Call forget_cached_source_info to clear the stale source cache
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
42a4f53d 3 Copyright (C) 2003-2019 Free Software Foundation, Inc.
cfc14b3a
MK
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
cfc14b3a
MK
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
cfc14b3a
MK
21
22#include "defs.h"
d55e5aa6 23#include "dwarf2expr.h"
4de283e4
TT
24#include "dwarf2.h"
25#include "frame.h"
cfc14b3a
MK
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
4de283e4 30#include "symtab.h"
cfc14b3a
MK
31#include "objfiles.h"
32#include "regcache.h"
f2da6b3a 33#include "value.h"
4de283e4 34#include "record.h"
cfc14b3a 35
4de283e4
TT
36#include "complaints.h"
37#include "dwarf2-frame.h"
38#include "dwarf2read.h"
39#include "ax.h"
40#include "dwarf2loc.h"
41#include "dwarf2-frame-tailcall.h"
1c90d9f0 42#if GDB_SELF_TEST
268a13a5 43#include "gdbsupport/selftest.h"
1c90d9f0
YQ
44#include "selftest-arch.h"
45#endif
cfc14b3a 46
39ef2f62
CB
47#include <algorithm>
48
ae0d2f24
UW
49struct comp_unit;
50
cfc14b3a
MK
51/* Call Frame Information (CFI). */
52
53/* Common Information Entry (CIE). */
54
55struct dwarf2_cie
56{
ae0d2f24
UW
57 /* Computation Unit for this CIE. */
58 struct comp_unit *unit;
59
cfc14b3a
MK
60 /* Offset into the .debug_frame section where this CIE was found.
61 Used to identify this CIE. */
62 ULONGEST cie_pointer;
63
64 /* Constant that is factored out of all advance location
65 instructions. */
66 ULONGEST code_alignment_factor;
67
68 /* Constants that is factored out of all offset instructions. */
69 LONGEST data_alignment_factor;
70
71 /* Return address column. */
72 ULONGEST return_address_register;
73
74 /* Instruction sequence to initialize a register set. */
f664829e
DE
75 const gdb_byte *initial_instructions;
76 const gdb_byte *end;
cfc14b3a 77
303b6f5d
DJ
78 /* Saved augmentation, in case it's needed later. */
79 char *augmentation;
80
cfc14b3a 81 /* Encoding of addresses. */
852483bc 82 gdb_byte encoding;
cfc14b3a 83
ae0d2f24
UW
84 /* Target address size in bytes. */
85 int addr_size;
86
0963b4bd 87 /* Target pointer size in bytes. */
8da614df
CV
88 int ptr_size;
89
7131cb6e
RH
90 /* True if a 'z' augmentation existed. */
91 unsigned char saw_z_augmentation;
92
56c987f6
AO
93 /* True if an 'S' augmentation existed. */
94 unsigned char signal_frame;
95
303b6f5d
DJ
96 /* The version recorded in the CIE. */
97 unsigned char version;
2dc7f7b3
TT
98
99 /* The segment size. */
100 unsigned char segment_size;
b01c8410 101};
303b6f5d 102
b01c8410
PP
103struct dwarf2_cie_table
104{
105 int num_entries;
106 struct dwarf2_cie **entries;
cfc14b3a
MK
107};
108
109/* Frame Description Entry (FDE). */
110
111struct dwarf2_fde
112{
113 /* CIE for this FDE. */
114 struct dwarf2_cie *cie;
115
116 /* First location associated with this FDE. */
117 CORE_ADDR initial_location;
118
119 /* Number of bytes of program instructions described by this FDE. */
120 CORE_ADDR address_range;
121
122 /* Instruction sequence. */
f664829e
DE
123 const gdb_byte *instructions;
124 const gdb_byte *end;
cfc14b3a 125
4bf8967c
AS
126 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
127 section. */
128 unsigned char eh_frame_p;
b01c8410 129};
4bf8967c 130
b01c8410
PP
131struct dwarf2_fde_table
132{
133 int num_entries;
134 struct dwarf2_fde **entries;
cfc14b3a
MK
135};
136
ae0d2f24
UW
137/* A minimal decoding of DWARF2 compilation units. We only decode
138 what's needed to get to the call frame information. */
139
140struct comp_unit
141{
142 /* Keep the bfd convenient. */
143 bfd *abfd;
144
145 struct objfile *objfile;
146
ae0d2f24 147 /* Pointer to the .debug_frame section loaded into memory. */
d521ce57 148 const gdb_byte *dwarf_frame_buffer;
ae0d2f24
UW
149
150 /* Length of the loaded .debug_frame section. */
c098b58b 151 bfd_size_type dwarf_frame_size;
ae0d2f24
UW
152
153 /* Pointer to the .debug_frame section. */
154 asection *dwarf_frame_section;
155
156 /* Base for DW_EH_PE_datarel encodings. */
157 bfd_vma dbase;
158
159 /* Base for DW_EH_PE_textrel encodings. */
160 bfd_vma tbase;
161};
162
ac56253d
TT
163static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
164 CORE_ADDR *out_offset);
4fc771b8
DJ
165
166static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
167 int eh_frame_p);
ae0d2f24
UW
168
169static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e 170 int ptr_len, const gdb_byte *buf,
ae0d2f24
UW
171 unsigned int *bytes_read_ptr,
172 CORE_ADDR func_base);
cfc14b3a
MK
173\f
174
3c3bb058 175/* See dwarf2-frame.h. */
491144b5 176bool dwarf2_frame_unwinders_enabled_p = true;
3c3bb058 177
cfc14b3a
MK
178/* Store the length the expression for the CFA in the `cfa_reg' field,
179 which is unused in that case. */
180#define cfa_exp_len cfa_reg
181
afe37d6b
YQ
182dwarf2_frame_state::dwarf2_frame_state (CORE_ADDR pc_, struct dwarf2_cie *cie)
183 : pc (pc_), data_align (cie->data_alignment_factor),
184 code_align (cie->code_alignment_factor),
185 retaddr_column (cie->return_address_register)
cfc14b3a 186{
afe37d6b 187}
cfc14b3a
MK
188\f
189
190/* Helper functions for execute_stack_op. */
191
192static CORE_ADDR
192ca6d8 193read_addr_from_reg (struct frame_info *this_frame, int reg)
cfc14b3a 194{
4a4e5149 195 struct gdbarch *gdbarch = get_frame_arch (this_frame);
0fde2c53 196 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
f2da6b3a 197
2ed3c037 198 return address_from_register (regnum, this_frame);
cfc14b3a
MK
199}
200
a6a5a945
LM
201/* Execute the required actions for both the DW_CFA_restore and
202DW_CFA_restore_extended instructions. */
203static void
204dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
205 struct dwarf2_frame_state *fs, int eh_frame_p)
206{
207 ULONGEST reg;
208
a6a5a945 209 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
1c90d9f0 210 fs->regs.alloc_regs (reg + 1);
a6a5a945
LM
211
212 /* Check if this register was explicitly initialized in the
213 CIE initial instructions. If not, default the rule to
214 UNSPECIFIED. */
780942fc 215 if (reg < fs->initial.reg.size ())
a6a5a945
LM
216 fs->regs.reg[reg] = fs->initial.reg[reg];
217 else
218 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
219
220 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
0fde2c53
DE
221 {
222 int regnum = dwarf_reg_to_regnum (gdbarch, reg);
223
b98664d3 224 complaint (_("\
a6a5a945 225incomplete CFI data; DW_CFA_restore unspecified\n\
5af949e3 226register %s (#%d) at %s"),
0fde2c53
DE
227 gdbarch_register_name (gdbarch, regnum), regnum,
228 paddress (gdbarch, fs->pc));
229 }
a6a5a945
LM
230}
231
192ca6d8 232class dwarf_expr_executor : public dwarf_expr_context
9e8b7a03 233{
192ca6d8
TT
234 public:
235
236 struct frame_info *this_frame;
237
632e107b 238 CORE_ADDR read_addr_from_reg (int reg) override
192ca6d8
TT
239 {
240 return ::read_addr_from_reg (this_frame, reg);
241 }
242
632e107b 243 struct value *get_reg_value (struct type *type, int reg) override
192ca6d8
TT
244 {
245 struct gdbarch *gdbarch = get_frame_arch (this_frame);
246 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
247
248 return value_from_register (type, regnum, this_frame);
249 }
250
632e107b 251 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
192ca6d8
TT
252 {
253 read_memory (addr, buf, len);
254 }
befbff86 255
632e107b 256 void get_frame_base (const gdb_byte **start, size_t *length) override
befbff86
TT
257 {
258 invalid ("DW_OP_fbreg");
259 }
260
261 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
262 union call_site_parameter_u kind_u,
632e107b 263 int deref_size) override
befbff86 264 {
216f72a1 265 invalid ("DW_OP_entry_value");
befbff86
TT
266 }
267
632e107b 268 CORE_ADDR get_object_address () override
befbff86
TT
269 {
270 invalid ("DW_OP_push_object_address");
271 }
272
632e107b 273 CORE_ADDR get_frame_cfa () override
befbff86
TT
274 {
275 invalid ("DW_OP_call_frame_cfa");
276 }
277
632e107b 278 CORE_ADDR get_tls_address (CORE_ADDR offset) override
befbff86
TT
279 {
280 invalid ("DW_OP_form_tls_address");
281 }
282
632e107b 283 void dwarf_call (cu_offset die_offset) override
befbff86
TT
284 {
285 invalid ("DW_OP_call*");
286 }
287
a6b786da
KB
288 struct value *dwarf_variable_value (sect_offset sect_off) override
289 {
290 invalid ("DW_OP_GNU_variable_value");
291 }
292
632e107b 293 CORE_ADDR get_addr_index (unsigned int index) override
befbff86 294 {
336d760d 295 invalid ("DW_OP_addrx or DW_OP_GNU_addr_index");
befbff86
TT
296 }
297
298 private:
299
300 void invalid (const char *op) ATTRIBUTE_NORETURN
301 {
302 error (_("%s is invalid in this context"), op);
303 }
9e8b7a03
JK
304};
305
cfc14b3a 306static CORE_ADDR
0d45f56e 307execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
ac56253d
TT
308 CORE_ADDR offset, struct frame_info *this_frame,
309 CORE_ADDR initial, int initial_in_stack_memory)
cfc14b3a 310{
cfc14b3a
MK
311 CORE_ADDR result;
312
192ca6d8 313 dwarf_expr_executor ctx;
eb115069 314 scoped_value_mark free_values;
4a227398 315
192ca6d8 316 ctx.this_frame = this_frame;
718b9626
TT
317 ctx.gdbarch = get_frame_arch (this_frame);
318 ctx.addr_size = addr_size;
319 ctx.ref_addr_size = -1;
320 ctx.offset = offset;
cfc14b3a 321
595d2e30
TT
322 ctx.push_address (initial, initial_in_stack_memory);
323 ctx.eval (exp, len);
cfc14b3a 324
718b9626 325 if (ctx.location == DWARF_VALUE_MEMORY)
595d2e30 326 result = ctx.fetch_address (0);
718b9626 327 else if (ctx.location == DWARF_VALUE_REGISTER)
192ca6d8 328 result = ctx.read_addr_from_reg (value_as_long (ctx.fetch (0)));
f2c7657e 329 else
cec03d70
TT
330 {
331 /* This is actually invalid DWARF, but if we ever do run across
332 it somehow, we might as well support it. So, instead, report
333 it as unimplemented. */
3e43a32a
MS
334 error (_("\
335Not implemented: computing unwound register using explicit value operator"));
cec03d70 336 }
cfc14b3a 337
cfc14b3a
MK
338 return result;
339}
340\f
341
111c6489
JK
342/* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
343 PC. Modify FS state accordingly. Return current INSN_PTR where the
344 execution has stopped, one can resume it on the next call. */
345
346static const gdb_byte *
0d45f56e 347execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
9f6f94ff
TT
348 const gdb_byte *insn_end, struct gdbarch *gdbarch,
349 CORE_ADDR pc, struct dwarf2_frame_state *fs)
cfc14b3a 350{
ae0d2f24 351 int eh_frame_p = fde->eh_frame_p;
507a579c 352 unsigned int bytes_read;
e17a4113 353 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cfc14b3a
MK
354
355 while (insn_ptr < insn_end && fs->pc <= pc)
356 {
852483bc 357 gdb_byte insn = *insn_ptr++;
9fccedf7
DE
358 uint64_t utmp, reg;
359 int64_t offset;
cfc14b3a
MK
360
361 if ((insn & 0xc0) == DW_CFA_advance_loc)
362 fs->pc += (insn & 0x3f) * fs->code_align;
363 else if ((insn & 0xc0) == DW_CFA_offset)
364 {
365 reg = insn & 0x3f;
4fc771b8 366 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 367 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a 368 offset = utmp * fs->data_align;
1c90d9f0 369 fs->regs.alloc_regs (reg + 1);
05cbe71a 370 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
371 fs->regs.reg[reg].loc.offset = offset;
372 }
373 else if ((insn & 0xc0) == DW_CFA_restore)
374 {
cfc14b3a 375 reg = insn & 0x3f;
a6a5a945 376 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
377 }
378 else
379 {
380 switch (insn)
381 {
382 case DW_CFA_set_loc:
ae0d2f24 383 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
8da614df 384 fde->cie->ptr_size, insn_ptr,
ae0d2f24
UW
385 &bytes_read, fde->initial_location);
386 /* Apply the objfile offset for relocatable objects. */
387 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
388 SECT_OFF_TEXT (fde->cie->unit->objfile));
cfc14b3a
MK
389 insn_ptr += bytes_read;
390 break;
391
392 case DW_CFA_advance_loc1:
e17a4113 393 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
cfc14b3a
MK
394 fs->pc += utmp * fs->code_align;
395 insn_ptr++;
396 break;
397 case DW_CFA_advance_loc2:
e17a4113 398 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
cfc14b3a
MK
399 fs->pc += utmp * fs->code_align;
400 insn_ptr += 2;
401 break;
402 case DW_CFA_advance_loc4:
e17a4113 403 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
cfc14b3a
MK
404 fs->pc += utmp * fs->code_align;
405 insn_ptr += 4;
406 break;
407
408 case DW_CFA_offset_extended:
f664829e 409 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 410 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 411 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a 412 offset = utmp * fs->data_align;
1c90d9f0 413 fs->regs.alloc_regs (reg + 1);
05cbe71a 414 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
415 fs->regs.reg[reg].loc.offset = offset;
416 break;
417
418 case DW_CFA_restore_extended:
f664829e 419 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
a6a5a945 420 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
421 break;
422
423 case DW_CFA_undefined:
f664829e 424 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 425 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
1c90d9f0 426 fs->regs.alloc_regs (reg + 1);
05cbe71a 427 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
428 break;
429
430 case DW_CFA_same_value:
f664829e 431 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 432 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
1c90d9f0 433 fs->regs.alloc_regs (reg + 1);
05cbe71a 434 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
435 break;
436
437 case DW_CFA_register:
f664829e 438 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 439 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 440 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
4fc771b8 441 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
1c90d9f0 442 fs->regs.alloc_regs (reg + 1);
05cbe71a 443 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
444 fs->regs.reg[reg].loc.reg = utmp;
445 break;
446
447 case DW_CFA_remember_state:
448 {
449 struct dwarf2_frame_state_reg_info *new_rs;
450
1c90d9f0 451 new_rs = new dwarf2_frame_state_reg_info (fs->regs);
cfc14b3a
MK
452 fs->regs.prev = new_rs;
453 }
454 break;
455
456 case DW_CFA_restore_state:
457 {
458 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
459
50ea7769
MK
460 if (old_rs == NULL)
461 {
b98664d3 462 complaint (_("\
5af949e3
UW
463bad CFI data; mismatched DW_CFA_restore_state at %s"),
464 paddress (gdbarch, fs->pc));
50ea7769
MK
465 }
466 else
1c90d9f0 467 fs->regs = std::move (*old_rs);
cfc14b3a
MK
468 }
469 break;
470
471 case DW_CFA_def_cfa:
f664829e
DE
472 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
473 fs->regs.cfa_reg = reg;
474 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
475
476 if (fs->armcc_cfa_offsets_sf)
477 utmp *= fs->data_align;
478
2fd481e1
PP
479 fs->regs.cfa_offset = utmp;
480 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
481 break;
482
483 case DW_CFA_def_cfa_register:
f664829e
DE
484 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
485 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1
PP
486 eh_frame_p);
487 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
488 break;
489
490 case DW_CFA_def_cfa_offset:
f664829e 491 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
492
493 if (fs->armcc_cfa_offsets_sf)
494 utmp *= fs->data_align;
495
2fd481e1 496 fs->regs.cfa_offset = utmp;
cfc14b3a
MK
497 /* cfa_how deliberately not set. */
498 break;
499
a8504492
MK
500 case DW_CFA_nop:
501 break;
502
cfc14b3a 503 case DW_CFA_def_cfa_expression:
f664829e
DE
504 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
505 fs->regs.cfa_exp_len = utmp;
2fd481e1
PP
506 fs->regs.cfa_exp = insn_ptr;
507 fs->regs.cfa_how = CFA_EXP;
508 insn_ptr += fs->regs.cfa_exp_len;
cfc14b3a
MK
509 break;
510
511 case DW_CFA_expression:
f664829e 512 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 513 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
1c90d9f0 514 fs->regs.alloc_regs (reg + 1);
f664829e 515 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
b348037f
YQ
516 fs->regs.reg[reg].loc.exp.start = insn_ptr;
517 fs->regs.reg[reg].loc.exp.len = utmp;
05cbe71a 518 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
519 insn_ptr += utmp;
520 break;
521
a8504492 522 case DW_CFA_offset_extended_sf:
f664829e 523 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 524 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 525 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 526 offset *= fs->data_align;
1c90d9f0 527 fs->regs.alloc_regs (reg + 1);
05cbe71a 528 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
529 fs->regs.reg[reg].loc.offset = offset;
530 break;
531
46ea248b 532 case DW_CFA_val_offset:
f664829e 533 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
1c90d9f0 534 fs->regs.alloc_regs (reg + 1);
f664829e 535 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
536 offset = utmp * fs->data_align;
537 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
538 fs->regs.reg[reg].loc.offset = offset;
539 break;
540
541 case DW_CFA_val_offset_sf:
f664829e 542 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
1c90d9f0 543 fs->regs.alloc_regs (reg + 1);
f664829e 544 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
46ea248b
AO
545 offset *= fs->data_align;
546 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
547 fs->regs.reg[reg].loc.offset = offset;
548 break;
549
550 case DW_CFA_val_expression:
f664829e 551 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
1c90d9f0 552 fs->regs.alloc_regs (reg + 1);
f664829e 553 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
b348037f
YQ
554 fs->regs.reg[reg].loc.exp.start = insn_ptr;
555 fs->regs.reg[reg].loc.exp.len = utmp;
46ea248b
AO
556 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
557 insn_ptr += utmp;
558 break;
559
a8504492 560 case DW_CFA_def_cfa_sf:
f664829e
DE
561 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
562 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1 563 eh_frame_p);
f664829e 564 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1
PP
565 fs->regs.cfa_offset = offset * fs->data_align;
566 fs->regs.cfa_how = CFA_REG_OFFSET;
a8504492
MK
567 break;
568
569 case DW_CFA_def_cfa_offset_sf:
f664829e 570 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1 571 fs->regs.cfa_offset = offset * fs->data_align;
a8504492 572 /* cfa_how deliberately not set. */
cfc14b3a
MK
573 break;
574
575 case DW_CFA_GNU_args_size:
576 /* Ignored. */
f664829e 577 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
578 break;
579
58894217 580 case DW_CFA_GNU_negative_offset_extended:
f664829e 581 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 582 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
507a579c
PA
583 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
584 offset = utmp * fs->data_align;
1c90d9f0 585 fs->regs.alloc_regs (reg + 1);
58894217
JK
586 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
587 fs->regs.reg[reg].loc.offset = -offset;
588 break;
589
cfc14b3a 590 default:
b41c5a85
JW
591 if (insn >= DW_CFA_lo_user && insn <= DW_CFA_hi_user)
592 {
593 /* Handle vendor-specific CFI for different architectures. */
594 if (!gdbarch_execute_dwarf_cfa_vendor_op (gdbarch, insn, fs))
595 error (_("Call Frame Instruction op %d in vendor extension "
596 "space is not handled on this architecture."),
597 insn);
598 }
599 else
600 internal_error (__FILE__, __LINE__,
601 _("Unknown CFI encountered."));
cfc14b3a
MK
602 }
603 }
604 }
605
780942fc 606 if (fs->initial.reg.empty ())
111c6489
JK
607 {
608 /* Don't allow remember/restore between CIE and FDE programs. */
1c90d9f0 609 delete fs->regs.prev;
111c6489
JK
610 fs->regs.prev = NULL;
611 }
612
613 return insn_ptr;
cfc14b3a 614}
1c90d9f0
YQ
615
616#if GDB_SELF_TEST
617
618namespace selftests {
619
620/* Unit test to function execute_cfa_program. */
621
622static void
623execute_cfa_program_test (struct gdbarch *gdbarch)
624{
625 struct dwarf2_fde fde;
626 struct dwarf2_cie cie;
627
628 memset (&fde, 0, sizeof fde);
629 memset (&cie, 0, sizeof cie);
630
631 cie.data_alignment_factor = -4;
632 cie.code_alignment_factor = 2;
633 fde.cie = &cie;
634
635 dwarf2_frame_state fs (0, fde.cie);
636
637 gdb_byte insns[] =
638 {
639 DW_CFA_def_cfa, 1, 4, /* DW_CFA_def_cfa: r1 ofs 4 */
640 DW_CFA_offset | 0x2, 1, /* DW_CFA_offset: r2 at cfa-4 */
641 DW_CFA_remember_state,
642 DW_CFA_restore_state,
643 };
644
645 const gdb_byte *insn_end = insns + sizeof (insns);
646 const gdb_byte *out = execute_cfa_program (&fde, insns, insn_end, gdbarch,
647 0, &fs);
648
649 SELF_CHECK (out == insn_end);
650 SELF_CHECK (fs.pc == 0);
651
652 /* The instructions above only use r1 and r2, but the register numbers
653 used are adjusted by dwarf2_frame_adjust_regnum. */
654 auto r1 = dwarf2_frame_adjust_regnum (gdbarch, 1, fde.eh_frame_p);
655 auto r2 = dwarf2_frame_adjust_regnum (gdbarch, 2, fde.eh_frame_p);
656
780942fc 657 SELF_CHECK (fs.regs.reg.size () == (std::max (r1, r2) + 1));
1c90d9f0
YQ
658
659 SELF_CHECK (fs.regs.reg[r2].how == DWARF2_FRAME_REG_SAVED_OFFSET);
660 SELF_CHECK (fs.regs.reg[r2].loc.offset == -4);
661
780942fc 662 for (auto i = 0; i < fs.regs.reg.size (); i++)
1c90d9f0
YQ
663 if (i != r2)
664 SELF_CHECK (fs.regs.reg[i].how == DWARF2_FRAME_REG_UNSPECIFIED);
665
666 SELF_CHECK (fs.regs.cfa_reg == 1);
667 SELF_CHECK (fs.regs.cfa_offset == 4);
668 SELF_CHECK (fs.regs.cfa_how == CFA_REG_OFFSET);
669 SELF_CHECK (fs.regs.cfa_exp == NULL);
670 SELF_CHECK (fs.regs.prev == NULL);
671}
672
673} // namespace selftests
674#endif /* GDB_SELF_TEST */
675
8f22cb90 676\f
cfc14b3a 677
8f22cb90 678/* Architecture-specific operations. */
cfc14b3a 679
8f22cb90
MK
680/* Per-architecture data key. */
681static struct gdbarch_data *dwarf2_frame_data;
682
683struct dwarf2_frame_ops
684{
685 /* Pre-initialize the register state REG for register REGNUM. */
aff37fc1
DM
686 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
687 struct frame_info *);
3ed09a32 688
4a4e5149 689 /* Check whether the THIS_FRAME is a signal trampoline. */
3ed09a32 690 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
4bf8967c 691
4fc771b8
DJ
692 /* Convert .eh_frame register number to DWARF register number, or
693 adjust .debug_frame register number. */
694 int (*adjust_regnum) (struct gdbarch *, int, int);
cfc14b3a
MK
695};
696
8f22cb90
MK
697/* Default architecture-specific register state initialization
698 function. */
699
700static void
701dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 702 struct dwarf2_frame_state_reg *reg,
4a4e5149 703 struct frame_info *this_frame)
8f22cb90
MK
704{
705 /* If we have a register that acts as a program counter, mark it as
706 a destination for the return address. If we have a register that
707 serves as the stack pointer, arrange for it to be filled with the
708 call frame address (CFA). The other registers are marked as
709 unspecified.
710
711 We copy the return address to the program counter, since many
712 parts in GDB assume that it is possible to get the return address
713 by unwinding the program counter register. However, on ISA's
714 with a dedicated return address register, the CFI usually only
715 contains information to unwind that return address register.
716
717 The reason we're treating the stack pointer special here is
718 because in many cases GCC doesn't emit CFI for the stack pointer
719 and implicitly assumes that it is equal to the CFA. This makes
720 some sense since the DWARF specification (version 3, draft 8,
721 p. 102) says that:
722
723 "Typically, the CFA is defined to be the value of the stack
724 pointer at the call site in the previous frame (which may be
725 different from its value on entry to the current frame)."
726
727 However, this isn't true for all platforms supported by GCC
728 (e.g. IBM S/390 and zSeries). Those architectures should provide
729 their own architecture-specific initialization function. */
05cbe71a 730
ad010def 731 if (regnum == gdbarch_pc_regnum (gdbarch))
8f22cb90 732 reg->how = DWARF2_FRAME_REG_RA;
ad010def 733 else if (regnum == gdbarch_sp_regnum (gdbarch))
8f22cb90
MK
734 reg->how = DWARF2_FRAME_REG_CFA;
735}
05cbe71a 736
8f22cb90 737/* Return a default for the architecture-specific operations. */
05cbe71a 738
8f22cb90 739static void *
030f20e1 740dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
741{
742 struct dwarf2_frame_ops *ops;
743
030f20e1 744 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
745 ops->init_reg = dwarf2_frame_default_init_reg;
746 return ops;
747}
05cbe71a 748
8f22cb90
MK
749/* Set the architecture-specific register state initialization
750 function for GDBARCH to INIT_REG. */
751
752void
753dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
754 void (*init_reg) (struct gdbarch *, int,
aff37fc1
DM
755 struct dwarf2_frame_state_reg *,
756 struct frame_info *))
8f22cb90 757{
9a3c8263
SM
758 struct dwarf2_frame_ops *ops
759 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 760
8f22cb90
MK
761 ops->init_reg = init_reg;
762}
763
764/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
765
766static void
767dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 768 struct dwarf2_frame_state_reg *reg,
4a4e5149 769 struct frame_info *this_frame)
05cbe71a 770{
9a3c8263
SM
771 struct dwarf2_frame_ops *ops
772 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 773
4a4e5149 774 ops->init_reg (gdbarch, regnum, reg, this_frame);
05cbe71a 775}
3ed09a32
DJ
776
777/* Set the architecture-specific signal trampoline recognition
778 function for GDBARCH to SIGNAL_FRAME_P. */
779
780void
781dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
782 int (*signal_frame_p) (struct gdbarch *,
783 struct frame_info *))
784{
9a3c8263
SM
785 struct dwarf2_frame_ops *ops
786 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
3ed09a32
DJ
787
788 ops->signal_frame_p = signal_frame_p;
789}
790
791/* Query the architecture-specific signal frame recognizer for
4a4e5149 792 THIS_FRAME. */
3ed09a32
DJ
793
794static int
795dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
4a4e5149 796 struct frame_info *this_frame)
3ed09a32 797{
9a3c8263
SM
798 struct dwarf2_frame_ops *ops
799 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
3ed09a32
DJ
800
801 if (ops->signal_frame_p == NULL)
802 return 0;
4a4e5149 803 return ops->signal_frame_p (gdbarch, this_frame);
3ed09a32 804}
4bf8967c 805
4fc771b8
DJ
806/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
807 register numbers. */
4bf8967c
AS
808
809void
4fc771b8
DJ
810dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
811 int (*adjust_regnum) (struct gdbarch *,
812 int, int))
4bf8967c 813{
9a3c8263
SM
814 struct dwarf2_frame_ops *ops
815 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
4bf8967c 816
4fc771b8 817 ops->adjust_regnum = adjust_regnum;
4bf8967c
AS
818}
819
4fc771b8
DJ
820/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
821 register. */
4bf8967c 822
4fc771b8 823static int
3e43a32a
MS
824dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
825 int regnum, int eh_frame_p)
4bf8967c 826{
9a3c8263
SM
827 struct dwarf2_frame_ops *ops
828 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
4bf8967c 829
4fc771b8 830 if (ops->adjust_regnum == NULL)
4bf8967c 831 return regnum;
4fc771b8 832 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
4bf8967c 833}
303b6f5d
DJ
834
835static void
836dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
837 struct dwarf2_fde *fde)
838{
43f3e411 839 struct compunit_symtab *cust;
303b6f5d 840
43f3e411
DE
841 cust = find_pc_compunit_symtab (fs->pc);
842 if (cust == NULL)
303b6f5d
DJ
843 return;
844
43f3e411 845 if (producer_is_realview (COMPUNIT_PRODUCER (cust)))
a6c727b2
DJ
846 {
847 if (fde->cie->version == 1)
848 fs->armcc_cfa_offsets_sf = 1;
849
850 if (fde->cie->version == 1)
851 fs->armcc_cfa_offsets_reversed = 1;
852
853 /* The reversed offset problem is present in some compilers
854 using DWARF3, but it was eventually fixed. Check the ARM
855 defined augmentations, which are in the format "armcc" followed
856 by a list of one-character options. The "+" option means
857 this problem is fixed (no quirk needed). If the armcc
858 augmentation is missing, the quirk is needed. */
859 if (fde->cie->version == 3
61012eef 860 && (!startswith (fde->cie->augmentation, "armcc")
a6c727b2
DJ
861 || strchr (fde->cie->augmentation + 5, '+') == NULL))
862 fs->armcc_cfa_offsets_reversed = 1;
863
864 return;
865 }
303b6f5d 866}
8f22cb90
MK
867\f
868
a8fd5589
TT
869/* See dwarf2-frame.h. */
870
871int
872dwarf2_fetch_cfa_info (struct gdbarch *gdbarch, CORE_ADDR pc,
873 struct dwarf2_per_cu_data *data,
874 int *regnum_out, LONGEST *offset_out,
875 CORE_ADDR *text_offset_out,
876 const gdb_byte **cfa_start_out,
877 const gdb_byte **cfa_end_out)
9f6f94ff 878{
9f6f94ff 879 struct dwarf2_fde *fde;
22e048c9 880 CORE_ADDR text_offset;
afe37d6b 881 CORE_ADDR pc1 = pc;
9f6f94ff
TT
882
883 /* Find the correct FDE. */
afe37d6b 884 fde = dwarf2_frame_find_fde (&pc1, &text_offset);
9f6f94ff
TT
885 if (fde == NULL)
886 error (_("Could not compute CFA; needed to translate this expression"));
887
afe37d6b 888 dwarf2_frame_state fs (pc1, fde->cie);
9f6f94ff
TT
889
890 /* Check for "quirks" - known bugs in producers. */
891 dwarf2_frame_find_quirks (&fs, fde);
892
893 /* First decode all the insns in the CIE. */
894 execute_cfa_program (fde, fde->cie->initial_instructions,
895 fde->cie->end, gdbarch, pc, &fs);
896
897 /* Save the initialized register set. */
898 fs.initial = fs.regs;
9f6f94ff
TT
899
900 /* Then decode the insns in the FDE up to our target PC. */
901 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
902
903 /* Calculate the CFA. */
904 switch (fs.regs.cfa_how)
905 {
906 case CFA_REG_OFFSET:
907 {
0fde2c53 908 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, fs.regs.cfa_reg);
a8fd5589
TT
909
910 *regnum_out = regnum;
911 if (fs.armcc_cfa_offsets_reversed)
912 *offset_out = -fs.regs.cfa_offset;
913 else
914 *offset_out = fs.regs.cfa_offset;
915 return 1;
9f6f94ff 916 }
9f6f94ff
TT
917
918 case CFA_EXP:
a8fd5589
TT
919 *text_offset_out = text_offset;
920 *cfa_start_out = fs.regs.cfa_exp;
921 *cfa_end_out = fs.regs.cfa_exp + fs.regs.cfa_exp_len;
922 return 0;
9f6f94ff
TT
923
924 default:
925 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
926 }
927}
928
929\f
8f22cb90
MK
930struct dwarf2_frame_cache
931{
932 /* DWARF Call Frame Address. */
933 CORE_ADDR cfa;
934
8fbca658
PA
935 /* Set if the return address column was marked as unavailable
936 (required non-collected memory or registers to compute). */
937 int unavailable_retaddr;
938
0228dfb9
DJ
939 /* Set if the return address column was marked as undefined. */
940 int undefined_retaddr;
941
8f22cb90
MK
942 /* Saved registers, indexed by GDB register number, not by DWARF
943 register number. */
944 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
945
946 /* Return address register. */
947 struct dwarf2_frame_state_reg retaddr_reg;
ae0d2f24
UW
948
949 /* Target address size in bytes. */
950 int addr_size;
ac56253d
TT
951
952 /* The .text offset. */
953 CORE_ADDR text_offset;
111c6489 954
1ec56e88
PA
955 /* True if we already checked whether this frame is the bottom frame
956 of a virtual tail call frame chain. */
957 int checked_tailcall_bottom;
958
111c6489
JK
959 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
960 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
961 involved. Non-bottom frames of a virtual tail call frames chain use
962 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
963 them. */
964 void *tailcall_cache;
1ec56e88
PA
965
966 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
967 base to get the SP, to simulate the return address pushed on the
968 stack. */
969 LONGEST entry_cfa_sp_offset;
970 int entry_cfa_sp_offset_p;
8f22cb90 971};
05cbe71a 972
b9362cc7 973static struct dwarf2_frame_cache *
4a4e5149 974dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
cfc14b3a 975{
4a4e5149 976 struct gdbarch *gdbarch = get_frame_arch (this_frame);
f6efe3f8 977 const int num_regs = gdbarch_num_cooked_regs (gdbarch);
cfc14b3a 978 struct dwarf2_frame_cache *cache;
cfc14b3a 979 struct dwarf2_fde *fde;
111c6489 980 CORE_ADDR entry_pc;
111c6489 981 const gdb_byte *instr;
cfc14b3a
MK
982
983 if (*this_cache)
9a3c8263 984 return (struct dwarf2_frame_cache *) *this_cache;
cfc14b3a
MK
985
986 /* Allocate a new cache. */
987 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
988 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
8fbca658 989 *this_cache = cache;
cfc14b3a 990
cfc14b3a
MK
991 /* Unwind the PC.
992
4a4e5149 993 Note that if the next frame is never supposed to return (i.e. a call
cfc14b3a 994 to abort), the compiler might optimize away the instruction at
4a4e5149 995 its return address. As a result the return address will
cfc14b3a 996 point at some random instruction, and the CFI for that
e4e9607c 997 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
998 this problem by substracting 1 from the return address to get an
999 address in the middle of a presumed call instruction (or the
1000 instruction in the associated delay slot). This should only be
1001 done for "normal" frames and not for resume-type frames (signal
e4e9607c 1002 handlers, sentinel frames, dummy frames). The function
ad1193e7 1003 get_frame_address_in_block does just this. It's not clear how
e4e9607c
MK
1004 reliable the method is though; there is the potential for the
1005 register state pre-call being different to that on return. */
afe37d6b 1006 CORE_ADDR pc1 = get_frame_address_in_block (this_frame);
cfc14b3a
MK
1007
1008 /* Find the correct FDE. */
afe37d6b 1009 fde = dwarf2_frame_find_fde (&pc1, &cache->text_offset);
cfc14b3a
MK
1010 gdb_assert (fde != NULL);
1011
afe37d6b
YQ
1012 /* Allocate and initialize the frame state. */
1013 struct dwarf2_frame_state fs (pc1, fde->cie);
1014
ae0d2f24 1015 cache->addr_size = fde->cie->addr_size;
cfc14b3a 1016
303b6f5d 1017 /* Check for "quirks" - known bugs in producers. */
afe37d6b 1018 dwarf2_frame_find_quirks (&fs, fde);
303b6f5d 1019
cfc14b3a 1020 /* First decode all the insns in the CIE. */
ae0d2f24 1021 execute_cfa_program (fde, fde->cie->initial_instructions,
0c92d8c1 1022 fde->cie->end, gdbarch,
afe37d6b 1023 get_frame_address_in_block (this_frame), &fs);
cfc14b3a
MK
1024
1025 /* Save the initialized register set. */
afe37d6b 1026 fs.initial = fs.regs;
cfc14b3a 1027
1aff7173
KB
1028 /* Fetching the entry pc for THIS_FRAME won't necessarily result
1029 in an address that's within the range of FDE locations. This
1030 is due to the possibility of the function occupying non-contiguous
1031 ranges. */
1032 if (get_frame_func_if_available (this_frame, &entry_pc)
1033 && fde->initial_location <= entry_pc
1034 && entry_pc < fde->initial_location + fde->address_range)
111c6489
JK
1035 {
1036 /* Decode the insns in the FDE up to the entry PC. */
1037 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
afe37d6b 1038 entry_pc, &fs);
111c6489 1039
afe37d6b
YQ
1040 if (fs.regs.cfa_how == CFA_REG_OFFSET
1041 && (dwarf_reg_to_regnum (gdbarch, fs.regs.cfa_reg)
111c6489
JK
1042 == gdbarch_sp_regnum (gdbarch)))
1043 {
afe37d6b 1044 cache->entry_cfa_sp_offset = fs.regs.cfa_offset;
1ec56e88 1045 cache->entry_cfa_sp_offset_p = 1;
111c6489
JK
1046 }
1047 }
1048 else
1049 instr = fde->instructions;
1050
cfc14b3a 1051 /* Then decode the insns in the FDE up to our target PC. */
111c6489 1052 execute_cfa_program (fde, instr, fde->end, gdbarch,
afe37d6b 1053 get_frame_address_in_block (this_frame), &fs);
cfc14b3a 1054
a70b8144 1055 try
cfc14b3a 1056 {
8fbca658 1057 /* Calculate the CFA. */
afe37d6b 1058 switch (fs.regs.cfa_how)
8fbca658
PA
1059 {
1060 case CFA_REG_OFFSET:
afe37d6b
YQ
1061 cache->cfa = read_addr_from_reg (this_frame, fs.regs.cfa_reg);
1062 if (fs.armcc_cfa_offsets_reversed)
1063 cache->cfa -= fs.regs.cfa_offset;
8fbca658 1064 else
afe37d6b 1065 cache->cfa += fs.regs.cfa_offset;
8fbca658
PA
1066 break;
1067
1068 case CFA_EXP:
1069 cache->cfa =
afe37d6b 1070 execute_stack_op (fs.regs.cfa_exp, fs.regs.cfa_exp_len,
8fbca658
PA
1071 cache->addr_size, cache->text_offset,
1072 this_frame, 0, 0);
1073 break;
1074
1075 default:
1076 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1077 }
1078 }
230d2906 1079 catch (const gdb_exception_error &ex)
8fbca658
PA
1080 {
1081 if (ex.error == NOT_AVAILABLE_ERROR)
1082 {
1083 cache->unavailable_retaddr = 1;
1084 return cache;
1085 }
cfc14b3a 1086
eedc3f4f 1087 throw;
cfc14b3a
MK
1088 }
1089
05cbe71a 1090 /* Initialize the register state. */
3e2c4033
AC
1091 {
1092 int regnum;
e4e9607c 1093
3e2c4033 1094 for (regnum = 0; regnum < num_regs; regnum++)
4a4e5149 1095 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
3e2c4033
AC
1096 }
1097
1098 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
1099 location information in the cache. Note that we don't skip the
1100 return address column; it's perfectly all right for it to
0fde2c53 1101 correspond to a real register. */
3e2c4033
AC
1102 {
1103 int column; /* CFI speak for "register number". */
e4e9607c 1104
780942fc 1105 for (column = 0; column < fs.regs.reg.size (); column++)
3e2c4033 1106 {
3e2c4033 1107 /* Use the GDB register number as the destination index. */
0fde2c53 1108 int regnum = dwarf_reg_to_regnum (gdbarch, column);
3e2c4033 1109
0fde2c53 1110 /* Protect against a target returning a bad register. */
3e2c4033
AC
1111 if (regnum < 0 || regnum >= num_regs)
1112 continue;
1113
1114 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
1115 of all debug info registers. If it doesn't, complain (but
1116 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
1117 unspecified register implies "same value" when CFI (draft
1118 7) specifies nothing at all. Such a register could equally
1119 be interpreted as "undefined". Also note that this check
e4e9607c
MK
1120 isn't sufficient; it only checks that all registers in the
1121 range [0 .. max column] are specified, and won't detect
3e2c4033 1122 problems when a debug info register falls outside of the
e4e9607c 1123 table. We need a way of iterating through all the valid
3e2c4033 1124 DWARF2 register numbers. */
afe37d6b 1125 if (fs.regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
1126 {
1127 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
b98664d3 1128 complaint (_("\
5af949e3 1129incomplete CFI data; unspecified registers (e.g., %s) at %s"),
f059bf6f 1130 gdbarch_register_name (gdbarch, regnum),
afe37d6b 1131 paddress (gdbarch, fs.pc));
f059bf6f 1132 }
35889917 1133 else
afe37d6b 1134 cache->reg[regnum] = fs.regs.reg[column];
3e2c4033
AC
1135 }
1136 }
cfc14b3a 1137
8d5a9abc
MK
1138 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1139 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
1140 {
1141 int regnum;
1142
1143 for (regnum = 0; regnum < num_regs; regnum++)
1144 {
8d5a9abc
MK
1145 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1146 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 1147 {
780942fc
TT
1148 const std::vector<struct dwarf2_frame_state_reg> &regs
1149 = fs.regs.reg;
1150 ULONGEST retaddr_column = fs.retaddr_column;
05cbe71a 1151
d4f10bf2
MK
1152 /* It seems rather bizarre to specify an "empty" column as
1153 the return adress column. However, this is exactly
1154 what GCC does on some targets. It turns out that GCC
1155 assumes that the return address can be found in the
1156 register corresponding to the return address column.
8d5a9abc
MK
1157 Incidentally, that's how we should treat a return
1158 address column specifying "same value" too. */
780942fc
TT
1159 if (fs.retaddr_column < fs.regs.reg.size ()
1160 && regs[retaddr_column].how != DWARF2_FRAME_REG_UNSPECIFIED
1161 && regs[retaddr_column].how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
1162 {
1163 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
780942fc 1164 cache->reg[regnum] = regs[retaddr_column];
8d5a9abc 1165 else
780942fc 1166 cache->retaddr_reg = regs[retaddr_column];
8d5a9abc 1167 }
35889917
MK
1168 else
1169 {
8d5a9abc
MK
1170 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1171 {
afe37d6b 1172 cache->reg[regnum].loc.reg = fs.retaddr_column;
8d5a9abc
MK
1173 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1174 }
1175 else
1176 {
afe37d6b 1177 cache->retaddr_reg.loc.reg = fs.retaddr_column;
8d5a9abc
MK
1178 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1179 }
35889917
MK
1180 }
1181 }
1182 }
1183 }
cfc14b3a 1184
780942fc 1185 if (fs.retaddr_column < fs.regs.reg.size ()
afe37d6b 1186 && fs.regs.reg[fs.retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
0228dfb9
DJ
1187 cache->undefined_retaddr = 1;
1188
cfc14b3a
MK
1189 return cache;
1190}
1191
8fbca658
PA
1192static enum unwind_stop_reason
1193dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1194 void **this_cache)
1195{
1196 struct dwarf2_frame_cache *cache
1197 = dwarf2_frame_cache (this_frame, this_cache);
1198
1199 if (cache->unavailable_retaddr)
1200 return UNWIND_UNAVAILABLE;
1201
1202 if (cache->undefined_retaddr)
1203 return UNWIND_OUTERMOST;
1204
1205 return UNWIND_NO_REASON;
1206}
1207
cfc14b3a 1208static void
4a4e5149 1209dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
cfc14b3a
MK
1210 struct frame_id *this_id)
1211{
1212 struct dwarf2_frame_cache *cache =
4a4e5149 1213 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a 1214
8fbca658 1215 if (cache->unavailable_retaddr)
5ce0145d
PA
1216 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1217 else if (cache->undefined_retaddr)
8fbca658 1218 return;
5ce0145d
PA
1219 else
1220 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
93d42b30
DJ
1221}
1222
4a4e5149
DJ
1223static struct value *
1224dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1225 int regnum)
93d42b30 1226{
4a4e5149 1227 struct gdbarch *gdbarch = get_frame_arch (this_frame);
93d42b30 1228 struct dwarf2_frame_cache *cache =
4a4e5149
DJ
1229 dwarf2_frame_cache (this_frame, this_cache);
1230 CORE_ADDR addr;
1231 int realnum;
cfc14b3a 1232
1ec56e88
PA
1233 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1234 call frame chain. */
1235 if (!cache->checked_tailcall_bottom)
1236 {
1237 cache->checked_tailcall_bottom = 1;
1238 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1239 (cache->entry_cfa_sp_offset_p
1240 ? &cache->entry_cfa_sp_offset : NULL));
1241 }
1242
111c6489
JK
1243 /* Non-bottom frames of a virtual tail call frames chain use
1244 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1245 them. If dwarf2_tailcall_prev_register_first does not have specific value
1246 unwind the register, tail call frames are assumed to have the register set
1247 of the top caller. */
1248 if (cache->tailcall_cache)
1249 {
1250 struct value *val;
1251
1252 val = dwarf2_tailcall_prev_register_first (this_frame,
1253 &cache->tailcall_cache,
1254 regnum);
1255 if (val)
1256 return val;
1257 }
1258
cfc14b3a
MK
1259 switch (cache->reg[regnum].how)
1260 {
05cbe71a 1261 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 1262 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 1263 mark it as optimized away; the value isn't available. */
4a4e5149 1264 return frame_unwind_got_optimized (this_frame, regnum);
cfc14b3a 1265
05cbe71a 1266 case DWARF2_FRAME_REG_SAVED_OFFSET:
4a4e5149
DJ
1267 addr = cache->cfa + cache->reg[regnum].loc.offset;
1268 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1269
05cbe71a 1270 case DWARF2_FRAME_REG_SAVED_REG:
0fde2c53
DE
1271 realnum = dwarf_reg_to_regnum_or_error
1272 (gdbarch, cache->reg[regnum].loc.reg);
4a4e5149 1273 return frame_unwind_got_register (this_frame, regnum, realnum);
cfc14b3a 1274
05cbe71a 1275 case DWARF2_FRAME_REG_SAVED_EXP:
b348037f
YQ
1276 addr = execute_stack_op (cache->reg[regnum].loc.exp.start,
1277 cache->reg[regnum].loc.exp.len,
ac56253d
TT
1278 cache->addr_size, cache->text_offset,
1279 this_frame, cache->cfa, 1);
4a4e5149 1280 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1281
46ea248b 1282 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
4a4e5149
DJ
1283 addr = cache->cfa + cache->reg[regnum].loc.offset;
1284 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b
AO
1285
1286 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
b348037f
YQ
1287 addr = execute_stack_op (cache->reg[regnum].loc.exp.start,
1288 cache->reg[regnum].loc.exp.len,
ac56253d
TT
1289 cache->addr_size, cache->text_offset,
1290 this_frame, cache->cfa, 1);
4a4e5149 1291 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b 1292
05cbe71a 1293 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
1294 /* GCC, in its infinite wisdom decided to not provide unwind
1295 information for registers that are "same value". Since
1296 DWARF2 (3 draft 7) doesn't define such behavior, said
1297 registers are actually undefined (which is different to CFI
1298 "undefined"). Code above issues a complaint about this.
1299 Here just fudge the books, assume GCC, and that the value is
1300 more inner on the stack. */
4a4e5149 1301 return frame_unwind_got_register (this_frame, regnum, regnum);
3e2c4033 1302
05cbe71a 1303 case DWARF2_FRAME_REG_SAME_VALUE:
4a4e5149 1304 return frame_unwind_got_register (this_frame, regnum, regnum);
cfc14b3a 1305
05cbe71a 1306 case DWARF2_FRAME_REG_CFA:
4a4e5149 1307 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
35889917 1308
ea7963f0 1309 case DWARF2_FRAME_REG_CFA_OFFSET:
4a4e5149
DJ
1310 addr = cache->cfa + cache->reg[regnum].loc.offset;
1311 return frame_unwind_got_address (this_frame, regnum, addr);
ea7963f0 1312
8d5a9abc 1313 case DWARF2_FRAME_REG_RA_OFFSET:
4a4e5149 1314 addr = cache->reg[regnum].loc.offset;
0fde2c53 1315 regnum = dwarf_reg_to_regnum_or_error
4a4e5149
DJ
1316 (gdbarch, cache->retaddr_reg.loc.reg);
1317 addr += get_frame_register_unsigned (this_frame, regnum);
1318 return frame_unwind_got_address (this_frame, regnum, addr);
8d5a9abc 1319
b39cc962
DJ
1320 case DWARF2_FRAME_REG_FN:
1321 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1322
cfc14b3a 1323 default:
e2e0b3e5 1324 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
1325 }
1326}
1327
111c6489
JK
1328/* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1329 call frames chain. */
1330
1331static void
1332dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1333{
1334 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1335
1336 if (cache->tailcall_cache)
1337 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1338}
1339
4a4e5149
DJ
1340static int
1341dwarf2_frame_sniffer (const struct frame_unwind *self,
1342 struct frame_info *this_frame, void **this_cache)
cfc14b3a 1343{
3c3bb058
AB
1344 if (!dwarf2_frame_unwinders_enabled_p)
1345 return 0;
1346
1ce5d6dd 1347 /* Grab an address that is guarenteed to reside somewhere within the
4a4e5149 1348 function. get_frame_pc(), with a no-return next function, can
93d42b30
DJ
1349 end up returning something past the end of this function's body.
1350 If the frame we're sniffing for is a signal frame whose start
1351 address is placed on the stack by the OS, its FDE must
4a4e5149
DJ
1352 extend one byte before its start address or we could potentially
1353 select the FDE of the previous function. */
1354 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
ac56253d 1355 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
9a619af0 1356
56c987f6 1357 if (!fde)
4a4e5149 1358 return 0;
3ed09a32
DJ
1359
1360 /* On some targets, signal trampolines may have unwind information.
1361 We need to recognize them so that we set the frame type
1362 correctly. */
1363
56c987f6 1364 if (fde->cie->signal_frame
4a4e5149
DJ
1365 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1366 this_frame))
1367 return self->type == SIGTRAMP_FRAME;
1368
111c6489
JK
1369 if (self->type != NORMAL_FRAME)
1370 return 0;
1371
111c6489 1372 return 1;
4a4e5149
DJ
1373}
1374
1375static const struct frame_unwind dwarf2_frame_unwind =
1376{
1377 NORMAL_FRAME,
8fbca658 1378 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1379 dwarf2_frame_this_id,
1380 dwarf2_frame_prev_register,
1381 NULL,
111c6489
JK
1382 dwarf2_frame_sniffer,
1383 dwarf2_frame_dealloc_cache
4a4e5149
DJ
1384};
1385
1386static const struct frame_unwind dwarf2_signal_frame_unwind =
1387{
1388 SIGTRAMP_FRAME,
8fbca658 1389 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1390 dwarf2_frame_this_id,
1391 dwarf2_frame_prev_register,
1392 NULL,
111c6489
JK
1393 dwarf2_frame_sniffer,
1394
1395 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1396 NULL
4a4e5149 1397};
cfc14b3a 1398
4a4e5149
DJ
1399/* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1400
1401void
1402dwarf2_append_unwinders (struct gdbarch *gdbarch)
1403{
111c6489
JK
1404 /* TAILCALL_FRAME must be first to find the record by
1405 dwarf2_tailcall_sniffer_first. */
1406 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1407
4a4e5149
DJ
1408 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1409 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
cfc14b3a
MK
1410}
1411\f
1412
1413/* There is no explicitly defined relationship between the CFA and the
1414 location of frame's local variables and arguments/parameters.
1415 Therefore, frame base methods on this page should probably only be
1416 used as a last resort, just to avoid printing total garbage as a
1417 response to the "info frame" command. */
1418
1419static CORE_ADDR
4a4e5149 1420dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
1421{
1422 struct dwarf2_frame_cache *cache =
4a4e5149 1423 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a
MK
1424
1425 return cache->cfa;
1426}
1427
1428static const struct frame_base dwarf2_frame_base =
1429{
1430 &dwarf2_frame_unwind,
1431 dwarf2_frame_base_address,
1432 dwarf2_frame_base_address,
1433 dwarf2_frame_base_address
1434};
1435
1436const struct frame_base *
4a4e5149 1437dwarf2_frame_base_sniffer (struct frame_info *this_frame)
cfc14b3a 1438{
4a4e5149 1439 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
9a619af0 1440
ac56253d 1441 if (dwarf2_frame_find_fde (&block_addr, NULL))
cfc14b3a
MK
1442 return &dwarf2_frame_base;
1443
1444 return NULL;
1445}
e7802207
TT
1446
1447/* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1448 the DWARF unwinder. This is used to implement
1449 DW_OP_call_frame_cfa. */
1450
1451CORE_ADDR
1452dwarf2_frame_cfa (struct frame_info *this_frame)
1453{
0b722aec
MM
1454 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1455 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1456 throw_error (NOT_AVAILABLE_ERROR,
1457 _("cfa not available for record btrace target"));
1458
e7802207
TT
1459 while (get_frame_type (this_frame) == INLINE_FRAME)
1460 this_frame = get_prev_frame (this_frame);
32261e52
MM
1461 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1462 throw_error (NOT_AVAILABLE_ERROR,
1463 _("can't compute CFA for this frame: "
1464 "required registers or memory are unavailable"));
14aba1ac
JB
1465
1466 if (get_frame_id (this_frame).stack_status != FID_STACK_VALID)
1467 throw_error (NOT_AVAILABLE_ERROR,
1468 _("can't compute CFA for this frame: "
1469 "frame base not available"));
1470
e7802207
TT
1471 return get_frame_base (this_frame);
1472}
cfc14b3a 1473\f
924d79e2
TT
1474const struct objfile_key<dwarf2_fde_table,
1475 gdb::noop_deleter<dwarf2_fde_table>>
1476 dwarf2_frame_objfile_data;
0d0e1a63 1477
cfc14b3a 1478static unsigned int
f664829e 1479read_1_byte (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1480{
852483bc 1481 return bfd_get_8 (abfd, buf);
cfc14b3a
MK
1482}
1483
1484static unsigned int
f664829e 1485read_4_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1486{
852483bc 1487 return bfd_get_32 (abfd, buf);
cfc14b3a
MK
1488}
1489
1490static ULONGEST
f664829e 1491read_8_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1492{
852483bc 1493 return bfd_get_64 (abfd, buf);
cfc14b3a
MK
1494}
1495
1496static ULONGEST
f664829e
DE
1497read_initial_length (bfd *abfd, const gdb_byte *buf,
1498 unsigned int *bytes_read_ptr)
cfc14b3a 1499{
723adb65 1500 ULONGEST result;
cfc14b3a 1501
852483bc 1502 result = bfd_get_32 (abfd, buf);
cfc14b3a
MK
1503 if (result == 0xffffffff)
1504 {
852483bc 1505 result = bfd_get_64 (abfd, buf + 4);
cfc14b3a
MK
1506 *bytes_read_ptr = 12;
1507 }
1508 else
1509 *bytes_read_ptr = 4;
1510
1511 return result;
1512}
1513\f
1514
1515/* Pointer encoding helper functions. */
1516
1517/* GCC supports exception handling based on DWARF2 CFI. However, for
1518 technical reasons, it encodes addresses in its FDE's in a different
1519 way. Several "pointer encodings" are supported. The encoding
1520 that's used for a particular FDE is determined by the 'R'
1521 augmentation in the associated CIE. The argument of this
1522 augmentation is a single byte.
1523
1524 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1525 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1526 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1527 address should be interpreted (absolute, relative to the current
1528 position in the FDE, ...). Bit 7, indicates that the address
1529 should be dereferenced. */
1530
852483bc 1531static gdb_byte
cfc14b3a
MK
1532encoding_for_size (unsigned int size)
1533{
1534 switch (size)
1535 {
1536 case 2:
1537 return DW_EH_PE_udata2;
1538 case 4:
1539 return DW_EH_PE_udata4;
1540 case 8:
1541 return DW_EH_PE_udata8;
1542 default:
e2e0b3e5 1543 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1544 }
1545}
1546
cfc14b3a 1547static CORE_ADDR
852483bc 1548read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e
TT
1549 int ptr_len, const gdb_byte *buf,
1550 unsigned int *bytes_read_ptr,
ae0d2f24 1551 CORE_ADDR func_base)
cfc14b3a 1552{
68f6cf99 1553 ptrdiff_t offset;
cfc14b3a
MK
1554 CORE_ADDR base;
1555
1556 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1557 FDE's. */
1558 if (encoding & DW_EH_PE_indirect)
1559 internal_error (__FILE__, __LINE__,
e2e0b3e5 1560 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1561
68f6cf99
MK
1562 *bytes_read_ptr = 0;
1563
cfc14b3a
MK
1564 switch (encoding & 0x70)
1565 {
1566 case DW_EH_PE_absptr:
1567 base = 0;
1568 break;
1569 case DW_EH_PE_pcrel:
fd361982 1570 base = bfd_section_vma (unit->dwarf_frame_section);
852483bc 1571 base += (buf - unit->dwarf_frame_buffer);
cfc14b3a 1572 break;
0912c7f2
MK
1573 case DW_EH_PE_datarel:
1574 base = unit->dbase;
1575 break;
0fd85043
CV
1576 case DW_EH_PE_textrel:
1577 base = unit->tbase;
1578 break;
03ac2a74 1579 case DW_EH_PE_funcrel:
ae0d2f24 1580 base = func_base;
03ac2a74 1581 break;
68f6cf99
MK
1582 case DW_EH_PE_aligned:
1583 base = 0;
852483bc 1584 offset = buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1585 if ((offset % ptr_len) != 0)
1586 {
1587 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1588 buf += *bytes_read_ptr;
1589 }
1590 break;
cfc14b3a 1591 default:
3e43a32a
MS
1592 internal_error (__FILE__, __LINE__,
1593 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1594 }
1595
b04de778 1596 if ((encoding & 0x07) == 0x00)
f2fec864
DJ
1597 {
1598 encoding |= encoding_for_size (ptr_len);
1599 if (bfd_get_sign_extend_vma (unit->abfd))
1600 encoding |= DW_EH_PE_signed;
1601 }
cfc14b3a
MK
1602
1603 switch (encoding & 0x0f)
1604 {
a81b10ae
MK
1605 case DW_EH_PE_uleb128:
1606 {
9fccedf7 1607 uint64_t value;
0d45f56e 1608 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1609
f664829e 1610 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1611 return base + value;
1612 }
cfc14b3a 1613 case DW_EH_PE_udata2:
68f6cf99 1614 *bytes_read_ptr += 2;
cfc14b3a
MK
1615 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1616 case DW_EH_PE_udata4:
68f6cf99 1617 *bytes_read_ptr += 4;
cfc14b3a
MK
1618 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1619 case DW_EH_PE_udata8:
68f6cf99 1620 *bytes_read_ptr += 8;
cfc14b3a 1621 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1622 case DW_EH_PE_sleb128:
1623 {
9fccedf7 1624 int64_t value;
0d45f56e 1625 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1626
f664829e 1627 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1628 return base + value;
1629 }
cfc14b3a 1630 case DW_EH_PE_sdata2:
68f6cf99 1631 *bytes_read_ptr += 2;
cfc14b3a
MK
1632 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1633 case DW_EH_PE_sdata4:
68f6cf99 1634 *bytes_read_ptr += 4;
cfc14b3a
MK
1635 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1636 case DW_EH_PE_sdata8:
68f6cf99 1637 *bytes_read_ptr += 8;
cfc14b3a
MK
1638 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1639 default:
3e43a32a
MS
1640 internal_error (__FILE__, __LINE__,
1641 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1642 }
1643}
1644\f
1645
b01c8410
PP
1646static int
1647bsearch_cie_cmp (const void *key, const void *element)
cfc14b3a 1648{
b01c8410
PP
1649 ULONGEST cie_pointer = *(ULONGEST *) key;
1650 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
cfc14b3a 1651
b01c8410
PP
1652 if (cie_pointer == cie->cie_pointer)
1653 return 0;
cfc14b3a 1654
b01c8410
PP
1655 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1656}
1657
1658/* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1659static struct dwarf2_cie *
1660find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1661{
1662 struct dwarf2_cie **p_cie;
cfc14b3a 1663
65a97ab3
PP
1664 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1665 bsearch be non-NULL. */
1666 if (cie_table->entries == NULL)
1667 {
1668 gdb_assert (cie_table->num_entries == 0);
1669 return NULL;
1670 }
1671
9a3c8263
SM
1672 p_cie = ((struct dwarf2_cie **)
1673 bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1674 sizeof (cie_table->entries[0]), bsearch_cie_cmp));
b01c8410
PP
1675 if (p_cie != NULL)
1676 return *p_cie;
cfc14b3a
MK
1677 return NULL;
1678}
1679
b01c8410 1680/* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
cfc14b3a 1681static void
b01c8410 1682add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
cfc14b3a 1683{
b01c8410
PP
1684 const int n = cie_table->num_entries;
1685
1686 gdb_assert (n < 1
1687 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1688
224c3ddb
SM
1689 cie_table->entries
1690 = XRESIZEVEC (struct dwarf2_cie *, cie_table->entries, n + 1);
b01c8410
PP
1691 cie_table->entries[n] = cie;
1692 cie_table->num_entries = n + 1;
1693}
1694
1695static int
1696bsearch_fde_cmp (const void *key, const void *element)
1697{
1698 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1699 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
9a619af0 1700
b01c8410
PP
1701 if (seek_pc < fde->initial_location)
1702 return -1;
1703 if (seek_pc < fde->initial_location + fde->address_range)
1704 return 0;
1705 return 1;
cfc14b3a
MK
1706}
1707
1708/* Find the FDE for *PC. Return a pointer to the FDE, and store the
85102364 1709 initial location associated with it into *PC. */
cfc14b3a
MK
1710
1711static struct dwarf2_fde *
ac56253d 1712dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
cfc14b3a 1713{
2030c079 1714 for (objfile *objfile : current_program_space->objfiles ())
cfc14b3a 1715 {
b01c8410
PP
1716 struct dwarf2_fde_table *fde_table;
1717 struct dwarf2_fde **p_fde;
cfc14b3a 1718 CORE_ADDR offset;
b01c8410 1719 CORE_ADDR seek_pc;
cfc14b3a 1720
924d79e2 1721 fde_table = dwarf2_frame_objfile_data.get (objfile);
b01c8410 1722 if (fde_table == NULL)
be391dca
TT
1723 {
1724 dwarf2_build_frame_info (objfile);
924d79e2 1725 fde_table = dwarf2_frame_objfile_data.get (objfile);
be391dca
TT
1726 }
1727 gdb_assert (fde_table != NULL);
1728
1729 if (fde_table->num_entries == 0)
4ae9ee8e
DJ
1730 continue;
1731
1732 gdb_assert (objfile->section_offsets);
1733 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1734
b01c8410
PP
1735 gdb_assert (fde_table->num_entries > 0);
1736 if (*pc < offset + fde_table->entries[0]->initial_location)
1737 continue;
1738
1739 seek_pc = *pc - offset;
9a3c8263
SM
1740 p_fde = ((struct dwarf2_fde **)
1741 bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1742 sizeof (fde_table->entries[0]), bsearch_fde_cmp));
b01c8410
PP
1743 if (p_fde != NULL)
1744 {
1745 *pc = (*p_fde)->initial_location + offset;
ac56253d
TT
1746 if (out_offset)
1747 *out_offset = offset;
b01c8410
PP
1748 return *p_fde;
1749 }
cfc14b3a 1750 }
cfc14b3a
MK
1751 return NULL;
1752}
1753
b01c8410 1754/* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
cfc14b3a 1755static void
b01c8410 1756add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
cfc14b3a 1757{
b01c8410
PP
1758 if (fde->address_range == 0)
1759 /* Discard useless FDEs. */
1760 return;
1761
1762 fde_table->num_entries += 1;
224c3ddb
SM
1763 fde_table->entries = XRESIZEVEC (struct dwarf2_fde *, fde_table->entries,
1764 fde_table->num_entries);
b01c8410 1765 fde_table->entries[fde_table->num_entries - 1] = fde;
cfc14b3a
MK
1766}
1767
cfc14b3a 1768#define DW64_CIE_ID 0xffffffffffffffffULL
cfc14b3a 1769
8bd90839
FM
1770/* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1771 or any of them. */
1772
1773enum eh_frame_type
1774{
1775 EH_CIE_TYPE_ID = 1 << 0,
1776 EH_FDE_TYPE_ID = 1 << 1,
1777 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1778};
1779
f664829e
DE
1780static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1781 const gdb_byte *start,
1782 int eh_frame_p,
1783 struct dwarf2_cie_table *cie_table,
1784 struct dwarf2_fde_table *fde_table,
1785 enum eh_frame_type entry_type);
8bd90839
FM
1786
1787/* Decode the next CIE or FDE, entry_type specifies the expected type.
1788 Return NULL if invalid input, otherwise the next byte to be processed. */
cfc14b3a 1789
f664829e
DE
1790static const gdb_byte *
1791decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1792 int eh_frame_p,
b01c8410 1793 struct dwarf2_cie_table *cie_table,
8bd90839
FM
1794 struct dwarf2_fde_table *fde_table,
1795 enum eh_frame_type entry_type)
cfc14b3a 1796{
5e2b427d 1797 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
f664829e 1798 const gdb_byte *buf, *end;
723adb65 1799 ULONGEST length;
cfc14b3a 1800 unsigned int bytes_read;
6896c0c7
RH
1801 int dwarf64_p;
1802 ULONGEST cie_id;
cfc14b3a 1803 ULONGEST cie_pointer;
9fccedf7
DE
1804 int64_t sleb128;
1805 uint64_t uleb128;
cfc14b3a 1806
6896c0c7 1807 buf = start;
cfc14b3a
MK
1808 length = read_initial_length (unit->abfd, buf, &bytes_read);
1809 buf += bytes_read;
723adb65 1810 end = buf + (size_t) length;
6896c0c7 1811
cfc14b3a
MK
1812 if (length == 0)
1813 return end;
1814
723adb65
SL
1815 /* Are we still within the section? */
1816 if (end <= buf || end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1817 return NULL;
1818
6896c0c7
RH
1819 /* Distinguish between 32 and 64-bit encoded frame info. */
1820 dwarf64_p = (bytes_read == 12);
cfc14b3a 1821
6896c0c7 1822 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1823 if (eh_frame_p)
1824 cie_id = 0;
1825 else if (dwarf64_p)
1826 cie_id = DW64_CIE_ID;
6896c0c7
RH
1827 else
1828 cie_id = DW_CIE_ID;
cfc14b3a
MK
1829
1830 if (dwarf64_p)
1831 {
1832 cie_pointer = read_8_bytes (unit->abfd, buf);
1833 buf += 8;
1834 }
1835 else
1836 {
1837 cie_pointer = read_4_bytes (unit->abfd, buf);
1838 buf += 4;
1839 }
1840
1841 if (cie_pointer == cie_id)
1842 {
1843 /* This is a CIE. */
1844 struct dwarf2_cie *cie;
1845 char *augmentation;
28ba0b33 1846 unsigned int cie_version;
cfc14b3a 1847
8bd90839
FM
1848 /* Check that a CIE was expected. */
1849 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1850 error (_("Found a CIE when not expecting it."));
1851
cfc14b3a
MK
1852 /* Record the offset into the .debug_frame section of this CIE. */
1853 cie_pointer = start - unit->dwarf_frame_buffer;
1854
1855 /* Check whether we've already read it. */
b01c8410 1856 if (find_cie (cie_table, cie_pointer))
cfc14b3a
MK
1857 return end;
1858
8d749320 1859 cie = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_cie);
cfc14b3a
MK
1860 cie->initial_instructions = NULL;
1861 cie->cie_pointer = cie_pointer;
1862
1863 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1864 depends on the target address size. */
1865 cie->encoding = DW_EH_PE_absptr;
cfc14b3a 1866
56c987f6
AO
1867 /* We'll determine the final value later, but we need to
1868 initialize it conservatively. */
1869 cie->signal_frame = 0;
1870
cfc14b3a 1871 /* Check version number. */
28ba0b33 1872 cie_version = read_1_byte (unit->abfd, buf);
2dc7f7b3 1873 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
6896c0c7 1874 return NULL;
303b6f5d 1875 cie->version = cie_version;
cfc14b3a
MK
1876 buf += 1;
1877
1878 /* Interpret the interesting bits of the augmentation. */
303b6f5d 1879 cie->augmentation = augmentation = (char *) buf;
852483bc 1880 buf += (strlen (augmentation) + 1);
cfc14b3a 1881
303b6f5d
DJ
1882 /* Ignore armcc augmentations. We only use them for quirks,
1883 and that doesn't happen until later. */
61012eef 1884 if (startswith (augmentation, "armcc"))
303b6f5d
DJ
1885 augmentation += strlen (augmentation);
1886
cfc14b3a
MK
1887 /* The GCC 2.x "eh" augmentation has a pointer immediately
1888 following the augmentation string, so it must be handled
1889 first. */
1890 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1891 {
1892 /* Skip. */
5e2b427d 1893 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
cfc14b3a
MK
1894 augmentation += 2;
1895 }
1896
2dc7f7b3
TT
1897 if (cie->version >= 4)
1898 {
1899 /* FIXME: check that this is the same as from the CU header. */
1900 cie->addr_size = read_1_byte (unit->abfd, buf);
1901 ++buf;
1902 cie->segment_size = read_1_byte (unit->abfd, buf);
1903 ++buf;
1904 }
1905 else
1906 {
8da614df 1907 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
2dc7f7b3
TT
1908 cie->segment_size = 0;
1909 }
8da614df
CV
1910 /* Address values in .eh_frame sections are defined to have the
1911 target's pointer size. Watchout: This breaks frame info for
1912 targets with pointer size < address size, unless a .debug_frame
0963b4bd 1913 section exists as well. */
8da614df
CV
1914 if (eh_frame_p)
1915 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1916 else
1917 cie->ptr_size = cie->addr_size;
2dc7f7b3 1918
f664829e
DE
1919 buf = gdb_read_uleb128 (buf, end, &uleb128);
1920 if (buf == NULL)
1921 return NULL;
1922 cie->code_alignment_factor = uleb128;
cfc14b3a 1923
f664829e
DE
1924 buf = gdb_read_sleb128 (buf, end, &sleb128);
1925 if (buf == NULL)
1926 return NULL;
1927 cie->data_alignment_factor = sleb128;
cfc14b3a 1928
28ba0b33
PB
1929 if (cie_version == 1)
1930 {
1931 cie->return_address_register = read_1_byte (unit->abfd, buf);
f664829e 1932 ++buf;
28ba0b33
PB
1933 }
1934 else
f664829e
DE
1935 {
1936 buf = gdb_read_uleb128 (buf, end, &uleb128);
1937 if (buf == NULL)
1938 return NULL;
1939 cie->return_address_register = uleb128;
1940 }
1941
4fc771b8 1942 cie->return_address_register
5e2b427d 1943 = dwarf2_frame_adjust_regnum (gdbarch,
4fc771b8
DJ
1944 cie->return_address_register,
1945 eh_frame_p);
4bf8967c 1946
7131cb6e
RH
1947 cie->saw_z_augmentation = (*augmentation == 'z');
1948 if (cie->saw_z_augmentation)
cfc14b3a 1949 {
b926417a 1950 uint64_t uleb_length;
cfc14b3a 1951
b926417a 1952 buf = gdb_read_uleb128 (buf, end, &uleb_length);
f664829e 1953 if (buf == NULL)
6896c0c7 1954 return NULL;
b926417a 1955 cie->initial_instructions = buf + uleb_length;
cfc14b3a
MK
1956 augmentation++;
1957 }
1958
1959 while (*augmentation)
1960 {
1961 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1962 if (*augmentation == 'L')
1963 {
1964 /* Skip. */
1965 buf++;
1966 augmentation++;
1967 }
1968
1969 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1970 else if (*augmentation == 'R')
1971 {
1972 cie->encoding = *buf++;
1973 augmentation++;
1974 }
1975
1976 /* "P" indicates a personality routine in the CIE augmentation. */
1977 else if (*augmentation == 'P')
1978 {
1234d960 1979 /* Skip. Avoid indirection since we throw away the result. */
852483bc 1980 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
8da614df 1981 read_encoded_value (unit, encoding, cie->ptr_size,
ae0d2f24 1982 buf, &bytes_read, 0);
f724bf08 1983 buf += bytes_read;
cfc14b3a
MK
1984 augmentation++;
1985 }
1986
56c987f6
AO
1987 /* "S" indicates a signal frame, such that the return
1988 address must not be decremented to locate the call frame
1989 info for the previous frame; it might even be the first
1990 instruction of a function, so decrementing it would take
1991 us to a different function. */
1992 else if (*augmentation == 'S')
1993 {
1994 cie->signal_frame = 1;
1995 augmentation++;
1996 }
1997
3e9a2e52
DJ
1998 /* Otherwise we have an unknown augmentation. Assume that either
1999 there is no augmentation data, or we saw a 'z' prefix. */
cfc14b3a
MK
2000 else
2001 {
3e9a2e52
DJ
2002 if (cie->initial_instructions)
2003 buf = cie->initial_instructions;
cfc14b3a
MK
2004 break;
2005 }
2006 }
2007
2008 cie->initial_instructions = buf;
2009 cie->end = end;
b01c8410 2010 cie->unit = unit;
cfc14b3a 2011
b01c8410 2012 add_cie (cie_table, cie);
cfc14b3a
MK
2013 }
2014 else
2015 {
2016 /* This is a FDE. */
2017 struct dwarf2_fde *fde;
3e29f34a 2018 CORE_ADDR addr;
cfc14b3a 2019
8bd90839
FM
2020 /* Check that an FDE was expected. */
2021 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2022 error (_("Found an FDE when not expecting it."));
2023
6896c0c7
RH
2024 /* In an .eh_frame section, the CIE pointer is the delta between the
2025 address within the FDE where the CIE pointer is stored and the
2026 address of the CIE. Convert it to an offset into the .eh_frame
2027 section. */
cfc14b3a
MK
2028 if (eh_frame_p)
2029 {
cfc14b3a
MK
2030 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2031 cie_pointer -= (dwarf64_p ? 8 : 4);
2032 }
2033
6896c0c7
RH
2034 /* In either case, validate the result is still within the section. */
2035 if (cie_pointer >= unit->dwarf_frame_size)
2036 return NULL;
2037
8d749320 2038 fde = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_fde);
b01c8410 2039 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2040 if (fde->cie == NULL)
2041 {
2042 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
8bd90839
FM
2043 eh_frame_p, cie_table, fde_table,
2044 EH_CIE_TYPE_ID);
b01c8410 2045 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2046 }
2047
2048 gdb_assert (fde->cie != NULL);
2049
3e29f34a
MR
2050 addr = read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2051 buf, &bytes_read, 0);
2052 fde->initial_location = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
cfc14b3a
MK
2053 buf += bytes_read;
2054
2055 fde->address_range =
ae0d2f24 2056 read_encoded_value (unit, fde->cie->encoding & 0x0f,
8da614df 2057 fde->cie->ptr_size, buf, &bytes_read, 0);
3e29f34a
MR
2058 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + fde->address_range);
2059 fde->address_range = addr - fde->initial_location;
cfc14b3a
MK
2060 buf += bytes_read;
2061
7131cb6e
RH
2062 /* A 'z' augmentation in the CIE implies the presence of an
2063 augmentation field in the FDE as well. The only thing known
2064 to be in here at present is the LSDA entry for EH. So we
2065 can skip the whole thing. */
2066 if (fde->cie->saw_z_augmentation)
2067 {
b926417a 2068 uint64_t uleb_length;
7131cb6e 2069
b926417a 2070 buf = gdb_read_uleb128 (buf, end, &uleb_length);
f664829e
DE
2071 if (buf == NULL)
2072 return NULL;
b926417a 2073 buf += uleb_length;
6896c0c7
RH
2074 if (buf > end)
2075 return NULL;
7131cb6e
RH
2076 }
2077
cfc14b3a
MK
2078 fde->instructions = buf;
2079 fde->end = end;
2080
4bf8967c
AS
2081 fde->eh_frame_p = eh_frame_p;
2082
b01c8410 2083 add_fde (fde_table, fde);
cfc14b3a
MK
2084 }
2085
2086 return end;
2087}
6896c0c7 2088
8bd90839
FM
2089/* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2090 expect an FDE or a CIE. */
2091
f664829e
DE
2092static const gdb_byte *
2093decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2094 int eh_frame_p,
b01c8410 2095 struct dwarf2_cie_table *cie_table,
8bd90839
FM
2096 struct dwarf2_fde_table *fde_table,
2097 enum eh_frame_type entry_type)
6896c0c7
RH
2098{
2099 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
f664829e 2100 const gdb_byte *ret;
6896c0c7
RH
2101 ptrdiff_t start_offset;
2102
2103 while (1)
2104 {
b01c8410 2105 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
8bd90839 2106 cie_table, fde_table, entry_type);
6896c0c7
RH
2107 if (ret != NULL)
2108 break;
2109
2110 /* We have corrupt input data of some form. */
2111
2112 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2113 and mismatches wrt padding and alignment of debug sections. */
2114 /* Note that there is no requirement in the standard for any
2115 alignment at all in the frame unwind sections. Testing for
2116 alignment before trying to interpret data would be incorrect.
2117
2118 However, GCC traditionally arranged for frame sections to be
2119 sized such that the FDE length and CIE fields happen to be
2120 aligned (in theory, for performance). This, unfortunately,
2121 was done with .align directives, which had the side effect of
2122 forcing the section to be aligned by the linker.
2123
2124 This becomes a problem when you have some other producer that
2125 creates frame sections that are not as strictly aligned. That
2126 produces a hole in the frame info that gets filled by the
2127 linker with zeros.
2128
2129 The GCC behaviour is arguably a bug, but it's effectively now
2130 part of the ABI, so we're now stuck with it, at least at the
2131 object file level. A smart linker may decide, in the process
2132 of compressing duplicate CIE information, that it can rewrite
2133 the entire output section without this extra padding. */
2134
2135 start_offset = start - unit->dwarf_frame_buffer;
2136 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2137 {
2138 start += 4 - (start_offset & 3);
2139 workaround = ALIGN4;
2140 continue;
2141 }
2142 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2143 {
2144 start += 8 - (start_offset & 7);
2145 workaround = ALIGN8;
2146 continue;
2147 }
2148
2149 /* Nothing left to try. Arrange to return as if we've consumed
2150 the entire input section. Hopefully we'll get valid info from
2151 the other of .debug_frame/.eh_frame. */
2152 workaround = FAIL;
2153 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2154 break;
2155 }
2156
2157 switch (workaround)
2158 {
2159 case NONE:
2160 break;
2161
2162 case ALIGN4:
b98664d3 2163 complaint (_("\
3e43a32a 2164Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
2165 unit->dwarf_frame_section->owner->filename,
2166 unit->dwarf_frame_section->name);
2167 break;
2168
2169 case ALIGN8:
b98664d3 2170 complaint (_("\
3e43a32a 2171Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
2172 unit->dwarf_frame_section->owner->filename,
2173 unit->dwarf_frame_section->name);
2174 break;
2175
2176 default:
b98664d3 2177 complaint (_("Corrupt data in %s:%s"),
6896c0c7
RH
2178 unit->dwarf_frame_section->owner->filename,
2179 unit->dwarf_frame_section->name);
2180 break;
2181 }
2182
2183 return ret;
2184}
cfc14b3a 2185\f
39ef2f62
CB
2186static bool
2187fde_is_less_than (const dwarf2_fde *aa, const dwarf2_fde *bb)
b01c8410 2188{
b01c8410 2189 if (aa->initial_location == bb->initial_location)
e5af178f
PP
2190 {
2191 if (aa->address_range != bb->address_range
2192 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2193 /* Linker bug, e.g. gold/10400.
2194 Work around it by keeping stable sort order. */
39ef2f62 2195 return aa < bb;
e5af178f
PP
2196 else
2197 /* Put eh_frame entries after debug_frame ones. */
39ef2f62 2198 return aa->eh_frame_p < bb->eh_frame_p;
e5af178f 2199 }
b01c8410 2200
39ef2f62 2201 return aa->initial_location < bb->initial_location;
b01c8410
PP
2202}
2203
cfc14b3a
MK
2204void
2205dwarf2_build_frame_info (struct objfile *objfile)
2206{
ae0d2f24 2207 struct comp_unit *unit;
f664829e 2208 const gdb_byte *frame_ptr;
b01c8410
PP
2209 struct dwarf2_cie_table cie_table;
2210 struct dwarf2_fde_table fde_table;
be391dca 2211 struct dwarf2_fde_table *fde_table2;
b01c8410
PP
2212
2213 cie_table.num_entries = 0;
2214 cie_table.entries = NULL;
2215
2216 fde_table.num_entries = 0;
2217 fde_table.entries = NULL;
cfc14b3a
MK
2218
2219 /* Build a minimal decoding of the DWARF2 compilation unit. */
e39db4db 2220 unit = XOBNEW (&objfile->objfile_obstack, comp_unit);
ae0d2f24
UW
2221 unit->abfd = objfile->obfd;
2222 unit->objfile = objfile;
2223 unit->dbase = 0;
2224 unit->tbase = 0;
cfc14b3a 2225
d40102a1 2226 if (objfile->separate_debug_objfile_backlink == NULL)
cfc14b3a 2227 {
d40102a1
JB
2228 /* Do not read .eh_frame from separate file as they must be also
2229 present in the main file. */
2230 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2231 &unit->dwarf_frame_section,
2232 &unit->dwarf_frame_buffer,
2233 &unit->dwarf_frame_size);
2234 if (unit->dwarf_frame_size)
b01c8410 2235 {
d40102a1
JB
2236 asection *got, *txt;
2237
2238 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2239 that is used for the i386/amd64 target, which currently is
2240 the only target in GCC that supports/uses the
2241 DW_EH_PE_datarel encoding. */
2242 got = bfd_get_section_by_name (unit->abfd, ".got");
2243 if (got)
2244 unit->dbase = got->vma;
2245
2246 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2247 so far. */
2248 txt = bfd_get_section_by_name (unit->abfd, ".text");
2249 if (txt)
2250 unit->tbase = txt->vma;
2251
a70b8144 2252 try
8bd90839
FM
2253 {
2254 frame_ptr = unit->dwarf_frame_buffer;
2255 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2256 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2257 &cie_table, &fde_table,
2258 EH_CIE_OR_FDE_TYPE_ID);
2259 }
2260
230d2906 2261 catch (const gdb_exception_error &e)
8bd90839
FM
2262 {
2263 warning (_("skipping .eh_frame info of %s: %s"),
3d6e9d23 2264 objfile_name (objfile), e.what ());
8bd90839
FM
2265
2266 if (fde_table.num_entries != 0)
2267 {
2268 xfree (fde_table.entries);
2269 fde_table.entries = NULL;
2270 fde_table.num_entries = 0;
2271 }
2272 /* The cie_table is discarded by the next if. */
2273 }
d40102a1
JB
2274
2275 if (cie_table.num_entries != 0)
2276 {
2277 /* Reinit cie_table: debug_frame has different CIEs. */
2278 xfree (cie_table.entries);
2279 cie_table.num_entries = 0;
2280 cie_table.entries = NULL;
2281 }
b01c8410 2282 }
cfc14b3a
MK
2283 }
2284
3017a003 2285 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
dce234bc
PP
2286 &unit->dwarf_frame_section,
2287 &unit->dwarf_frame_buffer,
2288 &unit->dwarf_frame_size);
2289 if (unit->dwarf_frame_size)
cfc14b3a 2290 {
8bd90839
FM
2291 int num_old_fde_entries = fde_table.num_entries;
2292
a70b8144 2293 try
8bd90839
FM
2294 {
2295 frame_ptr = unit->dwarf_frame_buffer;
2296 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2297 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2298 &cie_table, &fde_table,
2299 EH_CIE_OR_FDE_TYPE_ID);
2300 }
230d2906 2301 catch (const gdb_exception_error &e)
8bd90839
FM
2302 {
2303 warning (_("skipping .debug_frame info of %s: %s"),
3d6e9d23 2304 objfile_name (objfile), e.what ());
8bd90839
FM
2305
2306 if (fde_table.num_entries != 0)
2307 {
2308 fde_table.num_entries = num_old_fde_entries;
2309 if (num_old_fde_entries == 0)
2310 {
2311 xfree (fde_table.entries);
2312 fde_table.entries = NULL;
2313 }
2314 else
2315 {
224c3ddb
SM
2316 fde_table.entries
2317 = XRESIZEVEC (struct dwarf2_fde *, fde_table.entries,
2318 fde_table.num_entries);
8bd90839
FM
2319 }
2320 }
2321 fde_table.num_entries = num_old_fde_entries;
2322 /* The cie_table is discarded by the next if. */
2323 }
b01c8410
PP
2324 }
2325
2326 /* Discard the cie_table, it is no longer needed. */
2327 if (cie_table.num_entries != 0)
2328 {
2329 xfree (cie_table.entries);
2330 cie_table.entries = NULL; /* Paranoia. */
2331 cie_table.num_entries = 0; /* Paranoia. */
2332 }
2333
be391dca 2334 /* Copy fde_table to obstack: it is needed at runtime. */
8d749320 2335 fde_table2 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_fde_table);
be391dca
TT
2336
2337 if (fde_table.num_entries == 0)
2338 {
2339 fde_table2->entries = NULL;
2340 fde_table2->num_entries = 0;
2341 }
2342 else
b01c8410 2343 {
875cdfbb
PA
2344 struct dwarf2_fde *fde_prev = NULL;
2345 struct dwarf2_fde *first_non_zero_fde = NULL;
2346 int i;
b01c8410
PP
2347
2348 /* Prepare FDE table for lookups. */
39ef2f62
CB
2349 std::sort (fde_table.entries, fde_table.entries + fde_table.num_entries,
2350 fde_is_less_than);
b01c8410 2351
875cdfbb
PA
2352 /* Check for leftovers from --gc-sections. The GNU linker sets
2353 the relevant symbols to zero, but doesn't zero the FDE *end*
2354 ranges because there's no relocation there. It's (offset,
2355 length), not (start, end). On targets where address zero is
2356 just another valid address this can be a problem, since the
2357 FDEs appear to be non-empty in the output --- we could pick
2358 out the wrong FDE. To work around this, when overlaps are
2359 detected, we prefer FDEs that do not start at zero.
2360
2361 Start by finding the first FDE with non-zero start. Below
2362 we'll discard all FDEs that start at zero and overlap this
2363 one. */
2364 for (i = 0; i < fde_table.num_entries; i++)
2365 {
2366 struct dwarf2_fde *fde = fde_table.entries[i];
b01c8410 2367
875cdfbb
PA
2368 if (fde->initial_location != 0)
2369 {
2370 first_non_zero_fde = fde;
2371 break;
2372 }
2373 }
2374
2375 /* Since we'll be doing bsearch, squeeze out identical (except
2376 for eh_frame_p) fde entries so bsearch result is predictable.
2377 Also discard leftovers from --gc-sections. */
be391dca 2378 fde_table2->num_entries = 0;
875cdfbb
PA
2379 for (i = 0; i < fde_table.num_entries; i++)
2380 {
2381 struct dwarf2_fde *fde = fde_table.entries[i];
2382
2383 if (fde->initial_location == 0
2384 && first_non_zero_fde != NULL
2385 && (first_non_zero_fde->initial_location
2386 < fde->initial_location + fde->address_range))
2387 continue;
2388
2389 if (fde_prev != NULL
2390 && fde_prev->initial_location == fde->initial_location)
2391 continue;
2392
2393 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2394 sizeof (fde_table.entries[0]));
2395 ++fde_table2->num_entries;
2396 fde_prev = fde;
2397 }
224c3ddb
SM
2398 fde_table2->entries
2399 = (struct dwarf2_fde **) obstack_finish (&objfile->objfile_obstack);
b01c8410
PP
2400
2401 /* Discard the original fde_table. */
2402 xfree (fde_table.entries);
cfc14b3a 2403 }
be391dca 2404
924d79e2 2405 dwarf2_frame_objfile_data.set (objfile, fde_table2);
cfc14b3a 2406}
0d0e1a63 2407
3c3bb058
AB
2408/* Handle 'maintenance show dwarf unwinders'. */
2409
2410static void
2411show_dwarf_unwinders_enabled_p (struct ui_file *file, int from_tty,
2412 struct cmd_list_element *c,
2413 const char *value)
2414{
2415 fprintf_filtered (file,
2416 _("The DWARF stack unwinders are currently %s.\n"),
2417 value);
2418}
2419
0d0e1a63
MK
2420void
2421_initialize_dwarf2_frame (void)
2422{
030f20e1 2423 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
1c90d9f0 2424
3c3bb058
AB
2425 add_setshow_boolean_cmd ("unwinders", class_obscure,
2426 &dwarf2_frame_unwinders_enabled_p , _("\
2427Set whether the DWARF stack frame unwinders are used."), _("\
2428Show whether the DWARF stack frame unwinders are used."), _("\
2429When enabled the DWARF stack frame unwinders can be used for architectures\n\
2430that support the DWARF unwinders. Enabling the DWARF unwinders for an\n\
2431architecture that doesn't support them will have no effect."),
2432 NULL,
2433 show_dwarf_unwinders_enabled_p,
2434 &set_dwarf_cmdlist,
2435 &show_dwarf_cmdlist);
2436
1c90d9f0 2437#if GDB_SELF_TEST
1526853e
SM
2438 selftests::register_test_foreach_arch ("execute_cfa_program",
2439 selftests::execute_cfa_program_test);
1c90d9f0 2440#endif
0d0e1a63 2441}
This page took 1.293538 seconds and 4 git commands to generate.