PR symtab/17391 gdb internal error: assertion fails in regcache.c:178
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
32d0add0 3 Copyright (C) 2003-2015 Free Software Foundation, Inc.
cfc14b3a
MK
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
cfc14b3a
MK
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
cfc14b3a
MK
21
22#include "defs.h"
23#include "dwarf2expr.h"
fa8f86ff 24#include "dwarf2.h"
cfc14b3a
MK
25#include "frame.h"
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
30#include "symtab.h"
31#include "objfiles.h"
32#include "regcache.h"
f2da6b3a 33#include "value.h"
0b722aec 34#include "record.h"
cfc14b3a 35
6896c0c7 36#include "complaints.h"
cfc14b3a 37#include "dwarf2-frame.h"
9f6f94ff
TT
38#include "ax.h"
39#include "dwarf2loc.h"
111c6489 40#include "dwarf2-frame-tailcall.h"
cfc14b3a 41
ae0d2f24
UW
42struct comp_unit;
43
cfc14b3a
MK
44/* Call Frame Information (CFI). */
45
46/* Common Information Entry (CIE). */
47
48struct dwarf2_cie
49{
ae0d2f24
UW
50 /* Computation Unit for this CIE. */
51 struct comp_unit *unit;
52
cfc14b3a
MK
53 /* Offset into the .debug_frame section where this CIE was found.
54 Used to identify this CIE. */
55 ULONGEST cie_pointer;
56
57 /* Constant that is factored out of all advance location
58 instructions. */
59 ULONGEST code_alignment_factor;
60
61 /* Constants that is factored out of all offset instructions. */
62 LONGEST data_alignment_factor;
63
64 /* Return address column. */
65 ULONGEST return_address_register;
66
67 /* Instruction sequence to initialize a register set. */
f664829e
DE
68 const gdb_byte *initial_instructions;
69 const gdb_byte *end;
cfc14b3a 70
303b6f5d
DJ
71 /* Saved augmentation, in case it's needed later. */
72 char *augmentation;
73
cfc14b3a 74 /* Encoding of addresses. */
852483bc 75 gdb_byte encoding;
cfc14b3a 76
ae0d2f24
UW
77 /* Target address size in bytes. */
78 int addr_size;
79
0963b4bd 80 /* Target pointer size in bytes. */
8da614df
CV
81 int ptr_size;
82
7131cb6e
RH
83 /* True if a 'z' augmentation existed. */
84 unsigned char saw_z_augmentation;
85
56c987f6
AO
86 /* True if an 'S' augmentation existed. */
87 unsigned char signal_frame;
88
303b6f5d
DJ
89 /* The version recorded in the CIE. */
90 unsigned char version;
2dc7f7b3
TT
91
92 /* The segment size. */
93 unsigned char segment_size;
b01c8410 94};
303b6f5d 95
b01c8410
PP
96struct dwarf2_cie_table
97{
98 int num_entries;
99 struct dwarf2_cie **entries;
cfc14b3a
MK
100};
101
102/* Frame Description Entry (FDE). */
103
104struct dwarf2_fde
105{
106 /* CIE for this FDE. */
107 struct dwarf2_cie *cie;
108
109 /* First location associated with this FDE. */
110 CORE_ADDR initial_location;
111
112 /* Number of bytes of program instructions described by this FDE. */
113 CORE_ADDR address_range;
114
115 /* Instruction sequence. */
f664829e
DE
116 const gdb_byte *instructions;
117 const gdb_byte *end;
cfc14b3a 118
4bf8967c
AS
119 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
120 section. */
121 unsigned char eh_frame_p;
b01c8410 122};
4bf8967c 123
b01c8410
PP
124struct dwarf2_fde_table
125{
126 int num_entries;
127 struct dwarf2_fde **entries;
cfc14b3a
MK
128};
129
ae0d2f24
UW
130/* A minimal decoding of DWARF2 compilation units. We only decode
131 what's needed to get to the call frame information. */
132
133struct comp_unit
134{
135 /* Keep the bfd convenient. */
136 bfd *abfd;
137
138 struct objfile *objfile;
139
ae0d2f24 140 /* Pointer to the .debug_frame section loaded into memory. */
d521ce57 141 const gdb_byte *dwarf_frame_buffer;
ae0d2f24
UW
142
143 /* Length of the loaded .debug_frame section. */
c098b58b 144 bfd_size_type dwarf_frame_size;
ae0d2f24
UW
145
146 /* Pointer to the .debug_frame section. */
147 asection *dwarf_frame_section;
148
149 /* Base for DW_EH_PE_datarel encodings. */
150 bfd_vma dbase;
151
152 /* Base for DW_EH_PE_textrel encodings. */
153 bfd_vma tbase;
154};
155
ac56253d
TT
156static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
157 CORE_ADDR *out_offset);
4fc771b8
DJ
158
159static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
160 int eh_frame_p);
ae0d2f24
UW
161
162static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e 163 int ptr_len, const gdb_byte *buf,
ae0d2f24
UW
164 unsigned int *bytes_read_ptr,
165 CORE_ADDR func_base);
cfc14b3a
MK
166\f
167
52059ffd
TT
168enum cfa_how_kind
169{
170 CFA_UNSET,
171 CFA_REG_OFFSET,
172 CFA_EXP
173};
174
175struct dwarf2_frame_state_reg_info
176{
177 struct dwarf2_frame_state_reg *reg;
178 int num_regs;
179
180 LONGEST cfa_offset;
181 ULONGEST cfa_reg;
182 enum cfa_how_kind cfa_how;
183 const gdb_byte *cfa_exp;
184
185 /* Used to implement DW_CFA_remember_state. */
186 struct dwarf2_frame_state_reg_info *prev;
187};
188
cfc14b3a
MK
189/* Structure describing a frame state. */
190
191struct dwarf2_frame_state
192{
193 /* Each register save state can be described in terms of a CFA slot,
194 another register, or a location expression. */
52059ffd 195 struct dwarf2_frame_state_reg_info regs;
cfc14b3a 196
cfc14b3a
MK
197 /* The PC described by the current frame state. */
198 CORE_ADDR pc;
199
200 /* Initial register set from the CIE.
201 Used to implement DW_CFA_restore. */
202 struct dwarf2_frame_state_reg_info initial;
203
204 /* The information we care about from the CIE. */
205 LONGEST data_align;
206 ULONGEST code_align;
207 ULONGEST retaddr_column;
303b6f5d
DJ
208
209 /* Flags for known producer quirks. */
210
211 /* The ARM compilers, in DWARF2 mode, assume that DW_CFA_def_cfa
212 and DW_CFA_def_cfa_offset takes a factored offset. */
213 int armcc_cfa_offsets_sf;
214
215 /* The ARM compilers, in DWARF2 or DWARF3 mode, may assume that
216 the CFA is defined as REG - OFFSET rather than REG + OFFSET. */
217 int armcc_cfa_offsets_reversed;
cfc14b3a
MK
218};
219
220/* Store the length the expression for the CFA in the `cfa_reg' field,
221 which is unused in that case. */
222#define cfa_exp_len cfa_reg
223
f57d151a 224/* Assert that the register set RS is large enough to store gdbarch_num_regs
cfc14b3a
MK
225 columns. If necessary, enlarge the register set. */
226
227static void
228dwarf2_frame_state_alloc_regs (struct dwarf2_frame_state_reg_info *rs,
229 int num_regs)
230{
231 size_t size = sizeof (struct dwarf2_frame_state_reg);
232
233 if (num_regs <= rs->num_regs)
234 return;
235
236 rs->reg = (struct dwarf2_frame_state_reg *)
237 xrealloc (rs->reg, num_regs * size);
238
239 /* Initialize newly allocated registers. */
2473a4a9 240 memset (rs->reg + rs->num_regs, 0, (num_regs - rs->num_regs) * size);
cfc14b3a
MK
241 rs->num_regs = num_regs;
242}
243
244/* Copy the register columns in register set RS into newly allocated
245 memory and return a pointer to this newly created copy. */
246
247static struct dwarf2_frame_state_reg *
248dwarf2_frame_state_copy_regs (struct dwarf2_frame_state_reg_info *rs)
249{
d10891d4 250 size_t size = rs->num_regs * sizeof (struct dwarf2_frame_state_reg);
cfc14b3a
MK
251 struct dwarf2_frame_state_reg *reg;
252
253 reg = (struct dwarf2_frame_state_reg *) xmalloc (size);
254 memcpy (reg, rs->reg, size);
255
256 return reg;
257}
258
259/* Release the memory allocated to register set RS. */
260
261static void
262dwarf2_frame_state_free_regs (struct dwarf2_frame_state_reg_info *rs)
263{
264 if (rs)
265 {
266 dwarf2_frame_state_free_regs (rs->prev);
267
268 xfree (rs->reg);
269 xfree (rs);
270 }
271}
272
273/* Release the memory allocated to the frame state FS. */
274
275static void
276dwarf2_frame_state_free (void *p)
277{
9a3c8263 278 struct dwarf2_frame_state *fs = (struct dwarf2_frame_state *) p;
cfc14b3a
MK
279
280 dwarf2_frame_state_free_regs (fs->initial.prev);
281 dwarf2_frame_state_free_regs (fs->regs.prev);
282 xfree (fs->initial.reg);
283 xfree (fs->regs.reg);
284 xfree (fs);
285}
286\f
287
288/* Helper functions for execute_stack_op. */
289
290static CORE_ADDR
b1370418 291read_addr_from_reg (void *baton, int reg)
cfc14b3a 292{
4a4e5149
DJ
293 struct frame_info *this_frame = (struct frame_info *) baton;
294 struct gdbarch *gdbarch = get_frame_arch (this_frame);
0fde2c53 295 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
f2da6b3a 296
2ed3c037 297 return address_from_register (regnum, this_frame);
cfc14b3a
MK
298}
299
0acf8b65
JB
300/* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
301
302static struct value *
303get_reg_value (void *baton, struct type *type, int reg)
304{
305 struct frame_info *this_frame = (struct frame_info *) baton;
306 struct gdbarch *gdbarch = get_frame_arch (this_frame);
0fde2c53 307 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
0acf8b65
JB
308
309 return value_from_register (type, regnum, this_frame);
310}
311
cfc14b3a 312static void
852483bc 313read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
cfc14b3a
MK
314{
315 read_memory (addr, buf, len);
316}
317
a6a5a945
LM
318/* Execute the required actions for both the DW_CFA_restore and
319DW_CFA_restore_extended instructions. */
320static void
321dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
322 struct dwarf2_frame_state *fs, int eh_frame_p)
323{
324 ULONGEST reg;
325
326 gdb_assert (fs->initial.reg);
327 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
328 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
329
330 /* Check if this register was explicitly initialized in the
331 CIE initial instructions. If not, default the rule to
332 UNSPECIFIED. */
333 if (reg < fs->initial.num_regs)
334 fs->regs.reg[reg] = fs->initial.reg[reg];
335 else
336 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
337
338 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
0fde2c53
DE
339 {
340 int regnum = dwarf_reg_to_regnum (gdbarch, reg);
341
342 complaint (&symfile_complaints, _("\
a6a5a945 343incomplete CFI data; DW_CFA_restore unspecified\n\
5af949e3 344register %s (#%d) at %s"),
0fde2c53
DE
345 gdbarch_register_name (gdbarch, regnum), regnum,
346 paddress (gdbarch, fs->pc));
347 }
a6a5a945
LM
348}
349
9e8b7a03
JK
350/* Virtual method table for execute_stack_op below. */
351
352static const struct dwarf_expr_context_funcs dwarf2_frame_ctx_funcs =
353{
b1370418 354 read_addr_from_reg,
0acf8b65 355 get_reg_value,
9e8b7a03 356 read_mem,
523f3620
JK
357 ctx_no_get_frame_base,
358 ctx_no_get_frame_cfa,
359 ctx_no_get_frame_pc,
360 ctx_no_get_tls_address,
361 ctx_no_dwarf_call,
8e3b41a9 362 ctx_no_get_base_type,
3019eac3
DE
363 ctx_no_push_dwarf_reg_entry_value,
364 ctx_no_get_addr_index
9e8b7a03
JK
365};
366
cfc14b3a 367static CORE_ADDR
0d45f56e 368execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
ac56253d
TT
369 CORE_ADDR offset, struct frame_info *this_frame,
370 CORE_ADDR initial, int initial_in_stack_memory)
cfc14b3a
MK
371{
372 struct dwarf_expr_context *ctx;
373 CORE_ADDR result;
4a227398 374 struct cleanup *old_chain;
cfc14b3a
MK
375
376 ctx = new_dwarf_expr_context ();
4a227398 377 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
72fc29ff 378 make_cleanup_value_free_to_mark (value_mark ());
4a227398 379
f7fd4728 380 ctx->gdbarch = get_frame_arch (this_frame);
ae0d2f24 381 ctx->addr_size = addr_size;
181cebd4 382 ctx->ref_addr_size = -1;
ac56253d 383 ctx->offset = offset;
4a4e5149 384 ctx->baton = this_frame;
9e8b7a03 385 ctx->funcs = &dwarf2_frame_ctx_funcs;
cfc14b3a 386
8a9b8146 387 dwarf_expr_push_address (ctx, initial, initial_in_stack_memory);
cfc14b3a 388 dwarf_expr_eval (ctx, exp, len);
cfc14b3a 389
f2c7657e
UW
390 if (ctx->location == DWARF_VALUE_MEMORY)
391 result = dwarf_expr_fetch_address (ctx, 0);
392 else if (ctx->location == DWARF_VALUE_REGISTER)
b1370418
JB
393 result = read_addr_from_reg (this_frame,
394 value_as_long (dwarf_expr_fetch (ctx, 0)));
f2c7657e 395 else
cec03d70
TT
396 {
397 /* This is actually invalid DWARF, but if we ever do run across
398 it somehow, we might as well support it. So, instead, report
399 it as unimplemented. */
3e43a32a
MS
400 error (_("\
401Not implemented: computing unwound register using explicit value operator"));
cec03d70 402 }
cfc14b3a 403
4a227398 404 do_cleanups (old_chain);
cfc14b3a
MK
405
406 return result;
407}
408\f
409
111c6489
JK
410/* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
411 PC. Modify FS state accordingly. Return current INSN_PTR where the
412 execution has stopped, one can resume it on the next call. */
413
414static const gdb_byte *
0d45f56e 415execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
9f6f94ff
TT
416 const gdb_byte *insn_end, struct gdbarch *gdbarch,
417 CORE_ADDR pc, struct dwarf2_frame_state *fs)
cfc14b3a 418{
ae0d2f24 419 int eh_frame_p = fde->eh_frame_p;
507a579c 420 unsigned int bytes_read;
e17a4113 421 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cfc14b3a
MK
422
423 while (insn_ptr < insn_end && fs->pc <= pc)
424 {
852483bc 425 gdb_byte insn = *insn_ptr++;
9fccedf7
DE
426 uint64_t utmp, reg;
427 int64_t offset;
cfc14b3a
MK
428
429 if ((insn & 0xc0) == DW_CFA_advance_loc)
430 fs->pc += (insn & 0x3f) * fs->code_align;
431 else if ((insn & 0xc0) == DW_CFA_offset)
432 {
433 reg = insn & 0x3f;
4fc771b8 434 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 435 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
436 offset = utmp * fs->data_align;
437 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 438 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
439 fs->regs.reg[reg].loc.offset = offset;
440 }
441 else if ((insn & 0xc0) == DW_CFA_restore)
442 {
cfc14b3a 443 reg = insn & 0x3f;
a6a5a945 444 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
445 }
446 else
447 {
448 switch (insn)
449 {
450 case DW_CFA_set_loc:
ae0d2f24 451 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
8da614df 452 fde->cie->ptr_size, insn_ptr,
ae0d2f24
UW
453 &bytes_read, fde->initial_location);
454 /* Apply the objfile offset for relocatable objects. */
455 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
456 SECT_OFF_TEXT (fde->cie->unit->objfile));
cfc14b3a
MK
457 insn_ptr += bytes_read;
458 break;
459
460 case DW_CFA_advance_loc1:
e17a4113 461 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
cfc14b3a
MK
462 fs->pc += utmp * fs->code_align;
463 insn_ptr++;
464 break;
465 case DW_CFA_advance_loc2:
e17a4113 466 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
cfc14b3a
MK
467 fs->pc += utmp * fs->code_align;
468 insn_ptr += 2;
469 break;
470 case DW_CFA_advance_loc4:
e17a4113 471 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
cfc14b3a
MK
472 fs->pc += utmp * fs->code_align;
473 insn_ptr += 4;
474 break;
475
476 case DW_CFA_offset_extended:
f664829e 477 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 478 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 479 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
480 offset = utmp * fs->data_align;
481 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 482 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
483 fs->regs.reg[reg].loc.offset = offset;
484 break;
485
486 case DW_CFA_restore_extended:
f664829e 487 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
a6a5a945 488 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
489 break;
490
491 case DW_CFA_undefined:
f664829e 492 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 493 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 494 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 495 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
496 break;
497
498 case DW_CFA_same_value:
f664829e 499 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 500 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 501 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 502 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
503 break;
504
505 case DW_CFA_register:
f664829e 506 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 507 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 508 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
4fc771b8 509 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
cfc14b3a 510 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 511 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
512 fs->regs.reg[reg].loc.reg = utmp;
513 break;
514
515 case DW_CFA_remember_state:
516 {
517 struct dwarf2_frame_state_reg_info *new_rs;
518
70ba0933 519 new_rs = XNEW (struct dwarf2_frame_state_reg_info);
cfc14b3a
MK
520 *new_rs = fs->regs;
521 fs->regs.reg = dwarf2_frame_state_copy_regs (&fs->regs);
522 fs->regs.prev = new_rs;
523 }
524 break;
525
526 case DW_CFA_restore_state:
527 {
528 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
529
50ea7769
MK
530 if (old_rs == NULL)
531 {
e2e0b3e5 532 complaint (&symfile_complaints, _("\
5af949e3
UW
533bad CFI data; mismatched DW_CFA_restore_state at %s"),
534 paddress (gdbarch, fs->pc));
50ea7769
MK
535 }
536 else
537 {
538 xfree (fs->regs.reg);
539 fs->regs = *old_rs;
540 xfree (old_rs);
541 }
cfc14b3a
MK
542 }
543 break;
544
545 case DW_CFA_def_cfa:
f664829e
DE
546 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
547 fs->regs.cfa_reg = reg;
548 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
549
550 if (fs->armcc_cfa_offsets_sf)
551 utmp *= fs->data_align;
552
2fd481e1
PP
553 fs->regs.cfa_offset = utmp;
554 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
555 break;
556
557 case DW_CFA_def_cfa_register:
f664829e
DE
558 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
559 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1
PP
560 eh_frame_p);
561 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
562 break;
563
564 case DW_CFA_def_cfa_offset:
f664829e 565 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
566
567 if (fs->armcc_cfa_offsets_sf)
568 utmp *= fs->data_align;
569
2fd481e1 570 fs->regs.cfa_offset = utmp;
cfc14b3a
MK
571 /* cfa_how deliberately not set. */
572 break;
573
a8504492
MK
574 case DW_CFA_nop:
575 break;
576
cfc14b3a 577 case DW_CFA_def_cfa_expression:
f664829e
DE
578 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
579 fs->regs.cfa_exp_len = utmp;
2fd481e1
PP
580 fs->regs.cfa_exp = insn_ptr;
581 fs->regs.cfa_how = CFA_EXP;
582 insn_ptr += fs->regs.cfa_exp_len;
cfc14b3a
MK
583 break;
584
585 case DW_CFA_expression:
f664829e 586 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 587 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
cfc14b3a 588 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 589 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
590 fs->regs.reg[reg].loc.exp = insn_ptr;
591 fs->regs.reg[reg].exp_len = utmp;
05cbe71a 592 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
593 insn_ptr += utmp;
594 break;
595
a8504492 596 case DW_CFA_offset_extended_sf:
f664829e 597 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 598 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 599 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 600 offset *= fs->data_align;
a8504492 601 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
05cbe71a 602 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
603 fs->regs.reg[reg].loc.offset = offset;
604 break;
605
46ea248b 606 case DW_CFA_val_offset:
f664829e 607 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 608 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 609 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
610 offset = utmp * fs->data_align;
611 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
612 fs->regs.reg[reg].loc.offset = offset;
613 break;
614
615 case DW_CFA_val_offset_sf:
f664829e 616 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 617 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 618 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
46ea248b
AO
619 offset *= fs->data_align;
620 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
621 fs->regs.reg[reg].loc.offset = offset;
622 break;
623
624 case DW_CFA_val_expression:
f664829e 625 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
46ea248b 626 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
f664829e 627 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
628 fs->regs.reg[reg].loc.exp = insn_ptr;
629 fs->regs.reg[reg].exp_len = utmp;
630 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
631 insn_ptr += utmp;
632 break;
633
a8504492 634 case DW_CFA_def_cfa_sf:
f664829e
DE
635 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
636 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1 637 eh_frame_p);
f664829e 638 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1
PP
639 fs->regs.cfa_offset = offset * fs->data_align;
640 fs->regs.cfa_how = CFA_REG_OFFSET;
a8504492
MK
641 break;
642
643 case DW_CFA_def_cfa_offset_sf:
f664829e 644 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1 645 fs->regs.cfa_offset = offset * fs->data_align;
a8504492 646 /* cfa_how deliberately not set. */
cfc14b3a
MK
647 break;
648
a77f4086
MK
649 case DW_CFA_GNU_window_save:
650 /* This is SPARC-specific code, and contains hard-coded
651 constants for the register numbering scheme used by
652 GCC. Rather than having a architecture-specific
653 operation that's only ever used by a single
654 architecture, we provide the implementation here.
655 Incidentally that's what GCC does too in its
656 unwinder. */
657 {
4a4e5149 658 int size = register_size (gdbarch, 0);
9a619af0 659
a77f4086
MK
660 dwarf2_frame_state_alloc_regs (&fs->regs, 32);
661 for (reg = 8; reg < 16; reg++)
662 {
663 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
664 fs->regs.reg[reg].loc.reg = reg + 16;
665 }
666 for (reg = 16; reg < 32; reg++)
667 {
668 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
669 fs->regs.reg[reg].loc.offset = (reg - 16) * size;
670 }
671 }
672 break;
673
cfc14b3a
MK
674 case DW_CFA_GNU_args_size:
675 /* Ignored. */
f664829e 676 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
677 break;
678
58894217 679 case DW_CFA_GNU_negative_offset_extended:
f664829e 680 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 681 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
507a579c
PA
682 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
683 offset = utmp * fs->data_align;
58894217
JK
684 dwarf2_frame_state_alloc_regs (&fs->regs, reg + 1);
685 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
686 fs->regs.reg[reg].loc.offset = -offset;
687 break;
688
cfc14b3a 689 default:
3e43a32a
MS
690 internal_error (__FILE__, __LINE__,
691 _("Unknown CFI encountered."));
cfc14b3a
MK
692 }
693 }
694 }
695
111c6489
JK
696 if (fs->initial.reg == NULL)
697 {
698 /* Don't allow remember/restore between CIE and FDE programs. */
699 dwarf2_frame_state_free_regs (fs->regs.prev);
700 fs->regs.prev = NULL;
701 }
702
703 return insn_ptr;
cfc14b3a 704}
8f22cb90 705\f
cfc14b3a 706
8f22cb90 707/* Architecture-specific operations. */
cfc14b3a 708
8f22cb90
MK
709/* Per-architecture data key. */
710static struct gdbarch_data *dwarf2_frame_data;
711
712struct dwarf2_frame_ops
713{
714 /* Pre-initialize the register state REG for register REGNUM. */
aff37fc1
DM
715 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
716 struct frame_info *);
3ed09a32 717
4a4e5149 718 /* Check whether the THIS_FRAME is a signal trampoline. */
3ed09a32 719 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
4bf8967c 720
4fc771b8
DJ
721 /* Convert .eh_frame register number to DWARF register number, or
722 adjust .debug_frame register number. */
723 int (*adjust_regnum) (struct gdbarch *, int, int);
cfc14b3a
MK
724};
725
8f22cb90
MK
726/* Default architecture-specific register state initialization
727 function. */
728
729static void
730dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 731 struct dwarf2_frame_state_reg *reg,
4a4e5149 732 struct frame_info *this_frame)
8f22cb90
MK
733{
734 /* If we have a register that acts as a program counter, mark it as
735 a destination for the return address. If we have a register that
736 serves as the stack pointer, arrange for it to be filled with the
737 call frame address (CFA). The other registers are marked as
738 unspecified.
739
740 We copy the return address to the program counter, since many
741 parts in GDB assume that it is possible to get the return address
742 by unwinding the program counter register. However, on ISA's
743 with a dedicated return address register, the CFI usually only
744 contains information to unwind that return address register.
745
746 The reason we're treating the stack pointer special here is
747 because in many cases GCC doesn't emit CFI for the stack pointer
748 and implicitly assumes that it is equal to the CFA. This makes
749 some sense since the DWARF specification (version 3, draft 8,
750 p. 102) says that:
751
752 "Typically, the CFA is defined to be the value of the stack
753 pointer at the call site in the previous frame (which may be
754 different from its value on entry to the current frame)."
755
756 However, this isn't true for all platforms supported by GCC
757 (e.g. IBM S/390 and zSeries). Those architectures should provide
758 their own architecture-specific initialization function. */
05cbe71a 759
ad010def 760 if (regnum == gdbarch_pc_regnum (gdbarch))
8f22cb90 761 reg->how = DWARF2_FRAME_REG_RA;
ad010def 762 else if (regnum == gdbarch_sp_regnum (gdbarch))
8f22cb90
MK
763 reg->how = DWARF2_FRAME_REG_CFA;
764}
05cbe71a 765
8f22cb90 766/* Return a default for the architecture-specific operations. */
05cbe71a 767
8f22cb90 768static void *
030f20e1 769dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
770{
771 struct dwarf2_frame_ops *ops;
772
030f20e1 773 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
774 ops->init_reg = dwarf2_frame_default_init_reg;
775 return ops;
776}
05cbe71a 777
8f22cb90
MK
778/* Set the architecture-specific register state initialization
779 function for GDBARCH to INIT_REG. */
780
781void
782dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
783 void (*init_reg) (struct gdbarch *, int,
aff37fc1
DM
784 struct dwarf2_frame_state_reg *,
785 struct frame_info *))
8f22cb90 786{
9a3c8263
SM
787 struct dwarf2_frame_ops *ops
788 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 789
8f22cb90
MK
790 ops->init_reg = init_reg;
791}
792
793/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
794
795static void
796dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 797 struct dwarf2_frame_state_reg *reg,
4a4e5149 798 struct frame_info *this_frame)
05cbe71a 799{
9a3c8263
SM
800 struct dwarf2_frame_ops *ops
801 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 802
4a4e5149 803 ops->init_reg (gdbarch, regnum, reg, this_frame);
05cbe71a 804}
3ed09a32
DJ
805
806/* Set the architecture-specific signal trampoline recognition
807 function for GDBARCH to SIGNAL_FRAME_P. */
808
809void
810dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
811 int (*signal_frame_p) (struct gdbarch *,
812 struct frame_info *))
813{
9a3c8263
SM
814 struct dwarf2_frame_ops *ops
815 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
3ed09a32
DJ
816
817 ops->signal_frame_p = signal_frame_p;
818}
819
820/* Query the architecture-specific signal frame recognizer for
4a4e5149 821 THIS_FRAME. */
3ed09a32
DJ
822
823static int
824dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
4a4e5149 825 struct frame_info *this_frame)
3ed09a32 826{
9a3c8263
SM
827 struct dwarf2_frame_ops *ops
828 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
3ed09a32
DJ
829
830 if (ops->signal_frame_p == NULL)
831 return 0;
4a4e5149 832 return ops->signal_frame_p (gdbarch, this_frame);
3ed09a32 833}
4bf8967c 834
4fc771b8
DJ
835/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
836 register numbers. */
4bf8967c
AS
837
838void
4fc771b8
DJ
839dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
840 int (*adjust_regnum) (struct gdbarch *,
841 int, int))
4bf8967c 842{
9a3c8263
SM
843 struct dwarf2_frame_ops *ops
844 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
4bf8967c 845
4fc771b8 846 ops->adjust_regnum = adjust_regnum;
4bf8967c
AS
847}
848
4fc771b8
DJ
849/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
850 register. */
4bf8967c 851
4fc771b8 852static int
3e43a32a
MS
853dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
854 int regnum, int eh_frame_p)
4bf8967c 855{
9a3c8263
SM
856 struct dwarf2_frame_ops *ops
857 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
4bf8967c 858
4fc771b8 859 if (ops->adjust_regnum == NULL)
4bf8967c 860 return regnum;
4fc771b8 861 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
4bf8967c 862}
303b6f5d
DJ
863
864static void
865dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
866 struct dwarf2_fde *fde)
867{
43f3e411 868 struct compunit_symtab *cust;
303b6f5d 869
43f3e411
DE
870 cust = find_pc_compunit_symtab (fs->pc);
871 if (cust == NULL)
303b6f5d
DJ
872 return;
873
43f3e411 874 if (producer_is_realview (COMPUNIT_PRODUCER (cust)))
a6c727b2
DJ
875 {
876 if (fde->cie->version == 1)
877 fs->armcc_cfa_offsets_sf = 1;
878
879 if (fde->cie->version == 1)
880 fs->armcc_cfa_offsets_reversed = 1;
881
882 /* The reversed offset problem is present in some compilers
883 using DWARF3, but it was eventually fixed. Check the ARM
884 defined augmentations, which are in the format "armcc" followed
885 by a list of one-character options. The "+" option means
886 this problem is fixed (no quirk needed). If the armcc
887 augmentation is missing, the quirk is needed. */
888 if (fde->cie->version == 3
61012eef 889 && (!startswith (fde->cie->augmentation, "armcc")
a6c727b2
DJ
890 || strchr (fde->cie->augmentation + 5, '+') == NULL))
891 fs->armcc_cfa_offsets_reversed = 1;
892
893 return;
894 }
303b6f5d 895}
8f22cb90
MK
896\f
897
a8fd5589
TT
898/* See dwarf2-frame.h. */
899
900int
901dwarf2_fetch_cfa_info (struct gdbarch *gdbarch, CORE_ADDR pc,
902 struct dwarf2_per_cu_data *data,
903 int *regnum_out, LONGEST *offset_out,
904 CORE_ADDR *text_offset_out,
905 const gdb_byte **cfa_start_out,
906 const gdb_byte **cfa_end_out)
9f6f94ff 907{
9f6f94ff 908 struct dwarf2_fde *fde;
22e048c9 909 CORE_ADDR text_offset;
9f6f94ff
TT
910 struct dwarf2_frame_state fs;
911 int addr_size;
912
913 memset (&fs, 0, sizeof (struct dwarf2_frame_state));
914
915 fs.pc = pc;
916
917 /* Find the correct FDE. */
918 fde = dwarf2_frame_find_fde (&fs.pc, &text_offset);
919 if (fde == NULL)
920 error (_("Could not compute CFA; needed to translate this expression"));
921
922 /* Extract any interesting information from the CIE. */
923 fs.data_align = fde->cie->data_alignment_factor;
924 fs.code_align = fde->cie->code_alignment_factor;
925 fs.retaddr_column = fde->cie->return_address_register;
926 addr_size = fde->cie->addr_size;
927
928 /* Check for "quirks" - known bugs in producers. */
929 dwarf2_frame_find_quirks (&fs, fde);
930
931 /* First decode all the insns in the CIE. */
932 execute_cfa_program (fde, fde->cie->initial_instructions,
933 fde->cie->end, gdbarch, pc, &fs);
934
935 /* Save the initialized register set. */
936 fs.initial = fs.regs;
937 fs.initial.reg = dwarf2_frame_state_copy_regs (&fs.regs);
938
939 /* Then decode the insns in the FDE up to our target PC. */
940 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
941
942 /* Calculate the CFA. */
943 switch (fs.regs.cfa_how)
944 {
945 case CFA_REG_OFFSET:
946 {
0fde2c53 947 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, fs.regs.cfa_reg);
a8fd5589
TT
948
949 *regnum_out = regnum;
950 if (fs.armcc_cfa_offsets_reversed)
951 *offset_out = -fs.regs.cfa_offset;
952 else
953 *offset_out = fs.regs.cfa_offset;
954 return 1;
9f6f94ff 955 }
9f6f94ff
TT
956
957 case CFA_EXP:
a8fd5589
TT
958 *text_offset_out = text_offset;
959 *cfa_start_out = fs.regs.cfa_exp;
960 *cfa_end_out = fs.regs.cfa_exp + fs.regs.cfa_exp_len;
961 return 0;
9f6f94ff
TT
962
963 default:
964 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
965 }
966}
967
968\f
8f22cb90
MK
969struct dwarf2_frame_cache
970{
971 /* DWARF Call Frame Address. */
972 CORE_ADDR cfa;
973
8fbca658
PA
974 /* Set if the return address column was marked as unavailable
975 (required non-collected memory or registers to compute). */
976 int unavailable_retaddr;
977
0228dfb9
DJ
978 /* Set if the return address column was marked as undefined. */
979 int undefined_retaddr;
980
8f22cb90
MK
981 /* Saved registers, indexed by GDB register number, not by DWARF
982 register number. */
983 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
984
985 /* Return address register. */
986 struct dwarf2_frame_state_reg retaddr_reg;
ae0d2f24
UW
987
988 /* Target address size in bytes. */
989 int addr_size;
ac56253d
TT
990
991 /* The .text offset. */
992 CORE_ADDR text_offset;
111c6489 993
1ec56e88
PA
994 /* True if we already checked whether this frame is the bottom frame
995 of a virtual tail call frame chain. */
996 int checked_tailcall_bottom;
997
111c6489
JK
998 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
999 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
1000 involved. Non-bottom frames of a virtual tail call frames chain use
1001 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
1002 them. */
1003 void *tailcall_cache;
1ec56e88
PA
1004
1005 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
1006 base to get the SP, to simulate the return address pushed on the
1007 stack. */
1008 LONGEST entry_cfa_sp_offset;
1009 int entry_cfa_sp_offset_p;
8f22cb90 1010};
05cbe71a 1011
78ac5f83
TT
1012/* A cleanup that sets a pointer to NULL. */
1013
1014static void
1015clear_pointer_cleanup (void *arg)
1016{
9a3c8263 1017 void **ptr = (void **) arg;
78ac5f83
TT
1018
1019 *ptr = NULL;
1020}
1021
b9362cc7 1022static struct dwarf2_frame_cache *
4a4e5149 1023dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
cfc14b3a 1024{
78ac5f83 1025 struct cleanup *reset_cache_cleanup, *old_chain;
4a4e5149 1026 struct gdbarch *gdbarch = get_frame_arch (this_frame);
ad010def
UW
1027 const int num_regs = gdbarch_num_regs (gdbarch)
1028 + gdbarch_num_pseudo_regs (gdbarch);
cfc14b3a
MK
1029 struct dwarf2_frame_cache *cache;
1030 struct dwarf2_frame_state *fs;
1031 struct dwarf2_fde *fde;
111c6489 1032 CORE_ADDR entry_pc;
111c6489 1033 const gdb_byte *instr;
cfc14b3a
MK
1034
1035 if (*this_cache)
9a3c8263 1036 return (struct dwarf2_frame_cache *) *this_cache;
cfc14b3a
MK
1037
1038 /* Allocate a new cache. */
1039 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
1040 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
8fbca658 1041 *this_cache = cache;
78ac5f83 1042 reset_cache_cleanup = make_cleanup (clear_pointer_cleanup, this_cache);
cfc14b3a
MK
1043
1044 /* Allocate and initialize the frame state. */
41bf6aca 1045 fs = XCNEW (struct dwarf2_frame_state);
cfc14b3a
MK
1046 old_chain = make_cleanup (dwarf2_frame_state_free, fs);
1047
1048 /* Unwind the PC.
1049
4a4e5149 1050 Note that if the next frame is never supposed to return (i.e. a call
cfc14b3a 1051 to abort), the compiler might optimize away the instruction at
4a4e5149 1052 its return address. As a result the return address will
cfc14b3a 1053 point at some random instruction, and the CFI for that
e4e9607c 1054 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
1055 this problem by substracting 1 from the return address to get an
1056 address in the middle of a presumed call instruction (or the
1057 instruction in the associated delay slot). This should only be
1058 done for "normal" frames and not for resume-type frames (signal
e4e9607c 1059 handlers, sentinel frames, dummy frames). The function
ad1193e7 1060 get_frame_address_in_block does just this. It's not clear how
e4e9607c
MK
1061 reliable the method is though; there is the potential for the
1062 register state pre-call being different to that on return. */
4a4e5149 1063 fs->pc = get_frame_address_in_block (this_frame);
cfc14b3a
MK
1064
1065 /* Find the correct FDE. */
ac56253d 1066 fde = dwarf2_frame_find_fde (&fs->pc, &cache->text_offset);
cfc14b3a
MK
1067 gdb_assert (fde != NULL);
1068
1069 /* Extract any interesting information from the CIE. */
1070 fs->data_align = fde->cie->data_alignment_factor;
1071 fs->code_align = fde->cie->code_alignment_factor;
1072 fs->retaddr_column = fde->cie->return_address_register;
ae0d2f24 1073 cache->addr_size = fde->cie->addr_size;
cfc14b3a 1074
303b6f5d
DJ
1075 /* Check for "quirks" - known bugs in producers. */
1076 dwarf2_frame_find_quirks (fs, fde);
1077
cfc14b3a 1078 /* First decode all the insns in the CIE. */
ae0d2f24 1079 execute_cfa_program (fde, fde->cie->initial_instructions,
0c92d8c1
JB
1080 fde->cie->end, gdbarch,
1081 get_frame_address_in_block (this_frame), fs);
cfc14b3a
MK
1082
1083 /* Save the initialized register set. */
1084 fs->initial = fs->regs;
1085 fs->initial.reg = dwarf2_frame_state_copy_regs (&fs->regs);
1086
111c6489
JK
1087 if (get_frame_func_if_available (this_frame, &entry_pc))
1088 {
1089 /* Decode the insns in the FDE up to the entry PC. */
1090 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
1091 entry_pc, fs);
1092
1093 if (fs->regs.cfa_how == CFA_REG_OFFSET
0fde2c53 1094 && (dwarf_reg_to_regnum (gdbarch, fs->regs.cfa_reg)
111c6489
JK
1095 == gdbarch_sp_regnum (gdbarch)))
1096 {
1ec56e88
PA
1097 cache->entry_cfa_sp_offset = fs->regs.cfa_offset;
1098 cache->entry_cfa_sp_offset_p = 1;
111c6489
JK
1099 }
1100 }
1101 else
1102 instr = fde->instructions;
1103
cfc14b3a 1104 /* Then decode the insns in the FDE up to our target PC. */
111c6489 1105 execute_cfa_program (fde, instr, fde->end, gdbarch,
0c92d8c1 1106 get_frame_address_in_block (this_frame), fs);
cfc14b3a 1107
492d29ea 1108 TRY
cfc14b3a 1109 {
8fbca658
PA
1110 /* Calculate the CFA. */
1111 switch (fs->regs.cfa_how)
1112 {
1113 case CFA_REG_OFFSET:
b1370418 1114 cache->cfa = read_addr_from_reg (this_frame, fs->regs.cfa_reg);
8fbca658
PA
1115 if (fs->armcc_cfa_offsets_reversed)
1116 cache->cfa -= fs->regs.cfa_offset;
1117 else
1118 cache->cfa += fs->regs.cfa_offset;
1119 break;
1120
1121 case CFA_EXP:
1122 cache->cfa =
1123 execute_stack_op (fs->regs.cfa_exp, fs->regs.cfa_exp_len,
1124 cache->addr_size, cache->text_offset,
1125 this_frame, 0, 0);
1126 break;
1127
1128 default:
1129 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1130 }
1131 }
492d29ea 1132 CATCH (ex, RETURN_MASK_ERROR)
8fbca658
PA
1133 {
1134 if (ex.error == NOT_AVAILABLE_ERROR)
1135 {
1136 cache->unavailable_retaddr = 1;
5a1cf4d6 1137 do_cleanups (old_chain);
78ac5f83 1138 discard_cleanups (reset_cache_cleanup);
8fbca658
PA
1139 return cache;
1140 }
cfc14b3a 1141
8fbca658 1142 throw_exception (ex);
cfc14b3a 1143 }
492d29ea 1144 END_CATCH
cfc14b3a 1145
05cbe71a 1146 /* Initialize the register state. */
3e2c4033
AC
1147 {
1148 int regnum;
e4e9607c 1149
3e2c4033 1150 for (regnum = 0; regnum < num_regs; regnum++)
4a4e5149 1151 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
3e2c4033
AC
1152 }
1153
1154 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
1155 location information in the cache. Note that we don't skip the
1156 return address column; it's perfectly all right for it to
0fde2c53 1157 correspond to a real register. */
3e2c4033
AC
1158 {
1159 int column; /* CFI speak for "register number". */
e4e9607c 1160
3e2c4033
AC
1161 for (column = 0; column < fs->regs.num_regs; column++)
1162 {
3e2c4033 1163 /* Use the GDB register number as the destination index. */
0fde2c53 1164 int regnum = dwarf_reg_to_regnum (gdbarch, column);
3e2c4033 1165
0fde2c53 1166 /* Protect against a target returning a bad register. */
3e2c4033
AC
1167 if (regnum < 0 || regnum >= num_regs)
1168 continue;
1169
1170 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
1171 of all debug info registers. If it doesn't, complain (but
1172 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
1173 unspecified register implies "same value" when CFI (draft
1174 7) specifies nothing at all. Such a register could equally
1175 be interpreted as "undefined". Also note that this check
e4e9607c
MK
1176 isn't sufficient; it only checks that all registers in the
1177 range [0 .. max column] are specified, and won't detect
3e2c4033 1178 problems when a debug info register falls outside of the
e4e9607c 1179 table. We need a way of iterating through all the valid
3e2c4033 1180 DWARF2 register numbers. */
05cbe71a 1181 if (fs->regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
1182 {
1183 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
e2e0b3e5 1184 complaint (&symfile_complaints, _("\
5af949e3 1185incomplete CFI data; unspecified registers (e.g., %s) at %s"),
f059bf6f 1186 gdbarch_register_name (gdbarch, regnum),
5af949e3 1187 paddress (gdbarch, fs->pc));
f059bf6f 1188 }
35889917
MK
1189 else
1190 cache->reg[regnum] = fs->regs.reg[column];
3e2c4033
AC
1191 }
1192 }
cfc14b3a 1193
8d5a9abc
MK
1194 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1195 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
1196 {
1197 int regnum;
1198
1199 for (regnum = 0; regnum < num_regs; regnum++)
1200 {
8d5a9abc
MK
1201 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1202 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 1203 {
05cbe71a
MK
1204 struct dwarf2_frame_state_reg *retaddr_reg =
1205 &fs->regs.reg[fs->retaddr_column];
1206
d4f10bf2
MK
1207 /* It seems rather bizarre to specify an "empty" column as
1208 the return adress column. However, this is exactly
1209 what GCC does on some targets. It turns out that GCC
1210 assumes that the return address can be found in the
1211 register corresponding to the return address column.
8d5a9abc
MK
1212 Incidentally, that's how we should treat a return
1213 address column specifying "same value" too. */
d4f10bf2 1214 if (fs->retaddr_column < fs->regs.num_regs
05cbe71a
MK
1215 && retaddr_reg->how != DWARF2_FRAME_REG_UNSPECIFIED
1216 && retaddr_reg->how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
1217 {
1218 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1219 cache->reg[regnum] = *retaddr_reg;
1220 else
1221 cache->retaddr_reg = *retaddr_reg;
1222 }
35889917
MK
1223 else
1224 {
8d5a9abc
MK
1225 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1226 {
1227 cache->reg[regnum].loc.reg = fs->retaddr_column;
1228 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1229 }
1230 else
1231 {
1232 cache->retaddr_reg.loc.reg = fs->retaddr_column;
1233 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1234 }
35889917
MK
1235 }
1236 }
1237 }
1238 }
cfc14b3a 1239
0228dfb9
DJ
1240 if (fs->retaddr_column < fs->regs.num_regs
1241 && fs->regs.reg[fs->retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
1242 cache->undefined_retaddr = 1;
1243
cfc14b3a 1244 do_cleanups (old_chain);
78ac5f83 1245 discard_cleanups (reset_cache_cleanup);
cfc14b3a
MK
1246 return cache;
1247}
1248
8fbca658
PA
1249static enum unwind_stop_reason
1250dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1251 void **this_cache)
1252{
1253 struct dwarf2_frame_cache *cache
1254 = dwarf2_frame_cache (this_frame, this_cache);
1255
1256 if (cache->unavailable_retaddr)
1257 return UNWIND_UNAVAILABLE;
1258
1259 if (cache->undefined_retaddr)
1260 return UNWIND_OUTERMOST;
1261
1262 return UNWIND_NO_REASON;
1263}
1264
cfc14b3a 1265static void
4a4e5149 1266dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
cfc14b3a
MK
1267 struct frame_id *this_id)
1268{
1269 struct dwarf2_frame_cache *cache =
4a4e5149 1270 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a 1271
8fbca658 1272 if (cache->unavailable_retaddr)
5ce0145d
PA
1273 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1274 else if (cache->undefined_retaddr)
8fbca658 1275 return;
5ce0145d
PA
1276 else
1277 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
93d42b30
DJ
1278}
1279
4a4e5149
DJ
1280static struct value *
1281dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1282 int regnum)
93d42b30 1283{
4a4e5149 1284 struct gdbarch *gdbarch = get_frame_arch (this_frame);
93d42b30 1285 struct dwarf2_frame_cache *cache =
4a4e5149
DJ
1286 dwarf2_frame_cache (this_frame, this_cache);
1287 CORE_ADDR addr;
1288 int realnum;
cfc14b3a 1289
1ec56e88
PA
1290 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1291 call frame chain. */
1292 if (!cache->checked_tailcall_bottom)
1293 {
1294 cache->checked_tailcall_bottom = 1;
1295 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1296 (cache->entry_cfa_sp_offset_p
1297 ? &cache->entry_cfa_sp_offset : NULL));
1298 }
1299
111c6489
JK
1300 /* Non-bottom frames of a virtual tail call frames chain use
1301 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1302 them. If dwarf2_tailcall_prev_register_first does not have specific value
1303 unwind the register, tail call frames are assumed to have the register set
1304 of the top caller. */
1305 if (cache->tailcall_cache)
1306 {
1307 struct value *val;
1308
1309 val = dwarf2_tailcall_prev_register_first (this_frame,
1310 &cache->tailcall_cache,
1311 regnum);
1312 if (val)
1313 return val;
1314 }
1315
cfc14b3a
MK
1316 switch (cache->reg[regnum].how)
1317 {
05cbe71a 1318 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 1319 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 1320 mark it as optimized away; the value isn't available. */
4a4e5149 1321 return frame_unwind_got_optimized (this_frame, regnum);
cfc14b3a 1322
05cbe71a 1323 case DWARF2_FRAME_REG_SAVED_OFFSET:
4a4e5149
DJ
1324 addr = cache->cfa + cache->reg[regnum].loc.offset;
1325 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1326
05cbe71a 1327 case DWARF2_FRAME_REG_SAVED_REG:
0fde2c53
DE
1328 realnum = dwarf_reg_to_regnum_or_error
1329 (gdbarch, cache->reg[regnum].loc.reg);
4a4e5149 1330 return frame_unwind_got_register (this_frame, regnum, realnum);
cfc14b3a 1331
05cbe71a 1332 case DWARF2_FRAME_REG_SAVED_EXP:
4a4e5149
DJ
1333 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1334 cache->reg[regnum].exp_len,
ac56253d
TT
1335 cache->addr_size, cache->text_offset,
1336 this_frame, cache->cfa, 1);
4a4e5149 1337 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1338
46ea248b 1339 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
4a4e5149
DJ
1340 addr = cache->cfa + cache->reg[regnum].loc.offset;
1341 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b
AO
1342
1343 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
4a4e5149
DJ
1344 addr = execute_stack_op (cache->reg[regnum].loc.exp,
1345 cache->reg[regnum].exp_len,
ac56253d
TT
1346 cache->addr_size, cache->text_offset,
1347 this_frame, cache->cfa, 1);
4a4e5149 1348 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b 1349
05cbe71a 1350 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
1351 /* GCC, in its infinite wisdom decided to not provide unwind
1352 information for registers that are "same value". Since
1353 DWARF2 (3 draft 7) doesn't define such behavior, said
1354 registers are actually undefined (which is different to CFI
1355 "undefined"). Code above issues a complaint about this.
1356 Here just fudge the books, assume GCC, and that the value is
1357 more inner on the stack. */
4a4e5149 1358 return frame_unwind_got_register (this_frame, regnum, regnum);
3e2c4033 1359
05cbe71a 1360 case DWARF2_FRAME_REG_SAME_VALUE:
4a4e5149 1361 return frame_unwind_got_register (this_frame, regnum, regnum);
cfc14b3a 1362
05cbe71a 1363 case DWARF2_FRAME_REG_CFA:
4a4e5149 1364 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
35889917 1365
ea7963f0 1366 case DWARF2_FRAME_REG_CFA_OFFSET:
4a4e5149
DJ
1367 addr = cache->cfa + cache->reg[regnum].loc.offset;
1368 return frame_unwind_got_address (this_frame, regnum, addr);
ea7963f0 1369
8d5a9abc 1370 case DWARF2_FRAME_REG_RA_OFFSET:
4a4e5149 1371 addr = cache->reg[regnum].loc.offset;
0fde2c53 1372 regnum = dwarf_reg_to_regnum_or_error
4a4e5149
DJ
1373 (gdbarch, cache->retaddr_reg.loc.reg);
1374 addr += get_frame_register_unsigned (this_frame, regnum);
1375 return frame_unwind_got_address (this_frame, regnum, addr);
8d5a9abc 1376
b39cc962
DJ
1377 case DWARF2_FRAME_REG_FN:
1378 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1379
cfc14b3a 1380 default:
e2e0b3e5 1381 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
1382 }
1383}
1384
111c6489
JK
1385/* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1386 call frames chain. */
1387
1388static void
1389dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1390{
1391 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1392
1393 if (cache->tailcall_cache)
1394 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1395}
1396
4a4e5149
DJ
1397static int
1398dwarf2_frame_sniffer (const struct frame_unwind *self,
1399 struct frame_info *this_frame, void **this_cache)
cfc14b3a 1400{
1ce5d6dd 1401 /* Grab an address that is guarenteed to reside somewhere within the
4a4e5149 1402 function. get_frame_pc(), with a no-return next function, can
93d42b30
DJ
1403 end up returning something past the end of this function's body.
1404 If the frame we're sniffing for is a signal frame whose start
1405 address is placed on the stack by the OS, its FDE must
4a4e5149
DJ
1406 extend one byte before its start address or we could potentially
1407 select the FDE of the previous function. */
1408 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
ac56253d 1409 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
9a619af0 1410
56c987f6 1411 if (!fde)
4a4e5149 1412 return 0;
3ed09a32
DJ
1413
1414 /* On some targets, signal trampolines may have unwind information.
1415 We need to recognize them so that we set the frame type
1416 correctly. */
1417
56c987f6 1418 if (fde->cie->signal_frame
4a4e5149
DJ
1419 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1420 this_frame))
1421 return self->type == SIGTRAMP_FRAME;
1422
111c6489
JK
1423 if (self->type != NORMAL_FRAME)
1424 return 0;
1425
111c6489 1426 return 1;
4a4e5149
DJ
1427}
1428
1429static const struct frame_unwind dwarf2_frame_unwind =
1430{
1431 NORMAL_FRAME,
8fbca658 1432 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1433 dwarf2_frame_this_id,
1434 dwarf2_frame_prev_register,
1435 NULL,
111c6489
JK
1436 dwarf2_frame_sniffer,
1437 dwarf2_frame_dealloc_cache
4a4e5149
DJ
1438};
1439
1440static const struct frame_unwind dwarf2_signal_frame_unwind =
1441{
1442 SIGTRAMP_FRAME,
8fbca658 1443 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1444 dwarf2_frame_this_id,
1445 dwarf2_frame_prev_register,
1446 NULL,
111c6489
JK
1447 dwarf2_frame_sniffer,
1448
1449 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1450 NULL
4a4e5149 1451};
cfc14b3a 1452
4a4e5149
DJ
1453/* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1454
1455void
1456dwarf2_append_unwinders (struct gdbarch *gdbarch)
1457{
111c6489
JK
1458 /* TAILCALL_FRAME must be first to find the record by
1459 dwarf2_tailcall_sniffer_first. */
1460 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1461
4a4e5149
DJ
1462 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1463 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
cfc14b3a
MK
1464}
1465\f
1466
1467/* There is no explicitly defined relationship between the CFA and the
1468 location of frame's local variables and arguments/parameters.
1469 Therefore, frame base methods on this page should probably only be
1470 used as a last resort, just to avoid printing total garbage as a
1471 response to the "info frame" command. */
1472
1473static CORE_ADDR
4a4e5149 1474dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
1475{
1476 struct dwarf2_frame_cache *cache =
4a4e5149 1477 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a
MK
1478
1479 return cache->cfa;
1480}
1481
1482static const struct frame_base dwarf2_frame_base =
1483{
1484 &dwarf2_frame_unwind,
1485 dwarf2_frame_base_address,
1486 dwarf2_frame_base_address,
1487 dwarf2_frame_base_address
1488};
1489
1490const struct frame_base *
4a4e5149 1491dwarf2_frame_base_sniffer (struct frame_info *this_frame)
cfc14b3a 1492{
4a4e5149 1493 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
9a619af0 1494
ac56253d 1495 if (dwarf2_frame_find_fde (&block_addr, NULL))
cfc14b3a
MK
1496 return &dwarf2_frame_base;
1497
1498 return NULL;
1499}
e7802207
TT
1500
1501/* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1502 the DWARF unwinder. This is used to implement
1503 DW_OP_call_frame_cfa. */
1504
1505CORE_ADDR
1506dwarf2_frame_cfa (struct frame_info *this_frame)
1507{
0b722aec
MM
1508 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1509 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1510 throw_error (NOT_AVAILABLE_ERROR,
1511 _("cfa not available for record btrace target"));
1512
e7802207
TT
1513 while (get_frame_type (this_frame) == INLINE_FRAME)
1514 this_frame = get_prev_frame (this_frame);
32261e52
MM
1515 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1516 throw_error (NOT_AVAILABLE_ERROR,
1517 _("can't compute CFA for this frame: "
1518 "required registers or memory are unavailable"));
14aba1ac
JB
1519
1520 if (get_frame_id (this_frame).stack_status != FID_STACK_VALID)
1521 throw_error (NOT_AVAILABLE_ERROR,
1522 _("can't compute CFA for this frame: "
1523 "frame base not available"));
1524
e7802207
TT
1525 return get_frame_base (this_frame);
1526}
cfc14b3a 1527\f
8f22cb90 1528const struct objfile_data *dwarf2_frame_objfile_data;
0d0e1a63 1529
cfc14b3a 1530static unsigned int
f664829e 1531read_1_byte (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1532{
852483bc 1533 return bfd_get_8 (abfd, buf);
cfc14b3a
MK
1534}
1535
1536static unsigned int
f664829e 1537read_4_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1538{
852483bc 1539 return bfd_get_32 (abfd, buf);
cfc14b3a
MK
1540}
1541
1542static ULONGEST
f664829e 1543read_8_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1544{
852483bc 1545 return bfd_get_64 (abfd, buf);
cfc14b3a
MK
1546}
1547
1548static ULONGEST
f664829e
DE
1549read_initial_length (bfd *abfd, const gdb_byte *buf,
1550 unsigned int *bytes_read_ptr)
cfc14b3a
MK
1551{
1552 LONGEST result;
1553
852483bc 1554 result = bfd_get_32 (abfd, buf);
cfc14b3a
MK
1555 if (result == 0xffffffff)
1556 {
852483bc 1557 result = bfd_get_64 (abfd, buf + 4);
cfc14b3a
MK
1558 *bytes_read_ptr = 12;
1559 }
1560 else
1561 *bytes_read_ptr = 4;
1562
1563 return result;
1564}
1565\f
1566
1567/* Pointer encoding helper functions. */
1568
1569/* GCC supports exception handling based on DWARF2 CFI. However, for
1570 technical reasons, it encodes addresses in its FDE's in a different
1571 way. Several "pointer encodings" are supported. The encoding
1572 that's used for a particular FDE is determined by the 'R'
1573 augmentation in the associated CIE. The argument of this
1574 augmentation is a single byte.
1575
1576 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1577 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1578 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1579 address should be interpreted (absolute, relative to the current
1580 position in the FDE, ...). Bit 7, indicates that the address
1581 should be dereferenced. */
1582
852483bc 1583static gdb_byte
cfc14b3a
MK
1584encoding_for_size (unsigned int size)
1585{
1586 switch (size)
1587 {
1588 case 2:
1589 return DW_EH_PE_udata2;
1590 case 4:
1591 return DW_EH_PE_udata4;
1592 case 8:
1593 return DW_EH_PE_udata8;
1594 default:
e2e0b3e5 1595 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1596 }
1597}
1598
cfc14b3a 1599static CORE_ADDR
852483bc 1600read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e
TT
1601 int ptr_len, const gdb_byte *buf,
1602 unsigned int *bytes_read_ptr,
ae0d2f24 1603 CORE_ADDR func_base)
cfc14b3a 1604{
68f6cf99 1605 ptrdiff_t offset;
cfc14b3a
MK
1606 CORE_ADDR base;
1607
1608 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1609 FDE's. */
1610 if (encoding & DW_EH_PE_indirect)
1611 internal_error (__FILE__, __LINE__,
e2e0b3e5 1612 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1613
68f6cf99
MK
1614 *bytes_read_ptr = 0;
1615
cfc14b3a
MK
1616 switch (encoding & 0x70)
1617 {
1618 case DW_EH_PE_absptr:
1619 base = 0;
1620 break;
1621 case DW_EH_PE_pcrel:
f2fec864 1622 base = bfd_get_section_vma (unit->abfd, unit->dwarf_frame_section);
852483bc 1623 base += (buf - unit->dwarf_frame_buffer);
cfc14b3a 1624 break;
0912c7f2
MK
1625 case DW_EH_PE_datarel:
1626 base = unit->dbase;
1627 break;
0fd85043
CV
1628 case DW_EH_PE_textrel:
1629 base = unit->tbase;
1630 break;
03ac2a74 1631 case DW_EH_PE_funcrel:
ae0d2f24 1632 base = func_base;
03ac2a74 1633 break;
68f6cf99
MK
1634 case DW_EH_PE_aligned:
1635 base = 0;
852483bc 1636 offset = buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1637 if ((offset % ptr_len) != 0)
1638 {
1639 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1640 buf += *bytes_read_ptr;
1641 }
1642 break;
cfc14b3a 1643 default:
3e43a32a
MS
1644 internal_error (__FILE__, __LINE__,
1645 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1646 }
1647
b04de778 1648 if ((encoding & 0x07) == 0x00)
f2fec864
DJ
1649 {
1650 encoding |= encoding_for_size (ptr_len);
1651 if (bfd_get_sign_extend_vma (unit->abfd))
1652 encoding |= DW_EH_PE_signed;
1653 }
cfc14b3a
MK
1654
1655 switch (encoding & 0x0f)
1656 {
a81b10ae
MK
1657 case DW_EH_PE_uleb128:
1658 {
9fccedf7 1659 uint64_t value;
0d45f56e 1660 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1661
f664829e 1662 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1663 return base + value;
1664 }
cfc14b3a 1665 case DW_EH_PE_udata2:
68f6cf99 1666 *bytes_read_ptr += 2;
cfc14b3a
MK
1667 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1668 case DW_EH_PE_udata4:
68f6cf99 1669 *bytes_read_ptr += 4;
cfc14b3a
MK
1670 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1671 case DW_EH_PE_udata8:
68f6cf99 1672 *bytes_read_ptr += 8;
cfc14b3a 1673 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1674 case DW_EH_PE_sleb128:
1675 {
9fccedf7 1676 int64_t value;
0d45f56e 1677 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1678
f664829e 1679 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1680 return base + value;
1681 }
cfc14b3a 1682 case DW_EH_PE_sdata2:
68f6cf99 1683 *bytes_read_ptr += 2;
cfc14b3a
MK
1684 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1685 case DW_EH_PE_sdata4:
68f6cf99 1686 *bytes_read_ptr += 4;
cfc14b3a
MK
1687 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1688 case DW_EH_PE_sdata8:
68f6cf99 1689 *bytes_read_ptr += 8;
cfc14b3a
MK
1690 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1691 default:
3e43a32a
MS
1692 internal_error (__FILE__, __LINE__,
1693 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1694 }
1695}
1696\f
1697
b01c8410
PP
1698static int
1699bsearch_cie_cmp (const void *key, const void *element)
cfc14b3a 1700{
b01c8410
PP
1701 ULONGEST cie_pointer = *(ULONGEST *) key;
1702 struct dwarf2_cie *cie = *(struct dwarf2_cie **) element;
cfc14b3a 1703
b01c8410
PP
1704 if (cie_pointer == cie->cie_pointer)
1705 return 0;
cfc14b3a 1706
b01c8410
PP
1707 return (cie_pointer < cie->cie_pointer) ? -1 : 1;
1708}
1709
1710/* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1711static struct dwarf2_cie *
1712find_cie (struct dwarf2_cie_table *cie_table, ULONGEST cie_pointer)
1713{
1714 struct dwarf2_cie **p_cie;
cfc14b3a 1715
65a97ab3
PP
1716 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1717 bsearch be non-NULL. */
1718 if (cie_table->entries == NULL)
1719 {
1720 gdb_assert (cie_table->num_entries == 0);
1721 return NULL;
1722 }
1723
9a3c8263
SM
1724 p_cie = ((struct dwarf2_cie **)
1725 bsearch (&cie_pointer, cie_table->entries, cie_table->num_entries,
1726 sizeof (cie_table->entries[0]), bsearch_cie_cmp));
b01c8410
PP
1727 if (p_cie != NULL)
1728 return *p_cie;
cfc14b3a
MK
1729 return NULL;
1730}
1731
b01c8410 1732/* Add a pointer to new CIE to the CIE_TABLE, allocating space for it. */
cfc14b3a 1733static void
b01c8410 1734add_cie (struct dwarf2_cie_table *cie_table, struct dwarf2_cie *cie)
cfc14b3a 1735{
b01c8410
PP
1736 const int n = cie_table->num_entries;
1737
1738 gdb_assert (n < 1
1739 || cie_table->entries[n - 1]->cie_pointer < cie->cie_pointer);
1740
224c3ddb
SM
1741 cie_table->entries
1742 = XRESIZEVEC (struct dwarf2_cie *, cie_table->entries, n + 1);
b01c8410
PP
1743 cie_table->entries[n] = cie;
1744 cie_table->num_entries = n + 1;
1745}
1746
1747static int
1748bsearch_fde_cmp (const void *key, const void *element)
1749{
1750 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1751 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
9a619af0 1752
b01c8410
PP
1753 if (seek_pc < fde->initial_location)
1754 return -1;
1755 if (seek_pc < fde->initial_location + fde->address_range)
1756 return 0;
1757 return 1;
cfc14b3a
MK
1758}
1759
1760/* Find the FDE for *PC. Return a pointer to the FDE, and store the
1761 inital location associated with it into *PC. */
1762
1763static struct dwarf2_fde *
ac56253d 1764dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
cfc14b3a
MK
1765{
1766 struct objfile *objfile;
1767
1768 ALL_OBJFILES (objfile)
1769 {
b01c8410
PP
1770 struct dwarf2_fde_table *fde_table;
1771 struct dwarf2_fde **p_fde;
cfc14b3a 1772 CORE_ADDR offset;
b01c8410 1773 CORE_ADDR seek_pc;
cfc14b3a 1774
9a3c8263
SM
1775 fde_table = ((struct dwarf2_fde_table *)
1776 objfile_data (objfile, dwarf2_frame_objfile_data));
b01c8410 1777 if (fde_table == NULL)
be391dca
TT
1778 {
1779 dwarf2_build_frame_info (objfile);
9a3c8263
SM
1780 fde_table = ((struct dwarf2_fde_table *)
1781 objfile_data (objfile, dwarf2_frame_objfile_data));
be391dca
TT
1782 }
1783 gdb_assert (fde_table != NULL);
1784
1785 if (fde_table->num_entries == 0)
4ae9ee8e
DJ
1786 continue;
1787
1788 gdb_assert (objfile->section_offsets);
1789 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1790
b01c8410
PP
1791 gdb_assert (fde_table->num_entries > 0);
1792 if (*pc < offset + fde_table->entries[0]->initial_location)
1793 continue;
1794
1795 seek_pc = *pc - offset;
9a3c8263
SM
1796 p_fde = ((struct dwarf2_fde **)
1797 bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1798 sizeof (fde_table->entries[0]), bsearch_fde_cmp));
b01c8410
PP
1799 if (p_fde != NULL)
1800 {
1801 *pc = (*p_fde)->initial_location + offset;
ac56253d
TT
1802 if (out_offset)
1803 *out_offset = offset;
b01c8410
PP
1804 return *p_fde;
1805 }
cfc14b3a 1806 }
cfc14b3a
MK
1807 return NULL;
1808}
1809
b01c8410 1810/* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
cfc14b3a 1811static void
b01c8410 1812add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
cfc14b3a 1813{
b01c8410
PP
1814 if (fde->address_range == 0)
1815 /* Discard useless FDEs. */
1816 return;
1817
1818 fde_table->num_entries += 1;
224c3ddb
SM
1819 fde_table->entries = XRESIZEVEC (struct dwarf2_fde *, fde_table->entries,
1820 fde_table->num_entries);
b01c8410 1821 fde_table->entries[fde_table->num_entries - 1] = fde;
cfc14b3a
MK
1822}
1823
cfc14b3a 1824#define DW64_CIE_ID 0xffffffffffffffffULL
cfc14b3a 1825
8bd90839
FM
1826/* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1827 or any of them. */
1828
1829enum eh_frame_type
1830{
1831 EH_CIE_TYPE_ID = 1 << 0,
1832 EH_FDE_TYPE_ID = 1 << 1,
1833 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1834};
1835
f664829e
DE
1836static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1837 const gdb_byte *start,
1838 int eh_frame_p,
1839 struct dwarf2_cie_table *cie_table,
1840 struct dwarf2_fde_table *fde_table,
1841 enum eh_frame_type entry_type);
8bd90839
FM
1842
1843/* Decode the next CIE or FDE, entry_type specifies the expected type.
1844 Return NULL if invalid input, otherwise the next byte to be processed. */
cfc14b3a 1845
f664829e
DE
1846static const gdb_byte *
1847decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1848 int eh_frame_p,
b01c8410 1849 struct dwarf2_cie_table *cie_table,
8bd90839
FM
1850 struct dwarf2_fde_table *fde_table,
1851 enum eh_frame_type entry_type)
cfc14b3a 1852{
5e2b427d 1853 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
f664829e 1854 const gdb_byte *buf, *end;
cfc14b3a
MK
1855 LONGEST length;
1856 unsigned int bytes_read;
6896c0c7
RH
1857 int dwarf64_p;
1858 ULONGEST cie_id;
cfc14b3a 1859 ULONGEST cie_pointer;
9fccedf7
DE
1860 int64_t sleb128;
1861 uint64_t uleb128;
cfc14b3a 1862
6896c0c7 1863 buf = start;
cfc14b3a
MK
1864 length = read_initial_length (unit->abfd, buf, &bytes_read);
1865 buf += bytes_read;
1866 end = buf + length;
1867
0963b4bd 1868 /* Are we still within the section? */
6896c0c7
RH
1869 if (end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1870 return NULL;
1871
cfc14b3a
MK
1872 if (length == 0)
1873 return end;
1874
6896c0c7
RH
1875 /* Distinguish between 32 and 64-bit encoded frame info. */
1876 dwarf64_p = (bytes_read == 12);
cfc14b3a 1877
6896c0c7 1878 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1879 if (eh_frame_p)
1880 cie_id = 0;
1881 else if (dwarf64_p)
1882 cie_id = DW64_CIE_ID;
6896c0c7
RH
1883 else
1884 cie_id = DW_CIE_ID;
cfc14b3a
MK
1885
1886 if (dwarf64_p)
1887 {
1888 cie_pointer = read_8_bytes (unit->abfd, buf);
1889 buf += 8;
1890 }
1891 else
1892 {
1893 cie_pointer = read_4_bytes (unit->abfd, buf);
1894 buf += 4;
1895 }
1896
1897 if (cie_pointer == cie_id)
1898 {
1899 /* This is a CIE. */
1900 struct dwarf2_cie *cie;
1901 char *augmentation;
28ba0b33 1902 unsigned int cie_version;
cfc14b3a 1903
8bd90839
FM
1904 /* Check that a CIE was expected. */
1905 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1906 error (_("Found a CIE when not expecting it."));
1907
cfc14b3a
MK
1908 /* Record the offset into the .debug_frame section of this CIE. */
1909 cie_pointer = start - unit->dwarf_frame_buffer;
1910
1911 /* Check whether we've already read it. */
b01c8410 1912 if (find_cie (cie_table, cie_pointer))
cfc14b3a
MK
1913 return end;
1914
8d749320 1915 cie = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_cie);
cfc14b3a
MK
1916 cie->initial_instructions = NULL;
1917 cie->cie_pointer = cie_pointer;
1918
1919 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1920 depends on the target address size. */
1921 cie->encoding = DW_EH_PE_absptr;
cfc14b3a 1922
56c987f6
AO
1923 /* We'll determine the final value later, but we need to
1924 initialize it conservatively. */
1925 cie->signal_frame = 0;
1926
cfc14b3a 1927 /* Check version number. */
28ba0b33 1928 cie_version = read_1_byte (unit->abfd, buf);
2dc7f7b3 1929 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
6896c0c7 1930 return NULL;
303b6f5d 1931 cie->version = cie_version;
cfc14b3a
MK
1932 buf += 1;
1933
1934 /* Interpret the interesting bits of the augmentation. */
303b6f5d 1935 cie->augmentation = augmentation = (char *) buf;
852483bc 1936 buf += (strlen (augmentation) + 1);
cfc14b3a 1937
303b6f5d
DJ
1938 /* Ignore armcc augmentations. We only use them for quirks,
1939 and that doesn't happen until later. */
61012eef 1940 if (startswith (augmentation, "armcc"))
303b6f5d
DJ
1941 augmentation += strlen (augmentation);
1942
cfc14b3a
MK
1943 /* The GCC 2.x "eh" augmentation has a pointer immediately
1944 following the augmentation string, so it must be handled
1945 first. */
1946 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1947 {
1948 /* Skip. */
5e2b427d 1949 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
cfc14b3a
MK
1950 augmentation += 2;
1951 }
1952
2dc7f7b3
TT
1953 if (cie->version >= 4)
1954 {
1955 /* FIXME: check that this is the same as from the CU header. */
1956 cie->addr_size = read_1_byte (unit->abfd, buf);
1957 ++buf;
1958 cie->segment_size = read_1_byte (unit->abfd, buf);
1959 ++buf;
1960 }
1961 else
1962 {
8da614df 1963 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
2dc7f7b3
TT
1964 cie->segment_size = 0;
1965 }
8da614df
CV
1966 /* Address values in .eh_frame sections are defined to have the
1967 target's pointer size. Watchout: This breaks frame info for
1968 targets with pointer size < address size, unless a .debug_frame
0963b4bd 1969 section exists as well. */
8da614df
CV
1970 if (eh_frame_p)
1971 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1972 else
1973 cie->ptr_size = cie->addr_size;
2dc7f7b3 1974
f664829e
DE
1975 buf = gdb_read_uleb128 (buf, end, &uleb128);
1976 if (buf == NULL)
1977 return NULL;
1978 cie->code_alignment_factor = uleb128;
cfc14b3a 1979
f664829e
DE
1980 buf = gdb_read_sleb128 (buf, end, &sleb128);
1981 if (buf == NULL)
1982 return NULL;
1983 cie->data_alignment_factor = sleb128;
cfc14b3a 1984
28ba0b33
PB
1985 if (cie_version == 1)
1986 {
1987 cie->return_address_register = read_1_byte (unit->abfd, buf);
f664829e 1988 ++buf;
28ba0b33
PB
1989 }
1990 else
f664829e
DE
1991 {
1992 buf = gdb_read_uleb128 (buf, end, &uleb128);
1993 if (buf == NULL)
1994 return NULL;
1995 cie->return_address_register = uleb128;
1996 }
1997
4fc771b8 1998 cie->return_address_register
5e2b427d 1999 = dwarf2_frame_adjust_regnum (gdbarch,
4fc771b8
DJ
2000 cie->return_address_register,
2001 eh_frame_p);
4bf8967c 2002
7131cb6e
RH
2003 cie->saw_z_augmentation = (*augmentation == 'z');
2004 if (cie->saw_z_augmentation)
cfc14b3a 2005 {
9fccedf7 2006 uint64_t length;
cfc14b3a 2007
f664829e
DE
2008 buf = gdb_read_uleb128 (buf, end, &length);
2009 if (buf == NULL)
6896c0c7 2010 return NULL;
cfc14b3a
MK
2011 cie->initial_instructions = buf + length;
2012 augmentation++;
2013 }
2014
2015 while (*augmentation)
2016 {
2017 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
2018 if (*augmentation == 'L')
2019 {
2020 /* Skip. */
2021 buf++;
2022 augmentation++;
2023 }
2024
2025 /* "R" indicates a byte indicating how FDE addresses are encoded. */
2026 else if (*augmentation == 'R')
2027 {
2028 cie->encoding = *buf++;
2029 augmentation++;
2030 }
2031
2032 /* "P" indicates a personality routine in the CIE augmentation. */
2033 else if (*augmentation == 'P')
2034 {
1234d960 2035 /* Skip. Avoid indirection since we throw away the result. */
852483bc 2036 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
8da614df 2037 read_encoded_value (unit, encoding, cie->ptr_size,
ae0d2f24 2038 buf, &bytes_read, 0);
f724bf08 2039 buf += bytes_read;
cfc14b3a
MK
2040 augmentation++;
2041 }
2042
56c987f6
AO
2043 /* "S" indicates a signal frame, such that the return
2044 address must not be decremented to locate the call frame
2045 info for the previous frame; it might even be the first
2046 instruction of a function, so decrementing it would take
2047 us to a different function. */
2048 else if (*augmentation == 'S')
2049 {
2050 cie->signal_frame = 1;
2051 augmentation++;
2052 }
2053
3e9a2e52
DJ
2054 /* Otherwise we have an unknown augmentation. Assume that either
2055 there is no augmentation data, or we saw a 'z' prefix. */
cfc14b3a
MK
2056 else
2057 {
3e9a2e52
DJ
2058 if (cie->initial_instructions)
2059 buf = cie->initial_instructions;
cfc14b3a
MK
2060 break;
2061 }
2062 }
2063
2064 cie->initial_instructions = buf;
2065 cie->end = end;
b01c8410 2066 cie->unit = unit;
cfc14b3a 2067
b01c8410 2068 add_cie (cie_table, cie);
cfc14b3a
MK
2069 }
2070 else
2071 {
2072 /* This is a FDE. */
2073 struct dwarf2_fde *fde;
3e29f34a 2074 CORE_ADDR addr;
cfc14b3a 2075
8bd90839
FM
2076 /* Check that an FDE was expected. */
2077 if ((entry_type & EH_FDE_TYPE_ID) == 0)
2078 error (_("Found an FDE when not expecting it."));
2079
6896c0c7
RH
2080 /* In an .eh_frame section, the CIE pointer is the delta between the
2081 address within the FDE where the CIE pointer is stored and the
2082 address of the CIE. Convert it to an offset into the .eh_frame
2083 section. */
cfc14b3a
MK
2084 if (eh_frame_p)
2085 {
cfc14b3a
MK
2086 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
2087 cie_pointer -= (dwarf64_p ? 8 : 4);
2088 }
2089
6896c0c7
RH
2090 /* In either case, validate the result is still within the section. */
2091 if (cie_pointer >= unit->dwarf_frame_size)
2092 return NULL;
2093
8d749320 2094 fde = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_fde);
b01c8410 2095 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2096 if (fde->cie == NULL)
2097 {
2098 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
8bd90839
FM
2099 eh_frame_p, cie_table, fde_table,
2100 EH_CIE_TYPE_ID);
b01c8410 2101 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2102 }
2103
2104 gdb_assert (fde->cie != NULL);
2105
3e29f34a
MR
2106 addr = read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2107 buf, &bytes_read, 0);
2108 fde->initial_location = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
cfc14b3a
MK
2109 buf += bytes_read;
2110
2111 fde->address_range =
ae0d2f24 2112 read_encoded_value (unit, fde->cie->encoding & 0x0f,
8da614df 2113 fde->cie->ptr_size, buf, &bytes_read, 0);
3e29f34a
MR
2114 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + fde->address_range);
2115 fde->address_range = addr - fde->initial_location;
cfc14b3a
MK
2116 buf += bytes_read;
2117
7131cb6e
RH
2118 /* A 'z' augmentation in the CIE implies the presence of an
2119 augmentation field in the FDE as well. The only thing known
2120 to be in here at present is the LSDA entry for EH. So we
2121 can skip the whole thing. */
2122 if (fde->cie->saw_z_augmentation)
2123 {
9fccedf7 2124 uint64_t length;
7131cb6e 2125
f664829e
DE
2126 buf = gdb_read_uleb128 (buf, end, &length);
2127 if (buf == NULL)
2128 return NULL;
2129 buf += length;
6896c0c7
RH
2130 if (buf > end)
2131 return NULL;
7131cb6e
RH
2132 }
2133
cfc14b3a
MK
2134 fde->instructions = buf;
2135 fde->end = end;
2136
4bf8967c
AS
2137 fde->eh_frame_p = eh_frame_p;
2138
b01c8410 2139 add_fde (fde_table, fde);
cfc14b3a
MK
2140 }
2141
2142 return end;
2143}
6896c0c7 2144
8bd90839
FM
2145/* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2146 expect an FDE or a CIE. */
2147
f664829e
DE
2148static const gdb_byte *
2149decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2150 int eh_frame_p,
b01c8410 2151 struct dwarf2_cie_table *cie_table,
8bd90839
FM
2152 struct dwarf2_fde_table *fde_table,
2153 enum eh_frame_type entry_type)
6896c0c7
RH
2154{
2155 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
f664829e 2156 const gdb_byte *ret;
6896c0c7
RH
2157 ptrdiff_t start_offset;
2158
2159 while (1)
2160 {
b01c8410 2161 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
8bd90839 2162 cie_table, fde_table, entry_type);
6896c0c7
RH
2163 if (ret != NULL)
2164 break;
2165
2166 /* We have corrupt input data of some form. */
2167
2168 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2169 and mismatches wrt padding and alignment of debug sections. */
2170 /* Note that there is no requirement in the standard for any
2171 alignment at all in the frame unwind sections. Testing for
2172 alignment before trying to interpret data would be incorrect.
2173
2174 However, GCC traditionally arranged for frame sections to be
2175 sized such that the FDE length and CIE fields happen to be
2176 aligned (in theory, for performance). This, unfortunately,
2177 was done with .align directives, which had the side effect of
2178 forcing the section to be aligned by the linker.
2179
2180 This becomes a problem when you have some other producer that
2181 creates frame sections that are not as strictly aligned. That
2182 produces a hole in the frame info that gets filled by the
2183 linker with zeros.
2184
2185 The GCC behaviour is arguably a bug, but it's effectively now
2186 part of the ABI, so we're now stuck with it, at least at the
2187 object file level. A smart linker may decide, in the process
2188 of compressing duplicate CIE information, that it can rewrite
2189 the entire output section without this extra padding. */
2190
2191 start_offset = start - unit->dwarf_frame_buffer;
2192 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2193 {
2194 start += 4 - (start_offset & 3);
2195 workaround = ALIGN4;
2196 continue;
2197 }
2198 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2199 {
2200 start += 8 - (start_offset & 7);
2201 workaround = ALIGN8;
2202 continue;
2203 }
2204
2205 /* Nothing left to try. Arrange to return as if we've consumed
2206 the entire input section. Hopefully we'll get valid info from
2207 the other of .debug_frame/.eh_frame. */
2208 workaround = FAIL;
2209 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2210 break;
2211 }
2212
2213 switch (workaround)
2214 {
2215 case NONE:
2216 break;
2217
2218 case ALIGN4:
3e43a32a
MS
2219 complaint (&symfile_complaints, _("\
2220Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
2221 unit->dwarf_frame_section->owner->filename,
2222 unit->dwarf_frame_section->name);
2223 break;
2224
2225 case ALIGN8:
3e43a32a
MS
2226 complaint (&symfile_complaints, _("\
2227Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
2228 unit->dwarf_frame_section->owner->filename,
2229 unit->dwarf_frame_section->name);
2230 break;
2231
2232 default:
2233 complaint (&symfile_complaints,
e2e0b3e5 2234 _("Corrupt data in %s:%s"),
6896c0c7
RH
2235 unit->dwarf_frame_section->owner->filename,
2236 unit->dwarf_frame_section->name);
2237 break;
2238 }
2239
2240 return ret;
2241}
cfc14b3a 2242\f
b01c8410
PP
2243static int
2244qsort_fde_cmp (const void *a, const void *b)
2245{
2246 struct dwarf2_fde *aa = *(struct dwarf2_fde **)a;
2247 struct dwarf2_fde *bb = *(struct dwarf2_fde **)b;
e5af178f 2248
b01c8410 2249 if (aa->initial_location == bb->initial_location)
e5af178f
PP
2250 {
2251 if (aa->address_range != bb->address_range
2252 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2253 /* Linker bug, e.g. gold/10400.
2254 Work around it by keeping stable sort order. */
2255 return (a < b) ? -1 : 1;
2256 else
2257 /* Put eh_frame entries after debug_frame ones. */
2258 return aa->eh_frame_p - bb->eh_frame_p;
2259 }
b01c8410
PP
2260
2261 return (aa->initial_location < bb->initial_location) ? -1 : 1;
2262}
2263
cfc14b3a
MK
2264void
2265dwarf2_build_frame_info (struct objfile *objfile)
2266{
ae0d2f24 2267 struct comp_unit *unit;
f664829e 2268 const gdb_byte *frame_ptr;
b01c8410
PP
2269 struct dwarf2_cie_table cie_table;
2270 struct dwarf2_fde_table fde_table;
be391dca 2271 struct dwarf2_fde_table *fde_table2;
b01c8410
PP
2272
2273 cie_table.num_entries = 0;
2274 cie_table.entries = NULL;
2275
2276 fde_table.num_entries = 0;
2277 fde_table.entries = NULL;
cfc14b3a
MK
2278
2279 /* Build a minimal decoding of the DWARF2 compilation unit. */
ae0d2f24
UW
2280 unit = (struct comp_unit *) obstack_alloc (&objfile->objfile_obstack,
2281 sizeof (struct comp_unit));
2282 unit->abfd = objfile->obfd;
2283 unit->objfile = objfile;
2284 unit->dbase = 0;
2285 unit->tbase = 0;
cfc14b3a 2286
d40102a1 2287 if (objfile->separate_debug_objfile_backlink == NULL)
cfc14b3a 2288 {
d40102a1
JB
2289 /* Do not read .eh_frame from separate file as they must be also
2290 present in the main file. */
2291 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2292 &unit->dwarf_frame_section,
2293 &unit->dwarf_frame_buffer,
2294 &unit->dwarf_frame_size);
2295 if (unit->dwarf_frame_size)
b01c8410 2296 {
d40102a1
JB
2297 asection *got, *txt;
2298
2299 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2300 that is used for the i386/amd64 target, which currently is
2301 the only target in GCC that supports/uses the
2302 DW_EH_PE_datarel encoding. */
2303 got = bfd_get_section_by_name (unit->abfd, ".got");
2304 if (got)
2305 unit->dbase = got->vma;
2306
2307 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2308 so far. */
2309 txt = bfd_get_section_by_name (unit->abfd, ".text");
2310 if (txt)
2311 unit->tbase = txt->vma;
2312
492d29ea 2313 TRY
8bd90839
FM
2314 {
2315 frame_ptr = unit->dwarf_frame_buffer;
2316 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2317 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
2318 &cie_table, &fde_table,
2319 EH_CIE_OR_FDE_TYPE_ID);
2320 }
2321
492d29ea 2322 CATCH (e, RETURN_MASK_ERROR)
8bd90839
FM
2323 {
2324 warning (_("skipping .eh_frame info of %s: %s"),
4262abfb 2325 objfile_name (objfile), e.message);
8bd90839
FM
2326
2327 if (fde_table.num_entries != 0)
2328 {
2329 xfree (fde_table.entries);
2330 fde_table.entries = NULL;
2331 fde_table.num_entries = 0;
2332 }
2333 /* The cie_table is discarded by the next if. */
2334 }
492d29ea 2335 END_CATCH
d40102a1
JB
2336
2337 if (cie_table.num_entries != 0)
2338 {
2339 /* Reinit cie_table: debug_frame has different CIEs. */
2340 xfree (cie_table.entries);
2341 cie_table.num_entries = 0;
2342 cie_table.entries = NULL;
2343 }
b01c8410 2344 }
cfc14b3a
MK
2345 }
2346
3017a003 2347 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
dce234bc
PP
2348 &unit->dwarf_frame_section,
2349 &unit->dwarf_frame_buffer,
2350 &unit->dwarf_frame_size);
2351 if (unit->dwarf_frame_size)
cfc14b3a 2352 {
8bd90839
FM
2353 int num_old_fde_entries = fde_table.num_entries;
2354
492d29ea 2355 TRY
8bd90839
FM
2356 {
2357 frame_ptr = unit->dwarf_frame_buffer;
2358 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2359 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
2360 &cie_table, &fde_table,
2361 EH_CIE_OR_FDE_TYPE_ID);
2362 }
492d29ea 2363 CATCH (e, RETURN_MASK_ERROR)
8bd90839
FM
2364 {
2365 warning (_("skipping .debug_frame info of %s: %s"),
4262abfb 2366 objfile_name (objfile), e.message);
8bd90839
FM
2367
2368 if (fde_table.num_entries != 0)
2369 {
2370 fde_table.num_entries = num_old_fde_entries;
2371 if (num_old_fde_entries == 0)
2372 {
2373 xfree (fde_table.entries);
2374 fde_table.entries = NULL;
2375 }
2376 else
2377 {
224c3ddb
SM
2378 fde_table.entries
2379 = XRESIZEVEC (struct dwarf2_fde *, fde_table.entries,
2380 fde_table.num_entries);
8bd90839
FM
2381 }
2382 }
2383 fde_table.num_entries = num_old_fde_entries;
2384 /* The cie_table is discarded by the next if. */
2385 }
492d29ea 2386 END_CATCH
b01c8410
PP
2387 }
2388
2389 /* Discard the cie_table, it is no longer needed. */
2390 if (cie_table.num_entries != 0)
2391 {
2392 xfree (cie_table.entries);
2393 cie_table.entries = NULL; /* Paranoia. */
2394 cie_table.num_entries = 0; /* Paranoia. */
2395 }
2396
be391dca 2397 /* Copy fde_table to obstack: it is needed at runtime. */
8d749320 2398 fde_table2 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_fde_table);
be391dca
TT
2399
2400 if (fde_table.num_entries == 0)
2401 {
2402 fde_table2->entries = NULL;
2403 fde_table2->num_entries = 0;
2404 }
2405 else
b01c8410 2406 {
875cdfbb
PA
2407 struct dwarf2_fde *fde_prev = NULL;
2408 struct dwarf2_fde *first_non_zero_fde = NULL;
2409 int i;
b01c8410
PP
2410
2411 /* Prepare FDE table for lookups. */
2412 qsort (fde_table.entries, fde_table.num_entries,
2413 sizeof (fde_table.entries[0]), qsort_fde_cmp);
2414
875cdfbb
PA
2415 /* Check for leftovers from --gc-sections. The GNU linker sets
2416 the relevant symbols to zero, but doesn't zero the FDE *end*
2417 ranges because there's no relocation there. It's (offset,
2418 length), not (start, end). On targets where address zero is
2419 just another valid address this can be a problem, since the
2420 FDEs appear to be non-empty in the output --- we could pick
2421 out the wrong FDE. To work around this, when overlaps are
2422 detected, we prefer FDEs that do not start at zero.
2423
2424 Start by finding the first FDE with non-zero start. Below
2425 we'll discard all FDEs that start at zero and overlap this
2426 one. */
2427 for (i = 0; i < fde_table.num_entries; i++)
2428 {
2429 struct dwarf2_fde *fde = fde_table.entries[i];
b01c8410 2430
875cdfbb
PA
2431 if (fde->initial_location != 0)
2432 {
2433 first_non_zero_fde = fde;
2434 break;
2435 }
2436 }
2437
2438 /* Since we'll be doing bsearch, squeeze out identical (except
2439 for eh_frame_p) fde entries so bsearch result is predictable.
2440 Also discard leftovers from --gc-sections. */
be391dca 2441 fde_table2->num_entries = 0;
875cdfbb
PA
2442 for (i = 0; i < fde_table.num_entries; i++)
2443 {
2444 struct dwarf2_fde *fde = fde_table.entries[i];
2445
2446 if (fde->initial_location == 0
2447 && first_non_zero_fde != NULL
2448 && (first_non_zero_fde->initial_location
2449 < fde->initial_location + fde->address_range))
2450 continue;
2451
2452 if (fde_prev != NULL
2453 && fde_prev->initial_location == fde->initial_location)
2454 continue;
2455
2456 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2457 sizeof (fde_table.entries[0]));
2458 ++fde_table2->num_entries;
2459 fde_prev = fde;
2460 }
224c3ddb
SM
2461 fde_table2->entries
2462 = (struct dwarf2_fde **) obstack_finish (&objfile->objfile_obstack);
b01c8410
PP
2463
2464 /* Discard the original fde_table. */
2465 xfree (fde_table.entries);
cfc14b3a 2466 }
be391dca
TT
2467
2468 set_objfile_data (objfile, dwarf2_frame_objfile_data, fde_table2);
cfc14b3a 2469}
0d0e1a63
MK
2470
2471/* Provide a prototype to silence -Wmissing-prototypes. */
2472void _initialize_dwarf2_frame (void);
2473
2474void
2475_initialize_dwarf2_frame (void)
2476{
030f20e1 2477 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
8f22cb90 2478 dwarf2_frame_objfile_data = register_objfile_data ();
0d0e1a63 2479}
This page took 0.999437 seconds and 4 git commands to generate.