gdb: add declaration for _initialize_gdbarch in gdbarch.sh
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
b811d2c2 3 Copyright (C) 2003-2020 Free Software Foundation, Inc.
cfc14b3a
MK
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
cfc14b3a
MK
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
cfc14b3a
MK
21
22#include "defs.h"
d55e5aa6 23#include "dwarf2expr.h"
4de283e4
TT
24#include "dwarf2.h"
25#include "frame.h"
cfc14b3a
MK
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
4de283e4 30#include "symtab.h"
cfc14b3a
MK
31#include "objfiles.h"
32#include "regcache.h"
f2da6b3a 33#include "value.h"
4de283e4 34#include "record.h"
cfc14b3a 35
4de283e4
TT
36#include "complaints.h"
37#include "dwarf2-frame.h"
38#include "dwarf2read.h"
39#include "ax.h"
40#include "dwarf2loc.h"
41#include "dwarf2-frame-tailcall.h"
35e65c49 42#include "gdbsupport/gdb_binary_search.h"
1c90d9f0 43#if GDB_SELF_TEST
268a13a5 44#include "gdbsupport/selftest.h"
1c90d9f0
YQ
45#include "selftest-arch.h"
46#endif
93878f47 47#include <unordered_map>
cfc14b3a 48
39ef2f62
CB
49#include <algorithm>
50
ae0d2f24
UW
51struct comp_unit;
52
cfc14b3a
MK
53/* Call Frame Information (CFI). */
54
55/* Common Information Entry (CIE). */
56
57struct dwarf2_cie
58{
ae0d2f24
UW
59 /* Computation Unit for this CIE. */
60 struct comp_unit *unit;
61
cfc14b3a
MK
62 /* Offset into the .debug_frame section where this CIE was found.
63 Used to identify this CIE. */
64 ULONGEST cie_pointer;
65
66 /* Constant that is factored out of all advance location
67 instructions. */
68 ULONGEST code_alignment_factor;
69
70 /* Constants that is factored out of all offset instructions. */
71 LONGEST data_alignment_factor;
72
73 /* Return address column. */
74 ULONGEST return_address_register;
75
76 /* Instruction sequence to initialize a register set. */
f664829e
DE
77 const gdb_byte *initial_instructions;
78 const gdb_byte *end;
cfc14b3a 79
303b6f5d
DJ
80 /* Saved augmentation, in case it's needed later. */
81 char *augmentation;
82
cfc14b3a 83 /* Encoding of addresses. */
852483bc 84 gdb_byte encoding;
cfc14b3a 85
ae0d2f24
UW
86 /* Target address size in bytes. */
87 int addr_size;
88
0963b4bd 89 /* Target pointer size in bytes. */
8da614df
CV
90 int ptr_size;
91
7131cb6e
RH
92 /* True if a 'z' augmentation existed. */
93 unsigned char saw_z_augmentation;
94
56c987f6
AO
95 /* True if an 'S' augmentation existed. */
96 unsigned char signal_frame;
97
303b6f5d
DJ
98 /* The version recorded in the CIE. */
99 unsigned char version;
2dc7f7b3
TT
100
101 /* The segment size. */
102 unsigned char segment_size;
b01c8410 103};
303b6f5d 104
93878f47
TT
105/* The CIE table is used to find CIEs during parsing, but then
106 discarded. It maps from the CIE's offset to the CIE. */
107typedef std::unordered_map<ULONGEST, dwarf2_cie *> dwarf2_cie_table;
cfc14b3a
MK
108
109/* Frame Description Entry (FDE). */
110
111struct dwarf2_fde
112{
113 /* CIE for this FDE. */
114 struct dwarf2_cie *cie;
115
116 /* First location associated with this FDE. */
117 CORE_ADDR initial_location;
118
119 /* Number of bytes of program instructions described by this FDE. */
120 CORE_ADDR address_range;
121
122 /* Instruction sequence. */
f664829e
DE
123 const gdb_byte *instructions;
124 const gdb_byte *end;
cfc14b3a 125
4bf8967c
AS
126 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
127 section. */
128 unsigned char eh_frame_p;
b01c8410 129};
4bf8967c 130
b01c8410
PP
131struct dwarf2_fde_table
132{
133 int num_entries;
134 struct dwarf2_fde **entries;
cfc14b3a
MK
135};
136
ae0d2f24
UW
137/* A minimal decoding of DWARF2 compilation units. We only decode
138 what's needed to get to the call frame information. */
139
140struct comp_unit
141{
142 /* Keep the bfd convenient. */
143 bfd *abfd;
144
145 struct objfile *objfile;
146
ae0d2f24 147 /* Pointer to the .debug_frame section loaded into memory. */
d521ce57 148 const gdb_byte *dwarf_frame_buffer;
ae0d2f24
UW
149
150 /* Length of the loaded .debug_frame section. */
c098b58b 151 bfd_size_type dwarf_frame_size;
ae0d2f24
UW
152
153 /* Pointer to the .debug_frame section. */
154 asection *dwarf_frame_section;
155
156 /* Base for DW_EH_PE_datarel encodings. */
157 bfd_vma dbase;
158
159 /* Base for DW_EH_PE_textrel encodings. */
160 bfd_vma tbase;
161};
162
ac56253d
TT
163static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
164 CORE_ADDR *out_offset);
4fc771b8
DJ
165
166static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
167 int eh_frame_p);
ae0d2f24
UW
168
169static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e 170 int ptr_len, const gdb_byte *buf,
ae0d2f24
UW
171 unsigned int *bytes_read_ptr,
172 CORE_ADDR func_base);
cfc14b3a
MK
173\f
174
3c3bb058 175/* See dwarf2-frame.h. */
491144b5 176bool dwarf2_frame_unwinders_enabled_p = true;
3c3bb058 177
cfc14b3a
MK
178/* Store the length the expression for the CFA in the `cfa_reg' field,
179 which is unused in that case. */
180#define cfa_exp_len cfa_reg
181
afe37d6b
YQ
182dwarf2_frame_state::dwarf2_frame_state (CORE_ADDR pc_, struct dwarf2_cie *cie)
183 : pc (pc_), data_align (cie->data_alignment_factor),
184 code_align (cie->code_alignment_factor),
185 retaddr_column (cie->return_address_register)
cfc14b3a 186{
afe37d6b 187}
cfc14b3a
MK
188\f
189
190/* Helper functions for execute_stack_op. */
191
192static CORE_ADDR
192ca6d8 193read_addr_from_reg (struct frame_info *this_frame, int reg)
cfc14b3a 194{
4a4e5149 195 struct gdbarch *gdbarch = get_frame_arch (this_frame);
0fde2c53 196 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
f2da6b3a 197
2ed3c037 198 return address_from_register (regnum, this_frame);
cfc14b3a
MK
199}
200
a6a5a945
LM
201/* Execute the required actions for both the DW_CFA_restore and
202DW_CFA_restore_extended instructions. */
203static void
204dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
205 struct dwarf2_frame_state *fs, int eh_frame_p)
206{
207 ULONGEST reg;
208
a6a5a945 209 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
1c90d9f0 210 fs->regs.alloc_regs (reg + 1);
a6a5a945
LM
211
212 /* Check if this register was explicitly initialized in the
213 CIE initial instructions. If not, default the rule to
214 UNSPECIFIED. */
780942fc 215 if (reg < fs->initial.reg.size ())
a6a5a945
LM
216 fs->regs.reg[reg] = fs->initial.reg[reg];
217 else
218 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
219
220 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
0fde2c53
DE
221 {
222 int regnum = dwarf_reg_to_regnum (gdbarch, reg);
223
b98664d3 224 complaint (_("\
a6a5a945 225incomplete CFI data; DW_CFA_restore unspecified\n\
5af949e3 226register %s (#%d) at %s"),
0fde2c53
DE
227 gdbarch_register_name (gdbarch, regnum), regnum,
228 paddress (gdbarch, fs->pc));
229 }
a6a5a945
LM
230}
231
192ca6d8 232class dwarf_expr_executor : public dwarf_expr_context
9e8b7a03 233{
192ca6d8
TT
234 public:
235
236 struct frame_info *this_frame;
237
632e107b 238 CORE_ADDR read_addr_from_reg (int reg) override
192ca6d8
TT
239 {
240 return ::read_addr_from_reg (this_frame, reg);
241 }
242
632e107b 243 struct value *get_reg_value (struct type *type, int reg) override
192ca6d8
TT
244 {
245 struct gdbarch *gdbarch = get_frame_arch (this_frame);
246 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
247
248 return value_from_register (type, regnum, this_frame);
249 }
250
632e107b 251 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
192ca6d8
TT
252 {
253 read_memory (addr, buf, len);
254 }
befbff86 255
632e107b 256 void get_frame_base (const gdb_byte **start, size_t *length) override
befbff86
TT
257 {
258 invalid ("DW_OP_fbreg");
259 }
260
261 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
262 union call_site_parameter_u kind_u,
632e107b 263 int deref_size) override
befbff86 264 {
216f72a1 265 invalid ("DW_OP_entry_value");
befbff86
TT
266 }
267
632e107b 268 CORE_ADDR get_object_address () override
befbff86
TT
269 {
270 invalid ("DW_OP_push_object_address");
271 }
272
632e107b 273 CORE_ADDR get_frame_cfa () override
befbff86
TT
274 {
275 invalid ("DW_OP_call_frame_cfa");
276 }
277
632e107b 278 CORE_ADDR get_tls_address (CORE_ADDR offset) override
befbff86
TT
279 {
280 invalid ("DW_OP_form_tls_address");
281 }
282
632e107b 283 void dwarf_call (cu_offset die_offset) override
befbff86
TT
284 {
285 invalid ("DW_OP_call*");
286 }
287
a6b786da
KB
288 struct value *dwarf_variable_value (sect_offset sect_off) override
289 {
290 invalid ("DW_OP_GNU_variable_value");
291 }
292
632e107b 293 CORE_ADDR get_addr_index (unsigned int index) override
befbff86 294 {
336d760d 295 invalid ("DW_OP_addrx or DW_OP_GNU_addr_index");
befbff86
TT
296 }
297
298 private:
299
300 void invalid (const char *op) ATTRIBUTE_NORETURN
301 {
302 error (_("%s is invalid in this context"), op);
303 }
9e8b7a03
JK
304};
305
cfc14b3a 306static CORE_ADDR
0d45f56e 307execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
ac56253d
TT
308 CORE_ADDR offset, struct frame_info *this_frame,
309 CORE_ADDR initial, int initial_in_stack_memory)
cfc14b3a 310{
cfc14b3a
MK
311 CORE_ADDR result;
312
192ca6d8 313 dwarf_expr_executor ctx;
eb115069 314 scoped_value_mark free_values;
4a227398 315
192ca6d8 316 ctx.this_frame = this_frame;
718b9626
TT
317 ctx.gdbarch = get_frame_arch (this_frame);
318 ctx.addr_size = addr_size;
319 ctx.ref_addr_size = -1;
320 ctx.offset = offset;
cfc14b3a 321
595d2e30
TT
322 ctx.push_address (initial, initial_in_stack_memory);
323 ctx.eval (exp, len);
cfc14b3a 324
718b9626 325 if (ctx.location == DWARF_VALUE_MEMORY)
595d2e30 326 result = ctx.fetch_address (0);
718b9626 327 else if (ctx.location == DWARF_VALUE_REGISTER)
192ca6d8 328 result = ctx.read_addr_from_reg (value_as_long (ctx.fetch (0)));
f2c7657e 329 else
cec03d70
TT
330 {
331 /* This is actually invalid DWARF, but if we ever do run across
332 it somehow, we might as well support it. So, instead, report
333 it as unimplemented. */
3e43a32a
MS
334 error (_("\
335Not implemented: computing unwound register using explicit value operator"));
cec03d70 336 }
cfc14b3a 337
cfc14b3a
MK
338 return result;
339}
340\f
341
111c6489
JK
342/* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
343 PC. Modify FS state accordingly. Return current INSN_PTR where the
344 execution has stopped, one can resume it on the next call. */
345
346static const gdb_byte *
0d45f56e 347execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
9f6f94ff
TT
348 const gdb_byte *insn_end, struct gdbarch *gdbarch,
349 CORE_ADDR pc, struct dwarf2_frame_state *fs)
cfc14b3a 350{
ae0d2f24 351 int eh_frame_p = fde->eh_frame_p;
507a579c 352 unsigned int bytes_read;
e17a4113 353 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cfc14b3a
MK
354
355 while (insn_ptr < insn_end && fs->pc <= pc)
356 {
852483bc 357 gdb_byte insn = *insn_ptr++;
9fccedf7
DE
358 uint64_t utmp, reg;
359 int64_t offset;
cfc14b3a
MK
360
361 if ((insn & 0xc0) == DW_CFA_advance_loc)
362 fs->pc += (insn & 0x3f) * fs->code_align;
363 else if ((insn & 0xc0) == DW_CFA_offset)
364 {
365 reg = insn & 0x3f;
4fc771b8 366 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 367 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a 368 offset = utmp * fs->data_align;
1c90d9f0 369 fs->regs.alloc_regs (reg + 1);
05cbe71a 370 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
371 fs->regs.reg[reg].loc.offset = offset;
372 }
373 else if ((insn & 0xc0) == DW_CFA_restore)
374 {
cfc14b3a 375 reg = insn & 0x3f;
a6a5a945 376 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
377 }
378 else
379 {
380 switch (insn)
381 {
382 case DW_CFA_set_loc:
ae0d2f24 383 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
8da614df 384 fde->cie->ptr_size, insn_ptr,
ae0d2f24
UW
385 &bytes_read, fde->initial_location);
386 /* Apply the objfile offset for relocatable objects. */
6a053cb1 387 fs->pc += fde->cie->unit->objfile->section_offsets[SECT_OFF_TEXT (fde->cie->unit->objfile)];
cfc14b3a
MK
388 insn_ptr += bytes_read;
389 break;
390
391 case DW_CFA_advance_loc1:
e17a4113 392 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
cfc14b3a
MK
393 fs->pc += utmp * fs->code_align;
394 insn_ptr++;
395 break;
396 case DW_CFA_advance_loc2:
e17a4113 397 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
cfc14b3a
MK
398 fs->pc += utmp * fs->code_align;
399 insn_ptr += 2;
400 break;
401 case DW_CFA_advance_loc4:
e17a4113 402 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
cfc14b3a
MK
403 fs->pc += utmp * fs->code_align;
404 insn_ptr += 4;
405 break;
406
407 case DW_CFA_offset_extended:
f664829e 408 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 409 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 410 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a 411 offset = utmp * fs->data_align;
1c90d9f0 412 fs->regs.alloc_regs (reg + 1);
05cbe71a 413 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
414 fs->regs.reg[reg].loc.offset = offset;
415 break;
416
417 case DW_CFA_restore_extended:
f664829e 418 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
a6a5a945 419 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
420 break;
421
422 case DW_CFA_undefined:
f664829e 423 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 424 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
1c90d9f0 425 fs->regs.alloc_regs (reg + 1);
05cbe71a 426 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
427 break;
428
429 case DW_CFA_same_value:
f664829e 430 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 431 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
1c90d9f0 432 fs->regs.alloc_regs (reg + 1);
05cbe71a 433 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
434 break;
435
436 case DW_CFA_register:
f664829e 437 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 438 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 439 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
4fc771b8 440 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
1c90d9f0 441 fs->regs.alloc_regs (reg + 1);
05cbe71a 442 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
443 fs->regs.reg[reg].loc.reg = utmp;
444 break;
445
446 case DW_CFA_remember_state:
447 {
448 struct dwarf2_frame_state_reg_info *new_rs;
449
1c90d9f0 450 new_rs = new dwarf2_frame_state_reg_info (fs->regs);
cfc14b3a
MK
451 fs->regs.prev = new_rs;
452 }
453 break;
454
455 case DW_CFA_restore_state:
456 {
457 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
458
50ea7769
MK
459 if (old_rs == NULL)
460 {
b98664d3 461 complaint (_("\
5af949e3
UW
462bad CFI data; mismatched DW_CFA_restore_state at %s"),
463 paddress (gdbarch, fs->pc));
50ea7769
MK
464 }
465 else
1c90d9f0 466 fs->regs = std::move (*old_rs);
cfc14b3a
MK
467 }
468 break;
469
470 case DW_CFA_def_cfa:
f664829e
DE
471 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
472 fs->regs.cfa_reg = reg;
473 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
474
475 if (fs->armcc_cfa_offsets_sf)
476 utmp *= fs->data_align;
477
2fd481e1
PP
478 fs->regs.cfa_offset = utmp;
479 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
480 break;
481
482 case DW_CFA_def_cfa_register:
f664829e
DE
483 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
484 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1
PP
485 eh_frame_p);
486 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
487 break;
488
489 case DW_CFA_def_cfa_offset:
f664829e 490 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
491
492 if (fs->armcc_cfa_offsets_sf)
493 utmp *= fs->data_align;
494
2fd481e1 495 fs->regs.cfa_offset = utmp;
cfc14b3a
MK
496 /* cfa_how deliberately not set. */
497 break;
498
a8504492
MK
499 case DW_CFA_nop:
500 break;
501
cfc14b3a 502 case DW_CFA_def_cfa_expression:
f664829e
DE
503 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
504 fs->regs.cfa_exp_len = utmp;
2fd481e1
PP
505 fs->regs.cfa_exp = insn_ptr;
506 fs->regs.cfa_how = CFA_EXP;
507 insn_ptr += fs->regs.cfa_exp_len;
cfc14b3a
MK
508 break;
509
510 case DW_CFA_expression:
f664829e 511 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 512 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
1c90d9f0 513 fs->regs.alloc_regs (reg + 1);
f664829e 514 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
b348037f
YQ
515 fs->regs.reg[reg].loc.exp.start = insn_ptr;
516 fs->regs.reg[reg].loc.exp.len = utmp;
05cbe71a 517 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
518 insn_ptr += utmp;
519 break;
520
a8504492 521 case DW_CFA_offset_extended_sf:
f664829e 522 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 523 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 524 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 525 offset *= fs->data_align;
1c90d9f0 526 fs->regs.alloc_regs (reg + 1);
05cbe71a 527 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
528 fs->regs.reg[reg].loc.offset = offset;
529 break;
530
46ea248b 531 case DW_CFA_val_offset:
f664829e 532 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
1c90d9f0 533 fs->regs.alloc_regs (reg + 1);
f664829e 534 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
535 offset = utmp * fs->data_align;
536 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
537 fs->regs.reg[reg].loc.offset = offset;
538 break;
539
540 case DW_CFA_val_offset_sf:
f664829e 541 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
1c90d9f0 542 fs->regs.alloc_regs (reg + 1);
f664829e 543 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
46ea248b
AO
544 offset *= fs->data_align;
545 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
546 fs->regs.reg[reg].loc.offset = offset;
547 break;
548
549 case DW_CFA_val_expression:
f664829e 550 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
1c90d9f0 551 fs->regs.alloc_regs (reg + 1);
f664829e 552 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
b348037f
YQ
553 fs->regs.reg[reg].loc.exp.start = insn_ptr;
554 fs->regs.reg[reg].loc.exp.len = utmp;
46ea248b
AO
555 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
556 insn_ptr += utmp;
557 break;
558
a8504492 559 case DW_CFA_def_cfa_sf:
f664829e
DE
560 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
561 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1 562 eh_frame_p);
f664829e 563 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1
PP
564 fs->regs.cfa_offset = offset * fs->data_align;
565 fs->regs.cfa_how = CFA_REG_OFFSET;
a8504492
MK
566 break;
567
568 case DW_CFA_def_cfa_offset_sf:
f664829e 569 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1 570 fs->regs.cfa_offset = offset * fs->data_align;
a8504492 571 /* cfa_how deliberately not set. */
cfc14b3a
MK
572 break;
573
574 case DW_CFA_GNU_args_size:
575 /* Ignored. */
f664829e 576 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
577 break;
578
58894217 579 case DW_CFA_GNU_negative_offset_extended:
f664829e 580 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 581 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
507a579c
PA
582 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
583 offset = utmp * fs->data_align;
1c90d9f0 584 fs->regs.alloc_regs (reg + 1);
58894217
JK
585 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
586 fs->regs.reg[reg].loc.offset = -offset;
587 break;
588
cfc14b3a 589 default:
b41c5a85
JW
590 if (insn >= DW_CFA_lo_user && insn <= DW_CFA_hi_user)
591 {
592 /* Handle vendor-specific CFI for different architectures. */
593 if (!gdbarch_execute_dwarf_cfa_vendor_op (gdbarch, insn, fs))
594 error (_("Call Frame Instruction op %d in vendor extension "
595 "space is not handled on this architecture."),
596 insn);
597 }
598 else
599 internal_error (__FILE__, __LINE__,
600 _("Unknown CFI encountered."));
cfc14b3a
MK
601 }
602 }
603 }
604
780942fc 605 if (fs->initial.reg.empty ())
111c6489
JK
606 {
607 /* Don't allow remember/restore between CIE and FDE programs. */
1c90d9f0 608 delete fs->regs.prev;
111c6489
JK
609 fs->regs.prev = NULL;
610 }
611
612 return insn_ptr;
cfc14b3a 613}
1c90d9f0
YQ
614
615#if GDB_SELF_TEST
616
617namespace selftests {
618
619/* Unit test to function execute_cfa_program. */
620
621static void
622execute_cfa_program_test (struct gdbarch *gdbarch)
623{
624 struct dwarf2_fde fde;
625 struct dwarf2_cie cie;
626
627 memset (&fde, 0, sizeof fde);
628 memset (&cie, 0, sizeof cie);
629
630 cie.data_alignment_factor = -4;
631 cie.code_alignment_factor = 2;
632 fde.cie = &cie;
633
634 dwarf2_frame_state fs (0, fde.cie);
635
636 gdb_byte insns[] =
637 {
638 DW_CFA_def_cfa, 1, 4, /* DW_CFA_def_cfa: r1 ofs 4 */
639 DW_CFA_offset | 0x2, 1, /* DW_CFA_offset: r2 at cfa-4 */
640 DW_CFA_remember_state,
641 DW_CFA_restore_state,
642 };
643
644 const gdb_byte *insn_end = insns + sizeof (insns);
645 const gdb_byte *out = execute_cfa_program (&fde, insns, insn_end, gdbarch,
646 0, &fs);
647
648 SELF_CHECK (out == insn_end);
649 SELF_CHECK (fs.pc == 0);
650
651 /* The instructions above only use r1 and r2, but the register numbers
652 used are adjusted by dwarf2_frame_adjust_regnum. */
653 auto r1 = dwarf2_frame_adjust_regnum (gdbarch, 1, fde.eh_frame_p);
654 auto r2 = dwarf2_frame_adjust_regnum (gdbarch, 2, fde.eh_frame_p);
655
780942fc 656 SELF_CHECK (fs.regs.reg.size () == (std::max (r1, r2) + 1));
1c90d9f0
YQ
657
658 SELF_CHECK (fs.regs.reg[r2].how == DWARF2_FRAME_REG_SAVED_OFFSET);
659 SELF_CHECK (fs.regs.reg[r2].loc.offset == -4);
660
780942fc 661 for (auto i = 0; i < fs.regs.reg.size (); i++)
1c90d9f0
YQ
662 if (i != r2)
663 SELF_CHECK (fs.regs.reg[i].how == DWARF2_FRAME_REG_UNSPECIFIED);
664
665 SELF_CHECK (fs.regs.cfa_reg == 1);
666 SELF_CHECK (fs.regs.cfa_offset == 4);
667 SELF_CHECK (fs.regs.cfa_how == CFA_REG_OFFSET);
668 SELF_CHECK (fs.regs.cfa_exp == NULL);
669 SELF_CHECK (fs.regs.prev == NULL);
670}
671
672} // namespace selftests
673#endif /* GDB_SELF_TEST */
674
8f22cb90 675\f
cfc14b3a 676
8f22cb90 677/* Architecture-specific operations. */
cfc14b3a 678
8f22cb90
MK
679/* Per-architecture data key. */
680static struct gdbarch_data *dwarf2_frame_data;
681
682struct dwarf2_frame_ops
683{
684 /* Pre-initialize the register state REG for register REGNUM. */
aff37fc1
DM
685 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
686 struct frame_info *);
3ed09a32 687
4a4e5149 688 /* Check whether the THIS_FRAME is a signal trampoline. */
3ed09a32 689 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
4bf8967c 690
4fc771b8
DJ
691 /* Convert .eh_frame register number to DWARF register number, or
692 adjust .debug_frame register number. */
693 int (*adjust_regnum) (struct gdbarch *, int, int);
cfc14b3a
MK
694};
695
8f22cb90
MK
696/* Default architecture-specific register state initialization
697 function. */
698
699static void
700dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 701 struct dwarf2_frame_state_reg *reg,
4a4e5149 702 struct frame_info *this_frame)
8f22cb90
MK
703{
704 /* If we have a register that acts as a program counter, mark it as
705 a destination for the return address. If we have a register that
706 serves as the stack pointer, arrange for it to be filled with the
707 call frame address (CFA). The other registers are marked as
708 unspecified.
709
710 We copy the return address to the program counter, since many
711 parts in GDB assume that it is possible to get the return address
712 by unwinding the program counter register. However, on ISA's
713 with a dedicated return address register, the CFI usually only
714 contains information to unwind that return address register.
715
716 The reason we're treating the stack pointer special here is
717 because in many cases GCC doesn't emit CFI for the stack pointer
718 and implicitly assumes that it is equal to the CFA. This makes
719 some sense since the DWARF specification (version 3, draft 8,
720 p. 102) says that:
721
722 "Typically, the CFA is defined to be the value of the stack
723 pointer at the call site in the previous frame (which may be
724 different from its value on entry to the current frame)."
725
726 However, this isn't true for all platforms supported by GCC
727 (e.g. IBM S/390 and zSeries). Those architectures should provide
728 their own architecture-specific initialization function. */
05cbe71a 729
ad010def 730 if (regnum == gdbarch_pc_regnum (gdbarch))
8f22cb90 731 reg->how = DWARF2_FRAME_REG_RA;
ad010def 732 else if (regnum == gdbarch_sp_regnum (gdbarch))
8f22cb90
MK
733 reg->how = DWARF2_FRAME_REG_CFA;
734}
05cbe71a 735
8f22cb90 736/* Return a default for the architecture-specific operations. */
05cbe71a 737
8f22cb90 738static void *
030f20e1 739dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
740{
741 struct dwarf2_frame_ops *ops;
742
030f20e1 743 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
744 ops->init_reg = dwarf2_frame_default_init_reg;
745 return ops;
746}
05cbe71a 747
8f22cb90
MK
748/* Set the architecture-specific register state initialization
749 function for GDBARCH to INIT_REG. */
750
751void
752dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
753 void (*init_reg) (struct gdbarch *, int,
aff37fc1
DM
754 struct dwarf2_frame_state_reg *,
755 struct frame_info *))
8f22cb90 756{
9a3c8263
SM
757 struct dwarf2_frame_ops *ops
758 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 759
8f22cb90
MK
760 ops->init_reg = init_reg;
761}
762
763/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
764
765static void
766dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 767 struct dwarf2_frame_state_reg *reg,
4a4e5149 768 struct frame_info *this_frame)
05cbe71a 769{
9a3c8263
SM
770 struct dwarf2_frame_ops *ops
771 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 772
4a4e5149 773 ops->init_reg (gdbarch, regnum, reg, this_frame);
05cbe71a 774}
3ed09a32
DJ
775
776/* Set the architecture-specific signal trampoline recognition
777 function for GDBARCH to SIGNAL_FRAME_P. */
778
779void
780dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
781 int (*signal_frame_p) (struct gdbarch *,
782 struct frame_info *))
783{
9a3c8263
SM
784 struct dwarf2_frame_ops *ops
785 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
3ed09a32
DJ
786
787 ops->signal_frame_p = signal_frame_p;
788}
789
790/* Query the architecture-specific signal frame recognizer for
4a4e5149 791 THIS_FRAME. */
3ed09a32
DJ
792
793static int
794dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
4a4e5149 795 struct frame_info *this_frame)
3ed09a32 796{
9a3c8263
SM
797 struct dwarf2_frame_ops *ops
798 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
3ed09a32
DJ
799
800 if (ops->signal_frame_p == NULL)
801 return 0;
4a4e5149 802 return ops->signal_frame_p (gdbarch, this_frame);
3ed09a32 803}
4bf8967c 804
4fc771b8
DJ
805/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
806 register numbers. */
4bf8967c
AS
807
808void
4fc771b8
DJ
809dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
810 int (*adjust_regnum) (struct gdbarch *,
811 int, int))
4bf8967c 812{
9a3c8263
SM
813 struct dwarf2_frame_ops *ops
814 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
4bf8967c 815
4fc771b8 816 ops->adjust_regnum = adjust_regnum;
4bf8967c
AS
817}
818
4fc771b8
DJ
819/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
820 register. */
4bf8967c 821
4fc771b8 822static int
3e43a32a
MS
823dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
824 int regnum, int eh_frame_p)
4bf8967c 825{
9a3c8263
SM
826 struct dwarf2_frame_ops *ops
827 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
4bf8967c 828
4fc771b8 829 if (ops->adjust_regnum == NULL)
4bf8967c 830 return regnum;
4fc771b8 831 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
4bf8967c 832}
303b6f5d
DJ
833
834static void
835dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
836 struct dwarf2_fde *fde)
837{
43f3e411 838 struct compunit_symtab *cust;
303b6f5d 839
43f3e411
DE
840 cust = find_pc_compunit_symtab (fs->pc);
841 if (cust == NULL)
303b6f5d
DJ
842 return;
843
43f3e411 844 if (producer_is_realview (COMPUNIT_PRODUCER (cust)))
a6c727b2
DJ
845 {
846 if (fde->cie->version == 1)
847 fs->armcc_cfa_offsets_sf = 1;
848
849 if (fde->cie->version == 1)
850 fs->armcc_cfa_offsets_reversed = 1;
851
852 /* The reversed offset problem is present in some compilers
853 using DWARF3, but it was eventually fixed. Check the ARM
854 defined augmentations, which are in the format "armcc" followed
855 by a list of one-character options. The "+" option means
856 this problem is fixed (no quirk needed). If the armcc
857 augmentation is missing, the quirk is needed. */
858 if (fde->cie->version == 3
61012eef 859 && (!startswith (fde->cie->augmentation, "armcc")
a6c727b2
DJ
860 || strchr (fde->cie->augmentation + 5, '+') == NULL))
861 fs->armcc_cfa_offsets_reversed = 1;
862
863 return;
864 }
303b6f5d 865}
8f22cb90
MK
866\f
867
a8fd5589
TT
868/* See dwarf2-frame.h. */
869
870int
871dwarf2_fetch_cfa_info (struct gdbarch *gdbarch, CORE_ADDR pc,
872 struct dwarf2_per_cu_data *data,
873 int *regnum_out, LONGEST *offset_out,
874 CORE_ADDR *text_offset_out,
875 const gdb_byte **cfa_start_out,
876 const gdb_byte **cfa_end_out)
9f6f94ff 877{
9f6f94ff 878 struct dwarf2_fde *fde;
22e048c9 879 CORE_ADDR text_offset;
afe37d6b 880 CORE_ADDR pc1 = pc;
9f6f94ff
TT
881
882 /* Find the correct FDE. */
afe37d6b 883 fde = dwarf2_frame_find_fde (&pc1, &text_offset);
9f6f94ff
TT
884 if (fde == NULL)
885 error (_("Could not compute CFA; needed to translate this expression"));
886
afe37d6b 887 dwarf2_frame_state fs (pc1, fde->cie);
9f6f94ff
TT
888
889 /* Check for "quirks" - known bugs in producers. */
890 dwarf2_frame_find_quirks (&fs, fde);
891
892 /* First decode all the insns in the CIE. */
893 execute_cfa_program (fde, fde->cie->initial_instructions,
894 fde->cie->end, gdbarch, pc, &fs);
895
896 /* Save the initialized register set. */
897 fs.initial = fs.regs;
9f6f94ff
TT
898
899 /* Then decode the insns in the FDE up to our target PC. */
900 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
901
902 /* Calculate the CFA. */
903 switch (fs.regs.cfa_how)
904 {
905 case CFA_REG_OFFSET:
906 {
0fde2c53 907 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, fs.regs.cfa_reg);
a8fd5589
TT
908
909 *regnum_out = regnum;
910 if (fs.armcc_cfa_offsets_reversed)
911 *offset_out = -fs.regs.cfa_offset;
912 else
913 *offset_out = fs.regs.cfa_offset;
914 return 1;
9f6f94ff 915 }
9f6f94ff
TT
916
917 case CFA_EXP:
a8fd5589
TT
918 *text_offset_out = text_offset;
919 *cfa_start_out = fs.regs.cfa_exp;
920 *cfa_end_out = fs.regs.cfa_exp + fs.regs.cfa_exp_len;
921 return 0;
9f6f94ff
TT
922
923 default:
924 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
925 }
926}
927
928\f
8f22cb90
MK
929struct dwarf2_frame_cache
930{
931 /* DWARF Call Frame Address. */
932 CORE_ADDR cfa;
933
8fbca658
PA
934 /* Set if the return address column was marked as unavailable
935 (required non-collected memory or registers to compute). */
936 int unavailable_retaddr;
937
0228dfb9
DJ
938 /* Set if the return address column was marked as undefined. */
939 int undefined_retaddr;
940
8f22cb90
MK
941 /* Saved registers, indexed by GDB register number, not by DWARF
942 register number. */
943 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
944
945 /* Return address register. */
946 struct dwarf2_frame_state_reg retaddr_reg;
ae0d2f24
UW
947
948 /* Target address size in bytes. */
949 int addr_size;
ac56253d
TT
950
951 /* The .text offset. */
952 CORE_ADDR text_offset;
111c6489 953
1ec56e88
PA
954 /* True if we already checked whether this frame is the bottom frame
955 of a virtual tail call frame chain. */
956 int checked_tailcall_bottom;
957
111c6489
JK
958 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
959 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
960 involved. Non-bottom frames of a virtual tail call frames chain use
961 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
962 them. */
963 void *tailcall_cache;
1ec56e88
PA
964
965 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
966 base to get the SP, to simulate the return address pushed on the
967 stack. */
968 LONGEST entry_cfa_sp_offset;
969 int entry_cfa_sp_offset_p;
8f22cb90 970};
05cbe71a 971
b9362cc7 972static struct dwarf2_frame_cache *
4a4e5149 973dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
cfc14b3a 974{
4a4e5149 975 struct gdbarch *gdbarch = get_frame_arch (this_frame);
f6efe3f8 976 const int num_regs = gdbarch_num_cooked_regs (gdbarch);
cfc14b3a 977 struct dwarf2_frame_cache *cache;
cfc14b3a 978 struct dwarf2_fde *fde;
111c6489 979 CORE_ADDR entry_pc;
111c6489 980 const gdb_byte *instr;
cfc14b3a
MK
981
982 if (*this_cache)
9a3c8263 983 return (struct dwarf2_frame_cache *) *this_cache;
cfc14b3a
MK
984
985 /* Allocate a new cache. */
986 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
987 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
8fbca658 988 *this_cache = cache;
cfc14b3a 989
cfc14b3a
MK
990 /* Unwind the PC.
991
4a4e5149 992 Note that if the next frame is never supposed to return (i.e. a call
cfc14b3a 993 to abort), the compiler might optimize away the instruction at
4a4e5149 994 its return address. As a result the return address will
cfc14b3a 995 point at some random instruction, and the CFI for that
e4e9607c 996 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
997 this problem by substracting 1 from the return address to get an
998 address in the middle of a presumed call instruction (or the
999 instruction in the associated delay slot). This should only be
1000 done for "normal" frames and not for resume-type frames (signal
e4e9607c 1001 handlers, sentinel frames, dummy frames). The function
ad1193e7 1002 get_frame_address_in_block does just this. It's not clear how
e4e9607c
MK
1003 reliable the method is though; there is the potential for the
1004 register state pre-call being different to that on return. */
afe37d6b 1005 CORE_ADDR pc1 = get_frame_address_in_block (this_frame);
cfc14b3a
MK
1006
1007 /* Find the correct FDE. */
afe37d6b 1008 fde = dwarf2_frame_find_fde (&pc1, &cache->text_offset);
cfc14b3a
MK
1009 gdb_assert (fde != NULL);
1010
afe37d6b
YQ
1011 /* Allocate and initialize the frame state. */
1012 struct dwarf2_frame_state fs (pc1, fde->cie);
1013
ae0d2f24 1014 cache->addr_size = fde->cie->addr_size;
cfc14b3a 1015
303b6f5d 1016 /* Check for "quirks" - known bugs in producers. */
afe37d6b 1017 dwarf2_frame_find_quirks (&fs, fde);
303b6f5d 1018
cfc14b3a 1019 /* First decode all the insns in the CIE. */
ae0d2f24 1020 execute_cfa_program (fde, fde->cie->initial_instructions,
0c92d8c1 1021 fde->cie->end, gdbarch,
afe37d6b 1022 get_frame_address_in_block (this_frame), &fs);
cfc14b3a
MK
1023
1024 /* Save the initialized register set. */
afe37d6b 1025 fs.initial = fs.regs;
cfc14b3a 1026
1aff7173
KB
1027 /* Fetching the entry pc for THIS_FRAME won't necessarily result
1028 in an address that's within the range of FDE locations. This
1029 is due to the possibility of the function occupying non-contiguous
1030 ranges. */
1031 if (get_frame_func_if_available (this_frame, &entry_pc)
1032 && fde->initial_location <= entry_pc
1033 && entry_pc < fde->initial_location + fde->address_range)
111c6489
JK
1034 {
1035 /* Decode the insns in the FDE up to the entry PC. */
1036 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
afe37d6b 1037 entry_pc, &fs);
111c6489 1038
afe37d6b
YQ
1039 if (fs.regs.cfa_how == CFA_REG_OFFSET
1040 && (dwarf_reg_to_regnum (gdbarch, fs.regs.cfa_reg)
111c6489
JK
1041 == gdbarch_sp_regnum (gdbarch)))
1042 {
afe37d6b 1043 cache->entry_cfa_sp_offset = fs.regs.cfa_offset;
1ec56e88 1044 cache->entry_cfa_sp_offset_p = 1;
111c6489
JK
1045 }
1046 }
1047 else
1048 instr = fde->instructions;
1049
cfc14b3a 1050 /* Then decode the insns in the FDE up to our target PC. */
111c6489 1051 execute_cfa_program (fde, instr, fde->end, gdbarch,
afe37d6b 1052 get_frame_address_in_block (this_frame), &fs);
cfc14b3a 1053
a70b8144 1054 try
cfc14b3a 1055 {
8fbca658 1056 /* Calculate the CFA. */
afe37d6b 1057 switch (fs.regs.cfa_how)
8fbca658
PA
1058 {
1059 case CFA_REG_OFFSET:
afe37d6b
YQ
1060 cache->cfa = read_addr_from_reg (this_frame, fs.regs.cfa_reg);
1061 if (fs.armcc_cfa_offsets_reversed)
1062 cache->cfa -= fs.regs.cfa_offset;
8fbca658 1063 else
afe37d6b 1064 cache->cfa += fs.regs.cfa_offset;
8fbca658
PA
1065 break;
1066
1067 case CFA_EXP:
1068 cache->cfa =
afe37d6b 1069 execute_stack_op (fs.regs.cfa_exp, fs.regs.cfa_exp_len,
8fbca658
PA
1070 cache->addr_size, cache->text_offset,
1071 this_frame, 0, 0);
1072 break;
1073
1074 default:
1075 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1076 }
1077 }
230d2906 1078 catch (const gdb_exception_error &ex)
8fbca658
PA
1079 {
1080 if (ex.error == NOT_AVAILABLE_ERROR)
1081 {
1082 cache->unavailable_retaddr = 1;
1083 return cache;
1084 }
cfc14b3a 1085
eedc3f4f 1086 throw;
cfc14b3a
MK
1087 }
1088
05cbe71a 1089 /* Initialize the register state. */
3e2c4033
AC
1090 {
1091 int regnum;
e4e9607c 1092
3e2c4033 1093 for (regnum = 0; regnum < num_regs; regnum++)
4a4e5149 1094 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
3e2c4033
AC
1095 }
1096
1097 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
1098 location information in the cache. Note that we don't skip the
1099 return address column; it's perfectly all right for it to
0fde2c53 1100 correspond to a real register. */
3e2c4033
AC
1101 {
1102 int column; /* CFI speak for "register number". */
e4e9607c 1103
780942fc 1104 for (column = 0; column < fs.regs.reg.size (); column++)
3e2c4033 1105 {
3e2c4033 1106 /* Use the GDB register number as the destination index. */
0fde2c53 1107 int regnum = dwarf_reg_to_regnum (gdbarch, column);
3e2c4033 1108
0fde2c53 1109 /* Protect against a target returning a bad register. */
3e2c4033
AC
1110 if (regnum < 0 || regnum >= num_regs)
1111 continue;
1112
1113 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
1114 of all debug info registers. If it doesn't, complain (but
1115 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
1116 unspecified register implies "same value" when CFI (draft
1117 7) specifies nothing at all. Such a register could equally
1118 be interpreted as "undefined". Also note that this check
e4e9607c
MK
1119 isn't sufficient; it only checks that all registers in the
1120 range [0 .. max column] are specified, and won't detect
3e2c4033 1121 problems when a debug info register falls outside of the
e4e9607c 1122 table. We need a way of iterating through all the valid
3e2c4033 1123 DWARF2 register numbers. */
afe37d6b 1124 if (fs.regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
1125 {
1126 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
b98664d3 1127 complaint (_("\
5af949e3 1128incomplete CFI data; unspecified registers (e.g., %s) at %s"),
f059bf6f 1129 gdbarch_register_name (gdbarch, regnum),
afe37d6b 1130 paddress (gdbarch, fs.pc));
f059bf6f 1131 }
35889917 1132 else
afe37d6b 1133 cache->reg[regnum] = fs.regs.reg[column];
3e2c4033
AC
1134 }
1135 }
cfc14b3a 1136
8d5a9abc
MK
1137 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1138 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
1139 {
1140 int regnum;
1141
1142 for (regnum = 0; regnum < num_regs; regnum++)
1143 {
8d5a9abc
MK
1144 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1145 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 1146 {
780942fc
TT
1147 const std::vector<struct dwarf2_frame_state_reg> &regs
1148 = fs.regs.reg;
1149 ULONGEST retaddr_column = fs.retaddr_column;
05cbe71a 1150
d4f10bf2
MK
1151 /* It seems rather bizarre to specify an "empty" column as
1152 the return adress column. However, this is exactly
1153 what GCC does on some targets. It turns out that GCC
1154 assumes that the return address can be found in the
1155 register corresponding to the return address column.
8d5a9abc
MK
1156 Incidentally, that's how we should treat a return
1157 address column specifying "same value" too. */
780942fc
TT
1158 if (fs.retaddr_column < fs.regs.reg.size ()
1159 && regs[retaddr_column].how != DWARF2_FRAME_REG_UNSPECIFIED
1160 && regs[retaddr_column].how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
1161 {
1162 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
780942fc 1163 cache->reg[regnum] = regs[retaddr_column];
8d5a9abc 1164 else
780942fc 1165 cache->retaddr_reg = regs[retaddr_column];
8d5a9abc 1166 }
35889917
MK
1167 else
1168 {
8d5a9abc
MK
1169 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1170 {
afe37d6b 1171 cache->reg[regnum].loc.reg = fs.retaddr_column;
8d5a9abc
MK
1172 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1173 }
1174 else
1175 {
afe37d6b 1176 cache->retaddr_reg.loc.reg = fs.retaddr_column;
8d5a9abc
MK
1177 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1178 }
35889917
MK
1179 }
1180 }
1181 }
1182 }
cfc14b3a 1183
780942fc 1184 if (fs.retaddr_column < fs.regs.reg.size ()
afe37d6b 1185 && fs.regs.reg[fs.retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
0228dfb9
DJ
1186 cache->undefined_retaddr = 1;
1187
cfc14b3a
MK
1188 return cache;
1189}
1190
8fbca658
PA
1191static enum unwind_stop_reason
1192dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1193 void **this_cache)
1194{
1195 struct dwarf2_frame_cache *cache
1196 = dwarf2_frame_cache (this_frame, this_cache);
1197
1198 if (cache->unavailable_retaddr)
1199 return UNWIND_UNAVAILABLE;
1200
1201 if (cache->undefined_retaddr)
1202 return UNWIND_OUTERMOST;
1203
1204 return UNWIND_NO_REASON;
1205}
1206
cfc14b3a 1207static void
4a4e5149 1208dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
cfc14b3a
MK
1209 struct frame_id *this_id)
1210{
1211 struct dwarf2_frame_cache *cache =
4a4e5149 1212 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a 1213
8fbca658 1214 if (cache->unavailable_retaddr)
5ce0145d
PA
1215 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1216 else if (cache->undefined_retaddr)
8fbca658 1217 return;
5ce0145d
PA
1218 else
1219 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
93d42b30
DJ
1220}
1221
4a4e5149
DJ
1222static struct value *
1223dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1224 int regnum)
93d42b30 1225{
4a4e5149 1226 struct gdbarch *gdbarch = get_frame_arch (this_frame);
93d42b30 1227 struct dwarf2_frame_cache *cache =
4a4e5149
DJ
1228 dwarf2_frame_cache (this_frame, this_cache);
1229 CORE_ADDR addr;
1230 int realnum;
cfc14b3a 1231
1ec56e88
PA
1232 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1233 call frame chain. */
1234 if (!cache->checked_tailcall_bottom)
1235 {
1236 cache->checked_tailcall_bottom = 1;
1237 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1238 (cache->entry_cfa_sp_offset_p
1239 ? &cache->entry_cfa_sp_offset : NULL));
1240 }
1241
111c6489
JK
1242 /* Non-bottom frames of a virtual tail call frames chain use
1243 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1244 them. If dwarf2_tailcall_prev_register_first does not have specific value
1245 unwind the register, tail call frames are assumed to have the register set
1246 of the top caller. */
1247 if (cache->tailcall_cache)
1248 {
1249 struct value *val;
1250
1251 val = dwarf2_tailcall_prev_register_first (this_frame,
1252 &cache->tailcall_cache,
1253 regnum);
1254 if (val)
1255 return val;
1256 }
1257
cfc14b3a
MK
1258 switch (cache->reg[regnum].how)
1259 {
05cbe71a 1260 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 1261 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 1262 mark it as optimized away; the value isn't available. */
4a4e5149 1263 return frame_unwind_got_optimized (this_frame, regnum);
cfc14b3a 1264
05cbe71a 1265 case DWARF2_FRAME_REG_SAVED_OFFSET:
4a4e5149
DJ
1266 addr = cache->cfa + cache->reg[regnum].loc.offset;
1267 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1268
05cbe71a 1269 case DWARF2_FRAME_REG_SAVED_REG:
0fde2c53
DE
1270 realnum = dwarf_reg_to_regnum_or_error
1271 (gdbarch, cache->reg[regnum].loc.reg);
4a4e5149 1272 return frame_unwind_got_register (this_frame, regnum, realnum);
cfc14b3a 1273
05cbe71a 1274 case DWARF2_FRAME_REG_SAVED_EXP:
b348037f
YQ
1275 addr = execute_stack_op (cache->reg[regnum].loc.exp.start,
1276 cache->reg[regnum].loc.exp.len,
ac56253d
TT
1277 cache->addr_size, cache->text_offset,
1278 this_frame, cache->cfa, 1);
4a4e5149 1279 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1280
46ea248b 1281 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
4a4e5149
DJ
1282 addr = cache->cfa + cache->reg[regnum].loc.offset;
1283 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b
AO
1284
1285 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
b348037f
YQ
1286 addr = execute_stack_op (cache->reg[regnum].loc.exp.start,
1287 cache->reg[regnum].loc.exp.len,
ac56253d
TT
1288 cache->addr_size, cache->text_offset,
1289 this_frame, cache->cfa, 1);
4a4e5149 1290 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b 1291
05cbe71a 1292 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
1293 /* GCC, in its infinite wisdom decided to not provide unwind
1294 information for registers that are "same value". Since
1295 DWARF2 (3 draft 7) doesn't define such behavior, said
1296 registers are actually undefined (which is different to CFI
1297 "undefined"). Code above issues a complaint about this.
1298 Here just fudge the books, assume GCC, and that the value is
1299 more inner on the stack. */
4a4e5149 1300 return frame_unwind_got_register (this_frame, regnum, regnum);
3e2c4033 1301
05cbe71a 1302 case DWARF2_FRAME_REG_SAME_VALUE:
4a4e5149 1303 return frame_unwind_got_register (this_frame, regnum, regnum);
cfc14b3a 1304
05cbe71a 1305 case DWARF2_FRAME_REG_CFA:
4a4e5149 1306 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
35889917 1307
ea7963f0 1308 case DWARF2_FRAME_REG_CFA_OFFSET:
4a4e5149
DJ
1309 addr = cache->cfa + cache->reg[regnum].loc.offset;
1310 return frame_unwind_got_address (this_frame, regnum, addr);
ea7963f0 1311
8d5a9abc 1312 case DWARF2_FRAME_REG_RA_OFFSET:
4a4e5149 1313 addr = cache->reg[regnum].loc.offset;
0fde2c53 1314 regnum = dwarf_reg_to_regnum_or_error
4a4e5149
DJ
1315 (gdbarch, cache->retaddr_reg.loc.reg);
1316 addr += get_frame_register_unsigned (this_frame, regnum);
1317 return frame_unwind_got_address (this_frame, regnum, addr);
8d5a9abc 1318
b39cc962
DJ
1319 case DWARF2_FRAME_REG_FN:
1320 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1321
cfc14b3a 1322 default:
e2e0b3e5 1323 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
1324 }
1325}
1326
111c6489
JK
1327/* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1328 call frames chain. */
1329
1330static void
1331dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1332{
1333 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1334
1335 if (cache->tailcall_cache)
1336 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1337}
1338
4a4e5149
DJ
1339static int
1340dwarf2_frame_sniffer (const struct frame_unwind *self,
1341 struct frame_info *this_frame, void **this_cache)
cfc14b3a 1342{
3c3bb058
AB
1343 if (!dwarf2_frame_unwinders_enabled_p)
1344 return 0;
1345
30baf67b 1346 /* Grab an address that is guaranteed to reside somewhere within the
4a4e5149 1347 function. get_frame_pc(), with a no-return next function, can
93d42b30
DJ
1348 end up returning something past the end of this function's body.
1349 If the frame we're sniffing for is a signal frame whose start
1350 address is placed on the stack by the OS, its FDE must
4a4e5149
DJ
1351 extend one byte before its start address or we could potentially
1352 select the FDE of the previous function. */
1353 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
ac56253d 1354 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
9a619af0 1355
56c987f6 1356 if (!fde)
4a4e5149 1357 return 0;
3ed09a32
DJ
1358
1359 /* On some targets, signal trampolines may have unwind information.
1360 We need to recognize them so that we set the frame type
1361 correctly. */
1362
56c987f6 1363 if (fde->cie->signal_frame
4a4e5149
DJ
1364 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1365 this_frame))
1366 return self->type == SIGTRAMP_FRAME;
1367
111c6489
JK
1368 if (self->type != NORMAL_FRAME)
1369 return 0;
1370
111c6489 1371 return 1;
4a4e5149
DJ
1372}
1373
1374static const struct frame_unwind dwarf2_frame_unwind =
1375{
1376 NORMAL_FRAME,
8fbca658 1377 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1378 dwarf2_frame_this_id,
1379 dwarf2_frame_prev_register,
1380 NULL,
111c6489
JK
1381 dwarf2_frame_sniffer,
1382 dwarf2_frame_dealloc_cache
4a4e5149
DJ
1383};
1384
1385static const struct frame_unwind dwarf2_signal_frame_unwind =
1386{
1387 SIGTRAMP_FRAME,
8fbca658 1388 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1389 dwarf2_frame_this_id,
1390 dwarf2_frame_prev_register,
1391 NULL,
111c6489
JK
1392 dwarf2_frame_sniffer,
1393
1394 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1395 NULL
4a4e5149 1396};
cfc14b3a 1397
4a4e5149
DJ
1398/* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1399
1400void
1401dwarf2_append_unwinders (struct gdbarch *gdbarch)
1402{
111c6489
JK
1403 /* TAILCALL_FRAME must be first to find the record by
1404 dwarf2_tailcall_sniffer_first. */
1405 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1406
4a4e5149
DJ
1407 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1408 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
cfc14b3a
MK
1409}
1410\f
1411
1412/* There is no explicitly defined relationship between the CFA and the
1413 location of frame's local variables and arguments/parameters.
1414 Therefore, frame base methods on this page should probably only be
1415 used as a last resort, just to avoid printing total garbage as a
1416 response to the "info frame" command. */
1417
1418static CORE_ADDR
4a4e5149 1419dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
1420{
1421 struct dwarf2_frame_cache *cache =
4a4e5149 1422 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a
MK
1423
1424 return cache->cfa;
1425}
1426
1427static const struct frame_base dwarf2_frame_base =
1428{
1429 &dwarf2_frame_unwind,
1430 dwarf2_frame_base_address,
1431 dwarf2_frame_base_address,
1432 dwarf2_frame_base_address
1433};
1434
1435const struct frame_base *
4a4e5149 1436dwarf2_frame_base_sniffer (struct frame_info *this_frame)
cfc14b3a 1437{
4a4e5149 1438 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
9a619af0 1439
ac56253d 1440 if (dwarf2_frame_find_fde (&block_addr, NULL))
cfc14b3a
MK
1441 return &dwarf2_frame_base;
1442
1443 return NULL;
1444}
e7802207
TT
1445
1446/* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1447 the DWARF unwinder. This is used to implement
1448 DW_OP_call_frame_cfa. */
1449
1450CORE_ADDR
1451dwarf2_frame_cfa (struct frame_info *this_frame)
1452{
0b722aec
MM
1453 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1454 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1455 throw_error (NOT_AVAILABLE_ERROR,
1456 _("cfa not available for record btrace target"));
1457
e7802207
TT
1458 while (get_frame_type (this_frame) == INLINE_FRAME)
1459 this_frame = get_prev_frame (this_frame);
32261e52
MM
1460 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1461 throw_error (NOT_AVAILABLE_ERROR,
1462 _("can't compute CFA for this frame: "
1463 "required registers or memory are unavailable"));
14aba1ac
JB
1464
1465 if (get_frame_id (this_frame).stack_status != FID_STACK_VALID)
1466 throw_error (NOT_AVAILABLE_ERROR,
1467 _("can't compute CFA for this frame: "
1468 "frame base not available"));
1469
e7802207
TT
1470 return get_frame_base (this_frame);
1471}
cfc14b3a 1472\f
924d79e2
TT
1473const struct objfile_key<dwarf2_fde_table,
1474 gdb::noop_deleter<dwarf2_fde_table>>
1475 dwarf2_frame_objfile_data;
0d0e1a63 1476
cfc14b3a 1477static unsigned int
f664829e 1478read_1_byte (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1479{
852483bc 1480 return bfd_get_8 (abfd, buf);
cfc14b3a
MK
1481}
1482
1483static unsigned int
f664829e 1484read_4_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1485{
852483bc 1486 return bfd_get_32 (abfd, buf);
cfc14b3a
MK
1487}
1488
1489static ULONGEST
f664829e 1490read_8_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1491{
852483bc 1492 return bfd_get_64 (abfd, buf);
cfc14b3a
MK
1493}
1494
1495static ULONGEST
f664829e
DE
1496read_initial_length (bfd *abfd, const gdb_byte *buf,
1497 unsigned int *bytes_read_ptr)
cfc14b3a 1498{
723adb65 1499 ULONGEST result;
cfc14b3a 1500
852483bc 1501 result = bfd_get_32 (abfd, buf);
cfc14b3a
MK
1502 if (result == 0xffffffff)
1503 {
852483bc 1504 result = bfd_get_64 (abfd, buf + 4);
cfc14b3a
MK
1505 *bytes_read_ptr = 12;
1506 }
1507 else
1508 *bytes_read_ptr = 4;
1509
1510 return result;
1511}
1512\f
1513
1514/* Pointer encoding helper functions. */
1515
1516/* GCC supports exception handling based on DWARF2 CFI. However, for
1517 technical reasons, it encodes addresses in its FDE's in a different
1518 way. Several "pointer encodings" are supported. The encoding
1519 that's used for a particular FDE is determined by the 'R'
1520 augmentation in the associated CIE. The argument of this
1521 augmentation is a single byte.
1522
1523 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1524 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1525 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1526 address should be interpreted (absolute, relative to the current
1527 position in the FDE, ...). Bit 7, indicates that the address
1528 should be dereferenced. */
1529
852483bc 1530static gdb_byte
cfc14b3a
MK
1531encoding_for_size (unsigned int size)
1532{
1533 switch (size)
1534 {
1535 case 2:
1536 return DW_EH_PE_udata2;
1537 case 4:
1538 return DW_EH_PE_udata4;
1539 case 8:
1540 return DW_EH_PE_udata8;
1541 default:
e2e0b3e5 1542 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1543 }
1544}
1545
cfc14b3a 1546static CORE_ADDR
852483bc 1547read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e
TT
1548 int ptr_len, const gdb_byte *buf,
1549 unsigned int *bytes_read_ptr,
ae0d2f24 1550 CORE_ADDR func_base)
cfc14b3a 1551{
68f6cf99 1552 ptrdiff_t offset;
cfc14b3a
MK
1553 CORE_ADDR base;
1554
1555 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1556 FDE's. */
1557 if (encoding & DW_EH_PE_indirect)
1558 internal_error (__FILE__, __LINE__,
e2e0b3e5 1559 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1560
68f6cf99
MK
1561 *bytes_read_ptr = 0;
1562
cfc14b3a
MK
1563 switch (encoding & 0x70)
1564 {
1565 case DW_EH_PE_absptr:
1566 base = 0;
1567 break;
1568 case DW_EH_PE_pcrel:
fd361982 1569 base = bfd_section_vma (unit->dwarf_frame_section);
852483bc 1570 base += (buf - unit->dwarf_frame_buffer);
cfc14b3a 1571 break;
0912c7f2
MK
1572 case DW_EH_PE_datarel:
1573 base = unit->dbase;
1574 break;
0fd85043
CV
1575 case DW_EH_PE_textrel:
1576 base = unit->tbase;
1577 break;
03ac2a74 1578 case DW_EH_PE_funcrel:
ae0d2f24 1579 base = func_base;
03ac2a74 1580 break;
68f6cf99
MK
1581 case DW_EH_PE_aligned:
1582 base = 0;
852483bc 1583 offset = buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1584 if ((offset % ptr_len) != 0)
1585 {
1586 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1587 buf += *bytes_read_ptr;
1588 }
1589 break;
cfc14b3a 1590 default:
3e43a32a
MS
1591 internal_error (__FILE__, __LINE__,
1592 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1593 }
1594
b04de778 1595 if ((encoding & 0x07) == 0x00)
f2fec864
DJ
1596 {
1597 encoding |= encoding_for_size (ptr_len);
1598 if (bfd_get_sign_extend_vma (unit->abfd))
1599 encoding |= DW_EH_PE_signed;
1600 }
cfc14b3a
MK
1601
1602 switch (encoding & 0x0f)
1603 {
a81b10ae
MK
1604 case DW_EH_PE_uleb128:
1605 {
9fccedf7 1606 uint64_t value;
0d45f56e 1607 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1608
f664829e 1609 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1610 return base + value;
1611 }
cfc14b3a 1612 case DW_EH_PE_udata2:
68f6cf99 1613 *bytes_read_ptr += 2;
cfc14b3a
MK
1614 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1615 case DW_EH_PE_udata4:
68f6cf99 1616 *bytes_read_ptr += 4;
cfc14b3a
MK
1617 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1618 case DW_EH_PE_udata8:
68f6cf99 1619 *bytes_read_ptr += 8;
cfc14b3a 1620 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1621 case DW_EH_PE_sleb128:
1622 {
9fccedf7 1623 int64_t value;
0d45f56e 1624 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1625
f664829e 1626 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1627 return base + value;
1628 }
cfc14b3a 1629 case DW_EH_PE_sdata2:
68f6cf99 1630 *bytes_read_ptr += 2;
cfc14b3a
MK
1631 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1632 case DW_EH_PE_sdata4:
68f6cf99 1633 *bytes_read_ptr += 4;
cfc14b3a
MK
1634 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1635 case DW_EH_PE_sdata8:
68f6cf99 1636 *bytes_read_ptr += 8;
cfc14b3a
MK
1637 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1638 default:
3e43a32a
MS
1639 internal_error (__FILE__, __LINE__,
1640 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1641 }
1642}
1643\f
1644
b01c8410
PP
1645/* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1646static struct dwarf2_cie *
93878f47 1647find_cie (const dwarf2_cie_table &cie_table, ULONGEST cie_pointer)
b01c8410 1648{
93878f47
TT
1649 auto iter = cie_table.find (cie_pointer);
1650 if (iter != cie_table.end ())
1651 return iter->second;
cfc14b3a
MK
1652 return NULL;
1653}
1654
35e65c49
CB
1655static inline int
1656bsearch_fde_cmp (const dwarf2_fde *fde, CORE_ADDR seek_pc)
b01c8410 1657{
35e65c49 1658 if (fde->initial_location + fde->address_range <= seek_pc)
b01c8410 1659 return -1;
35e65c49 1660 if (fde->initial_location <= seek_pc)
b01c8410
PP
1661 return 0;
1662 return 1;
cfc14b3a
MK
1663}
1664
1665/* Find the FDE for *PC. Return a pointer to the FDE, and store the
85102364 1666 initial location associated with it into *PC. */
cfc14b3a
MK
1667
1668static struct dwarf2_fde *
ac56253d 1669dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
cfc14b3a 1670{
2030c079 1671 for (objfile *objfile : current_program_space->objfiles ())
cfc14b3a 1672 {
b01c8410 1673 struct dwarf2_fde_table *fde_table;
cfc14b3a 1674 CORE_ADDR offset;
b01c8410 1675 CORE_ADDR seek_pc;
cfc14b3a 1676
924d79e2 1677 fde_table = dwarf2_frame_objfile_data.get (objfile);
b01c8410 1678 if (fde_table == NULL)
be391dca
TT
1679 {
1680 dwarf2_build_frame_info (objfile);
924d79e2 1681 fde_table = dwarf2_frame_objfile_data.get (objfile);
be391dca
TT
1682 }
1683 gdb_assert (fde_table != NULL);
1684
1685 if (fde_table->num_entries == 0)
4ae9ee8e
DJ
1686 continue;
1687
6a053cb1
TT
1688 gdb_assert (!objfile->section_offsets.empty ());
1689 offset = objfile->section_offsets[SECT_OFF_TEXT (objfile)];
4ae9ee8e 1690
b01c8410
PP
1691 gdb_assert (fde_table->num_entries > 0);
1692 if (*pc < offset + fde_table->entries[0]->initial_location)
1693 continue;
1694
1695 seek_pc = *pc - offset;
35e65c49
CB
1696 auto end = fde_table->entries + fde_table->num_entries;
1697 auto it = gdb::binary_search (fde_table->entries, end, seek_pc, bsearch_fde_cmp);
1698 if (it != end)
b01c8410 1699 {
35e65c49 1700 *pc = (*it)->initial_location + offset;
ac56253d
TT
1701 if (out_offset)
1702 *out_offset = offset;
35e65c49 1703 return *it;
b01c8410 1704 }
cfc14b3a 1705 }
cfc14b3a
MK
1706 return NULL;
1707}
1708
b01c8410 1709/* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
cfc14b3a 1710static void
b01c8410 1711add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
cfc14b3a 1712{
b01c8410
PP
1713 if (fde->address_range == 0)
1714 /* Discard useless FDEs. */
1715 return;
1716
1717 fde_table->num_entries += 1;
224c3ddb
SM
1718 fde_table->entries = XRESIZEVEC (struct dwarf2_fde *, fde_table->entries,
1719 fde_table->num_entries);
b01c8410 1720 fde_table->entries[fde_table->num_entries - 1] = fde;
cfc14b3a
MK
1721}
1722
cfc14b3a 1723#define DW64_CIE_ID 0xffffffffffffffffULL
cfc14b3a 1724
8bd90839
FM
1725/* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1726 or any of them. */
1727
1728enum eh_frame_type
1729{
1730 EH_CIE_TYPE_ID = 1 << 0,
1731 EH_FDE_TYPE_ID = 1 << 1,
1732 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1733};
1734
f664829e
DE
1735static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1736 const gdb_byte *start,
1737 int eh_frame_p,
93878f47 1738 dwarf2_cie_table &cie_table,
f664829e
DE
1739 struct dwarf2_fde_table *fde_table,
1740 enum eh_frame_type entry_type);
8bd90839
FM
1741
1742/* Decode the next CIE or FDE, entry_type specifies the expected type.
1743 Return NULL if invalid input, otherwise the next byte to be processed. */
cfc14b3a 1744
f664829e
DE
1745static const gdb_byte *
1746decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1747 int eh_frame_p,
93878f47 1748 dwarf2_cie_table &cie_table,
8bd90839
FM
1749 struct dwarf2_fde_table *fde_table,
1750 enum eh_frame_type entry_type)
cfc14b3a 1751{
5e2b427d 1752 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
f664829e 1753 const gdb_byte *buf, *end;
723adb65 1754 ULONGEST length;
cfc14b3a 1755 unsigned int bytes_read;
6896c0c7
RH
1756 int dwarf64_p;
1757 ULONGEST cie_id;
cfc14b3a 1758 ULONGEST cie_pointer;
9fccedf7
DE
1759 int64_t sleb128;
1760 uint64_t uleb128;
cfc14b3a 1761
6896c0c7 1762 buf = start;
cfc14b3a
MK
1763 length = read_initial_length (unit->abfd, buf, &bytes_read);
1764 buf += bytes_read;
723adb65 1765 end = buf + (size_t) length;
6896c0c7 1766
cfc14b3a
MK
1767 if (length == 0)
1768 return end;
1769
723adb65
SL
1770 /* Are we still within the section? */
1771 if (end <= buf || end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1772 return NULL;
1773
6896c0c7
RH
1774 /* Distinguish between 32 and 64-bit encoded frame info. */
1775 dwarf64_p = (bytes_read == 12);
cfc14b3a 1776
6896c0c7 1777 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1778 if (eh_frame_p)
1779 cie_id = 0;
1780 else if (dwarf64_p)
1781 cie_id = DW64_CIE_ID;
6896c0c7
RH
1782 else
1783 cie_id = DW_CIE_ID;
cfc14b3a
MK
1784
1785 if (dwarf64_p)
1786 {
1787 cie_pointer = read_8_bytes (unit->abfd, buf);
1788 buf += 8;
1789 }
1790 else
1791 {
1792 cie_pointer = read_4_bytes (unit->abfd, buf);
1793 buf += 4;
1794 }
1795
1796 if (cie_pointer == cie_id)
1797 {
1798 /* This is a CIE. */
1799 struct dwarf2_cie *cie;
1800 char *augmentation;
28ba0b33 1801 unsigned int cie_version;
cfc14b3a 1802
8bd90839
FM
1803 /* Check that a CIE was expected. */
1804 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1805 error (_("Found a CIE when not expecting it."));
1806
cfc14b3a
MK
1807 /* Record the offset into the .debug_frame section of this CIE. */
1808 cie_pointer = start - unit->dwarf_frame_buffer;
1809
1810 /* Check whether we've already read it. */
b01c8410 1811 if (find_cie (cie_table, cie_pointer))
cfc14b3a
MK
1812 return end;
1813
8d749320 1814 cie = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_cie);
cfc14b3a
MK
1815 cie->initial_instructions = NULL;
1816 cie->cie_pointer = cie_pointer;
1817
1818 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1819 depends on the target address size. */
1820 cie->encoding = DW_EH_PE_absptr;
cfc14b3a 1821
56c987f6
AO
1822 /* We'll determine the final value later, but we need to
1823 initialize it conservatively. */
1824 cie->signal_frame = 0;
1825
cfc14b3a 1826 /* Check version number. */
28ba0b33 1827 cie_version = read_1_byte (unit->abfd, buf);
2dc7f7b3 1828 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
6896c0c7 1829 return NULL;
303b6f5d 1830 cie->version = cie_version;
cfc14b3a
MK
1831 buf += 1;
1832
1833 /* Interpret the interesting bits of the augmentation. */
303b6f5d 1834 cie->augmentation = augmentation = (char *) buf;
852483bc 1835 buf += (strlen (augmentation) + 1);
cfc14b3a 1836
303b6f5d
DJ
1837 /* Ignore armcc augmentations. We only use them for quirks,
1838 and that doesn't happen until later. */
61012eef 1839 if (startswith (augmentation, "armcc"))
303b6f5d
DJ
1840 augmentation += strlen (augmentation);
1841
cfc14b3a
MK
1842 /* The GCC 2.x "eh" augmentation has a pointer immediately
1843 following the augmentation string, so it must be handled
1844 first. */
1845 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1846 {
1847 /* Skip. */
5e2b427d 1848 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
cfc14b3a
MK
1849 augmentation += 2;
1850 }
1851
2dc7f7b3
TT
1852 if (cie->version >= 4)
1853 {
1854 /* FIXME: check that this is the same as from the CU header. */
1855 cie->addr_size = read_1_byte (unit->abfd, buf);
1856 ++buf;
1857 cie->segment_size = read_1_byte (unit->abfd, buf);
1858 ++buf;
1859 }
1860 else
1861 {
8da614df 1862 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
2dc7f7b3
TT
1863 cie->segment_size = 0;
1864 }
8da614df
CV
1865 /* Address values in .eh_frame sections are defined to have the
1866 target's pointer size. Watchout: This breaks frame info for
1867 targets with pointer size < address size, unless a .debug_frame
0963b4bd 1868 section exists as well. */
8da614df
CV
1869 if (eh_frame_p)
1870 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1871 else
1872 cie->ptr_size = cie->addr_size;
2dc7f7b3 1873
f664829e
DE
1874 buf = gdb_read_uleb128 (buf, end, &uleb128);
1875 if (buf == NULL)
1876 return NULL;
1877 cie->code_alignment_factor = uleb128;
cfc14b3a 1878
f664829e
DE
1879 buf = gdb_read_sleb128 (buf, end, &sleb128);
1880 if (buf == NULL)
1881 return NULL;
1882 cie->data_alignment_factor = sleb128;
cfc14b3a 1883
28ba0b33
PB
1884 if (cie_version == 1)
1885 {
1886 cie->return_address_register = read_1_byte (unit->abfd, buf);
f664829e 1887 ++buf;
28ba0b33
PB
1888 }
1889 else
f664829e
DE
1890 {
1891 buf = gdb_read_uleb128 (buf, end, &uleb128);
1892 if (buf == NULL)
1893 return NULL;
1894 cie->return_address_register = uleb128;
1895 }
1896
4fc771b8 1897 cie->return_address_register
5e2b427d 1898 = dwarf2_frame_adjust_regnum (gdbarch,
4fc771b8
DJ
1899 cie->return_address_register,
1900 eh_frame_p);
4bf8967c 1901
7131cb6e
RH
1902 cie->saw_z_augmentation = (*augmentation == 'z');
1903 if (cie->saw_z_augmentation)
cfc14b3a 1904 {
b926417a 1905 uint64_t uleb_length;
cfc14b3a 1906
b926417a 1907 buf = gdb_read_uleb128 (buf, end, &uleb_length);
f664829e 1908 if (buf == NULL)
6896c0c7 1909 return NULL;
b926417a 1910 cie->initial_instructions = buf + uleb_length;
cfc14b3a
MK
1911 augmentation++;
1912 }
1913
1914 while (*augmentation)
1915 {
1916 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1917 if (*augmentation == 'L')
1918 {
1919 /* Skip. */
1920 buf++;
1921 augmentation++;
1922 }
1923
1924 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1925 else if (*augmentation == 'R')
1926 {
1927 cie->encoding = *buf++;
1928 augmentation++;
1929 }
1930
1931 /* "P" indicates a personality routine in the CIE augmentation. */
1932 else if (*augmentation == 'P')
1933 {
1234d960 1934 /* Skip. Avoid indirection since we throw away the result. */
852483bc 1935 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
8da614df 1936 read_encoded_value (unit, encoding, cie->ptr_size,
ae0d2f24 1937 buf, &bytes_read, 0);
f724bf08 1938 buf += bytes_read;
cfc14b3a
MK
1939 augmentation++;
1940 }
1941
56c987f6
AO
1942 /* "S" indicates a signal frame, such that the return
1943 address must not be decremented to locate the call frame
1944 info for the previous frame; it might even be the first
1945 instruction of a function, so decrementing it would take
1946 us to a different function. */
1947 else if (*augmentation == 'S')
1948 {
1949 cie->signal_frame = 1;
1950 augmentation++;
1951 }
1952
3e9a2e52
DJ
1953 /* Otherwise we have an unknown augmentation. Assume that either
1954 there is no augmentation data, or we saw a 'z' prefix. */
cfc14b3a
MK
1955 else
1956 {
3e9a2e52
DJ
1957 if (cie->initial_instructions)
1958 buf = cie->initial_instructions;
cfc14b3a
MK
1959 break;
1960 }
1961 }
1962
1963 cie->initial_instructions = buf;
1964 cie->end = end;
b01c8410 1965 cie->unit = unit;
cfc14b3a 1966
93878f47 1967 cie_table[cie->cie_pointer] = cie;
cfc14b3a
MK
1968 }
1969 else
1970 {
1971 /* This is a FDE. */
1972 struct dwarf2_fde *fde;
3e29f34a 1973 CORE_ADDR addr;
cfc14b3a 1974
8bd90839
FM
1975 /* Check that an FDE was expected. */
1976 if ((entry_type & EH_FDE_TYPE_ID) == 0)
1977 error (_("Found an FDE when not expecting it."));
1978
6896c0c7
RH
1979 /* In an .eh_frame section, the CIE pointer is the delta between the
1980 address within the FDE where the CIE pointer is stored and the
1981 address of the CIE. Convert it to an offset into the .eh_frame
1982 section. */
cfc14b3a
MK
1983 if (eh_frame_p)
1984 {
cfc14b3a
MK
1985 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1986 cie_pointer -= (dwarf64_p ? 8 : 4);
1987 }
1988
6896c0c7
RH
1989 /* In either case, validate the result is still within the section. */
1990 if (cie_pointer >= unit->dwarf_frame_size)
1991 return NULL;
1992
8d749320 1993 fde = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_fde);
b01c8410 1994 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
1995 if (fde->cie == NULL)
1996 {
1997 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
8bd90839
FM
1998 eh_frame_p, cie_table, fde_table,
1999 EH_CIE_TYPE_ID);
b01c8410 2000 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2001 }
2002
2003 gdb_assert (fde->cie != NULL);
2004
3e29f34a
MR
2005 addr = read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2006 buf, &bytes_read, 0);
2007 fde->initial_location = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
cfc14b3a
MK
2008 buf += bytes_read;
2009
2010 fde->address_range =
ae0d2f24 2011 read_encoded_value (unit, fde->cie->encoding & 0x0f,
8da614df 2012 fde->cie->ptr_size, buf, &bytes_read, 0);
3e29f34a
MR
2013 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + fde->address_range);
2014 fde->address_range = addr - fde->initial_location;
cfc14b3a
MK
2015 buf += bytes_read;
2016
7131cb6e
RH
2017 /* A 'z' augmentation in the CIE implies the presence of an
2018 augmentation field in the FDE as well. The only thing known
2019 to be in here at present is the LSDA entry for EH. So we
2020 can skip the whole thing. */
2021 if (fde->cie->saw_z_augmentation)
2022 {
b926417a 2023 uint64_t uleb_length;
7131cb6e 2024
b926417a 2025 buf = gdb_read_uleb128 (buf, end, &uleb_length);
f664829e
DE
2026 if (buf == NULL)
2027 return NULL;
b926417a 2028 buf += uleb_length;
6896c0c7
RH
2029 if (buf > end)
2030 return NULL;
7131cb6e
RH
2031 }
2032
cfc14b3a
MK
2033 fde->instructions = buf;
2034 fde->end = end;
2035
4bf8967c
AS
2036 fde->eh_frame_p = eh_frame_p;
2037
b01c8410 2038 add_fde (fde_table, fde);
cfc14b3a
MK
2039 }
2040
2041 return end;
2042}
6896c0c7 2043
8bd90839
FM
2044/* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2045 expect an FDE or a CIE. */
2046
f664829e
DE
2047static const gdb_byte *
2048decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2049 int eh_frame_p,
93878f47 2050 dwarf2_cie_table &cie_table,
8bd90839
FM
2051 struct dwarf2_fde_table *fde_table,
2052 enum eh_frame_type entry_type)
6896c0c7
RH
2053{
2054 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
f664829e 2055 const gdb_byte *ret;
6896c0c7
RH
2056 ptrdiff_t start_offset;
2057
2058 while (1)
2059 {
b01c8410 2060 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
8bd90839 2061 cie_table, fde_table, entry_type);
6896c0c7
RH
2062 if (ret != NULL)
2063 break;
2064
2065 /* We have corrupt input data of some form. */
2066
2067 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2068 and mismatches wrt padding and alignment of debug sections. */
2069 /* Note that there is no requirement in the standard for any
2070 alignment at all in the frame unwind sections. Testing for
2071 alignment before trying to interpret data would be incorrect.
2072
2073 However, GCC traditionally arranged for frame sections to be
2074 sized such that the FDE length and CIE fields happen to be
2075 aligned (in theory, for performance). This, unfortunately,
2076 was done with .align directives, which had the side effect of
2077 forcing the section to be aligned by the linker.
2078
2079 This becomes a problem when you have some other producer that
2080 creates frame sections that are not as strictly aligned. That
2081 produces a hole in the frame info that gets filled by the
2082 linker with zeros.
2083
2084 The GCC behaviour is arguably a bug, but it's effectively now
2085 part of the ABI, so we're now stuck with it, at least at the
2086 object file level. A smart linker may decide, in the process
2087 of compressing duplicate CIE information, that it can rewrite
2088 the entire output section without this extra padding. */
2089
2090 start_offset = start - unit->dwarf_frame_buffer;
2091 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2092 {
2093 start += 4 - (start_offset & 3);
2094 workaround = ALIGN4;
2095 continue;
2096 }
2097 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2098 {
2099 start += 8 - (start_offset & 7);
2100 workaround = ALIGN8;
2101 continue;
2102 }
2103
2104 /* Nothing left to try. Arrange to return as if we've consumed
2105 the entire input section. Hopefully we'll get valid info from
2106 the other of .debug_frame/.eh_frame. */
2107 workaround = FAIL;
2108 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2109 break;
2110 }
2111
2112 switch (workaround)
2113 {
2114 case NONE:
2115 break;
2116
2117 case ALIGN4:
b98664d3 2118 complaint (_("\
3e43a32a 2119Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
2120 unit->dwarf_frame_section->owner->filename,
2121 unit->dwarf_frame_section->name);
2122 break;
2123
2124 case ALIGN8:
b98664d3 2125 complaint (_("\
3e43a32a 2126Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
2127 unit->dwarf_frame_section->owner->filename,
2128 unit->dwarf_frame_section->name);
2129 break;
2130
2131 default:
b98664d3 2132 complaint (_("Corrupt data in %s:%s"),
6896c0c7
RH
2133 unit->dwarf_frame_section->owner->filename,
2134 unit->dwarf_frame_section->name);
2135 break;
2136 }
2137
2138 return ret;
2139}
cfc14b3a 2140\f
39ef2f62
CB
2141static bool
2142fde_is_less_than (const dwarf2_fde *aa, const dwarf2_fde *bb)
b01c8410 2143{
b01c8410 2144 if (aa->initial_location == bb->initial_location)
e5af178f
PP
2145 {
2146 if (aa->address_range != bb->address_range
2147 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2148 /* Linker bug, e.g. gold/10400.
2149 Work around it by keeping stable sort order. */
39ef2f62 2150 return aa < bb;
e5af178f
PP
2151 else
2152 /* Put eh_frame entries after debug_frame ones. */
39ef2f62 2153 return aa->eh_frame_p < bb->eh_frame_p;
e5af178f 2154 }
b01c8410 2155
39ef2f62 2156 return aa->initial_location < bb->initial_location;
b01c8410
PP
2157}
2158
cfc14b3a
MK
2159void
2160dwarf2_build_frame_info (struct objfile *objfile)
2161{
ae0d2f24 2162 struct comp_unit *unit;
f664829e 2163 const gdb_byte *frame_ptr;
93878f47 2164 dwarf2_cie_table cie_table;
b01c8410 2165 struct dwarf2_fde_table fde_table;
be391dca 2166 struct dwarf2_fde_table *fde_table2;
b01c8410 2167
b01c8410
PP
2168 fde_table.num_entries = 0;
2169 fde_table.entries = NULL;
cfc14b3a
MK
2170
2171 /* Build a minimal decoding of the DWARF2 compilation unit. */
e39db4db 2172 unit = XOBNEW (&objfile->objfile_obstack, comp_unit);
ae0d2f24
UW
2173 unit->abfd = objfile->obfd;
2174 unit->objfile = objfile;
2175 unit->dbase = 0;
2176 unit->tbase = 0;
cfc14b3a 2177
d40102a1 2178 if (objfile->separate_debug_objfile_backlink == NULL)
cfc14b3a 2179 {
d40102a1
JB
2180 /* Do not read .eh_frame from separate file as they must be also
2181 present in the main file. */
2182 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2183 &unit->dwarf_frame_section,
2184 &unit->dwarf_frame_buffer,
2185 &unit->dwarf_frame_size);
2186 if (unit->dwarf_frame_size)
b01c8410 2187 {
d40102a1
JB
2188 asection *got, *txt;
2189
2190 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2191 that is used for the i386/amd64 target, which currently is
2192 the only target in GCC that supports/uses the
2193 DW_EH_PE_datarel encoding. */
2194 got = bfd_get_section_by_name (unit->abfd, ".got");
2195 if (got)
2196 unit->dbase = got->vma;
2197
2198 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2199 so far. */
2200 txt = bfd_get_section_by_name (unit->abfd, ".text");
2201 if (txt)
2202 unit->tbase = txt->vma;
2203
a70b8144 2204 try
8bd90839
FM
2205 {
2206 frame_ptr = unit->dwarf_frame_buffer;
2207 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2208 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
93878f47 2209 cie_table, &fde_table,
8bd90839
FM
2210 EH_CIE_OR_FDE_TYPE_ID);
2211 }
2212
230d2906 2213 catch (const gdb_exception_error &e)
8bd90839
FM
2214 {
2215 warning (_("skipping .eh_frame info of %s: %s"),
3d6e9d23 2216 objfile_name (objfile), e.what ());
8bd90839
FM
2217
2218 if (fde_table.num_entries != 0)
2219 {
2220 xfree (fde_table.entries);
2221 fde_table.entries = NULL;
2222 fde_table.num_entries = 0;
2223 }
93878f47 2224 /* The cie_table is discarded below. */
8bd90839 2225 }
d40102a1 2226
93878f47 2227 cie_table.clear ();
b01c8410 2228 }
cfc14b3a
MK
2229 }
2230
3017a003 2231 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
dce234bc
PP
2232 &unit->dwarf_frame_section,
2233 &unit->dwarf_frame_buffer,
2234 &unit->dwarf_frame_size);
2235 if (unit->dwarf_frame_size)
cfc14b3a 2236 {
8bd90839
FM
2237 int num_old_fde_entries = fde_table.num_entries;
2238
a70b8144 2239 try
8bd90839
FM
2240 {
2241 frame_ptr = unit->dwarf_frame_buffer;
2242 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2243 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
93878f47 2244 cie_table, &fde_table,
8bd90839
FM
2245 EH_CIE_OR_FDE_TYPE_ID);
2246 }
230d2906 2247 catch (const gdb_exception_error &e)
8bd90839
FM
2248 {
2249 warning (_("skipping .debug_frame info of %s: %s"),
3d6e9d23 2250 objfile_name (objfile), e.what ());
8bd90839
FM
2251
2252 if (fde_table.num_entries != 0)
2253 {
2254 fde_table.num_entries = num_old_fde_entries;
2255 if (num_old_fde_entries == 0)
2256 {
2257 xfree (fde_table.entries);
2258 fde_table.entries = NULL;
2259 }
2260 else
2261 {
224c3ddb
SM
2262 fde_table.entries
2263 = XRESIZEVEC (struct dwarf2_fde *, fde_table.entries,
2264 fde_table.num_entries);
8bd90839
FM
2265 }
2266 }
2267 fde_table.num_entries = num_old_fde_entries;
8bd90839 2268 }
b01c8410
PP
2269 }
2270
be391dca 2271 /* Copy fde_table to obstack: it is needed at runtime. */
8d749320 2272 fde_table2 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_fde_table);
be391dca
TT
2273
2274 if (fde_table.num_entries == 0)
2275 {
2276 fde_table2->entries = NULL;
2277 fde_table2->num_entries = 0;
2278 }
2279 else
b01c8410 2280 {
875cdfbb
PA
2281 struct dwarf2_fde *fde_prev = NULL;
2282 struct dwarf2_fde *first_non_zero_fde = NULL;
2283 int i;
b01c8410
PP
2284
2285 /* Prepare FDE table for lookups. */
39ef2f62
CB
2286 std::sort (fde_table.entries, fde_table.entries + fde_table.num_entries,
2287 fde_is_less_than);
b01c8410 2288
875cdfbb
PA
2289 /* Check for leftovers from --gc-sections. The GNU linker sets
2290 the relevant symbols to zero, but doesn't zero the FDE *end*
2291 ranges because there's no relocation there. It's (offset,
2292 length), not (start, end). On targets where address zero is
2293 just another valid address this can be a problem, since the
2294 FDEs appear to be non-empty in the output --- we could pick
2295 out the wrong FDE. To work around this, when overlaps are
2296 detected, we prefer FDEs that do not start at zero.
2297
2298 Start by finding the first FDE with non-zero start. Below
2299 we'll discard all FDEs that start at zero and overlap this
2300 one. */
2301 for (i = 0; i < fde_table.num_entries; i++)
2302 {
2303 struct dwarf2_fde *fde = fde_table.entries[i];
b01c8410 2304
875cdfbb
PA
2305 if (fde->initial_location != 0)
2306 {
2307 first_non_zero_fde = fde;
2308 break;
2309 }
2310 }
2311
2312 /* Since we'll be doing bsearch, squeeze out identical (except
2313 for eh_frame_p) fde entries so bsearch result is predictable.
2314 Also discard leftovers from --gc-sections. */
be391dca 2315 fde_table2->num_entries = 0;
875cdfbb
PA
2316 for (i = 0; i < fde_table.num_entries; i++)
2317 {
2318 struct dwarf2_fde *fde = fde_table.entries[i];
2319
2320 if (fde->initial_location == 0
2321 && first_non_zero_fde != NULL
2322 && (first_non_zero_fde->initial_location
2323 < fde->initial_location + fde->address_range))
2324 continue;
2325
2326 if (fde_prev != NULL
2327 && fde_prev->initial_location == fde->initial_location)
2328 continue;
2329
2330 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2331 sizeof (fde_table.entries[0]));
2332 ++fde_table2->num_entries;
2333 fde_prev = fde;
2334 }
224c3ddb
SM
2335 fde_table2->entries
2336 = (struct dwarf2_fde **) obstack_finish (&objfile->objfile_obstack);
b01c8410
PP
2337
2338 /* Discard the original fde_table. */
2339 xfree (fde_table.entries);
cfc14b3a 2340 }
be391dca 2341
924d79e2 2342 dwarf2_frame_objfile_data.set (objfile, fde_table2);
cfc14b3a 2343}
0d0e1a63 2344
3c3bb058
AB
2345/* Handle 'maintenance show dwarf unwinders'. */
2346
2347static void
2348show_dwarf_unwinders_enabled_p (struct ui_file *file, int from_tty,
2349 struct cmd_list_element *c,
2350 const char *value)
2351{
2352 fprintf_filtered (file,
2353 _("The DWARF stack unwinders are currently %s.\n"),
2354 value);
2355}
2356
6c265988 2357void _initialize_dwarf2_frame ();
0d0e1a63 2358void
6c265988 2359_initialize_dwarf2_frame ()
0d0e1a63 2360{
030f20e1 2361 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
1c90d9f0 2362
3c3bb058
AB
2363 add_setshow_boolean_cmd ("unwinders", class_obscure,
2364 &dwarf2_frame_unwinders_enabled_p , _("\
2365Set whether the DWARF stack frame unwinders are used."), _("\
2366Show whether the DWARF stack frame unwinders are used."), _("\
2367When enabled the DWARF stack frame unwinders can be used for architectures\n\
2368that support the DWARF unwinders. Enabling the DWARF unwinders for an\n\
2369architecture that doesn't support them will have no effect."),
2370 NULL,
2371 show_dwarf_unwinders_enabled_p,
2372 &set_dwarf_cmdlist,
2373 &show_dwarf_cmdlist);
2374
1c90d9f0 2375#if GDB_SELF_TEST
1526853e
SM
2376 selftests::register_test_foreach_arch ("execute_cfa_program",
2377 selftests::execute_cfa_program_test);
1c90d9f0 2378#endif
0d0e1a63 2379}
This page took 1.395187 seconds and 4 git commands to generate.