Add delim_string_to_char_ptr_vec.
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
ecd75fc8 3 Copyright (C) 2003-2014 Free Software Foundation, Inc.
cfc14b3a
MK
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
cfc14b3a
MK
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
cfc14b3a
MK
21
22#include "defs.h"
23#include "dwarf2expr.h"
fa8f86ff 24#include "dwarf2.h"
cfc14b3a
MK
25#include "frame.h"
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
30#include "symtab.h"
31#include "objfiles.h"
32#include "regcache.h"
f2da6b3a 33#include "value.h"
0b722aec 34#include "record.h"
cfc14b3a
MK
35
36#include "gdb_assert.h"
0e9f083f 37#include <string.h>
cfc14b3a 38
6896c0c7 39#include "complaints.h"
cfc14b3a 40#include "dwarf2-frame.h"
9f6f94ff
TT
41#include "ax.h"
42#include "dwarf2loc.h"
8fbca658 43#include "exceptions.h"
111c6489 44#include "dwarf2-frame-tailcall.h"
cfc14b3a 45
ae0d2f24
UW
46struct comp_unit;
47
cfc14b3a
MK
48/* Call Frame Information (CFI). */
49
50/* Common Information Entry (CIE). */
51
52struct dwarf2_cie
53{
ae0d2f24
UW
54 /* Computation Unit for this CIE. */
55 struct comp_unit *unit;
56
cfc14b3a
MK
57 /* Offset into the .debug_frame section where this CIE was found.
58 Used to identify this CIE. */
59 ULONGEST cie_pointer;
60
61 /* Constant that is factored out of all advance location
62 instructions. */
63 ULONGEST code_alignment_factor;
64
65 /* Constants that is factored out of all offset instructions. */
66 LONGEST data_alignment_factor;
67
68 /* Return address column. */
69 ULONGEST return_address_register;
70
71 /* Instruction sequence to initialize a register set. */
f664829e
DE
72 const gdb_byte *initial_instructions;
73 const gdb_byte *end;
cfc14b3a 74
303b6f5d
DJ
75 /* Saved augmentation, in case it's needed later. */
76 char *augmentation;
77
cfc14b3a 78 /* Encoding of addresses. */
852483bc 79 gdb_byte encoding;
cfc14b3a 80
ae0d2f24
UW
81 /* Target address size in bytes. */
82 int addr_size;
83
0963b4bd 84 /* Target pointer size in bytes. */
8da614df
CV
85 int ptr_size;
86
7131cb6e
RH
87 /* True if a 'z' augmentation existed. */
88 unsigned char saw_z_augmentation;
89
56c987f6
AO
90 /* True if an 'S' augmentation existed. */
91 unsigned char signal_frame;
92
303b6f5d
DJ
93 /* The version recorded in the CIE. */
94 unsigned char version;
2dc7f7b3
TT
95
96 /* The segment size. */
97 unsigned char segment_size;
b01c8410 98};
303b6f5d 99
b01c8410
PP
100struct dwarf2_cie_table
101{
102 int num_entries;
103 struct dwarf2_cie **entries;
cfc14b3a
MK
104};
105
106/* Frame Description Entry (FDE). */
107
108struct dwarf2_fde
109{
110 /* CIE for this FDE. */
111 struct dwarf2_cie *cie;
112
113 /* First location associated with this FDE. */
114 CORE_ADDR initial_location;
115
116 /* Number of bytes of program instructions described by this FDE. */
117 CORE_ADDR address_range;
118
119 /* Instruction sequence. */
f664829e
DE
120 const gdb_byte *instructions;
121 const gdb_byte *end;
cfc14b3a 122
4bf8967c
AS
123 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
124 section. */
125 unsigned char eh_frame_p;
b01c8410 126};
4bf8967c 127
b01c8410
PP
128struct dwarf2_fde_table
129{
130 int num_entries;
131 struct dwarf2_fde **entries;
cfc14b3a
MK
132};
133
ae0d2f24
UW
134/* A minimal decoding of DWARF2 compilation units. We only decode
135 what's needed to get to the call frame information. */
136
137struct comp_unit
138{
139 /* Keep the bfd convenient. */
140 bfd *abfd;
141
142 struct objfile *objfile;
143
ae0d2f24 144 /* Pointer to the .debug_frame section loaded into memory. */
d521ce57 145 const gdb_byte *dwarf_frame_buffer;
ae0d2f24
UW
146
147 /* Length of the loaded .debug_frame section. */
c098b58b 148 bfd_size_type dwarf_frame_size;
ae0d2f24
UW
149
150 /* Pointer to the .debug_frame section. */
151 asection *dwarf_frame_section;
152
153 /* Base for DW_EH_PE_datarel encodings. */
154 bfd_vma dbase;
155
156 /* Base for DW_EH_PE_textrel encodings. */
157 bfd_vma tbase;
158};
159
ac56253d
TT
160static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
161 CORE_ADDR *out_offset);
4fc771b8
DJ
162
163static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
164 int eh_frame_p);
ae0d2f24
UW
165
166static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e 167 int ptr_len, const gdb_byte *buf,
ae0d2f24
UW
168 unsigned int *bytes_read_ptr,
169 CORE_ADDR func_base);
cfc14b3a
MK
170\f
171
172/* Structure describing a frame state. */
173
174struct dwarf2_frame_state
175{
176 /* Each register save state can be described in terms of a CFA slot,
177 another register, or a location expression. */
178 struct dwarf2_frame_state_reg_info
179 {
05cbe71a 180 struct dwarf2_frame_state_reg *reg;
cfc14b3a
MK
181 int num_regs;
182
2fd481e1
PP
183 LONGEST cfa_offset;
184 ULONGEST cfa_reg;
185 enum {
186 CFA_UNSET,
187 CFA_REG_OFFSET,
188 CFA_EXP
189 } cfa_how;
0d45f56e 190 const gdb_byte *cfa_exp;
2fd481e1 191
cfc14b3a
MK
192 /* Used to implement DW_CFA_remember_state. */
193 struct dwarf2_frame_state_reg_info *prev;
194 } regs;
195
cfc14b3a
MK
196 /* The PC described by the current frame state. */
197 CORE_ADDR pc;
198
199 /* Initial register set from the CIE.
200 Used to implement DW_CFA_restore. */
201 struct dwarf2_frame_state_reg_info initial;
202
203 /* The information we care about from the CIE. */
204 LONGEST data_align;
205 ULONGEST code_align;
206 ULONGEST retaddr_column;
303b6f5d
DJ
207
208 /* Flags for known producer quirks. */
209
210 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
211 and DW_CFA_def_cfa_offset takes a factored offset. */
212 int armcc_cfa_offsets_sf;
213
214 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
215 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
216 int armcc_cfa_offsets_reversed;
cfc14b3a
MK
217};
218
219/* Store the length the expression for the CFA in the `cfa_reg' field,
220 which is unused in that case. */
221#define cfa_exp_len cfa_reg
222
f57d151a 223/* Assert that the register set RS is large enough to store gdbarch_num_regs
cfc14b3a
MK
224 columns. If necessary, enlarge the register set. */
225
226static void
227dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
228 int num_regs)
229{
230 size_t size = sizeof (struct dwarf2_frame_state_reg);
231
232 if (num_regs <= rs->num_regs)
233 return;
234
235 rs->reg = (struct dwarf2_frame_state_reg *)
236 xrealloc (rs->reg, num_regs * size);
237
238 /* Initialize newly allocated registers. */
2473a4a9 239 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
cfc14b3a
MK
240 rs->num_regs = num_regs;
241}
242
243/* Copy the register columns in register set RS into newly allocated
244 memory and return a pointer to this newly created copy. */
245
246static struct dwarf2_frame_state_reg *
247dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
248{
d10891d4 249 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
cfc14b3a
MK
250 struct dwarf2_frame_state_reg *reg;
251
252 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
253 memcpy (reg, rs->reg, size);
254
255 return reg;
256}
257
258/* Release the memory allocated to register set RS. */
259
260static void
261dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
262{
263 if (rs)
264 {
265 dwarf2_frame_state_free_regs (rs->prev);
266
267 xfree (rs->reg);
268 xfree (rs);
269 }
270}
271
272/* Release the memory allocated to the frame state FS. */
273
274static void
275dwarf2_frame_state_free (void *p)
276{
277 struct dwarf2_frame_state *fs = p;
278
279 dwarf2_frame_state_free_regs (fs->initial.prev);
280 dwarf2_frame_state_free_regs (fs->regs.prev);
281 xfree (fs->initial.reg);
282 xfree (fs->regs.reg);
283 xfree (fs);
284}
285\f
286
287/* Helper functions for execute_stack_op. */
288
289static CORE_ADDR
b1370418 290read_addr_from_reg (void *baton, int reg)
cfc14b3a 291{
4a4e5149
DJ
292 struct frame_info *this_frame = (struct frame_info *) baton;
293 struct gdbarch *gdbarch = get_frame_arch (this_frame);
cfc14b3a 294 int regnum;
852483bc 295 gdb_byte *buf;
cfc14b3a 296
ad010def 297 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
cfc14b3a 298
852483bc 299 buf = alloca (register_size (gdbarch, regnum));
4a4e5149 300 get_frame_register (this_frame, regnum, buf);
f2da6b3a 301
4b4589ad 302 return unpack_pointer (register_type (gdbarch, regnum), buf);
cfc14b3a
MK
303}
304
0acf8b65
JB
305/* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
306
307static struct value *
308get_reg_value (void *baton, struct type *type, int reg)
309{
310 struct frame_info *this_frame = (struct frame_info *) baton;
311 struct gdbarch *gdbarch = get_frame_arch (this_frame);
312 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg);
313
314 return value_from_register (type, regnum, this_frame);
315}
316
cfc14b3a 317static void
852483bc 318read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
cfc14b3a
MK
319{
320 read_memory (addr, buf, len);
321}
322
a6a5a945
LM
323/* Execute the required actions for both the DW_CFA_restore and
324DW_CFA_restore_extended instructions. */
325static void
326dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
327 struct dwarf2_frame_state *fs, int eh_frame_p)
328{
329 ULONGEST reg;
330
331 gdb_assert (fs->initial.reg);
332 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
333 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
334
335 /* Check if this register was explicitly initialized in the
336 CIE initial instructions. If not, default the rule to
337 UNSPECIFIED. */
338 if (reg < fs->initial.num_regs)
339 fs->regs.reg[reg] = fs->initial.reg[reg];
340 else
341 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
342
343 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
344 complaint (&symfile_complaints, _("\
345incomplete CFI data; DW_CFA_restore unspecified\n\
5af949e3 346register %s (#%d) at %s"),
a6a5a945
LM
347 gdbarch_register_name
348 (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)),
349 gdbarch_dwarf2_reg_to_regnum (gdbarch, reg),
5af949e3 350 paddress (gdbarch, fs->pc));
a6a5a945
LM
351}
352
9e8b7a03
JK
353/* Virtual method table for execute_stack_op below. */
354
355static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
356{
b1370418 357 read_addr_from_reg,
0acf8b65 358 get_reg_value,
9e8b7a03 359 read_mem,
523f3620
JK
360 ctx_no_get_frame_base,
361 ctx_no_get_frame_cfa,
362 ctx_no_get_frame_pc,
363 ctx_no_get_tls_address,
364 ctx_no_dwarf_call,
8e3b41a9 365 ctx_no_get_base_type,
3019eac3
DE
366 ctx_no_push_dwarf_reg_entry_value,
367 ctx_no_get_addr_index
9e8b7a03
JK
368};
369
cfc14b3a 370static CORE_ADDR
0d45f56e 371execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
ac56253d
TT
372 CORE_ADDR offset, struct frame_info *this_frame,
373 CORE_ADDR initial, int initial_in_stack_memory)
cfc14b3a
MK
374{
375 struct dwarf_expr_context *ctx;
376 CORE_ADDR result;
4a227398 377 struct cleanup *old_chain;
cfc14b3a
MK
378
379 ctx = new_dwarf_expr_context ();
4a227398 380 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
72fc29ff 381 make_cleanup_value_free_to_mark (value_mark ());
4a227398 382
f7fd4728 383 ctx->gdbarch = get_frame_arch (this_frame);
ae0d2f24 384 ctx->addr_size = addr_size;
181cebd4 385 ctx->ref_addr_size = -1;
ac56253d 386 ctx->offset = offset;
4a4e5149 387 ctx->baton = this_frame;
9e8b7a03 388 ctx->funcs = &dwarf2_frame_ctx_funcs;
cfc14b3a 389
8a9b8146 390 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
cfc14b3a 391 dwarf_expr_eval (ctx, exp, len);
cfc14b3a 392
f2c7657e
UW
393 if (ctx->location == DWARF_VALUE_MEMORY)
394 result = dwarf_expr_fetch_address (ctx, 0);
395 else if (ctx->location == DWARF_VALUE_REGISTER)
b1370418
JB
396 result = read_addr_from_reg (this_frame,
397 value_as_long (dwarf_expr_fetch (ctx, 0)));
f2c7657e 398 else
cec03d70
TT
399 {
400 /* This is actually invalid DWARF, but if we ever do run across
401 it somehow, we might as well support it. So, instead, report
402 it as unimplemented. */
3e43a32a
MS
403 error (_("\
404Not implemented: computing unwound register using explicit value operator"));
cec03d70 405 }
cfc14b3a 406
4a227398 407 do_cleanups (old_chain);
cfc14b3a
MK
408
409 return result;
410}
411\f
412
111c6489
JK
413/* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
414 PC. Modify FS state accordingly. Return current INSN_PTR where the
415 execution has stopped, one can resume it on the next call. */
416
417static const gdb_byte *
0d45f56e 418execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
9f6f94ff
TT
419 const gdb_byte *insn_end, struct gdbarch *gdbarch,
420 CORE_ADDR pc, struct dwarf2_frame_state *fs)
cfc14b3a 421{
ae0d2f24 422 int eh_frame_p = fde->eh_frame_p;
507a579c 423 unsigned int bytes_read;
e17a4113 424 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cfc14b3a
MK
425
426 while (insn_ptr < insn_end && fs->pc <= pc)
427 {
852483bc 428 gdb_byte insn = *insn_ptr++;
9fccedf7
DE
429 uint64_t utmp, reg;
430 int64_t offset;
cfc14b3a
MK
431
432 if ((insn & 0xc0) == DW_CFA_advance_loc)
433 fs->pc += (insn & 0x3f) * fs->code_align;
434 else if ((insn & 0xc0) == DW_CFA_offset)
435 {
436 reg = insn & 0x3f;
4fc771b8 437 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 438 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
439 offset = utmp * fs->data_align;
440 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 441 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
442 fs->regs.reg[reg].loc.offset = offset;
443 }
444 else if ((insn & 0xc0) == DW_CFA_restore)
445 {
cfc14b3a 446 reg = insn & 0x3f;
a6a5a945 447 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
448 }
449 else
450 {
451 switch (insn)
452 {
453 case DW_CFA_set_loc:
ae0d2f24 454 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
8da614df 455 fde->cie->ptr_size, insn_ptr,
ae0d2f24
UW
456 &bytes_read, fde->initial_location);
457 /* Apply the objfile offset for relocatable objects. */
458 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
459 SECT_OFF_TEXT (fde->cie->unit->objfile));
cfc14b3a
MK
460 insn_ptr += bytes_read;
461 break;
462
463 case DW_CFA_advance_loc1:
e17a4113 464 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
cfc14b3a
MK
465 fs->pc += utmp * fs->code_align;
466 insn_ptr++;
467 break;
468 case DW_CFA_advance_loc2:
e17a4113 469 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
cfc14b3a
MK
470 fs->pc += utmp * fs->code_align;
471 insn_ptr += 2;
472 break;
473 case DW_CFA_advance_loc4:
e17a4113 474 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
cfc14b3a
MK
475 fs->pc += utmp * fs->code_align;
476 insn_ptr += 4;
477 break;
478
479 case DW_CFA_offset_extended:
f664829e 480 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 481 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 482 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
483 offset = utmp * fs->data_align;
484 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 485 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
486 fs->regs.reg[reg].loc.offset = offset;
487 break;
488
489 case DW_CFA_restore_extended:
f664829e 490 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
a6a5a945 491 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
492 break;
493
494 case DW_CFA_undefined:
f664829e 495 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 496 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 497 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 498 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
499 break;
500
501 case DW_CFA_same_value:
f664829e 502 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 503 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 504 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 505 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
506 break;
507
508 case DW_CFA_register:
f664829e 509 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 510 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 511 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
4fc771b8 512 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
cfc14b3a 513 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 514 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
515 fs->regs.reg[reg].loc.reg = utmp;
516 break;
517
518 case DW_CFA_remember_state:
519 {
520 struct dwarf2_frame_state_reg_info *new_rs;
521
70ba0933 522 new_rs = XNEW (struct dwarf2_frame_state_reg_info);
cfc14b3a
MK
523 *new_rs = fs->regs;
524 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
525 fs->regs.prev = new_rs;
526 }
527 break;
528
529 case DW_CFA_restore_state:
530 {
531 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
532
50ea7769
MK
533 if (old_rs == NULL)
534 {
e2e0b3e5 535 complaint (&symfile_complaints, _("\
5af949e3
UW
536bad CFI data; mismatched DW_CFA_restore_state at %s"),
537 paddress (gdbarch, fs->pc));
50ea7769
MK
538 }
539 else
540 {
541 xfree (fs->regs.reg);
542 fs->regs = *old_rs;
543 xfree (old_rs);
544 }
cfc14b3a
MK
545 }
546 break;
547
548 case DW_CFA_def_cfa:
f664829e
DE
549 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
550 fs->regs.cfa_reg = reg;
551 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
552
553 if (fs->armcc_cfa_offsets_sf)
554 utmp *= fs->data_align;
555
2fd481e1
PP
556 fs->regs.cfa_offset = utmp;
557 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
558 break;
559
560 case DW_CFA_def_cfa_register:
f664829e
DE
561 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
562 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1
PP
563 eh_frame_p);
564 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
565 break;
566
567 case DW_CFA_def_cfa_offset:
f664829e 568 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
569
570 if (fs->armcc_cfa_offsets_sf)
571 utmp *= fs->data_align;
572
2fd481e1 573 fs->regs.cfa_offset = utmp;
cfc14b3a
MK
574 /* cfa_how deliberately not set. */
575 break;
576
a8504492
MK
577 case DW_CFA_nop:
578 break;
579
cfc14b3a 580 case DW_CFA_def_cfa_expression:
f664829e
DE
581 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
582 fs->regs.cfa_exp_len = utmp;
2fd481e1
PP
583 fs->regs.cfa_exp = insn_ptr;
584 fs->regs.cfa_how = CFA_EXP;
585 insn_ptr += fs->regs.cfa_exp_len;
cfc14b3a
MK
586 break;
587
588 case DW_CFA_expression:
f664829e 589 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 590 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 591 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 592 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
593 fs->regs.reg[reg].loc.exp = insn_ptr;
594 fs->regs.reg[reg].exp_len = utmp;
05cbe71a 595 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
596 insn_ptr += utmp;
597 break;
598
a8504492 599 case DW_CFA_offset_extended_sf:
f664829e 600 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 601 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 602 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 603 offset *= fs->data_align;
a8504492 604 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 605 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
606 fs->regs.reg[reg].loc.offset = offset;
607 break;
608
46ea248b 609 case DW_CFA_val_offset:
f664829e 610 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 611 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 612 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
613 offset = utmp * fs->data_align;
614 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
615 fs->regs.reg[reg].loc.offset = offset;
616 break;
617
618 case DW_CFA_val_offset_sf:
f664829e 619 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 620 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 621 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
46ea248b
AO
622 offset *= fs->data_align;
623 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
624 fs->regs.reg[reg].loc.offset = offset;
625 break;
626
627 case DW_CFA_val_expression:
f664829e 628 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 629 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 630 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
631 fs->regs.reg[reg].loc.exp = insn_ptr;
632 fs->regs.reg[reg].exp_len = utmp;
633 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
634 insn_ptr += utmp;
635 break;
636
a8504492 637 case DW_CFA_def_cfa_sf:
f664829e
DE
638 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
639 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1 640 eh_frame_p);
f664829e 641 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1
PP
642 fs->regs.cfa_offset = offset * fs->data_align;
643 fs->regs.cfa_how = CFA_REG_OFFSET;
a8504492
MK
644 break;
645
646 case DW_CFA_def_cfa_offset_sf:
f664829e 647 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1 648 fs->regs.cfa_offset = offset * fs->data_align;
a8504492 649 /* cfa_how deliberately not set. */
cfc14b3a
MK
650 break;
651
a77f4086
MK
652 case DW_CFA_GNU_window_save:
653 /* This is SPARC-specific code, and contains hard-coded
654 constants for the register numbering scheme used by
655 GCC. Rather than having a architecture-specific
656 operation that's only ever used by a single
657 architecture, we provide the implementation here.
658 Incidentally that's what GCC does too in its
659 unwinder. */
660 {
4a4e5149 661 int size = register_size (gdbarch, 0);
9a619af0 662
a77f4086
MK
663 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
664 for (reg = 8; reg < 16; reg++)
665 {
666 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
667 fs->regs.reg[reg].loc.reg = reg + 16;
668 }
669 for (reg = 16; reg < 32; reg++)
670 {
671 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
672 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
673 }
674 }
675 break;
676
cfc14b3a
MK
677 case DW_CFA_GNU_args_size:
678 /* Ignored. */
f664829e 679 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
680 break;
681
58894217 682 case DW_CFA_GNU_negative_offset_extended:
f664829e 683 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 684 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
507a579c
PA
685 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
686 offset = utmp * fs->data_align;
58894217
JK
687 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
688 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
689 fs->regs.reg[reg].loc.offset = -offset;
690 break;
691
cfc14b3a 692 default:
3e43a32a
MS
693 internal_error (__FILE__, __LINE__,
694 _("Unknown CFI encountered."));
cfc14b3a
MK
695 }
696 }
697 }
698
111c6489
JK
699 if (fs->initial.reg == NULL)
700 {
701 /* Don't allow remember/restore between CIE and FDE programs. */
702 dwarf2_frame_state_free_regs (fs->regs.prev);
703 fs->regs.prev = NULL;
704 }
705
706 return insn_ptr;
cfc14b3a 707}
8f22cb90 708\f
cfc14b3a 709
8f22cb90 710/* Architecture-specific operations. */
cfc14b3a 711
8f22cb90
MK
712/* Per-architecture data key. */
713static struct gdbarch_data *dwarf2_frame_data;
714
715struct dwarf2_frame_ops
716{
717 /* Pre-initialize the register state REG for register REGNUM. */
aff37fc1
DM
718 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
719 struct frame_info *);
3ed09a32 720
4a4e5149 721 /* Check whether the THIS_FRAME is a signal trampoline. */
3ed09a32 722 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
4bf8967c 723
4fc771b8
DJ
724 /* Convert .eh_frame register number to DWARF register number, or
725 adjust .debug_frame register number. */
726 int (*adjust_regnum) (struct gdbarch *, int, int);
cfc14b3a
MK
727};
728
8f22cb90
MK
729/* Default architecture-specific register state initialization
730 function. */
731
732static void
733dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 734 struct dwarf2_frame_state_reg *reg,
4a4e5149 735 struct frame_info *this_frame)
8f22cb90
MK
736{
737 /* If we have a register that acts as a program counter, mark it as
738 a destination for the return address. If we have a register that
739 serves as the stack pointer, arrange for it to be filled with the
740 call frame address (CFA). The other registers are marked as
741 unspecified.
742
743 We copy the return address to the program counter, since many
744 parts in GDB assume that it is possible to get the return address
745 by unwinding the program counter register. However, on ISA's
746 with a dedicated return address register, the CFI usually only
747 contains information to unwind that return address register.
748
749 The reason we're treating the stack pointer special here is
750 because in many cases GCC doesn't emit CFI for the stack pointer
751 and implicitly assumes that it is equal to the CFA. This makes
752 some sense since the DWARF specification (version 3, draft 8,
753 p. 102) says that:
754
755 "Typically, the CFA is defined to be the value of the stack
756 pointer at the call site in the previous frame (which may be
757 different from its value on entry to the current frame)."
758
759 However, this isn't true for all platforms supported by GCC
760 (e.g. IBM S/390 and zSeries). Those architectures should provide
761 their own architecture-specific initialization function. */
05cbe71a 762
ad010def 763 if (regnum == gdbarch_pc_regnum (gdbarch))
8f22cb90 764 reg->how = DWARF2_FRAME_REG_RA;
ad010def 765 else if (regnum == gdbarch_sp_regnum (gdbarch))
8f22cb90
MK
766 reg->how = DWARF2_FRAME_REG_CFA;
767}
05cbe71a 768
8f22cb90 769/* Return a default for the architecture-specific operations. */
05cbe71a 770
8f22cb90 771static void *
030f20e1 772dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
773{
774 struct dwarf2_frame_ops *ops;
775
030f20e1 776 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
777 ops->init_reg = dwarf2_frame_default_init_reg;
778 return ops;
779}
05cbe71a 780
8f22cb90
MK
781/* Set the architecture-specific register state initialization
782 function for GDBARCH to INIT_REG. */
783
784void
785dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
786 void (*init_reg) (struct gdbarch *, int,
aff37fc1
DM
787 struct dwarf2_frame_state_reg *,
788 struct frame_info *))
8f22cb90 789{
030f20e1 790 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 791
8f22cb90
MK
792 ops->init_reg = init_reg;
793}
794
795/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
796
797static void
798dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 799 struct dwarf2_frame_state_reg *reg,
4a4e5149 800 struct frame_info *this_frame)
05cbe71a 801{
030f20e1 802 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 803
4a4e5149 804 ops->init_reg (gdbarch, regnum, reg, this_frame);
05cbe71a 805}
3ed09a32
DJ
806
807/* Set the architecture-specific signal trampoline recognition
808 function for GDBARCH to SIGNAL_FRAME_P. */
809
810void
811dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
812 int (*signal_frame_p) (struct gdbarch *,
813 struct frame_info *))
814{
815 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
816
817 ops->signal_frame_p = signal_frame_p;
818}
819
820/* Query the architecture-specific signal frame recognizer for
4a4e5149 821 THIS_FRAME. */
3ed09a32
DJ
822
823static int
824dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
4a4e5149 825 struct frame_info *this_frame)
3ed09a32
DJ
826{
827 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
828
829 if (ops->signal_frame_p == NULL)
830 return 0;
4a4e5149 831 return ops->signal_frame_p (gdbarch, this_frame);
3ed09a32 832}
4bf8967c 833
4fc771b8
DJ
834/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
835 register numbers. */
4bf8967c
AS
836
837void
4fc771b8
DJ
838dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
839 int (*adjust_regnum) (struct gdbarch *,
840 int, int))
4bf8967c
AS
841{
842 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
843
4fc771b8 844 ops->adjust_regnum = adjust_regnum;
4bf8967c
AS
845}
846
4fc771b8
DJ
847/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
848 register. */
4bf8967c 849
4fc771b8 850static int
3e43a32a
MS
851dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
852 int regnum, int eh_frame_p)
4bf8967c
AS
853{
854 struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data);
855
4fc771b8 856 if (ops->adjust_regnum == NULL)
4bf8967c 857 return regnum;
4fc771b8 858 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
4bf8967c 859}
303b6f5d
DJ
860
861static void
862dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
863 struct dwarf2_fde *fde)
864{
303b6f5d
DJ
865 struct symtab *s;
866
867 s = find_pc_symtab (fs->pc);
a6c727b2 868 if (s == NULL)
303b6f5d
DJ
869 return;
870
a6c727b2
DJ
871 if (producer_is_realview (s->producer))
872 {
873 if (fde->cie->version == 1)
874 fs->armcc_cfa_offsets_sf = 1;
875
876 if (fde->cie->version == 1)
877 fs->armcc_cfa_offsets_reversed = 1;
878
879 /* The reversed offset problem is present in some compilers
880 using DWARF3, but it was eventually fixed. Check the ARM
881 defined augmentations, which are in the format "armcc" followed
882 by a list of one-character options. The "+" option means
883 this problem is fixed (no quirk needed). If the armcc
884 augmentation is missing, the quirk is needed. */
885 if (fde->cie->version == 3
886 && (strncmp (fde->cie->augmentation, "armcc", 5) != 0
887 || strchr (fde->cie->augmentation + 5, '+') == NULL))
888 fs->armcc_cfa_offsets_reversed = 1;
889
890 return;
891 }
303b6f5d 892}
8f22cb90
MK
893\f
894
9f6f94ff
TT
895void
896dwarf2_compile_cfa_to_ax (struct agent_expr *expr, struct axs_value *loc,
897 struct gdbarch *gdbarch,
898 CORE_ADDR pc,
899 struct dwarf2_per_cu_data *data)
900{
9f6f94ff 901 struct dwarf2_fde *fde;
22e048c9 902 CORE_ADDR text_offset;
9f6f94ff
TT
903 struct dwarf2_frame_state fs;
904 int addr_size;
905
906 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
907
908 fs.pc = pc;
909
910 /* Find the correct FDE. */
911 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
912 if (fde == NULL)
913 error (_("Could not compute CFA; needed to translate this expression"));
914
915 /* Extract any interesting information from the CIE. */
916 fs.data_align = fde->cie->data_alignment_factor;
917 fs.code_align = fde->cie->code_alignment_factor;
918 fs.retaddr_column = fde->cie->return_address_register;
919 addr_size = fde->cie->addr_size;
920
921 /* Check for "quirks" - known bugs in producers. */
922 dwarf2_frame_find_quirks (&fs, fde);
923
924 /* First decode all the insns in the CIE. */
925 execute_cfa_program (fde, fde->cie->initial_instructions,
926 fde->cie->end, gdbarch, pc, &fs);
927
928 /* Save the initialized register set. */
929 fs.initial = fs.regs;
930 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
931
932 /* Then decode the insns in the FDE up to our target PC. */
933 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
934
935 /* Calculate the CFA. */
936 switch (fs.regs.cfa_how)
937 {
938 case CFA_REG_OFFSET:
939 {
940 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, fs.regs.cfa_reg);
941
942 if (regnum == -1)
943 error (_("Unable to access DWARF register number %d"),
944 (int) fs.regs.cfa_reg); /* FIXME */
945 ax_reg (expr, regnum);
946
947 if (fs.regs.cfa_offset != 0)
948 {
949 if (fs.armcc_cfa_offsets_reversed)
950 ax_const_l (expr, -fs.regs.cfa_offset);
951 else
952 ax_const_l (expr, fs.regs.cfa_offset);
953 ax_simple (expr, aop_add);
954 }
955 }
956 break;
957
958 case CFA_EXP:
959 ax_const_l (expr, text_offset);
960 dwarf2_compile_expr_to_ax (expr, loc, gdbarch, addr_size,
961 fs.regs.cfa_exp,
962 fs.regs.cfa_exp + fs.regs.cfa_exp_len,
963 data);
964 break;
965
966 default:
967 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
968 }
969}
970
971\f
8f22cb90
MK
972struct dwarf2_frame_cache
973{
974 /* DWARF Call Frame Address. */
975 CORE_ADDR cfa;
976
8fbca658
PA
977 /* Set if the return address column was marked as unavailable
978 (required non-collected memory or registers to compute). */
979 int unavailable_retaddr;
980
0228dfb9
DJ
981 /* Set if the return address column was marked as undefined. */
982 int undefined_retaddr;
983
8f22cb90
MK
984 /* Saved registers, indexed by GDB register number, not by DWARF
985 register number. */
986 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
987
988 /* Return address register. */
989 struct dwarf2_frame_state_reg retaddr_reg;
ae0d2f24
UW
990
991 /* Target address size in bytes. */
992 int addr_size;
ac56253d
TT
993
994 /* The .text offset. */
995 CORE_ADDR text_offset;
111c6489 996
1ec56e88
PA
997 /* True if we already checked whether this frame is the bottom frame
998 of a virtual tail call frame chain. */
999 int checked_tailcall_bottom;
1000
111c6489
JK
1001 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
1002 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
1003 involved. Non-bottom frames of a virtual tail call frames chain use
1004 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
1005 them. */
1006 void *tailcall_cache;
1ec56e88
PA
1007
1008 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
1009 base to get the SP, to simulate the return address pushed on the
1010 stack. */
1011 LONGEST entry_cfa_sp_offset;
1012 int entry_cfa_sp_offset_p;
8f22cb90 1013};
05cbe71a 1014
78ac5f83
TT
1015/* A cleanup that sets a pointer to NULL. */
1016
1017static void
1018clear_pointer_cleanup (void *arg)
1019{
1020 void **ptr = arg;
1021
1022 *ptr = NULL;
1023}
1024
b9362cc7 1025static struct dwarf2_frame_cache *
4a4e5149 1026dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
cfc14b3a 1027{
78ac5f83 1028 struct cleanup *reset_cache_cleanup, *old_chain;
4a4e5149 1029 struct gdbarch *gdbarch = get_frame_arch (this_frame);
ad010def
UW
1030 const int num_regs = gdbarch_num_regs (gdbarch)
1031 + gdbarch_num_pseudo_regs (gdbarch);
cfc14b3a
MK
1032 struct dwarf2_frame_cache *cache;
1033 struct dwarf2_frame_state *fs;
1034 struct dwarf2_fde *fde;
8fbca658 1035 volatile struct gdb_exception ex;
111c6489 1036 CORE_ADDR entry_pc;
111c6489 1037 const gdb_byte *instr;
cfc14b3a
MK
1038
1039 if (*this_cache)
1040 return *this_cache;
1041
1042 /* Allocate a new cache. */
1043 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1044 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
8fbca658 1045 *this_cache = cache;
78ac5f83 1046 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
cfc14b3a
MK
1047
1048 /* Allocate and initialize the frame state. */
41bf6aca 1049 fs = XCNEW (struct dwarf2_frame_state);
cfc14b3a
MK
1050 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1051
1052 /* Unwind the PC.
1053
4a4e5149 1054 Note that if the next frame is never supposed to return (i.e. a call
cfc14b3a 1055 to abort), the compiler might optimize away the instruction at
4a4e5149 1056 its return address. As a result the return address will
cfc14b3a 1057 point at some random instruction, and the CFI for that
e4e9607c 1058 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
1059 this problem by substracting 1 from the return address to get an
1060 address in the middle of a presumed call instruction (or the
1061 instruction in the associated delay slot). This should only be
1062 done for "normal" frames and not for resume-type frames (signal
e4e9607c 1063 handlers, sentinel frames, dummy frames). The function
ad1193e7 1064 get_frame_address_in_block does just this. It's not clear how
e4e9607c
MK
1065 reliable the method is though; there is the potential for the
1066 register state pre-call being different to that on return. */
4a4e5149 1067 fs->pc = get_frame_address_in_block (this_frame);
cfc14b3a
MK
1068
1069 /* Find the correct FDE. */
ac56253d 1070 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
cfc14b3a
MK
1071 gdb_assert (fde != NULL);
1072
1073 /* Extract any interesting information from the CIE. */
1074 fs->data_align = fde->cie->data_alignment_factor;
1075 fs->code_align = fde->cie->code_alignment_factor;
1076 fs->retaddr_column = fde->cie->return_address_register;
ae0d2f24 1077 cache->addr_size = fde->cie->addr_size;
cfc14b3a 1078
303b6f5d
DJ
1079 /* Check for "quirks" - known bugs in producers. */
1080 dwarf2_frame_find_quirks (fs, fde);
1081
cfc14b3a 1082 /* First decode all the insns in the CIE. */
ae0d2f24 1083 execute_cfa_program (fde, fde->cie->initial_instructions,
0c92d8c1
JB
1084 fde->cie->end, gdbarch,
1085 get_frame_address_in_block (this_frame), fs);
cfc14b3a
MK
1086
1087 /* Save the initialized register set. */
1088 fs->initial = fs->regs;
1089 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1090
111c6489
JK
1091 if (get_frame_func_if_available (this_frame, &entry_pc))
1092 {
1093 /* Decode the insns in the FDE up to the entry PC. */
1094 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1095 entry_pc, fs);
1096
1097 if (fs->regs.cfa_how == CFA_REG_OFFSET
1098 && (gdbarch_dwarf2_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
1099 == gdbarch_sp_regnum (gdbarch)))
1100 {
1ec56e88
PA
1101 cache->entry_cfa_sp_offset = fs->regs.cfa_offset;
1102 cache->entry_cfa_sp_offset_p = 1;
111c6489
JK
1103 }
1104 }
1105 else
1106 instr = fde->instructions;
1107
cfc14b3a 1108 /* Then decode the insns in the FDE up to our target PC. */
111c6489 1109 execute_cfa_program (fde, instr, fde->end, gdbarch,
0c92d8c1 1110 get_frame_address_in_block (this_frame), fs);
cfc14b3a 1111
8fbca658 1112 TRY_CATCH (ex, RETURN_MASK_ERROR)
cfc14b3a 1113 {
8fbca658
PA
1114 /* Calculate the CFA. */
1115 switch (fs->regs.cfa_how)
1116 {
1117 case CFA_REG_OFFSET:
b1370418 1118 cache->cfa = read_addr_from_reg (this_frame, fs->regs.cfa_reg);
8fbca658
PA
1119 if (fs->armcc_cfa_offsets_reversed)
1120 cache->cfa -= fs->regs.cfa_offset;
1121 else
1122 cache->cfa += fs->regs.cfa_offset;
1123 break;
1124
1125 case CFA_EXP:
1126 cache->cfa =
1127 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1128 cache->addr_size, cache->text_offset,
1129 this_frame, 0, 0);
1130 break;
1131
1132 default:
1133 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1134 }
1135 }
1136 if (ex.reason < 0)
1137 {
1138 if (ex.error == NOT_AVAILABLE_ERROR)
1139 {
1140 cache->unavailable_retaddr = 1;
5a1cf4d6 1141 do_cleanups (old_chain);
78ac5f83 1142 discard_cleanups (reset_cache_cleanup);
8fbca658
PA
1143 return cache;
1144 }
cfc14b3a 1145
8fbca658 1146 throw_exception (ex);
cfc14b3a
MK
1147 }
1148
05cbe71a 1149 /* Initialize the register state. */
3e2c4033
AC
1150 {
1151 int regnum;
e4e9607c 1152
3e2c4033 1153 for (regnum = 0; regnum < num_regs; regnum++)
4a4e5149 1154 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
3e2c4033
AC
1155 }
1156
1157 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
1158 location information in the cache. Note that we don't skip the
1159 return address column; it's perfectly all right for it to
1160 correspond to a real register. If it doesn't correspond to a
1161 real register, or if we shouldn't treat it as such,
055d23b8 1162 gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside
f57d151a 1163 the range [0, gdbarch_num_regs). */
3e2c4033
AC
1164 {
1165 int column; /* CFI speak for "register number". */
e4e9607c 1166
3e2c4033
AC
1167 for (column = 0; column < fs->regs.num_regs; column++)
1168 {
3e2c4033 1169 /* Use the GDB register number as the destination index. */
ad010def 1170 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column);
3e2c4033
AC
1171
1172 /* If there's no corresponding GDB register, ignore it. */
1173 if (regnum < 0 || regnum >= num_regs)
1174 continue;
1175
1176 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
1177 of all debug info registers. If it doesn't, complain (but
1178 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
1179 unspecified register implies "same value" when CFI (draft
1180 7) specifies nothing at all. Such a register could equally
1181 be interpreted as "undefined". Also note that this check
e4e9607c
MK
1182 isn't sufficient; it only checks that all registers in the
1183 range [0 .. max column] are specified, and won't detect
3e2c4033 1184 problems when a debug info register falls outside of the
e4e9607c 1185 table. We need a way of iterating through all the valid
3e2c4033 1186 DWARF2 register numbers. */
05cbe71a 1187 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
1188 {
1189 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
e2e0b3e5 1190 complaint (&symfile_complaints, _("\
5af949e3 1191incomplete CFI data; unspecified registers (e.g., %s) at %s"),
f059bf6f 1192 gdbarch_register_name (gdbarch, regnum),
5af949e3 1193 paddress (gdbarch, fs->pc));
f059bf6f 1194 }
35889917
MK
1195 else
1196 cache->reg[regnum] = fs->regs.reg[column];
3e2c4033
AC
1197 }
1198 }
cfc14b3a 1199
8d5a9abc
MK
1200 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1201 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
1202 {
1203 int regnum;
1204
1205 for (regnum = 0; regnum < num_regs; regnum++)
1206 {
8d5a9abc
MK
1207 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1208 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 1209 {
05cbe71a
MK
1210 struct dwarf2_frame_state_reg *retaddr_reg =
1211 &fs->regs.reg[fs->retaddr_column];
1212
d4f10bf2
MK
1213 /* It seems rather bizarre to specify an "empty" column as
1214 the return adress column. However, this is exactly
1215 what GCC does on some targets. It turns out that GCC
1216 assumes that the return address can be found in the
1217 register corresponding to the return address column.
8d5a9abc
MK
1218 Incidentally, that's how we should treat a return
1219 address column specifying "same value" too. */
d4f10bf2 1220 if (fs->retaddr_column < fs->regs.num_regs
05cbe71a
MK
1221 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1222 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
1223 {
1224 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1225 cache->reg[regnum] = *retaddr_reg;
1226 else
1227 cache->retaddr_reg = *retaddr_reg;
1228 }
35889917
MK
1229 else
1230 {
8d5a9abc
MK
1231 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1232 {
1233 cache->reg[regnum].loc.reg = fs->retaddr_column;
1234 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1235 }
1236 else
1237 {
1238 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1239 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1240 }
35889917
MK
1241 }
1242 }
1243 }
1244 }
cfc14b3a 1245
0228dfb9
DJ
1246 if (fs->retaddr_column < fs->regs.num_regs
1247 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1248 cache->undefined_retaddr = 1;
1249
cfc14b3a 1250 do_cleanups (old_chain);
78ac5f83 1251 discard_cleanups (reset_cache_cleanup);
cfc14b3a
MK
1252 return cache;
1253}
1254
8fbca658
PA
1255static enum unwind_stop_reason
1256dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1257 void **this_cache)
1258{
1259 struct dwarf2_frame_cache *cache
1260 = dwarf2_frame_cache (this_frame, this_cache);
1261
1262 if (cache->unavailable_retaddr)
1263 return UNWIND_UNAVAILABLE;
1264
1265 if (cache->undefined_retaddr)
1266 return UNWIND_OUTERMOST;
1267
1268 return UNWIND_NO_REASON;
1269}
1270
cfc14b3a 1271static void
4a4e5149 1272dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
cfc14b3a
MK
1273 struct frame_id *this_id)
1274{
1275 struct dwarf2_frame_cache *cache =
4a4e5149 1276 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a 1277
8fbca658 1278 if (cache->unavailable_retaddr)
5ce0145d
PA
1279 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1280 else if (cache->undefined_retaddr)
8fbca658 1281 return;
5ce0145d
PA
1282 else
1283 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
93d42b30
DJ
1284}
1285
4a4e5149
DJ
1286static struct value *
1287dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1288 int regnum)
93d42b30 1289{
4a4e5149 1290 struct gdbarch *gdbarch = get_frame_arch (this_frame);
93d42b30 1291 struct dwarf2_frame_cache *cache =
4a4e5149
DJ
1292 dwarf2_frame_cache (this_frame, this_cache);
1293 CORE_ADDR addr;
1294 int realnum;
cfc14b3a 1295
1ec56e88
PA
1296 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1297 call frame chain. */
1298 if (!cache->checked_tailcall_bottom)
1299 {
1300 cache->checked_tailcall_bottom = 1;
1301 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1302 (cache->entry_cfa_sp_offset_p
1303 ? &cache->entry_cfa_sp_offset : NULL));
1304 }
1305
111c6489
JK
1306 /* Non-bottom frames of a virtual tail call frames chain use
1307 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1308 them. If dwarf2_tailcall_prev_register_first does not have specific value
1309 unwind the register, tail call frames are assumed to have the register set
1310 of the top caller. */
1311 if (cache->tailcall_cache)
1312 {
1313 struct value *val;
1314
1315 val = dwarf2_tailcall_prev_register_first (this_frame,
1316 &cache->tailcall_cache,
1317 regnum);
1318 if (val)
1319 return val;
1320 }
1321
cfc14b3a
MK
1322 switch (cache->reg[regnum].how)
1323 {
05cbe71a 1324 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 1325 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 1326 mark it as optimized away; the value isn't available. */
4a4e5149 1327 return frame_unwind_got_optimized (this_frame, regnum);
cfc14b3a 1328
05cbe71a 1329 case DWARF2_FRAME_REG_SAVED_OFFSET:
4a4e5149
DJ
1330 addr = cache->cfa + cache->reg[regnum].loc.offset;
1331 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1332
05cbe71a 1333 case DWARF2_FRAME_REG_SAVED_REG:
4a4e5149
DJ
1334 realnum
1335 = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg);
1336 return frame_unwind_got_register (this_frame, regnum, realnum);
cfc14b3a 1337
05cbe71a 1338 case DWARF2_FRAME_REG_SAVED_EXP:
4a4e5149
DJ
1339 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1340 cache->reg[regnum].exp_len,
ac56253d
TT
1341 cache->addr_size, cache->text_offset,
1342 this_frame, cache->cfa, 1);
4a4e5149 1343 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1344
46ea248b 1345 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
4a4e5149
DJ
1346 addr = cache->cfa + cache->reg[regnum].loc.offset;
1347 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b
AO
1348
1349 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
4a4e5149
DJ
1350 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1351 cache->reg[regnum].exp_len,
ac56253d
TT
1352 cache->addr_size, cache->text_offset,
1353 this_frame, cache->cfa, 1);
4a4e5149 1354 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b 1355
05cbe71a 1356 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
1357 /* GCC, in its infinite wisdom decided to not provide unwind
1358 information for registers that are "same value". Since
1359 DWARF2 (3 draft 7) doesn't define such behavior, said
1360 registers are actually undefined (which is different to CFI
1361 "undefined"). Code above issues a complaint about this.
1362 Here just fudge the books, assume GCC, and that the value is
1363 more inner on the stack. */
4a4e5149 1364 return frame_unwind_got_register (this_frame, regnum, regnum);
3e2c4033 1365
05cbe71a 1366 case DWARF2_FRAME_REG_SAME_VALUE:
4a4e5149 1367 return frame_unwind_got_register (this_frame, regnum, regnum);
cfc14b3a 1368
05cbe71a 1369 case DWARF2_FRAME_REG_CFA:
4a4e5149 1370 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
35889917 1371
ea7963f0 1372 case DWARF2_FRAME_REG_CFA_OFFSET:
4a4e5149
DJ
1373 addr = cache->cfa + cache->reg[regnum].loc.offset;
1374 return frame_unwind_got_address (this_frame, regnum, addr);
ea7963f0 1375
8d5a9abc 1376 case DWARF2_FRAME_REG_RA_OFFSET:
4a4e5149
DJ
1377 addr = cache->reg[regnum].loc.offset;
1378 regnum = gdbarch_dwarf2_reg_to_regnum
1379 (gdbarch, cache->retaddr_reg.loc.reg);
1380 addr += get_frame_register_unsigned (this_frame, regnum);
1381 return frame_unwind_got_address (this_frame, regnum, addr);
8d5a9abc 1382
b39cc962
DJ
1383 case DWARF2_FRAME_REG_FN:
1384 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1385
cfc14b3a 1386 default:
e2e0b3e5 1387 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
1388 }
1389}
1390
111c6489
JK
1391/* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1392 call frames chain. */
1393
1394static void
1395dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1396{
1397 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1398
1399 if (cache->tailcall_cache)
1400 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1401}
1402
4a4e5149
DJ
1403static int
1404dwarf2_frame_sniffer (const struct frame_unwind *self,
1405 struct frame_info *this_frame, void **this_cache)
cfc14b3a 1406{
1ce5d6dd 1407 /* Grab an address that is guarenteed to reside somewhere within the
4a4e5149 1408 function. get_frame_pc(), with a no-return next function, can
93d42b30
DJ
1409 end up returning something past the end of this function's body.
1410 If the frame we're sniffing for is a signal frame whose start
1411 address is placed on the stack by the OS, its FDE must
4a4e5149
DJ
1412 extend one byte before its start address or we could potentially
1413 select the FDE of the previous function. */
1414 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
ac56253d 1415 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
9a619af0 1416
56c987f6 1417 if (!fde)
4a4e5149 1418 return 0;
3ed09a32
DJ
1419
1420 /* On some targets, signal trampolines may have unwind information.
1421 We need to recognize them so that we set the frame type
1422 correctly. */
1423
56c987f6 1424 if (fde->cie->signal_frame
4a4e5149
DJ
1425 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1426 this_frame))
1427 return self->type == SIGTRAMP_FRAME;
1428
111c6489
JK
1429 if (self->type != NORMAL_FRAME)
1430 return 0;
1431
111c6489 1432 return 1;
4a4e5149
DJ
1433}
1434
1435static const struct frame_unwind dwarf2_frame_unwind =
1436{
1437 NORMAL_FRAME,
8fbca658 1438 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1439 dwarf2_frame_this_id,
1440 dwarf2_frame_prev_register,
1441 NULL,
111c6489
JK
1442 dwarf2_frame_sniffer,
1443 dwarf2_frame_dealloc_cache
4a4e5149
DJ
1444};
1445
1446static const struct frame_unwind dwarf2_signal_frame_unwind =
1447{
1448 SIGTRAMP_FRAME,
8fbca658 1449 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1450 dwarf2_frame_this_id,
1451 dwarf2_frame_prev_register,
1452 NULL,
111c6489
JK
1453 dwarf2_frame_sniffer,
1454
1455 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1456 NULL
4a4e5149 1457};
cfc14b3a 1458
4a4e5149
DJ
1459/* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1460
1461void
1462dwarf2_append_unwinders (struct gdbarch *gdbarch)
1463{
111c6489
JK
1464 /* TAILCALL_FRAME must be first to find the record by
1465 dwarf2_tailcall_sniffer_first. */
1466 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1467
4a4e5149
DJ
1468 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1469 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
cfc14b3a
MK
1470}
1471\f
1472
1473/* There is no explicitly defined relationship between the CFA and the
1474 location of frame's local variables and arguments/parameters.
1475 Therefore, frame base methods on this page should probably only be
1476 used as a last resort, just to avoid printing total garbage as a
1477 response to the "info frame" command. */
1478
1479static CORE_ADDR
4a4e5149 1480dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
1481{
1482 struct dwarf2_frame_cache *cache =
4a4e5149 1483 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a
MK
1484
1485 return cache->cfa;
1486}
1487
1488static const struct frame_base dwarf2_frame_base =
1489{
1490 &dwarf2_frame_unwind,
1491 dwarf2_frame_base_address,
1492 dwarf2_frame_base_address,
1493 dwarf2_frame_base_address
1494};
1495
1496const struct frame_base *
4a4e5149 1497dwarf2_frame_base_sniffer (struct frame_info *this_frame)
cfc14b3a 1498{
4a4e5149 1499 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
9a619af0 1500
ac56253d 1501 if (dwarf2_frame_find_fde (&block_addr, NULL))
cfc14b3a
MK
1502 return &dwarf2_frame_base;
1503
1504 return NULL;
1505}
e7802207
TT
1506
1507/* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1508 the DWARF unwinder. This is used to implement
1509 DW_OP_call_frame_cfa. */
1510
1511CORE_ADDR
1512dwarf2_frame_cfa (struct frame_info *this_frame)
1513{
0b722aec
MM
1514 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1515 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1516 throw_error (NOT_AVAILABLE_ERROR,
1517 _("cfa not available for record btrace target"));
1518
e7802207
TT
1519 while (get_frame_type (this_frame) == INLINE_FRAME)
1520 this_frame = get_prev_frame (this_frame);
32261e52
MM
1521 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1522 throw_error (NOT_AVAILABLE_ERROR,
1523 _("can't compute CFA for this frame: "
1524 "required registers or memory are unavailable"));
e7802207
TT
1525 /* This restriction could be lifted if other unwinders are known to
1526 compute the frame base in a way compatible with the DWARF
1527 unwinder. */
111c6489
JK
1528 if (!frame_unwinder_is (this_frame, &dwarf2_frame_unwind)
1529 && !frame_unwinder_is (this_frame, &dwarf2_tailcall_frame_unwind))
e7802207
TT
1530 error (_("can't compute CFA for this frame"));
1531 return get_frame_base (this_frame);
1532}
cfc14b3a 1533\f
8f22cb90 1534const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 1535
cfc14b3a 1536static unsigned int
f664829e 1537read_1_byte (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1538{
852483bc 1539 return bfd_get_8 (abfd, buf);
cfc14b3a
MK
1540}
1541
1542static unsigned int
f664829e 1543read_4_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1544{
852483bc 1545 return bfd_get_32 (abfd, buf);
cfc14b3a
MK
1546}
1547
1548static ULONGEST
f664829e 1549read_8_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1550{
852483bc 1551 return bfd_get_64 (abfd, buf);
cfc14b3a
MK
1552}
1553
1554static ULONGEST
f664829e
DE
1555read_initial_length (bfd *abfd, const gdb_byte *buf,
1556 unsigned int *bytes_read_ptr)
cfc14b3a
MK
1557{
1558 LONGEST result;
1559
852483bc 1560 result = bfd_get_32 (abfd, buf);
cfc14b3a
MK
1561 if (result == 0xffffffff)
1562 {
852483bc 1563 result = bfd_get_64 (abfd, buf + 4);
cfc14b3a
MK
1564 *bytes_read_ptr = 12;
1565 }
1566 else
1567 *bytes_read_ptr = 4;
1568
1569 return result;
1570}
1571\f
1572
1573/* Pointer encoding helper functions. */
1574
1575/* GCC supports exception handling based on DWARF2 CFI. However, for
1576 technical reasons, it encodes addresses in its FDE's in a different
1577 way. Several "pointer encodings" are supported. The encoding
1578 that's used for a particular FDE is determined by the 'R'
1579 augmentation in the associated CIE. The argument of this
1580 augmentation is a single byte.
1581
1582 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1583 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1584 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1585 address should be interpreted (absolute, relative to the current
1586 position in the FDE, ...). Bit 7, indicates that the address
1587 should be dereferenced. */
1588
852483bc 1589static gdb_byte
cfc14b3a
MK
1590encoding_for_size (unsigned int size)
1591{
1592 switch (size)
1593 {
1594 case 2:
1595 return DW_EH_PE_udata2;
1596 case 4:
1597 return DW_EH_PE_udata4;
1598 case 8:
1599 return DW_EH_PE_udata8;
1600 default:
e2e0b3e5 1601 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1602 }
1603}
1604
cfc14b3a 1605static CORE_ADDR
852483bc 1606read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e
TT
1607 int ptr_len, const gdb_byte *buf,
1608 unsigned int *bytes_read_ptr,
ae0d2f24 1609 CORE_ADDR func_base)
cfc14b3a 1610{
68f6cf99 1611 ptrdiff_t offset;
cfc14b3a
MK
1612 CORE_ADDR base;
1613
1614 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1615 FDE's. */
1616 if (encoding & DW_EH_PE_indirect)
1617 internal_error (__FILE__, __LINE__,
e2e0b3e5 1618 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1619
68f6cf99
MK
1620 *bytes_read_ptr = 0;
1621
cfc14b3a
MK
1622 switch (encoding & 0x70)
1623 {
1624 case DW_EH_PE_absptr:
1625 base = 0;
1626 break;
1627 case DW_EH_PE_pcrel:
f2fec864 1628 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
852483bc 1629 base += (buf - unit->dwarf_frame_buffer);
cfc14b3a 1630 break;
0912c7f2
MK
1631 case DW_EH_PE_datarel:
1632 base = unit->dbase;
1633 break;
0fd85043
CV
1634 case DW_EH_PE_textrel:
1635 base = unit->tbase;
1636 break;
03ac2a74 1637 case DW_EH_PE_funcrel:
ae0d2f24 1638 base = func_base;
03ac2a74 1639 break;
68f6cf99
MK
1640 case DW_EH_PE_aligned:
1641 base = 0;
852483bc 1642 offset = buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1643 if ((offset % ptr_len) != 0)
1644 {
1645 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1646 buf += *bytes_read_ptr;
1647 }
1648 break;
cfc14b3a 1649 default:
3e43a32a
MS
1650 internal_error (__FILE__, __LINE__,
1651 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1652 }
1653
b04de778 1654 if ((encoding & 0x07) == 0x00)
f2fec864
DJ
1655 {
1656 encoding |= encoding_for_size (ptr_len);
1657 if (bfd_get_sign_extend_vma (unit->abfd))
1658 encoding |= DW_EH_PE_signed;
1659 }
cfc14b3a
MK
1660
1661 switch (encoding & 0x0f)
1662 {
a81b10ae
MK
1663 case DW_EH_PE_uleb128:
1664 {
9fccedf7 1665 uint64_t value;
0d45f56e 1666 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1667
f664829e 1668 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1669 return base + value;
1670 }
cfc14b3a 1671 case DW_EH_PE_udata2:
68f6cf99 1672 *bytes_read_ptr += 2;
cfc14b3a
MK
1673 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1674 case DW_EH_PE_udata4:
68f6cf99 1675 *bytes_read_ptr += 4;
cfc14b3a
MK
1676 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1677 case DW_EH_PE_udata8:
68f6cf99 1678 *bytes_read_ptr += 8;
cfc14b3a 1679 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1680 case DW_EH_PE_sleb128:
1681 {
9fccedf7 1682 int64_t value;
0d45f56e 1683 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1684
f664829e 1685 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1686 return base + value;
1687 }
cfc14b3a 1688 case DW_EH_PE_sdata2:
68f6cf99 1689 *bytes_read_ptr += 2;
cfc14b3a
MK
1690 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1691 case DW_EH_PE_sdata4:
68f6cf99 1692 *bytes_read_ptr += 4;
cfc14b3a
MK
1693 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1694 case DW_EH_PE_sdata8:
68f6cf99 1695 *bytes_read_ptr += 8;
cfc14b3a
MK
1696 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1697 default:
3e43a32a
MS
1698 internal_error (__FILE__, __LINE__,
1699 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1700 }
1701}
1702\f
1703
b01c8410
PP
1704static int
1705bsearch_cie_cmp (const void *key, const void *element)
cfc14b3a 1706{
b01c8410
PP
1707 ULONGEST cie_pointer = *(ULONGEST *) key;
1708 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
cfc14b3a 1709
b01c8410
PP
1710 if (cie_pointer == cie->cie_pointer)
1711 return 0;
cfc14b3a 1712
b01c8410
PP
1713 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1714}
1715
1716/* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1717static struct dwarf2_cie *
1718find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1719{
1720 struct dwarf2_cie **p_cie;
cfc14b3a 1721
65a97ab3
PP
1722 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1723 bsearch be non-NULL. */
1724 if (cie_table->entries == NULL)
1725 {
1726 gdb_assert (cie_table->num_entries == 0);
1727 return NULL;
1728 }
1729
b01c8410
PP
1730 p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1731 sizeof (cie_table->entries[0]), bsearch_cie_cmp);
1732 if (p_cie != NULL)
1733 return *p_cie;
cfc14b3a
MK
1734 return NULL;
1735}
1736
b01c8410 1737/* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
cfc14b3a 1738static void
b01c8410 1739add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
cfc14b3a 1740{
b01c8410
PP
1741 const int n = cie_table->num_entries;
1742
1743 gdb_assert (n < 1
1744 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1745
1746 cie_table->entries =
1747 xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0]));
1748 cie_table->entries[n] = cie;
1749 cie_table->num_entries = n + 1;
1750}
1751
1752static int
1753bsearch_fde_cmp (const void *key, const void *element)
1754{
1755 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1756 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
9a619af0 1757
b01c8410
PP
1758 if (seek_pc < fde->initial_location)
1759 return -1;
1760 if (seek_pc < fde->initial_location + fde->address_range)
1761 return 0;
1762 return 1;
cfc14b3a
MK
1763}
1764
1765/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1766 inital location associated with it into *PC. */
1767
1768static struct dwarf2_fde *
ac56253d 1769dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
cfc14b3a
MK
1770{
1771 struct objfile *objfile;
1772
1773 ALL_OBJFILES (objfile)
1774 {
b01c8410
PP
1775 struct dwarf2_fde_table *fde_table;
1776 struct dwarf2_fde **p_fde;
cfc14b3a 1777 CORE_ADDR offset;
b01c8410 1778 CORE_ADDR seek_pc;
cfc14b3a 1779
b01c8410
PP
1780 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1781 if (fde_table == NULL)
be391dca
TT
1782 {
1783 dwarf2_build_frame_info (objfile);
1784 fde_table = objfile_data (objfile, dwarf2_frame_objfile_data);
1785 }
1786 gdb_assert (fde_table != NULL);
1787
1788 if (fde_table->num_entries == 0)
4ae9ee8e
DJ
1789 continue;
1790
1791 gdb_assert (objfile->section_offsets);
1792 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1793
b01c8410
PP
1794 gdb_assert (fde_table->num_entries > 0);
1795 if (*pc < offset + fde_table->entries[0]->initial_location)
1796 continue;
1797
1798 seek_pc = *pc - offset;
1799 p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1800 sizeof (fde_table->entries[0]), bsearch_fde_cmp);
1801 if (p_fde != NULL)
1802 {
1803 *pc = (*p_fde)->initial_location + offset;
ac56253d
TT
1804 if (out_offset)
1805 *out_offset = offset;
b01c8410
PP
1806 return *p_fde;
1807 }
cfc14b3a 1808 }
cfc14b3a
MK
1809 return NULL;
1810}
1811
b01c8410 1812/* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
cfc14b3a 1813static void
b01c8410 1814add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
cfc14b3a 1815{
b01c8410
PP
1816 if (fde->address_range == 0)
1817 /* Discard useless FDEs. */
1818 return;
1819
1820 fde_table->num_entries += 1;
1821 fde_table->entries =
1822 xrealloc (fde_table->entries,
1823 fde_table->num_entries * sizeof (fde_table->entries[0]));
1824 fde_table->entries[fde_table->num_entries - 1] = fde;
cfc14b3a
MK
1825}
1826
cfc14b3a 1827#define DW64_CIE_ID 0xffffffffffffffffULL
cfc14b3a 1828
8bd90839
FM
1829/* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1830 or any of them. */
1831
1832enum eh_frame_type
1833{
1834 EH_CIE_TYPE_ID = 1 << 0,
1835 EH_FDE_TYPE_ID = 1 << 1,
1836 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1837};
1838
f664829e
DE
1839static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1840 const gdb_byte *start,
1841 int eh_frame_p,
1842 struct dwarf2_cie_table *cie_table,
1843 struct dwarf2_fde_table *fde_table,
1844 enum eh_frame_type entry_type);
8bd90839
FM
1845
1846/* Decode the next CIE or FDE, entry_type specifies the expected type.
1847 Return NULL if invalid input, otherwise the next byte to be processed. */
cfc14b3a 1848
f664829e
DE
1849static const gdb_byte *
1850decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1851 int eh_frame_p,
b01c8410 1852 struct dwarf2_cie_table *cie_table,
8bd90839
FM
1853 struct dwarf2_fde_table *fde_table,
1854 enum eh_frame_type entry_type)
cfc14b3a 1855{
5e2b427d 1856 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
f664829e 1857 const gdb_byte *buf, *end;
cfc14b3a
MK
1858 LONGEST length;
1859 unsigned int bytes_read;
6896c0c7
RH
1860 int dwarf64_p;
1861 ULONGEST cie_id;
cfc14b3a 1862 ULONGEST cie_pointer;
9fccedf7
DE
1863 int64_t sleb128;
1864 uint64_t uleb128;
cfc14b3a 1865
6896c0c7 1866 buf = start;
cfc14b3a
MK
1867 length = read_initial_length (unit->abfd, buf, &bytes_read);
1868 buf += bytes_read;
1869 end = buf + length;
1870
0963b4bd 1871 /* Are we still within the section? */
6896c0c7
RH
1872 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1873 return NULL;
1874
cfc14b3a
MK
1875 if (length == 0)
1876 return end;
1877
6896c0c7
RH
1878 /* Distinguish between 32 and 64-bit encoded frame info. */
1879 dwarf64_p = (bytes_read == 12);
cfc14b3a 1880
6896c0c7 1881 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1882 if (eh_frame_p)
1883 cie_id = 0;
1884 else if (dwarf64_p)
1885 cie_id = DW64_CIE_ID;
6896c0c7
RH
1886 else
1887 cie_id = DW_CIE_ID;
cfc14b3a
MK
1888
1889 if (dwarf64_p)
1890 {
1891 cie_pointer = read_8_bytes (unit->abfd, buf);
1892 buf += 8;
1893 }
1894 else
1895 {
1896 cie_pointer = read_4_bytes (unit->abfd, buf);
1897 buf += 4;
1898 }
1899
1900 if (cie_pointer == cie_id)
1901 {
1902 /* This is a CIE. */
1903 struct dwarf2_cie *cie;
1904 char *augmentation;
28ba0b33 1905 unsigned int cie_version;
cfc14b3a 1906
8bd90839
FM
1907 /* Check that a CIE was expected. */
1908 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1909 error (_("Found a CIE when not expecting it."));
1910
cfc14b3a
MK
1911 /* Record the offset into the .debug_frame section of this CIE. */
1912 cie_pointer = start - unit->dwarf_frame_buffer;
1913
1914 /* Check whether we've already read it. */
b01c8410 1915 if (find_cie (cie_table, cie_pointer))
cfc14b3a
MK
1916 return end;
1917
1918 cie = (struct dwarf2_cie *)
8b92e4d5 1919 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a
MK
1920 sizeof (struct dwarf2_cie));
1921 cie->initial_instructions = NULL;
1922 cie->cie_pointer = cie_pointer;
1923
1924 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1925 depends on the target address size. */
1926 cie->encoding = DW_EH_PE_absptr;
cfc14b3a 1927
56c987f6
AO
1928 /* We'll determine the final value later, but we need to
1929 initialize it conservatively. */
1930 cie->signal_frame = 0;
1931
cfc14b3a 1932 /* Check version number. */
28ba0b33 1933 cie_version = read_1_byte (unit->abfd, buf);
2dc7f7b3 1934 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
6896c0c7 1935 return NULL;
303b6f5d 1936 cie->version = cie_version;
cfc14b3a
MK
1937 buf += 1;
1938
1939 /* Interpret the interesting bits of the augmentation. */
303b6f5d 1940 cie->augmentation = augmentation = (char *) buf;
852483bc 1941 buf += (strlen (augmentation) + 1);
cfc14b3a 1942
303b6f5d
DJ
1943 /* Ignore armcc augmentations. We only use them for quirks,
1944 and that doesn't happen until later. */
1945 if (strncmp (augmentation, "armcc", 5) == 0)
1946 augmentation += strlen (augmentation);
1947
cfc14b3a
MK
1948 /* The GCC 2.x "eh" augmentation has a pointer immediately
1949 following the augmentation string, so it must be handled
1950 first. */
1951 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1952 {
1953 /* Skip. */
5e2b427d 1954 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
cfc14b3a
MK
1955 augmentation += 2;
1956 }
1957
2dc7f7b3
TT
1958 if (cie->version >= 4)
1959 {
1960 /* FIXME: check that this is the same as from the CU header. */
1961 cie->addr_size = read_1_byte (unit->abfd, buf);
1962 ++buf;
1963 cie->segment_size = read_1_byte (unit->abfd, buf);
1964 ++buf;
1965 }
1966 else
1967 {
8da614df 1968 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
2dc7f7b3
TT
1969 cie->segment_size = 0;
1970 }
8da614df
CV
1971 /* Address values in .eh_frame sections are defined to have the
1972 target's pointer size. Watchout: This breaks frame info for
1973 targets with pointer size < address size, unless a .debug_frame
0963b4bd 1974 section exists as well. */
8da614df
CV
1975 if (eh_frame_p)
1976 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1977 else
1978 cie->ptr_size = cie->addr_size;
2dc7f7b3 1979
f664829e
DE
1980 buf = gdb_read_uleb128 (buf, end, &uleb128);
1981 if (buf == NULL)
1982 return NULL;
1983 cie->code_alignment_factor = uleb128;
cfc14b3a 1984
f664829e
DE
1985 buf = gdb_read_sleb128 (buf, end, &sleb128);
1986 if (buf == NULL)
1987 return NULL;
1988 cie->data_alignment_factor = sleb128;
cfc14b3a 1989
28ba0b33
PB
1990 if (cie_version == 1)
1991 {
1992 cie->return_address_register = read_1_byte (unit->abfd, buf);
f664829e 1993 ++buf;
28ba0b33
PB
1994 }
1995 else
f664829e
DE
1996 {
1997 buf = gdb_read_uleb128 (buf, end, &uleb128);
1998 if (buf == NULL)
1999 return NULL;
2000 cie->return_address_register = uleb128;
2001 }
2002
4fc771b8 2003 cie->return_address_register
5e2b427d 2004 = dwarf2_frame_adjust_regnum (gdbarch,
4fc771b8
DJ
2005 cie->return_address_register,
2006 eh_frame_p);
4bf8967c 2007
7131cb6e
RH
2008 cie->saw_z_augmentation = (*augmentation == 'z');
2009 if (cie->saw_z_augmentation)
cfc14b3a 2010 {
9fccedf7 2011 uint64_t length;
cfc14b3a 2012
f664829e
DE
2013 buf = gdb_read_uleb128 (buf, end, &length);
2014 if (buf == NULL)
6896c0c7 2015 return NULL;
cfc14b3a
MK
2016 cie->initial_instructions = buf + length;
2017 augmentation++;
2018 }
2019
2020 while (*augmentation)
2021 {
2022 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2023 if (*augmentation == 'L')
2024 {
2025 /* Skip. */
2026 buf++;
2027 augmentation++;
2028 }
2029
2030 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2031 else if (*augmentation == 'R')
2032 {
2033 cie->encoding = *buf++;
2034 augmentation++;
2035 }
2036
2037 /* "P" indicates a personality routine in the CIE augmentation. */
2038 else if (*augmentation == 'P')
2039 {
1234d960 2040 /* Skip. Avoid indirection since we throw away the result. */
852483bc 2041 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
8da614df 2042 read_encoded_value (unit, encoding, cie->ptr_size,
ae0d2f24 2043 buf, &bytes_read, 0);
f724bf08 2044 buf += bytes_read;
cfc14b3a
MK
2045 augmentation++;
2046 }
2047
56c987f6
AO
2048 /* "S" indicates a signal frame, such that the return
2049 address must not be decremented to locate the call frame
2050 info for the previous frame; it might even be the first
2051 instruction of a function, so decrementing it would take
2052 us to a different function. */
2053 else if (*augmentation == 'S')
2054 {
2055 cie->signal_frame = 1;
2056 augmentation++;
2057 }
2058
3e9a2e52
DJ
2059 /* Otherwise we have an unknown augmentation. Assume that either
2060 there is no augmentation data, or we saw a 'z' prefix. */
cfc14b3a
MK
2061 else
2062 {
3e9a2e52
DJ
2063 if (cie->initial_instructions)
2064 buf = cie->initial_instructions;
cfc14b3a
MK
2065 break;
2066 }
2067 }
2068
2069 cie->initial_instructions = buf;
2070 cie->end = end;
b01c8410 2071 cie->unit = unit;
cfc14b3a 2072
b01c8410 2073 add_cie (cie_table, cie);
cfc14b3a
MK
2074 }
2075 else
2076 {
2077 /* This is a FDE. */
2078 struct dwarf2_fde *fde;
2079
8bd90839
FM
2080 /* Check that an FDE was expected. */
2081 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2082 error (_("Found an FDE when not expecting it."));
2083
6896c0c7
RH
2084 /* In an .eh_frame section, the CIE pointer is the delta between the
2085 address within the FDE where the CIE pointer is stored and the
2086 address of the CIE. Convert it to an offset into the .eh_frame
2087 section. */
cfc14b3a
MK
2088 if (eh_frame_p)
2089 {
cfc14b3a
MK
2090 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2091 cie_pointer -= (dwarf64_p ? 8 : 4);
2092 }
2093
6896c0c7
RH
2094 /* In either case, validate the result is still within the section. */
2095 if (cie_pointer >= unit->dwarf_frame_size)
2096 return NULL;
2097
cfc14b3a 2098 fde = (struct dwarf2_fde *)
8b92e4d5 2099 obstack_alloc (&unit->objfile->objfile_obstack,
cfc14b3a 2100 sizeof (struct dwarf2_fde));
b01c8410 2101 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2102 if (fde->cie == NULL)
2103 {
2104 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
8bd90839
FM
2105 eh_frame_p, cie_table, fde_table,
2106 EH_CIE_TYPE_ID);
b01c8410 2107 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2108 }
2109
2110 gdb_assert (fde->cie != NULL);
2111
2112 fde->initial_location =
8da614df 2113 read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
ae0d2f24 2114 buf, &bytes_read, 0);
cfc14b3a
MK
2115 buf += bytes_read;
2116
2117 fde->address_range =
ae0d2f24 2118 read_encoded_value (unit, fde->cie->encoding & 0x0f,
8da614df 2119 fde->cie->ptr_size, buf, &bytes_read, 0);
cfc14b3a
MK
2120 buf += bytes_read;
2121
7131cb6e
RH
2122 /* A 'z' augmentation in the CIE implies the presence of an
2123 augmentation field in the FDE as well. The only thing known
2124 to be in here at present is the LSDA entry for EH. So we
2125 can skip the whole thing. */
2126 if (fde->cie->saw_z_augmentation)
2127 {
9fccedf7 2128 uint64_t length;
7131cb6e 2129
f664829e
DE
2130 buf = gdb_read_uleb128 (buf, end, &length);
2131 if (buf == NULL)
2132 return NULL;
2133 buf += length;
6896c0c7
RH
2134 if (buf > end)
2135 return NULL;
7131cb6e
RH
2136 }
2137
cfc14b3a
MK
2138 fde->instructions = buf;
2139 fde->end = end;
2140
4bf8967c
AS
2141 fde->eh_frame_p = eh_frame_p;
2142
b01c8410 2143 add_fde (fde_table, fde);
cfc14b3a
MK
2144 }
2145
2146 return end;
2147}
6896c0c7 2148
8bd90839
FM
2149/* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2150 expect an FDE or a CIE. */
2151
f664829e
DE
2152static const gdb_byte *
2153decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2154 int eh_frame_p,
b01c8410 2155 struct dwarf2_cie_table *cie_table,
8bd90839
FM
2156 struct dwarf2_fde_table *fde_table,
2157 enum eh_frame_type entry_type)
6896c0c7
RH
2158{
2159 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
f664829e 2160 const gdb_byte *ret;
6896c0c7
RH
2161 ptrdiff_t start_offset;
2162
2163 while (1)
2164 {
b01c8410 2165 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
8bd90839 2166 cie_table, fde_table, entry_type);
6896c0c7
RH
2167 if (ret != NULL)
2168 break;
2169
2170 /* We have corrupt input data of some form. */
2171
2172 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2173 and mismatches wrt padding and alignment of debug sections. */
2174 /* Note that there is no requirement in the standard for any
2175 alignment at all in the frame unwind sections. Testing for
2176 alignment before trying to interpret data would be incorrect.
2177
2178 However, GCC traditionally arranged for frame sections to be
2179 sized such that the FDE length and CIE fields happen to be
2180 aligned (in theory, for performance). This, unfortunately,
2181 was done with .align directives, which had the side effect of
2182 forcing the section to be aligned by the linker.
2183
2184 This becomes a problem when you have some other producer that
2185 creates frame sections that are not as strictly aligned. That
2186 produces a hole in the frame info that gets filled by the
2187 linker with zeros.
2188
2189 The GCC behaviour is arguably a bug, but it's effectively now
2190 part of the ABI, so we're now stuck with it, at least at the
2191 object file level. A smart linker may decide, in the process
2192 of compressing duplicate CIE information, that it can rewrite
2193 the entire output section without this extra padding. */
2194
2195 start_offset = start - unit->dwarf_frame_buffer;
2196 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2197 {
2198 start += 4 - (start_offset & 3);
2199 workaround = ALIGN4;
2200 continue;
2201 }
2202 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2203 {
2204 start += 8 - (start_offset & 7);
2205 workaround = ALIGN8;
2206 continue;
2207 }
2208
2209 /* Nothing left to try. Arrange to return as if we've consumed
2210 the entire input section. Hopefully we'll get valid info from
2211 the other of .debug_frame/.eh_frame. */
2212 workaround = FAIL;
2213 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2214 break;
2215 }
2216
2217 switch (workaround)
2218 {
2219 case NONE:
2220 break;
2221
2222 case ALIGN4:
3e43a32a
MS
2223 complaint (&symfile_complaints, _("\
2224Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
2225 unit->dwarf_frame_section->owner->filename,
2226 unit->dwarf_frame_section->name);
2227 break;
2228
2229 case ALIGN8:
3e43a32a
MS
2230 complaint (&symfile_complaints, _("\
2231Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
2232 unit->dwarf_frame_section->owner->filename,
2233 unit->dwarf_frame_section->name);
2234 break;
2235
2236 default:
2237 complaint (&symfile_complaints,
e2e0b3e5 2238 _("Corrupt data in %s:%s"),
6896c0c7
RH
2239 unit->dwarf_frame_section->owner->filename,
2240 unit->dwarf_frame_section->name);
2241 break;
2242 }
2243
2244 return ret;
2245}
cfc14b3a 2246\f
b01c8410
PP
2247static int
2248qsort_fde_cmp (const void *a, const void *b)
2249{
2250 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2251 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
e5af178f 2252
b01c8410 2253 if (aa->initial_location == bb->initial_location)
e5af178f
PP
2254 {
2255 if (aa->address_range != bb->address_range
2256 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2257 /* Linker bug, e.g. gold/10400.
2258 Work around it by keeping stable sort order. */
2259 return (a < b) ? -1 : 1;
2260 else
2261 /* Put eh_frame entries after debug_frame ones. */
2262 return aa->eh_frame_p - bb->eh_frame_p;
2263 }
b01c8410
PP
2264
2265 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2266}
2267
cfc14b3a
MK
2268void
2269dwarf2_build_frame_info (struct objfile *objfile)
2270{
ae0d2f24 2271 struct comp_unit *unit;
f664829e 2272 const gdb_byte *frame_ptr;
b01c8410
PP
2273 struct dwarf2_cie_table cie_table;
2274 struct dwarf2_fde_table fde_table;
be391dca 2275 struct dwarf2_fde_table *fde_table2;
8bd90839 2276 volatile struct gdb_exception e;
b01c8410
PP
2277
2278 cie_table.num_entries = 0;
2279 cie_table.entries = NULL;
2280
2281 fde_table.num_entries = 0;
2282 fde_table.entries = NULL;
cfc14b3a
MK
2283
2284 /* Build a minimal decoding of the DWARF2 compilation unit. */
ae0d2f24
UW
2285 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2286 sizeof (struct comp_unit));
2287 unit->abfd = objfile->obfd;
2288 unit->objfile = objfile;
2289 unit->dbase = 0;
2290 unit->tbase = 0;
cfc14b3a 2291
d40102a1 2292 if (objfile->separate_debug_objfile_backlink == NULL)
cfc14b3a 2293 {
d40102a1
JB
2294 /* Do not read .eh_frame from separate file as they must be also
2295 present in the main file. */
2296 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2297 &unit->dwarf_frame_section,
2298 &unit->dwarf_frame_buffer,
2299 &unit->dwarf_frame_size);
2300 if (unit->dwarf_frame_size)
b01c8410 2301 {
d40102a1
JB
2302 asection *got, *txt;
2303
2304 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2305 that is used for the i386/amd64 target, which currently is
2306 the only target in GCC that supports/uses the
2307 DW_EH_PE_datarel encoding. */
2308 got = bfd_get_section_by_name (unit->abfd, ".got");
2309 if (got)
2310 unit->dbase = got->vma;
2311
2312 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2313 so far. */
2314 txt = bfd_get_section_by_name (unit->abfd, ".text");
2315 if (txt)
2316 unit->tbase = txt->vma;
2317
8bd90839
FM
2318 TRY_CATCH (e, RETURN_MASK_ERROR)
2319 {
2320 frame_ptr = unit->dwarf_frame_buffer;
2321 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2322 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2323 &cie_table, &fde_table,
2324 EH_CIE_OR_FDE_TYPE_ID);
2325 }
2326
2327 if (e.reason < 0)
2328 {
2329 warning (_("skipping .eh_frame info of %s: %s"),
4262abfb 2330 objfile_name (objfile), e.message);
8bd90839
FM
2331
2332 if (fde_table.num_entries != 0)
2333 {
2334 xfree (fde_table.entries);
2335 fde_table.entries = NULL;
2336 fde_table.num_entries = 0;
2337 }
2338 /* The cie_table is discarded by the next if. */
2339 }
d40102a1
JB
2340
2341 if (cie_table.num_entries != 0)
2342 {
2343 /* Reinit cie_table: debug_frame has different CIEs. */
2344 xfree (cie_table.entries);
2345 cie_table.num_entries = 0;
2346 cie_table.entries = NULL;
2347 }
b01c8410 2348 }
cfc14b3a
MK
2349 }
2350
3017a003 2351 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
dce234bc
PP
2352 &unit->dwarf_frame_section,
2353 &unit->dwarf_frame_buffer,
2354 &unit->dwarf_frame_size);
2355 if (unit->dwarf_frame_size)
cfc14b3a 2356 {
8bd90839
FM
2357 int num_old_fde_entries = fde_table.num_entries;
2358
2359 TRY_CATCH (e, RETURN_MASK_ERROR)
2360 {
2361 frame_ptr = unit->dwarf_frame_buffer;
2362 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2363 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2364 &cie_table, &fde_table,
2365 EH_CIE_OR_FDE_TYPE_ID);
2366 }
2367 if (e.reason < 0)
2368 {
2369 warning (_("skipping .debug_frame info of %s: %s"),
4262abfb 2370 objfile_name (objfile), e.message);
8bd90839
FM
2371
2372 if (fde_table.num_entries != 0)
2373 {
2374 fde_table.num_entries = num_old_fde_entries;
2375 if (num_old_fde_entries == 0)
2376 {
2377 xfree (fde_table.entries);
2378 fde_table.entries = NULL;
2379 }
2380 else
2381 {
2382 fde_table.entries = xrealloc (fde_table.entries,
2383 fde_table.num_entries *
2384 sizeof (fde_table.entries[0]));
2385 }
2386 }
2387 fde_table.num_entries = num_old_fde_entries;
2388 /* The cie_table is discarded by the next if. */
2389 }
b01c8410
PP
2390 }
2391
2392 /* Discard the cie_table, it is no longer needed. */
2393 if (cie_table.num_entries != 0)
2394 {
2395 xfree (cie_table.entries);
2396 cie_table.entries = NULL; /* Paranoia. */
2397 cie_table.num_entries = 0; /* Paranoia. */
2398 }
2399
be391dca
TT
2400 /* Copy fde_table to obstack: it is needed at runtime. */
2401 fde_table2 = (struct dwarf2_fde_table *)
2402 obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2));
2403
2404 if (fde_table.num_entries == 0)
2405 {
2406 fde_table2->entries = NULL;
2407 fde_table2->num_entries = 0;
2408 }
2409 else
b01c8410 2410 {
875cdfbb
PA
2411 struct dwarf2_fde *fde_prev = NULL;
2412 struct dwarf2_fde *first_non_zero_fde = NULL;
2413 int i;
b01c8410
PP
2414
2415 /* Prepare FDE table for lookups. */
2416 qsort (fde_table.entries, fde_table.num_entries,
2417 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2418
875cdfbb
PA
2419 /* Check for leftovers from --gc-sections. The GNU linker sets
2420 the relevant symbols to zero, but doesn't zero the FDE *end*
2421 ranges because there's no relocation there. It's (offset,
2422 length), not (start, end). On targets where address zero is
2423 just another valid address this can be a problem, since the
2424 FDEs appear to be non-empty in the output --- we could pick
2425 out the wrong FDE. To work around this, when overlaps are
2426 detected, we prefer FDEs that do not start at zero.
2427
2428 Start by finding the first FDE with non-zero start. Below
2429 we'll discard all FDEs that start at zero and overlap this
2430 one. */
2431 for (i = 0; i < fde_table.num_entries; i++)
2432 {
2433 struct dwarf2_fde *fde = fde_table.entries[i];
b01c8410 2434
875cdfbb
PA
2435 if (fde->initial_location != 0)
2436 {
2437 first_non_zero_fde = fde;
2438 break;
2439 }
2440 }
2441
2442 /* Since we'll be doing bsearch, squeeze out identical (except
2443 for eh_frame_p) fde entries so bsearch result is predictable.
2444 Also discard leftovers from --gc-sections. */
be391dca 2445 fde_table2->num_entries = 0;
875cdfbb
PA
2446 for (i = 0; i < fde_table.num_entries; i++)
2447 {
2448 struct dwarf2_fde *fde = fde_table.entries[i];
2449
2450 if (fde->initial_location == 0
2451 && first_non_zero_fde != NULL
2452 && (first_non_zero_fde->initial_location
2453 < fde->initial_location + fde->address_range))
2454 continue;
2455
2456 if (fde_prev != NULL
2457 && fde_prev->initial_location == fde->initial_location)
2458 continue;
2459
2460 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2461 sizeof (fde_table.entries[0]));
2462 ++fde_table2->num_entries;
2463 fde_prev = fde;
2464 }
b01c8410 2465 fde_table2->entries = obstack_finish (&objfile->objfile_obstack);
b01c8410
PP
2466
2467 /* Discard the original fde_table. */
2468 xfree (fde_table.entries);
cfc14b3a 2469 }
be391dca
TT
2470
2471 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
cfc14b3a 2472}
0d0e1a63
MK
2473
2474/* Provide a prototype to silence -Wmissing-prototypes. */
2475void _initialize_dwarf2_frame (void);
2476
2477void
2478_initialize_dwarf2_frame (void)
2479{
030f20e1 2480 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 2481 dwarf2_frame_objfile_data = register_objfile_data ();
0d0e1a63 2482}
This page took 0.894254 seconds and 4 git commands to generate.