Add scoped_value_mark
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
CommitLineData
4c2df51b 1/* DWARF 2 location expression support for GDB.
feb13ab0 2
61baf725 3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
feb13ab0 4
4c2df51b
DJ
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7
JB
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
4c2df51b 13
a9762ec7
JB
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
4c2df51b
DJ
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
4c2df51b
DJ
21
22#include "defs.h"
23#include "ui-out.h"
24#include "value.h"
25#include "frame.h"
26#include "gdbcore.h"
27#include "target.h"
28#include "inferior.h"
a55cc764
DJ
29#include "ax.h"
30#include "ax-gdb.h"
e4adbba9 31#include "regcache.h"
c3228f12 32#include "objfiles.h"
edb3359d 33#include "block.h"
8e3b41a9 34#include "gdbcmd.h"
0fde2c53 35#include "complaints.h"
fa8f86ff 36#include "dwarf2.h"
4c2df51b
DJ
37#include "dwarf2expr.h"
38#include "dwarf2loc.h"
e7802207 39#include "dwarf2-frame.h"
bb2ec1b3 40#include "compile/compile.h"
ad06383f 41#include "selftest.h"
325fac50 42#include <algorithm>
58414334 43#include <vector>
fc4007c9 44#include <unordered_set>
4c2df51b 45
b4f54984 46extern int dwarf_always_disassemble;
9eae7c52 47
1632a688
JK
48static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
49 struct frame_info *frame,
50 const gdb_byte *data,
56eb65bd
SP
51 size_t size,
52 struct dwarf2_per_cu_data *per_cu,
1632a688 53 LONGEST byte_offset);
8cf6f0b1 54
192ca6d8
TT
55static struct call_site_parameter *dwarf_expr_reg_to_entry_parameter
56 (struct frame_info *frame,
57 enum call_site_parameter_kind kind,
58 union call_site_parameter_u kind_u,
59 struct dwarf2_per_cu_data **per_cu_return);
60
f664829e
DE
61/* Until these have formal names, we define these here.
62 ref: http://gcc.gnu.org/wiki/DebugFission
63 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
64 and is then followed by data specific to that entry. */
65
66enum debug_loc_kind
67{
68 /* Indicates the end of the list of entries. */
69 DEBUG_LOC_END_OF_LIST = 0,
70
71 /* This is followed by an unsigned LEB128 number that is an index into
72 .debug_addr and specifies the base address for all following entries. */
73 DEBUG_LOC_BASE_ADDRESS = 1,
74
75 /* This is followed by two unsigned LEB128 numbers that are indices into
76 .debug_addr and specify the beginning and ending addresses, and then
77 a normal location expression as in .debug_loc. */
3771a44c
DE
78 DEBUG_LOC_START_END = 2,
79
80 /* This is followed by an unsigned LEB128 number that is an index into
81 .debug_addr and specifies the beginning address, and a 4 byte unsigned
82 number that specifies the length, and then a normal location expression
83 as in .debug_loc. */
84 DEBUG_LOC_START_LENGTH = 3,
f664829e
DE
85
86 /* An internal value indicating there is insufficient data. */
87 DEBUG_LOC_BUFFER_OVERFLOW = -1,
88
89 /* An internal value indicating an invalid kind of entry was found. */
90 DEBUG_LOC_INVALID_ENTRY = -2
91};
92
b6807d98
TT
93/* Helper function which throws an error if a synthetic pointer is
94 invalid. */
95
96static void
97invalid_synthetic_pointer (void)
98{
99 error (_("access outside bounds of object "
100 "referenced via synthetic pointer"));
101}
102
f664829e
DE
103/* Decode the addresses in a non-dwo .debug_loc entry.
104 A pointer to the next byte to examine is returned in *NEW_PTR.
105 The encoded low,high addresses are return in *LOW,*HIGH.
106 The result indicates the kind of entry found. */
107
108static enum debug_loc_kind
109decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
110 const gdb_byte **new_ptr,
111 CORE_ADDR *low, CORE_ADDR *high,
112 enum bfd_endian byte_order,
113 unsigned int addr_size,
114 int signed_addr_p)
115{
116 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
117
118 if (buf_end - loc_ptr < 2 * addr_size)
119 return DEBUG_LOC_BUFFER_OVERFLOW;
120
121 if (signed_addr_p)
122 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
123 else
124 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
125 loc_ptr += addr_size;
126
127 if (signed_addr_p)
128 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
129 else
130 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
131 loc_ptr += addr_size;
132
133 *new_ptr = loc_ptr;
134
135 /* A base-address-selection entry. */
136 if ((*low & base_mask) == base_mask)
137 return DEBUG_LOC_BASE_ADDRESS;
138
139 /* An end-of-list entry. */
140 if (*low == 0 && *high == 0)
141 return DEBUG_LOC_END_OF_LIST;
142
3771a44c 143 return DEBUG_LOC_START_END;
f664829e
DE
144}
145
146/* Decode the addresses in .debug_loc.dwo entry.
147 A pointer to the next byte to examine is returned in *NEW_PTR.
148 The encoded low,high addresses are return in *LOW,*HIGH.
149 The result indicates the kind of entry found. */
150
151static enum debug_loc_kind
152decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
153 const gdb_byte *loc_ptr,
154 const gdb_byte *buf_end,
155 const gdb_byte **new_ptr,
3771a44c
DE
156 CORE_ADDR *low, CORE_ADDR *high,
157 enum bfd_endian byte_order)
f664829e 158{
9fccedf7 159 uint64_t low_index, high_index;
f664829e
DE
160
161 if (loc_ptr == buf_end)
162 return DEBUG_LOC_BUFFER_OVERFLOW;
163
164 switch (*loc_ptr++)
165 {
166 case DEBUG_LOC_END_OF_LIST:
167 *new_ptr = loc_ptr;
168 return DEBUG_LOC_END_OF_LIST;
169 case DEBUG_LOC_BASE_ADDRESS:
170 *low = 0;
171 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
172 if (loc_ptr == NULL)
173 return DEBUG_LOC_BUFFER_OVERFLOW;
174 *high = dwarf2_read_addr_index (per_cu, high_index);
175 *new_ptr = loc_ptr;
176 return DEBUG_LOC_BASE_ADDRESS;
3771a44c 177 case DEBUG_LOC_START_END:
f664829e
DE
178 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
179 if (loc_ptr == NULL)
180 return DEBUG_LOC_BUFFER_OVERFLOW;
181 *low = dwarf2_read_addr_index (per_cu, low_index);
182 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
183 if (loc_ptr == NULL)
184 return DEBUG_LOC_BUFFER_OVERFLOW;
185 *high = dwarf2_read_addr_index (per_cu, high_index);
186 *new_ptr = loc_ptr;
3771a44c
DE
187 return DEBUG_LOC_START_END;
188 case DEBUG_LOC_START_LENGTH:
189 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
190 if (loc_ptr == NULL)
191 return DEBUG_LOC_BUFFER_OVERFLOW;
192 *low = dwarf2_read_addr_index (per_cu, low_index);
193 if (loc_ptr + 4 > buf_end)
194 return DEBUG_LOC_BUFFER_OVERFLOW;
195 *high = *low;
196 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
197 *new_ptr = loc_ptr + 4;
198 return DEBUG_LOC_START_LENGTH;
f664829e
DE
199 default:
200 return DEBUG_LOC_INVALID_ENTRY;
201 }
202}
203
8cf6f0b1 204/* A function for dealing with location lists. Given a
0d53c4c4
DJ
205 symbol baton (BATON) and a pc value (PC), find the appropriate
206 location expression, set *LOCEXPR_LENGTH, and return a pointer
207 to the beginning of the expression. Returns NULL on failure.
208
209 For now, only return the first matching location expression; there
210 can be more than one in the list. */
211
8cf6f0b1
TT
212const gdb_byte *
213dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
214 size_t *locexpr_length, CORE_ADDR pc)
0d53c4c4 215{
ae0d2f24 216 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
f7fd4728 217 struct gdbarch *gdbarch = get_objfile_arch (objfile);
e17a4113 218 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ae0d2f24 219 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
d4a087c7 220 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
8edfa926 221 /* Adjust base_address for relocatable objects. */
9aa1f1e3 222 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
8edfa926 223 CORE_ADDR base_address = baton->base_address + base_offset;
f664829e 224 const gdb_byte *loc_ptr, *buf_end;
0d53c4c4
DJ
225
226 loc_ptr = baton->data;
227 buf_end = baton->data + baton->size;
228
229 while (1)
230 {
f664829e
DE
231 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
232 int length;
233 enum debug_loc_kind kind;
234 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
235
236 if (baton->from_dwo)
237 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
238 loc_ptr, buf_end, &new_ptr,
3771a44c 239 &low, &high, byte_order);
d4a087c7 240 else
f664829e
DE
241 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
242 &low, &high,
243 byte_order, addr_size,
244 signed_addr_p);
245 loc_ptr = new_ptr;
246 switch (kind)
1d6edc3c 247 {
f664829e 248 case DEBUG_LOC_END_OF_LIST:
1d6edc3c
JK
249 *locexpr_length = 0;
250 return NULL;
f664829e
DE
251 case DEBUG_LOC_BASE_ADDRESS:
252 base_address = high + base_offset;
253 continue;
3771a44c
DE
254 case DEBUG_LOC_START_END:
255 case DEBUG_LOC_START_LENGTH:
f664829e
DE
256 break;
257 case DEBUG_LOC_BUFFER_OVERFLOW:
258 case DEBUG_LOC_INVALID_ENTRY:
259 error (_("dwarf2_find_location_expression: "
260 "Corrupted DWARF expression."));
261 default:
262 gdb_assert_not_reached ("bad debug_loc_kind");
1d6edc3c 263 }
b5758fe4 264
bed911e5 265 /* Otherwise, a location expression entry.
8ddd5a6c
DE
266 If the entry is from a DWO, don't add base address: the entry is from
267 .debug_addr which already has the DWARF "base address". We still add
268 base_offset in case we're debugging a PIE executable. */
269 if (baton->from_dwo)
270 {
271 low += base_offset;
272 high += base_offset;
273 }
274 else
bed911e5
DE
275 {
276 low += base_address;
277 high += base_address;
278 }
0d53c4c4 279
e17a4113 280 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
0d53c4c4
DJ
281 loc_ptr += 2;
282
e18b2753
JK
283 if (low == high && pc == low)
284 {
285 /* This is entry PC record present only at entry point
286 of a function. Verify it is really the function entry point. */
287
3977b71f 288 const struct block *pc_block = block_for_pc (pc);
e18b2753
JK
289 struct symbol *pc_func = NULL;
290
291 if (pc_block)
292 pc_func = block_linkage_function (pc_block);
293
294 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
295 {
296 *locexpr_length = length;
297 return loc_ptr;
298 }
299 }
300
0d53c4c4
DJ
301 if (pc >= low && pc < high)
302 {
303 *locexpr_length = length;
304 return loc_ptr;
305 }
306
307 loc_ptr += length;
308 }
309}
310
4c2df51b
DJ
311/* This is the baton used when performing dwarf2 expression
312 evaluation. */
313struct dwarf_expr_baton
314{
315 struct frame_info *frame;
17ea53c3 316 struct dwarf2_per_cu_data *per_cu;
08412b07 317 CORE_ADDR obj_address;
4c2df51b
DJ
318};
319
f1e6e072
TT
320/* Implement find_frame_base_location method for LOC_BLOCK functions using
321 DWARF expression for its DW_AT_frame_base. */
322
323static void
324locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
325 const gdb_byte **start, size_t *length)
326{
9a3c8263
SM
327 struct dwarf2_locexpr_baton *symbaton
328 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
f1e6e072
TT
329
330 *length = symbaton->size;
331 *start = symbaton->data;
332}
333
7d1c9c9b
JB
334/* Implement the struct symbol_block_ops::get_frame_base method for
335 LOC_BLOCK functions using a DWARF expression as its DW_AT_frame_base. */
63e43d3a
PMR
336
337static CORE_ADDR
7d1c9c9b 338locexpr_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
63e43d3a
PMR
339{
340 struct gdbarch *gdbarch;
341 struct type *type;
342 struct dwarf2_locexpr_baton *dlbaton;
343 const gdb_byte *start;
344 size_t length;
345 struct value *result;
346
347 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
348 Thus, it's supposed to provide the find_frame_base_location method as
349 well. */
350 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
351
352 gdbarch = get_frame_arch (frame);
353 type = builtin_type (gdbarch)->builtin_data_ptr;
9a3c8263 354 dlbaton = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (framefunc);
63e43d3a
PMR
355
356 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
357 (framefunc, get_frame_pc (frame), &start, &length);
358 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
359 dlbaton->per_cu);
360
361 /* The DW_AT_frame_base attribute contains a location description which
362 computes the base address itself. However, the call to
363 dwarf2_evaluate_loc_desc returns a value representing a variable at
364 that address. The frame base address is thus this variable's
365 address. */
366 return value_address (result);
367}
368
f1e6e072
TT
369/* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
370 function uses DWARF expression for its DW_AT_frame_base. */
371
372const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
373{
63e43d3a 374 locexpr_find_frame_base_location,
7d1c9c9b 375 locexpr_get_frame_base
f1e6e072
TT
376};
377
378/* Implement find_frame_base_location method for LOC_BLOCK functions using
379 DWARF location list for its DW_AT_frame_base. */
380
381static void
382loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
383 const gdb_byte **start, size_t *length)
384{
9a3c8263
SM
385 struct dwarf2_loclist_baton *symbaton
386 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
f1e6e072
TT
387
388 *start = dwarf2_find_location_expression (symbaton, length, pc);
389}
390
7d1c9c9b
JB
391/* Implement the struct symbol_block_ops::get_frame_base method for
392 LOC_BLOCK functions using a DWARF location list as its DW_AT_frame_base. */
393
394static CORE_ADDR
395loclist_get_frame_base (struct symbol *framefunc, struct frame_info *frame)
396{
397 struct gdbarch *gdbarch;
398 struct type *type;
399 struct dwarf2_loclist_baton *dlbaton;
400 const gdb_byte *start;
401 size_t length;
402 struct value *result;
403
404 /* If this method is called, then FRAMEFUNC is supposed to be a DWARF block.
405 Thus, it's supposed to provide the find_frame_base_location method as
406 well. */
407 gdb_assert (SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location != NULL);
408
409 gdbarch = get_frame_arch (frame);
410 type = builtin_type (gdbarch)->builtin_data_ptr;
9a3c8263 411 dlbaton = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (framefunc);
7d1c9c9b
JB
412
413 SYMBOL_BLOCK_OPS (framefunc)->find_frame_base_location
414 (framefunc, get_frame_pc (frame), &start, &length);
415 result = dwarf2_evaluate_loc_desc (type, frame, start, length,
416 dlbaton->per_cu);
417
418 /* The DW_AT_frame_base attribute contains a location description which
419 computes the base address itself. However, the call to
420 dwarf2_evaluate_loc_desc returns a value representing a variable at
421 that address. The frame base address is thus this variable's
422 address. */
423 return value_address (result);
424}
425
f1e6e072
TT
426/* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
427 function uses DWARF location list for its DW_AT_frame_base. */
428
429const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
430{
63e43d3a 431 loclist_find_frame_base_location,
7d1c9c9b 432 loclist_get_frame_base
f1e6e072
TT
433};
434
af945b75
TT
435/* See dwarf2loc.h. */
436
437void
438func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
439 const gdb_byte **start, size_t *length)
0936ad1d 440{
f1e6e072 441 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
0d53c4c4 442 {
f1e6e072 443 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
22c6caba 444
f1e6e072 445 ops_block->find_frame_base_location (framefunc, pc, start, length);
0d53c4c4
DJ
446 }
447 else
f1e6e072 448 *length = 0;
0d53c4c4 449
1d6edc3c 450 if (*length == 0)
8a3fe4f8 451 error (_("Could not find the frame base for \"%s\"."),
0d53c4c4 452 SYMBOL_NATURAL_NAME (framefunc));
4c2df51b
DJ
453}
454
4c2df51b 455static CORE_ADDR
192ca6d8 456get_frame_pc_for_per_cu_dwarf_call (void *baton)
4c2df51b 457{
192ca6d8 458 dwarf_expr_context *ctx = (dwarf_expr_context *) baton;
4c2df51b 459
192ca6d8 460 return ctx->get_frame_pc ();
4c2df51b
DJ
461}
462
5c631832 463static void
b64f50a1 464per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
192ca6d8 465 struct dwarf2_per_cu_data *per_cu)
5c631832
JK
466{
467 struct dwarf2_locexpr_baton block;
468
192ca6d8
TT
469 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu,
470 get_frame_pc_for_per_cu_dwarf_call,
471 ctx);
5c631832
JK
472
473 /* DW_OP_call_ref is currently not supported. */
474 gdb_assert (block.per_cu == per_cu);
475
595d2e30 476 ctx->eval (block.data, block.size);
5c631832
JK
477}
478
192ca6d8 479class dwarf_evaluate_loc_desc : public dwarf_expr_context
5c631832 480{
192ca6d8 481 public:
5c631832 482
192ca6d8
TT
483 struct frame_info *frame;
484 struct dwarf2_per_cu_data *per_cu;
485 CORE_ADDR obj_address;
5c631832 486
192ca6d8
TT
487 /* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
488 the frame in BATON. */
8a9b8146 489
192ca6d8
TT
490 CORE_ADDR get_frame_cfa () OVERRIDE
491 {
492 return dwarf2_frame_cfa (frame);
493 }
8a9b8146 494
192ca6d8
TT
495 /* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
496 the frame in BATON. */
497
498 CORE_ADDR get_frame_pc () OVERRIDE
499 {
500 return get_frame_address_in_block (frame);
501 }
502
503 /* Using the objfile specified in BATON, find the address for the
504 current thread's thread-local storage with offset OFFSET. */
505 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
506 {
507 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
508
509 return target_translate_tls_address (objfile, offset);
510 }
511
512 /* Helper interface of per_cu_dwarf_call for
513 dwarf2_evaluate_loc_desc. */
514
515 void dwarf_call (cu_offset die_offset) OVERRIDE
516 {
517 per_cu_dwarf_call (this, die_offset, per_cu);
518 }
519
7d5697f9 520 struct type *get_base_type (cu_offset die_offset, int size) OVERRIDE
192ca6d8 521 {
7d5697f9
TT
522 struct type *result = dwarf2_get_die_type (die_offset, per_cu);
523 if (result == NULL)
524 error (_("Could not find type for DW_OP_GNU_const_type"));
525 if (size != 0 && TYPE_LENGTH (result) != size)
526 error (_("DW_OP_GNU_const_type has different sizes for type and data"));
527 return result;
192ca6d8
TT
528 }
529
530 /* Callback function for dwarf2_evaluate_loc_desc.
531 Fetch the address indexed by DW_OP_GNU_addr_index. */
532
533 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
534 {
535 return dwarf2_read_addr_index (per_cu, index);
536 }
537
538 /* Callback function for get_object_address. Return the address of the VLA
539 object. */
540
541 CORE_ADDR get_object_address () OVERRIDE
542 {
543 if (obj_address == 0)
544 error (_("Location address is not set."));
545 return obj_address;
546 }
547
548 /* Execute DWARF block of call_site_parameter which matches KIND and
549 KIND_U. Choose DEREF_SIZE value of that parameter. Search
550 caller of this objects's frame.
551
552 The caller can be from a different CU - per_cu_dwarf_call
553 implementation can be more simple as it does not support cross-CU
554 DWARF executions. */
555
556 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
557 union call_site_parameter_u kind_u,
558 int deref_size) OVERRIDE
559 {
560 struct frame_info *caller_frame;
561 struct dwarf2_per_cu_data *caller_per_cu;
192ca6d8
TT
562 struct call_site_parameter *parameter;
563 const gdb_byte *data_src;
564 size_t size;
565
566 caller_frame = get_prev_frame (frame);
567
568 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
569 &caller_per_cu);
570 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
571 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
572
573 /* DEREF_SIZE size is not verified here. */
574 if (data_src == NULL)
575 throw_error (NO_ENTRY_VALUE_ERROR,
576 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
577
7d5697f9
TT
578 scoped_restore save_frame = make_scoped_restore (&this->frame,
579 caller_frame);
580 scoped_restore save_per_cu = make_scoped_restore (&this->per_cu,
581 caller_per_cu);
582 scoped_restore save_obj_addr = make_scoped_restore (&this->obj_address,
583 (CORE_ADDR) 0);
192ca6d8
TT
584
585 scoped_restore save_arch = make_scoped_restore (&this->gdbarch);
586 this->gdbarch
7d5697f9 587 = get_objfile_arch (dwarf2_per_cu_objfile (per_cu));
192ca6d8 588 scoped_restore save_addr_size = make_scoped_restore (&this->addr_size);
7d5697f9 589 this->addr_size = dwarf2_per_cu_addr_size (per_cu);
192ca6d8 590 scoped_restore save_offset = make_scoped_restore (&this->offset);
7d5697f9 591 this->offset = dwarf2_per_cu_text_offset (per_cu);
192ca6d8
TT
592
593 this->eval (data_src, size);
594 }
595
596 /* Using the frame specified in BATON, find the location expression
597 describing the frame base. Return a pointer to it in START and
598 its length in LENGTH. */
599 void get_frame_base (const gdb_byte **start, size_t * length) OVERRIDE
600 {
601 /* FIXME: cagney/2003-03-26: This code should be using
602 get_frame_base_address(), and then implement a dwarf2 specific
603 this_base method. */
604 struct symbol *framefunc;
605 const struct block *bl = get_frame_block (frame, NULL);
606
607 if (bl == NULL)
608 error (_("frame address is not available."));
609
610 /* Use block_linkage_function, which returns a real (not inlined)
611 function, instead of get_frame_function, which may return an
612 inlined function. */
613 framefunc = block_linkage_function (bl);
614
615 /* If we found a frame-relative symbol then it was certainly within
616 some function associated with a frame. If we can't find the frame,
617 something has gone wrong. */
618 gdb_assert (framefunc != NULL);
619
620 func_get_frame_base_dwarf_block (framefunc,
621 get_frame_address_in_block (frame),
622 start, length);
623 }
624
625 /* Read memory at ADDR (length LEN) into BUF. */
626
627 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
628 {
629 read_memory (addr, buf, len);
630 }
631
632 /* Using the frame specified in BATON, return the value of register
633 REGNUM, treated as a pointer. */
634 CORE_ADDR read_addr_from_reg (int dwarf_regnum) OVERRIDE
635 {
636 struct gdbarch *gdbarch = get_frame_arch (frame);
637 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
638
639 return address_from_register (regnum, frame);
640 }
641
642 /* Implement "get_reg_value" callback. */
643
644 struct value *get_reg_value (struct type *type, int dwarf_regnum) OVERRIDE
645 {
646 struct gdbarch *gdbarch = get_frame_arch (frame);
647 int regnum = dwarf_reg_to_regnum_or_error (gdbarch, dwarf_regnum);
648
649 return value_from_register (type, regnum, frame);
650 }
651};
8a9b8146 652
8e3b41a9
JK
653/* See dwarf2loc.h. */
654
ccce17b0 655unsigned int entry_values_debug = 0;
8e3b41a9
JK
656
657/* Helper to set entry_values_debug. */
658
659static void
660show_entry_values_debug (struct ui_file *file, int from_tty,
661 struct cmd_list_element *c, const char *value)
662{
663 fprintf_filtered (file,
664 _("Entry values and tail call frames debugging is %s.\n"),
665 value);
666}
667
668/* Find DW_TAG_GNU_call_site's DW_AT_GNU_call_site_target address.
669 CALLER_FRAME (for registers) can be NULL if it is not known. This function
670 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
671
672static CORE_ADDR
673call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
674 struct call_site *call_site,
675 struct frame_info *caller_frame)
676{
677 switch (FIELD_LOC_KIND (call_site->target))
678 {
679 case FIELD_LOC_KIND_DWARF_BLOCK:
680 {
681 struct dwarf2_locexpr_baton *dwarf_block;
682 struct value *val;
683 struct type *caller_core_addr_type;
684 struct gdbarch *caller_arch;
685
686 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
687 if (dwarf_block == NULL)
688 {
7cbd4a93 689 struct bound_minimal_symbol msym;
8e3b41a9
JK
690
691 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
692 throw_error (NO_ENTRY_VALUE_ERROR,
693 _("DW_AT_GNU_call_site_target is not specified "
694 "at %s in %s"),
695 paddress (call_site_gdbarch, call_site->pc),
7cbd4a93 696 (msym.minsym == NULL ? "???"
efd66ac6 697 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
698
699 }
700 if (caller_frame == NULL)
701 {
7cbd4a93 702 struct bound_minimal_symbol msym;
8e3b41a9
JK
703
704 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
705 throw_error (NO_ENTRY_VALUE_ERROR,
706 _("DW_AT_GNU_call_site_target DWARF block resolving "
707 "requires known frame which is currently not "
708 "available at %s in %s"),
709 paddress (call_site_gdbarch, call_site->pc),
7cbd4a93 710 (msym.minsym == NULL ? "???"
efd66ac6 711 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
712
713 }
714 caller_arch = get_frame_arch (caller_frame);
715 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
716 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
717 dwarf_block->data, dwarf_block->size,
718 dwarf_block->per_cu);
719 /* DW_AT_GNU_call_site_target is a DWARF expression, not a DWARF
720 location. */
721 if (VALUE_LVAL (val) == lval_memory)
722 return value_address (val);
723 else
724 return value_as_address (val);
725 }
726
727 case FIELD_LOC_KIND_PHYSNAME:
728 {
729 const char *physname;
3b7344d5 730 struct bound_minimal_symbol msym;
8e3b41a9
JK
731
732 physname = FIELD_STATIC_PHYSNAME (call_site->target);
9112db09
JK
733
734 /* Handle both the mangled and demangled PHYSNAME. */
735 msym = lookup_minimal_symbol (physname, NULL, NULL);
3b7344d5 736 if (msym.minsym == NULL)
8e3b41a9 737 {
3b7344d5 738 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
8e3b41a9
JK
739 throw_error (NO_ENTRY_VALUE_ERROR,
740 _("Cannot find function \"%s\" for a call site target "
741 "at %s in %s"),
742 physname, paddress (call_site_gdbarch, call_site->pc),
3b7344d5
TT
743 (msym.minsym == NULL ? "???"
744 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
745
746 }
77e371c0 747 return BMSYMBOL_VALUE_ADDRESS (msym);
8e3b41a9
JK
748 }
749
750 case FIELD_LOC_KIND_PHYSADDR:
751 return FIELD_STATIC_PHYSADDR (call_site->target);
752
753 default:
754 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
755 }
756}
757
111c6489
JK
758/* Convert function entry point exact address ADDR to the function which is
759 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
760 NO_ENTRY_VALUE_ERROR otherwise. */
761
762static struct symbol *
763func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
764{
765 struct symbol *sym = find_pc_function (addr);
766 struct type *type;
767
768 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
769 throw_error (NO_ENTRY_VALUE_ERROR,
770 _("DW_TAG_GNU_call_site resolving failed to find function "
771 "name for address %s"),
772 paddress (gdbarch, addr));
773
774 type = SYMBOL_TYPE (sym);
775 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
776 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
777
778 return sym;
779}
780
2d6c5dc2
JK
781/* Verify function with entry point exact address ADDR can never call itself
782 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
783 can call itself via tail calls.
784
785 If a funtion can tail call itself its entry value based parameters are
786 unreliable. There is no verification whether the value of some/all
787 parameters is unchanged through the self tail call, we expect if there is
788 a self tail call all the parameters can be modified. */
789
790static void
791func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
792{
2d6c5dc2
JK
793 CORE_ADDR addr;
794
2d6c5dc2
JK
795 /* The verification is completely unordered. Track here function addresses
796 which still need to be iterated. */
fc4007c9 797 std::vector<CORE_ADDR> todo;
2d6c5dc2 798
fc4007c9
TT
799 /* Track here CORE_ADDRs which were already visited. */
800 std::unordered_set<CORE_ADDR> addr_hash;
2d6c5dc2 801
fc4007c9
TT
802 todo.push_back (verify_addr);
803 while (!todo.empty ())
2d6c5dc2
JK
804 {
805 struct symbol *func_sym;
806 struct call_site *call_site;
807
fc4007c9
TT
808 addr = todo.back ();
809 todo.pop_back ();
2d6c5dc2
JK
810
811 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
812
813 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
814 call_site; call_site = call_site->tail_call_next)
815 {
816 CORE_ADDR target_addr;
2d6c5dc2
JK
817
818 /* CALLER_FRAME with registers is not available for tail-call jumped
819 frames. */
820 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
821
822 if (target_addr == verify_addr)
823 {
7cbd4a93 824 struct bound_minimal_symbol msym;
2d6c5dc2
JK
825
826 msym = lookup_minimal_symbol_by_pc (verify_addr);
827 throw_error (NO_ENTRY_VALUE_ERROR,
828 _("DW_OP_GNU_entry_value resolving has found "
829 "function \"%s\" at %s can call itself via tail "
830 "calls"),
7cbd4a93 831 (msym.minsym == NULL ? "???"
efd66ac6 832 : MSYMBOL_PRINT_NAME (msym.minsym)),
2d6c5dc2
JK
833 paddress (gdbarch, verify_addr));
834 }
835
fc4007c9
TT
836 if (addr_hash.insert (target_addr).second)
837 todo.push_back (target_addr);
2d6c5dc2
JK
838 }
839 }
2d6c5dc2
JK
840}
841
111c6489
JK
842/* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
843 ENTRY_VALUES_DEBUG. */
844
845static void
846tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
847{
848 CORE_ADDR addr = call_site->pc;
7cbd4a93 849 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
111c6489
JK
850
851 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
7cbd4a93 852 (msym.minsym == NULL ? "???"
efd66ac6 853 : MSYMBOL_PRINT_NAME (msym.minsym)));
111c6489
JK
854
855}
856
111c6489
JK
857/* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
858 only top callers and bottom callees which are present in both. GDBARCH is
859 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
860 no remaining possibilities to provide unambiguous non-trivial result.
861 RESULTP should point to NULL on the first (initialization) call. Caller is
862 responsible for xfree of any RESULTP data. */
863
864static void
fc4007c9
TT
865chain_candidate (struct gdbarch *gdbarch,
866 gdb::unique_xmalloc_ptr<struct call_site_chain> *resultp,
867 std::vector<struct call_site *> *chain)
111c6489 868{
fc4007c9 869 long length = chain->size ();
111c6489
JK
870 int callers, callees, idx;
871
fc4007c9 872 if (*resultp == NULL)
111c6489
JK
873 {
874 /* Create the initial chain containing all the passed PCs. */
875
fc4007c9
TT
876 struct call_site_chain *result
877 = ((struct call_site_chain *)
878 xmalloc (sizeof (*result)
879 + sizeof (*result->call_site) * (length - 1)));
111c6489
JK
880 result->length = length;
881 result->callers = result->callees = length;
fc4007c9
TT
882 if (!chain->empty ())
883 memcpy (result->call_site, chain->data (),
19a1b230 884 sizeof (*result->call_site) * length);
fc4007c9 885 resultp->reset (result);
111c6489
JK
886
887 if (entry_values_debug)
888 {
889 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
890 for (idx = 0; idx < length; idx++)
891 tailcall_dump (gdbarch, result->call_site[idx]);
892 fputc_unfiltered ('\n', gdb_stdlog);
893 }
894
895 return;
896 }
897
898 if (entry_values_debug)
899 {
900 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
901 for (idx = 0; idx < length; idx++)
fc4007c9 902 tailcall_dump (gdbarch, chain->at (idx));
111c6489
JK
903 fputc_unfiltered ('\n', gdb_stdlog);
904 }
905
906 /* Intersect callers. */
907
fc4007c9 908 callers = std::min ((long) (*resultp)->callers, length);
111c6489 909 for (idx = 0; idx < callers; idx++)
fc4007c9 910 if ((*resultp)->call_site[idx] != chain->at (idx))
111c6489 911 {
fc4007c9 912 (*resultp)->callers = idx;
111c6489
JK
913 break;
914 }
915
916 /* Intersect callees. */
917
fc4007c9 918 callees = std::min ((long) (*resultp)->callees, length);
111c6489 919 for (idx = 0; idx < callees; idx++)
fc4007c9
TT
920 if ((*resultp)->call_site[(*resultp)->length - 1 - idx]
921 != chain->at (length - 1 - idx))
111c6489 922 {
fc4007c9 923 (*resultp)->callees = idx;
111c6489
JK
924 break;
925 }
926
927 if (entry_values_debug)
928 {
929 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
fc4007c9
TT
930 for (idx = 0; idx < (*resultp)->callers; idx++)
931 tailcall_dump (gdbarch, (*resultp)->call_site[idx]);
111c6489 932 fputs_unfiltered (" |", gdb_stdlog);
fc4007c9
TT
933 for (idx = 0; idx < (*resultp)->callees; idx++)
934 tailcall_dump (gdbarch,
935 (*resultp)->call_site[(*resultp)->length
936 - (*resultp)->callees + idx]);
111c6489
JK
937 fputc_unfiltered ('\n', gdb_stdlog);
938 }
939
fc4007c9 940 if ((*resultp)->callers == 0 && (*resultp)->callees == 0)
111c6489
JK
941 {
942 /* There are no common callers or callees. It could be also a direct
943 call (which has length 0) with ambiguous possibility of an indirect
944 call - CALLERS == CALLEES == 0 is valid during the first allocation
945 but any subsequence processing of such entry means ambiguity. */
fc4007c9 946 resultp->reset (NULL);
111c6489
JK
947 return;
948 }
949
950 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
951 PC again. In such case there must be two different code paths to reach
e0619de6 952 it. CALLERS + CALLEES equal to LENGTH in the case of self tail-call. */
fc4007c9 953 gdb_assert ((*resultp)->callers + (*resultp)->callees <= (*resultp)->length);
111c6489
JK
954}
955
956/* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
957 assumed frames between them use GDBARCH. Use depth first search so we can
958 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
959 would have needless GDB stack overhead. Caller is responsible for xfree of
960 the returned result. Any unreliability results in thrown
961 NO_ENTRY_VALUE_ERROR. */
962
963static struct call_site_chain *
964call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
965 CORE_ADDR callee_pc)
966{
c4be5165 967 CORE_ADDR save_callee_pc = callee_pc;
fc4007c9 968 gdb::unique_xmalloc_ptr<struct call_site_chain> retval;
111c6489
JK
969 struct call_site *call_site;
970
111c6489
JK
971 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
972 call_site nor any possible call_site at CALLEE_PC's function is there.
973 Any CALL_SITE in CHAIN will be iterated to its siblings - via
974 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
fc4007c9 975 std::vector<struct call_site *> chain;
111c6489
JK
976
977 /* We are not interested in the specific PC inside the callee function. */
978 callee_pc = get_pc_function_start (callee_pc);
979 if (callee_pc == 0)
980 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
c4be5165 981 paddress (gdbarch, save_callee_pc));
111c6489 982
fc4007c9
TT
983 /* Mark CALL_SITEs so we do not visit the same ones twice. */
984 std::unordered_set<CORE_ADDR> addr_hash;
111c6489
JK
985
986 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
987 at the target's function. All the possible tail call sites in the
988 target's function will get iterated as already pushed into CHAIN via their
989 TAIL_CALL_NEXT. */
990 call_site = call_site_for_pc (gdbarch, caller_pc);
991
992 while (call_site)
993 {
994 CORE_ADDR target_func_addr;
995 struct call_site *target_call_site;
996
997 /* CALLER_FRAME with registers is not available for tail-call jumped
998 frames. */
999 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
1000
1001 if (target_func_addr == callee_pc)
1002 {
fc4007c9 1003 chain_candidate (gdbarch, &retval, &chain);
111c6489
JK
1004 if (retval == NULL)
1005 break;
1006
1007 /* There is no way to reach CALLEE_PC again as we would prevent
1008 entering it twice as being already marked in ADDR_HASH. */
1009 target_call_site = NULL;
1010 }
1011 else
1012 {
1013 struct symbol *target_func;
1014
1015 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
1016 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
1017 }
1018
1019 do
1020 {
1021 /* Attempt to visit TARGET_CALL_SITE. */
1022
1023 if (target_call_site)
1024 {
fc4007c9 1025 if (addr_hash.insert (target_call_site->pc).second)
111c6489
JK
1026 {
1027 /* Successfully entered TARGET_CALL_SITE. */
1028
fc4007c9 1029 chain.push_back (target_call_site);
111c6489
JK
1030 break;
1031 }
1032 }
1033
1034 /* Backtrack (without revisiting the originating call_site). Try the
1035 callers's sibling; if there isn't any try the callers's callers's
1036 sibling etc. */
1037
1038 target_call_site = NULL;
fc4007c9 1039 while (!chain.empty ())
111c6489 1040 {
fc4007c9
TT
1041 call_site = chain.back ();
1042 chain.pop_back ();
111c6489 1043
fc4007c9
TT
1044 size_t removed = addr_hash.erase (call_site->pc);
1045 gdb_assert (removed == 1);
111c6489
JK
1046
1047 target_call_site = call_site->tail_call_next;
1048 if (target_call_site)
1049 break;
1050 }
1051 }
1052 while (target_call_site);
1053
fc4007c9 1054 if (chain.empty ())
111c6489
JK
1055 call_site = NULL;
1056 else
fc4007c9 1057 call_site = chain.back ();
111c6489
JK
1058 }
1059
1060 if (retval == NULL)
1061 {
7cbd4a93 1062 struct bound_minimal_symbol msym_caller, msym_callee;
111c6489
JK
1063
1064 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
1065 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
1066 throw_error (NO_ENTRY_VALUE_ERROR,
1067 _("There are no unambiguously determinable intermediate "
1068 "callers or callees between caller function \"%s\" at %s "
1069 "and callee function \"%s\" at %s"),
7cbd4a93 1070 (msym_caller.minsym == NULL
efd66ac6 1071 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
111c6489 1072 paddress (gdbarch, caller_pc),
7cbd4a93 1073 (msym_callee.minsym == NULL
efd66ac6 1074 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
111c6489
JK
1075 paddress (gdbarch, callee_pc));
1076 }
1077
fc4007c9 1078 return retval.release ();
111c6489
JK
1079}
1080
1081/* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
1082 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
1083 constructed return NULL. Caller is responsible for xfree of the returned
1084 result. */
1085
1086struct call_site_chain *
1087call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
1088 CORE_ADDR callee_pc)
1089{
111c6489
JK
1090 struct call_site_chain *retval = NULL;
1091
492d29ea 1092 TRY
111c6489
JK
1093 {
1094 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
1095 }
492d29ea 1096 CATCH (e, RETURN_MASK_ERROR)
111c6489
JK
1097 {
1098 if (e.error == NO_ENTRY_VALUE_ERROR)
1099 {
1100 if (entry_values_debug)
1101 exception_print (gdb_stdout, e);
1102
1103 return NULL;
1104 }
1105 else
1106 throw_exception (e);
1107 }
492d29ea
PA
1108 END_CATCH
1109
111c6489
JK
1110 return retval;
1111}
1112
24c5c679
JK
1113/* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1114
1115static int
1116call_site_parameter_matches (struct call_site_parameter *parameter,
1117 enum call_site_parameter_kind kind,
1118 union call_site_parameter_u kind_u)
1119{
1120 if (kind == parameter->kind)
1121 switch (kind)
1122 {
1123 case CALL_SITE_PARAMETER_DWARF_REG:
1124 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1125 case CALL_SITE_PARAMETER_FB_OFFSET:
1126 return kind_u.fb_offset == parameter->u.fb_offset;
1788b2d3
JK
1127 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1128 return kind_u.param_offset.cu_off == parameter->u.param_offset.cu_off;
24c5c679
JK
1129 }
1130 return 0;
1131}
1132
1133/* Fetch call_site_parameter from caller matching KIND and KIND_U.
1134 FRAME is for callee.
8e3b41a9
JK
1135
1136 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1137 otherwise. */
1138
1139static struct call_site_parameter *
24c5c679
JK
1140dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1141 enum call_site_parameter_kind kind,
1142 union call_site_parameter_u kind_u,
8e3b41a9
JK
1143 struct dwarf2_per_cu_data **per_cu_return)
1144{
9e3a7d65
JK
1145 CORE_ADDR func_addr, caller_pc;
1146 struct gdbarch *gdbarch;
1147 struct frame_info *caller_frame;
8e3b41a9
JK
1148 struct call_site *call_site;
1149 int iparams;
509f0fd9
JK
1150 /* Initialize it just to avoid a GCC false warning. */
1151 struct call_site_parameter *parameter = NULL;
8e3b41a9
JK
1152 CORE_ADDR target_addr;
1153
9e3a7d65
JK
1154 while (get_frame_type (frame) == INLINE_FRAME)
1155 {
1156 frame = get_prev_frame (frame);
1157 gdb_assert (frame != NULL);
1158 }
1159
1160 func_addr = get_frame_func (frame);
1161 gdbarch = get_frame_arch (frame);
1162 caller_frame = get_prev_frame (frame);
8e3b41a9
JK
1163 if (gdbarch != frame_unwind_arch (frame))
1164 {
7cbd4a93
TT
1165 struct bound_minimal_symbol msym
1166 = lookup_minimal_symbol_by_pc (func_addr);
8e3b41a9
JK
1167 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1168
1169 throw_error (NO_ENTRY_VALUE_ERROR,
1170 _("DW_OP_GNU_entry_value resolving callee gdbarch %s "
1171 "(of %s (%s)) does not match caller gdbarch %s"),
1172 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1173 paddress (gdbarch, func_addr),
7cbd4a93 1174 (msym.minsym == NULL ? "???"
efd66ac6 1175 : MSYMBOL_PRINT_NAME (msym.minsym)),
8e3b41a9
JK
1176 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1177 }
1178
1179 if (caller_frame == NULL)
1180 {
7cbd4a93
TT
1181 struct bound_minimal_symbol msym
1182 = lookup_minimal_symbol_by_pc (func_addr);
8e3b41a9
JK
1183
1184 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_GNU_entry_value resolving "
1185 "requires caller of %s (%s)"),
1186 paddress (gdbarch, func_addr),
7cbd4a93 1187 (msym.minsym == NULL ? "???"
efd66ac6 1188 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
1189 }
1190 caller_pc = get_frame_pc (caller_frame);
1191 call_site = call_site_for_pc (gdbarch, caller_pc);
1192
1193 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1194 if (target_addr != func_addr)
1195 {
1196 struct minimal_symbol *target_msym, *func_msym;
1197
7cbd4a93
TT
1198 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1199 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
8e3b41a9
JK
1200 throw_error (NO_ENTRY_VALUE_ERROR,
1201 _("DW_OP_GNU_entry_value resolving expects callee %s at %s "
1202 "but the called frame is for %s at %s"),
1203 (target_msym == NULL ? "???"
efd66ac6 1204 : MSYMBOL_PRINT_NAME (target_msym)),
8e3b41a9 1205 paddress (gdbarch, target_addr),
efd66ac6 1206 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
8e3b41a9
JK
1207 paddress (gdbarch, func_addr));
1208 }
1209
2d6c5dc2
JK
1210 /* No entry value based parameters would be reliable if this function can
1211 call itself via tail calls. */
1212 func_verify_no_selftailcall (gdbarch, func_addr);
1213
8e3b41a9
JK
1214 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1215 {
1216 parameter = &call_site->parameter[iparams];
24c5c679 1217 if (call_site_parameter_matches (parameter, kind, kind_u))
8e3b41a9
JK
1218 break;
1219 }
1220 if (iparams == call_site->parameter_count)
1221 {
7cbd4a93
TT
1222 struct minimal_symbol *msym
1223 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
8e3b41a9
JK
1224
1225 /* DW_TAG_GNU_call_site_parameter will be missing just if GCC could not
1226 determine its value. */
1227 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1228 "at DW_TAG_GNU_call_site %s at %s"),
1229 paddress (gdbarch, caller_pc),
efd66ac6 1230 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
8e3b41a9
JK
1231 }
1232
1233 *per_cu_return = call_site->per_cu;
1234 return parameter;
1235}
1236
a471c594
JK
1237/* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1238 the normal DW_AT_GNU_call_site_value block. Otherwise return the
1239 DW_AT_GNU_call_site_data_value (dereferenced) block.
e18b2753
JK
1240
1241 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1242 struct value.
1243
1244 Function always returns non-NULL, non-optimized out value. It throws
1245 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1246
1247static struct value *
1248dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
a471c594 1249 CORE_ADDR deref_size, struct type *type,
e18b2753
JK
1250 struct frame_info *caller_frame,
1251 struct dwarf2_per_cu_data *per_cu)
1252{
a471c594 1253 const gdb_byte *data_src;
e18b2753 1254 gdb_byte *data;
a471c594
JK
1255 size_t size;
1256
1257 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1258 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1259
1260 /* DEREF_SIZE size is not verified here. */
1261 if (data_src == NULL)
1262 throw_error (NO_ENTRY_VALUE_ERROR,
1263 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
e18b2753
JK
1264
1265 /* DW_AT_GNU_call_site_value is a DWARF expression, not a DWARF
1266 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1267 DWARF block. */
224c3ddb 1268 data = (gdb_byte *) alloca (size + 1);
a471c594
JK
1269 memcpy (data, data_src, size);
1270 data[size] = DW_OP_stack_value;
e18b2753 1271
a471c594 1272 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
e18b2753
JK
1273}
1274
a471c594
JK
1275/* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1276 the indirect method on it, that is use its stored target value, the sole
1277 purpose of entry_data_value_funcs.. */
1278
1279static struct value *
1280entry_data_value_coerce_ref (const struct value *value)
1281{
1282 struct type *checked_type = check_typedef (value_type (value));
1283 struct value *target_val;
1284
1285 if (TYPE_CODE (checked_type) != TYPE_CODE_REF)
1286 return NULL;
1287
9a3c8263 1288 target_val = (struct value *) value_computed_closure (value);
a471c594
JK
1289 value_incref (target_val);
1290 return target_val;
1291}
1292
1293/* Implement copy_closure. */
1294
1295static void *
1296entry_data_value_copy_closure (const struct value *v)
1297{
9a3c8263 1298 struct value *target_val = (struct value *) value_computed_closure (v);
a471c594
JK
1299
1300 value_incref (target_val);
1301 return target_val;
1302}
1303
1304/* Implement free_closure. */
1305
1306static void
1307entry_data_value_free_closure (struct value *v)
1308{
9a3c8263 1309 struct value *target_val = (struct value *) value_computed_closure (v);
a471c594
JK
1310
1311 value_free (target_val);
1312}
1313
1314/* Vector for methods for an entry value reference where the referenced value
1315 is stored in the caller. On the first dereference use
1316 DW_AT_GNU_call_site_data_value in the caller. */
1317
1318static const struct lval_funcs entry_data_value_funcs =
1319{
1320 NULL, /* read */
1321 NULL, /* write */
a471c594
JK
1322 NULL, /* indirect */
1323 entry_data_value_coerce_ref,
1324 NULL, /* check_synthetic_pointer */
1325 entry_data_value_copy_closure,
1326 entry_data_value_free_closure
1327};
1328
24c5c679
JK
1329/* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1330 are used to match DW_AT_location at the caller's
1331 DW_TAG_GNU_call_site_parameter.
e18b2753
JK
1332
1333 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1334 cannot resolve the parameter for any reason. */
1335
1336static struct value *
1337value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
24c5c679
JK
1338 enum call_site_parameter_kind kind,
1339 union call_site_parameter_u kind_u)
e18b2753 1340{
a471c594
JK
1341 struct type *checked_type = check_typedef (type);
1342 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
e18b2753 1343 struct frame_info *caller_frame = get_prev_frame (frame);
a471c594 1344 struct value *outer_val, *target_val, *val;
e18b2753
JK
1345 struct call_site_parameter *parameter;
1346 struct dwarf2_per_cu_data *caller_per_cu;
1347
24c5c679 1348 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
e18b2753
JK
1349 &caller_per_cu);
1350
a471c594
JK
1351 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1352 type, caller_frame,
1353 caller_per_cu);
1354
1355 /* Check if DW_AT_GNU_call_site_data_value cannot be used. If it should be
1356 used and it is not available do not fall back to OUTER_VAL - dereferencing
1357 TYPE_CODE_REF with non-entry data value would give current value - not the
1358 entry value. */
1359
1360 if (TYPE_CODE (checked_type) != TYPE_CODE_REF
1361 || TYPE_TARGET_TYPE (checked_type) == NULL)
1362 return outer_val;
1363
1364 target_val = dwarf_entry_parameter_to_value (parameter,
1365 TYPE_LENGTH (target_type),
1366 target_type, caller_frame,
1367 caller_per_cu);
1368
a471c594
JK
1369 release_value (target_val);
1370 val = allocate_computed_value (type, &entry_data_value_funcs,
1371 target_val /* closure */);
1372
1373 /* Copy the referencing pointer to the new computed value. */
1374 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1375 TYPE_LENGTH (checked_type));
1376 set_value_lazy (val, 0);
1377
1378 return val;
e18b2753
JK
1379}
1380
1381/* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1382 SIZE are DWARF block used to match DW_AT_location at the caller's
1383 DW_TAG_GNU_call_site_parameter.
1384
1385 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1386 cannot resolve the parameter for any reason. */
1387
1388static struct value *
1389value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1390 const gdb_byte *block, size_t block_len)
1391{
24c5c679 1392 union call_site_parameter_u kind_u;
e18b2753 1393
24c5c679
JK
1394 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1395 if (kind_u.dwarf_reg != -1)
1396 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1397 kind_u);
e18b2753 1398
24c5c679
JK
1399 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1400 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1401 kind_u);
e18b2753
JK
1402
1403 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1404 suppressed during normal operation. The expression can be arbitrary if
1405 there is no caller-callee entry value binding expected. */
1406 throw_error (NO_ENTRY_VALUE_ERROR,
1407 _("DWARF-2 expression error: DW_OP_GNU_entry_value is supported "
1408 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1409}
1410
052b9502
NF
1411struct piece_closure
1412{
88bfdde4
TT
1413 /* Reference count. */
1414 int refc;
1415
8cf6f0b1
TT
1416 /* The CU from which this closure's expression came. */
1417 struct dwarf2_per_cu_data *per_cu;
1418
052b9502
NF
1419 /* The number of pieces used to describe this variable. */
1420 int n_pieces;
1421
6063c216
UW
1422 /* The target address size, used only for DWARF_VALUE_STACK. */
1423 int addr_size;
cec03d70 1424
052b9502
NF
1425 /* The pieces themselves. */
1426 struct dwarf_expr_piece *pieces;
ee40d8d4
YQ
1427
1428 /* Frame ID of frame to which a register value is relative, used
1429 only by DWARF_VALUE_REGISTER. */
1430 struct frame_id frame_id;
052b9502
NF
1431};
1432
1433/* Allocate a closure for a value formed from separately-described
1434 PIECES. */
1435
1436static struct piece_closure *
8cf6f0b1
TT
1437allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1438 int n_pieces, struct dwarf_expr_piece *pieces,
ee40d8d4 1439 int addr_size, struct frame_info *frame)
052b9502 1440{
41bf6aca 1441 struct piece_closure *c = XCNEW (struct piece_closure);
8a9b8146 1442 int i;
052b9502 1443
88bfdde4 1444 c->refc = 1;
8cf6f0b1 1445 c->per_cu = per_cu;
052b9502 1446 c->n_pieces = n_pieces;
6063c216 1447 c->addr_size = addr_size;
fc270c35 1448 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
ee40d8d4
YQ
1449 if (frame == NULL)
1450 c->frame_id = null_frame_id;
1451 else
1452 c->frame_id = get_frame_id (frame);
052b9502
NF
1453
1454 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
8a9b8146
TT
1455 for (i = 0; i < n_pieces; ++i)
1456 if (c->pieces[i].location == DWARF_VALUE_STACK)
1457 value_incref (c->pieces[i].v.value);
052b9502
NF
1458
1459 return c;
1460}
1461
22347e55
AA
1462/* Copy NBITS bits from SOURCE to DEST starting at the given bit
1463 offsets. Use the bit order as specified by BITS_BIG_ENDIAN.
1464 Source and destination buffers must not overlap. */
d3b1e874
TT
1465
1466static void
22347e55
AA
1467copy_bitwise (gdb_byte *dest, ULONGEST dest_offset,
1468 const gdb_byte *source, ULONGEST source_offset,
1469 ULONGEST nbits, int bits_big_endian)
d3b1e874 1470{
22347e55 1471 unsigned int buf, avail;
d3b1e874 1472
22347e55
AA
1473 if (nbits == 0)
1474 return;
d3b1e874 1475
d3b1e874
TT
1476 if (bits_big_endian)
1477 {
22347e55
AA
1478 /* Start from the end, then work backwards. */
1479 dest_offset += nbits - 1;
1480 dest += dest_offset / 8;
1481 dest_offset = 7 - dest_offset % 8;
1482 source_offset += nbits - 1;
1483 source += source_offset / 8;
1484 source_offset = 7 - source_offset % 8;
d3b1e874
TT
1485 }
1486 else
1487 {
22347e55
AA
1488 dest += dest_offset / 8;
1489 dest_offset %= 8;
1490 source += source_offset / 8;
1491 source_offset %= 8;
d3b1e874
TT
1492 }
1493
22347e55
AA
1494 /* Fill BUF with DEST_OFFSET bits from the destination and 8 -
1495 SOURCE_OFFSET bits from the source. */
1496 buf = *(bits_big_endian ? source-- : source++) >> source_offset;
1497 buf <<= dest_offset;
1498 buf |= *dest & ((1 << dest_offset) - 1);
d3b1e874 1499
22347e55
AA
1500 /* NBITS: bits yet to be written; AVAIL: BUF's fill level. */
1501 nbits += dest_offset;
1502 avail = dest_offset + 8 - source_offset;
d3b1e874 1503
22347e55
AA
1504 /* Flush 8 bits from BUF, if appropriate. */
1505 if (nbits >= 8 && avail >= 8)
d3b1e874 1506 {
22347e55
AA
1507 *(bits_big_endian ? dest-- : dest++) = buf;
1508 buf >>= 8;
1509 avail -= 8;
1510 nbits -= 8;
d3b1e874
TT
1511 }
1512
22347e55
AA
1513 /* Copy the middle part. */
1514 if (nbits >= 8)
d3b1e874 1515 {
22347e55
AA
1516 size_t len = nbits / 8;
1517
793c128d
AA
1518 /* Use a faster method for byte-aligned copies. */
1519 if (avail == 0)
22347e55 1520 {
793c128d
AA
1521 if (bits_big_endian)
1522 {
1523 dest -= len;
1524 source -= len;
1525 memcpy (dest + 1, source + 1, len);
1526 }
1527 else
1528 {
1529 memcpy (dest, source, len);
1530 dest += len;
1531 source += len;
1532 }
1533 }
1534 else
1535 {
1536 while (len--)
1537 {
1538 buf |= *(bits_big_endian ? source-- : source++) << avail;
1539 *(bits_big_endian ? dest-- : dest++) = buf;
1540 buf >>= 8;
1541 }
22347e55
AA
1542 }
1543 nbits %= 8;
d3b1e874
TT
1544 }
1545
22347e55
AA
1546 /* Write the last byte. */
1547 if (nbits)
d3b1e874 1548 {
22347e55
AA
1549 if (avail < nbits)
1550 buf |= *source << avail;
1551
1552 buf &= (1 << nbits) - 1;
1553 *dest = (*dest & (~0 << nbits)) | buf;
d3b1e874
TT
1554 }
1555}
1556
ad06383f
AA
1557#if GDB_SELF_TEST
1558
1559namespace selftests {
1560
1561/* Helper function for the unit test of copy_bitwise. Convert NBITS bits
1562 out of BITS, starting at OFFS, to the respective '0'/'1'-string. MSB0
1563 specifies whether to assume big endian bit numbering. Store the
1564 resulting (not null-terminated) string at STR. */
1565
1566static void
1567bits_to_str (char *str, const gdb_byte *bits, ULONGEST offs,
1568 ULONGEST nbits, int msb0)
1569{
1570 unsigned int j;
1571 size_t i;
1572
1573 for (i = offs / 8, j = offs % 8; nbits; i++, j = 0)
1574 {
1575 unsigned int ch = bits[i];
1576 for (; j < 8 && nbits; j++, nbits--)
1577 *str++ = (ch & (msb0 ? (1 << (7 - j)) : (1 << j))) ? '1' : '0';
1578 }
1579}
1580
1581/* Check one invocation of copy_bitwise with the given parameters. */
1582
1583static void
1584check_copy_bitwise (const gdb_byte *dest, unsigned int dest_offset,
1585 const gdb_byte *source, unsigned int source_offset,
1586 unsigned int nbits, int msb0)
1587{
1588 size_t len = align_up (dest_offset + nbits, 8);
1589 char *expected = (char *) alloca (len + 1);
1590 char *actual = (char *) alloca (len + 1);
1591 gdb_byte *buf = (gdb_byte *) alloca (len / 8);
1592
1593 /* Compose a '0'/'1'-string that represents the expected result of
1594 copy_bitwise below:
1595 Bits from [0, DEST_OFFSET) are filled from DEST.
1596 Bits from [DEST_OFFSET, DEST_OFFSET + NBITS) are filled from SOURCE.
1597 Bits from [DEST_OFFSET + NBITS, LEN) are filled from DEST.
1598
1599 E.g., with:
1600 dest_offset: 4
1601 nbits: 2
1602 len: 8
1603 dest: 00000000
1604 source: 11111111
1605
1606 We should end up with:
1607 buf: 00001100
1608 DDDDSSDD (D=dest, S=source)
1609 */
1610 bits_to_str (expected, dest, 0, len, msb0);
1611 bits_to_str (expected + dest_offset, source, source_offset, nbits, msb0);
1612
1613 /* Fill BUF with data from DEST, apply copy_bitwise, and convert the
1614 result to a '0'/'1'-string. */
1615 memcpy (buf, dest, len / 8);
1616 copy_bitwise (buf, dest_offset, source, source_offset, nbits, msb0);
1617 bits_to_str (actual, buf, 0, len, msb0);
1618
1619 /* Compare the resulting strings. */
1620 expected[len] = actual[len] = '\0';
1621 if (strcmp (expected, actual) != 0)
1622 error (_("copy_bitwise %s != %s (%u+%u -> %u)"),
1623 expected, actual, source_offset, nbits, dest_offset);
1624}
1625
1626/* Unit test for copy_bitwise. */
1627
1628static void
1629copy_bitwise_tests (void)
1630{
1631 /* Data to be used as both source and destination buffers. The two
1632 arrays below represent the lsb0- and msb0- encoded versions of the
1633 following bit string, respectively:
1634 00000000 00011111 11111111 01001000 10100101 11110010
1635 This pattern is chosen such that it contains:
1636 - constant 0- and 1- chunks of more than a full byte;
1637 - 0/1- and 1/0 transitions on all bit positions within a byte;
1638 - several sufficiently asymmetric bytes.
1639 */
1640 static const gdb_byte data_lsb0[] = {
1641 0x00, 0xf8, 0xff, 0x12, 0xa5, 0x4f
1642 };
1643 static const gdb_byte data_msb0[] = {
1644 0x00, 0x1f, 0xff, 0x48, 0xa5, 0xf2
1645 };
1646
1647 constexpr size_t data_nbits = 8 * sizeof (data_lsb0);
1648 constexpr unsigned max_nbits = 24;
1649
1650 /* Try all combinations of:
1651 lsb0/msb0 bit order (using the respective data array)
1652 X [0, MAX_NBITS] copy bit width
1653 X feasible source offsets for the given copy bit width
1654 X feasible destination offsets
1655 */
1656 for (int msb0 = 0; msb0 < 2; msb0++)
1657 {
1658 const gdb_byte *data = msb0 ? data_msb0 : data_lsb0;
1659
1660 for (unsigned int nbits = 1; nbits <= max_nbits; nbits++)
1661 {
1662 const unsigned int max_offset = data_nbits - nbits;
1663
1664 for (unsigned source_offset = 0;
1665 source_offset <= max_offset;
1666 source_offset++)
1667 {
1668 for (unsigned dest_offset = 0;
1669 dest_offset <= max_offset;
1670 dest_offset++)
1671 {
1672 check_copy_bitwise (data + dest_offset / 8,
1673 dest_offset % 8,
1674 data + source_offset / 8,
1675 source_offset % 8,
1676 nbits, msb0);
1677 }
1678 }
1679 }
1680
1681 /* Special cases: copy all, copy nothing. */
1682 check_copy_bitwise (data_lsb0, 0, data_msb0, 0, data_nbits, msb0);
1683 check_copy_bitwise (data_msb0, 0, data_lsb0, 0, data_nbits, msb0);
1684 check_copy_bitwise (data, data_nbits - 7, data, 9, 0, msb0);
1685 }
1686}
1687
1688} /* namespace selftests */
1689
1690#endif /* GDB_SELF_TEST */
1691
052b9502
NF
1692static void
1693read_pieced_value (struct value *v)
1694{
1695 int i;
1696 long offset = 0;
d3b1e874 1697 ULONGEST bits_to_skip;
052b9502 1698 gdb_byte *contents;
3e43a32a
MS
1699 struct piece_closure *c
1700 = (struct piece_closure *) value_computed_closure (v);
afd74c5f 1701 size_t type_len;
d3b1e874 1702 size_t buffer_size = 0;
58414334 1703 std::vector<gdb_byte> buffer;
d3b1e874
TT
1704 int bits_big_endian
1705 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
afd74c5f
TT
1706
1707 if (value_type (v) != value_enclosing_type (v))
1708 internal_error (__FILE__, __LINE__,
1709 _("Should not be able to create a lazy value with "
1710 "an enclosing type"));
052b9502
NF
1711
1712 contents = value_contents_raw (v);
d3b1e874 1713 bits_to_skip = 8 * value_offset (v);
0e03807e
TT
1714 if (value_bitsize (v))
1715 {
1716 bits_to_skip += value_bitpos (v);
1717 type_len = value_bitsize (v);
1718 }
1719 else
1720 type_len = 8 * TYPE_LENGTH (value_type (v));
d3b1e874 1721
afd74c5f 1722 for (i = 0; i < c->n_pieces && offset < type_len; i++)
052b9502
NF
1723 {
1724 struct dwarf_expr_piece *p = &c->pieces[i];
d3b1e874
TT
1725 size_t this_size, this_size_bits;
1726 long dest_offset_bits, source_offset_bits, source_offset;
0d45f56e 1727 const gdb_byte *intermediate_buffer;
d3b1e874
TT
1728
1729 /* Compute size, source, and destination offsets for copying, in
1730 bits. */
1731 this_size_bits = p->size;
1732 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
afd74c5f 1733 {
d3b1e874 1734 bits_to_skip -= this_size_bits;
afd74c5f
TT
1735 continue;
1736 }
d3b1e874 1737 if (bits_to_skip > 0)
afd74c5f 1738 {
d3b1e874
TT
1739 dest_offset_bits = 0;
1740 source_offset_bits = bits_to_skip;
1741 this_size_bits -= bits_to_skip;
1742 bits_to_skip = 0;
afd74c5f
TT
1743 }
1744 else
1745 {
d3b1e874
TT
1746 dest_offset_bits = offset;
1747 source_offset_bits = 0;
afd74c5f 1748 }
5bd1ef56
TT
1749 if (this_size_bits > type_len - offset)
1750 this_size_bits = type_len - offset;
9a619af0 1751
d3b1e874
TT
1752 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1753 source_offset = source_offset_bits / 8;
1754 if (buffer_size < this_size)
1755 {
1756 buffer_size = this_size;
58414334 1757 buffer.reserve (buffer_size);
d3b1e874 1758 }
58414334 1759 intermediate_buffer = buffer.data ();
d3b1e874
TT
1760
1761 /* Copy from the source to DEST_BUFFER. */
cec03d70 1762 switch (p->location)
052b9502 1763 {
cec03d70
TT
1764 case DWARF_VALUE_REGISTER:
1765 {
ee40d8d4 1766 struct frame_info *frame = frame_find_by_id (c->frame_id);
cec03d70 1767 struct gdbarch *arch = get_frame_arch (frame);
0fde2c53
DE
1768 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1769 int optim, unavail;
6b850546 1770 LONGEST reg_offset = source_offset;
dcbf108f 1771
0fde2c53
DE
1772 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1773 && this_size < register_size (arch, gdb_regnum))
63b4f126 1774 {
0fde2c53
DE
1775 /* Big-endian, and we want less than full size. */
1776 reg_offset = register_size (arch, gdb_regnum) - this_size;
1777 /* We want the lower-order THIS_SIZE_BITS of the bytes
1778 we extract from the register. */
1779 source_offset_bits += 8 * this_size - this_size_bits;
63b4f126 1780 }
0fde2c53
DE
1781
1782 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
58414334 1783 this_size, buffer.data (),
0fde2c53 1784 &optim, &unavail))
63b4f126 1785 {
0fde2c53 1786 /* Just so garbage doesn't ever shine through. */
58414334 1787 memset (buffer.data (), 0, this_size);
0fde2c53
DE
1788
1789 if (optim)
1790 mark_value_bits_optimized_out (v, offset, this_size_bits);
1791 if (unavail)
1792 mark_value_bits_unavailable (v, offset, this_size_bits);
63b4f126 1793 }
cec03d70
TT
1794 }
1795 break;
1796
1797 case DWARF_VALUE_MEMORY:
e6ca34fc
PA
1798 read_value_memory (v, offset,
1799 p->v.mem.in_stack_memory,
1800 p->v.mem.addr + source_offset,
58414334 1801 buffer.data (), this_size);
cec03d70
TT
1802 break;
1803
1804 case DWARF_VALUE_STACK:
1805 {
afd74c5f 1806 size_t n = this_size;
9a619af0 1807
afd74c5f
TT
1808 if (n > c->addr_size - source_offset)
1809 n = (c->addr_size >= source_offset
1810 ? c->addr_size - source_offset
1811 : 0);
1812 if (n == 0)
1813 {
1814 /* Nothing. */
1815 }
afd74c5f
TT
1816 else
1817 {
8a9b8146 1818 const gdb_byte *val_bytes = value_contents_all (p->v.value);
afd74c5f 1819
8a9b8146 1820 intermediate_buffer = val_bytes + source_offset;
afd74c5f 1821 }
cec03d70
TT
1822 }
1823 break;
1824
1825 case DWARF_VALUE_LITERAL:
1826 {
afd74c5f
TT
1827 size_t n = this_size;
1828
1829 if (n > p->v.literal.length - source_offset)
1830 n = (p->v.literal.length >= source_offset
1831 ? p->v.literal.length - source_offset
1832 : 0);
1833 if (n != 0)
d3b1e874 1834 intermediate_buffer = p->v.literal.data + source_offset;
cec03d70
TT
1835 }
1836 break;
1837
8cf6f0b1
TT
1838 /* These bits show up as zeros -- but do not cause the value
1839 to be considered optimized-out. */
1840 case DWARF_VALUE_IMPLICIT_POINTER:
1841 break;
1842
cb826367 1843 case DWARF_VALUE_OPTIMIZED_OUT:
9a0dc9e3 1844 mark_value_bits_optimized_out (v, offset, this_size_bits);
cb826367
TT
1845 break;
1846
cec03d70
TT
1847 default:
1848 internal_error (__FILE__, __LINE__, _("invalid location type"));
052b9502 1849 }
d3b1e874 1850
8cf6f0b1
TT
1851 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
1852 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
d3b1e874
TT
1853 copy_bitwise (contents, dest_offset_bits,
1854 intermediate_buffer, source_offset_bits % 8,
1855 this_size_bits, bits_big_endian);
1856
1857 offset += this_size_bits;
052b9502
NF
1858 }
1859}
1860
1861static void
1862write_pieced_value (struct value *to, struct value *from)
1863{
1864 int i;
1865 long offset = 0;
d3b1e874 1866 ULONGEST bits_to_skip;
afd74c5f 1867 const gdb_byte *contents;
3e43a32a
MS
1868 struct piece_closure *c
1869 = (struct piece_closure *) value_computed_closure (to);
afd74c5f 1870 size_t type_len;
d3b1e874 1871 size_t buffer_size = 0;
58414334 1872 std::vector<gdb_byte> buffer;
d3b1e874
TT
1873 int bits_big_endian
1874 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
052b9502 1875
afd74c5f 1876 contents = value_contents (from);
d3b1e874 1877 bits_to_skip = 8 * value_offset (to);
0e03807e
TT
1878 if (value_bitsize (to))
1879 {
1880 bits_to_skip += value_bitpos (to);
1881 type_len = value_bitsize (to);
1882 }
1883 else
1884 type_len = 8 * TYPE_LENGTH (value_type (to));
1885
afd74c5f 1886 for (i = 0; i < c->n_pieces && offset < type_len; i++)
052b9502
NF
1887 {
1888 struct dwarf_expr_piece *p = &c->pieces[i];
d3b1e874
TT
1889 size_t this_size_bits, this_size;
1890 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1891 int need_bitwise;
1892 const gdb_byte *source_buffer;
afd74c5f 1893
d3b1e874
TT
1894 this_size_bits = p->size;
1895 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
afd74c5f 1896 {
d3b1e874 1897 bits_to_skip -= this_size_bits;
afd74c5f
TT
1898 continue;
1899 }
d3b1e874
TT
1900 if (this_size_bits > type_len - offset)
1901 this_size_bits = type_len - offset;
1902 if (bits_to_skip > 0)
afd74c5f 1903 {
d3b1e874
TT
1904 dest_offset_bits = bits_to_skip;
1905 source_offset_bits = 0;
1906 this_size_bits -= bits_to_skip;
1907 bits_to_skip = 0;
afd74c5f
TT
1908 }
1909 else
1910 {
d3b1e874
TT
1911 dest_offset_bits = 0;
1912 source_offset_bits = offset;
1913 }
1914
1915 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1916 source_offset = source_offset_bits / 8;
1917 dest_offset = dest_offset_bits / 8;
1918 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1919 {
1920 source_buffer = contents + source_offset;
1921 need_bitwise = 0;
1922 }
1923 else
1924 {
1925 if (buffer_size < this_size)
1926 {
1927 buffer_size = this_size;
58414334 1928 buffer.reserve (buffer_size);
d3b1e874 1929 }
58414334 1930 source_buffer = buffer.data ();
d3b1e874 1931 need_bitwise = 1;
afd74c5f 1932 }
9a619af0 1933
cec03d70 1934 switch (p->location)
052b9502 1935 {
cec03d70
TT
1936 case DWARF_VALUE_REGISTER:
1937 {
2aaaf250 1938 struct frame_info *frame = frame_find_by_id (c->frame_id);
cec03d70 1939 struct gdbarch *arch = get_frame_arch (frame);
0fde2c53
DE
1940 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, p->v.regno);
1941 int reg_offset = dest_offset;
dcbf108f 1942
0fde2c53
DE
1943 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1944 && this_size <= register_size (arch, gdb_regnum))
63b4f126 1945 {
0fde2c53
DE
1946 /* Big-endian, and we want less than full size. */
1947 reg_offset = register_size (arch, gdb_regnum) - this_size;
1948 }
ca45ab26 1949
0fde2c53
DE
1950 if (need_bitwise)
1951 {
1952 int optim, unavail;
ca45ab26 1953
0fde2c53 1954 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
58414334 1955 this_size, buffer.data (),
0fde2c53 1956 &optim, &unavail))
d3b1e874 1957 {
0fde2c53
DE
1958 if (optim)
1959 throw_error (OPTIMIZED_OUT_ERROR,
1960 _("Can't do read-modify-write to "
1961 "update bitfield; containing word "
1962 "has been optimized out"));
1963 if (unavail)
1964 throw_error (NOT_AVAILABLE_ERROR,
1965 _("Can't do read-modify-write to update "
1966 "bitfield; containing word "
1967 "is unavailable"));
d3b1e874 1968 }
58414334 1969 copy_bitwise (buffer.data (), dest_offset_bits,
0fde2c53
DE
1970 contents, source_offset_bits,
1971 this_size_bits,
1972 bits_big_endian);
63b4f126 1973 }
0fde2c53
DE
1974
1975 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
1976 this_size, source_buffer);
cec03d70
TT
1977 }
1978 break;
1979 case DWARF_VALUE_MEMORY:
d3b1e874
TT
1980 if (need_bitwise)
1981 {
1982 /* Only the first and last bytes can possibly have any
1983 bits reused. */
58414334 1984 read_memory (p->v.mem.addr + dest_offset, buffer.data (), 1);
f2c7657e 1985 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
58414334
TT
1986 &buffer[this_size - 1], 1);
1987 copy_bitwise (buffer.data (), dest_offset_bits,
d3b1e874
TT
1988 contents, source_offset_bits,
1989 this_size_bits,
1990 bits_big_endian);
1991 }
1992
f2c7657e 1993 write_memory (p->v.mem.addr + dest_offset,
d3b1e874 1994 source_buffer, this_size);
cec03d70
TT
1995 break;
1996 default:
9a0dc9e3 1997 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
0e03807e 1998 break;
052b9502 1999 }
d3b1e874 2000 offset += this_size_bits;
052b9502
NF
2001 }
2002}
2003
9a0dc9e3
PA
2004/* An implementation of an lval_funcs method to see whether a value is
2005 a synthetic pointer. */
8cf6f0b1 2006
0e03807e 2007static int
6b850546 2008check_pieced_synthetic_pointer (const struct value *value, LONGEST bit_offset,
9a0dc9e3 2009 int bit_length)
0e03807e
TT
2010{
2011 struct piece_closure *c
2012 = (struct piece_closure *) value_computed_closure (value);
2013 int i;
2014
2015 bit_offset += 8 * value_offset (value);
2016 if (value_bitsize (value))
2017 bit_offset += value_bitpos (value);
2018
2019 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2020 {
2021 struct dwarf_expr_piece *p = &c->pieces[i];
2022 size_t this_size_bits = p->size;
2023
2024 if (bit_offset > 0)
2025 {
2026 if (bit_offset >= this_size_bits)
2027 {
2028 bit_offset -= this_size_bits;
2029 continue;
2030 }
2031
2032 bit_length -= this_size_bits - bit_offset;
2033 bit_offset = 0;
2034 }
2035 else
2036 bit_length -= this_size_bits;
2037
9a0dc9e3
PA
2038 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2039 return 0;
0e03807e
TT
2040 }
2041
9a0dc9e3 2042 return 1;
8cf6f0b1
TT
2043}
2044
2045/* A wrapper function for get_frame_address_in_block. */
2046
2047static CORE_ADDR
2048get_frame_address_in_block_wrapper (void *baton)
2049{
9a3c8263 2050 return get_frame_address_in_block ((struct frame_info *) baton);
8cf6f0b1
TT
2051}
2052
3326303b
MG
2053/* Fetch a DW_AT_const_value through a synthetic pointer. */
2054
2055static struct value *
2056fetch_const_value_from_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2057 struct dwarf2_per_cu_data *per_cu,
2058 struct type *type)
2059{
2060 struct value *result = NULL;
2061 struct obstack temp_obstack;
2062 struct cleanup *cleanup;
2063 const gdb_byte *bytes;
2064 LONGEST len;
2065
2066 obstack_init (&temp_obstack);
2067 cleanup = make_cleanup_obstack_free (&temp_obstack);
2068 bytes = dwarf2_fetch_constant_bytes (die, per_cu, &temp_obstack, &len);
2069
2070 if (bytes != NULL)
2071 {
2072 if (byte_offset >= 0
2073 && byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) <= len)
2074 {
2075 bytes += byte_offset;
2076 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2077 }
2078 else
2079 invalid_synthetic_pointer ();
2080 }
2081 else
2082 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2083
2084 do_cleanups (cleanup);
2085
2086 return result;
2087}
2088
2089/* Fetch the value pointed to by a synthetic pointer. */
2090
2091static struct value *
2092indirect_synthetic_pointer (sect_offset die, LONGEST byte_offset,
2093 struct dwarf2_per_cu_data *per_cu,
2094 struct frame_info *frame, struct type *type)
2095{
2096 /* Fetch the location expression of the DIE we're pointing to. */
2097 struct dwarf2_locexpr_baton baton
2098 = dwarf2_fetch_die_loc_sect_off (die, per_cu,
2099 get_frame_address_in_block_wrapper, frame);
2100
2101 /* If pointed-to DIE has a DW_AT_location, evaluate it and return the
2102 resulting value. Otherwise, it may have a DW_AT_const_value instead,
2103 or it may've been optimized out. */
2104 if (baton.data != NULL)
2105 return dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
2106 baton.data, baton.size, baton.per_cu,
2107 byte_offset);
2108 else
2109 return fetch_const_value_from_synthetic_pointer (die, byte_offset, per_cu,
2110 type);
2111}
2112
8cf6f0b1
TT
2113/* An implementation of an lval_funcs method to indirect through a
2114 pointer. This handles the synthetic pointer case when needed. */
2115
2116static struct value *
2117indirect_pieced_value (struct value *value)
2118{
2119 struct piece_closure *c
2120 = (struct piece_closure *) value_computed_closure (value);
2121 struct type *type;
2122 struct frame_info *frame;
2123 struct dwarf2_locexpr_baton baton;
6b850546
DT
2124 int i, bit_length;
2125 LONGEST bit_offset;
8cf6f0b1 2126 struct dwarf_expr_piece *piece = NULL;
8cf6f0b1 2127 LONGEST byte_offset;
b597c318 2128 enum bfd_endian byte_order;
8cf6f0b1 2129
0e37a63c 2130 type = check_typedef (value_type (value));
8cf6f0b1
TT
2131 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2132 return NULL;
2133
2134 bit_length = 8 * TYPE_LENGTH (type);
2135 bit_offset = 8 * value_offset (value);
2136 if (value_bitsize (value))
2137 bit_offset += value_bitpos (value);
2138
2139 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2140 {
2141 struct dwarf_expr_piece *p = &c->pieces[i];
2142 size_t this_size_bits = p->size;
2143
2144 if (bit_offset > 0)
2145 {
2146 if (bit_offset >= this_size_bits)
2147 {
2148 bit_offset -= this_size_bits;
2149 continue;
2150 }
2151
2152 bit_length -= this_size_bits - bit_offset;
2153 bit_offset = 0;
2154 }
2155 else
2156 bit_length -= this_size_bits;
2157
2158 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2159 return NULL;
2160
2161 if (bit_length != 0)
2162 error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
2163
2164 piece = p;
2165 break;
2166 }
2167
3326303b 2168 gdb_assert (piece != NULL);
8cf6f0b1 2169 frame = get_selected_frame (_("No frame selected."));
543305c9 2170
5bd1ef56
TT
2171 /* This is an offset requested by GDB, such as value subscripts.
2172 However, due to how synthetic pointers are implemented, this is
2173 always presented to us as a pointer type. This means we have to
b597c318
YQ
2174 sign-extend it manually as appropriate. Use raw
2175 extract_signed_integer directly rather than value_as_address and
2176 sign extend afterwards on architectures that would need it
2177 (mostly everywhere except MIPS, which has signed addresses) as
2178 the later would go through gdbarch_pointer_to_address and thus
2179 return a CORE_ADDR with high bits set on architectures that
2180 encode address spaces and other things in CORE_ADDR. */
2181 byte_order = gdbarch_byte_order (get_frame_arch (frame));
2182 byte_offset = extract_signed_integer (value_contents (value),
2183 TYPE_LENGTH (type), byte_order);
5bd1ef56 2184 byte_offset += piece->v.ptr.offset;
8cf6f0b1 2185
3326303b
MG
2186 return indirect_synthetic_pointer (piece->v.ptr.die, byte_offset, c->per_cu,
2187 frame, type);
2188}
8cf6f0b1 2189
3326303b
MG
2190/* Implementation of the coerce_ref method of lval_funcs for synthetic C++
2191 references. */
b6807d98 2192
3326303b
MG
2193static struct value *
2194coerce_pieced_ref (const struct value *value)
2195{
2196 struct type *type = check_typedef (value_type (value));
b6807d98 2197
3326303b
MG
2198 if (value_bits_synthetic_pointer (value, value_embedded_offset (value),
2199 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
2200 {
2201 const struct piece_closure *closure
2202 = (struct piece_closure *) value_computed_closure (value);
2203 struct frame_info *frame
2204 = get_selected_frame (_("No frame selected."));
2205
2206 /* gdb represents synthetic pointers as pieced values with a single
2207 piece. */
2208 gdb_assert (closure != NULL);
2209 gdb_assert (closure->n_pieces == 1);
2210
2211 return indirect_synthetic_pointer (closure->pieces->v.ptr.die,
2212 closure->pieces->v.ptr.offset,
2213 closure->per_cu, frame, type);
2214 }
2215 else
2216 {
2217 /* Else: not a synthetic reference; do nothing. */
2218 return NULL;
2219 }
0e03807e
TT
2220}
2221
052b9502 2222static void *
0e03807e 2223copy_pieced_value_closure (const struct value *v)
052b9502 2224{
3e43a32a
MS
2225 struct piece_closure *c
2226 = (struct piece_closure *) value_computed_closure (v);
052b9502 2227
88bfdde4
TT
2228 ++c->refc;
2229 return c;
052b9502
NF
2230}
2231
2232static void
2233free_pieced_value_closure (struct value *v)
2234{
3e43a32a
MS
2235 struct piece_closure *c
2236 = (struct piece_closure *) value_computed_closure (v);
052b9502 2237
88bfdde4
TT
2238 --c->refc;
2239 if (c->refc == 0)
2240 {
8a9b8146
TT
2241 int i;
2242
2243 for (i = 0; i < c->n_pieces; ++i)
2244 if (c->pieces[i].location == DWARF_VALUE_STACK)
2245 value_free (c->pieces[i].v.value);
2246
88bfdde4
TT
2247 xfree (c->pieces);
2248 xfree (c);
2249 }
052b9502
NF
2250}
2251
2252/* Functions for accessing a variable described by DW_OP_piece. */
c8f2448a 2253static const struct lval_funcs pieced_value_funcs = {
052b9502
NF
2254 read_pieced_value,
2255 write_pieced_value,
8cf6f0b1 2256 indirect_pieced_value,
3326303b 2257 coerce_pieced_ref,
8cf6f0b1 2258 check_pieced_synthetic_pointer,
052b9502
NF
2259 copy_pieced_value_closure,
2260 free_pieced_value_closure
2261};
2262
4c2df51b 2263/* Evaluate a location description, starting at DATA and with length
8cf6f0b1
TT
2264 SIZE, to find the current location of variable of TYPE in the
2265 context of FRAME. BYTE_OFFSET is applied after the contents are
2266 computed. */
a2d33775 2267
8cf6f0b1
TT
2268static struct value *
2269dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
56eb65bd 2270 const gdb_byte *data, size_t size,
8cf6f0b1
TT
2271 struct dwarf2_per_cu_data *per_cu,
2272 LONGEST byte_offset)
4c2df51b 2273{
4c2df51b 2274 struct value *retval;
718b9626 2275 struct cleanup *value_chain;
ac56253d 2276 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
4c2df51b 2277
8cf6f0b1
TT
2278 if (byte_offset < 0)
2279 invalid_synthetic_pointer ();
2280
0d53c4c4 2281 if (size == 0)
a7035dbb 2282 return allocate_optimized_out_value (type);
0d53c4c4 2283
192ca6d8
TT
2284 dwarf_evaluate_loc_desc ctx;
2285 ctx.frame = frame;
2286 ctx.per_cu = per_cu;
2287 ctx.obj_address = 0;
4c2df51b 2288
72fc29ff 2289 value_chain = make_cleanup_value_free_to_mark (value_mark ());
4a227398 2290
718b9626
TT
2291 ctx.gdbarch = get_objfile_arch (objfile);
2292 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2293 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2294 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
4c2df51b 2295
492d29ea 2296 TRY
79e1a869 2297 {
595d2e30 2298 ctx.eval (data, size);
79e1a869 2299 }
492d29ea 2300 CATCH (ex, RETURN_MASK_ERROR)
79e1a869
PA
2301 {
2302 if (ex.error == NOT_AVAILABLE_ERROR)
2303 {
718b9626 2304 do_cleanups (value_chain);
79e1a869
PA
2305 retval = allocate_value (type);
2306 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type));
2307 return retval;
2308 }
8e3b41a9
JK
2309 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2310 {
2311 if (entry_values_debug)
2312 exception_print (gdb_stdout, ex);
718b9626 2313 do_cleanups (value_chain);
8e3b41a9
JK
2314 return allocate_optimized_out_value (type);
2315 }
79e1a869
PA
2316 else
2317 throw_exception (ex);
2318 }
492d29ea 2319 END_CATCH
79e1a869 2320
718b9626 2321 if (ctx.num_pieces > 0)
87808bd6 2322 {
052b9502 2323 struct piece_closure *c;
8cf6f0b1
TT
2324 ULONGEST bit_size = 0;
2325 int i;
052b9502 2326
718b9626
TT
2327 for (i = 0; i < ctx.num_pieces; ++i)
2328 bit_size += ctx.pieces[i].size;
8cf6f0b1
TT
2329 if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
2330 invalid_synthetic_pointer ();
2331
718b9626 2332 c = allocate_piece_closure (per_cu, ctx.num_pieces, ctx.pieces,
ee40d8d4 2333 ctx.addr_size, frame);
72fc29ff
TT
2334 /* We must clean up the value chain after creating the piece
2335 closure but before allocating the result. */
2336 do_cleanups (value_chain);
a2d33775 2337 retval = allocate_computed_value (type, &pieced_value_funcs, c);
8cf6f0b1 2338 set_value_offset (retval, byte_offset);
87808bd6 2339 }
4c2df51b
DJ
2340 else
2341 {
718b9626 2342 switch (ctx.location)
cec03d70
TT
2343 {
2344 case DWARF_VALUE_REGISTER:
2345 {
2346 struct gdbarch *arch = get_frame_arch (frame);
7c33b57c 2347 int dwarf_regnum
595d2e30 2348 = longest_to_int (value_as_long (ctx.fetch (0)));
0fde2c53 2349 int gdb_regnum = dwarf_reg_to_regnum_or_error (arch, dwarf_regnum);
9a619af0 2350
8cf6f0b1
TT
2351 if (byte_offset != 0)
2352 error (_("cannot use offset on synthetic pointer to register"));
72fc29ff 2353 do_cleanups (value_chain);
0fde2c53
DE
2354 retval = value_from_register (type, gdb_regnum, frame);
2355 if (value_optimized_out (retval))
2356 {
2357 struct value *tmp;
2358
2359 /* This means the register has undefined value / was
2360 not saved. As we're computing the location of some
2361 variable etc. in the program, not a value for
2362 inspecting a register ($pc, $sp, etc.), return a
2363 generic optimized out value instead, so that we show
2364 <optimized out> instead of <not saved>. */
2365 do_cleanups (value_chain);
2366 tmp = allocate_value (type);
2367 value_contents_copy (tmp, 0, retval, 0, TYPE_LENGTH (type));
2368 retval = tmp;
2369 }
cec03d70
TT
2370 }
2371 break;
2372
2373 case DWARF_VALUE_MEMORY:
2374 {
f56331b4 2375 struct type *ptr_type;
595d2e30
TT
2376 CORE_ADDR address = ctx.fetch_address (0);
2377 int in_stack_memory = ctx.fetch_in_stack_memory (0);
cec03d70 2378
f56331b4
KB
2379 /* DW_OP_deref_size (and possibly other operations too) may
2380 create a pointer instead of an address. Ideally, the
2381 pointer to address conversion would be performed as part
2382 of those operations, but the type of the object to
2383 which the address refers is not known at the time of
2384 the operation. Therefore, we do the conversion here
2385 since the type is readily available. */
2386
2387 switch (TYPE_CODE (type))
2388 {
2389 case TYPE_CODE_FUNC:
2390 case TYPE_CODE_METHOD:
718b9626 2391 ptr_type = builtin_type (ctx.gdbarch)->builtin_func_ptr;
f56331b4
KB
2392 break;
2393 default:
718b9626 2394 ptr_type = builtin_type (ctx.gdbarch)->builtin_data_ptr;
f56331b4
KB
2395 break;
2396 }
2397 address = value_as_address (value_from_pointer (ptr_type, address));
2398
72fc29ff 2399 do_cleanups (value_chain);
08039c9e 2400 retval = value_at_lazy (type, address + byte_offset);
44353522
DE
2401 if (in_stack_memory)
2402 set_value_stack (retval, 1);
cec03d70
TT
2403 }
2404 break;
2405
2406 case DWARF_VALUE_STACK:
2407 {
595d2e30 2408 struct value *value = ctx.fetch (0);
8a9b8146
TT
2409 gdb_byte *contents;
2410 const gdb_byte *val_bytes;
2411 size_t n = TYPE_LENGTH (value_type (value));
cec03d70 2412
8cf6f0b1
TT
2413 if (byte_offset + TYPE_LENGTH (type) > n)
2414 invalid_synthetic_pointer ();
2415
8a9b8146
TT
2416 val_bytes = value_contents_all (value);
2417 val_bytes += byte_offset;
8cf6f0b1
TT
2418 n -= byte_offset;
2419
72fc29ff
TT
2420 /* Preserve VALUE because we are going to free values back
2421 to the mark, but we still need the value contents
2422 below. */
2423 value_incref (value);
2424 do_cleanups (value_chain);
2425 make_cleanup_value_free (value);
2426
a2d33775 2427 retval = allocate_value (type);
cec03d70 2428 contents = value_contents_raw (retval);
a2d33775 2429 if (n > TYPE_LENGTH (type))
b6cede78
JK
2430 {
2431 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2432
2433 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2434 val_bytes += n - TYPE_LENGTH (type);
2435 n = TYPE_LENGTH (type);
2436 }
8a9b8146 2437 memcpy (contents, val_bytes, n);
cec03d70
TT
2438 }
2439 break;
2440
2441 case DWARF_VALUE_LITERAL:
2442 {
2443 bfd_byte *contents;
8c814cdd 2444 const bfd_byte *ldata;
718b9626 2445 size_t n = ctx.len;
cec03d70 2446
8cf6f0b1
TT
2447 if (byte_offset + TYPE_LENGTH (type) > n)
2448 invalid_synthetic_pointer ();
2449
72fc29ff 2450 do_cleanups (value_chain);
a2d33775 2451 retval = allocate_value (type);
cec03d70 2452 contents = value_contents_raw (retval);
8cf6f0b1 2453
718b9626 2454 ldata = ctx.data + byte_offset;
8cf6f0b1
TT
2455 n -= byte_offset;
2456
a2d33775 2457 if (n > TYPE_LENGTH (type))
b6cede78
JK
2458 {
2459 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2460
2461 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2462 ldata += n - TYPE_LENGTH (type);
2463 n = TYPE_LENGTH (type);
2464 }
8c814cdd 2465 memcpy (contents, ldata, n);
cec03d70
TT
2466 }
2467 break;
2468
dd90784c 2469 case DWARF_VALUE_OPTIMIZED_OUT:
72fc29ff 2470 do_cleanups (value_chain);
a7035dbb 2471 retval = allocate_optimized_out_value (type);
dd90784c
JK
2472 break;
2473
8cf6f0b1
TT
2474 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2475 operation by execute_stack_op. */
2476 case DWARF_VALUE_IMPLICIT_POINTER:
cb826367
TT
2477 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2478 it can only be encountered when making a piece. */
cec03d70
TT
2479 default:
2480 internal_error (__FILE__, __LINE__, _("invalid location type"));
2481 }
4c2df51b
DJ
2482 }
2483
718b9626 2484 set_value_initialized (retval, ctx.initialized);
42be36b3 2485
718b9626 2486 do_cleanups (value_chain);
4c2df51b
DJ
2487
2488 return retval;
2489}
8cf6f0b1
TT
2490
2491/* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2492 passes 0 as the byte_offset. */
2493
2494struct value *
2495dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
56eb65bd 2496 const gdb_byte *data, size_t size,
8cf6f0b1
TT
2497 struct dwarf2_per_cu_data *per_cu)
2498{
2499 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
2500}
2501
80180f79 2502/* Evaluates a dwarf expression and stores the result in VAL, expecting
63e43d3a
PMR
2503 that the dwarf expression only produces a single CORE_ADDR. FRAME is the
2504 frame in which the expression is evaluated. ADDR is a context (location of
2505 a variable) and might be needed to evaluate the location expression.
80180f79
SA
2506 Returns 1 on success, 0 otherwise. */
2507
2508static int
2509dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
63e43d3a 2510 struct frame_info *frame,
08412b07 2511 CORE_ADDR addr,
1cfdf534 2512 CORE_ADDR *valp)
80180f79 2513{
80180f79 2514 struct objfile *objfile;
80180f79
SA
2515
2516 if (dlbaton == NULL || dlbaton->size == 0)
2517 return 0;
2518
192ca6d8 2519 dwarf_evaluate_loc_desc ctx;
80180f79 2520
192ca6d8
TT
2521 ctx.frame = frame;
2522 ctx.per_cu = dlbaton->per_cu;
2523 ctx.obj_address = addr;
80180f79
SA
2524
2525 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2526
718b9626
TT
2527 ctx.gdbarch = get_objfile_arch (objfile);
2528 ctx.addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2529 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2530 ctx.offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
80180f79 2531
595d2e30 2532 ctx.eval (dlbaton->data, dlbaton->size);
80180f79 2533
718b9626 2534 switch (ctx.location)
80180f79
SA
2535 {
2536 case DWARF_VALUE_REGISTER:
2537 case DWARF_VALUE_MEMORY:
2538 case DWARF_VALUE_STACK:
595d2e30 2539 *valp = ctx.fetch_address (0);
718b9626 2540 if (ctx.location == DWARF_VALUE_REGISTER)
192ca6d8 2541 *valp = ctx.read_addr_from_reg (*valp);
80180f79
SA
2542 return 1;
2543 case DWARF_VALUE_LITERAL:
718b9626
TT
2544 *valp = extract_signed_integer (ctx.data, ctx.len,
2545 gdbarch_byte_order (ctx.gdbarch));
80180f79
SA
2546 return 1;
2547 /* Unsupported dwarf values. */
2548 case DWARF_VALUE_OPTIMIZED_OUT:
2549 case DWARF_VALUE_IMPLICIT_POINTER:
2550 break;
2551 }
2552
80180f79
SA
2553 return 0;
2554}
2555
2556/* See dwarf2loc.h. */
2557
2558int
08412b07 2559dwarf2_evaluate_property (const struct dynamic_prop *prop,
63e43d3a 2560 struct frame_info *frame,
df25ebbd
JB
2561 struct property_addr_info *addr_stack,
2562 CORE_ADDR *value)
80180f79
SA
2563{
2564 if (prop == NULL)
2565 return 0;
2566
63e43d3a
PMR
2567 if (frame == NULL && has_stack_frames ())
2568 frame = get_selected_frame (NULL);
2569
80180f79
SA
2570 switch (prop->kind)
2571 {
2572 case PROP_LOCEXPR:
2573 {
9a3c8263
SM
2574 const struct dwarf2_property_baton *baton
2575 = (const struct dwarf2_property_baton *) prop->data.baton;
80180f79 2576
63e43d3a
PMR
2577 if (dwarf2_locexpr_baton_eval (&baton->locexpr, frame,
2578 addr_stack ? addr_stack->addr : 0,
df25ebbd 2579 value))
80180f79
SA
2580 {
2581 if (baton->referenced_type)
2582 {
2583 struct value *val = value_at (baton->referenced_type, *value);
2584
2585 *value = value_as_address (val);
2586 }
2587 return 1;
2588 }
2589 }
2590 break;
2591
2592 case PROP_LOCLIST:
2593 {
9a3c8263
SM
2594 struct dwarf2_property_baton *baton
2595 = (struct dwarf2_property_baton *) prop->data.baton;
80180f79
SA
2596 CORE_ADDR pc = get_frame_address_in_block (frame);
2597 const gdb_byte *data;
2598 struct value *val;
2599 size_t size;
2600
2601 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2602 if (data != NULL)
2603 {
2604 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2605 size, baton->loclist.per_cu);
2606 if (!value_optimized_out (val))
2607 {
2608 *value = value_as_address (val);
2609 return 1;
2610 }
2611 }
2612 }
2613 break;
2614
2615 case PROP_CONST:
2616 *value = prop->data.const_val;
2617 return 1;
df25ebbd
JB
2618
2619 case PROP_ADDR_OFFSET:
2620 {
9a3c8263
SM
2621 struct dwarf2_property_baton *baton
2622 = (struct dwarf2_property_baton *) prop->data.baton;
df25ebbd
JB
2623 struct property_addr_info *pinfo;
2624 struct value *val;
2625
2626 for (pinfo = addr_stack; pinfo != NULL; pinfo = pinfo->next)
2627 if (pinfo->type == baton->referenced_type)
2628 break;
2629 if (pinfo == NULL)
2c811c0f 2630 error (_("cannot find reference address for offset property"));
c3345124
JB
2631 if (pinfo->valaddr != NULL)
2632 val = value_from_contents
2633 (baton->offset_info.type,
2634 pinfo->valaddr + baton->offset_info.offset);
2635 else
2636 val = value_at (baton->offset_info.type,
2637 pinfo->addr + baton->offset_info.offset);
df25ebbd
JB
2638 *value = value_as_address (val);
2639 return 1;
2640 }
80180f79
SA
2641 }
2642
2643 return 0;
2644}
2645
bb2ec1b3
TT
2646/* See dwarf2loc.h. */
2647
2648void
2649dwarf2_compile_property_to_c (struct ui_file *stream,
2650 const char *result_name,
2651 struct gdbarch *gdbarch,
2652 unsigned char *registers_used,
2653 const struct dynamic_prop *prop,
2654 CORE_ADDR pc,
2655 struct symbol *sym)
2656{
9a3c8263
SM
2657 struct dwarf2_property_baton *baton
2658 = (struct dwarf2_property_baton *) prop->data.baton;
bb2ec1b3
TT
2659 const gdb_byte *data;
2660 size_t size;
2661 struct dwarf2_per_cu_data *per_cu;
2662
2663 if (prop->kind == PROP_LOCEXPR)
2664 {
2665 data = baton->locexpr.data;
2666 size = baton->locexpr.size;
2667 per_cu = baton->locexpr.per_cu;
2668 }
2669 else
2670 {
2671 gdb_assert (prop->kind == PROP_LOCLIST);
2672
2673 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2674 per_cu = baton->loclist.per_cu;
2675 }
2676
2677 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2678 gdbarch, registers_used,
2679 dwarf2_per_cu_addr_size (per_cu),
2680 data, data + size, per_cu);
2681}
2682
4c2df51b 2683\f
0b31a4bc 2684/* Helper functions and baton for dwarf2_loc_desc_get_symbol_read_needs. */
4c2df51b 2685
192ca6d8 2686class symbol_needs_eval_context : public dwarf_expr_context
4c2df51b 2687{
192ca6d8
TT
2688 public:
2689
0b31a4bc 2690 enum symbol_needs_kind needs;
17ea53c3 2691 struct dwarf2_per_cu_data *per_cu;
4c2df51b 2692
192ca6d8
TT
2693 /* Reads from registers do require a frame. */
2694 CORE_ADDR read_addr_from_reg (int regnum) OVERRIDE
2695 {
2696 needs = SYMBOL_NEEDS_FRAME;
2697 return 1;
2698 }
2699
2700 /* "get_reg_value" callback: Reads from registers do require a
2701 frame. */
2702
2703 struct value *get_reg_value (struct type *type, int regnum) OVERRIDE
2704 {
2705 needs = SYMBOL_NEEDS_FRAME;
2706 return value_zero (type, not_lval);
2707 }
2708
2709 /* Reads from memory do not require a frame. */
2710 void read_mem (gdb_byte *buf, CORE_ADDR addr, size_t len) OVERRIDE
2711 {
2712 memset (buf, 0, len);
2713 }
2714
2715 /* Frame-relative accesses do require a frame. */
2716 void get_frame_base (const gdb_byte **start, size_t *length) OVERRIDE
2717 {
2718 static gdb_byte lit0 = DW_OP_lit0;
2719
2720 *start = &lit0;
2721 *length = 1;
2722
2723 needs = SYMBOL_NEEDS_FRAME;
2724 }
2725
2726 /* CFA accesses require a frame. */
2727 CORE_ADDR get_frame_cfa () OVERRIDE
2728 {
2729 needs = SYMBOL_NEEDS_FRAME;
2730 return 1;
2731 }
2732
7d5697f9
TT
2733 CORE_ADDR get_frame_pc () OVERRIDE
2734 {
2735 needs = SYMBOL_NEEDS_FRAME;
2736 return 1;
2737 }
2738
192ca6d8
TT
2739 /* Thread-local accesses require registers, but not a frame. */
2740 CORE_ADDR get_tls_address (CORE_ADDR offset) OVERRIDE
2741 {
2742 if (needs <= SYMBOL_NEEDS_REGISTERS)
2743 needs = SYMBOL_NEEDS_REGISTERS;
2744 return 1;
2745 }
2746
2747 /* Helper interface of per_cu_dwarf_call for
2748 dwarf2_loc_desc_get_symbol_read_needs. */
2749
2750 void dwarf_call (cu_offset die_offset) OVERRIDE
2751 {
2752 per_cu_dwarf_call (this, die_offset, per_cu);
2753 }
2754
2755 /* DW_OP_GNU_entry_value accesses require a caller, therefore a
2756 frame. */
2757
2758 void push_dwarf_reg_entry_value (enum call_site_parameter_kind kind,
2759 union call_site_parameter_u kind_u,
2760 int deref_size) OVERRIDE
2761 {
2762 needs = SYMBOL_NEEDS_FRAME;
3019eac3 2763
192ca6d8
TT
2764 /* The expression may require some stub values on DWARF stack. */
2765 push_address (0, 0);
2766 }
3019eac3 2767
192ca6d8 2768 /* DW_OP_GNU_addr_index doesn't require a frame. */
08412b07 2769
192ca6d8
TT
2770 CORE_ADDR get_addr_index (unsigned int index) OVERRIDE
2771 {
2772 /* Nothing to do. */
2773 return 1;
2774 }
08412b07 2775
192ca6d8 2776 /* DW_OP_push_object_address has a frame already passed through. */
9e8b7a03 2777
192ca6d8
TT
2778 CORE_ADDR get_object_address () OVERRIDE
2779 {
2780 /* Nothing to do. */
2781 return 1;
2782 }
9e8b7a03
JK
2783};
2784
0b31a4bc
TT
2785/* Compute the correct symbol_needs_kind value for the location
2786 expression at DATA (length SIZE). */
4c2df51b 2787
0b31a4bc
TT
2788static enum symbol_needs_kind
2789dwarf2_loc_desc_get_symbol_read_needs (const gdb_byte *data, size_t size,
2790 struct dwarf2_per_cu_data *per_cu)
4c2df51b 2791{
f630a401 2792 int in_reg;
ac56253d 2793 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
4c2df51b 2794
eb115069
TT
2795 scoped_value_mark free_values;
2796
192ca6d8
TT
2797 symbol_needs_eval_context ctx;
2798
2799 ctx.needs = SYMBOL_NEEDS_NONE;
2800 ctx.per_cu = per_cu;
718b9626
TT
2801 ctx.gdbarch = get_objfile_arch (objfile);
2802 ctx.addr_size = dwarf2_per_cu_addr_size (per_cu);
2803 ctx.ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
2804 ctx.offset = dwarf2_per_cu_text_offset (per_cu);
4c2df51b 2805
595d2e30 2806 ctx.eval (data, size);
4c2df51b 2807
718b9626 2808 in_reg = ctx.location == DWARF_VALUE_REGISTER;
f630a401 2809
718b9626 2810 if (ctx.num_pieces > 0)
87808bd6
JB
2811 {
2812 int i;
2813
2814 /* If the location has several pieces, and any of them are in
2815 registers, then we will need a frame to fetch them from. */
718b9626
TT
2816 for (i = 0; i < ctx.num_pieces; i++)
2817 if (ctx.pieces[i].location == DWARF_VALUE_REGISTER)
87808bd6
JB
2818 in_reg = 1;
2819 }
2820
0b31a4bc 2821 if (in_reg)
192ca6d8
TT
2822 ctx.needs = SYMBOL_NEEDS_FRAME;
2823 return ctx.needs;
4c2df51b
DJ
2824}
2825
3cf03773
TT
2826/* A helper function that throws an unimplemented error mentioning a
2827 given DWARF operator. */
2828
2829static void
2830unimplemented (unsigned int op)
0d53c4c4 2831{
f39c6ffd 2832 const char *name = get_DW_OP_name (op);
b1bfef65
TT
2833
2834 if (name)
2835 error (_("DWARF operator %s cannot be translated to an agent expression"),
2836 name);
2837 else
1ba1b353
TT
2838 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2839 "to an agent expression"),
b1bfef65 2840 op);
3cf03773 2841}
08922a10 2842
0fde2c53
DE
2843/* See dwarf2loc.h.
2844
2845 This is basically a wrapper on gdbarch_dwarf2_reg_to_regnum so that we
2846 can issue a complaint, which is better than having every target's
2847 implementation of dwarf2_reg_to_regnum do it. */
08922a10 2848
d064d1be 2849int
0fde2c53 2850dwarf_reg_to_regnum (struct gdbarch *arch, int dwarf_reg)
3cf03773
TT
2851{
2852 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
0fde2c53 2853
3cf03773 2854 if (reg == -1)
0fde2c53
DE
2855 {
2856 complaint (&symfile_complaints,
2857 _("bad DWARF register number %d"), dwarf_reg);
2858 }
2859 return reg;
2860}
2861
2862/* Subroutine of dwarf_reg_to_regnum_or_error to simplify it.
2863 Throw an error because DWARF_REG is bad. */
2864
2865static void
2866throw_bad_regnum_error (ULONGEST dwarf_reg)
2867{
2868 /* Still want to print -1 as "-1".
2869 We *could* have int and ULONGEST versions of dwarf2_reg_to_regnum_or_error
2870 but that's overkill for now. */
2871 if ((int) dwarf_reg == dwarf_reg)
2872 error (_("Unable to access DWARF register number %d"), (int) dwarf_reg);
2873 error (_("Unable to access DWARF register number %s"),
2874 pulongest (dwarf_reg));
2875}
2876
2877/* See dwarf2loc.h. */
2878
2879int
2880dwarf_reg_to_regnum_or_error (struct gdbarch *arch, ULONGEST dwarf_reg)
2881{
2882 int reg;
2883
2884 if (dwarf_reg > INT_MAX)
2885 throw_bad_regnum_error (dwarf_reg);
2886 /* Yes, we will end up issuing a complaint and an error if DWARF_REG is
2887 bad, but that's ok. */
2888 reg = dwarf_reg_to_regnum (arch, (int) dwarf_reg);
2889 if (reg == -1)
2890 throw_bad_regnum_error (dwarf_reg);
3cf03773
TT
2891 return reg;
2892}
08922a10 2893
3cf03773
TT
2894/* A helper function that emits an access to memory. ARCH is the
2895 target architecture. EXPR is the expression which we are building.
2896 NBITS is the number of bits we want to read. This emits the
2897 opcodes needed to read the memory and then extract the desired
2898 bits. */
08922a10 2899
3cf03773
TT
2900static void
2901access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
08922a10 2902{
3cf03773
TT
2903 ULONGEST nbytes = (nbits + 7) / 8;
2904
9df7235c 2905 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
3cf03773 2906
92bc6a20 2907 if (expr->tracing)
3cf03773
TT
2908 ax_trace_quick (expr, nbytes);
2909
2910 if (nbits <= 8)
2911 ax_simple (expr, aop_ref8);
2912 else if (nbits <= 16)
2913 ax_simple (expr, aop_ref16);
2914 else if (nbits <= 32)
2915 ax_simple (expr, aop_ref32);
2916 else
2917 ax_simple (expr, aop_ref64);
2918
2919 /* If we read exactly the number of bytes we wanted, we're done. */
2920 if (8 * nbytes == nbits)
2921 return;
2922
2923 if (gdbarch_bits_big_endian (arch))
0d53c4c4 2924 {
3cf03773
TT
2925 /* On a bits-big-endian machine, we want the high-order
2926 NBITS. */
2927 ax_const_l (expr, 8 * nbytes - nbits);
2928 ax_simple (expr, aop_rsh_unsigned);
0d53c4c4 2929 }
3cf03773 2930 else
0d53c4c4 2931 {
3cf03773
TT
2932 /* On a bits-little-endian box, we want the low-order NBITS. */
2933 ax_zero_ext (expr, nbits);
0d53c4c4 2934 }
3cf03773 2935}
0936ad1d 2936
8cf6f0b1
TT
2937/* A helper function to return the frame's PC. */
2938
2939static CORE_ADDR
2940get_ax_pc (void *baton)
2941{
9a3c8263 2942 struct agent_expr *expr = (struct agent_expr *) baton;
8cf6f0b1
TT
2943
2944 return expr->scope;
2945}
2946
3cf03773
TT
2947/* Compile a DWARF location expression to an agent expression.
2948
2949 EXPR is the agent expression we are building.
2950 LOC is the agent value we modify.
2951 ARCH is the architecture.
2952 ADDR_SIZE is the size of addresses, in bytes.
2953 OP_PTR is the start of the location expression.
2954 OP_END is one past the last byte of the location expression.
2955
2956 This will throw an exception for various kinds of errors -- for
2957 example, if the expression cannot be compiled, or if the expression
2958 is invalid. */
0936ad1d 2959
9f6f94ff
TT
2960void
2961dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
2962 struct gdbarch *arch, unsigned int addr_size,
2963 const gdb_byte *op_ptr, const gdb_byte *op_end,
2964 struct dwarf2_per_cu_data *per_cu)
3cf03773 2965{
58414334
TT
2966 int i;
2967 std::vector<int> dw_labels, patches;
3cf03773
TT
2968 const gdb_byte * const base = op_ptr;
2969 const gdb_byte *previous_piece = op_ptr;
2970 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2971 ULONGEST bits_collected = 0;
2972 unsigned int addr_size_bits = 8 * addr_size;
2973 int bits_big_endian = gdbarch_bits_big_endian (arch);
0936ad1d 2974
58414334 2975 std::vector<int> offsets (op_end - op_ptr, -1);
0936ad1d 2976
3cf03773
TT
2977 /* By default we are making an address. */
2978 loc->kind = axs_lvalue_memory;
0d45f56e 2979
3cf03773
TT
2980 while (op_ptr < op_end)
2981 {
aead7601 2982 enum dwarf_location_atom op = (enum dwarf_location_atom) *op_ptr;
9fccedf7
DE
2983 uint64_t uoffset, reg;
2984 int64_t offset;
3cf03773
TT
2985 int i;
2986
2987 offsets[op_ptr - base] = expr->len;
2988 ++op_ptr;
2989
2990 /* Our basic approach to code generation is to map DWARF
2991 operations directly to AX operations. However, there are
2992 some differences.
2993
2994 First, DWARF works on address-sized units, but AX always uses
2995 LONGEST. For most operations we simply ignore this
2996 difference; instead we generate sign extensions as needed
2997 before division and comparison operations. It would be nice
2998 to omit the sign extensions, but there is no way to determine
2999 the size of the target's LONGEST. (This code uses the size
3000 of the host LONGEST in some cases -- that is a bug but it is
3001 difficult to fix.)
3002
3003 Second, some DWARF operations cannot be translated to AX.
3004 For these we simply fail. See
3005 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
3006 switch (op)
0936ad1d 3007 {
3cf03773
TT
3008 case DW_OP_lit0:
3009 case DW_OP_lit1:
3010 case DW_OP_lit2:
3011 case DW_OP_lit3:
3012 case DW_OP_lit4:
3013 case DW_OP_lit5:
3014 case DW_OP_lit6:
3015 case DW_OP_lit7:
3016 case DW_OP_lit8:
3017 case DW_OP_lit9:
3018 case DW_OP_lit10:
3019 case DW_OP_lit11:
3020 case DW_OP_lit12:
3021 case DW_OP_lit13:
3022 case DW_OP_lit14:
3023 case DW_OP_lit15:
3024 case DW_OP_lit16:
3025 case DW_OP_lit17:
3026 case DW_OP_lit18:
3027 case DW_OP_lit19:
3028 case DW_OP_lit20:
3029 case DW_OP_lit21:
3030 case DW_OP_lit22:
3031 case DW_OP_lit23:
3032 case DW_OP_lit24:
3033 case DW_OP_lit25:
3034 case DW_OP_lit26:
3035 case DW_OP_lit27:
3036 case DW_OP_lit28:
3037 case DW_OP_lit29:
3038 case DW_OP_lit30:
3039 case DW_OP_lit31:
3040 ax_const_l (expr, op - DW_OP_lit0);
3041 break;
0d53c4c4 3042
3cf03773 3043 case DW_OP_addr:
ac56253d 3044 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3cf03773 3045 op_ptr += addr_size;
ac56253d
TT
3046 /* Some versions of GCC emit DW_OP_addr before
3047 DW_OP_GNU_push_tls_address. In this case the value is an
3048 index, not an address. We don't support things like
3049 branching between the address and the TLS op. */
3050 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
9aa1f1e3 3051 uoffset += dwarf2_per_cu_text_offset (per_cu);
ac56253d 3052 ax_const_l (expr, uoffset);
3cf03773 3053 break;
4c2df51b 3054
3cf03773
TT
3055 case DW_OP_const1u:
3056 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
3057 op_ptr += 1;
3058 break;
3059 case DW_OP_const1s:
3060 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
3061 op_ptr += 1;
3062 break;
3063 case DW_OP_const2u:
3064 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
3065 op_ptr += 2;
3066 break;
3067 case DW_OP_const2s:
3068 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
3069 op_ptr += 2;
3070 break;
3071 case DW_OP_const4u:
3072 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
3073 op_ptr += 4;
3074 break;
3075 case DW_OP_const4s:
3076 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
3077 op_ptr += 4;
3078 break;
3079 case DW_OP_const8u:
3080 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
3081 op_ptr += 8;
3082 break;
3083 case DW_OP_const8s:
3084 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
3085 op_ptr += 8;
3086 break;
3087 case DW_OP_constu:
f664829e 3088 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3cf03773
TT
3089 ax_const_l (expr, uoffset);
3090 break;
3091 case DW_OP_consts:
f664829e 3092 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3cf03773
TT
3093 ax_const_l (expr, offset);
3094 break;
9c238357 3095
3cf03773
TT
3096 case DW_OP_reg0:
3097 case DW_OP_reg1:
3098 case DW_OP_reg2:
3099 case DW_OP_reg3:
3100 case DW_OP_reg4:
3101 case DW_OP_reg5:
3102 case DW_OP_reg6:
3103 case DW_OP_reg7:
3104 case DW_OP_reg8:
3105 case DW_OP_reg9:
3106 case DW_OP_reg10:
3107 case DW_OP_reg11:
3108 case DW_OP_reg12:
3109 case DW_OP_reg13:
3110 case DW_OP_reg14:
3111 case DW_OP_reg15:
3112 case DW_OP_reg16:
3113 case DW_OP_reg17:
3114 case DW_OP_reg18:
3115 case DW_OP_reg19:
3116 case DW_OP_reg20:
3117 case DW_OP_reg21:
3118 case DW_OP_reg22:
3119 case DW_OP_reg23:
3120 case DW_OP_reg24:
3121 case DW_OP_reg25:
3122 case DW_OP_reg26:
3123 case DW_OP_reg27:
3124 case DW_OP_reg28:
3125 case DW_OP_reg29:
3126 case DW_OP_reg30:
3127 case DW_OP_reg31:
3128 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
0fde2c53 3129 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3cf03773
TT
3130 loc->kind = axs_lvalue_register;
3131 break;
9c238357 3132
3cf03773 3133 case DW_OP_regx:
f664829e 3134 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3cf03773 3135 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
0fde2c53 3136 loc->u.reg = dwarf_reg_to_regnum_or_error (arch, reg);
3cf03773
TT
3137 loc->kind = axs_lvalue_register;
3138 break;
08922a10 3139
3cf03773
TT
3140 case DW_OP_implicit_value:
3141 {
9fccedf7 3142 uint64_t len;
3cf03773 3143
f664829e 3144 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3cf03773
TT
3145 if (op_ptr + len > op_end)
3146 error (_("DW_OP_implicit_value: too few bytes available."));
3147 if (len > sizeof (ULONGEST))
3148 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3149 (int) len);
3150
3151 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3152 byte_order));
3153 op_ptr += len;
3154 dwarf_expr_require_composition (op_ptr, op_end,
3155 "DW_OP_implicit_value");
3156
3157 loc->kind = axs_rvalue;
3158 }
3159 break;
08922a10 3160
3cf03773
TT
3161 case DW_OP_stack_value:
3162 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3163 loc->kind = axs_rvalue;
3164 break;
08922a10 3165
3cf03773
TT
3166 case DW_OP_breg0:
3167 case DW_OP_breg1:
3168 case DW_OP_breg2:
3169 case DW_OP_breg3:
3170 case DW_OP_breg4:
3171 case DW_OP_breg5:
3172 case DW_OP_breg6:
3173 case DW_OP_breg7:
3174 case DW_OP_breg8:
3175 case DW_OP_breg9:
3176 case DW_OP_breg10:
3177 case DW_OP_breg11:
3178 case DW_OP_breg12:
3179 case DW_OP_breg13:
3180 case DW_OP_breg14:
3181 case DW_OP_breg15:
3182 case DW_OP_breg16:
3183 case DW_OP_breg17:
3184 case DW_OP_breg18:
3185 case DW_OP_breg19:
3186 case DW_OP_breg20:
3187 case DW_OP_breg21:
3188 case DW_OP_breg22:
3189 case DW_OP_breg23:
3190 case DW_OP_breg24:
3191 case DW_OP_breg25:
3192 case DW_OP_breg26:
3193 case DW_OP_breg27:
3194 case DW_OP_breg28:
3195 case DW_OP_breg29:
3196 case DW_OP_breg30:
3197 case DW_OP_breg31:
f664829e 3198 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
0fde2c53 3199 i = dwarf_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3cf03773
TT
3200 ax_reg (expr, i);
3201 if (offset != 0)
3202 {
3203 ax_const_l (expr, offset);
3204 ax_simple (expr, aop_add);
3205 }
3206 break;
3207 case DW_OP_bregx:
3208 {
f664829e
DE
3209 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3210 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
0fde2c53 3211 i = dwarf_reg_to_regnum_or_error (arch, reg);
3cf03773
TT
3212 ax_reg (expr, i);
3213 if (offset != 0)
3214 {
3215 ax_const_l (expr, offset);
3216 ax_simple (expr, aop_add);
3217 }
3218 }
3219 break;
3220 case DW_OP_fbreg:
3221 {
3222 const gdb_byte *datastart;
3223 size_t datalen;
3977b71f 3224 const struct block *b;
3cf03773 3225 struct symbol *framefunc;
08922a10 3226
3cf03773
TT
3227 b = block_for_pc (expr->scope);
3228
3229 if (!b)
3230 error (_("No block found for address"));
3231
3232 framefunc = block_linkage_function (b);
3233
3234 if (!framefunc)
3235 error (_("No function found for block"));
3236
af945b75
TT
3237 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3238 &datastart, &datalen);
3cf03773 3239
f664829e 3240 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
9f6f94ff
TT
3241 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3242 datastart + datalen, per_cu);
d84cf7eb
TT
3243 if (loc->kind == axs_lvalue_register)
3244 require_rvalue (expr, loc);
3cf03773
TT
3245
3246 if (offset != 0)
3247 {
3248 ax_const_l (expr, offset);
3249 ax_simple (expr, aop_add);
3250 }
3251
3252 loc->kind = axs_lvalue_memory;
3253 }
08922a10 3254 break;
08922a10 3255
3cf03773
TT
3256 case DW_OP_dup:
3257 ax_simple (expr, aop_dup);
3258 break;
08922a10 3259
3cf03773
TT
3260 case DW_OP_drop:
3261 ax_simple (expr, aop_pop);
3262 break;
08922a10 3263
3cf03773
TT
3264 case DW_OP_pick:
3265 offset = *op_ptr++;
c7f96d2b 3266 ax_pick (expr, offset);
3cf03773
TT
3267 break;
3268
3269 case DW_OP_swap:
3270 ax_simple (expr, aop_swap);
3271 break;
08922a10 3272
3cf03773 3273 case DW_OP_over:
c7f96d2b 3274 ax_pick (expr, 1);
3cf03773 3275 break;
08922a10 3276
3cf03773 3277 case DW_OP_rot:
c7f96d2b 3278 ax_simple (expr, aop_rot);
3cf03773 3279 break;
08922a10 3280
3cf03773
TT
3281 case DW_OP_deref:
3282 case DW_OP_deref_size:
3283 {
3284 int size;
08922a10 3285
3cf03773
TT
3286 if (op == DW_OP_deref_size)
3287 size = *op_ptr++;
3288 else
3289 size = addr_size;
3290
9df7235c 3291 if (size != 1 && size != 2 && size != 4 && size != 8)
f3cec7e6
HZ
3292 error (_("Unsupported size %d in %s"),
3293 size, get_DW_OP_name (op));
9df7235c 3294 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3cf03773
TT
3295 }
3296 break;
3297
3298 case DW_OP_abs:
3299 /* Sign extend the operand. */
3300 ax_ext (expr, addr_size_bits);
3301 ax_simple (expr, aop_dup);
3302 ax_const_l (expr, 0);
3303 ax_simple (expr, aop_less_signed);
3304 ax_simple (expr, aop_log_not);
3305 i = ax_goto (expr, aop_if_goto);
3306 /* We have to emit 0 - X. */
3307 ax_const_l (expr, 0);
3308 ax_simple (expr, aop_swap);
3309 ax_simple (expr, aop_sub);
3310 ax_label (expr, i, expr->len);
3311 break;
3312
3313 case DW_OP_neg:
3314 /* No need to sign extend here. */
3315 ax_const_l (expr, 0);
3316 ax_simple (expr, aop_swap);
3317 ax_simple (expr, aop_sub);
3318 break;
3319
3320 case DW_OP_not:
3321 /* Sign extend the operand. */
3322 ax_ext (expr, addr_size_bits);
3323 ax_simple (expr, aop_bit_not);
3324 break;
3325
3326 case DW_OP_plus_uconst:
f664829e 3327 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3cf03773
TT
3328 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3329 but we micro-optimize anyhow. */
3330 if (reg != 0)
3331 {
3332 ax_const_l (expr, reg);
3333 ax_simple (expr, aop_add);
3334 }
3335 break;
3336
3337 case DW_OP_and:
3338 ax_simple (expr, aop_bit_and);
3339 break;
3340
3341 case DW_OP_div:
3342 /* Sign extend the operands. */
3343 ax_ext (expr, addr_size_bits);
3344 ax_simple (expr, aop_swap);
3345 ax_ext (expr, addr_size_bits);
3346 ax_simple (expr, aop_swap);
3347 ax_simple (expr, aop_div_signed);
08922a10
SS
3348 break;
3349
3cf03773
TT
3350 case DW_OP_minus:
3351 ax_simple (expr, aop_sub);
3352 break;
3353
3354 case DW_OP_mod:
3355 ax_simple (expr, aop_rem_unsigned);
3356 break;
3357
3358 case DW_OP_mul:
3359 ax_simple (expr, aop_mul);
3360 break;
3361
3362 case DW_OP_or:
3363 ax_simple (expr, aop_bit_or);
3364 break;
3365
3366 case DW_OP_plus:
3367 ax_simple (expr, aop_add);
3368 break;
3369
3370 case DW_OP_shl:
3371 ax_simple (expr, aop_lsh);
3372 break;
3373
3374 case DW_OP_shr:
3375 ax_simple (expr, aop_rsh_unsigned);
3376 break;
3377
3378 case DW_OP_shra:
3379 ax_simple (expr, aop_rsh_signed);
3380 break;
3381
3382 case DW_OP_xor:
3383 ax_simple (expr, aop_bit_xor);
3384 break;
3385
3386 case DW_OP_le:
3387 /* Sign extend the operands. */
3388 ax_ext (expr, addr_size_bits);
3389 ax_simple (expr, aop_swap);
3390 ax_ext (expr, addr_size_bits);
3391 /* Note no swap here: A <= B is !(B < A). */
3392 ax_simple (expr, aop_less_signed);
3393 ax_simple (expr, aop_log_not);
3394 break;
3395
3396 case DW_OP_ge:
3397 /* Sign extend the operands. */
3398 ax_ext (expr, addr_size_bits);
3399 ax_simple (expr, aop_swap);
3400 ax_ext (expr, addr_size_bits);
3401 ax_simple (expr, aop_swap);
3402 /* A >= B is !(A < B). */
3403 ax_simple (expr, aop_less_signed);
3404 ax_simple (expr, aop_log_not);
3405 break;
3406
3407 case DW_OP_eq:
3408 /* Sign extend the operands. */
3409 ax_ext (expr, addr_size_bits);
3410 ax_simple (expr, aop_swap);
3411 ax_ext (expr, addr_size_bits);
3412 /* No need for a second swap here. */
3413 ax_simple (expr, aop_equal);
3414 break;
3415
3416 case DW_OP_lt:
3417 /* Sign extend the operands. */
3418 ax_ext (expr, addr_size_bits);
3419 ax_simple (expr, aop_swap);
3420 ax_ext (expr, addr_size_bits);
3421 ax_simple (expr, aop_swap);
3422 ax_simple (expr, aop_less_signed);
3423 break;
3424
3425 case DW_OP_gt:
3426 /* Sign extend the operands. */
3427 ax_ext (expr, addr_size_bits);
3428 ax_simple (expr, aop_swap);
3429 ax_ext (expr, addr_size_bits);
3430 /* Note no swap here: A > B is B < A. */
3431 ax_simple (expr, aop_less_signed);
3432 break;
3433
3434 case DW_OP_ne:
3435 /* Sign extend the operands. */
3436 ax_ext (expr, addr_size_bits);
3437 ax_simple (expr, aop_swap);
3438 ax_ext (expr, addr_size_bits);
3439 /* No need for a swap here. */
3440 ax_simple (expr, aop_equal);
3441 ax_simple (expr, aop_log_not);
3442 break;
3443
3444 case DW_OP_call_frame_cfa:
a8fd5589
TT
3445 {
3446 int regnum;
3447 CORE_ADDR text_offset;
3448 LONGEST off;
3449 const gdb_byte *cfa_start, *cfa_end;
3450
3451 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3452 &regnum, &off,
3453 &text_offset, &cfa_start, &cfa_end))
3454 {
3455 /* Register. */
3456 ax_reg (expr, regnum);
3457 if (off != 0)
3458 {
3459 ax_const_l (expr, off);
3460 ax_simple (expr, aop_add);
3461 }
3462 }
3463 else
3464 {
3465 /* Another expression. */
3466 ax_const_l (expr, text_offset);
3467 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3468 cfa_start, cfa_end, per_cu);
3469 }
3470
3471 loc->kind = axs_lvalue_memory;
3472 }
3cf03773
TT
3473 break;
3474
3475 case DW_OP_GNU_push_tls_address:
4aa4e28b 3476 case DW_OP_form_tls_address:
3cf03773
TT
3477 unimplemented (op);
3478 break;
3479
08412b07
JB
3480 case DW_OP_push_object_address:
3481 unimplemented (op);
3482 break;
3483
3cf03773
TT
3484 case DW_OP_skip:
3485 offset = extract_signed_integer (op_ptr, 2, byte_order);
3486 op_ptr += 2;
3487 i = ax_goto (expr, aop_goto);
58414334
TT
3488 dw_labels.push_back (op_ptr + offset - base);
3489 patches.push_back (i);
3cf03773
TT
3490 break;
3491
3492 case DW_OP_bra:
3493 offset = extract_signed_integer (op_ptr, 2, byte_order);
3494 op_ptr += 2;
3495 /* Zero extend the operand. */
3496 ax_zero_ext (expr, addr_size_bits);
3497 i = ax_goto (expr, aop_if_goto);
58414334
TT
3498 dw_labels.push_back (op_ptr + offset - base);
3499 patches.push_back (i);
3cf03773
TT
3500 break;
3501
3502 case DW_OP_nop:
3503 break;
3504
3505 case DW_OP_piece:
3506 case DW_OP_bit_piece:
08922a10 3507 {
9fccedf7 3508 uint64_t size, offset;
3cf03773
TT
3509
3510 if (op_ptr - 1 == previous_piece)
3511 error (_("Cannot translate empty pieces to agent expressions"));
3512 previous_piece = op_ptr - 1;
3513
f664829e 3514 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3cf03773
TT
3515 if (op == DW_OP_piece)
3516 {
3517 size *= 8;
3518 offset = 0;
3519 }
3520 else
f664829e 3521 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
08922a10 3522
3cf03773
TT
3523 if (bits_collected + size > 8 * sizeof (LONGEST))
3524 error (_("Expression pieces exceed word size"));
3525
3526 /* Access the bits. */
3527 switch (loc->kind)
3528 {
3529 case axs_lvalue_register:
3530 ax_reg (expr, loc->u.reg);
3531 break;
3532
3533 case axs_lvalue_memory:
3534 /* Offset the pointer, if needed. */
3535 if (offset > 8)
3536 {
3537 ax_const_l (expr, offset / 8);
3538 ax_simple (expr, aop_add);
3539 offset %= 8;
3540 }
3541 access_memory (arch, expr, size);
3542 break;
3543 }
3544
3545 /* For a bits-big-endian target, shift up what we already
3546 have. For a bits-little-endian target, shift up the
3547 new data. Note that there is a potential bug here if
3548 the DWARF expression leaves multiple values on the
3549 stack. */
3550 if (bits_collected > 0)
3551 {
3552 if (bits_big_endian)
3553 {
3554 ax_simple (expr, aop_swap);
3555 ax_const_l (expr, size);
3556 ax_simple (expr, aop_lsh);
3557 /* We don't need a second swap here, because
3558 aop_bit_or is symmetric. */
3559 }
3560 else
3561 {
3562 ax_const_l (expr, size);
3563 ax_simple (expr, aop_lsh);
3564 }
3565 ax_simple (expr, aop_bit_or);
3566 }
3567
3568 bits_collected += size;
3569 loc->kind = axs_rvalue;
08922a10
SS
3570 }
3571 break;
08922a10 3572
3cf03773
TT
3573 case DW_OP_GNU_uninit:
3574 unimplemented (op);
3575
3576 case DW_OP_call2:
3577 case DW_OP_call4:
3578 {
3579 struct dwarf2_locexpr_baton block;
3580 int size = (op == DW_OP_call2 ? 2 : 4);
b64f50a1 3581 cu_offset offset;
3cf03773
TT
3582
3583 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3584 op_ptr += size;
3585
b64f50a1 3586 offset.cu_off = uoffset;
8b9737bf
TT
3587 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3588 get_ax_pc, expr);
3cf03773
TT
3589
3590 /* DW_OP_call_ref is currently not supported. */
3591 gdb_assert (block.per_cu == per_cu);
3592
9f6f94ff
TT
3593 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3594 block.data, block.data + block.size,
3595 per_cu);
3cf03773
TT
3596 }
3597 break;
3598
3599 case DW_OP_call_ref:
3600 unimplemented (op);
3601
3602 default:
b1bfef65 3603 unimplemented (op);
08922a10 3604 }
08922a10 3605 }
3cf03773
TT
3606
3607 /* Patch all the branches we emitted. */
58414334 3608 for (i = 0; i < patches.size (); ++i)
3cf03773 3609 {
58414334 3610 int targ = offsets[dw_labels[i]];
3cf03773
TT
3611 if (targ == -1)
3612 internal_error (__FILE__, __LINE__, _("invalid label"));
58414334 3613 ax_label (expr, patches[i], targ);
3cf03773 3614 }
08922a10
SS
3615}
3616
4c2df51b
DJ
3617\f
3618/* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3619 evaluator to calculate the location. */
3620static struct value *
3621locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3622{
9a3c8263
SM
3623 struct dwarf2_locexpr_baton *dlbaton
3624 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
4c2df51b 3625 struct value *val;
9a619af0 3626
a2d33775
JK
3627 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3628 dlbaton->size, dlbaton->per_cu);
4c2df51b
DJ
3629
3630 return val;
3631}
3632
e18b2753
JK
3633/* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3634 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3635 will be thrown. */
3636
3637static struct value *
3638locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3639{
9a3c8263
SM
3640 struct dwarf2_locexpr_baton *dlbaton
3641 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
e18b2753
JK
3642
3643 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3644 dlbaton->size);
3645}
3646
0b31a4bc
TT
3647/* Implementation of get_symbol_read_needs from
3648 symbol_computed_ops. */
3649
3650static enum symbol_needs_kind
3651locexpr_get_symbol_read_needs (struct symbol *symbol)
4c2df51b 3652{
9a3c8263
SM
3653 struct dwarf2_locexpr_baton *dlbaton
3654 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
9a619af0 3655
0b31a4bc
TT
3656 return dwarf2_loc_desc_get_symbol_read_needs (dlbaton->data, dlbaton->size,
3657 dlbaton->per_cu);
4c2df51b
DJ
3658}
3659
9eae7c52
TT
3660/* Return true if DATA points to the end of a piece. END is one past
3661 the last byte in the expression. */
3662
3663static int
3664piece_end_p (const gdb_byte *data, const gdb_byte *end)
3665{
3666 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3667}
3668
5e44ecb3
TT
3669/* Helper for locexpr_describe_location_piece that finds the name of a
3670 DWARF register. */
3671
3672static const char *
3673locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3674{
3675 int regnum;
3676
0fde2c53
DE
3677 /* This doesn't use dwarf_reg_to_regnum_or_error on purpose.
3678 We'd rather print *something* here than throw an error. */
3679 regnum = dwarf_reg_to_regnum (gdbarch, dwarf_regnum);
3680 /* gdbarch_register_name may just return "", return something more
3681 descriptive for bad register numbers. */
3682 if (regnum == -1)
3683 {
3684 /* The text is output as "$bad_register_number".
3685 That is why we use the underscores. */
3686 return _("bad_register_number");
3687 }
5e44ecb3
TT
3688 return gdbarch_register_name (gdbarch, regnum);
3689}
3690
9eae7c52
TT
3691/* Nicely describe a single piece of a location, returning an updated
3692 position in the bytecode sequence. This function cannot recognize
3693 all locations; if a location is not recognized, it simply returns
f664829e
DE
3694 DATA. If there is an error during reading, e.g. we run off the end
3695 of the buffer, an error is thrown. */
08922a10 3696
0d45f56e 3697static const gdb_byte *
08922a10
SS
3698locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3699 CORE_ADDR addr, struct objfile *objfile,
49f6c839 3700 struct dwarf2_per_cu_data *per_cu,
9eae7c52 3701 const gdb_byte *data, const gdb_byte *end,
0d45f56e 3702 unsigned int addr_size)
4c2df51b 3703{
08922a10 3704 struct gdbarch *gdbarch = get_objfile_arch (objfile);
49f6c839 3705 size_t leb128_size;
08922a10
SS
3706
3707 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3708 {
08922a10 3709 fprintf_filtered (stream, _("a variable in $%s"),
5e44ecb3 3710 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
08922a10
SS
3711 data += 1;
3712 }
3713 else if (data[0] == DW_OP_regx)
3714 {
9fccedf7 3715 uint64_t reg;
4c2df51b 3716
f664829e 3717 data = safe_read_uleb128 (data + 1, end, &reg);
08922a10 3718 fprintf_filtered (stream, _("a variable in $%s"),
5e44ecb3 3719 locexpr_regname (gdbarch, reg));
08922a10
SS
3720 }
3721 else if (data[0] == DW_OP_fbreg)
4c2df51b 3722 {
3977b71f 3723 const struct block *b;
08922a10
SS
3724 struct symbol *framefunc;
3725 int frame_reg = 0;
9fccedf7 3726 int64_t frame_offset;
7155d578 3727 const gdb_byte *base_data, *new_data, *save_data = data;
08922a10 3728 size_t base_size;
9fccedf7 3729 int64_t base_offset = 0;
08922a10 3730
f664829e 3731 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
9eae7c52
TT
3732 if (!piece_end_p (new_data, end))
3733 return data;
3734 data = new_data;
3735
08922a10
SS
3736 b = block_for_pc (addr);
3737
3738 if (!b)
3739 error (_("No block found for address for symbol \"%s\"."),
3740 SYMBOL_PRINT_NAME (symbol));
3741
3742 framefunc = block_linkage_function (b);
3743
3744 if (!framefunc)
3745 error (_("No function found for block for symbol \"%s\"."),
3746 SYMBOL_PRINT_NAME (symbol));
3747
af945b75 3748 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
08922a10
SS
3749
3750 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3751 {
0d45f56e 3752 const gdb_byte *buf_end;
08922a10
SS
3753
3754 frame_reg = base_data[0] - DW_OP_breg0;
f664829e
DE
3755 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3756 &base_offset);
08922a10 3757 if (buf_end != base_data + base_size)
3e43a32a
MS
3758 error (_("Unexpected opcode after "
3759 "DW_OP_breg%u for symbol \"%s\"."),
08922a10
SS
3760 frame_reg, SYMBOL_PRINT_NAME (symbol));
3761 }
3762 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3763 {
3764 /* The frame base is just the register, with no offset. */
3765 frame_reg = base_data[0] - DW_OP_reg0;
3766 base_offset = 0;
3767 }
3768 else
3769 {
3770 /* We don't know what to do with the frame base expression,
3771 so we can't trace this variable; give up. */
7155d578 3772 return save_data;
08922a10
SS
3773 }
3774
3e43a32a
MS
3775 fprintf_filtered (stream,
3776 _("a variable at frame base reg $%s offset %s+%s"),
5e44ecb3 3777 locexpr_regname (gdbarch, frame_reg),
08922a10
SS
3778 plongest (base_offset), plongest (frame_offset));
3779 }
9eae7c52
TT
3780 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3781 && piece_end_p (data, end))
08922a10 3782 {
9fccedf7 3783 int64_t offset;
08922a10 3784
f664829e 3785 data = safe_read_sleb128 (data + 1, end, &offset);
08922a10 3786
4c2df51b 3787 fprintf_filtered (stream,
08922a10
SS
3788 _("a variable at offset %s from base reg $%s"),
3789 plongest (offset),
5e44ecb3 3790 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
4c2df51b
DJ
3791 }
3792
c3228f12
EZ
3793 /* The location expression for a TLS variable looks like this (on a
3794 64-bit LE machine):
3795
3796 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3797 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
09d8bd00 3798
c3228f12
EZ
3799 0x3 is the encoding for DW_OP_addr, which has an operand as long
3800 as the size of an address on the target machine (here is 8
09d8bd00
TT
3801 bytes). Note that more recent version of GCC emit DW_OP_const4u
3802 or DW_OP_const8u, depending on address size, rather than
0963b4bd
MS
3803 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3804 The operand represents the offset at which the variable is within
3805 the thread local storage. */
c3228f12 3806
9eae7c52 3807 else if (data + 1 + addr_size < end
09d8bd00
TT
3808 && (data[0] == DW_OP_addr
3809 || (addr_size == 4 && data[0] == DW_OP_const4u)
3810 || (addr_size == 8 && data[0] == DW_OP_const8u))
4aa4e28b
TT
3811 && (data[1 + addr_size] == DW_OP_GNU_push_tls_address
3812 || data[1 + addr_size] == DW_OP_form_tls_address)
9eae7c52 3813 && piece_end_p (data + 2 + addr_size, end))
08922a10 3814 {
d4a087c7
UW
3815 ULONGEST offset;
3816 offset = extract_unsigned_integer (data + 1, addr_size,
3817 gdbarch_byte_order (gdbarch));
9a619af0 3818
08922a10 3819 fprintf_filtered (stream,
d4a087c7 3820 _("a thread-local variable at offset 0x%s "
08922a10 3821 "in the thread-local storage for `%s'"),
4262abfb 3822 phex_nz (offset, addr_size), objfile_name (objfile));
08922a10
SS
3823
3824 data += 1 + addr_size + 1;
3825 }
49f6c839
DE
3826
3827 /* With -gsplit-dwarf a TLS variable can also look like this:
3828 DW_AT_location : 3 byte block: fc 4 e0
3829 (DW_OP_GNU_const_index: 4;
3830 DW_OP_GNU_push_tls_address) */
3831 else if (data + 3 <= end
3832 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3833 && data[0] == DW_OP_GNU_const_index
3834 && leb128_size > 0
4aa4e28b
TT
3835 && (data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3836 || data[1 + leb128_size] == DW_OP_form_tls_address)
49f6c839
DE
3837 && piece_end_p (data + 2 + leb128_size, end))
3838 {
a55c1f32 3839 uint64_t offset;
49f6c839
DE
3840
3841 data = safe_read_uleb128 (data + 1, end, &offset);
3842 offset = dwarf2_read_addr_index (per_cu, offset);
3843 fprintf_filtered (stream,
3844 _("a thread-local variable at offset 0x%s "
3845 "in the thread-local storage for `%s'"),
4262abfb 3846 phex_nz (offset, addr_size), objfile_name (objfile));
49f6c839
DE
3847 ++data;
3848 }
3849
9eae7c52
TT
3850 else if (data[0] >= DW_OP_lit0
3851 && data[0] <= DW_OP_lit31
3852 && data + 1 < end
3853 && data[1] == DW_OP_stack_value)
3854 {
3855 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3856 data += 2;
3857 }
3858
3859 return data;
3860}
3861
3862/* Disassemble an expression, stopping at the end of a piece or at the
3863 end of the expression. Returns a pointer to the next unread byte
3864 in the input expression. If ALL is nonzero, then this function
f664829e
DE
3865 will keep going until it reaches the end of the expression.
3866 If there is an error during reading, e.g. we run off the end
3867 of the buffer, an error is thrown. */
9eae7c52
TT
3868
3869static const gdb_byte *
3870disassemble_dwarf_expression (struct ui_file *stream,
3871 struct gdbarch *arch, unsigned int addr_size,
2bda9cc5 3872 int offset_size, const gdb_byte *start,
9eae7c52 3873 const gdb_byte *data, const gdb_byte *end,
2bda9cc5 3874 int indent, int all,
5e44ecb3 3875 struct dwarf2_per_cu_data *per_cu)
9eae7c52 3876{
9eae7c52
TT
3877 while (data < end
3878 && (all
3879 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3880 {
aead7601 3881 enum dwarf_location_atom op = (enum dwarf_location_atom) *data++;
9fccedf7
DE
3882 uint64_t ul;
3883 int64_t l;
9eae7c52
TT
3884 const char *name;
3885
f39c6ffd 3886 name = get_DW_OP_name (op);
9eae7c52
TT
3887
3888 if (!name)
3889 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
06826322 3890 op, (long) (data - 1 - start));
2bda9cc5
JK
3891 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3892 (long) (data - 1 - start), name);
9eae7c52
TT
3893
3894 switch (op)
3895 {
3896 case DW_OP_addr:
d4a087c7
UW
3897 ul = extract_unsigned_integer (data, addr_size,
3898 gdbarch_byte_order (arch));
9eae7c52 3899 data += addr_size;
d4a087c7 3900 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
9eae7c52
TT
3901 break;
3902
3903 case DW_OP_const1u:
3904 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3905 data += 1;
3906 fprintf_filtered (stream, " %s", pulongest (ul));
3907 break;
3908 case DW_OP_const1s:
3909 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3910 data += 1;
3911 fprintf_filtered (stream, " %s", plongest (l));
3912 break;
3913 case DW_OP_const2u:
3914 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3915 data += 2;
3916 fprintf_filtered (stream, " %s", pulongest (ul));
3917 break;
3918 case DW_OP_const2s:
3919 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3920 data += 2;
3921 fprintf_filtered (stream, " %s", plongest (l));
3922 break;
3923 case DW_OP_const4u:
3924 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3925 data += 4;
3926 fprintf_filtered (stream, " %s", pulongest (ul));
3927 break;
3928 case DW_OP_const4s:
3929 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3930 data += 4;
3931 fprintf_filtered (stream, " %s", plongest (l));
3932 break;
3933 case DW_OP_const8u:
3934 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3935 data += 8;
3936 fprintf_filtered (stream, " %s", pulongest (ul));
3937 break;
3938 case DW_OP_const8s:
3939 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3940 data += 8;
3941 fprintf_filtered (stream, " %s", plongest (l));
3942 break;
3943 case DW_OP_constu:
f664829e 3944 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3945 fprintf_filtered (stream, " %s", pulongest (ul));
3946 break;
3947 case DW_OP_consts:
f664829e 3948 data = safe_read_sleb128 (data, end, &l);
9eae7c52
TT
3949 fprintf_filtered (stream, " %s", plongest (l));
3950 break;
3951
3952 case DW_OP_reg0:
3953 case DW_OP_reg1:
3954 case DW_OP_reg2:
3955 case DW_OP_reg3:
3956 case DW_OP_reg4:
3957 case DW_OP_reg5:
3958 case DW_OP_reg6:
3959 case DW_OP_reg7:
3960 case DW_OP_reg8:
3961 case DW_OP_reg9:
3962 case DW_OP_reg10:
3963 case DW_OP_reg11:
3964 case DW_OP_reg12:
3965 case DW_OP_reg13:
3966 case DW_OP_reg14:
3967 case DW_OP_reg15:
3968 case DW_OP_reg16:
3969 case DW_OP_reg17:
3970 case DW_OP_reg18:
3971 case DW_OP_reg19:
3972 case DW_OP_reg20:
3973 case DW_OP_reg21:
3974 case DW_OP_reg22:
3975 case DW_OP_reg23:
3976 case DW_OP_reg24:
3977 case DW_OP_reg25:
3978 case DW_OP_reg26:
3979 case DW_OP_reg27:
3980 case DW_OP_reg28:
3981 case DW_OP_reg29:
3982 case DW_OP_reg30:
3983 case DW_OP_reg31:
3984 fprintf_filtered (stream, " [$%s]",
5e44ecb3 3985 locexpr_regname (arch, op - DW_OP_reg0));
9eae7c52
TT
3986 break;
3987
3988 case DW_OP_regx:
f664829e 3989 data = safe_read_uleb128 (data, end, &ul);
9eae7c52 3990 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
5e44ecb3 3991 locexpr_regname (arch, (int) ul));
9eae7c52
TT
3992 break;
3993
3994 case DW_OP_implicit_value:
f664829e 3995 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3996 data += ul;
3997 fprintf_filtered (stream, " %s", pulongest (ul));
3998 break;
3999
4000 case DW_OP_breg0:
4001 case DW_OP_breg1:
4002 case DW_OP_breg2:
4003 case DW_OP_breg3:
4004 case DW_OP_breg4:
4005 case DW_OP_breg5:
4006 case DW_OP_breg6:
4007 case DW_OP_breg7:
4008 case DW_OP_breg8:
4009 case DW_OP_breg9:
4010 case DW_OP_breg10:
4011 case DW_OP_breg11:
4012 case DW_OP_breg12:
4013 case DW_OP_breg13:
4014 case DW_OP_breg14:
4015 case DW_OP_breg15:
4016 case DW_OP_breg16:
4017 case DW_OP_breg17:
4018 case DW_OP_breg18:
4019 case DW_OP_breg19:
4020 case DW_OP_breg20:
4021 case DW_OP_breg21:
4022 case DW_OP_breg22:
4023 case DW_OP_breg23:
4024 case DW_OP_breg24:
4025 case DW_OP_breg25:
4026 case DW_OP_breg26:
4027 case DW_OP_breg27:
4028 case DW_OP_breg28:
4029 case DW_OP_breg29:
4030 case DW_OP_breg30:
4031 case DW_OP_breg31:
f664829e 4032 data = safe_read_sleb128 (data, end, &l);
0502ed8c 4033 fprintf_filtered (stream, " %s [$%s]", plongest (l),
5e44ecb3 4034 locexpr_regname (arch, op - DW_OP_breg0));
9eae7c52
TT
4035 break;
4036
4037 case DW_OP_bregx:
f664829e
DE
4038 data = safe_read_uleb128 (data, end, &ul);
4039 data = safe_read_sleb128 (data, end, &l);
0502ed8c
JK
4040 fprintf_filtered (stream, " register %s [$%s] offset %s",
4041 pulongest (ul),
5e44ecb3 4042 locexpr_regname (arch, (int) ul),
0502ed8c 4043 plongest (l));
9eae7c52
TT
4044 break;
4045
4046 case DW_OP_fbreg:
f664829e 4047 data = safe_read_sleb128 (data, end, &l);
0502ed8c 4048 fprintf_filtered (stream, " %s", plongest (l));
9eae7c52
TT
4049 break;
4050
4051 case DW_OP_xderef_size:
4052 case DW_OP_deref_size:
4053 case DW_OP_pick:
4054 fprintf_filtered (stream, " %d", *data);
4055 ++data;
4056 break;
4057
4058 case DW_OP_plus_uconst:
f664829e 4059 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
4060 fprintf_filtered (stream, " %s", pulongest (ul));
4061 break;
4062
4063 case DW_OP_skip:
4064 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4065 data += 2;
4066 fprintf_filtered (stream, " to %ld",
4067 (long) (data + l - start));
4068 break;
4069
4070 case DW_OP_bra:
4071 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
4072 data += 2;
4073 fprintf_filtered (stream, " %ld",
4074 (long) (data + l - start));
4075 break;
4076
4077 case DW_OP_call2:
4078 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
4079 data += 2;
4080 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
4081 break;
4082
4083 case DW_OP_call4:
4084 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4085 data += 4;
4086 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4087 break;
4088
4089 case DW_OP_call_ref:
4090 ul = extract_unsigned_integer (data, offset_size,
4091 gdbarch_byte_order (arch));
4092 data += offset_size;
4093 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
4094 break;
4095
4096 case DW_OP_piece:
f664829e 4097 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
4098 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
4099 break;
4100
4101 case DW_OP_bit_piece:
4102 {
9fccedf7 4103 uint64_t offset;
9eae7c52 4104
f664829e
DE
4105 data = safe_read_uleb128 (data, end, &ul);
4106 data = safe_read_uleb128 (data, end, &offset);
9eae7c52
TT
4107 fprintf_filtered (stream, " size %s offset %s (bits)",
4108 pulongest (ul), pulongest (offset));
4109 }
4110 break;
8cf6f0b1
TT
4111
4112 case DW_OP_GNU_implicit_pointer:
4113 {
4114 ul = extract_unsigned_integer (data, offset_size,
4115 gdbarch_byte_order (arch));
4116 data += offset_size;
4117
f664829e 4118 data = safe_read_sleb128 (data, end, &l);
8cf6f0b1
TT
4119
4120 fprintf_filtered (stream, " DIE %s offset %s",
4121 phex_nz (ul, offset_size),
4122 plongest (l));
4123 }
4124 break;
5e44ecb3
TT
4125
4126 case DW_OP_GNU_deref_type:
4127 {
4128 int addr_size = *data++;
b64f50a1 4129 cu_offset offset;
5e44ecb3
TT
4130 struct type *type;
4131
f664829e 4132 data = safe_read_uleb128 (data, end, &ul);
b64f50a1 4133 offset.cu_off = ul;
5e44ecb3
TT
4134 type = dwarf2_get_die_type (offset, per_cu);
4135 fprintf_filtered (stream, "<");
4136 type_print (type, "", stream, -1);
b64f50a1 4137 fprintf_filtered (stream, " [0x%s]> %d", phex_nz (offset.cu_off, 0),
5e44ecb3
TT
4138 addr_size);
4139 }
4140 break;
4141
4142 case DW_OP_GNU_const_type:
4143 {
b64f50a1 4144 cu_offset type_die;
5e44ecb3
TT
4145 struct type *type;
4146
f664829e 4147 data = safe_read_uleb128 (data, end, &ul);
b64f50a1 4148 type_die.cu_off = ul;
5e44ecb3
TT
4149 type = dwarf2_get_die_type (type_die, per_cu);
4150 fprintf_filtered (stream, "<");
4151 type_print (type, "", stream, -1);
b64f50a1 4152 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
5e44ecb3
TT
4153 }
4154 break;
4155
4156 case DW_OP_GNU_regval_type:
4157 {
9fccedf7 4158 uint64_t reg;
b64f50a1 4159 cu_offset type_die;
5e44ecb3
TT
4160 struct type *type;
4161
f664829e
DE
4162 data = safe_read_uleb128 (data, end, &reg);
4163 data = safe_read_uleb128 (data, end, &ul);
b64f50a1 4164 type_die.cu_off = ul;
5e44ecb3
TT
4165
4166 type = dwarf2_get_die_type (type_die, per_cu);
4167 fprintf_filtered (stream, "<");
4168 type_print (type, "", stream, -1);
b64f50a1
JK
4169 fprintf_filtered (stream, " [0x%s]> [$%s]",
4170 phex_nz (type_die.cu_off, 0),
5e44ecb3
TT
4171 locexpr_regname (arch, reg));
4172 }
4173 break;
4174
4175 case DW_OP_GNU_convert:
4176 case DW_OP_GNU_reinterpret:
4177 {
b64f50a1 4178 cu_offset type_die;
5e44ecb3 4179
f664829e 4180 data = safe_read_uleb128 (data, end, &ul);
b64f50a1 4181 type_die.cu_off = ul;
5e44ecb3 4182
b64f50a1 4183 if (type_die.cu_off == 0)
5e44ecb3
TT
4184 fprintf_filtered (stream, "<0>");
4185 else
4186 {
4187 struct type *type;
4188
4189 type = dwarf2_get_die_type (type_die, per_cu);
4190 fprintf_filtered (stream, "<");
4191 type_print (type, "", stream, -1);
b64f50a1 4192 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
5e44ecb3
TT
4193 }
4194 }
4195 break;
2bda9cc5
JK
4196
4197 case DW_OP_GNU_entry_value:
f664829e 4198 data = safe_read_uleb128 (data, end, &ul);
2bda9cc5
JK
4199 fputc_filtered ('\n', stream);
4200 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4201 start, data, data + ul, indent + 2,
4202 all, per_cu);
4203 data += ul;
4204 continue;
49f6c839 4205
a24f71ab
JK
4206 case DW_OP_GNU_parameter_ref:
4207 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4208 data += 4;
4209 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4210 break;
4211
49f6c839
DE
4212 case DW_OP_GNU_addr_index:
4213 data = safe_read_uleb128 (data, end, &ul);
4214 ul = dwarf2_read_addr_index (per_cu, ul);
4215 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4216 break;
4217 case DW_OP_GNU_const_index:
4218 data = safe_read_uleb128 (data, end, &ul);
4219 ul = dwarf2_read_addr_index (per_cu, ul);
4220 fprintf_filtered (stream, " %s", pulongest (ul));
4221 break;
9eae7c52
TT
4222 }
4223
4224 fprintf_filtered (stream, "\n");
4225 }
c3228f12 4226
08922a10 4227 return data;
4c2df51b
DJ
4228}
4229
08922a10
SS
4230/* Describe a single location, which may in turn consist of multiple
4231 pieces. */
a55cc764 4232
08922a10
SS
4233static void
4234locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
0d45f56e 4235 struct ui_file *stream,
56eb65bd 4236 const gdb_byte *data, size_t size,
9eae7c52 4237 struct objfile *objfile, unsigned int addr_size,
5e44ecb3 4238 int offset_size, struct dwarf2_per_cu_data *per_cu)
08922a10 4239{
0d45f56e 4240 const gdb_byte *end = data + size;
9eae7c52 4241 int first_piece = 1, bad = 0;
08922a10 4242
08922a10
SS
4243 while (data < end)
4244 {
9eae7c52
TT
4245 const gdb_byte *here = data;
4246 int disassemble = 1;
4247
4248 if (first_piece)
4249 first_piece = 0;
4250 else
4251 fprintf_filtered (stream, _(", and "));
08922a10 4252
b4f54984 4253 if (!dwarf_always_disassemble)
9eae7c52 4254 {
3e43a32a 4255 data = locexpr_describe_location_piece (symbol, stream,
49f6c839 4256 addr, objfile, per_cu,
9eae7c52
TT
4257 data, end, addr_size);
4258 /* If we printed anything, or if we have an empty piece,
4259 then don't disassemble. */
4260 if (data != here
4261 || data[0] == DW_OP_piece
4262 || data[0] == DW_OP_bit_piece)
4263 disassemble = 0;
08922a10 4264 }
9eae7c52 4265 if (disassemble)
2bda9cc5
JK
4266 {
4267 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4268 data = disassemble_dwarf_expression (stream,
4269 get_objfile_arch (objfile),
4270 addr_size, offset_size, data,
4271 data, end, 0,
b4f54984 4272 dwarf_always_disassemble,
2bda9cc5
JK
4273 per_cu);
4274 }
9eae7c52
TT
4275
4276 if (data < end)
08922a10 4277 {
9eae7c52 4278 int empty = data == here;
08922a10 4279
9eae7c52
TT
4280 if (disassemble)
4281 fprintf_filtered (stream, " ");
4282 if (data[0] == DW_OP_piece)
4283 {
9fccedf7 4284 uint64_t bytes;
08922a10 4285
f664829e 4286 data = safe_read_uleb128 (data + 1, end, &bytes);
08922a10 4287
9eae7c52
TT
4288 if (empty)
4289 fprintf_filtered (stream, _("an empty %s-byte piece"),
4290 pulongest (bytes));
4291 else
4292 fprintf_filtered (stream, _(" [%s-byte piece]"),
4293 pulongest (bytes));
4294 }
4295 else if (data[0] == DW_OP_bit_piece)
4296 {
9fccedf7 4297 uint64_t bits, offset;
9eae7c52 4298
f664829e
DE
4299 data = safe_read_uleb128 (data + 1, end, &bits);
4300 data = safe_read_uleb128 (data, end, &offset);
9eae7c52
TT
4301
4302 if (empty)
4303 fprintf_filtered (stream,
4304 _("an empty %s-bit piece"),
4305 pulongest (bits));
4306 else
4307 fprintf_filtered (stream,
4308 _(" [%s-bit piece, offset %s bits]"),
4309 pulongest (bits), pulongest (offset));
4310 }
4311 else
4312 {
4313 bad = 1;
4314 break;
4315 }
08922a10
SS
4316 }
4317 }
4318
4319 if (bad || data > end)
4320 error (_("Corrupted DWARF2 expression for \"%s\"."),
4321 SYMBOL_PRINT_NAME (symbol));
4322}
4323
4324/* Print a natural-language description of SYMBOL to STREAM. This
4325 version is for a symbol with a single location. */
a55cc764 4326
08922a10
SS
4327static void
4328locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4329 struct ui_file *stream)
4330{
9a3c8263
SM
4331 struct dwarf2_locexpr_baton *dlbaton
4332 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
08922a10
SS
4333 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4334 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
9eae7c52 4335 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
08922a10 4336
3e43a32a
MS
4337 locexpr_describe_location_1 (symbol, addr, stream,
4338 dlbaton->data, dlbaton->size,
5e44ecb3
TT
4339 objfile, addr_size, offset_size,
4340 dlbaton->per_cu);
08922a10
SS
4341}
4342
4343/* Describe the location of SYMBOL as an agent value in VALUE, generating
4344 any necessary bytecode in AX. */
a55cc764 4345
0d53c4c4 4346static void
505e835d
UW
4347locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4348 struct agent_expr *ax, struct axs_value *value)
a55cc764 4349{
9a3c8263
SM
4350 struct dwarf2_locexpr_baton *dlbaton
4351 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (symbol);
3cf03773 4352 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
a55cc764 4353
1d6edc3c 4354 if (dlbaton->size == 0)
cabe9ab6
PA
4355 value->optimized_out = 1;
4356 else
9f6f94ff
TT
4357 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4358 dlbaton->data, dlbaton->data + dlbaton->size,
4359 dlbaton->per_cu);
a55cc764
DJ
4360}
4361
bb2ec1b3
TT
4362/* symbol_computed_ops 'generate_c_location' method. */
4363
4364static void
4365locexpr_generate_c_location (struct symbol *sym, struct ui_file *stream,
4366 struct gdbarch *gdbarch,
4367 unsigned char *registers_used,
4368 CORE_ADDR pc, const char *result_name)
4369{
9a3c8263
SM
4370 struct dwarf2_locexpr_baton *dlbaton
4371 = (struct dwarf2_locexpr_baton *) SYMBOL_LOCATION_BATON (sym);
bb2ec1b3
TT
4372 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4373
4374 if (dlbaton->size == 0)
4375 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4376
4377 compile_dwarf_expr_to_c (stream, result_name,
4378 sym, pc, gdbarch, registers_used, addr_size,
4379 dlbaton->data, dlbaton->data + dlbaton->size,
4380 dlbaton->per_cu);
4381}
4382
4c2df51b
DJ
4383/* The set of location functions used with the DWARF-2 expression
4384 evaluator. */
768a979c 4385const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4c2df51b 4386 locexpr_read_variable,
e18b2753 4387 locexpr_read_variable_at_entry,
0b31a4bc 4388 locexpr_get_symbol_read_needs,
4c2df51b 4389 locexpr_describe_location,
f1e6e072 4390 0, /* location_has_loclist */
bb2ec1b3
TT
4391 locexpr_tracepoint_var_ref,
4392 locexpr_generate_c_location
4c2df51b 4393};
0d53c4c4
DJ
4394
4395
4396/* Wrapper functions for location lists. These generally find
4397 the appropriate location expression and call something above. */
4398
4399/* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4400 evaluator to calculate the location. */
4401static struct value *
4402loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4403{
9a3c8263
SM
4404 struct dwarf2_loclist_baton *dlbaton
4405 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
0d53c4c4 4406 struct value *val;
947bb88f 4407 const gdb_byte *data;
b6b08ebf 4408 size_t size;
8cf6f0b1 4409 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
0d53c4c4 4410
8cf6f0b1 4411 data = dwarf2_find_location_expression (dlbaton, &size, pc);
1d6edc3c
JK
4412 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4413 dlbaton->per_cu);
0d53c4c4
DJ
4414
4415 return val;
4416}
4417
e18b2753
JK
4418/* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4419 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4420 will be thrown.
4421
4422 Function always returns non-NULL value, it may be marked optimized out if
4423 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4424 if it cannot resolve the parameter for any reason. */
4425
4426static struct value *
4427loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4428{
9a3c8263
SM
4429 struct dwarf2_loclist_baton *dlbaton
4430 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
e18b2753
JK
4431 const gdb_byte *data;
4432 size_t size;
4433 CORE_ADDR pc;
4434
4435 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4436 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4437
4438 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4439 if (data == NULL)
4440 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4441
4442 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4443}
4444
0b31a4bc
TT
4445/* Implementation of get_symbol_read_needs from
4446 symbol_computed_ops. */
4447
4448static enum symbol_needs_kind
4449loclist_symbol_needs (struct symbol *symbol)
0d53c4c4
DJ
4450{
4451 /* If there's a location list, then assume we need to have a frame
4452 to choose the appropriate location expression. With tracking of
4453 global variables this is not necessarily true, but such tracking
4454 is disabled in GCC at the moment until we figure out how to
4455 represent it. */
4456
0b31a4bc 4457 return SYMBOL_NEEDS_FRAME;
0d53c4c4
DJ
4458}
4459
08922a10
SS
4460/* Print a natural-language description of SYMBOL to STREAM. This
4461 version applies when there is a list of different locations, each
4462 with a specified address range. */
4463
4464static void
4465loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4466 struct ui_file *stream)
0d53c4c4 4467{
9a3c8263
SM
4468 struct dwarf2_loclist_baton *dlbaton
4469 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
947bb88f 4470 const gdb_byte *loc_ptr, *buf_end;
08922a10
SS
4471 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4472 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4473 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4474 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
9eae7c52 4475 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
d4a087c7 4476 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
08922a10 4477 /* Adjust base_address for relocatable objects. */
9aa1f1e3 4478 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
08922a10 4479 CORE_ADDR base_address = dlbaton->base_address + base_offset;
f664829e 4480 int done = 0;
08922a10
SS
4481
4482 loc_ptr = dlbaton->data;
4483 buf_end = dlbaton->data + dlbaton->size;
4484
9eae7c52 4485 fprintf_filtered (stream, _("multi-location:\n"));
08922a10
SS
4486
4487 /* Iterate through locations until we run out. */
f664829e 4488 while (!done)
08922a10 4489 {
f664829e
DE
4490 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4491 int length;
4492 enum debug_loc_kind kind;
4493 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4494
4495 if (dlbaton->from_dwo)
4496 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4497 loc_ptr, buf_end, &new_ptr,
3771a44c 4498 &low, &high, byte_order);
d4a087c7 4499 else
f664829e
DE
4500 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4501 &low, &high,
4502 byte_order, addr_size,
4503 signed_addr_p);
4504 loc_ptr = new_ptr;
4505 switch (kind)
08922a10 4506 {
f664829e
DE
4507 case DEBUG_LOC_END_OF_LIST:
4508 done = 1;
4509 continue;
4510 case DEBUG_LOC_BASE_ADDRESS:
d4a087c7 4511 base_address = high + base_offset;
9eae7c52 4512 fprintf_filtered (stream, _(" Base address %s"),
08922a10 4513 paddress (gdbarch, base_address));
08922a10 4514 continue;
3771a44c
DE
4515 case DEBUG_LOC_START_END:
4516 case DEBUG_LOC_START_LENGTH:
f664829e
DE
4517 break;
4518 case DEBUG_LOC_BUFFER_OVERFLOW:
4519 case DEBUG_LOC_INVALID_ENTRY:
4520 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4521 SYMBOL_PRINT_NAME (symbol));
4522 default:
4523 gdb_assert_not_reached ("bad debug_loc_kind");
08922a10
SS
4524 }
4525
08922a10
SS
4526 /* Otherwise, a location expression entry. */
4527 low += base_address;
4528 high += base_address;
4529
3e29f34a
MR
4530 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4531 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4532
08922a10
SS
4533 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4534 loc_ptr += 2;
4535
08922a10
SS
4536 /* (It would improve readability to print only the minimum
4537 necessary digits of the second number of the range.) */
9eae7c52 4538 fprintf_filtered (stream, _(" Range %s-%s: "),
08922a10
SS
4539 paddress (gdbarch, low), paddress (gdbarch, high));
4540
4541 /* Now describe this particular location. */
4542 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
5e44ecb3
TT
4543 objfile, addr_size, offset_size,
4544 dlbaton->per_cu);
9eae7c52
TT
4545
4546 fprintf_filtered (stream, "\n");
08922a10
SS
4547
4548 loc_ptr += length;
4549 }
0d53c4c4
DJ
4550}
4551
4552/* Describe the location of SYMBOL as an agent value in VALUE, generating
4553 any necessary bytecode in AX. */
4554static void
505e835d
UW
4555loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4556 struct agent_expr *ax, struct axs_value *value)
0d53c4c4 4557{
9a3c8263
SM
4558 struct dwarf2_loclist_baton *dlbaton
4559 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (symbol);
947bb88f 4560 const gdb_byte *data;
b6b08ebf 4561 size_t size;
3cf03773 4562 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
0d53c4c4 4563
8cf6f0b1 4564 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
1d6edc3c 4565 if (size == 0)
cabe9ab6
PA
4566 value->optimized_out = 1;
4567 else
9f6f94ff
TT
4568 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4569 dlbaton->per_cu);
0d53c4c4
DJ
4570}
4571
bb2ec1b3
TT
4572/* symbol_computed_ops 'generate_c_location' method. */
4573
4574static void
4575loclist_generate_c_location (struct symbol *sym, struct ui_file *stream,
4576 struct gdbarch *gdbarch,
4577 unsigned char *registers_used,
4578 CORE_ADDR pc, const char *result_name)
4579{
9a3c8263
SM
4580 struct dwarf2_loclist_baton *dlbaton
4581 = (struct dwarf2_loclist_baton *) SYMBOL_LOCATION_BATON (sym);
bb2ec1b3
TT
4582 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4583 const gdb_byte *data;
4584 size_t size;
4585
4586 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4587 if (size == 0)
4588 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4589
4590 compile_dwarf_expr_to_c (stream, result_name,
4591 sym, pc, gdbarch, registers_used, addr_size,
4592 data, data + size,
4593 dlbaton->per_cu);
4594}
4595
0d53c4c4
DJ
4596/* The set of location functions used with the DWARF-2 expression
4597 evaluator and location lists. */
768a979c 4598const struct symbol_computed_ops dwarf2_loclist_funcs = {
0d53c4c4 4599 loclist_read_variable,
e18b2753 4600 loclist_read_variable_at_entry,
0b31a4bc 4601 loclist_symbol_needs,
0d53c4c4 4602 loclist_describe_location,
f1e6e072 4603 1, /* location_has_loclist */
bb2ec1b3
TT
4604 loclist_tracepoint_var_ref,
4605 loclist_generate_c_location
0d53c4c4 4606};
8e3b41a9 4607
70221824
PA
4608/* Provide a prototype to silence -Wmissing-prototypes. */
4609extern initialize_file_ftype _initialize_dwarf2loc;
4610
8e3b41a9
JK
4611void
4612_initialize_dwarf2loc (void)
4613{
ccce17b0
YQ
4614 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4615 &entry_values_debug,
4616 _("Set entry values and tail call frames "
4617 "debugging."),
4618 _("Show entry values and tail call frames "
4619 "debugging."),
4620 _("When non-zero, the process of determining "
4621 "parameter values from function entry point "
4622 "and tail call frames will be printed."),
4623 NULL,
4624 show_entry_values_debug,
4625 &setdebuglist, &showdebuglist);
ad06383f
AA
4626
4627#if GDB_SELF_TEST
4628 register_self_test (selftests::copy_bitwise_tests);
4629#endif
8e3b41a9 4630}
This page took 1.517217 seconds and 4 git commands to generate.