Commit | Line | Data |
---|---|---|
cfc14b3a MK |
1 | /* Frame unwinder for frames with DWARF Call Frame Information. |
2 | ||
4c38e0a4 | 3 | Copyright (C) 2003, 2004, 2005, 2007, 2008, 2009, 2010 |
0fb0cc75 | 4 | Free Software Foundation, Inc. |
cfc14b3a MK |
5 | |
6 | Contributed by Mark Kettenis. | |
7 | ||
8 | This file is part of GDB. | |
9 | ||
10 | This program is free software; you can redistribute it and/or modify | |
11 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 12 | the Free Software Foundation; either version 3 of the License, or |
cfc14b3a MK |
13 | (at your option) any later version. |
14 | ||
15 | This program is distributed in the hope that it will be useful, | |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
19 | ||
20 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 21 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
cfc14b3a MK |
22 | |
23 | #include "defs.h" | |
24 | #include "dwarf2expr.h" | |
fa8f86ff | 25 | #include "dwarf2.h" |
cfc14b3a MK |
26 | #include "frame.h" |
27 | #include "frame-base.h" | |
28 | #include "frame-unwind.h" | |
29 | #include "gdbcore.h" | |
30 | #include "gdbtypes.h" | |
31 | #include "symtab.h" | |
32 | #include "objfiles.h" | |
33 | #include "regcache.h" | |
f2da6b3a | 34 | #include "value.h" |
cfc14b3a MK |
35 | |
36 | #include "gdb_assert.h" | |
37 | #include "gdb_string.h" | |
38 | ||
6896c0c7 | 39 | #include "complaints.h" |
cfc14b3a MK |
40 | #include "dwarf2-frame.h" |
41 | ||
ae0d2f24 UW |
42 | struct comp_unit; |
43 | ||
cfc14b3a MK |
44 | /* Call Frame Information (CFI). */ |
45 | ||
46 | /* Common Information Entry (CIE). */ | |
47 | ||
48 | struct dwarf2_cie | |
49 | { | |
ae0d2f24 UW |
50 | /* Computation Unit for this CIE. */ |
51 | struct comp_unit *unit; | |
52 | ||
cfc14b3a MK |
53 | /* Offset into the .debug_frame section where this CIE was found. |
54 | Used to identify this CIE. */ | |
55 | ULONGEST cie_pointer; | |
56 | ||
57 | /* Constant that is factored out of all advance location | |
58 | instructions. */ | |
59 | ULONGEST code_alignment_factor; | |
60 | ||
61 | /* Constants that is factored out of all offset instructions. */ | |
62 | LONGEST data_alignment_factor; | |
63 | ||
64 | /* Return address column. */ | |
65 | ULONGEST return_address_register; | |
66 | ||
67 | /* Instruction sequence to initialize a register set. */ | |
852483bc MK |
68 | gdb_byte *initial_instructions; |
69 | gdb_byte *end; | |
cfc14b3a | 70 | |
303b6f5d DJ |
71 | /* Saved augmentation, in case it's needed later. */ |
72 | char *augmentation; | |
73 | ||
cfc14b3a | 74 | /* Encoding of addresses. */ |
852483bc | 75 | gdb_byte encoding; |
cfc14b3a | 76 | |
ae0d2f24 UW |
77 | /* Target address size in bytes. */ |
78 | int addr_size; | |
79 | ||
8da614df CV |
80 | /* Target pointer size in bytes. */ |
81 | int ptr_size; | |
82 | ||
7131cb6e RH |
83 | /* True if a 'z' augmentation existed. */ |
84 | unsigned char saw_z_augmentation; | |
85 | ||
56c987f6 AO |
86 | /* True if an 'S' augmentation existed. */ |
87 | unsigned char signal_frame; | |
88 | ||
303b6f5d DJ |
89 | /* The version recorded in the CIE. */ |
90 | unsigned char version; | |
2dc7f7b3 TT |
91 | |
92 | /* The segment size. */ | |
93 | unsigned char segment_size; | |
b01c8410 | 94 | }; |
303b6f5d | 95 | |
b01c8410 PP |
96 | struct dwarf2_cie_table |
97 | { | |
98 | int num_entries; | |
99 | struct dwarf2_cie **entries; | |
cfc14b3a MK |
100 | }; |
101 | ||
102 | /* Frame Description Entry (FDE). */ | |
103 | ||
104 | struct dwarf2_fde | |
105 | { | |
106 | /* CIE for this FDE. */ | |
107 | struct dwarf2_cie *cie; | |
108 | ||
109 | /* First location associated with this FDE. */ | |
110 | CORE_ADDR initial_location; | |
111 | ||
112 | /* Number of bytes of program instructions described by this FDE. */ | |
113 | CORE_ADDR address_range; | |
114 | ||
115 | /* Instruction sequence. */ | |
852483bc MK |
116 | gdb_byte *instructions; |
117 | gdb_byte *end; | |
cfc14b3a | 118 | |
4bf8967c AS |
119 | /* True if this FDE is read from a .eh_frame instead of a .debug_frame |
120 | section. */ | |
121 | unsigned char eh_frame_p; | |
b01c8410 | 122 | }; |
4bf8967c | 123 | |
b01c8410 PP |
124 | struct dwarf2_fde_table |
125 | { | |
126 | int num_entries; | |
127 | struct dwarf2_fde **entries; | |
cfc14b3a MK |
128 | }; |
129 | ||
ae0d2f24 UW |
130 | /* A minimal decoding of DWARF2 compilation units. We only decode |
131 | what's needed to get to the call frame information. */ | |
132 | ||
133 | struct comp_unit | |
134 | { | |
135 | /* Keep the bfd convenient. */ | |
136 | bfd *abfd; | |
137 | ||
138 | struct objfile *objfile; | |
139 | ||
ae0d2f24 UW |
140 | /* Pointer to the .debug_frame section loaded into memory. */ |
141 | gdb_byte *dwarf_frame_buffer; | |
142 | ||
143 | /* Length of the loaded .debug_frame section. */ | |
c098b58b | 144 | bfd_size_type dwarf_frame_size; |
ae0d2f24 UW |
145 | |
146 | /* Pointer to the .debug_frame section. */ | |
147 | asection *dwarf_frame_section; | |
148 | ||
149 | /* Base for DW_EH_PE_datarel encodings. */ | |
150 | bfd_vma dbase; | |
151 | ||
152 | /* Base for DW_EH_PE_textrel encodings. */ | |
153 | bfd_vma tbase; | |
154 | }; | |
155 | ||
ac56253d TT |
156 | static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc, |
157 | CORE_ADDR *out_offset); | |
4fc771b8 DJ |
158 | |
159 | static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum, | |
160 | int eh_frame_p); | |
ae0d2f24 UW |
161 | |
162 | static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding, | |
0d45f56e | 163 | int ptr_len, const gdb_byte *buf, |
ae0d2f24 UW |
164 | unsigned int *bytes_read_ptr, |
165 | CORE_ADDR func_base); | |
cfc14b3a MK |
166 | \f |
167 | ||
168 | /* Structure describing a frame state. */ | |
169 | ||
170 | struct dwarf2_frame_state | |
171 | { | |
172 | /* Each register save state can be described in terms of a CFA slot, | |
173 | another register, or a location expression. */ | |
174 | struct dwarf2_frame_state_reg_info | |
175 | { | |
05cbe71a | 176 | struct dwarf2_frame_state_reg *reg; |
cfc14b3a MK |
177 | int num_regs; |
178 | ||
2fd481e1 PP |
179 | LONGEST cfa_offset; |
180 | ULONGEST cfa_reg; | |
181 | enum { | |
182 | CFA_UNSET, | |
183 | CFA_REG_OFFSET, | |
184 | CFA_EXP | |
185 | } cfa_how; | |
0d45f56e | 186 | const gdb_byte *cfa_exp; |
2fd481e1 | 187 | |
cfc14b3a MK |
188 | /* Used to implement DW_CFA_remember_state. */ |
189 | struct dwarf2_frame_state_reg_info *prev; | |
190 | } regs; | |
191 | ||
cfc14b3a MK |
192 | /* The PC described by the current frame state. */ |
193 | CORE_ADDR pc; | |
194 | ||
195 | /* Initial register set from the CIE. | |
196 | Used to implement DW_CFA_restore. */ | |
197 | struct dwarf2_frame_state_reg_info initial; | |
198 | ||
199 | /* The information we care about from the CIE. */ | |
200 | LONGEST data_align; | |
201 | ULONGEST code_align; | |
202 | ULONGEST retaddr_column; | |
303b6f5d DJ |
203 | |
204 | /* Flags for known producer quirks. */ | |
205 | ||
206 | /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa | |
207 | and DW_CFA_def_cfa_offset takes a factored offset. */ | |
208 | int armcc_cfa_offsets_sf; | |
209 | ||
210 | /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that | |
211 | the CFA is defined as REG - OFFSET rather than REG + OFFSET. */ | |
212 | int armcc_cfa_offsets_reversed; | |
cfc14b3a MK |
213 | }; |
214 | ||
215 | /* Store the length the expression for the CFA in the `cfa_reg' field, | |
216 | which is unused in that case. */ | |
217 | #define cfa_exp_len cfa_reg | |
218 | ||
f57d151a | 219 | /* Assert that the register set RS is large enough to store gdbarch_num_regs |
cfc14b3a MK |
220 | columns. If necessary, enlarge the register set. */ |
221 | ||
222 | static void | |
223 | dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs, | |
224 | int num_regs) | |
225 | { | |
226 | size_t size = sizeof (struct dwarf2_frame_state_reg); | |
227 | ||
228 | if (num_regs <= rs->num_regs) | |
229 | return; | |
230 | ||
231 | rs->reg = (struct dwarf2_frame_state_reg *) | |
232 | xrealloc (rs->reg, num_regs * size); | |
233 | ||
234 | /* Initialize newly allocated registers. */ | |
2473a4a9 | 235 | memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size); |
cfc14b3a MK |
236 | rs->num_regs = num_regs; |
237 | } | |
238 | ||
239 | /* Copy the register columns in register set RS into newly allocated | |
240 | memory and return a pointer to this newly created copy. */ | |
241 | ||
242 | static struct dwarf2_frame_state_reg * | |
243 | dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs) | |
244 | { | |
d10891d4 | 245 | size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg); |
cfc14b3a MK |
246 | struct dwarf2_frame_state_reg *reg; |
247 | ||
248 | reg = (struct dwarf2_frame_state_reg *) xmalloc (size); | |
249 | memcpy (reg, rs->reg, size); | |
250 | ||
251 | return reg; | |
252 | } | |
253 | ||
254 | /* Release the memory allocated to register set RS. */ | |
255 | ||
256 | static void | |
257 | dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs) | |
258 | { | |
259 | if (rs) | |
260 | { | |
261 | dwarf2_frame_state_free_regs (rs->prev); | |
262 | ||
263 | xfree (rs->reg); | |
264 | xfree (rs); | |
265 | } | |
266 | } | |
267 | ||
268 | /* Release the memory allocated to the frame state FS. */ | |
269 | ||
270 | static void | |
271 | dwarf2_frame_state_free (void *p) | |
272 | { | |
273 | struct dwarf2_frame_state *fs = p; | |
274 | ||
275 | dwarf2_frame_state_free_regs (fs->initial.prev); | |
276 | dwarf2_frame_state_free_regs (fs->regs.prev); | |
277 | xfree (fs->initial.reg); | |
278 | xfree (fs->regs.reg); | |
279 | xfree (fs); | |
280 | } | |
281 | \f | |
282 | ||
283 | /* Helper functions for execute_stack_op. */ | |
284 | ||
285 | static CORE_ADDR | |
286 | read_reg (void *baton, int reg) | |
287 | { | |
4a4e5149 DJ |
288 | struct frame_info *this_frame = (struct frame_info *) baton; |
289 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
cfc14b3a | 290 | int regnum; |
852483bc | 291 | gdb_byte *buf; |
cfc14b3a | 292 | |
ad010def | 293 | regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, reg); |
cfc14b3a | 294 | |
852483bc | 295 | buf = alloca (register_size (gdbarch, regnum)); |
4a4e5149 | 296 | get_frame_register (this_frame, regnum, buf); |
f2da6b3a DJ |
297 | |
298 | /* Convert the register to an integer. This returns a LONGEST | |
299 | rather than a CORE_ADDR, but unpack_pointer does the same thing | |
300 | under the covers, and this makes more sense for non-pointer | |
301 | registers. Maybe read_reg and the associated interfaces should | |
302 | deal with "struct value" instead of CORE_ADDR. */ | |
303 | return unpack_long (register_type (gdbarch, regnum), buf); | |
cfc14b3a MK |
304 | } |
305 | ||
306 | static void | |
852483bc | 307 | read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len) |
cfc14b3a MK |
308 | { |
309 | read_memory (addr, buf, len); | |
310 | } | |
311 | ||
312 | static void | |
0d45f56e | 313 | no_get_frame_base (void *baton, const gdb_byte **start, size_t *length) |
cfc14b3a MK |
314 | { |
315 | internal_error (__FILE__, __LINE__, | |
e2e0b3e5 | 316 | _("Support for DW_OP_fbreg is unimplemented")); |
cfc14b3a MK |
317 | } |
318 | ||
e7802207 TT |
319 | /* Helper function for execute_stack_op. */ |
320 | ||
321 | static CORE_ADDR | |
322 | no_get_frame_cfa (void *baton) | |
323 | { | |
324 | internal_error (__FILE__, __LINE__, | |
325 | _("Support for DW_OP_call_frame_cfa is unimplemented")); | |
326 | } | |
327 | ||
cfc14b3a MK |
328 | static CORE_ADDR |
329 | no_get_tls_address (void *baton, CORE_ADDR offset) | |
330 | { | |
331 | internal_error (__FILE__, __LINE__, | |
e2e0b3e5 | 332 | _("Support for DW_OP_GNU_push_tls_address is unimplemented")); |
cfc14b3a MK |
333 | } |
334 | ||
5c631832 JK |
335 | /* Helper function for execute_stack_op. */ |
336 | ||
337 | static void | |
338 | no_dwarf_call (struct dwarf_expr_context *ctx, size_t die_offset) | |
339 | { | |
340 | internal_error (__FILE__, __LINE__, | |
341 | _("Support for DW_OP_call* is invalid in CFI")); | |
342 | } | |
343 | ||
a6a5a945 LM |
344 | /* Execute the required actions for both the DW_CFA_restore and |
345 | DW_CFA_restore_extended instructions. */ | |
346 | static void | |
347 | dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num, | |
348 | struct dwarf2_frame_state *fs, int eh_frame_p) | |
349 | { | |
350 | ULONGEST reg; | |
351 | ||
352 | gdb_assert (fs->initial.reg); | |
353 | reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p); | |
354 | dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); | |
355 | ||
356 | /* Check if this register was explicitly initialized in the | |
357 | CIE initial instructions. If not, default the rule to | |
358 | UNSPECIFIED. */ | |
359 | if (reg < fs->initial.num_regs) | |
360 | fs->regs.reg[reg] = fs->initial.reg[reg]; | |
361 | else | |
362 | fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED; | |
363 | ||
364 | if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED) | |
365 | complaint (&symfile_complaints, _("\ | |
366 | incomplete CFI data; DW_CFA_restore unspecified\n\ | |
5af949e3 | 367 | register %s (#%d) at %s"), |
a6a5a945 LM |
368 | gdbarch_register_name |
369 | (gdbarch, gdbarch_dwarf2_reg_to_regnum (gdbarch, reg)), | |
370 | gdbarch_dwarf2_reg_to_regnum (gdbarch, reg), | |
5af949e3 | 371 | paddress (gdbarch, fs->pc)); |
a6a5a945 LM |
372 | } |
373 | ||
cfc14b3a | 374 | static CORE_ADDR |
0d45f56e | 375 | execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size, |
ac56253d TT |
376 | CORE_ADDR offset, struct frame_info *this_frame, |
377 | CORE_ADDR initial, int initial_in_stack_memory) | |
cfc14b3a MK |
378 | { |
379 | struct dwarf_expr_context *ctx; | |
380 | CORE_ADDR result; | |
4a227398 | 381 | struct cleanup *old_chain; |
cfc14b3a MK |
382 | |
383 | ctx = new_dwarf_expr_context (); | |
4a227398 TT |
384 | old_chain = make_cleanup_free_dwarf_expr_context (ctx); |
385 | ||
f7fd4728 | 386 | ctx->gdbarch = get_frame_arch (this_frame); |
ae0d2f24 | 387 | ctx->addr_size = addr_size; |
ac56253d | 388 | ctx->offset = offset; |
4a4e5149 | 389 | ctx->baton = this_frame; |
cfc14b3a MK |
390 | ctx->read_reg = read_reg; |
391 | ctx->read_mem = read_mem; | |
392 | ctx->get_frame_base = no_get_frame_base; | |
e7802207 | 393 | ctx->get_frame_cfa = no_get_frame_cfa; |
cfc14b3a | 394 | ctx->get_tls_address = no_get_tls_address; |
5c631832 | 395 | ctx->dwarf_call = no_dwarf_call; |
cfc14b3a | 396 | |
44353522 | 397 | dwarf_expr_push (ctx, initial, initial_in_stack_memory); |
cfc14b3a | 398 | dwarf_expr_eval (ctx, exp, len); |
cfc14b3a | 399 | |
f2c7657e UW |
400 | if (ctx->location == DWARF_VALUE_MEMORY) |
401 | result = dwarf_expr_fetch_address (ctx, 0); | |
402 | else if (ctx->location == DWARF_VALUE_REGISTER) | |
403 | result = read_reg (this_frame, dwarf_expr_fetch (ctx, 0)); | |
404 | else | |
cec03d70 TT |
405 | { |
406 | /* This is actually invalid DWARF, but if we ever do run across | |
407 | it somehow, we might as well support it. So, instead, report | |
408 | it as unimplemented. */ | |
409 | error (_("Not implemented: computing unwound register using explicit value operator")); | |
410 | } | |
cfc14b3a | 411 | |
4a227398 | 412 | do_cleanups (old_chain); |
cfc14b3a MK |
413 | |
414 | return result; | |
415 | } | |
416 | \f | |
417 | ||
418 | static void | |
0d45f56e TT |
419 | execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr, |
420 | const gdb_byte *insn_end, struct frame_info *this_frame, | |
ae0d2f24 | 421 | struct dwarf2_frame_state *fs) |
cfc14b3a | 422 | { |
ae0d2f24 | 423 | int eh_frame_p = fde->eh_frame_p; |
4a4e5149 | 424 | CORE_ADDR pc = get_frame_pc (this_frame); |
cfc14b3a | 425 | int bytes_read; |
4a4e5149 | 426 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
e17a4113 | 427 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
cfc14b3a MK |
428 | |
429 | while (insn_ptr < insn_end && fs->pc <= pc) | |
430 | { | |
852483bc | 431 | gdb_byte insn = *insn_ptr++; |
cfc14b3a MK |
432 | ULONGEST utmp, reg; |
433 | LONGEST offset; | |
434 | ||
435 | if ((insn & 0xc0) == DW_CFA_advance_loc) | |
436 | fs->pc += (insn & 0x3f) * fs->code_align; | |
437 | else if ((insn & 0xc0) == DW_CFA_offset) | |
438 | { | |
439 | reg = insn & 0x3f; | |
4fc771b8 | 440 | reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); |
cfc14b3a MK |
441 | insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); |
442 | offset = utmp * fs->data_align; | |
443 | dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); | |
05cbe71a | 444 | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; |
cfc14b3a MK |
445 | fs->regs.reg[reg].loc.offset = offset; |
446 | } | |
447 | else if ((insn & 0xc0) == DW_CFA_restore) | |
448 | { | |
cfc14b3a | 449 | reg = insn & 0x3f; |
a6a5a945 | 450 | dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p); |
cfc14b3a MK |
451 | } |
452 | else | |
453 | { | |
454 | switch (insn) | |
455 | { | |
456 | case DW_CFA_set_loc: | |
ae0d2f24 | 457 | fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding, |
8da614df | 458 | fde->cie->ptr_size, insn_ptr, |
ae0d2f24 UW |
459 | &bytes_read, fde->initial_location); |
460 | /* Apply the objfile offset for relocatable objects. */ | |
461 | fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets, | |
462 | SECT_OFF_TEXT (fde->cie->unit->objfile)); | |
cfc14b3a MK |
463 | insn_ptr += bytes_read; |
464 | break; | |
465 | ||
466 | case DW_CFA_advance_loc1: | |
e17a4113 | 467 | utmp = extract_unsigned_integer (insn_ptr, 1, byte_order); |
cfc14b3a MK |
468 | fs->pc += utmp * fs->code_align; |
469 | insn_ptr++; | |
470 | break; | |
471 | case DW_CFA_advance_loc2: | |
e17a4113 | 472 | utmp = extract_unsigned_integer (insn_ptr, 2, byte_order); |
cfc14b3a MK |
473 | fs->pc += utmp * fs->code_align; |
474 | insn_ptr += 2; | |
475 | break; | |
476 | case DW_CFA_advance_loc4: | |
e17a4113 | 477 | utmp = extract_unsigned_integer (insn_ptr, 4, byte_order); |
cfc14b3a MK |
478 | fs->pc += utmp * fs->code_align; |
479 | insn_ptr += 4; | |
480 | break; | |
481 | ||
482 | case DW_CFA_offset_extended: | |
483 | insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); | |
4fc771b8 | 484 | reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); |
cfc14b3a MK |
485 | insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); |
486 | offset = utmp * fs->data_align; | |
487 | dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); | |
05cbe71a | 488 | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; |
cfc14b3a MK |
489 | fs->regs.reg[reg].loc.offset = offset; |
490 | break; | |
491 | ||
492 | case DW_CFA_restore_extended: | |
cfc14b3a | 493 | insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); |
a6a5a945 | 494 | dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p); |
cfc14b3a MK |
495 | break; |
496 | ||
497 | case DW_CFA_undefined: | |
498 | insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); | |
4fc771b8 | 499 | reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); |
cfc14b3a | 500 | dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); |
05cbe71a | 501 | fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED; |
cfc14b3a MK |
502 | break; |
503 | ||
504 | case DW_CFA_same_value: | |
505 | insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); | |
4fc771b8 | 506 | reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); |
cfc14b3a | 507 | dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); |
05cbe71a | 508 | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE; |
cfc14b3a MK |
509 | break; |
510 | ||
511 | case DW_CFA_register: | |
512 | insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); | |
4fc771b8 | 513 | reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); |
cfc14b3a | 514 | insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); |
4fc771b8 | 515 | utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p); |
cfc14b3a | 516 | dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); |
05cbe71a | 517 | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG; |
cfc14b3a MK |
518 | fs->regs.reg[reg].loc.reg = utmp; |
519 | break; | |
520 | ||
521 | case DW_CFA_remember_state: | |
522 | { | |
523 | struct dwarf2_frame_state_reg_info *new_rs; | |
524 | ||
525 | new_rs = XMALLOC (struct dwarf2_frame_state_reg_info); | |
526 | *new_rs = fs->regs; | |
527 | fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs); | |
528 | fs->regs.prev = new_rs; | |
529 | } | |
530 | break; | |
531 | ||
532 | case DW_CFA_restore_state: | |
533 | { | |
534 | struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev; | |
535 | ||
50ea7769 MK |
536 | if (old_rs == NULL) |
537 | { | |
e2e0b3e5 | 538 | complaint (&symfile_complaints, _("\ |
5af949e3 UW |
539 | bad CFI data; mismatched DW_CFA_restore_state at %s"), |
540 | paddress (gdbarch, fs->pc)); | |
50ea7769 MK |
541 | } |
542 | else | |
543 | { | |
544 | xfree (fs->regs.reg); | |
545 | fs->regs = *old_rs; | |
546 | xfree (old_rs); | |
547 | } | |
cfc14b3a MK |
548 | } |
549 | break; | |
550 | ||
551 | case DW_CFA_def_cfa: | |
2fd481e1 | 552 | insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg); |
cfc14b3a | 553 | insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); |
303b6f5d DJ |
554 | |
555 | if (fs->armcc_cfa_offsets_sf) | |
556 | utmp *= fs->data_align; | |
557 | ||
2fd481e1 PP |
558 | fs->regs.cfa_offset = utmp; |
559 | fs->regs.cfa_how = CFA_REG_OFFSET; | |
cfc14b3a MK |
560 | break; |
561 | ||
562 | case DW_CFA_def_cfa_register: | |
2fd481e1 PP |
563 | insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg); |
564 | fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, | |
565 | fs->regs.cfa_reg, | |
566 | eh_frame_p); | |
567 | fs->regs.cfa_how = CFA_REG_OFFSET; | |
cfc14b3a MK |
568 | break; |
569 | ||
570 | case DW_CFA_def_cfa_offset: | |
852483bc | 571 | insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); |
303b6f5d DJ |
572 | |
573 | if (fs->armcc_cfa_offsets_sf) | |
574 | utmp *= fs->data_align; | |
575 | ||
2fd481e1 | 576 | fs->regs.cfa_offset = utmp; |
cfc14b3a MK |
577 | /* cfa_how deliberately not set. */ |
578 | break; | |
579 | ||
a8504492 MK |
580 | case DW_CFA_nop: |
581 | break; | |
582 | ||
cfc14b3a | 583 | case DW_CFA_def_cfa_expression: |
2fd481e1 PP |
584 | insn_ptr = read_uleb128 (insn_ptr, insn_end, |
585 | &fs->regs.cfa_exp_len); | |
586 | fs->regs.cfa_exp = insn_ptr; | |
587 | fs->regs.cfa_how = CFA_EXP; | |
588 | insn_ptr += fs->regs.cfa_exp_len; | |
cfc14b3a MK |
589 | break; |
590 | ||
591 | case DW_CFA_expression: | |
592 | insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); | |
4fc771b8 | 593 | reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); |
cfc14b3a MK |
594 | dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); |
595 | insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); | |
596 | fs->regs.reg[reg].loc.exp = insn_ptr; | |
597 | fs->regs.reg[reg].exp_len = utmp; | |
05cbe71a | 598 | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP; |
cfc14b3a MK |
599 | insn_ptr += utmp; |
600 | break; | |
601 | ||
a8504492 MK |
602 | case DW_CFA_offset_extended_sf: |
603 | insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); | |
4fc771b8 | 604 | reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); |
a8504492 | 605 | insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset); |
f6da8dd8 | 606 | offset *= fs->data_align; |
a8504492 | 607 | dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); |
05cbe71a | 608 | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; |
a8504492 MK |
609 | fs->regs.reg[reg].loc.offset = offset; |
610 | break; | |
611 | ||
46ea248b AO |
612 | case DW_CFA_val_offset: |
613 | insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); | |
614 | dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); | |
615 | insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); | |
616 | offset = utmp * fs->data_align; | |
617 | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET; | |
618 | fs->regs.reg[reg].loc.offset = offset; | |
619 | break; | |
620 | ||
621 | case DW_CFA_val_offset_sf: | |
622 | insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); | |
623 | dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); | |
624 | insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset); | |
625 | offset *= fs->data_align; | |
626 | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET; | |
627 | fs->regs.reg[reg].loc.offset = offset; | |
628 | break; | |
629 | ||
630 | case DW_CFA_val_expression: | |
631 | insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); | |
632 | dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); | |
633 | insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); | |
634 | fs->regs.reg[reg].loc.exp = insn_ptr; | |
635 | fs->regs.reg[reg].exp_len = utmp; | |
636 | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP; | |
637 | insn_ptr += utmp; | |
638 | break; | |
639 | ||
a8504492 | 640 | case DW_CFA_def_cfa_sf: |
2fd481e1 PP |
641 | insn_ptr = read_uleb128 (insn_ptr, insn_end, &fs->regs.cfa_reg); |
642 | fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, | |
643 | fs->regs.cfa_reg, | |
644 | eh_frame_p); | |
a8504492 | 645 | insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset); |
2fd481e1 PP |
646 | fs->regs.cfa_offset = offset * fs->data_align; |
647 | fs->regs.cfa_how = CFA_REG_OFFSET; | |
a8504492 MK |
648 | break; |
649 | ||
650 | case DW_CFA_def_cfa_offset_sf: | |
651 | insn_ptr = read_sleb128 (insn_ptr, insn_end, &offset); | |
2fd481e1 | 652 | fs->regs.cfa_offset = offset * fs->data_align; |
a8504492 | 653 | /* cfa_how deliberately not set. */ |
cfc14b3a MK |
654 | break; |
655 | ||
a77f4086 MK |
656 | case DW_CFA_GNU_window_save: |
657 | /* This is SPARC-specific code, and contains hard-coded | |
658 | constants for the register numbering scheme used by | |
659 | GCC. Rather than having a architecture-specific | |
660 | operation that's only ever used by a single | |
661 | architecture, we provide the implementation here. | |
662 | Incidentally that's what GCC does too in its | |
663 | unwinder. */ | |
664 | { | |
4a4e5149 | 665 | int size = register_size (gdbarch, 0); |
9a619af0 | 666 | |
a77f4086 MK |
667 | dwarf2_frame_state_alloc_regs (&fs->regs, 32); |
668 | for (reg = 8; reg < 16; reg++) | |
669 | { | |
670 | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG; | |
671 | fs->regs.reg[reg].loc.reg = reg + 16; | |
672 | } | |
673 | for (reg = 16; reg < 32; reg++) | |
674 | { | |
675 | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; | |
676 | fs->regs.reg[reg].loc.offset = (reg - 16) * size; | |
677 | } | |
678 | } | |
679 | break; | |
680 | ||
cfc14b3a MK |
681 | case DW_CFA_GNU_args_size: |
682 | /* Ignored. */ | |
683 | insn_ptr = read_uleb128 (insn_ptr, insn_end, &utmp); | |
684 | break; | |
685 | ||
58894217 JK |
686 | case DW_CFA_GNU_negative_offset_extended: |
687 | insn_ptr = read_uleb128 (insn_ptr, insn_end, ®); | |
4fc771b8 | 688 | reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p); |
58894217 JK |
689 | insn_ptr = read_uleb128 (insn_ptr, insn_end, &offset); |
690 | offset *= fs->data_align; | |
691 | dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1); | |
692 | fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET; | |
693 | fs->regs.reg[reg].loc.offset = -offset; | |
694 | break; | |
695 | ||
cfc14b3a | 696 | default: |
e2e0b3e5 | 697 | internal_error (__FILE__, __LINE__, _("Unknown CFI encountered.")); |
cfc14b3a MK |
698 | } |
699 | } | |
700 | } | |
701 | ||
702 | /* Don't allow remember/restore between CIE and FDE programs. */ | |
703 | dwarf2_frame_state_free_regs (fs->regs.prev); | |
704 | fs->regs.prev = NULL; | |
705 | } | |
8f22cb90 | 706 | \f |
cfc14b3a | 707 | |
8f22cb90 | 708 | /* Architecture-specific operations. */ |
cfc14b3a | 709 | |
8f22cb90 MK |
710 | /* Per-architecture data key. */ |
711 | static struct gdbarch_data *dwarf2_frame_data; | |
712 | ||
713 | struct dwarf2_frame_ops | |
714 | { | |
715 | /* Pre-initialize the register state REG for register REGNUM. */ | |
aff37fc1 DM |
716 | void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *, |
717 | struct frame_info *); | |
3ed09a32 | 718 | |
4a4e5149 | 719 | /* Check whether the THIS_FRAME is a signal trampoline. */ |
3ed09a32 | 720 | int (*signal_frame_p) (struct gdbarch *, struct frame_info *); |
4bf8967c | 721 | |
4fc771b8 DJ |
722 | /* Convert .eh_frame register number to DWARF register number, or |
723 | adjust .debug_frame register number. */ | |
724 | int (*adjust_regnum) (struct gdbarch *, int, int); | |
cfc14b3a MK |
725 | }; |
726 | ||
8f22cb90 MK |
727 | /* Default architecture-specific register state initialization |
728 | function. */ | |
729 | ||
730 | static void | |
731 | dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum, | |
aff37fc1 | 732 | struct dwarf2_frame_state_reg *reg, |
4a4e5149 | 733 | struct frame_info *this_frame) |
8f22cb90 MK |
734 | { |
735 | /* If we have a register that acts as a program counter, mark it as | |
736 | a destination for the return address. If we have a register that | |
737 | serves as the stack pointer, arrange for it to be filled with the | |
738 | call frame address (CFA). The other registers are marked as | |
739 | unspecified. | |
740 | ||
741 | We copy the return address to the program counter, since many | |
742 | parts in GDB assume that it is possible to get the return address | |
743 | by unwinding the program counter register. However, on ISA's | |
744 | with a dedicated return address register, the CFI usually only | |
745 | contains information to unwind that return address register. | |
746 | ||
747 | The reason we're treating the stack pointer special here is | |
748 | because in many cases GCC doesn't emit CFI for the stack pointer | |
749 | and implicitly assumes that it is equal to the CFA. This makes | |
750 | some sense since the DWARF specification (version 3, draft 8, | |
751 | p. 102) says that: | |
752 | ||
753 | "Typically, the CFA is defined to be the value of the stack | |
754 | pointer at the call site in the previous frame (which may be | |
755 | different from its value on entry to the current frame)." | |
756 | ||
757 | However, this isn't true for all platforms supported by GCC | |
758 | (e.g. IBM S/390 and zSeries). Those architectures should provide | |
759 | their own architecture-specific initialization function. */ | |
05cbe71a | 760 | |
ad010def | 761 | if (regnum == gdbarch_pc_regnum (gdbarch)) |
8f22cb90 | 762 | reg->how = DWARF2_FRAME_REG_RA; |
ad010def | 763 | else if (regnum == gdbarch_sp_regnum (gdbarch)) |
8f22cb90 MK |
764 | reg->how = DWARF2_FRAME_REG_CFA; |
765 | } | |
05cbe71a | 766 | |
8f22cb90 | 767 | /* Return a default for the architecture-specific operations. */ |
05cbe71a | 768 | |
8f22cb90 | 769 | static void * |
030f20e1 | 770 | dwarf2_frame_init (struct obstack *obstack) |
8f22cb90 MK |
771 | { |
772 | struct dwarf2_frame_ops *ops; | |
773 | ||
030f20e1 | 774 | ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops); |
8f22cb90 MK |
775 | ops->init_reg = dwarf2_frame_default_init_reg; |
776 | return ops; | |
777 | } | |
05cbe71a | 778 | |
8f22cb90 MK |
779 | /* Set the architecture-specific register state initialization |
780 | function for GDBARCH to INIT_REG. */ | |
781 | ||
782 | void | |
783 | dwarf2_frame_set_init_reg (struct gdbarch *gdbarch, | |
784 | void (*init_reg) (struct gdbarch *, int, | |
aff37fc1 DM |
785 | struct dwarf2_frame_state_reg *, |
786 | struct frame_info *)) | |
8f22cb90 | 787 | { |
030f20e1 | 788 | struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); |
8f22cb90 | 789 | |
8f22cb90 MK |
790 | ops->init_reg = init_reg; |
791 | } | |
792 | ||
793 | /* Pre-initialize the register state REG for register REGNUM. */ | |
05cbe71a MK |
794 | |
795 | static void | |
796 | dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, | |
aff37fc1 | 797 | struct dwarf2_frame_state_reg *reg, |
4a4e5149 | 798 | struct frame_info *this_frame) |
05cbe71a | 799 | { |
030f20e1 | 800 | struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); |
8f22cb90 | 801 | |
4a4e5149 | 802 | ops->init_reg (gdbarch, regnum, reg, this_frame); |
05cbe71a | 803 | } |
3ed09a32 DJ |
804 | |
805 | /* Set the architecture-specific signal trampoline recognition | |
806 | function for GDBARCH to SIGNAL_FRAME_P. */ | |
807 | ||
808 | void | |
809 | dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch, | |
810 | int (*signal_frame_p) (struct gdbarch *, | |
811 | struct frame_info *)) | |
812 | { | |
813 | struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); | |
814 | ||
815 | ops->signal_frame_p = signal_frame_p; | |
816 | } | |
817 | ||
818 | /* Query the architecture-specific signal frame recognizer for | |
4a4e5149 | 819 | THIS_FRAME. */ |
3ed09a32 DJ |
820 | |
821 | static int | |
822 | dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch, | |
4a4e5149 | 823 | struct frame_info *this_frame) |
3ed09a32 DJ |
824 | { |
825 | struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); | |
826 | ||
827 | if (ops->signal_frame_p == NULL) | |
828 | return 0; | |
4a4e5149 | 829 | return ops->signal_frame_p (gdbarch, this_frame); |
3ed09a32 | 830 | } |
4bf8967c | 831 | |
4fc771b8 DJ |
832 | /* Set the architecture-specific adjustment of .eh_frame and .debug_frame |
833 | register numbers. */ | |
4bf8967c AS |
834 | |
835 | void | |
4fc771b8 DJ |
836 | dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch, |
837 | int (*adjust_regnum) (struct gdbarch *, | |
838 | int, int)) | |
4bf8967c AS |
839 | { |
840 | struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); | |
841 | ||
4fc771b8 | 842 | ops->adjust_regnum = adjust_regnum; |
4bf8967c AS |
843 | } |
844 | ||
4fc771b8 DJ |
845 | /* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame |
846 | register. */ | |
4bf8967c | 847 | |
4fc771b8 DJ |
848 | static int |
849 | dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum, int eh_frame_p) | |
4bf8967c AS |
850 | { |
851 | struct dwarf2_frame_ops *ops = gdbarch_data (gdbarch, dwarf2_frame_data); | |
852 | ||
4fc771b8 | 853 | if (ops->adjust_regnum == NULL) |
4bf8967c | 854 | return regnum; |
4fc771b8 | 855 | return ops->adjust_regnum (gdbarch, regnum, eh_frame_p); |
4bf8967c | 856 | } |
303b6f5d DJ |
857 | |
858 | static void | |
859 | dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs, | |
860 | struct dwarf2_fde *fde) | |
861 | { | |
303b6f5d DJ |
862 | struct symtab *s; |
863 | ||
864 | s = find_pc_symtab (fs->pc); | |
a6c727b2 | 865 | if (s == NULL) |
303b6f5d DJ |
866 | return; |
867 | ||
a6c727b2 DJ |
868 | if (producer_is_realview (s->producer)) |
869 | { | |
870 | if (fde->cie->version == 1) | |
871 | fs->armcc_cfa_offsets_sf = 1; | |
872 | ||
873 | if (fde->cie->version == 1) | |
874 | fs->armcc_cfa_offsets_reversed = 1; | |
875 | ||
876 | /* The reversed offset problem is present in some compilers | |
877 | using DWARF3, but it was eventually fixed. Check the ARM | |
878 | defined augmentations, which are in the format "armcc" followed | |
879 | by a list of one-character options. The "+" option means | |
880 | this problem is fixed (no quirk needed). If the armcc | |
881 | augmentation is missing, the quirk is needed. */ | |
882 | if (fde->cie->version == 3 | |
883 | && (strncmp (fde->cie->augmentation, "armcc", 5) != 0 | |
884 | || strchr (fde->cie->augmentation + 5, '+') == NULL)) | |
885 | fs->armcc_cfa_offsets_reversed = 1; | |
886 | ||
887 | return; | |
888 | } | |
303b6f5d | 889 | } |
8f22cb90 MK |
890 | \f |
891 | ||
892 | struct dwarf2_frame_cache | |
893 | { | |
894 | /* DWARF Call Frame Address. */ | |
895 | CORE_ADDR cfa; | |
896 | ||
0228dfb9 DJ |
897 | /* Set if the return address column was marked as undefined. */ |
898 | int undefined_retaddr; | |
899 | ||
8f22cb90 MK |
900 | /* Saved registers, indexed by GDB register number, not by DWARF |
901 | register number. */ | |
902 | struct dwarf2_frame_state_reg *reg; | |
8d5a9abc MK |
903 | |
904 | /* Return address register. */ | |
905 | struct dwarf2_frame_state_reg retaddr_reg; | |
ae0d2f24 UW |
906 | |
907 | /* Target address size in bytes. */ | |
908 | int addr_size; | |
ac56253d TT |
909 | |
910 | /* The .text offset. */ | |
911 | CORE_ADDR text_offset; | |
8f22cb90 | 912 | }; |
05cbe71a | 913 | |
b9362cc7 | 914 | static struct dwarf2_frame_cache * |
4a4e5149 | 915 | dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache) |
cfc14b3a MK |
916 | { |
917 | struct cleanup *old_chain; | |
4a4e5149 | 918 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
ad010def UW |
919 | const int num_regs = gdbarch_num_regs (gdbarch) |
920 | + gdbarch_num_pseudo_regs (gdbarch); | |
cfc14b3a MK |
921 | struct dwarf2_frame_cache *cache; |
922 | struct dwarf2_frame_state *fs; | |
923 | struct dwarf2_fde *fde; | |
cfc14b3a MK |
924 | |
925 | if (*this_cache) | |
926 | return *this_cache; | |
927 | ||
928 | /* Allocate a new cache. */ | |
929 | cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache); | |
930 | cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg); | |
931 | ||
932 | /* Allocate and initialize the frame state. */ | |
933 | fs = XMALLOC (struct dwarf2_frame_state); | |
934 | memset (fs, 0, sizeof (struct dwarf2_frame_state)); | |
935 | old_chain = make_cleanup (dwarf2_frame_state_free, fs); | |
936 | ||
937 | /* Unwind the PC. | |
938 | ||
4a4e5149 | 939 | Note that if the next frame is never supposed to return (i.e. a call |
cfc14b3a | 940 | to abort), the compiler might optimize away the instruction at |
4a4e5149 | 941 | its return address. As a result the return address will |
cfc14b3a | 942 | point at some random instruction, and the CFI for that |
e4e9607c | 943 | instruction is probably worthless to us. GCC's unwinder solves |
cfc14b3a MK |
944 | this problem by substracting 1 from the return address to get an |
945 | address in the middle of a presumed call instruction (or the | |
946 | instruction in the associated delay slot). This should only be | |
947 | done for "normal" frames and not for resume-type frames (signal | |
e4e9607c | 948 | handlers, sentinel frames, dummy frames). The function |
ad1193e7 | 949 | get_frame_address_in_block does just this. It's not clear how |
e4e9607c MK |
950 | reliable the method is though; there is the potential for the |
951 | register state pre-call being different to that on return. */ | |
4a4e5149 | 952 | fs->pc = get_frame_address_in_block (this_frame); |
cfc14b3a MK |
953 | |
954 | /* Find the correct FDE. */ | |
ac56253d | 955 | fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset); |
cfc14b3a MK |
956 | gdb_assert (fde != NULL); |
957 | ||
958 | /* Extract any interesting information from the CIE. */ | |
959 | fs->data_align = fde->cie->data_alignment_factor; | |
960 | fs->code_align = fde->cie->code_alignment_factor; | |
961 | fs->retaddr_column = fde->cie->return_address_register; | |
ae0d2f24 | 962 | cache->addr_size = fde->cie->addr_size; |
cfc14b3a | 963 | |
303b6f5d DJ |
964 | /* Check for "quirks" - known bugs in producers. */ |
965 | dwarf2_frame_find_quirks (fs, fde); | |
966 | ||
cfc14b3a | 967 | /* First decode all the insns in the CIE. */ |
ae0d2f24 | 968 | execute_cfa_program (fde, fde->cie->initial_instructions, |
4a4e5149 | 969 | fde->cie->end, this_frame, fs); |
cfc14b3a MK |
970 | |
971 | /* Save the initialized register set. */ | |
972 | fs->initial = fs->regs; | |
973 | fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs); | |
974 | ||
975 | /* Then decode the insns in the FDE up to our target PC. */ | |
4a4e5149 | 976 | execute_cfa_program (fde, fde->instructions, fde->end, this_frame, fs); |
cfc14b3a | 977 | |
938f5214 | 978 | /* Calculate the CFA. */ |
2fd481e1 | 979 | switch (fs->regs.cfa_how) |
cfc14b3a MK |
980 | { |
981 | case CFA_REG_OFFSET: | |
2fd481e1 | 982 | cache->cfa = read_reg (this_frame, fs->regs.cfa_reg); |
303b6f5d | 983 | if (fs->armcc_cfa_offsets_reversed) |
2fd481e1 | 984 | cache->cfa -= fs->regs.cfa_offset; |
303b6f5d | 985 | else |
2fd481e1 | 986 | cache->cfa += fs->regs.cfa_offset; |
cfc14b3a MK |
987 | break; |
988 | ||
989 | case CFA_EXP: | |
990 | cache->cfa = | |
2fd481e1 | 991 | execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len, |
ac56253d TT |
992 | cache->addr_size, cache->text_offset, |
993 | this_frame, 0, 0); | |
cfc14b3a MK |
994 | break; |
995 | ||
996 | default: | |
e2e0b3e5 | 997 | internal_error (__FILE__, __LINE__, _("Unknown CFA rule.")); |
cfc14b3a MK |
998 | } |
999 | ||
05cbe71a | 1000 | /* Initialize the register state. */ |
3e2c4033 AC |
1001 | { |
1002 | int regnum; | |
e4e9607c | 1003 | |
3e2c4033 | 1004 | for (regnum = 0; regnum < num_regs; regnum++) |
4a4e5149 | 1005 | dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame); |
3e2c4033 AC |
1006 | } |
1007 | ||
1008 | /* Go through the DWARF2 CFI generated table and save its register | |
79c4cb80 MK |
1009 | location information in the cache. Note that we don't skip the |
1010 | return address column; it's perfectly all right for it to | |
1011 | correspond to a real register. If it doesn't correspond to a | |
1012 | real register, or if we shouldn't treat it as such, | |
055d23b8 | 1013 | gdbarch_dwarf2_reg_to_regnum should be defined to return a number outside |
f57d151a | 1014 | the range [0, gdbarch_num_regs). */ |
3e2c4033 AC |
1015 | { |
1016 | int column; /* CFI speak for "register number". */ | |
e4e9607c | 1017 | |
3e2c4033 AC |
1018 | for (column = 0; column < fs->regs.num_regs; column++) |
1019 | { | |
3e2c4033 | 1020 | /* Use the GDB register number as the destination index. */ |
ad010def | 1021 | int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, column); |
3e2c4033 AC |
1022 | |
1023 | /* If there's no corresponding GDB register, ignore it. */ | |
1024 | if (regnum < 0 || regnum >= num_regs) | |
1025 | continue; | |
1026 | ||
1027 | /* NOTE: cagney/2003-09-05: CFI should specify the disposition | |
e4e9607c MK |
1028 | of all debug info registers. If it doesn't, complain (but |
1029 | not too loudly). It turns out that GCC assumes that an | |
3e2c4033 AC |
1030 | unspecified register implies "same value" when CFI (draft |
1031 | 7) specifies nothing at all. Such a register could equally | |
1032 | be interpreted as "undefined". Also note that this check | |
e4e9607c MK |
1033 | isn't sufficient; it only checks that all registers in the |
1034 | range [0 .. max column] are specified, and won't detect | |
3e2c4033 | 1035 | problems when a debug info register falls outside of the |
e4e9607c | 1036 | table. We need a way of iterating through all the valid |
3e2c4033 | 1037 | DWARF2 register numbers. */ |
05cbe71a | 1038 | if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED) |
f059bf6f AC |
1039 | { |
1040 | if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED) | |
e2e0b3e5 | 1041 | complaint (&symfile_complaints, _("\ |
5af949e3 | 1042 | incomplete CFI data; unspecified registers (e.g., %s) at %s"), |
f059bf6f | 1043 | gdbarch_register_name (gdbarch, regnum), |
5af949e3 | 1044 | paddress (gdbarch, fs->pc)); |
f059bf6f | 1045 | } |
35889917 MK |
1046 | else |
1047 | cache->reg[regnum] = fs->regs.reg[column]; | |
3e2c4033 AC |
1048 | } |
1049 | } | |
cfc14b3a | 1050 | |
8d5a9abc MK |
1051 | /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information |
1052 | we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */ | |
35889917 MK |
1053 | { |
1054 | int regnum; | |
1055 | ||
1056 | for (regnum = 0; regnum < num_regs; regnum++) | |
1057 | { | |
8d5a9abc MK |
1058 | if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA |
1059 | || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET) | |
35889917 | 1060 | { |
05cbe71a MK |
1061 | struct dwarf2_frame_state_reg *retaddr_reg = |
1062 | &fs->regs.reg[fs->retaddr_column]; | |
1063 | ||
d4f10bf2 MK |
1064 | /* It seems rather bizarre to specify an "empty" column as |
1065 | the return adress column. However, this is exactly | |
1066 | what GCC does on some targets. It turns out that GCC | |
1067 | assumes that the return address can be found in the | |
1068 | register corresponding to the return address column. | |
8d5a9abc MK |
1069 | Incidentally, that's how we should treat a return |
1070 | address column specifying "same value" too. */ | |
d4f10bf2 | 1071 | if (fs->retaddr_column < fs->regs.num_regs |
05cbe71a MK |
1072 | && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED |
1073 | && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE) | |
8d5a9abc MK |
1074 | { |
1075 | if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA) | |
1076 | cache->reg[regnum] = *retaddr_reg; | |
1077 | else | |
1078 | cache->retaddr_reg = *retaddr_reg; | |
1079 | } | |
35889917 MK |
1080 | else |
1081 | { | |
8d5a9abc MK |
1082 | if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA) |
1083 | { | |
1084 | cache->reg[regnum].loc.reg = fs->retaddr_column; | |
1085 | cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG; | |
1086 | } | |
1087 | else | |
1088 | { | |
1089 | cache->retaddr_reg.loc.reg = fs->retaddr_column; | |
1090 | cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG; | |
1091 | } | |
35889917 MK |
1092 | } |
1093 | } | |
1094 | } | |
1095 | } | |
cfc14b3a | 1096 | |
0228dfb9 DJ |
1097 | if (fs->retaddr_column < fs->regs.num_regs |
1098 | && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED) | |
1099 | cache->undefined_retaddr = 1; | |
1100 | ||
cfc14b3a MK |
1101 | do_cleanups (old_chain); |
1102 | ||
1103 | *this_cache = cache; | |
1104 | return cache; | |
1105 | } | |
1106 | ||
1107 | static void | |
4a4e5149 | 1108 | dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache, |
cfc14b3a MK |
1109 | struct frame_id *this_id) |
1110 | { | |
1111 | struct dwarf2_frame_cache *cache = | |
4a4e5149 | 1112 | dwarf2_frame_cache (this_frame, this_cache); |
cfc14b3a | 1113 | |
0228dfb9 DJ |
1114 | if (cache->undefined_retaddr) |
1115 | return; | |
1116 | ||
4a4e5149 | 1117 | (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame)); |
93d42b30 DJ |
1118 | } |
1119 | ||
4a4e5149 DJ |
1120 | static struct value * |
1121 | dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache, | |
1122 | int regnum) | |
93d42b30 | 1123 | { |
4a4e5149 | 1124 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
93d42b30 | 1125 | struct dwarf2_frame_cache *cache = |
4a4e5149 DJ |
1126 | dwarf2_frame_cache (this_frame, this_cache); |
1127 | CORE_ADDR addr; | |
1128 | int realnum; | |
cfc14b3a MK |
1129 | |
1130 | switch (cache->reg[regnum].how) | |
1131 | { | |
05cbe71a | 1132 | case DWARF2_FRAME_REG_UNDEFINED: |
3e2c4033 | 1133 | /* If CFI explicitly specified that the value isn't defined, |
e4e9607c | 1134 | mark it as optimized away; the value isn't available. */ |
4a4e5149 | 1135 | return frame_unwind_got_optimized (this_frame, regnum); |
cfc14b3a | 1136 | |
05cbe71a | 1137 | case DWARF2_FRAME_REG_SAVED_OFFSET: |
4a4e5149 DJ |
1138 | addr = cache->cfa + cache->reg[regnum].loc.offset; |
1139 | return frame_unwind_got_memory (this_frame, regnum, addr); | |
cfc14b3a | 1140 | |
05cbe71a | 1141 | case DWARF2_FRAME_REG_SAVED_REG: |
4a4e5149 DJ |
1142 | realnum |
1143 | = gdbarch_dwarf2_reg_to_regnum (gdbarch, cache->reg[regnum].loc.reg); | |
1144 | return frame_unwind_got_register (this_frame, regnum, realnum); | |
cfc14b3a | 1145 | |
05cbe71a | 1146 | case DWARF2_FRAME_REG_SAVED_EXP: |
4a4e5149 DJ |
1147 | addr = execute_stack_op (cache->reg[regnum].loc.exp, |
1148 | cache->reg[regnum].exp_len, | |
ac56253d TT |
1149 | cache->addr_size, cache->text_offset, |
1150 | this_frame, cache->cfa, 1); | |
4a4e5149 | 1151 | return frame_unwind_got_memory (this_frame, regnum, addr); |
cfc14b3a | 1152 | |
46ea248b | 1153 | case DWARF2_FRAME_REG_SAVED_VAL_OFFSET: |
4a4e5149 DJ |
1154 | addr = cache->cfa + cache->reg[regnum].loc.offset; |
1155 | return frame_unwind_got_constant (this_frame, regnum, addr); | |
46ea248b AO |
1156 | |
1157 | case DWARF2_FRAME_REG_SAVED_VAL_EXP: | |
4a4e5149 DJ |
1158 | addr = execute_stack_op (cache->reg[regnum].loc.exp, |
1159 | cache->reg[regnum].exp_len, | |
ac56253d TT |
1160 | cache->addr_size, cache->text_offset, |
1161 | this_frame, cache->cfa, 1); | |
4a4e5149 | 1162 | return frame_unwind_got_constant (this_frame, regnum, addr); |
46ea248b | 1163 | |
05cbe71a | 1164 | case DWARF2_FRAME_REG_UNSPECIFIED: |
3e2c4033 AC |
1165 | /* GCC, in its infinite wisdom decided to not provide unwind |
1166 | information for registers that are "same value". Since | |
1167 | DWARF2 (3 draft 7) doesn't define such behavior, said | |
1168 | registers are actually undefined (which is different to CFI | |
1169 | "undefined"). Code above issues a complaint about this. | |
1170 | Here just fudge the books, assume GCC, and that the value is | |
1171 | more inner on the stack. */ | |
4a4e5149 | 1172 | return frame_unwind_got_register (this_frame, regnum, regnum); |
3e2c4033 | 1173 | |
05cbe71a | 1174 | case DWARF2_FRAME_REG_SAME_VALUE: |
4a4e5149 | 1175 | return frame_unwind_got_register (this_frame, regnum, regnum); |
cfc14b3a | 1176 | |
05cbe71a | 1177 | case DWARF2_FRAME_REG_CFA: |
4a4e5149 | 1178 | return frame_unwind_got_address (this_frame, regnum, cache->cfa); |
35889917 | 1179 | |
ea7963f0 | 1180 | case DWARF2_FRAME_REG_CFA_OFFSET: |
4a4e5149 DJ |
1181 | addr = cache->cfa + cache->reg[regnum].loc.offset; |
1182 | return frame_unwind_got_address (this_frame, regnum, addr); | |
ea7963f0 | 1183 | |
8d5a9abc | 1184 | case DWARF2_FRAME_REG_RA_OFFSET: |
4a4e5149 DJ |
1185 | addr = cache->reg[regnum].loc.offset; |
1186 | regnum = gdbarch_dwarf2_reg_to_regnum | |
1187 | (gdbarch, cache->retaddr_reg.loc.reg); | |
1188 | addr += get_frame_register_unsigned (this_frame, regnum); | |
1189 | return frame_unwind_got_address (this_frame, regnum, addr); | |
8d5a9abc | 1190 | |
b39cc962 DJ |
1191 | case DWARF2_FRAME_REG_FN: |
1192 | return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum); | |
1193 | ||
cfc14b3a | 1194 | default: |
e2e0b3e5 | 1195 | internal_error (__FILE__, __LINE__, _("Unknown register rule.")); |
cfc14b3a MK |
1196 | } |
1197 | } | |
1198 | ||
4a4e5149 DJ |
1199 | static int |
1200 | dwarf2_frame_sniffer (const struct frame_unwind *self, | |
1201 | struct frame_info *this_frame, void **this_cache) | |
cfc14b3a | 1202 | { |
1ce5d6dd | 1203 | /* Grab an address that is guarenteed to reside somewhere within the |
4a4e5149 | 1204 | function. get_frame_pc(), with a no-return next function, can |
93d42b30 DJ |
1205 | end up returning something past the end of this function's body. |
1206 | If the frame we're sniffing for is a signal frame whose start | |
1207 | address is placed on the stack by the OS, its FDE must | |
4a4e5149 DJ |
1208 | extend one byte before its start address or we could potentially |
1209 | select the FDE of the previous function. */ | |
1210 | CORE_ADDR block_addr = get_frame_address_in_block (this_frame); | |
ac56253d | 1211 | struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL); |
9a619af0 | 1212 | |
56c987f6 | 1213 | if (!fde) |
4a4e5149 | 1214 | return 0; |
3ed09a32 DJ |
1215 | |
1216 | /* On some targets, signal trampolines may have unwind information. | |
1217 | We need to recognize them so that we set the frame type | |
1218 | correctly. */ | |
1219 | ||
56c987f6 | 1220 | if (fde->cie->signal_frame |
4a4e5149 DJ |
1221 | || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame), |
1222 | this_frame)) | |
1223 | return self->type == SIGTRAMP_FRAME; | |
1224 | ||
1225 | return self->type != SIGTRAMP_FRAME; | |
1226 | } | |
1227 | ||
1228 | static const struct frame_unwind dwarf2_frame_unwind = | |
1229 | { | |
1230 | NORMAL_FRAME, | |
1231 | dwarf2_frame_this_id, | |
1232 | dwarf2_frame_prev_register, | |
1233 | NULL, | |
1234 | dwarf2_frame_sniffer | |
1235 | }; | |
1236 | ||
1237 | static const struct frame_unwind dwarf2_signal_frame_unwind = | |
1238 | { | |
1239 | SIGTRAMP_FRAME, | |
1240 | dwarf2_frame_this_id, | |
1241 | dwarf2_frame_prev_register, | |
1242 | NULL, | |
1243 | dwarf2_frame_sniffer | |
1244 | }; | |
cfc14b3a | 1245 | |
4a4e5149 DJ |
1246 | /* Append the DWARF-2 frame unwinders to GDBARCH's list. */ |
1247 | ||
1248 | void | |
1249 | dwarf2_append_unwinders (struct gdbarch *gdbarch) | |
1250 | { | |
1251 | frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind); | |
1252 | frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind); | |
cfc14b3a MK |
1253 | } |
1254 | \f | |
1255 | ||
1256 | /* There is no explicitly defined relationship between the CFA and the | |
1257 | location of frame's local variables and arguments/parameters. | |
1258 | Therefore, frame base methods on this page should probably only be | |
1259 | used as a last resort, just to avoid printing total garbage as a | |
1260 | response to the "info frame" command. */ | |
1261 | ||
1262 | static CORE_ADDR | |
4a4e5149 | 1263 | dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache) |
cfc14b3a MK |
1264 | { |
1265 | struct dwarf2_frame_cache *cache = | |
4a4e5149 | 1266 | dwarf2_frame_cache (this_frame, this_cache); |
cfc14b3a MK |
1267 | |
1268 | return cache->cfa; | |
1269 | } | |
1270 | ||
1271 | static const struct frame_base dwarf2_frame_base = | |
1272 | { | |
1273 | &dwarf2_frame_unwind, | |
1274 | dwarf2_frame_base_address, | |
1275 | dwarf2_frame_base_address, | |
1276 | dwarf2_frame_base_address | |
1277 | }; | |
1278 | ||
1279 | const struct frame_base * | |
4a4e5149 | 1280 | dwarf2_frame_base_sniffer (struct frame_info *this_frame) |
cfc14b3a | 1281 | { |
4a4e5149 | 1282 | CORE_ADDR block_addr = get_frame_address_in_block (this_frame); |
9a619af0 | 1283 | |
ac56253d | 1284 | if (dwarf2_frame_find_fde (&block_addr, NULL)) |
cfc14b3a MK |
1285 | return &dwarf2_frame_base; |
1286 | ||
1287 | return NULL; | |
1288 | } | |
e7802207 TT |
1289 | |
1290 | /* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from | |
1291 | the DWARF unwinder. This is used to implement | |
1292 | DW_OP_call_frame_cfa. */ | |
1293 | ||
1294 | CORE_ADDR | |
1295 | dwarf2_frame_cfa (struct frame_info *this_frame) | |
1296 | { | |
1297 | while (get_frame_type (this_frame) == INLINE_FRAME) | |
1298 | this_frame = get_prev_frame (this_frame); | |
1299 | /* This restriction could be lifted if other unwinders are known to | |
1300 | compute the frame base in a way compatible with the DWARF | |
1301 | unwinder. */ | |
1302 | if (! frame_unwinder_is (this_frame, &dwarf2_frame_unwind)) | |
1303 | error (_("can't compute CFA for this frame")); | |
1304 | return get_frame_base (this_frame); | |
1305 | } | |
cfc14b3a | 1306 | \f |
8f22cb90 | 1307 | const struct objfile_data *dwarf2_frame_objfile_data; |
0d0e1a63 | 1308 | |
cfc14b3a | 1309 | static unsigned int |
852483bc | 1310 | read_1_byte (bfd *abfd, gdb_byte *buf) |
cfc14b3a | 1311 | { |
852483bc | 1312 | return bfd_get_8 (abfd, buf); |
cfc14b3a MK |
1313 | } |
1314 | ||
1315 | static unsigned int | |
852483bc | 1316 | read_4_bytes (bfd *abfd, gdb_byte *buf) |
cfc14b3a | 1317 | { |
852483bc | 1318 | return bfd_get_32 (abfd, buf); |
cfc14b3a MK |
1319 | } |
1320 | ||
1321 | static ULONGEST | |
852483bc | 1322 | read_8_bytes (bfd *abfd, gdb_byte *buf) |
cfc14b3a | 1323 | { |
852483bc | 1324 | return bfd_get_64 (abfd, buf); |
cfc14b3a MK |
1325 | } |
1326 | ||
1327 | static ULONGEST | |
852483bc | 1328 | read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr) |
cfc14b3a MK |
1329 | { |
1330 | ULONGEST result; | |
1331 | unsigned int num_read; | |
1332 | int shift; | |
852483bc | 1333 | gdb_byte byte; |
cfc14b3a MK |
1334 | |
1335 | result = 0; | |
1336 | shift = 0; | |
1337 | num_read = 0; | |
1338 | ||
1339 | do | |
1340 | { | |
1341 | byte = bfd_get_8 (abfd, (bfd_byte *) buf); | |
1342 | buf++; | |
1343 | num_read++; | |
1344 | result |= ((byte & 0x7f) << shift); | |
1345 | shift += 7; | |
1346 | } | |
1347 | while (byte & 0x80); | |
1348 | ||
1349 | *bytes_read_ptr = num_read; | |
1350 | ||
1351 | return result; | |
1352 | } | |
1353 | ||
1354 | static LONGEST | |
852483bc | 1355 | read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr) |
cfc14b3a MK |
1356 | { |
1357 | LONGEST result; | |
1358 | int shift; | |
1359 | unsigned int num_read; | |
852483bc | 1360 | gdb_byte byte; |
cfc14b3a MK |
1361 | |
1362 | result = 0; | |
1363 | shift = 0; | |
1364 | num_read = 0; | |
1365 | ||
1366 | do | |
1367 | { | |
1368 | byte = bfd_get_8 (abfd, (bfd_byte *) buf); | |
1369 | buf++; | |
1370 | num_read++; | |
1371 | result |= ((byte & 0x7f) << shift); | |
1372 | shift += 7; | |
1373 | } | |
1374 | while (byte & 0x80); | |
1375 | ||
77e0b926 DJ |
1376 | if (shift < 8 * sizeof (result) && (byte & 0x40)) |
1377 | result |= -(((LONGEST)1) << shift); | |
cfc14b3a MK |
1378 | |
1379 | *bytes_read_ptr = num_read; | |
1380 | ||
1381 | return result; | |
1382 | } | |
1383 | ||
1384 | static ULONGEST | |
852483bc | 1385 | read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr) |
cfc14b3a MK |
1386 | { |
1387 | LONGEST result; | |
1388 | ||
852483bc | 1389 | result = bfd_get_32 (abfd, buf); |
cfc14b3a MK |
1390 | if (result == 0xffffffff) |
1391 | { | |
852483bc | 1392 | result = bfd_get_64 (abfd, buf + 4); |
cfc14b3a MK |
1393 | *bytes_read_ptr = 12; |
1394 | } | |
1395 | else | |
1396 | *bytes_read_ptr = 4; | |
1397 | ||
1398 | return result; | |
1399 | } | |
1400 | \f | |
1401 | ||
1402 | /* Pointer encoding helper functions. */ | |
1403 | ||
1404 | /* GCC supports exception handling based on DWARF2 CFI. However, for | |
1405 | technical reasons, it encodes addresses in its FDE's in a different | |
1406 | way. Several "pointer encodings" are supported. The encoding | |
1407 | that's used for a particular FDE is determined by the 'R' | |
1408 | augmentation in the associated CIE. The argument of this | |
1409 | augmentation is a single byte. | |
1410 | ||
1411 | The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a | |
1412 | LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether | |
1413 | the address is signed or unsigned. Bits 4, 5 and 6 encode how the | |
1414 | address should be interpreted (absolute, relative to the current | |
1415 | position in the FDE, ...). Bit 7, indicates that the address | |
1416 | should be dereferenced. */ | |
1417 | ||
852483bc | 1418 | static gdb_byte |
cfc14b3a MK |
1419 | encoding_for_size (unsigned int size) |
1420 | { | |
1421 | switch (size) | |
1422 | { | |
1423 | case 2: | |
1424 | return DW_EH_PE_udata2; | |
1425 | case 4: | |
1426 | return DW_EH_PE_udata4; | |
1427 | case 8: | |
1428 | return DW_EH_PE_udata8; | |
1429 | default: | |
e2e0b3e5 | 1430 | internal_error (__FILE__, __LINE__, _("Unsupported address size")); |
cfc14b3a MK |
1431 | } |
1432 | } | |
1433 | ||
cfc14b3a | 1434 | static CORE_ADDR |
852483bc | 1435 | read_encoded_value (struct comp_unit *unit, gdb_byte encoding, |
0d45f56e TT |
1436 | int ptr_len, const gdb_byte *buf, |
1437 | unsigned int *bytes_read_ptr, | |
ae0d2f24 | 1438 | CORE_ADDR func_base) |
cfc14b3a | 1439 | { |
68f6cf99 | 1440 | ptrdiff_t offset; |
cfc14b3a MK |
1441 | CORE_ADDR base; |
1442 | ||
1443 | /* GCC currently doesn't generate DW_EH_PE_indirect encodings for | |
1444 | FDE's. */ | |
1445 | if (encoding & DW_EH_PE_indirect) | |
1446 | internal_error (__FILE__, __LINE__, | |
e2e0b3e5 | 1447 | _("Unsupported encoding: DW_EH_PE_indirect")); |
cfc14b3a | 1448 | |
68f6cf99 MK |
1449 | *bytes_read_ptr = 0; |
1450 | ||
cfc14b3a MK |
1451 | switch (encoding & 0x70) |
1452 | { | |
1453 | case DW_EH_PE_absptr: | |
1454 | base = 0; | |
1455 | break; | |
1456 | case DW_EH_PE_pcrel: | |
f2fec864 | 1457 | base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section); |
852483bc | 1458 | base += (buf - unit->dwarf_frame_buffer); |
cfc14b3a | 1459 | break; |
0912c7f2 MK |
1460 | case DW_EH_PE_datarel: |
1461 | base = unit->dbase; | |
1462 | break; | |
0fd85043 CV |
1463 | case DW_EH_PE_textrel: |
1464 | base = unit->tbase; | |
1465 | break; | |
03ac2a74 | 1466 | case DW_EH_PE_funcrel: |
ae0d2f24 | 1467 | base = func_base; |
03ac2a74 | 1468 | break; |
68f6cf99 MK |
1469 | case DW_EH_PE_aligned: |
1470 | base = 0; | |
852483bc | 1471 | offset = buf - unit->dwarf_frame_buffer; |
68f6cf99 MK |
1472 | if ((offset % ptr_len) != 0) |
1473 | { | |
1474 | *bytes_read_ptr = ptr_len - (offset % ptr_len); | |
1475 | buf += *bytes_read_ptr; | |
1476 | } | |
1477 | break; | |
cfc14b3a | 1478 | default: |
e2e0b3e5 | 1479 | internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding")); |
cfc14b3a MK |
1480 | } |
1481 | ||
b04de778 | 1482 | if ((encoding & 0x07) == 0x00) |
f2fec864 DJ |
1483 | { |
1484 | encoding |= encoding_for_size (ptr_len); | |
1485 | if (bfd_get_sign_extend_vma (unit->abfd)) | |
1486 | encoding |= DW_EH_PE_signed; | |
1487 | } | |
cfc14b3a MK |
1488 | |
1489 | switch (encoding & 0x0f) | |
1490 | { | |
a81b10ae MK |
1491 | case DW_EH_PE_uleb128: |
1492 | { | |
1493 | ULONGEST value; | |
0d45f56e | 1494 | const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7; |
9a619af0 | 1495 | |
a7289609 | 1496 | *bytes_read_ptr += read_uleb128 (buf, end_buf, &value) - buf; |
a81b10ae MK |
1497 | return base + value; |
1498 | } | |
cfc14b3a | 1499 | case DW_EH_PE_udata2: |
68f6cf99 | 1500 | *bytes_read_ptr += 2; |
cfc14b3a MK |
1501 | return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf)); |
1502 | case DW_EH_PE_udata4: | |
68f6cf99 | 1503 | *bytes_read_ptr += 4; |
cfc14b3a MK |
1504 | return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf)); |
1505 | case DW_EH_PE_udata8: | |
68f6cf99 | 1506 | *bytes_read_ptr += 8; |
cfc14b3a | 1507 | return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf)); |
a81b10ae MK |
1508 | case DW_EH_PE_sleb128: |
1509 | { | |
1510 | LONGEST value; | |
0d45f56e | 1511 | const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7; |
9a619af0 | 1512 | |
a7289609 | 1513 | *bytes_read_ptr += read_sleb128 (buf, end_buf, &value) - buf; |
a81b10ae MK |
1514 | return base + value; |
1515 | } | |
cfc14b3a | 1516 | case DW_EH_PE_sdata2: |
68f6cf99 | 1517 | *bytes_read_ptr += 2; |
cfc14b3a MK |
1518 | return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf)); |
1519 | case DW_EH_PE_sdata4: | |
68f6cf99 | 1520 | *bytes_read_ptr += 4; |
cfc14b3a MK |
1521 | return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf)); |
1522 | case DW_EH_PE_sdata8: | |
68f6cf99 | 1523 | *bytes_read_ptr += 8; |
cfc14b3a MK |
1524 | return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf)); |
1525 | default: | |
e2e0b3e5 | 1526 | internal_error (__FILE__, __LINE__, _("Invalid or unsupported encoding")); |
cfc14b3a MK |
1527 | } |
1528 | } | |
1529 | \f | |
1530 | ||
b01c8410 PP |
1531 | static int |
1532 | bsearch_cie_cmp (const void *key, const void *element) | |
cfc14b3a | 1533 | { |
b01c8410 PP |
1534 | ULONGEST cie_pointer = *(ULONGEST *) key; |
1535 | struct dwarf2_cie *cie = *(struct dwarf2_cie **) element; | |
cfc14b3a | 1536 | |
b01c8410 PP |
1537 | if (cie_pointer == cie->cie_pointer) |
1538 | return 0; | |
cfc14b3a | 1539 | |
b01c8410 PP |
1540 | return (cie_pointer < cie->cie_pointer) ? -1 : 1; |
1541 | } | |
1542 | ||
1543 | /* Find CIE with the given CIE_POINTER in CIE_TABLE. */ | |
1544 | static struct dwarf2_cie * | |
1545 | find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer) | |
1546 | { | |
1547 | struct dwarf2_cie **p_cie; | |
cfc14b3a | 1548 | |
65a97ab3 PP |
1549 | /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to |
1550 | bsearch be non-NULL. */ | |
1551 | if (cie_table->entries == NULL) | |
1552 | { | |
1553 | gdb_assert (cie_table->num_entries == 0); | |
1554 | return NULL; | |
1555 | } | |
1556 | ||
b01c8410 PP |
1557 | p_cie = bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries, |
1558 | sizeof (cie_table->entries[0]), bsearch_cie_cmp); | |
1559 | if (p_cie != NULL) | |
1560 | return *p_cie; | |
cfc14b3a MK |
1561 | return NULL; |
1562 | } | |
1563 | ||
b01c8410 | 1564 | /* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */ |
cfc14b3a | 1565 | static void |
b01c8410 | 1566 | add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie) |
cfc14b3a | 1567 | { |
b01c8410 PP |
1568 | const int n = cie_table->num_entries; |
1569 | ||
1570 | gdb_assert (n < 1 | |
1571 | || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer); | |
1572 | ||
1573 | cie_table->entries = | |
1574 | xrealloc (cie_table->entries, (n + 1) * sizeof (cie_table->entries[0])); | |
1575 | cie_table->entries[n] = cie; | |
1576 | cie_table->num_entries = n + 1; | |
1577 | } | |
1578 | ||
1579 | static int | |
1580 | bsearch_fde_cmp (const void *key, const void *element) | |
1581 | { | |
1582 | CORE_ADDR seek_pc = *(CORE_ADDR *) key; | |
1583 | struct dwarf2_fde *fde = *(struct dwarf2_fde **) element; | |
9a619af0 | 1584 | |
b01c8410 PP |
1585 | if (seek_pc < fde->initial_location) |
1586 | return -1; | |
1587 | if (seek_pc < fde->initial_location + fde->address_range) | |
1588 | return 0; | |
1589 | return 1; | |
cfc14b3a MK |
1590 | } |
1591 | ||
1592 | /* Find the FDE for *PC. Return a pointer to the FDE, and store the | |
1593 | inital location associated with it into *PC. */ | |
1594 | ||
1595 | static struct dwarf2_fde * | |
ac56253d | 1596 | dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset) |
cfc14b3a MK |
1597 | { |
1598 | struct objfile *objfile; | |
1599 | ||
1600 | ALL_OBJFILES (objfile) | |
1601 | { | |
b01c8410 PP |
1602 | struct dwarf2_fde_table *fde_table; |
1603 | struct dwarf2_fde **p_fde; | |
cfc14b3a | 1604 | CORE_ADDR offset; |
b01c8410 | 1605 | CORE_ADDR seek_pc; |
cfc14b3a | 1606 | |
b01c8410 PP |
1607 | fde_table = objfile_data (objfile, dwarf2_frame_objfile_data); |
1608 | if (fde_table == NULL) | |
be391dca TT |
1609 | { |
1610 | dwarf2_build_frame_info (objfile); | |
1611 | fde_table = objfile_data (objfile, dwarf2_frame_objfile_data); | |
1612 | } | |
1613 | gdb_assert (fde_table != NULL); | |
1614 | ||
1615 | if (fde_table->num_entries == 0) | |
4ae9ee8e DJ |
1616 | continue; |
1617 | ||
1618 | gdb_assert (objfile->section_offsets); | |
1619 | offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); | |
1620 | ||
b01c8410 PP |
1621 | gdb_assert (fde_table->num_entries > 0); |
1622 | if (*pc < offset + fde_table->entries[0]->initial_location) | |
1623 | continue; | |
1624 | ||
1625 | seek_pc = *pc - offset; | |
1626 | p_fde = bsearch (&seek_pc, fde_table->entries, fde_table->num_entries, | |
1627 | sizeof (fde_table->entries[0]), bsearch_fde_cmp); | |
1628 | if (p_fde != NULL) | |
1629 | { | |
1630 | *pc = (*p_fde)->initial_location + offset; | |
ac56253d TT |
1631 | if (out_offset) |
1632 | *out_offset = offset; | |
b01c8410 PP |
1633 | return *p_fde; |
1634 | } | |
cfc14b3a | 1635 | } |
cfc14b3a MK |
1636 | return NULL; |
1637 | } | |
1638 | ||
b01c8410 | 1639 | /* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */ |
cfc14b3a | 1640 | static void |
b01c8410 | 1641 | add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde) |
cfc14b3a | 1642 | { |
b01c8410 PP |
1643 | if (fde->address_range == 0) |
1644 | /* Discard useless FDEs. */ | |
1645 | return; | |
1646 | ||
1647 | fde_table->num_entries += 1; | |
1648 | fde_table->entries = | |
1649 | xrealloc (fde_table->entries, | |
1650 | fde_table->num_entries * sizeof (fde_table->entries[0])); | |
1651 | fde_table->entries[fde_table->num_entries - 1] = fde; | |
cfc14b3a MK |
1652 | } |
1653 | ||
1654 | #ifdef CC_HAS_LONG_LONG | |
1655 | #define DW64_CIE_ID 0xffffffffffffffffULL | |
1656 | #else | |
1657 | #define DW64_CIE_ID ~0 | |
1658 | #endif | |
1659 | ||
852483bc | 1660 | static gdb_byte *decode_frame_entry (struct comp_unit *unit, gdb_byte *start, |
b01c8410 PP |
1661 | int eh_frame_p, |
1662 | struct dwarf2_cie_table *cie_table, | |
1663 | struct dwarf2_fde_table *fde_table); | |
cfc14b3a | 1664 | |
6896c0c7 RH |
1665 | /* Decode the next CIE or FDE. Return NULL if invalid input, otherwise |
1666 | the next byte to be processed. */ | |
852483bc | 1667 | static gdb_byte * |
b01c8410 PP |
1668 | decode_frame_entry_1 (struct comp_unit *unit, gdb_byte *start, int eh_frame_p, |
1669 | struct dwarf2_cie_table *cie_table, | |
1670 | struct dwarf2_fde_table *fde_table) | |
cfc14b3a | 1671 | { |
5e2b427d | 1672 | struct gdbarch *gdbarch = get_objfile_arch (unit->objfile); |
852483bc | 1673 | gdb_byte *buf, *end; |
cfc14b3a MK |
1674 | LONGEST length; |
1675 | unsigned int bytes_read; | |
6896c0c7 RH |
1676 | int dwarf64_p; |
1677 | ULONGEST cie_id; | |
cfc14b3a | 1678 | ULONGEST cie_pointer; |
cfc14b3a | 1679 | |
6896c0c7 | 1680 | buf = start; |
cfc14b3a MK |
1681 | length = read_initial_length (unit->abfd, buf, &bytes_read); |
1682 | buf += bytes_read; | |
1683 | end = buf + length; | |
1684 | ||
6896c0c7 RH |
1685 | /* Are we still within the section? */ |
1686 | if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size) | |
1687 | return NULL; | |
1688 | ||
cfc14b3a MK |
1689 | if (length == 0) |
1690 | return end; | |
1691 | ||
6896c0c7 RH |
1692 | /* Distinguish between 32 and 64-bit encoded frame info. */ |
1693 | dwarf64_p = (bytes_read == 12); | |
cfc14b3a | 1694 | |
6896c0c7 | 1695 | /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */ |
cfc14b3a MK |
1696 | if (eh_frame_p) |
1697 | cie_id = 0; | |
1698 | else if (dwarf64_p) | |
1699 | cie_id = DW64_CIE_ID; | |
6896c0c7 RH |
1700 | else |
1701 | cie_id = DW_CIE_ID; | |
cfc14b3a MK |
1702 | |
1703 | if (dwarf64_p) | |
1704 | { | |
1705 | cie_pointer = read_8_bytes (unit->abfd, buf); | |
1706 | buf += 8; | |
1707 | } | |
1708 | else | |
1709 | { | |
1710 | cie_pointer = read_4_bytes (unit->abfd, buf); | |
1711 | buf += 4; | |
1712 | } | |
1713 | ||
1714 | if (cie_pointer == cie_id) | |
1715 | { | |
1716 | /* This is a CIE. */ | |
1717 | struct dwarf2_cie *cie; | |
1718 | char *augmentation; | |
28ba0b33 | 1719 | unsigned int cie_version; |
cfc14b3a MK |
1720 | |
1721 | /* Record the offset into the .debug_frame section of this CIE. */ | |
1722 | cie_pointer = start - unit->dwarf_frame_buffer; | |
1723 | ||
1724 | /* Check whether we've already read it. */ | |
b01c8410 | 1725 | if (find_cie (cie_table, cie_pointer)) |
cfc14b3a MK |
1726 | return end; |
1727 | ||
1728 | cie = (struct dwarf2_cie *) | |
8b92e4d5 | 1729 | obstack_alloc (&unit->objfile->objfile_obstack, |
cfc14b3a MK |
1730 | sizeof (struct dwarf2_cie)); |
1731 | cie->initial_instructions = NULL; | |
1732 | cie->cie_pointer = cie_pointer; | |
1733 | ||
1734 | /* The encoding for FDE's in a normal .debug_frame section | |
32b05c07 MK |
1735 | depends on the target address size. */ |
1736 | cie->encoding = DW_EH_PE_absptr; | |
cfc14b3a | 1737 | |
56c987f6 AO |
1738 | /* We'll determine the final value later, but we need to |
1739 | initialize it conservatively. */ | |
1740 | cie->signal_frame = 0; | |
1741 | ||
cfc14b3a | 1742 | /* Check version number. */ |
28ba0b33 | 1743 | cie_version = read_1_byte (unit->abfd, buf); |
2dc7f7b3 | 1744 | if (cie_version != 1 && cie_version != 3 && cie_version != 4) |
6896c0c7 | 1745 | return NULL; |
303b6f5d | 1746 | cie->version = cie_version; |
cfc14b3a MK |
1747 | buf += 1; |
1748 | ||
1749 | /* Interpret the interesting bits of the augmentation. */ | |
303b6f5d | 1750 | cie->augmentation = augmentation = (char *) buf; |
852483bc | 1751 | buf += (strlen (augmentation) + 1); |
cfc14b3a | 1752 | |
303b6f5d DJ |
1753 | /* Ignore armcc augmentations. We only use them for quirks, |
1754 | and that doesn't happen until later. */ | |
1755 | if (strncmp (augmentation, "armcc", 5) == 0) | |
1756 | augmentation += strlen (augmentation); | |
1757 | ||
cfc14b3a MK |
1758 | /* The GCC 2.x "eh" augmentation has a pointer immediately |
1759 | following the augmentation string, so it must be handled | |
1760 | first. */ | |
1761 | if (augmentation[0] == 'e' && augmentation[1] == 'h') | |
1762 | { | |
1763 | /* Skip. */ | |
5e2b427d | 1764 | buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT; |
cfc14b3a MK |
1765 | augmentation += 2; |
1766 | } | |
1767 | ||
2dc7f7b3 TT |
1768 | if (cie->version >= 4) |
1769 | { | |
1770 | /* FIXME: check that this is the same as from the CU header. */ | |
1771 | cie->addr_size = read_1_byte (unit->abfd, buf); | |
1772 | ++buf; | |
1773 | cie->segment_size = read_1_byte (unit->abfd, buf); | |
1774 | ++buf; | |
1775 | } | |
1776 | else | |
1777 | { | |
8da614df | 1778 | cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch); |
2dc7f7b3 TT |
1779 | cie->segment_size = 0; |
1780 | } | |
8da614df CV |
1781 | /* Address values in .eh_frame sections are defined to have the |
1782 | target's pointer size. Watchout: This breaks frame info for | |
1783 | targets with pointer size < address size, unless a .debug_frame | |
1784 | section exists as well. */ | |
1785 | if (eh_frame_p) | |
1786 | cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT; | |
1787 | else | |
1788 | cie->ptr_size = cie->addr_size; | |
2dc7f7b3 | 1789 | |
cfc14b3a MK |
1790 | cie->code_alignment_factor = |
1791 | read_unsigned_leb128 (unit->abfd, buf, &bytes_read); | |
1792 | buf += bytes_read; | |
1793 | ||
1794 | cie->data_alignment_factor = | |
1795 | read_signed_leb128 (unit->abfd, buf, &bytes_read); | |
1796 | buf += bytes_read; | |
1797 | ||
28ba0b33 PB |
1798 | if (cie_version == 1) |
1799 | { | |
1800 | cie->return_address_register = read_1_byte (unit->abfd, buf); | |
1801 | bytes_read = 1; | |
1802 | } | |
1803 | else | |
1804 | cie->return_address_register = read_unsigned_leb128 (unit->abfd, buf, | |
1805 | &bytes_read); | |
4fc771b8 | 1806 | cie->return_address_register |
5e2b427d | 1807 | = dwarf2_frame_adjust_regnum (gdbarch, |
4fc771b8 DJ |
1808 | cie->return_address_register, |
1809 | eh_frame_p); | |
4bf8967c | 1810 | |
28ba0b33 | 1811 | buf += bytes_read; |
cfc14b3a | 1812 | |
7131cb6e RH |
1813 | cie->saw_z_augmentation = (*augmentation == 'z'); |
1814 | if (cie->saw_z_augmentation) | |
cfc14b3a MK |
1815 | { |
1816 | ULONGEST length; | |
1817 | ||
1818 | length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read); | |
1819 | buf += bytes_read; | |
6896c0c7 RH |
1820 | if (buf > end) |
1821 | return NULL; | |
cfc14b3a MK |
1822 | cie->initial_instructions = buf + length; |
1823 | augmentation++; | |
1824 | } | |
1825 | ||
1826 | while (*augmentation) | |
1827 | { | |
1828 | /* "L" indicates a byte showing how the LSDA pointer is encoded. */ | |
1829 | if (*augmentation == 'L') | |
1830 | { | |
1831 | /* Skip. */ | |
1832 | buf++; | |
1833 | augmentation++; | |
1834 | } | |
1835 | ||
1836 | /* "R" indicates a byte indicating how FDE addresses are encoded. */ | |
1837 | else if (*augmentation == 'R') | |
1838 | { | |
1839 | cie->encoding = *buf++; | |
1840 | augmentation++; | |
1841 | } | |
1842 | ||
1843 | /* "P" indicates a personality routine in the CIE augmentation. */ | |
1844 | else if (*augmentation == 'P') | |
1845 | { | |
1234d960 | 1846 | /* Skip. Avoid indirection since we throw away the result. */ |
852483bc | 1847 | gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect; |
8da614df | 1848 | read_encoded_value (unit, encoding, cie->ptr_size, |
ae0d2f24 | 1849 | buf, &bytes_read, 0); |
f724bf08 | 1850 | buf += bytes_read; |
cfc14b3a MK |
1851 | augmentation++; |
1852 | } | |
1853 | ||
56c987f6 AO |
1854 | /* "S" indicates a signal frame, such that the return |
1855 | address must not be decremented to locate the call frame | |
1856 | info for the previous frame; it might even be the first | |
1857 | instruction of a function, so decrementing it would take | |
1858 | us to a different function. */ | |
1859 | else if (*augmentation == 'S') | |
1860 | { | |
1861 | cie->signal_frame = 1; | |
1862 | augmentation++; | |
1863 | } | |
1864 | ||
3e9a2e52 DJ |
1865 | /* Otherwise we have an unknown augmentation. Assume that either |
1866 | there is no augmentation data, or we saw a 'z' prefix. */ | |
cfc14b3a MK |
1867 | else |
1868 | { | |
3e9a2e52 DJ |
1869 | if (cie->initial_instructions) |
1870 | buf = cie->initial_instructions; | |
cfc14b3a MK |
1871 | break; |
1872 | } | |
1873 | } | |
1874 | ||
1875 | cie->initial_instructions = buf; | |
1876 | cie->end = end; | |
b01c8410 | 1877 | cie->unit = unit; |
cfc14b3a | 1878 | |
b01c8410 | 1879 | add_cie (cie_table, cie); |
cfc14b3a MK |
1880 | } |
1881 | else | |
1882 | { | |
1883 | /* This is a FDE. */ | |
1884 | struct dwarf2_fde *fde; | |
1885 | ||
6896c0c7 RH |
1886 | /* In an .eh_frame section, the CIE pointer is the delta between the |
1887 | address within the FDE where the CIE pointer is stored and the | |
1888 | address of the CIE. Convert it to an offset into the .eh_frame | |
1889 | section. */ | |
cfc14b3a MK |
1890 | if (eh_frame_p) |
1891 | { | |
cfc14b3a MK |
1892 | cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer; |
1893 | cie_pointer -= (dwarf64_p ? 8 : 4); | |
1894 | } | |
1895 | ||
6896c0c7 RH |
1896 | /* In either case, validate the result is still within the section. */ |
1897 | if (cie_pointer >= unit->dwarf_frame_size) | |
1898 | return NULL; | |
1899 | ||
cfc14b3a | 1900 | fde = (struct dwarf2_fde *) |
8b92e4d5 | 1901 | obstack_alloc (&unit->objfile->objfile_obstack, |
cfc14b3a | 1902 | sizeof (struct dwarf2_fde)); |
b01c8410 | 1903 | fde->cie = find_cie (cie_table, cie_pointer); |
cfc14b3a MK |
1904 | if (fde->cie == NULL) |
1905 | { | |
1906 | decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer, | |
b01c8410 PP |
1907 | eh_frame_p, cie_table, fde_table); |
1908 | fde->cie = find_cie (cie_table, cie_pointer); | |
cfc14b3a MK |
1909 | } |
1910 | ||
1911 | gdb_assert (fde->cie != NULL); | |
1912 | ||
1913 | fde->initial_location = | |
8da614df | 1914 | read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size, |
ae0d2f24 | 1915 | buf, &bytes_read, 0); |
cfc14b3a MK |
1916 | buf += bytes_read; |
1917 | ||
1918 | fde->address_range = | |
ae0d2f24 | 1919 | read_encoded_value (unit, fde->cie->encoding & 0x0f, |
8da614df | 1920 | fde->cie->ptr_size, buf, &bytes_read, 0); |
cfc14b3a MK |
1921 | buf += bytes_read; |
1922 | ||
7131cb6e RH |
1923 | /* A 'z' augmentation in the CIE implies the presence of an |
1924 | augmentation field in the FDE as well. The only thing known | |
1925 | to be in here at present is the LSDA entry for EH. So we | |
1926 | can skip the whole thing. */ | |
1927 | if (fde->cie->saw_z_augmentation) | |
1928 | { | |
1929 | ULONGEST length; | |
1930 | ||
1931 | length = read_unsigned_leb128 (unit->abfd, buf, &bytes_read); | |
1932 | buf += bytes_read + length; | |
6896c0c7 RH |
1933 | if (buf > end) |
1934 | return NULL; | |
7131cb6e RH |
1935 | } |
1936 | ||
cfc14b3a MK |
1937 | fde->instructions = buf; |
1938 | fde->end = end; | |
1939 | ||
4bf8967c AS |
1940 | fde->eh_frame_p = eh_frame_p; |
1941 | ||
b01c8410 | 1942 | add_fde (fde_table, fde); |
cfc14b3a MK |
1943 | } |
1944 | ||
1945 | return end; | |
1946 | } | |
6896c0c7 RH |
1947 | |
1948 | /* Read a CIE or FDE in BUF and decode it. */ | |
852483bc | 1949 | static gdb_byte * |
b01c8410 PP |
1950 | decode_frame_entry (struct comp_unit *unit, gdb_byte *start, int eh_frame_p, |
1951 | struct dwarf2_cie_table *cie_table, | |
1952 | struct dwarf2_fde_table *fde_table) | |
6896c0c7 RH |
1953 | { |
1954 | enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE; | |
852483bc | 1955 | gdb_byte *ret; |
6896c0c7 RH |
1956 | ptrdiff_t start_offset; |
1957 | ||
1958 | while (1) | |
1959 | { | |
b01c8410 PP |
1960 | ret = decode_frame_entry_1 (unit, start, eh_frame_p, |
1961 | cie_table, fde_table); | |
6896c0c7 RH |
1962 | if (ret != NULL) |
1963 | break; | |
1964 | ||
1965 | /* We have corrupt input data of some form. */ | |
1966 | ||
1967 | /* ??? Try, weakly, to work around compiler/assembler/linker bugs | |
1968 | and mismatches wrt padding and alignment of debug sections. */ | |
1969 | /* Note that there is no requirement in the standard for any | |
1970 | alignment at all in the frame unwind sections. Testing for | |
1971 | alignment before trying to interpret data would be incorrect. | |
1972 | ||
1973 | However, GCC traditionally arranged for frame sections to be | |
1974 | sized such that the FDE length and CIE fields happen to be | |
1975 | aligned (in theory, for performance). This, unfortunately, | |
1976 | was done with .align directives, which had the side effect of | |
1977 | forcing the section to be aligned by the linker. | |
1978 | ||
1979 | This becomes a problem when you have some other producer that | |
1980 | creates frame sections that are not as strictly aligned. That | |
1981 | produces a hole in the frame info that gets filled by the | |
1982 | linker with zeros. | |
1983 | ||
1984 | The GCC behaviour is arguably a bug, but it's effectively now | |
1985 | part of the ABI, so we're now stuck with it, at least at the | |
1986 | object file level. A smart linker may decide, in the process | |
1987 | of compressing duplicate CIE information, that it can rewrite | |
1988 | the entire output section without this extra padding. */ | |
1989 | ||
1990 | start_offset = start - unit->dwarf_frame_buffer; | |
1991 | if (workaround < ALIGN4 && (start_offset & 3) != 0) | |
1992 | { | |
1993 | start += 4 - (start_offset & 3); | |
1994 | workaround = ALIGN4; | |
1995 | continue; | |
1996 | } | |
1997 | if (workaround < ALIGN8 && (start_offset & 7) != 0) | |
1998 | { | |
1999 | start += 8 - (start_offset & 7); | |
2000 | workaround = ALIGN8; | |
2001 | continue; | |
2002 | } | |
2003 | ||
2004 | /* Nothing left to try. Arrange to return as if we've consumed | |
2005 | the entire input section. Hopefully we'll get valid info from | |
2006 | the other of .debug_frame/.eh_frame. */ | |
2007 | workaround = FAIL; | |
2008 | ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size; | |
2009 | break; | |
2010 | } | |
2011 | ||
2012 | switch (workaround) | |
2013 | { | |
2014 | case NONE: | |
2015 | break; | |
2016 | ||
2017 | case ALIGN4: | |
2018 | complaint (&symfile_complaints, | |
e2e0b3e5 | 2019 | _("Corrupt data in %s:%s; align 4 workaround apparently succeeded"), |
6896c0c7 RH |
2020 | unit->dwarf_frame_section->owner->filename, |
2021 | unit->dwarf_frame_section->name); | |
2022 | break; | |
2023 | ||
2024 | case ALIGN8: | |
2025 | complaint (&symfile_complaints, | |
e2e0b3e5 | 2026 | _("Corrupt data in %s:%s; align 8 workaround apparently succeeded"), |
6896c0c7 RH |
2027 | unit->dwarf_frame_section->owner->filename, |
2028 | unit->dwarf_frame_section->name); | |
2029 | break; | |
2030 | ||
2031 | default: | |
2032 | complaint (&symfile_complaints, | |
e2e0b3e5 | 2033 | _("Corrupt data in %s:%s"), |
6896c0c7 RH |
2034 | unit->dwarf_frame_section->owner->filename, |
2035 | unit->dwarf_frame_section->name); | |
2036 | break; | |
2037 | } | |
2038 | ||
2039 | return ret; | |
2040 | } | |
cfc14b3a MK |
2041 | \f |
2042 | ||
cfc14b3a | 2043 | /* Imported from dwarf2read.c. */ |
dce234bc PP |
2044 | extern void dwarf2_get_section_info (struct objfile *, const char *, asection **, |
2045 | gdb_byte **, bfd_size_type *); | |
cfc14b3a | 2046 | |
b01c8410 PP |
2047 | static int |
2048 | qsort_fde_cmp (const void *a, const void *b) | |
2049 | { | |
2050 | struct dwarf2_fde *aa = *(struct dwarf2_fde **)a; | |
2051 | struct dwarf2_fde *bb = *(struct dwarf2_fde **)b; | |
e5af178f | 2052 | |
b01c8410 | 2053 | if (aa->initial_location == bb->initial_location) |
e5af178f PP |
2054 | { |
2055 | if (aa->address_range != bb->address_range | |
2056 | && aa->eh_frame_p == 0 && bb->eh_frame_p == 0) | |
2057 | /* Linker bug, e.g. gold/10400. | |
2058 | Work around it by keeping stable sort order. */ | |
2059 | return (a < b) ? -1 : 1; | |
2060 | else | |
2061 | /* Put eh_frame entries after debug_frame ones. */ | |
2062 | return aa->eh_frame_p - bb->eh_frame_p; | |
2063 | } | |
b01c8410 PP |
2064 | |
2065 | return (aa->initial_location < bb->initial_location) ? -1 : 1; | |
2066 | } | |
2067 | ||
cfc14b3a MK |
2068 | void |
2069 | dwarf2_build_frame_info (struct objfile *objfile) | |
2070 | { | |
ae0d2f24 | 2071 | struct comp_unit *unit; |
852483bc | 2072 | gdb_byte *frame_ptr; |
b01c8410 PP |
2073 | struct dwarf2_cie_table cie_table; |
2074 | struct dwarf2_fde_table fde_table; | |
be391dca | 2075 | struct dwarf2_fde_table *fde_table2; |
b01c8410 PP |
2076 | |
2077 | cie_table.num_entries = 0; | |
2078 | cie_table.entries = NULL; | |
2079 | ||
2080 | fde_table.num_entries = 0; | |
2081 | fde_table.entries = NULL; | |
cfc14b3a MK |
2082 | |
2083 | /* Build a minimal decoding of the DWARF2 compilation unit. */ | |
ae0d2f24 UW |
2084 | unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack, |
2085 | sizeof (struct comp_unit)); | |
2086 | unit->abfd = objfile->obfd; | |
2087 | unit->objfile = objfile; | |
2088 | unit->dbase = 0; | |
2089 | unit->tbase = 0; | |
cfc14b3a | 2090 | |
dce234bc PP |
2091 | dwarf2_get_section_info (objfile, ".eh_frame", |
2092 | &unit->dwarf_frame_section, | |
2093 | &unit->dwarf_frame_buffer, | |
2094 | &unit->dwarf_frame_size); | |
2095 | if (unit->dwarf_frame_size) | |
cfc14b3a | 2096 | { |
0fd85043 | 2097 | asection *got, *txt; |
0912c7f2 | 2098 | |
0912c7f2 | 2099 | /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base |
37b517aa MK |
2100 | that is used for the i386/amd64 target, which currently is |
2101 | the only target in GCC that supports/uses the | |
2102 | DW_EH_PE_datarel encoding. */ | |
ae0d2f24 | 2103 | got = bfd_get_section_by_name (unit->abfd, ".got"); |
0912c7f2 | 2104 | if (got) |
ae0d2f24 | 2105 | unit->dbase = got->vma; |
0912c7f2 | 2106 | |
22c7ba1a MK |
2107 | /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64 |
2108 | so far. */ | |
ae0d2f24 | 2109 | txt = bfd_get_section_by_name (unit->abfd, ".text"); |
0fd85043 | 2110 | if (txt) |
ae0d2f24 | 2111 | unit->tbase = txt->vma; |
0fd85043 | 2112 | |
ae0d2f24 UW |
2113 | frame_ptr = unit->dwarf_frame_buffer; |
2114 | while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size) | |
b01c8410 PP |
2115 | frame_ptr = decode_frame_entry (unit, frame_ptr, 1, |
2116 | &cie_table, &fde_table); | |
2117 | ||
2118 | if (cie_table.num_entries != 0) | |
2119 | { | |
2120 | /* Reinit cie_table: debug_frame has different CIEs. */ | |
2121 | xfree (cie_table.entries); | |
2122 | cie_table.num_entries = 0; | |
2123 | cie_table.entries = NULL; | |
2124 | } | |
cfc14b3a MK |
2125 | } |
2126 | ||
dce234bc PP |
2127 | dwarf2_get_section_info (objfile, ".debug_frame", |
2128 | &unit->dwarf_frame_section, | |
2129 | &unit->dwarf_frame_buffer, | |
2130 | &unit->dwarf_frame_size); | |
2131 | if (unit->dwarf_frame_size) | |
cfc14b3a | 2132 | { |
ae0d2f24 UW |
2133 | frame_ptr = unit->dwarf_frame_buffer; |
2134 | while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size) | |
b01c8410 PP |
2135 | frame_ptr = decode_frame_entry (unit, frame_ptr, 0, |
2136 | &cie_table, &fde_table); | |
2137 | } | |
2138 | ||
2139 | /* Discard the cie_table, it is no longer needed. */ | |
2140 | if (cie_table.num_entries != 0) | |
2141 | { | |
2142 | xfree (cie_table.entries); | |
2143 | cie_table.entries = NULL; /* Paranoia. */ | |
2144 | cie_table.num_entries = 0; /* Paranoia. */ | |
2145 | } | |
2146 | ||
be391dca TT |
2147 | /* Copy fde_table to obstack: it is needed at runtime. */ |
2148 | fde_table2 = (struct dwarf2_fde_table *) | |
2149 | obstack_alloc (&objfile->objfile_obstack, sizeof (*fde_table2)); | |
2150 | ||
2151 | if (fde_table.num_entries == 0) | |
2152 | { | |
2153 | fde_table2->entries = NULL; | |
2154 | fde_table2->num_entries = 0; | |
2155 | } | |
2156 | else | |
b01c8410 | 2157 | { |
875cdfbb PA |
2158 | struct dwarf2_fde *fde_prev = NULL; |
2159 | struct dwarf2_fde *first_non_zero_fde = NULL; | |
2160 | int i; | |
b01c8410 PP |
2161 | |
2162 | /* Prepare FDE table for lookups. */ | |
2163 | qsort (fde_table.entries, fde_table.num_entries, | |
2164 | sizeof (fde_table.entries[0]), qsort_fde_cmp); | |
2165 | ||
875cdfbb PA |
2166 | /* Check for leftovers from --gc-sections. The GNU linker sets |
2167 | the relevant symbols to zero, but doesn't zero the FDE *end* | |
2168 | ranges because there's no relocation there. It's (offset, | |
2169 | length), not (start, end). On targets where address zero is | |
2170 | just another valid address this can be a problem, since the | |
2171 | FDEs appear to be non-empty in the output --- we could pick | |
2172 | out the wrong FDE. To work around this, when overlaps are | |
2173 | detected, we prefer FDEs that do not start at zero. | |
2174 | ||
2175 | Start by finding the first FDE with non-zero start. Below | |
2176 | we'll discard all FDEs that start at zero and overlap this | |
2177 | one. */ | |
2178 | for (i = 0; i < fde_table.num_entries; i++) | |
2179 | { | |
2180 | struct dwarf2_fde *fde = fde_table.entries[i]; | |
b01c8410 | 2181 | |
875cdfbb PA |
2182 | if (fde->initial_location != 0) |
2183 | { | |
2184 | first_non_zero_fde = fde; | |
2185 | break; | |
2186 | } | |
2187 | } | |
2188 | ||
2189 | /* Since we'll be doing bsearch, squeeze out identical (except | |
2190 | for eh_frame_p) fde entries so bsearch result is predictable. | |
2191 | Also discard leftovers from --gc-sections. */ | |
be391dca | 2192 | fde_table2->num_entries = 0; |
875cdfbb PA |
2193 | for (i = 0; i < fde_table.num_entries; i++) |
2194 | { | |
2195 | struct dwarf2_fde *fde = fde_table.entries[i]; | |
2196 | ||
2197 | if (fde->initial_location == 0 | |
2198 | && first_non_zero_fde != NULL | |
2199 | && (first_non_zero_fde->initial_location | |
2200 | < fde->initial_location + fde->address_range)) | |
2201 | continue; | |
2202 | ||
2203 | if (fde_prev != NULL | |
2204 | && fde_prev->initial_location == fde->initial_location) | |
2205 | continue; | |
2206 | ||
2207 | obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i], | |
2208 | sizeof (fde_table.entries[0])); | |
2209 | ++fde_table2->num_entries; | |
2210 | fde_prev = fde; | |
2211 | } | |
b01c8410 | 2212 | fde_table2->entries = obstack_finish (&objfile->objfile_obstack); |
b01c8410 PP |
2213 | |
2214 | /* Discard the original fde_table. */ | |
2215 | xfree (fde_table.entries); | |
cfc14b3a | 2216 | } |
be391dca TT |
2217 | |
2218 | set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2); | |
cfc14b3a | 2219 | } |
0d0e1a63 MK |
2220 | |
2221 | /* Provide a prototype to silence -Wmissing-prototypes. */ | |
2222 | void _initialize_dwarf2_frame (void); | |
2223 | ||
2224 | void | |
2225 | _initialize_dwarf2_frame (void) | |
2226 | { | |
030f20e1 | 2227 | dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init); |
8f22cb90 | 2228 | dwarf2_frame_objfile_data = register_objfile_data (); |
0d0e1a63 | 2229 | } |