Merge {i386,amd64}_linux_read_description
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
ecd75fc8 3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
9291a0cd 58#include "exceptions.h"
53ce3c39 59#include <sys/stat.h>
96d19272 60#include "completer.h"
34eaf542 61#include "vec.h"
98bfdba5 62#include "c-lang.h"
a766d390 63#include "go-lang.h"
98bfdba5 64#include "valprint.h"
3019eac3 65#include "gdbcore.h" /* for gnutarget */
156942c7 66#include "gdb/gdb-index.h"
60d5a603 67#include <ctype.h>
cbb099e8 68#include "gdb_bfd.h"
4357ac6c 69#include "f-lang.h"
05cba821 70#include "source.h"
614c279d 71#include "filestuff.h"
dc294be5 72#include "build-id.h"
4c2df51b 73
c906108c 74#include <fcntl.h>
0e9f083f 75#include <string.h>
4bdf3d34 76#include "gdb_assert.h"
c906108c 77#include <sys/types.h>
d8151005 78
34eaf542
TT
79typedef struct symbol *symbolp;
80DEF_VEC_P (symbolp);
81
73be47f5
DE
82/* When == 1, print basic high level tracing messages.
83 When > 1, be more verbose.
45cfd468 84 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
73be47f5 85static unsigned int dwarf2_read_debug = 0;
45cfd468 86
d97bc12b 87/* When non-zero, dump DIEs after they are read in. */
ccce17b0 88static unsigned int dwarf2_die_debug = 0;
d97bc12b 89
900e11f9
JK
90/* When non-zero, cross-check physname against demangler. */
91static int check_physname = 0;
92
481860b3 93/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 94static int use_deprecated_index_sections = 0;
481860b3 95
6502dd73
DJ
96static const struct objfile_data *dwarf2_objfile_data_key;
97
f1e6e072
TT
98/* The "aclass" indices for various kinds of computed DWARF symbols. */
99
100static int dwarf2_locexpr_index;
101static int dwarf2_loclist_index;
102static int dwarf2_locexpr_block_index;
103static int dwarf2_loclist_block_index;
104
73869dc2
DE
105/* A descriptor for dwarf sections.
106
107 S.ASECTION, SIZE are typically initialized when the objfile is first
108 scanned. BUFFER, READIN are filled in later when the section is read.
109 If the section contained compressed data then SIZE is updated to record
110 the uncompressed size of the section.
111
112 DWP file format V2 introduces a wrinkle that is easiest to handle by
113 creating the concept of virtual sections contained within a real section.
114 In DWP V2 the sections of the input DWO files are concatenated together
115 into one section, but section offsets are kept relative to the original
116 input section.
117 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
118 the real section this "virtual" section is contained in, and BUFFER,SIZE
119 describe the virtual section. */
120
dce234bc
PP
121struct dwarf2_section_info
122{
73869dc2
DE
123 union
124 {
e5aa3347 125 /* If this is a real section, the bfd section. */
73869dc2
DE
126 asection *asection;
127 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 128 section. */
73869dc2
DE
129 struct dwarf2_section_info *containing_section;
130 } s;
19ac8c2e 131 /* Pointer to section data, only valid if readin. */
d521ce57 132 const gdb_byte *buffer;
73869dc2 133 /* The size of the section, real or virtual. */
dce234bc 134 bfd_size_type size;
73869dc2
DE
135 /* If this is a virtual section, the offset in the real section.
136 Only valid if is_virtual. */
137 bfd_size_type virtual_offset;
be391dca 138 /* True if we have tried to read this section. */
73869dc2
DE
139 char readin;
140 /* True if this is a virtual section, False otherwise.
141 This specifies which of s.asection and s.containing_section to use. */
142 char is_virtual;
dce234bc
PP
143};
144
8b70b953
TT
145typedef struct dwarf2_section_info dwarf2_section_info_def;
146DEF_VEC_O (dwarf2_section_info_def);
147
9291a0cd
TT
148/* All offsets in the index are of this type. It must be
149 architecture-independent. */
150typedef uint32_t offset_type;
151
152DEF_VEC_I (offset_type);
153
156942c7
DE
154/* Ensure only legit values are used. */
155#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
156 do { \
157 gdb_assert ((unsigned int) (value) <= 1); \
158 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
159 } while (0)
160
161/* Ensure only legit values are used. */
162#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
163 do { \
164 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
165 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
166 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169/* Ensure we don't use more than the alloted nuber of bits for the CU. */
170#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
173 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
174 } while (0)
175
9291a0cd
TT
176/* A description of the mapped index. The file format is described in
177 a comment by the code that writes the index. */
178struct mapped_index
179{
559a7a62
JK
180 /* Index data format version. */
181 int version;
182
9291a0cd
TT
183 /* The total length of the buffer. */
184 off_t total_size;
b11b1f88 185
9291a0cd
TT
186 /* A pointer to the address table data. */
187 const gdb_byte *address_table;
b11b1f88 188
9291a0cd
TT
189 /* Size of the address table data in bytes. */
190 offset_type address_table_size;
b11b1f88 191
3876f04e
DE
192 /* The symbol table, implemented as a hash table. */
193 const offset_type *symbol_table;
b11b1f88 194
9291a0cd 195 /* Size in slots, each slot is 2 offset_types. */
3876f04e 196 offset_type symbol_table_slots;
b11b1f88 197
9291a0cd
TT
198 /* A pointer to the constant pool. */
199 const char *constant_pool;
200};
201
95554aad
TT
202typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
203DEF_VEC_P (dwarf2_per_cu_ptr);
204
9cdd5dbd
DE
205/* Collection of data recorded per objfile.
206 This hangs off of dwarf2_objfile_data_key. */
207
6502dd73
DJ
208struct dwarf2_per_objfile
209{
dce234bc
PP
210 struct dwarf2_section_info info;
211 struct dwarf2_section_info abbrev;
212 struct dwarf2_section_info line;
dce234bc
PP
213 struct dwarf2_section_info loc;
214 struct dwarf2_section_info macinfo;
cf2c3c16 215 struct dwarf2_section_info macro;
dce234bc
PP
216 struct dwarf2_section_info str;
217 struct dwarf2_section_info ranges;
3019eac3 218 struct dwarf2_section_info addr;
dce234bc
PP
219 struct dwarf2_section_info frame;
220 struct dwarf2_section_info eh_frame;
9291a0cd 221 struct dwarf2_section_info gdb_index;
ae038cb0 222
8b70b953
TT
223 VEC (dwarf2_section_info_def) *types;
224
be391dca
TT
225 /* Back link. */
226 struct objfile *objfile;
227
d467dd73 228 /* Table of all the compilation units. This is used to locate
10b3939b 229 the target compilation unit of a particular reference. */
ae038cb0
DJ
230 struct dwarf2_per_cu_data **all_comp_units;
231
232 /* The number of compilation units in ALL_COMP_UNITS. */
233 int n_comp_units;
234
1fd400ff 235 /* The number of .debug_types-related CUs. */
d467dd73 236 int n_type_units;
1fd400ff 237
6aa5f3a6
DE
238 /* The number of elements allocated in all_type_units.
239 If there are skeleton-less TUs, we add them to all_type_units lazily. */
240 int n_allocated_type_units;
241
a2ce51a0
DE
242 /* The .debug_types-related CUs (TUs).
243 This is stored in malloc space because we may realloc it. */
b4dd5633 244 struct signatured_type **all_type_units;
1fd400ff 245
f4dc4d17
DE
246 /* Table of struct type_unit_group objects.
247 The hash key is the DW_AT_stmt_list value. */
248 htab_t type_unit_groups;
72dca2f5 249
348e048f
DE
250 /* A table mapping .debug_types signatures to its signatured_type entry.
251 This is NULL if the .debug_types section hasn't been read in yet. */
252 htab_t signatured_types;
253
f4dc4d17
DE
254 /* Type unit statistics, to see how well the scaling improvements
255 are doing. */
256 struct tu_stats
257 {
258 int nr_uniq_abbrev_tables;
259 int nr_symtabs;
260 int nr_symtab_sharers;
261 int nr_stmt_less_type_units;
6aa5f3a6 262 int nr_all_type_units_reallocs;
f4dc4d17
DE
263 } tu_stats;
264
265 /* A chain of compilation units that are currently read in, so that
266 they can be freed later. */
267 struct dwarf2_per_cu_data *read_in_chain;
268
3019eac3
DE
269 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
270 This is NULL if the table hasn't been allocated yet. */
271 htab_t dwo_files;
272
80626a55
DE
273 /* Non-zero if we've check for whether there is a DWP file. */
274 int dwp_checked;
275
276 /* The DWP file if there is one, or NULL. */
277 struct dwp_file *dwp_file;
278
36586728
TT
279 /* The shared '.dwz' file, if one exists. This is used when the
280 original data was compressed using 'dwz -m'. */
281 struct dwz_file *dwz_file;
282
72dca2f5
FR
283 /* A flag indicating wether this objfile has a section loaded at a
284 VMA of 0. */
285 int has_section_at_zero;
9291a0cd 286
ae2de4f8
DE
287 /* True if we are using the mapped index,
288 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
289 unsigned char using_index;
290
ae2de4f8 291 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 292 struct mapped_index *index_table;
98bfdba5 293
7b9f3c50 294 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
295 TUs typically share line table entries with a CU, so we maintain a
296 separate table of all line table entries to support the sharing.
297 Note that while there can be way more TUs than CUs, we've already
298 sorted all the TUs into "type unit groups", grouped by their
299 DW_AT_stmt_list value. Therefore the only sharing done here is with a
300 CU and its associated TU group if there is one. */
7b9f3c50
DE
301 htab_t quick_file_names_table;
302
98bfdba5
PA
303 /* Set during partial symbol reading, to prevent queueing of full
304 symbols. */
305 int reading_partial_symbols;
673bfd45 306
dee91e82 307 /* Table mapping type DIEs to their struct type *.
673bfd45 308 This is NULL if not allocated yet.
02142a6c 309 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 310 htab_t die_type_hash;
95554aad
TT
311
312 /* The CUs we recently read. */
313 VEC (dwarf2_per_cu_ptr) *just_read_cus;
6502dd73
DJ
314};
315
316static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 317
251d32d9 318/* Default names of the debugging sections. */
c906108c 319
233a11ab
CS
320/* Note that if the debugging section has been compressed, it might
321 have a name like .zdebug_info. */
322
9cdd5dbd
DE
323static const struct dwarf2_debug_sections dwarf2_elf_names =
324{
251d32d9
TG
325 { ".debug_info", ".zdebug_info" },
326 { ".debug_abbrev", ".zdebug_abbrev" },
327 { ".debug_line", ".zdebug_line" },
328 { ".debug_loc", ".zdebug_loc" },
329 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 330 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
331 { ".debug_str", ".zdebug_str" },
332 { ".debug_ranges", ".zdebug_ranges" },
333 { ".debug_types", ".zdebug_types" },
3019eac3 334 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
335 { ".debug_frame", ".zdebug_frame" },
336 { ".eh_frame", NULL },
24d3216f
TT
337 { ".gdb_index", ".zgdb_index" },
338 23
251d32d9 339};
c906108c 340
80626a55 341/* List of DWO/DWP sections. */
3019eac3 342
80626a55 343static const struct dwop_section_names
3019eac3
DE
344{
345 struct dwarf2_section_names abbrev_dwo;
346 struct dwarf2_section_names info_dwo;
347 struct dwarf2_section_names line_dwo;
348 struct dwarf2_section_names loc_dwo;
09262596
DE
349 struct dwarf2_section_names macinfo_dwo;
350 struct dwarf2_section_names macro_dwo;
3019eac3
DE
351 struct dwarf2_section_names str_dwo;
352 struct dwarf2_section_names str_offsets_dwo;
353 struct dwarf2_section_names types_dwo;
80626a55
DE
354 struct dwarf2_section_names cu_index;
355 struct dwarf2_section_names tu_index;
3019eac3 356}
80626a55 357dwop_section_names =
3019eac3
DE
358{
359 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
360 { ".debug_info.dwo", ".zdebug_info.dwo" },
361 { ".debug_line.dwo", ".zdebug_line.dwo" },
362 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
363 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
364 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
365 { ".debug_str.dwo", ".zdebug_str.dwo" },
366 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
367 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
368 { ".debug_cu_index", ".zdebug_cu_index" },
369 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
370};
371
c906108c
SS
372/* local data types */
373
107d2387
AC
374/* The data in a compilation unit header, after target2host
375 translation, looks like this. */
c906108c 376struct comp_unit_head
a738430d 377{
c764a876 378 unsigned int length;
a738430d 379 short version;
a738430d
MK
380 unsigned char addr_size;
381 unsigned char signed_addr_p;
b64f50a1 382 sect_offset abbrev_offset;
57349743 383
a738430d
MK
384 /* Size of file offsets; either 4 or 8. */
385 unsigned int offset_size;
57349743 386
a738430d
MK
387 /* Size of the length field; either 4 or 12. */
388 unsigned int initial_length_size;
57349743 389
a738430d
MK
390 /* Offset to the first byte of this compilation unit header in the
391 .debug_info section, for resolving relative reference dies. */
b64f50a1 392 sect_offset offset;
57349743 393
d00adf39
DE
394 /* Offset to first die in this cu from the start of the cu.
395 This will be the first byte following the compilation unit header. */
b64f50a1 396 cu_offset first_die_offset;
a738430d 397};
c906108c 398
3da10d80
KS
399/* Type used for delaying computation of method physnames.
400 See comments for compute_delayed_physnames. */
401struct delayed_method_info
402{
403 /* The type to which the method is attached, i.e., its parent class. */
404 struct type *type;
405
406 /* The index of the method in the type's function fieldlists. */
407 int fnfield_index;
408
409 /* The index of the method in the fieldlist. */
410 int index;
411
412 /* The name of the DIE. */
413 const char *name;
414
415 /* The DIE associated with this method. */
416 struct die_info *die;
417};
418
419typedef struct delayed_method_info delayed_method_info;
420DEF_VEC_O (delayed_method_info);
421
e7c27a73
DJ
422/* Internal state when decoding a particular compilation unit. */
423struct dwarf2_cu
424{
425 /* The objfile containing this compilation unit. */
426 struct objfile *objfile;
427
d00adf39 428 /* The header of the compilation unit. */
e7c27a73 429 struct comp_unit_head header;
e142c38c 430
d00adf39
DE
431 /* Base address of this compilation unit. */
432 CORE_ADDR base_address;
433
434 /* Non-zero if base_address has been set. */
435 int base_known;
436
e142c38c
DJ
437 /* The language we are debugging. */
438 enum language language;
439 const struct language_defn *language_defn;
440
b0f35d58
DL
441 const char *producer;
442
e142c38c
DJ
443 /* The generic symbol table building routines have separate lists for
444 file scope symbols and all all other scopes (local scopes). So
445 we need to select the right one to pass to add_symbol_to_list().
446 We do it by keeping a pointer to the correct list in list_in_scope.
447
448 FIXME: The original dwarf code just treated the file scope as the
449 first local scope, and all other local scopes as nested local
450 scopes, and worked fine. Check to see if we really need to
451 distinguish these in buildsym.c. */
452 struct pending **list_in_scope;
453
433df2d4
DE
454 /* The abbrev table for this CU.
455 Normally this points to the abbrev table in the objfile.
456 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
457 struct abbrev_table *abbrev_table;
72bf9492 458
b64f50a1
JK
459 /* Hash table holding all the loaded partial DIEs
460 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
461 htab_t partial_dies;
462
463 /* Storage for things with the same lifetime as this read-in compilation
464 unit, including partial DIEs. */
465 struct obstack comp_unit_obstack;
466
ae038cb0
DJ
467 /* When multiple dwarf2_cu structures are living in memory, this field
468 chains them all together, so that they can be released efficiently.
469 We will probably also want a generation counter so that most-recently-used
470 compilation units are cached... */
471 struct dwarf2_per_cu_data *read_in_chain;
472
69d751e3 473 /* Backlink to our per_cu entry. */
ae038cb0
DJ
474 struct dwarf2_per_cu_data *per_cu;
475
476 /* How many compilation units ago was this CU last referenced? */
477 int last_used;
478
b64f50a1
JK
479 /* A hash table of DIE cu_offset for following references with
480 die_info->offset.sect_off as hash. */
51545339 481 htab_t die_hash;
10b3939b
DJ
482
483 /* Full DIEs if read in. */
484 struct die_info *dies;
485
486 /* A set of pointers to dwarf2_per_cu_data objects for compilation
487 units referenced by this one. Only set during full symbol processing;
488 partial symbol tables do not have dependencies. */
489 htab_t dependencies;
490
cb1df416
DJ
491 /* Header data from the line table, during full symbol processing. */
492 struct line_header *line_header;
493
3da10d80
KS
494 /* A list of methods which need to have physnames computed
495 after all type information has been read. */
496 VEC (delayed_method_info) *method_list;
497
96408a79
SA
498 /* To be copied to symtab->call_site_htab. */
499 htab_t call_site_htab;
500
034e5797
DE
501 /* Non-NULL if this CU came from a DWO file.
502 There is an invariant here that is important to remember:
503 Except for attributes copied from the top level DIE in the "main"
504 (or "stub") file in preparation for reading the DWO file
505 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
506 Either there isn't a DWO file (in which case this is NULL and the point
507 is moot), or there is and either we're not going to read it (in which
508 case this is NULL) or there is and we are reading it (in which case this
509 is non-NULL). */
3019eac3
DE
510 struct dwo_unit *dwo_unit;
511
512 /* The DW_AT_addr_base attribute if present, zero otherwise
513 (zero is a valid value though).
1dbab08b 514 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
515 ULONGEST addr_base;
516
2e3cf129
DE
517 /* The DW_AT_ranges_base attribute if present, zero otherwise
518 (zero is a valid value though).
1dbab08b 519 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 520 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
521 be used without needing to know whether DWO files are in use or not.
522 N.B. This does not apply to DW_AT_ranges appearing in
523 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
524 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
525 DW_AT_ranges_base *would* have to be applied, and we'd have to care
526 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
527 ULONGEST ranges_base;
528
ae038cb0
DJ
529 /* Mark used when releasing cached dies. */
530 unsigned int mark : 1;
531
8be455d7
JK
532 /* This CU references .debug_loc. See the symtab->locations_valid field.
533 This test is imperfect as there may exist optimized debug code not using
534 any location list and still facing inlining issues if handled as
535 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 536 unsigned int has_loclist : 1;
ba919b58 537
1b80a9fa
JK
538 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
539 if all the producer_is_* fields are valid. This information is cached
540 because profiling CU expansion showed excessive time spent in
541 producer_is_gxx_lt_4_6. */
ba919b58
TT
542 unsigned int checked_producer : 1;
543 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 544 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 545 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
546
547 /* When set, the file that we're processing is known to have
548 debugging info for C++ namespaces. GCC 3.3.x did not produce
549 this information, but later versions do. */
550
551 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
552};
553
10b3939b
DJ
554/* Persistent data held for a compilation unit, even when not
555 processing it. We put a pointer to this structure in the
28dee7f5 556 read_symtab_private field of the psymtab. */
10b3939b 557
ae038cb0
DJ
558struct dwarf2_per_cu_data
559{
36586728 560 /* The start offset and length of this compilation unit.
45452591 561 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
562 initial_length_size.
563 If the DIE refers to a DWO file, this is always of the original die,
564 not the DWO file. */
b64f50a1 565 sect_offset offset;
36586728 566 unsigned int length;
ae038cb0
DJ
567
568 /* Flag indicating this compilation unit will be read in before
569 any of the current compilation units are processed. */
c764a876 570 unsigned int queued : 1;
ae038cb0 571
0d99eb77
DE
572 /* This flag will be set when reading partial DIEs if we need to load
573 absolutely all DIEs for this compilation unit, instead of just the ones
574 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
575 hash table and don't find it. */
576 unsigned int load_all_dies : 1;
577
0186c6a7
DE
578 /* Non-zero if this CU is from .debug_types.
579 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
580 this is non-zero. */
3019eac3
DE
581 unsigned int is_debug_types : 1;
582
36586728
TT
583 /* Non-zero if this CU is from the .dwz file. */
584 unsigned int is_dwz : 1;
585
a2ce51a0
DE
586 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
587 This flag is only valid if is_debug_types is true.
588 We can't read a CU directly from a DWO file: There are required
589 attributes in the stub. */
590 unsigned int reading_dwo_directly : 1;
591
7ee85ab1
DE
592 /* Non-zero if the TU has been read.
593 This is used to assist the "Stay in DWO Optimization" for Fission:
594 When reading a DWO, it's faster to read TUs from the DWO instead of
595 fetching them from random other DWOs (due to comdat folding).
596 If the TU has already been read, the optimization is unnecessary
597 (and unwise - we don't want to change where gdb thinks the TU lives
598 "midflight").
599 This flag is only valid if is_debug_types is true. */
600 unsigned int tu_read : 1;
601
3019eac3
DE
602 /* The section this CU/TU lives in.
603 If the DIE refers to a DWO file, this is always the original die,
604 not the DWO file. */
8a0459fd 605 struct dwarf2_section_info *section;
348e048f 606
17ea53c3
JK
607 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
608 of the CU cache it gets reset to NULL again. */
ae038cb0 609 struct dwarf2_cu *cu;
1c379e20 610
9cdd5dbd
DE
611 /* The corresponding objfile.
612 Normally we can get the objfile from dwarf2_per_objfile.
613 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
614 struct objfile *objfile;
615
616 /* When using partial symbol tables, the 'psymtab' field is active.
617 Otherwise the 'quick' field is active. */
618 union
619 {
620 /* The partial symbol table associated with this compilation unit,
95554aad 621 or NULL for unread partial units. */
9291a0cd
TT
622 struct partial_symtab *psymtab;
623
624 /* Data needed by the "quick" functions. */
625 struct dwarf2_per_cu_quick_data *quick;
626 } v;
95554aad 627
796a7ff8
DE
628 /* The CUs we import using DW_TAG_imported_unit. This is filled in
629 while reading psymtabs, used to compute the psymtab dependencies,
630 and then cleared. Then it is filled in again while reading full
631 symbols, and only deleted when the objfile is destroyed.
632
633 This is also used to work around a difference between the way gold
634 generates .gdb_index version <=7 and the way gdb does. Arguably this
635 is a gold bug. For symbols coming from TUs, gold records in the index
636 the CU that includes the TU instead of the TU itself. This breaks
637 dw2_lookup_symbol: It assumes that if the index says symbol X lives
638 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
639 will find X. Alas TUs live in their own symtab, so after expanding CU Y
640 we need to look in TU Z to find X. Fortunately, this is akin to
641 DW_TAG_imported_unit, so we just use the same mechanism: For
642 .gdb_index version <=7 this also records the TUs that the CU referred
643 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
644 indices so we only pay a price for gold generated indices.
645 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 646 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
647};
648
348e048f
DE
649/* Entry in the signatured_types hash table. */
650
651struct signatured_type
652{
42e7ad6c 653 /* The "per_cu" object of this type.
ac9ec31b 654 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
655 N.B.: This is the first member so that it's easy to convert pointers
656 between them. */
657 struct dwarf2_per_cu_data per_cu;
658
3019eac3 659 /* The type's signature. */
348e048f
DE
660 ULONGEST signature;
661
3019eac3 662 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
663 If this TU is a DWO stub and the definition lives in a DWO file
664 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
665 cu_offset type_offset_in_tu;
666
667 /* Offset in the section of the type's DIE.
668 If the definition lives in a DWO file, this is the offset in the
669 .debug_types.dwo section.
670 The value is zero until the actual value is known.
671 Zero is otherwise not a valid section offset. */
672 sect_offset type_offset_in_section;
0186c6a7
DE
673
674 /* Type units are grouped by their DW_AT_stmt_list entry so that they
675 can share them. This points to the containing symtab. */
676 struct type_unit_group *type_unit_group;
ac9ec31b
DE
677
678 /* The type.
679 The first time we encounter this type we fully read it in and install it
680 in the symbol tables. Subsequent times we only need the type. */
681 struct type *type;
a2ce51a0
DE
682
683 /* Containing DWO unit.
684 This field is valid iff per_cu.reading_dwo_directly. */
685 struct dwo_unit *dwo_unit;
348e048f
DE
686};
687
0186c6a7
DE
688typedef struct signatured_type *sig_type_ptr;
689DEF_VEC_P (sig_type_ptr);
690
094b34ac
DE
691/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
692 This includes type_unit_group and quick_file_names. */
693
694struct stmt_list_hash
695{
696 /* The DWO unit this table is from or NULL if there is none. */
697 struct dwo_unit *dwo_unit;
698
699 /* Offset in .debug_line or .debug_line.dwo. */
700 sect_offset line_offset;
701};
702
f4dc4d17
DE
703/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
704 an object of this type. */
705
706struct type_unit_group
707{
0186c6a7 708 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
709 To simplify things we create an artificial CU that "includes" all the
710 type units using this stmt_list so that the rest of the code still has
711 a "per_cu" handle on the symtab.
712 This PER_CU is recognized by having no section. */
8a0459fd 713#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
714 struct dwarf2_per_cu_data per_cu;
715
0186c6a7
DE
716 /* The TUs that share this DW_AT_stmt_list entry.
717 This is added to while parsing type units to build partial symtabs,
718 and is deleted afterwards and not used again. */
719 VEC (sig_type_ptr) *tus;
f4dc4d17
DE
720
721 /* The primary symtab.
094b34ac
DE
722 Type units in a group needn't all be defined in the same source file,
723 so we create an essentially anonymous symtab as the primary symtab. */
f4dc4d17
DE
724 struct symtab *primary_symtab;
725
094b34ac
DE
726 /* The data used to construct the hash key. */
727 struct stmt_list_hash hash;
f4dc4d17
DE
728
729 /* The number of symtabs from the line header.
730 The value here must match line_header.num_file_names. */
731 unsigned int num_symtabs;
732
733 /* The symbol tables for this TU (obtained from the files listed in
734 DW_AT_stmt_list).
735 WARNING: The order of entries here must match the order of entries
736 in the line header. After the first TU using this type_unit_group, the
737 line header for the subsequent TUs is recreated from this. This is done
738 because we need to use the same symtabs for each TU using the same
739 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
740 there's no guarantee the line header doesn't have duplicate entries. */
741 struct symtab **symtabs;
742};
743
73869dc2 744/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
745
746struct dwo_sections
747{
748 struct dwarf2_section_info abbrev;
3019eac3
DE
749 struct dwarf2_section_info line;
750 struct dwarf2_section_info loc;
09262596
DE
751 struct dwarf2_section_info macinfo;
752 struct dwarf2_section_info macro;
3019eac3
DE
753 struct dwarf2_section_info str;
754 struct dwarf2_section_info str_offsets;
80626a55
DE
755 /* In the case of a virtual DWO file, these two are unused. */
756 struct dwarf2_section_info info;
3019eac3
DE
757 VEC (dwarf2_section_info_def) *types;
758};
759
c88ee1f0 760/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
761
762struct dwo_unit
763{
764 /* Backlink to the containing struct dwo_file. */
765 struct dwo_file *dwo_file;
766
767 /* The "id" that distinguishes this CU/TU.
768 .debug_info calls this "dwo_id", .debug_types calls this "signature".
769 Since signatures came first, we stick with it for consistency. */
770 ULONGEST signature;
771
772 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 773 struct dwarf2_section_info *section;
3019eac3 774
19ac8c2e 775 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
776 sect_offset offset;
777 unsigned int length;
778
779 /* For types, offset in the type's DIE of the type defined by this TU. */
780 cu_offset type_offset_in_tu;
781};
782
73869dc2
DE
783/* include/dwarf2.h defines the DWP section codes.
784 It defines a max value but it doesn't define a min value, which we
785 use for error checking, so provide one. */
786
787enum dwp_v2_section_ids
788{
789 DW_SECT_MIN = 1
790};
791
80626a55 792/* Data for one DWO file.
57d63ce2
DE
793
794 This includes virtual DWO files (a virtual DWO file is a DWO file as it
795 appears in a DWP file). DWP files don't really have DWO files per se -
796 comdat folding of types "loses" the DWO file they came from, and from
797 a high level view DWP files appear to contain a mass of random types.
798 However, to maintain consistency with the non-DWP case we pretend DWP
799 files contain virtual DWO files, and we assign each TU with one virtual
800 DWO file (generally based on the line and abbrev section offsets -
801 a heuristic that seems to work in practice). */
3019eac3
DE
802
803struct dwo_file
804{
0ac5b59e 805 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
806 For virtual DWO files the name is constructed from the section offsets
807 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
808 from related CU+TUs. */
0ac5b59e
DE
809 const char *dwo_name;
810
811 /* The DW_AT_comp_dir attribute. */
812 const char *comp_dir;
3019eac3 813
80626a55
DE
814 /* The bfd, when the file is open. Otherwise this is NULL.
815 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
816 bfd *dbfd;
3019eac3 817
73869dc2
DE
818 /* The sections that make up this DWO file.
819 Remember that for virtual DWO files in DWP V2, these are virtual
820 sections (for lack of a better name). */
3019eac3
DE
821 struct dwo_sections sections;
822
19c3d4c9
DE
823 /* The CU in the file.
824 We only support one because having more than one requires hacking the
825 dwo_name of each to match, which is highly unlikely to happen.
826 Doing this means all TUs can share comp_dir: We also assume that
827 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
828 struct dwo_unit *cu;
3019eac3
DE
829
830 /* Table of TUs in the file.
831 Each element is a struct dwo_unit. */
832 htab_t tus;
833};
834
80626a55
DE
835/* These sections are what may appear in a DWP file. */
836
837struct dwp_sections
838{
73869dc2 839 /* These are used by both DWP version 1 and 2. */
80626a55
DE
840 struct dwarf2_section_info str;
841 struct dwarf2_section_info cu_index;
842 struct dwarf2_section_info tu_index;
73869dc2
DE
843
844 /* These are only used by DWP version 2 files.
845 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
846 sections are referenced by section number, and are not recorded here.
847 In DWP version 2 there is at most one copy of all these sections, each
848 section being (effectively) comprised of the concatenation of all of the
849 individual sections that exist in the version 1 format.
850 To keep the code simple we treat each of these concatenated pieces as a
851 section itself (a virtual section?). */
852 struct dwarf2_section_info abbrev;
853 struct dwarf2_section_info info;
854 struct dwarf2_section_info line;
855 struct dwarf2_section_info loc;
856 struct dwarf2_section_info macinfo;
857 struct dwarf2_section_info macro;
858 struct dwarf2_section_info str_offsets;
859 struct dwarf2_section_info types;
80626a55
DE
860};
861
73869dc2
DE
862/* These sections are what may appear in a virtual DWO file in DWP version 1.
863 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 864
73869dc2 865struct virtual_v1_dwo_sections
80626a55
DE
866{
867 struct dwarf2_section_info abbrev;
868 struct dwarf2_section_info line;
869 struct dwarf2_section_info loc;
870 struct dwarf2_section_info macinfo;
871 struct dwarf2_section_info macro;
872 struct dwarf2_section_info str_offsets;
873 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 874 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
875 struct dwarf2_section_info info_or_types;
876};
877
73869dc2
DE
878/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
879 In version 2, the sections of the DWO files are concatenated together
880 and stored in one section of that name. Thus each ELF section contains
881 several "virtual" sections. */
882
883struct virtual_v2_dwo_sections
884{
885 bfd_size_type abbrev_offset;
886 bfd_size_type abbrev_size;
887
888 bfd_size_type line_offset;
889 bfd_size_type line_size;
890
891 bfd_size_type loc_offset;
892 bfd_size_type loc_size;
893
894 bfd_size_type macinfo_offset;
895 bfd_size_type macinfo_size;
896
897 bfd_size_type macro_offset;
898 bfd_size_type macro_size;
899
900 bfd_size_type str_offsets_offset;
901 bfd_size_type str_offsets_size;
902
903 /* Each DWP hash table entry records one CU or one TU.
904 That is recorded here, and copied to dwo_unit.section. */
905 bfd_size_type info_or_types_offset;
906 bfd_size_type info_or_types_size;
907};
908
80626a55
DE
909/* Contents of DWP hash tables. */
910
911struct dwp_hash_table
912{
73869dc2 913 uint32_t version, nr_columns;
80626a55 914 uint32_t nr_units, nr_slots;
73869dc2
DE
915 const gdb_byte *hash_table, *unit_table;
916 union
917 {
918 struct
919 {
920 const gdb_byte *indices;
921 } v1;
922 struct
923 {
924 /* This is indexed by column number and gives the id of the section
925 in that column. */
926#define MAX_NR_V2_DWO_SECTIONS \
927 (1 /* .debug_info or .debug_types */ \
928 + 1 /* .debug_abbrev */ \
929 + 1 /* .debug_line */ \
930 + 1 /* .debug_loc */ \
931 + 1 /* .debug_str_offsets */ \
932 + 1 /* .debug_macro or .debug_macinfo */)
933 int section_ids[MAX_NR_V2_DWO_SECTIONS];
934 const gdb_byte *offsets;
935 const gdb_byte *sizes;
936 } v2;
937 } section_pool;
80626a55
DE
938};
939
940/* Data for one DWP file. */
941
942struct dwp_file
943{
944 /* Name of the file. */
945 const char *name;
946
73869dc2
DE
947 /* File format version. */
948 int version;
949
93417882 950 /* The bfd. */
80626a55
DE
951 bfd *dbfd;
952
953 /* Section info for this file. */
954 struct dwp_sections sections;
955
57d63ce2 956 /* Table of CUs in the file. */
80626a55
DE
957 const struct dwp_hash_table *cus;
958
959 /* Table of TUs in the file. */
960 const struct dwp_hash_table *tus;
961
19ac8c2e
DE
962 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
963 htab_t loaded_cus;
964 htab_t loaded_tus;
80626a55 965
73869dc2
DE
966 /* Table to map ELF section numbers to their sections.
967 This is only needed for the DWP V1 file format. */
80626a55
DE
968 unsigned int num_sections;
969 asection **elf_sections;
970};
971
36586728
TT
972/* This represents a '.dwz' file. */
973
974struct dwz_file
975{
976 /* A dwz file can only contain a few sections. */
977 struct dwarf2_section_info abbrev;
978 struct dwarf2_section_info info;
979 struct dwarf2_section_info str;
980 struct dwarf2_section_info line;
981 struct dwarf2_section_info macro;
2ec9a5e0 982 struct dwarf2_section_info gdb_index;
36586728
TT
983
984 /* The dwz's BFD. */
985 bfd *dwz_bfd;
986};
987
0963b4bd
MS
988/* Struct used to pass misc. parameters to read_die_and_children, et
989 al. which are used for both .debug_info and .debug_types dies.
990 All parameters here are unchanging for the life of the call. This
dee91e82 991 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
992
993struct die_reader_specs
994{
a32a8923 995 /* The bfd of die_section. */
93311388
DE
996 bfd* abfd;
997
998 /* The CU of the DIE we are parsing. */
999 struct dwarf2_cu *cu;
1000
80626a55 1001 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1002 struct dwo_file *dwo_file;
1003
dee91e82 1004 /* The section the die comes from.
3019eac3 1005 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1006 struct dwarf2_section_info *die_section;
1007
1008 /* die_section->buffer. */
d521ce57 1009 const gdb_byte *buffer;
f664829e
DE
1010
1011 /* The end of the buffer. */
1012 const gdb_byte *buffer_end;
a2ce51a0
DE
1013
1014 /* The value of the DW_AT_comp_dir attribute. */
1015 const char *comp_dir;
93311388
DE
1016};
1017
fd820528 1018/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1019typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1020 const gdb_byte *info_ptr,
dee91e82
DE
1021 struct die_info *comp_unit_die,
1022 int has_children,
1023 void *data);
1024
debd256d
JB
1025/* The line number information for a compilation unit (found in the
1026 .debug_line section) begins with a "statement program header",
1027 which contains the following information. */
1028struct line_header
1029{
1030 unsigned int total_length;
1031 unsigned short version;
1032 unsigned int header_length;
1033 unsigned char minimum_instruction_length;
2dc7f7b3 1034 unsigned char maximum_ops_per_instruction;
debd256d
JB
1035 unsigned char default_is_stmt;
1036 int line_base;
1037 unsigned char line_range;
1038 unsigned char opcode_base;
1039
1040 /* standard_opcode_lengths[i] is the number of operands for the
1041 standard opcode whose value is i. This means that
1042 standard_opcode_lengths[0] is unused, and the last meaningful
1043 element is standard_opcode_lengths[opcode_base - 1]. */
1044 unsigned char *standard_opcode_lengths;
1045
1046 /* The include_directories table. NOTE! These strings are not
1047 allocated with xmalloc; instead, they are pointers into
1048 debug_line_buffer. If you try to free them, `free' will get
1049 indigestion. */
1050 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1051 const char **include_dirs;
debd256d
JB
1052
1053 /* The file_names table. NOTE! These strings are not allocated
1054 with xmalloc; instead, they are pointers into debug_line_buffer.
1055 Don't try to free them directly. */
1056 unsigned int num_file_names, file_names_size;
1057 struct file_entry
c906108c 1058 {
d521ce57 1059 const char *name;
debd256d
JB
1060 unsigned int dir_index;
1061 unsigned int mod_time;
1062 unsigned int length;
aaa75496 1063 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 1064 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
1065 } *file_names;
1066
1067 /* The start and end of the statement program following this
6502dd73 1068 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1069 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1070};
c906108c
SS
1071
1072/* When we construct a partial symbol table entry we only
0963b4bd 1073 need this much information. */
c906108c
SS
1074struct partial_die_info
1075 {
72bf9492 1076 /* Offset of this DIE. */
b64f50a1 1077 sect_offset offset;
72bf9492
DJ
1078
1079 /* DWARF-2 tag for this DIE. */
1080 ENUM_BITFIELD(dwarf_tag) tag : 16;
1081
72bf9492
DJ
1082 /* Assorted flags describing the data found in this DIE. */
1083 unsigned int has_children : 1;
1084 unsigned int is_external : 1;
1085 unsigned int is_declaration : 1;
1086 unsigned int has_type : 1;
1087 unsigned int has_specification : 1;
1088 unsigned int has_pc_info : 1;
481860b3 1089 unsigned int may_be_inlined : 1;
72bf9492
DJ
1090
1091 /* Flag set if the SCOPE field of this structure has been
1092 computed. */
1093 unsigned int scope_set : 1;
1094
fa4028e9
JB
1095 /* Flag set if the DIE has a byte_size attribute. */
1096 unsigned int has_byte_size : 1;
1097
98bfdba5
PA
1098 /* Flag set if any of the DIE's children are template arguments. */
1099 unsigned int has_template_arguments : 1;
1100
abc72ce4
DE
1101 /* Flag set if fixup_partial_die has been called on this die. */
1102 unsigned int fixup_called : 1;
1103
36586728
TT
1104 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1105 unsigned int is_dwz : 1;
1106
1107 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1108 unsigned int spec_is_dwz : 1;
1109
72bf9492 1110 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1111 sometimes a default name for unnamed DIEs. */
15d034d0 1112 const char *name;
72bf9492 1113
abc72ce4
DE
1114 /* The linkage name, if present. */
1115 const char *linkage_name;
1116
72bf9492
DJ
1117 /* The scope to prepend to our children. This is generally
1118 allocated on the comp_unit_obstack, so will disappear
1119 when this compilation unit leaves the cache. */
15d034d0 1120 const char *scope;
72bf9492 1121
95554aad
TT
1122 /* Some data associated with the partial DIE. The tag determines
1123 which field is live. */
1124 union
1125 {
1126 /* The location description associated with this DIE, if any. */
1127 struct dwarf_block *locdesc;
1128 /* The offset of an import, for DW_TAG_imported_unit. */
1129 sect_offset offset;
1130 } d;
72bf9492
DJ
1131
1132 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1133 CORE_ADDR lowpc;
1134 CORE_ADDR highpc;
72bf9492 1135
93311388 1136 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1137 DW_AT_sibling, if any. */
abc72ce4
DE
1138 /* NOTE: This member isn't strictly necessary, read_partial_die could
1139 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1140 const gdb_byte *sibling;
72bf9492
DJ
1141
1142 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1143 DW_AT_specification (or DW_AT_abstract_origin or
1144 DW_AT_extension). */
b64f50a1 1145 sect_offset spec_offset;
72bf9492
DJ
1146
1147 /* Pointers to this DIE's parent, first child, and next sibling,
1148 if any. */
1149 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1150 };
1151
0963b4bd 1152/* This data structure holds the information of an abbrev. */
c906108c
SS
1153struct abbrev_info
1154 {
1155 unsigned int number; /* number identifying abbrev */
1156 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1157 unsigned short has_children; /* boolean */
1158 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1159 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1160 struct abbrev_info *next; /* next in chain */
1161 };
1162
1163struct attr_abbrev
1164 {
9d25dd43
DE
1165 ENUM_BITFIELD(dwarf_attribute) name : 16;
1166 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1167 };
1168
433df2d4
DE
1169/* Size of abbrev_table.abbrev_hash_table. */
1170#define ABBREV_HASH_SIZE 121
1171
1172/* Top level data structure to contain an abbreviation table. */
1173
1174struct abbrev_table
1175{
f4dc4d17
DE
1176 /* Where the abbrev table came from.
1177 This is used as a sanity check when the table is used. */
433df2d4
DE
1178 sect_offset offset;
1179
1180 /* Storage for the abbrev table. */
1181 struct obstack abbrev_obstack;
1182
1183 /* Hash table of abbrevs.
1184 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1185 It could be statically allocated, but the previous code didn't so we
1186 don't either. */
1187 struct abbrev_info **abbrevs;
1188};
1189
0963b4bd 1190/* Attributes have a name and a value. */
b60c80d6
DJ
1191struct attribute
1192 {
9d25dd43 1193 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1194 ENUM_BITFIELD(dwarf_form) form : 15;
1195
1196 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1197 field should be in u.str (existing only for DW_STRING) but it is kept
1198 here for better struct attribute alignment. */
1199 unsigned int string_is_canonical : 1;
1200
b60c80d6
DJ
1201 union
1202 {
15d034d0 1203 const char *str;
b60c80d6 1204 struct dwarf_block *blk;
43bbcdc2
PH
1205 ULONGEST unsnd;
1206 LONGEST snd;
b60c80d6 1207 CORE_ADDR addr;
ac9ec31b 1208 ULONGEST signature;
b60c80d6
DJ
1209 }
1210 u;
1211 };
1212
0963b4bd 1213/* This data structure holds a complete die structure. */
c906108c
SS
1214struct die_info
1215 {
76815b17
DE
1216 /* DWARF-2 tag for this DIE. */
1217 ENUM_BITFIELD(dwarf_tag) tag : 16;
1218
1219 /* Number of attributes */
98bfdba5
PA
1220 unsigned char num_attrs;
1221
1222 /* True if we're presently building the full type name for the
1223 type derived from this DIE. */
1224 unsigned char building_fullname : 1;
76815b17 1225
adde2bff
DE
1226 /* True if this die is in process. PR 16581. */
1227 unsigned char in_process : 1;
1228
76815b17
DE
1229 /* Abbrev number */
1230 unsigned int abbrev;
1231
93311388 1232 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1233 sect_offset offset;
78ba4af6
JB
1234
1235 /* The dies in a compilation unit form an n-ary tree. PARENT
1236 points to this die's parent; CHILD points to the first child of
1237 this node; and all the children of a given node are chained
4950bc1c 1238 together via their SIBLING fields. */
639d11d3
DC
1239 struct die_info *child; /* Its first child, if any. */
1240 struct die_info *sibling; /* Its next sibling, if any. */
1241 struct die_info *parent; /* Its parent, if any. */
c906108c 1242
b60c80d6
DJ
1243 /* An array of attributes, with NUM_ATTRS elements. There may be
1244 zero, but it's not common and zero-sized arrays are not
1245 sufficiently portable C. */
1246 struct attribute attrs[1];
c906108c
SS
1247 };
1248
0963b4bd 1249/* Get at parts of an attribute structure. */
c906108c
SS
1250
1251#define DW_STRING(attr) ((attr)->u.str)
8285870a 1252#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1253#define DW_UNSND(attr) ((attr)->u.unsnd)
1254#define DW_BLOCK(attr) ((attr)->u.blk)
1255#define DW_SND(attr) ((attr)->u.snd)
1256#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1257#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1258
0963b4bd 1259/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1260struct dwarf_block
1261 {
56eb65bd 1262 size_t size;
1d6edc3c
JK
1263
1264 /* Valid only if SIZE is not zero. */
d521ce57 1265 const gdb_byte *data;
c906108c
SS
1266 };
1267
c906108c
SS
1268#ifndef ATTR_ALLOC_CHUNK
1269#define ATTR_ALLOC_CHUNK 4
1270#endif
1271
c906108c
SS
1272/* Allocate fields for structs, unions and enums in this size. */
1273#ifndef DW_FIELD_ALLOC_CHUNK
1274#define DW_FIELD_ALLOC_CHUNK 4
1275#endif
1276
c906108c
SS
1277/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1278 but this would require a corresponding change in unpack_field_as_long
1279 and friends. */
1280static int bits_per_byte = 8;
1281
1282/* The routines that read and process dies for a C struct or C++ class
1283 pass lists of data member fields and lists of member function fields
1284 in an instance of a field_info structure, as defined below. */
1285struct field_info
c5aa993b 1286 {
0963b4bd 1287 /* List of data member and baseclasses fields. */
c5aa993b
JM
1288 struct nextfield
1289 {
1290 struct nextfield *next;
1291 int accessibility;
1292 int virtuality;
1293 struct field field;
1294 }
7d0ccb61 1295 *fields, *baseclasses;
c906108c 1296
7d0ccb61 1297 /* Number of fields (including baseclasses). */
c5aa993b 1298 int nfields;
c906108c 1299
c5aa993b
JM
1300 /* Number of baseclasses. */
1301 int nbaseclasses;
c906108c 1302
c5aa993b
JM
1303 /* Set if the accesibility of one of the fields is not public. */
1304 int non_public_fields;
c906108c 1305
c5aa993b
JM
1306 /* Member function fields array, entries are allocated in the order they
1307 are encountered in the object file. */
1308 struct nextfnfield
1309 {
1310 struct nextfnfield *next;
1311 struct fn_field fnfield;
1312 }
1313 *fnfields;
c906108c 1314
c5aa993b
JM
1315 /* Member function fieldlist array, contains name of possibly overloaded
1316 member function, number of overloaded member functions and a pointer
1317 to the head of the member function field chain. */
1318 struct fnfieldlist
1319 {
15d034d0 1320 const char *name;
c5aa993b
JM
1321 int length;
1322 struct nextfnfield *head;
1323 }
1324 *fnfieldlists;
c906108c 1325
c5aa993b
JM
1326 /* Number of entries in the fnfieldlists array. */
1327 int nfnfields;
98751a41
JK
1328
1329 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1330 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1331 struct typedef_field_list
1332 {
1333 struct typedef_field field;
1334 struct typedef_field_list *next;
1335 }
1336 *typedef_field_list;
1337 unsigned typedef_field_list_count;
c5aa993b 1338 };
c906108c 1339
10b3939b
DJ
1340/* One item on the queue of compilation units to read in full symbols
1341 for. */
1342struct dwarf2_queue_item
1343{
1344 struct dwarf2_per_cu_data *per_cu;
95554aad 1345 enum language pretend_language;
10b3939b
DJ
1346 struct dwarf2_queue_item *next;
1347};
1348
1349/* The current queue. */
1350static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1351
ae038cb0
DJ
1352/* Loaded secondary compilation units are kept in memory until they
1353 have not been referenced for the processing of this many
1354 compilation units. Set this to zero to disable caching. Cache
1355 sizes of up to at least twenty will improve startup time for
1356 typical inter-CU-reference binaries, at an obvious memory cost. */
1357static int dwarf2_max_cache_age = 5;
920d2a44
AC
1358static void
1359show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1360 struct cmd_list_element *c, const char *value)
1361{
3e43a32a
MS
1362 fprintf_filtered (file, _("The upper bound on the age of cached "
1363 "dwarf2 compilation units is %s.\n"),
920d2a44
AC
1364 value);
1365}
4390d890 1366\f
c906108c
SS
1367/* local function prototypes */
1368
a32a8923
DE
1369static const char *get_section_name (const struct dwarf2_section_info *);
1370
1371static const char *get_section_file_name (const struct dwarf2_section_info *);
1372
4efb68b1 1373static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1374
918dd910
JK
1375static void dwarf2_find_base_address (struct die_info *die,
1376 struct dwarf2_cu *cu);
1377
0018ea6f
DE
1378static struct partial_symtab *create_partial_symtab
1379 (struct dwarf2_per_cu_data *per_cu, const char *name);
1380
c67a9c90 1381static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1382
72bf9492
DJ
1383static void scan_partial_symbols (struct partial_die_info *,
1384 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1385 int, struct dwarf2_cu *);
c906108c 1386
72bf9492
DJ
1387static void add_partial_symbol (struct partial_die_info *,
1388 struct dwarf2_cu *);
63d06c5c 1389
72bf9492
DJ
1390static void add_partial_namespace (struct partial_die_info *pdi,
1391 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1392 int need_pc, struct dwarf2_cu *cu);
63d06c5c 1393
5d7cb8df
JK
1394static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1395 CORE_ADDR *highpc, int need_pc,
1396 struct dwarf2_cu *cu);
1397
72bf9492
DJ
1398static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1399 struct dwarf2_cu *cu);
91c24f0a 1400
bc30ff58
JB
1401static void add_partial_subprogram (struct partial_die_info *pdi,
1402 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1403 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1404
257e7a09
YQ
1405static void dwarf2_read_symtab (struct partial_symtab *,
1406 struct objfile *);
c906108c 1407
a14ed312 1408static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1409
433df2d4
DE
1410static struct abbrev_info *abbrev_table_lookup_abbrev
1411 (const struct abbrev_table *, unsigned int);
1412
1413static struct abbrev_table *abbrev_table_read_table
1414 (struct dwarf2_section_info *, sect_offset);
1415
1416static void abbrev_table_free (struct abbrev_table *);
1417
f4dc4d17
DE
1418static void abbrev_table_free_cleanup (void *);
1419
dee91e82
DE
1420static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1421 struct dwarf2_section_info *);
c906108c 1422
f3dd6933 1423static void dwarf2_free_abbrev_table (void *);
c906108c 1424
d521ce57 1425static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1426
dee91e82 1427static struct partial_die_info *load_partial_dies
d521ce57 1428 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1429
d521ce57
TT
1430static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1431 struct partial_die_info *,
1432 struct abbrev_info *,
1433 unsigned int,
1434 const gdb_byte *);
c906108c 1435
36586728 1436static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1437 struct dwarf2_cu *);
72bf9492
DJ
1438
1439static void fixup_partial_die (struct partial_die_info *,
1440 struct dwarf2_cu *);
1441
d521ce57
TT
1442static const gdb_byte *read_attribute (const struct die_reader_specs *,
1443 struct attribute *, struct attr_abbrev *,
1444 const gdb_byte *);
a8329558 1445
a1855c1d 1446static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1447
a1855c1d 1448static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1449
a1855c1d 1450static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1451
a1855c1d 1452static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1453
a1855c1d 1454static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1455
d521ce57 1456static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1457 unsigned int *);
c906108c 1458
d521ce57 1459static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1460
1461static LONGEST read_checked_initial_length_and_offset
d521ce57 1462 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1463 unsigned int *, unsigned int *);
613e1657 1464
d521ce57
TT
1465static LONGEST read_offset (bfd *, const gdb_byte *,
1466 const struct comp_unit_head *,
c764a876
DE
1467 unsigned int *);
1468
d521ce57 1469static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1470
f4dc4d17
DE
1471static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1472 sect_offset);
1473
d521ce57 1474static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1475
d521ce57 1476static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1477
d521ce57
TT
1478static const char *read_indirect_string (bfd *, const gdb_byte *,
1479 const struct comp_unit_head *,
1480 unsigned int *);
4bdf3d34 1481
d521ce57 1482static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1483
d521ce57 1484static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1485
d521ce57 1486static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1487
d521ce57
TT
1488static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1489 const gdb_byte *,
3019eac3
DE
1490 unsigned int *);
1491
d521ce57 1492static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1493 ULONGEST str_index);
3019eac3 1494
e142c38c 1495static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1496
e142c38c
DJ
1497static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1498 struct dwarf2_cu *);
c906108c 1499
348e048f 1500static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1501 unsigned int);
348e048f 1502
05cf31d1
JB
1503static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1504 struct dwarf2_cu *cu);
1505
e142c38c 1506static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1507
e142c38c 1508static struct die_info *die_specification (struct die_info *die,
f2f0e013 1509 struct dwarf2_cu **);
63d06c5c 1510
debd256d
JB
1511static void free_line_header (struct line_header *lh);
1512
3019eac3
DE
1513static struct line_header *dwarf_decode_line_header (unsigned int offset,
1514 struct dwarf2_cu *cu);
debd256d 1515
f3f5162e
DE
1516static void dwarf_decode_lines (struct line_header *, const char *,
1517 struct dwarf2_cu *, struct partial_symtab *,
1518 int);
c906108c 1519
d521ce57 1520static void dwarf2_start_subfile (const char *, const char *, const char *);
c906108c 1521
f4dc4d17 1522static void dwarf2_start_symtab (struct dwarf2_cu *,
15d034d0 1523 const char *, const char *, CORE_ADDR);
f4dc4d17 1524
a14ed312 1525static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1526 struct dwarf2_cu *);
c906108c 1527
34eaf542
TT
1528static struct symbol *new_symbol_full (struct die_info *, struct type *,
1529 struct dwarf2_cu *, struct symbol *);
1530
ff39bb5e 1531static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1532 struct dwarf2_cu *);
c906108c 1533
ff39bb5e 1534static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1535 struct type *type,
1536 const char *name,
1537 struct obstack *obstack,
12df843f 1538 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1539 const gdb_byte **bytes,
98bfdba5 1540 struct dwarf2_locexpr_baton **baton);
2df3850c 1541
e7c27a73 1542static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1543
b4ba55a1
JB
1544static int need_gnat_info (struct dwarf2_cu *);
1545
3e43a32a
MS
1546static struct type *die_descriptive_type (struct die_info *,
1547 struct dwarf2_cu *);
b4ba55a1
JB
1548
1549static void set_descriptive_type (struct type *, struct die_info *,
1550 struct dwarf2_cu *);
1551
e7c27a73
DJ
1552static struct type *die_containing_type (struct die_info *,
1553 struct dwarf2_cu *);
c906108c 1554
ff39bb5e 1555static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1556 struct dwarf2_cu *);
c906108c 1557
f792889a 1558static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1559
673bfd45
DE
1560static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1561
0d5cff50 1562static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1563
6e70227d 1564static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1565 const char *suffix, int physname,
1566 struct dwarf2_cu *cu);
63d06c5c 1567
e7c27a73 1568static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1569
348e048f
DE
1570static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1571
e7c27a73 1572static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1573
e7c27a73 1574static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1575
96408a79
SA
1576static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1577
ff013f42
JK
1578static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1579 struct dwarf2_cu *, struct partial_symtab *);
1580
a14ed312 1581static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1582 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1583 struct partial_symtab *);
c906108c 1584
fae299cd
DC
1585static void get_scope_pc_bounds (struct die_info *,
1586 CORE_ADDR *, CORE_ADDR *,
1587 struct dwarf2_cu *);
1588
801e3a5b
JB
1589static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1590 CORE_ADDR, struct dwarf2_cu *);
1591
a14ed312 1592static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1593 struct dwarf2_cu *);
c906108c 1594
a14ed312 1595static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1596 struct type *, struct dwarf2_cu *);
c906108c 1597
a14ed312 1598static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1599 struct die_info *, struct type *,
e7c27a73 1600 struct dwarf2_cu *);
c906108c 1601
a14ed312 1602static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1603 struct type *,
1604 struct dwarf2_cu *);
c906108c 1605
134d01f1 1606static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1607
e7c27a73 1608static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1609
e7c27a73 1610static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1611
5d7cb8df
JK
1612static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1613
27aa8d6a
SW
1614static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1615
74921315
KS
1616static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1617
f55ee35c
JK
1618static struct type *read_module_type (struct die_info *die,
1619 struct dwarf2_cu *cu);
1620
38d518c9 1621static const char *namespace_name (struct die_info *die,
e142c38c 1622 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1623
134d01f1 1624static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1625
e7c27a73 1626static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1627
6e70227d 1628static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1629 struct dwarf2_cu *);
1630
bf6af496 1631static struct die_info *read_die_and_siblings_1
d521ce57 1632 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1633 struct die_info *);
639d11d3 1634
dee91e82 1635static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1636 const gdb_byte *info_ptr,
1637 const gdb_byte **new_info_ptr,
639d11d3
DC
1638 struct die_info *parent);
1639
d521ce57
TT
1640static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1641 struct die_info **, const gdb_byte *,
1642 int *, int);
3019eac3 1643
d521ce57
TT
1644static const gdb_byte *read_full_die (const struct die_reader_specs *,
1645 struct die_info **, const gdb_byte *,
1646 int *);
93311388 1647
e7c27a73 1648static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1649
15d034d0
TT
1650static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1651 struct obstack *);
71c25dea 1652
15d034d0 1653static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1654
15d034d0 1655static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1656 struct die_info *die,
1657 struct dwarf2_cu *cu);
1658
ca69b9e6
DE
1659static const char *dwarf2_physname (const char *name, struct die_info *die,
1660 struct dwarf2_cu *cu);
1661
e142c38c 1662static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1663 struct dwarf2_cu **);
9219021c 1664
f39c6ffd 1665static const char *dwarf_tag_name (unsigned int);
c906108c 1666
f39c6ffd 1667static const char *dwarf_attr_name (unsigned int);
c906108c 1668
f39c6ffd 1669static const char *dwarf_form_name (unsigned int);
c906108c 1670
a14ed312 1671static char *dwarf_bool_name (unsigned int);
c906108c 1672
f39c6ffd 1673static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1674
f9aca02d 1675static struct die_info *sibling_die (struct die_info *);
c906108c 1676
d97bc12b
DE
1677static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1678
1679static void dump_die_for_error (struct die_info *);
1680
1681static void dump_die_1 (struct ui_file *, int level, int max_level,
1682 struct die_info *);
c906108c 1683
d97bc12b 1684/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1685
51545339 1686static void store_in_ref_table (struct die_info *,
10b3939b 1687 struct dwarf2_cu *);
c906108c 1688
ff39bb5e 1689static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1690
ff39bb5e 1691static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1692
348e048f 1693static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1694 const struct attribute *,
348e048f
DE
1695 struct dwarf2_cu **);
1696
10b3939b 1697static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1698 const struct attribute *,
f2f0e013 1699 struct dwarf2_cu **);
c906108c 1700
348e048f 1701static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1702 const struct attribute *,
348e048f
DE
1703 struct dwarf2_cu **);
1704
ac9ec31b
DE
1705static struct type *get_signatured_type (struct die_info *, ULONGEST,
1706 struct dwarf2_cu *);
1707
1708static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1709 const struct attribute *,
ac9ec31b
DE
1710 struct dwarf2_cu *);
1711
e5fe5e75 1712static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1713
52dc124a 1714static void read_signatured_type (struct signatured_type *);
348e048f 1715
c906108c
SS
1716/* memory allocation interface */
1717
7b5a2f43 1718static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1719
b60c80d6 1720static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1721
09262596 1722static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
15d034d0 1723 const char *, int);
2e276125 1724
6e5a29e1 1725static int attr_form_is_block (const struct attribute *);
8e19ed76 1726
6e5a29e1 1727static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1728
6e5a29e1 1729static int attr_form_is_constant (const struct attribute *);
3690dd37 1730
6e5a29e1 1731static int attr_form_is_ref (const struct attribute *);
7771576e 1732
8cf6f0b1
TT
1733static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1734 struct dwarf2_loclist_baton *baton,
ff39bb5e 1735 const struct attribute *attr);
8cf6f0b1 1736
ff39bb5e 1737static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1738 struct symbol *sym,
f1e6e072
TT
1739 struct dwarf2_cu *cu,
1740 int is_block);
4c2df51b 1741
d521ce57
TT
1742static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1743 const gdb_byte *info_ptr,
1744 struct abbrev_info *abbrev);
4bb7a0a7 1745
72bf9492
DJ
1746static void free_stack_comp_unit (void *);
1747
72bf9492
DJ
1748static hashval_t partial_die_hash (const void *item);
1749
1750static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1751
ae038cb0 1752static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1753 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1754
9816fde3 1755static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1756 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1757
1758static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1759 struct die_info *comp_unit_die,
1760 enum language pretend_language);
93311388 1761
68dc6402 1762static void free_heap_comp_unit (void *);
ae038cb0
DJ
1763
1764static void free_cached_comp_units (void *);
1765
1766static void age_cached_comp_units (void);
1767
dee91e82 1768static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1769
f792889a
DJ
1770static struct type *set_die_type (struct die_info *, struct type *,
1771 struct dwarf2_cu *);
1c379e20 1772
ae038cb0
DJ
1773static void create_all_comp_units (struct objfile *);
1774
0e50663e 1775static int create_all_type_units (struct objfile *);
1fd400ff 1776
95554aad
TT
1777static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1778 enum language);
10b3939b 1779
95554aad
TT
1780static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1781 enum language);
10b3939b 1782
f4dc4d17
DE
1783static void process_full_type_unit (struct dwarf2_per_cu_data *,
1784 enum language);
1785
10b3939b
DJ
1786static void dwarf2_add_dependence (struct dwarf2_cu *,
1787 struct dwarf2_per_cu_data *);
1788
ae038cb0
DJ
1789static void dwarf2_mark (struct dwarf2_cu *);
1790
1791static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1792
b64f50a1 1793static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1794 struct dwarf2_per_cu_data *);
673bfd45 1795
f792889a 1796static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1797
9291a0cd
TT
1798static void dwarf2_release_queue (void *dummy);
1799
95554aad
TT
1800static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1801 enum language pretend_language);
1802
a0f42c21 1803static void process_queue (void);
9291a0cd
TT
1804
1805static void find_file_and_directory (struct die_info *die,
1806 struct dwarf2_cu *cu,
15d034d0 1807 const char **name, const char **comp_dir);
9291a0cd
TT
1808
1809static char *file_full_name (int file, struct line_header *lh,
1810 const char *comp_dir);
1811
d521ce57 1812static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1813 (struct comp_unit_head *header,
1814 struct dwarf2_section_info *section,
d521ce57 1815 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1816 int is_debug_types_section);
1817
fd820528 1818static void init_cutu_and_read_dies
f4dc4d17
DE
1819 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1820 int use_existing_cu, int keep,
3019eac3
DE
1821 die_reader_func_ftype *die_reader_func, void *data);
1822
dee91e82
DE
1823static void init_cutu_and_read_dies_simple
1824 (struct dwarf2_per_cu_data *this_cu,
1825 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1826
673bfd45 1827static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1828
3019eac3
DE
1829static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1830
57d63ce2
DE
1831static struct dwo_unit *lookup_dwo_unit_in_dwp
1832 (struct dwp_file *dwp_file, const char *comp_dir,
1833 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1834
1835static struct dwp_file *get_dwp_file (void);
1836
3019eac3 1837static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1838 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1839
1840static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1841 (struct signatured_type *, const char *, const char *);
3019eac3 1842
89e63ee4
DE
1843static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1844
3019eac3
DE
1845static void free_dwo_file_cleanup (void *);
1846
95554aad
TT
1847static void process_cu_includes (void);
1848
1b80a9fa 1849static void check_producer (struct dwarf2_cu *cu);
4390d890
DE
1850\f
1851/* Various complaints about symbol reading that don't abort the process. */
1852
1853static void
1854dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1855{
1856 complaint (&symfile_complaints,
1857 _("statement list doesn't fit in .debug_line section"));
1858}
1859
1860static void
1861dwarf2_debug_line_missing_file_complaint (void)
1862{
1863 complaint (&symfile_complaints,
1864 _(".debug_line section has line data without a file"));
1865}
1866
1867static void
1868dwarf2_debug_line_missing_end_sequence_complaint (void)
1869{
1870 complaint (&symfile_complaints,
1871 _(".debug_line section has line "
1872 "program sequence without an end"));
1873}
1874
1875static void
1876dwarf2_complex_location_expr_complaint (void)
1877{
1878 complaint (&symfile_complaints, _("location expression too complex"));
1879}
1880
1881static void
1882dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1883 int arg3)
1884{
1885 complaint (&symfile_complaints,
1886 _("const value length mismatch for '%s', got %d, expected %d"),
1887 arg1, arg2, arg3);
1888}
1889
1890static void
1891dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1892{
1893 complaint (&symfile_complaints,
1894 _("debug info runs off end of %s section"
1895 " [in module %s]"),
a32a8923
DE
1896 get_section_name (section),
1897 get_section_file_name (section));
4390d890 1898}
1b80a9fa 1899
4390d890
DE
1900static void
1901dwarf2_macro_malformed_definition_complaint (const char *arg1)
1902{
1903 complaint (&symfile_complaints,
1904 _("macro debug info contains a "
1905 "malformed macro definition:\n`%s'"),
1906 arg1);
1907}
1908
1909static void
1910dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1911{
1912 complaint (&symfile_complaints,
1913 _("invalid attribute class or form for '%s' in '%s'"),
1914 arg1, arg2);
1915}
1916\f
9291a0cd
TT
1917#if WORDS_BIGENDIAN
1918
1919/* Convert VALUE between big- and little-endian. */
1920static offset_type
1921byte_swap (offset_type value)
1922{
1923 offset_type result;
1924
1925 result = (value & 0xff) << 24;
1926 result |= (value & 0xff00) << 8;
1927 result |= (value & 0xff0000) >> 8;
1928 result |= (value & 0xff000000) >> 24;
1929 return result;
1930}
1931
1932#define MAYBE_SWAP(V) byte_swap (V)
1933
1934#else
1935#define MAYBE_SWAP(V) (V)
1936#endif /* WORDS_BIGENDIAN */
1937
31aa7e4e
JB
1938/* Read the given attribute value as an address, taking the attribute's
1939 form into account. */
1940
1941static CORE_ADDR
1942attr_value_as_address (struct attribute *attr)
1943{
1944 CORE_ADDR addr;
1945
1946 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1947 {
1948 /* Aside from a few clearly defined exceptions, attributes that
1949 contain an address must always be in DW_FORM_addr form.
1950 Unfortunately, some compilers happen to be violating this
1951 requirement by encoding addresses using other forms, such
1952 as DW_FORM_data4 for example. For those broken compilers,
1953 we try to do our best, without any guarantee of success,
1954 to interpret the address correctly. It would also be nice
1955 to generate a complaint, but that would require us to maintain
1956 a list of legitimate cases where a non-address form is allowed,
1957 as well as update callers to pass in at least the CU's DWARF
1958 version. This is more overhead than what we're willing to
1959 expand for a pretty rare case. */
1960 addr = DW_UNSND (attr);
1961 }
1962 else
1963 addr = DW_ADDR (attr);
1964
1965 return addr;
1966}
1967
9291a0cd
TT
1968/* The suffix for an index file. */
1969#define INDEX_SUFFIX ".gdb-index"
1970
c906108c 1971/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
1972 information and return true if we have enough to do something.
1973 NAMES points to the dwarf2 section names, or is NULL if the standard
1974 ELF names are used. */
c906108c
SS
1975
1976int
251d32d9
TG
1977dwarf2_has_info (struct objfile *objfile,
1978 const struct dwarf2_debug_sections *names)
c906108c 1979{
be391dca
TT
1980 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1981 if (!dwarf2_per_objfile)
1982 {
1983 /* Initialize per-objfile state. */
1984 struct dwarf2_per_objfile *data
1985 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1986
be391dca
TT
1987 memset (data, 0, sizeof (*data));
1988 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1989 dwarf2_per_objfile = data;
6502dd73 1990
251d32d9
TG
1991 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1992 (void *) names);
be391dca
TT
1993 dwarf2_per_objfile->objfile = objfile;
1994 }
73869dc2
DE
1995 return (!dwarf2_per_objfile->info.is_virtual
1996 && dwarf2_per_objfile->info.s.asection != NULL
1997 && !dwarf2_per_objfile->abbrev.is_virtual
1998 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1999}
2000
2001/* Return the containing section of virtual section SECTION. */
2002
2003static struct dwarf2_section_info *
2004get_containing_section (const struct dwarf2_section_info *section)
2005{
2006 gdb_assert (section->is_virtual);
2007 return section->s.containing_section;
c906108c
SS
2008}
2009
a32a8923
DE
2010/* Return the bfd owner of SECTION. */
2011
2012static struct bfd *
2013get_section_bfd_owner (const struct dwarf2_section_info *section)
2014{
73869dc2
DE
2015 if (section->is_virtual)
2016 {
2017 section = get_containing_section (section);
2018 gdb_assert (!section->is_virtual);
2019 }
2020 return section->s.asection->owner;
a32a8923
DE
2021}
2022
2023/* Return the bfd section of SECTION.
2024 Returns NULL if the section is not present. */
2025
2026static asection *
2027get_section_bfd_section (const struct dwarf2_section_info *section)
2028{
73869dc2
DE
2029 if (section->is_virtual)
2030 {
2031 section = get_containing_section (section);
2032 gdb_assert (!section->is_virtual);
2033 }
2034 return section->s.asection;
a32a8923
DE
2035}
2036
2037/* Return the name of SECTION. */
2038
2039static const char *
2040get_section_name (const struct dwarf2_section_info *section)
2041{
2042 asection *sectp = get_section_bfd_section (section);
2043
2044 gdb_assert (sectp != NULL);
2045 return bfd_section_name (get_section_bfd_owner (section), sectp);
2046}
2047
2048/* Return the name of the file SECTION is in. */
2049
2050static const char *
2051get_section_file_name (const struct dwarf2_section_info *section)
2052{
2053 bfd *abfd = get_section_bfd_owner (section);
2054
2055 return bfd_get_filename (abfd);
2056}
2057
2058/* Return the id of SECTION.
2059 Returns 0 if SECTION doesn't exist. */
2060
2061static int
2062get_section_id (const struct dwarf2_section_info *section)
2063{
2064 asection *sectp = get_section_bfd_section (section);
2065
2066 if (sectp == NULL)
2067 return 0;
2068 return sectp->id;
2069}
2070
2071/* Return the flags of SECTION.
73869dc2 2072 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2073
2074static int
2075get_section_flags (const struct dwarf2_section_info *section)
2076{
2077 asection *sectp = get_section_bfd_section (section);
2078
2079 gdb_assert (sectp != NULL);
2080 return bfd_get_section_flags (sectp->owner, sectp);
2081}
2082
251d32d9
TG
2083/* When loading sections, we look either for uncompressed section or for
2084 compressed section names. */
233a11ab
CS
2085
2086static int
251d32d9
TG
2087section_is_p (const char *section_name,
2088 const struct dwarf2_section_names *names)
233a11ab 2089{
251d32d9
TG
2090 if (names->normal != NULL
2091 && strcmp (section_name, names->normal) == 0)
2092 return 1;
2093 if (names->compressed != NULL
2094 && strcmp (section_name, names->compressed) == 0)
2095 return 1;
2096 return 0;
233a11ab
CS
2097}
2098
c906108c
SS
2099/* This function is mapped across the sections and remembers the
2100 offset and size of each of the debugging sections we are interested
2101 in. */
2102
2103static void
251d32d9 2104dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2105{
251d32d9 2106 const struct dwarf2_debug_sections *names;
dc7650b8 2107 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2108
2109 if (vnames == NULL)
2110 names = &dwarf2_elf_names;
2111 else
2112 names = (const struct dwarf2_debug_sections *) vnames;
2113
dc7650b8
JK
2114 if ((aflag & SEC_HAS_CONTENTS) == 0)
2115 {
2116 }
2117 else if (section_is_p (sectp->name, &names->info))
c906108c 2118 {
73869dc2 2119 dwarf2_per_objfile->info.s.asection = sectp;
dce234bc 2120 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2121 }
251d32d9 2122 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2123 {
73869dc2 2124 dwarf2_per_objfile->abbrev.s.asection = sectp;
dce234bc 2125 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2126 }
251d32d9 2127 else if (section_is_p (sectp->name, &names->line))
c906108c 2128 {
73869dc2 2129 dwarf2_per_objfile->line.s.asection = sectp;
dce234bc 2130 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2131 }
251d32d9 2132 else if (section_is_p (sectp->name, &names->loc))
c906108c 2133 {
73869dc2 2134 dwarf2_per_objfile->loc.s.asection = sectp;
dce234bc 2135 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2136 }
251d32d9 2137 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2138 {
73869dc2 2139 dwarf2_per_objfile->macinfo.s.asection = sectp;
dce234bc 2140 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2141 }
cf2c3c16
TT
2142 else if (section_is_p (sectp->name, &names->macro))
2143 {
73869dc2 2144 dwarf2_per_objfile->macro.s.asection = sectp;
cf2c3c16
TT
2145 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2146 }
251d32d9 2147 else if (section_is_p (sectp->name, &names->str))
c906108c 2148 {
73869dc2 2149 dwarf2_per_objfile->str.s.asection = sectp;
dce234bc 2150 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2151 }
3019eac3
DE
2152 else if (section_is_p (sectp->name, &names->addr))
2153 {
73869dc2 2154 dwarf2_per_objfile->addr.s.asection = sectp;
3019eac3
DE
2155 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2156 }
251d32d9 2157 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2158 {
73869dc2 2159 dwarf2_per_objfile->frame.s.asection = sectp;
dce234bc 2160 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2161 }
251d32d9 2162 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2163 {
73869dc2 2164 dwarf2_per_objfile->eh_frame.s.asection = sectp;
dc7650b8 2165 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2166 }
251d32d9 2167 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2168 {
73869dc2 2169 dwarf2_per_objfile->ranges.s.asection = sectp;
dce234bc 2170 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2171 }
251d32d9 2172 else if (section_is_p (sectp->name, &names->types))
348e048f 2173 {
8b70b953
TT
2174 struct dwarf2_section_info type_section;
2175
2176 memset (&type_section, 0, sizeof (type_section));
73869dc2 2177 type_section.s.asection = sectp;
8b70b953
TT
2178 type_section.size = bfd_get_section_size (sectp);
2179
2180 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2181 &type_section);
348e048f 2182 }
251d32d9 2183 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2184 {
73869dc2 2185 dwarf2_per_objfile->gdb_index.s.asection = sectp;
9291a0cd
TT
2186 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2187 }
dce234bc 2188
72dca2f5
FR
2189 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2190 && bfd_section_vma (abfd, sectp) == 0)
2191 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2192}
2193
fceca515
DE
2194/* A helper function that decides whether a section is empty,
2195 or not present. */
9e0ac564
TT
2196
2197static int
19ac8c2e 2198dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2199{
73869dc2
DE
2200 if (section->is_virtual)
2201 return section->size == 0;
2202 return section->s.asection == NULL || section->size == 0;
9e0ac564
TT
2203}
2204
3019eac3
DE
2205/* Read the contents of the section INFO.
2206 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2207 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2208 of the DWO file.
dce234bc 2209 If the section is compressed, uncompress it before returning. */
c906108c 2210
dce234bc
PP
2211static void
2212dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2213{
a32a8923 2214 asection *sectp;
3019eac3 2215 bfd *abfd;
dce234bc 2216 gdb_byte *buf, *retbuf;
c906108c 2217
be391dca
TT
2218 if (info->readin)
2219 return;
dce234bc 2220 info->buffer = NULL;
be391dca 2221 info->readin = 1;
188dd5d6 2222
9e0ac564 2223 if (dwarf2_section_empty_p (info))
dce234bc 2224 return;
c906108c 2225
a32a8923 2226 sectp = get_section_bfd_section (info);
3019eac3 2227
73869dc2
DE
2228 /* If this is a virtual section we need to read in the real one first. */
2229 if (info->is_virtual)
2230 {
2231 struct dwarf2_section_info *containing_section =
2232 get_containing_section (info);
2233
2234 gdb_assert (sectp != NULL);
2235 if ((sectp->flags & SEC_RELOC) != 0)
2236 {
2237 error (_("Dwarf Error: DWP format V2 with relocations is not"
2238 " supported in section %s [in module %s]"),
2239 get_section_name (info), get_section_file_name (info));
2240 }
2241 dwarf2_read_section (objfile, containing_section);
2242 /* Other code should have already caught virtual sections that don't
2243 fit. */
2244 gdb_assert (info->virtual_offset + info->size
2245 <= containing_section->size);
2246 /* If the real section is empty or there was a problem reading the
2247 section we shouldn't get here. */
2248 gdb_assert (containing_section->buffer != NULL);
2249 info->buffer = containing_section->buffer + info->virtual_offset;
2250 return;
2251 }
2252
4bf44c1c
TT
2253 /* If the section has relocations, we must read it ourselves.
2254 Otherwise we attach it to the BFD. */
2255 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2256 {
d521ce57 2257 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2258 return;
dce234bc 2259 }
dce234bc 2260
4bf44c1c
TT
2261 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2262 info->buffer = buf;
dce234bc
PP
2263
2264 /* When debugging .o files, we may need to apply relocations; see
2265 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2266 We never compress sections in .o files, so we only need to
2267 try this when the section is not compressed. */
ac8035ab 2268 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2269 if (retbuf != NULL)
2270 {
2271 info->buffer = retbuf;
2272 return;
2273 }
2274
a32a8923
DE
2275 abfd = get_section_bfd_owner (info);
2276 gdb_assert (abfd != NULL);
2277
dce234bc
PP
2278 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2279 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2280 {
2281 error (_("Dwarf Error: Can't read DWARF data"
2282 " in section %s [in module %s]"),
2283 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2284 }
dce234bc
PP
2285}
2286
9e0ac564
TT
2287/* A helper function that returns the size of a section in a safe way.
2288 If you are positive that the section has been read before using the
2289 size, then it is safe to refer to the dwarf2_section_info object's
2290 "size" field directly. In other cases, you must call this
2291 function, because for compressed sections the size field is not set
2292 correctly until the section has been read. */
2293
2294static bfd_size_type
2295dwarf2_section_size (struct objfile *objfile,
2296 struct dwarf2_section_info *info)
2297{
2298 if (!info->readin)
2299 dwarf2_read_section (objfile, info);
2300 return info->size;
2301}
2302
dce234bc 2303/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2304 SECTION_NAME. */
af34e669 2305
dce234bc 2306void
3017a003
TG
2307dwarf2_get_section_info (struct objfile *objfile,
2308 enum dwarf2_section_enum sect,
d521ce57 2309 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2310 bfd_size_type *sizep)
2311{
2312 struct dwarf2_per_objfile *data
2313 = objfile_data (objfile, dwarf2_objfile_data_key);
2314 struct dwarf2_section_info *info;
a3b2a86b
TT
2315
2316 /* We may see an objfile without any DWARF, in which case we just
2317 return nothing. */
2318 if (data == NULL)
2319 {
2320 *sectp = NULL;
2321 *bufp = NULL;
2322 *sizep = 0;
2323 return;
2324 }
3017a003
TG
2325 switch (sect)
2326 {
2327 case DWARF2_DEBUG_FRAME:
2328 info = &data->frame;
2329 break;
2330 case DWARF2_EH_FRAME:
2331 info = &data->eh_frame;
2332 break;
2333 default:
2334 gdb_assert_not_reached ("unexpected section");
2335 }
dce234bc 2336
9e0ac564 2337 dwarf2_read_section (objfile, info);
dce234bc 2338
a32a8923 2339 *sectp = get_section_bfd_section (info);
dce234bc
PP
2340 *bufp = info->buffer;
2341 *sizep = info->size;
2342}
2343
36586728
TT
2344/* A helper function to find the sections for a .dwz file. */
2345
2346static void
2347locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2348{
2349 struct dwz_file *dwz_file = arg;
2350
2351 /* Note that we only support the standard ELF names, because .dwz
2352 is ELF-only (at the time of writing). */
2353 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2354 {
73869dc2 2355 dwz_file->abbrev.s.asection = sectp;
36586728
TT
2356 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2357 }
2358 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2359 {
73869dc2 2360 dwz_file->info.s.asection = sectp;
36586728
TT
2361 dwz_file->info.size = bfd_get_section_size (sectp);
2362 }
2363 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2364 {
73869dc2 2365 dwz_file->str.s.asection = sectp;
36586728
TT
2366 dwz_file->str.size = bfd_get_section_size (sectp);
2367 }
2368 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2369 {
73869dc2 2370 dwz_file->line.s.asection = sectp;
36586728
TT
2371 dwz_file->line.size = bfd_get_section_size (sectp);
2372 }
2373 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2374 {
73869dc2 2375 dwz_file->macro.s.asection = sectp;
36586728
TT
2376 dwz_file->macro.size = bfd_get_section_size (sectp);
2377 }
2ec9a5e0
TT
2378 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2379 {
73869dc2 2380 dwz_file->gdb_index.s.asection = sectp;
2ec9a5e0
TT
2381 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2382 }
36586728
TT
2383}
2384
4db1a1dc
TT
2385/* Open the separate '.dwz' debug file, if needed. Return NULL if
2386 there is no .gnu_debugaltlink section in the file. Error if there
2387 is such a section but the file cannot be found. */
36586728
TT
2388
2389static struct dwz_file *
2390dwarf2_get_dwz_file (void)
2391{
4db1a1dc
TT
2392 bfd *dwz_bfd;
2393 char *data;
36586728
TT
2394 struct cleanup *cleanup;
2395 const char *filename;
2396 struct dwz_file *result;
acd13123 2397 bfd_size_type buildid_len_arg;
dc294be5
TT
2398 size_t buildid_len;
2399 bfd_byte *buildid;
36586728
TT
2400
2401 if (dwarf2_per_objfile->dwz_file != NULL)
2402 return dwarf2_per_objfile->dwz_file;
2403
4db1a1dc
TT
2404 bfd_set_error (bfd_error_no_error);
2405 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2406 &buildid_len_arg, &buildid);
4db1a1dc
TT
2407 if (data == NULL)
2408 {
2409 if (bfd_get_error () == bfd_error_no_error)
2410 return NULL;
2411 error (_("could not read '.gnu_debugaltlink' section: %s"),
2412 bfd_errmsg (bfd_get_error ()));
2413 }
36586728 2414 cleanup = make_cleanup (xfree, data);
dc294be5 2415 make_cleanup (xfree, buildid);
36586728 2416
acd13123
TT
2417 buildid_len = (size_t) buildid_len_arg;
2418
f9d83a0b 2419 filename = (const char *) data;
36586728
TT
2420 if (!IS_ABSOLUTE_PATH (filename))
2421 {
4262abfb 2422 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2423 char *rel;
2424
2425 make_cleanup (xfree, abs);
2426 abs = ldirname (abs);
2427 make_cleanup (xfree, abs);
2428
2429 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2430 make_cleanup (xfree, rel);
2431 filename = rel;
2432 }
2433
dc294be5
TT
2434 /* First try the file name given in the section. If that doesn't
2435 work, try to use the build-id instead. */
36586728 2436 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
dc294be5 2437 if (dwz_bfd != NULL)
36586728 2438 {
dc294be5
TT
2439 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2440 {
2441 gdb_bfd_unref (dwz_bfd);
2442 dwz_bfd = NULL;
2443 }
36586728
TT
2444 }
2445
dc294be5
TT
2446 if (dwz_bfd == NULL)
2447 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2448
2449 if (dwz_bfd == NULL)
2450 error (_("could not find '.gnu_debugaltlink' file for %s"),
2451 objfile_name (dwarf2_per_objfile->objfile));
2452
36586728
TT
2453 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2454 struct dwz_file);
2455 result->dwz_bfd = dwz_bfd;
2456
2457 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2458
2459 do_cleanups (cleanup);
2460
13aaf454 2461 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
8d2cc612 2462 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2463 return result;
2464}
9291a0cd 2465\f
7b9f3c50
DE
2466/* DWARF quick_symbols_functions support. */
2467
2468/* TUs can share .debug_line entries, and there can be a lot more TUs than
2469 unique line tables, so we maintain a separate table of all .debug_line
2470 derived entries to support the sharing.
2471 All the quick functions need is the list of file names. We discard the
2472 line_header when we're done and don't need to record it here. */
2473struct quick_file_names
2474{
094b34ac
DE
2475 /* The data used to construct the hash key. */
2476 struct stmt_list_hash hash;
7b9f3c50
DE
2477
2478 /* The number of entries in file_names, real_names. */
2479 unsigned int num_file_names;
2480
2481 /* The file names from the line table, after being run through
2482 file_full_name. */
2483 const char **file_names;
2484
2485 /* The file names from the line table after being run through
2486 gdb_realpath. These are computed lazily. */
2487 const char **real_names;
2488};
2489
2490/* When using the index (and thus not using psymtabs), each CU has an
2491 object of this type. This is used to hold information needed by
2492 the various "quick" methods. */
2493struct dwarf2_per_cu_quick_data
2494{
2495 /* The file table. This can be NULL if there was no file table
2496 or it's currently not read in.
2497 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2498 struct quick_file_names *file_names;
2499
2500 /* The corresponding symbol table. This is NULL if symbols for this
2501 CU have not yet been read. */
2502 struct symtab *symtab;
2503
2504 /* A temporary mark bit used when iterating over all CUs in
2505 expand_symtabs_matching. */
2506 unsigned int mark : 1;
2507
2508 /* True if we've tried to read the file table and found there isn't one.
2509 There will be no point in trying to read it again next time. */
2510 unsigned int no_file_data : 1;
2511};
2512
094b34ac
DE
2513/* Utility hash function for a stmt_list_hash. */
2514
2515static hashval_t
2516hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2517{
2518 hashval_t v = 0;
2519
2520 if (stmt_list_hash->dwo_unit != NULL)
2521 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2522 v += stmt_list_hash->line_offset.sect_off;
2523 return v;
2524}
2525
2526/* Utility equality function for a stmt_list_hash. */
2527
2528static int
2529eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2530 const struct stmt_list_hash *rhs)
2531{
2532 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2533 return 0;
2534 if (lhs->dwo_unit != NULL
2535 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2536 return 0;
2537
2538 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2539}
2540
7b9f3c50
DE
2541/* Hash function for a quick_file_names. */
2542
2543static hashval_t
2544hash_file_name_entry (const void *e)
2545{
2546 const struct quick_file_names *file_data = e;
2547
094b34ac 2548 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2549}
2550
2551/* Equality function for a quick_file_names. */
2552
2553static int
2554eq_file_name_entry (const void *a, const void *b)
2555{
2556 const struct quick_file_names *ea = a;
2557 const struct quick_file_names *eb = b;
2558
094b34ac 2559 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2560}
2561
2562/* Delete function for a quick_file_names. */
2563
2564static void
2565delete_file_name_entry (void *e)
2566{
2567 struct quick_file_names *file_data = e;
2568 int i;
2569
2570 for (i = 0; i < file_data->num_file_names; ++i)
2571 {
2572 xfree ((void*) file_data->file_names[i]);
2573 if (file_data->real_names)
2574 xfree ((void*) file_data->real_names[i]);
2575 }
2576
2577 /* The space for the struct itself lives on objfile_obstack,
2578 so we don't free it here. */
2579}
2580
2581/* Create a quick_file_names hash table. */
2582
2583static htab_t
2584create_quick_file_names_table (unsigned int nr_initial_entries)
2585{
2586 return htab_create_alloc (nr_initial_entries,
2587 hash_file_name_entry, eq_file_name_entry,
2588 delete_file_name_entry, xcalloc, xfree);
2589}
9291a0cd 2590
918dd910
JK
2591/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2592 have to be created afterwards. You should call age_cached_comp_units after
2593 processing PER_CU->CU. dw2_setup must have been already called. */
2594
2595static void
2596load_cu (struct dwarf2_per_cu_data *per_cu)
2597{
3019eac3 2598 if (per_cu->is_debug_types)
e5fe5e75 2599 load_full_type_unit (per_cu);
918dd910 2600 else
95554aad 2601 load_full_comp_unit (per_cu, language_minimal);
918dd910 2602
918dd910 2603 gdb_assert (per_cu->cu != NULL);
2dc860c0
DE
2604
2605 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2606}
2607
a0f42c21 2608/* Read in the symbols for PER_CU. */
2fdf6df6 2609
9291a0cd 2610static void
a0f42c21 2611dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2612{
2613 struct cleanup *back_to;
2614
f4dc4d17
DE
2615 /* Skip type_unit_groups, reading the type units they contain
2616 is handled elsewhere. */
2617 if (IS_TYPE_UNIT_GROUP (per_cu))
2618 return;
2619
9291a0cd
TT
2620 back_to = make_cleanup (dwarf2_release_queue, NULL);
2621
95554aad
TT
2622 if (dwarf2_per_objfile->using_index
2623 ? per_cu->v.quick->symtab == NULL
2624 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2625 {
2626 queue_comp_unit (per_cu, language_minimal);
2627 load_cu (per_cu);
89e63ee4
DE
2628
2629 /* If we just loaded a CU from a DWO, and we're working with an index
2630 that may badly handle TUs, load all the TUs in that DWO as well.
2631 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2632 if (!per_cu->is_debug_types
2633 && per_cu->cu->dwo_unit != NULL
2634 && dwarf2_per_objfile->index_table != NULL
2635 && dwarf2_per_objfile->index_table->version <= 7
2636 /* DWP files aren't supported yet. */
2637 && get_dwp_file () == NULL)
2638 queue_and_load_all_dwo_tus (per_cu);
95554aad 2639 }
9291a0cd 2640
a0f42c21 2641 process_queue ();
9291a0cd
TT
2642
2643 /* Age the cache, releasing compilation units that have not
2644 been used recently. */
2645 age_cached_comp_units ();
2646
2647 do_cleanups (back_to);
2648}
2649
2650/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2651 the objfile from which this CU came. Returns the resulting symbol
2652 table. */
2fdf6df6 2653
9291a0cd 2654static struct symtab *
a0f42c21 2655dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2656{
95554aad 2657 gdb_assert (dwarf2_per_objfile->using_index);
9291a0cd
TT
2658 if (!per_cu->v.quick->symtab)
2659 {
2660 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2661 increment_reading_symtab ();
a0f42c21 2662 dw2_do_instantiate_symtab (per_cu);
95554aad 2663 process_cu_includes ();
9291a0cd
TT
2664 do_cleanups (back_to);
2665 }
2666 return per_cu->v.quick->symtab;
2667}
2668
8832e7e3 2669/* Return the CU/TU given its index.
f4dc4d17
DE
2670
2671 This is intended for loops like:
2672
2673 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2674 + dwarf2_per_objfile->n_type_units); ++i)
2675 {
8832e7e3 2676 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2677
2678 ...;
2679 }
2680*/
2fdf6df6 2681
1fd400ff 2682static struct dwarf2_per_cu_data *
8832e7e3 2683dw2_get_cutu (int index)
1fd400ff
TT
2684{
2685 if (index >= dwarf2_per_objfile->n_comp_units)
2686 {
f4dc4d17 2687 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2688 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2689 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2690 }
2691
2692 return dwarf2_per_objfile->all_comp_units[index];
2693}
2694
8832e7e3
DE
2695/* Return the CU given its index.
2696 This differs from dw2_get_cutu in that it's for when you know INDEX
2697 refers to a CU. */
f4dc4d17
DE
2698
2699static struct dwarf2_per_cu_data *
8832e7e3 2700dw2_get_cu (int index)
f4dc4d17 2701{
8832e7e3 2702 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2703
1fd400ff
TT
2704 return dwarf2_per_objfile->all_comp_units[index];
2705}
2706
2ec9a5e0
TT
2707/* A helper for create_cus_from_index that handles a given list of
2708 CUs. */
2fdf6df6 2709
74a0d9f6 2710static void
2ec9a5e0
TT
2711create_cus_from_index_list (struct objfile *objfile,
2712 const gdb_byte *cu_list, offset_type n_elements,
2713 struct dwarf2_section_info *section,
2714 int is_dwz,
2715 int base_offset)
9291a0cd
TT
2716{
2717 offset_type i;
9291a0cd 2718
2ec9a5e0 2719 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2720 {
2721 struct dwarf2_per_cu_data *the_cu;
2722 ULONGEST offset, length;
2723
74a0d9f6
JK
2724 gdb_static_assert (sizeof (ULONGEST) >= 8);
2725 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2726 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2727 cu_list += 2 * 8;
2728
2729 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2730 struct dwarf2_per_cu_data);
b64f50a1 2731 the_cu->offset.sect_off = offset;
9291a0cd
TT
2732 the_cu->length = length;
2733 the_cu->objfile = objfile;
8a0459fd 2734 the_cu->section = section;
9291a0cd
TT
2735 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2736 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2737 the_cu->is_dwz = is_dwz;
2738 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2739 }
9291a0cd
TT
2740}
2741
2ec9a5e0 2742/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2743 the CU objects for this objfile. */
2ec9a5e0 2744
74a0d9f6 2745static void
2ec9a5e0
TT
2746create_cus_from_index (struct objfile *objfile,
2747 const gdb_byte *cu_list, offset_type cu_list_elements,
2748 const gdb_byte *dwz_list, offset_type dwz_elements)
2749{
2750 struct dwz_file *dwz;
2751
2752 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2753 dwarf2_per_objfile->all_comp_units
2754 = obstack_alloc (&objfile->objfile_obstack,
2755 dwarf2_per_objfile->n_comp_units
2756 * sizeof (struct dwarf2_per_cu_data *));
2757
74a0d9f6
JK
2758 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2759 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2760
2761 if (dwz_elements == 0)
74a0d9f6 2762 return;
2ec9a5e0
TT
2763
2764 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2765 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2766 cu_list_elements / 2);
2ec9a5e0
TT
2767}
2768
1fd400ff 2769/* Create the signatured type hash table from the index. */
673bfd45 2770
74a0d9f6 2771static void
673bfd45 2772create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2773 struct dwarf2_section_info *section,
673bfd45
DE
2774 const gdb_byte *bytes,
2775 offset_type elements)
1fd400ff
TT
2776{
2777 offset_type i;
673bfd45 2778 htab_t sig_types_hash;
1fd400ff 2779
6aa5f3a6
DE
2780 dwarf2_per_objfile->n_type_units
2781 = dwarf2_per_objfile->n_allocated_type_units
2782 = elements / 3;
d467dd73 2783 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
2784 = xmalloc (dwarf2_per_objfile->n_type_units
2785 * sizeof (struct signatured_type *));
1fd400ff 2786
673bfd45 2787 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2788
2789 for (i = 0; i < elements; i += 3)
2790 {
52dc124a
DE
2791 struct signatured_type *sig_type;
2792 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2793 void **slot;
2794
74a0d9f6
JK
2795 gdb_static_assert (sizeof (ULONGEST) >= 8);
2796 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2797 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2798 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2799 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2800 bytes += 3 * 8;
2801
52dc124a 2802 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2803 struct signatured_type);
52dc124a 2804 sig_type->signature = signature;
3019eac3
DE
2805 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2806 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2807 sig_type->per_cu.section = section;
52dc124a
DE
2808 sig_type->per_cu.offset.sect_off = offset;
2809 sig_type->per_cu.objfile = objfile;
2810 sig_type->per_cu.v.quick
1fd400ff
TT
2811 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2812 struct dwarf2_per_cu_quick_data);
2813
52dc124a
DE
2814 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2815 *slot = sig_type;
1fd400ff 2816
b4dd5633 2817 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2818 }
2819
673bfd45 2820 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2821}
2822
9291a0cd
TT
2823/* Read the address map data from the mapped index, and use it to
2824 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2825
9291a0cd
TT
2826static void
2827create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2828{
2829 const gdb_byte *iter, *end;
2830 struct obstack temp_obstack;
2831 struct addrmap *mutable_map;
2832 struct cleanup *cleanup;
2833 CORE_ADDR baseaddr;
2834
2835 obstack_init (&temp_obstack);
2836 cleanup = make_cleanup_obstack_free (&temp_obstack);
2837 mutable_map = addrmap_create_mutable (&temp_obstack);
2838
2839 iter = index->address_table;
2840 end = iter + index->address_table_size;
2841
2842 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2843
2844 while (iter < end)
2845 {
2846 ULONGEST hi, lo, cu_index;
2847 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2848 iter += 8;
2849 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2850 iter += 8;
2851 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2852 iter += 4;
f652bce2 2853
24a55014 2854 if (lo > hi)
f652bce2 2855 {
24a55014
DE
2856 complaint (&symfile_complaints,
2857 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2858 hex_string (lo), hex_string (hi));
24a55014 2859 continue;
f652bce2 2860 }
24a55014
DE
2861
2862 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2863 {
2864 complaint (&symfile_complaints,
2865 _(".gdb_index address table has invalid CU number %u"),
2866 (unsigned) cu_index);
24a55014 2867 continue;
f652bce2 2868 }
24a55014
DE
2869
2870 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
8832e7e3 2871 dw2_get_cutu (cu_index));
9291a0cd
TT
2872 }
2873
2874 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2875 &objfile->objfile_obstack);
2876 do_cleanups (cleanup);
2877}
2878
59d7bcaf
JK
2879/* The hash function for strings in the mapped index. This is the same as
2880 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2881 implementation. This is necessary because the hash function is tied to the
2882 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2883 SYMBOL_HASH_NEXT.
2884
2885 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2886
9291a0cd 2887static hashval_t
559a7a62 2888mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2889{
2890 const unsigned char *str = (const unsigned char *) p;
2891 hashval_t r = 0;
2892 unsigned char c;
2893
2894 while ((c = *str++) != 0)
559a7a62
JK
2895 {
2896 if (index_version >= 5)
2897 c = tolower (c);
2898 r = r * 67 + c - 113;
2899 }
9291a0cd
TT
2900
2901 return r;
2902}
2903
2904/* Find a slot in the mapped index INDEX for the object named NAME.
2905 If NAME is found, set *VEC_OUT to point to the CU vector in the
2906 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2907
9291a0cd
TT
2908static int
2909find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2910 offset_type **vec_out)
2911{
0cf03b49
JK
2912 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2913 offset_type hash;
9291a0cd 2914 offset_type slot, step;
559a7a62 2915 int (*cmp) (const char *, const char *);
9291a0cd 2916
0cf03b49
JK
2917 if (current_language->la_language == language_cplus
2918 || current_language->la_language == language_java
2919 || current_language->la_language == language_fortran)
2920 {
2921 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2922 not contain any. */
2923 const char *paren = strchr (name, '(');
2924
2925 if (paren)
2926 {
2927 char *dup;
2928
2929 dup = xmalloc (paren - name + 1);
2930 memcpy (dup, name, paren - name);
2931 dup[paren - name] = 0;
2932
2933 make_cleanup (xfree, dup);
2934 name = dup;
2935 }
2936 }
2937
559a7a62 2938 /* Index version 4 did not support case insensitive searches. But the
feea76c2 2939 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
2940 simulate our NAME being searched is also lowercased. */
2941 hash = mapped_index_string_hash ((index->version == 4
2942 && case_sensitivity == case_sensitive_off
2943 ? 5 : index->version),
2944 name);
2945
3876f04e
DE
2946 slot = hash & (index->symbol_table_slots - 1);
2947 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 2948 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
2949
2950 for (;;)
2951 {
2952 /* Convert a slot number to an offset into the table. */
2953 offset_type i = 2 * slot;
2954 const char *str;
3876f04e 2955 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
2956 {
2957 do_cleanups (back_to);
2958 return 0;
2959 }
9291a0cd 2960
3876f04e 2961 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 2962 if (!cmp (name, str))
9291a0cd
TT
2963 {
2964 *vec_out = (offset_type *) (index->constant_pool
3876f04e 2965 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 2966 do_cleanups (back_to);
9291a0cd
TT
2967 return 1;
2968 }
2969
3876f04e 2970 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
2971 }
2972}
2973
2ec9a5e0
TT
2974/* A helper function that reads the .gdb_index from SECTION and fills
2975 in MAP. FILENAME is the name of the file containing the section;
2976 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2977 ok to use deprecated sections.
2978
2979 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2980 out parameters that are filled in with information about the CU and
2981 TU lists in the section.
2982
2983 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 2984
9291a0cd 2985static int
2ec9a5e0
TT
2986read_index_from_section (struct objfile *objfile,
2987 const char *filename,
2988 int deprecated_ok,
2989 struct dwarf2_section_info *section,
2990 struct mapped_index *map,
2991 const gdb_byte **cu_list,
2992 offset_type *cu_list_elements,
2993 const gdb_byte **types_list,
2994 offset_type *types_list_elements)
9291a0cd 2995{
948f8e3d 2996 const gdb_byte *addr;
2ec9a5e0 2997 offset_type version;
b3b272e1 2998 offset_type *metadata;
1fd400ff 2999 int i;
9291a0cd 3000
2ec9a5e0 3001 if (dwarf2_section_empty_p (section))
9291a0cd 3002 return 0;
82430852
JK
3003
3004 /* Older elfutils strip versions could keep the section in the main
3005 executable while splitting it for the separate debug info file. */
a32a8923 3006 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3007 return 0;
3008
2ec9a5e0 3009 dwarf2_read_section (objfile, section);
9291a0cd 3010
2ec9a5e0 3011 addr = section->buffer;
9291a0cd 3012 /* Version check. */
1fd400ff 3013 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3014 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3015 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3016 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3017 indices. */
831adc1f 3018 if (version < 4)
481860b3
GB
3019 {
3020 static int warning_printed = 0;
3021 if (!warning_printed)
3022 {
3023 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3024 filename);
481860b3
GB
3025 warning_printed = 1;
3026 }
3027 return 0;
3028 }
3029 /* Index version 4 uses a different hash function than index version
3030 5 and later.
3031
3032 Versions earlier than 6 did not emit psymbols for inlined
3033 functions. Using these files will cause GDB not to be able to
3034 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3035 indices unless the user has done
3036 "set use-deprecated-index-sections on". */
2ec9a5e0 3037 if (version < 6 && !deprecated_ok)
481860b3
GB
3038 {
3039 static int warning_printed = 0;
3040 if (!warning_printed)
3041 {
e615022a
DE
3042 warning (_("\
3043Skipping deprecated .gdb_index section in %s.\n\
3044Do \"set use-deprecated-index-sections on\" before the file is read\n\
3045to use the section anyway."),
2ec9a5e0 3046 filename);
481860b3
GB
3047 warning_printed = 1;
3048 }
3049 return 0;
3050 }
796a7ff8 3051 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3052 of the TU (for symbols coming from TUs),
3053 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3054 Plus gold-generated indices can have duplicate entries for global symbols,
3055 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3056 These are just performance bugs, and we can't distinguish gdb-generated
3057 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3058
481860b3 3059 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3060 longer backward compatible. */
796a7ff8 3061 if (version > 8)
594e8718 3062 return 0;
9291a0cd 3063
559a7a62 3064 map->version = version;
2ec9a5e0 3065 map->total_size = section->size;
9291a0cd
TT
3066
3067 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3068
3069 i = 0;
2ec9a5e0
TT
3070 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3071 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3072 / 8);
1fd400ff
TT
3073 ++i;
3074
2ec9a5e0
TT
3075 *types_list = addr + MAYBE_SWAP (metadata[i]);
3076 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3077 - MAYBE_SWAP (metadata[i]))
3078 / 8);
987d643c 3079 ++i;
1fd400ff
TT
3080
3081 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3082 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3083 - MAYBE_SWAP (metadata[i]));
3084 ++i;
3085
3876f04e
DE
3086 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3087 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3088 - MAYBE_SWAP (metadata[i]))
3089 / (2 * sizeof (offset_type)));
1fd400ff 3090 ++i;
9291a0cd 3091
f9d83a0b 3092 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3093
2ec9a5e0
TT
3094 return 1;
3095}
3096
3097
3098/* Read the index file. If everything went ok, initialize the "quick"
3099 elements of all the CUs and return 1. Otherwise, return 0. */
3100
3101static int
3102dwarf2_read_index (struct objfile *objfile)
3103{
3104 struct mapped_index local_map, *map;
3105 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3106 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3107 struct dwz_file *dwz;
2ec9a5e0 3108
4262abfb 3109 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3110 use_deprecated_index_sections,
3111 &dwarf2_per_objfile->gdb_index, &local_map,
3112 &cu_list, &cu_list_elements,
3113 &types_list, &types_list_elements))
3114 return 0;
3115
0fefef59 3116 /* Don't use the index if it's empty. */
2ec9a5e0 3117 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3118 return 0;
3119
2ec9a5e0
TT
3120 /* If there is a .dwz file, read it so we can get its CU list as
3121 well. */
4db1a1dc
TT
3122 dwz = dwarf2_get_dwz_file ();
3123 if (dwz != NULL)
2ec9a5e0 3124 {
2ec9a5e0
TT
3125 struct mapped_index dwz_map;
3126 const gdb_byte *dwz_types_ignore;
3127 offset_type dwz_types_elements_ignore;
3128
3129 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3130 1,
3131 &dwz->gdb_index, &dwz_map,
3132 &dwz_list, &dwz_list_elements,
3133 &dwz_types_ignore,
3134 &dwz_types_elements_ignore))
3135 {
3136 warning (_("could not read '.gdb_index' section from %s; skipping"),
3137 bfd_get_filename (dwz->dwz_bfd));
3138 return 0;
3139 }
3140 }
3141
74a0d9f6
JK
3142 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3143 dwz_list_elements);
1fd400ff 3144
8b70b953
TT
3145 if (types_list_elements)
3146 {
3147 struct dwarf2_section_info *section;
3148
3149 /* We can only handle a single .debug_types when we have an
3150 index. */
3151 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3152 return 0;
3153
3154 section = VEC_index (dwarf2_section_info_def,
3155 dwarf2_per_objfile->types, 0);
3156
74a0d9f6
JK
3157 create_signatured_type_table_from_index (objfile, section, types_list,
3158 types_list_elements);
8b70b953 3159 }
9291a0cd 3160
2ec9a5e0
TT
3161 create_addrmap_from_index (objfile, &local_map);
3162
3163 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3164 *map = local_map;
9291a0cd
TT
3165
3166 dwarf2_per_objfile->index_table = map;
3167 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3168 dwarf2_per_objfile->quick_file_names_table =
3169 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3170
3171 return 1;
3172}
3173
3174/* A helper for the "quick" functions which sets the global
3175 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3176
9291a0cd
TT
3177static void
3178dw2_setup (struct objfile *objfile)
3179{
3180 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3181 gdb_assert (dwarf2_per_objfile);
3182}
3183
dee91e82 3184/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3185
dee91e82
DE
3186static void
3187dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3188 const gdb_byte *info_ptr,
dee91e82
DE
3189 struct die_info *comp_unit_die,
3190 int has_children,
3191 void *data)
9291a0cd 3192{
dee91e82
DE
3193 struct dwarf2_cu *cu = reader->cu;
3194 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3195 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3196 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3197 struct line_header *lh;
9291a0cd 3198 struct attribute *attr;
dee91e82 3199 int i;
15d034d0 3200 const char *name, *comp_dir;
7b9f3c50
DE
3201 void **slot;
3202 struct quick_file_names *qfn;
3203 unsigned int line_offset;
9291a0cd 3204
0186c6a7
DE
3205 gdb_assert (! this_cu->is_debug_types);
3206
07261596
TT
3207 /* Our callers never want to match partial units -- instead they
3208 will match the enclosing full CU. */
3209 if (comp_unit_die->tag == DW_TAG_partial_unit)
3210 {
3211 this_cu->v.quick->no_file_data = 1;
3212 return;
3213 }
3214
0186c6a7 3215 lh_cu = this_cu;
7b9f3c50
DE
3216 lh = NULL;
3217 slot = NULL;
3218 line_offset = 0;
dee91e82
DE
3219
3220 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3221 if (attr)
3222 {
7b9f3c50
DE
3223 struct quick_file_names find_entry;
3224
3225 line_offset = DW_UNSND (attr);
3226
3227 /* We may have already read in this line header (TU line header sharing).
3228 If we have we're done. */
094b34ac
DE
3229 find_entry.hash.dwo_unit = cu->dwo_unit;
3230 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3231 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3232 &find_entry, INSERT);
3233 if (*slot != NULL)
3234 {
094b34ac 3235 lh_cu->v.quick->file_names = *slot;
dee91e82 3236 return;
7b9f3c50
DE
3237 }
3238
3019eac3 3239 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3240 }
3241 if (lh == NULL)
3242 {
094b34ac 3243 lh_cu->v.quick->no_file_data = 1;
dee91e82 3244 return;
9291a0cd
TT
3245 }
3246
7b9f3c50 3247 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
094b34ac
DE
3248 qfn->hash.dwo_unit = cu->dwo_unit;
3249 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3250 gdb_assert (slot != NULL);
3251 *slot = qfn;
9291a0cd 3252
dee91e82 3253 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3254
7b9f3c50
DE
3255 qfn->num_file_names = lh->num_file_names;
3256 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3257 lh->num_file_names * sizeof (char *));
9291a0cd 3258 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3259 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3260 qfn->real_names = NULL;
9291a0cd 3261
7b9f3c50 3262 free_line_header (lh);
7b9f3c50 3263
094b34ac 3264 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3265}
3266
3267/* A helper for the "quick" functions which attempts to read the line
3268 table for THIS_CU. */
3269
3270static struct quick_file_names *
e4a48d9d 3271dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3272{
0186c6a7
DE
3273 /* This should never be called for TUs. */
3274 gdb_assert (! this_cu->is_debug_types);
3275 /* Nor type unit groups. */
3276 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3277
dee91e82
DE
3278 if (this_cu->v.quick->file_names != NULL)
3279 return this_cu->v.quick->file_names;
3280 /* If we know there is no line data, no point in looking again. */
3281 if (this_cu->v.quick->no_file_data)
3282 return NULL;
3283
0186c6a7 3284 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3285
3286 if (this_cu->v.quick->no_file_data)
3287 return NULL;
3288 return this_cu->v.quick->file_names;
9291a0cd
TT
3289}
3290
3291/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3292 real path for a given file name from the line table. */
2fdf6df6 3293
9291a0cd 3294static const char *
7b9f3c50
DE
3295dw2_get_real_path (struct objfile *objfile,
3296 struct quick_file_names *qfn, int index)
9291a0cd 3297{
7b9f3c50
DE
3298 if (qfn->real_names == NULL)
3299 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3300 qfn->num_file_names, const char *);
9291a0cd 3301
7b9f3c50
DE
3302 if (qfn->real_names[index] == NULL)
3303 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3304
7b9f3c50 3305 return qfn->real_names[index];
9291a0cd
TT
3306}
3307
3308static struct symtab *
3309dw2_find_last_source_symtab (struct objfile *objfile)
3310{
3311 int index;
ae2de4f8 3312
9291a0cd
TT
3313 dw2_setup (objfile);
3314 index = dwarf2_per_objfile->n_comp_units - 1;
8832e7e3 3315 return dw2_instantiate_symtab (dw2_get_cutu (index));
9291a0cd
TT
3316}
3317
7b9f3c50
DE
3318/* Traversal function for dw2_forget_cached_source_info. */
3319
3320static int
3321dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3322{
7b9f3c50 3323 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3324
7b9f3c50 3325 if (file_data->real_names)
9291a0cd 3326 {
7b9f3c50 3327 int i;
9291a0cd 3328
7b9f3c50 3329 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3330 {
7b9f3c50
DE
3331 xfree ((void*) file_data->real_names[i]);
3332 file_data->real_names[i] = NULL;
9291a0cd
TT
3333 }
3334 }
7b9f3c50
DE
3335
3336 return 1;
3337}
3338
3339static void
3340dw2_forget_cached_source_info (struct objfile *objfile)
3341{
3342 dw2_setup (objfile);
3343
3344 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3345 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3346}
3347
f8eba3c6
TT
3348/* Helper function for dw2_map_symtabs_matching_filename that expands
3349 the symtabs and calls the iterator. */
3350
3351static int
3352dw2_map_expand_apply (struct objfile *objfile,
3353 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3354 const char *name, const char *real_path,
f8eba3c6
TT
3355 int (*callback) (struct symtab *, void *),
3356 void *data)
3357{
3358 struct symtab *last_made = objfile->symtabs;
3359
3360 /* Don't visit already-expanded CUs. */
3361 if (per_cu->v.quick->symtab)
3362 return 0;
3363
3364 /* This may expand more than one symtab, and we want to iterate over
3365 all of them. */
a0f42c21 3366 dw2_instantiate_symtab (per_cu);
f8eba3c6 3367
f5b95b50 3368 return iterate_over_some_symtabs (name, real_path, callback, data,
f8eba3c6
TT
3369 objfile->symtabs, last_made);
3370}
3371
3372/* Implementation of the map_symtabs_matching_filename method. */
3373
9291a0cd 3374static int
f8eba3c6 3375dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3376 const char *real_path,
f8eba3c6
TT
3377 int (*callback) (struct symtab *, void *),
3378 void *data)
9291a0cd
TT
3379{
3380 int i;
c011a4f4 3381 const char *name_basename = lbasename (name);
9291a0cd
TT
3382
3383 dw2_setup (objfile);
ae2de4f8 3384
848e3e78
DE
3385 /* The rule is CUs specify all the files, including those used by
3386 any TU, so there's no need to scan TUs here. */
f4dc4d17 3387
848e3e78 3388 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3389 {
3390 int j;
8832e7e3 3391 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3392 struct quick_file_names *file_data;
9291a0cd 3393
3d7bb9d9 3394 /* We only need to look at symtabs not already expanded. */
e254ef6a 3395 if (per_cu->v.quick->symtab)
9291a0cd
TT
3396 continue;
3397
e4a48d9d 3398 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3399 if (file_data == NULL)
9291a0cd
TT
3400 continue;
3401
7b9f3c50 3402 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3403 {
7b9f3c50 3404 const char *this_name = file_data->file_names[j];
da235a7c 3405 const char *this_real_name;
9291a0cd 3406
af529f8f 3407 if (compare_filenames_for_search (this_name, name))
9291a0cd 3408 {
f5b95b50 3409 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3410 callback, data))
3411 return 1;
288e77a7 3412 continue;
4aac40c8 3413 }
9291a0cd 3414
c011a4f4
DE
3415 /* Before we invoke realpath, which can get expensive when many
3416 files are involved, do a quick comparison of the basenames. */
3417 if (! basenames_may_differ
3418 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3419 continue;
3420
da235a7c
JK
3421 this_real_name = dw2_get_real_path (objfile, file_data, j);
3422 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3423 {
da235a7c
JK
3424 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3425 callback, data))
3426 return 1;
288e77a7 3427 continue;
da235a7c 3428 }
9291a0cd 3429
da235a7c
JK
3430 if (real_path != NULL)
3431 {
af529f8f
JK
3432 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3433 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3434 if (this_real_name != NULL
af529f8f 3435 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3436 {
f5b95b50 3437 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3438 callback, data))
3439 return 1;
288e77a7 3440 continue;
9291a0cd
TT
3441 }
3442 }
3443 }
3444 }
3445
9291a0cd
TT
3446 return 0;
3447}
3448
da51c347
DE
3449/* Struct used to manage iterating over all CUs looking for a symbol. */
3450
3451struct dw2_symtab_iterator
9291a0cd 3452{
da51c347
DE
3453 /* The internalized form of .gdb_index. */
3454 struct mapped_index *index;
3455 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3456 int want_specific_block;
3457 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3458 Unused if !WANT_SPECIFIC_BLOCK. */
3459 int block_index;
3460 /* The kind of symbol we're looking for. */
3461 domain_enum domain;
3462 /* The list of CUs from the index entry of the symbol,
3463 or NULL if not found. */
3464 offset_type *vec;
3465 /* The next element in VEC to look at. */
3466 int next;
3467 /* The number of elements in VEC, or zero if there is no match. */
3468 int length;
8943b874
DE
3469 /* Have we seen a global version of the symbol?
3470 If so we can ignore all further global instances.
3471 This is to work around gold/15646, inefficient gold-generated
3472 indices. */
3473 int global_seen;
da51c347 3474};
9291a0cd 3475
da51c347
DE
3476/* Initialize the index symtab iterator ITER.
3477 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3478 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3479
9291a0cd 3480static void
da51c347
DE
3481dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3482 struct mapped_index *index,
3483 int want_specific_block,
3484 int block_index,
3485 domain_enum domain,
3486 const char *name)
3487{
3488 iter->index = index;
3489 iter->want_specific_block = want_specific_block;
3490 iter->block_index = block_index;
3491 iter->domain = domain;
3492 iter->next = 0;
8943b874 3493 iter->global_seen = 0;
da51c347
DE
3494
3495 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3496 iter->length = MAYBE_SWAP (*iter->vec);
3497 else
3498 {
3499 iter->vec = NULL;
3500 iter->length = 0;
3501 }
3502}
3503
3504/* Return the next matching CU or NULL if there are no more. */
3505
3506static struct dwarf2_per_cu_data *
3507dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3508{
3509 for ( ; iter->next < iter->length; ++iter->next)
3510 {
3511 offset_type cu_index_and_attrs =
3512 MAYBE_SWAP (iter->vec[iter->next + 1]);
3513 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3514 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3515 int want_static = iter->block_index != GLOBAL_BLOCK;
3516 /* This value is only valid for index versions >= 7. */
3517 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3518 gdb_index_symbol_kind symbol_kind =
3519 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3520 /* Only check the symbol attributes if they're present.
3521 Indices prior to version 7 don't record them,
3522 and indices >= 7 may elide them for certain symbols
3523 (gold does this). */
3524 int attrs_valid =
3525 (iter->index->version >= 7
3526 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3527
3190f0c6
DE
3528 /* Don't crash on bad data. */
3529 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3530 + dwarf2_per_objfile->n_type_units))
3531 {
3532 complaint (&symfile_complaints,
3533 _(".gdb_index entry has bad CU index"
4262abfb
JK
3534 " [in module %s]"),
3535 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3536 continue;
3537 }
3538
8832e7e3 3539 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3540
da51c347
DE
3541 /* Skip if already read in. */
3542 if (per_cu->v.quick->symtab)
3543 continue;
3544
8943b874
DE
3545 /* Check static vs global. */
3546 if (attrs_valid)
3547 {
3548 if (iter->want_specific_block
3549 && want_static != is_static)
3550 continue;
3551 /* Work around gold/15646. */
3552 if (!is_static && iter->global_seen)
3553 continue;
3554 if (!is_static)
3555 iter->global_seen = 1;
3556 }
da51c347
DE
3557
3558 /* Only check the symbol's kind if it has one. */
3559 if (attrs_valid)
3560 {
3561 switch (iter->domain)
3562 {
3563 case VAR_DOMAIN:
3564 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3565 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3566 /* Some types are also in VAR_DOMAIN. */
3567 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3568 continue;
3569 break;
3570 case STRUCT_DOMAIN:
3571 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3572 continue;
3573 break;
3574 case LABEL_DOMAIN:
3575 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3576 continue;
3577 break;
3578 default:
3579 break;
3580 }
3581 }
3582
3583 ++iter->next;
3584 return per_cu;
3585 }
3586
3587 return NULL;
3588}
3589
3590static struct symtab *
3591dw2_lookup_symbol (struct objfile *objfile, int block_index,
3592 const char *name, domain_enum domain)
9291a0cd 3593{
da51c347 3594 struct symtab *stab_best = NULL;
156942c7
DE
3595 struct mapped_index *index;
3596
9291a0cd
TT
3597 dw2_setup (objfile);
3598
156942c7
DE
3599 index = dwarf2_per_objfile->index_table;
3600
da51c347 3601 /* index is NULL if OBJF_READNOW. */
156942c7 3602 if (index)
9291a0cd 3603 {
da51c347
DE
3604 struct dw2_symtab_iterator iter;
3605 struct dwarf2_per_cu_data *per_cu;
3606
3607 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3608
da51c347 3609 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3610 {
da51c347
DE
3611 struct symbol *sym = NULL;
3612 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3613
3614 /* Some caution must be observed with overloaded functions
3615 and methods, since the index will not contain any overload
3616 information (but NAME might contain it). */
3617 if (stab->primary)
9291a0cd 3618 {
346d1dfe 3619 const struct blockvector *bv = BLOCKVECTOR (stab);
da51c347 3620 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
156942c7 3621
da51c347
DE
3622 sym = lookup_block_symbol (block, name, domain);
3623 }
1fd400ff 3624
da51c347
DE
3625 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3626 {
3627 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3628 return stab;
3629
3630 stab_best = stab;
9291a0cd 3631 }
da51c347
DE
3632
3633 /* Keep looking through other CUs. */
9291a0cd
TT
3634 }
3635 }
9291a0cd 3636
da51c347 3637 return stab_best;
9291a0cd
TT
3638}
3639
3640static void
3641dw2_print_stats (struct objfile *objfile)
3642{
e4a48d9d 3643 int i, total, count;
9291a0cd
TT
3644
3645 dw2_setup (objfile);
e4a48d9d 3646 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3647 count = 0;
e4a48d9d 3648 for (i = 0; i < total; ++i)
9291a0cd 3649 {
8832e7e3 3650 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3651
e254ef6a 3652 if (!per_cu->v.quick->symtab)
9291a0cd
TT
3653 ++count;
3654 }
e4a48d9d 3655 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3656 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3657}
3658
779bd270
DE
3659/* This dumps minimal information about the index.
3660 It is called via "mt print objfiles".
3661 One use is to verify .gdb_index has been loaded by the
3662 gdb.dwarf2/gdb-index.exp testcase. */
3663
9291a0cd
TT
3664static void
3665dw2_dump (struct objfile *objfile)
3666{
779bd270
DE
3667 dw2_setup (objfile);
3668 gdb_assert (dwarf2_per_objfile->using_index);
3669 printf_filtered (".gdb_index:");
3670 if (dwarf2_per_objfile->index_table != NULL)
3671 {
3672 printf_filtered (" version %d\n",
3673 dwarf2_per_objfile->index_table->version);
3674 }
3675 else
3676 printf_filtered (" faked for \"readnow\"\n");
3677 printf_filtered ("\n");
9291a0cd
TT
3678}
3679
3680static void
3189cb12
DE
3681dw2_relocate (struct objfile *objfile,
3682 const struct section_offsets *new_offsets,
3683 const struct section_offsets *delta)
9291a0cd
TT
3684{
3685 /* There's nothing to relocate here. */
3686}
3687
3688static void
3689dw2_expand_symtabs_for_function (struct objfile *objfile,
3690 const char *func_name)
3691{
da51c347
DE
3692 struct mapped_index *index;
3693
3694 dw2_setup (objfile);
3695
3696 index = dwarf2_per_objfile->index_table;
3697
3698 /* index is NULL if OBJF_READNOW. */
3699 if (index)
3700 {
3701 struct dw2_symtab_iterator iter;
3702 struct dwarf2_per_cu_data *per_cu;
3703
3704 /* Note: It doesn't matter what we pass for block_index here. */
3705 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3706 func_name);
3707
3708 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3709 dw2_instantiate_symtab (per_cu);
3710 }
9291a0cd
TT
3711}
3712
3713static void
3714dw2_expand_all_symtabs (struct objfile *objfile)
3715{
3716 int i;
3717
3718 dw2_setup (objfile);
1fd400ff
TT
3719
3720 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3721 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3722 {
8832e7e3 3723 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3724
a0f42c21 3725 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3726 }
3727}
3728
3729static void
652a8996
JK
3730dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3731 const char *fullname)
9291a0cd
TT
3732{
3733 int i;
3734
3735 dw2_setup (objfile);
d4637a04
DE
3736
3737 /* We don't need to consider type units here.
3738 This is only called for examining code, e.g. expand_line_sal.
3739 There can be an order of magnitude (or more) more type units
3740 than comp units, and we avoid them if we can. */
3741
3742 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3743 {
3744 int j;
8832e7e3 3745 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 3746 struct quick_file_names *file_data;
9291a0cd 3747
3d7bb9d9 3748 /* We only need to look at symtabs not already expanded. */
e254ef6a 3749 if (per_cu->v.quick->symtab)
9291a0cd
TT
3750 continue;
3751
e4a48d9d 3752 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3753 if (file_data == NULL)
9291a0cd
TT
3754 continue;
3755
7b9f3c50 3756 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3757 {
652a8996
JK
3758 const char *this_fullname = file_data->file_names[j];
3759
3760 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3761 {
a0f42c21 3762 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3763 break;
3764 }
3765 }
3766 }
3767}
3768
9291a0cd 3769static void
ade7ed9e
DE
3770dw2_map_matching_symbols (struct objfile *objfile,
3771 const char * name, domain_enum namespace,
3772 int global,
40658b94
PH
3773 int (*callback) (struct block *,
3774 struct symbol *, void *),
2edb89d3
JK
3775 void *data, symbol_compare_ftype *match,
3776 symbol_compare_ftype *ordered_compare)
9291a0cd 3777{
40658b94 3778 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3779 current language is Ada for a non-Ada objfile using GNU index. As Ada
3780 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3781}
3782
3783static void
f8eba3c6
TT
3784dw2_expand_symtabs_matching
3785 (struct objfile *objfile,
206f2a57
DE
3786 expand_symtabs_file_matcher_ftype *file_matcher,
3787 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
f8eba3c6
TT
3788 enum search_domain kind,
3789 void *data)
9291a0cd
TT
3790{
3791 int i;
3792 offset_type iter;
4b5246aa 3793 struct mapped_index *index;
9291a0cd
TT
3794
3795 dw2_setup (objfile);
ae2de4f8
DE
3796
3797 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3798 if (!dwarf2_per_objfile->index_table)
3799 return;
4b5246aa 3800 index = dwarf2_per_objfile->index_table;
9291a0cd 3801
7b08b9eb 3802 if (file_matcher != NULL)
24c79950
TT
3803 {
3804 struct cleanup *cleanup;
3805 htab_t visited_found, visited_not_found;
3806
3807 visited_found = htab_create_alloc (10,
3808 htab_hash_pointer, htab_eq_pointer,
3809 NULL, xcalloc, xfree);
3810 cleanup = make_cleanup_htab_delete (visited_found);
3811 visited_not_found = htab_create_alloc (10,
3812 htab_hash_pointer, htab_eq_pointer,
3813 NULL, xcalloc, xfree);
3814 make_cleanup_htab_delete (visited_not_found);
3815
848e3e78
DE
3816 /* The rule is CUs specify all the files, including those used by
3817 any TU, so there's no need to scan TUs here. */
3818
3819 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3820 {
3821 int j;
8832e7e3 3822 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
3823 struct quick_file_names *file_data;
3824 void **slot;
7b08b9eb 3825
24c79950 3826 per_cu->v.quick->mark = 0;
3d7bb9d9 3827
24c79950
TT
3828 /* We only need to look at symtabs not already expanded. */
3829 if (per_cu->v.quick->symtab)
3830 continue;
7b08b9eb 3831
e4a48d9d 3832 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3833 if (file_data == NULL)
3834 continue;
7b08b9eb 3835
24c79950
TT
3836 if (htab_find (visited_not_found, file_data) != NULL)
3837 continue;
3838 else if (htab_find (visited_found, file_data) != NULL)
3839 {
3840 per_cu->v.quick->mark = 1;
3841 continue;
3842 }
3843
3844 for (j = 0; j < file_data->num_file_names; ++j)
3845 {
da235a7c
JK
3846 const char *this_real_name;
3847
fbd9ab74 3848 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3849 {
3850 per_cu->v.quick->mark = 1;
3851 break;
3852 }
da235a7c
JK
3853
3854 /* Before we invoke realpath, which can get expensive when many
3855 files are involved, do a quick comparison of the basenames. */
3856 if (!basenames_may_differ
3857 && !file_matcher (lbasename (file_data->file_names[j]),
3858 data, 1))
3859 continue;
3860
3861 this_real_name = dw2_get_real_path (objfile, file_data, j);
3862 if (file_matcher (this_real_name, data, 0))
3863 {
3864 per_cu->v.quick->mark = 1;
3865 break;
3866 }
24c79950
TT
3867 }
3868
3869 slot = htab_find_slot (per_cu->v.quick->mark
3870 ? visited_found
3871 : visited_not_found,
3872 file_data, INSERT);
3873 *slot = file_data;
3874 }
3875
3876 do_cleanups (cleanup);
3877 }
9291a0cd 3878
3876f04e 3879 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3880 {
3881 offset_type idx = 2 * iter;
3882 const char *name;
3883 offset_type *vec, vec_len, vec_idx;
8943b874 3884 int global_seen = 0;
9291a0cd 3885
3876f04e 3886 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3887 continue;
3888
3876f04e 3889 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3890
206f2a57 3891 if (! (*symbol_matcher) (name, data))
9291a0cd
TT
3892 continue;
3893
3894 /* The name was matched, now expand corresponding CUs that were
3895 marked. */
4b5246aa 3896 vec = (offset_type *) (index->constant_pool
3876f04e 3897 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3898 vec_len = MAYBE_SWAP (vec[0]);
3899 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3900 {
e254ef6a 3901 struct dwarf2_per_cu_data *per_cu;
156942c7 3902 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
3903 /* This value is only valid for index versions >= 7. */
3904 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
3905 gdb_index_symbol_kind symbol_kind =
3906 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3907 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
3908 /* Only check the symbol attributes if they're present.
3909 Indices prior to version 7 don't record them,
3910 and indices >= 7 may elide them for certain symbols
3911 (gold does this). */
3912 int attrs_valid =
3913 (index->version >= 7
3914 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3915
8943b874
DE
3916 /* Work around gold/15646. */
3917 if (attrs_valid)
3918 {
3919 if (!is_static && global_seen)
3920 continue;
3921 if (!is_static)
3922 global_seen = 1;
3923 }
3924
3190f0c6
DE
3925 /* Only check the symbol's kind if it has one. */
3926 if (attrs_valid)
156942c7
DE
3927 {
3928 switch (kind)
3929 {
3930 case VARIABLES_DOMAIN:
3931 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3932 continue;
3933 break;
3934 case FUNCTIONS_DOMAIN:
3935 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3936 continue;
3937 break;
3938 case TYPES_DOMAIN:
3939 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3940 continue;
3941 break;
3942 default:
3943 break;
3944 }
3945 }
3946
3190f0c6
DE
3947 /* Don't crash on bad data. */
3948 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3949 + dwarf2_per_objfile->n_type_units))
3950 {
3951 complaint (&symfile_complaints,
3952 _(".gdb_index entry has bad CU index"
4262abfb 3953 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
3954 continue;
3955 }
3956
8832e7e3 3957 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 3958 if (file_matcher == NULL || per_cu->v.quick->mark)
a0f42c21 3959 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3960 }
3961 }
3962}
3963
9703b513
TT
3964/* A helper for dw2_find_pc_sect_symtab which finds the most specific
3965 symtab. */
3966
3967static struct symtab *
3968recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3969{
3970 int i;
3971
3972 if (BLOCKVECTOR (symtab) != NULL
3973 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3974 return symtab;
3975
a3ec0bb1
DE
3976 if (symtab->includes == NULL)
3977 return NULL;
3978
9703b513
TT
3979 for (i = 0; symtab->includes[i]; ++i)
3980 {
a3ec0bb1 3981 struct symtab *s = symtab->includes[i];
9703b513
TT
3982
3983 s = recursively_find_pc_sect_symtab (s, pc);
3984 if (s != NULL)
3985 return s;
3986 }
3987
3988 return NULL;
3989}
3990
9291a0cd
TT
3991static struct symtab *
3992dw2_find_pc_sect_symtab (struct objfile *objfile,
77e371c0 3993 struct bound_minimal_symbol msymbol,
9291a0cd
TT
3994 CORE_ADDR pc,
3995 struct obj_section *section,
3996 int warn_if_readin)
3997{
3998 struct dwarf2_per_cu_data *data;
9703b513 3999 struct symtab *result;
9291a0cd
TT
4000
4001 dw2_setup (objfile);
4002
4003 if (!objfile->psymtabs_addrmap)
4004 return NULL;
4005
4006 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4007 if (!data)
4008 return NULL;
4009
4010 if (warn_if_readin && data->v.quick->symtab)
abebb8b0 4011 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4012 paddress (get_objfile_arch (objfile), pc));
4013
9703b513
TT
4014 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4015 gdb_assert (result != NULL);
4016 return result;
9291a0cd
TT
4017}
4018
9291a0cd 4019static void
44b13c5a 4020dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4021 void *data, int need_fullname)
9291a0cd
TT
4022{
4023 int i;
24c79950
TT
4024 struct cleanup *cleanup;
4025 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4026 NULL, xcalloc, xfree);
9291a0cd 4027
24c79950 4028 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 4029 dw2_setup (objfile);
ae2de4f8 4030
848e3e78
DE
4031 /* The rule is CUs specify all the files, including those used by
4032 any TU, so there's no need to scan TUs here.
4033 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4034
848e3e78 4035 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950 4036 {
8832e7e3 4037 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
24c79950
TT
4038
4039 if (per_cu->v.quick->symtab)
4040 {
4041 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4042 INSERT);
4043
4044 *slot = per_cu->v.quick->file_names;
4045 }
4046 }
4047
848e3e78 4048 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4049 {
4050 int j;
8832e7e3 4051 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 4052 struct quick_file_names *file_data;
24c79950 4053 void **slot;
9291a0cd 4054
3d7bb9d9 4055 /* We only need to look at symtabs not already expanded. */
e254ef6a 4056 if (per_cu->v.quick->symtab)
9291a0cd
TT
4057 continue;
4058
e4a48d9d 4059 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4060 if (file_data == NULL)
9291a0cd
TT
4061 continue;
4062
24c79950
TT
4063 slot = htab_find_slot (visited, file_data, INSERT);
4064 if (*slot)
4065 {
4066 /* Already visited. */
4067 continue;
4068 }
4069 *slot = file_data;
4070
7b9f3c50 4071 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4072 {
74e2f255
DE
4073 const char *this_real_name;
4074
4075 if (need_fullname)
4076 this_real_name = dw2_get_real_path (objfile, file_data, j);
4077 else
4078 this_real_name = NULL;
7b9f3c50 4079 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4080 }
4081 }
24c79950
TT
4082
4083 do_cleanups (cleanup);
9291a0cd
TT
4084}
4085
4086static int
4087dw2_has_symbols (struct objfile *objfile)
4088{
4089 return 1;
4090}
4091
4092const struct quick_symbol_functions dwarf2_gdb_index_functions =
4093{
4094 dw2_has_symbols,
4095 dw2_find_last_source_symtab,
4096 dw2_forget_cached_source_info,
f8eba3c6 4097 dw2_map_symtabs_matching_filename,
9291a0cd 4098 dw2_lookup_symbol,
9291a0cd
TT
4099 dw2_print_stats,
4100 dw2_dump,
4101 dw2_relocate,
4102 dw2_expand_symtabs_for_function,
4103 dw2_expand_all_symtabs,
652a8996 4104 dw2_expand_symtabs_with_fullname,
40658b94 4105 dw2_map_matching_symbols,
9291a0cd
TT
4106 dw2_expand_symtabs_matching,
4107 dw2_find_pc_sect_symtab,
9291a0cd
TT
4108 dw2_map_symbol_filenames
4109};
4110
4111/* Initialize for reading DWARF for this objfile. Return 0 if this
4112 file will use psymtabs, or 1 if using the GNU index. */
4113
4114int
4115dwarf2_initialize_objfile (struct objfile *objfile)
4116{
4117 /* If we're about to read full symbols, don't bother with the
4118 indices. In this case we also don't care if some other debug
4119 format is making psymtabs, because they are all about to be
4120 expanded anyway. */
4121 if ((objfile->flags & OBJF_READNOW))
4122 {
4123 int i;
4124
4125 dwarf2_per_objfile->using_index = 1;
4126 create_all_comp_units (objfile);
0e50663e 4127 create_all_type_units (objfile);
7b9f3c50
DE
4128 dwarf2_per_objfile->quick_file_names_table =
4129 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4130
1fd400ff 4131 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4132 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4133 {
8832e7e3 4134 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4135
e254ef6a
DE
4136 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4137 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4138 }
4139
4140 /* Return 1 so that gdb sees the "quick" functions. However,
4141 these functions will be no-ops because we will have expanded
4142 all symtabs. */
4143 return 1;
4144 }
4145
4146 if (dwarf2_read_index (objfile))
4147 return 1;
4148
9291a0cd
TT
4149 return 0;
4150}
4151
4152\f
4153
dce234bc
PP
4154/* Build a partial symbol table. */
4155
4156void
f29dff0a 4157dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4158{
c9bf0622
TT
4159 volatile struct gdb_exception except;
4160
f29dff0a 4161 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4162 {
4163 init_psymbol_list (objfile, 1024);
4164 }
4165
c9bf0622
TT
4166 TRY_CATCH (except, RETURN_MASK_ERROR)
4167 {
4168 /* This isn't really ideal: all the data we allocate on the
4169 objfile's obstack is still uselessly kept around. However,
4170 freeing it seems unsafe. */
4171 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4172
4173 dwarf2_build_psymtabs_hard (objfile);
4174 discard_cleanups (cleanups);
4175 }
4176 if (except.reason < 0)
4177 exception_print (gdb_stderr, except);
c906108c 4178}
c906108c 4179
1ce1cefd
DE
4180/* Return the total length of the CU described by HEADER. */
4181
4182static unsigned int
4183get_cu_length (const struct comp_unit_head *header)
4184{
4185 return header->initial_length_size + header->length;
4186}
4187
45452591
DE
4188/* Return TRUE if OFFSET is within CU_HEADER. */
4189
4190static inline int
b64f50a1 4191offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4192{
b64f50a1 4193 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4194 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4195
b64f50a1 4196 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4197}
4198
3b80fe9b
DE
4199/* Find the base address of the compilation unit for range lists and
4200 location lists. It will normally be specified by DW_AT_low_pc.
4201 In DWARF-3 draft 4, the base address could be overridden by
4202 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4203 compilation units with discontinuous ranges. */
4204
4205static void
4206dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4207{
4208 struct attribute *attr;
4209
4210 cu->base_known = 0;
4211 cu->base_address = 0;
4212
4213 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4214 if (attr)
4215 {
31aa7e4e 4216 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4217 cu->base_known = 1;
4218 }
4219 else
4220 {
4221 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4222 if (attr)
4223 {
31aa7e4e 4224 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4225 cu->base_known = 1;
4226 }
4227 }
4228}
4229
93311388
DE
4230/* Read in the comp unit header information from the debug_info at info_ptr.
4231 NOTE: This leaves members offset, first_die_offset to be filled in
4232 by the caller. */
107d2387 4233
d521ce57 4234static const gdb_byte *
107d2387 4235read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 4236 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
4237{
4238 int signed_addr;
891d2f0b 4239 unsigned int bytes_read;
c764a876
DE
4240
4241 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4242 cu_header->initial_length_size = bytes_read;
4243 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4244 info_ptr += bytes_read;
107d2387
AC
4245 cu_header->version = read_2_bytes (abfd, info_ptr);
4246 info_ptr += 2;
b64f50a1
JK
4247 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4248 &bytes_read);
613e1657 4249 info_ptr += bytes_read;
107d2387
AC
4250 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4251 info_ptr += 1;
4252 signed_addr = bfd_get_sign_extend_vma (abfd);
4253 if (signed_addr < 0)
8e65ff28 4254 internal_error (__FILE__, __LINE__,
e2e0b3e5 4255 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4256 cu_header->signed_addr_p = signed_addr;
c764a876 4257
107d2387
AC
4258 return info_ptr;
4259}
4260
36586728
TT
4261/* Helper function that returns the proper abbrev section for
4262 THIS_CU. */
4263
4264static struct dwarf2_section_info *
4265get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4266{
4267 struct dwarf2_section_info *abbrev;
4268
4269 if (this_cu->is_dwz)
4270 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4271 else
4272 abbrev = &dwarf2_per_objfile->abbrev;
4273
4274 return abbrev;
4275}
4276
9ff913ba
DE
4277/* Subroutine of read_and_check_comp_unit_head and
4278 read_and_check_type_unit_head to simplify them.
4279 Perform various error checking on the header. */
4280
4281static void
4282error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4283 struct dwarf2_section_info *section,
4284 struct dwarf2_section_info *abbrev_section)
9ff913ba 4285{
a32a8923
DE
4286 bfd *abfd = get_section_bfd_owner (section);
4287 const char *filename = get_section_file_name (section);
9ff913ba
DE
4288
4289 if (header->version != 2 && header->version != 3 && header->version != 4)
4290 error (_("Dwarf Error: wrong version in compilation unit header "
4291 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4292 filename);
4293
b64f50a1 4294 if (header->abbrev_offset.sect_off
36586728 4295 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4296 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4297 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4298 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4299 filename);
4300
4301 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4302 avoid potential 32-bit overflow. */
1ce1cefd 4303 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4304 > section->size)
4305 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4306 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4307 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4308 filename);
4309}
4310
4311/* Read in a CU/TU header and perform some basic error checking.
4312 The contents of the header are stored in HEADER.
4313 The result is a pointer to the start of the first DIE. */
adabb602 4314
d521ce57 4315static const gdb_byte *
9ff913ba
DE
4316read_and_check_comp_unit_head (struct comp_unit_head *header,
4317 struct dwarf2_section_info *section,
4bdcc0c1 4318 struct dwarf2_section_info *abbrev_section,
d521ce57 4319 const gdb_byte *info_ptr,
9ff913ba 4320 int is_debug_types_section)
72bf9492 4321{
d521ce57 4322 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4323 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4324
b64f50a1 4325 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4326
72bf9492
DJ
4327 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4328
460c1c54
CC
4329 /* If we're reading a type unit, skip over the signature and
4330 type_offset fields. */
b0df02fd 4331 if (is_debug_types_section)
460c1c54
CC
4332 info_ptr += 8 /*signature*/ + header->offset_size;
4333
b64f50a1 4334 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4335
4bdcc0c1 4336 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4337
4338 return info_ptr;
4339}
4340
348e048f
DE
4341/* Read in the types comp unit header information from .debug_types entry at
4342 types_ptr. The result is a pointer to one past the end of the header. */
4343
d521ce57 4344static const gdb_byte *
9ff913ba
DE
4345read_and_check_type_unit_head (struct comp_unit_head *header,
4346 struct dwarf2_section_info *section,
4bdcc0c1 4347 struct dwarf2_section_info *abbrev_section,
d521ce57 4348 const gdb_byte *info_ptr,
dee91e82
DE
4349 ULONGEST *signature,
4350 cu_offset *type_offset_in_tu)
348e048f 4351{
d521ce57 4352 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4353 bfd *abfd = get_section_bfd_owner (section);
348e048f 4354
b64f50a1 4355 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4356
9ff913ba 4357 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4358
9ff913ba
DE
4359 /* If we're reading a type unit, skip over the signature and
4360 type_offset fields. */
4361 if (signature != NULL)
4362 *signature = read_8_bytes (abfd, info_ptr);
4363 info_ptr += 8;
dee91e82
DE
4364 if (type_offset_in_tu != NULL)
4365 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4366 header->offset_size);
9ff913ba
DE
4367 info_ptr += header->offset_size;
4368
b64f50a1 4369 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4370
4bdcc0c1 4371 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4372
4373 return info_ptr;
348e048f
DE
4374}
4375
f4dc4d17
DE
4376/* Fetch the abbreviation table offset from a comp or type unit header. */
4377
4378static sect_offset
4379read_abbrev_offset (struct dwarf2_section_info *section,
4380 sect_offset offset)
4381{
a32a8923 4382 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4383 const gdb_byte *info_ptr;
f4dc4d17
DE
4384 unsigned int length, initial_length_size, offset_size;
4385 sect_offset abbrev_offset;
4386
4387 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4388 info_ptr = section->buffer + offset.sect_off;
4389 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4390 offset_size = initial_length_size == 4 ? 4 : 8;
4391 info_ptr += initial_length_size + 2 /*version*/;
4392 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4393 return abbrev_offset;
4394}
4395
aaa75496
JB
4396/* Allocate a new partial symtab for file named NAME and mark this new
4397 partial symtab as being an include of PST. */
4398
4399static void
d521ce57 4400dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4401 struct objfile *objfile)
4402{
4403 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4404
fbd9ab74
JK
4405 if (!IS_ABSOLUTE_PATH (subpst->filename))
4406 {
4407 /* It shares objfile->objfile_obstack. */
4408 subpst->dirname = pst->dirname;
4409 }
4410
aaa75496
JB
4411 subpst->section_offsets = pst->section_offsets;
4412 subpst->textlow = 0;
4413 subpst->texthigh = 0;
4414
4415 subpst->dependencies = (struct partial_symtab **)
4416 obstack_alloc (&objfile->objfile_obstack,
4417 sizeof (struct partial_symtab *));
4418 subpst->dependencies[0] = pst;
4419 subpst->number_of_dependencies = 1;
4420
4421 subpst->globals_offset = 0;
4422 subpst->n_global_syms = 0;
4423 subpst->statics_offset = 0;
4424 subpst->n_static_syms = 0;
4425 subpst->symtab = NULL;
4426 subpst->read_symtab = pst->read_symtab;
4427 subpst->readin = 0;
4428
4429 /* No private part is necessary for include psymtabs. This property
4430 can be used to differentiate between such include psymtabs and
10b3939b 4431 the regular ones. */
58a9656e 4432 subpst->read_symtab_private = NULL;
aaa75496
JB
4433}
4434
4435/* Read the Line Number Program data and extract the list of files
4436 included by the source file represented by PST. Build an include
d85a05f0 4437 partial symtab for each of these included files. */
aaa75496
JB
4438
4439static void
4440dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4441 struct die_info *die,
4442 struct partial_symtab *pst)
aaa75496 4443{
d85a05f0
DJ
4444 struct line_header *lh = NULL;
4445 struct attribute *attr;
aaa75496 4446
d85a05f0
DJ
4447 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4448 if (attr)
3019eac3 4449 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4450 if (lh == NULL)
4451 return; /* No linetable, so no includes. */
4452
c6da4cef 4453 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
f3f5162e 4454 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
aaa75496
JB
4455
4456 free_line_header (lh);
4457}
4458
348e048f 4459static hashval_t
52dc124a 4460hash_signatured_type (const void *item)
348e048f 4461{
52dc124a 4462 const struct signatured_type *sig_type = item;
9a619af0 4463
348e048f 4464 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4465 return sig_type->signature;
348e048f
DE
4466}
4467
4468static int
52dc124a 4469eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f
DE
4470{
4471 const struct signatured_type *lhs = item_lhs;
4472 const struct signatured_type *rhs = item_rhs;
9a619af0 4473
348e048f
DE
4474 return lhs->signature == rhs->signature;
4475}
4476
1fd400ff
TT
4477/* Allocate a hash table for signatured types. */
4478
4479static htab_t
673bfd45 4480allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4481{
4482 return htab_create_alloc_ex (41,
52dc124a
DE
4483 hash_signatured_type,
4484 eq_signatured_type,
1fd400ff
TT
4485 NULL,
4486 &objfile->objfile_obstack,
4487 hashtab_obstack_allocate,
4488 dummy_obstack_deallocate);
4489}
4490
d467dd73 4491/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4492
4493static int
d467dd73 4494add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff
TT
4495{
4496 struct signatured_type *sigt = *slot;
b4dd5633 4497 struct signatured_type ***datap = datum;
1fd400ff 4498
b4dd5633 4499 **datap = sigt;
1fd400ff
TT
4500 ++*datap;
4501
4502 return 1;
4503}
4504
c88ee1f0
DE
4505/* Create the hash table of all entries in the .debug_types
4506 (or .debug_types.dwo) section(s).
4507 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4508 otherwise it is NULL.
4509
4510 The result is a pointer to the hash table or NULL if there are no types.
4511
4512 Note: This function processes DWO files only, not DWP files. */
348e048f 4513
3019eac3
DE
4514static htab_t
4515create_debug_types_hash_table (struct dwo_file *dwo_file,
4516 VEC (dwarf2_section_info_def) *types)
348e048f 4517{
3019eac3 4518 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4519 htab_t types_htab = NULL;
8b70b953
TT
4520 int ix;
4521 struct dwarf2_section_info *section;
4bdcc0c1 4522 struct dwarf2_section_info *abbrev_section;
348e048f 4523
3019eac3
DE
4524 if (VEC_empty (dwarf2_section_info_def, types))
4525 return NULL;
348e048f 4526
4bdcc0c1
DE
4527 abbrev_section = (dwo_file != NULL
4528 ? &dwo_file->sections.abbrev
4529 : &dwarf2_per_objfile->abbrev);
4530
09406207
DE
4531 if (dwarf2_read_debug)
4532 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4533 dwo_file ? ".dwo" : "",
a32a8923 4534 get_section_file_name (abbrev_section));
09406207 4535
8b70b953 4536 for (ix = 0;
3019eac3 4537 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4538 ++ix)
4539 {
3019eac3 4540 bfd *abfd;
d521ce57 4541 const gdb_byte *info_ptr, *end_ptr;
348e048f 4542
8b70b953
TT
4543 dwarf2_read_section (objfile, section);
4544 info_ptr = section->buffer;
348e048f 4545
8b70b953
TT
4546 if (info_ptr == NULL)
4547 continue;
348e048f 4548
3019eac3 4549 /* We can't set abfd until now because the section may be empty or
a32a8923
DE
4550 not present, in which case the bfd is unknown. */
4551 abfd = get_section_bfd_owner (section);
3019eac3 4552
dee91e82
DE
4553 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4554 because we don't need to read any dies: the signature is in the
4555 header. */
8b70b953
TT
4556
4557 end_ptr = info_ptr + section->size;
4558 while (info_ptr < end_ptr)
4559 {
b64f50a1 4560 sect_offset offset;
3019eac3 4561 cu_offset type_offset_in_tu;
8b70b953 4562 ULONGEST signature;
52dc124a 4563 struct signatured_type *sig_type;
3019eac3 4564 struct dwo_unit *dwo_tu;
8b70b953 4565 void **slot;
d521ce57 4566 const gdb_byte *ptr = info_ptr;
9ff913ba 4567 struct comp_unit_head header;
dee91e82 4568 unsigned int length;
348e048f 4569
b64f50a1 4570 offset.sect_off = ptr - section->buffer;
348e048f 4571
8b70b953 4572 /* We need to read the type's signature in order to build the hash
9ff913ba 4573 table, but we don't need anything else just yet. */
348e048f 4574
4bdcc0c1
DE
4575 ptr = read_and_check_type_unit_head (&header, section,
4576 abbrev_section, ptr,
3019eac3 4577 &signature, &type_offset_in_tu);
6caca83c 4578
1ce1cefd 4579 length = get_cu_length (&header);
dee91e82 4580
6caca83c 4581 /* Skip dummy type units. */
dee91e82
DE
4582 if (ptr >= info_ptr + length
4583 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4584 {
1ce1cefd 4585 info_ptr += length;
6caca83c
CC
4586 continue;
4587 }
8b70b953 4588
0349ea22
DE
4589 if (types_htab == NULL)
4590 {
4591 if (dwo_file)
4592 types_htab = allocate_dwo_unit_table (objfile);
4593 else
4594 types_htab = allocate_signatured_type_table (objfile);
4595 }
4596
3019eac3
DE
4597 if (dwo_file)
4598 {
4599 sig_type = NULL;
4600 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4601 struct dwo_unit);
4602 dwo_tu->dwo_file = dwo_file;
4603 dwo_tu->signature = signature;
4604 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4605 dwo_tu->section = section;
3019eac3
DE
4606 dwo_tu->offset = offset;
4607 dwo_tu->length = length;
4608 }
4609 else
4610 {
4611 /* N.B.: type_offset is not usable if this type uses a DWO file.
4612 The real type_offset is in the DWO file. */
4613 dwo_tu = NULL;
4614 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4615 struct signatured_type);
4616 sig_type->signature = signature;
4617 sig_type->type_offset_in_tu = type_offset_in_tu;
4618 sig_type->per_cu.objfile = objfile;
4619 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4620 sig_type->per_cu.section = section;
3019eac3
DE
4621 sig_type->per_cu.offset = offset;
4622 sig_type->per_cu.length = length;
4623 }
8b70b953 4624
3019eac3
DE
4625 slot = htab_find_slot (types_htab,
4626 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4627 INSERT);
8b70b953
TT
4628 gdb_assert (slot != NULL);
4629 if (*slot != NULL)
4630 {
3019eac3
DE
4631 sect_offset dup_offset;
4632
4633 if (dwo_file)
4634 {
4635 const struct dwo_unit *dup_tu = *slot;
4636
4637 dup_offset = dup_tu->offset;
4638 }
4639 else
4640 {
4641 const struct signatured_type *dup_tu = *slot;
4642
4643 dup_offset = dup_tu->per_cu.offset;
4644 }
b3c8eb43 4645
8b70b953 4646 complaint (&symfile_complaints,
c88ee1f0 4647 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4648 " the entry at offset 0x%x, signature %s"),
3019eac3 4649 offset.sect_off, dup_offset.sect_off,
4031ecc5 4650 hex_string (signature));
8b70b953 4651 }
3019eac3 4652 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4653
73be47f5 4654 if (dwarf2_read_debug > 1)
4031ecc5 4655 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4656 offset.sect_off,
4031ecc5 4657 hex_string (signature));
348e048f 4658
dee91e82 4659 info_ptr += length;
8b70b953 4660 }
348e048f
DE
4661 }
4662
3019eac3
DE
4663 return types_htab;
4664}
4665
4666/* Create the hash table of all entries in the .debug_types section,
4667 and initialize all_type_units.
4668 The result is zero if there is an error (e.g. missing .debug_types section),
4669 otherwise non-zero. */
4670
4671static int
4672create_all_type_units (struct objfile *objfile)
4673{
4674 htab_t types_htab;
b4dd5633 4675 struct signatured_type **iter;
3019eac3
DE
4676
4677 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4678 if (types_htab == NULL)
4679 {
4680 dwarf2_per_objfile->signatured_types = NULL;
4681 return 0;
4682 }
4683
348e048f
DE
4684 dwarf2_per_objfile->signatured_types = types_htab;
4685
6aa5f3a6
DE
4686 dwarf2_per_objfile->n_type_units
4687 = dwarf2_per_objfile->n_allocated_type_units
4688 = htab_elements (types_htab);
d467dd73 4689 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
4690 = xmalloc (dwarf2_per_objfile->n_type_units
4691 * sizeof (struct signatured_type *));
d467dd73
DE
4692 iter = &dwarf2_per_objfile->all_type_units[0];
4693 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4694 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4695 == dwarf2_per_objfile->n_type_units);
1fd400ff 4696
348e048f
DE
4697 return 1;
4698}
4699
6aa5f3a6
DE
4700/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4701 If SLOT is non-NULL, it is the entry to use in the hash table.
4702 Otherwise we find one. */
4703
4704static struct signatured_type *
4705add_type_unit (ULONGEST sig, void **slot)
4706{
4707 struct objfile *objfile = dwarf2_per_objfile->objfile;
4708 int n_type_units = dwarf2_per_objfile->n_type_units;
4709 struct signatured_type *sig_type;
4710
4711 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4712 ++n_type_units;
4713 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4714 {
4715 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4716 dwarf2_per_objfile->n_allocated_type_units = 1;
4717 dwarf2_per_objfile->n_allocated_type_units *= 2;
4718 dwarf2_per_objfile->all_type_units
4719 = xrealloc (dwarf2_per_objfile->all_type_units,
4720 dwarf2_per_objfile->n_allocated_type_units
4721 * sizeof (struct signatured_type *));
4722 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4723 }
4724 dwarf2_per_objfile->n_type_units = n_type_units;
4725
4726 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4727 struct signatured_type);
4728 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4729 sig_type->signature = sig;
4730 sig_type->per_cu.is_debug_types = 1;
4731 if (dwarf2_per_objfile->using_index)
4732 {
4733 sig_type->per_cu.v.quick =
4734 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4735 struct dwarf2_per_cu_quick_data);
4736 }
4737
4738 if (slot == NULL)
4739 {
4740 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4741 sig_type, INSERT);
4742 }
4743 gdb_assert (*slot == NULL);
4744 *slot = sig_type;
4745 /* The rest of sig_type must be filled in by the caller. */
4746 return sig_type;
4747}
4748
a2ce51a0
DE
4749/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4750 Fill in SIG_ENTRY with DWO_ENTRY. */
4751
4752static void
4753fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4754 struct signatured_type *sig_entry,
4755 struct dwo_unit *dwo_entry)
4756{
7ee85ab1 4757 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4758 gdb_assert (! sig_entry->per_cu.queued);
4759 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
4760 if (dwarf2_per_objfile->using_index)
4761 {
4762 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4763 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4764 }
4765 else
4766 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0
DE
4767 gdb_assert (sig_entry->signature == dwo_entry->signature);
4768 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4769 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4770 gdb_assert (sig_entry->dwo_unit == NULL);
4771
4772 sig_entry->per_cu.section = dwo_entry->section;
4773 sig_entry->per_cu.offset = dwo_entry->offset;
4774 sig_entry->per_cu.length = dwo_entry->length;
4775 sig_entry->per_cu.reading_dwo_directly = 1;
4776 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4777 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4778 sig_entry->dwo_unit = dwo_entry;
4779}
4780
4781/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4782 If we haven't read the TU yet, create the signatured_type data structure
4783 for a TU to be read in directly from a DWO file, bypassing the stub.
4784 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4785 using .gdb_index, then when reading a CU we want to stay in the DWO file
4786 containing that CU. Otherwise we could end up reading several other DWO
4787 files (due to comdat folding) to process the transitive closure of all the
4788 mentioned TUs, and that can be slow. The current DWO file will have every
4789 type signature that it needs.
a2ce51a0
DE
4790 We only do this for .gdb_index because in the psymtab case we already have
4791 to read all the DWOs to build the type unit groups. */
4792
4793static struct signatured_type *
4794lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4795{
4796 struct objfile *objfile = dwarf2_per_objfile->objfile;
4797 struct dwo_file *dwo_file;
4798 struct dwo_unit find_dwo_entry, *dwo_entry;
4799 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4800 void **slot;
a2ce51a0
DE
4801
4802 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4803
6aa5f3a6
DE
4804 /* If TU skeletons have been removed then we may not have read in any
4805 TUs yet. */
4806 if (dwarf2_per_objfile->signatured_types == NULL)
4807 {
4808 dwarf2_per_objfile->signatured_types
4809 = allocate_signatured_type_table (objfile);
4810 }
a2ce51a0
DE
4811
4812 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
4813 Use the global signatured_types array to do our own comdat-folding
4814 of types. If this is the first time we're reading this TU, and
4815 the TU has an entry in .gdb_index, replace the recorded data from
4816 .gdb_index with this TU. */
a2ce51a0 4817
a2ce51a0 4818 find_sig_entry.signature = sig;
6aa5f3a6
DE
4819 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4820 &find_sig_entry, INSERT);
4821 sig_entry = *slot;
7ee85ab1
DE
4822
4823 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
4824 read. Don't reassign the global entry to point to this DWO if that's
4825 the case. Also note that if the TU is already being read, it may not
4826 have come from a DWO, the program may be a mix of Fission-compiled
4827 code and non-Fission-compiled code. */
4828
4829 /* Have we already tried to read this TU?
4830 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4831 needn't exist in the global table yet). */
4832 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
4833 return sig_entry;
4834
6aa5f3a6
DE
4835 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4836 dwo_unit of the TU itself. */
4837 dwo_file = cu->dwo_unit->dwo_file;
4838
a2ce51a0
DE
4839 /* Ok, this is the first time we're reading this TU. */
4840 if (dwo_file->tus == NULL)
4841 return NULL;
4842 find_dwo_entry.signature = sig;
4843 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4844 if (dwo_entry == NULL)
4845 return NULL;
4846
6aa5f3a6
DE
4847 /* If the global table doesn't have an entry for this TU, add one. */
4848 if (sig_entry == NULL)
4849 sig_entry = add_type_unit (sig, slot);
4850
a2ce51a0 4851 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 4852 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
4853 return sig_entry;
4854}
4855
a2ce51a0
DE
4856/* Subroutine of lookup_signatured_type.
4857 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
4858 then try the DWP file. If the TU stub (skeleton) has been removed then
4859 it won't be in .gdb_index. */
a2ce51a0
DE
4860
4861static struct signatured_type *
4862lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4863{
4864 struct objfile *objfile = dwarf2_per_objfile->objfile;
4865 struct dwp_file *dwp_file = get_dwp_file ();
4866 struct dwo_unit *dwo_entry;
4867 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4868 void **slot;
a2ce51a0
DE
4869
4870 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4871 gdb_assert (dwp_file != NULL);
4872
6aa5f3a6
DE
4873 /* If TU skeletons have been removed then we may not have read in any
4874 TUs yet. */
4875 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 4876 {
6aa5f3a6
DE
4877 dwarf2_per_objfile->signatured_types
4878 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
4879 }
4880
6aa5f3a6
DE
4881 find_sig_entry.signature = sig;
4882 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4883 &find_sig_entry, INSERT);
4884 sig_entry = *slot;
4885
4886 /* Have we already tried to read this TU?
4887 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4888 needn't exist in the global table yet). */
4889 if (sig_entry != NULL)
4890 return sig_entry;
4891
a2ce51a0
DE
4892 if (dwp_file->tus == NULL)
4893 return NULL;
57d63ce2
DE
4894 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4895 sig, 1 /* is_debug_types */);
a2ce51a0
DE
4896 if (dwo_entry == NULL)
4897 return NULL;
4898
6aa5f3a6 4899 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
4900 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4901
a2ce51a0
DE
4902 return sig_entry;
4903}
4904
380bca97 4905/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
4906 Returns NULL if signature SIG is not present in the table.
4907 It is up to the caller to complain about this. */
348e048f
DE
4908
4909static struct signatured_type *
a2ce51a0 4910lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 4911{
a2ce51a0
DE
4912 if (cu->dwo_unit
4913 && dwarf2_per_objfile->using_index)
4914 {
4915 /* We're in a DWO/DWP file, and we're using .gdb_index.
4916 These cases require special processing. */
4917 if (get_dwp_file () == NULL)
4918 return lookup_dwo_signatured_type (cu, sig);
4919 else
4920 return lookup_dwp_signatured_type (cu, sig);
4921 }
4922 else
4923 {
4924 struct signatured_type find_entry, *entry;
348e048f 4925
a2ce51a0
DE
4926 if (dwarf2_per_objfile->signatured_types == NULL)
4927 return NULL;
4928 find_entry.signature = sig;
4929 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4930 return entry;
4931 }
348e048f 4932}
42e7ad6c
DE
4933\f
4934/* Low level DIE reading support. */
348e048f 4935
d85a05f0
DJ
4936/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4937
4938static void
4939init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 4940 struct dwarf2_cu *cu,
3019eac3
DE
4941 struct dwarf2_section_info *section,
4942 struct dwo_file *dwo_file)
d85a05f0 4943{
fceca515 4944 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 4945 reader->abfd = get_section_bfd_owner (section);
d85a05f0 4946 reader->cu = cu;
3019eac3 4947 reader->dwo_file = dwo_file;
dee91e82
DE
4948 reader->die_section = section;
4949 reader->buffer = section->buffer;
f664829e 4950 reader->buffer_end = section->buffer + section->size;
a2ce51a0 4951 reader->comp_dir = NULL;
d85a05f0
DJ
4952}
4953
b0c7bfa9
DE
4954/* Subroutine of init_cutu_and_read_dies to simplify it.
4955 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4956 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4957 already.
4958
4959 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4960 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
4961 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4962 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
4963 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
4964 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
4965 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4966 are filled in with the info of the DIE from the DWO file.
4967 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4968 provided an abbrev table to use.
4969 The result is non-zero if a valid (non-dummy) DIE was found. */
4970
4971static int
4972read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4973 struct dwo_unit *dwo_unit,
4974 int abbrev_table_provided,
4975 struct die_info *stub_comp_unit_die,
a2ce51a0 4976 const char *stub_comp_dir,
b0c7bfa9 4977 struct die_reader_specs *result_reader,
d521ce57 4978 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
4979 struct die_info **result_comp_unit_die,
4980 int *result_has_children)
4981{
4982 struct objfile *objfile = dwarf2_per_objfile->objfile;
4983 struct dwarf2_cu *cu = this_cu->cu;
4984 struct dwarf2_section_info *section;
4985 bfd *abfd;
d521ce57 4986 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
4987 ULONGEST signature; /* Or dwo_id. */
4988 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4989 int i,num_extra_attrs;
4990 struct dwarf2_section_info *dwo_abbrev_section;
4991 struct attribute *attr;
4992 struct die_info *comp_unit_die;
4993
b0aeadb3
DE
4994 /* At most one of these may be provided. */
4995 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 4996
b0c7bfa9
DE
4997 /* These attributes aren't processed until later:
4998 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
4999 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5000 referenced later. However, these attributes are found in the stub
5001 which we won't have later. In order to not impose this complication
5002 on the rest of the code, we read them here and copy them to the
5003 DWO CU/TU die. */
b0c7bfa9
DE
5004
5005 stmt_list = NULL;
5006 low_pc = NULL;
5007 high_pc = NULL;
5008 ranges = NULL;
5009 comp_dir = NULL;
5010
5011 if (stub_comp_unit_die != NULL)
5012 {
5013 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5014 DWO file. */
5015 if (! this_cu->is_debug_types)
5016 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5017 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5018 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5019 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5020 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5021
5022 /* There should be a DW_AT_addr_base attribute here (if needed).
5023 We need the value before we can process DW_FORM_GNU_addr_index. */
5024 cu->addr_base = 0;
5025 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5026 if (attr)
5027 cu->addr_base = DW_UNSND (attr);
5028
5029 /* There should be a DW_AT_ranges_base attribute here (if needed).
5030 We need the value before we can process DW_AT_ranges. */
5031 cu->ranges_base = 0;
5032 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5033 if (attr)
5034 cu->ranges_base = DW_UNSND (attr);
5035 }
a2ce51a0
DE
5036 else if (stub_comp_dir != NULL)
5037 {
5038 /* Reconstruct the comp_dir attribute to simplify the code below. */
5039 comp_dir = (struct attribute *)
5040 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5041 comp_dir->name = DW_AT_comp_dir;
5042 comp_dir->form = DW_FORM_string;
5043 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5044 DW_STRING (comp_dir) = stub_comp_dir;
5045 }
b0c7bfa9
DE
5046
5047 /* Set up for reading the DWO CU/TU. */
5048 cu->dwo_unit = dwo_unit;
5049 section = dwo_unit->section;
5050 dwarf2_read_section (objfile, section);
a32a8923 5051 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5052 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5053 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5054 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5055
5056 if (this_cu->is_debug_types)
5057 {
5058 ULONGEST header_signature;
5059 cu_offset type_offset_in_tu;
5060 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5061
5062 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5063 dwo_abbrev_section,
5064 info_ptr,
5065 &header_signature,
5066 &type_offset_in_tu);
a2ce51a0
DE
5067 /* This is not an assert because it can be caused by bad debug info. */
5068 if (sig_type->signature != header_signature)
5069 {
5070 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5071 " TU at offset 0x%x [in module %s]"),
5072 hex_string (sig_type->signature),
5073 hex_string (header_signature),
5074 dwo_unit->offset.sect_off,
5075 bfd_get_filename (abfd));
5076 }
b0c7bfa9
DE
5077 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5078 /* For DWOs coming from DWP files, we don't know the CU length
5079 nor the type's offset in the TU until now. */
5080 dwo_unit->length = get_cu_length (&cu->header);
5081 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5082
5083 /* Establish the type offset that can be used to lookup the type.
5084 For DWO files, we don't know it until now. */
5085 sig_type->type_offset_in_section.sect_off =
5086 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5087 }
5088 else
5089 {
5090 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5091 dwo_abbrev_section,
5092 info_ptr, 0);
5093 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5094 /* For DWOs coming from DWP files, we don't know the CU length
5095 until now. */
5096 dwo_unit->length = get_cu_length (&cu->header);
5097 }
5098
02142a6c
DE
5099 /* Replace the CU's original abbrev table with the DWO's.
5100 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5101 if (abbrev_table_provided)
5102 {
5103 /* Don't free the provided abbrev table, the caller of
5104 init_cutu_and_read_dies owns it. */
5105 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5106 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5107 make_cleanup (dwarf2_free_abbrev_table, cu);
5108 }
5109 else
5110 {
5111 dwarf2_free_abbrev_table (cu);
5112 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5113 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5114 }
5115
5116 /* Read in the die, but leave space to copy over the attributes
5117 from the stub. This has the benefit of simplifying the rest of
5118 the code - all the work to maintain the illusion of a single
5119 DW_TAG_{compile,type}_unit DIE is done here. */
5120 num_extra_attrs = ((stmt_list != NULL)
5121 + (low_pc != NULL)
5122 + (high_pc != NULL)
5123 + (ranges != NULL)
5124 + (comp_dir != NULL));
5125 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5126 result_has_children, num_extra_attrs);
5127
5128 /* Copy over the attributes from the stub to the DIE we just read in. */
5129 comp_unit_die = *result_comp_unit_die;
5130 i = comp_unit_die->num_attrs;
5131 if (stmt_list != NULL)
5132 comp_unit_die->attrs[i++] = *stmt_list;
5133 if (low_pc != NULL)
5134 comp_unit_die->attrs[i++] = *low_pc;
5135 if (high_pc != NULL)
5136 comp_unit_die->attrs[i++] = *high_pc;
5137 if (ranges != NULL)
5138 comp_unit_die->attrs[i++] = *ranges;
5139 if (comp_dir != NULL)
5140 comp_unit_die->attrs[i++] = *comp_dir;
5141 comp_unit_die->num_attrs += num_extra_attrs;
5142
bf6af496
DE
5143 if (dwarf2_die_debug)
5144 {
5145 fprintf_unfiltered (gdb_stdlog,
5146 "Read die from %s@0x%x of %s:\n",
a32a8923 5147 get_section_name (section),
bf6af496
DE
5148 (unsigned) (begin_info_ptr - section->buffer),
5149 bfd_get_filename (abfd));
5150 dump_die (comp_unit_die, dwarf2_die_debug);
5151 }
5152
a2ce51a0
DE
5153 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5154 TUs by skipping the stub and going directly to the entry in the DWO file.
5155 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5156 to get it via circuitous means. Blech. */
5157 if (comp_dir != NULL)
5158 result_reader->comp_dir = DW_STRING (comp_dir);
5159
b0c7bfa9
DE
5160 /* Skip dummy compilation units. */
5161 if (info_ptr >= begin_info_ptr + dwo_unit->length
5162 || peek_abbrev_code (abfd, info_ptr) == 0)
5163 return 0;
5164
5165 *result_info_ptr = info_ptr;
5166 return 1;
5167}
5168
5169/* Subroutine of init_cutu_and_read_dies to simplify it.
5170 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5171 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5172
5173static struct dwo_unit *
5174lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5175 struct die_info *comp_unit_die)
5176{
5177 struct dwarf2_cu *cu = this_cu->cu;
5178 struct attribute *attr;
5179 ULONGEST signature;
5180 struct dwo_unit *dwo_unit;
5181 const char *comp_dir, *dwo_name;
5182
a2ce51a0
DE
5183 gdb_assert (cu != NULL);
5184
b0c7bfa9
DE
5185 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5186 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5187 gdb_assert (attr != NULL);
5188 dwo_name = DW_STRING (attr);
5189 comp_dir = NULL;
5190 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5191 if (attr)
5192 comp_dir = DW_STRING (attr);
5193
5194 if (this_cu->is_debug_types)
5195 {
5196 struct signatured_type *sig_type;
5197
5198 /* Since this_cu is the first member of struct signatured_type,
5199 we can go from a pointer to one to a pointer to the other. */
5200 sig_type = (struct signatured_type *) this_cu;
5201 signature = sig_type->signature;
5202 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5203 }
5204 else
5205 {
5206 struct attribute *attr;
5207
5208 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5209 if (! attr)
5210 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5211 " [in module %s]"),
4262abfb 5212 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5213 signature = DW_UNSND (attr);
5214 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5215 signature);
5216 }
5217
b0c7bfa9
DE
5218 return dwo_unit;
5219}
5220
a2ce51a0 5221/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5222 See it for a description of the parameters.
5223 Read a TU directly from a DWO file, bypassing the stub.
5224
5225 Note: This function could be a little bit simpler if we shared cleanups
5226 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5227 to do, so we keep this function self-contained. Or we could move this
5228 into our caller, but it's complex enough already. */
a2ce51a0
DE
5229
5230static void
6aa5f3a6
DE
5231init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5232 int use_existing_cu, int keep,
a2ce51a0
DE
5233 die_reader_func_ftype *die_reader_func,
5234 void *data)
5235{
5236 struct dwarf2_cu *cu;
5237 struct signatured_type *sig_type;
6aa5f3a6 5238 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5239 struct die_reader_specs reader;
5240 const gdb_byte *info_ptr;
5241 struct die_info *comp_unit_die;
5242 int has_children;
5243
5244 /* Verify we can do the following downcast, and that we have the
5245 data we need. */
5246 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5247 sig_type = (struct signatured_type *) this_cu;
5248 gdb_assert (sig_type->dwo_unit != NULL);
5249
5250 cleanups = make_cleanup (null_cleanup, NULL);
5251
6aa5f3a6
DE
5252 if (use_existing_cu && this_cu->cu != NULL)
5253 {
5254 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5255 cu = this_cu->cu;
5256 /* There's no need to do the rereading_dwo_cu handling that
5257 init_cutu_and_read_dies does since we don't read the stub. */
5258 }
5259 else
5260 {
5261 /* If !use_existing_cu, this_cu->cu must be NULL. */
5262 gdb_assert (this_cu->cu == NULL);
5263 cu = xmalloc (sizeof (*cu));
5264 init_one_comp_unit (cu, this_cu);
5265 /* If an error occurs while loading, release our storage. */
5266 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5267 }
5268
5269 /* A future optimization, if needed, would be to use an existing
5270 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5271 could share abbrev tables. */
a2ce51a0
DE
5272
5273 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5274 0 /* abbrev_table_provided */,
5275 NULL /* stub_comp_unit_die */,
5276 sig_type->dwo_unit->dwo_file->comp_dir,
5277 &reader, &info_ptr,
5278 &comp_unit_die, &has_children) == 0)
5279 {
5280 /* Dummy die. */
5281 do_cleanups (cleanups);
5282 return;
5283 }
5284
5285 /* All the "real" work is done here. */
5286 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5287
6aa5f3a6 5288 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5289 but the alternative is making the latter more complex.
5290 This function is only for the special case of using DWO files directly:
5291 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5292 if (free_cu_cleanup != NULL)
a2ce51a0 5293 {
6aa5f3a6
DE
5294 if (keep)
5295 {
5296 /* We've successfully allocated this compilation unit. Let our
5297 caller clean it up when finished with it. */
5298 discard_cleanups (free_cu_cleanup);
a2ce51a0 5299
6aa5f3a6
DE
5300 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5301 So we have to manually free the abbrev table. */
5302 dwarf2_free_abbrev_table (cu);
a2ce51a0 5303
6aa5f3a6
DE
5304 /* Link this CU into read_in_chain. */
5305 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5306 dwarf2_per_objfile->read_in_chain = this_cu;
5307 }
5308 else
5309 do_cleanups (free_cu_cleanup);
a2ce51a0 5310 }
a2ce51a0
DE
5311
5312 do_cleanups (cleanups);
5313}
5314
fd820528 5315/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5316 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5317
f4dc4d17
DE
5318 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5319 Otherwise the table specified in the comp unit header is read in and used.
5320 This is an optimization for when we already have the abbrev table.
5321
dee91e82
DE
5322 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5323 Otherwise, a new CU is allocated with xmalloc.
5324
5325 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5326 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5327
5328 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5329 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5330
70221824 5331static void
fd820528 5332init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5333 struct abbrev_table *abbrev_table,
fd820528
DE
5334 int use_existing_cu, int keep,
5335 die_reader_func_ftype *die_reader_func,
5336 void *data)
c906108c 5337{
dee91e82 5338 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5339 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5340 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5341 struct dwarf2_cu *cu;
d521ce57 5342 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5343 struct die_reader_specs reader;
d85a05f0 5344 struct die_info *comp_unit_die;
dee91e82 5345 int has_children;
d85a05f0 5346 struct attribute *attr;
365156ad 5347 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5348 struct signatured_type *sig_type = NULL;
4bdcc0c1 5349 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5350 /* Non-zero if CU currently points to a DWO file and we need to
5351 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5352 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5353 int rereading_dwo_cu = 0;
c906108c 5354
09406207
DE
5355 if (dwarf2_die_debug)
5356 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5357 this_cu->is_debug_types ? "type" : "comp",
5358 this_cu->offset.sect_off);
5359
dee91e82
DE
5360 if (use_existing_cu)
5361 gdb_assert (keep);
23745b47 5362
a2ce51a0
DE
5363 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5364 file (instead of going through the stub), short-circuit all of this. */
5365 if (this_cu->reading_dwo_directly)
5366 {
5367 /* Narrow down the scope of possibilities to have to understand. */
5368 gdb_assert (this_cu->is_debug_types);
5369 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5370 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5371 die_reader_func, data);
a2ce51a0
DE
5372 return;
5373 }
5374
dee91e82
DE
5375 cleanups = make_cleanup (null_cleanup, NULL);
5376
5377 /* This is cheap if the section is already read in. */
5378 dwarf2_read_section (objfile, section);
5379
5380 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5381
5382 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5383
5384 if (use_existing_cu && this_cu->cu != NULL)
5385 {
5386 cu = this_cu->cu;
42e7ad6c
DE
5387 /* If this CU is from a DWO file we need to start over, we need to
5388 refetch the attributes from the skeleton CU.
5389 This could be optimized by retrieving those attributes from when we
5390 were here the first time: the previous comp_unit_die was stored in
5391 comp_unit_obstack. But there's no data yet that we need this
5392 optimization. */
5393 if (cu->dwo_unit != NULL)
5394 rereading_dwo_cu = 1;
dee91e82
DE
5395 }
5396 else
5397 {
5398 /* If !use_existing_cu, this_cu->cu must be NULL. */
5399 gdb_assert (this_cu->cu == NULL);
dee91e82
DE
5400 cu = xmalloc (sizeof (*cu));
5401 init_one_comp_unit (cu, this_cu);
dee91e82 5402 /* If an error occurs while loading, release our storage. */
365156ad 5403 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5404 }
dee91e82 5405
b0c7bfa9 5406 /* Get the header. */
42e7ad6c
DE
5407 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5408 {
5409 /* We already have the header, there's no need to read it in again. */
5410 info_ptr += cu->header.first_die_offset.cu_off;
5411 }
5412 else
5413 {
3019eac3 5414 if (this_cu->is_debug_types)
dee91e82
DE
5415 {
5416 ULONGEST signature;
42e7ad6c 5417 cu_offset type_offset_in_tu;
dee91e82 5418
4bdcc0c1
DE
5419 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5420 abbrev_section, info_ptr,
42e7ad6c
DE
5421 &signature,
5422 &type_offset_in_tu);
dee91e82 5423
42e7ad6c
DE
5424 /* Since per_cu is the first member of struct signatured_type,
5425 we can go from a pointer to one to a pointer to the other. */
5426 sig_type = (struct signatured_type *) this_cu;
5427 gdb_assert (sig_type->signature == signature);
5428 gdb_assert (sig_type->type_offset_in_tu.cu_off
5429 == type_offset_in_tu.cu_off);
dee91e82
DE
5430 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5431
42e7ad6c
DE
5432 /* LENGTH has not been set yet for type units if we're
5433 using .gdb_index. */
1ce1cefd 5434 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5435
5436 /* Establish the type offset that can be used to lookup the type. */
5437 sig_type->type_offset_in_section.sect_off =
5438 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5439 }
5440 else
5441 {
4bdcc0c1
DE
5442 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5443 abbrev_section,
5444 info_ptr, 0);
dee91e82
DE
5445
5446 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5447 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5448 }
5449 }
10b3939b 5450
6caca83c 5451 /* Skip dummy compilation units. */
dee91e82 5452 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5453 || peek_abbrev_code (abfd, info_ptr) == 0)
5454 {
dee91e82 5455 do_cleanups (cleanups);
21b2bd31 5456 return;
6caca83c
CC
5457 }
5458
433df2d4
DE
5459 /* If we don't have them yet, read the abbrevs for this compilation unit.
5460 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5461 done. Note that it's important that if the CU had an abbrev table
5462 on entry we don't free it when we're done: Somewhere up the call stack
5463 it may be in use. */
f4dc4d17
DE
5464 if (abbrev_table != NULL)
5465 {
5466 gdb_assert (cu->abbrev_table == NULL);
5467 gdb_assert (cu->header.abbrev_offset.sect_off
5468 == abbrev_table->offset.sect_off);
5469 cu->abbrev_table = abbrev_table;
5470 }
5471 else if (cu->abbrev_table == NULL)
dee91e82 5472 {
4bdcc0c1 5473 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5474 make_cleanup (dwarf2_free_abbrev_table, cu);
5475 }
42e7ad6c
DE
5476 else if (rereading_dwo_cu)
5477 {
5478 dwarf2_free_abbrev_table (cu);
5479 dwarf2_read_abbrevs (cu, abbrev_section);
5480 }
af703f96 5481
dee91e82 5482 /* Read the top level CU/TU die. */
3019eac3 5483 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5484 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5485
b0c7bfa9
DE
5486 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5487 from the DWO file.
5488 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5489 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5490 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5491 if (attr)
5492 {
3019eac3 5493 struct dwo_unit *dwo_unit;
b0c7bfa9 5494 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5495
5496 if (has_children)
6a506a2d
DE
5497 {
5498 complaint (&symfile_complaints,
5499 _("compilation unit with DW_AT_GNU_dwo_name"
5500 " has children (offset 0x%x) [in module %s]"),
5501 this_cu->offset.sect_off, bfd_get_filename (abfd));
5502 }
b0c7bfa9 5503 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5504 if (dwo_unit != NULL)
3019eac3 5505 {
6a506a2d
DE
5506 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5507 abbrev_table != NULL,
a2ce51a0 5508 comp_unit_die, NULL,
6a506a2d
DE
5509 &reader, &info_ptr,
5510 &dwo_comp_unit_die, &has_children) == 0)
5511 {
5512 /* Dummy die. */
5513 do_cleanups (cleanups);
5514 return;
5515 }
5516 comp_unit_die = dwo_comp_unit_die;
5517 }
5518 else
5519 {
5520 /* Yikes, we couldn't find the rest of the DIE, we only have
5521 the stub. A complaint has already been logged. There's
5522 not much more we can do except pass on the stub DIE to
5523 die_reader_func. We don't want to throw an error on bad
5524 debug info. */
3019eac3
DE
5525 }
5526 }
5527
b0c7bfa9 5528 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5529 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5530
b0c7bfa9 5531 /* Done, clean up. */
365156ad 5532 if (free_cu_cleanup != NULL)
348e048f 5533 {
365156ad
TT
5534 if (keep)
5535 {
5536 /* We've successfully allocated this compilation unit. Let our
5537 caller clean it up when finished with it. */
5538 discard_cleanups (free_cu_cleanup);
dee91e82 5539
365156ad
TT
5540 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5541 So we have to manually free the abbrev table. */
5542 dwarf2_free_abbrev_table (cu);
dee91e82 5543
365156ad
TT
5544 /* Link this CU into read_in_chain. */
5545 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5546 dwarf2_per_objfile->read_in_chain = this_cu;
5547 }
5548 else
5549 do_cleanups (free_cu_cleanup);
348e048f 5550 }
365156ad
TT
5551
5552 do_cleanups (cleanups);
dee91e82
DE
5553}
5554
33e80786
DE
5555/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5556 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5557 to have already done the lookup to find the DWO file).
dee91e82
DE
5558
5559 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5560 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5561
5562 We fill in THIS_CU->length.
5563
5564 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5565 linker) then DIE_READER_FUNC will not get called.
5566
5567 THIS_CU->cu is always freed when done.
3019eac3
DE
5568 This is done in order to not leave THIS_CU->cu in a state where we have
5569 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5570
5571static void
5572init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5573 struct dwo_file *dwo_file,
dee91e82
DE
5574 die_reader_func_ftype *die_reader_func,
5575 void *data)
5576{
5577 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5578 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5579 bfd *abfd = get_section_bfd_owner (section);
33e80786 5580 struct dwarf2_section_info *abbrev_section;
dee91e82 5581 struct dwarf2_cu cu;
d521ce57 5582 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5583 struct die_reader_specs reader;
5584 struct cleanup *cleanups;
5585 struct die_info *comp_unit_die;
5586 int has_children;
5587
09406207
DE
5588 if (dwarf2_die_debug)
5589 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5590 this_cu->is_debug_types ? "type" : "comp",
5591 this_cu->offset.sect_off);
5592
dee91e82
DE
5593 gdb_assert (this_cu->cu == NULL);
5594
33e80786
DE
5595 abbrev_section = (dwo_file != NULL
5596 ? &dwo_file->sections.abbrev
5597 : get_abbrev_section_for_cu (this_cu));
5598
dee91e82
DE
5599 /* This is cheap if the section is already read in. */
5600 dwarf2_read_section (objfile, section);
5601
5602 init_one_comp_unit (&cu, this_cu);
5603
5604 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5605
5606 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5607 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5608 abbrev_section, info_ptr,
3019eac3 5609 this_cu->is_debug_types);
dee91e82 5610
1ce1cefd 5611 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5612
5613 /* Skip dummy compilation units. */
5614 if (info_ptr >= begin_info_ptr + this_cu->length
5615 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5616 {
dee91e82 5617 do_cleanups (cleanups);
21b2bd31 5618 return;
93311388 5619 }
72bf9492 5620
dee91e82
DE
5621 dwarf2_read_abbrevs (&cu, abbrev_section);
5622 make_cleanup (dwarf2_free_abbrev_table, &cu);
5623
3019eac3 5624 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5625 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5626
5627 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5628
5629 do_cleanups (cleanups);
5630}
5631
3019eac3
DE
5632/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5633 does not lookup the specified DWO file.
5634 This cannot be used to read DWO files.
dee91e82
DE
5635
5636 THIS_CU->cu is always freed when done.
3019eac3
DE
5637 This is done in order to not leave THIS_CU->cu in a state where we have
5638 to care whether it refers to the "main" CU or the DWO CU.
5639 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5640
5641static void
5642init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5643 die_reader_func_ftype *die_reader_func,
5644 void *data)
5645{
33e80786 5646 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5647}
0018ea6f
DE
5648\f
5649/* Type Unit Groups.
dee91e82 5650
0018ea6f
DE
5651 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5652 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5653 so that all types coming from the same compilation (.o file) are grouped
5654 together. A future step could be to put the types in the same symtab as
5655 the CU the types ultimately came from. */
ff013f42 5656
f4dc4d17
DE
5657static hashval_t
5658hash_type_unit_group (const void *item)
5659{
094b34ac 5660 const struct type_unit_group *tu_group = item;
f4dc4d17 5661
094b34ac 5662 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5663}
348e048f
DE
5664
5665static int
f4dc4d17 5666eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5667{
f4dc4d17
DE
5668 const struct type_unit_group *lhs = item_lhs;
5669 const struct type_unit_group *rhs = item_rhs;
348e048f 5670
094b34ac 5671 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5672}
348e048f 5673
f4dc4d17
DE
5674/* Allocate a hash table for type unit groups. */
5675
5676static htab_t
5677allocate_type_unit_groups_table (void)
5678{
5679 return htab_create_alloc_ex (3,
5680 hash_type_unit_group,
5681 eq_type_unit_group,
5682 NULL,
5683 &dwarf2_per_objfile->objfile->objfile_obstack,
5684 hashtab_obstack_allocate,
5685 dummy_obstack_deallocate);
5686}
dee91e82 5687
f4dc4d17
DE
5688/* Type units that don't have DW_AT_stmt_list are grouped into their own
5689 partial symtabs. We combine several TUs per psymtab to not let the size
5690 of any one psymtab grow too big. */
5691#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5692#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5693
094b34ac 5694/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5695 Create the type_unit_group object used to hold one or more TUs. */
5696
5697static struct type_unit_group *
094b34ac 5698create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5699{
5700 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5701 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5702 struct type_unit_group *tu_group;
f4dc4d17
DE
5703
5704 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5705 struct type_unit_group);
094b34ac 5706 per_cu = &tu_group->per_cu;
f4dc4d17 5707 per_cu->objfile = objfile;
f4dc4d17 5708
094b34ac
DE
5709 if (dwarf2_per_objfile->using_index)
5710 {
5711 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5712 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5713 }
5714 else
5715 {
5716 unsigned int line_offset = line_offset_struct.sect_off;
5717 struct partial_symtab *pst;
5718 char *name;
5719
5720 /* Give the symtab a useful name for debug purposes. */
5721 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5722 name = xstrprintf ("<type_units_%d>",
5723 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5724 else
5725 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5726
5727 pst = create_partial_symtab (per_cu, name);
5728 pst->anonymous = 1;
f4dc4d17 5729
094b34ac
DE
5730 xfree (name);
5731 }
f4dc4d17 5732
094b34ac
DE
5733 tu_group->hash.dwo_unit = cu->dwo_unit;
5734 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5735
5736 return tu_group;
5737}
5738
094b34ac
DE
5739/* Look up the type_unit_group for type unit CU, and create it if necessary.
5740 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5741
5742static struct type_unit_group *
ff39bb5e 5743get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5744{
5745 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5746 struct type_unit_group *tu_group;
5747 void **slot;
5748 unsigned int line_offset;
5749 struct type_unit_group type_unit_group_for_lookup;
5750
5751 if (dwarf2_per_objfile->type_unit_groups == NULL)
5752 {
5753 dwarf2_per_objfile->type_unit_groups =
5754 allocate_type_unit_groups_table ();
5755 }
5756
5757 /* Do we need to create a new group, or can we use an existing one? */
5758
5759 if (stmt_list)
5760 {
5761 line_offset = DW_UNSND (stmt_list);
5762 ++tu_stats->nr_symtab_sharers;
5763 }
5764 else
5765 {
5766 /* Ugh, no stmt_list. Rare, but we have to handle it.
5767 We can do various things here like create one group per TU or
5768 spread them over multiple groups to split up the expansion work.
5769 To avoid worst case scenarios (too many groups or too large groups)
5770 we, umm, group them in bunches. */
5771 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5772 | (tu_stats->nr_stmt_less_type_units
5773 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5774 ++tu_stats->nr_stmt_less_type_units;
5775 }
5776
094b34ac
DE
5777 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5778 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5779 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5780 &type_unit_group_for_lookup, INSERT);
5781 if (*slot != NULL)
5782 {
5783 tu_group = *slot;
5784 gdb_assert (tu_group != NULL);
5785 }
5786 else
5787 {
5788 sect_offset line_offset_struct;
5789
5790 line_offset_struct.sect_off = line_offset;
094b34ac 5791 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5792 *slot = tu_group;
5793 ++tu_stats->nr_symtabs;
5794 }
5795
5796 return tu_group;
5797}
0018ea6f
DE
5798\f
5799/* Partial symbol tables. */
5800
5801/* Create a psymtab named NAME and assign it to PER_CU.
5802
5803 The caller must fill in the following details:
5804 dirname, textlow, texthigh. */
5805
5806static struct partial_symtab *
5807create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5808{
5809 struct objfile *objfile = per_cu->objfile;
5810 struct partial_symtab *pst;
5811
5812 pst = start_psymtab_common (objfile, objfile->section_offsets,
5813 name, 0,
5814 objfile->global_psymbols.next,
5815 objfile->static_psymbols.next);
5816
5817 pst->psymtabs_addrmap_supported = 1;
5818
5819 /* This is the glue that links PST into GDB's symbol API. */
5820 pst->read_symtab_private = per_cu;
5821 pst->read_symtab = dwarf2_read_symtab;
5822 per_cu->v.psymtab = pst;
5823
5824 return pst;
5825}
5826
b93601f3
TT
5827/* The DATA object passed to process_psymtab_comp_unit_reader has this
5828 type. */
5829
5830struct process_psymtab_comp_unit_data
5831{
5832 /* True if we are reading a DW_TAG_partial_unit. */
5833
5834 int want_partial_unit;
5835
5836 /* The "pretend" language that is used if the CU doesn't declare a
5837 language. */
5838
5839 enum language pretend_language;
5840};
5841
0018ea6f
DE
5842/* die_reader_func for process_psymtab_comp_unit. */
5843
5844static void
5845process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5846 const gdb_byte *info_ptr,
0018ea6f
DE
5847 struct die_info *comp_unit_die,
5848 int has_children,
5849 void *data)
5850{
5851 struct dwarf2_cu *cu = reader->cu;
5852 struct objfile *objfile = cu->objfile;
5853 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5854 struct attribute *attr;
5855 CORE_ADDR baseaddr;
5856 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5857 struct partial_symtab *pst;
5858 int has_pc_info;
5859 const char *filename;
b93601f3 5860 struct process_psymtab_comp_unit_data *info = data;
0018ea6f 5861
b93601f3 5862 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
5863 return;
5864
5865 gdb_assert (! per_cu->is_debug_types);
5866
b93601f3 5867 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
5868
5869 cu->list_in_scope = &file_symbols;
5870
5871 /* Allocate a new partial symbol table structure. */
5872 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5873 if (attr == NULL || !DW_STRING (attr))
5874 filename = "";
5875 else
5876 filename = DW_STRING (attr);
5877
5878 pst = create_partial_symtab (per_cu, filename);
5879
5880 /* This must be done before calling dwarf2_build_include_psymtabs. */
5881 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5882 if (attr != NULL)
5883 pst->dirname = DW_STRING (attr);
5884
5885 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5886
5887 dwarf2_find_base_address (comp_unit_die, cu);
5888
5889 /* Possibly set the default values of LOWPC and HIGHPC from
5890 `DW_AT_ranges'. */
5891 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5892 &best_highpc, cu, pst);
5893 if (has_pc_info == 1 && best_lowpc < best_highpc)
5894 /* Store the contiguous range if it is not empty; it can be empty for
5895 CUs with no code. */
5896 addrmap_set_empty (objfile->psymtabs_addrmap,
5897 best_lowpc + baseaddr,
5898 best_highpc + baseaddr - 1, pst);
5899
5900 /* Check if comp unit has_children.
5901 If so, read the rest of the partial symbols from this comp unit.
5902 If not, there's no more debug_info for this comp unit. */
5903 if (has_children)
5904 {
5905 struct partial_die_info *first_die;
5906 CORE_ADDR lowpc, highpc;
5907
5908 lowpc = ((CORE_ADDR) -1);
5909 highpc = ((CORE_ADDR) 0);
5910
5911 first_die = load_partial_dies (reader, info_ptr, 1);
5912
5913 scan_partial_symbols (first_die, &lowpc, &highpc,
5914 ! has_pc_info, cu);
5915
5916 /* If we didn't find a lowpc, set it to highpc to avoid
5917 complaints from `maint check'. */
5918 if (lowpc == ((CORE_ADDR) -1))
5919 lowpc = highpc;
5920
5921 /* If the compilation unit didn't have an explicit address range,
5922 then use the information extracted from its child dies. */
5923 if (! has_pc_info)
5924 {
5925 best_lowpc = lowpc;
5926 best_highpc = highpc;
5927 }
5928 }
5929 pst->textlow = best_lowpc + baseaddr;
5930 pst->texthigh = best_highpc + baseaddr;
5931
5932 pst->n_global_syms = objfile->global_psymbols.next -
5933 (objfile->global_psymbols.list + pst->globals_offset);
5934 pst->n_static_syms = objfile->static_psymbols.next -
5935 (objfile->static_psymbols.list + pst->statics_offset);
5936 sort_pst_symbols (objfile, pst);
5937
5938 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5939 {
5940 int i;
5941 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5942 struct dwarf2_per_cu_data *iter;
5943
5944 /* Fill in 'dependencies' here; we fill in 'users' in a
5945 post-pass. */
5946 pst->number_of_dependencies = len;
5947 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5948 len * sizeof (struct symtab *));
5949 for (i = 0;
5950 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5951 i, iter);
5952 ++i)
5953 pst->dependencies[i] = iter->v.psymtab;
5954
5955 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5956 }
5957
5958 /* Get the list of files included in the current compilation unit,
5959 and build a psymtab for each of them. */
5960 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5961
5962 if (dwarf2_read_debug)
5963 {
5964 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5965
5966 fprintf_unfiltered (gdb_stdlog,
5967 "Psymtab for %s unit @0x%x: %s - %s"
5968 ", %d global, %d static syms\n",
5969 per_cu->is_debug_types ? "type" : "comp",
5970 per_cu->offset.sect_off,
5971 paddress (gdbarch, pst->textlow),
5972 paddress (gdbarch, pst->texthigh),
5973 pst->n_global_syms, pst->n_static_syms);
5974 }
5975}
5976
5977/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5978 Process compilation unit THIS_CU for a psymtab. */
5979
5980static void
5981process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
5982 int want_partial_unit,
5983 enum language pretend_language)
0018ea6f 5984{
b93601f3
TT
5985 struct process_psymtab_comp_unit_data info;
5986
0018ea6f
DE
5987 /* If this compilation unit was already read in, free the
5988 cached copy in order to read it in again. This is
5989 necessary because we skipped some symbols when we first
5990 read in the compilation unit (see load_partial_dies).
5991 This problem could be avoided, but the benefit is unclear. */
5992 if (this_cu->cu != NULL)
5993 free_one_cached_comp_unit (this_cu);
5994
5995 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
5996 info.want_partial_unit = want_partial_unit;
5997 info.pretend_language = pretend_language;
0018ea6f
DE
5998 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5999 process_psymtab_comp_unit_reader,
b93601f3 6000 &info);
0018ea6f
DE
6001
6002 /* Age out any secondary CUs. */
6003 age_cached_comp_units ();
6004}
f4dc4d17
DE
6005
6006/* Reader function for build_type_psymtabs. */
6007
6008static void
6009build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6010 const gdb_byte *info_ptr,
f4dc4d17
DE
6011 struct die_info *type_unit_die,
6012 int has_children,
6013 void *data)
6014{
6015 struct objfile *objfile = dwarf2_per_objfile->objfile;
6016 struct dwarf2_cu *cu = reader->cu;
6017 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6018 struct signatured_type *sig_type;
f4dc4d17
DE
6019 struct type_unit_group *tu_group;
6020 struct attribute *attr;
6021 struct partial_die_info *first_die;
6022 CORE_ADDR lowpc, highpc;
6023 struct partial_symtab *pst;
6024
6025 gdb_assert (data == NULL);
0186c6a7
DE
6026 gdb_assert (per_cu->is_debug_types);
6027 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6028
6029 if (! has_children)
6030 return;
6031
6032 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6033 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6034
0186c6a7 6035 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6036
6037 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6038 cu->list_in_scope = &file_symbols;
6039 pst = create_partial_symtab (per_cu, "");
6040 pst->anonymous = 1;
6041
6042 first_die = load_partial_dies (reader, info_ptr, 1);
6043
6044 lowpc = (CORE_ADDR) -1;
6045 highpc = (CORE_ADDR) 0;
6046 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6047
6048 pst->n_global_syms = objfile->global_psymbols.next -
6049 (objfile->global_psymbols.list + pst->globals_offset);
6050 pst->n_static_syms = objfile->static_psymbols.next -
6051 (objfile->static_psymbols.list + pst->statics_offset);
5c80ed9d 6052 sort_pst_symbols (objfile, pst);
f4dc4d17
DE
6053}
6054
73051182
DE
6055/* Struct used to sort TUs by their abbreviation table offset. */
6056
6057struct tu_abbrev_offset
6058{
6059 struct signatured_type *sig_type;
6060 sect_offset abbrev_offset;
6061};
6062
6063/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6064
6065static int
6066sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6067{
6068 const struct tu_abbrev_offset * const *a = ap;
6069 const struct tu_abbrev_offset * const *b = bp;
6070 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6071 unsigned int boff = (*b)->abbrev_offset.sect_off;
6072
6073 return (aoff > boff) - (aoff < boff);
6074}
6075
6076/* Efficiently read all the type units.
6077 This does the bulk of the work for build_type_psymtabs.
6078
6079 The efficiency is because we sort TUs by the abbrev table they use and
6080 only read each abbrev table once. In one program there are 200K TUs
6081 sharing 8K abbrev tables.
6082
6083 The main purpose of this function is to support building the
6084 dwarf2_per_objfile->type_unit_groups table.
6085 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6086 can collapse the search space by grouping them by stmt_list.
6087 The savings can be significant, in the same program from above the 200K TUs
6088 share 8K stmt_list tables.
6089
6090 FUNC is expected to call get_type_unit_group, which will create the
6091 struct type_unit_group if necessary and add it to
6092 dwarf2_per_objfile->type_unit_groups. */
6093
6094static void
6095build_type_psymtabs_1 (void)
6096{
6097 struct objfile *objfile = dwarf2_per_objfile->objfile;
6098 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6099 struct cleanup *cleanups;
6100 struct abbrev_table *abbrev_table;
6101 sect_offset abbrev_offset;
6102 struct tu_abbrev_offset *sorted_by_abbrev;
6103 struct type_unit_group **iter;
6104 int i;
6105
6106 /* It's up to the caller to not call us multiple times. */
6107 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6108
6109 if (dwarf2_per_objfile->n_type_units == 0)
6110 return;
6111
6112 /* TUs typically share abbrev tables, and there can be way more TUs than
6113 abbrev tables. Sort by abbrev table to reduce the number of times we
6114 read each abbrev table in.
6115 Alternatives are to punt or to maintain a cache of abbrev tables.
6116 This is simpler and efficient enough for now.
6117
6118 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6119 symtab to use). Typically TUs with the same abbrev offset have the same
6120 stmt_list value too so in practice this should work well.
6121
6122 The basic algorithm here is:
6123
6124 sort TUs by abbrev table
6125 for each TU with same abbrev table:
6126 read abbrev table if first user
6127 read TU top level DIE
6128 [IWBN if DWO skeletons had DW_AT_stmt_list]
6129 call FUNC */
6130
6131 if (dwarf2_read_debug)
6132 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6133
6134 /* Sort in a separate table to maintain the order of all_type_units
6135 for .gdb_index: TU indices directly index all_type_units. */
6136 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6137 dwarf2_per_objfile->n_type_units);
6138 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6139 {
6140 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6141
6142 sorted_by_abbrev[i].sig_type = sig_type;
6143 sorted_by_abbrev[i].abbrev_offset =
6144 read_abbrev_offset (sig_type->per_cu.section,
6145 sig_type->per_cu.offset);
6146 }
6147 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6148 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6149 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6150
6151 abbrev_offset.sect_off = ~(unsigned) 0;
6152 abbrev_table = NULL;
6153 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6154
6155 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6156 {
6157 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6158
6159 /* Switch to the next abbrev table if necessary. */
6160 if (abbrev_table == NULL
6161 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6162 {
6163 if (abbrev_table != NULL)
6164 {
6165 abbrev_table_free (abbrev_table);
6166 /* Reset to NULL in case abbrev_table_read_table throws
6167 an error: abbrev_table_free_cleanup will get called. */
6168 abbrev_table = NULL;
6169 }
6170 abbrev_offset = tu->abbrev_offset;
6171 abbrev_table =
6172 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6173 abbrev_offset);
6174 ++tu_stats->nr_uniq_abbrev_tables;
6175 }
6176
6177 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6178 build_type_psymtabs_reader, NULL);
6179 }
6180
73051182 6181 do_cleanups (cleanups);
6aa5f3a6 6182}
73051182 6183
6aa5f3a6
DE
6184/* Print collected type unit statistics. */
6185
6186static void
6187print_tu_stats (void)
6188{
6189 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6190
6191 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6192 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6193 dwarf2_per_objfile->n_type_units);
6194 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6195 tu_stats->nr_uniq_abbrev_tables);
6196 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6197 tu_stats->nr_symtabs);
6198 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6199 tu_stats->nr_symtab_sharers);
6200 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6201 tu_stats->nr_stmt_less_type_units);
6202 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6203 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6204}
6205
f4dc4d17
DE
6206/* Traversal function for build_type_psymtabs. */
6207
6208static int
6209build_type_psymtab_dependencies (void **slot, void *info)
6210{
6211 struct objfile *objfile = dwarf2_per_objfile->objfile;
6212 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6213 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6214 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6215 int len = VEC_length (sig_type_ptr, tu_group->tus);
6216 struct signatured_type *iter;
f4dc4d17
DE
6217 int i;
6218
6219 gdb_assert (len > 0);
0186c6a7 6220 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6221
6222 pst->number_of_dependencies = len;
6223 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6224 len * sizeof (struct psymtab *));
6225 for (i = 0;
0186c6a7 6226 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6227 ++i)
6228 {
0186c6a7
DE
6229 gdb_assert (iter->per_cu.is_debug_types);
6230 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6231 iter->type_unit_group = tu_group;
f4dc4d17
DE
6232 }
6233
0186c6a7 6234 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6235
6236 return 1;
6237}
6238
6239/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6240 Build partial symbol tables for the .debug_types comp-units. */
6241
6242static void
6243build_type_psymtabs (struct objfile *objfile)
6244{
0e50663e 6245 if (! create_all_type_units (objfile))
348e048f
DE
6246 return;
6247
73051182 6248 build_type_psymtabs_1 ();
6aa5f3a6 6249}
f4dc4d17 6250
6aa5f3a6
DE
6251/* Traversal function for process_skeletonless_type_unit.
6252 Read a TU in a DWO file and build partial symbols for it. */
6253
6254static int
6255process_skeletonless_type_unit (void **slot, void *info)
6256{
6257 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6258 struct objfile *objfile = info;
6259 struct signatured_type find_entry, *entry;
6260
6261 /* If this TU doesn't exist in the global table, add it and read it in. */
6262
6263 if (dwarf2_per_objfile->signatured_types == NULL)
6264 {
6265 dwarf2_per_objfile->signatured_types
6266 = allocate_signatured_type_table (objfile);
6267 }
6268
6269 find_entry.signature = dwo_unit->signature;
6270 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6271 INSERT);
6272 /* If we've already seen this type there's nothing to do. What's happening
6273 is we're doing our own version of comdat-folding here. */
6274 if (*slot != NULL)
6275 return 1;
6276
6277 /* This does the job that create_all_type_units would have done for
6278 this TU. */
6279 entry = add_type_unit (dwo_unit->signature, slot);
6280 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6281 *slot = entry;
6282
6283 /* This does the job that build_type_psymtabs_1 would have done. */
6284 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6285 build_type_psymtabs_reader, NULL);
6286
6287 return 1;
6288}
6289
6290/* Traversal function for process_skeletonless_type_units. */
6291
6292static int
6293process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6294{
6295 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6296
6297 if (dwo_file->tus != NULL)
6298 {
6299 htab_traverse_noresize (dwo_file->tus,
6300 process_skeletonless_type_unit, info);
6301 }
6302
6303 return 1;
6304}
6305
6306/* Scan all TUs of DWO files, verifying we've processed them.
6307 This is needed in case a TU was emitted without its skeleton.
6308 Note: This can't be done until we know what all the DWO files are. */
6309
6310static void
6311process_skeletonless_type_units (struct objfile *objfile)
6312{
6313 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6314 if (get_dwp_file () == NULL
6315 && dwarf2_per_objfile->dwo_files != NULL)
6316 {
6317 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6318 process_dwo_file_for_skeletonless_type_units,
6319 objfile);
6320 }
348e048f
DE
6321}
6322
60606b2c
TT
6323/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6324
6325static void
6326psymtabs_addrmap_cleanup (void *o)
6327{
6328 struct objfile *objfile = o;
ec61707d 6329
60606b2c
TT
6330 objfile->psymtabs_addrmap = NULL;
6331}
6332
95554aad
TT
6333/* Compute the 'user' field for each psymtab in OBJFILE. */
6334
6335static void
6336set_partial_user (struct objfile *objfile)
6337{
6338 int i;
6339
6340 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6341 {
8832e7e3 6342 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6343 struct partial_symtab *pst = per_cu->v.psymtab;
6344 int j;
6345
36586728
TT
6346 if (pst == NULL)
6347 continue;
6348
95554aad
TT
6349 for (j = 0; j < pst->number_of_dependencies; ++j)
6350 {
6351 /* Set the 'user' field only if it is not already set. */
6352 if (pst->dependencies[j]->user == NULL)
6353 pst->dependencies[j]->user = pst;
6354 }
6355 }
6356}
6357
93311388
DE
6358/* Build the partial symbol table by doing a quick pass through the
6359 .debug_info and .debug_abbrev sections. */
72bf9492 6360
93311388 6361static void
c67a9c90 6362dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6363{
60606b2c
TT
6364 struct cleanup *back_to, *addrmap_cleanup;
6365 struct obstack temp_obstack;
21b2bd31 6366 int i;
93311388 6367
45cfd468
DE
6368 if (dwarf2_read_debug)
6369 {
6370 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6371 objfile_name (objfile));
45cfd468
DE
6372 }
6373
98bfdba5
PA
6374 dwarf2_per_objfile->reading_partial_symbols = 1;
6375
be391dca 6376 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6377
93311388
DE
6378 /* Any cached compilation units will be linked by the per-objfile
6379 read_in_chain. Make sure to free them when we're done. */
6380 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6381
348e048f
DE
6382 build_type_psymtabs (objfile);
6383
93311388 6384 create_all_comp_units (objfile);
c906108c 6385
60606b2c
TT
6386 /* Create a temporary address map on a temporary obstack. We later
6387 copy this to the final obstack. */
6388 obstack_init (&temp_obstack);
6389 make_cleanup_obstack_free (&temp_obstack);
6390 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6391 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6392
21b2bd31 6393 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6394 {
8832e7e3 6395 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6396
b93601f3 6397 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6398 }
ff013f42 6399
6aa5f3a6
DE
6400 /* This has to wait until we read the CUs, we need the list of DWOs. */
6401 process_skeletonless_type_units (objfile);
6402
6403 /* Now that all TUs have been processed we can fill in the dependencies. */
6404 if (dwarf2_per_objfile->type_unit_groups != NULL)
6405 {
6406 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6407 build_type_psymtab_dependencies, NULL);
6408 }
6409
6410 if (dwarf2_read_debug)
6411 print_tu_stats ();
6412
95554aad
TT
6413 set_partial_user (objfile);
6414
ff013f42
JK
6415 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6416 &objfile->objfile_obstack);
60606b2c 6417 discard_cleanups (addrmap_cleanup);
ff013f42 6418
ae038cb0 6419 do_cleanups (back_to);
45cfd468
DE
6420
6421 if (dwarf2_read_debug)
6422 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6423 objfile_name (objfile));
ae038cb0
DJ
6424}
6425
3019eac3 6426/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6427
6428static void
dee91e82 6429load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6430 const gdb_byte *info_ptr,
dee91e82
DE
6431 struct die_info *comp_unit_die,
6432 int has_children,
6433 void *data)
ae038cb0 6434{
dee91e82 6435 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6436
95554aad 6437 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6438
ae038cb0
DJ
6439 /* Check if comp unit has_children.
6440 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6441 If not, there's no more debug_info for this comp unit. */
d85a05f0 6442 if (has_children)
dee91e82
DE
6443 load_partial_dies (reader, info_ptr, 0);
6444}
98bfdba5 6445
dee91e82
DE
6446/* Load the partial DIEs for a secondary CU into memory.
6447 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6448
dee91e82
DE
6449static void
6450load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6451{
f4dc4d17
DE
6452 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6453 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6454}
6455
ae038cb0 6456static void
36586728
TT
6457read_comp_units_from_section (struct objfile *objfile,
6458 struct dwarf2_section_info *section,
6459 unsigned int is_dwz,
6460 int *n_allocated,
6461 int *n_comp_units,
6462 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6463{
d521ce57 6464 const gdb_byte *info_ptr;
a32a8923 6465 bfd *abfd = get_section_bfd_owner (section);
be391dca 6466
bf6af496
DE
6467 if (dwarf2_read_debug)
6468 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6469 get_section_name (section),
6470 get_section_file_name (section));
bf6af496 6471
36586728 6472 dwarf2_read_section (objfile, section);
ae038cb0 6473
36586728 6474 info_ptr = section->buffer;
6e70227d 6475
36586728 6476 while (info_ptr < section->buffer + section->size)
ae038cb0 6477 {
c764a876 6478 unsigned int length, initial_length_size;
ae038cb0 6479 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6480 sect_offset offset;
ae038cb0 6481
36586728 6482 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6483
6484 /* Read just enough information to find out where the next
6485 compilation unit is. */
36586728 6486 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6487
6488 /* Save the compilation unit for later lookup. */
6489 this_cu = obstack_alloc (&objfile->objfile_obstack,
6490 sizeof (struct dwarf2_per_cu_data));
6491 memset (this_cu, 0, sizeof (*this_cu));
6492 this_cu->offset = offset;
c764a876 6493 this_cu->length = length + initial_length_size;
36586728 6494 this_cu->is_dwz = is_dwz;
9291a0cd 6495 this_cu->objfile = objfile;
8a0459fd 6496 this_cu->section = section;
ae038cb0 6497
36586728 6498 if (*n_comp_units == *n_allocated)
ae038cb0 6499 {
36586728
TT
6500 *n_allocated *= 2;
6501 *all_comp_units = xrealloc (*all_comp_units,
6502 *n_allocated
6503 * sizeof (struct dwarf2_per_cu_data *));
ae038cb0 6504 }
36586728
TT
6505 (*all_comp_units)[*n_comp_units] = this_cu;
6506 ++*n_comp_units;
ae038cb0
DJ
6507
6508 info_ptr = info_ptr + this_cu->length;
6509 }
36586728
TT
6510}
6511
6512/* Create a list of all compilation units in OBJFILE.
6513 This is only done for -readnow and building partial symtabs. */
6514
6515static void
6516create_all_comp_units (struct objfile *objfile)
6517{
6518 int n_allocated;
6519 int n_comp_units;
6520 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6521 struct dwz_file *dwz;
36586728
TT
6522
6523 n_comp_units = 0;
6524 n_allocated = 10;
6525 all_comp_units = xmalloc (n_allocated
6526 * sizeof (struct dwarf2_per_cu_data *));
6527
6528 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6529 &n_allocated, &n_comp_units, &all_comp_units);
6530
4db1a1dc
TT
6531 dwz = dwarf2_get_dwz_file ();
6532 if (dwz != NULL)
6533 read_comp_units_from_section (objfile, &dwz->info, 1,
6534 &n_allocated, &n_comp_units,
6535 &all_comp_units);
ae038cb0
DJ
6536
6537 dwarf2_per_objfile->all_comp_units
6538 = obstack_alloc (&objfile->objfile_obstack,
6539 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6540 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6541 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6542 xfree (all_comp_units);
6543 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6544}
6545
5734ee8b
DJ
6546/* Process all loaded DIEs for compilation unit CU, starting at
6547 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6548 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6549 DW_AT_ranges). If NEED_PC is set, then this function will set
6550 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6551 and record the covered ranges in the addrmap. */
c906108c 6552
72bf9492
DJ
6553static void
6554scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5734ee8b 6555 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
c906108c 6556{
72bf9492 6557 struct partial_die_info *pdi;
c906108c 6558
91c24f0a
DC
6559 /* Now, march along the PDI's, descending into ones which have
6560 interesting children but skipping the children of the other ones,
6561 until we reach the end of the compilation unit. */
c906108c 6562
72bf9492 6563 pdi = first_die;
91c24f0a 6564
72bf9492
DJ
6565 while (pdi != NULL)
6566 {
6567 fixup_partial_die (pdi, cu);
c906108c 6568
f55ee35c 6569 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6570 children, so we need to look at them. Ditto for anonymous
6571 enums. */
933c6fe4 6572
72bf9492 6573 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6574 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6575 || pdi->tag == DW_TAG_imported_unit)
c906108c 6576 {
72bf9492 6577 switch (pdi->tag)
c906108c
SS
6578 {
6579 case DW_TAG_subprogram:
5734ee8b 6580 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
c906108c 6581 break;
72929c62 6582 case DW_TAG_constant:
c906108c
SS
6583 case DW_TAG_variable:
6584 case DW_TAG_typedef:
91c24f0a 6585 case DW_TAG_union_type:
72bf9492 6586 if (!pdi->is_declaration)
63d06c5c 6587 {
72bf9492 6588 add_partial_symbol (pdi, cu);
63d06c5c
DC
6589 }
6590 break;
c906108c 6591 case DW_TAG_class_type:
680b30c7 6592 case DW_TAG_interface_type:
c906108c 6593 case DW_TAG_structure_type:
72bf9492 6594 if (!pdi->is_declaration)
c906108c 6595 {
72bf9492 6596 add_partial_symbol (pdi, cu);
c906108c
SS
6597 }
6598 break;
91c24f0a 6599 case DW_TAG_enumeration_type:
72bf9492
DJ
6600 if (!pdi->is_declaration)
6601 add_partial_enumeration (pdi, cu);
c906108c
SS
6602 break;
6603 case DW_TAG_base_type:
a02abb62 6604 case DW_TAG_subrange_type:
c906108c 6605 /* File scope base type definitions are added to the partial
c5aa993b 6606 symbol table. */
72bf9492 6607 add_partial_symbol (pdi, cu);
c906108c 6608 break;
d9fa45fe 6609 case DW_TAG_namespace:
5734ee8b 6610 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
91c24f0a 6611 break;
5d7cb8df
JK
6612 case DW_TAG_module:
6613 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6614 break;
95554aad
TT
6615 case DW_TAG_imported_unit:
6616 {
6617 struct dwarf2_per_cu_data *per_cu;
6618
f4dc4d17
DE
6619 /* For now we don't handle imported units in type units. */
6620 if (cu->per_cu->is_debug_types)
6621 {
6622 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6623 " supported in type units [in module %s]"),
4262abfb 6624 objfile_name (cu->objfile));
f4dc4d17
DE
6625 }
6626
95554aad 6627 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6628 pdi->is_dwz,
95554aad
TT
6629 cu->objfile);
6630
6631 /* Go read the partial unit, if needed. */
6632 if (per_cu->v.psymtab == NULL)
b93601f3 6633 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6634
f4dc4d17 6635 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6636 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6637 }
6638 break;
74921315
KS
6639 case DW_TAG_imported_declaration:
6640 add_partial_symbol (pdi, cu);
6641 break;
c906108c
SS
6642 default:
6643 break;
6644 }
6645 }
6646
72bf9492
DJ
6647 /* If the die has a sibling, skip to the sibling. */
6648
6649 pdi = pdi->die_sibling;
6650 }
6651}
6652
6653/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6654
72bf9492 6655 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6656 name is concatenated with "::" and the partial DIE's name. For
6657 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6658 Enumerators are an exception; they use the scope of their parent
6659 enumeration type, i.e. the name of the enumeration type is not
6660 prepended to the enumerator.
91c24f0a 6661
72bf9492
DJ
6662 There are two complexities. One is DW_AT_specification; in this
6663 case "parent" means the parent of the target of the specification,
6664 instead of the direct parent of the DIE. The other is compilers
6665 which do not emit DW_TAG_namespace; in this case we try to guess
6666 the fully qualified name of structure types from their members'
6667 linkage names. This must be done using the DIE's children rather
6668 than the children of any DW_AT_specification target. We only need
6669 to do this for structures at the top level, i.e. if the target of
6670 any DW_AT_specification (if any; otherwise the DIE itself) does not
6671 have a parent. */
6672
6673/* Compute the scope prefix associated with PDI's parent, in
6674 compilation unit CU. The result will be allocated on CU's
6675 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6676 field. NULL is returned if no prefix is necessary. */
15d034d0 6677static const char *
72bf9492
DJ
6678partial_die_parent_scope (struct partial_die_info *pdi,
6679 struct dwarf2_cu *cu)
6680{
15d034d0 6681 const char *grandparent_scope;
72bf9492 6682 struct partial_die_info *parent, *real_pdi;
91c24f0a 6683
72bf9492
DJ
6684 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6685 then this means the parent of the specification DIE. */
6686
6687 real_pdi = pdi;
72bf9492 6688 while (real_pdi->has_specification)
36586728
TT
6689 real_pdi = find_partial_die (real_pdi->spec_offset,
6690 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6691
6692 parent = real_pdi->die_parent;
6693 if (parent == NULL)
6694 return NULL;
6695
6696 if (parent->scope_set)
6697 return parent->scope;
6698
6699 fixup_partial_die (parent, cu);
6700
10b3939b 6701 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6702
acebe513
UW
6703 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6704 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6705 Work around this problem here. */
6706 if (cu->language == language_cplus
6e70227d 6707 && parent->tag == DW_TAG_namespace
acebe513
UW
6708 && strcmp (parent->name, "::") == 0
6709 && grandparent_scope == NULL)
6710 {
6711 parent->scope = NULL;
6712 parent->scope_set = 1;
6713 return NULL;
6714 }
6715
9c6c53f7
SA
6716 if (pdi->tag == DW_TAG_enumerator)
6717 /* Enumerators should not get the name of the enumeration as a prefix. */
6718 parent->scope = grandparent_scope;
6719 else if (parent->tag == DW_TAG_namespace
f55ee35c 6720 || parent->tag == DW_TAG_module
72bf9492
DJ
6721 || parent->tag == DW_TAG_structure_type
6722 || parent->tag == DW_TAG_class_type
680b30c7 6723 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6724 || parent->tag == DW_TAG_union_type
6725 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6726 {
6727 if (grandparent_scope == NULL)
6728 parent->scope = parent->name;
6729 else
3e43a32a
MS
6730 parent->scope = typename_concat (&cu->comp_unit_obstack,
6731 grandparent_scope,
f55ee35c 6732 parent->name, 0, cu);
72bf9492 6733 }
72bf9492
DJ
6734 else
6735 {
6736 /* FIXME drow/2004-04-01: What should we be doing with
6737 function-local names? For partial symbols, we should probably be
6738 ignoring them. */
6739 complaint (&symfile_complaints,
e2e0b3e5 6740 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6741 parent->tag, pdi->offset.sect_off);
72bf9492 6742 parent->scope = grandparent_scope;
c906108c
SS
6743 }
6744
72bf9492
DJ
6745 parent->scope_set = 1;
6746 return parent->scope;
6747}
6748
6749/* Return the fully scoped name associated with PDI, from compilation unit
6750 CU. The result will be allocated with malloc. */
4568ecf9 6751
72bf9492
DJ
6752static char *
6753partial_die_full_name (struct partial_die_info *pdi,
6754 struct dwarf2_cu *cu)
6755{
15d034d0 6756 const char *parent_scope;
72bf9492 6757
98bfdba5
PA
6758 /* If this is a template instantiation, we can not work out the
6759 template arguments from partial DIEs. So, unfortunately, we have
6760 to go through the full DIEs. At least any work we do building
6761 types here will be reused if full symbols are loaded later. */
6762 if (pdi->has_template_arguments)
6763 {
6764 fixup_partial_die (pdi, cu);
6765
6766 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6767 {
6768 struct die_info *die;
6769 struct attribute attr;
6770 struct dwarf2_cu *ref_cu = cu;
6771
b64f50a1 6772 /* DW_FORM_ref_addr is using section offset. */
98bfdba5
PA
6773 attr.name = 0;
6774 attr.form = DW_FORM_ref_addr;
4568ecf9 6775 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6776 die = follow_die_ref (NULL, &attr, &ref_cu);
6777
6778 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6779 }
6780 }
6781
72bf9492
DJ
6782 parent_scope = partial_die_parent_scope (pdi, cu);
6783 if (parent_scope == NULL)
6784 return NULL;
6785 else
f55ee35c 6786 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6787}
6788
6789static void
72bf9492 6790add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6791{
e7c27a73 6792 struct objfile *objfile = cu->objfile;
c906108c 6793 CORE_ADDR addr = 0;
15d034d0 6794 const char *actual_name = NULL;
e142c38c 6795 CORE_ADDR baseaddr;
15d034d0 6796 char *built_actual_name;
e142c38c
DJ
6797
6798 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6799
15d034d0
TT
6800 built_actual_name = partial_die_full_name (pdi, cu);
6801 if (built_actual_name != NULL)
6802 actual_name = built_actual_name;
63d06c5c 6803
72bf9492
DJ
6804 if (actual_name == NULL)
6805 actual_name = pdi->name;
6806
c906108c
SS
6807 switch (pdi->tag)
6808 {
6809 case DW_TAG_subprogram:
2cfa0c8d 6810 if (pdi->is_external || cu->language == language_ada)
c906108c 6811 {
2cfa0c8d
JB
6812 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6813 of the global scope. But in Ada, we want to be able to access
6814 nested procedures globally. So all Ada subprograms are stored
6815 in the global scope. */
f47fb265 6816 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 6817 mst_text, objfile); */
f47fb265 6818 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6819 built_actual_name != NULL,
f47fb265
MS
6820 VAR_DOMAIN, LOC_BLOCK,
6821 &objfile->global_psymbols,
6822 0, pdi->lowpc + baseaddr,
6823 cu->language, objfile);
c906108c
SS
6824 }
6825 else
6826 {
f47fb265 6827 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 6828 mst_file_text, objfile); */
f47fb265 6829 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6830 built_actual_name != NULL,
f47fb265
MS
6831 VAR_DOMAIN, LOC_BLOCK,
6832 &objfile->static_psymbols,
6833 0, pdi->lowpc + baseaddr,
6834 cu->language, objfile);
c906108c
SS
6835 }
6836 break;
72929c62
JB
6837 case DW_TAG_constant:
6838 {
6839 struct psymbol_allocation_list *list;
6840
6841 if (pdi->is_external)
6842 list = &objfile->global_psymbols;
6843 else
6844 list = &objfile->static_psymbols;
f47fb265 6845 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6846 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
f47fb265 6847 list, 0, 0, cu->language, objfile);
72929c62
JB
6848 }
6849 break;
c906108c 6850 case DW_TAG_variable:
95554aad
TT
6851 if (pdi->d.locdesc)
6852 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6853
95554aad 6854 if (pdi->d.locdesc
caac4577
JG
6855 && addr == 0
6856 && !dwarf2_per_objfile->has_section_at_zero)
6857 {
6858 /* A global or static variable may also have been stripped
6859 out by the linker if unused, in which case its address
6860 will be nullified; do not add such variables into partial
6861 symbol table then. */
6862 }
6863 else if (pdi->is_external)
c906108c
SS
6864 {
6865 /* Global Variable.
6866 Don't enter into the minimal symbol tables as there is
6867 a minimal symbol table entry from the ELF symbols already.
6868 Enter into partial symbol table if it has a location
6869 descriptor or a type.
6870 If the location descriptor is missing, new_symbol will create
6871 a LOC_UNRESOLVED symbol, the address of the variable will then
6872 be determined from the minimal symbol table whenever the variable
6873 is referenced.
6874 The address for the partial symbol table entry is not
6875 used by GDB, but it comes in handy for debugging partial symbol
6876 table building. */
6877
95554aad 6878 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6879 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6880 built_actual_name != NULL,
f47fb265
MS
6881 VAR_DOMAIN, LOC_STATIC,
6882 &objfile->global_psymbols,
6883 0, addr + baseaddr,
6884 cu->language, objfile);
c906108c
SS
6885 }
6886 else
6887 {
0963b4bd 6888 /* Static Variable. Skip symbols without location descriptors. */
95554aad 6889 if (pdi->d.locdesc == NULL)
decbce07 6890 {
15d034d0 6891 xfree (built_actual_name);
decbce07
MS
6892 return;
6893 }
f47fb265 6894 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 6895 mst_file_data, objfile); */
f47fb265 6896 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6897 built_actual_name != NULL,
f47fb265
MS
6898 VAR_DOMAIN, LOC_STATIC,
6899 &objfile->static_psymbols,
6900 0, addr + baseaddr,
6901 cu->language, objfile);
c906108c
SS
6902 }
6903 break;
6904 case DW_TAG_typedef:
6905 case DW_TAG_base_type:
a02abb62 6906 case DW_TAG_subrange_type:
38d518c9 6907 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6908 built_actual_name != NULL,
176620f1 6909 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 6910 &objfile->static_psymbols,
e142c38c 6911 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6912 break;
74921315 6913 case DW_TAG_imported_declaration:
72bf9492
DJ
6914 case DW_TAG_namespace:
6915 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6916 built_actual_name != NULL,
72bf9492
DJ
6917 VAR_DOMAIN, LOC_TYPEDEF,
6918 &objfile->global_psymbols,
6919 0, (CORE_ADDR) 0, cu->language, objfile);
6920 break;
530e8392
KB
6921 case DW_TAG_module:
6922 add_psymbol_to_list (actual_name, strlen (actual_name),
6923 built_actual_name != NULL,
6924 MODULE_DOMAIN, LOC_TYPEDEF,
6925 &objfile->global_psymbols,
6926 0, (CORE_ADDR) 0, cu->language, objfile);
6927 break;
c906108c 6928 case DW_TAG_class_type:
680b30c7 6929 case DW_TAG_interface_type:
c906108c
SS
6930 case DW_TAG_structure_type:
6931 case DW_TAG_union_type:
6932 case DW_TAG_enumeration_type:
fa4028e9
JB
6933 /* Skip external references. The DWARF standard says in the section
6934 about "Structure, Union, and Class Type Entries": "An incomplete
6935 structure, union or class type is represented by a structure,
6936 union or class entry that does not have a byte size attribute
6937 and that has a DW_AT_declaration attribute." */
6938 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 6939 {
15d034d0 6940 xfree (built_actual_name);
decbce07
MS
6941 return;
6942 }
fa4028e9 6943
63d06c5c
DC
6944 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6945 static vs. global. */
38d518c9 6946 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6947 built_actual_name != NULL,
176620f1 6948 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
6949 (cu->language == language_cplus
6950 || cu->language == language_java)
63d06c5c
DC
6951 ? &objfile->global_psymbols
6952 : &objfile->static_psymbols,
e142c38c 6953 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6954
c906108c
SS
6955 break;
6956 case DW_TAG_enumerator:
38d518c9 6957 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6958 built_actual_name != NULL,
176620f1 6959 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
6960 (cu->language == language_cplus
6961 || cu->language == language_java)
f6fe98ef
DJ
6962 ? &objfile->global_psymbols
6963 : &objfile->static_psymbols,
e142c38c 6964 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
6965 break;
6966 default:
6967 break;
6968 }
5c4e30ca 6969
15d034d0 6970 xfree (built_actual_name);
c906108c
SS
6971}
6972
5c4e30ca
DC
6973/* Read a partial die corresponding to a namespace; also, add a symbol
6974 corresponding to that namespace to the symbol table. NAMESPACE is
6975 the name of the enclosing namespace. */
91c24f0a 6976
72bf9492
DJ
6977static void
6978add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 6979 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 6980 int need_pc, struct dwarf2_cu *cu)
91c24f0a 6981{
72bf9492 6982 /* Add a symbol for the namespace. */
e7c27a73 6983
72bf9492 6984 add_partial_symbol (pdi, cu);
5c4e30ca
DC
6985
6986 /* Now scan partial symbols in that namespace. */
6987
91c24f0a 6988 if (pdi->has_children)
5734ee8b 6989 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
91c24f0a
DC
6990}
6991
5d7cb8df
JK
6992/* Read a partial die corresponding to a Fortran module. */
6993
6994static void
6995add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6996 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6997{
530e8392
KB
6998 /* Add a symbol for the namespace. */
6999
7000 add_partial_symbol (pdi, cu);
7001
f55ee35c 7002 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7003
7004 if (pdi->has_children)
7005 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
7006}
7007
bc30ff58
JB
7008/* Read a partial die corresponding to a subprogram and create a partial
7009 symbol for that subprogram. When the CU language allows it, this
7010 routine also defines a partial symbol for each nested subprogram
7011 that this subprogram contains.
6e70227d 7012
bc30ff58
JB
7013 DIE my also be a lexical block, in which case we simply search
7014 recursively for suprograms defined inside that lexical block.
7015 Again, this is only performed when the CU language allows this
7016 type of definitions. */
7017
7018static void
7019add_partial_subprogram (struct partial_die_info *pdi,
7020 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 7021 int need_pc, struct dwarf2_cu *cu)
bc30ff58
JB
7022{
7023 if (pdi->tag == DW_TAG_subprogram)
7024 {
7025 if (pdi->has_pc_info)
7026 {
7027 if (pdi->lowpc < *lowpc)
7028 *lowpc = pdi->lowpc;
7029 if (pdi->highpc > *highpc)
7030 *highpc = pdi->highpc;
5734ee8b
DJ
7031 if (need_pc)
7032 {
7033 CORE_ADDR baseaddr;
7034 struct objfile *objfile = cu->objfile;
7035
7036 baseaddr = ANOFFSET (objfile->section_offsets,
7037 SECT_OFF_TEXT (objfile));
7038 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
7039 pdi->lowpc + baseaddr,
7040 pdi->highpc - 1 + baseaddr,
9291a0cd 7041 cu->per_cu->v.psymtab);
5734ee8b 7042 }
481860b3
GB
7043 }
7044
7045 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7046 {
bc30ff58 7047 if (!pdi->is_declaration)
e8d05480
JB
7048 /* Ignore subprogram DIEs that do not have a name, they are
7049 illegal. Do not emit a complaint at this point, we will
7050 do so when we convert this psymtab into a symtab. */
7051 if (pdi->name)
7052 add_partial_symbol (pdi, cu);
bc30ff58
JB
7053 }
7054 }
6e70227d 7055
bc30ff58
JB
7056 if (! pdi->has_children)
7057 return;
7058
7059 if (cu->language == language_ada)
7060 {
7061 pdi = pdi->die_child;
7062 while (pdi != NULL)
7063 {
7064 fixup_partial_die (pdi, cu);
7065 if (pdi->tag == DW_TAG_subprogram
7066 || pdi->tag == DW_TAG_lexical_block)
5734ee8b 7067 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
bc30ff58
JB
7068 pdi = pdi->die_sibling;
7069 }
7070 }
7071}
7072
91c24f0a
DC
7073/* Read a partial die corresponding to an enumeration type. */
7074
72bf9492
DJ
7075static void
7076add_partial_enumeration (struct partial_die_info *enum_pdi,
7077 struct dwarf2_cu *cu)
91c24f0a 7078{
72bf9492 7079 struct partial_die_info *pdi;
91c24f0a
DC
7080
7081 if (enum_pdi->name != NULL)
72bf9492
DJ
7082 add_partial_symbol (enum_pdi, cu);
7083
7084 pdi = enum_pdi->die_child;
7085 while (pdi)
91c24f0a 7086 {
72bf9492 7087 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7088 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7089 else
72bf9492
DJ
7090 add_partial_symbol (pdi, cu);
7091 pdi = pdi->die_sibling;
91c24f0a 7092 }
91c24f0a
DC
7093}
7094
6caca83c
CC
7095/* Return the initial uleb128 in the die at INFO_PTR. */
7096
7097static unsigned int
d521ce57 7098peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7099{
7100 unsigned int bytes_read;
7101
7102 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7103}
7104
4bb7a0a7
DJ
7105/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7106 Return the corresponding abbrev, or NULL if the number is zero (indicating
7107 an empty DIE). In either case *BYTES_READ will be set to the length of
7108 the initial number. */
7109
7110static struct abbrev_info *
d521ce57 7111peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7112 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7113{
7114 bfd *abfd = cu->objfile->obfd;
7115 unsigned int abbrev_number;
7116 struct abbrev_info *abbrev;
7117
7118 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7119
7120 if (abbrev_number == 0)
7121 return NULL;
7122
433df2d4 7123 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7124 if (!abbrev)
7125 {
3e43a32a
MS
7126 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7127 abbrev_number, bfd_get_filename (abfd));
4bb7a0a7
DJ
7128 }
7129
7130 return abbrev;
7131}
7132
93311388
DE
7133/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7134 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7135 DIE. Any children of the skipped DIEs will also be skipped. */
7136
d521ce57
TT
7137static const gdb_byte *
7138skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7139{
dee91e82 7140 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7141 struct abbrev_info *abbrev;
7142 unsigned int bytes_read;
7143
7144 while (1)
7145 {
7146 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7147 if (abbrev == NULL)
7148 return info_ptr + bytes_read;
7149 else
dee91e82 7150 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7151 }
7152}
7153
93311388
DE
7154/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7155 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7156 abbrev corresponding to that skipped uleb128 should be passed in
7157 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7158 children. */
7159
d521ce57
TT
7160static const gdb_byte *
7161skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7162 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7163{
7164 unsigned int bytes_read;
7165 struct attribute attr;
dee91e82
DE
7166 bfd *abfd = reader->abfd;
7167 struct dwarf2_cu *cu = reader->cu;
d521ce57 7168 const gdb_byte *buffer = reader->buffer;
f664829e 7169 const gdb_byte *buffer_end = reader->buffer_end;
d521ce57 7170 const gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
7171 unsigned int form, i;
7172
7173 for (i = 0; i < abbrev->num_attrs; i++)
7174 {
7175 /* The only abbrev we care about is DW_AT_sibling. */
7176 if (abbrev->attrs[i].name == DW_AT_sibling)
7177 {
dee91e82 7178 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7179 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7180 complaint (&symfile_complaints,
7181 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7182 else
b9502d3f
WN
7183 {
7184 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7185 const gdb_byte *sibling_ptr = buffer + off;
7186
7187 if (sibling_ptr < info_ptr)
7188 complaint (&symfile_complaints,
7189 _("DW_AT_sibling points backwards"));
22869d73
KS
7190 else if (sibling_ptr > reader->buffer_end)
7191 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7192 else
7193 return sibling_ptr;
7194 }
4bb7a0a7
DJ
7195 }
7196
7197 /* If it isn't DW_AT_sibling, skip this attribute. */
7198 form = abbrev->attrs[i].form;
7199 skip_attribute:
7200 switch (form)
7201 {
4bb7a0a7 7202 case DW_FORM_ref_addr:
ae411497
TT
7203 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7204 and later it is offset sized. */
7205 if (cu->header.version == 2)
7206 info_ptr += cu->header.addr_size;
7207 else
7208 info_ptr += cu->header.offset_size;
7209 break;
36586728
TT
7210 case DW_FORM_GNU_ref_alt:
7211 info_ptr += cu->header.offset_size;
7212 break;
ae411497 7213 case DW_FORM_addr:
4bb7a0a7
DJ
7214 info_ptr += cu->header.addr_size;
7215 break;
7216 case DW_FORM_data1:
7217 case DW_FORM_ref1:
7218 case DW_FORM_flag:
7219 info_ptr += 1;
7220 break;
2dc7f7b3
TT
7221 case DW_FORM_flag_present:
7222 break;
4bb7a0a7
DJ
7223 case DW_FORM_data2:
7224 case DW_FORM_ref2:
7225 info_ptr += 2;
7226 break;
7227 case DW_FORM_data4:
7228 case DW_FORM_ref4:
7229 info_ptr += 4;
7230 break;
7231 case DW_FORM_data8:
7232 case DW_FORM_ref8:
55f1336d 7233 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7234 info_ptr += 8;
7235 break;
7236 case DW_FORM_string:
9b1c24c8 7237 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7238 info_ptr += bytes_read;
7239 break;
2dc7f7b3 7240 case DW_FORM_sec_offset:
4bb7a0a7 7241 case DW_FORM_strp:
36586728 7242 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7243 info_ptr += cu->header.offset_size;
7244 break;
2dc7f7b3 7245 case DW_FORM_exprloc:
4bb7a0a7
DJ
7246 case DW_FORM_block:
7247 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7248 info_ptr += bytes_read;
7249 break;
7250 case DW_FORM_block1:
7251 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7252 break;
7253 case DW_FORM_block2:
7254 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7255 break;
7256 case DW_FORM_block4:
7257 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7258 break;
7259 case DW_FORM_sdata:
7260 case DW_FORM_udata:
7261 case DW_FORM_ref_udata:
3019eac3
DE
7262 case DW_FORM_GNU_addr_index:
7263 case DW_FORM_GNU_str_index:
d521ce57 7264 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7265 break;
7266 case DW_FORM_indirect:
7267 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7268 info_ptr += bytes_read;
7269 /* We need to continue parsing from here, so just go back to
7270 the top. */
7271 goto skip_attribute;
7272
7273 default:
3e43a32a
MS
7274 error (_("Dwarf Error: Cannot handle %s "
7275 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7276 dwarf_form_name (form),
7277 bfd_get_filename (abfd));
7278 }
7279 }
7280
7281 if (abbrev->has_children)
dee91e82 7282 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7283 else
7284 return info_ptr;
7285}
7286
93311388 7287/* Locate ORIG_PDI's sibling.
dee91e82 7288 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7289
d521ce57 7290static const gdb_byte *
dee91e82
DE
7291locate_pdi_sibling (const struct die_reader_specs *reader,
7292 struct partial_die_info *orig_pdi,
d521ce57 7293 const gdb_byte *info_ptr)
91c24f0a
DC
7294{
7295 /* Do we know the sibling already? */
72bf9492 7296
91c24f0a
DC
7297 if (orig_pdi->sibling)
7298 return orig_pdi->sibling;
7299
7300 /* Are there any children to deal with? */
7301
7302 if (!orig_pdi->has_children)
7303 return info_ptr;
7304
4bb7a0a7 7305 /* Skip the children the long way. */
91c24f0a 7306
dee91e82 7307 return skip_children (reader, info_ptr);
91c24f0a
DC
7308}
7309
257e7a09 7310/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7311 not NULL. */
c906108c
SS
7312
7313static void
257e7a09
YQ
7314dwarf2_read_symtab (struct partial_symtab *self,
7315 struct objfile *objfile)
c906108c 7316{
257e7a09 7317 if (self->readin)
c906108c 7318 {
442e4d9c 7319 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7320 self->filename);
442e4d9c
YQ
7321 }
7322 else
7323 {
7324 if (info_verbose)
c906108c 7325 {
442e4d9c 7326 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7327 self->filename);
442e4d9c 7328 gdb_flush (gdb_stdout);
c906108c 7329 }
c906108c 7330
442e4d9c
YQ
7331 /* Restore our global data. */
7332 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10b3939b 7333
442e4d9c
YQ
7334 /* If this psymtab is constructed from a debug-only objfile, the
7335 has_section_at_zero flag will not necessarily be correct. We
7336 can get the correct value for this flag by looking at the data
7337 associated with the (presumably stripped) associated objfile. */
7338 if (objfile->separate_debug_objfile_backlink)
7339 {
7340 struct dwarf2_per_objfile *dpo_backlink
7341 = objfile_data (objfile->separate_debug_objfile_backlink,
7342 dwarf2_objfile_data_key);
9a619af0 7343
442e4d9c
YQ
7344 dwarf2_per_objfile->has_section_at_zero
7345 = dpo_backlink->has_section_at_zero;
7346 }
b2ab525c 7347
442e4d9c 7348 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7349
257e7a09 7350 psymtab_to_symtab_1 (self);
c906108c 7351
442e4d9c
YQ
7352 /* Finish up the debug error message. */
7353 if (info_verbose)
7354 printf_filtered (_("done.\n"));
c906108c 7355 }
95554aad
TT
7356
7357 process_cu_includes ();
c906108c 7358}
9cdd5dbd
DE
7359\f
7360/* Reading in full CUs. */
c906108c 7361
10b3939b
DJ
7362/* Add PER_CU to the queue. */
7363
7364static void
95554aad
TT
7365queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7366 enum language pretend_language)
10b3939b
DJ
7367{
7368 struct dwarf2_queue_item *item;
7369
7370 per_cu->queued = 1;
7371 item = xmalloc (sizeof (*item));
7372 item->per_cu = per_cu;
95554aad 7373 item->pretend_language = pretend_language;
10b3939b
DJ
7374 item->next = NULL;
7375
7376 if (dwarf2_queue == NULL)
7377 dwarf2_queue = item;
7378 else
7379 dwarf2_queue_tail->next = item;
7380
7381 dwarf2_queue_tail = item;
7382}
7383
89e63ee4
DE
7384/* If PER_CU is not yet queued, add it to the queue.
7385 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7386 dependency.
0907af0c 7387 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7388 meaning either PER_CU is already queued or it is already loaded.
7389
7390 N.B. There is an invariant here that if a CU is queued then it is loaded.
7391 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7392
7393static int
89e63ee4 7394maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7395 struct dwarf2_per_cu_data *per_cu,
7396 enum language pretend_language)
7397{
7398 /* We may arrive here during partial symbol reading, if we need full
7399 DIEs to process an unusual case (e.g. template arguments). Do
7400 not queue PER_CU, just tell our caller to load its DIEs. */
7401 if (dwarf2_per_objfile->reading_partial_symbols)
7402 {
7403 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7404 return 1;
7405 return 0;
7406 }
7407
7408 /* Mark the dependence relation so that we don't flush PER_CU
7409 too early. */
89e63ee4
DE
7410 if (dependent_cu != NULL)
7411 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7412
7413 /* If it's already on the queue, we have nothing to do. */
7414 if (per_cu->queued)
7415 return 0;
7416
7417 /* If the compilation unit is already loaded, just mark it as
7418 used. */
7419 if (per_cu->cu != NULL)
7420 {
7421 per_cu->cu->last_used = 0;
7422 return 0;
7423 }
7424
7425 /* Add it to the queue. */
7426 queue_comp_unit (per_cu, pretend_language);
7427
7428 return 1;
7429}
7430
10b3939b
DJ
7431/* Process the queue. */
7432
7433static void
a0f42c21 7434process_queue (void)
10b3939b
DJ
7435{
7436 struct dwarf2_queue_item *item, *next_item;
7437
45cfd468
DE
7438 if (dwarf2_read_debug)
7439 {
7440 fprintf_unfiltered (gdb_stdlog,
7441 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7442 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7443 }
7444
03dd20cc
DJ
7445 /* The queue starts out with one item, but following a DIE reference
7446 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7447 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7448 {
9291a0cd
TT
7449 if (dwarf2_per_objfile->using_index
7450 ? !item->per_cu->v.quick->symtab
7451 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
f4dc4d17
DE
7452 {
7453 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7454 unsigned int debug_print_threshold;
247f5c4f 7455 char buf[100];
f4dc4d17 7456
247f5c4f 7457 if (per_cu->is_debug_types)
f4dc4d17 7458 {
247f5c4f
DE
7459 struct signatured_type *sig_type =
7460 (struct signatured_type *) per_cu;
7461
7462 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7463 hex_string (sig_type->signature),
7464 per_cu->offset.sect_off);
7465 /* There can be 100s of TUs.
7466 Only print them in verbose mode. */
7467 debug_print_threshold = 2;
f4dc4d17 7468 }
247f5c4f 7469 else
73be47f5
DE
7470 {
7471 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7472 debug_print_threshold = 1;
7473 }
247f5c4f 7474
73be47f5 7475 if (dwarf2_read_debug >= debug_print_threshold)
247f5c4f 7476 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7477
7478 if (per_cu->is_debug_types)
7479 process_full_type_unit (per_cu, item->pretend_language);
7480 else
7481 process_full_comp_unit (per_cu, item->pretend_language);
7482
73be47f5 7483 if (dwarf2_read_debug >= debug_print_threshold)
247f5c4f 7484 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7485 }
10b3939b
DJ
7486
7487 item->per_cu->queued = 0;
7488 next_item = item->next;
7489 xfree (item);
7490 }
7491
7492 dwarf2_queue_tail = NULL;
45cfd468
DE
7493
7494 if (dwarf2_read_debug)
7495 {
7496 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7497 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7498 }
10b3939b
DJ
7499}
7500
7501/* Free all allocated queue entries. This function only releases anything if
7502 an error was thrown; if the queue was processed then it would have been
7503 freed as we went along. */
7504
7505static void
7506dwarf2_release_queue (void *dummy)
7507{
7508 struct dwarf2_queue_item *item, *last;
7509
7510 item = dwarf2_queue;
7511 while (item)
7512 {
7513 /* Anything still marked queued is likely to be in an
7514 inconsistent state, so discard it. */
7515 if (item->per_cu->queued)
7516 {
7517 if (item->per_cu->cu != NULL)
dee91e82 7518 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7519 item->per_cu->queued = 0;
7520 }
7521
7522 last = item;
7523 item = item->next;
7524 xfree (last);
7525 }
7526
7527 dwarf2_queue = dwarf2_queue_tail = NULL;
7528}
7529
7530/* Read in full symbols for PST, and anything it depends on. */
7531
c906108c 7532static void
fba45db2 7533psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7534{
10b3939b 7535 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7536 int i;
7537
95554aad
TT
7538 if (pst->readin)
7539 return;
7540
aaa75496 7541 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7542 if (!pst->dependencies[i]->readin
7543 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7544 {
7545 /* Inform about additional files that need to be read in. */
7546 if (info_verbose)
7547 {
a3f17187 7548 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7549 fputs_filtered (" ", gdb_stdout);
7550 wrap_here ("");
7551 fputs_filtered ("and ", gdb_stdout);
7552 wrap_here ("");
7553 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7554 wrap_here (""); /* Flush output. */
aaa75496
JB
7555 gdb_flush (gdb_stdout);
7556 }
7557 psymtab_to_symtab_1 (pst->dependencies[i]);
7558 }
7559
e38df1d0 7560 per_cu = pst->read_symtab_private;
10b3939b
DJ
7561
7562 if (per_cu == NULL)
aaa75496
JB
7563 {
7564 /* It's an include file, no symbols to read for it.
7565 Everything is in the parent symtab. */
7566 pst->readin = 1;
7567 return;
7568 }
c906108c 7569
a0f42c21 7570 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7571}
7572
dee91e82
DE
7573/* Trivial hash function for die_info: the hash value of a DIE
7574 is its offset in .debug_info for this objfile. */
10b3939b 7575
dee91e82
DE
7576static hashval_t
7577die_hash (const void *item)
10b3939b 7578{
dee91e82 7579 const struct die_info *die = item;
6502dd73 7580
dee91e82
DE
7581 return die->offset.sect_off;
7582}
63d06c5c 7583
dee91e82
DE
7584/* Trivial comparison function for die_info structures: two DIEs
7585 are equal if they have the same offset. */
98bfdba5 7586
dee91e82
DE
7587static int
7588die_eq (const void *item_lhs, const void *item_rhs)
7589{
7590 const struct die_info *die_lhs = item_lhs;
7591 const struct die_info *die_rhs = item_rhs;
c906108c 7592
dee91e82
DE
7593 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7594}
c906108c 7595
dee91e82
DE
7596/* die_reader_func for load_full_comp_unit.
7597 This is identical to read_signatured_type_reader,
7598 but is kept separate for now. */
c906108c 7599
dee91e82
DE
7600static void
7601load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7602 const gdb_byte *info_ptr,
dee91e82
DE
7603 struct die_info *comp_unit_die,
7604 int has_children,
7605 void *data)
7606{
7607 struct dwarf2_cu *cu = reader->cu;
95554aad 7608 enum language *language_ptr = data;
6caca83c 7609
dee91e82
DE
7610 gdb_assert (cu->die_hash == NULL);
7611 cu->die_hash =
7612 htab_create_alloc_ex (cu->header.length / 12,
7613 die_hash,
7614 die_eq,
7615 NULL,
7616 &cu->comp_unit_obstack,
7617 hashtab_obstack_allocate,
7618 dummy_obstack_deallocate);
e142c38c 7619
dee91e82
DE
7620 if (has_children)
7621 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7622 &info_ptr, comp_unit_die);
7623 cu->dies = comp_unit_die;
7624 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7625
7626 /* We try not to read any attributes in this function, because not
9cdd5dbd 7627 all CUs needed for references have been loaded yet, and symbol
10b3939b 7628 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7629 or we won't be able to build types correctly.
7630 Similarly, if we do not read the producer, we can not apply
7631 producer-specific interpretation. */
95554aad 7632 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7633}
10b3939b 7634
dee91e82 7635/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7636
dee91e82 7637static void
95554aad
TT
7638load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7639 enum language pretend_language)
dee91e82 7640{
3019eac3 7641 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7642
f4dc4d17
DE
7643 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7644 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7645}
7646
3da10d80
KS
7647/* Add a DIE to the delayed physname list. */
7648
7649static void
7650add_to_method_list (struct type *type, int fnfield_index, int index,
7651 const char *name, struct die_info *die,
7652 struct dwarf2_cu *cu)
7653{
7654 struct delayed_method_info mi;
7655 mi.type = type;
7656 mi.fnfield_index = fnfield_index;
7657 mi.index = index;
7658 mi.name = name;
7659 mi.die = die;
7660 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7661}
7662
7663/* A cleanup for freeing the delayed method list. */
7664
7665static void
7666free_delayed_list (void *ptr)
7667{
7668 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7669 if (cu->method_list != NULL)
7670 {
7671 VEC_free (delayed_method_info, cu->method_list);
7672 cu->method_list = NULL;
7673 }
7674}
7675
7676/* Compute the physnames of any methods on the CU's method list.
7677
7678 The computation of method physnames is delayed in order to avoid the
7679 (bad) condition that one of the method's formal parameters is of an as yet
7680 incomplete type. */
7681
7682static void
7683compute_delayed_physnames (struct dwarf2_cu *cu)
7684{
7685 int i;
7686 struct delayed_method_info *mi;
7687 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7688 {
1d06ead6 7689 const char *physname;
3da10d80
KS
7690 struct fn_fieldlist *fn_flp
7691 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7692 physname = dwarf2_physname (mi->name, mi->die, cu);
3da10d80
KS
7693 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7694 }
7695}
7696
a766d390
DE
7697/* Go objects should be embedded in a DW_TAG_module DIE,
7698 and it's not clear if/how imported objects will appear.
7699 To keep Go support simple until that's worked out,
7700 go back through what we've read and create something usable.
7701 We could do this while processing each DIE, and feels kinda cleaner,
7702 but that way is more invasive.
7703 This is to, for example, allow the user to type "p var" or "b main"
7704 without having to specify the package name, and allow lookups
7705 of module.object to work in contexts that use the expression
7706 parser. */
7707
7708static void
7709fixup_go_packaging (struct dwarf2_cu *cu)
7710{
7711 char *package_name = NULL;
7712 struct pending *list;
7713 int i;
7714
7715 for (list = global_symbols; list != NULL; list = list->next)
7716 {
7717 for (i = 0; i < list->nsyms; ++i)
7718 {
7719 struct symbol *sym = list->symbol[i];
7720
7721 if (SYMBOL_LANGUAGE (sym) == language_go
7722 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7723 {
7724 char *this_package_name = go_symbol_package_name (sym);
7725
7726 if (this_package_name == NULL)
7727 continue;
7728 if (package_name == NULL)
7729 package_name = this_package_name;
7730 else
7731 {
7732 if (strcmp (package_name, this_package_name) != 0)
7733 complaint (&symfile_complaints,
7734 _("Symtab %s has objects from two different Go packages: %s and %s"),
210bbc17 7735 (SYMBOL_SYMTAB (sym)
05cba821 7736 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
4262abfb 7737 : objfile_name (cu->objfile)),
a766d390
DE
7738 this_package_name, package_name);
7739 xfree (this_package_name);
7740 }
7741 }
7742 }
7743 }
7744
7745 if (package_name != NULL)
7746 {
7747 struct objfile *objfile = cu->objfile;
34a68019
TT
7748 const char *saved_package_name
7749 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7750 package_name,
7751 strlen (package_name));
a766d390 7752 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
86f62fd7 7753 saved_package_name, objfile);
a766d390
DE
7754 struct symbol *sym;
7755
7756 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7757
e623cf5d 7758 sym = allocate_symbol (objfile);
f85f34ed 7759 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7760 SYMBOL_SET_NAMES (sym, saved_package_name,
7761 strlen (saved_package_name), 0, objfile);
a766d390
DE
7762 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7763 e.g., "main" finds the "main" module and not C's main(). */
7764 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7765 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7766 SYMBOL_TYPE (sym) = type;
7767
7768 add_symbol_to_list (sym, &global_symbols);
7769
7770 xfree (package_name);
7771 }
7772}
7773
95554aad
TT
7774/* Return the symtab for PER_CU. This works properly regardless of
7775 whether we're using the index or psymtabs. */
7776
7777static struct symtab *
7778get_symtab (struct dwarf2_per_cu_data *per_cu)
7779{
7780 return (dwarf2_per_objfile->using_index
7781 ? per_cu->v.quick->symtab
7782 : per_cu->v.psymtab->symtab);
7783}
7784
7785/* A helper function for computing the list of all symbol tables
7786 included by PER_CU. */
7787
7788static void
ec94af83
DE
7789recursively_compute_inclusions (VEC (symtab_ptr) **result,
7790 htab_t all_children, htab_t all_type_symtabs,
f9125b6c
TT
7791 struct dwarf2_per_cu_data *per_cu,
7792 struct symtab *immediate_parent)
95554aad
TT
7793{
7794 void **slot;
7795 int ix;
ec94af83 7796 struct symtab *symtab;
95554aad
TT
7797 struct dwarf2_per_cu_data *iter;
7798
7799 slot = htab_find_slot (all_children, per_cu, INSERT);
7800 if (*slot != NULL)
7801 {
7802 /* This inclusion and its children have been processed. */
7803 return;
7804 }
7805
7806 *slot = per_cu;
7807 /* Only add a CU if it has a symbol table. */
ec94af83
DE
7808 symtab = get_symtab (per_cu);
7809 if (symtab != NULL)
7810 {
7811 /* If this is a type unit only add its symbol table if we haven't
7812 seen it yet (type unit per_cu's can share symtabs). */
7813 if (per_cu->is_debug_types)
7814 {
7815 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7816 if (*slot == NULL)
7817 {
7818 *slot = symtab;
7819 VEC_safe_push (symtab_ptr, *result, symtab);
f9125b6c
TT
7820 if (symtab->user == NULL)
7821 symtab->user = immediate_parent;
ec94af83
DE
7822 }
7823 }
7824 else
f9125b6c
TT
7825 {
7826 VEC_safe_push (symtab_ptr, *result, symtab);
7827 if (symtab->user == NULL)
7828 symtab->user = immediate_parent;
7829 }
ec94af83 7830 }
95554aad
TT
7831
7832 for (ix = 0;
796a7ff8 7833 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7834 ++ix)
ec94af83
DE
7835 {
7836 recursively_compute_inclusions (result, all_children,
f9125b6c 7837 all_type_symtabs, iter, symtab);
ec94af83 7838 }
95554aad
TT
7839}
7840
7841/* Compute the symtab 'includes' fields for the symtab related to
7842 PER_CU. */
7843
7844static void
7845compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7846{
f4dc4d17
DE
7847 gdb_assert (! per_cu->is_debug_types);
7848
796a7ff8 7849 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7850 {
7851 int ix, len;
ec94af83
DE
7852 struct dwarf2_per_cu_data *per_cu_iter;
7853 struct symtab *symtab_iter;
7854 VEC (symtab_ptr) *result_symtabs = NULL;
7855 htab_t all_children, all_type_symtabs;
95554aad
TT
7856 struct symtab *symtab = get_symtab (per_cu);
7857
7858 /* If we don't have a symtab, we can just skip this case. */
7859 if (symtab == NULL)
7860 return;
7861
7862 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7863 NULL, xcalloc, xfree);
ec94af83
DE
7864 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7865 NULL, xcalloc, xfree);
95554aad
TT
7866
7867 for (ix = 0;
796a7ff8 7868 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7869 ix, per_cu_iter);
95554aad 7870 ++ix)
ec94af83
DE
7871 {
7872 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c
TT
7873 all_type_symtabs, per_cu_iter,
7874 symtab);
ec94af83 7875 }
95554aad 7876
ec94af83
DE
7877 /* Now we have a transitive closure of all the included symtabs. */
7878 len = VEC_length (symtab_ptr, result_symtabs);
95554aad
TT
7879 symtab->includes
7880 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7881 (len + 1) * sizeof (struct symtab *));
7882 for (ix = 0;
ec94af83 7883 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
95554aad 7884 ++ix)
ec94af83 7885 symtab->includes[ix] = symtab_iter;
95554aad
TT
7886 symtab->includes[len] = NULL;
7887
ec94af83 7888 VEC_free (symtab_ptr, result_symtabs);
95554aad 7889 htab_delete (all_children);
ec94af83 7890 htab_delete (all_type_symtabs);
95554aad
TT
7891 }
7892}
7893
7894/* Compute the 'includes' field for the symtabs of all the CUs we just
7895 read. */
7896
7897static void
7898process_cu_includes (void)
7899{
7900 int ix;
7901 struct dwarf2_per_cu_data *iter;
7902
7903 for (ix = 0;
7904 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7905 ix, iter);
7906 ++ix)
f4dc4d17
DE
7907 {
7908 if (! iter->is_debug_types)
7909 compute_symtab_includes (iter);
7910 }
95554aad
TT
7911
7912 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7913}
7914
9cdd5dbd 7915/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
7916 already been loaded into memory. */
7917
7918static void
95554aad
TT
7919process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7920 enum language pretend_language)
10b3939b 7921{
10b3939b 7922 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 7923 struct objfile *objfile = per_cu->objfile;
10b3939b
DJ
7924 CORE_ADDR lowpc, highpc;
7925 struct symtab *symtab;
3da10d80 7926 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 7927 CORE_ADDR baseaddr;
4359dff1 7928 struct block *static_block;
10b3939b
DJ
7929
7930 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7931
10b3939b
DJ
7932 buildsym_init ();
7933 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 7934 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
7935
7936 cu->list_in_scope = &file_symbols;
c906108c 7937
95554aad
TT
7938 cu->language = pretend_language;
7939 cu->language_defn = language_def (cu->language);
7940
c906108c 7941 /* Do line number decoding in read_file_scope () */
10b3939b 7942 process_die (cu->dies, cu);
c906108c 7943
a766d390
DE
7944 /* For now fudge the Go package. */
7945 if (cu->language == language_go)
7946 fixup_go_packaging (cu);
7947
3da10d80
KS
7948 /* Now that we have processed all the DIEs in the CU, all the types
7949 should be complete, and it should now be safe to compute all of the
7950 physnames. */
7951 compute_delayed_physnames (cu);
7952 do_cleanups (delayed_list_cleanup);
7953
fae299cd
DC
7954 /* Some compilers don't define a DW_AT_high_pc attribute for the
7955 compilation unit. If the DW_AT_high_pc is missing, synthesize
7956 it, by scanning the DIE's below the compilation unit. */
10b3939b 7957 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 7958
36586728 7959 static_block
ff546935 7960 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
4359dff1
JK
7961
7962 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7963 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7964 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7965 addrmap to help ensure it has an accurate map of pc values belonging to
7966 this comp unit. */
7967 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7968
7969 symtab = end_symtab_from_static_block (static_block, objfile,
7970 SECT_OFF_TEXT (objfile), 0);
c906108c 7971
8be455d7 7972 if (symtab != NULL)
c906108c 7973 {
df15bd07 7974 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 7975
8be455d7
JK
7976 /* Set symtab language to language from DW_AT_language. If the
7977 compilation is from a C file generated by language preprocessors, do
7978 not set the language if it was already deduced by start_subfile. */
7979 if (!(cu->language == language_c && symtab->language != language_c))
7980 symtab->language = cu->language;
7981
7982 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7983 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
7984 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7985 there were bugs in prologue debug info, fixed later in GCC-4.5
7986 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
7987
7988 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7989 needed, it would be wrong due to missing DW_AT_producer there.
7990
7991 Still one can confuse GDB by using non-standard GCC compilation
7992 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7993 */
ab260dad 7994 if (cu->has_loclist && gcc_4_minor >= 5)
8be455d7 7995 symtab->locations_valid = 1;
e0d00bc7
JK
7996
7997 if (gcc_4_minor >= 5)
7998 symtab->epilogue_unwind_valid = 1;
96408a79
SA
7999
8000 symtab->call_site_htab = cu->call_site_htab;
c906108c 8001 }
9291a0cd
TT
8002
8003 if (dwarf2_per_objfile->using_index)
8004 per_cu->v.quick->symtab = symtab;
8005 else
8006 {
8007 struct partial_symtab *pst = per_cu->v.psymtab;
8008 pst->symtab = symtab;
8009 pst->readin = 1;
8010 }
c906108c 8011
95554aad
TT
8012 /* Push it for inclusion processing later. */
8013 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8014
c906108c 8015 do_cleanups (back_to);
f4dc4d17 8016}
45cfd468 8017
f4dc4d17
DE
8018/* Generate full symbol information for type unit PER_CU, whose DIEs have
8019 already been loaded into memory. */
8020
8021static void
8022process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8023 enum language pretend_language)
8024{
8025 struct dwarf2_cu *cu = per_cu->cu;
8026 struct objfile *objfile = per_cu->objfile;
8027 struct symtab *symtab;
8028 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8029 struct signatured_type *sig_type;
8030
8031 gdb_assert (per_cu->is_debug_types);
8032 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8033
8034 buildsym_init ();
8035 back_to = make_cleanup (really_free_pendings, NULL);
8036 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8037
8038 cu->list_in_scope = &file_symbols;
8039
8040 cu->language = pretend_language;
8041 cu->language_defn = language_def (cu->language);
8042
8043 /* The symbol tables are set up in read_type_unit_scope. */
8044 process_die (cu->dies, cu);
8045
8046 /* For now fudge the Go package. */
8047 if (cu->language == language_go)
8048 fixup_go_packaging (cu);
8049
8050 /* Now that we have processed all the DIEs in the CU, all the types
8051 should be complete, and it should now be safe to compute all of the
8052 physnames. */
8053 compute_delayed_physnames (cu);
8054 do_cleanups (delayed_list_cleanup);
8055
8056 /* TUs share symbol tables.
8057 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8058 of it with end_expandable_symtab. Otherwise, complete the addition of
8059 this TU's symbols to the existing symtab. */
0186c6a7 8060 if (sig_type->type_unit_group->primary_symtab == NULL)
45cfd468 8061 {
f4dc4d17 8062 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
0186c6a7 8063 sig_type->type_unit_group->primary_symtab = symtab;
f4dc4d17
DE
8064
8065 if (symtab != NULL)
8066 {
8067 /* Set symtab language to language from DW_AT_language. If the
8068 compilation is from a C file generated by language preprocessors,
8069 do not set the language if it was already deduced by
8070 start_subfile. */
8071 if (!(cu->language == language_c && symtab->language != language_c))
8072 symtab->language = cu->language;
8073 }
8074 }
8075 else
8076 {
8077 augment_type_symtab (objfile,
0186c6a7
DE
8078 sig_type->type_unit_group->primary_symtab);
8079 symtab = sig_type->type_unit_group->primary_symtab;
f4dc4d17
DE
8080 }
8081
8082 if (dwarf2_per_objfile->using_index)
8083 per_cu->v.quick->symtab = symtab;
8084 else
8085 {
8086 struct partial_symtab *pst = per_cu->v.psymtab;
8087 pst->symtab = symtab;
8088 pst->readin = 1;
45cfd468 8089 }
f4dc4d17
DE
8090
8091 do_cleanups (back_to);
c906108c
SS
8092}
8093
95554aad
TT
8094/* Process an imported unit DIE. */
8095
8096static void
8097process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8098{
8099 struct attribute *attr;
8100
f4dc4d17
DE
8101 /* For now we don't handle imported units in type units. */
8102 if (cu->per_cu->is_debug_types)
8103 {
8104 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8105 " supported in type units [in module %s]"),
4262abfb 8106 objfile_name (cu->objfile));
f4dc4d17
DE
8107 }
8108
95554aad
TT
8109 attr = dwarf2_attr (die, DW_AT_import, cu);
8110 if (attr != NULL)
8111 {
8112 struct dwarf2_per_cu_data *per_cu;
8113 struct symtab *imported_symtab;
8114 sect_offset offset;
36586728 8115 int is_dwz;
95554aad
TT
8116
8117 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
8118 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8119 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 8120
69d751e3 8121 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8122 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8123 load_full_comp_unit (per_cu, cu->language);
8124
796a7ff8 8125 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8126 per_cu);
8127 }
8128}
8129
adde2bff
DE
8130/* Reset the in_process bit of a die. */
8131
8132static void
8133reset_die_in_process (void *arg)
8134{
8135 struct die_info *die = arg;
8c3cb9fa 8136
adde2bff
DE
8137 die->in_process = 0;
8138}
8139
c906108c
SS
8140/* Process a die and its children. */
8141
8142static void
e7c27a73 8143process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8144{
adde2bff
DE
8145 struct cleanup *in_process;
8146
8147 /* We should only be processing those not already in process. */
8148 gdb_assert (!die->in_process);
8149
8150 die->in_process = 1;
8151 in_process = make_cleanup (reset_die_in_process,die);
8152
c906108c
SS
8153 switch (die->tag)
8154 {
8155 case DW_TAG_padding:
8156 break;
8157 case DW_TAG_compile_unit:
95554aad 8158 case DW_TAG_partial_unit:
e7c27a73 8159 read_file_scope (die, cu);
c906108c 8160 break;
348e048f
DE
8161 case DW_TAG_type_unit:
8162 read_type_unit_scope (die, cu);
8163 break;
c906108c 8164 case DW_TAG_subprogram:
c906108c 8165 case DW_TAG_inlined_subroutine:
edb3359d 8166 read_func_scope (die, cu);
c906108c
SS
8167 break;
8168 case DW_TAG_lexical_block:
14898363
L
8169 case DW_TAG_try_block:
8170 case DW_TAG_catch_block:
e7c27a73 8171 read_lexical_block_scope (die, cu);
c906108c 8172 break;
96408a79
SA
8173 case DW_TAG_GNU_call_site:
8174 read_call_site_scope (die, cu);
8175 break;
c906108c 8176 case DW_TAG_class_type:
680b30c7 8177 case DW_TAG_interface_type:
c906108c
SS
8178 case DW_TAG_structure_type:
8179 case DW_TAG_union_type:
134d01f1 8180 process_structure_scope (die, cu);
c906108c
SS
8181 break;
8182 case DW_TAG_enumeration_type:
134d01f1 8183 process_enumeration_scope (die, cu);
c906108c 8184 break;
134d01f1 8185
f792889a
DJ
8186 /* These dies have a type, but processing them does not create
8187 a symbol or recurse to process the children. Therefore we can
8188 read them on-demand through read_type_die. */
c906108c 8189 case DW_TAG_subroutine_type:
72019c9c 8190 case DW_TAG_set_type:
c906108c 8191 case DW_TAG_array_type:
c906108c 8192 case DW_TAG_pointer_type:
c906108c 8193 case DW_TAG_ptr_to_member_type:
c906108c 8194 case DW_TAG_reference_type:
c906108c 8195 case DW_TAG_string_type:
c906108c 8196 break;
134d01f1 8197
c906108c 8198 case DW_TAG_base_type:
a02abb62 8199 case DW_TAG_subrange_type:
cb249c71 8200 case DW_TAG_typedef:
134d01f1
DJ
8201 /* Add a typedef symbol for the type definition, if it has a
8202 DW_AT_name. */
f792889a 8203 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8204 break;
c906108c 8205 case DW_TAG_common_block:
e7c27a73 8206 read_common_block (die, cu);
c906108c
SS
8207 break;
8208 case DW_TAG_common_inclusion:
8209 break;
d9fa45fe 8210 case DW_TAG_namespace:
4d4ec4e5 8211 cu->processing_has_namespace_info = 1;
e7c27a73 8212 read_namespace (die, cu);
d9fa45fe 8213 break;
5d7cb8df 8214 case DW_TAG_module:
4d4ec4e5 8215 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8216 read_module (die, cu);
8217 break;
d9fa45fe 8218 case DW_TAG_imported_declaration:
74921315
KS
8219 cu->processing_has_namespace_info = 1;
8220 if (read_namespace_alias (die, cu))
8221 break;
8222 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8223 case DW_TAG_imported_module:
4d4ec4e5 8224 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8225 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8226 || cu->language != language_fortran))
8227 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8228 dwarf_tag_name (die->tag));
8229 read_import_statement (die, cu);
d9fa45fe 8230 break;
95554aad
TT
8231
8232 case DW_TAG_imported_unit:
8233 process_imported_unit_die (die, cu);
8234 break;
8235
c906108c 8236 default:
e7c27a73 8237 new_symbol (die, NULL, cu);
c906108c
SS
8238 break;
8239 }
adde2bff
DE
8240
8241 do_cleanups (in_process);
c906108c 8242}
ca69b9e6
DE
8243\f
8244/* DWARF name computation. */
c906108c 8245
94af9270
KS
8246/* A helper function for dwarf2_compute_name which determines whether DIE
8247 needs to have the name of the scope prepended to the name listed in the
8248 die. */
8249
8250static int
8251die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8252{
1c809c68
TT
8253 struct attribute *attr;
8254
94af9270
KS
8255 switch (die->tag)
8256 {
8257 case DW_TAG_namespace:
8258 case DW_TAG_typedef:
8259 case DW_TAG_class_type:
8260 case DW_TAG_interface_type:
8261 case DW_TAG_structure_type:
8262 case DW_TAG_union_type:
8263 case DW_TAG_enumeration_type:
8264 case DW_TAG_enumerator:
8265 case DW_TAG_subprogram:
8266 case DW_TAG_member:
74921315 8267 case DW_TAG_imported_declaration:
94af9270
KS
8268 return 1;
8269
8270 case DW_TAG_variable:
c2b0a229 8271 case DW_TAG_constant:
94af9270
KS
8272 /* We only need to prefix "globally" visible variables. These include
8273 any variable marked with DW_AT_external or any variable that
8274 lives in a namespace. [Variables in anonymous namespaces
8275 require prefixing, but they are not DW_AT_external.] */
8276
8277 if (dwarf2_attr (die, DW_AT_specification, cu))
8278 {
8279 struct dwarf2_cu *spec_cu = cu;
9a619af0 8280
94af9270
KS
8281 return die_needs_namespace (die_specification (die, &spec_cu),
8282 spec_cu);
8283 }
8284
1c809c68 8285 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8286 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8287 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8288 return 0;
8289 /* A variable in a lexical block of some kind does not need a
8290 namespace, even though in C++ such variables may be external
8291 and have a mangled name. */
8292 if (die->parent->tag == DW_TAG_lexical_block
8293 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8294 || die->parent->tag == DW_TAG_catch_block
8295 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8296 return 0;
8297 return 1;
94af9270
KS
8298
8299 default:
8300 return 0;
8301 }
8302}
8303
98bfdba5
PA
8304/* Retrieve the last character from a mem_file. */
8305
8306static void
8307do_ui_file_peek_last (void *object, const char *buffer, long length)
8308{
8309 char *last_char_p = (char *) object;
8310
8311 if (length > 0)
8312 *last_char_p = buffer[length - 1];
8313}
8314
94af9270 8315/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
8316 compute the physname for the object, which include a method's:
8317 - formal parameters (C++/Java),
8318 - receiver type (Go),
8319 - return type (Java).
8320
8321 The term "physname" is a bit confusing.
8322 For C++, for example, it is the demangled name.
8323 For Go, for example, it's the mangled name.
94af9270 8324
af6b7be1
JB
8325 For Ada, return the DIE's linkage name rather than the fully qualified
8326 name. PHYSNAME is ignored..
8327
94af9270
KS
8328 The result is allocated on the objfile_obstack and canonicalized. */
8329
8330static const char *
15d034d0
TT
8331dwarf2_compute_name (const char *name,
8332 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8333 int physname)
8334{
bb5ed363
DE
8335 struct objfile *objfile = cu->objfile;
8336
94af9270
KS
8337 if (name == NULL)
8338 name = dwarf2_name (die, cu);
8339
f55ee35c
JK
8340 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8341 compute it by typename_concat inside GDB. */
8342 if (cu->language == language_ada
8343 || (cu->language == language_fortran && physname))
8344 {
8345 /* For Ada unit, we prefer the linkage name over the name, as
8346 the former contains the exported name, which the user expects
8347 to be able to reference. Ideally, we want the user to be able
8348 to reference this entity using either natural or linkage name,
8349 but we haven't started looking at this enhancement yet. */
8350 struct attribute *attr;
8351
8352 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8353 if (attr == NULL)
8354 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8355 if (attr && DW_STRING (attr))
8356 return DW_STRING (attr);
8357 }
8358
94af9270
KS
8359 /* These are the only languages we know how to qualify names in. */
8360 if (name != NULL
f55ee35c
JK
8361 && (cu->language == language_cplus || cu->language == language_java
8362 || cu->language == language_fortran))
94af9270
KS
8363 {
8364 if (die_needs_namespace (die, cu))
8365 {
8366 long length;
0d5cff50 8367 const char *prefix;
94af9270 8368 struct ui_file *buf;
34a68019
TT
8369 char *intermediate_name;
8370 const char *canonical_name = NULL;
94af9270
KS
8371
8372 prefix = determine_prefix (die, cu);
8373 buf = mem_fileopen ();
8374 if (*prefix != '\0')
8375 {
f55ee35c
JK
8376 char *prefixed_name = typename_concat (NULL, prefix, name,
8377 physname, cu);
9a619af0 8378
94af9270
KS
8379 fputs_unfiltered (prefixed_name, buf);
8380 xfree (prefixed_name);
8381 }
8382 else
62d5b8da 8383 fputs_unfiltered (name, buf);
94af9270 8384
98bfdba5
PA
8385 /* Template parameters may be specified in the DIE's DW_AT_name, or
8386 as children with DW_TAG_template_type_param or
8387 DW_TAG_value_type_param. If the latter, add them to the name
8388 here. If the name already has template parameters, then
8389 skip this step; some versions of GCC emit both, and
8390 it is more efficient to use the pre-computed name.
8391
8392 Something to keep in mind about this process: it is very
8393 unlikely, or in some cases downright impossible, to produce
8394 something that will match the mangled name of a function.
8395 If the definition of the function has the same debug info,
8396 we should be able to match up with it anyway. But fallbacks
8397 using the minimal symbol, for instance to find a method
8398 implemented in a stripped copy of libstdc++, will not work.
8399 If we do not have debug info for the definition, we will have to
8400 match them up some other way.
8401
8402 When we do name matching there is a related problem with function
8403 templates; two instantiated function templates are allowed to
8404 differ only by their return types, which we do not add here. */
8405
8406 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8407 {
8408 struct attribute *attr;
8409 struct die_info *child;
8410 int first = 1;
8411
8412 die->building_fullname = 1;
8413
8414 for (child = die->child; child != NULL; child = child->sibling)
8415 {
8416 struct type *type;
12df843f 8417 LONGEST value;
d521ce57 8418 const gdb_byte *bytes;
98bfdba5
PA
8419 struct dwarf2_locexpr_baton *baton;
8420 struct value *v;
8421
8422 if (child->tag != DW_TAG_template_type_param
8423 && child->tag != DW_TAG_template_value_param)
8424 continue;
8425
8426 if (first)
8427 {
8428 fputs_unfiltered ("<", buf);
8429 first = 0;
8430 }
8431 else
8432 fputs_unfiltered (", ", buf);
8433
8434 attr = dwarf2_attr (child, DW_AT_type, cu);
8435 if (attr == NULL)
8436 {
8437 complaint (&symfile_complaints,
8438 _("template parameter missing DW_AT_type"));
8439 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8440 continue;
8441 }
8442 type = die_type (child, cu);
8443
8444 if (child->tag == DW_TAG_template_type_param)
8445 {
79d43c61 8446 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8447 continue;
8448 }
8449
8450 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8451 if (attr == NULL)
8452 {
8453 complaint (&symfile_complaints,
3e43a32a
MS
8454 _("template parameter missing "
8455 "DW_AT_const_value"));
98bfdba5
PA
8456 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8457 continue;
8458 }
8459
8460 dwarf2_const_value_attr (attr, type, name,
8461 &cu->comp_unit_obstack, cu,
8462 &value, &bytes, &baton);
8463
8464 if (TYPE_NOSIGN (type))
8465 /* GDB prints characters as NUMBER 'CHAR'. If that's
8466 changed, this can use value_print instead. */
8467 c_printchar (value, type, buf);
8468 else
8469 {
8470 struct value_print_options opts;
8471
8472 if (baton != NULL)
8473 v = dwarf2_evaluate_loc_desc (type, NULL,
8474 baton->data,
8475 baton->size,
8476 baton->per_cu);
8477 else if (bytes != NULL)
8478 {
8479 v = allocate_value (type);
8480 memcpy (value_contents_writeable (v), bytes,
8481 TYPE_LENGTH (type));
8482 }
8483 else
8484 v = value_from_longest (type, value);
8485
3e43a32a
MS
8486 /* Specify decimal so that we do not depend on
8487 the radix. */
98bfdba5
PA
8488 get_formatted_print_options (&opts, 'd');
8489 opts.raw = 1;
8490 value_print (v, buf, &opts);
8491 release_value (v);
8492 value_free (v);
8493 }
8494 }
8495
8496 die->building_fullname = 0;
8497
8498 if (!first)
8499 {
8500 /* Close the argument list, with a space if necessary
8501 (nested templates). */
8502 char last_char = '\0';
8503 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8504 if (last_char == '>')
8505 fputs_unfiltered (" >", buf);
8506 else
8507 fputs_unfiltered (">", buf);
8508 }
8509 }
8510
94af9270
KS
8511 /* For Java and C++ methods, append formal parameter type
8512 information, if PHYSNAME. */
6e70227d 8513
94af9270
KS
8514 if (physname && die->tag == DW_TAG_subprogram
8515 && (cu->language == language_cplus
8516 || cu->language == language_java))
8517 {
8518 struct type *type = read_type_die (die, cu);
8519
79d43c61
TT
8520 c_type_print_args (type, buf, 1, cu->language,
8521 &type_print_raw_options);
94af9270
KS
8522
8523 if (cu->language == language_java)
8524 {
8525 /* For java, we must append the return type to method
0963b4bd 8526 names. */
94af9270
KS
8527 if (die->tag == DW_TAG_subprogram)
8528 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8529 0, 0, &type_print_raw_options);
94af9270
KS
8530 }
8531 else if (cu->language == language_cplus)
8532 {
60430eff
DJ
8533 /* Assume that an artificial first parameter is
8534 "this", but do not crash if it is not. RealView
8535 marks unnamed (and thus unused) parameters as
8536 artificial; there is no way to differentiate
8537 the two cases. */
94af9270
KS
8538 if (TYPE_NFIELDS (type) > 0
8539 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8540 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8541 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8542 0))))
94af9270
KS
8543 fputs_unfiltered (" const", buf);
8544 }
8545 }
8546
34a68019 8547 intermediate_name = ui_file_xstrdup (buf, &length);
94af9270
KS
8548 ui_file_delete (buf);
8549
8550 if (cu->language == language_cplus)
34a68019
TT
8551 canonical_name
8552 = dwarf2_canonicalize_name (intermediate_name, cu,
8553 &objfile->per_bfd->storage_obstack);
8554
8555 /* If we only computed INTERMEDIATE_NAME, or if
8556 INTERMEDIATE_NAME is already canonical, then we need to
8557 copy it to the appropriate obstack. */
8558 if (canonical_name == NULL || canonical_name == intermediate_name)
8559 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8560 intermediate_name,
8561 strlen (intermediate_name));
8562 else
8563 name = canonical_name;
9a619af0 8564
34a68019 8565 xfree (intermediate_name);
94af9270
KS
8566 }
8567 }
8568
8569 return name;
8570}
8571
0114d602
DJ
8572/* Return the fully qualified name of DIE, based on its DW_AT_name.
8573 If scope qualifiers are appropriate they will be added. The result
34a68019 8574 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8575 not have a name. NAME may either be from a previous call to
8576 dwarf2_name or NULL.
8577
0963b4bd 8578 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8579
8580static const char *
15d034d0 8581dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8582{
94af9270
KS
8583 return dwarf2_compute_name (name, die, cu, 0);
8584}
0114d602 8585
94af9270
KS
8586/* Construct a physname for the given DIE in CU. NAME may either be
8587 from a previous call to dwarf2_name or NULL. The result will be
8588 allocated on the objfile_objstack or NULL if the DIE does not have a
8589 name.
0114d602 8590
94af9270 8591 The output string will be canonicalized (if C++/Java). */
0114d602 8592
94af9270 8593static const char *
15d034d0 8594dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8595{
bb5ed363 8596 struct objfile *objfile = cu->objfile;
900e11f9
JK
8597 struct attribute *attr;
8598 const char *retval, *mangled = NULL, *canon = NULL;
8599 struct cleanup *back_to;
8600 int need_copy = 1;
8601
8602 /* In this case dwarf2_compute_name is just a shortcut not building anything
8603 on its own. */
8604 if (!die_needs_namespace (die, cu))
8605 return dwarf2_compute_name (name, die, cu, 1);
8606
8607 back_to = make_cleanup (null_cleanup, NULL);
8608
8609 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8610 if (!attr)
8611 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8612
8613 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8614 has computed. */
8615 if (attr && DW_STRING (attr))
8616 {
8617 char *demangled;
8618
8619 mangled = DW_STRING (attr);
8620
8621 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8622 type. It is easier for GDB users to search for such functions as
8623 `name(params)' than `long name(params)'. In such case the minimal
8624 symbol names do not match the full symbol names but for template
8625 functions there is never a need to look up their definition from their
8626 declaration so the only disadvantage remains the minimal symbol
8627 variant `long name(params)' does not have the proper inferior type.
8628 */
8629
a766d390
DE
8630 if (cu->language == language_go)
8631 {
8632 /* This is a lie, but we already lie to the caller new_symbol_full.
8633 new_symbol_full assumes we return the mangled name.
8634 This just undoes that lie until things are cleaned up. */
8635 demangled = NULL;
8636 }
8637 else
8638 {
8de20a37
TT
8639 demangled = gdb_demangle (mangled,
8640 (DMGL_PARAMS | DMGL_ANSI
8641 | (cu->language == language_java
8642 ? DMGL_JAVA | DMGL_RET_POSTFIX
8643 : DMGL_RET_DROP)));
a766d390 8644 }
900e11f9
JK
8645 if (demangled)
8646 {
8647 make_cleanup (xfree, demangled);
8648 canon = demangled;
8649 }
8650 else
8651 {
8652 canon = mangled;
8653 need_copy = 0;
8654 }
8655 }
8656
8657 if (canon == NULL || check_physname)
8658 {
8659 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8660
8661 if (canon != NULL && strcmp (physname, canon) != 0)
8662 {
8663 /* It may not mean a bug in GDB. The compiler could also
8664 compute DW_AT_linkage_name incorrectly. But in such case
8665 GDB would need to be bug-to-bug compatible. */
8666
8667 complaint (&symfile_complaints,
8668 _("Computed physname <%s> does not match demangled <%s> "
8669 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8670 physname, canon, mangled, die->offset.sect_off,
8671 objfile_name (objfile));
900e11f9
JK
8672
8673 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8674 is available here - over computed PHYSNAME. It is safer
8675 against both buggy GDB and buggy compilers. */
8676
8677 retval = canon;
8678 }
8679 else
8680 {
8681 retval = physname;
8682 need_copy = 0;
8683 }
8684 }
8685 else
8686 retval = canon;
8687
8688 if (need_copy)
34a68019
TT
8689 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8690 retval, strlen (retval));
900e11f9
JK
8691
8692 do_cleanups (back_to);
8693 return retval;
0114d602
DJ
8694}
8695
74921315
KS
8696/* Inspect DIE in CU for a namespace alias. If one exists, record
8697 a new symbol for it.
8698
8699 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8700
8701static int
8702read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8703{
8704 struct attribute *attr;
8705
8706 /* If the die does not have a name, this is not a namespace
8707 alias. */
8708 attr = dwarf2_attr (die, DW_AT_name, cu);
8709 if (attr != NULL)
8710 {
8711 int num;
8712 struct die_info *d = die;
8713 struct dwarf2_cu *imported_cu = cu;
8714
8715 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8716 keep inspecting DIEs until we hit the underlying import. */
8717#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8718 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8719 {
8720 attr = dwarf2_attr (d, DW_AT_import, cu);
8721 if (attr == NULL)
8722 break;
8723
8724 d = follow_die_ref (d, attr, &imported_cu);
8725 if (d->tag != DW_TAG_imported_declaration)
8726 break;
8727 }
8728
8729 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8730 {
8731 complaint (&symfile_complaints,
8732 _("DIE at 0x%x has too many recursively imported "
8733 "declarations"), d->offset.sect_off);
8734 return 0;
8735 }
8736
8737 if (attr != NULL)
8738 {
8739 struct type *type;
8740 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8741
8742 type = get_die_type_at_offset (offset, cu->per_cu);
8743 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8744 {
8745 /* This declaration is a global namespace alias. Add
8746 a symbol for it whose type is the aliased namespace. */
8747 new_symbol (die, type, cu);
8748 return 1;
8749 }
8750 }
8751 }
8752
8753 return 0;
8754}
8755
27aa8d6a
SW
8756/* Read the import statement specified by the given die and record it. */
8757
8758static void
8759read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8760{
bb5ed363 8761 struct objfile *objfile = cu->objfile;
27aa8d6a 8762 struct attribute *import_attr;
32019081 8763 struct die_info *imported_die, *child_die;
de4affc9 8764 struct dwarf2_cu *imported_cu;
27aa8d6a 8765 const char *imported_name;
794684b6 8766 const char *imported_name_prefix;
13387711
SW
8767 const char *canonical_name;
8768 const char *import_alias;
8769 const char *imported_declaration = NULL;
794684b6 8770 const char *import_prefix;
32019081
JK
8771 VEC (const_char_ptr) *excludes = NULL;
8772 struct cleanup *cleanups;
13387711 8773
27aa8d6a
SW
8774 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8775 if (import_attr == NULL)
8776 {
8777 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8778 dwarf_tag_name (die->tag));
8779 return;
8780 }
8781
de4affc9
CC
8782 imported_cu = cu;
8783 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8784 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8785 if (imported_name == NULL)
8786 {
8787 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8788
8789 The import in the following code:
8790 namespace A
8791 {
8792 typedef int B;
8793 }
8794
8795 int main ()
8796 {
8797 using A::B;
8798 B b;
8799 return b;
8800 }
8801
8802 ...
8803 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8804 <52> DW_AT_decl_file : 1
8805 <53> DW_AT_decl_line : 6
8806 <54> DW_AT_import : <0x75>
8807 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8808 <59> DW_AT_name : B
8809 <5b> DW_AT_decl_file : 1
8810 <5c> DW_AT_decl_line : 2
8811 <5d> DW_AT_type : <0x6e>
8812 ...
8813 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8814 <76> DW_AT_byte_size : 4
8815 <77> DW_AT_encoding : 5 (signed)
8816
8817 imports the wrong die ( 0x75 instead of 0x58 ).
8818 This case will be ignored until the gcc bug is fixed. */
8819 return;
8820 }
8821
82856980
SW
8822 /* Figure out the local name after import. */
8823 import_alias = dwarf2_name (die, cu);
27aa8d6a 8824
794684b6
SW
8825 /* Figure out where the statement is being imported to. */
8826 import_prefix = determine_prefix (die, cu);
8827
8828 /* Figure out what the scope of the imported die is and prepend it
8829 to the name of the imported die. */
de4affc9 8830 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8831
f55ee35c
JK
8832 if (imported_die->tag != DW_TAG_namespace
8833 && imported_die->tag != DW_TAG_module)
794684b6 8834 {
13387711
SW
8835 imported_declaration = imported_name;
8836 canonical_name = imported_name_prefix;
794684b6 8837 }
13387711 8838 else if (strlen (imported_name_prefix) > 0)
12aaed36
TT
8839 canonical_name = obconcat (&objfile->objfile_obstack,
8840 imported_name_prefix, "::", imported_name,
8841 (char *) NULL);
13387711
SW
8842 else
8843 canonical_name = imported_name;
794684b6 8844
32019081
JK
8845 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8846
8847 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8848 for (child_die = die->child; child_die && child_die->tag;
8849 child_die = sibling_die (child_die))
8850 {
8851 /* DWARF-4: A Fortran use statement with a “rename list” may be
8852 represented by an imported module entry with an import attribute
8853 referring to the module and owned entries corresponding to those
8854 entities that are renamed as part of being imported. */
8855
8856 if (child_die->tag != DW_TAG_imported_declaration)
8857 {
8858 complaint (&symfile_complaints,
8859 _("child DW_TAG_imported_declaration expected "
8860 "- DIE at 0x%x [in module %s]"),
4262abfb 8861 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8862 continue;
8863 }
8864
8865 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8866 if (import_attr == NULL)
8867 {
8868 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8869 dwarf_tag_name (child_die->tag));
8870 continue;
8871 }
8872
8873 imported_cu = cu;
8874 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8875 &imported_cu);
8876 imported_name = dwarf2_name (imported_die, imported_cu);
8877 if (imported_name == NULL)
8878 {
8879 complaint (&symfile_complaints,
8880 _("child DW_TAG_imported_declaration has unknown "
8881 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 8882 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8883 continue;
8884 }
8885
8886 VEC_safe_push (const_char_ptr, excludes, imported_name);
8887
8888 process_die (child_die, cu);
8889 }
8890
c0cc3a76
SW
8891 cp_add_using_directive (import_prefix,
8892 canonical_name,
8893 import_alias,
13387711 8894 imported_declaration,
32019081 8895 excludes,
12aaed36 8896 0,
bb5ed363 8897 &objfile->objfile_obstack);
32019081
JK
8898
8899 do_cleanups (cleanups);
27aa8d6a
SW
8900}
8901
f4dc4d17 8902/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 8903
cb1df416
DJ
8904static void
8905free_cu_line_header (void *arg)
8906{
8907 struct dwarf2_cu *cu = arg;
8908
8909 free_line_header (cu->line_header);
8910 cu->line_header = NULL;
8911}
8912
1b80a9fa
JK
8913/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8914 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8915 this, it was first present in GCC release 4.3.0. */
8916
8917static int
8918producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8919{
8920 if (!cu->checked_producer)
8921 check_producer (cu);
8922
8923 return cu->producer_is_gcc_lt_4_3;
8924}
8925
9291a0cd
TT
8926static void
8927find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 8928 const char **name, const char **comp_dir)
9291a0cd
TT
8929{
8930 struct attribute *attr;
8931
8932 *name = NULL;
8933 *comp_dir = NULL;
8934
8935 /* Find the filename. Do not use dwarf2_name here, since the filename
8936 is not a source language identifier. */
8937 attr = dwarf2_attr (die, DW_AT_name, cu);
8938 if (attr)
8939 {
8940 *name = DW_STRING (attr);
8941 }
8942
8943 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8944 if (attr)
8945 *comp_dir = DW_STRING (attr);
1b80a9fa
JK
8946 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8947 && IS_ABSOLUTE_PATH (*name))
9291a0cd 8948 {
15d034d0
TT
8949 char *d = ldirname (*name);
8950
8951 *comp_dir = d;
8952 if (d != NULL)
8953 make_cleanup (xfree, d);
9291a0cd
TT
8954 }
8955 if (*comp_dir != NULL)
8956 {
8957 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8958 directory, get rid of it. */
8959 char *cp = strchr (*comp_dir, ':');
8960
8961 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8962 *comp_dir = cp + 1;
8963 }
8964
8965 if (*name == NULL)
8966 *name = "<unknown>";
8967}
8968
f4dc4d17
DE
8969/* Handle DW_AT_stmt_list for a compilation unit.
8970 DIE is the DW_TAG_compile_unit die for CU.
f3f5162e
DE
8971 COMP_DIR is the compilation directory.
8972 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
2ab95328
TT
8973
8974static void
8975handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
b385a60d 8976 const char *comp_dir) /* ARI: editCase function */
2ab95328
TT
8977{
8978 struct attribute *attr;
2ab95328 8979
f4dc4d17
DE
8980 gdb_assert (! cu->per_cu->is_debug_types);
8981
2ab95328
TT
8982 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8983 if (attr)
8984 {
8985 unsigned int line_offset = DW_UNSND (attr);
8986 struct line_header *line_header
3019eac3 8987 = dwarf_decode_line_header (line_offset, cu);
2ab95328
TT
8988
8989 if (line_header)
dee91e82
DE
8990 {
8991 cu->line_header = line_header;
8992 make_cleanup (free_cu_line_header, cu);
f4dc4d17 8993 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
dee91e82 8994 }
2ab95328
TT
8995 }
8996}
8997
95554aad 8998/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 8999
c906108c 9000static void
e7c27a73 9001read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9002{
dee91e82 9003 struct objfile *objfile = dwarf2_per_objfile->objfile;
debd256d 9004 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 9005 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9006 CORE_ADDR highpc = ((CORE_ADDR) 0);
9007 struct attribute *attr;
15d034d0
TT
9008 const char *name = NULL;
9009 const char *comp_dir = NULL;
c906108c
SS
9010 struct die_info *child_die;
9011 bfd *abfd = objfile->obfd;
e142c38c 9012 CORE_ADDR baseaddr;
6e70227d 9013
e142c38c 9014 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9015
fae299cd 9016 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9017
9018 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9019 from finish_block. */
2acceee2 9020 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
9021 lowpc = highpc;
9022 lowpc += baseaddr;
9023 highpc += baseaddr;
9024
9291a0cd 9025 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 9026
95554aad 9027 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9028
f4b8a18d
KW
9029 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9030 standardised yet. As a workaround for the language detection we fall
9031 back to the DW_AT_producer string. */
9032 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9033 cu->language = language_opencl;
9034
3019eac3
DE
9035 /* Similar hack for Go. */
9036 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9037 set_cu_language (DW_LANG_Go, cu);
9038
f4dc4d17 9039 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
9040
9041 /* Decode line number information if present. We do this before
9042 processing child DIEs, so that the line header table is available
9043 for DW_AT_decl_file. */
f4dc4d17 9044 handle_DW_AT_stmt_list (die, cu, comp_dir);
3019eac3
DE
9045
9046 /* Process all dies in compilation unit. */
9047 if (die->child != NULL)
9048 {
9049 child_die = die->child;
9050 while (child_die && child_die->tag)
9051 {
9052 process_die (child_die, cu);
9053 child_die = sibling_die (child_die);
9054 }
9055 }
9056
9057 /* Decode macro information, if present. Dwarf 2 macro information
9058 refers to information in the line number info statement program
9059 header, so we can only read it if we've read the header
9060 successfully. */
9061 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9062 if (attr && cu->line_header)
9063 {
9064 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9065 complaint (&symfile_complaints,
9066 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9067
09262596 9068 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
3019eac3
DE
9069 }
9070 else
9071 {
9072 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9073 if (attr && cu->line_header)
9074 {
9075 unsigned int macro_offset = DW_UNSND (attr);
9076
09262596 9077 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
3019eac3
DE
9078 }
9079 }
9080
9081 do_cleanups (back_to);
9082}
9083
f4dc4d17
DE
9084/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9085 Create the set of symtabs used by this TU, or if this TU is sharing
9086 symtabs with another TU and the symtabs have already been created
9087 then restore those symtabs in the line header.
9088 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9089
9090static void
f4dc4d17 9091setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9092{
f4dc4d17
DE
9093 struct objfile *objfile = dwarf2_per_objfile->objfile;
9094 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9095 struct type_unit_group *tu_group;
9096 int first_time;
9097 struct line_header *lh;
3019eac3 9098 struct attribute *attr;
f4dc4d17 9099 unsigned int i, line_offset;
0186c6a7 9100 struct signatured_type *sig_type;
3019eac3 9101
f4dc4d17 9102 gdb_assert (per_cu->is_debug_types);
0186c6a7 9103 sig_type = (struct signatured_type *) per_cu;
3019eac3 9104
f4dc4d17 9105 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9106
f4dc4d17 9107 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9108 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9109 if (sig_type->type_unit_group == NULL)
9110 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9111 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9112
9113 /* If we've already processed this stmt_list there's no real need to
9114 do it again, we could fake it and just recreate the part we need
9115 (file name,index -> symtab mapping). If data shows this optimization
9116 is useful we can do it then. */
9117 first_time = tu_group->primary_symtab == NULL;
9118
9119 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9120 debug info. */
9121 lh = NULL;
9122 if (attr != NULL)
3019eac3 9123 {
f4dc4d17
DE
9124 line_offset = DW_UNSND (attr);
9125 lh = dwarf_decode_line_header (line_offset, cu);
9126 }
9127 if (lh == NULL)
9128 {
9129 if (first_time)
9130 dwarf2_start_symtab (cu, "", NULL, 0);
9131 else
9132 {
9133 gdb_assert (tu_group->symtabs == NULL);
9134 restart_symtab (0);
9135 }
9136 /* Note: The primary symtab will get allocated at the end. */
9137 return;
3019eac3
DE
9138 }
9139
f4dc4d17
DE
9140 cu->line_header = lh;
9141 make_cleanup (free_cu_line_header, cu);
3019eac3 9142
f4dc4d17
DE
9143 if (first_time)
9144 {
9145 dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9146
f4dc4d17
DE
9147 tu_group->num_symtabs = lh->num_file_names;
9148 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 9149
f4dc4d17
DE
9150 for (i = 0; i < lh->num_file_names; ++i)
9151 {
d521ce57 9152 const char *dir = NULL;
f4dc4d17 9153 struct file_entry *fe = &lh->file_names[i];
3019eac3 9154
f4dc4d17
DE
9155 if (fe->dir_index)
9156 dir = lh->include_dirs[fe->dir_index - 1];
9157 dwarf2_start_subfile (fe->name, dir, NULL);
3019eac3 9158
f4dc4d17
DE
9159 /* Note: We don't have to watch for the main subfile here, type units
9160 don't have DW_AT_name. */
3019eac3 9161
f4dc4d17
DE
9162 if (current_subfile->symtab == NULL)
9163 {
9164 /* NOTE: start_subfile will recognize when it's been passed
9165 a file it has already seen. So we can't assume there's a
9166 simple mapping from lh->file_names to subfiles,
9167 lh->file_names may contain dups. */
9168 current_subfile->symtab = allocate_symtab (current_subfile->name,
9169 objfile);
9170 }
9171
9172 fe->symtab = current_subfile->symtab;
9173 tu_group->symtabs[i] = fe->symtab;
9174 }
9175 }
9176 else
3019eac3 9177 {
f4dc4d17
DE
9178 restart_symtab (0);
9179
9180 for (i = 0; i < lh->num_file_names; ++i)
9181 {
9182 struct file_entry *fe = &lh->file_names[i];
9183
9184 fe->symtab = tu_group->symtabs[i];
9185 }
3019eac3
DE
9186 }
9187
f4dc4d17
DE
9188 /* The main symtab is allocated last. Type units don't have DW_AT_name
9189 so they don't have a "real" (so to speak) symtab anyway.
9190 There is later code that will assign the main symtab to all symbols
9191 that don't have one. We need to handle the case of a symbol with a
9192 missing symtab (DW_AT_decl_file) anyway. */
9193}
3019eac3 9194
f4dc4d17
DE
9195/* Process DW_TAG_type_unit.
9196 For TUs we want to skip the first top level sibling if it's not the
9197 actual type being defined by this TU. In this case the first top
9198 level sibling is there to provide context only. */
3019eac3 9199
f4dc4d17
DE
9200static void
9201read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9202{
9203 struct die_info *child_die;
3019eac3 9204
f4dc4d17
DE
9205 prepare_one_comp_unit (cu, die, language_minimal);
9206
9207 /* Initialize (or reinitialize) the machinery for building symtabs.
9208 We do this before processing child DIEs, so that the line header table
9209 is available for DW_AT_decl_file. */
9210 setup_type_unit_groups (die, cu);
9211
9212 if (die->child != NULL)
9213 {
9214 child_die = die->child;
9215 while (child_die && child_die->tag)
9216 {
9217 process_die (child_die, cu);
9218 child_die = sibling_die (child_die);
9219 }
9220 }
3019eac3
DE
9221}
9222\f
80626a55
DE
9223/* DWO/DWP files.
9224
9225 http://gcc.gnu.org/wiki/DebugFission
9226 http://gcc.gnu.org/wiki/DebugFissionDWP
9227
9228 To simplify handling of both DWO files ("object" files with the DWARF info)
9229 and DWP files (a file with the DWOs packaged up into one file), we treat
9230 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9231
9232static hashval_t
9233hash_dwo_file (const void *item)
9234{
9235 const struct dwo_file *dwo_file = item;
a2ce51a0 9236 hashval_t hash;
3019eac3 9237
a2ce51a0
DE
9238 hash = htab_hash_string (dwo_file->dwo_name);
9239 if (dwo_file->comp_dir != NULL)
9240 hash += htab_hash_string (dwo_file->comp_dir);
9241 return hash;
3019eac3
DE
9242}
9243
9244static int
9245eq_dwo_file (const void *item_lhs, const void *item_rhs)
9246{
9247 const struct dwo_file *lhs = item_lhs;
9248 const struct dwo_file *rhs = item_rhs;
9249
a2ce51a0
DE
9250 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9251 return 0;
9252 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9253 return lhs->comp_dir == rhs->comp_dir;
9254 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9255}
9256
9257/* Allocate a hash table for DWO files. */
9258
9259static htab_t
9260allocate_dwo_file_hash_table (void)
9261{
9262 struct objfile *objfile = dwarf2_per_objfile->objfile;
9263
9264 return htab_create_alloc_ex (41,
9265 hash_dwo_file,
9266 eq_dwo_file,
9267 NULL,
9268 &objfile->objfile_obstack,
9269 hashtab_obstack_allocate,
9270 dummy_obstack_deallocate);
9271}
9272
80626a55
DE
9273/* Lookup DWO file DWO_NAME. */
9274
9275static void **
0ac5b59e 9276lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9277{
9278 struct dwo_file find_entry;
9279 void **slot;
9280
9281 if (dwarf2_per_objfile->dwo_files == NULL)
9282 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9283
9284 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9285 find_entry.dwo_name = dwo_name;
9286 find_entry.comp_dir = comp_dir;
80626a55
DE
9287 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9288
9289 return slot;
9290}
9291
3019eac3
DE
9292static hashval_t
9293hash_dwo_unit (const void *item)
9294{
9295 const struct dwo_unit *dwo_unit = item;
9296
9297 /* This drops the top 32 bits of the id, but is ok for a hash. */
9298 return dwo_unit->signature;
9299}
9300
9301static int
9302eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9303{
9304 const struct dwo_unit *lhs = item_lhs;
9305 const struct dwo_unit *rhs = item_rhs;
9306
9307 /* The signature is assumed to be unique within the DWO file.
9308 So while object file CU dwo_id's always have the value zero,
9309 that's OK, assuming each object file DWO file has only one CU,
9310 and that's the rule for now. */
9311 return lhs->signature == rhs->signature;
9312}
9313
9314/* Allocate a hash table for DWO CUs,TUs.
9315 There is one of these tables for each of CUs,TUs for each DWO file. */
9316
9317static htab_t
9318allocate_dwo_unit_table (struct objfile *objfile)
9319{
9320 /* Start out with a pretty small number.
9321 Generally DWO files contain only one CU and maybe some TUs. */
9322 return htab_create_alloc_ex (3,
9323 hash_dwo_unit,
9324 eq_dwo_unit,
9325 NULL,
9326 &objfile->objfile_obstack,
9327 hashtab_obstack_allocate,
9328 dummy_obstack_deallocate);
9329}
9330
80626a55 9331/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9332
19c3d4c9 9333struct create_dwo_cu_data
3019eac3
DE
9334{
9335 struct dwo_file *dwo_file;
19c3d4c9 9336 struct dwo_unit dwo_unit;
3019eac3
DE
9337};
9338
19c3d4c9 9339/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9340
9341static void
19c3d4c9
DE
9342create_dwo_cu_reader (const struct die_reader_specs *reader,
9343 const gdb_byte *info_ptr,
9344 struct die_info *comp_unit_die,
9345 int has_children,
9346 void *datap)
3019eac3
DE
9347{
9348 struct dwarf2_cu *cu = reader->cu;
9349 struct objfile *objfile = dwarf2_per_objfile->objfile;
9350 sect_offset offset = cu->per_cu->offset;
8a0459fd 9351 struct dwarf2_section_info *section = cu->per_cu->section;
19c3d4c9 9352 struct create_dwo_cu_data *data = datap;
3019eac3 9353 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9354 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9355 struct attribute *attr;
3019eac3
DE
9356
9357 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9358 if (attr == NULL)
9359 {
19c3d4c9
DE
9360 complaint (&symfile_complaints,
9361 _("Dwarf Error: debug entry at offset 0x%x is missing"
9362 " its dwo_id [in module %s]"),
9363 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9364 return;
9365 }
9366
3019eac3
DE
9367 dwo_unit->dwo_file = dwo_file;
9368 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9369 dwo_unit->section = section;
3019eac3
DE
9370 dwo_unit->offset = offset;
9371 dwo_unit->length = cu->per_cu->length;
9372
09406207 9373 if (dwarf2_read_debug)
4031ecc5
DE
9374 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9375 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9376}
9377
19c3d4c9
DE
9378/* Create the dwo_unit for the lone CU in DWO_FILE.
9379 Note: This function processes DWO files only, not DWP files. */
3019eac3 9380
19c3d4c9
DE
9381static struct dwo_unit *
9382create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9383{
9384 struct objfile *objfile = dwarf2_per_objfile->objfile;
9385 struct dwarf2_section_info *section = &dwo_file->sections.info;
9386 bfd *abfd;
9387 htab_t cu_htab;
d521ce57 9388 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9389 struct create_dwo_cu_data create_dwo_cu_data;
9390 struct dwo_unit *dwo_unit;
3019eac3
DE
9391
9392 dwarf2_read_section (objfile, section);
9393 info_ptr = section->buffer;
9394
9395 if (info_ptr == NULL)
9396 return NULL;
9397
9398 /* We can't set abfd until now because the section may be empty or
9399 not present, in which case section->asection will be NULL. */
a32a8923 9400 abfd = get_section_bfd_owner (section);
3019eac3 9401
09406207 9402 if (dwarf2_read_debug)
19c3d4c9
DE
9403 {
9404 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9405 get_section_name (section),
9406 get_section_file_name (section));
19c3d4c9 9407 }
3019eac3 9408
19c3d4c9
DE
9409 create_dwo_cu_data.dwo_file = dwo_file;
9410 dwo_unit = NULL;
3019eac3
DE
9411
9412 end_ptr = info_ptr + section->size;
9413 while (info_ptr < end_ptr)
9414 {
9415 struct dwarf2_per_cu_data per_cu;
9416
19c3d4c9
DE
9417 memset (&create_dwo_cu_data.dwo_unit, 0,
9418 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9419 memset (&per_cu, 0, sizeof (per_cu));
9420 per_cu.objfile = objfile;
9421 per_cu.is_debug_types = 0;
9422 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9423 per_cu.section = section;
3019eac3 9424
33e80786 9425 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
19c3d4c9
DE
9426 create_dwo_cu_reader,
9427 &create_dwo_cu_data);
9428
9429 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9430 {
9431 /* If we've already found one, complain. We only support one
9432 because having more than one requires hacking the dwo_name of
9433 each to match, which is highly unlikely to happen. */
9434 if (dwo_unit != NULL)
9435 {
9436 complaint (&symfile_complaints,
9437 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9438 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9439 break;
9440 }
9441
9442 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9443 *dwo_unit = create_dwo_cu_data.dwo_unit;
9444 }
3019eac3
DE
9445
9446 info_ptr += per_cu.length;
9447 }
9448
19c3d4c9 9449 return dwo_unit;
3019eac3
DE
9450}
9451
80626a55
DE
9452/* DWP file .debug_{cu,tu}_index section format:
9453 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9454
d2415c6c
DE
9455 DWP Version 1:
9456
80626a55
DE
9457 Both index sections have the same format, and serve to map a 64-bit
9458 signature to a set of section numbers. Each section begins with a header,
9459 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9460 indexes, and a pool of 32-bit section numbers. The index sections will be
9461 aligned at 8-byte boundaries in the file.
9462
d2415c6c
DE
9463 The index section header consists of:
9464
9465 V, 32 bit version number
9466 -, 32 bits unused
9467 N, 32 bit number of compilation units or type units in the index
9468 M, 32 bit number of slots in the hash table
80626a55 9469
d2415c6c 9470 Numbers are recorded using the byte order of the application binary.
80626a55 9471
d2415c6c
DE
9472 The hash table begins at offset 16 in the section, and consists of an array
9473 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9474 order of the application binary). Unused slots in the hash table are 0.
9475 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9476
d2415c6c
DE
9477 The parallel table begins immediately after the hash table
9478 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9479 array of 32-bit indexes (using the byte order of the application binary),
9480 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9481 table contains a 32-bit index into the pool of section numbers. For unused
9482 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9483
73869dc2
DE
9484 The pool of section numbers begins immediately following the hash table
9485 (at offset 16 + 12 * M from the beginning of the section). The pool of
9486 section numbers consists of an array of 32-bit words (using the byte order
9487 of the application binary). Each item in the array is indexed starting
9488 from 0. The hash table entry provides the index of the first section
9489 number in the set. Additional section numbers in the set follow, and the
9490 set is terminated by a 0 entry (section number 0 is not used in ELF).
9491
9492 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9493 section must be the first entry in the set, and the .debug_abbrev.dwo must
9494 be the second entry. Other members of the set may follow in any order.
9495
9496 ---
9497
9498 DWP Version 2:
9499
9500 DWP Version 2 combines all the .debug_info, etc. sections into one,
9501 and the entries in the index tables are now offsets into these sections.
9502 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9503 section.
9504
9505 Index Section Contents:
9506 Header
9507 Hash Table of Signatures dwp_hash_table.hash_table
9508 Parallel Table of Indices dwp_hash_table.unit_table
9509 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9510 Table of Section Sizes dwp_hash_table.v2.sizes
9511
9512 The index section header consists of:
9513
9514 V, 32 bit version number
9515 L, 32 bit number of columns in the table of section offsets
9516 N, 32 bit number of compilation units or type units in the index
9517 M, 32 bit number of slots in the hash table
9518
9519 Numbers are recorded using the byte order of the application binary.
9520
9521 The hash table has the same format as version 1.
9522 The parallel table of indices has the same format as version 1,
9523 except that the entries are origin-1 indices into the table of sections
9524 offsets and the table of section sizes.
9525
9526 The table of offsets begins immediately following the parallel table
9527 (at offset 16 + 12 * M from the beginning of the section). The table is
9528 a two-dimensional array of 32-bit words (using the byte order of the
9529 application binary), with L columns and N+1 rows, in row-major order.
9530 Each row in the array is indexed starting from 0. The first row provides
9531 a key to the remaining rows: each column in this row provides an identifier
9532 for a debug section, and the offsets in the same column of subsequent rows
9533 refer to that section. The section identifiers are:
9534
9535 DW_SECT_INFO 1 .debug_info.dwo
9536 DW_SECT_TYPES 2 .debug_types.dwo
9537 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9538 DW_SECT_LINE 4 .debug_line.dwo
9539 DW_SECT_LOC 5 .debug_loc.dwo
9540 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9541 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9542 DW_SECT_MACRO 8 .debug_macro.dwo
9543
9544 The offsets provided by the CU and TU index sections are the base offsets
9545 for the contributions made by each CU or TU to the corresponding section
9546 in the package file. Each CU and TU header contains an abbrev_offset
9547 field, used to find the abbreviations table for that CU or TU within the
9548 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9549 be interpreted as relative to the base offset given in the index section.
9550 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9551 should be interpreted as relative to the base offset for .debug_line.dwo,
9552 and offsets into other debug sections obtained from DWARF attributes should
9553 also be interpreted as relative to the corresponding base offset.
9554
9555 The table of sizes begins immediately following the table of offsets.
9556 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9557 with L columns and N rows, in row-major order. Each row in the array is
9558 indexed starting from 1 (row 0 is shared by the two tables).
9559
9560 ---
9561
9562 Hash table lookup is handled the same in version 1 and 2:
9563
9564 We assume that N and M will not exceed 2^32 - 1.
9565 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9566
d2415c6c
DE
9567 Given a 64-bit compilation unit signature or a type signature S, an entry
9568 in the hash table is located as follows:
80626a55 9569
d2415c6c
DE
9570 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9571 the low-order k bits all set to 1.
80626a55 9572
d2415c6c 9573 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9574
d2415c6c
DE
9575 3) If the hash table entry at index H matches the signature, use that
9576 entry. If the hash table entry at index H is unused (all zeroes),
9577 terminate the search: the signature is not present in the table.
80626a55 9578
d2415c6c 9579 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9580
d2415c6c 9581 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9582 to stop at an unused slot or find the match. */
80626a55
DE
9583
9584/* Create a hash table to map DWO IDs to their CU/TU entry in
9585 .debug_{info,types}.dwo in DWP_FILE.
9586 Returns NULL if there isn't one.
9587 Note: This function processes DWP files only, not DWO files. */
9588
9589static struct dwp_hash_table *
9590create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9591{
9592 struct objfile *objfile = dwarf2_per_objfile->objfile;
9593 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9594 const gdb_byte *index_ptr, *index_end;
80626a55 9595 struct dwarf2_section_info *index;
73869dc2 9596 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9597 struct dwp_hash_table *htab;
9598
9599 if (is_debug_types)
9600 index = &dwp_file->sections.tu_index;
9601 else
9602 index = &dwp_file->sections.cu_index;
9603
9604 if (dwarf2_section_empty_p (index))
9605 return NULL;
9606 dwarf2_read_section (objfile, index);
9607
9608 index_ptr = index->buffer;
9609 index_end = index_ptr + index->size;
9610
9611 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9612 index_ptr += 4;
9613 if (version == 2)
9614 nr_columns = read_4_bytes (dbfd, index_ptr);
9615 else
9616 nr_columns = 0;
9617 index_ptr += 4;
80626a55
DE
9618 nr_units = read_4_bytes (dbfd, index_ptr);
9619 index_ptr += 4;
9620 nr_slots = read_4_bytes (dbfd, index_ptr);
9621 index_ptr += 4;
9622
73869dc2 9623 if (version != 1 && version != 2)
80626a55 9624 {
21aa081e 9625 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9626 " [in module %s]"),
21aa081e 9627 pulongest (version), dwp_file->name);
80626a55
DE
9628 }
9629 if (nr_slots != (nr_slots & -nr_slots))
9630 {
21aa081e 9631 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9632 " is not power of 2 [in module %s]"),
21aa081e 9633 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9634 }
9635
9636 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9637 htab->version = version;
9638 htab->nr_columns = nr_columns;
80626a55
DE
9639 htab->nr_units = nr_units;
9640 htab->nr_slots = nr_slots;
9641 htab->hash_table = index_ptr;
9642 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9643
9644 /* Exit early if the table is empty. */
9645 if (nr_slots == 0 || nr_units == 0
9646 || (version == 2 && nr_columns == 0))
9647 {
9648 /* All must be zero. */
9649 if (nr_slots != 0 || nr_units != 0
9650 || (version == 2 && nr_columns != 0))
9651 {
9652 complaint (&symfile_complaints,
9653 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9654 " all zero [in modules %s]"),
9655 dwp_file->name);
9656 }
9657 return htab;
9658 }
9659
9660 if (version == 1)
9661 {
9662 htab->section_pool.v1.indices =
9663 htab->unit_table + sizeof (uint32_t) * nr_slots;
9664 /* It's harder to decide whether the section is too small in v1.
9665 V1 is deprecated anyway so we punt. */
9666 }
9667 else
9668 {
9669 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9670 int *ids = htab->section_pool.v2.section_ids;
9671 /* Reverse map for error checking. */
9672 int ids_seen[DW_SECT_MAX + 1];
9673 int i;
9674
9675 if (nr_columns < 2)
9676 {
9677 error (_("Dwarf Error: bad DWP hash table, too few columns"
9678 " in section table [in module %s]"),
9679 dwp_file->name);
9680 }
9681 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9682 {
9683 error (_("Dwarf Error: bad DWP hash table, too many columns"
9684 " in section table [in module %s]"),
9685 dwp_file->name);
9686 }
9687 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9688 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9689 for (i = 0; i < nr_columns; ++i)
9690 {
9691 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9692
9693 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9694 {
9695 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9696 " in section table [in module %s]"),
9697 id, dwp_file->name);
9698 }
9699 if (ids_seen[id] != -1)
9700 {
9701 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9702 " id %d in section table [in module %s]"),
9703 id, dwp_file->name);
9704 }
9705 ids_seen[id] = i;
9706 ids[i] = id;
9707 }
9708 /* Must have exactly one info or types section. */
9709 if (((ids_seen[DW_SECT_INFO] != -1)
9710 + (ids_seen[DW_SECT_TYPES] != -1))
9711 != 1)
9712 {
9713 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9714 " DWO info/types section [in module %s]"),
9715 dwp_file->name);
9716 }
9717 /* Must have an abbrev section. */
9718 if (ids_seen[DW_SECT_ABBREV] == -1)
9719 {
9720 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9721 " section [in module %s]"),
9722 dwp_file->name);
9723 }
9724 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9725 htab->section_pool.v2.sizes =
9726 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9727 * nr_units * nr_columns);
9728 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9729 * nr_units * nr_columns))
9730 > index_end)
9731 {
9732 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9733 " [in module %s]"),
9734 dwp_file->name);
9735 }
9736 }
80626a55
DE
9737
9738 return htab;
9739}
9740
9741/* Update SECTIONS with the data from SECTP.
9742
9743 This function is like the other "locate" section routines that are
9744 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9745 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9746
9747 The result is non-zero for success, or zero if an error was found. */
9748
9749static int
73869dc2
DE
9750locate_v1_virtual_dwo_sections (asection *sectp,
9751 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9752{
9753 const struct dwop_section_names *names = &dwop_section_names;
9754
9755 if (section_is_p (sectp->name, &names->abbrev_dwo))
9756 {
9757 /* There can be only one. */
73869dc2 9758 if (sections->abbrev.s.asection != NULL)
80626a55 9759 return 0;
73869dc2 9760 sections->abbrev.s.asection = sectp;
80626a55
DE
9761 sections->abbrev.size = bfd_get_section_size (sectp);
9762 }
9763 else if (section_is_p (sectp->name, &names->info_dwo)
9764 || section_is_p (sectp->name, &names->types_dwo))
9765 {
9766 /* There can be only one. */
73869dc2 9767 if (sections->info_or_types.s.asection != NULL)
80626a55 9768 return 0;
73869dc2 9769 sections->info_or_types.s.asection = sectp;
80626a55
DE
9770 sections->info_or_types.size = bfd_get_section_size (sectp);
9771 }
9772 else if (section_is_p (sectp->name, &names->line_dwo))
9773 {
9774 /* There can be only one. */
73869dc2 9775 if (sections->line.s.asection != NULL)
80626a55 9776 return 0;
73869dc2 9777 sections->line.s.asection = sectp;
80626a55
DE
9778 sections->line.size = bfd_get_section_size (sectp);
9779 }
9780 else if (section_is_p (sectp->name, &names->loc_dwo))
9781 {
9782 /* There can be only one. */
73869dc2 9783 if (sections->loc.s.asection != NULL)
80626a55 9784 return 0;
73869dc2 9785 sections->loc.s.asection = sectp;
80626a55
DE
9786 sections->loc.size = bfd_get_section_size (sectp);
9787 }
9788 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9789 {
9790 /* There can be only one. */
73869dc2 9791 if (sections->macinfo.s.asection != NULL)
80626a55 9792 return 0;
73869dc2 9793 sections->macinfo.s.asection = sectp;
80626a55
DE
9794 sections->macinfo.size = bfd_get_section_size (sectp);
9795 }
9796 else if (section_is_p (sectp->name, &names->macro_dwo))
9797 {
9798 /* There can be only one. */
73869dc2 9799 if (sections->macro.s.asection != NULL)
80626a55 9800 return 0;
73869dc2 9801 sections->macro.s.asection = sectp;
80626a55
DE
9802 sections->macro.size = bfd_get_section_size (sectp);
9803 }
9804 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9805 {
9806 /* There can be only one. */
73869dc2 9807 if (sections->str_offsets.s.asection != NULL)
80626a55 9808 return 0;
73869dc2 9809 sections->str_offsets.s.asection = sectp;
80626a55
DE
9810 sections->str_offsets.size = bfd_get_section_size (sectp);
9811 }
9812 else
9813 {
9814 /* No other kind of section is valid. */
9815 return 0;
9816 }
9817
9818 return 1;
9819}
9820
73869dc2
DE
9821/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9822 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9823 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9824 This is for DWP version 1 files. */
80626a55
DE
9825
9826static struct dwo_unit *
73869dc2
DE
9827create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9828 uint32_t unit_index,
9829 const char *comp_dir,
9830 ULONGEST signature, int is_debug_types)
80626a55
DE
9831{
9832 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
9833 const struct dwp_hash_table *dwp_htab =
9834 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
9835 bfd *dbfd = dwp_file->dbfd;
9836 const char *kind = is_debug_types ? "TU" : "CU";
9837 struct dwo_file *dwo_file;
9838 struct dwo_unit *dwo_unit;
73869dc2 9839 struct virtual_v1_dwo_sections sections;
80626a55
DE
9840 void **dwo_file_slot;
9841 char *virtual_dwo_name;
9842 struct dwarf2_section_info *cutu;
9843 struct cleanup *cleanups;
9844 int i;
9845
73869dc2
DE
9846 gdb_assert (dwp_file->version == 1);
9847
80626a55
DE
9848 if (dwarf2_read_debug)
9849 {
73869dc2 9850 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 9851 kind,
73869dc2 9852 pulongest (unit_index), hex_string (signature),
80626a55
DE
9853 dwp_file->name);
9854 }
9855
19ac8c2e 9856 /* Fetch the sections of this DWO unit.
80626a55
DE
9857 Put a limit on the number of sections we look for so that bad data
9858 doesn't cause us to loop forever. */
9859
73869dc2 9860#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
9861 (1 /* .debug_info or .debug_types */ \
9862 + 1 /* .debug_abbrev */ \
9863 + 1 /* .debug_line */ \
9864 + 1 /* .debug_loc */ \
9865 + 1 /* .debug_str_offsets */ \
19ac8c2e 9866 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
9867 + 1 /* trailing zero */)
9868
9869 memset (&sections, 0, sizeof (sections));
9870 cleanups = make_cleanup (null_cleanup, 0);
9871
73869dc2 9872 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
9873 {
9874 asection *sectp;
9875 uint32_t section_nr =
9876 read_4_bytes (dbfd,
73869dc2
DE
9877 dwp_htab->section_pool.v1.indices
9878 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
9879
9880 if (section_nr == 0)
9881 break;
9882 if (section_nr >= dwp_file->num_sections)
9883 {
9884 error (_("Dwarf Error: bad DWP hash table, section number too large"
9885 " [in module %s]"),
9886 dwp_file->name);
9887 }
9888
9889 sectp = dwp_file->elf_sections[section_nr];
73869dc2 9890 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
9891 {
9892 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9893 " [in module %s]"),
9894 dwp_file->name);
9895 }
9896 }
9897
9898 if (i < 2
a32a8923
DE
9899 || dwarf2_section_empty_p (&sections.info_or_types)
9900 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
9901 {
9902 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9903 " [in module %s]"),
9904 dwp_file->name);
9905 }
73869dc2 9906 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
9907 {
9908 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9909 " [in module %s]"),
9910 dwp_file->name);
9911 }
9912
9913 /* It's easier for the rest of the code if we fake a struct dwo_file and
9914 have dwo_unit "live" in that. At least for now.
9915
9916 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 9917 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
9918 file, we can combine them back into a virtual DWO file to save space
9919 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
9920 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9921
2792b94d
PM
9922 virtual_dwo_name =
9923 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
9924 get_section_id (&sections.abbrev),
9925 get_section_id (&sections.line),
9926 get_section_id (&sections.loc),
9927 get_section_id (&sections.str_offsets));
80626a55
DE
9928 make_cleanup (xfree, virtual_dwo_name);
9929 /* Can we use an existing virtual DWO file? */
0ac5b59e 9930 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
9931 /* Create one if necessary. */
9932 if (*dwo_file_slot == NULL)
9933 {
9934 if (dwarf2_read_debug)
9935 {
9936 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9937 virtual_dwo_name);
9938 }
9939 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
9940 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9941 virtual_dwo_name,
9942 strlen (virtual_dwo_name));
9943 dwo_file->comp_dir = comp_dir;
80626a55
DE
9944 dwo_file->sections.abbrev = sections.abbrev;
9945 dwo_file->sections.line = sections.line;
9946 dwo_file->sections.loc = sections.loc;
9947 dwo_file->sections.macinfo = sections.macinfo;
9948 dwo_file->sections.macro = sections.macro;
9949 dwo_file->sections.str_offsets = sections.str_offsets;
9950 /* The "str" section is global to the entire DWP file. */
9951 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 9952 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
9953 there's no need to record it in dwo_file.
9954 Also, we can't simply record type sections in dwo_file because
9955 we record a pointer into the vector in dwo_unit. As we collect more
9956 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
9957 for it, invalidating all copies of pointers into the previous
9958 contents. */
80626a55
DE
9959 *dwo_file_slot = dwo_file;
9960 }
9961 else
9962 {
9963 if (dwarf2_read_debug)
9964 {
9965 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9966 virtual_dwo_name);
9967 }
9968 dwo_file = *dwo_file_slot;
9969 }
9970 do_cleanups (cleanups);
9971
9972 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9973 dwo_unit->dwo_file = dwo_file;
9974 dwo_unit->signature = signature;
8a0459fd
DE
9975 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9976 sizeof (struct dwarf2_section_info));
9977 *dwo_unit->section = sections.info_or_types;
57d63ce2 9978 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
9979
9980 return dwo_unit;
9981}
9982
73869dc2
DE
9983/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9984 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9985 piece within that section used by a TU/CU, return a virtual section
9986 of just that piece. */
9987
9988static struct dwarf2_section_info
9989create_dwp_v2_section (struct dwarf2_section_info *section,
9990 bfd_size_type offset, bfd_size_type size)
9991{
9992 struct dwarf2_section_info result;
9993 asection *sectp;
9994
9995 gdb_assert (section != NULL);
9996 gdb_assert (!section->is_virtual);
9997
9998 memset (&result, 0, sizeof (result));
9999 result.s.containing_section = section;
10000 result.is_virtual = 1;
10001
10002 if (size == 0)
10003 return result;
10004
10005 sectp = get_section_bfd_section (section);
10006
10007 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10008 bounds of the real section. This is a pretty-rare event, so just
10009 flag an error (easier) instead of a warning and trying to cope. */
10010 if (sectp == NULL
10011 || offset + size > bfd_get_section_size (sectp))
10012 {
10013 bfd *abfd = sectp->owner;
10014
10015 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10016 " in section %s [in module %s]"),
10017 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10018 objfile_name (dwarf2_per_objfile->objfile));
10019 }
10020
10021 result.virtual_offset = offset;
10022 result.size = size;
10023 return result;
10024}
10025
10026/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10027 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10028 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10029 This is for DWP version 2 files. */
10030
10031static struct dwo_unit *
10032create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10033 uint32_t unit_index,
10034 const char *comp_dir,
10035 ULONGEST signature, int is_debug_types)
10036{
10037 struct objfile *objfile = dwarf2_per_objfile->objfile;
10038 const struct dwp_hash_table *dwp_htab =
10039 is_debug_types ? dwp_file->tus : dwp_file->cus;
10040 bfd *dbfd = dwp_file->dbfd;
10041 const char *kind = is_debug_types ? "TU" : "CU";
10042 struct dwo_file *dwo_file;
10043 struct dwo_unit *dwo_unit;
10044 struct virtual_v2_dwo_sections sections;
10045 void **dwo_file_slot;
10046 char *virtual_dwo_name;
10047 struct dwarf2_section_info *cutu;
10048 struct cleanup *cleanups;
10049 int i;
10050
10051 gdb_assert (dwp_file->version == 2);
10052
10053 if (dwarf2_read_debug)
10054 {
10055 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10056 kind,
10057 pulongest (unit_index), hex_string (signature),
10058 dwp_file->name);
10059 }
10060
10061 /* Fetch the section offsets of this DWO unit. */
10062
10063 memset (&sections, 0, sizeof (sections));
10064 cleanups = make_cleanup (null_cleanup, 0);
10065
10066 for (i = 0; i < dwp_htab->nr_columns; ++i)
10067 {
10068 uint32_t offset = read_4_bytes (dbfd,
10069 dwp_htab->section_pool.v2.offsets
10070 + (((unit_index - 1) * dwp_htab->nr_columns
10071 + i)
10072 * sizeof (uint32_t)));
10073 uint32_t size = read_4_bytes (dbfd,
10074 dwp_htab->section_pool.v2.sizes
10075 + (((unit_index - 1) * dwp_htab->nr_columns
10076 + i)
10077 * sizeof (uint32_t)));
10078
10079 switch (dwp_htab->section_pool.v2.section_ids[i])
10080 {
10081 case DW_SECT_INFO:
10082 case DW_SECT_TYPES:
10083 sections.info_or_types_offset = offset;
10084 sections.info_or_types_size = size;
10085 break;
10086 case DW_SECT_ABBREV:
10087 sections.abbrev_offset = offset;
10088 sections.abbrev_size = size;
10089 break;
10090 case DW_SECT_LINE:
10091 sections.line_offset = offset;
10092 sections.line_size = size;
10093 break;
10094 case DW_SECT_LOC:
10095 sections.loc_offset = offset;
10096 sections.loc_size = size;
10097 break;
10098 case DW_SECT_STR_OFFSETS:
10099 sections.str_offsets_offset = offset;
10100 sections.str_offsets_size = size;
10101 break;
10102 case DW_SECT_MACINFO:
10103 sections.macinfo_offset = offset;
10104 sections.macinfo_size = size;
10105 break;
10106 case DW_SECT_MACRO:
10107 sections.macro_offset = offset;
10108 sections.macro_size = size;
10109 break;
10110 }
10111 }
10112
10113 /* It's easier for the rest of the code if we fake a struct dwo_file and
10114 have dwo_unit "live" in that. At least for now.
10115
10116 The DWP file can be made up of a random collection of CUs and TUs.
10117 However, for each CU + set of TUs that came from the same original DWO
10118 file, we can combine them back into a virtual DWO file to save space
10119 (fewer struct dwo_file objects to allocate). Remember that for really
10120 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10121
10122 virtual_dwo_name =
10123 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10124 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10125 (long) (sections.line_size ? sections.line_offset : 0),
10126 (long) (sections.loc_size ? sections.loc_offset : 0),
10127 (long) (sections.str_offsets_size
10128 ? sections.str_offsets_offset : 0));
10129 make_cleanup (xfree, virtual_dwo_name);
10130 /* Can we use an existing virtual DWO file? */
10131 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10132 /* Create one if necessary. */
10133 if (*dwo_file_slot == NULL)
10134 {
10135 if (dwarf2_read_debug)
10136 {
10137 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10138 virtual_dwo_name);
10139 }
10140 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10141 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10142 virtual_dwo_name,
10143 strlen (virtual_dwo_name));
10144 dwo_file->comp_dir = comp_dir;
10145 dwo_file->sections.abbrev =
10146 create_dwp_v2_section (&dwp_file->sections.abbrev,
10147 sections.abbrev_offset, sections.abbrev_size);
10148 dwo_file->sections.line =
10149 create_dwp_v2_section (&dwp_file->sections.line,
10150 sections.line_offset, sections.line_size);
10151 dwo_file->sections.loc =
10152 create_dwp_v2_section (&dwp_file->sections.loc,
10153 sections.loc_offset, sections.loc_size);
10154 dwo_file->sections.macinfo =
10155 create_dwp_v2_section (&dwp_file->sections.macinfo,
10156 sections.macinfo_offset, sections.macinfo_size);
10157 dwo_file->sections.macro =
10158 create_dwp_v2_section (&dwp_file->sections.macro,
10159 sections.macro_offset, sections.macro_size);
10160 dwo_file->sections.str_offsets =
10161 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10162 sections.str_offsets_offset,
10163 sections.str_offsets_size);
10164 /* The "str" section is global to the entire DWP file. */
10165 dwo_file->sections.str = dwp_file->sections.str;
10166 /* The info or types section is assigned below to dwo_unit,
10167 there's no need to record it in dwo_file.
10168 Also, we can't simply record type sections in dwo_file because
10169 we record a pointer into the vector in dwo_unit. As we collect more
10170 types we'll grow the vector and eventually have to reallocate space
10171 for it, invalidating all copies of pointers into the previous
10172 contents. */
10173 *dwo_file_slot = dwo_file;
10174 }
10175 else
10176 {
10177 if (dwarf2_read_debug)
10178 {
10179 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10180 virtual_dwo_name);
10181 }
10182 dwo_file = *dwo_file_slot;
10183 }
10184 do_cleanups (cleanups);
10185
10186 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10187 dwo_unit->dwo_file = dwo_file;
10188 dwo_unit->signature = signature;
10189 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10190 sizeof (struct dwarf2_section_info));
10191 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10192 ? &dwp_file->sections.types
10193 : &dwp_file->sections.info,
10194 sections.info_or_types_offset,
10195 sections.info_or_types_size);
10196 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10197
10198 return dwo_unit;
10199}
10200
57d63ce2
DE
10201/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10202 Returns NULL if the signature isn't found. */
80626a55
DE
10203
10204static struct dwo_unit *
57d63ce2
DE
10205lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10206 ULONGEST signature, int is_debug_types)
80626a55 10207{
57d63ce2
DE
10208 const struct dwp_hash_table *dwp_htab =
10209 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10210 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10211 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10212 uint32_t hash = signature & mask;
10213 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10214 unsigned int i;
10215 void **slot;
10216 struct dwo_unit find_dwo_cu, *dwo_cu;
10217
10218 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10219 find_dwo_cu.signature = signature;
19ac8c2e
DE
10220 slot = htab_find_slot (is_debug_types
10221 ? dwp_file->loaded_tus
10222 : dwp_file->loaded_cus,
10223 &find_dwo_cu, INSERT);
80626a55
DE
10224
10225 if (*slot != NULL)
10226 return *slot;
10227
10228 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10229 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10230 {
10231 ULONGEST signature_in_table;
10232
10233 signature_in_table =
57d63ce2 10234 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10235 if (signature_in_table == signature)
10236 {
57d63ce2
DE
10237 uint32_t unit_index =
10238 read_4_bytes (dbfd,
10239 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10240
73869dc2
DE
10241 if (dwp_file->version == 1)
10242 {
10243 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10244 comp_dir, signature,
10245 is_debug_types);
10246 }
10247 else
10248 {
10249 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10250 comp_dir, signature,
10251 is_debug_types);
10252 }
80626a55
DE
10253 return *slot;
10254 }
10255 if (signature_in_table == 0)
10256 return NULL;
10257 hash = (hash + hash2) & mask;
10258 }
10259
10260 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10261 " [in module %s]"),
10262 dwp_file->name);
10263}
10264
ab5088bf 10265/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10266 Open the file specified by FILE_NAME and hand it off to BFD for
10267 preliminary analysis. Return a newly initialized bfd *, which
10268 includes a canonicalized copy of FILE_NAME.
80626a55 10269 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10270 SEARCH_CWD is true if the current directory is to be searched.
10271 It will be searched before debug-file-directory.
13aaf454
DE
10272 If successful, the file is added to the bfd include table of the
10273 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10274 If unable to find/open the file, return NULL.
3019eac3
DE
10275 NOTE: This function is derived from symfile_bfd_open. */
10276
10277static bfd *
6ac97d4c 10278try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
10279{
10280 bfd *sym_bfd;
80626a55 10281 int desc, flags;
3019eac3 10282 char *absolute_name;
9c02c129
DE
10283 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10284 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10285 to debug_file_directory. */
10286 char *search_path;
10287 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10288
6ac97d4c
DE
10289 if (search_cwd)
10290 {
10291 if (*debug_file_directory != '\0')
10292 search_path = concat (".", dirname_separator_string,
10293 debug_file_directory, NULL);
10294 else
10295 search_path = xstrdup (".");
10296 }
9c02c129 10297 else
6ac97d4c 10298 search_path = xstrdup (debug_file_directory);
3019eac3 10299
492c0ab7 10300 flags = OPF_RETURN_REALPATH;
80626a55
DE
10301 if (is_dwp)
10302 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10303 desc = openp (search_path, flags, file_name,
3019eac3 10304 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10305 xfree (search_path);
3019eac3
DE
10306 if (desc < 0)
10307 return NULL;
10308
bb397797 10309 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 10310 xfree (absolute_name);
9c02c129
DE
10311 if (sym_bfd == NULL)
10312 return NULL;
3019eac3
DE
10313 bfd_set_cacheable (sym_bfd, 1);
10314
10315 if (!bfd_check_format (sym_bfd, bfd_object))
10316 {
cbb099e8 10317 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
10318 return NULL;
10319 }
10320
13aaf454
DE
10321 /* Success. Record the bfd as having been included by the objfile's bfd.
10322 This is important because things like demangled_names_hash lives in the
10323 objfile's per_bfd space and may have references to things like symbol
10324 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10325 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10326
3019eac3
DE
10327 return sym_bfd;
10328}
10329
ab5088bf 10330/* Try to open DWO file FILE_NAME.
3019eac3
DE
10331 COMP_DIR is the DW_AT_comp_dir attribute.
10332 The result is the bfd handle of the file.
10333 If there is a problem finding or opening the file, return NULL.
10334 Upon success, the canonicalized path of the file is stored in the bfd,
10335 same as symfile_bfd_open. */
10336
10337static bfd *
ab5088bf 10338open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
10339{
10340 bfd *abfd;
3019eac3 10341
80626a55 10342 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10343 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10344
10345 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10346
10347 if (comp_dir != NULL)
10348 {
80626a55 10349 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
3019eac3
DE
10350
10351 /* NOTE: If comp_dir is a relative path, this will also try the
10352 search path, which seems useful. */
6ac97d4c 10353 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10354 xfree (path_to_try);
10355 if (abfd != NULL)
10356 return abfd;
10357 }
10358
10359 /* That didn't work, try debug-file-directory, which, despite its name,
10360 is a list of paths. */
10361
10362 if (*debug_file_directory == '\0')
10363 return NULL;
10364
6ac97d4c 10365 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10366}
10367
80626a55
DE
10368/* This function is mapped across the sections and remembers the offset and
10369 size of each of the DWO debugging sections we are interested in. */
10370
10371static void
10372dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10373{
10374 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10375 const struct dwop_section_names *names = &dwop_section_names;
10376
10377 if (section_is_p (sectp->name, &names->abbrev_dwo))
10378 {
73869dc2 10379 dwo_sections->abbrev.s.asection = sectp;
80626a55
DE
10380 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10381 }
10382 else if (section_is_p (sectp->name, &names->info_dwo))
10383 {
73869dc2 10384 dwo_sections->info.s.asection = sectp;
80626a55
DE
10385 dwo_sections->info.size = bfd_get_section_size (sectp);
10386 }
10387 else if (section_is_p (sectp->name, &names->line_dwo))
10388 {
73869dc2 10389 dwo_sections->line.s.asection = sectp;
80626a55
DE
10390 dwo_sections->line.size = bfd_get_section_size (sectp);
10391 }
10392 else if (section_is_p (sectp->name, &names->loc_dwo))
10393 {
73869dc2 10394 dwo_sections->loc.s.asection = sectp;
80626a55
DE
10395 dwo_sections->loc.size = bfd_get_section_size (sectp);
10396 }
10397 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10398 {
73869dc2 10399 dwo_sections->macinfo.s.asection = sectp;
80626a55
DE
10400 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10401 }
10402 else if (section_is_p (sectp->name, &names->macro_dwo))
10403 {
73869dc2 10404 dwo_sections->macro.s.asection = sectp;
80626a55
DE
10405 dwo_sections->macro.size = bfd_get_section_size (sectp);
10406 }
10407 else if (section_is_p (sectp->name, &names->str_dwo))
10408 {
73869dc2 10409 dwo_sections->str.s.asection = sectp;
80626a55
DE
10410 dwo_sections->str.size = bfd_get_section_size (sectp);
10411 }
10412 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10413 {
73869dc2 10414 dwo_sections->str_offsets.s.asection = sectp;
80626a55
DE
10415 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10416 }
10417 else if (section_is_p (sectp->name, &names->types_dwo))
10418 {
10419 struct dwarf2_section_info type_section;
10420
10421 memset (&type_section, 0, sizeof (type_section));
73869dc2 10422 type_section.s.asection = sectp;
80626a55
DE
10423 type_section.size = bfd_get_section_size (sectp);
10424 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10425 &type_section);
10426 }
10427}
10428
ab5088bf 10429/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10430 by PER_CU. This is for the non-DWP case.
80626a55 10431 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10432
10433static struct dwo_file *
0ac5b59e
DE
10434open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10435 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10436{
10437 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10438 struct dwo_file *dwo_file;
10439 bfd *dbfd;
3019eac3
DE
10440 struct cleanup *cleanups;
10441
ab5088bf 10442 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
10443 if (dbfd == NULL)
10444 {
10445 if (dwarf2_read_debug)
10446 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10447 return NULL;
10448 }
10449 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10450 dwo_file->dwo_name = dwo_name;
10451 dwo_file->comp_dir = comp_dir;
80626a55 10452 dwo_file->dbfd = dbfd;
3019eac3
DE
10453
10454 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10455
80626a55 10456 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 10457
19c3d4c9 10458 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
10459
10460 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10461 dwo_file->sections.types);
10462
10463 discard_cleanups (cleanups);
10464
80626a55
DE
10465 if (dwarf2_read_debug)
10466 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10467
3019eac3
DE
10468 return dwo_file;
10469}
10470
80626a55 10471/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10472 size of each of the DWP debugging sections common to version 1 and 2 that
10473 we are interested in. */
3019eac3 10474
80626a55 10475static void
73869dc2
DE
10476dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10477 void *dwp_file_ptr)
3019eac3 10478{
80626a55
DE
10479 struct dwp_file *dwp_file = dwp_file_ptr;
10480 const struct dwop_section_names *names = &dwop_section_names;
10481 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10482
80626a55 10483 /* Record the ELF section number for later lookup: this is what the
73869dc2 10484 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10485 gdb_assert (elf_section_nr < dwp_file->num_sections);
10486 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10487
80626a55
DE
10488 /* Look for specific sections that we need. */
10489 if (section_is_p (sectp->name, &names->str_dwo))
10490 {
73869dc2 10491 dwp_file->sections.str.s.asection = sectp;
80626a55
DE
10492 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10493 }
10494 else if (section_is_p (sectp->name, &names->cu_index))
10495 {
73869dc2 10496 dwp_file->sections.cu_index.s.asection = sectp;
80626a55
DE
10497 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10498 }
10499 else if (section_is_p (sectp->name, &names->tu_index))
10500 {
73869dc2 10501 dwp_file->sections.tu_index.s.asection = sectp;
80626a55
DE
10502 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10503 }
10504}
3019eac3 10505
73869dc2
DE
10506/* This function is mapped across the sections and remembers the offset and
10507 size of each of the DWP version 2 debugging sections that we are interested
10508 in. This is split into a separate function because we don't know if we
10509 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10510
10511static void
10512dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10513{
10514 struct dwp_file *dwp_file = dwp_file_ptr;
10515 const struct dwop_section_names *names = &dwop_section_names;
10516 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10517
10518 /* Record the ELF section number for later lookup: this is what the
10519 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10520 gdb_assert (elf_section_nr < dwp_file->num_sections);
10521 dwp_file->elf_sections[elf_section_nr] = sectp;
10522
10523 /* Look for specific sections that we need. */
10524 if (section_is_p (sectp->name, &names->abbrev_dwo))
10525 {
10526 dwp_file->sections.abbrev.s.asection = sectp;
10527 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10528 }
10529 else if (section_is_p (sectp->name, &names->info_dwo))
10530 {
10531 dwp_file->sections.info.s.asection = sectp;
10532 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10533 }
10534 else if (section_is_p (sectp->name, &names->line_dwo))
10535 {
10536 dwp_file->sections.line.s.asection = sectp;
10537 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10538 }
10539 else if (section_is_p (sectp->name, &names->loc_dwo))
10540 {
10541 dwp_file->sections.loc.s.asection = sectp;
10542 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10543 }
10544 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10545 {
10546 dwp_file->sections.macinfo.s.asection = sectp;
10547 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10548 }
10549 else if (section_is_p (sectp->name, &names->macro_dwo))
10550 {
10551 dwp_file->sections.macro.s.asection = sectp;
10552 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10553 }
10554 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10555 {
10556 dwp_file->sections.str_offsets.s.asection = sectp;
10557 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10558 }
10559 else if (section_is_p (sectp->name, &names->types_dwo))
10560 {
10561 dwp_file->sections.types.s.asection = sectp;
10562 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10563 }
10564}
10565
80626a55 10566/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10567
80626a55
DE
10568static hashval_t
10569hash_dwp_loaded_cutus (const void *item)
10570{
10571 const struct dwo_unit *dwo_unit = item;
3019eac3 10572
80626a55
DE
10573 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10574 return dwo_unit->signature;
3019eac3
DE
10575}
10576
80626a55 10577/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10578
80626a55
DE
10579static int
10580eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10581{
80626a55
DE
10582 const struct dwo_unit *dua = a;
10583 const struct dwo_unit *dub = b;
3019eac3 10584
80626a55
DE
10585 return dua->signature == dub->signature;
10586}
3019eac3 10587
80626a55 10588/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10589
80626a55
DE
10590static htab_t
10591allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10592{
10593 return htab_create_alloc_ex (3,
10594 hash_dwp_loaded_cutus,
10595 eq_dwp_loaded_cutus,
10596 NULL,
10597 &objfile->objfile_obstack,
10598 hashtab_obstack_allocate,
10599 dummy_obstack_deallocate);
10600}
3019eac3 10601
ab5088bf
DE
10602/* Try to open DWP file FILE_NAME.
10603 The result is the bfd handle of the file.
10604 If there is a problem finding or opening the file, return NULL.
10605 Upon success, the canonicalized path of the file is stored in the bfd,
10606 same as symfile_bfd_open. */
10607
10608static bfd *
10609open_dwp_file (const char *file_name)
10610{
6ac97d4c
DE
10611 bfd *abfd;
10612
10613 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10614 if (abfd != NULL)
10615 return abfd;
10616
10617 /* Work around upstream bug 15652.
10618 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10619 [Whether that's a "bug" is debatable, but it is getting in our way.]
10620 We have no real idea where the dwp file is, because gdb's realpath-ing
10621 of the executable's path may have discarded the needed info.
10622 [IWBN if the dwp file name was recorded in the executable, akin to
10623 .gnu_debuglink, but that doesn't exist yet.]
10624 Strip the directory from FILE_NAME and search again. */
10625 if (*debug_file_directory != '\0')
10626 {
10627 /* Don't implicitly search the current directory here.
10628 If the user wants to search "." to handle this case,
10629 it must be added to debug-file-directory. */
10630 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10631 0 /*search_cwd*/);
10632 }
10633
10634 return NULL;
ab5088bf
DE
10635}
10636
80626a55
DE
10637/* Initialize the use of the DWP file for the current objfile.
10638 By convention the name of the DWP file is ${objfile}.dwp.
10639 The result is NULL if it can't be found. */
a766d390 10640
80626a55 10641static struct dwp_file *
ab5088bf 10642open_and_init_dwp_file (void)
80626a55
DE
10643{
10644 struct objfile *objfile = dwarf2_per_objfile->objfile;
10645 struct dwp_file *dwp_file;
10646 char *dwp_name;
10647 bfd *dbfd;
10648 struct cleanup *cleanups;
10649
82bf32bc
JK
10650 /* Try to find first .dwp for the binary file before any symbolic links
10651 resolving. */
10652 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
80626a55
DE
10653 cleanups = make_cleanup (xfree, dwp_name);
10654
ab5088bf 10655 dbfd = open_dwp_file (dwp_name);
82bf32bc
JK
10656 if (dbfd == NULL
10657 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10658 {
10659 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10660 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10661 make_cleanup (xfree, dwp_name);
10662 dbfd = open_dwp_file (dwp_name);
10663 }
10664
80626a55
DE
10665 if (dbfd == NULL)
10666 {
10667 if (dwarf2_read_debug)
10668 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10669 do_cleanups (cleanups);
10670 return NULL;
3019eac3 10671 }
80626a55 10672 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 10673 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
10674 dwp_file->dbfd = dbfd;
10675 do_cleanups (cleanups);
c906108c 10676
80626a55
DE
10677 /* +1: section 0 is unused */
10678 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10679 dwp_file->elf_sections =
10680 OBSTACK_CALLOC (&objfile->objfile_obstack,
10681 dwp_file->num_sections, asection *);
10682
73869dc2 10683 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
80626a55
DE
10684
10685 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10686
10687 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10688
73869dc2
DE
10689 /* The DWP file version is stored in the hash table. Oh well. */
10690 if (dwp_file->cus->version != dwp_file->tus->version)
10691 {
10692 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 10693 pretty bizarre. We use pulongest here because that's the established
4d65956b 10694 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
10695 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10696 " TU version %s [in DWP file %s]"),
10697 pulongest (dwp_file->cus->version),
10698 pulongest (dwp_file->tus->version), dwp_name);
73869dc2
DE
10699 }
10700 dwp_file->version = dwp_file->cus->version;
10701
10702 if (dwp_file->version == 2)
10703 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10704
19ac8c2e
DE
10705 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10706 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10707
80626a55
DE
10708 if (dwarf2_read_debug)
10709 {
10710 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10711 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10712 " %s CUs, %s TUs\n",
10713 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10714 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10715 }
10716
10717 return dwp_file;
3019eac3 10718}
c906108c 10719
ab5088bf
DE
10720/* Wrapper around open_and_init_dwp_file, only open it once. */
10721
10722static struct dwp_file *
10723get_dwp_file (void)
10724{
10725 if (! dwarf2_per_objfile->dwp_checked)
10726 {
10727 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10728 dwarf2_per_objfile->dwp_checked = 1;
10729 }
10730 return dwarf2_per_objfile->dwp_file;
10731}
10732
80626a55
DE
10733/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10734 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10735 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10736 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10737 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10738
10739 This is called, for example, when wanting to read a variable with a
10740 complex location. Therefore we don't want to do file i/o for every call.
10741 Therefore we don't want to look for a DWO file on every call.
10742 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10743 then we check if we've already seen DWO_NAME, and only THEN do we check
10744 for a DWO file.
10745
1c658ad5 10746 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 10747 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 10748
3019eac3 10749static struct dwo_unit *
80626a55
DE
10750lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10751 const char *dwo_name, const char *comp_dir,
10752 ULONGEST signature, int is_debug_types)
3019eac3
DE
10753{
10754 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10755 const char *kind = is_debug_types ? "TU" : "CU";
10756 void **dwo_file_slot;
3019eac3 10757 struct dwo_file *dwo_file;
80626a55 10758 struct dwp_file *dwp_file;
cb1df416 10759
6a506a2d
DE
10760 /* First see if there's a DWP file.
10761 If we have a DWP file but didn't find the DWO inside it, don't
10762 look for the original DWO file. It makes gdb behave differently
10763 depending on whether one is debugging in the build tree. */
cf2c3c16 10764
ab5088bf 10765 dwp_file = get_dwp_file ();
80626a55 10766 if (dwp_file != NULL)
cf2c3c16 10767 {
80626a55
DE
10768 const struct dwp_hash_table *dwp_htab =
10769 is_debug_types ? dwp_file->tus : dwp_file->cus;
10770
10771 if (dwp_htab != NULL)
10772 {
10773 struct dwo_unit *dwo_cutu =
57d63ce2
DE
10774 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10775 signature, is_debug_types);
80626a55
DE
10776
10777 if (dwo_cutu != NULL)
10778 {
10779 if (dwarf2_read_debug)
10780 {
10781 fprintf_unfiltered (gdb_stdlog,
10782 "Virtual DWO %s %s found: @%s\n",
10783 kind, hex_string (signature),
10784 host_address_to_string (dwo_cutu));
10785 }
10786 return dwo_cutu;
10787 }
10788 }
10789 }
6a506a2d 10790 else
80626a55 10791 {
6a506a2d 10792 /* No DWP file, look for the DWO file. */
80626a55 10793
6a506a2d
DE
10794 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10795 if (*dwo_file_slot == NULL)
80626a55 10796 {
6a506a2d
DE
10797 /* Read in the file and build a table of the CUs/TUs it contains. */
10798 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 10799 }
6a506a2d
DE
10800 /* NOTE: This will be NULL if unable to open the file. */
10801 dwo_file = *dwo_file_slot;
3019eac3 10802
6a506a2d 10803 if (dwo_file != NULL)
19c3d4c9 10804 {
6a506a2d
DE
10805 struct dwo_unit *dwo_cutu = NULL;
10806
10807 if (is_debug_types && dwo_file->tus)
10808 {
10809 struct dwo_unit find_dwo_cutu;
10810
10811 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10812 find_dwo_cutu.signature = signature;
10813 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10814 }
10815 else if (!is_debug_types && dwo_file->cu)
80626a55 10816 {
6a506a2d
DE
10817 if (signature == dwo_file->cu->signature)
10818 dwo_cutu = dwo_file->cu;
10819 }
10820
10821 if (dwo_cutu != NULL)
10822 {
10823 if (dwarf2_read_debug)
10824 {
10825 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10826 kind, dwo_name, hex_string (signature),
10827 host_address_to_string (dwo_cutu));
10828 }
10829 return dwo_cutu;
80626a55
DE
10830 }
10831 }
2e276125 10832 }
9cdd5dbd 10833
80626a55
DE
10834 /* We didn't find it. This could mean a dwo_id mismatch, or
10835 someone deleted the DWO/DWP file, or the search path isn't set up
10836 correctly to find the file. */
10837
10838 if (dwarf2_read_debug)
10839 {
10840 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10841 kind, dwo_name, hex_string (signature));
10842 }
3019eac3 10843
6656a72d
DE
10844 /* This is a warning and not a complaint because it can be caused by
10845 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
10846 {
10847 /* Print the name of the DWP file if we looked there, helps the user
10848 better diagnose the problem. */
10849 char *dwp_text = NULL;
10850 struct cleanup *cleanups;
10851
10852 if (dwp_file != NULL)
10853 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10854 cleanups = make_cleanup (xfree, dwp_text);
10855
10856 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10857 " [in module %s]"),
10858 kind, dwo_name, hex_string (signature),
10859 dwp_text != NULL ? dwp_text : "",
10860 this_unit->is_debug_types ? "TU" : "CU",
10861 this_unit->offset.sect_off, objfile_name (objfile));
10862
10863 do_cleanups (cleanups);
10864 }
3019eac3 10865 return NULL;
5fb290d7
DJ
10866}
10867
80626a55
DE
10868/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10869 See lookup_dwo_cutu_unit for details. */
10870
10871static struct dwo_unit *
10872lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10873 const char *dwo_name, const char *comp_dir,
10874 ULONGEST signature)
10875{
10876 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10877}
10878
10879/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10880 See lookup_dwo_cutu_unit for details. */
10881
10882static struct dwo_unit *
10883lookup_dwo_type_unit (struct signatured_type *this_tu,
10884 const char *dwo_name, const char *comp_dir)
10885{
10886 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10887}
10888
89e63ee4
DE
10889/* Traversal function for queue_and_load_all_dwo_tus. */
10890
10891static int
10892queue_and_load_dwo_tu (void **slot, void *info)
10893{
10894 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10895 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10896 ULONGEST signature = dwo_unit->signature;
10897 struct signatured_type *sig_type =
10898 lookup_dwo_signatured_type (per_cu->cu, signature);
10899
10900 if (sig_type != NULL)
10901 {
10902 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10903
10904 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10905 a real dependency of PER_CU on SIG_TYPE. That is detected later
10906 while processing PER_CU. */
10907 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10908 load_full_type_unit (sig_cu);
10909 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10910 }
10911
10912 return 1;
10913}
10914
10915/* Queue all TUs contained in the DWO of PER_CU to be read in.
10916 The DWO may have the only definition of the type, though it may not be
10917 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10918 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10919
10920static void
10921queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10922{
10923 struct dwo_unit *dwo_unit;
10924 struct dwo_file *dwo_file;
10925
10926 gdb_assert (!per_cu->is_debug_types);
10927 gdb_assert (get_dwp_file () == NULL);
10928 gdb_assert (per_cu->cu != NULL);
10929
10930 dwo_unit = per_cu->cu->dwo_unit;
10931 gdb_assert (dwo_unit != NULL);
10932
10933 dwo_file = dwo_unit->dwo_file;
10934 if (dwo_file->tus != NULL)
10935 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10936}
10937
3019eac3
DE
10938/* Free all resources associated with DWO_FILE.
10939 Close the DWO file and munmap the sections.
10940 All memory should be on the objfile obstack. */
348e048f
DE
10941
10942static void
3019eac3 10943free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 10944{
3019eac3
DE
10945 int ix;
10946 struct dwarf2_section_info *section;
348e048f 10947
5c6fa7ab 10948 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 10949 gdb_bfd_unref (dwo_file->dbfd);
348e048f 10950
3019eac3
DE
10951 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10952}
348e048f 10953
3019eac3 10954/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 10955
3019eac3
DE
10956static void
10957free_dwo_file_cleanup (void *arg)
10958{
10959 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10960 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 10961
3019eac3
DE
10962 free_dwo_file (dwo_file, objfile);
10963}
348e048f 10964
3019eac3 10965/* Traversal function for free_dwo_files. */
2ab95328 10966
3019eac3
DE
10967static int
10968free_dwo_file_from_slot (void **slot, void *info)
10969{
10970 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10971 struct objfile *objfile = (struct objfile *) info;
348e048f 10972
3019eac3 10973 free_dwo_file (dwo_file, objfile);
348e048f 10974
3019eac3
DE
10975 return 1;
10976}
348e048f 10977
3019eac3 10978/* Free all resources associated with DWO_FILES. */
348e048f 10979
3019eac3
DE
10980static void
10981free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10982{
10983 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 10984}
3019eac3
DE
10985\f
10986/* Read in various DIEs. */
348e048f 10987
d389af10
JK
10988/* qsort helper for inherit_abstract_dies. */
10989
10990static int
10991unsigned_int_compar (const void *ap, const void *bp)
10992{
10993 unsigned int a = *(unsigned int *) ap;
10994 unsigned int b = *(unsigned int *) bp;
10995
10996 return (a > b) - (b > a);
10997}
10998
10999/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11000 Inherit only the children of the DW_AT_abstract_origin DIE not being
11001 already referenced by DW_AT_abstract_origin from the children of the
11002 current DIE. */
d389af10
JK
11003
11004static void
11005inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11006{
11007 struct die_info *child_die;
11008 unsigned die_children_count;
11009 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11010 sect_offset *offsets;
11011 sect_offset *offsets_end, *offsetp;
d389af10
JK
11012 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11013 struct die_info *origin_die;
11014 /* Iterator of the ORIGIN_DIE children. */
11015 struct die_info *origin_child_die;
11016 struct cleanup *cleanups;
11017 struct attribute *attr;
cd02d79d
PA
11018 struct dwarf2_cu *origin_cu;
11019 struct pending **origin_previous_list_in_scope;
d389af10
JK
11020
11021 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11022 if (!attr)
11023 return;
11024
cd02d79d
PA
11025 /* Note that following die references may follow to a die in a
11026 different cu. */
11027
11028 origin_cu = cu;
11029 origin_die = follow_die_ref (die, attr, &origin_cu);
11030
11031 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11032 symbols in. */
11033 origin_previous_list_in_scope = origin_cu->list_in_scope;
11034 origin_cu->list_in_scope = cu->list_in_scope;
11035
edb3359d
DJ
11036 if (die->tag != origin_die->tag
11037 && !(die->tag == DW_TAG_inlined_subroutine
11038 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11039 complaint (&symfile_complaints,
11040 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 11041 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
11042
11043 child_die = die->child;
11044 die_children_count = 0;
11045 while (child_die && child_die->tag)
11046 {
11047 child_die = sibling_die (child_die);
11048 die_children_count++;
11049 }
11050 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11051 cleanups = make_cleanup (xfree, offsets);
11052
11053 offsets_end = offsets;
11054 child_die = die->child;
11055 while (child_die && child_die->tag)
11056 {
c38f313d
DJ
11057 /* For each CHILD_DIE, find the corresponding child of
11058 ORIGIN_DIE. If there is more than one layer of
11059 DW_AT_abstract_origin, follow them all; there shouldn't be,
11060 but GCC versions at least through 4.4 generate this (GCC PR
11061 40573). */
11062 struct die_info *child_origin_die = child_die;
cd02d79d 11063 struct dwarf2_cu *child_origin_cu = cu;
9a619af0 11064
c38f313d
DJ
11065 while (1)
11066 {
cd02d79d
PA
11067 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11068 child_origin_cu);
c38f313d
DJ
11069 if (attr == NULL)
11070 break;
cd02d79d
PA
11071 child_origin_die = follow_die_ref (child_origin_die, attr,
11072 &child_origin_cu);
c38f313d
DJ
11073 }
11074
d389af10
JK
11075 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11076 counterpart may exist. */
c38f313d 11077 if (child_origin_die != child_die)
d389af10 11078 {
edb3359d
DJ
11079 if (child_die->tag != child_origin_die->tag
11080 && !(child_die->tag == DW_TAG_inlined_subroutine
11081 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11082 complaint (&symfile_complaints,
11083 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11084 "different tags"), child_die->offset.sect_off,
11085 child_origin_die->offset.sect_off);
c38f313d
DJ
11086 if (child_origin_die->parent != origin_die)
11087 complaint (&symfile_complaints,
11088 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11089 "different parents"), child_die->offset.sect_off,
11090 child_origin_die->offset.sect_off);
c38f313d
DJ
11091 else
11092 *offsets_end++ = child_origin_die->offset;
d389af10
JK
11093 }
11094 child_die = sibling_die (child_die);
11095 }
11096 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11097 unsigned_int_compar);
11098 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 11099 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
11100 complaint (&symfile_complaints,
11101 _("Multiple children of DIE 0x%x refer "
11102 "to DIE 0x%x as their abstract origin"),
b64f50a1 11103 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
11104
11105 offsetp = offsets;
11106 origin_child_die = origin_die->child;
11107 while (origin_child_die && origin_child_die->tag)
11108 {
11109 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
11110 while (offsetp < offsets_end
11111 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 11112 offsetp++;
b64f50a1
JK
11113 if (offsetp >= offsets_end
11114 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10 11115 {
adde2bff
DE
11116 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11117 Check whether we're already processing ORIGIN_CHILD_DIE.
11118 This can happen with mutually referenced abstract_origins.
11119 PR 16581. */
11120 if (!origin_child_die->in_process)
11121 process_die (origin_child_die, origin_cu);
d389af10
JK
11122 }
11123 origin_child_die = sibling_die (origin_child_die);
11124 }
cd02d79d 11125 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11126
11127 do_cleanups (cleanups);
11128}
11129
c906108c 11130static void
e7c27a73 11131read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11132{
e7c27a73 11133 struct objfile *objfile = cu->objfile;
52f0bd74 11134 struct context_stack *new;
c906108c
SS
11135 CORE_ADDR lowpc;
11136 CORE_ADDR highpc;
11137 struct die_info *child_die;
edb3359d 11138 struct attribute *attr, *call_line, *call_file;
15d034d0 11139 const char *name;
e142c38c 11140 CORE_ADDR baseaddr;
801e3a5b 11141 struct block *block;
edb3359d 11142 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11143 VEC (symbolp) *template_args = NULL;
11144 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11145
11146 if (inlined_func)
11147 {
11148 /* If we do not have call site information, we can't show the
11149 caller of this inlined function. That's too confusing, so
11150 only use the scope for local variables. */
11151 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11152 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11153 if (call_line == NULL || call_file == NULL)
11154 {
11155 read_lexical_block_scope (die, cu);
11156 return;
11157 }
11158 }
c906108c 11159
e142c38c
DJ
11160 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11161
94af9270 11162 name = dwarf2_name (die, cu);
c906108c 11163
e8d05480
JB
11164 /* Ignore functions with missing or empty names. These are actually
11165 illegal according to the DWARF standard. */
11166 if (name == NULL)
11167 {
11168 complaint (&symfile_complaints,
b64f50a1
JK
11169 _("missing name for subprogram DIE at %d"),
11170 die->offset.sect_off);
e8d05480
JB
11171 return;
11172 }
11173
11174 /* Ignore functions with missing or invalid low and high pc attributes. */
11175 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11176 {
ae4d0c03
PM
11177 attr = dwarf2_attr (die, DW_AT_external, cu);
11178 if (!attr || !DW_UNSND (attr))
11179 complaint (&symfile_complaints,
3e43a32a
MS
11180 _("cannot get low and high bounds "
11181 "for subprogram DIE at %d"),
b64f50a1 11182 die->offset.sect_off);
e8d05480
JB
11183 return;
11184 }
c906108c
SS
11185
11186 lowpc += baseaddr;
11187 highpc += baseaddr;
11188
34eaf542
TT
11189 /* If we have any template arguments, then we must allocate a
11190 different sort of symbol. */
11191 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11192 {
11193 if (child_die->tag == DW_TAG_template_type_param
11194 || child_die->tag == DW_TAG_template_value_param)
11195 {
e623cf5d 11196 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11197 templ_func->base.is_cplus_template_function = 1;
11198 break;
11199 }
11200 }
11201
c906108c 11202 new = push_context (0, lowpc);
34eaf542
TT
11203 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11204 (struct symbol *) templ_func);
4c2df51b 11205
4cecd739
DJ
11206 /* If there is a location expression for DW_AT_frame_base, record
11207 it. */
e142c38c 11208 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11209 if (attr)
f1e6e072 11210 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
4c2df51b 11211
e142c38c 11212 cu->list_in_scope = &local_symbols;
c906108c 11213
639d11d3 11214 if (die->child != NULL)
c906108c 11215 {
639d11d3 11216 child_die = die->child;
c906108c
SS
11217 while (child_die && child_die->tag)
11218 {
34eaf542
TT
11219 if (child_die->tag == DW_TAG_template_type_param
11220 || child_die->tag == DW_TAG_template_value_param)
11221 {
11222 struct symbol *arg = new_symbol (child_die, NULL, cu);
11223
f1078f66
DJ
11224 if (arg != NULL)
11225 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11226 }
11227 else
11228 process_die (child_die, cu);
c906108c
SS
11229 child_die = sibling_die (child_die);
11230 }
11231 }
11232
d389af10
JK
11233 inherit_abstract_dies (die, cu);
11234
4a811a97
UW
11235 /* If we have a DW_AT_specification, we might need to import using
11236 directives from the context of the specification DIE. See the
11237 comment in determine_prefix. */
11238 if (cu->language == language_cplus
11239 && dwarf2_attr (die, DW_AT_specification, cu))
11240 {
11241 struct dwarf2_cu *spec_cu = cu;
11242 struct die_info *spec_die = die_specification (die, &spec_cu);
11243
11244 while (spec_die)
11245 {
11246 child_die = spec_die->child;
11247 while (child_die && child_die->tag)
11248 {
11249 if (child_die->tag == DW_TAG_imported_module)
11250 process_die (child_die, spec_cu);
11251 child_die = sibling_die (child_die);
11252 }
11253
11254 /* In some cases, GCC generates specification DIEs that
11255 themselves contain DW_AT_specification attributes. */
11256 spec_die = die_specification (spec_die, &spec_cu);
11257 }
11258 }
11259
c906108c
SS
11260 new = pop_context ();
11261 /* Make a block for the local symbols within. */
801e3a5b
JB
11262 block = finish_block (new->name, &local_symbols, new->old_blocks,
11263 lowpc, highpc, objfile);
11264
df8a16a1 11265 /* For C++, set the block's scope. */
195a3f6c 11266 if ((cu->language == language_cplus || cu->language == language_fortran)
4d4ec4e5 11267 && cu->processing_has_namespace_info)
195a3f6c
TT
11268 block_set_scope (block, determine_prefix (die, cu),
11269 &objfile->objfile_obstack);
df8a16a1 11270
801e3a5b
JB
11271 /* If we have address ranges, record them. */
11272 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11273
34eaf542
TT
11274 /* Attach template arguments to function. */
11275 if (! VEC_empty (symbolp, template_args))
11276 {
11277 gdb_assert (templ_func != NULL);
11278
11279 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11280 templ_func->template_arguments
11281 = obstack_alloc (&objfile->objfile_obstack,
11282 (templ_func->n_template_arguments
11283 * sizeof (struct symbol *)));
11284 memcpy (templ_func->template_arguments,
11285 VEC_address (symbolp, template_args),
11286 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11287 VEC_free (symbolp, template_args);
11288 }
11289
208d8187
JB
11290 /* In C++, we can have functions nested inside functions (e.g., when
11291 a function declares a class that has methods). This means that
11292 when we finish processing a function scope, we may need to go
11293 back to building a containing block's symbol lists. */
11294 local_symbols = new->locals;
27aa8d6a 11295 using_directives = new->using_directives;
208d8187 11296
921e78cf
JB
11297 /* If we've finished processing a top-level function, subsequent
11298 symbols go in the file symbol list. */
11299 if (outermost_context_p ())
e142c38c 11300 cu->list_in_scope = &file_symbols;
c906108c
SS
11301}
11302
11303/* Process all the DIES contained within a lexical block scope. Start
11304 a new scope, process the dies, and then close the scope. */
11305
11306static void
e7c27a73 11307read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11308{
e7c27a73 11309 struct objfile *objfile = cu->objfile;
52f0bd74 11310 struct context_stack *new;
c906108c
SS
11311 CORE_ADDR lowpc, highpc;
11312 struct die_info *child_die;
e142c38c
DJ
11313 CORE_ADDR baseaddr;
11314
11315 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11316
11317 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11318 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11319 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11320 be nasty. Might be easier to properly extend generic blocks to
af34e669 11321 describe ranges. */
d85a05f0 11322 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
11323 return;
11324 lowpc += baseaddr;
11325 highpc += baseaddr;
11326
11327 push_context (0, lowpc);
639d11d3 11328 if (die->child != NULL)
c906108c 11329 {
639d11d3 11330 child_die = die->child;
c906108c
SS
11331 while (child_die && child_die->tag)
11332 {
e7c27a73 11333 process_die (child_die, cu);
c906108c
SS
11334 child_die = sibling_die (child_die);
11335 }
11336 }
11337 new = pop_context ();
11338
8540c487 11339 if (local_symbols != NULL || using_directives != NULL)
c906108c 11340 {
801e3a5b
JB
11341 struct block *block
11342 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11343 highpc, objfile);
11344
11345 /* Note that recording ranges after traversing children, as we
11346 do here, means that recording a parent's ranges entails
11347 walking across all its children's ranges as they appear in
11348 the address map, which is quadratic behavior.
11349
11350 It would be nicer to record the parent's ranges before
11351 traversing its children, simply overriding whatever you find
11352 there. But since we don't even decide whether to create a
11353 block until after we've traversed its children, that's hard
11354 to do. */
11355 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
11356 }
11357 local_symbols = new->locals;
27aa8d6a 11358 using_directives = new->using_directives;
c906108c
SS
11359}
11360
96408a79
SA
11361/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11362
11363static void
11364read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11365{
11366 struct objfile *objfile = cu->objfile;
11367 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11368 CORE_ADDR pc, baseaddr;
11369 struct attribute *attr;
11370 struct call_site *call_site, call_site_local;
11371 void **slot;
11372 int nparams;
11373 struct die_info *child_die;
11374
11375 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11376
11377 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11378 if (!attr)
11379 {
11380 complaint (&symfile_complaints,
11381 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11382 "DIE 0x%x [in module %s]"),
4262abfb 11383 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11384 return;
11385 }
31aa7e4e 11386 pc = attr_value_as_address (attr) + baseaddr;
96408a79
SA
11387
11388 if (cu->call_site_htab == NULL)
11389 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11390 NULL, &objfile->objfile_obstack,
11391 hashtab_obstack_allocate, NULL);
11392 call_site_local.pc = pc;
11393 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11394 if (*slot != NULL)
11395 {
11396 complaint (&symfile_complaints,
11397 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11398 "DIE 0x%x [in module %s]"),
4262abfb
JK
11399 paddress (gdbarch, pc), die->offset.sect_off,
11400 objfile_name (objfile));
96408a79
SA
11401 return;
11402 }
11403
11404 /* Count parameters at the caller. */
11405
11406 nparams = 0;
11407 for (child_die = die->child; child_die && child_die->tag;
11408 child_die = sibling_die (child_die))
11409 {
11410 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11411 {
11412 complaint (&symfile_complaints,
11413 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11414 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11415 child_die->tag, child_die->offset.sect_off,
11416 objfile_name (objfile));
96408a79
SA
11417 continue;
11418 }
11419
11420 nparams++;
11421 }
11422
11423 call_site = obstack_alloc (&objfile->objfile_obstack,
11424 (sizeof (*call_site)
11425 + (sizeof (*call_site->parameter)
11426 * (nparams - 1))));
11427 *slot = call_site;
11428 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11429 call_site->pc = pc;
11430
11431 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11432 {
11433 struct die_info *func_die;
11434
11435 /* Skip also over DW_TAG_inlined_subroutine. */
11436 for (func_die = die->parent;
11437 func_die && func_die->tag != DW_TAG_subprogram
11438 && func_die->tag != DW_TAG_subroutine_type;
11439 func_die = func_die->parent);
11440
11441 /* DW_AT_GNU_all_call_sites is a superset
11442 of DW_AT_GNU_all_tail_call_sites. */
11443 if (func_die
11444 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11445 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11446 {
11447 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11448 not complete. But keep CALL_SITE for look ups via call_site_htab,
11449 both the initial caller containing the real return address PC and
11450 the final callee containing the current PC of a chain of tail
11451 calls do not need to have the tail call list complete. But any
11452 function candidate for a virtual tail call frame searched via
11453 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11454 determined unambiguously. */
11455 }
11456 else
11457 {
11458 struct type *func_type = NULL;
11459
11460 if (func_die)
11461 func_type = get_die_type (func_die, cu);
11462 if (func_type != NULL)
11463 {
11464 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11465
11466 /* Enlist this call site to the function. */
11467 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11468 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11469 }
11470 else
11471 complaint (&symfile_complaints,
11472 _("Cannot find function owning DW_TAG_GNU_call_site "
11473 "DIE 0x%x [in module %s]"),
4262abfb 11474 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11475 }
11476 }
11477
11478 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11479 if (attr == NULL)
11480 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11481 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11482 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11483 /* Keep NULL DWARF_BLOCK. */;
11484 else if (attr_form_is_block (attr))
11485 {
11486 struct dwarf2_locexpr_baton *dlbaton;
11487
11488 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11489 dlbaton->data = DW_BLOCK (attr)->data;
11490 dlbaton->size = DW_BLOCK (attr)->size;
11491 dlbaton->per_cu = cu->per_cu;
11492
11493 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11494 }
7771576e 11495 else if (attr_form_is_ref (attr))
96408a79 11496 {
96408a79
SA
11497 struct dwarf2_cu *target_cu = cu;
11498 struct die_info *target_die;
11499
ac9ec31b 11500 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11501 gdb_assert (target_cu->objfile == objfile);
11502 if (die_is_declaration (target_die, target_cu))
11503 {
9112db09
JK
11504 const char *target_physname = NULL;
11505 struct attribute *target_attr;
11506
11507 /* Prefer the mangled name; otherwise compute the demangled one. */
11508 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11509 if (target_attr == NULL)
11510 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11511 target_cu);
11512 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11513 target_physname = DW_STRING (target_attr);
11514 else
11515 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11516 if (target_physname == NULL)
11517 complaint (&symfile_complaints,
11518 _("DW_AT_GNU_call_site_target target DIE has invalid "
11519 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11520 die->offset.sect_off, objfile_name (objfile));
96408a79 11521 else
7d455152 11522 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11523 }
11524 else
11525 {
11526 CORE_ADDR lowpc;
11527
11528 /* DW_AT_entry_pc should be preferred. */
11529 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11530 complaint (&symfile_complaints,
11531 _("DW_AT_GNU_call_site_target target DIE has invalid "
11532 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11533 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11534 else
11535 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11536 }
11537 }
11538 else
11539 complaint (&symfile_complaints,
11540 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11541 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11542 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11543
11544 call_site->per_cu = cu->per_cu;
11545
11546 for (child_die = die->child;
11547 child_die && child_die->tag;
11548 child_die = sibling_die (child_die))
11549 {
96408a79 11550 struct call_site_parameter *parameter;
1788b2d3 11551 struct attribute *loc, *origin;
96408a79
SA
11552
11553 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11554 {
11555 /* Already printed the complaint above. */
11556 continue;
11557 }
11558
11559 gdb_assert (call_site->parameter_count < nparams);
11560 parameter = &call_site->parameter[call_site->parameter_count];
11561
1788b2d3
JK
11562 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11563 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11564 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11565
24c5c679 11566 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11567 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11568 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11569 {
11570 sect_offset offset;
11571
11572 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11573 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11574 if (!offset_in_cu_p (&cu->header, offset))
11575 {
11576 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11577 binding can be done only inside one CU. Such referenced DIE
11578 therefore cannot be even moved to DW_TAG_partial_unit. */
11579 complaint (&symfile_complaints,
11580 _("DW_AT_abstract_origin offset is not in CU for "
11581 "DW_TAG_GNU_call_site child DIE 0x%x "
11582 "[in module %s]"),
4262abfb 11583 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11584 continue;
11585 }
1788b2d3
JK
11586 parameter->u.param_offset.cu_off = (offset.sect_off
11587 - cu->header.offset.sect_off);
11588 }
11589 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11590 {
11591 complaint (&symfile_complaints,
11592 _("No DW_FORM_block* DW_AT_location for "
11593 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11594 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11595 continue;
11596 }
24c5c679 11597 else
96408a79 11598 {
24c5c679
JK
11599 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11600 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11601 if (parameter->u.dwarf_reg != -1)
11602 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11603 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11604 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11605 &parameter->u.fb_offset))
11606 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11607 else
11608 {
11609 complaint (&symfile_complaints,
11610 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11611 "for DW_FORM_block* DW_AT_location is supported for "
11612 "DW_TAG_GNU_call_site child DIE 0x%x "
11613 "[in module %s]"),
4262abfb 11614 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11615 continue;
11616 }
96408a79
SA
11617 }
11618
11619 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11620 if (!attr_form_is_block (attr))
11621 {
11622 complaint (&symfile_complaints,
11623 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11624 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11625 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11626 continue;
11627 }
11628 parameter->value = DW_BLOCK (attr)->data;
11629 parameter->value_size = DW_BLOCK (attr)->size;
11630
11631 /* Parameters are not pre-cleared by memset above. */
11632 parameter->data_value = NULL;
11633 parameter->data_value_size = 0;
11634 call_site->parameter_count++;
11635
11636 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11637 if (attr)
11638 {
11639 if (!attr_form_is_block (attr))
11640 complaint (&symfile_complaints,
11641 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11642 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11643 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11644 else
11645 {
11646 parameter->data_value = DW_BLOCK (attr)->data;
11647 parameter->data_value_size = DW_BLOCK (attr)->size;
11648 }
11649 }
11650 }
11651}
11652
43039443 11653/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
11654 Return 1 if the attributes are present and valid, otherwise, return 0.
11655 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
11656
11657static int
11658dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
11659 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11660 struct partial_symtab *ranges_pst)
43039443
JK
11661{
11662 struct objfile *objfile = cu->objfile;
11663 struct comp_unit_head *cu_header = &cu->header;
11664 bfd *obfd = objfile->obfd;
11665 unsigned int addr_size = cu_header->addr_size;
11666 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11667 /* Base address selection entry. */
11668 CORE_ADDR base;
11669 int found_base;
11670 unsigned int dummy;
d521ce57 11671 const gdb_byte *buffer;
43039443
JK
11672 CORE_ADDR marker;
11673 int low_set;
11674 CORE_ADDR low = 0;
11675 CORE_ADDR high = 0;
ff013f42 11676 CORE_ADDR baseaddr;
43039443 11677
d00adf39
DE
11678 found_base = cu->base_known;
11679 base = cu->base_address;
43039443 11680
be391dca 11681 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11682 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
11683 {
11684 complaint (&symfile_complaints,
11685 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11686 offset);
11687 return 0;
11688 }
dce234bc 11689 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
11690
11691 /* Read in the largest possible address. */
11692 marker = read_address (obfd, buffer, cu, &dummy);
11693 if ((marker & mask) == mask)
11694 {
11695 /* If we found the largest possible address, then
11696 read the base address. */
11697 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11698 buffer += 2 * addr_size;
11699 offset += 2 * addr_size;
11700 found_base = 1;
11701 }
11702
11703 low_set = 0;
11704
e7030f15 11705 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 11706
43039443
JK
11707 while (1)
11708 {
11709 CORE_ADDR range_beginning, range_end;
11710
11711 range_beginning = read_address (obfd, buffer, cu, &dummy);
11712 buffer += addr_size;
11713 range_end = read_address (obfd, buffer, cu, &dummy);
11714 buffer += addr_size;
11715 offset += 2 * addr_size;
11716
11717 /* An end of list marker is a pair of zero addresses. */
11718 if (range_beginning == 0 && range_end == 0)
11719 /* Found the end of list entry. */
11720 break;
11721
11722 /* Each base address selection entry is a pair of 2 values.
11723 The first is the largest possible address, the second is
11724 the base address. Check for a base address here. */
11725 if ((range_beginning & mask) == mask)
11726 {
11727 /* If we found the largest possible address, then
11728 read the base address. */
11729 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11730 found_base = 1;
11731 continue;
11732 }
11733
11734 if (!found_base)
11735 {
11736 /* We have no valid base address for the ranges
11737 data. */
11738 complaint (&symfile_complaints,
11739 _("Invalid .debug_ranges data (no base address)"));
11740 return 0;
11741 }
11742
9277c30c
UW
11743 if (range_beginning > range_end)
11744 {
11745 /* Inverted range entries are invalid. */
11746 complaint (&symfile_complaints,
11747 _("Invalid .debug_ranges data (inverted range)"));
11748 return 0;
11749 }
11750
11751 /* Empty range entries have no effect. */
11752 if (range_beginning == range_end)
11753 continue;
11754
43039443
JK
11755 range_beginning += base;
11756 range_end += base;
11757
01093045
DE
11758 /* A not-uncommon case of bad debug info.
11759 Don't pollute the addrmap with bad data. */
11760 if (range_beginning + baseaddr == 0
11761 && !dwarf2_per_objfile->has_section_at_zero)
11762 {
11763 complaint (&symfile_complaints,
11764 _(".debug_ranges entry has start address of zero"
4262abfb 11765 " [in module %s]"), objfile_name (objfile));
01093045
DE
11766 continue;
11767 }
11768
9277c30c 11769 if (ranges_pst != NULL)
ff013f42 11770 addrmap_set_empty (objfile->psymtabs_addrmap,
3e43a32a
MS
11771 range_beginning + baseaddr,
11772 range_end - 1 + baseaddr,
ff013f42
JK
11773 ranges_pst);
11774
43039443
JK
11775 /* FIXME: This is recording everything as a low-high
11776 segment of consecutive addresses. We should have a
11777 data structure for discontiguous block ranges
11778 instead. */
11779 if (! low_set)
11780 {
11781 low = range_beginning;
11782 high = range_end;
11783 low_set = 1;
11784 }
11785 else
11786 {
11787 if (range_beginning < low)
11788 low = range_beginning;
11789 if (range_end > high)
11790 high = range_end;
11791 }
11792 }
11793
11794 if (! low_set)
11795 /* If the first entry is an end-of-list marker, the range
11796 describes an empty scope, i.e. no instructions. */
11797 return 0;
11798
11799 if (low_return)
11800 *low_return = low;
11801 if (high_return)
11802 *high_return = high;
11803 return 1;
11804}
11805
af34e669
DJ
11806/* Get low and high pc attributes from a die. Return 1 if the attributes
11807 are present and valid, otherwise, return 0. Return -1 if the range is
11808 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 11809
c906108c 11810static int
af34e669 11811dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
11812 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11813 struct partial_symtab *pst)
c906108c
SS
11814{
11815 struct attribute *attr;
91da1414 11816 struct attribute *attr_high;
af34e669
DJ
11817 CORE_ADDR low = 0;
11818 CORE_ADDR high = 0;
11819 int ret = 0;
c906108c 11820
91da1414
MW
11821 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11822 if (attr_high)
af34e669 11823 {
e142c38c 11824 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 11825 if (attr)
91da1414 11826 {
31aa7e4e
JB
11827 low = attr_value_as_address (attr);
11828 high = attr_value_as_address (attr_high);
11829 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11830 high += low;
91da1414 11831 }
af34e669
DJ
11832 else
11833 /* Found high w/o low attribute. */
11834 return 0;
11835
11836 /* Found consecutive range of addresses. */
11837 ret = 1;
11838 }
c906108c 11839 else
af34e669 11840 {
e142c38c 11841 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
11842 if (attr != NULL)
11843 {
ab435259
DE
11844 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11845 We take advantage of the fact that DW_AT_ranges does not appear
11846 in DW_TAG_compile_unit of DWO files. */
11847 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11848 unsigned int ranges_offset = (DW_UNSND (attr)
11849 + (need_ranges_base
11850 ? cu->ranges_base
11851 : 0));
2e3cf129 11852
af34e669 11853 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 11854 .debug_ranges section. */
2e3cf129 11855 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
af34e669 11856 return 0;
43039443 11857 /* Found discontinuous range of addresses. */
af34e669
DJ
11858 ret = -1;
11859 }
11860 }
c906108c 11861
9373cf26
JK
11862 /* read_partial_die has also the strict LOW < HIGH requirement. */
11863 if (high <= low)
c906108c
SS
11864 return 0;
11865
11866 /* When using the GNU linker, .gnu.linkonce. sections are used to
11867 eliminate duplicate copies of functions and vtables and such.
11868 The linker will arbitrarily choose one and discard the others.
11869 The AT_*_pc values for such functions refer to local labels in
11870 these sections. If the section from that file was discarded, the
11871 labels are not in the output, so the relocs get a value of 0.
11872 If this is a discarded function, mark the pc bounds as invalid,
11873 so that GDB will ignore it. */
72dca2f5 11874 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
11875 return 0;
11876
11877 *lowpc = low;
96408a79
SA
11878 if (highpc)
11879 *highpc = high;
af34e669 11880 return ret;
c906108c
SS
11881}
11882
b084d499
JB
11883/* Assuming that DIE represents a subprogram DIE or a lexical block, get
11884 its low and high PC addresses. Do nothing if these addresses could not
11885 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11886 and HIGHPC to the high address if greater than HIGHPC. */
11887
11888static void
11889dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11890 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11891 struct dwarf2_cu *cu)
11892{
11893 CORE_ADDR low, high;
11894 struct die_info *child = die->child;
11895
d85a05f0 11896 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
11897 {
11898 *lowpc = min (*lowpc, low);
11899 *highpc = max (*highpc, high);
11900 }
11901
11902 /* If the language does not allow nested subprograms (either inside
11903 subprograms or lexical blocks), we're done. */
11904 if (cu->language != language_ada)
11905 return;
6e70227d 11906
b084d499
JB
11907 /* Check all the children of the given DIE. If it contains nested
11908 subprograms, then check their pc bounds. Likewise, we need to
11909 check lexical blocks as well, as they may also contain subprogram
11910 definitions. */
11911 while (child && child->tag)
11912 {
11913 if (child->tag == DW_TAG_subprogram
11914 || child->tag == DW_TAG_lexical_block)
11915 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11916 child = sibling_die (child);
11917 }
11918}
11919
fae299cd
DC
11920/* Get the low and high pc's represented by the scope DIE, and store
11921 them in *LOWPC and *HIGHPC. If the correct values can't be
11922 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11923
11924static void
11925get_scope_pc_bounds (struct die_info *die,
11926 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11927 struct dwarf2_cu *cu)
11928{
11929 CORE_ADDR best_low = (CORE_ADDR) -1;
11930 CORE_ADDR best_high = (CORE_ADDR) 0;
11931 CORE_ADDR current_low, current_high;
11932
d85a05f0 11933 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
11934 {
11935 best_low = current_low;
11936 best_high = current_high;
11937 }
11938 else
11939 {
11940 struct die_info *child = die->child;
11941
11942 while (child && child->tag)
11943 {
11944 switch (child->tag) {
11945 case DW_TAG_subprogram:
b084d499 11946 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
11947 break;
11948 case DW_TAG_namespace:
f55ee35c 11949 case DW_TAG_module:
fae299cd
DC
11950 /* FIXME: carlton/2004-01-16: Should we do this for
11951 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11952 that current GCC's always emit the DIEs corresponding
11953 to definitions of methods of classes as children of a
11954 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11955 the DIEs giving the declarations, which could be
11956 anywhere). But I don't see any reason why the
11957 standards says that they have to be there. */
11958 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11959
11960 if (current_low != ((CORE_ADDR) -1))
11961 {
11962 best_low = min (best_low, current_low);
11963 best_high = max (best_high, current_high);
11964 }
11965 break;
11966 default:
0963b4bd 11967 /* Ignore. */
fae299cd
DC
11968 break;
11969 }
11970
11971 child = sibling_die (child);
11972 }
11973 }
11974
11975 *lowpc = best_low;
11976 *highpc = best_high;
11977}
11978
801e3a5b
JB
11979/* Record the address ranges for BLOCK, offset by BASEADDR, as given
11980 in DIE. */
380bca97 11981
801e3a5b
JB
11982static void
11983dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11984 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11985{
bb5ed363 11986 struct objfile *objfile = cu->objfile;
801e3a5b 11987 struct attribute *attr;
91da1414 11988 struct attribute *attr_high;
801e3a5b 11989
91da1414
MW
11990 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11991 if (attr_high)
801e3a5b 11992 {
801e3a5b
JB
11993 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11994 if (attr)
11995 {
31aa7e4e
JB
11996 CORE_ADDR low = attr_value_as_address (attr);
11997 CORE_ADDR high = attr_value_as_address (attr_high);
11998
11999 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12000 high += low;
9a619af0 12001
801e3a5b
JB
12002 record_block_range (block, baseaddr + low, baseaddr + high - 1);
12003 }
12004 }
12005
12006 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12007 if (attr)
12008 {
bb5ed363 12009 bfd *obfd = objfile->obfd;
ab435259
DE
12010 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12011 We take advantage of the fact that DW_AT_ranges does not appear
12012 in DW_TAG_compile_unit of DWO files. */
12013 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12014
12015 /* The value of the DW_AT_ranges attribute is the offset of the
12016 address range list in the .debug_ranges section. */
ab435259
DE
12017 unsigned long offset = (DW_UNSND (attr)
12018 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12019 const gdb_byte *buffer;
801e3a5b
JB
12020
12021 /* For some target architectures, but not others, the
12022 read_address function sign-extends the addresses it returns.
12023 To recognize base address selection entries, we need a
12024 mask. */
12025 unsigned int addr_size = cu->header.addr_size;
12026 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12027
12028 /* The base address, to which the next pair is relative. Note
12029 that this 'base' is a DWARF concept: most entries in a range
12030 list are relative, to reduce the number of relocs against the
12031 debugging information. This is separate from this function's
12032 'baseaddr' argument, which GDB uses to relocate debugging
12033 information from a shared library based on the address at
12034 which the library was loaded. */
d00adf39
DE
12035 CORE_ADDR base = cu->base_address;
12036 int base_known = cu->base_known;
801e3a5b 12037
d62bfeaf 12038 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12039 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
12040 {
12041 complaint (&symfile_complaints,
12042 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12043 offset);
12044 return;
12045 }
d62bfeaf 12046 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
12047
12048 for (;;)
12049 {
12050 unsigned int bytes_read;
12051 CORE_ADDR start, end;
12052
12053 start = read_address (obfd, buffer, cu, &bytes_read);
12054 buffer += bytes_read;
12055 end = read_address (obfd, buffer, cu, &bytes_read);
12056 buffer += bytes_read;
12057
12058 /* Did we find the end of the range list? */
12059 if (start == 0 && end == 0)
12060 break;
12061
12062 /* Did we find a base address selection entry? */
12063 else if ((start & base_select_mask) == base_select_mask)
12064 {
12065 base = end;
12066 base_known = 1;
12067 }
12068
12069 /* We found an ordinary address range. */
12070 else
12071 {
12072 if (!base_known)
12073 {
12074 complaint (&symfile_complaints,
3e43a32a
MS
12075 _("Invalid .debug_ranges data "
12076 "(no base address)"));
801e3a5b
JB
12077 return;
12078 }
12079
9277c30c
UW
12080 if (start > end)
12081 {
12082 /* Inverted range entries are invalid. */
12083 complaint (&symfile_complaints,
12084 _("Invalid .debug_ranges data "
12085 "(inverted range)"));
12086 return;
12087 }
12088
12089 /* Empty range entries have no effect. */
12090 if (start == end)
12091 continue;
12092
01093045
DE
12093 start += base + baseaddr;
12094 end += base + baseaddr;
12095
12096 /* A not-uncommon case of bad debug info.
12097 Don't pollute the addrmap with bad data. */
12098 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12099 {
12100 complaint (&symfile_complaints,
12101 _(".debug_ranges entry has start address of zero"
4262abfb 12102 " [in module %s]"), objfile_name (objfile));
01093045
DE
12103 continue;
12104 }
12105
12106 record_block_range (block, start, end - 1);
801e3a5b
JB
12107 }
12108 }
12109 }
12110}
12111
685b1105
JK
12112/* Check whether the producer field indicates either of GCC < 4.6, or the
12113 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12114
685b1105
JK
12115static void
12116check_producer (struct dwarf2_cu *cu)
60d5a603
JK
12117{
12118 const char *cs;
12119 int major, minor, release;
12120
12121 if (cu->producer == NULL)
12122 {
12123 /* For unknown compilers expect their behavior is DWARF version
12124 compliant.
12125
12126 GCC started to support .debug_types sections by -gdwarf-4 since
12127 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12128 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12129 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12130 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12131 }
685b1105 12132 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
60d5a603 12133 {
685b1105
JK
12134 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12135
ba919b58
TT
12136 cs = &cu->producer[strlen ("GNU ")];
12137 while (*cs && !isdigit (*cs))
12138 cs++;
12139 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12140 {
12141 /* Not recognized as GCC. */
12142 }
12143 else
1b80a9fa
JK
12144 {
12145 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12146 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12147 }
685b1105
JK
12148 }
12149 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12150 cu->producer_is_icc = 1;
12151 else
12152 {
12153 /* For other non-GCC compilers, expect their behavior is DWARF version
12154 compliant. */
60d5a603
JK
12155 }
12156
ba919b58 12157 cu->checked_producer = 1;
685b1105 12158}
ba919b58 12159
685b1105
JK
12160/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12161 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12162 during 4.6.0 experimental. */
12163
12164static int
12165producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12166{
12167 if (!cu->checked_producer)
12168 check_producer (cu);
12169
12170 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12171}
12172
12173/* Return the default accessibility type if it is not overriden by
12174 DW_AT_accessibility. */
12175
12176static enum dwarf_access_attribute
12177dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12178{
12179 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12180 {
12181 /* The default DWARF 2 accessibility for members is public, the default
12182 accessibility for inheritance is private. */
12183
12184 if (die->tag != DW_TAG_inheritance)
12185 return DW_ACCESS_public;
12186 else
12187 return DW_ACCESS_private;
12188 }
12189 else
12190 {
12191 /* DWARF 3+ defines the default accessibility a different way. The same
12192 rules apply now for DW_TAG_inheritance as for the members and it only
12193 depends on the container kind. */
12194
12195 if (die->parent->tag == DW_TAG_class_type)
12196 return DW_ACCESS_private;
12197 else
12198 return DW_ACCESS_public;
12199 }
12200}
12201
74ac6d43
TT
12202/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12203 offset. If the attribute was not found return 0, otherwise return
12204 1. If it was found but could not properly be handled, set *OFFSET
12205 to 0. */
12206
12207static int
12208handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12209 LONGEST *offset)
12210{
12211 struct attribute *attr;
12212
12213 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12214 if (attr != NULL)
12215 {
12216 *offset = 0;
12217
12218 /* Note that we do not check for a section offset first here.
12219 This is because DW_AT_data_member_location is new in DWARF 4,
12220 so if we see it, we can assume that a constant form is really
12221 a constant and not a section offset. */
12222 if (attr_form_is_constant (attr))
12223 *offset = dwarf2_get_attr_constant_value (attr, 0);
12224 else if (attr_form_is_section_offset (attr))
12225 dwarf2_complex_location_expr_complaint ();
12226 else if (attr_form_is_block (attr))
12227 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12228 else
12229 dwarf2_complex_location_expr_complaint ();
12230
12231 return 1;
12232 }
12233
12234 return 0;
12235}
12236
c906108c
SS
12237/* Add an aggregate field to the field list. */
12238
12239static void
107d2387 12240dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12241 struct dwarf2_cu *cu)
6e70227d 12242{
e7c27a73 12243 struct objfile *objfile = cu->objfile;
5e2b427d 12244 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12245 struct nextfield *new_field;
12246 struct attribute *attr;
12247 struct field *fp;
15d034d0 12248 const char *fieldname = "";
c906108c
SS
12249
12250 /* Allocate a new field list entry and link it in. */
12251 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 12252 make_cleanup (xfree, new_field);
c906108c 12253 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12254
12255 if (die->tag == DW_TAG_inheritance)
12256 {
12257 new_field->next = fip->baseclasses;
12258 fip->baseclasses = new_field;
12259 }
12260 else
12261 {
12262 new_field->next = fip->fields;
12263 fip->fields = new_field;
12264 }
c906108c
SS
12265 fip->nfields++;
12266
e142c38c 12267 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12268 if (attr)
12269 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12270 else
12271 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12272 if (new_field->accessibility != DW_ACCESS_public)
12273 fip->non_public_fields = 1;
60d5a603 12274
e142c38c 12275 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12276 if (attr)
12277 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12278 else
12279 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12280
12281 fp = &new_field->field;
a9a9bd0f 12282
e142c38c 12283 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12284 {
74ac6d43
TT
12285 LONGEST offset;
12286
a9a9bd0f 12287 /* Data member other than a C++ static data member. */
6e70227d 12288
c906108c 12289 /* Get type of field. */
e7c27a73 12290 fp->type = die_type (die, cu);
c906108c 12291
d6a843b5 12292 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12293
c906108c 12294 /* Get bit size of field (zero if none). */
e142c38c 12295 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12296 if (attr)
12297 {
12298 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12299 }
12300 else
12301 {
12302 FIELD_BITSIZE (*fp) = 0;
12303 }
12304
12305 /* Get bit offset of field. */
74ac6d43
TT
12306 if (handle_data_member_location (die, cu, &offset))
12307 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12308 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12309 if (attr)
12310 {
5e2b427d 12311 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12312 {
12313 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12314 additional bit offset from the MSB of the containing
12315 anonymous object to the MSB of the field. We don't
12316 have to do anything special since we don't need to
12317 know the size of the anonymous object. */
f41f5e61 12318 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12319 }
12320 else
12321 {
12322 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12323 MSB of the anonymous object, subtract off the number of
12324 bits from the MSB of the field to the MSB of the
12325 object, and then subtract off the number of bits of
12326 the field itself. The result is the bit offset of
12327 the LSB of the field. */
c906108c
SS
12328 int anonymous_size;
12329 int bit_offset = DW_UNSND (attr);
12330
e142c38c 12331 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12332 if (attr)
12333 {
12334 /* The size of the anonymous object containing
12335 the bit field is explicit, so use the
12336 indicated size (in bytes). */
12337 anonymous_size = DW_UNSND (attr);
12338 }
12339 else
12340 {
12341 /* The size of the anonymous object containing
12342 the bit field must be inferred from the type
12343 attribute of the data member containing the
12344 bit field. */
12345 anonymous_size = TYPE_LENGTH (fp->type);
12346 }
f41f5e61
PA
12347 SET_FIELD_BITPOS (*fp,
12348 (FIELD_BITPOS (*fp)
12349 + anonymous_size * bits_per_byte
12350 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12351 }
12352 }
12353
12354 /* Get name of field. */
39cbfefa
DJ
12355 fieldname = dwarf2_name (die, cu);
12356 if (fieldname == NULL)
12357 fieldname = "";
d8151005
DJ
12358
12359 /* The name is already allocated along with this objfile, so we don't
12360 need to duplicate it for the type. */
12361 fp->name = fieldname;
c906108c
SS
12362
12363 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12364 pointer or virtual base class pointer) to private. */
e142c38c 12365 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12366 {
d48cc9dd 12367 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12368 new_field->accessibility = DW_ACCESS_private;
12369 fip->non_public_fields = 1;
12370 }
12371 }
a9a9bd0f 12372 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12373 {
a9a9bd0f
DC
12374 /* C++ static member. */
12375
12376 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12377 is a declaration, but all versions of G++ as of this writing
12378 (so through at least 3.2.1) incorrectly generate
12379 DW_TAG_variable tags. */
6e70227d 12380
ff355380 12381 const char *physname;
c906108c 12382
a9a9bd0f 12383 /* Get name of field. */
39cbfefa
DJ
12384 fieldname = dwarf2_name (die, cu);
12385 if (fieldname == NULL)
c906108c
SS
12386 return;
12387
254e6b9e 12388 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12389 if (attr
12390 /* Only create a symbol if this is an external value.
12391 new_symbol checks this and puts the value in the global symbol
12392 table, which we want. If it is not external, new_symbol
12393 will try to put the value in cu->list_in_scope which is wrong. */
12394 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12395 {
12396 /* A static const member, not much different than an enum as far as
12397 we're concerned, except that we can support more types. */
12398 new_symbol (die, NULL, cu);
12399 }
12400
2df3850c 12401 /* Get physical name. */
ff355380 12402 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12403
d8151005
DJ
12404 /* The name is already allocated along with this objfile, so we don't
12405 need to duplicate it for the type. */
12406 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12407 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12408 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12409 }
12410 else if (die->tag == DW_TAG_inheritance)
12411 {
74ac6d43 12412 LONGEST offset;
d4b96c9a 12413
74ac6d43
TT
12414 /* C++ base class field. */
12415 if (handle_data_member_location (die, cu, &offset))
12416 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12417 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12418 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12419 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12420 fip->nbaseclasses++;
12421 }
12422}
12423
98751a41
JK
12424/* Add a typedef defined in the scope of the FIP's class. */
12425
12426static void
12427dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12428 struct dwarf2_cu *cu)
6e70227d 12429{
98751a41 12430 struct objfile *objfile = cu->objfile;
98751a41
JK
12431 struct typedef_field_list *new_field;
12432 struct attribute *attr;
12433 struct typedef_field *fp;
12434 char *fieldname = "";
12435
12436 /* Allocate a new field list entry and link it in. */
12437 new_field = xzalloc (sizeof (*new_field));
12438 make_cleanup (xfree, new_field);
12439
12440 gdb_assert (die->tag == DW_TAG_typedef);
12441
12442 fp = &new_field->field;
12443
12444 /* Get name of field. */
12445 fp->name = dwarf2_name (die, cu);
12446 if (fp->name == NULL)
12447 return;
12448
12449 fp->type = read_type_die (die, cu);
12450
12451 new_field->next = fip->typedef_field_list;
12452 fip->typedef_field_list = new_field;
12453 fip->typedef_field_list_count++;
12454}
12455
c906108c
SS
12456/* Create the vector of fields, and attach it to the type. */
12457
12458static void
fba45db2 12459dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12460 struct dwarf2_cu *cu)
c906108c
SS
12461{
12462 int nfields = fip->nfields;
12463
12464 /* Record the field count, allocate space for the array of fields,
12465 and create blank accessibility bitfields if necessary. */
12466 TYPE_NFIELDS (type) = nfields;
12467 TYPE_FIELDS (type) = (struct field *)
12468 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12469 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12470
b4ba55a1 12471 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12472 {
12473 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12474
12475 TYPE_FIELD_PRIVATE_BITS (type) =
12476 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12477 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12478
12479 TYPE_FIELD_PROTECTED_BITS (type) =
12480 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12481 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12482
774b6a14
TT
12483 TYPE_FIELD_IGNORE_BITS (type) =
12484 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12485 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12486 }
12487
12488 /* If the type has baseclasses, allocate and clear a bit vector for
12489 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12490 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12491 {
12492 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12493 unsigned char *pointer;
c906108c
SS
12494
12495 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
12496 pointer = TYPE_ALLOC (type, num_bytes);
12497 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12498 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12499 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12500 }
12501
3e43a32a
MS
12502 /* Copy the saved-up fields into the field vector. Start from the head of
12503 the list, adding to the tail of the field array, so that they end up in
12504 the same order in the array in which they were added to the list. */
c906108c
SS
12505 while (nfields-- > 0)
12506 {
7d0ccb61
DJ
12507 struct nextfield *fieldp;
12508
12509 if (fip->fields)
12510 {
12511 fieldp = fip->fields;
12512 fip->fields = fieldp->next;
12513 }
12514 else
12515 {
12516 fieldp = fip->baseclasses;
12517 fip->baseclasses = fieldp->next;
12518 }
12519
12520 TYPE_FIELD (type, nfields) = fieldp->field;
12521 switch (fieldp->accessibility)
c906108c 12522 {
c5aa993b 12523 case DW_ACCESS_private:
b4ba55a1
JB
12524 if (cu->language != language_ada)
12525 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12526 break;
c906108c 12527
c5aa993b 12528 case DW_ACCESS_protected:
b4ba55a1
JB
12529 if (cu->language != language_ada)
12530 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12531 break;
c906108c 12532
c5aa993b
JM
12533 case DW_ACCESS_public:
12534 break;
c906108c 12535
c5aa993b
JM
12536 default:
12537 /* Unknown accessibility. Complain and treat it as public. */
12538 {
e2e0b3e5 12539 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12540 fieldp->accessibility);
c5aa993b
JM
12541 }
12542 break;
c906108c
SS
12543 }
12544 if (nfields < fip->nbaseclasses)
12545 {
7d0ccb61 12546 switch (fieldp->virtuality)
c906108c 12547 {
c5aa993b
JM
12548 case DW_VIRTUALITY_virtual:
12549 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12550 if (cu->language == language_ada)
a73c6dcd 12551 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12552 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12553 break;
c906108c
SS
12554 }
12555 }
c906108c
SS
12556 }
12557}
12558
7d27a96d
TT
12559/* Return true if this member function is a constructor, false
12560 otherwise. */
12561
12562static int
12563dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12564{
12565 const char *fieldname;
12566 const char *typename;
12567 int len;
12568
12569 if (die->parent == NULL)
12570 return 0;
12571
12572 if (die->parent->tag != DW_TAG_structure_type
12573 && die->parent->tag != DW_TAG_union_type
12574 && die->parent->tag != DW_TAG_class_type)
12575 return 0;
12576
12577 fieldname = dwarf2_name (die, cu);
12578 typename = dwarf2_name (die->parent, cu);
12579 if (fieldname == NULL || typename == NULL)
12580 return 0;
12581
12582 len = strlen (fieldname);
12583 return (strncmp (fieldname, typename, len) == 0
12584 && (typename[len] == '\0' || typename[len] == '<'));
12585}
12586
c906108c
SS
12587/* Add a member function to the proper fieldlist. */
12588
12589static void
107d2387 12590dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 12591 struct type *type, struct dwarf2_cu *cu)
c906108c 12592{
e7c27a73 12593 struct objfile *objfile = cu->objfile;
c906108c
SS
12594 struct attribute *attr;
12595 struct fnfieldlist *flp;
12596 int i;
12597 struct fn_field *fnp;
15d034d0 12598 const char *fieldname;
c906108c 12599 struct nextfnfield *new_fnfield;
f792889a 12600 struct type *this_type;
60d5a603 12601 enum dwarf_access_attribute accessibility;
c906108c 12602
b4ba55a1 12603 if (cu->language == language_ada)
a73c6dcd 12604 error (_("unexpected member function in Ada type"));
b4ba55a1 12605
2df3850c 12606 /* Get name of member function. */
39cbfefa
DJ
12607 fieldname = dwarf2_name (die, cu);
12608 if (fieldname == NULL)
2df3850c 12609 return;
c906108c 12610
c906108c
SS
12611 /* Look up member function name in fieldlist. */
12612 for (i = 0; i < fip->nfnfields; i++)
12613 {
27bfe10e 12614 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
12615 break;
12616 }
12617
12618 /* Create new list element if necessary. */
12619 if (i < fip->nfnfields)
12620 flp = &fip->fnfieldlists[i];
12621 else
12622 {
12623 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12624 {
12625 fip->fnfieldlists = (struct fnfieldlist *)
12626 xrealloc (fip->fnfieldlists,
12627 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12628 * sizeof (struct fnfieldlist));
c906108c 12629 if (fip->nfnfields == 0)
c13c43fd 12630 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
12631 }
12632 flp = &fip->fnfieldlists[fip->nfnfields];
12633 flp->name = fieldname;
12634 flp->length = 0;
12635 flp->head = NULL;
3da10d80 12636 i = fip->nfnfields++;
c906108c
SS
12637 }
12638
12639 /* Create a new member function field and chain it to the field list
0963b4bd 12640 entry. */
c906108c 12641 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 12642 make_cleanup (xfree, new_fnfield);
c906108c
SS
12643 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12644 new_fnfield->next = flp->head;
12645 flp->head = new_fnfield;
12646 flp->length++;
12647
12648 /* Fill in the member function field info. */
12649 fnp = &new_fnfield->fnfield;
3da10d80
KS
12650
12651 /* Delay processing of the physname until later. */
12652 if (cu->language == language_cplus || cu->language == language_java)
12653 {
12654 add_to_method_list (type, i, flp->length - 1, fieldname,
12655 die, cu);
12656 }
12657 else
12658 {
1d06ead6 12659 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
12660 fnp->physname = physname ? physname : "";
12661 }
12662
c906108c 12663 fnp->type = alloc_type (objfile);
f792889a
DJ
12664 this_type = read_type_die (die, cu);
12665 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 12666 {
f792889a 12667 int nparams = TYPE_NFIELDS (this_type);
c906108c 12668
f792889a 12669 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
12670 of the method itself (TYPE_CODE_METHOD). */
12671 smash_to_method_type (fnp->type, type,
f792889a
DJ
12672 TYPE_TARGET_TYPE (this_type),
12673 TYPE_FIELDS (this_type),
12674 TYPE_NFIELDS (this_type),
12675 TYPE_VARARGS (this_type));
c906108c
SS
12676
12677 /* Handle static member functions.
c5aa993b 12678 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
12679 member functions. G++ helps GDB by marking the first
12680 parameter for non-static member functions (which is the this
12681 pointer) as artificial. We obtain this information from
12682 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 12683 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
12684 fnp->voffset = VOFFSET_STATIC;
12685 }
12686 else
e2e0b3e5 12687 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 12688 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
12689
12690 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 12691 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 12692 fnp->fcontext = die_containing_type (die, cu);
c906108c 12693
3e43a32a
MS
12694 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12695 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
12696
12697 /* Get accessibility. */
e142c38c 12698 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 12699 if (attr)
60d5a603
JK
12700 accessibility = DW_UNSND (attr);
12701 else
12702 accessibility = dwarf2_default_access_attribute (die, cu);
12703 switch (accessibility)
c906108c 12704 {
60d5a603
JK
12705 case DW_ACCESS_private:
12706 fnp->is_private = 1;
12707 break;
12708 case DW_ACCESS_protected:
12709 fnp->is_protected = 1;
12710 break;
c906108c
SS
12711 }
12712
b02dede2 12713 /* Check for artificial methods. */
e142c38c 12714 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
12715 if (attr && DW_UNSND (attr) != 0)
12716 fnp->is_artificial = 1;
12717
7d27a96d
TT
12718 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12719
0d564a31 12720 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
12721 function. For older versions of GCC, this is an offset in the
12722 appropriate virtual table, as specified by DW_AT_containing_type.
12723 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
12724 to the object address. */
12725
e142c38c 12726 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 12727 if (attr)
8e19ed76 12728 {
aec5aa8b 12729 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 12730 {
aec5aa8b
TT
12731 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12732 {
12733 /* Old-style GCC. */
12734 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12735 }
12736 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12737 || (DW_BLOCK (attr)->size > 1
12738 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12739 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12740 {
12741 struct dwarf_block blk;
12742 int offset;
12743
12744 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12745 ? 1 : 2);
12746 blk.size = DW_BLOCK (attr)->size - offset;
12747 blk.data = DW_BLOCK (attr)->data + offset;
12748 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12749 if ((fnp->voffset % cu->header.addr_size) != 0)
12750 dwarf2_complex_location_expr_complaint ();
12751 else
12752 fnp->voffset /= cu->header.addr_size;
12753 fnp->voffset += 2;
12754 }
12755 else
12756 dwarf2_complex_location_expr_complaint ();
12757
12758 if (!fnp->fcontext)
12759 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12760 }
3690dd37 12761 else if (attr_form_is_section_offset (attr))
8e19ed76 12762 {
4d3c2250 12763 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
12764 }
12765 else
12766 {
4d3c2250
KB
12767 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12768 fieldname);
8e19ed76 12769 }
0d564a31 12770 }
d48cc9dd
DJ
12771 else
12772 {
12773 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12774 if (attr && DW_UNSND (attr))
12775 {
12776 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12777 complaint (&symfile_complaints,
3e43a32a
MS
12778 _("Member function \"%s\" (offset %d) is virtual "
12779 "but the vtable offset is not specified"),
b64f50a1 12780 fieldname, die->offset.sect_off);
9655fd1a 12781 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
12782 TYPE_CPLUS_DYNAMIC (type) = 1;
12783 }
12784 }
c906108c
SS
12785}
12786
12787/* Create the vector of member function fields, and attach it to the type. */
12788
12789static void
fba45db2 12790dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12791 struct dwarf2_cu *cu)
c906108c
SS
12792{
12793 struct fnfieldlist *flp;
c906108c
SS
12794 int i;
12795
b4ba55a1 12796 if (cu->language == language_ada)
a73c6dcd 12797 error (_("unexpected member functions in Ada type"));
b4ba55a1 12798
c906108c
SS
12799 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12800 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12801 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12802
12803 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12804 {
12805 struct nextfnfield *nfp = flp->head;
12806 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12807 int k;
12808
12809 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12810 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12811 fn_flp->fn_fields = (struct fn_field *)
12812 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12813 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 12814 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
12815 }
12816
12817 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
12818}
12819
1168df01
JB
12820/* Returns non-zero if NAME is the name of a vtable member in CU's
12821 language, zero otherwise. */
12822static int
12823is_vtable_name (const char *name, struct dwarf2_cu *cu)
12824{
12825 static const char vptr[] = "_vptr";
987504bb 12826 static const char vtable[] = "vtable";
1168df01 12827
987504bb
JJ
12828 /* Look for the C++ and Java forms of the vtable. */
12829 if ((cu->language == language_java
12830 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12831 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12832 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
12833 return 1;
12834
12835 return 0;
12836}
12837
c0dd20ea 12838/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
12839 functions, with the ABI-specified layout. If TYPE describes
12840 such a structure, smash it into a member function type.
61049d3b
DJ
12841
12842 GCC shouldn't do this; it should just output pointer to member DIEs.
12843 This is GCC PR debug/28767. */
c0dd20ea 12844
0b92b5bb
TT
12845static void
12846quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 12847{
0b92b5bb 12848 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
12849
12850 /* Check for a structure with no name and two children. */
0b92b5bb
TT
12851 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12852 return;
c0dd20ea
DJ
12853
12854 /* Check for __pfn and __delta members. */
0b92b5bb
TT
12855 if (TYPE_FIELD_NAME (type, 0) == NULL
12856 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12857 || TYPE_FIELD_NAME (type, 1) == NULL
12858 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12859 return;
c0dd20ea
DJ
12860
12861 /* Find the type of the method. */
0b92b5bb 12862 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
12863 if (pfn_type == NULL
12864 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12865 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 12866 return;
c0dd20ea
DJ
12867
12868 /* Look for the "this" argument. */
12869 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12870 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 12871 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 12872 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 12873 return;
c0dd20ea
DJ
12874
12875 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
12876 new_type = alloc_type (objfile);
12877 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
12878 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12879 TYPE_VARARGS (pfn_type));
0b92b5bb 12880 smash_to_methodptr_type (type, new_type);
c0dd20ea 12881}
1168df01 12882
685b1105
JK
12883/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12884 (icc). */
12885
12886static int
12887producer_is_icc (struct dwarf2_cu *cu)
12888{
12889 if (!cu->checked_producer)
12890 check_producer (cu);
12891
12892 return cu->producer_is_icc;
12893}
12894
c906108c 12895/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
12896 (definition) to create a type for the structure or union. Fill in
12897 the type's name and general properties; the members will not be
83655187
DE
12898 processed until process_structure_scope. A symbol table entry for
12899 the type will also not be done until process_structure_scope (assuming
12900 the type has a name).
c906108c 12901
c767944b
DJ
12902 NOTE: we need to call these functions regardless of whether or not the
12903 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 12904 structure or union. This gets the type entered into our set of
83655187 12905 user defined types. */
c906108c 12906
f792889a 12907static struct type *
134d01f1 12908read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12909{
e7c27a73 12910 struct objfile *objfile = cu->objfile;
c906108c
SS
12911 struct type *type;
12912 struct attribute *attr;
15d034d0 12913 const char *name;
c906108c 12914
348e048f
DE
12915 /* If the definition of this type lives in .debug_types, read that type.
12916 Don't follow DW_AT_specification though, that will take us back up
12917 the chain and we want to go down. */
45e58e77 12918 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
12919 if (attr)
12920 {
ac9ec31b 12921 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 12922
ac9ec31b 12923 /* The type's CU may not be the same as CU.
02142a6c 12924 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
12925 return set_die_type (die, type, cu);
12926 }
12927
c0dd20ea 12928 type = alloc_type (objfile);
c906108c 12929 INIT_CPLUS_SPECIFIC (type);
93311388 12930
39cbfefa
DJ
12931 name = dwarf2_name (die, cu);
12932 if (name != NULL)
c906108c 12933 {
987504bb
JJ
12934 if (cu->language == language_cplus
12935 || cu->language == language_java)
63d06c5c 12936 {
15d034d0 12937 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
12938
12939 /* dwarf2_full_name might have already finished building the DIE's
12940 type. If so, there is no need to continue. */
12941 if (get_die_type (die, cu) != NULL)
12942 return get_die_type (die, cu);
12943
12944 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
12945 if (die->tag == DW_TAG_structure_type
12946 || die->tag == DW_TAG_class_type)
12947 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
12948 }
12949 else
12950 {
d8151005
DJ
12951 /* The name is already allocated along with this objfile, so
12952 we don't need to duplicate it for the type. */
7d455152 12953 TYPE_TAG_NAME (type) = name;
94af9270
KS
12954 if (die->tag == DW_TAG_class_type)
12955 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 12956 }
c906108c
SS
12957 }
12958
12959 if (die->tag == DW_TAG_structure_type)
12960 {
12961 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12962 }
12963 else if (die->tag == DW_TAG_union_type)
12964 {
12965 TYPE_CODE (type) = TYPE_CODE_UNION;
12966 }
12967 else
12968 {
c906108c
SS
12969 TYPE_CODE (type) = TYPE_CODE_CLASS;
12970 }
12971
0cc2414c
TT
12972 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12973 TYPE_DECLARED_CLASS (type) = 1;
12974
e142c38c 12975 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12976 if (attr)
12977 {
12978 TYPE_LENGTH (type) = DW_UNSND (attr);
12979 }
12980 else
12981 {
12982 TYPE_LENGTH (type) = 0;
12983 }
12984
422b1cb0 12985 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
685b1105
JK
12986 {
12987 /* ICC does not output the required DW_AT_declaration
12988 on incomplete types, but gives them a size of zero. */
422b1cb0 12989 TYPE_STUB (type) = 1;
685b1105
JK
12990 }
12991 else
12992 TYPE_STUB_SUPPORTED (type) = 1;
12993
dc718098 12994 if (die_is_declaration (die, cu))
876cecd0 12995 TYPE_STUB (type) = 1;
a6c727b2
DJ
12996 else if (attr == NULL && die->child == NULL
12997 && producer_is_realview (cu->producer))
12998 /* RealView does not output the required DW_AT_declaration
12999 on incomplete types. */
13000 TYPE_STUB (type) = 1;
dc718098 13001
c906108c
SS
13002 /* We need to add the type field to the die immediately so we don't
13003 infinitely recurse when dealing with pointers to the structure
0963b4bd 13004 type within the structure itself. */
1c379e20 13005 set_die_type (die, type, cu);
c906108c 13006
7e314c57
JK
13007 /* set_die_type should be already done. */
13008 set_descriptive_type (type, die, cu);
13009
c767944b
DJ
13010 return type;
13011}
13012
13013/* Finish creating a structure or union type, including filling in
13014 its members and creating a symbol for it. */
13015
13016static void
13017process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13018{
13019 struct objfile *objfile = cu->objfile;
13020 struct die_info *child_die = die->child;
13021 struct type *type;
13022
13023 type = get_die_type (die, cu);
13024 if (type == NULL)
13025 type = read_structure_type (die, cu);
13026
e142c38c 13027 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13028 {
13029 struct field_info fi;
13030 struct die_info *child_die;
34eaf542 13031 VEC (symbolp) *template_args = NULL;
c767944b 13032 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13033
13034 memset (&fi, 0, sizeof (struct field_info));
13035
639d11d3 13036 child_die = die->child;
c906108c
SS
13037
13038 while (child_die && child_die->tag)
13039 {
a9a9bd0f
DC
13040 if (child_die->tag == DW_TAG_member
13041 || child_die->tag == DW_TAG_variable)
c906108c 13042 {
a9a9bd0f
DC
13043 /* NOTE: carlton/2002-11-05: A C++ static data member
13044 should be a DW_TAG_member that is a declaration, but
13045 all versions of G++ as of this writing (so through at
13046 least 3.2.1) incorrectly generate DW_TAG_variable
13047 tags for them instead. */
e7c27a73 13048 dwarf2_add_field (&fi, child_die, cu);
c906108c 13049 }
8713b1b1 13050 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13051 {
0963b4bd 13052 /* C++ member function. */
e7c27a73 13053 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
13054 }
13055 else if (child_die->tag == DW_TAG_inheritance)
13056 {
13057 /* C++ base class field. */
e7c27a73 13058 dwarf2_add_field (&fi, child_die, cu);
c906108c 13059 }
98751a41
JK
13060 else if (child_die->tag == DW_TAG_typedef)
13061 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13062 else if (child_die->tag == DW_TAG_template_type_param
13063 || child_die->tag == DW_TAG_template_value_param)
13064 {
13065 struct symbol *arg = new_symbol (child_die, NULL, cu);
13066
f1078f66
DJ
13067 if (arg != NULL)
13068 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13069 }
13070
c906108c
SS
13071 child_die = sibling_die (child_die);
13072 }
13073
34eaf542
TT
13074 /* Attach template arguments to type. */
13075 if (! VEC_empty (symbolp, template_args))
13076 {
13077 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13078 TYPE_N_TEMPLATE_ARGUMENTS (type)
13079 = VEC_length (symbolp, template_args);
13080 TYPE_TEMPLATE_ARGUMENTS (type)
13081 = obstack_alloc (&objfile->objfile_obstack,
13082 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13083 * sizeof (struct symbol *)));
13084 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13085 VEC_address (symbolp, template_args),
13086 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13087 * sizeof (struct symbol *)));
13088 VEC_free (symbolp, template_args);
13089 }
13090
c906108c
SS
13091 /* Attach fields and member functions to the type. */
13092 if (fi.nfields)
e7c27a73 13093 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13094 if (fi.nfnfields)
13095 {
e7c27a73 13096 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13097
c5aa993b 13098 /* Get the type which refers to the base class (possibly this
c906108c 13099 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13100 class from the DW_AT_containing_type attribute. This use of
13101 DW_AT_containing_type is a GNU extension. */
c906108c 13102
e142c38c 13103 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13104 {
e7c27a73 13105 struct type *t = die_containing_type (die, cu);
c906108c
SS
13106
13107 TYPE_VPTR_BASETYPE (type) = t;
13108 if (type == t)
13109 {
c906108c
SS
13110 int i;
13111
13112 /* Our own class provides vtbl ptr. */
13113 for (i = TYPE_NFIELDS (t) - 1;
13114 i >= TYPE_N_BASECLASSES (t);
13115 --i)
13116 {
0d5cff50 13117 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13118
1168df01 13119 if (is_vtable_name (fieldname, cu))
c906108c
SS
13120 {
13121 TYPE_VPTR_FIELDNO (type) = i;
13122 break;
13123 }
13124 }
13125
13126 /* Complain if virtual function table field not found. */
13127 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13128 complaint (&symfile_complaints,
3e43a32a
MS
13129 _("virtual function table pointer "
13130 "not found when defining class '%s'"),
4d3c2250
KB
13131 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13132 "");
c906108c
SS
13133 }
13134 else
13135 {
13136 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13137 }
13138 }
f6235d4c
EZ
13139 else if (cu->producer
13140 && strncmp (cu->producer,
13141 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13142 {
13143 /* The IBM XLC compiler does not provide direct indication
13144 of the containing type, but the vtable pointer is
13145 always named __vfp. */
13146
13147 int i;
13148
13149 for (i = TYPE_NFIELDS (type) - 1;
13150 i >= TYPE_N_BASECLASSES (type);
13151 --i)
13152 {
13153 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13154 {
13155 TYPE_VPTR_FIELDNO (type) = i;
13156 TYPE_VPTR_BASETYPE (type) = type;
13157 break;
13158 }
13159 }
13160 }
c906108c 13161 }
98751a41
JK
13162
13163 /* Copy fi.typedef_field_list linked list elements content into the
13164 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13165 if (fi.typedef_field_list)
13166 {
13167 int i = fi.typedef_field_list_count;
13168
a0d7a4ff 13169 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
13170 TYPE_TYPEDEF_FIELD_ARRAY (type)
13171 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13172 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13173
13174 /* Reverse the list order to keep the debug info elements order. */
13175 while (--i >= 0)
13176 {
13177 struct typedef_field *dest, *src;
6e70227d 13178
98751a41
JK
13179 dest = &TYPE_TYPEDEF_FIELD (type, i);
13180 src = &fi.typedef_field_list->field;
13181 fi.typedef_field_list = fi.typedef_field_list->next;
13182 *dest = *src;
13183 }
13184 }
c767944b
DJ
13185
13186 do_cleanups (back_to);
eb2a6f42
TT
13187
13188 if (HAVE_CPLUS_STRUCT (type))
13189 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 13190 }
63d06c5c 13191
bb5ed363 13192 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13193
90aeadfc
DC
13194 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13195 snapshots) has been known to create a die giving a declaration
13196 for a class that has, as a child, a die giving a definition for a
13197 nested class. So we have to process our children even if the
13198 current die is a declaration. Normally, of course, a declaration
13199 won't have any children at all. */
134d01f1 13200
90aeadfc
DC
13201 while (child_die != NULL && child_die->tag)
13202 {
13203 if (child_die->tag == DW_TAG_member
13204 || child_die->tag == DW_TAG_variable
34eaf542
TT
13205 || child_die->tag == DW_TAG_inheritance
13206 || child_die->tag == DW_TAG_template_value_param
13207 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13208 {
90aeadfc 13209 /* Do nothing. */
134d01f1 13210 }
90aeadfc
DC
13211 else
13212 process_die (child_die, cu);
134d01f1 13213
90aeadfc 13214 child_die = sibling_die (child_die);
134d01f1
DJ
13215 }
13216
fa4028e9
JB
13217 /* Do not consider external references. According to the DWARF standard,
13218 these DIEs are identified by the fact that they have no byte_size
13219 attribute, and a declaration attribute. */
13220 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13221 || !die_is_declaration (die, cu))
c767944b 13222 new_symbol (die, type, cu);
134d01f1
DJ
13223}
13224
55426c9d
JB
13225/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13226 update TYPE using some information only available in DIE's children. */
13227
13228static void
13229update_enumeration_type_from_children (struct die_info *die,
13230 struct type *type,
13231 struct dwarf2_cu *cu)
13232{
13233 struct obstack obstack;
13234 struct die_info *child_die = die->child;
13235 int unsigned_enum = 1;
13236 int flag_enum = 1;
13237 ULONGEST mask = 0;
13238 struct cleanup *old_chain;
13239
13240 obstack_init (&obstack);
13241 old_chain = make_cleanup_obstack_free (&obstack);
13242
13243 while (child_die != NULL && child_die->tag)
13244 {
13245 struct attribute *attr;
13246 LONGEST value;
13247 const gdb_byte *bytes;
13248 struct dwarf2_locexpr_baton *baton;
13249 const char *name;
13250 if (child_die->tag != DW_TAG_enumerator)
13251 continue;
13252
13253 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13254 if (attr == NULL)
13255 continue;
13256
13257 name = dwarf2_name (child_die, cu);
13258 if (name == NULL)
13259 name = "<anonymous enumerator>";
13260
13261 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13262 &value, &bytes, &baton);
13263 if (value < 0)
13264 {
13265 unsigned_enum = 0;
13266 flag_enum = 0;
13267 }
13268 else if ((mask & value) != 0)
13269 flag_enum = 0;
13270 else
13271 mask |= value;
13272
13273 /* If we already know that the enum type is neither unsigned, nor
13274 a flag type, no need to look at the rest of the enumerates. */
13275 if (!unsigned_enum && !flag_enum)
13276 break;
13277 child_die = sibling_die (child_die);
13278 }
13279
13280 if (unsigned_enum)
13281 TYPE_UNSIGNED (type) = 1;
13282 if (flag_enum)
13283 TYPE_FLAG_ENUM (type) = 1;
13284
13285 do_cleanups (old_chain);
13286}
13287
134d01f1
DJ
13288/* Given a DW_AT_enumeration_type die, set its type. We do not
13289 complete the type's fields yet, or create any symbols. */
c906108c 13290
f792889a 13291static struct type *
134d01f1 13292read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13293{
e7c27a73 13294 struct objfile *objfile = cu->objfile;
c906108c 13295 struct type *type;
c906108c 13296 struct attribute *attr;
0114d602 13297 const char *name;
134d01f1 13298
348e048f
DE
13299 /* If the definition of this type lives in .debug_types, read that type.
13300 Don't follow DW_AT_specification though, that will take us back up
13301 the chain and we want to go down. */
45e58e77 13302 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13303 if (attr)
13304 {
ac9ec31b 13305 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13306
ac9ec31b 13307 /* The type's CU may not be the same as CU.
02142a6c 13308 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13309 return set_die_type (die, type, cu);
13310 }
13311
c906108c
SS
13312 type = alloc_type (objfile);
13313
13314 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13315 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13316 if (name != NULL)
7d455152 13317 TYPE_TAG_NAME (type) = name;
c906108c 13318
0626fc76
TT
13319 attr = dwarf2_attr (die, DW_AT_type, cu);
13320 if (attr != NULL)
13321 {
13322 struct type *underlying_type = die_type (die, cu);
13323
13324 TYPE_TARGET_TYPE (type) = underlying_type;
13325 }
13326
e142c38c 13327 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13328 if (attr)
13329 {
13330 TYPE_LENGTH (type) = DW_UNSND (attr);
13331 }
13332 else
13333 {
13334 TYPE_LENGTH (type) = 0;
13335 }
13336
137033e9
JB
13337 /* The enumeration DIE can be incomplete. In Ada, any type can be
13338 declared as private in the package spec, and then defined only
13339 inside the package body. Such types are known as Taft Amendment
13340 Types. When another package uses such a type, an incomplete DIE
13341 may be generated by the compiler. */
02eb380e 13342 if (die_is_declaration (die, cu))
876cecd0 13343 TYPE_STUB (type) = 1;
02eb380e 13344
0626fc76
TT
13345 /* Finish the creation of this type by using the enum's children.
13346 We must call this even when the underlying type has been provided
13347 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
13348 update_enumeration_type_from_children (die, type, cu);
13349
0626fc76
TT
13350 /* If this type has an underlying type that is not a stub, then we
13351 may use its attributes. We always use the "unsigned" attribute
13352 in this situation, because ordinarily we guess whether the type
13353 is unsigned -- but the guess can be wrong and the underlying type
13354 can tell us the reality. However, we defer to a local size
13355 attribute if one exists, because this lets the compiler override
13356 the underlying type if needed. */
13357 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13358 {
13359 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13360 if (TYPE_LENGTH (type) == 0)
13361 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13362 }
13363
3d567982
TT
13364 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13365
f792889a 13366 return set_die_type (die, type, cu);
134d01f1
DJ
13367}
13368
13369/* Given a pointer to a die which begins an enumeration, process all
13370 the dies that define the members of the enumeration, and create the
13371 symbol for the enumeration type.
13372
13373 NOTE: We reverse the order of the element list. */
13374
13375static void
13376process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13377{
f792889a 13378 struct type *this_type;
134d01f1 13379
f792889a
DJ
13380 this_type = get_die_type (die, cu);
13381 if (this_type == NULL)
13382 this_type = read_enumeration_type (die, cu);
9dc481d3 13383
639d11d3 13384 if (die->child != NULL)
c906108c 13385 {
9dc481d3
DE
13386 struct die_info *child_die;
13387 struct symbol *sym;
13388 struct field *fields = NULL;
13389 int num_fields = 0;
15d034d0 13390 const char *name;
9dc481d3 13391
639d11d3 13392 child_die = die->child;
c906108c
SS
13393 while (child_die && child_die->tag)
13394 {
13395 if (child_die->tag != DW_TAG_enumerator)
13396 {
e7c27a73 13397 process_die (child_die, cu);
c906108c
SS
13398 }
13399 else
13400 {
39cbfefa
DJ
13401 name = dwarf2_name (child_die, cu);
13402 if (name)
c906108c 13403 {
f792889a 13404 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
13405
13406 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13407 {
13408 fields = (struct field *)
13409 xrealloc (fields,
13410 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13411 * sizeof (struct field));
c906108c
SS
13412 }
13413
3567439c 13414 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13415 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13416 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13417 FIELD_BITSIZE (fields[num_fields]) = 0;
13418
13419 num_fields++;
13420 }
13421 }
13422
13423 child_die = sibling_die (child_die);
13424 }
13425
13426 if (num_fields)
13427 {
f792889a
DJ
13428 TYPE_NFIELDS (this_type) = num_fields;
13429 TYPE_FIELDS (this_type) = (struct field *)
13430 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13431 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13432 sizeof (struct field) * num_fields);
b8c9b27d 13433 xfree (fields);
c906108c 13434 }
c906108c 13435 }
134d01f1 13436
6c83ed52
TT
13437 /* If we are reading an enum from a .debug_types unit, and the enum
13438 is a declaration, and the enum is not the signatured type in the
13439 unit, then we do not want to add a symbol for it. Adding a
13440 symbol would in some cases obscure the true definition of the
13441 enum, giving users an incomplete type when the definition is
13442 actually available. Note that we do not want to do this for all
13443 enums which are just declarations, because C++0x allows forward
13444 enum declarations. */
3019eac3 13445 if (cu->per_cu->is_debug_types
6c83ed52
TT
13446 && die_is_declaration (die, cu))
13447 {
52dc124a 13448 struct signatured_type *sig_type;
6c83ed52 13449
c0f78cd4 13450 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13451 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13452 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13453 return;
13454 }
13455
f792889a 13456 new_symbol (die, this_type, cu);
c906108c
SS
13457}
13458
13459/* Extract all information from a DW_TAG_array_type DIE and put it in
13460 the DIE's type field. For now, this only handles one dimensional
13461 arrays. */
13462
f792889a 13463static struct type *
e7c27a73 13464read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13465{
e7c27a73 13466 struct objfile *objfile = cu->objfile;
c906108c 13467 struct die_info *child_die;
7e314c57 13468 struct type *type;
c906108c
SS
13469 struct type *element_type, *range_type, *index_type;
13470 struct type **range_types = NULL;
13471 struct attribute *attr;
13472 int ndim = 0;
13473 struct cleanup *back_to;
15d034d0 13474 const char *name;
dc53a7ad 13475 unsigned int bit_stride = 0;
c906108c 13476
e7c27a73 13477 element_type = die_type (die, cu);
c906108c 13478
7e314c57
JK
13479 /* The die_type call above may have already set the type for this DIE. */
13480 type = get_die_type (die, cu);
13481 if (type)
13482 return type;
13483
dc53a7ad
JB
13484 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13485 if (attr != NULL)
13486 bit_stride = DW_UNSND (attr) * 8;
13487
13488 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13489 if (attr != NULL)
13490 bit_stride = DW_UNSND (attr);
13491
c906108c
SS
13492 /* Irix 6.2 native cc creates array types without children for
13493 arrays with unspecified length. */
639d11d3 13494 if (die->child == NULL)
c906108c 13495 {
46bf5051 13496 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 13497 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
13498 type = create_array_type_with_stride (NULL, element_type, range_type,
13499 bit_stride);
f792889a 13500 return set_die_type (die, type, cu);
c906108c
SS
13501 }
13502
13503 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13504 child_die = die->child;
c906108c
SS
13505 while (child_die && child_die->tag)
13506 {
13507 if (child_die->tag == DW_TAG_subrange_type)
13508 {
f792889a 13509 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13510
f792889a 13511 if (child_type != NULL)
a02abb62 13512 {
0963b4bd
MS
13513 /* The range type was succesfully read. Save it for the
13514 array type creation. */
a02abb62
JB
13515 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13516 {
13517 range_types = (struct type **)
13518 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13519 * sizeof (struct type *));
13520 if (ndim == 0)
13521 make_cleanup (free_current_contents, &range_types);
13522 }
f792889a 13523 range_types[ndim++] = child_type;
a02abb62 13524 }
c906108c
SS
13525 }
13526 child_die = sibling_die (child_die);
13527 }
13528
13529 /* Dwarf2 dimensions are output from left to right, create the
13530 necessary array types in backwards order. */
7ca2d3a3 13531
c906108c 13532 type = element_type;
7ca2d3a3
DL
13533
13534 if (read_array_order (die, cu) == DW_ORD_col_major)
13535 {
13536 int i = 0;
9a619af0 13537
7ca2d3a3 13538 while (i < ndim)
dc53a7ad
JB
13539 type = create_array_type_with_stride (NULL, type, range_types[i++],
13540 bit_stride);
7ca2d3a3
DL
13541 }
13542 else
13543 {
13544 while (ndim-- > 0)
dc53a7ad
JB
13545 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13546 bit_stride);
7ca2d3a3 13547 }
c906108c 13548
f5f8a009
EZ
13549 /* Understand Dwarf2 support for vector types (like they occur on
13550 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13551 array type. This is not part of the Dwarf2/3 standard yet, but a
13552 custom vendor extension. The main difference between a regular
13553 array and the vector variant is that vectors are passed by value
13554 to functions. */
e142c38c 13555 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 13556 if (attr)
ea37ba09 13557 make_vector_type (type);
f5f8a009 13558
dbc98a8b
KW
13559 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13560 implementation may choose to implement triple vectors using this
13561 attribute. */
13562 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13563 if (attr)
13564 {
13565 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13566 TYPE_LENGTH (type) = DW_UNSND (attr);
13567 else
3e43a32a
MS
13568 complaint (&symfile_complaints,
13569 _("DW_AT_byte_size for array type smaller "
13570 "than the total size of elements"));
dbc98a8b
KW
13571 }
13572
39cbfefa
DJ
13573 name = dwarf2_name (die, cu);
13574 if (name)
13575 TYPE_NAME (type) = name;
6e70227d 13576
0963b4bd 13577 /* Install the type in the die. */
7e314c57
JK
13578 set_die_type (die, type, cu);
13579
13580 /* set_die_type should be already done. */
b4ba55a1
JB
13581 set_descriptive_type (type, die, cu);
13582
c906108c
SS
13583 do_cleanups (back_to);
13584
7e314c57 13585 return type;
c906108c
SS
13586}
13587
7ca2d3a3 13588static enum dwarf_array_dim_ordering
6e70227d 13589read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
13590{
13591 struct attribute *attr;
13592
13593 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13594
13595 if (attr) return DW_SND (attr);
13596
0963b4bd
MS
13597 /* GNU F77 is a special case, as at 08/2004 array type info is the
13598 opposite order to the dwarf2 specification, but data is still
13599 laid out as per normal fortran.
7ca2d3a3 13600
0963b4bd
MS
13601 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13602 version checking. */
7ca2d3a3 13603
905e0470
PM
13604 if (cu->language == language_fortran
13605 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
13606 {
13607 return DW_ORD_row_major;
13608 }
13609
6e70227d 13610 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
13611 {
13612 case array_column_major:
13613 return DW_ORD_col_major;
13614 case array_row_major:
13615 default:
13616 return DW_ORD_row_major;
13617 };
13618}
13619
72019c9c 13620/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 13621 the DIE's type field. */
72019c9c 13622
f792889a 13623static struct type *
72019c9c
GM
13624read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13625{
7e314c57
JK
13626 struct type *domain_type, *set_type;
13627 struct attribute *attr;
f792889a 13628
7e314c57
JK
13629 domain_type = die_type (die, cu);
13630
13631 /* The die_type call above may have already set the type for this DIE. */
13632 set_type = get_die_type (die, cu);
13633 if (set_type)
13634 return set_type;
13635
13636 set_type = create_set_type (NULL, domain_type);
13637
13638 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
13639 if (attr)
13640 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 13641
f792889a 13642 return set_die_type (die, set_type, cu);
72019c9c 13643}
7ca2d3a3 13644
0971de02
TT
13645/* A helper for read_common_block that creates a locexpr baton.
13646 SYM is the symbol which we are marking as computed.
13647 COMMON_DIE is the DIE for the common block.
13648 COMMON_LOC is the location expression attribute for the common
13649 block itself.
13650 MEMBER_LOC is the location expression attribute for the particular
13651 member of the common block that we are processing.
13652 CU is the CU from which the above come. */
13653
13654static void
13655mark_common_block_symbol_computed (struct symbol *sym,
13656 struct die_info *common_die,
13657 struct attribute *common_loc,
13658 struct attribute *member_loc,
13659 struct dwarf2_cu *cu)
13660{
13661 struct objfile *objfile = dwarf2_per_objfile->objfile;
13662 struct dwarf2_locexpr_baton *baton;
13663 gdb_byte *ptr;
13664 unsigned int cu_off;
13665 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13666 LONGEST offset = 0;
13667
13668 gdb_assert (common_loc && member_loc);
13669 gdb_assert (attr_form_is_block (common_loc));
13670 gdb_assert (attr_form_is_block (member_loc)
13671 || attr_form_is_constant (member_loc));
13672
13673 baton = obstack_alloc (&objfile->objfile_obstack,
13674 sizeof (struct dwarf2_locexpr_baton));
13675 baton->per_cu = cu->per_cu;
13676 gdb_assert (baton->per_cu);
13677
13678 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13679
13680 if (attr_form_is_constant (member_loc))
13681 {
13682 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13683 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13684 }
13685 else
13686 baton->size += DW_BLOCK (member_loc)->size;
13687
13688 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13689 baton->data = ptr;
13690
13691 *ptr++ = DW_OP_call4;
13692 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13693 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13694 ptr += 4;
13695
13696 if (attr_form_is_constant (member_loc))
13697 {
13698 *ptr++ = DW_OP_addr;
13699 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13700 ptr += cu->header.addr_size;
13701 }
13702 else
13703 {
13704 /* We have to copy the data here, because DW_OP_call4 will only
13705 use a DW_AT_location attribute. */
13706 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13707 ptr += DW_BLOCK (member_loc)->size;
13708 }
13709
13710 *ptr++ = DW_OP_plus;
13711 gdb_assert (ptr - baton->data == baton->size);
13712
0971de02 13713 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 13714 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
13715}
13716
4357ac6c
TT
13717/* Create appropriate locally-scoped variables for all the
13718 DW_TAG_common_block entries. Also create a struct common_block
13719 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13720 is used to sepate the common blocks name namespace from regular
13721 variable names. */
c906108c
SS
13722
13723static void
e7c27a73 13724read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13725{
0971de02
TT
13726 struct attribute *attr;
13727
13728 attr = dwarf2_attr (die, DW_AT_location, cu);
13729 if (attr)
13730 {
13731 /* Support the .debug_loc offsets. */
13732 if (attr_form_is_block (attr))
13733 {
13734 /* Ok. */
13735 }
13736 else if (attr_form_is_section_offset (attr))
13737 {
13738 dwarf2_complex_location_expr_complaint ();
13739 attr = NULL;
13740 }
13741 else
13742 {
13743 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13744 "common block member");
13745 attr = NULL;
13746 }
13747 }
13748
639d11d3 13749 if (die->child != NULL)
c906108c 13750 {
4357ac6c
TT
13751 struct objfile *objfile = cu->objfile;
13752 struct die_info *child_die;
13753 size_t n_entries = 0, size;
13754 struct common_block *common_block;
13755 struct symbol *sym;
74ac6d43 13756
4357ac6c
TT
13757 for (child_die = die->child;
13758 child_die && child_die->tag;
13759 child_die = sibling_die (child_die))
13760 ++n_entries;
13761
13762 size = (sizeof (struct common_block)
13763 + (n_entries - 1) * sizeof (struct symbol *));
13764 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13765 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13766 common_block->n_entries = 0;
13767
13768 for (child_die = die->child;
13769 child_die && child_die->tag;
13770 child_die = sibling_die (child_die))
13771 {
13772 /* Create the symbol in the DW_TAG_common_block block in the current
13773 symbol scope. */
e7c27a73 13774 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
13775 if (sym != NULL)
13776 {
13777 struct attribute *member_loc;
13778
13779 common_block->contents[common_block->n_entries++] = sym;
13780
13781 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13782 cu);
13783 if (member_loc)
13784 {
13785 /* GDB has handled this for a long time, but it is
13786 not specified by DWARF. It seems to have been
13787 emitted by gfortran at least as recently as:
13788 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13789 complaint (&symfile_complaints,
13790 _("Variable in common block has "
13791 "DW_AT_data_member_location "
13792 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
13793 child_die->offset.sect_off,
13794 objfile_name (cu->objfile));
0971de02
TT
13795
13796 if (attr_form_is_section_offset (member_loc))
13797 dwarf2_complex_location_expr_complaint ();
13798 else if (attr_form_is_constant (member_loc)
13799 || attr_form_is_block (member_loc))
13800 {
13801 if (attr)
13802 mark_common_block_symbol_computed (sym, die, attr,
13803 member_loc, cu);
13804 }
13805 else
13806 dwarf2_complex_location_expr_complaint ();
13807 }
13808 }
c906108c 13809 }
4357ac6c
TT
13810
13811 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13812 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
13813 }
13814}
13815
0114d602 13816/* Create a type for a C++ namespace. */
d9fa45fe 13817
0114d602
DJ
13818static struct type *
13819read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 13820{
e7c27a73 13821 struct objfile *objfile = cu->objfile;
0114d602 13822 const char *previous_prefix, *name;
9219021c 13823 int is_anonymous;
0114d602
DJ
13824 struct type *type;
13825
13826 /* For extensions, reuse the type of the original namespace. */
13827 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13828 {
13829 struct die_info *ext_die;
13830 struct dwarf2_cu *ext_cu = cu;
9a619af0 13831
0114d602
DJ
13832 ext_die = dwarf2_extension (die, &ext_cu);
13833 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
13834
13835 /* EXT_CU may not be the same as CU.
02142a6c 13836 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
13837 return set_die_type (die, type, cu);
13838 }
9219021c 13839
e142c38c 13840 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
13841
13842 /* Now build the name of the current namespace. */
13843
0114d602
DJ
13844 previous_prefix = determine_prefix (die, cu);
13845 if (previous_prefix[0] != '\0')
13846 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 13847 previous_prefix, name, 0, cu);
0114d602
DJ
13848
13849 /* Create the type. */
13850 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13851 objfile);
abee88f2 13852 TYPE_NAME (type) = name;
0114d602
DJ
13853 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13854
60531b24 13855 return set_die_type (die, type, cu);
0114d602
DJ
13856}
13857
13858/* Read a C++ namespace. */
13859
13860static void
13861read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13862{
13863 struct objfile *objfile = cu->objfile;
0114d602 13864 int is_anonymous;
9219021c 13865
5c4e30ca
DC
13866 /* Add a symbol associated to this if we haven't seen the namespace
13867 before. Also, add a using directive if it's an anonymous
13868 namespace. */
9219021c 13869
f2f0e013 13870 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
13871 {
13872 struct type *type;
13873
0114d602 13874 type = read_type_die (die, cu);
e7c27a73 13875 new_symbol (die, type, cu);
5c4e30ca 13876
e8e80198 13877 namespace_name (die, &is_anonymous, cu);
5c4e30ca 13878 if (is_anonymous)
0114d602
DJ
13879 {
13880 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 13881
c0cc3a76 13882 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12aaed36 13883 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 13884 }
5c4e30ca 13885 }
9219021c 13886
639d11d3 13887 if (die->child != NULL)
d9fa45fe 13888 {
639d11d3 13889 struct die_info *child_die = die->child;
6e70227d 13890
d9fa45fe
DC
13891 while (child_die && child_die->tag)
13892 {
e7c27a73 13893 process_die (child_die, cu);
d9fa45fe
DC
13894 child_die = sibling_die (child_die);
13895 }
13896 }
38d518c9
EZ
13897}
13898
f55ee35c
JK
13899/* Read a Fortran module as type. This DIE can be only a declaration used for
13900 imported module. Still we need that type as local Fortran "use ... only"
13901 declaration imports depend on the created type in determine_prefix. */
13902
13903static struct type *
13904read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13905{
13906 struct objfile *objfile = cu->objfile;
15d034d0 13907 const char *module_name;
f55ee35c
JK
13908 struct type *type;
13909
13910 module_name = dwarf2_name (die, cu);
13911 if (!module_name)
3e43a32a
MS
13912 complaint (&symfile_complaints,
13913 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 13914 die->offset.sect_off);
f55ee35c
JK
13915 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13916
13917 /* determine_prefix uses TYPE_TAG_NAME. */
13918 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13919
13920 return set_die_type (die, type, cu);
13921}
13922
5d7cb8df
JK
13923/* Read a Fortran module. */
13924
13925static void
13926read_module (struct die_info *die, struct dwarf2_cu *cu)
13927{
13928 struct die_info *child_die = die->child;
530e8392
KB
13929 struct type *type;
13930
13931 type = read_type_die (die, cu);
13932 new_symbol (die, type, cu);
5d7cb8df 13933
5d7cb8df
JK
13934 while (child_die && child_die->tag)
13935 {
13936 process_die (child_die, cu);
13937 child_die = sibling_die (child_die);
13938 }
13939}
13940
38d518c9
EZ
13941/* Return the name of the namespace represented by DIE. Set
13942 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13943 namespace. */
13944
13945static const char *
e142c38c 13946namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
13947{
13948 struct die_info *current_die;
13949 const char *name = NULL;
13950
13951 /* Loop through the extensions until we find a name. */
13952
13953 for (current_die = die;
13954 current_die != NULL;
f2f0e013 13955 current_die = dwarf2_extension (die, &cu))
38d518c9 13956 {
e142c38c 13957 name = dwarf2_name (current_die, cu);
38d518c9
EZ
13958 if (name != NULL)
13959 break;
13960 }
13961
13962 /* Is it an anonymous namespace? */
13963
13964 *is_anonymous = (name == NULL);
13965 if (*is_anonymous)
2b1dbab0 13966 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
13967
13968 return name;
d9fa45fe
DC
13969}
13970
c906108c
SS
13971/* Extract all information from a DW_TAG_pointer_type DIE and add to
13972 the user defined type vector. */
13973
f792889a 13974static struct type *
e7c27a73 13975read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13976{
5e2b427d 13977 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 13978 struct comp_unit_head *cu_header = &cu->header;
c906108c 13979 struct type *type;
8b2dbe47
KB
13980 struct attribute *attr_byte_size;
13981 struct attribute *attr_address_class;
13982 int byte_size, addr_class;
7e314c57
JK
13983 struct type *target_type;
13984
13985 target_type = die_type (die, cu);
c906108c 13986
7e314c57
JK
13987 /* The die_type call above may have already set the type for this DIE. */
13988 type = get_die_type (die, cu);
13989 if (type)
13990 return type;
13991
13992 type = lookup_pointer_type (target_type);
8b2dbe47 13993
e142c38c 13994 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
13995 if (attr_byte_size)
13996 byte_size = DW_UNSND (attr_byte_size);
c906108c 13997 else
8b2dbe47
KB
13998 byte_size = cu_header->addr_size;
13999
e142c38c 14000 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14001 if (attr_address_class)
14002 addr_class = DW_UNSND (attr_address_class);
14003 else
14004 addr_class = DW_ADDR_none;
14005
14006 /* If the pointer size or address class is different than the
14007 default, create a type variant marked as such and set the
14008 length accordingly. */
14009 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14010 {
5e2b427d 14011 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14012 {
14013 int type_flags;
14014
849957d9 14015 type_flags = gdbarch_address_class_type_flags
5e2b427d 14016 (gdbarch, byte_size, addr_class);
876cecd0
TT
14017 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14018 == 0);
8b2dbe47
KB
14019 type = make_type_with_address_space (type, type_flags);
14020 }
14021 else if (TYPE_LENGTH (type) != byte_size)
14022 {
3e43a32a
MS
14023 complaint (&symfile_complaints,
14024 _("invalid pointer size %d"), byte_size);
8b2dbe47 14025 }
6e70227d 14026 else
9a619af0
MS
14027 {
14028 /* Should we also complain about unhandled address classes? */
14029 }
c906108c 14030 }
8b2dbe47
KB
14031
14032 TYPE_LENGTH (type) = byte_size;
f792889a 14033 return set_die_type (die, type, cu);
c906108c
SS
14034}
14035
14036/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14037 the user defined type vector. */
14038
f792889a 14039static struct type *
e7c27a73 14040read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14041{
14042 struct type *type;
14043 struct type *to_type;
14044 struct type *domain;
14045
e7c27a73
DJ
14046 to_type = die_type (die, cu);
14047 domain = die_containing_type (die, cu);
0d5de010 14048
7e314c57
JK
14049 /* The calls above may have already set the type for this DIE. */
14050 type = get_die_type (die, cu);
14051 if (type)
14052 return type;
14053
0d5de010
DJ
14054 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14055 type = lookup_methodptr_type (to_type);
7078baeb
TT
14056 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14057 {
14058 struct type *new_type = alloc_type (cu->objfile);
14059
14060 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14061 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14062 TYPE_VARARGS (to_type));
14063 type = lookup_methodptr_type (new_type);
14064 }
0d5de010
DJ
14065 else
14066 type = lookup_memberptr_type (to_type, domain);
c906108c 14067
f792889a 14068 return set_die_type (die, type, cu);
c906108c
SS
14069}
14070
14071/* Extract all information from a DW_TAG_reference_type DIE and add to
14072 the user defined type vector. */
14073
f792889a 14074static struct type *
e7c27a73 14075read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14076{
e7c27a73 14077 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14078 struct type *type, *target_type;
c906108c
SS
14079 struct attribute *attr;
14080
7e314c57
JK
14081 target_type = die_type (die, cu);
14082
14083 /* The die_type call above may have already set the type for this DIE. */
14084 type = get_die_type (die, cu);
14085 if (type)
14086 return type;
14087
14088 type = lookup_reference_type (target_type);
e142c38c 14089 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14090 if (attr)
14091 {
14092 TYPE_LENGTH (type) = DW_UNSND (attr);
14093 }
14094 else
14095 {
107d2387 14096 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14097 }
f792889a 14098 return set_die_type (die, type, cu);
c906108c
SS
14099}
14100
cf363f18
MW
14101/* Add the given cv-qualifiers to the element type of the array. GCC
14102 outputs DWARF type qualifiers that apply to an array, not the
14103 element type. But GDB relies on the array element type to carry
14104 the cv-qualifiers. This mimics section 6.7.3 of the C99
14105 specification. */
14106
14107static struct type *
14108add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14109 struct type *base_type, int cnst, int voltl)
14110{
14111 struct type *el_type, *inner_array;
14112
14113 base_type = copy_type (base_type);
14114 inner_array = base_type;
14115
14116 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14117 {
14118 TYPE_TARGET_TYPE (inner_array) =
14119 copy_type (TYPE_TARGET_TYPE (inner_array));
14120 inner_array = TYPE_TARGET_TYPE (inner_array);
14121 }
14122
14123 el_type = TYPE_TARGET_TYPE (inner_array);
14124 cnst |= TYPE_CONST (el_type);
14125 voltl |= TYPE_VOLATILE (el_type);
14126 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14127
14128 return set_die_type (die, base_type, cu);
14129}
14130
f792889a 14131static struct type *
e7c27a73 14132read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14133{
f792889a 14134 struct type *base_type, *cv_type;
c906108c 14135
e7c27a73 14136 base_type = die_type (die, cu);
7e314c57
JK
14137
14138 /* The die_type call above may have already set the type for this DIE. */
14139 cv_type = get_die_type (die, cu);
14140 if (cv_type)
14141 return cv_type;
14142
2f608a3a
KW
14143 /* In case the const qualifier is applied to an array type, the element type
14144 is so qualified, not the array type (section 6.7.3 of C99). */
14145 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14146 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14147
f792889a
DJ
14148 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14149 return set_die_type (die, cv_type, cu);
c906108c
SS
14150}
14151
f792889a 14152static struct type *
e7c27a73 14153read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14154{
f792889a 14155 struct type *base_type, *cv_type;
c906108c 14156
e7c27a73 14157 base_type = die_type (die, cu);
7e314c57
JK
14158
14159 /* The die_type call above may have already set the type for this DIE. */
14160 cv_type = get_die_type (die, cu);
14161 if (cv_type)
14162 return cv_type;
14163
cf363f18
MW
14164 /* In case the volatile qualifier is applied to an array type, the
14165 element type is so qualified, not the array type (section 6.7.3
14166 of C99). */
14167 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14168 return add_array_cv_type (die, cu, base_type, 0, 1);
14169
f792889a
DJ
14170 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14171 return set_die_type (die, cv_type, cu);
c906108c
SS
14172}
14173
06d66ee9
TT
14174/* Handle DW_TAG_restrict_type. */
14175
14176static struct type *
14177read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14178{
14179 struct type *base_type, *cv_type;
14180
14181 base_type = die_type (die, cu);
14182
14183 /* The die_type call above may have already set the type for this DIE. */
14184 cv_type = get_die_type (die, cu);
14185 if (cv_type)
14186 return cv_type;
14187
14188 cv_type = make_restrict_type (base_type);
14189 return set_die_type (die, cv_type, cu);
14190}
14191
c906108c
SS
14192/* Extract all information from a DW_TAG_string_type DIE and add to
14193 the user defined type vector. It isn't really a user defined type,
14194 but it behaves like one, with other DIE's using an AT_user_def_type
14195 attribute to reference it. */
14196
f792889a 14197static struct type *
e7c27a73 14198read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14199{
e7c27a73 14200 struct objfile *objfile = cu->objfile;
3b7538c0 14201 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14202 struct type *type, *range_type, *index_type, *char_type;
14203 struct attribute *attr;
14204 unsigned int length;
14205
e142c38c 14206 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14207 if (attr)
14208 {
14209 length = DW_UNSND (attr);
14210 }
14211 else
14212 {
0963b4bd 14213 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14214 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14215 if (attr)
14216 {
14217 length = DW_UNSND (attr);
14218 }
14219 else
14220 {
14221 length = 1;
14222 }
c906108c 14223 }
6ccb9162 14224
46bf5051 14225 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14226 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14227 char_type = language_string_char_type (cu->language_defn, gdbarch);
14228 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14229
f792889a 14230 return set_die_type (die, type, cu);
c906108c
SS
14231}
14232
4d804846
JB
14233/* Assuming that DIE corresponds to a function, returns nonzero
14234 if the function is prototyped. */
14235
14236static int
14237prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14238{
14239 struct attribute *attr;
14240
14241 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14242 if (attr && (DW_UNSND (attr) != 0))
14243 return 1;
14244
14245 /* The DWARF standard implies that the DW_AT_prototyped attribute
14246 is only meaninful for C, but the concept also extends to other
14247 languages that allow unprototyped functions (Eg: Objective C).
14248 For all other languages, assume that functions are always
14249 prototyped. */
14250 if (cu->language != language_c
14251 && cu->language != language_objc
14252 && cu->language != language_opencl)
14253 return 1;
14254
14255 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14256 prototyped and unprototyped functions; default to prototyped,
14257 since that is more common in modern code (and RealView warns
14258 about unprototyped functions). */
14259 if (producer_is_realview (cu->producer))
14260 return 1;
14261
14262 return 0;
14263}
14264
c906108c
SS
14265/* Handle DIES due to C code like:
14266
14267 struct foo
c5aa993b
JM
14268 {
14269 int (*funcp)(int a, long l);
14270 int b;
14271 };
c906108c 14272
0963b4bd 14273 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14274
f792889a 14275static struct type *
e7c27a73 14276read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14277{
bb5ed363 14278 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14279 struct type *type; /* Type that this function returns. */
14280 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14281 struct attribute *attr;
14282
e7c27a73 14283 type = die_type (die, cu);
7e314c57
JK
14284
14285 /* The die_type call above may have already set the type for this DIE. */
14286 ftype = get_die_type (die, cu);
14287 if (ftype)
14288 return ftype;
14289
0c8b41f1 14290 ftype = lookup_function_type (type);
c906108c 14291
4d804846 14292 if (prototyped_function_p (die, cu))
a6c727b2 14293 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14294
c055b101
CV
14295 /* Store the calling convention in the type if it's available in
14296 the subroutine die. Otherwise set the calling convention to
14297 the default value DW_CC_normal. */
14298 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14299 if (attr)
14300 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14301 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14302 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14303 else
14304 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2
GM
14305
14306 /* We need to add the subroutine type to the die immediately so
14307 we don't infinitely recurse when dealing with parameters
0963b4bd 14308 declared as the same subroutine type. */
76c10ea2 14309 set_die_type (die, ftype, cu);
6e70227d 14310
639d11d3 14311 if (die->child != NULL)
c906108c 14312 {
bb5ed363 14313 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14314 struct die_info *child_die;
8072405b 14315 int nparams, iparams;
c906108c
SS
14316
14317 /* Count the number of parameters.
14318 FIXME: GDB currently ignores vararg functions, but knows about
14319 vararg member functions. */
8072405b 14320 nparams = 0;
639d11d3 14321 child_die = die->child;
c906108c
SS
14322 while (child_die && child_die->tag)
14323 {
14324 if (child_die->tag == DW_TAG_formal_parameter)
14325 nparams++;
14326 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14327 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14328 child_die = sibling_die (child_die);
14329 }
14330
14331 /* Allocate storage for parameters and fill them in. */
14332 TYPE_NFIELDS (ftype) = nparams;
14333 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14334 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14335
8072405b
JK
14336 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14337 even if we error out during the parameters reading below. */
14338 for (iparams = 0; iparams < nparams; iparams++)
14339 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14340
14341 iparams = 0;
639d11d3 14342 child_die = die->child;
c906108c
SS
14343 while (child_die && child_die->tag)
14344 {
14345 if (child_die->tag == DW_TAG_formal_parameter)
14346 {
3ce3b1ba
PA
14347 struct type *arg_type;
14348
14349 /* DWARF version 2 has no clean way to discern C++
14350 static and non-static member functions. G++ helps
14351 GDB by marking the first parameter for non-static
14352 member functions (which is the this pointer) as
14353 artificial. We pass this information to
14354 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14355
14356 DWARF version 3 added DW_AT_object_pointer, which GCC
14357 4.5 does not yet generate. */
e142c38c 14358 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14359 if (attr)
14360 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14361 else
418835cc
KS
14362 {
14363 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14364
14365 /* GCC/43521: In java, the formal parameter
14366 "this" is sometimes not marked with DW_AT_artificial. */
14367 if (cu->language == language_java)
14368 {
14369 const char *name = dwarf2_name (child_die, cu);
9a619af0 14370
418835cc
KS
14371 if (name && !strcmp (name, "this"))
14372 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14373 }
14374 }
3ce3b1ba
PA
14375 arg_type = die_type (child_die, cu);
14376
14377 /* RealView does not mark THIS as const, which the testsuite
14378 expects. GCC marks THIS as const in method definitions,
14379 but not in the class specifications (GCC PR 43053). */
14380 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14381 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14382 {
14383 int is_this = 0;
14384 struct dwarf2_cu *arg_cu = cu;
14385 const char *name = dwarf2_name (child_die, cu);
14386
14387 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14388 if (attr)
14389 {
14390 /* If the compiler emits this, use it. */
14391 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14392 is_this = 1;
14393 }
14394 else if (name && strcmp (name, "this") == 0)
14395 /* Function definitions will have the argument names. */
14396 is_this = 1;
14397 else if (name == NULL && iparams == 0)
14398 /* Declarations may not have the names, so like
14399 elsewhere in GDB, assume an artificial first
14400 argument is "this". */
14401 is_this = 1;
14402
14403 if (is_this)
14404 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14405 arg_type, 0);
14406 }
14407
14408 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14409 iparams++;
14410 }
14411 child_die = sibling_die (child_die);
14412 }
14413 }
14414
76c10ea2 14415 return ftype;
c906108c
SS
14416}
14417
f792889a 14418static struct type *
e7c27a73 14419read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14420{
e7c27a73 14421 struct objfile *objfile = cu->objfile;
0114d602 14422 const char *name = NULL;
3c8e0968 14423 struct type *this_type, *target_type;
c906108c 14424
94af9270 14425 name = dwarf2_full_name (NULL, die, cu);
f792889a 14426 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602 14427 TYPE_FLAG_TARGET_STUB, NULL, objfile);
abee88f2 14428 TYPE_NAME (this_type) = name;
f792889a 14429 set_die_type (die, this_type, cu);
3c8e0968
DE
14430 target_type = die_type (die, cu);
14431 if (target_type != this_type)
14432 TYPE_TARGET_TYPE (this_type) = target_type;
14433 else
14434 {
14435 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14436 spec and cause infinite loops in GDB. */
14437 complaint (&symfile_complaints,
14438 _("Self-referential DW_TAG_typedef "
14439 "- DIE at 0x%x [in module %s]"),
4262abfb 14440 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14441 TYPE_TARGET_TYPE (this_type) = NULL;
14442 }
f792889a 14443 return this_type;
c906108c
SS
14444}
14445
14446/* Find a representation of a given base type and install
14447 it in the TYPE field of the die. */
14448
f792889a 14449static struct type *
e7c27a73 14450read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14451{
e7c27a73 14452 struct objfile *objfile = cu->objfile;
c906108c
SS
14453 struct type *type;
14454 struct attribute *attr;
14455 int encoding = 0, size = 0;
15d034d0 14456 const char *name;
6ccb9162
UW
14457 enum type_code code = TYPE_CODE_INT;
14458 int type_flags = 0;
14459 struct type *target_type = NULL;
c906108c 14460
e142c38c 14461 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14462 if (attr)
14463 {
14464 encoding = DW_UNSND (attr);
14465 }
e142c38c 14466 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14467 if (attr)
14468 {
14469 size = DW_UNSND (attr);
14470 }
39cbfefa 14471 name = dwarf2_name (die, cu);
6ccb9162 14472 if (!name)
c906108c 14473 {
6ccb9162
UW
14474 complaint (&symfile_complaints,
14475 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14476 }
6ccb9162
UW
14477
14478 switch (encoding)
c906108c 14479 {
6ccb9162
UW
14480 case DW_ATE_address:
14481 /* Turn DW_ATE_address into a void * pointer. */
14482 code = TYPE_CODE_PTR;
14483 type_flags |= TYPE_FLAG_UNSIGNED;
14484 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14485 break;
14486 case DW_ATE_boolean:
14487 code = TYPE_CODE_BOOL;
14488 type_flags |= TYPE_FLAG_UNSIGNED;
14489 break;
14490 case DW_ATE_complex_float:
14491 code = TYPE_CODE_COMPLEX;
14492 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14493 break;
14494 case DW_ATE_decimal_float:
14495 code = TYPE_CODE_DECFLOAT;
14496 break;
14497 case DW_ATE_float:
14498 code = TYPE_CODE_FLT;
14499 break;
14500 case DW_ATE_signed:
14501 break;
14502 case DW_ATE_unsigned:
14503 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
14504 if (cu->language == language_fortran
14505 && name
14506 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14507 code = TYPE_CODE_CHAR;
6ccb9162
UW
14508 break;
14509 case DW_ATE_signed_char:
6e70227d 14510 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14511 || cu->language == language_pascal
14512 || cu->language == language_fortran)
6ccb9162
UW
14513 code = TYPE_CODE_CHAR;
14514 break;
14515 case DW_ATE_unsigned_char:
868a0084 14516 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14517 || cu->language == language_pascal
14518 || cu->language == language_fortran)
6ccb9162
UW
14519 code = TYPE_CODE_CHAR;
14520 type_flags |= TYPE_FLAG_UNSIGNED;
14521 break;
75079b2b
TT
14522 case DW_ATE_UTF:
14523 /* We just treat this as an integer and then recognize the
14524 type by name elsewhere. */
14525 break;
14526
6ccb9162
UW
14527 default:
14528 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14529 dwarf_type_encoding_name (encoding));
14530 break;
c906108c 14531 }
6ccb9162 14532
0114d602
DJ
14533 type = init_type (code, size, type_flags, NULL, objfile);
14534 TYPE_NAME (type) = name;
6ccb9162
UW
14535 TYPE_TARGET_TYPE (type) = target_type;
14536
0114d602 14537 if (name && strcmp (name, "char") == 0)
876cecd0 14538 TYPE_NOSIGN (type) = 1;
0114d602 14539
f792889a 14540 return set_die_type (die, type, cu);
c906108c
SS
14541}
14542
80180f79
SA
14543/* Parse dwarf attribute if it's a block, reference or constant and put the
14544 resulting value of the attribute into struct bound_prop.
14545 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14546
14547static int
14548attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14549 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14550{
14551 struct dwarf2_property_baton *baton;
14552 struct obstack *obstack = &cu->objfile->objfile_obstack;
14553
14554 if (attr == NULL || prop == NULL)
14555 return 0;
14556
14557 if (attr_form_is_block (attr))
14558 {
14559 baton = obstack_alloc (obstack, sizeof (*baton));
14560 baton->referenced_type = NULL;
14561 baton->locexpr.per_cu = cu->per_cu;
14562 baton->locexpr.size = DW_BLOCK (attr)->size;
14563 baton->locexpr.data = DW_BLOCK (attr)->data;
14564 prop->data.baton = baton;
14565 prop->kind = PROP_LOCEXPR;
14566 gdb_assert (prop->data.baton != NULL);
14567 }
14568 else if (attr_form_is_ref (attr))
14569 {
14570 struct dwarf2_cu *target_cu = cu;
14571 struct die_info *target_die;
14572 struct attribute *target_attr;
14573
14574 target_die = follow_die_ref (die, attr, &target_cu);
14575 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14576 if (target_attr == NULL)
14577 return 0;
14578
14579 if (attr_form_is_section_offset (target_attr))
14580 {
14581 baton = obstack_alloc (obstack, sizeof (*baton));
14582 baton->referenced_type = die_type (target_die, target_cu);
14583 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14584 prop->data.baton = baton;
14585 prop->kind = PROP_LOCLIST;
14586 gdb_assert (prop->data.baton != NULL);
14587 }
14588 else if (attr_form_is_block (target_attr))
14589 {
14590 baton = obstack_alloc (obstack, sizeof (*baton));
14591 baton->referenced_type = die_type (target_die, target_cu);
14592 baton->locexpr.per_cu = cu->per_cu;
14593 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14594 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14595 prop->data.baton = baton;
14596 prop->kind = PROP_LOCEXPR;
14597 gdb_assert (prop->data.baton != NULL);
14598 }
14599 else
14600 {
14601 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14602 "dynamic property");
14603 return 0;
14604 }
14605 }
14606 else if (attr_form_is_constant (attr))
14607 {
14608 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14609 prop->kind = PROP_CONST;
14610 }
14611 else
14612 {
14613 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14614 dwarf2_name (die, cu));
14615 return 0;
14616 }
14617
14618 return 1;
14619}
14620
a02abb62
JB
14621/* Read the given DW_AT_subrange DIE. */
14622
f792889a 14623static struct type *
a02abb62
JB
14624read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14625{
4c9ad8c2 14626 struct type *base_type, *orig_base_type;
a02abb62
JB
14627 struct type *range_type;
14628 struct attribute *attr;
729efb13 14629 struct dynamic_prop low, high;
4fae6e18 14630 int low_default_is_valid;
c451ebe5 14631 int high_bound_is_count = 0;
15d034d0 14632 const char *name;
43bbcdc2 14633 LONGEST negative_mask;
e77813c8 14634
4c9ad8c2
TT
14635 orig_base_type = die_type (die, cu);
14636 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14637 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14638 creating the range type, but we use the result of check_typedef
14639 when examining properties of the type. */
14640 base_type = check_typedef (orig_base_type);
a02abb62 14641
7e314c57
JK
14642 /* The die_type call above may have already set the type for this DIE. */
14643 range_type = get_die_type (die, cu);
14644 if (range_type)
14645 return range_type;
14646
729efb13
SA
14647 low.kind = PROP_CONST;
14648 high.kind = PROP_CONST;
14649 high.data.const_val = 0;
14650
4fae6e18
JK
14651 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14652 omitting DW_AT_lower_bound. */
14653 switch (cu->language)
6e70227d 14654 {
4fae6e18
JK
14655 case language_c:
14656 case language_cplus:
729efb13 14657 low.data.const_val = 0;
4fae6e18
JK
14658 low_default_is_valid = 1;
14659 break;
14660 case language_fortran:
729efb13 14661 low.data.const_val = 1;
4fae6e18
JK
14662 low_default_is_valid = 1;
14663 break;
14664 case language_d:
14665 case language_java:
14666 case language_objc:
729efb13 14667 low.data.const_val = 0;
4fae6e18
JK
14668 low_default_is_valid = (cu->header.version >= 4);
14669 break;
14670 case language_ada:
14671 case language_m2:
14672 case language_pascal:
729efb13 14673 low.data.const_val = 1;
4fae6e18
JK
14674 low_default_is_valid = (cu->header.version >= 4);
14675 break;
14676 default:
729efb13 14677 low.data.const_val = 0;
4fae6e18
JK
14678 low_default_is_valid = 0;
14679 break;
a02abb62
JB
14680 }
14681
e142c38c 14682 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 14683 if (attr)
11c1ba78 14684 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
14685 else if (!low_default_is_valid)
14686 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14687 "- DIE at 0x%x [in module %s]"),
4262abfb 14688 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 14689
e142c38c 14690 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 14691 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
14692 {
14693 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 14694 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 14695 {
c451ebe5
SA
14696 /* If bounds are constant do the final calculation here. */
14697 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14698 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14699 else
14700 high_bound_is_count = 1;
c2ff108b 14701 }
e77813c8
PM
14702 }
14703
14704 /* Dwarf-2 specifications explicitly allows to create subrange types
14705 without specifying a base type.
14706 In that case, the base type must be set to the type of
14707 the lower bound, upper bound or count, in that order, if any of these
14708 three attributes references an object that has a type.
14709 If no base type is found, the Dwarf-2 specifications say that
14710 a signed integer type of size equal to the size of an address should
14711 be used.
14712 For the following C code: `extern char gdb_int [];'
14713 GCC produces an empty range DIE.
14714 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 14715 high bound or count are not yet handled by this code. */
e77813c8
PM
14716 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14717 {
14718 struct objfile *objfile = cu->objfile;
14719 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14720 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14721 struct type *int_type = objfile_type (objfile)->builtin_int;
14722
14723 /* Test "int", "long int", and "long long int" objfile types,
14724 and select the first one having a size above or equal to the
14725 architecture address size. */
14726 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14727 base_type = int_type;
14728 else
14729 {
14730 int_type = objfile_type (objfile)->builtin_long;
14731 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14732 base_type = int_type;
14733 else
14734 {
14735 int_type = objfile_type (objfile)->builtin_long_long;
14736 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14737 base_type = int_type;
14738 }
14739 }
14740 }
a02abb62 14741
dbb9c2b1
JB
14742 /* Normally, the DWARF producers are expected to use a signed
14743 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14744 But this is unfortunately not always the case, as witnessed
14745 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14746 is used instead. To work around that ambiguity, we treat
14747 the bounds as signed, and thus sign-extend their values, when
14748 the base type is signed. */
6e70227d 14749 negative_mask =
43bbcdc2 14750 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
729efb13
SA
14751 if (low.kind == PROP_CONST
14752 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14753 low.data.const_val |= negative_mask;
14754 if (high.kind == PROP_CONST
14755 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14756 high.data.const_val |= negative_mask;
43bbcdc2 14757
729efb13 14758 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 14759
c451ebe5
SA
14760 if (high_bound_is_count)
14761 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14762
c2ff108b
JK
14763 /* Ada expects an empty array on no boundary attributes. */
14764 if (attr == NULL && cu->language != language_ada)
729efb13 14765 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 14766
39cbfefa
DJ
14767 name = dwarf2_name (die, cu);
14768 if (name)
14769 TYPE_NAME (range_type) = name;
6e70227d 14770
e142c38c 14771 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
14772 if (attr)
14773 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14774
7e314c57
JK
14775 set_die_type (die, range_type, cu);
14776
14777 /* set_die_type should be already done. */
b4ba55a1
JB
14778 set_descriptive_type (range_type, die, cu);
14779
7e314c57 14780 return range_type;
a02abb62 14781}
6e70227d 14782
f792889a 14783static struct type *
81a17f79
JB
14784read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14785{
14786 struct type *type;
81a17f79 14787
81a17f79
JB
14788 /* For now, we only support the C meaning of an unspecified type: void. */
14789
0114d602
DJ
14790 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14791 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 14792
f792889a 14793 return set_die_type (die, type, cu);
81a17f79 14794}
a02abb62 14795
639d11d3
DC
14796/* Read a single die and all its descendents. Set the die's sibling
14797 field to NULL; set other fields in the die correctly, and set all
14798 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14799 location of the info_ptr after reading all of those dies. PARENT
14800 is the parent of the die in question. */
14801
14802static struct die_info *
dee91e82 14803read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
14804 const gdb_byte *info_ptr,
14805 const gdb_byte **new_info_ptr,
dee91e82 14806 struct die_info *parent)
639d11d3
DC
14807{
14808 struct die_info *die;
d521ce57 14809 const gdb_byte *cur_ptr;
639d11d3
DC
14810 int has_children;
14811
bf6af496 14812 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
14813 if (die == NULL)
14814 {
14815 *new_info_ptr = cur_ptr;
14816 return NULL;
14817 }
93311388 14818 store_in_ref_table (die, reader->cu);
639d11d3
DC
14819
14820 if (has_children)
bf6af496 14821 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
14822 else
14823 {
14824 die->child = NULL;
14825 *new_info_ptr = cur_ptr;
14826 }
14827
14828 die->sibling = NULL;
14829 die->parent = parent;
14830 return die;
14831}
14832
14833/* Read a die, all of its descendents, and all of its siblings; set
14834 all of the fields of all of the dies correctly. Arguments are as
14835 in read_die_and_children. */
14836
14837static struct die_info *
bf6af496 14838read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
14839 const gdb_byte *info_ptr,
14840 const gdb_byte **new_info_ptr,
bf6af496 14841 struct die_info *parent)
639d11d3
DC
14842{
14843 struct die_info *first_die, *last_sibling;
d521ce57 14844 const gdb_byte *cur_ptr;
639d11d3 14845
c906108c 14846 cur_ptr = info_ptr;
639d11d3
DC
14847 first_die = last_sibling = NULL;
14848
14849 while (1)
c906108c 14850 {
639d11d3 14851 struct die_info *die
dee91e82 14852 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 14853
1d325ec1 14854 if (die == NULL)
c906108c 14855 {
639d11d3
DC
14856 *new_info_ptr = cur_ptr;
14857 return first_die;
c906108c 14858 }
1d325ec1
DJ
14859
14860 if (!first_die)
14861 first_die = die;
c906108c 14862 else
1d325ec1
DJ
14863 last_sibling->sibling = die;
14864
14865 last_sibling = die;
c906108c 14866 }
c906108c
SS
14867}
14868
bf6af496
DE
14869/* Read a die, all of its descendents, and all of its siblings; set
14870 all of the fields of all of the dies correctly. Arguments are as
14871 in read_die_and_children.
14872 This the main entry point for reading a DIE and all its children. */
14873
14874static struct die_info *
14875read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
14876 const gdb_byte *info_ptr,
14877 const gdb_byte **new_info_ptr,
bf6af496
DE
14878 struct die_info *parent)
14879{
14880 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14881 new_info_ptr, parent);
14882
14883 if (dwarf2_die_debug)
14884 {
14885 fprintf_unfiltered (gdb_stdlog,
14886 "Read die from %s@0x%x of %s:\n",
a32a8923 14887 get_section_name (reader->die_section),
bf6af496
DE
14888 (unsigned) (info_ptr - reader->die_section->buffer),
14889 bfd_get_filename (reader->abfd));
14890 dump_die (die, dwarf2_die_debug);
14891 }
14892
14893 return die;
14894}
14895
3019eac3
DE
14896/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14897 attributes.
14898 The caller is responsible for filling in the extra attributes
14899 and updating (*DIEP)->num_attrs.
14900 Set DIEP to point to a newly allocated die with its information,
14901 except for its child, sibling, and parent fields.
14902 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 14903
d521ce57 14904static const gdb_byte *
3019eac3 14905read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 14906 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 14907 int *has_children, int num_extra_attrs)
93311388 14908{
b64f50a1
JK
14909 unsigned int abbrev_number, bytes_read, i;
14910 sect_offset offset;
93311388
DE
14911 struct abbrev_info *abbrev;
14912 struct die_info *die;
14913 struct dwarf2_cu *cu = reader->cu;
14914 bfd *abfd = reader->abfd;
14915
b64f50a1 14916 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
14917 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14918 info_ptr += bytes_read;
14919 if (!abbrev_number)
14920 {
14921 *diep = NULL;
14922 *has_children = 0;
14923 return info_ptr;
14924 }
14925
433df2d4 14926 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 14927 if (!abbrev)
348e048f
DE
14928 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14929 abbrev_number,
14930 bfd_get_filename (abfd));
14931
3019eac3 14932 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
14933 die->offset = offset;
14934 die->tag = abbrev->tag;
14935 die->abbrev = abbrev_number;
14936
3019eac3
DE
14937 /* Make the result usable.
14938 The caller needs to update num_attrs after adding the extra
14939 attributes. */
93311388
DE
14940 die->num_attrs = abbrev->num_attrs;
14941
14942 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
14943 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14944 info_ptr);
93311388
DE
14945
14946 *diep = die;
14947 *has_children = abbrev->has_children;
14948 return info_ptr;
14949}
14950
3019eac3
DE
14951/* Read a die and all its attributes.
14952 Set DIEP to point to a newly allocated die with its information,
14953 except for its child, sibling, and parent fields.
14954 Set HAS_CHILDREN to tell whether the die has children or not. */
14955
d521ce57 14956static const gdb_byte *
3019eac3 14957read_full_die (const struct die_reader_specs *reader,
d521ce57 14958 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
14959 int *has_children)
14960{
d521ce57 14961 const gdb_byte *result;
bf6af496
DE
14962
14963 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14964
14965 if (dwarf2_die_debug)
14966 {
14967 fprintf_unfiltered (gdb_stdlog,
14968 "Read die from %s@0x%x of %s:\n",
a32a8923 14969 get_section_name (reader->die_section),
bf6af496
DE
14970 (unsigned) (info_ptr - reader->die_section->buffer),
14971 bfd_get_filename (reader->abfd));
14972 dump_die (*diep, dwarf2_die_debug);
14973 }
14974
14975 return result;
3019eac3 14976}
433df2d4
DE
14977\f
14978/* Abbreviation tables.
3019eac3 14979
433df2d4 14980 In DWARF version 2, the description of the debugging information is
c906108c
SS
14981 stored in a separate .debug_abbrev section. Before we read any
14982 dies from a section we read in all abbreviations and install them
433df2d4
DE
14983 in a hash table. */
14984
14985/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14986
14987static struct abbrev_info *
14988abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14989{
14990 struct abbrev_info *abbrev;
14991
14992 abbrev = (struct abbrev_info *)
14993 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14994 memset (abbrev, 0, sizeof (struct abbrev_info));
14995 return abbrev;
14996}
14997
14998/* Add an abbreviation to the table. */
c906108c
SS
14999
15000static void
433df2d4
DE
15001abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15002 unsigned int abbrev_number,
15003 struct abbrev_info *abbrev)
15004{
15005 unsigned int hash_number;
15006
15007 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15008 abbrev->next = abbrev_table->abbrevs[hash_number];
15009 abbrev_table->abbrevs[hash_number] = abbrev;
15010}
dee91e82 15011
433df2d4
DE
15012/* Look up an abbrev in the table.
15013 Returns NULL if the abbrev is not found. */
15014
15015static struct abbrev_info *
15016abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15017 unsigned int abbrev_number)
c906108c 15018{
433df2d4
DE
15019 unsigned int hash_number;
15020 struct abbrev_info *abbrev;
15021
15022 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15023 abbrev = abbrev_table->abbrevs[hash_number];
15024
15025 while (abbrev)
15026 {
15027 if (abbrev->number == abbrev_number)
15028 return abbrev;
15029 abbrev = abbrev->next;
15030 }
15031 return NULL;
15032}
15033
15034/* Read in an abbrev table. */
15035
15036static struct abbrev_table *
15037abbrev_table_read_table (struct dwarf2_section_info *section,
15038 sect_offset offset)
15039{
15040 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15041 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15042 struct abbrev_table *abbrev_table;
d521ce57 15043 const gdb_byte *abbrev_ptr;
c906108c
SS
15044 struct abbrev_info *cur_abbrev;
15045 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15046 unsigned int abbrev_form;
f3dd6933
DJ
15047 struct attr_abbrev *cur_attrs;
15048 unsigned int allocated_attrs;
c906108c 15049
70ba0933 15050 abbrev_table = XNEW (struct abbrev_table);
f4dc4d17 15051 abbrev_table->offset = offset;
433df2d4
DE
15052 obstack_init (&abbrev_table->abbrev_obstack);
15053 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15054 (ABBREV_HASH_SIZE
15055 * sizeof (struct abbrev_info *)));
15056 memset (abbrev_table->abbrevs, 0,
15057 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15058
433df2d4
DE
15059 dwarf2_read_section (objfile, section);
15060 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
15061 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15062 abbrev_ptr += bytes_read;
15063
f3dd6933
DJ
15064 allocated_attrs = ATTR_ALLOC_CHUNK;
15065 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 15066
0963b4bd 15067 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15068 while (abbrev_number)
15069 {
433df2d4 15070 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15071
15072 /* read in abbrev header */
15073 cur_abbrev->number = abbrev_number;
15074 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15075 abbrev_ptr += bytes_read;
15076 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15077 abbrev_ptr += 1;
15078
15079 /* now read in declarations */
15080 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15081 abbrev_ptr += bytes_read;
15082 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15083 abbrev_ptr += bytes_read;
15084 while (abbrev_name)
15085 {
f3dd6933 15086 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15087 {
f3dd6933
DJ
15088 allocated_attrs += ATTR_ALLOC_CHUNK;
15089 cur_attrs
15090 = xrealloc (cur_attrs, (allocated_attrs
15091 * sizeof (struct attr_abbrev)));
c906108c 15092 }
ae038cb0 15093
f3dd6933
DJ
15094 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15095 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
15096 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15097 abbrev_ptr += bytes_read;
15098 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15099 abbrev_ptr += bytes_read;
15100 }
15101
433df2d4 15102 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
f3dd6933
DJ
15103 (cur_abbrev->num_attrs
15104 * sizeof (struct attr_abbrev)));
15105 memcpy (cur_abbrev->attrs, cur_attrs,
15106 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15107
433df2d4 15108 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15109
15110 /* Get next abbreviation.
15111 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15112 always properly terminated with an abbrev number of 0.
15113 Exit loop if we encounter an abbreviation which we have
15114 already read (which means we are about to read the abbreviations
15115 for the next compile unit) or if the end of the abbreviation
15116 table is reached. */
433df2d4 15117 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15118 break;
15119 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15120 abbrev_ptr += bytes_read;
433df2d4 15121 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15122 break;
15123 }
f3dd6933
DJ
15124
15125 xfree (cur_attrs);
433df2d4 15126 return abbrev_table;
c906108c
SS
15127}
15128
433df2d4 15129/* Free the resources held by ABBREV_TABLE. */
c906108c 15130
c906108c 15131static void
433df2d4 15132abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15133{
433df2d4
DE
15134 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15135 xfree (abbrev_table);
c906108c
SS
15136}
15137
f4dc4d17
DE
15138/* Same as abbrev_table_free but as a cleanup.
15139 We pass in a pointer to the pointer to the table so that we can
15140 set the pointer to NULL when we're done. It also simplifies
73051182 15141 build_type_psymtabs_1. */
f4dc4d17
DE
15142
15143static void
15144abbrev_table_free_cleanup (void *table_ptr)
15145{
15146 struct abbrev_table **abbrev_table_ptr = table_ptr;
15147
15148 if (*abbrev_table_ptr != NULL)
15149 abbrev_table_free (*abbrev_table_ptr);
15150 *abbrev_table_ptr = NULL;
15151}
15152
433df2d4
DE
15153/* Read the abbrev table for CU from ABBREV_SECTION. */
15154
15155static void
15156dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15157 struct dwarf2_section_info *abbrev_section)
c906108c 15158{
433df2d4
DE
15159 cu->abbrev_table =
15160 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15161}
c906108c 15162
433df2d4 15163/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15164
433df2d4
DE
15165static void
15166dwarf2_free_abbrev_table (void *ptr_to_cu)
15167{
15168 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 15169
a2ce51a0
DE
15170 if (cu->abbrev_table != NULL)
15171 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15172 /* Set this to NULL so that we SEGV if we try to read it later,
15173 and also because free_comp_unit verifies this is NULL. */
15174 cu->abbrev_table = NULL;
15175}
15176\f
72bf9492
DJ
15177/* Returns nonzero if TAG represents a type that we might generate a partial
15178 symbol for. */
15179
15180static int
15181is_type_tag_for_partial (int tag)
15182{
15183 switch (tag)
15184 {
15185#if 0
15186 /* Some types that would be reasonable to generate partial symbols for,
15187 that we don't at present. */
15188 case DW_TAG_array_type:
15189 case DW_TAG_file_type:
15190 case DW_TAG_ptr_to_member_type:
15191 case DW_TAG_set_type:
15192 case DW_TAG_string_type:
15193 case DW_TAG_subroutine_type:
15194#endif
15195 case DW_TAG_base_type:
15196 case DW_TAG_class_type:
680b30c7 15197 case DW_TAG_interface_type:
72bf9492
DJ
15198 case DW_TAG_enumeration_type:
15199 case DW_TAG_structure_type:
15200 case DW_TAG_subrange_type:
15201 case DW_TAG_typedef:
15202 case DW_TAG_union_type:
15203 return 1;
15204 default:
15205 return 0;
15206 }
15207}
15208
15209/* Load all DIEs that are interesting for partial symbols into memory. */
15210
15211static struct partial_die_info *
dee91e82 15212load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15213 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15214{
dee91e82 15215 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15216 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15217 struct partial_die_info *part_die;
15218 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15219 struct abbrev_info *abbrev;
15220 unsigned int bytes_read;
5afb4e99 15221 unsigned int load_all = 0;
72bf9492
DJ
15222 int nesting_level = 1;
15223
15224 parent_die = NULL;
15225 last_die = NULL;
15226
7adf1e79
DE
15227 gdb_assert (cu->per_cu != NULL);
15228 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15229 load_all = 1;
15230
72bf9492
DJ
15231 cu->partial_dies
15232 = htab_create_alloc_ex (cu->header.length / 12,
15233 partial_die_hash,
15234 partial_die_eq,
15235 NULL,
15236 &cu->comp_unit_obstack,
15237 hashtab_obstack_allocate,
15238 dummy_obstack_deallocate);
15239
15240 part_die = obstack_alloc (&cu->comp_unit_obstack,
15241 sizeof (struct partial_die_info));
15242
15243 while (1)
15244 {
15245 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15246
15247 /* A NULL abbrev means the end of a series of children. */
15248 if (abbrev == NULL)
15249 {
15250 if (--nesting_level == 0)
15251 {
15252 /* PART_DIE was probably the last thing allocated on the
15253 comp_unit_obstack, so we could call obstack_free
15254 here. We don't do that because the waste is small,
15255 and will be cleaned up when we're done with this
15256 compilation unit. This way, we're also more robust
15257 against other users of the comp_unit_obstack. */
15258 return first_die;
15259 }
15260 info_ptr += bytes_read;
15261 last_die = parent_die;
15262 parent_die = parent_die->die_parent;
15263 continue;
15264 }
15265
98bfdba5
PA
15266 /* Check for template arguments. We never save these; if
15267 they're seen, we just mark the parent, and go on our way. */
15268 if (parent_die != NULL
15269 && cu->language == language_cplus
15270 && (abbrev->tag == DW_TAG_template_type_param
15271 || abbrev->tag == DW_TAG_template_value_param))
15272 {
15273 parent_die->has_template_arguments = 1;
15274
15275 if (!load_all)
15276 {
15277 /* We don't need a partial DIE for the template argument. */
dee91e82 15278 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15279 continue;
15280 }
15281 }
15282
0d99eb77 15283 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
15284 Skip their other children. */
15285 if (!load_all
15286 && cu->language == language_cplus
15287 && parent_die != NULL
15288 && parent_die->tag == DW_TAG_subprogram)
15289 {
dee91e82 15290 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15291 continue;
15292 }
15293
5afb4e99
DJ
15294 /* Check whether this DIE is interesting enough to save. Normally
15295 we would not be interested in members here, but there may be
15296 later variables referencing them via DW_AT_specification (for
15297 static members). */
15298 if (!load_all
15299 && !is_type_tag_for_partial (abbrev->tag)
72929c62 15300 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
15301 && abbrev->tag != DW_TAG_enumerator
15302 && abbrev->tag != DW_TAG_subprogram
bc30ff58 15303 && abbrev->tag != DW_TAG_lexical_block
72bf9492 15304 && abbrev->tag != DW_TAG_variable
5afb4e99 15305 && abbrev->tag != DW_TAG_namespace
f55ee35c 15306 && abbrev->tag != DW_TAG_module
95554aad 15307 && abbrev->tag != DW_TAG_member
74921315
KS
15308 && abbrev->tag != DW_TAG_imported_unit
15309 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
15310 {
15311 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15312 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
15313 continue;
15314 }
15315
dee91e82
DE
15316 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15317 info_ptr);
72bf9492
DJ
15318
15319 /* This two-pass algorithm for processing partial symbols has a
15320 high cost in cache pressure. Thus, handle some simple cases
15321 here which cover the majority of C partial symbols. DIEs
15322 which neither have specification tags in them, nor could have
15323 specification tags elsewhere pointing at them, can simply be
15324 processed and discarded.
15325
15326 This segment is also optional; scan_partial_symbols and
15327 add_partial_symbol will handle these DIEs if we chain
15328 them in normally. When compilers which do not emit large
15329 quantities of duplicate debug information are more common,
15330 this code can probably be removed. */
15331
15332 /* Any complete simple types at the top level (pretty much all
15333 of them, for a language without namespaces), can be processed
15334 directly. */
15335 if (parent_die == NULL
15336 && part_die->has_specification == 0
15337 && part_die->is_declaration == 0
d8228535 15338 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15339 || part_die->tag == DW_TAG_base_type
15340 || part_die->tag == DW_TAG_subrange_type))
15341 {
15342 if (building_psymtab && part_die->name != NULL)
04a679b8 15343 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15344 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363
DE
15345 &objfile->static_psymbols,
15346 0, (CORE_ADDR) 0, cu->language, objfile);
dee91e82 15347 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15348 continue;
15349 }
15350
d8228535
JK
15351 /* The exception for DW_TAG_typedef with has_children above is
15352 a workaround of GCC PR debug/47510. In the case of this complaint
15353 type_name_no_tag_or_error will error on such types later.
15354
15355 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15356 it could not find the child DIEs referenced later, this is checked
15357 above. In correct DWARF DW_TAG_typedef should have no children. */
15358
15359 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15360 complaint (&symfile_complaints,
15361 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15362 "- DIE at 0x%x [in module %s]"),
4262abfb 15363 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15364
72bf9492
DJ
15365 /* If we're at the second level, and we're an enumerator, and
15366 our parent has no specification (meaning possibly lives in a
15367 namespace elsewhere), then we can add the partial symbol now
15368 instead of queueing it. */
15369 if (part_die->tag == DW_TAG_enumerator
15370 && parent_die != NULL
15371 && parent_die->die_parent == NULL
15372 && parent_die->tag == DW_TAG_enumeration_type
15373 && parent_die->has_specification == 0)
15374 {
15375 if (part_die->name == NULL)
3e43a32a
MS
15376 complaint (&symfile_complaints,
15377 _("malformed enumerator DIE ignored"));
72bf9492 15378 else if (building_psymtab)
04a679b8 15379 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15380 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
15381 (cu->language == language_cplus
15382 || cu->language == language_java)
bb5ed363
DE
15383 ? &objfile->global_psymbols
15384 : &objfile->static_psymbols,
15385 0, (CORE_ADDR) 0, cu->language, objfile);
72bf9492 15386
dee91e82 15387 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15388 continue;
15389 }
15390
15391 /* We'll save this DIE so link it in. */
15392 part_die->die_parent = parent_die;
15393 part_die->die_sibling = NULL;
15394 part_die->die_child = NULL;
15395
15396 if (last_die && last_die == parent_die)
15397 last_die->die_child = part_die;
15398 else if (last_die)
15399 last_die->die_sibling = part_die;
15400
15401 last_die = part_die;
15402
15403 if (first_die == NULL)
15404 first_die = part_die;
15405
15406 /* Maybe add the DIE to the hash table. Not all DIEs that we
15407 find interesting need to be in the hash table, because we
15408 also have the parent/sibling/child chains; only those that we
15409 might refer to by offset later during partial symbol reading.
15410
15411 For now this means things that might have be the target of a
15412 DW_AT_specification, DW_AT_abstract_origin, or
15413 DW_AT_extension. DW_AT_extension will refer only to
15414 namespaces; DW_AT_abstract_origin refers to functions (and
15415 many things under the function DIE, but we do not recurse
15416 into function DIEs during partial symbol reading) and
15417 possibly variables as well; DW_AT_specification refers to
15418 declarations. Declarations ought to have the DW_AT_declaration
15419 flag. It happens that GCC forgets to put it in sometimes, but
15420 only for functions, not for types.
15421
15422 Adding more things than necessary to the hash table is harmless
15423 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15424 wasted time in find_partial_die, when we reread the compilation
15425 unit with load_all_dies set. */
72bf9492 15426
5afb4e99 15427 if (load_all
72929c62 15428 || abbrev->tag == DW_TAG_constant
5afb4e99 15429 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15430 || abbrev->tag == DW_TAG_variable
15431 || abbrev->tag == DW_TAG_namespace
15432 || part_die->is_declaration)
15433 {
15434 void **slot;
15435
15436 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 15437 part_die->offset.sect_off, INSERT);
72bf9492
DJ
15438 *slot = part_die;
15439 }
15440
15441 part_die = obstack_alloc (&cu->comp_unit_obstack,
15442 sizeof (struct partial_die_info));
15443
15444 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 15445 we have no reason to follow the children of structures; for other
98bfdba5
PA
15446 languages we have to, so that we can get at method physnames
15447 to infer fully qualified class names, for DW_AT_specification,
15448 and for C++ template arguments. For C++, we also look one level
15449 inside functions to find template arguments (if the name of the
15450 function does not already contain the template arguments).
bc30ff58
JB
15451
15452 For Ada, we need to scan the children of subprograms and lexical
15453 blocks as well because Ada allows the definition of nested
15454 entities that could be interesting for the debugger, such as
15455 nested subprograms for instance. */
72bf9492 15456 if (last_die->has_children
5afb4e99
DJ
15457 && (load_all
15458 || last_die->tag == DW_TAG_namespace
f55ee35c 15459 || last_die->tag == DW_TAG_module
72bf9492 15460 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15461 || (cu->language == language_cplus
15462 && last_die->tag == DW_TAG_subprogram
15463 && (last_die->name == NULL
15464 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15465 || (cu->language != language_c
15466 && (last_die->tag == DW_TAG_class_type
680b30c7 15467 || last_die->tag == DW_TAG_interface_type
72bf9492 15468 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
15469 || last_die->tag == DW_TAG_union_type))
15470 || (cu->language == language_ada
15471 && (last_die->tag == DW_TAG_subprogram
15472 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
15473 {
15474 nesting_level++;
15475 parent_die = last_die;
15476 continue;
15477 }
15478
15479 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15480 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
15481
15482 /* Back to the top, do it again. */
15483 }
15484}
15485
c906108c
SS
15486/* Read a minimal amount of information into the minimal die structure. */
15487
d521ce57 15488static const gdb_byte *
dee91e82
DE
15489read_partial_die (const struct die_reader_specs *reader,
15490 struct partial_die_info *part_die,
15491 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 15492 const gdb_byte *info_ptr)
c906108c 15493{
dee91e82 15494 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15495 struct objfile *objfile = cu->objfile;
d521ce57 15496 const gdb_byte *buffer = reader->buffer;
fa238c03 15497 unsigned int i;
c906108c 15498 struct attribute attr;
c5aa993b 15499 int has_low_pc_attr = 0;
c906108c 15500 int has_high_pc_attr = 0;
91da1414 15501 int high_pc_relative = 0;
c906108c 15502
72bf9492 15503 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 15504
b64f50a1 15505 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
15506
15507 info_ptr += abbrev_len;
15508
15509 if (abbrev == NULL)
15510 return info_ptr;
15511
c906108c
SS
15512 part_die->tag = abbrev->tag;
15513 part_die->has_children = abbrev->has_children;
c906108c
SS
15514
15515 for (i = 0; i < abbrev->num_attrs; ++i)
15516 {
dee91e82 15517 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
15518
15519 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 15520 partial symbol table. */
c906108c
SS
15521 switch (attr.name)
15522 {
15523 case DW_AT_name:
71c25dea
TT
15524 switch (part_die->tag)
15525 {
15526 case DW_TAG_compile_unit:
95554aad 15527 case DW_TAG_partial_unit:
348e048f 15528 case DW_TAG_type_unit:
71c25dea
TT
15529 /* Compilation units have a DW_AT_name that is a filename, not
15530 a source language identifier. */
15531 case DW_TAG_enumeration_type:
15532 case DW_TAG_enumerator:
15533 /* These tags always have simple identifiers already; no need
15534 to canonicalize them. */
15535 part_die->name = DW_STRING (&attr);
15536 break;
15537 default:
15538 part_die->name
15539 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 15540 &objfile->per_bfd->storage_obstack);
71c25dea
TT
15541 break;
15542 }
c906108c 15543 break;
31ef98ae 15544 case DW_AT_linkage_name:
c906108c 15545 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
15546 /* Note that both forms of linkage name might appear. We
15547 assume they will be the same, and we only store the last
15548 one we see. */
94af9270
KS
15549 if (cu->language == language_ada)
15550 part_die->name = DW_STRING (&attr);
abc72ce4 15551 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
15552 break;
15553 case DW_AT_low_pc:
15554 has_low_pc_attr = 1;
31aa7e4e 15555 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
15556 break;
15557 case DW_AT_high_pc:
15558 has_high_pc_attr = 1;
31aa7e4e
JB
15559 part_die->highpc = attr_value_as_address (&attr);
15560 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15561 high_pc_relative = 1;
c906108c
SS
15562 break;
15563 case DW_AT_location:
0963b4bd 15564 /* Support the .debug_loc offsets. */
8e19ed76
PS
15565 if (attr_form_is_block (&attr))
15566 {
95554aad 15567 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 15568 }
3690dd37 15569 else if (attr_form_is_section_offset (&attr))
8e19ed76 15570 {
4d3c2250 15571 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15572 }
15573 else
15574 {
4d3c2250
KB
15575 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15576 "partial symbol information");
8e19ed76 15577 }
c906108c 15578 break;
c906108c
SS
15579 case DW_AT_external:
15580 part_die->is_external = DW_UNSND (&attr);
15581 break;
15582 case DW_AT_declaration:
15583 part_die->is_declaration = DW_UNSND (&attr);
15584 break;
15585 case DW_AT_type:
15586 part_die->has_type = 1;
15587 break;
15588 case DW_AT_abstract_origin:
15589 case DW_AT_specification:
72bf9492
DJ
15590 case DW_AT_extension:
15591 part_die->has_specification = 1;
c764a876 15592 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
15593 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15594 || cu->per_cu->is_dwz);
c906108c
SS
15595 break;
15596 case DW_AT_sibling:
15597 /* Ignore absolute siblings, they might point outside of
15598 the current compile unit. */
15599 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
15600 complaint (&symfile_complaints,
15601 _("ignoring absolute DW_AT_sibling"));
c906108c 15602 else
b9502d3f
WN
15603 {
15604 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15605 const gdb_byte *sibling_ptr = buffer + off;
15606
15607 if (sibling_ptr < info_ptr)
15608 complaint (&symfile_complaints,
15609 _("DW_AT_sibling points backwards"));
22869d73
KS
15610 else if (sibling_ptr > reader->buffer_end)
15611 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
15612 else
15613 part_die->sibling = sibling_ptr;
15614 }
c906108c 15615 break;
fa4028e9
JB
15616 case DW_AT_byte_size:
15617 part_die->has_byte_size = 1;
15618 break;
68511cec
CES
15619 case DW_AT_calling_convention:
15620 /* DWARF doesn't provide a way to identify a program's source-level
15621 entry point. DW_AT_calling_convention attributes are only meant
15622 to describe functions' calling conventions.
15623
15624 However, because it's a necessary piece of information in
15625 Fortran, and because DW_CC_program is the only piece of debugging
15626 information whose definition refers to a 'main program' at all,
15627 several compilers have begun marking Fortran main programs with
15628 DW_CC_program --- even when those functions use the standard
15629 calling conventions.
15630
15631 So until DWARF specifies a way to provide this information and
15632 compilers pick up the new representation, we'll support this
15633 practice. */
15634 if (DW_UNSND (&attr) == DW_CC_program
15635 && cu->language == language_fortran)
3d548a53 15636 set_objfile_main_name (objfile, part_die->name, language_fortran);
68511cec 15637 break;
481860b3
GB
15638 case DW_AT_inline:
15639 if (DW_UNSND (&attr) == DW_INL_inlined
15640 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15641 part_die->may_be_inlined = 1;
15642 break;
95554aad
TT
15643
15644 case DW_AT_import:
15645 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
15646 {
15647 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15648 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15649 || cu->per_cu->is_dwz);
15650 }
95554aad
TT
15651 break;
15652
c906108c
SS
15653 default:
15654 break;
15655 }
15656 }
15657
91da1414
MW
15658 if (high_pc_relative)
15659 part_die->highpc += part_die->lowpc;
15660
9373cf26
JK
15661 if (has_low_pc_attr && has_high_pc_attr)
15662 {
15663 /* When using the GNU linker, .gnu.linkonce. sections are used to
15664 eliminate duplicate copies of functions and vtables and such.
15665 The linker will arbitrarily choose one and discard the others.
15666 The AT_*_pc values for such functions refer to local labels in
15667 these sections. If the section from that file was discarded, the
15668 labels are not in the output, so the relocs get a value of 0.
15669 If this is a discarded function, mark the pc bounds as invalid,
15670 so that GDB will ignore it. */
15671 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15672 {
bb5ed363 15673 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15674
15675 complaint (&symfile_complaints,
15676 _("DW_AT_low_pc %s is zero "
15677 "for DIE at 0x%x [in module %s]"),
15678 paddress (gdbarch, part_die->lowpc),
4262abfb 15679 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15680 }
15681 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15682 else if (part_die->lowpc >= part_die->highpc)
15683 {
bb5ed363 15684 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15685
15686 complaint (&symfile_complaints,
15687 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15688 "for DIE at 0x%x [in module %s]"),
15689 paddress (gdbarch, part_die->lowpc),
15690 paddress (gdbarch, part_die->highpc),
4262abfb 15691 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15692 }
15693 else
15694 part_die->has_pc_info = 1;
15695 }
85cbf3d3 15696
c906108c
SS
15697 return info_ptr;
15698}
15699
72bf9492
DJ
15700/* Find a cached partial DIE at OFFSET in CU. */
15701
15702static struct partial_die_info *
b64f50a1 15703find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
15704{
15705 struct partial_die_info *lookup_die = NULL;
15706 struct partial_die_info part_die;
15707
15708 part_die.offset = offset;
b64f50a1
JK
15709 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15710 offset.sect_off);
72bf9492 15711
72bf9492
DJ
15712 return lookup_die;
15713}
15714
348e048f
DE
15715/* Find a partial DIE at OFFSET, which may or may not be in CU,
15716 except in the case of .debug_types DIEs which do not reference
15717 outside their CU (they do however referencing other types via
55f1336d 15718 DW_FORM_ref_sig8). */
72bf9492
DJ
15719
15720static struct partial_die_info *
36586728 15721find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 15722{
bb5ed363 15723 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
15724 struct dwarf2_per_cu_data *per_cu = NULL;
15725 struct partial_die_info *pd = NULL;
72bf9492 15726
36586728
TT
15727 if (offset_in_dwz == cu->per_cu->is_dwz
15728 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
15729 {
15730 pd = find_partial_die_in_comp_unit (offset, cu);
15731 if (pd != NULL)
15732 return pd;
0d99eb77
DE
15733 /* We missed recording what we needed.
15734 Load all dies and try again. */
15735 per_cu = cu->per_cu;
5afb4e99 15736 }
0d99eb77
DE
15737 else
15738 {
15739 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 15740 if (cu->per_cu->is_debug_types)
0d99eb77
DE
15741 {
15742 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15743 " external reference to offset 0x%lx [in module %s].\n"),
15744 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15745 bfd_get_filename (objfile->obfd));
15746 }
36586728
TT
15747 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15748 objfile);
72bf9492 15749
0d99eb77
DE
15750 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15751 load_partial_comp_unit (per_cu);
ae038cb0 15752
0d99eb77
DE
15753 per_cu->cu->last_used = 0;
15754 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15755 }
5afb4e99 15756
dee91e82
DE
15757 /* If we didn't find it, and not all dies have been loaded,
15758 load them all and try again. */
15759
5afb4e99
DJ
15760 if (pd == NULL && per_cu->load_all_dies == 0)
15761 {
5afb4e99 15762 per_cu->load_all_dies = 1;
fd820528
DE
15763
15764 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15765 THIS_CU->cu may already be in use. So we can't just free it and
15766 replace its DIEs with the ones we read in. Instead, we leave those
15767 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15768 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15769 set. */
dee91e82 15770 load_partial_comp_unit (per_cu);
5afb4e99
DJ
15771
15772 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15773 }
15774
15775 if (pd == NULL)
15776 internal_error (__FILE__, __LINE__,
3e43a32a
MS
15777 _("could not find partial DIE 0x%x "
15778 "in cache [from module %s]\n"),
b64f50a1 15779 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 15780 return pd;
72bf9492
DJ
15781}
15782
abc72ce4
DE
15783/* See if we can figure out if the class lives in a namespace. We do
15784 this by looking for a member function; its demangled name will
15785 contain namespace info, if there is any. */
15786
15787static void
15788guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15789 struct dwarf2_cu *cu)
15790{
15791 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15792 what template types look like, because the demangler
15793 frequently doesn't give the same name as the debug info. We
15794 could fix this by only using the demangled name to get the
15795 prefix (but see comment in read_structure_type). */
15796
15797 struct partial_die_info *real_pdi;
15798 struct partial_die_info *child_pdi;
15799
15800 /* If this DIE (this DIE's specification, if any) has a parent, then
15801 we should not do this. We'll prepend the parent's fully qualified
15802 name when we create the partial symbol. */
15803
15804 real_pdi = struct_pdi;
15805 while (real_pdi->has_specification)
36586728
TT
15806 real_pdi = find_partial_die (real_pdi->spec_offset,
15807 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
15808
15809 if (real_pdi->die_parent != NULL)
15810 return;
15811
15812 for (child_pdi = struct_pdi->die_child;
15813 child_pdi != NULL;
15814 child_pdi = child_pdi->die_sibling)
15815 {
15816 if (child_pdi->tag == DW_TAG_subprogram
15817 && child_pdi->linkage_name != NULL)
15818 {
15819 char *actual_class_name
15820 = language_class_name_from_physname (cu->language_defn,
15821 child_pdi->linkage_name);
15822 if (actual_class_name != NULL)
15823 {
15824 struct_pdi->name
34a68019 15825 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb
TT
15826 actual_class_name,
15827 strlen (actual_class_name));
abc72ce4
DE
15828 xfree (actual_class_name);
15829 }
15830 break;
15831 }
15832 }
15833}
15834
72bf9492
DJ
15835/* Adjust PART_DIE before generating a symbol for it. This function
15836 may set the is_external flag or change the DIE's name. */
15837
15838static void
15839fixup_partial_die (struct partial_die_info *part_die,
15840 struct dwarf2_cu *cu)
15841{
abc72ce4
DE
15842 /* Once we've fixed up a die, there's no point in doing so again.
15843 This also avoids a memory leak if we were to call
15844 guess_partial_die_structure_name multiple times. */
15845 if (part_die->fixup_called)
15846 return;
15847
72bf9492
DJ
15848 /* If we found a reference attribute and the DIE has no name, try
15849 to find a name in the referred to DIE. */
15850
15851 if (part_die->name == NULL && part_die->has_specification)
15852 {
15853 struct partial_die_info *spec_die;
72bf9492 15854
36586728
TT
15855 spec_die = find_partial_die (part_die->spec_offset,
15856 part_die->spec_is_dwz, cu);
72bf9492 15857
10b3939b 15858 fixup_partial_die (spec_die, cu);
72bf9492
DJ
15859
15860 if (spec_die->name)
15861 {
15862 part_die->name = spec_die->name;
15863
15864 /* Copy DW_AT_external attribute if it is set. */
15865 if (spec_die->is_external)
15866 part_die->is_external = spec_die->is_external;
15867 }
15868 }
15869
15870 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
15871
15872 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 15873 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 15874
abc72ce4
DE
15875 /* If there is no parent die to provide a namespace, and there are
15876 children, see if we can determine the namespace from their linkage
122d1940 15877 name. */
abc72ce4 15878 if (cu->language == language_cplus
8b70b953 15879 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
15880 && part_die->die_parent == NULL
15881 && part_die->has_children
15882 && (part_die->tag == DW_TAG_class_type
15883 || part_die->tag == DW_TAG_structure_type
15884 || part_die->tag == DW_TAG_union_type))
15885 guess_partial_die_structure_name (part_die, cu);
15886
53832f31
TT
15887 /* GCC might emit a nameless struct or union that has a linkage
15888 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15889 if (part_die->name == NULL
96408a79
SA
15890 && (part_die->tag == DW_TAG_class_type
15891 || part_die->tag == DW_TAG_interface_type
15892 || part_die->tag == DW_TAG_structure_type
15893 || part_die->tag == DW_TAG_union_type)
53832f31
TT
15894 && part_die->linkage_name != NULL)
15895 {
15896 char *demangled;
15897
8de20a37 15898 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
15899 if (demangled)
15900 {
96408a79
SA
15901 const char *base;
15902
15903 /* Strip any leading namespaces/classes, keep only the base name.
15904 DW_AT_name for named DIEs does not contain the prefixes. */
15905 base = strrchr (demangled, ':');
15906 if (base && base > demangled && base[-1] == ':')
15907 base++;
15908 else
15909 base = demangled;
15910
34a68019
TT
15911 part_die->name
15912 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15913 base, strlen (base));
53832f31
TT
15914 xfree (demangled);
15915 }
15916 }
15917
abc72ce4 15918 part_die->fixup_called = 1;
72bf9492
DJ
15919}
15920
a8329558 15921/* Read an attribute value described by an attribute form. */
c906108c 15922
d521ce57 15923static const gdb_byte *
dee91e82
DE
15924read_attribute_value (const struct die_reader_specs *reader,
15925 struct attribute *attr, unsigned form,
d521ce57 15926 const gdb_byte *info_ptr)
c906108c 15927{
dee91e82
DE
15928 struct dwarf2_cu *cu = reader->cu;
15929 bfd *abfd = reader->abfd;
e7c27a73 15930 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
15931 unsigned int bytes_read;
15932 struct dwarf_block *blk;
15933
a8329558
KW
15934 attr->form = form;
15935 switch (form)
c906108c 15936 {
c906108c 15937 case DW_FORM_ref_addr:
ae411497 15938 if (cu->header.version == 2)
4568ecf9 15939 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 15940 else
4568ecf9
DE
15941 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15942 &cu->header, &bytes_read);
ae411497
TT
15943 info_ptr += bytes_read;
15944 break;
36586728
TT
15945 case DW_FORM_GNU_ref_alt:
15946 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15947 info_ptr += bytes_read;
15948 break;
ae411497 15949 case DW_FORM_addr:
e7c27a73 15950 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 15951 info_ptr += bytes_read;
c906108c
SS
15952 break;
15953 case DW_FORM_block2:
7b5a2f43 15954 blk = dwarf_alloc_block (cu);
c906108c
SS
15955 blk->size = read_2_bytes (abfd, info_ptr);
15956 info_ptr += 2;
15957 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15958 info_ptr += blk->size;
15959 DW_BLOCK (attr) = blk;
15960 break;
15961 case DW_FORM_block4:
7b5a2f43 15962 blk = dwarf_alloc_block (cu);
c906108c
SS
15963 blk->size = read_4_bytes (abfd, info_ptr);
15964 info_ptr += 4;
15965 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15966 info_ptr += blk->size;
15967 DW_BLOCK (attr) = blk;
15968 break;
15969 case DW_FORM_data2:
15970 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15971 info_ptr += 2;
15972 break;
15973 case DW_FORM_data4:
15974 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15975 info_ptr += 4;
15976 break;
15977 case DW_FORM_data8:
15978 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15979 info_ptr += 8;
15980 break;
2dc7f7b3
TT
15981 case DW_FORM_sec_offset:
15982 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15983 info_ptr += bytes_read;
15984 break;
c906108c 15985 case DW_FORM_string:
9b1c24c8 15986 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 15987 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
15988 info_ptr += bytes_read;
15989 break;
4bdf3d34 15990 case DW_FORM_strp:
36586728
TT
15991 if (!cu->per_cu->is_dwz)
15992 {
15993 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15994 &bytes_read);
15995 DW_STRING_IS_CANONICAL (attr) = 0;
15996 info_ptr += bytes_read;
15997 break;
15998 }
15999 /* FALLTHROUGH */
16000 case DW_FORM_GNU_strp_alt:
16001 {
16002 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16003 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16004 &bytes_read);
16005
16006 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16007 DW_STRING_IS_CANONICAL (attr) = 0;
16008 info_ptr += bytes_read;
16009 }
4bdf3d34 16010 break;
2dc7f7b3 16011 case DW_FORM_exprloc:
c906108c 16012 case DW_FORM_block:
7b5a2f43 16013 blk = dwarf_alloc_block (cu);
c906108c
SS
16014 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16015 info_ptr += bytes_read;
16016 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16017 info_ptr += blk->size;
16018 DW_BLOCK (attr) = blk;
16019 break;
16020 case DW_FORM_block1:
7b5a2f43 16021 blk = dwarf_alloc_block (cu);
c906108c
SS
16022 blk->size = read_1_byte (abfd, info_ptr);
16023 info_ptr += 1;
16024 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16025 info_ptr += blk->size;
16026 DW_BLOCK (attr) = blk;
16027 break;
16028 case DW_FORM_data1:
16029 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16030 info_ptr += 1;
16031 break;
16032 case DW_FORM_flag:
16033 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16034 info_ptr += 1;
16035 break;
2dc7f7b3
TT
16036 case DW_FORM_flag_present:
16037 DW_UNSND (attr) = 1;
16038 break;
c906108c
SS
16039 case DW_FORM_sdata:
16040 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16041 info_ptr += bytes_read;
16042 break;
16043 case DW_FORM_udata:
16044 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16045 info_ptr += bytes_read;
16046 break;
16047 case DW_FORM_ref1:
4568ecf9
DE
16048 DW_UNSND (attr) = (cu->header.offset.sect_off
16049 + read_1_byte (abfd, info_ptr));
c906108c
SS
16050 info_ptr += 1;
16051 break;
16052 case DW_FORM_ref2:
4568ecf9
DE
16053 DW_UNSND (attr) = (cu->header.offset.sect_off
16054 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16055 info_ptr += 2;
16056 break;
16057 case DW_FORM_ref4:
4568ecf9
DE
16058 DW_UNSND (attr) = (cu->header.offset.sect_off
16059 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16060 info_ptr += 4;
16061 break;
613e1657 16062 case DW_FORM_ref8:
4568ecf9
DE
16063 DW_UNSND (attr) = (cu->header.offset.sect_off
16064 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16065 info_ptr += 8;
16066 break;
55f1336d 16067 case DW_FORM_ref_sig8:
ac9ec31b 16068 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16069 info_ptr += 8;
16070 break;
c906108c 16071 case DW_FORM_ref_udata:
4568ecf9
DE
16072 DW_UNSND (attr) = (cu->header.offset.sect_off
16073 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16074 info_ptr += bytes_read;
16075 break;
c906108c 16076 case DW_FORM_indirect:
a8329558
KW
16077 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16078 info_ptr += bytes_read;
dee91e82 16079 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 16080 break;
3019eac3
DE
16081 case DW_FORM_GNU_addr_index:
16082 if (reader->dwo_file == NULL)
16083 {
16084 /* For now flag a hard error.
16085 Later we can turn this into a complaint. */
16086 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16087 dwarf_form_name (form),
16088 bfd_get_filename (abfd));
16089 }
16090 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16091 info_ptr += bytes_read;
16092 break;
16093 case DW_FORM_GNU_str_index:
16094 if (reader->dwo_file == NULL)
16095 {
16096 /* For now flag a hard error.
16097 Later we can turn this into a complaint if warranted. */
16098 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16099 dwarf_form_name (form),
16100 bfd_get_filename (abfd));
16101 }
16102 {
16103 ULONGEST str_index =
16104 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16105
342587c4 16106 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16107 DW_STRING_IS_CANONICAL (attr) = 0;
16108 info_ptr += bytes_read;
16109 }
16110 break;
c906108c 16111 default:
8a3fe4f8 16112 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16113 dwarf_form_name (form),
16114 bfd_get_filename (abfd));
c906108c 16115 }
28e94949 16116
36586728 16117 /* Super hack. */
7771576e 16118 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16119 attr->form = DW_FORM_GNU_ref_alt;
16120
28e94949
JB
16121 /* We have seen instances where the compiler tried to emit a byte
16122 size attribute of -1 which ended up being encoded as an unsigned
16123 0xffffffff. Although 0xffffffff is technically a valid size value,
16124 an object of this size seems pretty unlikely so we can relatively
16125 safely treat these cases as if the size attribute was invalid and
16126 treat them as zero by default. */
16127 if (attr->name == DW_AT_byte_size
16128 && form == DW_FORM_data4
16129 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16130 {
16131 complaint
16132 (&symfile_complaints,
43bbcdc2
PH
16133 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16134 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16135 DW_UNSND (attr) = 0;
16136 }
28e94949 16137
c906108c
SS
16138 return info_ptr;
16139}
16140
a8329558
KW
16141/* Read an attribute described by an abbreviated attribute. */
16142
d521ce57 16143static const gdb_byte *
dee91e82
DE
16144read_attribute (const struct die_reader_specs *reader,
16145 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16146 const gdb_byte *info_ptr)
a8329558
KW
16147{
16148 attr->name = abbrev->name;
dee91e82 16149 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
16150}
16151
0963b4bd 16152/* Read dwarf information from a buffer. */
c906108c
SS
16153
16154static unsigned int
a1855c1d 16155read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16156{
fe1b8b76 16157 return bfd_get_8 (abfd, buf);
c906108c
SS
16158}
16159
16160static int
a1855c1d 16161read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16162{
fe1b8b76 16163 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16164}
16165
16166static unsigned int
a1855c1d 16167read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16168{
fe1b8b76 16169 return bfd_get_16 (abfd, buf);
c906108c
SS
16170}
16171
21ae7a4d 16172static int
a1855c1d 16173read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16174{
16175 return bfd_get_signed_16 (abfd, buf);
16176}
16177
c906108c 16178static unsigned int
a1855c1d 16179read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16180{
fe1b8b76 16181 return bfd_get_32 (abfd, buf);
c906108c
SS
16182}
16183
21ae7a4d 16184static int
a1855c1d 16185read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16186{
16187 return bfd_get_signed_32 (abfd, buf);
16188}
16189
93311388 16190static ULONGEST
a1855c1d 16191read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16192{
fe1b8b76 16193 return bfd_get_64 (abfd, buf);
c906108c
SS
16194}
16195
16196static CORE_ADDR
d521ce57 16197read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16198 unsigned int *bytes_read)
c906108c 16199{
e7c27a73 16200 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16201 CORE_ADDR retval = 0;
16202
107d2387 16203 if (cu_header->signed_addr_p)
c906108c 16204 {
107d2387
AC
16205 switch (cu_header->addr_size)
16206 {
16207 case 2:
fe1b8b76 16208 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16209 break;
16210 case 4:
fe1b8b76 16211 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16212 break;
16213 case 8:
fe1b8b76 16214 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16215 break;
16216 default:
8e65ff28 16217 internal_error (__FILE__, __LINE__,
e2e0b3e5 16218 _("read_address: bad switch, signed [in module %s]"),
659b0389 16219 bfd_get_filename (abfd));
107d2387
AC
16220 }
16221 }
16222 else
16223 {
16224 switch (cu_header->addr_size)
16225 {
16226 case 2:
fe1b8b76 16227 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16228 break;
16229 case 4:
fe1b8b76 16230 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16231 break;
16232 case 8:
fe1b8b76 16233 retval = bfd_get_64 (abfd, buf);
107d2387
AC
16234 break;
16235 default:
8e65ff28 16236 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
16237 _("read_address: bad switch, "
16238 "unsigned [in module %s]"),
659b0389 16239 bfd_get_filename (abfd));
107d2387 16240 }
c906108c 16241 }
64367e0a 16242
107d2387
AC
16243 *bytes_read = cu_header->addr_size;
16244 return retval;
c906108c
SS
16245}
16246
f7ef9339 16247/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
16248 specification allows the initial length to take up either 4 bytes
16249 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16250 bytes describe the length and all offsets will be 8 bytes in length
16251 instead of 4.
16252
f7ef9339
KB
16253 An older, non-standard 64-bit format is also handled by this
16254 function. The older format in question stores the initial length
16255 as an 8-byte quantity without an escape value. Lengths greater
16256 than 2^32 aren't very common which means that the initial 4 bytes
16257 is almost always zero. Since a length value of zero doesn't make
16258 sense for the 32-bit format, this initial zero can be considered to
16259 be an escape value which indicates the presence of the older 64-bit
16260 format. As written, the code can't detect (old format) lengths
917c78fc
MK
16261 greater than 4GB. If it becomes necessary to handle lengths
16262 somewhat larger than 4GB, we could allow other small values (such
16263 as the non-sensical values of 1, 2, and 3) to also be used as
16264 escape values indicating the presence of the old format.
f7ef9339 16265
917c78fc
MK
16266 The value returned via bytes_read should be used to increment the
16267 relevant pointer after calling read_initial_length().
c764a876 16268
613e1657
KB
16269 [ Note: read_initial_length() and read_offset() are based on the
16270 document entitled "DWARF Debugging Information Format", revision
f7ef9339 16271 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
16272 from:
16273
f7ef9339 16274 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 16275
613e1657
KB
16276 This document is only a draft and is subject to change. (So beware.)
16277
f7ef9339 16278 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
16279 determined empirically by examining 64-bit ELF files produced by
16280 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
16281
16282 - Kevin, July 16, 2002
613e1657
KB
16283 ] */
16284
16285static LONGEST
d521ce57 16286read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 16287{
fe1b8b76 16288 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 16289
dd373385 16290 if (length == 0xffffffff)
613e1657 16291 {
fe1b8b76 16292 length = bfd_get_64 (abfd, buf + 4);
613e1657 16293 *bytes_read = 12;
613e1657 16294 }
dd373385 16295 else if (length == 0)
f7ef9339 16296 {
dd373385 16297 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 16298 length = bfd_get_64 (abfd, buf);
f7ef9339 16299 *bytes_read = 8;
f7ef9339 16300 }
613e1657
KB
16301 else
16302 {
16303 *bytes_read = 4;
613e1657
KB
16304 }
16305
c764a876
DE
16306 return length;
16307}
dd373385 16308
c764a876
DE
16309/* Cover function for read_initial_length.
16310 Returns the length of the object at BUF, and stores the size of the
16311 initial length in *BYTES_READ and stores the size that offsets will be in
16312 *OFFSET_SIZE.
16313 If the initial length size is not equivalent to that specified in
16314 CU_HEADER then issue a complaint.
16315 This is useful when reading non-comp-unit headers. */
dd373385 16316
c764a876 16317static LONGEST
d521ce57 16318read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
16319 const struct comp_unit_head *cu_header,
16320 unsigned int *bytes_read,
16321 unsigned int *offset_size)
16322{
16323 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16324
16325 gdb_assert (cu_header->initial_length_size == 4
16326 || cu_header->initial_length_size == 8
16327 || cu_header->initial_length_size == 12);
16328
16329 if (cu_header->initial_length_size != *bytes_read)
16330 complaint (&symfile_complaints,
16331 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16332
c764a876 16333 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16334 return length;
613e1657
KB
16335}
16336
16337/* Read an offset from the data stream. The size of the offset is
917c78fc 16338 given by cu_header->offset_size. */
613e1657
KB
16339
16340static LONGEST
d521ce57
TT
16341read_offset (bfd *abfd, const gdb_byte *buf,
16342 const struct comp_unit_head *cu_header,
891d2f0b 16343 unsigned int *bytes_read)
c764a876
DE
16344{
16345 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16346
c764a876
DE
16347 *bytes_read = cu_header->offset_size;
16348 return offset;
16349}
16350
16351/* Read an offset from the data stream. */
16352
16353static LONGEST
d521ce57 16354read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16355{
16356 LONGEST retval = 0;
16357
c764a876 16358 switch (offset_size)
613e1657
KB
16359 {
16360 case 4:
fe1b8b76 16361 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16362 break;
16363 case 8:
fe1b8b76 16364 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16365 break;
16366 default:
8e65ff28 16367 internal_error (__FILE__, __LINE__,
c764a876 16368 _("read_offset_1: bad switch [in module %s]"),
659b0389 16369 bfd_get_filename (abfd));
613e1657
KB
16370 }
16371
917c78fc 16372 return retval;
613e1657
KB
16373}
16374
d521ce57
TT
16375static const gdb_byte *
16376read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16377{
16378 /* If the size of a host char is 8 bits, we can return a pointer
16379 to the buffer, otherwise we have to copy the data to a buffer
16380 allocated on the temporary obstack. */
4bdf3d34 16381 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16382 return buf;
c906108c
SS
16383}
16384
d521ce57
TT
16385static const char *
16386read_direct_string (bfd *abfd, const gdb_byte *buf,
16387 unsigned int *bytes_read_ptr)
c906108c
SS
16388{
16389 /* If the size of a host char is 8 bits, we can return a pointer
16390 to the string, otherwise we have to copy the string to a buffer
16391 allocated on the temporary obstack. */
4bdf3d34 16392 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
16393 if (*buf == '\0')
16394 {
16395 *bytes_read_ptr = 1;
16396 return NULL;
16397 }
d521ce57
TT
16398 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16399 return (const char *) buf;
4bdf3d34
JJ
16400}
16401
d521ce57 16402static const char *
cf2c3c16 16403read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 16404{
be391dca 16405 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 16406 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
16407 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16408 bfd_get_filename (abfd));
dce234bc 16409 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
16410 error (_("DW_FORM_strp pointing outside of "
16411 ".debug_str section [in module %s]"),
16412 bfd_get_filename (abfd));
4bdf3d34 16413 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 16414 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 16415 return NULL;
d521ce57 16416 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
16417}
16418
36586728
TT
16419/* Read a string at offset STR_OFFSET in the .debug_str section from
16420 the .dwz file DWZ. Throw an error if the offset is too large. If
16421 the string consists of a single NUL byte, return NULL; otherwise
16422 return a pointer to the string. */
16423
d521ce57 16424static const char *
36586728
TT
16425read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16426{
16427 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16428
16429 if (dwz->str.buffer == NULL)
16430 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16431 "section [in module %s]"),
16432 bfd_get_filename (dwz->dwz_bfd));
16433 if (str_offset >= dwz->str.size)
16434 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16435 ".debug_str section [in module %s]"),
16436 bfd_get_filename (dwz->dwz_bfd));
16437 gdb_assert (HOST_CHAR_BIT == 8);
16438 if (dwz->str.buffer[str_offset] == '\0')
16439 return NULL;
d521ce57 16440 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
16441}
16442
d521ce57
TT
16443static const char *
16444read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
16445 const struct comp_unit_head *cu_header,
16446 unsigned int *bytes_read_ptr)
16447{
16448 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16449
16450 return read_indirect_string_at_offset (abfd, str_offset);
16451}
16452
12df843f 16453static ULONGEST
d521ce57
TT
16454read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16455 unsigned int *bytes_read_ptr)
c906108c 16456{
12df843f 16457 ULONGEST result;
ce5d95e1 16458 unsigned int num_read;
c906108c
SS
16459 int i, shift;
16460 unsigned char byte;
16461
16462 result = 0;
16463 shift = 0;
16464 num_read = 0;
16465 i = 0;
16466 while (1)
16467 {
fe1b8b76 16468 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16469 buf++;
16470 num_read++;
12df843f 16471 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
16472 if ((byte & 128) == 0)
16473 {
16474 break;
16475 }
16476 shift += 7;
16477 }
16478 *bytes_read_ptr = num_read;
16479 return result;
16480}
16481
12df843f 16482static LONGEST
d521ce57
TT
16483read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16484 unsigned int *bytes_read_ptr)
c906108c 16485{
12df843f 16486 LONGEST result;
77e0b926 16487 int i, shift, num_read;
c906108c
SS
16488 unsigned char byte;
16489
16490 result = 0;
16491 shift = 0;
c906108c
SS
16492 num_read = 0;
16493 i = 0;
16494 while (1)
16495 {
fe1b8b76 16496 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16497 buf++;
16498 num_read++;
12df843f 16499 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
16500 shift += 7;
16501 if ((byte & 128) == 0)
16502 {
16503 break;
16504 }
16505 }
77e0b926 16506 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 16507 result |= -(((LONGEST) 1) << shift);
c906108c
SS
16508 *bytes_read_ptr = num_read;
16509 return result;
16510}
16511
3019eac3
DE
16512/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16513 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16514 ADDR_SIZE is the size of addresses from the CU header. */
16515
16516static CORE_ADDR
16517read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16518{
16519 struct objfile *objfile = dwarf2_per_objfile->objfile;
16520 bfd *abfd = objfile->obfd;
16521 const gdb_byte *info_ptr;
16522
16523 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16524 if (dwarf2_per_objfile->addr.buffer == NULL)
16525 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 16526 objfile_name (objfile));
3019eac3
DE
16527 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16528 error (_("DW_FORM_addr_index pointing outside of "
16529 ".debug_addr section [in module %s]"),
4262abfb 16530 objfile_name (objfile));
3019eac3
DE
16531 info_ptr = (dwarf2_per_objfile->addr.buffer
16532 + addr_base + addr_index * addr_size);
16533 if (addr_size == 4)
16534 return bfd_get_32 (abfd, info_ptr);
16535 else
16536 return bfd_get_64 (abfd, info_ptr);
16537}
16538
16539/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16540
16541static CORE_ADDR
16542read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16543{
16544 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16545}
16546
16547/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16548
16549static CORE_ADDR
d521ce57 16550read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
16551 unsigned int *bytes_read)
16552{
16553 bfd *abfd = cu->objfile->obfd;
16554 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16555
16556 return read_addr_index (cu, addr_index);
16557}
16558
16559/* Data structure to pass results from dwarf2_read_addr_index_reader
16560 back to dwarf2_read_addr_index. */
16561
16562struct dwarf2_read_addr_index_data
16563{
16564 ULONGEST addr_base;
16565 int addr_size;
16566};
16567
16568/* die_reader_func for dwarf2_read_addr_index. */
16569
16570static void
16571dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 16572 const gdb_byte *info_ptr,
3019eac3
DE
16573 struct die_info *comp_unit_die,
16574 int has_children,
16575 void *data)
16576{
16577 struct dwarf2_cu *cu = reader->cu;
16578 struct dwarf2_read_addr_index_data *aidata =
16579 (struct dwarf2_read_addr_index_data *) data;
16580
16581 aidata->addr_base = cu->addr_base;
16582 aidata->addr_size = cu->header.addr_size;
16583}
16584
16585/* Given an index in .debug_addr, fetch the value.
16586 NOTE: This can be called during dwarf expression evaluation,
16587 long after the debug information has been read, and thus per_cu->cu
16588 may no longer exist. */
16589
16590CORE_ADDR
16591dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16592 unsigned int addr_index)
16593{
16594 struct objfile *objfile = per_cu->objfile;
16595 struct dwarf2_cu *cu = per_cu->cu;
16596 ULONGEST addr_base;
16597 int addr_size;
16598
16599 /* This is intended to be called from outside this file. */
16600 dw2_setup (objfile);
16601
16602 /* We need addr_base and addr_size.
16603 If we don't have PER_CU->cu, we have to get it.
16604 Nasty, but the alternative is storing the needed info in PER_CU,
16605 which at this point doesn't seem justified: it's not clear how frequently
16606 it would get used and it would increase the size of every PER_CU.
16607 Entry points like dwarf2_per_cu_addr_size do a similar thing
16608 so we're not in uncharted territory here.
16609 Alas we need to be a bit more complicated as addr_base is contained
16610 in the DIE.
16611
16612 We don't need to read the entire CU(/TU).
16613 We just need the header and top level die.
a1b64ce1 16614
3019eac3 16615 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 16616 For now we skip this optimization. */
3019eac3
DE
16617
16618 if (cu != NULL)
16619 {
16620 addr_base = cu->addr_base;
16621 addr_size = cu->header.addr_size;
16622 }
16623 else
16624 {
16625 struct dwarf2_read_addr_index_data aidata;
16626
a1b64ce1
DE
16627 /* Note: We can't use init_cutu_and_read_dies_simple here,
16628 we need addr_base. */
16629 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16630 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
16631 addr_base = aidata.addr_base;
16632 addr_size = aidata.addr_size;
16633 }
16634
16635 return read_addr_index_1 (addr_index, addr_base, addr_size);
16636}
16637
57d63ce2
DE
16638/* Given a DW_FORM_GNU_str_index, fetch the string.
16639 This is only used by the Fission support. */
3019eac3 16640
d521ce57 16641static const char *
342587c4 16642read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
16643{
16644 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 16645 const char *objf_name = objfile_name (objfile);
3019eac3 16646 bfd *abfd = objfile->obfd;
342587c4 16647 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
16648 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16649 struct dwarf2_section_info *str_offsets_section =
16650 &reader->dwo_file->sections.str_offsets;
d521ce57 16651 const gdb_byte *info_ptr;
3019eac3 16652 ULONGEST str_offset;
57d63ce2 16653 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 16654
73869dc2
DE
16655 dwarf2_read_section (objfile, str_section);
16656 dwarf2_read_section (objfile, str_offsets_section);
16657 if (str_section->buffer == NULL)
57d63ce2 16658 error (_("%s used without .debug_str.dwo section"
3019eac3 16659 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16660 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16661 if (str_offsets_section->buffer == NULL)
57d63ce2 16662 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 16663 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16664 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16665 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 16666 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 16667 " section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16668 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16669 info_ptr = (str_offsets_section->buffer
3019eac3
DE
16670 + str_index * cu->header.offset_size);
16671 if (cu->header.offset_size == 4)
16672 str_offset = bfd_get_32 (abfd, info_ptr);
16673 else
16674 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 16675 if (str_offset >= str_section->size)
57d63ce2 16676 error (_("Offset from %s pointing outside of"
3019eac3 16677 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16678 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16679 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
16680}
16681
3019eac3
DE
16682/* Return the length of an LEB128 number in BUF. */
16683
16684static int
16685leb128_size (const gdb_byte *buf)
16686{
16687 const gdb_byte *begin = buf;
16688 gdb_byte byte;
16689
16690 while (1)
16691 {
16692 byte = *buf++;
16693 if ((byte & 128) == 0)
16694 return buf - begin;
16695 }
16696}
16697
c906108c 16698static void
e142c38c 16699set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
16700{
16701 switch (lang)
16702 {
16703 case DW_LANG_C89:
76bee0cc 16704 case DW_LANG_C99:
c906108c 16705 case DW_LANG_C:
d1be3247 16706 case DW_LANG_UPC:
e142c38c 16707 cu->language = language_c;
c906108c
SS
16708 break;
16709 case DW_LANG_C_plus_plus:
e142c38c 16710 cu->language = language_cplus;
c906108c 16711 break;
6aecb9c2
JB
16712 case DW_LANG_D:
16713 cu->language = language_d;
16714 break;
c906108c
SS
16715 case DW_LANG_Fortran77:
16716 case DW_LANG_Fortran90:
b21b22e0 16717 case DW_LANG_Fortran95:
e142c38c 16718 cu->language = language_fortran;
c906108c 16719 break;
a766d390
DE
16720 case DW_LANG_Go:
16721 cu->language = language_go;
16722 break;
c906108c 16723 case DW_LANG_Mips_Assembler:
e142c38c 16724 cu->language = language_asm;
c906108c 16725 break;
bebd888e 16726 case DW_LANG_Java:
e142c38c 16727 cu->language = language_java;
bebd888e 16728 break;
c906108c 16729 case DW_LANG_Ada83:
8aaf0b47 16730 case DW_LANG_Ada95:
bc5f45f8
JB
16731 cu->language = language_ada;
16732 break;
72019c9c
GM
16733 case DW_LANG_Modula2:
16734 cu->language = language_m2;
16735 break;
fe8e67fd
PM
16736 case DW_LANG_Pascal83:
16737 cu->language = language_pascal;
16738 break;
22566fbd
DJ
16739 case DW_LANG_ObjC:
16740 cu->language = language_objc;
16741 break;
c906108c
SS
16742 case DW_LANG_Cobol74:
16743 case DW_LANG_Cobol85:
c906108c 16744 default:
e142c38c 16745 cu->language = language_minimal;
c906108c
SS
16746 break;
16747 }
e142c38c 16748 cu->language_defn = language_def (cu->language);
c906108c
SS
16749}
16750
16751/* Return the named attribute or NULL if not there. */
16752
16753static struct attribute *
e142c38c 16754dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 16755{
a48e046c 16756 for (;;)
c906108c 16757 {
a48e046c
TT
16758 unsigned int i;
16759 struct attribute *spec = NULL;
16760
16761 for (i = 0; i < die->num_attrs; ++i)
16762 {
16763 if (die->attrs[i].name == name)
16764 return &die->attrs[i];
16765 if (die->attrs[i].name == DW_AT_specification
16766 || die->attrs[i].name == DW_AT_abstract_origin)
16767 spec = &die->attrs[i];
16768 }
16769
16770 if (!spec)
16771 break;
c906108c 16772
f2f0e013 16773 die = follow_die_ref (die, spec, &cu);
f2f0e013 16774 }
c5aa993b 16775
c906108c
SS
16776 return NULL;
16777}
16778
348e048f
DE
16779/* Return the named attribute or NULL if not there,
16780 but do not follow DW_AT_specification, etc.
16781 This is for use in contexts where we're reading .debug_types dies.
16782 Following DW_AT_specification, DW_AT_abstract_origin will take us
16783 back up the chain, and we want to go down. */
16784
16785static struct attribute *
45e58e77 16786dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
16787{
16788 unsigned int i;
16789
16790 for (i = 0; i < die->num_attrs; ++i)
16791 if (die->attrs[i].name == name)
16792 return &die->attrs[i];
16793
16794 return NULL;
16795}
16796
05cf31d1
JB
16797/* Return non-zero iff the attribute NAME is defined for the given DIE,
16798 and holds a non-zero value. This function should only be used for
2dc7f7b3 16799 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
16800
16801static int
16802dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16803{
16804 struct attribute *attr = dwarf2_attr (die, name, cu);
16805
16806 return (attr && DW_UNSND (attr));
16807}
16808
3ca72b44 16809static int
e142c38c 16810die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 16811{
05cf31d1
JB
16812 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16813 which value is non-zero. However, we have to be careful with
16814 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16815 (via dwarf2_flag_true_p) follows this attribute. So we may
16816 end up accidently finding a declaration attribute that belongs
16817 to a different DIE referenced by the specification attribute,
16818 even though the given DIE does not have a declaration attribute. */
16819 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16820 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
16821}
16822
63d06c5c 16823/* Return the die giving the specification for DIE, if there is
f2f0e013 16824 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
16825 containing the return value on output. If there is no
16826 specification, but there is an abstract origin, that is
16827 returned. */
63d06c5c
DC
16828
16829static struct die_info *
f2f0e013 16830die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 16831{
f2f0e013
DJ
16832 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16833 *spec_cu);
63d06c5c 16834
edb3359d
DJ
16835 if (spec_attr == NULL)
16836 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16837
63d06c5c
DC
16838 if (spec_attr == NULL)
16839 return NULL;
16840 else
f2f0e013 16841 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 16842}
c906108c 16843
debd256d 16844/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
16845 refers to.
16846 NOTE: This is also used as a "cleanup" function. */
16847
debd256d
JB
16848static void
16849free_line_header (struct line_header *lh)
16850{
16851 if (lh->standard_opcode_lengths)
a8bc7b56 16852 xfree (lh->standard_opcode_lengths);
debd256d
JB
16853
16854 /* Remember that all the lh->file_names[i].name pointers are
16855 pointers into debug_line_buffer, and don't need to be freed. */
16856 if (lh->file_names)
a8bc7b56 16857 xfree (lh->file_names);
debd256d
JB
16858
16859 /* Similarly for the include directory names. */
16860 if (lh->include_dirs)
a8bc7b56 16861 xfree (lh->include_dirs);
debd256d 16862
a8bc7b56 16863 xfree (lh);
debd256d
JB
16864}
16865
debd256d 16866/* Add an entry to LH's include directory table. */
ae2de4f8 16867
debd256d 16868static void
d521ce57 16869add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 16870{
debd256d
JB
16871 /* Grow the array if necessary. */
16872 if (lh->include_dirs_size == 0)
c5aa993b 16873 {
debd256d
JB
16874 lh->include_dirs_size = 1; /* for testing */
16875 lh->include_dirs = xmalloc (lh->include_dirs_size
16876 * sizeof (*lh->include_dirs));
16877 }
16878 else if (lh->num_include_dirs >= lh->include_dirs_size)
16879 {
16880 lh->include_dirs_size *= 2;
16881 lh->include_dirs = xrealloc (lh->include_dirs,
16882 (lh->include_dirs_size
16883 * sizeof (*lh->include_dirs)));
c5aa993b 16884 }
c906108c 16885
debd256d
JB
16886 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16887}
6e70227d 16888
debd256d 16889/* Add an entry to LH's file name table. */
ae2de4f8 16890
debd256d
JB
16891static void
16892add_file_name (struct line_header *lh,
d521ce57 16893 const char *name,
debd256d
JB
16894 unsigned int dir_index,
16895 unsigned int mod_time,
16896 unsigned int length)
16897{
16898 struct file_entry *fe;
16899
16900 /* Grow the array if necessary. */
16901 if (lh->file_names_size == 0)
16902 {
16903 lh->file_names_size = 1; /* for testing */
16904 lh->file_names = xmalloc (lh->file_names_size
16905 * sizeof (*lh->file_names));
16906 }
16907 else if (lh->num_file_names >= lh->file_names_size)
16908 {
16909 lh->file_names_size *= 2;
16910 lh->file_names = xrealloc (lh->file_names,
16911 (lh->file_names_size
16912 * sizeof (*lh->file_names)));
16913 }
16914
16915 fe = &lh->file_names[lh->num_file_names++];
16916 fe->name = name;
16917 fe->dir_index = dir_index;
16918 fe->mod_time = mod_time;
16919 fe->length = length;
aaa75496 16920 fe->included_p = 0;
cb1df416 16921 fe->symtab = NULL;
debd256d 16922}
6e70227d 16923
36586728
TT
16924/* A convenience function to find the proper .debug_line section for a
16925 CU. */
16926
16927static struct dwarf2_section_info *
16928get_debug_line_section (struct dwarf2_cu *cu)
16929{
16930 struct dwarf2_section_info *section;
16931
16932 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16933 DWO file. */
16934 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16935 section = &cu->dwo_unit->dwo_file->sections.line;
16936 else if (cu->per_cu->is_dwz)
16937 {
16938 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16939
16940 section = &dwz->line;
16941 }
16942 else
16943 section = &dwarf2_per_objfile->line;
16944
16945 return section;
16946}
16947
debd256d 16948/* Read the statement program header starting at OFFSET in
3019eac3 16949 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 16950 to a struct line_header, allocated using xmalloc.
debd256d
JB
16951
16952 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
16953 the returned object point into the dwarf line section buffer,
16954 and must not be freed. */
ae2de4f8 16955
debd256d 16956static struct line_header *
3019eac3 16957dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
16958{
16959 struct cleanup *back_to;
16960 struct line_header *lh;
d521ce57 16961 const gdb_byte *line_ptr;
c764a876 16962 unsigned int bytes_read, offset_size;
debd256d 16963 int i;
d521ce57 16964 const char *cur_dir, *cur_file;
3019eac3
DE
16965 struct dwarf2_section_info *section;
16966 bfd *abfd;
16967
36586728 16968 section = get_debug_line_section (cu);
3019eac3
DE
16969 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16970 if (section->buffer == NULL)
debd256d 16971 {
3019eac3
DE
16972 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16973 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16974 else
16975 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
16976 return 0;
16977 }
16978
fceca515
DE
16979 /* We can't do this until we know the section is non-empty.
16980 Only then do we know we have such a section. */
a32a8923 16981 abfd = get_section_bfd_owner (section);
fceca515 16982
a738430d
MK
16983 /* Make sure that at least there's room for the total_length field.
16984 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 16985 if (offset + 4 >= section->size)
debd256d 16986 {
4d3c2250 16987 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
16988 return 0;
16989 }
16990
16991 lh = xmalloc (sizeof (*lh));
16992 memset (lh, 0, sizeof (*lh));
16993 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16994 (void *) lh);
16995
3019eac3 16996 line_ptr = section->buffer + offset;
debd256d 16997
a738430d 16998 /* Read in the header. */
6e70227d 16999 lh->total_length =
c764a876
DE
17000 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17001 &bytes_read, &offset_size);
debd256d 17002 line_ptr += bytes_read;
3019eac3 17003 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17004 {
4d3c2250 17005 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 17006 do_cleanups (back_to);
debd256d
JB
17007 return 0;
17008 }
17009 lh->statement_program_end = line_ptr + lh->total_length;
17010 lh->version = read_2_bytes (abfd, line_ptr);
17011 line_ptr += 2;
c764a876
DE
17012 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17013 line_ptr += offset_size;
debd256d
JB
17014 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17015 line_ptr += 1;
2dc7f7b3
TT
17016 if (lh->version >= 4)
17017 {
17018 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17019 line_ptr += 1;
17020 }
17021 else
17022 lh->maximum_ops_per_instruction = 1;
17023
17024 if (lh->maximum_ops_per_instruction == 0)
17025 {
17026 lh->maximum_ops_per_instruction = 1;
17027 complaint (&symfile_complaints,
3e43a32a
MS
17028 _("invalid maximum_ops_per_instruction "
17029 "in `.debug_line' section"));
2dc7f7b3
TT
17030 }
17031
debd256d
JB
17032 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17033 line_ptr += 1;
17034 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17035 line_ptr += 1;
17036 lh->line_range = read_1_byte (abfd, line_ptr);
17037 line_ptr += 1;
17038 lh->opcode_base = read_1_byte (abfd, line_ptr);
17039 line_ptr += 1;
17040 lh->standard_opcode_lengths
fe1b8b76 17041 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
17042
17043 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17044 for (i = 1; i < lh->opcode_base; ++i)
17045 {
17046 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17047 line_ptr += 1;
17048 }
17049
a738430d 17050 /* Read directory table. */
9b1c24c8 17051 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17052 {
17053 line_ptr += bytes_read;
17054 add_include_dir (lh, cur_dir);
17055 }
17056 line_ptr += bytes_read;
17057
a738430d 17058 /* Read file name table. */
9b1c24c8 17059 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17060 {
17061 unsigned int dir_index, mod_time, length;
17062
17063 line_ptr += bytes_read;
17064 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17065 line_ptr += bytes_read;
17066 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17067 line_ptr += bytes_read;
17068 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17069 line_ptr += bytes_read;
17070
17071 add_file_name (lh, cur_file, dir_index, mod_time, length);
17072 }
17073 line_ptr += bytes_read;
6e70227d 17074 lh->statement_program_start = line_ptr;
debd256d 17075
3019eac3 17076 if (line_ptr > (section->buffer + section->size))
4d3c2250 17077 complaint (&symfile_complaints,
3e43a32a
MS
17078 _("line number info header doesn't "
17079 "fit in `.debug_line' section"));
debd256d
JB
17080
17081 discard_cleanups (back_to);
17082 return lh;
17083}
c906108c 17084
c6da4cef
DE
17085/* Subroutine of dwarf_decode_lines to simplify it.
17086 Return the file name of the psymtab for included file FILE_INDEX
17087 in line header LH of PST.
17088 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17089 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
17090 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17091
17092 The function creates dangling cleanup registration. */
c6da4cef 17093
d521ce57 17094static const char *
c6da4cef
DE
17095psymtab_include_file_name (const struct line_header *lh, int file_index,
17096 const struct partial_symtab *pst,
17097 const char *comp_dir)
17098{
17099 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
17100 const char *include_name = fe.name;
17101 const char *include_name_to_compare = include_name;
17102 const char *dir_name = NULL;
72b9f47f
TT
17103 const char *pst_filename;
17104 char *copied_name = NULL;
c6da4cef
DE
17105 int file_is_pst;
17106
17107 if (fe.dir_index)
17108 dir_name = lh->include_dirs[fe.dir_index - 1];
17109
17110 if (!IS_ABSOLUTE_PATH (include_name)
17111 && (dir_name != NULL || comp_dir != NULL))
17112 {
17113 /* Avoid creating a duplicate psymtab for PST.
17114 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17115 Before we do the comparison, however, we need to account
17116 for DIR_NAME and COMP_DIR.
17117 First prepend dir_name (if non-NULL). If we still don't
17118 have an absolute path prepend comp_dir (if non-NULL).
17119 However, the directory we record in the include-file's
17120 psymtab does not contain COMP_DIR (to match the
17121 corresponding symtab(s)).
17122
17123 Example:
17124
17125 bash$ cd /tmp
17126 bash$ gcc -g ./hello.c
17127 include_name = "hello.c"
17128 dir_name = "."
17129 DW_AT_comp_dir = comp_dir = "/tmp"
17130 DW_AT_name = "./hello.c" */
17131
17132 if (dir_name != NULL)
17133 {
d521ce57
TT
17134 char *tem = concat (dir_name, SLASH_STRING,
17135 include_name, (char *)NULL);
17136
17137 make_cleanup (xfree, tem);
17138 include_name = tem;
c6da4cef 17139 include_name_to_compare = include_name;
c6da4cef
DE
17140 }
17141 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17142 {
d521ce57
TT
17143 char *tem = concat (comp_dir, SLASH_STRING,
17144 include_name, (char *)NULL);
17145
17146 make_cleanup (xfree, tem);
17147 include_name_to_compare = tem;
c6da4cef
DE
17148 }
17149 }
17150
17151 pst_filename = pst->filename;
17152 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17153 {
72b9f47f
TT
17154 copied_name = concat (pst->dirname, SLASH_STRING,
17155 pst_filename, (char *)NULL);
17156 pst_filename = copied_name;
c6da4cef
DE
17157 }
17158
1e3fad37 17159 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 17160
72b9f47f
TT
17161 if (copied_name != NULL)
17162 xfree (copied_name);
c6da4cef
DE
17163
17164 if (file_is_pst)
17165 return NULL;
17166 return include_name;
17167}
17168
c91513d8
PP
17169/* Ignore this record_line request. */
17170
17171static void
17172noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17173{
17174 return;
17175}
17176
f3f5162e
DE
17177/* Subroutine of dwarf_decode_lines to simplify it.
17178 Process the line number information in LH. */
debd256d 17179
c906108c 17180static void
f3f5162e
DE
17181dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
17182 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 17183{
d521ce57
TT
17184 const gdb_byte *line_ptr, *extended_end;
17185 const gdb_byte *line_end;
a8c50c1f 17186 unsigned int bytes_read, extended_len;
c906108c 17187 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
17188 CORE_ADDR baseaddr;
17189 struct objfile *objfile = cu->objfile;
f3f5162e 17190 bfd *abfd = objfile->obfd;
fbf65064 17191 struct gdbarch *gdbarch = get_objfile_arch (objfile);
aaa75496 17192 const int decode_for_pst_p = (pst != NULL);
f3f5162e 17193 struct subfile *last_subfile = NULL;
c91513d8
PP
17194 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17195 = record_line;
e142c38c
DJ
17196
17197 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17198
debd256d
JB
17199 line_ptr = lh->statement_program_start;
17200 line_end = lh->statement_program_end;
c906108c
SS
17201
17202 /* Read the statement sequences until there's nothing left. */
17203 while (line_ptr < line_end)
17204 {
17205 /* state machine registers */
17206 CORE_ADDR address = 0;
17207 unsigned int file = 1;
17208 unsigned int line = 1;
17209 unsigned int column = 0;
debd256d 17210 int is_stmt = lh->default_is_stmt;
c906108c
SS
17211 int basic_block = 0;
17212 int end_sequence = 0;
fbf65064 17213 CORE_ADDR addr;
2dc7f7b3 17214 unsigned char op_index = 0;
c906108c 17215
aaa75496 17216 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 17217 {
aaa75496 17218 /* Start a subfile for the current file of the state machine. */
debd256d
JB
17219 /* lh->include_dirs and lh->file_names are 0-based, but the
17220 directory and file name numbers in the statement program
17221 are 1-based. */
17222 struct file_entry *fe = &lh->file_names[file - 1];
d521ce57 17223 const char *dir = NULL;
a738430d 17224
debd256d
JB
17225 if (fe->dir_index)
17226 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
17227
17228 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
17229 }
17230
a738430d 17231 /* Decode the table. */
c5aa993b 17232 while (!end_sequence)
c906108c
SS
17233 {
17234 op_code = read_1_byte (abfd, line_ptr);
17235 line_ptr += 1;
59205f5a
JB
17236 if (line_ptr > line_end)
17237 {
17238 dwarf2_debug_line_missing_end_sequence_complaint ();
17239 break;
17240 }
9aa1fe7e 17241
debd256d 17242 if (op_code >= lh->opcode_base)
6e70227d 17243 {
a738430d 17244 /* Special operand. */
debd256d 17245 adj_opcode = op_code - lh->opcode_base;
2dc7f7b3
TT
17246 address += (((op_index + (adj_opcode / lh->line_range))
17247 / lh->maximum_ops_per_instruction)
17248 * lh->minimum_instruction_length);
17249 op_index = ((op_index + (adj_opcode / lh->line_range))
17250 % lh->maximum_ops_per_instruction);
debd256d 17251 line += lh->line_base + (adj_opcode % lh->line_range);
59205f5a 17252 if (lh->num_file_names < file || file == 0)
25e43795 17253 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
17254 /* For now we ignore lines not starting on an
17255 instruction boundary. */
17256 else if (op_index == 0)
25e43795
DJ
17257 {
17258 lh->file_names[file - 1].included_p = 1;
ca5f395d 17259 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
17260 {
17261 if (last_subfile != current_subfile)
17262 {
17263 addr = gdbarch_addr_bits_remove (gdbarch, address);
17264 if (last_subfile)
c91513d8 17265 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
17266 last_subfile = current_subfile;
17267 }
25e43795 17268 /* Append row to matrix using current values. */
7019d805 17269 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 17270 (*p_record_line) (current_subfile, line, addr);
366da635 17271 }
25e43795 17272 }
ca5f395d 17273 basic_block = 0;
9aa1fe7e
GK
17274 }
17275 else switch (op_code)
c906108c
SS
17276 {
17277 case DW_LNS_extended_op:
3e43a32a
MS
17278 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17279 &bytes_read);
473b7be6 17280 line_ptr += bytes_read;
a8c50c1f 17281 extended_end = line_ptr + extended_len;
c906108c
SS
17282 extended_op = read_1_byte (abfd, line_ptr);
17283 line_ptr += 1;
17284 switch (extended_op)
17285 {
17286 case DW_LNE_end_sequence:
c91513d8 17287 p_record_line = record_line;
c906108c 17288 end_sequence = 1;
c906108c
SS
17289 break;
17290 case DW_LNE_set_address:
e7c27a73 17291 address = read_address (abfd, line_ptr, cu, &bytes_read);
c91513d8
PP
17292
17293 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
17294 {
17295 /* This line table is for a function which has been
17296 GCd by the linker. Ignore it. PR gdb/12528 */
17297
17298 long line_offset
36586728 17299 = line_ptr - get_debug_line_section (cu)->buffer;
c91513d8
PP
17300
17301 complaint (&symfile_complaints,
17302 _(".debug_line address at offset 0x%lx is 0 "
17303 "[in module %s]"),
4262abfb 17304 line_offset, objfile_name (objfile));
c91513d8
PP
17305 p_record_line = noop_record_line;
17306 }
17307
2dc7f7b3 17308 op_index = 0;
107d2387
AC
17309 line_ptr += bytes_read;
17310 address += baseaddr;
c906108c
SS
17311 break;
17312 case DW_LNE_define_file:
debd256d 17313 {
d521ce57 17314 const char *cur_file;
debd256d 17315 unsigned int dir_index, mod_time, length;
6e70227d 17316
3e43a32a
MS
17317 cur_file = read_direct_string (abfd, line_ptr,
17318 &bytes_read);
debd256d
JB
17319 line_ptr += bytes_read;
17320 dir_index =
17321 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17322 line_ptr += bytes_read;
17323 mod_time =
17324 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17325 line_ptr += bytes_read;
17326 length =
17327 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17328 line_ptr += bytes_read;
17329 add_file_name (lh, cur_file, dir_index, mod_time, length);
17330 }
c906108c 17331 break;
d0c6ba3d
CC
17332 case DW_LNE_set_discriminator:
17333 /* The discriminator is not interesting to the debugger;
17334 just ignore it. */
17335 line_ptr = extended_end;
17336 break;
c906108c 17337 default:
4d3c2250 17338 complaint (&symfile_complaints,
e2e0b3e5 17339 _("mangled .debug_line section"));
debd256d 17340 return;
c906108c 17341 }
a8c50c1f
DJ
17342 /* Make sure that we parsed the extended op correctly. If e.g.
17343 we expected a different address size than the producer used,
17344 we may have read the wrong number of bytes. */
17345 if (line_ptr != extended_end)
17346 {
17347 complaint (&symfile_complaints,
17348 _("mangled .debug_line section"));
17349 return;
17350 }
c906108c
SS
17351 break;
17352 case DW_LNS_copy:
59205f5a 17353 if (lh->num_file_names < file || file == 0)
25e43795
DJ
17354 dwarf2_debug_line_missing_file_complaint ();
17355 else
366da635 17356 {
25e43795 17357 lh->file_names[file - 1].included_p = 1;
ca5f395d 17358 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
17359 {
17360 if (last_subfile != current_subfile)
17361 {
17362 addr = gdbarch_addr_bits_remove (gdbarch, address);
17363 if (last_subfile)
c91513d8 17364 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
17365 last_subfile = current_subfile;
17366 }
7019d805 17367 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 17368 (*p_record_line) (current_subfile, line, addr);
fbf65064 17369 }
366da635 17370 }
c906108c
SS
17371 basic_block = 0;
17372 break;
17373 case DW_LNS_advance_pc:
2dc7f7b3
TT
17374 {
17375 CORE_ADDR adjust
17376 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17377
17378 address += (((op_index + adjust)
17379 / lh->maximum_ops_per_instruction)
17380 * lh->minimum_instruction_length);
17381 op_index = ((op_index + adjust)
17382 % lh->maximum_ops_per_instruction);
17383 line_ptr += bytes_read;
17384 }
c906108c
SS
17385 break;
17386 case DW_LNS_advance_line:
17387 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
17388 line_ptr += bytes_read;
17389 break;
17390 case DW_LNS_set_file:
debd256d 17391 {
a738430d
MK
17392 /* The arrays lh->include_dirs and lh->file_names are
17393 0-based, but the directory and file name numbers in
17394 the statement program are 1-based. */
debd256d 17395 struct file_entry *fe;
d521ce57 17396 const char *dir = NULL;
a738430d 17397
debd256d
JB
17398 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17399 line_ptr += bytes_read;
59205f5a 17400 if (lh->num_file_names < file || file == 0)
25e43795
DJ
17401 dwarf2_debug_line_missing_file_complaint ();
17402 else
17403 {
17404 fe = &lh->file_names[file - 1];
17405 if (fe->dir_index)
17406 dir = lh->include_dirs[fe->dir_index - 1];
17407 if (!decode_for_pst_p)
17408 {
17409 last_subfile = current_subfile;
17410 dwarf2_start_subfile (fe->name, dir, comp_dir);
17411 }
17412 }
debd256d 17413 }
c906108c
SS
17414 break;
17415 case DW_LNS_set_column:
17416 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17417 line_ptr += bytes_read;
17418 break;
17419 case DW_LNS_negate_stmt:
17420 is_stmt = (!is_stmt);
17421 break;
17422 case DW_LNS_set_basic_block:
17423 basic_block = 1;
17424 break;
c2c6d25f
JM
17425 /* Add to the address register of the state machine the
17426 address increment value corresponding to special opcode
a738430d
MK
17427 255. I.e., this value is scaled by the minimum
17428 instruction length since special opcode 255 would have
b021a221 17429 scaled the increment. */
c906108c 17430 case DW_LNS_const_add_pc:
2dc7f7b3
TT
17431 {
17432 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17433
17434 address += (((op_index + adjust)
17435 / lh->maximum_ops_per_instruction)
17436 * lh->minimum_instruction_length);
17437 op_index = ((op_index + adjust)
17438 % lh->maximum_ops_per_instruction);
17439 }
c906108c
SS
17440 break;
17441 case DW_LNS_fixed_advance_pc:
17442 address += read_2_bytes (abfd, line_ptr);
2dc7f7b3 17443 op_index = 0;
c906108c
SS
17444 line_ptr += 2;
17445 break;
9aa1fe7e 17446 default:
a738430d
MK
17447 {
17448 /* Unknown standard opcode, ignore it. */
9aa1fe7e 17449 int i;
a738430d 17450
debd256d 17451 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
17452 {
17453 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17454 line_ptr += bytes_read;
17455 }
17456 }
c906108c
SS
17457 }
17458 }
59205f5a
JB
17459 if (lh->num_file_names < file || file == 0)
17460 dwarf2_debug_line_missing_file_complaint ();
17461 else
17462 {
17463 lh->file_names[file - 1].included_p = 1;
17464 if (!decode_for_pst_p)
fbf65064
UW
17465 {
17466 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 17467 (*p_record_line) (current_subfile, 0, addr);
fbf65064 17468 }
59205f5a 17469 }
c906108c 17470 }
f3f5162e
DE
17471}
17472
17473/* Decode the Line Number Program (LNP) for the given line_header
17474 structure and CU. The actual information extracted and the type
17475 of structures created from the LNP depends on the value of PST.
17476
17477 1. If PST is NULL, then this procedure uses the data from the program
17478 to create all necessary symbol tables, and their linetables.
17479
17480 2. If PST is not NULL, this procedure reads the program to determine
17481 the list of files included by the unit represented by PST, and
17482 builds all the associated partial symbol tables.
17483
17484 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17485 It is used for relative paths in the line table.
17486 NOTE: When processing partial symtabs (pst != NULL),
17487 comp_dir == pst->dirname.
17488
17489 NOTE: It is important that psymtabs have the same file name (via strcmp)
17490 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17491 symtab we don't use it in the name of the psymtabs we create.
17492 E.g. expand_line_sal requires this when finding psymtabs to expand.
17493 A good testcase for this is mb-inline.exp. */
17494
17495static void
17496dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17497 struct dwarf2_cu *cu, struct partial_symtab *pst,
17498 int want_line_info)
17499{
17500 struct objfile *objfile = cu->objfile;
17501 const int decode_for_pst_p = (pst != NULL);
17502 struct subfile *first_subfile = current_subfile;
17503
17504 if (want_line_info)
17505 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
aaa75496
JB
17506
17507 if (decode_for_pst_p)
17508 {
17509 int file_index;
17510
17511 /* Now that we're done scanning the Line Header Program, we can
17512 create the psymtab of each included file. */
17513 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17514 if (lh->file_names[file_index].included_p == 1)
17515 {
d521ce57 17516 const char *include_name =
c6da4cef
DE
17517 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17518 if (include_name != NULL)
aaa75496
JB
17519 dwarf2_create_include_psymtab (include_name, pst, objfile);
17520 }
17521 }
cb1df416
DJ
17522 else
17523 {
17524 /* Make sure a symtab is created for every file, even files
17525 which contain only variables (i.e. no code with associated
17526 line numbers). */
cb1df416 17527 int i;
cb1df416
DJ
17528
17529 for (i = 0; i < lh->num_file_names; i++)
17530 {
d521ce57 17531 const char *dir = NULL;
f3f5162e 17532 struct file_entry *fe;
9a619af0 17533
cb1df416
DJ
17534 fe = &lh->file_names[i];
17535 if (fe->dir_index)
17536 dir = lh->include_dirs[fe->dir_index - 1];
17537 dwarf2_start_subfile (fe->name, dir, comp_dir);
17538
17539 /* Skip the main file; we don't need it, and it must be
17540 allocated last, so that it will show up before the
17541 non-primary symtabs in the objfile's symtab list. */
17542 if (current_subfile == first_subfile)
17543 continue;
17544
17545 if (current_subfile->symtab == NULL)
17546 current_subfile->symtab = allocate_symtab (current_subfile->name,
bb5ed363 17547 objfile);
cb1df416
DJ
17548 fe->symtab = current_subfile->symtab;
17549 }
17550 }
c906108c
SS
17551}
17552
17553/* Start a subfile for DWARF. FILENAME is the name of the file and
17554 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
17555 or NULL if not known. COMP_DIR is the compilation directory for the
17556 linetable's compilation unit or NULL if not known.
c906108c
SS
17557 This routine tries to keep line numbers from identical absolute and
17558 relative file names in a common subfile.
17559
17560 Using the `list' example from the GDB testsuite, which resides in
17561 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17562 of /srcdir/list0.c yields the following debugging information for list0.c:
17563
c5aa993b
JM
17564 DW_AT_name: /srcdir/list0.c
17565 DW_AT_comp_dir: /compdir
357e46e7 17566 files.files[0].name: list0.h
c5aa993b 17567 files.files[0].dir: /srcdir
357e46e7 17568 files.files[1].name: list0.c
c5aa993b 17569 files.files[1].dir: /srcdir
c906108c
SS
17570
17571 The line number information for list0.c has to end up in a single
4f1520fb
FR
17572 subfile, so that `break /srcdir/list0.c:1' works as expected.
17573 start_subfile will ensure that this happens provided that we pass the
17574 concatenation of files.files[1].dir and files.files[1].name as the
17575 subfile's name. */
c906108c
SS
17576
17577static void
d521ce57 17578dwarf2_start_subfile (const char *filename, const char *dirname,
3e43a32a 17579 const char *comp_dir)
c906108c 17580{
d521ce57 17581 char *copy = NULL;
4f1520fb
FR
17582
17583 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17584 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17585 second argument to start_subfile. To be consistent, we do the
17586 same here. In order not to lose the line information directory,
17587 we concatenate it to the filename when it makes sense.
17588 Note that the Dwarf3 standard says (speaking of filenames in line
17589 information): ``The directory index is ignored for file names
17590 that represent full path names''. Thus ignoring dirname in the
17591 `else' branch below isn't an issue. */
c906108c 17592
d5166ae1 17593 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
17594 {
17595 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17596 filename = copy;
17597 }
c906108c 17598
d521ce57 17599 start_subfile (filename, comp_dir);
4f1520fb 17600
d521ce57
TT
17601 if (copy != NULL)
17602 xfree (copy);
c906108c
SS
17603}
17604
f4dc4d17
DE
17605/* Start a symtab for DWARF.
17606 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17607
17608static void
17609dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 17610 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17
DE
17611{
17612 start_symtab (name, comp_dir, low_pc);
17613 record_debugformat ("DWARF 2");
17614 record_producer (cu->producer);
17615
17616 /* We assume that we're processing GCC output. */
17617 processing_gcc_compilation = 2;
17618
4d4ec4e5 17619 cu->processing_has_namespace_info = 0;
f4dc4d17
DE
17620}
17621
4c2df51b
DJ
17622static void
17623var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 17624 struct dwarf2_cu *cu)
4c2df51b 17625{
e7c27a73
DJ
17626 struct objfile *objfile = cu->objfile;
17627 struct comp_unit_head *cu_header = &cu->header;
17628
4c2df51b
DJ
17629 /* NOTE drow/2003-01-30: There used to be a comment and some special
17630 code here to turn a symbol with DW_AT_external and a
17631 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17632 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17633 with some versions of binutils) where shared libraries could have
17634 relocations against symbols in their debug information - the
17635 minimal symbol would have the right address, but the debug info
17636 would not. It's no longer necessary, because we will explicitly
17637 apply relocations when we read in the debug information now. */
17638
17639 /* A DW_AT_location attribute with no contents indicates that a
17640 variable has been optimized away. */
17641 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17642 {
f1e6e072 17643 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
17644 return;
17645 }
17646
17647 /* Handle one degenerate form of location expression specially, to
17648 preserve GDB's previous behavior when section offsets are
3019eac3
DE
17649 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17650 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
17651
17652 if (attr_form_is_block (attr)
3019eac3
DE
17653 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17654 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17655 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17656 && (DW_BLOCK (attr)->size
17657 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 17658 {
891d2f0b 17659 unsigned int dummy;
4c2df51b 17660
3019eac3
DE
17661 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17662 SYMBOL_VALUE_ADDRESS (sym) =
17663 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17664 else
17665 SYMBOL_VALUE_ADDRESS (sym) =
17666 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 17667 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
17668 fixup_symbol_section (sym, objfile);
17669 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17670 SYMBOL_SECTION (sym));
4c2df51b
DJ
17671 return;
17672 }
17673
17674 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17675 expression evaluator, and use LOC_COMPUTED only when necessary
17676 (i.e. when the value of a register or memory location is
17677 referenced, or a thread-local block, etc.). Then again, it might
17678 not be worthwhile. I'm assuming that it isn't unless performance
17679 or memory numbers show me otherwise. */
17680
f1e6e072 17681 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 17682
f1e6e072 17683 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 17684 cu->has_loclist = 1;
4c2df51b
DJ
17685}
17686
c906108c
SS
17687/* Given a pointer to a DWARF information entry, figure out if we need
17688 to make a symbol table entry for it, and if so, create a new entry
17689 and return a pointer to it.
17690 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
17691 used the passed type.
17692 If SPACE is not NULL, use it to hold the new symbol. If it is
17693 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
17694
17695static struct symbol *
34eaf542
TT
17696new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17697 struct symbol *space)
c906108c 17698{
e7c27a73 17699 struct objfile *objfile = cu->objfile;
c906108c 17700 struct symbol *sym = NULL;
15d034d0 17701 const char *name;
c906108c
SS
17702 struct attribute *attr = NULL;
17703 struct attribute *attr2 = NULL;
e142c38c 17704 CORE_ADDR baseaddr;
e37fd15a
SW
17705 struct pending **list_to_add = NULL;
17706
edb3359d 17707 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
17708
17709 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17710
94af9270 17711 name = dwarf2_name (die, cu);
c906108c
SS
17712 if (name)
17713 {
94af9270 17714 const char *linkagename;
34eaf542 17715 int suppress_add = 0;
94af9270 17716
34eaf542
TT
17717 if (space)
17718 sym = space;
17719 else
e623cf5d 17720 sym = allocate_symbol (objfile);
c906108c 17721 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
17722
17723 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 17724 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
17725 linkagename = dwarf2_physname (name, die, cu);
17726 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 17727
f55ee35c
JK
17728 /* Fortran does not have mangling standard and the mangling does differ
17729 between gfortran, iFort etc. */
17730 if (cu->language == language_fortran
b250c185 17731 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 17732 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 17733 dwarf2_full_name (name, die, cu),
29df156d 17734 NULL);
f55ee35c 17735
c906108c 17736 /* Default assumptions.
c5aa993b 17737 Use the passed type or decode it from the die. */
176620f1 17738 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 17739 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
17740 if (type != NULL)
17741 SYMBOL_TYPE (sym) = type;
17742 else
e7c27a73 17743 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
17744 attr = dwarf2_attr (die,
17745 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17746 cu);
c906108c
SS
17747 if (attr)
17748 {
17749 SYMBOL_LINE (sym) = DW_UNSND (attr);
17750 }
cb1df416 17751
edb3359d
DJ
17752 attr = dwarf2_attr (die,
17753 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17754 cu);
cb1df416
DJ
17755 if (attr)
17756 {
17757 int file_index = DW_UNSND (attr);
9a619af0 17758
cb1df416
DJ
17759 if (cu->line_header == NULL
17760 || file_index > cu->line_header->num_file_names)
17761 complaint (&symfile_complaints,
17762 _("file index out of range"));
1c3d648d 17763 else if (file_index > 0)
cb1df416
DJ
17764 {
17765 struct file_entry *fe;
9a619af0 17766
cb1df416
DJ
17767 fe = &cu->line_header->file_names[file_index - 1];
17768 SYMBOL_SYMTAB (sym) = fe->symtab;
17769 }
17770 }
17771
c906108c
SS
17772 switch (die->tag)
17773 {
17774 case DW_TAG_label:
e142c38c 17775 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 17776 if (attr)
31aa7e4e
JB
17777 SYMBOL_VALUE_ADDRESS (sym)
17778 = attr_value_as_address (attr) + baseaddr;
0f5238ed
TT
17779 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17780 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 17781 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 17782 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
17783 break;
17784 case DW_TAG_subprogram:
17785 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17786 finish_block. */
f1e6e072 17787 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 17788 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
17789 if ((attr2 && (DW_UNSND (attr2) != 0))
17790 || cu->language == language_ada)
c906108c 17791 {
2cfa0c8d
JB
17792 /* Subprograms marked external are stored as a global symbol.
17793 Ada subprograms, whether marked external or not, are always
17794 stored as a global symbol, because we want to be able to
17795 access them globally. For instance, we want to be able
17796 to break on a nested subprogram without having to
17797 specify the context. */
e37fd15a 17798 list_to_add = &global_symbols;
c906108c
SS
17799 }
17800 else
17801 {
e37fd15a 17802 list_to_add = cu->list_in_scope;
c906108c
SS
17803 }
17804 break;
edb3359d
DJ
17805 case DW_TAG_inlined_subroutine:
17806 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17807 finish_block. */
f1e6e072 17808 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 17809 SYMBOL_INLINED (sym) = 1;
481860b3 17810 list_to_add = cu->list_in_scope;
edb3359d 17811 break;
34eaf542
TT
17812 case DW_TAG_template_value_param:
17813 suppress_add = 1;
17814 /* Fall through. */
72929c62 17815 case DW_TAG_constant:
c906108c 17816 case DW_TAG_variable:
254e6b9e 17817 case DW_TAG_member:
0963b4bd
MS
17818 /* Compilation with minimal debug info may result in
17819 variables with missing type entries. Change the
17820 misleading `void' type to something sensible. */
c906108c 17821 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 17822 SYMBOL_TYPE (sym)
46bf5051 17823 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 17824
e142c38c 17825 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
17826 /* In the case of DW_TAG_member, we should only be called for
17827 static const members. */
17828 if (die->tag == DW_TAG_member)
17829 {
3863f96c
DE
17830 /* dwarf2_add_field uses die_is_declaration,
17831 so we do the same. */
254e6b9e
DE
17832 gdb_assert (die_is_declaration (die, cu));
17833 gdb_assert (attr);
17834 }
c906108c
SS
17835 if (attr)
17836 {
e7c27a73 17837 dwarf2_const_value (attr, sym, cu);
e142c38c 17838 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 17839 if (!suppress_add)
34eaf542
TT
17840 {
17841 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 17842 list_to_add = &global_symbols;
34eaf542 17843 else
e37fd15a 17844 list_to_add = cu->list_in_scope;
34eaf542 17845 }
c906108c
SS
17846 break;
17847 }
e142c38c 17848 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
17849 if (attr)
17850 {
e7c27a73 17851 var_decode_location (attr, sym, cu);
e142c38c 17852 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
17853
17854 /* Fortran explicitly imports any global symbols to the local
17855 scope by DW_TAG_common_block. */
17856 if (cu->language == language_fortran && die->parent
17857 && die->parent->tag == DW_TAG_common_block)
17858 attr2 = NULL;
17859
caac4577
JG
17860 if (SYMBOL_CLASS (sym) == LOC_STATIC
17861 && SYMBOL_VALUE_ADDRESS (sym) == 0
17862 && !dwarf2_per_objfile->has_section_at_zero)
17863 {
17864 /* When a static variable is eliminated by the linker,
17865 the corresponding debug information is not stripped
17866 out, but the variable address is set to null;
17867 do not add such variables into symbol table. */
17868 }
17869 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 17870 {
f55ee35c
JK
17871 /* Workaround gfortran PR debug/40040 - it uses
17872 DW_AT_location for variables in -fPIC libraries which may
17873 get overriden by other libraries/executable and get
17874 a different address. Resolve it by the minimal symbol
17875 which may come from inferior's executable using copy
17876 relocation. Make this workaround only for gfortran as for
17877 other compilers GDB cannot guess the minimal symbol
17878 Fortran mangling kind. */
17879 if (cu->language == language_fortran && die->parent
17880 && die->parent->tag == DW_TAG_module
17881 && cu->producer
17882 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
f1e6e072 17883 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 17884
1c809c68
TT
17885 /* A variable with DW_AT_external is never static,
17886 but it may be block-scoped. */
17887 list_to_add = (cu->list_in_scope == &file_symbols
17888 ? &global_symbols : cu->list_in_scope);
1c809c68 17889 }
c906108c 17890 else
e37fd15a 17891 list_to_add = cu->list_in_scope;
c906108c
SS
17892 }
17893 else
17894 {
17895 /* We do not know the address of this symbol.
c5aa993b
JM
17896 If it is an external symbol and we have type information
17897 for it, enter the symbol as a LOC_UNRESOLVED symbol.
17898 The address of the variable will then be determined from
17899 the minimal symbol table whenever the variable is
17900 referenced. */
e142c38c 17901 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
17902
17903 /* Fortran explicitly imports any global symbols to the local
17904 scope by DW_TAG_common_block. */
17905 if (cu->language == language_fortran && die->parent
17906 && die->parent->tag == DW_TAG_common_block)
17907 {
17908 /* SYMBOL_CLASS doesn't matter here because
17909 read_common_block is going to reset it. */
17910 if (!suppress_add)
17911 list_to_add = cu->list_in_scope;
17912 }
17913 else if (attr2 && (DW_UNSND (attr2) != 0)
17914 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 17915 {
0fe7935b
DJ
17916 /* A variable with DW_AT_external is never static, but it
17917 may be block-scoped. */
17918 list_to_add = (cu->list_in_scope == &file_symbols
17919 ? &global_symbols : cu->list_in_scope);
17920
f1e6e072 17921 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 17922 }
442ddf59
JK
17923 else if (!die_is_declaration (die, cu))
17924 {
17925 /* Use the default LOC_OPTIMIZED_OUT class. */
17926 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
17927 if (!suppress_add)
17928 list_to_add = cu->list_in_scope;
442ddf59 17929 }
c906108c
SS
17930 }
17931 break;
17932 case DW_TAG_formal_parameter:
edb3359d
DJ
17933 /* If we are inside a function, mark this as an argument. If
17934 not, we might be looking at an argument to an inlined function
17935 when we do not have enough information to show inlined frames;
17936 pretend it's a local variable in that case so that the user can
17937 still see it. */
17938 if (context_stack_depth > 0
17939 && context_stack[context_stack_depth - 1].name != NULL)
17940 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 17941 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
17942 if (attr)
17943 {
e7c27a73 17944 var_decode_location (attr, sym, cu);
c906108c 17945 }
e142c38c 17946 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
17947 if (attr)
17948 {
e7c27a73 17949 dwarf2_const_value (attr, sym, cu);
c906108c 17950 }
f346a30d 17951
e37fd15a 17952 list_to_add = cu->list_in_scope;
c906108c
SS
17953 break;
17954 case DW_TAG_unspecified_parameters:
17955 /* From varargs functions; gdb doesn't seem to have any
17956 interest in this information, so just ignore it for now.
17957 (FIXME?) */
17958 break;
34eaf542
TT
17959 case DW_TAG_template_type_param:
17960 suppress_add = 1;
17961 /* Fall through. */
c906108c 17962 case DW_TAG_class_type:
680b30c7 17963 case DW_TAG_interface_type:
c906108c
SS
17964 case DW_TAG_structure_type:
17965 case DW_TAG_union_type:
72019c9c 17966 case DW_TAG_set_type:
c906108c 17967 case DW_TAG_enumeration_type:
f1e6e072 17968 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 17969 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 17970
63d06c5c 17971 {
987504bb 17972 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
17973 really ever be static objects: otherwise, if you try
17974 to, say, break of a class's method and you're in a file
17975 which doesn't mention that class, it won't work unless
17976 the check for all static symbols in lookup_symbol_aux
17977 saves you. See the OtherFileClass tests in
17978 gdb.c++/namespace.exp. */
17979
e37fd15a 17980 if (!suppress_add)
34eaf542 17981 {
34eaf542
TT
17982 list_to_add = (cu->list_in_scope == &file_symbols
17983 && (cu->language == language_cplus
17984 || cu->language == language_java)
17985 ? &global_symbols : cu->list_in_scope);
63d06c5c 17986
64382290
TT
17987 /* The semantics of C++ state that "struct foo {
17988 ... }" also defines a typedef for "foo". A Java
17989 class declaration also defines a typedef for the
17990 class. */
17991 if (cu->language == language_cplus
17992 || cu->language == language_java
17993 || cu->language == language_ada)
17994 {
17995 /* The symbol's name is already allocated along
17996 with this objfile, so we don't need to
17997 duplicate it for the type. */
17998 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
17999 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18000 }
63d06c5c
DC
18001 }
18002 }
c906108c
SS
18003 break;
18004 case DW_TAG_typedef:
f1e6e072 18005 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 18006 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18007 list_to_add = cu->list_in_scope;
63d06c5c 18008 break;
c906108c 18009 case DW_TAG_base_type:
a02abb62 18010 case DW_TAG_subrange_type:
f1e6e072 18011 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18012 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18013 list_to_add = cu->list_in_scope;
c906108c
SS
18014 break;
18015 case DW_TAG_enumerator:
e142c38c 18016 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18017 if (attr)
18018 {
e7c27a73 18019 dwarf2_const_value (attr, sym, cu);
c906108c 18020 }
63d06c5c
DC
18021 {
18022 /* NOTE: carlton/2003-11-10: See comment above in the
18023 DW_TAG_class_type, etc. block. */
18024
e142c38c 18025 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
18026 && (cu->language == language_cplus
18027 || cu->language == language_java)
e142c38c 18028 ? &global_symbols : cu->list_in_scope);
63d06c5c 18029 }
c906108c 18030 break;
74921315 18031 case DW_TAG_imported_declaration:
5c4e30ca 18032 case DW_TAG_namespace:
f1e6e072 18033 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 18034 list_to_add = &global_symbols;
5c4e30ca 18035 break;
530e8392
KB
18036 case DW_TAG_module:
18037 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18038 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18039 list_to_add = &global_symbols;
18040 break;
4357ac6c 18041 case DW_TAG_common_block:
f1e6e072 18042 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
18043 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18044 add_symbol_to_list (sym, cu->list_in_scope);
18045 break;
c906108c
SS
18046 default:
18047 /* Not a tag we recognize. Hopefully we aren't processing
18048 trash data, but since we must specifically ignore things
18049 we don't recognize, there is nothing else we should do at
0963b4bd 18050 this point. */
e2e0b3e5 18051 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 18052 dwarf_tag_name (die->tag));
c906108c
SS
18053 break;
18054 }
df8a16a1 18055
e37fd15a
SW
18056 if (suppress_add)
18057 {
18058 sym->hash_next = objfile->template_symbols;
18059 objfile->template_symbols = sym;
18060 list_to_add = NULL;
18061 }
18062
18063 if (list_to_add != NULL)
18064 add_symbol_to_list (sym, list_to_add);
18065
df8a16a1
DJ
18066 /* For the benefit of old versions of GCC, check for anonymous
18067 namespaces based on the demangled name. */
4d4ec4e5 18068 if (!cu->processing_has_namespace_info
94af9270 18069 && cu->language == language_cplus)
a10964d1 18070 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
18071 }
18072 return (sym);
18073}
18074
34eaf542
TT
18075/* A wrapper for new_symbol_full that always allocates a new symbol. */
18076
18077static struct symbol *
18078new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18079{
18080 return new_symbol_full (die, type, cu, NULL);
18081}
18082
98bfdba5
PA
18083/* Given an attr with a DW_FORM_dataN value in host byte order,
18084 zero-extend it as appropriate for the symbol's type. The DWARF
18085 standard (v4) is not entirely clear about the meaning of using
18086 DW_FORM_dataN for a constant with a signed type, where the type is
18087 wider than the data. The conclusion of a discussion on the DWARF
18088 list was that this is unspecified. We choose to always zero-extend
18089 because that is the interpretation long in use by GCC. */
c906108c 18090
98bfdba5 18091static gdb_byte *
ff39bb5e 18092dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 18093 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 18094{
e7c27a73 18095 struct objfile *objfile = cu->objfile;
e17a4113
UW
18096 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18097 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
18098 LONGEST l = DW_UNSND (attr);
18099
18100 if (bits < sizeof (*value) * 8)
18101 {
18102 l &= ((LONGEST) 1 << bits) - 1;
18103 *value = l;
18104 }
18105 else if (bits == sizeof (*value) * 8)
18106 *value = l;
18107 else
18108 {
18109 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18110 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18111 return bytes;
18112 }
18113
18114 return NULL;
18115}
18116
18117/* Read a constant value from an attribute. Either set *VALUE, or if
18118 the value does not fit in *VALUE, set *BYTES - either already
18119 allocated on the objfile obstack, or newly allocated on OBSTACK,
18120 or, set *BATON, if we translated the constant to a location
18121 expression. */
18122
18123static void
ff39bb5e 18124dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
18125 const char *name, struct obstack *obstack,
18126 struct dwarf2_cu *cu,
d521ce57 18127 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
18128 struct dwarf2_locexpr_baton **baton)
18129{
18130 struct objfile *objfile = cu->objfile;
18131 struct comp_unit_head *cu_header = &cu->header;
c906108c 18132 struct dwarf_block *blk;
98bfdba5
PA
18133 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18134 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18135
18136 *value = 0;
18137 *bytes = NULL;
18138 *baton = NULL;
c906108c
SS
18139
18140 switch (attr->form)
18141 {
18142 case DW_FORM_addr:
3019eac3 18143 case DW_FORM_GNU_addr_index:
ac56253d 18144 {
ac56253d
TT
18145 gdb_byte *data;
18146
98bfdba5
PA
18147 if (TYPE_LENGTH (type) != cu_header->addr_size)
18148 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 18149 cu_header->addr_size,
98bfdba5 18150 TYPE_LENGTH (type));
ac56253d
TT
18151 /* Symbols of this form are reasonably rare, so we just
18152 piggyback on the existing location code rather than writing
18153 a new implementation of symbol_computed_ops. */
7919a973 18154 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
98bfdba5
PA
18155 (*baton)->per_cu = cu->per_cu;
18156 gdb_assert ((*baton)->per_cu);
ac56253d 18157
98bfdba5 18158 (*baton)->size = 2 + cu_header->addr_size;
7919a973 18159 data = obstack_alloc (obstack, (*baton)->size);
98bfdba5 18160 (*baton)->data = data;
ac56253d
TT
18161
18162 data[0] = DW_OP_addr;
18163 store_unsigned_integer (&data[1], cu_header->addr_size,
18164 byte_order, DW_ADDR (attr));
18165 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 18166 }
c906108c 18167 break;
4ac36638 18168 case DW_FORM_string:
93b5768b 18169 case DW_FORM_strp:
3019eac3 18170 case DW_FORM_GNU_str_index:
36586728 18171 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
18172 /* DW_STRING is already allocated on the objfile obstack, point
18173 directly to it. */
d521ce57 18174 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 18175 break;
c906108c
SS
18176 case DW_FORM_block1:
18177 case DW_FORM_block2:
18178 case DW_FORM_block4:
18179 case DW_FORM_block:
2dc7f7b3 18180 case DW_FORM_exprloc:
c906108c 18181 blk = DW_BLOCK (attr);
98bfdba5
PA
18182 if (TYPE_LENGTH (type) != blk->size)
18183 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18184 TYPE_LENGTH (type));
18185 *bytes = blk->data;
c906108c 18186 break;
2df3850c
JM
18187
18188 /* The DW_AT_const_value attributes are supposed to carry the
18189 symbol's value "represented as it would be on the target
18190 architecture." By the time we get here, it's already been
18191 converted to host endianness, so we just need to sign- or
18192 zero-extend it as appropriate. */
18193 case DW_FORM_data1:
3aef2284 18194 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 18195 break;
c906108c 18196 case DW_FORM_data2:
3aef2284 18197 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 18198 break;
c906108c 18199 case DW_FORM_data4:
3aef2284 18200 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 18201 break;
c906108c 18202 case DW_FORM_data8:
3aef2284 18203 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
18204 break;
18205
c906108c 18206 case DW_FORM_sdata:
98bfdba5 18207 *value = DW_SND (attr);
2df3850c
JM
18208 break;
18209
c906108c 18210 case DW_FORM_udata:
98bfdba5 18211 *value = DW_UNSND (attr);
c906108c 18212 break;
2df3850c 18213
c906108c 18214 default:
4d3c2250 18215 complaint (&symfile_complaints,
e2e0b3e5 18216 _("unsupported const value attribute form: '%s'"),
4d3c2250 18217 dwarf_form_name (attr->form));
98bfdba5 18218 *value = 0;
c906108c
SS
18219 break;
18220 }
18221}
18222
2df3850c 18223
98bfdba5
PA
18224/* Copy constant value from an attribute to a symbol. */
18225
2df3850c 18226static void
ff39bb5e 18227dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 18228 struct dwarf2_cu *cu)
2df3850c 18229{
98bfdba5
PA
18230 struct objfile *objfile = cu->objfile;
18231 struct comp_unit_head *cu_header = &cu->header;
12df843f 18232 LONGEST value;
d521ce57 18233 const gdb_byte *bytes;
98bfdba5 18234 struct dwarf2_locexpr_baton *baton;
2df3850c 18235
98bfdba5
PA
18236 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18237 SYMBOL_PRINT_NAME (sym),
18238 &objfile->objfile_obstack, cu,
18239 &value, &bytes, &baton);
2df3850c 18240
98bfdba5
PA
18241 if (baton != NULL)
18242 {
98bfdba5 18243 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 18244 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
18245 }
18246 else if (bytes != NULL)
18247 {
18248 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 18249 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
18250 }
18251 else
18252 {
18253 SYMBOL_VALUE (sym) = value;
f1e6e072 18254 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 18255 }
2df3850c
JM
18256}
18257
c906108c
SS
18258/* Return the type of the die in question using its DW_AT_type attribute. */
18259
18260static struct type *
e7c27a73 18261die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18262{
c906108c 18263 struct attribute *type_attr;
c906108c 18264
e142c38c 18265 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
18266 if (!type_attr)
18267 {
18268 /* A missing DW_AT_type represents a void type. */
46bf5051 18269 return objfile_type (cu->objfile)->builtin_void;
c906108c 18270 }
348e048f 18271
673bfd45 18272 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18273}
18274
b4ba55a1
JB
18275/* True iff CU's producer generates GNAT Ada auxiliary information
18276 that allows to find parallel types through that information instead
18277 of having to do expensive parallel lookups by type name. */
18278
18279static int
18280need_gnat_info (struct dwarf2_cu *cu)
18281{
18282 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18283 of GNAT produces this auxiliary information, without any indication
18284 that it is produced. Part of enhancing the FSF version of GNAT
18285 to produce that information will be to put in place an indicator
18286 that we can use in order to determine whether the descriptive type
18287 info is available or not. One suggestion that has been made is
18288 to use a new attribute, attached to the CU die. For now, assume
18289 that the descriptive type info is not available. */
18290 return 0;
18291}
18292
b4ba55a1
JB
18293/* Return the auxiliary type of the die in question using its
18294 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18295 attribute is not present. */
18296
18297static struct type *
18298die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18299{
b4ba55a1 18300 struct attribute *type_attr;
b4ba55a1
JB
18301
18302 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18303 if (!type_attr)
18304 return NULL;
18305
673bfd45 18306 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
18307}
18308
18309/* If DIE has a descriptive_type attribute, then set the TYPE's
18310 descriptive type accordingly. */
18311
18312static void
18313set_descriptive_type (struct type *type, struct die_info *die,
18314 struct dwarf2_cu *cu)
18315{
18316 struct type *descriptive_type = die_descriptive_type (die, cu);
18317
18318 if (descriptive_type)
18319 {
18320 ALLOCATE_GNAT_AUX_TYPE (type);
18321 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18322 }
18323}
18324
c906108c
SS
18325/* Return the containing type of the die in question using its
18326 DW_AT_containing_type attribute. */
18327
18328static struct type *
e7c27a73 18329die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18330{
c906108c 18331 struct attribute *type_attr;
c906108c 18332
e142c38c 18333 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
18334 if (!type_attr)
18335 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 18336 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 18337
673bfd45 18338 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18339}
18340
ac9ec31b
DE
18341/* Return an error marker type to use for the ill formed type in DIE/CU. */
18342
18343static struct type *
18344build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18345{
18346 struct objfile *objfile = dwarf2_per_objfile->objfile;
18347 char *message, *saved;
18348
18349 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 18350 objfile_name (objfile),
ac9ec31b
DE
18351 cu->header.offset.sect_off,
18352 die->offset.sect_off);
18353 saved = obstack_copy0 (&objfile->objfile_obstack,
18354 message, strlen (message));
18355 xfree (message);
18356
18357 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18358}
18359
673bfd45 18360/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
18361 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18362 DW_AT_containing_type.
673bfd45
DE
18363 If there is no type substitute an error marker. */
18364
c906108c 18365static struct type *
ff39bb5e 18366lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 18367 struct dwarf2_cu *cu)
c906108c 18368{
bb5ed363 18369 struct objfile *objfile = cu->objfile;
f792889a
DJ
18370 struct type *this_type;
18371
ac9ec31b
DE
18372 gdb_assert (attr->name == DW_AT_type
18373 || attr->name == DW_AT_GNAT_descriptive_type
18374 || attr->name == DW_AT_containing_type);
18375
673bfd45
DE
18376 /* First see if we have it cached. */
18377
36586728
TT
18378 if (attr->form == DW_FORM_GNU_ref_alt)
18379 {
18380 struct dwarf2_per_cu_data *per_cu;
18381 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18382
18383 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18384 this_type = get_die_type_at_offset (offset, per_cu);
18385 }
7771576e 18386 else if (attr_form_is_ref (attr))
673bfd45 18387 {
b64f50a1 18388 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
18389
18390 this_type = get_die_type_at_offset (offset, cu->per_cu);
18391 }
55f1336d 18392 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 18393 {
ac9ec31b 18394 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 18395
ac9ec31b 18396 return get_signatured_type (die, signature, cu);
673bfd45
DE
18397 }
18398 else
18399 {
ac9ec31b
DE
18400 complaint (&symfile_complaints,
18401 _("Dwarf Error: Bad type attribute %s in DIE"
18402 " at 0x%x [in module %s]"),
18403 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 18404 objfile_name (objfile));
ac9ec31b 18405 return build_error_marker_type (cu, die);
673bfd45
DE
18406 }
18407
18408 /* If not cached we need to read it in. */
18409
18410 if (this_type == NULL)
18411 {
ac9ec31b 18412 struct die_info *type_die = NULL;
673bfd45
DE
18413 struct dwarf2_cu *type_cu = cu;
18414
7771576e 18415 if (attr_form_is_ref (attr))
ac9ec31b
DE
18416 type_die = follow_die_ref (die, attr, &type_cu);
18417 if (type_die == NULL)
18418 return build_error_marker_type (cu, die);
18419 /* If we find the type now, it's probably because the type came
3019eac3
DE
18420 from an inter-CU reference and the type's CU got expanded before
18421 ours. */
ac9ec31b 18422 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
18423 }
18424
18425 /* If we still don't have a type use an error marker. */
18426
18427 if (this_type == NULL)
ac9ec31b 18428 return build_error_marker_type (cu, die);
673bfd45 18429
f792889a 18430 return this_type;
c906108c
SS
18431}
18432
673bfd45
DE
18433/* Return the type in DIE, CU.
18434 Returns NULL for invalid types.
18435
02142a6c 18436 This first does a lookup in die_type_hash,
673bfd45
DE
18437 and only reads the die in if necessary.
18438
18439 NOTE: This can be called when reading in partial or full symbols. */
18440
f792889a 18441static struct type *
e7c27a73 18442read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18443{
f792889a
DJ
18444 struct type *this_type;
18445
18446 this_type = get_die_type (die, cu);
18447 if (this_type)
18448 return this_type;
18449
673bfd45
DE
18450 return read_type_die_1 (die, cu);
18451}
18452
18453/* Read the type in DIE, CU.
18454 Returns NULL for invalid types. */
18455
18456static struct type *
18457read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18458{
18459 struct type *this_type = NULL;
18460
c906108c
SS
18461 switch (die->tag)
18462 {
18463 case DW_TAG_class_type:
680b30c7 18464 case DW_TAG_interface_type:
c906108c
SS
18465 case DW_TAG_structure_type:
18466 case DW_TAG_union_type:
f792889a 18467 this_type = read_structure_type (die, cu);
c906108c
SS
18468 break;
18469 case DW_TAG_enumeration_type:
f792889a 18470 this_type = read_enumeration_type (die, cu);
c906108c
SS
18471 break;
18472 case DW_TAG_subprogram:
18473 case DW_TAG_subroutine_type:
edb3359d 18474 case DW_TAG_inlined_subroutine:
f792889a 18475 this_type = read_subroutine_type (die, cu);
c906108c
SS
18476 break;
18477 case DW_TAG_array_type:
f792889a 18478 this_type = read_array_type (die, cu);
c906108c 18479 break;
72019c9c 18480 case DW_TAG_set_type:
f792889a 18481 this_type = read_set_type (die, cu);
72019c9c 18482 break;
c906108c 18483 case DW_TAG_pointer_type:
f792889a 18484 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
18485 break;
18486 case DW_TAG_ptr_to_member_type:
f792889a 18487 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
18488 break;
18489 case DW_TAG_reference_type:
f792889a 18490 this_type = read_tag_reference_type (die, cu);
c906108c
SS
18491 break;
18492 case DW_TAG_const_type:
f792889a 18493 this_type = read_tag_const_type (die, cu);
c906108c
SS
18494 break;
18495 case DW_TAG_volatile_type:
f792889a 18496 this_type = read_tag_volatile_type (die, cu);
c906108c 18497 break;
06d66ee9
TT
18498 case DW_TAG_restrict_type:
18499 this_type = read_tag_restrict_type (die, cu);
18500 break;
c906108c 18501 case DW_TAG_string_type:
f792889a 18502 this_type = read_tag_string_type (die, cu);
c906108c
SS
18503 break;
18504 case DW_TAG_typedef:
f792889a 18505 this_type = read_typedef (die, cu);
c906108c 18506 break;
a02abb62 18507 case DW_TAG_subrange_type:
f792889a 18508 this_type = read_subrange_type (die, cu);
a02abb62 18509 break;
c906108c 18510 case DW_TAG_base_type:
f792889a 18511 this_type = read_base_type (die, cu);
c906108c 18512 break;
81a17f79 18513 case DW_TAG_unspecified_type:
f792889a 18514 this_type = read_unspecified_type (die, cu);
81a17f79 18515 break;
0114d602
DJ
18516 case DW_TAG_namespace:
18517 this_type = read_namespace_type (die, cu);
18518 break;
f55ee35c
JK
18519 case DW_TAG_module:
18520 this_type = read_module_type (die, cu);
18521 break;
c906108c 18522 default:
3e43a32a
MS
18523 complaint (&symfile_complaints,
18524 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 18525 dwarf_tag_name (die->tag));
c906108c
SS
18526 break;
18527 }
63d06c5c 18528
f792889a 18529 return this_type;
63d06c5c
DC
18530}
18531
abc72ce4
DE
18532/* See if we can figure out if the class lives in a namespace. We do
18533 this by looking for a member function; its demangled name will
18534 contain namespace info, if there is any.
18535 Return the computed name or NULL.
18536 Space for the result is allocated on the objfile's obstack.
18537 This is the full-die version of guess_partial_die_structure_name.
18538 In this case we know DIE has no useful parent. */
18539
18540static char *
18541guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18542{
18543 struct die_info *spec_die;
18544 struct dwarf2_cu *spec_cu;
18545 struct die_info *child;
18546
18547 spec_cu = cu;
18548 spec_die = die_specification (die, &spec_cu);
18549 if (spec_die != NULL)
18550 {
18551 die = spec_die;
18552 cu = spec_cu;
18553 }
18554
18555 for (child = die->child;
18556 child != NULL;
18557 child = child->sibling)
18558 {
18559 if (child->tag == DW_TAG_subprogram)
18560 {
18561 struct attribute *attr;
18562
18563 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18564 if (attr == NULL)
18565 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18566 if (attr != NULL)
18567 {
18568 char *actual_name
18569 = language_class_name_from_physname (cu->language_defn,
18570 DW_STRING (attr));
18571 char *name = NULL;
18572
18573 if (actual_name != NULL)
18574 {
15d034d0 18575 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
18576
18577 if (die_name != NULL
18578 && strcmp (die_name, actual_name) != 0)
18579 {
18580 /* Strip off the class name from the full name.
18581 We want the prefix. */
18582 int die_name_len = strlen (die_name);
18583 int actual_name_len = strlen (actual_name);
18584
18585 /* Test for '::' as a sanity check. */
18586 if (actual_name_len > die_name_len + 2
3e43a32a
MS
18587 && actual_name[actual_name_len
18588 - die_name_len - 1] == ':')
abc72ce4 18589 name =
34a68019 18590 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb
TT
18591 actual_name,
18592 actual_name_len - die_name_len - 2);
abc72ce4
DE
18593 }
18594 }
18595 xfree (actual_name);
18596 return name;
18597 }
18598 }
18599 }
18600
18601 return NULL;
18602}
18603
96408a79
SA
18604/* GCC might emit a nameless typedef that has a linkage name. Determine the
18605 prefix part in such case. See
18606 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18607
18608static char *
18609anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18610{
18611 struct attribute *attr;
18612 char *base;
18613
18614 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18615 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18616 return NULL;
18617
18618 attr = dwarf2_attr (die, DW_AT_name, cu);
18619 if (attr != NULL && DW_STRING (attr) != NULL)
18620 return NULL;
18621
18622 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18623 if (attr == NULL)
18624 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18625 if (attr == NULL || DW_STRING (attr) == NULL)
18626 return NULL;
18627
18628 /* dwarf2_name had to be already called. */
18629 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18630
18631 /* Strip the base name, keep any leading namespaces/classes. */
18632 base = strrchr (DW_STRING (attr), ':');
18633 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18634 return "";
18635
34a68019 18636 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb 18637 DW_STRING (attr), &base[-1] - DW_STRING (attr));
96408a79
SA
18638}
18639
fdde2d81 18640/* Return the name of the namespace/class that DIE is defined within,
0114d602 18641 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 18642
0114d602
DJ
18643 For example, if we're within the method foo() in the following
18644 code:
18645
18646 namespace N {
18647 class C {
18648 void foo () {
18649 }
18650 };
18651 }
18652
18653 then determine_prefix on foo's die will return "N::C". */
fdde2d81 18654
0d5cff50 18655static const char *
e142c38c 18656determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 18657{
0114d602
DJ
18658 struct die_info *parent, *spec_die;
18659 struct dwarf2_cu *spec_cu;
18660 struct type *parent_type;
96408a79 18661 char *retval;
63d06c5c 18662
f55ee35c
JK
18663 if (cu->language != language_cplus && cu->language != language_java
18664 && cu->language != language_fortran)
0114d602
DJ
18665 return "";
18666
96408a79
SA
18667 retval = anonymous_struct_prefix (die, cu);
18668 if (retval)
18669 return retval;
18670
0114d602
DJ
18671 /* We have to be careful in the presence of DW_AT_specification.
18672 For example, with GCC 3.4, given the code
18673
18674 namespace N {
18675 void foo() {
18676 // Definition of N::foo.
18677 }
18678 }
18679
18680 then we'll have a tree of DIEs like this:
18681
18682 1: DW_TAG_compile_unit
18683 2: DW_TAG_namespace // N
18684 3: DW_TAG_subprogram // declaration of N::foo
18685 4: DW_TAG_subprogram // definition of N::foo
18686 DW_AT_specification // refers to die #3
18687
18688 Thus, when processing die #4, we have to pretend that we're in
18689 the context of its DW_AT_specification, namely the contex of die
18690 #3. */
18691 spec_cu = cu;
18692 spec_die = die_specification (die, &spec_cu);
18693 if (spec_die == NULL)
18694 parent = die->parent;
18695 else
63d06c5c 18696 {
0114d602
DJ
18697 parent = spec_die->parent;
18698 cu = spec_cu;
63d06c5c 18699 }
0114d602
DJ
18700
18701 if (parent == NULL)
18702 return "";
98bfdba5
PA
18703 else if (parent->building_fullname)
18704 {
18705 const char *name;
18706 const char *parent_name;
18707
18708 /* It has been seen on RealView 2.2 built binaries,
18709 DW_TAG_template_type_param types actually _defined_ as
18710 children of the parent class:
18711
18712 enum E {};
18713 template class <class Enum> Class{};
18714 Class<enum E> class_e;
18715
18716 1: DW_TAG_class_type (Class)
18717 2: DW_TAG_enumeration_type (E)
18718 3: DW_TAG_enumerator (enum1:0)
18719 3: DW_TAG_enumerator (enum2:1)
18720 ...
18721 2: DW_TAG_template_type_param
18722 DW_AT_type DW_FORM_ref_udata (E)
18723
18724 Besides being broken debug info, it can put GDB into an
18725 infinite loop. Consider:
18726
18727 When we're building the full name for Class<E>, we'll start
18728 at Class, and go look over its template type parameters,
18729 finding E. We'll then try to build the full name of E, and
18730 reach here. We're now trying to build the full name of E,
18731 and look over the parent DIE for containing scope. In the
18732 broken case, if we followed the parent DIE of E, we'd again
18733 find Class, and once again go look at its template type
18734 arguments, etc., etc. Simply don't consider such parent die
18735 as source-level parent of this die (it can't be, the language
18736 doesn't allow it), and break the loop here. */
18737 name = dwarf2_name (die, cu);
18738 parent_name = dwarf2_name (parent, cu);
18739 complaint (&symfile_complaints,
18740 _("template param type '%s' defined within parent '%s'"),
18741 name ? name : "<unknown>",
18742 parent_name ? parent_name : "<unknown>");
18743 return "";
18744 }
63d06c5c 18745 else
0114d602
DJ
18746 switch (parent->tag)
18747 {
63d06c5c 18748 case DW_TAG_namespace:
0114d602 18749 parent_type = read_type_die (parent, cu);
acebe513
UW
18750 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18751 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18752 Work around this problem here. */
18753 if (cu->language == language_cplus
18754 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18755 return "";
0114d602
DJ
18756 /* We give a name to even anonymous namespaces. */
18757 return TYPE_TAG_NAME (parent_type);
63d06c5c 18758 case DW_TAG_class_type:
680b30c7 18759 case DW_TAG_interface_type:
63d06c5c 18760 case DW_TAG_structure_type:
0114d602 18761 case DW_TAG_union_type:
f55ee35c 18762 case DW_TAG_module:
0114d602
DJ
18763 parent_type = read_type_die (parent, cu);
18764 if (TYPE_TAG_NAME (parent_type) != NULL)
18765 return TYPE_TAG_NAME (parent_type);
18766 else
18767 /* An anonymous structure is only allowed non-static data
18768 members; no typedefs, no member functions, et cetera.
18769 So it does not need a prefix. */
18770 return "";
abc72ce4 18771 case DW_TAG_compile_unit:
95554aad 18772 case DW_TAG_partial_unit:
abc72ce4
DE
18773 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18774 if (cu->language == language_cplus
8b70b953 18775 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
18776 && die->child != NULL
18777 && (die->tag == DW_TAG_class_type
18778 || die->tag == DW_TAG_structure_type
18779 || die->tag == DW_TAG_union_type))
18780 {
18781 char *name = guess_full_die_structure_name (die, cu);
18782 if (name != NULL)
18783 return name;
18784 }
18785 return "";
3d567982
TT
18786 case DW_TAG_enumeration_type:
18787 parent_type = read_type_die (parent, cu);
18788 if (TYPE_DECLARED_CLASS (parent_type))
18789 {
18790 if (TYPE_TAG_NAME (parent_type) != NULL)
18791 return TYPE_TAG_NAME (parent_type);
18792 return "";
18793 }
18794 /* Fall through. */
63d06c5c 18795 default:
8176b9b8 18796 return determine_prefix (parent, cu);
63d06c5c 18797 }
63d06c5c
DC
18798}
18799
3e43a32a
MS
18800/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18801 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18802 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18803 an obconcat, otherwise allocate storage for the result. The CU argument is
18804 used to determine the language and hence, the appropriate separator. */
987504bb 18805
f55ee35c 18806#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
18807
18808static char *
f55ee35c
JK
18809typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18810 int physname, struct dwarf2_cu *cu)
63d06c5c 18811{
f55ee35c 18812 const char *lead = "";
5c315b68 18813 const char *sep;
63d06c5c 18814
3e43a32a
MS
18815 if (suffix == NULL || suffix[0] == '\0'
18816 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
18817 sep = "";
18818 else if (cu->language == language_java)
18819 sep = ".";
f55ee35c
JK
18820 else if (cu->language == language_fortran && physname)
18821 {
18822 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18823 DW_AT_MIPS_linkage_name is preferred and used instead. */
18824
18825 lead = "__";
18826 sep = "_MOD_";
18827 }
987504bb
JJ
18828 else
18829 sep = "::";
63d06c5c 18830
6dd47d34
DE
18831 if (prefix == NULL)
18832 prefix = "";
18833 if (suffix == NULL)
18834 suffix = "";
18835
987504bb
JJ
18836 if (obs == NULL)
18837 {
3e43a32a
MS
18838 char *retval
18839 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 18840
f55ee35c
JK
18841 strcpy (retval, lead);
18842 strcat (retval, prefix);
6dd47d34
DE
18843 strcat (retval, sep);
18844 strcat (retval, suffix);
63d06c5c
DC
18845 return retval;
18846 }
987504bb
JJ
18847 else
18848 {
18849 /* We have an obstack. */
f55ee35c 18850 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 18851 }
63d06c5c
DC
18852}
18853
c906108c
SS
18854/* Return sibling of die, NULL if no sibling. */
18855
f9aca02d 18856static struct die_info *
fba45db2 18857sibling_die (struct die_info *die)
c906108c 18858{
639d11d3 18859 return die->sibling;
c906108c
SS
18860}
18861
71c25dea
TT
18862/* Get name of a die, return NULL if not found. */
18863
15d034d0
TT
18864static const char *
18865dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
18866 struct obstack *obstack)
18867{
18868 if (name && cu->language == language_cplus)
18869 {
18870 char *canon_name = cp_canonicalize_string (name);
18871
18872 if (canon_name != NULL)
18873 {
18874 if (strcmp (canon_name, name) != 0)
10f0c4bb 18875 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
71c25dea
TT
18876 xfree (canon_name);
18877 }
18878 }
18879
18880 return name;
c906108c
SS
18881}
18882
9219021c
DC
18883/* Get name of a die, return NULL if not found. */
18884
15d034d0 18885static const char *
e142c38c 18886dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
18887{
18888 struct attribute *attr;
18889
e142c38c 18890 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31
TT
18891 if ((!attr || !DW_STRING (attr))
18892 && die->tag != DW_TAG_class_type
18893 && die->tag != DW_TAG_interface_type
18894 && die->tag != DW_TAG_structure_type
18895 && die->tag != DW_TAG_union_type)
71c25dea
TT
18896 return NULL;
18897
18898 switch (die->tag)
18899 {
18900 case DW_TAG_compile_unit:
95554aad 18901 case DW_TAG_partial_unit:
71c25dea
TT
18902 /* Compilation units have a DW_AT_name that is a filename, not
18903 a source language identifier. */
18904 case DW_TAG_enumeration_type:
18905 case DW_TAG_enumerator:
18906 /* These tags always have simple identifiers already; no need
18907 to canonicalize them. */
18908 return DW_STRING (attr);
907af001 18909
418835cc
KS
18910 case DW_TAG_subprogram:
18911 /* Java constructors will all be named "<init>", so return
18912 the class name when we see this special case. */
18913 if (cu->language == language_java
18914 && DW_STRING (attr) != NULL
18915 && strcmp (DW_STRING (attr), "<init>") == 0)
18916 {
18917 struct dwarf2_cu *spec_cu = cu;
18918 struct die_info *spec_die;
18919
18920 /* GCJ will output '<init>' for Java constructor names.
18921 For this special case, return the name of the parent class. */
18922
18923 /* GCJ may output suprogram DIEs with AT_specification set.
18924 If so, use the name of the specified DIE. */
18925 spec_die = die_specification (die, &spec_cu);
18926 if (spec_die != NULL)
18927 return dwarf2_name (spec_die, spec_cu);
18928
18929 do
18930 {
18931 die = die->parent;
18932 if (die->tag == DW_TAG_class_type)
18933 return dwarf2_name (die, cu);
18934 }
95554aad
TT
18935 while (die->tag != DW_TAG_compile_unit
18936 && die->tag != DW_TAG_partial_unit);
418835cc 18937 }
907af001
UW
18938 break;
18939
18940 case DW_TAG_class_type:
18941 case DW_TAG_interface_type:
18942 case DW_TAG_structure_type:
18943 case DW_TAG_union_type:
18944 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
18945 structures or unions. These were of the form "._%d" in GCC 4.1,
18946 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
18947 and GCC 4.4. We work around this problem by ignoring these. */
53832f31
TT
18948 if (attr && DW_STRING (attr)
18949 && (strncmp (DW_STRING (attr), "._", 2) == 0
18950 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
907af001 18951 return NULL;
53832f31
TT
18952
18953 /* GCC might emit a nameless typedef that has a linkage name. See
18954 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18955 if (!attr || DW_STRING (attr) == NULL)
18956 {
df5c6c50 18957 char *demangled = NULL;
53832f31
TT
18958
18959 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18960 if (attr == NULL)
18961 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18962
18963 if (attr == NULL || DW_STRING (attr) == NULL)
18964 return NULL;
18965
df5c6c50
JK
18966 /* Avoid demangling DW_STRING (attr) the second time on a second
18967 call for the same DIE. */
18968 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 18969 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
18970
18971 if (demangled)
18972 {
96408a79
SA
18973 char *base;
18974
53832f31 18975 /* FIXME: we already did this for the partial symbol... */
34a68019
TT
18976 DW_STRING (attr)
18977 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
18978 demangled, strlen (demangled));
53832f31
TT
18979 DW_STRING_IS_CANONICAL (attr) = 1;
18980 xfree (demangled);
96408a79
SA
18981
18982 /* Strip any leading namespaces/classes, keep only the base name.
18983 DW_AT_name for named DIEs does not contain the prefixes. */
18984 base = strrchr (DW_STRING (attr), ':');
18985 if (base && base > DW_STRING (attr) && base[-1] == ':')
18986 return &base[1];
18987 else
18988 return DW_STRING (attr);
53832f31
TT
18989 }
18990 }
907af001
UW
18991 break;
18992
71c25dea 18993 default:
907af001
UW
18994 break;
18995 }
18996
18997 if (!DW_STRING_IS_CANONICAL (attr))
18998 {
18999 DW_STRING (attr)
19000 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 19001 &cu->objfile->per_bfd->storage_obstack);
907af001 19002 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 19003 }
907af001 19004 return DW_STRING (attr);
9219021c
DC
19005}
19006
19007/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
19008 is none. *EXT_CU is the CU containing DIE on input, and the CU
19009 containing the return value on output. */
9219021c
DC
19010
19011static struct die_info *
f2f0e013 19012dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
19013{
19014 struct attribute *attr;
9219021c 19015
f2f0e013 19016 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
19017 if (attr == NULL)
19018 return NULL;
19019
f2f0e013 19020 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
19021}
19022
c906108c
SS
19023/* Convert a DIE tag into its string name. */
19024
f39c6ffd 19025static const char *
aa1ee363 19026dwarf_tag_name (unsigned tag)
c906108c 19027{
f39c6ffd
TT
19028 const char *name = get_DW_TAG_name (tag);
19029
19030 if (name == NULL)
19031 return "DW_TAG_<unknown>";
19032
19033 return name;
c906108c
SS
19034}
19035
19036/* Convert a DWARF attribute code into its string name. */
19037
f39c6ffd 19038static const char *
aa1ee363 19039dwarf_attr_name (unsigned attr)
c906108c 19040{
f39c6ffd
TT
19041 const char *name;
19042
c764a876 19043#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
19044 if (attr == DW_AT_MIPS_fde)
19045 return "DW_AT_MIPS_fde";
19046#else
19047 if (attr == DW_AT_HP_block_index)
19048 return "DW_AT_HP_block_index";
c764a876 19049#endif
f39c6ffd
TT
19050
19051 name = get_DW_AT_name (attr);
19052
19053 if (name == NULL)
19054 return "DW_AT_<unknown>";
19055
19056 return name;
c906108c
SS
19057}
19058
19059/* Convert a DWARF value form code into its string name. */
19060
f39c6ffd 19061static const char *
aa1ee363 19062dwarf_form_name (unsigned form)
c906108c 19063{
f39c6ffd
TT
19064 const char *name = get_DW_FORM_name (form);
19065
19066 if (name == NULL)
19067 return "DW_FORM_<unknown>";
19068
19069 return name;
c906108c
SS
19070}
19071
19072static char *
fba45db2 19073dwarf_bool_name (unsigned mybool)
c906108c
SS
19074{
19075 if (mybool)
19076 return "TRUE";
19077 else
19078 return "FALSE";
19079}
19080
19081/* Convert a DWARF type code into its string name. */
19082
f39c6ffd 19083static const char *
aa1ee363 19084dwarf_type_encoding_name (unsigned enc)
c906108c 19085{
f39c6ffd 19086 const char *name = get_DW_ATE_name (enc);
c906108c 19087
f39c6ffd
TT
19088 if (name == NULL)
19089 return "DW_ATE_<unknown>";
c906108c 19090
f39c6ffd 19091 return name;
c906108c 19092}
c906108c 19093
f9aca02d 19094static void
d97bc12b 19095dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
19096{
19097 unsigned int i;
19098
d97bc12b
DE
19099 print_spaces (indent, f);
19100 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 19101 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
19102
19103 if (die->parent != NULL)
19104 {
19105 print_spaces (indent, f);
19106 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 19107 die->parent->offset.sect_off);
d97bc12b
DE
19108 }
19109
19110 print_spaces (indent, f);
19111 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 19112 dwarf_bool_name (die->child != NULL));
c906108c 19113
d97bc12b
DE
19114 print_spaces (indent, f);
19115 fprintf_unfiltered (f, " attributes:\n");
19116
c906108c
SS
19117 for (i = 0; i < die->num_attrs; ++i)
19118 {
d97bc12b
DE
19119 print_spaces (indent, f);
19120 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
19121 dwarf_attr_name (die->attrs[i].name),
19122 dwarf_form_name (die->attrs[i].form));
d97bc12b 19123
c906108c
SS
19124 switch (die->attrs[i].form)
19125 {
c906108c 19126 case DW_FORM_addr:
3019eac3 19127 case DW_FORM_GNU_addr_index:
d97bc12b 19128 fprintf_unfiltered (f, "address: ");
5af949e3 19129 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
19130 break;
19131 case DW_FORM_block2:
19132 case DW_FORM_block4:
19133 case DW_FORM_block:
19134 case DW_FORM_block1:
56eb65bd
SP
19135 fprintf_unfiltered (f, "block: size %s",
19136 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 19137 break;
2dc7f7b3 19138 case DW_FORM_exprloc:
56eb65bd
SP
19139 fprintf_unfiltered (f, "expression: size %s",
19140 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 19141 break;
4568ecf9
DE
19142 case DW_FORM_ref_addr:
19143 fprintf_unfiltered (f, "ref address: ");
19144 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19145 break;
36586728
TT
19146 case DW_FORM_GNU_ref_alt:
19147 fprintf_unfiltered (f, "alt ref address: ");
19148 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19149 break;
10b3939b
DJ
19150 case DW_FORM_ref1:
19151 case DW_FORM_ref2:
19152 case DW_FORM_ref4:
4568ecf9
DE
19153 case DW_FORM_ref8:
19154 case DW_FORM_ref_udata:
d97bc12b 19155 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 19156 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 19157 break;
c906108c
SS
19158 case DW_FORM_data1:
19159 case DW_FORM_data2:
19160 case DW_FORM_data4:
ce5d95e1 19161 case DW_FORM_data8:
c906108c
SS
19162 case DW_FORM_udata:
19163 case DW_FORM_sdata:
43bbcdc2
PH
19164 fprintf_unfiltered (f, "constant: %s",
19165 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 19166 break;
2dc7f7b3
TT
19167 case DW_FORM_sec_offset:
19168 fprintf_unfiltered (f, "section offset: %s",
19169 pulongest (DW_UNSND (&die->attrs[i])));
19170 break;
55f1336d 19171 case DW_FORM_ref_sig8:
ac9ec31b
DE
19172 fprintf_unfiltered (f, "signature: %s",
19173 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 19174 break;
c906108c 19175 case DW_FORM_string:
4bdf3d34 19176 case DW_FORM_strp:
3019eac3 19177 case DW_FORM_GNU_str_index:
36586728 19178 case DW_FORM_GNU_strp_alt:
8285870a 19179 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 19180 DW_STRING (&die->attrs[i])
8285870a
JK
19181 ? DW_STRING (&die->attrs[i]) : "",
19182 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
19183 break;
19184 case DW_FORM_flag:
19185 if (DW_UNSND (&die->attrs[i]))
d97bc12b 19186 fprintf_unfiltered (f, "flag: TRUE");
c906108c 19187 else
d97bc12b 19188 fprintf_unfiltered (f, "flag: FALSE");
c906108c 19189 break;
2dc7f7b3
TT
19190 case DW_FORM_flag_present:
19191 fprintf_unfiltered (f, "flag: TRUE");
19192 break;
a8329558 19193 case DW_FORM_indirect:
0963b4bd
MS
19194 /* The reader will have reduced the indirect form to
19195 the "base form" so this form should not occur. */
3e43a32a
MS
19196 fprintf_unfiltered (f,
19197 "unexpected attribute form: DW_FORM_indirect");
a8329558 19198 break;
c906108c 19199 default:
d97bc12b 19200 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 19201 die->attrs[i].form);
d97bc12b 19202 break;
c906108c 19203 }
d97bc12b 19204 fprintf_unfiltered (f, "\n");
c906108c
SS
19205 }
19206}
19207
f9aca02d 19208static void
d97bc12b 19209dump_die_for_error (struct die_info *die)
c906108c 19210{
d97bc12b
DE
19211 dump_die_shallow (gdb_stderr, 0, die);
19212}
19213
19214static void
19215dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19216{
19217 int indent = level * 4;
19218
19219 gdb_assert (die != NULL);
19220
19221 if (level >= max_level)
19222 return;
19223
19224 dump_die_shallow (f, indent, die);
19225
19226 if (die->child != NULL)
c906108c 19227 {
d97bc12b
DE
19228 print_spaces (indent, f);
19229 fprintf_unfiltered (f, " Children:");
19230 if (level + 1 < max_level)
19231 {
19232 fprintf_unfiltered (f, "\n");
19233 dump_die_1 (f, level + 1, max_level, die->child);
19234 }
19235 else
19236 {
3e43a32a
MS
19237 fprintf_unfiltered (f,
19238 " [not printed, max nesting level reached]\n");
d97bc12b
DE
19239 }
19240 }
19241
19242 if (die->sibling != NULL && level > 0)
19243 {
19244 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
19245 }
19246}
19247
d97bc12b
DE
19248/* This is called from the pdie macro in gdbinit.in.
19249 It's not static so gcc will keep a copy callable from gdb. */
19250
19251void
19252dump_die (struct die_info *die, int max_level)
19253{
19254 dump_die_1 (gdb_stdlog, 0, max_level, die);
19255}
19256
f9aca02d 19257static void
51545339 19258store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19259{
51545339 19260 void **slot;
c906108c 19261
b64f50a1
JK
19262 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19263 INSERT);
51545339
DJ
19264
19265 *slot = die;
c906108c
SS
19266}
19267
b64f50a1
JK
19268/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19269 required kind. */
19270
19271static sect_offset
ff39bb5e 19272dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 19273{
4568ecf9 19274 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 19275
7771576e 19276 if (attr_form_is_ref (attr))
b64f50a1 19277 return retval;
93311388 19278
b64f50a1 19279 retval.sect_off = 0;
93311388
DE
19280 complaint (&symfile_complaints,
19281 _("unsupported die ref attribute form: '%s'"),
19282 dwarf_form_name (attr->form));
b64f50a1 19283 return retval;
c906108c
SS
19284}
19285
43bbcdc2
PH
19286/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19287 * the value held by the attribute is not constant. */
a02abb62 19288
43bbcdc2 19289static LONGEST
ff39bb5e 19290dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
19291{
19292 if (attr->form == DW_FORM_sdata)
19293 return DW_SND (attr);
19294 else if (attr->form == DW_FORM_udata
19295 || attr->form == DW_FORM_data1
19296 || attr->form == DW_FORM_data2
19297 || attr->form == DW_FORM_data4
19298 || attr->form == DW_FORM_data8)
19299 return DW_UNSND (attr);
19300 else
19301 {
3e43a32a
MS
19302 complaint (&symfile_complaints,
19303 _("Attribute value is not a constant (%s)"),
a02abb62
JB
19304 dwarf_form_name (attr->form));
19305 return default_value;
19306 }
19307}
19308
348e048f
DE
19309/* Follow reference or signature attribute ATTR of SRC_DIE.
19310 On entry *REF_CU is the CU of SRC_DIE.
19311 On exit *REF_CU is the CU of the result. */
19312
19313static struct die_info *
ff39bb5e 19314follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
19315 struct dwarf2_cu **ref_cu)
19316{
19317 struct die_info *die;
19318
7771576e 19319 if (attr_form_is_ref (attr))
348e048f 19320 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 19321 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
19322 die = follow_die_sig (src_die, attr, ref_cu);
19323 else
19324 {
19325 dump_die_for_error (src_die);
19326 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 19327 objfile_name ((*ref_cu)->objfile));
348e048f
DE
19328 }
19329
19330 return die;
03dd20cc
DJ
19331}
19332
5c631832 19333/* Follow reference OFFSET.
673bfd45
DE
19334 On entry *REF_CU is the CU of the source die referencing OFFSET.
19335 On exit *REF_CU is the CU of the result.
19336 Returns NULL if OFFSET is invalid. */
f504f079 19337
f9aca02d 19338static struct die_info *
36586728
TT
19339follow_die_offset (sect_offset offset, int offset_in_dwz,
19340 struct dwarf2_cu **ref_cu)
c906108c 19341{
10b3939b 19342 struct die_info temp_die;
f2f0e013 19343 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 19344
348e048f
DE
19345 gdb_assert (cu->per_cu != NULL);
19346
98bfdba5
PA
19347 target_cu = cu;
19348
3019eac3 19349 if (cu->per_cu->is_debug_types)
348e048f
DE
19350 {
19351 /* .debug_types CUs cannot reference anything outside their CU.
19352 If they need to, they have to reference a signatured type via
55f1336d 19353 DW_FORM_ref_sig8. */
348e048f 19354 if (! offset_in_cu_p (&cu->header, offset))
5c631832 19355 return NULL;
348e048f 19356 }
36586728
TT
19357 else if (offset_in_dwz != cu->per_cu->is_dwz
19358 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
19359 {
19360 struct dwarf2_per_cu_data *per_cu;
9a619af0 19361
36586728
TT
19362 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19363 cu->objfile);
03dd20cc
DJ
19364
19365 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
19366 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19367 load_full_comp_unit (per_cu, cu->language);
03dd20cc 19368
10b3939b
DJ
19369 target_cu = per_cu->cu;
19370 }
98bfdba5
PA
19371 else if (cu->dies == NULL)
19372 {
19373 /* We're loading full DIEs during partial symbol reading. */
19374 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 19375 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 19376 }
c906108c 19377
f2f0e013 19378 *ref_cu = target_cu;
51545339 19379 temp_die.offset = offset;
b64f50a1 19380 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
5c631832 19381}
10b3939b 19382
5c631832
JK
19383/* Follow reference attribute ATTR of SRC_DIE.
19384 On entry *REF_CU is the CU of SRC_DIE.
19385 On exit *REF_CU is the CU of the result. */
19386
19387static struct die_info *
ff39bb5e 19388follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
19389 struct dwarf2_cu **ref_cu)
19390{
b64f50a1 19391 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
19392 struct dwarf2_cu *cu = *ref_cu;
19393 struct die_info *die;
19394
36586728
TT
19395 die = follow_die_offset (offset,
19396 (attr->form == DW_FORM_GNU_ref_alt
19397 || cu->per_cu->is_dwz),
19398 ref_cu);
5c631832
JK
19399 if (!die)
19400 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19401 "at 0x%x [in module %s]"),
4262abfb
JK
19402 offset.sect_off, src_die->offset.sect_off,
19403 objfile_name (cu->objfile));
348e048f 19404
5c631832
JK
19405 return die;
19406}
19407
d83e736b
JK
19408/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19409 Returned value is intended for DW_OP_call*. Returned
19410 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
19411
19412struct dwarf2_locexpr_baton
8b9737bf
TT
19413dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19414 struct dwarf2_per_cu_data *per_cu,
19415 CORE_ADDR (*get_frame_pc) (void *baton),
19416 void *baton)
5c631832 19417{
918dd910 19418 struct dwarf2_cu *cu;
5c631832
JK
19419 struct die_info *die;
19420 struct attribute *attr;
19421 struct dwarf2_locexpr_baton retval;
19422
8cf6f0b1
TT
19423 dw2_setup (per_cu->objfile);
19424
918dd910
JK
19425 if (per_cu->cu == NULL)
19426 load_cu (per_cu);
19427 cu = per_cu->cu;
19428
36586728 19429 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
19430 if (!die)
19431 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 19432 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
19433
19434 attr = dwarf2_attr (die, DW_AT_location, cu);
19435 if (!attr)
19436 {
e103e986
JK
19437 /* DWARF: "If there is no such attribute, then there is no effect.".
19438 DATA is ignored if SIZE is 0. */
5c631832 19439
e103e986 19440 retval.data = NULL;
5c631832
JK
19441 retval.size = 0;
19442 }
8cf6f0b1
TT
19443 else if (attr_form_is_section_offset (attr))
19444 {
19445 struct dwarf2_loclist_baton loclist_baton;
19446 CORE_ADDR pc = (*get_frame_pc) (baton);
19447 size_t size;
19448
19449 fill_in_loclist_baton (cu, &loclist_baton, attr);
19450
19451 retval.data = dwarf2_find_location_expression (&loclist_baton,
19452 &size, pc);
19453 retval.size = size;
19454 }
5c631832
JK
19455 else
19456 {
19457 if (!attr_form_is_block (attr))
19458 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19459 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 19460 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
19461
19462 retval.data = DW_BLOCK (attr)->data;
19463 retval.size = DW_BLOCK (attr)->size;
19464 }
19465 retval.per_cu = cu->per_cu;
918dd910 19466
918dd910
JK
19467 age_cached_comp_units ();
19468
5c631832 19469 return retval;
348e048f
DE
19470}
19471
8b9737bf
TT
19472/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19473 offset. */
19474
19475struct dwarf2_locexpr_baton
19476dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19477 struct dwarf2_per_cu_data *per_cu,
19478 CORE_ADDR (*get_frame_pc) (void *baton),
19479 void *baton)
19480{
19481 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19482
19483 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19484}
19485
b6807d98
TT
19486/* Write a constant of a given type as target-ordered bytes into
19487 OBSTACK. */
19488
19489static const gdb_byte *
19490write_constant_as_bytes (struct obstack *obstack,
19491 enum bfd_endian byte_order,
19492 struct type *type,
19493 ULONGEST value,
19494 LONGEST *len)
19495{
19496 gdb_byte *result;
19497
19498 *len = TYPE_LENGTH (type);
19499 result = obstack_alloc (obstack, *len);
19500 store_unsigned_integer (result, *len, byte_order, value);
19501
19502 return result;
19503}
19504
19505/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19506 pointer to the constant bytes and set LEN to the length of the
19507 data. If memory is needed, allocate it on OBSTACK. If the DIE
19508 does not have a DW_AT_const_value, return NULL. */
19509
19510const gdb_byte *
19511dwarf2_fetch_constant_bytes (sect_offset offset,
19512 struct dwarf2_per_cu_data *per_cu,
19513 struct obstack *obstack,
19514 LONGEST *len)
19515{
19516 struct dwarf2_cu *cu;
19517 struct die_info *die;
19518 struct attribute *attr;
19519 const gdb_byte *result = NULL;
19520 struct type *type;
19521 LONGEST value;
19522 enum bfd_endian byte_order;
19523
19524 dw2_setup (per_cu->objfile);
19525
19526 if (per_cu->cu == NULL)
19527 load_cu (per_cu);
19528 cu = per_cu->cu;
19529
19530 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19531 if (!die)
19532 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 19533 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
19534
19535
19536 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19537 if (attr == NULL)
19538 return NULL;
19539
19540 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19541 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19542
19543 switch (attr->form)
19544 {
19545 case DW_FORM_addr:
19546 case DW_FORM_GNU_addr_index:
19547 {
19548 gdb_byte *tem;
19549
19550 *len = cu->header.addr_size;
19551 tem = obstack_alloc (obstack, *len);
19552 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19553 result = tem;
19554 }
19555 break;
19556 case DW_FORM_string:
19557 case DW_FORM_strp:
19558 case DW_FORM_GNU_str_index:
19559 case DW_FORM_GNU_strp_alt:
19560 /* DW_STRING is already allocated on the objfile obstack, point
19561 directly to it. */
19562 result = (const gdb_byte *) DW_STRING (attr);
19563 *len = strlen (DW_STRING (attr));
19564 break;
19565 case DW_FORM_block1:
19566 case DW_FORM_block2:
19567 case DW_FORM_block4:
19568 case DW_FORM_block:
19569 case DW_FORM_exprloc:
19570 result = DW_BLOCK (attr)->data;
19571 *len = DW_BLOCK (attr)->size;
19572 break;
19573
19574 /* The DW_AT_const_value attributes are supposed to carry the
19575 symbol's value "represented as it would be on the target
19576 architecture." By the time we get here, it's already been
19577 converted to host endianness, so we just need to sign- or
19578 zero-extend it as appropriate. */
19579 case DW_FORM_data1:
19580 type = die_type (die, cu);
19581 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19582 if (result == NULL)
19583 result = write_constant_as_bytes (obstack, byte_order,
19584 type, value, len);
19585 break;
19586 case DW_FORM_data2:
19587 type = die_type (die, cu);
19588 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19589 if (result == NULL)
19590 result = write_constant_as_bytes (obstack, byte_order,
19591 type, value, len);
19592 break;
19593 case DW_FORM_data4:
19594 type = die_type (die, cu);
19595 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19596 if (result == NULL)
19597 result = write_constant_as_bytes (obstack, byte_order,
19598 type, value, len);
19599 break;
19600 case DW_FORM_data8:
19601 type = die_type (die, cu);
19602 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19603 if (result == NULL)
19604 result = write_constant_as_bytes (obstack, byte_order,
19605 type, value, len);
19606 break;
19607
19608 case DW_FORM_sdata:
19609 type = die_type (die, cu);
19610 result = write_constant_as_bytes (obstack, byte_order,
19611 type, DW_SND (attr), len);
19612 break;
19613
19614 case DW_FORM_udata:
19615 type = die_type (die, cu);
19616 result = write_constant_as_bytes (obstack, byte_order,
19617 type, DW_UNSND (attr), len);
19618 break;
19619
19620 default:
19621 complaint (&symfile_complaints,
19622 _("unsupported const value attribute form: '%s'"),
19623 dwarf_form_name (attr->form));
19624 break;
19625 }
19626
19627 return result;
19628}
19629
8a9b8146
TT
19630/* Return the type of the DIE at DIE_OFFSET in the CU named by
19631 PER_CU. */
19632
19633struct type *
b64f50a1 19634dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
19635 struct dwarf2_per_cu_data *per_cu)
19636{
b64f50a1
JK
19637 sect_offset die_offset_sect;
19638
8a9b8146 19639 dw2_setup (per_cu->objfile);
b64f50a1
JK
19640
19641 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19642 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
19643}
19644
ac9ec31b 19645/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 19646 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
19647 On exit *REF_CU is the CU of the result.
19648 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
19649
19650static struct die_info *
ac9ec31b
DE
19651follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19652 struct dwarf2_cu **ref_cu)
348e048f
DE
19653{
19654 struct objfile *objfile = (*ref_cu)->objfile;
19655 struct die_info temp_die;
348e048f
DE
19656 struct dwarf2_cu *sig_cu;
19657 struct die_info *die;
19658
ac9ec31b
DE
19659 /* While it might be nice to assert sig_type->type == NULL here,
19660 we can get here for DW_AT_imported_declaration where we need
19661 the DIE not the type. */
348e048f
DE
19662
19663 /* If necessary, add it to the queue and load its DIEs. */
19664
95554aad 19665 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 19666 read_signatured_type (sig_type);
348e048f 19667
348e048f 19668 sig_cu = sig_type->per_cu.cu;
69d751e3 19669 gdb_assert (sig_cu != NULL);
3019eac3
DE
19670 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19671 temp_die.offset = sig_type->type_offset_in_section;
b64f50a1
JK
19672 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19673 temp_die.offset.sect_off);
348e048f
DE
19674 if (die)
19675 {
796a7ff8
DE
19676 /* For .gdb_index version 7 keep track of included TUs.
19677 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19678 if (dwarf2_per_objfile->index_table != NULL
19679 && dwarf2_per_objfile->index_table->version <= 7)
19680 {
19681 VEC_safe_push (dwarf2_per_cu_ptr,
19682 (*ref_cu)->per_cu->imported_symtabs,
19683 sig_cu->per_cu);
19684 }
19685
348e048f
DE
19686 *ref_cu = sig_cu;
19687 return die;
19688 }
19689
ac9ec31b
DE
19690 return NULL;
19691}
19692
19693/* Follow signatured type referenced by ATTR in SRC_DIE.
19694 On entry *REF_CU is the CU of SRC_DIE.
19695 On exit *REF_CU is the CU of the result.
19696 The result is the DIE of the type.
19697 If the referenced type cannot be found an error is thrown. */
19698
19699static struct die_info *
ff39bb5e 19700follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
19701 struct dwarf2_cu **ref_cu)
19702{
19703 ULONGEST signature = DW_SIGNATURE (attr);
19704 struct signatured_type *sig_type;
19705 struct die_info *die;
19706
19707 gdb_assert (attr->form == DW_FORM_ref_sig8);
19708
a2ce51a0 19709 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
19710 /* sig_type will be NULL if the signatured type is missing from
19711 the debug info. */
19712 if (sig_type == NULL)
19713 {
19714 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19715 " from DIE at 0x%x [in module %s]"),
19716 hex_string (signature), src_die->offset.sect_off,
4262abfb 19717 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
19718 }
19719
19720 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19721 if (die == NULL)
19722 {
19723 dump_die_for_error (src_die);
19724 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19725 " from DIE at 0x%x [in module %s]"),
19726 hex_string (signature), src_die->offset.sect_off,
4262abfb 19727 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
19728 }
19729
19730 return die;
19731}
19732
19733/* Get the type specified by SIGNATURE referenced in DIE/CU,
19734 reading in and processing the type unit if necessary. */
19735
19736static struct type *
19737get_signatured_type (struct die_info *die, ULONGEST signature,
19738 struct dwarf2_cu *cu)
19739{
19740 struct signatured_type *sig_type;
19741 struct dwarf2_cu *type_cu;
19742 struct die_info *type_die;
19743 struct type *type;
19744
a2ce51a0 19745 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
19746 /* sig_type will be NULL if the signatured type is missing from
19747 the debug info. */
19748 if (sig_type == NULL)
19749 {
19750 complaint (&symfile_complaints,
19751 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19752 " from DIE at 0x%x [in module %s]"),
19753 hex_string (signature), die->offset.sect_off,
4262abfb 19754 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19755 return build_error_marker_type (cu, die);
19756 }
19757
19758 /* If we already know the type we're done. */
19759 if (sig_type->type != NULL)
19760 return sig_type->type;
19761
19762 type_cu = cu;
19763 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19764 if (type_die != NULL)
19765 {
19766 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19767 is created. This is important, for example, because for c++ classes
19768 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19769 type = read_type_die (type_die, type_cu);
19770 if (type == NULL)
19771 {
19772 complaint (&symfile_complaints,
19773 _("Dwarf Error: Cannot build signatured type %s"
19774 " referenced from DIE at 0x%x [in module %s]"),
19775 hex_string (signature), die->offset.sect_off,
4262abfb 19776 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19777 type = build_error_marker_type (cu, die);
19778 }
19779 }
19780 else
19781 {
19782 complaint (&symfile_complaints,
19783 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19784 " from DIE at 0x%x [in module %s]"),
19785 hex_string (signature), die->offset.sect_off,
4262abfb 19786 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19787 type = build_error_marker_type (cu, die);
19788 }
19789 sig_type->type = type;
19790
19791 return type;
19792}
19793
19794/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19795 reading in and processing the type unit if necessary. */
19796
19797static struct type *
ff39bb5e 19798get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 19799 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
19800{
19801 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 19802 if (attr_form_is_ref (attr))
ac9ec31b
DE
19803 {
19804 struct dwarf2_cu *type_cu = cu;
19805 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19806
19807 return read_type_die (type_die, type_cu);
19808 }
19809 else if (attr->form == DW_FORM_ref_sig8)
19810 {
19811 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19812 }
19813 else
19814 {
19815 complaint (&symfile_complaints,
19816 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19817 " at 0x%x [in module %s]"),
19818 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 19819 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19820 return build_error_marker_type (cu, die);
19821 }
348e048f
DE
19822}
19823
e5fe5e75 19824/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
19825
19826static void
e5fe5e75 19827load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 19828{
52dc124a 19829 struct signatured_type *sig_type;
348e048f 19830
f4dc4d17
DE
19831 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19832 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19833
6721b2ec
DE
19834 /* We have the per_cu, but we need the signatured_type.
19835 Fortunately this is an easy translation. */
19836 gdb_assert (per_cu->is_debug_types);
19837 sig_type = (struct signatured_type *) per_cu;
348e048f 19838
6721b2ec 19839 gdb_assert (per_cu->cu == NULL);
348e048f 19840
52dc124a 19841 read_signatured_type (sig_type);
348e048f 19842
6721b2ec 19843 gdb_assert (per_cu->cu != NULL);
348e048f
DE
19844}
19845
dee91e82
DE
19846/* die_reader_func for read_signatured_type.
19847 This is identical to load_full_comp_unit_reader,
19848 but is kept separate for now. */
348e048f
DE
19849
19850static void
dee91e82 19851read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 19852 const gdb_byte *info_ptr,
dee91e82
DE
19853 struct die_info *comp_unit_die,
19854 int has_children,
19855 void *data)
348e048f 19856{
dee91e82 19857 struct dwarf2_cu *cu = reader->cu;
348e048f 19858
dee91e82
DE
19859 gdb_assert (cu->die_hash == NULL);
19860 cu->die_hash =
19861 htab_create_alloc_ex (cu->header.length / 12,
19862 die_hash,
19863 die_eq,
19864 NULL,
19865 &cu->comp_unit_obstack,
19866 hashtab_obstack_allocate,
19867 dummy_obstack_deallocate);
348e048f 19868
dee91e82
DE
19869 if (has_children)
19870 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19871 &info_ptr, comp_unit_die);
19872 cu->dies = comp_unit_die;
19873 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
19874
19875 /* We try not to read any attributes in this function, because not
9cdd5dbd 19876 all CUs needed for references have been loaded yet, and symbol
348e048f 19877 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
19878 or we won't be able to build types correctly.
19879 Similarly, if we do not read the producer, we can not apply
19880 producer-specific interpretation. */
95554aad 19881 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 19882}
348e048f 19883
3019eac3
DE
19884/* Read in a signatured type and build its CU and DIEs.
19885 If the type is a stub for the real type in a DWO file,
19886 read in the real type from the DWO file as well. */
dee91e82
DE
19887
19888static void
19889read_signatured_type (struct signatured_type *sig_type)
19890{
19891 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 19892
3019eac3 19893 gdb_assert (per_cu->is_debug_types);
dee91e82 19894 gdb_assert (per_cu->cu == NULL);
348e048f 19895
f4dc4d17
DE
19896 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
19897 read_signatured_type_reader, NULL);
7ee85ab1 19898 sig_type->per_cu.tu_read = 1;
c906108c
SS
19899}
19900
c906108c
SS
19901/* Decode simple location descriptions.
19902 Given a pointer to a dwarf block that defines a location, compute
19903 the location and return the value.
19904
4cecd739
DJ
19905 NOTE drow/2003-11-18: This function is called in two situations
19906 now: for the address of static or global variables (partial symbols
19907 only) and for offsets into structures which are expected to be
19908 (more or less) constant. The partial symbol case should go away,
19909 and only the constant case should remain. That will let this
19910 function complain more accurately. A few special modes are allowed
19911 without complaint for global variables (for instance, global
19912 register values and thread-local values).
c906108c
SS
19913
19914 A location description containing no operations indicates that the
4cecd739 19915 object is optimized out. The return value is 0 for that case.
6b992462
DJ
19916 FIXME drow/2003-11-16: No callers check for this case any more; soon all
19917 callers will only want a very basic result and this can become a
21ae7a4d
JK
19918 complaint.
19919
19920 Note that stack[0] is unused except as a default error return. */
c906108c
SS
19921
19922static CORE_ADDR
e7c27a73 19923decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 19924{
e7c27a73 19925 struct objfile *objfile = cu->objfile;
56eb65bd
SP
19926 size_t i;
19927 size_t size = blk->size;
d521ce57 19928 const gdb_byte *data = blk->data;
21ae7a4d
JK
19929 CORE_ADDR stack[64];
19930 int stacki;
19931 unsigned int bytes_read, unsnd;
19932 gdb_byte op;
c906108c 19933
21ae7a4d
JK
19934 i = 0;
19935 stacki = 0;
19936 stack[stacki] = 0;
19937 stack[++stacki] = 0;
19938
19939 while (i < size)
19940 {
19941 op = data[i++];
19942 switch (op)
19943 {
19944 case DW_OP_lit0:
19945 case DW_OP_lit1:
19946 case DW_OP_lit2:
19947 case DW_OP_lit3:
19948 case DW_OP_lit4:
19949 case DW_OP_lit5:
19950 case DW_OP_lit6:
19951 case DW_OP_lit7:
19952 case DW_OP_lit8:
19953 case DW_OP_lit9:
19954 case DW_OP_lit10:
19955 case DW_OP_lit11:
19956 case DW_OP_lit12:
19957 case DW_OP_lit13:
19958 case DW_OP_lit14:
19959 case DW_OP_lit15:
19960 case DW_OP_lit16:
19961 case DW_OP_lit17:
19962 case DW_OP_lit18:
19963 case DW_OP_lit19:
19964 case DW_OP_lit20:
19965 case DW_OP_lit21:
19966 case DW_OP_lit22:
19967 case DW_OP_lit23:
19968 case DW_OP_lit24:
19969 case DW_OP_lit25:
19970 case DW_OP_lit26:
19971 case DW_OP_lit27:
19972 case DW_OP_lit28:
19973 case DW_OP_lit29:
19974 case DW_OP_lit30:
19975 case DW_OP_lit31:
19976 stack[++stacki] = op - DW_OP_lit0;
19977 break;
f1bea926 19978
21ae7a4d
JK
19979 case DW_OP_reg0:
19980 case DW_OP_reg1:
19981 case DW_OP_reg2:
19982 case DW_OP_reg3:
19983 case DW_OP_reg4:
19984 case DW_OP_reg5:
19985 case DW_OP_reg6:
19986 case DW_OP_reg7:
19987 case DW_OP_reg8:
19988 case DW_OP_reg9:
19989 case DW_OP_reg10:
19990 case DW_OP_reg11:
19991 case DW_OP_reg12:
19992 case DW_OP_reg13:
19993 case DW_OP_reg14:
19994 case DW_OP_reg15:
19995 case DW_OP_reg16:
19996 case DW_OP_reg17:
19997 case DW_OP_reg18:
19998 case DW_OP_reg19:
19999 case DW_OP_reg20:
20000 case DW_OP_reg21:
20001 case DW_OP_reg22:
20002 case DW_OP_reg23:
20003 case DW_OP_reg24:
20004 case DW_OP_reg25:
20005 case DW_OP_reg26:
20006 case DW_OP_reg27:
20007 case DW_OP_reg28:
20008 case DW_OP_reg29:
20009 case DW_OP_reg30:
20010 case DW_OP_reg31:
20011 stack[++stacki] = op - DW_OP_reg0;
20012 if (i < size)
20013 dwarf2_complex_location_expr_complaint ();
20014 break;
c906108c 20015
21ae7a4d
JK
20016 case DW_OP_regx:
20017 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20018 i += bytes_read;
20019 stack[++stacki] = unsnd;
20020 if (i < size)
20021 dwarf2_complex_location_expr_complaint ();
20022 break;
c906108c 20023
21ae7a4d
JK
20024 case DW_OP_addr:
20025 stack[++stacki] = read_address (objfile->obfd, &data[i],
20026 cu, &bytes_read);
20027 i += bytes_read;
20028 break;
d53d4ac5 20029
21ae7a4d
JK
20030 case DW_OP_const1u:
20031 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20032 i += 1;
20033 break;
20034
20035 case DW_OP_const1s:
20036 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20037 i += 1;
20038 break;
20039
20040 case DW_OP_const2u:
20041 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20042 i += 2;
20043 break;
20044
20045 case DW_OP_const2s:
20046 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20047 i += 2;
20048 break;
d53d4ac5 20049
21ae7a4d
JK
20050 case DW_OP_const4u:
20051 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20052 i += 4;
20053 break;
20054
20055 case DW_OP_const4s:
20056 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20057 i += 4;
20058 break;
20059
585861ea
JK
20060 case DW_OP_const8u:
20061 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20062 i += 8;
20063 break;
20064
21ae7a4d
JK
20065 case DW_OP_constu:
20066 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20067 &bytes_read);
20068 i += bytes_read;
20069 break;
20070
20071 case DW_OP_consts:
20072 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20073 i += bytes_read;
20074 break;
20075
20076 case DW_OP_dup:
20077 stack[stacki + 1] = stack[stacki];
20078 stacki++;
20079 break;
20080
20081 case DW_OP_plus:
20082 stack[stacki - 1] += stack[stacki];
20083 stacki--;
20084 break;
20085
20086 case DW_OP_plus_uconst:
20087 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20088 &bytes_read);
20089 i += bytes_read;
20090 break;
20091
20092 case DW_OP_minus:
20093 stack[stacki - 1] -= stack[stacki];
20094 stacki--;
20095 break;
20096
20097 case DW_OP_deref:
20098 /* If we're not the last op, then we definitely can't encode
20099 this using GDB's address_class enum. This is valid for partial
20100 global symbols, although the variable's address will be bogus
20101 in the psymtab. */
20102 if (i < size)
20103 dwarf2_complex_location_expr_complaint ();
20104 break;
20105
20106 case DW_OP_GNU_push_tls_address:
20107 /* The top of the stack has the offset from the beginning
20108 of the thread control block at which the variable is located. */
20109 /* Nothing should follow this operator, so the top of stack would
20110 be returned. */
20111 /* This is valid for partial global symbols, but the variable's
585861ea
JK
20112 address will be bogus in the psymtab. Make it always at least
20113 non-zero to not look as a variable garbage collected by linker
20114 which have DW_OP_addr 0. */
21ae7a4d
JK
20115 if (i < size)
20116 dwarf2_complex_location_expr_complaint ();
585861ea 20117 stack[stacki]++;
21ae7a4d
JK
20118 break;
20119
20120 case DW_OP_GNU_uninit:
20121 break;
20122
3019eac3 20123 case DW_OP_GNU_addr_index:
49f6c839 20124 case DW_OP_GNU_const_index:
3019eac3
DE
20125 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20126 &bytes_read);
20127 i += bytes_read;
20128 break;
20129
21ae7a4d
JK
20130 default:
20131 {
f39c6ffd 20132 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
20133
20134 if (name)
20135 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20136 name);
20137 else
20138 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20139 op);
20140 }
20141
20142 return (stack[stacki]);
d53d4ac5 20143 }
3c6e0cb3 20144
21ae7a4d
JK
20145 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20146 outside of the allocated space. Also enforce minimum>0. */
20147 if (stacki >= ARRAY_SIZE (stack) - 1)
20148 {
20149 complaint (&symfile_complaints,
20150 _("location description stack overflow"));
20151 return 0;
20152 }
20153
20154 if (stacki <= 0)
20155 {
20156 complaint (&symfile_complaints,
20157 _("location description stack underflow"));
20158 return 0;
20159 }
20160 }
20161 return (stack[stacki]);
c906108c
SS
20162}
20163
20164/* memory allocation interface */
20165
c906108c 20166static struct dwarf_block *
7b5a2f43 20167dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
20168{
20169 struct dwarf_block *blk;
20170
20171 blk = (struct dwarf_block *)
7b5a2f43 20172 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
20173 return (blk);
20174}
20175
c906108c 20176static struct die_info *
b60c80d6 20177dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
20178{
20179 struct die_info *die;
b60c80d6
DJ
20180 size_t size = sizeof (struct die_info);
20181
20182 if (num_attrs > 1)
20183 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 20184
b60c80d6 20185 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
20186 memset (die, 0, sizeof (struct die_info));
20187 return (die);
20188}
2e276125
JB
20189
20190\f
20191/* Macro support. */
20192
233d95b5
JK
20193/* Return file name relative to the compilation directory of file number I in
20194 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 20195 responsible for freeing it. */
233d95b5 20196
2e276125 20197static char *
233d95b5 20198file_file_name (int file, struct line_header *lh)
2e276125 20199{
6a83a1e6
EZ
20200 /* Is the file number a valid index into the line header's file name
20201 table? Remember that file numbers start with one, not zero. */
20202 if (1 <= file && file <= lh->num_file_names)
20203 {
20204 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 20205
233d95b5 20206 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
6a83a1e6 20207 return xstrdup (fe->name);
233d95b5
JK
20208 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20209 fe->name, NULL);
6a83a1e6 20210 }
2e276125
JB
20211 else
20212 {
6a83a1e6
EZ
20213 /* The compiler produced a bogus file number. We can at least
20214 record the macro definitions made in the file, even if we
20215 won't be able to find the file by name. */
20216 char fake_name[80];
9a619af0 20217
8c042590
PM
20218 xsnprintf (fake_name, sizeof (fake_name),
20219 "<bad macro file number %d>", file);
2e276125 20220
6e70227d 20221 complaint (&symfile_complaints,
6a83a1e6
EZ
20222 _("bad file number in macro information (%d)"),
20223 file);
2e276125 20224
6a83a1e6 20225 return xstrdup (fake_name);
2e276125
JB
20226 }
20227}
20228
233d95b5
JK
20229/* Return the full name of file number I in *LH's file name table.
20230 Use COMP_DIR as the name of the current directory of the
20231 compilation. The result is allocated using xmalloc; the caller is
20232 responsible for freeing it. */
20233static char *
20234file_full_name (int file, struct line_header *lh, const char *comp_dir)
20235{
20236 /* Is the file number a valid index into the line header's file name
20237 table? Remember that file numbers start with one, not zero. */
20238 if (1 <= file && file <= lh->num_file_names)
20239 {
20240 char *relative = file_file_name (file, lh);
20241
20242 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20243 return relative;
20244 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20245 }
20246 else
20247 return file_file_name (file, lh);
20248}
20249
2e276125
JB
20250
20251static struct macro_source_file *
20252macro_start_file (int file, int line,
20253 struct macro_source_file *current_file,
20254 const char *comp_dir,
20255 struct line_header *lh, struct objfile *objfile)
20256{
233d95b5
JK
20257 /* File name relative to the compilation directory of this source file. */
20258 char *file_name = file_file_name (file, lh);
2e276125 20259
2e276125 20260 if (! current_file)
abc9d0dc 20261 {
fc474241
DE
20262 /* Note: We don't create a macro table for this compilation unit
20263 at all until we actually get a filename. */
20264 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
20265
abc9d0dc
TT
20266 /* If we have no current file, then this must be the start_file
20267 directive for the compilation unit's main source file. */
fc474241
DE
20268 current_file = macro_set_main (macro_table, file_name);
20269 macro_define_special (macro_table);
abc9d0dc 20270 }
2e276125 20271 else
233d95b5 20272 current_file = macro_include (current_file, line, file_name);
2e276125 20273
233d95b5 20274 xfree (file_name);
6e70227d 20275
2e276125
JB
20276 return current_file;
20277}
20278
20279
20280/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20281 followed by a null byte. */
20282static char *
20283copy_string (const char *buf, int len)
20284{
20285 char *s = xmalloc (len + 1);
9a619af0 20286
2e276125
JB
20287 memcpy (s, buf, len);
20288 s[len] = '\0';
2e276125
JB
20289 return s;
20290}
20291
20292
20293static const char *
20294consume_improper_spaces (const char *p, const char *body)
20295{
20296 if (*p == ' ')
20297 {
4d3c2250 20298 complaint (&symfile_complaints,
3e43a32a
MS
20299 _("macro definition contains spaces "
20300 "in formal argument list:\n`%s'"),
4d3c2250 20301 body);
2e276125
JB
20302
20303 while (*p == ' ')
20304 p++;
20305 }
20306
20307 return p;
20308}
20309
20310
20311static void
20312parse_macro_definition (struct macro_source_file *file, int line,
20313 const char *body)
20314{
20315 const char *p;
20316
20317 /* The body string takes one of two forms. For object-like macro
20318 definitions, it should be:
20319
20320 <macro name> " " <definition>
20321
20322 For function-like macro definitions, it should be:
20323
20324 <macro name> "() " <definition>
20325 or
20326 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20327
20328 Spaces may appear only where explicitly indicated, and in the
20329 <definition>.
20330
20331 The Dwarf 2 spec says that an object-like macro's name is always
20332 followed by a space, but versions of GCC around March 2002 omit
6e70227d 20333 the space when the macro's definition is the empty string.
2e276125
JB
20334
20335 The Dwarf 2 spec says that there should be no spaces between the
20336 formal arguments in a function-like macro's formal argument list,
20337 but versions of GCC around March 2002 include spaces after the
20338 commas. */
20339
20340
20341 /* Find the extent of the macro name. The macro name is terminated
20342 by either a space or null character (for an object-like macro) or
20343 an opening paren (for a function-like macro). */
20344 for (p = body; *p; p++)
20345 if (*p == ' ' || *p == '(')
20346 break;
20347
20348 if (*p == ' ' || *p == '\0')
20349 {
20350 /* It's an object-like macro. */
20351 int name_len = p - body;
20352 char *name = copy_string (body, name_len);
20353 const char *replacement;
20354
20355 if (*p == ' ')
20356 replacement = body + name_len + 1;
20357 else
20358 {
4d3c2250 20359 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20360 replacement = body + name_len;
20361 }
6e70227d 20362
2e276125
JB
20363 macro_define_object (file, line, name, replacement);
20364
20365 xfree (name);
20366 }
20367 else if (*p == '(')
20368 {
20369 /* It's a function-like macro. */
20370 char *name = copy_string (body, p - body);
20371 int argc = 0;
20372 int argv_size = 1;
20373 char **argv = xmalloc (argv_size * sizeof (*argv));
20374
20375 p++;
20376
20377 p = consume_improper_spaces (p, body);
20378
20379 /* Parse the formal argument list. */
20380 while (*p && *p != ')')
20381 {
20382 /* Find the extent of the current argument name. */
20383 const char *arg_start = p;
20384
20385 while (*p && *p != ',' && *p != ')' && *p != ' ')
20386 p++;
20387
20388 if (! *p || p == arg_start)
4d3c2250 20389 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20390 else
20391 {
20392 /* Make sure argv has room for the new argument. */
20393 if (argc >= argv_size)
20394 {
20395 argv_size *= 2;
20396 argv = xrealloc (argv, argv_size * sizeof (*argv));
20397 }
20398
20399 argv[argc++] = copy_string (arg_start, p - arg_start);
20400 }
20401
20402 p = consume_improper_spaces (p, body);
20403
20404 /* Consume the comma, if present. */
20405 if (*p == ',')
20406 {
20407 p++;
20408
20409 p = consume_improper_spaces (p, body);
20410 }
20411 }
20412
20413 if (*p == ')')
20414 {
20415 p++;
20416
20417 if (*p == ' ')
20418 /* Perfectly formed definition, no complaints. */
20419 macro_define_function (file, line, name,
6e70227d 20420 argc, (const char **) argv,
2e276125
JB
20421 p + 1);
20422 else if (*p == '\0')
20423 {
20424 /* Complain, but do define it. */
4d3c2250 20425 dwarf2_macro_malformed_definition_complaint (body);
2e276125 20426 macro_define_function (file, line, name,
6e70227d 20427 argc, (const char **) argv,
2e276125
JB
20428 p);
20429 }
20430 else
20431 /* Just complain. */
4d3c2250 20432 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20433 }
20434 else
20435 /* Just complain. */
4d3c2250 20436 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20437
20438 xfree (name);
20439 {
20440 int i;
20441
20442 for (i = 0; i < argc; i++)
20443 xfree (argv[i]);
20444 }
20445 xfree (argv);
20446 }
20447 else
4d3c2250 20448 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20449}
20450
cf2c3c16
TT
20451/* Skip some bytes from BYTES according to the form given in FORM.
20452 Returns the new pointer. */
2e276125 20453
d521ce57
TT
20454static const gdb_byte *
20455skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
20456 enum dwarf_form form,
20457 unsigned int offset_size,
20458 struct dwarf2_section_info *section)
2e276125 20459{
cf2c3c16 20460 unsigned int bytes_read;
2e276125 20461
cf2c3c16 20462 switch (form)
2e276125 20463 {
cf2c3c16
TT
20464 case DW_FORM_data1:
20465 case DW_FORM_flag:
20466 ++bytes;
20467 break;
20468
20469 case DW_FORM_data2:
20470 bytes += 2;
20471 break;
20472
20473 case DW_FORM_data4:
20474 bytes += 4;
20475 break;
20476
20477 case DW_FORM_data8:
20478 bytes += 8;
20479 break;
20480
20481 case DW_FORM_string:
20482 read_direct_string (abfd, bytes, &bytes_read);
20483 bytes += bytes_read;
20484 break;
20485
20486 case DW_FORM_sec_offset:
20487 case DW_FORM_strp:
36586728 20488 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
20489 bytes += offset_size;
20490 break;
20491
20492 case DW_FORM_block:
20493 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20494 bytes += bytes_read;
20495 break;
20496
20497 case DW_FORM_block1:
20498 bytes += 1 + read_1_byte (abfd, bytes);
20499 break;
20500 case DW_FORM_block2:
20501 bytes += 2 + read_2_bytes (abfd, bytes);
20502 break;
20503 case DW_FORM_block4:
20504 bytes += 4 + read_4_bytes (abfd, bytes);
20505 break;
20506
20507 case DW_FORM_sdata:
20508 case DW_FORM_udata:
3019eac3
DE
20509 case DW_FORM_GNU_addr_index:
20510 case DW_FORM_GNU_str_index:
d521ce57 20511 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
20512 if (bytes == NULL)
20513 {
20514 dwarf2_section_buffer_overflow_complaint (section);
20515 return NULL;
20516 }
cf2c3c16
TT
20517 break;
20518
20519 default:
20520 {
20521 complain:
20522 complaint (&symfile_complaints,
20523 _("invalid form 0x%x in `%s'"),
a32a8923 20524 form, get_section_name (section));
cf2c3c16
TT
20525 return NULL;
20526 }
2e276125
JB
20527 }
20528
cf2c3c16
TT
20529 return bytes;
20530}
757a13d0 20531
cf2c3c16
TT
20532/* A helper for dwarf_decode_macros that handles skipping an unknown
20533 opcode. Returns an updated pointer to the macro data buffer; or,
20534 on error, issues a complaint and returns NULL. */
757a13d0 20535
d521ce57 20536static const gdb_byte *
cf2c3c16 20537skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
20538 const gdb_byte **opcode_definitions,
20539 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
20540 bfd *abfd,
20541 unsigned int offset_size,
20542 struct dwarf2_section_info *section)
20543{
20544 unsigned int bytes_read, i;
20545 unsigned long arg;
d521ce57 20546 const gdb_byte *defn;
2e276125 20547
cf2c3c16 20548 if (opcode_definitions[opcode] == NULL)
2e276125 20549 {
cf2c3c16
TT
20550 complaint (&symfile_complaints,
20551 _("unrecognized DW_MACFINO opcode 0x%x"),
20552 opcode);
20553 return NULL;
20554 }
2e276125 20555
cf2c3c16
TT
20556 defn = opcode_definitions[opcode];
20557 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20558 defn += bytes_read;
2e276125 20559
cf2c3c16
TT
20560 for (i = 0; i < arg; ++i)
20561 {
f664829e
DE
20562 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20563 section);
cf2c3c16
TT
20564 if (mac_ptr == NULL)
20565 {
20566 /* skip_form_bytes already issued the complaint. */
20567 return NULL;
20568 }
20569 }
757a13d0 20570
cf2c3c16
TT
20571 return mac_ptr;
20572}
757a13d0 20573
cf2c3c16
TT
20574/* A helper function which parses the header of a macro section.
20575 If the macro section is the extended (for now called "GNU") type,
20576 then this updates *OFFSET_SIZE. Returns a pointer to just after
20577 the header, or issues a complaint and returns NULL on error. */
757a13d0 20578
d521ce57
TT
20579static const gdb_byte *
20580dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 20581 bfd *abfd,
d521ce57 20582 const gdb_byte *mac_ptr,
cf2c3c16
TT
20583 unsigned int *offset_size,
20584 int section_is_gnu)
20585{
20586 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 20587
cf2c3c16
TT
20588 if (section_is_gnu)
20589 {
20590 unsigned int version, flags;
757a13d0 20591
cf2c3c16
TT
20592 version = read_2_bytes (abfd, mac_ptr);
20593 if (version != 4)
20594 {
20595 complaint (&symfile_complaints,
20596 _("unrecognized version `%d' in .debug_macro section"),
20597 version);
20598 return NULL;
20599 }
20600 mac_ptr += 2;
757a13d0 20601
cf2c3c16
TT
20602 flags = read_1_byte (abfd, mac_ptr);
20603 ++mac_ptr;
20604 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 20605
cf2c3c16
TT
20606 if ((flags & 2) != 0)
20607 /* We don't need the line table offset. */
20608 mac_ptr += *offset_size;
757a13d0 20609
cf2c3c16
TT
20610 /* Vendor opcode descriptions. */
20611 if ((flags & 4) != 0)
20612 {
20613 unsigned int i, count;
757a13d0 20614
cf2c3c16
TT
20615 count = read_1_byte (abfd, mac_ptr);
20616 ++mac_ptr;
20617 for (i = 0; i < count; ++i)
20618 {
20619 unsigned int opcode, bytes_read;
20620 unsigned long arg;
20621
20622 opcode = read_1_byte (abfd, mac_ptr);
20623 ++mac_ptr;
20624 opcode_definitions[opcode] = mac_ptr;
20625 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20626 mac_ptr += bytes_read;
20627 mac_ptr += arg;
20628 }
757a13d0 20629 }
cf2c3c16 20630 }
757a13d0 20631
cf2c3c16
TT
20632 return mac_ptr;
20633}
757a13d0 20634
cf2c3c16 20635/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 20636 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
20637
20638static void
d521ce57
TT
20639dwarf_decode_macro_bytes (bfd *abfd,
20640 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 20641 struct macro_source_file *current_file,
15d034d0 20642 struct line_header *lh, const char *comp_dir,
cf2c3c16 20643 struct dwarf2_section_info *section,
36586728 20644 int section_is_gnu, int section_is_dwz,
cf2c3c16 20645 unsigned int offset_size,
8fc3fc34
TT
20646 struct objfile *objfile,
20647 htab_t include_hash)
cf2c3c16
TT
20648{
20649 enum dwarf_macro_record_type macinfo_type;
20650 int at_commandline;
d521ce57 20651 const gdb_byte *opcode_definitions[256];
757a13d0 20652
cf2c3c16
TT
20653 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20654 &offset_size, section_is_gnu);
20655 if (mac_ptr == NULL)
20656 {
20657 /* We already issued a complaint. */
20658 return;
20659 }
757a13d0
JK
20660
20661 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20662 GDB is still reading the definitions from command line. First
20663 DW_MACINFO_start_file will need to be ignored as it was already executed
20664 to create CURRENT_FILE for the main source holding also the command line
20665 definitions. On first met DW_MACINFO_start_file this flag is reset to
20666 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20667
20668 at_commandline = 1;
20669
20670 do
20671 {
20672 /* Do we at least have room for a macinfo type byte? */
20673 if (mac_ptr >= mac_end)
20674 {
f664829e 20675 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
20676 break;
20677 }
20678
20679 macinfo_type = read_1_byte (abfd, mac_ptr);
20680 mac_ptr++;
20681
cf2c3c16
TT
20682 /* Note that we rely on the fact that the corresponding GNU and
20683 DWARF constants are the same. */
757a13d0
JK
20684 switch (macinfo_type)
20685 {
20686 /* A zero macinfo type indicates the end of the macro
20687 information. */
20688 case 0:
20689 break;
2e276125 20690
cf2c3c16
TT
20691 case DW_MACRO_GNU_define:
20692 case DW_MACRO_GNU_undef:
20693 case DW_MACRO_GNU_define_indirect:
20694 case DW_MACRO_GNU_undef_indirect:
36586728
TT
20695 case DW_MACRO_GNU_define_indirect_alt:
20696 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 20697 {
891d2f0b 20698 unsigned int bytes_read;
2e276125 20699 int line;
d521ce57 20700 const char *body;
cf2c3c16 20701 int is_define;
2e276125 20702
cf2c3c16
TT
20703 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20704 mac_ptr += bytes_read;
20705
20706 if (macinfo_type == DW_MACRO_GNU_define
20707 || macinfo_type == DW_MACRO_GNU_undef)
20708 {
20709 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20710 mac_ptr += bytes_read;
20711 }
20712 else
20713 {
20714 LONGEST str_offset;
20715
20716 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20717 mac_ptr += offset_size;
2e276125 20718
36586728 20719 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
20720 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20721 || section_is_dwz)
36586728
TT
20722 {
20723 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20724
20725 body = read_indirect_string_from_dwz (dwz, str_offset);
20726 }
20727 else
20728 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
20729 }
20730
20731 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
20732 || macinfo_type == DW_MACRO_GNU_define_indirect
20733 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 20734 if (! current_file)
757a13d0
JK
20735 {
20736 /* DWARF violation as no main source is present. */
20737 complaint (&symfile_complaints,
20738 _("debug info with no main source gives macro %s "
20739 "on line %d: %s"),
cf2c3c16
TT
20740 is_define ? _("definition") : _("undefinition"),
20741 line, body);
757a13d0
JK
20742 break;
20743 }
3e43a32a
MS
20744 if ((line == 0 && !at_commandline)
20745 || (line != 0 && at_commandline))
4d3c2250 20746 complaint (&symfile_complaints,
757a13d0
JK
20747 _("debug info gives %s macro %s with %s line %d: %s"),
20748 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 20749 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
20750 line == 0 ? _("zero") : _("non-zero"), line, body);
20751
cf2c3c16 20752 if (is_define)
757a13d0 20753 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
20754 else
20755 {
20756 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
20757 || macinfo_type == DW_MACRO_GNU_undef_indirect
20758 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
20759 macro_undef (current_file, line, body);
20760 }
2e276125
JB
20761 }
20762 break;
20763
cf2c3c16 20764 case DW_MACRO_GNU_start_file:
2e276125 20765 {
891d2f0b 20766 unsigned int bytes_read;
2e276125
JB
20767 int line, file;
20768
20769 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20770 mac_ptr += bytes_read;
20771 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20772 mac_ptr += bytes_read;
20773
3e43a32a
MS
20774 if ((line == 0 && !at_commandline)
20775 || (line != 0 && at_commandline))
757a13d0
JK
20776 complaint (&symfile_complaints,
20777 _("debug info gives source %d included "
20778 "from %s at %s line %d"),
20779 file, at_commandline ? _("command-line") : _("file"),
20780 line == 0 ? _("zero") : _("non-zero"), line);
20781
20782 if (at_commandline)
20783 {
cf2c3c16
TT
20784 /* This DW_MACRO_GNU_start_file was executed in the
20785 pass one. */
757a13d0
JK
20786 at_commandline = 0;
20787 }
20788 else
20789 current_file = macro_start_file (file, line,
20790 current_file, comp_dir,
cf2c3c16 20791 lh, objfile);
2e276125
JB
20792 }
20793 break;
20794
cf2c3c16 20795 case DW_MACRO_GNU_end_file:
2e276125 20796 if (! current_file)
4d3c2250 20797 complaint (&symfile_complaints,
3e43a32a
MS
20798 _("macro debug info has an unmatched "
20799 "`close_file' directive"));
2e276125
JB
20800 else
20801 {
20802 current_file = current_file->included_by;
20803 if (! current_file)
20804 {
cf2c3c16 20805 enum dwarf_macro_record_type next_type;
2e276125
JB
20806
20807 /* GCC circa March 2002 doesn't produce the zero
20808 type byte marking the end of the compilation
20809 unit. Complain if it's not there, but exit no
20810 matter what. */
20811
20812 /* Do we at least have room for a macinfo type byte? */
20813 if (mac_ptr >= mac_end)
20814 {
f664829e 20815 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
20816 return;
20817 }
20818
20819 /* We don't increment mac_ptr here, so this is just
20820 a look-ahead. */
20821 next_type = read_1_byte (abfd, mac_ptr);
20822 if (next_type != 0)
4d3c2250 20823 complaint (&symfile_complaints,
3e43a32a
MS
20824 _("no terminating 0-type entry for "
20825 "macros in `.debug_macinfo' section"));
2e276125
JB
20826
20827 return;
20828 }
20829 }
20830 break;
20831
cf2c3c16 20832 case DW_MACRO_GNU_transparent_include:
36586728 20833 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
20834 {
20835 LONGEST offset;
8fc3fc34 20836 void **slot;
a036ba48
TT
20837 bfd *include_bfd = abfd;
20838 struct dwarf2_section_info *include_section = section;
20839 struct dwarf2_section_info alt_section;
d521ce57 20840 const gdb_byte *include_mac_end = mac_end;
a036ba48 20841 int is_dwz = section_is_dwz;
d521ce57 20842 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
20843
20844 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20845 mac_ptr += offset_size;
20846
a036ba48
TT
20847 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20848 {
20849 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20850
20851 dwarf2_read_section (dwarf2_per_objfile->objfile,
20852 &dwz->macro);
20853
a036ba48 20854 include_section = &dwz->macro;
a32a8923 20855 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
20856 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20857 is_dwz = 1;
20858 }
20859
20860 new_mac_ptr = include_section->buffer + offset;
20861 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20862
8fc3fc34
TT
20863 if (*slot != NULL)
20864 {
20865 /* This has actually happened; see
20866 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20867 complaint (&symfile_complaints,
20868 _("recursive DW_MACRO_GNU_transparent_include in "
20869 ".debug_macro section"));
20870 }
20871 else
20872 {
d521ce57 20873 *slot = (void *) new_mac_ptr;
36586728 20874
a036ba48 20875 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
36586728 20876 include_mac_end, current_file,
8fc3fc34 20877 lh, comp_dir,
36586728 20878 section, section_is_gnu, is_dwz,
8fc3fc34
TT
20879 offset_size, objfile, include_hash);
20880
d521ce57 20881 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 20882 }
cf2c3c16
TT
20883 }
20884 break;
20885
2e276125 20886 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
20887 if (!section_is_gnu)
20888 {
20889 unsigned int bytes_read;
20890 int constant;
2e276125 20891
cf2c3c16
TT
20892 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20893 mac_ptr += bytes_read;
20894 read_direct_string (abfd, mac_ptr, &bytes_read);
20895 mac_ptr += bytes_read;
2e276125 20896
cf2c3c16
TT
20897 /* We don't recognize any vendor extensions. */
20898 break;
20899 }
20900 /* FALLTHROUGH */
20901
20902 default:
20903 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 20904 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
20905 section);
20906 if (mac_ptr == NULL)
20907 return;
20908 break;
2e276125 20909 }
757a13d0 20910 } while (macinfo_type != 0);
2e276125 20911}
8e19ed76 20912
cf2c3c16 20913static void
09262596 20914dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
15d034d0 20915 const char *comp_dir, int section_is_gnu)
cf2c3c16 20916{
bb5ed363 20917 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
20918 struct line_header *lh = cu->line_header;
20919 bfd *abfd;
d521ce57 20920 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
20921 struct macro_source_file *current_file = 0;
20922 enum dwarf_macro_record_type macinfo_type;
20923 unsigned int offset_size = cu->header.offset_size;
d521ce57 20924 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
20925 struct cleanup *cleanup;
20926 htab_t include_hash;
20927 void **slot;
09262596
DE
20928 struct dwarf2_section_info *section;
20929 const char *section_name;
20930
20931 if (cu->dwo_unit != NULL)
20932 {
20933 if (section_is_gnu)
20934 {
20935 section = &cu->dwo_unit->dwo_file->sections.macro;
20936 section_name = ".debug_macro.dwo";
20937 }
20938 else
20939 {
20940 section = &cu->dwo_unit->dwo_file->sections.macinfo;
20941 section_name = ".debug_macinfo.dwo";
20942 }
20943 }
20944 else
20945 {
20946 if (section_is_gnu)
20947 {
20948 section = &dwarf2_per_objfile->macro;
20949 section_name = ".debug_macro";
20950 }
20951 else
20952 {
20953 section = &dwarf2_per_objfile->macinfo;
20954 section_name = ".debug_macinfo";
20955 }
20956 }
cf2c3c16 20957
bb5ed363 20958 dwarf2_read_section (objfile, section);
cf2c3c16
TT
20959 if (section->buffer == NULL)
20960 {
fceca515 20961 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
20962 return;
20963 }
a32a8923 20964 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
20965
20966 /* First pass: Find the name of the base filename.
20967 This filename is needed in order to process all macros whose definition
20968 (or undefinition) comes from the command line. These macros are defined
20969 before the first DW_MACINFO_start_file entry, and yet still need to be
20970 associated to the base file.
20971
20972 To determine the base file name, we scan the macro definitions until we
20973 reach the first DW_MACINFO_start_file entry. We then initialize
20974 CURRENT_FILE accordingly so that any macro definition found before the
20975 first DW_MACINFO_start_file can still be associated to the base file. */
20976
20977 mac_ptr = section->buffer + offset;
20978 mac_end = section->buffer + section->size;
20979
20980 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20981 &offset_size, section_is_gnu);
20982 if (mac_ptr == NULL)
20983 {
20984 /* We already issued a complaint. */
20985 return;
20986 }
20987
20988 do
20989 {
20990 /* Do we at least have room for a macinfo type byte? */
20991 if (mac_ptr >= mac_end)
20992 {
20993 /* Complaint is printed during the second pass as GDB will probably
20994 stop the first pass earlier upon finding
20995 DW_MACINFO_start_file. */
20996 break;
20997 }
20998
20999 macinfo_type = read_1_byte (abfd, mac_ptr);
21000 mac_ptr++;
21001
21002 /* Note that we rely on the fact that the corresponding GNU and
21003 DWARF constants are the same. */
21004 switch (macinfo_type)
21005 {
21006 /* A zero macinfo type indicates the end of the macro
21007 information. */
21008 case 0:
21009 break;
21010
21011 case DW_MACRO_GNU_define:
21012 case DW_MACRO_GNU_undef:
21013 /* Only skip the data by MAC_PTR. */
21014 {
21015 unsigned int bytes_read;
21016
21017 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21018 mac_ptr += bytes_read;
21019 read_direct_string (abfd, mac_ptr, &bytes_read);
21020 mac_ptr += bytes_read;
21021 }
21022 break;
21023
21024 case DW_MACRO_GNU_start_file:
21025 {
21026 unsigned int bytes_read;
21027 int line, file;
21028
21029 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21030 mac_ptr += bytes_read;
21031 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21032 mac_ptr += bytes_read;
21033
21034 current_file = macro_start_file (file, line, current_file,
bb5ed363 21035 comp_dir, lh, objfile);
cf2c3c16
TT
21036 }
21037 break;
21038
21039 case DW_MACRO_GNU_end_file:
21040 /* No data to skip by MAC_PTR. */
21041 break;
21042
21043 case DW_MACRO_GNU_define_indirect:
21044 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
21045 case DW_MACRO_GNU_define_indirect_alt:
21046 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
21047 {
21048 unsigned int bytes_read;
21049
21050 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21051 mac_ptr += bytes_read;
21052 mac_ptr += offset_size;
21053 }
21054 break;
21055
21056 case DW_MACRO_GNU_transparent_include:
f7a35f02 21057 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21058 /* Note that, according to the spec, a transparent include
21059 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21060 skip this opcode. */
21061 mac_ptr += offset_size;
21062 break;
21063
21064 case DW_MACINFO_vendor_ext:
21065 /* Only skip the data by MAC_PTR. */
21066 if (!section_is_gnu)
21067 {
21068 unsigned int bytes_read;
21069
21070 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21071 mac_ptr += bytes_read;
21072 read_direct_string (abfd, mac_ptr, &bytes_read);
21073 mac_ptr += bytes_read;
21074 }
21075 /* FALLTHROUGH */
21076
21077 default:
21078 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21079 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21080 section);
21081 if (mac_ptr == NULL)
21082 return;
21083 break;
21084 }
21085 } while (macinfo_type != 0 && current_file == NULL);
21086
21087 /* Second pass: Process all entries.
21088
21089 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21090 command-line macro definitions/undefinitions. This flag is unset when we
21091 reach the first DW_MACINFO_start_file entry. */
21092
8fc3fc34
TT
21093 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21094 NULL, xcalloc, xfree);
21095 cleanup = make_cleanup_htab_delete (include_hash);
21096 mac_ptr = section->buffer + offset;
21097 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 21098 *slot = (void *) mac_ptr;
8fc3fc34 21099 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
36586728
TT
21100 current_file, lh, comp_dir, section,
21101 section_is_gnu, 0,
8fc3fc34
TT
21102 offset_size, objfile, include_hash);
21103 do_cleanups (cleanup);
cf2c3c16
TT
21104}
21105
8e19ed76 21106/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 21107 if so return true else false. */
380bca97 21108
8e19ed76 21109static int
6e5a29e1 21110attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
21111{
21112 return (attr == NULL ? 0 :
21113 attr->form == DW_FORM_block1
21114 || attr->form == DW_FORM_block2
21115 || attr->form == DW_FORM_block4
2dc7f7b3
TT
21116 || attr->form == DW_FORM_block
21117 || attr->form == DW_FORM_exprloc);
8e19ed76 21118}
4c2df51b 21119
c6a0999f
JB
21120/* Return non-zero if ATTR's value is a section offset --- classes
21121 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21122 You may use DW_UNSND (attr) to retrieve such offsets.
21123
21124 Section 7.5.4, "Attribute Encodings", explains that no attribute
21125 may have a value that belongs to more than one of these classes; it
21126 would be ambiguous if we did, because we use the same forms for all
21127 of them. */
380bca97 21128
3690dd37 21129static int
6e5a29e1 21130attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
21131{
21132 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
21133 || attr->form == DW_FORM_data8
21134 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
21135}
21136
3690dd37
JB
21137/* Return non-zero if ATTR's value falls in the 'constant' class, or
21138 zero otherwise. When this function returns true, you can apply
21139 dwarf2_get_attr_constant_value to it.
21140
21141 However, note that for some attributes you must check
21142 attr_form_is_section_offset before using this test. DW_FORM_data4
21143 and DW_FORM_data8 are members of both the constant class, and of
21144 the classes that contain offsets into other debug sections
21145 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21146 that, if an attribute's can be either a constant or one of the
21147 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21148 taken as section offsets, not constants. */
380bca97 21149
3690dd37 21150static int
6e5a29e1 21151attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
21152{
21153 switch (attr->form)
21154 {
21155 case DW_FORM_sdata:
21156 case DW_FORM_udata:
21157 case DW_FORM_data1:
21158 case DW_FORM_data2:
21159 case DW_FORM_data4:
21160 case DW_FORM_data8:
21161 return 1;
21162 default:
21163 return 0;
21164 }
21165}
21166
7771576e
SA
21167
21168/* DW_ADDR is always stored already as sect_offset; despite for the forms
21169 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21170
21171static int
6e5a29e1 21172attr_form_is_ref (const struct attribute *attr)
7771576e
SA
21173{
21174 switch (attr->form)
21175 {
21176 case DW_FORM_ref_addr:
21177 case DW_FORM_ref1:
21178 case DW_FORM_ref2:
21179 case DW_FORM_ref4:
21180 case DW_FORM_ref8:
21181 case DW_FORM_ref_udata:
21182 case DW_FORM_GNU_ref_alt:
21183 return 1;
21184 default:
21185 return 0;
21186 }
21187}
21188
3019eac3
DE
21189/* Return the .debug_loc section to use for CU.
21190 For DWO files use .debug_loc.dwo. */
21191
21192static struct dwarf2_section_info *
21193cu_debug_loc_section (struct dwarf2_cu *cu)
21194{
21195 if (cu->dwo_unit)
21196 return &cu->dwo_unit->dwo_file->sections.loc;
21197 return &dwarf2_per_objfile->loc;
21198}
21199
8cf6f0b1
TT
21200/* A helper function that fills in a dwarf2_loclist_baton. */
21201
21202static void
21203fill_in_loclist_baton (struct dwarf2_cu *cu,
21204 struct dwarf2_loclist_baton *baton,
ff39bb5e 21205 const struct attribute *attr)
8cf6f0b1 21206{
3019eac3
DE
21207 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21208
21209 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
21210
21211 baton->per_cu = cu->per_cu;
21212 gdb_assert (baton->per_cu);
21213 /* We don't know how long the location list is, but make sure we
21214 don't run off the edge of the section. */
3019eac3
DE
21215 baton->size = section->size - DW_UNSND (attr);
21216 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 21217 baton->base_address = cu->base_address;
f664829e 21218 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
21219}
21220
4c2df51b 21221static void
ff39bb5e 21222dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 21223 struct dwarf2_cu *cu, int is_block)
4c2df51b 21224{
bb5ed363 21225 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 21226 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 21227
3690dd37 21228 if (attr_form_is_section_offset (attr)
3019eac3 21229 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
21230 the section. If so, fall through to the complaint in the
21231 other branch. */
3019eac3 21232 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 21233 {
0d53c4c4 21234 struct dwarf2_loclist_baton *baton;
4c2df51b 21235
bb5ed363 21236 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 21237 sizeof (struct dwarf2_loclist_baton));
4c2df51b 21238
8cf6f0b1 21239 fill_in_loclist_baton (cu, baton, attr);
be391dca 21240
d00adf39 21241 if (cu->base_known == 0)
0d53c4c4 21242 complaint (&symfile_complaints,
3e43a32a
MS
21243 _("Location list used without "
21244 "specifying the CU base address."));
4c2df51b 21245
f1e6e072
TT
21246 SYMBOL_ACLASS_INDEX (sym) = (is_block
21247 ? dwarf2_loclist_block_index
21248 : dwarf2_loclist_index);
0d53c4c4
DJ
21249 SYMBOL_LOCATION_BATON (sym) = baton;
21250 }
21251 else
21252 {
21253 struct dwarf2_locexpr_baton *baton;
21254
bb5ed363 21255 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 21256 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
21257 baton->per_cu = cu->per_cu;
21258 gdb_assert (baton->per_cu);
0d53c4c4
DJ
21259
21260 if (attr_form_is_block (attr))
21261 {
21262 /* Note that we're just copying the block's data pointer
21263 here, not the actual data. We're still pointing into the
6502dd73
DJ
21264 info_buffer for SYM's objfile; right now we never release
21265 that buffer, but when we do clean up properly this may
21266 need to change. */
0d53c4c4
DJ
21267 baton->size = DW_BLOCK (attr)->size;
21268 baton->data = DW_BLOCK (attr)->data;
21269 }
21270 else
21271 {
21272 dwarf2_invalid_attrib_class_complaint ("location description",
21273 SYMBOL_NATURAL_NAME (sym));
21274 baton->size = 0;
0d53c4c4 21275 }
6e70227d 21276
f1e6e072
TT
21277 SYMBOL_ACLASS_INDEX (sym) = (is_block
21278 ? dwarf2_locexpr_block_index
21279 : dwarf2_locexpr_index);
0d53c4c4
DJ
21280 SYMBOL_LOCATION_BATON (sym) = baton;
21281 }
4c2df51b 21282}
6502dd73 21283
9aa1f1e3
TT
21284/* Return the OBJFILE associated with the compilation unit CU. If CU
21285 came from a separate debuginfo file, then the master objfile is
21286 returned. */
ae0d2f24
UW
21287
21288struct objfile *
21289dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21290{
9291a0cd 21291 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
21292
21293 /* Return the master objfile, so that we can report and look up the
21294 correct file containing this variable. */
21295 if (objfile->separate_debug_objfile_backlink)
21296 objfile = objfile->separate_debug_objfile_backlink;
21297
21298 return objfile;
21299}
21300
96408a79
SA
21301/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21302 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21303 CU_HEADERP first. */
21304
21305static const struct comp_unit_head *
21306per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21307 struct dwarf2_per_cu_data *per_cu)
21308{
d521ce57 21309 const gdb_byte *info_ptr;
96408a79
SA
21310
21311 if (per_cu->cu)
21312 return &per_cu->cu->header;
21313
8a0459fd 21314 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
21315
21316 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 21317 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
21318
21319 return cu_headerp;
21320}
21321
ae0d2f24
UW
21322/* Return the address size given in the compilation unit header for CU. */
21323
98714339 21324int
ae0d2f24
UW
21325dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21326{
96408a79
SA
21327 struct comp_unit_head cu_header_local;
21328 const struct comp_unit_head *cu_headerp;
c471e790 21329
96408a79
SA
21330 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21331
21332 return cu_headerp->addr_size;
ae0d2f24
UW
21333}
21334
9eae7c52
TT
21335/* Return the offset size given in the compilation unit header for CU. */
21336
21337int
21338dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21339{
96408a79
SA
21340 struct comp_unit_head cu_header_local;
21341 const struct comp_unit_head *cu_headerp;
9c6c53f7 21342
96408a79
SA
21343 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21344
21345 return cu_headerp->offset_size;
21346}
21347
21348/* See its dwarf2loc.h declaration. */
21349
21350int
21351dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21352{
21353 struct comp_unit_head cu_header_local;
21354 const struct comp_unit_head *cu_headerp;
21355
21356 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21357
21358 if (cu_headerp->version == 2)
21359 return cu_headerp->addr_size;
21360 else
21361 return cu_headerp->offset_size;
181cebd4
JK
21362}
21363
9aa1f1e3
TT
21364/* Return the text offset of the CU. The returned offset comes from
21365 this CU's objfile. If this objfile came from a separate debuginfo
21366 file, then the offset may be different from the corresponding
21367 offset in the parent objfile. */
21368
21369CORE_ADDR
21370dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21371{
bb3fa9d0 21372 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
21373
21374 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21375}
21376
348e048f
DE
21377/* Locate the .debug_info compilation unit from CU's objfile which contains
21378 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
21379
21380static struct dwarf2_per_cu_data *
b64f50a1 21381dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 21382 unsigned int offset_in_dwz,
ae038cb0
DJ
21383 struct objfile *objfile)
21384{
21385 struct dwarf2_per_cu_data *this_cu;
21386 int low, high;
36586728 21387 const sect_offset *cu_off;
ae038cb0 21388
ae038cb0
DJ
21389 low = 0;
21390 high = dwarf2_per_objfile->n_comp_units - 1;
21391 while (high > low)
21392 {
36586728 21393 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 21394 int mid = low + (high - low) / 2;
9a619af0 21395
36586728
TT
21396 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21397 cu_off = &mid_cu->offset;
21398 if (mid_cu->is_dwz > offset_in_dwz
21399 || (mid_cu->is_dwz == offset_in_dwz
21400 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
21401 high = mid;
21402 else
21403 low = mid + 1;
21404 }
21405 gdb_assert (low == high);
36586728
TT
21406 this_cu = dwarf2_per_objfile->all_comp_units[low];
21407 cu_off = &this_cu->offset;
21408 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 21409 {
36586728 21410 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
21411 error (_("Dwarf Error: could not find partial DIE containing "
21412 "offset 0x%lx [in module %s]"),
b64f50a1 21413 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 21414
b64f50a1
JK
21415 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21416 <= offset.sect_off);
ae038cb0
DJ
21417 return dwarf2_per_objfile->all_comp_units[low-1];
21418 }
21419 else
21420 {
21421 this_cu = dwarf2_per_objfile->all_comp_units[low];
21422 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
21423 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21424 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21425 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
21426 return this_cu;
21427 }
21428}
21429
23745b47 21430/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 21431
9816fde3 21432static void
23745b47 21433init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 21434{
9816fde3 21435 memset (cu, 0, sizeof (*cu));
23745b47
DE
21436 per_cu->cu = cu;
21437 cu->per_cu = per_cu;
21438 cu->objfile = per_cu->objfile;
93311388 21439 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
21440}
21441
21442/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21443
21444static void
95554aad
TT
21445prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21446 enum language pretend_language)
9816fde3
JK
21447{
21448 struct attribute *attr;
21449
21450 /* Set the language we're debugging. */
21451 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21452 if (attr)
21453 set_cu_language (DW_UNSND (attr), cu);
21454 else
9cded63f 21455 {
95554aad 21456 cu->language = pretend_language;
9cded63f
TT
21457 cu->language_defn = language_def (cu->language);
21458 }
dee91e82
DE
21459
21460 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21461 if (attr)
21462 cu->producer = DW_STRING (attr);
93311388
DE
21463}
21464
ae038cb0
DJ
21465/* Release one cached compilation unit, CU. We unlink it from the tree
21466 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
21467 the caller is responsible for that.
21468 NOTE: DATA is a void * because this function is also used as a
21469 cleanup routine. */
ae038cb0
DJ
21470
21471static void
68dc6402 21472free_heap_comp_unit (void *data)
ae038cb0
DJ
21473{
21474 struct dwarf2_cu *cu = data;
21475
23745b47
DE
21476 gdb_assert (cu->per_cu != NULL);
21477 cu->per_cu->cu = NULL;
ae038cb0
DJ
21478 cu->per_cu = NULL;
21479
21480 obstack_free (&cu->comp_unit_obstack, NULL);
21481
21482 xfree (cu);
21483}
21484
72bf9492 21485/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 21486 when we're finished with it. We can't free the pointer itself, but be
dee91e82 21487 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
21488
21489static void
21490free_stack_comp_unit (void *data)
21491{
21492 struct dwarf2_cu *cu = data;
21493
23745b47
DE
21494 gdb_assert (cu->per_cu != NULL);
21495 cu->per_cu->cu = NULL;
21496 cu->per_cu = NULL;
21497
72bf9492
DJ
21498 obstack_free (&cu->comp_unit_obstack, NULL);
21499 cu->partial_dies = NULL;
ae038cb0
DJ
21500}
21501
21502/* Free all cached compilation units. */
21503
21504static void
21505free_cached_comp_units (void *data)
21506{
21507 struct dwarf2_per_cu_data *per_cu, **last_chain;
21508
21509 per_cu = dwarf2_per_objfile->read_in_chain;
21510 last_chain = &dwarf2_per_objfile->read_in_chain;
21511 while (per_cu != NULL)
21512 {
21513 struct dwarf2_per_cu_data *next_cu;
21514
21515 next_cu = per_cu->cu->read_in_chain;
21516
68dc6402 21517 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
21518 *last_chain = next_cu;
21519
21520 per_cu = next_cu;
21521 }
21522}
21523
21524/* Increase the age counter on each cached compilation unit, and free
21525 any that are too old. */
21526
21527static void
21528age_cached_comp_units (void)
21529{
21530 struct dwarf2_per_cu_data *per_cu, **last_chain;
21531
21532 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21533 per_cu = dwarf2_per_objfile->read_in_chain;
21534 while (per_cu != NULL)
21535 {
21536 per_cu->cu->last_used ++;
21537 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21538 dwarf2_mark (per_cu->cu);
21539 per_cu = per_cu->cu->read_in_chain;
21540 }
21541
21542 per_cu = dwarf2_per_objfile->read_in_chain;
21543 last_chain = &dwarf2_per_objfile->read_in_chain;
21544 while (per_cu != NULL)
21545 {
21546 struct dwarf2_per_cu_data *next_cu;
21547
21548 next_cu = per_cu->cu->read_in_chain;
21549
21550 if (!per_cu->cu->mark)
21551 {
68dc6402 21552 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
21553 *last_chain = next_cu;
21554 }
21555 else
21556 last_chain = &per_cu->cu->read_in_chain;
21557
21558 per_cu = next_cu;
21559 }
21560}
21561
21562/* Remove a single compilation unit from the cache. */
21563
21564static void
dee91e82 21565free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
21566{
21567 struct dwarf2_per_cu_data *per_cu, **last_chain;
21568
21569 per_cu = dwarf2_per_objfile->read_in_chain;
21570 last_chain = &dwarf2_per_objfile->read_in_chain;
21571 while (per_cu != NULL)
21572 {
21573 struct dwarf2_per_cu_data *next_cu;
21574
21575 next_cu = per_cu->cu->read_in_chain;
21576
dee91e82 21577 if (per_cu == target_per_cu)
ae038cb0 21578 {
68dc6402 21579 free_heap_comp_unit (per_cu->cu);
dee91e82 21580 per_cu->cu = NULL;
ae038cb0
DJ
21581 *last_chain = next_cu;
21582 break;
21583 }
21584 else
21585 last_chain = &per_cu->cu->read_in_chain;
21586
21587 per_cu = next_cu;
21588 }
21589}
21590
fe3e1990
DJ
21591/* Release all extra memory associated with OBJFILE. */
21592
21593void
21594dwarf2_free_objfile (struct objfile *objfile)
21595{
21596 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21597
21598 if (dwarf2_per_objfile == NULL)
21599 return;
21600
21601 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21602 free_cached_comp_units (NULL);
21603
7b9f3c50
DE
21604 if (dwarf2_per_objfile->quick_file_names_table)
21605 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 21606
fe3e1990
DJ
21607 /* Everything else should be on the objfile obstack. */
21608}
21609
dee91e82
DE
21610/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21611 We store these in a hash table separate from the DIEs, and preserve them
21612 when the DIEs are flushed out of cache.
21613
21614 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 21615 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
21616 or the type may come from a DWO file. Furthermore, while it's more logical
21617 to use per_cu->section+offset, with Fission the section with the data is in
21618 the DWO file but we don't know that section at the point we need it.
21619 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21620 because we can enter the lookup routine, get_die_type_at_offset, from
21621 outside this file, and thus won't necessarily have PER_CU->cu.
21622 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 21623
dee91e82 21624struct dwarf2_per_cu_offset_and_type
1c379e20 21625{
dee91e82 21626 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 21627 sect_offset offset;
1c379e20
DJ
21628 struct type *type;
21629};
21630
dee91e82 21631/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
21632
21633static hashval_t
dee91e82 21634per_cu_offset_and_type_hash (const void *item)
1c379e20 21635{
dee91e82 21636 const struct dwarf2_per_cu_offset_and_type *ofs = item;
9a619af0 21637
dee91e82 21638 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
21639}
21640
dee91e82 21641/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
21642
21643static int
dee91e82 21644per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 21645{
dee91e82
DE
21646 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21647 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
9a619af0 21648
dee91e82
DE
21649 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21650 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
21651}
21652
21653/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
21654 table if necessary. For convenience, return TYPE.
21655
21656 The DIEs reading must have careful ordering to:
21657 * Not cause infite loops trying to read in DIEs as a prerequisite for
21658 reading current DIE.
21659 * Not trying to dereference contents of still incompletely read in types
21660 while reading in other DIEs.
21661 * Enable referencing still incompletely read in types just by a pointer to
21662 the type without accessing its fields.
21663
21664 Therefore caller should follow these rules:
21665 * Try to fetch any prerequisite types we may need to build this DIE type
21666 before building the type and calling set_die_type.
e71ec853 21667 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
21668 possible before fetching more types to complete the current type.
21669 * Make the type as complete as possible before fetching more types. */
1c379e20 21670
f792889a 21671static struct type *
1c379e20
DJ
21672set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21673{
dee91e82 21674 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 21675 struct objfile *objfile = cu->objfile;
1c379e20 21676
b4ba55a1
JB
21677 /* For Ada types, make sure that the gnat-specific data is always
21678 initialized (if not already set). There are a few types where
21679 we should not be doing so, because the type-specific area is
21680 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21681 where the type-specific area is used to store the floatformat).
21682 But this is not a problem, because the gnat-specific information
21683 is actually not needed for these types. */
21684 if (need_gnat_info (cu)
21685 && TYPE_CODE (type) != TYPE_CODE_FUNC
21686 && TYPE_CODE (type) != TYPE_CODE_FLT
21687 && !HAVE_GNAT_AUX_INFO (type))
21688 INIT_GNAT_SPECIFIC (type);
21689
dee91e82 21690 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 21691 {
dee91e82
DE
21692 dwarf2_per_objfile->die_type_hash =
21693 htab_create_alloc_ex (127,
21694 per_cu_offset_and_type_hash,
21695 per_cu_offset_and_type_eq,
21696 NULL,
21697 &objfile->objfile_obstack,
21698 hashtab_obstack_allocate,
21699 dummy_obstack_deallocate);
f792889a 21700 }
1c379e20 21701
dee91e82 21702 ofs.per_cu = cu->per_cu;
1c379e20
DJ
21703 ofs.offset = die->offset;
21704 ofs.type = type;
dee91e82
DE
21705 slot = (struct dwarf2_per_cu_offset_and_type **)
21706 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
21707 if (*slot)
21708 complaint (&symfile_complaints,
21709 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 21710 die->offset.sect_off);
673bfd45 21711 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 21712 **slot = ofs;
f792889a 21713 return type;
1c379e20
DJ
21714}
21715
02142a6c
DE
21716/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21717 or return NULL if the die does not have a saved type. */
1c379e20
DJ
21718
21719static struct type *
b64f50a1 21720get_die_type_at_offset (sect_offset offset,
673bfd45 21721 struct dwarf2_per_cu_data *per_cu)
1c379e20 21722{
dee91e82 21723 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 21724
dee91e82 21725 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 21726 return NULL;
1c379e20 21727
dee91e82 21728 ofs.per_cu = per_cu;
673bfd45 21729 ofs.offset = offset;
dee91e82 21730 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
1c379e20
DJ
21731 if (slot)
21732 return slot->type;
21733 else
21734 return NULL;
21735}
21736
02142a6c 21737/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
21738 or return NULL if DIE does not have a saved type. */
21739
21740static struct type *
21741get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21742{
21743 return get_die_type_at_offset (die->offset, cu->per_cu);
21744}
21745
10b3939b
DJ
21746/* Add a dependence relationship from CU to REF_PER_CU. */
21747
21748static void
21749dwarf2_add_dependence (struct dwarf2_cu *cu,
21750 struct dwarf2_per_cu_data *ref_per_cu)
21751{
21752 void **slot;
21753
21754 if (cu->dependencies == NULL)
21755 cu->dependencies
21756 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21757 NULL, &cu->comp_unit_obstack,
21758 hashtab_obstack_allocate,
21759 dummy_obstack_deallocate);
21760
21761 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21762 if (*slot == NULL)
21763 *slot = ref_per_cu;
21764}
1c379e20 21765
f504f079
DE
21766/* Subroutine of dwarf2_mark to pass to htab_traverse.
21767 Set the mark field in every compilation unit in the
ae038cb0
DJ
21768 cache that we must keep because we are keeping CU. */
21769
10b3939b
DJ
21770static int
21771dwarf2_mark_helper (void **slot, void *data)
21772{
21773 struct dwarf2_per_cu_data *per_cu;
21774
21775 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
21776
21777 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21778 reading of the chain. As such dependencies remain valid it is not much
21779 useful to track and undo them during QUIT cleanups. */
21780 if (per_cu->cu == NULL)
21781 return 1;
21782
10b3939b
DJ
21783 if (per_cu->cu->mark)
21784 return 1;
21785 per_cu->cu->mark = 1;
21786
21787 if (per_cu->cu->dependencies != NULL)
21788 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21789
21790 return 1;
21791}
21792
f504f079
DE
21793/* Set the mark field in CU and in every other compilation unit in the
21794 cache that we must keep because we are keeping CU. */
21795
ae038cb0
DJ
21796static void
21797dwarf2_mark (struct dwarf2_cu *cu)
21798{
21799 if (cu->mark)
21800 return;
21801 cu->mark = 1;
10b3939b
DJ
21802 if (cu->dependencies != NULL)
21803 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
21804}
21805
21806static void
21807dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21808{
21809 while (per_cu)
21810 {
21811 per_cu->cu->mark = 0;
21812 per_cu = per_cu->cu->read_in_chain;
21813 }
72bf9492
DJ
21814}
21815
72bf9492
DJ
21816/* Trivial hash function for partial_die_info: the hash value of a DIE
21817 is its offset in .debug_info for this objfile. */
21818
21819static hashval_t
21820partial_die_hash (const void *item)
21821{
21822 const struct partial_die_info *part_die = item;
9a619af0 21823
b64f50a1 21824 return part_die->offset.sect_off;
72bf9492
DJ
21825}
21826
21827/* Trivial comparison function for partial_die_info structures: two DIEs
21828 are equal if they have the same offset. */
21829
21830static int
21831partial_die_eq (const void *item_lhs, const void *item_rhs)
21832{
21833 const struct partial_die_info *part_die_lhs = item_lhs;
21834 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 21835
b64f50a1 21836 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
21837}
21838
ae038cb0
DJ
21839static struct cmd_list_element *set_dwarf2_cmdlist;
21840static struct cmd_list_element *show_dwarf2_cmdlist;
21841
21842static void
21843set_dwarf2_cmd (char *args, int from_tty)
21844{
635c7e8a
TT
21845 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
21846 gdb_stdout);
ae038cb0
DJ
21847}
21848
21849static void
21850show_dwarf2_cmd (char *args, int from_tty)
6e70227d 21851{
ae038cb0
DJ
21852 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21853}
21854
4bf44c1c 21855/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
21856
21857static void
c1bd65d0 21858dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
21859{
21860 struct dwarf2_per_objfile *data = d;
8b70b953 21861 int ix;
8b70b953 21862
626f2d1c
TT
21863 /* Make sure we don't accidentally use dwarf2_per_objfile while
21864 cleaning up. */
21865 dwarf2_per_objfile = NULL;
21866
59b0c7c1
JB
21867 for (ix = 0; ix < data->n_comp_units; ++ix)
21868 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 21869
59b0c7c1 21870 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 21871 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
21872 data->all_type_units[ix]->per_cu.imported_symtabs);
21873 xfree (data->all_type_units);
95554aad 21874
8b70b953 21875 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
21876
21877 if (data->dwo_files)
21878 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
21879 if (data->dwp_file)
21880 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
21881
21882 if (data->dwz_file && data->dwz_file->dwz_bfd)
21883 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
21884}
21885
21886\f
ae2de4f8 21887/* The "save gdb-index" command. */
9291a0cd
TT
21888
21889/* The contents of the hash table we create when building the string
21890 table. */
21891struct strtab_entry
21892{
21893 offset_type offset;
21894 const char *str;
21895};
21896
559a7a62
JK
21897/* Hash function for a strtab_entry.
21898
21899 Function is used only during write_hash_table so no index format backward
21900 compatibility is needed. */
b89be57b 21901
9291a0cd
TT
21902static hashval_t
21903hash_strtab_entry (const void *e)
21904{
21905 const struct strtab_entry *entry = e;
559a7a62 21906 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
21907}
21908
21909/* Equality function for a strtab_entry. */
b89be57b 21910
9291a0cd
TT
21911static int
21912eq_strtab_entry (const void *a, const void *b)
21913{
21914 const struct strtab_entry *ea = a;
21915 const struct strtab_entry *eb = b;
21916 return !strcmp (ea->str, eb->str);
21917}
21918
21919/* Create a strtab_entry hash table. */
b89be57b 21920
9291a0cd
TT
21921static htab_t
21922create_strtab (void)
21923{
21924 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
21925 xfree, xcalloc, xfree);
21926}
21927
21928/* Add a string to the constant pool. Return the string's offset in
21929 host order. */
b89be57b 21930
9291a0cd
TT
21931static offset_type
21932add_string (htab_t table, struct obstack *cpool, const char *str)
21933{
21934 void **slot;
21935 struct strtab_entry entry;
21936 struct strtab_entry *result;
21937
21938 entry.str = str;
21939 slot = htab_find_slot (table, &entry, INSERT);
21940 if (*slot)
21941 result = *slot;
21942 else
21943 {
21944 result = XNEW (struct strtab_entry);
21945 result->offset = obstack_object_size (cpool);
21946 result->str = str;
21947 obstack_grow_str0 (cpool, str);
21948 *slot = result;
21949 }
21950 return result->offset;
21951}
21952
21953/* An entry in the symbol table. */
21954struct symtab_index_entry
21955{
21956 /* The name of the symbol. */
21957 const char *name;
21958 /* The offset of the name in the constant pool. */
21959 offset_type index_offset;
21960 /* A sorted vector of the indices of all the CUs that hold an object
21961 of this name. */
21962 VEC (offset_type) *cu_indices;
21963};
21964
21965/* The symbol table. This is a power-of-2-sized hash table. */
21966struct mapped_symtab
21967{
21968 offset_type n_elements;
21969 offset_type size;
21970 struct symtab_index_entry **data;
21971};
21972
21973/* Hash function for a symtab_index_entry. */
b89be57b 21974
9291a0cd
TT
21975static hashval_t
21976hash_symtab_entry (const void *e)
21977{
21978 const struct symtab_index_entry *entry = e;
21979 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
21980 sizeof (offset_type) * VEC_length (offset_type,
21981 entry->cu_indices),
21982 0);
21983}
21984
21985/* Equality function for a symtab_index_entry. */
b89be57b 21986
9291a0cd
TT
21987static int
21988eq_symtab_entry (const void *a, const void *b)
21989{
21990 const struct symtab_index_entry *ea = a;
21991 const struct symtab_index_entry *eb = b;
21992 int len = VEC_length (offset_type, ea->cu_indices);
21993 if (len != VEC_length (offset_type, eb->cu_indices))
21994 return 0;
21995 return !memcmp (VEC_address (offset_type, ea->cu_indices),
21996 VEC_address (offset_type, eb->cu_indices),
21997 sizeof (offset_type) * len);
21998}
21999
22000/* Destroy a symtab_index_entry. */
b89be57b 22001
9291a0cd
TT
22002static void
22003delete_symtab_entry (void *p)
22004{
22005 struct symtab_index_entry *entry = p;
22006 VEC_free (offset_type, entry->cu_indices);
22007 xfree (entry);
22008}
22009
22010/* Create a hash table holding symtab_index_entry objects. */
b89be57b 22011
9291a0cd 22012static htab_t
3876f04e 22013create_symbol_hash_table (void)
9291a0cd
TT
22014{
22015 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22016 delete_symtab_entry, xcalloc, xfree);
22017}
22018
22019/* Create a new mapped symtab object. */
b89be57b 22020
9291a0cd
TT
22021static struct mapped_symtab *
22022create_mapped_symtab (void)
22023{
22024 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22025 symtab->n_elements = 0;
22026 symtab->size = 1024;
22027 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22028 return symtab;
22029}
22030
22031/* Destroy a mapped_symtab. */
b89be57b 22032
9291a0cd
TT
22033static void
22034cleanup_mapped_symtab (void *p)
22035{
22036 struct mapped_symtab *symtab = p;
22037 /* The contents of the array are freed when the other hash table is
22038 destroyed. */
22039 xfree (symtab->data);
22040 xfree (symtab);
22041}
22042
22043/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
22044 the slot.
22045
22046 Function is used only during write_hash_table so no index format backward
22047 compatibility is needed. */
b89be57b 22048
9291a0cd
TT
22049static struct symtab_index_entry **
22050find_slot (struct mapped_symtab *symtab, const char *name)
22051{
559a7a62 22052 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
22053
22054 index = hash & (symtab->size - 1);
22055 step = ((hash * 17) & (symtab->size - 1)) | 1;
22056
22057 for (;;)
22058 {
22059 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22060 return &symtab->data[index];
22061 index = (index + step) & (symtab->size - 1);
22062 }
22063}
22064
22065/* Expand SYMTAB's hash table. */
b89be57b 22066
9291a0cd
TT
22067static void
22068hash_expand (struct mapped_symtab *symtab)
22069{
22070 offset_type old_size = symtab->size;
22071 offset_type i;
22072 struct symtab_index_entry **old_entries = symtab->data;
22073
22074 symtab->size *= 2;
22075 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22076
22077 for (i = 0; i < old_size; ++i)
22078 {
22079 if (old_entries[i])
22080 {
22081 struct symtab_index_entry **slot = find_slot (symtab,
22082 old_entries[i]->name);
22083 *slot = old_entries[i];
22084 }
22085 }
22086
22087 xfree (old_entries);
22088}
22089
156942c7
DE
22090/* Add an entry to SYMTAB. NAME is the name of the symbol.
22091 CU_INDEX is the index of the CU in which the symbol appears.
22092 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 22093
9291a0cd
TT
22094static void
22095add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 22096 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
22097 offset_type cu_index)
22098{
22099 struct symtab_index_entry **slot;
156942c7 22100 offset_type cu_index_and_attrs;
9291a0cd
TT
22101
22102 ++symtab->n_elements;
22103 if (4 * symtab->n_elements / 3 >= symtab->size)
22104 hash_expand (symtab);
22105
22106 slot = find_slot (symtab, name);
22107 if (!*slot)
22108 {
22109 *slot = XNEW (struct symtab_index_entry);
22110 (*slot)->name = name;
156942c7 22111 /* index_offset is set later. */
9291a0cd
TT
22112 (*slot)->cu_indices = NULL;
22113 }
156942c7
DE
22114
22115 cu_index_and_attrs = 0;
22116 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22117 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22118 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22119
22120 /* We don't want to record an index value twice as we want to avoid the
22121 duplication.
22122 We process all global symbols and then all static symbols
22123 (which would allow us to avoid the duplication by only having to check
22124 the last entry pushed), but a symbol could have multiple kinds in one CU.
22125 To keep things simple we don't worry about the duplication here and
22126 sort and uniqufy the list after we've processed all symbols. */
22127 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22128}
22129
22130/* qsort helper routine for uniquify_cu_indices. */
22131
22132static int
22133offset_type_compare (const void *ap, const void *bp)
22134{
22135 offset_type a = *(offset_type *) ap;
22136 offset_type b = *(offset_type *) bp;
22137
22138 return (a > b) - (b > a);
22139}
22140
22141/* Sort and remove duplicates of all symbols' cu_indices lists. */
22142
22143static void
22144uniquify_cu_indices (struct mapped_symtab *symtab)
22145{
22146 int i;
22147
22148 for (i = 0; i < symtab->size; ++i)
22149 {
22150 struct symtab_index_entry *entry = symtab->data[i];
22151
22152 if (entry
22153 && entry->cu_indices != NULL)
22154 {
22155 unsigned int next_to_insert, next_to_check;
22156 offset_type last_value;
22157
22158 qsort (VEC_address (offset_type, entry->cu_indices),
22159 VEC_length (offset_type, entry->cu_indices),
22160 sizeof (offset_type), offset_type_compare);
22161
22162 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22163 next_to_insert = 1;
22164 for (next_to_check = 1;
22165 next_to_check < VEC_length (offset_type, entry->cu_indices);
22166 ++next_to_check)
22167 {
22168 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22169 != last_value)
22170 {
22171 last_value = VEC_index (offset_type, entry->cu_indices,
22172 next_to_check);
22173 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22174 last_value);
22175 ++next_to_insert;
22176 }
22177 }
22178 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22179 }
22180 }
9291a0cd
TT
22181}
22182
22183/* Add a vector of indices to the constant pool. */
b89be57b 22184
9291a0cd 22185static offset_type
3876f04e 22186add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
22187 struct symtab_index_entry *entry)
22188{
22189 void **slot;
22190
3876f04e 22191 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
22192 if (!*slot)
22193 {
22194 offset_type len = VEC_length (offset_type, entry->cu_indices);
22195 offset_type val = MAYBE_SWAP (len);
22196 offset_type iter;
22197 int i;
22198
22199 *slot = entry;
22200 entry->index_offset = obstack_object_size (cpool);
22201
22202 obstack_grow (cpool, &val, sizeof (val));
22203 for (i = 0;
22204 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22205 ++i)
22206 {
22207 val = MAYBE_SWAP (iter);
22208 obstack_grow (cpool, &val, sizeof (val));
22209 }
22210 }
22211 else
22212 {
22213 struct symtab_index_entry *old_entry = *slot;
22214 entry->index_offset = old_entry->index_offset;
22215 entry = old_entry;
22216 }
22217 return entry->index_offset;
22218}
22219
22220/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22221 constant pool entries going into the obstack CPOOL. */
b89be57b 22222
9291a0cd
TT
22223static void
22224write_hash_table (struct mapped_symtab *symtab,
22225 struct obstack *output, struct obstack *cpool)
22226{
22227 offset_type i;
3876f04e 22228 htab_t symbol_hash_table;
9291a0cd
TT
22229 htab_t str_table;
22230
3876f04e 22231 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 22232 str_table = create_strtab ();
3876f04e 22233
9291a0cd
TT
22234 /* We add all the index vectors to the constant pool first, to
22235 ensure alignment is ok. */
22236 for (i = 0; i < symtab->size; ++i)
22237 {
22238 if (symtab->data[i])
3876f04e 22239 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
22240 }
22241
22242 /* Now write out the hash table. */
22243 for (i = 0; i < symtab->size; ++i)
22244 {
22245 offset_type str_off, vec_off;
22246
22247 if (symtab->data[i])
22248 {
22249 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22250 vec_off = symtab->data[i]->index_offset;
22251 }
22252 else
22253 {
22254 /* While 0 is a valid constant pool index, it is not valid
22255 to have 0 for both offsets. */
22256 str_off = 0;
22257 vec_off = 0;
22258 }
22259
22260 str_off = MAYBE_SWAP (str_off);
22261 vec_off = MAYBE_SWAP (vec_off);
22262
22263 obstack_grow (output, &str_off, sizeof (str_off));
22264 obstack_grow (output, &vec_off, sizeof (vec_off));
22265 }
22266
22267 htab_delete (str_table);
3876f04e 22268 htab_delete (symbol_hash_table);
9291a0cd
TT
22269}
22270
0a5429f6
DE
22271/* Struct to map psymtab to CU index in the index file. */
22272struct psymtab_cu_index_map
22273{
22274 struct partial_symtab *psymtab;
22275 unsigned int cu_index;
22276};
22277
22278static hashval_t
22279hash_psymtab_cu_index (const void *item)
22280{
22281 const struct psymtab_cu_index_map *map = item;
22282
22283 return htab_hash_pointer (map->psymtab);
22284}
22285
22286static int
22287eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22288{
22289 const struct psymtab_cu_index_map *lhs = item_lhs;
22290 const struct psymtab_cu_index_map *rhs = item_rhs;
22291
22292 return lhs->psymtab == rhs->psymtab;
22293}
22294
22295/* Helper struct for building the address table. */
22296struct addrmap_index_data
22297{
22298 struct objfile *objfile;
22299 struct obstack *addr_obstack;
22300 htab_t cu_index_htab;
22301
22302 /* Non-zero if the previous_* fields are valid.
22303 We can't write an entry until we see the next entry (since it is only then
22304 that we know the end of the entry). */
22305 int previous_valid;
22306 /* Index of the CU in the table of all CUs in the index file. */
22307 unsigned int previous_cu_index;
0963b4bd 22308 /* Start address of the CU. */
0a5429f6
DE
22309 CORE_ADDR previous_cu_start;
22310};
22311
22312/* Write an address entry to OBSTACK. */
b89be57b 22313
9291a0cd 22314static void
0a5429f6
DE
22315add_address_entry (struct objfile *objfile, struct obstack *obstack,
22316 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 22317{
0a5429f6 22318 offset_type cu_index_to_write;
948f8e3d 22319 gdb_byte addr[8];
9291a0cd
TT
22320 CORE_ADDR baseaddr;
22321
22322 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22323
0a5429f6
DE
22324 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22325 obstack_grow (obstack, addr, 8);
22326 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22327 obstack_grow (obstack, addr, 8);
22328 cu_index_to_write = MAYBE_SWAP (cu_index);
22329 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22330}
22331
22332/* Worker function for traversing an addrmap to build the address table. */
22333
22334static int
22335add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22336{
22337 struct addrmap_index_data *data = datap;
22338 struct partial_symtab *pst = obj;
0a5429f6
DE
22339
22340 if (data->previous_valid)
22341 add_address_entry (data->objfile, data->addr_obstack,
22342 data->previous_cu_start, start_addr,
22343 data->previous_cu_index);
22344
22345 data->previous_cu_start = start_addr;
22346 if (pst != NULL)
22347 {
22348 struct psymtab_cu_index_map find_map, *map;
22349 find_map.psymtab = pst;
22350 map = htab_find (data->cu_index_htab, &find_map);
22351 gdb_assert (map != NULL);
22352 data->previous_cu_index = map->cu_index;
22353 data->previous_valid = 1;
22354 }
22355 else
22356 data->previous_valid = 0;
22357
22358 return 0;
22359}
22360
22361/* Write OBJFILE's address map to OBSTACK.
22362 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22363 in the index file. */
22364
22365static void
22366write_address_map (struct objfile *objfile, struct obstack *obstack,
22367 htab_t cu_index_htab)
22368{
22369 struct addrmap_index_data addrmap_index_data;
22370
22371 /* When writing the address table, we have to cope with the fact that
22372 the addrmap iterator only provides the start of a region; we have to
22373 wait until the next invocation to get the start of the next region. */
22374
22375 addrmap_index_data.objfile = objfile;
22376 addrmap_index_data.addr_obstack = obstack;
22377 addrmap_index_data.cu_index_htab = cu_index_htab;
22378 addrmap_index_data.previous_valid = 0;
22379
22380 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22381 &addrmap_index_data);
22382
22383 /* It's highly unlikely the last entry (end address = 0xff...ff)
22384 is valid, but we should still handle it.
22385 The end address is recorded as the start of the next region, but that
22386 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22387 anyway. */
22388 if (addrmap_index_data.previous_valid)
22389 add_address_entry (objfile, obstack,
22390 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22391 addrmap_index_data.previous_cu_index);
9291a0cd
TT
22392}
22393
156942c7
DE
22394/* Return the symbol kind of PSYM. */
22395
22396static gdb_index_symbol_kind
22397symbol_kind (struct partial_symbol *psym)
22398{
22399 domain_enum domain = PSYMBOL_DOMAIN (psym);
22400 enum address_class aclass = PSYMBOL_CLASS (psym);
22401
22402 switch (domain)
22403 {
22404 case VAR_DOMAIN:
22405 switch (aclass)
22406 {
22407 case LOC_BLOCK:
22408 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22409 case LOC_TYPEDEF:
22410 return GDB_INDEX_SYMBOL_KIND_TYPE;
22411 case LOC_COMPUTED:
22412 case LOC_CONST_BYTES:
22413 case LOC_OPTIMIZED_OUT:
22414 case LOC_STATIC:
22415 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22416 case LOC_CONST:
22417 /* Note: It's currently impossible to recognize psyms as enum values
22418 short of reading the type info. For now punt. */
22419 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22420 default:
22421 /* There are other LOC_FOO values that one might want to classify
22422 as variables, but dwarf2read.c doesn't currently use them. */
22423 return GDB_INDEX_SYMBOL_KIND_OTHER;
22424 }
22425 case STRUCT_DOMAIN:
22426 return GDB_INDEX_SYMBOL_KIND_TYPE;
22427 default:
22428 return GDB_INDEX_SYMBOL_KIND_OTHER;
22429 }
22430}
22431
9291a0cd 22432/* Add a list of partial symbols to SYMTAB. */
b89be57b 22433
9291a0cd
TT
22434static void
22435write_psymbols (struct mapped_symtab *symtab,
987d643c 22436 htab_t psyms_seen,
9291a0cd
TT
22437 struct partial_symbol **psymp,
22438 int count,
987d643c
TT
22439 offset_type cu_index,
22440 int is_static)
9291a0cd
TT
22441{
22442 for (; count-- > 0; ++psymp)
22443 {
156942c7
DE
22444 struct partial_symbol *psym = *psymp;
22445 void **slot;
987d643c 22446
156942c7 22447 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 22448 error (_("Ada is not currently supported by the index"));
987d643c 22449
987d643c 22450 /* Only add a given psymbol once. */
156942c7 22451 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
22452 if (!*slot)
22453 {
156942c7
DE
22454 gdb_index_symbol_kind kind = symbol_kind (psym);
22455
22456 *slot = psym;
22457 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22458 is_static, kind, cu_index);
987d643c 22459 }
9291a0cd
TT
22460 }
22461}
22462
22463/* Write the contents of an ("unfinished") obstack to FILE. Throw an
22464 exception if there is an error. */
b89be57b 22465
9291a0cd
TT
22466static void
22467write_obstack (FILE *file, struct obstack *obstack)
22468{
22469 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22470 file)
22471 != obstack_object_size (obstack))
22472 error (_("couldn't data write to file"));
22473}
22474
22475/* Unlink a file if the argument is not NULL. */
b89be57b 22476
9291a0cd
TT
22477static void
22478unlink_if_set (void *p)
22479{
22480 char **filename = p;
22481 if (*filename)
22482 unlink (*filename);
22483}
22484
1fd400ff
TT
22485/* A helper struct used when iterating over debug_types. */
22486struct signatured_type_index_data
22487{
22488 struct objfile *objfile;
22489 struct mapped_symtab *symtab;
22490 struct obstack *types_list;
987d643c 22491 htab_t psyms_seen;
1fd400ff
TT
22492 int cu_index;
22493};
22494
22495/* A helper function that writes a single signatured_type to an
22496 obstack. */
b89be57b 22497
1fd400ff
TT
22498static int
22499write_one_signatured_type (void **slot, void *d)
22500{
22501 struct signatured_type_index_data *info = d;
22502 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 22503 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
22504 gdb_byte val[8];
22505
22506 write_psymbols (info->symtab,
987d643c 22507 info->psyms_seen,
3e43a32a
MS
22508 info->objfile->global_psymbols.list
22509 + psymtab->globals_offset,
987d643c
TT
22510 psymtab->n_global_syms, info->cu_index,
22511 0);
1fd400ff 22512 write_psymbols (info->symtab,
987d643c 22513 info->psyms_seen,
3e43a32a
MS
22514 info->objfile->static_psymbols.list
22515 + psymtab->statics_offset,
987d643c
TT
22516 psymtab->n_static_syms, info->cu_index,
22517 1);
1fd400ff 22518
b64f50a1
JK
22519 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22520 entry->per_cu.offset.sect_off);
1fd400ff 22521 obstack_grow (info->types_list, val, 8);
3019eac3
DE
22522 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22523 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
22524 obstack_grow (info->types_list, val, 8);
22525 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22526 obstack_grow (info->types_list, val, 8);
22527
22528 ++info->cu_index;
22529
22530 return 1;
22531}
22532
95554aad
TT
22533/* Recurse into all "included" dependencies and write their symbols as
22534 if they appeared in this psymtab. */
22535
22536static void
22537recursively_write_psymbols (struct objfile *objfile,
22538 struct partial_symtab *psymtab,
22539 struct mapped_symtab *symtab,
22540 htab_t psyms_seen,
22541 offset_type cu_index)
22542{
22543 int i;
22544
22545 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22546 if (psymtab->dependencies[i]->user != NULL)
22547 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22548 symtab, psyms_seen, cu_index);
22549
22550 write_psymbols (symtab,
22551 psyms_seen,
22552 objfile->global_psymbols.list + psymtab->globals_offset,
22553 psymtab->n_global_syms, cu_index,
22554 0);
22555 write_psymbols (symtab,
22556 psyms_seen,
22557 objfile->static_psymbols.list + psymtab->statics_offset,
22558 psymtab->n_static_syms, cu_index,
22559 1);
22560}
22561
9291a0cd 22562/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 22563
9291a0cd
TT
22564static void
22565write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22566{
22567 struct cleanup *cleanup;
22568 char *filename, *cleanup_filename;
1fd400ff
TT
22569 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22570 struct obstack cu_list, types_cu_list;
9291a0cd
TT
22571 int i;
22572 FILE *out_file;
22573 struct mapped_symtab *symtab;
22574 offset_type val, size_of_contents, total_len;
22575 struct stat st;
987d643c 22576 htab_t psyms_seen;
0a5429f6
DE
22577 htab_t cu_index_htab;
22578 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 22579
9291a0cd
TT
22580 if (dwarf2_per_objfile->using_index)
22581 error (_("Cannot use an index to create the index"));
22582
8b70b953
TT
22583 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22584 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22585
260b681b
DE
22586 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22587 return;
22588
4262abfb
JK
22589 if (stat (objfile_name (objfile), &st) < 0)
22590 perror_with_name (objfile_name (objfile));
9291a0cd 22591
4262abfb 22592 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
22593 INDEX_SUFFIX, (char *) NULL);
22594 cleanup = make_cleanup (xfree, filename);
22595
614c279d 22596 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
22597 if (!out_file)
22598 error (_("Can't open `%s' for writing"), filename);
22599
22600 cleanup_filename = filename;
22601 make_cleanup (unlink_if_set, &cleanup_filename);
22602
22603 symtab = create_mapped_symtab ();
22604 make_cleanup (cleanup_mapped_symtab, symtab);
22605
22606 obstack_init (&addr_obstack);
22607 make_cleanup_obstack_free (&addr_obstack);
22608
22609 obstack_init (&cu_list);
22610 make_cleanup_obstack_free (&cu_list);
22611
1fd400ff
TT
22612 obstack_init (&types_cu_list);
22613 make_cleanup_obstack_free (&types_cu_list);
22614
987d643c
TT
22615 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22616 NULL, xcalloc, xfree);
96408a79 22617 make_cleanup_htab_delete (psyms_seen);
987d643c 22618
0a5429f6
DE
22619 /* While we're scanning CU's create a table that maps a psymtab pointer
22620 (which is what addrmap records) to its index (which is what is recorded
22621 in the index file). This will later be needed to write the address
22622 table. */
22623 cu_index_htab = htab_create_alloc (100,
22624 hash_psymtab_cu_index,
22625 eq_psymtab_cu_index,
22626 NULL, xcalloc, xfree);
96408a79 22627 make_cleanup_htab_delete (cu_index_htab);
0a5429f6
DE
22628 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22629 xmalloc (sizeof (struct psymtab_cu_index_map)
22630 * dwarf2_per_objfile->n_comp_units);
22631 make_cleanup (xfree, psymtab_cu_index_map);
22632
22633 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
22634 work here. Also, the debug_types entries do not appear in
22635 all_comp_units, but only in their own hash table. */
9291a0cd
TT
22636 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22637 {
3e43a32a
MS
22638 struct dwarf2_per_cu_data *per_cu
22639 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 22640 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 22641 gdb_byte val[8];
0a5429f6
DE
22642 struct psymtab_cu_index_map *map;
22643 void **slot;
9291a0cd 22644
92fac807
JK
22645 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22646 It may be referenced from a local scope but in such case it does not
22647 need to be present in .gdb_index. */
22648 if (psymtab == NULL)
22649 continue;
22650
95554aad
TT
22651 if (psymtab->user == NULL)
22652 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 22653
0a5429f6
DE
22654 map = &psymtab_cu_index_map[i];
22655 map->psymtab = psymtab;
22656 map->cu_index = i;
22657 slot = htab_find_slot (cu_index_htab, map, INSERT);
22658 gdb_assert (slot != NULL);
22659 gdb_assert (*slot == NULL);
22660 *slot = map;
9291a0cd 22661
b64f50a1
JK
22662 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22663 per_cu->offset.sect_off);
9291a0cd 22664 obstack_grow (&cu_list, val, 8);
e254ef6a 22665 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
22666 obstack_grow (&cu_list, val, 8);
22667 }
22668
0a5429f6
DE
22669 /* Dump the address map. */
22670 write_address_map (objfile, &addr_obstack, cu_index_htab);
22671
1fd400ff
TT
22672 /* Write out the .debug_type entries, if any. */
22673 if (dwarf2_per_objfile->signatured_types)
22674 {
22675 struct signatured_type_index_data sig_data;
22676
22677 sig_data.objfile = objfile;
22678 sig_data.symtab = symtab;
22679 sig_data.types_list = &types_cu_list;
987d643c 22680 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
22681 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22682 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22683 write_one_signatured_type, &sig_data);
22684 }
22685
156942c7
DE
22686 /* Now that we've processed all symbols we can shrink their cu_indices
22687 lists. */
22688 uniquify_cu_indices (symtab);
22689
9291a0cd
TT
22690 obstack_init (&constant_pool);
22691 make_cleanup_obstack_free (&constant_pool);
22692 obstack_init (&symtab_obstack);
22693 make_cleanup_obstack_free (&symtab_obstack);
22694 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22695
22696 obstack_init (&contents);
22697 make_cleanup_obstack_free (&contents);
1fd400ff 22698 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
22699 total_len = size_of_contents;
22700
22701 /* The version number. */
796a7ff8 22702 val = MAYBE_SWAP (8);
9291a0cd
TT
22703 obstack_grow (&contents, &val, sizeof (val));
22704
22705 /* The offset of the CU list from the start of the file. */
22706 val = MAYBE_SWAP (total_len);
22707 obstack_grow (&contents, &val, sizeof (val));
22708 total_len += obstack_object_size (&cu_list);
22709
1fd400ff
TT
22710 /* The offset of the types CU list from the start of the file. */
22711 val = MAYBE_SWAP (total_len);
22712 obstack_grow (&contents, &val, sizeof (val));
22713 total_len += obstack_object_size (&types_cu_list);
22714
9291a0cd
TT
22715 /* The offset of the address table from the start of the file. */
22716 val = MAYBE_SWAP (total_len);
22717 obstack_grow (&contents, &val, sizeof (val));
22718 total_len += obstack_object_size (&addr_obstack);
22719
22720 /* The offset of the symbol table from the start of the file. */
22721 val = MAYBE_SWAP (total_len);
22722 obstack_grow (&contents, &val, sizeof (val));
22723 total_len += obstack_object_size (&symtab_obstack);
22724
22725 /* The offset of the constant pool from the start of the file. */
22726 val = MAYBE_SWAP (total_len);
22727 obstack_grow (&contents, &val, sizeof (val));
22728 total_len += obstack_object_size (&constant_pool);
22729
22730 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22731
22732 write_obstack (out_file, &contents);
22733 write_obstack (out_file, &cu_list);
1fd400ff 22734 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
22735 write_obstack (out_file, &addr_obstack);
22736 write_obstack (out_file, &symtab_obstack);
22737 write_obstack (out_file, &constant_pool);
22738
22739 fclose (out_file);
22740
22741 /* We want to keep the file, so we set cleanup_filename to NULL
22742 here. See unlink_if_set. */
22743 cleanup_filename = NULL;
22744
22745 do_cleanups (cleanup);
22746}
22747
90476074
TT
22748/* Implementation of the `save gdb-index' command.
22749
22750 Note that the file format used by this command is documented in the
22751 GDB manual. Any changes here must be documented there. */
11570e71 22752
9291a0cd
TT
22753static void
22754save_gdb_index_command (char *arg, int from_tty)
22755{
22756 struct objfile *objfile;
22757
22758 if (!arg || !*arg)
96d19272 22759 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
22760
22761 ALL_OBJFILES (objfile)
22762 {
22763 struct stat st;
22764
22765 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 22766 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
22767 continue;
22768
22769 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22770 if (dwarf2_per_objfile)
22771 {
22772 volatile struct gdb_exception except;
22773
22774 TRY_CATCH (except, RETURN_MASK_ERROR)
22775 {
22776 write_psymtabs_to_index (objfile, arg);
22777 }
22778 if (except.reason < 0)
22779 exception_fprintf (gdb_stderr, except,
22780 _("Error while writing index for `%s': "),
4262abfb 22781 objfile_name (objfile));
9291a0cd
TT
22782 }
22783 }
dce234bc
PP
22784}
22785
9291a0cd
TT
22786\f
22787
9eae7c52
TT
22788int dwarf2_always_disassemble;
22789
22790static void
22791show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22792 struct cmd_list_element *c, const char *value)
22793{
3e43a32a
MS
22794 fprintf_filtered (file,
22795 _("Whether to always disassemble "
22796 "DWARF expressions is %s.\n"),
9eae7c52
TT
22797 value);
22798}
22799
900e11f9
JK
22800static void
22801show_check_physname (struct ui_file *file, int from_tty,
22802 struct cmd_list_element *c, const char *value)
22803{
22804 fprintf_filtered (file,
22805 _("Whether to check \"physname\" is %s.\n"),
22806 value);
22807}
22808
6502dd73
DJ
22809void _initialize_dwarf2_read (void);
22810
22811void
22812_initialize_dwarf2_read (void)
22813{
96d19272
JK
22814 struct cmd_list_element *c;
22815
dce234bc 22816 dwarf2_objfile_data_key
c1bd65d0 22817 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 22818
1bedd215
AC
22819 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22820Set DWARF 2 specific variables.\n\
22821Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
22822 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22823 0/*allow-unknown*/, &maintenance_set_cmdlist);
22824
1bedd215
AC
22825 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22826Show DWARF 2 specific variables\n\
22827Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
22828 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22829 0/*allow-unknown*/, &maintenance_show_cmdlist);
22830
22831 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
22832 &dwarf2_max_cache_age, _("\
22833Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22834Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22835A higher limit means that cached compilation units will be stored\n\
22836in memory longer, and more total memory will be used. Zero disables\n\
22837caching, which can slow down startup."),
2c5b56ce 22838 NULL,
920d2a44 22839 show_dwarf2_max_cache_age,
2c5b56ce 22840 &set_dwarf2_cmdlist,
ae038cb0 22841 &show_dwarf2_cmdlist);
d97bc12b 22842
9eae7c52
TT
22843 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22844 &dwarf2_always_disassemble, _("\
22845Set whether `info address' always disassembles DWARF expressions."), _("\
22846Show whether `info address' always disassembles DWARF expressions."), _("\
22847When enabled, DWARF expressions are always printed in an assembly-like\n\
22848syntax. When disabled, expressions will be printed in a more\n\
22849conversational style, when possible."),
22850 NULL,
22851 show_dwarf2_always_disassemble,
22852 &set_dwarf2_cmdlist,
22853 &show_dwarf2_cmdlist);
22854
73be47f5 22855 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
45cfd468
DE
22856Set debugging of the dwarf2 reader."), _("\
22857Show debugging of the dwarf2 reader."), _("\
73be47f5
DE
22858When enabled (non-zero), debugging messages are printed during dwarf2\n\
22859reading and symtab expansion. A value of 1 (one) provides basic\n\
22860information. A value greater than 1 provides more verbose information."),
45cfd468
DE
22861 NULL,
22862 NULL,
22863 &setdebuglist, &showdebuglist);
22864
ccce17b0 22865 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
d97bc12b
DE
22866Set debugging of the dwarf2 DIE reader."), _("\
22867Show debugging of the dwarf2 DIE reader."), _("\
22868When enabled (non-zero), DIEs are dumped after they are read in.\n\
22869The value is the maximum depth to print."),
ccce17b0
YQ
22870 NULL,
22871 NULL,
22872 &setdebuglist, &showdebuglist);
9291a0cd 22873
900e11f9
JK
22874 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22875Set cross-checking of \"physname\" code against demangler."), _("\
22876Show cross-checking of \"physname\" code against demangler."), _("\
22877When enabled, GDB's internal \"physname\" code is checked against\n\
22878the demangler."),
22879 NULL, show_check_physname,
22880 &setdebuglist, &showdebuglist);
22881
e615022a
DE
22882 add_setshow_boolean_cmd ("use-deprecated-index-sections",
22883 no_class, &use_deprecated_index_sections, _("\
22884Set whether to use deprecated gdb_index sections."), _("\
22885Show whether to use deprecated gdb_index sections."), _("\
22886When enabled, deprecated .gdb_index sections are used anyway.\n\
22887Normally they are ignored either because of a missing feature or\n\
22888performance issue.\n\
22889Warning: This option must be enabled before gdb reads the file."),
22890 NULL,
22891 NULL,
22892 &setlist, &showlist);
22893
96d19272 22894 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 22895 _("\
fc1a9d6e 22896Save a gdb-index file.\n\
11570e71 22897Usage: save gdb-index DIRECTORY"),
96d19272
JK
22898 &save_cmdlist);
22899 set_cmd_completer (c, filename_completer);
f1e6e072
TT
22900
22901 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
22902 &dwarf2_locexpr_funcs);
22903 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
22904 &dwarf2_loclist_funcs);
22905
22906 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
22907 &dwarf2_block_frame_base_locexpr_funcs);
22908 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
22909 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 22910}
This page took 3.409462 seconds and 4 git commands to generate.