* gdb.threads/gcore-thread.exp: Use gdb_gcore_cmd.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
0b302171 3 Copyright (C) 1994-2012 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
9291a0cd
TT
58#include "exceptions.h"
59#include "gdb_stat.h"
96d19272 60#include "completer.h"
34eaf542 61#include "vec.h"
98bfdba5 62#include "c-lang.h"
a766d390 63#include "go-lang.h"
98bfdba5 64#include "valprint.h"
3019eac3 65#include "gdbcore.h" /* for gnutarget */
156942c7 66#include "gdb/gdb-index.h"
60d5a603 67#include <ctype.h>
cbb099e8 68#include "gdb_bfd.h"
4357ac6c 69#include "f-lang.h"
4c2df51b 70
c906108c
SS
71#include <fcntl.h>
72#include "gdb_string.h"
4bdf3d34 73#include "gdb_assert.h"
c906108c 74#include <sys/types.h>
d8151005 75
34eaf542
TT
76typedef struct symbol *symbolp;
77DEF_VEC_P (symbolp);
78
45cfd468
DE
79/* When non-zero, print basic high level tracing messages.
80 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
81static int dwarf2_read_debug = 0;
82
d97bc12b 83/* When non-zero, dump DIEs after they are read in. */
ccce17b0 84static unsigned int dwarf2_die_debug = 0;
d97bc12b 85
900e11f9
JK
86/* When non-zero, cross-check physname against demangler. */
87static int check_physname = 0;
88
481860b3 89/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 90static int use_deprecated_index_sections = 0;
481860b3 91
df8a16a1
DJ
92/* When set, the file that we're processing is known to have debugging
93 info for C++ namespaces. GCC 3.3.x did not produce this information,
94 but later versions do. */
95
96static int processing_has_namespace_info;
97
6502dd73
DJ
98static const struct objfile_data *dwarf2_objfile_data_key;
99
dce234bc
PP
100struct dwarf2_section_info
101{
102 asection *asection;
103 gdb_byte *buffer;
104 bfd_size_type size;
be391dca
TT
105 /* True if we have tried to read this section. */
106 int readin;
dce234bc
PP
107};
108
8b70b953
TT
109typedef struct dwarf2_section_info dwarf2_section_info_def;
110DEF_VEC_O (dwarf2_section_info_def);
111
9291a0cd
TT
112/* All offsets in the index are of this type. It must be
113 architecture-independent. */
114typedef uint32_t offset_type;
115
116DEF_VEC_I (offset_type);
117
156942c7
DE
118/* Ensure only legit values are used. */
119#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
120 do { \
121 gdb_assert ((unsigned int) (value) <= 1); \
122 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
123 } while (0)
124
125/* Ensure only legit values are used. */
126#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
127 do { \
128 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
129 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
130 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
131 } while (0)
132
133/* Ensure we don't use more than the alloted nuber of bits for the CU. */
134#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
135 do { \
136 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
137 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
138 } while (0)
139
9291a0cd
TT
140/* A description of the mapped index. The file format is described in
141 a comment by the code that writes the index. */
142struct mapped_index
143{
559a7a62
JK
144 /* Index data format version. */
145 int version;
146
9291a0cd
TT
147 /* The total length of the buffer. */
148 off_t total_size;
b11b1f88 149
9291a0cd
TT
150 /* A pointer to the address table data. */
151 const gdb_byte *address_table;
b11b1f88 152
9291a0cd
TT
153 /* Size of the address table data in bytes. */
154 offset_type address_table_size;
b11b1f88 155
3876f04e
DE
156 /* The symbol table, implemented as a hash table. */
157 const offset_type *symbol_table;
b11b1f88 158
9291a0cd 159 /* Size in slots, each slot is 2 offset_types. */
3876f04e 160 offset_type symbol_table_slots;
b11b1f88 161
9291a0cd
TT
162 /* A pointer to the constant pool. */
163 const char *constant_pool;
164};
165
95554aad
TT
166typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
167DEF_VEC_P (dwarf2_per_cu_ptr);
168
9cdd5dbd
DE
169/* Collection of data recorded per objfile.
170 This hangs off of dwarf2_objfile_data_key. */
171
6502dd73
DJ
172struct dwarf2_per_objfile
173{
dce234bc
PP
174 struct dwarf2_section_info info;
175 struct dwarf2_section_info abbrev;
176 struct dwarf2_section_info line;
dce234bc
PP
177 struct dwarf2_section_info loc;
178 struct dwarf2_section_info macinfo;
cf2c3c16 179 struct dwarf2_section_info macro;
dce234bc
PP
180 struct dwarf2_section_info str;
181 struct dwarf2_section_info ranges;
3019eac3 182 struct dwarf2_section_info addr;
dce234bc
PP
183 struct dwarf2_section_info frame;
184 struct dwarf2_section_info eh_frame;
9291a0cd 185 struct dwarf2_section_info gdb_index;
ae038cb0 186
8b70b953
TT
187 VEC (dwarf2_section_info_def) *types;
188
be391dca
TT
189 /* Back link. */
190 struct objfile *objfile;
191
d467dd73 192 /* Table of all the compilation units. This is used to locate
10b3939b 193 the target compilation unit of a particular reference. */
ae038cb0
DJ
194 struct dwarf2_per_cu_data **all_comp_units;
195
196 /* The number of compilation units in ALL_COMP_UNITS. */
197 int n_comp_units;
198
1fd400ff 199 /* The number of .debug_types-related CUs. */
d467dd73 200 int n_type_units;
1fd400ff 201
d467dd73 202 /* The .debug_types-related CUs (TUs). */
b4dd5633 203 struct signatured_type **all_type_units;
1fd400ff 204
f4dc4d17
DE
205 /* The number of entries in all_type_unit_groups. */
206 int n_type_unit_groups;
207
208 /* Table of type unit groups.
209 This exists to make it easy to iterate over all CUs and TU groups. */
210 struct type_unit_group **all_type_unit_groups;
211
212 /* Table of struct type_unit_group objects.
213 The hash key is the DW_AT_stmt_list value. */
214 htab_t type_unit_groups;
72dca2f5 215
348e048f
DE
216 /* A table mapping .debug_types signatures to its signatured_type entry.
217 This is NULL if the .debug_types section hasn't been read in yet. */
218 htab_t signatured_types;
219
f4dc4d17
DE
220 /* Type unit statistics, to see how well the scaling improvements
221 are doing. */
222 struct tu_stats
223 {
224 int nr_uniq_abbrev_tables;
225 int nr_symtabs;
226 int nr_symtab_sharers;
227 int nr_stmt_less_type_units;
228 } tu_stats;
229
230 /* A chain of compilation units that are currently read in, so that
231 they can be freed later. */
232 struct dwarf2_per_cu_data *read_in_chain;
233
3019eac3
DE
234 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
235 This is NULL if the table hasn't been allocated yet. */
236 htab_t dwo_files;
237
80626a55
DE
238 /* Non-zero if we've check for whether there is a DWP file. */
239 int dwp_checked;
240
241 /* The DWP file if there is one, or NULL. */
242 struct dwp_file *dwp_file;
243
36586728
TT
244 /* The shared '.dwz' file, if one exists. This is used when the
245 original data was compressed using 'dwz -m'. */
246 struct dwz_file *dwz_file;
247
72dca2f5
FR
248 /* A flag indicating wether this objfile has a section loaded at a
249 VMA of 0. */
250 int has_section_at_zero;
9291a0cd 251
ae2de4f8
DE
252 /* True if we are using the mapped index,
253 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
254 unsigned char using_index;
255
ae2de4f8 256 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 257 struct mapped_index *index_table;
98bfdba5 258
7b9f3c50
DE
259 /* When using index_table, this keeps track of all quick_file_names entries.
260 TUs can share line table entries with CUs or other TUs, and there can be
261 a lot more TUs than unique line tables, so we maintain a separate table
262 of all line table entries to support the sharing. */
263 htab_t quick_file_names_table;
264
98bfdba5
PA
265 /* Set during partial symbol reading, to prevent queueing of full
266 symbols. */
267 int reading_partial_symbols;
673bfd45 268
dee91e82 269 /* Table mapping type DIEs to their struct type *.
673bfd45 270 This is NULL if not allocated yet.
dee91e82
DE
271 The mapping is done via (CU/TU signature + DIE offset) -> type. */
272 htab_t die_type_hash;
95554aad
TT
273
274 /* The CUs we recently read. */
275 VEC (dwarf2_per_cu_ptr) *just_read_cus;
6502dd73
DJ
276};
277
278static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 279
251d32d9 280/* Default names of the debugging sections. */
c906108c 281
233a11ab
CS
282/* Note that if the debugging section has been compressed, it might
283 have a name like .zdebug_info. */
284
9cdd5dbd
DE
285static const struct dwarf2_debug_sections dwarf2_elf_names =
286{
251d32d9
TG
287 { ".debug_info", ".zdebug_info" },
288 { ".debug_abbrev", ".zdebug_abbrev" },
289 { ".debug_line", ".zdebug_line" },
290 { ".debug_loc", ".zdebug_loc" },
291 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 292 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
293 { ".debug_str", ".zdebug_str" },
294 { ".debug_ranges", ".zdebug_ranges" },
295 { ".debug_types", ".zdebug_types" },
3019eac3 296 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
297 { ".debug_frame", ".zdebug_frame" },
298 { ".eh_frame", NULL },
24d3216f
TT
299 { ".gdb_index", ".zgdb_index" },
300 23
251d32d9 301};
c906108c 302
80626a55 303/* List of DWO/DWP sections. */
3019eac3 304
80626a55 305static const struct dwop_section_names
3019eac3
DE
306{
307 struct dwarf2_section_names abbrev_dwo;
308 struct dwarf2_section_names info_dwo;
309 struct dwarf2_section_names line_dwo;
310 struct dwarf2_section_names loc_dwo;
09262596
DE
311 struct dwarf2_section_names macinfo_dwo;
312 struct dwarf2_section_names macro_dwo;
3019eac3
DE
313 struct dwarf2_section_names str_dwo;
314 struct dwarf2_section_names str_offsets_dwo;
315 struct dwarf2_section_names types_dwo;
80626a55
DE
316 struct dwarf2_section_names cu_index;
317 struct dwarf2_section_names tu_index;
3019eac3 318}
80626a55 319dwop_section_names =
3019eac3
DE
320{
321 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
322 { ".debug_info.dwo", ".zdebug_info.dwo" },
323 { ".debug_line.dwo", ".zdebug_line.dwo" },
324 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
325 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
326 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
327 { ".debug_str.dwo", ".zdebug_str.dwo" },
328 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
329 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
330 { ".debug_cu_index", ".zdebug_cu_index" },
331 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
332};
333
c906108c
SS
334/* local data types */
335
107d2387
AC
336/* The data in a compilation unit header, after target2host
337 translation, looks like this. */
c906108c 338struct comp_unit_head
a738430d 339{
c764a876 340 unsigned int length;
a738430d 341 short version;
a738430d
MK
342 unsigned char addr_size;
343 unsigned char signed_addr_p;
b64f50a1 344 sect_offset abbrev_offset;
57349743 345
a738430d
MK
346 /* Size of file offsets; either 4 or 8. */
347 unsigned int offset_size;
57349743 348
a738430d
MK
349 /* Size of the length field; either 4 or 12. */
350 unsigned int initial_length_size;
57349743 351
a738430d
MK
352 /* Offset to the first byte of this compilation unit header in the
353 .debug_info section, for resolving relative reference dies. */
b64f50a1 354 sect_offset offset;
57349743 355
d00adf39
DE
356 /* Offset to first die in this cu from the start of the cu.
357 This will be the first byte following the compilation unit header. */
b64f50a1 358 cu_offset first_die_offset;
a738430d 359};
c906108c 360
3da10d80
KS
361/* Type used for delaying computation of method physnames.
362 See comments for compute_delayed_physnames. */
363struct delayed_method_info
364{
365 /* The type to which the method is attached, i.e., its parent class. */
366 struct type *type;
367
368 /* The index of the method in the type's function fieldlists. */
369 int fnfield_index;
370
371 /* The index of the method in the fieldlist. */
372 int index;
373
374 /* The name of the DIE. */
375 const char *name;
376
377 /* The DIE associated with this method. */
378 struct die_info *die;
379};
380
381typedef struct delayed_method_info delayed_method_info;
382DEF_VEC_O (delayed_method_info);
383
e7c27a73
DJ
384/* Internal state when decoding a particular compilation unit. */
385struct dwarf2_cu
386{
387 /* The objfile containing this compilation unit. */
388 struct objfile *objfile;
389
d00adf39 390 /* The header of the compilation unit. */
e7c27a73 391 struct comp_unit_head header;
e142c38c 392
d00adf39
DE
393 /* Base address of this compilation unit. */
394 CORE_ADDR base_address;
395
396 /* Non-zero if base_address has been set. */
397 int base_known;
398
e142c38c
DJ
399 /* The language we are debugging. */
400 enum language language;
401 const struct language_defn *language_defn;
402
b0f35d58
DL
403 const char *producer;
404
e142c38c
DJ
405 /* The generic symbol table building routines have separate lists for
406 file scope symbols and all all other scopes (local scopes). So
407 we need to select the right one to pass to add_symbol_to_list().
408 We do it by keeping a pointer to the correct list in list_in_scope.
409
410 FIXME: The original dwarf code just treated the file scope as the
411 first local scope, and all other local scopes as nested local
412 scopes, and worked fine. Check to see if we really need to
413 distinguish these in buildsym.c. */
414 struct pending **list_in_scope;
415
433df2d4
DE
416 /* The abbrev table for this CU.
417 Normally this points to the abbrev table in the objfile.
418 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
419 struct abbrev_table *abbrev_table;
72bf9492 420
b64f50a1
JK
421 /* Hash table holding all the loaded partial DIEs
422 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
423 htab_t partial_dies;
424
425 /* Storage for things with the same lifetime as this read-in compilation
426 unit, including partial DIEs. */
427 struct obstack comp_unit_obstack;
428
ae038cb0
DJ
429 /* When multiple dwarf2_cu structures are living in memory, this field
430 chains them all together, so that they can be released efficiently.
431 We will probably also want a generation counter so that most-recently-used
432 compilation units are cached... */
433 struct dwarf2_per_cu_data *read_in_chain;
434
435 /* Backchain to our per_cu entry if the tree has been built. */
436 struct dwarf2_per_cu_data *per_cu;
437
438 /* How many compilation units ago was this CU last referenced? */
439 int last_used;
440
b64f50a1
JK
441 /* A hash table of DIE cu_offset for following references with
442 die_info->offset.sect_off as hash. */
51545339 443 htab_t die_hash;
10b3939b
DJ
444
445 /* Full DIEs if read in. */
446 struct die_info *dies;
447
448 /* A set of pointers to dwarf2_per_cu_data objects for compilation
449 units referenced by this one. Only set during full symbol processing;
450 partial symbol tables do not have dependencies. */
451 htab_t dependencies;
452
cb1df416
DJ
453 /* Header data from the line table, during full symbol processing. */
454 struct line_header *line_header;
455
3da10d80
KS
456 /* A list of methods which need to have physnames computed
457 after all type information has been read. */
458 VEC (delayed_method_info) *method_list;
459
96408a79
SA
460 /* To be copied to symtab->call_site_htab. */
461 htab_t call_site_htab;
462
034e5797
DE
463 /* Non-NULL if this CU came from a DWO file.
464 There is an invariant here that is important to remember:
465 Except for attributes copied from the top level DIE in the "main"
466 (or "stub") file in preparation for reading the DWO file
467 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
468 Either there isn't a DWO file (in which case this is NULL and the point
469 is moot), or there is and either we're not going to read it (in which
470 case this is NULL) or there is and we are reading it (in which case this
471 is non-NULL). */
3019eac3
DE
472 struct dwo_unit *dwo_unit;
473
474 /* The DW_AT_addr_base attribute if present, zero otherwise
475 (zero is a valid value though).
476 Note this value comes from the stub CU/TU's DIE. */
477 ULONGEST addr_base;
478
2e3cf129
DE
479 /* The DW_AT_ranges_base attribute if present, zero otherwise
480 (zero is a valid value though).
481 Note this value comes from the stub CU/TU's DIE.
482 Also note that the value is zero in the non-DWO case so this value can
483 be used without needing to know whether DWO files are in use or not. */
484 ULONGEST ranges_base;
485
ae038cb0
DJ
486 /* Mark used when releasing cached dies. */
487 unsigned int mark : 1;
488
8be455d7
JK
489 /* This CU references .debug_loc. See the symtab->locations_valid field.
490 This test is imperfect as there may exist optimized debug code not using
491 any location list and still facing inlining issues if handled as
492 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 493 unsigned int has_loclist : 1;
ba919b58 494
685b1105
JK
495 /* These cache the results for producer_is_gxx_lt_4_6 and producer_is_icc.
496 CHECKED_PRODUCER is set if both PRODUCER_IS_GXX_LT_4_6 and PRODUCER_IS_ICC
497 are valid. This information is cached because profiling CU expansion
498 showed excessive time spent in producer_is_gxx_lt_4_6. */
ba919b58
TT
499 unsigned int checked_producer : 1;
500 unsigned int producer_is_gxx_lt_4_6 : 1;
685b1105 501 unsigned int producer_is_icc : 1;
e7c27a73
DJ
502};
503
10b3939b
DJ
504/* Persistent data held for a compilation unit, even when not
505 processing it. We put a pointer to this structure in the
28dee7f5 506 read_symtab_private field of the psymtab. */
10b3939b 507
ae038cb0
DJ
508struct dwarf2_per_cu_data
509{
36586728 510 /* The start offset and length of this compilation unit.
45452591 511 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
512 initial_length_size.
513 If the DIE refers to a DWO file, this is always of the original die,
514 not the DWO file. */
b64f50a1 515 sect_offset offset;
36586728 516 unsigned int length;
ae038cb0
DJ
517
518 /* Flag indicating this compilation unit will be read in before
519 any of the current compilation units are processed. */
c764a876 520 unsigned int queued : 1;
ae038cb0 521
0d99eb77
DE
522 /* This flag will be set when reading partial DIEs if we need to load
523 absolutely all DIEs for this compilation unit, instead of just the ones
524 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
525 hash table and don't find it. */
526 unsigned int load_all_dies : 1;
527
3019eac3
DE
528 /* Non-zero if this CU is from .debug_types. */
529 unsigned int is_debug_types : 1;
530
36586728
TT
531 /* Non-zero if this CU is from the .dwz file. */
532 unsigned int is_dwz : 1;
533
3019eac3
DE
534 /* The section this CU/TU lives in.
535 If the DIE refers to a DWO file, this is always the original die,
536 not the DWO file. */
537 struct dwarf2_section_info *info_or_types_section;
348e048f 538
17ea53c3
JK
539 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
540 of the CU cache it gets reset to NULL again. */
ae038cb0 541 struct dwarf2_cu *cu;
1c379e20 542
9cdd5dbd
DE
543 /* The corresponding objfile.
544 Normally we can get the objfile from dwarf2_per_objfile.
545 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
546 struct objfile *objfile;
547
548 /* When using partial symbol tables, the 'psymtab' field is active.
549 Otherwise the 'quick' field is active. */
550 union
551 {
552 /* The partial symbol table associated with this compilation unit,
95554aad 553 or NULL for unread partial units. */
9291a0cd
TT
554 struct partial_symtab *psymtab;
555
556 /* Data needed by the "quick" functions. */
557 struct dwarf2_per_cu_quick_data *quick;
558 } v;
95554aad 559
f4dc4d17
DE
560 union
561 {
562 /* The CUs we import using DW_TAG_imported_unit. This is filled in
563 while reading psymtabs, used to compute the psymtab dependencies,
564 and then cleared. Then it is filled in again while reading full
565 symbols, and only deleted when the objfile is destroyed. */
566 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
567
568 /* Type units are grouped by their DW_AT_stmt_list entry so that they
569 can share them. If this is a TU, this points to the containing
570 symtab. */
571 struct type_unit_group *type_unit_group;
572 } s;
ae038cb0
DJ
573};
574
348e048f
DE
575/* Entry in the signatured_types hash table. */
576
577struct signatured_type
578{
42e7ad6c
DE
579 /* The "per_cu" object of this type.
580 N.B.: This is the first member so that it's easy to convert pointers
581 between them. */
582 struct dwarf2_per_cu_data per_cu;
583
3019eac3 584 /* The type's signature. */
348e048f
DE
585 ULONGEST signature;
586
3019eac3
DE
587 /* Offset in the TU of the type's DIE, as read from the TU header.
588 If the definition lives in a DWO file, this value is unusable. */
589 cu_offset type_offset_in_tu;
590
591 /* Offset in the section of the type's DIE.
592 If the definition lives in a DWO file, this is the offset in the
593 .debug_types.dwo section.
594 The value is zero until the actual value is known.
595 Zero is otherwise not a valid section offset. */
596 sect_offset type_offset_in_section;
348e048f
DE
597};
598
094b34ac
DE
599/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
600 This includes type_unit_group and quick_file_names. */
601
602struct stmt_list_hash
603{
604 /* The DWO unit this table is from or NULL if there is none. */
605 struct dwo_unit *dwo_unit;
606
607 /* Offset in .debug_line or .debug_line.dwo. */
608 sect_offset line_offset;
609};
610
f4dc4d17
DE
611/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
612 an object of this type. */
613
614struct type_unit_group
615{
616 /* dwarf2read.c's main "handle" on the symtab.
617 To simplify things we create an artificial CU that "includes" all the
618 type units using this stmt_list so that the rest of the code still has
619 a "per_cu" handle on the symtab.
620 This PER_CU is recognized by having no section. */
621#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->info_or_types_section == NULL)
094b34ac
DE
622 struct dwarf2_per_cu_data per_cu;
623
624 union
625 {
626 /* The TUs that share this DW_AT_stmt_list entry.
627 This is added to while parsing type units to build partial symtabs,
628 and is deleted afterwards and not used again. */
629 VEC (dwarf2_per_cu_ptr) *tus;
f4dc4d17 630
094b34ac
DE
631 /* When reading the line table in "quick" functions, we need a real TU.
632 Any will do, we know they all share the same DW_AT_stmt_list entry.
633 For simplicity's sake, we pick the first one. */
634 struct dwarf2_per_cu_data *first_tu;
635 } t;
f4dc4d17
DE
636
637 /* The primary symtab.
094b34ac
DE
638 Type units in a group needn't all be defined in the same source file,
639 so we create an essentially anonymous symtab as the primary symtab. */
f4dc4d17
DE
640 struct symtab *primary_symtab;
641
094b34ac
DE
642 /* The data used to construct the hash key. */
643 struct stmt_list_hash hash;
f4dc4d17
DE
644
645 /* The number of symtabs from the line header.
646 The value here must match line_header.num_file_names. */
647 unsigned int num_symtabs;
648
649 /* The symbol tables for this TU (obtained from the files listed in
650 DW_AT_stmt_list).
651 WARNING: The order of entries here must match the order of entries
652 in the line header. After the first TU using this type_unit_group, the
653 line header for the subsequent TUs is recreated from this. This is done
654 because we need to use the same symtabs for each TU using the same
655 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
656 there's no guarantee the line header doesn't have duplicate entries. */
657 struct symtab **symtabs;
658};
659
80626a55 660/* These sections are what may appear in a DWO file. */
3019eac3
DE
661
662struct dwo_sections
663{
664 struct dwarf2_section_info abbrev;
3019eac3
DE
665 struct dwarf2_section_info line;
666 struct dwarf2_section_info loc;
09262596
DE
667 struct dwarf2_section_info macinfo;
668 struct dwarf2_section_info macro;
3019eac3
DE
669 struct dwarf2_section_info str;
670 struct dwarf2_section_info str_offsets;
80626a55
DE
671 /* In the case of a virtual DWO file, these two are unused. */
672 struct dwarf2_section_info info;
3019eac3
DE
673 VEC (dwarf2_section_info_def) *types;
674};
675
676/* Common bits of DWO CUs/TUs. */
677
678struct dwo_unit
679{
680 /* Backlink to the containing struct dwo_file. */
681 struct dwo_file *dwo_file;
682
683 /* The "id" that distinguishes this CU/TU.
684 .debug_info calls this "dwo_id", .debug_types calls this "signature".
685 Since signatures came first, we stick with it for consistency. */
686 ULONGEST signature;
687
688 /* The section this CU/TU lives in, in the DWO file. */
689 struct dwarf2_section_info *info_or_types_section;
690
691 /* Same as dwarf2_per_cu_data:{offset,length} but for the DWO section. */
692 sect_offset offset;
693 unsigned int length;
694
695 /* For types, offset in the type's DIE of the type defined by this TU. */
696 cu_offset type_offset_in_tu;
697};
698
80626a55
DE
699/* Data for one DWO file.
700 This includes virtual DWO files that have been packaged into a
701 DWP file. */
3019eac3
DE
702
703struct dwo_file
704{
80626a55
DE
705 /* The DW_AT_GNU_dwo_name attribute. This is the hash key.
706 For virtual DWO files the name is constructed from the section offsets
707 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
708 from related CU+TUs. */
709 const char *name;
3019eac3 710
80626a55
DE
711 /* The bfd, when the file is open. Otherwise this is NULL.
712 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
713 bfd *dbfd;
3019eac3
DE
714
715 /* Section info for this file. */
716 struct dwo_sections sections;
717
718 /* Table of CUs in the file.
719 Each element is a struct dwo_unit. */
720 htab_t cus;
721
722 /* Table of TUs in the file.
723 Each element is a struct dwo_unit. */
724 htab_t tus;
725};
726
80626a55
DE
727/* These sections are what may appear in a DWP file. */
728
729struct dwp_sections
730{
731 struct dwarf2_section_info str;
732 struct dwarf2_section_info cu_index;
733 struct dwarf2_section_info tu_index;
734 /* The .debug_info.dwo, .debug_types.dwo, and other sections are referenced
735 by section number. We don't need to record them here. */
736};
737
738/* These sections are what may appear in a virtual DWO file. */
739
740struct virtual_dwo_sections
741{
742 struct dwarf2_section_info abbrev;
743 struct dwarf2_section_info line;
744 struct dwarf2_section_info loc;
745 struct dwarf2_section_info macinfo;
746 struct dwarf2_section_info macro;
747 struct dwarf2_section_info str_offsets;
748 /* Each DWP hash table entry records one CU or one TU.
749 That is recorded here, and copied to dwo_unit.info_or_types_section. */
750 struct dwarf2_section_info info_or_types;
751};
752
753/* Contents of DWP hash tables. */
754
755struct dwp_hash_table
756{
757 uint32_t nr_units, nr_slots;
758 const gdb_byte *hash_table, *unit_table, *section_pool;
759};
760
761/* Data for one DWP file. */
762
763struct dwp_file
764{
765 /* Name of the file. */
766 const char *name;
767
768 /* The bfd, when the file is open. Otherwise this is NULL. */
769 bfd *dbfd;
770
771 /* Section info for this file. */
772 struct dwp_sections sections;
773
774 /* Table of CUs in the file. */
775 const struct dwp_hash_table *cus;
776
777 /* Table of TUs in the file. */
778 const struct dwp_hash_table *tus;
779
780 /* Table of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
781 htab_t loaded_cutus;
782
783 /* Table to map ELF section numbers to their sections. */
784 unsigned int num_sections;
785 asection **elf_sections;
786};
787
36586728
TT
788/* This represents a '.dwz' file. */
789
790struct dwz_file
791{
792 /* A dwz file can only contain a few sections. */
793 struct dwarf2_section_info abbrev;
794 struct dwarf2_section_info info;
795 struct dwarf2_section_info str;
796 struct dwarf2_section_info line;
797 struct dwarf2_section_info macro;
2ec9a5e0 798 struct dwarf2_section_info gdb_index;
36586728
TT
799
800 /* The dwz's BFD. */
801 bfd *dwz_bfd;
802};
803
0963b4bd
MS
804/* Struct used to pass misc. parameters to read_die_and_children, et
805 al. which are used for both .debug_info and .debug_types dies.
806 All parameters here are unchanging for the life of the call. This
dee91e82 807 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
808
809struct die_reader_specs
810{
dee91e82 811 /* die_section->asection->owner. */
93311388
DE
812 bfd* abfd;
813
814 /* The CU of the DIE we are parsing. */
815 struct dwarf2_cu *cu;
816
80626a55 817 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
818 struct dwo_file *dwo_file;
819
dee91e82 820 /* The section the die comes from.
3019eac3 821 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
822 struct dwarf2_section_info *die_section;
823
824 /* die_section->buffer. */
825 gdb_byte *buffer;
f664829e
DE
826
827 /* The end of the buffer. */
828 const gdb_byte *buffer_end;
93311388
DE
829};
830
fd820528 831/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82
DE
832typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
833 gdb_byte *info_ptr,
834 struct die_info *comp_unit_die,
835 int has_children,
836 void *data);
837
debd256d
JB
838/* The line number information for a compilation unit (found in the
839 .debug_line section) begins with a "statement program header",
840 which contains the following information. */
841struct line_header
842{
843 unsigned int total_length;
844 unsigned short version;
845 unsigned int header_length;
846 unsigned char minimum_instruction_length;
2dc7f7b3 847 unsigned char maximum_ops_per_instruction;
debd256d
JB
848 unsigned char default_is_stmt;
849 int line_base;
850 unsigned char line_range;
851 unsigned char opcode_base;
852
853 /* standard_opcode_lengths[i] is the number of operands for the
854 standard opcode whose value is i. This means that
855 standard_opcode_lengths[0] is unused, and the last meaningful
856 element is standard_opcode_lengths[opcode_base - 1]. */
857 unsigned char *standard_opcode_lengths;
858
859 /* The include_directories table. NOTE! These strings are not
860 allocated with xmalloc; instead, they are pointers into
861 debug_line_buffer. If you try to free them, `free' will get
862 indigestion. */
863 unsigned int num_include_dirs, include_dirs_size;
864 char **include_dirs;
865
866 /* The file_names table. NOTE! These strings are not allocated
867 with xmalloc; instead, they are pointers into debug_line_buffer.
868 Don't try to free them directly. */
869 unsigned int num_file_names, file_names_size;
870 struct file_entry
c906108c 871 {
debd256d
JB
872 char *name;
873 unsigned int dir_index;
874 unsigned int mod_time;
875 unsigned int length;
aaa75496 876 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 877 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
878 } *file_names;
879
880 /* The start and end of the statement program following this
6502dd73 881 header. These point into dwarf2_per_objfile->line_buffer. */
fe1b8b76 882 gdb_byte *statement_program_start, *statement_program_end;
debd256d 883};
c906108c
SS
884
885/* When we construct a partial symbol table entry we only
0963b4bd 886 need this much information. */
c906108c
SS
887struct partial_die_info
888 {
72bf9492 889 /* Offset of this DIE. */
b64f50a1 890 sect_offset offset;
72bf9492
DJ
891
892 /* DWARF-2 tag for this DIE. */
893 ENUM_BITFIELD(dwarf_tag) tag : 16;
894
72bf9492
DJ
895 /* Assorted flags describing the data found in this DIE. */
896 unsigned int has_children : 1;
897 unsigned int is_external : 1;
898 unsigned int is_declaration : 1;
899 unsigned int has_type : 1;
900 unsigned int has_specification : 1;
901 unsigned int has_pc_info : 1;
481860b3 902 unsigned int may_be_inlined : 1;
72bf9492
DJ
903
904 /* Flag set if the SCOPE field of this structure has been
905 computed. */
906 unsigned int scope_set : 1;
907
fa4028e9
JB
908 /* Flag set if the DIE has a byte_size attribute. */
909 unsigned int has_byte_size : 1;
910
98bfdba5
PA
911 /* Flag set if any of the DIE's children are template arguments. */
912 unsigned int has_template_arguments : 1;
913
abc72ce4
DE
914 /* Flag set if fixup_partial_die has been called on this die. */
915 unsigned int fixup_called : 1;
916
36586728
TT
917 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
918 unsigned int is_dwz : 1;
919
920 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
921 unsigned int spec_is_dwz : 1;
922
72bf9492 923 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 924 sometimes a default name for unnamed DIEs. */
c906108c 925 char *name;
72bf9492 926
abc72ce4
DE
927 /* The linkage name, if present. */
928 const char *linkage_name;
929
72bf9492
DJ
930 /* The scope to prepend to our children. This is generally
931 allocated on the comp_unit_obstack, so will disappear
932 when this compilation unit leaves the cache. */
933 char *scope;
934
95554aad
TT
935 /* Some data associated with the partial DIE. The tag determines
936 which field is live. */
937 union
938 {
939 /* The location description associated with this DIE, if any. */
940 struct dwarf_block *locdesc;
941 /* The offset of an import, for DW_TAG_imported_unit. */
942 sect_offset offset;
943 } d;
72bf9492
DJ
944
945 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
946 CORE_ADDR lowpc;
947 CORE_ADDR highpc;
72bf9492 948
93311388 949 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 950 DW_AT_sibling, if any. */
abc72ce4
DE
951 /* NOTE: This member isn't strictly necessary, read_partial_die could
952 return DW_AT_sibling values to its caller load_partial_dies. */
fe1b8b76 953 gdb_byte *sibling;
72bf9492
DJ
954
955 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
956 DW_AT_specification (or DW_AT_abstract_origin or
957 DW_AT_extension). */
b64f50a1 958 sect_offset spec_offset;
72bf9492
DJ
959
960 /* Pointers to this DIE's parent, first child, and next sibling,
961 if any. */
962 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
963 };
964
0963b4bd 965/* This data structure holds the information of an abbrev. */
c906108c
SS
966struct abbrev_info
967 {
968 unsigned int number; /* number identifying abbrev */
969 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
970 unsigned short has_children; /* boolean */
971 unsigned short num_attrs; /* number of attributes */
c906108c
SS
972 struct attr_abbrev *attrs; /* an array of attribute descriptions */
973 struct abbrev_info *next; /* next in chain */
974 };
975
976struct attr_abbrev
977 {
9d25dd43
DE
978 ENUM_BITFIELD(dwarf_attribute) name : 16;
979 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
980 };
981
433df2d4
DE
982/* Size of abbrev_table.abbrev_hash_table. */
983#define ABBREV_HASH_SIZE 121
984
985/* Top level data structure to contain an abbreviation table. */
986
987struct abbrev_table
988{
f4dc4d17
DE
989 /* Where the abbrev table came from.
990 This is used as a sanity check when the table is used. */
433df2d4
DE
991 sect_offset offset;
992
993 /* Storage for the abbrev table. */
994 struct obstack abbrev_obstack;
995
996 /* Hash table of abbrevs.
997 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
998 It could be statically allocated, but the previous code didn't so we
999 don't either. */
1000 struct abbrev_info **abbrevs;
1001};
1002
0963b4bd 1003/* Attributes have a name and a value. */
b60c80d6
DJ
1004struct attribute
1005 {
9d25dd43 1006 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1007 ENUM_BITFIELD(dwarf_form) form : 15;
1008
1009 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1010 field should be in u.str (existing only for DW_STRING) but it is kept
1011 here for better struct attribute alignment. */
1012 unsigned int string_is_canonical : 1;
1013
b60c80d6
DJ
1014 union
1015 {
1016 char *str;
1017 struct dwarf_block *blk;
43bbcdc2
PH
1018 ULONGEST unsnd;
1019 LONGEST snd;
b60c80d6 1020 CORE_ADDR addr;
348e048f 1021 struct signatured_type *signatured_type;
b60c80d6
DJ
1022 }
1023 u;
1024 };
1025
0963b4bd 1026/* This data structure holds a complete die structure. */
c906108c
SS
1027struct die_info
1028 {
76815b17
DE
1029 /* DWARF-2 tag for this DIE. */
1030 ENUM_BITFIELD(dwarf_tag) tag : 16;
1031
1032 /* Number of attributes */
98bfdba5
PA
1033 unsigned char num_attrs;
1034
1035 /* True if we're presently building the full type name for the
1036 type derived from this DIE. */
1037 unsigned char building_fullname : 1;
76815b17
DE
1038
1039 /* Abbrev number */
1040 unsigned int abbrev;
1041
93311388 1042 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1043 sect_offset offset;
78ba4af6
JB
1044
1045 /* The dies in a compilation unit form an n-ary tree. PARENT
1046 points to this die's parent; CHILD points to the first child of
1047 this node; and all the children of a given node are chained
4950bc1c 1048 together via their SIBLING fields. */
639d11d3
DC
1049 struct die_info *child; /* Its first child, if any. */
1050 struct die_info *sibling; /* Its next sibling, if any. */
1051 struct die_info *parent; /* Its parent, if any. */
c906108c 1052
b60c80d6
DJ
1053 /* An array of attributes, with NUM_ATTRS elements. There may be
1054 zero, but it's not common and zero-sized arrays are not
1055 sufficiently portable C. */
1056 struct attribute attrs[1];
c906108c
SS
1057 };
1058
0963b4bd 1059/* Get at parts of an attribute structure. */
c906108c
SS
1060
1061#define DW_STRING(attr) ((attr)->u.str)
8285870a 1062#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1063#define DW_UNSND(attr) ((attr)->u.unsnd)
1064#define DW_BLOCK(attr) ((attr)->u.blk)
1065#define DW_SND(attr) ((attr)->u.snd)
1066#define DW_ADDR(attr) ((attr)->u.addr)
348e048f 1067#define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
c906108c 1068
0963b4bd 1069/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1070struct dwarf_block
1071 {
56eb65bd 1072 size_t size;
1d6edc3c
JK
1073
1074 /* Valid only if SIZE is not zero. */
fe1b8b76 1075 gdb_byte *data;
c906108c
SS
1076 };
1077
c906108c
SS
1078#ifndef ATTR_ALLOC_CHUNK
1079#define ATTR_ALLOC_CHUNK 4
1080#endif
1081
c906108c
SS
1082/* Allocate fields for structs, unions and enums in this size. */
1083#ifndef DW_FIELD_ALLOC_CHUNK
1084#define DW_FIELD_ALLOC_CHUNK 4
1085#endif
1086
c906108c
SS
1087/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1088 but this would require a corresponding change in unpack_field_as_long
1089 and friends. */
1090static int bits_per_byte = 8;
1091
1092/* The routines that read and process dies for a C struct or C++ class
1093 pass lists of data member fields and lists of member function fields
1094 in an instance of a field_info structure, as defined below. */
1095struct field_info
c5aa993b 1096 {
0963b4bd 1097 /* List of data member and baseclasses fields. */
c5aa993b
JM
1098 struct nextfield
1099 {
1100 struct nextfield *next;
1101 int accessibility;
1102 int virtuality;
1103 struct field field;
1104 }
7d0ccb61 1105 *fields, *baseclasses;
c906108c 1106
7d0ccb61 1107 /* Number of fields (including baseclasses). */
c5aa993b 1108 int nfields;
c906108c 1109
c5aa993b
JM
1110 /* Number of baseclasses. */
1111 int nbaseclasses;
c906108c 1112
c5aa993b
JM
1113 /* Set if the accesibility of one of the fields is not public. */
1114 int non_public_fields;
c906108c 1115
c5aa993b
JM
1116 /* Member function fields array, entries are allocated in the order they
1117 are encountered in the object file. */
1118 struct nextfnfield
1119 {
1120 struct nextfnfield *next;
1121 struct fn_field fnfield;
1122 }
1123 *fnfields;
c906108c 1124
c5aa993b
JM
1125 /* Member function fieldlist array, contains name of possibly overloaded
1126 member function, number of overloaded member functions and a pointer
1127 to the head of the member function field chain. */
1128 struct fnfieldlist
1129 {
1130 char *name;
1131 int length;
1132 struct nextfnfield *head;
1133 }
1134 *fnfieldlists;
c906108c 1135
c5aa993b
JM
1136 /* Number of entries in the fnfieldlists array. */
1137 int nfnfields;
98751a41
JK
1138
1139 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1140 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1141 struct typedef_field_list
1142 {
1143 struct typedef_field field;
1144 struct typedef_field_list *next;
1145 }
1146 *typedef_field_list;
1147 unsigned typedef_field_list_count;
c5aa993b 1148 };
c906108c 1149
10b3939b
DJ
1150/* One item on the queue of compilation units to read in full symbols
1151 for. */
1152struct dwarf2_queue_item
1153{
1154 struct dwarf2_per_cu_data *per_cu;
95554aad 1155 enum language pretend_language;
10b3939b
DJ
1156 struct dwarf2_queue_item *next;
1157};
1158
1159/* The current queue. */
1160static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1161
ae038cb0
DJ
1162/* Loaded secondary compilation units are kept in memory until they
1163 have not been referenced for the processing of this many
1164 compilation units. Set this to zero to disable caching. Cache
1165 sizes of up to at least twenty will improve startup time for
1166 typical inter-CU-reference binaries, at an obvious memory cost. */
1167static int dwarf2_max_cache_age = 5;
920d2a44
AC
1168static void
1169show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1170 struct cmd_list_element *c, const char *value)
1171{
3e43a32a
MS
1172 fprintf_filtered (file, _("The upper bound on the age of cached "
1173 "dwarf2 compilation units is %s.\n"),
920d2a44
AC
1174 value);
1175}
1176
ae038cb0 1177
0963b4bd 1178/* Various complaints about symbol reading that don't abort the process. */
c906108c 1179
4d3c2250
KB
1180static void
1181dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 1182{
4d3c2250 1183 complaint (&symfile_complaints,
e2e0b3e5 1184 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
1185}
1186
25e43795
DJ
1187static void
1188dwarf2_debug_line_missing_file_complaint (void)
1189{
1190 complaint (&symfile_complaints,
1191 _(".debug_line section has line data without a file"));
1192}
1193
59205f5a
JB
1194static void
1195dwarf2_debug_line_missing_end_sequence_complaint (void)
1196{
1197 complaint (&symfile_complaints,
3e43a32a
MS
1198 _(".debug_line section has line "
1199 "program sequence without an end"));
59205f5a
JB
1200}
1201
4d3c2250
KB
1202static void
1203dwarf2_complex_location_expr_complaint (void)
2e276125 1204{
e2e0b3e5 1205 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
1206}
1207
4d3c2250
KB
1208static void
1209dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1210 int arg3)
2e276125 1211{
4d3c2250 1212 complaint (&symfile_complaints,
3e43a32a
MS
1213 _("const value length mismatch for '%s', got %d, expected %d"),
1214 arg1, arg2, arg3);
4d3c2250
KB
1215}
1216
1217static void
f664829e 1218dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2e276125 1219{
4d3c2250 1220 complaint (&symfile_complaints,
f664829e
DE
1221 _("debug info runs off end of %s section"
1222 " [in module %s]"),
1223 section->asection->name,
1224 bfd_get_filename (section->asection->owner));
4d3c2250
KB
1225}
1226
1227static void
1228dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 1229{
4d3c2250 1230 complaint (&symfile_complaints,
3e43a32a
MS
1231 _("macro debug info contains a "
1232 "malformed macro definition:\n`%s'"),
4d3c2250
KB
1233 arg1);
1234}
1235
1236static void
1237dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 1238{
4d3c2250 1239 complaint (&symfile_complaints,
3e43a32a
MS
1240 _("invalid attribute class or form for '%s' in '%s'"),
1241 arg1, arg2);
4d3c2250 1242}
c906108c 1243
c906108c
SS
1244/* local function prototypes */
1245
4efb68b1 1246static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1247
aaa75496
JB
1248static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
1249 struct objfile *);
1250
918dd910
JK
1251static void dwarf2_find_base_address (struct die_info *die,
1252 struct dwarf2_cu *cu);
1253
c67a9c90 1254static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1255
72bf9492
DJ
1256static void scan_partial_symbols (struct partial_die_info *,
1257 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1258 int, struct dwarf2_cu *);
c906108c 1259
72bf9492
DJ
1260static void add_partial_symbol (struct partial_die_info *,
1261 struct dwarf2_cu *);
63d06c5c 1262
72bf9492
DJ
1263static void add_partial_namespace (struct partial_die_info *pdi,
1264 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1265 int need_pc, struct dwarf2_cu *cu);
63d06c5c 1266
5d7cb8df
JK
1267static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1268 CORE_ADDR *highpc, int need_pc,
1269 struct dwarf2_cu *cu);
1270
72bf9492
DJ
1271static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1272 struct dwarf2_cu *cu);
91c24f0a 1273
bc30ff58
JB
1274static void add_partial_subprogram (struct partial_die_info *pdi,
1275 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1276 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1277
a14ed312 1278static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
c906108c 1279
a14ed312 1280static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1281
433df2d4
DE
1282static struct abbrev_info *abbrev_table_lookup_abbrev
1283 (const struct abbrev_table *, unsigned int);
1284
1285static struct abbrev_table *abbrev_table_read_table
1286 (struct dwarf2_section_info *, sect_offset);
1287
1288static void abbrev_table_free (struct abbrev_table *);
1289
f4dc4d17
DE
1290static void abbrev_table_free_cleanup (void *);
1291
dee91e82
DE
1292static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1293 struct dwarf2_section_info *);
c906108c 1294
f3dd6933 1295static void dwarf2_free_abbrev_table (void *);
c906108c 1296
6caca83c
CC
1297static unsigned int peek_abbrev_code (bfd *, gdb_byte *);
1298
dee91e82
DE
1299static struct partial_die_info *load_partial_dies
1300 (const struct die_reader_specs *, gdb_byte *, int);
72bf9492 1301
dee91e82
DE
1302static gdb_byte *read_partial_die (const struct die_reader_specs *,
1303 struct partial_die_info *,
1304 struct abbrev_info *,
1305 unsigned int,
1306 gdb_byte *);
c906108c 1307
36586728 1308static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1309 struct dwarf2_cu *);
72bf9492
DJ
1310
1311static void fixup_partial_die (struct partial_die_info *,
1312 struct dwarf2_cu *);
1313
dee91e82
DE
1314static gdb_byte *read_attribute (const struct die_reader_specs *,
1315 struct attribute *, struct attr_abbrev *,
1316 gdb_byte *);
a8329558 1317
a1855c1d 1318static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1319
a1855c1d 1320static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1321
a1855c1d 1322static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1323
a1855c1d 1324static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1325
a1855c1d 1326static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1327
fe1b8b76 1328static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1329 unsigned int *);
c906108c 1330
c764a876
DE
1331static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
1332
1333static LONGEST read_checked_initial_length_and_offset
1334 (bfd *, gdb_byte *, const struct comp_unit_head *,
1335 unsigned int *, unsigned int *);
613e1657 1336
fe1b8b76 1337static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
c764a876
DE
1338 unsigned int *);
1339
1340static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
613e1657 1341
f4dc4d17
DE
1342static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1343 sect_offset);
1344
fe1b8b76 1345static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
c906108c 1346
9b1c24c8 1347static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
c906108c 1348
fe1b8b76
JB
1349static char *read_indirect_string (bfd *, gdb_byte *,
1350 const struct comp_unit_head *,
1351 unsigned int *);
4bdf3d34 1352
36586728
TT
1353static char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
1354
12df843f 1355static ULONGEST read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 1356
12df843f 1357static LONGEST read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 1358
3019eac3
DE
1359static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *, gdb_byte *,
1360 unsigned int *);
1361
1362static char *read_str_index (const struct die_reader_specs *reader,
1363 struct dwarf2_cu *cu, ULONGEST str_index);
1364
e142c38c 1365static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1366
e142c38c
DJ
1367static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1368 struct dwarf2_cu *);
c906108c 1369
348e048f 1370static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1371 unsigned int);
348e048f 1372
05cf31d1
JB
1373static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1374 struct dwarf2_cu *cu);
1375
e142c38c 1376static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1377
e142c38c 1378static struct die_info *die_specification (struct die_info *die,
f2f0e013 1379 struct dwarf2_cu **);
63d06c5c 1380
debd256d
JB
1381static void free_line_header (struct line_header *lh);
1382
aaa75496
JB
1383static void add_file_name (struct line_header *, char *, unsigned int,
1384 unsigned int, unsigned int);
1385
3019eac3
DE
1386static struct line_header *dwarf_decode_line_header (unsigned int offset,
1387 struct dwarf2_cu *cu);
debd256d 1388
f3f5162e
DE
1389static void dwarf_decode_lines (struct line_header *, const char *,
1390 struct dwarf2_cu *, struct partial_symtab *,
1391 int);
c906108c 1392
72b9f47f 1393static void dwarf2_start_subfile (char *, const char *, const char *);
c906108c 1394
f4dc4d17
DE
1395static void dwarf2_start_symtab (struct dwarf2_cu *,
1396 char *, char *, CORE_ADDR);
1397
a14ed312 1398static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1399 struct dwarf2_cu *);
c906108c 1400
34eaf542
TT
1401static struct symbol *new_symbol_full (struct die_info *, struct type *,
1402 struct dwarf2_cu *, struct symbol *);
1403
a14ed312 1404static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 1405 struct dwarf2_cu *);
c906108c 1406
98bfdba5
PA
1407static void dwarf2_const_value_attr (struct attribute *attr,
1408 struct type *type,
1409 const char *name,
1410 struct obstack *obstack,
12df843f 1411 struct dwarf2_cu *cu, LONGEST *value,
98bfdba5
PA
1412 gdb_byte **bytes,
1413 struct dwarf2_locexpr_baton **baton);
2df3850c 1414
e7c27a73 1415static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1416
b4ba55a1
JB
1417static int need_gnat_info (struct dwarf2_cu *);
1418
3e43a32a
MS
1419static struct type *die_descriptive_type (struct die_info *,
1420 struct dwarf2_cu *);
b4ba55a1
JB
1421
1422static void set_descriptive_type (struct type *, struct die_info *,
1423 struct dwarf2_cu *);
1424
e7c27a73
DJ
1425static struct type *die_containing_type (struct die_info *,
1426 struct dwarf2_cu *);
c906108c 1427
673bfd45
DE
1428static struct type *lookup_die_type (struct die_info *, struct attribute *,
1429 struct dwarf2_cu *);
c906108c 1430
f792889a 1431static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1432
673bfd45
DE
1433static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1434
0d5cff50 1435static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1436
6e70227d 1437static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1438 const char *suffix, int physname,
1439 struct dwarf2_cu *cu);
63d06c5c 1440
e7c27a73 1441static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1442
348e048f
DE
1443static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1444
e7c27a73 1445static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1446
e7c27a73 1447static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1448
96408a79
SA
1449static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1450
ff013f42
JK
1451static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1452 struct dwarf2_cu *, struct partial_symtab *);
1453
a14ed312 1454static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1455 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1456 struct partial_symtab *);
c906108c 1457
fae299cd
DC
1458static void get_scope_pc_bounds (struct die_info *,
1459 CORE_ADDR *, CORE_ADDR *,
1460 struct dwarf2_cu *);
1461
801e3a5b
JB
1462static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1463 CORE_ADDR, struct dwarf2_cu *);
1464
a14ed312 1465static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1466 struct dwarf2_cu *);
c906108c 1467
a14ed312 1468static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1469 struct type *, struct dwarf2_cu *);
c906108c 1470
a14ed312 1471static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1472 struct die_info *, struct type *,
e7c27a73 1473 struct dwarf2_cu *);
c906108c 1474
a14ed312 1475static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1476 struct type *,
1477 struct dwarf2_cu *);
c906108c 1478
134d01f1 1479static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1480
e7c27a73 1481static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1482
e7c27a73 1483static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1484
5d7cb8df
JK
1485static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1486
27aa8d6a
SW
1487static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1488
f55ee35c
JK
1489static struct type *read_module_type (struct die_info *die,
1490 struct dwarf2_cu *cu);
1491
38d518c9 1492static const char *namespace_name (struct die_info *die,
e142c38c 1493 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1494
134d01f1 1495static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1496
e7c27a73 1497static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1498
6e70227d 1499static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1500 struct dwarf2_cu *);
1501
dee91e82 1502static struct die_info *read_die_and_children (const struct die_reader_specs *,
93311388 1503 gdb_byte *info_ptr,
fe1b8b76 1504 gdb_byte **new_info_ptr,
639d11d3
DC
1505 struct die_info *parent);
1506
dee91e82 1507static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
93311388 1508 gdb_byte *info_ptr,
fe1b8b76 1509 gdb_byte **new_info_ptr,
639d11d3
DC
1510 struct die_info *parent);
1511
3019eac3
DE
1512static gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1513 struct die_info **, gdb_byte *, int *, int);
1514
dee91e82
DE
1515static gdb_byte *read_full_die (const struct die_reader_specs *,
1516 struct die_info **, gdb_byte *, int *);
93311388 1517
e7c27a73 1518static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1519
71c25dea
TT
1520static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1521 struct obstack *);
1522
e142c38c 1523static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1524
98bfdba5
PA
1525static const char *dwarf2_full_name (char *name,
1526 struct die_info *die,
1527 struct dwarf2_cu *cu);
1528
e142c38c 1529static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1530 struct dwarf2_cu **);
9219021c 1531
f39c6ffd 1532static const char *dwarf_tag_name (unsigned int);
c906108c 1533
f39c6ffd 1534static const char *dwarf_attr_name (unsigned int);
c906108c 1535
f39c6ffd 1536static const char *dwarf_form_name (unsigned int);
c906108c 1537
a14ed312 1538static char *dwarf_bool_name (unsigned int);
c906108c 1539
f39c6ffd 1540static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1541
f9aca02d 1542static struct die_info *sibling_die (struct die_info *);
c906108c 1543
d97bc12b
DE
1544static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1545
1546static void dump_die_for_error (struct die_info *);
1547
1548static void dump_die_1 (struct ui_file *, int level, int max_level,
1549 struct die_info *);
c906108c 1550
d97bc12b 1551/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1552
51545339 1553static void store_in_ref_table (struct die_info *,
10b3939b 1554 struct dwarf2_cu *);
c906108c 1555
93311388
DE
1556static int is_ref_attr (struct attribute *);
1557
b64f50a1 1558static sect_offset dwarf2_get_ref_die_offset (struct attribute *);
c906108c 1559
43bbcdc2 1560static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
a02abb62 1561
348e048f
DE
1562static struct die_info *follow_die_ref_or_sig (struct die_info *,
1563 struct attribute *,
1564 struct dwarf2_cu **);
1565
10b3939b
DJ
1566static struct die_info *follow_die_ref (struct die_info *,
1567 struct attribute *,
f2f0e013 1568 struct dwarf2_cu **);
c906108c 1569
348e048f
DE
1570static struct die_info *follow_die_sig (struct die_info *,
1571 struct attribute *,
1572 struct dwarf2_cu **);
1573
6c83ed52
TT
1574static struct signatured_type *lookup_signatured_type_at_offset
1575 (struct objfile *objfile,
b64f50a1 1576 struct dwarf2_section_info *section, sect_offset offset);
6c83ed52 1577
e5fe5e75 1578static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1579
52dc124a 1580static void read_signatured_type (struct signatured_type *);
348e048f 1581
f4dc4d17 1582static struct type_unit_group *get_type_unit_group
094b34ac 1583 (struct dwarf2_cu *, struct attribute *);
f4dc4d17
DE
1584
1585static void build_type_unit_groups (die_reader_func_ftype *, void *);
1586
c906108c
SS
1587/* memory allocation interface */
1588
7b5a2f43 1589static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1590
b60c80d6 1591static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1592
09262596
DE
1593static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
1594 char *, int);
2e276125 1595
8e19ed76
PS
1596static int attr_form_is_block (struct attribute *);
1597
3690dd37
JB
1598static int attr_form_is_section_offset (struct attribute *);
1599
1600static int attr_form_is_constant (struct attribute *);
1601
8cf6f0b1
TT
1602static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1603 struct dwarf2_loclist_baton *baton,
1604 struct attribute *attr);
1605
93e7bd98
DJ
1606static void dwarf2_symbol_mark_computed (struct attribute *attr,
1607 struct symbol *sym,
1608 struct dwarf2_cu *cu);
4c2df51b 1609
dee91e82
DE
1610static gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1611 gdb_byte *info_ptr,
1612 struct abbrev_info *abbrev);
4bb7a0a7 1613
72bf9492
DJ
1614static void free_stack_comp_unit (void *);
1615
72bf9492
DJ
1616static hashval_t partial_die_hash (const void *item);
1617
1618static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1619
ae038cb0 1620static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1621 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1622
9816fde3 1623static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1624 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1625
1626static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1627 struct die_info *comp_unit_die,
1628 enum language pretend_language);
93311388 1629
68dc6402 1630static void free_heap_comp_unit (void *);
ae038cb0
DJ
1631
1632static void free_cached_comp_units (void *);
1633
1634static void age_cached_comp_units (void);
1635
dee91e82 1636static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1637
f792889a
DJ
1638static struct type *set_die_type (struct die_info *, struct type *,
1639 struct dwarf2_cu *);
1c379e20 1640
ae038cb0
DJ
1641static void create_all_comp_units (struct objfile *);
1642
0e50663e 1643static int create_all_type_units (struct objfile *);
1fd400ff 1644
95554aad
TT
1645static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1646 enum language);
10b3939b 1647
95554aad
TT
1648static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1649 enum language);
10b3939b 1650
f4dc4d17
DE
1651static void process_full_type_unit (struct dwarf2_per_cu_data *,
1652 enum language);
1653
10b3939b
DJ
1654static void dwarf2_add_dependence (struct dwarf2_cu *,
1655 struct dwarf2_per_cu_data *);
1656
ae038cb0
DJ
1657static void dwarf2_mark (struct dwarf2_cu *);
1658
1659static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1660
b64f50a1 1661static struct type *get_die_type_at_offset (sect_offset,
673bfd45
DE
1662 struct dwarf2_per_cu_data *per_cu);
1663
f792889a 1664static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1665
9291a0cd
TT
1666static void dwarf2_release_queue (void *dummy);
1667
95554aad
TT
1668static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1669 enum language pretend_language);
1670
1671static int maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
1672 struct dwarf2_per_cu_data *per_cu,
1673 enum language pretend_language);
9291a0cd 1674
a0f42c21 1675static void process_queue (void);
9291a0cd
TT
1676
1677static void find_file_and_directory (struct die_info *die,
1678 struct dwarf2_cu *cu,
1679 char **name, char **comp_dir);
1680
1681static char *file_full_name (int file, struct line_header *lh,
1682 const char *comp_dir);
1683
36586728
TT
1684static gdb_byte *read_and_check_comp_unit_head
1685 (struct comp_unit_head *header,
1686 struct dwarf2_section_info *section,
1687 struct dwarf2_section_info *abbrev_section, gdb_byte *info_ptr,
1688 int is_debug_types_section);
1689
fd820528 1690static void init_cutu_and_read_dies
f4dc4d17
DE
1691 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1692 int use_existing_cu, int keep,
3019eac3
DE
1693 die_reader_func_ftype *die_reader_func, void *data);
1694
dee91e82
DE
1695static void init_cutu_and_read_dies_simple
1696 (struct dwarf2_per_cu_data *this_cu,
1697 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1698
673bfd45 1699static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1700
3019eac3
DE
1701static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1702
1703static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1704 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1705
1706static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1707 (struct signatured_type *, const char *, const char *);
3019eac3
DE
1708
1709static void free_dwo_file_cleanup (void *);
1710
95554aad
TT
1711static void process_cu_includes (void);
1712
9291a0cd
TT
1713#if WORDS_BIGENDIAN
1714
1715/* Convert VALUE between big- and little-endian. */
1716static offset_type
1717byte_swap (offset_type value)
1718{
1719 offset_type result;
1720
1721 result = (value & 0xff) << 24;
1722 result |= (value & 0xff00) << 8;
1723 result |= (value & 0xff0000) >> 8;
1724 result |= (value & 0xff000000) >> 24;
1725 return result;
1726}
1727
1728#define MAYBE_SWAP(V) byte_swap (V)
1729
1730#else
1731#define MAYBE_SWAP(V) (V)
1732#endif /* WORDS_BIGENDIAN */
1733
1734/* The suffix for an index file. */
1735#define INDEX_SUFFIX ".gdb-index"
1736
3da10d80
KS
1737static const char *dwarf2_physname (char *name, struct die_info *die,
1738 struct dwarf2_cu *cu);
1739
c906108c 1740/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
1741 information and return true if we have enough to do something.
1742 NAMES points to the dwarf2 section names, or is NULL if the standard
1743 ELF names are used. */
c906108c
SS
1744
1745int
251d32d9
TG
1746dwarf2_has_info (struct objfile *objfile,
1747 const struct dwarf2_debug_sections *names)
c906108c 1748{
be391dca
TT
1749 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1750 if (!dwarf2_per_objfile)
1751 {
1752 /* Initialize per-objfile state. */
1753 struct dwarf2_per_objfile *data
1754 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1755
be391dca
TT
1756 memset (data, 0, sizeof (*data));
1757 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1758 dwarf2_per_objfile = data;
6502dd73 1759
251d32d9
TG
1760 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1761 (void *) names);
be391dca
TT
1762 dwarf2_per_objfile->objfile = objfile;
1763 }
1764 return (dwarf2_per_objfile->info.asection != NULL
1765 && dwarf2_per_objfile->abbrev.asection != NULL);
c906108c
SS
1766}
1767
251d32d9
TG
1768/* When loading sections, we look either for uncompressed section or for
1769 compressed section names. */
233a11ab
CS
1770
1771static int
251d32d9
TG
1772section_is_p (const char *section_name,
1773 const struct dwarf2_section_names *names)
233a11ab 1774{
251d32d9
TG
1775 if (names->normal != NULL
1776 && strcmp (section_name, names->normal) == 0)
1777 return 1;
1778 if (names->compressed != NULL
1779 && strcmp (section_name, names->compressed) == 0)
1780 return 1;
1781 return 0;
233a11ab
CS
1782}
1783
c906108c
SS
1784/* This function is mapped across the sections and remembers the
1785 offset and size of each of the debugging sections we are interested
1786 in. */
1787
1788static void
251d32d9 1789dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 1790{
251d32d9 1791 const struct dwarf2_debug_sections *names;
dc7650b8 1792 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
1793
1794 if (vnames == NULL)
1795 names = &dwarf2_elf_names;
1796 else
1797 names = (const struct dwarf2_debug_sections *) vnames;
1798
dc7650b8
JK
1799 if ((aflag & SEC_HAS_CONTENTS) == 0)
1800 {
1801 }
1802 else if (section_is_p (sectp->name, &names->info))
c906108c 1803 {
dce234bc
PP
1804 dwarf2_per_objfile->info.asection = sectp;
1805 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 1806 }
251d32d9 1807 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 1808 {
dce234bc
PP
1809 dwarf2_per_objfile->abbrev.asection = sectp;
1810 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 1811 }
251d32d9 1812 else if (section_is_p (sectp->name, &names->line))
c906108c 1813 {
dce234bc
PP
1814 dwarf2_per_objfile->line.asection = sectp;
1815 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 1816 }
251d32d9 1817 else if (section_is_p (sectp->name, &names->loc))
c906108c 1818 {
dce234bc
PP
1819 dwarf2_per_objfile->loc.asection = sectp;
1820 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 1821 }
251d32d9 1822 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 1823 {
dce234bc
PP
1824 dwarf2_per_objfile->macinfo.asection = sectp;
1825 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 1826 }
cf2c3c16
TT
1827 else if (section_is_p (sectp->name, &names->macro))
1828 {
1829 dwarf2_per_objfile->macro.asection = sectp;
1830 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1831 }
251d32d9 1832 else if (section_is_p (sectp->name, &names->str))
c906108c 1833 {
dce234bc
PP
1834 dwarf2_per_objfile->str.asection = sectp;
1835 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 1836 }
3019eac3
DE
1837 else if (section_is_p (sectp->name, &names->addr))
1838 {
1839 dwarf2_per_objfile->addr.asection = sectp;
1840 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
1841 }
251d32d9 1842 else if (section_is_p (sectp->name, &names->frame))
b6af0555 1843 {
dce234bc
PP
1844 dwarf2_per_objfile->frame.asection = sectp;
1845 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 1846 }
251d32d9 1847 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 1848 {
dc7650b8
JK
1849 dwarf2_per_objfile->eh_frame.asection = sectp;
1850 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 1851 }
251d32d9 1852 else if (section_is_p (sectp->name, &names->ranges))
af34e669 1853 {
dce234bc
PP
1854 dwarf2_per_objfile->ranges.asection = sectp;
1855 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 1856 }
251d32d9 1857 else if (section_is_p (sectp->name, &names->types))
348e048f 1858 {
8b70b953
TT
1859 struct dwarf2_section_info type_section;
1860
1861 memset (&type_section, 0, sizeof (type_section));
1862 type_section.asection = sectp;
1863 type_section.size = bfd_get_section_size (sectp);
1864
1865 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1866 &type_section);
348e048f 1867 }
251d32d9 1868 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd
TT
1869 {
1870 dwarf2_per_objfile->gdb_index.asection = sectp;
1871 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1872 }
dce234bc 1873
72dca2f5
FR
1874 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1875 && bfd_section_vma (abfd, sectp) == 0)
1876 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1877}
1878
fceca515
DE
1879/* A helper function that decides whether a section is empty,
1880 or not present. */
9e0ac564
TT
1881
1882static int
1883dwarf2_section_empty_p (struct dwarf2_section_info *info)
1884{
1885 return info->asection == NULL || info->size == 0;
1886}
1887
3019eac3
DE
1888/* Read the contents of the section INFO.
1889 OBJFILE is the main object file, but not necessarily the file where
1890 the section comes from. E.g., for DWO files INFO->asection->owner
1891 is the bfd of the DWO file.
dce234bc 1892 If the section is compressed, uncompress it before returning. */
c906108c 1893
dce234bc
PP
1894static void
1895dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 1896{
dce234bc 1897 asection *sectp = info->asection;
3019eac3 1898 bfd *abfd;
dce234bc
PP
1899 gdb_byte *buf, *retbuf;
1900 unsigned char header[4];
c906108c 1901
be391dca
TT
1902 if (info->readin)
1903 return;
dce234bc 1904 info->buffer = NULL;
be391dca 1905 info->readin = 1;
188dd5d6 1906
9e0ac564 1907 if (dwarf2_section_empty_p (info))
dce234bc 1908 return;
c906108c 1909
3019eac3
DE
1910 abfd = sectp->owner;
1911
4bf44c1c
TT
1912 /* If the section has relocations, we must read it ourselves.
1913 Otherwise we attach it to the BFD. */
1914 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 1915 {
4bf44c1c 1916 const gdb_byte *bytes = gdb_bfd_map_section (sectp, &info->size);
dce234bc 1917
4bf44c1c
TT
1918 /* We have to cast away const here for historical reasons.
1919 Fixing dwarf2read to be const-correct would be quite nice. */
1920 info->buffer = (gdb_byte *) bytes;
1921 return;
dce234bc 1922 }
dce234bc 1923
4bf44c1c
TT
1924 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
1925 info->buffer = buf;
dce234bc
PP
1926
1927 /* When debugging .o files, we may need to apply relocations; see
1928 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1929 We never compress sections in .o files, so we only need to
1930 try this when the section is not compressed. */
ac8035ab 1931 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
1932 if (retbuf != NULL)
1933 {
1934 info->buffer = retbuf;
1935 return;
1936 }
1937
1938 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1939 || bfd_bread (buf, info->size, abfd) != info->size)
1940 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1941 bfd_get_filename (abfd));
1942}
1943
9e0ac564
TT
1944/* A helper function that returns the size of a section in a safe way.
1945 If you are positive that the section has been read before using the
1946 size, then it is safe to refer to the dwarf2_section_info object's
1947 "size" field directly. In other cases, you must call this
1948 function, because for compressed sections the size field is not set
1949 correctly until the section has been read. */
1950
1951static bfd_size_type
1952dwarf2_section_size (struct objfile *objfile,
1953 struct dwarf2_section_info *info)
1954{
1955 if (!info->readin)
1956 dwarf2_read_section (objfile, info);
1957 return info->size;
1958}
1959
dce234bc 1960/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 1961 SECTION_NAME. */
af34e669 1962
dce234bc 1963void
3017a003
TG
1964dwarf2_get_section_info (struct objfile *objfile,
1965 enum dwarf2_section_enum sect,
dce234bc
PP
1966 asection **sectp, gdb_byte **bufp,
1967 bfd_size_type *sizep)
1968{
1969 struct dwarf2_per_objfile *data
1970 = objfile_data (objfile, dwarf2_objfile_data_key);
1971 struct dwarf2_section_info *info;
a3b2a86b
TT
1972
1973 /* We may see an objfile without any DWARF, in which case we just
1974 return nothing. */
1975 if (data == NULL)
1976 {
1977 *sectp = NULL;
1978 *bufp = NULL;
1979 *sizep = 0;
1980 return;
1981 }
3017a003
TG
1982 switch (sect)
1983 {
1984 case DWARF2_DEBUG_FRAME:
1985 info = &data->frame;
1986 break;
1987 case DWARF2_EH_FRAME:
1988 info = &data->eh_frame;
1989 break;
1990 default:
1991 gdb_assert_not_reached ("unexpected section");
1992 }
dce234bc 1993
9e0ac564 1994 dwarf2_read_section (objfile, info);
dce234bc
PP
1995
1996 *sectp = info->asection;
1997 *bufp = info->buffer;
1998 *sizep = info->size;
1999}
2000
36586728
TT
2001/* A helper function to find the sections for a .dwz file. */
2002
2003static void
2004locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2005{
2006 struct dwz_file *dwz_file = arg;
2007
2008 /* Note that we only support the standard ELF names, because .dwz
2009 is ELF-only (at the time of writing). */
2010 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2011 {
2012 dwz_file->abbrev.asection = sectp;
2013 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2014 }
2015 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2016 {
2017 dwz_file->info.asection = sectp;
2018 dwz_file->info.size = bfd_get_section_size (sectp);
2019 }
2020 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2021 {
2022 dwz_file->str.asection = sectp;
2023 dwz_file->str.size = bfd_get_section_size (sectp);
2024 }
2025 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2026 {
2027 dwz_file->line.asection = sectp;
2028 dwz_file->line.size = bfd_get_section_size (sectp);
2029 }
2030 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2031 {
2032 dwz_file->macro.asection = sectp;
2033 dwz_file->macro.size = bfd_get_section_size (sectp);
2034 }
2ec9a5e0
TT
2035 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2036 {
2037 dwz_file->gdb_index.asection = sectp;
2038 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2039 }
36586728
TT
2040}
2041
2042/* Open the separate '.dwz' debug file, if needed. Error if the file
2043 cannot be found. */
2044
2045static struct dwz_file *
2046dwarf2_get_dwz_file (void)
2047{
2048 bfd *abfd, *dwz_bfd;
2049 asection *section;
2050 gdb_byte *data;
2051 struct cleanup *cleanup;
2052 const char *filename;
2053 struct dwz_file *result;
2054
2055 if (dwarf2_per_objfile->dwz_file != NULL)
2056 return dwarf2_per_objfile->dwz_file;
2057
2058 abfd = dwarf2_per_objfile->objfile->obfd;
2059 section = bfd_get_section_by_name (abfd, ".gnu_debugaltlink");
2060 if (section == NULL)
2061 error (_("could not find '.gnu_debugaltlink' section"));
2062 if (!bfd_malloc_and_get_section (abfd, section, &data))
2063 error (_("could not read '.gnu_debugaltlink' section: %s"),
2064 bfd_errmsg (bfd_get_error ()));
2065 cleanup = make_cleanup (xfree, data);
2066
2067 filename = data;
2068 if (!IS_ABSOLUTE_PATH (filename))
2069 {
2070 char *abs = gdb_realpath (dwarf2_per_objfile->objfile->name);
2071 char *rel;
2072
2073 make_cleanup (xfree, abs);
2074 abs = ldirname (abs);
2075 make_cleanup (xfree, abs);
2076
2077 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2078 make_cleanup (xfree, rel);
2079 filename = rel;
2080 }
2081
2082 /* The format is just a NUL-terminated file name, followed by the
2083 build-id. For now, though, we ignore the build-id. */
2084 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
2085 if (dwz_bfd == NULL)
2086 error (_("could not read '%s': %s"), filename,
2087 bfd_errmsg (bfd_get_error ()));
2088
2089 if (!bfd_check_format (dwz_bfd, bfd_object))
2090 {
2091 gdb_bfd_unref (dwz_bfd);
2092 error (_("file '%s' was not usable: %s"), filename,
2093 bfd_errmsg (bfd_get_error ()));
2094 }
2095
2096 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2097 struct dwz_file);
2098 result->dwz_bfd = dwz_bfd;
2099
2100 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2101
2102 do_cleanups (cleanup);
2103
2104 return result;
2105}
9291a0cd 2106\f
7b9f3c50
DE
2107/* DWARF quick_symbols_functions support. */
2108
2109/* TUs can share .debug_line entries, and there can be a lot more TUs than
2110 unique line tables, so we maintain a separate table of all .debug_line
2111 derived entries to support the sharing.
2112 All the quick functions need is the list of file names. We discard the
2113 line_header when we're done and don't need to record it here. */
2114struct quick_file_names
2115{
094b34ac
DE
2116 /* The data used to construct the hash key. */
2117 struct stmt_list_hash hash;
7b9f3c50
DE
2118
2119 /* The number of entries in file_names, real_names. */
2120 unsigned int num_file_names;
2121
2122 /* The file names from the line table, after being run through
2123 file_full_name. */
2124 const char **file_names;
2125
2126 /* The file names from the line table after being run through
2127 gdb_realpath. These are computed lazily. */
2128 const char **real_names;
2129};
2130
2131/* When using the index (and thus not using psymtabs), each CU has an
2132 object of this type. This is used to hold information needed by
2133 the various "quick" methods. */
2134struct dwarf2_per_cu_quick_data
2135{
2136 /* The file table. This can be NULL if there was no file table
2137 or it's currently not read in.
2138 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2139 struct quick_file_names *file_names;
2140
2141 /* The corresponding symbol table. This is NULL if symbols for this
2142 CU have not yet been read. */
2143 struct symtab *symtab;
2144
2145 /* A temporary mark bit used when iterating over all CUs in
2146 expand_symtabs_matching. */
2147 unsigned int mark : 1;
2148
2149 /* True if we've tried to read the file table and found there isn't one.
2150 There will be no point in trying to read it again next time. */
2151 unsigned int no_file_data : 1;
2152};
2153
094b34ac
DE
2154/* Utility hash function for a stmt_list_hash. */
2155
2156static hashval_t
2157hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2158{
2159 hashval_t v = 0;
2160
2161 if (stmt_list_hash->dwo_unit != NULL)
2162 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2163 v += stmt_list_hash->line_offset.sect_off;
2164 return v;
2165}
2166
2167/* Utility equality function for a stmt_list_hash. */
2168
2169static int
2170eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2171 const struct stmt_list_hash *rhs)
2172{
2173 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2174 return 0;
2175 if (lhs->dwo_unit != NULL
2176 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2177 return 0;
2178
2179 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2180}
2181
7b9f3c50
DE
2182/* Hash function for a quick_file_names. */
2183
2184static hashval_t
2185hash_file_name_entry (const void *e)
2186{
2187 const struct quick_file_names *file_data = e;
2188
094b34ac 2189 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2190}
2191
2192/* Equality function for a quick_file_names. */
2193
2194static int
2195eq_file_name_entry (const void *a, const void *b)
2196{
2197 const struct quick_file_names *ea = a;
2198 const struct quick_file_names *eb = b;
2199
094b34ac 2200 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2201}
2202
2203/* Delete function for a quick_file_names. */
2204
2205static void
2206delete_file_name_entry (void *e)
2207{
2208 struct quick_file_names *file_data = e;
2209 int i;
2210
2211 for (i = 0; i < file_data->num_file_names; ++i)
2212 {
2213 xfree ((void*) file_data->file_names[i]);
2214 if (file_data->real_names)
2215 xfree ((void*) file_data->real_names[i]);
2216 }
2217
2218 /* The space for the struct itself lives on objfile_obstack,
2219 so we don't free it here. */
2220}
2221
2222/* Create a quick_file_names hash table. */
2223
2224static htab_t
2225create_quick_file_names_table (unsigned int nr_initial_entries)
2226{
2227 return htab_create_alloc (nr_initial_entries,
2228 hash_file_name_entry, eq_file_name_entry,
2229 delete_file_name_entry, xcalloc, xfree);
2230}
9291a0cd 2231
918dd910
JK
2232/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2233 have to be created afterwards. You should call age_cached_comp_units after
2234 processing PER_CU->CU. dw2_setup must have been already called. */
2235
2236static void
2237load_cu (struct dwarf2_per_cu_data *per_cu)
2238{
3019eac3 2239 if (per_cu->is_debug_types)
e5fe5e75 2240 load_full_type_unit (per_cu);
918dd910 2241 else
95554aad 2242 load_full_comp_unit (per_cu, language_minimal);
918dd910 2243
918dd910 2244 gdb_assert (per_cu->cu != NULL);
2dc860c0
DE
2245
2246 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2247}
2248
a0f42c21 2249/* Read in the symbols for PER_CU. */
2fdf6df6 2250
9291a0cd 2251static void
a0f42c21 2252dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2253{
2254 struct cleanup *back_to;
2255
f4dc4d17
DE
2256 /* Skip type_unit_groups, reading the type units they contain
2257 is handled elsewhere. */
2258 if (IS_TYPE_UNIT_GROUP (per_cu))
2259 return;
2260
9291a0cd
TT
2261 back_to = make_cleanup (dwarf2_release_queue, NULL);
2262
95554aad
TT
2263 if (dwarf2_per_objfile->using_index
2264 ? per_cu->v.quick->symtab == NULL
2265 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2266 {
2267 queue_comp_unit (per_cu, language_minimal);
2268 load_cu (per_cu);
2269 }
9291a0cd 2270
a0f42c21 2271 process_queue ();
9291a0cd
TT
2272
2273 /* Age the cache, releasing compilation units that have not
2274 been used recently. */
2275 age_cached_comp_units ();
2276
2277 do_cleanups (back_to);
2278}
2279
2280/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2281 the objfile from which this CU came. Returns the resulting symbol
2282 table. */
2fdf6df6 2283
9291a0cd 2284static struct symtab *
a0f42c21 2285dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2286{
95554aad 2287 gdb_assert (dwarf2_per_objfile->using_index);
9291a0cd
TT
2288 if (!per_cu->v.quick->symtab)
2289 {
2290 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2291 increment_reading_symtab ();
a0f42c21 2292 dw2_do_instantiate_symtab (per_cu);
95554aad 2293 process_cu_includes ();
9291a0cd
TT
2294 do_cleanups (back_to);
2295 }
2296 return per_cu->v.quick->symtab;
2297}
2298
f4dc4d17
DE
2299/* Return the CU given its index.
2300
2301 This is intended for loops like:
2302
2303 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2304 + dwarf2_per_objfile->n_type_units); ++i)
2305 {
2306 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2307
2308 ...;
2309 }
2310*/
2fdf6df6 2311
1fd400ff
TT
2312static struct dwarf2_per_cu_data *
2313dw2_get_cu (int index)
2314{
2315 if (index >= dwarf2_per_objfile->n_comp_units)
2316 {
f4dc4d17 2317 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2318 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2319 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2320 }
2321
2322 return dwarf2_per_objfile->all_comp_units[index];
2323}
2324
2325/* Return the primary CU given its index.
2326 The difference between this function and dw2_get_cu is in the handling
2327 of type units (TUs). Here we return the type_unit_group object.
2328
2329 This is intended for loops like:
2330
2331 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2332 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2333 {
2334 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2335
2336 ...;
2337 }
2338*/
2339
2340static struct dwarf2_per_cu_data *
2341dw2_get_primary_cu (int index)
2342{
2343 if (index >= dwarf2_per_objfile->n_comp_units)
2344 {
1fd400ff 2345 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2346 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2347 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
1fd400ff 2348 }
f4dc4d17 2349
1fd400ff
TT
2350 return dwarf2_per_objfile->all_comp_units[index];
2351}
2352
9291a0cd
TT
2353/* A helper function that knows how to read a 64-bit value in a way
2354 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
2355 otherwise. */
2fdf6df6 2356
9291a0cd
TT
2357static int
2358extract_cu_value (const char *bytes, ULONGEST *result)
2359{
2360 if (sizeof (ULONGEST) < 8)
2361 {
2362 int i;
2363
2364 /* Ignore the upper 4 bytes if they are all zero. */
2365 for (i = 0; i < 4; ++i)
2366 if (bytes[i + 4] != 0)
2367 return 0;
2368
2369 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
2370 }
2371 else
2372 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2373 return 1;
2374}
2375
2ec9a5e0
TT
2376/* A helper for create_cus_from_index that handles a given list of
2377 CUs. */
2fdf6df6 2378
9291a0cd 2379static int
2ec9a5e0
TT
2380create_cus_from_index_list (struct objfile *objfile,
2381 const gdb_byte *cu_list, offset_type n_elements,
2382 struct dwarf2_section_info *section,
2383 int is_dwz,
2384 int base_offset)
9291a0cd
TT
2385{
2386 offset_type i;
9291a0cd 2387
2ec9a5e0 2388 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2389 {
2390 struct dwarf2_per_cu_data *the_cu;
2391 ULONGEST offset, length;
2392
2393 if (!extract_cu_value (cu_list, &offset)
2394 || !extract_cu_value (cu_list + 8, &length))
2395 return 0;
2396 cu_list += 2 * 8;
2397
2398 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2399 struct dwarf2_per_cu_data);
b64f50a1 2400 the_cu->offset.sect_off = offset;
9291a0cd
TT
2401 the_cu->length = length;
2402 the_cu->objfile = objfile;
2ec9a5e0 2403 the_cu->info_or_types_section = section;
9291a0cd
TT
2404 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2405 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2406 the_cu->is_dwz = is_dwz;
2407 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd
TT
2408 }
2409
2410 return 1;
2411}
2412
2ec9a5e0
TT
2413/* Read the CU list from the mapped index, and use it to create all
2414 the CU objects for this objfile. Return 0 if something went wrong,
2415 1 if everything went ok. */
2416
2417static int
2418create_cus_from_index (struct objfile *objfile,
2419 const gdb_byte *cu_list, offset_type cu_list_elements,
2420 const gdb_byte *dwz_list, offset_type dwz_elements)
2421{
2422 struct dwz_file *dwz;
2423
2424 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2425 dwarf2_per_objfile->all_comp_units
2426 = obstack_alloc (&objfile->objfile_obstack,
2427 dwarf2_per_objfile->n_comp_units
2428 * sizeof (struct dwarf2_per_cu_data *));
2429
2430 if (!create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2431 &dwarf2_per_objfile->info, 0, 0))
2432 return 0;
2433
2434 if (dwz_elements == 0)
2435 return 1;
2436
2437 dwz = dwarf2_get_dwz_file ();
2438 return create_cus_from_index_list (objfile, dwz_list, dwz_elements,
2439 &dwz->info, 1, cu_list_elements / 2);
2440}
2441
1fd400ff 2442/* Create the signatured type hash table from the index. */
673bfd45 2443
1fd400ff 2444static int
673bfd45 2445create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2446 struct dwarf2_section_info *section,
673bfd45
DE
2447 const gdb_byte *bytes,
2448 offset_type elements)
1fd400ff
TT
2449{
2450 offset_type i;
673bfd45 2451 htab_t sig_types_hash;
1fd400ff 2452
d467dd73
DE
2453 dwarf2_per_objfile->n_type_units = elements / 3;
2454 dwarf2_per_objfile->all_type_units
1fd400ff 2455 = obstack_alloc (&objfile->objfile_obstack,
d467dd73 2456 dwarf2_per_objfile->n_type_units
b4dd5633 2457 * sizeof (struct signatured_type *));
1fd400ff 2458
673bfd45 2459 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2460
2461 for (i = 0; i < elements; i += 3)
2462 {
52dc124a
DE
2463 struct signatured_type *sig_type;
2464 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2465 void **slot;
2466
2467 if (!extract_cu_value (bytes, &offset)
52dc124a 2468 || !extract_cu_value (bytes + 8, &type_offset_in_tu))
1fd400ff
TT
2469 return 0;
2470 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2471 bytes += 3 * 8;
2472
52dc124a 2473 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2474 struct signatured_type);
52dc124a 2475 sig_type->signature = signature;
3019eac3
DE
2476 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2477 sig_type->per_cu.is_debug_types = 1;
2478 sig_type->per_cu.info_or_types_section = section;
52dc124a
DE
2479 sig_type->per_cu.offset.sect_off = offset;
2480 sig_type->per_cu.objfile = objfile;
2481 sig_type->per_cu.v.quick
1fd400ff
TT
2482 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2483 struct dwarf2_per_cu_quick_data);
2484
52dc124a
DE
2485 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2486 *slot = sig_type;
1fd400ff 2487
b4dd5633 2488 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2489 }
2490
673bfd45 2491 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2492
2493 return 1;
2494}
2495
9291a0cd
TT
2496/* Read the address map data from the mapped index, and use it to
2497 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2498
9291a0cd
TT
2499static void
2500create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2501{
2502 const gdb_byte *iter, *end;
2503 struct obstack temp_obstack;
2504 struct addrmap *mutable_map;
2505 struct cleanup *cleanup;
2506 CORE_ADDR baseaddr;
2507
2508 obstack_init (&temp_obstack);
2509 cleanup = make_cleanup_obstack_free (&temp_obstack);
2510 mutable_map = addrmap_create_mutable (&temp_obstack);
2511
2512 iter = index->address_table;
2513 end = iter + index->address_table_size;
2514
2515 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2516
2517 while (iter < end)
2518 {
2519 ULONGEST hi, lo, cu_index;
2520 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2521 iter += 8;
2522 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2523 iter += 8;
2524 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2525 iter += 4;
2526
2527 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1fd400ff 2528 dw2_get_cu (cu_index));
9291a0cd
TT
2529 }
2530
2531 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2532 &objfile->objfile_obstack);
2533 do_cleanups (cleanup);
2534}
2535
59d7bcaf
JK
2536/* The hash function for strings in the mapped index. This is the same as
2537 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2538 implementation. This is necessary because the hash function is tied to the
2539 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2540 SYMBOL_HASH_NEXT.
2541
2542 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2543
9291a0cd 2544static hashval_t
559a7a62 2545mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2546{
2547 const unsigned char *str = (const unsigned char *) p;
2548 hashval_t r = 0;
2549 unsigned char c;
2550
2551 while ((c = *str++) != 0)
559a7a62
JK
2552 {
2553 if (index_version >= 5)
2554 c = tolower (c);
2555 r = r * 67 + c - 113;
2556 }
9291a0cd
TT
2557
2558 return r;
2559}
2560
2561/* Find a slot in the mapped index INDEX for the object named NAME.
2562 If NAME is found, set *VEC_OUT to point to the CU vector in the
2563 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2564
9291a0cd
TT
2565static int
2566find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2567 offset_type **vec_out)
2568{
0cf03b49
JK
2569 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2570 offset_type hash;
9291a0cd 2571 offset_type slot, step;
559a7a62 2572 int (*cmp) (const char *, const char *);
9291a0cd 2573
0cf03b49
JK
2574 if (current_language->la_language == language_cplus
2575 || current_language->la_language == language_java
2576 || current_language->la_language == language_fortran)
2577 {
2578 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2579 not contain any. */
2580 const char *paren = strchr (name, '(');
2581
2582 if (paren)
2583 {
2584 char *dup;
2585
2586 dup = xmalloc (paren - name + 1);
2587 memcpy (dup, name, paren - name);
2588 dup[paren - name] = 0;
2589
2590 make_cleanup (xfree, dup);
2591 name = dup;
2592 }
2593 }
2594
559a7a62 2595 /* Index version 4 did not support case insensitive searches. But the
feea76c2 2596 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
2597 simulate our NAME being searched is also lowercased. */
2598 hash = mapped_index_string_hash ((index->version == 4
2599 && case_sensitivity == case_sensitive_off
2600 ? 5 : index->version),
2601 name);
2602
3876f04e
DE
2603 slot = hash & (index->symbol_table_slots - 1);
2604 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 2605 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
2606
2607 for (;;)
2608 {
2609 /* Convert a slot number to an offset into the table. */
2610 offset_type i = 2 * slot;
2611 const char *str;
3876f04e 2612 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
2613 {
2614 do_cleanups (back_to);
2615 return 0;
2616 }
9291a0cd 2617
3876f04e 2618 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 2619 if (!cmp (name, str))
9291a0cd
TT
2620 {
2621 *vec_out = (offset_type *) (index->constant_pool
3876f04e 2622 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 2623 do_cleanups (back_to);
9291a0cd
TT
2624 return 1;
2625 }
2626
3876f04e 2627 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
2628 }
2629}
2630
2ec9a5e0
TT
2631/* A helper function that reads the .gdb_index from SECTION and fills
2632 in MAP. FILENAME is the name of the file containing the section;
2633 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2634 ok to use deprecated sections.
2635
2636 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2637 out parameters that are filled in with information about the CU and
2638 TU lists in the section.
2639
2640 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 2641
9291a0cd 2642static int
2ec9a5e0
TT
2643read_index_from_section (struct objfile *objfile,
2644 const char *filename,
2645 int deprecated_ok,
2646 struct dwarf2_section_info *section,
2647 struct mapped_index *map,
2648 const gdb_byte **cu_list,
2649 offset_type *cu_list_elements,
2650 const gdb_byte **types_list,
2651 offset_type *types_list_elements)
9291a0cd 2652{
9291a0cd 2653 char *addr;
2ec9a5e0 2654 offset_type version;
b3b272e1 2655 offset_type *metadata;
1fd400ff 2656 int i;
9291a0cd 2657
2ec9a5e0 2658 if (dwarf2_section_empty_p (section))
9291a0cd 2659 return 0;
82430852
JK
2660
2661 /* Older elfutils strip versions could keep the section in the main
2662 executable while splitting it for the separate debug info file. */
2ec9a5e0 2663 if ((bfd_get_file_flags (section->asection) & SEC_HAS_CONTENTS) == 0)
82430852
JK
2664 return 0;
2665
2ec9a5e0 2666 dwarf2_read_section (objfile, section);
9291a0cd 2667
2ec9a5e0 2668 addr = section->buffer;
9291a0cd 2669 /* Version check. */
1fd400ff 2670 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 2671 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 2672 causes the index to behave very poorly for certain requests. Version 3
831adc1f 2673 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 2674 indices. */
831adc1f 2675 if (version < 4)
481860b3
GB
2676 {
2677 static int warning_printed = 0;
2678 if (!warning_printed)
2679 {
2680 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 2681 filename);
481860b3
GB
2682 warning_printed = 1;
2683 }
2684 return 0;
2685 }
2686 /* Index version 4 uses a different hash function than index version
2687 5 and later.
2688
2689 Versions earlier than 6 did not emit psymbols for inlined
2690 functions. Using these files will cause GDB not to be able to
2691 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
2692 indices unless the user has done
2693 "set use-deprecated-index-sections on". */
2ec9a5e0 2694 if (version < 6 && !deprecated_ok)
481860b3
GB
2695 {
2696 static int warning_printed = 0;
2697 if (!warning_printed)
2698 {
e615022a
DE
2699 warning (_("\
2700Skipping deprecated .gdb_index section in %s.\n\
2701Do \"set use-deprecated-index-sections on\" before the file is read\n\
2702to use the section anyway."),
2ec9a5e0 2703 filename);
481860b3
GB
2704 warning_printed = 1;
2705 }
2706 return 0;
2707 }
2708 /* Indexes with higher version than the one supported by GDB may be no
594e8718 2709 longer backward compatible. */
156942c7 2710 if (version > 7)
594e8718 2711 return 0;
9291a0cd 2712
559a7a62 2713 map->version = version;
2ec9a5e0 2714 map->total_size = section->size;
9291a0cd
TT
2715
2716 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
2717
2718 i = 0;
2ec9a5e0
TT
2719 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2720 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2721 / 8);
1fd400ff
TT
2722 ++i;
2723
2ec9a5e0
TT
2724 *types_list = addr + MAYBE_SWAP (metadata[i]);
2725 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2726 - MAYBE_SWAP (metadata[i]))
2727 / 8);
987d643c 2728 ++i;
1fd400ff
TT
2729
2730 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2731 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2732 - MAYBE_SWAP (metadata[i]));
2733 ++i;
2734
3876f04e
DE
2735 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2736 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2737 - MAYBE_SWAP (metadata[i]))
2738 / (2 * sizeof (offset_type)));
1fd400ff 2739 ++i;
9291a0cd 2740
1fd400ff
TT
2741 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2742
2ec9a5e0
TT
2743 return 1;
2744}
2745
2746
2747/* Read the index file. If everything went ok, initialize the "quick"
2748 elements of all the CUs and return 1. Otherwise, return 0. */
2749
2750static int
2751dwarf2_read_index (struct objfile *objfile)
2752{
2753 struct mapped_index local_map, *map;
2754 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
2755 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
2756
2757 if (!read_index_from_section (objfile, objfile->name,
2758 use_deprecated_index_sections,
2759 &dwarf2_per_objfile->gdb_index, &local_map,
2760 &cu_list, &cu_list_elements,
2761 &types_list, &types_list_elements))
2762 return 0;
2763
0fefef59 2764 /* Don't use the index if it's empty. */
2ec9a5e0 2765 if (local_map.symbol_table_slots == 0)
0fefef59
DE
2766 return 0;
2767
2ec9a5e0
TT
2768 /* If there is a .dwz file, read it so we can get its CU list as
2769 well. */
2770 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
2771 {
2772 struct dwz_file *dwz = dwarf2_get_dwz_file ();
2773 struct mapped_index dwz_map;
2774 const gdb_byte *dwz_types_ignore;
2775 offset_type dwz_types_elements_ignore;
2776
2777 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
2778 1,
2779 &dwz->gdb_index, &dwz_map,
2780 &dwz_list, &dwz_list_elements,
2781 &dwz_types_ignore,
2782 &dwz_types_elements_ignore))
2783 {
2784 warning (_("could not read '.gdb_index' section from %s; skipping"),
2785 bfd_get_filename (dwz->dwz_bfd));
2786 return 0;
2787 }
2788 }
2789
2790 if (!create_cus_from_index (objfile, cu_list, cu_list_elements,
2791 dwz_list, dwz_list_elements))
1fd400ff
TT
2792 return 0;
2793
8b70b953
TT
2794 if (types_list_elements)
2795 {
2796 struct dwarf2_section_info *section;
2797
2798 /* We can only handle a single .debug_types when we have an
2799 index. */
2800 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2801 return 0;
2802
2803 section = VEC_index (dwarf2_section_info_def,
2804 dwarf2_per_objfile->types, 0);
2805
2806 if (!create_signatured_type_table_from_index (objfile, section,
2807 types_list,
2808 types_list_elements))
2809 return 0;
2810 }
9291a0cd 2811
2ec9a5e0
TT
2812 create_addrmap_from_index (objfile, &local_map);
2813
2814 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
2815 *map = local_map;
9291a0cd
TT
2816
2817 dwarf2_per_objfile->index_table = map;
2818 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
2819 dwarf2_per_objfile->quick_file_names_table =
2820 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
2821
2822 return 1;
2823}
2824
2825/* A helper for the "quick" functions which sets the global
2826 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 2827
9291a0cd
TT
2828static void
2829dw2_setup (struct objfile *objfile)
2830{
2831 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2832 gdb_assert (dwarf2_per_objfile);
2833}
2834
f4dc4d17
DE
2835/* Reader function for dw2_build_type_unit_groups. */
2836
2837static void
2838dw2_build_type_unit_groups_reader (const struct die_reader_specs *reader,
2839 gdb_byte *info_ptr,
2840 struct die_info *type_unit_die,
2841 int has_children,
2842 void *data)
2843{
2844 struct dwarf2_cu *cu = reader->cu;
f4dc4d17
DE
2845 struct attribute *attr;
2846 struct type_unit_group *tu_group;
2847
2848 gdb_assert (data == NULL);
2849
2850 if (! has_children)
2851 return;
2852
2853 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
2854 /* Call this for its side-effect of creating the associated
2855 struct type_unit_group if it doesn't already exist. */
094b34ac 2856 tu_group = get_type_unit_group (cu, attr);
f4dc4d17
DE
2857}
2858
2859/* Build dwarf2_per_objfile->type_unit_groups.
2860 This function may be called multiple times. */
2861
2862static void
2863dw2_build_type_unit_groups (void)
2864{
2865 if (dwarf2_per_objfile->type_unit_groups == NULL)
2866 build_type_unit_groups (dw2_build_type_unit_groups_reader, NULL);
2867}
2868
dee91e82 2869/* die_reader_func for dw2_get_file_names. */
2fdf6df6 2870
dee91e82
DE
2871static void
2872dw2_get_file_names_reader (const struct die_reader_specs *reader,
2873 gdb_byte *info_ptr,
2874 struct die_info *comp_unit_die,
2875 int has_children,
2876 void *data)
9291a0cd 2877{
dee91e82
DE
2878 struct dwarf2_cu *cu = reader->cu;
2879 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
2880 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 2881 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 2882 struct line_header *lh;
9291a0cd 2883 struct attribute *attr;
dee91e82 2884 int i;
9291a0cd 2885 char *name, *comp_dir;
7b9f3c50
DE
2886 void **slot;
2887 struct quick_file_names *qfn;
2888 unsigned int line_offset;
9291a0cd 2889
07261596
TT
2890 /* Our callers never want to match partial units -- instead they
2891 will match the enclosing full CU. */
2892 if (comp_unit_die->tag == DW_TAG_partial_unit)
2893 {
2894 this_cu->v.quick->no_file_data = 1;
2895 return;
2896 }
2897
094b34ac
DE
2898 /* If we're reading the line header for TUs, store it in the "per_cu"
2899 for tu_group. */
2900 if (this_cu->is_debug_types)
2901 {
2902 struct type_unit_group *tu_group = data;
2903
2904 gdb_assert (tu_group != NULL);
2905 lh_cu = &tu_group->per_cu;
2906 }
2907 else
2908 lh_cu = this_cu;
2909
7b9f3c50
DE
2910 lh = NULL;
2911 slot = NULL;
2912 line_offset = 0;
dee91e82
DE
2913
2914 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
2915 if (attr)
2916 {
7b9f3c50
DE
2917 struct quick_file_names find_entry;
2918
2919 line_offset = DW_UNSND (attr);
2920
2921 /* We may have already read in this line header (TU line header sharing).
2922 If we have we're done. */
094b34ac
DE
2923 find_entry.hash.dwo_unit = cu->dwo_unit;
2924 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
2925 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2926 &find_entry, INSERT);
2927 if (*slot != NULL)
2928 {
094b34ac 2929 lh_cu->v.quick->file_names = *slot;
dee91e82 2930 return;
7b9f3c50
DE
2931 }
2932
3019eac3 2933 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
2934 }
2935 if (lh == NULL)
2936 {
094b34ac 2937 lh_cu->v.quick->no_file_data = 1;
dee91e82 2938 return;
9291a0cd
TT
2939 }
2940
7b9f3c50 2941 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
094b34ac
DE
2942 qfn->hash.dwo_unit = cu->dwo_unit;
2943 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
2944 gdb_assert (slot != NULL);
2945 *slot = qfn;
9291a0cd 2946
dee91e82 2947 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 2948
7b9f3c50
DE
2949 qfn->num_file_names = lh->num_file_names;
2950 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2951 lh->num_file_names * sizeof (char *));
9291a0cd 2952 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
2953 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2954 qfn->real_names = NULL;
9291a0cd 2955
7b9f3c50 2956 free_line_header (lh);
7b9f3c50 2957
094b34ac 2958 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
2959}
2960
2961/* A helper for the "quick" functions which attempts to read the line
2962 table for THIS_CU. */
2963
2964static struct quick_file_names *
2965dw2_get_file_names (struct objfile *objfile,
2966 struct dwarf2_per_cu_data *this_cu)
2967{
f4dc4d17
DE
2968 /* For TUs this should only be called on the parent group. */
2969 if (this_cu->is_debug_types)
2970 gdb_assert (IS_TYPE_UNIT_GROUP (this_cu));
2971
dee91e82
DE
2972 if (this_cu->v.quick->file_names != NULL)
2973 return this_cu->v.quick->file_names;
2974 /* If we know there is no line data, no point in looking again. */
2975 if (this_cu->v.quick->no_file_data)
2976 return NULL;
2977
3019eac3
DE
2978 /* If DWO files are in use, we can still find the DW_AT_stmt_list attribute
2979 in the stub for CUs, there's is no need to lookup the DWO file.
2980 However, that's not the case for TUs where DW_AT_stmt_list lives in the
2981 DWO file. */
2982 if (this_cu->is_debug_types)
094b34ac
DE
2983 {
2984 struct type_unit_group *tu_group = this_cu->s.type_unit_group;
2985
2986 init_cutu_and_read_dies (tu_group->t.first_tu, NULL, 0, 0,
2987 dw2_get_file_names_reader, tu_group);
2988 }
3019eac3
DE
2989 else
2990 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
2991
2992 if (this_cu->v.quick->no_file_data)
2993 return NULL;
2994 return this_cu->v.quick->file_names;
9291a0cd
TT
2995}
2996
2997/* A helper for the "quick" functions which computes and caches the
7b9f3c50 2998 real path for a given file name from the line table. */
2fdf6df6 2999
9291a0cd 3000static const char *
7b9f3c50
DE
3001dw2_get_real_path (struct objfile *objfile,
3002 struct quick_file_names *qfn, int index)
9291a0cd 3003{
7b9f3c50
DE
3004 if (qfn->real_names == NULL)
3005 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3006 qfn->num_file_names, sizeof (char *));
9291a0cd 3007
7b9f3c50
DE
3008 if (qfn->real_names[index] == NULL)
3009 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3010
7b9f3c50 3011 return qfn->real_names[index];
9291a0cd
TT
3012}
3013
3014static struct symtab *
3015dw2_find_last_source_symtab (struct objfile *objfile)
3016{
3017 int index;
ae2de4f8 3018
9291a0cd
TT
3019 dw2_setup (objfile);
3020 index = dwarf2_per_objfile->n_comp_units - 1;
a0f42c21 3021 return dw2_instantiate_symtab (dw2_get_cu (index));
9291a0cd
TT
3022}
3023
7b9f3c50
DE
3024/* Traversal function for dw2_forget_cached_source_info. */
3025
3026static int
3027dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3028{
7b9f3c50 3029 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3030
7b9f3c50 3031 if (file_data->real_names)
9291a0cd 3032 {
7b9f3c50 3033 int i;
9291a0cd 3034
7b9f3c50 3035 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3036 {
7b9f3c50
DE
3037 xfree ((void*) file_data->real_names[i]);
3038 file_data->real_names[i] = NULL;
9291a0cd
TT
3039 }
3040 }
7b9f3c50
DE
3041
3042 return 1;
3043}
3044
3045static void
3046dw2_forget_cached_source_info (struct objfile *objfile)
3047{
3048 dw2_setup (objfile);
3049
3050 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3051 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3052}
3053
f8eba3c6
TT
3054/* Helper function for dw2_map_symtabs_matching_filename that expands
3055 the symtabs and calls the iterator. */
3056
3057static int
3058dw2_map_expand_apply (struct objfile *objfile,
3059 struct dwarf2_per_cu_data *per_cu,
3060 const char *name,
3061 const char *full_path, const char *real_path,
3062 int (*callback) (struct symtab *, void *),
3063 void *data)
3064{
3065 struct symtab *last_made = objfile->symtabs;
3066
3067 /* Don't visit already-expanded CUs. */
3068 if (per_cu->v.quick->symtab)
3069 return 0;
3070
3071 /* This may expand more than one symtab, and we want to iterate over
3072 all of them. */
a0f42c21 3073 dw2_instantiate_symtab (per_cu);
f8eba3c6
TT
3074
3075 return iterate_over_some_symtabs (name, full_path, real_path, callback, data,
3076 objfile->symtabs, last_made);
3077}
3078
3079/* Implementation of the map_symtabs_matching_filename method. */
3080
9291a0cd 3081static int
f8eba3c6
TT
3082dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
3083 const char *full_path, const char *real_path,
3084 int (*callback) (struct symtab *, void *),
3085 void *data)
9291a0cd
TT
3086{
3087 int i;
c011a4f4 3088 const char *name_basename = lbasename (name);
4aac40c8
TT
3089 int name_len = strlen (name);
3090 int is_abs = IS_ABSOLUTE_PATH (name);
9291a0cd
TT
3091
3092 dw2_setup (objfile);
ae2de4f8 3093
f4dc4d17
DE
3094 dw2_build_type_unit_groups ();
3095
1fd400ff 3096 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
f4dc4d17 3097 + dwarf2_per_objfile->n_type_unit_groups); ++i)
9291a0cd
TT
3098 {
3099 int j;
f4dc4d17 3100 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
7b9f3c50 3101 struct quick_file_names *file_data;
9291a0cd 3102
3d7bb9d9 3103 /* We only need to look at symtabs not already expanded. */
e254ef6a 3104 if (per_cu->v.quick->symtab)
9291a0cd
TT
3105 continue;
3106
7b9f3c50
DE
3107 file_data = dw2_get_file_names (objfile, per_cu);
3108 if (file_data == NULL)
9291a0cd
TT
3109 continue;
3110
7b9f3c50 3111 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3112 {
7b9f3c50 3113 const char *this_name = file_data->file_names[j];
9291a0cd 3114
4aac40c8
TT
3115 if (FILENAME_CMP (name, this_name) == 0
3116 || (!is_abs && compare_filenames_for_search (this_name,
3117 name, name_len)))
9291a0cd 3118 {
f8eba3c6
TT
3119 if (dw2_map_expand_apply (objfile, per_cu,
3120 name, full_path, real_path,
3121 callback, data))
3122 return 1;
4aac40c8 3123 }
9291a0cd 3124
c011a4f4
DE
3125 /* Before we invoke realpath, which can get expensive when many
3126 files are involved, do a quick comparison of the basenames. */
3127 if (! basenames_may_differ
3128 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3129 continue;
3130
9291a0cd
TT
3131 if (full_path != NULL)
3132 {
7b9f3c50
DE
3133 const char *this_real_name = dw2_get_real_path (objfile,
3134 file_data, j);
9291a0cd 3135
7b9f3c50 3136 if (this_real_name != NULL
4aac40c8
TT
3137 && (FILENAME_CMP (full_path, this_real_name) == 0
3138 || (!is_abs
3139 && compare_filenames_for_search (this_real_name,
3140 name, name_len))))
9291a0cd 3141 {
f8eba3c6
TT
3142 if (dw2_map_expand_apply (objfile, per_cu,
3143 name, full_path, real_path,
3144 callback, data))
3145 return 1;
9291a0cd
TT
3146 }
3147 }
3148
3149 if (real_path != NULL)
3150 {
7b9f3c50
DE
3151 const char *this_real_name = dw2_get_real_path (objfile,
3152 file_data, j);
9291a0cd 3153
7b9f3c50 3154 if (this_real_name != NULL
4aac40c8
TT
3155 && (FILENAME_CMP (real_path, this_real_name) == 0
3156 || (!is_abs
3157 && compare_filenames_for_search (this_real_name,
3158 name, name_len))))
9291a0cd 3159 {
f8eba3c6
TT
3160 if (dw2_map_expand_apply (objfile, per_cu,
3161 name, full_path, real_path,
3162 callback, data))
3163 return 1;
9291a0cd
TT
3164 }
3165 }
3166 }
3167 }
3168
9291a0cd
TT
3169 return 0;
3170}
3171
3172static struct symtab *
3173dw2_lookup_symbol (struct objfile *objfile, int block_index,
3174 const char *name, domain_enum domain)
3175{
774b6a14 3176 /* We do all the work in the pre_expand_symtabs_matching hook
9291a0cd
TT
3177 instead. */
3178 return NULL;
3179}
3180
3181/* A helper function that expands all symtabs that hold an object
156942c7
DE
3182 named NAME. If WANT_SPECIFIC_BLOCK is non-zero, only look for
3183 symbols in block BLOCK_KIND. */
2fdf6df6 3184
9291a0cd 3185static void
156942c7
DE
3186dw2_do_expand_symtabs_matching (struct objfile *objfile,
3187 int want_specific_block,
3188 enum block_enum block_kind,
3189 const char *name, domain_enum domain)
9291a0cd 3190{
156942c7
DE
3191 struct mapped_index *index;
3192
9291a0cd
TT
3193 dw2_setup (objfile);
3194
156942c7
DE
3195 index = dwarf2_per_objfile->index_table;
3196
ae2de4f8 3197 /* index_table is NULL if OBJF_READNOW. */
156942c7 3198 if (index)
9291a0cd
TT
3199 {
3200 offset_type *vec;
3201
156942c7 3202 if (find_slot_in_mapped_hash (index, name, &vec))
9291a0cd
TT
3203 {
3204 offset_type i, len = MAYBE_SWAP (*vec);
3205 for (i = 0; i < len; ++i)
3206 {
156942c7
DE
3207 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[i + 1]);
3208 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
e254ef6a 3209 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
156942c7
DE
3210 int want_static = block_kind != GLOBAL_BLOCK;
3211 /* This value is only valid for index versions >= 7. */
3212 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3213 gdb_index_symbol_kind symbol_kind =
3214 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
83a788b8
DE
3215 /* Only check the symbol attributes if they're present.
3216 Indices prior to version 7 don't record them,
3217 and indices >= 7 may elide them for certain symbols
3218 (gold does this). */
3219 int attrs_valid =
3220 (index->version >= 7
3221 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3222
3223 if (attrs_valid
3224 && want_specific_block
156942c7
DE
3225 && want_static != is_static)
3226 continue;
3227
83a788b8
DE
3228 /* Only check the symbol's kind if it has one. */
3229 if (attrs_valid)
156942c7
DE
3230 {
3231 switch (domain)
3232 {
3233 case VAR_DOMAIN:
3234 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3235 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3236 /* Some types are also in VAR_DOMAIN. */
3237 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3238 continue;
3239 break;
3240 case STRUCT_DOMAIN:
3241 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3242 continue;
3243 break;
3244 case LABEL_DOMAIN:
3245 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3246 continue;
3247 break;
3248 default:
3249 break;
3250 }
3251 }
1fd400ff 3252
a0f42c21 3253 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3254 }
3255 }
3256 }
3257}
3258
774b6a14
TT
3259static void
3260dw2_pre_expand_symtabs_matching (struct objfile *objfile,
8903c50d 3261 enum block_enum block_kind, const char *name,
774b6a14 3262 domain_enum domain)
9291a0cd 3263{
156942c7 3264 dw2_do_expand_symtabs_matching (objfile, 1, block_kind, name, domain);
9291a0cd
TT
3265}
3266
3267static void
3268dw2_print_stats (struct objfile *objfile)
3269{
3270 int i, count;
3271
3272 dw2_setup (objfile);
3273 count = 0;
1fd400ff 3274 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3275 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3276 {
e254ef6a 3277 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3278
e254ef6a 3279 if (!per_cu->v.quick->symtab)
9291a0cd
TT
3280 ++count;
3281 }
3282 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3283}
3284
3285static void
3286dw2_dump (struct objfile *objfile)
3287{
3288 /* Nothing worth printing. */
3289}
3290
3291static void
3292dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
3293 struct section_offsets *delta)
3294{
3295 /* There's nothing to relocate here. */
3296}
3297
3298static void
3299dw2_expand_symtabs_for_function (struct objfile *objfile,
3300 const char *func_name)
3301{
156942c7
DE
3302 /* Note: It doesn't matter what we pass for block_kind here. */
3303 dw2_do_expand_symtabs_matching (objfile, 0, GLOBAL_BLOCK, func_name,
3304 VAR_DOMAIN);
9291a0cd
TT
3305}
3306
3307static void
3308dw2_expand_all_symtabs (struct objfile *objfile)
3309{
3310 int i;
3311
3312 dw2_setup (objfile);
1fd400ff
TT
3313
3314 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3315 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3316 {
e254ef6a 3317 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3318
a0f42c21 3319 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3320 }
3321}
3322
3323static void
3324dw2_expand_symtabs_with_filename (struct objfile *objfile,
3325 const char *filename)
3326{
3327 int i;
3328
3329 dw2_setup (objfile);
d4637a04
DE
3330
3331 /* We don't need to consider type units here.
3332 This is only called for examining code, e.g. expand_line_sal.
3333 There can be an order of magnitude (or more) more type units
3334 than comp units, and we avoid them if we can. */
3335
3336 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3337 {
3338 int j;
e254ef6a 3339 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3340 struct quick_file_names *file_data;
9291a0cd 3341
3d7bb9d9 3342 /* We only need to look at symtabs not already expanded. */
e254ef6a 3343 if (per_cu->v.quick->symtab)
9291a0cd
TT
3344 continue;
3345
7b9f3c50
DE
3346 file_data = dw2_get_file_names (objfile, per_cu);
3347 if (file_data == NULL)
9291a0cd
TT
3348 continue;
3349
7b9f3c50 3350 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3351 {
7b9f3c50 3352 const char *this_name = file_data->file_names[j];
1ef75ecc 3353 if (FILENAME_CMP (this_name, filename) == 0)
9291a0cd 3354 {
a0f42c21 3355 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3356 break;
3357 }
3358 }
3359 }
3360}
3361
356d9f9d
TT
3362/* A helper function for dw2_find_symbol_file that finds the primary
3363 file name for a given CU. This is a die_reader_func. */
3364
3365static void
3366dw2_get_primary_filename_reader (const struct die_reader_specs *reader,
3367 gdb_byte *info_ptr,
3368 struct die_info *comp_unit_die,
3369 int has_children,
3370 void *data)
3371{
3372 const char **result_ptr = data;
3373 struct dwarf2_cu *cu = reader->cu;
3374 struct attribute *attr;
3375
3376 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3377 if (attr == NULL)
3378 *result_ptr = NULL;
3379 else
3380 *result_ptr = DW_STRING (attr);
3381}
3382
dd786858 3383static const char *
9291a0cd
TT
3384dw2_find_symbol_file (struct objfile *objfile, const char *name)
3385{
e254ef6a 3386 struct dwarf2_per_cu_data *per_cu;
9291a0cd 3387 offset_type *vec;
7b9f3c50 3388 struct quick_file_names *file_data;
356d9f9d 3389 const char *filename;
9291a0cd
TT
3390
3391 dw2_setup (objfile);
3392
ae2de4f8 3393 /* index_table is NULL if OBJF_READNOW. */
9291a0cd 3394 if (!dwarf2_per_objfile->index_table)
96408a79
SA
3395 {
3396 struct symtab *s;
3397
d790cf0a
DE
3398 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
3399 {
3400 struct blockvector *bv = BLOCKVECTOR (s);
3401 const struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3402 struct symbol *sym = lookup_block_symbol (block, name, VAR_DOMAIN);
3403
3404 if (sym)
3405 return sym->symtab->filename;
3406 }
96408a79
SA
3407 return NULL;
3408 }
9291a0cd
TT
3409
3410 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
3411 name, &vec))
3412 return NULL;
3413
3414 /* Note that this just looks at the very first one named NAME -- but
3415 actually we are looking for a function. find_main_filename
3416 should be rewritten so that it doesn't require a custom hook. It
3417 could just use the ordinary symbol tables. */
3418 /* vec[0] is the length, which must always be >0. */
156942c7 3419 per_cu = dw2_get_cu (GDB_INDEX_CU_VALUE (MAYBE_SWAP (vec[1])));
9291a0cd 3420
356d9f9d
TT
3421 if (per_cu->v.quick->symtab != NULL)
3422 return per_cu->v.quick->symtab->filename;
3423
f4dc4d17
DE
3424 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
3425 dw2_get_primary_filename_reader, &filename);
9291a0cd 3426
356d9f9d 3427 return filename;
9291a0cd
TT
3428}
3429
3430static void
40658b94
PH
3431dw2_map_matching_symbols (const char * name, domain_enum namespace,
3432 struct objfile *objfile, int global,
3433 int (*callback) (struct block *,
3434 struct symbol *, void *),
2edb89d3
JK
3435 void *data, symbol_compare_ftype *match,
3436 symbol_compare_ftype *ordered_compare)
9291a0cd 3437{
40658b94 3438 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3439 current language is Ada for a non-Ada objfile using GNU index. As Ada
3440 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3441}
3442
3443static void
f8eba3c6
TT
3444dw2_expand_symtabs_matching
3445 (struct objfile *objfile,
3446 int (*file_matcher) (const char *, void *),
e078317b 3447 int (*name_matcher) (const char *, void *),
f8eba3c6
TT
3448 enum search_domain kind,
3449 void *data)
9291a0cd
TT
3450{
3451 int i;
3452 offset_type iter;
4b5246aa 3453 struct mapped_index *index;
9291a0cd
TT
3454
3455 dw2_setup (objfile);
ae2de4f8
DE
3456
3457 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3458 if (!dwarf2_per_objfile->index_table)
3459 return;
4b5246aa 3460 index = dwarf2_per_objfile->index_table;
9291a0cd 3461
7b08b9eb 3462 if (file_matcher != NULL)
24c79950
TT
3463 {
3464 struct cleanup *cleanup;
3465 htab_t visited_found, visited_not_found;
3466
f4dc4d17
DE
3467 dw2_build_type_unit_groups ();
3468
24c79950
TT
3469 visited_found = htab_create_alloc (10,
3470 htab_hash_pointer, htab_eq_pointer,
3471 NULL, xcalloc, xfree);
3472 cleanup = make_cleanup_htab_delete (visited_found);
3473 visited_not_found = htab_create_alloc (10,
3474 htab_hash_pointer, htab_eq_pointer,
3475 NULL, xcalloc, xfree);
3476 make_cleanup_htab_delete (visited_not_found);
3477
3478 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
f4dc4d17 3479 + dwarf2_per_objfile->n_type_unit_groups); ++i)
24c79950
TT
3480 {
3481 int j;
f4dc4d17 3482 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
24c79950
TT
3483 struct quick_file_names *file_data;
3484 void **slot;
7b08b9eb 3485
24c79950 3486 per_cu->v.quick->mark = 0;
3d7bb9d9 3487
24c79950
TT
3488 /* We only need to look at symtabs not already expanded. */
3489 if (per_cu->v.quick->symtab)
3490 continue;
7b08b9eb 3491
24c79950
TT
3492 file_data = dw2_get_file_names (objfile, per_cu);
3493 if (file_data == NULL)
3494 continue;
7b08b9eb 3495
24c79950
TT
3496 if (htab_find (visited_not_found, file_data) != NULL)
3497 continue;
3498 else if (htab_find (visited_found, file_data) != NULL)
3499 {
3500 per_cu->v.quick->mark = 1;
3501 continue;
3502 }
3503
3504 for (j = 0; j < file_data->num_file_names; ++j)
3505 {
3506 if (file_matcher (file_data->file_names[j], data))
3507 {
3508 per_cu->v.quick->mark = 1;
3509 break;
3510 }
3511 }
3512
3513 slot = htab_find_slot (per_cu->v.quick->mark
3514 ? visited_found
3515 : visited_not_found,
3516 file_data, INSERT);
3517 *slot = file_data;
3518 }
3519
3520 do_cleanups (cleanup);
3521 }
9291a0cd 3522
3876f04e 3523 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3524 {
3525 offset_type idx = 2 * iter;
3526 const char *name;
3527 offset_type *vec, vec_len, vec_idx;
3528
3876f04e 3529 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3530 continue;
3531
3876f04e 3532 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3533
e078317b 3534 if (! (*name_matcher) (name, data))
9291a0cd
TT
3535 continue;
3536
3537 /* The name was matched, now expand corresponding CUs that were
3538 marked. */
4b5246aa 3539 vec = (offset_type *) (index->constant_pool
3876f04e 3540 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3541 vec_len = MAYBE_SWAP (vec[0]);
3542 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3543 {
e254ef6a 3544 struct dwarf2_per_cu_data *per_cu;
156942c7
DE
3545 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
3546 gdb_index_symbol_kind symbol_kind =
3547 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3548 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3549
3550 /* Don't crash on bad data. */
3551 if (cu_index >= (dwarf2_per_objfile->n_comp_units
667e0a4b 3552 + dwarf2_per_objfile->n_type_units))
156942c7 3553 continue;
1fd400ff 3554
156942c7
DE
3555 /* Only check the symbol's kind if it has one.
3556 Indices prior to version 7 don't record it. */
3557 if (index->version >= 7)
3558 {
3559 switch (kind)
3560 {
3561 case VARIABLES_DOMAIN:
3562 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3563 continue;
3564 break;
3565 case FUNCTIONS_DOMAIN:
3566 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3567 continue;
3568 break;
3569 case TYPES_DOMAIN:
3570 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3571 continue;
3572 break;
3573 default:
3574 break;
3575 }
3576 }
3577
3578 per_cu = dw2_get_cu (cu_index);
7b08b9eb 3579 if (file_matcher == NULL || per_cu->v.quick->mark)
a0f42c21 3580 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3581 }
3582 }
3583}
3584
9703b513
TT
3585/* A helper for dw2_find_pc_sect_symtab which finds the most specific
3586 symtab. */
3587
3588static struct symtab *
3589recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3590{
3591 int i;
3592
3593 if (BLOCKVECTOR (symtab) != NULL
3594 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3595 return symtab;
3596
a3ec0bb1
DE
3597 if (symtab->includes == NULL)
3598 return NULL;
3599
9703b513
TT
3600 for (i = 0; symtab->includes[i]; ++i)
3601 {
a3ec0bb1 3602 struct symtab *s = symtab->includes[i];
9703b513
TT
3603
3604 s = recursively_find_pc_sect_symtab (s, pc);
3605 if (s != NULL)
3606 return s;
3607 }
3608
3609 return NULL;
3610}
3611
9291a0cd
TT
3612static struct symtab *
3613dw2_find_pc_sect_symtab (struct objfile *objfile,
3614 struct minimal_symbol *msymbol,
3615 CORE_ADDR pc,
3616 struct obj_section *section,
3617 int warn_if_readin)
3618{
3619 struct dwarf2_per_cu_data *data;
9703b513 3620 struct symtab *result;
9291a0cd
TT
3621
3622 dw2_setup (objfile);
3623
3624 if (!objfile->psymtabs_addrmap)
3625 return NULL;
3626
3627 data = addrmap_find (objfile->psymtabs_addrmap, pc);
3628 if (!data)
3629 return NULL;
3630
3631 if (warn_if_readin && data->v.quick->symtab)
abebb8b0 3632 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
3633 paddress (get_objfile_arch (objfile), pc));
3634
9703b513
TT
3635 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
3636 gdb_assert (result != NULL);
3637 return result;
9291a0cd
TT
3638}
3639
9291a0cd 3640static void
44b13c5a 3641dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 3642 void *data, int need_fullname)
9291a0cd
TT
3643{
3644 int i;
24c79950
TT
3645 struct cleanup *cleanup;
3646 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
3647 NULL, xcalloc, xfree);
9291a0cd 3648
24c79950 3649 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 3650 dw2_setup (objfile);
ae2de4f8 3651
f4dc4d17
DE
3652 dw2_build_type_unit_groups ();
3653
24c79950
TT
3654 /* We can ignore file names coming from already-expanded CUs. */
3655 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
3656 + dwarf2_per_objfile->n_type_units); ++i)
3657 {
3658 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
3659
3660 if (per_cu->v.quick->symtab)
3661 {
3662 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
3663 INSERT);
3664
3665 *slot = per_cu->v.quick->file_names;
3666 }
3667 }
3668
1fd400ff 3669 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
f4dc4d17 3670 + dwarf2_per_objfile->n_type_unit_groups); ++i)
9291a0cd
TT
3671 {
3672 int j;
f4dc4d17 3673 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
7b9f3c50 3674 struct quick_file_names *file_data;
24c79950 3675 void **slot;
9291a0cd 3676
3d7bb9d9 3677 /* We only need to look at symtabs not already expanded. */
e254ef6a 3678 if (per_cu->v.quick->symtab)
9291a0cd
TT
3679 continue;
3680
7b9f3c50
DE
3681 file_data = dw2_get_file_names (objfile, per_cu);
3682 if (file_data == NULL)
9291a0cd
TT
3683 continue;
3684
24c79950
TT
3685 slot = htab_find_slot (visited, file_data, INSERT);
3686 if (*slot)
3687 {
3688 /* Already visited. */
3689 continue;
3690 }
3691 *slot = file_data;
3692
7b9f3c50 3693 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3694 {
74e2f255
DE
3695 const char *this_real_name;
3696
3697 if (need_fullname)
3698 this_real_name = dw2_get_real_path (objfile, file_data, j);
3699 else
3700 this_real_name = NULL;
7b9f3c50 3701 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
3702 }
3703 }
24c79950
TT
3704
3705 do_cleanups (cleanup);
9291a0cd
TT
3706}
3707
3708static int
3709dw2_has_symbols (struct objfile *objfile)
3710{
3711 return 1;
3712}
3713
3714const struct quick_symbol_functions dwarf2_gdb_index_functions =
3715{
3716 dw2_has_symbols,
3717 dw2_find_last_source_symtab,
3718 dw2_forget_cached_source_info,
f8eba3c6 3719 dw2_map_symtabs_matching_filename,
9291a0cd 3720 dw2_lookup_symbol,
774b6a14 3721 dw2_pre_expand_symtabs_matching,
9291a0cd
TT
3722 dw2_print_stats,
3723 dw2_dump,
3724 dw2_relocate,
3725 dw2_expand_symtabs_for_function,
3726 dw2_expand_all_symtabs,
3727 dw2_expand_symtabs_with_filename,
3728 dw2_find_symbol_file,
40658b94 3729 dw2_map_matching_symbols,
9291a0cd
TT
3730 dw2_expand_symtabs_matching,
3731 dw2_find_pc_sect_symtab,
9291a0cd
TT
3732 dw2_map_symbol_filenames
3733};
3734
3735/* Initialize for reading DWARF for this objfile. Return 0 if this
3736 file will use psymtabs, or 1 if using the GNU index. */
3737
3738int
3739dwarf2_initialize_objfile (struct objfile *objfile)
3740{
3741 /* If we're about to read full symbols, don't bother with the
3742 indices. In this case we also don't care if some other debug
3743 format is making psymtabs, because they are all about to be
3744 expanded anyway. */
3745 if ((objfile->flags & OBJF_READNOW))
3746 {
3747 int i;
3748
3749 dwarf2_per_objfile->using_index = 1;
3750 create_all_comp_units (objfile);
0e50663e 3751 create_all_type_units (objfile);
7b9f3c50
DE
3752 dwarf2_per_objfile->quick_file_names_table =
3753 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 3754
1fd400ff 3755 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3756 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3757 {
e254ef6a 3758 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3759
e254ef6a
DE
3760 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3761 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
3762 }
3763
3764 /* Return 1 so that gdb sees the "quick" functions. However,
3765 these functions will be no-ops because we will have expanded
3766 all symtabs. */
3767 return 1;
3768 }
3769
3770 if (dwarf2_read_index (objfile))
3771 return 1;
3772
9291a0cd
TT
3773 return 0;
3774}
3775
3776\f
3777
dce234bc
PP
3778/* Build a partial symbol table. */
3779
3780void
f29dff0a 3781dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 3782{
f29dff0a 3783 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
3784 {
3785 init_psymbol_list (objfile, 1024);
3786 }
3787
d146bf1e 3788 dwarf2_build_psymtabs_hard (objfile);
c906108c 3789}
c906108c 3790
1ce1cefd
DE
3791/* Return the total length of the CU described by HEADER. */
3792
3793static unsigned int
3794get_cu_length (const struct comp_unit_head *header)
3795{
3796 return header->initial_length_size + header->length;
3797}
3798
45452591
DE
3799/* Return TRUE if OFFSET is within CU_HEADER. */
3800
3801static inline int
b64f50a1 3802offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 3803{
b64f50a1 3804 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 3805 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 3806
b64f50a1 3807 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
3808}
3809
3b80fe9b
DE
3810/* Find the base address of the compilation unit for range lists and
3811 location lists. It will normally be specified by DW_AT_low_pc.
3812 In DWARF-3 draft 4, the base address could be overridden by
3813 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3814 compilation units with discontinuous ranges. */
3815
3816static void
3817dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3818{
3819 struct attribute *attr;
3820
3821 cu->base_known = 0;
3822 cu->base_address = 0;
3823
3824 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3825 if (attr)
3826 {
3827 cu->base_address = DW_ADDR (attr);
3828 cu->base_known = 1;
3829 }
3830 else
3831 {
3832 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3833 if (attr)
3834 {
3835 cu->base_address = DW_ADDR (attr);
3836 cu->base_known = 1;
3837 }
3838 }
3839}
3840
93311388
DE
3841/* Read in the comp unit header information from the debug_info at info_ptr.
3842 NOTE: This leaves members offset, first_die_offset to be filled in
3843 by the caller. */
107d2387 3844
fe1b8b76 3845static gdb_byte *
107d2387 3846read_comp_unit_head (struct comp_unit_head *cu_header,
fe1b8b76 3847 gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
3848{
3849 int signed_addr;
891d2f0b 3850 unsigned int bytes_read;
c764a876
DE
3851
3852 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
3853 cu_header->initial_length_size = bytes_read;
3854 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 3855 info_ptr += bytes_read;
107d2387
AC
3856 cu_header->version = read_2_bytes (abfd, info_ptr);
3857 info_ptr += 2;
b64f50a1
JK
3858 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
3859 &bytes_read);
613e1657 3860 info_ptr += bytes_read;
107d2387
AC
3861 cu_header->addr_size = read_1_byte (abfd, info_ptr);
3862 info_ptr += 1;
3863 signed_addr = bfd_get_sign_extend_vma (abfd);
3864 if (signed_addr < 0)
8e65ff28 3865 internal_error (__FILE__, __LINE__,
e2e0b3e5 3866 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 3867 cu_header->signed_addr_p = signed_addr;
c764a876 3868
107d2387
AC
3869 return info_ptr;
3870}
3871
36586728
TT
3872/* Helper function that returns the proper abbrev section for
3873 THIS_CU. */
3874
3875static struct dwarf2_section_info *
3876get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
3877{
3878 struct dwarf2_section_info *abbrev;
3879
3880 if (this_cu->is_dwz)
3881 abbrev = &dwarf2_get_dwz_file ()->abbrev;
3882 else
3883 abbrev = &dwarf2_per_objfile->abbrev;
3884
3885 return abbrev;
3886}
3887
9ff913ba
DE
3888/* Subroutine of read_and_check_comp_unit_head and
3889 read_and_check_type_unit_head to simplify them.
3890 Perform various error checking on the header. */
3891
3892static void
3893error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
3894 struct dwarf2_section_info *section,
3895 struct dwarf2_section_info *abbrev_section)
9ff913ba
DE
3896{
3897 bfd *abfd = section->asection->owner;
3898 const char *filename = bfd_get_filename (abfd);
3899
3900 if (header->version != 2 && header->version != 3 && header->version != 4)
3901 error (_("Dwarf Error: wrong version in compilation unit header "
3902 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
3903 filename);
3904
b64f50a1 3905 if (header->abbrev_offset.sect_off
36586728 3906 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
3907 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
3908 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 3909 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
3910 filename);
3911
3912 /* Cast to unsigned long to use 64-bit arithmetic when possible to
3913 avoid potential 32-bit overflow. */
1ce1cefd 3914 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
3915 > section->size)
3916 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
3917 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 3918 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
3919 filename);
3920}
3921
3922/* Read in a CU/TU header and perform some basic error checking.
3923 The contents of the header are stored in HEADER.
3924 The result is a pointer to the start of the first DIE. */
adabb602 3925
fe1b8b76 3926static gdb_byte *
9ff913ba
DE
3927read_and_check_comp_unit_head (struct comp_unit_head *header,
3928 struct dwarf2_section_info *section,
4bdcc0c1 3929 struct dwarf2_section_info *abbrev_section,
9ff913ba
DE
3930 gdb_byte *info_ptr,
3931 int is_debug_types_section)
72bf9492 3932{
fe1b8b76 3933 gdb_byte *beg_of_comp_unit = info_ptr;
9ff913ba 3934 bfd *abfd = section->asection->owner;
72bf9492 3935
b64f50a1 3936 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 3937
72bf9492
DJ
3938 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
3939
460c1c54
CC
3940 /* If we're reading a type unit, skip over the signature and
3941 type_offset fields. */
b0df02fd 3942 if (is_debug_types_section)
460c1c54
CC
3943 info_ptr += 8 /*signature*/ + header->offset_size;
3944
b64f50a1 3945 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 3946
4bdcc0c1 3947 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
3948
3949 return info_ptr;
3950}
3951
348e048f
DE
3952/* Read in the types comp unit header information from .debug_types entry at
3953 types_ptr. The result is a pointer to one past the end of the header. */
3954
3955static gdb_byte *
9ff913ba
DE
3956read_and_check_type_unit_head (struct comp_unit_head *header,
3957 struct dwarf2_section_info *section,
4bdcc0c1 3958 struct dwarf2_section_info *abbrev_section,
9ff913ba 3959 gdb_byte *info_ptr,
dee91e82
DE
3960 ULONGEST *signature,
3961 cu_offset *type_offset_in_tu)
348e048f 3962{
9ff913ba
DE
3963 gdb_byte *beg_of_comp_unit = info_ptr;
3964 bfd *abfd = section->asection->owner;
348e048f 3965
b64f50a1 3966 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 3967
9ff913ba 3968 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 3969
9ff913ba
DE
3970 /* If we're reading a type unit, skip over the signature and
3971 type_offset fields. */
3972 if (signature != NULL)
3973 *signature = read_8_bytes (abfd, info_ptr);
3974 info_ptr += 8;
dee91e82
DE
3975 if (type_offset_in_tu != NULL)
3976 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
3977 header->offset_size);
9ff913ba
DE
3978 info_ptr += header->offset_size;
3979
b64f50a1 3980 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 3981
4bdcc0c1 3982 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
3983
3984 return info_ptr;
348e048f
DE
3985}
3986
f4dc4d17
DE
3987/* Fetch the abbreviation table offset from a comp or type unit header. */
3988
3989static sect_offset
3990read_abbrev_offset (struct dwarf2_section_info *section,
3991 sect_offset offset)
3992{
3993 bfd *abfd = section->asection->owner;
3994 gdb_byte *info_ptr;
3995 unsigned int length, initial_length_size, offset_size;
3996 sect_offset abbrev_offset;
3997
3998 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
3999 info_ptr = section->buffer + offset.sect_off;
4000 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4001 offset_size = initial_length_size == 4 ? 4 : 8;
4002 info_ptr += initial_length_size + 2 /*version*/;
4003 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4004 return abbrev_offset;
4005}
4006
aaa75496
JB
4007/* Allocate a new partial symtab for file named NAME and mark this new
4008 partial symtab as being an include of PST. */
4009
4010static void
4011dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
4012 struct objfile *objfile)
4013{
4014 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4015
4016 subpst->section_offsets = pst->section_offsets;
4017 subpst->textlow = 0;
4018 subpst->texthigh = 0;
4019
4020 subpst->dependencies = (struct partial_symtab **)
4021 obstack_alloc (&objfile->objfile_obstack,
4022 sizeof (struct partial_symtab *));
4023 subpst->dependencies[0] = pst;
4024 subpst->number_of_dependencies = 1;
4025
4026 subpst->globals_offset = 0;
4027 subpst->n_global_syms = 0;
4028 subpst->statics_offset = 0;
4029 subpst->n_static_syms = 0;
4030 subpst->symtab = NULL;
4031 subpst->read_symtab = pst->read_symtab;
4032 subpst->readin = 0;
4033
4034 /* No private part is necessary for include psymtabs. This property
4035 can be used to differentiate between such include psymtabs and
10b3939b 4036 the regular ones. */
58a9656e 4037 subpst->read_symtab_private = NULL;
aaa75496
JB
4038}
4039
4040/* Read the Line Number Program data and extract the list of files
4041 included by the source file represented by PST. Build an include
d85a05f0 4042 partial symtab for each of these included files. */
aaa75496
JB
4043
4044static void
4045dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4046 struct die_info *die,
4047 struct partial_symtab *pst)
aaa75496 4048{
d85a05f0
DJ
4049 struct line_header *lh = NULL;
4050 struct attribute *attr;
aaa75496 4051
d85a05f0
DJ
4052 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4053 if (attr)
3019eac3 4054 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4055 if (lh == NULL)
4056 return; /* No linetable, so no includes. */
4057
c6da4cef 4058 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
f3f5162e 4059 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
aaa75496
JB
4060
4061 free_line_header (lh);
4062}
4063
348e048f 4064static hashval_t
52dc124a 4065hash_signatured_type (const void *item)
348e048f 4066{
52dc124a 4067 const struct signatured_type *sig_type = item;
9a619af0 4068
348e048f 4069 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4070 return sig_type->signature;
348e048f
DE
4071}
4072
4073static int
52dc124a 4074eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f
DE
4075{
4076 const struct signatured_type *lhs = item_lhs;
4077 const struct signatured_type *rhs = item_rhs;
9a619af0 4078
348e048f
DE
4079 return lhs->signature == rhs->signature;
4080}
4081
1fd400ff
TT
4082/* Allocate a hash table for signatured types. */
4083
4084static htab_t
673bfd45 4085allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4086{
4087 return htab_create_alloc_ex (41,
52dc124a
DE
4088 hash_signatured_type,
4089 eq_signatured_type,
1fd400ff
TT
4090 NULL,
4091 &objfile->objfile_obstack,
4092 hashtab_obstack_allocate,
4093 dummy_obstack_deallocate);
4094}
4095
d467dd73 4096/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4097
4098static int
d467dd73 4099add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff
TT
4100{
4101 struct signatured_type *sigt = *slot;
b4dd5633 4102 struct signatured_type ***datap = datum;
1fd400ff 4103
b4dd5633 4104 **datap = sigt;
1fd400ff
TT
4105 ++*datap;
4106
4107 return 1;
4108}
4109
3019eac3 4110/* Create the hash table of all entries in the .debug_types section.
80626a55
DE
4111 DWO_FILE is a pointer to the DWO file for .debug_types.dwo,
4112 NULL otherwise.
4113 Note: This function processes DWO files only, not DWP files.
3019eac3
DE
4114 The result is a pointer to the hash table or NULL if there are
4115 no types. */
348e048f 4116
3019eac3
DE
4117static htab_t
4118create_debug_types_hash_table (struct dwo_file *dwo_file,
4119 VEC (dwarf2_section_info_def) *types)
348e048f 4120{
3019eac3 4121 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4122 htab_t types_htab = NULL;
8b70b953
TT
4123 int ix;
4124 struct dwarf2_section_info *section;
4bdcc0c1 4125 struct dwarf2_section_info *abbrev_section;
348e048f 4126
3019eac3
DE
4127 if (VEC_empty (dwarf2_section_info_def, types))
4128 return NULL;
348e048f 4129
4bdcc0c1
DE
4130 abbrev_section = (dwo_file != NULL
4131 ? &dwo_file->sections.abbrev
4132 : &dwarf2_per_objfile->abbrev);
4133
09406207
DE
4134 if (dwarf2_read_debug)
4135 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4136 dwo_file ? ".dwo" : "",
4137 bfd_get_filename (abbrev_section->asection->owner));
4138
8b70b953 4139 for (ix = 0;
3019eac3 4140 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4141 ++ix)
4142 {
3019eac3 4143 bfd *abfd;
8b70b953 4144 gdb_byte *info_ptr, *end_ptr;
36586728 4145 struct dwarf2_section_info *abbrev_section;
348e048f 4146
8b70b953
TT
4147 dwarf2_read_section (objfile, section);
4148 info_ptr = section->buffer;
348e048f 4149
8b70b953
TT
4150 if (info_ptr == NULL)
4151 continue;
348e048f 4152
3019eac3
DE
4153 /* We can't set abfd until now because the section may be empty or
4154 not present, in which case section->asection will be NULL. */
4155 abfd = section->asection->owner;
4156
36586728
TT
4157 if (dwo_file)
4158 abbrev_section = &dwo_file->sections.abbrev;
4159 else
4160 abbrev_section = &dwarf2_per_objfile->abbrev;
4161
8b70b953 4162 if (types_htab == NULL)
3019eac3
DE
4163 {
4164 if (dwo_file)
4165 types_htab = allocate_dwo_unit_table (objfile);
4166 else
4167 types_htab = allocate_signatured_type_table (objfile);
4168 }
348e048f 4169
dee91e82
DE
4170 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4171 because we don't need to read any dies: the signature is in the
4172 header. */
8b70b953
TT
4173
4174 end_ptr = info_ptr + section->size;
4175 while (info_ptr < end_ptr)
4176 {
b64f50a1 4177 sect_offset offset;
3019eac3 4178 cu_offset type_offset_in_tu;
8b70b953 4179 ULONGEST signature;
52dc124a 4180 struct signatured_type *sig_type;
3019eac3 4181 struct dwo_unit *dwo_tu;
8b70b953
TT
4182 void **slot;
4183 gdb_byte *ptr = info_ptr;
9ff913ba 4184 struct comp_unit_head header;
dee91e82 4185 unsigned int length;
348e048f 4186
b64f50a1 4187 offset.sect_off = ptr - section->buffer;
348e048f 4188
8b70b953 4189 /* We need to read the type's signature in order to build the hash
9ff913ba 4190 table, but we don't need anything else just yet. */
348e048f 4191
4bdcc0c1
DE
4192 ptr = read_and_check_type_unit_head (&header, section,
4193 abbrev_section, ptr,
3019eac3 4194 &signature, &type_offset_in_tu);
6caca83c 4195
1ce1cefd 4196 length = get_cu_length (&header);
dee91e82 4197
6caca83c 4198 /* Skip dummy type units. */
dee91e82
DE
4199 if (ptr >= info_ptr + length
4200 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4201 {
1ce1cefd 4202 info_ptr += length;
6caca83c
CC
4203 continue;
4204 }
8b70b953 4205
3019eac3
DE
4206 if (dwo_file)
4207 {
4208 sig_type = NULL;
4209 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4210 struct dwo_unit);
4211 dwo_tu->dwo_file = dwo_file;
4212 dwo_tu->signature = signature;
4213 dwo_tu->type_offset_in_tu = type_offset_in_tu;
4214 dwo_tu->info_or_types_section = section;
4215 dwo_tu->offset = offset;
4216 dwo_tu->length = length;
4217 }
4218 else
4219 {
4220 /* N.B.: type_offset is not usable if this type uses a DWO file.
4221 The real type_offset is in the DWO file. */
4222 dwo_tu = NULL;
4223 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4224 struct signatured_type);
4225 sig_type->signature = signature;
4226 sig_type->type_offset_in_tu = type_offset_in_tu;
4227 sig_type->per_cu.objfile = objfile;
4228 sig_type->per_cu.is_debug_types = 1;
4229 sig_type->per_cu.info_or_types_section = section;
4230 sig_type->per_cu.offset = offset;
4231 sig_type->per_cu.length = length;
4232 }
8b70b953 4233
3019eac3
DE
4234 slot = htab_find_slot (types_htab,
4235 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4236 INSERT);
8b70b953
TT
4237 gdb_assert (slot != NULL);
4238 if (*slot != NULL)
4239 {
3019eac3
DE
4240 sect_offset dup_offset;
4241
4242 if (dwo_file)
4243 {
4244 const struct dwo_unit *dup_tu = *slot;
4245
4246 dup_offset = dup_tu->offset;
4247 }
4248 else
4249 {
4250 const struct signatured_type *dup_tu = *slot;
4251
4252 dup_offset = dup_tu->per_cu.offset;
4253 }
b3c8eb43 4254
8b70b953
TT
4255 complaint (&symfile_complaints,
4256 _("debug type entry at offset 0x%x is duplicate to the "
4257 "entry at offset 0x%x, signature 0x%s"),
3019eac3 4258 offset.sect_off, dup_offset.sect_off,
8b70b953 4259 phex (signature, sizeof (signature)));
8b70b953 4260 }
3019eac3 4261 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4262
09406207 4263 if (dwarf2_read_debug)
8b70b953 4264 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
b64f50a1
JK
4265 offset.sect_off,
4266 phex (signature, sizeof (signature)));
348e048f 4267
dee91e82 4268 info_ptr += length;
8b70b953 4269 }
348e048f
DE
4270 }
4271
3019eac3
DE
4272 return types_htab;
4273}
4274
4275/* Create the hash table of all entries in the .debug_types section,
4276 and initialize all_type_units.
4277 The result is zero if there is an error (e.g. missing .debug_types section),
4278 otherwise non-zero. */
4279
4280static int
4281create_all_type_units (struct objfile *objfile)
4282{
4283 htab_t types_htab;
b4dd5633 4284 struct signatured_type **iter;
3019eac3
DE
4285
4286 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4287 if (types_htab == NULL)
4288 {
4289 dwarf2_per_objfile->signatured_types = NULL;
4290 return 0;
4291 }
4292
348e048f
DE
4293 dwarf2_per_objfile->signatured_types = types_htab;
4294
d467dd73
DE
4295 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4296 dwarf2_per_objfile->all_type_units
1fd400ff 4297 = obstack_alloc (&objfile->objfile_obstack,
d467dd73 4298 dwarf2_per_objfile->n_type_units
b4dd5633 4299 * sizeof (struct signatured_type *));
d467dd73
DE
4300 iter = &dwarf2_per_objfile->all_type_units[0];
4301 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4302 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4303 == dwarf2_per_objfile->n_type_units);
1fd400ff 4304
348e048f
DE
4305 return 1;
4306}
4307
380bca97 4308/* Lookup a signature based type for DW_FORM_ref_sig8.
e319fa28 4309 Returns NULL if signature SIG is not present in the table. */
348e048f
DE
4310
4311static struct signatured_type *
e319fa28 4312lookup_signatured_type (ULONGEST sig)
348e048f
DE
4313{
4314 struct signatured_type find_entry, *entry;
4315
4316 if (dwarf2_per_objfile->signatured_types == NULL)
4317 {
4318 complaint (&symfile_complaints,
55f1336d 4319 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
dcc07052 4320 return NULL;
348e048f
DE
4321 }
4322
4323 find_entry.signature = sig;
4324 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4325 return entry;
4326}
42e7ad6c
DE
4327\f
4328/* Low level DIE reading support. */
348e048f 4329
d85a05f0
DJ
4330/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4331
4332static void
4333init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 4334 struct dwarf2_cu *cu,
3019eac3
DE
4335 struct dwarf2_section_info *section,
4336 struct dwo_file *dwo_file)
d85a05f0 4337{
fceca515 4338 gdb_assert (section->readin && section->buffer != NULL);
dee91e82 4339 reader->abfd = section->asection->owner;
d85a05f0 4340 reader->cu = cu;
3019eac3 4341 reader->dwo_file = dwo_file;
dee91e82
DE
4342 reader->die_section = section;
4343 reader->buffer = section->buffer;
f664829e 4344 reader->buffer_end = section->buffer + section->size;
d85a05f0
DJ
4345}
4346
fd820528 4347/* Initialize a CU (or TU) and read its DIEs.
3019eac3 4348 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 4349
f4dc4d17
DE
4350 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
4351 Otherwise the table specified in the comp unit header is read in and used.
4352 This is an optimization for when we already have the abbrev table.
4353
dee91e82
DE
4354 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
4355 Otherwise, a new CU is allocated with xmalloc.
4356
4357 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
4358 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
4359
4360 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 4361 linker) then DIE_READER_FUNC will not get called. */
aaa75496 4362
70221824 4363static void
fd820528 4364init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 4365 struct abbrev_table *abbrev_table,
fd820528
DE
4366 int use_existing_cu, int keep,
4367 die_reader_func_ftype *die_reader_func,
4368 void *data)
c906108c 4369{
dee91e82 4370 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3
DE
4371 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4372 bfd *abfd = section->asection->owner;
dee91e82
DE
4373 struct dwarf2_cu *cu;
4374 gdb_byte *begin_info_ptr, *info_ptr;
4375 struct die_reader_specs reader;
d85a05f0 4376 struct die_info *comp_unit_die;
dee91e82 4377 int has_children;
d85a05f0 4378 struct attribute *attr;
dee91e82
DE
4379 struct cleanup *cleanups, *free_cu_cleanup = NULL;
4380 struct signatured_type *sig_type = NULL;
4bdcc0c1 4381 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
4382 /* Non-zero if CU currently points to a DWO file and we need to
4383 reread it. When this happens we need to reread the skeleton die
4384 before we can reread the DWO file. */
4385 int rereading_dwo_cu = 0;
c906108c 4386
09406207
DE
4387 if (dwarf2_die_debug)
4388 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4389 this_cu->is_debug_types ? "type" : "comp",
4390 this_cu->offset.sect_off);
4391
dee91e82
DE
4392 if (use_existing_cu)
4393 gdb_assert (keep);
23745b47 4394
dee91e82
DE
4395 cleanups = make_cleanup (null_cleanup, NULL);
4396
4397 /* This is cheap if the section is already read in. */
4398 dwarf2_read_section (objfile, section);
4399
4400 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
4401
4402 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
4403
4404 if (use_existing_cu && this_cu->cu != NULL)
4405 {
4406 cu = this_cu->cu;
42e7ad6c
DE
4407
4408 /* If this CU is from a DWO file we need to start over, we need to
4409 refetch the attributes from the skeleton CU.
4410 This could be optimized by retrieving those attributes from when we
4411 were here the first time: the previous comp_unit_die was stored in
4412 comp_unit_obstack. But there's no data yet that we need this
4413 optimization. */
4414 if (cu->dwo_unit != NULL)
4415 rereading_dwo_cu = 1;
dee91e82
DE
4416 }
4417 else
4418 {
4419 /* If !use_existing_cu, this_cu->cu must be NULL. */
4420 gdb_assert (this_cu->cu == NULL);
4421
4422 cu = xmalloc (sizeof (*cu));
4423 init_one_comp_unit (cu, this_cu);
4424
4425 /* If an error occurs while loading, release our storage. */
4426 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 4427 }
dee91e82 4428
42e7ad6c
DE
4429 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
4430 {
4431 /* We already have the header, there's no need to read it in again. */
4432 info_ptr += cu->header.first_die_offset.cu_off;
4433 }
4434 else
4435 {
3019eac3 4436 if (this_cu->is_debug_types)
dee91e82
DE
4437 {
4438 ULONGEST signature;
42e7ad6c 4439 cu_offset type_offset_in_tu;
dee91e82 4440
4bdcc0c1
DE
4441 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4442 abbrev_section, info_ptr,
42e7ad6c
DE
4443 &signature,
4444 &type_offset_in_tu);
dee91e82 4445
42e7ad6c
DE
4446 /* Since per_cu is the first member of struct signatured_type,
4447 we can go from a pointer to one to a pointer to the other. */
4448 sig_type = (struct signatured_type *) this_cu;
4449 gdb_assert (sig_type->signature == signature);
4450 gdb_assert (sig_type->type_offset_in_tu.cu_off
4451 == type_offset_in_tu.cu_off);
dee91e82
DE
4452 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
4453
42e7ad6c
DE
4454 /* LENGTH has not been set yet for type units if we're
4455 using .gdb_index. */
1ce1cefd 4456 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
4457
4458 /* Establish the type offset that can be used to lookup the type. */
4459 sig_type->type_offset_in_section.sect_off =
4460 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
4461 }
4462 else
4463 {
4bdcc0c1
DE
4464 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4465 abbrev_section,
4466 info_ptr, 0);
dee91e82
DE
4467
4468 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 4469 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
4470 }
4471 }
10b3939b 4472
6caca83c 4473 /* Skip dummy compilation units. */
dee91e82 4474 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
4475 || peek_abbrev_code (abfd, info_ptr) == 0)
4476 {
dee91e82 4477 do_cleanups (cleanups);
21b2bd31 4478 return;
6caca83c
CC
4479 }
4480
433df2d4
DE
4481 /* If we don't have them yet, read the abbrevs for this compilation unit.
4482 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
4483 done. Note that it's important that if the CU had an abbrev table
4484 on entry we don't free it when we're done: Somewhere up the call stack
4485 it may be in use. */
f4dc4d17
DE
4486 if (abbrev_table != NULL)
4487 {
4488 gdb_assert (cu->abbrev_table == NULL);
4489 gdb_assert (cu->header.abbrev_offset.sect_off
4490 == abbrev_table->offset.sect_off);
4491 cu->abbrev_table = abbrev_table;
4492 }
4493 else if (cu->abbrev_table == NULL)
dee91e82 4494 {
4bdcc0c1 4495 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
4496 make_cleanup (dwarf2_free_abbrev_table, cu);
4497 }
42e7ad6c
DE
4498 else if (rereading_dwo_cu)
4499 {
4500 dwarf2_free_abbrev_table (cu);
4501 dwarf2_read_abbrevs (cu, abbrev_section);
4502 }
af703f96 4503
dee91e82 4504 /* Read the top level CU/TU die. */
3019eac3 4505 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 4506 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 4507
3019eac3
DE
4508 /* If we have a DWO stub, process it and then read in the DWO file.
4509 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains
4510 a DWO CU, that this test will fail. */
4511 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
4512 if (attr)
4513 {
4514 char *dwo_name = DW_STRING (attr);
42e7ad6c 4515 const char *comp_dir_string;
3019eac3
DE
4516 struct dwo_unit *dwo_unit;
4517 ULONGEST signature; /* Or dwo_id. */
42e7ad6c 4518 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
3019eac3 4519 int i,num_extra_attrs;
4bdcc0c1 4520 struct dwarf2_section_info *dwo_abbrev_section;
3019eac3
DE
4521
4522 if (has_children)
4523 error (_("Dwarf Error: compilation unit with DW_AT_GNU_dwo_name"
4524 " has children (offset 0x%x) [in module %s]"),
4525 this_cu->offset.sect_off, bfd_get_filename (abfd));
4526
4527 /* These attributes aren't processed until later:
4528 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4529 However, the attribute is found in the stub which we won't have later.
4530 In order to not impose this complication on the rest of the code,
4531 we read them here and copy them to the DWO CU/TU die. */
3019eac3
DE
4532
4533 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4534 DWO file. */
42e7ad6c 4535 stmt_list = NULL;
3019eac3
DE
4536 if (! this_cu->is_debug_types)
4537 stmt_list = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
4538 low_pc = dwarf2_attr (comp_unit_die, DW_AT_low_pc, cu);
4539 high_pc = dwarf2_attr (comp_unit_die, DW_AT_high_pc, cu);
4540 ranges = dwarf2_attr (comp_unit_die, DW_AT_ranges, cu);
42e7ad6c 4541 comp_dir = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
3019eac3
DE
4542
4543 /* There should be a DW_AT_addr_base attribute here (if needed).
4544 We need the value before we can process DW_FORM_GNU_addr_index. */
4545 cu->addr_base = 0;
3019eac3
DE
4546 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_addr_base, cu);
4547 if (attr)
2e3cf129
DE
4548 cu->addr_base = DW_UNSND (attr);
4549
4550 /* There should be a DW_AT_ranges_base attribute here (if needed).
4551 We need the value before we can process DW_AT_ranges. */
4552 cu->ranges_base = 0;
4553 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_ranges_base, cu);
4554 if (attr)
4555 cu->ranges_base = DW_UNSND (attr);
3019eac3
DE
4556
4557 if (this_cu->is_debug_types)
4558 {
4559 gdb_assert (sig_type != NULL);
4560 signature = sig_type->signature;
4561 }
4562 else
4563 {
4564 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
4565 if (! attr)
4566 error (_("Dwarf Error: missing dwo_id [in module %s]"),
4567 dwo_name);
4568 signature = DW_UNSND (attr);
4569 }
4570
4571 /* We may need the comp_dir in order to find the DWO file. */
42e7ad6c
DE
4572 comp_dir_string = NULL;
4573 if (comp_dir)
4574 comp_dir_string = DW_STRING (comp_dir);
3019eac3
DE
4575
4576 if (this_cu->is_debug_types)
42e7ad6c 4577 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir_string);
3019eac3 4578 else
42e7ad6c 4579 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir_string,
3019eac3
DE
4580 signature);
4581
4582 if (dwo_unit == NULL)
4583 {
4584 error (_("Dwarf Error: CU at offset 0x%x references unknown DWO"
4585 " with ID %s [in module %s]"),
4586 this_cu->offset.sect_off,
4587 phex (signature, sizeof (signature)),
4588 objfile->name);
4589 }
4590
4591 /* Set up for reading the DWO CU/TU. */
4592 cu->dwo_unit = dwo_unit;
4593 section = dwo_unit->info_or_types_section;
80626a55 4594 dwarf2_read_section (objfile, section);
3019eac3 4595 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
4bdcc0c1 4596 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
3019eac3
DE
4597 init_cu_die_reader (&reader, cu, section, dwo_unit->dwo_file);
4598
4599 if (this_cu->is_debug_types)
4600 {
4601 ULONGEST signature;
80626a55 4602 cu_offset type_offset_in_tu;
3019eac3 4603
4bdcc0c1
DE
4604 info_ptr = read_and_check_type_unit_head (&cu->header, section,
4605 dwo_abbrev_section,
4606 info_ptr,
80626a55
DE
4607 &signature,
4608 &type_offset_in_tu);
3019eac3
DE
4609 gdb_assert (sig_type->signature == signature);
4610 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
80626a55
DE
4611 /* For DWOs coming from DWP files, we don't know the CU length
4612 nor the type's offset in the TU until now. */
4613 dwo_unit->length = get_cu_length (&cu->header);
4614 dwo_unit->type_offset_in_tu = type_offset_in_tu;
3019eac3
DE
4615
4616 /* Establish the type offset that can be used to lookup the type.
4617 For DWO files, we don't know it until now. */
4618 sig_type->type_offset_in_section.sect_off =
4619 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
4620 }
4621 else
4622 {
4bdcc0c1
DE
4623 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
4624 dwo_abbrev_section,
4625 info_ptr, 0);
3019eac3 4626 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
80626a55
DE
4627 /* For DWOs coming from DWP files, we don't know the CU length
4628 until now. */
4629 dwo_unit->length = get_cu_length (&cu->header);
3019eac3
DE
4630 }
4631
4632 /* Discard the original CU's abbrev table, and read the DWO's. */
f4dc4d17
DE
4633 if (abbrev_table == NULL)
4634 {
4635 dwarf2_free_abbrev_table (cu);
4636 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4637 }
4638 else
4639 {
4640 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
4641 make_cleanup (dwarf2_free_abbrev_table, cu);
4642 }
3019eac3
DE
4643
4644 /* Read in the die, but leave space to copy over the attributes
4645 from the stub. This has the benefit of simplifying the rest of
4646 the code - all the real work is done here. */
4647 num_extra_attrs = ((stmt_list != NULL)
4648 + (low_pc != NULL)
4649 + (high_pc != NULL)
42e7ad6c
DE
4650 + (ranges != NULL)
4651 + (comp_dir != NULL));
3019eac3
DE
4652 info_ptr = read_full_die_1 (&reader, &comp_unit_die, info_ptr,
4653 &has_children, num_extra_attrs);
4654
4655 /* Copy over the attributes from the stub to the DWO die. */
4656 i = comp_unit_die->num_attrs;
4657 if (stmt_list != NULL)
4658 comp_unit_die->attrs[i++] = *stmt_list;
4659 if (low_pc != NULL)
4660 comp_unit_die->attrs[i++] = *low_pc;
4661 if (high_pc != NULL)
4662 comp_unit_die->attrs[i++] = *high_pc;
4663 if (ranges != NULL)
4664 comp_unit_die->attrs[i++] = *ranges;
42e7ad6c
DE
4665 if (comp_dir != NULL)
4666 comp_unit_die->attrs[i++] = *comp_dir;
3019eac3
DE
4667 comp_unit_die->num_attrs += num_extra_attrs;
4668
4669 /* Skip dummy compilation units. */
4670 if (info_ptr >= begin_info_ptr + dwo_unit->length
4671 || peek_abbrev_code (abfd, info_ptr) == 0)
4672 {
4673 do_cleanups (cleanups);
4674 return;
4675 }
4676 }
4677
dee91e82
DE
4678 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4679
4680 if (free_cu_cleanup != NULL)
348e048f 4681 {
dee91e82
DE
4682 if (keep)
4683 {
4684 /* We've successfully allocated this compilation unit. Let our
4685 caller clean it up when finished with it. */
4686 discard_cleanups (free_cu_cleanup);
4687
4688 /* We can only discard free_cu_cleanup and all subsequent cleanups.
4689 So we have to manually free the abbrev table. */
4690 dwarf2_free_abbrev_table (cu);
4691
4692 /* Link this CU into read_in_chain. */
4693 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4694 dwarf2_per_objfile->read_in_chain = this_cu;
4695 }
4696 else
4697 do_cleanups (free_cu_cleanup);
348e048f 4698 }
dee91e82
DE
4699
4700 do_cleanups (cleanups);
4701}
4702
3019eac3
DE
4703/* Read CU/TU THIS_CU in section SECTION,
4704 but do not follow DW_AT_GNU_dwo_name if present.
80626a55
DE
4705 DWOP_FILE, if non-NULL, is the DWO/DWP file to read (the caller is assumed
4706 to have already done the lookup to find the DWO/DWP file).
dee91e82
DE
4707
4708 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 4709 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
4710
4711 We fill in THIS_CU->length.
4712
4713 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
4714 linker) then DIE_READER_FUNC will not get called.
4715
4716 THIS_CU->cu is always freed when done.
3019eac3
DE
4717 This is done in order to not leave THIS_CU->cu in a state where we have
4718 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
4719
4720static void
4721init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
4722 struct dwarf2_section_info *abbrev_section,
3019eac3 4723 struct dwo_file *dwo_file,
dee91e82
DE
4724 die_reader_func_ftype *die_reader_func,
4725 void *data)
4726{
4727 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3
DE
4728 struct dwarf2_section_info *section = this_cu->info_or_types_section;
4729 bfd *abfd = section->asection->owner;
dee91e82
DE
4730 struct dwarf2_cu cu;
4731 gdb_byte *begin_info_ptr, *info_ptr;
4732 struct die_reader_specs reader;
4733 struct cleanup *cleanups;
4734 struct die_info *comp_unit_die;
4735 int has_children;
4736
09406207
DE
4737 if (dwarf2_die_debug)
4738 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
4739 this_cu->is_debug_types ? "type" : "comp",
4740 this_cu->offset.sect_off);
4741
dee91e82
DE
4742 gdb_assert (this_cu->cu == NULL);
4743
dee91e82
DE
4744 /* This is cheap if the section is already read in. */
4745 dwarf2_read_section (objfile, section);
4746
4747 init_one_comp_unit (&cu, this_cu);
4748
4749 cleanups = make_cleanup (free_stack_comp_unit, &cu);
4750
4751 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
4752 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
4753 abbrev_section, info_ptr,
3019eac3 4754 this_cu->is_debug_types);
dee91e82 4755
1ce1cefd 4756 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
4757
4758 /* Skip dummy compilation units. */
4759 if (info_ptr >= begin_info_ptr + this_cu->length
4760 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 4761 {
dee91e82 4762 do_cleanups (cleanups);
21b2bd31 4763 return;
93311388 4764 }
72bf9492 4765
dee91e82
DE
4766 dwarf2_read_abbrevs (&cu, abbrev_section);
4767 make_cleanup (dwarf2_free_abbrev_table, &cu);
4768
3019eac3 4769 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
4770 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
4771
4772 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
4773
4774 do_cleanups (cleanups);
4775}
4776
3019eac3
DE
4777/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
4778 does not lookup the specified DWO file.
4779 This cannot be used to read DWO files.
dee91e82
DE
4780
4781 THIS_CU->cu is always freed when done.
3019eac3
DE
4782 This is done in order to not leave THIS_CU->cu in a state where we have
4783 to care whether it refers to the "main" CU or the DWO CU.
4784 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
4785
4786static void
4787init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
4788 die_reader_func_ftype *die_reader_func,
4789 void *data)
4790{
4791 init_cutu_and_read_dies_no_follow (this_cu,
36586728 4792 get_abbrev_section_for_cu (this_cu),
3019eac3 4793 NULL,
dee91e82
DE
4794 die_reader_func, data);
4795}
4796
f4dc4d17
DE
4797/* Create a psymtab named NAME and assign it to PER_CU.
4798
4799 The caller must fill in the following details:
4800 dirname, textlow, texthigh. */
4801
4802static struct partial_symtab *
4803create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
4804{
4805 struct objfile *objfile = per_cu->objfile;
4806 struct partial_symtab *pst;
4807
4808 pst = start_psymtab_common (objfile, objfile->section_offsets,
4809 name, 0,
4810 objfile->global_psymbols.next,
4811 objfile->static_psymbols.next);
4812
4813 pst->psymtabs_addrmap_supported = 1;
4814
4815 /* This is the glue that links PST into GDB's symbol API. */
4816 pst->read_symtab_private = per_cu;
4817 pst->read_symtab = dwarf2_psymtab_to_symtab;
4818 per_cu->v.psymtab = pst;
4819
4820 return pst;
4821}
4822
dee91e82
DE
4823/* die_reader_func for process_psymtab_comp_unit. */
4824
4825static void
4826process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
4827 gdb_byte *info_ptr,
4828 struct die_info *comp_unit_die,
4829 int has_children,
4830 void *data)
4831{
4832 struct dwarf2_cu *cu = reader->cu;
4833 struct objfile *objfile = cu->objfile;
4834 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
dee91e82
DE
4835 struct attribute *attr;
4836 CORE_ADDR baseaddr;
4837 CORE_ADDR best_lowpc = 0, best_highpc = 0;
4838 struct partial_symtab *pst;
4839 int has_pc_info;
4840 const char *filename;
95554aad 4841 int *want_partial_unit_ptr = data;
dee91e82 4842
95554aad
TT
4843 if (comp_unit_die->tag == DW_TAG_partial_unit
4844 && (want_partial_unit_ptr == NULL
4845 || !*want_partial_unit_ptr))
dee91e82
DE
4846 return;
4847
f4dc4d17
DE
4848 gdb_assert (! per_cu->is_debug_types);
4849
95554aad 4850 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
dee91e82
DE
4851
4852 cu->list_in_scope = &file_symbols;
c906108c 4853
93311388 4854 /* Allocate a new partial symbol table structure. */
dee91e82 4855 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
3e2a0cee
TT
4856 if (attr == NULL || !DW_STRING (attr))
4857 filename = "";
4858 else
4859 filename = DW_STRING (attr);
72bf9492 4860
f4dc4d17
DE
4861 pst = create_partial_symtab (per_cu, filename);
4862
4863 /* This must be done before calling dwarf2_build_include_psymtabs. */
dee91e82 4864 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
d85a05f0
DJ
4865 if (attr != NULL)
4866 pst->dirname = DW_STRING (attr);
72bf9492 4867
93311388 4868 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
e7c27a73 4869
dee91e82 4870 dwarf2_find_base_address (comp_unit_die, cu);
d85a05f0 4871
93311388
DE
4872 /* Possibly set the default values of LOWPC and HIGHPC from
4873 `DW_AT_ranges'. */
d85a05f0 4874 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
dee91e82 4875 &best_highpc, cu, pst);
d85a05f0 4876 if (has_pc_info == 1 && best_lowpc < best_highpc)
93311388
DE
4877 /* Store the contiguous range if it is not empty; it can be empty for
4878 CUs with no code. */
4879 addrmap_set_empty (objfile->psymtabs_addrmap,
d85a05f0
DJ
4880 best_lowpc + baseaddr,
4881 best_highpc + baseaddr - 1, pst);
93311388
DE
4882
4883 /* Check if comp unit has_children.
4884 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 4885 If not, there's no more debug_info for this comp unit. */
d85a05f0 4886 if (has_children)
93311388
DE
4887 {
4888 struct partial_die_info *first_die;
4889 CORE_ADDR lowpc, highpc;
31ffec48 4890
93311388
DE
4891 lowpc = ((CORE_ADDR) -1);
4892 highpc = ((CORE_ADDR) 0);
c906108c 4893
dee91e82 4894 first_die = load_partial_dies (reader, info_ptr, 1);
c906108c 4895
93311388 4896 scan_partial_symbols (first_die, &lowpc, &highpc,
dee91e82 4897 ! has_pc_info, cu);
57c22c6c 4898
93311388
DE
4899 /* If we didn't find a lowpc, set it to highpc to avoid
4900 complaints from `maint check'. */
4901 if (lowpc == ((CORE_ADDR) -1))
4902 lowpc = highpc;
10b3939b 4903
93311388
DE
4904 /* If the compilation unit didn't have an explicit address range,
4905 then use the information extracted from its child dies. */
d85a05f0 4906 if (! has_pc_info)
93311388 4907 {
d85a05f0
DJ
4908 best_lowpc = lowpc;
4909 best_highpc = highpc;
93311388
DE
4910 }
4911 }
d85a05f0
DJ
4912 pst->textlow = best_lowpc + baseaddr;
4913 pst->texthigh = best_highpc + baseaddr;
c906108c 4914
93311388
DE
4915 pst->n_global_syms = objfile->global_psymbols.next -
4916 (objfile->global_psymbols.list + pst->globals_offset);
4917 pst->n_static_syms = objfile->static_psymbols.next -
4918 (objfile->static_psymbols.list + pst->statics_offset);
4919 sort_pst_symbols (pst);
c906108c 4920
f4dc4d17 4921 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs))
95554aad
TT
4922 {
4923 int i;
f4dc4d17 4924 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs);
95554aad
TT
4925 struct dwarf2_per_cu_data *iter;
4926
4927 /* Fill in 'dependencies' here; we fill in 'users' in a
4928 post-pass. */
4929 pst->number_of_dependencies = len;
4930 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
4931 len * sizeof (struct symtab *));
4932 for (i = 0;
f4dc4d17 4933 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs,
95554aad
TT
4934 i, iter);
4935 ++i)
4936 pst->dependencies[i] = iter->v.psymtab;
4937
f4dc4d17 4938 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs);
95554aad
TT
4939 }
4940
f4dc4d17
DE
4941 /* Get the list of files included in the current compilation unit,
4942 and build a psymtab for each of them. */
4943 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
09406207
DE
4944
4945 if (dwarf2_read_debug)
4946 {
4947 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4948
4949 fprintf_unfiltered (gdb_stdlog,
844226d6 4950 "Psymtab for %s unit @0x%x: %s - %s"
09406207
DE
4951 ", %d global, %d static syms\n",
4952 per_cu->is_debug_types ? "type" : "comp",
4953 per_cu->offset.sect_off,
4954 paddress (gdbarch, pst->textlow),
4955 paddress (gdbarch, pst->texthigh),
4956 pst->n_global_syms, pst->n_static_syms);
4957 }
dee91e82 4958}
ae038cb0 4959
dee91e82
DE
4960/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
4961 Process compilation unit THIS_CU for a psymtab. */
4962
4963static void
95554aad
TT
4964process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
4965 int want_partial_unit)
dee91e82
DE
4966{
4967 /* If this compilation unit was already read in, free the
4968 cached copy in order to read it in again. This is
4969 necessary because we skipped some symbols when we first
4970 read in the compilation unit (see load_partial_dies).
4971 This problem could be avoided, but the benefit is unclear. */
4972 if (this_cu->cu != NULL)
4973 free_one_cached_comp_unit (this_cu);
4974
3019eac3 4975 gdb_assert (! this_cu->is_debug_types);
f4dc4d17
DE
4976 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
4977 process_psymtab_comp_unit_reader,
95554aad 4978 &want_partial_unit);
dee91e82
DE
4979
4980 /* Age out any secondary CUs. */
4981 age_cached_comp_units ();
93311388 4982}
ff013f42 4983
f4dc4d17
DE
4984static hashval_t
4985hash_type_unit_group (const void *item)
4986{
094b34ac 4987 const struct type_unit_group *tu_group = item;
f4dc4d17 4988
094b34ac 4989 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 4990}
348e048f
DE
4991
4992static int
f4dc4d17 4993eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 4994{
f4dc4d17
DE
4995 const struct type_unit_group *lhs = item_lhs;
4996 const struct type_unit_group *rhs = item_rhs;
348e048f 4997
094b34ac 4998 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 4999}
348e048f 5000
f4dc4d17
DE
5001/* Allocate a hash table for type unit groups. */
5002
5003static htab_t
5004allocate_type_unit_groups_table (void)
5005{
5006 return htab_create_alloc_ex (3,
5007 hash_type_unit_group,
5008 eq_type_unit_group,
5009 NULL,
5010 &dwarf2_per_objfile->objfile->objfile_obstack,
5011 hashtab_obstack_allocate,
5012 dummy_obstack_deallocate);
5013}
dee91e82 5014
f4dc4d17
DE
5015/* Type units that don't have DW_AT_stmt_list are grouped into their own
5016 partial symtabs. We combine several TUs per psymtab to not let the size
5017 of any one psymtab grow too big. */
5018#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5019#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5020
094b34ac 5021/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5022 Create the type_unit_group object used to hold one or more TUs. */
5023
5024static struct type_unit_group *
094b34ac 5025create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5026{
5027 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5028 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5029 struct type_unit_group *tu_group;
f4dc4d17
DE
5030
5031 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5032 struct type_unit_group);
094b34ac 5033 per_cu = &tu_group->per_cu;
f4dc4d17
DE
5034 per_cu->objfile = objfile;
5035 per_cu->is_debug_types = 1;
5036 per_cu->s.type_unit_group = tu_group;
5037
094b34ac
DE
5038 if (dwarf2_per_objfile->using_index)
5039 {
5040 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5041 struct dwarf2_per_cu_quick_data);
5042 tu_group->t.first_tu = cu->per_cu;
5043 }
5044 else
5045 {
5046 unsigned int line_offset = line_offset_struct.sect_off;
5047 struct partial_symtab *pst;
5048 char *name;
5049
5050 /* Give the symtab a useful name for debug purposes. */
5051 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5052 name = xstrprintf ("<type_units_%d>",
5053 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5054 else
5055 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5056
5057 pst = create_partial_symtab (per_cu, name);
5058 pst->anonymous = 1;
f4dc4d17 5059
094b34ac
DE
5060 xfree (name);
5061 }
f4dc4d17 5062
094b34ac
DE
5063 tu_group->hash.dwo_unit = cu->dwo_unit;
5064 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5065
5066 return tu_group;
5067}
5068
094b34ac
DE
5069/* Look up the type_unit_group for type unit CU, and create it if necessary.
5070 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5071
5072static struct type_unit_group *
094b34ac 5073get_type_unit_group (struct dwarf2_cu *cu, struct attribute *stmt_list)
f4dc4d17
DE
5074{
5075 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5076 struct type_unit_group *tu_group;
5077 void **slot;
5078 unsigned int line_offset;
5079 struct type_unit_group type_unit_group_for_lookup;
5080
5081 if (dwarf2_per_objfile->type_unit_groups == NULL)
5082 {
5083 dwarf2_per_objfile->type_unit_groups =
5084 allocate_type_unit_groups_table ();
5085 }
5086
5087 /* Do we need to create a new group, or can we use an existing one? */
5088
5089 if (stmt_list)
5090 {
5091 line_offset = DW_UNSND (stmt_list);
5092 ++tu_stats->nr_symtab_sharers;
5093 }
5094 else
5095 {
5096 /* Ugh, no stmt_list. Rare, but we have to handle it.
5097 We can do various things here like create one group per TU or
5098 spread them over multiple groups to split up the expansion work.
5099 To avoid worst case scenarios (too many groups or too large groups)
5100 we, umm, group them in bunches. */
5101 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5102 | (tu_stats->nr_stmt_less_type_units
5103 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5104 ++tu_stats->nr_stmt_less_type_units;
5105 }
5106
094b34ac
DE
5107 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5108 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5109 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5110 &type_unit_group_for_lookup, INSERT);
5111 if (*slot != NULL)
5112 {
5113 tu_group = *slot;
5114 gdb_assert (tu_group != NULL);
5115 }
5116 else
5117 {
5118 sect_offset line_offset_struct;
5119
5120 line_offset_struct.sect_off = line_offset;
094b34ac 5121 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5122 *slot = tu_group;
5123 ++tu_stats->nr_symtabs;
5124 }
5125
5126 return tu_group;
5127}
5128
5129/* Struct used to sort TUs by their abbreviation table offset. */
5130
5131struct tu_abbrev_offset
5132{
5133 struct signatured_type *sig_type;
5134 sect_offset abbrev_offset;
5135};
5136
5137/* Helper routine for build_type_unit_groups, passed to qsort. */
5138
5139static int
5140sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5141{
5142 const struct tu_abbrev_offset * const *a = ap;
5143 const struct tu_abbrev_offset * const *b = bp;
5144 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5145 unsigned int boff = (*b)->abbrev_offset.sect_off;
5146
5147 return (aoff > boff) - (aoff < boff);
5148}
5149
5150/* A helper function to add a type_unit_group to a table. */
5151
5152static int
5153add_type_unit_group_to_table (void **slot, void *datum)
5154{
5155 struct type_unit_group *tu_group = *slot;
5156 struct type_unit_group ***datap = datum;
5157
5158 **datap = tu_group;
5159 ++*datap;
5160
5161 return 1;
5162}
5163
5164/* Efficiently read all the type units, calling init_cutu_and_read_dies on
5165 each one passing FUNC,DATA.
5166
5167 The efficiency is because we sort TUs by the abbrev table they use and
5168 only read each abbrev table once. In one program there are 200K TUs
5169 sharing 8K abbrev tables.
5170
5171 The main purpose of this function is to support building the
5172 dwarf2_per_objfile->type_unit_groups table.
5173 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5174 can collapse the search space by grouping them by stmt_list.
5175 The savings can be significant, in the same program from above the 200K TUs
5176 share 8K stmt_list tables.
5177
5178 FUNC is expected to call get_type_unit_group, which will create the
5179 struct type_unit_group if necessary and add it to
5180 dwarf2_per_objfile->type_unit_groups. */
5181
5182static void
5183build_type_unit_groups (die_reader_func_ftype *func, void *data)
5184{
5185 struct objfile *objfile = dwarf2_per_objfile->objfile;
5186 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5187 struct cleanup *cleanups;
5188 struct abbrev_table *abbrev_table;
5189 sect_offset abbrev_offset;
5190 struct tu_abbrev_offset *sorted_by_abbrev;
5191 struct type_unit_group **iter;
5192 int i;
5193
5194 /* It's up to the caller to not call us multiple times. */
5195 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5196
5197 if (dwarf2_per_objfile->n_type_units == 0)
5198 return;
5199
5200 /* TUs typically share abbrev tables, and there can be way more TUs than
5201 abbrev tables. Sort by abbrev table to reduce the number of times we
5202 read each abbrev table in.
5203 Alternatives are to punt or to maintain a cache of abbrev tables.
5204 This is simpler and efficient enough for now.
5205
5206 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5207 symtab to use). Typically TUs with the same abbrev offset have the same
5208 stmt_list value too so in practice this should work well.
5209
5210 The basic algorithm here is:
5211
5212 sort TUs by abbrev table
5213 for each TU with same abbrev table:
5214 read abbrev table if first user
5215 read TU top level DIE
5216 [IWBN if DWO skeletons had DW_AT_stmt_list]
5217 call FUNC */
5218
5219 if (dwarf2_read_debug)
5220 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5221
5222 /* Sort in a separate table to maintain the order of all_type_units
5223 for .gdb_index: TU indices directly index all_type_units. */
5224 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5225 dwarf2_per_objfile->n_type_units);
5226 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5227 {
5228 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5229
5230 sorted_by_abbrev[i].sig_type = sig_type;
5231 sorted_by_abbrev[i].abbrev_offset =
5232 read_abbrev_offset (sig_type->per_cu.info_or_types_section,
5233 sig_type->per_cu.offset);
5234 }
5235 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5236 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5237 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5238
094b34ac
DE
5239 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5240 called any number of times, so we don't reset tu_stats here. */
5241
f4dc4d17
DE
5242 abbrev_offset.sect_off = ~(unsigned) 0;
5243 abbrev_table = NULL;
5244 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5245
5246 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5247 {
5248 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5249
5250 /* Switch to the next abbrev table if necessary. */
5251 if (abbrev_table == NULL
5252 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5253 {
5254 if (abbrev_table != NULL)
5255 {
5256 abbrev_table_free (abbrev_table);
5257 /* Reset to NULL in case abbrev_table_read_table throws
5258 an error: abbrev_table_free_cleanup will get called. */
5259 abbrev_table = NULL;
5260 }
5261 abbrev_offset = tu->abbrev_offset;
5262 abbrev_table =
5263 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5264 abbrev_offset);
5265 ++tu_stats->nr_uniq_abbrev_tables;
5266 }
5267
5268 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5269 func, data);
5270 }
5271
5272 /* Create a vector of pointers to primary type units to make it easy to
5273 iterate over them and CUs. See dw2_get_primary_cu. */
5274 dwarf2_per_objfile->n_type_unit_groups =
5275 htab_elements (dwarf2_per_objfile->type_unit_groups);
5276 dwarf2_per_objfile->all_type_unit_groups =
5277 obstack_alloc (&objfile->objfile_obstack,
5278 dwarf2_per_objfile->n_type_unit_groups
5279 * sizeof (struct type_unit_group *));
5280 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5281 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5282 add_type_unit_group_to_table, &iter);
5283 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5284 == dwarf2_per_objfile->n_type_unit_groups);
5285
5286 do_cleanups (cleanups);
5287
5288 if (dwarf2_read_debug)
5289 {
5290 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5291 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5292 dwarf2_per_objfile->n_type_units);
5293 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5294 tu_stats->nr_uniq_abbrev_tables);
5295 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5296 tu_stats->nr_symtabs);
5297 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5298 tu_stats->nr_symtab_sharers);
5299 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5300 tu_stats->nr_stmt_less_type_units);
5301 }
5302}
5303
5304/* Reader function for build_type_psymtabs. */
5305
5306static void
5307build_type_psymtabs_reader (const struct die_reader_specs *reader,
5308 gdb_byte *info_ptr,
5309 struct die_info *type_unit_die,
5310 int has_children,
5311 void *data)
5312{
5313 struct objfile *objfile = dwarf2_per_objfile->objfile;
5314 struct dwarf2_cu *cu = reader->cu;
5315 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5316 struct type_unit_group *tu_group;
5317 struct attribute *attr;
5318 struct partial_die_info *first_die;
5319 CORE_ADDR lowpc, highpc;
5320 struct partial_symtab *pst;
5321
5322 gdb_assert (data == NULL);
5323
5324 if (! has_children)
5325 return;
5326
5327 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 5328 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 5329
094b34ac 5330 VEC_safe_push (dwarf2_per_cu_ptr, tu_group->t.tus, per_cu);
f4dc4d17
DE
5331
5332 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
5333 cu->list_in_scope = &file_symbols;
5334 pst = create_partial_symtab (per_cu, "");
5335 pst->anonymous = 1;
5336
5337 first_die = load_partial_dies (reader, info_ptr, 1);
5338
5339 lowpc = (CORE_ADDR) -1;
5340 highpc = (CORE_ADDR) 0;
5341 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
5342
5343 pst->n_global_syms = objfile->global_psymbols.next -
5344 (objfile->global_psymbols.list + pst->globals_offset);
5345 pst->n_static_syms = objfile->static_psymbols.next -
5346 (objfile->static_psymbols.list + pst->statics_offset);
5347 sort_pst_symbols (pst);
5348}
5349
5350/* Traversal function for build_type_psymtabs. */
5351
5352static int
5353build_type_psymtab_dependencies (void **slot, void *info)
5354{
5355 struct objfile *objfile = dwarf2_per_objfile->objfile;
5356 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 5357 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 5358 struct partial_symtab *pst = per_cu->v.psymtab;
094b34ac 5359 int len = VEC_length (dwarf2_per_cu_ptr, tu_group->t.tus);
f4dc4d17
DE
5360 struct dwarf2_per_cu_data *iter;
5361 int i;
5362
5363 gdb_assert (len > 0);
5364
5365 pst->number_of_dependencies = len;
5366 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5367 len * sizeof (struct psymtab *));
5368 for (i = 0;
094b34ac 5369 VEC_iterate (dwarf2_per_cu_ptr, tu_group->t.tus, i, iter);
f4dc4d17
DE
5370 ++i)
5371 {
5372 pst->dependencies[i] = iter->v.psymtab;
5373 iter->s.type_unit_group = tu_group;
5374 }
5375
094b34ac 5376 VEC_free (dwarf2_per_cu_ptr, tu_group->t.tus);
348e048f
DE
5377
5378 return 1;
5379}
5380
5381/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5382 Build partial symbol tables for the .debug_types comp-units. */
5383
5384static void
5385build_type_psymtabs (struct objfile *objfile)
5386{
0e50663e 5387 if (! create_all_type_units (objfile))
348e048f
DE
5388 return;
5389
f4dc4d17
DE
5390 build_type_unit_groups (build_type_psymtabs_reader, NULL);
5391
5392 /* Now that all TUs have been processed we can fill in the dependencies. */
5393 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5394 build_type_psymtab_dependencies, NULL);
348e048f
DE
5395}
5396
60606b2c
TT
5397/* A cleanup function that clears objfile's psymtabs_addrmap field. */
5398
5399static void
5400psymtabs_addrmap_cleanup (void *o)
5401{
5402 struct objfile *objfile = o;
ec61707d 5403
60606b2c
TT
5404 objfile->psymtabs_addrmap = NULL;
5405}
5406
95554aad
TT
5407/* Compute the 'user' field for each psymtab in OBJFILE. */
5408
5409static void
5410set_partial_user (struct objfile *objfile)
5411{
5412 int i;
5413
5414 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
5415 {
5416 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
5417 struct partial_symtab *pst = per_cu->v.psymtab;
5418 int j;
5419
36586728
TT
5420 if (pst == NULL)
5421 continue;
5422
95554aad
TT
5423 for (j = 0; j < pst->number_of_dependencies; ++j)
5424 {
5425 /* Set the 'user' field only if it is not already set. */
5426 if (pst->dependencies[j]->user == NULL)
5427 pst->dependencies[j]->user = pst;
5428 }
5429 }
5430}
5431
93311388
DE
5432/* Build the partial symbol table by doing a quick pass through the
5433 .debug_info and .debug_abbrev sections. */
72bf9492 5434
93311388 5435static void
c67a9c90 5436dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 5437{
60606b2c
TT
5438 struct cleanup *back_to, *addrmap_cleanup;
5439 struct obstack temp_obstack;
21b2bd31 5440 int i;
93311388 5441
45cfd468
DE
5442 if (dwarf2_read_debug)
5443 {
5444 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
5445 objfile->name);
5446 }
5447
98bfdba5
PA
5448 dwarf2_per_objfile->reading_partial_symbols = 1;
5449
be391dca 5450 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 5451
93311388
DE
5452 /* Any cached compilation units will be linked by the per-objfile
5453 read_in_chain. Make sure to free them when we're done. */
5454 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 5455
348e048f
DE
5456 build_type_psymtabs (objfile);
5457
93311388 5458 create_all_comp_units (objfile);
c906108c 5459
60606b2c
TT
5460 /* Create a temporary address map on a temporary obstack. We later
5461 copy this to the final obstack. */
5462 obstack_init (&temp_obstack);
5463 make_cleanup_obstack_free (&temp_obstack);
5464 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
5465 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 5466
21b2bd31 5467 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 5468 {
21b2bd31 5469 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
aaa75496 5470
95554aad 5471 process_psymtab_comp_unit (per_cu, 0);
c906108c 5472 }
ff013f42 5473
95554aad
TT
5474 set_partial_user (objfile);
5475
ff013f42
JK
5476 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
5477 &objfile->objfile_obstack);
60606b2c 5478 discard_cleanups (addrmap_cleanup);
ff013f42 5479
ae038cb0 5480 do_cleanups (back_to);
45cfd468
DE
5481
5482 if (dwarf2_read_debug)
5483 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
5484 objfile->name);
ae038cb0
DJ
5485}
5486
3019eac3 5487/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
5488
5489static void
dee91e82
DE
5490load_partial_comp_unit_reader (const struct die_reader_specs *reader,
5491 gdb_byte *info_ptr,
5492 struct die_info *comp_unit_die,
5493 int has_children,
5494 void *data)
ae038cb0 5495{
dee91e82 5496 struct dwarf2_cu *cu = reader->cu;
ae038cb0 5497
95554aad 5498 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 5499
ae038cb0
DJ
5500 /* Check if comp unit has_children.
5501 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 5502 If not, there's no more debug_info for this comp unit. */
d85a05f0 5503 if (has_children)
dee91e82
DE
5504 load_partial_dies (reader, info_ptr, 0);
5505}
98bfdba5 5506
dee91e82
DE
5507/* Load the partial DIEs for a secondary CU into memory.
5508 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 5509
dee91e82
DE
5510static void
5511load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
5512{
f4dc4d17
DE
5513 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
5514 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
5515}
5516
ae038cb0 5517static void
36586728
TT
5518read_comp_units_from_section (struct objfile *objfile,
5519 struct dwarf2_section_info *section,
5520 unsigned int is_dwz,
5521 int *n_allocated,
5522 int *n_comp_units,
5523 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 5524{
be391dca 5525 gdb_byte *info_ptr;
36586728 5526 bfd *abfd = section->asection->owner;
be391dca 5527
36586728 5528 dwarf2_read_section (objfile, section);
ae038cb0 5529
36586728 5530 info_ptr = section->buffer;
6e70227d 5531
36586728 5532 while (info_ptr < section->buffer + section->size)
ae038cb0 5533 {
c764a876 5534 unsigned int length, initial_length_size;
ae038cb0 5535 struct dwarf2_per_cu_data *this_cu;
b64f50a1 5536 sect_offset offset;
ae038cb0 5537
36586728 5538 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
5539
5540 /* Read just enough information to find out where the next
5541 compilation unit is. */
36586728 5542 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
5543
5544 /* Save the compilation unit for later lookup. */
5545 this_cu = obstack_alloc (&objfile->objfile_obstack,
5546 sizeof (struct dwarf2_per_cu_data));
5547 memset (this_cu, 0, sizeof (*this_cu));
5548 this_cu->offset = offset;
c764a876 5549 this_cu->length = length + initial_length_size;
36586728 5550 this_cu->is_dwz = is_dwz;
9291a0cd 5551 this_cu->objfile = objfile;
36586728 5552 this_cu->info_or_types_section = section;
ae038cb0 5553
36586728 5554 if (*n_comp_units == *n_allocated)
ae038cb0 5555 {
36586728
TT
5556 *n_allocated *= 2;
5557 *all_comp_units = xrealloc (*all_comp_units,
5558 *n_allocated
5559 * sizeof (struct dwarf2_per_cu_data *));
ae038cb0 5560 }
36586728
TT
5561 (*all_comp_units)[*n_comp_units] = this_cu;
5562 ++*n_comp_units;
ae038cb0
DJ
5563
5564 info_ptr = info_ptr + this_cu->length;
5565 }
36586728
TT
5566}
5567
5568/* Create a list of all compilation units in OBJFILE.
5569 This is only done for -readnow and building partial symtabs. */
5570
5571static void
5572create_all_comp_units (struct objfile *objfile)
5573{
5574 int n_allocated;
5575 int n_comp_units;
5576 struct dwarf2_per_cu_data **all_comp_units;
5577
5578 n_comp_units = 0;
5579 n_allocated = 10;
5580 all_comp_units = xmalloc (n_allocated
5581 * sizeof (struct dwarf2_per_cu_data *));
5582
5583 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
5584 &n_allocated, &n_comp_units, &all_comp_units);
5585
5586 if (bfd_get_section_by_name (objfile->obfd, ".gnu_debugaltlink") != NULL)
5587 {
5588 struct dwz_file *dwz = dwarf2_get_dwz_file ();
5589
5590 read_comp_units_from_section (objfile, &dwz->info, 1,
5591 &n_allocated, &n_comp_units,
5592 &all_comp_units);
5593 }
ae038cb0
DJ
5594
5595 dwarf2_per_objfile->all_comp_units
5596 = obstack_alloc (&objfile->objfile_obstack,
5597 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5598 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
5599 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
5600 xfree (all_comp_units);
5601 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
5602}
5603
5734ee8b
DJ
5604/* Process all loaded DIEs for compilation unit CU, starting at
5605 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
5606 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
5607 DW_AT_ranges). If NEED_PC is set, then this function will set
5608 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
5609 and record the covered ranges in the addrmap. */
c906108c 5610
72bf9492
DJ
5611static void
5612scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5734ee8b 5613 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
c906108c 5614{
72bf9492 5615 struct partial_die_info *pdi;
c906108c 5616
91c24f0a
DC
5617 /* Now, march along the PDI's, descending into ones which have
5618 interesting children but skipping the children of the other ones,
5619 until we reach the end of the compilation unit. */
c906108c 5620
72bf9492 5621 pdi = first_die;
91c24f0a 5622
72bf9492
DJ
5623 while (pdi != NULL)
5624 {
5625 fixup_partial_die (pdi, cu);
c906108c 5626
f55ee35c 5627 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
5628 children, so we need to look at them. Ditto for anonymous
5629 enums. */
933c6fe4 5630
72bf9492 5631 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
5632 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
5633 || pdi->tag == DW_TAG_imported_unit)
c906108c 5634 {
72bf9492 5635 switch (pdi->tag)
c906108c
SS
5636 {
5637 case DW_TAG_subprogram:
5734ee8b 5638 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
c906108c 5639 break;
72929c62 5640 case DW_TAG_constant:
c906108c
SS
5641 case DW_TAG_variable:
5642 case DW_TAG_typedef:
91c24f0a 5643 case DW_TAG_union_type:
72bf9492 5644 if (!pdi->is_declaration)
63d06c5c 5645 {
72bf9492 5646 add_partial_symbol (pdi, cu);
63d06c5c
DC
5647 }
5648 break;
c906108c 5649 case DW_TAG_class_type:
680b30c7 5650 case DW_TAG_interface_type:
c906108c 5651 case DW_TAG_structure_type:
72bf9492 5652 if (!pdi->is_declaration)
c906108c 5653 {
72bf9492 5654 add_partial_symbol (pdi, cu);
c906108c
SS
5655 }
5656 break;
91c24f0a 5657 case DW_TAG_enumeration_type:
72bf9492
DJ
5658 if (!pdi->is_declaration)
5659 add_partial_enumeration (pdi, cu);
c906108c
SS
5660 break;
5661 case DW_TAG_base_type:
a02abb62 5662 case DW_TAG_subrange_type:
c906108c 5663 /* File scope base type definitions are added to the partial
c5aa993b 5664 symbol table. */
72bf9492 5665 add_partial_symbol (pdi, cu);
c906108c 5666 break;
d9fa45fe 5667 case DW_TAG_namespace:
5734ee8b 5668 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
91c24f0a 5669 break;
5d7cb8df
JK
5670 case DW_TAG_module:
5671 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
5672 break;
95554aad
TT
5673 case DW_TAG_imported_unit:
5674 {
5675 struct dwarf2_per_cu_data *per_cu;
5676
f4dc4d17
DE
5677 /* For now we don't handle imported units in type units. */
5678 if (cu->per_cu->is_debug_types)
5679 {
5680 error (_("Dwarf Error: DW_TAG_imported_unit is not"
5681 " supported in type units [in module %s]"),
5682 cu->objfile->name);
5683 }
5684
95554aad 5685 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 5686 pdi->is_dwz,
95554aad
TT
5687 cu->objfile);
5688
5689 /* Go read the partial unit, if needed. */
5690 if (per_cu->v.psymtab == NULL)
5691 process_psymtab_comp_unit (per_cu, 1);
5692
f4dc4d17
DE
5693 VEC_safe_push (dwarf2_per_cu_ptr,
5694 cu->per_cu->s.imported_symtabs, per_cu);
95554aad
TT
5695 }
5696 break;
c906108c
SS
5697 default:
5698 break;
5699 }
5700 }
5701
72bf9492
DJ
5702 /* If the die has a sibling, skip to the sibling. */
5703
5704 pdi = pdi->die_sibling;
5705 }
5706}
5707
5708/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 5709
72bf9492 5710 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
5711 name is concatenated with "::" and the partial DIE's name. For
5712 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
5713 Enumerators are an exception; they use the scope of their parent
5714 enumeration type, i.e. the name of the enumeration type is not
5715 prepended to the enumerator.
91c24f0a 5716
72bf9492
DJ
5717 There are two complexities. One is DW_AT_specification; in this
5718 case "parent" means the parent of the target of the specification,
5719 instead of the direct parent of the DIE. The other is compilers
5720 which do not emit DW_TAG_namespace; in this case we try to guess
5721 the fully qualified name of structure types from their members'
5722 linkage names. This must be done using the DIE's children rather
5723 than the children of any DW_AT_specification target. We only need
5724 to do this for structures at the top level, i.e. if the target of
5725 any DW_AT_specification (if any; otherwise the DIE itself) does not
5726 have a parent. */
5727
5728/* Compute the scope prefix associated with PDI's parent, in
5729 compilation unit CU. The result will be allocated on CU's
5730 comp_unit_obstack, or a copy of the already allocated PDI->NAME
5731 field. NULL is returned if no prefix is necessary. */
5732static char *
5733partial_die_parent_scope (struct partial_die_info *pdi,
5734 struct dwarf2_cu *cu)
5735{
5736 char *grandparent_scope;
5737 struct partial_die_info *parent, *real_pdi;
91c24f0a 5738
72bf9492
DJ
5739 /* We need to look at our parent DIE; if we have a DW_AT_specification,
5740 then this means the parent of the specification DIE. */
5741
5742 real_pdi = pdi;
72bf9492 5743 while (real_pdi->has_specification)
36586728
TT
5744 real_pdi = find_partial_die (real_pdi->spec_offset,
5745 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
5746
5747 parent = real_pdi->die_parent;
5748 if (parent == NULL)
5749 return NULL;
5750
5751 if (parent->scope_set)
5752 return parent->scope;
5753
5754 fixup_partial_die (parent, cu);
5755
10b3939b 5756 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 5757
acebe513
UW
5758 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
5759 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
5760 Work around this problem here. */
5761 if (cu->language == language_cplus
6e70227d 5762 && parent->tag == DW_TAG_namespace
acebe513
UW
5763 && strcmp (parent->name, "::") == 0
5764 && grandparent_scope == NULL)
5765 {
5766 parent->scope = NULL;
5767 parent->scope_set = 1;
5768 return NULL;
5769 }
5770
9c6c53f7
SA
5771 if (pdi->tag == DW_TAG_enumerator)
5772 /* Enumerators should not get the name of the enumeration as a prefix. */
5773 parent->scope = grandparent_scope;
5774 else if (parent->tag == DW_TAG_namespace
f55ee35c 5775 || parent->tag == DW_TAG_module
72bf9492
DJ
5776 || parent->tag == DW_TAG_structure_type
5777 || parent->tag == DW_TAG_class_type
680b30c7 5778 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
5779 || parent->tag == DW_TAG_union_type
5780 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
5781 {
5782 if (grandparent_scope == NULL)
5783 parent->scope = parent->name;
5784 else
3e43a32a
MS
5785 parent->scope = typename_concat (&cu->comp_unit_obstack,
5786 grandparent_scope,
f55ee35c 5787 parent->name, 0, cu);
72bf9492 5788 }
72bf9492
DJ
5789 else
5790 {
5791 /* FIXME drow/2004-04-01: What should we be doing with
5792 function-local names? For partial symbols, we should probably be
5793 ignoring them. */
5794 complaint (&symfile_complaints,
e2e0b3e5 5795 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 5796 parent->tag, pdi->offset.sect_off);
72bf9492 5797 parent->scope = grandparent_scope;
c906108c
SS
5798 }
5799
72bf9492
DJ
5800 parent->scope_set = 1;
5801 return parent->scope;
5802}
5803
5804/* Return the fully scoped name associated with PDI, from compilation unit
5805 CU. The result will be allocated with malloc. */
4568ecf9 5806
72bf9492
DJ
5807static char *
5808partial_die_full_name (struct partial_die_info *pdi,
5809 struct dwarf2_cu *cu)
5810{
5811 char *parent_scope;
5812
98bfdba5
PA
5813 /* If this is a template instantiation, we can not work out the
5814 template arguments from partial DIEs. So, unfortunately, we have
5815 to go through the full DIEs. At least any work we do building
5816 types here will be reused if full symbols are loaded later. */
5817 if (pdi->has_template_arguments)
5818 {
5819 fixup_partial_die (pdi, cu);
5820
5821 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
5822 {
5823 struct die_info *die;
5824 struct attribute attr;
5825 struct dwarf2_cu *ref_cu = cu;
5826
b64f50a1 5827 /* DW_FORM_ref_addr is using section offset. */
98bfdba5
PA
5828 attr.name = 0;
5829 attr.form = DW_FORM_ref_addr;
4568ecf9 5830 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
5831 die = follow_die_ref (NULL, &attr, &ref_cu);
5832
5833 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
5834 }
5835 }
5836
72bf9492
DJ
5837 parent_scope = partial_die_parent_scope (pdi, cu);
5838 if (parent_scope == NULL)
5839 return NULL;
5840 else
f55ee35c 5841 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
5842}
5843
5844static void
72bf9492 5845add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 5846{
e7c27a73 5847 struct objfile *objfile = cu->objfile;
c906108c 5848 CORE_ADDR addr = 0;
decbce07 5849 char *actual_name = NULL;
e142c38c 5850 CORE_ADDR baseaddr;
72bf9492 5851 int built_actual_name = 0;
e142c38c
DJ
5852
5853 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 5854
94af9270
KS
5855 actual_name = partial_die_full_name (pdi, cu);
5856 if (actual_name)
5857 built_actual_name = 1;
63d06c5c 5858
72bf9492
DJ
5859 if (actual_name == NULL)
5860 actual_name = pdi->name;
5861
c906108c
SS
5862 switch (pdi->tag)
5863 {
5864 case DW_TAG_subprogram:
2cfa0c8d 5865 if (pdi->is_external || cu->language == language_ada)
c906108c 5866 {
2cfa0c8d
JB
5867 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
5868 of the global scope. But in Ada, we want to be able to access
5869 nested procedures globally. So all Ada subprograms are stored
5870 in the global scope. */
f47fb265 5871 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 5872 mst_text, objfile); */
f47fb265
MS
5873 add_psymbol_to_list (actual_name, strlen (actual_name),
5874 built_actual_name,
5875 VAR_DOMAIN, LOC_BLOCK,
5876 &objfile->global_psymbols,
5877 0, pdi->lowpc + baseaddr,
5878 cu->language, objfile);
c906108c
SS
5879 }
5880 else
5881 {
f47fb265 5882 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 5883 mst_file_text, objfile); */
f47fb265
MS
5884 add_psymbol_to_list (actual_name, strlen (actual_name),
5885 built_actual_name,
5886 VAR_DOMAIN, LOC_BLOCK,
5887 &objfile->static_psymbols,
5888 0, pdi->lowpc + baseaddr,
5889 cu->language, objfile);
c906108c
SS
5890 }
5891 break;
72929c62
JB
5892 case DW_TAG_constant:
5893 {
5894 struct psymbol_allocation_list *list;
5895
5896 if (pdi->is_external)
5897 list = &objfile->global_psymbols;
5898 else
5899 list = &objfile->static_psymbols;
f47fb265
MS
5900 add_psymbol_to_list (actual_name, strlen (actual_name),
5901 built_actual_name, VAR_DOMAIN, LOC_STATIC,
5902 list, 0, 0, cu->language, objfile);
72929c62
JB
5903 }
5904 break;
c906108c 5905 case DW_TAG_variable:
95554aad
TT
5906 if (pdi->d.locdesc)
5907 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 5908
95554aad 5909 if (pdi->d.locdesc
caac4577
JG
5910 && addr == 0
5911 && !dwarf2_per_objfile->has_section_at_zero)
5912 {
5913 /* A global or static variable may also have been stripped
5914 out by the linker if unused, in which case its address
5915 will be nullified; do not add such variables into partial
5916 symbol table then. */
5917 }
5918 else if (pdi->is_external)
c906108c
SS
5919 {
5920 /* Global Variable.
5921 Don't enter into the minimal symbol tables as there is
5922 a minimal symbol table entry from the ELF symbols already.
5923 Enter into partial symbol table if it has a location
5924 descriptor or a type.
5925 If the location descriptor is missing, new_symbol will create
5926 a LOC_UNRESOLVED symbol, the address of the variable will then
5927 be determined from the minimal symbol table whenever the variable
5928 is referenced.
5929 The address for the partial symbol table entry is not
5930 used by GDB, but it comes in handy for debugging partial symbol
5931 table building. */
5932
95554aad 5933 if (pdi->d.locdesc || pdi->has_type)
f47fb265
MS
5934 add_psymbol_to_list (actual_name, strlen (actual_name),
5935 built_actual_name,
5936 VAR_DOMAIN, LOC_STATIC,
5937 &objfile->global_psymbols,
5938 0, addr + baseaddr,
5939 cu->language, objfile);
c906108c
SS
5940 }
5941 else
5942 {
0963b4bd 5943 /* Static Variable. Skip symbols without location descriptors. */
95554aad 5944 if (pdi->d.locdesc == NULL)
decbce07
MS
5945 {
5946 if (built_actual_name)
5947 xfree (actual_name);
5948 return;
5949 }
f47fb265 5950 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 5951 mst_file_data, objfile); */
f47fb265
MS
5952 add_psymbol_to_list (actual_name, strlen (actual_name),
5953 built_actual_name,
5954 VAR_DOMAIN, LOC_STATIC,
5955 &objfile->static_psymbols,
5956 0, addr + baseaddr,
5957 cu->language, objfile);
c906108c
SS
5958 }
5959 break;
5960 case DW_TAG_typedef:
5961 case DW_TAG_base_type:
a02abb62 5962 case DW_TAG_subrange_type:
38d518c9 5963 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 5964 built_actual_name,
176620f1 5965 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 5966 &objfile->static_psymbols,
e142c38c 5967 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 5968 break;
72bf9492
DJ
5969 case DW_TAG_namespace:
5970 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 5971 built_actual_name,
72bf9492
DJ
5972 VAR_DOMAIN, LOC_TYPEDEF,
5973 &objfile->global_psymbols,
5974 0, (CORE_ADDR) 0, cu->language, objfile);
5975 break;
c906108c 5976 case DW_TAG_class_type:
680b30c7 5977 case DW_TAG_interface_type:
c906108c
SS
5978 case DW_TAG_structure_type:
5979 case DW_TAG_union_type:
5980 case DW_TAG_enumeration_type:
fa4028e9
JB
5981 /* Skip external references. The DWARF standard says in the section
5982 about "Structure, Union, and Class Type Entries": "An incomplete
5983 structure, union or class type is represented by a structure,
5984 union or class entry that does not have a byte size attribute
5985 and that has a DW_AT_declaration attribute." */
5986 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07
MS
5987 {
5988 if (built_actual_name)
5989 xfree (actual_name);
5990 return;
5991 }
fa4028e9 5992
63d06c5c
DC
5993 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
5994 static vs. global. */
38d518c9 5995 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 5996 built_actual_name,
176620f1 5997 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
5998 (cu->language == language_cplus
5999 || cu->language == language_java)
63d06c5c
DC
6000 ? &objfile->global_psymbols
6001 : &objfile->static_psymbols,
e142c38c 6002 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6003
c906108c
SS
6004 break;
6005 case DW_TAG_enumerator:
38d518c9 6006 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 6007 built_actual_name,
176620f1 6008 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
6009 (cu->language == language_cplus
6010 || cu->language == language_java)
f6fe98ef
DJ
6011 ? &objfile->global_psymbols
6012 : &objfile->static_psymbols,
e142c38c 6013 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
6014 break;
6015 default:
6016 break;
6017 }
5c4e30ca 6018
72bf9492
DJ
6019 if (built_actual_name)
6020 xfree (actual_name);
c906108c
SS
6021}
6022
5c4e30ca
DC
6023/* Read a partial die corresponding to a namespace; also, add a symbol
6024 corresponding to that namespace to the symbol table. NAMESPACE is
6025 the name of the enclosing namespace. */
91c24f0a 6026
72bf9492
DJ
6027static void
6028add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 6029 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 6030 int need_pc, struct dwarf2_cu *cu)
91c24f0a 6031{
72bf9492 6032 /* Add a symbol for the namespace. */
e7c27a73 6033
72bf9492 6034 add_partial_symbol (pdi, cu);
5c4e30ca
DC
6035
6036 /* Now scan partial symbols in that namespace. */
6037
91c24f0a 6038 if (pdi->has_children)
5734ee8b 6039 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
91c24f0a
DC
6040}
6041
5d7cb8df
JK
6042/* Read a partial die corresponding to a Fortran module. */
6043
6044static void
6045add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6046 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6047{
f55ee35c 6048 /* Now scan partial symbols in that module. */
5d7cb8df
JK
6049
6050 if (pdi->has_children)
6051 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6052}
6053
bc30ff58
JB
6054/* Read a partial die corresponding to a subprogram and create a partial
6055 symbol for that subprogram. When the CU language allows it, this
6056 routine also defines a partial symbol for each nested subprogram
6057 that this subprogram contains.
6e70227d 6058
bc30ff58
JB
6059 DIE my also be a lexical block, in which case we simply search
6060 recursively for suprograms defined inside that lexical block.
6061 Again, this is only performed when the CU language allows this
6062 type of definitions. */
6063
6064static void
6065add_partial_subprogram (struct partial_die_info *pdi,
6066 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 6067 int need_pc, struct dwarf2_cu *cu)
bc30ff58
JB
6068{
6069 if (pdi->tag == DW_TAG_subprogram)
6070 {
6071 if (pdi->has_pc_info)
6072 {
6073 if (pdi->lowpc < *lowpc)
6074 *lowpc = pdi->lowpc;
6075 if (pdi->highpc > *highpc)
6076 *highpc = pdi->highpc;
5734ee8b
DJ
6077 if (need_pc)
6078 {
6079 CORE_ADDR baseaddr;
6080 struct objfile *objfile = cu->objfile;
6081
6082 baseaddr = ANOFFSET (objfile->section_offsets,
6083 SECT_OFF_TEXT (objfile));
6084 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
6085 pdi->lowpc + baseaddr,
6086 pdi->highpc - 1 + baseaddr,
9291a0cd 6087 cu->per_cu->v.psymtab);
5734ee8b 6088 }
481860b3
GB
6089 }
6090
6091 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6092 {
bc30ff58 6093 if (!pdi->is_declaration)
e8d05480
JB
6094 /* Ignore subprogram DIEs that do not have a name, they are
6095 illegal. Do not emit a complaint at this point, we will
6096 do so when we convert this psymtab into a symtab. */
6097 if (pdi->name)
6098 add_partial_symbol (pdi, cu);
bc30ff58
JB
6099 }
6100 }
6e70227d 6101
bc30ff58
JB
6102 if (! pdi->has_children)
6103 return;
6104
6105 if (cu->language == language_ada)
6106 {
6107 pdi = pdi->die_child;
6108 while (pdi != NULL)
6109 {
6110 fixup_partial_die (pdi, cu);
6111 if (pdi->tag == DW_TAG_subprogram
6112 || pdi->tag == DW_TAG_lexical_block)
5734ee8b 6113 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
bc30ff58
JB
6114 pdi = pdi->die_sibling;
6115 }
6116 }
6117}
6118
91c24f0a
DC
6119/* Read a partial die corresponding to an enumeration type. */
6120
72bf9492
DJ
6121static void
6122add_partial_enumeration (struct partial_die_info *enum_pdi,
6123 struct dwarf2_cu *cu)
91c24f0a 6124{
72bf9492 6125 struct partial_die_info *pdi;
91c24f0a
DC
6126
6127 if (enum_pdi->name != NULL)
72bf9492
DJ
6128 add_partial_symbol (enum_pdi, cu);
6129
6130 pdi = enum_pdi->die_child;
6131 while (pdi)
91c24f0a 6132 {
72bf9492 6133 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 6134 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 6135 else
72bf9492
DJ
6136 add_partial_symbol (pdi, cu);
6137 pdi = pdi->die_sibling;
91c24f0a 6138 }
91c24f0a
DC
6139}
6140
6caca83c
CC
6141/* Return the initial uleb128 in the die at INFO_PTR. */
6142
6143static unsigned int
6144peek_abbrev_code (bfd *abfd, gdb_byte *info_ptr)
6145{
6146 unsigned int bytes_read;
6147
6148 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6149}
6150
4bb7a0a7
DJ
6151/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
6152 Return the corresponding abbrev, or NULL if the number is zero (indicating
6153 an empty DIE). In either case *BYTES_READ will be set to the length of
6154 the initial number. */
6155
6156static struct abbrev_info *
fe1b8b76 6157peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 6158 struct dwarf2_cu *cu)
4bb7a0a7
DJ
6159{
6160 bfd *abfd = cu->objfile->obfd;
6161 unsigned int abbrev_number;
6162 struct abbrev_info *abbrev;
6163
6164 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
6165
6166 if (abbrev_number == 0)
6167 return NULL;
6168
433df2d4 6169 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
6170 if (!abbrev)
6171 {
3e43a32a
MS
6172 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
6173 abbrev_number, bfd_get_filename (abfd));
4bb7a0a7
DJ
6174 }
6175
6176 return abbrev;
6177}
6178
93311388
DE
6179/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6180 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
6181 DIE. Any children of the skipped DIEs will also be skipped. */
6182
fe1b8b76 6183static gdb_byte *
dee91e82 6184skip_children (const struct die_reader_specs *reader, gdb_byte *info_ptr)
4bb7a0a7 6185{
dee91e82 6186 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
6187 struct abbrev_info *abbrev;
6188 unsigned int bytes_read;
6189
6190 while (1)
6191 {
6192 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
6193 if (abbrev == NULL)
6194 return info_ptr + bytes_read;
6195 else
dee91e82 6196 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
6197 }
6198}
6199
93311388
DE
6200/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
6201 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
6202 abbrev corresponding to that skipped uleb128 should be passed in
6203 ABBREV. Returns a pointer to this DIE's sibling, skipping any
6204 children. */
6205
fe1b8b76 6206static gdb_byte *
dee91e82
DE
6207skip_one_die (const struct die_reader_specs *reader, gdb_byte *info_ptr,
6208 struct abbrev_info *abbrev)
4bb7a0a7
DJ
6209{
6210 unsigned int bytes_read;
6211 struct attribute attr;
dee91e82
DE
6212 bfd *abfd = reader->abfd;
6213 struct dwarf2_cu *cu = reader->cu;
6214 gdb_byte *buffer = reader->buffer;
f664829e
DE
6215 const gdb_byte *buffer_end = reader->buffer_end;
6216 gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
6217 unsigned int form, i;
6218
6219 for (i = 0; i < abbrev->num_attrs; i++)
6220 {
6221 /* The only abbrev we care about is DW_AT_sibling. */
6222 if (abbrev->attrs[i].name == DW_AT_sibling)
6223 {
dee91e82 6224 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 6225 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
6226 complaint (&symfile_complaints,
6227 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 6228 else
b64f50a1 6229 return buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
4bb7a0a7
DJ
6230 }
6231
6232 /* If it isn't DW_AT_sibling, skip this attribute. */
6233 form = abbrev->attrs[i].form;
6234 skip_attribute:
6235 switch (form)
6236 {
4bb7a0a7 6237 case DW_FORM_ref_addr:
ae411497
TT
6238 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
6239 and later it is offset sized. */
6240 if (cu->header.version == 2)
6241 info_ptr += cu->header.addr_size;
6242 else
6243 info_ptr += cu->header.offset_size;
6244 break;
36586728
TT
6245 case DW_FORM_GNU_ref_alt:
6246 info_ptr += cu->header.offset_size;
6247 break;
ae411497 6248 case DW_FORM_addr:
4bb7a0a7
DJ
6249 info_ptr += cu->header.addr_size;
6250 break;
6251 case DW_FORM_data1:
6252 case DW_FORM_ref1:
6253 case DW_FORM_flag:
6254 info_ptr += 1;
6255 break;
2dc7f7b3
TT
6256 case DW_FORM_flag_present:
6257 break;
4bb7a0a7
DJ
6258 case DW_FORM_data2:
6259 case DW_FORM_ref2:
6260 info_ptr += 2;
6261 break;
6262 case DW_FORM_data4:
6263 case DW_FORM_ref4:
6264 info_ptr += 4;
6265 break;
6266 case DW_FORM_data8:
6267 case DW_FORM_ref8:
55f1336d 6268 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
6269 info_ptr += 8;
6270 break;
6271 case DW_FORM_string:
9b1c24c8 6272 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
6273 info_ptr += bytes_read;
6274 break;
2dc7f7b3 6275 case DW_FORM_sec_offset:
4bb7a0a7 6276 case DW_FORM_strp:
36586728 6277 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
6278 info_ptr += cu->header.offset_size;
6279 break;
2dc7f7b3 6280 case DW_FORM_exprloc:
4bb7a0a7
DJ
6281 case DW_FORM_block:
6282 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6283 info_ptr += bytes_read;
6284 break;
6285 case DW_FORM_block1:
6286 info_ptr += 1 + read_1_byte (abfd, info_ptr);
6287 break;
6288 case DW_FORM_block2:
6289 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
6290 break;
6291 case DW_FORM_block4:
6292 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
6293 break;
6294 case DW_FORM_sdata:
6295 case DW_FORM_udata:
6296 case DW_FORM_ref_udata:
3019eac3
DE
6297 case DW_FORM_GNU_addr_index:
6298 case DW_FORM_GNU_str_index:
f664829e 6299 info_ptr = (gdb_byte *) safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
6300 break;
6301 case DW_FORM_indirect:
6302 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6303 info_ptr += bytes_read;
6304 /* We need to continue parsing from here, so just go back to
6305 the top. */
6306 goto skip_attribute;
6307
6308 default:
3e43a32a
MS
6309 error (_("Dwarf Error: Cannot handle %s "
6310 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
6311 dwarf_form_name (form),
6312 bfd_get_filename (abfd));
6313 }
6314 }
6315
6316 if (abbrev->has_children)
dee91e82 6317 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
6318 else
6319 return info_ptr;
6320}
6321
93311388 6322/* Locate ORIG_PDI's sibling.
dee91e82 6323 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 6324
fe1b8b76 6325static gdb_byte *
dee91e82
DE
6326locate_pdi_sibling (const struct die_reader_specs *reader,
6327 struct partial_die_info *orig_pdi,
6328 gdb_byte *info_ptr)
91c24f0a
DC
6329{
6330 /* Do we know the sibling already? */
72bf9492 6331
91c24f0a
DC
6332 if (orig_pdi->sibling)
6333 return orig_pdi->sibling;
6334
6335 /* Are there any children to deal with? */
6336
6337 if (!orig_pdi->has_children)
6338 return info_ptr;
6339
4bb7a0a7 6340 /* Skip the children the long way. */
91c24f0a 6341
dee91e82 6342 return skip_children (reader, info_ptr);
91c24f0a
DC
6343}
6344
c906108c
SS
6345/* Expand this partial symbol table into a full symbol table. */
6346
6347static void
fba45db2 6348dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
c906108c 6349{
c906108c
SS
6350 if (pst != NULL)
6351 {
6352 if (pst->readin)
6353 {
3e43a32a
MS
6354 warning (_("bug: psymtab for %s is already read in."),
6355 pst->filename);
c906108c
SS
6356 }
6357 else
6358 {
6359 if (info_verbose)
6360 {
3e43a32a
MS
6361 printf_filtered (_("Reading in symbols for %s..."),
6362 pst->filename);
c906108c
SS
6363 gdb_flush (gdb_stdout);
6364 }
6365
10b3939b
DJ
6366 /* Restore our global data. */
6367 dwarf2_per_objfile = objfile_data (pst->objfile,
6368 dwarf2_objfile_data_key);
6369
b2ab525c
KB
6370 /* If this psymtab is constructed from a debug-only objfile, the
6371 has_section_at_zero flag will not necessarily be correct. We
6372 can get the correct value for this flag by looking at the data
6373 associated with the (presumably stripped) associated objfile. */
6374 if (pst->objfile->separate_debug_objfile_backlink)
6375 {
6376 struct dwarf2_per_objfile *dpo_backlink
6377 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
6378 dwarf2_objfile_data_key);
9a619af0 6379
b2ab525c
KB
6380 dwarf2_per_objfile->has_section_at_zero
6381 = dpo_backlink->has_section_at_zero;
6382 }
6383
98bfdba5
PA
6384 dwarf2_per_objfile->reading_partial_symbols = 0;
6385
c906108c
SS
6386 psymtab_to_symtab_1 (pst);
6387
6388 /* Finish up the debug error message. */
6389 if (info_verbose)
a3f17187 6390 printf_filtered (_("done.\n"));
c906108c
SS
6391 }
6392 }
95554aad
TT
6393
6394 process_cu_includes ();
c906108c 6395}
9cdd5dbd
DE
6396\f
6397/* Reading in full CUs. */
c906108c 6398
10b3939b
DJ
6399/* Add PER_CU to the queue. */
6400
6401static void
95554aad
TT
6402queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
6403 enum language pretend_language)
10b3939b
DJ
6404{
6405 struct dwarf2_queue_item *item;
6406
6407 per_cu->queued = 1;
6408 item = xmalloc (sizeof (*item));
6409 item->per_cu = per_cu;
95554aad 6410 item->pretend_language = pretend_language;
10b3939b
DJ
6411 item->next = NULL;
6412
6413 if (dwarf2_queue == NULL)
6414 dwarf2_queue = item;
6415 else
6416 dwarf2_queue_tail->next = item;
6417
6418 dwarf2_queue_tail = item;
6419}
6420
0907af0c
DE
6421/* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
6422 unit and add it to our queue.
6423 The result is non-zero if PER_CU was queued, otherwise the result is zero
6424 meaning either PER_CU is already queued or it is already loaded. */
6425
6426static int
6427maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
6428 struct dwarf2_per_cu_data *per_cu,
6429 enum language pretend_language)
6430{
6431 /* We may arrive here during partial symbol reading, if we need full
6432 DIEs to process an unusual case (e.g. template arguments). Do
6433 not queue PER_CU, just tell our caller to load its DIEs. */
6434 if (dwarf2_per_objfile->reading_partial_symbols)
6435 {
6436 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
6437 return 1;
6438 return 0;
6439 }
6440
6441 /* Mark the dependence relation so that we don't flush PER_CU
6442 too early. */
6443 dwarf2_add_dependence (this_cu, per_cu);
6444
6445 /* If it's already on the queue, we have nothing to do. */
6446 if (per_cu->queued)
6447 return 0;
6448
6449 /* If the compilation unit is already loaded, just mark it as
6450 used. */
6451 if (per_cu->cu != NULL)
6452 {
6453 per_cu->cu->last_used = 0;
6454 return 0;
6455 }
6456
6457 /* Add it to the queue. */
6458 queue_comp_unit (per_cu, pretend_language);
6459
6460 return 1;
6461}
6462
10b3939b
DJ
6463/* Process the queue. */
6464
6465static void
a0f42c21 6466process_queue (void)
10b3939b
DJ
6467{
6468 struct dwarf2_queue_item *item, *next_item;
6469
45cfd468
DE
6470 if (dwarf2_read_debug)
6471 {
6472 fprintf_unfiltered (gdb_stdlog,
6473 "Expanding one or more symtabs of objfile %s ...\n",
6474 dwarf2_per_objfile->objfile->name);
6475 }
6476
03dd20cc
DJ
6477 /* The queue starts out with one item, but following a DIE reference
6478 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
6479 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
6480 {
9291a0cd
TT
6481 if (dwarf2_per_objfile->using_index
6482 ? !item->per_cu->v.quick->symtab
6483 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
f4dc4d17
DE
6484 {
6485 struct dwarf2_per_cu_data *per_cu = item->per_cu;
6486
6487 if (dwarf2_read_debug)
6488 {
6489 fprintf_unfiltered (gdb_stdlog,
6490 "Expanding symtab of %s at offset 0x%x\n",
6491 per_cu->is_debug_types ? "TU" : "CU",
6492 per_cu->offset.sect_off);
6493 }
6494
6495 if (per_cu->is_debug_types)
6496 process_full_type_unit (per_cu, item->pretend_language);
6497 else
6498 process_full_comp_unit (per_cu, item->pretend_language);
6499
6500 if (dwarf2_read_debug)
6501 {
6502 fprintf_unfiltered (gdb_stdlog,
6503 "Done expanding %s at offset 0x%x\n",
6504 per_cu->is_debug_types ? "TU" : "CU",
6505 per_cu->offset.sect_off);
6506 }
6507 }
10b3939b
DJ
6508
6509 item->per_cu->queued = 0;
6510 next_item = item->next;
6511 xfree (item);
6512 }
6513
6514 dwarf2_queue_tail = NULL;
45cfd468
DE
6515
6516 if (dwarf2_read_debug)
6517 {
6518 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
6519 dwarf2_per_objfile->objfile->name);
6520 }
10b3939b
DJ
6521}
6522
6523/* Free all allocated queue entries. This function only releases anything if
6524 an error was thrown; if the queue was processed then it would have been
6525 freed as we went along. */
6526
6527static void
6528dwarf2_release_queue (void *dummy)
6529{
6530 struct dwarf2_queue_item *item, *last;
6531
6532 item = dwarf2_queue;
6533 while (item)
6534 {
6535 /* Anything still marked queued is likely to be in an
6536 inconsistent state, so discard it. */
6537 if (item->per_cu->queued)
6538 {
6539 if (item->per_cu->cu != NULL)
dee91e82 6540 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
6541 item->per_cu->queued = 0;
6542 }
6543
6544 last = item;
6545 item = item->next;
6546 xfree (last);
6547 }
6548
6549 dwarf2_queue = dwarf2_queue_tail = NULL;
6550}
6551
6552/* Read in full symbols for PST, and anything it depends on. */
6553
c906108c 6554static void
fba45db2 6555psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 6556{
10b3939b 6557 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
6558 int i;
6559
95554aad
TT
6560 if (pst->readin)
6561 return;
6562
aaa75496 6563 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
6564 if (!pst->dependencies[i]->readin
6565 && pst->dependencies[i]->user == NULL)
aaa75496
JB
6566 {
6567 /* Inform about additional files that need to be read in. */
6568 if (info_verbose)
6569 {
a3f17187 6570 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
6571 fputs_filtered (" ", gdb_stdout);
6572 wrap_here ("");
6573 fputs_filtered ("and ", gdb_stdout);
6574 wrap_here ("");
6575 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 6576 wrap_here (""); /* Flush output. */
aaa75496
JB
6577 gdb_flush (gdb_stdout);
6578 }
6579 psymtab_to_symtab_1 (pst->dependencies[i]);
6580 }
6581
e38df1d0 6582 per_cu = pst->read_symtab_private;
10b3939b
DJ
6583
6584 if (per_cu == NULL)
aaa75496
JB
6585 {
6586 /* It's an include file, no symbols to read for it.
6587 Everything is in the parent symtab. */
6588 pst->readin = 1;
6589 return;
6590 }
c906108c 6591
a0f42c21 6592 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
6593}
6594
dee91e82
DE
6595/* Trivial hash function for die_info: the hash value of a DIE
6596 is its offset in .debug_info for this objfile. */
10b3939b 6597
dee91e82
DE
6598static hashval_t
6599die_hash (const void *item)
10b3939b 6600{
dee91e82 6601 const struct die_info *die = item;
6502dd73 6602
dee91e82
DE
6603 return die->offset.sect_off;
6604}
63d06c5c 6605
dee91e82
DE
6606/* Trivial comparison function for die_info structures: two DIEs
6607 are equal if they have the same offset. */
98bfdba5 6608
dee91e82
DE
6609static int
6610die_eq (const void *item_lhs, const void *item_rhs)
6611{
6612 const struct die_info *die_lhs = item_lhs;
6613 const struct die_info *die_rhs = item_rhs;
c906108c 6614
dee91e82
DE
6615 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
6616}
c906108c 6617
dee91e82
DE
6618/* die_reader_func for load_full_comp_unit.
6619 This is identical to read_signatured_type_reader,
6620 but is kept separate for now. */
c906108c 6621
dee91e82
DE
6622static void
6623load_full_comp_unit_reader (const struct die_reader_specs *reader,
6624 gdb_byte *info_ptr,
6625 struct die_info *comp_unit_die,
6626 int has_children,
6627 void *data)
6628{
6629 struct dwarf2_cu *cu = reader->cu;
95554aad 6630 enum language *language_ptr = data;
6caca83c 6631
dee91e82
DE
6632 gdb_assert (cu->die_hash == NULL);
6633 cu->die_hash =
6634 htab_create_alloc_ex (cu->header.length / 12,
6635 die_hash,
6636 die_eq,
6637 NULL,
6638 &cu->comp_unit_obstack,
6639 hashtab_obstack_allocate,
6640 dummy_obstack_deallocate);
e142c38c 6641
dee91e82
DE
6642 if (has_children)
6643 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
6644 &info_ptr, comp_unit_die);
6645 cu->dies = comp_unit_die;
6646 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
6647
6648 /* We try not to read any attributes in this function, because not
9cdd5dbd 6649 all CUs needed for references have been loaded yet, and symbol
10b3939b 6650 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
6651 or we won't be able to build types correctly.
6652 Similarly, if we do not read the producer, we can not apply
6653 producer-specific interpretation. */
95554aad 6654 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 6655}
10b3939b 6656
dee91e82 6657/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 6658
dee91e82 6659static void
95554aad
TT
6660load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
6661 enum language pretend_language)
dee91e82 6662{
3019eac3 6663 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 6664
f4dc4d17
DE
6665 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6666 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
6667}
6668
3da10d80
KS
6669/* Add a DIE to the delayed physname list. */
6670
6671static void
6672add_to_method_list (struct type *type, int fnfield_index, int index,
6673 const char *name, struct die_info *die,
6674 struct dwarf2_cu *cu)
6675{
6676 struct delayed_method_info mi;
6677 mi.type = type;
6678 mi.fnfield_index = fnfield_index;
6679 mi.index = index;
6680 mi.name = name;
6681 mi.die = die;
6682 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
6683}
6684
6685/* A cleanup for freeing the delayed method list. */
6686
6687static void
6688free_delayed_list (void *ptr)
6689{
6690 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
6691 if (cu->method_list != NULL)
6692 {
6693 VEC_free (delayed_method_info, cu->method_list);
6694 cu->method_list = NULL;
6695 }
6696}
6697
6698/* Compute the physnames of any methods on the CU's method list.
6699
6700 The computation of method physnames is delayed in order to avoid the
6701 (bad) condition that one of the method's formal parameters is of an as yet
6702 incomplete type. */
6703
6704static void
6705compute_delayed_physnames (struct dwarf2_cu *cu)
6706{
6707 int i;
6708 struct delayed_method_info *mi;
6709 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
6710 {
1d06ead6 6711 const char *physname;
3da10d80
KS
6712 struct fn_fieldlist *fn_flp
6713 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
1d06ead6 6714 physname = dwarf2_physname ((char *) mi->name, mi->die, cu);
3da10d80
KS
6715 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
6716 }
6717}
6718
a766d390
DE
6719/* Go objects should be embedded in a DW_TAG_module DIE,
6720 and it's not clear if/how imported objects will appear.
6721 To keep Go support simple until that's worked out,
6722 go back through what we've read and create something usable.
6723 We could do this while processing each DIE, and feels kinda cleaner,
6724 but that way is more invasive.
6725 This is to, for example, allow the user to type "p var" or "b main"
6726 without having to specify the package name, and allow lookups
6727 of module.object to work in contexts that use the expression
6728 parser. */
6729
6730static void
6731fixup_go_packaging (struct dwarf2_cu *cu)
6732{
6733 char *package_name = NULL;
6734 struct pending *list;
6735 int i;
6736
6737 for (list = global_symbols; list != NULL; list = list->next)
6738 {
6739 for (i = 0; i < list->nsyms; ++i)
6740 {
6741 struct symbol *sym = list->symbol[i];
6742
6743 if (SYMBOL_LANGUAGE (sym) == language_go
6744 && SYMBOL_CLASS (sym) == LOC_BLOCK)
6745 {
6746 char *this_package_name = go_symbol_package_name (sym);
6747
6748 if (this_package_name == NULL)
6749 continue;
6750 if (package_name == NULL)
6751 package_name = this_package_name;
6752 else
6753 {
6754 if (strcmp (package_name, this_package_name) != 0)
6755 complaint (&symfile_complaints,
6756 _("Symtab %s has objects from two different Go packages: %s and %s"),
6757 (sym->symtab && sym->symtab->filename
6758 ? sym->symtab->filename
6759 : cu->objfile->name),
6760 this_package_name, package_name);
6761 xfree (this_package_name);
6762 }
6763 }
6764 }
6765 }
6766
6767 if (package_name != NULL)
6768 {
6769 struct objfile *objfile = cu->objfile;
6770 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
6771 package_name, objfile);
6772 struct symbol *sym;
6773
6774 TYPE_TAG_NAME (type) = TYPE_NAME (type);
6775
6776 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6777 SYMBOL_SET_LANGUAGE (sym, language_go);
6778 SYMBOL_SET_NAMES (sym, package_name, strlen (package_name), 1, objfile);
6779 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
6780 e.g., "main" finds the "main" module and not C's main(). */
6781 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
6782 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
6783 SYMBOL_TYPE (sym) = type;
6784
6785 add_symbol_to_list (sym, &global_symbols);
6786
6787 xfree (package_name);
6788 }
6789}
6790
95554aad
TT
6791static void compute_symtab_includes (struct dwarf2_per_cu_data *per_cu);
6792
6793/* Return the symtab for PER_CU. This works properly regardless of
6794 whether we're using the index or psymtabs. */
6795
6796static struct symtab *
6797get_symtab (struct dwarf2_per_cu_data *per_cu)
6798{
6799 return (dwarf2_per_objfile->using_index
6800 ? per_cu->v.quick->symtab
6801 : per_cu->v.psymtab->symtab);
6802}
6803
6804/* A helper function for computing the list of all symbol tables
6805 included by PER_CU. */
6806
6807static void
6808recursively_compute_inclusions (VEC (dwarf2_per_cu_ptr) **result,
6809 htab_t all_children,
6810 struct dwarf2_per_cu_data *per_cu)
6811{
6812 void **slot;
6813 int ix;
6814 struct dwarf2_per_cu_data *iter;
6815
6816 slot = htab_find_slot (all_children, per_cu, INSERT);
6817 if (*slot != NULL)
6818 {
6819 /* This inclusion and its children have been processed. */
6820 return;
6821 }
6822
6823 *slot = per_cu;
6824 /* Only add a CU if it has a symbol table. */
6825 if (get_symtab (per_cu) != NULL)
6826 VEC_safe_push (dwarf2_per_cu_ptr, *result, per_cu);
6827
6828 for (ix = 0;
f4dc4d17 6829 VEC_iterate (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs, ix, iter);
95554aad
TT
6830 ++ix)
6831 recursively_compute_inclusions (result, all_children, iter);
6832}
6833
6834/* Compute the symtab 'includes' fields for the symtab related to
6835 PER_CU. */
6836
6837static void
6838compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
6839{
f4dc4d17
DE
6840 gdb_assert (! per_cu->is_debug_types);
6841
6842 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs))
95554aad
TT
6843 {
6844 int ix, len;
6845 struct dwarf2_per_cu_data *iter;
6846 VEC (dwarf2_per_cu_ptr) *result_children = NULL;
6847 htab_t all_children;
6848 struct symtab *symtab = get_symtab (per_cu);
6849
6850 /* If we don't have a symtab, we can just skip this case. */
6851 if (symtab == NULL)
6852 return;
6853
6854 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
6855 NULL, xcalloc, xfree);
6856
6857 for (ix = 0;
f4dc4d17 6858 VEC_iterate (dwarf2_per_cu_ptr, per_cu->s.imported_symtabs,
95554aad
TT
6859 ix, iter);
6860 ++ix)
6861 recursively_compute_inclusions (&result_children, all_children, iter);
6862
6863 /* Now we have a transitive closure of all the included CUs, so
6864 we can convert it to a list of symtabs. */
6865 len = VEC_length (dwarf2_per_cu_ptr, result_children);
6866 symtab->includes
6867 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
6868 (len + 1) * sizeof (struct symtab *));
6869 for (ix = 0;
6870 VEC_iterate (dwarf2_per_cu_ptr, result_children, ix, iter);
6871 ++ix)
6872 symtab->includes[ix] = get_symtab (iter);
6873 symtab->includes[len] = NULL;
6874
6875 VEC_free (dwarf2_per_cu_ptr, result_children);
6876 htab_delete (all_children);
6877 }
6878}
6879
6880/* Compute the 'includes' field for the symtabs of all the CUs we just
6881 read. */
6882
6883static void
6884process_cu_includes (void)
6885{
6886 int ix;
6887 struct dwarf2_per_cu_data *iter;
6888
6889 for (ix = 0;
6890 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
6891 ix, iter);
6892 ++ix)
f4dc4d17
DE
6893 {
6894 if (! iter->is_debug_types)
6895 compute_symtab_includes (iter);
6896 }
95554aad
TT
6897
6898 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
6899}
6900
9cdd5dbd 6901/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
6902 already been loaded into memory. */
6903
6904static void
95554aad
TT
6905process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
6906 enum language pretend_language)
10b3939b 6907{
10b3939b 6908 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 6909 struct objfile *objfile = per_cu->objfile;
10b3939b
DJ
6910 CORE_ADDR lowpc, highpc;
6911 struct symtab *symtab;
3da10d80 6912 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 6913 CORE_ADDR baseaddr;
4359dff1 6914 struct block *static_block;
10b3939b
DJ
6915
6916 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6917
10b3939b
DJ
6918 buildsym_init ();
6919 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 6920 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
6921
6922 cu->list_in_scope = &file_symbols;
c906108c 6923
95554aad
TT
6924 cu->language = pretend_language;
6925 cu->language_defn = language_def (cu->language);
6926
c906108c 6927 /* Do line number decoding in read_file_scope () */
10b3939b 6928 process_die (cu->dies, cu);
c906108c 6929
a766d390
DE
6930 /* For now fudge the Go package. */
6931 if (cu->language == language_go)
6932 fixup_go_packaging (cu);
6933
3da10d80
KS
6934 /* Now that we have processed all the DIEs in the CU, all the types
6935 should be complete, and it should now be safe to compute all of the
6936 physnames. */
6937 compute_delayed_physnames (cu);
6938 do_cleanups (delayed_list_cleanup);
6939
fae299cd
DC
6940 /* Some compilers don't define a DW_AT_high_pc attribute for the
6941 compilation unit. If the DW_AT_high_pc is missing, synthesize
6942 it, by scanning the DIE's below the compilation unit. */
10b3939b 6943 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 6944
36586728
TT
6945 static_block
6946 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0,
6947 per_cu->s.imported_symtabs != NULL);
4359dff1
JK
6948
6949 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
6950 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
6951 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
6952 addrmap to help ensure it has an accurate map of pc values belonging to
6953 this comp unit. */
6954 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
6955
6956 symtab = end_symtab_from_static_block (static_block, objfile,
6957 SECT_OFF_TEXT (objfile), 0);
c906108c 6958
8be455d7 6959 if (symtab != NULL)
c906108c 6960 {
df15bd07 6961 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 6962
8be455d7
JK
6963 /* Set symtab language to language from DW_AT_language. If the
6964 compilation is from a C file generated by language preprocessors, do
6965 not set the language if it was already deduced by start_subfile. */
6966 if (!(cu->language == language_c && symtab->language != language_c))
6967 symtab->language = cu->language;
6968
6969 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
6970 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
6971 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
6972 there were bugs in prologue debug info, fixed later in GCC-4.5
6973 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
6974
6975 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
6976 needed, it would be wrong due to missing DW_AT_producer there.
6977
6978 Still one can confuse GDB by using non-standard GCC compilation
6979 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
6980 */
ab260dad 6981 if (cu->has_loclist && gcc_4_minor >= 5)
8be455d7 6982 symtab->locations_valid = 1;
e0d00bc7
JK
6983
6984 if (gcc_4_minor >= 5)
6985 symtab->epilogue_unwind_valid = 1;
96408a79
SA
6986
6987 symtab->call_site_htab = cu->call_site_htab;
c906108c 6988 }
9291a0cd
TT
6989
6990 if (dwarf2_per_objfile->using_index)
6991 per_cu->v.quick->symtab = symtab;
6992 else
6993 {
6994 struct partial_symtab *pst = per_cu->v.psymtab;
6995 pst->symtab = symtab;
6996 pst->readin = 1;
6997 }
c906108c 6998
95554aad
TT
6999 /* Push it for inclusion processing later. */
7000 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7001
c906108c 7002 do_cleanups (back_to);
f4dc4d17 7003}
45cfd468 7004
f4dc4d17
DE
7005/* Generate full symbol information for type unit PER_CU, whose DIEs have
7006 already been loaded into memory. */
7007
7008static void
7009process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7010 enum language pretend_language)
7011{
7012 struct dwarf2_cu *cu = per_cu->cu;
7013 struct objfile *objfile = per_cu->objfile;
7014 struct symtab *symtab;
7015 struct cleanup *back_to, *delayed_list_cleanup;
7016
7017 buildsym_init ();
7018 back_to = make_cleanup (really_free_pendings, NULL);
7019 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7020
7021 cu->list_in_scope = &file_symbols;
7022
7023 cu->language = pretend_language;
7024 cu->language_defn = language_def (cu->language);
7025
7026 /* The symbol tables are set up in read_type_unit_scope. */
7027 process_die (cu->dies, cu);
7028
7029 /* For now fudge the Go package. */
7030 if (cu->language == language_go)
7031 fixup_go_packaging (cu);
7032
7033 /* Now that we have processed all the DIEs in the CU, all the types
7034 should be complete, and it should now be safe to compute all of the
7035 physnames. */
7036 compute_delayed_physnames (cu);
7037 do_cleanups (delayed_list_cleanup);
7038
7039 /* TUs share symbol tables.
7040 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
7041 of it with end_expandable_symtab. Otherwise, complete the addition of
7042 this TU's symbols to the existing symtab. */
f4dc4d17 7043 if (per_cu->s.type_unit_group->primary_symtab == NULL)
45cfd468 7044 {
f4dc4d17
DE
7045 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
7046 per_cu->s.type_unit_group->primary_symtab = symtab;
7047
7048 if (symtab != NULL)
7049 {
7050 /* Set symtab language to language from DW_AT_language. If the
7051 compilation is from a C file generated by language preprocessors,
7052 do not set the language if it was already deduced by
7053 start_subfile. */
7054 if (!(cu->language == language_c && symtab->language != language_c))
7055 symtab->language = cu->language;
7056 }
7057 }
7058 else
7059 {
7060 augment_type_symtab (objfile,
7061 per_cu->s.type_unit_group->primary_symtab);
7062 symtab = per_cu->s.type_unit_group->primary_symtab;
7063 }
7064
7065 if (dwarf2_per_objfile->using_index)
7066 per_cu->v.quick->symtab = symtab;
7067 else
7068 {
7069 struct partial_symtab *pst = per_cu->v.psymtab;
7070 pst->symtab = symtab;
7071 pst->readin = 1;
45cfd468 7072 }
f4dc4d17
DE
7073
7074 do_cleanups (back_to);
c906108c
SS
7075}
7076
95554aad
TT
7077/* Process an imported unit DIE. */
7078
7079static void
7080process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
7081{
7082 struct attribute *attr;
7083
f4dc4d17
DE
7084 /* For now we don't handle imported units in type units. */
7085 if (cu->per_cu->is_debug_types)
7086 {
7087 error (_("Dwarf Error: DW_TAG_imported_unit is not"
7088 " supported in type units [in module %s]"),
7089 cu->objfile->name);
7090 }
7091
95554aad
TT
7092 attr = dwarf2_attr (die, DW_AT_import, cu);
7093 if (attr != NULL)
7094 {
7095 struct dwarf2_per_cu_data *per_cu;
7096 struct symtab *imported_symtab;
7097 sect_offset offset;
36586728 7098 int is_dwz;
95554aad
TT
7099
7100 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
7101 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
7102 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad
TT
7103
7104 /* Queue the unit, if needed. */
7105 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
7106 load_full_comp_unit (per_cu, cu->language);
7107
f4dc4d17 7108 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->s.imported_symtabs,
95554aad
TT
7109 per_cu);
7110 }
7111}
7112
c906108c
SS
7113/* Process a die and its children. */
7114
7115static void
e7c27a73 7116process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7117{
7118 switch (die->tag)
7119 {
7120 case DW_TAG_padding:
7121 break;
7122 case DW_TAG_compile_unit:
95554aad 7123 case DW_TAG_partial_unit:
e7c27a73 7124 read_file_scope (die, cu);
c906108c 7125 break;
348e048f
DE
7126 case DW_TAG_type_unit:
7127 read_type_unit_scope (die, cu);
7128 break;
c906108c 7129 case DW_TAG_subprogram:
c906108c 7130 case DW_TAG_inlined_subroutine:
edb3359d 7131 read_func_scope (die, cu);
c906108c
SS
7132 break;
7133 case DW_TAG_lexical_block:
14898363
L
7134 case DW_TAG_try_block:
7135 case DW_TAG_catch_block:
e7c27a73 7136 read_lexical_block_scope (die, cu);
c906108c 7137 break;
96408a79
SA
7138 case DW_TAG_GNU_call_site:
7139 read_call_site_scope (die, cu);
7140 break;
c906108c 7141 case DW_TAG_class_type:
680b30c7 7142 case DW_TAG_interface_type:
c906108c
SS
7143 case DW_TAG_structure_type:
7144 case DW_TAG_union_type:
134d01f1 7145 process_structure_scope (die, cu);
c906108c
SS
7146 break;
7147 case DW_TAG_enumeration_type:
134d01f1 7148 process_enumeration_scope (die, cu);
c906108c 7149 break;
134d01f1 7150
f792889a
DJ
7151 /* These dies have a type, but processing them does not create
7152 a symbol or recurse to process the children. Therefore we can
7153 read them on-demand through read_type_die. */
c906108c 7154 case DW_TAG_subroutine_type:
72019c9c 7155 case DW_TAG_set_type:
c906108c 7156 case DW_TAG_array_type:
c906108c 7157 case DW_TAG_pointer_type:
c906108c 7158 case DW_TAG_ptr_to_member_type:
c906108c 7159 case DW_TAG_reference_type:
c906108c 7160 case DW_TAG_string_type:
c906108c 7161 break;
134d01f1 7162
c906108c 7163 case DW_TAG_base_type:
a02abb62 7164 case DW_TAG_subrange_type:
cb249c71 7165 case DW_TAG_typedef:
134d01f1
DJ
7166 /* Add a typedef symbol for the type definition, if it has a
7167 DW_AT_name. */
f792889a 7168 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 7169 break;
c906108c 7170 case DW_TAG_common_block:
e7c27a73 7171 read_common_block (die, cu);
c906108c
SS
7172 break;
7173 case DW_TAG_common_inclusion:
7174 break;
d9fa45fe 7175 case DW_TAG_namespace:
63d06c5c 7176 processing_has_namespace_info = 1;
e7c27a73 7177 read_namespace (die, cu);
d9fa45fe 7178 break;
5d7cb8df 7179 case DW_TAG_module:
f55ee35c 7180 processing_has_namespace_info = 1;
5d7cb8df
JK
7181 read_module (die, cu);
7182 break;
d9fa45fe
DC
7183 case DW_TAG_imported_declaration:
7184 case DW_TAG_imported_module:
63d06c5c 7185 processing_has_namespace_info = 1;
27aa8d6a
SW
7186 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
7187 || cu->language != language_fortran))
7188 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
7189 dwarf_tag_name (die->tag));
7190 read_import_statement (die, cu);
d9fa45fe 7191 break;
95554aad
TT
7192
7193 case DW_TAG_imported_unit:
7194 process_imported_unit_die (die, cu);
7195 break;
7196
c906108c 7197 default:
e7c27a73 7198 new_symbol (die, NULL, cu);
c906108c
SS
7199 break;
7200 }
7201}
7202
94af9270
KS
7203/* A helper function for dwarf2_compute_name which determines whether DIE
7204 needs to have the name of the scope prepended to the name listed in the
7205 die. */
7206
7207static int
7208die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
7209{
1c809c68
TT
7210 struct attribute *attr;
7211
94af9270
KS
7212 switch (die->tag)
7213 {
7214 case DW_TAG_namespace:
7215 case DW_TAG_typedef:
7216 case DW_TAG_class_type:
7217 case DW_TAG_interface_type:
7218 case DW_TAG_structure_type:
7219 case DW_TAG_union_type:
7220 case DW_TAG_enumeration_type:
7221 case DW_TAG_enumerator:
7222 case DW_TAG_subprogram:
7223 case DW_TAG_member:
7224 return 1;
7225
7226 case DW_TAG_variable:
c2b0a229 7227 case DW_TAG_constant:
94af9270
KS
7228 /* We only need to prefix "globally" visible variables. These include
7229 any variable marked with DW_AT_external or any variable that
7230 lives in a namespace. [Variables in anonymous namespaces
7231 require prefixing, but they are not DW_AT_external.] */
7232
7233 if (dwarf2_attr (die, DW_AT_specification, cu))
7234 {
7235 struct dwarf2_cu *spec_cu = cu;
9a619af0 7236
94af9270
KS
7237 return die_needs_namespace (die_specification (die, &spec_cu),
7238 spec_cu);
7239 }
7240
1c809c68 7241 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
7242 if (attr == NULL && die->parent->tag != DW_TAG_namespace
7243 && die->parent->tag != DW_TAG_module)
1c809c68
TT
7244 return 0;
7245 /* A variable in a lexical block of some kind does not need a
7246 namespace, even though in C++ such variables may be external
7247 and have a mangled name. */
7248 if (die->parent->tag == DW_TAG_lexical_block
7249 || die->parent->tag == DW_TAG_try_block
1054b214
TT
7250 || die->parent->tag == DW_TAG_catch_block
7251 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
7252 return 0;
7253 return 1;
94af9270
KS
7254
7255 default:
7256 return 0;
7257 }
7258}
7259
98bfdba5
PA
7260/* Retrieve the last character from a mem_file. */
7261
7262static void
7263do_ui_file_peek_last (void *object, const char *buffer, long length)
7264{
7265 char *last_char_p = (char *) object;
7266
7267 if (length > 0)
7268 *last_char_p = buffer[length - 1];
7269}
7270
94af9270 7271/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
7272 compute the physname for the object, which include a method's:
7273 - formal parameters (C++/Java),
7274 - receiver type (Go),
7275 - return type (Java).
7276
7277 The term "physname" is a bit confusing.
7278 For C++, for example, it is the demangled name.
7279 For Go, for example, it's the mangled name.
94af9270 7280
af6b7be1
JB
7281 For Ada, return the DIE's linkage name rather than the fully qualified
7282 name. PHYSNAME is ignored..
7283
94af9270
KS
7284 The result is allocated on the objfile_obstack and canonicalized. */
7285
7286static const char *
7287dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
7288 int physname)
7289{
bb5ed363
DE
7290 struct objfile *objfile = cu->objfile;
7291
94af9270
KS
7292 if (name == NULL)
7293 name = dwarf2_name (die, cu);
7294
f55ee35c
JK
7295 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
7296 compute it by typename_concat inside GDB. */
7297 if (cu->language == language_ada
7298 || (cu->language == language_fortran && physname))
7299 {
7300 /* For Ada unit, we prefer the linkage name over the name, as
7301 the former contains the exported name, which the user expects
7302 to be able to reference. Ideally, we want the user to be able
7303 to reference this entity using either natural or linkage name,
7304 but we haven't started looking at this enhancement yet. */
7305 struct attribute *attr;
7306
7307 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7308 if (attr == NULL)
7309 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7310 if (attr && DW_STRING (attr))
7311 return DW_STRING (attr);
7312 }
7313
94af9270
KS
7314 /* These are the only languages we know how to qualify names in. */
7315 if (name != NULL
f55ee35c
JK
7316 && (cu->language == language_cplus || cu->language == language_java
7317 || cu->language == language_fortran))
94af9270
KS
7318 {
7319 if (die_needs_namespace (die, cu))
7320 {
7321 long length;
0d5cff50 7322 const char *prefix;
94af9270
KS
7323 struct ui_file *buf;
7324
7325 prefix = determine_prefix (die, cu);
7326 buf = mem_fileopen ();
7327 if (*prefix != '\0')
7328 {
f55ee35c
JK
7329 char *prefixed_name = typename_concat (NULL, prefix, name,
7330 physname, cu);
9a619af0 7331
94af9270
KS
7332 fputs_unfiltered (prefixed_name, buf);
7333 xfree (prefixed_name);
7334 }
7335 else
62d5b8da 7336 fputs_unfiltered (name, buf);
94af9270 7337
98bfdba5
PA
7338 /* Template parameters may be specified in the DIE's DW_AT_name, or
7339 as children with DW_TAG_template_type_param or
7340 DW_TAG_value_type_param. If the latter, add them to the name
7341 here. If the name already has template parameters, then
7342 skip this step; some versions of GCC emit both, and
7343 it is more efficient to use the pre-computed name.
7344
7345 Something to keep in mind about this process: it is very
7346 unlikely, or in some cases downright impossible, to produce
7347 something that will match the mangled name of a function.
7348 If the definition of the function has the same debug info,
7349 we should be able to match up with it anyway. But fallbacks
7350 using the minimal symbol, for instance to find a method
7351 implemented in a stripped copy of libstdc++, will not work.
7352 If we do not have debug info for the definition, we will have to
7353 match them up some other way.
7354
7355 When we do name matching there is a related problem with function
7356 templates; two instantiated function templates are allowed to
7357 differ only by their return types, which we do not add here. */
7358
7359 if (cu->language == language_cplus && strchr (name, '<') == NULL)
7360 {
7361 struct attribute *attr;
7362 struct die_info *child;
7363 int first = 1;
7364
7365 die->building_fullname = 1;
7366
7367 for (child = die->child; child != NULL; child = child->sibling)
7368 {
7369 struct type *type;
12df843f 7370 LONGEST value;
98bfdba5
PA
7371 gdb_byte *bytes;
7372 struct dwarf2_locexpr_baton *baton;
7373 struct value *v;
7374
7375 if (child->tag != DW_TAG_template_type_param
7376 && child->tag != DW_TAG_template_value_param)
7377 continue;
7378
7379 if (first)
7380 {
7381 fputs_unfiltered ("<", buf);
7382 first = 0;
7383 }
7384 else
7385 fputs_unfiltered (", ", buf);
7386
7387 attr = dwarf2_attr (child, DW_AT_type, cu);
7388 if (attr == NULL)
7389 {
7390 complaint (&symfile_complaints,
7391 _("template parameter missing DW_AT_type"));
7392 fputs_unfiltered ("UNKNOWN_TYPE", buf);
7393 continue;
7394 }
7395 type = die_type (child, cu);
7396
7397 if (child->tag == DW_TAG_template_type_param)
7398 {
7399 c_print_type (type, "", buf, -1, 0);
7400 continue;
7401 }
7402
7403 attr = dwarf2_attr (child, DW_AT_const_value, cu);
7404 if (attr == NULL)
7405 {
7406 complaint (&symfile_complaints,
3e43a32a
MS
7407 _("template parameter missing "
7408 "DW_AT_const_value"));
98bfdba5
PA
7409 fputs_unfiltered ("UNKNOWN_VALUE", buf);
7410 continue;
7411 }
7412
7413 dwarf2_const_value_attr (attr, type, name,
7414 &cu->comp_unit_obstack, cu,
7415 &value, &bytes, &baton);
7416
7417 if (TYPE_NOSIGN (type))
7418 /* GDB prints characters as NUMBER 'CHAR'. If that's
7419 changed, this can use value_print instead. */
7420 c_printchar (value, type, buf);
7421 else
7422 {
7423 struct value_print_options opts;
7424
7425 if (baton != NULL)
7426 v = dwarf2_evaluate_loc_desc (type, NULL,
7427 baton->data,
7428 baton->size,
7429 baton->per_cu);
7430 else if (bytes != NULL)
7431 {
7432 v = allocate_value (type);
7433 memcpy (value_contents_writeable (v), bytes,
7434 TYPE_LENGTH (type));
7435 }
7436 else
7437 v = value_from_longest (type, value);
7438
3e43a32a
MS
7439 /* Specify decimal so that we do not depend on
7440 the radix. */
98bfdba5
PA
7441 get_formatted_print_options (&opts, 'd');
7442 opts.raw = 1;
7443 value_print (v, buf, &opts);
7444 release_value (v);
7445 value_free (v);
7446 }
7447 }
7448
7449 die->building_fullname = 0;
7450
7451 if (!first)
7452 {
7453 /* Close the argument list, with a space if necessary
7454 (nested templates). */
7455 char last_char = '\0';
7456 ui_file_put (buf, do_ui_file_peek_last, &last_char);
7457 if (last_char == '>')
7458 fputs_unfiltered (" >", buf);
7459 else
7460 fputs_unfiltered (">", buf);
7461 }
7462 }
7463
94af9270
KS
7464 /* For Java and C++ methods, append formal parameter type
7465 information, if PHYSNAME. */
6e70227d 7466
94af9270
KS
7467 if (physname && die->tag == DW_TAG_subprogram
7468 && (cu->language == language_cplus
7469 || cu->language == language_java))
7470 {
7471 struct type *type = read_type_die (die, cu);
7472
3167638f 7473 c_type_print_args (type, buf, 1, cu->language);
94af9270
KS
7474
7475 if (cu->language == language_java)
7476 {
7477 /* For java, we must append the return type to method
0963b4bd 7478 names. */
94af9270
KS
7479 if (die->tag == DW_TAG_subprogram)
7480 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
7481 0, 0);
7482 }
7483 else if (cu->language == language_cplus)
7484 {
60430eff
DJ
7485 /* Assume that an artificial first parameter is
7486 "this", but do not crash if it is not. RealView
7487 marks unnamed (and thus unused) parameters as
7488 artificial; there is no way to differentiate
7489 the two cases. */
94af9270
KS
7490 if (TYPE_NFIELDS (type) > 0
7491 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 7492 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
7493 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
7494 0))))
94af9270
KS
7495 fputs_unfiltered (" const", buf);
7496 }
7497 }
7498
bb5ed363 7499 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
94af9270
KS
7500 &length);
7501 ui_file_delete (buf);
7502
7503 if (cu->language == language_cplus)
7504 {
7505 char *cname
7506 = dwarf2_canonicalize_name (name, cu,
bb5ed363 7507 &objfile->objfile_obstack);
9a619af0 7508
94af9270
KS
7509 if (cname != NULL)
7510 name = cname;
7511 }
7512 }
7513 }
7514
7515 return name;
7516}
7517
0114d602
DJ
7518/* Return the fully qualified name of DIE, based on its DW_AT_name.
7519 If scope qualifiers are appropriate they will be added. The result
7520 will be allocated on the objfile_obstack, or NULL if the DIE does
94af9270
KS
7521 not have a name. NAME may either be from a previous call to
7522 dwarf2_name or NULL.
7523
0963b4bd 7524 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
7525
7526static const char *
94af9270 7527dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 7528{
94af9270
KS
7529 return dwarf2_compute_name (name, die, cu, 0);
7530}
0114d602 7531
94af9270
KS
7532/* Construct a physname for the given DIE in CU. NAME may either be
7533 from a previous call to dwarf2_name or NULL. The result will be
7534 allocated on the objfile_objstack or NULL if the DIE does not have a
7535 name.
0114d602 7536
94af9270 7537 The output string will be canonicalized (if C++/Java). */
0114d602 7538
94af9270
KS
7539static const char *
7540dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
7541{
bb5ed363 7542 struct objfile *objfile = cu->objfile;
900e11f9
JK
7543 struct attribute *attr;
7544 const char *retval, *mangled = NULL, *canon = NULL;
7545 struct cleanup *back_to;
7546 int need_copy = 1;
7547
7548 /* In this case dwarf2_compute_name is just a shortcut not building anything
7549 on its own. */
7550 if (!die_needs_namespace (die, cu))
7551 return dwarf2_compute_name (name, die, cu, 1);
7552
7553 back_to = make_cleanup (null_cleanup, NULL);
7554
7555 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
7556 if (!attr)
7557 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
7558
7559 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
7560 has computed. */
7561 if (attr && DW_STRING (attr))
7562 {
7563 char *demangled;
7564
7565 mangled = DW_STRING (attr);
7566
7567 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
7568 type. It is easier for GDB users to search for such functions as
7569 `name(params)' than `long name(params)'. In such case the minimal
7570 symbol names do not match the full symbol names but for template
7571 functions there is never a need to look up their definition from their
7572 declaration so the only disadvantage remains the minimal symbol
7573 variant `long name(params)' does not have the proper inferior type.
7574 */
7575
a766d390
DE
7576 if (cu->language == language_go)
7577 {
7578 /* This is a lie, but we already lie to the caller new_symbol_full.
7579 new_symbol_full assumes we return the mangled name.
7580 This just undoes that lie until things are cleaned up. */
7581 demangled = NULL;
7582 }
7583 else
7584 {
7585 demangled = cplus_demangle (mangled,
7586 (DMGL_PARAMS | DMGL_ANSI
7587 | (cu->language == language_java
7588 ? DMGL_JAVA | DMGL_RET_POSTFIX
7589 : DMGL_RET_DROP)));
7590 }
900e11f9
JK
7591 if (demangled)
7592 {
7593 make_cleanup (xfree, demangled);
7594 canon = demangled;
7595 }
7596 else
7597 {
7598 canon = mangled;
7599 need_copy = 0;
7600 }
7601 }
7602
7603 if (canon == NULL || check_physname)
7604 {
7605 const char *physname = dwarf2_compute_name (name, die, cu, 1);
7606
7607 if (canon != NULL && strcmp (physname, canon) != 0)
7608 {
7609 /* It may not mean a bug in GDB. The compiler could also
7610 compute DW_AT_linkage_name incorrectly. But in such case
7611 GDB would need to be bug-to-bug compatible. */
7612
7613 complaint (&symfile_complaints,
7614 _("Computed physname <%s> does not match demangled <%s> "
7615 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
b64f50a1 7616 physname, canon, mangled, die->offset.sect_off, objfile->name);
900e11f9
JK
7617
7618 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
7619 is available here - over computed PHYSNAME. It is safer
7620 against both buggy GDB and buggy compilers. */
7621
7622 retval = canon;
7623 }
7624 else
7625 {
7626 retval = physname;
7627 need_copy = 0;
7628 }
7629 }
7630 else
7631 retval = canon;
7632
7633 if (need_copy)
7634 retval = obsavestring (retval, strlen (retval),
bb5ed363 7635 &objfile->objfile_obstack);
900e11f9
JK
7636
7637 do_cleanups (back_to);
7638 return retval;
0114d602
DJ
7639}
7640
27aa8d6a
SW
7641/* Read the import statement specified by the given die and record it. */
7642
7643static void
7644read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
7645{
bb5ed363 7646 struct objfile *objfile = cu->objfile;
27aa8d6a 7647 struct attribute *import_attr;
32019081 7648 struct die_info *imported_die, *child_die;
de4affc9 7649 struct dwarf2_cu *imported_cu;
27aa8d6a 7650 const char *imported_name;
794684b6 7651 const char *imported_name_prefix;
13387711
SW
7652 const char *canonical_name;
7653 const char *import_alias;
7654 const char *imported_declaration = NULL;
794684b6 7655 const char *import_prefix;
32019081
JK
7656 VEC (const_char_ptr) *excludes = NULL;
7657 struct cleanup *cleanups;
13387711
SW
7658
7659 char *temp;
27aa8d6a
SW
7660
7661 import_attr = dwarf2_attr (die, DW_AT_import, cu);
7662 if (import_attr == NULL)
7663 {
7664 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7665 dwarf_tag_name (die->tag));
7666 return;
7667 }
7668
de4affc9
CC
7669 imported_cu = cu;
7670 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
7671 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
7672 if (imported_name == NULL)
7673 {
7674 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
7675
7676 The import in the following code:
7677 namespace A
7678 {
7679 typedef int B;
7680 }
7681
7682 int main ()
7683 {
7684 using A::B;
7685 B b;
7686 return b;
7687 }
7688
7689 ...
7690 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
7691 <52> DW_AT_decl_file : 1
7692 <53> DW_AT_decl_line : 6
7693 <54> DW_AT_import : <0x75>
7694 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
7695 <59> DW_AT_name : B
7696 <5b> DW_AT_decl_file : 1
7697 <5c> DW_AT_decl_line : 2
7698 <5d> DW_AT_type : <0x6e>
7699 ...
7700 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
7701 <76> DW_AT_byte_size : 4
7702 <77> DW_AT_encoding : 5 (signed)
7703
7704 imports the wrong die ( 0x75 instead of 0x58 ).
7705 This case will be ignored until the gcc bug is fixed. */
7706 return;
7707 }
7708
82856980
SW
7709 /* Figure out the local name after import. */
7710 import_alias = dwarf2_name (die, cu);
27aa8d6a 7711
794684b6
SW
7712 /* Figure out where the statement is being imported to. */
7713 import_prefix = determine_prefix (die, cu);
7714
7715 /* Figure out what the scope of the imported die is and prepend it
7716 to the name of the imported die. */
de4affc9 7717 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 7718
f55ee35c
JK
7719 if (imported_die->tag != DW_TAG_namespace
7720 && imported_die->tag != DW_TAG_module)
794684b6 7721 {
13387711
SW
7722 imported_declaration = imported_name;
7723 canonical_name = imported_name_prefix;
794684b6 7724 }
13387711 7725 else if (strlen (imported_name_prefix) > 0)
794684b6 7726 {
13387711
SW
7727 temp = alloca (strlen (imported_name_prefix)
7728 + 2 + strlen (imported_name) + 1);
7729 strcpy (temp, imported_name_prefix);
7730 strcat (temp, "::");
7731 strcat (temp, imported_name);
7732 canonical_name = temp;
794684b6 7733 }
13387711
SW
7734 else
7735 canonical_name = imported_name;
794684b6 7736
32019081
JK
7737 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
7738
7739 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
7740 for (child_die = die->child; child_die && child_die->tag;
7741 child_die = sibling_die (child_die))
7742 {
7743 /* DWARF-4: A Fortran use statement with a “rename list” may be
7744 represented by an imported module entry with an import attribute
7745 referring to the module and owned entries corresponding to those
7746 entities that are renamed as part of being imported. */
7747
7748 if (child_die->tag != DW_TAG_imported_declaration)
7749 {
7750 complaint (&symfile_complaints,
7751 _("child DW_TAG_imported_declaration expected "
7752 "- DIE at 0x%x [in module %s]"),
b64f50a1 7753 child_die->offset.sect_off, objfile->name);
32019081
JK
7754 continue;
7755 }
7756
7757 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
7758 if (import_attr == NULL)
7759 {
7760 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
7761 dwarf_tag_name (child_die->tag));
7762 continue;
7763 }
7764
7765 imported_cu = cu;
7766 imported_die = follow_die_ref_or_sig (child_die, import_attr,
7767 &imported_cu);
7768 imported_name = dwarf2_name (imported_die, imported_cu);
7769 if (imported_name == NULL)
7770 {
7771 complaint (&symfile_complaints,
7772 _("child DW_TAG_imported_declaration has unknown "
7773 "imported name - DIE at 0x%x [in module %s]"),
b64f50a1 7774 child_die->offset.sect_off, objfile->name);
32019081
JK
7775 continue;
7776 }
7777
7778 VEC_safe_push (const_char_ptr, excludes, imported_name);
7779
7780 process_die (child_die, cu);
7781 }
7782
c0cc3a76
SW
7783 cp_add_using_directive (import_prefix,
7784 canonical_name,
7785 import_alias,
13387711 7786 imported_declaration,
32019081 7787 excludes,
bb5ed363 7788 &objfile->objfile_obstack);
32019081
JK
7789
7790 do_cleanups (cleanups);
27aa8d6a
SW
7791}
7792
f4dc4d17 7793/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 7794
cb1df416
DJ
7795static void
7796free_cu_line_header (void *arg)
7797{
7798 struct dwarf2_cu *cu = arg;
7799
7800 free_line_header (cu->line_header);
7801 cu->line_header = NULL;
7802}
7803
9291a0cd
TT
7804static void
7805find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
7806 char **name, char **comp_dir)
7807{
7808 struct attribute *attr;
7809
7810 *name = NULL;
7811 *comp_dir = NULL;
7812
7813 /* Find the filename. Do not use dwarf2_name here, since the filename
7814 is not a source language identifier. */
7815 attr = dwarf2_attr (die, DW_AT_name, cu);
7816 if (attr)
7817 {
7818 *name = DW_STRING (attr);
7819 }
7820
7821 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
7822 if (attr)
7823 *comp_dir = DW_STRING (attr);
7824 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
7825 {
7826 *comp_dir = ldirname (*name);
7827 if (*comp_dir != NULL)
7828 make_cleanup (xfree, *comp_dir);
7829 }
7830 if (*comp_dir != NULL)
7831 {
7832 /* Irix 6.2 native cc prepends <machine>.: to the compilation
7833 directory, get rid of it. */
7834 char *cp = strchr (*comp_dir, ':');
7835
7836 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
7837 *comp_dir = cp + 1;
7838 }
7839
7840 if (*name == NULL)
7841 *name = "<unknown>";
7842}
7843
f4dc4d17
DE
7844/* Handle DW_AT_stmt_list for a compilation unit.
7845 DIE is the DW_TAG_compile_unit die for CU.
f3f5162e
DE
7846 COMP_DIR is the compilation directory.
7847 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
2ab95328
TT
7848
7849static void
7850handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
f4dc4d17 7851 const char *comp_dir)
2ab95328
TT
7852{
7853 struct attribute *attr;
2ab95328 7854
f4dc4d17
DE
7855 gdb_assert (! cu->per_cu->is_debug_types);
7856
2ab95328
TT
7857 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
7858 if (attr)
7859 {
7860 unsigned int line_offset = DW_UNSND (attr);
7861 struct line_header *line_header
3019eac3 7862 = dwarf_decode_line_header (line_offset, cu);
2ab95328
TT
7863
7864 if (line_header)
dee91e82
DE
7865 {
7866 cu->line_header = line_header;
7867 make_cleanup (free_cu_line_header, cu);
f4dc4d17 7868 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
dee91e82 7869 }
2ab95328
TT
7870 }
7871}
7872
95554aad 7873/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 7874
c906108c 7875static void
e7c27a73 7876read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7877{
dee91e82 7878 struct objfile *objfile = dwarf2_per_objfile->objfile;
debd256d 7879 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 7880 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
7881 CORE_ADDR highpc = ((CORE_ADDR) 0);
7882 struct attribute *attr;
e1024ff1 7883 char *name = NULL;
c906108c
SS
7884 char *comp_dir = NULL;
7885 struct die_info *child_die;
7886 bfd *abfd = objfile->obfd;
e142c38c 7887 CORE_ADDR baseaddr;
6e70227d 7888
e142c38c 7889 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 7890
fae299cd 7891 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
7892
7893 /* If we didn't find a lowpc, set it to highpc to avoid complaints
7894 from finish_block. */
2acceee2 7895 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
7896 lowpc = highpc;
7897 lowpc += baseaddr;
7898 highpc += baseaddr;
7899
9291a0cd 7900 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 7901
95554aad 7902 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 7903
f4b8a18d
KW
7904 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
7905 standardised yet. As a workaround for the language detection we fall
7906 back to the DW_AT_producer string. */
7907 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
7908 cu->language = language_opencl;
7909
3019eac3
DE
7910 /* Similar hack for Go. */
7911 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
7912 set_cu_language (DW_LANG_Go, cu);
7913
f4dc4d17 7914 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
7915
7916 /* Decode line number information if present. We do this before
7917 processing child DIEs, so that the line header table is available
7918 for DW_AT_decl_file. */
f4dc4d17 7919 handle_DW_AT_stmt_list (die, cu, comp_dir);
3019eac3
DE
7920
7921 /* Process all dies in compilation unit. */
7922 if (die->child != NULL)
7923 {
7924 child_die = die->child;
7925 while (child_die && child_die->tag)
7926 {
7927 process_die (child_die, cu);
7928 child_die = sibling_die (child_die);
7929 }
7930 }
7931
7932 /* Decode macro information, if present. Dwarf 2 macro information
7933 refers to information in the line number info statement program
7934 header, so we can only read it if we've read the header
7935 successfully. */
7936 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
7937 if (attr && cu->line_header)
7938 {
7939 if (dwarf2_attr (die, DW_AT_macro_info, cu))
7940 complaint (&symfile_complaints,
7941 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
7942
09262596 7943 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
3019eac3
DE
7944 }
7945 else
7946 {
7947 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
7948 if (attr && cu->line_header)
7949 {
7950 unsigned int macro_offset = DW_UNSND (attr);
7951
09262596 7952 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
3019eac3
DE
7953 }
7954 }
7955
7956 do_cleanups (back_to);
7957}
7958
f4dc4d17
DE
7959/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
7960 Create the set of symtabs used by this TU, or if this TU is sharing
7961 symtabs with another TU and the symtabs have already been created
7962 then restore those symtabs in the line header.
7963 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
7964
7965static void
f4dc4d17 7966setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 7967{
f4dc4d17
DE
7968 struct objfile *objfile = dwarf2_per_objfile->objfile;
7969 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7970 struct type_unit_group *tu_group;
7971 int first_time;
7972 struct line_header *lh;
3019eac3 7973 struct attribute *attr;
f4dc4d17 7974 unsigned int i, line_offset;
3019eac3 7975
f4dc4d17 7976 gdb_assert (per_cu->is_debug_types);
3019eac3 7977
f4dc4d17 7978 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 7979
f4dc4d17
DE
7980 /* If we're using .gdb_index (includes -readnow) then
7981 per_cu->s.type_unit_group may not have been set up yet. */
7982 if (per_cu->s.type_unit_group == NULL)
094b34ac 7983 per_cu->s.type_unit_group = get_type_unit_group (cu, attr);
f4dc4d17
DE
7984 tu_group = per_cu->s.type_unit_group;
7985
7986 /* If we've already processed this stmt_list there's no real need to
7987 do it again, we could fake it and just recreate the part we need
7988 (file name,index -> symtab mapping). If data shows this optimization
7989 is useful we can do it then. */
7990 first_time = tu_group->primary_symtab == NULL;
7991
7992 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
7993 debug info. */
7994 lh = NULL;
7995 if (attr != NULL)
3019eac3 7996 {
f4dc4d17
DE
7997 line_offset = DW_UNSND (attr);
7998 lh = dwarf_decode_line_header (line_offset, cu);
7999 }
8000 if (lh == NULL)
8001 {
8002 if (first_time)
8003 dwarf2_start_symtab (cu, "", NULL, 0);
8004 else
8005 {
8006 gdb_assert (tu_group->symtabs == NULL);
8007 restart_symtab (0);
8008 }
8009 /* Note: The primary symtab will get allocated at the end. */
8010 return;
3019eac3
DE
8011 }
8012
f4dc4d17
DE
8013 cu->line_header = lh;
8014 make_cleanup (free_cu_line_header, cu);
3019eac3 8015
f4dc4d17
DE
8016 if (first_time)
8017 {
8018 dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 8019
f4dc4d17
DE
8020 tu_group->num_symtabs = lh->num_file_names;
8021 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 8022
f4dc4d17
DE
8023 for (i = 0; i < lh->num_file_names; ++i)
8024 {
8025 char *dir = NULL;
8026 struct file_entry *fe = &lh->file_names[i];
3019eac3 8027
f4dc4d17
DE
8028 if (fe->dir_index)
8029 dir = lh->include_dirs[fe->dir_index - 1];
8030 dwarf2_start_subfile (fe->name, dir, NULL);
3019eac3 8031
f4dc4d17
DE
8032 /* Note: We don't have to watch for the main subfile here, type units
8033 don't have DW_AT_name. */
3019eac3 8034
f4dc4d17
DE
8035 if (current_subfile->symtab == NULL)
8036 {
8037 /* NOTE: start_subfile will recognize when it's been passed
8038 a file it has already seen. So we can't assume there's a
8039 simple mapping from lh->file_names to subfiles,
8040 lh->file_names may contain dups. */
8041 current_subfile->symtab = allocate_symtab (current_subfile->name,
8042 objfile);
8043 }
8044
8045 fe->symtab = current_subfile->symtab;
8046 tu_group->symtabs[i] = fe->symtab;
8047 }
8048 }
8049 else
3019eac3 8050 {
f4dc4d17
DE
8051 restart_symtab (0);
8052
8053 for (i = 0; i < lh->num_file_names; ++i)
8054 {
8055 struct file_entry *fe = &lh->file_names[i];
8056
8057 fe->symtab = tu_group->symtabs[i];
8058 }
3019eac3
DE
8059 }
8060
f4dc4d17
DE
8061 /* The main symtab is allocated last. Type units don't have DW_AT_name
8062 so they don't have a "real" (so to speak) symtab anyway.
8063 There is later code that will assign the main symtab to all symbols
8064 that don't have one. We need to handle the case of a symbol with a
8065 missing symtab (DW_AT_decl_file) anyway. */
8066}
3019eac3 8067
f4dc4d17
DE
8068/* Process DW_TAG_type_unit.
8069 For TUs we want to skip the first top level sibling if it's not the
8070 actual type being defined by this TU. In this case the first top
8071 level sibling is there to provide context only. */
3019eac3 8072
f4dc4d17
DE
8073static void
8074read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
8075{
8076 struct die_info *child_die;
3019eac3 8077
f4dc4d17
DE
8078 prepare_one_comp_unit (cu, die, language_minimal);
8079
8080 /* Initialize (or reinitialize) the machinery for building symtabs.
8081 We do this before processing child DIEs, so that the line header table
8082 is available for DW_AT_decl_file. */
8083 setup_type_unit_groups (die, cu);
8084
8085 if (die->child != NULL)
8086 {
8087 child_die = die->child;
8088 while (child_die && child_die->tag)
8089 {
8090 process_die (child_die, cu);
8091 child_die = sibling_die (child_die);
8092 }
8093 }
3019eac3
DE
8094}
8095\f
80626a55
DE
8096/* DWO/DWP files.
8097
8098 http://gcc.gnu.org/wiki/DebugFission
8099 http://gcc.gnu.org/wiki/DebugFissionDWP
8100
8101 To simplify handling of both DWO files ("object" files with the DWARF info)
8102 and DWP files (a file with the DWOs packaged up into one file), we treat
8103 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
8104
8105static hashval_t
8106hash_dwo_file (const void *item)
8107{
8108 const struct dwo_file *dwo_file = item;
8109
80626a55 8110 return htab_hash_string (dwo_file->name);
3019eac3
DE
8111}
8112
8113static int
8114eq_dwo_file (const void *item_lhs, const void *item_rhs)
8115{
8116 const struct dwo_file *lhs = item_lhs;
8117 const struct dwo_file *rhs = item_rhs;
8118
80626a55 8119 return strcmp (lhs->name, rhs->name) == 0;
3019eac3
DE
8120}
8121
8122/* Allocate a hash table for DWO files. */
8123
8124static htab_t
8125allocate_dwo_file_hash_table (void)
8126{
8127 struct objfile *objfile = dwarf2_per_objfile->objfile;
8128
8129 return htab_create_alloc_ex (41,
8130 hash_dwo_file,
8131 eq_dwo_file,
8132 NULL,
8133 &objfile->objfile_obstack,
8134 hashtab_obstack_allocate,
8135 dummy_obstack_deallocate);
8136}
8137
80626a55
DE
8138/* Lookup DWO file DWO_NAME. */
8139
8140static void **
8141lookup_dwo_file_slot (const char *dwo_name)
8142{
8143 struct dwo_file find_entry;
8144 void **slot;
8145
8146 if (dwarf2_per_objfile->dwo_files == NULL)
8147 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
8148
8149 memset (&find_entry, 0, sizeof (find_entry));
8150 find_entry.name = dwo_name;
8151 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
8152
8153 return slot;
8154}
8155
3019eac3
DE
8156static hashval_t
8157hash_dwo_unit (const void *item)
8158{
8159 const struct dwo_unit *dwo_unit = item;
8160
8161 /* This drops the top 32 bits of the id, but is ok for a hash. */
8162 return dwo_unit->signature;
8163}
8164
8165static int
8166eq_dwo_unit (const void *item_lhs, const void *item_rhs)
8167{
8168 const struct dwo_unit *lhs = item_lhs;
8169 const struct dwo_unit *rhs = item_rhs;
8170
8171 /* The signature is assumed to be unique within the DWO file.
8172 So while object file CU dwo_id's always have the value zero,
8173 that's OK, assuming each object file DWO file has only one CU,
8174 and that's the rule for now. */
8175 return lhs->signature == rhs->signature;
8176}
8177
8178/* Allocate a hash table for DWO CUs,TUs.
8179 There is one of these tables for each of CUs,TUs for each DWO file. */
8180
8181static htab_t
8182allocate_dwo_unit_table (struct objfile *objfile)
8183{
8184 /* Start out with a pretty small number.
8185 Generally DWO files contain only one CU and maybe some TUs. */
8186 return htab_create_alloc_ex (3,
8187 hash_dwo_unit,
8188 eq_dwo_unit,
8189 NULL,
8190 &objfile->objfile_obstack,
8191 hashtab_obstack_allocate,
8192 dummy_obstack_deallocate);
8193}
8194
80626a55 8195/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3
DE
8196
8197struct create_dwo_info_table_data
8198{
8199 struct dwo_file *dwo_file;
8200 htab_t cu_htab;
8201};
8202
80626a55 8203/* die_reader_func for create_dwo_debug_info_hash_table. */
3019eac3
DE
8204
8205static void
80626a55
DE
8206create_dwo_debug_info_hash_table_reader (const struct die_reader_specs *reader,
8207 gdb_byte *info_ptr,
8208 struct die_info *comp_unit_die,
8209 int has_children,
8210 void *datap)
3019eac3
DE
8211{
8212 struct dwarf2_cu *cu = reader->cu;
8213 struct objfile *objfile = dwarf2_per_objfile->objfile;
8214 sect_offset offset = cu->per_cu->offset;
8215 struct dwarf2_section_info *section = cu->per_cu->info_or_types_section;
8216 struct create_dwo_info_table_data *data = datap;
8217 struct dwo_file *dwo_file = data->dwo_file;
8218 htab_t cu_htab = data->cu_htab;
8219 void **slot;
8220 struct attribute *attr;
8221 struct dwo_unit *dwo_unit;
8222
8223 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
8224 if (attr == NULL)
8225 {
8226 error (_("Dwarf Error: debug entry at offset 0x%x is missing"
8227 " its dwo_id [in module %s]"),
80626a55 8228 offset.sect_off, dwo_file->name);
3019eac3
DE
8229 return;
8230 }
8231
8232 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8233 dwo_unit->dwo_file = dwo_file;
8234 dwo_unit->signature = DW_UNSND (attr);
8235 dwo_unit->info_or_types_section = section;
8236 dwo_unit->offset = offset;
8237 dwo_unit->length = cu->per_cu->length;
8238
8239 slot = htab_find_slot (cu_htab, dwo_unit, INSERT);
8240 gdb_assert (slot != NULL);
8241 if (*slot != NULL)
8242 {
8243 const struct dwo_unit *dup_dwo_unit = *slot;
8244
8245 complaint (&symfile_complaints,
8246 _("debug entry at offset 0x%x is duplicate to the entry at"
8247 " offset 0x%x, dwo_id 0x%s [in module %s]"),
8248 offset.sect_off, dup_dwo_unit->offset.sect_off,
8249 phex (dwo_unit->signature, sizeof (dwo_unit->signature)),
80626a55 8250 dwo_file->name);
3019eac3
DE
8251 }
8252 else
8253 *slot = dwo_unit;
8254
09406207 8255 if (dwarf2_read_debug)
3019eac3
DE
8256 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id 0x%s\n",
8257 offset.sect_off,
8258 phex (dwo_unit->signature,
8259 sizeof (dwo_unit->signature)));
8260}
8261
80626a55
DE
8262/* Create a hash table to map DWO IDs to their CU entry in
8263 .debug_info.dwo in DWO_FILE.
8264 Note: This function processes DWO files only, not DWP files. */
3019eac3
DE
8265
8266static htab_t
80626a55 8267create_dwo_debug_info_hash_table (struct dwo_file *dwo_file)
3019eac3
DE
8268{
8269 struct objfile *objfile = dwarf2_per_objfile->objfile;
8270 struct dwarf2_section_info *section = &dwo_file->sections.info;
8271 bfd *abfd;
8272 htab_t cu_htab;
8273 gdb_byte *info_ptr, *end_ptr;
8274 struct create_dwo_info_table_data create_dwo_info_table_data;
8275
8276 dwarf2_read_section (objfile, section);
8277 info_ptr = section->buffer;
8278
8279 if (info_ptr == NULL)
8280 return NULL;
8281
8282 /* We can't set abfd until now because the section may be empty or
8283 not present, in which case section->asection will be NULL. */
8284 abfd = section->asection->owner;
8285
09406207 8286 if (dwarf2_read_debug)
3019eac3
DE
8287 fprintf_unfiltered (gdb_stdlog, "Reading .debug_info.dwo for %s:\n",
8288 bfd_get_filename (abfd));
8289
8290 cu_htab = allocate_dwo_unit_table (objfile);
8291
8292 create_dwo_info_table_data.dwo_file = dwo_file;
8293 create_dwo_info_table_data.cu_htab = cu_htab;
8294
8295 end_ptr = info_ptr + section->size;
8296 while (info_ptr < end_ptr)
8297 {
8298 struct dwarf2_per_cu_data per_cu;
8299
8300 memset (&per_cu, 0, sizeof (per_cu));
8301 per_cu.objfile = objfile;
8302 per_cu.is_debug_types = 0;
8303 per_cu.offset.sect_off = info_ptr - section->buffer;
8304 per_cu.info_or_types_section = section;
8305
8306 init_cutu_and_read_dies_no_follow (&per_cu,
8307 &dwo_file->sections.abbrev,
8308 dwo_file,
80626a55 8309 create_dwo_debug_info_hash_table_reader,
3019eac3
DE
8310 &create_dwo_info_table_data);
8311
8312 info_ptr += per_cu.length;
8313 }
8314
8315 return cu_htab;
8316}
8317
80626a55
DE
8318/* DWP file .debug_{cu,tu}_index section format:
8319 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
8320
8321 Both index sections have the same format, and serve to map a 64-bit
8322 signature to a set of section numbers. Each section begins with a header,
8323 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
8324 indexes, and a pool of 32-bit section numbers. The index sections will be
8325 aligned at 8-byte boundaries in the file.
8326
8327 The index section header contains two unsigned 32-bit values (using the
8328 byte order of the application binary):
8329
8330 N, the number of compilation units or type units in the index
8331 M, the number of slots in the hash table
8332
8333 (We assume that N and M will not exceed 2^32 - 1.)
8334
8335 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
8336
8337 The hash table begins at offset 8 in the section, and consists of an array
8338 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
8339 order of the application binary). Unused slots in the hash table are 0.
8340 (We rely on the extreme unlikeliness of a signature being exactly 0.)
8341
8342 The parallel table begins immediately after the hash table
8343 (at offset 8 + 8 * M from the beginning of the section), and consists of an
8344 array of 32-bit indexes (using the byte order of the application binary),
8345 corresponding 1-1 with slots in the hash table. Each entry in the parallel
8346 table contains a 32-bit index into the pool of section numbers. For unused
8347 hash table slots, the corresponding entry in the parallel table will be 0.
8348
8349 Given a 64-bit compilation unit signature or a type signature S, an entry
8350 in the hash table is located as follows:
8351
8352 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
8353 the low-order k bits all set to 1.
8354
8355 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
8356
8357 3) If the hash table entry at index H matches the signature, use that
8358 entry. If the hash table entry at index H is unused (all zeroes),
8359 terminate the search: the signature is not present in the table.
8360
8361 4) Let H = (H + H') modulo M. Repeat at Step 3.
8362
8363 Because M > N and H' and M are relatively prime, the search is guaranteed
8364 to stop at an unused slot or find the match.
8365
8366 The pool of section numbers begins immediately following the hash table
8367 (at offset 8 + 12 * M from the beginning of the section). The pool of
8368 section numbers consists of an array of 32-bit words (using the byte order
8369 of the application binary). Each item in the array is indexed starting
8370 from 0. The hash table entry provides the index of the first section
8371 number in the set. Additional section numbers in the set follow, and the
8372 set is terminated by a 0 entry (section number 0 is not used in ELF).
8373
8374 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
8375 section must be the first entry in the set, and the .debug_abbrev.dwo must
8376 be the second entry. Other members of the set may follow in any order. */
8377
8378/* Create a hash table to map DWO IDs to their CU/TU entry in
8379 .debug_{info,types}.dwo in DWP_FILE.
8380 Returns NULL if there isn't one.
8381 Note: This function processes DWP files only, not DWO files. */
8382
8383static struct dwp_hash_table *
8384create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
8385{
8386 struct objfile *objfile = dwarf2_per_objfile->objfile;
8387 bfd *dbfd = dwp_file->dbfd;
8388 char *index_ptr, *index_end;
8389 struct dwarf2_section_info *index;
8390 uint32_t version, nr_units, nr_slots;
8391 struct dwp_hash_table *htab;
8392
8393 if (is_debug_types)
8394 index = &dwp_file->sections.tu_index;
8395 else
8396 index = &dwp_file->sections.cu_index;
8397
8398 if (dwarf2_section_empty_p (index))
8399 return NULL;
8400 dwarf2_read_section (objfile, index);
8401
8402 index_ptr = index->buffer;
8403 index_end = index_ptr + index->size;
8404
8405 version = read_4_bytes (dbfd, index_ptr);
8406 index_ptr += 8; /* Skip the unused word. */
8407 nr_units = read_4_bytes (dbfd, index_ptr);
8408 index_ptr += 4;
8409 nr_slots = read_4_bytes (dbfd, index_ptr);
8410 index_ptr += 4;
8411
8412 if (version != 1)
8413 {
8414 error (_("Dwarf Error: unsupported DWP file version (%u)"
8415 " [in module %s]"),
8416 version, dwp_file->name);
8417 }
8418 if (nr_slots != (nr_slots & -nr_slots))
8419 {
8420 error (_("Dwarf Error: number of slots in DWP hash table (%u)"
8421 " is not power of 2 [in module %s]"),
8422 nr_slots, dwp_file->name);
8423 }
8424
8425 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
8426 htab->nr_units = nr_units;
8427 htab->nr_slots = nr_slots;
8428 htab->hash_table = index_ptr;
8429 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
8430 htab->section_pool = htab->unit_table + sizeof (uint32_t) * nr_slots;
8431
8432 return htab;
8433}
8434
8435/* Update SECTIONS with the data from SECTP.
8436
8437 This function is like the other "locate" section routines that are
8438 passed to bfd_map_over_sections, but in this context the sections to
8439 read comes from the DWP hash table, not the full ELF section table.
8440
8441 The result is non-zero for success, or zero if an error was found. */
8442
8443static int
8444locate_virtual_dwo_sections (asection *sectp,
8445 struct virtual_dwo_sections *sections)
8446{
8447 const struct dwop_section_names *names = &dwop_section_names;
8448
8449 if (section_is_p (sectp->name, &names->abbrev_dwo))
8450 {
8451 /* There can be only one. */
8452 if (sections->abbrev.asection != NULL)
8453 return 0;
8454 sections->abbrev.asection = sectp;
8455 sections->abbrev.size = bfd_get_section_size (sectp);
8456 }
8457 else if (section_is_p (sectp->name, &names->info_dwo)
8458 || section_is_p (sectp->name, &names->types_dwo))
8459 {
8460 /* There can be only one. */
8461 if (sections->info_or_types.asection != NULL)
8462 return 0;
8463 sections->info_or_types.asection = sectp;
8464 sections->info_or_types.size = bfd_get_section_size (sectp);
8465 }
8466 else if (section_is_p (sectp->name, &names->line_dwo))
8467 {
8468 /* There can be only one. */
8469 if (sections->line.asection != NULL)
8470 return 0;
8471 sections->line.asection = sectp;
8472 sections->line.size = bfd_get_section_size (sectp);
8473 }
8474 else if (section_is_p (sectp->name, &names->loc_dwo))
8475 {
8476 /* There can be only one. */
8477 if (sections->loc.asection != NULL)
8478 return 0;
8479 sections->loc.asection = sectp;
8480 sections->loc.size = bfd_get_section_size (sectp);
8481 }
8482 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8483 {
8484 /* There can be only one. */
8485 if (sections->macinfo.asection != NULL)
8486 return 0;
8487 sections->macinfo.asection = sectp;
8488 sections->macinfo.size = bfd_get_section_size (sectp);
8489 }
8490 else if (section_is_p (sectp->name, &names->macro_dwo))
8491 {
8492 /* There can be only one. */
8493 if (sections->macro.asection != NULL)
8494 return 0;
8495 sections->macro.asection = sectp;
8496 sections->macro.size = bfd_get_section_size (sectp);
8497 }
8498 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8499 {
8500 /* There can be only one. */
8501 if (sections->str_offsets.asection != NULL)
8502 return 0;
8503 sections->str_offsets.asection = sectp;
8504 sections->str_offsets.size = bfd_get_section_size (sectp);
8505 }
8506 else
8507 {
8508 /* No other kind of section is valid. */
8509 return 0;
8510 }
8511
8512 return 1;
8513}
8514
8515/* Create a dwo_unit object for the DWO with signature SIGNATURE.
8516 HTAB is the hash table from the DWP file.
8517 SECTION_INDEX is the index of the DWO in HTAB. */
8518
8519static struct dwo_unit *
8520create_dwo_in_dwp (struct dwp_file *dwp_file,
8521 const struct dwp_hash_table *htab,
8522 uint32_t section_index,
8523 ULONGEST signature, int is_debug_types)
8524{
8525 struct objfile *objfile = dwarf2_per_objfile->objfile;
8526 bfd *dbfd = dwp_file->dbfd;
8527 const char *kind = is_debug_types ? "TU" : "CU";
8528 struct dwo_file *dwo_file;
8529 struct dwo_unit *dwo_unit;
8530 struct virtual_dwo_sections sections;
8531 void **dwo_file_slot;
8532 char *virtual_dwo_name;
8533 struct dwarf2_section_info *cutu;
8534 struct cleanup *cleanups;
8535 int i;
8536
8537 if (dwarf2_read_debug)
8538 {
8539 fprintf_unfiltered (gdb_stdlog, "Reading %s %u/0x%s in DWP file: %s\n",
8540 kind,
8541 section_index, phex (signature, sizeof (signature)),
8542 dwp_file->name);
8543 }
8544
8545 /* Fetch the sections of this DWO.
8546 Put a limit on the number of sections we look for so that bad data
8547 doesn't cause us to loop forever. */
8548
8549#define MAX_NR_DWO_SECTIONS \
8550 (1 /* .debug_info or .debug_types */ \
8551 + 1 /* .debug_abbrev */ \
8552 + 1 /* .debug_line */ \
8553 + 1 /* .debug_loc */ \
8554 + 1 /* .debug_str_offsets */ \
8555 + 1 /* .debug_macro */ \
8556 + 1 /* .debug_macinfo */ \
8557 + 1 /* trailing zero */)
8558
8559 memset (&sections, 0, sizeof (sections));
8560 cleanups = make_cleanup (null_cleanup, 0);
8561
8562 for (i = 0; i < MAX_NR_DWO_SECTIONS; ++i)
8563 {
8564 asection *sectp;
8565 uint32_t section_nr =
8566 read_4_bytes (dbfd,
8567 htab->section_pool
8568 + (section_index + i) * sizeof (uint32_t));
8569
8570 if (section_nr == 0)
8571 break;
8572 if (section_nr >= dwp_file->num_sections)
8573 {
8574 error (_("Dwarf Error: bad DWP hash table, section number too large"
8575 " [in module %s]"),
8576 dwp_file->name);
8577 }
8578
8579 sectp = dwp_file->elf_sections[section_nr];
8580 if (! locate_virtual_dwo_sections (sectp, &sections))
8581 {
8582 error (_("Dwarf Error: bad DWP hash table, invalid section found"
8583 " [in module %s]"),
8584 dwp_file->name);
8585 }
8586 }
8587
8588 if (i < 2
8589 || sections.info_or_types.asection == NULL
8590 || sections.abbrev.asection == NULL)
8591 {
8592 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
8593 " [in module %s]"),
8594 dwp_file->name);
8595 }
8596 if (i == MAX_NR_DWO_SECTIONS)
8597 {
8598 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
8599 " [in module %s]"),
8600 dwp_file->name);
8601 }
8602
8603 /* It's easier for the rest of the code if we fake a struct dwo_file and
8604 have dwo_unit "live" in that. At least for now.
8605
8606 The DWP file can be made up of a random collection of CUs and TUs.
8607 However, for each CU + set of TUs that came from the same original
8608 DWO file, we want combine them back into a virtual DWO file to save space
8609 (fewer struct dwo_file objects to allocated). Remember that for really
8610 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
8611
8612 xasprintf (&virtual_dwo_name, "virtual-dwo/%d-%d-%d-%d",
8613 sections.abbrev.asection ? sections.abbrev.asection->id : 0,
8614 sections.line.asection ? sections.line.asection->id : 0,
8615 sections.loc.asection ? sections.loc.asection->id : 0,
8616 (sections.str_offsets.asection
8617 ? sections.str_offsets.asection->id
8618 : 0));
8619 make_cleanup (xfree, virtual_dwo_name);
8620 /* Can we use an existing virtual DWO file? */
8621 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name);
8622 /* Create one if necessary. */
8623 if (*dwo_file_slot == NULL)
8624 {
8625 if (dwarf2_read_debug)
8626 {
8627 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
8628 virtual_dwo_name);
8629 }
8630 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8631 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8632 virtual_dwo_name,
8633 strlen (virtual_dwo_name));
8634 dwo_file->sections.abbrev = sections.abbrev;
8635 dwo_file->sections.line = sections.line;
8636 dwo_file->sections.loc = sections.loc;
8637 dwo_file->sections.macinfo = sections.macinfo;
8638 dwo_file->sections.macro = sections.macro;
8639 dwo_file->sections.str_offsets = sections.str_offsets;
8640 /* The "str" section is global to the entire DWP file. */
8641 dwo_file->sections.str = dwp_file->sections.str;
8642 /* The info or types section is assigned later to dwo_unit,
8643 there's no need to record it in dwo_file.
8644 Also, we can't simply record type sections in dwo_file because
8645 we record a pointer into the vector in dwo_unit. As we collect more
8646 types we'll grow the vector and eventually have to reallocate space
8647 for it, invalidating all the pointers into the current copy. */
8648 *dwo_file_slot = dwo_file;
8649 }
8650 else
8651 {
8652 if (dwarf2_read_debug)
8653 {
8654 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
8655 virtual_dwo_name);
8656 }
8657 dwo_file = *dwo_file_slot;
8658 }
8659 do_cleanups (cleanups);
8660
8661 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
8662 dwo_unit->dwo_file = dwo_file;
8663 dwo_unit->signature = signature;
8664 dwo_unit->info_or_types_section =
8665 obstack_alloc (&objfile->objfile_obstack,
8666 sizeof (struct dwarf2_section_info));
8667 *dwo_unit->info_or_types_section = sections.info_or_types;
8668 /* offset, length, type_offset_in_tu are set later. */
8669
8670 return dwo_unit;
8671}
8672
8673/* Lookup the DWO with SIGNATURE in DWP_FILE. */
8674
8675static struct dwo_unit *
8676lookup_dwo_in_dwp (struct dwp_file *dwp_file,
8677 const struct dwp_hash_table *htab,
8678 ULONGEST signature, int is_debug_types)
8679{
8680 bfd *dbfd = dwp_file->dbfd;
8681 uint32_t mask = htab->nr_slots - 1;
8682 uint32_t hash = signature & mask;
8683 uint32_t hash2 = ((signature >> 32) & mask) | 1;
8684 unsigned int i;
8685 void **slot;
8686 struct dwo_unit find_dwo_cu, *dwo_cu;
8687
8688 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
8689 find_dwo_cu.signature = signature;
8690 slot = htab_find_slot (dwp_file->loaded_cutus, &find_dwo_cu, INSERT);
8691
8692 if (*slot != NULL)
8693 return *slot;
8694
8695 /* Use a for loop so that we don't loop forever on bad debug info. */
8696 for (i = 0; i < htab->nr_slots; ++i)
8697 {
8698 ULONGEST signature_in_table;
8699
8700 signature_in_table =
8701 read_8_bytes (dbfd, htab->hash_table + hash * sizeof (uint64_t));
8702 if (signature_in_table == signature)
8703 {
8704 uint32_t section_index =
8705 read_4_bytes (dbfd, htab->unit_table + hash * sizeof (uint32_t));
8706
8707 *slot = create_dwo_in_dwp (dwp_file, htab, section_index,
8708 signature, is_debug_types);
8709 return *slot;
8710 }
8711 if (signature_in_table == 0)
8712 return NULL;
8713 hash = (hash + hash2) & mask;
8714 }
8715
8716 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
8717 " [in module %s]"),
8718 dwp_file->name);
8719}
8720
8721/* Subroutine of open_dwop_file to simplify it.
3019eac3
DE
8722 Open the file specified by FILE_NAME and hand it off to BFD for
8723 preliminary analysis. Return a newly initialized bfd *, which
8724 includes a canonicalized copy of FILE_NAME.
80626a55 8725 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
3019eac3
DE
8726 In case of trouble, return NULL.
8727 NOTE: This function is derived from symfile_bfd_open. */
8728
8729static bfd *
80626a55 8730try_open_dwop_file (const char *file_name, int is_dwp)
3019eac3
DE
8731{
8732 bfd *sym_bfd;
80626a55 8733 int desc, flags;
3019eac3 8734 char *absolute_name;
3019eac3 8735
80626a55
DE
8736 flags = OPF_TRY_CWD_FIRST;
8737 if (is_dwp)
8738 flags |= OPF_SEARCH_IN_PATH;
8739 desc = openp (debug_file_directory, flags, file_name,
3019eac3
DE
8740 O_RDONLY | O_BINARY, &absolute_name);
8741 if (desc < 0)
8742 return NULL;
8743
bb397797 8744 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
3019eac3
DE
8745 if (!sym_bfd)
8746 {
3019eac3
DE
8747 xfree (absolute_name);
8748 return NULL;
8749 }
a4453b7e 8750 xfree (absolute_name);
3019eac3
DE
8751 bfd_set_cacheable (sym_bfd, 1);
8752
8753 if (!bfd_check_format (sym_bfd, bfd_object))
8754 {
cbb099e8 8755 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
8756 return NULL;
8757 }
8758
3019eac3
DE
8759 return sym_bfd;
8760}
8761
80626a55 8762/* Try to open DWO/DWP file FILE_NAME.
3019eac3 8763 COMP_DIR is the DW_AT_comp_dir attribute.
80626a55 8764 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
3019eac3
DE
8765 The result is the bfd handle of the file.
8766 If there is a problem finding or opening the file, return NULL.
8767 Upon success, the canonicalized path of the file is stored in the bfd,
8768 same as symfile_bfd_open. */
8769
8770static bfd *
80626a55 8771open_dwop_file (const char *file_name, const char *comp_dir, int is_dwp)
3019eac3
DE
8772{
8773 bfd *abfd;
3019eac3 8774
80626a55
DE
8775 if (IS_ABSOLUTE_PATH (file_name))
8776 return try_open_dwop_file (file_name, is_dwp);
3019eac3
DE
8777
8778 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
8779
8780 if (comp_dir != NULL)
8781 {
80626a55 8782 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
3019eac3
DE
8783
8784 /* NOTE: If comp_dir is a relative path, this will also try the
8785 search path, which seems useful. */
80626a55 8786 abfd = try_open_dwop_file (path_to_try, is_dwp);
3019eac3
DE
8787 xfree (path_to_try);
8788 if (abfd != NULL)
8789 return abfd;
8790 }
8791
8792 /* That didn't work, try debug-file-directory, which, despite its name,
8793 is a list of paths. */
8794
8795 if (*debug_file_directory == '\0')
8796 return NULL;
8797
80626a55 8798 return try_open_dwop_file (file_name, is_dwp);
3019eac3
DE
8799}
8800
80626a55
DE
8801/* This function is mapped across the sections and remembers the offset and
8802 size of each of the DWO debugging sections we are interested in. */
8803
8804static void
8805dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
8806{
8807 struct dwo_sections *dwo_sections = dwo_sections_ptr;
8808 const struct dwop_section_names *names = &dwop_section_names;
8809
8810 if (section_is_p (sectp->name, &names->abbrev_dwo))
8811 {
8812 dwo_sections->abbrev.asection = sectp;
8813 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
8814 }
8815 else if (section_is_p (sectp->name, &names->info_dwo))
8816 {
8817 dwo_sections->info.asection = sectp;
8818 dwo_sections->info.size = bfd_get_section_size (sectp);
8819 }
8820 else if (section_is_p (sectp->name, &names->line_dwo))
8821 {
8822 dwo_sections->line.asection = sectp;
8823 dwo_sections->line.size = bfd_get_section_size (sectp);
8824 }
8825 else if (section_is_p (sectp->name, &names->loc_dwo))
8826 {
8827 dwo_sections->loc.asection = sectp;
8828 dwo_sections->loc.size = bfd_get_section_size (sectp);
8829 }
8830 else if (section_is_p (sectp->name, &names->macinfo_dwo))
8831 {
8832 dwo_sections->macinfo.asection = sectp;
8833 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
8834 }
8835 else if (section_is_p (sectp->name, &names->macro_dwo))
8836 {
8837 dwo_sections->macro.asection = sectp;
8838 dwo_sections->macro.size = bfd_get_section_size (sectp);
8839 }
8840 else if (section_is_p (sectp->name, &names->str_dwo))
8841 {
8842 dwo_sections->str.asection = sectp;
8843 dwo_sections->str.size = bfd_get_section_size (sectp);
8844 }
8845 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
8846 {
8847 dwo_sections->str_offsets.asection = sectp;
8848 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
8849 }
8850 else if (section_is_p (sectp->name, &names->types_dwo))
8851 {
8852 struct dwarf2_section_info type_section;
8853
8854 memset (&type_section, 0, sizeof (type_section));
8855 type_section.asection = sectp;
8856 type_section.size = bfd_get_section_size (sectp);
8857 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
8858 &type_section);
8859 }
8860}
8861
8862/* Initialize the use of the DWO file specified by DWO_NAME.
8863 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
8864
8865static struct dwo_file *
80626a55 8866open_and_init_dwo_file (const char *dwo_name, const char *comp_dir)
3019eac3
DE
8867{
8868 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
8869 struct dwo_file *dwo_file;
8870 bfd *dbfd;
3019eac3
DE
8871 struct cleanup *cleanups;
8872
80626a55
DE
8873 dbfd = open_dwop_file (dwo_name, comp_dir, 0);
8874 if (dbfd == NULL)
8875 {
8876 if (dwarf2_read_debug)
8877 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
8878 return NULL;
8879 }
8880 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
8881 dwo_file->name = obstack_copy0 (&objfile->objfile_obstack,
8882 dwo_name, strlen (dwo_name));
8883 dwo_file->dbfd = dbfd;
3019eac3
DE
8884
8885 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
8886
80626a55 8887 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 8888
80626a55 8889 dwo_file->cus = create_dwo_debug_info_hash_table (dwo_file);
3019eac3
DE
8890
8891 dwo_file->tus = create_debug_types_hash_table (dwo_file,
8892 dwo_file->sections.types);
8893
8894 discard_cleanups (cleanups);
8895
80626a55
DE
8896 if (dwarf2_read_debug)
8897 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
8898
3019eac3
DE
8899 return dwo_file;
8900}
8901
80626a55
DE
8902/* This function is mapped across the sections and remembers the offset and
8903 size of each of the DWP debugging sections we are interested in. */
3019eac3 8904
80626a55
DE
8905static void
8906dwarf2_locate_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
3019eac3 8907{
80626a55
DE
8908 struct dwp_file *dwp_file = dwp_file_ptr;
8909 const struct dwop_section_names *names = &dwop_section_names;
8910 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 8911
80626a55
DE
8912 /* Record the ELF section number for later lookup: this is what the
8913 .debug_cu_index,.debug_tu_index tables use. */
8914 gdb_assert (elf_section_nr < dwp_file->num_sections);
8915 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 8916
80626a55
DE
8917 /* Look for specific sections that we need. */
8918 if (section_is_p (sectp->name, &names->str_dwo))
8919 {
8920 dwp_file->sections.str.asection = sectp;
8921 dwp_file->sections.str.size = bfd_get_section_size (sectp);
8922 }
8923 else if (section_is_p (sectp->name, &names->cu_index))
8924 {
8925 dwp_file->sections.cu_index.asection = sectp;
8926 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
8927 }
8928 else if (section_is_p (sectp->name, &names->tu_index))
8929 {
8930 dwp_file->sections.tu_index.asection = sectp;
8931 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
8932 }
8933}
3019eac3 8934
80626a55 8935/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 8936
80626a55
DE
8937static hashval_t
8938hash_dwp_loaded_cutus (const void *item)
8939{
8940 const struct dwo_unit *dwo_unit = item;
3019eac3 8941
80626a55
DE
8942 /* This drops the top 32 bits of the signature, but is ok for a hash. */
8943 return dwo_unit->signature;
3019eac3
DE
8944}
8945
80626a55 8946/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 8947
80626a55
DE
8948static int
8949eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 8950{
80626a55
DE
8951 const struct dwo_unit *dua = a;
8952 const struct dwo_unit *dub = b;
3019eac3 8953
80626a55
DE
8954 return dua->signature == dub->signature;
8955}
3019eac3 8956
80626a55 8957/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 8958
80626a55
DE
8959static htab_t
8960allocate_dwp_loaded_cutus_table (struct objfile *objfile)
8961{
8962 return htab_create_alloc_ex (3,
8963 hash_dwp_loaded_cutus,
8964 eq_dwp_loaded_cutus,
8965 NULL,
8966 &objfile->objfile_obstack,
8967 hashtab_obstack_allocate,
8968 dummy_obstack_deallocate);
8969}
3019eac3 8970
80626a55
DE
8971/* Initialize the use of the DWP file for the current objfile.
8972 By convention the name of the DWP file is ${objfile}.dwp.
8973 The result is NULL if it can't be found. */
a766d390 8974
80626a55
DE
8975static struct dwp_file *
8976open_and_init_dwp_file (const char *comp_dir)
8977{
8978 struct objfile *objfile = dwarf2_per_objfile->objfile;
8979 struct dwp_file *dwp_file;
8980 char *dwp_name;
8981 bfd *dbfd;
8982 struct cleanup *cleanups;
8983
8984 xasprintf (&dwp_name, "%s.dwp", dwarf2_per_objfile->objfile->name);
8985 cleanups = make_cleanup (xfree, dwp_name);
8986
8987 dbfd = open_dwop_file (dwp_name, comp_dir, 1);
8988 if (dbfd == NULL)
8989 {
8990 if (dwarf2_read_debug)
8991 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
8992 do_cleanups (cleanups);
8993 return NULL;
3019eac3 8994 }
80626a55
DE
8995 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
8996 dwp_file->name = obstack_copy0 (&objfile->objfile_obstack,
8997 dwp_name, strlen (dwp_name));
8998 dwp_file->dbfd = dbfd;
8999 do_cleanups (cleanups);
c906108c 9000
80626a55 9001 cleanups = make_cleanup (free_dwo_file_cleanup, dwp_file);
df8a16a1 9002
80626a55
DE
9003 /* +1: section 0 is unused */
9004 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
9005 dwp_file->elf_sections =
9006 OBSTACK_CALLOC (&objfile->objfile_obstack,
9007 dwp_file->num_sections, asection *);
9008
9009 bfd_map_over_sections (dbfd, dwarf2_locate_dwp_sections, dwp_file);
9010
9011 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
9012
9013 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
9014
9015 dwp_file->loaded_cutus = allocate_dwp_loaded_cutus_table (objfile);
9016
9017 discard_cleanups (cleanups);
9018
9019 if (dwarf2_read_debug)
9020 {
9021 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
9022 fprintf_unfiltered (gdb_stdlog,
9023 " %u CUs, %u TUs\n",
9024 dwp_file->cus ? dwp_file->cus->nr_units : 0,
9025 dwp_file->tus ? dwp_file->tus->nr_units : 0);
9026 }
9027
9028 return dwp_file;
3019eac3 9029}
c906108c 9030
80626a55
DE
9031/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
9032 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
9033 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 9034 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
9035 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
9036
9037 This is called, for example, when wanting to read a variable with a
9038 complex location. Therefore we don't want to do file i/o for every call.
9039 Therefore we don't want to look for a DWO file on every call.
9040 Therefore we first see if we've already seen SIGNATURE in a DWP file,
9041 then we check if we've already seen DWO_NAME, and only THEN do we check
9042 for a DWO file.
9043
1c658ad5 9044 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 9045 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 9046
3019eac3 9047static struct dwo_unit *
80626a55
DE
9048lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
9049 const char *dwo_name, const char *comp_dir,
9050 ULONGEST signature, int is_debug_types)
3019eac3
DE
9051{
9052 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
9053 const char *kind = is_debug_types ? "TU" : "CU";
9054 void **dwo_file_slot;
3019eac3 9055 struct dwo_file *dwo_file;
80626a55 9056 struct dwp_file *dwp_file;
cb1df416 9057
80626a55 9058 /* Have we already read SIGNATURE from a DWP file? */
cf2c3c16 9059
80626a55
DE
9060 if (! dwarf2_per_objfile->dwp_checked)
9061 {
9062 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file (comp_dir);
9063 dwarf2_per_objfile->dwp_checked = 1;
9064 }
9065 dwp_file = dwarf2_per_objfile->dwp_file;
3019eac3 9066
80626a55 9067 if (dwp_file != NULL)
cf2c3c16 9068 {
80626a55
DE
9069 const struct dwp_hash_table *dwp_htab =
9070 is_debug_types ? dwp_file->tus : dwp_file->cus;
9071
9072 if (dwp_htab != NULL)
9073 {
9074 struct dwo_unit *dwo_cutu =
9075 lookup_dwo_in_dwp (dwp_file, dwp_htab, signature, is_debug_types);
9076
9077 if (dwo_cutu != NULL)
9078 {
9079 if (dwarf2_read_debug)
9080 {
9081 fprintf_unfiltered (gdb_stdlog,
9082 "Virtual DWO %s %s found: @%s\n",
9083 kind, hex_string (signature),
9084 host_address_to_string (dwo_cutu));
9085 }
9086 return dwo_cutu;
9087 }
9088 }
9089 }
9090
9091 /* Have we already seen DWO_NAME? */
9092
9093 dwo_file_slot = lookup_dwo_file_slot (dwo_name);
9094 if (*dwo_file_slot == NULL)
9095 {
9096 /* Read in the file and build a table of the DWOs it contains. */
9097 *dwo_file_slot = open_and_init_dwo_file (dwo_name, comp_dir);
9098 }
9099 /* NOTE: This will be NULL if unable to open the file. */
9100 dwo_file = *dwo_file_slot;
9101
9102 if (dwo_file != NULL)
9103 {
9104 htab_t htab = is_debug_types ? dwo_file->tus : dwo_file->cus;
9105
9106 if (htab != NULL)
9107 {
9108 struct dwo_unit find_dwo_cutu, *dwo_cutu;
9a619af0 9109
80626a55
DE
9110 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
9111 find_dwo_cutu.signature = signature;
9112 dwo_cutu = htab_find (htab, &find_dwo_cutu);
3019eac3 9113
80626a55
DE
9114 if (dwo_cutu != NULL)
9115 {
9116 if (dwarf2_read_debug)
9117 {
9118 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
9119 kind, dwo_name, hex_string (signature),
9120 host_address_to_string (dwo_cutu));
9121 }
9122 return dwo_cutu;
9123 }
9124 }
2e276125 9125 }
9cdd5dbd 9126
80626a55
DE
9127 /* We didn't find it. This could mean a dwo_id mismatch, or
9128 someone deleted the DWO/DWP file, or the search path isn't set up
9129 correctly to find the file. */
9130
9131 if (dwarf2_read_debug)
9132 {
9133 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
9134 kind, dwo_name, hex_string (signature));
9135 }
3019eac3
DE
9136
9137 complaint (&symfile_complaints,
80626a55 9138 _("Could not find DWO CU referenced by CU at offset 0x%x"
3019eac3 9139 " [in module %s]"),
80626a55 9140 this_unit->offset.sect_off, objfile->name);
3019eac3 9141 return NULL;
5fb290d7
DJ
9142}
9143
80626a55
DE
9144/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
9145 See lookup_dwo_cutu_unit for details. */
9146
9147static struct dwo_unit *
9148lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
9149 const char *dwo_name, const char *comp_dir,
9150 ULONGEST signature)
9151{
9152 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
9153}
9154
9155/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
9156 See lookup_dwo_cutu_unit for details. */
9157
9158static struct dwo_unit *
9159lookup_dwo_type_unit (struct signatured_type *this_tu,
9160 const char *dwo_name, const char *comp_dir)
9161{
9162 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
9163}
9164
3019eac3
DE
9165/* Free all resources associated with DWO_FILE.
9166 Close the DWO file and munmap the sections.
9167 All memory should be on the objfile obstack. */
348e048f
DE
9168
9169static void
3019eac3 9170free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 9171{
3019eac3
DE
9172 int ix;
9173 struct dwarf2_section_info *section;
348e048f 9174
80626a55
DE
9175 gdb_assert (dwo_file->dbfd != objfile->obfd);
9176 gdb_bfd_unref (dwo_file->dbfd);
348e048f 9177
3019eac3
DE
9178 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
9179}
348e048f 9180
3019eac3 9181/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 9182
3019eac3
DE
9183static void
9184free_dwo_file_cleanup (void *arg)
9185{
9186 struct dwo_file *dwo_file = (struct dwo_file *) arg;
9187 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 9188
3019eac3
DE
9189 free_dwo_file (dwo_file, objfile);
9190}
348e048f 9191
3019eac3 9192/* Traversal function for free_dwo_files. */
2ab95328 9193
3019eac3
DE
9194static int
9195free_dwo_file_from_slot (void **slot, void *info)
9196{
9197 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
9198 struct objfile *objfile = (struct objfile *) info;
348e048f 9199
3019eac3 9200 free_dwo_file (dwo_file, objfile);
348e048f 9201
3019eac3
DE
9202 return 1;
9203}
348e048f 9204
3019eac3 9205/* Free all resources associated with DWO_FILES. */
348e048f 9206
3019eac3
DE
9207static void
9208free_dwo_files (htab_t dwo_files, struct objfile *objfile)
9209{
9210 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 9211}
3019eac3
DE
9212\f
9213/* Read in various DIEs. */
348e048f 9214
d389af10
JK
9215/* qsort helper for inherit_abstract_dies. */
9216
9217static int
9218unsigned_int_compar (const void *ap, const void *bp)
9219{
9220 unsigned int a = *(unsigned int *) ap;
9221 unsigned int b = *(unsigned int *) bp;
9222
9223 return (a > b) - (b > a);
9224}
9225
9226/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
9227 Inherit only the children of the DW_AT_abstract_origin DIE not being
9228 already referenced by DW_AT_abstract_origin from the children of the
9229 current DIE. */
d389af10
JK
9230
9231static void
9232inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
9233{
9234 struct die_info *child_die;
9235 unsigned die_children_count;
9236 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
9237 sect_offset *offsets;
9238 sect_offset *offsets_end, *offsetp;
d389af10
JK
9239 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
9240 struct die_info *origin_die;
9241 /* Iterator of the ORIGIN_DIE children. */
9242 struct die_info *origin_child_die;
9243 struct cleanup *cleanups;
9244 struct attribute *attr;
cd02d79d
PA
9245 struct dwarf2_cu *origin_cu;
9246 struct pending **origin_previous_list_in_scope;
d389af10
JK
9247
9248 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9249 if (!attr)
9250 return;
9251
cd02d79d
PA
9252 /* Note that following die references may follow to a die in a
9253 different cu. */
9254
9255 origin_cu = cu;
9256 origin_die = follow_die_ref (die, attr, &origin_cu);
9257
9258 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
9259 symbols in. */
9260 origin_previous_list_in_scope = origin_cu->list_in_scope;
9261 origin_cu->list_in_scope = cu->list_in_scope;
9262
edb3359d
DJ
9263 if (die->tag != origin_die->tag
9264 && !(die->tag == DW_TAG_inlined_subroutine
9265 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
9266 complaint (&symfile_complaints,
9267 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 9268 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
9269
9270 child_die = die->child;
9271 die_children_count = 0;
9272 while (child_die && child_die->tag)
9273 {
9274 child_die = sibling_die (child_die);
9275 die_children_count++;
9276 }
9277 offsets = xmalloc (sizeof (*offsets) * die_children_count);
9278 cleanups = make_cleanup (xfree, offsets);
9279
9280 offsets_end = offsets;
9281 child_die = die->child;
9282 while (child_die && child_die->tag)
9283 {
c38f313d
DJ
9284 /* For each CHILD_DIE, find the corresponding child of
9285 ORIGIN_DIE. If there is more than one layer of
9286 DW_AT_abstract_origin, follow them all; there shouldn't be,
9287 but GCC versions at least through 4.4 generate this (GCC PR
9288 40573). */
9289 struct die_info *child_origin_die = child_die;
cd02d79d 9290 struct dwarf2_cu *child_origin_cu = cu;
9a619af0 9291
c38f313d
DJ
9292 while (1)
9293 {
cd02d79d
PA
9294 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
9295 child_origin_cu);
c38f313d
DJ
9296 if (attr == NULL)
9297 break;
cd02d79d
PA
9298 child_origin_die = follow_die_ref (child_origin_die, attr,
9299 &child_origin_cu);
c38f313d
DJ
9300 }
9301
d389af10
JK
9302 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
9303 counterpart may exist. */
c38f313d 9304 if (child_origin_die != child_die)
d389af10 9305 {
edb3359d
DJ
9306 if (child_die->tag != child_origin_die->tag
9307 && !(child_die->tag == DW_TAG_inlined_subroutine
9308 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
9309 complaint (&symfile_complaints,
9310 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
9311 "different tags"), child_die->offset.sect_off,
9312 child_origin_die->offset.sect_off);
c38f313d
DJ
9313 if (child_origin_die->parent != origin_die)
9314 complaint (&symfile_complaints,
9315 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
9316 "different parents"), child_die->offset.sect_off,
9317 child_origin_die->offset.sect_off);
c38f313d
DJ
9318 else
9319 *offsets_end++ = child_origin_die->offset;
d389af10
JK
9320 }
9321 child_die = sibling_die (child_die);
9322 }
9323 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
9324 unsigned_int_compar);
9325 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 9326 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
9327 complaint (&symfile_complaints,
9328 _("Multiple children of DIE 0x%x refer "
9329 "to DIE 0x%x as their abstract origin"),
b64f50a1 9330 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
9331
9332 offsetp = offsets;
9333 origin_child_die = origin_die->child;
9334 while (origin_child_die && origin_child_die->tag)
9335 {
9336 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
9337 while (offsetp < offsets_end
9338 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 9339 offsetp++;
b64f50a1
JK
9340 if (offsetp >= offsets_end
9341 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10
JK
9342 {
9343 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
cd02d79d 9344 process_die (origin_child_die, origin_cu);
d389af10
JK
9345 }
9346 origin_child_die = sibling_die (origin_child_die);
9347 }
cd02d79d 9348 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
9349
9350 do_cleanups (cleanups);
9351}
9352
c906108c 9353static void
e7c27a73 9354read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9355{
e7c27a73 9356 struct objfile *objfile = cu->objfile;
52f0bd74 9357 struct context_stack *new;
c906108c
SS
9358 CORE_ADDR lowpc;
9359 CORE_ADDR highpc;
9360 struct die_info *child_die;
edb3359d 9361 struct attribute *attr, *call_line, *call_file;
c906108c 9362 char *name;
e142c38c 9363 CORE_ADDR baseaddr;
801e3a5b 9364 struct block *block;
edb3359d 9365 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
9366 VEC (symbolp) *template_args = NULL;
9367 struct template_symbol *templ_func = NULL;
edb3359d
DJ
9368
9369 if (inlined_func)
9370 {
9371 /* If we do not have call site information, we can't show the
9372 caller of this inlined function. That's too confusing, so
9373 only use the scope for local variables. */
9374 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
9375 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
9376 if (call_line == NULL || call_file == NULL)
9377 {
9378 read_lexical_block_scope (die, cu);
9379 return;
9380 }
9381 }
c906108c 9382
e142c38c
DJ
9383 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9384
94af9270 9385 name = dwarf2_name (die, cu);
c906108c 9386
e8d05480
JB
9387 /* Ignore functions with missing or empty names. These are actually
9388 illegal according to the DWARF standard. */
9389 if (name == NULL)
9390 {
9391 complaint (&symfile_complaints,
b64f50a1
JK
9392 _("missing name for subprogram DIE at %d"),
9393 die->offset.sect_off);
e8d05480
JB
9394 return;
9395 }
9396
9397 /* Ignore functions with missing or invalid low and high pc attributes. */
9398 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
9399 {
ae4d0c03
PM
9400 attr = dwarf2_attr (die, DW_AT_external, cu);
9401 if (!attr || !DW_UNSND (attr))
9402 complaint (&symfile_complaints,
3e43a32a
MS
9403 _("cannot get low and high bounds "
9404 "for subprogram DIE at %d"),
b64f50a1 9405 die->offset.sect_off);
e8d05480
JB
9406 return;
9407 }
c906108c
SS
9408
9409 lowpc += baseaddr;
9410 highpc += baseaddr;
9411
34eaf542
TT
9412 /* If we have any template arguments, then we must allocate a
9413 different sort of symbol. */
9414 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
9415 {
9416 if (child_die->tag == DW_TAG_template_type_param
9417 || child_die->tag == DW_TAG_template_value_param)
9418 {
9419 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
9420 struct template_symbol);
9421 templ_func->base.is_cplus_template_function = 1;
9422 break;
9423 }
9424 }
9425
c906108c 9426 new = push_context (0, lowpc);
34eaf542
TT
9427 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
9428 (struct symbol *) templ_func);
4c2df51b 9429
4cecd739
DJ
9430 /* If there is a location expression for DW_AT_frame_base, record
9431 it. */
e142c38c 9432 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 9433 if (attr)
c034e007
AC
9434 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
9435 expression is being recorded directly in the function's symbol
9436 and not in a separate frame-base object. I guess this hack is
9437 to avoid adding some sort of frame-base adjunct/annex to the
9438 function's symbol :-(. The problem with doing this is that it
9439 results in a function symbol with a location expression that
9440 has nothing to do with the location of the function, ouch! The
9441 relationship should be: a function's symbol has-a frame base; a
9442 frame-base has-a location expression. */
e7c27a73 9443 dwarf2_symbol_mark_computed (attr, new->name, cu);
4c2df51b 9444
e142c38c 9445 cu->list_in_scope = &local_symbols;
c906108c 9446
639d11d3 9447 if (die->child != NULL)
c906108c 9448 {
639d11d3 9449 child_die = die->child;
c906108c
SS
9450 while (child_die && child_die->tag)
9451 {
34eaf542
TT
9452 if (child_die->tag == DW_TAG_template_type_param
9453 || child_die->tag == DW_TAG_template_value_param)
9454 {
9455 struct symbol *arg = new_symbol (child_die, NULL, cu);
9456
f1078f66
DJ
9457 if (arg != NULL)
9458 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
9459 }
9460 else
9461 process_die (child_die, cu);
c906108c
SS
9462 child_die = sibling_die (child_die);
9463 }
9464 }
9465
d389af10
JK
9466 inherit_abstract_dies (die, cu);
9467
4a811a97
UW
9468 /* If we have a DW_AT_specification, we might need to import using
9469 directives from the context of the specification DIE. See the
9470 comment in determine_prefix. */
9471 if (cu->language == language_cplus
9472 && dwarf2_attr (die, DW_AT_specification, cu))
9473 {
9474 struct dwarf2_cu *spec_cu = cu;
9475 struct die_info *spec_die = die_specification (die, &spec_cu);
9476
9477 while (spec_die)
9478 {
9479 child_die = spec_die->child;
9480 while (child_die && child_die->tag)
9481 {
9482 if (child_die->tag == DW_TAG_imported_module)
9483 process_die (child_die, spec_cu);
9484 child_die = sibling_die (child_die);
9485 }
9486
9487 /* In some cases, GCC generates specification DIEs that
9488 themselves contain DW_AT_specification attributes. */
9489 spec_die = die_specification (spec_die, &spec_cu);
9490 }
9491 }
9492
c906108c
SS
9493 new = pop_context ();
9494 /* Make a block for the local symbols within. */
801e3a5b
JB
9495 block = finish_block (new->name, &local_symbols, new->old_blocks,
9496 lowpc, highpc, objfile);
9497
df8a16a1 9498 /* For C++, set the block's scope. */
f55ee35c 9499 if (cu->language == language_cplus || cu->language == language_fortran)
df8a16a1 9500 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
0114d602 9501 determine_prefix (die, cu),
df8a16a1
DJ
9502 processing_has_namespace_info);
9503
801e3a5b
JB
9504 /* If we have address ranges, record them. */
9505 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 9506
34eaf542
TT
9507 /* Attach template arguments to function. */
9508 if (! VEC_empty (symbolp, template_args))
9509 {
9510 gdb_assert (templ_func != NULL);
9511
9512 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
9513 templ_func->template_arguments
9514 = obstack_alloc (&objfile->objfile_obstack,
9515 (templ_func->n_template_arguments
9516 * sizeof (struct symbol *)));
9517 memcpy (templ_func->template_arguments,
9518 VEC_address (symbolp, template_args),
9519 (templ_func->n_template_arguments * sizeof (struct symbol *)));
9520 VEC_free (symbolp, template_args);
9521 }
9522
208d8187
JB
9523 /* In C++, we can have functions nested inside functions (e.g., when
9524 a function declares a class that has methods). This means that
9525 when we finish processing a function scope, we may need to go
9526 back to building a containing block's symbol lists. */
9527 local_symbols = new->locals;
27aa8d6a 9528 using_directives = new->using_directives;
208d8187 9529
921e78cf
JB
9530 /* If we've finished processing a top-level function, subsequent
9531 symbols go in the file symbol list. */
9532 if (outermost_context_p ())
e142c38c 9533 cu->list_in_scope = &file_symbols;
c906108c
SS
9534}
9535
9536/* Process all the DIES contained within a lexical block scope. Start
9537 a new scope, process the dies, and then close the scope. */
9538
9539static void
e7c27a73 9540read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9541{
e7c27a73 9542 struct objfile *objfile = cu->objfile;
52f0bd74 9543 struct context_stack *new;
c906108c
SS
9544 CORE_ADDR lowpc, highpc;
9545 struct die_info *child_die;
e142c38c
DJ
9546 CORE_ADDR baseaddr;
9547
9548 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
9549
9550 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
9551 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
9552 as multiple lexical blocks? Handling children in a sane way would
6e70227d 9553 be nasty. Might be easier to properly extend generic blocks to
af34e669 9554 describe ranges. */
d85a05f0 9555 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
9556 return;
9557 lowpc += baseaddr;
9558 highpc += baseaddr;
9559
9560 push_context (0, lowpc);
639d11d3 9561 if (die->child != NULL)
c906108c 9562 {
639d11d3 9563 child_die = die->child;
c906108c
SS
9564 while (child_die && child_die->tag)
9565 {
e7c27a73 9566 process_die (child_die, cu);
c906108c
SS
9567 child_die = sibling_die (child_die);
9568 }
9569 }
9570 new = pop_context ();
9571
8540c487 9572 if (local_symbols != NULL || using_directives != NULL)
c906108c 9573 {
801e3a5b
JB
9574 struct block *block
9575 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
9576 highpc, objfile);
9577
9578 /* Note that recording ranges after traversing children, as we
9579 do here, means that recording a parent's ranges entails
9580 walking across all its children's ranges as they appear in
9581 the address map, which is quadratic behavior.
9582
9583 It would be nicer to record the parent's ranges before
9584 traversing its children, simply overriding whatever you find
9585 there. But since we don't even decide whether to create a
9586 block until after we've traversed its children, that's hard
9587 to do. */
9588 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
9589 }
9590 local_symbols = new->locals;
27aa8d6a 9591 using_directives = new->using_directives;
c906108c
SS
9592}
9593
96408a79
SA
9594/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
9595
9596static void
9597read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
9598{
9599 struct objfile *objfile = cu->objfile;
9600 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9601 CORE_ADDR pc, baseaddr;
9602 struct attribute *attr;
9603 struct call_site *call_site, call_site_local;
9604 void **slot;
9605 int nparams;
9606 struct die_info *child_die;
9607
9608 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
9609
9610 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
9611 if (!attr)
9612 {
9613 complaint (&symfile_complaints,
9614 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
9615 "DIE 0x%x [in module %s]"),
b64f50a1 9616 die->offset.sect_off, objfile->name);
96408a79
SA
9617 return;
9618 }
9619 pc = DW_ADDR (attr) + baseaddr;
9620
9621 if (cu->call_site_htab == NULL)
9622 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
9623 NULL, &objfile->objfile_obstack,
9624 hashtab_obstack_allocate, NULL);
9625 call_site_local.pc = pc;
9626 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
9627 if (*slot != NULL)
9628 {
9629 complaint (&symfile_complaints,
9630 _("Duplicate PC %s for DW_TAG_GNU_call_site "
9631 "DIE 0x%x [in module %s]"),
b64f50a1 9632 paddress (gdbarch, pc), die->offset.sect_off, objfile->name);
96408a79
SA
9633 return;
9634 }
9635
9636 /* Count parameters at the caller. */
9637
9638 nparams = 0;
9639 for (child_die = die->child; child_die && child_die->tag;
9640 child_die = sibling_die (child_die))
9641 {
9642 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9643 {
9644 complaint (&symfile_complaints,
9645 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
9646 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 9647 child_die->tag, child_die->offset.sect_off, objfile->name);
96408a79
SA
9648 continue;
9649 }
9650
9651 nparams++;
9652 }
9653
9654 call_site = obstack_alloc (&objfile->objfile_obstack,
9655 (sizeof (*call_site)
9656 + (sizeof (*call_site->parameter)
9657 * (nparams - 1))));
9658 *slot = call_site;
9659 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
9660 call_site->pc = pc;
9661
9662 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
9663 {
9664 struct die_info *func_die;
9665
9666 /* Skip also over DW_TAG_inlined_subroutine. */
9667 for (func_die = die->parent;
9668 func_die && func_die->tag != DW_TAG_subprogram
9669 && func_die->tag != DW_TAG_subroutine_type;
9670 func_die = func_die->parent);
9671
9672 /* DW_AT_GNU_all_call_sites is a superset
9673 of DW_AT_GNU_all_tail_call_sites. */
9674 if (func_die
9675 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
9676 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
9677 {
9678 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
9679 not complete. But keep CALL_SITE for look ups via call_site_htab,
9680 both the initial caller containing the real return address PC and
9681 the final callee containing the current PC of a chain of tail
9682 calls do not need to have the tail call list complete. But any
9683 function candidate for a virtual tail call frame searched via
9684 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
9685 determined unambiguously. */
9686 }
9687 else
9688 {
9689 struct type *func_type = NULL;
9690
9691 if (func_die)
9692 func_type = get_die_type (func_die, cu);
9693 if (func_type != NULL)
9694 {
9695 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
9696
9697 /* Enlist this call site to the function. */
9698 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
9699 TYPE_TAIL_CALL_LIST (func_type) = call_site;
9700 }
9701 else
9702 complaint (&symfile_complaints,
9703 _("Cannot find function owning DW_TAG_GNU_call_site "
9704 "DIE 0x%x [in module %s]"),
b64f50a1 9705 die->offset.sect_off, objfile->name);
96408a79
SA
9706 }
9707 }
9708
9709 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
9710 if (attr == NULL)
9711 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
9712 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
9713 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
9714 /* Keep NULL DWARF_BLOCK. */;
9715 else if (attr_form_is_block (attr))
9716 {
9717 struct dwarf2_locexpr_baton *dlbaton;
9718
9719 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
9720 dlbaton->data = DW_BLOCK (attr)->data;
9721 dlbaton->size = DW_BLOCK (attr)->size;
9722 dlbaton->per_cu = cu->per_cu;
9723
9724 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
9725 }
9726 else if (is_ref_attr (attr))
9727 {
96408a79
SA
9728 struct dwarf2_cu *target_cu = cu;
9729 struct die_info *target_die;
9730
9731 target_die = follow_die_ref_or_sig (die, attr, &target_cu);
9732 gdb_assert (target_cu->objfile == objfile);
9733 if (die_is_declaration (target_die, target_cu))
9734 {
9735 const char *target_physname;
9736
9737 target_physname = dwarf2_physname (NULL, target_die, target_cu);
9738 if (target_physname == NULL)
9739 complaint (&symfile_complaints,
9740 _("DW_AT_GNU_call_site_target target DIE has invalid "
9741 "physname, for referencing DIE 0x%x [in module %s]"),
b64f50a1 9742 die->offset.sect_off, objfile->name);
96408a79
SA
9743 else
9744 SET_FIELD_PHYSNAME (call_site->target, (char *) target_physname);
9745 }
9746 else
9747 {
9748 CORE_ADDR lowpc;
9749
9750 /* DW_AT_entry_pc should be preferred. */
9751 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
9752 complaint (&symfile_complaints,
9753 _("DW_AT_GNU_call_site_target target DIE has invalid "
9754 "low pc, for referencing DIE 0x%x [in module %s]"),
b64f50a1 9755 die->offset.sect_off, objfile->name);
96408a79
SA
9756 else
9757 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
9758 }
9759 }
9760 else
9761 complaint (&symfile_complaints,
9762 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
9763 "block nor reference, for DIE 0x%x [in module %s]"),
b64f50a1 9764 die->offset.sect_off, objfile->name);
96408a79
SA
9765
9766 call_site->per_cu = cu->per_cu;
9767
9768 for (child_die = die->child;
9769 child_die && child_die->tag;
9770 child_die = sibling_die (child_die))
9771 {
96408a79 9772 struct call_site_parameter *parameter;
1788b2d3 9773 struct attribute *loc, *origin;
96408a79
SA
9774
9775 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
9776 {
9777 /* Already printed the complaint above. */
9778 continue;
9779 }
9780
9781 gdb_assert (call_site->parameter_count < nparams);
9782 parameter = &call_site->parameter[call_site->parameter_count];
9783
1788b2d3
JK
9784 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
9785 specifies DW_TAG_formal_parameter. Value of the data assumed for the
9786 register is contained in DW_AT_GNU_call_site_value. */
96408a79 9787
24c5c679 9788 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3
JK
9789 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
9790 if (loc == NULL && origin != NULL && is_ref_attr (origin))
9791 {
9792 sect_offset offset;
9793
9794 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
9795 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
9796 if (!offset_in_cu_p (&cu->header, offset))
9797 {
9798 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
9799 binding can be done only inside one CU. Such referenced DIE
9800 therefore cannot be even moved to DW_TAG_partial_unit. */
9801 complaint (&symfile_complaints,
9802 _("DW_AT_abstract_origin offset is not in CU for "
9803 "DW_TAG_GNU_call_site child DIE 0x%x "
9804 "[in module %s]"),
9805 child_die->offset.sect_off, objfile->name);
9806 continue;
9807 }
1788b2d3
JK
9808 parameter->u.param_offset.cu_off = (offset.sect_off
9809 - cu->header.offset.sect_off);
9810 }
9811 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
9812 {
9813 complaint (&symfile_complaints,
9814 _("No DW_FORM_block* DW_AT_location for "
9815 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 9816 child_die->offset.sect_off, objfile->name);
96408a79
SA
9817 continue;
9818 }
24c5c679 9819 else
96408a79 9820 {
24c5c679
JK
9821 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
9822 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
9823 if (parameter->u.dwarf_reg != -1)
9824 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
9825 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
9826 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
9827 &parameter->u.fb_offset))
9828 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
9829 else
9830 {
9831 complaint (&symfile_complaints,
9832 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
9833 "for DW_FORM_block* DW_AT_location is supported for "
9834 "DW_TAG_GNU_call_site child DIE 0x%x "
9835 "[in module %s]"),
9836 child_die->offset.sect_off, objfile->name);
9837 continue;
9838 }
96408a79
SA
9839 }
9840
9841 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
9842 if (!attr_form_is_block (attr))
9843 {
9844 complaint (&symfile_complaints,
9845 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
9846 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 9847 child_die->offset.sect_off, objfile->name);
96408a79
SA
9848 continue;
9849 }
9850 parameter->value = DW_BLOCK (attr)->data;
9851 parameter->value_size = DW_BLOCK (attr)->size;
9852
9853 /* Parameters are not pre-cleared by memset above. */
9854 parameter->data_value = NULL;
9855 parameter->data_value_size = 0;
9856 call_site->parameter_count++;
9857
9858 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
9859 if (attr)
9860 {
9861 if (!attr_form_is_block (attr))
9862 complaint (&symfile_complaints,
9863 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
9864 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
b64f50a1 9865 child_die->offset.sect_off, objfile->name);
96408a79
SA
9866 else
9867 {
9868 parameter->data_value = DW_BLOCK (attr)->data;
9869 parameter->data_value_size = DW_BLOCK (attr)->size;
9870 }
9871 }
9872 }
9873}
9874
43039443 9875/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
9876 Return 1 if the attributes are present and valid, otherwise, return 0.
9877 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
9878
9879static int
9880dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
9881 CORE_ADDR *high_return, struct dwarf2_cu *cu,
9882 struct partial_symtab *ranges_pst)
43039443
JK
9883{
9884 struct objfile *objfile = cu->objfile;
9885 struct comp_unit_head *cu_header = &cu->header;
9886 bfd *obfd = objfile->obfd;
9887 unsigned int addr_size = cu_header->addr_size;
9888 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
9889 /* Base address selection entry. */
9890 CORE_ADDR base;
9891 int found_base;
9892 unsigned int dummy;
9893 gdb_byte *buffer;
9894 CORE_ADDR marker;
9895 int low_set;
9896 CORE_ADDR low = 0;
9897 CORE_ADDR high = 0;
ff013f42 9898 CORE_ADDR baseaddr;
43039443 9899
d00adf39
DE
9900 found_base = cu->base_known;
9901 base = cu->base_address;
43039443 9902
be391dca 9903 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 9904 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
9905 {
9906 complaint (&symfile_complaints,
9907 _("Offset %d out of bounds for DW_AT_ranges attribute"),
9908 offset);
9909 return 0;
9910 }
dce234bc 9911 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
9912
9913 /* Read in the largest possible address. */
9914 marker = read_address (obfd, buffer, cu, &dummy);
9915 if ((marker & mask) == mask)
9916 {
9917 /* If we found the largest possible address, then
9918 read the base address. */
9919 base = read_address (obfd, buffer + addr_size, cu, &dummy);
9920 buffer += 2 * addr_size;
9921 offset += 2 * addr_size;
9922 found_base = 1;
9923 }
9924
9925 low_set = 0;
9926
e7030f15 9927 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 9928
43039443
JK
9929 while (1)
9930 {
9931 CORE_ADDR range_beginning, range_end;
9932
9933 range_beginning = read_address (obfd, buffer, cu, &dummy);
9934 buffer += addr_size;
9935 range_end = read_address (obfd, buffer, cu, &dummy);
9936 buffer += addr_size;
9937 offset += 2 * addr_size;
9938
9939 /* An end of list marker is a pair of zero addresses. */
9940 if (range_beginning == 0 && range_end == 0)
9941 /* Found the end of list entry. */
9942 break;
9943
9944 /* Each base address selection entry is a pair of 2 values.
9945 The first is the largest possible address, the second is
9946 the base address. Check for a base address here. */
9947 if ((range_beginning & mask) == mask)
9948 {
9949 /* If we found the largest possible address, then
9950 read the base address. */
9951 base = read_address (obfd, buffer + addr_size, cu, &dummy);
9952 found_base = 1;
9953 continue;
9954 }
9955
9956 if (!found_base)
9957 {
9958 /* We have no valid base address for the ranges
9959 data. */
9960 complaint (&symfile_complaints,
9961 _("Invalid .debug_ranges data (no base address)"));
9962 return 0;
9963 }
9964
9277c30c
UW
9965 if (range_beginning > range_end)
9966 {
9967 /* Inverted range entries are invalid. */
9968 complaint (&symfile_complaints,
9969 _("Invalid .debug_ranges data (inverted range)"));
9970 return 0;
9971 }
9972
9973 /* Empty range entries have no effect. */
9974 if (range_beginning == range_end)
9975 continue;
9976
43039443
JK
9977 range_beginning += base;
9978 range_end += base;
9979
01093045
DE
9980 /* A not-uncommon case of bad debug info.
9981 Don't pollute the addrmap with bad data. */
9982 if (range_beginning + baseaddr == 0
9983 && !dwarf2_per_objfile->has_section_at_zero)
9984 {
9985 complaint (&symfile_complaints,
9986 _(".debug_ranges entry has start address of zero"
9987 " [in module %s]"), objfile->name);
9988 continue;
9989 }
9990
9277c30c 9991 if (ranges_pst != NULL)
ff013f42 9992 addrmap_set_empty (objfile->psymtabs_addrmap,
3e43a32a
MS
9993 range_beginning + baseaddr,
9994 range_end - 1 + baseaddr,
ff013f42
JK
9995 ranges_pst);
9996
43039443
JK
9997 /* FIXME: This is recording everything as a low-high
9998 segment of consecutive addresses. We should have a
9999 data structure for discontiguous block ranges
10000 instead. */
10001 if (! low_set)
10002 {
10003 low = range_beginning;
10004 high = range_end;
10005 low_set = 1;
10006 }
10007 else
10008 {
10009 if (range_beginning < low)
10010 low = range_beginning;
10011 if (range_end > high)
10012 high = range_end;
10013 }
10014 }
10015
10016 if (! low_set)
10017 /* If the first entry is an end-of-list marker, the range
10018 describes an empty scope, i.e. no instructions. */
10019 return 0;
10020
10021 if (low_return)
10022 *low_return = low;
10023 if (high_return)
10024 *high_return = high;
10025 return 1;
10026}
10027
af34e669
DJ
10028/* Get low and high pc attributes from a die. Return 1 if the attributes
10029 are present and valid, otherwise, return 0. Return -1 if the range is
10030 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 10031
c906108c 10032static int
af34e669 10033dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
10034 CORE_ADDR *highpc, struct dwarf2_cu *cu,
10035 struct partial_symtab *pst)
c906108c
SS
10036{
10037 struct attribute *attr;
91da1414 10038 struct attribute *attr_high;
af34e669
DJ
10039 CORE_ADDR low = 0;
10040 CORE_ADDR high = 0;
10041 int ret = 0;
c906108c 10042
91da1414
MW
10043 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10044 if (attr_high)
af34e669 10045 {
e142c38c 10046 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 10047 if (attr)
91da1414
MW
10048 {
10049 low = DW_ADDR (attr);
3019eac3
DE
10050 if (attr_high->form == DW_FORM_addr
10051 || attr_high->form == DW_FORM_GNU_addr_index)
91da1414
MW
10052 high = DW_ADDR (attr_high);
10053 else
10054 high = low + DW_UNSND (attr_high);
10055 }
af34e669
DJ
10056 else
10057 /* Found high w/o low attribute. */
10058 return 0;
10059
10060 /* Found consecutive range of addresses. */
10061 ret = 1;
10062 }
c906108c 10063 else
af34e669 10064 {
e142c38c 10065 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
10066 if (attr != NULL)
10067 {
2e3cf129
DE
10068 unsigned int ranges_offset = DW_UNSND (attr) + cu->ranges_base;
10069
af34e669 10070 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 10071 .debug_ranges section. */
2e3cf129 10072 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
af34e669 10073 return 0;
43039443 10074 /* Found discontinuous range of addresses. */
af34e669
DJ
10075 ret = -1;
10076 }
10077 }
c906108c 10078
9373cf26
JK
10079 /* read_partial_die has also the strict LOW < HIGH requirement. */
10080 if (high <= low)
c906108c
SS
10081 return 0;
10082
10083 /* When using the GNU linker, .gnu.linkonce. sections are used to
10084 eliminate duplicate copies of functions and vtables and such.
10085 The linker will arbitrarily choose one and discard the others.
10086 The AT_*_pc values for such functions refer to local labels in
10087 these sections. If the section from that file was discarded, the
10088 labels are not in the output, so the relocs get a value of 0.
10089 If this is a discarded function, mark the pc bounds as invalid,
10090 so that GDB will ignore it. */
72dca2f5 10091 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
10092 return 0;
10093
10094 *lowpc = low;
96408a79
SA
10095 if (highpc)
10096 *highpc = high;
af34e669 10097 return ret;
c906108c
SS
10098}
10099
b084d499
JB
10100/* Assuming that DIE represents a subprogram DIE or a lexical block, get
10101 its low and high PC addresses. Do nothing if these addresses could not
10102 be determined. Otherwise, set LOWPC to the low address if it is smaller,
10103 and HIGHPC to the high address if greater than HIGHPC. */
10104
10105static void
10106dwarf2_get_subprogram_pc_bounds (struct die_info *die,
10107 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10108 struct dwarf2_cu *cu)
10109{
10110 CORE_ADDR low, high;
10111 struct die_info *child = die->child;
10112
d85a05f0 10113 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
10114 {
10115 *lowpc = min (*lowpc, low);
10116 *highpc = max (*highpc, high);
10117 }
10118
10119 /* If the language does not allow nested subprograms (either inside
10120 subprograms or lexical blocks), we're done. */
10121 if (cu->language != language_ada)
10122 return;
6e70227d 10123
b084d499
JB
10124 /* Check all the children of the given DIE. If it contains nested
10125 subprograms, then check their pc bounds. Likewise, we need to
10126 check lexical blocks as well, as they may also contain subprogram
10127 definitions. */
10128 while (child && child->tag)
10129 {
10130 if (child->tag == DW_TAG_subprogram
10131 || child->tag == DW_TAG_lexical_block)
10132 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
10133 child = sibling_die (child);
10134 }
10135}
10136
fae299cd
DC
10137/* Get the low and high pc's represented by the scope DIE, and store
10138 them in *LOWPC and *HIGHPC. If the correct values can't be
10139 determined, set *LOWPC to -1 and *HIGHPC to 0. */
10140
10141static void
10142get_scope_pc_bounds (struct die_info *die,
10143 CORE_ADDR *lowpc, CORE_ADDR *highpc,
10144 struct dwarf2_cu *cu)
10145{
10146 CORE_ADDR best_low = (CORE_ADDR) -1;
10147 CORE_ADDR best_high = (CORE_ADDR) 0;
10148 CORE_ADDR current_low, current_high;
10149
d85a05f0 10150 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
10151 {
10152 best_low = current_low;
10153 best_high = current_high;
10154 }
10155 else
10156 {
10157 struct die_info *child = die->child;
10158
10159 while (child && child->tag)
10160 {
10161 switch (child->tag) {
10162 case DW_TAG_subprogram:
b084d499 10163 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
10164 break;
10165 case DW_TAG_namespace:
f55ee35c 10166 case DW_TAG_module:
fae299cd
DC
10167 /* FIXME: carlton/2004-01-16: Should we do this for
10168 DW_TAG_class_type/DW_TAG_structure_type, too? I think
10169 that current GCC's always emit the DIEs corresponding
10170 to definitions of methods of classes as children of a
10171 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
10172 the DIEs giving the declarations, which could be
10173 anywhere). But I don't see any reason why the
10174 standards says that they have to be there. */
10175 get_scope_pc_bounds (child, &current_low, &current_high, cu);
10176
10177 if (current_low != ((CORE_ADDR) -1))
10178 {
10179 best_low = min (best_low, current_low);
10180 best_high = max (best_high, current_high);
10181 }
10182 break;
10183 default:
0963b4bd 10184 /* Ignore. */
fae299cd
DC
10185 break;
10186 }
10187
10188 child = sibling_die (child);
10189 }
10190 }
10191
10192 *lowpc = best_low;
10193 *highpc = best_high;
10194}
10195
801e3a5b
JB
10196/* Record the address ranges for BLOCK, offset by BASEADDR, as given
10197 in DIE. */
380bca97 10198
801e3a5b
JB
10199static void
10200dwarf2_record_block_ranges (struct die_info *die, struct block *block,
10201 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
10202{
bb5ed363 10203 struct objfile *objfile = cu->objfile;
801e3a5b 10204 struct attribute *attr;
91da1414 10205 struct attribute *attr_high;
801e3a5b 10206
91da1414
MW
10207 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
10208 if (attr_high)
801e3a5b 10209 {
801e3a5b
JB
10210 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
10211 if (attr)
10212 {
10213 CORE_ADDR low = DW_ADDR (attr);
91da1414 10214 CORE_ADDR high;
3019eac3
DE
10215 if (attr_high->form == DW_FORM_addr
10216 || attr_high->form == DW_FORM_GNU_addr_index)
91da1414
MW
10217 high = DW_ADDR (attr_high);
10218 else
10219 high = low + DW_UNSND (attr_high);
9a619af0 10220
801e3a5b
JB
10221 record_block_range (block, baseaddr + low, baseaddr + high - 1);
10222 }
10223 }
10224
10225 attr = dwarf2_attr (die, DW_AT_ranges, cu);
10226 if (attr)
10227 {
bb5ed363 10228 bfd *obfd = objfile->obfd;
801e3a5b
JB
10229
10230 /* The value of the DW_AT_ranges attribute is the offset of the
10231 address range list in the .debug_ranges section. */
2e3cf129 10232 unsigned long offset = DW_UNSND (attr) + cu->ranges_base;
dce234bc 10233 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
10234
10235 /* For some target architectures, but not others, the
10236 read_address function sign-extends the addresses it returns.
10237 To recognize base address selection entries, we need a
10238 mask. */
10239 unsigned int addr_size = cu->header.addr_size;
10240 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
10241
10242 /* The base address, to which the next pair is relative. Note
10243 that this 'base' is a DWARF concept: most entries in a range
10244 list are relative, to reduce the number of relocs against the
10245 debugging information. This is separate from this function's
10246 'baseaddr' argument, which GDB uses to relocate debugging
10247 information from a shared library based on the address at
10248 which the library was loaded. */
d00adf39
DE
10249 CORE_ADDR base = cu->base_address;
10250 int base_known = cu->base_known;
801e3a5b 10251
be391dca 10252 gdb_assert (dwarf2_per_objfile->ranges.readin);
dce234bc 10253 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
10254 {
10255 complaint (&symfile_complaints,
10256 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
10257 offset);
10258 return;
10259 }
10260
10261 for (;;)
10262 {
10263 unsigned int bytes_read;
10264 CORE_ADDR start, end;
10265
10266 start = read_address (obfd, buffer, cu, &bytes_read);
10267 buffer += bytes_read;
10268 end = read_address (obfd, buffer, cu, &bytes_read);
10269 buffer += bytes_read;
10270
10271 /* Did we find the end of the range list? */
10272 if (start == 0 && end == 0)
10273 break;
10274
10275 /* Did we find a base address selection entry? */
10276 else if ((start & base_select_mask) == base_select_mask)
10277 {
10278 base = end;
10279 base_known = 1;
10280 }
10281
10282 /* We found an ordinary address range. */
10283 else
10284 {
10285 if (!base_known)
10286 {
10287 complaint (&symfile_complaints,
3e43a32a
MS
10288 _("Invalid .debug_ranges data "
10289 "(no base address)"));
801e3a5b
JB
10290 return;
10291 }
10292
9277c30c
UW
10293 if (start > end)
10294 {
10295 /* Inverted range entries are invalid. */
10296 complaint (&symfile_complaints,
10297 _("Invalid .debug_ranges data "
10298 "(inverted range)"));
10299 return;
10300 }
10301
10302 /* Empty range entries have no effect. */
10303 if (start == end)
10304 continue;
10305
01093045
DE
10306 start += base + baseaddr;
10307 end += base + baseaddr;
10308
10309 /* A not-uncommon case of bad debug info.
10310 Don't pollute the addrmap with bad data. */
10311 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
10312 {
10313 complaint (&symfile_complaints,
10314 _(".debug_ranges entry has start address of zero"
10315 " [in module %s]"), objfile->name);
10316 continue;
10317 }
10318
10319 record_block_range (block, start, end - 1);
801e3a5b
JB
10320 }
10321 }
10322 }
10323}
10324
685b1105
JK
10325/* Check whether the producer field indicates either of GCC < 4.6, or the
10326 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 10327
685b1105
JK
10328static void
10329check_producer (struct dwarf2_cu *cu)
60d5a603
JK
10330{
10331 const char *cs;
10332 int major, minor, release;
10333
10334 if (cu->producer == NULL)
10335 {
10336 /* For unknown compilers expect their behavior is DWARF version
10337 compliant.
10338
10339 GCC started to support .debug_types sections by -gdwarf-4 since
10340 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
10341 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
10342 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
10343 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 10344 }
685b1105 10345 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
60d5a603 10346 {
685b1105
JK
10347 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
10348
ba919b58
TT
10349 cs = &cu->producer[strlen ("GNU ")];
10350 while (*cs && !isdigit (*cs))
10351 cs++;
10352 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
10353 {
10354 /* Not recognized as GCC. */
10355 }
10356 else
685b1105
JK
10357 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
10358 }
10359 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
10360 cu->producer_is_icc = 1;
10361 else
10362 {
10363 /* For other non-GCC compilers, expect their behavior is DWARF version
10364 compliant. */
60d5a603
JK
10365 }
10366
ba919b58 10367 cu->checked_producer = 1;
685b1105 10368}
ba919b58 10369
685b1105
JK
10370/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
10371 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
10372 during 4.6.0 experimental. */
10373
10374static int
10375producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
10376{
10377 if (!cu->checked_producer)
10378 check_producer (cu);
10379
10380 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
10381}
10382
10383/* Return the default accessibility type if it is not overriden by
10384 DW_AT_accessibility. */
10385
10386static enum dwarf_access_attribute
10387dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
10388{
10389 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
10390 {
10391 /* The default DWARF 2 accessibility for members is public, the default
10392 accessibility for inheritance is private. */
10393
10394 if (die->tag != DW_TAG_inheritance)
10395 return DW_ACCESS_public;
10396 else
10397 return DW_ACCESS_private;
10398 }
10399 else
10400 {
10401 /* DWARF 3+ defines the default accessibility a different way. The same
10402 rules apply now for DW_TAG_inheritance as for the members and it only
10403 depends on the container kind. */
10404
10405 if (die->parent->tag == DW_TAG_class_type)
10406 return DW_ACCESS_private;
10407 else
10408 return DW_ACCESS_public;
10409 }
10410}
10411
74ac6d43
TT
10412/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
10413 offset. If the attribute was not found return 0, otherwise return
10414 1. If it was found but could not properly be handled, set *OFFSET
10415 to 0. */
10416
10417static int
10418handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
10419 LONGEST *offset)
10420{
10421 struct attribute *attr;
10422
10423 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
10424 if (attr != NULL)
10425 {
10426 *offset = 0;
10427
10428 /* Note that we do not check for a section offset first here.
10429 This is because DW_AT_data_member_location is new in DWARF 4,
10430 so if we see it, we can assume that a constant form is really
10431 a constant and not a section offset. */
10432 if (attr_form_is_constant (attr))
10433 *offset = dwarf2_get_attr_constant_value (attr, 0);
10434 else if (attr_form_is_section_offset (attr))
10435 dwarf2_complex_location_expr_complaint ();
10436 else if (attr_form_is_block (attr))
10437 *offset = decode_locdesc (DW_BLOCK (attr), cu);
10438 else
10439 dwarf2_complex_location_expr_complaint ();
10440
10441 return 1;
10442 }
10443
10444 return 0;
10445}
10446
c906108c
SS
10447/* Add an aggregate field to the field list. */
10448
10449static void
107d2387 10450dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 10451 struct dwarf2_cu *cu)
6e70227d 10452{
e7c27a73 10453 struct objfile *objfile = cu->objfile;
5e2b427d 10454 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
10455 struct nextfield *new_field;
10456 struct attribute *attr;
10457 struct field *fp;
10458 char *fieldname = "";
10459
10460 /* Allocate a new field list entry and link it in. */
10461 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 10462 make_cleanup (xfree, new_field);
c906108c 10463 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
10464
10465 if (die->tag == DW_TAG_inheritance)
10466 {
10467 new_field->next = fip->baseclasses;
10468 fip->baseclasses = new_field;
10469 }
10470 else
10471 {
10472 new_field->next = fip->fields;
10473 fip->fields = new_field;
10474 }
c906108c
SS
10475 fip->nfields++;
10476
e142c38c 10477 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
10478 if (attr)
10479 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
10480 else
10481 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
10482 if (new_field->accessibility != DW_ACCESS_public)
10483 fip->non_public_fields = 1;
60d5a603 10484
e142c38c 10485 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
10486 if (attr)
10487 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
10488 else
10489 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
10490
10491 fp = &new_field->field;
a9a9bd0f 10492
e142c38c 10493 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 10494 {
74ac6d43
TT
10495 LONGEST offset;
10496
a9a9bd0f 10497 /* Data member other than a C++ static data member. */
6e70227d 10498
c906108c 10499 /* Get type of field. */
e7c27a73 10500 fp->type = die_type (die, cu);
c906108c 10501
d6a843b5 10502 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 10503
c906108c 10504 /* Get bit size of field (zero if none). */
e142c38c 10505 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
10506 if (attr)
10507 {
10508 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
10509 }
10510 else
10511 {
10512 FIELD_BITSIZE (*fp) = 0;
10513 }
10514
10515 /* Get bit offset of field. */
74ac6d43
TT
10516 if (handle_data_member_location (die, cu, &offset))
10517 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 10518 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
10519 if (attr)
10520 {
5e2b427d 10521 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
10522 {
10523 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
10524 additional bit offset from the MSB of the containing
10525 anonymous object to the MSB of the field. We don't
10526 have to do anything special since we don't need to
10527 know the size of the anonymous object. */
f41f5e61 10528 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
10529 }
10530 else
10531 {
10532 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
10533 MSB of the anonymous object, subtract off the number of
10534 bits from the MSB of the field to the MSB of the
10535 object, and then subtract off the number of bits of
10536 the field itself. The result is the bit offset of
10537 the LSB of the field. */
c906108c
SS
10538 int anonymous_size;
10539 int bit_offset = DW_UNSND (attr);
10540
e142c38c 10541 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
10542 if (attr)
10543 {
10544 /* The size of the anonymous object containing
10545 the bit field is explicit, so use the
10546 indicated size (in bytes). */
10547 anonymous_size = DW_UNSND (attr);
10548 }
10549 else
10550 {
10551 /* The size of the anonymous object containing
10552 the bit field must be inferred from the type
10553 attribute of the data member containing the
10554 bit field. */
10555 anonymous_size = TYPE_LENGTH (fp->type);
10556 }
f41f5e61
PA
10557 SET_FIELD_BITPOS (*fp,
10558 (FIELD_BITPOS (*fp)
10559 + anonymous_size * bits_per_byte
10560 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
10561 }
10562 }
10563
10564 /* Get name of field. */
39cbfefa
DJ
10565 fieldname = dwarf2_name (die, cu);
10566 if (fieldname == NULL)
10567 fieldname = "";
d8151005
DJ
10568
10569 /* The name is already allocated along with this objfile, so we don't
10570 need to duplicate it for the type. */
10571 fp->name = fieldname;
c906108c
SS
10572
10573 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 10574 pointer or virtual base class pointer) to private. */
e142c38c 10575 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 10576 {
d48cc9dd 10577 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
10578 new_field->accessibility = DW_ACCESS_private;
10579 fip->non_public_fields = 1;
10580 }
10581 }
a9a9bd0f 10582 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 10583 {
a9a9bd0f
DC
10584 /* C++ static member. */
10585
10586 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
10587 is a declaration, but all versions of G++ as of this writing
10588 (so through at least 3.2.1) incorrectly generate
10589 DW_TAG_variable tags. */
6e70227d 10590
ff355380 10591 const char *physname;
c906108c 10592
a9a9bd0f 10593 /* Get name of field. */
39cbfefa
DJ
10594 fieldname = dwarf2_name (die, cu);
10595 if (fieldname == NULL)
c906108c
SS
10596 return;
10597
254e6b9e 10598 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
10599 if (attr
10600 /* Only create a symbol if this is an external value.
10601 new_symbol checks this and puts the value in the global symbol
10602 table, which we want. If it is not external, new_symbol
10603 will try to put the value in cu->list_in_scope which is wrong. */
10604 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
10605 {
10606 /* A static const member, not much different than an enum as far as
10607 we're concerned, except that we can support more types. */
10608 new_symbol (die, NULL, cu);
10609 }
10610
2df3850c 10611 /* Get physical name. */
ff355380 10612 physname = dwarf2_physname (fieldname, die, cu);
c906108c 10613
d8151005
DJ
10614 /* The name is already allocated along with this objfile, so we don't
10615 need to duplicate it for the type. */
10616 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 10617 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 10618 FIELD_NAME (*fp) = fieldname;
c906108c
SS
10619 }
10620 else if (die->tag == DW_TAG_inheritance)
10621 {
74ac6d43 10622 LONGEST offset;
d4b96c9a 10623
74ac6d43
TT
10624 /* C++ base class field. */
10625 if (handle_data_member_location (die, cu, &offset))
10626 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 10627 FIELD_BITSIZE (*fp) = 0;
e7c27a73 10628 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
10629 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
10630 fip->nbaseclasses++;
10631 }
10632}
10633
98751a41
JK
10634/* Add a typedef defined in the scope of the FIP's class. */
10635
10636static void
10637dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
10638 struct dwarf2_cu *cu)
6e70227d 10639{
98751a41 10640 struct objfile *objfile = cu->objfile;
98751a41
JK
10641 struct typedef_field_list *new_field;
10642 struct attribute *attr;
10643 struct typedef_field *fp;
10644 char *fieldname = "";
10645
10646 /* Allocate a new field list entry and link it in. */
10647 new_field = xzalloc (sizeof (*new_field));
10648 make_cleanup (xfree, new_field);
10649
10650 gdb_assert (die->tag == DW_TAG_typedef);
10651
10652 fp = &new_field->field;
10653
10654 /* Get name of field. */
10655 fp->name = dwarf2_name (die, cu);
10656 if (fp->name == NULL)
10657 return;
10658
10659 fp->type = read_type_die (die, cu);
10660
10661 new_field->next = fip->typedef_field_list;
10662 fip->typedef_field_list = new_field;
10663 fip->typedef_field_list_count++;
10664}
10665
c906108c
SS
10666/* Create the vector of fields, and attach it to the type. */
10667
10668static void
fba45db2 10669dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 10670 struct dwarf2_cu *cu)
c906108c
SS
10671{
10672 int nfields = fip->nfields;
10673
10674 /* Record the field count, allocate space for the array of fields,
10675 and create blank accessibility bitfields if necessary. */
10676 TYPE_NFIELDS (type) = nfields;
10677 TYPE_FIELDS (type) = (struct field *)
10678 TYPE_ALLOC (type, sizeof (struct field) * nfields);
10679 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
10680
b4ba55a1 10681 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
10682 {
10683 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10684
10685 TYPE_FIELD_PRIVATE_BITS (type) =
10686 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10687 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
10688
10689 TYPE_FIELD_PROTECTED_BITS (type) =
10690 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10691 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
10692
774b6a14
TT
10693 TYPE_FIELD_IGNORE_BITS (type) =
10694 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
10695 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
10696 }
10697
10698 /* If the type has baseclasses, allocate and clear a bit vector for
10699 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 10700 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
10701 {
10702 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 10703 unsigned char *pointer;
c906108c
SS
10704
10705 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
10706 pointer = TYPE_ALLOC (type, num_bytes);
10707 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
10708 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
10709 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
10710 }
10711
3e43a32a
MS
10712 /* Copy the saved-up fields into the field vector. Start from the head of
10713 the list, adding to the tail of the field array, so that they end up in
10714 the same order in the array in which they were added to the list. */
c906108c
SS
10715 while (nfields-- > 0)
10716 {
7d0ccb61
DJ
10717 struct nextfield *fieldp;
10718
10719 if (fip->fields)
10720 {
10721 fieldp = fip->fields;
10722 fip->fields = fieldp->next;
10723 }
10724 else
10725 {
10726 fieldp = fip->baseclasses;
10727 fip->baseclasses = fieldp->next;
10728 }
10729
10730 TYPE_FIELD (type, nfields) = fieldp->field;
10731 switch (fieldp->accessibility)
c906108c 10732 {
c5aa993b 10733 case DW_ACCESS_private:
b4ba55a1
JB
10734 if (cu->language != language_ada)
10735 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 10736 break;
c906108c 10737
c5aa993b 10738 case DW_ACCESS_protected:
b4ba55a1
JB
10739 if (cu->language != language_ada)
10740 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 10741 break;
c906108c 10742
c5aa993b
JM
10743 case DW_ACCESS_public:
10744 break;
c906108c 10745
c5aa993b
JM
10746 default:
10747 /* Unknown accessibility. Complain and treat it as public. */
10748 {
e2e0b3e5 10749 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 10750 fieldp->accessibility);
c5aa993b
JM
10751 }
10752 break;
c906108c
SS
10753 }
10754 if (nfields < fip->nbaseclasses)
10755 {
7d0ccb61 10756 switch (fieldp->virtuality)
c906108c 10757 {
c5aa993b
JM
10758 case DW_VIRTUALITY_virtual:
10759 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 10760 if (cu->language == language_ada)
a73c6dcd 10761 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
10762 SET_TYPE_FIELD_VIRTUAL (type, nfields);
10763 break;
c906108c
SS
10764 }
10765 }
c906108c
SS
10766 }
10767}
10768
c906108c
SS
10769/* Add a member function to the proper fieldlist. */
10770
10771static void
107d2387 10772dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 10773 struct type *type, struct dwarf2_cu *cu)
c906108c 10774{
e7c27a73 10775 struct objfile *objfile = cu->objfile;
c906108c
SS
10776 struct attribute *attr;
10777 struct fnfieldlist *flp;
10778 int i;
10779 struct fn_field *fnp;
10780 char *fieldname;
c906108c 10781 struct nextfnfield *new_fnfield;
f792889a 10782 struct type *this_type;
60d5a603 10783 enum dwarf_access_attribute accessibility;
c906108c 10784
b4ba55a1 10785 if (cu->language == language_ada)
a73c6dcd 10786 error (_("unexpected member function in Ada type"));
b4ba55a1 10787
2df3850c 10788 /* Get name of member function. */
39cbfefa
DJ
10789 fieldname = dwarf2_name (die, cu);
10790 if (fieldname == NULL)
2df3850c 10791 return;
c906108c 10792
c906108c
SS
10793 /* Look up member function name in fieldlist. */
10794 for (i = 0; i < fip->nfnfields; i++)
10795 {
27bfe10e 10796 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
10797 break;
10798 }
10799
10800 /* Create new list element if necessary. */
10801 if (i < fip->nfnfields)
10802 flp = &fip->fnfieldlists[i];
10803 else
10804 {
10805 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
10806 {
10807 fip->fnfieldlists = (struct fnfieldlist *)
10808 xrealloc (fip->fnfieldlists,
10809 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 10810 * sizeof (struct fnfieldlist));
c906108c 10811 if (fip->nfnfields == 0)
c13c43fd 10812 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
10813 }
10814 flp = &fip->fnfieldlists[fip->nfnfields];
10815 flp->name = fieldname;
10816 flp->length = 0;
10817 flp->head = NULL;
3da10d80 10818 i = fip->nfnfields++;
c906108c
SS
10819 }
10820
10821 /* Create a new member function field and chain it to the field list
0963b4bd 10822 entry. */
c906108c 10823 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 10824 make_cleanup (xfree, new_fnfield);
c906108c
SS
10825 memset (new_fnfield, 0, sizeof (struct nextfnfield));
10826 new_fnfield->next = flp->head;
10827 flp->head = new_fnfield;
10828 flp->length++;
10829
10830 /* Fill in the member function field info. */
10831 fnp = &new_fnfield->fnfield;
3da10d80
KS
10832
10833 /* Delay processing of the physname until later. */
10834 if (cu->language == language_cplus || cu->language == language_java)
10835 {
10836 add_to_method_list (type, i, flp->length - 1, fieldname,
10837 die, cu);
10838 }
10839 else
10840 {
1d06ead6 10841 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
10842 fnp->physname = physname ? physname : "";
10843 }
10844
c906108c 10845 fnp->type = alloc_type (objfile);
f792889a
DJ
10846 this_type = read_type_die (die, cu);
10847 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 10848 {
f792889a 10849 int nparams = TYPE_NFIELDS (this_type);
c906108c 10850
f792889a 10851 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
10852 of the method itself (TYPE_CODE_METHOD). */
10853 smash_to_method_type (fnp->type, type,
f792889a
DJ
10854 TYPE_TARGET_TYPE (this_type),
10855 TYPE_FIELDS (this_type),
10856 TYPE_NFIELDS (this_type),
10857 TYPE_VARARGS (this_type));
c906108c
SS
10858
10859 /* Handle static member functions.
c5aa993b 10860 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
10861 member functions. G++ helps GDB by marking the first
10862 parameter for non-static member functions (which is the this
10863 pointer) as artificial. We obtain this information from
10864 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 10865 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
10866 fnp->voffset = VOFFSET_STATIC;
10867 }
10868 else
e2e0b3e5 10869 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 10870 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
10871
10872 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 10873 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 10874 fnp->fcontext = die_containing_type (die, cu);
c906108c 10875
3e43a32a
MS
10876 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
10877 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
10878
10879 /* Get accessibility. */
e142c38c 10880 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 10881 if (attr)
60d5a603
JK
10882 accessibility = DW_UNSND (attr);
10883 else
10884 accessibility = dwarf2_default_access_attribute (die, cu);
10885 switch (accessibility)
c906108c 10886 {
60d5a603
JK
10887 case DW_ACCESS_private:
10888 fnp->is_private = 1;
10889 break;
10890 case DW_ACCESS_protected:
10891 fnp->is_protected = 1;
10892 break;
c906108c
SS
10893 }
10894
b02dede2 10895 /* Check for artificial methods. */
e142c38c 10896 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
10897 if (attr && DW_UNSND (attr) != 0)
10898 fnp->is_artificial = 1;
10899
0d564a31 10900 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
10901 function. For older versions of GCC, this is an offset in the
10902 appropriate virtual table, as specified by DW_AT_containing_type.
10903 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
10904 to the object address. */
10905
e142c38c 10906 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 10907 if (attr)
8e19ed76 10908 {
aec5aa8b 10909 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 10910 {
aec5aa8b
TT
10911 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
10912 {
10913 /* Old-style GCC. */
10914 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
10915 }
10916 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
10917 || (DW_BLOCK (attr)->size > 1
10918 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
10919 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
10920 {
10921 struct dwarf_block blk;
10922 int offset;
10923
10924 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
10925 ? 1 : 2);
10926 blk.size = DW_BLOCK (attr)->size - offset;
10927 blk.data = DW_BLOCK (attr)->data + offset;
10928 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
10929 if ((fnp->voffset % cu->header.addr_size) != 0)
10930 dwarf2_complex_location_expr_complaint ();
10931 else
10932 fnp->voffset /= cu->header.addr_size;
10933 fnp->voffset += 2;
10934 }
10935 else
10936 dwarf2_complex_location_expr_complaint ();
10937
10938 if (!fnp->fcontext)
10939 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
10940 }
3690dd37 10941 else if (attr_form_is_section_offset (attr))
8e19ed76 10942 {
4d3c2250 10943 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
10944 }
10945 else
10946 {
4d3c2250
KB
10947 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
10948 fieldname);
8e19ed76 10949 }
0d564a31 10950 }
d48cc9dd
DJ
10951 else
10952 {
10953 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
10954 if (attr && DW_UNSND (attr))
10955 {
10956 /* GCC does this, as of 2008-08-25; PR debug/37237. */
10957 complaint (&symfile_complaints,
3e43a32a
MS
10958 _("Member function \"%s\" (offset %d) is virtual "
10959 "but the vtable offset is not specified"),
b64f50a1 10960 fieldname, die->offset.sect_off);
9655fd1a 10961 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
10962 TYPE_CPLUS_DYNAMIC (type) = 1;
10963 }
10964 }
c906108c
SS
10965}
10966
10967/* Create the vector of member function fields, and attach it to the type. */
10968
10969static void
fba45db2 10970dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 10971 struct dwarf2_cu *cu)
c906108c
SS
10972{
10973 struct fnfieldlist *flp;
c906108c
SS
10974 int i;
10975
b4ba55a1 10976 if (cu->language == language_ada)
a73c6dcd 10977 error (_("unexpected member functions in Ada type"));
b4ba55a1 10978
c906108c
SS
10979 ALLOCATE_CPLUS_STRUCT_TYPE (type);
10980 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
10981 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
10982
10983 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
10984 {
10985 struct nextfnfield *nfp = flp->head;
10986 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
10987 int k;
10988
10989 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
10990 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
10991 fn_flp->fn_fields = (struct fn_field *)
10992 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
10993 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 10994 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
10995 }
10996
10997 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
10998}
10999
1168df01
JB
11000/* Returns non-zero if NAME is the name of a vtable member in CU's
11001 language, zero otherwise. */
11002static int
11003is_vtable_name (const char *name, struct dwarf2_cu *cu)
11004{
11005 static const char vptr[] = "_vptr";
987504bb 11006 static const char vtable[] = "vtable";
1168df01 11007
987504bb
JJ
11008 /* Look for the C++ and Java forms of the vtable. */
11009 if ((cu->language == language_java
11010 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
11011 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
11012 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
11013 return 1;
11014
11015 return 0;
11016}
11017
c0dd20ea 11018/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
11019 functions, with the ABI-specified layout. If TYPE describes
11020 such a structure, smash it into a member function type.
61049d3b
DJ
11021
11022 GCC shouldn't do this; it should just output pointer to member DIEs.
11023 This is GCC PR debug/28767. */
c0dd20ea 11024
0b92b5bb
TT
11025static void
11026quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 11027{
0b92b5bb 11028 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
11029
11030 /* Check for a structure with no name and two children. */
0b92b5bb
TT
11031 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
11032 return;
c0dd20ea
DJ
11033
11034 /* Check for __pfn and __delta members. */
0b92b5bb
TT
11035 if (TYPE_FIELD_NAME (type, 0) == NULL
11036 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
11037 || TYPE_FIELD_NAME (type, 1) == NULL
11038 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
11039 return;
c0dd20ea
DJ
11040
11041 /* Find the type of the method. */
0b92b5bb 11042 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
11043 if (pfn_type == NULL
11044 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
11045 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 11046 return;
c0dd20ea
DJ
11047
11048 /* Look for the "this" argument. */
11049 pfn_type = TYPE_TARGET_TYPE (pfn_type);
11050 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 11051 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 11052 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 11053 return;
c0dd20ea
DJ
11054
11055 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
11056 new_type = alloc_type (objfile);
11057 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
11058 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
11059 TYPE_VARARGS (pfn_type));
0b92b5bb 11060 smash_to_methodptr_type (type, new_type);
c0dd20ea 11061}
1168df01 11062
685b1105
JK
11063/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
11064 (icc). */
11065
11066static int
11067producer_is_icc (struct dwarf2_cu *cu)
11068{
11069 if (!cu->checked_producer)
11070 check_producer (cu);
11071
11072 return cu->producer_is_icc;
11073}
11074
c906108c 11075/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
11076 (definition) to create a type for the structure or union. Fill in
11077 the type's name and general properties; the members will not be
11078 processed until process_structure_type.
c906108c 11079
c767944b
DJ
11080 NOTE: we need to call these functions regardless of whether or not the
11081 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c
SS
11082 structure or union. This gets the type entered into our set of
11083 user defined types.
11084
11085 However, if the structure is incomplete (an opaque struct/union)
11086 then suppress creating a symbol table entry for it since gdb only
11087 wants to find the one with the complete definition. Note that if
11088 it is complete, we just call new_symbol, which does it's own
11089 checking about whether the struct/union is anonymous or not (and
11090 suppresses creating a symbol table entry itself). */
11091
f792889a 11092static struct type *
134d01f1 11093read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11094{
e7c27a73 11095 struct objfile *objfile = cu->objfile;
c906108c
SS
11096 struct type *type;
11097 struct attribute *attr;
39cbfefa 11098 char *name;
c906108c 11099
348e048f
DE
11100 /* If the definition of this type lives in .debug_types, read that type.
11101 Don't follow DW_AT_specification though, that will take us back up
11102 the chain and we want to go down. */
45e58e77 11103 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
11104 if (attr)
11105 {
11106 struct dwarf2_cu *type_cu = cu;
11107 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9a619af0 11108
348e048f
DE
11109 /* We could just recurse on read_structure_type, but we need to call
11110 get_die_type to ensure only one type for this DIE is created.
11111 This is important, for example, because for c++ classes we need
11112 TYPE_NAME set which is only done by new_symbol. Blech. */
11113 type = read_type_die (type_die, type_cu);
9dc481d3
DE
11114
11115 /* TYPE_CU may not be the same as CU.
11116 Ensure TYPE is recorded in CU's type_hash table. */
348e048f
DE
11117 return set_die_type (die, type, cu);
11118 }
11119
c0dd20ea 11120 type = alloc_type (objfile);
c906108c 11121 INIT_CPLUS_SPECIFIC (type);
93311388 11122
39cbfefa
DJ
11123 name = dwarf2_name (die, cu);
11124 if (name != NULL)
c906108c 11125 {
987504bb
JJ
11126 if (cu->language == language_cplus
11127 || cu->language == language_java)
63d06c5c 11128 {
3da10d80
KS
11129 char *full_name = (char *) dwarf2_full_name (name, die, cu);
11130
11131 /* dwarf2_full_name might have already finished building the DIE's
11132 type. If so, there is no need to continue. */
11133 if (get_die_type (die, cu) != NULL)
11134 return get_die_type (die, cu);
11135
11136 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
11137 if (die->tag == DW_TAG_structure_type
11138 || die->tag == DW_TAG_class_type)
11139 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
11140 }
11141 else
11142 {
d8151005
DJ
11143 /* The name is already allocated along with this objfile, so
11144 we don't need to duplicate it for the type. */
94af9270
KS
11145 TYPE_TAG_NAME (type) = (char *) name;
11146 if (die->tag == DW_TAG_class_type)
11147 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 11148 }
c906108c
SS
11149 }
11150
11151 if (die->tag == DW_TAG_structure_type)
11152 {
11153 TYPE_CODE (type) = TYPE_CODE_STRUCT;
11154 }
11155 else if (die->tag == DW_TAG_union_type)
11156 {
11157 TYPE_CODE (type) = TYPE_CODE_UNION;
11158 }
11159 else
11160 {
c906108c
SS
11161 TYPE_CODE (type) = TYPE_CODE_CLASS;
11162 }
11163
0cc2414c
TT
11164 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
11165 TYPE_DECLARED_CLASS (type) = 1;
11166
e142c38c 11167 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
11168 if (attr)
11169 {
11170 TYPE_LENGTH (type) = DW_UNSND (attr);
11171 }
11172 else
11173 {
11174 TYPE_LENGTH (type) = 0;
11175 }
11176
685b1105
JK
11177 if (producer_is_icc (cu))
11178 {
11179 /* ICC does not output the required DW_AT_declaration
11180 on incomplete types, but gives them a size of zero. */
11181 }
11182 else
11183 TYPE_STUB_SUPPORTED (type) = 1;
11184
dc718098 11185 if (die_is_declaration (die, cu))
876cecd0 11186 TYPE_STUB (type) = 1;
a6c727b2
DJ
11187 else if (attr == NULL && die->child == NULL
11188 && producer_is_realview (cu->producer))
11189 /* RealView does not output the required DW_AT_declaration
11190 on incomplete types. */
11191 TYPE_STUB (type) = 1;
dc718098 11192
c906108c
SS
11193 /* We need to add the type field to the die immediately so we don't
11194 infinitely recurse when dealing with pointers to the structure
0963b4bd 11195 type within the structure itself. */
1c379e20 11196 set_die_type (die, type, cu);
c906108c 11197
7e314c57
JK
11198 /* set_die_type should be already done. */
11199 set_descriptive_type (type, die, cu);
11200
c767944b
DJ
11201 return type;
11202}
11203
11204/* Finish creating a structure or union type, including filling in
11205 its members and creating a symbol for it. */
11206
11207static void
11208process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
11209{
11210 struct objfile *objfile = cu->objfile;
11211 struct die_info *child_die = die->child;
11212 struct type *type;
11213
11214 type = get_die_type (die, cu);
11215 if (type == NULL)
11216 type = read_structure_type (die, cu);
11217
e142c38c 11218 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
11219 {
11220 struct field_info fi;
11221 struct die_info *child_die;
34eaf542 11222 VEC (symbolp) *template_args = NULL;
c767944b 11223 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
11224
11225 memset (&fi, 0, sizeof (struct field_info));
11226
639d11d3 11227 child_die = die->child;
c906108c
SS
11228
11229 while (child_die && child_die->tag)
11230 {
a9a9bd0f
DC
11231 if (child_die->tag == DW_TAG_member
11232 || child_die->tag == DW_TAG_variable)
c906108c 11233 {
a9a9bd0f
DC
11234 /* NOTE: carlton/2002-11-05: A C++ static data member
11235 should be a DW_TAG_member that is a declaration, but
11236 all versions of G++ as of this writing (so through at
11237 least 3.2.1) incorrectly generate DW_TAG_variable
11238 tags for them instead. */
e7c27a73 11239 dwarf2_add_field (&fi, child_die, cu);
c906108c 11240 }
8713b1b1 11241 else if (child_die->tag == DW_TAG_subprogram)
c906108c 11242 {
0963b4bd 11243 /* C++ member function. */
e7c27a73 11244 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
11245 }
11246 else if (child_die->tag == DW_TAG_inheritance)
11247 {
11248 /* C++ base class field. */
e7c27a73 11249 dwarf2_add_field (&fi, child_die, cu);
c906108c 11250 }
98751a41
JK
11251 else if (child_die->tag == DW_TAG_typedef)
11252 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
11253 else if (child_die->tag == DW_TAG_template_type_param
11254 || child_die->tag == DW_TAG_template_value_param)
11255 {
11256 struct symbol *arg = new_symbol (child_die, NULL, cu);
11257
f1078f66
DJ
11258 if (arg != NULL)
11259 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11260 }
11261
c906108c
SS
11262 child_die = sibling_die (child_die);
11263 }
11264
34eaf542
TT
11265 /* Attach template arguments to type. */
11266 if (! VEC_empty (symbolp, template_args))
11267 {
11268 ALLOCATE_CPLUS_STRUCT_TYPE (type);
11269 TYPE_N_TEMPLATE_ARGUMENTS (type)
11270 = VEC_length (symbolp, template_args);
11271 TYPE_TEMPLATE_ARGUMENTS (type)
11272 = obstack_alloc (&objfile->objfile_obstack,
11273 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11274 * sizeof (struct symbol *)));
11275 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
11276 VEC_address (symbolp, template_args),
11277 (TYPE_N_TEMPLATE_ARGUMENTS (type)
11278 * sizeof (struct symbol *)));
11279 VEC_free (symbolp, template_args);
11280 }
11281
c906108c
SS
11282 /* Attach fields and member functions to the type. */
11283 if (fi.nfields)
e7c27a73 11284 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
11285 if (fi.nfnfields)
11286 {
e7c27a73 11287 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 11288
c5aa993b 11289 /* Get the type which refers to the base class (possibly this
c906108c 11290 class itself) which contains the vtable pointer for the current
0d564a31
DJ
11291 class from the DW_AT_containing_type attribute. This use of
11292 DW_AT_containing_type is a GNU extension. */
c906108c 11293
e142c38c 11294 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 11295 {
e7c27a73 11296 struct type *t = die_containing_type (die, cu);
c906108c
SS
11297
11298 TYPE_VPTR_BASETYPE (type) = t;
11299 if (type == t)
11300 {
c906108c
SS
11301 int i;
11302
11303 /* Our own class provides vtbl ptr. */
11304 for (i = TYPE_NFIELDS (t) - 1;
11305 i >= TYPE_N_BASECLASSES (t);
11306 --i)
11307 {
0d5cff50 11308 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 11309
1168df01 11310 if (is_vtable_name (fieldname, cu))
c906108c
SS
11311 {
11312 TYPE_VPTR_FIELDNO (type) = i;
11313 break;
11314 }
11315 }
11316
11317 /* Complain if virtual function table field not found. */
11318 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 11319 complaint (&symfile_complaints,
3e43a32a
MS
11320 _("virtual function table pointer "
11321 "not found when defining class '%s'"),
4d3c2250
KB
11322 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
11323 "");
c906108c
SS
11324 }
11325 else
11326 {
11327 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
11328 }
11329 }
f6235d4c
EZ
11330 else if (cu->producer
11331 && strncmp (cu->producer,
11332 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
11333 {
11334 /* The IBM XLC compiler does not provide direct indication
11335 of the containing type, but the vtable pointer is
11336 always named __vfp. */
11337
11338 int i;
11339
11340 for (i = TYPE_NFIELDS (type) - 1;
11341 i >= TYPE_N_BASECLASSES (type);
11342 --i)
11343 {
11344 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
11345 {
11346 TYPE_VPTR_FIELDNO (type) = i;
11347 TYPE_VPTR_BASETYPE (type) = type;
11348 break;
11349 }
11350 }
11351 }
c906108c 11352 }
98751a41
JK
11353
11354 /* Copy fi.typedef_field_list linked list elements content into the
11355 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
11356 if (fi.typedef_field_list)
11357 {
11358 int i = fi.typedef_field_list_count;
11359
a0d7a4ff 11360 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
11361 TYPE_TYPEDEF_FIELD_ARRAY (type)
11362 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
11363 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
11364
11365 /* Reverse the list order to keep the debug info elements order. */
11366 while (--i >= 0)
11367 {
11368 struct typedef_field *dest, *src;
6e70227d 11369
98751a41
JK
11370 dest = &TYPE_TYPEDEF_FIELD (type, i);
11371 src = &fi.typedef_field_list->field;
11372 fi.typedef_field_list = fi.typedef_field_list->next;
11373 *dest = *src;
11374 }
11375 }
c767944b
DJ
11376
11377 do_cleanups (back_to);
eb2a6f42
TT
11378
11379 if (HAVE_CPLUS_STRUCT (type))
11380 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 11381 }
63d06c5c 11382
bb5ed363 11383 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 11384
90aeadfc
DC
11385 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
11386 snapshots) has been known to create a die giving a declaration
11387 for a class that has, as a child, a die giving a definition for a
11388 nested class. So we have to process our children even if the
11389 current die is a declaration. Normally, of course, a declaration
11390 won't have any children at all. */
134d01f1 11391
90aeadfc
DC
11392 while (child_die != NULL && child_die->tag)
11393 {
11394 if (child_die->tag == DW_TAG_member
11395 || child_die->tag == DW_TAG_variable
34eaf542
TT
11396 || child_die->tag == DW_TAG_inheritance
11397 || child_die->tag == DW_TAG_template_value_param
11398 || child_die->tag == DW_TAG_template_type_param)
134d01f1 11399 {
90aeadfc 11400 /* Do nothing. */
134d01f1 11401 }
90aeadfc
DC
11402 else
11403 process_die (child_die, cu);
134d01f1 11404
90aeadfc 11405 child_die = sibling_die (child_die);
134d01f1
DJ
11406 }
11407
fa4028e9
JB
11408 /* Do not consider external references. According to the DWARF standard,
11409 these DIEs are identified by the fact that they have no byte_size
11410 attribute, and a declaration attribute. */
11411 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
11412 || !die_is_declaration (die, cu))
c767944b 11413 new_symbol (die, type, cu);
134d01f1
DJ
11414}
11415
11416/* Given a DW_AT_enumeration_type die, set its type. We do not
11417 complete the type's fields yet, or create any symbols. */
c906108c 11418
f792889a 11419static struct type *
134d01f1 11420read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11421{
e7c27a73 11422 struct objfile *objfile = cu->objfile;
c906108c 11423 struct type *type;
c906108c 11424 struct attribute *attr;
0114d602 11425 const char *name;
134d01f1 11426
348e048f
DE
11427 /* If the definition of this type lives in .debug_types, read that type.
11428 Don't follow DW_AT_specification though, that will take us back up
11429 the chain and we want to go down. */
45e58e77 11430 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
11431 if (attr)
11432 {
11433 struct dwarf2_cu *type_cu = cu;
11434 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9a619af0 11435
348e048f 11436 type = read_type_die (type_die, type_cu);
9dc481d3
DE
11437
11438 /* TYPE_CU may not be the same as CU.
11439 Ensure TYPE is recorded in CU's type_hash table. */
348e048f
DE
11440 return set_die_type (die, type, cu);
11441 }
11442
c906108c
SS
11443 type = alloc_type (objfile);
11444
11445 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 11446 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 11447 if (name != NULL)
0114d602 11448 TYPE_TAG_NAME (type) = (char *) name;
c906108c 11449
e142c38c 11450 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
11451 if (attr)
11452 {
11453 TYPE_LENGTH (type) = DW_UNSND (attr);
11454 }
11455 else
11456 {
11457 TYPE_LENGTH (type) = 0;
11458 }
11459
137033e9
JB
11460 /* The enumeration DIE can be incomplete. In Ada, any type can be
11461 declared as private in the package spec, and then defined only
11462 inside the package body. Such types are known as Taft Amendment
11463 Types. When another package uses such a type, an incomplete DIE
11464 may be generated by the compiler. */
02eb380e 11465 if (die_is_declaration (die, cu))
876cecd0 11466 TYPE_STUB (type) = 1;
02eb380e 11467
f792889a 11468 return set_die_type (die, type, cu);
134d01f1
DJ
11469}
11470
11471/* Given a pointer to a die which begins an enumeration, process all
11472 the dies that define the members of the enumeration, and create the
11473 symbol for the enumeration type.
11474
11475 NOTE: We reverse the order of the element list. */
11476
11477static void
11478process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
11479{
f792889a 11480 struct type *this_type;
134d01f1 11481
f792889a
DJ
11482 this_type = get_die_type (die, cu);
11483 if (this_type == NULL)
11484 this_type = read_enumeration_type (die, cu);
9dc481d3 11485
639d11d3 11486 if (die->child != NULL)
c906108c 11487 {
9dc481d3
DE
11488 struct die_info *child_die;
11489 struct symbol *sym;
11490 struct field *fields = NULL;
11491 int num_fields = 0;
11492 int unsigned_enum = 1;
11493 char *name;
cafec441
TT
11494 int flag_enum = 1;
11495 ULONGEST mask = 0;
9dc481d3 11496
639d11d3 11497 child_die = die->child;
c906108c
SS
11498 while (child_die && child_die->tag)
11499 {
11500 if (child_die->tag != DW_TAG_enumerator)
11501 {
e7c27a73 11502 process_die (child_die, cu);
c906108c
SS
11503 }
11504 else
11505 {
39cbfefa
DJ
11506 name = dwarf2_name (child_die, cu);
11507 if (name)
c906108c 11508 {
f792889a 11509 sym = new_symbol (child_die, this_type, cu);
c906108c 11510 if (SYMBOL_VALUE (sym) < 0)
cafec441
TT
11511 {
11512 unsigned_enum = 0;
11513 flag_enum = 0;
11514 }
11515 else if ((mask & SYMBOL_VALUE (sym)) != 0)
11516 flag_enum = 0;
11517 else
11518 mask |= SYMBOL_VALUE (sym);
c906108c
SS
11519
11520 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
11521 {
11522 fields = (struct field *)
11523 xrealloc (fields,
11524 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 11525 * sizeof (struct field));
c906108c
SS
11526 }
11527
3567439c 11528 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 11529 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 11530 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
11531 FIELD_BITSIZE (fields[num_fields]) = 0;
11532
11533 num_fields++;
11534 }
11535 }
11536
11537 child_die = sibling_die (child_die);
11538 }
11539
11540 if (num_fields)
11541 {
f792889a
DJ
11542 TYPE_NFIELDS (this_type) = num_fields;
11543 TYPE_FIELDS (this_type) = (struct field *)
11544 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
11545 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 11546 sizeof (struct field) * num_fields);
b8c9b27d 11547 xfree (fields);
c906108c
SS
11548 }
11549 if (unsigned_enum)
876cecd0 11550 TYPE_UNSIGNED (this_type) = 1;
cafec441
TT
11551 if (flag_enum)
11552 TYPE_FLAG_ENUM (this_type) = 1;
c906108c 11553 }
134d01f1 11554
6c83ed52
TT
11555 /* If we are reading an enum from a .debug_types unit, and the enum
11556 is a declaration, and the enum is not the signatured type in the
11557 unit, then we do not want to add a symbol for it. Adding a
11558 symbol would in some cases obscure the true definition of the
11559 enum, giving users an incomplete type when the definition is
11560 actually available. Note that we do not want to do this for all
11561 enums which are just declarations, because C++0x allows forward
11562 enum declarations. */
3019eac3 11563 if (cu->per_cu->is_debug_types
6c83ed52
TT
11564 && die_is_declaration (die, cu))
11565 {
52dc124a 11566 struct signatured_type *sig_type;
6c83ed52 11567
52dc124a 11568 sig_type
6c83ed52 11569 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
3019eac3 11570 cu->per_cu->info_or_types_section,
6c83ed52 11571 cu->per_cu->offset);
3019eac3
DE
11572 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
11573 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
11574 return;
11575 }
11576
f792889a 11577 new_symbol (die, this_type, cu);
c906108c
SS
11578}
11579
11580/* Extract all information from a DW_TAG_array_type DIE and put it in
11581 the DIE's type field. For now, this only handles one dimensional
11582 arrays. */
11583
f792889a 11584static struct type *
e7c27a73 11585read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11586{
e7c27a73 11587 struct objfile *objfile = cu->objfile;
c906108c 11588 struct die_info *child_die;
7e314c57 11589 struct type *type;
c906108c
SS
11590 struct type *element_type, *range_type, *index_type;
11591 struct type **range_types = NULL;
11592 struct attribute *attr;
11593 int ndim = 0;
11594 struct cleanup *back_to;
39cbfefa 11595 char *name;
c906108c 11596
e7c27a73 11597 element_type = die_type (die, cu);
c906108c 11598
7e314c57
JK
11599 /* The die_type call above may have already set the type for this DIE. */
11600 type = get_die_type (die, cu);
11601 if (type)
11602 return type;
11603
c906108c
SS
11604 /* Irix 6.2 native cc creates array types without children for
11605 arrays with unspecified length. */
639d11d3 11606 if (die->child == NULL)
c906108c 11607 {
46bf5051 11608 index_type = objfile_type (objfile)->builtin_int;
c906108c 11609 range_type = create_range_type (NULL, index_type, 0, -1);
f792889a
DJ
11610 type = create_array_type (NULL, element_type, range_type);
11611 return set_die_type (die, type, cu);
c906108c
SS
11612 }
11613
11614 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 11615 child_die = die->child;
c906108c
SS
11616 while (child_die && child_die->tag)
11617 {
11618 if (child_die->tag == DW_TAG_subrange_type)
11619 {
f792889a 11620 struct type *child_type = read_type_die (child_die, cu);
9a619af0 11621
f792889a 11622 if (child_type != NULL)
a02abb62 11623 {
0963b4bd
MS
11624 /* The range type was succesfully read. Save it for the
11625 array type creation. */
a02abb62
JB
11626 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
11627 {
11628 range_types = (struct type **)
11629 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
11630 * sizeof (struct type *));
11631 if (ndim == 0)
11632 make_cleanup (free_current_contents, &range_types);
11633 }
f792889a 11634 range_types[ndim++] = child_type;
a02abb62 11635 }
c906108c
SS
11636 }
11637 child_die = sibling_die (child_die);
11638 }
11639
11640 /* Dwarf2 dimensions are output from left to right, create the
11641 necessary array types in backwards order. */
7ca2d3a3 11642
c906108c 11643 type = element_type;
7ca2d3a3
DL
11644
11645 if (read_array_order (die, cu) == DW_ORD_col_major)
11646 {
11647 int i = 0;
9a619af0 11648
7ca2d3a3
DL
11649 while (i < ndim)
11650 type = create_array_type (NULL, type, range_types[i++]);
11651 }
11652 else
11653 {
11654 while (ndim-- > 0)
11655 type = create_array_type (NULL, type, range_types[ndim]);
11656 }
c906108c 11657
f5f8a009
EZ
11658 /* Understand Dwarf2 support for vector types (like they occur on
11659 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
11660 array type. This is not part of the Dwarf2/3 standard yet, but a
11661 custom vendor extension. The main difference between a regular
11662 array and the vector variant is that vectors are passed by value
11663 to functions. */
e142c38c 11664 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 11665 if (attr)
ea37ba09 11666 make_vector_type (type);
f5f8a009 11667
dbc98a8b
KW
11668 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
11669 implementation may choose to implement triple vectors using this
11670 attribute. */
11671 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
11672 if (attr)
11673 {
11674 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
11675 TYPE_LENGTH (type) = DW_UNSND (attr);
11676 else
3e43a32a
MS
11677 complaint (&symfile_complaints,
11678 _("DW_AT_byte_size for array type smaller "
11679 "than the total size of elements"));
dbc98a8b
KW
11680 }
11681
39cbfefa
DJ
11682 name = dwarf2_name (die, cu);
11683 if (name)
11684 TYPE_NAME (type) = name;
6e70227d 11685
0963b4bd 11686 /* Install the type in the die. */
7e314c57
JK
11687 set_die_type (die, type, cu);
11688
11689 /* set_die_type should be already done. */
b4ba55a1
JB
11690 set_descriptive_type (type, die, cu);
11691
c906108c
SS
11692 do_cleanups (back_to);
11693
7e314c57 11694 return type;
c906108c
SS
11695}
11696
7ca2d3a3 11697static enum dwarf_array_dim_ordering
6e70227d 11698read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
11699{
11700 struct attribute *attr;
11701
11702 attr = dwarf2_attr (die, DW_AT_ordering, cu);
11703
11704 if (attr) return DW_SND (attr);
11705
0963b4bd
MS
11706 /* GNU F77 is a special case, as at 08/2004 array type info is the
11707 opposite order to the dwarf2 specification, but data is still
11708 laid out as per normal fortran.
7ca2d3a3 11709
0963b4bd
MS
11710 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
11711 version checking. */
7ca2d3a3 11712
905e0470
PM
11713 if (cu->language == language_fortran
11714 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
11715 {
11716 return DW_ORD_row_major;
11717 }
11718
6e70227d 11719 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
11720 {
11721 case array_column_major:
11722 return DW_ORD_col_major;
11723 case array_row_major:
11724 default:
11725 return DW_ORD_row_major;
11726 };
11727}
11728
72019c9c 11729/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 11730 the DIE's type field. */
72019c9c 11731
f792889a 11732static struct type *
72019c9c
GM
11733read_set_type (struct die_info *die, struct dwarf2_cu *cu)
11734{
7e314c57
JK
11735 struct type *domain_type, *set_type;
11736 struct attribute *attr;
f792889a 11737
7e314c57
JK
11738 domain_type = die_type (die, cu);
11739
11740 /* The die_type call above may have already set the type for this DIE. */
11741 set_type = get_die_type (die, cu);
11742 if (set_type)
11743 return set_type;
11744
11745 set_type = create_set_type (NULL, domain_type);
11746
11747 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
11748 if (attr)
11749 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 11750
f792889a 11751 return set_die_type (die, set_type, cu);
72019c9c 11752}
7ca2d3a3 11753
0971de02
TT
11754/* A helper for read_common_block that creates a locexpr baton.
11755 SYM is the symbol which we are marking as computed.
11756 COMMON_DIE is the DIE for the common block.
11757 COMMON_LOC is the location expression attribute for the common
11758 block itself.
11759 MEMBER_LOC is the location expression attribute for the particular
11760 member of the common block that we are processing.
11761 CU is the CU from which the above come. */
11762
11763static void
11764mark_common_block_symbol_computed (struct symbol *sym,
11765 struct die_info *common_die,
11766 struct attribute *common_loc,
11767 struct attribute *member_loc,
11768 struct dwarf2_cu *cu)
11769{
11770 struct objfile *objfile = dwarf2_per_objfile->objfile;
11771 struct dwarf2_locexpr_baton *baton;
11772 gdb_byte *ptr;
11773 unsigned int cu_off;
11774 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
11775 LONGEST offset = 0;
11776
11777 gdb_assert (common_loc && member_loc);
11778 gdb_assert (attr_form_is_block (common_loc));
11779 gdb_assert (attr_form_is_block (member_loc)
11780 || attr_form_is_constant (member_loc));
11781
11782 baton = obstack_alloc (&objfile->objfile_obstack,
11783 sizeof (struct dwarf2_locexpr_baton));
11784 baton->per_cu = cu->per_cu;
11785 gdb_assert (baton->per_cu);
11786
11787 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
11788
11789 if (attr_form_is_constant (member_loc))
11790 {
11791 offset = dwarf2_get_attr_constant_value (member_loc, 0);
11792 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
11793 }
11794 else
11795 baton->size += DW_BLOCK (member_loc)->size;
11796
11797 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
11798 baton->data = ptr;
11799
11800 *ptr++ = DW_OP_call4;
11801 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
11802 store_unsigned_integer (ptr, 4, byte_order, cu_off);
11803 ptr += 4;
11804
11805 if (attr_form_is_constant (member_loc))
11806 {
11807 *ptr++ = DW_OP_addr;
11808 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
11809 ptr += cu->header.addr_size;
11810 }
11811 else
11812 {
11813 /* We have to copy the data here, because DW_OP_call4 will only
11814 use a DW_AT_location attribute. */
11815 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
11816 ptr += DW_BLOCK (member_loc)->size;
11817 }
11818
11819 *ptr++ = DW_OP_plus;
11820 gdb_assert (ptr - baton->data == baton->size);
11821
11822 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11823 SYMBOL_LOCATION_BATON (sym) = baton;
11824 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11825}
11826
4357ac6c
TT
11827/* Create appropriate locally-scoped variables for all the
11828 DW_TAG_common_block entries. Also create a struct common_block
11829 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
11830 is used to sepate the common blocks name namespace from regular
11831 variable names. */
c906108c
SS
11832
11833static void
e7c27a73 11834read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11835{
0971de02
TT
11836 struct attribute *attr;
11837
11838 attr = dwarf2_attr (die, DW_AT_location, cu);
11839 if (attr)
11840 {
11841 /* Support the .debug_loc offsets. */
11842 if (attr_form_is_block (attr))
11843 {
11844 /* Ok. */
11845 }
11846 else if (attr_form_is_section_offset (attr))
11847 {
11848 dwarf2_complex_location_expr_complaint ();
11849 attr = NULL;
11850 }
11851 else
11852 {
11853 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
11854 "common block member");
11855 attr = NULL;
11856 }
11857 }
11858
639d11d3 11859 if (die->child != NULL)
c906108c 11860 {
4357ac6c
TT
11861 struct objfile *objfile = cu->objfile;
11862 struct die_info *child_die;
11863 size_t n_entries = 0, size;
11864 struct common_block *common_block;
11865 struct symbol *sym;
74ac6d43 11866
4357ac6c
TT
11867 for (child_die = die->child;
11868 child_die && child_die->tag;
11869 child_die = sibling_die (child_die))
11870 ++n_entries;
11871
11872 size = (sizeof (struct common_block)
11873 + (n_entries - 1) * sizeof (struct symbol *));
11874 common_block = obstack_alloc (&objfile->objfile_obstack, size);
11875 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
11876 common_block->n_entries = 0;
11877
11878 for (child_die = die->child;
11879 child_die && child_die->tag;
11880 child_die = sibling_die (child_die))
11881 {
11882 /* Create the symbol in the DW_TAG_common_block block in the current
11883 symbol scope. */
e7c27a73 11884 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
11885 if (sym != NULL)
11886 {
11887 struct attribute *member_loc;
11888
11889 common_block->contents[common_block->n_entries++] = sym;
11890
11891 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
11892 cu);
11893 if (member_loc)
11894 {
11895 /* GDB has handled this for a long time, but it is
11896 not specified by DWARF. It seems to have been
11897 emitted by gfortran at least as recently as:
11898 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
11899 complaint (&symfile_complaints,
11900 _("Variable in common block has "
11901 "DW_AT_data_member_location "
11902 "- DIE at 0x%x [in module %s]"),
11903 child_die->offset.sect_off, cu->objfile->name);
11904
11905 if (attr_form_is_section_offset (member_loc))
11906 dwarf2_complex_location_expr_complaint ();
11907 else if (attr_form_is_constant (member_loc)
11908 || attr_form_is_block (member_loc))
11909 {
11910 if (attr)
11911 mark_common_block_symbol_computed (sym, die, attr,
11912 member_loc, cu);
11913 }
11914 else
11915 dwarf2_complex_location_expr_complaint ();
11916 }
11917 }
c906108c 11918 }
4357ac6c
TT
11919
11920 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
11921 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
11922 }
11923}
11924
0114d602 11925/* Create a type for a C++ namespace. */
d9fa45fe 11926
0114d602
DJ
11927static struct type *
11928read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 11929{
e7c27a73 11930 struct objfile *objfile = cu->objfile;
0114d602 11931 const char *previous_prefix, *name;
9219021c 11932 int is_anonymous;
0114d602
DJ
11933 struct type *type;
11934
11935 /* For extensions, reuse the type of the original namespace. */
11936 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
11937 {
11938 struct die_info *ext_die;
11939 struct dwarf2_cu *ext_cu = cu;
9a619af0 11940
0114d602
DJ
11941 ext_die = dwarf2_extension (die, &ext_cu);
11942 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
11943
11944 /* EXT_CU may not be the same as CU.
11945 Ensure TYPE is recorded in CU's type_hash table. */
0114d602
DJ
11946 return set_die_type (die, type, cu);
11947 }
9219021c 11948
e142c38c 11949 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
11950
11951 /* Now build the name of the current namespace. */
11952
0114d602
DJ
11953 previous_prefix = determine_prefix (die, cu);
11954 if (previous_prefix[0] != '\0')
11955 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 11956 previous_prefix, name, 0, cu);
0114d602
DJ
11957
11958 /* Create the type. */
11959 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
11960 objfile);
11961 TYPE_NAME (type) = (char *) name;
11962 TYPE_TAG_NAME (type) = TYPE_NAME (type);
11963
60531b24 11964 return set_die_type (die, type, cu);
0114d602
DJ
11965}
11966
11967/* Read a C++ namespace. */
11968
11969static void
11970read_namespace (struct die_info *die, struct dwarf2_cu *cu)
11971{
11972 struct objfile *objfile = cu->objfile;
0114d602 11973 int is_anonymous;
9219021c 11974
5c4e30ca
DC
11975 /* Add a symbol associated to this if we haven't seen the namespace
11976 before. Also, add a using directive if it's an anonymous
11977 namespace. */
9219021c 11978
f2f0e013 11979 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
11980 {
11981 struct type *type;
11982
0114d602 11983 type = read_type_die (die, cu);
e7c27a73 11984 new_symbol (die, type, cu);
5c4e30ca 11985
e8e80198 11986 namespace_name (die, &is_anonymous, cu);
5c4e30ca 11987 if (is_anonymous)
0114d602
DJ
11988 {
11989 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 11990
c0cc3a76 11991 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
32019081 11992 NULL, NULL, &objfile->objfile_obstack);
0114d602 11993 }
5c4e30ca 11994 }
9219021c 11995
639d11d3 11996 if (die->child != NULL)
d9fa45fe 11997 {
639d11d3 11998 struct die_info *child_die = die->child;
6e70227d 11999
d9fa45fe
DC
12000 while (child_die && child_die->tag)
12001 {
e7c27a73 12002 process_die (child_die, cu);
d9fa45fe
DC
12003 child_die = sibling_die (child_die);
12004 }
12005 }
38d518c9
EZ
12006}
12007
f55ee35c
JK
12008/* Read a Fortran module as type. This DIE can be only a declaration used for
12009 imported module. Still we need that type as local Fortran "use ... only"
12010 declaration imports depend on the created type in determine_prefix. */
12011
12012static struct type *
12013read_module_type (struct die_info *die, struct dwarf2_cu *cu)
12014{
12015 struct objfile *objfile = cu->objfile;
12016 char *module_name;
12017 struct type *type;
12018
12019 module_name = dwarf2_name (die, cu);
12020 if (!module_name)
3e43a32a
MS
12021 complaint (&symfile_complaints,
12022 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 12023 die->offset.sect_off);
f55ee35c
JK
12024 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
12025
12026 /* determine_prefix uses TYPE_TAG_NAME. */
12027 TYPE_TAG_NAME (type) = TYPE_NAME (type);
12028
12029 return set_die_type (die, type, cu);
12030}
12031
5d7cb8df
JK
12032/* Read a Fortran module. */
12033
12034static void
12035read_module (struct die_info *die, struct dwarf2_cu *cu)
12036{
12037 struct die_info *child_die = die->child;
12038
5d7cb8df
JK
12039 while (child_die && child_die->tag)
12040 {
12041 process_die (child_die, cu);
12042 child_die = sibling_die (child_die);
12043 }
12044}
12045
38d518c9
EZ
12046/* Return the name of the namespace represented by DIE. Set
12047 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
12048 namespace. */
12049
12050static const char *
e142c38c 12051namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
12052{
12053 struct die_info *current_die;
12054 const char *name = NULL;
12055
12056 /* Loop through the extensions until we find a name. */
12057
12058 for (current_die = die;
12059 current_die != NULL;
f2f0e013 12060 current_die = dwarf2_extension (die, &cu))
38d518c9 12061 {
e142c38c 12062 name = dwarf2_name (current_die, cu);
38d518c9
EZ
12063 if (name != NULL)
12064 break;
12065 }
12066
12067 /* Is it an anonymous namespace? */
12068
12069 *is_anonymous = (name == NULL);
12070 if (*is_anonymous)
2b1dbab0 12071 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
12072
12073 return name;
d9fa45fe
DC
12074}
12075
c906108c
SS
12076/* Extract all information from a DW_TAG_pointer_type DIE and add to
12077 the user defined type vector. */
12078
f792889a 12079static struct type *
e7c27a73 12080read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12081{
5e2b427d 12082 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 12083 struct comp_unit_head *cu_header = &cu->header;
c906108c 12084 struct type *type;
8b2dbe47
KB
12085 struct attribute *attr_byte_size;
12086 struct attribute *attr_address_class;
12087 int byte_size, addr_class;
7e314c57
JK
12088 struct type *target_type;
12089
12090 target_type = die_type (die, cu);
c906108c 12091
7e314c57
JK
12092 /* The die_type call above may have already set the type for this DIE. */
12093 type = get_die_type (die, cu);
12094 if (type)
12095 return type;
12096
12097 type = lookup_pointer_type (target_type);
8b2dbe47 12098
e142c38c 12099 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
12100 if (attr_byte_size)
12101 byte_size = DW_UNSND (attr_byte_size);
c906108c 12102 else
8b2dbe47
KB
12103 byte_size = cu_header->addr_size;
12104
e142c38c 12105 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
12106 if (attr_address_class)
12107 addr_class = DW_UNSND (attr_address_class);
12108 else
12109 addr_class = DW_ADDR_none;
12110
12111 /* If the pointer size or address class is different than the
12112 default, create a type variant marked as such and set the
12113 length accordingly. */
12114 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 12115 {
5e2b427d 12116 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
12117 {
12118 int type_flags;
12119
849957d9 12120 type_flags = gdbarch_address_class_type_flags
5e2b427d 12121 (gdbarch, byte_size, addr_class);
876cecd0
TT
12122 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
12123 == 0);
8b2dbe47
KB
12124 type = make_type_with_address_space (type, type_flags);
12125 }
12126 else if (TYPE_LENGTH (type) != byte_size)
12127 {
3e43a32a
MS
12128 complaint (&symfile_complaints,
12129 _("invalid pointer size %d"), byte_size);
8b2dbe47 12130 }
6e70227d 12131 else
9a619af0
MS
12132 {
12133 /* Should we also complain about unhandled address classes? */
12134 }
c906108c 12135 }
8b2dbe47
KB
12136
12137 TYPE_LENGTH (type) = byte_size;
f792889a 12138 return set_die_type (die, type, cu);
c906108c
SS
12139}
12140
12141/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
12142 the user defined type vector. */
12143
f792889a 12144static struct type *
e7c27a73 12145read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
12146{
12147 struct type *type;
12148 struct type *to_type;
12149 struct type *domain;
12150
e7c27a73
DJ
12151 to_type = die_type (die, cu);
12152 domain = die_containing_type (die, cu);
0d5de010 12153
7e314c57
JK
12154 /* The calls above may have already set the type for this DIE. */
12155 type = get_die_type (die, cu);
12156 if (type)
12157 return type;
12158
0d5de010
DJ
12159 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
12160 type = lookup_methodptr_type (to_type);
12161 else
12162 type = lookup_memberptr_type (to_type, domain);
c906108c 12163
f792889a 12164 return set_die_type (die, type, cu);
c906108c
SS
12165}
12166
12167/* Extract all information from a DW_TAG_reference_type DIE and add to
12168 the user defined type vector. */
12169
f792889a 12170static struct type *
e7c27a73 12171read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12172{
e7c27a73 12173 struct comp_unit_head *cu_header = &cu->header;
7e314c57 12174 struct type *type, *target_type;
c906108c
SS
12175 struct attribute *attr;
12176
7e314c57
JK
12177 target_type = die_type (die, cu);
12178
12179 /* The die_type call above may have already set the type for this DIE. */
12180 type = get_die_type (die, cu);
12181 if (type)
12182 return type;
12183
12184 type = lookup_reference_type (target_type);
e142c38c 12185 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12186 if (attr)
12187 {
12188 TYPE_LENGTH (type) = DW_UNSND (attr);
12189 }
12190 else
12191 {
107d2387 12192 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 12193 }
f792889a 12194 return set_die_type (die, type, cu);
c906108c
SS
12195}
12196
f792889a 12197static struct type *
e7c27a73 12198read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12199{
f792889a 12200 struct type *base_type, *cv_type;
c906108c 12201
e7c27a73 12202 base_type = die_type (die, cu);
7e314c57
JK
12203
12204 /* The die_type call above may have already set the type for this DIE. */
12205 cv_type = get_die_type (die, cu);
12206 if (cv_type)
12207 return cv_type;
12208
2f608a3a
KW
12209 /* In case the const qualifier is applied to an array type, the element type
12210 is so qualified, not the array type (section 6.7.3 of C99). */
12211 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
12212 {
12213 struct type *el_type, *inner_array;
12214
12215 base_type = copy_type (base_type);
12216 inner_array = base_type;
12217
12218 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
12219 {
12220 TYPE_TARGET_TYPE (inner_array) =
12221 copy_type (TYPE_TARGET_TYPE (inner_array));
12222 inner_array = TYPE_TARGET_TYPE (inner_array);
12223 }
12224
12225 el_type = TYPE_TARGET_TYPE (inner_array);
12226 TYPE_TARGET_TYPE (inner_array) =
12227 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
12228
12229 return set_die_type (die, base_type, cu);
12230 }
12231
f792889a
DJ
12232 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
12233 return set_die_type (die, cv_type, cu);
c906108c
SS
12234}
12235
f792889a 12236static struct type *
e7c27a73 12237read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12238{
f792889a 12239 struct type *base_type, *cv_type;
c906108c 12240
e7c27a73 12241 base_type = die_type (die, cu);
7e314c57
JK
12242
12243 /* The die_type call above may have already set the type for this DIE. */
12244 cv_type = get_die_type (die, cu);
12245 if (cv_type)
12246 return cv_type;
12247
f792889a
DJ
12248 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
12249 return set_die_type (die, cv_type, cu);
c906108c
SS
12250}
12251
12252/* Extract all information from a DW_TAG_string_type DIE and add to
12253 the user defined type vector. It isn't really a user defined type,
12254 but it behaves like one, with other DIE's using an AT_user_def_type
12255 attribute to reference it. */
12256
f792889a 12257static struct type *
e7c27a73 12258read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12259{
e7c27a73 12260 struct objfile *objfile = cu->objfile;
3b7538c0 12261 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12262 struct type *type, *range_type, *index_type, *char_type;
12263 struct attribute *attr;
12264 unsigned int length;
12265
e142c38c 12266 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
12267 if (attr)
12268 {
12269 length = DW_UNSND (attr);
12270 }
12271 else
12272 {
0963b4bd 12273 /* Check for the DW_AT_byte_size attribute. */
e142c38c 12274 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
12275 if (attr)
12276 {
12277 length = DW_UNSND (attr);
12278 }
12279 else
12280 {
12281 length = 1;
12282 }
c906108c 12283 }
6ccb9162 12284
46bf5051 12285 index_type = objfile_type (objfile)->builtin_int;
c906108c 12286 range_type = create_range_type (NULL, index_type, 1, length);
3b7538c0
UW
12287 char_type = language_string_char_type (cu->language_defn, gdbarch);
12288 type = create_string_type (NULL, char_type, range_type);
6ccb9162 12289
f792889a 12290 return set_die_type (die, type, cu);
c906108c
SS
12291}
12292
12293/* Handle DIES due to C code like:
12294
12295 struct foo
c5aa993b
JM
12296 {
12297 int (*funcp)(int a, long l);
12298 int b;
12299 };
c906108c 12300
0963b4bd 12301 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 12302
f792889a 12303static struct type *
e7c27a73 12304read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12305{
bb5ed363 12306 struct objfile *objfile = cu->objfile;
0963b4bd
MS
12307 struct type *type; /* Type that this function returns. */
12308 struct type *ftype; /* Function that returns above type. */
c906108c
SS
12309 struct attribute *attr;
12310
e7c27a73 12311 type = die_type (die, cu);
7e314c57
JK
12312
12313 /* The die_type call above may have already set the type for this DIE. */
12314 ftype = get_die_type (die, cu);
12315 if (ftype)
12316 return ftype;
12317
0c8b41f1 12318 ftype = lookup_function_type (type);
c906108c 12319
5b8101ae 12320 /* All functions in C++, Pascal and Java have prototypes. */
e142c38c 12321 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
c906108c 12322 if ((attr && (DW_UNSND (attr) != 0))
987504bb 12323 || cu->language == language_cplus
5b8101ae
PM
12324 || cu->language == language_java
12325 || cu->language == language_pascal)
876cecd0 12326 TYPE_PROTOTYPED (ftype) = 1;
a6c727b2
DJ
12327 else if (producer_is_realview (cu->producer))
12328 /* RealView does not emit DW_AT_prototyped. We can not
12329 distinguish prototyped and unprototyped functions; default to
12330 prototyped, since that is more common in modern code (and
12331 RealView warns about unprototyped functions). */
12332 TYPE_PROTOTYPED (ftype) = 1;
c906108c 12333
c055b101
CV
12334 /* Store the calling convention in the type if it's available in
12335 the subroutine die. Otherwise set the calling convention to
12336 the default value DW_CC_normal. */
12337 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
12338 if (attr)
12339 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
12340 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
12341 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
12342 else
12343 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2
GM
12344
12345 /* We need to add the subroutine type to the die immediately so
12346 we don't infinitely recurse when dealing with parameters
0963b4bd 12347 declared as the same subroutine type. */
76c10ea2 12348 set_die_type (die, ftype, cu);
6e70227d 12349
639d11d3 12350 if (die->child != NULL)
c906108c 12351 {
bb5ed363 12352 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 12353 struct die_info *child_die;
8072405b 12354 int nparams, iparams;
c906108c
SS
12355
12356 /* Count the number of parameters.
12357 FIXME: GDB currently ignores vararg functions, but knows about
12358 vararg member functions. */
8072405b 12359 nparams = 0;
639d11d3 12360 child_die = die->child;
c906108c
SS
12361 while (child_die && child_die->tag)
12362 {
12363 if (child_die->tag == DW_TAG_formal_parameter)
12364 nparams++;
12365 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 12366 TYPE_VARARGS (ftype) = 1;
c906108c
SS
12367 child_die = sibling_die (child_die);
12368 }
12369
12370 /* Allocate storage for parameters and fill them in. */
12371 TYPE_NFIELDS (ftype) = nparams;
12372 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 12373 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 12374
8072405b
JK
12375 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
12376 even if we error out during the parameters reading below. */
12377 for (iparams = 0; iparams < nparams; iparams++)
12378 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
12379
12380 iparams = 0;
639d11d3 12381 child_die = die->child;
c906108c
SS
12382 while (child_die && child_die->tag)
12383 {
12384 if (child_die->tag == DW_TAG_formal_parameter)
12385 {
3ce3b1ba
PA
12386 struct type *arg_type;
12387
12388 /* DWARF version 2 has no clean way to discern C++
12389 static and non-static member functions. G++ helps
12390 GDB by marking the first parameter for non-static
12391 member functions (which is the this pointer) as
12392 artificial. We pass this information to
12393 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
12394
12395 DWARF version 3 added DW_AT_object_pointer, which GCC
12396 4.5 does not yet generate. */
e142c38c 12397 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
12398 if (attr)
12399 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
12400 else
418835cc
KS
12401 {
12402 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
12403
12404 /* GCC/43521: In java, the formal parameter
12405 "this" is sometimes not marked with DW_AT_artificial. */
12406 if (cu->language == language_java)
12407 {
12408 const char *name = dwarf2_name (child_die, cu);
9a619af0 12409
418835cc
KS
12410 if (name && !strcmp (name, "this"))
12411 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
12412 }
12413 }
3ce3b1ba
PA
12414 arg_type = die_type (child_die, cu);
12415
12416 /* RealView does not mark THIS as const, which the testsuite
12417 expects. GCC marks THIS as const in method definitions,
12418 but not in the class specifications (GCC PR 43053). */
12419 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
12420 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
12421 {
12422 int is_this = 0;
12423 struct dwarf2_cu *arg_cu = cu;
12424 const char *name = dwarf2_name (child_die, cu);
12425
12426 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
12427 if (attr)
12428 {
12429 /* If the compiler emits this, use it. */
12430 if (follow_die_ref (die, attr, &arg_cu) == child_die)
12431 is_this = 1;
12432 }
12433 else if (name && strcmp (name, "this") == 0)
12434 /* Function definitions will have the argument names. */
12435 is_this = 1;
12436 else if (name == NULL && iparams == 0)
12437 /* Declarations may not have the names, so like
12438 elsewhere in GDB, assume an artificial first
12439 argument is "this". */
12440 is_this = 1;
12441
12442 if (is_this)
12443 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
12444 arg_type, 0);
12445 }
12446
12447 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
12448 iparams++;
12449 }
12450 child_die = sibling_die (child_die);
12451 }
12452 }
12453
76c10ea2 12454 return ftype;
c906108c
SS
12455}
12456
f792889a 12457static struct type *
e7c27a73 12458read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12459{
e7c27a73 12460 struct objfile *objfile = cu->objfile;
0114d602 12461 const char *name = NULL;
3c8e0968 12462 struct type *this_type, *target_type;
c906108c 12463
94af9270 12464 name = dwarf2_full_name (NULL, die, cu);
f792889a 12465 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602
DJ
12466 TYPE_FLAG_TARGET_STUB, NULL, objfile);
12467 TYPE_NAME (this_type) = (char *) name;
f792889a 12468 set_die_type (die, this_type, cu);
3c8e0968
DE
12469 target_type = die_type (die, cu);
12470 if (target_type != this_type)
12471 TYPE_TARGET_TYPE (this_type) = target_type;
12472 else
12473 {
12474 /* Self-referential typedefs are, it seems, not allowed by the DWARF
12475 spec and cause infinite loops in GDB. */
12476 complaint (&symfile_complaints,
12477 _("Self-referential DW_TAG_typedef "
12478 "- DIE at 0x%x [in module %s]"),
b64f50a1 12479 die->offset.sect_off, objfile->name);
3c8e0968
DE
12480 TYPE_TARGET_TYPE (this_type) = NULL;
12481 }
f792889a 12482 return this_type;
c906108c
SS
12483}
12484
12485/* Find a representation of a given base type and install
12486 it in the TYPE field of the die. */
12487
f792889a 12488static struct type *
e7c27a73 12489read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12490{
e7c27a73 12491 struct objfile *objfile = cu->objfile;
c906108c
SS
12492 struct type *type;
12493 struct attribute *attr;
12494 int encoding = 0, size = 0;
39cbfefa 12495 char *name;
6ccb9162
UW
12496 enum type_code code = TYPE_CODE_INT;
12497 int type_flags = 0;
12498 struct type *target_type = NULL;
c906108c 12499
e142c38c 12500 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
12501 if (attr)
12502 {
12503 encoding = DW_UNSND (attr);
12504 }
e142c38c 12505 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12506 if (attr)
12507 {
12508 size = DW_UNSND (attr);
12509 }
39cbfefa 12510 name = dwarf2_name (die, cu);
6ccb9162 12511 if (!name)
c906108c 12512 {
6ccb9162
UW
12513 complaint (&symfile_complaints,
12514 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 12515 }
6ccb9162
UW
12516
12517 switch (encoding)
c906108c 12518 {
6ccb9162
UW
12519 case DW_ATE_address:
12520 /* Turn DW_ATE_address into a void * pointer. */
12521 code = TYPE_CODE_PTR;
12522 type_flags |= TYPE_FLAG_UNSIGNED;
12523 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
12524 break;
12525 case DW_ATE_boolean:
12526 code = TYPE_CODE_BOOL;
12527 type_flags |= TYPE_FLAG_UNSIGNED;
12528 break;
12529 case DW_ATE_complex_float:
12530 code = TYPE_CODE_COMPLEX;
12531 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
12532 break;
12533 case DW_ATE_decimal_float:
12534 code = TYPE_CODE_DECFLOAT;
12535 break;
12536 case DW_ATE_float:
12537 code = TYPE_CODE_FLT;
12538 break;
12539 case DW_ATE_signed:
12540 break;
12541 case DW_ATE_unsigned:
12542 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
12543 if (cu->language == language_fortran
12544 && name
12545 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
12546 code = TYPE_CODE_CHAR;
6ccb9162
UW
12547 break;
12548 case DW_ATE_signed_char:
6e70227d 12549 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
12550 || cu->language == language_pascal
12551 || cu->language == language_fortran)
6ccb9162
UW
12552 code = TYPE_CODE_CHAR;
12553 break;
12554 case DW_ATE_unsigned_char:
868a0084 12555 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
12556 || cu->language == language_pascal
12557 || cu->language == language_fortran)
6ccb9162
UW
12558 code = TYPE_CODE_CHAR;
12559 type_flags |= TYPE_FLAG_UNSIGNED;
12560 break;
75079b2b
TT
12561 case DW_ATE_UTF:
12562 /* We just treat this as an integer and then recognize the
12563 type by name elsewhere. */
12564 break;
12565
6ccb9162
UW
12566 default:
12567 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
12568 dwarf_type_encoding_name (encoding));
12569 break;
c906108c 12570 }
6ccb9162 12571
0114d602
DJ
12572 type = init_type (code, size, type_flags, NULL, objfile);
12573 TYPE_NAME (type) = name;
6ccb9162
UW
12574 TYPE_TARGET_TYPE (type) = target_type;
12575
0114d602 12576 if (name && strcmp (name, "char") == 0)
876cecd0 12577 TYPE_NOSIGN (type) = 1;
0114d602 12578
f792889a 12579 return set_die_type (die, type, cu);
c906108c
SS
12580}
12581
a02abb62
JB
12582/* Read the given DW_AT_subrange DIE. */
12583
f792889a 12584static struct type *
a02abb62
JB
12585read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
12586{
12587 struct type *base_type;
12588 struct type *range_type;
12589 struct attribute *attr;
4fae6e18
JK
12590 LONGEST low, high;
12591 int low_default_is_valid;
39cbfefa 12592 char *name;
43bbcdc2 12593 LONGEST negative_mask;
e77813c8 12594
a02abb62 12595 base_type = die_type (die, cu);
953ac07e
JK
12596 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
12597 check_typedef (base_type);
a02abb62 12598
7e314c57
JK
12599 /* The die_type call above may have already set the type for this DIE. */
12600 range_type = get_die_type (die, cu);
12601 if (range_type)
12602 return range_type;
12603
4fae6e18
JK
12604 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
12605 omitting DW_AT_lower_bound. */
12606 switch (cu->language)
6e70227d 12607 {
4fae6e18
JK
12608 case language_c:
12609 case language_cplus:
12610 low = 0;
12611 low_default_is_valid = 1;
12612 break;
12613 case language_fortran:
12614 low = 1;
12615 low_default_is_valid = 1;
12616 break;
12617 case language_d:
12618 case language_java:
12619 case language_objc:
12620 low = 0;
12621 low_default_is_valid = (cu->header.version >= 4);
12622 break;
12623 case language_ada:
12624 case language_m2:
12625 case language_pascal:
a02abb62 12626 low = 1;
4fae6e18
JK
12627 low_default_is_valid = (cu->header.version >= 4);
12628 break;
12629 default:
12630 low = 0;
12631 low_default_is_valid = 0;
12632 break;
a02abb62
JB
12633 }
12634
dd5e6932
DJ
12635 /* FIXME: For variable sized arrays either of these could be
12636 a variable rather than a constant value. We'll allow it,
12637 but we don't know how to handle it. */
e142c38c 12638 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 12639 if (attr)
4fae6e18
JK
12640 low = dwarf2_get_attr_constant_value (attr, low);
12641 else if (!low_default_is_valid)
12642 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
12643 "- DIE at 0x%x [in module %s]"),
12644 die->offset.sect_off, cu->objfile->name);
a02abb62 12645
e142c38c 12646 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62 12647 if (attr)
6e70227d 12648 {
d48323d8 12649 if (attr_form_is_block (attr) || is_ref_attr (attr))
a02abb62
JB
12650 {
12651 /* GCC encodes arrays with unspecified or dynamic length
e77813c8 12652 with a DW_FORM_block1 attribute or a reference attribute.
a02abb62
JB
12653 FIXME: GDB does not yet know how to handle dynamic
12654 arrays properly, treat them as arrays with unspecified
12655 length for now.
12656
12657 FIXME: jimb/2003-09-22: GDB does not really know
12658 how to handle arrays of unspecified length
12659 either; we just represent them as zero-length
12660 arrays. Choose an appropriate upper bound given
12661 the lower bound we've computed above. */
12662 high = low - 1;
12663 }
12664 else
12665 high = dwarf2_get_attr_constant_value (attr, 1);
12666 }
e77813c8
PM
12667 else
12668 {
12669 attr = dwarf2_attr (die, DW_AT_count, cu);
12670 if (attr)
12671 {
12672 int count = dwarf2_get_attr_constant_value (attr, 1);
12673 high = low + count - 1;
12674 }
c2ff108b
JK
12675 else
12676 {
12677 /* Unspecified array length. */
12678 high = low - 1;
12679 }
e77813c8
PM
12680 }
12681
12682 /* Dwarf-2 specifications explicitly allows to create subrange types
12683 without specifying a base type.
12684 In that case, the base type must be set to the type of
12685 the lower bound, upper bound or count, in that order, if any of these
12686 three attributes references an object that has a type.
12687 If no base type is found, the Dwarf-2 specifications say that
12688 a signed integer type of size equal to the size of an address should
12689 be used.
12690 For the following C code: `extern char gdb_int [];'
12691 GCC produces an empty range DIE.
12692 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 12693 high bound or count are not yet handled by this code. */
e77813c8
PM
12694 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
12695 {
12696 struct objfile *objfile = cu->objfile;
12697 struct gdbarch *gdbarch = get_objfile_arch (objfile);
12698 int addr_size = gdbarch_addr_bit (gdbarch) /8;
12699 struct type *int_type = objfile_type (objfile)->builtin_int;
12700
12701 /* Test "int", "long int", and "long long int" objfile types,
12702 and select the first one having a size above or equal to the
12703 architecture address size. */
12704 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12705 base_type = int_type;
12706 else
12707 {
12708 int_type = objfile_type (objfile)->builtin_long;
12709 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12710 base_type = int_type;
12711 else
12712 {
12713 int_type = objfile_type (objfile)->builtin_long_long;
12714 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
12715 base_type = int_type;
12716 }
12717 }
12718 }
a02abb62 12719
6e70227d 12720 negative_mask =
43bbcdc2
PH
12721 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
12722 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
12723 low |= negative_mask;
12724 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
12725 high |= negative_mask;
12726
a02abb62
JB
12727 range_type = create_range_type (NULL, base_type, low, high);
12728
bbb0eef6
JK
12729 /* Mark arrays with dynamic length at least as an array of unspecified
12730 length. GDB could check the boundary but before it gets implemented at
12731 least allow accessing the array elements. */
d48323d8 12732 if (attr && attr_form_is_block (attr))
bbb0eef6
JK
12733 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12734
c2ff108b
JK
12735 /* Ada expects an empty array on no boundary attributes. */
12736 if (attr == NULL && cu->language != language_ada)
12737 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
12738
39cbfefa
DJ
12739 name = dwarf2_name (die, cu);
12740 if (name)
12741 TYPE_NAME (range_type) = name;
6e70227d 12742
e142c38c 12743 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
12744 if (attr)
12745 TYPE_LENGTH (range_type) = DW_UNSND (attr);
12746
7e314c57
JK
12747 set_die_type (die, range_type, cu);
12748
12749 /* set_die_type should be already done. */
b4ba55a1
JB
12750 set_descriptive_type (range_type, die, cu);
12751
7e314c57 12752 return range_type;
a02abb62 12753}
6e70227d 12754
f792889a 12755static struct type *
81a17f79
JB
12756read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
12757{
12758 struct type *type;
81a17f79 12759
81a17f79
JB
12760 /* For now, we only support the C meaning of an unspecified type: void. */
12761
0114d602
DJ
12762 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
12763 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 12764
f792889a 12765 return set_die_type (die, type, cu);
81a17f79 12766}
a02abb62 12767
639d11d3
DC
12768/* Read a single die and all its descendents. Set the die's sibling
12769 field to NULL; set other fields in the die correctly, and set all
12770 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
12771 location of the info_ptr after reading all of those dies. PARENT
12772 is the parent of the die in question. */
12773
12774static struct die_info *
dee91e82
DE
12775read_die_and_children (const struct die_reader_specs *reader,
12776 gdb_byte *info_ptr,
12777 gdb_byte **new_info_ptr,
12778 struct die_info *parent)
639d11d3
DC
12779{
12780 struct die_info *die;
fe1b8b76 12781 gdb_byte *cur_ptr;
639d11d3
DC
12782 int has_children;
12783
93311388 12784 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
1d325ec1
DJ
12785 if (die == NULL)
12786 {
12787 *new_info_ptr = cur_ptr;
12788 return NULL;
12789 }
93311388 12790 store_in_ref_table (die, reader->cu);
639d11d3
DC
12791
12792 if (has_children)
348e048f 12793 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
12794 else
12795 {
12796 die->child = NULL;
12797 *new_info_ptr = cur_ptr;
12798 }
12799
12800 die->sibling = NULL;
12801 die->parent = parent;
12802 return die;
12803}
12804
12805/* Read a die, all of its descendents, and all of its siblings; set
12806 all of the fields of all of the dies correctly. Arguments are as
12807 in read_die_and_children. */
12808
12809static struct die_info *
93311388
DE
12810read_die_and_siblings (const struct die_reader_specs *reader,
12811 gdb_byte *info_ptr,
fe1b8b76 12812 gdb_byte **new_info_ptr,
639d11d3
DC
12813 struct die_info *parent)
12814{
12815 struct die_info *first_die, *last_sibling;
fe1b8b76 12816 gdb_byte *cur_ptr;
639d11d3 12817
c906108c 12818 cur_ptr = info_ptr;
639d11d3
DC
12819 first_die = last_sibling = NULL;
12820
12821 while (1)
c906108c 12822 {
639d11d3 12823 struct die_info *die
dee91e82 12824 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 12825
1d325ec1 12826 if (die == NULL)
c906108c 12827 {
639d11d3
DC
12828 *new_info_ptr = cur_ptr;
12829 return first_die;
c906108c 12830 }
1d325ec1
DJ
12831
12832 if (!first_die)
12833 first_die = die;
c906108c 12834 else
1d325ec1
DJ
12835 last_sibling->sibling = die;
12836
12837 last_sibling = die;
c906108c 12838 }
c906108c
SS
12839}
12840
3019eac3
DE
12841/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
12842 attributes.
12843 The caller is responsible for filling in the extra attributes
12844 and updating (*DIEP)->num_attrs.
12845 Set DIEP to point to a newly allocated die with its information,
12846 except for its child, sibling, and parent fields.
12847 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388
DE
12848
12849static gdb_byte *
3019eac3
DE
12850read_full_die_1 (const struct die_reader_specs *reader,
12851 struct die_info **diep, gdb_byte *info_ptr,
12852 int *has_children, int num_extra_attrs)
93311388 12853{
b64f50a1
JK
12854 unsigned int abbrev_number, bytes_read, i;
12855 sect_offset offset;
93311388
DE
12856 struct abbrev_info *abbrev;
12857 struct die_info *die;
12858 struct dwarf2_cu *cu = reader->cu;
12859 bfd *abfd = reader->abfd;
12860
b64f50a1 12861 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
12862 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
12863 info_ptr += bytes_read;
12864 if (!abbrev_number)
12865 {
12866 *diep = NULL;
12867 *has_children = 0;
12868 return info_ptr;
12869 }
12870
433df2d4 12871 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 12872 if (!abbrev)
348e048f
DE
12873 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
12874 abbrev_number,
12875 bfd_get_filename (abfd));
12876
3019eac3 12877 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
12878 die->offset = offset;
12879 die->tag = abbrev->tag;
12880 die->abbrev = abbrev_number;
12881
3019eac3
DE
12882 /* Make the result usable.
12883 The caller needs to update num_attrs after adding the extra
12884 attributes. */
93311388
DE
12885 die->num_attrs = abbrev->num_attrs;
12886
12887 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
12888 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
12889 info_ptr);
93311388
DE
12890
12891 *diep = die;
12892 *has_children = abbrev->has_children;
12893 return info_ptr;
12894}
12895
3019eac3
DE
12896/* Read a die and all its attributes.
12897 Set DIEP to point to a newly allocated die with its information,
12898 except for its child, sibling, and parent fields.
12899 Set HAS_CHILDREN to tell whether the die has children or not. */
12900
12901static gdb_byte *
12902read_full_die (const struct die_reader_specs *reader,
12903 struct die_info **diep, gdb_byte *info_ptr,
12904 int *has_children)
12905{
12906 return read_full_die_1 (reader, diep, info_ptr, has_children, 0);
12907}
433df2d4
DE
12908\f
12909/* Abbreviation tables.
3019eac3 12910
433df2d4 12911 In DWARF version 2, the description of the debugging information is
c906108c
SS
12912 stored in a separate .debug_abbrev section. Before we read any
12913 dies from a section we read in all abbreviations and install them
433df2d4
DE
12914 in a hash table. */
12915
12916/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
12917
12918static struct abbrev_info *
12919abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
12920{
12921 struct abbrev_info *abbrev;
12922
12923 abbrev = (struct abbrev_info *)
12924 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
12925 memset (abbrev, 0, sizeof (struct abbrev_info));
12926 return abbrev;
12927}
12928
12929/* Add an abbreviation to the table. */
c906108c
SS
12930
12931static void
433df2d4
DE
12932abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
12933 unsigned int abbrev_number,
12934 struct abbrev_info *abbrev)
12935{
12936 unsigned int hash_number;
12937
12938 hash_number = abbrev_number % ABBREV_HASH_SIZE;
12939 abbrev->next = abbrev_table->abbrevs[hash_number];
12940 abbrev_table->abbrevs[hash_number] = abbrev;
12941}
dee91e82 12942
433df2d4
DE
12943/* Look up an abbrev in the table.
12944 Returns NULL if the abbrev is not found. */
12945
12946static struct abbrev_info *
12947abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
12948 unsigned int abbrev_number)
c906108c 12949{
433df2d4
DE
12950 unsigned int hash_number;
12951 struct abbrev_info *abbrev;
12952
12953 hash_number = abbrev_number % ABBREV_HASH_SIZE;
12954 abbrev = abbrev_table->abbrevs[hash_number];
12955
12956 while (abbrev)
12957 {
12958 if (abbrev->number == abbrev_number)
12959 return abbrev;
12960 abbrev = abbrev->next;
12961 }
12962 return NULL;
12963}
12964
12965/* Read in an abbrev table. */
12966
12967static struct abbrev_table *
12968abbrev_table_read_table (struct dwarf2_section_info *section,
12969 sect_offset offset)
12970{
12971 struct objfile *objfile = dwarf2_per_objfile->objfile;
12972 bfd *abfd = section->asection->owner;
12973 struct abbrev_table *abbrev_table;
fe1b8b76 12974 gdb_byte *abbrev_ptr;
c906108c
SS
12975 struct abbrev_info *cur_abbrev;
12976 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 12977 unsigned int abbrev_form;
f3dd6933
DJ
12978 struct attr_abbrev *cur_attrs;
12979 unsigned int allocated_attrs;
c906108c 12980
433df2d4 12981 abbrev_table = XMALLOC (struct abbrev_table);
f4dc4d17 12982 abbrev_table->offset = offset;
433df2d4
DE
12983 obstack_init (&abbrev_table->abbrev_obstack);
12984 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
12985 (ABBREV_HASH_SIZE
12986 * sizeof (struct abbrev_info *)));
12987 memset (abbrev_table->abbrevs, 0,
12988 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 12989
433df2d4
DE
12990 dwarf2_read_section (objfile, section);
12991 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
12992 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
12993 abbrev_ptr += bytes_read;
12994
f3dd6933
DJ
12995 allocated_attrs = ATTR_ALLOC_CHUNK;
12996 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 12997
0963b4bd 12998 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
12999 while (abbrev_number)
13000 {
433df2d4 13001 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
13002
13003 /* read in abbrev header */
13004 cur_abbrev->number = abbrev_number;
13005 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13006 abbrev_ptr += bytes_read;
13007 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
13008 abbrev_ptr += 1;
13009
13010 /* now read in declarations */
13011 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13012 abbrev_ptr += bytes_read;
13013 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13014 abbrev_ptr += bytes_read;
13015 while (abbrev_name)
13016 {
f3dd6933 13017 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 13018 {
f3dd6933
DJ
13019 allocated_attrs += ATTR_ALLOC_CHUNK;
13020 cur_attrs
13021 = xrealloc (cur_attrs, (allocated_attrs
13022 * sizeof (struct attr_abbrev)));
c906108c 13023 }
ae038cb0 13024
f3dd6933
DJ
13025 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
13026 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
13027 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13028 abbrev_ptr += bytes_read;
13029 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13030 abbrev_ptr += bytes_read;
13031 }
13032
433df2d4 13033 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
f3dd6933
DJ
13034 (cur_abbrev->num_attrs
13035 * sizeof (struct attr_abbrev)));
13036 memcpy (cur_abbrev->attrs, cur_attrs,
13037 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
13038
433df2d4 13039 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
13040
13041 /* Get next abbreviation.
13042 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
13043 always properly terminated with an abbrev number of 0.
13044 Exit loop if we encounter an abbreviation which we have
13045 already read (which means we are about to read the abbreviations
13046 for the next compile unit) or if the end of the abbreviation
13047 table is reached. */
433df2d4 13048 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
13049 break;
13050 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
13051 abbrev_ptr += bytes_read;
433df2d4 13052 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
13053 break;
13054 }
f3dd6933
DJ
13055
13056 xfree (cur_attrs);
433df2d4 13057 return abbrev_table;
c906108c
SS
13058}
13059
433df2d4 13060/* Free the resources held by ABBREV_TABLE. */
c906108c 13061
c906108c 13062static void
433df2d4 13063abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 13064{
433df2d4
DE
13065 obstack_free (&abbrev_table->abbrev_obstack, NULL);
13066 xfree (abbrev_table);
c906108c
SS
13067}
13068
f4dc4d17
DE
13069/* Same as abbrev_table_free but as a cleanup.
13070 We pass in a pointer to the pointer to the table so that we can
13071 set the pointer to NULL when we're done. It also simplifies
13072 build_type_unit_groups. */
13073
13074static void
13075abbrev_table_free_cleanup (void *table_ptr)
13076{
13077 struct abbrev_table **abbrev_table_ptr = table_ptr;
13078
13079 if (*abbrev_table_ptr != NULL)
13080 abbrev_table_free (*abbrev_table_ptr);
13081 *abbrev_table_ptr = NULL;
13082}
13083
433df2d4
DE
13084/* Read the abbrev table for CU from ABBREV_SECTION. */
13085
13086static void
13087dwarf2_read_abbrevs (struct dwarf2_cu *cu,
13088 struct dwarf2_section_info *abbrev_section)
c906108c 13089{
433df2d4
DE
13090 cu->abbrev_table =
13091 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
13092}
c906108c 13093
433df2d4 13094/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 13095
433df2d4
DE
13096static void
13097dwarf2_free_abbrev_table (void *ptr_to_cu)
13098{
13099 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 13100
433df2d4
DE
13101 abbrev_table_free (cu->abbrev_table);
13102 /* Set this to NULL so that we SEGV if we try to read it later,
13103 and also because free_comp_unit verifies this is NULL. */
13104 cu->abbrev_table = NULL;
13105}
13106\f
72bf9492
DJ
13107/* Returns nonzero if TAG represents a type that we might generate a partial
13108 symbol for. */
13109
13110static int
13111is_type_tag_for_partial (int tag)
13112{
13113 switch (tag)
13114 {
13115#if 0
13116 /* Some types that would be reasonable to generate partial symbols for,
13117 that we don't at present. */
13118 case DW_TAG_array_type:
13119 case DW_TAG_file_type:
13120 case DW_TAG_ptr_to_member_type:
13121 case DW_TAG_set_type:
13122 case DW_TAG_string_type:
13123 case DW_TAG_subroutine_type:
13124#endif
13125 case DW_TAG_base_type:
13126 case DW_TAG_class_type:
680b30c7 13127 case DW_TAG_interface_type:
72bf9492
DJ
13128 case DW_TAG_enumeration_type:
13129 case DW_TAG_structure_type:
13130 case DW_TAG_subrange_type:
13131 case DW_TAG_typedef:
13132 case DW_TAG_union_type:
13133 return 1;
13134 default:
13135 return 0;
13136 }
13137}
13138
13139/* Load all DIEs that are interesting for partial symbols into memory. */
13140
13141static struct partial_die_info *
dee91e82
DE
13142load_partial_dies (const struct die_reader_specs *reader,
13143 gdb_byte *info_ptr, int building_psymtab)
72bf9492 13144{
dee91e82 13145 struct dwarf2_cu *cu = reader->cu;
bb5ed363 13146 struct objfile *objfile = cu->objfile;
72bf9492
DJ
13147 struct partial_die_info *part_die;
13148 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
13149 struct abbrev_info *abbrev;
13150 unsigned int bytes_read;
5afb4e99 13151 unsigned int load_all = 0;
72bf9492
DJ
13152 int nesting_level = 1;
13153
13154 parent_die = NULL;
13155 last_die = NULL;
13156
7adf1e79
DE
13157 gdb_assert (cu->per_cu != NULL);
13158 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
13159 load_all = 1;
13160
72bf9492
DJ
13161 cu->partial_dies
13162 = htab_create_alloc_ex (cu->header.length / 12,
13163 partial_die_hash,
13164 partial_die_eq,
13165 NULL,
13166 &cu->comp_unit_obstack,
13167 hashtab_obstack_allocate,
13168 dummy_obstack_deallocate);
13169
13170 part_die = obstack_alloc (&cu->comp_unit_obstack,
13171 sizeof (struct partial_die_info));
13172
13173 while (1)
13174 {
13175 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
13176
13177 /* A NULL abbrev means the end of a series of children. */
13178 if (abbrev == NULL)
13179 {
13180 if (--nesting_level == 0)
13181 {
13182 /* PART_DIE was probably the last thing allocated on the
13183 comp_unit_obstack, so we could call obstack_free
13184 here. We don't do that because the waste is small,
13185 and will be cleaned up when we're done with this
13186 compilation unit. This way, we're also more robust
13187 against other users of the comp_unit_obstack. */
13188 return first_die;
13189 }
13190 info_ptr += bytes_read;
13191 last_die = parent_die;
13192 parent_die = parent_die->die_parent;
13193 continue;
13194 }
13195
98bfdba5
PA
13196 /* Check for template arguments. We never save these; if
13197 they're seen, we just mark the parent, and go on our way. */
13198 if (parent_die != NULL
13199 && cu->language == language_cplus
13200 && (abbrev->tag == DW_TAG_template_type_param
13201 || abbrev->tag == DW_TAG_template_value_param))
13202 {
13203 parent_die->has_template_arguments = 1;
13204
13205 if (!load_all)
13206 {
13207 /* We don't need a partial DIE for the template argument. */
dee91e82 13208 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
13209 continue;
13210 }
13211 }
13212
0d99eb77 13213 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
13214 Skip their other children. */
13215 if (!load_all
13216 && cu->language == language_cplus
13217 && parent_die != NULL
13218 && parent_die->tag == DW_TAG_subprogram)
13219 {
dee91e82 13220 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
13221 continue;
13222 }
13223
5afb4e99
DJ
13224 /* Check whether this DIE is interesting enough to save. Normally
13225 we would not be interested in members here, but there may be
13226 later variables referencing them via DW_AT_specification (for
13227 static members). */
13228 if (!load_all
13229 && !is_type_tag_for_partial (abbrev->tag)
72929c62 13230 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
13231 && abbrev->tag != DW_TAG_enumerator
13232 && abbrev->tag != DW_TAG_subprogram
bc30ff58 13233 && abbrev->tag != DW_TAG_lexical_block
72bf9492 13234 && abbrev->tag != DW_TAG_variable
5afb4e99 13235 && abbrev->tag != DW_TAG_namespace
f55ee35c 13236 && abbrev->tag != DW_TAG_module
95554aad
TT
13237 && abbrev->tag != DW_TAG_member
13238 && abbrev->tag != DW_TAG_imported_unit)
72bf9492
DJ
13239 {
13240 /* Otherwise we skip to the next sibling, if any. */
dee91e82 13241 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
13242 continue;
13243 }
13244
dee91e82
DE
13245 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
13246 info_ptr);
72bf9492
DJ
13247
13248 /* This two-pass algorithm for processing partial symbols has a
13249 high cost in cache pressure. Thus, handle some simple cases
13250 here which cover the majority of C partial symbols. DIEs
13251 which neither have specification tags in them, nor could have
13252 specification tags elsewhere pointing at them, can simply be
13253 processed and discarded.
13254
13255 This segment is also optional; scan_partial_symbols and
13256 add_partial_symbol will handle these DIEs if we chain
13257 them in normally. When compilers which do not emit large
13258 quantities of duplicate debug information are more common,
13259 this code can probably be removed. */
13260
13261 /* Any complete simple types at the top level (pretty much all
13262 of them, for a language without namespaces), can be processed
13263 directly. */
13264 if (parent_die == NULL
13265 && part_die->has_specification == 0
13266 && part_die->is_declaration == 0
d8228535 13267 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
13268 || part_die->tag == DW_TAG_base_type
13269 || part_die->tag == DW_TAG_subrange_type))
13270 {
13271 if (building_psymtab && part_die->name != NULL)
04a679b8 13272 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 13273 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363
DE
13274 &objfile->static_psymbols,
13275 0, (CORE_ADDR) 0, cu->language, objfile);
dee91e82 13276 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
13277 continue;
13278 }
13279
d8228535
JK
13280 /* The exception for DW_TAG_typedef with has_children above is
13281 a workaround of GCC PR debug/47510. In the case of this complaint
13282 type_name_no_tag_or_error will error on such types later.
13283
13284 GDB skipped children of DW_TAG_typedef by the shortcut above and then
13285 it could not find the child DIEs referenced later, this is checked
13286 above. In correct DWARF DW_TAG_typedef should have no children. */
13287
13288 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
13289 complaint (&symfile_complaints,
13290 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
13291 "- DIE at 0x%x [in module %s]"),
b64f50a1 13292 part_die->offset.sect_off, objfile->name);
d8228535 13293
72bf9492
DJ
13294 /* If we're at the second level, and we're an enumerator, and
13295 our parent has no specification (meaning possibly lives in a
13296 namespace elsewhere), then we can add the partial symbol now
13297 instead of queueing it. */
13298 if (part_die->tag == DW_TAG_enumerator
13299 && parent_die != NULL
13300 && parent_die->die_parent == NULL
13301 && parent_die->tag == DW_TAG_enumeration_type
13302 && parent_die->has_specification == 0)
13303 {
13304 if (part_die->name == NULL)
3e43a32a
MS
13305 complaint (&symfile_complaints,
13306 _("malformed enumerator DIE ignored"));
72bf9492 13307 else if (building_psymtab)
04a679b8 13308 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 13309 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
13310 (cu->language == language_cplus
13311 || cu->language == language_java)
bb5ed363
DE
13312 ? &objfile->global_psymbols
13313 : &objfile->static_psymbols,
13314 0, (CORE_ADDR) 0, cu->language, objfile);
72bf9492 13315
dee91e82 13316 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
13317 continue;
13318 }
13319
13320 /* We'll save this DIE so link it in. */
13321 part_die->die_parent = parent_die;
13322 part_die->die_sibling = NULL;
13323 part_die->die_child = NULL;
13324
13325 if (last_die && last_die == parent_die)
13326 last_die->die_child = part_die;
13327 else if (last_die)
13328 last_die->die_sibling = part_die;
13329
13330 last_die = part_die;
13331
13332 if (first_die == NULL)
13333 first_die = part_die;
13334
13335 /* Maybe add the DIE to the hash table. Not all DIEs that we
13336 find interesting need to be in the hash table, because we
13337 also have the parent/sibling/child chains; only those that we
13338 might refer to by offset later during partial symbol reading.
13339
13340 For now this means things that might have be the target of a
13341 DW_AT_specification, DW_AT_abstract_origin, or
13342 DW_AT_extension. DW_AT_extension will refer only to
13343 namespaces; DW_AT_abstract_origin refers to functions (and
13344 many things under the function DIE, but we do not recurse
13345 into function DIEs during partial symbol reading) and
13346 possibly variables as well; DW_AT_specification refers to
13347 declarations. Declarations ought to have the DW_AT_declaration
13348 flag. It happens that GCC forgets to put it in sometimes, but
13349 only for functions, not for types.
13350
13351 Adding more things than necessary to the hash table is harmless
13352 except for the performance cost. Adding too few will result in
5afb4e99
DJ
13353 wasted time in find_partial_die, when we reread the compilation
13354 unit with load_all_dies set. */
72bf9492 13355
5afb4e99 13356 if (load_all
72929c62 13357 || abbrev->tag == DW_TAG_constant
5afb4e99 13358 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
13359 || abbrev->tag == DW_TAG_variable
13360 || abbrev->tag == DW_TAG_namespace
13361 || part_die->is_declaration)
13362 {
13363 void **slot;
13364
13365 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 13366 part_die->offset.sect_off, INSERT);
72bf9492
DJ
13367 *slot = part_die;
13368 }
13369
13370 part_die = obstack_alloc (&cu->comp_unit_obstack,
13371 sizeof (struct partial_die_info));
13372
13373 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 13374 we have no reason to follow the children of structures; for other
98bfdba5
PA
13375 languages we have to, so that we can get at method physnames
13376 to infer fully qualified class names, for DW_AT_specification,
13377 and for C++ template arguments. For C++, we also look one level
13378 inside functions to find template arguments (if the name of the
13379 function does not already contain the template arguments).
bc30ff58
JB
13380
13381 For Ada, we need to scan the children of subprograms and lexical
13382 blocks as well because Ada allows the definition of nested
13383 entities that could be interesting for the debugger, such as
13384 nested subprograms for instance. */
72bf9492 13385 if (last_die->has_children
5afb4e99
DJ
13386 && (load_all
13387 || last_die->tag == DW_TAG_namespace
f55ee35c 13388 || last_die->tag == DW_TAG_module
72bf9492 13389 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
13390 || (cu->language == language_cplus
13391 && last_die->tag == DW_TAG_subprogram
13392 && (last_die->name == NULL
13393 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
13394 || (cu->language != language_c
13395 && (last_die->tag == DW_TAG_class_type
680b30c7 13396 || last_die->tag == DW_TAG_interface_type
72bf9492 13397 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
13398 || last_die->tag == DW_TAG_union_type))
13399 || (cu->language == language_ada
13400 && (last_die->tag == DW_TAG_subprogram
13401 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
13402 {
13403 nesting_level++;
13404 parent_die = last_die;
13405 continue;
13406 }
13407
13408 /* Otherwise we skip to the next sibling, if any. */
dee91e82 13409 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
13410
13411 /* Back to the top, do it again. */
13412 }
13413}
13414
c906108c
SS
13415/* Read a minimal amount of information into the minimal die structure. */
13416
fe1b8b76 13417static gdb_byte *
dee91e82
DE
13418read_partial_die (const struct die_reader_specs *reader,
13419 struct partial_die_info *part_die,
13420 struct abbrev_info *abbrev, unsigned int abbrev_len,
13421 gdb_byte *info_ptr)
c906108c 13422{
dee91e82 13423 struct dwarf2_cu *cu = reader->cu;
bb5ed363 13424 struct objfile *objfile = cu->objfile;
dee91e82 13425 gdb_byte *buffer = reader->buffer;
fa238c03 13426 unsigned int i;
c906108c 13427 struct attribute attr;
c5aa993b 13428 int has_low_pc_attr = 0;
c906108c 13429 int has_high_pc_attr = 0;
91da1414 13430 int high_pc_relative = 0;
c906108c 13431
72bf9492 13432 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 13433
b64f50a1 13434 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
13435
13436 info_ptr += abbrev_len;
13437
13438 if (abbrev == NULL)
13439 return info_ptr;
13440
c906108c
SS
13441 part_die->tag = abbrev->tag;
13442 part_die->has_children = abbrev->has_children;
c906108c
SS
13443
13444 for (i = 0; i < abbrev->num_attrs; ++i)
13445 {
dee91e82 13446 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
13447
13448 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 13449 partial symbol table. */
c906108c
SS
13450 switch (attr.name)
13451 {
13452 case DW_AT_name:
71c25dea
TT
13453 switch (part_die->tag)
13454 {
13455 case DW_TAG_compile_unit:
95554aad 13456 case DW_TAG_partial_unit:
348e048f 13457 case DW_TAG_type_unit:
71c25dea
TT
13458 /* Compilation units have a DW_AT_name that is a filename, not
13459 a source language identifier. */
13460 case DW_TAG_enumeration_type:
13461 case DW_TAG_enumerator:
13462 /* These tags always have simple identifiers already; no need
13463 to canonicalize them. */
13464 part_die->name = DW_STRING (&attr);
13465 break;
13466 default:
13467 part_die->name
13468 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
bb5ed363 13469 &objfile->objfile_obstack);
71c25dea
TT
13470 break;
13471 }
c906108c 13472 break;
31ef98ae 13473 case DW_AT_linkage_name:
c906108c 13474 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
13475 /* Note that both forms of linkage name might appear. We
13476 assume they will be the same, and we only store the last
13477 one we see. */
94af9270
KS
13478 if (cu->language == language_ada)
13479 part_die->name = DW_STRING (&attr);
abc72ce4 13480 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
13481 break;
13482 case DW_AT_low_pc:
13483 has_low_pc_attr = 1;
13484 part_die->lowpc = DW_ADDR (&attr);
13485 break;
13486 case DW_AT_high_pc:
13487 has_high_pc_attr = 1;
3019eac3
DE
13488 if (attr.form == DW_FORM_addr
13489 || attr.form == DW_FORM_GNU_addr_index)
91da1414
MW
13490 part_die->highpc = DW_ADDR (&attr);
13491 else
13492 {
13493 high_pc_relative = 1;
13494 part_die->highpc = DW_UNSND (&attr);
13495 }
c906108c
SS
13496 break;
13497 case DW_AT_location:
0963b4bd 13498 /* Support the .debug_loc offsets. */
8e19ed76
PS
13499 if (attr_form_is_block (&attr))
13500 {
95554aad 13501 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 13502 }
3690dd37 13503 else if (attr_form_is_section_offset (&attr))
8e19ed76 13504 {
4d3c2250 13505 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
13506 }
13507 else
13508 {
4d3c2250
KB
13509 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13510 "partial symbol information");
8e19ed76 13511 }
c906108c 13512 break;
c906108c
SS
13513 case DW_AT_external:
13514 part_die->is_external = DW_UNSND (&attr);
13515 break;
13516 case DW_AT_declaration:
13517 part_die->is_declaration = DW_UNSND (&attr);
13518 break;
13519 case DW_AT_type:
13520 part_die->has_type = 1;
13521 break;
13522 case DW_AT_abstract_origin:
13523 case DW_AT_specification:
72bf9492
DJ
13524 case DW_AT_extension:
13525 part_die->has_specification = 1;
c764a876 13526 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
13527 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13528 || cu->per_cu->is_dwz);
c906108c
SS
13529 break;
13530 case DW_AT_sibling:
13531 /* Ignore absolute siblings, they might point outside of
13532 the current compile unit. */
13533 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
13534 complaint (&symfile_complaints,
13535 _("ignoring absolute DW_AT_sibling"));
c906108c 13536 else
b64f50a1 13537 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr).sect_off;
c906108c 13538 break;
fa4028e9
JB
13539 case DW_AT_byte_size:
13540 part_die->has_byte_size = 1;
13541 break;
68511cec
CES
13542 case DW_AT_calling_convention:
13543 /* DWARF doesn't provide a way to identify a program's source-level
13544 entry point. DW_AT_calling_convention attributes are only meant
13545 to describe functions' calling conventions.
13546
13547 However, because it's a necessary piece of information in
13548 Fortran, and because DW_CC_program is the only piece of debugging
13549 information whose definition refers to a 'main program' at all,
13550 several compilers have begun marking Fortran main programs with
13551 DW_CC_program --- even when those functions use the standard
13552 calling conventions.
13553
13554 So until DWARF specifies a way to provide this information and
13555 compilers pick up the new representation, we'll support this
13556 practice. */
13557 if (DW_UNSND (&attr) == DW_CC_program
13558 && cu->language == language_fortran)
01f8c46d
JK
13559 {
13560 set_main_name (part_die->name);
13561
13562 /* As this DIE has a static linkage the name would be difficult
13563 to look up later. */
13564 language_of_main = language_fortran;
13565 }
68511cec 13566 break;
481860b3
GB
13567 case DW_AT_inline:
13568 if (DW_UNSND (&attr) == DW_INL_inlined
13569 || DW_UNSND (&attr) == DW_INL_declared_inlined)
13570 part_die->may_be_inlined = 1;
13571 break;
95554aad
TT
13572
13573 case DW_AT_import:
13574 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
13575 {
13576 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
13577 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
13578 || cu->per_cu->is_dwz);
13579 }
95554aad
TT
13580 break;
13581
c906108c
SS
13582 default:
13583 break;
13584 }
13585 }
13586
91da1414
MW
13587 if (high_pc_relative)
13588 part_die->highpc += part_die->lowpc;
13589
9373cf26
JK
13590 if (has_low_pc_attr && has_high_pc_attr)
13591 {
13592 /* When using the GNU linker, .gnu.linkonce. sections are used to
13593 eliminate duplicate copies of functions and vtables and such.
13594 The linker will arbitrarily choose one and discard the others.
13595 The AT_*_pc values for such functions refer to local labels in
13596 these sections. If the section from that file was discarded, the
13597 labels are not in the output, so the relocs get a value of 0.
13598 If this is a discarded function, mark the pc bounds as invalid,
13599 so that GDB will ignore it. */
13600 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
13601 {
bb5ed363 13602 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
13603
13604 complaint (&symfile_complaints,
13605 _("DW_AT_low_pc %s is zero "
13606 "for DIE at 0x%x [in module %s]"),
13607 paddress (gdbarch, part_die->lowpc),
b64f50a1 13608 part_die->offset.sect_off, objfile->name);
9373cf26
JK
13609 }
13610 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
13611 else if (part_die->lowpc >= part_die->highpc)
13612 {
bb5ed363 13613 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
13614
13615 complaint (&symfile_complaints,
13616 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
13617 "for DIE at 0x%x [in module %s]"),
13618 paddress (gdbarch, part_die->lowpc),
13619 paddress (gdbarch, part_die->highpc),
b64f50a1 13620 part_die->offset.sect_off, objfile->name);
9373cf26
JK
13621 }
13622 else
13623 part_die->has_pc_info = 1;
13624 }
85cbf3d3 13625
c906108c
SS
13626 return info_ptr;
13627}
13628
72bf9492
DJ
13629/* Find a cached partial DIE at OFFSET in CU. */
13630
13631static struct partial_die_info *
b64f50a1 13632find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
13633{
13634 struct partial_die_info *lookup_die = NULL;
13635 struct partial_die_info part_die;
13636
13637 part_die.offset = offset;
b64f50a1
JK
13638 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
13639 offset.sect_off);
72bf9492 13640
72bf9492
DJ
13641 return lookup_die;
13642}
13643
348e048f
DE
13644/* Find a partial DIE at OFFSET, which may or may not be in CU,
13645 except in the case of .debug_types DIEs which do not reference
13646 outside their CU (they do however referencing other types via
55f1336d 13647 DW_FORM_ref_sig8). */
72bf9492
DJ
13648
13649static struct partial_die_info *
36586728 13650find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 13651{
bb5ed363 13652 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
13653 struct dwarf2_per_cu_data *per_cu = NULL;
13654 struct partial_die_info *pd = NULL;
72bf9492 13655
36586728
TT
13656 if (offset_in_dwz == cu->per_cu->is_dwz
13657 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
13658 {
13659 pd = find_partial_die_in_comp_unit (offset, cu);
13660 if (pd != NULL)
13661 return pd;
0d99eb77
DE
13662 /* We missed recording what we needed.
13663 Load all dies and try again. */
13664 per_cu = cu->per_cu;
5afb4e99 13665 }
0d99eb77
DE
13666 else
13667 {
13668 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 13669 if (cu->per_cu->is_debug_types)
0d99eb77
DE
13670 {
13671 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
13672 " external reference to offset 0x%lx [in module %s].\n"),
13673 (long) cu->header.offset.sect_off, (long) offset.sect_off,
13674 bfd_get_filename (objfile->obfd));
13675 }
36586728
TT
13676 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
13677 objfile);
72bf9492 13678
0d99eb77
DE
13679 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
13680 load_partial_comp_unit (per_cu);
ae038cb0 13681
0d99eb77
DE
13682 per_cu->cu->last_used = 0;
13683 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13684 }
5afb4e99 13685
dee91e82
DE
13686 /* If we didn't find it, and not all dies have been loaded,
13687 load them all and try again. */
13688
5afb4e99
DJ
13689 if (pd == NULL && per_cu->load_all_dies == 0)
13690 {
5afb4e99 13691 per_cu->load_all_dies = 1;
fd820528
DE
13692
13693 /* This is nasty. When we reread the DIEs, somewhere up the call chain
13694 THIS_CU->cu may already be in use. So we can't just free it and
13695 replace its DIEs with the ones we read in. Instead, we leave those
13696 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
13697 and clobber THIS_CU->cu->partial_dies with the hash table for the new
13698 set. */
dee91e82 13699 load_partial_comp_unit (per_cu);
5afb4e99
DJ
13700
13701 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
13702 }
13703
13704 if (pd == NULL)
13705 internal_error (__FILE__, __LINE__,
3e43a32a
MS
13706 _("could not find partial DIE 0x%x "
13707 "in cache [from module %s]\n"),
b64f50a1 13708 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 13709 return pd;
72bf9492
DJ
13710}
13711
abc72ce4
DE
13712/* See if we can figure out if the class lives in a namespace. We do
13713 this by looking for a member function; its demangled name will
13714 contain namespace info, if there is any. */
13715
13716static void
13717guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
13718 struct dwarf2_cu *cu)
13719{
13720 /* NOTE: carlton/2003-10-07: Getting the info this way changes
13721 what template types look like, because the demangler
13722 frequently doesn't give the same name as the debug info. We
13723 could fix this by only using the demangled name to get the
13724 prefix (but see comment in read_structure_type). */
13725
13726 struct partial_die_info *real_pdi;
13727 struct partial_die_info *child_pdi;
13728
13729 /* If this DIE (this DIE's specification, if any) has a parent, then
13730 we should not do this. We'll prepend the parent's fully qualified
13731 name when we create the partial symbol. */
13732
13733 real_pdi = struct_pdi;
13734 while (real_pdi->has_specification)
36586728
TT
13735 real_pdi = find_partial_die (real_pdi->spec_offset,
13736 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
13737
13738 if (real_pdi->die_parent != NULL)
13739 return;
13740
13741 for (child_pdi = struct_pdi->die_child;
13742 child_pdi != NULL;
13743 child_pdi = child_pdi->die_sibling)
13744 {
13745 if (child_pdi->tag == DW_TAG_subprogram
13746 && child_pdi->linkage_name != NULL)
13747 {
13748 char *actual_class_name
13749 = language_class_name_from_physname (cu->language_defn,
13750 child_pdi->linkage_name);
13751 if (actual_class_name != NULL)
13752 {
13753 struct_pdi->name
13754 = obsavestring (actual_class_name,
13755 strlen (actual_class_name),
13756 &cu->objfile->objfile_obstack);
13757 xfree (actual_class_name);
13758 }
13759 break;
13760 }
13761 }
13762}
13763
72bf9492
DJ
13764/* Adjust PART_DIE before generating a symbol for it. This function
13765 may set the is_external flag or change the DIE's name. */
13766
13767static void
13768fixup_partial_die (struct partial_die_info *part_die,
13769 struct dwarf2_cu *cu)
13770{
abc72ce4
DE
13771 /* Once we've fixed up a die, there's no point in doing so again.
13772 This also avoids a memory leak if we were to call
13773 guess_partial_die_structure_name multiple times. */
13774 if (part_die->fixup_called)
13775 return;
13776
72bf9492
DJ
13777 /* If we found a reference attribute and the DIE has no name, try
13778 to find a name in the referred to DIE. */
13779
13780 if (part_die->name == NULL && part_die->has_specification)
13781 {
13782 struct partial_die_info *spec_die;
72bf9492 13783
36586728
TT
13784 spec_die = find_partial_die (part_die->spec_offset,
13785 part_die->spec_is_dwz, cu);
72bf9492 13786
10b3939b 13787 fixup_partial_die (spec_die, cu);
72bf9492
DJ
13788
13789 if (spec_die->name)
13790 {
13791 part_die->name = spec_die->name;
13792
13793 /* Copy DW_AT_external attribute if it is set. */
13794 if (spec_die->is_external)
13795 part_die->is_external = spec_die->is_external;
13796 }
13797 }
13798
13799 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
13800
13801 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 13802 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 13803
abc72ce4
DE
13804 /* If there is no parent die to provide a namespace, and there are
13805 children, see if we can determine the namespace from their linkage
122d1940 13806 name. */
abc72ce4 13807 if (cu->language == language_cplus
8b70b953 13808 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
13809 && part_die->die_parent == NULL
13810 && part_die->has_children
13811 && (part_die->tag == DW_TAG_class_type
13812 || part_die->tag == DW_TAG_structure_type
13813 || part_die->tag == DW_TAG_union_type))
13814 guess_partial_die_structure_name (part_die, cu);
13815
53832f31
TT
13816 /* GCC might emit a nameless struct or union that has a linkage
13817 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
13818 if (part_die->name == NULL
96408a79
SA
13819 && (part_die->tag == DW_TAG_class_type
13820 || part_die->tag == DW_TAG_interface_type
13821 || part_die->tag == DW_TAG_structure_type
13822 || part_die->tag == DW_TAG_union_type)
53832f31
TT
13823 && part_die->linkage_name != NULL)
13824 {
13825 char *demangled;
13826
13827 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
13828 if (demangled)
13829 {
96408a79
SA
13830 const char *base;
13831
13832 /* Strip any leading namespaces/classes, keep only the base name.
13833 DW_AT_name for named DIEs does not contain the prefixes. */
13834 base = strrchr (demangled, ':');
13835 if (base && base > demangled && base[-1] == ':')
13836 base++;
13837 else
13838 base = demangled;
13839
13840 part_die->name = obsavestring (base, strlen (base),
53832f31
TT
13841 &cu->objfile->objfile_obstack);
13842 xfree (demangled);
13843 }
13844 }
13845
abc72ce4 13846 part_die->fixup_called = 1;
72bf9492
DJ
13847}
13848
a8329558 13849/* Read an attribute value described by an attribute form. */
c906108c 13850
fe1b8b76 13851static gdb_byte *
dee91e82
DE
13852read_attribute_value (const struct die_reader_specs *reader,
13853 struct attribute *attr, unsigned form,
13854 gdb_byte *info_ptr)
c906108c 13855{
dee91e82
DE
13856 struct dwarf2_cu *cu = reader->cu;
13857 bfd *abfd = reader->abfd;
e7c27a73 13858 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
13859 unsigned int bytes_read;
13860 struct dwarf_block *blk;
13861
a8329558
KW
13862 attr->form = form;
13863 switch (form)
c906108c 13864 {
c906108c 13865 case DW_FORM_ref_addr:
ae411497 13866 if (cu->header.version == 2)
4568ecf9 13867 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 13868 else
4568ecf9
DE
13869 DW_UNSND (attr) = read_offset (abfd, info_ptr,
13870 &cu->header, &bytes_read);
ae411497
TT
13871 info_ptr += bytes_read;
13872 break;
36586728
TT
13873 case DW_FORM_GNU_ref_alt:
13874 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
13875 info_ptr += bytes_read;
13876 break;
ae411497 13877 case DW_FORM_addr:
e7c27a73 13878 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 13879 info_ptr += bytes_read;
c906108c
SS
13880 break;
13881 case DW_FORM_block2:
7b5a2f43 13882 blk = dwarf_alloc_block (cu);
c906108c
SS
13883 blk->size = read_2_bytes (abfd, info_ptr);
13884 info_ptr += 2;
13885 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13886 info_ptr += blk->size;
13887 DW_BLOCK (attr) = blk;
13888 break;
13889 case DW_FORM_block4:
7b5a2f43 13890 blk = dwarf_alloc_block (cu);
c906108c
SS
13891 blk->size = read_4_bytes (abfd, info_ptr);
13892 info_ptr += 4;
13893 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13894 info_ptr += blk->size;
13895 DW_BLOCK (attr) = blk;
13896 break;
13897 case DW_FORM_data2:
13898 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
13899 info_ptr += 2;
13900 break;
13901 case DW_FORM_data4:
13902 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
13903 info_ptr += 4;
13904 break;
13905 case DW_FORM_data8:
13906 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
13907 info_ptr += 8;
13908 break;
2dc7f7b3
TT
13909 case DW_FORM_sec_offset:
13910 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
13911 info_ptr += bytes_read;
13912 break;
c906108c 13913 case DW_FORM_string:
9b1c24c8 13914 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 13915 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
13916 info_ptr += bytes_read;
13917 break;
4bdf3d34 13918 case DW_FORM_strp:
36586728
TT
13919 if (!cu->per_cu->is_dwz)
13920 {
13921 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
13922 &bytes_read);
13923 DW_STRING_IS_CANONICAL (attr) = 0;
13924 info_ptr += bytes_read;
13925 break;
13926 }
13927 /* FALLTHROUGH */
13928 case DW_FORM_GNU_strp_alt:
13929 {
13930 struct dwz_file *dwz = dwarf2_get_dwz_file ();
13931 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
13932 &bytes_read);
13933
13934 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
13935 DW_STRING_IS_CANONICAL (attr) = 0;
13936 info_ptr += bytes_read;
13937 }
4bdf3d34 13938 break;
2dc7f7b3 13939 case DW_FORM_exprloc:
c906108c 13940 case DW_FORM_block:
7b5a2f43 13941 blk = dwarf_alloc_block (cu);
c906108c
SS
13942 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13943 info_ptr += bytes_read;
13944 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13945 info_ptr += blk->size;
13946 DW_BLOCK (attr) = blk;
13947 break;
13948 case DW_FORM_block1:
7b5a2f43 13949 blk = dwarf_alloc_block (cu);
c906108c
SS
13950 blk->size = read_1_byte (abfd, info_ptr);
13951 info_ptr += 1;
13952 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
13953 info_ptr += blk->size;
13954 DW_BLOCK (attr) = blk;
13955 break;
13956 case DW_FORM_data1:
13957 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
13958 info_ptr += 1;
13959 break;
13960 case DW_FORM_flag:
13961 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
13962 info_ptr += 1;
13963 break;
2dc7f7b3
TT
13964 case DW_FORM_flag_present:
13965 DW_UNSND (attr) = 1;
13966 break;
c906108c
SS
13967 case DW_FORM_sdata:
13968 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
13969 info_ptr += bytes_read;
13970 break;
13971 case DW_FORM_udata:
13972 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
13973 info_ptr += bytes_read;
13974 break;
13975 case DW_FORM_ref1:
4568ecf9
DE
13976 DW_UNSND (attr) = (cu->header.offset.sect_off
13977 + read_1_byte (abfd, info_ptr));
c906108c
SS
13978 info_ptr += 1;
13979 break;
13980 case DW_FORM_ref2:
4568ecf9
DE
13981 DW_UNSND (attr) = (cu->header.offset.sect_off
13982 + read_2_bytes (abfd, info_ptr));
c906108c
SS
13983 info_ptr += 2;
13984 break;
13985 case DW_FORM_ref4:
4568ecf9
DE
13986 DW_UNSND (attr) = (cu->header.offset.sect_off
13987 + read_4_bytes (abfd, info_ptr));
c906108c
SS
13988 info_ptr += 4;
13989 break;
613e1657 13990 case DW_FORM_ref8:
4568ecf9
DE
13991 DW_UNSND (attr) = (cu->header.offset.sect_off
13992 + read_8_bytes (abfd, info_ptr));
613e1657
KB
13993 info_ptr += 8;
13994 break;
55f1336d 13995 case DW_FORM_ref_sig8:
348e048f
DE
13996 /* Convert the signature to something we can record in DW_UNSND
13997 for later lookup.
13998 NOTE: This is NULL if the type wasn't found. */
13999 DW_SIGNATURED_TYPE (attr) =
e319fa28 14000 lookup_signatured_type (read_8_bytes (abfd, info_ptr));
348e048f
DE
14001 info_ptr += 8;
14002 break;
c906108c 14003 case DW_FORM_ref_udata:
4568ecf9
DE
14004 DW_UNSND (attr) = (cu->header.offset.sect_off
14005 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
14006 info_ptr += bytes_read;
14007 break;
c906108c 14008 case DW_FORM_indirect:
a8329558
KW
14009 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14010 info_ptr += bytes_read;
dee91e82 14011 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 14012 break;
3019eac3
DE
14013 case DW_FORM_GNU_addr_index:
14014 if (reader->dwo_file == NULL)
14015 {
14016 /* For now flag a hard error.
14017 Later we can turn this into a complaint. */
14018 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14019 dwarf_form_name (form),
14020 bfd_get_filename (abfd));
14021 }
14022 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
14023 info_ptr += bytes_read;
14024 break;
14025 case DW_FORM_GNU_str_index:
14026 if (reader->dwo_file == NULL)
14027 {
14028 /* For now flag a hard error.
14029 Later we can turn this into a complaint if warranted. */
14030 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
14031 dwarf_form_name (form),
14032 bfd_get_filename (abfd));
14033 }
14034 {
14035 ULONGEST str_index =
14036 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14037
14038 DW_STRING (attr) = read_str_index (reader, cu, str_index);
14039 DW_STRING_IS_CANONICAL (attr) = 0;
14040 info_ptr += bytes_read;
14041 }
14042 break;
c906108c 14043 default:
8a3fe4f8 14044 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
14045 dwarf_form_name (form),
14046 bfd_get_filename (abfd));
c906108c 14047 }
28e94949 14048
36586728
TT
14049 /* Super hack. */
14050 if (cu->per_cu->is_dwz && is_ref_attr (attr))
14051 attr->form = DW_FORM_GNU_ref_alt;
14052
28e94949
JB
14053 /* We have seen instances where the compiler tried to emit a byte
14054 size attribute of -1 which ended up being encoded as an unsigned
14055 0xffffffff. Although 0xffffffff is technically a valid size value,
14056 an object of this size seems pretty unlikely so we can relatively
14057 safely treat these cases as if the size attribute was invalid and
14058 treat them as zero by default. */
14059 if (attr->name == DW_AT_byte_size
14060 && form == DW_FORM_data4
14061 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
14062 {
14063 complaint
14064 (&symfile_complaints,
43bbcdc2
PH
14065 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
14066 hex_string (DW_UNSND (attr)));
01c66ae6
JB
14067 DW_UNSND (attr) = 0;
14068 }
28e94949 14069
c906108c
SS
14070 return info_ptr;
14071}
14072
a8329558
KW
14073/* Read an attribute described by an abbreviated attribute. */
14074
fe1b8b76 14075static gdb_byte *
dee91e82
DE
14076read_attribute (const struct die_reader_specs *reader,
14077 struct attribute *attr, struct attr_abbrev *abbrev,
14078 gdb_byte *info_ptr)
a8329558
KW
14079{
14080 attr->name = abbrev->name;
dee91e82 14081 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
14082}
14083
0963b4bd 14084/* Read dwarf information from a buffer. */
c906108c
SS
14085
14086static unsigned int
a1855c1d 14087read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 14088{
fe1b8b76 14089 return bfd_get_8 (abfd, buf);
c906108c
SS
14090}
14091
14092static int
a1855c1d 14093read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 14094{
fe1b8b76 14095 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
14096}
14097
14098static unsigned int
a1855c1d 14099read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 14100{
fe1b8b76 14101 return bfd_get_16 (abfd, buf);
c906108c
SS
14102}
14103
21ae7a4d 14104static int
a1855c1d 14105read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
14106{
14107 return bfd_get_signed_16 (abfd, buf);
14108}
14109
c906108c 14110static unsigned int
a1855c1d 14111read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 14112{
fe1b8b76 14113 return bfd_get_32 (abfd, buf);
c906108c
SS
14114}
14115
21ae7a4d 14116static int
a1855c1d 14117read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
14118{
14119 return bfd_get_signed_32 (abfd, buf);
14120}
14121
93311388 14122static ULONGEST
a1855c1d 14123read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 14124{
fe1b8b76 14125 return bfd_get_64 (abfd, buf);
c906108c
SS
14126}
14127
14128static CORE_ADDR
fe1b8b76 14129read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 14130 unsigned int *bytes_read)
c906108c 14131{
e7c27a73 14132 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
14133 CORE_ADDR retval = 0;
14134
107d2387 14135 if (cu_header->signed_addr_p)
c906108c 14136 {
107d2387
AC
14137 switch (cu_header->addr_size)
14138 {
14139 case 2:
fe1b8b76 14140 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
14141 break;
14142 case 4:
fe1b8b76 14143 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
14144 break;
14145 case 8:
fe1b8b76 14146 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
14147 break;
14148 default:
8e65ff28 14149 internal_error (__FILE__, __LINE__,
e2e0b3e5 14150 _("read_address: bad switch, signed [in module %s]"),
659b0389 14151 bfd_get_filename (abfd));
107d2387
AC
14152 }
14153 }
14154 else
14155 {
14156 switch (cu_header->addr_size)
14157 {
14158 case 2:
fe1b8b76 14159 retval = bfd_get_16 (abfd, buf);
107d2387
AC
14160 break;
14161 case 4:
fe1b8b76 14162 retval = bfd_get_32 (abfd, buf);
107d2387
AC
14163 break;
14164 case 8:
fe1b8b76 14165 retval = bfd_get_64 (abfd, buf);
107d2387
AC
14166 break;
14167 default:
8e65ff28 14168 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
14169 _("read_address: bad switch, "
14170 "unsigned [in module %s]"),
659b0389 14171 bfd_get_filename (abfd));
107d2387 14172 }
c906108c 14173 }
64367e0a 14174
107d2387
AC
14175 *bytes_read = cu_header->addr_size;
14176 return retval;
c906108c
SS
14177}
14178
f7ef9339 14179/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
14180 specification allows the initial length to take up either 4 bytes
14181 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
14182 bytes describe the length and all offsets will be 8 bytes in length
14183 instead of 4.
14184
f7ef9339
KB
14185 An older, non-standard 64-bit format is also handled by this
14186 function. The older format in question stores the initial length
14187 as an 8-byte quantity without an escape value. Lengths greater
14188 than 2^32 aren't very common which means that the initial 4 bytes
14189 is almost always zero. Since a length value of zero doesn't make
14190 sense for the 32-bit format, this initial zero can be considered to
14191 be an escape value which indicates the presence of the older 64-bit
14192 format. As written, the code can't detect (old format) lengths
917c78fc
MK
14193 greater than 4GB. If it becomes necessary to handle lengths
14194 somewhat larger than 4GB, we could allow other small values (such
14195 as the non-sensical values of 1, 2, and 3) to also be used as
14196 escape values indicating the presence of the old format.
f7ef9339 14197
917c78fc
MK
14198 The value returned via bytes_read should be used to increment the
14199 relevant pointer after calling read_initial_length().
c764a876 14200
613e1657
KB
14201 [ Note: read_initial_length() and read_offset() are based on the
14202 document entitled "DWARF Debugging Information Format", revision
f7ef9339 14203 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
14204 from:
14205
f7ef9339 14206 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 14207
613e1657
KB
14208 This document is only a draft and is subject to change. (So beware.)
14209
f7ef9339 14210 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
14211 determined empirically by examining 64-bit ELF files produced by
14212 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
14213
14214 - Kevin, July 16, 2002
613e1657
KB
14215 ] */
14216
14217static LONGEST
c764a876 14218read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
613e1657 14219{
fe1b8b76 14220 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 14221
dd373385 14222 if (length == 0xffffffff)
613e1657 14223 {
fe1b8b76 14224 length = bfd_get_64 (abfd, buf + 4);
613e1657 14225 *bytes_read = 12;
613e1657 14226 }
dd373385 14227 else if (length == 0)
f7ef9339 14228 {
dd373385 14229 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 14230 length = bfd_get_64 (abfd, buf);
f7ef9339 14231 *bytes_read = 8;
f7ef9339 14232 }
613e1657
KB
14233 else
14234 {
14235 *bytes_read = 4;
613e1657
KB
14236 }
14237
c764a876
DE
14238 return length;
14239}
dd373385 14240
c764a876
DE
14241/* Cover function for read_initial_length.
14242 Returns the length of the object at BUF, and stores the size of the
14243 initial length in *BYTES_READ and stores the size that offsets will be in
14244 *OFFSET_SIZE.
14245 If the initial length size is not equivalent to that specified in
14246 CU_HEADER then issue a complaint.
14247 This is useful when reading non-comp-unit headers. */
dd373385 14248
c764a876
DE
14249static LONGEST
14250read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
14251 const struct comp_unit_head *cu_header,
14252 unsigned int *bytes_read,
14253 unsigned int *offset_size)
14254{
14255 LONGEST length = read_initial_length (abfd, buf, bytes_read);
14256
14257 gdb_assert (cu_header->initial_length_size == 4
14258 || cu_header->initial_length_size == 8
14259 || cu_header->initial_length_size == 12);
14260
14261 if (cu_header->initial_length_size != *bytes_read)
14262 complaint (&symfile_complaints,
14263 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 14264
c764a876 14265 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 14266 return length;
613e1657
KB
14267}
14268
14269/* Read an offset from the data stream. The size of the offset is
917c78fc 14270 given by cu_header->offset_size. */
613e1657
KB
14271
14272static LONGEST
fe1b8b76 14273read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
891d2f0b 14274 unsigned int *bytes_read)
c764a876
DE
14275{
14276 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 14277
c764a876
DE
14278 *bytes_read = cu_header->offset_size;
14279 return offset;
14280}
14281
14282/* Read an offset from the data stream. */
14283
14284static LONGEST
14285read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
613e1657
KB
14286{
14287 LONGEST retval = 0;
14288
c764a876 14289 switch (offset_size)
613e1657
KB
14290 {
14291 case 4:
fe1b8b76 14292 retval = bfd_get_32 (abfd, buf);
613e1657
KB
14293 break;
14294 case 8:
fe1b8b76 14295 retval = bfd_get_64 (abfd, buf);
613e1657
KB
14296 break;
14297 default:
8e65ff28 14298 internal_error (__FILE__, __LINE__,
c764a876 14299 _("read_offset_1: bad switch [in module %s]"),
659b0389 14300 bfd_get_filename (abfd));
613e1657
KB
14301 }
14302
917c78fc 14303 return retval;
613e1657
KB
14304}
14305
fe1b8b76
JB
14306static gdb_byte *
14307read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
c906108c
SS
14308{
14309 /* If the size of a host char is 8 bits, we can return a pointer
14310 to the buffer, otherwise we have to copy the data to a buffer
14311 allocated on the temporary obstack. */
4bdf3d34 14312 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 14313 return buf;
c906108c
SS
14314}
14315
14316static char *
9b1c24c8 14317read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c
SS
14318{
14319 /* If the size of a host char is 8 bits, we can return a pointer
14320 to the string, otherwise we have to copy the string to a buffer
14321 allocated on the temporary obstack. */
4bdf3d34 14322 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
14323 if (*buf == '\0')
14324 {
14325 *bytes_read_ptr = 1;
14326 return NULL;
14327 }
fe1b8b76
JB
14328 *bytes_read_ptr = strlen ((char *) buf) + 1;
14329 return (char *) buf;
4bdf3d34
JJ
14330}
14331
14332static char *
cf2c3c16 14333read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 14334{
be391dca 14335 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 14336 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
14337 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
14338 bfd_get_filename (abfd));
dce234bc 14339 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
14340 error (_("DW_FORM_strp pointing outside of "
14341 ".debug_str section [in module %s]"),
14342 bfd_get_filename (abfd));
4bdf3d34 14343 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 14344 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 14345 return NULL;
dce234bc 14346 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
14347}
14348
36586728
TT
14349/* Read a string at offset STR_OFFSET in the .debug_str section from
14350 the .dwz file DWZ. Throw an error if the offset is too large. If
14351 the string consists of a single NUL byte, return NULL; otherwise
14352 return a pointer to the string. */
14353
14354static char *
14355read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
14356{
14357 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
14358
14359 if (dwz->str.buffer == NULL)
14360 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
14361 "section [in module %s]"),
14362 bfd_get_filename (dwz->dwz_bfd));
14363 if (str_offset >= dwz->str.size)
14364 error (_("DW_FORM_GNU_strp_alt pointing outside of "
14365 ".debug_str section [in module %s]"),
14366 bfd_get_filename (dwz->dwz_bfd));
14367 gdb_assert (HOST_CHAR_BIT == 8);
14368 if (dwz->str.buffer[str_offset] == '\0')
14369 return NULL;
14370 return (char *) (dwz->str.buffer + str_offset);
14371}
14372
cf2c3c16
TT
14373static char *
14374read_indirect_string (bfd *abfd, gdb_byte *buf,
14375 const struct comp_unit_head *cu_header,
14376 unsigned int *bytes_read_ptr)
14377{
14378 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
14379
14380 return read_indirect_string_at_offset (abfd, str_offset);
14381}
14382
12df843f 14383static ULONGEST
fe1b8b76 14384read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 14385{
12df843f 14386 ULONGEST result;
ce5d95e1 14387 unsigned int num_read;
c906108c
SS
14388 int i, shift;
14389 unsigned char byte;
14390
14391 result = 0;
14392 shift = 0;
14393 num_read = 0;
14394 i = 0;
14395 while (1)
14396 {
fe1b8b76 14397 byte = bfd_get_8 (abfd, buf);
c906108c
SS
14398 buf++;
14399 num_read++;
12df843f 14400 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
14401 if ((byte & 128) == 0)
14402 {
14403 break;
14404 }
14405 shift += 7;
14406 }
14407 *bytes_read_ptr = num_read;
14408 return result;
14409}
14410
12df843f 14411static LONGEST
fe1b8b76 14412read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 14413{
12df843f 14414 LONGEST result;
77e0b926 14415 int i, shift, num_read;
c906108c
SS
14416 unsigned char byte;
14417
14418 result = 0;
14419 shift = 0;
c906108c
SS
14420 num_read = 0;
14421 i = 0;
14422 while (1)
14423 {
fe1b8b76 14424 byte = bfd_get_8 (abfd, buf);
c906108c
SS
14425 buf++;
14426 num_read++;
12df843f 14427 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
14428 shift += 7;
14429 if ((byte & 128) == 0)
14430 {
14431 break;
14432 }
14433 }
77e0b926 14434 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 14435 result |= -(((LONGEST) 1) << shift);
c906108c
SS
14436 *bytes_read_ptr = num_read;
14437 return result;
14438}
14439
3019eac3
DE
14440/* Given index ADDR_INDEX in .debug_addr, fetch the value.
14441 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
14442 ADDR_SIZE is the size of addresses from the CU header. */
14443
14444static CORE_ADDR
14445read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
14446{
14447 struct objfile *objfile = dwarf2_per_objfile->objfile;
14448 bfd *abfd = objfile->obfd;
14449 const gdb_byte *info_ptr;
14450
14451 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
14452 if (dwarf2_per_objfile->addr.buffer == NULL)
14453 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
14454 objfile->name);
14455 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
14456 error (_("DW_FORM_addr_index pointing outside of "
14457 ".debug_addr section [in module %s]"),
14458 objfile->name);
14459 info_ptr = (dwarf2_per_objfile->addr.buffer
14460 + addr_base + addr_index * addr_size);
14461 if (addr_size == 4)
14462 return bfd_get_32 (abfd, info_ptr);
14463 else
14464 return bfd_get_64 (abfd, info_ptr);
14465}
14466
14467/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
14468
14469static CORE_ADDR
14470read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
14471{
14472 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
14473}
14474
14475/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
14476
14477static CORE_ADDR
14478read_addr_index_from_leb128 (struct dwarf2_cu *cu, gdb_byte *info_ptr,
14479 unsigned int *bytes_read)
14480{
14481 bfd *abfd = cu->objfile->obfd;
14482 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
14483
14484 return read_addr_index (cu, addr_index);
14485}
14486
14487/* Data structure to pass results from dwarf2_read_addr_index_reader
14488 back to dwarf2_read_addr_index. */
14489
14490struct dwarf2_read_addr_index_data
14491{
14492 ULONGEST addr_base;
14493 int addr_size;
14494};
14495
14496/* die_reader_func for dwarf2_read_addr_index. */
14497
14498static void
14499dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
14500 gdb_byte *info_ptr,
14501 struct die_info *comp_unit_die,
14502 int has_children,
14503 void *data)
14504{
14505 struct dwarf2_cu *cu = reader->cu;
14506 struct dwarf2_read_addr_index_data *aidata =
14507 (struct dwarf2_read_addr_index_data *) data;
14508
14509 aidata->addr_base = cu->addr_base;
14510 aidata->addr_size = cu->header.addr_size;
14511}
14512
14513/* Given an index in .debug_addr, fetch the value.
14514 NOTE: This can be called during dwarf expression evaluation,
14515 long after the debug information has been read, and thus per_cu->cu
14516 may no longer exist. */
14517
14518CORE_ADDR
14519dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
14520 unsigned int addr_index)
14521{
14522 struct objfile *objfile = per_cu->objfile;
14523 struct dwarf2_cu *cu = per_cu->cu;
14524 ULONGEST addr_base;
14525 int addr_size;
14526
14527 /* This is intended to be called from outside this file. */
14528 dw2_setup (objfile);
14529
14530 /* We need addr_base and addr_size.
14531 If we don't have PER_CU->cu, we have to get it.
14532 Nasty, but the alternative is storing the needed info in PER_CU,
14533 which at this point doesn't seem justified: it's not clear how frequently
14534 it would get used and it would increase the size of every PER_CU.
14535 Entry points like dwarf2_per_cu_addr_size do a similar thing
14536 so we're not in uncharted territory here.
14537 Alas we need to be a bit more complicated as addr_base is contained
14538 in the DIE.
14539
14540 We don't need to read the entire CU(/TU).
14541 We just need the header and top level die.
a1b64ce1 14542
3019eac3 14543 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 14544 For now we skip this optimization. */
3019eac3
DE
14545
14546 if (cu != NULL)
14547 {
14548 addr_base = cu->addr_base;
14549 addr_size = cu->header.addr_size;
14550 }
14551 else
14552 {
14553 struct dwarf2_read_addr_index_data aidata;
14554
a1b64ce1
DE
14555 /* Note: We can't use init_cutu_and_read_dies_simple here,
14556 we need addr_base. */
14557 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
14558 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
14559 addr_base = aidata.addr_base;
14560 addr_size = aidata.addr_size;
14561 }
14562
14563 return read_addr_index_1 (addr_index, addr_base, addr_size);
14564}
14565
14566/* Given a DW_AT_str_index, fetch the string. */
14567
14568static char *
14569read_str_index (const struct die_reader_specs *reader,
14570 struct dwarf2_cu *cu, ULONGEST str_index)
14571{
14572 struct objfile *objfile = dwarf2_per_objfile->objfile;
14573 const char *dwo_name = objfile->name;
14574 bfd *abfd = objfile->obfd;
14575 struct dwo_sections *sections = &reader->dwo_file->sections;
14576 gdb_byte *info_ptr;
14577 ULONGEST str_offset;
14578
14579 dwarf2_read_section (objfile, &sections->str);
14580 dwarf2_read_section (objfile, &sections->str_offsets);
14581 if (sections->str.buffer == NULL)
14582 error (_("DW_FORM_str_index used without .debug_str.dwo section"
14583 " in CU at offset 0x%lx [in module %s]"),
14584 (long) cu->header.offset.sect_off, dwo_name);
14585 if (sections->str_offsets.buffer == NULL)
14586 error (_("DW_FORM_str_index used without .debug_str_offsets.dwo section"
14587 " in CU at offset 0x%lx [in module %s]"),
14588 (long) cu->header.offset.sect_off, dwo_name);
14589 if (str_index * cu->header.offset_size >= sections->str_offsets.size)
14590 error (_("DW_FORM_str_index pointing outside of .debug_str_offsets.dwo"
14591 " section in CU at offset 0x%lx [in module %s]"),
14592 (long) cu->header.offset.sect_off, dwo_name);
14593 info_ptr = (sections->str_offsets.buffer
14594 + str_index * cu->header.offset_size);
14595 if (cu->header.offset_size == 4)
14596 str_offset = bfd_get_32 (abfd, info_ptr);
14597 else
14598 str_offset = bfd_get_64 (abfd, info_ptr);
14599 if (str_offset >= sections->str.size)
14600 error (_("Offset from DW_FORM_str_index pointing outside of"
14601 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
14602 (long) cu->header.offset.sect_off, dwo_name);
14603 return (char *) (sections->str.buffer + str_offset);
14604}
14605
3019eac3
DE
14606/* Return the length of an LEB128 number in BUF. */
14607
14608static int
14609leb128_size (const gdb_byte *buf)
14610{
14611 const gdb_byte *begin = buf;
14612 gdb_byte byte;
14613
14614 while (1)
14615 {
14616 byte = *buf++;
14617 if ((byte & 128) == 0)
14618 return buf - begin;
14619 }
14620}
14621
c906108c 14622static void
e142c38c 14623set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
14624{
14625 switch (lang)
14626 {
14627 case DW_LANG_C89:
76bee0cc 14628 case DW_LANG_C99:
c906108c 14629 case DW_LANG_C:
e142c38c 14630 cu->language = language_c;
c906108c
SS
14631 break;
14632 case DW_LANG_C_plus_plus:
e142c38c 14633 cu->language = language_cplus;
c906108c 14634 break;
6aecb9c2
JB
14635 case DW_LANG_D:
14636 cu->language = language_d;
14637 break;
c906108c
SS
14638 case DW_LANG_Fortran77:
14639 case DW_LANG_Fortran90:
b21b22e0 14640 case DW_LANG_Fortran95:
e142c38c 14641 cu->language = language_fortran;
c906108c 14642 break;
a766d390
DE
14643 case DW_LANG_Go:
14644 cu->language = language_go;
14645 break;
c906108c 14646 case DW_LANG_Mips_Assembler:
e142c38c 14647 cu->language = language_asm;
c906108c 14648 break;
bebd888e 14649 case DW_LANG_Java:
e142c38c 14650 cu->language = language_java;
bebd888e 14651 break;
c906108c 14652 case DW_LANG_Ada83:
8aaf0b47 14653 case DW_LANG_Ada95:
bc5f45f8
JB
14654 cu->language = language_ada;
14655 break;
72019c9c
GM
14656 case DW_LANG_Modula2:
14657 cu->language = language_m2;
14658 break;
fe8e67fd
PM
14659 case DW_LANG_Pascal83:
14660 cu->language = language_pascal;
14661 break;
22566fbd
DJ
14662 case DW_LANG_ObjC:
14663 cu->language = language_objc;
14664 break;
c906108c
SS
14665 case DW_LANG_Cobol74:
14666 case DW_LANG_Cobol85:
c906108c 14667 default:
e142c38c 14668 cu->language = language_minimal;
c906108c
SS
14669 break;
14670 }
e142c38c 14671 cu->language_defn = language_def (cu->language);
c906108c
SS
14672}
14673
14674/* Return the named attribute or NULL if not there. */
14675
14676static struct attribute *
e142c38c 14677dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 14678{
a48e046c 14679 for (;;)
c906108c 14680 {
a48e046c
TT
14681 unsigned int i;
14682 struct attribute *spec = NULL;
14683
14684 for (i = 0; i < die->num_attrs; ++i)
14685 {
14686 if (die->attrs[i].name == name)
14687 return &die->attrs[i];
14688 if (die->attrs[i].name == DW_AT_specification
14689 || die->attrs[i].name == DW_AT_abstract_origin)
14690 spec = &die->attrs[i];
14691 }
14692
14693 if (!spec)
14694 break;
c906108c 14695
f2f0e013 14696 die = follow_die_ref (die, spec, &cu);
f2f0e013 14697 }
c5aa993b 14698
c906108c
SS
14699 return NULL;
14700}
14701
348e048f
DE
14702/* Return the named attribute or NULL if not there,
14703 but do not follow DW_AT_specification, etc.
14704 This is for use in contexts where we're reading .debug_types dies.
14705 Following DW_AT_specification, DW_AT_abstract_origin will take us
14706 back up the chain, and we want to go down. */
14707
14708static struct attribute *
45e58e77 14709dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
14710{
14711 unsigned int i;
14712
14713 for (i = 0; i < die->num_attrs; ++i)
14714 if (die->attrs[i].name == name)
14715 return &die->attrs[i];
14716
14717 return NULL;
14718}
14719
05cf31d1
JB
14720/* Return non-zero iff the attribute NAME is defined for the given DIE,
14721 and holds a non-zero value. This function should only be used for
2dc7f7b3 14722 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
14723
14724static int
14725dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
14726{
14727 struct attribute *attr = dwarf2_attr (die, name, cu);
14728
14729 return (attr && DW_UNSND (attr));
14730}
14731
3ca72b44 14732static int
e142c38c 14733die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 14734{
05cf31d1
JB
14735 /* A DIE is a declaration if it has a DW_AT_declaration attribute
14736 which value is non-zero. However, we have to be careful with
14737 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
14738 (via dwarf2_flag_true_p) follows this attribute. So we may
14739 end up accidently finding a declaration attribute that belongs
14740 to a different DIE referenced by the specification attribute,
14741 even though the given DIE does not have a declaration attribute. */
14742 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
14743 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
14744}
14745
63d06c5c 14746/* Return the die giving the specification for DIE, if there is
f2f0e013 14747 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
14748 containing the return value on output. If there is no
14749 specification, but there is an abstract origin, that is
14750 returned. */
63d06c5c
DC
14751
14752static struct die_info *
f2f0e013 14753die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 14754{
f2f0e013
DJ
14755 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
14756 *spec_cu);
63d06c5c 14757
edb3359d
DJ
14758 if (spec_attr == NULL)
14759 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
14760
63d06c5c
DC
14761 if (spec_attr == NULL)
14762 return NULL;
14763 else
f2f0e013 14764 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 14765}
c906108c 14766
debd256d 14767/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
14768 refers to.
14769 NOTE: This is also used as a "cleanup" function. */
14770
debd256d
JB
14771static void
14772free_line_header (struct line_header *lh)
14773{
14774 if (lh->standard_opcode_lengths)
a8bc7b56 14775 xfree (lh->standard_opcode_lengths);
debd256d
JB
14776
14777 /* Remember that all the lh->file_names[i].name pointers are
14778 pointers into debug_line_buffer, and don't need to be freed. */
14779 if (lh->file_names)
a8bc7b56 14780 xfree (lh->file_names);
debd256d
JB
14781
14782 /* Similarly for the include directory names. */
14783 if (lh->include_dirs)
a8bc7b56 14784 xfree (lh->include_dirs);
debd256d 14785
a8bc7b56 14786 xfree (lh);
debd256d
JB
14787}
14788
debd256d 14789/* Add an entry to LH's include directory table. */
ae2de4f8 14790
debd256d
JB
14791static void
14792add_include_dir (struct line_header *lh, char *include_dir)
c906108c 14793{
debd256d
JB
14794 /* Grow the array if necessary. */
14795 if (lh->include_dirs_size == 0)
c5aa993b 14796 {
debd256d
JB
14797 lh->include_dirs_size = 1; /* for testing */
14798 lh->include_dirs = xmalloc (lh->include_dirs_size
14799 * sizeof (*lh->include_dirs));
14800 }
14801 else if (lh->num_include_dirs >= lh->include_dirs_size)
14802 {
14803 lh->include_dirs_size *= 2;
14804 lh->include_dirs = xrealloc (lh->include_dirs,
14805 (lh->include_dirs_size
14806 * sizeof (*lh->include_dirs)));
c5aa993b 14807 }
c906108c 14808
debd256d
JB
14809 lh->include_dirs[lh->num_include_dirs++] = include_dir;
14810}
6e70227d 14811
debd256d 14812/* Add an entry to LH's file name table. */
ae2de4f8 14813
debd256d
JB
14814static void
14815add_file_name (struct line_header *lh,
14816 char *name,
14817 unsigned int dir_index,
14818 unsigned int mod_time,
14819 unsigned int length)
14820{
14821 struct file_entry *fe;
14822
14823 /* Grow the array if necessary. */
14824 if (lh->file_names_size == 0)
14825 {
14826 lh->file_names_size = 1; /* for testing */
14827 lh->file_names = xmalloc (lh->file_names_size
14828 * sizeof (*lh->file_names));
14829 }
14830 else if (lh->num_file_names >= lh->file_names_size)
14831 {
14832 lh->file_names_size *= 2;
14833 lh->file_names = xrealloc (lh->file_names,
14834 (lh->file_names_size
14835 * sizeof (*lh->file_names)));
14836 }
14837
14838 fe = &lh->file_names[lh->num_file_names++];
14839 fe->name = name;
14840 fe->dir_index = dir_index;
14841 fe->mod_time = mod_time;
14842 fe->length = length;
aaa75496 14843 fe->included_p = 0;
cb1df416 14844 fe->symtab = NULL;
debd256d 14845}
6e70227d 14846
36586728
TT
14847/* A convenience function to find the proper .debug_line section for a
14848 CU. */
14849
14850static struct dwarf2_section_info *
14851get_debug_line_section (struct dwarf2_cu *cu)
14852{
14853 struct dwarf2_section_info *section;
14854
14855 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
14856 DWO file. */
14857 if (cu->dwo_unit && cu->per_cu->is_debug_types)
14858 section = &cu->dwo_unit->dwo_file->sections.line;
14859 else if (cu->per_cu->is_dwz)
14860 {
14861 struct dwz_file *dwz = dwarf2_get_dwz_file ();
14862
14863 section = &dwz->line;
14864 }
14865 else
14866 section = &dwarf2_per_objfile->line;
14867
14868 return section;
14869}
14870
debd256d 14871/* Read the statement program header starting at OFFSET in
3019eac3 14872 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 14873 to a struct line_header, allocated using xmalloc.
debd256d
JB
14874
14875 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
14876 the returned object point into the dwarf line section buffer,
14877 and must not be freed. */
ae2de4f8 14878
debd256d 14879static struct line_header *
3019eac3 14880dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
14881{
14882 struct cleanup *back_to;
14883 struct line_header *lh;
fe1b8b76 14884 gdb_byte *line_ptr;
c764a876 14885 unsigned int bytes_read, offset_size;
debd256d
JB
14886 int i;
14887 char *cur_dir, *cur_file;
3019eac3
DE
14888 struct dwarf2_section_info *section;
14889 bfd *abfd;
14890
36586728 14891 section = get_debug_line_section (cu);
3019eac3
DE
14892 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
14893 if (section->buffer == NULL)
debd256d 14894 {
3019eac3
DE
14895 if (cu->dwo_unit && cu->per_cu->is_debug_types)
14896 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
14897 else
14898 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
14899 return 0;
14900 }
14901
fceca515
DE
14902 /* We can't do this until we know the section is non-empty.
14903 Only then do we know we have such a section. */
14904 abfd = section->asection->owner;
14905
a738430d
MK
14906 /* Make sure that at least there's room for the total_length field.
14907 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 14908 if (offset + 4 >= section->size)
debd256d 14909 {
4d3c2250 14910 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
14911 return 0;
14912 }
14913
14914 lh = xmalloc (sizeof (*lh));
14915 memset (lh, 0, sizeof (*lh));
14916 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
14917 (void *) lh);
14918
3019eac3 14919 line_ptr = section->buffer + offset;
debd256d 14920
a738430d 14921 /* Read in the header. */
6e70227d 14922 lh->total_length =
c764a876
DE
14923 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
14924 &bytes_read, &offset_size);
debd256d 14925 line_ptr += bytes_read;
3019eac3 14926 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 14927 {
4d3c2250 14928 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
14929 return 0;
14930 }
14931 lh->statement_program_end = line_ptr + lh->total_length;
14932 lh->version = read_2_bytes (abfd, line_ptr);
14933 line_ptr += 2;
c764a876
DE
14934 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
14935 line_ptr += offset_size;
debd256d
JB
14936 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
14937 line_ptr += 1;
2dc7f7b3
TT
14938 if (lh->version >= 4)
14939 {
14940 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
14941 line_ptr += 1;
14942 }
14943 else
14944 lh->maximum_ops_per_instruction = 1;
14945
14946 if (lh->maximum_ops_per_instruction == 0)
14947 {
14948 lh->maximum_ops_per_instruction = 1;
14949 complaint (&symfile_complaints,
3e43a32a
MS
14950 _("invalid maximum_ops_per_instruction "
14951 "in `.debug_line' section"));
2dc7f7b3
TT
14952 }
14953
debd256d
JB
14954 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
14955 line_ptr += 1;
14956 lh->line_base = read_1_signed_byte (abfd, line_ptr);
14957 line_ptr += 1;
14958 lh->line_range = read_1_byte (abfd, line_ptr);
14959 line_ptr += 1;
14960 lh->opcode_base = read_1_byte (abfd, line_ptr);
14961 line_ptr += 1;
14962 lh->standard_opcode_lengths
fe1b8b76 14963 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
14964
14965 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
14966 for (i = 1; i < lh->opcode_base; ++i)
14967 {
14968 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
14969 line_ptr += 1;
14970 }
14971
a738430d 14972 /* Read directory table. */
9b1c24c8 14973 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
14974 {
14975 line_ptr += bytes_read;
14976 add_include_dir (lh, cur_dir);
14977 }
14978 line_ptr += bytes_read;
14979
a738430d 14980 /* Read file name table. */
9b1c24c8 14981 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
14982 {
14983 unsigned int dir_index, mod_time, length;
14984
14985 line_ptr += bytes_read;
14986 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14987 line_ptr += bytes_read;
14988 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14989 line_ptr += bytes_read;
14990 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
14991 line_ptr += bytes_read;
14992
14993 add_file_name (lh, cur_file, dir_index, mod_time, length);
14994 }
14995 line_ptr += bytes_read;
6e70227d 14996 lh->statement_program_start = line_ptr;
debd256d 14997
3019eac3 14998 if (line_ptr > (section->buffer + section->size))
4d3c2250 14999 complaint (&symfile_complaints,
3e43a32a
MS
15000 _("line number info header doesn't "
15001 "fit in `.debug_line' section"));
debd256d
JB
15002
15003 discard_cleanups (back_to);
15004 return lh;
15005}
c906108c 15006
c6da4cef
DE
15007/* Subroutine of dwarf_decode_lines to simplify it.
15008 Return the file name of the psymtab for included file FILE_INDEX
15009 in line header LH of PST.
15010 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15011 If space for the result is malloc'd, it will be freed by a cleanup.
15012 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
15013
15014static char *
15015psymtab_include_file_name (const struct line_header *lh, int file_index,
15016 const struct partial_symtab *pst,
15017 const char *comp_dir)
15018{
15019 const struct file_entry fe = lh->file_names [file_index];
15020 char *include_name = fe.name;
15021 char *include_name_to_compare = include_name;
15022 char *dir_name = NULL;
72b9f47f
TT
15023 const char *pst_filename;
15024 char *copied_name = NULL;
c6da4cef
DE
15025 int file_is_pst;
15026
15027 if (fe.dir_index)
15028 dir_name = lh->include_dirs[fe.dir_index - 1];
15029
15030 if (!IS_ABSOLUTE_PATH (include_name)
15031 && (dir_name != NULL || comp_dir != NULL))
15032 {
15033 /* Avoid creating a duplicate psymtab for PST.
15034 We do this by comparing INCLUDE_NAME and PST_FILENAME.
15035 Before we do the comparison, however, we need to account
15036 for DIR_NAME and COMP_DIR.
15037 First prepend dir_name (if non-NULL). If we still don't
15038 have an absolute path prepend comp_dir (if non-NULL).
15039 However, the directory we record in the include-file's
15040 psymtab does not contain COMP_DIR (to match the
15041 corresponding symtab(s)).
15042
15043 Example:
15044
15045 bash$ cd /tmp
15046 bash$ gcc -g ./hello.c
15047 include_name = "hello.c"
15048 dir_name = "."
15049 DW_AT_comp_dir = comp_dir = "/tmp"
15050 DW_AT_name = "./hello.c" */
15051
15052 if (dir_name != NULL)
15053 {
15054 include_name = concat (dir_name, SLASH_STRING,
15055 include_name, (char *)NULL);
15056 include_name_to_compare = include_name;
15057 make_cleanup (xfree, include_name);
15058 }
15059 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
15060 {
15061 include_name_to_compare = concat (comp_dir, SLASH_STRING,
15062 include_name, (char *)NULL);
15063 }
15064 }
15065
15066 pst_filename = pst->filename;
15067 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
15068 {
72b9f47f
TT
15069 copied_name = concat (pst->dirname, SLASH_STRING,
15070 pst_filename, (char *)NULL);
15071 pst_filename = copied_name;
c6da4cef
DE
15072 }
15073
1e3fad37 15074 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef
DE
15075
15076 if (include_name_to_compare != include_name)
15077 xfree (include_name_to_compare);
72b9f47f
TT
15078 if (copied_name != NULL)
15079 xfree (copied_name);
c6da4cef
DE
15080
15081 if (file_is_pst)
15082 return NULL;
15083 return include_name;
15084}
15085
c91513d8
PP
15086/* Ignore this record_line request. */
15087
15088static void
15089noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
15090{
15091 return;
15092}
15093
f3f5162e
DE
15094/* Subroutine of dwarf_decode_lines to simplify it.
15095 Process the line number information in LH. */
debd256d 15096
c906108c 15097static void
f3f5162e
DE
15098dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
15099 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 15100{
a8c50c1f 15101 gdb_byte *line_ptr, *extended_end;
fe1b8b76 15102 gdb_byte *line_end;
a8c50c1f 15103 unsigned int bytes_read, extended_len;
c906108c 15104 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
15105 CORE_ADDR baseaddr;
15106 struct objfile *objfile = cu->objfile;
f3f5162e 15107 bfd *abfd = objfile->obfd;
fbf65064 15108 struct gdbarch *gdbarch = get_objfile_arch (objfile);
aaa75496 15109 const int decode_for_pst_p = (pst != NULL);
f3f5162e 15110 struct subfile *last_subfile = NULL;
c91513d8
PP
15111 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
15112 = record_line;
e142c38c
DJ
15113
15114 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 15115
debd256d
JB
15116 line_ptr = lh->statement_program_start;
15117 line_end = lh->statement_program_end;
c906108c
SS
15118
15119 /* Read the statement sequences until there's nothing left. */
15120 while (line_ptr < line_end)
15121 {
15122 /* state machine registers */
15123 CORE_ADDR address = 0;
15124 unsigned int file = 1;
15125 unsigned int line = 1;
15126 unsigned int column = 0;
debd256d 15127 int is_stmt = lh->default_is_stmt;
c906108c
SS
15128 int basic_block = 0;
15129 int end_sequence = 0;
fbf65064 15130 CORE_ADDR addr;
2dc7f7b3 15131 unsigned char op_index = 0;
c906108c 15132
aaa75496 15133 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 15134 {
aaa75496 15135 /* Start a subfile for the current file of the state machine. */
debd256d
JB
15136 /* lh->include_dirs and lh->file_names are 0-based, but the
15137 directory and file name numbers in the statement program
15138 are 1-based. */
15139 struct file_entry *fe = &lh->file_names[file - 1];
4f1520fb 15140 char *dir = NULL;
a738430d 15141
debd256d
JB
15142 if (fe->dir_index)
15143 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
15144
15145 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
15146 }
15147
a738430d 15148 /* Decode the table. */
c5aa993b 15149 while (!end_sequence)
c906108c
SS
15150 {
15151 op_code = read_1_byte (abfd, line_ptr);
15152 line_ptr += 1;
59205f5a
JB
15153 if (line_ptr > line_end)
15154 {
15155 dwarf2_debug_line_missing_end_sequence_complaint ();
15156 break;
15157 }
9aa1fe7e 15158
debd256d 15159 if (op_code >= lh->opcode_base)
6e70227d 15160 {
a738430d 15161 /* Special operand. */
debd256d 15162 adj_opcode = op_code - lh->opcode_base;
2dc7f7b3
TT
15163 address += (((op_index + (adj_opcode / lh->line_range))
15164 / lh->maximum_ops_per_instruction)
15165 * lh->minimum_instruction_length);
15166 op_index = ((op_index + (adj_opcode / lh->line_range))
15167 % lh->maximum_ops_per_instruction);
debd256d 15168 line += lh->line_base + (adj_opcode % lh->line_range);
59205f5a 15169 if (lh->num_file_names < file || file == 0)
25e43795 15170 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
15171 /* For now we ignore lines not starting on an
15172 instruction boundary. */
15173 else if (op_index == 0)
25e43795
DJ
15174 {
15175 lh->file_names[file - 1].included_p = 1;
ca5f395d 15176 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
15177 {
15178 if (last_subfile != current_subfile)
15179 {
15180 addr = gdbarch_addr_bits_remove (gdbarch, address);
15181 if (last_subfile)
c91513d8 15182 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
15183 last_subfile = current_subfile;
15184 }
25e43795 15185 /* Append row to matrix using current values. */
7019d805 15186 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 15187 (*p_record_line) (current_subfile, line, addr);
366da635 15188 }
25e43795 15189 }
ca5f395d 15190 basic_block = 0;
9aa1fe7e
GK
15191 }
15192 else switch (op_code)
c906108c
SS
15193 {
15194 case DW_LNS_extended_op:
3e43a32a
MS
15195 extended_len = read_unsigned_leb128 (abfd, line_ptr,
15196 &bytes_read);
473b7be6 15197 line_ptr += bytes_read;
a8c50c1f 15198 extended_end = line_ptr + extended_len;
c906108c
SS
15199 extended_op = read_1_byte (abfd, line_ptr);
15200 line_ptr += 1;
15201 switch (extended_op)
15202 {
15203 case DW_LNE_end_sequence:
c91513d8 15204 p_record_line = record_line;
c906108c 15205 end_sequence = 1;
c906108c
SS
15206 break;
15207 case DW_LNE_set_address:
e7c27a73 15208 address = read_address (abfd, line_ptr, cu, &bytes_read);
c91513d8
PP
15209
15210 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
15211 {
15212 /* This line table is for a function which has been
15213 GCd by the linker. Ignore it. PR gdb/12528 */
15214
15215 long line_offset
36586728 15216 = line_ptr - get_debug_line_section (cu)->buffer;
c91513d8
PP
15217
15218 complaint (&symfile_complaints,
15219 _(".debug_line address at offset 0x%lx is 0 "
15220 "[in module %s]"),
bb5ed363 15221 line_offset, objfile->name);
c91513d8
PP
15222 p_record_line = noop_record_line;
15223 }
15224
2dc7f7b3 15225 op_index = 0;
107d2387
AC
15226 line_ptr += bytes_read;
15227 address += baseaddr;
c906108c
SS
15228 break;
15229 case DW_LNE_define_file:
debd256d
JB
15230 {
15231 char *cur_file;
15232 unsigned int dir_index, mod_time, length;
6e70227d 15233
3e43a32a
MS
15234 cur_file = read_direct_string (abfd, line_ptr,
15235 &bytes_read);
debd256d
JB
15236 line_ptr += bytes_read;
15237 dir_index =
15238 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15239 line_ptr += bytes_read;
15240 mod_time =
15241 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15242 line_ptr += bytes_read;
15243 length =
15244 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15245 line_ptr += bytes_read;
15246 add_file_name (lh, cur_file, dir_index, mod_time, length);
15247 }
c906108c 15248 break;
d0c6ba3d
CC
15249 case DW_LNE_set_discriminator:
15250 /* The discriminator is not interesting to the debugger;
15251 just ignore it. */
15252 line_ptr = extended_end;
15253 break;
c906108c 15254 default:
4d3c2250 15255 complaint (&symfile_complaints,
e2e0b3e5 15256 _("mangled .debug_line section"));
debd256d 15257 return;
c906108c 15258 }
a8c50c1f
DJ
15259 /* Make sure that we parsed the extended op correctly. If e.g.
15260 we expected a different address size than the producer used,
15261 we may have read the wrong number of bytes. */
15262 if (line_ptr != extended_end)
15263 {
15264 complaint (&symfile_complaints,
15265 _("mangled .debug_line section"));
15266 return;
15267 }
c906108c
SS
15268 break;
15269 case DW_LNS_copy:
59205f5a 15270 if (lh->num_file_names < file || file == 0)
25e43795
DJ
15271 dwarf2_debug_line_missing_file_complaint ();
15272 else
366da635 15273 {
25e43795 15274 lh->file_names[file - 1].included_p = 1;
ca5f395d 15275 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
15276 {
15277 if (last_subfile != current_subfile)
15278 {
15279 addr = gdbarch_addr_bits_remove (gdbarch, address);
15280 if (last_subfile)
c91513d8 15281 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
15282 last_subfile = current_subfile;
15283 }
7019d805 15284 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 15285 (*p_record_line) (current_subfile, line, addr);
fbf65064 15286 }
366da635 15287 }
c906108c
SS
15288 basic_block = 0;
15289 break;
15290 case DW_LNS_advance_pc:
2dc7f7b3
TT
15291 {
15292 CORE_ADDR adjust
15293 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15294
15295 address += (((op_index + adjust)
15296 / lh->maximum_ops_per_instruction)
15297 * lh->minimum_instruction_length);
15298 op_index = ((op_index + adjust)
15299 % lh->maximum_ops_per_instruction);
15300 line_ptr += bytes_read;
15301 }
c906108c
SS
15302 break;
15303 case DW_LNS_advance_line:
15304 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
15305 line_ptr += bytes_read;
15306 break;
15307 case DW_LNS_set_file:
debd256d 15308 {
a738430d
MK
15309 /* The arrays lh->include_dirs and lh->file_names are
15310 0-based, but the directory and file name numbers in
15311 the statement program are 1-based. */
debd256d 15312 struct file_entry *fe;
4f1520fb 15313 char *dir = NULL;
a738430d 15314
debd256d
JB
15315 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15316 line_ptr += bytes_read;
59205f5a 15317 if (lh->num_file_names < file || file == 0)
25e43795
DJ
15318 dwarf2_debug_line_missing_file_complaint ();
15319 else
15320 {
15321 fe = &lh->file_names[file - 1];
15322 if (fe->dir_index)
15323 dir = lh->include_dirs[fe->dir_index - 1];
15324 if (!decode_for_pst_p)
15325 {
15326 last_subfile = current_subfile;
15327 dwarf2_start_subfile (fe->name, dir, comp_dir);
15328 }
15329 }
debd256d 15330 }
c906108c
SS
15331 break;
15332 case DW_LNS_set_column:
15333 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15334 line_ptr += bytes_read;
15335 break;
15336 case DW_LNS_negate_stmt:
15337 is_stmt = (!is_stmt);
15338 break;
15339 case DW_LNS_set_basic_block:
15340 basic_block = 1;
15341 break;
c2c6d25f
JM
15342 /* Add to the address register of the state machine the
15343 address increment value corresponding to special opcode
a738430d
MK
15344 255. I.e., this value is scaled by the minimum
15345 instruction length since special opcode 255 would have
b021a221 15346 scaled the increment. */
c906108c 15347 case DW_LNS_const_add_pc:
2dc7f7b3
TT
15348 {
15349 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
15350
15351 address += (((op_index + adjust)
15352 / lh->maximum_ops_per_instruction)
15353 * lh->minimum_instruction_length);
15354 op_index = ((op_index + adjust)
15355 % lh->maximum_ops_per_instruction);
15356 }
c906108c
SS
15357 break;
15358 case DW_LNS_fixed_advance_pc:
15359 address += read_2_bytes (abfd, line_ptr);
2dc7f7b3 15360 op_index = 0;
c906108c
SS
15361 line_ptr += 2;
15362 break;
9aa1fe7e 15363 default:
a738430d
MK
15364 {
15365 /* Unknown standard opcode, ignore it. */
9aa1fe7e 15366 int i;
a738430d 15367
debd256d 15368 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
15369 {
15370 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
15371 line_ptr += bytes_read;
15372 }
15373 }
c906108c
SS
15374 }
15375 }
59205f5a
JB
15376 if (lh->num_file_names < file || file == 0)
15377 dwarf2_debug_line_missing_file_complaint ();
15378 else
15379 {
15380 lh->file_names[file - 1].included_p = 1;
15381 if (!decode_for_pst_p)
fbf65064
UW
15382 {
15383 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 15384 (*p_record_line) (current_subfile, 0, addr);
fbf65064 15385 }
59205f5a 15386 }
c906108c 15387 }
f3f5162e
DE
15388}
15389
15390/* Decode the Line Number Program (LNP) for the given line_header
15391 structure and CU. The actual information extracted and the type
15392 of structures created from the LNP depends on the value of PST.
15393
15394 1. If PST is NULL, then this procedure uses the data from the program
15395 to create all necessary symbol tables, and their linetables.
15396
15397 2. If PST is not NULL, this procedure reads the program to determine
15398 the list of files included by the unit represented by PST, and
15399 builds all the associated partial symbol tables.
15400
15401 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
15402 It is used for relative paths in the line table.
15403 NOTE: When processing partial symtabs (pst != NULL),
15404 comp_dir == pst->dirname.
15405
15406 NOTE: It is important that psymtabs have the same file name (via strcmp)
15407 as the corresponding symtab. Since COMP_DIR is not used in the name of the
15408 symtab we don't use it in the name of the psymtabs we create.
15409 E.g. expand_line_sal requires this when finding psymtabs to expand.
15410 A good testcase for this is mb-inline.exp. */
15411
15412static void
15413dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
15414 struct dwarf2_cu *cu, struct partial_symtab *pst,
15415 int want_line_info)
15416{
15417 struct objfile *objfile = cu->objfile;
15418 const int decode_for_pst_p = (pst != NULL);
15419 struct subfile *first_subfile = current_subfile;
15420
15421 if (want_line_info)
15422 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
aaa75496
JB
15423
15424 if (decode_for_pst_p)
15425 {
15426 int file_index;
15427
15428 /* Now that we're done scanning the Line Header Program, we can
15429 create the psymtab of each included file. */
15430 for (file_index = 0; file_index < lh->num_file_names; file_index++)
15431 if (lh->file_names[file_index].included_p == 1)
15432 {
c6da4cef
DE
15433 char *include_name =
15434 psymtab_include_file_name (lh, file_index, pst, comp_dir);
15435 if (include_name != NULL)
aaa75496
JB
15436 dwarf2_create_include_psymtab (include_name, pst, objfile);
15437 }
15438 }
cb1df416
DJ
15439 else
15440 {
15441 /* Make sure a symtab is created for every file, even files
15442 which contain only variables (i.e. no code with associated
15443 line numbers). */
cb1df416 15444 int i;
cb1df416
DJ
15445
15446 for (i = 0; i < lh->num_file_names; i++)
15447 {
15448 char *dir = NULL;
f3f5162e 15449 struct file_entry *fe;
9a619af0 15450
cb1df416
DJ
15451 fe = &lh->file_names[i];
15452 if (fe->dir_index)
15453 dir = lh->include_dirs[fe->dir_index - 1];
15454 dwarf2_start_subfile (fe->name, dir, comp_dir);
15455
15456 /* Skip the main file; we don't need it, and it must be
15457 allocated last, so that it will show up before the
15458 non-primary symtabs in the objfile's symtab list. */
15459 if (current_subfile == first_subfile)
15460 continue;
15461
15462 if (current_subfile->symtab == NULL)
15463 current_subfile->symtab = allocate_symtab (current_subfile->name,
bb5ed363 15464 objfile);
cb1df416
DJ
15465 fe->symtab = current_subfile->symtab;
15466 }
15467 }
c906108c
SS
15468}
15469
15470/* Start a subfile for DWARF. FILENAME is the name of the file and
15471 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
15472 or NULL if not known. COMP_DIR is the compilation directory for the
15473 linetable's compilation unit or NULL if not known.
c906108c
SS
15474 This routine tries to keep line numbers from identical absolute and
15475 relative file names in a common subfile.
15476
15477 Using the `list' example from the GDB testsuite, which resides in
15478 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
15479 of /srcdir/list0.c yields the following debugging information for list0.c:
15480
c5aa993b
JM
15481 DW_AT_name: /srcdir/list0.c
15482 DW_AT_comp_dir: /compdir
357e46e7 15483 files.files[0].name: list0.h
c5aa993b 15484 files.files[0].dir: /srcdir
357e46e7 15485 files.files[1].name: list0.c
c5aa993b 15486 files.files[1].dir: /srcdir
c906108c
SS
15487
15488 The line number information for list0.c has to end up in a single
4f1520fb
FR
15489 subfile, so that `break /srcdir/list0.c:1' works as expected.
15490 start_subfile will ensure that this happens provided that we pass the
15491 concatenation of files.files[1].dir and files.files[1].name as the
15492 subfile's name. */
c906108c
SS
15493
15494static void
3e43a32a
MS
15495dwarf2_start_subfile (char *filename, const char *dirname,
15496 const char *comp_dir)
c906108c 15497{
4f1520fb
FR
15498 char *fullname;
15499
15500 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
15501 `start_symtab' will always pass the contents of DW_AT_comp_dir as
15502 second argument to start_subfile. To be consistent, we do the
15503 same here. In order not to lose the line information directory,
15504 we concatenate it to the filename when it makes sense.
15505 Note that the Dwarf3 standard says (speaking of filenames in line
15506 information): ``The directory index is ignored for file names
15507 that represent full path names''. Thus ignoring dirname in the
15508 `else' branch below isn't an issue. */
c906108c 15509
d5166ae1 15510 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
4f1520fb
FR
15511 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
15512 else
15513 fullname = filename;
c906108c 15514
4f1520fb
FR
15515 start_subfile (fullname, comp_dir);
15516
15517 if (fullname != filename)
15518 xfree (fullname);
c906108c
SS
15519}
15520
f4dc4d17
DE
15521/* Start a symtab for DWARF.
15522 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
15523
15524static void
15525dwarf2_start_symtab (struct dwarf2_cu *cu,
15526 char *name, char *comp_dir, CORE_ADDR low_pc)
15527{
15528 start_symtab (name, comp_dir, low_pc);
15529 record_debugformat ("DWARF 2");
15530 record_producer (cu->producer);
15531
15532 /* We assume that we're processing GCC output. */
15533 processing_gcc_compilation = 2;
15534
15535 processing_has_namespace_info = 0;
15536}
15537
4c2df51b
DJ
15538static void
15539var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 15540 struct dwarf2_cu *cu)
4c2df51b 15541{
e7c27a73
DJ
15542 struct objfile *objfile = cu->objfile;
15543 struct comp_unit_head *cu_header = &cu->header;
15544
4c2df51b
DJ
15545 /* NOTE drow/2003-01-30: There used to be a comment and some special
15546 code here to turn a symbol with DW_AT_external and a
15547 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
15548 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
15549 with some versions of binutils) where shared libraries could have
15550 relocations against symbols in their debug information - the
15551 minimal symbol would have the right address, but the debug info
15552 would not. It's no longer necessary, because we will explicitly
15553 apply relocations when we read in the debug information now. */
15554
15555 /* A DW_AT_location attribute with no contents indicates that a
15556 variable has been optimized away. */
15557 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
15558 {
15559 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
15560 return;
15561 }
15562
15563 /* Handle one degenerate form of location expression specially, to
15564 preserve GDB's previous behavior when section offsets are
3019eac3
DE
15565 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
15566 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
15567
15568 if (attr_form_is_block (attr)
3019eac3
DE
15569 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
15570 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
15571 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
15572 && (DW_BLOCK (attr)->size
15573 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 15574 {
891d2f0b 15575 unsigned int dummy;
4c2df51b 15576
3019eac3
DE
15577 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
15578 SYMBOL_VALUE_ADDRESS (sym) =
15579 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
15580 else
15581 SYMBOL_VALUE_ADDRESS (sym) =
15582 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
907fc202 15583 SYMBOL_CLASS (sym) = LOC_STATIC;
4c2df51b
DJ
15584 fixup_symbol_section (sym, objfile);
15585 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
15586 SYMBOL_SECTION (sym));
4c2df51b
DJ
15587 return;
15588 }
15589
15590 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
15591 expression evaluator, and use LOC_COMPUTED only when necessary
15592 (i.e. when the value of a register or memory location is
15593 referenced, or a thread-local block, etc.). Then again, it might
15594 not be worthwhile. I'm assuming that it isn't unless performance
15595 or memory numbers show me otherwise. */
15596
e7c27a73 15597 dwarf2_symbol_mark_computed (attr, sym, cu);
4c2df51b 15598 SYMBOL_CLASS (sym) = LOC_COMPUTED;
8be455d7
JK
15599
15600 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
15601 cu->has_loclist = 1;
4c2df51b
DJ
15602}
15603
c906108c
SS
15604/* Given a pointer to a DWARF information entry, figure out if we need
15605 to make a symbol table entry for it, and if so, create a new entry
15606 and return a pointer to it.
15607 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
15608 used the passed type.
15609 If SPACE is not NULL, use it to hold the new symbol. If it is
15610 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
15611
15612static struct symbol *
34eaf542
TT
15613new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
15614 struct symbol *space)
c906108c 15615{
e7c27a73 15616 struct objfile *objfile = cu->objfile;
c906108c
SS
15617 struct symbol *sym = NULL;
15618 char *name;
15619 struct attribute *attr = NULL;
15620 struct attribute *attr2 = NULL;
e142c38c 15621 CORE_ADDR baseaddr;
e37fd15a
SW
15622 struct pending **list_to_add = NULL;
15623
edb3359d 15624 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
15625
15626 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 15627
94af9270 15628 name = dwarf2_name (die, cu);
c906108c
SS
15629 if (name)
15630 {
94af9270 15631 const char *linkagename;
34eaf542 15632 int suppress_add = 0;
94af9270 15633
34eaf542
TT
15634 if (space)
15635 sym = space;
15636 else
15637 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
c906108c 15638 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
15639
15640 /* Cache this symbol's name and the name's demangled form (if any). */
33e5013e 15641 SYMBOL_SET_LANGUAGE (sym, cu->language);
94af9270
KS
15642 linkagename = dwarf2_physname (name, die, cu);
15643 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 15644
f55ee35c
JK
15645 /* Fortran does not have mangling standard and the mangling does differ
15646 between gfortran, iFort etc. */
15647 if (cu->language == language_fortran
b250c185 15648 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d
SW
15649 symbol_set_demangled_name (&(sym->ginfo),
15650 (char *) dwarf2_full_name (name, die, cu),
15651 NULL);
f55ee35c 15652
c906108c 15653 /* Default assumptions.
c5aa993b 15654 Use the passed type or decode it from the die. */
176620f1 15655 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
875dc2fc 15656 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
15657 if (type != NULL)
15658 SYMBOL_TYPE (sym) = type;
15659 else
e7c27a73 15660 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
15661 attr = dwarf2_attr (die,
15662 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
15663 cu);
c906108c
SS
15664 if (attr)
15665 {
15666 SYMBOL_LINE (sym) = DW_UNSND (attr);
15667 }
cb1df416 15668
edb3359d
DJ
15669 attr = dwarf2_attr (die,
15670 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
15671 cu);
cb1df416
DJ
15672 if (attr)
15673 {
15674 int file_index = DW_UNSND (attr);
9a619af0 15675
cb1df416
DJ
15676 if (cu->line_header == NULL
15677 || file_index > cu->line_header->num_file_names)
15678 complaint (&symfile_complaints,
15679 _("file index out of range"));
1c3d648d 15680 else if (file_index > 0)
cb1df416
DJ
15681 {
15682 struct file_entry *fe;
9a619af0 15683
cb1df416
DJ
15684 fe = &cu->line_header->file_names[file_index - 1];
15685 SYMBOL_SYMTAB (sym) = fe->symtab;
15686 }
15687 }
15688
c906108c
SS
15689 switch (die->tag)
15690 {
15691 case DW_TAG_label:
e142c38c 15692 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
15693 if (attr)
15694 {
15695 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
15696 }
0f5238ed
TT
15697 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
15698 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
c906108c 15699 SYMBOL_CLASS (sym) = LOC_LABEL;
0f5238ed 15700 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
15701 break;
15702 case DW_TAG_subprogram:
15703 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15704 finish_block. */
15705 SYMBOL_CLASS (sym) = LOC_BLOCK;
e142c38c 15706 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
15707 if ((attr2 && (DW_UNSND (attr2) != 0))
15708 || cu->language == language_ada)
c906108c 15709 {
2cfa0c8d
JB
15710 /* Subprograms marked external are stored as a global symbol.
15711 Ada subprograms, whether marked external or not, are always
15712 stored as a global symbol, because we want to be able to
15713 access them globally. For instance, we want to be able
15714 to break on a nested subprogram without having to
15715 specify the context. */
e37fd15a 15716 list_to_add = &global_symbols;
c906108c
SS
15717 }
15718 else
15719 {
e37fd15a 15720 list_to_add = cu->list_in_scope;
c906108c
SS
15721 }
15722 break;
edb3359d
DJ
15723 case DW_TAG_inlined_subroutine:
15724 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
15725 finish_block. */
15726 SYMBOL_CLASS (sym) = LOC_BLOCK;
15727 SYMBOL_INLINED (sym) = 1;
481860b3 15728 list_to_add = cu->list_in_scope;
edb3359d 15729 break;
34eaf542
TT
15730 case DW_TAG_template_value_param:
15731 suppress_add = 1;
15732 /* Fall through. */
72929c62 15733 case DW_TAG_constant:
c906108c 15734 case DW_TAG_variable:
254e6b9e 15735 case DW_TAG_member:
0963b4bd
MS
15736 /* Compilation with minimal debug info may result in
15737 variables with missing type entries. Change the
15738 misleading `void' type to something sensible. */
c906108c 15739 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 15740 SYMBOL_TYPE (sym)
46bf5051 15741 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 15742
e142c38c 15743 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
15744 /* In the case of DW_TAG_member, we should only be called for
15745 static const members. */
15746 if (die->tag == DW_TAG_member)
15747 {
3863f96c
DE
15748 /* dwarf2_add_field uses die_is_declaration,
15749 so we do the same. */
254e6b9e
DE
15750 gdb_assert (die_is_declaration (die, cu));
15751 gdb_assert (attr);
15752 }
c906108c
SS
15753 if (attr)
15754 {
e7c27a73 15755 dwarf2_const_value (attr, sym, cu);
e142c38c 15756 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 15757 if (!suppress_add)
34eaf542
TT
15758 {
15759 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 15760 list_to_add = &global_symbols;
34eaf542 15761 else
e37fd15a 15762 list_to_add = cu->list_in_scope;
34eaf542 15763 }
c906108c
SS
15764 break;
15765 }
e142c38c 15766 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
15767 if (attr)
15768 {
e7c27a73 15769 var_decode_location (attr, sym, cu);
e142c38c 15770 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
15771
15772 /* Fortran explicitly imports any global symbols to the local
15773 scope by DW_TAG_common_block. */
15774 if (cu->language == language_fortran && die->parent
15775 && die->parent->tag == DW_TAG_common_block)
15776 attr2 = NULL;
15777
caac4577
JG
15778 if (SYMBOL_CLASS (sym) == LOC_STATIC
15779 && SYMBOL_VALUE_ADDRESS (sym) == 0
15780 && !dwarf2_per_objfile->has_section_at_zero)
15781 {
15782 /* When a static variable is eliminated by the linker,
15783 the corresponding debug information is not stripped
15784 out, but the variable address is set to null;
15785 do not add such variables into symbol table. */
15786 }
15787 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 15788 {
f55ee35c
JK
15789 /* Workaround gfortran PR debug/40040 - it uses
15790 DW_AT_location for variables in -fPIC libraries which may
15791 get overriden by other libraries/executable and get
15792 a different address. Resolve it by the minimal symbol
15793 which may come from inferior's executable using copy
15794 relocation. Make this workaround only for gfortran as for
15795 other compilers GDB cannot guess the minimal symbol
15796 Fortran mangling kind. */
15797 if (cu->language == language_fortran && die->parent
15798 && die->parent->tag == DW_TAG_module
15799 && cu->producer
15800 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
15801 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
15802
1c809c68
TT
15803 /* A variable with DW_AT_external is never static,
15804 but it may be block-scoped. */
15805 list_to_add = (cu->list_in_scope == &file_symbols
15806 ? &global_symbols : cu->list_in_scope);
1c809c68 15807 }
c906108c 15808 else
e37fd15a 15809 list_to_add = cu->list_in_scope;
c906108c
SS
15810 }
15811 else
15812 {
15813 /* We do not know the address of this symbol.
c5aa993b
JM
15814 If it is an external symbol and we have type information
15815 for it, enter the symbol as a LOC_UNRESOLVED symbol.
15816 The address of the variable will then be determined from
15817 the minimal symbol table whenever the variable is
15818 referenced. */
e142c38c 15819 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
15820
15821 /* Fortran explicitly imports any global symbols to the local
15822 scope by DW_TAG_common_block. */
15823 if (cu->language == language_fortran && die->parent
15824 && die->parent->tag == DW_TAG_common_block)
15825 {
15826 /* SYMBOL_CLASS doesn't matter here because
15827 read_common_block is going to reset it. */
15828 if (!suppress_add)
15829 list_to_add = cu->list_in_scope;
15830 }
15831 else if (attr2 && (DW_UNSND (attr2) != 0)
15832 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 15833 {
0fe7935b
DJ
15834 /* A variable with DW_AT_external is never static, but it
15835 may be block-scoped. */
15836 list_to_add = (cu->list_in_scope == &file_symbols
15837 ? &global_symbols : cu->list_in_scope);
15838
c906108c 15839 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
c906108c 15840 }
442ddf59
JK
15841 else if (!die_is_declaration (die, cu))
15842 {
15843 /* Use the default LOC_OPTIMIZED_OUT class. */
15844 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
15845 if (!suppress_add)
15846 list_to_add = cu->list_in_scope;
442ddf59 15847 }
c906108c
SS
15848 }
15849 break;
15850 case DW_TAG_formal_parameter:
edb3359d
DJ
15851 /* If we are inside a function, mark this as an argument. If
15852 not, we might be looking at an argument to an inlined function
15853 when we do not have enough information to show inlined frames;
15854 pretend it's a local variable in that case so that the user can
15855 still see it. */
15856 if (context_stack_depth > 0
15857 && context_stack[context_stack_depth - 1].name != NULL)
15858 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 15859 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
15860 if (attr)
15861 {
e7c27a73 15862 var_decode_location (attr, sym, cu);
c906108c 15863 }
e142c38c 15864 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
15865 if (attr)
15866 {
e7c27a73 15867 dwarf2_const_value (attr, sym, cu);
c906108c 15868 }
f346a30d 15869
e37fd15a 15870 list_to_add = cu->list_in_scope;
c906108c
SS
15871 break;
15872 case DW_TAG_unspecified_parameters:
15873 /* From varargs functions; gdb doesn't seem to have any
15874 interest in this information, so just ignore it for now.
15875 (FIXME?) */
15876 break;
34eaf542
TT
15877 case DW_TAG_template_type_param:
15878 suppress_add = 1;
15879 /* Fall through. */
c906108c 15880 case DW_TAG_class_type:
680b30c7 15881 case DW_TAG_interface_type:
c906108c
SS
15882 case DW_TAG_structure_type:
15883 case DW_TAG_union_type:
72019c9c 15884 case DW_TAG_set_type:
c906108c
SS
15885 case DW_TAG_enumeration_type:
15886 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 15887 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 15888
63d06c5c 15889 {
987504bb 15890 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
15891 really ever be static objects: otherwise, if you try
15892 to, say, break of a class's method and you're in a file
15893 which doesn't mention that class, it won't work unless
15894 the check for all static symbols in lookup_symbol_aux
15895 saves you. See the OtherFileClass tests in
15896 gdb.c++/namespace.exp. */
15897
e37fd15a 15898 if (!suppress_add)
34eaf542 15899 {
34eaf542
TT
15900 list_to_add = (cu->list_in_scope == &file_symbols
15901 && (cu->language == language_cplus
15902 || cu->language == language_java)
15903 ? &global_symbols : cu->list_in_scope);
63d06c5c 15904
64382290
TT
15905 /* The semantics of C++ state that "struct foo {
15906 ... }" also defines a typedef for "foo". A Java
15907 class declaration also defines a typedef for the
15908 class. */
15909 if (cu->language == language_cplus
15910 || cu->language == language_java
15911 || cu->language == language_ada)
15912 {
15913 /* The symbol's name is already allocated along
15914 with this objfile, so we don't need to
15915 duplicate it for the type. */
15916 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
15917 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
15918 }
63d06c5c
DC
15919 }
15920 }
c906108c
SS
15921 break;
15922 case DW_TAG_typedef:
63d06c5c
DC
15923 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
15924 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 15925 list_to_add = cu->list_in_scope;
63d06c5c 15926 break;
c906108c 15927 case DW_TAG_base_type:
a02abb62 15928 case DW_TAG_subrange_type:
c906108c 15929 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 15930 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 15931 list_to_add = cu->list_in_scope;
c906108c
SS
15932 break;
15933 case DW_TAG_enumerator:
e142c38c 15934 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
15935 if (attr)
15936 {
e7c27a73 15937 dwarf2_const_value (attr, sym, cu);
c906108c 15938 }
63d06c5c
DC
15939 {
15940 /* NOTE: carlton/2003-11-10: See comment above in the
15941 DW_TAG_class_type, etc. block. */
15942
e142c38c 15943 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
15944 && (cu->language == language_cplus
15945 || cu->language == language_java)
e142c38c 15946 ? &global_symbols : cu->list_in_scope);
63d06c5c 15947 }
c906108c 15948 break;
5c4e30ca
DC
15949 case DW_TAG_namespace:
15950 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
e37fd15a 15951 list_to_add = &global_symbols;
5c4e30ca 15952 break;
4357ac6c
TT
15953 case DW_TAG_common_block:
15954 SYMBOL_CLASS (sym) = LOC_STATIC;
15955 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
15956 add_symbol_to_list (sym, cu->list_in_scope);
15957 break;
c906108c
SS
15958 default:
15959 /* Not a tag we recognize. Hopefully we aren't processing
15960 trash data, but since we must specifically ignore things
15961 we don't recognize, there is nothing else we should do at
0963b4bd 15962 this point. */
e2e0b3e5 15963 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 15964 dwarf_tag_name (die->tag));
c906108c
SS
15965 break;
15966 }
df8a16a1 15967
e37fd15a
SW
15968 if (suppress_add)
15969 {
15970 sym->hash_next = objfile->template_symbols;
15971 objfile->template_symbols = sym;
15972 list_to_add = NULL;
15973 }
15974
15975 if (list_to_add != NULL)
15976 add_symbol_to_list (sym, list_to_add);
15977
df8a16a1
DJ
15978 /* For the benefit of old versions of GCC, check for anonymous
15979 namespaces based on the demangled name. */
15980 if (!processing_has_namespace_info
94af9270 15981 && cu->language == language_cplus)
a10964d1 15982 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
15983 }
15984 return (sym);
15985}
15986
34eaf542
TT
15987/* A wrapper for new_symbol_full that always allocates a new symbol. */
15988
15989static struct symbol *
15990new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
15991{
15992 return new_symbol_full (die, type, cu, NULL);
15993}
15994
98bfdba5
PA
15995/* Given an attr with a DW_FORM_dataN value in host byte order,
15996 zero-extend it as appropriate for the symbol's type. The DWARF
15997 standard (v4) is not entirely clear about the meaning of using
15998 DW_FORM_dataN for a constant with a signed type, where the type is
15999 wider than the data. The conclusion of a discussion on the DWARF
16000 list was that this is unspecified. We choose to always zero-extend
16001 because that is the interpretation long in use by GCC. */
c906108c 16002
98bfdba5
PA
16003static gdb_byte *
16004dwarf2_const_value_data (struct attribute *attr, struct type *type,
16005 const char *name, struct obstack *obstack,
12df843f 16006 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 16007{
e7c27a73 16008 struct objfile *objfile = cu->objfile;
e17a4113
UW
16009 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
16010 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
16011 LONGEST l = DW_UNSND (attr);
16012
16013 if (bits < sizeof (*value) * 8)
16014 {
16015 l &= ((LONGEST) 1 << bits) - 1;
16016 *value = l;
16017 }
16018 else if (bits == sizeof (*value) * 8)
16019 *value = l;
16020 else
16021 {
16022 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
16023 store_unsigned_integer (bytes, bits / 8, byte_order, l);
16024 return bytes;
16025 }
16026
16027 return NULL;
16028}
16029
16030/* Read a constant value from an attribute. Either set *VALUE, or if
16031 the value does not fit in *VALUE, set *BYTES - either already
16032 allocated on the objfile obstack, or newly allocated on OBSTACK,
16033 or, set *BATON, if we translated the constant to a location
16034 expression. */
16035
16036static void
16037dwarf2_const_value_attr (struct attribute *attr, struct type *type,
16038 const char *name, struct obstack *obstack,
16039 struct dwarf2_cu *cu,
12df843f 16040 LONGEST *value, gdb_byte **bytes,
98bfdba5
PA
16041 struct dwarf2_locexpr_baton **baton)
16042{
16043 struct objfile *objfile = cu->objfile;
16044 struct comp_unit_head *cu_header = &cu->header;
c906108c 16045 struct dwarf_block *blk;
98bfdba5
PA
16046 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
16047 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
16048
16049 *value = 0;
16050 *bytes = NULL;
16051 *baton = NULL;
c906108c
SS
16052
16053 switch (attr->form)
16054 {
16055 case DW_FORM_addr:
3019eac3 16056 case DW_FORM_GNU_addr_index:
ac56253d 16057 {
ac56253d
TT
16058 gdb_byte *data;
16059
98bfdba5
PA
16060 if (TYPE_LENGTH (type) != cu_header->addr_size)
16061 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 16062 cu_header->addr_size,
98bfdba5 16063 TYPE_LENGTH (type));
ac56253d
TT
16064 /* Symbols of this form are reasonably rare, so we just
16065 piggyback on the existing location code rather than writing
16066 a new implementation of symbol_computed_ops. */
98bfdba5
PA
16067 *baton = obstack_alloc (&objfile->objfile_obstack,
16068 sizeof (struct dwarf2_locexpr_baton));
16069 (*baton)->per_cu = cu->per_cu;
16070 gdb_assert ((*baton)->per_cu);
ac56253d 16071
98bfdba5
PA
16072 (*baton)->size = 2 + cu_header->addr_size;
16073 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
16074 (*baton)->data = data;
ac56253d
TT
16075
16076 data[0] = DW_OP_addr;
16077 store_unsigned_integer (&data[1], cu_header->addr_size,
16078 byte_order, DW_ADDR (attr));
16079 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 16080 }
c906108c 16081 break;
4ac36638 16082 case DW_FORM_string:
93b5768b 16083 case DW_FORM_strp:
3019eac3 16084 case DW_FORM_GNU_str_index:
36586728 16085 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
16086 /* DW_STRING is already allocated on the objfile obstack, point
16087 directly to it. */
16088 *bytes = (gdb_byte *) DW_STRING (attr);
93b5768b 16089 break;
c906108c
SS
16090 case DW_FORM_block1:
16091 case DW_FORM_block2:
16092 case DW_FORM_block4:
16093 case DW_FORM_block:
2dc7f7b3 16094 case DW_FORM_exprloc:
c906108c 16095 blk = DW_BLOCK (attr);
98bfdba5
PA
16096 if (TYPE_LENGTH (type) != blk->size)
16097 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
16098 TYPE_LENGTH (type));
16099 *bytes = blk->data;
c906108c 16100 break;
2df3850c
JM
16101
16102 /* The DW_AT_const_value attributes are supposed to carry the
16103 symbol's value "represented as it would be on the target
16104 architecture." By the time we get here, it's already been
16105 converted to host endianness, so we just need to sign- or
16106 zero-extend it as appropriate. */
16107 case DW_FORM_data1:
3e43a32a
MS
16108 *bytes = dwarf2_const_value_data (attr, type, name,
16109 obstack, cu, value, 8);
2df3850c 16110 break;
c906108c 16111 case DW_FORM_data2:
3e43a32a
MS
16112 *bytes = dwarf2_const_value_data (attr, type, name,
16113 obstack, cu, value, 16);
2df3850c 16114 break;
c906108c 16115 case DW_FORM_data4:
3e43a32a
MS
16116 *bytes = dwarf2_const_value_data (attr, type, name,
16117 obstack, cu, value, 32);
2df3850c 16118 break;
c906108c 16119 case DW_FORM_data8:
3e43a32a
MS
16120 *bytes = dwarf2_const_value_data (attr, type, name,
16121 obstack, cu, value, 64);
2df3850c
JM
16122 break;
16123
c906108c 16124 case DW_FORM_sdata:
98bfdba5 16125 *value = DW_SND (attr);
2df3850c
JM
16126 break;
16127
c906108c 16128 case DW_FORM_udata:
98bfdba5 16129 *value = DW_UNSND (attr);
c906108c 16130 break;
2df3850c 16131
c906108c 16132 default:
4d3c2250 16133 complaint (&symfile_complaints,
e2e0b3e5 16134 _("unsupported const value attribute form: '%s'"),
4d3c2250 16135 dwarf_form_name (attr->form));
98bfdba5 16136 *value = 0;
c906108c
SS
16137 break;
16138 }
16139}
16140
2df3850c 16141
98bfdba5
PA
16142/* Copy constant value from an attribute to a symbol. */
16143
2df3850c 16144static void
98bfdba5
PA
16145dwarf2_const_value (struct attribute *attr, struct symbol *sym,
16146 struct dwarf2_cu *cu)
2df3850c 16147{
98bfdba5
PA
16148 struct objfile *objfile = cu->objfile;
16149 struct comp_unit_head *cu_header = &cu->header;
12df843f 16150 LONGEST value;
98bfdba5
PA
16151 gdb_byte *bytes;
16152 struct dwarf2_locexpr_baton *baton;
2df3850c 16153
98bfdba5
PA
16154 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
16155 SYMBOL_PRINT_NAME (sym),
16156 &objfile->objfile_obstack, cu,
16157 &value, &bytes, &baton);
2df3850c 16158
98bfdba5
PA
16159 if (baton != NULL)
16160 {
16161 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
16162 SYMBOL_LOCATION_BATON (sym) = baton;
16163 SYMBOL_CLASS (sym) = LOC_COMPUTED;
16164 }
16165 else if (bytes != NULL)
16166 {
16167 SYMBOL_VALUE_BYTES (sym) = bytes;
16168 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
16169 }
16170 else
16171 {
16172 SYMBOL_VALUE (sym) = value;
16173 SYMBOL_CLASS (sym) = LOC_CONST;
16174 }
2df3850c
JM
16175}
16176
c906108c
SS
16177/* Return the type of the die in question using its DW_AT_type attribute. */
16178
16179static struct type *
e7c27a73 16180die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16181{
c906108c 16182 struct attribute *type_attr;
c906108c 16183
e142c38c 16184 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
16185 if (!type_attr)
16186 {
16187 /* A missing DW_AT_type represents a void type. */
46bf5051 16188 return objfile_type (cu->objfile)->builtin_void;
c906108c 16189 }
348e048f 16190
673bfd45 16191 return lookup_die_type (die, type_attr, cu);
c906108c
SS
16192}
16193
b4ba55a1
JB
16194/* True iff CU's producer generates GNAT Ada auxiliary information
16195 that allows to find parallel types through that information instead
16196 of having to do expensive parallel lookups by type name. */
16197
16198static int
16199need_gnat_info (struct dwarf2_cu *cu)
16200{
16201 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
16202 of GNAT produces this auxiliary information, without any indication
16203 that it is produced. Part of enhancing the FSF version of GNAT
16204 to produce that information will be to put in place an indicator
16205 that we can use in order to determine whether the descriptive type
16206 info is available or not. One suggestion that has been made is
16207 to use a new attribute, attached to the CU die. For now, assume
16208 that the descriptive type info is not available. */
16209 return 0;
16210}
16211
b4ba55a1
JB
16212/* Return the auxiliary type of the die in question using its
16213 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
16214 attribute is not present. */
16215
16216static struct type *
16217die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
16218{
b4ba55a1 16219 struct attribute *type_attr;
b4ba55a1
JB
16220
16221 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
16222 if (!type_attr)
16223 return NULL;
16224
673bfd45 16225 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
16226}
16227
16228/* If DIE has a descriptive_type attribute, then set the TYPE's
16229 descriptive type accordingly. */
16230
16231static void
16232set_descriptive_type (struct type *type, struct die_info *die,
16233 struct dwarf2_cu *cu)
16234{
16235 struct type *descriptive_type = die_descriptive_type (die, cu);
16236
16237 if (descriptive_type)
16238 {
16239 ALLOCATE_GNAT_AUX_TYPE (type);
16240 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
16241 }
16242}
16243
c906108c
SS
16244/* Return the containing type of the die in question using its
16245 DW_AT_containing_type attribute. */
16246
16247static struct type *
e7c27a73 16248die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16249{
c906108c 16250 struct attribute *type_attr;
c906108c 16251
e142c38c 16252 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
16253 if (!type_attr)
16254 error (_("Dwarf Error: Problem turning containing type into gdb type "
16255 "[in module %s]"), cu->objfile->name);
16256
673bfd45 16257 return lookup_die_type (die, type_attr, cu);
c906108c
SS
16258}
16259
673bfd45
DE
16260/* Look up the type of DIE in CU using its type attribute ATTR.
16261 If there is no type substitute an error marker. */
16262
c906108c 16263static struct type *
673bfd45
DE
16264lookup_die_type (struct die_info *die, struct attribute *attr,
16265 struct dwarf2_cu *cu)
c906108c 16266{
bb5ed363 16267 struct objfile *objfile = cu->objfile;
f792889a
DJ
16268 struct type *this_type;
16269
673bfd45
DE
16270 /* First see if we have it cached. */
16271
36586728
TT
16272 if (attr->form == DW_FORM_GNU_ref_alt)
16273 {
16274 struct dwarf2_per_cu_data *per_cu;
16275 sect_offset offset = dwarf2_get_ref_die_offset (attr);
16276
16277 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
16278 this_type = get_die_type_at_offset (offset, per_cu);
16279 }
16280 else if (is_ref_attr (attr))
673bfd45 16281 {
b64f50a1 16282 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
16283
16284 this_type = get_die_type_at_offset (offset, cu->per_cu);
16285 }
55f1336d 16286 else if (attr->form == DW_FORM_ref_sig8)
673bfd45
DE
16287 {
16288 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
673bfd45
DE
16289
16290 /* sig_type will be NULL if the signatured type is missing from
16291 the debug info. */
16292 if (sig_type == NULL)
16293 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
16294 "at 0x%x [in module %s]"),
b64f50a1 16295 die->offset.sect_off, objfile->name);
673bfd45 16296
3019eac3
DE
16297 gdb_assert (sig_type->per_cu.is_debug_types);
16298 /* If we haven't filled in type_offset_in_section yet, then we
16299 haven't read the type in yet. */
16300 this_type = NULL;
16301 if (sig_type->type_offset_in_section.sect_off != 0)
16302 {
16303 this_type =
16304 get_die_type_at_offset (sig_type->type_offset_in_section,
16305 &sig_type->per_cu);
16306 }
673bfd45
DE
16307 }
16308 else
16309 {
16310 dump_die_for_error (die);
16311 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
bb5ed363 16312 dwarf_attr_name (attr->name), objfile->name);
673bfd45
DE
16313 }
16314
16315 /* If not cached we need to read it in. */
16316
16317 if (this_type == NULL)
16318 {
16319 struct die_info *type_die;
16320 struct dwarf2_cu *type_cu = cu;
16321
16322 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
3019eac3
DE
16323 /* If we found the type now, it's probably because the type came
16324 from an inter-CU reference and the type's CU got expanded before
16325 ours. */
16326 this_type = get_die_type (type_die, type_cu);
16327 if (this_type == NULL)
16328 this_type = read_type_die_1 (type_die, type_cu);
673bfd45
DE
16329 }
16330
16331 /* If we still don't have a type use an error marker. */
16332
16333 if (this_type == NULL)
c906108c 16334 {
b00fdb78
TT
16335 char *message, *saved;
16336
16337 /* read_type_die already issued a complaint. */
16338 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
bb5ed363 16339 objfile->name,
b64f50a1
JK
16340 cu->header.offset.sect_off,
16341 die->offset.sect_off);
bb5ed363 16342 saved = obstack_copy0 (&objfile->objfile_obstack,
b00fdb78
TT
16343 message, strlen (message));
16344 xfree (message);
16345
bb5ed363 16346 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
c906108c 16347 }
673bfd45 16348
f792889a 16349 return this_type;
c906108c
SS
16350}
16351
673bfd45
DE
16352/* Return the type in DIE, CU.
16353 Returns NULL for invalid types.
16354
16355 This first does a lookup in the appropriate type_hash table,
16356 and only reads the die in if necessary.
16357
16358 NOTE: This can be called when reading in partial or full symbols. */
16359
f792889a 16360static struct type *
e7c27a73 16361read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 16362{
f792889a
DJ
16363 struct type *this_type;
16364
16365 this_type = get_die_type (die, cu);
16366 if (this_type)
16367 return this_type;
16368
673bfd45
DE
16369 return read_type_die_1 (die, cu);
16370}
16371
16372/* Read the type in DIE, CU.
16373 Returns NULL for invalid types. */
16374
16375static struct type *
16376read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
16377{
16378 struct type *this_type = NULL;
16379
c906108c
SS
16380 switch (die->tag)
16381 {
16382 case DW_TAG_class_type:
680b30c7 16383 case DW_TAG_interface_type:
c906108c
SS
16384 case DW_TAG_structure_type:
16385 case DW_TAG_union_type:
f792889a 16386 this_type = read_structure_type (die, cu);
c906108c
SS
16387 break;
16388 case DW_TAG_enumeration_type:
f792889a 16389 this_type = read_enumeration_type (die, cu);
c906108c
SS
16390 break;
16391 case DW_TAG_subprogram:
16392 case DW_TAG_subroutine_type:
edb3359d 16393 case DW_TAG_inlined_subroutine:
f792889a 16394 this_type = read_subroutine_type (die, cu);
c906108c
SS
16395 break;
16396 case DW_TAG_array_type:
f792889a 16397 this_type = read_array_type (die, cu);
c906108c 16398 break;
72019c9c 16399 case DW_TAG_set_type:
f792889a 16400 this_type = read_set_type (die, cu);
72019c9c 16401 break;
c906108c 16402 case DW_TAG_pointer_type:
f792889a 16403 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
16404 break;
16405 case DW_TAG_ptr_to_member_type:
f792889a 16406 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
16407 break;
16408 case DW_TAG_reference_type:
f792889a 16409 this_type = read_tag_reference_type (die, cu);
c906108c
SS
16410 break;
16411 case DW_TAG_const_type:
f792889a 16412 this_type = read_tag_const_type (die, cu);
c906108c
SS
16413 break;
16414 case DW_TAG_volatile_type:
f792889a 16415 this_type = read_tag_volatile_type (die, cu);
c906108c
SS
16416 break;
16417 case DW_TAG_string_type:
f792889a 16418 this_type = read_tag_string_type (die, cu);
c906108c
SS
16419 break;
16420 case DW_TAG_typedef:
f792889a 16421 this_type = read_typedef (die, cu);
c906108c 16422 break;
a02abb62 16423 case DW_TAG_subrange_type:
f792889a 16424 this_type = read_subrange_type (die, cu);
a02abb62 16425 break;
c906108c 16426 case DW_TAG_base_type:
f792889a 16427 this_type = read_base_type (die, cu);
c906108c 16428 break;
81a17f79 16429 case DW_TAG_unspecified_type:
f792889a 16430 this_type = read_unspecified_type (die, cu);
81a17f79 16431 break;
0114d602
DJ
16432 case DW_TAG_namespace:
16433 this_type = read_namespace_type (die, cu);
16434 break;
f55ee35c
JK
16435 case DW_TAG_module:
16436 this_type = read_module_type (die, cu);
16437 break;
c906108c 16438 default:
3e43a32a
MS
16439 complaint (&symfile_complaints,
16440 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 16441 dwarf_tag_name (die->tag));
c906108c
SS
16442 break;
16443 }
63d06c5c 16444
f792889a 16445 return this_type;
63d06c5c
DC
16446}
16447
abc72ce4
DE
16448/* See if we can figure out if the class lives in a namespace. We do
16449 this by looking for a member function; its demangled name will
16450 contain namespace info, if there is any.
16451 Return the computed name or NULL.
16452 Space for the result is allocated on the objfile's obstack.
16453 This is the full-die version of guess_partial_die_structure_name.
16454 In this case we know DIE has no useful parent. */
16455
16456static char *
16457guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
16458{
16459 struct die_info *spec_die;
16460 struct dwarf2_cu *spec_cu;
16461 struct die_info *child;
16462
16463 spec_cu = cu;
16464 spec_die = die_specification (die, &spec_cu);
16465 if (spec_die != NULL)
16466 {
16467 die = spec_die;
16468 cu = spec_cu;
16469 }
16470
16471 for (child = die->child;
16472 child != NULL;
16473 child = child->sibling)
16474 {
16475 if (child->tag == DW_TAG_subprogram)
16476 {
16477 struct attribute *attr;
16478
16479 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
16480 if (attr == NULL)
16481 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
16482 if (attr != NULL)
16483 {
16484 char *actual_name
16485 = language_class_name_from_physname (cu->language_defn,
16486 DW_STRING (attr));
16487 char *name = NULL;
16488
16489 if (actual_name != NULL)
16490 {
16491 char *die_name = dwarf2_name (die, cu);
16492
16493 if (die_name != NULL
16494 && strcmp (die_name, actual_name) != 0)
16495 {
16496 /* Strip off the class name from the full name.
16497 We want the prefix. */
16498 int die_name_len = strlen (die_name);
16499 int actual_name_len = strlen (actual_name);
16500
16501 /* Test for '::' as a sanity check. */
16502 if (actual_name_len > die_name_len + 2
3e43a32a
MS
16503 && actual_name[actual_name_len
16504 - die_name_len - 1] == ':')
abc72ce4
DE
16505 name =
16506 obsavestring (actual_name,
16507 actual_name_len - die_name_len - 2,
16508 &cu->objfile->objfile_obstack);
16509 }
16510 }
16511 xfree (actual_name);
16512 return name;
16513 }
16514 }
16515 }
16516
16517 return NULL;
16518}
16519
96408a79
SA
16520/* GCC might emit a nameless typedef that has a linkage name. Determine the
16521 prefix part in such case. See
16522 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16523
16524static char *
16525anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
16526{
16527 struct attribute *attr;
16528 char *base;
16529
16530 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
16531 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
16532 return NULL;
16533
16534 attr = dwarf2_attr (die, DW_AT_name, cu);
16535 if (attr != NULL && DW_STRING (attr) != NULL)
16536 return NULL;
16537
16538 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16539 if (attr == NULL)
16540 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16541 if (attr == NULL || DW_STRING (attr) == NULL)
16542 return NULL;
16543
16544 /* dwarf2_name had to be already called. */
16545 gdb_assert (DW_STRING_IS_CANONICAL (attr));
16546
16547 /* Strip the base name, keep any leading namespaces/classes. */
16548 base = strrchr (DW_STRING (attr), ':');
16549 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
16550 return "";
16551
16552 return obsavestring (DW_STRING (attr), &base[-1] - DW_STRING (attr),
16553 &cu->objfile->objfile_obstack);
16554}
16555
fdde2d81 16556/* Return the name of the namespace/class that DIE is defined within,
0114d602 16557 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 16558
0114d602
DJ
16559 For example, if we're within the method foo() in the following
16560 code:
16561
16562 namespace N {
16563 class C {
16564 void foo () {
16565 }
16566 };
16567 }
16568
16569 then determine_prefix on foo's die will return "N::C". */
fdde2d81 16570
0d5cff50 16571static const char *
e142c38c 16572determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 16573{
0114d602
DJ
16574 struct die_info *parent, *spec_die;
16575 struct dwarf2_cu *spec_cu;
16576 struct type *parent_type;
96408a79 16577 char *retval;
63d06c5c 16578
f55ee35c
JK
16579 if (cu->language != language_cplus && cu->language != language_java
16580 && cu->language != language_fortran)
0114d602
DJ
16581 return "";
16582
96408a79
SA
16583 retval = anonymous_struct_prefix (die, cu);
16584 if (retval)
16585 return retval;
16586
0114d602
DJ
16587 /* We have to be careful in the presence of DW_AT_specification.
16588 For example, with GCC 3.4, given the code
16589
16590 namespace N {
16591 void foo() {
16592 // Definition of N::foo.
16593 }
16594 }
16595
16596 then we'll have a tree of DIEs like this:
16597
16598 1: DW_TAG_compile_unit
16599 2: DW_TAG_namespace // N
16600 3: DW_TAG_subprogram // declaration of N::foo
16601 4: DW_TAG_subprogram // definition of N::foo
16602 DW_AT_specification // refers to die #3
16603
16604 Thus, when processing die #4, we have to pretend that we're in
16605 the context of its DW_AT_specification, namely the contex of die
16606 #3. */
16607 spec_cu = cu;
16608 spec_die = die_specification (die, &spec_cu);
16609 if (spec_die == NULL)
16610 parent = die->parent;
16611 else
63d06c5c 16612 {
0114d602
DJ
16613 parent = spec_die->parent;
16614 cu = spec_cu;
63d06c5c 16615 }
0114d602
DJ
16616
16617 if (parent == NULL)
16618 return "";
98bfdba5
PA
16619 else if (parent->building_fullname)
16620 {
16621 const char *name;
16622 const char *parent_name;
16623
16624 /* It has been seen on RealView 2.2 built binaries,
16625 DW_TAG_template_type_param types actually _defined_ as
16626 children of the parent class:
16627
16628 enum E {};
16629 template class <class Enum> Class{};
16630 Class<enum E> class_e;
16631
16632 1: DW_TAG_class_type (Class)
16633 2: DW_TAG_enumeration_type (E)
16634 3: DW_TAG_enumerator (enum1:0)
16635 3: DW_TAG_enumerator (enum2:1)
16636 ...
16637 2: DW_TAG_template_type_param
16638 DW_AT_type DW_FORM_ref_udata (E)
16639
16640 Besides being broken debug info, it can put GDB into an
16641 infinite loop. Consider:
16642
16643 When we're building the full name for Class<E>, we'll start
16644 at Class, and go look over its template type parameters,
16645 finding E. We'll then try to build the full name of E, and
16646 reach here. We're now trying to build the full name of E,
16647 and look over the parent DIE for containing scope. In the
16648 broken case, if we followed the parent DIE of E, we'd again
16649 find Class, and once again go look at its template type
16650 arguments, etc., etc. Simply don't consider such parent die
16651 as source-level parent of this die (it can't be, the language
16652 doesn't allow it), and break the loop here. */
16653 name = dwarf2_name (die, cu);
16654 parent_name = dwarf2_name (parent, cu);
16655 complaint (&symfile_complaints,
16656 _("template param type '%s' defined within parent '%s'"),
16657 name ? name : "<unknown>",
16658 parent_name ? parent_name : "<unknown>");
16659 return "";
16660 }
63d06c5c 16661 else
0114d602
DJ
16662 switch (parent->tag)
16663 {
63d06c5c 16664 case DW_TAG_namespace:
0114d602 16665 parent_type = read_type_die (parent, cu);
acebe513
UW
16666 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
16667 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
16668 Work around this problem here. */
16669 if (cu->language == language_cplus
16670 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
16671 return "";
0114d602
DJ
16672 /* We give a name to even anonymous namespaces. */
16673 return TYPE_TAG_NAME (parent_type);
63d06c5c 16674 case DW_TAG_class_type:
680b30c7 16675 case DW_TAG_interface_type:
63d06c5c 16676 case DW_TAG_structure_type:
0114d602 16677 case DW_TAG_union_type:
f55ee35c 16678 case DW_TAG_module:
0114d602
DJ
16679 parent_type = read_type_die (parent, cu);
16680 if (TYPE_TAG_NAME (parent_type) != NULL)
16681 return TYPE_TAG_NAME (parent_type);
16682 else
16683 /* An anonymous structure is only allowed non-static data
16684 members; no typedefs, no member functions, et cetera.
16685 So it does not need a prefix. */
16686 return "";
abc72ce4 16687 case DW_TAG_compile_unit:
95554aad 16688 case DW_TAG_partial_unit:
abc72ce4
DE
16689 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
16690 if (cu->language == language_cplus
8b70b953 16691 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
16692 && die->child != NULL
16693 && (die->tag == DW_TAG_class_type
16694 || die->tag == DW_TAG_structure_type
16695 || die->tag == DW_TAG_union_type))
16696 {
16697 char *name = guess_full_die_structure_name (die, cu);
16698 if (name != NULL)
16699 return name;
16700 }
16701 return "";
63d06c5c 16702 default:
8176b9b8 16703 return determine_prefix (parent, cu);
63d06c5c 16704 }
63d06c5c
DC
16705}
16706
3e43a32a
MS
16707/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
16708 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
16709 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
16710 an obconcat, otherwise allocate storage for the result. The CU argument is
16711 used to determine the language and hence, the appropriate separator. */
987504bb 16712
f55ee35c 16713#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
16714
16715static char *
f55ee35c
JK
16716typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
16717 int physname, struct dwarf2_cu *cu)
63d06c5c 16718{
f55ee35c 16719 const char *lead = "";
5c315b68 16720 const char *sep;
63d06c5c 16721
3e43a32a
MS
16722 if (suffix == NULL || suffix[0] == '\0'
16723 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
16724 sep = "";
16725 else if (cu->language == language_java)
16726 sep = ".";
f55ee35c
JK
16727 else if (cu->language == language_fortran && physname)
16728 {
16729 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
16730 DW_AT_MIPS_linkage_name is preferred and used instead. */
16731
16732 lead = "__";
16733 sep = "_MOD_";
16734 }
987504bb
JJ
16735 else
16736 sep = "::";
63d06c5c 16737
6dd47d34
DE
16738 if (prefix == NULL)
16739 prefix = "";
16740 if (suffix == NULL)
16741 suffix = "";
16742
987504bb
JJ
16743 if (obs == NULL)
16744 {
3e43a32a
MS
16745 char *retval
16746 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 16747
f55ee35c
JK
16748 strcpy (retval, lead);
16749 strcat (retval, prefix);
6dd47d34
DE
16750 strcat (retval, sep);
16751 strcat (retval, suffix);
63d06c5c
DC
16752 return retval;
16753 }
987504bb
JJ
16754 else
16755 {
16756 /* We have an obstack. */
f55ee35c 16757 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 16758 }
63d06c5c
DC
16759}
16760
c906108c
SS
16761/* Return sibling of die, NULL if no sibling. */
16762
f9aca02d 16763static struct die_info *
fba45db2 16764sibling_die (struct die_info *die)
c906108c 16765{
639d11d3 16766 return die->sibling;
c906108c
SS
16767}
16768
71c25dea
TT
16769/* Get name of a die, return NULL if not found. */
16770
16771static char *
16772dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
16773 struct obstack *obstack)
16774{
16775 if (name && cu->language == language_cplus)
16776 {
16777 char *canon_name = cp_canonicalize_string (name);
16778
16779 if (canon_name != NULL)
16780 {
16781 if (strcmp (canon_name, name) != 0)
16782 name = obsavestring (canon_name, strlen (canon_name),
16783 obstack);
16784 xfree (canon_name);
16785 }
16786 }
16787
16788 return name;
c906108c
SS
16789}
16790
9219021c
DC
16791/* Get name of a die, return NULL if not found. */
16792
16793static char *
e142c38c 16794dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
16795{
16796 struct attribute *attr;
16797
e142c38c 16798 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31
TT
16799 if ((!attr || !DW_STRING (attr))
16800 && die->tag != DW_TAG_class_type
16801 && die->tag != DW_TAG_interface_type
16802 && die->tag != DW_TAG_structure_type
16803 && die->tag != DW_TAG_union_type)
71c25dea
TT
16804 return NULL;
16805
16806 switch (die->tag)
16807 {
16808 case DW_TAG_compile_unit:
95554aad 16809 case DW_TAG_partial_unit:
71c25dea
TT
16810 /* Compilation units have a DW_AT_name that is a filename, not
16811 a source language identifier. */
16812 case DW_TAG_enumeration_type:
16813 case DW_TAG_enumerator:
16814 /* These tags always have simple identifiers already; no need
16815 to canonicalize them. */
16816 return DW_STRING (attr);
907af001 16817
418835cc
KS
16818 case DW_TAG_subprogram:
16819 /* Java constructors will all be named "<init>", so return
16820 the class name when we see this special case. */
16821 if (cu->language == language_java
16822 && DW_STRING (attr) != NULL
16823 && strcmp (DW_STRING (attr), "<init>") == 0)
16824 {
16825 struct dwarf2_cu *spec_cu = cu;
16826 struct die_info *spec_die;
16827
16828 /* GCJ will output '<init>' for Java constructor names.
16829 For this special case, return the name of the parent class. */
16830
16831 /* GCJ may output suprogram DIEs with AT_specification set.
16832 If so, use the name of the specified DIE. */
16833 spec_die = die_specification (die, &spec_cu);
16834 if (spec_die != NULL)
16835 return dwarf2_name (spec_die, spec_cu);
16836
16837 do
16838 {
16839 die = die->parent;
16840 if (die->tag == DW_TAG_class_type)
16841 return dwarf2_name (die, cu);
16842 }
95554aad
TT
16843 while (die->tag != DW_TAG_compile_unit
16844 && die->tag != DW_TAG_partial_unit);
418835cc 16845 }
907af001
UW
16846 break;
16847
16848 case DW_TAG_class_type:
16849 case DW_TAG_interface_type:
16850 case DW_TAG_structure_type:
16851 case DW_TAG_union_type:
16852 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
16853 structures or unions. These were of the form "._%d" in GCC 4.1,
16854 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
16855 and GCC 4.4. We work around this problem by ignoring these. */
53832f31
TT
16856 if (attr && DW_STRING (attr)
16857 && (strncmp (DW_STRING (attr), "._", 2) == 0
16858 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
907af001 16859 return NULL;
53832f31
TT
16860
16861 /* GCC might emit a nameless typedef that has a linkage name. See
16862 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16863 if (!attr || DW_STRING (attr) == NULL)
16864 {
df5c6c50 16865 char *demangled = NULL;
53832f31
TT
16866
16867 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
16868 if (attr == NULL)
16869 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
16870
16871 if (attr == NULL || DW_STRING (attr) == NULL)
16872 return NULL;
16873
df5c6c50
JK
16874 /* Avoid demangling DW_STRING (attr) the second time on a second
16875 call for the same DIE. */
16876 if (!DW_STRING_IS_CANONICAL (attr))
16877 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
16878
16879 if (demangled)
16880 {
96408a79
SA
16881 char *base;
16882
53832f31 16883 /* FIXME: we already did this for the partial symbol... */
96408a79
SA
16884 DW_STRING (attr) = obsavestring (demangled, strlen (demangled),
16885 &cu->objfile->objfile_obstack);
53832f31
TT
16886 DW_STRING_IS_CANONICAL (attr) = 1;
16887 xfree (demangled);
96408a79
SA
16888
16889 /* Strip any leading namespaces/classes, keep only the base name.
16890 DW_AT_name for named DIEs does not contain the prefixes. */
16891 base = strrchr (DW_STRING (attr), ':');
16892 if (base && base > DW_STRING (attr) && base[-1] == ':')
16893 return &base[1];
16894 else
16895 return DW_STRING (attr);
53832f31
TT
16896 }
16897 }
907af001
UW
16898 break;
16899
71c25dea 16900 default:
907af001
UW
16901 break;
16902 }
16903
16904 if (!DW_STRING_IS_CANONICAL (attr))
16905 {
16906 DW_STRING (attr)
16907 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
16908 &cu->objfile->objfile_obstack);
16909 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 16910 }
907af001 16911 return DW_STRING (attr);
9219021c
DC
16912}
16913
16914/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
16915 is none. *EXT_CU is the CU containing DIE on input, and the CU
16916 containing the return value on output. */
9219021c
DC
16917
16918static struct die_info *
f2f0e013 16919dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
16920{
16921 struct attribute *attr;
9219021c 16922
f2f0e013 16923 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
16924 if (attr == NULL)
16925 return NULL;
16926
f2f0e013 16927 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
16928}
16929
c906108c
SS
16930/* Convert a DIE tag into its string name. */
16931
f39c6ffd 16932static const char *
aa1ee363 16933dwarf_tag_name (unsigned tag)
c906108c 16934{
f39c6ffd
TT
16935 const char *name = get_DW_TAG_name (tag);
16936
16937 if (name == NULL)
16938 return "DW_TAG_<unknown>";
16939
16940 return name;
c906108c
SS
16941}
16942
16943/* Convert a DWARF attribute code into its string name. */
16944
f39c6ffd 16945static const char *
aa1ee363 16946dwarf_attr_name (unsigned attr)
c906108c 16947{
f39c6ffd
TT
16948 const char *name;
16949
c764a876 16950#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
16951 if (attr == DW_AT_MIPS_fde)
16952 return "DW_AT_MIPS_fde";
16953#else
16954 if (attr == DW_AT_HP_block_index)
16955 return "DW_AT_HP_block_index";
c764a876 16956#endif
f39c6ffd
TT
16957
16958 name = get_DW_AT_name (attr);
16959
16960 if (name == NULL)
16961 return "DW_AT_<unknown>";
16962
16963 return name;
c906108c
SS
16964}
16965
16966/* Convert a DWARF value form code into its string name. */
16967
f39c6ffd 16968static const char *
aa1ee363 16969dwarf_form_name (unsigned form)
c906108c 16970{
f39c6ffd
TT
16971 const char *name = get_DW_FORM_name (form);
16972
16973 if (name == NULL)
16974 return "DW_FORM_<unknown>";
16975
16976 return name;
c906108c
SS
16977}
16978
16979static char *
fba45db2 16980dwarf_bool_name (unsigned mybool)
c906108c
SS
16981{
16982 if (mybool)
16983 return "TRUE";
16984 else
16985 return "FALSE";
16986}
16987
16988/* Convert a DWARF type code into its string name. */
16989
f39c6ffd 16990static const char *
aa1ee363 16991dwarf_type_encoding_name (unsigned enc)
c906108c 16992{
f39c6ffd 16993 const char *name = get_DW_ATE_name (enc);
c906108c 16994
f39c6ffd
TT
16995 if (name == NULL)
16996 return "DW_ATE_<unknown>";
c906108c 16997
f39c6ffd 16998 return name;
c906108c 16999}
c906108c 17000
f9aca02d 17001static void
d97bc12b 17002dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
17003{
17004 unsigned int i;
17005
d97bc12b
DE
17006 print_spaces (indent, f);
17007 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 17008 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
17009
17010 if (die->parent != NULL)
17011 {
17012 print_spaces (indent, f);
17013 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 17014 die->parent->offset.sect_off);
d97bc12b
DE
17015 }
17016
17017 print_spaces (indent, f);
17018 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 17019 dwarf_bool_name (die->child != NULL));
c906108c 17020
d97bc12b
DE
17021 print_spaces (indent, f);
17022 fprintf_unfiltered (f, " attributes:\n");
17023
c906108c
SS
17024 for (i = 0; i < die->num_attrs; ++i)
17025 {
d97bc12b
DE
17026 print_spaces (indent, f);
17027 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
17028 dwarf_attr_name (die->attrs[i].name),
17029 dwarf_form_name (die->attrs[i].form));
d97bc12b 17030
c906108c
SS
17031 switch (die->attrs[i].form)
17032 {
c906108c 17033 case DW_FORM_addr:
3019eac3 17034 case DW_FORM_GNU_addr_index:
d97bc12b 17035 fprintf_unfiltered (f, "address: ");
5af949e3 17036 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
17037 break;
17038 case DW_FORM_block2:
17039 case DW_FORM_block4:
17040 case DW_FORM_block:
17041 case DW_FORM_block1:
56eb65bd
SP
17042 fprintf_unfiltered (f, "block: size %s",
17043 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 17044 break;
2dc7f7b3 17045 case DW_FORM_exprloc:
56eb65bd
SP
17046 fprintf_unfiltered (f, "expression: size %s",
17047 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 17048 break;
4568ecf9
DE
17049 case DW_FORM_ref_addr:
17050 fprintf_unfiltered (f, "ref address: ");
17051 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17052 break;
36586728
TT
17053 case DW_FORM_GNU_ref_alt:
17054 fprintf_unfiltered (f, "alt ref address: ");
17055 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
17056 break;
10b3939b
DJ
17057 case DW_FORM_ref1:
17058 case DW_FORM_ref2:
17059 case DW_FORM_ref4:
4568ecf9
DE
17060 case DW_FORM_ref8:
17061 case DW_FORM_ref_udata:
d97bc12b 17062 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 17063 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 17064 break;
c906108c
SS
17065 case DW_FORM_data1:
17066 case DW_FORM_data2:
17067 case DW_FORM_data4:
ce5d95e1 17068 case DW_FORM_data8:
c906108c
SS
17069 case DW_FORM_udata:
17070 case DW_FORM_sdata:
43bbcdc2
PH
17071 fprintf_unfiltered (f, "constant: %s",
17072 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 17073 break;
2dc7f7b3
TT
17074 case DW_FORM_sec_offset:
17075 fprintf_unfiltered (f, "section offset: %s",
17076 pulongest (DW_UNSND (&die->attrs[i])));
17077 break;
55f1336d 17078 case DW_FORM_ref_sig8:
348e048f
DE
17079 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
17080 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
b64f50a1 17081 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset.sect_off);
348e048f
DE
17082 else
17083 fprintf_unfiltered (f, "signatured type, offset: unknown");
17084 break;
c906108c 17085 case DW_FORM_string:
4bdf3d34 17086 case DW_FORM_strp:
3019eac3 17087 case DW_FORM_GNU_str_index:
36586728 17088 case DW_FORM_GNU_strp_alt:
8285870a 17089 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 17090 DW_STRING (&die->attrs[i])
8285870a
JK
17091 ? DW_STRING (&die->attrs[i]) : "",
17092 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
17093 break;
17094 case DW_FORM_flag:
17095 if (DW_UNSND (&die->attrs[i]))
d97bc12b 17096 fprintf_unfiltered (f, "flag: TRUE");
c906108c 17097 else
d97bc12b 17098 fprintf_unfiltered (f, "flag: FALSE");
c906108c 17099 break;
2dc7f7b3
TT
17100 case DW_FORM_flag_present:
17101 fprintf_unfiltered (f, "flag: TRUE");
17102 break;
a8329558 17103 case DW_FORM_indirect:
0963b4bd
MS
17104 /* The reader will have reduced the indirect form to
17105 the "base form" so this form should not occur. */
3e43a32a
MS
17106 fprintf_unfiltered (f,
17107 "unexpected attribute form: DW_FORM_indirect");
a8329558 17108 break;
c906108c 17109 default:
d97bc12b 17110 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 17111 die->attrs[i].form);
d97bc12b 17112 break;
c906108c 17113 }
d97bc12b 17114 fprintf_unfiltered (f, "\n");
c906108c
SS
17115 }
17116}
17117
f9aca02d 17118static void
d97bc12b 17119dump_die_for_error (struct die_info *die)
c906108c 17120{
d97bc12b
DE
17121 dump_die_shallow (gdb_stderr, 0, die);
17122}
17123
17124static void
17125dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
17126{
17127 int indent = level * 4;
17128
17129 gdb_assert (die != NULL);
17130
17131 if (level >= max_level)
17132 return;
17133
17134 dump_die_shallow (f, indent, die);
17135
17136 if (die->child != NULL)
c906108c 17137 {
d97bc12b
DE
17138 print_spaces (indent, f);
17139 fprintf_unfiltered (f, " Children:");
17140 if (level + 1 < max_level)
17141 {
17142 fprintf_unfiltered (f, "\n");
17143 dump_die_1 (f, level + 1, max_level, die->child);
17144 }
17145 else
17146 {
3e43a32a
MS
17147 fprintf_unfiltered (f,
17148 " [not printed, max nesting level reached]\n");
d97bc12b
DE
17149 }
17150 }
17151
17152 if (die->sibling != NULL && level > 0)
17153 {
17154 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
17155 }
17156}
17157
d97bc12b
DE
17158/* This is called from the pdie macro in gdbinit.in.
17159 It's not static so gcc will keep a copy callable from gdb. */
17160
17161void
17162dump_die (struct die_info *die, int max_level)
17163{
17164 dump_die_1 (gdb_stdlog, 0, max_level, die);
17165}
17166
f9aca02d 17167static void
51545339 17168store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 17169{
51545339 17170 void **slot;
c906108c 17171
b64f50a1
JK
17172 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
17173 INSERT);
51545339
DJ
17174
17175 *slot = die;
c906108c
SS
17176}
17177
b64f50a1
JK
17178/* DW_ADDR is always stored already as sect_offset; despite for the forms
17179 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
17180
93311388
DE
17181static int
17182is_ref_attr (struct attribute *attr)
c906108c 17183{
c906108c
SS
17184 switch (attr->form)
17185 {
17186 case DW_FORM_ref_addr:
c906108c
SS
17187 case DW_FORM_ref1:
17188 case DW_FORM_ref2:
17189 case DW_FORM_ref4:
613e1657 17190 case DW_FORM_ref8:
c906108c 17191 case DW_FORM_ref_udata:
36586728 17192 case DW_FORM_GNU_ref_alt:
93311388 17193 return 1;
c906108c 17194 default:
93311388 17195 return 0;
c906108c 17196 }
93311388
DE
17197}
17198
b64f50a1
JK
17199/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
17200 required kind. */
17201
17202static sect_offset
93311388
DE
17203dwarf2_get_ref_die_offset (struct attribute *attr)
17204{
4568ecf9 17205 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 17206
93311388 17207 if (is_ref_attr (attr))
b64f50a1 17208 return retval;
93311388 17209
b64f50a1 17210 retval.sect_off = 0;
93311388
DE
17211 complaint (&symfile_complaints,
17212 _("unsupported die ref attribute form: '%s'"),
17213 dwarf_form_name (attr->form));
b64f50a1 17214 return retval;
c906108c
SS
17215}
17216
43bbcdc2
PH
17217/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
17218 * the value held by the attribute is not constant. */
a02abb62 17219
43bbcdc2 17220static LONGEST
a02abb62
JB
17221dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
17222{
17223 if (attr->form == DW_FORM_sdata)
17224 return DW_SND (attr);
17225 else if (attr->form == DW_FORM_udata
17226 || attr->form == DW_FORM_data1
17227 || attr->form == DW_FORM_data2
17228 || attr->form == DW_FORM_data4
17229 || attr->form == DW_FORM_data8)
17230 return DW_UNSND (attr);
17231 else
17232 {
3e43a32a
MS
17233 complaint (&symfile_complaints,
17234 _("Attribute value is not a constant (%s)"),
a02abb62
JB
17235 dwarf_form_name (attr->form));
17236 return default_value;
17237 }
17238}
17239
348e048f
DE
17240/* Follow reference or signature attribute ATTR of SRC_DIE.
17241 On entry *REF_CU is the CU of SRC_DIE.
17242 On exit *REF_CU is the CU of the result. */
17243
17244static struct die_info *
17245follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
17246 struct dwarf2_cu **ref_cu)
17247{
17248 struct die_info *die;
17249
17250 if (is_ref_attr (attr))
17251 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 17252 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
17253 die = follow_die_sig (src_die, attr, ref_cu);
17254 else
17255 {
17256 dump_die_for_error (src_die);
17257 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
17258 (*ref_cu)->objfile->name);
17259 }
17260
17261 return die;
03dd20cc
DJ
17262}
17263
5c631832 17264/* Follow reference OFFSET.
673bfd45
DE
17265 On entry *REF_CU is the CU of the source die referencing OFFSET.
17266 On exit *REF_CU is the CU of the result.
17267 Returns NULL if OFFSET is invalid. */
f504f079 17268
f9aca02d 17269static struct die_info *
36586728
TT
17270follow_die_offset (sect_offset offset, int offset_in_dwz,
17271 struct dwarf2_cu **ref_cu)
c906108c 17272{
10b3939b 17273 struct die_info temp_die;
f2f0e013 17274 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 17275
348e048f
DE
17276 gdb_assert (cu->per_cu != NULL);
17277
98bfdba5
PA
17278 target_cu = cu;
17279
3019eac3 17280 if (cu->per_cu->is_debug_types)
348e048f
DE
17281 {
17282 /* .debug_types CUs cannot reference anything outside their CU.
17283 If they need to, they have to reference a signatured type via
55f1336d 17284 DW_FORM_ref_sig8. */
348e048f 17285 if (! offset_in_cu_p (&cu->header, offset))
5c631832 17286 return NULL;
348e048f 17287 }
36586728
TT
17288 else if (offset_in_dwz != cu->per_cu->is_dwz
17289 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
17290 {
17291 struct dwarf2_per_cu_data *per_cu;
9a619af0 17292
36586728
TT
17293 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
17294 cu->objfile);
03dd20cc
DJ
17295
17296 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
17297 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
17298 load_full_comp_unit (per_cu, cu->language);
03dd20cc 17299
10b3939b
DJ
17300 target_cu = per_cu->cu;
17301 }
98bfdba5
PA
17302 else if (cu->dies == NULL)
17303 {
17304 /* We're loading full DIEs during partial symbol reading. */
17305 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 17306 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 17307 }
c906108c 17308
f2f0e013 17309 *ref_cu = target_cu;
51545339 17310 temp_die.offset = offset;
b64f50a1 17311 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
5c631832 17312}
10b3939b 17313
5c631832
JK
17314/* Follow reference attribute ATTR of SRC_DIE.
17315 On entry *REF_CU is the CU of SRC_DIE.
17316 On exit *REF_CU is the CU of the result. */
17317
17318static struct die_info *
17319follow_die_ref (struct die_info *src_die, struct attribute *attr,
17320 struct dwarf2_cu **ref_cu)
17321{
b64f50a1 17322 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
17323 struct dwarf2_cu *cu = *ref_cu;
17324 struct die_info *die;
17325
36586728
TT
17326 die = follow_die_offset (offset,
17327 (attr->form == DW_FORM_GNU_ref_alt
17328 || cu->per_cu->is_dwz),
17329 ref_cu);
5c631832
JK
17330 if (!die)
17331 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
17332 "at 0x%x [in module %s]"),
b64f50a1 17333 offset.sect_off, src_die->offset.sect_off, cu->objfile->name);
348e048f 17334
5c631832
JK
17335 return die;
17336}
17337
d83e736b
JK
17338/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
17339 Returned value is intended for DW_OP_call*. Returned
17340 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
17341
17342struct dwarf2_locexpr_baton
b64f50a1 17343dwarf2_fetch_die_location_block (cu_offset offset_in_cu,
8cf6f0b1
TT
17344 struct dwarf2_per_cu_data *per_cu,
17345 CORE_ADDR (*get_frame_pc) (void *baton),
17346 void *baton)
5c631832 17347{
b64f50a1 17348 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
918dd910 17349 struct dwarf2_cu *cu;
5c631832
JK
17350 struct die_info *die;
17351 struct attribute *attr;
17352 struct dwarf2_locexpr_baton retval;
17353
8cf6f0b1
TT
17354 dw2_setup (per_cu->objfile);
17355
918dd910
JK
17356 if (per_cu->cu == NULL)
17357 load_cu (per_cu);
17358 cu = per_cu->cu;
17359
36586728 17360 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
17361 if (!die)
17362 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
b64f50a1 17363 offset.sect_off, per_cu->objfile->name);
5c631832
JK
17364
17365 attr = dwarf2_attr (die, DW_AT_location, cu);
17366 if (!attr)
17367 {
e103e986
JK
17368 /* DWARF: "If there is no such attribute, then there is no effect.".
17369 DATA is ignored if SIZE is 0. */
5c631832 17370
e103e986 17371 retval.data = NULL;
5c631832
JK
17372 retval.size = 0;
17373 }
8cf6f0b1
TT
17374 else if (attr_form_is_section_offset (attr))
17375 {
17376 struct dwarf2_loclist_baton loclist_baton;
17377 CORE_ADDR pc = (*get_frame_pc) (baton);
17378 size_t size;
17379
17380 fill_in_loclist_baton (cu, &loclist_baton, attr);
17381
17382 retval.data = dwarf2_find_location_expression (&loclist_baton,
17383 &size, pc);
17384 retval.size = size;
17385 }
5c631832
JK
17386 else
17387 {
17388 if (!attr_form_is_block (attr))
17389 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
17390 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
b64f50a1 17391 offset.sect_off, per_cu->objfile->name);
5c631832
JK
17392
17393 retval.data = DW_BLOCK (attr)->data;
17394 retval.size = DW_BLOCK (attr)->size;
17395 }
17396 retval.per_cu = cu->per_cu;
918dd910 17397
918dd910
JK
17398 age_cached_comp_units ();
17399
5c631832 17400 return retval;
348e048f
DE
17401}
17402
8a9b8146
TT
17403/* Return the type of the DIE at DIE_OFFSET in the CU named by
17404 PER_CU. */
17405
17406struct type *
b64f50a1 17407dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
17408 struct dwarf2_per_cu_data *per_cu)
17409{
b64f50a1
JK
17410 sect_offset die_offset_sect;
17411
8a9b8146 17412 dw2_setup (per_cu->objfile);
b64f50a1
JK
17413
17414 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
17415 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
17416}
17417
348e048f
DE
17418/* Follow the signature attribute ATTR in SRC_DIE.
17419 On entry *REF_CU is the CU of SRC_DIE.
17420 On exit *REF_CU is the CU of the result. */
17421
17422static struct die_info *
17423follow_die_sig (struct die_info *src_die, struct attribute *attr,
17424 struct dwarf2_cu **ref_cu)
17425{
17426 struct objfile *objfile = (*ref_cu)->objfile;
17427 struct die_info temp_die;
17428 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
17429 struct dwarf2_cu *sig_cu;
17430 struct die_info *die;
17431
17432 /* sig_type will be NULL if the signatured type is missing from
17433 the debug info. */
17434 if (sig_type == NULL)
17435 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
17436 "at 0x%x [in module %s]"),
b64f50a1 17437 src_die->offset.sect_off, objfile->name);
348e048f
DE
17438
17439 /* If necessary, add it to the queue and load its DIEs. */
17440
95554aad 17441 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 17442 read_signatured_type (sig_type);
348e048f
DE
17443
17444 gdb_assert (sig_type->per_cu.cu != NULL);
17445
17446 sig_cu = sig_type->per_cu.cu;
3019eac3
DE
17447 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
17448 temp_die.offset = sig_type->type_offset_in_section;
b64f50a1
JK
17449 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
17450 temp_die.offset.sect_off);
348e048f
DE
17451 if (die)
17452 {
17453 *ref_cu = sig_cu;
17454 return die;
17455 }
17456
3e43a32a
MS
17457 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
17458 "from DIE at 0x%x [in module %s]"),
b64f50a1 17459 temp_die.offset.sect_off, src_die->offset.sect_off, objfile->name);
348e048f
DE
17460}
17461
17462/* Given an offset of a signatured type, return its signatured_type. */
17463
17464static struct signatured_type *
8b70b953
TT
17465lookup_signatured_type_at_offset (struct objfile *objfile,
17466 struct dwarf2_section_info *section,
b64f50a1 17467 sect_offset offset)
348e048f 17468{
b64f50a1 17469 gdb_byte *info_ptr = section->buffer + offset.sect_off;
348e048f
DE
17470 unsigned int length, initial_length_size;
17471 unsigned int sig_offset;
52dc124a 17472 struct signatured_type find_entry, *sig_type;
348e048f
DE
17473
17474 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
17475 sig_offset = (initial_length_size
17476 + 2 /*version*/
17477 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
17478 + 1 /*address_size*/);
17479 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
52dc124a 17480 sig_type = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
348e048f
DE
17481
17482 /* This is only used to lookup previously recorded types.
17483 If we didn't find it, it's our bug. */
52dc124a
DE
17484 gdb_assert (sig_type != NULL);
17485 gdb_assert (offset.sect_off == sig_type->per_cu.offset.sect_off);
348e048f 17486
52dc124a 17487 return sig_type;
348e048f
DE
17488}
17489
e5fe5e75 17490/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
17491
17492static void
e5fe5e75 17493load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 17494{
52dc124a 17495 struct signatured_type *sig_type;
348e048f 17496
f4dc4d17
DE
17497 /* Caller is responsible for ensuring type_unit_groups don't get here. */
17498 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
17499
6721b2ec
DE
17500 /* We have the per_cu, but we need the signatured_type.
17501 Fortunately this is an easy translation. */
17502 gdb_assert (per_cu->is_debug_types);
17503 sig_type = (struct signatured_type *) per_cu;
348e048f 17504
6721b2ec 17505 gdb_assert (per_cu->cu == NULL);
348e048f 17506
52dc124a 17507 read_signatured_type (sig_type);
348e048f 17508
6721b2ec 17509 gdb_assert (per_cu->cu != NULL);
348e048f
DE
17510}
17511
dee91e82
DE
17512/* die_reader_func for read_signatured_type.
17513 This is identical to load_full_comp_unit_reader,
17514 but is kept separate for now. */
348e048f
DE
17515
17516static void
dee91e82
DE
17517read_signatured_type_reader (const struct die_reader_specs *reader,
17518 gdb_byte *info_ptr,
17519 struct die_info *comp_unit_die,
17520 int has_children,
17521 void *data)
348e048f 17522{
dee91e82 17523 struct dwarf2_cu *cu = reader->cu;
348e048f 17524
dee91e82
DE
17525 gdb_assert (cu->die_hash == NULL);
17526 cu->die_hash =
17527 htab_create_alloc_ex (cu->header.length / 12,
17528 die_hash,
17529 die_eq,
17530 NULL,
17531 &cu->comp_unit_obstack,
17532 hashtab_obstack_allocate,
17533 dummy_obstack_deallocate);
348e048f 17534
dee91e82
DE
17535 if (has_children)
17536 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
17537 &info_ptr, comp_unit_die);
17538 cu->dies = comp_unit_die;
17539 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
17540
17541 /* We try not to read any attributes in this function, because not
9cdd5dbd 17542 all CUs needed for references have been loaded yet, and symbol
348e048f 17543 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
17544 or we won't be able to build types correctly.
17545 Similarly, if we do not read the producer, we can not apply
17546 producer-specific interpretation. */
95554aad 17547 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 17548}
348e048f 17549
3019eac3
DE
17550/* Read in a signatured type and build its CU and DIEs.
17551 If the type is a stub for the real type in a DWO file,
17552 read in the real type from the DWO file as well. */
dee91e82
DE
17553
17554static void
17555read_signatured_type (struct signatured_type *sig_type)
17556{
17557 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 17558
3019eac3 17559 gdb_assert (per_cu->is_debug_types);
dee91e82 17560 gdb_assert (per_cu->cu == NULL);
348e048f 17561
f4dc4d17
DE
17562 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
17563 read_signatured_type_reader, NULL);
c906108c
SS
17564}
17565
c906108c
SS
17566/* Decode simple location descriptions.
17567 Given a pointer to a dwarf block that defines a location, compute
17568 the location and return the value.
17569
4cecd739
DJ
17570 NOTE drow/2003-11-18: This function is called in two situations
17571 now: for the address of static or global variables (partial symbols
17572 only) and for offsets into structures which are expected to be
17573 (more or less) constant. The partial symbol case should go away,
17574 and only the constant case should remain. That will let this
17575 function complain more accurately. A few special modes are allowed
17576 without complaint for global variables (for instance, global
17577 register values and thread-local values).
c906108c
SS
17578
17579 A location description containing no operations indicates that the
4cecd739 17580 object is optimized out. The return value is 0 for that case.
6b992462
DJ
17581 FIXME drow/2003-11-16: No callers check for this case any more; soon all
17582 callers will only want a very basic result and this can become a
21ae7a4d
JK
17583 complaint.
17584
17585 Note that stack[0] is unused except as a default error return. */
c906108c
SS
17586
17587static CORE_ADDR
e7c27a73 17588decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 17589{
e7c27a73 17590 struct objfile *objfile = cu->objfile;
56eb65bd
SP
17591 size_t i;
17592 size_t size = blk->size;
21ae7a4d
JK
17593 gdb_byte *data = blk->data;
17594 CORE_ADDR stack[64];
17595 int stacki;
17596 unsigned int bytes_read, unsnd;
17597 gdb_byte op;
c906108c 17598
21ae7a4d
JK
17599 i = 0;
17600 stacki = 0;
17601 stack[stacki] = 0;
17602 stack[++stacki] = 0;
17603
17604 while (i < size)
17605 {
17606 op = data[i++];
17607 switch (op)
17608 {
17609 case DW_OP_lit0:
17610 case DW_OP_lit1:
17611 case DW_OP_lit2:
17612 case DW_OP_lit3:
17613 case DW_OP_lit4:
17614 case DW_OP_lit5:
17615 case DW_OP_lit6:
17616 case DW_OP_lit7:
17617 case DW_OP_lit8:
17618 case DW_OP_lit9:
17619 case DW_OP_lit10:
17620 case DW_OP_lit11:
17621 case DW_OP_lit12:
17622 case DW_OP_lit13:
17623 case DW_OP_lit14:
17624 case DW_OP_lit15:
17625 case DW_OP_lit16:
17626 case DW_OP_lit17:
17627 case DW_OP_lit18:
17628 case DW_OP_lit19:
17629 case DW_OP_lit20:
17630 case DW_OP_lit21:
17631 case DW_OP_lit22:
17632 case DW_OP_lit23:
17633 case DW_OP_lit24:
17634 case DW_OP_lit25:
17635 case DW_OP_lit26:
17636 case DW_OP_lit27:
17637 case DW_OP_lit28:
17638 case DW_OP_lit29:
17639 case DW_OP_lit30:
17640 case DW_OP_lit31:
17641 stack[++stacki] = op - DW_OP_lit0;
17642 break;
f1bea926 17643
21ae7a4d
JK
17644 case DW_OP_reg0:
17645 case DW_OP_reg1:
17646 case DW_OP_reg2:
17647 case DW_OP_reg3:
17648 case DW_OP_reg4:
17649 case DW_OP_reg5:
17650 case DW_OP_reg6:
17651 case DW_OP_reg7:
17652 case DW_OP_reg8:
17653 case DW_OP_reg9:
17654 case DW_OP_reg10:
17655 case DW_OP_reg11:
17656 case DW_OP_reg12:
17657 case DW_OP_reg13:
17658 case DW_OP_reg14:
17659 case DW_OP_reg15:
17660 case DW_OP_reg16:
17661 case DW_OP_reg17:
17662 case DW_OP_reg18:
17663 case DW_OP_reg19:
17664 case DW_OP_reg20:
17665 case DW_OP_reg21:
17666 case DW_OP_reg22:
17667 case DW_OP_reg23:
17668 case DW_OP_reg24:
17669 case DW_OP_reg25:
17670 case DW_OP_reg26:
17671 case DW_OP_reg27:
17672 case DW_OP_reg28:
17673 case DW_OP_reg29:
17674 case DW_OP_reg30:
17675 case DW_OP_reg31:
17676 stack[++stacki] = op - DW_OP_reg0;
17677 if (i < size)
17678 dwarf2_complex_location_expr_complaint ();
17679 break;
c906108c 17680
21ae7a4d
JK
17681 case DW_OP_regx:
17682 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
17683 i += bytes_read;
17684 stack[++stacki] = unsnd;
17685 if (i < size)
17686 dwarf2_complex_location_expr_complaint ();
17687 break;
c906108c 17688
21ae7a4d
JK
17689 case DW_OP_addr:
17690 stack[++stacki] = read_address (objfile->obfd, &data[i],
17691 cu, &bytes_read);
17692 i += bytes_read;
17693 break;
d53d4ac5 17694
21ae7a4d
JK
17695 case DW_OP_const1u:
17696 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
17697 i += 1;
17698 break;
17699
17700 case DW_OP_const1s:
17701 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
17702 i += 1;
17703 break;
17704
17705 case DW_OP_const2u:
17706 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
17707 i += 2;
17708 break;
17709
17710 case DW_OP_const2s:
17711 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
17712 i += 2;
17713 break;
d53d4ac5 17714
21ae7a4d
JK
17715 case DW_OP_const4u:
17716 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
17717 i += 4;
17718 break;
17719
17720 case DW_OP_const4s:
17721 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
17722 i += 4;
17723 break;
17724
585861ea
JK
17725 case DW_OP_const8u:
17726 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
17727 i += 8;
17728 break;
17729
21ae7a4d
JK
17730 case DW_OP_constu:
17731 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
17732 &bytes_read);
17733 i += bytes_read;
17734 break;
17735
17736 case DW_OP_consts:
17737 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
17738 i += bytes_read;
17739 break;
17740
17741 case DW_OP_dup:
17742 stack[stacki + 1] = stack[stacki];
17743 stacki++;
17744 break;
17745
17746 case DW_OP_plus:
17747 stack[stacki - 1] += stack[stacki];
17748 stacki--;
17749 break;
17750
17751 case DW_OP_plus_uconst:
17752 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
17753 &bytes_read);
17754 i += bytes_read;
17755 break;
17756
17757 case DW_OP_minus:
17758 stack[stacki - 1] -= stack[stacki];
17759 stacki--;
17760 break;
17761
17762 case DW_OP_deref:
17763 /* If we're not the last op, then we definitely can't encode
17764 this using GDB's address_class enum. This is valid for partial
17765 global symbols, although the variable's address will be bogus
17766 in the psymtab. */
17767 if (i < size)
17768 dwarf2_complex_location_expr_complaint ();
17769 break;
17770
17771 case DW_OP_GNU_push_tls_address:
17772 /* The top of the stack has the offset from the beginning
17773 of the thread control block at which the variable is located. */
17774 /* Nothing should follow this operator, so the top of stack would
17775 be returned. */
17776 /* This is valid for partial global symbols, but the variable's
585861ea
JK
17777 address will be bogus in the psymtab. Make it always at least
17778 non-zero to not look as a variable garbage collected by linker
17779 which have DW_OP_addr 0. */
21ae7a4d
JK
17780 if (i < size)
17781 dwarf2_complex_location_expr_complaint ();
585861ea 17782 stack[stacki]++;
21ae7a4d
JK
17783 break;
17784
17785 case DW_OP_GNU_uninit:
17786 break;
17787
3019eac3 17788 case DW_OP_GNU_addr_index:
49f6c839 17789 case DW_OP_GNU_const_index:
3019eac3
DE
17790 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
17791 &bytes_read);
17792 i += bytes_read;
17793 break;
17794
21ae7a4d
JK
17795 default:
17796 {
f39c6ffd 17797 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
17798
17799 if (name)
17800 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
17801 name);
17802 else
17803 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
17804 op);
17805 }
17806
17807 return (stack[stacki]);
d53d4ac5 17808 }
3c6e0cb3 17809
21ae7a4d
JK
17810 /* Enforce maximum stack depth of SIZE-1 to avoid writing
17811 outside of the allocated space. Also enforce minimum>0. */
17812 if (stacki >= ARRAY_SIZE (stack) - 1)
17813 {
17814 complaint (&symfile_complaints,
17815 _("location description stack overflow"));
17816 return 0;
17817 }
17818
17819 if (stacki <= 0)
17820 {
17821 complaint (&symfile_complaints,
17822 _("location description stack underflow"));
17823 return 0;
17824 }
17825 }
17826 return (stack[stacki]);
c906108c
SS
17827}
17828
17829/* memory allocation interface */
17830
c906108c 17831static struct dwarf_block *
7b5a2f43 17832dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
17833{
17834 struct dwarf_block *blk;
17835
17836 blk = (struct dwarf_block *)
7b5a2f43 17837 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
17838 return (blk);
17839}
17840
c906108c 17841static struct die_info *
b60c80d6 17842dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
17843{
17844 struct die_info *die;
b60c80d6
DJ
17845 size_t size = sizeof (struct die_info);
17846
17847 if (num_attrs > 1)
17848 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 17849
b60c80d6 17850 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
17851 memset (die, 0, sizeof (struct die_info));
17852 return (die);
17853}
2e276125
JB
17854
17855\f
17856/* Macro support. */
17857
2e276125
JB
17858/* Return the full name of file number I in *LH's file name table.
17859 Use COMP_DIR as the name of the current directory of the
17860 compilation. The result is allocated using xmalloc; the caller is
17861 responsible for freeing it. */
17862static char *
17863file_full_name (int file, struct line_header *lh, const char *comp_dir)
17864{
6a83a1e6
EZ
17865 /* Is the file number a valid index into the line header's file name
17866 table? Remember that file numbers start with one, not zero. */
17867 if (1 <= file && file <= lh->num_file_names)
17868 {
17869 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 17870
6a83a1e6
EZ
17871 if (IS_ABSOLUTE_PATH (fe->name))
17872 return xstrdup (fe->name);
17873 else
17874 {
17875 const char *dir;
17876 int dir_len;
17877 char *full_name;
17878
17879 if (fe->dir_index)
17880 dir = lh->include_dirs[fe->dir_index - 1];
17881 else
17882 dir = comp_dir;
17883
17884 if (dir)
17885 {
17886 dir_len = strlen (dir);
17887 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
17888 strcpy (full_name, dir);
17889 full_name[dir_len] = '/';
17890 strcpy (full_name + dir_len + 1, fe->name);
17891 return full_name;
17892 }
17893 else
17894 return xstrdup (fe->name);
17895 }
17896 }
2e276125
JB
17897 else
17898 {
6a83a1e6
EZ
17899 /* The compiler produced a bogus file number. We can at least
17900 record the macro definitions made in the file, even if we
17901 won't be able to find the file by name. */
17902 char fake_name[80];
9a619af0 17903
6a83a1e6 17904 sprintf (fake_name, "<bad macro file number %d>", file);
2e276125 17905
6e70227d 17906 complaint (&symfile_complaints,
6a83a1e6
EZ
17907 _("bad file number in macro information (%d)"),
17908 file);
2e276125 17909
6a83a1e6 17910 return xstrdup (fake_name);
2e276125
JB
17911 }
17912}
17913
17914
17915static struct macro_source_file *
17916macro_start_file (int file, int line,
17917 struct macro_source_file *current_file,
17918 const char *comp_dir,
17919 struct line_header *lh, struct objfile *objfile)
17920{
17921 /* The full name of this source file. */
17922 char *full_name = file_full_name (file, lh, comp_dir);
17923
17924 /* We don't create a macro table for this compilation unit
17925 at all until we actually get a filename. */
17926 if (! pending_macros)
6532ff36
TT
17927 pending_macros = new_macro_table (&objfile->per_bfd->storage_obstack,
17928 objfile->per_bfd->macro_cache);
2e276125
JB
17929
17930 if (! current_file)
abc9d0dc
TT
17931 {
17932 /* If we have no current file, then this must be the start_file
17933 directive for the compilation unit's main source file. */
17934 current_file = macro_set_main (pending_macros, full_name);
17935 macro_define_special (pending_macros);
17936 }
2e276125
JB
17937 else
17938 current_file = macro_include (current_file, line, full_name);
17939
17940 xfree (full_name);
6e70227d 17941
2e276125
JB
17942 return current_file;
17943}
17944
17945
17946/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
17947 followed by a null byte. */
17948static char *
17949copy_string (const char *buf, int len)
17950{
17951 char *s = xmalloc (len + 1);
9a619af0 17952
2e276125
JB
17953 memcpy (s, buf, len);
17954 s[len] = '\0';
2e276125
JB
17955 return s;
17956}
17957
17958
17959static const char *
17960consume_improper_spaces (const char *p, const char *body)
17961{
17962 if (*p == ' ')
17963 {
4d3c2250 17964 complaint (&symfile_complaints,
3e43a32a
MS
17965 _("macro definition contains spaces "
17966 "in formal argument list:\n`%s'"),
4d3c2250 17967 body);
2e276125
JB
17968
17969 while (*p == ' ')
17970 p++;
17971 }
17972
17973 return p;
17974}
17975
17976
17977static void
17978parse_macro_definition (struct macro_source_file *file, int line,
17979 const char *body)
17980{
17981 const char *p;
17982
17983 /* The body string takes one of two forms. For object-like macro
17984 definitions, it should be:
17985
17986 <macro name> " " <definition>
17987
17988 For function-like macro definitions, it should be:
17989
17990 <macro name> "() " <definition>
17991 or
17992 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
17993
17994 Spaces may appear only where explicitly indicated, and in the
17995 <definition>.
17996
17997 The Dwarf 2 spec says that an object-like macro's name is always
17998 followed by a space, but versions of GCC around March 2002 omit
6e70227d 17999 the space when the macro's definition is the empty string.
2e276125
JB
18000
18001 The Dwarf 2 spec says that there should be no spaces between the
18002 formal arguments in a function-like macro's formal argument list,
18003 but versions of GCC around March 2002 include spaces after the
18004 commas. */
18005
18006
18007 /* Find the extent of the macro name. The macro name is terminated
18008 by either a space or null character (for an object-like macro) or
18009 an opening paren (for a function-like macro). */
18010 for (p = body; *p; p++)
18011 if (*p == ' ' || *p == '(')
18012 break;
18013
18014 if (*p == ' ' || *p == '\0')
18015 {
18016 /* It's an object-like macro. */
18017 int name_len = p - body;
18018 char *name = copy_string (body, name_len);
18019 const char *replacement;
18020
18021 if (*p == ' ')
18022 replacement = body + name_len + 1;
18023 else
18024 {
4d3c2250 18025 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
18026 replacement = body + name_len;
18027 }
6e70227d 18028
2e276125
JB
18029 macro_define_object (file, line, name, replacement);
18030
18031 xfree (name);
18032 }
18033 else if (*p == '(')
18034 {
18035 /* It's a function-like macro. */
18036 char *name = copy_string (body, p - body);
18037 int argc = 0;
18038 int argv_size = 1;
18039 char **argv = xmalloc (argv_size * sizeof (*argv));
18040
18041 p++;
18042
18043 p = consume_improper_spaces (p, body);
18044
18045 /* Parse the formal argument list. */
18046 while (*p && *p != ')')
18047 {
18048 /* Find the extent of the current argument name. */
18049 const char *arg_start = p;
18050
18051 while (*p && *p != ',' && *p != ')' && *p != ' ')
18052 p++;
18053
18054 if (! *p || p == arg_start)
4d3c2250 18055 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
18056 else
18057 {
18058 /* Make sure argv has room for the new argument. */
18059 if (argc >= argv_size)
18060 {
18061 argv_size *= 2;
18062 argv = xrealloc (argv, argv_size * sizeof (*argv));
18063 }
18064
18065 argv[argc++] = copy_string (arg_start, p - arg_start);
18066 }
18067
18068 p = consume_improper_spaces (p, body);
18069
18070 /* Consume the comma, if present. */
18071 if (*p == ',')
18072 {
18073 p++;
18074
18075 p = consume_improper_spaces (p, body);
18076 }
18077 }
18078
18079 if (*p == ')')
18080 {
18081 p++;
18082
18083 if (*p == ' ')
18084 /* Perfectly formed definition, no complaints. */
18085 macro_define_function (file, line, name,
6e70227d 18086 argc, (const char **) argv,
2e276125
JB
18087 p + 1);
18088 else if (*p == '\0')
18089 {
18090 /* Complain, but do define it. */
4d3c2250 18091 dwarf2_macro_malformed_definition_complaint (body);
2e276125 18092 macro_define_function (file, line, name,
6e70227d 18093 argc, (const char **) argv,
2e276125
JB
18094 p);
18095 }
18096 else
18097 /* Just complain. */
4d3c2250 18098 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
18099 }
18100 else
18101 /* Just complain. */
4d3c2250 18102 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
18103
18104 xfree (name);
18105 {
18106 int i;
18107
18108 for (i = 0; i < argc; i++)
18109 xfree (argv[i]);
18110 }
18111 xfree (argv);
18112 }
18113 else
4d3c2250 18114 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
18115}
18116
cf2c3c16
TT
18117/* Skip some bytes from BYTES according to the form given in FORM.
18118 Returns the new pointer. */
2e276125 18119
cf2c3c16 18120static gdb_byte *
f664829e 18121skip_form_bytes (bfd *abfd, gdb_byte *bytes, gdb_byte *buffer_end,
cf2c3c16
TT
18122 enum dwarf_form form,
18123 unsigned int offset_size,
18124 struct dwarf2_section_info *section)
2e276125 18125{
cf2c3c16 18126 unsigned int bytes_read;
2e276125 18127
cf2c3c16 18128 switch (form)
2e276125 18129 {
cf2c3c16
TT
18130 case DW_FORM_data1:
18131 case DW_FORM_flag:
18132 ++bytes;
18133 break;
18134
18135 case DW_FORM_data2:
18136 bytes += 2;
18137 break;
18138
18139 case DW_FORM_data4:
18140 bytes += 4;
18141 break;
18142
18143 case DW_FORM_data8:
18144 bytes += 8;
18145 break;
18146
18147 case DW_FORM_string:
18148 read_direct_string (abfd, bytes, &bytes_read);
18149 bytes += bytes_read;
18150 break;
18151
18152 case DW_FORM_sec_offset:
18153 case DW_FORM_strp:
36586728 18154 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
18155 bytes += offset_size;
18156 break;
18157
18158 case DW_FORM_block:
18159 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
18160 bytes += bytes_read;
18161 break;
18162
18163 case DW_FORM_block1:
18164 bytes += 1 + read_1_byte (abfd, bytes);
18165 break;
18166 case DW_FORM_block2:
18167 bytes += 2 + read_2_bytes (abfd, bytes);
18168 break;
18169 case DW_FORM_block4:
18170 bytes += 4 + read_4_bytes (abfd, bytes);
18171 break;
18172
18173 case DW_FORM_sdata:
18174 case DW_FORM_udata:
3019eac3
DE
18175 case DW_FORM_GNU_addr_index:
18176 case DW_FORM_GNU_str_index:
f664829e
DE
18177 bytes = (gdb_byte *) gdb_skip_leb128 (bytes, buffer_end);
18178 if (bytes == NULL)
18179 {
18180 dwarf2_section_buffer_overflow_complaint (section);
18181 return NULL;
18182 }
cf2c3c16
TT
18183 break;
18184
18185 default:
18186 {
18187 complain:
18188 complaint (&symfile_complaints,
18189 _("invalid form 0x%x in `%s'"),
18190 form,
18191 section->asection->name);
18192 return NULL;
18193 }
2e276125
JB
18194 }
18195
cf2c3c16
TT
18196 return bytes;
18197}
757a13d0 18198
cf2c3c16
TT
18199/* A helper for dwarf_decode_macros that handles skipping an unknown
18200 opcode. Returns an updated pointer to the macro data buffer; or,
18201 on error, issues a complaint and returns NULL. */
757a13d0 18202
cf2c3c16
TT
18203static gdb_byte *
18204skip_unknown_opcode (unsigned int opcode,
18205 gdb_byte **opcode_definitions,
f664829e 18206 gdb_byte *mac_ptr, gdb_byte *mac_end,
cf2c3c16
TT
18207 bfd *abfd,
18208 unsigned int offset_size,
18209 struct dwarf2_section_info *section)
18210{
18211 unsigned int bytes_read, i;
18212 unsigned long arg;
18213 gdb_byte *defn;
2e276125 18214
cf2c3c16 18215 if (opcode_definitions[opcode] == NULL)
2e276125 18216 {
cf2c3c16
TT
18217 complaint (&symfile_complaints,
18218 _("unrecognized DW_MACFINO opcode 0x%x"),
18219 opcode);
18220 return NULL;
18221 }
2e276125 18222
cf2c3c16
TT
18223 defn = opcode_definitions[opcode];
18224 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
18225 defn += bytes_read;
2e276125 18226
cf2c3c16
TT
18227 for (i = 0; i < arg; ++i)
18228 {
f664829e
DE
18229 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
18230 section);
cf2c3c16
TT
18231 if (mac_ptr == NULL)
18232 {
18233 /* skip_form_bytes already issued the complaint. */
18234 return NULL;
18235 }
18236 }
757a13d0 18237
cf2c3c16
TT
18238 return mac_ptr;
18239}
757a13d0 18240
cf2c3c16
TT
18241/* A helper function which parses the header of a macro section.
18242 If the macro section is the extended (for now called "GNU") type,
18243 then this updates *OFFSET_SIZE. Returns a pointer to just after
18244 the header, or issues a complaint and returns NULL on error. */
757a13d0 18245
cf2c3c16
TT
18246static gdb_byte *
18247dwarf_parse_macro_header (gdb_byte **opcode_definitions,
18248 bfd *abfd,
18249 gdb_byte *mac_ptr,
18250 unsigned int *offset_size,
18251 int section_is_gnu)
18252{
18253 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 18254
cf2c3c16
TT
18255 if (section_is_gnu)
18256 {
18257 unsigned int version, flags;
757a13d0 18258
cf2c3c16
TT
18259 version = read_2_bytes (abfd, mac_ptr);
18260 if (version != 4)
18261 {
18262 complaint (&symfile_complaints,
18263 _("unrecognized version `%d' in .debug_macro section"),
18264 version);
18265 return NULL;
18266 }
18267 mac_ptr += 2;
757a13d0 18268
cf2c3c16
TT
18269 flags = read_1_byte (abfd, mac_ptr);
18270 ++mac_ptr;
18271 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 18272
cf2c3c16
TT
18273 if ((flags & 2) != 0)
18274 /* We don't need the line table offset. */
18275 mac_ptr += *offset_size;
757a13d0 18276
cf2c3c16
TT
18277 /* Vendor opcode descriptions. */
18278 if ((flags & 4) != 0)
18279 {
18280 unsigned int i, count;
757a13d0 18281
cf2c3c16
TT
18282 count = read_1_byte (abfd, mac_ptr);
18283 ++mac_ptr;
18284 for (i = 0; i < count; ++i)
18285 {
18286 unsigned int opcode, bytes_read;
18287 unsigned long arg;
18288
18289 opcode = read_1_byte (abfd, mac_ptr);
18290 ++mac_ptr;
18291 opcode_definitions[opcode] = mac_ptr;
18292 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18293 mac_ptr += bytes_read;
18294 mac_ptr += arg;
18295 }
757a13d0 18296 }
cf2c3c16 18297 }
757a13d0 18298
cf2c3c16
TT
18299 return mac_ptr;
18300}
757a13d0 18301
cf2c3c16 18302/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 18303 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
18304
18305static void
18306dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
18307 struct macro_source_file *current_file,
18308 struct line_header *lh, char *comp_dir,
18309 struct dwarf2_section_info *section,
36586728 18310 int section_is_gnu, int section_is_dwz,
cf2c3c16 18311 unsigned int offset_size,
8fc3fc34
TT
18312 struct objfile *objfile,
18313 htab_t include_hash)
cf2c3c16
TT
18314{
18315 enum dwarf_macro_record_type macinfo_type;
18316 int at_commandline;
18317 gdb_byte *opcode_definitions[256];
757a13d0 18318
cf2c3c16
TT
18319 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18320 &offset_size, section_is_gnu);
18321 if (mac_ptr == NULL)
18322 {
18323 /* We already issued a complaint. */
18324 return;
18325 }
757a13d0
JK
18326
18327 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
18328 GDB is still reading the definitions from command line. First
18329 DW_MACINFO_start_file will need to be ignored as it was already executed
18330 to create CURRENT_FILE for the main source holding also the command line
18331 definitions. On first met DW_MACINFO_start_file this flag is reset to
18332 normally execute all the remaining DW_MACINFO_start_file macinfos. */
18333
18334 at_commandline = 1;
18335
18336 do
18337 {
18338 /* Do we at least have room for a macinfo type byte? */
18339 if (mac_ptr >= mac_end)
18340 {
f664829e 18341 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
18342 break;
18343 }
18344
18345 macinfo_type = read_1_byte (abfd, mac_ptr);
18346 mac_ptr++;
18347
cf2c3c16
TT
18348 /* Note that we rely on the fact that the corresponding GNU and
18349 DWARF constants are the same. */
757a13d0
JK
18350 switch (macinfo_type)
18351 {
18352 /* A zero macinfo type indicates the end of the macro
18353 information. */
18354 case 0:
18355 break;
2e276125 18356
cf2c3c16
TT
18357 case DW_MACRO_GNU_define:
18358 case DW_MACRO_GNU_undef:
18359 case DW_MACRO_GNU_define_indirect:
18360 case DW_MACRO_GNU_undef_indirect:
36586728
TT
18361 case DW_MACRO_GNU_define_indirect_alt:
18362 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 18363 {
891d2f0b 18364 unsigned int bytes_read;
2e276125
JB
18365 int line;
18366 char *body;
cf2c3c16 18367 int is_define;
2e276125 18368
cf2c3c16
TT
18369 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18370 mac_ptr += bytes_read;
18371
18372 if (macinfo_type == DW_MACRO_GNU_define
18373 || macinfo_type == DW_MACRO_GNU_undef)
18374 {
18375 body = read_direct_string (abfd, mac_ptr, &bytes_read);
18376 mac_ptr += bytes_read;
18377 }
18378 else
18379 {
18380 LONGEST str_offset;
18381
18382 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
18383 mac_ptr += offset_size;
2e276125 18384
36586728 18385 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
18386 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
18387 || section_is_dwz)
36586728
TT
18388 {
18389 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18390
18391 body = read_indirect_string_from_dwz (dwz, str_offset);
18392 }
18393 else
18394 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
18395 }
18396
18397 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
18398 || macinfo_type == DW_MACRO_GNU_define_indirect
18399 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 18400 if (! current_file)
757a13d0
JK
18401 {
18402 /* DWARF violation as no main source is present. */
18403 complaint (&symfile_complaints,
18404 _("debug info with no main source gives macro %s "
18405 "on line %d: %s"),
cf2c3c16
TT
18406 is_define ? _("definition") : _("undefinition"),
18407 line, body);
757a13d0
JK
18408 break;
18409 }
3e43a32a
MS
18410 if ((line == 0 && !at_commandline)
18411 || (line != 0 && at_commandline))
4d3c2250 18412 complaint (&symfile_complaints,
757a13d0
JK
18413 _("debug info gives %s macro %s with %s line %d: %s"),
18414 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 18415 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
18416 line == 0 ? _("zero") : _("non-zero"), line, body);
18417
cf2c3c16 18418 if (is_define)
757a13d0 18419 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
18420 else
18421 {
18422 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
18423 || macinfo_type == DW_MACRO_GNU_undef_indirect
18424 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
18425 macro_undef (current_file, line, body);
18426 }
2e276125
JB
18427 }
18428 break;
18429
cf2c3c16 18430 case DW_MACRO_GNU_start_file:
2e276125 18431 {
891d2f0b 18432 unsigned int bytes_read;
2e276125
JB
18433 int line, file;
18434
18435 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18436 mac_ptr += bytes_read;
18437 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18438 mac_ptr += bytes_read;
18439
3e43a32a
MS
18440 if ((line == 0 && !at_commandline)
18441 || (line != 0 && at_commandline))
757a13d0
JK
18442 complaint (&symfile_complaints,
18443 _("debug info gives source %d included "
18444 "from %s at %s line %d"),
18445 file, at_commandline ? _("command-line") : _("file"),
18446 line == 0 ? _("zero") : _("non-zero"), line);
18447
18448 if (at_commandline)
18449 {
cf2c3c16
TT
18450 /* This DW_MACRO_GNU_start_file was executed in the
18451 pass one. */
757a13d0
JK
18452 at_commandline = 0;
18453 }
18454 else
18455 current_file = macro_start_file (file, line,
18456 current_file, comp_dir,
cf2c3c16 18457 lh, objfile);
2e276125
JB
18458 }
18459 break;
18460
cf2c3c16 18461 case DW_MACRO_GNU_end_file:
2e276125 18462 if (! current_file)
4d3c2250 18463 complaint (&symfile_complaints,
3e43a32a
MS
18464 _("macro debug info has an unmatched "
18465 "`close_file' directive"));
2e276125
JB
18466 else
18467 {
18468 current_file = current_file->included_by;
18469 if (! current_file)
18470 {
cf2c3c16 18471 enum dwarf_macro_record_type next_type;
2e276125
JB
18472
18473 /* GCC circa March 2002 doesn't produce the zero
18474 type byte marking the end of the compilation
18475 unit. Complain if it's not there, but exit no
18476 matter what. */
18477
18478 /* Do we at least have room for a macinfo type byte? */
18479 if (mac_ptr >= mac_end)
18480 {
f664829e 18481 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
18482 return;
18483 }
18484
18485 /* We don't increment mac_ptr here, so this is just
18486 a look-ahead. */
18487 next_type = read_1_byte (abfd, mac_ptr);
18488 if (next_type != 0)
4d3c2250 18489 complaint (&symfile_complaints,
3e43a32a
MS
18490 _("no terminating 0-type entry for "
18491 "macros in `.debug_macinfo' section"));
2e276125
JB
18492
18493 return;
18494 }
18495 }
18496 break;
18497
cf2c3c16 18498 case DW_MACRO_GNU_transparent_include:
36586728 18499 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
18500 {
18501 LONGEST offset;
8fc3fc34 18502 void **slot;
a036ba48
TT
18503 bfd *include_bfd = abfd;
18504 struct dwarf2_section_info *include_section = section;
18505 struct dwarf2_section_info alt_section;
18506 gdb_byte *include_mac_end = mac_end;
18507 int is_dwz = section_is_dwz;
18508 gdb_byte *new_mac_ptr;
cf2c3c16
TT
18509
18510 offset = read_offset_1 (abfd, mac_ptr, offset_size);
18511 mac_ptr += offset_size;
18512
a036ba48
TT
18513 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
18514 {
18515 struct dwz_file *dwz = dwarf2_get_dwz_file ();
18516
18517 dwarf2_read_section (dwarf2_per_objfile->objfile,
18518 &dwz->macro);
18519
18520 include_bfd = dwz->macro.asection->owner;
18521 include_section = &dwz->macro;
18522 include_mac_end = dwz->macro.buffer + dwz->macro.size;
18523 is_dwz = 1;
18524 }
18525
18526 new_mac_ptr = include_section->buffer + offset;
18527 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
18528
8fc3fc34
TT
18529 if (*slot != NULL)
18530 {
18531 /* This has actually happened; see
18532 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
18533 complaint (&symfile_complaints,
18534 _("recursive DW_MACRO_GNU_transparent_include in "
18535 ".debug_macro section"));
18536 }
18537 else
18538 {
a036ba48 18539 *slot = new_mac_ptr;
36586728 18540
a036ba48 18541 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
36586728 18542 include_mac_end, current_file,
8fc3fc34 18543 lh, comp_dir,
36586728 18544 section, section_is_gnu, is_dwz,
8fc3fc34
TT
18545 offset_size, objfile, include_hash);
18546
a036ba48 18547 htab_remove_elt (include_hash, new_mac_ptr);
8fc3fc34 18548 }
cf2c3c16
TT
18549 }
18550 break;
18551
2e276125 18552 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
18553 if (!section_is_gnu)
18554 {
18555 unsigned int bytes_read;
18556 int constant;
2e276125 18557
cf2c3c16
TT
18558 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18559 mac_ptr += bytes_read;
18560 read_direct_string (abfd, mac_ptr, &bytes_read);
18561 mac_ptr += bytes_read;
2e276125 18562
cf2c3c16
TT
18563 /* We don't recognize any vendor extensions. */
18564 break;
18565 }
18566 /* FALLTHROUGH */
18567
18568 default:
18569 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 18570 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
18571 section);
18572 if (mac_ptr == NULL)
18573 return;
18574 break;
2e276125 18575 }
757a13d0 18576 } while (macinfo_type != 0);
2e276125 18577}
8e19ed76 18578
cf2c3c16 18579static void
09262596
DE
18580dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
18581 char *comp_dir, int section_is_gnu)
cf2c3c16 18582{
bb5ed363 18583 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
18584 struct line_header *lh = cu->line_header;
18585 bfd *abfd;
cf2c3c16
TT
18586 gdb_byte *mac_ptr, *mac_end;
18587 struct macro_source_file *current_file = 0;
18588 enum dwarf_macro_record_type macinfo_type;
18589 unsigned int offset_size = cu->header.offset_size;
18590 gdb_byte *opcode_definitions[256];
8fc3fc34
TT
18591 struct cleanup *cleanup;
18592 htab_t include_hash;
18593 void **slot;
09262596
DE
18594 struct dwarf2_section_info *section;
18595 const char *section_name;
18596
18597 if (cu->dwo_unit != NULL)
18598 {
18599 if (section_is_gnu)
18600 {
18601 section = &cu->dwo_unit->dwo_file->sections.macro;
18602 section_name = ".debug_macro.dwo";
18603 }
18604 else
18605 {
18606 section = &cu->dwo_unit->dwo_file->sections.macinfo;
18607 section_name = ".debug_macinfo.dwo";
18608 }
18609 }
18610 else
18611 {
18612 if (section_is_gnu)
18613 {
18614 section = &dwarf2_per_objfile->macro;
18615 section_name = ".debug_macro";
18616 }
18617 else
18618 {
18619 section = &dwarf2_per_objfile->macinfo;
18620 section_name = ".debug_macinfo";
18621 }
18622 }
cf2c3c16 18623
bb5ed363 18624 dwarf2_read_section (objfile, section);
cf2c3c16
TT
18625 if (section->buffer == NULL)
18626 {
fceca515 18627 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
18628 return;
18629 }
09262596 18630 abfd = section->asection->owner;
cf2c3c16
TT
18631
18632 /* First pass: Find the name of the base filename.
18633 This filename is needed in order to process all macros whose definition
18634 (or undefinition) comes from the command line. These macros are defined
18635 before the first DW_MACINFO_start_file entry, and yet still need to be
18636 associated to the base file.
18637
18638 To determine the base file name, we scan the macro definitions until we
18639 reach the first DW_MACINFO_start_file entry. We then initialize
18640 CURRENT_FILE accordingly so that any macro definition found before the
18641 first DW_MACINFO_start_file can still be associated to the base file. */
18642
18643 mac_ptr = section->buffer + offset;
18644 mac_end = section->buffer + section->size;
18645
18646 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
18647 &offset_size, section_is_gnu);
18648 if (mac_ptr == NULL)
18649 {
18650 /* We already issued a complaint. */
18651 return;
18652 }
18653
18654 do
18655 {
18656 /* Do we at least have room for a macinfo type byte? */
18657 if (mac_ptr >= mac_end)
18658 {
18659 /* Complaint is printed during the second pass as GDB will probably
18660 stop the first pass earlier upon finding
18661 DW_MACINFO_start_file. */
18662 break;
18663 }
18664
18665 macinfo_type = read_1_byte (abfd, mac_ptr);
18666 mac_ptr++;
18667
18668 /* Note that we rely on the fact that the corresponding GNU and
18669 DWARF constants are the same. */
18670 switch (macinfo_type)
18671 {
18672 /* A zero macinfo type indicates the end of the macro
18673 information. */
18674 case 0:
18675 break;
18676
18677 case DW_MACRO_GNU_define:
18678 case DW_MACRO_GNU_undef:
18679 /* Only skip the data by MAC_PTR. */
18680 {
18681 unsigned int bytes_read;
18682
18683 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18684 mac_ptr += bytes_read;
18685 read_direct_string (abfd, mac_ptr, &bytes_read);
18686 mac_ptr += bytes_read;
18687 }
18688 break;
18689
18690 case DW_MACRO_GNU_start_file:
18691 {
18692 unsigned int bytes_read;
18693 int line, file;
18694
18695 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18696 mac_ptr += bytes_read;
18697 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18698 mac_ptr += bytes_read;
18699
18700 current_file = macro_start_file (file, line, current_file,
bb5ed363 18701 comp_dir, lh, objfile);
cf2c3c16
TT
18702 }
18703 break;
18704
18705 case DW_MACRO_GNU_end_file:
18706 /* No data to skip by MAC_PTR. */
18707 break;
18708
18709 case DW_MACRO_GNU_define_indirect:
18710 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
18711 case DW_MACRO_GNU_define_indirect_alt:
18712 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
18713 {
18714 unsigned int bytes_read;
18715
18716 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18717 mac_ptr += bytes_read;
18718 mac_ptr += offset_size;
18719 }
18720 break;
18721
18722 case DW_MACRO_GNU_transparent_include:
f7a35f02 18723 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
18724 /* Note that, according to the spec, a transparent include
18725 chain cannot call DW_MACRO_GNU_start_file. So, we can just
18726 skip this opcode. */
18727 mac_ptr += offset_size;
18728 break;
18729
18730 case DW_MACINFO_vendor_ext:
18731 /* Only skip the data by MAC_PTR. */
18732 if (!section_is_gnu)
18733 {
18734 unsigned int bytes_read;
18735
18736 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
18737 mac_ptr += bytes_read;
18738 read_direct_string (abfd, mac_ptr, &bytes_read);
18739 mac_ptr += bytes_read;
18740 }
18741 /* FALLTHROUGH */
18742
18743 default:
18744 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 18745 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
18746 section);
18747 if (mac_ptr == NULL)
18748 return;
18749 break;
18750 }
18751 } while (macinfo_type != 0 && current_file == NULL);
18752
18753 /* Second pass: Process all entries.
18754
18755 Use the AT_COMMAND_LINE flag to determine whether we are still processing
18756 command-line macro definitions/undefinitions. This flag is unset when we
18757 reach the first DW_MACINFO_start_file entry. */
18758
8fc3fc34
TT
18759 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
18760 NULL, xcalloc, xfree);
18761 cleanup = make_cleanup_htab_delete (include_hash);
18762 mac_ptr = section->buffer + offset;
18763 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
18764 *slot = mac_ptr;
18765 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
36586728
TT
18766 current_file, lh, comp_dir, section,
18767 section_is_gnu, 0,
8fc3fc34
TT
18768 offset_size, objfile, include_hash);
18769 do_cleanups (cleanup);
cf2c3c16
TT
18770}
18771
8e19ed76 18772/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 18773 if so return true else false. */
380bca97 18774
8e19ed76
PS
18775static int
18776attr_form_is_block (struct attribute *attr)
18777{
18778 return (attr == NULL ? 0 :
18779 attr->form == DW_FORM_block1
18780 || attr->form == DW_FORM_block2
18781 || attr->form == DW_FORM_block4
2dc7f7b3
TT
18782 || attr->form == DW_FORM_block
18783 || attr->form == DW_FORM_exprloc);
8e19ed76 18784}
4c2df51b 18785
c6a0999f
JB
18786/* Return non-zero if ATTR's value is a section offset --- classes
18787 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
18788 You may use DW_UNSND (attr) to retrieve such offsets.
18789
18790 Section 7.5.4, "Attribute Encodings", explains that no attribute
18791 may have a value that belongs to more than one of these classes; it
18792 would be ambiguous if we did, because we use the same forms for all
18793 of them. */
380bca97 18794
3690dd37
JB
18795static int
18796attr_form_is_section_offset (struct attribute *attr)
18797{
18798 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
18799 || attr->form == DW_FORM_data8
18800 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
18801}
18802
3690dd37
JB
18803/* Return non-zero if ATTR's value falls in the 'constant' class, or
18804 zero otherwise. When this function returns true, you can apply
18805 dwarf2_get_attr_constant_value to it.
18806
18807 However, note that for some attributes you must check
18808 attr_form_is_section_offset before using this test. DW_FORM_data4
18809 and DW_FORM_data8 are members of both the constant class, and of
18810 the classes that contain offsets into other debug sections
18811 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
18812 that, if an attribute's can be either a constant or one of the
18813 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
18814 taken as section offsets, not constants. */
380bca97 18815
3690dd37
JB
18816static int
18817attr_form_is_constant (struct attribute *attr)
18818{
18819 switch (attr->form)
18820 {
18821 case DW_FORM_sdata:
18822 case DW_FORM_udata:
18823 case DW_FORM_data1:
18824 case DW_FORM_data2:
18825 case DW_FORM_data4:
18826 case DW_FORM_data8:
18827 return 1;
18828 default:
18829 return 0;
18830 }
18831}
18832
3019eac3
DE
18833/* Return the .debug_loc section to use for CU.
18834 For DWO files use .debug_loc.dwo. */
18835
18836static struct dwarf2_section_info *
18837cu_debug_loc_section (struct dwarf2_cu *cu)
18838{
18839 if (cu->dwo_unit)
18840 return &cu->dwo_unit->dwo_file->sections.loc;
18841 return &dwarf2_per_objfile->loc;
18842}
18843
8cf6f0b1
TT
18844/* A helper function that fills in a dwarf2_loclist_baton. */
18845
18846static void
18847fill_in_loclist_baton (struct dwarf2_cu *cu,
18848 struct dwarf2_loclist_baton *baton,
18849 struct attribute *attr)
18850{
3019eac3
DE
18851 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
18852
18853 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
18854
18855 baton->per_cu = cu->per_cu;
18856 gdb_assert (baton->per_cu);
18857 /* We don't know how long the location list is, but make sure we
18858 don't run off the edge of the section. */
3019eac3
DE
18859 baton->size = section->size - DW_UNSND (attr);
18860 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 18861 baton->base_address = cu->base_address;
f664829e 18862 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
18863}
18864
4c2df51b
DJ
18865static void
18866dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 18867 struct dwarf2_cu *cu)
4c2df51b 18868{
bb5ed363 18869 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 18870 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 18871
3690dd37 18872 if (attr_form_is_section_offset (attr)
3019eac3 18873 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
18874 the section. If so, fall through to the complaint in the
18875 other branch. */
3019eac3 18876 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 18877 {
0d53c4c4 18878 struct dwarf2_loclist_baton *baton;
4c2df51b 18879
bb5ed363 18880 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 18881 sizeof (struct dwarf2_loclist_baton));
4c2df51b 18882
8cf6f0b1 18883 fill_in_loclist_baton (cu, baton, attr);
be391dca 18884
d00adf39 18885 if (cu->base_known == 0)
0d53c4c4 18886 complaint (&symfile_complaints,
3e43a32a
MS
18887 _("Location list used without "
18888 "specifying the CU base address."));
4c2df51b 18889
768a979c 18890 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
0d53c4c4
DJ
18891 SYMBOL_LOCATION_BATON (sym) = baton;
18892 }
18893 else
18894 {
18895 struct dwarf2_locexpr_baton *baton;
18896
bb5ed363 18897 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 18898 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
18899 baton->per_cu = cu->per_cu;
18900 gdb_assert (baton->per_cu);
0d53c4c4
DJ
18901
18902 if (attr_form_is_block (attr))
18903 {
18904 /* Note that we're just copying the block's data pointer
18905 here, not the actual data. We're still pointing into the
6502dd73
DJ
18906 info_buffer for SYM's objfile; right now we never release
18907 that buffer, but when we do clean up properly this may
18908 need to change. */
0d53c4c4
DJ
18909 baton->size = DW_BLOCK (attr)->size;
18910 baton->data = DW_BLOCK (attr)->data;
18911 }
18912 else
18913 {
18914 dwarf2_invalid_attrib_class_complaint ("location description",
18915 SYMBOL_NATURAL_NAME (sym));
18916 baton->size = 0;
0d53c4c4 18917 }
6e70227d 18918
768a979c 18919 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
0d53c4c4
DJ
18920 SYMBOL_LOCATION_BATON (sym) = baton;
18921 }
4c2df51b 18922}
6502dd73 18923
9aa1f1e3
TT
18924/* Return the OBJFILE associated with the compilation unit CU. If CU
18925 came from a separate debuginfo file, then the master objfile is
18926 returned. */
ae0d2f24
UW
18927
18928struct objfile *
18929dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
18930{
9291a0cd 18931 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
18932
18933 /* Return the master objfile, so that we can report and look up the
18934 correct file containing this variable. */
18935 if (objfile->separate_debug_objfile_backlink)
18936 objfile = objfile->separate_debug_objfile_backlink;
18937
18938 return objfile;
18939}
18940
96408a79
SA
18941/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
18942 (CU_HEADERP is unused in such case) or prepare a temporary copy at
18943 CU_HEADERP first. */
18944
18945static const struct comp_unit_head *
18946per_cu_header_read_in (struct comp_unit_head *cu_headerp,
18947 struct dwarf2_per_cu_data *per_cu)
18948{
96408a79
SA
18949 gdb_byte *info_ptr;
18950
18951 if (per_cu->cu)
18952 return &per_cu->cu->header;
18953
0bc3a05c 18954 info_ptr = per_cu->info_or_types_section->buffer + per_cu->offset.sect_off;
96408a79
SA
18955
18956 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 18957 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
18958
18959 return cu_headerp;
18960}
18961
ae0d2f24
UW
18962/* Return the address size given in the compilation unit header for CU. */
18963
98714339 18964int
ae0d2f24
UW
18965dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
18966{
96408a79
SA
18967 struct comp_unit_head cu_header_local;
18968 const struct comp_unit_head *cu_headerp;
c471e790 18969
96408a79
SA
18970 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
18971
18972 return cu_headerp->addr_size;
ae0d2f24
UW
18973}
18974
9eae7c52
TT
18975/* Return the offset size given in the compilation unit header for CU. */
18976
18977int
18978dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
18979{
96408a79
SA
18980 struct comp_unit_head cu_header_local;
18981 const struct comp_unit_head *cu_headerp;
9c6c53f7 18982
96408a79
SA
18983 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
18984
18985 return cu_headerp->offset_size;
18986}
18987
18988/* See its dwarf2loc.h declaration. */
18989
18990int
18991dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
18992{
18993 struct comp_unit_head cu_header_local;
18994 const struct comp_unit_head *cu_headerp;
18995
18996 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
18997
18998 if (cu_headerp->version == 2)
18999 return cu_headerp->addr_size;
19000 else
19001 return cu_headerp->offset_size;
181cebd4
JK
19002}
19003
9aa1f1e3
TT
19004/* Return the text offset of the CU. The returned offset comes from
19005 this CU's objfile. If this objfile came from a separate debuginfo
19006 file, then the offset may be different from the corresponding
19007 offset in the parent objfile. */
19008
19009CORE_ADDR
19010dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
19011{
bb3fa9d0 19012 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
19013
19014 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19015}
19016
348e048f
DE
19017/* Locate the .debug_info compilation unit from CU's objfile which contains
19018 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
19019
19020static struct dwarf2_per_cu_data *
b64f50a1 19021dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 19022 unsigned int offset_in_dwz,
ae038cb0
DJ
19023 struct objfile *objfile)
19024{
19025 struct dwarf2_per_cu_data *this_cu;
19026 int low, high;
36586728 19027 const sect_offset *cu_off;
ae038cb0 19028
ae038cb0
DJ
19029 low = 0;
19030 high = dwarf2_per_objfile->n_comp_units - 1;
19031 while (high > low)
19032 {
36586728 19033 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 19034 int mid = low + (high - low) / 2;
9a619af0 19035
36586728
TT
19036 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
19037 cu_off = &mid_cu->offset;
19038 if (mid_cu->is_dwz > offset_in_dwz
19039 || (mid_cu->is_dwz == offset_in_dwz
19040 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
19041 high = mid;
19042 else
19043 low = mid + 1;
19044 }
19045 gdb_assert (low == high);
36586728
TT
19046 this_cu = dwarf2_per_objfile->all_comp_units[low];
19047 cu_off = &this_cu->offset;
19048 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 19049 {
36586728 19050 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
19051 error (_("Dwarf Error: could not find partial DIE containing "
19052 "offset 0x%lx [in module %s]"),
b64f50a1 19053 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 19054
b64f50a1
JK
19055 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
19056 <= offset.sect_off);
ae038cb0
DJ
19057 return dwarf2_per_objfile->all_comp_units[low-1];
19058 }
19059 else
19060 {
19061 this_cu = dwarf2_per_objfile->all_comp_units[low];
19062 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
19063 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
19064 error (_("invalid dwarf2 offset %u"), offset.sect_off);
19065 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
19066 return this_cu;
19067 }
19068}
19069
23745b47 19070/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 19071
9816fde3 19072static void
23745b47 19073init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 19074{
9816fde3 19075 memset (cu, 0, sizeof (*cu));
23745b47
DE
19076 per_cu->cu = cu;
19077 cu->per_cu = per_cu;
19078 cu->objfile = per_cu->objfile;
93311388 19079 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
19080}
19081
19082/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
19083
19084static void
95554aad
TT
19085prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
19086 enum language pretend_language)
9816fde3
JK
19087{
19088 struct attribute *attr;
19089
19090 /* Set the language we're debugging. */
19091 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
19092 if (attr)
19093 set_cu_language (DW_UNSND (attr), cu);
19094 else
9cded63f 19095 {
95554aad 19096 cu->language = pretend_language;
9cded63f
TT
19097 cu->language_defn = language_def (cu->language);
19098 }
dee91e82
DE
19099
19100 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
19101 if (attr)
19102 cu->producer = DW_STRING (attr);
93311388
DE
19103}
19104
ae038cb0
DJ
19105/* Release one cached compilation unit, CU. We unlink it from the tree
19106 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
19107 the caller is responsible for that.
19108 NOTE: DATA is a void * because this function is also used as a
19109 cleanup routine. */
ae038cb0
DJ
19110
19111static void
68dc6402 19112free_heap_comp_unit (void *data)
ae038cb0
DJ
19113{
19114 struct dwarf2_cu *cu = data;
19115
23745b47
DE
19116 gdb_assert (cu->per_cu != NULL);
19117 cu->per_cu->cu = NULL;
ae038cb0
DJ
19118 cu->per_cu = NULL;
19119
19120 obstack_free (&cu->comp_unit_obstack, NULL);
19121
19122 xfree (cu);
19123}
19124
72bf9492 19125/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 19126 when we're finished with it. We can't free the pointer itself, but be
dee91e82 19127 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
19128
19129static void
19130free_stack_comp_unit (void *data)
19131{
19132 struct dwarf2_cu *cu = data;
19133
23745b47
DE
19134 gdb_assert (cu->per_cu != NULL);
19135 cu->per_cu->cu = NULL;
19136 cu->per_cu = NULL;
19137
72bf9492
DJ
19138 obstack_free (&cu->comp_unit_obstack, NULL);
19139 cu->partial_dies = NULL;
ae038cb0
DJ
19140}
19141
19142/* Free all cached compilation units. */
19143
19144static void
19145free_cached_comp_units (void *data)
19146{
19147 struct dwarf2_per_cu_data *per_cu, **last_chain;
19148
19149 per_cu = dwarf2_per_objfile->read_in_chain;
19150 last_chain = &dwarf2_per_objfile->read_in_chain;
19151 while (per_cu != NULL)
19152 {
19153 struct dwarf2_per_cu_data *next_cu;
19154
19155 next_cu = per_cu->cu->read_in_chain;
19156
68dc6402 19157 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
19158 *last_chain = next_cu;
19159
19160 per_cu = next_cu;
19161 }
19162}
19163
19164/* Increase the age counter on each cached compilation unit, and free
19165 any that are too old. */
19166
19167static void
19168age_cached_comp_units (void)
19169{
19170 struct dwarf2_per_cu_data *per_cu, **last_chain;
19171
19172 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
19173 per_cu = dwarf2_per_objfile->read_in_chain;
19174 while (per_cu != NULL)
19175 {
19176 per_cu->cu->last_used ++;
19177 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
19178 dwarf2_mark (per_cu->cu);
19179 per_cu = per_cu->cu->read_in_chain;
19180 }
19181
19182 per_cu = dwarf2_per_objfile->read_in_chain;
19183 last_chain = &dwarf2_per_objfile->read_in_chain;
19184 while (per_cu != NULL)
19185 {
19186 struct dwarf2_per_cu_data *next_cu;
19187
19188 next_cu = per_cu->cu->read_in_chain;
19189
19190 if (!per_cu->cu->mark)
19191 {
68dc6402 19192 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
19193 *last_chain = next_cu;
19194 }
19195 else
19196 last_chain = &per_cu->cu->read_in_chain;
19197
19198 per_cu = next_cu;
19199 }
19200}
19201
19202/* Remove a single compilation unit from the cache. */
19203
19204static void
dee91e82 19205free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
19206{
19207 struct dwarf2_per_cu_data *per_cu, **last_chain;
19208
19209 per_cu = dwarf2_per_objfile->read_in_chain;
19210 last_chain = &dwarf2_per_objfile->read_in_chain;
19211 while (per_cu != NULL)
19212 {
19213 struct dwarf2_per_cu_data *next_cu;
19214
19215 next_cu = per_cu->cu->read_in_chain;
19216
dee91e82 19217 if (per_cu == target_per_cu)
ae038cb0 19218 {
68dc6402 19219 free_heap_comp_unit (per_cu->cu);
dee91e82 19220 per_cu->cu = NULL;
ae038cb0
DJ
19221 *last_chain = next_cu;
19222 break;
19223 }
19224 else
19225 last_chain = &per_cu->cu->read_in_chain;
19226
19227 per_cu = next_cu;
19228 }
19229}
19230
fe3e1990
DJ
19231/* Release all extra memory associated with OBJFILE. */
19232
19233void
19234dwarf2_free_objfile (struct objfile *objfile)
19235{
19236 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
19237
19238 if (dwarf2_per_objfile == NULL)
19239 return;
19240
19241 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
19242 free_cached_comp_units (NULL);
19243
7b9f3c50
DE
19244 if (dwarf2_per_objfile->quick_file_names_table)
19245 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 19246
fe3e1990
DJ
19247 /* Everything else should be on the objfile obstack. */
19248}
19249
dee91e82
DE
19250/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
19251 We store these in a hash table separate from the DIEs, and preserve them
19252 when the DIEs are flushed out of cache.
19253
19254 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3
DE
19255 uniquely identify the type. A file may have multiple .debug_types sections,
19256 or the type may come from a DWO file. We have to use something in
19257 dwarf2_per_cu_data (or the pointer to it) because we can enter the lookup
19258 routine, get_die_type_at_offset, from outside this file, and thus won't
19259 necessarily have PER_CU->cu. Fortunately, PER_CU is stable for the life
19260 of the objfile. */
1c379e20 19261
dee91e82 19262struct dwarf2_per_cu_offset_and_type
1c379e20 19263{
dee91e82 19264 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 19265 sect_offset offset;
1c379e20
DJ
19266 struct type *type;
19267};
19268
dee91e82 19269/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
19270
19271static hashval_t
dee91e82 19272per_cu_offset_and_type_hash (const void *item)
1c379e20 19273{
dee91e82 19274 const struct dwarf2_per_cu_offset_and_type *ofs = item;
9a619af0 19275
dee91e82 19276 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
19277}
19278
dee91e82 19279/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
19280
19281static int
dee91e82 19282per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 19283{
dee91e82
DE
19284 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
19285 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
9a619af0 19286
dee91e82
DE
19287 return (ofs_lhs->per_cu == ofs_rhs->per_cu
19288 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
19289}
19290
19291/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
19292 table if necessary. For convenience, return TYPE.
19293
19294 The DIEs reading must have careful ordering to:
19295 * Not cause infite loops trying to read in DIEs as a prerequisite for
19296 reading current DIE.
19297 * Not trying to dereference contents of still incompletely read in types
19298 while reading in other DIEs.
19299 * Enable referencing still incompletely read in types just by a pointer to
19300 the type without accessing its fields.
19301
19302 Therefore caller should follow these rules:
19303 * Try to fetch any prerequisite types we may need to build this DIE type
19304 before building the type and calling set_die_type.
e71ec853 19305 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
19306 possible before fetching more types to complete the current type.
19307 * Make the type as complete as possible before fetching more types. */
1c379e20 19308
f792889a 19309static struct type *
1c379e20
DJ
19310set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
19311{
dee91e82 19312 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 19313 struct objfile *objfile = cu->objfile;
1c379e20 19314
b4ba55a1
JB
19315 /* For Ada types, make sure that the gnat-specific data is always
19316 initialized (if not already set). There are a few types where
19317 we should not be doing so, because the type-specific area is
19318 already used to hold some other piece of info (eg: TYPE_CODE_FLT
19319 where the type-specific area is used to store the floatformat).
19320 But this is not a problem, because the gnat-specific information
19321 is actually not needed for these types. */
19322 if (need_gnat_info (cu)
19323 && TYPE_CODE (type) != TYPE_CODE_FUNC
19324 && TYPE_CODE (type) != TYPE_CODE_FLT
19325 && !HAVE_GNAT_AUX_INFO (type))
19326 INIT_GNAT_SPECIFIC (type);
19327
dee91e82 19328 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 19329 {
dee91e82
DE
19330 dwarf2_per_objfile->die_type_hash =
19331 htab_create_alloc_ex (127,
19332 per_cu_offset_and_type_hash,
19333 per_cu_offset_and_type_eq,
19334 NULL,
19335 &objfile->objfile_obstack,
19336 hashtab_obstack_allocate,
19337 dummy_obstack_deallocate);
f792889a 19338 }
1c379e20 19339
dee91e82 19340 ofs.per_cu = cu->per_cu;
1c379e20
DJ
19341 ofs.offset = die->offset;
19342 ofs.type = type;
dee91e82
DE
19343 slot = (struct dwarf2_per_cu_offset_and_type **)
19344 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
19345 if (*slot)
19346 complaint (&symfile_complaints,
19347 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 19348 die->offset.sect_off);
673bfd45 19349 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 19350 **slot = ofs;
f792889a 19351 return type;
1c379e20
DJ
19352}
19353
380bca97 19354/* Look up the type for the die at OFFSET in the appropriate type_hash
673bfd45 19355 table, or return NULL if the die does not have a saved type. */
1c379e20
DJ
19356
19357static struct type *
b64f50a1 19358get_die_type_at_offset (sect_offset offset,
673bfd45 19359 struct dwarf2_per_cu_data *per_cu)
1c379e20 19360{
dee91e82 19361 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 19362
dee91e82 19363 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 19364 return NULL;
1c379e20 19365
dee91e82 19366 ofs.per_cu = per_cu;
673bfd45 19367 ofs.offset = offset;
dee91e82 19368 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
1c379e20
DJ
19369 if (slot)
19370 return slot->type;
19371 else
19372 return NULL;
19373}
19374
673bfd45
DE
19375/* Look up the type for DIE in the appropriate type_hash table,
19376 or return NULL if DIE does not have a saved type. */
19377
19378static struct type *
19379get_die_type (struct die_info *die, struct dwarf2_cu *cu)
19380{
19381 return get_die_type_at_offset (die->offset, cu->per_cu);
19382}
19383
10b3939b
DJ
19384/* Add a dependence relationship from CU to REF_PER_CU. */
19385
19386static void
19387dwarf2_add_dependence (struct dwarf2_cu *cu,
19388 struct dwarf2_per_cu_data *ref_per_cu)
19389{
19390 void **slot;
19391
19392 if (cu->dependencies == NULL)
19393 cu->dependencies
19394 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
19395 NULL, &cu->comp_unit_obstack,
19396 hashtab_obstack_allocate,
19397 dummy_obstack_deallocate);
19398
19399 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
19400 if (*slot == NULL)
19401 *slot = ref_per_cu;
19402}
1c379e20 19403
f504f079
DE
19404/* Subroutine of dwarf2_mark to pass to htab_traverse.
19405 Set the mark field in every compilation unit in the
ae038cb0
DJ
19406 cache that we must keep because we are keeping CU. */
19407
10b3939b
DJ
19408static int
19409dwarf2_mark_helper (void **slot, void *data)
19410{
19411 struct dwarf2_per_cu_data *per_cu;
19412
19413 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
19414
19415 /* cu->dependencies references may not yet have been ever read if QUIT aborts
19416 reading of the chain. As such dependencies remain valid it is not much
19417 useful to track and undo them during QUIT cleanups. */
19418 if (per_cu->cu == NULL)
19419 return 1;
19420
10b3939b
DJ
19421 if (per_cu->cu->mark)
19422 return 1;
19423 per_cu->cu->mark = 1;
19424
19425 if (per_cu->cu->dependencies != NULL)
19426 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
19427
19428 return 1;
19429}
19430
f504f079
DE
19431/* Set the mark field in CU and in every other compilation unit in the
19432 cache that we must keep because we are keeping CU. */
19433
ae038cb0
DJ
19434static void
19435dwarf2_mark (struct dwarf2_cu *cu)
19436{
19437 if (cu->mark)
19438 return;
19439 cu->mark = 1;
10b3939b
DJ
19440 if (cu->dependencies != NULL)
19441 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
19442}
19443
19444static void
19445dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
19446{
19447 while (per_cu)
19448 {
19449 per_cu->cu->mark = 0;
19450 per_cu = per_cu->cu->read_in_chain;
19451 }
72bf9492
DJ
19452}
19453
72bf9492
DJ
19454/* Trivial hash function for partial_die_info: the hash value of a DIE
19455 is its offset in .debug_info for this objfile. */
19456
19457static hashval_t
19458partial_die_hash (const void *item)
19459{
19460 const struct partial_die_info *part_die = item;
9a619af0 19461
b64f50a1 19462 return part_die->offset.sect_off;
72bf9492
DJ
19463}
19464
19465/* Trivial comparison function for partial_die_info structures: two DIEs
19466 are equal if they have the same offset. */
19467
19468static int
19469partial_die_eq (const void *item_lhs, const void *item_rhs)
19470{
19471 const struct partial_die_info *part_die_lhs = item_lhs;
19472 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 19473
b64f50a1 19474 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
19475}
19476
ae038cb0
DJ
19477static struct cmd_list_element *set_dwarf2_cmdlist;
19478static struct cmd_list_element *show_dwarf2_cmdlist;
19479
19480static void
19481set_dwarf2_cmd (char *args, int from_tty)
19482{
19483 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
19484}
19485
19486static void
19487show_dwarf2_cmd (char *args, int from_tty)
6e70227d 19488{
ae038cb0
DJ
19489 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
19490}
19491
4bf44c1c 19492/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
19493
19494static void
c1bd65d0 19495dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
19496{
19497 struct dwarf2_per_objfile *data = d;
8b70b953 19498 int ix;
8b70b953 19499
95554aad
TT
19500 for (ix = 0; ix < dwarf2_per_objfile->n_comp_units; ++ix)
19501 VEC_free (dwarf2_per_cu_ptr,
f4dc4d17 19502 dwarf2_per_objfile->all_comp_units[ix]->s.imported_symtabs);
95554aad 19503
8b70b953 19504 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
19505
19506 if (data->dwo_files)
19507 free_dwo_files (data->dwo_files, objfile);
36586728
TT
19508
19509 if (data->dwz_file && data->dwz_file->dwz_bfd)
19510 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
19511}
19512
19513\f
ae2de4f8 19514/* The "save gdb-index" command. */
9291a0cd
TT
19515
19516/* The contents of the hash table we create when building the string
19517 table. */
19518struct strtab_entry
19519{
19520 offset_type offset;
19521 const char *str;
19522};
19523
559a7a62
JK
19524/* Hash function for a strtab_entry.
19525
19526 Function is used only during write_hash_table so no index format backward
19527 compatibility is needed. */
b89be57b 19528
9291a0cd
TT
19529static hashval_t
19530hash_strtab_entry (const void *e)
19531{
19532 const struct strtab_entry *entry = e;
559a7a62 19533 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
19534}
19535
19536/* Equality function for a strtab_entry. */
b89be57b 19537
9291a0cd
TT
19538static int
19539eq_strtab_entry (const void *a, const void *b)
19540{
19541 const struct strtab_entry *ea = a;
19542 const struct strtab_entry *eb = b;
19543 return !strcmp (ea->str, eb->str);
19544}
19545
19546/* Create a strtab_entry hash table. */
b89be57b 19547
9291a0cd
TT
19548static htab_t
19549create_strtab (void)
19550{
19551 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
19552 xfree, xcalloc, xfree);
19553}
19554
19555/* Add a string to the constant pool. Return the string's offset in
19556 host order. */
b89be57b 19557
9291a0cd
TT
19558static offset_type
19559add_string (htab_t table, struct obstack *cpool, const char *str)
19560{
19561 void **slot;
19562 struct strtab_entry entry;
19563 struct strtab_entry *result;
19564
19565 entry.str = str;
19566 slot = htab_find_slot (table, &entry, INSERT);
19567 if (*slot)
19568 result = *slot;
19569 else
19570 {
19571 result = XNEW (struct strtab_entry);
19572 result->offset = obstack_object_size (cpool);
19573 result->str = str;
19574 obstack_grow_str0 (cpool, str);
19575 *slot = result;
19576 }
19577 return result->offset;
19578}
19579
19580/* An entry in the symbol table. */
19581struct symtab_index_entry
19582{
19583 /* The name of the symbol. */
19584 const char *name;
19585 /* The offset of the name in the constant pool. */
19586 offset_type index_offset;
19587 /* A sorted vector of the indices of all the CUs that hold an object
19588 of this name. */
19589 VEC (offset_type) *cu_indices;
19590};
19591
19592/* The symbol table. This is a power-of-2-sized hash table. */
19593struct mapped_symtab
19594{
19595 offset_type n_elements;
19596 offset_type size;
19597 struct symtab_index_entry **data;
19598};
19599
19600/* Hash function for a symtab_index_entry. */
b89be57b 19601
9291a0cd
TT
19602static hashval_t
19603hash_symtab_entry (const void *e)
19604{
19605 const struct symtab_index_entry *entry = e;
19606 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
19607 sizeof (offset_type) * VEC_length (offset_type,
19608 entry->cu_indices),
19609 0);
19610}
19611
19612/* Equality function for a symtab_index_entry. */
b89be57b 19613
9291a0cd
TT
19614static int
19615eq_symtab_entry (const void *a, const void *b)
19616{
19617 const struct symtab_index_entry *ea = a;
19618 const struct symtab_index_entry *eb = b;
19619 int len = VEC_length (offset_type, ea->cu_indices);
19620 if (len != VEC_length (offset_type, eb->cu_indices))
19621 return 0;
19622 return !memcmp (VEC_address (offset_type, ea->cu_indices),
19623 VEC_address (offset_type, eb->cu_indices),
19624 sizeof (offset_type) * len);
19625}
19626
19627/* Destroy a symtab_index_entry. */
b89be57b 19628
9291a0cd
TT
19629static void
19630delete_symtab_entry (void *p)
19631{
19632 struct symtab_index_entry *entry = p;
19633 VEC_free (offset_type, entry->cu_indices);
19634 xfree (entry);
19635}
19636
19637/* Create a hash table holding symtab_index_entry objects. */
b89be57b 19638
9291a0cd 19639static htab_t
3876f04e 19640create_symbol_hash_table (void)
9291a0cd
TT
19641{
19642 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
19643 delete_symtab_entry, xcalloc, xfree);
19644}
19645
19646/* Create a new mapped symtab object. */
b89be57b 19647
9291a0cd
TT
19648static struct mapped_symtab *
19649create_mapped_symtab (void)
19650{
19651 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
19652 symtab->n_elements = 0;
19653 symtab->size = 1024;
19654 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19655 return symtab;
19656}
19657
19658/* Destroy a mapped_symtab. */
b89be57b 19659
9291a0cd
TT
19660static void
19661cleanup_mapped_symtab (void *p)
19662{
19663 struct mapped_symtab *symtab = p;
19664 /* The contents of the array are freed when the other hash table is
19665 destroyed. */
19666 xfree (symtab->data);
19667 xfree (symtab);
19668}
19669
19670/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
19671 the slot.
19672
19673 Function is used only during write_hash_table so no index format backward
19674 compatibility is needed. */
b89be57b 19675
9291a0cd
TT
19676static struct symtab_index_entry **
19677find_slot (struct mapped_symtab *symtab, const char *name)
19678{
559a7a62 19679 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
19680
19681 index = hash & (symtab->size - 1);
19682 step = ((hash * 17) & (symtab->size - 1)) | 1;
19683
19684 for (;;)
19685 {
19686 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
19687 return &symtab->data[index];
19688 index = (index + step) & (symtab->size - 1);
19689 }
19690}
19691
19692/* Expand SYMTAB's hash table. */
b89be57b 19693
9291a0cd
TT
19694static void
19695hash_expand (struct mapped_symtab *symtab)
19696{
19697 offset_type old_size = symtab->size;
19698 offset_type i;
19699 struct symtab_index_entry **old_entries = symtab->data;
19700
19701 symtab->size *= 2;
19702 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
19703
19704 for (i = 0; i < old_size; ++i)
19705 {
19706 if (old_entries[i])
19707 {
19708 struct symtab_index_entry **slot = find_slot (symtab,
19709 old_entries[i]->name);
19710 *slot = old_entries[i];
19711 }
19712 }
19713
19714 xfree (old_entries);
19715}
19716
156942c7
DE
19717/* Add an entry to SYMTAB. NAME is the name of the symbol.
19718 CU_INDEX is the index of the CU in which the symbol appears.
19719 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 19720
9291a0cd
TT
19721static void
19722add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 19723 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
19724 offset_type cu_index)
19725{
19726 struct symtab_index_entry **slot;
156942c7 19727 offset_type cu_index_and_attrs;
9291a0cd
TT
19728
19729 ++symtab->n_elements;
19730 if (4 * symtab->n_elements / 3 >= symtab->size)
19731 hash_expand (symtab);
19732
19733 slot = find_slot (symtab, name);
19734 if (!*slot)
19735 {
19736 *slot = XNEW (struct symtab_index_entry);
19737 (*slot)->name = name;
156942c7 19738 /* index_offset is set later. */
9291a0cd
TT
19739 (*slot)->cu_indices = NULL;
19740 }
156942c7
DE
19741
19742 cu_index_and_attrs = 0;
19743 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
19744 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
19745 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
19746
19747 /* We don't want to record an index value twice as we want to avoid the
19748 duplication.
19749 We process all global symbols and then all static symbols
19750 (which would allow us to avoid the duplication by only having to check
19751 the last entry pushed), but a symbol could have multiple kinds in one CU.
19752 To keep things simple we don't worry about the duplication here and
19753 sort and uniqufy the list after we've processed all symbols. */
19754 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
19755}
19756
19757/* qsort helper routine for uniquify_cu_indices. */
19758
19759static int
19760offset_type_compare (const void *ap, const void *bp)
19761{
19762 offset_type a = *(offset_type *) ap;
19763 offset_type b = *(offset_type *) bp;
19764
19765 return (a > b) - (b > a);
19766}
19767
19768/* Sort and remove duplicates of all symbols' cu_indices lists. */
19769
19770static void
19771uniquify_cu_indices (struct mapped_symtab *symtab)
19772{
19773 int i;
19774
19775 for (i = 0; i < symtab->size; ++i)
19776 {
19777 struct symtab_index_entry *entry = symtab->data[i];
19778
19779 if (entry
19780 && entry->cu_indices != NULL)
19781 {
19782 unsigned int next_to_insert, next_to_check;
19783 offset_type last_value;
19784
19785 qsort (VEC_address (offset_type, entry->cu_indices),
19786 VEC_length (offset_type, entry->cu_indices),
19787 sizeof (offset_type), offset_type_compare);
19788
19789 last_value = VEC_index (offset_type, entry->cu_indices, 0);
19790 next_to_insert = 1;
19791 for (next_to_check = 1;
19792 next_to_check < VEC_length (offset_type, entry->cu_indices);
19793 ++next_to_check)
19794 {
19795 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
19796 != last_value)
19797 {
19798 last_value = VEC_index (offset_type, entry->cu_indices,
19799 next_to_check);
19800 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
19801 last_value);
19802 ++next_to_insert;
19803 }
19804 }
19805 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
19806 }
19807 }
9291a0cd
TT
19808}
19809
19810/* Add a vector of indices to the constant pool. */
b89be57b 19811
9291a0cd 19812static offset_type
3876f04e 19813add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
19814 struct symtab_index_entry *entry)
19815{
19816 void **slot;
19817
3876f04e 19818 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
19819 if (!*slot)
19820 {
19821 offset_type len = VEC_length (offset_type, entry->cu_indices);
19822 offset_type val = MAYBE_SWAP (len);
19823 offset_type iter;
19824 int i;
19825
19826 *slot = entry;
19827 entry->index_offset = obstack_object_size (cpool);
19828
19829 obstack_grow (cpool, &val, sizeof (val));
19830 for (i = 0;
19831 VEC_iterate (offset_type, entry->cu_indices, i, iter);
19832 ++i)
19833 {
19834 val = MAYBE_SWAP (iter);
19835 obstack_grow (cpool, &val, sizeof (val));
19836 }
19837 }
19838 else
19839 {
19840 struct symtab_index_entry *old_entry = *slot;
19841 entry->index_offset = old_entry->index_offset;
19842 entry = old_entry;
19843 }
19844 return entry->index_offset;
19845}
19846
19847/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
19848 constant pool entries going into the obstack CPOOL. */
b89be57b 19849
9291a0cd
TT
19850static void
19851write_hash_table (struct mapped_symtab *symtab,
19852 struct obstack *output, struct obstack *cpool)
19853{
19854 offset_type i;
3876f04e 19855 htab_t symbol_hash_table;
9291a0cd
TT
19856 htab_t str_table;
19857
3876f04e 19858 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 19859 str_table = create_strtab ();
3876f04e 19860
9291a0cd
TT
19861 /* We add all the index vectors to the constant pool first, to
19862 ensure alignment is ok. */
19863 for (i = 0; i < symtab->size; ++i)
19864 {
19865 if (symtab->data[i])
3876f04e 19866 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
19867 }
19868
19869 /* Now write out the hash table. */
19870 for (i = 0; i < symtab->size; ++i)
19871 {
19872 offset_type str_off, vec_off;
19873
19874 if (symtab->data[i])
19875 {
19876 str_off = add_string (str_table, cpool, symtab->data[i]->name);
19877 vec_off = symtab->data[i]->index_offset;
19878 }
19879 else
19880 {
19881 /* While 0 is a valid constant pool index, it is not valid
19882 to have 0 for both offsets. */
19883 str_off = 0;
19884 vec_off = 0;
19885 }
19886
19887 str_off = MAYBE_SWAP (str_off);
19888 vec_off = MAYBE_SWAP (vec_off);
19889
19890 obstack_grow (output, &str_off, sizeof (str_off));
19891 obstack_grow (output, &vec_off, sizeof (vec_off));
19892 }
19893
19894 htab_delete (str_table);
3876f04e 19895 htab_delete (symbol_hash_table);
9291a0cd
TT
19896}
19897
0a5429f6
DE
19898/* Struct to map psymtab to CU index in the index file. */
19899struct psymtab_cu_index_map
19900{
19901 struct partial_symtab *psymtab;
19902 unsigned int cu_index;
19903};
19904
19905static hashval_t
19906hash_psymtab_cu_index (const void *item)
19907{
19908 const struct psymtab_cu_index_map *map = item;
19909
19910 return htab_hash_pointer (map->psymtab);
19911}
19912
19913static int
19914eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
19915{
19916 const struct psymtab_cu_index_map *lhs = item_lhs;
19917 const struct psymtab_cu_index_map *rhs = item_rhs;
19918
19919 return lhs->psymtab == rhs->psymtab;
19920}
19921
19922/* Helper struct for building the address table. */
19923struct addrmap_index_data
19924{
19925 struct objfile *objfile;
19926 struct obstack *addr_obstack;
19927 htab_t cu_index_htab;
19928
19929 /* Non-zero if the previous_* fields are valid.
19930 We can't write an entry until we see the next entry (since it is only then
19931 that we know the end of the entry). */
19932 int previous_valid;
19933 /* Index of the CU in the table of all CUs in the index file. */
19934 unsigned int previous_cu_index;
0963b4bd 19935 /* Start address of the CU. */
0a5429f6
DE
19936 CORE_ADDR previous_cu_start;
19937};
19938
19939/* Write an address entry to OBSTACK. */
b89be57b 19940
9291a0cd 19941static void
0a5429f6
DE
19942add_address_entry (struct objfile *objfile, struct obstack *obstack,
19943 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 19944{
0a5429f6 19945 offset_type cu_index_to_write;
9291a0cd
TT
19946 char addr[8];
19947 CORE_ADDR baseaddr;
19948
19949 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
19950
0a5429f6
DE
19951 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
19952 obstack_grow (obstack, addr, 8);
19953 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
19954 obstack_grow (obstack, addr, 8);
19955 cu_index_to_write = MAYBE_SWAP (cu_index);
19956 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
19957}
19958
19959/* Worker function for traversing an addrmap to build the address table. */
19960
19961static int
19962add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
19963{
19964 struct addrmap_index_data *data = datap;
19965 struct partial_symtab *pst = obj;
0a5429f6
DE
19966
19967 if (data->previous_valid)
19968 add_address_entry (data->objfile, data->addr_obstack,
19969 data->previous_cu_start, start_addr,
19970 data->previous_cu_index);
19971
19972 data->previous_cu_start = start_addr;
19973 if (pst != NULL)
19974 {
19975 struct psymtab_cu_index_map find_map, *map;
19976 find_map.psymtab = pst;
19977 map = htab_find (data->cu_index_htab, &find_map);
19978 gdb_assert (map != NULL);
19979 data->previous_cu_index = map->cu_index;
19980 data->previous_valid = 1;
19981 }
19982 else
19983 data->previous_valid = 0;
19984
19985 return 0;
19986}
19987
19988/* Write OBJFILE's address map to OBSTACK.
19989 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
19990 in the index file. */
19991
19992static void
19993write_address_map (struct objfile *objfile, struct obstack *obstack,
19994 htab_t cu_index_htab)
19995{
19996 struct addrmap_index_data addrmap_index_data;
19997
19998 /* When writing the address table, we have to cope with the fact that
19999 the addrmap iterator only provides the start of a region; we have to
20000 wait until the next invocation to get the start of the next region. */
20001
20002 addrmap_index_data.objfile = objfile;
20003 addrmap_index_data.addr_obstack = obstack;
20004 addrmap_index_data.cu_index_htab = cu_index_htab;
20005 addrmap_index_data.previous_valid = 0;
20006
20007 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
20008 &addrmap_index_data);
20009
20010 /* It's highly unlikely the last entry (end address = 0xff...ff)
20011 is valid, but we should still handle it.
20012 The end address is recorded as the start of the next region, but that
20013 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
20014 anyway. */
20015 if (addrmap_index_data.previous_valid)
20016 add_address_entry (objfile, obstack,
20017 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
20018 addrmap_index_data.previous_cu_index);
9291a0cd
TT
20019}
20020
156942c7
DE
20021/* Return the symbol kind of PSYM. */
20022
20023static gdb_index_symbol_kind
20024symbol_kind (struct partial_symbol *psym)
20025{
20026 domain_enum domain = PSYMBOL_DOMAIN (psym);
20027 enum address_class aclass = PSYMBOL_CLASS (psym);
20028
20029 switch (domain)
20030 {
20031 case VAR_DOMAIN:
20032 switch (aclass)
20033 {
20034 case LOC_BLOCK:
20035 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
20036 case LOC_TYPEDEF:
20037 return GDB_INDEX_SYMBOL_KIND_TYPE;
20038 case LOC_COMPUTED:
20039 case LOC_CONST_BYTES:
20040 case LOC_OPTIMIZED_OUT:
20041 case LOC_STATIC:
20042 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20043 case LOC_CONST:
20044 /* Note: It's currently impossible to recognize psyms as enum values
20045 short of reading the type info. For now punt. */
20046 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
20047 default:
20048 /* There are other LOC_FOO values that one might want to classify
20049 as variables, but dwarf2read.c doesn't currently use them. */
20050 return GDB_INDEX_SYMBOL_KIND_OTHER;
20051 }
20052 case STRUCT_DOMAIN:
20053 return GDB_INDEX_SYMBOL_KIND_TYPE;
20054 default:
20055 return GDB_INDEX_SYMBOL_KIND_OTHER;
20056 }
20057}
20058
9291a0cd 20059/* Add a list of partial symbols to SYMTAB. */
b89be57b 20060
9291a0cd
TT
20061static void
20062write_psymbols (struct mapped_symtab *symtab,
987d643c 20063 htab_t psyms_seen,
9291a0cd
TT
20064 struct partial_symbol **psymp,
20065 int count,
987d643c
TT
20066 offset_type cu_index,
20067 int is_static)
9291a0cd
TT
20068{
20069 for (; count-- > 0; ++psymp)
20070 {
156942c7
DE
20071 struct partial_symbol *psym = *psymp;
20072 void **slot;
987d643c 20073
156942c7 20074 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 20075 error (_("Ada is not currently supported by the index"));
987d643c 20076
987d643c 20077 /* Only add a given psymbol once. */
156942c7 20078 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
20079 if (!*slot)
20080 {
156942c7
DE
20081 gdb_index_symbol_kind kind = symbol_kind (psym);
20082
20083 *slot = psym;
20084 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
20085 is_static, kind, cu_index);
987d643c 20086 }
9291a0cd
TT
20087 }
20088}
20089
20090/* Write the contents of an ("unfinished") obstack to FILE. Throw an
20091 exception if there is an error. */
b89be57b 20092
9291a0cd
TT
20093static void
20094write_obstack (FILE *file, struct obstack *obstack)
20095{
20096 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
20097 file)
20098 != obstack_object_size (obstack))
20099 error (_("couldn't data write to file"));
20100}
20101
20102/* Unlink a file if the argument is not NULL. */
b89be57b 20103
9291a0cd
TT
20104static void
20105unlink_if_set (void *p)
20106{
20107 char **filename = p;
20108 if (*filename)
20109 unlink (*filename);
20110}
20111
1fd400ff
TT
20112/* A helper struct used when iterating over debug_types. */
20113struct signatured_type_index_data
20114{
20115 struct objfile *objfile;
20116 struct mapped_symtab *symtab;
20117 struct obstack *types_list;
987d643c 20118 htab_t psyms_seen;
1fd400ff
TT
20119 int cu_index;
20120};
20121
20122/* A helper function that writes a single signatured_type to an
20123 obstack. */
b89be57b 20124
1fd400ff
TT
20125static int
20126write_one_signatured_type (void **slot, void *d)
20127{
20128 struct signatured_type_index_data *info = d;
20129 struct signatured_type *entry = (struct signatured_type *) *slot;
e254ef6a
DE
20130 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
20131 struct partial_symtab *psymtab = per_cu->v.psymtab;
1fd400ff
TT
20132 gdb_byte val[8];
20133
20134 write_psymbols (info->symtab,
987d643c 20135 info->psyms_seen,
3e43a32a
MS
20136 info->objfile->global_psymbols.list
20137 + psymtab->globals_offset,
987d643c
TT
20138 psymtab->n_global_syms, info->cu_index,
20139 0);
1fd400ff 20140 write_psymbols (info->symtab,
987d643c 20141 info->psyms_seen,
3e43a32a
MS
20142 info->objfile->static_psymbols.list
20143 + psymtab->statics_offset,
987d643c
TT
20144 psymtab->n_static_syms, info->cu_index,
20145 1);
1fd400ff 20146
b64f50a1
JK
20147 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20148 entry->per_cu.offset.sect_off);
1fd400ff 20149 obstack_grow (info->types_list, val, 8);
3019eac3
DE
20150 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20151 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
20152 obstack_grow (info->types_list, val, 8);
20153 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
20154 obstack_grow (info->types_list, val, 8);
20155
20156 ++info->cu_index;
20157
20158 return 1;
20159}
20160
95554aad
TT
20161/* Recurse into all "included" dependencies and write their symbols as
20162 if they appeared in this psymtab. */
20163
20164static void
20165recursively_write_psymbols (struct objfile *objfile,
20166 struct partial_symtab *psymtab,
20167 struct mapped_symtab *symtab,
20168 htab_t psyms_seen,
20169 offset_type cu_index)
20170{
20171 int i;
20172
20173 for (i = 0; i < psymtab->number_of_dependencies; ++i)
20174 if (psymtab->dependencies[i]->user != NULL)
20175 recursively_write_psymbols (objfile, psymtab->dependencies[i],
20176 symtab, psyms_seen, cu_index);
20177
20178 write_psymbols (symtab,
20179 psyms_seen,
20180 objfile->global_psymbols.list + psymtab->globals_offset,
20181 psymtab->n_global_syms, cu_index,
20182 0);
20183 write_psymbols (symtab,
20184 psyms_seen,
20185 objfile->static_psymbols.list + psymtab->statics_offset,
20186 psymtab->n_static_syms, cu_index,
20187 1);
20188}
20189
9291a0cd 20190/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 20191
9291a0cd
TT
20192static void
20193write_psymtabs_to_index (struct objfile *objfile, const char *dir)
20194{
20195 struct cleanup *cleanup;
20196 char *filename, *cleanup_filename;
1fd400ff
TT
20197 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
20198 struct obstack cu_list, types_cu_list;
9291a0cd
TT
20199 int i;
20200 FILE *out_file;
20201 struct mapped_symtab *symtab;
20202 offset_type val, size_of_contents, total_len;
20203 struct stat st;
987d643c 20204 htab_t psyms_seen;
0a5429f6
DE
20205 htab_t cu_index_htab;
20206 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 20207
b4f2f049 20208 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
9291a0cd 20209 return;
b4f2f049 20210
9291a0cd
TT
20211 if (dwarf2_per_objfile->using_index)
20212 error (_("Cannot use an index to create the index"));
20213
8b70b953
TT
20214 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
20215 error (_("Cannot make an index when the file has multiple .debug_types sections"));
20216
9291a0cd 20217 if (stat (objfile->name, &st) < 0)
7e17e088 20218 perror_with_name (objfile->name);
9291a0cd
TT
20219
20220 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
20221 INDEX_SUFFIX, (char *) NULL);
20222 cleanup = make_cleanup (xfree, filename);
20223
20224 out_file = fopen (filename, "wb");
20225 if (!out_file)
20226 error (_("Can't open `%s' for writing"), filename);
20227
20228 cleanup_filename = filename;
20229 make_cleanup (unlink_if_set, &cleanup_filename);
20230
20231 symtab = create_mapped_symtab ();
20232 make_cleanup (cleanup_mapped_symtab, symtab);
20233
20234 obstack_init (&addr_obstack);
20235 make_cleanup_obstack_free (&addr_obstack);
20236
20237 obstack_init (&cu_list);
20238 make_cleanup_obstack_free (&cu_list);
20239
1fd400ff
TT
20240 obstack_init (&types_cu_list);
20241 make_cleanup_obstack_free (&types_cu_list);
20242
987d643c
TT
20243 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
20244 NULL, xcalloc, xfree);
96408a79 20245 make_cleanup_htab_delete (psyms_seen);
987d643c 20246
0a5429f6
DE
20247 /* While we're scanning CU's create a table that maps a psymtab pointer
20248 (which is what addrmap records) to its index (which is what is recorded
20249 in the index file). This will later be needed to write the address
20250 table. */
20251 cu_index_htab = htab_create_alloc (100,
20252 hash_psymtab_cu_index,
20253 eq_psymtab_cu_index,
20254 NULL, xcalloc, xfree);
96408a79 20255 make_cleanup_htab_delete (cu_index_htab);
0a5429f6
DE
20256 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
20257 xmalloc (sizeof (struct psymtab_cu_index_map)
20258 * dwarf2_per_objfile->n_comp_units);
20259 make_cleanup (xfree, psymtab_cu_index_map);
20260
20261 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
20262 work here. Also, the debug_types entries do not appear in
20263 all_comp_units, but only in their own hash table. */
9291a0cd
TT
20264 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
20265 {
3e43a32a
MS
20266 struct dwarf2_per_cu_data *per_cu
20267 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 20268 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 20269 gdb_byte val[8];
0a5429f6
DE
20270 struct psymtab_cu_index_map *map;
20271 void **slot;
9291a0cd 20272
95554aad
TT
20273 if (psymtab->user == NULL)
20274 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 20275
0a5429f6
DE
20276 map = &psymtab_cu_index_map[i];
20277 map->psymtab = psymtab;
20278 map->cu_index = i;
20279 slot = htab_find_slot (cu_index_htab, map, INSERT);
20280 gdb_assert (slot != NULL);
20281 gdb_assert (*slot == NULL);
20282 *slot = map;
9291a0cd 20283
b64f50a1
JK
20284 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
20285 per_cu->offset.sect_off);
9291a0cd 20286 obstack_grow (&cu_list, val, 8);
e254ef6a 20287 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
20288 obstack_grow (&cu_list, val, 8);
20289 }
20290
0a5429f6
DE
20291 /* Dump the address map. */
20292 write_address_map (objfile, &addr_obstack, cu_index_htab);
20293
1fd400ff
TT
20294 /* Write out the .debug_type entries, if any. */
20295 if (dwarf2_per_objfile->signatured_types)
20296 {
20297 struct signatured_type_index_data sig_data;
20298
20299 sig_data.objfile = objfile;
20300 sig_data.symtab = symtab;
20301 sig_data.types_list = &types_cu_list;
987d643c 20302 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
20303 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
20304 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
20305 write_one_signatured_type, &sig_data);
20306 }
20307
156942c7
DE
20308 /* Now that we've processed all symbols we can shrink their cu_indices
20309 lists. */
20310 uniquify_cu_indices (symtab);
20311
9291a0cd
TT
20312 obstack_init (&constant_pool);
20313 make_cleanup_obstack_free (&constant_pool);
20314 obstack_init (&symtab_obstack);
20315 make_cleanup_obstack_free (&symtab_obstack);
20316 write_hash_table (symtab, &symtab_obstack, &constant_pool);
20317
20318 obstack_init (&contents);
20319 make_cleanup_obstack_free (&contents);
1fd400ff 20320 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
20321 total_len = size_of_contents;
20322
20323 /* The version number. */
156942c7 20324 val = MAYBE_SWAP (7);
9291a0cd
TT
20325 obstack_grow (&contents, &val, sizeof (val));
20326
20327 /* The offset of the CU list from the start of the file. */
20328 val = MAYBE_SWAP (total_len);
20329 obstack_grow (&contents, &val, sizeof (val));
20330 total_len += obstack_object_size (&cu_list);
20331
1fd400ff
TT
20332 /* The offset of the types CU list from the start of the file. */
20333 val = MAYBE_SWAP (total_len);
20334 obstack_grow (&contents, &val, sizeof (val));
20335 total_len += obstack_object_size (&types_cu_list);
20336
9291a0cd
TT
20337 /* The offset of the address table from the start of the file. */
20338 val = MAYBE_SWAP (total_len);
20339 obstack_grow (&contents, &val, sizeof (val));
20340 total_len += obstack_object_size (&addr_obstack);
20341
20342 /* The offset of the symbol table from the start of the file. */
20343 val = MAYBE_SWAP (total_len);
20344 obstack_grow (&contents, &val, sizeof (val));
20345 total_len += obstack_object_size (&symtab_obstack);
20346
20347 /* The offset of the constant pool from the start of the file. */
20348 val = MAYBE_SWAP (total_len);
20349 obstack_grow (&contents, &val, sizeof (val));
20350 total_len += obstack_object_size (&constant_pool);
20351
20352 gdb_assert (obstack_object_size (&contents) == size_of_contents);
20353
20354 write_obstack (out_file, &contents);
20355 write_obstack (out_file, &cu_list);
1fd400ff 20356 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
20357 write_obstack (out_file, &addr_obstack);
20358 write_obstack (out_file, &symtab_obstack);
20359 write_obstack (out_file, &constant_pool);
20360
20361 fclose (out_file);
20362
20363 /* We want to keep the file, so we set cleanup_filename to NULL
20364 here. See unlink_if_set. */
20365 cleanup_filename = NULL;
20366
20367 do_cleanups (cleanup);
20368}
20369
90476074
TT
20370/* Implementation of the `save gdb-index' command.
20371
20372 Note that the file format used by this command is documented in the
20373 GDB manual. Any changes here must be documented there. */
11570e71 20374
9291a0cd
TT
20375static void
20376save_gdb_index_command (char *arg, int from_tty)
20377{
20378 struct objfile *objfile;
20379
20380 if (!arg || !*arg)
96d19272 20381 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
20382
20383 ALL_OBJFILES (objfile)
20384 {
20385 struct stat st;
20386
20387 /* If the objfile does not correspond to an actual file, skip it. */
20388 if (stat (objfile->name, &st) < 0)
20389 continue;
20390
20391 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
20392 if (dwarf2_per_objfile)
20393 {
20394 volatile struct gdb_exception except;
20395
20396 TRY_CATCH (except, RETURN_MASK_ERROR)
20397 {
20398 write_psymtabs_to_index (objfile, arg);
20399 }
20400 if (except.reason < 0)
20401 exception_fprintf (gdb_stderr, except,
20402 _("Error while writing index for `%s': "),
20403 objfile->name);
20404 }
20405 }
dce234bc
PP
20406}
20407
9291a0cd
TT
20408\f
20409
9eae7c52
TT
20410int dwarf2_always_disassemble;
20411
20412static void
20413show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
20414 struct cmd_list_element *c, const char *value)
20415{
3e43a32a
MS
20416 fprintf_filtered (file,
20417 _("Whether to always disassemble "
20418 "DWARF expressions is %s.\n"),
9eae7c52
TT
20419 value);
20420}
20421
900e11f9
JK
20422static void
20423show_check_physname (struct ui_file *file, int from_tty,
20424 struct cmd_list_element *c, const char *value)
20425{
20426 fprintf_filtered (file,
20427 _("Whether to check \"physname\" is %s.\n"),
20428 value);
20429}
20430
6502dd73
DJ
20431void _initialize_dwarf2_read (void);
20432
20433void
20434_initialize_dwarf2_read (void)
20435{
96d19272
JK
20436 struct cmd_list_element *c;
20437
dce234bc 20438 dwarf2_objfile_data_key
c1bd65d0 20439 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 20440
1bedd215
AC
20441 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
20442Set DWARF 2 specific variables.\n\
20443Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
20444 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
20445 0/*allow-unknown*/, &maintenance_set_cmdlist);
20446
1bedd215
AC
20447 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
20448Show DWARF 2 specific variables\n\
20449Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
20450 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
20451 0/*allow-unknown*/, &maintenance_show_cmdlist);
20452
20453 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
20454 &dwarf2_max_cache_age, _("\
20455Set the upper bound on the age of cached dwarf2 compilation units."), _("\
20456Show the upper bound on the age of cached dwarf2 compilation units."), _("\
20457A higher limit means that cached compilation units will be stored\n\
20458in memory longer, and more total memory will be used. Zero disables\n\
20459caching, which can slow down startup."),
2c5b56ce 20460 NULL,
920d2a44 20461 show_dwarf2_max_cache_age,
2c5b56ce 20462 &set_dwarf2_cmdlist,
ae038cb0 20463 &show_dwarf2_cmdlist);
d97bc12b 20464
9eae7c52
TT
20465 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
20466 &dwarf2_always_disassemble, _("\
20467Set whether `info address' always disassembles DWARF expressions."), _("\
20468Show whether `info address' always disassembles DWARF expressions."), _("\
20469When enabled, DWARF expressions are always printed in an assembly-like\n\
20470syntax. When disabled, expressions will be printed in a more\n\
20471conversational style, when possible."),
20472 NULL,
20473 show_dwarf2_always_disassemble,
20474 &set_dwarf2_cmdlist,
20475 &show_dwarf2_cmdlist);
20476
45cfd468
DE
20477 add_setshow_boolean_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
20478Set debugging of the dwarf2 reader."), _("\
20479Show debugging of the dwarf2 reader."), _("\
20480When enabled, debugging messages are printed during dwarf2 reading\n\
20481and symtab expansion."),
20482 NULL,
20483 NULL,
20484 &setdebuglist, &showdebuglist);
20485
ccce17b0 20486 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
d97bc12b
DE
20487Set debugging of the dwarf2 DIE reader."), _("\
20488Show debugging of the dwarf2 DIE reader."), _("\
20489When enabled (non-zero), DIEs are dumped after they are read in.\n\
20490The value is the maximum depth to print."),
ccce17b0
YQ
20491 NULL,
20492 NULL,
20493 &setdebuglist, &showdebuglist);
9291a0cd 20494
900e11f9
JK
20495 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
20496Set cross-checking of \"physname\" code against demangler."), _("\
20497Show cross-checking of \"physname\" code against demangler."), _("\
20498When enabled, GDB's internal \"physname\" code is checked against\n\
20499the demangler."),
20500 NULL, show_check_physname,
20501 &setdebuglist, &showdebuglist);
20502
e615022a
DE
20503 add_setshow_boolean_cmd ("use-deprecated-index-sections",
20504 no_class, &use_deprecated_index_sections, _("\
20505Set whether to use deprecated gdb_index sections."), _("\
20506Show whether to use deprecated gdb_index sections."), _("\
20507When enabled, deprecated .gdb_index sections are used anyway.\n\
20508Normally they are ignored either because of a missing feature or\n\
20509performance issue.\n\
20510Warning: This option must be enabled before gdb reads the file."),
20511 NULL,
20512 NULL,
20513 &setlist, &showlist);
20514
96d19272 20515 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 20516 _("\
fc1a9d6e 20517Save a gdb-index file.\n\
11570e71 20518Usage: save gdb-index DIRECTORY"),
96d19272
JK
20519 &save_cmdlist);
20520 set_cmd_completer (c, filename_completer);
6502dd73 20521}
This page took 3.153972 seconds and 4 git commands to generate.