sort_gnu_build_notes fix
[deliverable/binutils-gdb.git] / gdb / dwarf2-frame.c
CommitLineData
cfc14b3a
MK
1/* Frame unwinder for frames with DWARF Call Frame Information.
2
42a4f53d 3 Copyright (C) 2003-2019 Free Software Foundation, Inc.
cfc14b3a
MK
4
5 Contributed by Mark Kettenis.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
cfc14b3a
MK
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
cfc14b3a
MK
21
22#include "defs.h"
d55e5aa6 23#include "dwarf2expr.h"
4de283e4
TT
24#include "dwarf2.h"
25#include "frame.h"
cfc14b3a
MK
26#include "frame-base.h"
27#include "frame-unwind.h"
28#include "gdbcore.h"
29#include "gdbtypes.h"
4de283e4 30#include "symtab.h"
cfc14b3a
MK
31#include "objfiles.h"
32#include "regcache.h"
f2da6b3a 33#include "value.h"
4de283e4 34#include "record.h"
cfc14b3a 35
4de283e4
TT
36#include "complaints.h"
37#include "dwarf2-frame.h"
38#include "dwarf2read.h"
39#include "ax.h"
40#include "dwarf2loc.h"
41#include "dwarf2-frame-tailcall.h"
1c90d9f0 42#if GDB_SELF_TEST
268a13a5 43#include "gdbsupport/selftest.h"
1c90d9f0
YQ
44#include "selftest-arch.h"
45#endif
93878f47 46#include <unordered_map>
cfc14b3a 47
39ef2f62
CB
48#include <algorithm>
49
ae0d2f24
UW
50struct comp_unit;
51
cfc14b3a
MK
52/* Call Frame Information (CFI). */
53
54/* Common Information Entry (CIE). */
55
56struct dwarf2_cie
57{
ae0d2f24
UW
58 /* Computation Unit for this CIE. */
59 struct comp_unit *unit;
60
cfc14b3a
MK
61 /* Offset into the .debug_frame section where this CIE was found.
62 Used to identify this CIE. */
63 ULONGEST cie_pointer;
64
65 /* Constant that is factored out of all advance location
66 instructions. */
67 ULONGEST code_alignment_factor;
68
69 /* Constants that is factored out of all offset instructions. */
70 LONGEST data_alignment_factor;
71
72 /* Return address column. */
73 ULONGEST return_address_register;
74
75 /* Instruction sequence to initialize a register set. */
f664829e
DE
76 const gdb_byte *initial_instructions;
77 const gdb_byte *end;
cfc14b3a 78
303b6f5d
DJ
79 /* Saved augmentation, in case it's needed later. */
80 char *augmentation;
81
cfc14b3a 82 /* Encoding of addresses. */
852483bc 83 gdb_byte encoding;
cfc14b3a 84
ae0d2f24
UW
85 /* Target address size in bytes. */
86 int addr_size;
87
0963b4bd 88 /* Target pointer size in bytes. */
8da614df
CV
89 int ptr_size;
90
7131cb6e
RH
91 /* True if a 'z' augmentation existed. */
92 unsigned char saw_z_augmentation;
93
56c987f6
AO
94 /* True if an 'S' augmentation existed. */
95 unsigned char signal_frame;
96
303b6f5d
DJ
97 /* The version recorded in the CIE. */
98 unsigned char version;
2dc7f7b3
TT
99
100 /* The segment size. */
101 unsigned char segment_size;
b01c8410 102};
303b6f5d 103
93878f47
TT
104/* The CIE table is used to find CIEs during parsing, but then
105 discarded. It maps from the CIE's offset to the CIE. */
106typedef std::unordered_map<ULONGEST, dwarf2_cie *> dwarf2_cie_table;
cfc14b3a
MK
107
108/* Frame Description Entry (FDE). */
109
110struct dwarf2_fde
111{
112 /* CIE for this FDE. */
113 struct dwarf2_cie *cie;
114
115 /* First location associated with this FDE. */
116 CORE_ADDR initial_location;
117
118 /* Number of bytes of program instructions described by this FDE. */
119 CORE_ADDR address_range;
120
121 /* Instruction sequence. */
f664829e
DE
122 const gdb_byte *instructions;
123 const gdb_byte *end;
cfc14b3a 124
4bf8967c
AS
125 /* True if this FDE is read from a .eh_frame instead of a .debug_frame
126 section. */
127 unsigned char eh_frame_p;
b01c8410 128};
4bf8967c 129
b01c8410
PP
130struct dwarf2_fde_table
131{
132 int num_entries;
133 struct dwarf2_fde **entries;
cfc14b3a
MK
134};
135
ae0d2f24
UW
136/* A minimal decoding of DWARF2 compilation units. We only decode
137 what's needed to get to the call frame information. */
138
139struct comp_unit
140{
141 /* Keep the bfd convenient. */
142 bfd *abfd;
143
144 struct objfile *objfile;
145
ae0d2f24 146 /* Pointer to the .debug_frame section loaded into memory. */
d521ce57 147 const gdb_byte *dwarf_frame_buffer;
ae0d2f24
UW
148
149 /* Length of the loaded .debug_frame section. */
c098b58b 150 bfd_size_type dwarf_frame_size;
ae0d2f24
UW
151
152 /* Pointer to the .debug_frame section. */
153 asection *dwarf_frame_section;
154
155 /* Base for DW_EH_PE_datarel encodings. */
156 bfd_vma dbase;
157
158 /* Base for DW_EH_PE_textrel encodings. */
159 bfd_vma tbase;
160};
161
ac56253d
TT
162static struct dwarf2_fde *dwarf2_frame_find_fde (CORE_ADDR *pc,
163 CORE_ADDR *out_offset);
4fc771b8
DJ
164
165static int dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch, int regnum,
166 int eh_frame_p);
ae0d2f24
UW
167
168static CORE_ADDR read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e 169 int ptr_len, const gdb_byte *buf,
ae0d2f24
UW
170 unsigned int *bytes_read_ptr,
171 CORE_ADDR func_base);
cfc14b3a
MK
172\f
173
3c3bb058 174/* See dwarf2-frame.h. */
491144b5 175bool dwarf2_frame_unwinders_enabled_p = true;
3c3bb058 176
cfc14b3a
MK
177/* Store the length the expression for the CFA in the `cfa_reg' field,
178 which is unused in that case. */
179#define cfa_exp_len cfa_reg
180
afe37d6b
YQ
181dwarf2_frame_state::dwarf2_frame_state (CORE_ADDR pc_, struct dwarf2_cie *cie)
182 : pc (pc_), data_align (cie->data_alignment_factor),
183 code_align (cie->code_alignment_factor),
184 retaddr_column (cie->return_address_register)
cfc14b3a 185{
afe37d6b 186}
cfc14b3a
MK
187\f
188
189/* Helper functions for execute_stack_op. */
190
191static CORE_ADDR
192ca6d8 192read_addr_from_reg (struct frame_info *this_frame, int reg)
cfc14b3a 193{
4a4e5149 194 struct gdbarch *gdbarch = get_frame_arch (this_frame);
0fde2c53 195 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
f2da6b3a 196
2ed3c037 197 return address_from_register (regnum, this_frame);
cfc14b3a
MK
198}
199
a6a5a945
LM
200/* Execute the required actions for both the DW_CFA_restore and
201DW_CFA_restore_extended instructions. */
202static void
203dwarf2_restore_rule (struct gdbarch *gdbarch, ULONGEST reg_num,
204 struct dwarf2_frame_state *fs, int eh_frame_p)
205{
206 ULONGEST reg;
207
a6a5a945 208 reg = dwarf2_frame_adjust_regnum (gdbarch, reg_num, eh_frame_p);
1c90d9f0 209 fs->regs.alloc_regs (reg + 1);
a6a5a945
LM
210
211 /* Check if this register was explicitly initialized in the
212 CIE initial instructions. If not, default the rule to
213 UNSPECIFIED. */
780942fc 214 if (reg < fs->initial.reg.size ())
a6a5a945
LM
215 fs->regs.reg[reg] = fs->initial.reg[reg];
216 else
217 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNSPECIFIED;
218
219 if (fs->regs.reg[reg].how == DWARF2_FRAME_REG_UNSPECIFIED)
0fde2c53
DE
220 {
221 int regnum = dwarf_reg_to_regnum (gdbarch, reg);
222
b98664d3 223 complaint (_("\
a6a5a945 224incomplete CFI data; DW_CFA_restore unspecified\n\
5af949e3 225register %s (#%d) at %s"),
0fde2c53
DE
226 gdbarch_register_name (gdbarch, regnum), regnum,
227 paddress (gdbarch, fs->pc));
228 }
a6a5a945
LM
229}
230
192ca6d8 231class dwarf_expr_executor : public dwarf_expr_context
9e8b7a03 232{
192ca6d8
TT
233 public:
234
235 struct frame_info *this_frame;
236
632e107b 237 CORE_ADDR read_addr_from_reg (int reg) override
192ca6d8
TT
238 {
239 return ::read_addr_from_reg (this_frame, reg);
240 }
241
632e107b 242 struct value *get_reg_value (struct type *type, int reg) override
192ca6d8
TT
243 {
244 struct gdbarch *gdbarch = get_frame_arch (this_frame);
245 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, reg);
246
247 return value_from_register (type, regnum, this_frame);
248 }
249
632e107b 250 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) override
192ca6d8
TT
251 {
252 read_memory (addr, buf, len);
253 }
befbff86 254
632e107b 255 void get_frame_base (const gdb_byte **start, size_t *length) override
befbff86
TT
256 {
257 invalid ("DW_OP_fbreg");
258 }
259
260 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
261 union call_site_parameter_u kind_u,
632e107b 262 int deref_size) override
befbff86 263 {
216f72a1 264 invalid ("DW_OP_entry_value");
befbff86
TT
265 }
266
632e107b 267 CORE_ADDR get_object_address () override
befbff86
TT
268 {
269 invalid ("DW_OP_push_object_address");
270 }
271
632e107b 272 CORE_ADDR get_frame_cfa () override
befbff86
TT
273 {
274 invalid ("DW_OP_call_frame_cfa");
275 }
276
632e107b 277 CORE_ADDR get_tls_address (CORE_ADDR offset) override
befbff86
TT
278 {
279 invalid ("DW_OP_form_tls_address");
280 }
281
632e107b 282 void dwarf_call (cu_offset die_offset) override
befbff86
TT
283 {
284 invalid ("DW_OP_call*");
285 }
286
a6b786da
KB
287 struct value *dwarf_variable_value (sect_offset sect_off) override
288 {
289 invalid ("DW_OP_GNU_variable_value");
290 }
291
632e107b 292 CORE_ADDR get_addr_index (unsigned int index) override
befbff86 293 {
336d760d 294 invalid ("DW_OP_addrx or DW_OP_GNU_addr_index");
befbff86
TT
295 }
296
297 private:
298
299 void invalid (const char *op) ATTRIBUTE_NORETURN
300 {
301 error (_("%s is invalid in this context"), op);
302 }
9e8b7a03
JK
303};
304
cfc14b3a 305static CORE_ADDR
0d45f56e 306execute_stack_op (const gdb_byte *exp, ULONGEST len, int addr_size,
ac56253d
TT
307 CORE_ADDR offset, struct frame_info *this_frame,
308 CORE_ADDR initial, int initial_in_stack_memory)
cfc14b3a 309{
cfc14b3a
MK
310 CORE_ADDR result;
311
192ca6d8 312 dwarf_expr_executor ctx;
eb115069 313 scoped_value_mark free_values;
4a227398 314
192ca6d8 315 ctx.this_frame = this_frame;
718b9626
TT
316 ctx.gdbarch = get_frame_arch (this_frame);
317 ctx.addr_size = addr_size;
318 ctx.ref_addr_size = -1;
319 ctx.offset = offset;
cfc14b3a 320
595d2e30
TT
321 ctx.push_address (initial, initial_in_stack_memory);
322 ctx.eval (exp, len);
cfc14b3a 323
718b9626 324 if (ctx.location == DWARF_VALUE_MEMORY)
595d2e30 325 result = ctx.fetch_address (0);
718b9626 326 else if (ctx.location == DWARF_VALUE_REGISTER)
192ca6d8 327 result = ctx.read_addr_from_reg (value_as_long (ctx.fetch (0)));
f2c7657e 328 else
cec03d70
TT
329 {
330 /* This is actually invalid DWARF, but if we ever do run across
331 it somehow, we might as well support it. So, instead, report
332 it as unimplemented. */
3e43a32a
MS
333 error (_("\
334Not implemented: computing unwound register using explicit value operator"));
cec03d70 335 }
cfc14b3a 336
cfc14b3a
MK
337 return result;
338}
339\f
340
111c6489
JK
341/* Execute FDE program from INSN_PTR possibly up to INSN_END or up to inferior
342 PC. Modify FS state accordingly. Return current INSN_PTR where the
343 execution has stopped, one can resume it on the next call. */
344
345static const gdb_byte *
0d45f56e 346execute_cfa_program (struct dwarf2_fde *fde, const gdb_byte *insn_ptr,
9f6f94ff
TT
347 const gdb_byte *insn_end, struct gdbarch *gdbarch,
348 CORE_ADDR pc, struct dwarf2_frame_state *fs)
cfc14b3a 349{
ae0d2f24 350 int eh_frame_p = fde->eh_frame_p;
507a579c 351 unsigned int bytes_read;
e17a4113 352 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cfc14b3a
MK
353
354 while (insn_ptr < insn_end && fs->pc <= pc)
355 {
852483bc 356 gdb_byte insn = *insn_ptr++;
9fccedf7
DE
357 uint64_t utmp, reg;
358 int64_t offset;
cfc14b3a
MK
359
360 if ((insn & 0xc0) == DW_CFA_advance_loc)
361 fs->pc += (insn & 0x3f) * fs->code_align;
362 else if ((insn & 0xc0) == DW_CFA_offset)
363 {
364 reg = insn & 0x3f;
4fc771b8 365 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 366 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a 367 offset = utmp * fs->data_align;
1c90d9f0 368 fs->regs.alloc_regs (reg + 1);
05cbe71a 369 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
370 fs->regs.reg[reg].loc.offset = offset;
371 }
372 else if ((insn & 0xc0) == DW_CFA_restore)
373 {
cfc14b3a 374 reg = insn & 0x3f;
a6a5a945 375 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
376 }
377 else
378 {
379 switch (insn)
380 {
381 case DW_CFA_set_loc:
ae0d2f24 382 fs->pc = read_encoded_value (fde->cie->unit, fde->cie->encoding,
8da614df 383 fde->cie->ptr_size, insn_ptr,
ae0d2f24
UW
384 &bytes_read, fde->initial_location);
385 /* Apply the objfile offset for relocatable objects. */
386 fs->pc += ANOFFSET (fde->cie->unit->objfile->section_offsets,
387 SECT_OFF_TEXT (fde->cie->unit->objfile));
cfc14b3a
MK
388 insn_ptr += bytes_read;
389 break;
390
391 case DW_CFA_advance_loc1:
e17a4113 392 utmp = extract_unsigned_integer (insn_ptr, 1, byte_order);
cfc14b3a
MK
393 fs->pc += utmp * fs->code_align;
394 insn_ptr++;
395 break;
396 case DW_CFA_advance_loc2:
e17a4113 397 utmp = extract_unsigned_integer (insn_ptr, 2, byte_order);
cfc14b3a
MK
398 fs->pc += utmp * fs->code_align;
399 insn_ptr += 2;
400 break;
401 case DW_CFA_advance_loc4:
e17a4113 402 utmp = extract_unsigned_integer (insn_ptr, 4, byte_order);
cfc14b3a
MK
403 fs->pc += utmp * fs->code_align;
404 insn_ptr += 4;
405 break;
406
407 case DW_CFA_offset_extended:
f664829e 408 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 409 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 410 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a 411 offset = utmp * fs->data_align;
1c90d9f0 412 fs->regs.alloc_regs (reg + 1);
05cbe71a 413 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
cfc14b3a
MK
414 fs->regs.reg[reg].loc.offset = offset;
415 break;
416
417 case DW_CFA_restore_extended:
f664829e 418 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
a6a5a945 419 dwarf2_restore_rule (gdbarch, reg, fs, eh_frame_p);
cfc14b3a
MK
420 break;
421
422 case DW_CFA_undefined:
f664829e 423 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 424 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
1c90d9f0 425 fs->regs.alloc_regs (reg + 1);
05cbe71a 426 fs->regs.reg[reg].how = DWARF2_FRAME_REG_UNDEFINED;
cfc14b3a
MK
427 break;
428
429 case DW_CFA_same_value:
f664829e 430 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 431 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
1c90d9f0 432 fs->regs.alloc_regs (reg + 1);
05cbe71a 433 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAME_VALUE;
cfc14b3a
MK
434 break;
435
436 case DW_CFA_register:
f664829e 437 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 438 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 439 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
4fc771b8 440 utmp = dwarf2_frame_adjust_regnum (gdbarch, utmp, eh_frame_p);
1c90d9f0 441 fs->regs.alloc_regs (reg + 1);
05cbe71a 442 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_REG;
cfc14b3a
MK
443 fs->regs.reg[reg].loc.reg = utmp;
444 break;
445
446 case DW_CFA_remember_state:
447 {
448 struct dwarf2_frame_state_reg_info *new_rs;
449
1c90d9f0 450 new_rs = new dwarf2_frame_state_reg_info (fs->regs);
cfc14b3a
MK
451 fs->regs.prev = new_rs;
452 }
453 break;
454
455 case DW_CFA_restore_state:
456 {
457 struct dwarf2_frame_state_reg_info *old_rs = fs->regs.prev;
458
50ea7769
MK
459 if (old_rs == NULL)
460 {
b98664d3 461 complaint (_("\
5af949e3
UW
462bad CFI data; mismatched DW_CFA_restore_state at %s"),
463 paddress (gdbarch, fs->pc));
50ea7769
MK
464 }
465 else
1c90d9f0 466 fs->regs = std::move (*old_rs);
cfc14b3a
MK
467 }
468 break;
469
470 case DW_CFA_def_cfa:
f664829e
DE
471 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
472 fs->regs.cfa_reg = reg;
473 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
474
475 if (fs->armcc_cfa_offsets_sf)
476 utmp *= fs->data_align;
477
2fd481e1
PP
478 fs->regs.cfa_offset = utmp;
479 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
480 break;
481
482 case DW_CFA_def_cfa_register:
f664829e
DE
483 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
484 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1
PP
485 eh_frame_p);
486 fs->regs.cfa_how = CFA_REG_OFFSET;
cfc14b3a
MK
487 break;
488
489 case DW_CFA_def_cfa_offset:
f664829e 490 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
303b6f5d
DJ
491
492 if (fs->armcc_cfa_offsets_sf)
493 utmp *= fs->data_align;
494
2fd481e1 495 fs->regs.cfa_offset = utmp;
cfc14b3a
MK
496 /* cfa_how deliberately not set. */
497 break;
498
a8504492
MK
499 case DW_CFA_nop:
500 break;
501
cfc14b3a 502 case DW_CFA_def_cfa_expression:
f664829e
DE
503 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
504 fs->regs.cfa_exp_len = utmp;
2fd481e1
PP
505 fs->regs.cfa_exp = insn_ptr;
506 fs->regs.cfa_how = CFA_EXP;
507 insn_ptr += fs->regs.cfa_exp_len;
cfc14b3a
MK
508 break;
509
510 case DW_CFA_expression:
f664829e 511 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 512 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
1c90d9f0 513 fs->regs.alloc_regs (reg + 1);
f664829e 514 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
b348037f
YQ
515 fs->regs.reg[reg].loc.exp.start = insn_ptr;
516 fs->regs.reg[reg].loc.exp.len = utmp;
05cbe71a 517 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_EXP;
cfc14b3a
MK
518 insn_ptr += utmp;
519 break;
520
a8504492 521 case DW_CFA_offset_extended_sf:
f664829e 522 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 523 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
f664829e 524 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
f6da8dd8 525 offset *= fs->data_align;
1c90d9f0 526 fs->regs.alloc_regs (reg + 1);
05cbe71a 527 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
a8504492
MK
528 fs->regs.reg[reg].loc.offset = offset;
529 break;
530
46ea248b 531 case DW_CFA_val_offset:
f664829e 532 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
1c90d9f0 533 fs->regs.alloc_regs (reg + 1);
f664829e 534 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
46ea248b
AO
535 offset = utmp * fs->data_align;
536 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
537 fs->regs.reg[reg].loc.offset = offset;
538 break;
539
540 case DW_CFA_val_offset_sf:
f664829e 541 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
1c90d9f0 542 fs->regs.alloc_regs (reg + 1);
f664829e 543 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
46ea248b
AO
544 offset *= fs->data_align;
545 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_OFFSET;
546 fs->regs.reg[reg].loc.offset = offset;
547 break;
548
549 case DW_CFA_val_expression:
f664829e 550 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
1c90d9f0 551 fs->regs.alloc_regs (reg + 1);
f664829e 552 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
b348037f
YQ
553 fs->regs.reg[reg].loc.exp.start = insn_ptr;
554 fs->regs.reg[reg].loc.exp.len = utmp;
46ea248b
AO
555 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
556 insn_ptr += utmp;
557 break;
558
a8504492 559 case DW_CFA_def_cfa_sf:
f664829e
DE
560 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
561 fs->regs.cfa_reg = dwarf2_frame_adjust_regnum (gdbarch, reg,
2fd481e1 562 eh_frame_p);
f664829e 563 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1
PP
564 fs->regs.cfa_offset = offset * fs->data_align;
565 fs->regs.cfa_how = CFA_REG_OFFSET;
a8504492
MK
566 break;
567
568 case DW_CFA_def_cfa_offset_sf:
f664829e 569 insn_ptr = safe_read_sleb128 (insn_ptr, insn_end, &offset);
2fd481e1 570 fs->regs.cfa_offset = offset * fs->data_align;
a8504492 571 /* cfa_how deliberately not set. */
cfc14b3a
MK
572 break;
573
574 case DW_CFA_GNU_args_size:
575 /* Ignored. */
f664829e 576 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
cfc14b3a
MK
577 break;
578
58894217 579 case DW_CFA_GNU_negative_offset_extended:
f664829e 580 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &reg);
4fc771b8 581 reg = dwarf2_frame_adjust_regnum (gdbarch, reg, eh_frame_p);
507a579c
PA
582 insn_ptr = safe_read_uleb128 (insn_ptr, insn_end, &utmp);
583 offset = utmp * fs->data_align;
1c90d9f0 584 fs->regs.alloc_regs (reg + 1);
58894217
JK
585 fs->regs.reg[reg].how = DWARF2_FRAME_REG_SAVED_OFFSET;
586 fs->regs.reg[reg].loc.offset = -offset;
587 break;
588
cfc14b3a 589 default:
b41c5a85
JW
590 if (insn >= DW_CFA_lo_user && insn <= DW_CFA_hi_user)
591 {
592 /* Handle vendor-specific CFI for different architectures. */
593 if (!gdbarch_execute_dwarf_cfa_vendor_op (gdbarch, insn, fs))
594 error (_("Call Frame Instruction op %d in vendor extension "
595 "space is not handled on this architecture."),
596 insn);
597 }
598 else
599 internal_error (__FILE__, __LINE__,
600 _("Unknown CFI encountered."));
cfc14b3a
MK
601 }
602 }
603 }
604
780942fc 605 if (fs->initial.reg.empty ())
111c6489
JK
606 {
607 /* Don't allow remember/restore between CIE and FDE programs. */
1c90d9f0 608 delete fs->regs.prev;
111c6489
JK
609 fs->regs.prev = NULL;
610 }
611
612 return insn_ptr;
cfc14b3a 613}
1c90d9f0
YQ
614
615#if GDB_SELF_TEST
616
617namespace selftests {
618
619/* Unit test to function execute_cfa_program. */
620
621static void
622execute_cfa_program_test (struct gdbarch *gdbarch)
623{
624 struct dwarf2_fde fde;
625 struct dwarf2_cie cie;
626
627 memset (&fde, 0, sizeof fde);
628 memset (&cie, 0, sizeof cie);
629
630 cie.data_alignment_factor = -4;
631 cie.code_alignment_factor = 2;
632 fde.cie = &cie;
633
634 dwarf2_frame_state fs (0, fde.cie);
635
636 gdb_byte insns[] =
637 {
638 DW_CFA_def_cfa, 1, 4, /* DW_CFA_def_cfa: r1 ofs 4 */
639 DW_CFA_offset | 0x2, 1, /* DW_CFA_offset: r2 at cfa-4 */
640 DW_CFA_remember_state,
641 DW_CFA_restore_state,
642 };
643
644 const gdb_byte *insn_end = insns + sizeof (insns);
645 const gdb_byte *out = execute_cfa_program (&fde, insns, insn_end, gdbarch,
646 0, &fs);
647
648 SELF_CHECK (out == insn_end);
649 SELF_CHECK (fs.pc == 0);
650
651 /* The instructions above only use r1 and r2, but the register numbers
652 used are adjusted by dwarf2_frame_adjust_regnum. */
653 auto r1 = dwarf2_frame_adjust_regnum (gdbarch, 1, fde.eh_frame_p);
654 auto r2 = dwarf2_frame_adjust_regnum (gdbarch, 2, fde.eh_frame_p);
655
780942fc 656 SELF_CHECK (fs.regs.reg.size () == (std::max (r1, r2) + 1));
1c90d9f0
YQ
657
658 SELF_CHECK (fs.regs.reg[r2].how == DWARF2_FRAME_REG_SAVED_OFFSET);
659 SELF_CHECK (fs.regs.reg[r2].loc.offset == -4);
660
780942fc 661 for (auto i = 0; i < fs.regs.reg.size (); i++)
1c90d9f0
YQ
662 if (i != r2)
663 SELF_CHECK (fs.regs.reg[i].how == DWARF2_FRAME_REG_UNSPECIFIED);
664
665 SELF_CHECK (fs.regs.cfa_reg == 1);
666 SELF_CHECK (fs.regs.cfa_offset == 4);
667 SELF_CHECK (fs.regs.cfa_how == CFA_REG_OFFSET);
668 SELF_CHECK (fs.regs.cfa_exp == NULL);
669 SELF_CHECK (fs.regs.prev == NULL);
670}
671
672} // namespace selftests
673#endif /* GDB_SELF_TEST */
674
8f22cb90 675\f
cfc14b3a 676
8f22cb90 677/* Architecture-specific operations. */
cfc14b3a 678
8f22cb90
MK
679/* Per-architecture data key. */
680static struct gdbarch_data *dwarf2_frame_data;
681
682struct dwarf2_frame_ops
683{
684 /* Pre-initialize the register state REG for register REGNUM. */
aff37fc1
DM
685 void (*init_reg) (struct gdbarch *, int, struct dwarf2_frame_state_reg *,
686 struct frame_info *);
3ed09a32 687
4a4e5149 688 /* Check whether the THIS_FRAME is a signal trampoline. */
3ed09a32 689 int (*signal_frame_p) (struct gdbarch *, struct frame_info *);
4bf8967c 690
4fc771b8
DJ
691 /* Convert .eh_frame register number to DWARF register number, or
692 adjust .debug_frame register number. */
693 int (*adjust_regnum) (struct gdbarch *, int, int);
cfc14b3a
MK
694};
695
8f22cb90
MK
696/* Default architecture-specific register state initialization
697 function. */
698
699static void
700dwarf2_frame_default_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 701 struct dwarf2_frame_state_reg *reg,
4a4e5149 702 struct frame_info *this_frame)
8f22cb90
MK
703{
704 /* If we have a register that acts as a program counter, mark it as
705 a destination for the return address. If we have a register that
706 serves as the stack pointer, arrange for it to be filled with the
707 call frame address (CFA). The other registers are marked as
708 unspecified.
709
710 We copy the return address to the program counter, since many
711 parts in GDB assume that it is possible to get the return address
712 by unwinding the program counter register. However, on ISA's
713 with a dedicated return address register, the CFI usually only
714 contains information to unwind that return address register.
715
716 The reason we're treating the stack pointer special here is
717 because in many cases GCC doesn't emit CFI for the stack pointer
718 and implicitly assumes that it is equal to the CFA. This makes
719 some sense since the DWARF specification (version 3, draft 8,
720 p. 102) says that:
721
722 "Typically, the CFA is defined to be the value of the stack
723 pointer at the call site in the previous frame (which may be
724 different from its value on entry to the current frame)."
725
726 However, this isn't true for all platforms supported by GCC
727 (e.g. IBM S/390 and zSeries). Those architectures should provide
728 their own architecture-specific initialization function. */
05cbe71a 729
ad010def 730 if (regnum == gdbarch_pc_regnum (gdbarch))
8f22cb90 731 reg->how = DWARF2_FRAME_REG_RA;
ad010def 732 else if (regnum == gdbarch_sp_regnum (gdbarch))
8f22cb90
MK
733 reg->how = DWARF2_FRAME_REG_CFA;
734}
05cbe71a 735
8f22cb90 736/* Return a default for the architecture-specific operations. */
05cbe71a 737
8f22cb90 738static void *
030f20e1 739dwarf2_frame_init (struct obstack *obstack)
8f22cb90
MK
740{
741 struct dwarf2_frame_ops *ops;
742
030f20e1 743 ops = OBSTACK_ZALLOC (obstack, struct dwarf2_frame_ops);
8f22cb90
MK
744 ops->init_reg = dwarf2_frame_default_init_reg;
745 return ops;
746}
05cbe71a 747
8f22cb90
MK
748/* Set the architecture-specific register state initialization
749 function for GDBARCH to INIT_REG. */
750
751void
752dwarf2_frame_set_init_reg (struct gdbarch *gdbarch,
753 void (*init_reg) (struct gdbarch *, int,
aff37fc1
DM
754 struct dwarf2_frame_state_reg *,
755 struct frame_info *))
8f22cb90 756{
9a3c8263
SM
757 struct dwarf2_frame_ops *ops
758 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 759
8f22cb90
MK
760 ops->init_reg = init_reg;
761}
762
763/* Pre-initialize the register state REG for register REGNUM. */
05cbe71a
MK
764
765static void
766dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 767 struct dwarf2_frame_state_reg *reg,
4a4e5149 768 struct frame_info *this_frame)
05cbe71a 769{
9a3c8263
SM
770 struct dwarf2_frame_ops *ops
771 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
8f22cb90 772
4a4e5149 773 ops->init_reg (gdbarch, regnum, reg, this_frame);
05cbe71a 774}
3ed09a32
DJ
775
776/* Set the architecture-specific signal trampoline recognition
777 function for GDBARCH to SIGNAL_FRAME_P. */
778
779void
780dwarf2_frame_set_signal_frame_p (struct gdbarch *gdbarch,
781 int (*signal_frame_p) (struct gdbarch *,
782 struct frame_info *))
783{
9a3c8263
SM
784 struct dwarf2_frame_ops *ops
785 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
3ed09a32
DJ
786
787 ops->signal_frame_p = signal_frame_p;
788}
789
790/* Query the architecture-specific signal frame recognizer for
4a4e5149 791 THIS_FRAME. */
3ed09a32
DJ
792
793static int
794dwarf2_frame_signal_frame_p (struct gdbarch *gdbarch,
4a4e5149 795 struct frame_info *this_frame)
3ed09a32 796{
9a3c8263
SM
797 struct dwarf2_frame_ops *ops
798 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
3ed09a32
DJ
799
800 if (ops->signal_frame_p == NULL)
801 return 0;
4a4e5149 802 return ops->signal_frame_p (gdbarch, this_frame);
3ed09a32 803}
4bf8967c 804
4fc771b8
DJ
805/* Set the architecture-specific adjustment of .eh_frame and .debug_frame
806 register numbers. */
4bf8967c
AS
807
808void
4fc771b8
DJ
809dwarf2_frame_set_adjust_regnum (struct gdbarch *gdbarch,
810 int (*adjust_regnum) (struct gdbarch *,
811 int, int))
4bf8967c 812{
9a3c8263
SM
813 struct dwarf2_frame_ops *ops
814 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
4bf8967c 815
4fc771b8 816 ops->adjust_regnum = adjust_regnum;
4bf8967c
AS
817}
818
4fc771b8
DJ
819/* Translate a .eh_frame register to DWARF register, or adjust a .debug_frame
820 register. */
4bf8967c 821
4fc771b8 822static int
3e43a32a
MS
823dwarf2_frame_adjust_regnum (struct gdbarch *gdbarch,
824 int regnum, int eh_frame_p)
4bf8967c 825{
9a3c8263
SM
826 struct dwarf2_frame_ops *ops
827 = (struct dwarf2_frame_ops *) gdbarch_data (gdbarch, dwarf2_frame_data);
4bf8967c 828
4fc771b8 829 if (ops->adjust_regnum == NULL)
4bf8967c 830 return regnum;
4fc771b8 831 return ops->adjust_regnum (gdbarch, regnum, eh_frame_p);
4bf8967c 832}
303b6f5d
DJ
833
834static void
835dwarf2_frame_find_quirks (struct dwarf2_frame_state *fs,
836 struct dwarf2_fde *fde)
837{
43f3e411 838 struct compunit_symtab *cust;
303b6f5d 839
43f3e411
DE
840 cust = find_pc_compunit_symtab (fs->pc);
841 if (cust == NULL)
303b6f5d
DJ
842 return;
843
43f3e411 844 if (producer_is_realview (COMPUNIT_PRODUCER (cust)))
a6c727b2
DJ
845 {
846 if (fde->cie->version == 1)
847 fs->armcc_cfa_offsets_sf = 1;
848
849 if (fde->cie->version == 1)
850 fs->armcc_cfa_offsets_reversed = 1;
851
852 /* The reversed offset problem is present in some compilers
853 using DWARF3, but it was eventually fixed. Check the ARM
854 defined augmentations, which are in the format "armcc" followed
855 by a list of one-character options. The "+" option means
856 this problem is fixed (no quirk needed). If the armcc
857 augmentation is missing, the quirk is needed. */
858 if (fde->cie->version == 3
61012eef 859 && (!startswith (fde->cie->augmentation, "armcc")
a6c727b2
DJ
860 || strchr (fde->cie->augmentation + 5, '+') == NULL))
861 fs->armcc_cfa_offsets_reversed = 1;
862
863 return;
864 }
303b6f5d 865}
8f22cb90
MK
866\f
867
a8fd5589
TT
868/* See dwarf2-frame.h. */
869
870int
871dwarf2_fetch_cfa_info (struct gdbarch *gdbarch, CORE_ADDR pc,
872 struct dwarf2_per_cu_data *data,
873 int *regnum_out, LONGEST *offset_out,
874 CORE_ADDR *text_offset_out,
875 const gdb_byte **cfa_start_out,
876 const gdb_byte **cfa_end_out)
9f6f94ff 877{
9f6f94ff 878 struct dwarf2_fde *fde;
22e048c9 879 CORE_ADDR text_offset;
afe37d6b 880 CORE_ADDR pc1 = pc;
9f6f94ff
TT
881
882 /* Find the correct FDE. */
afe37d6b 883 fde = dwarf2_frame_find_fde (&pc1, &text_offset);
9f6f94ff
TT
884 if (fde == NULL)
885 error (_("Could not compute CFA; needed to translate this expression"));
886
afe37d6b 887 dwarf2_frame_state fs (pc1, fde->cie);
9f6f94ff
TT
888
889 /* Check for "quirks" - known bugs in producers. */
890 dwarf2_frame_find_quirks (&fs, fde);
891
892 /* First decode all the insns in the CIE. */
893 execute_cfa_program (fde, fde->cie->initial_instructions,
894 fde->cie->end, gdbarch, pc, &fs);
895
896 /* Save the initialized register set. */
897 fs.initial = fs.regs;
9f6f94ff
TT
898
899 /* Then decode the insns in the FDE up to our target PC. */
900 execute_cfa_program (fde, fde->instructions, fde->end, gdbarch, pc, &fs);
901
902 /* Calculate the CFA. */
903 switch (fs.regs.cfa_how)
904 {
905 case CFA_REG_OFFSET:
906 {
0fde2c53 907 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, fs.regs.cfa_reg);
a8fd5589
TT
908
909 *regnum_out = regnum;
910 if (fs.armcc_cfa_offsets_reversed)
911 *offset_out = -fs.regs.cfa_offset;
912 else
913 *offset_out = fs.regs.cfa_offset;
914 return 1;
9f6f94ff 915 }
9f6f94ff
TT
916
917 case CFA_EXP:
a8fd5589
TT
918 *text_offset_out = text_offset;
919 *cfa_start_out = fs.regs.cfa_exp;
920 *cfa_end_out = fs.regs.cfa_exp + fs.regs.cfa_exp_len;
921 return 0;
9f6f94ff
TT
922
923 default:
924 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
925 }
926}
927
928\f
8f22cb90
MK
929struct dwarf2_frame_cache
930{
931 /* DWARF Call Frame Address. */
932 CORE_ADDR cfa;
933
8fbca658
PA
934 /* Set if the return address column was marked as unavailable
935 (required non-collected memory or registers to compute). */
936 int unavailable_retaddr;
937
0228dfb9
DJ
938 /* Set if the return address column was marked as undefined. */
939 int undefined_retaddr;
940
8f22cb90
MK
941 /* Saved registers, indexed by GDB register number, not by DWARF
942 register number. */
943 struct dwarf2_frame_state_reg *reg;
8d5a9abc
MK
944
945 /* Return address register. */
946 struct dwarf2_frame_state_reg retaddr_reg;
ae0d2f24
UW
947
948 /* Target address size in bytes. */
949 int addr_size;
ac56253d
TT
950
951 /* The .text offset. */
952 CORE_ADDR text_offset;
111c6489 953
1ec56e88
PA
954 /* True if we already checked whether this frame is the bottom frame
955 of a virtual tail call frame chain. */
956 int checked_tailcall_bottom;
957
111c6489
JK
958 /* If not NULL then this frame is the bottom frame of a TAILCALL_FRAME
959 sequence. If NULL then it is a normal case with no TAILCALL_FRAME
960 involved. Non-bottom frames of a virtual tail call frames chain use
961 dwarf2_tailcall_frame_unwind unwinder so this field does not apply for
962 them. */
963 void *tailcall_cache;
1ec56e88
PA
964
965 /* The number of bytes to subtract from TAILCALL_FRAME frames frame
966 base to get the SP, to simulate the return address pushed on the
967 stack. */
968 LONGEST entry_cfa_sp_offset;
969 int entry_cfa_sp_offset_p;
8f22cb90 970};
05cbe71a 971
b9362cc7 972static struct dwarf2_frame_cache *
4a4e5149 973dwarf2_frame_cache (struct frame_info *this_frame, void **this_cache)
cfc14b3a 974{
4a4e5149 975 struct gdbarch *gdbarch = get_frame_arch (this_frame);
f6efe3f8 976 const int num_regs = gdbarch_num_cooked_regs (gdbarch);
cfc14b3a 977 struct dwarf2_frame_cache *cache;
cfc14b3a 978 struct dwarf2_fde *fde;
111c6489 979 CORE_ADDR entry_pc;
111c6489 980 const gdb_byte *instr;
cfc14b3a
MK
981
982 if (*this_cache)
9a3c8263 983 return (struct dwarf2_frame_cache *) *this_cache;
cfc14b3a
MK
984
985 /* Allocate a new cache. */
986 cache = FRAME_OBSTACK_ZALLOC (struct dwarf2_frame_cache);
987 cache->reg = FRAME_OBSTACK_CALLOC (num_regs, struct dwarf2_frame_state_reg);
8fbca658 988 *this_cache = cache;
cfc14b3a 989
cfc14b3a
MK
990 /* Unwind the PC.
991
4a4e5149 992 Note that if the next frame is never supposed to return (i.e. a call
cfc14b3a 993 to abort), the compiler might optimize away the instruction at
4a4e5149 994 its return address. As a result the return address will
cfc14b3a 995 point at some random instruction, and the CFI for that
e4e9607c 996 instruction is probably worthless to us. GCC's unwinder solves
cfc14b3a
MK
997 this problem by substracting 1 from the return address to get an
998 address in the middle of a presumed call instruction (or the
999 instruction in the associated delay slot). This should only be
1000 done for "normal" frames and not for resume-type frames (signal
e4e9607c 1001 handlers, sentinel frames, dummy frames). The function
ad1193e7 1002 get_frame_address_in_block does just this. It's not clear how
e4e9607c
MK
1003 reliable the method is though; there is the potential for the
1004 register state pre-call being different to that on return. */
afe37d6b 1005 CORE_ADDR pc1 = get_frame_address_in_block (this_frame);
cfc14b3a
MK
1006
1007 /* Find the correct FDE. */
afe37d6b 1008 fde = dwarf2_frame_find_fde (&pc1, &cache->text_offset);
cfc14b3a
MK
1009 gdb_assert (fde != NULL);
1010
afe37d6b
YQ
1011 /* Allocate and initialize the frame state. */
1012 struct dwarf2_frame_state fs (pc1, fde->cie);
1013
ae0d2f24 1014 cache->addr_size = fde->cie->addr_size;
cfc14b3a 1015
303b6f5d 1016 /* Check for "quirks" - known bugs in producers. */
afe37d6b 1017 dwarf2_frame_find_quirks (&fs, fde);
303b6f5d 1018
cfc14b3a 1019 /* First decode all the insns in the CIE. */
ae0d2f24 1020 execute_cfa_program (fde, fde->cie->initial_instructions,
0c92d8c1 1021 fde->cie->end, gdbarch,
afe37d6b 1022 get_frame_address_in_block (this_frame), &fs);
cfc14b3a
MK
1023
1024 /* Save the initialized register set. */
afe37d6b 1025 fs.initial = fs.regs;
cfc14b3a 1026
1aff7173
KB
1027 /* Fetching the entry pc for THIS_FRAME won't necessarily result
1028 in an address that's within the range of FDE locations. This
1029 is due to the possibility of the function occupying non-contiguous
1030 ranges. */
1031 if (get_frame_func_if_available (this_frame, &entry_pc)
1032 && fde->initial_location <= entry_pc
1033 && entry_pc < fde->initial_location + fde->address_range)
111c6489
JK
1034 {
1035 /* Decode the insns in the FDE up to the entry PC. */
1036 instr = execute_cfa_program (fde, fde->instructions, fde->end, gdbarch,
afe37d6b 1037 entry_pc, &fs);
111c6489 1038
afe37d6b
YQ
1039 if (fs.regs.cfa_how == CFA_REG_OFFSET
1040 && (dwarf_reg_to_regnum (gdbarch, fs.regs.cfa_reg)
111c6489
JK
1041 == gdbarch_sp_regnum (gdbarch)))
1042 {
afe37d6b 1043 cache->entry_cfa_sp_offset = fs.regs.cfa_offset;
1ec56e88 1044 cache->entry_cfa_sp_offset_p = 1;
111c6489
JK
1045 }
1046 }
1047 else
1048 instr = fde->instructions;
1049
cfc14b3a 1050 /* Then decode the insns in the FDE up to our target PC. */
111c6489 1051 execute_cfa_program (fde, instr, fde->end, gdbarch,
afe37d6b 1052 get_frame_address_in_block (this_frame), &fs);
cfc14b3a 1053
a70b8144 1054 try
cfc14b3a 1055 {
8fbca658 1056 /* Calculate the CFA. */
afe37d6b 1057 switch (fs.regs.cfa_how)
8fbca658
PA
1058 {
1059 case CFA_REG_OFFSET:
afe37d6b
YQ
1060 cache->cfa = read_addr_from_reg (this_frame, fs.regs.cfa_reg);
1061 if (fs.armcc_cfa_offsets_reversed)
1062 cache->cfa -= fs.regs.cfa_offset;
8fbca658 1063 else
afe37d6b 1064 cache->cfa += fs.regs.cfa_offset;
8fbca658
PA
1065 break;
1066
1067 case CFA_EXP:
1068 cache->cfa =
afe37d6b 1069 execute_stack_op (fs.regs.cfa_exp, fs.regs.cfa_exp_len,
8fbca658
PA
1070 cache->addr_size, cache->text_offset,
1071 this_frame, 0, 0);
1072 break;
1073
1074 default:
1075 internal_error (__FILE__, __LINE__, _("Unknown CFA rule."));
1076 }
1077 }
230d2906 1078 catch (const gdb_exception_error &ex)
8fbca658
PA
1079 {
1080 if (ex.error == NOT_AVAILABLE_ERROR)
1081 {
1082 cache->unavailable_retaddr = 1;
1083 return cache;
1084 }
cfc14b3a 1085
eedc3f4f 1086 throw;
cfc14b3a
MK
1087 }
1088
05cbe71a 1089 /* Initialize the register state. */
3e2c4033
AC
1090 {
1091 int regnum;
e4e9607c 1092
3e2c4033 1093 for (regnum = 0; regnum < num_regs; regnum++)
4a4e5149 1094 dwarf2_frame_init_reg (gdbarch, regnum, &cache->reg[regnum], this_frame);
3e2c4033
AC
1095 }
1096
1097 /* Go through the DWARF2 CFI generated table and save its register
79c4cb80
MK
1098 location information in the cache. Note that we don't skip the
1099 return address column; it's perfectly all right for it to
0fde2c53 1100 correspond to a real register. */
3e2c4033
AC
1101 {
1102 int column; /* CFI speak for "register number". */
e4e9607c 1103
780942fc 1104 for (column = 0; column < fs.regs.reg.size (); column++)
3e2c4033 1105 {
3e2c4033 1106 /* Use the GDB register number as the destination index. */
0fde2c53 1107 int regnum = dwarf_reg_to_regnum (gdbarch, column);
3e2c4033 1108
0fde2c53 1109 /* Protect against a target returning a bad register. */
3e2c4033
AC
1110 if (regnum < 0 || regnum >= num_regs)
1111 continue;
1112
1113 /* NOTE: cagney/2003-09-05: CFI should specify the disposition
e4e9607c
MK
1114 of all debug info registers. If it doesn't, complain (but
1115 not too loudly). It turns out that GCC assumes that an
3e2c4033
AC
1116 unspecified register implies "same value" when CFI (draft
1117 7) specifies nothing at all. Such a register could equally
1118 be interpreted as "undefined". Also note that this check
e4e9607c
MK
1119 isn't sufficient; it only checks that all registers in the
1120 range [0 .. max column] are specified, and won't detect
3e2c4033 1121 problems when a debug info register falls outside of the
e4e9607c 1122 table. We need a way of iterating through all the valid
3e2c4033 1123 DWARF2 register numbers. */
afe37d6b 1124 if (fs.regs.reg[column].how == DWARF2_FRAME_REG_UNSPECIFIED)
f059bf6f
AC
1125 {
1126 if (cache->reg[regnum].how == DWARF2_FRAME_REG_UNSPECIFIED)
b98664d3 1127 complaint (_("\
5af949e3 1128incomplete CFI data; unspecified registers (e.g., %s) at %s"),
f059bf6f 1129 gdbarch_register_name (gdbarch, regnum),
afe37d6b 1130 paddress (gdbarch, fs.pc));
f059bf6f 1131 }
35889917 1132 else
afe37d6b 1133 cache->reg[regnum] = fs.regs.reg[column];
3e2c4033
AC
1134 }
1135 }
cfc14b3a 1136
8d5a9abc
MK
1137 /* Eliminate any DWARF2_FRAME_REG_RA rules, and save the information
1138 we need for evaluating DWARF2_FRAME_REG_RA_OFFSET rules. */
35889917
MK
1139 {
1140 int regnum;
1141
1142 for (regnum = 0; regnum < num_regs; regnum++)
1143 {
8d5a9abc
MK
1144 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA
1145 || cache->reg[regnum].how == DWARF2_FRAME_REG_RA_OFFSET)
35889917 1146 {
780942fc
TT
1147 const std::vector<struct dwarf2_frame_state_reg> &regs
1148 = fs.regs.reg;
1149 ULONGEST retaddr_column = fs.retaddr_column;
05cbe71a 1150
d4f10bf2
MK
1151 /* It seems rather bizarre to specify an "empty" column as
1152 the return adress column. However, this is exactly
1153 what GCC does on some targets. It turns out that GCC
1154 assumes that the return address can be found in the
1155 register corresponding to the return address column.
8d5a9abc
MK
1156 Incidentally, that's how we should treat a return
1157 address column specifying "same value" too. */
780942fc
TT
1158 if (fs.retaddr_column < fs.regs.reg.size ()
1159 && regs[retaddr_column].how != DWARF2_FRAME_REG_UNSPECIFIED
1160 && regs[retaddr_column].how != DWARF2_FRAME_REG_SAME_VALUE)
8d5a9abc
MK
1161 {
1162 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
780942fc 1163 cache->reg[regnum] = regs[retaddr_column];
8d5a9abc 1164 else
780942fc 1165 cache->retaddr_reg = regs[retaddr_column];
8d5a9abc 1166 }
35889917
MK
1167 else
1168 {
8d5a9abc
MK
1169 if (cache->reg[regnum].how == DWARF2_FRAME_REG_RA)
1170 {
afe37d6b 1171 cache->reg[regnum].loc.reg = fs.retaddr_column;
8d5a9abc
MK
1172 cache->reg[regnum].how = DWARF2_FRAME_REG_SAVED_REG;
1173 }
1174 else
1175 {
afe37d6b 1176 cache->retaddr_reg.loc.reg = fs.retaddr_column;
8d5a9abc
MK
1177 cache->retaddr_reg.how = DWARF2_FRAME_REG_SAVED_REG;
1178 }
35889917
MK
1179 }
1180 }
1181 }
1182 }
cfc14b3a 1183
780942fc 1184 if (fs.retaddr_column < fs.regs.reg.size ()
afe37d6b 1185 && fs.regs.reg[fs.retaddr_column].how == DWARF2_FRAME_REG_UNDEFINED)
0228dfb9
DJ
1186 cache->undefined_retaddr = 1;
1187
cfc14b3a
MK
1188 return cache;
1189}
1190
8fbca658
PA
1191static enum unwind_stop_reason
1192dwarf2_frame_unwind_stop_reason (struct frame_info *this_frame,
1193 void **this_cache)
1194{
1195 struct dwarf2_frame_cache *cache
1196 = dwarf2_frame_cache (this_frame, this_cache);
1197
1198 if (cache->unavailable_retaddr)
1199 return UNWIND_UNAVAILABLE;
1200
1201 if (cache->undefined_retaddr)
1202 return UNWIND_OUTERMOST;
1203
1204 return UNWIND_NO_REASON;
1205}
1206
cfc14b3a 1207static void
4a4e5149 1208dwarf2_frame_this_id (struct frame_info *this_frame, void **this_cache,
cfc14b3a
MK
1209 struct frame_id *this_id)
1210{
1211 struct dwarf2_frame_cache *cache =
4a4e5149 1212 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a 1213
8fbca658 1214 if (cache->unavailable_retaddr)
5ce0145d
PA
1215 (*this_id) = frame_id_build_unavailable_stack (get_frame_func (this_frame));
1216 else if (cache->undefined_retaddr)
8fbca658 1217 return;
5ce0145d
PA
1218 else
1219 (*this_id) = frame_id_build (cache->cfa, get_frame_func (this_frame));
93d42b30
DJ
1220}
1221
4a4e5149
DJ
1222static struct value *
1223dwarf2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1224 int regnum)
93d42b30 1225{
4a4e5149 1226 struct gdbarch *gdbarch = get_frame_arch (this_frame);
93d42b30 1227 struct dwarf2_frame_cache *cache =
4a4e5149
DJ
1228 dwarf2_frame_cache (this_frame, this_cache);
1229 CORE_ADDR addr;
1230 int realnum;
cfc14b3a 1231
1ec56e88
PA
1232 /* Check whether THIS_FRAME is the bottom frame of a virtual tail
1233 call frame chain. */
1234 if (!cache->checked_tailcall_bottom)
1235 {
1236 cache->checked_tailcall_bottom = 1;
1237 dwarf2_tailcall_sniffer_first (this_frame, &cache->tailcall_cache,
1238 (cache->entry_cfa_sp_offset_p
1239 ? &cache->entry_cfa_sp_offset : NULL));
1240 }
1241
111c6489
JK
1242 /* Non-bottom frames of a virtual tail call frames chain use
1243 dwarf2_tailcall_frame_unwind unwinder so this code does not apply for
1244 them. If dwarf2_tailcall_prev_register_first does not have specific value
1245 unwind the register, tail call frames are assumed to have the register set
1246 of the top caller. */
1247 if (cache->tailcall_cache)
1248 {
1249 struct value *val;
1250
1251 val = dwarf2_tailcall_prev_register_first (this_frame,
1252 &cache->tailcall_cache,
1253 regnum);
1254 if (val)
1255 return val;
1256 }
1257
cfc14b3a
MK
1258 switch (cache->reg[regnum].how)
1259 {
05cbe71a 1260 case DWARF2_FRAME_REG_UNDEFINED:
3e2c4033 1261 /* If CFI explicitly specified that the value isn't defined,
e4e9607c 1262 mark it as optimized away; the value isn't available. */
4a4e5149 1263 return frame_unwind_got_optimized (this_frame, regnum);
cfc14b3a 1264
05cbe71a 1265 case DWARF2_FRAME_REG_SAVED_OFFSET:
4a4e5149
DJ
1266 addr = cache->cfa + cache->reg[regnum].loc.offset;
1267 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1268
05cbe71a 1269 case DWARF2_FRAME_REG_SAVED_REG:
0fde2c53
DE
1270 realnum = dwarf_reg_to_regnum_or_error
1271 (gdbarch, cache->reg[regnum].loc.reg);
4a4e5149 1272 return frame_unwind_got_register (this_frame, regnum, realnum);
cfc14b3a 1273
05cbe71a 1274 case DWARF2_FRAME_REG_SAVED_EXP:
b348037f
YQ
1275 addr = execute_stack_op (cache->reg[regnum].loc.exp.start,
1276 cache->reg[regnum].loc.exp.len,
ac56253d
TT
1277 cache->addr_size, cache->text_offset,
1278 this_frame, cache->cfa, 1);
4a4e5149 1279 return frame_unwind_got_memory (this_frame, regnum, addr);
cfc14b3a 1280
46ea248b 1281 case DWARF2_FRAME_REG_SAVED_VAL_OFFSET:
4a4e5149
DJ
1282 addr = cache->cfa + cache->reg[regnum].loc.offset;
1283 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b
AO
1284
1285 case DWARF2_FRAME_REG_SAVED_VAL_EXP:
b348037f
YQ
1286 addr = execute_stack_op (cache->reg[regnum].loc.exp.start,
1287 cache->reg[regnum].loc.exp.len,
ac56253d
TT
1288 cache->addr_size, cache->text_offset,
1289 this_frame, cache->cfa, 1);
4a4e5149 1290 return frame_unwind_got_constant (this_frame, regnum, addr);
46ea248b 1291
05cbe71a 1292 case DWARF2_FRAME_REG_UNSPECIFIED:
3e2c4033
AC
1293 /* GCC, in its infinite wisdom decided to not provide unwind
1294 information for registers that are "same value". Since
1295 DWARF2 (3 draft 7) doesn't define such behavior, said
1296 registers are actually undefined (which is different to CFI
1297 "undefined"). Code above issues a complaint about this.
1298 Here just fudge the books, assume GCC, and that the value is
1299 more inner on the stack. */
4a4e5149 1300 return frame_unwind_got_register (this_frame, regnum, regnum);
3e2c4033 1301
05cbe71a 1302 case DWARF2_FRAME_REG_SAME_VALUE:
4a4e5149 1303 return frame_unwind_got_register (this_frame, regnum, regnum);
cfc14b3a 1304
05cbe71a 1305 case DWARF2_FRAME_REG_CFA:
4a4e5149 1306 return frame_unwind_got_address (this_frame, regnum, cache->cfa);
35889917 1307
ea7963f0 1308 case DWARF2_FRAME_REG_CFA_OFFSET:
4a4e5149
DJ
1309 addr = cache->cfa + cache->reg[regnum].loc.offset;
1310 return frame_unwind_got_address (this_frame, regnum, addr);
ea7963f0 1311
8d5a9abc 1312 case DWARF2_FRAME_REG_RA_OFFSET:
4a4e5149 1313 addr = cache->reg[regnum].loc.offset;
0fde2c53 1314 regnum = dwarf_reg_to_regnum_or_error
4a4e5149
DJ
1315 (gdbarch, cache->retaddr_reg.loc.reg);
1316 addr += get_frame_register_unsigned (this_frame, regnum);
1317 return frame_unwind_got_address (this_frame, regnum, addr);
8d5a9abc 1318
b39cc962
DJ
1319 case DWARF2_FRAME_REG_FN:
1320 return cache->reg[regnum].loc.fn (this_frame, this_cache, regnum);
1321
cfc14b3a 1322 default:
e2e0b3e5 1323 internal_error (__FILE__, __LINE__, _("Unknown register rule."));
cfc14b3a
MK
1324 }
1325}
1326
111c6489
JK
1327/* Proxy for tailcall_frame_dealloc_cache for bottom frame of a virtual tail
1328 call frames chain. */
1329
1330static void
1331dwarf2_frame_dealloc_cache (struct frame_info *self, void *this_cache)
1332{
1333 struct dwarf2_frame_cache *cache = dwarf2_frame_cache (self, &this_cache);
1334
1335 if (cache->tailcall_cache)
1336 dwarf2_tailcall_frame_unwind.dealloc_cache (self, cache->tailcall_cache);
1337}
1338
4a4e5149
DJ
1339static int
1340dwarf2_frame_sniffer (const struct frame_unwind *self,
1341 struct frame_info *this_frame, void **this_cache)
cfc14b3a 1342{
3c3bb058
AB
1343 if (!dwarf2_frame_unwinders_enabled_p)
1344 return 0;
1345
1ce5d6dd 1346 /* Grab an address that is guarenteed to reside somewhere within the
4a4e5149 1347 function. get_frame_pc(), with a no-return next function, can
93d42b30
DJ
1348 end up returning something past the end of this function's body.
1349 If the frame we're sniffing for is a signal frame whose start
1350 address is placed on the stack by the OS, its FDE must
4a4e5149
DJ
1351 extend one byte before its start address or we could potentially
1352 select the FDE of the previous function. */
1353 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
ac56253d 1354 struct dwarf2_fde *fde = dwarf2_frame_find_fde (&block_addr, NULL);
9a619af0 1355
56c987f6 1356 if (!fde)
4a4e5149 1357 return 0;
3ed09a32
DJ
1358
1359 /* On some targets, signal trampolines may have unwind information.
1360 We need to recognize them so that we set the frame type
1361 correctly. */
1362
56c987f6 1363 if (fde->cie->signal_frame
4a4e5149
DJ
1364 || dwarf2_frame_signal_frame_p (get_frame_arch (this_frame),
1365 this_frame))
1366 return self->type == SIGTRAMP_FRAME;
1367
111c6489
JK
1368 if (self->type != NORMAL_FRAME)
1369 return 0;
1370
111c6489 1371 return 1;
4a4e5149
DJ
1372}
1373
1374static const struct frame_unwind dwarf2_frame_unwind =
1375{
1376 NORMAL_FRAME,
8fbca658 1377 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1378 dwarf2_frame_this_id,
1379 dwarf2_frame_prev_register,
1380 NULL,
111c6489
JK
1381 dwarf2_frame_sniffer,
1382 dwarf2_frame_dealloc_cache
4a4e5149
DJ
1383};
1384
1385static const struct frame_unwind dwarf2_signal_frame_unwind =
1386{
1387 SIGTRAMP_FRAME,
8fbca658 1388 dwarf2_frame_unwind_stop_reason,
4a4e5149
DJ
1389 dwarf2_frame_this_id,
1390 dwarf2_frame_prev_register,
1391 NULL,
111c6489
JK
1392 dwarf2_frame_sniffer,
1393
1394 /* TAILCALL_CACHE can never be in such frame to need dealloc_cache. */
1395 NULL
4a4e5149 1396};
cfc14b3a 1397
4a4e5149
DJ
1398/* Append the DWARF-2 frame unwinders to GDBARCH's list. */
1399
1400void
1401dwarf2_append_unwinders (struct gdbarch *gdbarch)
1402{
111c6489
JK
1403 /* TAILCALL_FRAME must be first to find the record by
1404 dwarf2_tailcall_sniffer_first. */
1405 frame_unwind_append_unwinder (gdbarch, &dwarf2_tailcall_frame_unwind);
1406
4a4e5149
DJ
1407 frame_unwind_append_unwinder (gdbarch, &dwarf2_frame_unwind);
1408 frame_unwind_append_unwinder (gdbarch, &dwarf2_signal_frame_unwind);
cfc14b3a
MK
1409}
1410\f
1411
1412/* There is no explicitly defined relationship between the CFA and the
1413 location of frame's local variables and arguments/parameters.
1414 Therefore, frame base methods on this page should probably only be
1415 used as a last resort, just to avoid printing total garbage as a
1416 response to the "info frame" command. */
1417
1418static CORE_ADDR
4a4e5149 1419dwarf2_frame_base_address (struct frame_info *this_frame, void **this_cache)
cfc14b3a
MK
1420{
1421 struct dwarf2_frame_cache *cache =
4a4e5149 1422 dwarf2_frame_cache (this_frame, this_cache);
cfc14b3a
MK
1423
1424 return cache->cfa;
1425}
1426
1427static const struct frame_base dwarf2_frame_base =
1428{
1429 &dwarf2_frame_unwind,
1430 dwarf2_frame_base_address,
1431 dwarf2_frame_base_address,
1432 dwarf2_frame_base_address
1433};
1434
1435const struct frame_base *
4a4e5149 1436dwarf2_frame_base_sniffer (struct frame_info *this_frame)
cfc14b3a 1437{
4a4e5149 1438 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
9a619af0 1439
ac56253d 1440 if (dwarf2_frame_find_fde (&block_addr, NULL))
cfc14b3a
MK
1441 return &dwarf2_frame_base;
1442
1443 return NULL;
1444}
e7802207
TT
1445
1446/* Compute the CFA for THIS_FRAME, but only if THIS_FRAME came from
1447 the DWARF unwinder. This is used to implement
1448 DW_OP_call_frame_cfa. */
1449
1450CORE_ADDR
1451dwarf2_frame_cfa (struct frame_info *this_frame)
1452{
0b722aec
MM
1453 if (frame_unwinder_is (this_frame, &record_btrace_tailcall_frame_unwind)
1454 || frame_unwinder_is (this_frame, &record_btrace_frame_unwind))
1455 throw_error (NOT_AVAILABLE_ERROR,
1456 _("cfa not available for record btrace target"));
1457
e7802207
TT
1458 while (get_frame_type (this_frame) == INLINE_FRAME)
1459 this_frame = get_prev_frame (this_frame);
32261e52
MM
1460 if (get_frame_unwind_stop_reason (this_frame) == UNWIND_UNAVAILABLE)
1461 throw_error (NOT_AVAILABLE_ERROR,
1462 _("can't compute CFA for this frame: "
1463 "required registers or memory are unavailable"));
14aba1ac
JB
1464
1465 if (get_frame_id (this_frame).stack_status != FID_STACK_VALID)
1466 throw_error (NOT_AVAILABLE_ERROR,
1467 _("can't compute CFA for this frame: "
1468 "frame base not available"));
1469
e7802207
TT
1470 return get_frame_base (this_frame);
1471}
cfc14b3a 1472\f
924d79e2
TT
1473const struct objfile_key<dwarf2_fde_table,
1474 gdb::noop_deleter<dwarf2_fde_table>>
1475 dwarf2_frame_objfile_data;
0d0e1a63 1476
cfc14b3a 1477static unsigned int
f664829e 1478read_1_byte (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1479{
852483bc 1480 return bfd_get_8 (abfd, buf);
cfc14b3a
MK
1481}
1482
1483static unsigned int
f664829e 1484read_4_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1485{
852483bc 1486 return bfd_get_32 (abfd, buf);
cfc14b3a
MK
1487}
1488
1489static ULONGEST
f664829e 1490read_8_bytes (bfd *abfd, const gdb_byte *buf)
cfc14b3a 1491{
852483bc 1492 return bfd_get_64 (abfd, buf);
cfc14b3a
MK
1493}
1494
1495static ULONGEST
f664829e
DE
1496read_initial_length (bfd *abfd, const gdb_byte *buf,
1497 unsigned int *bytes_read_ptr)
cfc14b3a 1498{
723adb65 1499 ULONGEST result;
cfc14b3a 1500
852483bc 1501 result = bfd_get_32 (abfd, buf);
cfc14b3a
MK
1502 if (result == 0xffffffff)
1503 {
852483bc 1504 result = bfd_get_64 (abfd, buf + 4);
cfc14b3a
MK
1505 *bytes_read_ptr = 12;
1506 }
1507 else
1508 *bytes_read_ptr = 4;
1509
1510 return result;
1511}
1512\f
1513
1514/* Pointer encoding helper functions. */
1515
1516/* GCC supports exception handling based on DWARF2 CFI. However, for
1517 technical reasons, it encodes addresses in its FDE's in a different
1518 way. Several "pointer encodings" are supported. The encoding
1519 that's used for a particular FDE is determined by the 'R'
1520 augmentation in the associated CIE. The argument of this
1521 augmentation is a single byte.
1522
1523 The address can be encoded as 2 bytes, 4 bytes, 8 bytes, or as a
1524 LEB128. This is encoded in bits 0, 1 and 2. Bit 3 encodes whether
1525 the address is signed or unsigned. Bits 4, 5 and 6 encode how the
1526 address should be interpreted (absolute, relative to the current
1527 position in the FDE, ...). Bit 7, indicates that the address
1528 should be dereferenced. */
1529
852483bc 1530static gdb_byte
cfc14b3a
MK
1531encoding_for_size (unsigned int size)
1532{
1533 switch (size)
1534 {
1535 case 2:
1536 return DW_EH_PE_udata2;
1537 case 4:
1538 return DW_EH_PE_udata4;
1539 case 8:
1540 return DW_EH_PE_udata8;
1541 default:
e2e0b3e5 1542 internal_error (__FILE__, __LINE__, _("Unsupported address size"));
cfc14b3a
MK
1543 }
1544}
1545
cfc14b3a 1546static CORE_ADDR
852483bc 1547read_encoded_value (struct comp_unit *unit, gdb_byte encoding,
0d45f56e
TT
1548 int ptr_len, const gdb_byte *buf,
1549 unsigned int *bytes_read_ptr,
ae0d2f24 1550 CORE_ADDR func_base)
cfc14b3a 1551{
68f6cf99 1552 ptrdiff_t offset;
cfc14b3a
MK
1553 CORE_ADDR base;
1554
1555 /* GCC currently doesn't generate DW_EH_PE_indirect encodings for
1556 FDE's. */
1557 if (encoding & DW_EH_PE_indirect)
1558 internal_error (__FILE__, __LINE__,
e2e0b3e5 1559 _("Unsupported encoding: DW_EH_PE_indirect"));
cfc14b3a 1560
68f6cf99
MK
1561 *bytes_read_ptr = 0;
1562
cfc14b3a
MK
1563 switch (encoding & 0x70)
1564 {
1565 case DW_EH_PE_absptr:
1566 base = 0;
1567 break;
1568 case DW_EH_PE_pcrel:
fd361982 1569 base = bfd_section_vma (unit->dwarf_frame_section);
852483bc 1570 base += (buf - unit->dwarf_frame_buffer);
cfc14b3a 1571 break;
0912c7f2
MK
1572 case DW_EH_PE_datarel:
1573 base = unit->dbase;
1574 break;
0fd85043
CV
1575 case DW_EH_PE_textrel:
1576 base = unit->tbase;
1577 break;
03ac2a74 1578 case DW_EH_PE_funcrel:
ae0d2f24 1579 base = func_base;
03ac2a74 1580 break;
68f6cf99
MK
1581 case DW_EH_PE_aligned:
1582 base = 0;
852483bc 1583 offset = buf - unit->dwarf_frame_buffer;
68f6cf99
MK
1584 if ((offset % ptr_len) != 0)
1585 {
1586 *bytes_read_ptr = ptr_len - (offset % ptr_len);
1587 buf += *bytes_read_ptr;
1588 }
1589 break;
cfc14b3a 1590 default:
3e43a32a
MS
1591 internal_error (__FILE__, __LINE__,
1592 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1593 }
1594
b04de778 1595 if ((encoding & 0x07) == 0x00)
f2fec864
DJ
1596 {
1597 encoding |= encoding_for_size (ptr_len);
1598 if (bfd_get_sign_extend_vma (unit->abfd))
1599 encoding |= DW_EH_PE_signed;
1600 }
cfc14b3a
MK
1601
1602 switch (encoding & 0x0f)
1603 {
a81b10ae
MK
1604 case DW_EH_PE_uleb128:
1605 {
9fccedf7 1606 uint64_t value;
0d45f56e 1607 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1608
f664829e 1609 *bytes_read_ptr += safe_read_uleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1610 return base + value;
1611 }
cfc14b3a 1612 case DW_EH_PE_udata2:
68f6cf99 1613 *bytes_read_ptr += 2;
cfc14b3a
MK
1614 return (base + bfd_get_16 (unit->abfd, (bfd_byte *) buf));
1615 case DW_EH_PE_udata4:
68f6cf99 1616 *bytes_read_ptr += 4;
cfc14b3a
MK
1617 return (base + bfd_get_32 (unit->abfd, (bfd_byte *) buf));
1618 case DW_EH_PE_udata8:
68f6cf99 1619 *bytes_read_ptr += 8;
cfc14b3a 1620 return (base + bfd_get_64 (unit->abfd, (bfd_byte *) buf));
a81b10ae
MK
1621 case DW_EH_PE_sleb128:
1622 {
9fccedf7 1623 int64_t value;
0d45f56e 1624 const gdb_byte *end_buf = buf + (sizeof (value) + 1) * 8 / 7;
9a619af0 1625
f664829e 1626 *bytes_read_ptr += safe_read_sleb128 (buf, end_buf, &value) - buf;
a81b10ae
MK
1627 return base + value;
1628 }
cfc14b3a 1629 case DW_EH_PE_sdata2:
68f6cf99 1630 *bytes_read_ptr += 2;
cfc14b3a
MK
1631 return (base + bfd_get_signed_16 (unit->abfd, (bfd_byte *) buf));
1632 case DW_EH_PE_sdata4:
68f6cf99 1633 *bytes_read_ptr += 4;
cfc14b3a
MK
1634 return (base + bfd_get_signed_32 (unit->abfd, (bfd_byte *) buf));
1635 case DW_EH_PE_sdata8:
68f6cf99 1636 *bytes_read_ptr += 8;
cfc14b3a
MK
1637 return (base + bfd_get_signed_64 (unit->abfd, (bfd_byte *) buf));
1638 default:
3e43a32a
MS
1639 internal_error (__FILE__, __LINE__,
1640 _("Invalid or unsupported encoding"));
cfc14b3a
MK
1641 }
1642}
1643\f
1644
b01c8410
PP
1645/* Find CIE with the given CIE_POINTER in CIE_TABLE. */
1646static struct dwarf2_cie *
93878f47 1647find_cie (const dwarf2_cie_table &cie_table, ULONGEST cie_pointer)
b01c8410 1648{
93878f47
TT
1649 auto iter = cie_table.find (cie_pointer);
1650 if (iter != cie_table.end ())
1651 return iter->second;
cfc14b3a
MK
1652 return NULL;
1653}
1654
b01c8410
PP
1655static int
1656bsearch_fde_cmp (const void *key, const void *element)
1657{
1658 CORE_ADDR seek_pc = *(CORE_ADDR *) key;
1659 struct dwarf2_fde *fde = *(struct dwarf2_fde **) element;
9a619af0 1660
b01c8410
PP
1661 if (seek_pc < fde->initial_location)
1662 return -1;
1663 if (seek_pc < fde->initial_location + fde->address_range)
1664 return 0;
1665 return 1;
cfc14b3a
MK
1666}
1667
1668/* Find the FDE for *PC. Return a pointer to the FDE, and store the
85102364 1669 initial location associated with it into *PC. */
cfc14b3a
MK
1670
1671static struct dwarf2_fde *
ac56253d 1672dwarf2_frame_find_fde (CORE_ADDR *pc, CORE_ADDR *out_offset)
cfc14b3a 1673{
2030c079 1674 for (objfile *objfile : current_program_space->objfiles ())
cfc14b3a 1675 {
b01c8410
PP
1676 struct dwarf2_fde_table *fde_table;
1677 struct dwarf2_fde **p_fde;
cfc14b3a 1678 CORE_ADDR offset;
b01c8410 1679 CORE_ADDR seek_pc;
cfc14b3a 1680
924d79e2 1681 fde_table = dwarf2_frame_objfile_data.get (objfile);
b01c8410 1682 if (fde_table == NULL)
be391dca
TT
1683 {
1684 dwarf2_build_frame_info (objfile);
924d79e2 1685 fde_table = dwarf2_frame_objfile_data.get (objfile);
be391dca
TT
1686 }
1687 gdb_assert (fde_table != NULL);
1688
1689 if (fde_table->num_entries == 0)
4ae9ee8e
DJ
1690 continue;
1691
1692 gdb_assert (objfile->section_offsets);
1693 offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
1694
b01c8410
PP
1695 gdb_assert (fde_table->num_entries > 0);
1696 if (*pc < offset + fde_table->entries[0]->initial_location)
1697 continue;
1698
1699 seek_pc = *pc - offset;
9a3c8263
SM
1700 p_fde = ((struct dwarf2_fde **)
1701 bsearch (&seek_pc, fde_table->entries, fde_table->num_entries,
1702 sizeof (fde_table->entries[0]), bsearch_fde_cmp));
b01c8410
PP
1703 if (p_fde != NULL)
1704 {
1705 *pc = (*p_fde)->initial_location + offset;
ac56253d
TT
1706 if (out_offset)
1707 *out_offset = offset;
b01c8410
PP
1708 return *p_fde;
1709 }
cfc14b3a 1710 }
cfc14b3a
MK
1711 return NULL;
1712}
1713
b01c8410 1714/* Add a pointer to new FDE to the FDE_TABLE, allocating space for it. */
cfc14b3a 1715static void
b01c8410 1716add_fde (struct dwarf2_fde_table *fde_table, struct dwarf2_fde *fde)
cfc14b3a 1717{
b01c8410
PP
1718 if (fde->address_range == 0)
1719 /* Discard useless FDEs. */
1720 return;
1721
1722 fde_table->num_entries += 1;
224c3ddb
SM
1723 fde_table->entries = XRESIZEVEC (struct dwarf2_fde *, fde_table->entries,
1724 fde_table->num_entries);
b01c8410 1725 fde_table->entries[fde_table->num_entries - 1] = fde;
cfc14b3a
MK
1726}
1727
cfc14b3a 1728#define DW64_CIE_ID 0xffffffffffffffffULL
cfc14b3a 1729
8bd90839
FM
1730/* Defines the type of eh_frames that are expected to be decoded: CIE, FDE
1731 or any of them. */
1732
1733enum eh_frame_type
1734{
1735 EH_CIE_TYPE_ID = 1 << 0,
1736 EH_FDE_TYPE_ID = 1 << 1,
1737 EH_CIE_OR_FDE_TYPE_ID = EH_CIE_TYPE_ID | EH_FDE_TYPE_ID
1738};
1739
f664829e
DE
1740static const gdb_byte *decode_frame_entry (struct comp_unit *unit,
1741 const gdb_byte *start,
1742 int eh_frame_p,
93878f47 1743 dwarf2_cie_table &cie_table,
f664829e
DE
1744 struct dwarf2_fde_table *fde_table,
1745 enum eh_frame_type entry_type);
8bd90839
FM
1746
1747/* Decode the next CIE or FDE, entry_type specifies the expected type.
1748 Return NULL if invalid input, otherwise the next byte to be processed. */
cfc14b3a 1749
f664829e
DE
1750static const gdb_byte *
1751decode_frame_entry_1 (struct comp_unit *unit, const gdb_byte *start,
1752 int eh_frame_p,
93878f47 1753 dwarf2_cie_table &cie_table,
8bd90839
FM
1754 struct dwarf2_fde_table *fde_table,
1755 enum eh_frame_type entry_type)
cfc14b3a 1756{
5e2b427d 1757 struct gdbarch *gdbarch = get_objfile_arch (unit->objfile);
f664829e 1758 const gdb_byte *buf, *end;
723adb65 1759 ULONGEST length;
cfc14b3a 1760 unsigned int bytes_read;
6896c0c7
RH
1761 int dwarf64_p;
1762 ULONGEST cie_id;
cfc14b3a 1763 ULONGEST cie_pointer;
9fccedf7
DE
1764 int64_t sleb128;
1765 uint64_t uleb128;
cfc14b3a 1766
6896c0c7 1767 buf = start;
cfc14b3a
MK
1768 length = read_initial_length (unit->abfd, buf, &bytes_read);
1769 buf += bytes_read;
723adb65 1770 end = buf + (size_t) length;
6896c0c7 1771
cfc14b3a
MK
1772 if (length == 0)
1773 return end;
1774
723adb65
SL
1775 /* Are we still within the section? */
1776 if (end <= buf || end > unit->dwarf_frame_buffer + unit->dwarf_frame_size)
1777 return NULL;
1778
6896c0c7
RH
1779 /* Distinguish between 32 and 64-bit encoded frame info. */
1780 dwarf64_p = (bytes_read == 12);
cfc14b3a 1781
6896c0c7 1782 /* In a .eh_frame section, zero is used to distinguish CIEs from FDEs. */
cfc14b3a
MK
1783 if (eh_frame_p)
1784 cie_id = 0;
1785 else if (dwarf64_p)
1786 cie_id = DW64_CIE_ID;
6896c0c7
RH
1787 else
1788 cie_id = DW_CIE_ID;
cfc14b3a
MK
1789
1790 if (dwarf64_p)
1791 {
1792 cie_pointer = read_8_bytes (unit->abfd, buf);
1793 buf += 8;
1794 }
1795 else
1796 {
1797 cie_pointer = read_4_bytes (unit->abfd, buf);
1798 buf += 4;
1799 }
1800
1801 if (cie_pointer == cie_id)
1802 {
1803 /* This is a CIE. */
1804 struct dwarf2_cie *cie;
1805 char *augmentation;
28ba0b33 1806 unsigned int cie_version;
cfc14b3a 1807
8bd90839
FM
1808 /* Check that a CIE was expected. */
1809 if ((entry_type & EH_CIE_TYPE_ID) == 0)
1810 error (_("Found a CIE when not expecting it."));
1811
cfc14b3a
MK
1812 /* Record the offset into the .debug_frame section of this CIE. */
1813 cie_pointer = start - unit->dwarf_frame_buffer;
1814
1815 /* Check whether we've already read it. */
b01c8410 1816 if (find_cie (cie_table, cie_pointer))
cfc14b3a
MK
1817 return end;
1818
8d749320 1819 cie = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_cie);
cfc14b3a
MK
1820 cie->initial_instructions = NULL;
1821 cie->cie_pointer = cie_pointer;
1822
1823 /* The encoding for FDE's in a normal .debug_frame section
32b05c07
MK
1824 depends on the target address size. */
1825 cie->encoding = DW_EH_PE_absptr;
cfc14b3a 1826
56c987f6
AO
1827 /* We'll determine the final value later, but we need to
1828 initialize it conservatively. */
1829 cie->signal_frame = 0;
1830
cfc14b3a 1831 /* Check version number. */
28ba0b33 1832 cie_version = read_1_byte (unit->abfd, buf);
2dc7f7b3 1833 if (cie_version != 1 && cie_version != 3 && cie_version != 4)
6896c0c7 1834 return NULL;
303b6f5d 1835 cie->version = cie_version;
cfc14b3a
MK
1836 buf += 1;
1837
1838 /* Interpret the interesting bits of the augmentation. */
303b6f5d 1839 cie->augmentation = augmentation = (char *) buf;
852483bc 1840 buf += (strlen (augmentation) + 1);
cfc14b3a 1841
303b6f5d
DJ
1842 /* Ignore armcc augmentations. We only use them for quirks,
1843 and that doesn't happen until later. */
61012eef 1844 if (startswith (augmentation, "armcc"))
303b6f5d
DJ
1845 augmentation += strlen (augmentation);
1846
cfc14b3a
MK
1847 /* The GCC 2.x "eh" augmentation has a pointer immediately
1848 following the augmentation string, so it must be handled
1849 first. */
1850 if (augmentation[0] == 'e' && augmentation[1] == 'h')
1851 {
1852 /* Skip. */
5e2b427d 1853 buf += gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
cfc14b3a
MK
1854 augmentation += 2;
1855 }
1856
2dc7f7b3
TT
1857 if (cie->version >= 4)
1858 {
1859 /* FIXME: check that this is the same as from the CU header. */
1860 cie->addr_size = read_1_byte (unit->abfd, buf);
1861 ++buf;
1862 cie->segment_size = read_1_byte (unit->abfd, buf);
1863 ++buf;
1864 }
1865 else
1866 {
8da614df 1867 cie->addr_size = gdbarch_dwarf2_addr_size (gdbarch);
2dc7f7b3
TT
1868 cie->segment_size = 0;
1869 }
8da614df
CV
1870 /* Address values in .eh_frame sections are defined to have the
1871 target's pointer size. Watchout: This breaks frame info for
1872 targets with pointer size < address size, unless a .debug_frame
0963b4bd 1873 section exists as well. */
8da614df
CV
1874 if (eh_frame_p)
1875 cie->ptr_size = gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
1876 else
1877 cie->ptr_size = cie->addr_size;
2dc7f7b3 1878
f664829e
DE
1879 buf = gdb_read_uleb128 (buf, end, &uleb128);
1880 if (buf == NULL)
1881 return NULL;
1882 cie->code_alignment_factor = uleb128;
cfc14b3a 1883
f664829e
DE
1884 buf = gdb_read_sleb128 (buf, end, &sleb128);
1885 if (buf == NULL)
1886 return NULL;
1887 cie->data_alignment_factor = sleb128;
cfc14b3a 1888
28ba0b33
PB
1889 if (cie_version == 1)
1890 {
1891 cie->return_address_register = read_1_byte (unit->abfd, buf);
f664829e 1892 ++buf;
28ba0b33
PB
1893 }
1894 else
f664829e
DE
1895 {
1896 buf = gdb_read_uleb128 (buf, end, &uleb128);
1897 if (buf == NULL)
1898 return NULL;
1899 cie->return_address_register = uleb128;
1900 }
1901
4fc771b8 1902 cie->return_address_register
5e2b427d 1903 = dwarf2_frame_adjust_regnum (gdbarch,
4fc771b8
DJ
1904 cie->return_address_register,
1905 eh_frame_p);
4bf8967c 1906
7131cb6e
RH
1907 cie->saw_z_augmentation = (*augmentation == 'z');
1908 if (cie->saw_z_augmentation)
cfc14b3a 1909 {
b926417a 1910 uint64_t uleb_length;
cfc14b3a 1911
b926417a 1912 buf = gdb_read_uleb128 (buf, end, &uleb_length);
f664829e 1913 if (buf == NULL)
6896c0c7 1914 return NULL;
b926417a 1915 cie->initial_instructions = buf + uleb_length;
cfc14b3a
MK
1916 augmentation++;
1917 }
1918
1919 while (*augmentation)
1920 {
1921 /* "L" indicates a byte showing how the LSDA pointer is encoded. */
1922 if (*augmentation == 'L')
1923 {
1924 /* Skip. */
1925 buf++;
1926 augmentation++;
1927 }
1928
1929 /* "R" indicates a byte indicating how FDE addresses are encoded. */
1930 else if (*augmentation == 'R')
1931 {
1932 cie->encoding = *buf++;
1933 augmentation++;
1934 }
1935
1936 /* "P" indicates a personality routine in the CIE augmentation. */
1937 else if (*augmentation == 'P')
1938 {
1234d960 1939 /* Skip. Avoid indirection since we throw away the result. */
852483bc 1940 gdb_byte encoding = (*buf++) & ~DW_EH_PE_indirect;
8da614df 1941 read_encoded_value (unit, encoding, cie->ptr_size,
ae0d2f24 1942 buf, &bytes_read, 0);
f724bf08 1943 buf += bytes_read;
cfc14b3a
MK
1944 augmentation++;
1945 }
1946
56c987f6
AO
1947 /* "S" indicates a signal frame, such that the return
1948 address must not be decremented to locate the call frame
1949 info for the previous frame; it might even be the first
1950 instruction of a function, so decrementing it would take
1951 us to a different function. */
1952 else if (*augmentation == 'S')
1953 {
1954 cie->signal_frame = 1;
1955 augmentation++;
1956 }
1957
3e9a2e52
DJ
1958 /* Otherwise we have an unknown augmentation. Assume that either
1959 there is no augmentation data, or we saw a 'z' prefix. */
cfc14b3a
MK
1960 else
1961 {
3e9a2e52
DJ
1962 if (cie->initial_instructions)
1963 buf = cie->initial_instructions;
cfc14b3a
MK
1964 break;
1965 }
1966 }
1967
1968 cie->initial_instructions = buf;
1969 cie->end = end;
b01c8410 1970 cie->unit = unit;
cfc14b3a 1971
93878f47 1972 cie_table[cie->cie_pointer] = cie;
cfc14b3a
MK
1973 }
1974 else
1975 {
1976 /* This is a FDE. */
1977 struct dwarf2_fde *fde;
3e29f34a 1978 CORE_ADDR addr;
cfc14b3a 1979
8bd90839
FM
1980 /* Check that an FDE was expected. */
1981 if ((entry_type & EH_FDE_TYPE_ID) == 0)
1982 error (_("Found an FDE when not expecting it."));
1983
6896c0c7
RH
1984 /* In an .eh_frame section, the CIE pointer is the delta between the
1985 address within the FDE where the CIE pointer is stored and the
1986 address of the CIE. Convert it to an offset into the .eh_frame
1987 section. */
cfc14b3a
MK
1988 if (eh_frame_p)
1989 {
cfc14b3a
MK
1990 cie_pointer = buf - unit->dwarf_frame_buffer - cie_pointer;
1991 cie_pointer -= (dwarf64_p ? 8 : 4);
1992 }
1993
6896c0c7
RH
1994 /* In either case, validate the result is still within the section. */
1995 if (cie_pointer >= unit->dwarf_frame_size)
1996 return NULL;
1997
8d749320 1998 fde = XOBNEW (&unit->objfile->objfile_obstack, struct dwarf2_fde);
b01c8410 1999 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2000 if (fde->cie == NULL)
2001 {
2002 decode_frame_entry (unit, unit->dwarf_frame_buffer + cie_pointer,
8bd90839
FM
2003 eh_frame_p, cie_table, fde_table,
2004 EH_CIE_TYPE_ID);
b01c8410 2005 fde->cie = find_cie (cie_table, cie_pointer);
cfc14b3a
MK
2006 }
2007
2008 gdb_assert (fde->cie != NULL);
2009
3e29f34a
MR
2010 addr = read_encoded_value (unit, fde->cie->encoding, fde->cie->ptr_size,
2011 buf, &bytes_read, 0);
2012 fde->initial_location = gdbarch_adjust_dwarf2_addr (gdbarch, addr);
cfc14b3a
MK
2013 buf += bytes_read;
2014
2015 fde->address_range =
ae0d2f24 2016 read_encoded_value (unit, fde->cie->encoding & 0x0f,
8da614df 2017 fde->cie->ptr_size, buf, &bytes_read, 0);
3e29f34a
MR
2018 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + fde->address_range);
2019 fde->address_range = addr - fde->initial_location;
cfc14b3a
MK
2020 buf += bytes_read;
2021
7131cb6e
RH
2022 /* A 'z' augmentation in the CIE implies the presence of an
2023 augmentation field in the FDE as well. The only thing known
2024 to be in here at present is the LSDA entry for EH. So we
2025 can skip the whole thing. */
2026 if (fde->cie->saw_z_augmentation)
2027 {
b926417a 2028 uint64_t uleb_length;
7131cb6e 2029
b926417a 2030 buf = gdb_read_uleb128 (buf, end, &uleb_length);
f664829e
DE
2031 if (buf == NULL)
2032 return NULL;
b926417a 2033 buf += uleb_length;
6896c0c7
RH
2034 if (buf > end)
2035 return NULL;
7131cb6e
RH
2036 }
2037
cfc14b3a
MK
2038 fde->instructions = buf;
2039 fde->end = end;
2040
4bf8967c
AS
2041 fde->eh_frame_p = eh_frame_p;
2042
b01c8410 2043 add_fde (fde_table, fde);
cfc14b3a
MK
2044 }
2045
2046 return end;
2047}
6896c0c7 2048
8bd90839
FM
2049/* Read a CIE or FDE in BUF and decode it. Entry_type specifies whether we
2050 expect an FDE or a CIE. */
2051
f664829e
DE
2052static const gdb_byte *
2053decode_frame_entry (struct comp_unit *unit, const gdb_byte *start,
2054 int eh_frame_p,
93878f47 2055 dwarf2_cie_table &cie_table,
8bd90839
FM
2056 struct dwarf2_fde_table *fde_table,
2057 enum eh_frame_type entry_type)
6896c0c7
RH
2058{
2059 enum { NONE, ALIGN4, ALIGN8, FAIL } workaround = NONE;
f664829e 2060 const gdb_byte *ret;
6896c0c7
RH
2061 ptrdiff_t start_offset;
2062
2063 while (1)
2064 {
b01c8410 2065 ret = decode_frame_entry_1 (unit, start, eh_frame_p,
8bd90839 2066 cie_table, fde_table, entry_type);
6896c0c7
RH
2067 if (ret != NULL)
2068 break;
2069
2070 /* We have corrupt input data of some form. */
2071
2072 /* ??? Try, weakly, to work around compiler/assembler/linker bugs
2073 and mismatches wrt padding and alignment of debug sections. */
2074 /* Note that there is no requirement in the standard for any
2075 alignment at all in the frame unwind sections. Testing for
2076 alignment before trying to interpret data would be incorrect.
2077
2078 However, GCC traditionally arranged for frame sections to be
2079 sized such that the FDE length and CIE fields happen to be
2080 aligned (in theory, for performance). This, unfortunately,
2081 was done with .align directives, which had the side effect of
2082 forcing the section to be aligned by the linker.
2083
2084 This becomes a problem when you have some other producer that
2085 creates frame sections that are not as strictly aligned. That
2086 produces a hole in the frame info that gets filled by the
2087 linker with zeros.
2088
2089 The GCC behaviour is arguably a bug, but it's effectively now
2090 part of the ABI, so we're now stuck with it, at least at the
2091 object file level. A smart linker may decide, in the process
2092 of compressing duplicate CIE information, that it can rewrite
2093 the entire output section without this extra padding. */
2094
2095 start_offset = start - unit->dwarf_frame_buffer;
2096 if (workaround < ALIGN4 && (start_offset & 3) != 0)
2097 {
2098 start += 4 - (start_offset & 3);
2099 workaround = ALIGN4;
2100 continue;
2101 }
2102 if (workaround < ALIGN8 && (start_offset & 7) != 0)
2103 {
2104 start += 8 - (start_offset & 7);
2105 workaround = ALIGN8;
2106 continue;
2107 }
2108
2109 /* Nothing left to try. Arrange to return as if we've consumed
2110 the entire input section. Hopefully we'll get valid info from
2111 the other of .debug_frame/.eh_frame. */
2112 workaround = FAIL;
2113 ret = unit->dwarf_frame_buffer + unit->dwarf_frame_size;
2114 break;
2115 }
2116
2117 switch (workaround)
2118 {
2119 case NONE:
2120 break;
2121
2122 case ALIGN4:
b98664d3 2123 complaint (_("\
3e43a32a 2124Corrupt data in %s:%s; align 4 workaround apparently succeeded"),
6896c0c7
RH
2125 unit->dwarf_frame_section->owner->filename,
2126 unit->dwarf_frame_section->name);
2127 break;
2128
2129 case ALIGN8:
b98664d3 2130 complaint (_("\
3e43a32a 2131Corrupt data in %s:%s; align 8 workaround apparently succeeded"),
6896c0c7
RH
2132 unit->dwarf_frame_section->owner->filename,
2133 unit->dwarf_frame_section->name);
2134 break;
2135
2136 default:
b98664d3 2137 complaint (_("Corrupt data in %s:%s"),
6896c0c7
RH
2138 unit->dwarf_frame_section->owner->filename,
2139 unit->dwarf_frame_section->name);
2140 break;
2141 }
2142
2143 return ret;
2144}
cfc14b3a 2145\f
39ef2f62
CB
2146static bool
2147fde_is_less_than (const dwarf2_fde *aa, const dwarf2_fde *bb)
b01c8410 2148{
b01c8410 2149 if (aa->initial_location == bb->initial_location)
e5af178f
PP
2150 {
2151 if (aa->address_range != bb->address_range
2152 && aa->eh_frame_p == 0 && bb->eh_frame_p == 0)
2153 /* Linker bug, e.g. gold/10400.
2154 Work around it by keeping stable sort order. */
39ef2f62 2155 return aa < bb;
e5af178f
PP
2156 else
2157 /* Put eh_frame entries after debug_frame ones. */
39ef2f62 2158 return aa->eh_frame_p < bb->eh_frame_p;
e5af178f 2159 }
b01c8410 2160
39ef2f62 2161 return aa->initial_location < bb->initial_location;
b01c8410
PP
2162}
2163
cfc14b3a
MK
2164void
2165dwarf2_build_frame_info (struct objfile *objfile)
2166{
ae0d2f24 2167 struct comp_unit *unit;
f664829e 2168 const gdb_byte *frame_ptr;
93878f47 2169 dwarf2_cie_table cie_table;
b01c8410 2170 struct dwarf2_fde_table fde_table;
be391dca 2171 struct dwarf2_fde_table *fde_table2;
b01c8410 2172
b01c8410
PP
2173 fde_table.num_entries = 0;
2174 fde_table.entries = NULL;
cfc14b3a
MK
2175
2176 /* Build a minimal decoding of the DWARF2 compilation unit. */
e39db4db 2177 unit = XOBNEW (&objfile->objfile_obstack, comp_unit);
ae0d2f24
UW
2178 unit->abfd = objfile->obfd;
2179 unit->objfile = objfile;
2180 unit->dbase = 0;
2181 unit->tbase = 0;
cfc14b3a 2182
d40102a1 2183 if (objfile->separate_debug_objfile_backlink == NULL)
cfc14b3a 2184 {
d40102a1
JB
2185 /* Do not read .eh_frame from separate file as they must be also
2186 present in the main file. */
2187 dwarf2_get_section_info (objfile, DWARF2_EH_FRAME,
2188 &unit->dwarf_frame_section,
2189 &unit->dwarf_frame_buffer,
2190 &unit->dwarf_frame_size);
2191 if (unit->dwarf_frame_size)
b01c8410 2192 {
d40102a1
JB
2193 asection *got, *txt;
2194
2195 /* FIXME: kettenis/20030602: This is the DW_EH_PE_datarel base
2196 that is used for the i386/amd64 target, which currently is
2197 the only target in GCC that supports/uses the
2198 DW_EH_PE_datarel encoding. */
2199 got = bfd_get_section_by_name (unit->abfd, ".got");
2200 if (got)
2201 unit->dbase = got->vma;
2202
2203 /* GCC emits the DW_EH_PE_textrel encoding type on sh and ia64
2204 so far. */
2205 txt = bfd_get_section_by_name (unit->abfd, ".text");
2206 if (txt)
2207 unit->tbase = txt->vma;
2208
a70b8144 2209 try
8bd90839
FM
2210 {
2211 frame_ptr = unit->dwarf_frame_buffer;
2212 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2213 frame_ptr = decode_frame_entry (unit, frame_ptr, 1,
93878f47 2214 cie_table, &fde_table,
8bd90839
FM
2215 EH_CIE_OR_FDE_TYPE_ID);
2216 }
2217
230d2906 2218 catch (const gdb_exception_error &e)
8bd90839
FM
2219 {
2220 warning (_("skipping .eh_frame info of %s: %s"),
3d6e9d23 2221 objfile_name (objfile), e.what ());
8bd90839
FM
2222
2223 if (fde_table.num_entries != 0)
2224 {
2225 xfree (fde_table.entries);
2226 fde_table.entries = NULL;
2227 fde_table.num_entries = 0;
2228 }
93878f47 2229 /* The cie_table is discarded below. */
8bd90839 2230 }
d40102a1 2231
93878f47 2232 cie_table.clear ();
b01c8410 2233 }
cfc14b3a
MK
2234 }
2235
3017a003 2236 dwarf2_get_section_info (objfile, DWARF2_DEBUG_FRAME,
dce234bc
PP
2237 &unit->dwarf_frame_section,
2238 &unit->dwarf_frame_buffer,
2239 &unit->dwarf_frame_size);
2240 if (unit->dwarf_frame_size)
cfc14b3a 2241 {
8bd90839
FM
2242 int num_old_fde_entries = fde_table.num_entries;
2243
a70b8144 2244 try
8bd90839
FM
2245 {
2246 frame_ptr = unit->dwarf_frame_buffer;
2247 while (frame_ptr < unit->dwarf_frame_buffer + unit->dwarf_frame_size)
2248 frame_ptr = decode_frame_entry (unit, frame_ptr, 0,
93878f47 2249 cie_table, &fde_table,
8bd90839
FM
2250 EH_CIE_OR_FDE_TYPE_ID);
2251 }
230d2906 2252 catch (const gdb_exception_error &e)
8bd90839
FM
2253 {
2254 warning (_("skipping .debug_frame info of %s: %s"),
3d6e9d23 2255 objfile_name (objfile), e.what ());
8bd90839
FM
2256
2257 if (fde_table.num_entries != 0)
2258 {
2259 fde_table.num_entries = num_old_fde_entries;
2260 if (num_old_fde_entries == 0)
2261 {
2262 xfree (fde_table.entries);
2263 fde_table.entries = NULL;
2264 }
2265 else
2266 {
224c3ddb
SM
2267 fde_table.entries
2268 = XRESIZEVEC (struct dwarf2_fde *, fde_table.entries,
2269 fde_table.num_entries);
8bd90839
FM
2270 }
2271 }
2272 fde_table.num_entries = num_old_fde_entries;
8bd90839 2273 }
b01c8410
PP
2274 }
2275
be391dca 2276 /* Copy fde_table to obstack: it is needed at runtime. */
8d749320 2277 fde_table2 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_fde_table);
be391dca
TT
2278
2279 if (fde_table.num_entries == 0)
2280 {
2281 fde_table2->entries = NULL;
2282 fde_table2->num_entries = 0;
2283 }
2284 else
b01c8410 2285 {
875cdfbb
PA
2286 struct dwarf2_fde *fde_prev = NULL;
2287 struct dwarf2_fde *first_non_zero_fde = NULL;
2288 int i;
b01c8410
PP
2289
2290 /* Prepare FDE table for lookups. */
39ef2f62
CB
2291 std::sort (fde_table.entries, fde_table.entries + fde_table.num_entries,
2292 fde_is_less_than);
b01c8410 2293
875cdfbb
PA
2294 /* Check for leftovers from --gc-sections. The GNU linker sets
2295 the relevant symbols to zero, but doesn't zero the FDE *end*
2296 ranges because there's no relocation there. It's (offset,
2297 length), not (start, end). On targets where address zero is
2298 just another valid address this can be a problem, since the
2299 FDEs appear to be non-empty in the output --- we could pick
2300 out the wrong FDE. To work around this, when overlaps are
2301 detected, we prefer FDEs that do not start at zero.
2302
2303 Start by finding the first FDE with non-zero start. Below
2304 we'll discard all FDEs that start at zero and overlap this
2305 one. */
2306 for (i = 0; i < fde_table.num_entries; i++)
2307 {
2308 struct dwarf2_fde *fde = fde_table.entries[i];
b01c8410 2309
875cdfbb
PA
2310 if (fde->initial_location != 0)
2311 {
2312 first_non_zero_fde = fde;
2313 break;
2314 }
2315 }
2316
2317 /* Since we'll be doing bsearch, squeeze out identical (except
2318 for eh_frame_p) fde entries so bsearch result is predictable.
2319 Also discard leftovers from --gc-sections. */
be391dca 2320 fde_table2->num_entries = 0;
875cdfbb
PA
2321 for (i = 0; i < fde_table.num_entries; i++)
2322 {
2323 struct dwarf2_fde *fde = fde_table.entries[i];
2324
2325 if (fde->initial_location == 0
2326 && first_non_zero_fde != NULL
2327 && (first_non_zero_fde->initial_location
2328 < fde->initial_location + fde->address_range))
2329 continue;
2330
2331 if (fde_prev != NULL
2332 && fde_prev->initial_location == fde->initial_location)
2333 continue;
2334
2335 obstack_grow (&objfile->objfile_obstack, &fde_table.entries[i],
2336 sizeof (fde_table.entries[0]));
2337 ++fde_table2->num_entries;
2338 fde_prev = fde;
2339 }
224c3ddb
SM
2340 fde_table2->entries
2341 = (struct dwarf2_fde **) obstack_finish (&objfile->objfile_obstack);
b01c8410
PP
2342
2343 /* Discard the original fde_table. */
2344 xfree (fde_table.entries);
cfc14b3a 2345 }
be391dca 2346
924d79e2 2347 dwarf2_frame_objfile_data.set (objfile, fde_table2);
cfc14b3a 2348}
0d0e1a63 2349
3c3bb058
AB
2350/* Handle 'maintenance show dwarf unwinders'. */
2351
2352static void
2353show_dwarf_unwinders_enabled_p (struct ui_file *file, int from_tty,
2354 struct cmd_list_element *c,
2355 const char *value)
2356{
2357 fprintf_filtered (file,
2358 _("The DWARF stack unwinders are currently %s.\n"),
2359 value);
2360}
2361
0d0e1a63
MK
2362void
2363_initialize_dwarf2_frame (void)
2364{
030f20e1 2365 dwarf2_frame_data = gdbarch_data_register_pre_init (dwarf2_frame_init);
1c90d9f0 2366
3c3bb058
AB
2367 add_setshow_boolean_cmd ("unwinders", class_obscure,
2368 &dwarf2_frame_unwinders_enabled_p , _("\
2369Set whether the DWARF stack frame unwinders are used."), _("\
2370Show whether the DWARF stack frame unwinders are used."), _("\
2371When enabled the DWARF stack frame unwinders can be used for architectures\n\
2372that support the DWARF unwinders. Enabling the DWARF unwinders for an\n\
2373architecture that doesn't support them will have no effect."),
2374 NULL,
2375 show_dwarf_unwinders_enabled_p,
2376 &set_dwarf_cmdlist,
2377 &show_dwarf_cmdlist);
2378
1c90d9f0 2379#if GDB_SELF_TEST
1526853e
SM
2380 selftests::register_test_foreach_arch ("execute_cfa_program",
2381 selftests::execute_cfa_program_test);
1c90d9f0 2382#endif
0d0e1a63 2383}
This page took 1.294643 seconds and 4 git commands to generate.