Fixes for memory access violations triggered by running nlmconv on
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
CommitLineData
4c2df51b 1/* DWARF 2 location expression support for GDB.
feb13ab0 2
32d0add0 3 Copyright (C) 2003-2015 Free Software Foundation, Inc.
feb13ab0 4
4c2df51b
DJ
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7
JB
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
4c2df51b 13
a9762ec7
JB
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
4c2df51b
DJ
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
4c2df51b
DJ
21
22#include "defs.h"
23#include "ui-out.h"
24#include "value.h"
25#include "frame.h"
26#include "gdbcore.h"
27#include "target.h"
28#include "inferior.h"
a55cc764
DJ
29#include "ax.h"
30#include "ax-gdb.h"
e4adbba9 31#include "regcache.h"
c3228f12 32#include "objfiles.h"
edb3359d 33#include "block.h"
8e3b41a9 34#include "gdbcmd.h"
4c2df51b 35
fa8f86ff 36#include "dwarf2.h"
4c2df51b
DJ
37#include "dwarf2expr.h"
38#include "dwarf2loc.h"
e7802207 39#include "dwarf2-frame.h"
bb2ec1b3 40#include "compile/compile.h"
4c2df51b 41
9eae7c52
TT
42extern int dwarf2_always_disassemble;
43
8e3b41a9
JK
44static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs;
45
1632a688
JK
46static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
47 struct frame_info *frame,
48 const gdb_byte *data,
56eb65bd
SP
49 size_t size,
50 struct dwarf2_per_cu_data *per_cu,
1632a688 51 LONGEST byte_offset);
8cf6f0b1 52
f664829e
DE
53/* Until these have formal names, we define these here.
54 ref: http://gcc.gnu.org/wiki/DebugFission
55 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
56 and is then followed by data specific to that entry. */
57
58enum debug_loc_kind
59{
60 /* Indicates the end of the list of entries. */
61 DEBUG_LOC_END_OF_LIST = 0,
62
63 /* This is followed by an unsigned LEB128 number that is an index into
64 .debug_addr and specifies the base address for all following entries. */
65 DEBUG_LOC_BASE_ADDRESS = 1,
66
67 /* This is followed by two unsigned LEB128 numbers that are indices into
68 .debug_addr and specify the beginning and ending addresses, and then
69 a normal location expression as in .debug_loc. */
3771a44c
DE
70 DEBUG_LOC_START_END = 2,
71
72 /* This is followed by an unsigned LEB128 number that is an index into
73 .debug_addr and specifies the beginning address, and a 4 byte unsigned
74 number that specifies the length, and then a normal location expression
75 as in .debug_loc. */
76 DEBUG_LOC_START_LENGTH = 3,
f664829e
DE
77
78 /* An internal value indicating there is insufficient data. */
79 DEBUG_LOC_BUFFER_OVERFLOW = -1,
80
81 /* An internal value indicating an invalid kind of entry was found. */
82 DEBUG_LOC_INVALID_ENTRY = -2
83};
84
b6807d98
TT
85/* Helper function which throws an error if a synthetic pointer is
86 invalid. */
87
88static void
89invalid_synthetic_pointer (void)
90{
91 error (_("access outside bounds of object "
92 "referenced via synthetic pointer"));
93}
94
f664829e
DE
95/* Decode the addresses in a non-dwo .debug_loc entry.
96 A pointer to the next byte to examine is returned in *NEW_PTR.
97 The encoded low,high addresses are return in *LOW,*HIGH.
98 The result indicates the kind of entry found. */
99
100static enum debug_loc_kind
101decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
102 const gdb_byte **new_ptr,
103 CORE_ADDR *low, CORE_ADDR *high,
104 enum bfd_endian byte_order,
105 unsigned int addr_size,
106 int signed_addr_p)
107{
108 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
109
110 if (buf_end - loc_ptr < 2 * addr_size)
111 return DEBUG_LOC_BUFFER_OVERFLOW;
112
113 if (signed_addr_p)
114 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
115 else
116 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
117 loc_ptr += addr_size;
118
119 if (signed_addr_p)
120 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
121 else
122 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
123 loc_ptr += addr_size;
124
125 *new_ptr = loc_ptr;
126
127 /* A base-address-selection entry. */
128 if ((*low & base_mask) == base_mask)
129 return DEBUG_LOC_BASE_ADDRESS;
130
131 /* An end-of-list entry. */
132 if (*low == 0 && *high == 0)
133 return DEBUG_LOC_END_OF_LIST;
134
3771a44c 135 return DEBUG_LOC_START_END;
f664829e
DE
136}
137
138/* Decode the addresses in .debug_loc.dwo entry.
139 A pointer to the next byte to examine is returned in *NEW_PTR.
140 The encoded low,high addresses are return in *LOW,*HIGH.
141 The result indicates the kind of entry found. */
142
143static enum debug_loc_kind
144decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
145 const gdb_byte *loc_ptr,
146 const gdb_byte *buf_end,
147 const gdb_byte **new_ptr,
3771a44c
DE
148 CORE_ADDR *low, CORE_ADDR *high,
149 enum bfd_endian byte_order)
f664829e 150{
9fccedf7 151 uint64_t low_index, high_index;
f664829e
DE
152
153 if (loc_ptr == buf_end)
154 return DEBUG_LOC_BUFFER_OVERFLOW;
155
156 switch (*loc_ptr++)
157 {
158 case DEBUG_LOC_END_OF_LIST:
159 *new_ptr = loc_ptr;
160 return DEBUG_LOC_END_OF_LIST;
161 case DEBUG_LOC_BASE_ADDRESS:
162 *low = 0;
163 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
164 if (loc_ptr == NULL)
165 return DEBUG_LOC_BUFFER_OVERFLOW;
166 *high = dwarf2_read_addr_index (per_cu, high_index);
167 *new_ptr = loc_ptr;
168 return DEBUG_LOC_BASE_ADDRESS;
3771a44c 169 case DEBUG_LOC_START_END:
f664829e
DE
170 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
171 if (loc_ptr == NULL)
172 return DEBUG_LOC_BUFFER_OVERFLOW;
173 *low = dwarf2_read_addr_index (per_cu, low_index);
174 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
175 if (loc_ptr == NULL)
176 return DEBUG_LOC_BUFFER_OVERFLOW;
177 *high = dwarf2_read_addr_index (per_cu, high_index);
178 *new_ptr = loc_ptr;
3771a44c
DE
179 return DEBUG_LOC_START_END;
180 case DEBUG_LOC_START_LENGTH:
181 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
182 if (loc_ptr == NULL)
183 return DEBUG_LOC_BUFFER_OVERFLOW;
184 *low = dwarf2_read_addr_index (per_cu, low_index);
185 if (loc_ptr + 4 > buf_end)
186 return DEBUG_LOC_BUFFER_OVERFLOW;
187 *high = *low;
188 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
189 *new_ptr = loc_ptr + 4;
190 return DEBUG_LOC_START_LENGTH;
f664829e
DE
191 default:
192 return DEBUG_LOC_INVALID_ENTRY;
193 }
194}
195
8cf6f0b1 196/* A function for dealing with location lists. Given a
0d53c4c4
DJ
197 symbol baton (BATON) and a pc value (PC), find the appropriate
198 location expression, set *LOCEXPR_LENGTH, and return a pointer
199 to the beginning of the expression. Returns NULL on failure.
200
201 For now, only return the first matching location expression; there
202 can be more than one in the list. */
203
8cf6f0b1
TT
204const gdb_byte *
205dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
206 size_t *locexpr_length, CORE_ADDR pc)
0d53c4c4 207{
ae0d2f24 208 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
f7fd4728 209 struct gdbarch *gdbarch = get_objfile_arch (objfile);
e17a4113 210 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ae0d2f24 211 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
d4a087c7 212 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
8edfa926 213 /* Adjust base_address for relocatable objects. */
9aa1f1e3 214 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
8edfa926 215 CORE_ADDR base_address = baton->base_address + base_offset;
f664829e 216 const gdb_byte *loc_ptr, *buf_end;
0d53c4c4
DJ
217
218 loc_ptr = baton->data;
219 buf_end = baton->data + baton->size;
220
221 while (1)
222 {
f664829e
DE
223 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
224 int length;
225 enum debug_loc_kind kind;
226 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
227
228 if (baton->from_dwo)
229 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
230 loc_ptr, buf_end, &new_ptr,
3771a44c 231 &low, &high, byte_order);
d4a087c7 232 else
f664829e
DE
233 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
234 &low, &high,
235 byte_order, addr_size,
236 signed_addr_p);
237 loc_ptr = new_ptr;
238 switch (kind)
1d6edc3c 239 {
f664829e 240 case DEBUG_LOC_END_OF_LIST:
1d6edc3c
JK
241 *locexpr_length = 0;
242 return NULL;
f664829e
DE
243 case DEBUG_LOC_BASE_ADDRESS:
244 base_address = high + base_offset;
245 continue;
3771a44c
DE
246 case DEBUG_LOC_START_END:
247 case DEBUG_LOC_START_LENGTH:
f664829e
DE
248 break;
249 case DEBUG_LOC_BUFFER_OVERFLOW:
250 case DEBUG_LOC_INVALID_ENTRY:
251 error (_("dwarf2_find_location_expression: "
252 "Corrupted DWARF expression."));
253 default:
254 gdb_assert_not_reached ("bad debug_loc_kind");
1d6edc3c 255 }
b5758fe4 256
bed911e5
DE
257 /* Otherwise, a location expression entry.
258 If the entry is from a DWO, don't add base address: the entry is
259 from .debug_addr which has absolute addresses. */
260 if (! baton->from_dwo)
261 {
262 low += base_address;
263 high += base_address;
264 }
0d53c4c4 265
e17a4113 266 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
0d53c4c4
DJ
267 loc_ptr += 2;
268
e18b2753
JK
269 if (low == high && pc == low)
270 {
271 /* This is entry PC record present only at entry point
272 of a function. Verify it is really the function entry point. */
273
3977b71f 274 const struct block *pc_block = block_for_pc (pc);
e18b2753
JK
275 struct symbol *pc_func = NULL;
276
277 if (pc_block)
278 pc_func = block_linkage_function (pc_block);
279
280 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
281 {
282 *locexpr_length = length;
283 return loc_ptr;
284 }
285 }
286
0d53c4c4
DJ
287 if (pc >= low && pc < high)
288 {
289 *locexpr_length = length;
290 return loc_ptr;
291 }
292
293 loc_ptr += length;
294 }
295}
296
4c2df51b
DJ
297/* This is the baton used when performing dwarf2 expression
298 evaluation. */
299struct dwarf_expr_baton
300{
301 struct frame_info *frame;
17ea53c3 302 struct dwarf2_per_cu_data *per_cu;
08412b07 303 CORE_ADDR obj_address;
4c2df51b
DJ
304};
305
306/* Helper functions for dwarf2_evaluate_loc_desc. */
307
4bc9efe1 308/* Using the frame specified in BATON, return the value of register
0b2b0195 309 REGNUM, treated as a pointer. */
4c2df51b 310static CORE_ADDR
b1370418 311dwarf_expr_read_addr_from_reg (void *baton, int dwarf_regnum)
4c2df51b 312{
4c2df51b 313 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
5e2b427d 314 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
2ed3c037 315 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
e4adbba9 316
2ed3c037 317 return address_from_register (regnum, debaton->frame);
4c2df51b
DJ
318}
319
0acf8b65
JB
320/* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
321
322static struct value *
323dwarf_expr_get_reg_value (void *baton, struct type *type, int dwarf_regnum)
324{
325 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
326 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
327 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
328
329 return value_from_register (type, regnum, debaton->frame);
330}
331
4c2df51b
DJ
332/* Read memory at ADDR (length LEN) into BUF. */
333
334static void
852483bc 335dwarf_expr_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
4c2df51b
DJ
336{
337 read_memory (addr, buf, len);
338}
339
340/* Using the frame specified in BATON, find the location expression
341 describing the frame base. Return a pointer to it in START and
342 its length in LENGTH. */
343static void
0d45f56e 344dwarf_expr_frame_base (void *baton, const gdb_byte **start, size_t * length)
4c2df51b 345{
da62e633
AC
346 /* FIXME: cagney/2003-03-26: This code should be using
347 get_frame_base_address(), and then implement a dwarf2 specific
348 this_base method. */
4c2df51b 349 struct symbol *framefunc;
4c2df51b 350 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
3977b71f 351 const struct block *bl = get_frame_block (debaton->frame, NULL);
c90a0773
HZ
352
353 if (bl == NULL)
354 error (_("frame address is not available."));
0d53c4c4 355
edb3359d
DJ
356 /* Use block_linkage_function, which returns a real (not inlined)
357 function, instead of get_frame_function, which may return an
358 inlined function. */
c90a0773 359 framefunc = block_linkage_function (bl);
0d53c4c4 360
eff4f95e
JG
361 /* If we found a frame-relative symbol then it was certainly within
362 some function associated with a frame. If we can't find the frame,
363 something has gone wrong. */
364 gdb_assert (framefunc != NULL);
365
af945b75
TT
366 func_get_frame_base_dwarf_block (framefunc,
367 get_frame_address_in_block (debaton->frame),
368 start, length);
0936ad1d
SS
369}
370
f1e6e072
TT
371/* Implement find_frame_base_location method for LOC_BLOCK functions using
372 DWARF expression for its DW_AT_frame_base. */
373
374static void
375locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
376 const gdb_byte **start, size_t *length)
377{
378 struct dwarf2_locexpr_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
379
380 *length = symbaton->size;
381 *start = symbaton->data;
382}
383
384/* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
385 function uses DWARF expression for its DW_AT_frame_base. */
386
387const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
388{
389 locexpr_find_frame_base_location
390};
391
392/* Implement find_frame_base_location method for LOC_BLOCK functions using
393 DWARF location list for its DW_AT_frame_base. */
394
395static void
396loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
397 const gdb_byte **start, size_t *length)
398{
399 struct dwarf2_loclist_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
400
401 *start = dwarf2_find_location_expression (symbaton, length, pc);
402}
403
404/* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
405 function uses DWARF location list for its DW_AT_frame_base. */
406
407const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
408{
409 loclist_find_frame_base_location
410};
411
af945b75
TT
412/* See dwarf2loc.h. */
413
414void
415func_get_frame_base_dwarf_block (struct symbol *framefunc, CORE_ADDR pc,
416 const gdb_byte **start, size_t *length)
0936ad1d 417{
f1e6e072 418 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
0d53c4c4 419 {
f1e6e072 420 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
22c6caba 421
f1e6e072 422 ops_block->find_frame_base_location (framefunc, pc, start, length);
0d53c4c4
DJ
423 }
424 else
f1e6e072 425 *length = 0;
0d53c4c4 426
1d6edc3c 427 if (*length == 0)
8a3fe4f8 428 error (_("Could not find the frame base for \"%s\"."),
0d53c4c4 429 SYMBOL_NATURAL_NAME (framefunc));
4c2df51b
DJ
430}
431
e7802207
TT
432/* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
433 the frame in BATON. */
434
435static CORE_ADDR
436dwarf_expr_frame_cfa (void *baton)
437{
438 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
9a619af0 439
e7802207
TT
440 return dwarf2_frame_cfa (debaton->frame);
441}
442
8cf6f0b1
TT
443/* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
444 the frame in BATON. */
445
446static CORE_ADDR
447dwarf_expr_frame_pc (void *baton)
448{
449 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
450
451 return get_frame_address_in_block (debaton->frame);
452}
453
4c2df51b
DJ
454/* Using the objfile specified in BATON, find the address for the
455 current thread's thread-local storage with offset OFFSET. */
456static CORE_ADDR
457dwarf_expr_tls_address (void *baton, CORE_ADDR offset)
458{
459 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
17ea53c3 460 struct objfile *objfile = dwarf2_per_cu_objfile (debaton->per_cu);
4c2df51b 461
17ea53c3 462 return target_translate_tls_address (objfile, offset);
4c2df51b
DJ
463}
464
3e43a32a
MS
465/* Call DWARF subroutine from DW_AT_location of DIE at DIE_OFFSET in
466 current CU (as is PER_CU). State of the CTX is not affected by the
467 call and return. */
5c631832
JK
468
469static void
b64f50a1 470per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
8cf6f0b1
TT
471 struct dwarf2_per_cu_data *per_cu,
472 CORE_ADDR (*get_frame_pc) (void *baton),
473 void *baton)
5c631832
JK
474{
475 struct dwarf2_locexpr_baton block;
476
8b9737bf 477 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu, get_frame_pc, baton);
5c631832
JK
478
479 /* DW_OP_call_ref is currently not supported. */
480 gdb_assert (block.per_cu == per_cu);
481
482 dwarf_expr_eval (ctx, block.data, block.size);
483}
484
485/* Helper interface of per_cu_dwarf_call for dwarf2_evaluate_loc_desc. */
486
487static void
b64f50a1 488dwarf_expr_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
5c631832
JK
489{
490 struct dwarf_expr_baton *debaton = ctx->baton;
491
37b50a69 492 per_cu_dwarf_call (ctx, die_offset, debaton->per_cu,
9e8b7a03 493 ctx->funcs->get_frame_pc, ctx->baton);
5c631832
JK
494}
495
8a9b8146
TT
496/* Callback function for dwarf2_evaluate_loc_desc. */
497
498static struct type *
b64f50a1
JK
499dwarf_expr_get_base_type (struct dwarf_expr_context *ctx,
500 cu_offset die_offset)
8a9b8146
TT
501{
502 struct dwarf_expr_baton *debaton = ctx->baton;
503
504 return dwarf2_get_die_type (die_offset, debaton->per_cu);
505}
506
8e3b41a9
JK
507/* See dwarf2loc.h. */
508
ccce17b0 509unsigned int entry_values_debug = 0;
8e3b41a9
JK
510
511/* Helper to set entry_values_debug. */
512
513static void
514show_entry_values_debug (struct ui_file *file, int from_tty,
515 struct cmd_list_element *c, const char *value)
516{
517 fprintf_filtered (file,
518 _("Entry values and tail call frames debugging is %s.\n"),
519 value);
520}
521
522/* Find DW_TAG_GNU_call_site's DW_AT_GNU_call_site_target address.
523 CALLER_FRAME (for registers) can be NULL if it is not known. This function
524 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
525
526static CORE_ADDR
527call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
528 struct call_site *call_site,
529 struct frame_info *caller_frame)
530{
531 switch (FIELD_LOC_KIND (call_site->target))
532 {
533 case FIELD_LOC_KIND_DWARF_BLOCK:
534 {
535 struct dwarf2_locexpr_baton *dwarf_block;
536 struct value *val;
537 struct type *caller_core_addr_type;
538 struct gdbarch *caller_arch;
539
540 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
541 if (dwarf_block == NULL)
542 {
7cbd4a93 543 struct bound_minimal_symbol msym;
8e3b41a9
JK
544
545 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
546 throw_error (NO_ENTRY_VALUE_ERROR,
547 _("DW_AT_GNU_call_site_target is not specified "
548 "at %s in %s"),
549 paddress (call_site_gdbarch, call_site->pc),
7cbd4a93 550 (msym.minsym == NULL ? "???"
efd66ac6 551 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
552
553 }
554 if (caller_frame == NULL)
555 {
7cbd4a93 556 struct bound_minimal_symbol msym;
8e3b41a9
JK
557
558 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
559 throw_error (NO_ENTRY_VALUE_ERROR,
560 _("DW_AT_GNU_call_site_target DWARF block resolving "
561 "requires known frame which is currently not "
562 "available at %s in %s"),
563 paddress (call_site_gdbarch, call_site->pc),
7cbd4a93 564 (msym.minsym == NULL ? "???"
efd66ac6 565 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
566
567 }
568 caller_arch = get_frame_arch (caller_frame);
569 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
570 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
571 dwarf_block->data, dwarf_block->size,
572 dwarf_block->per_cu);
573 /* DW_AT_GNU_call_site_target is a DWARF expression, not a DWARF
574 location. */
575 if (VALUE_LVAL (val) == lval_memory)
576 return value_address (val);
577 else
578 return value_as_address (val);
579 }
580
581 case FIELD_LOC_KIND_PHYSNAME:
582 {
583 const char *physname;
3b7344d5 584 struct bound_minimal_symbol msym;
8e3b41a9
JK
585
586 physname = FIELD_STATIC_PHYSNAME (call_site->target);
9112db09
JK
587
588 /* Handle both the mangled and demangled PHYSNAME. */
589 msym = lookup_minimal_symbol (physname, NULL, NULL);
3b7344d5 590 if (msym.minsym == NULL)
8e3b41a9 591 {
3b7344d5 592 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
8e3b41a9
JK
593 throw_error (NO_ENTRY_VALUE_ERROR,
594 _("Cannot find function \"%s\" for a call site target "
595 "at %s in %s"),
596 physname, paddress (call_site_gdbarch, call_site->pc),
3b7344d5
TT
597 (msym.minsym == NULL ? "???"
598 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
599
600 }
77e371c0 601 return BMSYMBOL_VALUE_ADDRESS (msym);
8e3b41a9
JK
602 }
603
604 case FIELD_LOC_KIND_PHYSADDR:
605 return FIELD_STATIC_PHYSADDR (call_site->target);
606
607 default:
608 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
609 }
610}
611
111c6489
JK
612/* Convert function entry point exact address ADDR to the function which is
613 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
614 NO_ENTRY_VALUE_ERROR otherwise. */
615
616static struct symbol *
617func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
618{
619 struct symbol *sym = find_pc_function (addr);
620 struct type *type;
621
622 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
623 throw_error (NO_ENTRY_VALUE_ERROR,
624 _("DW_TAG_GNU_call_site resolving failed to find function "
625 "name for address %s"),
626 paddress (gdbarch, addr));
627
628 type = SYMBOL_TYPE (sym);
629 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
630 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
631
632 return sym;
633}
634
2d6c5dc2
JK
635/* Verify function with entry point exact address ADDR can never call itself
636 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
637 can call itself via tail calls.
638
639 If a funtion can tail call itself its entry value based parameters are
640 unreliable. There is no verification whether the value of some/all
641 parameters is unchanged through the self tail call, we expect if there is
642 a self tail call all the parameters can be modified. */
643
644static void
645func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
646{
647 struct obstack addr_obstack;
648 struct cleanup *old_chain;
649 CORE_ADDR addr;
650
651 /* Track here CORE_ADDRs which were already visited. */
652 htab_t addr_hash;
653
654 /* The verification is completely unordered. Track here function addresses
655 which still need to be iterated. */
656 VEC (CORE_ADDR) *todo = NULL;
657
658 obstack_init (&addr_obstack);
659 old_chain = make_cleanup_obstack_free (&addr_obstack);
660 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
661 &addr_obstack, hashtab_obstack_allocate,
662 NULL);
663 make_cleanup_htab_delete (addr_hash);
664
665 make_cleanup (VEC_cleanup (CORE_ADDR), &todo);
666
667 VEC_safe_push (CORE_ADDR, todo, verify_addr);
668 while (!VEC_empty (CORE_ADDR, todo))
669 {
670 struct symbol *func_sym;
671 struct call_site *call_site;
672
673 addr = VEC_pop (CORE_ADDR, todo);
674
675 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
676
677 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
678 call_site; call_site = call_site->tail_call_next)
679 {
680 CORE_ADDR target_addr;
681 void **slot;
682
683 /* CALLER_FRAME with registers is not available for tail-call jumped
684 frames. */
685 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
686
687 if (target_addr == verify_addr)
688 {
7cbd4a93 689 struct bound_minimal_symbol msym;
2d6c5dc2
JK
690
691 msym = lookup_minimal_symbol_by_pc (verify_addr);
692 throw_error (NO_ENTRY_VALUE_ERROR,
693 _("DW_OP_GNU_entry_value resolving has found "
694 "function \"%s\" at %s can call itself via tail "
695 "calls"),
7cbd4a93 696 (msym.minsym == NULL ? "???"
efd66ac6 697 : MSYMBOL_PRINT_NAME (msym.minsym)),
2d6c5dc2
JK
698 paddress (gdbarch, verify_addr));
699 }
700
701 slot = htab_find_slot (addr_hash, &target_addr, INSERT);
702 if (*slot == NULL)
703 {
704 *slot = obstack_copy (&addr_obstack, &target_addr,
705 sizeof (target_addr));
706 VEC_safe_push (CORE_ADDR, todo, target_addr);
707 }
708 }
709 }
710
711 do_cleanups (old_chain);
712}
713
111c6489
JK
714/* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
715 ENTRY_VALUES_DEBUG. */
716
717static void
718tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
719{
720 CORE_ADDR addr = call_site->pc;
7cbd4a93 721 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
111c6489
JK
722
723 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
7cbd4a93 724 (msym.minsym == NULL ? "???"
efd66ac6 725 : MSYMBOL_PRINT_NAME (msym.minsym)));
111c6489
JK
726
727}
728
729/* vec.h needs single word type name, typedef it. */
730typedef struct call_site *call_sitep;
731
732/* Define VEC (call_sitep) functions. */
733DEF_VEC_P (call_sitep);
734
735/* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
736 only top callers and bottom callees which are present in both. GDBARCH is
737 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
738 no remaining possibilities to provide unambiguous non-trivial result.
739 RESULTP should point to NULL on the first (initialization) call. Caller is
740 responsible for xfree of any RESULTP data. */
741
742static void
743chain_candidate (struct gdbarch *gdbarch, struct call_site_chain **resultp,
744 VEC (call_sitep) *chain)
745{
746 struct call_site_chain *result = *resultp;
747 long length = VEC_length (call_sitep, chain);
748 int callers, callees, idx;
749
750 if (result == NULL)
751 {
752 /* Create the initial chain containing all the passed PCs. */
753
754 result = xmalloc (sizeof (*result) + sizeof (*result->call_site)
755 * (length - 1));
756 result->length = length;
757 result->callers = result->callees = length;
19a1b230
AA
758 if (!VEC_empty (call_sitep, chain))
759 memcpy (result->call_site, VEC_address (call_sitep, chain),
760 sizeof (*result->call_site) * length);
111c6489
JK
761 *resultp = result;
762
763 if (entry_values_debug)
764 {
765 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
766 for (idx = 0; idx < length; idx++)
767 tailcall_dump (gdbarch, result->call_site[idx]);
768 fputc_unfiltered ('\n', gdb_stdlog);
769 }
770
771 return;
772 }
773
774 if (entry_values_debug)
775 {
776 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
777 for (idx = 0; idx < length; idx++)
778 tailcall_dump (gdbarch, VEC_index (call_sitep, chain, idx));
779 fputc_unfiltered ('\n', gdb_stdlog);
780 }
781
782 /* Intersect callers. */
783
784 callers = min (result->callers, length);
785 for (idx = 0; idx < callers; idx++)
786 if (result->call_site[idx] != VEC_index (call_sitep, chain, idx))
787 {
788 result->callers = idx;
789 break;
790 }
791
792 /* Intersect callees. */
793
794 callees = min (result->callees, length);
795 for (idx = 0; idx < callees; idx++)
796 if (result->call_site[result->length - 1 - idx]
797 != VEC_index (call_sitep, chain, length - 1 - idx))
798 {
799 result->callees = idx;
800 break;
801 }
802
803 if (entry_values_debug)
804 {
805 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
806 for (idx = 0; idx < result->callers; idx++)
807 tailcall_dump (gdbarch, result->call_site[idx]);
808 fputs_unfiltered (" |", gdb_stdlog);
809 for (idx = 0; idx < result->callees; idx++)
810 tailcall_dump (gdbarch, result->call_site[result->length
811 - result->callees + idx]);
812 fputc_unfiltered ('\n', gdb_stdlog);
813 }
814
815 if (result->callers == 0 && result->callees == 0)
816 {
817 /* There are no common callers or callees. It could be also a direct
818 call (which has length 0) with ambiguous possibility of an indirect
819 call - CALLERS == CALLEES == 0 is valid during the first allocation
820 but any subsequence processing of such entry means ambiguity. */
821 xfree (result);
822 *resultp = NULL;
823 return;
824 }
825
826 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
827 PC again. In such case there must be two different code paths to reach
828 it, therefore some of the former determined intermediate PCs must differ
829 and the unambiguous chain gets shortened. */
830 gdb_assert (result->callers + result->callees < result->length);
831}
832
833/* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
834 assumed frames between them use GDBARCH. Use depth first search so we can
835 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
836 would have needless GDB stack overhead. Caller is responsible for xfree of
837 the returned result. Any unreliability results in thrown
838 NO_ENTRY_VALUE_ERROR. */
839
840static struct call_site_chain *
841call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
842 CORE_ADDR callee_pc)
843{
c4be5165 844 CORE_ADDR save_callee_pc = callee_pc;
111c6489
JK
845 struct obstack addr_obstack;
846 struct cleanup *back_to_retval, *back_to_workdata;
847 struct call_site_chain *retval = NULL;
848 struct call_site *call_site;
849
850 /* Mark CALL_SITEs so we do not visit the same ones twice. */
851 htab_t addr_hash;
852
853 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
854 call_site nor any possible call_site at CALLEE_PC's function is there.
855 Any CALL_SITE in CHAIN will be iterated to its siblings - via
856 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
857 VEC (call_sitep) *chain = NULL;
858
859 /* We are not interested in the specific PC inside the callee function. */
860 callee_pc = get_pc_function_start (callee_pc);
861 if (callee_pc == 0)
862 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
c4be5165 863 paddress (gdbarch, save_callee_pc));
111c6489
JK
864
865 back_to_retval = make_cleanup (free_current_contents, &retval);
866
867 obstack_init (&addr_obstack);
868 back_to_workdata = make_cleanup_obstack_free (&addr_obstack);
869 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
870 &addr_obstack, hashtab_obstack_allocate,
871 NULL);
872 make_cleanup_htab_delete (addr_hash);
873
874 make_cleanup (VEC_cleanup (call_sitep), &chain);
875
876 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
877 at the target's function. All the possible tail call sites in the
878 target's function will get iterated as already pushed into CHAIN via their
879 TAIL_CALL_NEXT. */
880 call_site = call_site_for_pc (gdbarch, caller_pc);
881
882 while (call_site)
883 {
884 CORE_ADDR target_func_addr;
885 struct call_site *target_call_site;
886
887 /* CALLER_FRAME with registers is not available for tail-call jumped
888 frames. */
889 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
890
891 if (target_func_addr == callee_pc)
892 {
893 chain_candidate (gdbarch, &retval, chain);
894 if (retval == NULL)
895 break;
896
897 /* There is no way to reach CALLEE_PC again as we would prevent
898 entering it twice as being already marked in ADDR_HASH. */
899 target_call_site = NULL;
900 }
901 else
902 {
903 struct symbol *target_func;
904
905 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
906 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
907 }
908
909 do
910 {
911 /* Attempt to visit TARGET_CALL_SITE. */
912
913 if (target_call_site)
914 {
915 void **slot;
916
917 slot = htab_find_slot (addr_hash, &target_call_site->pc, INSERT);
918 if (*slot == NULL)
919 {
920 /* Successfully entered TARGET_CALL_SITE. */
921
922 *slot = &target_call_site->pc;
923 VEC_safe_push (call_sitep, chain, target_call_site);
924 break;
925 }
926 }
927
928 /* Backtrack (without revisiting the originating call_site). Try the
929 callers's sibling; if there isn't any try the callers's callers's
930 sibling etc. */
931
932 target_call_site = NULL;
933 while (!VEC_empty (call_sitep, chain))
934 {
935 call_site = VEC_pop (call_sitep, chain);
936
937 gdb_assert (htab_find_slot (addr_hash, &call_site->pc,
938 NO_INSERT) != NULL);
939 htab_remove_elt (addr_hash, &call_site->pc);
940
941 target_call_site = call_site->tail_call_next;
942 if (target_call_site)
943 break;
944 }
945 }
946 while (target_call_site);
947
948 if (VEC_empty (call_sitep, chain))
949 call_site = NULL;
950 else
951 call_site = VEC_last (call_sitep, chain);
952 }
953
954 if (retval == NULL)
955 {
7cbd4a93 956 struct bound_minimal_symbol msym_caller, msym_callee;
111c6489
JK
957
958 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
959 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
960 throw_error (NO_ENTRY_VALUE_ERROR,
961 _("There are no unambiguously determinable intermediate "
962 "callers or callees between caller function \"%s\" at %s "
963 "and callee function \"%s\" at %s"),
7cbd4a93 964 (msym_caller.minsym == NULL
efd66ac6 965 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
111c6489 966 paddress (gdbarch, caller_pc),
7cbd4a93 967 (msym_callee.minsym == NULL
efd66ac6 968 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
111c6489
JK
969 paddress (gdbarch, callee_pc));
970 }
971
972 do_cleanups (back_to_workdata);
973 discard_cleanups (back_to_retval);
974 return retval;
975}
976
977/* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
978 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
979 constructed return NULL. Caller is responsible for xfree of the returned
980 result. */
981
982struct call_site_chain *
983call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
984 CORE_ADDR callee_pc)
985{
986 volatile struct gdb_exception e;
987 struct call_site_chain *retval = NULL;
988
989 TRY_CATCH (e, RETURN_MASK_ERROR)
990 {
991 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
992 }
993 if (e.reason < 0)
994 {
995 if (e.error == NO_ENTRY_VALUE_ERROR)
996 {
997 if (entry_values_debug)
998 exception_print (gdb_stdout, e);
999
1000 return NULL;
1001 }
1002 else
1003 throw_exception (e);
1004 }
1005 return retval;
1006}
1007
24c5c679
JK
1008/* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1009
1010static int
1011call_site_parameter_matches (struct call_site_parameter *parameter,
1012 enum call_site_parameter_kind kind,
1013 union call_site_parameter_u kind_u)
1014{
1015 if (kind == parameter->kind)
1016 switch (kind)
1017 {
1018 case CALL_SITE_PARAMETER_DWARF_REG:
1019 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1020 case CALL_SITE_PARAMETER_FB_OFFSET:
1021 return kind_u.fb_offset == parameter->u.fb_offset;
1788b2d3
JK
1022 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1023 return kind_u.param_offset.cu_off == parameter->u.param_offset.cu_off;
24c5c679
JK
1024 }
1025 return 0;
1026}
1027
1028/* Fetch call_site_parameter from caller matching KIND and KIND_U.
1029 FRAME is for callee.
8e3b41a9
JK
1030
1031 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1032 otherwise. */
1033
1034static struct call_site_parameter *
24c5c679
JK
1035dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1036 enum call_site_parameter_kind kind,
1037 union call_site_parameter_u kind_u,
8e3b41a9
JK
1038 struct dwarf2_per_cu_data **per_cu_return)
1039{
9e3a7d65
JK
1040 CORE_ADDR func_addr, caller_pc;
1041 struct gdbarch *gdbarch;
1042 struct frame_info *caller_frame;
8e3b41a9
JK
1043 struct call_site *call_site;
1044 int iparams;
509f0fd9
JK
1045 /* Initialize it just to avoid a GCC false warning. */
1046 struct call_site_parameter *parameter = NULL;
8e3b41a9
JK
1047 CORE_ADDR target_addr;
1048
9e3a7d65
JK
1049 while (get_frame_type (frame) == INLINE_FRAME)
1050 {
1051 frame = get_prev_frame (frame);
1052 gdb_assert (frame != NULL);
1053 }
1054
1055 func_addr = get_frame_func (frame);
1056 gdbarch = get_frame_arch (frame);
1057 caller_frame = get_prev_frame (frame);
8e3b41a9
JK
1058 if (gdbarch != frame_unwind_arch (frame))
1059 {
7cbd4a93
TT
1060 struct bound_minimal_symbol msym
1061 = lookup_minimal_symbol_by_pc (func_addr);
8e3b41a9
JK
1062 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1063
1064 throw_error (NO_ENTRY_VALUE_ERROR,
1065 _("DW_OP_GNU_entry_value resolving callee gdbarch %s "
1066 "(of %s (%s)) does not match caller gdbarch %s"),
1067 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1068 paddress (gdbarch, func_addr),
7cbd4a93 1069 (msym.minsym == NULL ? "???"
efd66ac6 1070 : MSYMBOL_PRINT_NAME (msym.minsym)),
8e3b41a9
JK
1071 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1072 }
1073
1074 if (caller_frame == NULL)
1075 {
7cbd4a93
TT
1076 struct bound_minimal_symbol msym
1077 = lookup_minimal_symbol_by_pc (func_addr);
8e3b41a9
JK
1078
1079 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_GNU_entry_value resolving "
1080 "requires caller of %s (%s)"),
1081 paddress (gdbarch, func_addr),
7cbd4a93 1082 (msym.minsym == NULL ? "???"
efd66ac6 1083 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
1084 }
1085 caller_pc = get_frame_pc (caller_frame);
1086 call_site = call_site_for_pc (gdbarch, caller_pc);
1087
1088 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1089 if (target_addr != func_addr)
1090 {
1091 struct minimal_symbol *target_msym, *func_msym;
1092
7cbd4a93
TT
1093 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1094 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
8e3b41a9
JK
1095 throw_error (NO_ENTRY_VALUE_ERROR,
1096 _("DW_OP_GNU_entry_value resolving expects callee %s at %s "
1097 "but the called frame is for %s at %s"),
1098 (target_msym == NULL ? "???"
efd66ac6 1099 : MSYMBOL_PRINT_NAME (target_msym)),
8e3b41a9 1100 paddress (gdbarch, target_addr),
efd66ac6 1101 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
8e3b41a9
JK
1102 paddress (gdbarch, func_addr));
1103 }
1104
2d6c5dc2
JK
1105 /* No entry value based parameters would be reliable if this function can
1106 call itself via tail calls. */
1107 func_verify_no_selftailcall (gdbarch, func_addr);
1108
8e3b41a9
JK
1109 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1110 {
1111 parameter = &call_site->parameter[iparams];
24c5c679 1112 if (call_site_parameter_matches (parameter, kind, kind_u))
8e3b41a9
JK
1113 break;
1114 }
1115 if (iparams == call_site->parameter_count)
1116 {
7cbd4a93
TT
1117 struct minimal_symbol *msym
1118 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
8e3b41a9
JK
1119
1120 /* DW_TAG_GNU_call_site_parameter will be missing just if GCC could not
1121 determine its value. */
1122 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1123 "at DW_TAG_GNU_call_site %s at %s"),
1124 paddress (gdbarch, caller_pc),
efd66ac6 1125 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
8e3b41a9
JK
1126 }
1127
1128 *per_cu_return = call_site->per_cu;
1129 return parameter;
1130}
1131
a471c594
JK
1132/* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1133 the normal DW_AT_GNU_call_site_value block. Otherwise return the
1134 DW_AT_GNU_call_site_data_value (dereferenced) block.
e18b2753
JK
1135
1136 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1137 struct value.
1138
1139 Function always returns non-NULL, non-optimized out value. It throws
1140 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1141
1142static struct value *
1143dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
a471c594 1144 CORE_ADDR deref_size, struct type *type,
e18b2753
JK
1145 struct frame_info *caller_frame,
1146 struct dwarf2_per_cu_data *per_cu)
1147{
a471c594 1148 const gdb_byte *data_src;
e18b2753 1149 gdb_byte *data;
a471c594
JK
1150 size_t size;
1151
1152 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1153 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1154
1155 /* DEREF_SIZE size is not verified here. */
1156 if (data_src == NULL)
1157 throw_error (NO_ENTRY_VALUE_ERROR,
1158 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
e18b2753
JK
1159
1160 /* DW_AT_GNU_call_site_value is a DWARF expression, not a DWARF
1161 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1162 DWARF block. */
a471c594
JK
1163 data = alloca (size + 1);
1164 memcpy (data, data_src, size);
1165 data[size] = DW_OP_stack_value;
e18b2753 1166
a471c594 1167 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
e18b2753
JK
1168}
1169
24c5c679
JK
1170/* Execute DWARF block of call_site_parameter which matches KIND and KIND_U.
1171 Choose DEREF_SIZE value of that parameter. Search caller of the CTX's
1172 frame. CTX must be of dwarf_expr_ctx_funcs kind.
8e3b41a9
JK
1173
1174 The CTX caller can be from a different CU - per_cu_dwarf_call implementation
1175 can be more simple as it does not support cross-CU DWARF executions. */
1176
1177static void
1178dwarf_expr_push_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
24c5c679
JK
1179 enum call_site_parameter_kind kind,
1180 union call_site_parameter_u kind_u,
a471c594 1181 int deref_size)
8e3b41a9
JK
1182{
1183 struct dwarf_expr_baton *debaton;
1184 struct frame_info *frame, *caller_frame;
1185 struct dwarf2_per_cu_data *caller_per_cu;
1186 struct dwarf_expr_baton baton_local;
1187 struct dwarf_expr_context saved_ctx;
1188 struct call_site_parameter *parameter;
1189 const gdb_byte *data_src;
1190 size_t size;
1191
1192 gdb_assert (ctx->funcs == &dwarf_expr_ctx_funcs);
1193 debaton = ctx->baton;
1194 frame = debaton->frame;
1195 caller_frame = get_prev_frame (frame);
1196
24c5c679 1197 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
8e3b41a9 1198 &caller_per_cu);
a471c594
JK
1199 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1200 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1201
1202 /* DEREF_SIZE size is not verified here. */
1203 if (data_src == NULL)
1204 throw_error (NO_ENTRY_VALUE_ERROR,
1205 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
8e3b41a9
JK
1206
1207 baton_local.frame = caller_frame;
1208 baton_local.per_cu = caller_per_cu;
08412b07 1209 baton_local.obj_address = 0;
8e3b41a9
JK
1210
1211 saved_ctx.gdbarch = ctx->gdbarch;
1212 saved_ctx.addr_size = ctx->addr_size;
1213 saved_ctx.offset = ctx->offset;
1214 saved_ctx.baton = ctx->baton;
1215 ctx->gdbarch = get_objfile_arch (dwarf2_per_cu_objfile (baton_local.per_cu));
1216 ctx->addr_size = dwarf2_per_cu_addr_size (baton_local.per_cu);
1217 ctx->offset = dwarf2_per_cu_text_offset (baton_local.per_cu);
1218 ctx->baton = &baton_local;
1219
1220 dwarf_expr_eval (ctx, data_src, size);
1221
1222 ctx->gdbarch = saved_ctx.gdbarch;
1223 ctx->addr_size = saved_ctx.addr_size;
1224 ctx->offset = saved_ctx.offset;
1225 ctx->baton = saved_ctx.baton;
1226}
1227
3019eac3
DE
1228/* Callback function for dwarf2_evaluate_loc_desc.
1229 Fetch the address indexed by DW_OP_GNU_addr_index. */
1230
1231static CORE_ADDR
1232dwarf_expr_get_addr_index (void *baton, unsigned int index)
1233{
1234 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
1235
1236 return dwarf2_read_addr_index (debaton->per_cu, index);
1237}
1238
08412b07
JB
1239/* Callback function for get_object_address. Return the address of the VLA
1240 object. */
1241
1242static CORE_ADDR
1243dwarf_expr_get_obj_addr (void *baton)
1244{
1245 struct dwarf_expr_baton *debaton = baton;
1246
1247 gdb_assert (debaton != NULL);
1248
1249 if (debaton->obj_address == 0)
1250 error (_("Location address is not set."));
1251
1252 return debaton->obj_address;
1253}
1254
a471c594
JK
1255/* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1256 the indirect method on it, that is use its stored target value, the sole
1257 purpose of entry_data_value_funcs.. */
1258
1259static struct value *
1260entry_data_value_coerce_ref (const struct value *value)
1261{
1262 struct type *checked_type = check_typedef (value_type (value));
1263 struct value *target_val;
1264
1265 if (TYPE_CODE (checked_type) != TYPE_CODE_REF)
1266 return NULL;
1267
1268 target_val = value_computed_closure (value);
1269 value_incref (target_val);
1270 return target_val;
1271}
1272
1273/* Implement copy_closure. */
1274
1275static void *
1276entry_data_value_copy_closure (const struct value *v)
1277{
1278 struct value *target_val = value_computed_closure (v);
1279
1280 value_incref (target_val);
1281 return target_val;
1282}
1283
1284/* Implement free_closure. */
1285
1286static void
1287entry_data_value_free_closure (struct value *v)
1288{
1289 struct value *target_val = value_computed_closure (v);
1290
1291 value_free (target_val);
1292}
1293
1294/* Vector for methods for an entry value reference where the referenced value
1295 is stored in the caller. On the first dereference use
1296 DW_AT_GNU_call_site_data_value in the caller. */
1297
1298static const struct lval_funcs entry_data_value_funcs =
1299{
1300 NULL, /* read */
1301 NULL, /* write */
a471c594
JK
1302 NULL, /* indirect */
1303 entry_data_value_coerce_ref,
1304 NULL, /* check_synthetic_pointer */
1305 entry_data_value_copy_closure,
1306 entry_data_value_free_closure
1307};
1308
24c5c679
JK
1309/* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1310 are used to match DW_AT_location at the caller's
1311 DW_TAG_GNU_call_site_parameter.
e18b2753
JK
1312
1313 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1314 cannot resolve the parameter for any reason. */
1315
1316static struct value *
1317value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
24c5c679
JK
1318 enum call_site_parameter_kind kind,
1319 union call_site_parameter_u kind_u)
e18b2753 1320{
a471c594
JK
1321 struct type *checked_type = check_typedef (type);
1322 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
e18b2753 1323 struct frame_info *caller_frame = get_prev_frame (frame);
a471c594 1324 struct value *outer_val, *target_val, *val;
e18b2753
JK
1325 struct call_site_parameter *parameter;
1326 struct dwarf2_per_cu_data *caller_per_cu;
1327
24c5c679 1328 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
e18b2753
JK
1329 &caller_per_cu);
1330
a471c594
JK
1331 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1332 type, caller_frame,
1333 caller_per_cu);
1334
1335 /* Check if DW_AT_GNU_call_site_data_value cannot be used. If it should be
1336 used and it is not available do not fall back to OUTER_VAL - dereferencing
1337 TYPE_CODE_REF with non-entry data value would give current value - not the
1338 entry value. */
1339
1340 if (TYPE_CODE (checked_type) != TYPE_CODE_REF
1341 || TYPE_TARGET_TYPE (checked_type) == NULL)
1342 return outer_val;
1343
1344 target_val = dwarf_entry_parameter_to_value (parameter,
1345 TYPE_LENGTH (target_type),
1346 target_type, caller_frame,
1347 caller_per_cu);
1348
a471c594
JK
1349 release_value (target_val);
1350 val = allocate_computed_value (type, &entry_data_value_funcs,
1351 target_val /* closure */);
1352
1353 /* Copy the referencing pointer to the new computed value. */
1354 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1355 TYPE_LENGTH (checked_type));
1356 set_value_lazy (val, 0);
1357
1358 return val;
e18b2753
JK
1359}
1360
1361/* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1362 SIZE are DWARF block used to match DW_AT_location at the caller's
1363 DW_TAG_GNU_call_site_parameter.
1364
1365 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1366 cannot resolve the parameter for any reason. */
1367
1368static struct value *
1369value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1370 const gdb_byte *block, size_t block_len)
1371{
24c5c679 1372 union call_site_parameter_u kind_u;
e18b2753 1373
24c5c679
JK
1374 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1375 if (kind_u.dwarf_reg != -1)
1376 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1377 kind_u);
e18b2753 1378
24c5c679
JK
1379 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1380 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1381 kind_u);
e18b2753
JK
1382
1383 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1384 suppressed during normal operation. The expression can be arbitrary if
1385 there is no caller-callee entry value binding expected. */
1386 throw_error (NO_ENTRY_VALUE_ERROR,
1387 _("DWARF-2 expression error: DW_OP_GNU_entry_value is supported "
1388 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1389}
1390
052b9502
NF
1391struct piece_closure
1392{
88bfdde4
TT
1393 /* Reference count. */
1394 int refc;
1395
8cf6f0b1
TT
1396 /* The CU from which this closure's expression came. */
1397 struct dwarf2_per_cu_data *per_cu;
1398
052b9502
NF
1399 /* The number of pieces used to describe this variable. */
1400 int n_pieces;
1401
6063c216
UW
1402 /* The target address size, used only for DWARF_VALUE_STACK. */
1403 int addr_size;
cec03d70 1404
052b9502
NF
1405 /* The pieces themselves. */
1406 struct dwarf_expr_piece *pieces;
1407};
1408
1409/* Allocate a closure for a value formed from separately-described
1410 PIECES. */
1411
1412static struct piece_closure *
8cf6f0b1
TT
1413allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1414 int n_pieces, struct dwarf_expr_piece *pieces,
6063c216 1415 int addr_size)
052b9502 1416{
41bf6aca 1417 struct piece_closure *c = XCNEW (struct piece_closure);
8a9b8146 1418 int i;
052b9502 1419
88bfdde4 1420 c->refc = 1;
8cf6f0b1 1421 c->per_cu = per_cu;
052b9502 1422 c->n_pieces = n_pieces;
6063c216 1423 c->addr_size = addr_size;
fc270c35 1424 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
052b9502
NF
1425
1426 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
8a9b8146
TT
1427 for (i = 0; i < n_pieces; ++i)
1428 if (c->pieces[i].location == DWARF_VALUE_STACK)
1429 value_incref (c->pieces[i].v.value);
052b9502
NF
1430
1431 return c;
1432}
1433
d3b1e874
TT
1434/* The lowest-level function to extract bits from a byte buffer.
1435 SOURCE is the buffer. It is updated if we read to the end of a
1436 byte.
1437 SOURCE_OFFSET_BITS is the offset of the first bit to read. It is
1438 updated to reflect the number of bits actually read.
1439 NBITS is the number of bits we want to read. It is updated to
1440 reflect the number of bits actually read. This function may read
1441 fewer bits.
1442 BITS_BIG_ENDIAN is taken directly from gdbarch.
1443 This function returns the extracted bits. */
1444
1445static unsigned int
1446extract_bits_primitive (const gdb_byte **source,
1447 unsigned int *source_offset_bits,
1448 int *nbits, int bits_big_endian)
1449{
1450 unsigned int avail, mask, datum;
1451
1452 gdb_assert (*source_offset_bits < 8);
1453
1454 avail = 8 - *source_offset_bits;
1455 if (avail > *nbits)
1456 avail = *nbits;
1457
1458 mask = (1 << avail) - 1;
1459 datum = **source;
1460 if (bits_big_endian)
1461 datum >>= 8 - (*source_offset_bits + *nbits);
1462 else
1463 datum >>= *source_offset_bits;
1464 datum &= mask;
1465
1466 *nbits -= avail;
1467 *source_offset_bits += avail;
1468 if (*source_offset_bits >= 8)
1469 {
1470 *source_offset_bits -= 8;
1471 ++*source;
1472 }
1473
1474 return datum;
1475}
1476
1477/* Extract some bits from a source buffer and move forward in the
1478 buffer.
1479
1480 SOURCE is the source buffer. It is updated as bytes are read.
1481 SOURCE_OFFSET_BITS is the offset into SOURCE. It is updated as
1482 bits are read.
1483 NBITS is the number of bits to read.
1484 BITS_BIG_ENDIAN is taken directly from gdbarch.
1485
1486 This function returns the bits that were read. */
1487
1488static unsigned int
1489extract_bits (const gdb_byte **source, unsigned int *source_offset_bits,
1490 int nbits, int bits_big_endian)
1491{
1492 unsigned int datum;
1493
1494 gdb_assert (nbits > 0 && nbits <= 8);
1495
1496 datum = extract_bits_primitive (source, source_offset_bits, &nbits,
1497 bits_big_endian);
1498 if (nbits > 0)
1499 {
1500 unsigned int more;
1501
1502 more = extract_bits_primitive (source, source_offset_bits, &nbits,
1503 bits_big_endian);
1504 if (bits_big_endian)
1505 datum <<= nbits;
1506 else
1507 more <<= nbits;
1508 datum |= more;
1509 }
1510
1511 return datum;
1512}
1513
1514/* Write some bits into a buffer and move forward in the buffer.
1515
1516 DATUM is the bits to write. The low-order bits of DATUM are used.
1517 DEST is the destination buffer. It is updated as bytes are
1518 written.
1519 DEST_OFFSET_BITS is the bit offset in DEST at which writing is
1520 done.
1521 NBITS is the number of valid bits in DATUM.
1522 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1523
1524static void
1525insert_bits (unsigned int datum,
1526 gdb_byte *dest, unsigned int dest_offset_bits,
1527 int nbits, int bits_big_endian)
1528{
1529 unsigned int mask;
1530
8c814cdd 1531 gdb_assert (dest_offset_bits + nbits <= 8);
d3b1e874
TT
1532
1533 mask = (1 << nbits) - 1;
1534 if (bits_big_endian)
1535 {
1536 datum <<= 8 - (dest_offset_bits + nbits);
1537 mask <<= 8 - (dest_offset_bits + nbits);
1538 }
1539 else
1540 {
1541 datum <<= dest_offset_bits;
1542 mask <<= dest_offset_bits;
1543 }
1544
1545 gdb_assert ((datum & ~mask) == 0);
1546
1547 *dest = (*dest & ~mask) | datum;
1548}
1549
1550/* Copy bits from a source to a destination.
1551
1552 DEST is where the bits should be written.
1553 DEST_OFFSET_BITS is the bit offset into DEST.
1554 SOURCE is the source of bits.
1555 SOURCE_OFFSET_BITS is the bit offset into SOURCE.
1556 BIT_COUNT is the number of bits to copy.
1557 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1558
1559static void
1560copy_bitwise (gdb_byte *dest, unsigned int dest_offset_bits,
1561 const gdb_byte *source, unsigned int source_offset_bits,
1562 unsigned int bit_count,
1563 int bits_big_endian)
1564{
1565 unsigned int dest_avail;
1566 int datum;
1567
1568 /* Reduce everything to byte-size pieces. */
1569 dest += dest_offset_bits / 8;
1570 dest_offset_bits %= 8;
1571 source += source_offset_bits / 8;
1572 source_offset_bits %= 8;
1573
1574 dest_avail = 8 - dest_offset_bits % 8;
1575
1576 /* See if we can fill the first destination byte. */
1577 if (dest_avail < bit_count)
1578 {
1579 datum = extract_bits (&source, &source_offset_bits, dest_avail,
1580 bits_big_endian);
1581 insert_bits (datum, dest, dest_offset_bits, dest_avail, bits_big_endian);
1582 ++dest;
1583 dest_offset_bits = 0;
1584 bit_count -= dest_avail;
1585 }
1586
1587 /* Now, either DEST_OFFSET_BITS is byte-aligned, or we have fewer
1588 than 8 bits remaining. */
1589 gdb_assert (dest_offset_bits % 8 == 0 || bit_count < 8);
1590 for (; bit_count >= 8; bit_count -= 8)
1591 {
1592 datum = extract_bits (&source, &source_offset_bits, 8, bits_big_endian);
1593 *dest++ = (gdb_byte) datum;
1594 }
1595
1596 /* Finally, we may have a few leftover bits. */
1597 gdb_assert (bit_count <= 8 - dest_offset_bits % 8);
1598 if (bit_count > 0)
1599 {
1600 datum = extract_bits (&source, &source_offset_bits, bit_count,
1601 bits_big_endian);
1602 insert_bits (datum, dest, dest_offset_bits, bit_count, bits_big_endian);
1603 }
1604}
1605
052b9502
NF
1606static void
1607read_pieced_value (struct value *v)
1608{
1609 int i;
1610 long offset = 0;
d3b1e874 1611 ULONGEST bits_to_skip;
052b9502 1612 gdb_byte *contents;
3e43a32a
MS
1613 struct piece_closure *c
1614 = (struct piece_closure *) value_computed_closure (v);
052b9502 1615 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (v));
afd74c5f 1616 size_t type_len;
d3b1e874 1617 size_t buffer_size = 0;
948f8e3d 1618 gdb_byte *buffer = NULL;
d3b1e874
TT
1619 struct cleanup *cleanup;
1620 int bits_big_endian
1621 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
afd74c5f
TT
1622
1623 if (value_type (v) != value_enclosing_type (v))
1624 internal_error (__FILE__, __LINE__,
1625 _("Should not be able to create a lazy value with "
1626 "an enclosing type"));
052b9502 1627
d3b1e874
TT
1628 cleanup = make_cleanup (free_current_contents, &buffer);
1629
052b9502 1630 contents = value_contents_raw (v);
d3b1e874 1631 bits_to_skip = 8 * value_offset (v);
0e03807e
TT
1632 if (value_bitsize (v))
1633 {
1634 bits_to_skip += value_bitpos (v);
1635 type_len = value_bitsize (v);
1636 }
1637 else
1638 type_len = 8 * TYPE_LENGTH (value_type (v));
d3b1e874 1639
afd74c5f 1640 for (i = 0; i < c->n_pieces && offset < type_len; i++)
052b9502
NF
1641 {
1642 struct dwarf_expr_piece *p = &c->pieces[i];
d3b1e874
TT
1643 size_t this_size, this_size_bits;
1644 long dest_offset_bits, source_offset_bits, source_offset;
0d45f56e 1645 const gdb_byte *intermediate_buffer;
d3b1e874
TT
1646
1647 /* Compute size, source, and destination offsets for copying, in
1648 bits. */
1649 this_size_bits = p->size;
1650 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
afd74c5f 1651 {
d3b1e874 1652 bits_to_skip -= this_size_bits;
afd74c5f
TT
1653 continue;
1654 }
d3b1e874 1655 if (bits_to_skip > 0)
afd74c5f 1656 {
d3b1e874
TT
1657 dest_offset_bits = 0;
1658 source_offset_bits = bits_to_skip;
1659 this_size_bits -= bits_to_skip;
1660 bits_to_skip = 0;
afd74c5f
TT
1661 }
1662 else
1663 {
d3b1e874
TT
1664 dest_offset_bits = offset;
1665 source_offset_bits = 0;
afd74c5f 1666 }
5bd1ef56
TT
1667 if (this_size_bits > type_len - offset)
1668 this_size_bits = type_len - offset;
9a619af0 1669
d3b1e874
TT
1670 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1671 source_offset = source_offset_bits / 8;
1672 if (buffer_size < this_size)
1673 {
1674 buffer_size = this_size;
1675 buffer = xrealloc (buffer, buffer_size);
1676 }
1677 intermediate_buffer = buffer;
1678
1679 /* Copy from the source to DEST_BUFFER. */
cec03d70 1680 switch (p->location)
052b9502 1681 {
cec03d70
TT
1682 case DWARF_VALUE_REGISTER:
1683 {
1684 struct gdbarch *arch = get_frame_arch (frame);
8a9b8146 1685 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
dcbf108f 1686
63b4f126
MGD
1687 if (gdb_regnum != -1)
1688 {
8dccd430 1689 int optim, unavail;
ca45ab26
VK
1690 int reg_offset = source_offset;
1691
1692 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1693 && this_size < register_size (arch, gdb_regnum))
1694 {
1695 /* Big-endian, and we want less than full size. */
1696 reg_offset = register_size (arch, gdb_regnum) - this_size;
1697 /* We want the lower-order THIS_SIZE_BITS of the bytes
1698 we extract from the register. */
1699 source_offset_bits += 8 * this_size - this_size_bits;
1700 }
8dccd430
PA
1701
1702 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1703 this_size, buffer,
1704 &optim, &unavail))
1705 {
1706 /* Just so garbage doesn't ever shine through. */
1707 memset (buffer, 0, this_size);
1708
1709 if (optim)
9a0dc9e3 1710 mark_value_bits_optimized_out (v, offset, this_size_bits);
8dccd430 1711 if (unavail)
bdf22206 1712 mark_value_bits_unavailable (v, offset, this_size_bits);
8dccd430 1713 }
63b4f126
MGD
1714 }
1715 else
1716 {
1717 error (_("Unable to access DWARF register number %s"),
8a9b8146 1718 paddress (arch, p->v.regno));
63b4f126 1719 }
cec03d70
TT
1720 }
1721 break;
1722
1723 case DWARF_VALUE_MEMORY:
e6ca34fc
PA
1724 read_value_memory (v, offset,
1725 p->v.mem.in_stack_memory,
1726 p->v.mem.addr + source_offset,
1727 buffer, this_size);
cec03d70
TT
1728 break;
1729
1730 case DWARF_VALUE_STACK:
1731 {
afd74c5f 1732 size_t n = this_size;
9a619af0 1733
afd74c5f
TT
1734 if (n > c->addr_size - source_offset)
1735 n = (c->addr_size >= source_offset
1736 ? c->addr_size - source_offset
1737 : 0);
1738 if (n == 0)
1739 {
1740 /* Nothing. */
1741 }
afd74c5f
TT
1742 else
1743 {
8a9b8146 1744 const gdb_byte *val_bytes = value_contents_all (p->v.value);
afd74c5f 1745
8a9b8146 1746 intermediate_buffer = val_bytes + source_offset;
afd74c5f 1747 }
cec03d70
TT
1748 }
1749 break;
1750
1751 case DWARF_VALUE_LITERAL:
1752 {
afd74c5f
TT
1753 size_t n = this_size;
1754
1755 if (n > p->v.literal.length - source_offset)
1756 n = (p->v.literal.length >= source_offset
1757 ? p->v.literal.length - source_offset
1758 : 0);
1759 if (n != 0)
d3b1e874 1760 intermediate_buffer = p->v.literal.data + source_offset;
cec03d70
TT
1761 }
1762 break;
1763
8cf6f0b1
TT
1764 /* These bits show up as zeros -- but do not cause the value
1765 to be considered optimized-out. */
1766 case DWARF_VALUE_IMPLICIT_POINTER:
1767 break;
1768
cb826367 1769 case DWARF_VALUE_OPTIMIZED_OUT:
9a0dc9e3 1770 mark_value_bits_optimized_out (v, offset, this_size_bits);
cb826367
TT
1771 break;
1772
cec03d70
TT
1773 default:
1774 internal_error (__FILE__, __LINE__, _("invalid location type"));
052b9502 1775 }
d3b1e874 1776
8cf6f0b1
TT
1777 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
1778 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
d3b1e874
TT
1779 copy_bitwise (contents, dest_offset_bits,
1780 intermediate_buffer, source_offset_bits % 8,
1781 this_size_bits, bits_big_endian);
1782
1783 offset += this_size_bits;
052b9502 1784 }
d3b1e874
TT
1785
1786 do_cleanups (cleanup);
052b9502
NF
1787}
1788
1789static void
1790write_pieced_value (struct value *to, struct value *from)
1791{
1792 int i;
1793 long offset = 0;
d3b1e874 1794 ULONGEST bits_to_skip;
afd74c5f 1795 const gdb_byte *contents;
3e43a32a
MS
1796 struct piece_closure *c
1797 = (struct piece_closure *) value_computed_closure (to);
052b9502 1798 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (to));
afd74c5f 1799 size_t type_len;
d3b1e874 1800 size_t buffer_size = 0;
948f8e3d 1801 gdb_byte *buffer = NULL;
d3b1e874
TT
1802 struct cleanup *cleanup;
1803 int bits_big_endian
1804 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
052b9502
NF
1805
1806 if (frame == NULL)
1807 {
9a0dc9e3 1808 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
052b9502
NF
1809 return;
1810 }
1811
d3b1e874
TT
1812 cleanup = make_cleanup (free_current_contents, &buffer);
1813
afd74c5f 1814 contents = value_contents (from);
d3b1e874 1815 bits_to_skip = 8 * value_offset (to);
0e03807e
TT
1816 if (value_bitsize (to))
1817 {
1818 bits_to_skip += value_bitpos (to);
1819 type_len = value_bitsize (to);
1820 }
1821 else
1822 type_len = 8 * TYPE_LENGTH (value_type (to));
1823
afd74c5f 1824 for (i = 0; i < c->n_pieces && offset < type_len; i++)
052b9502
NF
1825 {
1826 struct dwarf_expr_piece *p = &c->pieces[i];
d3b1e874
TT
1827 size_t this_size_bits, this_size;
1828 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1829 int need_bitwise;
1830 const gdb_byte *source_buffer;
afd74c5f 1831
d3b1e874
TT
1832 this_size_bits = p->size;
1833 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
afd74c5f 1834 {
d3b1e874 1835 bits_to_skip -= this_size_bits;
afd74c5f
TT
1836 continue;
1837 }
d3b1e874
TT
1838 if (this_size_bits > type_len - offset)
1839 this_size_bits = type_len - offset;
1840 if (bits_to_skip > 0)
afd74c5f 1841 {
d3b1e874
TT
1842 dest_offset_bits = bits_to_skip;
1843 source_offset_bits = 0;
1844 this_size_bits -= bits_to_skip;
1845 bits_to_skip = 0;
afd74c5f
TT
1846 }
1847 else
1848 {
d3b1e874
TT
1849 dest_offset_bits = 0;
1850 source_offset_bits = offset;
1851 }
1852
1853 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1854 source_offset = source_offset_bits / 8;
1855 dest_offset = dest_offset_bits / 8;
1856 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1857 {
1858 source_buffer = contents + source_offset;
1859 need_bitwise = 0;
1860 }
1861 else
1862 {
1863 if (buffer_size < this_size)
1864 {
1865 buffer_size = this_size;
1866 buffer = xrealloc (buffer, buffer_size);
1867 }
1868 source_buffer = buffer;
1869 need_bitwise = 1;
afd74c5f 1870 }
9a619af0 1871
cec03d70 1872 switch (p->location)
052b9502 1873 {
cec03d70
TT
1874 case DWARF_VALUE_REGISTER:
1875 {
1876 struct gdbarch *arch = get_frame_arch (frame);
8a9b8146 1877 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
dcbf108f 1878
63b4f126
MGD
1879 if (gdb_regnum != -1)
1880 {
ca45ab26
VK
1881 int reg_offset = dest_offset;
1882
1883 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
1884 && this_size <= register_size (arch, gdb_regnum))
1885 {
1886 /* Big-endian, and we want less than full size. */
1887 reg_offset = register_size (arch, gdb_regnum) - this_size;
1888 }
1889
d3b1e874
TT
1890 if (need_bitwise)
1891 {
8dccd430
PA
1892 int optim, unavail;
1893
1894 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1895 this_size, buffer,
1896 &optim, &unavail))
1897 {
1898 if (optim)
710409a2
PA
1899 throw_error (OPTIMIZED_OUT_ERROR,
1900 _("Can't do read-modify-write to "
1901 "update bitfield; containing word "
1902 "has been optimized out"));
8dccd430
PA
1903 if (unavail)
1904 throw_error (NOT_AVAILABLE_ERROR,
1905 _("Can't do read-modify-write to update "
1906 "bitfield; containing word "
1907 "is unavailable"));
1908 }
d3b1e874
TT
1909 copy_bitwise (buffer, dest_offset_bits,
1910 contents, source_offset_bits,
1911 this_size_bits,
1912 bits_big_endian);
1913 }
1914
63b4f126 1915 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
d3b1e874 1916 this_size, source_buffer);
63b4f126
MGD
1917 }
1918 else
1919 {
1920 error (_("Unable to write to DWARF register number %s"),
8a9b8146 1921 paddress (arch, p->v.regno));
63b4f126 1922 }
cec03d70
TT
1923 }
1924 break;
1925 case DWARF_VALUE_MEMORY:
d3b1e874
TT
1926 if (need_bitwise)
1927 {
1928 /* Only the first and last bytes can possibly have any
1929 bits reused. */
f2c7657e
UW
1930 read_memory (p->v.mem.addr + dest_offset, buffer, 1);
1931 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
d3b1e874
TT
1932 buffer + this_size - 1, 1);
1933 copy_bitwise (buffer, dest_offset_bits,
1934 contents, source_offset_bits,
1935 this_size_bits,
1936 bits_big_endian);
1937 }
1938
f2c7657e 1939 write_memory (p->v.mem.addr + dest_offset,
d3b1e874 1940 source_buffer, this_size);
cec03d70
TT
1941 break;
1942 default:
9a0dc9e3 1943 mark_value_bytes_optimized_out (to, 0, TYPE_LENGTH (value_type (to)));
0e03807e 1944 break;
052b9502 1945 }
d3b1e874 1946 offset += this_size_bits;
052b9502 1947 }
d3b1e874 1948
d3b1e874 1949 do_cleanups (cleanup);
052b9502
NF
1950}
1951
9a0dc9e3
PA
1952/* An implementation of an lval_funcs method to see whether a value is
1953 a synthetic pointer. */
8cf6f0b1 1954
0e03807e 1955static int
9a0dc9e3
PA
1956check_pieced_synthetic_pointer (const struct value *value, int bit_offset,
1957 int bit_length)
0e03807e
TT
1958{
1959 struct piece_closure *c
1960 = (struct piece_closure *) value_computed_closure (value);
1961 int i;
1962
1963 bit_offset += 8 * value_offset (value);
1964 if (value_bitsize (value))
1965 bit_offset += value_bitpos (value);
1966
1967 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
1968 {
1969 struct dwarf_expr_piece *p = &c->pieces[i];
1970 size_t this_size_bits = p->size;
1971
1972 if (bit_offset > 0)
1973 {
1974 if (bit_offset >= this_size_bits)
1975 {
1976 bit_offset -= this_size_bits;
1977 continue;
1978 }
1979
1980 bit_length -= this_size_bits - bit_offset;
1981 bit_offset = 0;
1982 }
1983 else
1984 bit_length -= this_size_bits;
1985
9a0dc9e3
PA
1986 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
1987 return 0;
0e03807e
TT
1988 }
1989
9a0dc9e3 1990 return 1;
8cf6f0b1
TT
1991}
1992
1993/* A wrapper function for get_frame_address_in_block. */
1994
1995static CORE_ADDR
1996get_frame_address_in_block_wrapper (void *baton)
1997{
1998 return get_frame_address_in_block (baton);
1999}
2000
2001/* An implementation of an lval_funcs method to indirect through a
2002 pointer. This handles the synthetic pointer case when needed. */
2003
2004static struct value *
2005indirect_pieced_value (struct value *value)
2006{
2007 struct piece_closure *c
2008 = (struct piece_closure *) value_computed_closure (value);
2009 struct type *type;
2010 struct frame_info *frame;
2011 struct dwarf2_locexpr_baton baton;
2012 int i, bit_offset, bit_length;
2013 struct dwarf_expr_piece *piece = NULL;
8cf6f0b1
TT
2014 LONGEST byte_offset;
2015
0e37a63c 2016 type = check_typedef (value_type (value));
8cf6f0b1
TT
2017 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2018 return NULL;
2019
2020 bit_length = 8 * TYPE_LENGTH (type);
2021 bit_offset = 8 * value_offset (value);
2022 if (value_bitsize (value))
2023 bit_offset += value_bitpos (value);
2024
2025 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2026 {
2027 struct dwarf_expr_piece *p = &c->pieces[i];
2028 size_t this_size_bits = p->size;
2029
2030 if (bit_offset > 0)
2031 {
2032 if (bit_offset >= this_size_bits)
2033 {
2034 bit_offset -= this_size_bits;
2035 continue;
2036 }
2037
2038 bit_length -= this_size_bits - bit_offset;
2039 bit_offset = 0;
2040 }
2041 else
2042 bit_length -= this_size_bits;
2043
2044 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2045 return NULL;
2046
2047 if (bit_length != 0)
2048 error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
2049
2050 piece = p;
2051 break;
2052 }
2053
2054 frame = get_selected_frame (_("No frame selected."));
543305c9 2055
5bd1ef56
TT
2056 /* This is an offset requested by GDB, such as value subscripts.
2057 However, due to how synthetic pointers are implemented, this is
2058 always presented to us as a pointer type. This means we have to
2059 sign-extend it manually as appropriate. */
8cf6f0b1 2060 byte_offset = value_as_address (value);
5bd1ef56
TT
2061 if (TYPE_LENGTH (value_type (value)) < sizeof (LONGEST))
2062 byte_offset = gdb_sign_extend (byte_offset,
2063 8 * TYPE_LENGTH (value_type (value)));
2064 byte_offset += piece->v.ptr.offset;
8cf6f0b1 2065
e0e40094 2066 gdb_assert (piece);
8b9737bf
TT
2067 baton
2068 = dwarf2_fetch_die_loc_sect_off (piece->v.ptr.die, c->per_cu,
2069 get_frame_address_in_block_wrapper,
2070 frame);
8cf6f0b1 2071
b6807d98
TT
2072 if (baton.data != NULL)
2073 return dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
2074 baton.data, baton.size, baton.per_cu,
5bd1ef56 2075 byte_offset);
b6807d98
TT
2076
2077 {
2078 struct obstack temp_obstack;
2079 struct cleanup *cleanup;
2080 const gdb_byte *bytes;
2081 LONGEST len;
2082 struct value *result;
2083
2084 obstack_init (&temp_obstack);
2085 cleanup = make_cleanup_obstack_free (&temp_obstack);
2086
2087 bytes = dwarf2_fetch_constant_bytes (piece->v.ptr.die, c->per_cu,
2088 &temp_obstack, &len);
2089 if (bytes == NULL)
2090 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2091 else
2092 {
2093 if (byte_offset < 0
2094 || byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) > len)
2095 invalid_synthetic_pointer ();
2096 bytes += byte_offset;
2097 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2098 }
2099
2100 do_cleanups (cleanup);
2101 return result;
2102 }
0e03807e
TT
2103}
2104
052b9502 2105static void *
0e03807e 2106copy_pieced_value_closure (const struct value *v)
052b9502 2107{
3e43a32a
MS
2108 struct piece_closure *c
2109 = (struct piece_closure *) value_computed_closure (v);
052b9502 2110
88bfdde4
TT
2111 ++c->refc;
2112 return c;
052b9502
NF
2113}
2114
2115static void
2116free_pieced_value_closure (struct value *v)
2117{
3e43a32a
MS
2118 struct piece_closure *c
2119 = (struct piece_closure *) value_computed_closure (v);
052b9502 2120
88bfdde4
TT
2121 --c->refc;
2122 if (c->refc == 0)
2123 {
8a9b8146
TT
2124 int i;
2125
2126 for (i = 0; i < c->n_pieces; ++i)
2127 if (c->pieces[i].location == DWARF_VALUE_STACK)
2128 value_free (c->pieces[i].v.value);
2129
88bfdde4
TT
2130 xfree (c->pieces);
2131 xfree (c);
2132 }
052b9502
NF
2133}
2134
2135/* Functions for accessing a variable described by DW_OP_piece. */
c8f2448a 2136static const struct lval_funcs pieced_value_funcs = {
052b9502
NF
2137 read_pieced_value,
2138 write_pieced_value,
8cf6f0b1 2139 indirect_pieced_value,
a471c594 2140 NULL, /* coerce_ref */
8cf6f0b1 2141 check_pieced_synthetic_pointer,
052b9502
NF
2142 copy_pieced_value_closure,
2143 free_pieced_value_closure
2144};
2145
9e8b7a03
JK
2146/* Virtual method table for dwarf2_evaluate_loc_desc_full below. */
2147
2148static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs =
2149{
b1370418 2150 dwarf_expr_read_addr_from_reg,
0acf8b65 2151 dwarf_expr_get_reg_value,
9e8b7a03
JK
2152 dwarf_expr_read_mem,
2153 dwarf_expr_frame_base,
2154 dwarf_expr_frame_cfa,
2155 dwarf_expr_frame_pc,
2156 dwarf_expr_tls_address,
2157 dwarf_expr_dwarf_call,
8e3b41a9 2158 dwarf_expr_get_base_type,
3019eac3 2159 dwarf_expr_push_dwarf_reg_entry_value,
08412b07
JB
2160 dwarf_expr_get_addr_index,
2161 dwarf_expr_get_obj_addr
9e8b7a03
JK
2162};
2163
4c2df51b 2164/* Evaluate a location description, starting at DATA and with length
8cf6f0b1
TT
2165 SIZE, to find the current location of variable of TYPE in the
2166 context of FRAME. BYTE_OFFSET is applied after the contents are
2167 computed. */
a2d33775 2168
8cf6f0b1
TT
2169static struct value *
2170dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
56eb65bd 2171 const gdb_byte *data, size_t size,
8cf6f0b1
TT
2172 struct dwarf2_per_cu_data *per_cu,
2173 LONGEST byte_offset)
4c2df51b 2174{
4c2df51b
DJ
2175 struct value *retval;
2176 struct dwarf_expr_baton baton;
2177 struct dwarf_expr_context *ctx;
72fc29ff 2178 struct cleanup *old_chain, *value_chain;
ac56253d 2179 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
79e1a869 2180 volatile struct gdb_exception ex;
4c2df51b 2181
8cf6f0b1
TT
2182 if (byte_offset < 0)
2183 invalid_synthetic_pointer ();
2184
0d53c4c4 2185 if (size == 0)
a7035dbb 2186 return allocate_optimized_out_value (type);
0d53c4c4 2187
4c2df51b 2188 baton.frame = frame;
17ea53c3 2189 baton.per_cu = per_cu;
08412b07 2190 baton.obj_address = 0;
4c2df51b
DJ
2191
2192 ctx = new_dwarf_expr_context ();
4a227398 2193 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
72fc29ff 2194 value_chain = make_cleanup_value_free_to_mark (value_mark ());
4a227398 2195
ac56253d 2196 ctx->gdbarch = get_objfile_arch (objfile);
ae0d2f24 2197 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
181cebd4 2198 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
9aa1f1e3 2199 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
4c2df51b 2200 ctx->baton = &baton;
9e8b7a03 2201 ctx->funcs = &dwarf_expr_ctx_funcs;
4c2df51b 2202
79e1a869
PA
2203 TRY_CATCH (ex, RETURN_MASK_ERROR)
2204 {
2205 dwarf_expr_eval (ctx, data, size);
2206 }
2207 if (ex.reason < 0)
2208 {
2209 if (ex.error == NOT_AVAILABLE_ERROR)
2210 {
72fc29ff 2211 do_cleanups (old_chain);
79e1a869
PA
2212 retval = allocate_value (type);
2213 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type));
2214 return retval;
2215 }
8e3b41a9
JK
2216 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2217 {
2218 if (entry_values_debug)
2219 exception_print (gdb_stdout, ex);
2220 do_cleanups (old_chain);
2221 return allocate_optimized_out_value (type);
2222 }
79e1a869
PA
2223 else
2224 throw_exception (ex);
2225 }
2226
87808bd6
JB
2227 if (ctx->num_pieces > 0)
2228 {
052b9502
NF
2229 struct piece_closure *c;
2230 struct frame_id frame_id = get_frame_id (frame);
8cf6f0b1
TT
2231 ULONGEST bit_size = 0;
2232 int i;
052b9502 2233
8cf6f0b1
TT
2234 for (i = 0; i < ctx->num_pieces; ++i)
2235 bit_size += ctx->pieces[i].size;
2236 if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
2237 invalid_synthetic_pointer ();
2238
2239 c = allocate_piece_closure (per_cu, ctx->num_pieces, ctx->pieces,
6063c216 2240 ctx->addr_size);
72fc29ff
TT
2241 /* We must clean up the value chain after creating the piece
2242 closure but before allocating the result. */
2243 do_cleanups (value_chain);
a2d33775 2244 retval = allocate_computed_value (type, &pieced_value_funcs, c);
052b9502 2245 VALUE_FRAME_ID (retval) = frame_id;
8cf6f0b1 2246 set_value_offset (retval, byte_offset);
87808bd6 2247 }
4c2df51b
DJ
2248 else
2249 {
cec03d70
TT
2250 switch (ctx->location)
2251 {
2252 case DWARF_VALUE_REGISTER:
2253 {
2254 struct gdbarch *arch = get_frame_arch (frame);
7c33b57c
PA
2255 int dwarf_regnum
2256 = longest_to_int (value_as_long (dwarf_expr_fetch (ctx, 0)));
cec03d70 2257 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_regnum);
9a619af0 2258
8cf6f0b1
TT
2259 if (byte_offset != 0)
2260 error (_("cannot use offset on synthetic pointer to register"));
72fc29ff 2261 do_cleanups (value_chain);
901461f8 2262 if (gdb_regnum == -1)
7c33b57c
PA
2263 error (_("Unable to access DWARF register number %d"),
2264 dwarf_regnum);
901461f8
PA
2265 retval = value_from_register (type, gdb_regnum, frame);
2266 if (value_optimized_out (retval))
2267 {
9a0dc9e3
PA
2268 struct value *tmp;
2269
901461f8
PA
2270 /* This means the register has undefined value / was
2271 not saved. As we're computing the location of some
2272 variable etc. in the program, not a value for
2273 inspecting a register ($pc, $sp, etc.), return a
2274 generic optimized out value instead, so that we show
2275 <optimized out> instead of <not saved>. */
2276 do_cleanups (value_chain);
9a0dc9e3
PA
2277 tmp = allocate_value (type);
2278 value_contents_copy (tmp, 0, retval, 0, TYPE_LENGTH (type));
2279 retval = tmp;
901461f8 2280 }
cec03d70
TT
2281 }
2282 break;
2283
2284 case DWARF_VALUE_MEMORY:
2285 {
f2c7657e 2286 CORE_ADDR address = dwarf_expr_fetch_address (ctx, 0);
44353522 2287 int in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
cec03d70 2288
72fc29ff 2289 do_cleanups (value_chain);
08039c9e 2290 retval = value_at_lazy (type, address + byte_offset);
44353522
DE
2291 if (in_stack_memory)
2292 set_value_stack (retval, 1);
cec03d70
TT
2293 }
2294 break;
2295
2296 case DWARF_VALUE_STACK:
2297 {
8a9b8146
TT
2298 struct value *value = dwarf_expr_fetch (ctx, 0);
2299 gdb_byte *contents;
2300 const gdb_byte *val_bytes;
2301 size_t n = TYPE_LENGTH (value_type (value));
cec03d70 2302
8cf6f0b1
TT
2303 if (byte_offset + TYPE_LENGTH (type) > n)
2304 invalid_synthetic_pointer ();
2305
8a9b8146
TT
2306 val_bytes = value_contents_all (value);
2307 val_bytes += byte_offset;
8cf6f0b1
TT
2308 n -= byte_offset;
2309
72fc29ff
TT
2310 /* Preserve VALUE because we are going to free values back
2311 to the mark, but we still need the value contents
2312 below. */
2313 value_incref (value);
2314 do_cleanups (value_chain);
2315 make_cleanup_value_free (value);
2316
a2d33775 2317 retval = allocate_value (type);
cec03d70 2318 contents = value_contents_raw (retval);
a2d33775 2319 if (n > TYPE_LENGTH (type))
b6cede78
JK
2320 {
2321 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2322
2323 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2324 val_bytes += n - TYPE_LENGTH (type);
2325 n = TYPE_LENGTH (type);
2326 }
8a9b8146 2327 memcpy (contents, val_bytes, n);
cec03d70
TT
2328 }
2329 break;
2330
2331 case DWARF_VALUE_LITERAL:
2332 {
2333 bfd_byte *contents;
8c814cdd 2334 const bfd_byte *ldata;
cec03d70
TT
2335 size_t n = ctx->len;
2336
8cf6f0b1
TT
2337 if (byte_offset + TYPE_LENGTH (type) > n)
2338 invalid_synthetic_pointer ();
2339
72fc29ff 2340 do_cleanups (value_chain);
a2d33775 2341 retval = allocate_value (type);
cec03d70 2342 contents = value_contents_raw (retval);
8cf6f0b1 2343
8c814cdd 2344 ldata = ctx->data + byte_offset;
8cf6f0b1
TT
2345 n -= byte_offset;
2346
a2d33775 2347 if (n > TYPE_LENGTH (type))
b6cede78
JK
2348 {
2349 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2350
2351 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2352 ldata += n - TYPE_LENGTH (type);
2353 n = TYPE_LENGTH (type);
2354 }
8c814cdd 2355 memcpy (contents, ldata, n);
cec03d70
TT
2356 }
2357 break;
2358
dd90784c 2359 case DWARF_VALUE_OPTIMIZED_OUT:
72fc29ff 2360 do_cleanups (value_chain);
a7035dbb 2361 retval = allocate_optimized_out_value (type);
dd90784c
JK
2362 break;
2363
8cf6f0b1
TT
2364 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2365 operation by execute_stack_op. */
2366 case DWARF_VALUE_IMPLICIT_POINTER:
cb826367
TT
2367 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2368 it can only be encountered when making a piece. */
cec03d70
TT
2369 default:
2370 internal_error (__FILE__, __LINE__, _("invalid location type"));
2371 }
4c2df51b
DJ
2372 }
2373
42be36b3
CT
2374 set_value_initialized (retval, ctx->initialized);
2375
4a227398 2376 do_cleanups (old_chain);
4c2df51b
DJ
2377
2378 return retval;
2379}
8cf6f0b1
TT
2380
2381/* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2382 passes 0 as the byte_offset. */
2383
2384struct value *
2385dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
56eb65bd 2386 const gdb_byte *data, size_t size,
8cf6f0b1
TT
2387 struct dwarf2_per_cu_data *per_cu)
2388{
2389 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
2390}
2391
80180f79
SA
2392/* Evaluates a dwarf expression and stores the result in VAL, expecting
2393 that the dwarf expression only produces a single CORE_ADDR. ADDR is a
2394 context (location of a variable) and might be needed to evaluate the
2395 location expression.
2396 Returns 1 on success, 0 otherwise. */
2397
2398static int
2399dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
08412b07 2400 CORE_ADDR addr,
1cfdf534 2401 CORE_ADDR *valp)
80180f79
SA
2402{
2403 struct dwarf_expr_context *ctx;
2404 struct dwarf_expr_baton baton;
2405 struct objfile *objfile;
2406 struct cleanup *cleanup;
2407
2408 if (dlbaton == NULL || dlbaton->size == 0)
2409 return 0;
2410
2411 ctx = new_dwarf_expr_context ();
2412 cleanup = make_cleanup_free_dwarf_expr_context (ctx);
2413
2414 baton.frame = get_selected_frame (NULL);
2415 baton.per_cu = dlbaton->per_cu;
08412b07 2416 baton.obj_address = addr;
80180f79
SA
2417
2418 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2419
2420 ctx->gdbarch = get_objfile_arch (objfile);
2421 ctx->addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2422 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2423 ctx->offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2424 ctx->funcs = &dwarf_expr_ctx_funcs;
2425 ctx->baton = &baton;
2426
2427 dwarf_expr_eval (ctx, dlbaton->data, dlbaton->size);
2428
2429 switch (ctx->location)
2430 {
2431 case DWARF_VALUE_REGISTER:
2432 case DWARF_VALUE_MEMORY:
2433 case DWARF_VALUE_STACK:
2434 *valp = dwarf_expr_fetch_address (ctx, 0);
2435 if (ctx->location == DWARF_VALUE_REGISTER)
2436 *valp = dwarf_expr_read_addr_from_reg (&baton, *valp);
2437 do_cleanups (cleanup);
2438 return 1;
2439 case DWARF_VALUE_LITERAL:
2440 *valp = extract_signed_integer (ctx->data, ctx->len,
2441 gdbarch_byte_order (ctx->gdbarch));
2442 do_cleanups (cleanup);
2443 return 1;
2444 /* Unsupported dwarf values. */
2445 case DWARF_VALUE_OPTIMIZED_OUT:
2446 case DWARF_VALUE_IMPLICIT_POINTER:
2447 break;
2448 }
2449
2450 do_cleanups (cleanup);
2451 return 0;
2452}
2453
2454/* See dwarf2loc.h. */
2455
2456int
08412b07
JB
2457dwarf2_evaluate_property (const struct dynamic_prop *prop,
2458 CORE_ADDR address, CORE_ADDR *value)
80180f79
SA
2459{
2460 if (prop == NULL)
2461 return 0;
2462
2463 switch (prop->kind)
2464 {
2465 case PROP_LOCEXPR:
2466 {
2467 const struct dwarf2_property_baton *baton = prop->data.baton;
2468
08412b07 2469 if (dwarf2_locexpr_baton_eval (&baton->locexpr, address, value))
80180f79
SA
2470 {
2471 if (baton->referenced_type)
2472 {
2473 struct value *val = value_at (baton->referenced_type, *value);
2474
2475 *value = value_as_address (val);
2476 }
2477 return 1;
2478 }
2479 }
2480 break;
2481
2482 case PROP_LOCLIST:
2483 {
2484 struct dwarf2_property_baton *baton = prop->data.baton;
2485 struct frame_info *frame = get_selected_frame (NULL);
2486 CORE_ADDR pc = get_frame_address_in_block (frame);
2487 const gdb_byte *data;
2488 struct value *val;
2489 size_t size;
2490
2491 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2492 if (data != NULL)
2493 {
2494 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2495 size, baton->loclist.per_cu);
2496 if (!value_optimized_out (val))
2497 {
2498 *value = value_as_address (val);
2499 return 1;
2500 }
2501 }
2502 }
2503 break;
2504
2505 case PROP_CONST:
2506 *value = prop->data.const_val;
2507 return 1;
2508 }
2509
2510 return 0;
2511}
2512
bb2ec1b3
TT
2513/* See dwarf2loc.h. */
2514
2515void
2516dwarf2_compile_property_to_c (struct ui_file *stream,
2517 const char *result_name,
2518 struct gdbarch *gdbarch,
2519 unsigned char *registers_used,
2520 const struct dynamic_prop *prop,
2521 CORE_ADDR pc,
2522 struct symbol *sym)
2523{
2524 struct dwarf2_property_baton *baton = prop->data.baton;
2525 const gdb_byte *data;
2526 size_t size;
2527 struct dwarf2_per_cu_data *per_cu;
2528
2529 if (prop->kind == PROP_LOCEXPR)
2530 {
2531 data = baton->locexpr.data;
2532 size = baton->locexpr.size;
2533 per_cu = baton->locexpr.per_cu;
2534 }
2535 else
2536 {
2537 gdb_assert (prop->kind == PROP_LOCLIST);
2538
2539 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2540 per_cu = baton->loclist.per_cu;
2541 }
2542
2543 compile_dwarf_bounds_to_c (stream, result_name, prop, sym, pc,
2544 gdbarch, registers_used,
2545 dwarf2_per_cu_addr_size (per_cu),
2546 data, data + size, per_cu);
2547}
2548
4c2df51b
DJ
2549\f
2550/* Helper functions and baton for dwarf2_loc_desc_needs_frame. */
2551
2552struct needs_frame_baton
2553{
2554 int needs_frame;
17ea53c3 2555 struct dwarf2_per_cu_data *per_cu;
4c2df51b
DJ
2556};
2557
2558/* Reads from registers do require a frame. */
2559static CORE_ADDR
b1370418 2560needs_frame_read_addr_from_reg (void *baton, int regnum)
4c2df51b
DJ
2561{
2562 struct needs_frame_baton *nf_baton = baton;
9a619af0 2563
4c2df51b
DJ
2564 nf_baton->needs_frame = 1;
2565 return 1;
2566}
2567
0acf8b65
JB
2568/* struct dwarf_expr_context_funcs' "get_reg_value" callback:
2569 Reads from registers do require a frame. */
2570
2571static struct value *
2572needs_frame_get_reg_value (void *baton, struct type *type, int regnum)
2573{
2574 struct needs_frame_baton *nf_baton = baton;
2575
2576 nf_baton->needs_frame = 1;
2577 return value_zero (type, not_lval);
2578}
2579
4c2df51b
DJ
2580/* Reads from memory do not require a frame. */
2581static void
852483bc 2582needs_frame_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
4c2df51b
DJ
2583{
2584 memset (buf, 0, len);
2585}
2586
2587/* Frame-relative accesses do require a frame. */
2588static void
0d45f56e 2589needs_frame_frame_base (void *baton, const gdb_byte **start, size_t * length)
4c2df51b 2590{
852483bc 2591 static gdb_byte lit0 = DW_OP_lit0;
4c2df51b
DJ
2592 struct needs_frame_baton *nf_baton = baton;
2593
2594 *start = &lit0;
2595 *length = 1;
2596
2597 nf_baton->needs_frame = 1;
2598}
2599
e7802207
TT
2600/* CFA accesses require a frame. */
2601
2602static CORE_ADDR
2603needs_frame_frame_cfa (void *baton)
2604{
2605 struct needs_frame_baton *nf_baton = baton;
9a619af0 2606
e7802207
TT
2607 nf_baton->needs_frame = 1;
2608 return 1;
2609}
2610
4c2df51b
DJ
2611/* Thread-local accesses do require a frame. */
2612static CORE_ADDR
2613needs_frame_tls_address (void *baton, CORE_ADDR offset)
2614{
2615 struct needs_frame_baton *nf_baton = baton;
9a619af0 2616
4c2df51b
DJ
2617 nf_baton->needs_frame = 1;
2618 return 1;
2619}
2620
5c631832
JK
2621/* Helper interface of per_cu_dwarf_call for dwarf2_loc_desc_needs_frame. */
2622
2623static void
b64f50a1 2624needs_frame_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
5c631832
JK
2625{
2626 struct needs_frame_baton *nf_baton = ctx->baton;
2627
37b50a69 2628 per_cu_dwarf_call (ctx, die_offset, nf_baton->per_cu,
9e8b7a03 2629 ctx->funcs->get_frame_pc, ctx->baton);
5c631832
JK
2630}
2631
8e3b41a9
JK
2632/* DW_OP_GNU_entry_value accesses require a caller, therefore a frame. */
2633
2634static void
2635needs_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
24c5c679
JK
2636 enum call_site_parameter_kind kind,
2637 union call_site_parameter_u kind_u, int deref_size)
8e3b41a9
JK
2638{
2639 struct needs_frame_baton *nf_baton = ctx->baton;
2640
2641 nf_baton->needs_frame = 1;
1788b2d3
JK
2642
2643 /* The expression may require some stub values on DWARF stack. */
2644 dwarf_expr_push_address (ctx, 0, 0);
8e3b41a9
JK
2645}
2646
3019eac3
DE
2647/* DW_OP_GNU_addr_index doesn't require a frame. */
2648
2649static CORE_ADDR
2650needs_get_addr_index (void *baton, unsigned int index)
2651{
2652 /* Nothing to do. */
2653 return 1;
2654}
2655
08412b07
JB
2656/* DW_OP_push_object_address has a frame already passed through. */
2657
2658static CORE_ADDR
2659needs_get_obj_addr (void *baton)
2660{
2661 /* Nothing to do. */
2662 return 1;
2663}
2664
9e8b7a03
JK
2665/* Virtual method table for dwarf2_loc_desc_needs_frame below. */
2666
2667static const struct dwarf_expr_context_funcs needs_frame_ctx_funcs =
2668{
b1370418 2669 needs_frame_read_addr_from_reg,
0acf8b65 2670 needs_frame_get_reg_value,
9e8b7a03
JK
2671 needs_frame_read_mem,
2672 needs_frame_frame_base,
2673 needs_frame_frame_cfa,
2674 needs_frame_frame_cfa, /* get_frame_pc */
2675 needs_frame_tls_address,
2676 needs_frame_dwarf_call,
8e3b41a9 2677 NULL, /* get_base_type */
3019eac3 2678 needs_dwarf_reg_entry_value,
08412b07
JB
2679 needs_get_addr_index,
2680 needs_get_obj_addr
9e8b7a03
JK
2681};
2682
4c2df51b
DJ
2683/* Return non-zero iff the location expression at DATA (length SIZE)
2684 requires a frame to evaluate. */
2685
2686static int
56eb65bd 2687dwarf2_loc_desc_needs_frame (const gdb_byte *data, size_t size,
ae0d2f24 2688 struct dwarf2_per_cu_data *per_cu)
4c2df51b
DJ
2689{
2690 struct needs_frame_baton baton;
2691 struct dwarf_expr_context *ctx;
f630a401 2692 int in_reg;
4a227398 2693 struct cleanup *old_chain;
ac56253d 2694 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
4c2df51b
DJ
2695
2696 baton.needs_frame = 0;
17ea53c3 2697 baton.per_cu = per_cu;
4c2df51b
DJ
2698
2699 ctx = new_dwarf_expr_context ();
4a227398 2700 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
72fc29ff 2701 make_cleanup_value_free_to_mark (value_mark ());
4a227398 2702
ac56253d 2703 ctx->gdbarch = get_objfile_arch (objfile);
ae0d2f24 2704 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
181cebd4 2705 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
9aa1f1e3 2706 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
4c2df51b 2707 ctx->baton = &baton;
9e8b7a03 2708 ctx->funcs = &needs_frame_ctx_funcs;
4c2df51b
DJ
2709
2710 dwarf_expr_eval (ctx, data, size);
2711
cec03d70 2712 in_reg = ctx->location == DWARF_VALUE_REGISTER;
f630a401 2713
87808bd6
JB
2714 if (ctx->num_pieces > 0)
2715 {
2716 int i;
2717
2718 /* If the location has several pieces, and any of them are in
2719 registers, then we will need a frame to fetch them from. */
2720 for (i = 0; i < ctx->num_pieces; i++)
cec03d70 2721 if (ctx->pieces[i].location == DWARF_VALUE_REGISTER)
87808bd6
JB
2722 in_reg = 1;
2723 }
2724
4a227398 2725 do_cleanups (old_chain);
4c2df51b 2726
f630a401 2727 return baton.needs_frame || in_reg;
4c2df51b
DJ
2728}
2729
3cf03773
TT
2730/* A helper function that throws an unimplemented error mentioning a
2731 given DWARF operator. */
2732
2733static void
2734unimplemented (unsigned int op)
0d53c4c4 2735{
f39c6ffd 2736 const char *name = get_DW_OP_name (op);
b1bfef65
TT
2737
2738 if (name)
2739 error (_("DWARF operator %s cannot be translated to an agent expression"),
2740 name);
2741 else
1ba1b353
TT
2742 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2743 "to an agent expression"),
b1bfef65 2744 op);
3cf03773 2745}
08922a10 2746
d064d1be 2747/* See dwarf2loc.h. */
08922a10 2748
d064d1be
JK
2749int
2750dwarf2_reg_to_regnum_or_error (struct gdbarch *arch, int dwarf_reg)
3cf03773
TT
2751{
2752 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2753 if (reg == -1)
2754 error (_("Unable to access DWARF register number %d"), dwarf_reg);
2755 return reg;
2756}
08922a10 2757
3cf03773
TT
2758/* A helper function that emits an access to memory. ARCH is the
2759 target architecture. EXPR is the expression which we are building.
2760 NBITS is the number of bits we want to read. This emits the
2761 opcodes needed to read the memory and then extract the desired
2762 bits. */
08922a10 2763
3cf03773
TT
2764static void
2765access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
08922a10 2766{
3cf03773
TT
2767 ULONGEST nbytes = (nbits + 7) / 8;
2768
9df7235c 2769 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
3cf03773 2770
92bc6a20 2771 if (expr->tracing)
3cf03773
TT
2772 ax_trace_quick (expr, nbytes);
2773
2774 if (nbits <= 8)
2775 ax_simple (expr, aop_ref8);
2776 else if (nbits <= 16)
2777 ax_simple (expr, aop_ref16);
2778 else if (nbits <= 32)
2779 ax_simple (expr, aop_ref32);
2780 else
2781 ax_simple (expr, aop_ref64);
2782
2783 /* If we read exactly the number of bytes we wanted, we're done. */
2784 if (8 * nbytes == nbits)
2785 return;
2786
2787 if (gdbarch_bits_big_endian (arch))
0d53c4c4 2788 {
3cf03773
TT
2789 /* On a bits-big-endian machine, we want the high-order
2790 NBITS. */
2791 ax_const_l (expr, 8 * nbytes - nbits);
2792 ax_simple (expr, aop_rsh_unsigned);
0d53c4c4 2793 }
3cf03773 2794 else
0d53c4c4 2795 {
3cf03773
TT
2796 /* On a bits-little-endian box, we want the low-order NBITS. */
2797 ax_zero_ext (expr, nbits);
0d53c4c4 2798 }
3cf03773 2799}
0936ad1d 2800
8cf6f0b1
TT
2801/* A helper function to return the frame's PC. */
2802
2803static CORE_ADDR
2804get_ax_pc (void *baton)
2805{
2806 struct agent_expr *expr = baton;
2807
2808 return expr->scope;
2809}
2810
3cf03773
TT
2811/* Compile a DWARF location expression to an agent expression.
2812
2813 EXPR is the agent expression we are building.
2814 LOC is the agent value we modify.
2815 ARCH is the architecture.
2816 ADDR_SIZE is the size of addresses, in bytes.
2817 OP_PTR is the start of the location expression.
2818 OP_END is one past the last byte of the location expression.
2819
2820 This will throw an exception for various kinds of errors -- for
2821 example, if the expression cannot be compiled, or if the expression
2822 is invalid. */
0936ad1d 2823
9f6f94ff
TT
2824void
2825dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
2826 struct gdbarch *arch, unsigned int addr_size,
2827 const gdb_byte *op_ptr, const gdb_byte *op_end,
2828 struct dwarf2_per_cu_data *per_cu)
3cf03773
TT
2829{
2830 struct cleanup *cleanups;
2831 int i, *offsets;
2832 VEC(int) *dw_labels = NULL, *patches = NULL;
2833 const gdb_byte * const base = op_ptr;
2834 const gdb_byte *previous_piece = op_ptr;
2835 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2836 ULONGEST bits_collected = 0;
2837 unsigned int addr_size_bits = 8 * addr_size;
2838 int bits_big_endian = gdbarch_bits_big_endian (arch);
0936ad1d 2839
3cf03773
TT
2840 offsets = xmalloc ((op_end - op_ptr) * sizeof (int));
2841 cleanups = make_cleanup (xfree, offsets);
0936ad1d 2842
3cf03773
TT
2843 for (i = 0; i < op_end - op_ptr; ++i)
2844 offsets[i] = -1;
0936ad1d 2845
3cf03773
TT
2846 make_cleanup (VEC_cleanup (int), &dw_labels);
2847 make_cleanup (VEC_cleanup (int), &patches);
0936ad1d 2848
3cf03773
TT
2849 /* By default we are making an address. */
2850 loc->kind = axs_lvalue_memory;
0d45f56e 2851
3cf03773
TT
2852 while (op_ptr < op_end)
2853 {
2854 enum dwarf_location_atom op = *op_ptr;
9fccedf7
DE
2855 uint64_t uoffset, reg;
2856 int64_t offset;
3cf03773
TT
2857 int i;
2858
2859 offsets[op_ptr - base] = expr->len;
2860 ++op_ptr;
2861
2862 /* Our basic approach to code generation is to map DWARF
2863 operations directly to AX operations. However, there are
2864 some differences.
2865
2866 First, DWARF works on address-sized units, but AX always uses
2867 LONGEST. For most operations we simply ignore this
2868 difference; instead we generate sign extensions as needed
2869 before division and comparison operations. It would be nice
2870 to omit the sign extensions, but there is no way to determine
2871 the size of the target's LONGEST. (This code uses the size
2872 of the host LONGEST in some cases -- that is a bug but it is
2873 difficult to fix.)
2874
2875 Second, some DWARF operations cannot be translated to AX.
2876 For these we simply fail. See
2877 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
2878 switch (op)
0936ad1d 2879 {
3cf03773
TT
2880 case DW_OP_lit0:
2881 case DW_OP_lit1:
2882 case DW_OP_lit2:
2883 case DW_OP_lit3:
2884 case DW_OP_lit4:
2885 case DW_OP_lit5:
2886 case DW_OP_lit6:
2887 case DW_OP_lit7:
2888 case DW_OP_lit8:
2889 case DW_OP_lit9:
2890 case DW_OP_lit10:
2891 case DW_OP_lit11:
2892 case DW_OP_lit12:
2893 case DW_OP_lit13:
2894 case DW_OP_lit14:
2895 case DW_OP_lit15:
2896 case DW_OP_lit16:
2897 case DW_OP_lit17:
2898 case DW_OP_lit18:
2899 case DW_OP_lit19:
2900 case DW_OP_lit20:
2901 case DW_OP_lit21:
2902 case DW_OP_lit22:
2903 case DW_OP_lit23:
2904 case DW_OP_lit24:
2905 case DW_OP_lit25:
2906 case DW_OP_lit26:
2907 case DW_OP_lit27:
2908 case DW_OP_lit28:
2909 case DW_OP_lit29:
2910 case DW_OP_lit30:
2911 case DW_OP_lit31:
2912 ax_const_l (expr, op - DW_OP_lit0);
2913 break;
0d53c4c4 2914
3cf03773 2915 case DW_OP_addr:
ac56253d 2916 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3cf03773 2917 op_ptr += addr_size;
ac56253d
TT
2918 /* Some versions of GCC emit DW_OP_addr before
2919 DW_OP_GNU_push_tls_address. In this case the value is an
2920 index, not an address. We don't support things like
2921 branching between the address and the TLS op. */
2922 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
9aa1f1e3 2923 uoffset += dwarf2_per_cu_text_offset (per_cu);
ac56253d 2924 ax_const_l (expr, uoffset);
3cf03773 2925 break;
4c2df51b 2926
3cf03773
TT
2927 case DW_OP_const1u:
2928 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
2929 op_ptr += 1;
2930 break;
2931 case DW_OP_const1s:
2932 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
2933 op_ptr += 1;
2934 break;
2935 case DW_OP_const2u:
2936 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
2937 op_ptr += 2;
2938 break;
2939 case DW_OP_const2s:
2940 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
2941 op_ptr += 2;
2942 break;
2943 case DW_OP_const4u:
2944 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
2945 op_ptr += 4;
2946 break;
2947 case DW_OP_const4s:
2948 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
2949 op_ptr += 4;
2950 break;
2951 case DW_OP_const8u:
2952 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
2953 op_ptr += 8;
2954 break;
2955 case DW_OP_const8s:
2956 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
2957 op_ptr += 8;
2958 break;
2959 case DW_OP_constu:
f664829e 2960 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3cf03773
TT
2961 ax_const_l (expr, uoffset);
2962 break;
2963 case DW_OP_consts:
f664829e 2964 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3cf03773
TT
2965 ax_const_l (expr, offset);
2966 break;
9c238357 2967
3cf03773
TT
2968 case DW_OP_reg0:
2969 case DW_OP_reg1:
2970 case DW_OP_reg2:
2971 case DW_OP_reg3:
2972 case DW_OP_reg4:
2973 case DW_OP_reg5:
2974 case DW_OP_reg6:
2975 case DW_OP_reg7:
2976 case DW_OP_reg8:
2977 case DW_OP_reg9:
2978 case DW_OP_reg10:
2979 case DW_OP_reg11:
2980 case DW_OP_reg12:
2981 case DW_OP_reg13:
2982 case DW_OP_reg14:
2983 case DW_OP_reg15:
2984 case DW_OP_reg16:
2985 case DW_OP_reg17:
2986 case DW_OP_reg18:
2987 case DW_OP_reg19:
2988 case DW_OP_reg20:
2989 case DW_OP_reg21:
2990 case DW_OP_reg22:
2991 case DW_OP_reg23:
2992 case DW_OP_reg24:
2993 case DW_OP_reg25:
2994 case DW_OP_reg26:
2995 case DW_OP_reg27:
2996 case DW_OP_reg28:
2997 case DW_OP_reg29:
2998 case DW_OP_reg30:
2999 case DW_OP_reg31:
3000 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
d064d1be 3001 loc->u.reg = dwarf2_reg_to_regnum_or_error (arch, op - DW_OP_reg0);
3cf03773
TT
3002 loc->kind = axs_lvalue_register;
3003 break;
9c238357 3004
3cf03773 3005 case DW_OP_regx:
f664829e 3006 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3cf03773 3007 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
d064d1be 3008 loc->u.reg = dwarf2_reg_to_regnum_or_error (arch, reg);
3cf03773
TT
3009 loc->kind = axs_lvalue_register;
3010 break;
08922a10 3011
3cf03773
TT
3012 case DW_OP_implicit_value:
3013 {
9fccedf7 3014 uint64_t len;
3cf03773 3015
f664829e 3016 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3cf03773
TT
3017 if (op_ptr + len > op_end)
3018 error (_("DW_OP_implicit_value: too few bytes available."));
3019 if (len > sizeof (ULONGEST))
3020 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3021 (int) len);
3022
3023 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3024 byte_order));
3025 op_ptr += len;
3026 dwarf_expr_require_composition (op_ptr, op_end,
3027 "DW_OP_implicit_value");
3028
3029 loc->kind = axs_rvalue;
3030 }
3031 break;
08922a10 3032
3cf03773
TT
3033 case DW_OP_stack_value:
3034 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3035 loc->kind = axs_rvalue;
3036 break;
08922a10 3037
3cf03773
TT
3038 case DW_OP_breg0:
3039 case DW_OP_breg1:
3040 case DW_OP_breg2:
3041 case DW_OP_breg3:
3042 case DW_OP_breg4:
3043 case DW_OP_breg5:
3044 case DW_OP_breg6:
3045 case DW_OP_breg7:
3046 case DW_OP_breg8:
3047 case DW_OP_breg9:
3048 case DW_OP_breg10:
3049 case DW_OP_breg11:
3050 case DW_OP_breg12:
3051 case DW_OP_breg13:
3052 case DW_OP_breg14:
3053 case DW_OP_breg15:
3054 case DW_OP_breg16:
3055 case DW_OP_breg17:
3056 case DW_OP_breg18:
3057 case DW_OP_breg19:
3058 case DW_OP_breg20:
3059 case DW_OP_breg21:
3060 case DW_OP_breg22:
3061 case DW_OP_breg23:
3062 case DW_OP_breg24:
3063 case DW_OP_breg25:
3064 case DW_OP_breg26:
3065 case DW_OP_breg27:
3066 case DW_OP_breg28:
3067 case DW_OP_breg29:
3068 case DW_OP_breg30:
3069 case DW_OP_breg31:
f664829e 3070 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
d064d1be 3071 i = dwarf2_reg_to_regnum_or_error (arch, op - DW_OP_breg0);
3cf03773
TT
3072 ax_reg (expr, i);
3073 if (offset != 0)
3074 {
3075 ax_const_l (expr, offset);
3076 ax_simple (expr, aop_add);
3077 }
3078 break;
3079 case DW_OP_bregx:
3080 {
f664829e
DE
3081 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3082 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
d064d1be 3083 i = dwarf2_reg_to_regnum_or_error (arch, reg);
3cf03773
TT
3084 ax_reg (expr, i);
3085 if (offset != 0)
3086 {
3087 ax_const_l (expr, offset);
3088 ax_simple (expr, aop_add);
3089 }
3090 }
3091 break;
3092 case DW_OP_fbreg:
3093 {
3094 const gdb_byte *datastart;
3095 size_t datalen;
3977b71f 3096 const struct block *b;
3cf03773 3097 struct symbol *framefunc;
08922a10 3098
3cf03773
TT
3099 b = block_for_pc (expr->scope);
3100
3101 if (!b)
3102 error (_("No block found for address"));
3103
3104 framefunc = block_linkage_function (b);
3105
3106 if (!framefunc)
3107 error (_("No function found for block"));
3108
af945b75
TT
3109 func_get_frame_base_dwarf_block (framefunc, expr->scope,
3110 &datastart, &datalen);
3cf03773 3111
f664829e 3112 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
9f6f94ff
TT
3113 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3114 datastart + datalen, per_cu);
d84cf7eb
TT
3115 if (loc->kind == axs_lvalue_register)
3116 require_rvalue (expr, loc);
3cf03773
TT
3117
3118 if (offset != 0)
3119 {
3120 ax_const_l (expr, offset);
3121 ax_simple (expr, aop_add);
3122 }
3123
3124 loc->kind = axs_lvalue_memory;
3125 }
08922a10 3126 break;
08922a10 3127
3cf03773
TT
3128 case DW_OP_dup:
3129 ax_simple (expr, aop_dup);
3130 break;
08922a10 3131
3cf03773
TT
3132 case DW_OP_drop:
3133 ax_simple (expr, aop_pop);
3134 break;
08922a10 3135
3cf03773
TT
3136 case DW_OP_pick:
3137 offset = *op_ptr++;
c7f96d2b 3138 ax_pick (expr, offset);
3cf03773
TT
3139 break;
3140
3141 case DW_OP_swap:
3142 ax_simple (expr, aop_swap);
3143 break;
08922a10 3144
3cf03773 3145 case DW_OP_over:
c7f96d2b 3146 ax_pick (expr, 1);
3cf03773 3147 break;
08922a10 3148
3cf03773 3149 case DW_OP_rot:
c7f96d2b 3150 ax_simple (expr, aop_rot);
3cf03773 3151 break;
08922a10 3152
3cf03773
TT
3153 case DW_OP_deref:
3154 case DW_OP_deref_size:
3155 {
3156 int size;
08922a10 3157
3cf03773
TT
3158 if (op == DW_OP_deref_size)
3159 size = *op_ptr++;
3160 else
3161 size = addr_size;
3162
9df7235c 3163 if (size != 1 && size != 2 && size != 4 && size != 8)
f3cec7e6
HZ
3164 error (_("Unsupported size %d in %s"),
3165 size, get_DW_OP_name (op));
9df7235c 3166 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3cf03773
TT
3167 }
3168 break;
3169
3170 case DW_OP_abs:
3171 /* Sign extend the operand. */
3172 ax_ext (expr, addr_size_bits);
3173 ax_simple (expr, aop_dup);
3174 ax_const_l (expr, 0);
3175 ax_simple (expr, aop_less_signed);
3176 ax_simple (expr, aop_log_not);
3177 i = ax_goto (expr, aop_if_goto);
3178 /* We have to emit 0 - X. */
3179 ax_const_l (expr, 0);
3180 ax_simple (expr, aop_swap);
3181 ax_simple (expr, aop_sub);
3182 ax_label (expr, i, expr->len);
3183 break;
3184
3185 case DW_OP_neg:
3186 /* No need to sign extend here. */
3187 ax_const_l (expr, 0);
3188 ax_simple (expr, aop_swap);
3189 ax_simple (expr, aop_sub);
3190 break;
3191
3192 case DW_OP_not:
3193 /* Sign extend the operand. */
3194 ax_ext (expr, addr_size_bits);
3195 ax_simple (expr, aop_bit_not);
3196 break;
3197
3198 case DW_OP_plus_uconst:
f664829e 3199 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3cf03773
TT
3200 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3201 but we micro-optimize anyhow. */
3202 if (reg != 0)
3203 {
3204 ax_const_l (expr, reg);
3205 ax_simple (expr, aop_add);
3206 }
3207 break;
3208
3209 case DW_OP_and:
3210 ax_simple (expr, aop_bit_and);
3211 break;
3212
3213 case DW_OP_div:
3214 /* Sign extend the operands. */
3215 ax_ext (expr, addr_size_bits);
3216 ax_simple (expr, aop_swap);
3217 ax_ext (expr, addr_size_bits);
3218 ax_simple (expr, aop_swap);
3219 ax_simple (expr, aop_div_signed);
08922a10
SS
3220 break;
3221
3cf03773
TT
3222 case DW_OP_minus:
3223 ax_simple (expr, aop_sub);
3224 break;
3225
3226 case DW_OP_mod:
3227 ax_simple (expr, aop_rem_unsigned);
3228 break;
3229
3230 case DW_OP_mul:
3231 ax_simple (expr, aop_mul);
3232 break;
3233
3234 case DW_OP_or:
3235 ax_simple (expr, aop_bit_or);
3236 break;
3237
3238 case DW_OP_plus:
3239 ax_simple (expr, aop_add);
3240 break;
3241
3242 case DW_OP_shl:
3243 ax_simple (expr, aop_lsh);
3244 break;
3245
3246 case DW_OP_shr:
3247 ax_simple (expr, aop_rsh_unsigned);
3248 break;
3249
3250 case DW_OP_shra:
3251 ax_simple (expr, aop_rsh_signed);
3252 break;
3253
3254 case DW_OP_xor:
3255 ax_simple (expr, aop_bit_xor);
3256 break;
3257
3258 case DW_OP_le:
3259 /* Sign extend the operands. */
3260 ax_ext (expr, addr_size_bits);
3261 ax_simple (expr, aop_swap);
3262 ax_ext (expr, addr_size_bits);
3263 /* Note no swap here: A <= B is !(B < A). */
3264 ax_simple (expr, aop_less_signed);
3265 ax_simple (expr, aop_log_not);
3266 break;
3267
3268 case DW_OP_ge:
3269 /* Sign extend the operands. */
3270 ax_ext (expr, addr_size_bits);
3271 ax_simple (expr, aop_swap);
3272 ax_ext (expr, addr_size_bits);
3273 ax_simple (expr, aop_swap);
3274 /* A >= B is !(A < B). */
3275 ax_simple (expr, aop_less_signed);
3276 ax_simple (expr, aop_log_not);
3277 break;
3278
3279 case DW_OP_eq:
3280 /* Sign extend the operands. */
3281 ax_ext (expr, addr_size_bits);
3282 ax_simple (expr, aop_swap);
3283 ax_ext (expr, addr_size_bits);
3284 /* No need for a second swap here. */
3285 ax_simple (expr, aop_equal);
3286 break;
3287
3288 case DW_OP_lt:
3289 /* Sign extend the operands. */
3290 ax_ext (expr, addr_size_bits);
3291 ax_simple (expr, aop_swap);
3292 ax_ext (expr, addr_size_bits);
3293 ax_simple (expr, aop_swap);
3294 ax_simple (expr, aop_less_signed);
3295 break;
3296
3297 case DW_OP_gt:
3298 /* Sign extend the operands. */
3299 ax_ext (expr, addr_size_bits);
3300 ax_simple (expr, aop_swap);
3301 ax_ext (expr, addr_size_bits);
3302 /* Note no swap here: A > B is B < A. */
3303 ax_simple (expr, aop_less_signed);
3304 break;
3305
3306 case DW_OP_ne:
3307 /* Sign extend the operands. */
3308 ax_ext (expr, addr_size_bits);
3309 ax_simple (expr, aop_swap);
3310 ax_ext (expr, addr_size_bits);
3311 /* No need for a swap here. */
3312 ax_simple (expr, aop_equal);
3313 ax_simple (expr, aop_log_not);
3314 break;
3315
3316 case DW_OP_call_frame_cfa:
a8fd5589
TT
3317 {
3318 int regnum;
3319 CORE_ADDR text_offset;
3320 LONGEST off;
3321 const gdb_byte *cfa_start, *cfa_end;
3322
3323 if (dwarf2_fetch_cfa_info (arch, expr->scope, per_cu,
3324 &regnum, &off,
3325 &text_offset, &cfa_start, &cfa_end))
3326 {
3327 /* Register. */
3328 ax_reg (expr, regnum);
3329 if (off != 0)
3330 {
3331 ax_const_l (expr, off);
3332 ax_simple (expr, aop_add);
3333 }
3334 }
3335 else
3336 {
3337 /* Another expression. */
3338 ax_const_l (expr, text_offset);
3339 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3340 cfa_start, cfa_end, per_cu);
3341 }
3342
3343 loc->kind = axs_lvalue_memory;
3344 }
3cf03773
TT
3345 break;
3346
3347 case DW_OP_GNU_push_tls_address:
3348 unimplemented (op);
3349 break;
3350
08412b07
JB
3351 case DW_OP_push_object_address:
3352 unimplemented (op);
3353 break;
3354
3cf03773
TT
3355 case DW_OP_skip:
3356 offset = extract_signed_integer (op_ptr, 2, byte_order);
3357 op_ptr += 2;
3358 i = ax_goto (expr, aop_goto);
3359 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3360 VEC_safe_push (int, patches, i);
3361 break;
3362
3363 case DW_OP_bra:
3364 offset = extract_signed_integer (op_ptr, 2, byte_order);
3365 op_ptr += 2;
3366 /* Zero extend the operand. */
3367 ax_zero_ext (expr, addr_size_bits);
3368 i = ax_goto (expr, aop_if_goto);
3369 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3370 VEC_safe_push (int, patches, i);
3371 break;
3372
3373 case DW_OP_nop:
3374 break;
3375
3376 case DW_OP_piece:
3377 case DW_OP_bit_piece:
08922a10 3378 {
9fccedf7 3379 uint64_t size, offset;
3cf03773
TT
3380
3381 if (op_ptr - 1 == previous_piece)
3382 error (_("Cannot translate empty pieces to agent expressions"));
3383 previous_piece = op_ptr - 1;
3384
f664829e 3385 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3cf03773
TT
3386 if (op == DW_OP_piece)
3387 {
3388 size *= 8;
3389 offset = 0;
3390 }
3391 else
f664829e 3392 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
08922a10 3393
3cf03773
TT
3394 if (bits_collected + size > 8 * sizeof (LONGEST))
3395 error (_("Expression pieces exceed word size"));
3396
3397 /* Access the bits. */
3398 switch (loc->kind)
3399 {
3400 case axs_lvalue_register:
3401 ax_reg (expr, loc->u.reg);
3402 break;
3403
3404 case axs_lvalue_memory:
3405 /* Offset the pointer, if needed. */
3406 if (offset > 8)
3407 {
3408 ax_const_l (expr, offset / 8);
3409 ax_simple (expr, aop_add);
3410 offset %= 8;
3411 }
3412 access_memory (arch, expr, size);
3413 break;
3414 }
3415
3416 /* For a bits-big-endian target, shift up what we already
3417 have. For a bits-little-endian target, shift up the
3418 new data. Note that there is a potential bug here if
3419 the DWARF expression leaves multiple values on the
3420 stack. */
3421 if (bits_collected > 0)
3422 {
3423 if (bits_big_endian)
3424 {
3425 ax_simple (expr, aop_swap);
3426 ax_const_l (expr, size);
3427 ax_simple (expr, aop_lsh);
3428 /* We don't need a second swap here, because
3429 aop_bit_or is symmetric. */
3430 }
3431 else
3432 {
3433 ax_const_l (expr, size);
3434 ax_simple (expr, aop_lsh);
3435 }
3436 ax_simple (expr, aop_bit_or);
3437 }
3438
3439 bits_collected += size;
3440 loc->kind = axs_rvalue;
08922a10
SS
3441 }
3442 break;
08922a10 3443
3cf03773
TT
3444 case DW_OP_GNU_uninit:
3445 unimplemented (op);
3446
3447 case DW_OP_call2:
3448 case DW_OP_call4:
3449 {
3450 struct dwarf2_locexpr_baton block;
3451 int size = (op == DW_OP_call2 ? 2 : 4);
b64f50a1 3452 cu_offset offset;
3cf03773
TT
3453
3454 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3455 op_ptr += size;
3456
b64f50a1 3457 offset.cu_off = uoffset;
8b9737bf
TT
3458 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3459 get_ax_pc, expr);
3cf03773
TT
3460
3461 /* DW_OP_call_ref is currently not supported. */
3462 gdb_assert (block.per_cu == per_cu);
3463
9f6f94ff
TT
3464 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3465 block.data, block.data + block.size,
3466 per_cu);
3cf03773
TT
3467 }
3468 break;
3469
3470 case DW_OP_call_ref:
3471 unimplemented (op);
3472
3473 default:
b1bfef65 3474 unimplemented (op);
08922a10 3475 }
08922a10 3476 }
3cf03773
TT
3477
3478 /* Patch all the branches we emitted. */
3479 for (i = 0; i < VEC_length (int, patches); ++i)
3480 {
3481 int targ = offsets[VEC_index (int, dw_labels, i)];
3482 if (targ == -1)
3483 internal_error (__FILE__, __LINE__, _("invalid label"));
3484 ax_label (expr, VEC_index (int, patches, i), targ);
3485 }
3486
3487 do_cleanups (cleanups);
08922a10
SS
3488}
3489
4c2df51b
DJ
3490\f
3491/* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3492 evaluator to calculate the location. */
3493static struct value *
3494locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3495{
3496 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3497 struct value *val;
9a619af0 3498
a2d33775
JK
3499 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3500 dlbaton->size, dlbaton->per_cu);
4c2df51b
DJ
3501
3502 return val;
3503}
3504
e18b2753
JK
3505/* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3506 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3507 will be thrown. */
3508
3509static struct value *
3510locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3511{
3512 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3513
3514 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3515 dlbaton->size);
3516}
3517
4c2df51b
DJ
3518/* Return non-zero iff we need a frame to evaluate SYMBOL. */
3519static int
3520locexpr_read_needs_frame (struct symbol *symbol)
3521{
3522 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
9a619af0 3523
ae0d2f24
UW
3524 return dwarf2_loc_desc_needs_frame (dlbaton->data, dlbaton->size,
3525 dlbaton->per_cu);
4c2df51b
DJ
3526}
3527
9eae7c52
TT
3528/* Return true if DATA points to the end of a piece. END is one past
3529 the last byte in the expression. */
3530
3531static int
3532piece_end_p (const gdb_byte *data, const gdb_byte *end)
3533{
3534 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3535}
3536
5e44ecb3
TT
3537/* Helper for locexpr_describe_location_piece that finds the name of a
3538 DWARF register. */
3539
3540static const char *
3541locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3542{
3543 int regnum;
3544
3545 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
3546 return gdbarch_register_name (gdbarch, regnum);
3547}
3548
9eae7c52
TT
3549/* Nicely describe a single piece of a location, returning an updated
3550 position in the bytecode sequence. This function cannot recognize
3551 all locations; if a location is not recognized, it simply returns
f664829e
DE
3552 DATA. If there is an error during reading, e.g. we run off the end
3553 of the buffer, an error is thrown. */
08922a10 3554
0d45f56e 3555static const gdb_byte *
08922a10
SS
3556locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3557 CORE_ADDR addr, struct objfile *objfile,
49f6c839 3558 struct dwarf2_per_cu_data *per_cu,
9eae7c52 3559 const gdb_byte *data, const gdb_byte *end,
0d45f56e 3560 unsigned int addr_size)
4c2df51b 3561{
08922a10 3562 struct gdbarch *gdbarch = get_objfile_arch (objfile);
49f6c839 3563 size_t leb128_size;
08922a10
SS
3564
3565 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3566 {
08922a10 3567 fprintf_filtered (stream, _("a variable in $%s"),
5e44ecb3 3568 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
08922a10
SS
3569 data += 1;
3570 }
3571 else if (data[0] == DW_OP_regx)
3572 {
9fccedf7 3573 uint64_t reg;
4c2df51b 3574
f664829e 3575 data = safe_read_uleb128 (data + 1, end, &reg);
08922a10 3576 fprintf_filtered (stream, _("a variable in $%s"),
5e44ecb3 3577 locexpr_regname (gdbarch, reg));
08922a10
SS
3578 }
3579 else if (data[0] == DW_OP_fbreg)
4c2df51b 3580 {
3977b71f 3581 const struct block *b;
08922a10
SS
3582 struct symbol *framefunc;
3583 int frame_reg = 0;
9fccedf7 3584 int64_t frame_offset;
7155d578 3585 const gdb_byte *base_data, *new_data, *save_data = data;
08922a10 3586 size_t base_size;
9fccedf7 3587 int64_t base_offset = 0;
08922a10 3588
f664829e 3589 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
9eae7c52
TT
3590 if (!piece_end_p (new_data, end))
3591 return data;
3592 data = new_data;
3593
08922a10
SS
3594 b = block_for_pc (addr);
3595
3596 if (!b)
3597 error (_("No block found for address for symbol \"%s\"."),
3598 SYMBOL_PRINT_NAME (symbol));
3599
3600 framefunc = block_linkage_function (b);
3601
3602 if (!framefunc)
3603 error (_("No function found for block for symbol \"%s\"."),
3604 SYMBOL_PRINT_NAME (symbol));
3605
af945b75 3606 func_get_frame_base_dwarf_block (framefunc, addr, &base_data, &base_size);
08922a10
SS
3607
3608 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3609 {
0d45f56e 3610 const gdb_byte *buf_end;
08922a10
SS
3611
3612 frame_reg = base_data[0] - DW_OP_breg0;
f664829e
DE
3613 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3614 &base_offset);
08922a10 3615 if (buf_end != base_data + base_size)
3e43a32a
MS
3616 error (_("Unexpected opcode after "
3617 "DW_OP_breg%u for symbol \"%s\"."),
08922a10
SS
3618 frame_reg, SYMBOL_PRINT_NAME (symbol));
3619 }
3620 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3621 {
3622 /* The frame base is just the register, with no offset. */
3623 frame_reg = base_data[0] - DW_OP_reg0;
3624 base_offset = 0;
3625 }
3626 else
3627 {
3628 /* We don't know what to do with the frame base expression,
3629 so we can't trace this variable; give up. */
7155d578 3630 return save_data;
08922a10
SS
3631 }
3632
3e43a32a
MS
3633 fprintf_filtered (stream,
3634 _("a variable at frame base reg $%s offset %s+%s"),
5e44ecb3 3635 locexpr_regname (gdbarch, frame_reg),
08922a10
SS
3636 plongest (base_offset), plongest (frame_offset));
3637 }
9eae7c52
TT
3638 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3639 && piece_end_p (data, end))
08922a10 3640 {
9fccedf7 3641 int64_t offset;
08922a10 3642
f664829e 3643 data = safe_read_sleb128 (data + 1, end, &offset);
08922a10 3644
4c2df51b 3645 fprintf_filtered (stream,
08922a10
SS
3646 _("a variable at offset %s from base reg $%s"),
3647 plongest (offset),
5e44ecb3 3648 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
4c2df51b
DJ
3649 }
3650
c3228f12
EZ
3651 /* The location expression for a TLS variable looks like this (on a
3652 64-bit LE machine):
3653
3654 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3655 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
09d8bd00 3656
c3228f12
EZ
3657 0x3 is the encoding for DW_OP_addr, which has an operand as long
3658 as the size of an address on the target machine (here is 8
09d8bd00
TT
3659 bytes). Note that more recent version of GCC emit DW_OP_const4u
3660 or DW_OP_const8u, depending on address size, rather than
0963b4bd
MS
3661 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3662 The operand represents the offset at which the variable is within
3663 the thread local storage. */
c3228f12 3664
9eae7c52 3665 else if (data + 1 + addr_size < end
09d8bd00
TT
3666 && (data[0] == DW_OP_addr
3667 || (addr_size == 4 && data[0] == DW_OP_const4u)
3668 || (addr_size == 8 && data[0] == DW_OP_const8u))
9eae7c52
TT
3669 && data[1 + addr_size] == DW_OP_GNU_push_tls_address
3670 && piece_end_p (data + 2 + addr_size, end))
08922a10 3671 {
d4a087c7
UW
3672 ULONGEST offset;
3673 offset = extract_unsigned_integer (data + 1, addr_size,
3674 gdbarch_byte_order (gdbarch));
9a619af0 3675
08922a10 3676 fprintf_filtered (stream,
d4a087c7 3677 _("a thread-local variable at offset 0x%s "
08922a10 3678 "in the thread-local storage for `%s'"),
4262abfb 3679 phex_nz (offset, addr_size), objfile_name (objfile));
08922a10
SS
3680
3681 data += 1 + addr_size + 1;
3682 }
49f6c839
DE
3683
3684 /* With -gsplit-dwarf a TLS variable can also look like this:
3685 DW_AT_location : 3 byte block: fc 4 e0
3686 (DW_OP_GNU_const_index: 4;
3687 DW_OP_GNU_push_tls_address) */
3688 else if (data + 3 <= end
3689 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3690 && data[0] == DW_OP_GNU_const_index
3691 && leb128_size > 0
3692 && data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3693 && piece_end_p (data + 2 + leb128_size, end))
3694 {
a55c1f32 3695 uint64_t offset;
49f6c839
DE
3696
3697 data = safe_read_uleb128 (data + 1, end, &offset);
3698 offset = dwarf2_read_addr_index (per_cu, offset);
3699 fprintf_filtered (stream,
3700 _("a thread-local variable at offset 0x%s "
3701 "in the thread-local storage for `%s'"),
4262abfb 3702 phex_nz (offset, addr_size), objfile_name (objfile));
49f6c839
DE
3703 ++data;
3704 }
3705
9eae7c52
TT
3706 else if (data[0] >= DW_OP_lit0
3707 && data[0] <= DW_OP_lit31
3708 && data + 1 < end
3709 && data[1] == DW_OP_stack_value)
3710 {
3711 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3712 data += 2;
3713 }
3714
3715 return data;
3716}
3717
3718/* Disassemble an expression, stopping at the end of a piece or at the
3719 end of the expression. Returns a pointer to the next unread byte
3720 in the input expression. If ALL is nonzero, then this function
f664829e
DE
3721 will keep going until it reaches the end of the expression.
3722 If there is an error during reading, e.g. we run off the end
3723 of the buffer, an error is thrown. */
9eae7c52
TT
3724
3725static const gdb_byte *
3726disassemble_dwarf_expression (struct ui_file *stream,
3727 struct gdbarch *arch, unsigned int addr_size,
2bda9cc5 3728 int offset_size, const gdb_byte *start,
9eae7c52 3729 const gdb_byte *data, const gdb_byte *end,
2bda9cc5 3730 int indent, int all,
5e44ecb3 3731 struct dwarf2_per_cu_data *per_cu)
9eae7c52 3732{
9eae7c52
TT
3733 while (data < end
3734 && (all
3735 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3736 {
3737 enum dwarf_location_atom op = *data++;
9fccedf7
DE
3738 uint64_t ul;
3739 int64_t l;
9eae7c52
TT
3740 const char *name;
3741
f39c6ffd 3742 name = get_DW_OP_name (op);
9eae7c52
TT
3743
3744 if (!name)
3745 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
06826322 3746 op, (long) (data - 1 - start));
2bda9cc5
JK
3747 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3748 (long) (data - 1 - start), name);
9eae7c52
TT
3749
3750 switch (op)
3751 {
3752 case DW_OP_addr:
d4a087c7
UW
3753 ul = extract_unsigned_integer (data, addr_size,
3754 gdbarch_byte_order (arch));
9eae7c52 3755 data += addr_size;
d4a087c7 3756 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
9eae7c52
TT
3757 break;
3758
3759 case DW_OP_const1u:
3760 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3761 data += 1;
3762 fprintf_filtered (stream, " %s", pulongest (ul));
3763 break;
3764 case DW_OP_const1s:
3765 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3766 data += 1;
3767 fprintf_filtered (stream, " %s", plongest (l));
3768 break;
3769 case DW_OP_const2u:
3770 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3771 data += 2;
3772 fprintf_filtered (stream, " %s", pulongest (ul));
3773 break;
3774 case DW_OP_const2s:
3775 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3776 data += 2;
3777 fprintf_filtered (stream, " %s", plongest (l));
3778 break;
3779 case DW_OP_const4u:
3780 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3781 data += 4;
3782 fprintf_filtered (stream, " %s", pulongest (ul));
3783 break;
3784 case DW_OP_const4s:
3785 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3786 data += 4;
3787 fprintf_filtered (stream, " %s", plongest (l));
3788 break;
3789 case DW_OP_const8u:
3790 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3791 data += 8;
3792 fprintf_filtered (stream, " %s", pulongest (ul));
3793 break;
3794 case DW_OP_const8s:
3795 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3796 data += 8;
3797 fprintf_filtered (stream, " %s", plongest (l));
3798 break;
3799 case DW_OP_constu:
f664829e 3800 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3801 fprintf_filtered (stream, " %s", pulongest (ul));
3802 break;
3803 case DW_OP_consts:
f664829e 3804 data = safe_read_sleb128 (data, end, &l);
9eae7c52
TT
3805 fprintf_filtered (stream, " %s", plongest (l));
3806 break;
3807
3808 case DW_OP_reg0:
3809 case DW_OP_reg1:
3810 case DW_OP_reg2:
3811 case DW_OP_reg3:
3812 case DW_OP_reg4:
3813 case DW_OP_reg5:
3814 case DW_OP_reg6:
3815 case DW_OP_reg7:
3816 case DW_OP_reg8:
3817 case DW_OP_reg9:
3818 case DW_OP_reg10:
3819 case DW_OP_reg11:
3820 case DW_OP_reg12:
3821 case DW_OP_reg13:
3822 case DW_OP_reg14:
3823 case DW_OP_reg15:
3824 case DW_OP_reg16:
3825 case DW_OP_reg17:
3826 case DW_OP_reg18:
3827 case DW_OP_reg19:
3828 case DW_OP_reg20:
3829 case DW_OP_reg21:
3830 case DW_OP_reg22:
3831 case DW_OP_reg23:
3832 case DW_OP_reg24:
3833 case DW_OP_reg25:
3834 case DW_OP_reg26:
3835 case DW_OP_reg27:
3836 case DW_OP_reg28:
3837 case DW_OP_reg29:
3838 case DW_OP_reg30:
3839 case DW_OP_reg31:
3840 fprintf_filtered (stream, " [$%s]",
5e44ecb3 3841 locexpr_regname (arch, op - DW_OP_reg0));
9eae7c52
TT
3842 break;
3843
3844 case DW_OP_regx:
f664829e 3845 data = safe_read_uleb128 (data, end, &ul);
9eae7c52 3846 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
5e44ecb3 3847 locexpr_regname (arch, (int) ul));
9eae7c52
TT
3848 break;
3849
3850 case DW_OP_implicit_value:
f664829e 3851 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3852 data += ul;
3853 fprintf_filtered (stream, " %s", pulongest (ul));
3854 break;
3855
3856 case DW_OP_breg0:
3857 case DW_OP_breg1:
3858 case DW_OP_breg2:
3859 case DW_OP_breg3:
3860 case DW_OP_breg4:
3861 case DW_OP_breg5:
3862 case DW_OP_breg6:
3863 case DW_OP_breg7:
3864 case DW_OP_breg8:
3865 case DW_OP_breg9:
3866 case DW_OP_breg10:
3867 case DW_OP_breg11:
3868 case DW_OP_breg12:
3869 case DW_OP_breg13:
3870 case DW_OP_breg14:
3871 case DW_OP_breg15:
3872 case DW_OP_breg16:
3873 case DW_OP_breg17:
3874 case DW_OP_breg18:
3875 case DW_OP_breg19:
3876 case DW_OP_breg20:
3877 case DW_OP_breg21:
3878 case DW_OP_breg22:
3879 case DW_OP_breg23:
3880 case DW_OP_breg24:
3881 case DW_OP_breg25:
3882 case DW_OP_breg26:
3883 case DW_OP_breg27:
3884 case DW_OP_breg28:
3885 case DW_OP_breg29:
3886 case DW_OP_breg30:
3887 case DW_OP_breg31:
f664829e 3888 data = safe_read_sleb128 (data, end, &l);
0502ed8c 3889 fprintf_filtered (stream, " %s [$%s]", plongest (l),
5e44ecb3 3890 locexpr_regname (arch, op - DW_OP_breg0));
9eae7c52
TT
3891 break;
3892
3893 case DW_OP_bregx:
f664829e
DE
3894 data = safe_read_uleb128 (data, end, &ul);
3895 data = safe_read_sleb128 (data, end, &l);
0502ed8c
JK
3896 fprintf_filtered (stream, " register %s [$%s] offset %s",
3897 pulongest (ul),
5e44ecb3 3898 locexpr_regname (arch, (int) ul),
0502ed8c 3899 plongest (l));
9eae7c52
TT
3900 break;
3901
3902 case DW_OP_fbreg:
f664829e 3903 data = safe_read_sleb128 (data, end, &l);
0502ed8c 3904 fprintf_filtered (stream, " %s", plongest (l));
9eae7c52
TT
3905 break;
3906
3907 case DW_OP_xderef_size:
3908 case DW_OP_deref_size:
3909 case DW_OP_pick:
3910 fprintf_filtered (stream, " %d", *data);
3911 ++data;
3912 break;
3913
3914 case DW_OP_plus_uconst:
f664829e 3915 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3916 fprintf_filtered (stream, " %s", pulongest (ul));
3917 break;
3918
3919 case DW_OP_skip:
3920 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3921 data += 2;
3922 fprintf_filtered (stream, " to %ld",
3923 (long) (data + l - start));
3924 break;
3925
3926 case DW_OP_bra:
3927 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3928 data += 2;
3929 fprintf_filtered (stream, " %ld",
3930 (long) (data + l - start));
3931 break;
3932
3933 case DW_OP_call2:
3934 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3935 data += 2;
3936 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
3937 break;
3938
3939 case DW_OP_call4:
3940 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3941 data += 4;
3942 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3943 break;
3944
3945 case DW_OP_call_ref:
3946 ul = extract_unsigned_integer (data, offset_size,
3947 gdbarch_byte_order (arch));
3948 data += offset_size;
3949 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
3950 break;
3951
3952 case DW_OP_piece:
f664829e 3953 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3954 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
3955 break;
3956
3957 case DW_OP_bit_piece:
3958 {
9fccedf7 3959 uint64_t offset;
9eae7c52 3960
f664829e
DE
3961 data = safe_read_uleb128 (data, end, &ul);
3962 data = safe_read_uleb128 (data, end, &offset);
9eae7c52
TT
3963 fprintf_filtered (stream, " size %s offset %s (bits)",
3964 pulongest (ul), pulongest (offset));
3965 }
3966 break;
8cf6f0b1
TT
3967
3968 case DW_OP_GNU_implicit_pointer:
3969 {
3970 ul = extract_unsigned_integer (data, offset_size,
3971 gdbarch_byte_order (arch));
3972 data += offset_size;
3973
f664829e 3974 data = safe_read_sleb128 (data, end, &l);
8cf6f0b1
TT
3975
3976 fprintf_filtered (stream, " DIE %s offset %s",
3977 phex_nz (ul, offset_size),
3978 plongest (l));
3979 }
3980 break;
5e44ecb3
TT
3981
3982 case DW_OP_GNU_deref_type:
3983 {
3984 int addr_size = *data++;
b64f50a1 3985 cu_offset offset;
5e44ecb3
TT
3986 struct type *type;
3987
f664829e 3988 data = safe_read_uleb128 (data, end, &ul);
b64f50a1 3989 offset.cu_off = ul;
5e44ecb3
TT
3990 type = dwarf2_get_die_type (offset, per_cu);
3991 fprintf_filtered (stream, "<");
3992 type_print (type, "", stream, -1);
b64f50a1 3993 fprintf_filtered (stream, " [0x%s]> %d", phex_nz (offset.cu_off, 0),
5e44ecb3
TT
3994 addr_size);
3995 }
3996 break;
3997
3998 case DW_OP_GNU_const_type:
3999 {
b64f50a1 4000 cu_offset type_die;
5e44ecb3
TT
4001 struct type *type;
4002
f664829e 4003 data = safe_read_uleb128 (data, end, &ul);
b64f50a1 4004 type_die.cu_off = ul;
5e44ecb3
TT
4005 type = dwarf2_get_die_type (type_die, per_cu);
4006 fprintf_filtered (stream, "<");
4007 type_print (type, "", stream, -1);
b64f50a1 4008 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
5e44ecb3
TT
4009 }
4010 break;
4011
4012 case DW_OP_GNU_regval_type:
4013 {
9fccedf7 4014 uint64_t reg;
b64f50a1 4015 cu_offset type_die;
5e44ecb3
TT
4016 struct type *type;
4017
f664829e
DE
4018 data = safe_read_uleb128 (data, end, &reg);
4019 data = safe_read_uleb128 (data, end, &ul);
b64f50a1 4020 type_die.cu_off = ul;
5e44ecb3
TT
4021
4022 type = dwarf2_get_die_type (type_die, per_cu);
4023 fprintf_filtered (stream, "<");
4024 type_print (type, "", stream, -1);
b64f50a1
JK
4025 fprintf_filtered (stream, " [0x%s]> [$%s]",
4026 phex_nz (type_die.cu_off, 0),
5e44ecb3
TT
4027 locexpr_regname (arch, reg));
4028 }
4029 break;
4030
4031 case DW_OP_GNU_convert:
4032 case DW_OP_GNU_reinterpret:
4033 {
b64f50a1 4034 cu_offset type_die;
5e44ecb3 4035
f664829e 4036 data = safe_read_uleb128 (data, end, &ul);
b64f50a1 4037 type_die.cu_off = ul;
5e44ecb3 4038
b64f50a1 4039 if (type_die.cu_off == 0)
5e44ecb3
TT
4040 fprintf_filtered (stream, "<0>");
4041 else
4042 {
4043 struct type *type;
4044
4045 type = dwarf2_get_die_type (type_die, per_cu);
4046 fprintf_filtered (stream, "<");
4047 type_print (type, "", stream, -1);
b64f50a1 4048 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
5e44ecb3
TT
4049 }
4050 }
4051 break;
2bda9cc5
JK
4052
4053 case DW_OP_GNU_entry_value:
f664829e 4054 data = safe_read_uleb128 (data, end, &ul);
2bda9cc5
JK
4055 fputc_filtered ('\n', stream);
4056 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4057 start, data, data + ul, indent + 2,
4058 all, per_cu);
4059 data += ul;
4060 continue;
49f6c839 4061
a24f71ab
JK
4062 case DW_OP_GNU_parameter_ref:
4063 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4064 data += 4;
4065 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4066 break;
4067
49f6c839
DE
4068 case DW_OP_GNU_addr_index:
4069 data = safe_read_uleb128 (data, end, &ul);
4070 ul = dwarf2_read_addr_index (per_cu, ul);
4071 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4072 break;
4073 case DW_OP_GNU_const_index:
4074 data = safe_read_uleb128 (data, end, &ul);
4075 ul = dwarf2_read_addr_index (per_cu, ul);
4076 fprintf_filtered (stream, " %s", pulongest (ul));
4077 break;
9eae7c52
TT
4078 }
4079
4080 fprintf_filtered (stream, "\n");
4081 }
c3228f12 4082
08922a10 4083 return data;
4c2df51b
DJ
4084}
4085
08922a10
SS
4086/* Describe a single location, which may in turn consist of multiple
4087 pieces. */
a55cc764 4088
08922a10
SS
4089static void
4090locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
0d45f56e 4091 struct ui_file *stream,
56eb65bd 4092 const gdb_byte *data, size_t size,
9eae7c52 4093 struct objfile *objfile, unsigned int addr_size,
5e44ecb3 4094 int offset_size, struct dwarf2_per_cu_data *per_cu)
08922a10 4095{
0d45f56e 4096 const gdb_byte *end = data + size;
9eae7c52 4097 int first_piece = 1, bad = 0;
08922a10 4098
08922a10
SS
4099 while (data < end)
4100 {
9eae7c52
TT
4101 const gdb_byte *here = data;
4102 int disassemble = 1;
4103
4104 if (first_piece)
4105 first_piece = 0;
4106 else
4107 fprintf_filtered (stream, _(", and "));
08922a10 4108
9eae7c52
TT
4109 if (!dwarf2_always_disassemble)
4110 {
3e43a32a 4111 data = locexpr_describe_location_piece (symbol, stream,
49f6c839 4112 addr, objfile, per_cu,
9eae7c52
TT
4113 data, end, addr_size);
4114 /* If we printed anything, or if we have an empty piece,
4115 then don't disassemble. */
4116 if (data != here
4117 || data[0] == DW_OP_piece
4118 || data[0] == DW_OP_bit_piece)
4119 disassemble = 0;
08922a10 4120 }
9eae7c52 4121 if (disassemble)
2bda9cc5
JK
4122 {
4123 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4124 data = disassemble_dwarf_expression (stream,
4125 get_objfile_arch (objfile),
4126 addr_size, offset_size, data,
4127 data, end, 0,
4128 dwarf2_always_disassemble,
4129 per_cu);
4130 }
9eae7c52
TT
4131
4132 if (data < end)
08922a10 4133 {
9eae7c52 4134 int empty = data == here;
08922a10 4135
9eae7c52
TT
4136 if (disassemble)
4137 fprintf_filtered (stream, " ");
4138 if (data[0] == DW_OP_piece)
4139 {
9fccedf7 4140 uint64_t bytes;
08922a10 4141
f664829e 4142 data = safe_read_uleb128 (data + 1, end, &bytes);
08922a10 4143
9eae7c52
TT
4144 if (empty)
4145 fprintf_filtered (stream, _("an empty %s-byte piece"),
4146 pulongest (bytes));
4147 else
4148 fprintf_filtered (stream, _(" [%s-byte piece]"),
4149 pulongest (bytes));
4150 }
4151 else if (data[0] == DW_OP_bit_piece)
4152 {
9fccedf7 4153 uint64_t bits, offset;
9eae7c52 4154
f664829e
DE
4155 data = safe_read_uleb128 (data + 1, end, &bits);
4156 data = safe_read_uleb128 (data, end, &offset);
9eae7c52
TT
4157
4158 if (empty)
4159 fprintf_filtered (stream,
4160 _("an empty %s-bit piece"),
4161 pulongest (bits));
4162 else
4163 fprintf_filtered (stream,
4164 _(" [%s-bit piece, offset %s bits]"),
4165 pulongest (bits), pulongest (offset));
4166 }
4167 else
4168 {
4169 bad = 1;
4170 break;
4171 }
08922a10
SS
4172 }
4173 }
4174
4175 if (bad || data > end)
4176 error (_("Corrupted DWARF2 expression for \"%s\"."),
4177 SYMBOL_PRINT_NAME (symbol));
4178}
4179
4180/* Print a natural-language description of SYMBOL to STREAM. This
4181 version is for a symbol with a single location. */
a55cc764 4182
08922a10
SS
4183static void
4184locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4185 struct ui_file *stream)
4186{
4187 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4188 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4189 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
9eae7c52 4190 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
08922a10 4191
3e43a32a
MS
4192 locexpr_describe_location_1 (symbol, addr, stream,
4193 dlbaton->data, dlbaton->size,
5e44ecb3
TT
4194 objfile, addr_size, offset_size,
4195 dlbaton->per_cu);
08922a10
SS
4196}
4197
4198/* Describe the location of SYMBOL as an agent value in VALUE, generating
4199 any necessary bytecode in AX. */
a55cc764 4200
0d53c4c4 4201static void
505e835d
UW
4202locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4203 struct agent_expr *ax, struct axs_value *value)
a55cc764
DJ
4204{
4205 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3cf03773 4206 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
a55cc764 4207
1d6edc3c 4208 if (dlbaton->size == 0)
cabe9ab6
PA
4209 value->optimized_out = 1;
4210 else
9f6f94ff
TT
4211 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4212 dlbaton->data, dlbaton->data + dlbaton->size,
4213 dlbaton->per_cu);
a55cc764
DJ
4214}
4215
bb2ec1b3
TT
4216/* symbol_computed_ops 'generate_c_location' method. */
4217
4218static void
4219locexpr_generate_c_location (struct symbol *sym, struct ui_file *stream,
4220 struct gdbarch *gdbarch,
4221 unsigned char *registers_used,
4222 CORE_ADDR pc, const char *result_name)
4223{
4224 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (sym);
4225 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4226
4227 if (dlbaton->size == 0)
4228 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4229
4230 compile_dwarf_expr_to_c (stream, result_name,
4231 sym, pc, gdbarch, registers_used, addr_size,
4232 dlbaton->data, dlbaton->data + dlbaton->size,
4233 dlbaton->per_cu);
4234}
4235
4c2df51b
DJ
4236/* The set of location functions used with the DWARF-2 expression
4237 evaluator. */
768a979c 4238const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4c2df51b 4239 locexpr_read_variable,
e18b2753 4240 locexpr_read_variable_at_entry,
4c2df51b
DJ
4241 locexpr_read_needs_frame,
4242 locexpr_describe_location,
f1e6e072 4243 0, /* location_has_loclist */
bb2ec1b3
TT
4244 locexpr_tracepoint_var_ref,
4245 locexpr_generate_c_location
4c2df51b 4246};
0d53c4c4
DJ
4247
4248
4249/* Wrapper functions for location lists. These generally find
4250 the appropriate location expression and call something above. */
4251
4252/* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4253 evaluator to calculate the location. */
4254static struct value *
4255loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4256{
4257 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4258 struct value *val;
947bb88f 4259 const gdb_byte *data;
b6b08ebf 4260 size_t size;
8cf6f0b1 4261 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
0d53c4c4 4262
8cf6f0b1 4263 data = dwarf2_find_location_expression (dlbaton, &size, pc);
1d6edc3c
JK
4264 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4265 dlbaton->per_cu);
0d53c4c4
DJ
4266
4267 return val;
4268}
4269
e18b2753
JK
4270/* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4271 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4272 will be thrown.
4273
4274 Function always returns non-NULL value, it may be marked optimized out if
4275 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4276 if it cannot resolve the parameter for any reason. */
4277
4278static struct value *
4279loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4280{
4281 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4282 const gdb_byte *data;
4283 size_t size;
4284 CORE_ADDR pc;
4285
4286 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4287 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4288
4289 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4290 if (data == NULL)
4291 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4292
4293 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4294}
4295
0d53c4c4
DJ
4296/* Return non-zero iff we need a frame to evaluate SYMBOL. */
4297static int
4298loclist_read_needs_frame (struct symbol *symbol)
4299{
4300 /* If there's a location list, then assume we need to have a frame
4301 to choose the appropriate location expression. With tracking of
4302 global variables this is not necessarily true, but such tracking
4303 is disabled in GCC at the moment until we figure out how to
4304 represent it. */
4305
4306 return 1;
4307}
4308
08922a10
SS
4309/* Print a natural-language description of SYMBOL to STREAM. This
4310 version applies when there is a list of different locations, each
4311 with a specified address range. */
4312
4313static void
4314loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4315 struct ui_file *stream)
0d53c4c4 4316{
08922a10 4317 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
947bb88f 4318 const gdb_byte *loc_ptr, *buf_end;
08922a10
SS
4319 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4320 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4321 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4322 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
9eae7c52 4323 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
d4a087c7 4324 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
08922a10 4325 /* Adjust base_address for relocatable objects. */
9aa1f1e3 4326 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
08922a10 4327 CORE_ADDR base_address = dlbaton->base_address + base_offset;
f664829e 4328 int done = 0;
08922a10
SS
4329
4330 loc_ptr = dlbaton->data;
4331 buf_end = dlbaton->data + dlbaton->size;
4332
9eae7c52 4333 fprintf_filtered (stream, _("multi-location:\n"));
08922a10
SS
4334
4335 /* Iterate through locations until we run out. */
f664829e 4336 while (!done)
08922a10 4337 {
f664829e
DE
4338 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4339 int length;
4340 enum debug_loc_kind kind;
4341 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4342
4343 if (dlbaton->from_dwo)
4344 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4345 loc_ptr, buf_end, &new_ptr,
3771a44c 4346 &low, &high, byte_order);
d4a087c7 4347 else
f664829e
DE
4348 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4349 &low, &high,
4350 byte_order, addr_size,
4351 signed_addr_p);
4352 loc_ptr = new_ptr;
4353 switch (kind)
08922a10 4354 {
f664829e
DE
4355 case DEBUG_LOC_END_OF_LIST:
4356 done = 1;
4357 continue;
4358 case DEBUG_LOC_BASE_ADDRESS:
d4a087c7 4359 base_address = high + base_offset;
9eae7c52 4360 fprintf_filtered (stream, _(" Base address %s"),
08922a10 4361 paddress (gdbarch, base_address));
08922a10 4362 continue;
3771a44c
DE
4363 case DEBUG_LOC_START_END:
4364 case DEBUG_LOC_START_LENGTH:
f664829e
DE
4365 break;
4366 case DEBUG_LOC_BUFFER_OVERFLOW:
4367 case DEBUG_LOC_INVALID_ENTRY:
4368 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4369 SYMBOL_PRINT_NAME (symbol));
4370 default:
4371 gdb_assert_not_reached ("bad debug_loc_kind");
08922a10
SS
4372 }
4373
08922a10
SS
4374 /* Otherwise, a location expression entry. */
4375 low += base_address;
4376 high += base_address;
4377
3e29f34a
MR
4378 low = gdbarch_adjust_dwarf2_addr (gdbarch, low);
4379 high = gdbarch_adjust_dwarf2_addr (gdbarch, high);
4380
08922a10
SS
4381 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4382 loc_ptr += 2;
4383
08922a10
SS
4384 /* (It would improve readability to print only the minimum
4385 necessary digits of the second number of the range.) */
9eae7c52 4386 fprintf_filtered (stream, _(" Range %s-%s: "),
08922a10
SS
4387 paddress (gdbarch, low), paddress (gdbarch, high));
4388
4389 /* Now describe this particular location. */
4390 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
5e44ecb3
TT
4391 objfile, addr_size, offset_size,
4392 dlbaton->per_cu);
9eae7c52
TT
4393
4394 fprintf_filtered (stream, "\n");
08922a10
SS
4395
4396 loc_ptr += length;
4397 }
0d53c4c4
DJ
4398}
4399
4400/* Describe the location of SYMBOL as an agent value in VALUE, generating
4401 any necessary bytecode in AX. */
4402static void
505e835d
UW
4403loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4404 struct agent_expr *ax, struct axs_value *value)
0d53c4c4
DJ
4405{
4406 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
947bb88f 4407 const gdb_byte *data;
b6b08ebf 4408 size_t size;
3cf03773 4409 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
0d53c4c4 4410
8cf6f0b1 4411 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
1d6edc3c 4412 if (size == 0)
cabe9ab6
PA
4413 value->optimized_out = 1;
4414 else
9f6f94ff
TT
4415 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4416 dlbaton->per_cu);
0d53c4c4
DJ
4417}
4418
bb2ec1b3
TT
4419/* symbol_computed_ops 'generate_c_location' method. */
4420
4421static void
4422loclist_generate_c_location (struct symbol *sym, struct ui_file *stream,
4423 struct gdbarch *gdbarch,
4424 unsigned char *registers_used,
4425 CORE_ADDR pc, const char *result_name)
4426{
4427 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (sym);
4428 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
4429 const gdb_byte *data;
4430 size_t size;
4431
4432 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4433 if (size == 0)
4434 error (_("symbol \"%s\" is optimized out"), SYMBOL_NATURAL_NAME (sym));
4435
4436 compile_dwarf_expr_to_c (stream, result_name,
4437 sym, pc, gdbarch, registers_used, addr_size,
4438 data, data + size,
4439 dlbaton->per_cu);
4440}
4441
0d53c4c4
DJ
4442/* The set of location functions used with the DWARF-2 expression
4443 evaluator and location lists. */
768a979c 4444const struct symbol_computed_ops dwarf2_loclist_funcs = {
0d53c4c4 4445 loclist_read_variable,
e18b2753 4446 loclist_read_variable_at_entry,
0d53c4c4
DJ
4447 loclist_read_needs_frame,
4448 loclist_describe_location,
f1e6e072 4449 1, /* location_has_loclist */
bb2ec1b3
TT
4450 loclist_tracepoint_var_ref,
4451 loclist_generate_c_location
0d53c4c4 4452};
8e3b41a9 4453
70221824
PA
4454/* Provide a prototype to silence -Wmissing-prototypes. */
4455extern initialize_file_ftype _initialize_dwarf2loc;
4456
8e3b41a9
JK
4457void
4458_initialize_dwarf2loc (void)
4459{
ccce17b0
YQ
4460 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4461 &entry_values_debug,
4462 _("Set entry values and tail call frames "
4463 "debugging."),
4464 _("Show entry values and tail call frames "
4465 "debugging."),
4466 _("When non-zero, the process of determining "
4467 "parameter values from function entry point "
4468 "and tail call frames will be printed."),
4469 NULL,
4470 show_entry_values_debug,
4471 &setdebuglist, &showdebuglist);
8e3b41a9 4472}
This page took 1.040103 seconds and 4 git commands to generate.