* dvp-opc.c (parse_vif_unpackloc,insert_vif_unpackloc): Delete.
[deliverable/binutils-gdb.git] / gdb / dve3900-rom.c
CommitLineData
7e9576e0
MA
1/* Remote debugging interface for Densan DVE-R3900 ROM monitor for
2 GDB, the GNU debugger.
3 Copyright 1997 Free Software Foundation, Inc.
4
5This file is part of GDB.
6
7This program is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
11
12This program is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with this program; if not, write to the Free Software
19Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21#include "defs.h"
22#include "gdbcore.h"
23#include "target.h"
24#include "monitor.h"
25#include "serial.h"
1a31a33a
MA
26#include "inferior.h"
27#include "command.h"
28#include "gdb_string.h"
29#include <time.h>
30
d8365eee
MA
31/* Type of function passed to bfd_map_over_sections. */
32
33typedef void (*section_map_func) PARAMS ((bfd *abfd, asection *sect, PTR obj));
34
1a31a33a
MA
35/* Packet escape character used by Densan monitor. */
36
37#define PESC 0xdc
38
39/* Maximum packet size. This is actually smaller than necessary
40 just to be safe. */
41
42#define MAXPSIZE 1024
43
44/* External functions. */
45
46extern void report_transfer_performance PARAMS ((unsigned long,
47 time_t, time_t));
48
49/* Certain registers are "bitmapped", in that the monitor can only display
50 them or let the user modify them as a series of named bitfields.
51 This structure describes a field in a bitmapped register. */
52
53struct bit_field
54{
55 char *prefix; /* string appearing before the value */
56 char *suffix; /* string appearing after the value */
57 char *user_name; /* name used by human when entering field value */
58 int length; /* number of bits in the field */
59 int start; /* starting (least significant) bit number of field */
60};
61
62/* Local functions for register manipulation. */
63
64static void r3900_supply_register PARAMS ((char *regname, int regnamelen,
65 char *val, int vallen));
66static void fetch_bad_vaddr PARAMS ((void));
67static unsigned long fetch_fields PARAMS ((struct bit_field *bf));
68static void fetch_bitmapped_register PARAMS ((int regno,
69 struct bit_field *bf));
70static void r3900_fetch_registers PARAMS ((int regno));
71static void store_bitmapped_register PARAMS ((int regno,
72 struct bit_field *bf));
73static void r3900_store_registers PARAMS ((int regno));
74
75/* Local functions for fast binary loading. */
76
77static void write_long PARAMS ((char *buf, long n));
78static void write_long_le PARAMS ((char *buf, long n));
79static int debug_readchar PARAMS ((int hex));
80static void debug_write PARAMS ((unsigned char *buf, int buflen));
81static void ignore_packet PARAMS ((void));
82static void send_packet PARAMS ((char type, unsigned char *buf, int buflen,
83 int seq));
84static void process_read_request PARAMS ((unsigned char *buf, int buflen));
85static void count_section PARAMS ((bfd *abfd, asection *s,
86 unsigned int *section_count));
87static void load_section PARAMS ((bfd *abfd, asection *s,
88 unsigned int *data_count));
89static void r3900_load PARAMS ((char *filename, int from_tty));
90
91/* Miscellaneous local functions. */
7e9576e0
MA
92
93static void r3900_open PARAMS ((char *args, int from_tty));
94
1a31a33a 95
7e9576e0
MA
96/* Pointers to static functions in monitor.c for fetching and storing
97 registers. We can't use these function in certain cases where the Densan
98 monitor acts perversely: for registers that it displays in bit-map
99 format, and those that can't be modified at all. In those cases
100 we have to use our own functions to fetch and store their values. */
101
102static void (*orig_monitor_fetch_registers) PARAMS ((int regno));
103static void (*orig_monitor_store_registers) PARAMS ((int regno));
104
1a31a33a
MA
105/* Pointer to static function in monitor. for loading programs.
106 We use this function for loading S-records via the serial link. */
107
108static void (*orig_monitor_load) PARAMS ((char *file, int from_tty));
109
110/* This flag is set if a fast ethernet download should be used. */
111
112static int ethernet = 0;
7e9576e0
MA
113
114/* This array of registers needs to match the indexes used by GDB. The
115 whole reason this exists is because the various ROM monitors use
116 different names than GDB does, and don't support all the registers
117 either. */
118
119static char *r3900_regnames[NUM_REGS] =
120{
121 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
122 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
123 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
124 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
125
126 "S", /* PS_REGNUM */
127 "l", /* LO_REGNUM */
128 "h", /* HI_REGNUM */
129 "B", /* BADVADDR_REGNUM */
130 "Pcause", /* CAUSE_REGNUM */
131 "p" /* PC_REGNUM */
132};
133
134
135/* Table of register names produced by monitor's register dump command. */
136
137static struct reg_entry
138{
139 char *name;
140 int regno;
141} reg_table[] =
142{
143 { "r0_zero", 0 }, { "r1_at", 1 }, { "r2_v0", 2 }, { "r3_v1", 3 },
144 { "r4_a0", 4 }, { "r5_a1", 5 }, { "r6_a2", 6 }, { "r7_a3", 7 },
145 { "r8_t0", 8 }, { "r9_t1", 9 }, { "r10_t2", 10 }, { "r11_t3", 11 },
146 { "r12_t4", 12 }, { "r13_t5", 13 }, { "r14_t6", 14 }, { "r15_t7", 15 },
147 { "r16_s0", 16 }, { "r17_s1", 17 }, { "r18_s2", 18 }, { "r19_s3", 19 },
148 { "r20_s4", 20 }, { "r21_s5", 21 }, { "r22_s6", 22 }, { "r23_s7", 23 },
149 { "r24_t8", 24 }, { "r25_t9", 25 }, { "r26_k0", 26 }, { "r27_k1", 27 },
150 { "r28_gp", 28 }, { "r29_sp", 29 }, { "r30_fp", 30 }, { "r31_ra", 31 },
151 { "HI", HI_REGNUM },
152 { "LO", LO_REGNUM },
153 { "PC", PC_REGNUM },
154 { "BadV", BADVADDR_REGNUM },
155 { NULL, 0 }
156};
157
158
7e9576e0
MA
159/* The monitor displays the cache register along with the status register,
160 as if they were a single register. So when we want to fetch the
161 status register, parse but otherwise ignore the fields of the
162 cache register that the monitor displays. Register fields that should
163 be ignored have a length of zero in the tables below. */
164
165static struct bit_field status_fields [] =
166{
167 /* Status register portion */
168 { "SR[<CU=", " ", "cu", 4, 28 },
169 { "RE=", " ", "re", 1, 25 },
170 { "BEV=", " ", "bev", 1, 22 },
171 { "TS=", " ", "ts", 1, 21 },
172 { "Nmi=", " ", "nmi", 1, 20 },
173 { "INT=", " ", "int", 6, 10 },
174 { "SW=", ">]", "sw", 2, 8 },
175 { "[<KUO=", " ", "kuo", 1, 5 },
176 { "IEO=", " ", "ieo", 1, 4 },
177 { "KUP=", " ", "kup", 1, 3 },
178 { "IEP=", " ", "iep", 1, 2 },
179 { "KUC=", " ", "kuc", 1, 1 },
180 { "IEC=", ">]", "iec", 1, 0 },
181
182 /* Cache register portion (dummy for parsing only) */
183 { "CR[<IalO="," ", "ialo", 0, 13 },
184 { "DalO=", " ", "dalo", 0, 12 },
185 { "IalP=", " ", "ialp", 0, 11 },
186 { "DalP=", " ", "dalp", 0, 10 },
187 { "IalC=", " ", "ialc", 0, 9 },
188 { "DalC=", ">] ", "dalc", 0, 8 },
189
190 { NULL, NULL, 0, 0 } /* end of table marker */
191};
192
193
d8365eee 194#if 0 /* FIXME: Enable when we add support for modifying cache register. */
7e9576e0
MA
195static struct bit_field cache_fields [] =
196{
197 /* Status register portion (dummy for parsing only) */
198 { "SR[<CU=", " ", "cu", 0, 28 },
199 { "RE=", " ", "re", 0, 25 },
200 { "BEV=", " ", "bev", 0, 22 },
201 { "TS=", " ", "ts", 0, 21 },
202 { "Nmi=", " ", "nmi", 0, 20 },
203 { "INT=", " ", "int", 0, 10 },
204 { "SW=", ">]", "sw", 0, 8 },
205 { "[<KUO=", " ", "kuo", 0, 5 },
206 { "IEO=", " ", "ieo", 0, 4 },
207 { "KUP=", " ", "kup", 0, 3 },
208 { "IEP=", " ", "iep", 0, 2 },
209 { "KUC=", " ", "kuc", 0, 1 },
210 { "IEC=", ">]", "iec", 0, 0 },
211
212 /* Cache register portion */
213 { "CR[<IalO="," ", "ialo", 1, 13 },
214 { "DalO=", " ", "dalo", 1, 12 },
215 { "IalP=", " ", "ialp", 1, 11 },
216 { "DalP=", " ", "dalp", 1, 10 },
217 { "IalC=", " ", "ialc", 1, 9 },
218 { "DalC=", ">] ", "dalc", 1, 8 },
219
220 { NULL, NULL, NULL, 0, 0 } /* end of table marker */
221};
d8365eee
MA
222#endif
223
7e9576e0
MA
224
225static struct bit_field cause_fields[] =
226{
227 { "<BD=", " ", "bd", 1, 31 },
228 { "CE=", " ", "ce", 2, 28 },
229 { "IP=", " ", "ip", 6, 10 },
230 { "SW=", " ", "sw", 2, 8 },
231 { "EC=", ">]" , "ec", 5, 2 },
232
233 { NULL, NULL, NULL, 0, 0 } /* end of table marker */
234};
235
236
1a31a33a
MA
237/* The monitor prints register values in the form
238
239 regname = xxxx xxxx
240
241 We look up the register name in a table, and remove the embedded space in
242 the hex value before passing it to monitor_supply_register. */
243
244static void
245r3900_supply_register (regname, regnamelen, val, vallen)
246 char *regname;
247 int regnamelen;
248 char *val;
249 int vallen;
250{
251 int regno = -1;
252 int i;
253 char valbuf[10];
254 char *p;
255
256 /* Perform some sanity checks on the register name and value. */
257 if (regnamelen < 2 || regnamelen > 7 || vallen != 9)
258 return;
259
260 /* Look up the register name. */
261 for (i = 0; reg_table[i].name != NULL; i++)
262 {
263 int rlen = strlen (reg_table[i].name);
264 if (rlen == regnamelen && strncmp (regname, reg_table[i].name, rlen) == 0)
265 {
266 regno = reg_table[i].regno;
267 break;
268 }
269 }
270 if (regno == -1)
271 return;
272
273 /* Copy the hex value to a buffer and eliminate the embedded space. */
274 for (i = 0, p = valbuf; i < vallen; i++)
275 if (val[i] != ' ')
276 *p++ = val[i];
277 *p = '\0';
278
279 monitor_supply_register (regno, valbuf);
280}
281
d8365eee 282
1a31a33a
MA
283/* Fetch the BadVaddr register. Unlike the other registers, this
284 one can't be modified, and the monitor won't even prompt to let
285 you modify it. */
286
287static void
288fetch_bad_vaddr()
289{
290 char buf[20];
291
292 monitor_printf ("xB\r");
293 monitor_expect ("BadV=", NULL, 0);
294 monitor_expect_prompt (buf, sizeof(buf));
295 monitor_supply_register (BADVADDR_REGNUM, buf);
296}
297
298
7e9576e0
MA
299/* Read a series of bit fields from the monitor, and return their
300 combined binary value. */
301
302static unsigned long
1a31a33a 303fetch_fields (bf)
7e9576e0
MA
304 struct bit_field *bf;
305{
306 char buf[20];
7e9576e0
MA
307 unsigned long val = 0;
308 unsigned long bits;
309
310 for ( ; bf->prefix != NULL; bf++)
311 {
312 monitor_expect (bf->prefix, NULL, 0); /* get prefix */
313 monitor_expect (bf->suffix, buf, sizeof (buf)); /* hex value, suffix */
314 if (bf->length != 0)
315 {
316 bits = strtoul (buf, NULL, 16); /* get field value */
317 bits &= ((1 << bf->length) - 1); /* mask out useless bits */
318 val |= bits << bf->start; /* insert into register */
319 }
320
321 }
322
323 return val;
324}
325
d8365eee 326
7e9576e0 327static void
1a31a33a 328fetch_bitmapped_register (regno, bf)
7e9576e0
MA
329 int regno;
330 struct bit_field *bf;
331{
7e9576e0 332 unsigned long val;
7e9576e0
MA
333 unsigned char regbuf[MAX_REGISTER_RAW_SIZE];
334
335 monitor_printf ("x%s\r", r3900_regnames[regno]);
1a31a33a 336 val = fetch_fields (bf);
7e9576e0
MA
337 monitor_printf (".\r");
338 monitor_expect_prompt (NULL, 0);
339
340 /* supply register stores in target byte order, so swap here */
341
342 store_unsigned_integer (regbuf, REGISTER_RAW_SIZE (regno), val);
343 supply_register (regno, regbuf);
344
345}
346
d8365eee 347
7e9576e0
MA
348/* Fetch all registers (if regno is -1), or one register from the
349 monitor. For most registers, we can use the generic monitor_
350 monitor_fetch_registers function. But others are displayed in
d8365eee 351 a very unusual fashion by the monitor, and must be handled specially. */
7e9576e0
MA
352
353static void
354r3900_fetch_registers (regno)
355 int regno;
356{
357 switch (regno)
358 {
359 case BADVADDR_REGNUM:
1a31a33a 360 fetch_bad_vaddr ();
7e9576e0
MA
361 return;
362 case PS_REGNUM:
1a31a33a 363 fetch_bitmapped_register (PS_REGNUM, status_fields);
7e9576e0
MA
364 return;
365 case CAUSE_REGNUM:
1a31a33a 366 fetch_bitmapped_register (CAUSE_REGNUM, cause_fields);
7e9576e0
MA
367 return;
368 default:
369 orig_monitor_fetch_registers (regno);
370 }
371}
372
373
374/* Write the new value of the bitmapped register to the monitor. */
375
376static void
1a31a33a 377store_bitmapped_register (regno, bf)
7e9576e0
MA
378 int regno;
379 struct bit_field *bf;
380{
381 unsigned long oldval, newval;
382
383 /* Fetch the current value of the register. */
384 monitor_printf ("x%s\r", r3900_regnames[regno]);
1a31a33a 385 oldval = fetch_fields (bf);
7e9576e0
MA
386 newval = read_register (regno);
387
388 /* To save time, write just the fields that have changed. */
389 for ( ; bf->prefix != NULL; bf++)
390 {
391 if (bf->length != 0)
392 {
393 unsigned long oldbits, newbits, mask;
394
395 mask = (1 << bf->length) - 1;
396 oldbits = (oldval >> bf->start) & mask;
397 newbits = (newval >> bf->start) & mask;
398 if (oldbits != newbits)
399 monitor_printf ("%s %x ", bf->user_name, newbits);
400 }
401 }
402
403 monitor_printf (".\r");
404 monitor_expect_prompt (NULL, 0);
405}
406
d8365eee 407
7e9576e0
MA
408static void
409r3900_store_registers (regno)
410 int regno;
411{
412 switch (regno)
413 {
414 case PS_REGNUM:
1a31a33a 415 store_bitmapped_register (PS_REGNUM, status_fields);
7e9576e0
MA
416 return;
417 case CAUSE_REGNUM:
1a31a33a 418 store_bitmapped_register (CAUSE_REGNUM, cause_fields);
7e9576e0
MA
419 return;
420 default:
421 orig_monitor_store_registers (regno);
422 }
423}
424
1a31a33a
MA
425
426/* Write a 4-byte integer to the buffer in big-endian order. */
427
7e9576e0 428static void
1a31a33a
MA
429write_long (buf, n)
430 char *buf;
431 long n;
432{
433 buf[0] = (n >> 24) & 0xff;
434 buf[1] = (n >> 16) & 0xff;
435 buf[2] = (n >> 8) & 0xff;
436 buf[3] = n & 0xff;
437}
438
439
440/* Write a 4-byte integer to the buffer in little-endian order. */
441
442static void
443write_long_le (buf, n)
444 char *buf;
445 long n;
446{
447 buf[0] = n & 0xff;
448 buf[1] = (n >> 8) & 0xff;
449 buf[2] = (n >> 16) & 0xff;
450 buf[3] = (n >> 24) & 0xff;
451}
452
453
454/* Read a character from the monitor. If remote debugging is on,
455 print the received character. If HEX is non-zero, print the
d8365eee 456 character in hexadecimal; otherwise, print it in ASCII. */
1a31a33a
MA
457
458static int
459debug_readchar (hex)
460 int hex;
461{
462 char buf [10];
463 int c = monitor_readchar ();
464
465 if (remote_debug > 0)
466 {
467 if (hex)
468 sprintf (buf, "[%02x]", c & 0xff);
469 else if (c == '\0')
470 strcpy (buf, "\\0");
471 else
472 {
473 buf[0] = c;
474 buf[1] = '\0';
475 }
476 puts_debug ("Read -->", buf, "<--");
477 }
478 return c;
479}
480
481
482/* Send a buffer of characters to the monitor. If remote debugging is on,
483 print the sent buffer in hex. */
484
485static void
486debug_write (buf, buflen)
487 unsigned char *buf;
488 int buflen;
489{
490 char s[10];
491
492 monitor_write (buf, buflen);
493
494 if (remote_debug > 0)
495 {
496 while (buflen-- > 0)
497 {
498 sprintf (s, "[%02x]", *buf & 0xff);
499 puts_debug ("Sent -->", s, "<--");
500 buf++;
501 }
502 }
503}
504
505
506/* Ignore a packet sent to us by the monitor. It send packets
507 when its console is in "communications interface" mode. A packet
508 is of this form:
509
510 start of packet flag (one byte: 0xdc)
511 packet type (one byte)
512 length (low byte)
513 length (high byte)
514 data (length bytes)
d8365eee
MA
515
516 The last two bytes of the data field are a checksum, but we don't
517 bother to verify it.
1a31a33a
MA
518*/
519
520static void
521ignore_packet ()
522{
523 int c;
524 int len;
525
526 /* Ignore lots of trash (messages about section addresses, for example)
527 until we see the start of a packet. */
528 for (len = 0; len < 256; len++)
529 {
530 c = debug_readchar (0);
531 if (c == PESC)
532 break;
533 }
534 if (len == 8)
535 error ("Packet header byte not found; %02x seen instead.", c);
536
537 /* Read the packet type and length. */
538 c = debug_readchar (1); /* type */
539
540 c = debug_readchar (1); /* low byte of length */
541 len = c & 0xff;
542
543 c = debug_readchar (1); /* high byte of length */
544 len += (c & 0xff) << 8;
545
546 /* Ignore the rest of the packet. */
547 while (len-- > 0)
548 c = debug_readchar (1);
549}
550
551
d8365eee
MA
552/* Encapsulate some data into a packet and send it to the monitor.
553
554 The 'p' packet is a special case. This is a packet we send
555 in response to a read ('r') packet from the monitor. This function
556 appends a one-byte sequence number to the data field of such a packet.
557*/
1a31a33a
MA
558
559static void
560send_packet (type, buf, buflen, seq)
561 char type;
562 unsigned char *buf;
563 int buflen, seq;
564{
565 unsigned char hdr[4];
566 int len = buflen;
567 int sum, i;
568
569 /* If this is a 'p' packet, add one byte for a sequence number. */
570 if (type == 'p')
571 len++;
572
573 /* If the buffer has a non-zero length, add two bytes for a checksum. */
574 if (len > 0)
575 len += 2;
576
577 /* Write the packet header. */
578 hdr[0] = PESC;
579 hdr[1] = type;
580 hdr[2] = len & 0xff;
581 hdr[3] = (len >> 8) & 0xff;
582 debug_write (hdr, sizeof (hdr));
583
584 if (len)
585 {
586 /* Write the packet data. */
587 debug_write (buf, buflen);
588
589 /* Write the sequence number if this is a 'p' packet. */
590 if (type == 'p')
591 {
592 hdr[0] = seq;
593 debug_write (hdr, 1);
594 }
595
596 /* Write the checksum. */
597 sum = 0;
598 for (i = 0; i < buflen; i++)
599 {
600 int tmp = (buf[i] & 0xff);
601 if (i & 1)
602 sum += tmp;
603 else
604 sum += tmp << 8;
605 }
606 if (type == 'p')
607 {
608 if (buflen & 1)
609 sum += (seq & 0xff);
610 else
611 sum += (seq & 0xff) << 8;
612 }
613 sum = (sum & 0xffff) + ((sum >> 16) & 0xffff);
614 sum += (sum >> 16) & 1;
615 sum = ~sum;
616
617 hdr[0] = (sum >> 8) & 0xff;
618 hdr[1] = sum & 0xff;
619 debug_write (hdr, 2);
620 }
621}
622
623
624/* Respond to an expected read request from the monitor by sending
d8365eee
MA
625 data in chunks. Handle all acknowledgements and handshaking packets.
626
627 The monitor expects a response consisting of a one or more 'p' packets,
628 each followed by a portion of the data requested. The 'p' packet
629 contains only a four-byte integer, the value of which is the number
630 of bytes of data we are about to send. Following the 'p' packet,
631 the monitor expects the data bytes themselves in raw, unpacketized,
632 form, without even a checksum.
633 */
1a31a33a
MA
634
635static void
636process_read_request (buf, buflen)
637 unsigned char *buf;
638 int buflen;
639{
640 unsigned char len[4];
641 int i, chunk;
642 unsigned char seq;
643
d8365eee
MA
644 /* Discard the read request. FIXME: we have to hope it's for
645 the exact number of bytes we want to send; should check for this. */
1a31a33a
MA
646 ignore_packet ();
647
648 for (i = chunk = 0, seq = 0; i < buflen; i += chunk, seq++)
649 {
d8365eee 650 /* Don't send more than MAXPSIZE bytes at a time. */
1a31a33a
MA
651 chunk = buflen - i;
652 if (chunk > MAXPSIZE)
653 chunk = MAXPSIZE;
654
655 /* Write a packet containing the number of bytes we are sending. */
656 write_long_le (len, chunk);
657 send_packet ('p', len, sizeof (len), seq);
658
659 /* Write the data in raw form following the packet. */
660 debug_write (&buf[i], chunk);
661
662 /* Discard the ACK packet. */
663 ignore_packet ();
664 }
665
666 /* Send an "end of data" packet. */
667 send_packet ('e', "", 0, 0);
668}
669
670
671/* Count loadable sections (helper function for r3900_load). */
672
673static void
674count_section (abfd, s, section_count)
675 bfd *abfd;
676 asection *s;
677 unsigned int *section_count;
7e9576e0 678{
1a31a33a
MA
679 if (s->flags & SEC_LOAD && bfd_section_size (abfd, s) != 0)
680 (*section_count)++;
681}
7e9576e0 682
1a31a33a
MA
683
684/* Load a single BFD section (helper function for r3900_load).
685
686 WARNING: this code is filled with assumptions about how
687 the Densan monitor loads programs. The monitor issues
688 packets containing read requests, but rather than respond
689 to them in an general way, we expect them to following
690 a certain pattern.
691
692 For example, we know that the monitor will start loading by
693 issuing an 8-byte read request for the binary file header.
694 We know this is coming and ignore the actual contents
695 of the read request packet.
696*/
697
698static void
699load_section (abfd, s, data_count)
700 bfd *abfd;
701 asection *s;
702 unsigned int *data_count;
703{
704 if (s->flags & SEC_LOAD)
705 {
706 bfd_size_type section_size = bfd_section_size (abfd, s);
707 bfd_vma section_base = bfd_section_lma (abfd, s);
708 unsigned char *buffer;
709 unsigned char header[8];
710
711 /* Don't output zero-length sections. */
712 if (section_size == 0)
713 return;
714 if (data_count)
715 *data_count += section_size;
716
717 /* Print some fluff about the section being loaded. */
718 printf_filtered ("Loading section %s, size 0x%lx lma ",
719 bfd_section_name (abfd, s), (long)section_size);
720 print_address_numeric (section_base, 1, gdb_stdout);
721 printf_filtered ("\n");
722 gdb_flush (gdb_stdout);
723
724 /* Write the section header (location and size). */
725 write_long (&header[0], (long)section_base);
726 write_long (&header[4], (long)section_size);
727 process_read_request (header, sizeof (header));
728
729 /* Read the section contents into a buffer, write it out,
730 then free the buffer. */
731 buffer = (unsigned char *) xmalloc (section_size);
732 bfd_get_section_contents (abfd, s, buffer, 0, section_size);
733 process_read_request (buffer, section_size);
734 free (buffer);
735 }
736}
737
738
739/* When the ethernet is used as the console port on the Densan board,
740 we can use the "Rm" command to do a fast binary load. The format
741 of the download data is:
742
743 number of sections (4 bytes)
744 starting address (4 bytes)
745 repeat for each section:
746 location address (4 bytes)
747 section size (4 bytes)
748 binary data
749
750 The 4-byte fields are all in big-endian order.
751
752 Using this command is tricky because we have to put the monitor
753 into a special funky "communications interface" mode, in which
754 it sends and receives packets of data along with the normal prompt.
755 */
756
757static void
758r3900_load (filename, from_tty)
759 char *filename;
760 int from_tty;
761{
762 bfd *abfd;
763 unsigned int data_count = 0;
764 time_t start_time, end_time; /* for timing of download */
765 int section_count = 0;
766 unsigned char buffer[8];
767
768 /* If we are not using the ethernet, use the normal monitor load,
769 which sends S-records over the serial link. */
770 if (!ethernet)
771 {
772 orig_monitor_load (filename, from_tty);
773 return;
774 }
775
776 /* Open the file. */
777 if (filename == NULL || filename[0] == 0)
778 filename = get_exec_file (1);
779 abfd = bfd_openr (filename, 0);
780 if (!abfd)
781 error ("Unable to open file %s\n", filename);
782 if (bfd_check_format (abfd, bfd_object) == 0)
783 error ("File is not an object file\n");
784
785 /* Output the "vconsi" command to get the monitor in the communication
786 state where it will accept a load command. This will cause
787 the monitor to emit a packet before each prompt, so ignore the packet. */
788 monitor_printf ("vconsi\r");
789 ignore_packet ();
790 monitor_expect_prompt (NULL, 0);
791
792 /* Output the "Rm" (load) command and respond to the subsequent "open"
793 packet by sending an ACK packet. */
794 monitor_printf ("Rm\r");
795 ignore_packet ();
796 send_packet ('a', "", 0, 0);
797
798 /* Output the fast load header (number of sections and starting address). */
d8365eee
MA
799 bfd_map_over_sections ((bfd *) abfd, (section_map_func) count_section,
800 &section_count);
1a31a33a
MA
801 write_long (&buffer[0], (long)section_count);
802 if (exec_bfd)
803 write_long (&buffer[4], (long)bfd_get_start_address (exec_bfd));
804 else
805 write_long (&buffer[4], 0);
806 process_read_request (buffer, sizeof (buffer));
807
808 /* Output the section data. */
809 start_time = time (NULL);
d8365eee 810 bfd_map_over_sections (abfd, (section_map_func) load_section, &data_count);
1a31a33a
MA
811 end_time = time (NULL);
812
813 /* Acknowledge the close packet and put the monitor back into
814 "normal" mode so it won't send packets any more. */
815 ignore_packet ();
816 send_packet ('a', "", 0, 0);
817 monitor_expect_prompt (NULL, 0);
818 monitor_printf ("vconsx\r");
819 monitor_expect_prompt (NULL, 0);
820
d8365eee 821 /* Print start address and download performance information. */
1a31a33a
MA
822 printf_filtered ("Start address 0x%lx\n", (long)bfd_get_start_address (abfd));
823 report_transfer_performance (data_count, start_time, end_time);
7e9576e0
MA
824
825 /* Finally, make the PC point at the start address */
826 if (exec_bfd)
827 write_pc (bfd_get_start_address (exec_bfd));
828
829 inferior_pid = 0; /* No process now */
1a31a33a
MA
830
831 /* This is necessary because many things were based on the PC at the
832 time that we attached to the monitor, which is no longer valid
833 now that we have loaded new code (and just changed the PC).
834 Another way to do this might be to call normal_stop, except that
835 the stack may not be valid, and things would get horribly
836 confused... */
1a31a33a 837 clear_symtab_users ();
7e9576e0
MA
838}
839
840
7e9576e0
MA
841/* Commands to send to the monitor when first connecting:
842 * The bare carriage return forces a prompt from the monitor
d8365eee 843 (monitor doesn't prompt immediately after a reset).
1a31a33a
MA
844 * The "vconsx" switches the monitor back to interactive mode
845 in case an aborted download had left it in packet mode.
7e9576e0
MA
846 * The "Xtr" command causes subsequent "t" (trace) commands to display
847 the general registers only.
848 * The "Xxr" command does the same thing for the "x" (examine
849 registers) command.
850 * The "bx" command clears all breakpoints.
851*/
852
1a31a33a
MA
853static char *r3900_inits[] = {"\r", "vconsx\r", "Xtr\r", "Xxr\r", "bx\r", NULL};
854static char *dummy_inits[] = { NULL };
7e9576e0 855
d8365eee 856static struct target_ops r3900_ops;
7e9576e0
MA
857static struct monitor_ops r3900_cmds;
858
859static void
860r3900_open (args, from_tty)
861 char *args;
862 int from_tty;
863{
1a31a33a
MA
864 char buf[64];
865 int i;
866
7e9576e0 867 monitor_open (args, &r3900_cmds, from_tty);
1a31a33a
MA
868
869 /* We have to handle sending the init strings ourselves, because
870 the first two strings we send (carriage returns) may not be echoed
871 by the monitor, but the rest will be. */
872 monitor_printf_noecho ("\r\r");
873 for (i = 0; r3900_inits[i] != NULL; i++)
874 {
875 monitor_printf (r3900_inits[i]);
876 monitor_expect_prompt (NULL, 0);
877 }
878
879 /* Attempt to determine whether the console device is ethernet or serial.
880 This will tell us which kind of load to use (S-records over a serial
881 link, or the Densan fast binary multi-section format over the net). */
882
883 ethernet = 0;
884 monitor_printf ("v\r");
885 if (monitor_expect ("console device :", NULL, 0) != -1)
886 if (monitor_expect ("\n", buf, sizeof (buf)) != -1)
887 if (strstr (buf, "ethernet") != NULL)
888 ethernet = 1;
889 monitor_expect_prompt (NULL, 0);
7e9576e0
MA
890}
891
892void
893_initialize_r3900_rom ()
894{
352f9e9d 895 r3900_cmds.flags = MO_NO_ECHO_ON_OPEN |
7e9576e0 896 MO_ADDR_BITS_REMOVE |
352f9e9d 897 MO_CLR_BREAK_USES_ADDR |
d8365eee 898 MO_GETMEM_READ_SINGLE |
352f9e9d 899 MO_PRINT_PROGRAM_OUTPUT;
7e9576e0 900
1a31a33a 901 r3900_cmds.init = dummy_inits;
7e9576e0
MA
902 r3900_cmds.cont = "g\r";
903 r3900_cmds.step = "t\r";
29df6f4b
MA
904 r3900_cmds.set_break = "b %A\r"; /* COREADDR */
905 r3900_cmds.clr_break = "b %A,0\r"; /* COREADDR */
906 r3900_cmds.fill = "fx %A s %x %x\r"; /* COREADDR, len, val */
7e9576e0 907
29df6f4b
MA
908 r3900_cmds.setmem.cmdb = "sx %A %x\r"; /* COREADDR, val */
909 r3900_cmds.setmem.cmdw = "sh %A %x\r"; /* COREADDR, val */
910 r3900_cmds.setmem.cmdl = "sw %A %x\r"; /* COREADDR, val */
7e9576e0 911
29df6f4b
MA
912 r3900_cmds.getmem.cmdb = "sx %A\r"; /* COREADDR */
913 r3900_cmds.getmem.cmdw = "sh %A\r"; /* COREADDR */
914 r3900_cmds.getmem.cmdl = "sw %A\r"; /* COREADDR */
7e9576e0 915 r3900_cmds.getmem.resp_delim = " : ";
d8365eee
MA
916 r3900_cmds.getmem.term = " ";
917 r3900_cmds.getmem.term_cmd = ".\r";
7e9576e0
MA
918
919 r3900_cmds.setreg.cmd = "x%s %x\r"; /* regname, val */
920
921 r3900_cmds.getreg.cmd = "x%s\r"; /* regname */
922 r3900_cmds.getreg.resp_delim = "=";
923 r3900_cmds.getreg.term = " ";
924 r3900_cmds.getreg.term_cmd = ".\r";
925
926 r3900_cmds.dump_registers = "x\r";
927 r3900_cmds.register_pattern =
928 "\\([a-zA-Z0-9_]+\\) *=\\([0-9a-f]+ [0-9a-f]+\\b\\)";
929 r3900_cmds.supply_register = r3900_supply_register;
930 /* S-record download, via "keyboard port". */
931 r3900_cmds.load = "r0\r";
7e9576e0
MA
932 r3900_cmds.prompt = "#";
933 r3900_cmds.line_term = "\r";
934 r3900_cmds.target = &r3900_ops;
935 r3900_cmds.stopbits = SERIAL_1_STOPBITS;
936 r3900_cmds.regnames = r3900_regnames;
937 r3900_cmds.magic = MONITOR_OPS_MAGIC;
938
939 init_monitor_ops (&r3900_ops);
940
941 r3900_ops.to_shortname = "r3900";
942 r3900_ops.to_longname = "R3900 monitor";
943 r3900_ops.to_doc = "Debug using the DVE R3900 monitor.\n\
944Specify the serial device it is connected to (e.g. /dev/ttya).";
945 r3900_ops.to_open = r3900_open;
946
947 /* Override the functions to fetch and store registers. But save the
948 addresses of the default functions, because we will use those functions
949 for "normal" registers. */
950
951 orig_monitor_fetch_registers = r3900_ops.to_fetch_registers;
952 orig_monitor_store_registers = r3900_ops.to_store_registers;
953 r3900_ops.to_fetch_registers = r3900_fetch_registers;
954 r3900_ops.to_store_registers = r3900_store_registers;
955
1a31a33a
MA
956 /* Override the load function, but save the address of the default
957 function to use when loading S-records over a serial link. */
958 orig_monitor_load = r3900_ops.to_load;
959 r3900_ops.to_load = r3900_load;
960
7e9576e0
MA
961 add_target (&r3900_ops);
962}
This page took 0.082199 seconds and 4 git commands to generate.