Fix PR c++/21323: GDB thinks char16_t and char32_t are signed in C++
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
CommitLineData
4c2df51b 1/* DWARF 2 location expression support for GDB.
feb13ab0 2
61baf725 3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
feb13ab0 4
4c2df51b
DJ
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7
JB
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
4c2df51b 13
a9762ec7
JB
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
4c2df51b
DJ
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
4c2df51b
DJ
21
22#include "defs.h"
23#include "ui-out.h"
24#include "value.h"
25#include "frame.h"
26#include "gdbcore.h"
27#include "target.h"
28#include "inferior.h"
a55cc764
DJ
29#include "ax.h"
30#include "ax-gdb.h"
e4adbba9 31#include "regcache.h"
c3228f12 32#include "objfiles.h"
edb3359d 33#include "block.h"
8e3b41a9 34#include "gdbcmd.h"
0fde2c53 35#include "complaints.h"
fa8f86ff 36#include "dwarf2.h"
4c2df51b
DJ
37#include "dwarf2expr.h"
38#include "dwarf2loc.h"
e7802207 39#include "dwarf2-frame.h"
bb2ec1b3 40#include "compile/compile.h"
ad06383f 41#include "selftest.h"
325fac50 42#include <algorithm>
58414334 43#include <vector>
fc4007c9 44#include <unordered_set>
9c541725 45#include "common/underlying.h"
4c2df51b 46
b4f54984 47extern int dwarf_always_disassemble;
9eae7c52 48
1632a688
JK
49static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
50 struct frame_info *frame,
51 const gdb_byte *data,
56eb65bd
SP
52 size_t size,
53 struct dwarf2_per_cu_data *per_cu,
7942e96e
AA
54 struct type *subobj_type,
55 LONGEST subobj_byte_offset);
8cf6f0b1 56
192ca6d8
TT
57static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
58 (struct frame_info *frame,
59 enum call_site_parameter_kind kind,
60 union call_site_parameter_u kind_u,
61 struct dwarf2_per_cu_data **per_cu_return);
62
f664829e
DE
63/* Until these have formal names, we define these here.
64 ref: http://gcc.gnu.org/wiki/DebugFission
65 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
66 and is then followed by data specific to that entry. */
67
68enum debug_loc_kind
69{
70 /* Indicates the end of the list of entries. */
71 DEBUG_LOC_END_OF_LIST = 0,
72
73 /* This is followed by an unsigned LEB128 number that is an index into
74 .debug_addr and specifies the base address for all following entries. */
75 DEBUG_LOC_BASE_ADDRESS = 1,
76
77 /* This is followed by two unsigned LEB128 numbers that are indices into
78 .debug_addr and specify the beginning and ending addresses, and then
79 a normal location expression as in .debug_loc. */
3771a44c
DE
80 DEBUG_LOC_START_END = 2,
81
82 /* This is followed by an unsigned LEB128 number that is an index into
83 .debug_addr and specifies the beginning address, and a 4 byte unsigned
84 number that specifies the length, and then a normal location expression
85 as in .debug_loc. */
86 DEBUG_LOC_START_LENGTH = 3,
f664829e
DE
87
88 /* An internal value indicating there is insufficient data. */
89 DEBUG_LOC_BUFFER_OVERFLOW = -1,
90
91 /* An internal value indicating an invalid kind of entry was found. */
92 DEBUG_LOC_INVALID_ENTRY = -2
93};
94
b6807d98
TT
95/* Helper function which throws an error if a synthetic pointer is
96 invalid. */
97
98static void
99invalid_synthetic_pointer (void)
100{
101 error (_("access outside bounds of object "
102 "referenced via synthetic pointer"));
103}
104
f664829e
DE
105/* Decode the addresses in a non-dwo .debug_loc entry.
106 A pointer to the next byte to examine is returned in *NEW_PTR.
107 The encoded low,high addresses are return in *LOW,*HIGH.
108 The result indicates the kind of entry found. */
109
110static enum debug_loc_kind
111decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
112 const gdb_byte **new_ptr,
113 CORE_ADDR *low, CORE_ADDR *high,
114 enum bfd_endian byte_order,
115 unsigned int addr_size,
116 int signed_addr_p)
117{
118 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
119
120 if (buf_end - loc_ptr < 2 * addr_size)
121 return DEBUG_LOC_BUFFER_OVERFLOW;
122
123 if (signed_addr_p)
124 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
125 else
126 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
127 loc_ptr += addr_size;
128
129 if (signed_addr_p)
130 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
131 else
132 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
133 loc_ptr += addr_size;
134
135 *new_ptr = loc_ptr;
136
137 /* A base-address-selection entry. */
138 if ((*low & base_mask) == base_mask)
139 return DEBUG_LOC_BASE_ADDRESS;
140
141 /* An end-of-list entry. */
142 if (*low == 0 && *high == 0)
143 return DEBUG_LOC_END_OF_LIST;
144
3771a44c 145 return DEBUG_LOC_START_END;
f664829e
DE
146}
147
43988095
JK
148/* Decode the addresses in .debug_loclists entry.
149 A pointer to the next byte to examine is returned in *NEW_PTR.
150 The encoded low,high addresses are return in *LOW,*HIGH.
151 The result indicates the kind of entry found. */
152
153static enum debug_loc_kind
154decode_debug_loclists_addresses (struct dwarf2_per_cu_data *per_cu,
155 const gdb_byte *loc_ptr,
156 const gdb_byte *buf_end,
157 const gdb_byte **new_ptr,
158 CORE_ADDR *low, CORE_ADDR *high,
159 enum bfd_endian byte_order,
160 unsigned int addr_size,
161 int signed_addr_p)
162{
163 uint64_t u64;
164
165 if (loc_ptr == buf_end)
166 return DEBUG_LOC_BUFFER_OVERFLOW;
167
168 switch (*loc_ptr++)
169 {
170 case DW_LLE_end_of_list:
171 *new_ptr = loc_ptr;
172 return DEBUG_LOC_END_OF_LIST;
173 case DW_LLE_base_address:
174 if (loc_ptr + addr_size > buf_end)
175 return DEBUG_LOC_BUFFER_OVERFLOW;
176 if (signed_addr_p)
177 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
178 else
179 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
180 loc_ptr += addr_size;
181 *new_ptr = loc_ptr;
182 return DEBUG_LOC_BASE_ADDRESS;
183 case DW_LLE_offset_pair:
184 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
185 if (loc_ptr == NULL)
186 return DEBUG_LOC_BUFFER_OVERFLOW;
187 *low = u64;
188 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &u64);
189 if (loc_ptr == NULL)
190 return DEBUG_LOC_BUFFER_OVERFLOW;
191 *high = u64;
192 *new_ptr = loc_ptr;
193 return DEBUG_LOC_START_END;
194 default:
195 return DEBUG_LOC_INVALID_ENTRY;
196 }
197}
198
f664829e
DE
199/* Decode the addresses in .debug_loc.dwo entry.
200 A pointer to the next byte to examine is returned in *NEW_PTR.
201 The encoded low,high addresses are return in *LOW,*HIGH.
202 The result indicates the kind of entry found. */
203
204static enum debug_loc_kind
205decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
206 const gdb_byte *loc_ptr,
207 const gdb_byte *buf_end,
208 const gdb_byte **new_ptr,
3771a44c
DE
209 CORE_ADDR *low, CORE_ADDR *high,
210 enum bfd_endian byte_order)
f664829e 211{
9fccedf7 212 uint64_t low_index, high_index;
f664829e
DE
213
214 if (loc_ptr == buf_end)
215 return DEBUG_LOC_BUFFER_OVERFLOW;
216
217 switch (*loc_ptr++)
218 {
43988095 219 case DW_LLE_GNU_end_of_list_entry:
f664829e
DE
220 *new_ptr = loc_ptr;
221 return DEBUG_LOC_END_OF_LIST;
43988095 222 case DW_LLE_GNU_base_address_selection_entry:
f664829e
DE
223 *low = 0;
224 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
225 if (loc_ptr == NULL)
226 return DEBUG_LOC_BUFFER_OVERFLOW;
227 *high = dwarf2_read_addr_index (per_cu, high_index);
228 *new_ptr = loc_ptr;
229 return DEBUG_LOC_BASE_ADDRESS;
43988095 230 case DW_LLE_GNU_start_end_entry:
f664829e
DE
231 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
232 if (loc_ptr == NULL)
233 return DEBUG_LOC_BUFFER_OVERFLOW;
234 *low = dwarf2_read_addr_index (per_cu, low_index);
235 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
236 if (loc_ptr == NULL)
237 return DEBUG_LOC_BUFFER_OVERFLOW;
238 *high = dwarf2_read_addr_index (per_cu, high_index);
239 *new_ptr = loc_ptr;
3771a44c 240 return DEBUG_LOC_START_END;
43988095 241 case DW_LLE_GNU_start_length_entry:
3771a44c
DE
242 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
243 if (loc_ptr == NULL)
244 return DEBUG_LOC_BUFFER_OVERFLOW;
245 *low = dwarf2_read_addr_index (per_cu, low_index);
246 if (loc_ptr + 4 > buf_end)
247 return DEBUG_LOC_BUFFER_OVERFLOW;
248 *high = *low;
249 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
250 *new_ptr = loc_ptr + 4;
251 return DEBUG_LOC_START_LENGTH;
f664829e
DE
252 default:
253 return DEBUG_LOC_INVALID_ENTRY;
254 }
255}
256
8cf6f0b1 257/* A function for dealing with location lists. Given a
0d53c4c4
DJ
258 symbol baton (BATON) and a pc value (PC), find the appropriate
259 location expression, set *LOCEXPR_LENGTH, and return a pointer
260 to the beginning of the expression. Returns NULL on failure.
261
262 For now, only return the first matching location expression; there
263 can be more than one in the list. */
264
8cf6f0b1
TT
265const gdb_byte *
266dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
267 size_t *locexpr_length, CORE_ADDR pc)
0d53c4c4 268{
ae0d2f24 269 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
f7fd4728 270 struct gdbarch *gdbarch = get_objfile_arch (objfile);
e17a4113 271 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ae0d2f24 272 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
d4a087c7 273 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
8edfa926 274 /* Adjust base_address for relocatable objects. */
9aa1f1e3 275 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
8edfa926 276 CORE_ADDR base_address = baton->base_address + base_offset;
f664829e 277 const gdb_byte *loc_ptr, *buf_end;
0d53c4c4
DJ
278
279 loc_ptr = baton->data;
280 buf_end = baton->data + baton->size;
281
282 while (1)
283 {
f664829e
DE
284 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
285 int length;
286 enum debug_loc_kind kind;
287 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
288
289 if (baton->from_dwo)
290 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
291 loc_ptr, buf_end, &new_ptr,
3771a44c 292 &low, &high, byte_order);
43988095 293 else if (dwarf2_version (baton->per_cu) < 5)
f664829e
DE
294 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
295 &low, &high,
296 byte_order, addr_size,
297 signed_addr_p);
43988095
JK
298 else
299 kind = decode_debug_loclists_addresses (baton->per_cu,
300 loc_ptr, buf_end, &new_ptr,
301 &low, &high, byte_order,
302 addr_size, signed_addr_p);
303
f664829e
DE
304 loc_ptr = new_ptr;
305 switch (kind)
1d6edc3c 306 {
f664829e 307 case DEBUG_LOC_END_OF_LIST:
1d6edc3c
JK
308 *locexpr_length = 0;
309 return NULL;
f664829e
DE
310 case DEBUG_LOC_BASE_ADDRESS:
311 base_address = high + base_offset;
312 continue;
3771a44c
DE
313 case DEBUG_LOC_START_END:
314 case DEBUG_LOC_START_LENGTH:
f664829e
DE
315 break;
316 case DEBUG_LOC_BUFFER_OVERFLOW:
317 case DEBUG_LOC_INVALID_ENTRY:
318 error (_("dwarf2_find_location_expression: "
319 "Corrupted DWARF expression."));
320 default:
321 gdb_assert_not_reached ("bad debug_loc_kind");
1d6edc3c 322 }
b5758fe4 323
bed911e5 324 /* Otherwise, a location expression entry.
8ddd5a6c
DE
325 If the entry is from a DWO, don't add base address: the entry is from
326 .debug_addr which already has the DWARF "base address". We still add
327 base_offset in case we're debugging a PIE executable. */
328 if (baton->from_dwo)
329 {
330 low += base_offset;
331 high += base_offset;
332 }
333 else
bed911e5
DE
334 {
335 low += base_address;
336 high += base_address;
337 }
0d53c4c4 338
43988095
JK
339 if (dwarf2_version (baton->per_cu) < 5)
340 {
341 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
342 loc_ptr += 2;
343 }
344 else
345 {
346 unsigned int bytes_read;
347
348 length = read_unsigned_leb128 (NULL, loc_ptr, &bytes_read);
349 loc_ptr += bytes_read;
350 }
0d53c4c4 351
e18b2753
JK
352 if (low == high && pc == low)
353 {
354 /* This is entry PC record present only at entry point
355 of a function. Verify it is really the function entry point. */
356
3977b71f 357 const struct block *pc_block = block_for_pc (pc);
e18b2753
JK
358 struct symbol *pc_func = NULL;
359
360 if (pc_block)
361 pc_func = block_linkage_function (pc_block);
362
363 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
364 {
365 *locexpr_length = length;
366 return loc_ptr;
367 }
368 }
369
0d53c4c4
DJ
370 if (pc >= low && pc < high)
371 {
372 *locexpr_length = length;
373 return loc_ptr;
374 }
375
376 loc_ptr += length;
377 }
378}
379
4c2df51b
DJ
380/* This is the baton used when performing dwarf2 expression
381 evaluation. */
382struct dwarf_expr_baton
383{
384 struct frame_info *frame;
17ea53c3 385 struct dwarf2_per_cu_data *per_cu;
08412b07 386 CORE_ADDR obj_address;
4c2df51b
DJ
387};
388
f1e6e072
TT
389/* Implement find_frame_base_location method for LOC_BLOCK functions using
390 DWARF expression for its DW_AT_frame_base. */
391
392static void
393locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
394 const gdb_byte **start, size_t *length)
395{
9a3c8263
SM
396 struct dwarf2_locexpr_baton *symbaton
397 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
f1e6e072
TT
398
399 *length = symbaton->size;
400 *start = symbaton->data;
401}
402
7d1c9c9b
JB
403/* Implement the struct symbol_block_ops::get_frame_base method for
404 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
63e43d3a
PMR
405
406static CORE_ADDR
7d1c9c9b 407locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
63e43d3a
PMR
408{
409 struct gdbarch *gdbarch;
410 struct type *type;
411 struct dwarf2_locexpr_baton *dlbaton;
412 const gdb_byte *start;
413 size_t length;
414 struct value *result;
415
416 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
417 Thus, it's supposed to provide the find_frame_base_location method as
418 well. */
419 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
420
421 gdbarch = get_frame_arch (frame);
422 type = builtin_type (gdbarch)->builtin_data_ptr;
9a3c8263 423 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
63e43d3a
PMR
424
425 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
426 (framefunc, get_frame_pc (frame), &start, &length);
427 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
428 dlbaton->per_cu);
429
430 /* The DW_AT_frame_base attribute contains a location description which
431 computes the base address itself. However, the call to
432 dwarf2_evaluate_loc_desc returns a value representing a variable at
433 that address. The frame base address is thus this variable's
434 address. */
435 return value_address (result);
436}
437
f1e6e072
TT
438/* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
439 function uses DWARF expression for its DW_AT_frame_base. */
440
441const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
442{
63e43d3a 443 locexpr_find_frame_base_location,
7d1c9c9b 444 locexpr_get_frame_base
f1e6e072
TT
445};
446
447/* Implement find_frame_base_location method for LOC_BLOCK functions using
448 DWARF location list for its DW_AT_frame_base. */
449
450static void
451loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
452 const gdb_byte **start, size_t *length)
453{
9a3c8263
SM
454 struct dwarf2_loclist_baton *symbaton
455 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
f1e6e072
TT
456
457 *start = dwarf2_find_location_expression (symbaton, length, pc);
458}
459
7d1c9c9b
JB
460/* Implement the struct symbol_block_ops::get_frame_base method for
461 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
462
463static CORE_ADDR
464loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
465{
466 struct gdbarch *gdbarch;
467 struct type *type;
468 struct dwarf2_loclist_baton *dlbaton;
469 const gdb_byte *start;
470 size_t length;
471 struct value *result;
472
473 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
474 Thus, it's supposed to provide the find_frame_base_location method as
475 well. */
476 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
477
478 gdbarch = get_frame_arch (frame);
479 type = builtin_type (gdbarch)->builtin_data_ptr;
9a3c8263 480 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
7d1c9c9b
JB
481
482 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
483 (framefunc, get_frame_pc (frame), &start, &length);
484 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
485 dlbaton->per_cu);
486
487 /* The DW_AT_frame_base attribute contains a location description which
488 computes the base address itself. However, the call to
489 dwarf2_evaluate_loc_desc returns a value representing a variable at
490 that address. The frame base address is thus this variable's
491 address. */
492 return value_address (result);
493}
494
f1e6e072
TT
495/* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
496 function uses DWARF location list for its DW_AT_frame_base. */
497
498const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
499{
63e43d3a 500 loclist_find_frame_base_location,
7d1c9c9b 501 loclist_get_frame_base
f1e6e072
TT
502};
503
af945b75
TT
504/* See dwarf2loc.h. */
505
506void
507func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
508 const gdb_byte **start, size_t *length)
0936ad1d 509{
f1e6e072 510 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
0d53c4c4 511 {
f1e6e072 512 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
22c6caba 513
f1e6e072 514 ops_block->find_frame_base_location (framefunc, pc, start, length);
0d53c4c4
DJ
515 }
516 else
f1e6e072 517 *length = 0;
0d53c4c4 518
1d6edc3c 519 if (*length == 0)
8a3fe4f8 520 error (_("Could not find the frame base for \"%s\"."),
0d53c4c4 521 SYMBOL_NATURAL_NAME (framefunc));
4c2df51b
DJ
522}
523
4c2df51b 524static CORE_ADDR
192ca6d8 525get_frame_pc_for_per_cu_dwarf_call (void *baton)
4c2df51b 526{
192ca6d8 527 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
4c2df51b 528
192ca6d8 529 return ctx->get_frame_pc ();
4c2df51b
DJ
530}
531
5c631832 532static void
b64f50a1 533per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
192ca6d8 534 struct dwarf2_per_cu_data *per_cu)
5c631832
JK
535{
536 struct dwarf2_locexpr_baton block;
537
192ca6d8
TT
538 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
539 get_frame_pc_for_per_cu_dwarf_call,
540 ctx);
5c631832
JK
541
542 /* DW_OP_call_ref is currently not supported. */
543 gdb_assert (block.per_cu == per_cu);
544
595d2e30 545 ctx->eval (block.data, block.size);
5c631832
JK
546}
547
192ca6d8 548class dwarf_evaluate_loc_desc : public dwarf_expr_context
5c631832 549{
192ca6d8 550 public:
5c631832 551
192ca6d8
TT
552 struct frame_info *frame;
553 struct dwarf2_per_cu_data *per_cu;
554 CORE_ADDR obj_address;
5c631832 555
192ca6d8
TT
556 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
557 the frame in BATON. */
8a9b8146 558
192ca6d8
TT
559 CORE_ADDR get_frame_cfa () OVERRIDE
560 {
561 return dwarf2_frame_cfa (frame);
562 }
8a9b8146 563
192ca6d8
TT
564 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
565 the frame in BATON. */
566
567 CORE_ADDR get_frame_pc () OVERRIDE
568 {
569 return get_frame_address_in_block (frame);
570 }
571
572 /* Using the objfile specified in BATON, find the address for the
573 current thread's thread-local storage with offset OFFSET. */
574 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
575 {
576 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
577
578 return target_translate_tls_address (objfile, offset);
579 }
580
581 /* Helper interface of per_cu_dwarf_call for
582 dwarf2_evaluate_loc_desc. */
583
584 void dwarf_call (cu_offset die_offset) OVERRIDE
585 {
586 per_cu_dwarf_call (this, die_offset, per_cu);
587 }
588
7d5697f9 589 struct type *get_base_type (cu_offset die_offset, int size) OVERRIDE
192ca6d8 590 {
7d5697f9
TT
591 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
592 if (result == NULL)
216f72a1 593 error (_("Could not find type for DW_OP_const_type"));
7d5697f9 594 if (size != 0 && TYPE_LENGTH (result) != size)
216f72a1 595 error (_("DW_OP_const_type has different sizes for type and data"));
7d5697f9 596 return result;
192ca6d8
TT
597 }
598
599 /* Callback function for dwarf2_evaluate_loc_desc.
600 Fetch the address indexed by DW_OP_GNU_addr_index. */
601
602 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
603 {
604 return dwarf2_read_addr_index (per_cu, index);
605 }
606
607 /* Callback function for get_object_address. Return the address of the VLA
608 object. */
609
610 CORE_ADDR get_object_address () OVERRIDE
611 {
612 if (obj_address == 0)
613 error (_("Location address is not set."));
614 return obj_address;
615 }
616
617 /* Execute DWARF block of call_site_parameter which matches KIND and
618 KIND_U. Choose DEREF_SIZE value of that parameter. Search
619 caller of this objects's frame.
620
621 The caller can be from a different CU - per_cu_dwarf_call
622 implementation can be more simple as it does not support cross-CU
623 DWARF executions. */
624
625 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
626 union call_site_parameter_u kind_u,
627 int deref_size) OVERRIDE
628 {
629 struct frame_info *caller_frame;
630 struct dwarf2_per_cu_data *caller_per_cu;
192ca6d8
TT
631 struct call_site_parameter *parameter;
632 const gdb_byte *data_src;
633 size_t size;
634
635 caller_frame = get_prev_frame (frame);
636
637 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
638 &caller_per_cu);
639 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
640 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
641
642 /* DEREF_SIZE size is not verified here. */
643 if (data_src == NULL)
644 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 645 _("Cannot resolve DW_AT_call_data_value"));
192ca6d8 646
7d5697f9
TT
647 scoped_restore save_frame = make_scoped_restore (&this->frame,
648 caller_frame);
649 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
650 caller_per_cu);
651 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
652 (CORE_ADDR) 0);
192ca6d8
TT
653
654 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
655 this->gdbarch
7d5697f9 656 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
192ca6d8 657 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
7d5697f9 658 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
192ca6d8 659 scoped_restore save_offset = make_scoped_restore (&this->offset);
7d5697f9 660 this->offset = dwarf2_per_cu_text_offset (per_cu);
192ca6d8
TT
661
662 this->eval (data_src, size);
663 }
664
665 /* Using the frame specified in BATON, find the location expression
666 describing the frame base. Return a pointer to it in START and
667 its length in LENGTH. */
668 void get_frame_base (const gdb_byte **start, size_t * length) OVERRIDE
669 {
670 /* FIXME: cagney/2003-03-26: This code should be using
671 get_frame_base_address(), and then implement a dwarf2 specific
672 this_base method. */
673 struct symbol *framefunc;
674 const struct block *bl = get_frame_block (frame, NULL);
675
676 if (bl == NULL)
677 error (_("frame address is not available."));
678
679 /* Use block_linkage_function, which returns a real (not inlined)
680 function, instead of get_frame_function, which may return an
681 inlined function. */
682 framefunc = block_linkage_function (bl);
683
684 /* If we found a frame-relative symbol then it was certainly within
685 some function associated with a frame. If we can't find the frame,
686 something has gone wrong. */
687 gdb_assert (framefunc != NULL);
688
689 func_get_frame_base_dwarf_block (framefunc,
690 get_frame_address_in_block (frame),
691 start, length);
692 }
693
694 /* Read memory at ADDR (length LEN) into BUF. */
695
696 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
697 {
698 read_memory (addr, buf, len);
699 }
700
701 /* Using the frame specified in BATON, return the value of register
702 REGNUM, treated as a pointer. */
703 CORE_ADDR read_addr_from_reg (int dwarf_regnum) OVERRIDE
704 {
705 struct gdbarch *gdbarch = get_frame_arch (frame);
706 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
707
708 return address_from_register (regnum, frame);
709 }
710
711 /* Implement "get_reg_value" callback. */
712
713 struct value *get_reg_value (struct type *type, int dwarf_regnum) OVERRIDE
714 {
715 struct gdbarch *gdbarch = get_frame_arch (frame);
716 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
717
718 return value_from_register (type, regnum, frame);
719 }
720};
8a9b8146 721
8e3b41a9
JK
722/* See dwarf2loc.h. */
723
ccce17b0 724unsigned int entry_values_debug = 0;
8e3b41a9
JK
725
726/* Helper to set entry_values_debug. */
727
728static void
729show_entry_values_debug (struct ui_file *file, int from_tty,
730 struct cmd_list_element *c, const char *value)
731{
732 fprintf_filtered (file,
733 _("Entry values and tail call frames debugging is %s.\n"),
734 value);
735}
736
216f72a1 737/* Find DW_TAG_call_site's DW_AT_call_target address.
8e3b41a9
JK
738 CALLER_FRAME (for registers) can be NULL if it is not known. This function
739 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
740
741static CORE_ADDR
742call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
743 struct call_site *call_site,
744 struct frame_info *caller_frame)
745{
746 switch (FIELD_LOC_KIND (call_site->target))
747 {
748 case FIELD_LOC_KIND_DWARF_BLOCK:
749 {
750 struct dwarf2_locexpr_baton *dwarf_block;
751 struct value *val;
752 struct type *caller_core_addr_type;
753 struct gdbarch *caller_arch;
754
755 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
756 if (dwarf_block == NULL)
757 {
7cbd4a93 758 struct bound_minimal_symbol msym;
8e3b41a9
JK
759
760 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
761 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 762 _("DW_AT_call_target is not specified at %s in %s"),
8e3b41a9 763 paddress (call_site_gdbarch, call_site->pc),
7cbd4a93 764 (msym.minsym == NULL ? "???"
efd66ac6 765 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
766
767 }
768 if (caller_frame == NULL)
769 {
7cbd4a93 770 struct bound_minimal_symbol msym;
8e3b41a9
JK
771
772 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
773 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 774 _("DW_AT_call_target DWARF block resolving "
8e3b41a9
JK
775 "requires known frame which is currently not "
776 "available at %s in %s"),
777 paddress (call_site_gdbarch, call_site->pc),
7cbd4a93 778 (msym.minsym == NULL ? "???"
efd66ac6 779 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
780
781 }
782 caller_arch = get_frame_arch (caller_frame);
783 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
784 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
785 dwarf_block->data, dwarf_block->size,
786 dwarf_block->per_cu);
216f72a1 787 /* DW_AT_call_target is a DWARF expression, not a DWARF location. */
8e3b41a9
JK
788 if (VALUE_LVAL (val) == lval_memory)
789 return value_address (val);
790 else
791 return value_as_address (val);
792 }
793
794 case FIELD_LOC_KIND_PHYSNAME:
795 {
796 const char *physname;
3b7344d5 797 struct bound_minimal_symbol msym;
8e3b41a9
JK
798
799 physname = FIELD_STATIC_PHYSNAME (call_site->target);
9112db09
JK
800
801 /* Handle both the mangled and demangled PHYSNAME. */
802 msym = lookup_minimal_symbol (physname, NULL, NULL);
3b7344d5 803 if (msym.minsym == NULL)
8e3b41a9 804 {
3b7344d5 805 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
8e3b41a9
JK
806 throw_error (NO_ENTRY_VALUE_ERROR,
807 _("Cannot find function \"%s\" for a call site target "
808 "at %s in %s"),
809 physname, paddress (call_site_gdbarch, call_site->pc),
3b7344d5
TT
810 (msym.minsym == NULL ? "???"
811 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
812
813 }
77e371c0 814 return BMSYMBOL_VALUE_ADDRESS (msym);
8e3b41a9
JK
815 }
816
817 case FIELD_LOC_KIND_PHYSADDR:
818 return FIELD_STATIC_PHYSADDR (call_site->target);
819
820 default:
821 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
822 }
823}
824
111c6489
JK
825/* Convert function entry point exact address ADDR to the function which is
826 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
827 NO_ENTRY_VALUE_ERROR otherwise. */
828
829static struct symbol *
830func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
831{
832 struct symbol *sym = find_pc_function (addr);
833 struct type *type;
834
835 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
836 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 837 _("DW_TAG_call_site resolving failed to find function "
111c6489
JK
838 "name for address %s"),
839 paddress (gdbarch, addr));
840
841 type = SYMBOL_TYPE (sym);
842 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
843 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
844
845 return sym;
846}
847
2d6c5dc2
JK
848/* Verify function with entry point exact address ADDR can never call itself
849 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
850 can call itself via tail calls.
851
852 If a funtion can tail call itself its entry value based parameters are
853 unreliable. There is no verification whether the value of some/all
854 parameters is unchanged through the self tail call, we expect if there is
855 a self tail call all the parameters can be modified. */
856
857static void
858func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
859{
2d6c5dc2
JK
860 CORE_ADDR addr;
861
2d6c5dc2
JK
862 /* The verification is completely unordered. Track here function addresses
863 which still need to be iterated. */
fc4007c9 864 std::vector<CORE_ADDR> todo;
2d6c5dc2 865
fc4007c9
TT
866 /* Track here CORE_ADDRs which were already visited. */
867 std::unordered_set<CORE_ADDR> addr_hash;
2d6c5dc2 868
fc4007c9
TT
869 todo.push_back (verify_addr);
870 while (!todo.empty ())
2d6c5dc2
JK
871 {
872 struct symbol *func_sym;
873 struct call_site *call_site;
874
fc4007c9
TT
875 addr = todo.back ();
876 todo.pop_back ();
2d6c5dc2
JK
877
878 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
879
880 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
881 call_site; call_site = call_site->tail_call_next)
882 {
883 CORE_ADDR target_addr;
2d6c5dc2
JK
884
885 /* CALLER_FRAME with registers is not available for tail-call jumped
886 frames. */
887 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
888
889 if (target_addr == verify_addr)
890 {
7cbd4a93 891 struct bound_minimal_symbol msym;
2d6c5dc2
JK
892
893 msym = lookup_minimal_symbol_by_pc (verify_addr);
894 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 895 _("DW_OP_entry_value resolving has found "
2d6c5dc2
JK
896 "function \"%s\" at %s can call itself via tail "
897 "calls"),
7cbd4a93 898 (msym.minsym == NULL ? "???"
efd66ac6 899 : MSYMBOL_PRINT_NAME (msym.minsym)),
2d6c5dc2
JK
900 paddress (gdbarch, verify_addr));
901 }
902
fc4007c9
TT
903 if (addr_hash.insert (target_addr).second)
904 todo.push_back (target_addr);
2d6c5dc2
JK
905 }
906 }
2d6c5dc2
JK
907}
908
111c6489
JK
909/* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
910 ENTRY_VALUES_DEBUG. */
911
912static void
913tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
914{
915 CORE_ADDR addr = call_site->pc;
7cbd4a93 916 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
111c6489
JK
917
918 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
7cbd4a93 919 (msym.minsym == NULL ? "???"
efd66ac6 920 : MSYMBOL_PRINT_NAME (msym.minsym)));
111c6489
JK
921
922}
923
111c6489
JK
924/* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
925 only top callers and bottom callees which are present in both. GDBARCH is
926 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
927 no remaining possibilities to provide unambiguous non-trivial result.
928 RESULTP should point to NULL on the first (initialization) call. Caller is
929 responsible for xfree of any RESULTP data. */
930
931static void
fc4007c9
TT
932chain_candidate (struct gdbarch *gdbarch,
933 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
934 std::vector<struct call_site *> *chain)
111c6489 935{
fc4007c9 936 long length = chain->size ();
111c6489
JK
937 int callers, callees, idx;
938
fc4007c9 939 if (*resultp == NULL)
111c6489
JK
940 {
941 /* Create the initial chain containing all the passed PCs. */
942
fc4007c9
TT
943 struct call_site_chain *result
944 = ((struct call_site_chain *)
945 xmalloc (sizeof (*result)
946 + sizeof (*result->call_site) * (length - 1)));
111c6489
JK
947 result->length = length;
948 result->callers = result->callees = length;
fc4007c9
TT
949 if (!chain->empty ())
950 memcpy (result->call_site, chain->data (),
19a1b230 951 sizeof (*result->call_site) * length);
fc4007c9 952 resultp->reset (result);
111c6489
JK
953
954 if (entry_values_debug)
955 {
956 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
957 for (idx = 0; idx < length; idx++)
958 tailcall_dump (gdbarch, result->call_site[idx]);
959 fputc_unfiltered ('\n', gdb_stdlog);
960 }
961
962 return;
963 }
964
965 if (entry_values_debug)
966 {
967 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
968 for (idx = 0; idx < length; idx++)
fc4007c9 969 tailcall_dump (gdbarch, chain->at (idx));
111c6489
JK
970 fputc_unfiltered ('\n', gdb_stdlog);
971 }
972
973 /* Intersect callers. */
974
fc4007c9 975 callers = std::min ((long) (*resultp)->callers, length);
111c6489 976 for (idx = 0; idx < callers; idx++)
fc4007c9 977 if ((*resultp)->call_site[idx] != chain->at (idx))
111c6489 978 {
fc4007c9 979 (*resultp)->callers = idx;
111c6489
JK
980 break;
981 }
982
983 /* Intersect callees. */
984
fc4007c9 985 callees = std::min ((long) (*resultp)->callees, length);
111c6489 986 for (idx = 0; idx < callees; idx++)
fc4007c9
TT
987 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
988 != chain->at (length - 1 - idx))
111c6489 989 {
fc4007c9 990 (*resultp)->callees = idx;
111c6489
JK
991 break;
992 }
993
994 if (entry_values_debug)
995 {
996 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
fc4007c9
TT
997 for (idx = 0; idx < (*resultp)->callers; idx++)
998 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
111c6489 999 fputs_unfiltered (" |", gdb_stdlog);
fc4007c9
TT
1000 for (idx = 0; idx < (*resultp)->callees; idx++)
1001 tailcall_dump (gdbarch,
1002 (*resultp)->call_site[(*resultp)->length
1003 - (*resultp)->callees + idx]);
111c6489
JK
1004 fputc_unfiltered ('\n', gdb_stdlog);
1005 }
1006
fc4007c9 1007 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
111c6489
JK
1008 {
1009 /* There are no common callers or callees. It could be also a direct
1010 call (which has length 0) with ambiguous possibility of an indirect
1011 call - CALLERS == CALLEES == 0 is valid during the first allocation
1012 but any subsequence processing of such entry means ambiguity. */
fc4007c9 1013 resultp->reset (NULL);
111c6489
JK
1014 return;
1015 }
1016
1017 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
1018 PC again. In such case there must be two different code paths to reach
e0619de6 1019 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
fc4007c9 1020 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
111c6489
JK
1021}
1022
1023/* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1024 assumed frames between them use GDBARCH. Use depth first search so we can
1025 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
1026 would have needless GDB stack overhead. Caller is responsible for xfree of
1027 the returned result. Any unreliability results in thrown
1028 NO_ENTRY_VALUE_ERROR. */
1029
1030static struct call_site_chain *
1031call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1032 CORE_ADDR callee_pc)
1033{
c4be5165 1034 CORE_ADDR save_callee_pc = callee_pc;
fc4007c9 1035 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
111c6489
JK
1036 struct call_site *call_site;
1037
111c6489
JK
1038 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
1039 call_site nor any possible call_site at CALLEE_PC's function is there.
1040 Any CALL_SITE in CHAIN will be iterated to its siblings - via
1041 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
fc4007c9 1042 std::vector<struct call_site *> chain;
111c6489
JK
1043
1044 /* We are not interested in the specific PC inside the callee function. */
1045 callee_pc = get_pc_function_start (callee_pc);
1046 if (callee_pc == 0)
1047 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
c4be5165 1048 paddress (gdbarch, save_callee_pc));
111c6489 1049
fc4007c9
TT
1050 /* Mark CALL_SITEs so we do not visit the same ones twice. */
1051 std::unordered_set<CORE_ADDR> addr_hash;
111c6489
JK
1052
1053 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
1054 at the target's function. All the possible tail call sites in the
1055 target's function will get iterated as already pushed into CHAIN via their
1056 TAIL_CALL_NEXT. */
1057 call_site = call_site_for_pc (gdbarch, caller_pc);
1058
1059 while (call_site)
1060 {
1061 CORE_ADDR target_func_addr;
1062 struct call_site *target_call_site;
1063
1064 /* CALLER_FRAME with registers is not available for tail-call jumped
1065 frames. */
1066 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1067
1068 if (target_func_addr == callee_pc)
1069 {
fc4007c9 1070 chain_candidate (gdbarch, &retval, &chain);
111c6489
JK
1071 if (retval == NULL)
1072 break;
1073
1074 /* There is no way to reach CALLEE_PC again as we would prevent
1075 entering it twice as being already marked in ADDR_HASH. */
1076 target_call_site = NULL;
1077 }
1078 else
1079 {
1080 struct symbol *target_func;
1081
1082 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1083 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1084 }
1085
1086 do
1087 {
1088 /* Attempt to visit TARGET_CALL_SITE. */
1089
1090 if (target_call_site)
1091 {
fc4007c9 1092 if (addr_hash.insert (target_call_site->pc).second)
111c6489
JK
1093 {
1094 /* Successfully entered TARGET_CALL_SITE. */
1095
fc4007c9 1096 chain.push_back (target_call_site);
111c6489
JK
1097 break;
1098 }
1099 }
1100
1101 /* Backtrack (without revisiting the originating call_site). Try the
1102 callers's sibling; if there isn't any try the callers's callers's
1103 sibling etc. */
1104
1105 target_call_site = NULL;
fc4007c9 1106 while (!chain.empty ())
111c6489 1107 {
fc4007c9
TT
1108 call_site = chain.back ();
1109 chain.pop_back ();
111c6489 1110
fc4007c9
TT
1111 size_t removed = addr_hash.erase (call_site->pc);
1112 gdb_assert (removed == 1);
111c6489
JK
1113
1114 target_call_site = call_site->tail_call_next;
1115 if (target_call_site)
1116 break;
1117 }
1118 }
1119 while (target_call_site);
1120
fc4007c9 1121 if (chain.empty ())
111c6489
JK
1122 call_site = NULL;
1123 else
fc4007c9 1124 call_site = chain.back ();
111c6489
JK
1125 }
1126
1127 if (retval == NULL)
1128 {
7cbd4a93 1129 struct bound_minimal_symbol msym_caller, msym_callee;
111c6489
JK
1130
1131 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1132 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1133 throw_error (NO_ENTRY_VALUE_ERROR,
1134 _("There are no unambiguously determinable intermediate "
1135 "callers or callees between caller function \"%s\" at %s "
1136 "and callee function \"%s\" at %s"),
7cbd4a93 1137 (msym_caller.minsym == NULL
efd66ac6 1138 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
111c6489 1139 paddress (gdbarch, caller_pc),
7cbd4a93 1140 (msym_callee.minsym == NULL
efd66ac6 1141 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
111c6489
JK
1142 paddress (gdbarch, callee_pc));
1143 }
1144
fc4007c9 1145 return retval.release ();
111c6489
JK
1146}
1147
1148/* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1149 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1150 constructed return NULL. Caller is responsible for xfree of the returned
1151 result. */
1152
1153struct call_site_chain *
1154call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1155 CORE_ADDR callee_pc)
1156{
111c6489
JK
1157 struct call_site_chain *retval = NULL;
1158
492d29ea 1159 TRY
111c6489
JK
1160 {
1161 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1162 }
492d29ea 1163 CATCH (e, RETURN_MASK_ERROR)
111c6489
JK
1164 {
1165 if (e.error == NO_ENTRY_VALUE_ERROR)
1166 {
1167 if (entry_values_debug)
1168 exception_print (gdb_stdout, e);
1169
1170 return NULL;
1171 }
1172 else
1173 throw_exception (e);
1174 }
492d29ea
PA
1175 END_CATCH
1176
111c6489
JK
1177 return retval;
1178}
1179
24c5c679
JK
1180/* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1181
1182static int
1183call_site_parameter_matches (struct call_site_parameter *parameter,
1184 enum call_site_parameter_kind kind,
1185 union call_site_parameter_u kind_u)
1186{
1187 if (kind == parameter->kind)
1188 switch (kind)
1189 {
1190 case CALL_SITE_PARAMETER_DWARF_REG:
1191 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1192 case CALL_SITE_PARAMETER_FB_OFFSET:
1193 return kind_u.fb_offset == parameter->u.fb_offset;
1788b2d3 1194 case CALL_SITE_PARAMETER_PARAM_OFFSET:
9c541725 1195 return kind_u.param_cu_off == parameter->u.param_cu_off;
24c5c679
JK
1196 }
1197 return 0;
1198}
1199
1200/* Fetch call_site_parameter from caller matching KIND and KIND_U.
1201 FRAME is for callee.
8e3b41a9
JK
1202
1203 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1204 otherwise. */
1205
1206static struct call_site_parameter *
24c5c679
JK
1207dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1208 enum call_site_parameter_kind kind,
1209 union call_site_parameter_u kind_u,
8e3b41a9
JK
1210 struct dwarf2_per_cu_data **per_cu_return)
1211{
9e3a7d65
JK
1212 CORE_ADDR func_addr, caller_pc;
1213 struct gdbarch *gdbarch;
1214 struct frame_info *caller_frame;
8e3b41a9
JK
1215 struct call_site *call_site;
1216 int iparams;
509f0fd9
JK
1217 /* Initialize it just to avoid a GCC false warning. */
1218 struct call_site_parameter *parameter = NULL;
8e3b41a9
JK
1219 CORE_ADDR target_addr;
1220
9e3a7d65
JK
1221 while (get_frame_type (frame) == INLINE_FRAME)
1222 {
1223 frame = get_prev_frame (frame);
1224 gdb_assert (frame != NULL);
1225 }
1226
1227 func_addr = get_frame_func (frame);
1228 gdbarch = get_frame_arch (frame);
1229 caller_frame = get_prev_frame (frame);
8e3b41a9
JK
1230 if (gdbarch != frame_unwind_arch (frame))
1231 {
7cbd4a93
TT
1232 struct bound_minimal_symbol msym
1233 = lookup_minimal_symbol_by_pc (func_addr);
8e3b41a9
JK
1234 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1235
1236 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 1237 _("DW_OP_entry_value resolving callee gdbarch %s "
8e3b41a9
JK
1238 "(of %s (%s)) does not match caller gdbarch %s"),
1239 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1240 paddress (gdbarch, func_addr),
7cbd4a93 1241 (msym.minsym == NULL ? "???"
efd66ac6 1242 : MSYMBOL_PRINT_NAME (msym.minsym)),
8e3b41a9
JK
1243 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1244 }
1245
1246 if (caller_frame == NULL)
1247 {
7cbd4a93
TT
1248 struct bound_minimal_symbol msym
1249 = lookup_minimal_symbol_by_pc (func_addr);
8e3b41a9 1250
216f72a1 1251 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_entry_value resolving "
8e3b41a9
JK
1252 "requires caller of %s (%s)"),
1253 paddress (gdbarch, func_addr),
7cbd4a93 1254 (msym.minsym == NULL ? "???"
efd66ac6 1255 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
1256 }
1257 caller_pc = get_frame_pc (caller_frame);
1258 call_site = call_site_for_pc (gdbarch, caller_pc);
1259
1260 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1261 if (target_addr != func_addr)
1262 {
1263 struct minimal_symbol *target_msym, *func_msym;
1264
7cbd4a93
TT
1265 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1266 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
8e3b41a9 1267 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 1268 _("DW_OP_entry_value resolving expects callee %s at %s "
8e3b41a9
JK
1269 "but the called frame is for %s at %s"),
1270 (target_msym == NULL ? "???"
efd66ac6 1271 : MSYMBOL_PRINT_NAME (target_msym)),
8e3b41a9 1272 paddress (gdbarch, target_addr),
efd66ac6 1273 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
8e3b41a9
JK
1274 paddress (gdbarch, func_addr));
1275 }
1276
2d6c5dc2
JK
1277 /* No entry value based parameters would be reliable if this function can
1278 call itself via tail calls. */
1279 func_verify_no_selftailcall (gdbarch, func_addr);
1280
8e3b41a9
JK
1281 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1282 {
1283 parameter = &call_site->parameter[iparams];
24c5c679 1284 if (call_site_parameter_matches (parameter, kind, kind_u))
8e3b41a9
JK
1285 break;
1286 }
1287 if (iparams == call_site->parameter_count)
1288 {
7cbd4a93
TT
1289 struct minimal_symbol *msym
1290 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
8e3b41a9 1291
216f72a1 1292 /* DW_TAG_call_site_parameter will be missing just if GCC could not
8e3b41a9
JK
1293 determine its value. */
1294 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
216f72a1 1295 "at DW_TAG_call_site %s at %s"),
8e3b41a9 1296 paddress (gdbarch, caller_pc),
efd66ac6 1297 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
8e3b41a9
JK
1298 }
1299
1300 *per_cu_return = call_site->per_cu;
1301 return parameter;
1302}
1303
a471c594 1304/* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
216f72a1
JK
1305 the normal DW_AT_call_value block. Otherwise return the
1306 DW_AT_call_data_value (dereferenced) block.
e18b2753
JK
1307
1308 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1309 struct value.
1310
1311 Function always returns non-NULL, non-optimized out value. It throws
1312 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1313
1314static struct value *
1315dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
a471c594 1316 CORE_ADDR deref_size, struct type *type,
e18b2753
JK
1317 struct frame_info *caller_frame,
1318 struct dwarf2_per_cu_data *per_cu)
1319{
a471c594 1320 const gdb_byte *data_src;
e18b2753 1321 gdb_byte *data;
a471c594
JK
1322 size_t size;
1323
1324 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1325 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1326
1327 /* DEREF_SIZE size is not verified here. */
1328 if (data_src == NULL)
1329 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 1330 _("Cannot resolve DW_AT_call_data_value"));
e18b2753 1331
216f72a1 1332 /* DW_AT_call_value is a DWARF expression, not a DWARF
e18b2753
JK
1333 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1334 DWARF block. */
224c3ddb 1335 data = (gdb_byte *) alloca (size + 1);
a471c594
JK
1336 memcpy (data, data_src, size);
1337 data[size] = DW_OP_stack_value;
e18b2753 1338
a471c594 1339 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
e18b2753
JK
1340}
1341
a471c594
JK
1342/* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1343 the indirect method on it, that is use its stored target value, the sole
1344 purpose of entry_data_value_funcs.. */
1345
1346static struct value *
1347entry_data_value_coerce_ref (const struct value *value)
1348{
1349 struct type *checked_type = check_typedef (value_type (value));
1350 struct value *target_val;
1351
aa006118 1352 if (!TYPE_IS_REFERENCE (checked_type))
a471c594
JK
1353 return NULL;
1354
9a3c8263 1355 target_val = (struct value *) value_computed_closure (value);
a471c594
JK
1356 value_incref (target_val);
1357 return target_val;
1358}
1359
1360/* Implement copy_closure. */
1361
1362static void *
1363entry_data_value_copy_closure (const struct value *v)
1364{
9a3c8263 1365 struct value *target_val = (struct value *) value_computed_closure (v);
a471c594
JK
1366
1367 value_incref (target_val);
1368 return target_val;
1369}
1370
1371/* Implement free_closure. */
1372
1373static void
1374entry_data_value_free_closure (struct value *v)
1375{
9a3c8263 1376 struct value *target_val = (struct value *) value_computed_closure (v);
a471c594
JK
1377
1378 value_free (target_val);
1379}
1380
1381/* Vector for methods for an entry value reference where the referenced value
1382 is stored in the caller. On the first dereference use
216f72a1 1383 DW_AT_call_data_value in the caller. */
a471c594
JK
1384
1385static const struct lval_funcs entry_data_value_funcs =
1386{
1387 NULL, /* read */
1388 NULL, /* write */
a471c594
JK
1389 NULL, /* indirect */
1390 entry_data_value_coerce_ref,
1391 NULL, /* check_synthetic_pointer */
1392 entry_data_value_copy_closure,
1393 entry_data_value_free_closure
1394};
1395
24c5c679
JK
1396/* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1397 are used to match DW_AT_location at the caller's
216f72a1 1398 DW_TAG_call_site_parameter.
e18b2753
JK
1399
1400 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1401 cannot resolve the parameter for any reason. */
1402
1403static struct value *
1404value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
24c5c679
JK
1405 enum call_site_parameter_kind kind,
1406 union call_site_parameter_u kind_u)
e18b2753 1407{
a471c594
JK
1408 struct type *checked_type = check_typedef (type);
1409 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
e18b2753 1410 struct frame_info *caller_frame = get_prev_frame (frame);
a471c594 1411 struct value *outer_val, *target_val, *val;
e18b2753
JK
1412 struct call_site_parameter *parameter;
1413 struct dwarf2_per_cu_data *caller_per_cu;
1414
24c5c679 1415 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
e18b2753
JK
1416 &caller_per_cu);
1417
a471c594
JK
1418 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1419 type, caller_frame,
1420 caller_per_cu);
1421
216f72a1 1422 /* Check if DW_AT_call_data_value cannot be used. If it should be
a471c594
JK
1423 used and it is not available do not fall back to OUTER_VAL - dereferencing
1424 TYPE_CODE_REF with non-entry data value would give current value - not the
1425 entry value. */
1426
aa006118 1427 if (!TYPE_IS_REFERENCE (checked_type)
a471c594
JK
1428 || TYPE_TARGET_TYPE (checked_type) == NULL)
1429 return outer_val;
1430
1431 target_val = dwarf_entry_parameter_to_value (parameter,
1432 TYPE_LENGTH (target_type),
1433 target_type, caller_frame,
1434 caller_per_cu);
1435
a471c594
JK
1436 release_value (target_val);
1437 val = allocate_computed_value (type, &entry_data_value_funcs,
1438 target_val /* closure */);
1439
1440 /* Copy the referencing pointer to the new computed value. */
1441 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1442 TYPE_LENGTH (checked_type));
1443 set_value_lazy (val, 0);
1444
1445 return val;
e18b2753
JK
1446}
1447
1448/* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1449 SIZE are DWARF block used to match DW_AT_location at the caller's
216f72a1 1450 DW_TAG_call_site_parameter.
e18b2753
JK
1451
1452 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1453 cannot resolve the parameter for any reason. */
1454
1455static struct value *
1456value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1457 const gdb_byte *block, size_t block_len)
1458{
24c5c679 1459 union call_site_parameter_u kind_u;
e18b2753 1460
24c5c679
JK
1461 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1462 if (kind_u.dwarf_reg != -1)
1463 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1464 kind_u);
e18b2753 1465
24c5c679
JK
1466 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1467 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1468 kind_u);
e18b2753
JK
1469
1470 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1471 suppressed during normal operation. The expression can be arbitrary if
1472 there is no caller-callee entry value binding expected. */
1473 throw_error (NO_ENTRY_VALUE_ERROR,
216f72a1 1474 _("DWARF-2 expression error: DW_OP_entry_value is supported "
e18b2753
JK
1475 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1476}
1477
052b9502
NF
1478struct piece_closure
1479{
88bfdde4
TT
1480 /* Reference count. */
1481 int refc;
1482
8cf6f0b1
TT
1483 /* The CU from which this closure's expression came. */
1484 struct dwarf2_per_cu_data *per_cu;
1485
052b9502
NF
1486 /* The number of pieces used to describe this variable. */
1487 int n_pieces;
1488
6063c216
UW
1489 /* The target address size, used only for DWARF_VALUE_STACK. */
1490 int addr_size;
cec03d70 1491
052b9502
NF
1492 /* The pieces themselves. */
1493 struct dwarf_expr_piece *pieces;
ee40d8d4
YQ
1494
1495 /* Frame ID of frame to which a register value is relative, used
1496 only by DWARF_VALUE_REGISTER. */
1497 struct frame_id frame_id;
052b9502
NF
1498};
1499
1500/* Allocate a closure for a value formed from separately-described
1501 PIECES. */
1502
1503static struct piece_closure *
8cf6f0b1
TT
1504allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1505 int n_pieces, struct dwarf_expr_piece *pieces,
ee40d8d4 1506 int addr_size, struct frame_info *frame)
052b9502 1507{
41bf6aca 1508 struct piece_closure *c = XCNEW (struct piece_closure);
8a9b8146 1509 int i;
052b9502 1510
88bfdde4 1511 c->refc = 1;
8cf6f0b1 1512 c->per_cu = per_cu;
052b9502 1513 c->n_pieces = n_pieces;
6063c216 1514 c->addr_size = addr_size;
fc270c35 1515 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
ee40d8d4
YQ
1516 if (frame == NULL)
1517 c->frame_id = null_frame_id;
1518 else
1519 c->frame_id = get_frame_id (frame);
052b9502
NF
1520
1521 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
8a9b8146
TT
1522 for (i = 0; i < n_pieces; ++i)
1523 if (c->pieces[i].location == DWARF_VALUE_STACK)
1524 value_incref (c->pieces[i].v.value);
052b9502
NF
1525
1526 return c;
1527}
1528
22347e55
AA
1529/* Copy NBITS bits from SOURCE to DEST starting at the given bit
1530 offsets. Use the bit order as specified by BITS_BIG_ENDIAN.
1531 Source and destination buffers must not overlap. */
d3b1e874
TT
1532
1533static void
22347e55
AA
1534copy_bitwise (gdb_byte *dest, ULONGEST dest_offset,
1535 const gdb_byte *source, ULONGEST source_offset,
1536 ULONGEST nbits, int bits_big_endian)
d3b1e874 1537{
22347e55 1538 unsigned int buf, avail;
d3b1e874 1539
22347e55
AA
1540 if (nbits == 0)
1541 return;
d3b1e874 1542
d3b1e874
TT
1543 if (bits_big_endian)
1544 {
22347e55
AA
1545 /* Start from the end, then work backwards. */
1546 dest_offset += nbits - 1;
1547 dest += dest_offset / 8;
1548 dest_offset = 7 - dest_offset % 8;
1549 source_offset += nbits - 1;
1550 source += source_offset / 8;
1551 source_offset = 7 - source_offset % 8;
d3b1e874
TT
1552 }
1553 else
1554 {
22347e55
AA
1555 dest += dest_offset / 8;
1556 dest_offset %= 8;
1557 source += source_offset / 8;
1558 source_offset %= 8;
d3b1e874
TT
1559 }
1560
22347e55
AA
1561 /* Fill BUF with DEST_OFFSET bits from the destination and 8 -
1562 SOURCE_OFFSET bits from the source. */
1563 buf = *(bits_big_endian ? source-- : source++) >> source_offset;
1564 buf <<= dest_offset;
1565 buf |= *dest & ((1 << dest_offset) - 1);
d3b1e874 1566
22347e55
AA
1567 /* NBITS: bits yet to be written; AVAIL: BUF's fill level. */
1568 nbits += dest_offset;
1569 avail = dest_offset + 8 - source_offset;
d3b1e874 1570
22347e55
AA
1571 /* Flush 8 bits from BUF, if appropriate. */
1572 if (nbits >= 8 && avail >= 8)
d3b1e874 1573 {
22347e55
AA
1574 *(bits_big_endian ? dest-- : dest++) = buf;
1575 buf >>= 8;
1576 avail -= 8;
1577 nbits -= 8;
d3b1e874
TT
1578 }
1579
22347e55
AA
1580 /* Copy the middle part. */
1581 if (nbits >= 8)
d3b1e874 1582 {
22347e55
AA
1583 size_t len = nbits / 8;
1584
793c128d
AA
1585 /* Use a faster method for byte-aligned copies. */
1586 if (avail == 0)
22347e55 1587 {
793c128d
AA
1588 if (bits_big_endian)
1589 {
1590 dest -= len;
1591 source -= len;
1592 memcpy (dest + 1, source + 1, len);
1593 }
1594 else
1595 {
1596 memcpy (dest, source, len);
1597 dest += len;
1598 source += len;
1599 }
1600 }
1601 else
1602 {
1603 while (len--)
1604 {
1605 buf |= *(bits_big_endian ? source-- : source++) << avail;
1606 *(bits_big_endian ? dest-- : dest++) = buf;
1607 buf >>= 8;
1608 }
22347e55
AA
1609 }
1610 nbits %= 8;
d3b1e874
TT
1611 }
1612
22347e55
AA
1613 /* Write the last byte. */
1614 if (nbits)
d3b1e874 1615 {
22347e55
AA
1616 if (avail < nbits)
1617 buf |= *source << avail;
1618
1619 buf &= (1 << nbits) - 1;
1620 *dest = (*dest & (~0 << nbits)) | buf;
d3b1e874
TT
1621 }
1622}
1623
ad06383f
AA
1624#if GDB_SELF_TEST
1625
1626namespace selftests {
1627
1628/* Helper function for the unit test of copy_bitwise. Convert NBITS bits
1629 out of BITS, starting at OFFS, to the respective '0'/'1'-string. MSB0
1630 specifies whether to assume big endian bit numbering. Store the
1631 resulting (not null-terminated) string at STR. */
1632
1633static void
1634bits_to_str (char *str, const gdb_byte *bits, ULONGEST offs,
1635 ULONGEST nbits, int msb0)
1636{
1637 unsigned int j;
1638 size_t i;
1639
1640 for (i = offs / 8, j = offs % 8; nbits; i++, j = 0)
1641 {
1642 unsigned int ch = bits[i];
1643 for (; j < 8 && nbits; j++, nbits--)
1644 *str++ = (ch & (msb0 ? (1 << (7 - j)) : (1 << j))) ? '1' : '0';
1645 }
1646}
1647
1648/* Check one invocation of copy_bitwise with the given parameters. */
1649
1650static void
1651check_copy_bitwise (const gdb_byte *dest, unsigned int dest_offset,
1652 const gdb_byte *source, unsigned int source_offset,
1653 unsigned int nbits, int msb0)
1654{
1655 size_t len = align_up (dest_offset + nbits, 8);
1656 char *expected = (char *) alloca (len + 1);
1657 char *actual = (char *) alloca (len + 1);
1658 gdb_byte *buf = (gdb_byte *) alloca (len / 8);
1659
1660 /* Compose a '0'/'1'-string that represents the expected result of
1661 copy_bitwise below:
1662 Bits from [0, DEST_OFFSET) are filled from DEST.
1663 Bits from [DEST_OFFSET, DEST_OFFSET + NBITS) are filled from SOURCE.
1664 Bits from [DEST_OFFSET + NBITS, LEN) are filled from DEST.
1665
1666 E.g., with:
1667 dest_offset: 4
1668 nbits: 2
1669 len: 8
1670 dest: 00000000
1671 source: 11111111
1672
1673 We should end up with:
1674 buf: 00001100
1675 DDDDSSDD (D=dest, S=source)
1676 */
1677 bits_to_str (expected, dest, 0, len, msb0);
1678 bits_to_str (expected + dest_offset, source, source_offset, nbits, msb0);
1679
1680 /* Fill BUF with data from DEST, apply copy_bitwise, and convert the
1681 result to a '0'/'1'-string. */
1682 memcpy (buf, dest, len / 8);
1683 copy_bitwise (buf, dest_offset, source, source_offset, nbits, msb0);
1684 bits_to_str (actual, buf, 0, len, msb0);
1685
1686 /* Compare the resulting strings. */
1687 expected[len] = actual[len] = '\0';
1688 if (strcmp (expected, actual) != 0)
1689 error (_("copy_bitwise %s != %s (%u+%u -> %u)"),
1690 expected, actual, source_offset, nbits, dest_offset);
1691}
1692
1693/* Unit test for copy_bitwise. */
1694
1695static void
1696copy_bitwise_tests (void)
1697{
1698 /* Data to be used as both source and destination buffers. The two
1699 arrays below represent the lsb0- and msb0- encoded versions of the
1700 following bit string, respectively:
1701 00000000 00011111 11111111 01001000 10100101 11110010
1702 This pattern is chosen such that it contains:
1703 - constant 0- and 1- chunks of more than a full byte;
1704 - 0/1- and 1/0 transitions on all bit positions within a byte;
1705 - several sufficiently asymmetric bytes.
1706 */
1707 static const gdb_byte data_lsb0[] = {
1708 0x00, 0xf8, 0xff, 0x12, 0xa5, 0x4f
1709 };
1710 static const gdb_byte data_msb0[] = {
1711 0x00, 0x1f, 0xff, 0x48, 0xa5, 0xf2
1712 };
1713
1714 constexpr size_t data_nbits = 8 * sizeof (data_lsb0);
1715 constexpr unsigned max_nbits = 24;
1716
1717 /* Try all combinations of:
1718 lsb0/msb0 bit order (using the respective data array)
1719 X [0, MAX_NBITS] copy bit width
1720 X feasible source offsets for the given copy bit width
1721 X feasible destination offsets
1722 */
1723 for (int msb0 = 0; msb0 < 2; msb0++)
1724 {
1725 const gdb_byte *data = msb0 ? data_msb0 : data_lsb0;
1726
1727 for (unsigned int nbits = 1; nbits <= max_nbits; nbits++)
1728 {
1729 const unsigned int max_offset = data_nbits - nbits;
1730
1731 for (unsigned source_offset = 0;
1732 source_offset <= max_offset;
1733 source_offset++)
1734 {
1735 for (unsigned dest_offset = 0;
1736 dest_offset <= max_offset;
1737 dest_offset++)
1738 {
1739 check_copy_bitwise (data + dest_offset / 8,
1740 dest_offset % 8,
1741 data + source_offset / 8,
1742 source_offset % 8,
1743 nbits, msb0);
1744 }
1745 }
1746 }
1747
1748 /* Special cases: copy all, copy nothing. */
1749 check_copy_bitwise (data_lsb0, 0, data_msb0, 0, data_nbits, msb0);
1750 check_copy_bitwise (data_msb0, 0, data_lsb0, 0, data_nbits, msb0);
1751 check_copy_bitwise (data, data_nbits - 7, data, 9, 0, msb0);
1752 }
1753}
1754
1755} /* namespace selftests */
1756
1757#endif /* GDB_SELF_TEST */
1758
052b9502
NF
1759static void
1760read_pieced_value (struct value *v)
1761{
1762 int i;
1763 long offset = 0;
d3b1e874 1764 ULONGEST bits_to_skip;
052b9502 1765 gdb_byte *contents;
3e43a32a
MS
1766 struct piece_closure *c
1767 = (struct piece_closure *) value_computed_closure (v);
afd74c5f 1768 size_t type_len;
d3b1e874 1769 size_t buffer_size = 0;
58414334 1770 std::vector<gdb_byte> buffer;
d3b1e874
TT
1771 int bits_big_endian
1772 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
afd74c5f
TT
1773
1774 if (value_type (v) != value_enclosing_type (v))
1775 internal_error (__FILE__, __LINE__,
1776 _("Should not be able to create a lazy value with "
1777 "an enclosing type"));
052b9502
NF
1778
1779 contents = value_contents_raw (v);
d3b1e874 1780 bits_to_skip = 8 * value_offset (v);
0e03807e
TT
1781 if (value_bitsize (v))
1782 {
1783 bits_to_skip += value_bitpos (v);
1784 type_len = value_bitsize (v);
1785 }
1786 else
1787 type_len = 8 * TYPE_LENGTH (value_type (v));
d3b1e874 1788
afd74c5f 1789 for (i = 0; i < c->n_pieces && offset < type_len; i++)
052b9502
NF
1790 {
1791 struct dwarf_expr_piece *p = &c->pieces[i];
d3b1e874
TT
1792 size_t this_size, this_size_bits;
1793 long dest_offset_bits, source_offset_bits, source_offset;
0d45f56e 1794 const gdb_byte *intermediate_buffer;
d3b1e874
TT
1795
1796 /* Compute size, source, and destination offsets for copying, in
1797 bits. */
1798 this_size_bits = p->size;
1799 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
afd74c5f 1800 {
d3b1e874 1801 bits_to_skip -= this_size_bits;
afd74c5f
TT
1802 continue;
1803 }
d3b1e874 1804 if (bits_to_skip > 0)
afd74c5f 1805 {
d3b1e874
TT
1806 dest_offset_bits = 0;
1807 source_offset_bits = bits_to_skip;
1808 this_size_bits -= bits_to_skip;
1809 bits_to_skip = 0;
afd74c5f
TT
1810 }
1811 else
1812 {
d3b1e874
TT
1813 dest_offset_bits = offset;
1814 source_offset_bits = 0;
afd74c5f 1815 }
5bd1ef56
TT
1816 if (this_size_bits > type_len - offset)
1817 this_size_bits = type_len - offset;
9a619af0 1818
d3b1e874
TT
1819 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1820 source_offset = source_offset_bits / 8;
1821 if (buffer_size < this_size)
1822 {
1823 buffer_size = this_size;
58414334 1824 buffer.reserve (buffer_size);
d3b1e874 1825 }
58414334 1826 intermediate_buffer = buffer.data ();
d3b1e874
TT
1827
1828 /* Copy from the source to DEST_BUFFER. */
cec03d70 1829 switch (p->location)
052b9502 1830 {
cec03d70
TT
1831 case DWARF_VALUE_REGISTER:
1832 {
ee40d8d4 1833 struct frame_info *frame = frame_find_by_id (c->frame_id);
cec03d70 1834 struct gdbarch *arch = get_frame_arch (frame);
0fde2c53
DE
1835 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1836 int optim, unavail;
6b850546 1837 LONGEST reg_offset = source_offset;
dcbf108f 1838
0fde2c53
DE
1839 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1840 && this_size < register_size (arch, gdb_regnum))
63b4f126 1841 {
0fde2c53
DE
1842 /* Big-endian, and we want less than full size. */
1843 reg_offset = register_size (arch, gdb_regnum) - this_size;
1844 /* We want the lower-order THIS_SIZE_BITS of the bytes
1845 we extract from the register. */
1846 source_offset_bits += 8 * this_size - this_size_bits;
63b4f126 1847 }
0fde2c53
DE
1848
1849 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
58414334 1850 this_size, buffer.data (),
0fde2c53 1851 &optim, &unavail))
63b4f126 1852 {
0fde2c53 1853 /* Just so garbage doesn't ever shine through. */
58414334 1854 memset (buffer.data (), 0, this_size);
0fde2c53
DE
1855
1856 if (optim)
1857 mark_value_bits_optimized_out (v, offset, this_size_bits);
1858 if (unavail)
1859 mark_value_bits_unavailable (v, offset, this_size_bits);
63b4f126 1860 }
cec03d70
TT
1861 }
1862 break;
1863
1864 case DWARF_VALUE_MEMORY:
e6ca34fc
PA
1865 read_value_memory (v, offset,
1866 p->v.mem.in_stack_memory,
1867 p->v.mem.addr + source_offset,
58414334 1868 buffer.data (), this_size);
cec03d70
TT
1869 break;
1870
1871 case DWARF_VALUE_STACK:
1872 {
afd74c5f 1873 size_t n = this_size;
9a619af0 1874
afd74c5f
TT
1875 if (n > c->addr_size - source_offset)
1876 n = (c->addr_size >= source_offset
1877 ? c->addr_size - source_offset
1878 : 0);
1879 if (n == 0)
1880 {
1881 /* Nothing. */
1882 }
afd74c5f
TT
1883 else
1884 {
8a9b8146 1885 const gdb_byte *val_bytes = value_contents_all (p->v.value);
afd74c5f 1886
8a9b8146 1887 intermediate_buffer = val_bytes + source_offset;
afd74c5f 1888 }
cec03d70
TT
1889 }
1890 break;
1891
1892 case DWARF_VALUE_LITERAL:
1893 {
afd74c5f
TT
1894 size_t n = this_size;
1895
1896 if (n > p->v.literal.length - source_offset)
1897 n = (p->v.literal.length >= source_offset
1898 ? p->v.literal.length - source_offset
1899 : 0);
1900 if (n != 0)
d3b1e874 1901 intermediate_buffer = p->v.literal.data + source_offset;
cec03d70
TT
1902 }
1903 break;
1904
8cf6f0b1
TT
1905 /* These bits show up as zeros -- but do not cause the value
1906 to be considered optimized-out. */
1907 case DWARF_VALUE_IMPLICIT_POINTER:
1908 break;
1909
cb826367 1910 case DWARF_VALUE_OPTIMIZED_OUT:
9a0dc9e3 1911 mark_value_bits_optimized_out (v, offset, this_size_bits);
cb826367
TT
1912 break;
1913
cec03d70
TT
1914 default:
1915 internal_error (__FILE__, __LINE__, _("invalid location type"));
052b9502 1916 }
d3b1e874 1917
8cf6f0b1
TT
1918 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
1919 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
d3b1e874
TT
1920 copy_bitwise (contents, dest_offset_bits,
1921 intermediate_buffer, source_offset_bits % 8,
1922 this_size_bits, bits_big_endian);
1923
1924 offset += this_size_bits;
052b9502
NF
1925 }
1926}
1927
1928static void
1929write_pieced_value (struct value *to, struct value *from)
1930{
1931 int i;
1932 long offset = 0;
d3b1e874 1933 ULONGEST bits_to_skip;
afd74c5f 1934 const gdb_byte *contents;
3e43a32a
MS
1935 struct piece_closure *c
1936 = (struct piece_closure *) value_computed_closure (to);
afd74c5f 1937 size_t type_len;
d3b1e874 1938 size_t buffer_size = 0;
58414334 1939 std::vector<gdb_byte> buffer;
d3b1e874
TT
1940 int bits_big_endian
1941 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
052b9502 1942
afd74c5f 1943 contents = value_contents (from);
d3b1e874 1944 bits_to_skip = 8 * value_offset (to);
0e03807e
TT
1945 if (value_bitsize (to))
1946 {
1947 bits_to_skip += value_bitpos (to);
1948 type_len = value_bitsize (to);
1949 }
1950 else
1951 type_len = 8 * TYPE_LENGTH (value_type (to));
1952
afd74c5f 1953 for (i = 0; i < c->n_pieces && offset < type_len; i++)
052b9502
NF
1954 {
1955 struct dwarf_expr_piece *p = &c->pieces[i];
d3b1e874
TT
1956 size_t this_size_bits, this_size;
1957 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1958 int need_bitwise;
1959 const gdb_byte *source_buffer;
afd74c5f 1960
d3b1e874
TT
1961 this_size_bits = p->size;
1962 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
afd74c5f 1963 {
d3b1e874 1964 bits_to_skip -= this_size_bits;
afd74c5f
TT
1965 continue;
1966 }
d3b1e874
TT
1967 if (this_size_bits > type_len - offset)
1968 this_size_bits = type_len - offset;
1969 if (bits_to_skip > 0)
afd74c5f 1970 {
d3b1e874
TT
1971 dest_offset_bits = bits_to_skip;
1972 source_offset_bits = 0;
1973 this_size_bits -= bits_to_skip;
1974 bits_to_skip = 0;
afd74c5f
TT
1975 }
1976 else
1977 {
d3b1e874
TT
1978 dest_offset_bits = 0;
1979 source_offset_bits = offset;
1980 }
1981
1982 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1983 source_offset = source_offset_bits / 8;
1984 dest_offset = dest_offset_bits / 8;
1985 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1986 {
1987 source_buffer = contents + source_offset;
1988 need_bitwise = 0;
1989 }
1990 else
1991 {
1992 if (buffer_size < this_size)
1993 {
1994 buffer_size = this_size;
58414334 1995 buffer.reserve (buffer_size);
d3b1e874 1996 }
58414334 1997 source_buffer = buffer.data ();
d3b1e874 1998 need_bitwise = 1;
afd74c5f 1999 }
9a619af0 2000
cec03d70 2001 switch (p->location)
052b9502 2002 {
cec03d70
TT
2003 case DWARF_VALUE_REGISTER:
2004 {
2aaaf250 2005 struct frame_info *frame = frame_find_by_id (c->frame_id);
cec03d70 2006 struct gdbarch *arch = get_frame_arch (frame);
0fde2c53
DE
2007 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
2008 int reg_offset = dest_offset;
dcbf108f 2009
0fde2c53
DE
2010 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
2011 && this_size <= register_size (arch, gdb_regnum))
63b4f126 2012 {
0fde2c53
DE
2013 /* Big-endian, and we want less than full size. */
2014 reg_offset = register_size (arch, gdb_regnum) - this_size;
2015 }
ca45ab26 2016
0fde2c53
DE
2017 if (need_bitwise)
2018 {
2019 int optim, unavail;
ca45ab26 2020
0fde2c53 2021 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
58414334 2022 this_size, buffer.data (),
0fde2c53 2023 &optim, &unavail))
d3b1e874 2024 {
0fde2c53
DE
2025 if (optim)
2026 throw_error (OPTIMIZED_OUT_ERROR,
2027 _("Can't do read-modify-write to "
2028 "update bitfield; containing word "
2029 "has been optimized out"));
2030 if (unavail)
2031 throw_error (NOT_AVAILABLE_ERROR,
2032 _("Can't do read-modify-write to update "
2033 "bitfield; containing word "
2034 "is unavailable"));
d3b1e874 2035 }
58414334 2036 copy_bitwise (buffer.data (), dest_offset_bits,
0fde2c53
DE
2037 contents, source_offset_bits,
2038 this_size_bits,
2039 bits_big_endian);
63b4f126 2040 }
0fde2c53
DE
2041
2042 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
2043 this_size, source_buffer);
cec03d70
TT
2044 }
2045 break;
2046 case DWARF_VALUE_MEMORY:
d3b1e874
TT
2047 if (need_bitwise)
2048 {
2049 /* Only the first and last bytes can possibly have any
2050 bits reused. */
58414334 2051 read_memory (p->v.mem.addr + dest_offset, buffer.data (), 1);
f2c7657e 2052 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
58414334
TT
2053 &buffer[this_size - 1], 1);
2054 copy_bitwise (buffer.data (), dest_offset_bits,
d3b1e874
TT
2055 contents, source_offset_bits,
2056 this_size_bits,
2057 bits_big_endian);
2058 }
2059
f2c7657e 2060 write_memory (p->v.mem.addr + dest_offset,
d3b1e874 2061 source_buffer, this_size);
cec03d70
TT
2062 break;
2063 default:
9a0dc9e3 2064 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
0e03807e 2065 break;
052b9502 2066 }
d3b1e874 2067 offset += this_size_bits;
052b9502
NF
2068 }
2069}
2070
9a0dc9e3
PA
2071/* An implementation of an lval_funcs method to see whether a value is
2072 a synthetic pointer. */
8cf6f0b1 2073
0e03807e 2074static int
6b850546 2075check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
9a0dc9e3 2076 int bit_length)
0e03807e
TT
2077{
2078 struct piece_closure *c
2079 = (struct piece_closure *) value_computed_closure (value);
2080 int i;
2081
2082 bit_offset += 8 * value_offset (value);
2083 if (value_bitsize (value))
2084 bit_offset += value_bitpos (value);
2085
2086 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2087 {
2088 struct dwarf_expr_piece *p = &c->pieces[i];
2089 size_t this_size_bits = p->size;
2090
2091 if (bit_offset > 0)
2092 {
2093 if (bit_offset >= this_size_bits)
2094 {
2095 bit_offset -= this_size_bits;
2096 continue;
2097 }
2098
2099 bit_length -= this_size_bits - bit_offset;
2100 bit_offset = 0;
2101 }
2102 else
2103 bit_length -= this_size_bits;
2104
9a0dc9e3
PA
2105 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2106 return 0;
0e03807e
TT
2107 }
2108
9a0dc9e3 2109 return 1;
8cf6f0b1
TT
2110}
2111
2112/* A wrapper function for get_frame_address_in_block. */
2113
2114static CORE_ADDR
2115get_frame_address_in_block_wrapper (void *baton)
2116{
9a3c8263 2117 return get_frame_address_in_block ((struct frame_info *) baton);
8cf6f0b1
TT
2118}
2119
3326303b
MG
2120/* Fetch a DW_AT_const_value through a synthetic pointer. */
2121
2122static struct value *
2123fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2124 struct dwarf2_per_cu_data *per_cu,
2125 struct type *type)
2126{
2127 struct value *result = NULL;
2128 struct obstack temp_obstack;
2129 struct cleanup *cleanup;
2130 const gdb_byte *bytes;
2131 LONGEST len;
2132
2133 obstack_init (&temp_obstack);
2134 cleanup = make_cleanup_obstack_free (&temp_obstack);
2135 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
2136
2137 if (bytes != NULL)
2138 {
2139 if (byte_offset >= 0
2140 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
2141 {
2142 bytes += byte_offset;
2143 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2144 }
2145 else
2146 invalid_synthetic_pointer ();
2147 }
2148 else
2149 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2150
2151 do_cleanups (cleanup);
2152
2153 return result;
2154}
2155
2156/* Fetch the value pointed to by a synthetic pointer. */
2157
2158static struct value *
2159indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2160 struct dwarf2_per_cu_data *per_cu,
2161 struct frame_info *frame, struct type *type)
2162{
2163 /* Fetch the location expression of the DIE we're pointing to. */
2164 struct dwarf2_locexpr_baton baton
2165 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
2166 get_frame_address_in_block_wrapper, frame);
2167
7942e96e
AA
2168 /* Get type of pointed-to DIE. */
2169 struct type *orig_type = dwarf2_fetch_die_type_sect_off (die, per_cu);
2170 if (orig_type == NULL)
2171 invalid_synthetic_pointer ();
2172
3326303b
MG
2173 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
2174 resulting value. Otherwise, it may have a DW_AT_const_value instead,
2175 or it may've been optimized out. */
2176 if (baton.data != NULL)
7942e96e
AA
2177 return dwarf2_evaluate_loc_desc_full (orig_type, frame, baton.data,
2178 baton.size, baton.per_cu,
2179 TYPE_TARGET_TYPE (type),
3326303b
MG
2180 byte_offset);
2181 else
2182 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
2183 type);
2184}
2185
8cf6f0b1
TT
2186/* An implementation of an lval_funcs method to indirect through a
2187 pointer. This handles the synthetic pointer case when needed. */
2188
2189static struct value *
2190indirect_pieced_value (struct value *value)
2191{
2192 struct piece_closure *c
2193 = (struct piece_closure *) value_computed_closure (value);
2194 struct type *type;
2195 struct frame_info *frame;
2196 struct dwarf2_locexpr_baton baton;
6b850546
DT
2197 int i, bit_length;
2198 LONGEST bit_offset;
8cf6f0b1 2199 struct dwarf_expr_piece *piece = NULL;
8cf6f0b1 2200 LONGEST byte_offset;
b597c318 2201 enum bfd_endian byte_order;
8cf6f0b1 2202
0e37a63c 2203 type = check_typedef (value_type (value));
8cf6f0b1
TT
2204 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2205 return NULL;
2206
2207 bit_length = 8 * TYPE_LENGTH (type);
2208 bit_offset = 8 * value_offset (value);
2209 if (value_bitsize (value))
2210 bit_offset += value_bitpos (value);
2211
2212 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2213 {
2214 struct dwarf_expr_piece *p = &c->pieces[i];
2215 size_t this_size_bits = p->size;
2216
2217 if (bit_offset > 0)
2218 {
2219 if (bit_offset >= this_size_bits)
2220 {
2221 bit_offset -= this_size_bits;
2222 continue;
2223 }
2224
2225 bit_length -= this_size_bits - bit_offset;
2226 bit_offset = 0;
2227 }
2228 else
2229 bit_length -= this_size_bits;
2230
2231 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2232 return NULL;
2233
2234 if (bit_length != 0)
216f72a1 2235 error (_("Invalid use of DW_OP_implicit_pointer"));
8cf6f0b1
TT
2236
2237 piece = p;
2238 break;
2239 }
2240
3326303b 2241 gdb_assert (piece != NULL);
8cf6f0b1 2242 frame = get_selected_frame (_("No frame selected."));
543305c9 2243
5bd1ef56
TT
2244 /* This is an offset requested by GDB, such as value subscripts.
2245 However, due to how synthetic pointers are implemented, this is
2246 always presented to us as a pointer type. This means we have to
b597c318
YQ
2247 sign-extend it manually as appropriate. Use raw
2248 extract_signed_integer directly rather than value_as_address and
2249 sign extend afterwards on architectures that would need it
2250 (mostly everywhere except MIPS, which has signed addresses) as
2251 the later would go through gdbarch_pointer_to_address and thus
2252 return a CORE_ADDR with high bits set on architectures that
2253 encode address spaces and other things in CORE_ADDR. */
2254 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2255 byte_offset = extract_signed_integer (value_contents (value),
2256 TYPE_LENGTH (type), byte_order);
5bd1ef56 2257 byte_offset += piece->v.ptr.offset;
8cf6f0b1 2258
9c541725
PA
2259 return indirect_synthetic_pointer (piece->v.ptr.die_sect_off,
2260 byte_offset, c->per_cu,
3326303b
MG
2261 frame, type);
2262}
8cf6f0b1 2263
3326303b
MG
2264/* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2265 references. */
b6807d98 2266
3326303b
MG
2267static struct value *
2268coerce_pieced_ref (const struct value *value)
2269{
2270 struct type *type = check_typedef (value_type (value));
b6807d98 2271
3326303b
MG
2272 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2273 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2274 {
2275 const struct piece_closure *closure
2276 = (struct piece_closure *) value_computed_closure (value);
2277 struct frame_info *frame
2278 = get_selected_frame (_("No frame selected."));
2279
2280 /* gdb represents synthetic pointers as pieced values with a single
2281 piece. */
2282 gdb_assert (closure != NULL);
2283 gdb_assert (closure->n_pieces == 1);
2284
9c541725 2285 return indirect_synthetic_pointer (closure->pieces->v.ptr.die_sect_off,
3326303b
MG
2286 closure->pieces->v.ptr.offset,
2287 closure->per_cu, frame, type);
2288 }
2289 else
2290 {
2291 /* Else: not a synthetic reference; do nothing. */
2292 return NULL;
2293 }
0e03807e
TT
2294}
2295
052b9502 2296static void *
0e03807e 2297copy_pieced_value_closure (const struct value *v)
052b9502 2298{
3e43a32a
MS
2299 struct piece_closure *c
2300 = (struct piece_closure *) value_computed_closure (v);
052b9502 2301
88bfdde4
TT
2302 ++c->refc;
2303 return c;
052b9502
NF
2304}
2305
2306static void
2307free_pieced_value_closure (struct value *v)
2308{
3e43a32a
MS
2309 struct piece_closure *c
2310 = (struct piece_closure *) value_computed_closure (v);
052b9502 2311
88bfdde4
TT
2312 --c->refc;
2313 if (c->refc == 0)
2314 {
8a9b8146
TT
2315 int i;
2316
2317 for (i = 0; i < c->n_pieces; ++i)
2318 if (c->pieces[i].location == DWARF_VALUE_STACK)
2319 value_free (c->pieces[i].v.value);
2320
88bfdde4
TT
2321 xfree (c->pieces);
2322 xfree (c);
2323 }
052b9502
NF
2324}
2325
2326/* Functions for accessing a variable described by DW_OP_piece. */
c8f2448a 2327static const struct lval_funcs pieced_value_funcs = {
052b9502
NF
2328 read_pieced_value,
2329 write_pieced_value,
8cf6f0b1 2330 indirect_pieced_value,
3326303b 2331 coerce_pieced_ref,
8cf6f0b1 2332 check_pieced_synthetic_pointer,
052b9502
NF
2333 copy_pieced_value_closure,
2334 free_pieced_value_closure
2335};
2336
4c2df51b 2337/* Evaluate a location description, starting at DATA and with length
8cf6f0b1 2338 SIZE, to find the current location of variable of TYPE in the
7942e96e
AA
2339 context of FRAME. If SUBOBJ_TYPE is non-NULL, return instead the
2340 location of the subobject of type SUBOBJ_TYPE at byte offset
2341 SUBOBJ_BYTE_OFFSET within the variable of type TYPE. */
a2d33775 2342
8cf6f0b1
TT
2343static struct value *
2344dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
56eb65bd 2345 const gdb_byte *data, size_t size,
8cf6f0b1 2346 struct dwarf2_per_cu_data *per_cu,
7942e96e
AA
2347 struct type *subobj_type,
2348 LONGEST subobj_byte_offset)
4c2df51b 2349{
4c2df51b 2350 struct value *retval;
ac56253d 2351 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
4c2df51b 2352
7942e96e
AA
2353 if (subobj_type == NULL)
2354 {
2355 subobj_type = type;
2356 subobj_byte_offset = 0;
2357 }
2358 else if (subobj_byte_offset < 0)
8cf6f0b1
TT
2359 invalid_synthetic_pointer ();
2360
0d53c4c4 2361 if (size == 0)
7942e96e 2362 return allocate_optimized_out_value (subobj_type);
0d53c4c4 2363
192ca6d8
TT
2364 dwarf_evaluate_loc_desc ctx;
2365 ctx.frame = frame;
2366 ctx.per_cu = per_cu;
2367 ctx.obj_address = 0;
4c2df51b 2368
0cf08227 2369 scoped_value_mark free_values;
4a227398 2370
718b9626
TT
2371 ctx.gdbarch = get_objfile_arch (objfile);
2372 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2373 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2374 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
4c2df51b 2375
492d29ea 2376 TRY
79e1a869 2377 {
595d2e30 2378 ctx.eval (data, size);
79e1a869 2379 }
492d29ea 2380 CATCH (ex, RETURN_MASK_ERROR)
79e1a869
PA
2381 {
2382 if (ex.error == NOT_AVAILABLE_ERROR)
2383 {
0cf08227 2384 free_values.free_to_mark ();
7942e96e
AA
2385 retval = allocate_value (subobj_type);
2386 mark_value_bytes_unavailable (retval, 0,
2387 TYPE_LENGTH (subobj_type));
79e1a869
PA
2388 return retval;
2389 }
8e3b41a9
JK
2390 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2391 {
2392 if (entry_values_debug)
2393 exception_print (gdb_stdout, ex);
0cf08227 2394 free_values.free_to_mark ();
7942e96e 2395 return allocate_optimized_out_value (subobj_type);
8e3b41a9 2396 }
79e1a869
PA
2397 else
2398 throw_exception (ex);
2399 }
492d29ea 2400 END_CATCH
79e1a869 2401
718b9626 2402 if (ctx.num_pieces > 0)
87808bd6 2403 {
052b9502 2404 struct piece_closure *c;
8cf6f0b1
TT
2405 ULONGEST bit_size = 0;
2406 int i;
052b9502 2407
718b9626
TT
2408 for (i = 0; i < ctx.num_pieces; ++i)
2409 bit_size += ctx.pieces[i].size;
7942e96e 2410 if (8 * (subobj_byte_offset + TYPE_LENGTH (subobj_type)) > bit_size)
8cf6f0b1
TT
2411 invalid_synthetic_pointer ();
2412
718b9626 2413 c = allocate_piece_closure (per_cu, ctx.num_pieces, ctx.pieces,
ee40d8d4 2414 ctx.addr_size, frame);
72fc29ff
TT
2415 /* We must clean up the value chain after creating the piece
2416 closure but before allocating the result. */
0cf08227 2417 free_values.free_to_mark ();
7942e96e
AA
2418 retval = allocate_computed_value (subobj_type,
2419 &pieced_value_funcs, c);
2420 set_value_offset (retval, subobj_byte_offset);
87808bd6 2421 }
4c2df51b
DJ
2422 else
2423 {
718b9626 2424 switch (ctx.location)
cec03d70
TT
2425 {
2426 case DWARF_VALUE_REGISTER:
2427 {
2428 struct gdbarch *arch = get_frame_arch (frame);
7c33b57c 2429 int dwarf_regnum
595d2e30 2430 = longest_to_int (value_as_long (ctx.fetch (0)));
0fde2c53 2431 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
9a619af0 2432
7942e96e 2433 if (subobj_byte_offset != 0)
8cf6f0b1 2434 error (_("cannot use offset on synthetic pointer to register"));
0cf08227 2435 free_values.free_to_mark ();
7942e96e 2436 retval = value_from_register (subobj_type, gdb_regnum, frame);
0fde2c53
DE
2437 if (value_optimized_out (retval))
2438 {
2439 struct value *tmp;
2440
2441 /* This means the register has undefined value / was
2442 not saved. As we're computing the location of some
2443 variable etc. in the program, not a value for
2444 inspecting a register ($pc, $sp, etc.), return a
2445 generic optimized out value instead, so that we show
2446 <optimized out> instead of <not saved>. */
7942e96e
AA
2447 tmp = allocate_value (subobj_type);
2448 value_contents_copy (tmp, 0, retval, 0,
2449 TYPE_LENGTH (subobj_type));
0fde2c53
DE
2450 retval = tmp;
2451 }
cec03d70
TT
2452 }
2453 break;
2454
2455 case DWARF_VALUE_MEMORY:
2456 {
f56331b4 2457 struct type *ptr_type;
595d2e30
TT
2458 CORE_ADDR address = ctx.fetch_address (0);
2459 int in_stack_memory = ctx.fetch_in_stack_memory (0);
cec03d70 2460
f56331b4
KB
2461 /* DW_OP_deref_size (and possibly other operations too) may
2462 create a pointer instead of an address. Ideally, the
2463 pointer to address conversion would be performed as part
2464 of those operations, but the type of the object to
2465 which the address refers is not known at the time of
2466 the operation. Therefore, we do the conversion here
2467 since the type is readily available. */
2468
7942e96e 2469 switch (TYPE_CODE (subobj_type))
f56331b4
KB
2470 {
2471 case TYPE_CODE_FUNC:
2472 case TYPE_CODE_METHOD:
718b9626 2473 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
f56331b4
KB
2474 break;
2475 default:
718b9626 2476 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
f56331b4
KB
2477 break;
2478 }
2479 address = value_as_address (value_from_pointer (ptr_type, address));
2480
0cf08227 2481 free_values.free_to_mark ();
7942e96e
AA
2482 retval = value_at_lazy (subobj_type,
2483 address + subobj_byte_offset);
44353522
DE
2484 if (in_stack_memory)
2485 set_value_stack (retval, 1);
cec03d70
TT
2486 }
2487 break;
2488
2489 case DWARF_VALUE_STACK:
2490 {
595d2e30 2491 struct value *value = ctx.fetch (0);
8a9b8146 2492 size_t n = TYPE_LENGTH (value_type (value));
7942e96e
AA
2493 size_t len = TYPE_LENGTH (subobj_type);
2494 size_t max = TYPE_LENGTH (type);
2495 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
0cf08227 2496 struct cleanup *cleanup;
cec03d70 2497
7942e96e 2498 if (subobj_byte_offset + len > max)
8cf6f0b1
TT
2499 invalid_synthetic_pointer ();
2500
72fc29ff
TT
2501 /* Preserve VALUE because we are going to free values back
2502 to the mark, but we still need the value contents
2503 below. */
2504 value_incref (value);
0cf08227
TT
2505 free_values.free_to_mark ();
2506 cleanup = make_cleanup_value_free (value);
72fc29ff 2507
7942e96e 2508 retval = allocate_value (subobj_type);
b6cede78 2509
7942e96e
AA
2510 /* The given offset is relative to the actual object. */
2511 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2512 subobj_byte_offset += n - max;
2513
2514 memcpy (value_contents_raw (retval),
2515 value_contents_all (value) + subobj_byte_offset, len);
0cf08227
TT
2516
2517 do_cleanups (cleanup);
cec03d70
TT
2518 }
2519 break;
2520
2521 case DWARF_VALUE_LITERAL:
2522 {
2523 bfd_byte *contents;
7942e96e 2524 size_t n = TYPE_LENGTH (subobj_type);
cec03d70 2525
7942e96e 2526 if (subobj_byte_offset + n > ctx.len)
8cf6f0b1
TT
2527 invalid_synthetic_pointer ();
2528
0cf08227 2529 free_values.free_to_mark ();
7942e96e 2530 retval = allocate_value (subobj_type);
cec03d70 2531 contents = value_contents_raw (retval);
7942e96e 2532 memcpy (contents, ctx.data + subobj_byte_offset, n);
cec03d70
TT
2533 }
2534 break;
2535
dd90784c 2536 case DWARF_VALUE_OPTIMIZED_OUT:
0cf08227 2537 free_values.free_to_mark ();
7942e96e 2538 retval = allocate_optimized_out_value (subobj_type);
dd90784c
JK
2539 break;
2540
8cf6f0b1
TT
2541 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2542 operation by execute_stack_op. */
2543 case DWARF_VALUE_IMPLICIT_POINTER:
cb826367
TT
2544 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2545 it can only be encountered when making a piece. */
cec03d70
TT
2546 default:
2547 internal_error (__FILE__, __LINE__, _("invalid location type"));
2548 }
4c2df51b
DJ
2549 }
2550
718b9626 2551 set_value_initialized (retval, ctx.initialized);
42be36b3 2552
4c2df51b
DJ
2553 return retval;
2554}
8cf6f0b1
TT
2555
2556/* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2557 passes 0 as the byte_offset. */
2558
2559struct value *
2560dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
56eb65bd 2561 const gdb_byte *data, size_t size,
8cf6f0b1
TT
2562 struct dwarf2_per_cu_data *per_cu)
2563{
7942e96e
AA
2564 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu,
2565 NULL, 0);
8cf6f0b1
TT
2566}
2567
80180f79 2568/* Evaluates a dwarf expression and stores the result in VAL, expecting
63e43d3a
PMR
2569 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2570 frame in which the expression is evaluated. ADDR is a context (location of
2571 a variable) and might be needed to evaluate the location expression.
80180f79
SA
2572 Returns 1 on success, 0 otherwise. */
2573
2574static int
2575dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
63e43d3a 2576 struct frame_info *frame,
08412b07 2577 CORE_ADDR addr,
1cfdf534 2578 CORE_ADDR *valp)
80180f79 2579{
80180f79 2580 struct objfile *objfile;
80180f79
SA
2581
2582 if (dlbaton == NULL || dlbaton->size == 0)
2583 return 0;
2584
192ca6d8 2585 dwarf_evaluate_loc_desc ctx;
80180f79 2586
192ca6d8
TT
2587 ctx.frame = frame;
2588 ctx.per_cu = dlbaton->per_cu;
2589 ctx.obj_address = addr;
80180f79
SA
2590
2591 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2592
718b9626
TT
2593 ctx.gdbarch = get_objfile_arch (objfile);
2594 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2595 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2596 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
80180f79 2597
595d2e30 2598 ctx.eval (dlbaton->data, dlbaton->size);
80180f79 2599
718b9626 2600 switch (ctx.location)
80180f79
SA
2601 {
2602 case DWARF_VALUE_REGISTER:
2603 case DWARF_VALUE_MEMORY:
2604 case DWARF_VALUE_STACK:
595d2e30 2605 *valp = ctx.fetch_address (0);
718b9626 2606 if (ctx.location == DWARF_VALUE_REGISTER)
192ca6d8 2607 *valp = ctx.read_addr_from_reg (*valp);
80180f79
SA
2608 return 1;
2609 case DWARF_VALUE_LITERAL:
718b9626
TT
2610 *valp = extract_signed_integer (ctx.data, ctx.len,
2611 gdbarch_byte_order (ctx.gdbarch));
80180f79
SA
2612 return 1;
2613 /* Unsupported dwarf values. */
2614 case DWARF_VALUE_OPTIMIZED_OUT:
2615 case DWARF_VALUE_IMPLICIT_POINTER:
2616 break;
2617 }
2618
80180f79
SA
2619 return 0;
2620}
2621
2622/* See dwarf2loc.h. */
2623
2624int
08412b07 2625dwarf2_evaluate_property (const struct dynamic_prop *prop,
63e43d3a 2626 struct frame_info *frame,
df25ebbd
JB
2627 struct property_addr_info *addr_stack,
2628 CORE_ADDR *value)
80180f79
SA
2629{
2630 if (prop == NULL)
2631 return 0;
2632
63e43d3a
PMR
2633 if (frame == NULL && has_stack_frames ())
2634 frame = get_selected_frame (NULL);
2635
80180f79
SA
2636 switch (prop->kind)
2637 {
2638 case PROP_LOCEXPR:
2639 {
9a3c8263
SM
2640 const struct dwarf2_property_baton *baton
2641 = (const struct dwarf2_property_baton *) prop->data.baton;
80180f79 2642
63e43d3a
PMR
2643 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2644 addr_stack ? addr_stack->addr : 0,
df25ebbd 2645 value))
80180f79
SA
2646 {
2647 if (baton->referenced_type)
2648 {
2649 struct value *val = value_at (baton->referenced_type, *value);
2650
2651 *value = value_as_address (val);
2652 }
2653 return 1;
2654 }
2655 }
2656 break;
2657
2658 case PROP_LOCLIST:
2659 {
9a3c8263
SM
2660 struct dwarf2_property_baton *baton
2661 = (struct dwarf2_property_baton *) prop->data.baton;
80180f79
SA
2662 CORE_ADDR pc = get_frame_address_in_block (frame);
2663 const gdb_byte *data;
2664 struct value *val;
2665 size_t size;
2666
2667 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2668 if (data != NULL)
2669 {
2670 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2671 size, baton->loclist.per_cu);
2672 if (!value_optimized_out (val))
2673 {
2674 *value = value_as_address (val);
2675 return 1;
2676 }
2677 }
2678 }
2679 break;
2680
2681 case PROP_CONST:
2682 *value = prop->data.const_val;
2683 return 1;
df25ebbd
JB
2684
2685 case PROP_ADDR_OFFSET:
2686 {
9a3c8263
SM
2687 struct dwarf2_property_baton *baton
2688 = (struct dwarf2_property_baton *) prop->data.baton;
df25ebbd
JB
2689 struct property_addr_info *pinfo;
2690 struct value *val;
2691
2692 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2693 if (pinfo->type == baton->referenced_type)
2694 break;
2695 if (pinfo == NULL)
2c811c0f 2696 error (_("cannot find reference address for offset property"));
c3345124
JB
2697 if (pinfo->valaddr != NULL)
2698 val = value_from_contents
2699 (baton->offset_info.type,
2700 pinfo->valaddr + baton->offset_info.offset);
2701 else
2702 val = value_at (baton->offset_info.type,
2703 pinfo->addr + baton->offset_info.offset);
df25ebbd
JB
2704 *value = value_as_address (val);
2705 return 1;
2706 }
80180f79
SA
2707 }
2708
2709 return 0;
2710}
2711
bb2ec1b3
TT
2712/* See dwarf2loc.h. */
2713
2714void
d7e74731 2715dwarf2_compile_property_to_c (string_file &stream,
bb2ec1b3
TT
2716 const char *result_name,
2717 struct gdbarch *gdbarch,
2718 unsigned char *registers_used,
2719 const struct dynamic_prop *prop,
2720 CORE_ADDR pc,
2721 struct symbol *sym)
2722{
9a3c8263
SM
2723 struct dwarf2_property_baton *baton
2724 = (struct dwarf2_property_baton *) prop->data.baton;
bb2ec1b3
TT
2725 const gdb_byte *data;
2726 size_t size;
2727 struct dwarf2_per_cu_data *per_cu;
2728
2729 if (prop->kind == PROP_LOCEXPR)
2730 {
2731 data = baton->locexpr.data;
2732 size = baton->locexpr.size;
2733 per_cu = baton->locexpr.per_cu;
2734 }
2735 else
2736 {
2737 gdb_assert (prop->kind == PROP_LOCLIST);
2738
2739 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2740 per_cu = baton->loclist.per_cu;
2741 }
2742
2743 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2744 gdbarch, registers_used,
2745 dwarf2_per_cu_addr_size (per_cu),
2746 data, data + size, per_cu);
2747}
2748
4c2df51b 2749\f
0b31a4bc 2750/* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
4c2df51b 2751
192ca6d8 2752class symbol_needs_eval_context : public dwarf_expr_context
4c2df51b 2753{
192ca6d8
TT
2754 public:
2755
0b31a4bc 2756 enum symbol_needs_kind needs;
17ea53c3 2757 struct dwarf2_per_cu_data *per_cu;
4c2df51b 2758
192ca6d8
TT
2759 /* Reads from registers do require a frame. */
2760 CORE_ADDR read_addr_from_reg (int regnum) OVERRIDE
2761 {
2762 needs = SYMBOL_NEEDS_FRAME;
2763 return 1;
2764 }
2765
2766 /* "get_reg_value" callback: Reads from registers do require a
2767 frame. */
2768
2769 struct value *get_reg_value (struct type *type, int regnum) OVERRIDE
2770 {
2771 needs = SYMBOL_NEEDS_FRAME;
2772 return value_zero (type, not_lval);
2773 }
2774
2775 /* Reads from memory do not require a frame. */
2776 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
2777 {
2778 memset (buf, 0, len);
2779 }
2780
2781 /* Frame-relative accesses do require a frame. */
2782 void get_frame_base (const gdb_byte **start, size_t *length) OVERRIDE
2783 {
2784 static gdb_byte lit0 = DW_OP_lit0;
2785
2786 *start = &lit0;
2787 *length = 1;
2788
2789 needs = SYMBOL_NEEDS_FRAME;
2790 }
2791
2792 /* CFA accesses require a frame. */
2793 CORE_ADDR get_frame_cfa () OVERRIDE
2794 {
2795 needs = SYMBOL_NEEDS_FRAME;
2796 return 1;
2797 }
2798
7d5697f9
TT
2799 CORE_ADDR get_frame_pc () OVERRIDE
2800 {
2801 needs = SYMBOL_NEEDS_FRAME;
2802 return 1;
2803 }
2804
192ca6d8
TT
2805 /* Thread-local accesses require registers, but not a frame. */
2806 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
2807 {
2808 if (needs <= SYMBOL_NEEDS_REGISTERS)
2809 needs = SYMBOL_NEEDS_REGISTERS;
2810 return 1;
2811 }
2812
2813 /* Helper interface of per_cu_dwarf_call for
2814 dwarf2_loc_desc_get_symbol_read_needs. */
2815
2816 void dwarf_call (cu_offset die_offset) OVERRIDE
2817 {
2818 per_cu_dwarf_call (this, die_offset, per_cu);
2819 }
2820
216f72a1 2821 /* DW_OP_entry_value accesses require a caller, therefore a
192ca6d8
TT
2822 frame. */
2823
2824 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2825 union call_site_parameter_u kind_u,
2826 int deref_size) OVERRIDE
2827 {
2828 needs = SYMBOL_NEEDS_FRAME;
3019eac3 2829
192ca6d8
TT
2830 /* The expression may require some stub values on DWARF stack. */
2831 push_address (0, 0);
2832 }
3019eac3 2833
192ca6d8 2834 /* DW_OP_GNU_addr_index doesn't require a frame. */
08412b07 2835
192ca6d8
TT
2836 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
2837 {
2838 /* Nothing to do. */
2839 return 1;
2840 }
08412b07 2841
192ca6d8 2842 /* DW_OP_push_object_address has a frame already passed through. */
9e8b7a03 2843
192ca6d8
TT
2844 CORE_ADDR get_object_address () OVERRIDE
2845 {
2846 /* Nothing to do. */
2847 return 1;
2848 }
9e8b7a03
JK
2849};
2850
0b31a4bc
TT
2851/* Compute the correct symbol_needs_kind value for the location
2852 expression at DATA (length SIZE). */
4c2df51b 2853
0b31a4bc
TT
2854static enum symbol_needs_kind
2855dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2856 struct dwarf2_per_cu_data *per_cu)
4c2df51b 2857{
f630a401 2858 int in_reg;
ac56253d 2859 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
4c2df51b 2860
eb115069
TT
2861 scoped_value_mark free_values;
2862
192ca6d8
TT
2863 symbol_needs_eval_context ctx;
2864
2865 ctx.needs = SYMBOL_NEEDS_NONE;
2866 ctx.per_cu = per_cu;
718b9626
TT
2867 ctx.gdbarch = get_objfile_arch (objfile);
2868 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2869 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2870 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
4c2df51b 2871
595d2e30 2872 ctx.eval (data, size);
4c2df51b 2873
718b9626 2874 in_reg = ctx.location == DWARF_VALUE_REGISTER;
f630a401 2875
718b9626 2876 if (ctx.num_pieces > 0)
87808bd6
JB
2877 {
2878 int i;
2879
2880 /* If the location has several pieces, and any of them are in
2881 registers, then we will need a frame to fetch them from. */
718b9626
TT
2882 for (i = 0; i < ctx.num_pieces; i++)
2883 if (ctx.pieces[i].location == DWARF_VALUE_REGISTER)
87808bd6
JB
2884 in_reg = 1;
2885 }
2886
0b31a4bc 2887 if (in_reg)
192ca6d8
TT
2888 ctx.needs = SYMBOL_NEEDS_FRAME;
2889 return ctx.needs;
4c2df51b
DJ
2890}
2891
3cf03773
TT
2892/* A helper function that throws an unimplemented error mentioning a
2893 given DWARF operator. */
2894
2895static void
2896unimplemented (unsigned int op)
0d53c4c4 2897{
f39c6ffd 2898 const char *name = get_DW_OP_name (op);
b1bfef65
TT
2899
2900 if (name)
2901 error (_("DWARF operator %s cannot be translated to an agent expression"),
2902 name);
2903 else
1ba1b353
TT
2904 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2905 "to an agent expression"),
b1bfef65 2906 op);
3cf03773 2907}
08922a10 2908
0fde2c53
DE
2909/* See dwarf2loc.h.
2910
2911 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2912 can issue a complaint, which is better than having every target's
2913 implementation of dwarf2_reg_to_regnum do it. */
08922a10 2914
d064d1be 2915int
0fde2c53 2916dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
3cf03773
TT
2917{
2918 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
0fde2c53 2919
3cf03773 2920 if (reg == -1)
0fde2c53
DE
2921 {
2922 complaint (&symfile_complaints,
2923 _("bad DWARF register number %d"), dwarf_reg);
2924 }
2925 return reg;
2926}
2927
2928/* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2929 Throw an error because DWARF_REG is bad. */
2930
2931static void
2932throw_bad_regnum_error (ULONGEST dwarf_reg)
2933{
2934 /* Still want to print -1 as "-1".
2935 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2936 but that's overkill for now. */
2937 if ((int) dwarf_reg == dwarf_reg)
2938 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2939 error (_("Unable to access DWARF register number %s"),
2940 pulongest (dwarf_reg));
2941}
2942
2943/* See dwarf2loc.h. */
2944
2945int
2946dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2947{
2948 int reg;
2949
2950 if (dwarf_reg > INT_MAX)
2951 throw_bad_regnum_error (dwarf_reg);
2952 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2953 bad, but that's ok. */
2954 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2955 if (reg == -1)
2956 throw_bad_regnum_error (dwarf_reg);
3cf03773
TT
2957 return reg;
2958}
08922a10 2959
3cf03773
TT
2960/* A helper function that emits an access to memory. ARCH is the
2961 target architecture. EXPR is the expression which we are building.
2962 NBITS is the number of bits we want to read. This emits the
2963 opcodes needed to read the memory and then extract the desired
2964 bits. */
08922a10 2965
3cf03773
TT
2966static void
2967access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
08922a10 2968{
3cf03773
TT
2969 ULONGEST nbytes = (nbits + 7) / 8;
2970
9df7235c 2971 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
3cf03773 2972
92bc6a20 2973 if (expr->tracing)
3cf03773
TT
2974 ax_trace_quick (expr, nbytes);
2975
2976 if (nbits <= 8)
2977 ax_simple (expr, aop_ref8);
2978 else if (nbits <= 16)
2979 ax_simple (expr, aop_ref16);
2980 else if (nbits <= 32)
2981 ax_simple (expr, aop_ref32);
2982 else
2983 ax_simple (expr, aop_ref64);
2984
2985 /* If we read exactly the number of bytes we wanted, we're done. */
2986 if (8 * nbytes == nbits)
2987 return;
2988
2989 if (gdbarch_bits_big_endian (arch))
0d53c4c4 2990 {
3cf03773
TT
2991 /* On a bits-big-endian machine, we want the high-order
2992 NBITS. */
2993 ax_const_l (expr, 8 * nbytes - nbits);
2994 ax_simple (expr, aop_rsh_unsigned);
0d53c4c4 2995 }
3cf03773 2996 else
0d53c4c4 2997 {
3cf03773
TT
2998 /* On a bits-little-endian box, we want the low-order NBITS. */
2999 ax_zero_ext (expr, nbits);
0d53c4c4 3000 }
3cf03773 3001}
0936ad1d 3002
8cf6f0b1
TT
3003/* A helper function to return the frame's PC. */
3004
3005static CORE_ADDR
3006get_ax_pc (void *baton)
3007{
9a3c8263 3008 struct agent_expr *expr = (struct agent_expr *) baton;
8cf6f0b1
TT
3009
3010 return expr->scope;
3011}
3012
3cf03773
TT
3013/* Compile a DWARF location expression to an agent expression.
3014
3015 EXPR is the agent expression we are building.
3016 LOC is the agent value we modify.
3017 ARCH is the architecture.
3018 ADDR_SIZE is the size of addresses, in bytes.
3019 OP_PTR is the start of the location expression.
3020 OP_END is one past the last byte of the location expression.
3021
3022 This will throw an exception for various kinds of errors -- for
3023 example, if the expression cannot be compiled, or if the expression
3024 is invalid. */
0936ad1d 3025
9f6f94ff
TT
3026void
3027dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
3028 struct gdbarch *arch, unsigned int addr_size,
3029 const gdb_byte *op_ptr, const gdb_byte *op_end,
3030 struct dwarf2_per_cu_data *per_cu)
3cf03773 3031{
58414334
TT
3032 int i;
3033 std::vector<int> dw_labels, patches;
3cf03773
TT
3034 const gdb_byte * const base = op_ptr;
3035 const gdb_byte *previous_piece = op_ptr;
3036 enum bfd_endian byte_order = gdbarch_byte_order (arch);
3037 ULONGEST bits_collected = 0;
3038 unsigned int addr_size_bits = 8 * addr_size;
3039 int bits_big_endian = gdbarch_bits_big_endian (arch);
0936ad1d 3040
58414334 3041 std::vector<int> offsets (op_end - op_ptr, -1);
0936ad1d 3042
3cf03773
TT
3043 /* By default we are making an address. */
3044 loc->kind = axs_lvalue_memory;
0d45f56e 3045
3cf03773
TT
3046 while (op_ptr < op_end)
3047 {
aead7601 3048 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
9fccedf7
DE
3049 uint64_t uoffset, reg;
3050 int64_t offset;
3cf03773
TT
3051 int i;
3052
3053 offsets[op_ptr - base] = expr->len;
3054 ++op_ptr;
3055
3056 /* Our basic approach to code generation is to map DWARF
3057 operations directly to AX operations. However, there are
3058 some differences.
3059
3060 First, DWARF works on address-sized units, but AX always uses
3061 LONGEST. For most operations we simply ignore this
3062 difference; instead we generate sign extensions as needed
3063 before division and comparison operations. It would be nice
3064 to omit the sign extensions, but there is no way to determine
3065 the size of the target's LONGEST. (This code uses the size
3066 of the host LONGEST in some cases -- that is a bug but it is
3067 difficult to fix.)
3068
3069 Second, some DWARF operations cannot be translated to AX.
3070 For these we simply fail. See
3071 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
3072 switch (op)
0936ad1d 3073 {
3cf03773
TT
3074 case DW_OP_lit0:
3075 case DW_OP_lit1:
3076 case DW_OP_lit2:
3077 case DW_OP_lit3:
3078 case DW_OP_lit4:
3079 case DW_OP_lit5:
3080 case DW_OP_lit6:
3081 case DW_OP_lit7:
3082 case DW_OP_lit8:
3083 case DW_OP_lit9:
3084 case DW_OP_lit10:
3085 case DW_OP_lit11:
3086 case DW_OP_lit12:
3087 case DW_OP_lit13:
3088 case DW_OP_lit14:
3089 case DW_OP_lit15:
3090 case DW_OP_lit16:
3091 case DW_OP_lit17:
3092 case DW_OP_lit18:
3093 case DW_OP_lit19:
3094 case DW_OP_lit20:
3095 case DW_OP_lit21:
3096 case DW_OP_lit22:
3097 case DW_OP_lit23:
3098 case DW_OP_lit24:
3099 case DW_OP_lit25:
3100 case DW_OP_lit26:
3101 case DW_OP_lit27:
3102 case DW_OP_lit28:
3103 case DW_OP_lit29:
3104 case DW_OP_lit30:
3105 case DW_OP_lit31:
3106 ax_const_l (expr, op - DW_OP_lit0);
3107 break;
0d53c4c4 3108
3cf03773 3109 case DW_OP_addr:
ac56253d 3110 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3cf03773 3111 op_ptr += addr_size;
ac56253d
TT
3112 /* Some versions of GCC emit DW_OP_addr before
3113 DW_OP_GNU_push_tls_address. In this case the value is an
3114 index, not an address. We don't support things like
3115 branching between the address and the TLS op. */
3116 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
9aa1f1e3 3117 uoffset += dwarf2_per_cu_text_offset (per_cu);
ac56253d 3118 ax_const_l (expr, uoffset);
3cf03773 3119 break;
4c2df51b 3120
3cf03773
TT
3121 case DW_OP_const1u:
3122 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
3123 op_ptr += 1;
3124 break;
3125 case DW_OP_const1s:
3126 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
3127 op_ptr += 1;
3128 break;
3129 case DW_OP_const2u:
3130 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
3131 op_ptr += 2;
3132 break;
3133 case DW_OP_const2s:
3134 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
3135 op_ptr += 2;
3136 break;
3137 case DW_OP_const4u:
3138 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
3139 op_ptr += 4;
3140 break;
3141 case DW_OP_const4s:
3142 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
3143 op_ptr += 4;
3144 break;
3145 case DW_OP_const8u:
3146 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
3147 op_ptr += 8;
3148 break;
3149 case DW_OP_const8s:
3150 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
3151 op_ptr += 8;
3152 break;
3153 case DW_OP_constu:
f664829e 3154 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3cf03773
TT
3155 ax_const_l (expr, uoffset);
3156 break;
3157 case DW_OP_consts:
f664829e 3158 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3cf03773
TT
3159 ax_const_l (expr, offset);
3160 break;
9c238357 3161
3cf03773
TT
3162 case DW_OP_reg0:
3163 case DW_OP_reg1:
3164 case DW_OP_reg2:
3165 case DW_OP_reg3:
3166 case DW_OP_reg4:
3167 case DW_OP_reg5:
3168 case DW_OP_reg6:
3169 case DW_OP_reg7:
3170 case DW_OP_reg8:
3171 case DW_OP_reg9:
3172 case DW_OP_reg10:
3173 case DW_OP_reg11:
3174 case DW_OP_reg12:
3175 case DW_OP_reg13:
3176 case DW_OP_reg14:
3177 case DW_OP_reg15:
3178 case DW_OP_reg16:
3179 case DW_OP_reg17:
3180 case DW_OP_reg18:
3181 case DW_OP_reg19:
3182 case DW_OP_reg20:
3183 case DW_OP_reg21:
3184 case DW_OP_reg22:
3185 case DW_OP_reg23:
3186 case DW_OP_reg24:
3187 case DW_OP_reg25:
3188 case DW_OP_reg26:
3189 case DW_OP_reg27:
3190 case DW_OP_reg28:
3191 case DW_OP_reg29:
3192 case DW_OP_reg30:
3193 case DW_OP_reg31:
3194 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
0fde2c53 3195 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3cf03773
TT
3196 loc->kind = axs_lvalue_register;
3197 break;
9c238357 3198
3cf03773 3199 case DW_OP_regx:
f664829e 3200 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3cf03773 3201 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
0fde2c53 3202 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3cf03773
TT
3203 loc->kind = axs_lvalue_register;
3204 break;
08922a10 3205
3cf03773
TT
3206 case DW_OP_implicit_value:
3207 {
9fccedf7 3208 uint64_t len;
3cf03773 3209
f664829e 3210 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3cf03773
TT
3211 if (op_ptr + len > op_end)
3212 error (_("DW_OP_implicit_value: too few bytes available."));
3213 if (len > sizeof (ULONGEST))
3214 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3215 (int) len);
3216
3217 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3218 byte_order));
3219 op_ptr += len;
3220 dwarf_expr_require_composition (op_ptr, op_end,
3221 "DW_OP_implicit_value");
3222
3223 loc->kind = axs_rvalue;
3224 }
3225 break;
08922a10 3226
3cf03773
TT
3227 case DW_OP_stack_value:
3228 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3229 loc->kind = axs_rvalue;
3230 break;
08922a10 3231
3cf03773
TT
3232 case DW_OP_breg0:
3233 case DW_OP_breg1:
3234 case DW_OP_breg2:
3235 case DW_OP_breg3:
3236 case DW_OP_breg4:
3237 case DW_OP_breg5:
3238 case DW_OP_breg6:
3239 case DW_OP_breg7:
3240 case DW_OP_breg8:
3241 case DW_OP_breg9:
3242 case DW_OP_breg10:
3243 case DW_OP_breg11:
3244 case DW_OP_breg12:
3245 case DW_OP_breg13:
3246 case DW_OP_breg14:
3247 case DW_OP_breg15:
3248 case DW_OP_breg16:
3249 case DW_OP_breg17:
3250 case DW_OP_breg18:
3251 case DW_OP_breg19:
3252 case DW_OP_breg20:
3253 case DW_OP_breg21:
3254 case DW_OP_breg22:
3255 case DW_OP_breg23:
3256 case DW_OP_breg24:
3257 case DW_OP_breg25:
3258 case DW_OP_breg26:
3259 case DW_OP_breg27:
3260 case DW_OP_breg28:
3261 case DW_OP_breg29:
3262 case DW_OP_breg30:
3263 case DW_OP_breg31:
f664829e 3264 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
0fde2c53 3265 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3cf03773
TT
3266 ax_reg (expr, i);
3267 if (offset != 0)
3268 {
3269 ax_const_l (expr, offset);
3270 ax_simple (expr, aop_add);
3271 }
3272 break;
3273 case DW_OP_bregx:
3274 {
f664829e
DE
3275 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3276 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
0fde2c53 3277 i = dwarf_reg_to_regnum_or_error (arch, reg);
3cf03773
TT
3278 ax_reg (expr, i);
3279 if (offset != 0)
3280 {
3281 ax_const_l (expr, offset);
3282 ax_simple (expr, aop_add);
3283 }
3284 }
3285 break;
3286 case DW_OP_fbreg:
3287 {
3288 const gdb_byte *datastart;
3289 size_t datalen;
3977b71f 3290 const struct block *b;
3cf03773 3291 struct symbol *framefunc;
08922a10 3292
3cf03773
TT
3293 b = block_for_pc (expr->scope);
3294
3295 if (!b)
3296 error (_("No block found for address"));
3297
3298 framefunc = block_linkage_function (b);
3299
3300 if (!framefunc)
3301 error (_("No function found for block"));
3302
af945b75
TT
3303 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3304 &datastart, &datalen);
3cf03773 3305
f664829e 3306 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
9f6f94ff
TT
3307 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3308 datastart + datalen, per_cu);
d84cf7eb
TT
3309 if (loc->kind == axs_lvalue_register)
3310 require_rvalue (expr, loc);
3cf03773
TT
3311
3312 if (offset != 0)
3313 {
3314 ax_const_l (expr, offset);
3315 ax_simple (expr, aop_add);
3316 }
3317
3318 loc->kind = axs_lvalue_memory;
3319 }
08922a10 3320 break;
08922a10 3321
3cf03773
TT
3322 case DW_OP_dup:
3323 ax_simple (expr, aop_dup);
3324 break;
08922a10 3325
3cf03773
TT
3326 case DW_OP_drop:
3327 ax_simple (expr, aop_pop);
3328 break;
08922a10 3329
3cf03773
TT
3330 case DW_OP_pick:
3331 offset = *op_ptr++;
c7f96d2b 3332 ax_pick (expr, offset);
3cf03773
TT
3333 break;
3334
3335 case DW_OP_swap:
3336 ax_simple (expr, aop_swap);
3337 break;
08922a10 3338
3cf03773 3339 case DW_OP_over:
c7f96d2b 3340 ax_pick (expr, 1);
3cf03773 3341 break;
08922a10 3342
3cf03773 3343 case DW_OP_rot:
c7f96d2b 3344 ax_simple (expr, aop_rot);
3cf03773 3345 break;
08922a10 3346
3cf03773
TT
3347 case DW_OP_deref:
3348 case DW_OP_deref_size:
3349 {
3350 int size;
08922a10 3351
3cf03773
TT
3352 if (op == DW_OP_deref_size)
3353 size = *op_ptr++;
3354 else
3355 size = addr_size;
3356
9df7235c 3357 if (size != 1 && size != 2 && size != 4 && size != 8)
f3cec7e6
HZ
3358 error (_("Unsupported size %d in %s"),
3359 size, get_DW_OP_name (op));
9df7235c 3360 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3cf03773
TT
3361 }
3362 break;
3363
3364 case DW_OP_abs:
3365 /* Sign extend the operand. */
3366 ax_ext (expr, addr_size_bits);
3367 ax_simple (expr, aop_dup);
3368 ax_const_l (expr, 0);
3369 ax_simple (expr, aop_less_signed);
3370 ax_simple (expr, aop_log_not);
3371 i = ax_goto (expr, aop_if_goto);
3372 /* We have to emit 0 - X. */
3373 ax_const_l (expr, 0);
3374 ax_simple (expr, aop_swap);
3375 ax_simple (expr, aop_sub);
3376 ax_label (expr, i, expr->len);
3377 break;
3378
3379 case DW_OP_neg:
3380 /* No need to sign extend here. */
3381 ax_const_l (expr, 0);
3382 ax_simple (expr, aop_swap);
3383 ax_simple (expr, aop_sub);
3384 break;
3385
3386 case DW_OP_not:
3387 /* Sign extend the operand. */
3388 ax_ext (expr, addr_size_bits);
3389 ax_simple (expr, aop_bit_not);
3390 break;
3391
3392 case DW_OP_plus_uconst:
f664829e 3393 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3cf03773
TT
3394 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3395 but we micro-optimize anyhow. */
3396 if (reg != 0)
3397 {
3398 ax_const_l (expr, reg);
3399 ax_simple (expr, aop_add);
3400 }
3401 break;
3402
3403 case DW_OP_and:
3404 ax_simple (expr, aop_bit_and);
3405 break;
3406
3407 case DW_OP_div:
3408 /* Sign extend the operands. */
3409 ax_ext (expr, addr_size_bits);
3410 ax_simple (expr, aop_swap);
3411 ax_ext (expr, addr_size_bits);
3412 ax_simple (expr, aop_swap);
3413 ax_simple (expr, aop_div_signed);
08922a10
SS
3414 break;
3415
3cf03773
TT
3416 case DW_OP_minus:
3417 ax_simple (expr, aop_sub);
3418 break;
3419
3420 case DW_OP_mod:
3421 ax_simple (expr, aop_rem_unsigned);
3422 break;
3423
3424 case DW_OP_mul:
3425 ax_simple (expr, aop_mul);
3426 break;
3427
3428 case DW_OP_or:
3429 ax_simple (expr, aop_bit_or);
3430 break;
3431
3432 case DW_OP_plus:
3433 ax_simple (expr, aop_add);
3434 break;
3435
3436 case DW_OP_shl:
3437 ax_simple (expr, aop_lsh);
3438 break;
3439
3440 case DW_OP_shr:
3441 ax_simple (expr, aop_rsh_unsigned);
3442 break;
3443
3444 case DW_OP_shra:
3445 ax_simple (expr, aop_rsh_signed);
3446 break;
3447
3448 case DW_OP_xor:
3449 ax_simple (expr, aop_bit_xor);
3450 break;
3451
3452 case DW_OP_le:
3453 /* Sign extend the operands. */
3454 ax_ext (expr, addr_size_bits);
3455 ax_simple (expr, aop_swap);
3456 ax_ext (expr, addr_size_bits);
3457 /* Note no swap here: A <= B is !(B < A). */
3458 ax_simple (expr, aop_less_signed);
3459 ax_simple (expr, aop_log_not);
3460 break;
3461
3462 case DW_OP_ge:
3463 /* Sign extend the operands. */
3464 ax_ext (expr, addr_size_bits);
3465 ax_simple (expr, aop_swap);
3466 ax_ext (expr, addr_size_bits);
3467 ax_simple (expr, aop_swap);
3468 /* A >= B is !(A < B). */
3469 ax_simple (expr, aop_less_signed);
3470 ax_simple (expr, aop_log_not);
3471 break;
3472
3473 case DW_OP_eq:
3474 /* Sign extend the operands. */
3475 ax_ext (expr, addr_size_bits);
3476 ax_simple (expr, aop_swap);
3477 ax_ext (expr, addr_size_bits);
3478 /* No need for a second swap here. */
3479 ax_simple (expr, aop_equal);
3480 break;
3481
3482 case DW_OP_lt:
3483 /* Sign extend the operands. */
3484 ax_ext (expr, addr_size_bits);
3485 ax_simple (expr, aop_swap);
3486 ax_ext (expr, addr_size_bits);
3487 ax_simple (expr, aop_swap);
3488 ax_simple (expr, aop_less_signed);
3489 break;
3490
3491 case DW_OP_gt:
3492 /* Sign extend the operands. */
3493 ax_ext (expr, addr_size_bits);
3494 ax_simple (expr, aop_swap);
3495 ax_ext (expr, addr_size_bits);
3496 /* Note no swap here: A > B is B < A. */
3497 ax_simple (expr, aop_less_signed);
3498 break;
3499
3500 case DW_OP_ne:
3501 /* Sign extend the operands. */
3502 ax_ext (expr, addr_size_bits);
3503 ax_simple (expr, aop_swap);
3504 ax_ext (expr, addr_size_bits);
3505 /* No need for a swap here. */
3506 ax_simple (expr, aop_equal);
3507 ax_simple (expr, aop_log_not);
3508 break;
3509
3510 case DW_OP_call_frame_cfa:
a8fd5589
TT
3511 {
3512 int regnum;
3513 CORE_ADDR text_offset;
3514 LONGEST off;
3515 const gdb_byte *cfa_start, *cfa_end;
3516
3517 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3518 &regnum, &off,
3519 &text_offset, &cfa_start, &cfa_end))
3520 {
3521 /* Register. */
3522 ax_reg (expr, regnum);
3523 if (off != 0)
3524 {
3525 ax_const_l (expr, off);
3526 ax_simple (expr, aop_add);
3527 }
3528 }
3529 else
3530 {
3531 /* Another expression. */
3532 ax_const_l (expr, text_offset);
3533 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3534 cfa_start, cfa_end, per_cu);
3535 }
3536
3537 loc->kind = axs_lvalue_memory;
3538 }
3cf03773
TT
3539 break;
3540
3541 case DW_OP_GNU_push_tls_address:
4aa4e28b 3542 case DW_OP_form_tls_address:
3cf03773
TT
3543 unimplemented (op);
3544 break;
3545
08412b07
JB
3546 case DW_OP_push_object_address:
3547 unimplemented (op);
3548 break;
3549
3cf03773
TT
3550 case DW_OP_skip:
3551 offset = extract_signed_integer (op_ptr, 2, byte_order);
3552 op_ptr += 2;
3553 i = ax_goto (expr, aop_goto);
58414334
TT
3554 dw_labels.push_back (op_ptr + offset - base);
3555 patches.push_back (i);
3cf03773
TT
3556 break;
3557
3558 case DW_OP_bra:
3559 offset = extract_signed_integer (op_ptr, 2, byte_order);
3560 op_ptr += 2;
3561 /* Zero extend the operand. */
3562 ax_zero_ext (expr, addr_size_bits);
3563 i = ax_goto (expr, aop_if_goto);
58414334
TT
3564 dw_labels.push_back (op_ptr + offset - base);
3565 patches.push_back (i);
3cf03773
TT
3566 break;
3567
3568 case DW_OP_nop:
3569 break;
3570
3571 case DW_OP_piece:
3572 case DW_OP_bit_piece:
08922a10 3573 {
9fccedf7 3574 uint64_t size, offset;
3cf03773
TT
3575
3576 if (op_ptr - 1 == previous_piece)
3577 error (_("Cannot translate empty pieces to agent expressions"));
3578 previous_piece = op_ptr - 1;
3579
f664829e 3580 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3cf03773
TT
3581 if (op == DW_OP_piece)
3582 {
3583 size *= 8;
3584 offset = 0;
3585 }
3586 else
f664829e 3587 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
08922a10 3588
3cf03773
TT
3589 if (bits_collected + size > 8 * sizeof (LONGEST))
3590 error (_("Expression pieces exceed word size"));
3591
3592 /* Access the bits. */
3593 switch (loc->kind)
3594 {
3595 case axs_lvalue_register:
3596 ax_reg (expr, loc->u.reg);
3597 break;
3598
3599 case axs_lvalue_memory:
3600 /* Offset the pointer, if needed. */
3601 if (offset > 8)
3602 {
3603 ax_const_l (expr, offset / 8);
3604 ax_simple (expr, aop_add);
3605 offset %= 8;
3606 }
3607 access_memory (arch, expr, size);
3608 break;
3609 }
3610
3611 /* For a bits-big-endian target, shift up what we already
3612 have. For a bits-little-endian target, shift up the
3613 new data. Note that there is a potential bug here if
3614 the DWARF expression leaves multiple values on the
3615 stack. */
3616 if (bits_collected > 0)
3617 {
3618 if (bits_big_endian)
3619 {
3620 ax_simple (expr, aop_swap);
3621 ax_const_l (expr, size);
3622 ax_simple (expr, aop_lsh);
3623 /* We don't need a second swap here, because
3624 aop_bit_or is symmetric. */
3625 }
3626 else
3627 {
3628 ax_const_l (expr, size);
3629 ax_simple (expr, aop_lsh);
3630 }
3631 ax_simple (expr, aop_bit_or);
3632 }
3633
3634 bits_collected += size;
3635 loc->kind = axs_rvalue;
08922a10
SS
3636 }
3637 break;
08922a10 3638
3cf03773
TT
3639 case DW_OP_GNU_uninit:
3640 unimplemented (op);
3641
3642 case DW_OP_call2:
3643 case DW_OP_call4:
3644 {
3645 struct dwarf2_locexpr_baton block;
3646 int size = (op == DW_OP_call2 ? 2 : 4);
3647
3648 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3649 op_ptr += size;
3650
9c541725 3651 cu_offset offset = (cu_offset) uoffset;
8b9737bf
TT
3652 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3653 get_ax_pc, expr);
3cf03773
TT
3654
3655 /* DW_OP_call_ref is currently not supported. */
3656 gdb_assert (block.per_cu == per_cu);
3657
9f6f94ff
TT
3658 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3659 block.data, block.data + block.size,
3660 per_cu);
3cf03773
TT
3661 }
3662 break;
3663
3664 case DW_OP_call_ref:
3665 unimplemented (op);
3666
3667 default:
b1bfef65 3668 unimplemented (op);
08922a10 3669 }
08922a10 3670 }
3cf03773
TT
3671
3672 /* Patch all the branches we emitted. */
58414334 3673 for (i = 0; i < patches.size (); ++i)
3cf03773 3674 {
58414334 3675 int targ = offsets[dw_labels[i]];
3cf03773
TT
3676 if (targ == -1)
3677 internal_error (__FILE__, __LINE__, _("invalid label"));
58414334 3678 ax_label (expr, patches[i], targ);
3cf03773 3679 }
08922a10
SS
3680}
3681
4c2df51b
DJ
3682\f
3683/* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3684 evaluator to calculate the location. */
3685static struct value *
3686locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3687{
9a3c8263
SM
3688 struct dwarf2_locexpr_baton *dlbaton
3689 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4c2df51b 3690 struct value *val;
9a619af0 3691
a2d33775
JK
3692 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3693 dlbaton->size, dlbaton->per_cu);
4c2df51b
DJ
3694
3695 return val;
3696}
3697
e18b2753
JK
3698/* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3699 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3700 will be thrown. */
3701
3702static struct value *
3703locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3704{
9a3c8263
SM
3705 struct dwarf2_locexpr_baton *dlbaton
3706 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
e18b2753
JK
3707
3708 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3709 dlbaton->size);
3710}
3711
0b31a4bc
TT
3712/* Implementation of get_symbol_read_needs from
3713 symbol_computed_ops. */
3714
3715static enum symbol_needs_kind
3716locexpr_get_symbol_read_needs (struct symbol *symbol)
4c2df51b 3717{
9a3c8263
SM
3718 struct dwarf2_locexpr_baton *dlbaton
3719 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
9a619af0 3720
0b31a4bc
TT
3721 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3722 dlbaton->per_cu);
4c2df51b
DJ
3723}
3724
9eae7c52
TT
3725/* Return true if DATA points to the end of a piece. END is one past
3726 the last byte in the expression. */
3727
3728static int
3729piece_end_p (const gdb_byte *data, const gdb_byte *end)
3730{
3731 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3732}
3733
5e44ecb3
TT
3734/* Helper for locexpr_describe_location_piece that finds the name of a
3735 DWARF register. */
3736
3737static const char *
3738locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3739{
3740 int regnum;
3741
0fde2c53
DE
3742 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3743 We'd rather print *something* here than throw an error. */
3744 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3745 /* gdbarch_register_name may just return "", return something more
3746 descriptive for bad register numbers. */
3747 if (regnum == -1)
3748 {
3749 /* The text is output as "$bad_register_number".
3750 That is why we use the underscores. */
3751 return _("bad_register_number");
3752 }
5e44ecb3
TT
3753 return gdbarch_register_name (gdbarch, regnum);
3754}
3755
9eae7c52
TT
3756/* Nicely describe a single piece of a location, returning an updated
3757 position in the bytecode sequence. This function cannot recognize
3758 all locations; if a location is not recognized, it simply returns
f664829e
DE
3759 DATA. If there is an error during reading, e.g. we run off the end
3760 of the buffer, an error is thrown. */
08922a10 3761
0d45f56e 3762static const gdb_byte *
08922a10
SS
3763locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3764 CORE_ADDR addr, struct objfile *objfile,
49f6c839 3765 struct dwarf2_per_cu_data *per_cu,
9eae7c52 3766 const gdb_byte *data, const gdb_byte *end,
0d45f56e 3767 unsigned int addr_size)
4c2df51b 3768{
08922a10 3769 struct gdbarch *gdbarch = get_objfile_arch (objfile);
49f6c839 3770 size_t leb128_size;
08922a10
SS
3771
3772 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3773 {
08922a10 3774 fprintf_filtered (stream, _("a variable in $%s"),
5e44ecb3 3775 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
08922a10
SS
3776 data += 1;
3777 }
3778 else if (data[0] == DW_OP_regx)
3779 {
9fccedf7 3780 uint64_t reg;
4c2df51b 3781
f664829e 3782 data = safe_read_uleb128 (data + 1, end, &reg);
08922a10 3783 fprintf_filtered (stream, _("a variable in $%s"),
5e44ecb3 3784 locexpr_regname (gdbarch, reg));
08922a10
SS
3785 }
3786 else if (data[0] == DW_OP_fbreg)
4c2df51b 3787 {
3977b71f 3788 const struct block *b;
08922a10
SS
3789 struct symbol *framefunc;
3790 int frame_reg = 0;
9fccedf7 3791 int64_t frame_offset;
7155d578 3792 const gdb_byte *base_data, *new_data, *save_data = data;
08922a10 3793 size_t base_size;
9fccedf7 3794 int64_t base_offset = 0;
08922a10 3795
f664829e 3796 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
9eae7c52
TT
3797 if (!piece_end_p (new_data, end))
3798 return data;
3799 data = new_data;
3800
08922a10
SS
3801 b = block_for_pc (addr);
3802
3803 if (!b)
3804 error (_("No block found for address for symbol \"%s\"."),
3805 SYMBOL_PRINT_NAME (symbol));
3806
3807 framefunc = block_linkage_function (b);
3808
3809 if (!framefunc)
3810 error (_("No function found for block for symbol \"%s\"."),
3811 SYMBOL_PRINT_NAME (symbol));
3812
af945b75 3813 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
08922a10
SS
3814
3815 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3816 {
0d45f56e 3817 const gdb_byte *buf_end;
08922a10
SS
3818
3819 frame_reg = base_data[0] - DW_OP_breg0;
f664829e
DE
3820 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3821 &base_offset);
08922a10 3822 if (buf_end != base_data + base_size)
3e43a32a
MS
3823 error (_("Unexpected opcode after "
3824 "DW_OP_breg%u for symbol \"%s\"."),
08922a10
SS
3825 frame_reg, SYMBOL_PRINT_NAME (symbol));
3826 }
3827 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3828 {
3829 /* The frame base is just the register, with no offset. */
3830 frame_reg = base_data[0] - DW_OP_reg0;
3831 base_offset = 0;
3832 }
3833 else
3834 {
3835 /* We don't know what to do with the frame base expression,
3836 so we can't trace this variable; give up. */
7155d578 3837 return save_data;
08922a10
SS
3838 }
3839
3e43a32a
MS
3840 fprintf_filtered (stream,
3841 _("a variable at frame base reg $%s offset %s+%s"),
5e44ecb3 3842 locexpr_regname (gdbarch, frame_reg),
08922a10
SS
3843 plongest (base_offset), plongest (frame_offset));
3844 }
9eae7c52
TT
3845 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3846 && piece_end_p (data, end))
08922a10 3847 {
9fccedf7 3848 int64_t offset;
08922a10 3849
f664829e 3850 data = safe_read_sleb128 (data + 1, end, &offset);
08922a10 3851
4c2df51b 3852 fprintf_filtered (stream,
08922a10
SS
3853 _("a variable at offset %s from base reg $%s"),
3854 plongest (offset),
5e44ecb3 3855 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
4c2df51b
DJ
3856 }
3857
c3228f12
EZ
3858 /* The location expression for a TLS variable looks like this (on a
3859 64-bit LE machine):
3860
3861 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3862 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
09d8bd00 3863
c3228f12
EZ
3864 0x3 is the encoding for DW_OP_addr, which has an operand as long
3865 as the size of an address on the target machine (here is 8
09d8bd00
TT
3866 bytes). Note that more recent version of GCC emit DW_OP_const4u
3867 or DW_OP_const8u, depending on address size, rather than
0963b4bd
MS
3868 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3869 The operand represents the offset at which the variable is within
3870 the thread local storage. */
c3228f12 3871
9eae7c52 3872 else if (data + 1 + addr_size < end
09d8bd00
TT
3873 && (data[0] == DW_OP_addr
3874 || (addr_size == 4 && data[0] == DW_OP_const4u)
3875 || (addr_size == 8 && data[0] == DW_OP_const8u))
4aa4e28b
TT
3876 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3877 || data[1 + addr_size] == DW_OP_form_tls_address)
9eae7c52 3878 && piece_end_p (data + 2 + addr_size, end))
08922a10 3879 {
d4a087c7
UW
3880 ULONGEST offset;
3881 offset = extract_unsigned_integer (data + 1, addr_size,
3882 gdbarch_byte_order (gdbarch));
9a619af0 3883
08922a10 3884 fprintf_filtered (stream,
d4a087c7 3885 _("a thread-local variable at offset 0x%s "
08922a10 3886 "in the thread-local storage for `%s'"),
4262abfb 3887 phex_nz (offset, addr_size), objfile_name (objfile));
08922a10
SS
3888
3889 data += 1 + addr_size + 1;
3890 }
49f6c839
DE
3891
3892 /* With -gsplit-dwarf a TLS variable can also look like this:
3893 DW_AT_location : 3 byte block: fc 4 e0
3894 (DW_OP_GNU_const_index: 4;
3895 DW_OP_GNU_push_tls_address) */
3896 else if (data + 3 <= end
3897 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3898 && data[0] == DW_OP_GNU_const_index
3899 && leb128_size > 0
4aa4e28b
TT
3900 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3901 || data[1 + leb128_size] == DW_OP_form_tls_address)
49f6c839
DE
3902 && piece_end_p (data + 2 + leb128_size, end))
3903 {
a55c1f32 3904 uint64_t offset;
49f6c839
DE
3905
3906 data = safe_read_uleb128 (data + 1, end, &offset);
3907 offset = dwarf2_read_addr_index (per_cu, offset);
3908 fprintf_filtered (stream,
3909 _("a thread-local variable at offset 0x%s "
3910 "in the thread-local storage for `%s'"),
4262abfb 3911 phex_nz (offset, addr_size), objfile_name (objfile));
49f6c839
DE
3912 ++data;
3913 }
3914
9eae7c52
TT
3915 else if (data[0] >= DW_OP_lit0
3916 && data[0] <= DW_OP_lit31
3917 && data + 1 < end
3918 && data[1] == DW_OP_stack_value)
3919 {
3920 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3921 data += 2;
3922 }
3923
3924 return data;
3925}
3926
3927/* Disassemble an expression, stopping at the end of a piece or at the
3928 end of the expression. Returns a pointer to the next unread byte
3929 in the input expression. If ALL is nonzero, then this function
f664829e
DE
3930 will keep going until it reaches the end of the expression.
3931 If there is an error during reading, e.g. we run off the end
3932 of the buffer, an error is thrown. */
9eae7c52
TT
3933
3934static const gdb_byte *
3935disassemble_dwarf_expression (struct ui_file *stream,
3936 struct gdbarch *arch, unsigned int addr_size,
2bda9cc5 3937 int offset_size, const gdb_byte *start,
9eae7c52 3938 const gdb_byte *data, const gdb_byte *end,
2bda9cc5 3939 int indent, int all,
5e44ecb3 3940 struct dwarf2_per_cu_data *per_cu)
9eae7c52 3941{
9eae7c52
TT
3942 while (data < end
3943 && (all
3944 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3945 {
aead7601 3946 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
9fccedf7
DE
3947 uint64_t ul;
3948 int64_t l;
9eae7c52
TT
3949 const char *name;
3950
f39c6ffd 3951 name = get_DW_OP_name (op);
9eae7c52
TT
3952
3953 if (!name)
3954 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
06826322 3955 op, (long) (data - 1 - start));
2bda9cc5
JK
3956 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3957 (long) (data - 1 - start), name);
9eae7c52
TT
3958
3959 switch (op)
3960 {
3961 case DW_OP_addr:
d4a087c7
UW
3962 ul = extract_unsigned_integer (data, addr_size,
3963 gdbarch_byte_order (arch));
9eae7c52 3964 data += addr_size;
d4a087c7 3965 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
9eae7c52
TT
3966 break;
3967
3968 case DW_OP_const1u:
3969 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3970 data += 1;
3971 fprintf_filtered (stream, " %s", pulongest (ul));
3972 break;
3973 case DW_OP_const1s:
3974 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3975 data += 1;
3976 fprintf_filtered (stream, " %s", plongest (l));
3977 break;
3978 case DW_OP_const2u:
3979 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3980 data += 2;
3981 fprintf_filtered (stream, " %s", pulongest (ul));
3982 break;
3983 case DW_OP_const2s:
3984 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3985 data += 2;
3986 fprintf_filtered (stream, " %s", plongest (l));
3987 break;
3988 case DW_OP_const4u:
3989 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3990 data += 4;
3991 fprintf_filtered (stream, " %s", pulongest (ul));
3992 break;
3993 case DW_OP_const4s:
3994 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3995 data += 4;
3996 fprintf_filtered (stream, " %s", plongest (l));
3997 break;
3998 case DW_OP_const8u:
3999 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
4000 data += 8;
4001 fprintf_filtered (stream, " %s", pulongest (ul));
4002 break;
4003 case DW_OP_const8s:
4004 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
4005 data += 8;
4006 fprintf_filtered (stream, " %s", plongest (l));
4007 break;
4008 case DW_OP_constu:
f664829e 4009 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
4010 fprintf_filtered (stream, " %s", pulongest (ul));
4011 break;
4012 case DW_OP_consts:
f664829e 4013 data = safe_read_sleb128 (data, end, &l);
9eae7c52
TT
4014 fprintf_filtered (stream, " %s", plongest (l));
4015 break;
4016
4017 case DW_OP_reg0:
4018 case DW_OP_reg1:
4019 case DW_OP_reg2:
4020 case DW_OP_reg3:
4021 case DW_OP_reg4:
4022 case DW_OP_reg5:
4023 case DW_OP_reg6:
4024 case DW_OP_reg7:
4025 case DW_OP_reg8:
4026 case DW_OP_reg9:
4027 case DW_OP_reg10:
4028 case DW_OP_reg11:
4029 case DW_OP_reg12:
4030 case DW_OP_reg13:
4031 case DW_OP_reg14:
4032 case DW_OP_reg15:
4033 case DW_OP_reg16:
4034 case DW_OP_reg17:
4035 case DW_OP_reg18:
4036 case DW_OP_reg19:
4037 case DW_OP_reg20:
4038 case DW_OP_reg21:
4039 case DW_OP_reg22:
4040 case DW_OP_reg23:
4041 case DW_OP_reg24:
4042 case DW_OP_reg25:
4043 case DW_OP_reg26:
4044 case DW_OP_reg27:
4045 case DW_OP_reg28:
4046 case DW_OP_reg29:
4047 case DW_OP_reg30:
4048 case DW_OP_reg31:
4049 fprintf_filtered (stream, " [$%s]",
5e44ecb3 4050 locexpr_regname (arch, op - DW_OP_reg0));
9eae7c52
TT
4051 break;
4052
4053 case DW_OP_regx:
f664829e 4054 data = safe_read_uleb128 (data, end, &ul);
9eae7c52 4055 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
5e44ecb3 4056 locexpr_regname (arch, (int) ul));
9eae7c52
TT
4057 break;
4058
4059 case DW_OP_implicit_value:
f664829e 4060 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
4061 data += ul;
4062 fprintf_filtered (stream, " %s", pulongest (ul));
4063 break;
4064
4065 case DW_OP_breg0:
4066 case DW_OP_breg1:
4067 case DW_OP_breg2:
4068 case DW_OP_breg3:
4069 case DW_OP_breg4:
4070 case DW_OP_breg5:
4071 case DW_OP_breg6:
4072 case DW_OP_breg7:
4073 case DW_OP_breg8:
4074 case DW_OP_breg9:
4075 case DW_OP_breg10:
4076 case DW_OP_breg11:
4077 case DW_OP_breg12:
4078 case DW_OP_breg13:
4079 case DW_OP_breg14:
4080 case DW_OP_breg15:
4081 case DW_OP_breg16:
4082 case DW_OP_breg17:
4083 case DW_OP_breg18:
4084 case DW_OP_breg19:
4085 case DW_OP_breg20:
4086 case DW_OP_breg21:
4087 case DW_OP_breg22:
4088 case DW_OP_breg23:
4089 case DW_OP_breg24:
4090 case DW_OP_breg25:
4091 case DW_OP_breg26:
4092 case DW_OP_breg27:
4093 case DW_OP_breg28:
4094 case DW_OP_breg29:
4095 case DW_OP_breg30:
4096 case DW_OP_breg31:
f664829e 4097 data = safe_read_sleb128 (data, end, &l);
0502ed8c 4098 fprintf_filtered (stream, " %s [$%s]", plongest (l),
5e44ecb3 4099 locexpr_regname (arch, op - DW_OP_breg0));
9eae7c52
TT
4100 break;
4101
4102 case DW_OP_bregx:
f664829e
DE
4103 data = safe_read_uleb128 (data, end, &ul);
4104 data = safe_read_sleb128 (data, end, &l);
0502ed8c
JK
4105 fprintf_filtered (stream, " register %s [$%s] offset %s",
4106 pulongest (ul),
5e44ecb3 4107 locexpr_regname (arch, (int) ul),
0502ed8c 4108 plongest (l));
9eae7c52
TT
4109 break;
4110
4111 case DW_OP_fbreg:
f664829e 4112 data = safe_read_sleb128 (data, end, &l);
0502ed8c 4113 fprintf_filtered (stream, " %s", plongest (l));
9eae7c52
TT
4114 break;
4115
4116 case DW_OP_xderef_size:
4117 case DW_OP_deref_size:
4118 case DW_OP_pick:
4119 fprintf_filtered (stream, " %d", *data);
4120 ++data;
4121 break;
4122
4123 case DW_OP_plus_uconst:
f664829e 4124 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
4125 fprintf_filtered (stream, " %s", pulongest (ul));
4126 break;
4127
4128 case DW_OP_skip:
4129 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4130 data += 2;
4131 fprintf_filtered (stream, " to %ld",
4132 (long) (data + l - start));
4133 break;
4134
4135 case DW_OP_bra:
4136 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4137 data += 2;
4138 fprintf_filtered (stream, " %ld",
4139 (long) (data + l - start));
4140 break;
4141
4142 case DW_OP_call2:
4143 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4144 data += 2;
4145 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
4146 break;
4147
4148 case DW_OP_call4:
4149 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4150 data += 4;
4151 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4152 break;
4153
4154 case DW_OP_call_ref:
4155 ul = extract_unsigned_integer (data, offset_size,
4156 gdbarch_byte_order (arch));
4157 data += offset_size;
4158 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4159 break;
4160
4161 case DW_OP_piece:
f664829e 4162 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
4163 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
4164 break;
4165
4166 case DW_OP_bit_piece:
4167 {
9fccedf7 4168 uint64_t offset;
9eae7c52 4169
f664829e
DE
4170 data = safe_read_uleb128 (data, end, &ul);
4171 data = safe_read_uleb128 (data, end, &offset);
9eae7c52
TT
4172 fprintf_filtered (stream, " size %s offset %s (bits)",
4173 pulongest (ul), pulongest (offset));
4174 }
4175 break;
8cf6f0b1 4176
216f72a1 4177 case DW_OP_implicit_pointer:
8cf6f0b1
TT
4178 case DW_OP_GNU_implicit_pointer:
4179 {
4180 ul = extract_unsigned_integer (data, offset_size,
4181 gdbarch_byte_order (arch));
4182 data += offset_size;
4183
f664829e 4184 data = safe_read_sleb128 (data, end, &l);
8cf6f0b1
TT
4185
4186 fprintf_filtered (stream, " DIE %s offset %s",
4187 phex_nz (ul, offset_size),
4188 plongest (l));
4189 }
4190 break;
5e44ecb3 4191
216f72a1 4192 case DW_OP_deref_type:
5e44ecb3
TT
4193 case DW_OP_GNU_deref_type:
4194 {
4195 int addr_size = *data++;
5e44ecb3
TT
4196 struct type *type;
4197
f664829e 4198 data = safe_read_uleb128 (data, end, &ul);
9c541725 4199 cu_offset offset = (cu_offset) ul;
5e44ecb3
TT
4200 type = dwarf2_get_die_type (offset, per_cu);
4201 fprintf_filtered (stream, "<");
4202 type_print (type, "", stream, -1);
9c541725
PA
4203 fprintf_filtered (stream, " [0x%s]> %d",
4204 phex_nz (to_underlying (offset), 0),
5e44ecb3
TT
4205 addr_size);
4206 }
4207 break;
4208
216f72a1 4209 case DW_OP_const_type:
5e44ecb3
TT
4210 case DW_OP_GNU_const_type:
4211 {
5e44ecb3
TT
4212 struct type *type;
4213
f664829e 4214 data = safe_read_uleb128 (data, end, &ul);
9c541725 4215 cu_offset type_die = (cu_offset) ul;
5e44ecb3
TT
4216 type = dwarf2_get_die_type (type_die, per_cu);
4217 fprintf_filtered (stream, "<");
4218 type_print (type, "", stream, -1);
9c541725
PA
4219 fprintf_filtered (stream, " [0x%s]>",
4220 phex_nz (to_underlying (type_die), 0));
5e44ecb3
TT
4221 }
4222 break;
4223
216f72a1 4224 case DW_OP_regval_type:
5e44ecb3
TT
4225 case DW_OP_GNU_regval_type:
4226 {
9fccedf7 4227 uint64_t reg;
5e44ecb3
TT
4228 struct type *type;
4229
f664829e
DE
4230 data = safe_read_uleb128 (data, end, &reg);
4231 data = safe_read_uleb128 (data, end, &ul);
9c541725 4232 cu_offset type_die = (cu_offset) ul;
5e44ecb3
TT
4233
4234 type = dwarf2_get_die_type (type_die, per_cu);
4235 fprintf_filtered (stream, "<");
4236 type_print (type, "", stream, -1);
b64f50a1 4237 fprintf_filtered (stream, " [0x%s]> [$%s]",
9c541725 4238 phex_nz (to_underlying (type_die), 0),
5e44ecb3
TT
4239 locexpr_regname (arch, reg));
4240 }
4241 break;
4242
216f72a1 4243 case DW_OP_convert:
5e44ecb3 4244 case DW_OP_GNU_convert:
216f72a1 4245 case DW_OP_reinterpret:
5e44ecb3
TT
4246 case DW_OP_GNU_reinterpret:
4247 {
f664829e 4248 data = safe_read_uleb128 (data, end, &ul);
9c541725 4249 cu_offset type_die = (cu_offset) ul;
5e44ecb3 4250
9c541725 4251 if (to_underlying (type_die) == 0)
5e44ecb3
TT
4252 fprintf_filtered (stream, "<0>");
4253 else
4254 {
4255 struct type *type;
4256
4257 type = dwarf2_get_die_type (type_die, per_cu);
4258 fprintf_filtered (stream, "<");
4259 type_print (type, "", stream, -1);
9c541725
PA
4260 fprintf_filtered (stream, " [0x%s]>",
4261 phex_nz (to_underlying (type_die), 0));
5e44ecb3
TT
4262 }
4263 }
4264 break;
2bda9cc5 4265
216f72a1 4266 case DW_OP_entry_value:
2bda9cc5 4267 case DW_OP_GNU_entry_value:
f664829e 4268 data = safe_read_uleb128 (data, end, &ul);
2bda9cc5
JK
4269 fputc_filtered ('\n', stream);
4270 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4271 start, data, data + ul, indent + 2,
4272 all, per_cu);
4273 data += ul;
4274 continue;
49f6c839 4275
a24f71ab
JK
4276 case DW_OP_GNU_parameter_ref:
4277 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4278 data += 4;
4279 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4280 break;
4281
49f6c839
DE
4282 case DW_OP_GNU_addr_index:
4283 data = safe_read_uleb128 (data, end, &ul);
4284 ul = dwarf2_read_addr_index (per_cu, ul);
4285 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4286 break;
4287 case DW_OP_GNU_const_index:
4288 data = safe_read_uleb128 (data, end, &ul);
4289 ul = dwarf2_read_addr_index (per_cu, ul);
4290 fprintf_filtered (stream, " %s", pulongest (ul));
4291 break;
9eae7c52
TT
4292 }
4293
4294 fprintf_filtered (stream, "\n");
4295 }
c3228f12 4296
08922a10 4297 return data;
4c2df51b
DJ
4298}
4299
08922a10
SS
4300/* Describe a single location, which may in turn consist of multiple
4301 pieces. */
a55cc764 4302
08922a10
SS
4303static void
4304locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
0d45f56e 4305 struct ui_file *stream,
56eb65bd 4306 const gdb_byte *data, size_t size,
9eae7c52 4307 struct objfile *objfile, unsigned int addr_size,
5e44ecb3 4308 int offset_size, struct dwarf2_per_cu_data *per_cu)
08922a10 4309{
0d45f56e 4310 const gdb_byte *end = data + size;
9eae7c52 4311 int first_piece = 1, bad = 0;
08922a10 4312
08922a10
SS
4313 while (data < end)
4314 {
9eae7c52
TT
4315 const gdb_byte *here = data;
4316 int disassemble = 1;
4317
4318 if (first_piece)
4319 first_piece = 0;
4320 else
4321 fprintf_filtered (stream, _(", and "));
08922a10 4322
b4f54984 4323 if (!dwarf_always_disassemble)
9eae7c52 4324 {
3e43a32a 4325 data = locexpr_describe_location_piece (symbol, stream,
49f6c839 4326 addr, objfile, per_cu,
9eae7c52
TT
4327 data, end, addr_size);
4328 /* If we printed anything, or if we have an empty piece,
4329 then don't disassemble. */
4330 if (data != here
4331 || data[0] == DW_OP_piece
4332 || data[0] == DW_OP_bit_piece)
4333 disassemble = 0;
08922a10 4334 }
9eae7c52 4335 if (disassemble)
2bda9cc5
JK
4336 {
4337 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4338 data = disassemble_dwarf_expression (stream,
4339 get_objfile_arch (objfile),
4340 addr_size, offset_size, data,
4341 data, end, 0,
b4f54984 4342 dwarf_always_disassemble,
2bda9cc5
JK
4343 per_cu);
4344 }
9eae7c52
TT
4345
4346 if (data < end)
08922a10 4347 {
9eae7c52 4348 int empty = data == here;
08922a10 4349
9eae7c52
TT
4350 if (disassemble)
4351 fprintf_filtered (stream, " ");
4352 if (data[0] == DW_OP_piece)
4353 {
9fccedf7 4354 uint64_t bytes;
08922a10 4355
f664829e 4356 data = safe_read_uleb128 (data + 1, end, &bytes);
08922a10 4357
9eae7c52
TT
4358 if (empty)
4359 fprintf_filtered (stream, _("an empty %s-byte piece"),
4360 pulongest (bytes));
4361 else
4362 fprintf_filtered (stream, _(" [%s-byte piece]"),
4363 pulongest (bytes));
4364 }
4365 else if (data[0] == DW_OP_bit_piece)
4366 {
9fccedf7 4367 uint64_t bits, offset;
9eae7c52 4368
f664829e
DE
4369 data = safe_read_uleb128 (data + 1, end, &bits);
4370 data = safe_read_uleb128 (data, end, &offset);
9eae7c52
TT
4371
4372 if (empty)
4373 fprintf_filtered (stream,
4374 _("an empty %s-bit piece"),
4375 pulongest (bits));
4376 else
4377 fprintf_filtered (stream,
4378 _(" [%s-bit piece, offset %s bits]"),
4379 pulongest (bits), pulongest (offset));
4380 }
4381 else
4382 {
4383 bad = 1;
4384 break;
4385 }
08922a10
SS
4386 }
4387 }
4388
4389 if (bad || data > end)
4390 error (_("Corrupted DWARF2 expression for \"%s\"."),
4391 SYMBOL_PRINT_NAME (symbol));
4392}
4393
4394/* Print a natural-language description of SYMBOL to STREAM. This
4395 version is for a symbol with a single location. */
a55cc764 4396
08922a10
SS
4397static void
4398locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4399 struct ui_file *stream)
4400{
9a3c8263
SM
4401 struct dwarf2_locexpr_baton *dlbaton
4402 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
08922a10
SS
4403 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4404 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
9eae7c52 4405 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
08922a10 4406
3e43a32a
MS
4407 locexpr_describe_location_1 (symbol, addr, stream,
4408 dlbaton->data, dlbaton->size,
5e44ecb3
TT
4409 objfile, addr_size, offset_size,
4410 dlbaton->per_cu);
08922a10
SS
4411}
4412
4413/* Describe the location of SYMBOL as an agent value in VALUE, generating
4414 any necessary bytecode in AX. */
a55cc764 4415
0d53c4c4 4416static void
505e835d
UW
4417locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4418 struct agent_expr *ax, struct axs_value *value)
a55cc764 4419{
9a3c8263
SM
4420 struct dwarf2_locexpr_baton *dlbaton
4421 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3cf03773 4422 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
a55cc764 4423
1d6edc3c 4424 if (dlbaton->size == 0)
cabe9ab6
PA
4425 value->optimized_out = 1;
4426 else
9f6f94ff
TT
4427 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4428 dlbaton->data, dlbaton->data + dlbaton->size,
4429 dlbaton->per_cu);
a55cc764
DJ
4430}
4431
bb2ec1b3
TT
4432/* symbol_computed_ops 'generate_c_location' method. */
4433
4434static void
d7e74731 4435locexpr_generate_c_location (struct symbol *sym, string_file &stream,
bb2ec1b3
TT
4436 struct gdbarch *gdbarch,
4437 unsigned char *registers_used,
4438 CORE_ADDR pc, const char *result_name)
4439{
9a3c8263
SM
4440 struct dwarf2_locexpr_baton *dlbaton
4441 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
bb2ec1b3
TT
4442 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4443
4444 if (dlbaton->size == 0)
4445 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4446
4447 compile_dwarf_expr_to_c (stream, result_name,
4448 sym, pc, gdbarch, registers_used, addr_size,
4449 dlbaton->data, dlbaton->data + dlbaton->size,
4450 dlbaton->per_cu);
4451}
4452
4c2df51b
DJ
4453/* The set of location functions used with the DWARF-2 expression
4454 evaluator. */
768a979c 4455const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4c2df51b 4456 locexpr_read_variable,
e18b2753 4457 locexpr_read_variable_at_entry,
0b31a4bc 4458 locexpr_get_symbol_read_needs,
4c2df51b 4459 locexpr_describe_location,
f1e6e072 4460 0, /* location_has_loclist */
bb2ec1b3
TT
4461 locexpr_tracepoint_var_ref,
4462 locexpr_generate_c_location
4c2df51b 4463};
0d53c4c4
DJ
4464
4465
4466/* Wrapper functions for location lists. These generally find
4467 the appropriate location expression and call something above. */
4468
4469/* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4470 evaluator to calculate the location. */
4471static struct value *
4472loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4473{
9a3c8263
SM
4474 struct dwarf2_loclist_baton *dlbaton
4475 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
0d53c4c4 4476 struct value *val;
947bb88f 4477 const gdb_byte *data;
b6b08ebf 4478 size_t size;
8cf6f0b1 4479 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
0d53c4c4 4480
8cf6f0b1 4481 data = dwarf2_find_location_expression (dlbaton, &size, pc);
1d6edc3c
JK
4482 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4483 dlbaton->per_cu);
0d53c4c4
DJ
4484
4485 return val;
4486}
4487
e18b2753
JK
4488/* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4489 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4490 will be thrown.
4491
4492 Function always returns non-NULL value, it may be marked optimized out if
4493 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4494 if it cannot resolve the parameter for any reason. */
4495
4496static struct value *
4497loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4498{
9a3c8263
SM
4499 struct dwarf2_loclist_baton *dlbaton
4500 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
e18b2753
JK
4501 const gdb_byte *data;
4502 size_t size;
4503 CORE_ADDR pc;
4504
4505 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4506 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4507
4508 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4509 if (data == NULL)
4510 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4511
4512 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4513}
4514
0b31a4bc
TT
4515/* Implementation of get_symbol_read_needs from
4516 symbol_computed_ops. */
4517
4518static enum symbol_needs_kind
4519loclist_symbol_needs (struct symbol *symbol)
0d53c4c4
DJ
4520{
4521 /* If there's a location list, then assume we need to have a frame
4522 to choose the appropriate location expression. With tracking of
4523 global variables this is not necessarily true, but such tracking
4524 is disabled in GCC at the moment until we figure out how to
4525 represent it. */
4526
0b31a4bc 4527 return SYMBOL_NEEDS_FRAME;
0d53c4c4
DJ
4528}
4529
08922a10
SS
4530/* Print a natural-language description of SYMBOL to STREAM. This
4531 version applies when there is a list of different locations, each
4532 with a specified address range. */
4533
4534static void
4535loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4536 struct ui_file *stream)
0d53c4c4 4537{
9a3c8263
SM
4538 struct dwarf2_loclist_baton *dlbaton
4539 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
947bb88f 4540 const gdb_byte *loc_ptr, *buf_end;
08922a10
SS
4541 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4542 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4543 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4544 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
9eae7c52 4545 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
d4a087c7 4546 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
08922a10 4547 /* Adjust base_address for relocatable objects. */
9aa1f1e3 4548 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
08922a10 4549 CORE_ADDR base_address = dlbaton->base_address + base_offset;
f664829e 4550 int done = 0;
08922a10
SS
4551
4552 loc_ptr = dlbaton->data;
4553 buf_end = dlbaton->data + dlbaton->size;
4554
9eae7c52 4555 fprintf_filtered (stream, _("multi-location:\n"));
08922a10
SS
4556
4557 /* Iterate through locations until we run out. */
f664829e 4558 while (!done)
08922a10 4559 {
f664829e
DE
4560 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4561 int length;
4562 enum debug_loc_kind kind;
4563 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4564
4565 if (dlbaton->from_dwo)
4566 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4567 loc_ptr, buf_end, &new_ptr,
3771a44c 4568 &low, &high, byte_order);
d4a087c7 4569 else
f664829e
DE
4570 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4571 &low, &high,
4572 byte_order, addr_size,
4573 signed_addr_p);
4574 loc_ptr = new_ptr;
4575 switch (kind)
08922a10 4576 {
f664829e
DE
4577 case DEBUG_LOC_END_OF_LIST:
4578 done = 1;
4579 continue;
4580 case DEBUG_LOC_BASE_ADDRESS:
d4a087c7 4581 base_address = high + base_offset;
9eae7c52 4582 fprintf_filtered (stream, _(" Base address %s"),
08922a10 4583 paddress (gdbarch, base_address));
08922a10 4584 continue;
3771a44c
DE
4585 case DEBUG_LOC_START_END:
4586 case DEBUG_LOC_START_LENGTH:
f664829e
DE
4587 break;
4588 case DEBUG_LOC_BUFFER_OVERFLOW:
4589 case DEBUG_LOC_INVALID_ENTRY:
4590 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4591 SYMBOL_PRINT_NAME (symbol));
4592 default:
4593 gdb_assert_not_reached ("bad debug_loc_kind");
08922a10
SS
4594 }
4595
08922a10
SS
4596 /* Otherwise, a location expression entry. */
4597 low += base_address;
4598 high += base_address;
4599
3e29f34a
MR
4600 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4601 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4602
08922a10
SS
4603 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4604 loc_ptr += 2;
4605
08922a10
SS
4606 /* (It would improve readability to print only the minimum
4607 necessary digits of the second number of the range.) */
9eae7c52 4608 fprintf_filtered (stream, _(" Range %s-%s: "),
08922a10
SS
4609 paddress (gdbarch, low), paddress (gdbarch, high));
4610
4611 /* Now describe this particular location. */
4612 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
5e44ecb3
TT
4613 objfile, addr_size, offset_size,
4614 dlbaton->per_cu);
9eae7c52
TT
4615
4616 fprintf_filtered (stream, "\n");
08922a10
SS
4617
4618 loc_ptr += length;
4619 }
0d53c4c4
DJ
4620}
4621
4622/* Describe the location of SYMBOL as an agent value in VALUE, generating
4623 any necessary bytecode in AX. */
4624static void
505e835d
UW
4625loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4626 struct agent_expr *ax, struct axs_value *value)
0d53c4c4 4627{
9a3c8263
SM
4628 struct dwarf2_loclist_baton *dlbaton
4629 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
947bb88f 4630 const gdb_byte *data;
b6b08ebf 4631 size_t size;
3cf03773 4632 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
0d53c4c4 4633
8cf6f0b1 4634 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
1d6edc3c 4635 if (size == 0)
cabe9ab6
PA
4636 value->optimized_out = 1;
4637 else
9f6f94ff
TT
4638 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4639 dlbaton->per_cu);
0d53c4c4
DJ
4640}
4641
bb2ec1b3
TT
4642/* symbol_computed_ops 'generate_c_location' method. */
4643
4644static void
d7e74731 4645loclist_generate_c_location (struct symbol *sym, string_file &stream,
bb2ec1b3
TT
4646 struct gdbarch *gdbarch,
4647 unsigned char *registers_used,
4648 CORE_ADDR pc, const char *result_name)
4649{
9a3c8263
SM
4650 struct dwarf2_loclist_baton *dlbaton
4651 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
bb2ec1b3
TT
4652 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4653 const gdb_byte *data;
4654 size_t size;
4655
4656 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4657 if (size == 0)
4658 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4659
4660 compile_dwarf_expr_to_c (stream, result_name,
4661 sym, pc, gdbarch, registers_used, addr_size,
4662 data, data + size,
4663 dlbaton->per_cu);
4664}
4665
0d53c4c4
DJ
4666/* The set of location functions used with the DWARF-2 expression
4667 evaluator and location lists. */
768a979c 4668const struct symbol_computed_ops dwarf2_loclist_funcs = {
0d53c4c4 4669 loclist_read_variable,
e18b2753 4670 loclist_read_variable_at_entry,
0b31a4bc 4671 loclist_symbol_needs,
0d53c4c4 4672 loclist_describe_location,
f1e6e072 4673 1, /* location_has_loclist */
bb2ec1b3
TT
4674 loclist_tracepoint_var_ref,
4675 loclist_generate_c_location
0d53c4c4 4676};
8e3b41a9 4677
70221824
PA
4678/* Provide a prototype to silence -Wmissing-prototypes. */
4679extern initialize_file_ftype _initialize_dwarf2loc;
4680
8e3b41a9
JK
4681void
4682_initialize_dwarf2loc (void)
4683{
ccce17b0
YQ
4684 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4685 &entry_values_debug,
4686 _("Set entry values and tail call frames "
4687 "debugging."),
4688 _("Show entry values and tail call frames "
4689 "debugging."),
4690 _("When non-zero, the process of determining "
4691 "parameter values from function entry point "
4692 "and tail call frames will be printed."),
4693 NULL,
4694 show_entry_values_debug,
4695 &setdebuglist, &showdebuglist);
ad06383f
AA
4696
4697#if GDB_SELF_TEST
4698 register_self_test (selftests::copy_bitwise_tests);
4699#endif
8e3b41a9 4700}
This page took 1.267281 seconds and 4 git commands to generate.