ada_evaluate_subexp<OP_VAR_VALUE>: Avoid static fixing when possible.
[deliverable/binutils-gdb.git] / gdb / dwarf2loc.c
CommitLineData
4c2df51b 1/* DWARF 2 location expression support for GDB.
feb13ab0 2
ecd75fc8 3 Copyright (C) 2003-2014 Free Software Foundation, Inc.
feb13ab0 4
4c2df51b
DJ
5 Contributed by Daniel Jacobowitz, MontaVista Software, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7
JB
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
4c2df51b 13
a9762ec7
JB
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
4c2df51b
DJ
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
4c2df51b
DJ
21
22#include "defs.h"
23#include "ui-out.h"
24#include "value.h"
25#include "frame.h"
26#include "gdbcore.h"
27#include "target.h"
28#include "inferior.h"
a55cc764
DJ
29#include "ax.h"
30#include "ax-gdb.h"
e4adbba9 31#include "regcache.h"
c3228f12 32#include "objfiles.h"
93ad78a7 33#include "exceptions.h"
edb3359d 34#include "block.h"
8e3b41a9 35#include "gdbcmd.h"
4c2df51b 36
fa8f86ff 37#include "dwarf2.h"
4c2df51b
DJ
38#include "dwarf2expr.h"
39#include "dwarf2loc.h"
e7802207 40#include "dwarf2-frame.h"
4c2df51b 41
9eae7c52
TT
42extern int dwarf2_always_disassemble;
43
1632a688
JK
44static void dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
45 const gdb_byte **start, size_t *length);
0936ad1d 46
8e3b41a9
JK
47static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs;
48
1632a688
JK
49static struct value *dwarf2_evaluate_loc_desc_full (struct type *type,
50 struct frame_info *frame,
51 const gdb_byte *data,
56eb65bd
SP
52 size_t size,
53 struct dwarf2_per_cu_data *per_cu,
1632a688 54 LONGEST byte_offset);
8cf6f0b1 55
f664829e
DE
56/* Until these have formal names, we define these here.
57 ref: http://gcc.gnu.org/wiki/DebugFission
58 Each entry in .debug_loc.dwo begins with a byte that describes the entry,
59 and is then followed by data specific to that entry. */
60
61enum debug_loc_kind
62{
63 /* Indicates the end of the list of entries. */
64 DEBUG_LOC_END_OF_LIST = 0,
65
66 /* This is followed by an unsigned LEB128 number that is an index into
67 .debug_addr and specifies the base address for all following entries. */
68 DEBUG_LOC_BASE_ADDRESS = 1,
69
70 /* This is followed by two unsigned LEB128 numbers that are indices into
71 .debug_addr and specify the beginning and ending addresses, and then
72 a normal location expression as in .debug_loc. */
3771a44c
DE
73 DEBUG_LOC_START_END = 2,
74
75 /* This is followed by an unsigned LEB128 number that is an index into
76 .debug_addr and specifies the beginning address, and a 4 byte unsigned
77 number that specifies the length, and then a normal location expression
78 as in .debug_loc. */
79 DEBUG_LOC_START_LENGTH = 3,
f664829e
DE
80
81 /* An internal value indicating there is insufficient data. */
82 DEBUG_LOC_BUFFER_OVERFLOW = -1,
83
84 /* An internal value indicating an invalid kind of entry was found. */
85 DEBUG_LOC_INVALID_ENTRY = -2
86};
87
b6807d98
TT
88/* Helper function which throws an error if a synthetic pointer is
89 invalid. */
90
91static void
92invalid_synthetic_pointer (void)
93{
94 error (_("access outside bounds of object "
95 "referenced via synthetic pointer"));
96}
97
f664829e
DE
98/* Decode the addresses in a non-dwo .debug_loc entry.
99 A pointer to the next byte to examine is returned in *NEW_PTR.
100 The encoded low,high addresses are return in *LOW,*HIGH.
101 The result indicates the kind of entry found. */
102
103static enum debug_loc_kind
104decode_debug_loc_addresses (const gdb_byte *loc_ptr, const gdb_byte *buf_end,
105 const gdb_byte **new_ptr,
106 CORE_ADDR *low, CORE_ADDR *high,
107 enum bfd_endian byte_order,
108 unsigned int addr_size,
109 int signed_addr_p)
110{
111 CORE_ADDR base_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
112
113 if (buf_end - loc_ptr < 2 * addr_size)
114 return DEBUG_LOC_BUFFER_OVERFLOW;
115
116 if (signed_addr_p)
117 *low = extract_signed_integer (loc_ptr, addr_size, byte_order);
118 else
119 *low = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
120 loc_ptr += addr_size;
121
122 if (signed_addr_p)
123 *high = extract_signed_integer (loc_ptr, addr_size, byte_order);
124 else
125 *high = extract_unsigned_integer (loc_ptr, addr_size, byte_order);
126 loc_ptr += addr_size;
127
128 *new_ptr = loc_ptr;
129
130 /* A base-address-selection entry. */
131 if ((*low & base_mask) == base_mask)
132 return DEBUG_LOC_BASE_ADDRESS;
133
134 /* An end-of-list entry. */
135 if (*low == 0 && *high == 0)
136 return DEBUG_LOC_END_OF_LIST;
137
3771a44c 138 return DEBUG_LOC_START_END;
f664829e
DE
139}
140
141/* Decode the addresses in .debug_loc.dwo entry.
142 A pointer to the next byte to examine is returned in *NEW_PTR.
143 The encoded low,high addresses are return in *LOW,*HIGH.
144 The result indicates the kind of entry found. */
145
146static enum debug_loc_kind
147decode_debug_loc_dwo_addresses (struct dwarf2_per_cu_data *per_cu,
148 const gdb_byte *loc_ptr,
149 const gdb_byte *buf_end,
150 const gdb_byte **new_ptr,
3771a44c
DE
151 CORE_ADDR *low, CORE_ADDR *high,
152 enum bfd_endian byte_order)
f664829e 153{
9fccedf7 154 uint64_t low_index, high_index;
f664829e
DE
155
156 if (loc_ptr == buf_end)
157 return DEBUG_LOC_BUFFER_OVERFLOW;
158
159 switch (*loc_ptr++)
160 {
161 case DEBUG_LOC_END_OF_LIST:
162 *new_ptr = loc_ptr;
163 return DEBUG_LOC_END_OF_LIST;
164 case DEBUG_LOC_BASE_ADDRESS:
165 *low = 0;
166 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
167 if (loc_ptr == NULL)
168 return DEBUG_LOC_BUFFER_OVERFLOW;
169 *high = dwarf2_read_addr_index (per_cu, high_index);
170 *new_ptr = loc_ptr;
171 return DEBUG_LOC_BASE_ADDRESS;
3771a44c 172 case DEBUG_LOC_START_END:
f664829e
DE
173 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
174 if (loc_ptr == NULL)
175 return DEBUG_LOC_BUFFER_OVERFLOW;
176 *low = dwarf2_read_addr_index (per_cu, low_index);
177 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &high_index);
178 if (loc_ptr == NULL)
179 return DEBUG_LOC_BUFFER_OVERFLOW;
180 *high = dwarf2_read_addr_index (per_cu, high_index);
181 *new_ptr = loc_ptr;
3771a44c
DE
182 return DEBUG_LOC_START_END;
183 case DEBUG_LOC_START_LENGTH:
184 loc_ptr = gdb_read_uleb128 (loc_ptr, buf_end, &low_index);
185 if (loc_ptr == NULL)
186 return DEBUG_LOC_BUFFER_OVERFLOW;
187 *low = dwarf2_read_addr_index (per_cu, low_index);
188 if (loc_ptr + 4 > buf_end)
189 return DEBUG_LOC_BUFFER_OVERFLOW;
190 *high = *low;
191 *high += extract_unsigned_integer (loc_ptr, 4, byte_order);
192 *new_ptr = loc_ptr + 4;
193 return DEBUG_LOC_START_LENGTH;
f664829e
DE
194 default:
195 return DEBUG_LOC_INVALID_ENTRY;
196 }
197}
198
8cf6f0b1 199/* A function for dealing with location lists. Given a
0d53c4c4
DJ
200 symbol baton (BATON) and a pc value (PC), find the appropriate
201 location expression, set *LOCEXPR_LENGTH, and return a pointer
202 to the beginning of the expression. Returns NULL on failure.
203
204 For now, only return the first matching location expression; there
205 can be more than one in the list. */
206
8cf6f0b1
TT
207const gdb_byte *
208dwarf2_find_location_expression (struct dwarf2_loclist_baton *baton,
209 size_t *locexpr_length, CORE_ADDR pc)
0d53c4c4 210{
ae0d2f24 211 struct objfile *objfile = dwarf2_per_cu_objfile (baton->per_cu);
f7fd4728 212 struct gdbarch *gdbarch = get_objfile_arch (objfile);
e17a4113 213 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
ae0d2f24 214 unsigned int addr_size = dwarf2_per_cu_addr_size (baton->per_cu);
d4a087c7 215 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
8edfa926 216 /* Adjust base_address for relocatable objects. */
9aa1f1e3 217 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (baton->per_cu);
8edfa926 218 CORE_ADDR base_address = baton->base_address + base_offset;
f664829e 219 const gdb_byte *loc_ptr, *buf_end;
0d53c4c4
DJ
220
221 loc_ptr = baton->data;
222 buf_end = baton->data + baton->size;
223
224 while (1)
225 {
f664829e
DE
226 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
227 int length;
228 enum debug_loc_kind kind;
229 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
230
231 if (baton->from_dwo)
232 kind = decode_debug_loc_dwo_addresses (baton->per_cu,
233 loc_ptr, buf_end, &new_ptr,
3771a44c 234 &low, &high, byte_order);
d4a087c7 235 else
f664829e
DE
236 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
237 &low, &high,
238 byte_order, addr_size,
239 signed_addr_p);
240 loc_ptr = new_ptr;
241 switch (kind)
1d6edc3c 242 {
f664829e 243 case DEBUG_LOC_END_OF_LIST:
1d6edc3c
JK
244 *locexpr_length = 0;
245 return NULL;
f664829e
DE
246 case DEBUG_LOC_BASE_ADDRESS:
247 base_address = high + base_offset;
248 continue;
3771a44c
DE
249 case DEBUG_LOC_START_END:
250 case DEBUG_LOC_START_LENGTH:
f664829e
DE
251 break;
252 case DEBUG_LOC_BUFFER_OVERFLOW:
253 case DEBUG_LOC_INVALID_ENTRY:
254 error (_("dwarf2_find_location_expression: "
255 "Corrupted DWARF expression."));
256 default:
257 gdb_assert_not_reached ("bad debug_loc_kind");
1d6edc3c 258 }
b5758fe4 259
bed911e5
DE
260 /* Otherwise, a location expression entry.
261 If the entry is from a DWO, don't add base address: the entry is
262 from .debug_addr which has absolute addresses. */
263 if (! baton->from_dwo)
264 {
265 low += base_address;
266 high += base_address;
267 }
0d53c4c4 268
e17a4113 269 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
0d53c4c4
DJ
270 loc_ptr += 2;
271
e18b2753
JK
272 if (low == high && pc == low)
273 {
274 /* This is entry PC record present only at entry point
275 of a function. Verify it is really the function entry point. */
276
3977b71f 277 const struct block *pc_block = block_for_pc (pc);
e18b2753
JK
278 struct symbol *pc_func = NULL;
279
280 if (pc_block)
281 pc_func = block_linkage_function (pc_block);
282
283 if (pc_func && pc == BLOCK_START (SYMBOL_BLOCK_VALUE (pc_func)))
284 {
285 *locexpr_length = length;
286 return loc_ptr;
287 }
288 }
289
0d53c4c4
DJ
290 if (pc >= low && pc < high)
291 {
292 *locexpr_length = length;
293 return loc_ptr;
294 }
295
296 loc_ptr += length;
297 }
298}
299
4c2df51b
DJ
300/* This is the baton used when performing dwarf2 expression
301 evaluation. */
302struct dwarf_expr_baton
303{
304 struct frame_info *frame;
17ea53c3 305 struct dwarf2_per_cu_data *per_cu;
4c2df51b
DJ
306};
307
308/* Helper functions for dwarf2_evaluate_loc_desc. */
309
4bc9efe1 310/* Using the frame specified in BATON, return the value of register
0b2b0195 311 REGNUM, treated as a pointer. */
4c2df51b 312static CORE_ADDR
b1370418 313dwarf_expr_read_addr_from_reg (void *baton, int dwarf_regnum)
4c2df51b 314{
4c2df51b 315 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
5e2b427d 316 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
2ed3c037 317 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
e4adbba9 318
2ed3c037 319 return address_from_register (regnum, debaton->frame);
4c2df51b
DJ
320}
321
0acf8b65
JB
322/* Implement struct dwarf_expr_context_funcs' "get_reg_value" callback. */
323
324static struct value *
325dwarf_expr_get_reg_value (void *baton, struct type *type, int dwarf_regnum)
326{
327 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
328 struct gdbarch *gdbarch = get_frame_arch (debaton->frame);
329 int regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
330
331 return value_from_register (type, regnum, debaton->frame);
332}
333
4c2df51b
DJ
334/* Read memory at ADDR (length LEN) into BUF. */
335
336static void
852483bc 337dwarf_expr_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
4c2df51b
DJ
338{
339 read_memory (addr, buf, len);
340}
341
342/* Using the frame specified in BATON, find the location expression
343 describing the frame base. Return a pointer to it in START and
344 its length in LENGTH. */
345static void
0d45f56e 346dwarf_expr_frame_base (void *baton, const gdb_byte **start, size_t * length)
4c2df51b 347{
da62e633
AC
348 /* FIXME: cagney/2003-03-26: This code should be using
349 get_frame_base_address(), and then implement a dwarf2 specific
350 this_base method. */
4c2df51b 351 struct symbol *framefunc;
4c2df51b 352 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
3977b71f 353 const struct block *bl = get_frame_block (debaton->frame, NULL);
c90a0773
HZ
354
355 if (bl == NULL)
356 error (_("frame address is not available."));
0d53c4c4 357
edb3359d
DJ
358 /* Use block_linkage_function, which returns a real (not inlined)
359 function, instead of get_frame_function, which may return an
360 inlined function. */
c90a0773 361 framefunc = block_linkage_function (bl);
0d53c4c4 362
eff4f95e
JG
363 /* If we found a frame-relative symbol then it was certainly within
364 some function associated with a frame. If we can't find the frame,
365 something has gone wrong. */
366 gdb_assert (framefunc != NULL);
367
0936ad1d
SS
368 dwarf_expr_frame_base_1 (framefunc,
369 get_frame_address_in_block (debaton->frame),
370 start, length);
371}
372
f1e6e072
TT
373/* Implement find_frame_base_location method for LOC_BLOCK functions using
374 DWARF expression for its DW_AT_frame_base. */
375
376static void
377locexpr_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
378 const gdb_byte **start, size_t *length)
379{
380 struct dwarf2_locexpr_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
381
382 *length = symbaton->size;
383 *start = symbaton->data;
384}
385
386/* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
387 function uses DWARF expression for its DW_AT_frame_base. */
388
389const struct symbol_block_ops dwarf2_block_frame_base_locexpr_funcs =
390{
391 locexpr_find_frame_base_location
392};
393
394/* Implement find_frame_base_location method for LOC_BLOCK functions using
395 DWARF location list for its DW_AT_frame_base. */
396
397static void
398loclist_find_frame_base_location (struct symbol *framefunc, CORE_ADDR pc,
399 const gdb_byte **start, size_t *length)
400{
401 struct dwarf2_loclist_baton *symbaton = SYMBOL_LOCATION_BATON (framefunc);
402
403 *start = dwarf2_find_location_expression (symbaton, length, pc);
404}
405
406/* Vector for inferior functions as represented by LOC_BLOCK, if the inferior
407 function uses DWARF location list for its DW_AT_frame_base. */
408
409const struct symbol_block_ops dwarf2_block_frame_base_loclist_funcs =
410{
411 loclist_find_frame_base_location
412};
413
0936ad1d
SS
414static void
415dwarf_expr_frame_base_1 (struct symbol *framefunc, CORE_ADDR pc,
0d45f56e 416 const gdb_byte **start, size_t *length)
0936ad1d 417{
f1e6e072 418 if (SYMBOL_BLOCK_OPS (framefunc) != NULL)
0d53c4c4 419 {
f1e6e072 420 const struct symbol_block_ops *ops_block = SYMBOL_BLOCK_OPS (framefunc);
22c6caba 421
f1e6e072 422 ops_block->find_frame_base_location (framefunc, pc, start, length);
0d53c4c4
DJ
423 }
424 else
f1e6e072 425 *length = 0;
0d53c4c4 426
1d6edc3c 427 if (*length == 0)
8a3fe4f8 428 error (_("Could not find the frame base for \"%s\"."),
0d53c4c4 429 SYMBOL_NATURAL_NAME (framefunc));
4c2df51b
DJ
430}
431
e7802207
TT
432/* Helper function for dwarf2_evaluate_loc_desc. Computes the CFA for
433 the frame in BATON. */
434
435static CORE_ADDR
436dwarf_expr_frame_cfa (void *baton)
437{
438 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
9a619af0 439
e7802207
TT
440 return dwarf2_frame_cfa (debaton->frame);
441}
442
8cf6f0b1
TT
443/* Helper function for dwarf2_evaluate_loc_desc. Computes the PC for
444 the frame in BATON. */
445
446static CORE_ADDR
447dwarf_expr_frame_pc (void *baton)
448{
449 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
450
451 return get_frame_address_in_block (debaton->frame);
452}
453
4c2df51b
DJ
454/* Using the objfile specified in BATON, find the address for the
455 current thread's thread-local storage with offset OFFSET. */
456static CORE_ADDR
457dwarf_expr_tls_address (void *baton, CORE_ADDR offset)
458{
459 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
17ea53c3 460 struct objfile *objfile = dwarf2_per_cu_objfile (debaton->per_cu);
4c2df51b 461
17ea53c3 462 return target_translate_tls_address (objfile, offset);
4c2df51b
DJ
463}
464
3e43a32a
MS
465/* Call DWARF subroutine from DW_AT_location of DIE at DIE_OFFSET in
466 current CU (as is PER_CU). State of the CTX is not affected by the
467 call and return. */
5c631832
JK
468
469static void
b64f50a1 470per_cu_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset,
8cf6f0b1
TT
471 struct dwarf2_per_cu_data *per_cu,
472 CORE_ADDR (*get_frame_pc) (void *baton),
473 void *baton)
5c631832
JK
474{
475 struct dwarf2_locexpr_baton block;
476
8b9737bf 477 block = dwarf2_fetch_die_loc_cu_off (die_offset, per_cu, get_frame_pc, baton);
5c631832
JK
478
479 /* DW_OP_call_ref is currently not supported. */
480 gdb_assert (block.per_cu == per_cu);
481
482 dwarf_expr_eval (ctx, block.data, block.size);
483}
484
485/* Helper interface of per_cu_dwarf_call for dwarf2_evaluate_loc_desc. */
486
487static void
b64f50a1 488dwarf_expr_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
5c631832
JK
489{
490 struct dwarf_expr_baton *debaton = ctx->baton;
491
37b50a69 492 per_cu_dwarf_call (ctx, die_offset, debaton->per_cu,
9e8b7a03 493 ctx->funcs->get_frame_pc, ctx->baton);
5c631832
JK
494}
495
8a9b8146
TT
496/* Callback function for dwarf2_evaluate_loc_desc. */
497
498static struct type *
b64f50a1
JK
499dwarf_expr_get_base_type (struct dwarf_expr_context *ctx,
500 cu_offset die_offset)
8a9b8146
TT
501{
502 struct dwarf_expr_baton *debaton = ctx->baton;
503
504 return dwarf2_get_die_type (die_offset, debaton->per_cu);
505}
506
8e3b41a9
JK
507/* See dwarf2loc.h. */
508
ccce17b0 509unsigned int entry_values_debug = 0;
8e3b41a9
JK
510
511/* Helper to set entry_values_debug. */
512
513static void
514show_entry_values_debug (struct ui_file *file, int from_tty,
515 struct cmd_list_element *c, const char *value)
516{
517 fprintf_filtered (file,
518 _("Entry values and tail call frames debugging is %s.\n"),
519 value);
520}
521
522/* Find DW_TAG_GNU_call_site's DW_AT_GNU_call_site_target address.
523 CALLER_FRAME (for registers) can be NULL if it is not known. This function
524 always returns valid address or it throws NO_ENTRY_VALUE_ERROR. */
525
526static CORE_ADDR
527call_site_to_target_addr (struct gdbarch *call_site_gdbarch,
528 struct call_site *call_site,
529 struct frame_info *caller_frame)
530{
531 switch (FIELD_LOC_KIND (call_site->target))
532 {
533 case FIELD_LOC_KIND_DWARF_BLOCK:
534 {
535 struct dwarf2_locexpr_baton *dwarf_block;
536 struct value *val;
537 struct type *caller_core_addr_type;
538 struct gdbarch *caller_arch;
539
540 dwarf_block = FIELD_DWARF_BLOCK (call_site->target);
541 if (dwarf_block == NULL)
542 {
7cbd4a93 543 struct bound_minimal_symbol msym;
8e3b41a9
JK
544
545 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
546 throw_error (NO_ENTRY_VALUE_ERROR,
547 _("DW_AT_GNU_call_site_target is not specified "
548 "at %s in %s"),
549 paddress (call_site_gdbarch, call_site->pc),
7cbd4a93 550 (msym.minsym == NULL ? "???"
efd66ac6 551 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
552
553 }
554 if (caller_frame == NULL)
555 {
7cbd4a93 556 struct bound_minimal_symbol msym;
8e3b41a9
JK
557
558 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
559 throw_error (NO_ENTRY_VALUE_ERROR,
560 _("DW_AT_GNU_call_site_target DWARF block resolving "
561 "requires known frame which is currently not "
562 "available at %s in %s"),
563 paddress (call_site_gdbarch, call_site->pc),
7cbd4a93 564 (msym.minsym == NULL ? "???"
efd66ac6 565 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
566
567 }
568 caller_arch = get_frame_arch (caller_frame);
569 caller_core_addr_type = builtin_type (caller_arch)->builtin_func_ptr;
570 val = dwarf2_evaluate_loc_desc (caller_core_addr_type, caller_frame,
571 dwarf_block->data, dwarf_block->size,
572 dwarf_block->per_cu);
573 /* DW_AT_GNU_call_site_target is a DWARF expression, not a DWARF
574 location. */
575 if (VALUE_LVAL (val) == lval_memory)
576 return value_address (val);
577 else
578 return value_as_address (val);
579 }
580
581 case FIELD_LOC_KIND_PHYSNAME:
582 {
583 const char *physname;
3b7344d5 584 struct bound_minimal_symbol msym;
8e3b41a9
JK
585
586 physname = FIELD_STATIC_PHYSNAME (call_site->target);
9112db09
JK
587
588 /* Handle both the mangled and demangled PHYSNAME. */
589 msym = lookup_minimal_symbol (physname, NULL, NULL);
3b7344d5 590 if (msym.minsym == NULL)
8e3b41a9 591 {
3b7344d5 592 msym = lookup_minimal_symbol_by_pc (call_site->pc - 1);
8e3b41a9
JK
593 throw_error (NO_ENTRY_VALUE_ERROR,
594 _("Cannot find function \"%s\" for a call site target "
595 "at %s in %s"),
596 physname, paddress (call_site_gdbarch, call_site->pc),
3b7344d5
TT
597 (msym.minsym == NULL ? "???"
598 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
599
600 }
77e371c0 601 return BMSYMBOL_VALUE_ADDRESS (msym);
8e3b41a9
JK
602 }
603
604 case FIELD_LOC_KIND_PHYSADDR:
605 return FIELD_STATIC_PHYSADDR (call_site->target);
606
607 default:
608 internal_error (__FILE__, __LINE__, _("invalid call site target kind"));
609 }
610}
611
111c6489
JK
612/* Convert function entry point exact address ADDR to the function which is
613 compliant with TAIL_CALL_LIST_COMPLETE condition. Throw
614 NO_ENTRY_VALUE_ERROR otherwise. */
615
616static struct symbol *
617func_addr_to_tail_call_list (struct gdbarch *gdbarch, CORE_ADDR addr)
618{
619 struct symbol *sym = find_pc_function (addr);
620 struct type *type;
621
622 if (sym == NULL || BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) != addr)
623 throw_error (NO_ENTRY_VALUE_ERROR,
624 _("DW_TAG_GNU_call_site resolving failed to find function "
625 "name for address %s"),
626 paddress (gdbarch, addr));
627
628 type = SYMBOL_TYPE (sym);
629 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FUNC);
630 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
631
632 return sym;
633}
634
2d6c5dc2
JK
635/* Verify function with entry point exact address ADDR can never call itself
636 via its tail calls (incl. transitively). Throw NO_ENTRY_VALUE_ERROR if it
637 can call itself via tail calls.
638
639 If a funtion can tail call itself its entry value based parameters are
640 unreliable. There is no verification whether the value of some/all
641 parameters is unchanged through the self tail call, we expect if there is
642 a self tail call all the parameters can be modified. */
643
644static void
645func_verify_no_selftailcall (struct gdbarch *gdbarch, CORE_ADDR verify_addr)
646{
647 struct obstack addr_obstack;
648 struct cleanup *old_chain;
649 CORE_ADDR addr;
650
651 /* Track here CORE_ADDRs which were already visited. */
652 htab_t addr_hash;
653
654 /* The verification is completely unordered. Track here function addresses
655 which still need to be iterated. */
656 VEC (CORE_ADDR) *todo = NULL;
657
658 obstack_init (&addr_obstack);
659 old_chain = make_cleanup_obstack_free (&addr_obstack);
660 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
661 &addr_obstack, hashtab_obstack_allocate,
662 NULL);
663 make_cleanup_htab_delete (addr_hash);
664
665 make_cleanup (VEC_cleanup (CORE_ADDR), &todo);
666
667 VEC_safe_push (CORE_ADDR, todo, verify_addr);
668 while (!VEC_empty (CORE_ADDR, todo))
669 {
670 struct symbol *func_sym;
671 struct call_site *call_site;
672
673 addr = VEC_pop (CORE_ADDR, todo);
674
675 func_sym = func_addr_to_tail_call_list (gdbarch, addr);
676
677 for (call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (func_sym));
678 call_site; call_site = call_site->tail_call_next)
679 {
680 CORE_ADDR target_addr;
681 void **slot;
682
683 /* CALLER_FRAME with registers is not available for tail-call jumped
684 frames. */
685 target_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
686
687 if (target_addr == verify_addr)
688 {
7cbd4a93 689 struct bound_minimal_symbol msym;
2d6c5dc2
JK
690
691 msym = lookup_minimal_symbol_by_pc (verify_addr);
692 throw_error (NO_ENTRY_VALUE_ERROR,
693 _("DW_OP_GNU_entry_value resolving has found "
694 "function \"%s\" at %s can call itself via tail "
695 "calls"),
7cbd4a93 696 (msym.minsym == NULL ? "???"
efd66ac6 697 : MSYMBOL_PRINT_NAME (msym.minsym)),
2d6c5dc2
JK
698 paddress (gdbarch, verify_addr));
699 }
700
701 slot = htab_find_slot (addr_hash, &target_addr, INSERT);
702 if (*slot == NULL)
703 {
704 *slot = obstack_copy (&addr_obstack, &target_addr,
705 sizeof (target_addr));
706 VEC_safe_push (CORE_ADDR, todo, target_addr);
707 }
708 }
709 }
710
711 do_cleanups (old_chain);
712}
713
111c6489
JK
714/* Print user readable form of CALL_SITE->PC to gdb_stdlog. Used only for
715 ENTRY_VALUES_DEBUG. */
716
717static void
718tailcall_dump (struct gdbarch *gdbarch, const struct call_site *call_site)
719{
720 CORE_ADDR addr = call_site->pc;
7cbd4a93 721 struct bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (addr - 1);
111c6489
JK
722
723 fprintf_unfiltered (gdb_stdlog, " %s(%s)", paddress (gdbarch, addr),
7cbd4a93 724 (msym.minsym == NULL ? "???"
efd66ac6 725 : MSYMBOL_PRINT_NAME (msym.minsym)));
111c6489
JK
726
727}
728
729/* vec.h needs single word type name, typedef it. */
730typedef struct call_site *call_sitep;
731
732/* Define VEC (call_sitep) functions. */
733DEF_VEC_P (call_sitep);
734
735/* Intersect RESULTP with CHAIN to keep RESULTP unambiguous, keep in RESULTP
736 only top callers and bottom callees which are present in both. GDBARCH is
737 used only for ENTRY_VALUES_DEBUG. RESULTP is NULL after return if there are
738 no remaining possibilities to provide unambiguous non-trivial result.
739 RESULTP should point to NULL on the first (initialization) call. Caller is
740 responsible for xfree of any RESULTP data. */
741
742static void
743chain_candidate (struct gdbarch *gdbarch, struct call_site_chain **resultp,
744 VEC (call_sitep) *chain)
745{
746 struct call_site_chain *result = *resultp;
747 long length = VEC_length (call_sitep, chain);
748 int callers, callees, idx;
749
750 if (result == NULL)
751 {
752 /* Create the initial chain containing all the passed PCs. */
753
754 result = xmalloc (sizeof (*result) + sizeof (*result->call_site)
755 * (length - 1));
756 result->length = length;
757 result->callers = result->callees = length;
19a1b230
AA
758 if (!VEC_empty (call_sitep, chain))
759 memcpy (result->call_site, VEC_address (call_sitep, chain),
760 sizeof (*result->call_site) * length);
111c6489
JK
761 *resultp = result;
762
763 if (entry_values_debug)
764 {
765 fprintf_unfiltered (gdb_stdlog, "tailcall: initial:");
766 for (idx = 0; idx < length; idx++)
767 tailcall_dump (gdbarch, result->call_site[idx]);
768 fputc_unfiltered ('\n', gdb_stdlog);
769 }
770
771 return;
772 }
773
774 if (entry_values_debug)
775 {
776 fprintf_unfiltered (gdb_stdlog, "tailcall: compare:");
777 for (idx = 0; idx < length; idx++)
778 tailcall_dump (gdbarch, VEC_index (call_sitep, chain, idx));
779 fputc_unfiltered ('\n', gdb_stdlog);
780 }
781
782 /* Intersect callers. */
783
784 callers = min (result->callers, length);
785 for (idx = 0; idx < callers; idx++)
786 if (result->call_site[idx] != VEC_index (call_sitep, chain, idx))
787 {
788 result->callers = idx;
789 break;
790 }
791
792 /* Intersect callees. */
793
794 callees = min (result->callees, length);
795 for (idx = 0; idx < callees; idx++)
796 if (result->call_site[result->length - 1 - idx]
797 != VEC_index (call_sitep, chain, length - 1 - idx))
798 {
799 result->callees = idx;
800 break;
801 }
802
803 if (entry_values_debug)
804 {
805 fprintf_unfiltered (gdb_stdlog, "tailcall: reduced:");
806 for (idx = 0; idx < result->callers; idx++)
807 tailcall_dump (gdbarch, result->call_site[idx]);
808 fputs_unfiltered (" |", gdb_stdlog);
809 for (idx = 0; idx < result->callees; idx++)
810 tailcall_dump (gdbarch, result->call_site[result->length
811 - result->callees + idx]);
812 fputc_unfiltered ('\n', gdb_stdlog);
813 }
814
815 if (result->callers == 0 && result->callees == 0)
816 {
817 /* There are no common callers or callees. It could be also a direct
818 call (which has length 0) with ambiguous possibility of an indirect
819 call - CALLERS == CALLEES == 0 is valid during the first allocation
820 but any subsequence processing of such entry means ambiguity. */
821 xfree (result);
822 *resultp = NULL;
823 return;
824 }
825
826 /* See call_site_find_chain_1 why there is no way to reach the bottom callee
827 PC again. In such case there must be two different code paths to reach
828 it, therefore some of the former determined intermediate PCs must differ
829 and the unambiguous chain gets shortened. */
830 gdb_assert (result->callers + result->callees < result->length);
831}
832
833/* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
834 assumed frames between them use GDBARCH. Use depth first search so we can
835 keep single CHAIN of call_site's back to CALLER_PC. Function recursion
836 would have needless GDB stack overhead. Caller is responsible for xfree of
837 the returned result. Any unreliability results in thrown
838 NO_ENTRY_VALUE_ERROR. */
839
840static struct call_site_chain *
841call_site_find_chain_1 (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
842 CORE_ADDR callee_pc)
843{
c4be5165 844 CORE_ADDR save_callee_pc = callee_pc;
111c6489
JK
845 struct obstack addr_obstack;
846 struct cleanup *back_to_retval, *back_to_workdata;
847 struct call_site_chain *retval = NULL;
848 struct call_site *call_site;
849
850 /* Mark CALL_SITEs so we do not visit the same ones twice. */
851 htab_t addr_hash;
852
853 /* CHAIN contains only the intermediate CALL_SITEs. Neither CALLER_PC's
854 call_site nor any possible call_site at CALLEE_PC's function is there.
855 Any CALL_SITE in CHAIN will be iterated to its siblings - via
856 TAIL_CALL_NEXT. This is inappropriate for CALLER_PC's call_site. */
857 VEC (call_sitep) *chain = NULL;
858
859 /* We are not interested in the specific PC inside the callee function. */
860 callee_pc = get_pc_function_start (callee_pc);
861 if (callee_pc == 0)
862 throw_error (NO_ENTRY_VALUE_ERROR, _("Unable to find function for PC %s"),
c4be5165 863 paddress (gdbarch, save_callee_pc));
111c6489
JK
864
865 back_to_retval = make_cleanup (free_current_contents, &retval);
866
867 obstack_init (&addr_obstack);
868 back_to_workdata = make_cleanup_obstack_free (&addr_obstack);
869 addr_hash = htab_create_alloc_ex (64, core_addr_hash, core_addr_eq, NULL,
870 &addr_obstack, hashtab_obstack_allocate,
871 NULL);
872 make_cleanup_htab_delete (addr_hash);
873
874 make_cleanup (VEC_cleanup (call_sitep), &chain);
875
876 /* Do not push CALL_SITE to CHAIN. Push there only the first tail call site
877 at the target's function. All the possible tail call sites in the
878 target's function will get iterated as already pushed into CHAIN via their
879 TAIL_CALL_NEXT. */
880 call_site = call_site_for_pc (gdbarch, caller_pc);
881
882 while (call_site)
883 {
884 CORE_ADDR target_func_addr;
885 struct call_site *target_call_site;
886
887 /* CALLER_FRAME with registers is not available for tail-call jumped
888 frames. */
889 target_func_addr = call_site_to_target_addr (gdbarch, call_site, NULL);
890
891 if (target_func_addr == callee_pc)
892 {
893 chain_candidate (gdbarch, &retval, chain);
894 if (retval == NULL)
895 break;
896
897 /* There is no way to reach CALLEE_PC again as we would prevent
898 entering it twice as being already marked in ADDR_HASH. */
899 target_call_site = NULL;
900 }
901 else
902 {
903 struct symbol *target_func;
904
905 target_func = func_addr_to_tail_call_list (gdbarch, target_func_addr);
906 target_call_site = TYPE_TAIL_CALL_LIST (SYMBOL_TYPE (target_func));
907 }
908
909 do
910 {
911 /* Attempt to visit TARGET_CALL_SITE. */
912
913 if (target_call_site)
914 {
915 void **slot;
916
917 slot = htab_find_slot (addr_hash, &target_call_site->pc, INSERT);
918 if (*slot == NULL)
919 {
920 /* Successfully entered TARGET_CALL_SITE. */
921
922 *slot = &target_call_site->pc;
923 VEC_safe_push (call_sitep, chain, target_call_site);
924 break;
925 }
926 }
927
928 /* Backtrack (without revisiting the originating call_site). Try the
929 callers's sibling; if there isn't any try the callers's callers's
930 sibling etc. */
931
932 target_call_site = NULL;
933 while (!VEC_empty (call_sitep, chain))
934 {
935 call_site = VEC_pop (call_sitep, chain);
936
937 gdb_assert (htab_find_slot (addr_hash, &call_site->pc,
938 NO_INSERT) != NULL);
939 htab_remove_elt (addr_hash, &call_site->pc);
940
941 target_call_site = call_site->tail_call_next;
942 if (target_call_site)
943 break;
944 }
945 }
946 while (target_call_site);
947
948 if (VEC_empty (call_sitep, chain))
949 call_site = NULL;
950 else
951 call_site = VEC_last (call_sitep, chain);
952 }
953
954 if (retval == NULL)
955 {
7cbd4a93 956 struct bound_minimal_symbol msym_caller, msym_callee;
111c6489
JK
957
958 msym_caller = lookup_minimal_symbol_by_pc (caller_pc);
959 msym_callee = lookup_minimal_symbol_by_pc (callee_pc);
960 throw_error (NO_ENTRY_VALUE_ERROR,
961 _("There are no unambiguously determinable intermediate "
962 "callers or callees between caller function \"%s\" at %s "
963 "and callee function \"%s\" at %s"),
7cbd4a93 964 (msym_caller.minsym == NULL
efd66ac6 965 ? "???" : MSYMBOL_PRINT_NAME (msym_caller.minsym)),
111c6489 966 paddress (gdbarch, caller_pc),
7cbd4a93 967 (msym_callee.minsym == NULL
efd66ac6 968 ? "???" : MSYMBOL_PRINT_NAME (msym_callee.minsym)),
111c6489
JK
969 paddress (gdbarch, callee_pc));
970 }
971
972 do_cleanups (back_to_workdata);
973 discard_cleanups (back_to_retval);
974 return retval;
975}
976
977/* Create and return call_site_chain for CALLER_PC and CALLEE_PC. All the
978 assumed frames between them use GDBARCH. If valid call_site_chain cannot be
979 constructed return NULL. Caller is responsible for xfree of the returned
980 result. */
981
982struct call_site_chain *
983call_site_find_chain (struct gdbarch *gdbarch, CORE_ADDR caller_pc,
984 CORE_ADDR callee_pc)
985{
986 volatile struct gdb_exception e;
987 struct call_site_chain *retval = NULL;
988
989 TRY_CATCH (e, RETURN_MASK_ERROR)
990 {
991 retval = call_site_find_chain_1 (gdbarch, caller_pc, callee_pc);
992 }
993 if (e.reason < 0)
994 {
995 if (e.error == NO_ENTRY_VALUE_ERROR)
996 {
997 if (entry_values_debug)
998 exception_print (gdb_stdout, e);
999
1000 return NULL;
1001 }
1002 else
1003 throw_exception (e);
1004 }
1005 return retval;
1006}
1007
24c5c679
JK
1008/* Return 1 if KIND and KIND_U match PARAMETER. Return 0 otherwise. */
1009
1010static int
1011call_site_parameter_matches (struct call_site_parameter *parameter,
1012 enum call_site_parameter_kind kind,
1013 union call_site_parameter_u kind_u)
1014{
1015 if (kind == parameter->kind)
1016 switch (kind)
1017 {
1018 case CALL_SITE_PARAMETER_DWARF_REG:
1019 return kind_u.dwarf_reg == parameter->u.dwarf_reg;
1020 case CALL_SITE_PARAMETER_FB_OFFSET:
1021 return kind_u.fb_offset == parameter->u.fb_offset;
1788b2d3
JK
1022 case CALL_SITE_PARAMETER_PARAM_OFFSET:
1023 return kind_u.param_offset.cu_off == parameter->u.param_offset.cu_off;
24c5c679
JK
1024 }
1025 return 0;
1026}
1027
1028/* Fetch call_site_parameter from caller matching KIND and KIND_U.
1029 FRAME is for callee.
8e3b41a9
JK
1030
1031 Function always returns non-NULL, it throws NO_ENTRY_VALUE_ERROR
1032 otherwise. */
1033
1034static struct call_site_parameter *
24c5c679
JK
1035dwarf_expr_reg_to_entry_parameter (struct frame_info *frame,
1036 enum call_site_parameter_kind kind,
1037 union call_site_parameter_u kind_u,
8e3b41a9
JK
1038 struct dwarf2_per_cu_data **per_cu_return)
1039{
9e3a7d65
JK
1040 CORE_ADDR func_addr, caller_pc;
1041 struct gdbarch *gdbarch;
1042 struct frame_info *caller_frame;
8e3b41a9
JK
1043 struct call_site *call_site;
1044 int iparams;
509f0fd9
JK
1045 /* Initialize it just to avoid a GCC false warning. */
1046 struct call_site_parameter *parameter = NULL;
8e3b41a9
JK
1047 CORE_ADDR target_addr;
1048
9e3a7d65
JK
1049 while (get_frame_type (frame) == INLINE_FRAME)
1050 {
1051 frame = get_prev_frame (frame);
1052 gdb_assert (frame != NULL);
1053 }
1054
1055 func_addr = get_frame_func (frame);
1056 gdbarch = get_frame_arch (frame);
1057 caller_frame = get_prev_frame (frame);
8e3b41a9
JK
1058 if (gdbarch != frame_unwind_arch (frame))
1059 {
7cbd4a93
TT
1060 struct bound_minimal_symbol msym
1061 = lookup_minimal_symbol_by_pc (func_addr);
8e3b41a9
JK
1062 struct gdbarch *caller_gdbarch = frame_unwind_arch (frame);
1063
1064 throw_error (NO_ENTRY_VALUE_ERROR,
1065 _("DW_OP_GNU_entry_value resolving callee gdbarch %s "
1066 "(of %s (%s)) does not match caller gdbarch %s"),
1067 gdbarch_bfd_arch_info (gdbarch)->printable_name,
1068 paddress (gdbarch, func_addr),
7cbd4a93 1069 (msym.minsym == NULL ? "???"
efd66ac6 1070 : MSYMBOL_PRINT_NAME (msym.minsym)),
8e3b41a9
JK
1071 gdbarch_bfd_arch_info (caller_gdbarch)->printable_name);
1072 }
1073
1074 if (caller_frame == NULL)
1075 {
7cbd4a93
TT
1076 struct bound_minimal_symbol msym
1077 = lookup_minimal_symbol_by_pc (func_addr);
8e3b41a9
JK
1078
1079 throw_error (NO_ENTRY_VALUE_ERROR, _("DW_OP_GNU_entry_value resolving "
1080 "requires caller of %s (%s)"),
1081 paddress (gdbarch, func_addr),
7cbd4a93 1082 (msym.minsym == NULL ? "???"
efd66ac6 1083 : MSYMBOL_PRINT_NAME (msym.minsym)));
8e3b41a9
JK
1084 }
1085 caller_pc = get_frame_pc (caller_frame);
1086 call_site = call_site_for_pc (gdbarch, caller_pc);
1087
1088 target_addr = call_site_to_target_addr (gdbarch, call_site, caller_frame);
1089 if (target_addr != func_addr)
1090 {
1091 struct minimal_symbol *target_msym, *func_msym;
1092
7cbd4a93
TT
1093 target_msym = lookup_minimal_symbol_by_pc (target_addr).minsym;
1094 func_msym = lookup_minimal_symbol_by_pc (func_addr).minsym;
8e3b41a9
JK
1095 throw_error (NO_ENTRY_VALUE_ERROR,
1096 _("DW_OP_GNU_entry_value resolving expects callee %s at %s "
1097 "but the called frame is for %s at %s"),
1098 (target_msym == NULL ? "???"
efd66ac6 1099 : MSYMBOL_PRINT_NAME (target_msym)),
8e3b41a9 1100 paddress (gdbarch, target_addr),
efd66ac6 1101 func_msym == NULL ? "???" : MSYMBOL_PRINT_NAME (func_msym),
8e3b41a9
JK
1102 paddress (gdbarch, func_addr));
1103 }
1104
2d6c5dc2
JK
1105 /* No entry value based parameters would be reliable if this function can
1106 call itself via tail calls. */
1107 func_verify_no_selftailcall (gdbarch, func_addr);
1108
8e3b41a9
JK
1109 for (iparams = 0; iparams < call_site->parameter_count; iparams++)
1110 {
1111 parameter = &call_site->parameter[iparams];
24c5c679 1112 if (call_site_parameter_matches (parameter, kind, kind_u))
8e3b41a9
JK
1113 break;
1114 }
1115 if (iparams == call_site->parameter_count)
1116 {
7cbd4a93
TT
1117 struct minimal_symbol *msym
1118 = lookup_minimal_symbol_by_pc (caller_pc).minsym;
8e3b41a9
JK
1119
1120 /* DW_TAG_GNU_call_site_parameter will be missing just if GCC could not
1121 determine its value. */
1122 throw_error (NO_ENTRY_VALUE_ERROR, _("Cannot find matching parameter "
1123 "at DW_TAG_GNU_call_site %s at %s"),
1124 paddress (gdbarch, caller_pc),
efd66ac6 1125 msym == NULL ? "???" : MSYMBOL_PRINT_NAME (msym));
8e3b41a9
JK
1126 }
1127
1128 *per_cu_return = call_site->per_cu;
1129 return parameter;
1130}
1131
a471c594
JK
1132/* Return value for PARAMETER matching DEREF_SIZE. If DEREF_SIZE is -1, return
1133 the normal DW_AT_GNU_call_site_value block. Otherwise return the
1134 DW_AT_GNU_call_site_data_value (dereferenced) block.
e18b2753
JK
1135
1136 TYPE and CALLER_FRAME specify how to evaluate the DWARF block into returned
1137 struct value.
1138
1139 Function always returns non-NULL, non-optimized out value. It throws
1140 NO_ENTRY_VALUE_ERROR if it cannot resolve the value for any reason. */
1141
1142static struct value *
1143dwarf_entry_parameter_to_value (struct call_site_parameter *parameter,
a471c594 1144 CORE_ADDR deref_size, struct type *type,
e18b2753
JK
1145 struct frame_info *caller_frame,
1146 struct dwarf2_per_cu_data *per_cu)
1147{
a471c594 1148 const gdb_byte *data_src;
e18b2753 1149 gdb_byte *data;
a471c594
JK
1150 size_t size;
1151
1152 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1153 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1154
1155 /* DEREF_SIZE size is not verified here. */
1156 if (data_src == NULL)
1157 throw_error (NO_ENTRY_VALUE_ERROR,
1158 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
e18b2753
JK
1159
1160 /* DW_AT_GNU_call_site_value is a DWARF expression, not a DWARF
1161 location. Postprocessing of DWARF_VALUE_MEMORY would lose the type from
1162 DWARF block. */
a471c594
JK
1163 data = alloca (size + 1);
1164 memcpy (data, data_src, size);
1165 data[size] = DW_OP_stack_value;
e18b2753 1166
a471c594 1167 return dwarf2_evaluate_loc_desc (type, caller_frame, data, size + 1, per_cu);
e18b2753
JK
1168}
1169
24c5c679
JK
1170/* Execute DWARF block of call_site_parameter which matches KIND and KIND_U.
1171 Choose DEREF_SIZE value of that parameter. Search caller of the CTX's
1172 frame. CTX must be of dwarf_expr_ctx_funcs kind.
8e3b41a9
JK
1173
1174 The CTX caller can be from a different CU - per_cu_dwarf_call implementation
1175 can be more simple as it does not support cross-CU DWARF executions. */
1176
1177static void
1178dwarf_expr_push_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
24c5c679
JK
1179 enum call_site_parameter_kind kind,
1180 union call_site_parameter_u kind_u,
a471c594 1181 int deref_size)
8e3b41a9
JK
1182{
1183 struct dwarf_expr_baton *debaton;
1184 struct frame_info *frame, *caller_frame;
1185 struct dwarf2_per_cu_data *caller_per_cu;
1186 struct dwarf_expr_baton baton_local;
1187 struct dwarf_expr_context saved_ctx;
1188 struct call_site_parameter *parameter;
1189 const gdb_byte *data_src;
1190 size_t size;
1191
1192 gdb_assert (ctx->funcs == &dwarf_expr_ctx_funcs);
1193 debaton = ctx->baton;
1194 frame = debaton->frame;
1195 caller_frame = get_prev_frame (frame);
1196
24c5c679 1197 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
8e3b41a9 1198 &caller_per_cu);
a471c594
JK
1199 data_src = deref_size == -1 ? parameter->value : parameter->data_value;
1200 size = deref_size == -1 ? parameter->value_size : parameter->data_value_size;
1201
1202 /* DEREF_SIZE size is not verified here. */
1203 if (data_src == NULL)
1204 throw_error (NO_ENTRY_VALUE_ERROR,
1205 _("Cannot resolve DW_AT_GNU_call_site_data_value"));
8e3b41a9
JK
1206
1207 baton_local.frame = caller_frame;
1208 baton_local.per_cu = caller_per_cu;
1209
1210 saved_ctx.gdbarch = ctx->gdbarch;
1211 saved_ctx.addr_size = ctx->addr_size;
1212 saved_ctx.offset = ctx->offset;
1213 saved_ctx.baton = ctx->baton;
1214 ctx->gdbarch = get_objfile_arch (dwarf2_per_cu_objfile (baton_local.per_cu));
1215 ctx->addr_size = dwarf2_per_cu_addr_size (baton_local.per_cu);
1216 ctx->offset = dwarf2_per_cu_text_offset (baton_local.per_cu);
1217 ctx->baton = &baton_local;
1218
1219 dwarf_expr_eval (ctx, data_src, size);
1220
1221 ctx->gdbarch = saved_ctx.gdbarch;
1222 ctx->addr_size = saved_ctx.addr_size;
1223 ctx->offset = saved_ctx.offset;
1224 ctx->baton = saved_ctx.baton;
1225}
1226
3019eac3
DE
1227/* Callback function for dwarf2_evaluate_loc_desc.
1228 Fetch the address indexed by DW_OP_GNU_addr_index. */
1229
1230static CORE_ADDR
1231dwarf_expr_get_addr_index (void *baton, unsigned int index)
1232{
1233 struct dwarf_expr_baton *debaton = (struct dwarf_expr_baton *) baton;
1234
1235 return dwarf2_read_addr_index (debaton->per_cu, index);
1236}
1237
a471c594
JK
1238/* VALUE must be of type lval_computed with entry_data_value_funcs. Perform
1239 the indirect method on it, that is use its stored target value, the sole
1240 purpose of entry_data_value_funcs.. */
1241
1242static struct value *
1243entry_data_value_coerce_ref (const struct value *value)
1244{
1245 struct type *checked_type = check_typedef (value_type (value));
1246 struct value *target_val;
1247
1248 if (TYPE_CODE (checked_type) != TYPE_CODE_REF)
1249 return NULL;
1250
1251 target_val = value_computed_closure (value);
1252 value_incref (target_val);
1253 return target_val;
1254}
1255
1256/* Implement copy_closure. */
1257
1258static void *
1259entry_data_value_copy_closure (const struct value *v)
1260{
1261 struct value *target_val = value_computed_closure (v);
1262
1263 value_incref (target_val);
1264 return target_val;
1265}
1266
1267/* Implement free_closure. */
1268
1269static void
1270entry_data_value_free_closure (struct value *v)
1271{
1272 struct value *target_val = value_computed_closure (v);
1273
1274 value_free (target_val);
1275}
1276
1277/* Vector for methods for an entry value reference where the referenced value
1278 is stored in the caller. On the first dereference use
1279 DW_AT_GNU_call_site_data_value in the caller. */
1280
1281static const struct lval_funcs entry_data_value_funcs =
1282{
1283 NULL, /* read */
1284 NULL, /* write */
1285 NULL, /* check_validity */
1286 NULL, /* check_any_valid */
1287 NULL, /* indirect */
1288 entry_data_value_coerce_ref,
1289 NULL, /* check_synthetic_pointer */
1290 entry_data_value_copy_closure,
1291 entry_data_value_free_closure
1292};
1293
24c5c679
JK
1294/* Read parameter of TYPE at (callee) FRAME's function entry. KIND and KIND_U
1295 are used to match DW_AT_location at the caller's
1296 DW_TAG_GNU_call_site_parameter.
e18b2753
JK
1297
1298 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1299 cannot resolve the parameter for any reason. */
1300
1301static struct value *
1302value_of_dwarf_reg_entry (struct type *type, struct frame_info *frame,
24c5c679
JK
1303 enum call_site_parameter_kind kind,
1304 union call_site_parameter_u kind_u)
e18b2753 1305{
a471c594
JK
1306 struct type *checked_type = check_typedef (type);
1307 struct type *target_type = TYPE_TARGET_TYPE (checked_type);
e18b2753 1308 struct frame_info *caller_frame = get_prev_frame (frame);
a471c594 1309 struct value *outer_val, *target_val, *val;
e18b2753
JK
1310 struct call_site_parameter *parameter;
1311 struct dwarf2_per_cu_data *caller_per_cu;
1312
24c5c679 1313 parameter = dwarf_expr_reg_to_entry_parameter (frame, kind, kind_u,
e18b2753
JK
1314 &caller_per_cu);
1315
a471c594
JK
1316 outer_val = dwarf_entry_parameter_to_value (parameter, -1 /* deref_size */,
1317 type, caller_frame,
1318 caller_per_cu);
1319
1320 /* Check if DW_AT_GNU_call_site_data_value cannot be used. If it should be
1321 used and it is not available do not fall back to OUTER_VAL - dereferencing
1322 TYPE_CODE_REF with non-entry data value would give current value - not the
1323 entry value. */
1324
1325 if (TYPE_CODE (checked_type) != TYPE_CODE_REF
1326 || TYPE_TARGET_TYPE (checked_type) == NULL)
1327 return outer_val;
1328
1329 target_val = dwarf_entry_parameter_to_value (parameter,
1330 TYPE_LENGTH (target_type),
1331 target_type, caller_frame,
1332 caller_per_cu);
1333
a471c594
JK
1334 release_value (target_val);
1335 val = allocate_computed_value (type, &entry_data_value_funcs,
1336 target_val /* closure */);
1337
1338 /* Copy the referencing pointer to the new computed value. */
1339 memcpy (value_contents_raw (val), value_contents_raw (outer_val),
1340 TYPE_LENGTH (checked_type));
1341 set_value_lazy (val, 0);
1342
1343 return val;
e18b2753
JK
1344}
1345
1346/* Read parameter of TYPE at (callee) FRAME's function entry. DATA and
1347 SIZE are DWARF block used to match DW_AT_location at the caller's
1348 DW_TAG_GNU_call_site_parameter.
1349
1350 Function always returns non-NULL value. It throws NO_ENTRY_VALUE_ERROR if it
1351 cannot resolve the parameter for any reason. */
1352
1353static struct value *
1354value_of_dwarf_block_entry (struct type *type, struct frame_info *frame,
1355 const gdb_byte *block, size_t block_len)
1356{
24c5c679 1357 union call_site_parameter_u kind_u;
e18b2753 1358
24c5c679
JK
1359 kind_u.dwarf_reg = dwarf_block_to_dwarf_reg (block, block + block_len);
1360 if (kind_u.dwarf_reg != -1)
1361 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_DWARF_REG,
1362 kind_u);
e18b2753 1363
24c5c679
JK
1364 if (dwarf_block_to_fb_offset (block, block + block_len, &kind_u.fb_offset))
1365 return value_of_dwarf_reg_entry (type, frame, CALL_SITE_PARAMETER_FB_OFFSET,
1366 kind_u);
e18b2753
JK
1367
1368 /* This can normally happen - throw NO_ENTRY_VALUE_ERROR to get the message
1369 suppressed during normal operation. The expression can be arbitrary if
1370 there is no caller-callee entry value binding expected. */
1371 throw_error (NO_ENTRY_VALUE_ERROR,
1372 _("DWARF-2 expression error: DW_OP_GNU_entry_value is supported "
1373 "only for single DW_OP_reg* or for DW_OP_fbreg(*)"));
1374}
1375
052b9502
NF
1376struct piece_closure
1377{
88bfdde4
TT
1378 /* Reference count. */
1379 int refc;
1380
8cf6f0b1
TT
1381 /* The CU from which this closure's expression came. */
1382 struct dwarf2_per_cu_data *per_cu;
1383
052b9502
NF
1384 /* The number of pieces used to describe this variable. */
1385 int n_pieces;
1386
6063c216
UW
1387 /* The target address size, used only for DWARF_VALUE_STACK. */
1388 int addr_size;
cec03d70 1389
052b9502
NF
1390 /* The pieces themselves. */
1391 struct dwarf_expr_piece *pieces;
1392};
1393
1394/* Allocate a closure for a value formed from separately-described
1395 PIECES. */
1396
1397static struct piece_closure *
8cf6f0b1
TT
1398allocate_piece_closure (struct dwarf2_per_cu_data *per_cu,
1399 int n_pieces, struct dwarf_expr_piece *pieces,
6063c216 1400 int addr_size)
052b9502 1401{
41bf6aca 1402 struct piece_closure *c = XCNEW (struct piece_closure);
8a9b8146 1403 int i;
052b9502 1404
88bfdde4 1405 c->refc = 1;
8cf6f0b1 1406 c->per_cu = per_cu;
052b9502 1407 c->n_pieces = n_pieces;
6063c216 1408 c->addr_size = addr_size;
fc270c35 1409 c->pieces = XCNEWVEC (struct dwarf_expr_piece, n_pieces);
052b9502
NF
1410
1411 memcpy (c->pieces, pieces, n_pieces * sizeof (struct dwarf_expr_piece));
8a9b8146
TT
1412 for (i = 0; i < n_pieces; ++i)
1413 if (c->pieces[i].location == DWARF_VALUE_STACK)
1414 value_incref (c->pieces[i].v.value);
052b9502
NF
1415
1416 return c;
1417}
1418
d3b1e874
TT
1419/* The lowest-level function to extract bits from a byte buffer.
1420 SOURCE is the buffer. It is updated if we read to the end of a
1421 byte.
1422 SOURCE_OFFSET_BITS is the offset of the first bit to read. It is
1423 updated to reflect the number of bits actually read.
1424 NBITS is the number of bits we want to read. It is updated to
1425 reflect the number of bits actually read. This function may read
1426 fewer bits.
1427 BITS_BIG_ENDIAN is taken directly from gdbarch.
1428 This function returns the extracted bits. */
1429
1430static unsigned int
1431extract_bits_primitive (const gdb_byte **source,
1432 unsigned int *source_offset_bits,
1433 int *nbits, int bits_big_endian)
1434{
1435 unsigned int avail, mask, datum;
1436
1437 gdb_assert (*source_offset_bits < 8);
1438
1439 avail = 8 - *source_offset_bits;
1440 if (avail > *nbits)
1441 avail = *nbits;
1442
1443 mask = (1 << avail) - 1;
1444 datum = **source;
1445 if (bits_big_endian)
1446 datum >>= 8 - (*source_offset_bits + *nbits);
1447 else
1448 datum >>= *source_offset_bits;
1449 datum &= mask;
1450
1451 *nbits -= avail;
1452 *source_offset_bits += avail;
1453 if (*source_offset_bits >= 8)
1454 {
1455 *source_offset_bits -= 8;
1456 ++*source;
1457 }
1458
1459 return datum;
1460}
1461
1462/* Extract some bits from a source buffer and move forward in the
1463 buffer.
1464
1465 SOURCE is the source buffer. It is updated as bytes are read.
1466 SOURCE_OFFSET_BITS is the offset into SOURCE. It is updated as
1467 bits are read.
1468 NBITS is the number of bits to read.
1469 BITS_BIG_ENDIAN is taken directly from gdbarch.
1470
1471 This function returns the bits that were read. */
1472
1473static unsigned int
1474extract_bits (const gdb_byte **source, unsigned int *source_offset_bits,
1475 int nbits, int bits_big_endian)
1476{
1477 unsigned int datum;
1478
1479 gdb_assert (nbits > 0 && nbits <= 8);
1480
1481 datum = extract_bits_primitive (source, source_offset_bits, &nbits,
1482 bits_big_endian);
1483 if (nbits > 0)
1484 {
1485 unsigned int more;
1486
1487 more = extract_bits_primitive (source, source_offset_bits, &nbits,
1488 bits_big_endian);
1489 if (bits_big_endian)
1490 datum <<= nbits;
1491 else
1492 more <<= nbits;
1493 datum |= more;
1494 }
1495
1496 return datum;
1497}
1498
1499/* Write some bits into a buffer and move forward in the buffer.
1500
1501 DATUM is the bits to write. The low-order bits of DATUM are used.
1502 DEST is the destination buffer. It is updated as bytes are
1503 written.
1504 DEST_OFFSET_BITS is the bit offset in DEST at which writing is
1505 done.
1506 NBITS is the number of valid bits in DATUM.
1507 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1508
1509static void
1510insert_bits (unsigned int datum,
1511 gdb_byte *dest, unsigned int dest_offset_bits,
1512 int nbits, int bits_big_endian)
1513{
1514 unsigned int mask;
1515
8c814cdd 1516 gdb_assert (dest_offset_bits + nbits <= 8);
d3b1e874
TT
1517
1518 mask = (1 << nbits) - 1;
1519 if (bits_big_endian)
1520 {
1521 datum <<= 8 - (dest_offset_bits + nbits);
1522 mask <<= 8 - (dest_offset_bits + nbits);
1523 }
1524 else
1525 {
1526 datum <<= dest_offset_bits;
1527 mask <<= dest_offset_bits;
1528 }
1529
1530 gdb_assert ((datum & ~mask) == 0);
1531
1532 *dest = (*dest & ~mask) | datum;
1533}
1534
1535/* Copy bits from a source to a destination.
1536
1537 DEST is where the bits should be written.
1538 DEST_OFFSET_BITS is the bit offset into DEST.
1539 SOURCE is the source of bits.
1540 SOURCE_OFFSET_BITS is the bit offset into SOURCE.
1541 BIT_COUNT is the number of bits to copy.
1542 BITS_BIG_ENDIAN is taken directly from gdbarch. */
1543
1544static void
1545copy_bitwise (gdb_byte *dest, unsigned int dest_offset_bits,
1546 const gdb_byte *source, unsigned int source_offset_bits,
1547 unsigned int bit_count,
1548 int bits_big_endian)
1549{
1550 unsigned int dest_avail;
1551 int datum;
1552
1553 /* Reduce everything to byte-size pieces. */
1554 dest += dest_offset_bits / 8;
1555 dest_offset_bits %= 8;
1556 source += source_offset_bits / 8;
1557 source_offset_bits %= 8;
1558
1559 dest_avail = 8 - dest_offset_bits % 8;
1560
1561 /* See if we can fill the first destination byte. */
1562 if (dest_avail < bit_count)
1563 {
1564 datum = extract_bits (&source, &source_offset_bits, dest_avail,
1565 bits_big_endian);
1566 insert_bits (datum, dest, dest_offset_bits, dest_avail, bits_big_endian);
1567 ++dest;
1568 dest_offset_bits = 0;
1569 bit_count -= dest_avail;
1570 }
1571
1572 /* Now, either DEST_OFFSET_BITS is byte-aligned, or we have fewer
1573 than 8 bits remaining. */
1574 gdb_assert (dest_offset_bits % 8 == 0 || bit_count < 8);
1575 for (; bit_count >= 8; bit_count -= 8)
1576 {
1577 datum = extract_bits (&source, &source_offset_bits, 8, bits_big_endian);
1578 *dest++ = (gdb_byte) datum;
1579 }
1580
1581 /* Finally, we may have a few leftover bits. */
1582 gdb_assert (bit_count <= 8 - dest_offset_bits % 8);
1583 if (bit_count > 0)
1584 {
1585 datum = extract_bits (&source, &source_offset_bits, bit_count,
1586 bits_big_endian);
1587 insert_bits (datum, dest, dest_offset_bits, bit_count, bits_big_endian);
1588 }
1589}
1590
052b9502
NF
1591static void
1592read_pieced_value (struct value *v)
1593{
1594 int i;
1595 long offset = 0;
d3b1e874 1596 ULONGEST bits_to_skip;
052b9502 1597 gdb_byte *contents;
3e43a32a
MS
1598 struct piece_closure *c
1599 = (struct piece_closure *) value_computed_closure (v);
052b9502 1600 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (v));
afd74c5f 1601 size_t type_len;
d3b1e874 1602 size_t buffer_size = 0;
948f8e3d 1603 gdb_byte *buffer = NULL;
d3b1e874
TT
1604 struct cleanup *cleanup;
1605 int bits_big_endian
1606 = gdbarch_bits_big_endian (get_type_arch (value_type (v)));
afd74c5f
TT
1607
1608 if (value_type (v) != value_enclosing_type (v))
1609 internal_error (__FILE__, __LINE__,
1610 _("Should not be able to create a lazy value with "
1611 "an enclosing type"));
052b9502 1612
d3b1e874
TT
1613 cleanup = make_cleanup (free_current_contents, &buffer);
1614
052b9502 1615 contents = value_contents_raw (v);
d3b1e874 1616 bits_to_skip = 8 * value_offset (v);
0e03807e
TT
1617 if (value_bitsize (v))
1618 {
1619 bits_to_skip += value_bitpos (v);
1620 type_len = value_bitsize (v);
1621 }
1622 else
1623 type_len = 8 * TYPE_LENGTH (value_type (v));
d3b1e874 1624
afd74c5f 1625 for (i = 0; i < c->n_pieces && offset < type_len; i++)
052b9502
NF
1626 {
1627 struct dwarf_expr_piece *p = &c->pieces[i];
d3b1e874
TT
1628 size_t this_size, this_size_bits;
1629 long dest_offset_bits, source_offset_bits, source_offset;
0d45f56e 1630 const gdb_byte *intermediate_buffer;
d3b1e874
TT
1631
1632 /* Compute size, source, and destination offsets for copying, in
1633 bits. */
1634 this_size_bits = p->size;
1635 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
afd74c5f 1636 {
d3b1e874 1637 bits_to_skip -= this_size_bits;
afd74c5f
TT
1638 continue;
1639 }
d3b1e874 1640 if (bits_to_skip > 0)
afd74c5f 1641 {
d3b1e874
TT
1642 dest_offset_bits = 0;
1643 source_offset_bits = bits_to_skip;
1644 this_size_bits -= bits_to_skip;
1645 bits_to_skip = 0;
afd74c5f
TT
1646 }
1647 else
1648 {
d3b1e874
TT
1649 dest_offset_bits = offset;
1650 source_offset_bits = 0;
afd74c5f 1651 }
5bd1ef56
TT
1652 if (this_size_bits > type_len - offset)
1653 this_size_bits = type_len - offset;
9a619af0 1654
d3b1e874
TT
1655 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1656 source_offset = source_offset_bits / 8;
1657 if (buffer_size < this_size)
1658 {
1659 buffer_size = this_size;
1660 buffer = xrealloc (buffer, buffer_size);
1661 }
1662 intermediate_buffer = buffer;
1663
1664 /* Copy from the source to DEST_BUFFER. */
cec03d70 1665 switch (p->location)
052b9502 1666 {
cec03d70
TT
1667 case DWARF_VALUE_REGISTER:
1668 {
1669 struct gdbarch *arch = get_frame_arch (frame);
8a9b8146 1670 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
afd74c5f 1671 int reg_offset = source_offset;
dcbf108f
UW
1672
1673 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
afd74c5f 1674 && this_size < register_size (arch, gdb_regnum))
d3b1e874
TT
1675 {
1676 /* Big-endian, and we want less than full size. */
1677 reg_offset = register_size (arch, gdb_regnum) - this_size;
1678 /* We want the lower-order THIS_SIZE_BITS of the bytes
1679 we extract from the register. */
1680 source_offset_bits += 8 * this_size - this_size_bits;
1681 }
dcbf108f 1682
63b4f126
MGD
1683 if (gdb_regnum != -1)
1684 {
8dccd430
PA
1685 int optim, unavail;
1686
1687 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1688 this_size, buffer,
1689 &optim, &unavail))
1690 {
1691 /* Just so garbage doesn't ever shine through. */
1692 memset (buffer, 0, this_size);
1693
1694 if (optim)
1695 set_value_optimized_out (v, 1);
1696 if (unavail)
bdf22206 1697 mark_value_bits_unavailable (v, offset, this_size_bits);
8dccd430 1698 }
63b4f126
MGD
1699 }
1700 else
1701 {
1702 error (_("Unable to access DWARF register number %s"),
8a9b8146 1703 paddress (arch, p->v.regno));
63b4f126 1704 }
cec03d70
TT
1705 }
1706 break;
1707
1708 case DWARF_VALUE_MEMORY:
e6ca34fc
PA
1709 read_value_memory (v, offset,
1710 p->v.mem.in_stack_memory,
1711 p->v.mem.addr + source_offset,
1712 buffer, this_size);
cec03d70
TT
1713 break;
1714
1715 case DWARF_VALUE_STACK:
1716 {
afd74c5f 1717 size_t n = this_size;
9a619af0 1718
afd74c5f
TT
1719 if (n > c->addr_size - source_offset)
1720 n = (c->addr_size >= source_offset
1721 ? c->addr_size - source_offset
1722 : 0);
1723 if (n == 0)
1724 {
1725 /* Nothing. */
1726 }
afd74c5f
TT
1727 else
1728 {
8a9b8146 1729 const gdb_byte *val_bytes = value_contents_all (p->v.value);
afd74c5f 1730
8a9b8146 1731 intermediate_buffer = val_bytes + source_offset;
afd74c5f 1732 }
cec03d70
TT
1733 }
1734 break;
1735
1736 case DWARF_VALUE_LITERAL:
1737 {
afd74c5f
TT
1738 size_t n = this_size;
1739
1740 if (n > p->v.literal.length - source_offset)
1741 n = (p->v.literal.length >= source_offset
1742 ? p->v.literal.length - source_offset
1743 : 0);
1744 if (n != 0)
d3b1e874 1745 intermediate_buffer = p->v.literal.data + source_offset;
cec03d70
TT
1746 }
1747 break;
1748
8cf6f0b1
TT
1749 /* These bits show up as zeros -- but do not cause the value
1750 to be considered optimized-out. */
1751 case DWARF_VALUE_IMPLICIT_POINTER:
1752 break;
1753
cb826367 1754 case DWARF_VALUE_OPTIMIZED_OUT:
0e03807e 1755 set_value_optimized_out (v, 1);
cb826367
TT
1756 break;
1757
cec03d70
TT
1758 default:
1759 internal_error (__FILE__, __LINE__, _("invalid location type"));
052b9502 1760 }
d3b1e874 1761
8cf6f0b1
TT
1762 if (p->location != DWARF_VALUE_OPTIMIZED_OUT
1763 && p->location != DWARF_VALUE_IMPLICIT_POINTER)
d3b1e874
TT
1764 copy_bitwise (contents, dest_offset_bits,
1765 intermediate_buffer, source_offset_bits % 8,
1766 this_size_bits, bits_big_endian);
1767
1768 offset += this_size_bits;
052b9502 1769 }
d3b1e874
TT
1770
1771 do_cleanups (cleanup);
052b9502
NF
1772}
1773
1774static void
1775write_pieced_value (struct value *to, struct value *from)
1776{
1777 int i;
1778 long offset = 0;
d3b1e874 1779 ULONGEST bits_to_skip;
afd74c5f 1780 const gdb_byte *contents;
3e43a32a
MS
1781 struct piece_closure *c
1782 = (struct piece_closure *) value_computed_closure (to);
052b9502 1783 struct frame_info *frame = frame_find_by_id (VALUE_FRAME_ID (to));
afd74c5f 1784 size_t type_len;
d3b1e874 1785 size_t buffer_size = 0;
948f8e3d 1786 gdb_byte *buffer = NULL;
d3b1e874
TT
1787 struct cleanup *cleanup;
1788 int bits_big_endian
1789 = gdbarch_bits_big_endian (get_type_arch (value_type (to)));
052b9502
NF
1790
1791 if (frame == NULL)
1792 {
1793 set_value_optimized_out (to, 1);
1794 return;
1795 }
1796
d3b1e874
TT
1797 cleanup = make_cleanup (free_current_contents, &buffer);
1798
afd74c5f 1799 contents = value_contents (from);
d3b1e874 1800 bits_to_skip = 8 * value_offset (to);
0e03807e
TT
1801 if (value_bitsize (to))
1802 {
1803 bits_to_skip += value_bitpos (to);
1804 type_len = value_bitsize (to);
1805 }
1806 else
1807 type_len = 8 * TYPE_LENGTH (value_type (to));
1808
afd74c5f 1809 for (i = 0; i < c->n_pieces && offset < type_len; i++)
052b9502
NF
1810 {
1811 struct dwarf_expr_piece *p = &c->pieces[i];
d3b1e874
TT
1812 size_t this_size_bits, this_size;
1813 long dest_offset_bits, source_offset_bits, dest_offset, source_offset;
1814 int need_bitwise;
1815 const gdb_byte *source_buffer;
afd74c5f 1816
d3b1e874
TT
1817 this_size_bits = p->size;
1818 if (bits_to_skip > 0 && bits_to_skip >= this_size_bits)
afd74c5f 1819 {
d3b1e874 1820 bits_to_skip -= this_size_bits;
afd74c5f
TT
1821 continue;
1822 }
d3b1e874
TT
1823 if (this_size_bits > type_len - offset)
1824 this_size_bits = type_len - offset;
1825 if (bits_to_skip > 0)
afd74c5f 1826 {
d3b1e874
TT
1827 dest_offset_bits = bits_to_skip;
1828 source_offset_bits = 0;
1829 this_size_bits -= bits_to_skip;
1830 bits_to_skip = 0;
afd74c5f
TT
1831 }
1832 else
1833 {
d3b1e874
TT
1834 dest_offset_bits = 0;
1835 source_offset_bits = offset;
1836 }
1837
1838 this_size = (this_size_bits + source_offset_bits % 8 + 7) / 8;
1839 source_offset = source_offset_bits / 8;
1840 dest_offset = dest_offset_bits / 8;
1841 if (dest_offset_bits % 8 == 0 && source_offset_bits % 8 == 0)
1842 {
1843 source_buffer = contents + source_offset;
1844 need_bitwise = 0;
1845 }
1846 else
1847 {
1848 if (buffer_size < this_size)
1849 {
1850 buffer_size = this_size;
1851 buffer = xrealloc (buffer, buffer_size);
1852 }
1853 source_buffer = buffer;
1854 need_bitwise = 1;
afd74c5f 1855 }
9a619af0 1856
cec03d70 1857 switch (p->location)
052b9502 1858 {
cec03d70
TT
1859 case DWARF_VALUE_REGISTER:
1860 {
1861 struct gdbarch *arch = get_frame_arch (frame);
8a9b8146 1862 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, p->v.regno);
afd74c5f 1863 int reg_offset = dest_offset;
dcbf108f
UW
1864
1865 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG
afd74c5f 1866 && this_size <= register_size (arch, gdb_regnum))
dcbf108f 1867 /* Big-endian, and we want less than full size. */
afd74c5f 1868 reg_offset = register_size (arch, gdb_regnum) - this_size;
dcbf108f 1869
63b4f126
MGD
1870 if (gdb_regnum != -1)
1871 {
d3b1e874
TT
1872 if (need_bitwise)
1873 {
8dccd430
PA
1874 int optim, unavail;
1875
1876 if (!get_frame_register_bytes (frame, gdb_regnum, reg_offset,
1877 this_size, buffer,
1878 &optim, &unavail))
1879 {
1880 if (optim)
710409a2
PA
1881 throw_error (OPTIMIZED_OUT_ERROR,
1882 _("Can't do read-modify-write to "
1883 "update bitfield; containing word "
1884 "has been optimized out"));
8dccd430
PA
1885 if (unavail)
1886 throw_error (NOT_AVAILABLE_ERROR,
1887 _("Can't do read-modify-write to update "
1888 "bitfield; containing word "
1889 "is unavailable"));
1890 }
d3b1e874
TT
1891 copy_bitwise (buffer, dest_offset_bits,
1892 contents, source_offset_bits,
1893 this_size_bits,
1894 bits_big_endian);
1895 }
1896
63b4f126 1897 put_frame_register_bytes (frame, gdb_regnum, reg_offset,
d3b1e874 1898 this_size, source_buffer);
63b4f126
MGD
1899 }
1900 else
1901 {
1902 error (_("Unable to write to DWARF register number %s"),
8a9b8146 1903 paddress (arch, p->v.regno));
63b4f126 1904 }
cec03d70
TT
1905 }
1906 break;
1907 case DWARF_VALUE_MEMORY:
d3b1e874
TT
1908 if (need_bitwise)
1909 {
1910 /* Only the first and last bytes can possibly have any
1911 bits reused. */
f2c7657e
UW
1912 read_memory (p->v.mem.addr + dest_offset, buffer, 1);
1913 read_memory (p->v.mem.addr + dest_offset + this_size - 1,
d3b1e874
TT
1914 buffer + this_size - 1, 1);
1915 copy_bitwise (buffer, dest_offset_bits,
1916 contents, source_offset_bits,
1917 this_size_bits,
1918 bits_big_endian);
1919 }
1920
f2c7657e 1921 write_memory (p->v.mem.addr + dest_offset,
d3b1e874 1922 source_buffer, this_size);
cec03d70
TT
1923 break;
1924 default:
1925 set_value_optimized_out (to, 1);
0e03807e 1926 break;
052b9502 1927 }
d3b1e874 1928 offset += this_size_bits;
052b9502 1929 }
d3b1e874 1930
d3b1e874 1931 do_cleanups (cleanup);
052b9502
NF
1932}
1933
8cf6f0b1
TT
1934/* A helper function that checks bit validity in a pieced value.
1935 CHECK_FOR indicates the kind of validity checking.
1936 DWARF_VALUE_MEMORY means to check whether any bit is valid.
1937 DWARF_VALUE_OPTIMIZED_OUT means to check whether any bit is
1938 optimized out.
1939 DWARF_VALUE_IMPLICIT_POINTER means to check whether the bits are an
1940 implicit pointer. */
1941
0e03807e
TT
1942static int
1943check_pieced_value_bits (const struct value *value, int bit_offset,
8cf6f0b1
TT
1944 int bit_length,
1945 enum dwarf_value_location check_for)
0e03807e
TT
1946{
1947 struct piece_closure *c
1948 = (struct piece_closure *) value_computed_closure (value);
1949 int i;
8cf6f0b1
TT
1950 int validity = (check_for == DWARF_VALUE_MEMORY
1951 || check_for == DWARF_VALUE_IMPLICIT_POINTER);
0e03807e
TT
1952
1953 bit_offset += 8 * value_offset (value);
1954 if (value_bitsize (value))
1955 bit_offset += value_bitpos (value);
1956
1957 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
1958 {
1959 struct dwarf_expr_piece *p = &c->pieces[i];
1960 size_t this_size_bits = p->size;
1961
1962 if (bit_offset > 0)
1963 {
1964 if (bit_offset >= this_size_bits)
1965 {
1966 bit_offset -= this_size_bits;
1967 continue;
1968 }
1969
1970 bit_length -= this_size_bits - bit_offset;
1971 bit_offset = 0;
1972 }
1973 else
1974 bit_length -= this_size_bits;
1975
8cf6f0b1
TT
1976 if (check_for == DWARF_VALUE_IMPLICIT_POINTER)
1977 {
1978 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
1979 return 0;
1980 }
1981 else if (p->location == DWARF_VALUE_OPTIMIZED_OUT
1982 || p->location == DWARF_VALUE_IMPLICIT_POINTER)
0e03807e
TT
1983 {
1984 if (validity)
1985 return 0;
1986 }
1987 else
1988 {
1989 if (!validity)
1990 return 1;
1991 }
1992 }
1993
1994 return validity;
1995}
1996
1997static int
1998check_pieced_value_validity (const struct value *value, int bit_offset,
1999 int bit_length)
2000{
8cf6f0b1
TT
2001 return check_pieced_value_bits (value, bit_offset, bit_length,
2002 DWARF_VALUE_MEMORY);
0e03807e
TT
2003}
2004
2005static int
2006check_pieced_value_invalid (const struct value *value)
2007{
2008 return check_pieced_value_bits (value, 0,
8cf6f0b1
TT
2009 8 * TYPE_LENGTH (value_type (value)),
2010 DWARF_VALUE_OPTIMIZED_OUT);
2011}
2012
2013/* An implementation of an lval_funcs method to see whether a value is
2014 a synthetic pointer. */
2015
2016static int
2017check_pieced_synthetic_pointer (const struct value *value, int bit_offset,
2018 int bit_length)
2019{
2020 return check_pieced_value_bits (value, bit_offset, bit_length,
2021 DWARF_VALUE_IMPLICIT_POINTER);
2022}
2023
2024/* A wrapper function for get_frame_address_in_block. */
2025
2026static CORE_ADDR
2027get_frame_address_in_block_wrapper (void *baton)
2028{
2029 return get_frame_address_in_block (baton);
2030}
2031
2032/* An implementation of an lval_funcs method to indirect through a
2033 pointer. This handles the synthetic pointer case when needed. */
2034
2035static struct value *
2036indirect_pieced_value (struct value *value)
2037{
2038 struct piece_closure *c
2039 = (struct piece_closure *) value_computed_closure (value);
2040 struct type *type;
2041 struct frame_info *frame;
2042 struct dwarf2_locexpr_baton baton;
2043 int i, bit_offset, bit_length;
2044 struct dwarf_expr_piece *piece = NULL;
8cf6f0b1
TT
2045 LONGEST byte_offset;
2046
0e37a63c 2047 type = check_typedef (value_type (value));
8cf6f0b1
TT
2048 if (TYPE_CODE (type) != TYPE_CODE_PTR)
2049 return NULL;
2050
2051 bit_length = 8 * TYPE_LENGTH (type);
2052 bit_offset = 8 * value_offset (value);
2053 if (value_bitsize (value))
2054 bit_offset += value_bitpos (value);
2055
2056 for (i = 0; i < c->n_pieces && bit_length > 0; i++)
2057 {
2058 struct dwarf_expr_piece *p = &c->pieces[i];
2059 size_t this_size_bits = p->size;
2060
2061 if (bit_offset > 0)
2062 {
2063 if (bit_offset >= this_size_bits)
2064 {
2065 bit_offset -= this_size_bits;
2066 continue;
2067 }
2068
2069 bit_length -= this_size_bits - bit_offset;
2070 bit_offset = 0;
2071 }
2072 else
2073 bit_length -= this_size_bits;
2074
2075 if (p->location != DWARF_VALUE_IMPLICIT_POINTER)
2076 return NULL;
2077
2078 if (bit_length != 0)
2079 error (_("Invalid use of DW_OP_GNU_implicit_pointer"));
2080
2081 piece = p;
2082 break;
2083 }
2084
2085 frame = get_selected_frame (_("No frame selected."));
543305c9 2086
5bd1ef56
TT
2087 /* This is an offset requested by GDB, such as value subscripts.
2088 However, due to how synthetic pointers are implemented, this is
2089 always presented to us as a pointer type. This means we have to
2090 sign-extend it manually as appropriate. */
8cf6f0b1 2091 byte_offset = value_as_address (value);
5bd1ef56
TT
2092 if (TYPE_LENGTH (value_type (value)) < sizeof (LONGEST))
2093 byte_offset = gdb_sign_extend (byte_offset,
2094 8 * TYPE_LENGTH (value_type (value)));
2095 byte_offset += piece->v.ptr.offset;
8cf6f0b1 2096
e0e40094 2097 gdb_assert (piece);
8b9737bf
TT
2098 baton
2099 = dwarf2_fetch_die_loc_sect_off (piece->v.ptr.die, c->per_cu,
2100 get_frame_address_in_block_wrapper,
2101 frame);
8cf6f0b1 2102
b6807d98
TT
2103 if (baton.data != NULL)
2104 return dwarf2_evaluate_loc_desc_full (TYPE_TARGET_TYPE (type), frame,
2105 baton.data, baton.size, baton.per_cu,
5bd1ef56 2106 byte_offset);
b6807d98
TT
2107
2108 {
2109 struct obstack temp_obstack;
2110 struct cleanup *cleanup;
2111 const gdb_byte *bytes;
2112 LONGEST len;
2113 struct value *result;
2114
2115 obstack_init (&temp_obstack);
2116 cleanup = make_cleanup_obstack_free (&temp_obstack);
2117
2118 bytes = dwarf2_fetch_constant_bytes (piece->v.ptr.die, c->per_cu,
2119 &temp_obstack, &len);
2120 if (bytes == NULL)
2121 result = allocate_optimized_out_value (TYPE_TARGET_TYPE (type));
2122 else
2123 {
2124 if (byte_offset < 0
2125 || byte_offset + TYPE_LENGTH (TYPE_TARGET_TYPE (type)) > len)
2126 invalid_synthetic_pointer ();
2127 bytes += byte_offset;
2128 result = value_from_contents (TYPE_TARGET_TYPE (type), bytes);
2129 }
2130
2131 do_cleanups (cleanup);
2132 return result;
2133 }
0e03807e
TT
2134}
2135
052b9502 2136static void *
0e03807e 2137copy_pieced_value_closure (const struct value *v)
052b9502 2138{
3e43a32a
MS
2139 struct piece_closure *c
2140 = (struct piece_closure *) value_computed_closure (v);
052b9502 2141
88bfdde4
TT
2142 ++c->refc;
2143 return c;
052b9502
NF
2144}
2145
2146static void
2147free_pieced_value_closure (struct value *v)
2148{
3e43a32a
MS
2149 struct piece_closure *c
2150 = (struct piece_closure *) value_computed_closure (v);
052b9502 2151
88bfdde4
TT
2152 --c->refc;
2153 if (c->refc == 0)
2154 {
8a9b8146
TT
2155 int i;
2156
2157 for (i = 0; i < c->n_pieces; ++i)
2158 if (c->pieces[i].location == DWARF_VALUE_STACK)
2159 value_free (c->pieces[i].v.value);
2160
88bfdde4
TT
2161 xfree (c->pieces);
2162 xfree (c);
2163 }
052b9502
NF
2164}
2165
2166/* Functions for accessing a variable described by DW_OP_piece. */
c8f2448a 2167static const struct lval_funcs pieced_value_funcs = {
052b9502
NF
2168 read_pieced_value,
2169 write_pieced_value,
0e03807e
TT
2170 check_pieced_value_validity,
2171 check_pieced_value_invalid,
8cf6f0b1 2172 indirect_pieced_value,
a471c594 2173 NULL, /* coerce_ref */
8cf6f0b1 2174 check_pieced_synthetic_pointer,
052b9502
NF
2175 copy_pieced_value_closure,
2176 free_pieced_value_closure
2177};
2178
9e8b7a03
JK
2179/* Virtual method table for dwarf2_evaluate_loc_desc_full below. */
2180
2181static const struct dwarf_expr_context_funcs dwarf_expr_ctx_funcs =
2182{
b1370418 2183 dwarf_expr_read_addr_from_reg,
0acf8b65 2184 dwarf_expr_get_reg_value,
9e8b7a03
JK
2185 dwarf_expr_read_mem,
2186 dwarf_expr_frame_base,
2187 dwarf_expr_frame_cfa,
2188 dwarf_expr_frame_pc,
2189 dwarf_expr_tls_address,
2190 dwarf_expr_dwarf_call,
8e3b41a9 2191 dwarf_expr_get_base_type,
3019eac3
DE
2192 dwarf_expr_push_dwarf_reg_entry_value,
2193 dwarf_expr_get_addr_index
9e8b7a03
JK
2194};
2195
4c2df51b 2196/* Evaluate a location description, starting at DATA and with length
8cf6f0b1
TT
2197 SIZE, to find the current location of variable of TYPE in the
2198 context of FRAME. BYTE_OFFSET is applied after the contents are
2199 computed. */
a2d33775 2200
8cf6f0b1
TT
2201static struct value *
2202dwarf2_evaluate_loc_desc_full (struct type *type, struct frame_info *frame,
56eb65bd 2203 const gdb_byte *data, size_t size,
8cf6f0b1
TT
2204 struct dwarf2_per_cu_data *per_cu,
2205 LONGEST byte_offset)
4c2df51b 2206{
4c2df51b
DJ
2207 struct value *retval;
2208 struct dwarf_expr_baton baton;
2209 struct dwarf_expr_context *ctx;
72fc29ff 2210 struct cleanup *old_chain, *value_chain;
ac56253d 2211 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
79e1a869 2212 volatile struct gdb_exception ex;
4c2df51b 2213
8cf6f0b1
TT
2214 if (byte_offset < 0)
2215 invalid_synthetic_pointer ();
2216
0d53c4c4 2217 if (size == 0)
a7035dbb 2218 return allocate_optimized_out_value (type);
0d53c4c4 2219
4c2df51b 2220 baton.frame = frame;
17ea53c3 2221 baton.per_cu = per_cu;
4c2df51b
DJ
2222
2223 ctx = new_dwarf_expr_context ();
4a227398 2224 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
72fc29ff 2225 value_chain = make_cleanup_value_free_to_mark (value_mark ());
4a227398 2226
ac56253d 2227 ctx->gdbarch = get_objfile_arch (objfile);
ae0d2f24 2228 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
181cebd4 2229 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
9aa1f1e3 2230 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
4c2df51b 2231 ctx->baton = &baton;
9e8b7a03 2232 ctx->funcs = &dwarf_expr_ctx_funcs;
4c2df51b 2233
79e1a869
PA
2234 TRY_CATCH (ex, RETURN_MASK_ERROR)
2235 {
2236 dwarf_expr_eval (ctx, data, size);
2237 }
2238 if (ex.reason < 0)
2239 {
2240 if (ex.error == NOT_AVAILABLE_ERROR)
2241 {
72fc29ff 2242 do_cleanups (old_chain);
79e1a869
PA
2243 retval = allocate_value (type);
2244 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (type));
2245 return retval;
2246 }
8e3b41a9
JK
2247 else if (ex.error == NO_ENTRY_VALUE_ERROR)
2248 {
2249 if (entry_values_debug)
2250 exception_print (gdb_stdout, ex);
2251 do_cleanups (old_chain);
2252 return allocate_optimized_out_value (type);
2253 }
79e1a869
PA
2254 else
2255 throw_exception (ex);
2256 }
2257
87808bd6
JB
2258 if (ctx->num_pieces > 0)
2259 {
052b9502
NF
2260 struct piece_closure *c;
2261 struct frame_id frame_id = get_frame_id (frame);
8cf6f0b1
TT
2262 ULONGEST bit_size = 0;
2263 int i;
052b9502 2264
8cf6f0b1
TT
2265 for (i = 0; i < ctx->num_pieces; ++i)
2266 bit_size += ctx->pieces[i].size;
2267 if (8 * (byte_offset + TYPE_LENGTH (type)) > bit_size)
2268 invalid_synthetic_pointer ();
2269
2270 c = allocate_piece_closure (per_cu, ctx->num_pieces, ctx->pieces,
6063c216 2271 ctx->addr_size);
72fc29ff
TT
2272 /* We must clean up the value chain after creating the piece
2273 closure but before allocating the result. */
2274 do_cleanups (value_chain);
a2d33775 2275 retval = allocate_computed_value (type, &pieced_value_funcs, c);
052b9502 2276 VALUE_FRAME_ID (retval) = frame_id;
8cf6f0b1 2277 set_value_offset (retval, byte_offset);
87808bd6 2278 }
4c2df51b
DJ
2279 else
2280 {
cec03d70
TT
2281 switch (ctx->location)
2282 {
2283 case DWARF_VALUE_REGISTER:
2284 {
2285 struct gdbarch *arch = get_frame_arch (frame);
7c33b57c
PA
2286 int dwarf_regnum
2287 = longest_to_int (value_as_long (dwarf_expr_fetch (ctx, 0)));
cec03d70 2288 int gdb_regnum = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_regnum);
9a619af0 2289
8cf6f0b1
TT
2290 if (byte_offset != 0)
2291 error (_("cannot use offset on synthetic pointer to register"));
72fc29ff 2292 do_cleanups (value_chain);
901461f8 2293 if (gdb_regnum == -1)
7c33b57c
PA
2294 error (_("Unable to access DWARF register number %d"),
2295 dwarf_regnum);
901461f8
PA
2296 retval = value_from_register (type, gdb_regnum, frame);
2297 if (value_optimized_out (retval))
2298 {
2299 /* This means the register has undefined value / was
2300 not saved. As we're computing the location of some
2301 variable etc. in the program, not a value for
2302 inspecting a register ($pc, $sp, etc.), return a
2303 generic optimized out value instead, so that we show
2304 <optimized out> instead of <not saved>. */
2305 do_cleanups (value_chain);
2306 retval = allocate_optimized_out_value (type);
2307 }
cec03d70
TT
2308 }
2309 break;
2310
2311 case DWARF_VALUE_MEMORY:
2312 {
f2c7657e 2313 CORE_ADDR address = dwarf_expr_fetch_address (ctx, 0);
44353522 2314 int in_stack_memory = dwarf_expr_fetch_in_stack_memory (ctx, 0);
cec03d70 2315
72fc29ff 2316 do_cleanups (value_chain);
08039c9e 2317 retval = value_at_lazy (type, address + byte_offset);
44353522
DE
2318 if (in_stack_memory)
2319 set_value_stack (retval, 1);
cec03d70
TT
2320 }
2321 break;
2322
2323 case DWARF_VALUE_STACK:
2324 {
8a9b8146
TT
2325 struct value *value = dwarf_expr_fetch (ctx, 0);
2326 gdb_byte *contents;
2327 const gdb_byte *val_bytes;
2328 size_t n = TYPE_LENGTH (value_type (value));
cec03d70 2329
8cf6f0b1
TT
2330 if (byte_offset + TYPE_LENGTH (type) > n)
2331 invalid_synthetic_pointer ();
2332
8a9b8146
TT
2333 val_bytes = value_contents_all (value);
2334 val_bytes += byte_offset;
8cf6f0b1
TT
2335 n -= byte_offset;
2336
72fc29ff
TT
2337 /* Preserve VALUE because we are going to free values back
2338 to the mark, but we still need the value contents
2339 below. */
2340 value_incref (value);
2341 do_cleanups (value_chain);
2342 make_cleanup_value_free (value);
2343
a2d33775 2344 retval = allocate_value (type);
cec03d70 2345 contents = value_contents_raw (retval);
a2d33775 2346 if (n > TYPE_LENGTH (type))
b6cede78
JK
2347 {
2348 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2349
2350 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2351 val_bytes += n - TYPE_LENGTH (type);
2352 n = TYPE_LENGTH (type);
2353 }
8a9b8146 2354 memcpy (contents, val_bytes, n);
cec03d70
TT
2355 }
2356 break;
2357
2358 case DWARF_VALUE_LITERAL:
2359 {
2360 bfd_byte *contents;
8c814cdd 2361 const bfd_byte *ldata;
cec03d70
TT
2362 size_t n = ctx->len;
2363
8cf6f0b1
TT
2364 if (byte_offset + TYPE_LENGTH (type) > n)
2365 invalid_synthetic_pointer ();
2366
72fc29ff 2367 do_cleanups (value_chain);
a2d33775 2368 retval = allocate_value (type);
cec03d70 2369 contents = value_contents_raw (retval);
8cf6f0b1 2370
8c814cdd 2371 ldata = ctx->data + byte_offset;
8cf6f0b1
TT
2372 n -= byte_offset;
2373
a2d33775 2374 if (n > TYPE_LENGTH (type))
b6cede78
JK
2375 {
2376 struct gdbarch *objfile_gdbarch = get_objfile_arch (objfile);
2377
2378 if (gdbarch_byte_order (objfile_gdbarch) == BFD_ENDIAN_BIG)
2379 ldata += n - TYPE_LENGTH (type);
2380 n = TYPE_LENGTH (type);
2381 }
8c814cdd 2382 memcpy (contents, ldata, n);
cec03d70
TT
2383 }
2384 break;
2385
dd90784c 2386 case DWARF_VALUE_OPTIMIZED_OUT:
72fc29ff 2387 do_cleanups (value_chain);
a7035dbb 2388 retval = allocate_optimized_out_value (type);
dd90784c
JK
2389 break;
2390
8cf6f0b1
TT
2391 /* DWARF_VALUE_IMPLICIT_POINTER was converted to a pieced
2392 operation by execute_stack_op. */
2393 case DWARF_VALUE_IMPLICIT_POINTER:
cb826367
TT
2394 /* DWARF_VALUE_OPTIMIZED_OUT can't occur in this context --
2395 it can only be encountered when making a piece. */
cec03d70
TT
2396 default:
2397 internal_error (__FILE__, __LINE__, _("invalid location type"));
2398 }
4c2df51b
DJ
2399 }
2400
42be36b3
CT
2401 set_value_initialized (retval, ctx->initialized);
2402
4a227398 2403 do_cleanups (old_chain);
4c2df51b
DJ
2404
2405 return retval;
2406}
8cf6f0b1
TT
2407
2408/* The exported interface to dwarf2_evaluate_loc_desc_full; it always
2409 passes 0 as the byte_offset. */
2410
2411struct value *
2412dwarf2_evaluate_loc_desc (struct type *type, struct frame_info *frame,
56eb65bd 2413 const gdb_byte *data, size_t size,
8cf6f0b1
TT
2414 struct dwarf2_per_cu_data *per_cu)
2415{
2416 return dwarf2_evaluate_loc_desc_full (type, frame, data, size, per_cu, 0);
2417}
2418
80180f79
SA
2419/* Evaluates a dwarf expression and stores the result in VAL, expecting
2420 that the dwarf expression only produces a single CORE_ADDR. ADDR is a
2421 context (location of a variable) and might be needed to evaluate the
2422 location expression.
2423 Returns 1 on success, 0 otherwise. */
2424
2425static int
2426dwarf2_locexpr_baton_eval (const struct dwarf2_locexpr_baton *dlbaton,
1cfdf534 2427 CORE_ADDR *valp)
80180f79
SA
2428{
2429 struct dwarf_expr_context *ctx;
2430 struct dwarf_expr_baton baton;
2431 struct objfile *objfile;
2432 struct cleanup *cleanup;
2433
2434 if (dlbaton == NULL || dlbaton->size == 0)
2435 return 0;
2436
2437 ctx = new_dwarf_expr_context ();
2438 cleanup = make_cleanup_free_dwarf_expr_context (ctx);
2439
2440 baton.frame = get_selected_frame (NULL);
2441 baton.per_cu = dlbaton->per_cu;
2442
2443 objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
2444
2445 ctx->gdbarch = get_objfile_arch (objfile);
2446 ctx->addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
2447 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (dlbaton->per_cu);
2448 ctx->offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
2449 ctx->funcs = &dwarf_expr_ctx_funcs;
2450 ctx->baton = &baton;
2451
2452 dwarf_expr_eval (ctx, dlbaton->data, dlbaton->size);
2453
2454 switch (ctx->location)
2455 {
2456 case DWARF_VALUE_REGISTER:
2457 case DWARF_VALUE_MEMORY:
2458 case DWARF_VALUE_STACK:
2459 *valp = dwarf_expr_fetch_address (ctx, 0);
2460 if (ctx->location == DWARF_VALUE_REGISTER)
2461 *valp = dwarf_expr_read_addr_from_reg (&baton, *valp);
2462 do_cleanups (cleanup);
2463 return 1;
2464 case DWARF_VALUE_LITERAL:
2465 *valp = extract_signed_integer (ctx->data, ctx->len,
2466 gdbarch_byte_order (ctx->gdbarch));
2467 do_cleanups (cleanup);
2468 return 1;
2469 /* Unsupported dwarf values. */
2470 case DWARF_VALUE_OPTIMIZED_OUT:
2471 case DWARF_VALUE_IMPLICIT_POINTER:
2472 break;
2473 }
2474
2475 do_cleanups (cleanup);
2476 return 0;
2477}
2478
2479/* See dwarf2loc.h. */
2480
2481int
1cfdf534 2482dwarf2_evaluate_property (const struct dynamic_prop *prop, CORE_ADDR *value)
80180f79
SA
2483{
2484 if (prop == NULL)
2485 return 0;
2486
2487 switch (prop->kind)
2488 {
2489 case PROP_LOCEXPR:
2490 {
2491 const struct dwarf2_property_baton *baton = prop->data.baton;
2492
1cfdf534 2493 if (dwarf2_locexpr_baton_eval (&baton->locexpr, value))
80180f79
SA
2494 {
2495 if (baton->referenced_type)
2496 {
2497 struct value *val = value_at (baton->referenced_type, *value);
2498
2499 *value = value_as_address (val);
2500 }
2501 return 1;
2502 }
2503 }
2504 break;
2505
2506 case PROP_LOCLIST:
2507 {
2508 struct dwarf2_property_baton *baton = prop->data.baton;
2509 struct frame_info *frame = get_selected_frame (NULL);
2510 CORE_ADDR pc = get_frame_address_in_block (frame);
2511 const gdb_byte *data;
2512 struct value *val;
2513 size_t size;
2514
2515 data = dwarf2_find_location_expression (&baton->loclist, &size, pc);
2516 if (data != NULL)
2517 {
2518 val = dwarf2_evaluate_loc_desc (baton->referenced_type, frame, data,
2519 size, baton->loclist.per_cu);
2520 if (!value_optimized_out (val))
2521 {
2522 *value = value_as_address (val);
2523 return 1;
2524 }
2525 }
2526 }
2527 break;
2528
2529 case PROP_CONST:
2530 *value = prop->data.const_val;
2531 return 1;
2532 }
2533
2534 return 0;
2535}
2536
4c2df51b
DJ
2537\f
2538/* Helper functions and baton for dwarf2_loc_desc_needs_frame. */
2539
2540struct needs_frame_baton
2541{
2542 int needs_frame;
17ea53c3 2543 struct dwarf2_per_cu_data *per_cu;
4c2df51b
DJ
2544};
2545
2546/* Reads from registers do require a frame. */
2547static CORE_ADDR
b1370418 2548needs_frame_read_addr_from_reg (void *baton, int regnum)
4c2df51b
DJ
2549{
2550 struct needs_frame_baton *nf_baton = baton;
9a619af0 2551
4c2df51b
DJ
2552 nf_baton->needs_frame = 1;
2553 return 1;
2554}
2555
0acf8b65
JB
2556/* struct dwarf_expr_context_funcs' "get_reg_value" callback:
2557 Reads from registers do require a frame. */
2558
2559static struct value *
2560needs_frame_get_reg_value (void *baton, struct type *type, int regnum)
2561{
2562 struct needs_frame_baton *nf_baton = baton;
2563
2564 nf_baton->needs_frame = 1;
2565 return value_zero (type, not_lval);
2566}
2567
4c2df51b
DJ
2568/* Reads from memory do not require a frame. */
2569static void
852483bc 2570needs_frame_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr, size_t len)
4c2df51b
DJ
2571{
2572 memset (buf, 0, len);
2573}
2574
2575/* Frame-relative accesses do require a frame. */
2576static void
0d45f56e 2577needs_frame_frame_base (void *baton, const gdb_byte **start, size_t * length)
4c2df51b 2578{
852483bc 2579 static gdb_byte lit0 = DW_OP_lit0;
4c2df51b
DJ
2580 struct needs_frame_baton *nf_baton = baton;
2581
2582 *start = &lit0;
2583 *length = 1;
2584
2585 nf_baton->needs_frame = 1;
2586}
2587
e7802207
TT
2588/* CFA accesses require a frame. */
2589
2590static CORE_ADDR
2591needs_frame_frame_cfa (void *baton)
2592{
2593 struct needs_frame_baton *nf_baton = baton;
9a619af0 2594
e7802207
TT
2595 nf_baton->needs_frame = 1;
2596 return 1;
2597}
2598
4c2df51b
DJ
2599/* Thread-local accesses do require a frame. */
2600static CORE_ADDR
2601needs_frame_tls_address (void *baton, CORE_ADDR offset)
2602{
2603 struct needs_frame_baton *nf_baton = baton;
9a619af0 2604
4c2df51b
DJ
2605 nf_baton->needs_frame = 1;
2606 return 1;
2607}
2608
5c631832
JK
2609/* Helper interface of per_cu_dwarf_call for dwarf2_loc_desc_needs_frame. */
2610
2611static void
b64f50a1 2612needs_frame_dwarf_call (struct dwarf_expr_context *ctx, cu_offset die_offset)
5c631832
JK
2613{
2614 struct needs_frame_baton *nf_baton = ctx->baton;
2615
37b50a69 2616 per_cu_dwarf_call (ctx, die_offset, nf_baton->per_cu,
9e8b7a03 2617 ctx->funcs->get_frame_pc, ctx->baton);
5c631832
JK
2618}
2619
8e3b41a9
JK
2620/* DW_OP_GNU_entry_value accesses require a caller, therefore a frame. */
2621
2622static void
2623needs_dwarf_reg_entry_value (struct dwarf_expr_context *ctx,
24c5c679
JK
2624 enum call_site_parameter_kind kind,
2625 union call_site_parameter_u kind_u, int deref_size)
8e3b41a9
JK
2626{
2627 struct needs_frame_baton *nf_baton = ctx->baton;
2628
2629 nf_baton->needs_frame = 1;
1788b2d3
JK
2630
2631 /* The expression may require some stub values on DWARF stack. */
2632 dwarf_expr_push_address (ctx, 0, 0);
8e3b41a9
JK
2633}
2634
3019eac3
DE
2635/* DW_OP_GNU_addr_index doesn't require a frame. */
2636
2637static CORE_ADDR
2638needs_get_addr_index (void *baton, unsigned int index)
2639{
2640 /* Nothing to do. */
2641 return 1;
2642}
2643
9e8b7a03
JK
2644/* Virtual method table for dwarf2_loc_desc_needs_frame below. */
2645
2646static const struct dwarf_expr_context_funcs needs_frame_ctx_funcs =
2647{
b1370418 2648 needs_frame_read_addr_from_reg,
0acf8b65 2649 needs_frame_get_reg_value,
9e8b7a03
JK
2650 needs_frame_read_mem,
2651 needs_frame_frame_base,
2652 needs_frame_frame_cfa,
2653 needs_frame_frame_cfa, /* get_frame_pc */
2654 needs_frame_tls_address,
2655 needs_frame_dwarf_call,
8e3b41a9 2656 NULL, /* get_base_type */
3019eac3
DE
2657 needs_dwarf_reg_entry_value,
2658 needs_get_addr_index
9e8b7a03
JK
2659};
2660
4c2df51b
DJ
2661/* Return non-zero iff the location expression at DATA (length SIZE)
2662 requires a frame to evaluate. */
2663
2664static int
56eb65bd 2665dwarf2_loc_desc_needs_frame (const gdb_byte *data, size_t size,
ae0d2f24 2666 struct dwarf2_per_cu_data *per_cu)
4c2df51b
DJ
2667{
2668 struct needs_frame_baton baton;
2669 struct dwarf_expr_context *ctx;
f630a401 2670 int in_reg;
4a227398 2671 struct cleanup *old_chain;
ac56253d 2672 struct objfile *objfile = dwarf2_per_cu_objfile (per_cu);
4c2df51b
DJ
2673
2674 baton.needs_frame = 0;
17ea53c3 2675 baton.per_cu = per_cu;
4c2df51b
DJ
2676
2677 ctx = new_dwarf_expr_context ();
4a227398 2678 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
72fc29ff 2679 make_cleanup_value_free_to_mark (value_mark ());
4a227398 2680
ac56253d 2681 ctx->gdbarch = get_objfile_arch (objfile);
ae0d2f24 2682 ctx->addr_size = dwarf2_per_cu_addr_size (per_cu);
181cebd4 2683 ctx->ref_addr_size = dwarf2_per_cu_ref_addr_size (per_cu);
9aa1f1e3 2684 ctx->offset = dwarf2_per_cu_text_offset (per_cu);
4c2df51b 2685 ctx->baton = &baton;
9e8b7a03 2686 ctx->funcs = &needs_frame_ctx_funcs;
4c2df51b
DJ
2687
2688 dwarf_expr_eval (ctx, data, size);
2689
cec03d70 2690 in_reg = ctx->location == DWARF_VALUE_REGISTER;
f630a401 2691
87808bd6
JB
2692 if (ctx->num_pieces > 0)
2693 {
2694 int i;
2695
2696 /* If the location has several pieces, and any of them are in
2697 registers, then we will need a frame to fetch them from. */
2698 for (i = 0; i < ctx->num_pieces; i++)
cec03d70 2699 if (ctx->pieces[i].location == DWARF_VALUE_REGISTER)
87808bd6
JB
2700 in_reg = 1;
2701 }
2702
4a227398 2703 do_cleanups (old_chain);
4c2df51b 2704
f630a401 2705 return baton.needs_frame || in_reg;
4c2df51b
DJ
2706}
2707
3cf03773
TT
2708/* A helper function that throws an unimplemented error mentioning a
2709 given DWARF operator. */
2710
2711static void
2712unimplemented (unsigned int op)
0d53c4c4 2713{
f39c6ffd 2714 const char *name = get_DW_OP_name (op);
b1bfef65
TT
2715
2716 if (name)
2717 error (_("DWARF operator %s cannot be translated to an agent expression"),
2718 name);
2719 else
1ba1b353
TT
2720 error (_("Unknown DWARF operator 0x%02x cannot be translated "
2721 "to an agent expression"),
b1bfef65 2722 op);
3cf03773 2723}
08922a10 2724
3cf03773
TT
2725/* A helper function to convert a DWARF register to an arch register.
2726 ARCH is the architecture.
2727 DWARF_REG is the register.
2728 This will throw an exception if the DWARF register cannot be
2729 translated to an architecture register. */
08922a10 2730
3cf03773
TT
2731static int
2732translate_register (struct gdbarch *arch, int dwarf_reg)
2733{
2734 int reg = gdbarch_dwarf2_reg_to_regnum (arch, dwarf_reg);
2735 if (reg == -1)
2736 error (_("Unable to access DWARF register number %d"), dwarf_reg);
2737 return reg;
2738}
08922a10 2739
3cf03773
TT
2740/* A helper function that emits an access to memory. ARCH is the
2741 target architecture. EXPR is the expression which we are building.
2742 NBITS is the number of bits we want to read. This emits the
2743 opcodes needed to read the memory and then extract the desired
2744 bits. */
08922a10 2745
3cf03773
TT
2746static void
2747access_memory (struct gdbarch *arch, struct agent_expr *expr, ULONGEST nbits)
08922a10 2748{
3cf03773
TT
2749 ULONGEST nbytes = (nbits + 7) / 8;
2750
9df7235c 2751 gdb_assert (nbytes > 0 && nbytes <= sizeof (LONGEST));
3cf03773 2752
92bc6a20 2753 if (expr->tracing)
3cf03773
TT
2754 ax_trace_quick (expr, nbytes);
2755
2756 if (nbits <= 8)
2757 ax_simple (expr, aop_ref8);
2758 else if (nbits <= 16)
2759 ax_simple (expr, aop_ref16);
2760 else if (nbits <= 32)
2761 ax_simple (expr, aop_ref32);
2762 else
2763 ax_simple (expr, aop_ref64);
2764
2765 /* If we read exactly the number of bytes we wanted, we're done. */
2766 if (8 * nbytes == nbits)
2767 return;
2768
2769 if (gdbarch_bits_big_endian (arch))
0d53c4c4 2770 {
3cf03773
TT
2771 /* On a bits-big-endian machine, we want the high-order
2772 NBITS. */
2773 ax_const_l (expr, 8 * nbytes - nbits);
2774 ax_simple (expr, aop_rsh_unsigned);
0d53c4c4 2775 }
3cf03773 2776 else
0d53c4c4 2777 {
3cf03773
TT
2778 /* On a bits-little-endian box, we want the low-order NBITS. */
2779 ax_zero_ext (expr, nbits);
0d53c4c4 2780 }
3cf03773 2781}
0936ad1d 2782
8cf6f0b1
TT
2783/* A helper function to return the frame's PC. */
2784
2785static CORE_ADDR
2786get_ax_pc (void *baton)
2787{
2788 struct agent_expr *expr = baton;
2789
2790 return expr->scope;
2791}
2792
3cf03773
TT
2793/* Compile a DWARF location expression to an agent expression.
2794
2795 EXPR is the agent expression we are building.
2796 LOC is the agent value we modify.
2797 ARCH is the architecture.
2798 ADDR_SIZE is the size of addresses, in bytes.
2799 OP_PTR is the start of the location expression.
2800 OP_END is one past the last byte of the location expression.
2801
2802 This will throw an exception for various kinds of errors -- for
2803 example, if the expression cannot be compiled, or if the expression
2804 is invalid. */
0936ad1d 2805
9f6f94ff
TT
2806void
2807dwarf2_compile_expr_to_ax (struct agent_expr *expr, struct axs_value *loc,
2808 struct gdbarch *arch, unsigned int addr_size,
2809 const gdb_byte *op_ptr, const gdb_byte *op_end,
2810 struct dwarf2_per_cu_data *per_cu)
3cf03773
TT
2811{
2812 struct cleanup *cleanups;
2813 int i, *offsets;
2814 VEC(int) *dw_labels = NULL, *patches = NULL;
2815 const gdb_byte * const base = op_ptr;
2816 const gdb_byte *previous_piece = op_ptr;
2817 enum bfd_endian byte_order = gdbarch_byte_order (arch);
2818 ULONGEST bits_collected = 0;
2819 unsigned int addr_size_bits = 8 * addr_size;
2820 int bits_big_endian = gdbarch_bits_big_endian (arch);
0936ad1d 2821
3cf03773
TT
2822 offsets = xmalloc ((op_end - op_ptr) * sizeof (int));
2823 cleanups = make_cleanup (xfree, offsets);
0936ad1d 2824
3cf03773
TT
2825 for (i = 0; i < op_end - op_ptr; ++i)
2826 offsets[i] = -1;
0936ad1d 2827
3cf03773
TT
2828 make_cleanup (VEC_cleanup (int), &dw_labels);
2829 make_cleanup (VEC_cleanup (int), &patches);
0936ad1d 2830
3cf03773
TT
2831 /* By default we are making an address. */
2832 loc->kind = axs_lvalue_memory;
0d45f56e 2833
3cf03773
TT
2834 while (op_ptr < op_end)
2835 {
2836 enum dwarf_location_atom op = *op_ptr;
9fccedf7
DE
2837 uint64_t uoffset, reg;
2838 int64_t offset;
3cf03773
TT
2839 int i;
2840
2841 offsets[op_ptr - base] = expr->len;
2842 ++op_ptr;
2843
2844 /* Our basic approach to code generation is to map DWARF
2845 operations directly to AX operations. However, there are
2846 some differences.
2847
2848 First, DWARF works on address-sized units, but AX always uses
2849 LONGEST. For most operations we simply ignore this
2850 difference; instead we generate sign extensions as needed
2851 before division and comparison operations. It would be nice
2852 to omit the sign extensions, but there is no way to determine
2853 the size of the target's LONGEST. (This code uses the size
2854 of the host LONGEST in some cases -- that is a bug but it is
2855 difficult to fix.)
2856
2857 Second, some DWARF operations cannot be translated to AX.
2858 For these we simply fail. See
2859 http://sourceware.org/bugzilla/show_bug.cgi?id=11662. */
2860 switch (op)
0936ad1d 2861 {
3cf03773
TT
2862 case DW_OP_lit0:
2863 case DW_OP_lit1:
2864 case DW_OP_lit2:
2865 case DW_OP_lit3:
2866 case DW_OP_lit4:
2867 case DW_OP_lit5:
2868 case DW_OP_lit6:
2869 case DW_OP_lit7:
2870 case DW_OP_lit8:
2871 case DW_OP_lit9:
2872 case DW_OP_lit10:
2873 case DW_OP_lit11:
2874 case DW_OP_lit12:
2875 case DW_OP_lit13:
2876 case DW_OP_lit14:
2877 case DW_OP_lit15:
2878 case DW_OP_lit16:
2879 case DW_OP_lit17:
2880 case DW_OP_lit18:
2881 case DW_OP_lit19:
2882 case DW_OP_lit20:
2883 case DW_OP_lit21:
2884 case DW_OP_lit22:
2885 case DW_OP_lit23:
2886 case DW_OP_lit24:
2887 case DW_OP_lit25:
2888 case DW_OP_lit26:
2889 case DW_OP_lit27:
2890 case DW_OP_lit28:
2891 case DW_OP_lit29:
2892 case DW_OP_lit30:
2893 case DW_OP_lit31:
2894 ax_const_l (expr, op - DW_OP_lit0);
2895 break;
0d53c4c4 2896
3cf03773 2897 case DW_OP_addr:
ac56253d 2898 uoffset = extract_unsigned_integer (op_ptr, addr_size, byte_order);
3cf03773 2899 op_ptr += addr_size;
ac56253d
TT
2900 /* Some versions of GCC emit DW_OP_addr before
2901 DW_OP_GNU_push_tls_address. In this case the value is an
2902 index, not an address. We don't support things like
2903 branching between the address and the TLS op. */
2904 if (op_ptr >= op_end || *op_ptr != DW_OP_GNU_push_tls_address)
9aa1f1e3 2905 uoffset += dwarf2_per_cu_text_offset (per_cu);
ac56253d 2906 ax_const_l (expr, uoffset);
3cf03773 2907 break;
4c2df51b 2908
3cf03773
TT
2909 case DW_OP_const1u:
2910 ax_const_l (expr, extract_unsigned_integer (op_ptr, 1, byte_order));
2911 op_ptr += 1;
2912 break;
2913 case DW_OP_const1s:
2914 ax_const_l (expr, extract_signed_integer (op_ptr, 1, byte_order));
2915 op_ptr += 1;
2916 break;
2917 case DW_OP_const2u:
2918 ax_const_l (expr, extract_unsigned_integer (op_ptr, 2, byte_order));
2919 op_ptr += 2;
2920 break;
2921 case DW_OP_const2s:
2922 ax_const_l (expr, extract_signed_integer (op_ptr, 2, byte_order));
2923 op_ptr += 2;
2924 break;
2925 case DW_OP_const4u:
2926 ax_const_l (expr, extract_unsigned_integer (op_ptr, 4, byte_order));
2927 op_ptr += 4;
2928 break;
2929 case DW_OP_const4s:
2930 ax_const_l (expr, extract_signed_integer (op_ptr, 4, byte_order));
2931 op_ptr += 4;
2932 break;
2933 case DW_OP_const8u:
2934 ax_const_l (expr, extract_unsigned_integer (op_ptr, 8, byte_order));
2935 op_ptr += 8;
2936 break;
2937 case DW_OP_const8s:
2938 ax_const_l (expr, extract_signed_integer (op_ptr, 8, byte_order));
2939 op_ptr += 8;
2940 break;
2941 case DW_OP_constu:
f664829e 2942 op_ptr = safe_read_uleb128 (op_ptr, op_end, &uoffset);
3cf03773
TT
2943 ax_const_l (expr, uoffset);
2944 break;
2945 case DW_OP_consts:
f664829e 2946 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3cf03773
TT
2947 ax_const_l (expr, offset);
2948 break;
9c238357 2949
3cf03773
TT
2950 case DW_OP_reg0:
2951 case DW_OP_reg1:
2952 case DW_OP_reg2:
2953 case DW_OP_reg3:
2954 case DW_OP_reg4:
2955 case DW_OP_reg5:
2956 case DW_OP_reg6:
2957 case DW_OP_reg7:
2958 case DW_OP_reg8:
2959 case DW_OP_reg9:
2960 case DW_OP_reg10:
2961 case DW_OP_reg11:
2962 case DW_OP_reg12:
2963 case DW_OP_reg13:
2964 case DW_OP_reg14:
2965 case DW_OP_reg15:
2966 case DW_OP_reg16:
2967 case DW_OP_reg17:
2968 case DW_OP_reg18:
2969 case DW_OP_reg19:
2970 case DW_OP_reg20:
2971 case DW_OP_reg21:
2972 case DW_OP_reg22:
2973 case DW_OP_reg23:
2974 case DW_OP_reg24:
2975 case DW_OP_reg25:
2976 case DW_OP_reg26:
2977 case DW_OP_reg27:
2978 case DW_OP_reg28:
2979 case DW_OP_reg29:
2980 case DW_OP_reg30:
2981 case DW_OP_reg31:
2982 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
2983 loc->u.reg = translate_register (arch, op - DW_OP_reg0);
2984 loc->kind = axs_lvalue_register;
2985 break;
9c238357 2986
3cf03773 2987 case DW_OP_regx:
f664829e 2988 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3cf03773
TT
2989 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_regx");
2990 loc->u.reg = translate_register (arch, reg);
2991 loc->kind = axs_lvalue_register;
2992 break;
08922a10 2993
3cf03773
TT
2994 case DW_OP_implicit_value:
2995 {
9fccedf7 2996 uint64_t len;
3cf03773 2997
f664829e 2998 op_ptr = safe_read_uleb128 (op_ptr, op_end, &len);
3cf03773
TT
2999 if (op_ptr + len > op_end)
3000 error (_("DW_OP_implicit_value: too few bytes available."));
3001 if (len > sizeof (ULONGEST))
3002 error (_("Cannot translate DW_OP_implicit_value of %d bytes"),
3003 (int) len);
3004
3005 ax_const_l (expr, extract_unsigned_integer (op_ptr, len,
3006 byte_order));
3007 op_ptr += len;
3008 dwarf_expr_require_composition (op_ptr, op_end,
3009 "DW_OP_implicit_value");
3010
3011 loc->kind = axs_rvalue;
3012 }
3013 break;
08922a10 3014
3cf03773
TT
3015 case DW_OP_stack_value:
3016 dwarf_expr_require_composition (op_ptr, op_end, "DW_OP_stack_value");
3017 loc->kind = axs_rvalue;
3018 break;
08922a10 3019
3cf03773
TT
3020 case DW_OP_breg0:
3021 case DW_OP_breg1:
3022 case DW_OP_breg2:
3023 case DW_OP_breg3:
3024 case DW_OP_breg4:
3025 case DW_OP_breg5:
3026 case DW_OP_breg6:
3027 case DW_OP_breg7:
3028 case DW_OP_breg8:
3029 case DW_OP_breg9:
3030 case DW_OP_breg10:
3031 case DW_OP_breg11:
3032 case DW_OP_breg12:
3033 case DW_OP_breg13:
3034 case DW_OP_breg14:
3035 case DW_OP_breg15:
3036 case DW_OP_breg16:
3037 case DW_OP_breg17:
3038 case DW_OP_breg18:
3039 case DW_OP_breg19:
3040 case DW_OP_breg20:
3041 case DW_OP_breg21:
3042 case DW_OP_breg22:
3043 case DW_OP_breg23:
3044 case DW_OP_breg24:
3045 case DW_OP_breg25:
3046 case DW_OP_breg26:
3047 case DW_OP_breg27:
3048 case DW_OP_breg28:
3049 case DW_OP_breg29:
3050 case DW_OP_breg30:
3051 case DW_OP_breg31:
f664829e 3052 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3cf03773
TT
3053 i = translate_register (arch, op - DW_OP_breg0);
3054 ax_reg (expr, i);
3055 if (offset != 0)
3056 {
3057 ax_const_l (expr, offset);
3058 ax_simple (expr, aop_add);
3059 }
3060 break;
3061 case DW_OP_bregx:
3062 {
f664829e
DE
3063 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3064 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
3cf03773
TT
3065 i = translate_register (arch, reg);
3066 ax_reg (expr, i);
3067 if (offset != 0)
3068 {
3069 ax_const_l (expr, offset);
3070 ax_simple (expr, aop_add);
3071 }
3072 }
3073 break;
3074 case DW_OP_fbreg:
3075 {
3076 const gdb_byte *datastart;
3077 size_t datalen;
3977b71f 3078 const struct block *b;
3cf03773 3079 struct symbol *framefunc;
08922a10 3080
3cf03773
TT
3081 b = block_for_pc (expr->scope);
3082
3083 if (!b)
3084 error (_("No block found for address"));
3085
3086 framefunc = block_linkage_function (b);
3087
3088 if (!framefunc)
3089 error (_("No function found for block"));
3090
3091 dwarf_expr_frame_base_1 (framefunc, expr->scope,
3092 &datastart, &datalen);
3093
f664829e 3094 op_ptr = safe_read_sleb128 (op_ptr, op_end, &offset);
9f6f94ff
TT
3095 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size, datastart,
3096 datastart + datalen, per_cu);
d84cf7eb
TT
3097 if (loc->kind == axs_lvalue_register)
3098 require_rvalue (expr, loc);
3cf03773
TT
3099
3100 if (offset != 0)
3101 {
3102 ax_const_l (expr, offset);
3103 ax_simple (expr, aop_add);
3104 }
3105
3106 loc->kind = axs_lvalue_memory;
3107 }
08922a10 3108 break;
08922a10 3109
3cf03773
TT
3110 case DW_OP_dup:
3111 ax_simple (expr, aop_dup);
3112 break;
08922a10 3113
3cf03773
TT
3114 case DW_OP_drop:
3115 ax_simple (expr, aop_pop);
3116 break;
08922a10 3117
3cf03773
TT
3118 case DW_OP_pick:
3119 offset = *op_ptr++;
c7f96d2b 3120 ax_pick (expr, offset);
3cf03773
TT
3121 break;
3122
3123 case DW_OP_swap:
3124 ax_simple (expr, aop_swap);
3125 break;
08922a10 3126
3cf03773 3127 case DW_OP_over:
c7f96d2b 3128 ax_pick (expr, 1);
3cf03773 3129 break;
08922a10 3130
3cf03773 3131 case DW_OP_rot:
c7f96d2b 3132 ax_simple (expr, aop_rot);
3cf03773 3133 break;
08922a10 3134
3cf03773
TT
3135 case DW_OP_deref:
3136 case DW_OP_deref_size:
3137 {
3138 int size;
08922a10 3139
3cf03773
TT
3140 if (op == DW_OP_deref_size)
3141 size = *op_ptr++;
3142 else
3143 size = addr_size;
3144
9df7235c 3145 if (size != 1 && size != 2 && size != 4 && size != 8)
f3cec7e6
HZ
3146 error (_("Unsupported size %d in %s"),
3147 size, get_DW_OP_name (op));
9df7235c 3148 access_memory (arch, expr, size * TARGET_CHAR_BIT);
3cf03773
TT
3149 }
3150 break;
3151
3152 case DW_OP_abs:
3153 /* Sign extend the operand. */
3154 ax_ext (expr, addr_size_bits);
3155 ax_simple (expr, aop_dup);
3156 ax_const_l (expr, 0);
3157 ax_simple (expr, aop_less_signed);
3158 ax_simple (expr, aop_log_not);
3159 i = ax_goto (expr, aop_if_goto);
3160 /* We have to emit 0 - X. */
3161 ax_const_l (expr, 0);
3162 ax_simple (expr, aop_swap);
3163 ax_simple (expr, aop_sub);
3164 ax_label (expr, i, expr->len);
3165 break;
3166
3167 case DW_OP_neg:
3168 /* No need to sign extend here. */
3169 ax_const_l (expr, 0);
3170 ax_simple (expr, aop_swap);
3171 ax_simple (expr, aop_sub);
3172 break;
3173
3174 case DW_OP_not:
3175 /* Sign extend the operand. */
3176 ax_ext (expr, addr_size_bits);
3177 ax_simple (expr, aop_bit_not);
3178 break;
3179
3180 case DW_OP_plus_uconst:
f664829e 3181 op_ptr = safe_read_uleb128 (op_ptr, op_end, &reg);
3cf03773
TT
3182 /* It would be really weird to emit `DW_OP_plus_uconst 0',
3183 but we micro-optimize anyhow. */
3184 if (reg != 0)
3185 {
3186 ax_const_l (expr, reg);
3187 ax_simple (expr, aop_add);
3188 }
3189 break;
3190
3191 case DW_OP_and:
3192 ax_simple (expr, aop_bit_and);
3193 break;
3194
3195 case DW_OP_div:
3196 /* Sign extend the operands. */
3197 ax_ext (expr, addr_size_bits);
3198 ax_simple (expr, aop_swap);
3199 ax_ext (expr, addr_size_bits);
3200 ax_simple (expr, aop_swap);
3201 ax_simple (expr, aop_div_signed);
08922a10
SS
3202 break;
3203
3cf03773
TT
3204 case DW_OP_minus:
3205 ax_simple (expr, aop_sub);
3206 break;
3207
3208 case DW_OP_mod:
3209 ax_simple (expr, aop_rem_unsigned);
3210 break;
3211
3212 case DW_OP_mul:
3213 ax_simple (expr, aop_mul);
3214 break;
3215
3216 case DW_OP_or:
3217 ax_simple (expr, aop_bit_or);
3218 break;
3219
3220 case DW_OP_plus:
3221 ax_simple (expr, aop_add);
3222 break;
3223
3224 case DW_OP_shl:
3225 ax_simple (expr, aop_lsh);
3226 break;
3227
3228 case DW_OP_shr:
3229 ax_simple (expr, aop_rsh_unsigned);
3230 break;
3231
3232 case DW_OP_shra:
3233 ax_simple (expr, aop_rsh_signed);
3234 break;
3235
3236 case DW_OP_xor:
3237 ax_simple (expr, aop_bit_xor);
3238 break;
3239
3240 case DW_OP_le:
3241 /* Sign extend the operands. */
3242 ax_ext (expr, addr_size_bits);
3243 ax_simple (expr, aop_swap);
3244 ax_ext (expr, addr_size_bits);
3245 /* Note no swap here: A <= B is !(B < A). */
3246 ax_simple (expr, aop_less_signed);
3247 ax_simple (expr, aop_log_not);
3248 break;
3249
3250 case DW_OP_ge:
3251 /* Sign extend the operands. */
3252 ax_ext (expr, addr_size_bits);
3253 ax_simple (expr, aop_swap);
3254 ax_ext (expr, addr_size_bits);
3255 ax_simple (expr, aop_swap);
3256 /* A >= B is !(A < B). */
3257 ax_simple (expr, aop_less_signed);
3258 ax_simple (expr, aop_log_not);
3259 break;
3260
3261 case DW_OP_eq:
3262 /* Sign extend the operands. */
3263 ax_ext (expr, addr_size_bits);
3264 ax_simple (expr, aop_swap);
3265 ax_ext (expr, addr_size_bits);
3266 /* No need for a second swap here. */
3267 ax_simple (expr, aop_equal);
3268 break;
3269
3270 case DW_OP_lt:
3271 /* Sign extend the operands. */
3272 ax_ext (expr, addr_size_bits);
3273 ax_simple (expr, aop_swap);
3274 ax_ext (expr, addr_size_bits);
3275 ax_simple (expr, aop_swap);
3276 ax_simple (expr, aop_less_signed);
3277 break;
3278
3279 case DW_OP_gt:
3280 /* Sign extend the operands. */
3281 ax_ext (expr, addr_size_bits);
3282 ax_simple (expr, aop_swap);
3283 ax_ext (expr, addr_size_bits);
3284 /* Note no swap here: A > B is B < A. */
3285 ax_simple (expr, aop_less_signed);
3286 break;
3287
3288 case DW_OP_ne:
3289 /* Sign extend the operands. */
3290 ax_ext (expr, addr_size_bits);
3291 ax_simple (expr, aop_swap);
3292 ax_ext (expr, addr_size_bits);
3293 /* No need for a swap here. */
3294 ax_simple (expr, aop_equal);
3295 ax_simple (expr, aop_log_not);
3296 break;
3297
3298 case DW_OP_call_frame_cfa:
9f6f94ff
TT
3299 dwarf2_compile_cfa_to_ax (expr, loc, arch, expr->scope, per_cu);
3300 loc->kind = axs_lvalue_memory;
3cf03773
TT
3301 break;
3302
3303 case DW_OP_GNU_push_tls_address:
3304 unimplemented (op);
3305 break;
3306
3307 case DW_OP_skip:
3308 offset = extract_signed_integer (op_ptr, 2, byte_order);
3309 op_ptr += 2;
3310 i = ax_goto (expr, aop_goto);
3311 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3312 VEC_safe_push (int, patches, i);
3313 break;
3314
3315 case DW_OP_bra:
3316 offset = extract_signed_integer (op_ptr, 2, byte_order);
3317 op_ptr += 2;
3318 /* Zero extend the operand. */
3319 ax_zero_ext (expr, addr_size_bits);
3320 i = ax_goto (expr, aop_if_goto);
3321 VEC_safe_push (int, dw_labels, op_ptr + offset - base);
3322 VEC_safe_push (int, patches, i);
3323 break;
3324
3325 case DW_OP_nop:
3326 break;
3327
3328 case DW_OP_piece:
3329 case DW_OP_bit_piece:
08922a10 3330 {
9fccedf7 3331 uint64_t size, offset;
3cf03773
TT
3332
3333 if (op_ptr - 1 == previous_piece)
3334 error (_("Cannot translate empty pieces to agent expressions"));
3335 previous_piece = op_ptr - 1;
3336
f664829e 3337 op_ptr = safe_read_uleb128 (op_ptr, op_end, &size);
3cf03773
TT
3338 if (op == DW_OP_piece)
3339 {
3340 size *= 8;
3341 offset = 0;
3342 }
3343 else
f664829e 3344 op_ptr = safe_read_uleb128 (op_ptr, op_end, &offset);
08922a10 3345
3cf03773
TT
3346 if (bits_collected + size > 8 * sizeof (LONGEST))
3347 error (_("Expression pieces exceed word size"));
3348
3349 /* Access the bits. */
3350 switch (loc->kind)
3351 {
3352 case axs_lvalue_register:
3353 ax_reg (expr, loc->u.reg);
3354 break;
3355
3356 case axs_lvalue_memory:
3357 /* Offset the pointer, if needed. */
3358 if (offset > 8)
3359 {
3360 ax_const_l (expr, offset / 8);
3361 ax_simple (expr, aop_add);
3362 offset %= 8;
3363 }
3364 access_memory (arch, expr, size);
3365 break;
3366 }
3367
3368 /* For a bits-big-endian target, shift up what we already
3369 have. For a bits-little-endian target, shift up the
3370 new data. Note that there is a potential bug here if
3371 the DWARF expression leaves multiple values on the
3372 stack. */
3373 if (bits_collected > 0)
3374 {
3375 if (bits_big_endian)
3376 {
3377 ax_simple (expr, aop_swap);
3378 ax_const_l (expr, size);
3379 ax_simple (expr, aop_lsh);
3380 /* We don't need a second swap here, because
3381 aop_bit_or is symmetric. */
3382 }
3383 else
3384 {
3385 ax_const_l (expr, size);
3386 ax_simple (expr, aop_lsh);
3387 }
3388 ax_simple (expr, aop_bit_or);
3389 }
3390
3391 bits_collected += size;
3392 loc->kind = axs_rvalue;
08922a10
SS
3393 }
3394 break;
08922a10 3395
3cf03773
TT
3396 case DW_OP_GNU_uninit:
3397 unimplemented (op);
3398
3399 case DW_OP_call2:
3400 case DW_OP_call4:
3401 {
3402 struct dwarf2_locexpr_baton block;
3403 int size = (op == DW_OP_call2 ? 2 : 4);
b64f50a1 3404 cu_offset offset;
3cf03773
TT
3405
3406 uoffset = extract_unsigned_integer (op_ptr, size, byte_order);
3407 op_ptr += size;
3408
b64f50a1 3409 offset.cu_off = uoffset;
8b9737bf
TT
3410 block = dwarf2_fetch_die_loc_cu_off (offset, per_cu,
3411 get_ax_pc, expr);
3cf03773
TT
3412
3413 /* DW_OP_call_ref is currently not supported. */
3414 gdb_assert (block.per_cu == per_cu);
3415
9f6f94ff
TT
3416 dwarf2_compile_expr_to_ax (expr, loc, arch, addr_size,
3417 block.data, block.data + block.size,
3418 per_cu);
3cf03773
TT
3419 }
3420 break;
3421
3422 case DW_OP_call_ref:
3423 unimplemented (op);
3424
3425 default:
b1bfef65 3426 unimplemented (op);
08922a10 3427 }
08922a10 3428 }
3cf03773
TT
3429
3430 /* Patch all the branches we emitted. */
3431 for (i = 0; i < VEC_length (int, patches); ++i)
3432 {
3433 int targ = offsets[VEC_index (int, dw_labels, i)];
3434 if (targ == -1)
3435 internal_error (__FILE__, __LINE__, _("invalid label"));
3436 ax_label (expr, VEC_index (int, patches, i), targ);
3437 }
3438
3439 do_cleanups (cleanups);
08922a10
SS
3440}
3441
4c2df51b
DJ
3442\f
3443/* Return the value of SYMBOL in FRAME using the DWARF-2 expression
3444 evaluator to calculate the location. */
3445static struct value *
3446locexpr_read_variable (struct symbol *symbol, struct frame_info *frame)
3447{
3448 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3449 struct value *val;
9a619af0 3450
a2d33775
JK
3451 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3452 dlbaton->size, dlbaton->per_cu);
4c2df51b
DJ
3453
3454 return val;
3455}
3456
e18b2753
JK
3457/* Return the value of SYMBOL in FRAME at (callee) FRAME's function
3458 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
3459 will be thrown. */
3460
3461static struct value *
3462locexpr_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
3463{
3464 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3465
3466 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, dlbaton->data,
3467 dlbaton->size);
3468}
3469
4c2df51b
DJ
3470/* Return non-zero iff we need a frame to evaluate SYMBOL. */
3471static int
3472locexpr_read_needs_frame (struct symbol *symbol)
3473{
3474 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
9a619af0 3475
ae0d2f24
UW
3476 return dwarf2_loc_desc_needs_frame (dlbaton->data, dlbaton->size,
3477 dlbaton->per_cu);
4c2df51b
DJ
3478}
3479
9eae7c52
TT
3480/* Return true if DATA points to the end of a piece. END is one past
3481 the last byte in the expression. */
3482
3483static int
3484piece_end_p (const gdb_byte *data, const gdb_byte *end)
3485{
3486 return data == end || data[0] == DW_OP_piece || data[0] == DW_OP_bit_piece;
3487}
3488
5e44ecb3
TT
3489/* Helper for locexpr_describe_location_piece that finds the name of a
3490 DWARF register. */
3491
3492static const char *
3493locexpr_regname (struct gdbarch *gdbarch, int dwarf_regnum)
3494{
3495 int regnum;
3496
3497 regnum = gdbarch_dwarf2_reg_to_regnum (gdbarch, dwarf_regnum);
3498 return gdbarch_register_name (gdbarch, regnum);
3499}
3500
9eae7c52
TT
3501/* Nicely describe a single piece of a location, returning an updated
3502 position in the bytecode sequence. This function cannot recognize
3503 all locations; if a location is not recognized, it simply returns
f664829e
DE
3504 DATA. If there is an error during reading, e.g. we run off the end
3505 of the buffer, an error is thrown. */
08922a10 3506
0d45f56e 3507static const gdb_byte *
08922a10
SS
3508locexpr_describe_location_piece (struct symbol *symbol, struct ui_file *stream,
3509 CORE_ADDR addr, struct objfile *objfile,
49f6c839 3510 struct dwarf2_per_cu_data *per_cu,
9eae7c52 3511 const gdb_byte *data, const gdb_byte *end,
0d45f56e 3512 unsigned int addr_size)
4c2df51b 3513{
08922a10 3514 struct gdbarch *gdbarch = get_objfile_arch (objfile);
49f6c839 3515 size_t leb128_size;
08922a10
SS
3516
3517 if (data[0] >= DW_OP_reg0 && data[0] <= DW_OP_reg31)
3518 {
08922a10 3519 fprintf_filtered (stream, _("a variable in $%s"),
5e44ecb3 3520 locexpr_regname (gdbarch, data[0] - DW_OP_reg0));
08922a10
SS
3521 data += 1;
3522 }
3523 else if (data[0] == DW_OP_regx)
3524 {
9fccedf7 3525 uint64_t reg;
4c2df51b 3526
f664829e 3527 data = safe_read_uleb128 (data + 1, end, &reg);
08922a10 3528 fprintf_filtered (stream, _("a variable in $%s"),
5e44ecb3 3529 locexpr_regname (gdbarch, reg));
08922a10
SS
3530 }
3531 else if (data[0] == DW_OP_fbreg)
4c2df51b 3532 {
3977b71f 3533 const struct block *b;
08922a10
SS
3534 struct symbol *framefunc;
3535 int frame_reg = 0;
9fccedf7 3536 int64_t frame_offset;
7155d578 3537 const gdb_byte *base_data, *new_data, *save_data = data;
08922a10 3538 size_t base_size;
9fccedf7 3539 int64_t base_offset = 0;
08922a10 3540
f664829e 3541 new_data = safe_read_sleb128 (data + 1, end, &frame_offset);
9eae7c52
TT
3542 if (!piece_end_p (new_data, end))
3543 return data;
3544 data = new_data;
3545
08922a10
SS
3546 b = block_for_pc (addr);
3547
3548 if (!b)
3549 error (_("No block found for address for symbol \"%s\"."),
3550 SYMBOL_PRINT_NAME (symbol));
3551
3552 framefunc = block_linkage_function (b);
3553
3554 if (!framefunc)
3555 error (_("No function found for block for symbol \"%s\"."),
3556 SYMBOL_PRINT_NAME (symbol));
3557
3558 dwarf_expr_frame_base_1 (framefunc, addr, &base_data, &base_size);
3559
3560 if (base_data[0] >= DW_OP_breg0 && base_data[0] <= DW_OP_breg31)
3561 {
0d45f56e 3562 const gdb_byte *buf_end;
08922a10
SS
3563
3564 frame_reg = base_data[0] - DW_OP_breg0;
f664829e
DE
3565 buf_end = safe_read_sleb128 (base_data + 1, base_data + base_size,
3566 &base_offset);
08922a10 3567 if (buf_end != base_data + base_size)
3e43a32a
MS
3568 error (_("Unexpected opcode after "
3569 "DW_OP_breg%u for symbol \"%s\"."),
08922a10
SS
3570 frame_reg, SYMBOL_PRINT_NAME (symbol));
3571 }
3572 else if (base_data[0] >= DW_OP_reg0 && base_data[0] <= DW_OP_reg31)
3573 {
3574 /* The frame base is just the register, with no offset. */
3575 frame_reg = base_data[0] - DW_OP_reg0;
3576 base_offset = 0;
3577 }
3578 else
3579 {
3580 /* We don't know what to do with the frame base expression,
3581 so we can't trace this variable; give up. */
7155d578 3582 return save_data;
08922a10
SS
3583 }
3584
3e43a32a
MS
3585 fprintf_filtered (stream,
3586 _("a variable at frame base reg $%s offset %s+%s"),
5e44ecb3 3587 locexpr_regname (gdbarch, frame_reg),
08922a10
SS
3588 plongest (base_offset), plongest (frame_offset));
3589 }
9eae7c52
TT
3590 else if (data[0] >= DW_OP_breg0 && data[0] <= DW_OP_breg31
3591 && piece_end_p (data, end))
08922a10 3592 {
9fccedf7 3593 int64_t offset;
08922a10 3594
f664829e 3595 data = safe_read_sleb128 (data + 1, end, &offset);
08922a10 3596
4c2df51b 3597 fprintf_filtered (stream,
08922a10
SS
3598 _("a variable at offset %s from base reg $%s"),
3599 plongest (offset),
5e44ecb3 3600 locexpr_regname (gdbarch, data[0] - DW_OP_breg0));
4c2df51b
DJ
3601 }
3602
c3228f12
EZ
3603 /* The location expression for a TLS variable looks like this (on a
3604 64-bit LE machine):
3605
3606 DW_AT_location : 10 byte block: 3 4 0 0 0 0 0 0 0 e0
3607 (DW_OP_addr: 4; DW_OP_GNU_push_tls_address)
09d8bd00 3608
c3228f12
EZ
3609 0x3 is the encoding for DW_OP_addr, which has an operand as long
3610 as the size of an address on the target machine (here is 8
09d8bd00
TT
3611 bytes). Note that more recent version of GCC emit DW_OP_const4u
3612 or DW_OP_const8u, depending on address size, rather than
0963b4bd
MS
3613 DW_OP_addr. 0xe0 is the encoding for DW_OP_GNU_push_tls_address.
3614 The operand represents the offset at which the variable is within
3615 the thread local storage. */
c3228f12 3616
9eae7c52 3617 else if (data + 1 + addr_size < end
09d8bd00
TT
3618 && (data[0] == DW_OP_addr
3619 || (addr_size == 4 && data[0] == DW_OP_const4u)
3620 || (addr_size == 8 && data[0] == DW_OP_const8u))
9eae7c52
TT
3621 && data[1 + addr_size] == DW_OP_GNU_push_tls_address
3622 && piece_end_p (data + 2 + addr_size, end))
08922a10 3623 {
d4a087c7
UW
3624 ULONGEST offset;
3625 offset = extract_unsigned_integer (data + 1, addr_size,
3626 gdbarch_byte_order (gdbarch));
9a619af0 3627
08922a10 3628 fprintf_filtered (stream,
d4a087c7 3629 _("a thread-local variable at offset 0x%s "
08922a10 3630 "in the thread-local storage for `%s'"),
4262abfb 3631 phex_nz (offset, addr_size), objfile_name (objfile));
08922a10
SS
3632
3633 data += 1 + addr_size + 1;
3634 }
49f6c839
DE
3635
3636 /* With -gsplit-dwarf a TLS variable can also look like this:
3637 DW_AT_location : 3 byte block: fc 4 e0
3638 (DW_OP_GNU_const_index: 4;
3639 DW_OP_GNU_push_tls_address) */
3640 else if (data + 3 <= end
3641 && data + 1 + (leb128_size = skip_leb128 (data + 1, end)) < end
3642 && data[0] == DW_OP_GNU_const_index
3643 && leb128_size > 0
3644 && data[1 + leb128_size] == DW_OP_GNU_push_tls_address
3645 && piece_end_p (data + 2 + leb128_size, end))
3646 {
a55c1f32 3647 uint64_t offset;
49f6c839
DE
3648
3649 data = safe_read_uleb128 (data + 1, end, &offset);
3650 offset = dwarf2_read_addr_index (per_cu, offset);
3651 fprintf_filtered (stream,
3652 _("a thread-local variable at offset 0x%s "
3653 "in the thread-local storage for `%s'"),
4262abfb 3654 phex_nz (offset, addr_size), objfile_name (objfile));
49f6c839
DE
3655 ++data;
3656 }
3657
9eae7c52
TT
3658 else if (data[0] >= DW_OP_lit0
3659 && data[0] <= DW_OP_lit31
3660 && data + 1 < end
3661 && data[1] == DW_OP_stack_value)
3662 {
3663 fprintf_filtered (stream, _("the constant %d"), data[0] - DW_OP_lit0);
3664 data += 2;
3665 }
3666
3667 return data;
3668}
3669
3670/* Disassemble an expression, stopping at the end of a piece or at the
3671 end of the expression. Returns a pointer to the next unread byte
3672 in the input expression. If ALL is nonzero, then this function
f664829e
DE
3673 will keep going until it reaches the end of the expression.
3674 If there is an error during reading, e.g. we run off the end
3675 of the buffer, an error is thrown. */
9eae7c52
TT
3676
3677static const gdb_byte *
3678disassemble_dwarf_expression (struct ui_file *stream,
3679 struct gdbarch *arch, unsigned int addr_size,
2bda9cc5 3680 int offset_size, const gdb_byte *start,
9eae7c52 3681 const gdb_byte *data, const gdb_byte *end,
2bda9cc5 3682 int indent, int all,
5e44ecb3 3683 struct dwarf2_per_cu_data *per_cu)
9eae7c52 3684{
9eae7c52
TT
3685 while (data < end
3686 && (all
3687 || (data[0] != DW_OP_piece && data[0] != DW_OP_bit_piece)))
3688 {
3689 enum dwarf_location_atom op = *data++;
9fccedf7
DE
3690 uint64_t ul;
3691 int64_t l;
9eae7c52
TT
3692 const char *name;
3693
f39c6ffd 3694 name = get_DW_OP_name (op);
9eae7c52
TT
3695
3696 if (!name)
3697 error (_("Unrecognized DWARF opcode 0x%02x at %ld"),
06826322 3698 op, (long) (data - 1 - start));
2bda9cc5
JK
3699 fprintf_filtered (stream, " %*ld: %s", indent + 4,
3700 (long) (data - 1 - start), name);
9eae7c52
TT
3701
3702 switch (op)
3703 {
3704 case DW_OP_addr:
d4a087c7
UW
3705 ul = extract_unsigned_integer (data, addr_size,
3706 gdbarch_byte_order (arch));
9eae7c52 3707 data += addr_size;
d4a087c7 3708 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
9eae7c52
TT
3709 break;
3710
3711 case DW_OP_const1u:
3712 ul = extract_unsigned_integer (data, 1, gdbarch_byte_order (arch));
3713 data += 1;
3714 fprintf_filtered (stream, " %s", pulongest (ul));
3715 break;
3716 case DW_OP_const1s:
3717 l = extract_signed_integer (data, 1, gdbarch_byte_order (arch));
3718 data += 1;
3719 fprintf_filtered (stream, " %s", plongest (l));
3720 break;
3721 case DW_OP_const2u:
3722 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3723 data += 2;
3724 fprintf_filtered (stream, " %s", pulongest (ul));
3725 break;
3726 case DW_OP_const2s:
3727 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3728 data += 2;
3729 fprintf_filtered (stream, " %s", plongest (l));
3730 break;
3731 case DW_OP_const4u:
3732 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3733 data += 4;
3734 fprintf_filtered (stream, " %s", pulongest (ul));
3735 break;
3736 case DW_OP_const4s:
3737 l = extract_signed_integer (data, 4, gdbarch_byte_order (arch));
3738 data += 4;
3739 fprintf_filtered (stream, " %s", plongest (l));
3740 break;
3741 case DW_OP_const8u:
3742 ul = extract_unsigned_integer (data, 8, gdbarch_byte_order (arch));
3743 data += 8;
3744 fprintf_filtered (stream, " %s", pulongest (ul));
3745 break;
3746 case DW_OP_const8s:
3747 l = extract_signed_integer (data, 8, gdbarch_byte_order (arch));
3748 data += 8;
3749 fprintf_filtered (stream, " %s", plongest (l));
3750 break;
3751 case DW_OP_constu:
f664829e 3752 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3753 fprintf_filtered (stream, " %s", pulongest (ul));
3754 break;
3755 case DW_OP_consts:
f664829e 3756 data = safe_read_sleb128 (data, end, &l);
9eae7c52
TT
3757 fprintf_filtered (stream, " %s", plongest (l));
3758 break;
3759
3760 case DW_OP_reg0:
3761 case DW_OP_reg1:
3762 case DW_OP_reg2:
3763 case DW_OP_reg3:
3764 case DW_OP_reg4:
3765 case DW_OP_reg5:
3766 case DW_OP_reg6:
3767 case DW_OP_reg7:
3768 case DW_OP_reg8:
3769 case DW_OP_reg9:
3770 case DW_OP_reg10:
3771 case DW_OP_reg11:
3772 case DW_OP_reg12:
3773 case DW_OP_reg13:
3774 case DW_OP_reg14:
3775 case DW_OP_reg15:
3776 case DW_OP_reg16:
3777 case DW_OP_reg17:
3778 case DW_OP_reg18:
3779 case DW_OP_reg19:
3780 case DW_OP_reg20:
3781 case DW_OP_reg21:
3782 case DW_OP_reg22:
3783 case DW_OP_reg23:
3784 case DW_OP_reg24:
3785 case DW_OP_reg25:
3786 case DW_OP_reg26:
3787 case DW_OP_reg27:
3788 case DW_OP_reg28:
3789 case DW_OP_reg29:
3790 case DW_OP_reg30:
3791 case DW_OP_reg31:
3792 fprintf_filtered (stream, " [$%s]",
5e44ecb3 3793 locexpr_regname (arch, op - DW_OP_reg0));
9eae7c52
TT
3794 break;
3795
3796 case DW_OP_regx:
f664829e 3797 data = safe_read_uleb128 (data, end, &ul);
9eae7c52 3798 fprintf_filtered (stream, " %s [$%s]", pulongest (ul),
5e44ecb3 3799 locexpr_regname (arch, (int) ul));
9eae7c52
TT
3800 break;
3801
3802 case DW_OP_implicit_value:
f664829e 3803 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3804 data += ul;
3805 fprintf_filtered (stream, " %s", pulongest (ul));
3806 break;
3807
3808 case DW_OP_breg0:
3809 case DW_OP_breg1:
3810 case DW_OP_breg2:
3811 case DW_OP_breg3:
3812 case DW_OP_breg4:
3813 case DW_OP_breg5:
3814 case DW_OP_breg6:
3815 case DW_OP_breg7:
3816 case DW_OP_breg8:
3817 case DW_OP_breg9:
3818 case DW_OP_breg10:
3819 case DW_OP_breg11:
3820 case DW_OP_breg12:
3821 case DW_OP_breg13:
3822 case DW_OP_breg14:
3823 case DW_OP_breg15:
3824 case DW_OP_breg16:
3825 case DW_OP_breg17:
3826 case DW_OP_breg18:
3827 case DW_OP_breg19:
3828 case DW_OP_breg20:
3829 case DW_OP_breg21:
3830 case DW_OP_breg22:
3831 case DW_OP_breg23:
3832 case DW_OP_breg24:
3833 case DW_OP_breg25:
3834 case DW_OP_breg26:
3835 case DW_OP_breg27:
3836 case DW_OP_breg28:
3837 case DW_OP_breg29:
3838 case DW_OP_breg30:
3839 case DW_OP_breg31:
f664829e 3840 data = safe_read_sleb128 (data, end, &l);
0502ed8c 3841 fprintf_filtered (stream, " %s [$%s]", plongest (l),
5e44ecb3 3842 locexpr_regname (arch, op - DW_OP_breg0));
9eae7c52
TT
3843 break;
3844
3845 case DW_OP_bregx:
f664829e
DE
3846 data = safe_read_uleb128 (data, end, &ul);
3847 data = safe_read_sleb128 (data, end, &l);
0502ed8c
JK
3848 fprintf_filtered (stream, " register %s [$%s] offset %s",
3849 pulongest (ul),
5e44ecb3 3850 locexpr_regname (arch, (int) ul),
0502ed8c 3851 plongest (l));
9eae7c52
TT
3852 break;
3853
3854 case DW_OP_fbreg:
f664829e 3855 data = safe_read_sleb128 (data, end, &l);
0502ed8c 3856 fprintf_filtered (stream, " %s", plongest (l));
9eae7c52
TT
3857 break;
3858
3859 case DW_OP_xderef_size:
3860 case DW_OP_deref_size:
3861 case DW_OP_pick:
3862 fprintf_filtered (stream, " %d", *data);
3863 ++data;
3864 break;
3865
3866 case DW_OP_plus_uconst:
f664829e 3867 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3868 fprintf_filtered (stream, " %s", pulongest (ul));
3869 break;
3870
3871 case DW_OP_skip:
3872 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3873 data += 2;
3874 fprintf_filtered (stream, " to %ld",
3875 (long) (data + l - start));
3876 break;
3877
3878 case DW_OP_bra:
3879 l = extract_signed_integer (data, 2, gdbarch_byte_order (arch));
3880 data += 2;
3881 fprintf_filtered (stream, " %ld",
3882 (long) (data + l - start));
3883 break;
3884
3885 case DW_OP_call2:
3886 ul = extract_unsigned_integer (data, 2, gdbarch_byte_order (arch));
3887 data += 2;
3888 fprintf_filtered (stream, " offset %s", phex_nz (ul, 2));
3889 break;
3890
3891 case DW_OP_call4:
3892 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
3893 data += 4;
3894 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
3895 break;
3896
3897 case DW_OP_call_ref:
3898 ul = extract_unsigned_integer (data, offset_size,
3899 gdbarch_byte_order (arch));
3900 data += offset_size;
3901 fprintf_filtered (stream, " offset %s", phex_nz (ul, offset_size));
3902 break;
3903
3904 case DW_OP_piece:
f664829e 3905 data = safe_read_uleb128 (data, end, &ul);
9eae7c52
TT
3906 fprintf_filtered (stream, " %s (bytes)", pulongest (ul));
3907 break;
3908
3909 case DW_OP_bit_piece:
3910 {
9fccedf7 3911 uint64_t offset;
9eae7c52 3912
f664829e
DE
3913 data = safe_read_uleb128 (data, end, &ul);
3914 data = safe_read_uleb128 (data, end, &offset);
9eae7c52
TT
3915 fprintf_filtered (stream, " size %s offset %s (bits)",
3916 pulongest (ul), pulongest (offset));
3917 }
3918 break;
8cf6f0b1
TT
3919
3920 case DW_OP_GNU_implicit_pointer:
3921 {
3922 ul = extract_unsigned_integer (data, offset_size,
3923 gdbarch_byte_order (arch));
3924 data += offset_size;
3925
f664829e 3926 data = safe_read_sleb128 (data, end, &l);
8cf6f0b1
TT
3927
3928 fprintf_filtered (stream, " DIE %s offset %s",
3929 phex_nz (ul, offset_size),
3930 plongest (l));
3931 }
3932 break;
5e44ecb3
TT
3933
3934 case DW_OP_GNU_deref_type:
3935 {
3936 int addr_size = *data++;
b64f50a1 3937 cu_offset offset;
5e44ecb3
TT
3938 struct type *type;
3939
f664829e 3940 data = safe_read_uleb128 (data, end, &ul);
b64f50a1 3941 offset.cu_off = ul;
5e44ecb3
TT
3942 type = dwarf2_get_die_type (offset, per_cu);
3943 fprintf_filtered (stream, "<");
3944 type_print (type, "", stream, -1);
b64f50a1 3945 fprintf_filtered (stream, " [0x%s]> %d", phex_nz (offset.cu_off, 0),
5e44ecb3
TT
3946 addr_size);
3947 }
3948 break;
3949
3950 case DW_OP_GNU_const_type:
3951 {
b64f50a1 3952 cu_offset type_die;
5e44ecb3
TT
3953 struct type *type;
3954
f664829e 3955 data = safe_read_uleb128 (data, end, &ul);
b64f50a1 3956 type_die.cu_off = ul;
5e44ecb3
TT
3957 type = dwarf2_get_die_type (type_die, per_cu);
3958 fprintf_filtered (stream, "<");
3959 type_print (type, "", stream, -1);
b64f50a1 3960 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
5e44ecb3
TT
3961 }
3962 break;
3963
3964 case DW_OP_GNU_regval_type:
3965 {
9fccedf7 3966 uint64_t reg;
b64f50a1 3967 cu_offset type_die;
5e44ecb3
TT
3968 struct type *type;
3969
f664829e
DE
3970 data = safe_read_uleb128 (data, end, &reg);
3971 data = safe_read_uleb128 (data, end, &ul);
b64f50a1 3972 type_die.cu_off = ul;
5e44ecb3
TT
3973
3974 type = dwarf2_get_die_type (type_die, per_cu);
3975 fprintf_filtered (stream, "<");
3976 type_print (type, "", stream, -1);
b64f50a1
JK
3977 fprintf_filtered (stream, " [0x%s]> [$%s]",
3978 phex_nz (type_die.cu_off, 0),
5e44ecb3
TT
3979 locexpr_regname (arch, reg));
3980 }
3981 break;
3982
3983 case DW_OP_GNU_convert:
3984 case DW_OP_GNU_reinterpret:
3985 {
b64f50a1 3986 cu_offset type_die;
5e44ecb3 3987
f664829e 3988 data = safe_read_uleb128 (data, end, &ul);
b64f50a1 3989 type_die.cu_off = ul;
5e44ecb3 3990
b64f50a1 3991 if (type_die.cu_off == 0)
5e44ecb3
TT
3992 fprintf_filtered (stream, "<0>");
3993 else
3994 {
3995 struct type *type;
3996
3997 type = dwarf2_get_die_type (type_die, per_cu);
3998 fprintf_filtered (stream, "<");
3999 type_print (type, "", stream, -1);
b64f50a1 4000 fprintf_filtered (stream, " [0x%s]>", phex_nz (type_die.cu_off, 0));
5e44ecb3
TT
4001 }
4002 }
4003 break;
2bda9cc5
JK
4004
4005 case DW_OP_GNU_entry_value:
f664829e 4006 data = safe_read_uleb128 (data, end, &ul);
2bda9cc5
JK
4007 fputc_filtered ('\n', stream);
4008 disassemble_dwarf_expression (stream, arch, addr_size, offset_size,
4009 start, data, data + ul, indent + 2,
4010 all, per_cu);
4011 data += ul;
4012 continue;
49f6c839 4013
a24f71ab
JK
4014 case DW_OP_GNU_parameter_ref:
4015 ul = extract_unsigned_integer (data, 4, gdbarch_byte_order (arch));
4016 data += 4;
4017 fprintf_filtered (stream, " offset %s", phex_nz (ul, 4));
4018 break;
4019
49f6c839
DE
4020 case DW_OP_GNU_addr_index:
4021 data = safe_read_uleb128 (data, end, &ul);
4022 ul = dwarf2_read_addr_index (per_cu, ul);
4023 fprintf_filtered (stream, " 0x%s", phex_nz (ul, addr_size));
4024 break;
4025 case DW_OP_GNU_const_index:
4026 data = safe_read_uleb128 (data, end, &ul);
4027 ul = dwarf2_read_addr_index (per_cu, ul);
4028 fprintf_filtered (stream, " %s", pulongest (ul));
4029 break;
9eae7c52
TT
4030 }
4031
4032 fprintf_filtered (stream, "\n");
4033 }
c3228f12 4034
08922a10 4035 return data;
4c2df51b
DJ
4036}
4037
08922a10
SS
4038/* Describe a single location, which may in turn consist of multiple
4039 pieces. */
a55cc764 4040
08922a10
SS
4041static void
4042locexpr_describe_location_1 (struct symbol *symbol, CORE_ADDR addr,
0d45f56e 4043 struct ui_file *stream,
56eb65bd 4044 const gdb_byte *data, size_t size,
9eae7c52 4045 struct objfile *objfile, unsigned int addr_size,
5e44ecb3 4046 int offset_size, struct dwarf2_per_cu_data *per_cu)
08922a10 4047{
0d45f56e 4048 const gdb_byte *end = data + size;
9eae7c52 4049 int first_piece = 1, bad = 0;
08922a10 4050
08922a10
SS
4051 while (data < end)
4052 {
9eae7c52
TT
4053 const gdb_byte *here = data;
4054 int disassemble = 1;
4055
4056 if (first_piece)
4057 first_piece = 0;
4058 else
4059 fprintf_filtered (stream, _(", and "));
08922a10 4060
9eae7c52
TT
4061 if (!dwarf2_always_disassemble)
4062 {
3e43a32a 4063 data = locexpr_describe_location_piece (symbol, stream,
49f6c839 4064 addr, objfile, per_cu,
9eae7c52
TT
4065 data, end, addr_size);
4066 /* If we printed anything, or if we have an empty piece,
4067 then don't disassemble. */
4068 if (data != here
4069 || data[0] == DW_OP_piece
4070 || data[0] == DW_OP_bit_piece)
4071 disassemble = 0;
08922a10 4072 }
9eae7c52 4073 if (disassemble)
2bda9cc5
JK
4074 {
4075 fprintf_filtered (stream, _("a complex DWARF expression:\n"));
4076 data = disassemble_dwarf_expression (stream,
4077 get_objfile_arch (objfile),
4078 addr_size, offset_size, data,
4079 data, end, 0,
4080 dwarf2_always_disassemble,
4081 per_cu);
4082 }
9eae7c52
TT
4083
4084 if (data < end)
08922a10 4085 {
9eae7c52 4086 int empty = data == here;
08922a10 4087
9eae7c52
TT
4088 if (disassemble)
4089 fprintf_filtered (stream, " ");
4090 if (data[0] == DW_OP_piece)
4091 {
9fccedf7 4092 uint64_t bytes;
08922a10 4093
f664829e 4094 data = safe_read_uleb128 (data + 1, end, &bytes);
08922a10 4095
9eae7c52
TT
4096 if (empty)
4097 fprintf_filtered (stream, _("an empty %s-byte piece"),
4098 pulongest (bytes));
4099 else
4100 fprintf_filtered (stream, _(" [%s-byte piece]"),
4101 pulongest (bytes));
4102 }
4103 else if (data[0] == DW_OP_bit_piece)
4104 {
9fccedf7 4105 uint64_t bits, offset;
9eae7c52 4106
f664829e
DE
4107 data = safe_read_uleb128 (data + 1, end, &bits);
4108 data = safe_read_uleb128 (data, end, &offset);
9eae7c52
TT
4109
4110 if (empty)
4111 fprintf_filtered (stream,
4112 _("an empty %s-bit piece"),
4113 pulongest (bits));
4114 else
4115 fprintf_filtered (stream,
4116 _(" [%s-bit piece, offset %s bits]"),
4117 pulongest (bits), pulongest (offset));
4118 }
4119 else
4120 {
4121 bad = 1;
4122 break;
4123 }
08922a10
SS
4124 }
4125 }
4126
4127 if (bad || data > end)
4128 error (_("Corrupted DWARF2 expression for \"%s\"."),
4129 SYMBOL_PRINT_NAME (symbol));
4130}
4131
4132/* Print a natural-language description of SYMBOL to STREAM. This
4133 version is for a symbol with a single location. */
a55cc764 4134
08922a10
SS
4135static void
4136locexpr_describe_location (struct symbol *symbol, CORE_ADDR addr,
4137 struct ui_file *stream)
4138{
4139 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4140 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4141 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
9eae7c52 4142 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
08922a10 4143
3e43a32a
MS
4144 locexpr_describe_location_1 (symbol, addr, stream,
4145 dlbaton->data, dlbaton->size,
5e44ecb3
TT
4146 objfile, addr_size, offset_size,
4147 dlbaton->per_cu);
08922a10
SS
4148}
4149
4150/* Describe the location of SYMBOL as an agent value in VALUE, generating
4151 any necessary bytecode in AX. */
a55cc764 4152
0d53c4c4 4153static void
505e835d
UW
4154locexpr_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4155 struct agent_expr *ax, struct axs_value *value)
a55cc764
DJ
4156{
4157 struct dwarf2_locexpr_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
3cf03773 4158 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
a55cc764 4159
1d6edc3c 4160 if (dlbaton->size == 0)
cabe9ab6
PA
4161 value->optimized_out = 1;
4162 else
9f6f94ff
TT
4163 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size,
4164 dlbaton->data, dlbaton->data + dlbaton->size,
4165 dlbaton->per_cu);
a55cc764
DJ
4166}
4167
4c2df51b
DJ
4168/* The set of location functions used with the DWARF-2 expression
4169 evaluator. */
768a979c 4170const struct symbol_computed_ops dwarf2_locexpr_funcs = {
4c2df51b 4171 locexpr_read_variable,
e18b2753 4172 locexpr_read_variable_at_entry,
4c2df51b
DJ
4173 locexpr_read_needs_frame,
4174 locexpr_describe_location,
f1e6e072 4175 0, /* location_has_loclist */
a55cc764 4176 locexpr_tracepoint_var_ref
4c2df51b 4177};
0d53c4c4
DJ
4178
4179
4180/* Wrapper functions for location lists. These generally find
4181 the appropriate location expression and call something above. */
4182
4183/* Return the value of SYMBOL in FRAME using the DWARF-2 expression
4184 evaluator to calculate the location. */
4185static struct value *
4186loclist_read_variable (struct symbol *symbol, struct frame_info *frame)
4187{
4188 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4189 struct value *val;
947bb88f 4190 const gdb_byte *data;
b6b08ebf 4191 size_t size;
8cf6f0b1 4192 CORE_ADDR pc = frame ? get_frame_address_in_block (frame) : 0;
0d53c4c4 4193
8cf6f0b1 4194 data = dwarf2_find_location_expression (dlbaton, &size, pc);
1d6edc3c
JK
4195 val = dwarf2_evaluate_loc_desc (SYMBOL_TYPE (symbol), frame, data, size,
4196 dlbaton->per_cu);
0d53c4c4
DJ
4197
4198 return val;
4199}
4200
e18b2753
JK
4201/* Read variable SYMBOL like loclist_read_variable at (callee) FRAME's function
4202 entry. SYMBOL should be a function parameter, otherwise NO_ENTRY_VALUE_ERROR
4203 will be thrown.
4204
4205 Function always returns non-NULL value, it may be marked optimized out if
4206 inferior frame information is not available. It throws NO_ENTRY_VALUE_ERROR
4207 if it cannot resolve the parameter for any reason. */
4208
4209static struct value *
4210loclist_read_variable_at_entry (struct symbol *symbol, struct frame_info *frame)
4211{
4212 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
4213 const gdb_byte *data;
4214 size_t size;
4215 CORE_ADDR pc;
4216
4217 if (frame == NULL || !get_frame_func_if_available (frame, &pc))
4218 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4219
4220 data = dwarf2_find_location_expression (dlbaton, &size, pc);
4221 if (data == NULL)
4222 return allocate_optimized_out_value (SYMBOL_TYPE (symbol));
4223
4224 return value_of_dwarf_block_entry (SYMBOL_TYPE (symbol), frame, data, size);
4225}
4226
0d53c4c4
DJ
4227/* Return non-zero iff we need a frame to evaluate SYMBOL. */
4228static int
4229loclist_read_needs_frame (struct symbol *symbol)
4230{
4231 /* If there's a location list, then assume we need to have a frame
4232 to choose the appropriate location expression. With tracking of
4233 global variables this is not necessarily true, but such tracking
4234 is disabled in GCC at the moment until we figure out how to
4235 represent it. */
4236
4237 return 1;
4238}
4239
08922a10
SS
4240/* Print a natural-language description of SYMBOL to STREAM. This
4241 version applies when there is a list of different locations, each
4242 with a specified address range. */
4243
4244static void
4245loclist_describe_location (struct symbol *symbol, CORE_ADDR addr,
4246 struct ui_file *stream)
0d53c4c4 4247{
08922a10 4248 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
947bb88f 4249 const gdb_byte *loc_ptr, *buf_end;
08922a10
SS
4250 struct objfile *objfile = dwarf2_per_cu_objfile (dlbaton->per_cu);
4251 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4252 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4253 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
9eae7c52 4254 int offset_size = dwarf2_per_cu_offset_size (dlbaton->per_cu);
d4a087c7 4255 int signed_addr_p = bfd_get_sign_extend_vma (objfile->obfd);
08922a10 4256 /* Adjust base_address for relocatable objects. */
9aa1f1e3 4257 CORE_ADDR base_offset = dwarf2_per_cu_text_offset (dlbaton->per_cu);
08922a10 4258 CORE_ADDR base_address = dlbaton->base_address + base_offset;
f664829e 4259 int done = 0;
08922a10
SS
4260
4261 loc_ptr = dlbaton->data;
4262 buf_end = dlbaton->data + dlbaton->size;
4263
9eae7c52 4264 fprintf_filtered (stream, _("multi-location:\n"));
08922a10
SS
4265
4266 /* Iterate through locations until we run out. */
f664829e 4267 while (!done)
08922a10 4268 {
f664829e
DE
4269 CORE_ADDR low = 0, high = 0; /* init for gcc -Wall */
4270 int length;
4271 enum debug_loc_kind kind;
4272 const gdb_byte *new_ptr = NULL; /* init for gcc -Wall */
4273
4274 if (dlbaton->from_dwo)
4275 kind = decode_debug_loc_dwo_addresses (dlbaton->per_cu,
4276 loc_ptr, buf_end, &new_ptr,
3771a44c 4277 &low, &high, byte_order);
d4a087c7 4278 else
f664829e
DE
4279 kind = decode_debug_loc_addresses (loc_ptr, buf_end, &new_ptr,
4280 &low, &high,
4281 byte_order, addr_size,
4282 signed_addr_p);
4283 loc_ptr = new_ptr;
4284 switch (kind)
08922a10 4285 {
f664829e
DE
4286 case DEBUG_LOC_END_OF_LIST:
4287 done = 1;
4288 continue;
4289 case DEBUG_LOC_BASE_ADDRESS:
d4a087c7 4290 base_address = high + base_offset;
9eae7c52 4291 fprintf_filtered (stream, _(" Base address %s"),
08922a10 4292 paddress (gdbarch, base_address));
08922a10 4293 continue;
3771a44c
DE
4294 case DEBUG_LOC_START_END:
4295 case DEBUG_LOC_START_LENGTH:
f664829e
DE
4296 break;
4297 case DEBUG_LOC_BUFFER_OVERFLOW:
4298 case DEBUG_LOC_INVALID_ENTRY:
4299 error (_("Corrupted DWARF expression for symbol \"%s\"."),
4300 SYMBOL_PRINT_NAME (symbol));
4301 default:
4302 gdb_assert_not_reached ("bad debug_loc_kind");
08922a10
SS
4303 }
4304
08922a10
SS
4305 /* Otherwise, a location expression entry. */
4306 low += base_address;
4307 high += base_address;
4308
4309 length = extract_unsigned_integer (loc_ptr, 2, byte_order);
4310 loc_ptr += 2;
4311
08922a10
SS
4312 /* (It would improve readability to print only the minimum
4313 necessary digits of the second number of the range.) */
9eae7c52 4314 fprintf_filtered (stream, _(" Range %s-%s: "),
08922a10
SS
4315 paddress (gdbarch, low), paddress (gdbarch, high));
4316
4317 /* Now describe this particular location. */
4318 locexpr_describe_location_1 (symbol, low, stream, loc_ptr, length,
5e44ecb3
TT
4319 objfile, addr_size, offset_size,
4320 dlbaton->per_cu);
9eae7c52
TT
4321
4322 fprintf_filtered (stream, "\n");
08922a10
SS
4323
4324 loc_ptr += length;
4325 }
0d53c4c4
DJ
4326}
4327
4328/* Describe the location of SYMBOL as an agent value in VALUE, generating
4329 any necessary bytecode in AX. */
4330static void
505e835d
UW
4331loclist_tracepoint_var_ref (struct symbol *symbol, struct gdbarch *gdbarch,
4332 struct agent_expr *ax, struct axs_value *value)
0d53c4c4
DJ
4333{
4334 struct dwarf2_loclist_baton *dlbaton = SYMBOL_LOCATION_BATON (symbol);
947bb88f 4335 const gdb_byte *data;
b6b08ebf 4336 size_t size;
3cf03773 4337 unsigned int addr_size = dwarf2_per_cu_addr_size (dlbaton->per_cu);
0d53c4c4 4338
8cf6f0b1 4339 data = dwarf2_find_location_expression (dlbaton, &size, ax->scope);
1d6edc3c 4340 if (size == 0)
cabe9ab6
PA
4341 value->optimized_out = 1;
4342 else
9f6f94ff
TT
4343 dwarf2_compile_expr_to_ax (ax, value, gdbarch, addr_size, data, data + size,
4344 dlbaton->per_cu);
0d53c4c4
DJ
4345}
4346
4347/* The set of location functions used with the DWARF-2 expression
4348 evaluator and location lists. */
768a979c 4349const struct symbol_computed_ops dwarf2_loclist_funcs = {
0d53c4c4 4350 loclist_read_variable,
e18b2753 4351 loclist_read_variable_at_entry,
0d53c4c4
DJ
4352 loclist_read_needs_frame,
4353 loclist_describe_location,
f1e6e072 4354 1, /* location_has_loclist */
0d53c4c4
DJ
4355 loclist_tracepoint_var_ref
4356};
8e3b41a9 4357
70221824
PA
4358/* Provide a prototype to silence -Wmissing-prototypes. */
4359extern initialize_file_ftype _initialize_dwarf2loc;
4360
8e3b41a9
JK
4361void
4362_initialize_dwarf2loc (void)
4363{
ccce17b0
YQ
4364 add_setshow_zuinteger_cmd ("entry-values", class_maintenance,
4365 &entry_values_debug,
4366 _("Set entry values and tail call frames "
4367 "debugging."),
4368 _("Show entry values and tail call frames "
4369 "debugging."),
4370 _("When non-zero, the process of determining "
4371 "parameter values from function entry point "
4372 "and tail call frames will be printed."),
4373 NULL,
4374 show_entry_values_debug,
4375 &setdebuglist, &showdebuglist);
8e3b41a9 4376}
This page took 1.167729 seconds and 4 git commands to generate.