Remove obsolete TYPE_FLAG_... values
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
618f726f 3 Copyright (C) 1994-2016 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
53ce3c39 58#include <sys/stat.h>
96d19272 59#include "completer.h"
34eaf542 60#include "vec.h"
98bfdba5 61#include "c-lang.h"
a766d390 62#include "go-lang.h"
98bfdba5 63#include "valprint.h"
3019eac3 64#include "gdbcore.h" /* for gnutarget */
156942c7 65#include "gdb/gdb-index.h"
60d5a603 66#include <ctype.h>
cbb099e8 67#include "gdb_bfd.h"
4357ac6c 68#include "f-lang.h"
05cba821 69#include "source.h"
614c279d 70#include "filestuff.h"
dc294be5 71#include "build-id.h"
22cee43f 72#include "namespace.h"
4c2df51b 73
c906108c 74#include <fcntl.h>
c906108c 75#include <sys/types.h>
d8151005 76
34eaf542
TT
77typedef struct symbol *symbolp;
78DEF_VEC_P (symbolp);
79
73be47f5
DE
80/* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
b4f54984
DE
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83static unsigned int dwarf_read_debug = 0;
45cfd468 84
d97bc12b 85/* When non-zero, dump DIEs after they are read in. */
b4f54984 86static unsigned int dwarf_die_debug = 0;
d97bc12b 87
27e0867f
DE
88/* When non-zero, dump line number entries as they are read in. */
89static unsigned int dwarf_line_debug = 0;
90
900e11f9
JK
91/* When non-zero, cross-check physname against demangler. */
92static int check_physname = 0;
93
481860b3 94/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 95static int use_deprecated_index_sections = 0;
481860b3 96
6502dd73
DJ
97static const struct objfile_data *dwarf2_objfile_data_key;
98
f1e6e072
TT
99/* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101static int dwarf2_locexpr_index;
102static int dwarf2_loclist_index;
103static int dwarf2_locexpr_block_index;
104static int dwarf2_loclist_block_index;
105
73869dc2
DE
106/* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
dce234bc
PP
122struct dwarf2_section_info
123{
73869dc2
DE
124 union
125 {
e5aa3347 126 /* If this is a real section, the bfd section. */
049412e3 127 asection *section;
73869dc2 128 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 129 section. */
73869dc2
DE
130 struct dwarf2_section_info *containing_section;
131 } s;
19ac8c2e 132 /* Pointer to section data, only valid if readin. */
d521ce57 133 const gdb_byte *buffer;
73869dc2 134 /* The size of the section, real or virtual. */
dce234bc 135 bfd_size_type size;
73869dc2
DE
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
be391dca 139 /* True if we have tried to read this section. */
73869dc2
DE
140 char readin;
141 /* True if this is a virtual section, False otherwise.
049412e3 142 This specifies which of s.section and s.containing_section to use. */
73869dc2 143 char is_virtual;
dce234bc
PP
144};
145
8b70b953
TT
146typedef struct dwarf2_section_info dwarf2_section_info_def;
147DEF_VEC_O (dwarf2_section_info_def);
148
9291a0cd
TT
149/* All offsets in the index are of this type. It must be
150 architecture-independent. */
151typedef uint32_t offset_type;
152
153DEF_VEC_I (offset_type);
154
156942c7
DE
155/* Ensure only legit values are used. */
156#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162/* Ensure only legit values are used. */
163#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170/* Ensure we don't use more than the alloted nuber of bits for the CU. */
171#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
9291a0cd
TT
177/* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179struct mapped_index
180{
559a7a62
JK
181 /* Index data format version. */
182 int version;
183
9291a0cd
TT
184 /* The total length of the buffer. */
185 off_t total_size;
b11b1f88 186
9291a0cd
TT
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
b11b1f88 189
9291a0cd
TT
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
b11b1f88 192
3876f04e
DE
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
b11b1f88 195
9291a0cd 196 /* Size in slots, each slot is 2 offset_types. */
3876f04e 197 offset_type symbol_table_slots;
b11b1f88 198
9291a0cd
TT
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201};
202
95554aad
TT
203typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204DEF_VEC_P (dwarf2_per_cu_ptr);
205
52059ffd
TT
206struct tu_stats
207{
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213};
214
9cdd5dbd
DE
215/* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
6502dd73
DJ
218struct dwarf2_per_objfile
219{
dce234bc
PP
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
dce234bc
PP
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
cf2c3c16 225 struct dwarf2_section_info macro;
dce234bc
PP
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
3019eac3 228 struct dwarf2_section_info addr;
dce234bc
PP
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
9291a0cd 231 struct dwarf2_section_info gdb_index;
ae038cb0 232
8b70b953
TT
233 VEC (dwarf2_section_info_def) *types;
234
be391dca
TT
235 /* Back link. */
236 struct objfile *objfile;
237
d467dd73 238 /* Table of all the compilation units. This is used to locate
10b3939b 239 the target compilation unit of a particular reference. */
ae038cb0
DJ
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
1fd400ff 245 /* The number of .debug_types-related CUs. */
d467dd73 246 int n_type_units;
1fd400ff 247
6aa5f3a6
DE
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
a2ce51a0
DE
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
b4dd5633 254 struct signatured_type **all_type_units;
1fd400ff 255
f4dc4d17
DE
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
72dca2f5 259
348e048f
DE
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
f4dc4d17
DE
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
52059ffd 266 struct tu_stats tu_stats;
f4dc4d17
DE
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
3019eac3
DE
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
80626a55
DE
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
36586728
TT
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
72dca2f5
FR
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
9291a0cd 289
ae2de4f8
DE
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
292 unsigned char using_index;
293
ae2de4f8 294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 295 struct mapped_index *index_table;
98bfdba5 296
7b9f3c50 297 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
7b9f3c50
DE
304 htab_t quick_file_names_table;
305
98bfdba5
PA
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
673bfd45 309
dee91e82 310 /* Table mapping type DIEs to their struct type *.
673bfd45 311 This is NULL if not allocated yet.
02142a6c 312 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 313 htab_t die_type_hash;
95554aad
TT
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
527f3840
JK
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
6502dd73
DJ
320};
321
322static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 323
251d32d9 324/* Default names of the debugging sections. */
c906108c 325
233a11ab
CS
326/* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
9cdd5dbd
DE
329static const struct dwarf2_debug_sections dwarf2_elf_names =
330{
251d32d9
TG
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 336 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
3019eac3 340 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
24d3216f
TT
343 { ".gdb_index", ".zgdb_index" },
344 23
251d32d9 345};
c906108c 346
80626a55 347/* List of DWO/DWP sections. */
3019eac3 348
80626a55 349static const struct dwop_section_names
3019eac3
DE
350{
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
09262596
DE
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
3019eac3
DE
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
80626a55
DE
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
3019eac3 362}
80626a55 363dwop_section_names =
3019eac3
DE
364{
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
376};
377
c906108c
SS
378/* local data types */
379
107d2387
AC
380/* The data in a compilation unit header, after target2host
381 translation, looks like this. */
c906108c 382struct comp_unit_head
a738430d 383{
c764a876 384 unsigned int length;
a738430d 385 short version;
a738430d
MK
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
b64f50a1 388 sect_offset abbrev_offset;
57349743 389
a738430d
MK
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
57349743 392
a738430d
MK
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
57349743 395
a738430d
MK
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
b64f50a1 398 sect_offset offset;
57349743 399
d00adf39
DE
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
b64f50a1 402 cu_offset first_die_offset;
a738430d 403};
c906108c 404
3da10d80
KS
405/* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407struct delayed_method_info
408{
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423};
424
425typedef struct delayed_method_info delayed_method_info;
426DEF_VEC_O (delayed_method_info);
427
e7c27a73
DJ
428/* Internal state when decoding a particular compilation unit. */
429struct dwarf2_cu
430{
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
d00adf39 434 /* The header of the compilation unit. */
e7c27a73 435 struct comp_unit_head header;
e142c38c 436
d00adf39
DE
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
e142c38c
DJ
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
b0f35d58
DL
447 const char *producer;
448
e142c38c
DJ
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
433df2d4
DE
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
72bf9492 464
b64f50a1
JK
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
ae038cb0
DJ
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
69d751e3 479 /* Backlink to our per_cu entry. */
ae038cb0
DJ
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
b64f50a1
JK
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
51545339 487 htab_t die_hash;
10b3939b
DJ
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
cb1df416
DJ
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
3da10d80
KS
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
96408a79
SA
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
034e5797
DE
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
3019eac3
DE
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
1dbab08b 520 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
521 ULONGEST addr_base;
522
2e3cf129
DE
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
1dbab08b 525 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 526 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
533 ULONGEST ranges_base;
534
ae038cb0
DJ
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
8be455d7
JK
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 542 unsigned int has_loclist : 1;
ba919b58 543
1b80a9fa
JK
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
ba919b58
TT
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 550 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 551 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
558};
559
10b3939b
DJ
560/* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
28dee7f5 562 read_symtab_private field of the psymtab. */
10b3939b 563
ae038cb0
DJ
564struct dwarf2_per_cu_data
565{
36586728 566 /* The start offset and length of this compilation unit.
45452591 567 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
b64f50a1 571 sect_offset offset;
36586728 572 unsigned int length;
ae038cb0
DJ
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
c764a876 576 unsigned int queued : 1;
ae038cb0 577
0d99eb77
DE
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
0186c6a7
DE
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
3019eac3
DE
587 unsigned int is_debug_types : 1;
588
36586728
TT
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
a2ce51a0
DE
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
7ee85ab1
DE
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
3019eac3
DE
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
8a0459fd 611 struct dwarf2_section_info *section;
348e048f 612
17ea53c3 613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
cc12ce38
DE
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
ae038cb0 616 struct dwarf2_cu *cu;
1c379e20 617
9cdd5dbd
DE
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
621 struct objfile *objfile;
622
fffbe6a8
YQ
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
95554aad 628 or NULL for unread partial units. */
9291a0cd
TT
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
95554aad 634
796a7ff8
DE
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
654};
655
348e048f
DE
656/* Entry in the signatured_types hash table. */
657
658struct signatured_type
659{
42e7ad6c 660 /* The "per_cu" object of this type.
ac9ec31b 661 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
3019eac3 666 /* The type's signature. */
348e048f
DE
667 ULONGEST signature;
668
3019eac3 669 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
0186c6a7
DE
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
ac9ec31b
DE
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
a2ce51a0
DE
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
348e048f
DE
693};
694
0186c6a7
DE
695typedef struct signatured_type *sig_type_ptr;
696DEF_VEC_P (sig_type_ptr);
697
094b34ac
DE
698/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701struct stmt_list_hash
702{
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708};
709
f4dc4d17
DE
710/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713struct type_unit_group
714{
0186c6a7 715 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
8a0459fd 720#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
721 struct dwarf2_per_cu_data per_cu;
722
0186c6a7
DE
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
f4dc4d17 727
43f3e411 728 /* The compunit symtab.
094b34ac 729 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
f4dc4d17 732
094b34ac
DE
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
f4dc4d17
DE
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749};
750
73869dc2 751/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
752
753struct dwo_sections
754{
755 struct dwarf2_section_info abbrev;
3019eac3
DE
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
09262596
DE
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
3019eac3
DE
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
80626a55
DE
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
3019eac3
DE
764 VEC (dwarf2_section_info_def) *types;
765};
766
c88ee1f0 767/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
768
769struct dwo_unit
770{
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 780 struct dwarf2_section_info *section;
3019eac3 781
19ac8c2e 782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788};
789
73869dc2
DE
790/* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794enum dwp_v2_section_ids
795{
796 DW_SECT_MIN = 1
797};
798
80626a55 799/* Data for one DWO file.
57d63ce2
DE
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
3019eac3
DE
809
810struct dwo_file
811{
0ac5b59e 812 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
0ac5b59e
DE
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
3019eac3 820
80626a55
DE
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
3019eac3 824
73869dc2
DE
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
3019eac3
DE
828 struct dwo_sections sections;
829
19c3d4c9
DE
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
3019eac3
DE
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840};
841
80626a55
DE
842/* These sections are what may appear in a DWP file. */
843
844struct dwp_sections
845{
73869dc2 846 /* These are used by both DWP version 1 and 2. */
80626a55
DE
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
73869dc2
DE
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
80626a55
DE
867};
868
73869dc2
DE
869/* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 871
73869dc2 872struct virtual_v1_dwo_sections
80626a55
DE
873{
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 881 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
882 struct dwarf2_section_info info_or_types;
883};
884
73869dc2
DE
885/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890struct virtual_v2_dwo_sections
891{
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914};
915
80626a55
DE
916/* Contents of DWP hash tables. */
917
918struct dwp_hash_table
919{
73869dc2 920 uint32_t version, nr_columns;
80626a55 921 uint32_t nr_units, nr_slots;
73869dc2
DE
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933#define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
80626a55
DE
945};
946
947/* Data for one DWP file. */
948
949struct dwp_file
950{
951 /* Name of the file. */
952 const char *name;
953
73869dc2
DE
954 /* File format version. */
955 int version;
956
93417882 957 /* The bfd. */
80626a55
DE
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
57d63ce2 963 /* Table of CUs in the file. */
80626a55
DE
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
19ac8c2e
DE
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
80626a55 972
73869dc2
DE
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
80626a55
DE
975 unsigned int num_sections;
976 asection **elf_sections;
977};
978
36586728
TT
979/* This represents a '.dwz' file. */
980
981struct dwz_file
982{
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
2ec9a5e0 989 struct dwarf2_section_info gdb_index;
36586728
TT
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993};
994
0963b4bd
MS
995/* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
dee91e82 998 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
999
1000struct die_reader_specs
1001{
a32a8923 1002 /* The bfd of die_section. */
93311388
DE
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
80626a55 1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1009 struct dwo_file *dwo_file;
1010
dee91e82 1011 /* The section the die comes from.
3019eac3 1012 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
d521ce57 1016 const gdb_byte *buffer;
f664829e
DE
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
a2ce51a0
DE
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
93311388
DE
1023};
1024
fd820528 1025/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1026typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1027 const gdb_byte *info_ptr,
dee91e82
DE
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
52059ffd
TT
1032struct file_entry
1033{
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
83769d0b
DE
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
52059ffd
TT
1042};
1043
debd256d
JB
1044/* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047struct line_header
1048{
527f3840
JK
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
debd256d
JB
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
2dc7f7b3 1059 unsigned char maximum_ops_per_instruction;
debd256d
JB
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1076 const char **include_dirs;
debd256d
JB
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
52059ffd 1082 struct file_entry *file_names;
debd256d
JB
1083
1084 /* The start and end of the statement program following this
6502dd73 1085 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1086 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1087};
c906108c
SS
1088
1089/* When we construct a partial symbol table entry we only
0963b4bd 1090 need this much information. */
c906108c
SS
1091struct partial_die_info
1092 {
72bf9492 1093 /* Offset of this DIE. */
b64f50a1 1094 sect_offset offset;
72bf9492
DJ
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
72bf9492
DJ
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
481860b3 1106 unsigned int may_be_inlined : 1;
72bf9492
DJ
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
fa4028e9
JB
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
ff908ebf
AW
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
98bfdba5
PA
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
abc72ce4
DE
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
36586728
TT
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
72bf9492 1130 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1131 sometimes a default name for unnamed DIEs. */
15d034d0 1132 const char *name;
72bf9492 1133
abc72ce4
DE
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
72bf9492
DJ
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
15d034d0 1140 const char *scope;
72bf9492 1141
95554aad
TT
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
72bf9492
DJ
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
72bf9492 1155
93311388 1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1157 DW_AT_sibling, if any. */
abc72ce4
DE
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1160 const gdb_byte *sibling;
72bf9492
DJ
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
b64f50a1 1165 sect_offset spec_offset;
72bf9492
DJ
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1170 };
1171
0963b4bd 1172/* This data structure holds the information of an abbrev. */
c906108c
SS
1173struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183struct attr_abbrev
1184 {
9d25dd43
DE
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1187 };
1188
433df2d4
DE
1189/* Size of abbrev_table.abbrev_hash_table. */
1190#define ABBREV_HASH_SIZE 121
1191
1192/* Top level data structure to contain an abbreviation table. */
1193
1194struct abbrev_table
1195{
f4dc4d17
DE
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
433df2d4
DE
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208};
1209
0963b4bd 1210/* Attributes have a name and a value. */
b60c80d6
DJ
1211struct attribute
1212 {
9d25dd43 1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
b60c80d6
DJ
1221 union
1222 {
15d034d0 1223 const char *str;
b60c80d6 1224 struct dwarf_block *blk;
43bbcdc2
PH
1225 ULONGEST unsnd;
1226 LONGEST snd;
b60c80d6 1227 CORE_ADDR addr;
ac9ec31b 1228 ULONGEST signature;
b60c80d6
DJ
1229 }
1230 u;
1231 };
1232
0963b4bd 1233/* This data structure holds a complete die structure. */
c906108c
SS
1234struct die_info
1235 {
76815b17
DE
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
98bfdba5
PA
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
76815b17 1245
adde2bff
DE
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
76815b17
DE
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
93311388 1252 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1253 sect_offset offset;
78ba4af6
JB
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
4950bc1c 1258 together via their SIBLING fields. */
639d11d3
DC
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
c906108c 1262
b60c80d6
DJ
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
c906108c
SS
1267 };
1268
0963b4bd 1269/* Get at parts of an attribute structure. */
c906108c
SS
1270
1271#define DW_STRING(attr) ((attr)->u.str)
8285870a 1272#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1273#define DW_UNSND(attr) ((attr)->u.unsnd)
1274#define DW_BLOCK(attr) ((attr)->u.blk)
1275#define DW_SND(attr) ((attr)->u.snd)
1276#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1277#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1278
0963b4bd 1279/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1280struct dwarf_block
1281 {
56eb65bd 1282 size_t size;
1d6edc3c
JK
1283
1284 /* Valid only if SIZE is not zero. */
d521ce57 1285 const gdb_byte *data;
c906108c
SS
1286 };
1287
c906108c
SS
1288#ifndef ATTR_ALLOC_CHUNK
1289#define ATTR_ALLOC_CHUNK 4
1290#endif
1291
c906108c
SS
1292/* Allocate fields for structs, unions and enums in this size. */
1293#ifndef DW_FIELD_ALLOC_CHUNK
1294#define DW_FIELD_ALLOC_CHUNK 4
1295#endif
1296
c906108c
SS
1297/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300static int bits_per_byte = 8;
1301
52059ffd
TT
1302struct nextfield
1303{
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308};
1309
1310struct nextfnfield
1311{
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314};
1315
1316struct fnfieldlist
1317{
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321};
1322
1323struct typedef_field_list
1324{
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327};
1328
c906108c
SS
1329/* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332struct field_info
c5aa993b 1333 {
0963b4bd 1334 /* List of data member and baseclasses fields. */
52059ffd 1335 struct nextfield *fields, *baseclasses;
c906108c 1336
7d0ccb61 1337 /* Number of fields (including baseclasses). */
c5aa993b 1338 int nfields;
c906108c 1339
c5aa993b
JM
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
c906108c 1342
c5aa993b
JM
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
c906108c 1345
c5aa993b
JM
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
52059ffd 1348 struct nextfnfield *fnfields;
c906108c 1349
c5aa993b
JM
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
52059ffd 1353 struct fnfieldlist *fnfieldlists;
c906108c 1354
c5aa993b
JM
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
98751a41
JK
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
52059ffd 1360 struct typedef_field_list *typedef_field_list;
98751a41 1361 unsigned typedef_field_list_count;
c5aa993b 1362 };
c906108c 1363
10b3939b
DJ
1364/* One item on the queue of compilation units to read in full symbols
1365 for. */
1366struct dwarf2_queue_item
1367{
1368 struct dwarf2_per_cu_data *per_cu;
95554aad 1369 enum language pretend_language;
10b3939b
DJ
1370 struct dwarf2_queue_item *next;
1371};
1372
1373/* The current queue. */
1374static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
ae038cb0
DJ
1376/* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1381static int dwarf_max_cache_age = 5;
920d2a44 1382static void
b4f54984
DE
1383show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
920d2a44 1385{
3e43a32a 1386 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1387 "DWARF compilation units is %s.\n"),
920d2a44
AC
1388 value);
1389}
4390d890 1390\f
c906108c
SS
1391/* local function prototypes */
1392
a32a8923
DE
1393static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
4efb68b1 1397static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1398
918dd910
JK
1399static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
0018ea6f
DE
1402static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
c67a9c90 1405static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1406
72bf9492
DJ
1407static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1409 int, struct dwarf2_cu *);
c906108c 1410
72bf9492
DJ
1411static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
63d06c5c 1413
72bf9492
DJ
1414static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1416 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1417
5d7cb8df 1418static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1419 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1420 struct dwarf2_cu *cu);
1421
72bf9492
DJ
1422static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
91c24f0a 1424
bc30ff58
JB
1425static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1427 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1428
257e7a09
YQ
1429static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
c906108c 1431
a14ed312 1432static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1433
433df2d4
DE
1434static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440static void abbrev_table_free (struct abbrev_table *);
1441
f4dc4d17
DE
1442static void abbrev_table_free_cleanup (void *);
1443
dee91e82
DE
1444static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
c906108c 1446
f3dd6933 1447static void dwarf2_free_abbrev_table (void *);
c906108c 1448
d521ce57 1449static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1450
dee91e82 1451static struct partial_die_info *load_partial_dies
d521ce57 1452 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1453
d521ce57
TT
1454static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
c906108c 1459
36586728 1460static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1461 struct dwarf2_cu *);
72bf9492
DJ
1462
1463static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
d521ce57
TT
1466static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
a8329558 1469
a1855c1d 1470static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1471
a1855c1d 1472static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1473
a1855c1d 1474static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1475
a1855c1d 1476static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1477
a1855c1d 1478static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1479
d521ce57 1480static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1481 unsigned int *);
c906108c 1482
d521ce57 1483static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1484
1485static LONGEST read_checked_initial_length_and_offset
d521ce57 1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1487 unsigned int *, unsigned int *);
613e1657 1488
d521ce57
TT
1489static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
c764a876
DE
1491 unsigned int *);
1492
d521ce57 1493static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1494
f4dc4d17
DE
1495static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
d521ce57 1498static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1499
d521ce57 1500static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1501
d521ce57
TT
1502static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
4bdf3d34 1505
d521ce57 1506static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1507
d521ce57 1508static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1509
d521ce57 1510static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1511
d521ce57
TT
1512static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
3019eac3
DE
1514 unsigned int *);
1515
d521ce57 1516static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1517 ULONGEST str_index);
3019eac3 1518
e142c38c 1519static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1520
e142c38c
DJ
1521static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
c906108c 1523
348e048f 1524static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1525 unsigned int);
348e048f 1526
7d45c7c3
KB
1527static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1528 struct dwarf2_cu *cu);
1529
05cf31d1
JB
1530static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1531 struct dwarf2_cu *cu);
1532
e142c38c 1533static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1534
e142c38c 1535static struct die_info *die_specification (struct die_info *die,
f2f0e013 1536 struct dwarf2_cu **);
63d06c5c 1537
debd256d
JB
1538static void free_line_header (struct line_header *lh);
1539
3019eac3
DE
1540static struct line_header *dwarf_decode_line_header (unsigned int offset,
1541 struct dwarf2_cu *cu);
debd256d 1542
f3f5162e 1543static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1544 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1545 CORE_ADDR, int decode_mapping);
c906108c 1546
4d663531 1547static void dwarf2_start_subfile (const char *, const char *);
c906108c 1548
43f3e411
DE
1549static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1550 const char *, const char *,
1551 CORE_ADDR);
f4dc4d17 1552
a14ed312 1553static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1554 struct dwarf2_cu *);
c906108c 1555
34eaf542
TT
1556static struct symbol *new_symbol_full (struct die_info *, struct type *,
1557 struct dwarf2_cu *, struct symbol *);
1558
ff39bb5e 1559static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1560 struct dwarf2_cu *);
c906108c 1561
ff39bb5e 1562static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1563 struct type *type,
1564 const char *name,
1565 struct obstack *obstack,
12df843f 1566 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1567 const gdb_byte **bytes,
98bfdba5 1568 struct dwarf2_locexpr_baton **baton);
2df3850c 1569
e7c27a73 1570static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1571
b4ba55a1
JB
1572static int need_gnat_info (struct dwarf2_cu *);
1573
3e43a32a
MS
1574static struct type *die_descriptive_type (struct die_info *,
1575 struct dwarf2_cu *);
b4ba55a1
JB
1576
1577static void set_descriptive_type (struct type *, struct die_info *,
1578 struct dwarf2_cu *);
1579
e7c27a73
DJ
1580static struct type *die_containing_type (struct die_info *,
1581 struct dwarf2_cu *);
c906108c 1582
ff39bb5e 1583static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1584 struct dwarf2_cu *);
c906108c 1585
f792889a 1586static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1587
673bfd45
DE
1588static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1589
0d5cff50 1590static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1591
6e70227d 1592static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1593 const char *suffix, int physname,
1594 struct dwarf2_cu *cu);
63d06c5c 1595
e7c27a73 1596static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1597
348e048f
DE
1598static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1599
e7c27a73 1600static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1601
e7c27a73 1602static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1603
96408a79
SA
1604static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1605
ff013f42
JK
1606static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *, struct partial_symtab *);
1608
3a2b436a 1609/* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
e385593e 1610 values. Keep the items ordered with increasing constraints compliance. */
3a2b436a
JK
1611enum pc_bounds_kind
1612{
e385593e 1613 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
3a2b436a
JK
1614 PC_BOUNDS_NOT_PRESENT,
1615
e385593e
JK
1616 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1617 were present but they do not form a valid range of PC addresses. */
1618 PC_BOUNDS_INVALID,
1619
3a2b436a
JK
1620 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1621 PC_BOUNDS_RANGES,
1622
1623 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1624 PC_BOUNDS_HIGH_LOW,
1625};
1626
1627static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1628 CORE_ADDR *, CORE_ADDR *,
1629 struct dwarf2_cu *,
1630 struct partial_symtab *);
c906108c 1631
fae299cd
DC
1632static void get_scope_pc_bounds (struct die_info *,
1633 CORE_ADDR *, CORE_ADDR *,
1634 struct dwarf2_cu *);
1635
801e3a5b
JB
1636static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1637 CORE_ADDR, struct dwarf2_cu *);
1638
a14ed312 1639static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1640 struct dwarf2_cu *);
c906108c 1641
a14ed312 1642static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1643 struct type *, struct dwarf2_cu *);
c906108c 1644
a14ed312 1645static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1646 struct die_info *, struct type *,
e7c27a73 1647 struct dwarf2_cu *);
c906108c 1648
a14ed312 1649static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1650 struct type *,
1651 struct dwarf2_cu *);
c906108c 1652
134d01f1 1653static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1654
e7c27a73 1655static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1656
e7c27a73 1657static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1658
5d7cb8df
JK
1659static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1660
22cee43f
PMR
1661static struct using_direct **using_directives (enum language);
1662
27aa8d6a
SW
1663static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1664
74921315
KS
1665static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1666
f55ee35c
JK
1667static struct type *read_module_type (struct die_info *die,
1668 struct dwarf2_cu *cu);
1669
38d518c9 1670static const char *namespace_name (struct die_info *die,
e142c38c 1671 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1672
134d01f1 1673static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1674
e7c27a73 1675static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1676
6e70227d 1677static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1678 struct dwarf2_cu *);
1679
bf6af496 1680static struct die_info *read_die_and_siblings_1
d521ce57 1681 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1682 struct die_info *);
639d11d3 1683
dee91e82 1684static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1685 const gdb_byte *info_ptr,
1686 const gdb_byte **new_info_ptr,
639d11d3
DC
1687 struct die_info *parent);
1688
d521ce57
TT
1689static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1690 struct die_info **, const gdb_byte *,
1691 int *, int);
3019eac3 1692
d521ce57
TT
1693static const gdb_byte *read_full_die (const struct die_reader_specs *,
1694 struct die_info **, const gdb_byte *,
1695 int *);
93311388 1696
e7c27a73 1697static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1698
15d034d0
TT
1699static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1700 struct obstack *);
71c25dea 1701
15d034d0 1702static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1703
15d034d0 1704static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1705 struct die_info *die,
1706 struct dwarf2_cu *cu);
1707
ca69b9e6
DE
1708static const char *dwarf2_physname (const char *name, struct die_info *die,
1709 struct dwarf2_cu *cu);
1710
e142c38c 1711static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1712 struct dwarf2_cu **);
9219021c 1713
f39c6ffd 1714static const char *dwarf_tag_name (unsigned int);
c906108c 1715
f39c6ffd 1716static const char *dwarf_attr_name (unsigned int);
c906108c 1717
f39c6ffd 1718static const char *dwarf_form_name (unsigned int);
c906108c 1719
a14ed312 1720static char *dwarf_bool_name (unsigned int);
c906108c 1721
f39c6ffd 1722static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1723
f9aca02d 1724static struct die_info *sibling_die (struct die_info *);
c906108c 1725
d97bc12b
DE
1726static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1727
1728static void dump_die_for_error (struct die_info *);
1729
1730static void dump_die_1 (struct ui_file *, int level, int max_level,
1731 struct die_info *);
c906108c 1732
d97bc12b 1733/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1734
51545339 1735static void store_in_ref_table (struct die_info *,
10b3939b 1736 struct dwarf2_cu *);
c906108c 1737
ff39bb5e 1738static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1739
ff39bb5e 1740static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1741
348e048f 1742static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1743 const struct attribute *,
348e048f
DE
1744 struct dwarf2_cu **);
1745
10b3939b 1746static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1747 const struct attribute *,
f2f0e013 1748 struct dwarf2_cu **);
c906108c 1749
348e048f 1750static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1751 const struct attribute *,
348e048f
DE
1752 struct dwarf2_cu **);
1753
ac9ec31b
DE
1754static struct type *get_signatured_type (struct die_info *, ULONGEST,
1755 struct dwarf2_cu *);
1756
1757static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1758 const struct attribute *,
ac9ec31b
DE
1759 struct dwarf2_cu *);
1760
e5fe5e75 1761static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1762
52dc124a 1763static void read_signatured_type (struct signatured_type *);
348e048f 1764
63e43d3a
PMR
1765static int attr_to_dynamic_prop (const struct attribute *attr,
1766 struct die_info *die, struct dwarf2_cu *cu,
1767 struct dynamic_prop *prop);
1768
c906108c
SS
1769/* memory allocation interface */
1770
7b5a2f43 1771static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1772
b60c80d6 1773static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1774
43f3e411 1775static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1776
6e5a29e1 1777static int attr_form_is_block (const struct attribute *);
8e19ed76 1778
6e5a29e1 1779static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1780
6e5a29e1 1781static int attr_form_is_constant (const struct attribute *);
3690dd37 1782
6e5a29e1 1783static int attr_form_is_ref (const struct attribute *);
7771576e 1784
8cf6f0b1
TT
1785static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1786 struct dwarf2_loclist_baton *baton,
ff39bb5e 1787 const struct attribute *attr);
8cf6f0b1 1788
ff39bb5e 1789static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1790 struct symbol *sym,
f1e6e072
TT
1791 struct dwarf2_cu *cu,
1792 int is_block);
4c2df51b 1793
d521ce57
TT
1794static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1795 const gdb_byte *info_ptr,
1796 struct abbrev_info *abbrev);
4bb7a0a7 1797
72bf9492
DJ
1798static void free_stack_comp_unit (void *);
1799
72bf9492
DJ
1800static hashval_t partial_die_hash (const void *item);
1801
1802static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1803
ae038cb0 1804static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1805 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1806
9816fde3 1807static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1808 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1809
1810static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1811 struct die_info *comp_unit_die,
1812 enum language pretend_language);
93311388 1813
68dc6402 1814static void free_heap_comp_unit (void *);
ae038cb0
DJ
1815
1816static void free_cached_comp_units (void *);
1817
1818static void age_cached_comp_units (void);
1819
dee91e82 1820static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1821
f792889a
DJ
1822static struct type *set_die_type (struct die_info *, struct type *,
1823 struct dwarf2_cu *);
1c379e20 1824
ae038cb0
DJ
1825static void create_all_comp_units (struct objfile *);
1826
0e50663e 1827static int create_all_type_units (struct objfile *);
1fd400ff 1828
95554aad
TT
1829static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1830 enum language);
10b3939b 1831
95554aad
TT
1832static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1833 enum language);
10b3939b 1834
f4dc4d17
DE
1835static void process_full_type_unit (struct dwarf2_per_cu_data *,
1836 enum language);
1837
10b3939b
DJ
1838static void dwarf2_add_dependence (struct dwarf2_cu *,
1839 struct dwarf2_per_cu_data *);
1840
ae038cb0
DJ
1841static void dwarf2_mark (struct dwarf2_cu *);
1842
1843static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1844
b64f50a1 1845static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1846 struct dwarf2_per_cu_data *);
673bfd45 1847
f792889a 1848static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1849
9291a0cd
TT
1850static void dwarf2_release_queue (void *dummy);
1851
95554aad
TT
1852static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1853 enum language pretend_language);
1854
a0f42c21 1855static void process_queue (void);
9291a0cd
TT
1856
1857static void find_file_and_directory (struct die_info *die,
1858 struct dwarf2_cu *cu,
15d034d0 1859 const char **name, const char **comp_dir);
9291a0cd
TT
1860
1861static char *file_full_name (int file, struct line_header *lh,
1862 const char *comp_dir);
1863
d521ce57 1864static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1865 (struct comp_unit_head *header,
1866 struct dwarf2_section_info *section,
d521ce57 1867 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1868 int is_debug_types_section);
1869
fd820528 1870static void init_cutu_and_read_dies
f4dc4d17
DE
1871 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1872 int use_existing_cu, int keep,
3019eac3
DE
1873 die_reader_func_ftype *die_reader_func, void *data);
1874
dee91e82
DE
1875static void init_cutu_and_read_dies_simple
1876 (struct dwarf2_per_cu_data *this_cu,
1877 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1878
673bfd45 1879static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1880
3019eac3
DE
1881static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1882
57d63ce2
DE
1883static struct dwo_unit *lookup_dwo_unit_in_dwp
1884 (struct dwp_file *dwp_file, const char *comp_dir,
1885 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1886
1887static struct dwp_file *get_dwp_file (void);
1888
3019eac3 1889static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1890 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1891
1892static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1893 (struct signatured_type *, const char *, const char *);
3019eac3 1894
89e63ee4
DE
1895static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1896
3019eac3
DE
1897static void free_dwo_file_cleanup (void *);
1898
95554aad
TT
1899static void process_cu_includes (void);
1900
1b80a9fa 1901static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
1902
1903static void free_line_header_voidp (void *arg);
4390d890
DE
1904\f
1905/* Various complaints about symbol reading that don't abort the process. */
1906
1907static void
1908dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1909{
1910 complaint (&symfile_complaints,
1911 _("statement list doesn't fit in .debug_line section"));
1912}
1913
1914static void
1915dwarf2_debug_line_missing_file_complaint (void)
1916{
1917 complaint (&symfile_complaints,
1918 _(".debug_line section has line data without a file"));
1919}
1920
1921static void
1922dwarf2_debug_line_missing_end_sequence_complaint (void)
1923{
1924 complaint (&symfile_complaints,
1925 _(".debug_line section has line "
1926 "program sequence without an end"));
1927}
1928
1929static void
1930dwarf2_complex_location_expr_complaint (void)
1931{
1932 complaint (&symfile_complaints, _("location expression too complex"));
1933}
1934
1935static void
1936dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1937 int arg3)
1938{
1939 complaint (&symfile_complaints,
1940 _("const value length mismatch for '%s', got %d, expected %d"),
1941 arg1, arg2, arg3);
1942}
1943
1944static void
1945dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1946{
1947 complaint (&symfile_complaints,
1948 _("debug info runs off end of %s section"
1949 " [in module %s]"),
a32a8923
DE
1950 get_section_name (section),
1951 get_section_file_name (section));
4390d890 1952}
1b80a9fa 1953
4390d890
DE
1954static void
1955dwarf2_macro_malformed_definition_complaint (const char *arg1)
1956{
1957 complaint (&symfile_complaints,
1958 _("macro debug info contains a "
1959 "malformed macro definition:\n`%s'"),
1960 arg1);
1961}
1962
1963static void
1964dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1965{
1966 complaint (&symfile_complaints,
1967 _("invalid attribute class or form for '%s' in '%s'"),
1968 arg1, arg2);
1969}
527f3840
JK
1970
1971/* Hash function for line_header_hash. */
1972
1973static hashval_t
1974line_header_hash (const struct line_header *ofs)
1975{
1976 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1977}
1978
1979/* Hash function for htab_create_alloc_ex for line_header_hash. */
1980
1981static hashval_t
1982line_header_hash_voidp (const void *item)
1983{
9a3c8263 1984 const struct line_header *ofs = (const struct line_header *) item;
527f3840
JK
1985
1986 return line_header_hash (ofs);
1987}
1988
1989/* Equality function for line_header_hash. */
1990
1991static int
1992line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1993{
9a3c8263
SM
1994 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1995 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
527f3840
JK
1996
1997 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1998 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1999}
2000
4390d890 2001\f
9291a0cd
TT
2002#if WORDS_BIGENDIAN
2003
2004/* Convert VALUE between big- and little-endian. */
2005static offset_type
2006byte_swap (offset_type value)
2007{
2008 offset_type result;
2009
2010 result = (value & 0xff) << 24;
2011 result |= (value & 0xff00) << 8;
2012 result |= (value & 0xff0000) >> 8;
2013 result |= (value & 0xff000000) >> 24;
2014 return result;
2015}
2016
2017#define MAYBE_SWAP(V) byte_swap (V)
2018
2019#else
2020#define MAYBE_SWAP(V) (V)
2021#endif /* WORDS_BIGENDIAN */
2022
31aa7e4e
JB
2023/* Read the given attribute value as an address, taking the attribute's
2024 form into account. */
2025
2026static CORE_ADDR
2027attr_value_as_address (struct attribute *attr)
2028{
2029 CORE_ADDR addr;
2030
2031 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2032 {
2033 /* Aside from a few clearly defined exceptions, attributes that
2034 contain an address must always be in DW_FORM_addr form.
2035 Unfortunately, some compilers happen to be violating this
2036 requirement by encoding addresses using other forms, such
2037 as DW_FORM_data4 for example. For those broken compilers,
2038 we try to do our best, without any guarantee of success,
2039 to interpret the address correctly. It would also be nice
2040 to generate a complaint, but that would require us to maintain
2041 a list of legitimate cases where a non-address form is allowed,
2042 as well as update callers to pass in at least the CU's DWARF
2043 version. This is more overhead than what we're willing to
2044 expand for a pretty rare case. */
2045 addr = DW_UNSND (attr);
2046 }
2047 else
2048 addr = DW_ADDR (attr);
2049
2050 return addr;
2051}
2052
9291a0cd
TT
2053/* The suffix for an index file. */
2054#define INDEX_SUFFIX ".gdb-index"
2055
c906108c 2056/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2057 information and return true if we have enough to do something.
2058 NAMES points to the dwarf2 section names, or is NULL if the standard
2059 ELF names are used. */
c906108c
SS
2060
2061int
251d32d9
TG
2062dwarf2_has_info (struct objfile *objfile,
2063 const struct dwarf2_debug_sections *names)
c906108c 2064{
9a3c8263
SM
2065 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2066 objfile_data (objfile, dwarf2_objfile_data_key));
be391dca
TT
2067 if (!dwarf2_per_objfile)
2068 {
2069 /* Initialize per-objfile state. */
2070 struct dwarf2_per_objfile *data
8d749320 2071 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
9a619af0 2072
be391dca
TT
2073 memset (data, 0, sizeof (*data));
2074 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2075 dwarf2_per_objfile = data;
6502dd73 2076
251d32d9
TG
2077 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2078 (void *) names);
be391dca
TT
2079 dwarf2_per_objfile->objfile = objfile;
2080 }
73869dc2 2081 return (!dwarf2_per_objfile->info.is_virtual
049412e3 2082 && dwarf2_per_objfile->info.s.section != NULL
73869dc2 2083 && !dwarf2_per_objfile->abbrev.is_virtual
049412e3 2084 && dwarf2_per_objfile->abbrev.s.section != NULL);
73869dc2
DE
2085}
2086
2087/* Return the containing section of virtual section SECTION. */
2088
2089static struct dwarf2_section_info *
2090get_containing_section (const struct dwarf2_section_info *section)
2091{
2092 gdb_assert (section->is_virtual);
2093 return section->s.containing_section;
c906108c
SS
2094}
2095
a32a8923
DE
2096/* Return the bfd owner of SECTION. */
2097
2098static struct bfd *
2099get_section_bfd_owner (const struct dwarf2_section_info *section)
2100{
73869dc2
DE
2101 if (section->is_virtual)
2102 {
2103 section = get_containing_section (section);
2104 gdb_assert (!section->is_virtual);
2105 }
049412e3 2106 return section->s.section->owner;
a32a8923
DE
2107}
2108
2109/* Return the bfd section of SECTION.
2110 Returns NULL if the section is not present. */
2111
2112static asection *
2113get_section_bfd_section (const struct dwarf2_section_info *section)
2114{
73869dc2
DE
2115 if (section->is_virtual)
2116 {
2117 section = get_containing_section (section);
2118 gdb_assert (!section->is_virtual);
2119 }
049412e3 2120 return section->s.section;
a32a8923
DE
2121}
2122
2123/* Return the name of SECTION. */
2124
2125static const char *
2126get_section_name (const struct dwarf2_section_info *section)
2127{
2128 asection *sectp = get_section_bfd_section (section);
2129
2130 gdb_assert (sectp != NULL);
2131 return bfd_section_name (get_section_bfd_owner (section), sectp);
2132}
2133
2134/* Return the name of the file SECTION is in. */
2135
2136static const char *
2137get_section_file_name (const struct dwarf2_section_info *section)
2138{
2139 bfd *abfd = get_section_bfd_owner (section);
2140
2141 return bfd_get_filename (abfd);
2142}
2143
2144/* Return the id of SECTION.
2145 Returns 0 if SECTION doesn't exist. */
2146
2147static int
2148get_section_id (const struct dwarf2_section_info *section)
2149{
2150 asection *sectp = get_section_bfd_section (section);
2151
2152 if (sectp == NULL)
2153 return 0;
2154 return sectp->id;
2155}
2156
2157/* Return the flags of SECTION.
73869dc2 2158 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2159
2160static int
2161get_section_flags (const struct dwarf2_section_info *section)
2162{
2163 asection *sectp = get_section_bfd_section (section);
2164
2165 gdb_assert (sectp != NULL);
2166 return bfd_get_section_flags (sectp->owner, sectp);
2167}
2168
251d32d9
TG
2169/* When loading sections, we look either for uncompressed section or for
2170 compressed section names. */
233a11ab
CS
2171
2172static int
251d32d9
TG
2173section_is_p (const char *section_name,
2174 const struct dwarf2_section_names *names)
233a11ab 2175{
251d32d9
TG
2176 if (names->normal != NULL
2177 && strcmp (section_name, names->normal) == 0)
2178 return 1;
2179 if (names->compressed != NULL
2180 && strcmp (section_name, names->compressed) == 0)
2181 return 1;
2182 return 0;
233a11ab
CS
2183}
2184
c906108c
SS
2185/* This function is mapped across the sections and remembers the
2186 offset and size of each of the debugging sections we are interested
2187 in. */
2188
2189static void
251d32d9 2190dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2191{
251d32d9 2192 const struct dwarf2_debug_sections *names;
dc7650b8 2193 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2194
2195 if (vnames == NULL)
2196 names = &dwarf2_elf_names;
2197 else
2198 names = (const struct dwarf2_debug_sections *) vnames;
2199
dc7650b8
JK
2200 if ((aflag & SEC_HAS_CONTENTS) == 0)
2201 {
2202 }
2203 else if (section_is_p (sectp->name, &names->info))
c906108c 2204 {
049412e3 2205 dwarf2_per_objfile->info.s.section = sectp;
dce234bc 2206 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2207 }
251d32d9 2208 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2209 {
049412e3 2210 dwarf2_per_objfile->abbrev.s.section = sectp;
dce234bc 2211 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2212 }
251d32d9 2213 else if (section_is_p (sectp->name, &names->line))
c906108c 2214 {
049412e3 2215 dwarf2_per_objfile->line.s.section = sectp;
dce234bc 2216 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2217 }
251d32d9 2218 else if (section_is_p (sectp->name, &names->loc))
c906108c 2219 {
049412e3 2220 dwarf2_per_objfile->loc.s.section = sectp;
dce234bc 2221 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2222 }
251d32d9 2223 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2224 {
049412e3 2225 dwarf2_per_objfile->macinfo.s.section = sectp;
dce234bc 2226 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2227 }
cf2c3c16
TT
2228 else if (section_is_p (sectp->name, &names->macro))
2229 {
049412e3 2230 dwarf2_per_objfile->macro.s.section = sectp;
cf2c3c16
TT
2231 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2232 }
251d32d9 2233 else if (section_is_p (sectp->name, &names->str))
c906108c 2234 {
049412e3 2235 dwarf2_per_objfile->str.s.section = sectp;
dce234bc 2236 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2237 }
3019eac3
DE
2238 else if (section_is_p (sectp->name, &names->addr))
2239 {
049412e3 2240 dwarf2_per_objfile->addr.s.section = sectp;
3019eac3
DE
2241 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2242 }
251d32d9 2243 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2244 {
049412e3 2245 dwarf2_per_objfile->frame.s.section = sectp;
dce234bc 2246 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2247 }
251d32d9 2248 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2249 {
049412e3 2250 dwarf2_per_objfile->eh_frame.s.section = sectp;
dc7650b8 2251 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2252 }
251d32d9 2253 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2254 {
049412e3 2255 dwarf2_per_objfile->ranges.s.section = sectp;
dce234bc 2256 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2257 }
251d32d9 2258 else if (section_is_p (sectp->name, &names->types))
348e048f 2259 {
8b70b953
TT
2260 struct dwarf2_section_info type_section;
2261
2262 memset (&type_section, 0, sizeof (type_section));
049412e3 2263 type_section.s.section = sectp;
8b70b953
TT
2264 type_section.size = bfd_get_section_size (sectp);
2265
2266 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2267 &type_section);
348e048f 2268 }
251d32d9 2269 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2270 {
049412e3 2271 dwarf2_per_objfile->gdb_index.s.section = sectp;
9291a0cd
TT
2272 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2273 }
dce234bc 2274
b4e1fd61 2275 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
72dca2f5
FR
2276 && bfd_section_vma (abfd, sectp) == 0)
2277 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2278}
2279
fceca515
DE
2280/* A helper function that decides whether a section is empty,
2281 or not present. */
9e0ac564
TT
2282
2283static int
19ac8c2e 2284dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2285{
73869dc2
DE
2286 if (section->is_virtual)
2287 return section->size == 0;
049412e3 2288 return section->s.section == NULL || section->size == 0;
9e0ac564
TT
2289}
2290
3019eac3
DE
2291/* Read the contents of the section INFO.
2292 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2293 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2294 of the DWO file.
dce234bc 2295 If the section is compressed, uncompress it before returning. */
c906108c 2296
dce234bc
PP
2297static void
2298dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2299{
a32a8923 2300 asection *sectp;
3019eac3 2301 bfd *abfd;
dce234bc 2302 gdb_byte *buf, *retbuf;
c906108c 2303
be391dca
TT
2304 if (info->readin)
2305 return;
dce234bc 2306 info->buffer = NULL;
be391dca 2307 info->readin = 1;
188dd5d6 2308
9e0ac564 2309 if (dwarf2_section_empty_p (info))
dce234bc 2310 return;
c906108c 2311
a32a8923 2312 sectp = get_section_bfd_section (info);
3019eac3 2313
73869dc2
DE
2314 /* If this is a virtual section we need to read in the real one first. */
2315 if (info->is_virtual)
2316 {
2317 struct dwarf2_section_info *containing_section =
2318 get_containing_section (info);
2319
2320 gdb_assert (sectp != NULL);
2321 if ((sectp->flags & SEC_RELOC) != 0)
2322 {
2323 error (_("Dwarf Error: DWP format V2 with relocations is not"
2324 " supported in section %s [in module %s]"),
2325 get_section_name (info), get_section_file_name (info));
2326 }
2327 dwarf2_read_section (objfile, containing_section);
2328 /* Other code should have already caught virtual sections that don't
2329 fit. */
2330 gdb_assert (info->virtual_offset + info->size
2331 <= containing_section->size);
2332 /* If the real section is empty or there was a problem reading the
2333 section we shouldn't get here. */
2334 gdb_assert (containing_section->buffer != NULL);
2335 info->buffer = containing_section->buffer + info->virtual_offset;
2336 return;
2337 }
2338
4bf44c1c
TT
2339 /* If the section has relocations, we must read it ourselves.
2340 Otherwise we attach it to the BFD. */
2341 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2342 {
d521ce57 2343 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2344 return;
dce234bc 2345 }
dce234bc 2346
224c3ddb 2347 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
4bf44c1c 2348 info->buffer = buf;
dce234bc
PP
2349
2350 /* When debugging .o files, we may need to apply relocations; see
2351 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2352 We never compress sections in .o files, so we only need to
2353 try this when the section is not compressed. */
ac8035ab 2354 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2355 if (retbuf != NULL)
2356 {
2357 info->buffer = retbuf;
2358 return;
2359 }
2360
a32a8923
DE
2361 abfd = get_section_bfd_owner (info);
2362 gdb_assert (abfd != NULL);
2363
dce234bc
PP
2364 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2365 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2366 {
2367 error (_("Dwarf Error: Can't read DWARF data"
2368 " in section %s [in module %s]"),
2369 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2370 }
dce234bc
PP
2371}
2372
9e0ac564
TT
2373/* A helper function that returns the size of a section in a safe way.
2374 If you are positive that the section has been read before using the
2375 size, then it is safe to refer to the dwarf2_section_info object's
2376 "size" field directly. In other cases, you must call this
2377 function, because for compressed sections the size field is not set
2378 correctly until the section has been read. */
2379
2380static bfd_size_type
2381dwarf2_section_size (struct objfile *objfile,
2382 struct dwarf2_section_info *info)
2383{
2384 if (!info->readin)
2385 dwarf2_read_section (objfile, info);
2386 return info->size;
2387}
2388
dce234bc 2389/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2390 SECTION_NAME. */
af34e669 2391
dce234bc 2392void
3017a003
TG
2393dwarf2_get_section_info (struct objfile *objfile,
2394 enum dwarf2_section_enum sect,
d521ce57 2395 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2396 bfd_size_type *sizep)
2397{
2398 struct dwarf2_per_objfile *data
9a3c8263
SM
2399 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2400 dwarf2_objfile_data_key);
dce234bc 2401 struct dwarf2_section_info *info;
a3b2a86b
TT
2402
2403 /* We may see an objfile without any DWARF, in which case we just
2404 return nothing. */
2405 if (data == NULL)
2406 {
2407 *sectp = NULL;
2408 *bufp = NULL;
2409 *sizep = 0;
2410 return;
2411 }
3017a003
TG
2412 switch (sect)
2413 {
2414 case DWARF2_DEBUG_FRAME:
2415 info = &data->frame;
2416 break;
2417 case DWARF2_EH_FRAME:
2418 info = &data->eh_frame;
2419 break;
2420 default:
2421 gdb_assert_not_reached ("unexpected section");
2422 }
dce234bc 2423
9e0ac564 2424 dwarf2_read_section (objfile, info);
dce234bc 2425
a32a8923 2426 *sectp = get_section_bfd_section (info);
dce234bc
PP
2427 *bufp = info->buffer;
2428 *sizep = info->size;
2429}
2430
36586728
TT
2431/* A helper function to find the sections for a .dwz file. */
2432
2433static void
2434locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2435{
9a3c8263 2436 struct dwz_file *dwz_file = (struct dwz_file *) arg;
36586728
TT
2437
2438 /* Note that we only support the standard ELF names, because .dwz
2439 is ELF-only (at the time of writing). */
2440 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2441 {
049412e3 2442 dwz_file->abbrev.s.section = sectp;
36586728
TT
2443 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2444 }
2445 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2446 {
049412e3 2447 dwz_file->info.s.section = sectp;
36586728
TT
2448 dwz_file->info.size = bfd_get_section_size (sectp);
2449 }
2450 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2451 {
049412e3 2452 dwz_file->str.s.section = sectp;
36586728
TT
2453 dwz_file->str.size = bfd_get_section_size (sectp);
2454 }
2455 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2456 {
049412e3 2457 dwz_file->line.s.section = sectp;
36586728
TT
2458 dwz_file->line.size = bfd_get_section_size (sectp);
2459 }
2460 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2461 {
049412e3 2462 dwz_file->macro.s.section = sectp;
36586728
TT
2463 dwz_file->macro.size = bfd_get_section_size (sectp);
2464 }
2ec9a5e0
TT
2465 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2466 {
049412e3 2467 dwz_file->gdb_index.s.section = sectp;
2ec9a5e0
TT
2468 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2469 }
36586728
TT
2470}
2471
4db1a1dc
TT
2472/* Open the separate '.dwz' debug file, if needed. Return NULL if
2473 there is no .gnu_debugaltlink section in the file. Error if there
2474 is such a section but the file cannot be found. */
36586728
TT
2475
2476static struct dwz_file *
2477dwarf2_get_dwz_file (void)
2478{
4db1a1dc
TT
2479 bfd *dwz_bfd;
2480 char *data;
36586728
TT
2481 struct cleanup *cleanup;
2482 const char *filename;
2483 struct dwz_file *result;
acd13123 2484 bfd_size_type buildid_len_arg;
dc294be5
TT
2485 size_t buildid_len;
2486 bfd_byte *buildid;
36586728
TT
2487
2488 if (dwarf2_per_objfile->dwz_file != NULL)
2489 return dwarf2_per_objfile->dwz_file;
2490
4db1a1dc
TT
2491 bfd_set_error (bfd_error_no_error);
2492 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2493 &buildid_len_arg, &buildid);
4db1a1dc
TT
2494 if (data == NULL)
2495 {
2496 if (bfd_get_error () == bfd_error_no_error)
2497 return NULL;
2498 error (_("could not read '.gnu_debugaltlink' section: %s"),
2499 bfd_errmsg (bfd_get_error ()));
2500 }
36586728 2501 cleanup = make_cleanup (xfree, data);
dc294be5 2502 make_cleanup (xfree, buildid);
36586728 2503
acd13123
TT
2504 buildid_len = (size_t) buildid_len_arg;
2505
f9d83a0b 2506 filename = (const char *) data;
36586728
TT
2507 if (!IS_ABSOLUTE_PATH (filename))
2508 {
4262abfb 2509 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2510 char *rel;
2511
2512 make_cleanup (xfree, abs);
2513 abs = ldirname (abs);
2514 make_cleanup (xfree, abs);
2515
2516 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2517 make_cleanup (xfree, rel);
2518 filename = rel;
2519 }
2520
dc294be5
TT
2521 /* First try the file name given in the section. If that doesn't
2522 work, try to use the build-id instead. */
36586728 2523 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
dc294be5 2524 if (dwz_bfd != NULL)
36586728 2525 {
dc294be5
TT
2526 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2527 {
2528 gdb_bfd_unref (dwz_bfd);
2529 dwz_bfd = NULL;
2530 }
36586728
TT
2531 }
2532
dc294be5
TT
2533 if (dwz_bfd == NULL)
2534 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2535
2536 if (dwz_bfd == NULL)
2537 error (_("could not find '.gnu_debugaltlink' file for %s"),
2538 objfile_name (dwarf2_per_objfile->objfile));
2539
36586728
TT
2540 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2541 struct dwz_file);
2542 result->dwz_bfd = dwz_bfd;
2543
2544 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2545
2546 do_cleanups (cleanup);
2547
13aaf454 2548 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
8d2cc612 2549 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2550 return result;
2551}
9291a0cd 2552\f
7b9f3c50
DE
2553/* DWARF quick_symbols_functions support. */
2554
2555/* TUs can share .debug_line entries, and there can be a lot more TUs than
2556 unique line tables, so we maintain a separate table of all .debug_line
2557 derived entries to support the sharing.
2558 All the quick functions need is the list of file names. We discard the
2559 line_header when we're done and don't need to record it here. */
2560struct quick_file_names
2561{
094b34ac
DE
2562 /* The data used to construct the hash key. */
2563 struct stmt_list_hash hash;
7b9f3c50
DE
2564
2565 /* The number of entries in file_names, real_names. */
2566 unsigned int num_file_names;
2567
2568 /* The file names from the line table, after being run through
2569 file_full_name. */
2570 const char **file_names;
2571
2572 /* The file names from the line table after being run through
2573 gdb_realpath. These are computed lazily. */
2574 const char **real_names;
2575};
2576
2577/* When using the index (and thus not using psymtabs), each CU has an
2578 object of this type. This is used to hold information needed by
2579 the various "quick" methods. */
2580struct dwarf2_per_cu_quick_data
2581{
2582 /* The file table. This can be NULL if there was no file table
2583 or it's currently not read in.
2584 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2585 struct quick_file_names *file_names;
2586
2587 /* The corresponding symbol table. This is NULL if symbols for this
2588 CU have not yet been read. */
43f3e411 2589 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2590
2591 /* A temporary mark bit used when iterating over all CUs in
2592 expand_symtabs_matching. */
2593 unsigned int mark : 1;
2594
2595 /* True if we've tried to read the file table and found there isn't one.
2596 There will be no point in trying to read it again next time. */
2597 unsigned int no_file_data : 1;
2598};
2599
094b34ac
DE
2600/* Utility hash function for a stmt_list_hash. */
2601
2602static hashval_t
2603hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2604{
2605 hashval_t v = 0;
2606
2607 if (stmt_list_hash->dwo_unit != NULL)
2608 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2609 v += stmt_list_hash->line_offset.sect_off;
2610 return v;
2611}
2612
2613/* Utility equality function for a stmt_list_hash. */
2614
2615static int
2616eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2617 const struct stmt_list_hash *rhs)
2618{
2619 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2620 return 0;
2621 if (lhs->dwo_unit != NULL
2622 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2623 return 0;
2624
2625 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2626}
2627
7b9f3c50
DE
2628/* Hash function for a quick_file_names. */
2629
2630static hashval_t
2631hash_file_name_entry (const void *e)
2632{
9a3c8263
SM
2633 const struct quick_file_names *file_data
2634 = (const struct quick_file_names *) e;
7b9f3c50 2635
094b34ac 2636 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2637}
2638
2639/* Equality function for a quick_file_names. */
2640
2641static int
2642eq_file_name_entry (const void *a, const void *b)
2643{
9a3c8263
SM
2644 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2645 const struct quick_file_names *eb = (const struct quick_file_names *) b;
7b9f3c50 2646
094b34ac 2647 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2648}
2649
2650/* Delete function for a quick_file_names. */
2651
2652static void
2653delete_file_name_entry (void *e)
2654{
9a3c8263 2655 struct quick_file_names *file_data = (struct quick_file_names *) e;
7b9f3c50
DE
2656 int i;
2657
2658 for (i = 0; i < file_data->num_file_names; ++i)
2659 {
2660 xfree ((void*) file_data->file_names[i]);
2661 if (file_data->real_names)
2662 xfree ((void*) file_data->real_names[i]);
2663 }
2664
2665 /* The space for the struct itself lives on objfile_obstack,
2666 so we don't free it here. */
2667}
2668
2669/* Create a quick_file_names hash table. */
2670
2671static htab_t
2672create_quick_file_names_table (unsigned int nr_initial_entries)
2673{
2674 return htab_create_alloc (nr_initial_entries,
2675 hash_file_name_entry, eq_file_name_entry,
2676 delete_file_name_entry, xcalloc, xfree);
2677}
9291a0cd 2678
918dd910
JK
2679/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2680 have to be created afterwards. You should call age_cached_comp_units after
2681 processing PER_CU->CU. dw2_setup must have been already called. */
2682
2683static void
2684load_cu (struct dwarf2_per_cu_data *per_cu)
2685{
3019eac3 2686 if (per_cu->is_debug_types)
e5fe5e75 2687 load_full_type_unit (per_cu);
918dd910 2688 else
95554aad 2689 load_full_comp_unit (per_cu, language_minimal);
918dd910 2690
cc12ce38
DE
2691 if (per_cu->cu == NULL)
2692 return; /* Dummy CU. */
2dc860c0
DE
2693
2694 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2695}
2696
a0f42c21 2697/* Read in the symbols for PER_CU. */
2fdf6df6 2698
9291a0cd 2699static void
a0f42c21 2700dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2701{
2702 struct cleanup *back_to;
2703
f4dc4d17
DE
2704 /* Skip type_unit_groups, reading the type units they contain
2705 is handled elsewhere. */
2706 if (IS_TYPE_UNIT_GROUP (per_cu))
2707 return;
2708
9291a0cd
TT
2709 back_to = make_cleanup (dwarf2_release_queue, NULL);
2710
95554aad 2711 if (dwarf2_per_objfile->using_index
43f3e411 2712 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2713 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2714 {
2715 queue_comp_unit (per_cu, language_minimal);
2716 load_cu (per_cu);
89e63ee4
DE
2717
2718 /* If we just loaded a CU from a DWO, and we're working with an index
2719 that may badly handle TUs, load all the TUs in that DWO as well.
2720 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2721 if (!per_cu->is_debug_types
cc12ce38 2722 && per_cu->cu != NULL
89e63ee4
DE
2723 && per_cu->cu->dwo_unit != NULL
2724 && dwarf2_per_objfile->index_table != NULL
2725 && dwarf2_per_objfile->index_table->version <= 7
2726 /* DWP files aren't supported yet. */
2727 && get_dwp_file () == NULL)
2728 queue_and_load_all_dwo_tus (per_cu);
95554aad 2729 }
9291a0cd 2730
a0f42c21 2731 process_queue ();
9291a0cd
TT
2732
2733 /* Age the cache, releasing compilation units that have not
2734 been used recently. */
2735 age_cached_comp_units ();
2736
2737 do_cleanups (back_to);
2738}
2739
2740/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2741 the objfile from which this CU came. Returns the resulting symbol
2742 table. */
2fdf6df6 2743
43f3e411 2744static struct compunit_symtab *
a0f42c21 2745dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2746{
95554aad 2747 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2748 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
2749 {
2750 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2751 increment_reading_symtab ();
a0f42c21 2752 dw2_do_instantiate_symtab (per_cu);
95554aad 2753 process_cu_includes ();
9291a0cd
TT
2754 do_cleanups (back_to);
2755 }
f194fefb 2756
43f3e411 2757 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2758}
2759
8832e7e3 2760/* Return the CU/TU given its index.
f4dc4d17
DE
2761
2762 This is intended for loops like:
2763
2764 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2765 + dwarf2_per_objfile->n_type_units); ++i)
2766 {
8832e7e3 2767 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2768
2769 ...;
2770 }
2771*/
2fdf6df6 2772
1fd400ff 2773static struct dwarf2_per_cu_data *
8832e7e3 2774dw2_get_cutu (int index)
1fd400ff
TT
2775{
2776 if (index >= dwarf2_per_objfile->n_comp_units)
2777 {
f4dc4d17 2778 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2779 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2780 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2781 }
2782
2783 return dwarf2_per_objfile->all_comp_units[index];
2784}
2785
8832e7e3
DE
2786/* Return the CU given its index.
2787 This differs from dw2_get_cutu in that it's for when you know INDEX
2788 refers to a CU. */
f4dc4d17
DE
2789
2790static struct dwarf2_per_cu_data *
8832e7e3 2791dw2_get_cu (int index)
f4dc4d17 2792{
8832e7e3 2793 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2794
1fd400ff
TT
2795 return dwarf2_per_objfile->all_comp_units[index];
2796}
2797
2ec9a5e0
TT
2798/* A helper for create_cus_from_index that handles a given list of
2799 CUs. */
2fdf6df6 2800
74a0d9f6 2801static void
2ec9a5e0
TT
2802create_cus_from_index_list (struct objfile *objfile,
2803 const gdb_byte *cu_list, offset_type n_elements,
2804 struct dwarf2_section_info *section,
2805 int is_dwz,
2806 int base_offset)
9291a0cd
TT
2807{
2808 offset_type i;
9291a0cd 2809
2ec9a5e0 2810 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2811 {
2812 struct dwarf2_per_cu_data *the_cu;
2813 ULONGEST offset, length;
2814
74a0d9f6
JK
2815 gdb_static_assert (sizeof (ULONGEST) >= 8);
2816 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2817 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2818 cu_list += 2 * 8;
2819
2820 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2821 struct dwarf2_per_cu_data);
b64f50a1 2822 the_cu->offset.sect_off = offset;
9291a0cd
TT
2823 the_cu->length = length;
2824 the_cu->objfile = objfile;
8a0459fd 2825 the_cu->section = section;
9291a0cd
TT
2826 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2827 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2828 the_cu->is_dwz = is_dwz;
2829 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2830 }
9291a0cd
TT
2831}
2832
2ec9a5e0 2833/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2834 the CU objects for this objfile. */
2ec9a5e0 2835
74a0d9f6 2836static void
2ec9a5e0
TT
2837create_cus_from_index (struct objfile *objfile,
2838 const gdb_byte *cu_list, offset_type cu_list_elements,
2839 const gdb_byte *dwz_list, offset_type dwz_elements)
2840{
2841 struct dwz_file *dwz;
2842
2843 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
8d749320
SM
2844 dwarf2_per_objfile->all_comp_units =
2845 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2846 dwarf2_per_objfile->n_comp_units);
2ec9a5e0 2847
74a0d9f6
JK
2848 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2849 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2850
2851 if (dwz_elements == 0)
74a0d9f6 2852 return;
2ec9a5e0
TT
2853
2854 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2855 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2856 cu_list_elements / 2);
2ec9a5e0
TT
2857}
2858
1fd400ff 2859/* Create the signatured type hash table from the index. */
673bfd45 2860
74a0d9f6 2861static void
673bfd45 2862create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2863 struct dwarf2_section_info *section,
673bfd45
DE
2864 const gdb_byte *bytes,
2865 offset_type elements)
1fd400ff
TT
2866{
2867 offset_type i;
673bfd45 2868 htab_t sig_types_hash;
1fd400ff 2869
6aa5f3a6
DE
2870 dwarf2_per_objfile->n_type_units
2871 = dwarf2_per_objfile->n_allocated_type_units
2872 = elements / 3;
8d749320
SM
2873 dwarf2_per_objfile->all_type_units =
2874 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
1fd400ff 2875
673bfd45 2876 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2877
2878 for (i = 0; i < elements; i += 3)
2879 {
52dc124a
DE
2880 struct signatured_type *sig_type;
2881 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2882 void **slot;
2883
74a0d9f6
JK
2884 gdb_static_assert (sizeof (ULONGEST) >= 8);
2885 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2886 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2887 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2888 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2889 bytes += 3 * 8;
2890
52dc124a 2891 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2892 struct signatured_type);
52dc124a 2893 sig_type->signature = signature;
3019eac3
DE
2894 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2895 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2896 sig_type->per_cu.section = section;
52dc124a
DE
2897 sig_type->per_cu.offset.sect_off = offset;
2898 sig_type->per_cu.objfile = objfile;
2899 sig_type->per_cu.v.quick
1fd400ff
TT
2900 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2901 struct dwarf2_per_cu_quick_data);
2902
52dc124a
DE
2903 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2904 *slot = sig_type;
1fd400ff 2905
b4dd5633 2906 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2907 }
2908
673bfd45 2909 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2910}
2911
9291a0cd
TT
2912/* Read the address map data from the mapped index, and use it to
2913 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2914
9291a0cd
TT
2915static void
2916create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2917{
3e29f34a 2918 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd
TT
2919 const gdb_byte *iter, *end;
2920 struct obstack temp_obstack;
2921 struct addrmap *mutable_map;
2922 struct cleanup *cleanup;
2923 CORE_ADDR baseaddr;
2924
2925 obstack_init (&temp_obstack);
2926 cleanup = make_cleanup_obstack_free (&temp_obstack);
2927 mutable_map = addrmap_create_mutable (&temp_obstack);
2928
2929 iter = index->address_table;
2930 end = iter + index->address_table_size;
2931
2932 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2933
2934 while (iter < end)
2935 {
2936 ULONGEST hi, lo, cu_index;
2937 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2938 iter += 8;
2939 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2940 iter += 8;
2941 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2942 iter += 4;
f652bce2 2943
24a55014 2944 if (lo > hi)
f652bce2 2945 {
24a55014
DE
2946 complaint (&symfile_complaints,
2947 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2948 hex_string (lo), hex_string (hi));
24a55014 2949 continue;
f652bce2 2950 }
24a55014
DE
2951
2952 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2953 {
2954 complaint (&symfile_complaints,
2955 _(".gdb_index address table has invalid CU number %u"),
2956 (unsigned) cu_index);
24a55014 2957 continue;
f652bce2 2958 }
24a55014 2959
3e29f34a
MR
2960 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2961 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2962 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
9291a0cd
TT
2963 }
2964
2965 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2966 &objfile->objfile_obstack);
2967 do_cleanups (cleanup);
2968}
2969
59d7bcaf
JK
2970/* The hash function for strings in the mapped index. This is the same as
2971 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2972 implementation. This is necessary because the hash function is tied to the
2973 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2974 SYMBOL_HASH_NEXT.
2975
2976 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2977
9291a0cd 2978static hashval_t
559a7a62 2979mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2980{
2981 const unsigned char *str = (const unsigned char *) p;
2982 hashval_t r = 0;
2983 unsigned char c;
2984
2985 while ((c = *str++) != 0)
559a7a62
JK
2986 {
2987 if (index_version >= 5)
2988 c = tolower (c);
2989 r = r * 67 + c - 113;
2990 }
9291a0cd
TT
2991
2992 return r;
2993}
2994
2995/* Find a slot in the mapped index INDEX for the object named NAME.
2996 If NAME is found, set *VEC_OUT to point to the CU vector in the
2997 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2998
9291a0cd
TT
2999static int
3000find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3001 offset_type **vec_out)
3002{
0cf03b49
JK
3003 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
3004 offset_type hash;
9291a0cd 3005 offset_type slot, step;
559a7a62 3006 int (*cmp) (const char *, const char *);
9291a0cd 3007
0cf03b49
JK
3008 if (current_language->la_language == language_cplus
3009 || current_language->la_language == language_java
45280282
IB
3010 || current_language->la_language == language_fortran
3011 || current_language->la_language == language_d)
0cf03b49
JK
3012 {
3013 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3014 not contain any. */
a8719064 3015
72998fb3 3016 if (strchr (name, '(') != NULL)
0cf03b49 3017 {
72998fb3 3018 char *without_params = cp_remove_params (name);
0cf03b49 3019
72998fb3
DE
3020 if (without_params != NULL)
3021 {
3022 make_cleanup (xfree, without_params);
3023 name = without_params;
3024 }
0cf03b49
JK
3025 }
3026 }
3027
559a7a62 3028 /* Index version 4 did not support case insensitive searches. But the
feea76c2 3029 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
3030 simulate our NAME being searched is also lowercased. */
3031 hash = mapped_index_string_hash ((index->version == 4
3032 && case_sensitivity == case_sensitive_off
3033 ? 5 : index->version),
3034 name);
3035
3876f04e
DE
3036 slot = hash & (index->symbol_table_slots - 1);
3037 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 3038 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3039
3040 for (;;)
3041 {
3042 /* Convert a slot number to an offset into the table. */
3043 offset_type i = 2 * slot;
3044 const char *str;
3876f04e 3045 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
3046 {
3047 do_cleanups (back_to);
3048 return 0;
3049 }
9291a0cd 3050
3876f04e 3051 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 3052 if (!cmp (name, str))
9291a0cd
TT
3053 {
3054 *vec_out = (offset_type *) (index->constant_pool
3876f04e 3055 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 3056 do_cleanups (back_to);
9291a0cd
TT
3057 return 1;
3058 }
3059
3876f04e 3060 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
3061 }
3062}
3063
2ec9a5e0
TT
3064/* A helper function that reads the .gdb_index from SECTION and fills
3065 in MAP. FILENAME is the name of the file containing the section;
3066 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3067 ok to use deprecated sections.
3068
3069 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3070 out parameters that are filled in with information about the CU and
3071 TU lists in the section.
3072
3073 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3074
9291a0cd 3075static int
2ec9a5e0
TT
3076read_index_from_section (struct objfile *objfile,
3077 const char *filename,
3078 int deprecated_ok,
3079 struct dwarf2_section_info *section,
3080 struct mapped_index *map,
3081 const gdb_byte **cu_list,
3082 offset_type *cu_list_elements,
3083 const gdb_byte **types_list,
3084 offset_type *types_list_elements)
9291a0cd 3085{
948f8e3d 3086 const gdb_byte *addr;
2ec9a5e0 3087 offset_type version;
b3b272e1 3088 offset_type *metadata;
1fd400ff 3089 int i;
9291a0cd 3090
2ec9a5e0 3091 if (dwarf2_section_empty_p (section))
9291a0cd 3092 return 0;
82430852
JK
3093
3094 /* Older elfutils strip versions could keep the section in the main
3095 executable while splitting it for the separate debug info file. */
a32a8923 3096 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3097 return 0;
3098
2ec9a5e0 3099 dwarf2_read_section (objfile, section);
9291a0cd 3100
2ec9a5e0 3101 addr = section->buffer;
9291a0cd 3102 /* Version check. */
1fd400ff 3103 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3104 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3105 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3106 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3107 indices. */
831adc1f 3108 if (version < 4)
481860b3
GB
3109 {
3110 static int warning_printed = 0;
3111 if (!warning_printed)
3112 {
3113 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3114 filename);
481860b3
GB
3115 warning_printed = 1;
3116 }
3117 return 0;
3118 }
3119 /* Index version 4 uses a different hash function than index version
3120 5 and later.
3121
3122 Versions earlier than 6 did not emit psymbols for inlined
3123 functions. Using these files will cause GDB not to be able to
3124 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3125 indices unless the user has done
3126 "set use-deprecated-index-sections on". */
2ec9a5e0 3127 if (version < 6 && !deprecated_ok)
481860b3
GB
3128 {
3129 static int warning_printed = 0;
3130 if (!warning_printed)
3131 {
e615022a
DE
3132 warning (_("\
3133Skipping deprecated .gdb_index section in %s.\n\
3134Do \"set use-deprecated-index-sections on\" before the file is read\n\
3135to use the section anyway."),
2ec9a5e0 3136 filename);
481860b3
GB
3137 warning_printed = 1;
3138 }
3139 return 0;
3140 }
796a7ff8 3141 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3142 of the TU (for symbols coming from TUs),
3143 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3144 Plus gold-generated indices can have duplicate entries for global symbols,
3145 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3146 These are just performance bugs, and we can't distinguish gdb-generated
3147 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3148
481860b3 3149 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3150 longer backward compatible. */
796a7ff8 3151 if (version > 8)
594e8718 3152 return 0;
9291a0cd 3153
559a7a62 3154 map->version = version;
2ec9a5e0 3155 map->total_size = section->size;
9291a0cd
TT
3156
3157 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3158
3159 i = 0;
2ec9a5e0
TT
3160 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3161 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3162 / 8);
1fd400ff
TT
3163 ++i;
3164
2ec9a5e0
TT
3165 *types_list = addr + MAYBE_SWAP (metadata[i]);
3166 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3167 - MAYBE_SWAP (metadata[i]))
3168 / 8);
987d643c 3169 ++i;
1fd400ff
TT
3170
3171 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3172 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3173 - MAYBE_SWAP (metadata[i]));
3174 ++i;
3175
3876f04e
DE
3176 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3177 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3178 - MAYBE_SWAP (metadata[i]))
3179 / (2 * sizeof (offset_type)));
1fd400ff 3180 ++i;
9291a0cd 3181
f9d83a0b 3182 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3183
2ec9a5e0
TT
3184 return 1;
3185}
3186
3187
3188/* Read the index file. If everything went ok, initialize the "quick"
3189 elements of all the CUs and return 1. Otherwise, return 0. */
3190
3191static int
3192dwarf2_read_index (struct objfile *objfile)
3193{
3194 struct mapped_index local_map, *map;
3195 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3196 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3197 struct dwz_file *dwz;
2ec9a5e0 3198
4262abfb 3199 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3200 use_deprecated_index_sections,
3201 &dwarf2_per_objfile->gdb_index, &local_map,
3202 &cu_list, &cu_list_elements,
3203 &types_list, &types_list_elements))
3204 return 0;
3205
0fefef59 3206 /* Don't use the index if it's empty. */
2ec9a5e0 3207 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3208 return 0;
3209
2ec9a5e0
TT
3210 /* If there is a .dwz file, read it so we can get its CU list as
3211 well. */
4db1a1dc
TT
3212 dwz = dwarf2_get_dwz_file ();
3213 if (dwz != NULL)
2ec9a5e0 3214 {
2ec9a5e0
TT
3215 struct mapped_index dwz_map;
3216 const gdb_byte *dwz_types_ignore;
3217 offset_type dwz_types_elements_ignore;
3218
3219 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3220 1,
3221 &dwz->gdb_index, &dwz_map,
3222 &dwz_list, &dwz_list_elements,
3223 &dwz_types_ignore,
3224 &dwz_types_elements_ignore))
3225 {
3226 warning (_("could not read '.gdb_index' section from %s; skipping"),
3227 bfd_get_filename (dwz->dwz_bfd));
3228 return 0;
3229 }
3230 }
3231
74a0d9f6
JK
3232 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3233 dwz_list_elements);
1fd400ff 3234
8b70b953
TT
3235 if (types_list_elements)
3236 {
3237 struct dwarf2_section_info *section;
3238
3239 /* We can only handle a single .debug_types when we have an
3240 index. */
3241 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3242 return 0;
3243
3244 section = VEC_index (dwarf2_section_info_def,
3245 dwarf2_per_objfile->types, 0);
3246
74a0d9f6
JK
3247 create_signatured_type_table_from_index (objfile, section, types_list,
3248 types_list_elements);
8b70b953 3249 }
9291a0cd 3250
2ec9a5e0
TT
3251 create_addrmap_from_index (objfile, &local_map);
3252
8d749320 3253 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
2ec9a5e0 3254 *map = local_map;
9291a0cd
TT
3255
3256 dwarf2_per_objfile->index_table = map;
3257 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3258 dwarf2_per_objfile->quick_file_names_table =
3259 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3260
3261 return 1;
3262}
3263
3264/* A helper for the "quick" functions which sets the global
3265 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3266
9291a0cd
TT
3267static void
3268dw2_setup (struct objfile *objfile)
3269{
9a3c8263
SM
3270 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3271 objfile_data (objfile, dwarf2_objfile_data_key));
9291a0cd
TT
3272 gdb_assert (dwarf2_per_objfile);
3273}
3274
dee91e82 3275/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3276
dee91e82
DE
3277static void
3278dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3279 const gdb_byte *info_ptr,
dee91e82
DE
3280 struct die_info *comp_unit_die,
3281 int has_children,
3282 void *data)
9291a0cd 3283{
dee91e82
DE
3284 struct dwarf2_cu *cu = reader->cu;
3285 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3286 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3287 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3288 struct line_header *lh;
9291a0cd 3289 struct attribute *attr;
dee91e82 3290 int i;
15d034d0 3291 const char *name, *comp_dir;
7b9f3c50
DE
3292 void **slot;
3293 struct quick_file_names *qfn;
3294 unsigned int line_offset;
9291a0cd 3295
0186c6a7
DE
3296 gdb_assert (! this_cu->is_debug_types);
3297
07261596
TT
3298 /* Our callers never want to match partial units -- instead they
3299 will match the enclosing full CU. */
3300 if (comp_unit_die->tag == DW_TAG_partial_unit)
3301 {
3302 this_cu->v.quick->no_file_data = 1;
3303 return;
3304 }
3305
0186c6a7 3306 lh_cu = this_cu;
7b9f3c50
DE
3307 lh = NULL;
3308 slot = NULL;
3309 line_offset = 0;
dee91e82
DE
3310
3311 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3312 if (attr)
3313 {
7b9f3c50
DE
3314 struct quick_file_names find_entry;
3315
3316 line_offset = DW_UNSND (attr);
3317
3318 /* We may have already read in this line header (TU line header sharing).
3319 If we have we're done. */
094b34ac
DE
3320 find_entry.hash.dwo_unit = cu->dwo_unit;
3321 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3322 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3323 &find_entry, INSERT);
3324 if (*slot != NULL)
3325 {
9a3c8263 3326 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
dee91e82 3327 return;
7b9f3c50
DE
3328 }
3329
3019eac3 3330 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3331 }
3332 if (lh == NULL)
3333 {
094b34ac 3334 lh_cu->v.quick->no_file_data = 1;
dee91e82 3335 return;
9291a0cd
TT
3336 }
3337
8d749320 3338 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
094b34ac
DE
3339 qfn->hash.dwo_unit = cu->dwo_unit;
3340 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3341 gdb_assert (slot != NULL);
3342 *slot = qfn;
9291a0cd 3343
dee91e82 3344 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3345
7b9f3c50 3346 qfn->num_file_names = lh->num_file_names;
8d749320
SM
3347 qfn->file_names =
3348 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
9291a0cd 3349 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3350 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3351 qfn->real_names = NULL;
9291a0cd 3352
7b9f3c50 3353 free_line_header (lh);
7b9f3c50 3354
094b34ac 3355 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3356}
3357
3358/* A helper for the "quick" functions which attempts to read the line
3359 table for THIS_CU. */
3360
3361static struct quick_file_names *
e4a48d9d 3362dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3363{
0186c6a7
DE
3364 /* This should never be called for TUs. */
3365 gdb_assert (! this_cu->is_debug_types);
3366 /* Nor type unit groups. */
3367 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3368
dee91e82
DE
3369 if (this_cu->v.quick->file_names != NULL)
3370 return this_cu->v.quick->file_names;
3371 /* If we know there is no line data, no point in looking again. */
3372 if (this_cu->v.quick->no_file_data)
3373 return NULL;
3374
0186c6a7 3375 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3376
3377 if (this_cu->v.quick->no_file_data)
3378 return NULL;
3379 return this_cu->v.quick->file_names;
9291a0cd
TT
3380}
3381
3382/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3383 real path for a given file name from the line table. */
2fdf6df6 3384
9291a0cd 3385static const char *
7b9f3c50
DE
3386dw2_get_real_path (struct objfile *objfile,
3387 struct quick_file_names *qfn, int index)
9291a0cd 3388{
7b9f3c50
DE
3389 if (qfn->real_names == NULL)
3390 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3391 qfn->num_file_names, const char *);
9291a0cd 3392
7b9f3c50
DE
3393 if (qfn->real_names[index] == NULL)
3394 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3395
7b9f3c50 3396 return qfn->real_names[index];
9291a0cd
TT
3397}
3398
3399static struct symtab *
3400dw2_find_last_source_symtab (struct objfile *objfile)
3401{
43f3e411 3402 struct compunit_symtab *cust;
9291a0cd 3403 int index;
ae2de4f8 3404
9291a0cd
TT
3405 dw2_setup (objfile);
3406 index = dwarf2_per_objfile->n_comp_units - 1;
43f3e411
DE
3407 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3408 if (cust == NULL)
3409 return NULL;
3410 return compunit_primary_filetab (cust);
9291a0cd
TT
3411}
3412
7b9f3c50
DE
3413/* Traversal function for dw2_forget_cached_source_info. */
3414
3415static int
3416dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3417{
7b9f3c50 3418 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3419
7b9f3c50 3420 if (file_data->real_names)
9291a0cd 3421 {
7b9f3c50 3422 int i;
9291a0cd 3423
7b9f3c50 3424 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3425 {
7b9f3c50
DE
3426 xfree ((void*) file_data->real_names[i]);
3427 file_data->real_names[i] = NULL;
9291a0cd
TT
3428 }
3429 }
7b9f3c50
DE
3430
3431 return 1;
3432}
3433
3434static void
3435dw2_forget_cached_source_info (struct objfile *objfile)
3436{
3437 dw2_setup (objfile);
3438
3439 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3440 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3441}
3442
f8eba3c6
TT
3443/* Helper function for dw2_map_symtabs_matching_filename that expands
3444 the symtabs and calls the iterator. */
3445
3446static int
3447dw2_map_expand_apply (struct objfile *objfile,
3448 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3449 const char *name, const char *real_path,
f8eba3c6
TT
3450 int (*callback) (struct symtab *, void *),
3451 void *data)
3452{
43f3e411 3453 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3454
3455 /* Don't visit already-expanded CUs. */
43f3e411 3456 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3457 return 0;
3458
3459 /* This may expand more than one symtab, and we want to iterate over
3460 all of them. */
a0f42c21 3461 dw2_instantiate_symtab (per_cu);
f8eba3c6 3462
f5b95b50 3463 return iterate_over_some_symtabs (name, real_path, callback, data,
43f3e411 3464 objfile->compunit_symtabs, last_made);
f8eba3c6
TT
3465}
3466
3467/* Implementation of the map_symtabs_matching_filename method. */
3468
9291a0cd 3469static int
f8eba3c6 3470dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3471 const char *real_path,
f8eba3c6
TT
3472 int (*callback) (struct symtab *, void *),
3473 void *data)
9291a0cd
TT
3474{
3475 int i;
c011a4f4 3476 const char *name_basename = lbasename (name);
9291a0cd
TT
3477
3478 dw2_setup (objfile);
ae2de4f8 3479
848e3e78
DE
3480 /* The rule is CUs specify all the files, including those used by
3481 any TU, so there's no need to scan TUs here. */
f4dc4d17 3482
848e3e78 3483 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3484 {
3485 int j;
8832e7e3 3486 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3487 struct quick_file_names *file_data;
9291a0cd 3488
3d7bb9d9 3489 /* We only need to look at symtabs not already expanded. */
43f3e411 3490 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3491 continue;
3492
e4a48d9d 3493 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3494 if (file_data == NULL)
9291a0cd
TT
3495 continue;
3496
7b9f3c50 3497 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3498 {
7b9f3c50 3499 const char *this_name = file_data->file_names[j];
da235a7c 3500 const char *this_real_name;
9291a0cd 3501
af529f8f 3502 if (compare_filenames_for_search (this_name, name))
9291a0cd 3503 {
f5b95b50 3504 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3505 callback, data))
3506 return 1;
288e77a7 3507 continue;
4aac40c8 3508 }
9291a0cd 3509
c011a4f4
DE
3510 /* Before we invoke realpath, which can get expensive when many
3511 files are involved, do a quick comparison of the basenames. */
3512 if (! basenames_may_differ
3513 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3514 continue;
3515
da235a7c
JK
3516 this_real_name = dw2_get_real_path (objfile, file_data, j);
3517 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3518 {
da235a7c
JK
3519 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3520 callback, data))
3521 return 1;
288e77a7 3522 continue;
da235a7c 3523 }
9291a0cd 3524
da235a7c
JK
3525 if (real_path != NULL)
3526 {
af529f8f
JK
3527 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3528 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3529 if (this_real_name != NULL
af529f8f 3530 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3531 {
f5b95b50 3532 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3533 callback, data))
3534 return 1;
288e77a7 3535 continue;
9291a0cd
TT
3536 }
3537 }
3538 }
3539 }
3540
9291a0cd
TT
3541 return 0;
3542}
3543
da51c347
DE
3544/* Struct used to manage iterating over all CUs looking for a symbol. */
3545
3546struct dw2_symtab_iterator
9291a0cd 3547{
da51c347
DE
3548 /* The internalized form of .gdb_index. */
3549 struct mapped_index *index;
3550 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3551 int want_specific_block;
3552 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3553 Unused if !WANT_SPECIFIC_BLOCK. */
3554 int block_index;
3555 /* The kind of symbol we're looking for. */
3556 domain_enum domain;
3557 /* The list of CUs from the index entry of the symbol,
3558 or NULL if not found. */
3559 offset_type *vec;
3560 /* The next element in VEC to look at. */
3561 int next;
3562 /* The number of elements in VEC, or zero if there is no match. */
3563 int length;
8943b874
DE
3564 /* Have we seen a global version of the symbol?
3565 If so we can ignore all further global instances.
3566 This is to work around gold/15646, inefficient gold-generated
3567 indices. */
3568 int global_seen;
da51c347 3569};
9291a0cd 3570
da51c347
DE
3571/* Initialize the index symtab iterator ITER.
3572 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3573 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3574
9291a0cd 3575static void
da51c347
DE
3576dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3577 struct mapped_index *index,
3578 int want_specific_block,
3579 int block_index,
3580 domain_enum domain,
3581 const char *name)
3582{
3583 iter->index = index;
3584 iter->want_specific_block = want_specific_block;
3585 iter->block_index = block_index;
3586 iter->domain = domain;
3587 iter->next = 0;
8943b874 3588 iter->global_seen = 0;
da51c347
DE
3589
3590 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3591 iter->length = MAYBE_SWAP (*iter->vec);
3592 else
3593 {
3594 iter->vec = NULL;
3595 iter->length = 0;
3596 }
3597}
3598
3599/* Return the next matching CU or NULL if there are no more. */
3600
3601static struct dwarf2_per_cu_data *
3602dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3603{
3604 for ( ; iter->next < iter->length; ++iter->next)
3605 {
3606 offset_type cu_index_and_attrs =
3607 MAYBE_SWAP (iter->vec[iter->next + 1]);
3608 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3609 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3610 int want_static = iter->block_index != GLOBAL_BLOCK;
3611 /* This value is only valid for index versions >= 7. */
3612 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3613 gdb_index_symbol_kind symbol_kind =
3614 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3615 /* Only check the symbol attributes if they're present.
3616 Indices prior to version 7 don't record them,
3617 and indices >= 7 may elide them for certain symbols
3618 (gold does this). */
3619 int attrs_valid =
3620 (iter->index->version >= 7
3621 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3622
3190f0c6
DE
3623 /* Don't crash on bad data. */
3624 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3625 + dwarf2_per_objfile->n_type_units))
3626 {
3627 complaint (&symfile_complaints,
3628 _(".gdb_index entry has bad CU index"
4262abfb
JK
3629 " [in module %s]"),
3630 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3631 continue;
3632 }
3633
8832e7e3 3634 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3635
da51c347 3636 /* Skip if already read in. */
43f3e411 3637 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3638 continue;
3639
8943b874
DE
3640 /* Check static vs global. */
3641 if (attrs_valid)
3642 {
3643 if (iter->want_specific_block
3644 && want_static != is_static)
3645 continue;
3646 /* Work around gold/15646. */
3647 if (!is_static && iter->global_seen)
3648 continue;
3649 if (!is_static)
3650 iter->global_seen = 1;
3651 }
da51c347
DE
3652
3653 /* Only check the symbol's kind if it has one. */
3654 if (attrs_valid)
3655 {
3656 switch (iter->domain)
3657 {
3658 case VAR_DOMAIN:
3659 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3660 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3661 /* Some types are also in VAR_DOMAIN. */
3662 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3663 continue;
3664 break;
3665 case STRUCT_DOMAIN:
3666 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3667 continue;
3668 break;
3669 case LABEL_DOMAIN:
3670 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3671 continue;
3672 break;
3673 default:
3674 break;
3675 }
3676 }
3677
3678 ++iter->next;
3679 return per_cu;
3680 }
3681
3682 return NULL;
3683}
3684
43f3e411 3685static struct compunit_symtab *
da51c347
DE
3686dw2_lookup_symbol (struct objfile *objfile, int block_index,
3687 const char *name, domain_enum domain)
9291a0cd 3688{
43f3e411 3689 struct compunit_symtab *stab_best = NULL;
156942c7
DE
3690 struct mapped_index *index;
3691
9291a0cd
TT
3692 dw2_setup (objfile);
3693
156942c7
DE
3694 index = dwarf2_per_objfile->index_table;
3695
da51c347 3696 /* index is NULL if OBJF_READNOW. */
156942c7 3697 if (index)
9291a0cd 3698 {
da51c347
DE
3699 struct dw2_symtab_iterator iter;
3700 struct dwarf2_per_cu_data *per_cu;
3701
3702 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3703
da51c347 3704 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3705 {
b2e2f908 3706 struct symbol *sym, *with_opaque = NULL;
43f3e411
DE
3707 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3708 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
f194fefb 3709 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 3710
b2e2f908
DE
3711 sym = block_find_symbol (block, name, domain,
3712 block_find_non_opaque_type_preferred,
3713 &with_opaque);
3714
da51c347
DE
3715 /* Some caution must be observed with overloaded functions
3716 and methods, since the index will not contain any overload
3717 information (but NAME might contain it). */
da51c347 3718
b2e2f908
DE
3719 if (sym != NULL
3720 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3721 return stab;
3722 if (with_opaque != NULL
3723 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3724 stab_best = stab;
da51c347
DE
3725
3726 /* Keep looking through other CUs. */
9291a0cd
TT
3727 }
3728 }
9291a0cd 3729
da51c347 3730 return stab_best;
9291a0cd
TT
3731}
3732
3733static void
3734dw2_print_stats (struct objfile *objfile)
3735{
e4a48d9d 3736 int i, total, count;
9291a0cd
TT
3737
3738 dw2_setup (objfile);
e4a48d9d 3739 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3740 count = 0;
e4a48d9d 3741 for (i = 0; i < total; ++i)
9291a0cd 3742 {
8832e7e3 3743 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3744
43f3e411 3745 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3746 ++count;
3747 }
e4a48d9d 3748 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3749 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3750}
3751
779bd270
DE
3752/* This dumps minimal information about the index.
3753 It is called via "mt print objfiles".
3754 One use is to verify .gdb_index has been loaded by the
3755 gdb.dwarf2/gdb-index.exp testcase. */
3756
9291a0cd
TT
3757static void
3758dw2_dump (struct objfile *objfile)
3759{
779bd270
DE
3760 dw2_setup (objfile);
3761 gdb_assert (dwarf2_per_objfile->using_index);
3762 printf_filtered (".gdb_index:");
3763 if (dwarf2_per_objfile->index_table != NULL)
3764 {
3765 printf_filtered (" version %d\n",
3766 dwarf2_per_objfile->index_table->version);
3767 }
3768 else
3769 printf_filtered (" faked for \"readnow\"\n");
3770 printf_filtered ("\n");
9291a0cd
TT
3771}
3772
3773static void
3189cb12
DE
3774dw2_relocate (struct objfile *objfile,
3775 const struct section_offsets *new_offsets,
3776 const struct section_offsets *delta)
9291a0cd
TT
3777{
3778 /* There's nothing to relocate here. */
3779}
3780
3781static void
3782dw2_expand_symtabs_for_function (struct objfile *objfile,
3783 const char *func_name)
3784{
da51c347
DE
3785 struct mapped_index *index;
3786
3787 dw2_setup (objfile);
3788
3789 index = dwarf2_per_objfile->index_table;
3790
3791 /* index is NULL if OBJF_READNOW. */
3792 if (index)
3793 {
3794 struct dw2_symtab_iterator iter;
3795 struct dwarf2_per_cu_data *per_cu;
3796
3797 /* Note: It doesn't matter what we pass for block_index here. */
3798 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3799 func_name);
3800
3801 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3802 dw2_instantiate_symtab (per_cu);
3803 }
9291a0cd
TT
3804}
3805
3806static void
3807dw2_expand_all_symtabs (struct objfile *objfile)
3808{
3809 int i;
3810
3811 dw2_setup (objfile);
1fd400ff
TT
3812
3813 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3814 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3815 {
8832e7e3 3816 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3817
a0f42c21 3818 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3819 }
3820}
3821
3822static void
652a8996
JK
3823dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3824 const char *fullname)
9291a0cd
TT
3825{
3826 int i;
3827
3828 dw2_setup (objfile);
d4637a04
DE
3829
3830 /* We don't need to consider type units here.
3831 This is only called for examining code, e.g. expand_line_sal.
3832 There can be an order of magnitude (or more) more type units
3833 than comp units, and we avoid them if we can. */
3834
3835 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3836 {
3837 int j;
8832e7e3 3838 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 3839 struct quick_file_names *file_data;
9291a0cd 3840
3d7bb9d9 3841 /* We only need to look at symtabs not already expanded. */
43f3e411 3842 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3843 continue;
3844
e4a48d9d 3845 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3846 if (file_data == NULL)
9291a0cd
TT
3847 continue;
3848
7b9f3c50 3849 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3850 {
652a8996
JK
3851 const char *this_fullname = file_data->file_names[j];
3852
3853 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3854 {
a0f42c21 3855 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3856 break;
3857 }
3858 }
3859 }
3860}
3861
9291a0cd 3862static void
ade7ed9e 3863dw2_map_matching_symbols (struct objfile *objfile,
fe978cb0 3864 const char * name, domain_enum domain,
ade7ed9e 3865 int global,
40658b94
PH
3866 int (*callback) (struct block *,
3867 struct symbol *, void *),
2edb89d3
JK
3868 void *data, symbol_compare_ftype *match,
3869 symbol_compare_ftype *ordered_compare)
9291a0cd 3870{
40658b94 3871 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3872 current language is Ada for a non-Ada objfile using GNU index. As Ada
3873 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3874}
3875
3876static void
f8eba3c6
TT
3877dw2_expand_symtabs_matching
3878 (struct objfile *objfile,
206f2a57
DE
3879 expand_symtabs_file_matcher_ftype *file_matcher,
3880 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
276d885b 3881 expand_symtabs_exp_notify_ftype *expansion_notify,
f8eba3c6
TT
3882 enum search_domain kind,
3883 void *data)
9291a0cd
TT
3884{
3885 int i;
3886 offset_type iter;
4b5246aa 3887 struct mapped_index *index;
9291a0cd
TT
3888
3889 dw2_setup (objfile);
ae2de4f8
DE
3890
3891 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3892 if (!dwarf2_per_objfile->index_table)
3893 return;
4b5246aa 3894 index = dwarf2_per_objfile->index_table;
9291a0cd 3895
7b08b9eb 3896 if (file_matcher != NULL)
24c79950
TT
3897 {
3898 struct cleanup *cleanup;
3899 htab_t visited_found, visited_not_found;
3900
3901 visited_found = htab_create_alloc (10,
3902 htab_hash_pointer, htab_eq_pointer,
3903 NULL, xcalloc, xfree);
3904 cleanup = make_cleanup_htab_delete (visited_found);
3905 visited_not_found = htab_create_alloc (10,
3906 htab_hash_pointer, htab_eq_pointer,
3907 NULL, xcalloc, xfree);
3908 make_cleanup_htab_delete (visited_not_found);
3909
848e3e78
DE
3910 /* The rule is CUs specify all the files, including those used by
3911 any TU, so there's no need to scan TUs here. */
3912
3913 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3914 {
3915 int j;
8832e7e3 3916 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
3917 struct quick_file_names *file_data;
3918 void **slot;
7b08b9eb 3919
61d96d7e
DE
3920 QUIT;
3921
24c79950 3922 per_cu->v.quick->mark = 0;
3d7bb9d9 3923
24c79950 3924 /* We only need to look at symtabs not already expanded. */
43f3e411 3925 if (per_cu->v.quick->compunit_symtab)
24c79950 3926 continue;
7b08b9eb 3927
e4a48d9d 3928 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3929 if (file_data == NULL)
3930 continue;
7b08b9eb 3931
24c79950
TT
3932 if (htab_find (visited_not_found, file_data) != NULL)
3933 continue;
3934 else if (htab_find (visited_found, file_data) != NULL)
3935 {
3936 per_cu->v.quick->mark = 1;
3937 continue;
3938 }
3939
3940 for (j = 0; j < file_data->num_file_names; ++j)
3941 {
da235a7c
JK
3942 const char *this_real_name;
3943
fbd9ab74 3944 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3945 {
3946 per_cu->v.quick->mark = 1;
3947 break;
3948 }
da235a7c
JK
3949
3950 /* Before we invoke realpath, which can get expensive when many
3951 files are involved, do a quick comparison of the basenames. */
3952 if (!basenames_may_differ
3953 && !file_matcher (lbasename (file_data->file_names[j]),
3954 data, 1))
3955 continue;
3956
3957 this_real_name = dw2_get_real_path (objfile, file_data, j);
3958 if (file_matcher (this_real_name, data, 0))
3959 {
3960 per_cu->v.quick->mark = 1;
3961 break;
3962 }
24c79950
TT
3963 }
3964
3965 slot = htab_find_slot (per_cu->v.quick->mark
3966 ? visited_found
3967 : visited_not_found,
3968 file_data, INSERT);
3969 *slot = file_data;
3970 }
3971
3972 do_cleanups (cleanup);
3973 }
9291a0cd 3974
3876f04e 3975 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3976 {
3977 offset_type idx = 2 * iter;
3978 const char *name;
3979 offset_type *vec, vec_len, vec_idx;
8943b874 3980 int global_seen = 0;
9291a0cd 3981
61d96d7e
DE
3982 QUIT;
3983
3876f04e 3984 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3985 continue;
3986
3876f04e 3987 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3988
206f2a57 3989 if (! (*symbol_matcher) (name, data))
9291a0cd
TT
3990 continue;
3991
3992 /* The name was matched, now expand corresponding CUs that were
3993 marked. */
4b5246aa 3994 vec = (offset_type *) (index->constant_pool
3876f04e 3995 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3996 vec_len = MAYBE_SWAP (vec[0]);
3997 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3998 {
e254ef6a 3999 struct dwarf2_per_cu_data *per_cu;
156942c7 4000 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
4001 /* This value is only valid for index versions >= 7. */
4002 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
4003 gdb_index_symbol_kind symbol_kind =
4004 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4005 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
4006 /* Only check the symbol attributes if they're present.
4007 Indices prior to version 7 don't record them,
4008 and indices >= 7 may elide them for certain symbols
4009 (gold does this). */
4010 int attrs_valid =
4011 (index->version >= 7
4012 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4013
8943b874
DE
4014 /* Work around gold/15646. */
4015 if (attrs_valid)
4016 {
4017 if (!is_static && global_seen)
4018 continue;
4019 if (!is_static)
4020 global_seen = 1;
4021 }
4022
3190f0c6
DE
4023 /* Only check the symbol's kind if it has one. */
4024 if (attrs_valid)
156942c7
DE
4025 {
4026 switch (kind)
4027 {
4028 case VARIABLES_DOMAIN:
4029 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4030 continue;
4031 break;
4032 case FUNCTIONS_DOMAIN:
4033 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4034 continue;
4035 break;
4036 case TYPES_DOMAIN:
4037 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4038 continue;
4039 break;
4040 default:
4041 break;
4042 }
4043 }
4044
3190f0c6
DE
4045 /* Don't crash on bad data. */
4046 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4047 + dwarf2_per_objfile->n_type_units))
4048 {
4049 complaint (&symfile_complaints,
4050 _(".gdb_index entry has bad CU index"
4262abfb 4051 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
4052 continue;
4053 }
4054
8832e7e3 4055 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 4056 if (file_matcher == NULL || per_cu->v.quick->mark)
276d885b
GB
4057 {
4058 int symtab_was_null =
4059 (per_cu->v.quick->compunit_symtab == NULL);
4060
4061 dw2_instantiate_symtab (per_cu);
4062
4063 if (expansion_notify != NULL
4064 && symtab_was_null
4065 && per_cu->v.quick->compunit_symtab != NULL)
4066 {
4067 expansion_notify (per_cu->v.quick->compunit_symtab,
4068 data);
4069 }
4070 }
9291a0cd
TT
4071 }
4072 }
4073}
4074
43f3e411 4075/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
9703b513
TT
4076 symtab. */
4077
43f3e411
DE
4078static struct compunit_symtab *
4079recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4080 CORE_ADDR pc)
9703b513
TT
4081{
4082 int i;
4083
43f3e411
DE
4084 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4085 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4086 return cust;
9703b513 4087
43f3e411 4088 if (cust->includes == NULL)
a3ec0bb1
DE
4089 return NULL;
4090
43f3e411 4091 for (i = 0; cust->includes[i]; ++i)
9703b513 4092 {
43f3e411 4093 struct compunit_symtab *s = cust->includes[i];
9703b513 4094
43f3e411 4095 s = recursively_find_pc_sect_compunit_symtab (s, pc);
9703b513
TT
4096 if (s != NULL)
4097 return s;
4098 }
4099
4100 return NULL;
4101}
4102
43f3e411
DE
4103static struct compunit_symtab *
4104dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4105 struct bound_minimal_symbol msymbol,
4106 CORE_ADDR pc,
4107 struct obj_section *section,
4108 int warn_if_readin)
9291a0cd
TT
4109{
4110 struct dwarf2_per_cu_data *data;
43f3e411 4111 struct compunit_symtab *result;
9291a0cd
TT
4112
4113 dw2_setup (objfile);
4114
4115 if (!objfile->psymtabs_addrmap)
4116 return NULL;
4117
9a3c8263
SM
4118 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4119 pc);
9291a0cd
TT
4120 if (!data)
4121 return NULL;
4122
43f3e411 4123 if (warn_if_readin && data->v.quick->compunit_symtab)
abebb8b0 4124 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4125 paddress (get_objfile_arch (objfile), pc));
4126
43f3e411
DE
4127 result
4128 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4129 pc);
9703b513
TT
4130 gdb_assert (result != NULL);
4131 return result;
9291a0cd
TT
4132}
4133
9291a0cd 4134static void
44b13c5a 4135dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4136 void *data, int need_fullname)
9291a0cd
TT
4137{
4138 int i;
24c79950
TT
4139 struct cleanup *cleanup;
4140 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4141 NULL, xcalloc, xfree);
9291a0cd 4142
24c79950 4143 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 4144 dw2_setup (objfile);
ae2de4f8 4145
848e3e78
DE
4146 /* The rule is CUs specify all the files, including those used by
4147 any TU, so there's no need to scan TUs here.
4148 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4149
848e3e78 4150 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950 4151 {
8832e7e3 4152 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
24c79950 4153
43f3e411 4154 if (per_cu->v.quick->compunit_symtab)
24c79950
TT
4155 {
4156 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4157 INSERT);
4158
4159 *slot = per_cu->v.quick->file_names;
4160 }
4161 }
4162
848e3e78 4163 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4164 {
4165 int j;
8832e7e3 4166 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 4167 struct quick_file_names *file_data;
24c79950 4168 void **slot;
9291a0cd 4169
3d7bb9d9 4170 /* We only need to look at symtabs not already expanded. */
43f3e411 4171 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4172 continue;
4173
e4a48d9d 4174 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4175 if (file_data == NULL)
9291a0cd
TT
4176 continue;
4177
24c79950
TT
4178 slot = htab_find_slot (visited, file_data, INSERT);
4179 if (*slot)
4180 {
4181 /* Already visited. */
4182 continue;
4183 }
4184 *slot = file_data;
4185
7b9f3c50 4186 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4187 {
74e2f255
DE
4188 const char *this_real_name;
4189
4190 if (need_fullname)
4191 this_real_name = dw2_get_real_path (objfile, file_data, j);
4192 else
4193 this_real_name = NULL;
7b9f3c50 4194 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4195 }
4196 }
24c79950
TT
4197
4198 do_cleanups (cleanup);
9291a0cd
TT
4199}
4200
4201static int
4202dw2_has_symbols (struct objfile *objfile)
4203{
4204 return 1;
4205}
4206
4207const struct quick_symbol_functions dwarf2_gdb_index_functions =
4208{
4209 dw2_has_symbols,
4210 dw2_find_last_source_symtab,
4211 dw2_forget_cached_source_info,
f8eba3c6 4212 dw2_map_symtabs_matching_filename,
9291a0cd 4213 dw2_lookup_symbol,
9291a0cd
TT
4214 dw2_print_stats,
4215 dw2_dump,
4216 dw2_relocate,
4217 dw2_expand_symtabs_for_function,
4218 dw2_expand_all_symtabs,
652a8996 4219 dw2_expand_symtabs_with_fullname,
40658b94 4220 dw2_map_matching_symbols,
9291a0cd 4221 dw2_expand_symtabs_matching,
43f3e411 4222 dw2_find_pc_sect_compunit_symtab,
9291a0cd
TT
4223 dw2_map_symbol_filenames
4224};
4225
4226/* Initialize for reading DWARF for this objfile. Return 0 if this
4227 file will use psymtabs, or 1 if using the GNU index. */
4228
4229int
4230dwarf2_initialize_objfile (struct objfile *objfile)
4231{
4232 /* If we're about to read full symbols, don't bother with the
4233 indices. In this case we also don't care if some other debug
4234 format is making psymtabs, because they are all about to be
4235 expanded anyway. */
4236 if ((objfile->flags & OBJF_READNOW))
4237 {
4238 int i;
4239
4240 dwarf2_per_objfile->using_index = 1;
4241 create_all_comp_units (objfile);
0e50663e 4242 create_all_type_units (objfile);
7b9f3c50
DE
4243 dwarf2_per_objfile->quick_file_names_table =
4244 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4245
1fd400ff 4246 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4247 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4248 {
8832e7e3 4249 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4250
e254ef6a
DE
4251 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4252 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4253 }
4254
4255 /* Return 1 so that gdb sees the "quick" functions. However,
4256 these functions will be no-ops because we will have expanded
4257 all symtabs. */
4258 return 1;
4259 }
4260
4261 if (dwarf2_read_index (objfile))
4262 return 1;
4263
9291a0cd
TT
4264 return 0;
4265}
4266
4267\f
4268
dce234bc
PP
4269/* Build a partial symbol table. */
4270
4271void
f29dff0a 4272dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4273{
c9bf0622 4274
f29dff0a 4275 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4276 {
4277 init_psymbol_list (objfile, 1024);
4278 }
4279
492d29ea 4280 TRY
c9bf0622
TT
4281 {
4282 /* This isn't really ideal: all the data we allocate on the
4283 objfile's obstack is still uselessly kept around. However,
4284 freeing it seems unsafe. */
4285 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4286
4287 dwarf2_build_psymtabs_hard (objfile);
4288 discard_cleanups (cleanups);
4289 }
492d29ea
PA
4290 CATCH (except, RETURN_MASK_ERROR)
4291 {
4292 exception_print (gdb_stderr, except);
4293 }
4294 END_CATCH
c906108c 4295}
c906108c 4296
1ce1cefd
DE
4297/* Return the total length of the CU described by HEADER. */
4298
4299static unsigned int
4300get_cu_length (const struct comp_unit_head *header)
4301{
4302 return header->initial_length_size + header->length;
4303}
4304
45452591
DE
4305/* Return TRUE if OFFSET is within CU_HEADER. */
4306
4307static inline int
b64f50a1 4308offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4309{
b64f50a1 4310 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4311 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4312
b64f50a1 4313 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4314}
4315
3b80fe9b
DE
4316/* Find the base address of the compilation unit for range lists and
4317 location lists. It will normally be specified by DW_AT_low_pc.
4318 In DWARF-3 draft 4, the base address could be overridden by
4319 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4320 compilation units with discontinuous ranges. */
4321
4322static void
4323dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4324{
4325 struct attribute *attr;
4326
4327 cu->base_known = 0;
4328 cu->base_address = 0;
4329
4330 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4331 if (attr)
4332 {
31aa7e4e 4333 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4334 cu->base_known = 1;
4335 }
4336 else
4337 {
4338 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4339 if (attr)
4340 {
31aa7e4e 4341 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4342 cu->base_known = 1;
4343 }
4344 }
4345}
4346
93311388
DE
4347/* Read in the comp unit header information from the debug_info at info_ptr.
4348 NOTE: This leaves members offset, first_die_offset to be filled in
4349 by the caller. */
107d2387 4350
d521ce57 4351static const gdb_byte *
107d2387 4352read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 4353 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
4354{
4355 int signed_addr;
891d2f0b 4356 unsigned int bytes_read;
c764a876
DE
4357
4358 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4359 cu_header->initial_length_size = bytes_read;
4360 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4361 info_ptr += bytes_read;
107d2387
AC
4362 cu_header->version = read_2_bytes (abfd, info_ptr);
4363 info_ptr += 2;
b64f50a1
JK
4364 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4365 &bytes_read);
613e1657 4366 info_ptr += bytes_read;
107d2387
AC
4367 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4368 info_ptr += 1;
4369 signed_addr = bfd_get_sign_extend_vma (abfd);
4370 if (signed_addr < 0)
8e65ff28 4371 internal_error (__FILE__, __LINE__,
e2e0b3e5 4372 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4373 cu_header->signed_addr_p = signed_addr;
c764a876 4374
107d2387
AC
4375 return info_ptr;
4376}
4377
36586728
TT
4378/* Helper function that returns the proper abbrev section for
4379 THIS_CU. */
4380
4381static struct dwarf2_section_info *
4382get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4383{
4384 struct dwarf2_section_info *abbrev;
4385
4386 if (this_cu->is_dwz)
4387 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4388 else
4389 abbrev = &dwarf2_per_objfile->abbrev;
4390
4391 return abbrev;
4392}
4393
9ff913ba
DE
4394/* Subroutine of read_and_check_comp_unit_head and
4395 read_and_check_type_unit_head to simplify them.
4396 Perform various error checking on the header. */
4397
4398static void
4399error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4400 struct dwarf2_section_info *section,
4401 struct dwarf2_section_info *abbrev_section)
9ff913ba 4402{
a32a8923 4403 const char *filename = get_section_file_name (section);
9ff913ba
DE
4404
4405 if (header->version != 2 && header->version != 3 && header->version != 4)
4406 error (_("Dwarf Error: wrong version in compilation unit header "
4407 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4408 filename);
4409
b64f50a1 4410 if (header->abbrev_offset.sect_off
36586728 4411 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4412 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4413 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4414 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4415 filename);
4416
4417 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4418 avoid potential 32-bit overflow. */
1ce1cefd 4419 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4420 > section->size)
4421 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4422 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4423 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4424 filename);
4425}
4426
4427/* Read in a CU/TU header and perform some basic error checking.
4428 The contents of the header are stored in HEADER.
4429 The result is a pointer to the start of the first DIE. */
adabb602 4430
d521ce57 4431static const gdb_byte *
9ff913ba
DE
4432read_and_check_comp_unit_head (struct comp_unit_head *header,
4433 struct dwarf2_section_info *section,
4bdcc0c1 4434 struct dwarf2_section_info *abbrev_section,
d521ce57 4435 const gdb_byte *info_ptr,
9ff913ba 4436 int is_debug_types_section)
72bf9492 4437{
d521ce57 4438 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4439 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4440
b64f50a1 4441 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4442
72bf9492
DJ
4443 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4444
460c1c54
CC
4445 /* If we're reading a type unit, skip over the signature and
4446 type_offset fields. */
b0df02fd 4447 if (is_debug_types_section)
460c1c54
CC
4448 info_ptr += 8 /*signature*/ + header->offset_size;
4449
b64f50a1 4450 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4451
4bdcc0c1 4452 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4453
4454 return info_ptr;
4455}
4456
348e048f
DE
4457/* Read in the types comp unit header information from .debug_types entry at
4458 types_ptr. The result is a pointer to one past the end of the header. */
4459
d521ce57 4460static const gdb_byte *
9ff913ba
DE
4461read_and_check_type_unit_head (struct comp_unit_head *header,
4462 struct dwarf2_section_info *section,
4bdcc0c1 4463 struct dwarf2_section_info *abbrev_section,
d521ce57 4464 const gdb_byte *info_ptr,
dee91e82
DE
4465 ULONGEST *signature,
4466 cu_offset *type_offset_in_tu)
348e048f 4467{
d521ce57 4468 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4469 bfd *abfd = get_section_bfd_owner (section);
348e048f 4470
b64f50a1 4471 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4472
9ff913ba 4473 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4474
9ff913ba
DE
4475 /* If we're reading a type unit, skip over the signature and
4476 type_offset fields. */
4477 if (signature != NULL)
4478 *signature = read_8_bytes (abfd, info_ptr);
4479 info_ptr += 8;
dee91e82
DE
4480 if (type_offset_in_tu != NULL)
4481 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4482 header->offset_size);
9ff913ba
DE
4483 info_ptr += header->offset_size;
4484
b64f50a1 4485 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4486
4bdcc0c1 4487 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4488
4489 return info_ptr;
348e048f
DE
4490}
4491
f4dc4d17
DE
4492/* Fetch the abbreviation table offset from a comp or type unit header. */
4493
4494static sect_offset
4495read_abbrev_offset (struct dwarf2_section_info *section,
4496 sect_offset offset)
4497{
a32a8923 4498 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4499 const gdb_byte *info_ptr;
ac298888 4500 unsigned int initial_length_size, offset_size;
f4dc4d17
DE
4501 sect_offset abbrev_offset;
4502
4503 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4504 info_ptr = section->buffer + offset.sect_off;
ac298888 4505 read_initial_length (abfd, info_ptr, &initial_length_size);
f4dc4d17
DE
4506 offset_size = initial_length_size == 4 ? 4 : 8;
4507 info_ptr += initial_length_size + 2 /*version*/;
4508 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4509 return abbrev_offset;
4510}
4511
aaa75496
JB
4512/* Allocate a new partial symtab for file named NAME and mark this new
4513 partial symtab as being an include of PST. */
4514
4515static void
d521ce57 4516dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4517 struct objfile *objfile)
4518{
4519 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4520
fbd9ab74
JK
4521 if (!IS_ABSOLUTE_PATH (subpst->filename))
4522 {
4523 /* It shares objfile->objfile_obstack. */
4524 subpst->dirname = pst->dirname;
4525 }
4526
aaa75496
JB
4527 subpst->textlow = 0;
4528 subpst->texthigh = 0;
4529
8d749320
SM
4530 subpst->dependencies
4531 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
aaa75496
JB
4532 subpst->dependencies[0] = pst;
4533 subpst->number_of_dependencies = 1;
4534
4535 subpst->globals_offset = 0;
4536 subpst->n_global_syms = 0;
4537 subpst->statics_offset = 0;
4538 subpst->n_static_syms = 0;
43f3e411 4539 subpst->compunit_symtab = NULL;
aaa75496
JB
4540 subpst->read_symtab = pst->read_symtab;
4541 subpst->readin = 0;
4542
4543 /* No private part is necessary for include psymtabs. This property
4544 can be used to differentiate between such include psymtabs and
10b3939b 4545 the regular ones. */
58a9656e 4546 subpst->read_symtab_private = NULL;
aaa75496
JB
4547}
4548
4549/* Read the Line Number Program data and extract the list of files
4550 included by the source file represented by PST. Build an include
d85a05f0 4551 partial symtab for each of these included files. */
aaa75496
JB
4552
4553static void
4554dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4555 struct die_info *die,
4556 struct partial_symtab *pst)
aaa75496 4557{
d85a05f0
DJ
4558 struct line_header *lh = NULL;
4559 struct attribute *attr;
aaa75496 4560
d85a05f0
DJ
4561 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4562 if (attr)
3019eac3 4563 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4564 if (lh == NULL)
4565 return; /* No linetable, so no includes. */
4566
c6da4cef 4567 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
527f3840 4568 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
aaa75496
JB
4569
4570 free_line_header (lh);
4571}
4572
348e048f 4573static hashval_t
52dc124a 4574hash_signatured_type (const void *item)
348e048f 4575{
9a3c8263
SM
4576 const struct signatured_type *sig_type
4577 = (const struct signatured_type *) item;
9a619af0 4578
348e048f 4579 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4580 return sig_type->signature;
348e048f
DE
4581}
4582
4583static int
52dc124a 4584eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f 4585{
9a3c8263
SM
4586 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4587 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
9a619af0 4588
348e048f
DE
4589 return lhs->signature == rhs->signature;
4590}
4591
1fd400ff
TT
4592/* Allocate a hash table for signatured types. */
4593
4594static htab_t
673bfd45 4595allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4596{
4597 return htab_create_alloc_ex (41,
52dc124a
DE
4598 hash_signatured_type,
4599 eq_signatured_type,
1fd400ff
TT
4600 NULL,
4601 &objfile->objfile_obstack,
4602 hashtab_obstack_allocate,
4603 dummy_obstack_deallocate);
4604}
4605
d467dd73 4606/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4607
4608static int
d467dd73 4609add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff 4610{
9a3c8263
SM
4611 struct signatured_type *sigt = (struct signatured_type *) *slot;
4612 struct signatured_type ***datap = (struct signatured_type ***) datum;
1fd400ff 4613
b4dd5633 4614 **datap = sigt;
1fd400ff
TT
4615 ++*datap;
4616
4617 return 1;
4618}
4619
c88ee1f0
DE
4620/* Create the hash table of all entries in the .debug_types
4621 (or .debug_types.dwo) section(s).
4622 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4623 otherwise it is NULL.
4624
4625 The result is a pointer to the hash table or NULL if there are no types.
4626
4627 Note: This function processes DWO files only, not DWP files. */
348e048f 4628
3019eac3
DE
4629static htab_t
4630create_debug_types_hash_table (struct dwo_file *dwo_file,
4631 VEC (dwarf2_section_info_def) *types)
348e048f 4632{
3019eac3 4633 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4634 htab_t types_htab = NULL;
8b70b953
TT
4635 int ix;
4636 struct dwarf2_section_info *section;
4bdcc0c1 4637 struct dwarf2_section_info *abbrev_section;
348e048f 4638
3019eac3
DE
4639 if (VEC_empty (dwarf2_section_info_def, types))
4640 return NULL;
348e048f 4641
4bdcc0c1
DE
4642 abbrev_section = (dwo_file != NULL
4643 ? &dwo_file->sections.abbrev
4644 : &dwarf2_per_objfile->abbrev);
4645
b4f54984 4646 if (dwarf_read_debug)
09406207
DE
4647 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4648 dwo_file ? ".dwo" : "",
a32a8923 4649 get_section_file_name (abbrev_section));
09406207 4650
8b70b953 4651 for (ix = 0;
3019eac3 4652 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4653 ++ix)
4654 {
3019eac3 4655 bfd *abfd;
d521ce57 4656 const gdb_byte *info_ptr, *end_ptr;
348e048f 4657
8b70b953
TT
4658 dwarf2_read_section (objfile, section);
4659 info_ptr = section->buffer;
348e048f 4660
8b70b953
TT
4661 if (info_ptr == NULL)
4662 continue;
348e048f 4663
3019eac3 4664 /* We can't set abfd until now because the section may be empty or
a32a8923
DE
4665 not present, in which case the bfd is unknown. */
4666 abfd = get_section_bfd_owner (section);
3019eac3 4667
dee91e82
DE
4668 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4669 because we don't need to read any dies: the signature is in the
4670 header. */
8b70b953
TT
4671
4672 end_ptr = info_ptr + section->size;
4673 while (info_ptr < end_ptr)
4674 {
b64f50a1 4675 sect_offset offset;
3019eac3 4676 cu_offset type_offset_in_tu;
8b70b953 4677 ULONGEST signature;
52dc124a 4678 struct signatured_type *sig_type;
3019eac3 4679 struct dwo_unit *dwo_tu;
8b70b953 4680 void **slot;
d521ce57 4681 const gdb_byte *ptr = info_ptr;
9ff913ba 4682 struct comp_unit_head header;
dee91e82 4683 unsigned int length;
348e048f 4684
b64f50a1 4685 offset.sect_off = ptr - section->buffer;
348e048f 4686
8b70b953 4687 /* We need to read the type's signature in order to build the hash
9ff913ba 4688 table, but we don't need anything else just yet. */
348e048f 4689
4bdcc0c1
DE
4690 ptr = read_and_check_type_unit_head (&header, section,
4691 abbrev_section, ptr,
3019eac3 4692 &signature, &type_offset_in_tu);
6caca83c 4693
1ce1cefd 4694 length = get_cu_length (&header);
dee91e82 4695
6caca83c 4696 /* Skip dummy type units. */
dee91e82
DE
4697 if (ptr >= info_ptr + length
4698 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4699 {
1ce1cefd 4700 info_ptr += length;
6caca83c
CC
4701 continue;
4702 }
8b70b953 4703
0349ea22
DE
4704 if (types_htab == NULL)
4705 {
4706 if (dwo_file)
4707 types_htab = allocate_dwo_unit_table (objfile);
4708 else
4709 types_htab = allocate_signatured_type_table (objfile);
4710 }
4711
3019eac3
DE
4712 if (dwo_file)
4713 {
4714 sig_type = NULL;
4715 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4716 struct dwo_unit);
4717 dwo_tu->dwo_file = dwo_file;
4718 dwo_tu->signature = signature;
4719 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4720 dwo_tu->section = section;
3019eac3
DE
4721 dwo_tu->offset = offset;
4722 dwo_tu->length = length;
4723 }
4724 else
4725 {
4726 /* N.B.: type_offset is not usable if this type uses a DWO file.
4727 The real type_offset is in the DWO file. */
4728 dwo_tu = NULL;
4729 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4730 struct signatured_type);
4731 sig_type->signature = signature;
4732 sig_type->type_offset_in_tu = type_offset_in_tu;
4733 sig_type->per_cu.objfile = objfile;
4734 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4735 sig_type->per_cu.section = section;
3019eac3
DE
4736 sig_type->per_cu.offset = offset;
4737 sig_type->per_cu.length = length;
4738 }
8b70b953 4739
3019eac3
DE
4740 slot = htab_find_slot (types_htab,
4741 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4742 INSERT);
8b70b953
TT
4743 gdb_assert (slot != NULL);
4744 if (*slot != NULL)
4745 {
3019eac3
DE
4746 sect_offset dup_offset;
4747
4748 if (dwo_file)
4749 {
9a3c8263
SM
4750 const struct dwo_unit *dup_tu
4751 = (const struct dwo_unit *) *slot;
3019eac3
DE
4752
4753 dup_offset = dup_tu->offset;
4754 }
4755 else
4756 {
9a3c8263
SM
4757 const struct signatured_type *dup_tu
4758 = (const struct signatured_type *) *slot;
3019eac3
DE
4759
4760 dup_offset = dup_tu->per_cu.offset;
4761 }
b3c8eb43 4762
8b70b953 4763 complaint (&symfile_complaints,
c88ee1f0 4764 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4765 " the entry at offset 0x%x, signature %s"),
3019eac3 4766 offset.sect_off, dup_offset.sect_off,
4031ecc5 4767 hex_string (signature));
8b70b953 4768 }
3019eac3 4769 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4770
b4f54984 4771 if (dwarf_read_debug > 1)
4031ecc5 4772 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4773 offset.sect_off,
4031ecc5 4774 hex_string (signature));
348e048f 4775
dee91e82 4776 info_ptr += length;
8b70b953 4777 }
348e048f
DE
4778 }
4779
3019eac3
DE
4780 return types_htab;
4781}
4782
4783/* Create the hash table of all entries in the .debug_types section,
4784 and initialize all_type_units.
4785 The result is zero if there is an error (e.g. missing .debug_types section),
4786 otherwise non-zero. */
4787
4788static int
4789create_all_type_units (struct objfile *objfile)
4790{
4791 htab_t types_htab;
b4dd5633 4792 struct signatured_type **iter;
3019eac3
DE
4793
4794 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4795 if (types_htab == NULL)
4796 {
4797 dwarf2_per_objfile->signatured_types = NULL;
4798 return 0;
4799 }
4800
348e048f
DE
4801 dwarf2_per_objfile->signatured_types = types_htab;
4802
6aa5f3a6
DE
4803 dwarf2_per_objfile->n_type_units
4804 = dwarf2_per_objfile->n_allocated_type_units
4805 = htab_elements (types_htab);
8d749320
SM
4806 dwarf2_per_objfile->all_type_units =
4807 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
d467dd73
DE
4808 iter = &dwarf2_per_objfile->all_type_units[0];
4809 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4810 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4811 == dwarf2_per_objfile->n_type_units);
1fd400ff 4812
348e048f
DE
4813 return 1;
4814}
4815
6aa5f3a6
DE
4816/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4817 If SLOT is non-NULL, it is the entry to use in the hash table.
4818 Otherwise we find one. */
4819
4820static struct signatured_type *
4821add_type_unit (ULONGEST sig, void **slot)
4822{
4823 struct objfile *objfile = dwarf2_per_objfile->objfile;
4824 int n_type_units = dwarf2_per_objfile->n_type_units;
4825 struct signatured_type *sig_type;
4826
4827 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4828 ++n_type_units;
4829 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4830 {
4831 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4832 dwarf2_per_objfile->n_allocated_type_units = 1;
4833 dwarf2_per_objfile->n_allocated_type_units *= 2;
4834 dwarf2_per_objfile->all_type_units
224c3ddb
SM
4835 = XRESIZEVEC (struct signatured_type *,
4836 dwarf2_per_objfile->all_type_units,
4837 dwarf2_per_objfile->n_allocated_type_units);
6aa5f3a6
DE
4838 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4839 }
4840 dwarf2_per_objfile->n_type_units = n_type_units;
4841
4842 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4843 struct signatured_type);
4844 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4845 sig_type->signature = sig;
4846 sig_type->per_cu.is_debug_types = 1;
4847 if (dwarf2_per_objfile->using_index)
4848 {
4849 sig_type->per_cu.v.quick =
4850 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4851 struct dwarf2_per_cu_quick_data);
4852 }
4853
4854 if (slot == NULL)
4855 {
4856 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4857 sig_type, INSERT);
4858 }
4859 gdb_assert (*slot == NULL);
4860 *slot = sig_type;
4861 /* The rest of sig_type must be filled in by the caller. */
4862 return sig_type;
4863}
4864
a2ce51a0
DE
4865/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4866 Fill in SIG_ENTRY with DWO_ENTRY. */
4867
4868static void
4869fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4870 struct signatured_type *sig_entry,
4871 struct dwo_unit *dwo_entry)
4872{
7ee85ab1 4873 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4874 gdb_assert (! sig_entry->per_cu.queued);
4875 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
4876 if (dwarf2_per_objfile->using_index)
4877 {
4878 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 4879 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
4880 }
4881 else
4882 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0
DE
4883 gdb_assert (sig_entry->signature == dwo_entry->signature);
4884 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4885 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4886 gdb_assert (sig_entry->dwo_unit == NULL);
4887
4888 sig_entry->per_cu.section = dwo_entry->section;
4889 sig_entry->per_cu.offset = dwo_entry->offset;
4890 sig_entry->per_cu.length = dwo_entry->length;
4891 sig_entry->per_cu.reading_dwo_directly = 1;
4892 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4893 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4894 sig_entry->dwo_unit = dwo_entry;
4895}
4896
4897/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4898 If we haven't read the TU yet, create the signatured_type data structure
4899 for a TU to be read in directly from a DWO file, bypassing the stub.
4900 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4901 using .gdb_index, then when reading a CU we want to stay in the DWO file
4902 containing that CU. Otherwise we could end up reading several other DWO
4903 files (due to comdat folding) to process the transitive closure of all the
4904 mentioned TUs, and that can be slow. The current DWO file will have every
4905 type signature that it needs.
a2ce51a0
DE
4906 We only do this for .gdb_index because in the psymtab case we already have
4907 to read all the DWOs to build the type unit groups. */
4908
4909static struct signatured_type *
4910lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4911{
4912 struct objfile *objfile = dwarf2_per_objfile->objfile;
4913 struct dwo_file *dwo_file;
4914 struct dwo_unit find_dwo_entry, *dwo_entry;
4915 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4916 void **slot;
a2ce51a0
DE
4917
4918 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4919
6aa5f3a6
DE
4920 /* If TU skeletons have been removed then we may not have read in any
4921 TUs yet. */
4922 if (dwarf2_per_objfile->signatured_types == NULL)
4923 {
4924 dwarf2_per_objfile->signatured_types
4925 = allocate_signatured_type_table (objfile);
4926 }
a2ce51a0
DE
4927
4928 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
4929 Use the global signatured_types array to do our own comdat-folding
4930 of types. If this is the first time we're reading this TU, and
4931 the TU has an entry in .gdb_index, replace the recorded data from
4932 .gdb_index with this TU. */
a2ce51a0 4933
a2ce51a0 4934 find_sig_entry.signature = sig;
6aa5f3a6
DE
4935 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4936 &find_sig_entry, INSERT);
9a3c8263 4937 sig_entry = (struct signatured_type *) *slot;
7ee85ab1
DE
4938
4939 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
4940 read. Don't reassign the global entry to point to this DWO if that's
4941 the case. Also note that if the TU is already being read, it may not
4942 have come from a DWO, the program may be a mix of Fission-compiled
4943 code and non-Fission-compiled code. */
4944
4945 /* Have we already tried to read this TU?
4946 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4947 needn't exist in the global table yet). */
4948 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
4949 return sig_entry;
4950
6aa5f3a6
DE
4951 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4952 dwo_unit of the TU itself. */
4953 dwo_file = cu->dwo_unit->dwo_file;
4954
a2ce51a0
DE
4955 /* Ok, this is the first time we're reading this TU. */
4956 if (dwo_file->tus == NULL)
4957 return NULL;
4958 find_dwo_entry.signature = sig;
9a3c8263 4959 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
a2ce51a0
DE
4960 if (dwo_entry == NULL)
4961 return NULL;
4962
6aa5f3a6
DE
4963 /* If the global table doesn't have an entry for this TU, add one. */
4964 if (sig_entry == NULL)
4965 sig_entry = add_type_unit (sig, slot);
4966
a2ce51a0 4967 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 4968 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
4969 return sig_entry;
4970}
4971
a2ce51a0
DE
4972/* Subroutine of lookup_signatured_type.
4973 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
4974 then try the DWP file. If the TU stub (skeleton) has been removed then
4975 it won't be in .gdb_index. */
a2ce51a0
DE
4976
4977static struct signatured_type *
4978lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4979{
4980 struct objfile *objfile = dwarf2_per_objfile->objfile;
4981 struct dwp_file *dwp_file = get_dwp_file ();
4982 struct dwo_unit *dwo_entry;
4983 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4984 void **slot;
a2ce51a0
DE
4985
4986 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4987 gdb_assert (dwp_file != NULL);
4988
6aa5f3a6
DE
4989 /* If TU skeletons have been removed then we may not have read in any
4990 TUs yet. */
4991 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 4992 {
6aa5f3a6
DE
4993 dwarf2_per_objfile->signatured_types
4994 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
4995 }
4996
6aa5f3a6
DE
4997 find_sig_entry.signature = sig;
4998 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4999 &find_sig_entry, INSERT);
9a3c8263 5000 sig_entry = (struct signatured_type *) *slot;
6aa5f3a6
DE
5001
5002 /* Have we already tried to read this TU?
5003 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
5004 needn't exist in the global table yet). */
5005 if (sig_entry != NULL)
5006 return sig_entry;
5007
a2ce51a0
DE
5008 if (dwp_file->tus == NULL)
5009 return NULL;
57d63ce2
DE
5010 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
5011 sig, 1 /* is_debug_types */);
a2ce51a0
DE
5012 if (dwo_entry == NULL)
5013 return NULL;
5014
6aa5f3a6 5015 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
5016 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
5017
a2ce51a0
DE
5018 return sig_entry;
5019}
5020
380bca97 5021/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
5022 Returns NULL if signature SIG is not present in the table.
5023 It is up to the caller to complain about this. */
348e048f
DE
5024
5025static struct signatured_type *
a2ce51a0 5026lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 5027{
a2ce51a0
DE
5028 if (cu->dwo_unit
5029 && dwarf2_per_objfile->using_index)
5030 {
5031 /* We're in a DWO/DWP file, and we're using .gdb_index.
5032 These cases require special processing. */
5033 if (get_dwp_file () == NULL)
5034 return lookup_dwo_signatured_type (cu, sig);
5035 else
5036 return lookup_dwp_signatured_type (cu, sig);
5037 }
5038 else
5039 {
5040 struct signatured_type find_entry, *entry;
348e048f 5041
a2ce51a0
DE
5042 if (dwarf2_per_objfile->signatured_types == NULL)
5043 return NULL;
5044 find_entry.signature = sig;
9a3c8263
SM
5045 entry = ((struct signatured_type *)
5046 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
a2ce51a0
DE
5047 return entry;
5048 }
348e048f 5049}
42e7ad6c
DE
5050\f
5051/* Low level DIE reading support. */
348e048f 5052
d85a05f0
DJ
5053/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5054
5055static void
5056init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 5057 struct dwarf2_cu *cu,
3019eac3
DE
5058 struct dwarf2_section_info *section,
5059 struct dwo_file *dwo_file)
d85a05f0 5060{
fceca515 5061 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 5062 reader->abfd = get_section_bfd_owner (section);
d85a05f0 5063 reader->cu = cu;
3019eac3 5064 reader->dwo_file = dwo_file;
dee91e82
DE
5065 reader->die_section = section;
5066 reader->buffer = section->buffer;
f664829e 5067 reader->buffer_end = section->buffer + section->size;
a2ce51a0 5068 reader->comp_dir = NULL;
d85a05f0
DJ
5069}
5070
b0c7bfa9
DE
5071/* Subroutine of init_cutu_and_read_dies to simplify it.
5072 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5073 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5074 already.
5075
5076 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5077 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
5078 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5079 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
5080 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5081 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
5082 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5083 are filled in with the info of the DIE from the DWO file.
5084 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5085 provided an abbrev table to use.
5086 The result is non-zero if a valid (non-dummy) DIE was found. */
5087
5088static int
5089read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5090 struct dwo_unit *dwo_unit,
5091 int abbrev_table_provided,
5092 struct die_info *stub_comp_unit_die,
a2ce51a0 5093 const char *stub_comp_dir,
b0c7bfa9 5094 struct die_reader_specs *result_reader,
d521ce57 5095 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
5096 struct die_info **result_comp_unit_die,
5097 int *result_has_children)
5098{
5099 struct objfile *objfile = dwarf2_per_objfile->objfile;
5100 struct dwarf2_cu *cu = this_cu->cu;
5101 struct dwarf2_section_info *section;
5102 bfd *abfd;
d521ce57 5103 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
5104 ULONGEST signature; /* Or dwo_id. */
5105 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5106 int i,num_extra_attrs;
5107 struct dwarf2_section_info *dwo_abbrev_section;
5108 struct attribute *attr;
5109 struct die_info *comp_unit_die;
5110
b0aeadb3
DE
5111 /* At most one of these may be provided. */
5112 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 5113
b0c7bfa9
DE
5114 /* These attributes aren't processed until later:
5115 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
5116 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5117 referenced later. However, these attributes are found in the stub
5118 which we won't have later. In order to not impose this complication
5119 on the rest of the code, we read them here and copy them to the
5120 DWO CU/TU die. */
b0c7bfa9
DE
5121
5122 stmt_list = NULL;
5123 low_pc = NULL;
5124 high_pc = NULL;
5125 ranges = NULL;
5126 comp_dir = NULL;
5127
5128 if (stub_comp_unit_die != NULL)
5129 {
5130 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5131 DWO file. */
5132 if (! this_cu->is_debug_types)
5133 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5134 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5135 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5136 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5137 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5138
5139 /* There should be a DW_AT_addr_base attribute here (if needed).
5140 We need the value before we can process DW_FORM_GNU_addr_index. */
5141 cu->addr_base = 0;
5142 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5143 if (attr)
5144 cu->addr_base = DW_UNSND (attr);
5145
5146 /* There should be a DW_AT_ranges_base attribute here (if needed).
5147 We need the value before we can process DW_AT_ranges. */
5148 cu->ranges_base = 0;
5149 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5150 if (attr)
5151 cu->ranges_base = DW_UNSND (attr);
5152 }
a2ce51a0
DE
5153 else if (stub_comp_dir != NULL)
5154 {
5155 /* Reconstruct the comp_dir attribute to simplify the code below. */
8d749320 5156 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
a2ce51a0
DE
5157 comp_dir->name = DW_AT_comp_dir;
5158 comp_dir->form = DW_FORM_string;
5159 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5160 DW_STRING (comp_dir) = stub_comp_dir;
5161 }
b0c7bfa9
DE
5162
5163 /* Set up for reading the DWO CU/TU. */
5164 cu->dwo_unit = dwo_unit;
5165 section = dwo_unit->section;
5166 dwarf2_read_section (objfile, section);
a32a8923 5167 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5168 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5169 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5170 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5171
5172 if (this_cu->is_debug_types)
5173 {
5174 ULONGEST header_signature;
5175 cu_offset type_offset_in_tu;
5176 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5177
5178 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5179 dwo_abbrev_section,
5180 info_ptr,
5181 &header_signature,
5182 &type_offset_in_tu);
a2ce51a0
DE
5183 /* This is not an assert because it can be caused by bad debug info. */
5184 if (sig_type->signature != header_signature)
5185 {
5186 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5187 " TU at offset 0x%x [in module %s]"),
5188 hex_string (sig_type->signature),
5189 hex_string (header_signature),
5190 dwo_unit->offset.sect_off,
5191 bfd_get_filename (abfd));
5192 }
b0c7bfa9
DE
5193 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5194 /* For DWOs coming from DWP files, we don't know the CU length
5195 nor the type's offset in the TU until now. */
5196 dwo_unit->length = get_cu_length (&cu->header);
5197 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5198
5199 /* Establish the type offset that can be used to lookup the type.
5200 For DWO files, we don't know it until now. */
5201 sig_type->type_offset_in_section.sect_off =
5202 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5203 }
5204 else
5205 {
5206 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5207 dwo_abbrev_section,
5208 info_ptr, 0);
5209 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5210 /* For DWOs coming from DWP files, we don't know the CU length
5211 until now. */
5212 dwo_unit->length = get_cu_length (&cu->header);
5213 }
5214
02142a6c
DE
5215 /* Replace the CU's original abbrev table with the DWO's.
5216 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5217 if (abbrev_table_provided)
5218 {
5219 /* Don't free the provided abbrev table, the caller of
5220 init_cutu_and_read_dies owns it. */
5221 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5222 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5223 make_cleanup (dwarf2_free_abbrev_table, cu);
5224 }
5225 else
5226 {
5227 dwarf2_free_abbrev_table (cu);
5228 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5229 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5230 }
5231
5232 /* Read in the die, but leave space to copy over the attributes
5233 from the stub. This has the benefit of simplifying the rest of
5234 the code - all the work to maintain the illusion of a single
5235 DW_TAG_{compile,type}_unit DIE is done here. */
5236 num_extra_attrs = ((stmt_list != NULL)
5237 + (low_pc != NULL)
5238 + (high_pc != NULL)
5239 + (ranges != NULL)
5240 + (comp_dir != NULL));
5241 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5242 result_has_children, num_extra_attrs);
5243
5244 /* Copy over the attributes from the stub to the DIE we just read in. */
5245 comp_unit_die = *result_comp_unit_die;
5246 i = comp_unit_die->num_attrs;
5247 if (stmt_list != NULL)
5248 comp_unit_die->attrs[i++] = *stmt_list;
5249 if (low_pc != NULL)
5250 comp_unit_die->attrs[i++] = *low_pc;
5251 if (high_pc != NULL)
5252 comp_unit_die->attrs[i++] = *high_pc;
5253 if (ranges != NULL)
5254 comp_unit_die->attrs[i++] = *ranges;
5255 if (comp_dir != NULL)
5256 comp_unit_die->attrs[i++] = *comp_dir;
5257 comp_unit_die->num_attrs += num_extra_attrs;
5258
b4f54984 5259 if (dwarf_die_debug)
bf6af496
DE
5260 {
5261 fprintf_unfiltered (gdb_stdlog,
5262 "Read die from %s@0x%x of %s:\n",
a32a8923 5263 get_section_name (section),
bf6af496
DE
5264 (unsigned) (begin_info_ptr - section->buffer),
5265 bfd_get_filename (abfd));
b4f54984 5266 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
5267 }
5268
a2ce51a0
DE
5269 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5270 TUs by skipping the stub and going directly to the entry in the DWO file.
5271 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5272 to get it via circuitous means. Blech. */
5273 if (comp_dir != NULL)
5274 result_reader->comp_dir = DW_STRING (comp_dir);
5275
b0c7bfa9
DE
5276 /* Skip dummy compilation units. */
5277 if (info_ptr >= begin_info_ptr + dwo_unit->length
5278 || peek_abbrev_code (abfd, info_ptr) == 0)
5279 return 0;
5280
5281 *result_info_ptr = info_ptr;
5282 return 1;
5283}
5284
5285/* Subroutine of init_cutu_and_read_dies to simplify it.
5286 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5287 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5288
5289static struct dwo_unit *
5290lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5291 struct die_info *comp_unit_die)
5292{
5293 struct dwarf2_cu *cu = this_cu->cu;
5294 struct attribute *attr;
5295 ULONGEST signature;
5296 struct dwo_unit *dwo_unit;
5297 const char *comp_dir, *dwo_name;
5298
a2ce51a0
DE
5299 gdb_assert (cu != NULL);
5300
b0c7bfa9 5301 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7d45c7c3
KB
5302 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5303 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
b0c7bfa9
DE
5304
5305 if (this_cu->is_debug_types)
5306 {
5307 struct signatured_type *sig_type;
5308
5309 /* Since this_cu is the first member of struct signatured_type,
5310 we can go from a pointer to one to a pointer to the other. */
5311 sig_type = (struct signatured_type *) this_cu;
5312 signature = sig_type->signature;
5313 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5314 }
5315 else
5316 {
5317 struct attribute *attr;
5318
5319 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5320 if (! attr)
5321 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5322 " [in module %s]"),
4262abfb 5323 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5324 signature = DW_UNSND (attr);
5325 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5326 signature);
5327 }
5328
b0c7bfa9
DE
5329 return dwo_unit;
5330}
5331
a2ce51a0 5332/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5333 See it for a description of the parameters.
5334 Read a TU directly from a DWO file, bypassing the stub.
5335
5336 Note: This function could be a little bit simpler if we shared cleanups
5337 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5338 to do, so we keep this function self-contained. Or we could move this
5339 into our caller, but it's complex enough already. */
a2ce51a0
DE
5340
5341static void
6aa5f3a6
DE
5342init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5343 int use_existing_cu, int keep,
a2ce51a0
DE
5344 die_reader_func_ftype *die_reader_func,
5345 void *data)
5346{
5347 struct dwarf2_cu *cu;
5348 struct signatured_type *sig_type;
6aa5f3a6 5349 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5350 struct die_reader_specs reader;
5351 const gdb_byte *info_ptr;
5352 struct die_info *comp_unit_die;
5353 int has_children;
5354
5355 /* Verify we can do the following downcast, and that we have the
5356 data we need. */
5357 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5358 sig_type = (struct signatured_type *) this_cu;
5359 gdb_assert (sig_type->dwo_unit != NULL);
5360
5361 cleanups = make_cleanup (null_cleanup, NULL);
5362
6aa5f3a6
DE
5363 if (use_existing_cu && this_cu->cu != NULL)
5364 {
5365 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5366 cu = this_cu->cu;
5367 /* There's no need to do the rereading_dwo_cu handling that
5368 init_cutu_and_read_dies does since we don't read the stub. */
5369 }
5370 else
5371 {
5372 /* If !use_existing_cu, this_cu->cu must be NULL. */
5373 gdb_assert (this_cu->cu == NULL);
8d749320 5374 cu = XNEW (struct dwarf2_cu);
6aa5f3a6
DE
5375 init_one_comp_unit (cu, this_cu);
5376 /* If an error occurs while loading, release our storage. */
5377 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5378 }
5379
5380 /* A future optimization, if needed, would be to use an existing
5381 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5382 could share abbrev tables. */
a2ce51a0
DE
5383
5384 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5385 0 /* abbrev_table_provided */,
5386 NULL /* stub_comp_unit_die */,
5387 sig_type->dwo_unit->dwo_file->comp_dir,
5388 &reader, &info_ptr,
5389 &comp_unit_die, &has_children) == 0)
5390 {
5391 /* Dummy die. */
5392 do_cleanups (cleanups);
5393 return;
5394 }
5395
5396 /* All the "real" work is done here. */
5397 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5398
6aa5f3a6 5399 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5400 but the alternative is making the latter more complex.
5401 This function is only for the special case of using DWO files directly:
5402 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5403 if (free_cu_cleanup != NULL)
a2ce51a0 5404 {
6aa5f3a6
DE
5405 if (keep)
5406 {
5407 /* We've successfully allocated this compilation unit. Let our
5408 caller clean it up when finished with it. */
5409 discard_cleanups (free_cu_cleanup);
a2ce51a0 5410
6aa5f3a6
DE
5411 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5412 So we have to manually free the abbrev table. */
5413 dwarf2_free_abbrev_table (cu);
a2ce51a0 5414
6aa5f3a6
DE
5415 /* Link this CU into read_in_chain. */
5416 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5417 dwarf2_per_objfile->read_in_chain = this_cu;
5418 }
5419 else
5420 do_cleanups (free_cu_cleanup);
a2ce51a0 5421 }
a2ce51a0
DE
5422
5423 do_cleanups (cleanups);
5424}
5425
fd820528 5426/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5427 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5428
f4dc4d17
DE
5429 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5430 Otherwise the table specified in the comp unit header is read in and used.
5431 This is an optimization for when we already have the abbrev table.
5432
dee91e82
DE
5433 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5434 Otherwise, a new CU is allocated with xmalloc.
5435
5436 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5437 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5438
5439 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5440 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5441
70221824 5442static void
fd820528 5443init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5444 struct abbrev_table *abbrev_table,
fd820528
DE
5445 int use_existing_cu, int keep,
5446 die_reader_func_ftype *die_reader_func,
5447 void *data)
c906108c 5448{
dee91e82 5449 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5450 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5451 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5452 struct dwarf2_cu *cu;
d521ce57 5453 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5454 struct die_reader_specs reader;
d85a05f0 5455 struct die_info *comp_unit_die;
dee91e82 5456 int has_children;
d85a05f0 5457 struct attribute *attr;
365156ad 5458 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5459 struct signatured_type *sig_type = NULL;
4bdcc0c1 5460 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5461 /* Non-zero if CU currently points to a DWO file and we need to
5462 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5463 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5464 int rereading_dwo_cu = 0;
c906108c 5465
b4f54984 5466 if (dwarf_die_debug)
09406207
DE
5467 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5468 this_cu->is_debug_types ? "type" : "comp",
5469 this_cu->offset.sect_off);
5470
dee91e82
DE
5471 if (use_existing_cu)
5472 gdb_assert (keep);
23745b47 5473
a2ce51a0
DE
5474 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5475 file (instead of going through the stub), short-circuit all of this. */
5476 if (this_cu->reading_dwo_directly)
5477 {
5478 /* Narrow down the scope of possibilities to have to understand. */
5479 gdb_assert (this_cu->is_debug_types);
5480 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5481 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5482 die_reader_func, data);
a2ce51a0
DE
5483 return;
5484 }
5485
dee91e82
DE
5486 cleanups = make_cleanup (null_cleanup, NULL);
5487
5488 /* This is cheap if the section is already read in. */
5489 dwarf2_read_section (objfile, section);
5490
5491 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5492
5493 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5494
5495 if (use_existing_cu && this_cu->cu != NULL)
5496 {
5497 cu = this_cu->cu;
42e7ad6c
DE
5498 /* If this CU is from a DWO file we need to start over, we need to
5499 refetch the attributes from the skeleton CU.
5500 This could be optimized by retrieving those attributes from when we
5501 were here the first time: the previous comp_unit_die was stored in
5502 comp_unit_obstack. But there's no data yet that we need this
5503 optimization. */
5504 if (cu->dwo_unit != NULL)
5505 rereading_dwo_cu = 1;
dee91e82
DE
5506 }
5507 else
5508 {
5509 /* If !use_existing_cu, this_cu->cu must be NULL. */
5510 gdb_assert (this_cu->cu == NULL);
8d749320 5511 cu = XNEW (struct dwarf2_cu);
dee91e82 5512 init_one_comp_unit (cu, this_cu);
dee91e82 5513 /* If an error occurs while loading, release our storage. */
365156ad 5514 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5515 }
dee91e82 5516
b0c7bfa9 5517 /* Get the header. */
42e7ad6c
DE
5518 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5519 {
5520 /* We already have the header, there's no need to read it in again. */
5521 info_ptr += cu->header.first_die_offset.cu_off;
5522 }
5523 else
5524 {
3019eac3 5525 if (this_cu->is_debug_types)
dee91e82
DE
5526 {
5527 ULONGEST signature;
42e7ad6c 5528 cu_offset type_offset_in_tu;
dee91e82 5529
4bdcc0c1
DE
5530 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5531 abbrev_section, info_ptr,
42e7ad6c
DE
5532 &signature,
5533 &type_offset_in_tu);
dee91e82 5534
42e7ad6c
DE
5535 /* Since per_cu is the first member of struct signatured_type,
5536 we can go from a pointer to one to a pointer to the other. */
5537 sig_type = (struct signatured_type *) this_cu;
5538 gdb_assert (sig_type->signature == signature);
5539 gdb_assert (sig_type->type_offset_in_tu.cu_off
5540 == type_offset_in_tu.cu_off);
dee91e82
DE
5541 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5542
42e7ad6c
DE
5543 /* LENGTH has not been set yet for type units if we're
5544 using .gdb_index. */
1ce1cefd 5545 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5546
5547 /* Establish the type offset that can be used to lookup the type. */
5548 sig_type->type_offset_in_section.sect_off =
5549 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5550 }
5551 else
5552 {
4bdcc0c1
DE
5553 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5554 abbrev_section,
5555 info_ptr, 0);
dee91e82
DE
5556
5557 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5558 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5559 }
5560 }
10b3939b 5561
6caca83c 5562 /* Skip dummy compilation units. */
dee91e82 5563 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5564 || peek_abbrev_code (abfd, info_ptr) == 0)
5565 {
dee91e82 5566 do_cleanups (cleanups);
21b2bd31 5567 return;
6caca83c
CC
5568 }
5569
433df2d4
DE
5570 /* If we don't have them yet, read the abbrevs for this compilation unit.
5571 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5572 done. Note that it's important that if the CU had an abbrev table
5573 on entry we don't free it when we're done: Somewhere up the call stack
5574 it may be in use. */
f4dc4d17
DE
5575 if (abbrev_table != NULL)
5576 {
5577 gdb_assert (cu->abbrev_table == NULL);
5578 gdb_assert (cu->header.abbrev_offset.sect_off
5579 == abbrev_table->offset.sect_off);
5580 cu->abbrev_table = abbrev_table;
5581 }
5582 else if (cu->abbrev_table == NULL)
dee91e82 5583 {
4bdcc0c1 5584 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5585 make_cleanup (dwarf2_free_abbrev_table, cu);
5586 }
42e7ad6c
DE
5587 else if (rereading_dwo_cu)
5588 {
5589 dwarf2_free_abbrev_table (cu);
5590 dwarf2_read_abbrevs (cu, abbrev_section);
5591 }
af703f96 5592
dee91e82 5593 /* Read the top level CU/TU die. */
3019eac3 5594 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5595 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5596
b0c7bfa9
DE
5597 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5598 from the DWO file.
5599 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5600 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5601 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5602 if (attr)
5603 {
3019eac3 5604 struct dwo_unit *dwo_unit;
b0c7bfa9 5605 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5606
5607 if (has_children)
6a506a2d
DE
5608 {
5609 complaint (&symfile_complaints,
5610 _("compilation unit with DW_AT_GNU_dwo_name"
5611 " has children (offset 0x%x) [in module %s]"),
5612 this_cu->offset.sect_off, bfd_get_filename (abfd));
5613 }
b0c7bfa9 5614 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5615 if (dwo_unit != NULL)
3019eac3 5616 {
6a506a2d
DE
5617 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5618 abbrev_table != NULL,
a2ce51a0 5619 comp_unit_die, NULL,
6a506a2d
DE
5620 &reader, &info_ptr,
5621 &dwo_comp_unit_die, &has_children) == 0)
5622 {
5623 /* Dummy die. */
5624 do_cleanups (cleanups);
5625 return;
5626 }
5627 comp_unit_die = dwo_comp_unit_die;
5628 }
5629 else
5630 {
5631 /* Yikes, we couldn't find the rest of the DIE, we only have
5632 the stub. A complaint has already been logged. There's
5633 not much more we can do except pass on the stub DIE to
5634 die_reader_func. We don't want to throw an error on bad
5635 debug info. */
3019eac3
DE
5636 }
5637 }
5638
b0c7bfa9 5639 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5640 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5641
b0c7bfa9 5642 /* Done, clean up. */
365156ad 5643 if (free_cu_cleanup != NULL)
348e048f 5644 {
365156ad
TT
5645 if (keep)
5646 {
5647 /* We've successfully allocated this compilation unit. Let our
5648 caller clean it up when finished with it. */
5649 discard_cleanups (free_cu_cleanup);
dee91e82 5650
365156ad
TT
5651 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5652 So we have to manually free the abbrev table. */
5653 dwarf2_free_abbrev_table (cu);
dee91e82 5654
365156ad
TT
5655 /* Link this CU into read_in_chain. */
5656 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5657 dwarf2_per_objfile->read_in_chain = this_cu;
5658 }
5659 else
5660 do_cleanups (free_cu_cleanup);
348e048f 5661 }
365156ad
TT
5662
5663 do_cleanups (cleanups);
dee91e82
DE
5664}
5665
33e80786
DE
5666/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5667 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5668 to have already done the lookup to find the DWO file).
dee91e82
DE
5669
5670 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5671 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5672
5673 We fill in THIS_CU->length.
5674
5675 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5676 linker) then DIE_READER_FUNC will not get called.
5677
5678 THIS_CU->cu is always freed when done.
3019eac3
DE
5679 This is done in order to not leave THIS_CU->cu in a state where we have
5680 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5681
5682static void
5683init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5684 struct dwo_file *dwo_file,
dee91e82
DE
5685 die_reader_func_ftype *die_reader_func,
5686 void *data)
5687{
5688 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5689 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5690 bfd *abfd = get_section_bfd_owner (section);
33e80786 5691 struct dwarf2_section_info *abbrev_section;
dee91e82 5692 struct dwarf2_cu cu;
d521ce57 5693 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5694 struct die_reader_specs reader;
5695 struct cleanup *cleanups;
5696 struct die_info *comp_unit_die;
5697 int has_children;
5698
b4f54984 5699 if (dwarf_die_debug)
09406207
DE
5700 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5701 this_cu->is_debug_types ? "type" : "comp",
5702 this_cu->offset.sect_off);
5703
dee91e82
DE
5704 gdb_assert (this_cu->cu == NULL);
5705
33e80786
DE
5706 abbrev_section = (dwo_file != NULL
5707 ? &dwo_file->sections.abbrev
5708 : get_abbrev_section_for_cu (this_cu));
5709
dee91e82
DE
5710 /* This is cheap if the section is already read in. */
5711 dwarf2_read_section (objfile, section);
5712
5713 init_one_comp_unit (&cu, this_cu);
5714
5715 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5716
5717 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5718 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5719 abbrev_section, info_ptr,
3019eac3 5720 this_cu->is_debug_types);
dee91e82 5721
1ce1cefd 5722 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5723
5724 /* Skip dummy compilation units. */
5725 if (info_ptr >= begin_info_ptr + this_cu->length
5726 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5727 {
dee91e82 5728 do_cleanups (cleanups);
21b2bd31 5729 return;
93311388 5730 }
72bf9492 5731
dee91e82
DE
5732 dwarf2_read_abbrevs (&cu, abbrev_section);
5733 make_cleanup (dwarf2_free_abbrev_table, &cu);
5734
3019eac3 5735 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5736 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5737
5738 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5739
5740 do_cleanups (cleanups);
5741}
5742
3019eac3
DE
5743/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5744 does not lookup the specified DWO file.
5745 This cannot be used to read DWO files.
dee91e82
DE
5746
5747 THIS_CU->cu is always freed when done.
3019eac3
DE
5748 This is done in order to not leave THIS_CU->cu in a state where we have
5749 to care whether it refers to the "main" CU or the DWO CU.
5750 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5751
5752static void
5753init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5754 die_reader_func_ftype *die_reader_func,
5755 void *data)
5756{
33e80786 5757 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5758}
0018ea6f
DE
5759\f
5760/* Type Unit Groups.
dee91e82 5761
0018ea6f
DE
5762 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5763 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5764 so that all types coming from the same compilation (.o file) are grouped
5765 together. A future step could be to put the types in the same symtab as
5766 the CU the types ultimately came from. */
ff013f42 5767
f4dc4d17
DE
5768static hashval_t
5769hash_type_unit_group (const void *item)
5770{
9a3c8263
SM
5771 const struct type_unit_group *tu_group
5772 = (const struct type_unit_group *) item;
f4dc4d17 5773
094b34ac 5774 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5775}
348e048f
DE
5776
5777static int
f4dc4d17 5778eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5779{
9a3c8263
SM
5780 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5781 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
348e048f 5782
094b34ac 5783 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5784}
348e048f 5785
f4dc4d17
DE
5786/* Allocate a hash table for type unit groups. */
5787
5788static htab_t
5789allocate_type_unit_groups_table (void)
5790{
5791 return htab_create_alloc_ex (3,
5792 hash_type_unit_group,
5793 eq_type_unit_group,
5794 NULL,
5795 &dwarf2_per_objfile->objfile->objfile_obstack,
5796 hashtab_obstack_allocate,
5797 dummy_obstack_deallocate);
5798}
dee91e82 5799
f4dc4d17
DE
5800/* Type units that don't have DW_AT_stmt_list are grouped into their own
5801 partial symtabs. We combine several TUs per psymtab to not let the size
5802 of any one psymtab grow too big. */
5803#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5804#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5805
094b34ac 5806/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5807 Create the type_unit_group object used to hold one or more TUs. */
5808
5809static struct type_unit_group *
094b34ac 5810create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5811{
5812 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5813 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5814 struct type_unit_group *tu_group;
f4dc4d17
DE
5815
5816 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5817 struct type_unit_group);
094b34ac 5818 per_cu = &tu_group->per_cu;
f4dc4d17 5819 per_cu->objfile = objfile;
f4dc4d17 5820
094b34ac
DE
5821 if (dwarf2_per_objfile->using_index)
5822 {
5823 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5824 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5825 }
5826 else
5827 {
5828 unsigned int line_offset = line_offset_struct.sect_off;
5829 struct partial_symtab *pst;
5830 char *name;
5831
5832 /* Give the symtab a useful name for debug purposes. */
5833 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5834 name = xstrprintf ("<type_units_%d>",
5835 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5836 else
5837 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5838
5839 pst = create_partial_symtab (per_cu, name);
5840 pst->anonymous = 1;
f4dc4d17 5841
094b34ac
DE
5842 xfree (name);
5843 }
f4dc4d17 5844
094b34ac
DE
5845 tu_group->hash.dwo_unit = cu->dwo_unit;
5846 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5847
5848 return tu_group;
5849}
5850
094b34ac
DE
5851/* Look up the type_unit_group for type unit CU, and create it if necessary.
5852 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5853
5854static struct type_unit_group *
ff39bb5e 5855get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5856{
5857 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5858 struct type_unit_group *tu_group;
5859 void **slot;
5860 unsigned int line_offset;
5861 struct type_unit_group type_unit_group_for_lookup;
5862
5863 if (dwarf2_per_objfile->type_unit_groups == NULL)
5864 {
5865 dwarf2_per_objfile->type_unit_groups =
5866 allocate_type_unit_groups_table ();
5867 }
5868
5869 /* Do we need to create a new group, or can we use an existing one? */
5870
5871 if (stmt_list)
5872 {
5873 line_offset = DW_UNSND (stmt_list);
5874 ++tu_stats->nr_symtab_sharers;
5875 }
5876 else
5877 {
5878 /* Ugh, no stmt_list. Rare, but we have to handle it.
5879 We can do various things here like create one group per TU or
5880 spread them over multiple groups to split up the expansion work.
5881 To avoid worst case scenarios (too many groups or too large groups)
5882 we, umm, group them in bunches. */
5883 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5884 | (tu_stats->nr_stmt_less_type_units
5885 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5886 ++tu_stats->nr_stmt_less_type_units;
5887 }
5888
094b34ac
DE
5889 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5890 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5891 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5892 &type_unit_group_for_lookup, INSERT);
5893 if (*slot != NULL)
5894 {
9a3c8263 5895 tu_group = (struct type_unit_group *) *slot;
f4dc4d17
DE
5896 gdb_assert (tu_group != NULL);
5897 }
5898 else
5899 {
5900 sect_offset line_offset_struct;
5901
5902 line_offset_struct.sect_off = line_offset;
094b34ac 5903 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5904 *slot = tu_group;
5905 ++tu_stats->nr_symtabs;
5906 }
5907
5908 return tu_group;
5909}
0018ea6f
DE
5910\f
5911/* Partial symbol tables. */
5912
5913/* Create a psymtab named NAME and assign it to PER_CU.
5914
5915 The caller must fill in the following details:
5916 dirname, textlow, texthigh. */
5917
5918static struct partial_symtab *
5919create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5920{
5921 struct objfile *objfile = per_cu->objfile;
5922 struct partial_symtab *pst;
5923
18a94d75 5924 pst = start_psymtab_common (objfile, name, 0,
0018ea6f
DE
5925 objfile->global_psymbols.next,
5926 objfile->static_psymbols.next);
5927
5928 pst->psymtabs_addrmap_supported = 1;
5929
5930 /* This is the glue that links PST into GDB's symbol API. */
5931 pst->read_symtab_private = per_cu;
5932 pst->read_symtab = dwarf2_read_symtab;
5933 per_cu->v.psymtab = pst;
5934
5935 return pst;
5936}
5937
b93601f3
TT
5938/* The DATA object passed to process_psymtab_comp_unit_reader has this
5939 type. */
5940
5941struct process_psymtab_comp_unit_data
5942{
5943 /* True if we are reading a DW_TAG_partial_unit. */
5944
5945 int want_partial_unit;
5946
5947 /* The "pretend" language that is used if the CU doesn't declare a
5948 language. */
5949
5950 enum language pretend_language;
5951};
5952
0018ea6f
DE
5953/* die_reader_func for process_psymtab_comp_unit. */
5954
5955static void
5956process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5957 const gdb_byte *info_ptr,
0018ea6f
DE
5958 struct die_info *comp_unit_die,
5959 int has_children,
5960 void *data)
5961{
5962 struct dwarf2_cu *cu = reader->cu;
5963 struct objfile *objfile = cu->objfile;
3e29f34a 5964 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f 5965 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0018ea6f
DE
5966 CORE_ADDR baseaddr;
5967 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5968 struct partial_symtab *pst;
3a2b436a 5969 enum pc_bounds_kind cu_bounds_kind;
0018ea6f 5970 const char *filename;
9a3c8263
SM
5971 struct process_psymtab_comp_unit_data *info
5972 = (struct process_psymtab_comp_unit_data *) data;
0018ea6f 5973
b93601f3 5974 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
5975 return;
5976
5977 gdb_assert (! per_cu->is_debug_types);
5978
b93601f3 5979 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
5980
5981 cu->list_in_scope = &file_symbols;
5982
5983 /* Allocate a new partial symbol table structure. */
7d45c7c3
KB
5984 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5985 if (filename == NULL)
0018ea6f 5986 filename = "";
0018ea6f
DE
5987
5988 pst = create_partial_symtab (per_cu, filename);
5989
5990 /* This must be done before calling dwarf2_build_include_psymtabs. */
7d45c7c3 5991 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
0018ea6f
DE
5992
5993 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5994
5995 dwarf2_find_base_address (comp_unit_die, cu);
5996
5997 /* Possibly set the default values of LOWPC and HIGHPC from
5998 `DW_AT_ranges'. */
3a2b436a
JK
5999 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6000 &best_highpc, cu, pst);
6001 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
0018ea6f
DE
6002 /* Store the contiguous range if it is not empty; it can be empty for
6003 CUs with no code. */
6004 addrmap_set_empty (objfile->psymtabs_addrmap,
3e29f34a
MR
6005 gdbarch_adjust_dwarf2_addr (gdbarch,
6006 best_lowpc + baseaddr),
6007 gdbarch_adjust_dwarf2_addr (gdbarch,
6008 best_highpc + baseaddr) - 1,
6009 pst);
0018ea6f
DE
6010
6011 /* Check if comp unit has_children.
6012 If so, read the rest of the partial symbols from this comp unit.
6013 If not, there's no more debug_info for this comp unit. */
6014 if (has_children)
6015 {
6016 struct partial_die_info *first_die;
6017 CORE_ADDR lowpc, highpc;
6018
6019 lowpc = ((CORE_ADDR) -1);
6020 highpc = ((CORE_ADDR) 0);
6021
6022 first_die = load_partial_dies (reader, info_ptr, 1);
6023
6024 scan_partial_symbols (first_die, &lowpc, &highpc,
e385593e 6025 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
0018ea6f
DE
6026
6027 /* If we didn't find a lowpc, set it to highpc to avoid
6028 complaints from `maint check'. */
6029 if (lowpc == ((CORE_ADDR) -1))
6030 lowpc = highpc;
6031
6032 /* If the compilation unit didn't have an explicit address range,
6033 then use the information extracted from its child dies. */
e385593e 6034 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
0018ea6f
DE
6035 {
6036 best_lowpc = lowpc;
6037 best_highpc = highpc;
6038 }
6039 }
3e29f34a
MR
6040 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6041 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
0018ea6f 6042
8763cede 6043 end_psymtab_common (objfile, pst);
0018ea6f
DE
6044
6045 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6046 {
6047 int i;
6048 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6049 struct dwarf2_per_cu_data *iter;
6050
6051 /* Fill in 'dependencies' here; we fill in 'users' in a
6052 post-pass. */
6053 pst->number_of_dependencies = len;
8d749320
SM
6054 pst->dependencies =
6055 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
0018ea6f
DE
6056 for (i = 0;
6057 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6058 i, iter);
6059 ++i)
6060 pst->dependencies[i] = iter->v.psymtab;
6061
6062 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6063 }
6064
6065 /* Get the list of files included in the current compilation unit,
6066 and build a psymtab for each of them. */
6067 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6068
b4f54984 6069 if (dwarf_read_debug)
0018ea6f
DE
6070 {
6071 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6072
6073 fprintf_unfiltered (gdb_stdlog,
6074 "Psymtab for %s unit @0x%x: %s - %s"
6075 ", %d global, %d static syms\n",
6076 per_cu->is_debug_types ? "type" : "comp",
6077 per_cu->offset.sect_off,
6078 paddress (gdbarch, pst->textlow),
6079 paddress (gdbarch, pst->texthigh),
6080 pst->n_global_syms, pst->n_static_syms);
6081 }
6082}
6083
6084/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6085 Process compilation unit THIS_CU for a psymtab. */
6086
6087static void
6088process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6089 int want_partial_unit,
6090 enum language pretend_language)
0018ea6f 6091{
b93601f3
TT
6092 struct process_psymtab_comp_unit_data info;
6093
0018ea6f
DE
6094 /* If this compilation unit was already read in, free the
6095 cached copy in order to read it in again. This is
6096 necessary because we skipped some symbols when we first
6097 read in the compilation unit (see load_partial_dies).
6098 This problem could be avoided, but the benefit is unclear. */
6099 if (this_cu->cu != NULL)
6100 free_one_cached_comp_unit (this_cu);
6101
6102 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6103 info.want_partial_unit = want_partial_unit;
6104 info.pretend_language = pretend_language;
0018ea6f
DE
6105 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6106 process_psymtab_comp_unit_reader,
b93601f3 6107 &info);
0018ea6f
DE
6108
6109 /* Age out any secondary CUs. */
6110 age_cached_comp_units ();
6111}
f4dc4d17
DE
6112
6113/* Reader function for build_type_psymtabs. */
6114
6115static void
6116build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6117 const gdb_byte *info_ptr,
f4dc4d17
DE
6118 struct die_info *type_unit_die,
6119 int has_children,
6120 void *data)
6121{
6122 struct objfile *objfile = dwarf2_per_objfile->objfile;
6123 struct dwarf2_cu *cu = reader->cu;
6124 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6125 struct signatured_type *sig_type;
f4dc4d17
DE
6126 struct type_unit_group *tu_group;
6127 struct attribute *attr;
6128 struct partial_die_info *first_die;
6129 CORE_ADDR lowpc, highpc;
6130 struct partial_symtab *pst;
6131
6132 gdb_assert (data == NULL);
0186c6a7
DE
6133 gdb_assert (per_cu->is_debug_types);
6134 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6135
6136 if (! has_children)
6137 return;
6138
6139 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6140 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6141
0186c6a7 6142 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6143
6144 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6145 cu->list_in_scope = &file_symbols;
6146 pst = create_partial_symtab (per_cu, "");
6147 pst->anonymous = 1;
6148
6149 first_die = load_partial_dies (reader, info_ptr, 1);
6150
6151 lowpc = (CORE_ADDR) -1;
6152 highpc = (CORE_ADDR) 0;
6153 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6154
8763cede 6155 end_psymtab_common (objfile, pst);
f4dc4d17
DE
6156}
6157
73051182
DE
6158/* Struct used to sort TUs by their abbreviation table offset. */
6159
6160struct tu_abbrev_offset
6161{
6162 struct signatured_type *sig_type;
6163 sect_offset abbrev_offset;
6164};
6165
6166/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6167
6168static int
6169sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6170{
9a3c8263
SM
6171 const struct tu_abbrev_offset * const *a
6172 = (const struct tu_abbrev_offset * const*) ap;
6173 const struct tu_abbrev_offset * const *b
6174 = (const struct tu_abbrev_offset * const*) bp;
73051182
DE
6175 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6176 unsigned int boff = (*b)->abbrev_offset.sect_off;
6177
6178 return (aoff > boff) - (aoff < boff);
6179}
6180
6181/* Efficiently read all the type units.
6182 This does the bulk of the work for build_type_psymtabs.
6183
6184 The efficiency is because we sort TUs by the abbrev table they use and
6185 only read each abbrev table once. In one program there are 200K TUs
6186 sharing 8K abbrev tables.
6187
6188 The main purpose of this function is to support building the
6189 dwarf2_per_objfile->type_unit_groups table.
6190 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6191 can collapse the search space by grouping them by stmt_list.
6192 The savings can be significant, in the same program from above the 200K TUs
6193 share 8K stmt_list tables.
6194
6195 FUNC is expected to call get_type_unit_group, which will create the
6196 struct type_unit_group if necessary and add it to
6197 dwarf2_per_objfile->type_unit_groups. */
6198
6199static void
6200build_type_psymtabs_1 (void)
6201{
73051182
DE
6202 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6203 struct cleanup *cleanups;
6204 struct abbrev_table *abbrev_table;
6205 sect_offset abbrev_offset;
6206 struct tu_abbrev_offset *sorted_by_abbrev;
73051182
DE
6207 int i;
6208
6209 /* It's up to the caller to not call us multiple times. */
6210 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6211
6212 if (dwarf2_per_objfile->n_type_units == 0)
6213 return;
6214
6215 /* TUs typically share abbrev tables, and there can be way more TUs than
6216 abbrev tables. Sort by abbrev table to reduce the number of times we
6217 read each abbrev table in.
6218 Alternatives are to punt or to maintain a cache of abbrev tables.
6219 This is simpler and efficient enough for now.
6220
6221 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6222 symtab to use). Typically TUs with the same abbrev offset have the same
6223 stmt_list value too so in practice this should work well.
6224
6225 The basic algorithm here is:
6226
6227 sort TUs by abbrev table
6228 for each TU with same abbrev table:
6229 read abbrev table if first user
6230 read TU top level DIE
6231 [IWBN if DWO skeletons had DW_AT_stmt_list]
6232 call FUNC */
6233
b4f54984 6234 if (dwarf_read_debug)
73051182
DE
6235 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6236
6237 /* Sort in a separate table to maintain the order of all_type_units
6238 for .gdb_index: TU indices directly index all_type_units. */
6239 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6240 dwarf2_per_objfile->n_type_units);
6241 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6242 {
6243 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6244
6245 sorted_by_abbrev[i].sig_type = sig_type;
6246 sorted_by_abbrev[i].abbrev_offset =
6247 read_abbrev_offset (sig_type->per_cu.section,
6248 sig_type->per_cu.offset);
6249 }
6250 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6251 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6252 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6253
6254 abbrev_offset.sect_off = ~(unsigned) 0;
6255 abbrev_table = NULL;
6256 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6257
6258 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6259 {
6260 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6261
6262 /* Switch to the next abbrev table if necessary. */
6263 if (abbrev_table == NULL
6264 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6265 {
6266 if (abbrev_table != NULL)
6267 {
6268 abbrev_table_free (abbrev_table);
6269 /* Reset to NULL in case abbrev_table_read_table throws
6270 an error: abbrev_table_free_cleanup will get called. */
6271 abbrev_table = NULL;
6272 }
6273 abbrev_offset = tu->abbrev_offset;
6274 abbrev_table =
6275 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6276 abbrev_offset);
6277 ++tu_stats->nr_uniq_abbrev_tables;
6278 }
6279
6280 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6281 build_type_psymtabs_reader, NULL);
6282 }
6283
73051182 6284 do_cleanups (cleanups);
6aa5f3a6 6285}
73051182 6286
6aa5f3a6
DE
6287/* Print collected type unit statistics. */
6288
6289static void
6290print_tu_stats (void)
6291{
6292 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6293
6294 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6295 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6296 dwarf2_per_objfile->n_type_units);
6297 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6298 tu_stats->nr_uniq_abbrev_tables);
6299 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6300 tu_stats->nr_symtabs);
6301 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6302 tu_stats->nr_symtab_sharers);
6303 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6304 tu_stats->nr_stmt_less_type_units);
6305 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6306 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6307}
6308
f4dc4d17
DE
6309/* Traversal function for build_type_psymtabs. */
6310
6311static int
6312build_type_psymtab_dependencies (void **slot, void *info)
6313{
6314 struct objfile *objfile = dwarf2_per_objfile->objfile;
6315 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6316 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6317 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6318 int len = VEC_length (sig_type_ptr, tu_group->tus);
6319 struct signatured_type *iter;
f4dc4d17
DE
6320 int i;
6321
6322 gdb_assert (len > 0);
0186c6a7 6323 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6324
6325 pst->number_of_dependencies = len;
8d749320
SM
6326 pst->dependencies =
6327 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
f4dc4d17 6328 for (i = 0;
0186c6a7 6329 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6330 ++i)
6331 {
0186c6a7
DE
6332 gdb_assert (iter->per_cu.is_debug_types);
6333 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6334 iter->type_unit_group = tu_group;
f4dc4d17
DE
6335 }
6336
0186c6a7 6337 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6338
6339 return 1;
6340}
6341
6342/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6343 Build partial symbol tables for the .debug_types comp-units. */
6344
6345static void
6346build_type_psymtabs (struct objfile *objfile)
6347{
0e50663e 6348 if (! create_all_type_units (objfile))
348e048f
DE
6349 return;
6350
73051182 6351 build_type_psymtabs_1 ();
6aa5f3a6 6352}
f4dc4d17 6353
6aa5f3a6
DE
6354/* Traversal function for process_skeletonless_type_unit.
6355 Read a TU in a DWO file and build partial symbols for it. */
6356
6357static int
6358process_skeletonless_type_unit (void **slot, void *info)
6359{
6360 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
9a3c8263 6361 struct objfile *objfile = (struct objfile *) info;
6aa5f3a6
DE
6362 struct signatured_type find_entry, *entry;
6363
6364 /* If this TU doesn't exist in the global table, add it and read it in. */
6365
6366 if (dwarf2_per_objfile->signatured_types == NULL)
6367 {
6368 dwarf2_per_objfile->signatured_types
6369 = allocate_signatured_type_table (objfile);
6370 }
6371
6372 find_entry.signature = dwo_unit->signature;
6373 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6374 INSERT);
6375 /* If we've already seen this type there's nothing to do. What's happening
6376 is we're doing our own version of comdat-folding here. */
6377 if (*slot != NULL)
6378 return 1;
6379
6380 /* This does the job that create_all_type_units would have done for
6381 this TU. */
6382 entry = add_type_unit (dwo_unit->signature, slot);
6383 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6384 *slot = entry;
6385
6386 /* This does the job that build_type_psymtabs_1 would have done. */
6387 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6388 build_type_psymtabs_reader, NULL);
6389
6390 return 1;
6391}
6392
6393/* Traversal function for process_skeletonless_type_units. */
6394
6395static int
6396process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6397{
6398 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6399
6400 if (dwo_file->tus != NULL)
6401 {
6402 htab_traverse_noresize (dwo_file->tus,
6403 process_skeletonless_type_unit, info);
6404 }
6405
6406 return 1;
6407}
6408
6409/* Scan all TUs of DWO files, verifying we've processed them.
6410 This is needed in case a TU was emitted without its skeleton.
6411 Note: This can't be done until we know what all the DWO files are. */
6412
6413static void
6414process_skeletonless_type_units (struct objfile *objfile)
6415{
6416 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6417 if (get_dwp_file () == NULL
6418 && dwarf2_per_objfile->dwo_files != NULL)
6419 {
6420 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6421 process_dwo_file_for_skeletonless_type_units,
6422 objfile);
6423 }
348e048f
DE
6424}
6425
60606b2c
TT
6426/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6427
6428static void
6429psymtabs_addrmap_cleanup (void *o)
6430{
9a3c8263 6431 struct objfile *objfile = (struct objfile *) o;
ec61707d 6432
60606b2c
TT
6433 objfile->psymtabs_addrmap = NULL;
6434}
6435
95554aad
TT
6436/* Compute the 'user' field for each psymtab in OBJFILE. */
6437
6438static void
6439set_partial_user (struct objfile *objfile)
6440{
6441 int i;
6442
6443 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6444 {
8832e7e3 6445 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6446 struct partial_symtab *pst = per_cu->v.psymtab;
6447 int j;
6448
36586728
TT
6449 if (pst == NULL)
6450 continue;
6451
95554aad
TT
6452 for (j = 0; j < pst->number_of_dependencies; ++j)
6453 {
6454 /* Set the 'user' field only if it is not already set. */
6455 if (pst->dependencies[j]->user == NULL)
6456 pst->dependencies[j]->user = pst;
6457 }
6458 }
6459}
6460
93311388
DE
6461/* Build the partial symbol table by doing a quick pass through the
6462 .debug_info and .debug_abbrev sections. */
72bf9492 6463
93311388 6464static void
c67a9c90 6465dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6466{
60606b2c
TT
6467 struct cleanup *back_to, *addrmap_cleanup;
6468 struct obstack temp_obstack;
21b2bd31 6469 int i;
93311388 6470
b4f54984 6471 if (dwarf_read_debug)
45cfd468
DE
6472 {
6473 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6474 objfile_name (objfile));
45cfd468
DE
6475 }
6476
98bfdba5
PA
6477 dwarf2_per_objfile->reading_partial_symbols = 1;
6478
be391dca 6479 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6480
93311388
DE
6481 /* Any cached compilation units will be linked by the per-objfile
6482 read_in_chain. Make sure to free them when we're done. */
6483 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6484
348e048f
DE
6485 build_type_psymtabs (objfile);
6486
93311388 6487 create_all_comp_units (objfile);
c906108c 6488
60606b2c
TT
6489 /* Create a temporary address map on a temporary obstack. We later
6490 copy this to the final obstack. */
6491 obstack_init (&temp_obstack);
6492 make_cleanup_obstack_free (&temp_obstack);
6493 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6494 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6495
21b2bd31 6496 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6497 {
8832e7e3 6498 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6499
b93601f3 6500 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6501 }
ff013f42 6502
6aa5f3a6
DE
6503 /* This has to wait until we read the CUs, we need the list of DWOs. */
6504 process_skeletonless_type_units (objfile);
6505
6506 /* Now that all TUs have been processed we can fill in the dependencies. */
6507 if (dwarf2_per_objfile->type_unit_groups != NULL)
6508 {
6509 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6510 build_type_psymtab_dependencies, NULL);
6511 }
6512
b4f54984 6513 if (dwarf_read_debug)
6aa5f3a6
DE
6514 print_tu_stats ();
6515
95554aad
TT
6516 set_partial_user (objfile);
6517
ff013f42
JK
6518 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6519 &objfile->objfile_obstack);
60606b2c 6520 discard_cleanups (addrmap_cleanup);
ff013f42 6521
ae038cb0 6522 do_cleanups (back_to);
45cfd468 6523
b4f54984 6524 if (dwarf_read_debug)
45cfd468 6525 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6526 objfile_name (objfile));
ae038cb0
DJ
6527}
6528
3019eac3 6529/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6530
6531static void
dee91e82 6532load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6533 const gdb_byte *info_ptr,
dee91e82
DE
6534 struct die_info *comp_unit_die,
6535 int has_children,
6536 void *data)
ae038cb0 6537{
dee91e82 6538 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6539
95554aad 6540 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6541
ae038cb0
DJ
6542 /* Check if comp unit has_children.
6543 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6544 If not, there's no more debug_info for this comp unit. */
d85a05f0 6545 if (has_children)
dee91e82
DE
6546 load_partial_dies (reader, info_ptr, 0);
6547}
98bfdba5 6548
dee91e82
DE
6549/* Load the partial DIEs for a secondary CU into memory.
6550 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6551
dee91e82
DE
6552static void
6553load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6554{
f4dc4d17
DE
6555 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6556 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6557}
6558
ae038cb0 6559static void
36586728
TT
6560read_comp_units_from_section (struct objfile *objfile,
6561 struct dwarf2_section_info *section,
6562 unsigned int is_dwz,
6563 int *n_allocated,
6564 int *n_comp_units,
6565 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6566{
d521ce57 6567 const gdb_byte *info_ptr;
a32a8923 6568 bfd *abfd = get_section_bfd_owner (section);
be391dca 6569
b4f54984 6570 if (dwarf_read_debug)
bf6af496 6571 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6572 get_section_name (section),
6573 get_section_file_name (section));
bf6af496 6574
36586728 6575 dwarf2_read_section (objfile, section);
ae038cb0 6576
36586728 6577 info_ptr = section->buffer;
6e70227d 6578
36586728 6579 while (info_ptr < section->buffer + section->size)
ae038cb0 6580 {
c764a876 6581 unsigned int length, initial_length_size;
ae038cb0 6582 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6583 sect_offset offset;
ae038cb0 6584
36586728 6585 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6586
6587 /* Read just enough information to find out where the next
6588 compilation unit is. */
36586728 6589 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6590
6591 /* Save the compilation unit for later lookup. */
8d749320 6592 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
ae038cb0
DJ
6593 memset (this_cu, 0, sizeof (*this_cu));
6594 this_cu->offset = offset;
c764a876 6595 this_cu->length = length + initial_length_size;
36586728 6596 this_cu->is_dwz = is_dwz;
9291a0cd 6597 this_cu->objfile = objfile;
8a0459fd 6598 this_cu->section = section;
ae038cb0 6599
36586728 6600 if (*n_comp_units == *n_allocated)
ae038cb0 6601 {
36586728 6602 *n_allocated *= 2;
224c3ddb
SM
6603 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6604 *all_comp_units, *n_allocated);
ae038cb0 6605 }
36586728
TT
6606 (*all_comp_units)[*n_comp_units] = this_cu;
6607 ++*n_comp_units;
ae038cb0
DJ
6608
6609 info_ptr = info_ptr + this_cu->length;
6610 }
36586728
TT
6611}
6612
6613/* Create a list of all compilation units in OBJFILE.
6614 This is only done for -readnow and building partial symtabs. */
6615
6616static void
6617create_all_comp_units (struct objfile *objfile)
6618{
6619 int n_allocated;
6620 int n_comp_units;
6621 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6622 struct dwz_file *dwz;
36586728
TT
6623
6624 n_comp_units = 0;
6625 n_allocated = 10;
8d749320 6626 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
36586728
TT
6627
6628 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6629 &n_allocated, &n_comp_units, &all_comp_units);
6630
4db1a1dc
TT
6631 dwz = dwarf2_get_dwz_file ();
6632 if (dwz != NULL)
6633 read_comp_units_from_section (objfile, &dwz->info, 1,
6634 &n_allocated, &n_comp_units,
6635 &all_comp_units);
ae038cb0 6636
8d749320
SM
6637 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6638 struct dwarf2_per_cu_data *,
6639 n_comp_units);
ae038cb0
DJ
6640 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6641 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6642 xfree (all_comp_units);
6643 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6644}
6645
5734ee8b 6646/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6647 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6648 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6649 DW_AT_ranges). See the comments of add_partial_subprogram on how
6650 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6651
72bf9492
DJ
6652static void
6653scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6654 CORE_ADDR *highpc, int set_addrmap,
6655 struct dwarf2_cu *cu)
c906108c 6656{
72bf9492 6657 struct partial_die_info *pdi;
c906108c 6658
91c24f0a
DC
6659 /* Now, march along the PDI's, descending into ones which have
6660 interesting children but skipping the children of the other ones,
6661 until we reach the end of the compilation unit. */
c906108c 6662
72bf9492 6663 pdi = first_die;
91c24f0a 6664
72bf9492
DJ
6665 while (pdi != NULL)
6666 {
6667 fixup_partial_die (pdi, cu);
c906108c 6668
f55ee35c 6669 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6670 children, so we need to look at them. Ditto for anonymous
6671 enums. */
933c6fe4 6672
72bf9492 6673 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6674 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6675 || pdi->tag == DW_TAG_imported_unit)
c906108c 6676 {
72bf9492 6677 switch (pdi->tag)
c906108c
SS
6678 {
6679 case DW_TAG_subprogram:
cdc07690 6680 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6681 break;
72929c62 6682 case DW_TAG_constant:
c906108c
SS
6683 case DW_TAG_variable:
6684 case DW_TAG_typedef:
91c24f0a 6685 case DW_TAG_union_type:
72bf9492 6686 if (!pdi->is_declaration)
63d06c5c 6687 {
72bf9492 6688 add_partial_symbol (pdi, cu);
63d06c5c
DC
6689 }
6690 break;
c906108c 6691 case DW_TAG_class_type:
680b30c7 6692 case DW_TAG_interface_type:
c906108c 6693 case DW_TAG_structure_type:
72bf9492 6694 if (!pdi->is_declaration)
c906108c 6695 {
72bf9492 6696 add_partial_symbol (pdi, cu);
c906108c 6697 }
e98c9e7c
TT
6698 if (cu->language == language_rust && pdi->has_children)
6699 scan_partial_symbols (pdi->die_child, lowpc, highpc,
6700 set_addrmap, cu);
c906108c 6701 break;
91c24f0a 6702 case DW_TAG_enumeration_type:
72bf9492
DJ
6703 if (!pdi->is_declaration)
6704 add_partial_enumeration (pdi, cu);
c906108c
SS
6705 break;
6706 case DW_TAG_base_type:
a02abb62 6707 case DW_TAG_subrange_type:
c906108c 6708 /* File scope base type definitions are added to the partial
c5aa993b 6709 symbol table. */
72bf9492 6710 add_partial_symbol (pdi, cu);
c906108c 6711 break;
d9fa45fe 6712 case DW_TAG_namespace:
cdc07690 6713 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6714 break;
5d7cb8df 6715 case DW_TAG_module:
cdc07690 6716 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6717 break;
95554aad
TT
6718 case DW_TAG_imported_unit:
6719 {
6720 struct dwarf2_per_cu_data *per_cu;
6721
f4dc4d17
DE
6722 /* For now we don't handle imported units in type units. */
6723 if (cu->per_cu->is_debug_types)
6724 {
6725 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6726 " supported in type units [in module %s]"),
4262abfb 6727 objfile_name (cu->objfile));
f4dc4d17
DE
6728 }
6729
95554aad 6730 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6731 pdi->is_dwz,
95554aad
TT
6732 cu->objfile);
6733
6734 /* Go read the partial unit, if needed. */
6735 if (per_cu->v.psymtab == NULL)
b93601f3 6736 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6737
f4dc4d17 6738 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6739 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6740 }
6741 break;
74921315
KS
6742 case DW_TAG_imported_declaration:
6743 add_partial_symbol (pdi, cu);
6744 break;
c906108c
SS
6745 default:
6746 break;
6747 }
6748 }
6749
72bf9492
DJ
6750 /* If the die has a sibling, skip to the sibling. */
6751
6752 pdi = pdi->die_sibling;
6753 }
6754}
6755
6756/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6757
72bf9492 6758 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6759 name is concatenated with "::" and the partial DIE's name. For
6760 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6761 Enumerators are an exception; they use the scope of their parent
6762 enumeration type, i.e. the name of the enumeration type is not
6763 prepended to the enumerator.
91c24f0a 6764
72bf9492
DJ
6765 There are two complexities. One is DW_AT_specification; in this
6766 case "parent" means the parent of the target of the specification,
6767 instead of the direct parent of the DIE. The other is compilers
6768 which do not emit DW_TAG_namespace; in this case we try to guess
6769 the fully qualified name of structure types from their members'
6770 linkage names. This must be done using the DIE's children rather
6771 than the children of any DW_AT_specification target. We only need
6772 to do this for structures at the top level, i.e. if the target of
6773 any DW_AT_specification (if any; otherwise the DIE itself) does not
6774 have a parent. */
6775
6776/* Compute the scope prefix associated with PDI's parent, in
6777 compilation unit CU. The result will be allocated on CU's
6778 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6779 field. NULL is returned if no prefix is necessary. */
15d034d0 6780static const char *
72bf9492
DJ
6781partial_die_parent_scope (struct partial_die_info *pdi,
6782 struct dwarf2_cu *cu)
6783{
15d034d0 6784 const char *grandparent_scope;
72bf9492 6785 struct partial_die_info *parent, *real_pdi;
91c24f0a 6786
72bf9492
DJ
6787 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6788 then this means the parent of the specification DIE. */
6789
6790 real_pdi = pdi;
72bf9492 6791 while (real_pdi->has_specification)
36586728
TT
6792 real_pdi = find_partial_die (real_pdi->spec_offset,
6793 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6794
6795 parent = real_pdi->die_parent;
6796 if (parent == NULL)
6797 return NULL;
6798
6799 if (parent->scope_set)
6800 return parent->scope;
6801
6802 fixup_partial_die (parent, cu);
6803
10b3939b 6804 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6805
acebe513
UW
6806 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6807 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6808 Work around this problem here. */
6809 if (cu->language == language_cplus
6e70227d 6810 && parent->tag == DW_TAG_namespace
acebe513
UW
6811 && strcmp (parent->name, "::") == 0
6812 && grandparent_scope == NULL)
6813 {
6814 parent->scope = NULL;
6815 parent->scope_set = 1;
6816 return NULL;
6817 }
6818
9c6c53f7
SA
6819 if (pdi->tag == DW_TAG_enumerator)
6820 /* Enumerators should not get the name of the enumeration as a prefix. */
6821 parent->scope = grandparent_scope;
6822 else if (parent->tag == DW_TAG_namespace
f55ee35c 6823 || parent->tag == DW_TAG_module
72bf9492
DJ
6824 || parent->tag == DW_TAG_structure_type
6825 || parent->tag == DW_TAG_class_type
680b30c7 6826 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6827 || parent->tag == DW_TAG_union_type
6828 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6829 {
6830 if (grandparent_scope == NULL)
6831 parent->scope = parent->name;
6832 else
3e43a32a
MS
6833 parent->scope = typename_concat (&cu->comp_unit_obstack,
6834 grandparent_scope,
f55ee35c 6835 parent->name, 0, cu);
72bf9492 6836 }
72bf9492
DJ
6837 else
6838 {
6839 /* FIXME drow/2004-04-01: What should we be doing with
6840 function-local names? For partial symbols, we should probably be
6841 ignoring them. */
6842 complaint (&symfile_complaints,
e2e0b3e5 6843 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6844 parent->tag, pdi->offset.sect_off);
72bf9492 6845 parent->scope = grandparent_scope;
c906108c
SS
6846 }
6847
72bf9492
DJ
6848 parent->scope_set = 1;
6849 return parent->scope;
6850}
6851
6852/* Return the fully scoped name associated with PDI, from compilation unit
6853 CU. The result will be allocated with malloc. */
4568ecf9 6854
72bf9492
DJ
6855static char *
6856partial_die_full_name (struct partial_die_info *pdi,
6857 struct dwarf2_cu *cu)
6858{
15d034d0 6859 const char *parent_scope;
72bf9492 6860
98bfdba5
PA
6861 /* If this is a template instantiation, we can not work out the
6862 template arguments from partial DIEs. So, unfortunately, we have
6863 to go through the full DIEs. At least any work we do building
6864 types here will be reused if full symbols are loaded later. */
6865 if (pdi->has_template_arguments)
6866 {
6867 fixup_partial_die (pdi, cu);
6868
6869 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6870 {
6871 struct die_info *die;
6872 struct attribute attr;
6873 struct dwarf2_cu *ref_cu = cu;
6874
b64f50a1 6875 /* DW_FORM_ref_addr is using section offset. */
b4069958 6876 attr.name = (enum dwarf_attribute) 0;
98bfdba5 6877 attr.form = DW_FORM_ref_addr;
4568ecf9 6878 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6879 die = follow_die_ref (NULL, &attr, &ref_cu);
6880
6881 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6882 }
6883 }
6884
72bf9492
DJ
6885 parent_scope = partial_die_parent_scope (pdi, cu);
6886 if (parent_scope == NULL)
6887 return NULL;
6888 else
f55ee35c 6889 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6890}
6891
6892static void
72bf9492 6893add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6894{
e7c27a73 6895 struct objfile *objfile = cu->objfile;
3e29f34a 6896 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 6897 CORE_ADDR addr = 0;
15d034d0 6898 const char *actual_name = NULL;
e142c38c 6899 CORE_ADDR baseaddr;
15d034d0 6900 char *built_actual_name;
e142c38c
DJ
6901
6902 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6903
15d034d0
TT
6904 built_actual_name = partial_die_full_name (pdi, cu);
6905 if (built_actual_name != NULL)
6906 actual_name = built_actual_name;
63d06c5c 6907
72bf9492
DJ
6908 if (actual_name == NULL)
6909 actual_name = pdi->name;
6910
c906108c
SS
6911 switch (pdi->tag)
6912 {
6913 case DW_TAG_subprogram:
3e29f34a 6914 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
2cfa0c8d 6915 if (pdi->is_external || cu->language == language_ada)
c906108c 6916 {
2cfa0c8d
JB
6917 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6918 of the global scope. But in Ada, we want to be able to access
6919 nested procedures globally. So all Ada subprograms are stored
6920 in the global scope. */
f47fb265 6921 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6922 built_actual_name != NULL,
f47fb265
MS
6923 VAR_DOMAIN, LOC_BLOCK,
6924 &objfile->global_psymbols,
1762568f 6925 addr, cu->language, objfile);
c906108c
SS
6926 }
6927 else
6928 {
f47fb265 6929 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6930 built_actual_name != NULL,
f47fb265
MS
6931 VAR_DOMAIN, LOC_BLOCK,
6932 &objfile->static_psymbols,
1762568f 6933 addr, cu->language, objfile);
c906108c
SS
6934 }
6935 break;
72929c62
JB
6936 case DW_TAG_constant:
6937 {
6938 struct psymbol_allocation_list *list;
6939
6940 if (pdi->is_external)
6941 list = &objfile->global_psymbols;
6942 else
6943 list = &objfile->static_psymbols;
f47fb265 6944 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6945 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
1762568f 6946 list, 0, cu->language, objfile);
72929c62
JB
6947 }
6948 break;
c906108c 6949 case DW_TAG_variable:
95554aad
TT
6950 if (pdi->d.locdesc)
6951 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6952
95554aad 6953 if (pdi->d.locdesc
caac4577
JG
6954 && addr == 0
6955 && !dwarf2_per_objfile->has_section_at_zero)
6956 {
6957 /* A global or static variable may also have been stripped
6958 out by the linker if unused, in which case its address
6959 will be nullified; do not add such variables into partial
6960 symbol table then. */
6961 }
6962 else if (pdi->is_external)
c906108c
SS
6963 {
6964 /* Global Variable.
6965 Don't enter into the minimal symbol tables as there is
6966 a minimal symbol table entry from the ELF symbols already.
6967 Enter into partial symbol table if it has a location
6968 descriptor or a type.
6969 If the location descriptor is missing, new_symbol will create
6970 a LOC_UNRESOLVED symbol, the address of the variable will then
6971 be determined from the minimal symbol table whenever the variable
6972 is referenced.
6973 The address for the partial symbol table entry is not
6974 used by GDB, but it comes in handy for debugging partial symbol
6975 table building. */
6976
95554aad 6977 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6978 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6979 built_actual_name != NULL,
f47fb265
MS
6980 VAR_DOMAIN, LOC_STATIC,
6981 &objfile->global_psymbols,
1762568f 6982 addr + baseaddr,
f47fb265 6983 cu->language, objfile);
c906108c
SS
6984 }
6985 else
6986 {
ff908ebf
AW
6987 int has_loc = pdi->d.locdesc != NULL;
6988
6989 /* Static Variable. Skip symbols whose value we cannot know (those
6990 without location descriptors or constant values). */
6991 if (!has_loc && !pdi->has_const_value)
decbce07 6992 {
15d034d0 6993 xfree (built_actual_name);
decbce07
MS
6994 return;
6995 }
ff908ebf 6996
f47fb265 6997 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6998 built_actual_name != NULL,
f47fb265
MS
6999 VAR_DOMAIN, LOC_STATIC,
7000 &objfile->static_psymbols,
ff908ebf 7001 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
f47fb265 7002 cu->language, objfile);
c906108c
SS
7003 }
7004 break;
7005 case DW_TAG_typedef:
7006 case DW_TAG_base_type:
a02abb62 7007 case DW_TAG_subrange_type:
38d518c9 7008 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7009 built_actual_name != NULL,
176620f1 7010 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 7011 &objfile->static_psymbols,
1762568f 7012 0, cu->language, objfile);
c906108c 7013 break;
74921315 7014 case DW_TAG_imported_declaration:
72bf9492
DJ
7015 case DW_TAG_namespace:
7016 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7017 built_actual_name != NULL,
72bf9492
DJ
7018 VAR_DOMAIN, LOC_TYPEDEF,
7019 &objfile->global_psymbols,
1762568f 7020 0, cu->language, objfile);
72bf9492 7021 break;
530e8392
KB
7022 case DW_TAG_module:
7023 add_psymbol_to_list (actual_name, strlen (actual_name),
7024 built_actual_name != NULL,
7025 MODULE_DOMAIN, LOC_TYPEDEF,
7026 &objfile->global_psymbols,
1762568f 7027 0, cu->language, objfile);
530e8392 7028 break;
c906108c 7029 case DW_TAG_class_type:
680b30c7 7030 case DW_TAG_interface_type:
c906108c
SS
7031 case DW_TAG_structure_type:
7032 case DW_TAG_union_type:
7033 case DW_TAG_enumeration_type:
fa4028e9
JB
7034 /* Skip external references. The DWARF standard says in the section
7035 about "Structure, Union, and Class Type Entries": "An incomplete
7036 structure, union or class type is represented by a structure,
7037 union or class entry that does not have a byte size attribute
7038 and that has a DW_AT_declaration attribute." */
7039 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 7040 {
15d034d0 7041 xfree (built_actual_name);
decbce07
MS
7042 return;
7043 }
fa4028e9 7044
63d06c5c
DC
7045 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7046 static vs. global. */
38d518c9 7047 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7048 built_actual_name != NULL,
176620f1 7049 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
7050 (cu->language == language_cplus
7051 || cu->language == language_java)
63d06c5c
DC
7052 ? &objfile->global_psymbols
7053 : &objfile->static_psymbols,
1762568f 7054 0, cu->language, objfile);
c906108c 7055
c906108c
SS
7056 break;
7057 case DW_TAG_enumerator:
38d518c9 7058 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7059 built_actual_name != NULL,
176620f1 7060 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
7061 (cu->language == language_cplus
7062 || cu->language == language_java)
f6fe98ef
DJ
7063 ? &objfile->global_psymbols
7064 : &objfile->static_psymbols,
1762568f 7065 0, cu->language, objfile);
c906108c
SS
7066 break;
7067 default:
7068 break;
7069 }
5c4e30ca 7070
15d034d0 7071 xfree (built_actual_name);
c906108c
SS
7072}
7073
5c4e30ca
DC
7074/* Read a partial die corresponding to a namespace; also, add a symbol
7075 corresponding to that namespace to the symbol table. NAMESPACE is
7076 the name of the enclosing namespace. */
91c24f0a 7077
72bf9492
DJ
7078static void
7079add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 7080 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7081 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 7082{
72bf9492 7083 /* Add a symbol for the namespace. */
e7c27a73 7084
72bf9492 7085 add_partial_symbol (pdi, cu);
5c4e30ca
DC
7086
7087 /* Now scan partial symbols in that namespace. */
7088
91c24f0a 7089 if (pdi->has_children)
cdc07690 7090 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
7091}
7092
5d7cb8df
JK
7093/* Read a partial die corresponding to a Fortran module. */
7094
7095static void
7096add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 7097 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 7098{
530e8392
KB
7099 /* Add a symbol for the namespace. */
7100
7101 add_partial_symbol (pdi, cu);
7102
f55ee35c 7103 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7104
7105 if (pdi->has_children)
cdc07690 7106 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7107}
7108
bc30ff58
JB
7109/* Read a partial die corresponding to a subprogram and create a partial
7110 symbol for that subprogram. When the CU language allows it, this
7111 routine also defines a partial symbol for each nested subprogram
cdc07690 7112 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7113 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7114 and highest PC values found in PDI.
6e70227d 7115
cdc07690
YQ
7116 PDI may also be a lexical block, in which case we simply search
7117 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7118 Again, this is only performed when the CU language allows this
7119 type of definitions. */
7120
7121static void
7122add_partial_subprogram (struct partial_die_info *pdi,
7123 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7124 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7125{
7126 if (pdi->tag == DW_TAG_subprogram)
7127 {
7128 if (pdi->has_pc_info)
7129 {
7130 if (pdi->lowpc < *lowpc)
7131 *lowpc = pdi->lowpc;
7132 if (pdi->highpc > *highpc)
7133 *highpc = pdi->highpc;
cdc07690 7134 if (set_addrmap)
5734ee8b 7135 {
5734ee8b 7136 struct objfile *objfile = cu->objfile;
3e29f34a
MR
7137 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7138 CORE_ADDR baseaddr;
7139 CORE_ADDR highpc;
7140 CORE_ADDR lowpc;
5734ee8b
DJ
7141
7142 baseaddr = ANOFFSET (objfile->section_offsets,
7143 SECT_OFF_TEXT (objfile));
3e29f34a
MR
7144 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7145 pdi->lowpc + baseaddr);
7146 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7147 pdi->highpc + baseaddr);
7148 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 7149 cu->per_cu->v.psymtab);
5734ee8b 7150 }
481860b3
GB
7151 }
7152
7153 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7154 {
bc30ff58 7155 if (!pdi->is_declaration)
e8d05480
JB
7156 /* Ignore subprogram DIEs that do not have a name, they are
7157 illegal. Do not emit a complaint at this point, we will
7158 do so when we convert this psymtab into a symtab. */
7159 if (pdi->name)
7160 add_partial_symbol (pdi, cu);
bc30ff58
JB
7161 }
7162 }
6e70227d 7163
bc30ff58
JB
7164 if (! pdi->has_children)
7165 return;
7166
7167 if (cu->language == language_ada)
7168 {
7169 pdi = pdi->die_child;
7170 while (pdi != NULL)
7171 {
7172 fixup_partial_die (pdi, cu);
7173 if (pdi->tag == DW_TAG_subprogram
7174 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7175 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7176 pdi = pdi->die_sibling;
7177 }
7178 }
7179}
7180
91c24f0a
DC
7181/* Read a partial die corresponding to an enumeration type. */
7182
72bf9492
DJ
7183static void
7184add_partial_enumeration (struct partial_die_info *enum_pdi,
7185 struct dwarf2_cu *cu)
91c24f0a 7186{
72bf9492 7187 struct partial_die_info *pdi;
91c24f0a
DC
7188
7189 if (enum_pdi->name != NULL)
72bf9492
DJ
7190 add_partial_symbol (enum_pdi, cu);
7191
7192 pdi = enum_pdi->die_child;
7193 while (pdi)
91c24f0a 7194 {
72bf9492 7195 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7196 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7197 else
72bf9492
DJ
7198 add_partial_symbol (pdi, cu);
7199 pdi = pdi->die_sibling;
91c24f0a 7200 }
91c24f0a
DC
7201}
7202
6caca83c
CC
7203/* Return the initial uleb128 in the die at INFO_PTR. */
7204
7205static unsigned int
d521ce57 7206peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7207{
7208 unsigned int bytes_read;
7209
7210 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7211}
7212
4bb7a0a7
DJ
7213/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7214 Return the corresponding abbrev, or NULL if the number is zero (indicating
7215 an empty DIE). In either case *BYTES_READ will be set to the length of
7216 the initial number. */
7217
7218static struct abbrev_info *
d521ce57 7219peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7220 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7221{
7222 bfd *abfd = cu->objfile->obfd;
7223 unsigned int abbrev_number;
7224 struct abbrev_info *abbrev;
7225
7226 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7227
7228 if (abbrev_number == 0)
7229 return NULL;
7230
433df2d4 7231 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7232 if (!abbrev)
7233 {
422b9917
DE
7234 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7235 " at offset 0x%x [in module %s]"),
7236 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7237 cu->header.offset.sect_off, bfd_get_filename (abfd));
4bb7a0a7
DJ
7238 }
7239
7240 return abbrev;
7241}
7242
93311388
DE
7243/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7244 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7245 DIE. Any children of the skipped DIEs will also be skipped. */
7246
d521ce57
TT
7247static const gdb_byte *
7248skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7249{
dee91e82 7250 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7251 struct abbrev_info *abbrev;
7252 unsigned int bytes_read;
7253
7254 while (1)
7255 {
7256 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7257 if (abbrev == NULL)
7258 return info_ptr + bytes_read;
7259 else
dee91e82 7260 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7261 }
7262}
7263
93311388
DE
7264/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7265 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7266 abbrev corresponding to that skipped uleb128 should be passed in
7267 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7268 children. */
7269
d521ce57
TT
7270static const gdb_byte *
7271skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7272 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7273{
7274 unsigned int bytes_read;
7275 struct attribute attr;
dee91e82
DE
7276 bfd *abfd = reader->abfd;
7277 struct dwarf2_cu *cu = reader->cu;
d521ce57 7278 const gdb_byte *buffer = reader->buffer;
f664829e 7279 const gdb_byte *buffer_end = reader->buffer_end;
4bb7a0a7
DJ
7280 unsigned int form, i;
7281
7282 for (i = 0; i < abbrev->num_attrs; i++)
7283 {
7284 /* The only abbrev we care about is DW_AT_sibling. */
7285 if (abbrev->attrs[i].name == DW_AT_sibling)
7286 {
dee91e82 7287 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7288 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7289 complaint (&symfile_complaints,
7290 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7291 else
b9502d3f
WN
7292 {
7293 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7294 const gdb_byte *sibling_ptr = buffer + off;
7295
7296 if (sibling_ptr < info_ptr)
7297 complaint (&symfile_complaints,
7298 _("DW_AT_sibling points backwards"));
22869d73
KS
7299 else if (sibling_ptr > reader->buffer_end)
7300 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7301 else
7302 return sibling_ptr;
7303 }
4bb7a0a7
DJ
7304 }
7305
7306 /* If it isn't DW_AT_sibling, skip this attribute. */
7307 form = abbrev->attrs[i].form;
7308 skip_attribute:
7309 switch (form)
7310 {
4bb7a0a7 7311 case DW_FORM_ref_addr:
ae411497
TT
7312 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7313 and later it is offset sized. */
7314 if (cu->header.version == 2)
7315 info_ptr += cu->header.addr_size;
7316 else
7317 info_ptr += cu->header.offset_size;
7318 break;
36586728
TT
7319 case DW_FORM_GNU_ref_alt:
7320 info_ptr += cu->header.offset_size;
7321 break;
ae411497 7322 case DW_FORM_addr:
4bb7a0a7
DJ
7323 info_ptr += cu->header.addr_size;
7324 break;
7325 case DW_FORM_data1:
7326 case DW_FORM_ref1:
7327 case DW_FORM_flag:
7328 info_ptr += 1;
7329 break;
2dc7f7b3
TT
7330 case DW_FORM_flag_present:
7331 break;
4bb7a0a7
DJ
7332 case DW_FORM_data2:
7333 case DW_FORM_ref2:
7334 info_ptr += 2;
7335 break;
7336 case DW_FORM_data4:
7337 case DW_FORM_ref4:
7338 info_ptr += 4;
7339 break;
7340 case DW_FORM_data8:
7341 case DW_FORM_ref8:
55f1336d 7342 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7343 info_ptr += 8;
7344 break;
7345 case DW_FORM_string:
9b1c24c8 7346 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7347 info_ptr += bytes_read;
7348 break;
2dc7f7b3 7349 case DW_FORM_sec_offset:
4bb7a0a7 7350 case DW_FORM_strp:
36586728 7351 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7352 info_ptr += cu->header.offset_size;
7353 break;
2dc7f7b3 7354 case DW_FORM_exprloc:
4bb7a0a7
DJ
7355 case DW_FORM_block:
7356 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7357 info_ptr += bytes_read;
7358 break;
7359 case DW_FORM_block1:
7360 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7361 break;
7362 case DW_FORM_block2:
7363 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7364 break;
7365 case DW_FORM_block4:
7366 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7367 break;
7368 case DW_FORM_sdata:
7369 case DW_FORM_udata:
7370 case DW_FORM_ref_udata:
3019eac3
DE
7371 case DW_FORM_GNU_addr_index:
7372 case DW_FORM_GNU_str_index:
d521ce57 7373 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7374 break;
7375 case DW_FORM_indirect:
7376 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7377 info_ptr += bytes_read;
7378 /* We need to continue parsing from here, so just go back to
7379 the top. */
7380 goto skip_attribute;
7381
7382 default:
3e43a32a
MS
7383 error (_("Dwarf Error: Cannot handle %s "
7384 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7385 dwarf_form_name (form),
7386 bfd_get_filename (abfd));
7387 }
7388 }
7389
7390 if (abbrev->has_children)
dee91e82 7391 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7392 else
7393 return info_ptr;
7394}
7395
93311388 7396/* Locate ORIG_PDI's sibling.
dee91e82 7397 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7398
d521ce57 7399static const gdb_byte *
dee91e82
DE
7400locate_pdi_sibling (const struct die_reader_specs *reader,
7401 struct partial_die_info *orig_pdi,
d521ce57 7402 const gdb_byte *info_ptr)
91c24f0a
DC
7403{
7404 /* Do we know the sibling already? */
72bf9492 7405
91c24f0a
DC
7406 if (orig_pdi->sibling)
7407 return orig_pdi->sibling;
7408
7409 /* Are there any children to deal with? */
7410
7411 if (!orig_pdi->has_children)
7412 return info_ptr;
7413
4bb7a0a7 7414 /* Skip the children the long way. */
91c24f0a 7415
dee91e82 7416 return skip_children (reader, info_ptr);
91c24f0a
DC
7417}
7418
257e7a09 7419/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7420 not NULL. */
c906108c
SS
7421
7422static void
257e7a09
YQ
7423dwarf2_read_symtab (struct partial_symtab *self,
7424 struct objfile *objfile)
c906108c 7425{
257e7a09 7426 if (self->readin)
c906108c 7427 {
442e4d9c 7428 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7429 self->filename);
442e4d9c
YQ
7430 }
7431 else
7432 {
7433 if (info_verbose)
c906108c 7434 {
442e4d9c 7435 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7436 self->filename);
442e4d9c 7437 gdb_flush (gdb_stdout);
c906108c 7438 }
c906108c 7439
442e4d9c 7440 /* Restore our global data. */
9a3c8263
SM
7441 dwarf2_per_objfile
7442 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7443 dwarf2_objfile_data_key);
10b3939b 7444
442e4d9c
YQ
7445 /* If this psymtab is constructed from a debug-only objfile, the
7446 has_section_at_zero flag will not necessarily be correct. We
7447 can get the correct value for this flag by looking at the data
7448 associated with the (presumably stripped) associated objfile. */
7449 if (objfile->separate_debug_objfile_backlink)
7450 {
7451 struct dwarf2_per_objfile *dpo_backlink
9a3c8263
SM
7452 = ((struct dwarf2_per_objfile *)
7453 objfile_data (objfile->separate_debug_objfile_backlink,
7454 dwarf2_objfile_data_key));
9a619af0 7455
442e4d9c
YQ
7456 dwarf2_per_objfile->has_section_at_zero
7457 = dpo_backlink->has_section_at_zero;
7458 }
b2ab525c 7459
442e4d9c 7460 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7461
257e7a09 7462 psymtab_to_symtab_1 (self);
c906108c 7463
442e4d9c
YQ
7464 /* Finish up the debug error message. */
7465 if (info_verbose)
7466 printf_filtered (_("done.\n"));
c906108c 7467 }
95554aad
TT
7468
7469 process_cu_includes ();
c906108c 7470}
9cdd5dbd
DE
7471\f
7472/* Reading in full CUs. */
c906108c 7473
10b3939b
DJ
7474/* Add PER_CU to the queue. */
7475
7476static void
95554aad
TT
7477queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7478 enum language pretend_language)
10b3939b
DJ
7479{
7480 struct dwarf2_queue_item *item;
7481
7482 per_cu->queued = 1;
8d749320 7483 item = XNEW (struct dwarf2_queue_item);
10b3939b 7484 item->per_cu = per_cu;
95554aad 7485 item->pretend_language = pretend_language;
10b3939b
DJ
7486 item->next = NULL;
7487
7488 if (dwarf2_queue == NULL)
7489 dwarf2_queue = item;
7490 else
7491 dwarf2_queue_tail->next = item;
7492
7493 dwarf2_queue_tail = item;
7494}
7495
89e63ee4
DE
7496/* If PER_CU is not yet queued, add it to the queue.
7497 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7498 dependency.
0907af0c 7499 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7500 meaning either PER_CU is already queued or it is already loaded.
7501
7502 N.B. There is an invariant here that if a CU is queued then it is loaded.
7503 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7504
7505static int
89e63ee4 7506maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7507 struct dwarf2_per_cu_data *per_cu,
7508 enum language pretend_language)
7509{
7510 /* We may arrive here during partial symbol reading, if we need full
7511 DIEs to process an unusual case (e.g. template arguments). Do
7512 not queue PER_CU, just tell our caller to load its DIEs. */
7513 if (dwarf2_per_objfile->reading_partial_symbols)
7514 {
7515 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7516 return 1;
7517 return 0;
7518 }
7519
7520 /* Mark the dependence relation so that we don't flush PER_CU
7521 too early. */
89e63ee4
DE
7522 if (dependent_cu != NULL)
7523 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7524
7525 /* If it's already on the queue, we have nothing to do. */
7526 if (per_cu->queued)
7527 return 0;
7528
7529 /* If the compilation unit is already loaded, just mark it as
7530 used. */
7531 if (per_cu->cu != NULL)
7532 {
7533 per_cu->cu->last_used = 0;
7534 return 0;
7535 }
7536
7537 /* Add it to the queue. */
7538 queue_comp_unit (per_cu, pretend_language);
7539
7540 return 1;
7541}
7542
10b3939b
DJ
7543/* Process the queue. */
7544
7545static void
a0f42c21 7546process_queue (void)
10b3939b
DJ
7547{
7548 struct dwarf2_queue_item *item, *next_item;
7549
b4f54984 7550 if (dwarf_read_debug)
45cfd468
DE
7551 {
7552 fprintf_unfiltered (gdb_stdlog,
7553 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7554 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7555 }
7556
03dd20cc
DJ
7557 /* The queue starts out with one item, but following a DIE reference
7558 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7559 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7560 {
cc12ce38
DE
7561 if ((dwarf2_per_objfile->using_index
7562 ? !item->per_cu->v.quick->compunit_symtab
7563 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7564 /* Skip dummy CUs. */
7565 && item->per_cu->cu != NULL)
f4dc4d17
DE
7566 {
7567 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7568 unsigned int debug_print_threshold;
247f5c4f 7569 char buf[100];
f4dc4d17 7570
247f5c4f 7571 if (per_cu->is_debug_types)
f4dc4d17 7572 {
247f5c4f
DE
7573 struct signatured_type *sig_type =
7574 (struct signatured_type *) per_cu;
7575
7576 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7577 hex_string (sig_type->signature),
7578 per_cu->offset.sect_off);
7579 /* There can be 100s of TUs.
7580 Only print them in verbose mode. */
7581 debug_print_threshold = 2;
f4dc4d17 7582 }
247f5c4f 7583 else
73be47f5
DE
7584 {
7585 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7586 debug_print_threshold = 1;
7587 }
247f5c4f 7588
b4f54984 7589 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7590 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7591
7592 if (per_cu->is_debug_types)
7593 process_full_type_unit (per_cu, item->pretend_language);
7594 else
7595 process_full_comp_unit (per_cu, item->pretend_language);
7596
b4f54984 7597 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7598 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7599 }
10b3939b
DJ
7600
7601 item->per_cu->queued = 0;
7602 next_item = item->next;
7603 xfree (item);
7604 }
7605
7606 dwarf2_queue_tail = NULL;
45cfd468 7607
b4f54984 7608 if (dwarf_read_debug)
45cfd468
DE
7609 {
7610 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7611 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7612 }
10b3939b
DJ
7613}
7614
7615/* Free all allocated queue entries. This function only releases anything if
7616 an error was thrown; if the queue was processed then it would have been
7617 freed as we went along. */
7618
7619static void
7620dwarf2_release_queue (void *dummy)
7621{
7622 struct dwarf2_queue_item *item, *last;
7623
7624 item = dwarf2_queue;
7625 while (item)
7626 {
7627 /* Anything still marked queued is likely to be in an
7628 inconsistent state, so discard it. */
7629 if (item->per_cu->queued)
7630 {
7631 if (item->per_cu->cu != NULL)
dee91e82 7632 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7633 item->per_cu->queued = 0;
7634 }
7635
7636 last = item;
7637 item = item->next;
7638 xfree (last);
7639 }
7640
7641 dwarf2_queue = dwarf2_queue_tail = NULL;
7642}
7643
7644/* Read in full symbols for PST, and anything it depends on. */
7645
c906108c 7646static void
fba45db2 7647psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7648{
10b3939b 7649 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7650 int i;
7651
95554aad
TT
7652 if (pst->readin)
7653 return;
7654
aaa75496 7655 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7656 if (!pst->dependencies[i]->readin
7657 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7658 {
7659 /* Inform about additional files that need to be read in. */
7660 if (info_verbose)
7661 {
a3f17187 7662 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7663 fputs_filtered (" ", gdb_stdout);
7664 wrap_here ("");
7665 fputs_filtered ("and ", gdb_stdout);
7666 wrap_here ("");
7667 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7668 wrap_here (""); /* Flush output. */
aaa75496
JB
7669 gdb_flush (gdb_stdout);
7670 }
7671 psymtab_to_symtab_1 (pst->dependencies[i]);
7672 }
7673
9a3c8263 7674 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10b3939b
DJ
7675
7676 if (per_cu == NULL)
aaa75496
JB
7677 {
7678 /* It's an include file, no symbols to read for it.
7679 Everything is in the parent symtab. */
7680 pst->readin = 1;
7681 return;
7682 }
c906108c 7683
a0f42c21 7684 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7685}
7686
dee91e82
DE
7687/* Trivial hash function for die_info: the hash value of a DIE
7688 is its offset in .debug_info for this objfile. */
10b3939b 7689
dee91e82
DE
7690static hashval_t
7691die_hash (const void *item)
10b3939b 7692{
9a3c8263 7693 const struct die_info *die = (const struct die_info *) item;
6502dd73 7694
dee91e82
DE
7695 return die->offset.sect_off;
7696}
63d06c5c 7697
dee91e82
DE
7698/* Trivial comparison function for die_info structures: two DIEs
7699 are equal if they have the same offset. */
98bfdba5 7700
dee91e82
DE
7701static int
7702die_eq (const void *item_lhs, const void *item_rhs)
7703{
9a3c8263
SM
7704 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7705 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
c906108c 7706
dee91e82
DE
7707 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7708}
c906108c 7709
dee91e82
DE
7710/* die_reader_func for load_full_comp_unit.
7711 This is identical to read_signatured_type_reader,
7712 but is kept separate for now. */
c906108c 7713
dee91e82
DE
7714static void
7715load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7716 const gdb_byte *info_ptr,
dee91e82
DE
7717 struct die_info *comp_unit_die,
7718 int has_children,
7719 void *data)
7720{
7721 struct dwarf2_cu *cu = reader->cu;
9a3c8263 7722 enum language *language_ptr = (enum language *) data;
6caca83c 7723
dee91e82
DE
7724 gdb_assert (cu->die_hash == NULL);
7725 cu->die_hash =
7726 htab_create_alloc_ex (cu->header.length / 12,
7727 die_hash,
7728 die_eq,
7729 NULL,
7730 &cu->comp_unit_obstack,
7731 hashtab_obstack_allocate,
7732 dummy_obstack_deallocate);
e142c38c 7733
dee91e82
DE
7734 if (has_children)
7735 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7736 &info_ptr, comp_unit_die);
7737 cu->dies = comp_unit_die;
7738 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7739
7740 /* We try not to read any attributes in this function, because not
9cdd5dbd 7741 all CUs needed for references have been loaded yet, and symbol
10b3939b 7742 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7743 or we won't be able to build types correctly.
7744 Similarly, if we do not read the producer, we can not apply
7745 producer-specific interpretation. */
95554aad 7746 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7747}
10b3939b 7748
dee91e82 7749/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7750
dee91e82 7751static void
95554aad
TT
7752load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7753 enum language pretend_language)
dee91e82 7754{
3019eac3 7755 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7756
f4dc4d17
DE
7757 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7758 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7759}
7760
3da10d80
KS
7761/* Add a DIE to the delayed physname list. */
7762
7763static void
7764add_to_method_list (struct type *type, int fnfield_index, int index,
7765 const char *name, struct die_info *die,
7766 struct dwarf2_cu *cu)
7767{
7768 struct delayed_method_info mi;
7769 mi.type = type;
7770 mi.fnfield_index = fnfield_index;
7771 mi.index = index;
7772 mi.name = name;
7773 mi.die = die;
7774 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7775}
7776
7777/* A cleanup for freeing the delayed method list. */
7778
7779static void
7780free_delayed_list (void *ptr)
7781{
7782 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7783 if (cu->method_list != NULL)
7784 {
7785 VEC_free (delayed_method_info, cu->method_list);
7786 cu->method_list = NULL;
7787 }
7788}
7789
7790/* Compute the physnames of any methods on the CU's method list.
7791
7792 The computation of method physnames is delayed in order to avoid the
7793 (bad) condition that one of the method's formal parameters is of an as yet
7794 incomplete type. */
7795
7796static void
7797compute_delayed_physnames (struct dwarf2_cu *cu)
7798{
7799 int i;
7800 struct delayed_method_info *mi;
7801 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7802 {
1d06ead6 7803 const char *physname;
3da10d80
KS
7804 struct fn_fieldlist *fn_flp
7805 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7806 physname = dwarf2_physname (mi->name, mi->die, cu);
005e54bb
DE
7807 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7808 = physname ? physname : "";
3da10d80
KS
7809 }
7810}
7811
a766d390
DE
7812/* Go objects should be embedded in a DW_TAG_module DIE,
7813 and it's not clear if/how imported objects will appear.
7814 To keep Go support simple until that's worked out,
7815 go back through what we've read and create something usable.
7816 We could do this while processing each DIE, and feels kinda cleaner,
7817 but that way is more invasive.
7818 This is to, for example, allow the user to type "p var" or "b main"
7819 without having to specify the package name, and allow lookups
7820 of module.object to work in contexts that use the expression
7821 parser. */
7822
7823static void
7824fixup_go_packaging (struct dwarf2_cu *cu)
7825{
7826 char *package_name = NULL;
7827 struct pending *list;
7828 int i;
7829
7830 for (list = global_symbols; list != NULL; list = list->next)
7831 {
7832 for (i = 0; i < list->nsyms; ++i)
7833 {
7834 struct symbol *sym = list->symbol[i];
7835
7836 if (SYMBOL_LANGUAGE (sym) == language_go
7837 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7838 {
7839 char *this_package_name = go_symbol_package_name (sym);
7840
7841 if (this_package_name == NULL)
7842 continue;
7843 if (package_name == NULL)
7844 package_name = this_package_name;
7845 else
7846 {
7847 if (strcmp (package_name, this_package_name) != 0)
7848 complaint (&symfile_complaints,
7849 _("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
7850 (symbol_symtab (sym) != NULL
7851 ? symtab_to_filename_for_display
7852 (symbol_symtab (sym))
4262abfb 7853 : objfile_name (cu->objfile)),
a766d390
DE
7854 this_package_name, package_name);
7855 xfree (this_package_name);
7856 }
7857 }
7858 }
7859 }
7860
7861 if (package_name != NULL)
7862 {
7863 struct objfile *objfile = cu->objfile;
34a68019 7864 const char *saved_package_name
224c3ddb
SM
7865 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7866 package_name,
7867 strlen (package_name));
19f392bc
UW
7868 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
7869 saved_package_name);
a766d390
DE
7870 struct symbol *sym;
7871
7872 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7873
e623cf5d 7874 sym = allocate_symbol (objfile);
f85f34ed 7875 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7876 SYMBOL_SET_NAMES (sym, saved_package_name,
7877 strlen (saved_package_name), 0, objfile);
a766d390
DE
7878 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7879 e.g., "main" finds the "main" module and not C's main(). */
7880 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7881 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7882 SYMBOL_TYPE (sym) = type;
7883
7884 add_symbol_to_list (sym, &global_symbols);
7885
7886 xfree (package_name);
7887 }
7888}
7889
95554aad
TT
7890/* Return the symtab for PER_CU. This works properly regardless of
7891 whether we're using the index or psymtabs. */
7892
43f3e411
DE
7893static struct compunit_symtab *
7894get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad
TT
7895{
7896 return (dwarf2_per_objfile->using_index
43f3e411
DE
7897 ? per_cu->v.quick->compunit_symtab
7898 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
7899}
7900
7901/* A helper function for computing the list of all symbol tables
7902 included by PER_CU. */
7903
7904static void
43f3e411 7905recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 7906 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 7907 struct dwarf2_per_cu_data *per_cu,
43f3e411 7908 struct compunit_symtab *immediate_parent)
95554aad
TT
7909{
7910 void **slot;
7911 int ix;
43f3e411 7912 struct compunit_symtab *cust;
95554aad
TT
7913 struct dwarf2_per_cu_data *iter;
7914
7915 slot = htab_find_slot (all_children, per_cu, INSERT);
7916 if (*slot != NULL)
7917 {
7918 /* This inclusion and its children have been processed. */
7919 return;
7920 }
7921
7922 *slot = per_cu;
7923 /* Only add a CU if it has a symbol table. */
43f3e411
DE
7924 cust = get_compunit_symtab (per_cu);
7925 if (cust != NULL)
ec94af83
DE
7926 {
7927 /* If this is a type unit only add its symbol table if we haven't
7928 seen it yet (type unit per_cu's can share symtabs). */
7929 if (per_cu->is_debug_types)
7930 {
43f3e411 7931 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
7932 if (*slot == NULL)
7933 {
43f3e411
DE
7934 *slot = cust;
7935 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7936 if (cust->user == NULL)
7937 cust->user = immediate_parent;
ec94af83
DE
7938 }
7939 }
7940 else
f9125b6c 7941 {
43f3e411
DE
7942 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7943 if (cust->user == NULL)
7944 cust->user = immediate_parent;
f9125b6c 7945 }
ec94af83 7946 }
95554aad
TT
7947
7948 for (ix = 0;
796a7ff8 7949 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7950 ++ix)
ec94af83
DE
7951 {
7952 recursively_compute_inclusions (result, all_children,
43f3e411 7953 all_type_symtabs, iter, cust);
ec94af83 7954 }
95554aad
TT
7955}
7956
43f3e411 7957/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
7958 PER_CU. */
7959
7960static void
43f3e411 7961compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 7962{
f4dc4d17
DE
7963 gdb_assert (! per_cu->is_debug_types);
7964
796a7ff8 7965 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7966 {
7967 int ix, len;
ec94af83 7968 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
7969 struct compunit_symtab *compunit_symtab_iter;
7970 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 7971 htab_t all_children, all_type_symtabs;
43f3e411 7972 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
7973
7974 /* If we don't have a symtab, we can just skip this case. */
43f3e411 7975 if (cust == NULL)
95554aad
TT
7976 return;
7977
7978 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7979 NULL, xcalloc, xfree);
ec94af83
DE
7980 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7981 NULL, xcalloc, xfree);
95554aad
TT
7982
7983 for (ix = 0;
796a7ff8 7984 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7985 ix, per_cu_iter);
95554aad 7986 ++ix)
ec94af83
DE
7987 {
7988 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 7989 all_type_symtabs, per_cu_iter,
43f3e411 7990 cust);
ec94af83 7991 }
95554aad 7992
ec94af83 7993 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
7994 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7995 cust->includes
8d749320
SM
7996 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7997 struct compunit_symtab *, len + 1);
95554aad 7998 for (ix = 0;
43f3e411
DE
7999 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
8000 compunit_symtab_iter);
95554aad 8001 ++ix)
43f3e411
DE
8002 cust->includes[ix] = compunit_symtab_iter;
8003 cust->includes[len] = NULL;
95554aad 8004
43f3e411 8005 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 8006 htab_delete (all_children);
ec94af83 8007 htab_delete (all_type_symtabs);
95554aad
TT
8008 }
8009}
8010
8011/* Compute the 'includes' field for the symtabs of all the CUs we just
8012 read. */
8013
8014static void
8015process_cu_includes (void)
8016{
8017 int ix;
8018 struct dwarf2_per_cu_data *iter;
8019
8020 for (ix = 0;
8021 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8022 ix, iter);
8023 ++ix)
f4dc4d17
DE
8024 {
8025 if (! iter->is_debug_types)
43f3e411 8026 compute_compunit_symtab_includes (iter);
f4dc4d17 8027 }
95554aad
TT
8028
8029 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8030}
8031
9cdd5dbd 8032/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
8033 already been loaded into memory. */
8034
8035static void
95554aad
TT
8036process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8037 enum language pretend_language)
10b3939b 8038{
10b3939b 8039 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 8040 struct objfile *objfile = per_cu->objfile;
3e29f34a 8041 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 8042 CORE_ADDR lowpc, highpc;
43f3e411 8043 struct compunit_symtab *cust;
3da10d80 8044 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 8045 CORE_ADDR baseaddr;
4359dff1 8046 struct block *static_block;
3e29f34a 8047 CORE_ADDR addr;
10b3939b
DJ
8048
8049 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8050
10b3939b
DJ
8051 buildsym_init ();
8052 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 8053 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
8054
8055 cu->list_in_scope = &file_symbols;
c906108c 8056
95554aad
TT
8057 cu->language = pretend_language;
8058 cu->language_defn = language_def (cu->language);
8059
c906108c 8060 /* Do line number decoding in read_file_scope () */
10b3939b 8061 process_die (cu->dies, cu);
c906108c 8062
a766d390
DE
8063 /* For now fudge the Go package. */
8064 if (cu->language == language_go)
8065 fixup_go_packaging (cu);
8066
3da10d80
KS
8067 /* Now that we have processed all the DIEs in the CU, all the types
8068 should be complete, and it should now be safe to compute all of the
8069 physnames. */
8070 compute_delayed_physnames (cu);
8071 do_cleanups (delayed_list_cleanup);
8072
fae299cd
DC
8073 /* Some compilers don't define a DW_AT_high_pc attribute for the
8074 compilation unit. If the DW_AT_high_pc is missing, synthesize
8075 it, by scanning the DIE's below the compilation unit. */
10b3939b 8076 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 8077
3e29f34a
MR
8078 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8079 static_block = end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
8080
8081 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8082 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8083 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8084 addrmap to help ensure it has an accurate map of pc values belonging to
8085 this comp unit. */
8086 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8087
43f3e411
DE
8088 cust = end_symtab_from_static_block (static_block,
8089 SECT_OFF_TEXT (objfile), 0);
c906108c 8090
43f3e411 8091 if (cust != NULL)
c906108c 8092 {
df15bd07 8093 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 8094
8be455d7
JK
8095 /* Set symtab language to language from DW_AT_language. If the
8096 compilation is from a C file generated by language preprocessors, do
8097 not set the language if it was already deduced by start_subfile. */
43f3e411 8098 if (!(cu->language == language_c
40e3ad0e 8099 && COMPUNIT_FILETABS (cust)->language != language_unknown))
43f3e411 8100 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
8101
8102 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8103 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
8104 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8105 there were bugs in prologue debug info, fixed later in GCC-4.5
8106 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
8107
8108 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8109 needed, it would be wrong due to missing DW_AT_producer there.
8110
8111 Still one can confuse GDB by using non-standard GCC compilation
8112 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8113 */
ab260dad 8114 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 8115 cust->locations_valid = 1;
e0d00bc7
JK
8116
8117 if (gcc_4_minor >= 5)
43f3e411 8118 cust->epilogue_unwind_valid = 1;
96408a79 8119
43f3e411 8120 cust->call_site_htab = cu->call_site_htab;
c906108c 8121 }
9291a0cd
TT
8122
8123 if (dwarf2_per_objfile->using_index)
43f3e411 8124 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
8125 else
8126 {
8127 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8128 pst->compunit_symtab = cust;
9291a0cd
TT
8129 pst->readin = 1;
8130 }
c906108c 8131
95554aad
TT
8132 /* Push it for inclusion processing later. */
8133 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8134
c906108c 8135 do_cleanups (back_to);
f4dc4d17 8136}
45cfd468 8137
f4dc4d17
DE
8138/* Generate full symbol information for type unit PER_CU, whose DIEs have
8139 already been loaded into memory. */
8140
8141static void
8142process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8143 enum language pretend_language)
8144{
8145 struct dwarf2_cu *cu = per_cu->cu;
8146 struct objfile *objfile = per_cu->objfile;
43f3e411 8147 struct compunit_symtab *cust;
f4dc4d17 8148 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8149 struct signatured_type *sig_type;
8150
8151 gdb_assert (per_cu->is_debug_types);
8152 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8153
8154 buildsym_init ();
8155 back_to = make_cleanup (really_free_pendings, NULL);
8156 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8157
8158 cu->list_in_scope = &file_symbols;
8159
8160 cu->language = pretend_language;
8161 cu->language_defn = language_def (cu->language);
8162
8163 /* The symbol tables are set up in read_type_unit_scope. */
8164 process_die (cu->dies, cu);
8165
8166 /* For now fudge the Go package. */
8167 if (cu->language == language_go)
8168 fixup_go_packaging (cu);
8169
8170 /* Now that we have processed all the DIEs in the CU, all the types
8171 should be complete, and it should now be safe to compute all of the
8172 physnames. */
8173 compute_delayed_physnames (cu);
8174 do_cleanups (delayed_list_cleanup);
8175
8176 /* TUs share symbol tables.
8177 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8178 of it with end_expandable_symtab. Otherwise, complete the addition of
8179 this TU's symbols to the existing symtab. */
43f3e411 8180 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 8181 {
43f3e411
DE
8182 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8183 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 8184
43f3e411 8185 if (cust != NULL)
f4dc4d17
DE
8186 {
8187 /* Set symtab language to language from DW_AT_language. If the
8188 compilation is from a C file generated by language preprocessors,
8189 do not set the language if it was already deduced by
8190 start_subfile. */
43f3e411
DE
8191 if (!(cu->language == language_c
8192 && COMPUNIT_FILETABS (cust)->language != language_c))
8193 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
8194 }
8195 }
8196 else
8197 {
0ab9ce85 8198 augment_type_symtab ();
43f3e411 8199 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
8200 }
8201
8202 if (dwarf2_per_objfile->using_index)
43f3e411 8203 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
8204 else
8205 {
8206 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8207 pst->compunit_symtab = cust;
f4dc4d17 8208 pst->readin = 1;
45cfd468 8209 }
f4dc4d17
DE
8210
8211 do_cleanups (back_to);
c906108c
SS
8212}
8213
95554aad
TT
8214/* Process an imported unit DIE. */
8215
8216static void
8217process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8218{
8219 struct attribute *attr;
8220
f4dc4d17
DE
8221 /* For now we don't handle imported units in type units. */
8222 if (cu->per_cu->is_debug_types)
8223 {
8224 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8225 " supported in type units [in module %s]"),
4262abfb 8226 objfile_name (cu->objfile));
f4dc4d17
DE
8227 }
8228
95554aad
TT
8229 attr = dwarf2_attr (die, DW_AT_import, cu);
8230 if (attr != NULL)
8231 {
8232 struct dwarf2_per_cu_data *per_cu;
95554aad 8233 sect_offset offset;
36586728 8234 int is_dwz;
95554aad
TT
8235
8236 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
8237 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8238 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 8239
69d751e3 8240 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8241 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8242 load_full_comp_unit (per_cu, cu->language);
8243
796a7ff8 8244 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8245 per_cu);
8246 }
8247}
8248
adde2bff
DE
8249/* Reset the in_process bit of a die. */
8250
8251static void
8252reset_die_in_process (void *arg)
8253{
9a3c8263 8254 struct die_info *die = (struct die_info *) arg;
8c3cb9fa 8255
adde2bff
DE
8256 die->in_process = 0;
8257}
8258
c906108c
SS
8259/* Process a die and its children. */
8260
8261static void
e7c27a73 8262process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8263{
adde2bff
DE
8264 struct cleanup *in_process;
8265
8266 /* We should only be processing those not already in process. */
8267 gdb_assert (!die->in_process);
8268
8269 die->in_process = 1;
8270 in_process = make_cleanup (reset_die_in_process,die);
8271
c906108c
SS
8272 switch (die->tag)
8273 {
8274 case DW_TAG_padding:
8275 break;
8276 case DW_TAG_compile_unit:
95554aad 8277 case DW_TAG_partial_unit:
e7c27a73 8278 read_file_scope (die, cu);
c906108c 8279 break;
348e048f
DE
8280 case DW_TAG_type_unit:
8281 read_type_unit_scope (die, cu);
8282 break;
c906108c 8283 case DW_TAG_subprogram:
c906108c 8284 case DW_TAG_inlined_subroutine:
edb3359d 8285 read_func_scope (die, cu);
c906108c
SS
8286 break;
8287 case DW_TAG_lexical_block:
14898363
L
8288 case DW_TAG_try_block:
8289 case DW_TAG_catch_block:
e7c27a73 8290 read_lexical_block_scope (die, cu);
c906108c 8291 break;
96408a79
SA
8292 case DW_TAG_GNU_call_site:
8293 read_call_site_scope (die, cu);
8294 break;
c906108c 8295 case DW_TAG_class_type:
680b30c7 8296 case DW_TAG_interface_type:
c906108c
SS
8297 case DW_TAG_structure_type:
8298 case DW_TAG_union_type:
134d01f1 8299 process_structure_scope (die, cu);
c906108c
SS
8300 break;
8301 case DW_TAG_enumeration_type:
134d01f1 8302 process_enumeration_scope (die, cu);
c906108c 8303 break;
134d01f1 8304
f792889a
DJ
8305 /* These dies have a type, but processing them does not create
8306 a symbol or recurse to process the children. Therefore we can
8307 read them on-demand through read_type_die. */
c906108c 8308 case DW_TAG_subroutine_type:
72019c9c 8309 case DW_TAG_set_type:
c906108c 8310 case DW_TAG_array_type:
c906108c 8311 case DW_TAG_pointer_type:
c906108c 8312 case DW_TAG_ptr_to_member_type:
c906108c 8313 case DW_TAG_reference_type:
c906108c 8314 case DW_TAG_string_type:
c906108c 8315 break;
134d01f1 8316
c906108c 8317 case DW_TAG_base_type:
a02abb62 8318 case DW_TAG_subrange_type:
cb249c71 8319 case DW_TAG_typedef:
134d01f1
DJ
8320 /* Add a typedef symbol for the type definition, if it has a
8321 DW_AT_name. */
f792889a 8322 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8323 break;
c906108c 8324 case DW_TAG_common_block:
e7c27a73 8325 read_common_block (die, cu);
c906108c
SS
8326 break;
8327 case DW_TAG_common_inclusion:
8328 break;
d9fa45fe 8329 case DW_TAG_namespace:
4d4ec4e5 8330 cu->processing_has_namespace_info = 1;
e7c27a73 8331 read_namespace (die, cu);
d9fa45fe 8332 break;
5d7cb8df 8333 case DW_TAG_module:
4d4ec4e5 8334 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8335 read_module (die, cu);
8336 break;
d9fa45fe 8337 case DW_TAG_imported_declaration:
74921315
KS
8338 cu->processing_has_namespace_info = 1;
8339 if (read_namespace_alias (die, cu))
8340 break;
8341 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8342 case DW_TAG_imported_module:
4d4ec4e5 8343 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8344 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8345 || cu->language != language_fortran))
8346 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8347 dwarf_tag_name (die->tag));
8348 read_import_statement (die, cu);
d9fa45fe 8349 break;
95554aad
TT
8350
8351 case DW_TAG_imported_unit:
8352 process_imported_unit_die (die, cu);
8353 break;
8354
c906108c 8355 default:
e7c27a73 8356 new_symbol (die, NULL, cu);
c906108c
SS
8357 break;
8358 }
adde2bff
DE
8359
8360 do_cleanups (in_process);
c906108c 8361}
ca69b9e6
DE
8362\f
8363/* DWARF name computation. */
c906108c 8364
94af9270
KS
8365/* A helper function for dwarf2_compute_name which determines whether DIE
8366 needs to have the name of the scope prepended to the name listed in the
8367 die. */
8368
8369static int
8370die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8371{
1c809c68
TT
8372 struct attribute *attr;
8373
94af9270
KS
8374 switch (die->tag)
8375 {
8376 case DW_TAG_namespace:
8377 case DW_TAG_typedef:
8378 case DW_TAG_class_type:
8379 case DW_TAG_interface_type:
8380 case DW_TAG_structure_type:
8381 case DW_TAG_union_type:
8382 case DW_TAG_enumeration_type:
8383 case DW_TAG_enumerator:
8384 case DW_TAG_subprogram:
08a76f8a 8385 case DW_TAG_inlined_subroutine:
94af9270 8386 case DW_TAG_member:
74921315 8387 case DW_TAG_imported_declaration:
94af9270
KS
8388 return 1;
8389
8390 case DW_TAG_variable:
c2b0a229 8391 case DW_TAG_constant:
94af9270
KS
8392 /* We only need to prefix "globally" visible variables. These include
8393 any variable marked with DW_AT_external or any variable that
8394 lives in a namespace. [Variables in anonymous namespaces
8395 require prefixing, but they are not DW_AT_external.] */
8396
8397 if (dwarf2_attr (die, DW_AT_specification, cu))
8398 {
8399 struct dwarf2_cu *spec_cu = cu;
9a619af0 8400
94af9270
KS
8401 return die_needs_namespace (die_specification (die, &spec_cu),
8402 spec_cu);
8403 }
8404
1c809c68 8405 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8406 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8407 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8408 return 0;
8409 /* A variable in a lexical block of some kind does not need a
8410 namespace, even though in C++ such variables may be external
8411 and have a mangled name. */
8412 if (die->parent->tag == DW_TAG_lexical_block
8413 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8414 || die->parent->tag == DW_TAG_catch_block
8415 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8416 return 0;
8417 return 1;
94af9270
KS
8418
8419 default:
8420 return 0;
8421 }
8422}
8423
98bfdba5
PA
8424/* Retrieve the last character from a mem_file. */
8425
8426static void
8427do_ui_file_peek_last (void *object, const char *buffer, long length)
8428{
8429 char *last_char_p = (char *) object;
8430
8431 if (length > 0)
8432 *last_char_p = buffer[length - 1];
8433}
8434
94af9270 8435/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
8436 compute the physname for the object, which include a method's:
8437 - formal parameters (C++/Java),
8438 - receiver type (Go),
8439 - return type (Java).
8440
8441 The term "physname" is a bit confusing.
8442 For C++, for example, it is the demangled name.
8443 For Go, for example, it's the mangled name.
94af9270 8444
af6b7be1
JB
8445 For Ada, return the DIE's linkage name rather than the fully qualified
8446 name. PHYSNAME is ignored..
8447
94af9270
KS
8448 The result is allocated on the objfile_obstack and canonicalized. */
8449
8450static const char *
15d034d0
TT
8451dwarf2_compute_name (const char *name,
8452 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8453 int physname)
8454{
bb5ed363
DE
8455 struct objfile *objfile = cu->objfile;
8456
94af9270
KS
8457 if (name == NULL)
8458 name = dwarf2_name (die, cu);
8459
2ee7123e
DE
8460 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8461 but otherwise compute it by typename_concat inside GDB.
8462 FIXME: Actually this is not really true, or at least not always true.
8463 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8464 Fortran names because there is no mangling standard. So new_symbol_full
8465 will set the demangled name to the result of dwarf2_full_name, and it is
8466 the demangled name that GDB uses if it exists. */
f55ee35c
JK
8467 if (cu->language == language_ada
8468 || (cu->language == language_fortran && physname))
8469 {
8470 /* For Ada unit, we prefer the linkage name over the name, as
8471 the former contains the exported name, which the user expects
8472 to be able to reference. Ideally, we want the user to be able
8473 to reference this entity using either natural or linkage name,
8474 but we haven't started looking at this enhancement yet. */
2ee7123e 8475 const char *linkage_name;
f55ee35c 8476
2ee7123e
DE
8477 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8478 if (linkage_name == NULL)
8479 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8480 if (linkage_name != NULL)
8481 return linkage_name;
f55ee35c
JK
8482 }
8483
94af9270
KS
8484 /* These are the only languages we know how to qualify names in. */
8485 if (name != NULL
f55ee35c 8486 && (cu->language == language_cplus || cu->language == language_java
c44af4eb
TT
8487 || cu->language == language_fortran || cu->language == language_d
8488 || cu->language == language_rust))
94af9270
KS
8489 {
8490 if (die_needs_namespace (die, cu))
8491 {
8492 long length;
0d5cff50 8493 const char *prefix;
94af9270 8494 struct ui_file *buf;
34a68019
TT
8495 char *intermediate_name;
8496 const char *canonical_name = NULL;
94af9270
KS
8497
8498 prefix = determine_prefix (die, cu);
8499 buf = mem_fileopen ();
8500 if (*prefix != '\0')
8501 {
f55ee35c
JK
8502 char *prefixed_name = typename_concat (NULL, prefix, name,
8503 physname, cu);
9a619af0 8504
94af9270
KS
8505 fputs_unfiltered (prefixed_name, buf);
8506 xfree (prefixed_name);
8507 }
8508 else
62d5b8da 8509 fputs_unfiltered (name, buf);
94af9270 8510
98bfdba5
PA
8511 /* Template parameters may be specified in the DIE's DW_AT_name, or
8512 as children with DW_TAG_template_type_param or
8513 DW_TAG_value_type_param. If the latter, add them to the name
8514 here. If the name already has template parameters, then
8515 skip this step; some versions of GCC emit both, and
8516 it is more efficient to use the pre-computed name.
8517
8518 Something to keep in mind about this process: it is very
8519 unlikely, or in some cases downright impossible, to produce
8520 something that will match the mangled name of a function.
8521 If the definition of the function has the same debug info,
8522 we should be able to match up with it anyway. But fallbacks
8523 using the minimal symbol, for instance to find a method
8524 implemented in a stripped copy of libstdc++, will not work.
8525 If we do not have debug info for the definition, we will have to
8526 match them up some other way.
8527
8528 When we do name matching there is a related problem with function
8529 templates; two instantiated function templates are allowed to
8530 differ only by their return types, which we do not add here. */
8531
8532 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8533 {
8534 struct attribute *attr;
8535 struct die_info *child;
8536 int first = 1;
8537
8538 die->building_fullname = 1;
8539
8540 for (child = die->child; child != NULL; child = child->sibling)
8541 {
8542 struct type *type;
12df843f 8543 LONGEST value;
d521ce57 8544 const gdb_byte *bytes;
98bfdba5
PA
8545 struct dwarf2_locexpr_baton *baton;
8546 struct value *v;
8547
8548 if (child->tag != DW_TAG_template_type_param
8549 && child->tag != DW_TAG_template_value_param)
8550 continue;
8551
8552 if (first)
8553 {
8554 fputs_unfiltered ("<", buf);
8555 first = 0;
8556 }
8557 else
8558 fputs_unfiltered (", ", buf);
8559
8560 attr = dwarf2_attr (child, DW_AT_type, cu);
8561 if (attr == NULL)
8562 {
8563 complaint (&symfile_complaints,
8564 _("template parameter missing DW_AT_type"));
8565 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8566 continue;
8567 }
8568 type = die_type (child, cu);
8569
8570 if (child->tag == DW_TAG_template_type_param)
8571 {
79d43c61 8572 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8573 continue;
8574 }
8575
8576 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8577 if (attr == NULL)
8578 {
8579 complaint (&symfile_complaints,
3e43a32a
MS
8580 _("template parameter missing "
8581 "DW_AT_const_value"));
98bfdba5
PA
8582 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8583 continue;
8584 }
8585
8586 dwarf2_const_value_attr (attr, type, name,
8587 &cu->comp_unit_obstack, cu,
8588 &value, &bytes, &baton);
8589
8590 if (TYPE_NOSIGN (type))
8591 /* GDB prints characters as NUMBER 'CHAR'. If that's
8592 changed, this can use value_print instead. */
8593 c_printchar (value, type, buf);
8594 else
8595 {
8596 struct value_print_options opts;
8597
8598 if (baton != NULL)
8599 v = dwarf2_evaluate_loc_desc (type, NULL,
8600 baton->data,
8601 baton->size,
8602 baton->per_cu);
8603 else if (bytes != NULL)
8604 {
8605 v = allocate_value (type);
8606 memcpy (value_contents_writeable (v), bytes,
8607 TYPE_LENGTH (type));
8608 }
8609 else
8610 v = value_from_longest (type, value);
8611
3e43a32a
MS
8612 /* Specify decimal so that we do not depend on
8613 the radix. */
98bfdba5
PA
8614 get_formatted_print_options (&opts, 'd');
8615 opts.raw = 1;
8616 value_print (v, buf, &opts);
8617 release_value (v);
8618 value_free (v);
8619 }
8620 }
8621
8622 die->building_fullname = 0;
8623
8624 if (!first)
8625 {
8626 /* Close the argument list, with a space if necessary
8627 (nested templates). */
8628 char last_char = '\0';
8629 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8630 if (last_char == '>')
8631 fputs_unfiltered (" >", buf);
8632 else
8633 fputs_unfiltered (">", buf);
8634 }
8635 }
8636
94af9270
KS
8637 /* For Java and C++ methods, append formal parameter type
8638 information, if PHYSNAME. */
6e70227d 8639
94af9270
KS
8640 if (physname && die->tag == DW_TAG_subprogram
8641 && (cu->language == language_cplus
8642 || cu->language == language_java))
8643 {
8644 struct type *type = read_type_die (die, cu);
8645
79d43c61
TT
8646 c_type_print_args (type, buf, 1, cu->language,
8647 &type_print_raw_options);
94af9270
KS
8648
8649 if (cu->language == language_java)
8650 {
8651 /* For java, we must append the return type to method
0963b4bd 8652 names. */
94af9270
KS
8653 if (die->tag == DW_TAG_subprogram)
8654 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8655 0, 0, &type_print_raw_options);
94af9270
KS
8656 }
8657 else if (cu->language == language_cplus)
8658 {
60430eff
DJ
8659 /* Assume that an artificial first parameter is
8660 "this", but do not crash if it is not. RealView
8661 marks unnamed (and thus unused) parameters as
8662 artificial; there is no way to differentiate
8663 the two cases. */
94af9270
KS
8664 if (TYPE_NFIELDS (type) > 0
8665 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8666 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8667 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8668 0))))
94af9270
KS
8669 fputs_unfiltered (" const", buf);
8670 }
8671 }
8672
34a68019 8673 intermediate_name = ui_file_xstrdup (buf, &length);
94af9270
KS
8674 ui_file_delete (buf);
8675
8676 if (cu->language == language_cplus)
34a68019
TT
8677 canonical_name
8678 = dwarf2_canonicalize_name (intermediate_name, cu,
8679 &objfile->per_bfd->storage_obstack);
8680
8681 /* If we only computed INTERMEDIATE_NAME, or if
8682 INTERMEDIATE_NAME is already canonical, then we need to
8683 copy it to the appropriate obstack. */
8684 if (canonical_name == NULL || canonical_name == intermediate_name)
224c3ddb
SM
8685 name = ((const char *)
8686 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8687 intermediate_name,
8688 strlen (intermediate_name)));
34a68019
TT
8689 else
8690 name = canonical_name;
9a619af0 8691
34a68019 8692 xfree (intermediate_name);
94af9270
KS
8693 }
8694 }
8695
8696 return name;
8697}
8698
0114d602
DJ
8699/* Return the fully qualified name of DIE, based on its DW_AT_name.
8700 If scope qualifiers are appropriate they will be added. The result
34a68019 8701 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8702 not have a name. NAME may either be from a previous call to
8703 dwarf2_name or NULL.
8704
0963b4bd 8705 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8706
8707static const char *
15d034d0 8708dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8709{
94af9270
KS
8710 return dwarf2_compute_name (name, die, cu, 0);
8711}
0114d602 8712
94af9270
KS
8713/* Construct a physname for the given DIE in CU. NAME may either be
8714 from a previous call to dwarf2_name or NULL. The result will be
8715 allocated on the objfile_objstack or NULL if the DIE does not have a
8716 name.
0114d602 8717
94af9270 8718 The output string will be canonicalized (if C++/Java). */
0114d602 8719
94af9270 8720static const char *
15d034d0 8721dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8722{
bb5ed363 8723 struct objfile *objfile = cu->objfile;
900e11f9
JK
8724 const char *retval, *mangled = NULL, *canon = NULL;
8725 struct cleanup *back_to;
8726 int need_copy = 1;
8727
8728 /* In this case dwarf2_compute_name is just a shortcut not building anything
8729 on its own. */
8730 if (!die_needs_namespace (die, cu))
8731 return dwarf2_compute_name (name, die, cu, 1);
8732
8733 back_to = make_cleanup (null_cleanup, NULL);
8734
7d45c7c3
KB
8735 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8736 if (mangled == NULL)
8737 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
900e11f9 8738
e98c9e7c
TT
8739 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
8740 See https://github.com/rust-lang/rust/issues/32925. */
8741 if (cu->language == language_rust && mangled != NULL
8742 && strchr (mangled, '{') != NULL)
8743 mangled = NULL;
8744
900e11f9
JK
8745 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8746 has computed. */
7d45c7c3 8747 if (mangled != NULL)
900e11f9
JK
8748 {
8749 char *demangled;
8750
900e11f9
JK
8751 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8752 type. It is easier for GDB users to search for such functions as
8753 `name(params)' than `long name(params)'. In such case the minimal
8754 symbol names do not match the full symbol names but for template
8755 functions there is never a need to look up their definition from their
8756 declaration so the only disadvantage remains the minimal symbol
8757 variant `long name(params)' does not have the proper inferior type.
8758 */
8759
a766d390
DE
8760 if (cu->language == language_go)
8761 {
8762 /* This is a lie, but we already lie to the caller new_symbol_full.
8763 new_symbol_full assumes we return the mangled name.
8764 This just undoes that lie until things are cleaned up. */
8765 demangled = NULL;
8766 }
8767 else
8768 {
8de20a37
TT
8769 demangled = gdb_demangle (mangled,
8770 (DMGL_PARAMS | DMGL_ANSI
8771 | (cu->language == language_java
8772 ? DMGL_JAVA | DMGL_RET_POSTFIX
8773 : DMGL_RET_DROP)));
a766d390 8774 }
900e11f9
JK
8775 if (demangled)
8776 {
8777 make_cleanup (xfree, demangled);
8778 canon = demangled;
8779 }
8780 else
8781 {
8782 canon = mangled;
8783 need_copy = 0;
8784 }
8785 }
8786
8787 if (canon == NULL || check_physname)
8788 {
8789 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8790
8791 if (canon != NULL && strcmp (physname, canon) != 0)
8792 {
8793 /* It may not mean a bug in GDB. The compiler could also
8794 compute DW_AT_linkage_name incorrectly. But in such case
8795 GDB would need to be bug-to-bug compatible. */
8796
8797 complaint (&symfile_complaints,
8798 _("Computed physname <%s> does not match demangled <%s> "
8799 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8800 physname, canon, mangled, die->offset.sect_off,
8801 objfile_name (objfile));
900e11f9
JK
8802
8803 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8804 is available here - over computed PHYSNAME. It is safer
8805 against both buggy GDB and buggy compilers. */
8806
8807 retval = canon;
8808 }
8809 else
8810 {
8811 retval = physname;
8812 need_copy = 0;
8813 }
8814 }
8815 else
8816 retval = canon;
8817
8818 if (need_copy)
224c3ddb
SM
8819 retval = ((const char *)
8820 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8821 retval, strlen (retval)));
900e11f9
JK
8822
8823 do_cleanups (back_to);
8824 return retval;
0114d602
DJ
8825}
8826
74921315
KS
8827/* Inspect DIE in CU for a namespace alias. If one exists, record
8828 a new symbol for it.
8829
8830 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8831
8832static int
8833read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8834{
8835 struct attribute *attr;
8836
8837 /* If the die does not have a name, this is not a namespace
8838 alias. */
8839 attr = dwarf2_attr (die, DW_AT_name, cu);
8840 if (attr != NULL)
8841 {
8842 int num;
8843 struct die_info *d = die;
8844 struct dwarf2_cu *imported_cu = cu;
8845
8846 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8847 keep inspecting DIEs until we hit the underlying import. */
8848#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8849 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8850 {
8851 attr = dwarf2_attr (d, DW_AT_import, cu);
8852 if (attr == NULL)
8853 break;
8854
8855 d = follow_die_ref (d, attr, &imported_cu);
8856 if (d->tag != DW_TAG_imported_declaration)
8857 break;
8858 }
8859
8860 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8861 {
8862 complaint (&symfile_complaints,
8863 _("DIE at 0x%x has too many recursively imported "
8864 "declarations"), d->offset.sect_off);
8865 return 0;
8866 }
8867
8868 if (attr != NULL)
8869 {
8870 struct type *type;
8871 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8872
8873 type = get_die_type_at_offset (offset, cu->per_cu);
8874 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8875 {
8876 /* This declaration is a global namespace alias. Add
8877 a symbol for it whose type is the aliased namespace. */
8878 new_symbol (die, type, cu);
8879 return 1;
8880 }
8881 }
8882 }
8883
8884 return 0;
8885}
8886
22cee43f
PMR
8887/* Return the using directives repository (global or local?) to use in the
8888 current context for LANGUAGE.
8889
8890 For Ada, imported declarations can materialize renamings, which *may* be
8891 global. However it is impossible (for now?) in DWARF to distinguish
8892 "external" imported declarations and "static" ones. As all imported
8893 declarations seem to be static in all other languages, make them all CU-wide
8894 global only in Ada. */
8895
8896static struct using_direct **
8897using_directives (enum language language)
8898{
8899 if (language == language_ada && context_stack_depth == 0)
8900 return &global_using_directives;
8901 else
8902 return &local_using_directives;
8903}
8904
27aa8d6a
SW
8905/* Read the import statement specified by the given die and record it. */
8906
8907static void
8908read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8909{
bb5ed363 8910 struct objfile *objfile = cu->objfile;
27aa8d6a 8911 struct attribute *import_attr;
32019081 8912 struct die_info *imported_die, *child_die;
de4affc9 8913 struct dwarf2_cu *imported_cu;
27aa8d6a 8914 const char *imported_name;
794684b6 8915 const char *imported_name_prefix;
13387711
SW
8916 const char *canonical_name;
8917 const char *import_alias;
8918 const char *imported_declaration = NULL;
794684b6 8919 const char *import_prefix;
32019081
JK
8920 VEC (const_char_ptr) *excludes = NULL;
8921 struct cleanup *cleanups;
13387711 8922
27aa8d6a
SW
8923 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8924 if (import_attr == NULL)
8925 {
8926 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8927 dwarf_tag_name (die->tag));
8928 return;
8929 }
8930
de4affc9
CC
8931 imported_cu = cu;
8932 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8933 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8934 if (imported_name == NULL)
8935 {
8936 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8937
8938 The import in the following code:
8939 namespace A
8940 {
8941 typedef int B;
8942 }
8943
8944 int main ()
8945 {
8946 using A::B;
8947 B b;
8948 return b;
8949 }
8950
8951 ...
8952 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8953 <52> DW_AT_decl_file : 1
8954 <53> DW_AT_decl_line : 6
8955 <54> DW_AT_import : <0x75>
8956 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8957 <59> DW_AT_name : B
8958 <5b> DW_AT_decl_file : 1
8959 <5c> DW_AT_decl_line : 2
8960 <5d> DW_AT_type : <0x6e>
8961 ...
8962 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8963 <76> DW_AT_byte_size : 4
8964 <77> DW_AT_encoding : 5 (signed)
8965
8966 imports the wrong die ( 0x75 instead of 0x58 ).
8967 This case will be ignored until the gcc bug is fixed. */
8968 return;
8969 }
8970
82856980
SW
8971 /* Figure out the local name after import. */
8972 import_alias = dwarf2_name (die, cu);
27aa8d6a 8973
794684b6
SW
8974 /* Figure out where the statement is being imported to. */
8975 import_prefix = determine_prefix (die, cu);
8976
8977 /* Figure out what the scope of the imported die is and prepend it
8978 to the name of the imported die. */
de4affc9 8979 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8980
f55ee35c
JK
8981 if (imported_die->tag != DW_TAG_namespace
8982 && imported_die->tag != DW_TAG_module)
794684b6 8983 {
13387711
SW
8984 imported_declaration = imported_name;
8985 canonical_name = imported_name_prefix;
794684b6 8986 }
13387711 8987 else if (strlen (imported_name_prefix) > 0)
12aaed36 8988 canonical_name = obconcat (&objfile->objfile_obstack,
45280282
IB
8989 imported_name_prefix,
8990 (cu->language == language_d ? "." : "::"),
8991 imported_name, (char *) NULL);
13387711
SW
8992 else
8993 canonical_name = imported_name;
794684b6 8994
32019081
JK
8995 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8996
8997 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8998 for (child_die = die->child; child_die && child_die->tag;
8999 child_die = sibling_die (child_die))
9000 {
9001 /* DWARF-4: A Fortran use statement with a “rename list” may be
9002 represented by an imported module entry with an import attribute
9003 referring to the module and owned entries corresponding to those
9004 entities that are renamed as part of being imported. */
9005
9006 if (child_die->tag != DW_TAG_imported_declaration)
9007 {
9008 complaint (&symfile_complaints,
9009 _("child DW_TAG_imported_declaration expected "
9010 "- DIE at 0x%x [in module %s]"),
4262abfb 9011 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
9012 continue;
9013 }
9014
9015 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
9016 if (import_attr == NULL)
9017 {
9018 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
9019 dwarf_tag_name (child_die->tag));
9020 continue;
9021 }
9022
9023 imported_cu = cu;
9024 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9025 &imported_cu);
9026 imported_name = dwarf2_name (imported_die, imported_cu);
9027 if (imported_name == NULL)
9028 {
9029 complaint (&symfile_complaints,
9030 _("child DW_TAG_imported_declaration has unknown "
9031 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 9032 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
9033 continue;
9034 }
9035
9036 VEC_safe_push (const_char_ptr, excludes, imported_name);
9037
9038 process_die (child_die, cu);
9039 }
9040
22cee43f
PMR
9041 add_using_directive (using_directives (cu->language),
9042 import_prefix,
9043 canonical_name,
9044 import_alias,
9045 imported_declaration,
9046 excludes,
9047 0,
9048 &objfile->objfile_obstack);
32019081
JK
9049
9050 do_cleanups (cleanups);
27aa8d6a
SW
9051}
9052
f4dc4d17 9053/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 9054
cb1df416
DJ
9055static void
9056free_cu_line_header (void *arg)
9057{
9a3c8263 9058 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
cb1df416
DJ
9059
9060 free_line_header (cu->line_header);
9061 cu->line_header = NULL;
9062}
9063
1b80a9fa
JK
9064/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9065 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9066 this, it was first present in GCC release 4.3.0. */
9067
9068static int
9069producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9070{
9071 if (!cu->checked_producer)
9072 check_producer (cu);
9073
9074 return cu->producer_is_gcc_lt_4_3;
9075}
9076
9291a0cd
TT
9077static void
9078find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 9079 const char **name, const char **comp_dir)
9291a0cd 9080{
9291a0cd
TT
9081 /* Find the filename. Do not use dwarf2_name here, since the filename
9082 is not a source language identifier. */
7d45c7c3
KB
9083 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9084 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9291a0cd 9085
7d45c7c3
KB
9086 if (*comp_dir == NULL
9087 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9088 && IS_ABSOLUTE_PATH (*name))
9291a0cd 9089 {
15d034d0
TT
9090 char *d = ldirname (*name);
9091
9092 *comp_dir = d;
9093 if (d != NULL)
9094 make_cleanup (xfree, d);
9291a0cd
TT
9095 }
9096 if (*comp_dir != NULL)
9097 {
9098 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9099 directory, get rid of it. */
e6a959d6 9100 const char *cp = strchr (*comp_dir, ':');
9291a0cd
TT
9101
9102 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9103 *comp_dir = cp + 1;
9104 }
9105
9106 if (*name == NULL)
9107 *name = "<unknown>";
9108}
9109
f4dc4d17
DE
9110/* Handle DW_AT_stmt_list for a compilation unit.
9111 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
9112 COMP_DIR is the compilation directory. LOWPC is passed to
9113 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
9114
9115static void
9116handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 9117 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 9118{
527f3840 9119 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 9120 struct attribute *attr;
527f3840
JK
9121 unsigned int line_offset;
9122 struct line_header line_header_local;
9123 hashval_t line_header_local_hash;
9124 unsigned u;
9125 void **slot;
9126 int decode_mapping;
2ab95328 9127
f4dc4d17
DE
9128 gdb_assert (! cu->per_cu->is_debug_types);
9129
2ab95328 9130 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
9131 if (attr == NULL)
9132 return;
9133
9134 line_offset = DW_UNSND (attr);
9135
9136 /* The line header hash table is only created if needed (it exists to
9137 prevent redundant reading of the line table for partial_units).
9138 If we're given a partial_unit, we'll need it. If we're given a
9139 compile_unit, then use the line header hash table if it's already
9140 created, but don't create one just yet. */
9141
9142 if (dwarf2_per_objfile->line_header_hash == NULL
9143 && die->tag == DW_TAG_partial_unit)
2ab95328 9144 {
527f3840
JK
9145 dwarf2_per_objfile->line_header_hash
9146 = htab_create_alloc_ex (127, line_header_hash_voidp,
9147 line_header_eq_voidp,
9148 free_line_header_voidp,
9149 &objfile->objfile_obstack,
9150 hashtab_obstack_allocate,
9151 dummy_obstack_deallocate);
9152 }
2ab95328 9153
527f3840
JK
9154 line_header_local.offset.sect_off = line_offset;
9155 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9156 line_header_local_hash = line_header_hash (&line_header_local);
9157 if (dwarf2_per_objfile->line_header_hash != NULL)
9158 {
9159 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9160 &line_header_local,
9161 line_header_local_hash, NO_INSERT);
9162
9163 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9164 is not present in *SLOT (since if there is something in *SLOT then
9165 it will be for a partial_unit). */
9166 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 9167 {
527f3840 9168 gdb_assert (*slot != NULL);
9a3c8263 9169 cu->line_header = (struct line_header *) *slot;
527f3840 9170 return;
dee91e82 9171 }
2ab95328 9172 }
527f3840
JK
9173
9174 /* dwarf_decode_line_header does not yet provide sufficient information.
9175 We always have to call also dwarf_decode_lines for it. */
9176 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9177 if (cu->line_header == NULL)
9178 return;
9179
9180 if (dwarf2_per_objfile->line_header_hash == NULL)
9181 slot = NULL;
9182 else
9183 {
9184 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9185 &line_header_local,
9186 line_header_local_hash, INSERT);
9187 gdb_assert (slot != NULL);
9188 }
9189 if (slot != NULL && *slot == NULL)
9190 {
9191 /* This newly decoded line number information unit will be owned
9192 by line_header_hash hash table. */
9193 *slot = cu->line_header;
9194 }
9195 else
9196 {
9197 /* We cannot free any current entry in (*slot) as that struct line_header
9198 may be already used by multiple CUs. Create only temporary decoded
9199 line_header for this CU - it may happen at most once for each line
9200 number information unit. And if we're not using line_header_hash
9201 then this is what we want as well. */
9202 gdb_assert (die->tag != DW_TAG_partial_unit);
9203 make_cleanup (free_cu_line_header, cu);
9204 }
9205 decode_mapping = (die->tag != DW_TAG_partial_unit);
9206 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9207 decode_mapping);
2ab95328
TT
9208}
9209
95554aad 9210/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 9211
c906108c 9212static void
e7c27a73 9213read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9214{
dee91e82 9215 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 9216 struct gdbarch *gdbarch = get_objfile_arch (objfile);
debd256d 9217 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 9218 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9219 CORE_ADDR highpc = ((CORE_ADDR) 0);
9220 struct attribute *attr;
15d034d0
TT
9221 const char *name = NULL;
9222 const char *comp_dir = NULL;
c906108c 9223 struct die_info *child_die;
e142c38c 9224 CORE_ADDR baseaddr;
6e70227d 9225
e142c38c 9226 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9227
fae299cd 9228 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9229
9230 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9231 from finish_block. */
2acceee2 9232 if (lowpc == ((CORE_ADDR) -1))
c906108c 9233 lowpc = highpc;
3e29f34a 9234 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 9235
9291a0cd 9236 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 9237
95554aad 9238 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9239
f4b8a18d
KW
9240 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9241 standardised yet. As a workaround for the language detection we fall
9242 back to the DW_AT_producer string. */
9243 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9244 cu->language = language_opencl;
9245
3019eac3
DE
9246 /* Similar hack for Go. */
9247 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9248 set_cu_language (DW_LANG_Go, cu);
9249
f4dc4d17 9250 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
9251
9252 /* Decode line number information if present. We do this before
9253 processing child DIEs, so that the line header table is available
9254 for DW_AT_decl_file. */
c3b7b696 9255 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
3019eac3
DE
9256
9257 /* Process all dies in compilation unit. */
9258 if (die->child != NULL)
9259 {
9260 child_die = die->child;
9261 while (child_die && child_die->tag)
9262 {
9263 process_die (child_die, cu);
9264 child_die = sibling_die (child_die);
9265 }
9266 }
9267
9268 /* Decode macro information, if present. Dwarf 2 macro information
9269 refers to information in the line number info statement program
9270 header, so we can only read it if we've read the header
9271 successfully. */
9272 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9273 if (attr && cu->line_header)
9274 {
9275 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9276 complaint (&symfile_complaints,
9277 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9278
43f3e411 9279 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
9280 }
9281 else
9282 {
9283 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9284 if (attr && cu->line_header)
9285 {
9286 unsigned int macro_offset = DW_UNSND (attr);
9287
43f3e411 9288 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
9289 }
9290 }
9291
9292 do_cleanups (back_to);
9293}
9294
f4dc4d17
DE
9295/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9296 Create the set of symtabs used by this TU, or if this TU is sharing
9297 symtabs with another TU and the symtabs have already been created
9298 then restore those symtabs in the line header.
9299 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9300
9301static void
f4dc4d17 9302setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9303{
f4dc4d17
DE
9304 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9305 struct type_unit_group *tu_group;
9306 int first_time;
9307 struct line_header *lh;
3019eac3 9308 struct attribute *attr;
f4dc4d17 9309 unsigned int i, line_offset;
0186c6a7 9310 struct signatured_type *sig_type;
3019eac3 9311
f4dc4d17 9312 gdb_assert (per_cu->is_debug_types);
0186c6a7 9313 sig_type = (struct signatured_type *) per_cu;
3019eac3 9314
f4dc4d17 9315 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9316
f4dc4d17 9317 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9318 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9319 if (sig_type->type_unit_group == NULL)
9320 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9321 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9322
9323 /* If we've already processed this stmt_list there's no real need to
9324 do it again, we could fake it and just recreate the part we need
9325 (file name,index -> symtab mapping). If data shows this optimization
9326 is useful we can do it then. */
43f3e411 9327 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
9328
9329 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9330 debug info. */
9331 lh = NULL;
9332 if (attr != NULL)
3019eac3 9333 {
f4dc4d17
DE
9334 line_offset = DW_UNSND (attr);
9335 lh = dwarf_decode_line_header (line_offset, cu);
9336 }
9337 if (lh == NULL)
9338 {
9339 if (first_time)
9340 dwarf2_start_symtab (cu, "", NULL, 0);
9341 else
9342 {
9343 gdb_assert (tu_group->symtabs == NULL);
0ab9ce85 9344 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9345 }
f4dc4d17 9346 return;
3019eac3
DE
9347 }
9348
f4dc4d17
DE
9349 cu->line_header = lh;
9350 make_cleanup (free_cu_line_header, cu);
3019eac3 9351
f4dc4d17
DE
9352 if (first_time)
9353 {
43f3e411 9354 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9355
1fd60fc0
DE
9356 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9357 still initializing it, and our caller (a few levels up)
9358 process_full_type_unit still needs to know if this is the first
9359 time. */
9360
f4dc4d17
DE
9361 tu_group->num_symtabs = lh->num_file_names;
9362 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 9363
f4dc4d17
DE
9364 for (i = 0; i < lh->num_file_names; ++i)
9365 {
d521ce57 9366 const char *dir = NULL;
f4dc4d17 9367 struct file_entry *fe = &lh->file_names[i];
3019eac3 9368
afa6c9ab 9369 if (fe->dir_index && lh->include_dirs != NULL)
f4dc4d17 9370 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 9371 dwarf2_start_subfile (fe->name, dir);
3019eac3 9372
f4dc4d17
DE
9373 if (current_subfile->symtab == NULL)
9374 {
9375 /* NOTE: start_subfile will recognize when it's been passed
9376 a file it has already seen. So we can't assume there's a
43f3e411 9377 simple mapping from lh->file_names to subfiles, plus
f4dc4d17 9378 lh->file_names may contain dups. */
43f3e411
DE
9379 current_subfile->symtab
9380 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
9381 }
9382
9383 fe->symtab = current_subfile->symtab;
9384 tu_group->symtabs[i] = fe->symtab;
9385 }
9386 }
9387 else
3019eac3 9388 {
0ab9ce85 9389 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17
DE
9390
9391 for (i = 0; i < lh->num_file_names; ++i)
9392 {
9393 struct file_entry *fe = &lh->file_names[i];
9394
9395 fe->symtab = tu_group->symtabs[i];
9396 }
3019eac3
DE
9397 }
9398
f4dc4d17
DE
9399 /* The main symtab is allocated last. Type units don't have DW_AT_name
9400 so they don't have a "real" (so to speak) symtab anyway.
9401 There is later code that will assign the main symtab to all symbols
9402 that don't have one. We need to handle the case of a symbol with a
9403 missing symtab (DW_AT_decl_file) anyway. */
9404}
3019eac3 9405
f4dc4d17
DE
9406/* Process DW_TAG_type_unit.
9407 For TUs we want to skip the first top level sibling if it's not the
9408 actual type being defined by this TU. In this case the first top
9409 level sibling is there to provide context only. */
3019eac3 9410
f4dc4d17
DE
9411static void
9412read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9413{
9414 struct die_info *child_die;
3019eac3 9415
f4dc4d17
DE
9416 prepare_one_comp_unit (cu, die, language_minimal);
9417
9418 /* Initialize (or reinitialize) the machinery for building symtabs.
9419 We do this before processing child DIEs, so that the line header table
9420 is available for DW_AT_decl_file. */
9421 setup_type_unit_groups (die, cu);
9422
9423 if (die->child != NULL)
9424 {
9425 child_die = die->child;
9426 while (child_die && child_die->tag)
9427 {
9428 process_die (child_die, cu);
9429 child_die = sibling_die (child_die);
9430 }
9431 }
3019eac3
DE
9432}
9433\f
80626a55
DE
9434/* DWO/DWP files.
9435
9436 http://gcc.gnu.org/wiki/DebugFission
9437 http://gcc.gnu.org/wiki/DebugFissionDWP
9438
9439 To simplify handling of both DWO files ("object" files with the DWARF info)
9440 and DWP files (a file with the DWOs packaged up into one file), we treat
9441 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9442
9443static hashval_t
9444hash_dwo_file (const void *item)
9445{
9a3c8263 9446 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
a2ce51a0 9447 hashval_t hash;
3019eac3 9448
a2ce51a0
DE
9449 hash = htab_hash_string (dwo_file->dwo_name);
9450 if (dwo_file->comp_dir != NULL)
9451 hash += htab_hash_string (dwo_file->comp_dir);
9452 return hash;
3019eac3
DE
9453}
9454
9455static int
9456eq_dwo_file (const void *item_lhs, const void *item_rhs)
9457{
9a3c8263
SM
9458 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9459 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
3019eac3 9460
a2ce51a0
DE
9461 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9462 return 0;
9463 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9464 return lhs->comp_dir == rhs->comp_dir;
9465 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9466}
9467
9468/* Allocate a hash table for DWO files. */
9469
9470static htab_t
9471allocate_dwo_file_hash_table (void)
9472{
9473 struct objfile *objfile = dwarf2_per_objfile->objfile;
9474
9475 return htab_create_alloc_ex (41,
9476 hash_dwo_file,
9477 eq_dwo_file,
9478 NULL,
9479 &objfile->objfile_obstack,
9480 hashtab_obstack_allocate,
9481 dummy_obstack_deallocate);
9482}
9483
80626a55
DE
9484/* Lookup DWO file DWO_NAME. */
9485
9486static void **
0ac5b59e 9487lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9488{
9489 struct dwo_file find_entry;
9490 void **slot;
9491
9492 if (dwarf2_per_objfile->dwo_files == NULL)
9493 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9494
9495 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9496 find_entry.dwo_name = dwo_name;
9497 find_entry.comp_dir = comp_dir;
80626a55
DE
9498 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9499
9500 return slot;
9501}
9502
3019eac3
DE
9503static hashval_t
9504hash_dwo_unit (const void *item)
9505{
9a3c8263 9506 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3
DE
9507
9508 /* This drops the top 32 bits of the id, but is ok for a hash. */
9509 return dwo_unit->signature;
9510}
9511
9512static int
9513eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9514{
9a3c8263
SM
9515 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9516 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
3019eac3
DE
9517
9518 /* The signature is assumed to be unique within the DWO file.
9519 So while object file CU dwo_id's always have the value zero,
9520 that's OK, assuming each object file DWO file has only one CU,
9521 and that's the rule for now. */
9522 return lhs->signature == rhs->signature;
9523}
9524
9525/* Allocate a hash table for DWO CUs,TUs.
9526 There is one of these tables for each of CUs,TUs for each DWO file. */
9527
9528static htab_t
9529allocate_dwo_unit_table (struct objfile *objfile)
9530{
9531 /* Start out with a pretty small number.
9532 Generally DWO files contain only one CU and maybe some TUs. */
9533 return htab_create_alloc_ex (3,
9534 hash_dwo_unit,
9535 eq_dwo_unit,
9536 NULL,
9537 &objfile->objfile_obstack,
9538 hashtab_obstack_allocate,
9539 dummy_obstack_deallocate);
9540}
9541
80626a55 9542/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9543
19c3d4c9 9544struct create_dwo_cu_data
3019eac3
DE
9545{
9546 struct dwo_file *dwo_file;
19c3d4c9 9547 struct dwo_unit dwo_unit;
3019eac3
DE
9548};
9549
19c3d4c9 9550/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9551
9552static void
19c3d4c9
DE
9553create_dwo_cu_reader (const struct die_reader_specs *reader,
9554 const gdb_byte *info_ptr,
9555 struct die_info *comp_unit_die,
9556 int has_children,
9557 void *datap)
3019eac3
DE
9558{
9559 struct dwarf2_cu *cu = reader->cu;
3019eac3 9560 sect_offset offset = cu->per_cu->offset;
8a0459fd 9561 struct dwarf2_section_info *section = cu->per_cu->section;
9a3c8263 9562 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
3019eac3 9563 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9564 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9565 struct attribute *attr;
3019eac3
DE
9566
9567 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9568 if (attr == NULL)
9569 {
19c3d4c9
DE
9570 complaint (&symfile_complaints,
9571 _("Dwarf Error: debug entry at offset 0x%x is missing"
9572 " its dwo_id [in module %s]"),
9573 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9574 return;
9575 }
9576
3019eac3
DE
9577 dwo_unit->dwo_file = dwo_file;
9578 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9579 dwo_unit->section = section;
3019eac3
DE
9580 dwo_unit->offset = offset;
9581 dwo_unit->length = cu->per_cu->length;
9582
b4f54984 9583 if (dwarf_read_debug)
4031ecc5
DE
9584 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9585 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9586}
9587
19c3d4c9
DE
9588/* Create the dwo_unit for the lone CU in DWO_FILE.
9589 Note: This function processes DWO files only, not DWP files. */
3019eac3 9590
19c3d4c9
DE
9591static struct dwo_unit *
9592create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9593{
9594 struct objfile *objfile = dwarf2_per_objfile->objfile;
9595 struct dwarf2_section_info *section = &dwo_file->sections.info;
d521ce57 9596 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9597 struct create_dwo_cu_data create_dwo_cu_data;
9598 struct dwo_unit *dwo_unit;
3019eac3
DE
9599
9600 dwarf2_read_section (objfile, section);
9601 info_ptr = section->buffer;
9602
9603 if (info_ptr == NULL)
9604 return NULL;
9605
b4f54984 9606 if (dwarf_read_debug)
19c3d4c9
DE
9607 {
9608 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9609 get_section_name (section),
9610 get_section_file_name (section));
19c3d4c9 9611 }
3019eac3 9612
19c3d4c9
DE
9613 create_dwo_cu_data.dwo_file = dwo_file;
9614 dwo_unit = NULL;
3019eac3
DE
9615
9616 end_ptr = info_ptr + section->size;
9617 while (info_ptr < end_ptr)
9618 {
9619 struct dwarf2_per_cu_data per_cu;
9620
19c3d4c9
DE
9621 memset (&create_dwo_cu_data.dwo_unit, 0,
9622 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9623 memset (&per_cu, 0, sizeof (per_cu));
9624 per_cu.objfile = objfile;
9625 per_cu.is_debug_types = 0;
9626 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9627 per_cu.section = section;
3019eac3 9628
33e80786 9629 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
19c3d4c9
DE
9630 create_dwo_cu_reader,
9631 &create_dwo_cu_data);
9632
9633 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9634 {
9635 /* If we've already found one, complain. We only support one
9636 because having more than one requires hacking the dwo_name of
9637 each to match, which is highly unlikely to happen. */
9638 if (dwo_unit != NULL)
9639 {
9640 complaint (&symfile_complaints,
9641 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9642 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9643 break;
9644 }
9645
9646 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9647 *dwo_unit = create_dwo_cu_data.dwo_unit;
9648 }
3019eac3
DE
9649
9650 info_ptr += per_cu.length;
9651 }
9652
19c3d4c9 9653 return dwo_unit;
3019eac3
DE
9654}
9655
80626a55
DE
9656/* DWP file .debug_{cu,tu}_index section format:
9657 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9658
d2415c6c
DE
9659 DWP Version 1:
9660
80626a55
DE
9661 Both index sections have the same format, and serve to map a 64-bit
9662 signature to a set of section numbers. Each section begins with a header,
9663 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9664 indexes, and a pool of 32-bit section numbers. The index sections will be
9665 aligned at 8-byte boundaries in the file.
9666
d2415c6c
DE
9667 The index section header consists of:
9668
9669 V, 32 bit version number
9670 -, 32 bits unused
9671 N, 32 bit number of compilation units or type units in the index
9672 M, 32 bit number of slots in the hash table
80626a55 9673
d2415c6c 9674 Numbers are recorded using the byte order of the application binary.
80626a55 9675
d2415c6c
DE
9676 The hash table begins at offset 16 in the section, and consists of an array
9677 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9678 order of the application binary). Unused slots in the hash table are 0.
9679 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9680
d2415c6c
DE
9681 The parallel table begins immediately after the hash table
9682 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9683 array of 32-bit indexes (using the byte order of the application binary),
9684 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9685 table contains a 32-bit index into the pool of section numbers. For unused
9686 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9687
73869dc2
DE
9688 The pool of section numbers begins immediately following the hash table
9689 (at offset 16 + 12 * M from the beginning of the section). The pool of
9690 section numbers consists of an array of 32-bit words (using the byte order
9691 of the application binary). Each item in the array is indexed starting
9692 from 0. The hash table entry provides the index of the first section
9693 number in the set. Additional section numbers in the set follow, and the
9694 set is terminated by a 0 entry (section number 0 is not used in ELF).
9695
9696 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9697 section must be the first entry in the set, and the .debug_abbrev.dwo must
9698 be the second entry. Other members of the set may follow in any order.
9699
9700 ---
9701
9702 DWP Version 2:
9703
9704 DWP Version 2 combines all the .debug_info, etc. sections into one,
9705 and the entries in the index tables are now offsets into these sections.
9706 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9707 section.
9708
9709 Index Section Contents:
9710 Header
9711 Hash Table of Signatures dwp_hash_table.hash_table
9712 Parallel Table of Indices dwp_hash_table.unit_table
9713 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9714 Table of Section Sizes dwp_hash_table.v2.sizes
9715
9716 The index section header consists of:
9717
9718 V, 32 bit version number
9719 L, 32 bit number of columns in the table of section offsets
9720 N, 32 bit number of compilation units or type units in the index
9721 M, 32 bit number of slots in the hash table
9722
9723 Numbers are recorded using the byte order of the application binary.
9724
9725 The hash table has the same format as version 1.
9726 The parallel table of indices has the same format as version 1,
9727 except that the entries are origin-1 indices into the table of sections
9728 offsets and the table of section sizes.
9729
9730 The table of offsets begins immediately following the parallel table
9731 (at offset 16 + 12 * M from the beginning of the section). The table is
9732 a two-dimensional array of 32-bit words (using the byte order of the
9733 application binary), with L columns and N+1 rows, in row-major order.
9734 Each row in the array is indexed starting from 0. The first row provides
9735 a key to the remaining rows: each column in this row provides an identifier
9736 for a debug section, and the offsets in the same column of subsequent rows
9737 refer to that section. The section identifiers are:
9738
9739 DW_SECT_INFO 1 .debug_info.dwo
9740 DW_SECT_TYPES 2 .debug_types.dwo
9741 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9742 DW_SECT_LINE 4 .debug_line.dwo
9743 DW_SECT_LOC 5 .debug_loc.dwo
9744 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9745 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9746 DW_SECT_MACRO 8 .debug_macro.dwo
9747
9748 The offsets provided by the CU and TU index sections are the base offsets
9749 for the contributions made by each CU or TU to the corresponding section
9750 in the package file. Each CU and TU header contains an abbrev_offset
9751 field, used to find the abbreviations table for that CU or TU within the
9752 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9753 be interpreted as relative to the base offset given in the index section.
9754 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9755 should be interpreted as relative to the base offset for .debug_line.dwo,
9756 and offsets into other debug sections obtained from DWARF attributes should
9757 also be interpreted as relative to the corresponding base offset.
9758
9759 The table of sizes begins immediately following the table of offsets.
9760 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9761 with L columns and N rows, in row-major order. Each row in the array is
9762 indexed starting from 1 (row 0 is shared by the two tables).
9763
9764 ---
9765
9766 Hash table lookup is handled the same in version 1 and 2:
9767
9768 We assume that N and M will not exceed 2^32 - 1.
9769 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9770
d2415c6c
DE
9771 Given a 64-bit compilation unit signature or a type signature S, an entry
9772 in the hash table is located as follows:
80626a55 9773
d2415c6c
DE
9774 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9775 the low-order k bits all set to 1.
80626a55 9776
d2415c6c 9777 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9778
d2415c6c
DE
9779 3) If the hash table entry at index H matches the signature, use that
9780 entry. If the hash table entry at index H is unused (all zeroes),
9781 terminate the search: the signature is not present in the table.
80626a55 9782
d2415c6c 9783 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9784
d2415c6c 9785 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9786 to stop at an unused slot or find the match. */
80626a55
DE
9787
9788/* Create a hash table to map DWO IDs to their CU/TU entry in
9789 .debug_{info,types}.dwo in DWP_FILE.
9790 Returns NULL if there isn't one.
9791 Note: This function processes DWP files only, not DWO files. */
9792
9793static struct dwp_hash_table *
9794create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9795{
9796 struct objfile *objfile = dwarf2_per_objfile->objfile;
9797 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9798 const gdb_byte *index_ptr, *index_end;
80626a55 9799 struct dwarf2_section_info *index;
73869dc2 9800 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9801 struct dwp_hash_table *htab;
9802
9803 if (is_debug_types)
9804 index = &dwp_file->sections.tu_index;
9805 else
9806 index = &dwp_file->sections.cu_index;
9807
9808 if (dwarf2_section_empty_p (index))
9809 return NULL;
9810 dwarf2_read_section (objfile, index);
9811
9812 index_ptr = index->buffer;
9813 index_end = index_ptr + index->size;
9814
9815 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9816 index_ptr += 4;
9817 if (version == 2)
9818 nr_columns = read_4_bytes (dbfd, index_ptr);
9819 else
9820 nr_columns = 0;
9821 index_ptr += 4;
80626a55
DE
9822 nr_units = read_4_bytes (dbfd, index_ptr);
9823 index_ptr += 4;
9824 nr_slots = read_4_bytes (dbfd, index_ptr);
9825 index_ptr += 4;
9826
73869dc2 9827 if (version != 1 && version != 2)
80626a55 9828 {
21aa081e 9829 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9830 " [in module %s]"),
21aa081e 9831 pulongest (version), dwp_file->name);
80626a55
DE
9832 }
9833 if (nr_slots != (nr_slots & -nr_slots))
9834 {
21aa081e 9835 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9836 " is not power of 2 [in module %s]"),
21aa081e 9837 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9838 }
9839
9840 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9841 htab->version = version;
9842 htab->nr_columns = nr_columns;
80626a55
DE
9843 htab->nr_units = nr_units;
9844 htab->nr_slots = nr_slots;
9845 htab->hash_table = index_ptr;
9846 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9847
9848 /* Exit early if the table is empty. */
9849 if (nr_slots == 0 || nr_units == 0
9850 || (version == 2 && nr_columns == 0))
9851 {
9852 /* All must be zero. */
9853 if (nr_slots != 0 || nr_units != 0
9854 || (version == 2 && nr_columns != 0))
9855 {
9856 complaint (&symfile_complaints,
9857 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9858 " all zero [in modules %s]"),
9859 dwp_file->name);
9860 }
9861 return htab;
9862 }
9863
9864 if (version == 1)
9865 {
9866 htab->section_pool.v1.indices =
9867 htab->unit_table + sizeof (uint32_t) * nr_slots;
9868 /* It's harder to decide whether the section is too small in v1.
9869 V1 is deprecated anyway so we punt. */
9870 }
9871 else
9872 {
9873 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9874 int *ids = htab->section_pool.v2.section_ids;
9875 /* Reverse map for error checking. */
9876 int ids_seen[DW_SECT_MAX + 1];
9877 int i;
9878
9879 if (nr_columns < 2)
9880 {
9881 error (_("Dwarf Error: bad DWP hash table, too few columns"
9882 " in section table [in module %s]"),
9883 dwp_file->name);
9884 }
9885 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9886 {
9887 error (_("Dwarf Error: bad DWP hash table, too many columns"
9888 " in section table [in module %s]"),
9889 dwp_file->name);
9890 }
9891 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9892 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9893 for (i = 0; i < nr_columns; ++i)
9894 {
9895 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9896
9897 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9898 {
9899 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9900 " in section table [in module %s]"),
9901 id, dwp_file->name);
9902 }
9903 if (ids_seen[id] != -1)
9904 {
9905 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9906 " id %d in section table [in module %s]"),
9907 id, dwp_file->name);
9908 }
9909 ids_seen[id] = i;
9910 ids[i] = id;
9911 }
9912 /* Must have exactly one info or types section. */
9913 if (((ids_seen[DW_SECT_INFO] != -1)
9914 + (ids_seen[DW_SECT_TYPES] != -1))
9915 != 1)
9916 {
9917 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9918 " DWO info/types section [in module %s]"),
9919 dwp_file->name);
9920 }
9921 /* Must have an abbrev section. */
9922 if (ids_seen[DW_SECT_ABBREV] == -1)
9923 {
9924 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9925 " section [in module %s]"),
9926 dwp_file->name);
9927 }
9928 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9929 htab->section_pool.v2.sizes =
9930 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9931 * nr_units * nr_columns);
9932 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9933 * nr_units * nr_columns))
9934 > index_end)
9935 {
9936 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9937 " [in module %s]"),
9938 dwp_file->name);
9939 }
9940 }
80626a55
DE
9941
9942 return htab;
9943}
9944
9945/* Update SECTIONS with the data from SECTP.
9946
9947 This function is like the other "locate" section routines that are
9948 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9949 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9950
9951 The result is non-zero for success, or zero if an error was found. */
9952
9953static int
73869dc2
DE
9954locate_v1_virtual_dwo_sections (asection *sectp,
9955 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9956{
9957 const struct dwop_section_names *names = &dwop_section_names;
9958
9959 if (section_is_p (sectp->name, &names->abbrev_dwo))
9960 {
9961 /* There can be only one. */
049412e3 9962 if (sections->abbrev.s.section != NULL)
80626a55 9963 return 0;
049412e3 9964 sections->abbrev.s.section = sectp;
80626a55
DE
9965 sections->abbrev.size = bfd_get_section_size (sectp);
9966 }
9967 else if (section_is_p (sectp->name, &names->info_dwo)
9968 || section_is_p (sectp->name, &names->types_dwo))
9969 {
9970 /* There can be only one. */
049412e3 9971 if (sections->info_or_types.s.section != NULL)
80626a55 9972 return 0;
049412e3 9973 sections->info_or_types.s.section = sectp;
80626a55
DE
9974 sections->info_or_types.size = bfd_get_section_size (sectp);
9975 }
9976 else if (section_is_p (sectp->name, &names->line_dwo))
9977 {
9978 /* There can be only one. */
049412e3 9979 if (sections->line.s.section != NULL)
80626a55 9980 return 0;
049412e3 9981 sections->line.s.section = sectp;
80626a55
DE
9982 sections->line.size = bfd_get_section_size (sectp);
9983 }
9984 else if (section_is_p (sectp->name, &names->loc_dwo))
9985 {
9986 /* There can be only one. */
049412e3 9987 if (sections->loc.s.section != NULL)
80626a55 9988 return 0;
049412e3 9989 sections->loc.s.section = sectp;
80626a55
DE
9990 sections->loc.size = bfd_get_section_size (sectp);
9991 }
9992 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9993 {
9994 /* There can be only one. */
049412e3 9995 if (sections->macinfo.s.section != NULL)
80626a55 9996 return 0;
049412e3 9997 sections->macinfo.s.section = sectp;
80626a55
DE
9998 sections->macinfo.size = bfd_get_section_size (sectp);
9999 }
10000 else if (section_is_p (sectp->name, &names->macro_dwo))
10001 {
10002 /* There can be only one. */
049412e3 10003 if (sections->macro.s.section != NULL)
80626a55 10004 return 0;
049412e3 10005 sections->macro.s.section = sectp;
80626a55
DE
10006 sections->macro.size = bfd_get_section_size (sectp);
10007 }
10008 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10009 {
10010 /* There can be only one. */
049412e3 10011 if (sections->str_offsets.s.section != NULL)
80626a55 10012 return 0;
049412e3 10013 sections->str_offsets.s.section = sectp;
80626a55
DE
10014 sections->str_offsets.size = bfd_get_section_size (sectp);
10015 }
10016 else
10017 {
10018 /* No other kind of section is valid. */
10019 return 0;
10020 }
10021
10022 return 1;
10023}
10024
73869dc2
DE
10025/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10026 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10027 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10028 This is for DWP version 1 files. */
80626a55
DE
10029
10030static struct dwo_unit *
73869dc2
DE
10031create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10032 uint32_t unit_index,
10033 const char *comp_dir,
10034 ULONGEST signature, int is_debug_types)
80626a55
DE
10035{
10036 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
10037 const struct dwp_hash_table *dwp_htab =
10038 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
10039 bfd *dbfd = dwp_file->dbfd;
10040 const char *kind = is_debug_types ? "TU" : "CU";
10041 struct dwo_file *dwo_file;
10042 struct dwo_unit *dwo_unit;
73869dc2 10043 struct virtual_v1_dwo_sections sections;
80626a55
DE
10044 void **dwo_file_slot;
10045 char *virtual_dwo_name;
80626a55
DE
10046 struct cleanup *cleanups;
10047 int i;
10048
73869dc2
DE
10049 gdb_assert (dwp_file->version == 1);
10050
b4f54984 10051 if (dwarf_read_debug)
80626a55 10052 {
73869dc2 10053 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 10054 kind,
73869dc2 10055 pulongest (unit_index), hex_string (signature),
80626a55
DE
10056 dwp_file->name);
10057 }
10058
19ac8c2e 10059 /* Fetch the sections of this DWO unit.
80626a55
DE
10060 Put a limit on the number of sections we look for so that bad data
10061 doesn't cause us to loop forever. */
10062
73869dc2 10063#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
10064 (1 /* .debug_info or .debug_types */ \
10065 + 1 /* .debug_abbrev */ \
10066 + 1 /* .debug_line */ \
10067 + 1 /* .debug_loc */ \
10068 + 1 /* .debug_str_offsets */ \
19ac8c2e 10069 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
10070 + 1 /* trailing zero */)
10071
10072 memset (&sections, 0, sizeof (sections));
10073 cleanups = make_cleanup (null_cleanup, 0);
10074
73869dc2 10075 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
10076 {
10077 asection *sectp;
10078 uint32_t section_nr =
10079 read_4_bytes (dbfd,
73869dc2
DE
10080 dwp_htab->section_pool.v1.indices
10081 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
10082
10083 if (section_nr == 0)
10084 break;
10085 if (section_nr >= dwp_file->num_sections)
10086 {
10087 error (_("Dwarf Error: bad DWP hash table, section number too large"
10088 " [in module %s]"),
10089 dwp_file->name);
10090 }
10091
10092 sectp = dwp_file->elf_sections[section_nr];
73869dc2 10093 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
10094 {
10095 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10096 " [in module %s]"),
10097 dwp_file->name);
10098 }
10099 }
10100
10101 if (i < 2
a32a8923
DE
10102 || dwarf2_section_empty_p (&sections.info_or_types)
10103 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
10104 {
10105 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10106 " [in module %s]"),
10107 dwp_file->name);
10108 }
73869dc2 10109 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
10110 {
10111 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10112 " [in module %s]"),
10113 dwp_file->name);
10114 }
10115
10116 /* It's easier for the rest of the code if we fake a struct dwo_file and
10117 have dwo_unit "live" in that. At least for now.
10118
10119 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 10120 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
10121 file, we can combine them back into a virtual DWO file to save space
10122 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
10123 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10124
2792b94d
PM
10125 virtual_dwo_name =
10126 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
10127 get_section_id (&sections.abbrev),
10128 get_section_id (&sections.line),
10129 get_section_id (&sections.loc),
10130 get_section_id (&sections.str_offsets));
80626a55
DE
10131 make_cleanup (xfree, virtual_dwo_name);
10132 /* Can we use an existing virtual DWO file? */
0ac5b59e 10133 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
10134 /* Create one if necessary. */
10135 if (*dwo_file_slot == NULL)
10136 {
b4f54984 10137 if (dwarf_read_debug)
80626a55
DE
10138 {
10139 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10140 virtual_dwo_name);
10141 }
10142 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10143 dwo_file->dwo_name
10144 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10145 virtual_dwo_name,
10146 strlen (virtual_dwo_name));
0ac5b59e 10147 dwo_file->comp_dir = comp_dir;
80626a55
DE
10148 dwo_file->sections.abbrev = sections.abbrev;
10149 dwo_file->sections.line = sections.line;
10150 dwo_file->sections.loc = sections.loc;
10151 dwo_file->sections.macinfo = sections.macinfo;
10152 dwo_file->sections.macro = sections.macro;
10153 dwo_file->sections.str_offsets = sections.str_offsets;
10154 /* The "str" section is global to the entire DWP file. */
10155 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 10156 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
10157 there's no need to record it in dwo_file.
10158 Also, we can't simply record type sections in dwo_file because
10159 we record a pointer into the vector in dwo_unit. As we collect more
10160 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
10161 for it, invalidating all copies of pointers into the previous
10162 contents. */
80626a55
DE
10163 *dwo_file_slot = dwo_file;
10164 }
10165 else
10166 {
b4f54984 10167 if (dwarf_read_debug)
80626a55
DE
10168 {
10169 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10170 virtual_dwo_name);
10171 }
9a3c8263 10172 dwo_file = (struct dwo_file *) *dwo_file_slot;
80626a55
DE
10173 }
10174 do_cleanups (cleanups);
10175
10176 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10177 dwo_unit->dwo_file = dwo_file;
10178 dwo_unit->signature = signature;
8d749320
SM
10179 dwo_unit->section =
10180 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
8a0459fd 10181 *dwo_unit->section = sections.info_or_types;
57d63ce2 10182 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
10183
10184 return dwo_unit;
10185}
10186
73869dc2
DE
10187/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10188 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10189 piece within that section used by a TU/CU, return a virtual section
10190 of just that piece. */
10191
10192static struct dwarf2_section_info
10193create_dwp_v2_section (struct dwarf2_section_info *section,
10194 bfd_size_type offset, bfd_size_type size)
10195{
10196 struct dwarf2_section_info result;
10197 asection *sectp;
10198
10199 gdb_assert (section != NULL);
10200 gdb_assert (!section->is_virtual);
10201
10202 memset (&result, 0, sizeof (result));
10203 result.s.containing_section = section;
10204 result.is_virtual = 1;
10205
10206 if (size == 0)
10207 return result;
10208
10209 sectp = get_section_bfd_section (section);
10210
10211 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10212 bounds of the real section. This is a pretty-rare event, so just
10213 flag an error (easier) instead of a warning and trying to cope. */
10214 if (sectp == NULL
10215 || offset + size > bfd_get_section_size (sectp))
10216 {
10217 bfd *abfd = sectp->owner;
10218
10219 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10220 " in section %s [in module %s]"),
10221 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10222 objfile_name (dwarf2_per_objfile->objfile));
10223 }
10224
10225 result.virtual_offset = offset;
10226 result.size = size;
10227 return result;
10228}
10229
10230/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10231 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10232 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10233 This is for DWP version 2 files. */
10234
10235static struct dwo_unit *
10236create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10237 uint32_t unit_index,
10238 const char *comp_dir,
10239 ULONGEST signature, int is_debug_types)
10240{
10241 struct objfile *objfile = dwarf2_per_objfile->objfile;
10242 const struct dwp_hash_table *dwp_htab =
10243 is_debug_types ? dwp_file->tus : dwp_file->cus;
10244 bfd *dbfd = dwp_file->dbfd;
10245 const char *kind = is_debug_types ? "TU" : "CU";
10246 struct dwo_file *dwo_file;
10247 struct dwo_unit *dwo_unit;
10248 struct virtual_v2_dwo_sections sections;
10249 void **dwo_file_slot;
10250 char *virtual_dwo_name;
73869dc2
DE
10251 struct cleanup *cleanups;
10252 int i;
10253
10254 gdb_assert (dwp_file->version == 2);
10255
b4f54984 10256 if (dwarf_read_debug)
73869dc2
DE
10257 {
10258 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10259 kind,
10260 pulongest (unit_index), hex_string (signature),
10261 dwp_file->name);
10262 }
10263
10264 /* Fetch the section offsets of this DWO unit. */
10265
10266 memset (&sections, 0, sizeof (sections));
10267 cleanups = make_cleanup (null_cleanup, 0);
10268
10269 for (i = 0; i < dwp_htab->nr_columns; ++i)
10270 {
10271 uint32_t offset = read_4_bytes (dbfd,
10272 dwp_htab->section_pool.v2.offsets
10273 + (((unit_index - 1) * dwp_htab->nr_columns
10274 + i)
10275 * sizeof (uint32_t)));
10276 uint32_t size = read_4_bytes (dbfd,
10277 dwp_htab->section_pool.v2.sizes
10278 + (((unit_index - 1) * dwp_htab->nr_columns
10279 + i)
10280 * sizeof (uint32_t)));
10281
10282 switch (dwp_htab->section_pool.v2.section_ids[i])
10283 {
10284 case DW_SECT_INFO:
10285 case DW_SECT_TYPES:
10286 sections.info_or_types_offset = offset;
10287 sections.info_or_types_size = size;
10288 break;
10289 case DW_SECT_ABBREV:
10290 sections.abbrev_offset = offset;
10291 sections.abbrev_size = size;
10292 break;
10293 case DW_SECT_LINE:
10294 sections.line_offset = offset;
10295 sections.line_size = size;
10296 break;
10297 case DW_SECT_LOC:
10298 sections.loc_offset = offset;
10299 sections.loc_size = size;
10300 break;
10301 case DW_SECT_STR_OFFSETS:
10302 sections.str_offsets_offset = offset;
10303 sections.str_offsets_size = size;
10304 break;
10305 case DW_SECT_MACINFO:
10306 sections.macinfo_offset = offset;
10307 sections.macinfo_size = size;
10308 break;
10309 case DW_SECT_MACRO:
10310 sections.macro_offset = offset;
10311 sections.macro_size = size;
10312 break;
10313 }
10314 }
10315
10316 /* It's easier for the rest of the code if we fake a struct dwo_file and
10317 have dwo_unit "live" in that. At least for now.
10318
10319 The DWP file can be made up of a random collection of CUs and TUs.
10320 However, for each CU + set of TUs that came from the same original DWO
10321 file, we can combine them back into a virtual DWO file to save space
10322 (fewer struct dwo_file objects to allocate). Remember that for really
10323 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10324
10325 virtual_dwo_name =
10326 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10327 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10328 (long) (sections.line_size ? sections.line_offset : 0),
10329 (long) (sections.loc_size ? sections.loc_offset : 0),
10330 (long) (sections.str_offsets_size
10331 ? sections.str_offsets_offset : 0));
10332 make_cleanup (xfree, virtual_dwo_name);
10333 /* Can we use an existing virtual DWO file? */
10334 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10335 /* Create one if necessary. */
10336 if (*dwo_file_slot == NULL)
10337 {
b4f54984 10338 if (dwarf_read_debug)
73869dc2
DE
10339 {
10340 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10341 virtual_dwo_name);
10342 }
10343 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10344 dwo_file->dwo_name
10345 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10346 virtual_dwo_name,
10347 strlen (virtual_dwo_name));
73869dc2
DE
10348 dwo_file->comp_dir = comp_dir;
10349 dwo_file->sections.abbrev =
10350 create_dwp_v2_section (&dwp_file->sections.abbrev,
10351 sections.abbrev_offset, sections.abbrev_size);
10352 dwo_file->sections.line =
10353 create_dwp_v2_section (&dwp_file->sections.line,
10354 sections.line_offset, sections.line_size);
10355 dwo_file->sections.loc =
10356 create_dwp_v2_section (&dwp_file->sections.loc,
10357 sections.loc_offset, sections.loc_size);
10358 dwo_file->sections.macinfo =
10359 create_dwp_v2_section (&dwp_file->sections.macinfo,
10360 sections.macinfo_offset, sections.macinfo_size);
10361 dwo_file->sections.macro =
10362 create_dwp_v2_section (&dwp_file->sections.macro,
10363 sections.macro_offset, sections.macro_size);
10364 dwo_file->sections.str_offsets =
10365 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10366 sections.str_offsets_offset,
10367 sections.str_offsets_size);
10368 /* The "str" section is global to the entire DWP file. */
10369 dwo_file->sections.str = dwp_file->sections.str;
10370 /* The info or types section is assigned below to dwo_unit,
10371 there's no need to record it in dwo_file.
10372 Also, we can't simply record type sections in dwo_file because
10373 we record a pointer into the vector in dwo_unit. As we collect more
10374 types we'll grow the vector and eventually have to reallocate space
10375 for it, invalidating all copies of pointers into the previous
10376 contents. */
10377 *dwo_file_slot = dwo_file;
10378 }
10379 else
10380 {
b4f54984 10381 if (dwarf_read_debug)
73869dc2
DE
10382 {
10383 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10384 virtual_dwo_name);
10385 }
9a3c8263 10386 dwo_file = (struct dwo_file *) *dwo_file_slot;
73869dc2
DE
10387 }
10388 do_cleanups (cleanups);
10389
10390 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10391 dwo_unit->dwo_file = dwo_file;
10392 dwo_unit->signature = signature;
8d749320
SM
10393 dwo_unit->section =
10394 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
73869dc2
DE
10395 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10396 ? &dwp_file->sections.types
10397 : &dwp_file->sections.info,
10398 sections.info_or_types_offset,
10399 sections.info_or_types_size);
10400 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10401
10402 return dwo_unit;
10403}
10404
57d63ce2
DE
10405/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10406 Returns NULL if the signature isn't found. */
80626a55
DE
10407
10408static struct dwo_unit *
57d63ce2
DE
10409lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10410 ULONGEST signature, int is_debug_types)
80626a55 10411{
57d63ce2
DE
10412 const struct dwp_hash_table *dwp_htab =
10413 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10414 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10415 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10416 uint32_t hash = signature & mask;
10417 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10418 unsigned int i;
10419 void **slot;
870f88f7 10420 struct dwo_unit find_dwo_cu;
80626a55
DE
10421
10422 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10423 find_dwo_cu.signature = signature;
19ac8c2e
DE
10424 slot = htab_find_slot (is_debug_types
10425 ? dwp_file->loaded_tus
10426 : dwp_file->loaded_cus,
10427 &find_dwo_cu, INSERT);
80626a55
DE
10428
10429 if (*slot != NULL)
9a3c8263 10430 return (struct dwo_unit *) *slot;
80626a55
DE
10431
10432 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10433 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10434 {
10435 ULONGEST signature_in_table;
10436
10437 signature_in_table =
57d63ce2 10438 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10439 if (signature_in_table == signature)
10440 {
57d63ce2
DE
10441 uint32_t unit_index =
10442 read_4_bytes (dbfd,
10443 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10444
73869dc2
DE
10445 if (dwp_file->version == 1)
10446 {
10447 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10448 comp_dir, signature,
10449 is_debug_types);
10450 }
10451 else
10452 {
10453 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10454 comp_dir, signature,
10455 is_debug_types);
10456 }
9a3c8263 10457 return (struct dwo_unit *) *slot;
80626a55
DE
10458 }
10459 if (signature_in_table == 0)
10460 return NULL;
10461 hash = (hash + hash2) & mask;
10462 }
10463
10464 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10465 " [in module %s]"),
10466 dwp_file->name);
10467}
10468
ab5088bf 10469/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10470 Open the file specified by FILE_NAME and hand it off to BFD for
10471 preliminary analysis. Return a newly initialized bfd *, which
10472 includes a canonicalized copy of FILE_NAME.
80626a55 10473 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10474 SEARCH_CWD is true if the current directory is to be searched.
10475 It will be searched before debug-file-directory.
13aaf454
DE
10476 If successful, the file is added to the bfd include table of the
10477 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10478 If unable to find/open the file, return NULL.
3019eac3
DE
10479 NOTE: This function is derived from symfile_bfd_open. */
10480
10481static bfd *
6ac97d4c 10482try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
10483{
10484 bfd *sym_bfd;
80626a55 10485 int desc, flags;
3019eac3 10486 char *absolute_name;
9c02c129
DE
10487 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10488 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10489 to debug_file_directory. */
10490 char *search_path;
10491 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10492
6ac97d4c
DE
10493 if (search_cwd)
10494 {
10495 if (*debug_file_directory != '\0')
10496 search_path = concat (".", dirname_separator_string,
b36cec19 10497 debug_file_directory, (char *) NULL);
6ac97d4c
DE
10498 else
10499 search_path = xstrdup (".");
10500 }
9c02c129 10501 else
6ac97d4c 10502 search_path = xstrdup (debug_file_directory);
3019eac3 10503
492c0ab7 10504 flags = OPF_RETURN_REALPATH;
80626a55
DE
10505 if (is_dwp)
10506 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10507 desc = openp (search_path, flags, file_name,
3019eac3 10508 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10509 xfree (search_path);
3019eac3
DE
10510 if (desc < 0)
10511 return NULL;
10512
bb397797 10513 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 10514 xfree (absolute_name);
9c02c129
DE
10515 if (sym_bfd == NULL)
10516 return NULL;
3019eac3
DE
10517 bfd_set_cacheable (sym_bfd, 1);
10518
10519 if (!bfd_check_format (sym_bfd, bfd_object))
10520 {
cbb099e8 10521 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
10522 return NULL;
10523 }
10524
13aaf454
DE
10525 /* Success. Record the bfd as having been included by the objfile's bfd.
10526 This is important because things like demangled_names_hash lives in the
10527 objfile's per_bfd space and may have references to things like symbol
10528 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10529 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10530
3019eac3
DE
10531 return sym_bfd;
10532}
10533
ab5088bf 10534/* Try to open DWO file FILE_NAME.
3019eac3
DE
10535 COMP_DIR is the DW_AT_comp_dir attribute.
10536 The result is the bfd handle of the file.
10537 If there is a problem finding or opening the file, return NULL.
10538 Upon success, the canonicalized path of the file is stored in the bfd,
10539 same as symfile_bfd_open. */
10540
10541static bfd *
ab5088bf 10542open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
10543{
10544 bfd *abfd;
3019eac3 10545
80626a55 10546 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10547 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10548
10549 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10550
10551 if (comp_dir != NULL)
10552 {
b36cec19
PA
10553 char *path_to_try = concat (comp_dir, SLASH_STRING,
10554 file_name, (char *) NULL);
3019eac3
DE
10555
10556 /* NOTE: If comp_dir is a relative path, this will also try the
10557 search path, which seems useful. */
6ac97d4c 10558 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10559 xfree (path_to_try);
10560 if (abfd != NULL)
10561 return abfd;
10562 }
10563
10564 /* That didn't work, try debug-file-directory, which, despite its name,
10565 is a list of paths. */
10566
10567 if (*debug_file_directory == '\0')
10568 return NULL;
10569
6ac97d4c 10570 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10571}
10572
80626a55
DE
10573/* This function is mapped across the sections and remembers the offset and
10574 size of each of the DWO debugging sections we are interested in. */
10575
10576static void
10577dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10578{
9a3c8263 10579 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
80626a55
DE
10580 const struct dwop_section_names *names = &dwop_section_names;
10581
10582 if (section_is_p (sectp->name, &names->abbrev_dwo))
10583 {
049412e3 10584 dwo_sections->abbrev.s.section = sectp;
80626a55
DE
10585 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10586 }
10587 else if (section_is_p (sectp->name, &names->info_dwo))
10588 {
049412e3 10589 dwo_sections->info.s.section = sectp;
80626a55
DE
10590 dwo_sections->info.size = bfd_get_section_size (sectp);
10591 }
10592 else if (section_is_p (sectp->name, &names->line_dwo))
10593 {
049412e3 10594 dwo_sections->line.s.section = sectp;
80626a55
DE
10595 dwo_sections->line.size = bfd_get_section_size (sectp);
10596 }
10597 else if (section_is_p (sectp->name, &names->loc_dwo))
10598 {
049412e3 10599 dwo_sections->loc.s.section = sectp;
80626a55
DE
10600 dwo_sections->loc.size = bfd_get_section_size (sectp);
10601 }
10602 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10603 {
049412e3 10604 dwo_sections->macinfo.s.section = sectp;
80626a55
DE
10605 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10606 }
10607 else if (section_is_p (sectp->name, &names->macro_dwo))
10608 {
049412e3 10609 dwo_sections->macro.s.section = sectp;
80626a55
DE
10610 dwo_sections->macro.size = bfd_get_section_size (sectp);
10611 }
10612 else if (section_is_p (sectp->name, &names->str_dwo))
10613 {
049412e3 10614 dwo_sections->str.s.section = sectp;
80626a55
DE
10615 dwo_sections->str.size = bfd_get_section_size (sectp);
10616 }
10617 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10618 {
049412e3 10619 dwo_sections->str_offsets.s.section = sectp;
80626a55
DE
10620 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10621 }
10622 else if (section_is_p (sectp->name, &names->types_dwo))
10623 {
10624 struct dwarf2_section_info type_section;
10625
10626 memset (&type_section, 0, sizeof (type_section));
049412e3 10627 type_section.s.section = sectp;
80626a55
DE
10628 type_section.size = bfd_get_section_size (sectp);
10629 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10630 &type_section);
10631 }
10632}
10633
ab5088bf 10634/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10635 by PER_CU. This is for the non-DWP case.
80626a55 10636 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10637
10638static struct dwo_file *
0ac5b59e
DE
10639open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10640 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10641{
10642 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10643 struct dwo_file *dwo_file;
10644 bfd *dbfd;
3019eac3
DE
10645 struct cleanup *cleanups;
10646
ab5088bf 10647 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
10648 if (dbfd == NULL)
10649 {
b4f54984 10650 if (dwarf_read_debug)
80626a55
DE
10651 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10652 return NULL;
10653 }
10654 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10655 dwo_file->dwo_name = dwo_name;
10656 dwo_file->comp_dir = comp_dir;
80626a55 10657 dwo_file->dbfd = dbfd;
3019eac3
DE
10658
10659 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10660
80626a55 10661 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 10662
19c3d4c9 10663 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
10664
10665 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10666 dwo_file->sections.types);
10667
10668 discard_cleanups (cleanups);
10669
b4f54984 10670 if (dwarf_read_debug)
80626a55
DE
10671 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10672
3019eac3
DE
10673 return dwo_file;
10674}
10675
80626a55 10676/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10677 size of each of the DWP debugging sections common to version 1 and 2 that
10678 we are interested in. */
3019eac3 10679
80626a55 10680static void
73869dc2
DE
10681dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10682 void *dwp_file_ptr)
3019eac3 10683{
9a3c8263 10684 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
80626a55
DE
10685 const struct dwop_section_names *names = &dwop_section_names;
10686 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10687
80626a55 10688 /* Record the ELF section number for later lookup: this is what the
73869dc2 10689 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10690 gdb_assert (elf_section_nr < dwp_file->num_sections);
10691 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10692
80626a55
DE
10693 /* Look for specific sections that we need. */
10694 if (section_is_p (sectp->name, &names->str_dwo))
10695 {
049412e3 10696 dwp_file->sections.str.s.section = sectp;
80626a55
DE
10697 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10698 }
10699 else if (section_is_p (sectp->name, &names->cu_index))
10700 {
049412e3 10701 dwp_file->sections.cu_index.s.section = sectp;
80626a55
DE
10702 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10703 }
10704 else if (section_is_p (sectp->name, &names->tu_index))
10705 {
049412e3 10706 dwp_file->sections.tu_index.s.section = sectp;
80626a55
DE
10707 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10708 }
10709}
3019eac3 10710
73869dc2
DE
10711/* This function is mapped across the sections and remembers the offset and
10712 size of each of the DWP version 2 debugging sections that we are interested
10713 in. This is split into a separate function because we don't know if we
10714 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10715
10716static void
10717dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10718{
9a3c8263 10719 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
73869dc2
DE
10720 const struct dwop_section_names *names = &dwop_section_names;
10721 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10722
10723 /* Record the ELF section number for later lookup: this is what the
10724 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10725 gdb_assert (elf_section_nr < dwp_file->num_sections);
10726 dwp_file->elf_sections[elf_section_nr] = sectp;
10727
10728 /* Look for specific sections that we need. */
10729 if (section_is_p (sectp->name, &names->abbrev_dwo))
10730 {
049412e3 10731 dwp_file->sections.abbrev.s.section = sectp;
73869dc2
DE
10732 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10733 }
10734 else if (section_is_p (sectp->name, &names->info_dwo))
10735 {
049412e3 10736 dwp_file->sections.info.s.section = sectp;
73869dc2
DE
10737 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10738 }
10739 else if (section_is_p (sectp->name, &names->line_dwo))
10740 {
049412e3 10741 dwp_file->sections.line.s.section = sectp;
73869dc2
DE
10742 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10743 }
10744 else if (section_is_p (sectp->name, &names->loc_dwo))
10745 {
049412e3 10746 dwp_file->sections.loc.s.section = sectp;
73869dc2
DE
10747 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10748 }
10749 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10750 {
049412e3 10751 dwp_file->sections.macinfo.s.section = sectp;
73869dc2
DE
10752 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10753 }
10754 else if (section_is_p (sectp->name, &names->macro_dwo))
10755 {
049412e3 10756 dwp_file->sections.macro.s.section = sectp;
73869dc2
DE
10757 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10758 }
10759 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10760 {
049412e3 10761 dwp_file->sections.str_offsets.s.section = sectp;
73869dc2
DE
10762 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10763 }
10764 else if (section_is_p (sectp->name, &names->types_dwo))
10765 {
049412e3 10766 dwp_file->sections.types.s.section = sectp;
73869dc2
DE
10767 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10768 }
10769}
10770
80626a55 10771/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10772
80626a55
DE
10773static hashval_t
10774hash_dwp_loaded_cutus (const void *item)
10775{
9a3c8263 10776 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3 10777
80626a55
DE
10778 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10779 return dwo_unit->signature;
3019eac3
DE
10780}
10781
80626a55 10782/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10783
80626a55
DE
10784static int
10785eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10786{
9a3c8263
SM
10787 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10788 const struct dwo_unit *dub = (const struct dwo_unit *) b;
3019eac3 10789
80626a55
DE
10790 return dua->signature == dub->signature;
10791}
3019eac3 10792
80626a55 10793/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10794
80626a55
DE
10795static htab_t
10796allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10797{
10798 return htab_create_alloc_ex (3,
10799 hash_dwp_loaded_cutus,
10800 eq_dwp_loaded_cutus,
10801 NULL,
10802 &objfile->objfile_obstack,
10803 hashtab_obstack_allocate,
10804 dummy_obstack_deallocate);
10805}
3019eac3 10806
ab5088bf
DE
10807/* Try to open DWP file FILE_NAME.
10808 The result is the bfd handle of the file.
10809 If there is a problem finding or opening the file, return NULL.
10810 Upon success, the canonicalized path of the file is stored in the bfd,
10811 same as symfile_bfd_open. */
10812
10813static bfd *
10814open_dwp_file (const char *file_name)
10815{
6ac97d4c
DE
10816 bfd *abfd;
10817
10818 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10819 if (abfd != NULL)
10820 return abfd;
10821
10822 /* Work around upstream bug 15652.
10823 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10824 [Whether that's a "bug" is debatable, but it is getting in our way.]
10825 We have no real idea where the dwp file is, because gdb's realpath-ing
10826 of the executable's path may have discarded the needed info.
10827 [IWBN if the dwp file name was recorded in the executable, akin to
10828 .gnu_debuglink, but that doesn't exist yet.]
10829 Strip the directory from FILE_NAME and search again. */
10830 if (*debug_file_directory != '\0')
10831 {
10832 /* Don't implicitly search the current directory here.
10833 If the user wants to search "." to handle this case,
10834 it must be added to debug-file-directory. */
10835 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10836 0 /*search_cwd*/);
10837 }
10838
10839 return NULL;
ab5088bf
DE
10840}
10841
80626a55
DE
10842/* Initialize the use of the DWP file for the current objfile.
10843 By convention the name of the DWP file is ${objfile}.dwp.
10844 The result is NULL if it can't be found. */
a766d390 10845
80626a55 10846static struct dwp_file *
ab5088bf 10847open_and_init_dwp_file (void)
80626a55
DE
10848{
10849 struct objfile *objfile = dwarf2_per_objfile->objfile;
10850 struct dwp_file *dwp_file;
10851 char *dwp_name;
10852 bfd *dbfd;
6c447423 10853 struct cleanup *cleanups = make_cleanup (null_cleanup, 0);
80626a55 10854
82bf32bc
JK
10855 /* Try to find first .dwp for the binary file before any symbolic links
10856 resolving. */
6c447423
DE
10857
10858 /* If the objfile is a debug file, find the name of the real binary
10859 file and get the name of dwp file from there. */
10860 if (objfile->separate_debug_objfile_backlink != NULL)
10861 {
10862 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
10863 const char *backlink_basename = lbasename (backlink->original_name);
10864 char *debug_dirname = ldirname (objfile->original_name);
10865
10866 make_cleanup (xfree, debug_dirname);
10867 dwp_name = xstrprintf ("%s%s%s.dwp", debug_dirname,
10868 SLASH_STRING, backlink_basename);
10869 }
10870 else
10871 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
10872 make_cleanup (xfree, dwp_name);
80626a55 10873
ab5088bf 10874 dbfd = open_dwp_file (dwp_name);
82bf32bc
JK
10875 if (dbfd == NULL
10876 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10877 {
10878 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10879 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10880 make_cleanup (xfree, dwp_name);
10881 dbfd = open_dwp_file (dwp_name);
10882 }
10883
80626a55
DE
10884 if (dbfd == NULL)
10885 {
b4f54984 10886 if (dwarf_read_debug)
80626a55
DE
10887 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10888 do_cleanups (cleanups);
10889 return NULL;
3019eac3 10890 }
80626a55 10891 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 10892 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
10893 dwp_file->dbfd = dbfd;
10894 do_cleanups (cleanups);
c906108c 10895
80626a55
DE
10896 /* +1: section 0 is unused */
10897 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10898 dwp_file->elf_sections =
10899 OBSTACK_CALLOC (&objfile->objfile_obstack,
10900 dwp_file->num_sections, asection *);
10901
73869dc2 10902 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
80626a55
DE
10903
10904 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10905
10906 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10907
73869dc2
DE
10908 /* The DWP file version is stored in the hash table. Oh well. */
10909 if (dwp_file->cus->version != dwp_file->tus->version)
10910 {
10911 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 10912 pretty bizarre. We use pulongest here because that's the established
4d65956b 10913 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
10914 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10915 " TU version %s [in DWP file %s]"),
10916 pulongest (dwp_file->cus->version),
10917 pulongest (dwp_file->tus->version), dwp_name);
73869dc2
DE
10918 }
10919 dwp_file->version = dwp_file->cus->version;
10920
10921 if (dwp_file->version == 2)
10922 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10923
19ac8c2e
DE
10924 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10925 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10926
b4f54984 10927 if (dwarf_read_debug)
80626a55
DE
10928 {
10929 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10930 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10931 " %s CUs, %s TUs\n",
10932 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10933 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10934 }
10935
10936 return dwp_file;
3019eac3 10937}
c906108c 10938
ab5088bf
DE
10939/* Wrapper around open_and_init_dwp_file, only open it once. */
10940
10941static struct dwp_file *
10942get_dwp_file (void)
10943{
10944 if (! dwarf2_per_objfile->dwp_checked)
10945 {
10946 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10947 dwarf2_per_objfile->dwp_checked = 1;
10948 }
10949 return dwarf2_per_objfile->dwp_file;
10950}
10951
80626a55
DE
10952/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10953 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10954 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10955 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10956 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10957
10958 This is called, for example, when wanting to read a variable with a
10959 complex location. Therefore we don't want to do file i/o for every call.
10960 Therefore we don't want to look for a DWO file on every call.
10961 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10962 then we check if we've already seen DWO_NAME, and only THEN do we check
10963 for a DWO file.
10964
1c658ad5 10965 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 10966 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 10967
3019eac3 10968static struct dwo_unit *
80626a55
DE
10969lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10970 const char *dwo_name, const char *comp_dir,
10971 ULONGEST signature, int is_debug_types)
3019eac3
DE
10972{
10973 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10974 const char *kind = is_debug_types ? "TU" : "CU";
10975 void **dwo_file_slot;
3019eac3 10976 struct dwo_file *dwo_file;
80626a55 10977 struct dwp_file *dwp_file;
cb1df416 10978
6a506a2d
DE
10979 /* First see if there's a DWP file.
10980 If we have a DWP file but didn't find the DWO inside it, don't
10981 look for the original DWO file. It makes gdb behave differently
10982 depending on whether one is debugging in the build tree. */
cf2c3c16 10983
ab5088bf 10984 dwp_file = get_dwp_file ();
80626a55 10985 if (dwp_file != NULL)
cf2c3c16 10986 {
80626a55
DE
10987 const struct dwp_hash_table *dwp_htab =
10988 is_debug_types ? dwp_file->tus : dwp_file->cus;
10989
10990 if (dwp_htab != NULL)
10991 {
10992 struct dwo_unit *dwo_cutu =
57d63ce2
DE
10993 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10994 signature, is_debug_types);
80626a55
DE
10995
10996 if (dwo_cutu != NULL)
10997 {
b4f54984 10998 if (dwarf_read_debug)
80626a55
DE
10999 {
11000 fprintf_unfiltered (gdb_stdlog,
11001 "Virtual DWO %s %s found: @%s\n",
11002 kind, hex_string (signature),
11003 host_address_to_string (dwo_cutu));
11004 }
11005 return dwo_cutu;
11006 }
11007 }
11008 }
6a506a2d 11009 else
80626a55 11010 {
6a506a2d 11011 /* No DWP file, look for the DWO file. */
80626a55 11012
6a506a2d
DE
11013 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
11014 if (*dwo_file_slot == NULL)
80626a55 11015 {
6a506a2d
DE
11016 /* Read in the file and build a table of the CUs/TUs it contains. */
11017 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 11018 }
6a506a2d 11019 /* NOTE: This will be NULL if unable to open the file. */
9a3c8263 11020 dwo_file = (struct dwo_file *) *dwo_file_slot;
3019eac3 11021
6a506a2d 11022 if (dwo_file != NULL)
19c3d4c9 11023 {
6a506a2d
DE
11024 struct dwo_unit *dwo_cutu = NULL;
11025
11026 if (is_debug_types && dwo_file->tus)
11027 {
11028 struct dwo_unit find_dwo_cutu;
11029
11030 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11031 find_dwo_cutu.signature = signature;
9a3c8263
SM
11032 dwo_cutu
11033 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
6a506a2d
DE
11034 }
11035 else if (!is_debug_types && dwo_file->cu)
80626a55 11036 {
6a506a2d
DE
11037 if (signature == dwo_file->cu->signature)
11038 dwo_cutu = dwo_file->cu;
11039 }
11040
11041 if (dwo_cutu != NULL)
11042 {
b4f54984 11043 if (dwarf_read_debug)
6a506a2d
DE
11044 {
11045 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11046 kind, dwo_name, hex_string (signature),
11047 host_address_to_string (dwo_cutu));
11048 }
11049 return dwo_cutu;
80626a55
DE
11050 }
11051 }
2e276125 11052 }
9cdd5dbd 11053
80626a55
DE
11054 /* We didn't find it. This could mean a dwo_id mismatch, or
11055 someone deleted the DWO/DWP file, or the search path isn't set up
11056 correctly to find the file. */
11057
b4f54984 11058 if (dwarf_read_debug)
80626a55
DE
11059 {
11060 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11061 kind, dwo_name, hex_string (signature));
11062 }
3019eac3 11063
6656a72d
DE
11064 /* This is a warning and not a complaint because it can be caused by
11065 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
11066 {
11067 /* Print the name of the DWP file if we looked there, helps the user
11068 better diagnose the problem. */
11069 char *dwp_text = NULL;
11070 struct cleanup *cleanups;
11071
11072 if (dwp_file != NULL)
11073 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11074 cleanups = make_cleanup (xfree, dwp_text);
11075
11076 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11077 " [in module %s]"),
11078 kind, dwo_name, hex_string (signature),
11079 dwp_text != NULL ? dwp_text : "",
11080 this_unit->is_debug_types ? "TU" : "CU",
11081 this_unit->offset.sect_off, objfile_name (objfile));
11082
11083 do_cleanups (cleanups);
11084 }
3019eac3 11085 return NULL;
5fb290d7
DJ
11086}
11087
80626a55
DE
11088/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11089 See lookup_dwo_cutu_unit for details. */
11090
11091static struct dwo_unit *
11092lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11093 const char *dwo_name, const char *comp_dir,
11094 ULONGEST signature)
11095{
11096 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11097}
11098
11099/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11100 See lookup_dwo_cutu_unit for details. */
11101
11102static struct dwo_unit *
11103lookup_dwo_type_unit (struct signatured_type *this_tu,
11104 const char *dwo_name, const char *comp_dir)
11105{
11106 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11107}
11108
89e63ee4
DE
11109/* Traversal function for queue_and_load_all_dwo_tus. */
11110
11111static int
11112queue_and_load_dwo_tu (void **slot, void *info)
11113{
11114 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11115 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11116 ULONGEST signature = dwo_unit->signature;
11117 struct signatured_type *sig_type =
11118 lookup_dwo_signatured_type (per_cu->cu, signature);
11119
11120 if (sig_type != NULL)
11121 {
11122 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11123
11124 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11125 a real dependency of PER_CU on SIG_TYPE. That is detected later
11126 while processing PER_CU. */
11127 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11128 load_full_type_unit (sig_cu);
11129 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11130 }
11131
11132 return 1;
11133}
11134
11135/* Queue all TUs contained in the DWO of PER_CU to be read in.
11136 The DWO may have the only definition of the type, though it may not be
11137 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11138 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11139
11140static void
11141queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11142{
11143 struct dwo_unit *dwo_unit;
11144 struct dwo_file *dwo_file;
11145
11146 gdb_assert (!per_cu->is_debug_types);
11147 gdb_assert (get_dwp_file () == NULL);
11148 gdb_assert (per_cu->cu != NULL);
11149
11150 dwo_unit = per_cu->cu->dwo_unit;
11151 gdb_assert (dwo_unit != NULL);
11152
11153 dwo_file = dwo_unit->dwo_file;
11154 if (dwo_file->tus != NULL)
11155 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11156}
11157
3019eac3
DE
11158/* Free all resources associated with DWO_FILE.
11159 Close the DWO file and munmap the sections.
11160 All memory should be on the objfile obstack. */
348e048f
DE
11161
11162static void
3019eac3 11163free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 11164{
348e048f 11165
5c6fa7ab 11166 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 11167 gdb_bfd_unref (dwo_file->dbfd);
348e048f 11168
3019eac3
DE
11169 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11170}
348e048f 11171
3019eac3 11172/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 11173
3019eac3
DE
11174static void
11175free_dwo_file_cleanup (void *arg)
11176{
11177 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11178 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 11179
3019eac3
DE
11180 free_dwo_file (dwo_file, objfile);
11181}
348e048f 11182
3019eac3 11183/* Traversal function for free_dwo_files. */
2ab95328 11184
3019eac3
DE
11185static int
11186free_dwo_file_from_slot (void **slot, void *info)
11187{
11188 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11189 struct objfile *objfile = (struct objfile *) info;
348e048f 11190
3019eac3 11191 free_dwo_file (dwo_file, objfile);
348e048f 11192
3019eac3
DE
11193 return 1;
11194}
348e048f 11195
3019eac3 11196/* Free all resources associated with DWO_FILES. */
348e048f 11197
3019eac3
DE
11198static void
11199free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11200{
11201 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 11202}
3019eac3
DE
11203\f
11204/* Read in various DIEs. */
348e048f 11205
d389af10
JK
11206/* qsort helper for inherit_abstract_dies. */
11207
11208static int
11209unsigned_int_compar (const void *ap, const void *bp)
11210{
11211 unsigned int a = *(unsigned int *) ap;
11212 unsigned int b = *(unsigned int *) bp;
11213
11214 return (a > b) - (b > a);
11215}
11216
11217/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11218 Inherit only the children of the DW_AT_abstract_origin DIE not being
11219 already referenced by DW_AT_abstract_origin from the children of the
11220 current DIE. */
d389af10
JK
11221
11222static void
11223inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11224{
11225 struct die_info *child_die;
11226 unsigned die_children_count;
11227 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11228 sect_offset *offsets;
11229 sect_offset *offsets_end, *offsetp;
d389af10
JK
11230 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11231 struct die_info *origin_die;
11232 /* Iterator of the ORIGIN_DIE children. */
11233 struct die_info *origin_child_die;
11234 struct cleanup *cleanups;
11235 struct attribute *attr;
cd02d79d
PA
11236 struct dwarf2_cu *origin_cu;
11237 struct pending **origin_previous_list_in_scope;
d389af10
JK
11238
11239 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11240 if (!attr)
11241 return;
11242
cd02d79d
PA
11243 /* Note that following die references may follow to a die in a
11244 different cu. */
11245
11246 origin_cu = cu;
11247 origin_die = follow_die_ref (die, attr, &origin_cu);
11248
11249 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11250 symbols in. */
11251 origin_previous_list_in_scope = origin_cu->list_in_scope;
11252 origin_cu->list_in_scope = cu->list_in_scope;
11253
edb3359d
DJ
11254 if (die->tag != origin_die->tag
11255 && !(die->tag == DW_TAG_inlined_subroutine
11256 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11257 complaint (&symfile_complaints,
11258 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 11259 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
11260
11261 child_die = die->child;
11262 die_children_count = 0;
11263 while (child_die && child_die->tag)
11264 {
11265 child_die = sibling_die (child_die);
11266 die_children_count++;
11267 }
8d749320 11268 offsets = XNEWVEC (sect_offset, die_children_count);
d389af10
JK
11269 cleanups = make_cleanup (xfree, offsets);
11270
11271 offsets_end = offsets;
3ea89b92
PMR
11272 for (child_die = die->child;
11273 child_die && child_die->tag;
11274 child_die = sibling_die (child_die))
11275 {
11276 struct die_info *child_origin_die;
11277 struct dwarf2_cu *child_origin_cu;
11278
11279 /* We are trying to process concrete instance entries:
11280 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11281 it's not relevant to our analysis here. i.e. detecting DIEs that are
11282 present in the abstract instance but not referenced in the concrete
11283 one. */
11284 if (child_die->tag == DW_TAG_GNU_call_site)
11285 continue;
11286
c38f313d
DJ
11287 /* For each CHILD_DIE, find the corresponding child of
11288 ORIGIN_DIE. If there is more than one layer of
11289 DW_AT_abstract_origin, follow them all; there shouldn't be,
11290 but GCC versions at least through 4.4 generate this (GCC PR
11291 40573). */
3ea89b92
PMR
11292 child_origin_die = child_die;
11293 child_origin_cu = cu;
c38f313d
DJ
11294 while (1)
11295 {
cd02d79d
PA
11296 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11297 child_origin_cu);
c38f313d
DJ
11298 if (attr == NULL)
11299 break;
cd02d79d
PA
11300 child_origin_die = follow_die_ref (child_origin_die, attr,
11301 &child_origin_cu);
c38f313d
DJ
11302 }
11303
d389af10
JK
11304 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11305 counterpart may exist. */
c38f313d 11306 if (child_origin_die != child_die)
d389af10 11307 {
edb3359d
DJ
11308 if (child_die->tag != child_origin_die->tag
11309 && !(child_die->tag == DW_TAG_inlined_subroutine
11310 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11311 complaint (&symfile_complaints,
11312 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11313 "different tags"), child_die->offset.sect_off,
11314 child_origin_die->offset.sect_off);
c38f313d
DJ
11315 if (child_origin_die->parent != origin_die)
11316 complaint (&symfile_complaints,
11317 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11318 "different parents"), child_die->offset.sect_off,
11319 child_origin_die->offset.sect_off);
c38f313d
DJ
11320 else
11321 *offsets_end++ = child_origin_die->offset;
d389af10 11322 }
d389af10
JK
11323 }
11324 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11325 unsigned_int_compar);
11326 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 11327 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
11328 complaint (&symfile_complaints,
11329 _("Multiple children of DIE 0x%x refer "
11330 "to DIE 0x%x as their abstract origin"),
b64f50a1 11331 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
11332
11333 offsetp = offsets;
11334 origin_child_die = origin_die->child;
11335 while (origin_child_die && origin_child_die->tag)
11336 {
11337 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
11338 while (offsetp < offsets_end
11339 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 11340 offsetp++;
b64f50a1
JK
11341 if (offsetp >= offsets_end
11342 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10 11343 {
adde2bff
DE
11344 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11345 Check whether we're already processing ORIGIN_CHILD_DIE.
11346 This can happen with mutually referenced abstract_origins.
11347 PR 16581. */
11348 if (!origin_child_die->in_process)
11349 process_die (origin_child_die, origin_cu);
d389af10
JK
11350 }
11351 origin_child_die = sibling_die (origin_child_die);
11352 }
cd02d79d 11353 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11354
11355 do_cleanups (cleanups);
11356}
11357
c906108c 11358static void
e7c27a73 11359read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11360{
e7c27a73 11361 struct objfile *objfile = cu->objfile;
3e29f34a 11362 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11363 struct context_stack *newobj;
c906108c
SS
11364 CORE_ADDR lowpc;
11365 CORE_ADDR highpc;
11366 struct die_info *child_die;
edb3359d 11367 struct attribute *attr, *call_line, *call_file;
15d034d0 11368 const char *name;
e142c38c 11369 CORE_ADDR baseaddr;
801e3a5b 11370 struct block *block;
edb3359d 11371 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11372 VEC (symbolp) *template_args = NULL;
11373 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11374
11375 if (inlined_func)
11376 {
11377 /* If we do not have call site information, we can't show the
11378 caller of this inlined function. That's too confusing, so
11379 only use the scope for local variables. */
11380 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11381 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11382 if (call_line == NULL || call_file == NULL)
11383 {
11384 read_lexical_block_scope (die, cu);
11385 return;
11386 }
11387 }
c906108c 11388
e142c38c
DJ
11389 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11390
94af9270 11391 name = dwarf2_name (die, cu);
c906108c 11392
e8d05480
JB
11393 /* Ignore functions with missing or empty names. These are actually
11394 illegal according to the DWARF standard. */
11395 if (name == NULL)
11396 {
11397 complaint (&symfile_complaints,
b64f50a1
JK
11398 _("missing name for subprogram DIE at %d"),
11399 die->offset.sect_off);
e8d05480
JB
11400 return;
11401 }
11402
11403 /* Ignore functions with missing or invalid low and high pc attributes. */
3a2b436a 11404 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
e385593e 11405 <= PC_BOUNDS_INVALID)
e8d05480 11406 {
ae4d0c03
PM
11407 attr = dwarf2_attr (die, DW_AT_external, cu);
11408 if (!attr || !DW_UNSND (attr))
11409 complaint (&symfile_complaints,
3e43a32a
MS
11410 _("cannot get low and high bounds "
11411 "for subprogram DIE at %d"),
b64f50a1 11412 die->offset.sect_off);
e8d05480
JB
11413 return;
11414 }
c906108c 11415
3e29f34a
MR
11416 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11417 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 11418
34eaf542
TT
11419 /* If we have any template arguments, then we must allocate a
11420 different sort of symbol. */
11421 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11422 {
11423 if (child_die->tag == DW_TAG_template_type_param
11424 || child_die->tag == DW_TAG_template_value_param)
11425 {
e623cf5d 11426 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11427 templ_func->base.is_cplus_template_function = 1;
11428 break;
11429 }
11430 }
11431
fe978cb0
PA
11432 newobj = push_context (0, lowpc);
11433 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
34eaf542 11434 (struct symbol *) templ_func);
4c2df51b 11435
4cecd739
DJ
11436 /* If there is a location expression for DW_AT_frame_base, record
11437 it. */
e142c38c 11438 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11439 if (attr)
fe978cb0 11440 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 11441
63e43d3a
PMR
11442 /* If there is a location for the static link, record it. */
11443 newobj->static_link = NULL;
11444 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11445 if (attr)
11446 {
224c3ddb
SM
11447 newobj->static_link
11448 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
63e43d3a
PMR
11449 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11450 }
11451
e142c38c 11452 cu->list_in_scope = &local_symbols;
c906108c 11453
639d11d3 11454 if (die->child != NULL)
c906108c 11455 {
639d11d3 11456 child_die = die->child;
c906108c
SS
11457 while (child_die && child_die->tag)
11458 {
34eaf542
TT
11459 if (child_die->tag == DW_TAG_template_type_param
11460 || child_die->tag == DW_TAG_template_value_param)
11461 {
11462 struct symbol *arg = new_symbol (child_die, NULL, cu);
11463
f1078f66
DJ
11464 if (arg != NULL)
11465 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11466 }
11467 else
11468 process_die (child_die, cu);
c906108c
SS
11469 child_die = sibling_die (child_die);
11470 }
11471 }
11472
d389af10
JK
11473 inherit_abstract_dies (die, cu);
11474
4a811a97
UW
11475 /* If we have a DW_AT_specification, we might need to import using
11476 directives from the context of the specification DIE. See the
11477 comment in determine_prefix. */
11478 if (cu->language == language_cplus
11479 && dwarf2_attr (die, DW_AT_specification, cu))
11480 {
11481 struct dwarf2_cu *spec_cu = cu;
11482 struct die_info *spec_die = die_specification (die, &spec_cu);
11483
11484 while (spec_die)
11485 {
11486 child_die = spec_die->child;
11487 while (child_die && child_die->tag)
11488 {
11489 if (child_die->tag == DW_TAG_imported_module)
11490 process_die (child_die, spec_cu);
11491 child_die = sibling_die (child_die);
11492 }
11493
11494 /* In some cases, GCC generates specification DIEs that
11495 themselves contain DW_AT_specification attributes. */
11496 spec_die = die_specification (spec_die, &spec_cu);
11497 }
11498 }
11499
fe978cb0 11500 newobj = pop_context ();
c906108c 11501 /* Make a block for the local symbols within. */
fe978cb0 11502 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
63e43d3a 11503 newobj->static_link, lowpc, highpc);
801e3a5b 11504
df8a16a1 11505 /* For C++, set the block's scope. */
45280282
IB
11506 if ((cu->language == language_cplus
11507 || cu->language == language_fortran
c44af4eb
TT
11508 || cu->language == language_d
11509 || cu->language == language_rust)
4d4ec4e5 11510 && cu->processing_has_namespace_info)
195a3f6c
TT
11511 block_set_scope (block, determine_prefix (die, cu),
11512 &objfile->objfile_obstack);
df8a16a1 11513
801e3a5b
JB
11514 /* If we have address ranges, record them. */
11515 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11516
fe978cb0 11517 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
3e29f34a 11518
34eaf542
TT
11519 /* Attach template arguments to function. */
11520 if (! VEC_empty (symbolp, template_args))
11521 {
11522 gdb_assert (templ_func != NULL);
11523
11524 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11525 templ_func->template_arguments
8d749320
SM
11526 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11527 templ_func->n_template_arguments);
34eaf542
TT
11528 memcpy (templ_func->template_arguments,
11529 VEC_address (symbolp, template_args),
11530 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11531 VEC_free (symbolp, template_args);
11532 }
11533
208d8187
JB
11534 /* In C++, we can have functions nested inside functions (e.g., when
11535 a function declares a class that has methods). This means that
11536 when we finish processing a function scope, we may need to go
11537 back to building a containing block's symbol lists. */
fe978cb0 11538 local_symbols = newobj->locals;
22cee43f 11539 local_using_directives = newobj->local_using_directives;
208d8187 11540
921e78cf
JB
11541 /* If we've finished processing a top-level function, subsequent
11542 symbols go in the file symbol list. */
11543 if (outermost_context_p ())
e142c38c 11544 cu->list_in_scope = &file_symbols;
c906108c
SS
11545}
11546
11547/* Process all the DIES contained within a lexical block scope. Start
11548 a new scope, process the dies, and then close the scope. */
11549
11550static void
e7c27a73 11551read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11552{
e7c27a73 11553 struct objfile *objfile = cu->objfile;
3e29f34a 11554 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11555 struct context_stack *newobj;
c906108c
SS
11556 CORE_ADDR lowpc, highpc;
11557 struct die_info *child_die;
e142c38c
DJ
11558 CORE_ADDR baseaddr;
11559
11560 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11561
11562 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11563 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11564 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11565 be nasty. Might be easier to properly extend generic blocks to
af34e669 11566 describe ranges. */
e385593e
JK
11567 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11568 {
11569 case PC_BOUNDS_NOT_PRESENT:
11570 /* DW_TAG_lexical_block has no attributes, process its children as if
11571 there was no wrapping by that DW_TAG_lexical_block.
11572 GCC does no longer produces such DWARF since GCC r224161. */
11573 for (child_die = die->child;
11574 child_die != NULL && child_die->tag;
11575 child_die = sibling_die (child_die))
11576 process_die (child_die, cu);
11577 return;
11578 case PC_BOUNDS_INVALID:
11579 return;
11580 }
3e29f34a
MR
11581 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11582 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c
SS
11583
11584 push_context (0, lowpc);
639d11d3 11585 if (die->child != NULL)
c906108c 11586 {
639d11d3 11587 child_die = die->child;
c906108c
SS
11588 while (child_die && child_die->tag)
11589 {
e7c27a73 11590 process_die (child_die, cu);
c906108c
SS
11591 child_die = sibling_die (child_die);
11592 }
11593 }
3ea89b92 11594 inherit_abstract_dies (die, cu);
fe978cb0 11595 newobj = pop_context ();
c906108c 11596
22cee43f 11597 if (local_symbols != NULL || local_using_directives != NULL)
c906108c 11598 {
801e3a5b 11599 struct block *block
63e43d3a 11600 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
fe978cb0 11601 newobj->start_addr, highpc);
801e3a5b
JB
11602
11603 /* Note that recording ranges after traversing children, as we
11604 do here, means that recording a parent's ranges entails
11605 walking across all its children's ranges as they appear in
11606 the address map, which is quadratic behavior.
11607
11608 It would be nicer to record the parent's ranges before
11609 traversing its children, simply overriding whatever you find
11610 there. But since we don't even decide whether to create a
11611 block until after we've traversed its children, that's hard
11612 to do. */
11613 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 11614 }
fe978cb0 11615 local_symbols = newobj->locals;
22cee43f 11616 local_using_directives = newobj->local_using_directives;
c906108c
SS
11617}
11618
96408a79
SA
11619/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11620
11621static void
11622read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11623{
11624 struct objfile *objfile = cu->objfile;
11625 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11626 CORE_ADDR pc, baseaddr;
11627 struct attribute *attr;
11628 struct call_site *call_site, call_site_local;
11629 void **slot;
11630 int nparams;
11631 struct die_info *child_die;
11632
11633 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11634
11635 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11636 if (!attr)
11637 {
11638 complaint (&symfile_complaints,
11639 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11640 "DIE 0x%x [in module %s]"),
4262abfb 11641 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11642 return;
11643 }
31aa7e4e 11644 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 11645 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
11646
11647 if (cu->call_site_htab == NULL)
11648 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11649 NULL, &objfile->objfile_obstack,
11650 hashtab_obstack_allocate, NULL);
11651 call_site_local.pc = pc;
11652 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11653 if (*slot != NULL)
11654 {
11655 complaint (&symfile_complaints,
11656 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11657 "DIE 0x%x [in module %s]"),
4262abfb
JK
11658 paddress (gdbarch, pc), die->offset.sect_off,
11659 objfile_name (objfile));
96408a79
SA
11660 return;
11661 }
11662
11663 /* Count parameters at the caller. */
11664
11665 nparams = 0;
11666 for (child_die = die->child; child_die && child_die->tag;
11667 child_die = sibling_die (child_die))
11668 {
11669 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11670 {
11671 complaint (&symfile_complaints,
11672 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11673 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11674 child_die->tag, child_die->offset.sect_off,
11675 objfile_name (objfile));
96408a79
SA
11676 continue;
11677 }
11678
11679 nparams++;
11680 }
11681
224c3ddb
SM
11682 call_site
11683 = ((struct call_site *)
11684 obstack_alloc (&objfile->objfile_obstack,
11685 sizeof (*call_site)
11686 + (sizeof (*call_site->parameter) * (nparams - 1))));
96408a79
SA
11687 *slot = call_site;
11688 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11689 call_site->pc = pc;
11690
11691 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11692 {
11693 struct die_info *func_die;
11694
11695 /* Skip also over DW_TAG_inlined_subroutine. */
11696 for (func_die = die->parent;
11697 func_die && func_die->tag != DW_TAG_subprogram
11698 && func_die->tag != DW_TAG_subroutine_type;
11699 func_die = func_die->parent);
11700
11701 /* DW_AT_GNU_all_call_sites is a superset
11702 of DW_AT_GNU_all_tail_call_sites. */
11703 if (func_die
11704 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11705 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11706 {
11707 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11708 not complete. But keep CALL_SITE for look ups via call_site_htab,
11709 both the initial caller containing the real return address PC and
11710 the final callee containing the current PC of a chain of tail
11711 calls do not need to have the tail call list complete. But any
11712 function candidate for a virtual tail call frame searched via
11713 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11714 determined unambiguously. */
11715 }
11716 else
11717 {
11718 struct type *func_type = NULL;
11719
11720 if (func_die)
11721 func_type = get_die_type (func_die, cu);
11722 if (func_type != NULL)
11723 {
11724 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11725
11726 /* Enlist this call site to the function. */
11727 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11728 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11729 }
11730 else
11731 complaint (&symfile_complaints,
11732 _("Cannot find function owning DW_TAG_GNU_call_site "
11733 "DIE 0x%x [in module %s]"),
4262abfb 11734 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11735 }
11736 }
11737
11738 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11739 if (attr == NULL)
11740 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11741 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11742 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11743 /* Keep NULL DWARF_BLOCK. */;
11744 else if (attr_form_is_block (attr))
11745 {
11746 struct dwarf2_locexpr_baton *dlbaton;
11747
8d749320 11748 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
96408a79
SA
11749 dlbaton->data = DW_BLOCK (attr)->data;
11750 dlbaton->size = DW_BLOCK (attr)->size;
11751 dlbaton->per_cu = cu->per_cu;
11752
11753 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11754 }
7771576e 11755 else if (attr_form_is_ref (attr))
96408a79 11756 {
96408a79
SA
11757 struct dwarf2_cu *target_cu = cu;
11758 struct die_info *target_die;
11759
ac9ec31b 11760 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11761 gdb_assert (target_cu->objfile == objfile);
11762 if (die_is_declaration (target_die, target_cu))
11763 {
7d45c7c3 11764 const char *target_physname;
9112db09
JK
11765
11766 /* Prefer the mangled name; otherwise compute the demangled one. */
7d45c7c3
KB
11767 target_physname = dwarf2_string_attr (target_die,
11768 DW_AT_linkage_name,
11769 target_cu);
11770 if (target_physname == NULL)
11771 target_physname = dwarf2_string_attr (target_die,
11772 DW_AT_MIPS_linkage_name,
11773 target_cu);
11774 if (target_physname == NULL)
9112db09 11775 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11776 if (target_physname == NULL)
11777 complaint (&symfile_complaints,
11778 _("DW_AT_GNU_call_site_target target DIE has invalid "
11779 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11780 die->offset.sect_off, objfile_name (objfile));
96408a79 11781 else
7d455152 11782 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11783 }
11784 else
11785 {
11786 CORE_ADDR lowpc;
11787
11788 /* DW_AT_entry_pc should be preferred. */
3a2b436a 11789 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
e385593e 11790 <= PC_BOUNDS_INVALID)
96408a79
SA
11791 complaint (&symfile_complaints,
11792 _("DW_AT_GNU_call_site_target target DIE has invalid "
11793 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11794 die->offset.sect_off, objfile_name (objfile));
96408a79 11795 else
3e29f34a
MR
11796 {
11797 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11798 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11799 }
96408a79
SA
11800 }
11801 }
11802 else
11803 complaint (&symfile_complaints,
11804 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11805 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11806 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11807
11808 call_site->per_cu = cu->per_cu;
11809
11810 for (child_die = die->child;
11811 child_die && child_die->tag;
11812 child_die = sibling_die (child_die))
11813 {
96408a79 11814 struct call_site_parameter *parameter;
1788b2d3 11815 struct attribute *loc, *origin;
96408a79
SA
11816
11817 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11818 {
11819 /* Already printed the complaint above. */
11820 continue;
11821 }
11822
11823 gdb_assert (call_site->parameter_count < nparams);
11824 parameter = &call_site->parameter[call_site->parameter_count];
11825
1788b2d3
JK
11826 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11827 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11828 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11829
24c5c679 11830 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11831 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11832 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11833 {
11834 sect_offset offset;
11835
11836 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11837 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11838 if (!offset_in_cu_p (&cu->header, offset))
11839 {
11840 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11841 binding can be done only inside one CU. Such referenced DIE
11842 therefore cannot be even moved to DW_TAG_partial_unit. */
11843 complaint (&symfile_complaints,
11844 _("DW_AT_abstract_origin offset is not in CU for "
11845 "DW_TAG_GNU_call_site child DIE 0x%x "
11846 "[in module %s]"),
4262abfb 11847 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11848 continue;
11849 }
1788b2d3
JK
11850 parameter->u.param_offset.cu_off = (offset.sect_off
11851 - cu->header.offset.sect_off);
11852 }
11853 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11854 {
11855 complaint (&symfile_complaints,
11856 _("No DW_FORM_block* DW_AT_location for "
11857 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11858 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11859 continue;
11860 }
24c5c679 11861 else
96408a79 11862 {
24c5c679
JK
11863 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11864 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11865 if (parameter->u.dwarf_reg != -1)
11866 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11867 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11868 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11869 &parameter->u.fb_offset))
11870 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11871 else
11872 {
11873 complaint (&symfile_complaints,
11874 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11875 "for DW_FORM_block* DW_AT_location is supported for "
11876 "DW_TAG_GNU_call_site child DIE 0x%x "
11877 "[in module %s]"),
4262abfb 11878 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11879 continue;
11880 }
96408a79
SA
11881 }
11882
11883 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11884 if (!attr_form_is_block (attr))
11885 {
11886 complaint (&symfile_complaints,
11887 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11888 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11889 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11890 continue;
11891 }
11892 parameter->value = DW_BLOCK (attr)->data;
11893 parameter->value_size = DW_BLOCK (attr)->size;
11894
11895 /* Parameters are not pre-cleared by memset above. */
11896 parameter->data_value = NULL;
11897 parameter->data_value_size = 0;
11898 call_site->parameter_count++;
11899
11900 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11901 if (attr)
11902 {
11903 if (!attr_form_is_block (attr))
11904 complaint (&symfile_complaints,
11905 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11906 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11907 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11908 else
11909 {
11910 parameter->data_value = DW_BLOCK (attr)->data;
11911 parameter->data_value_size = DW_BLOCK (attr)->size;
11912 }
11913 }
11914 }
11915}
11916
43039443 11917/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
11918 Return 1 if the attributes are present and valid, otherwise, return 0.
11919 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
11920
11921static int
11922dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
11923 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11924 struct partial_symtab *ranges_pst)
43039443
JK
11925{
11926 struct objfile *objfile = cu->objfile;
3e29f34a 11927 struct gdbarch *gdbarch = get_objfile_arch (objfile);
43039443
JK
11928 struct comp_unit_head *cu_header = &cu->header;
11929 bfd *obfd = objfile->obfd;
11930 unsigned int addr_size = cu_header->addr_size;
11931 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11932 /* Base address selection entry. */
11933 CORE_ADDR base;
11934 int found_base;
11935 unsigned int dummy;
d521ce57 11936 const gdb_byte *buffer;
43039443
JK
11937 int low_set;
11938 CORE_ADDR low = 0;
11939 CORE_ADDR high = 0;
ff013f42 11940 CORE_ADDR baseaddr;
43039443 11941
d00adf39
DE
11942 found_base = cu->base_known;
11943 base = cu->base_address;
43039443 11944
be391dca 11945 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11946 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
11947 {
11948 complaint (&symfile_complaints,
11949 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11950 offset);
11951 return 0;
11952 }
dce234bc 11953 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443 11954
43039443
JK
11955 low_set = 0;
11956
e7030f15 11957 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 11958
43039443
JK
11959 while (1)
11960 {
11961 CORE_ADDR range_beginning, range_end;
11962
11963 range_beginning = read_address (obfd, buffer, cu, &dummy);
11964 buffer += addr_size;
11965 range_end = read_address (obfd, buffer, cu, &dummy);
11966 buffer += addr_size;
11967 offset += 2 * addr_size;
11968
11969 /* An end of list marker is a pair of zero addresses. */
11970 if (range_beginning == 0 && range_end == 0)
11971 /* Found the end of list entry. */
11972 break;
11973
11974 /* Each base address selection entry is a pair of 2 values.
11975 The first is the largest possible address, the second is
11976 the base address. Check for a base address here. */
11977 if ((range_beginning & mask) == mask)
11978 {
28d2bfb9
AB
11979 /* If we found the largest possible address, then we already
11980 have the base address in range_end. */
11981 base = range_end;
43039443
JK
11982 found_base = 1;
11983 continue;
11984 }
11985
11986 if (!found_base)
11987 {
11988 /* We have no valid base address for the ranges
11989 data. */
11990 complaint (&symfile_complaints,
11991 _("Invalid .debug_ranges data (no base address)"));
11992 return 0;
11993 }
11994
9277c30c
UW
11995 if (range_beginning > range_end)
11996 {
11997 /* Inverted range entries are invalid. */
11998 complaint (&symfile_complaints,
11999 _("Invalid .debug_ranges data (inverted range)"));
12000 return 0;
12001 }
12002
12003 /* Empty range entries have no effect. */
12004 if (range_beginning == range_end)
12005 continue;
12006
43039443
JK
12007 range_beginning += base;
12008 range_end += base;
12009
01093045
DE
12010 /* A not-uncommon case of bad debug info.
12011 Don't pollute the addrmap with bad data. */
12012 if (range_beginning + baseaddr == 0
12013 && !dwarf2_per_objfile->has_section_at_zero)
12014 {
12015 complaint (&symfile_complaints,
12016 _(".debug_ranges entry has start address of zero"
4262abfb 12017 " [in module %s]"), objfile_name (objfile));
01093045
DE
12018 continue;
12019 }
12020
9277c30c 12021 if (ranges_pst != NULL)
3e29f34a
MR
12022 {
12023 CORE_ADDR lowpc;
12024 CORE_ADDR highpc;
12025
12026 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12027 range_beginning + baseaddr);
12028 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
12029 range_end + baseaddr);
12030 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
12031 ranges_pst);
12032 }
ff013f42 12033
43039443
JK
12034 /* FIXME: This is recording everything as a low-high
12035 segment of consecutive addresses. We should have a
12036 data structure for discontiguous block ranges
12037 instead. */
12038 if (! low_set)
12039 {
12040 low = range_beginning;
12041 high = range_end;
12042 low_set = 1;
12043 }
12044 else
12045 {
12046 if (range_beginning < low)
12047 low = range_beginning;
12048 if (range_end > high)
12049 high = range_end;
12050 }
12051 }
12052
12053 if (! low_set)
12054 /* If the first entry is an end-of-list marker, the range
12055 describes an empty scope, i.e. no instructions. */
12056 return 0;
12057
12058 if (low_return)
12059 *low_return = low;
12060 if (high_return)
12061 *high_return = high;
12062 return 1;
12063}
12064
3a2b436a
JK
12065/* Get low and high pc attributes from a die. See enum pc_bounds_kind
12066 definition for the return value. *LOWPC and *HIGHPC are set iff
e385593e 12067 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
380bca97 12068
3a2b436a 12069static enum pc_bounds_kind
af34e669 12070dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
12071 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12072 struct partial_symtab *pst)
c906108c
SS
12073{
12074 struct attribute *attr;
91da1414 12075 struct attribute *attr_high;
af34e669
DJ
12076 CORE_ADDR low = 0;
12077 CORE_ADDR high = 0;
e385593e 12078 enum pc_bounds_kind ret;
c906108c 12079
91da1414
MW
12080 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12081 if (attr_high)
af34e669 12082 {
e142c38c 12083 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 12084 if (attr)
91da1414 12085 {
31aa7e4e
JB
12086 low = attr_value_as_address (attr);
12087 high = attr_value_as_address (attr_high);
12088 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12089 high += low;
91da1414 12090 }
af34e669
DJ
12091 else
12092 /* Found high w/o low attribute. */
e385593e 12093 return PC_BOUNDS_INVALID;
af34e669
DJ
12094
12095 /* Found consecutive range of addresses. */
3a2b436a 12096 ret = PC_BOUNDS_HIGH_LOW;
af34e669 12097 }
c906108c 12098 else
af34e669 12099 {
e142c38c 12100 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
12101 if (attr != NULL)
12102 {
ab435259
DE
12103 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12104 We take advantage of the fact that DW_AT_ranges does not appear
12105 in DW_TAG_compile_unit of DWO files. */
12106 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12107 unsigned int ranges_offset = (DW_UNSND (attr)
12108 + (need_ranges_base
12109 ? cu->ranges_base
12110 : 0));
2e3cf129 12111
af34e669 12112 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 12113 .debug_ranges section. */
2e3cf129 12114 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
e385593e 12115 return PC_BOUNDS_INVALID;
43039443 12116 /* Found discontinuous range of addresses. */
3a2b436a 12117 ret = PC_BOUNDS_RANGES;
af34e669 12118 }
e385593e
JK
12119 else
12120 return PC_BOUNDS_NOT_PRESENT;
af34e669 12121 }
c906108c 12122
9373cf26
JK
12123 /* read_partial_die has also the strict LOW < HIGH requirement. */
12124 if (high <= low)
e385593e 12125 return PC_BOUNDS_INVALID;
c906108c
SS
12126
12127 /* When using the GNU linker, .gnu.linkonce. sections are used to
12128 eliminate duplicate copies of functions and vtables and such.
12129 The linker will arbitrarily choose one and discard the others.
12130 The AT_*_pc values for such functions refer to local labels in
12131 these sections. If the section from that file was discarded, the
12132 labels are not in the output, so the relocs get a value of 0.
12133 If this is a discarded function, mark the pc bounds as invalid,
12134 so that GDB will ignore it. */
72dca2f5 12135 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
e385593e 12136 return PC_BOUNDS_INVALID;
c906108c
SS
12137
12138 *lowpc = low;
96408a79
SA
12139 if (highpc)
12140 *highpc = high;
af34e669 12141 return ret;
c906108c
SS
12142}
12143
b084d499
JB
12144/* Assuming that DIE represents a subprogram DIE or a lexical block, get
12145 its low and high PC addresses. Do nothing if these addresses could not
12146 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12147 and HIGHPC to the high address if greater than HIGHPC. */
12148
12149static void
12150dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12151 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12152 struct dwarf2_cu *cu)
12153{
12154 CORE_ADDR low, high;
12155 struct die_info *child = die->child;
12156
e385593e 12157 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
b084d499
JB
12158 {
12159 *lowpc = min (*lowpc, low);
12160 *highpc = max (*highpc, high);
12161 }
12162
12163 /* If the language does not allow nested subprograms (either inside
12164 subprograms or lexical blocks), we're done. */
12165 if (cu->language != language_ada)
12166 return;
6e70227d 12167
b084d499
JB
12168 /* Check all the children of the given DIE. If it contains nested
12169 subprograms, then check their pc bounds. Likewise, we need to
12170 check lexical blocks as well, as they may also contain subprogram
12171 definitions. */
12172 while (child && child->tag)
12173 {
12174 if (child->tag == DW_TAG_subprogram
12175 || child->tag == DW_TAG_lexical_block)
12176 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12177 child = sibling_die (child);
12178 }
12179}
12180
fae299cd
DC
12181/* Get the low and high pc's represented by the scope DIE, and store
12182 them in *LOWPC and *HIGHPC. If the correct values can't be
12183 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12184
12185static void
12186get_scope_pc_bounds (struct die_info *die,
12187 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12188 struct dwarf2_cu *cu)
12189{
12190 CORE_ADDR best_low = (CORE_ADDR) -1;
12191 CORE_ADDR best_high = (CORE_ADDR) 0;
12192 CORE_ADDR current_low, current_high;
12193
3a2b436a 12194 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
e385593e 12195 >= PC_BOUNDS_RANGES)
fae299cd
DC
12196 {
12197 best_low = current_low;
12198 best_high = current_high;
12199 }
12200 else
12201 {
12202 struct die_info *child = die->child;
12203
12204 while (child && child->tag)
12205 {
12206 switch (child->tag) {
12207 case DW_TAG_subprogram:
b084d499 12208 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
12209 break;
12210 case DW_TAG_namespace:
f55ee35c 12211 case DW_TAG_module:
fae299cd
DC
12212 /* FIXME: carlton/2004-01-16: Should we do this for
12213 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12214 that current GCC's always emit the DIEs corresponding
12215 to definitions of methods of classes as children of a
12216 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12217 the DIEs giving the declarations, which could be
12218 anywhere). But I don't see any reason why the
12219 standards says that they have to be there. */
12220 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12221
12222 if (current_low != ((CORE_ADDR) -1))
12223 {
12224 best_low = min (best_low, current_low);
12225 best_high = max (best_high, current_high);
12226 }
12227 break;
12228 default:
0963b4bd 12229 /* Ignore. */
fae299cd
DC
12230 break;
12231 }
12232
12233 child = sibling_die (child);
12234 }
12235 }
12236
12237 *lowpc = best_low;
12238 *highpc = best_high;
12239}
12240
801e3a5b
JB
12241/* Record the address ranges for BLOCK, offset by BASEADDR, as given
12242 in DIE. */
380bca97 12243
801e3a5b
JB
12244static void
12245dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12246 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12247{
bb5ed363 12248 struct objfile *objfile = cu->objfile;
3e29f34a 12249 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 12250 struct attribute *attr;
91da1414 12251 struct attribute *attr_high;
801e3a5b 12252
91da1414
MW
12253 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12254 if (attr_high)
801e3a5b 12255 {
801e3a5b
JB
12256 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12257 if (attr)
12258 {
31aa7e4e
JB
12259 CORE_ADDR low = attr_value_as_address (attr);
12260 CORE_ADDR high = attr_value_as_address (attr_high);
12261
12262 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12263 high += low;
9a619af0 12264
3e29f34a
MR
12265 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12266 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12267 record_block_range (block, low, high - 1);
801e3a5b
JB
12268 }
12269 }
12270
12271 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12272 if (attr)
12273 {
bb5ed363 12274 bfd *obfd = objfile->obfd;
ab435259
DE
12275 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12276 We take advantage of the fact that DW_AT_ranges does not appear
12277 in DW_TAG_compile_unit of DWO files. */
12278 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12279
12280 /* The value of the DW_AT_ranges attribute is the offset of the
12281 address range list in the .debug_ranges section. */
ab435259
DE
12282 unsigned long offset = (DW_UNSND (attr)
12283 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12284 const gdb_byte *buffer;
801e3a5b
JB
12285
12286 /* For some target architectures, but not others, the
12287 read_address function sign-extends the addresses it returns.
12288 To recognize base address selection entries, we need a
12289 mask. */
12290 unsigned int addr_size = cu->header.addr_size;
12291 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12292
12293 /* The base address, to which the next pair is relative. Note
12294 that this 'base' is a DWARF concept: most entries in a range
12295 list are relative, to reduce the number of relocs against the
12296 debugging information. This is separate from this function's
12297 'baseaddr' argument, which GDB uses to relocate debugging
12298 information from a shared library based on the address at
12299 which the library was loaded. */
d00adf39
DE
12300 CORE_ADDR base = cu->base_address;
12301 int base_known = cu->base_known;
801e3a5b 12302
d62bfeaf 12303 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12304 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
12305 {
12306 complaint (&symfile_complaints,
12307 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12308 offset);
12309 return;
12310 }
d62bfeaf 12311 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
12312
12313 for (;;)
12314 {
12315 unsigned int bytes_read;
12316 CORE_ADDR start, end;
12317
12318 start = read_address (obfd, buffer, cu, &bytes_read);
12319 buffer += bytes_read;
12320 end = read_address (obfd, buffer, cu, &bytes_read);
12321 buffer += bytes_read;
12322
12323 /* Did we find the end of the range list? */
12324 if (start == 0 && end == 0)
12325 break;
12326
12327 /* Did we find a base address selection entry? */
12328 else if ((start & base_select_mask) == base_select_mask)
12329 {
12330 base = end;
12331 base_known = 1;
12332 }
12333
12334 /* We found an ordinary address range. */
12335 else
12336 {
12337 if (!base_known)
12338 {
12339 complaint (&symfile_complaints,
3e43a32a
MS
12340 _("Invalid .debug_ranges data "
12341 "(no base address)"));
801e3a5b
JB
12342 return;
12343 }
12344
9277c30c
UW
12345 if (start > end)
12346 {
12347 /* Inverted range entries are invalid. */
12348 complaint (&symfile_complaints,
12349 _("Invalid .debug_ranges data "
12350 "(inverted range)"));
12351 return;
12352 }
12353
12354 /* Empty range entries have no effect. */
12355 if (start == end)
12356 continue;
12357
01093045
DE
12358 start += base + baseaddr;
12359 end += base + baseaddr;
12360
12361 /* A not-uncommon case of bad debug info.
12362 Don't pollute the addrmap with bad data. */
12363 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12364 {
12365 complaint (&symfile_complaints,
12366 _(".debug_ranges entry has start address of zero"
4262abfb 12367 " [in module %s]"), objfile_name (objfile));
01093045
DE
12368 continue;
12369 }
12370
3e29f34a
MR
12371 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12372 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
01093045 12373 record_block_range (block, start, end - 1);
801e3a5b
JB
12374 }
12375 }
12376 }
12377}
12378
685b1105
JK
12379/* Check whether the producer field indicates either of GCC < 4.6, or the
12380 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12381
685b1105
JK
12382static void
12383check_producer (struct dwarf2_cu *cu)
60d5a603 12384{
38360086 12385 int major, minor;
60d5a603
JK
12386
12387 if (cu->producer == NULL)
12388 {
12389 /* For unknown compilers expect their behavior is DWARF version
12390 compliant.
12391
12392 GCC started to support .debug_types sections by -gdwarf-4 since
12393 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12394 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12395 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12396 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12397 }
b1ffba5a 12398 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 12399 {
38360086
MW
12400 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12401 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 12402 }
61012eef 12403 else if (startswith (cu->producer, "Intel(R) C"))
685b1105
JK
12404 cu->producer_is_icc = 1;
12405 else
12406 {
12407 /* For other non-GCC compilers, expect their behavior is DWARF version
12408 compliant. */
60d5a603
JK
12409 }
12410
ba919b58 12411 cu->checked_producer = 1;
685b1105 12412}
ba919b58 12413
685b1105
JK
12414/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12415 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12416 during 4.6.0 experimental. */
12417
12418static int
12419producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12420{
12421 if (!cu->checked_producer)
12422 check_producer (cu);
12423
12424 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12425}
12426
12427/* Return the default accessibility type if it is not overriden by
12428 DW_AT_accessibility. */
12429
12430static enum dwarf_access_attribute
12431dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12432{
12433 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12434 {
12435 /* The default DWARF 2 accessibility for members is public, the default
12436 accessibility for inheritance is private. */
12437
12438 if (die->tag != DW_TAG_inheritance)
12439 return DW_ACCESS_public;
12440 else
12441 return DW_ACCESS_private;
12442 }
12443 else
12444 {
12445 /* DWARF 3+ defines the default accessibility a different way. The same
12446 rules apply now for DW_TAG_inheritance as for the members and it only
12447 depends on the container kind. */
12448
12449 if (die->parent->tag == DW_TAG_class_type)
12450 return DW_ACCESS_private;
12451 else
12452 return DW_ACCESS_public;
12453 }
12454}
12455
74ac6d43
TT
12456/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12457 offset. If the attribute was not found return 0, otherwise return
12458 1. If it was found but could not properly be handled, set *OFFSET
12459 to 0. */
12460
12461static int
12462handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12463 LONGEST *offset)
12464{
12465 struct attribute *attr;
12466
12467 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12468 if (attr != NULL)
12469 {
12470 *offset = 0;
12471
12472 /* Note that we do not check for a section offset first here.
12473 This is because DW_AT_data_member_location is new in DWARF 4,
12474 so if we see it, we can assume that a constant form is really
12475 a constant and not a section offset. */
12476 if (attr_form_is_constant (attr))
12477 *offset = dwarf2_get_attr_constant_value (attr, 0);
12478 else if (attr_form_is_section_offset (attr))
12479 dwarf2_complex_location_expr_complaint ();
12480 else if (attr_form_is_block (attr))
12481 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12482 else
12483 dwarf2_complex_location_expr_complaint ();
12484
12485 return 1;
12486 }
12487
12488 return 0;
12489}
12490
c906108c
SS
12491/* Add an aggregate field to the field list. */
12492
12493static void
107d2387 12494dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12495 struct dwarf2_cu *cu)
6e70227d 12496{
e7c27a73 12497 struct objfile *objfile = cu->objfile;
5e2b427d 12498 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12499 struct nextfield *new_field;
12500 struct attribute *attr;
12501 struct field *fp;
15d034d0 12502 const char *fieldname = "";
c906108c
SS
12503
12504 /* Allocate a new field list entry and link it in. */
8d749320 12505 new_field = XNEW (struct nextfield);
b8c9b27d 12506 make_cleanup (xfree, new_field);
c906108c 12507 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12508
12509 if (die->tag == DW_TAG_inheritance)
12510 {
12511 new_field->next = fip->baseclasses;
12512 fip->baseclasses = new_field;
12513 }
12514 else
12515 {
12516 new_field->next = fip->fields;
12517 fip->fields = new_field;
12518 }
c906108c
SS
12519 fip->nfields++;
12520
e142c38c 12521 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12522 if (attr)
12523 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12524 else
12525 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12526 if (new_field->accessibility != DW_ACCESS_public)
12527 fip->non_public_fields = 1;
60d5a603 12528
e142c38c 12529 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12530 if (attr)
12531 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12532 else
12533 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12534
12535 fp = &new_field->field;
a9a9bd0f 12536
e142c38c 12537 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12538 {
74ac6d43
TT
12539 LONGEST offset;
12540
a9a9bd0f 12541 /* Data member other than a C++ static data member. */
6e70227d 12542
c906108c 12543 /* Get type of field. */
e7c27a73 12544 fp->type = die_type (die, cu);
c906108c 12545
d6a843b5 12546 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12547
c906108c 12548 /* Get bit size of field (zero if none). */
e142c38c 12549 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12550 if (attr)
12551 {
12552 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12553 }
12554 else
12555 {
12556 FIELD_BITSIZE (*fp) = 0;
12557 }
12558
12559 /* Get bit offset of field. */
74ac6d43
TT
12560 if (handle_data_member_location (die, cu, &offset))
12561 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12562 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12563 if (attr)
12564 {
5e2b427d 12565 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12566 {
12567 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12568 additional bit offset from the MSB of the containing
12569 anonymous object to the MSB of the field. We don't
12570 have to do anything special since we don't need to
12571 know the size of the anonymous object. */
f41f5e61 12572 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12573 }
12574 else
12575 {
12576 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12577 MSB of the anonymous object, subtract off the number of
12578 bits from the MSB of the field to the MSB of the
12579 object, and then subtract off the number of bits of
12580 the field itself. The result is the bit offset of
12581 the LSB of the field. */
c906108c
SS
12582 int anonymous_size;
12583 int bit_offset = DW_UNSND (attr);
12584
e142c38c 12585 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12586 if (attr)
12587 {
12588 /* The size of the anonymous object containing
12589 the bit field is explicit, so use the
12590 indicated size (in bytes). */
12591 anonymous_size = DW_UNSND (attr);
12592 }
12593 else
12594 {
12595 /* The size of the anonymous object containing
12596 the bit field must be inferred from the type
12597 attribute of the data member containing the
12598 bit field. */
12599 anonymous_size = TYPE_LENGTH (fp->type);
12600 }
f41f5e61
PA
12601 SET_FIELD_BITPOS (*fp,
12602 (FIELD_BITPOS (*fp)
12603 + anonymous_size * bits_per_byte
12604 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12605 }
12606 }
12607
12608 /* Get name of field. */
39cbfefa
DJ
12609 fieldname = dwarf2_name (die, cu);
12610 if (fieldname == NULL)
12611 fieldname = "";
d8151005
DJ
12612
12613 /* The name is already allocated along with this objfile, so we don't
12614 need to duplicate it for the type. */
12615 fp->name = fieldname;
c906108c
SS
12616
12617 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12618 pointer or virtual base class pointer) to private. */
e142c38c 12619 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12620 {
d48cc9dd 12621 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12622 new_field->accessibility = DW_ACCESS_private;
12623 fip->non_public_fields = 1;
12624 }
12625 }
a9a9bd0f 12626 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12627 {
a9a9bd0f
DC
12628 /* C++ static member. */
12629
12630 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12631 is a declaration, but all versions of G++ as of this writing
12632 (so through at least 3.2.1) incorrectly generate
12633 DW_TAG_variable tags. */
6e70227d 12634
ff355380 12635 const char *physname;
c906108c 12636
a9a9bd0f 12637 /* Get name of field. */
39cbfefa
DJ
12638 fieldname = dwarf2_name (die, cu);
12639 if (fieldname == NULL)
c906108c
SS
12640 return;
12641
254e6b9e 12642 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12643 if (attr
12644 /* Only create a symbol if this is an external value.
12645 new_symbol checks this and puts the value in the global symbol
12646 table, which we want. If it is not external, new_symbol
12647 will try to put the value in cu->list_in_scope which is wrong. */
12648 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12649 {
12650 /* A static const member, not much different than an enum as far as
12651 we're concerned, except that we can support more types. */
12652 new_symbol (die, NULL, cu);
12653 }
12654
2df3850c 12655 /* Get physical name. */
ff355380 12656 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12657
d8151005
DJ
12658 /* The name is already allocated along with this objfile, so we don't
12659 need to duplicate it for the type. */
12660 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12661 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12662 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12663 }
12664 else if (die->tag == DW_TAG_inheritance)
12665 {
74ac6d43 12666 LONGEST offset;
d4b96c9a 12667
74ac6d43
TT
12668 /* C++ base class field. */
12669 if (handle_data_member_location (die, cu, &offset))
12670 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12671 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12672 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12673 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12674 fip->nbaseclasses++;
12675 }
12676}
12677
98751a41
JK
12678/* Add a typedef defined in the scope of the FIP's class. */
12679
12680static void
12681dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12682 struct dwarf2_cu *cu)
6e70227d 12683{
98751a41 12684 struct typedef_field_list *new_field;
98751a41 12685 struct typedef_field *fp;
98751a41
JK
12686
12687 /* Allocate a new field list entry and link it in. */
8d749320 12688 new_field = XCNEW (struct typedef_field_list);
98751a41
JK
12689 make_cleanup (xfree, new_field);
12690
12691 gdb_assert (die->tag == DW_TAG_typedef);
12692
12693 fp = &new_field->field;
12694
12695 /* Get name of field. */
12696 fp->name = dwarf2_name (die, cu);
12697 if (fp->name == NULL)
12698 return;
12699
12700 fp->type = read_type_die (die, cu);
12701
12702 new_field->next = fip->typedef_field_list;
12703 fip->typedef_field_list = new_field;
12704 fip->typedef_field_list_count++;
12705}
12706
c906108c
SS
12707/* Create the vector of fields, and attach it to the type. */
12708
12709static void
fba45db2 12710dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12711 struct dwarf2_cu *cu)
c906108c
SS
12712{
12713 int nfields = fip->nfields;
12714
12715 /* Record the field count, allocate space for the array of fields,
12716 and create blank accessibility bitfields if necessary. */
12717 TYPE_NFIELDS (type) = nfields;
12718 TYPE_FIELDS (type) = (struct field *)
12719 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12720 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12721
b4ba55a1 12722 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12723 {
12724 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12725
12726 TYPE_FIELD_PRIVATE_BITS (type) =
12727 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12728 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12729
12730 TYPE_FIELD_PROTECTED_BITS (type) =
12731 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12732 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12733
774b6a14
TT
12734 TYPE_FIELD_IGNORE_BITS (type) =
12735 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12736 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12737 }
12738
12739 /* If the type has baseclasses, allocate and clear a bit vector for
12740 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12741 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12742 {
12743 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12744 unsigned char *pointer;
c906108c
SS
12745
12746 ALLOCATE_CPLUS_STRUCT_TYPE (type);
224c3ddb 12747 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
fe1b8b76 12748 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12749 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12750 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12751 }
12752
3e43a32a
MS
12753 /* Copy the saved-up fields into the field vector. Start from the head of
12754 the list, adding to the tail of the field array, so that they end up in
12755 the same order in the array in which they were added to the list. */
c906108c
SS
12756 while (nfields-- > 0)
12757 {
7d0ccb61
DJ
12758 struct nextfield *fieldp;
12759
12760 if (fip->fields)
12761 {
12762 fieldp = fip->fields;
12763 fip->fields = fieldp->next;
12764 }
12765 else
12766 {
12767 fieldp = fip->baseclasses;
12768 fip->baseclasses = fieldp->next;
12769 }
12770
12771 TYPE_FIELD (type, nfields) = fieldp->field;
12772 switch (fieldp->accessibility)
c906108c 12773 {
c5aa993b 12774 case DW_ACCESS_private:
b4ba55a1
JB
12775 if (cu->language != language_ada)
12776 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12777 break;
c906108c 12778
c5aa993b 12779 case DW_ACCESS_protected:
b4ba55a1
JB
12780 if (cu->language != language_ada)
12781 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12782 break;
c906108c 12783
c5aa993b
JM
12784 case DW_ACCESS_public:
12785 break;
c906108c 12786
c5aa993b
JM
12787 default:
12788 /* Unknown accessibility. Complain and treat it as public. */
12789 {
e2e0b3e5 12790 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12791 fieldp->accessibility);
c5aa993b
JM
12792 }
12793 break;
c906108c
SS
12794 }
12795 if (nfields < fip->nbaseclasses)
12796 {
7d0ccb61 12797 switch (fieldp->virtuality)
c906108c 12798 {
c5aa993b
JM
12799 case DW_VIRTUALITY_virtual:
12800 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12801 if (cu->language == language_ada)
a73c6dcd 12802 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12803 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12804 break;
c906108c
SS
12805 }
12806 }
c906108c
SS
12807 }
12808}
12809
7d27a96d
TT
12810/* Return true if this member function is a constructor, false
12811 otherwise. */
12812
12813static int
12814dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12815{
12816 const char *fieldname;
fe978cb0 12817 const char *type_name;
7d27a96d
TT
12818 int len;
12819
12820 if (die->parent == NULL)
12821 return 0;
12822
12823 if (die->parent->tag != DW_TAG_structure_type
12824 && die->parent->tag != DW_TAG_union_type
12825 && die->parent->tag != DW_TAG_class_type)
12826 return 0;
12827
12828 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
12829 type_name = dwarf2_name (die->parent, cu);
12830 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
12831 return 0;
12832
12833 len = strlen (fieldname);
fe978cb0
PA
12834 return (strncmp (fieldname, type_name, len) == 0
12835 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
12836}
12837
c906108c
SS
12838/* Add a member function to the proper fieldlist. */
12839
12840static void
107d2387 12841dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 12842 struct type *type, struct dwarf2_cu *cu)
c906108c 12843{
e7c27a73 12844 struct objfile *objfile = cu->objfile;
c906108c
SS
12845 struct attribute *attr;
12846 struct fnfieldlist *flp;
12847 int i;
12848 struct fn_field *fnp;
15d034d0 12849 const char *fieldname;
c906108c 12850 struct nextfnfield *new_fnfield;
f792889a 12851 struct type *this_type;
60d5a603 12852 enum dwarf_access_attribute accessibility;
c906108c 12853
b4ba55a1 12854 if (cu->language == language_ada)
a73c6dcd 12855 error (_("unexpected member function in Ada type"));
b4ba55a1 12856
2df3850c 12857 /* Get name of member function. */
39cbfefa
DJ
12858 fieldname = dwarf2_name (die, cu);
12859 if (fieldname == NULL)
2df3850c 12860 return;
c906108c 12861
c906108c
SS
12862 /* Look up member function name in fieldlist. */
12863 for (i = 0; i < fip->nfnfields; i++)
12864 {
27bfe10e 12865 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
12866 break;
12867 }
12868
12869 /* Create new list element if necessary. */
12870 if (i < fip->nfnfields)
12871 flp = &fip->fnfieldlists[i];
12872 else
12873 {
12874 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12875 {
12876 fip->fnfieldlists = (struct fnfieldlist *)
12877 xrealloc (fip->fnfieldlists,
12878 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12879 * sizeof (struct fnfieldlist));
c906108c 12880 if (fip->nfnfields == 0)
c13c43fd 12881 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
12882 }
12883 flp = &fip->fnfieldlists[fip->nfnfields];
12884 flp->name = fieldname;
12885 flp->length = 0;
12886 flp->head = NULL;
3da10d80 12887 i = fip->nfnfields++;
c906108c
SS
12888 }
12889
12890 /* Create a new member function field and chain it to the field list
0963b4bd 12891 entry. */
8d749320 12892 new_fnfield = XNEW (struct nextfnfield);
b8c9b27d 12893 make_cleanup (xfree, new_fnfield);
c906108c
SS
12894 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12895 new_fnfield->next = flp->head;
12896 flp->head = new_fnfield;
12897 flp->length++;
12898
12899 /* Fill in the member function field info. */
12900 fnp = &new_fnfield->fnfield;
3da10d80
KS
12901
12902 /* Delay processing of the physname until later. */
12903 if (cu->language == language_cplus || cu->language == language_java)
12904 {
12905 add_to_method_list (type, i, flp->length - 1, fieldname,
12906 die, cu);
12907 }
12908 else
12909 {
1d06ead6 12910 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
12911 fnp->physname = physname ? physname : "";
12912 }
12913
c906108c 12914 fnp->type = alloc_type (objfile);
f792889a
DJ
12915 this_type = read_type_die (die, cu);
12916 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 12917 {
f792889a 12918 int nparams = TYPE_NFIELDS (this_type);
c906108c 12919
f792889a 12920 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
12921 of the method itself (TYPE_CODE_METHOD). */
12922 smash_to_method_type (fnp->type, type,
f792889a
DJ
12923 TYPE_TARGET_TYPE (this_type),
12924 TYPE_FIELDS (this_type),
12925 TYPE_NFIELDS (this_type),
12926 TYPE_VARARGS (this_type));
c906108c
SS
12927
12928 /* Handle static member functions.
c5aa993b 12929 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
12930 member functions. G++ helps GDB by marking the first
12931 parameter for non-static member functions (which is the this
12932 pointer) as artificial. We obtain this information from
12933 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 12934 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
12935 fnp->voffset = VOFFSET_STATIC;
12936 }
12937 else
e2e0b3e5 12938 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 12939 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
12940
12941 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 12942 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 12943 fnp->fcontext = die_containing_type (die, cu);
c906108c 12944
3e43a32a
MS
12945 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12946 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
12947
12948 /* Get accessibility. */
e142c38c 12949 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 12950 if (attr)
aead7601 12951 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
60d5a603
JK
12952 else
12953 accessibility = dwarf2_default_access_attribute (die, cu);
12954 switch (accessibility)
c906108c 12955 {
60d5a603
JK
12956 case DW_ACCESS_private:
12957 fnp->is_private = 1;
12958 break;
12959 case DW_ACCESS_protected:
12960 fnp->is_protected = 1;
12961 break;
c906108c
SS
12962 }
12963
b02dede2 12964 /* Check for artificial methods. */
e142c38c 12965 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
12966 if (attr && DW_UNSND (attr) != 0)
12967 fnp->is_artificial = 1;
12968
7d27a96d
TT
12969 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12970
0d564a31 12971 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
12972 function. For older versions of GCC, this is an offset in the
12973 appropriate virtual table, as specified by DW_AT_containing_type.
12974 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
12975 to the object address. */
12976
e142c38c 12977 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 12978 if (attr)
8e19ed76 12979 {
aec5aa8b 12980 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 12981 {
aec5aa8b
TT
12982 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12983 {
12984 /* Old-style GCC. */
12985 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12986 }
12987 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12988 || (DW_BLOCK (attr)->size > 1
12989 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12990 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12991 {
aec5aa8b
TT
12992 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12993 if ((fnp->voffset % cu->header.addr_size) != 0)
12994 dwarf2_complex_location_expr_complaint ();
12995 else
12996 fnp->voffset /= cu->header.addr_size;
12997 fnp->voffset += 2;
12998 }
12999 else
13000 dwarf2_complex_location_expr_complaint ();
13001
13002 if (!fnp->fcontext)
7e993ebf
KS
13003 {
13004 /* If there is no `this' field and no DW_AT_containing_type,
13005 we cannot actually find a base class context for the
13006 vtable! */
13007 if (TYPE_NFIELDS (this_type) == 0
13008 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
13009 {
13010 complaint (&symfile_complaints,
13011 _("cannot determine context for virtual member "
13012 "function \"%s\" (offset %d)"),
13013 fieldname, die->offset.sect_off);
13014 }
13015 else
13016 {
13017 fnp->fcontext
13018 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
13019 }
13020 }
aec5aa8b 13021 }
3690dd37 13022 else if (attr_form_is_section_offset (attr))
8e19ed76 13023 {
4d3c2250 13024 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
13025 }
13026 else
13027 {
4d3c2250
KB
13028 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
13029 fieldname);
8e19ed76 13030 }
0d564a31 13031 }
d48cc9dd
DJ
13032 else
13033 {
13034 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13035 if (attr && DW_UNSND (attr))
13036 {
13037 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13038 complaint (&symfile_complaints,
3e43a32a
MS
13039 _("Member function \"%s\" (offset %d) is virtual "
13040 "but the vtable offset is not specified"),
b64f50a1 13041 fieldname, die->offset.sect_off);
9655fd1a 13042 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
13043 TYPE_CPLUS_DYNAMIC (type) = 1;
13044 }
13045 }
c906108c
SS
13046}
13047
13048/* Create the vector of member function fields, and attach it to the type. */
13049
13050static void
fba45db2 13051dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 13052 struct dwarf2_cu *cu)
c906108c
SS
13053{
13054 struct fnfieldlist *flp;
c906108c
SS
13055 int i;
13056
b4ba55a1 13057 if (cu->language == language_ada)
a73c6dcd 13058 error (_("unexpected member functions in Ada type"));
b4ba55a1 13059
c906108c
SS
13060 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13061 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13062 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13063
13064 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13065 {
13066 struct nextfnfield *nfp = flp->head;
13067 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13068 int k;
13069
13070 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13071 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13072 fn_flp->fn_fields = (struct fn_field *)
13073 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13074 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 13075 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
13076 }
13077
13078 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
13079}
13080
1168df01
JB
13081/* Returns non-zero if NAME is the name of a vtable member in CU's
13082 language, zero otherwise. */
13083static int
13084is_vtable_name (const char *name, struct dwarf2_cu *cu)
13085{
13086 static const char vptr[] = "_vptr";
987504bb 13087 static const char vtable[] = "vtable";
1168df01 13088
987504bb
JJ
13089 /* Look for the C++ and Java forms of the vtable. */
13090 if ((cu->language == language_java
61012eef
GB
13091 && startswith (name, vtable))
13092 || (startswith (name, vptr)
987504bb 13093 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
13094 return 1;
13095
13096 return 0;
13097}
13098
c0dd20ea 13099/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
13100 functions, with the ABI-specified layout. If TYPE describes
13101 such a structure, smash it into a member function type.
61049d3b
DJ
13102
13103 GCC shouldn't do this; it should just output pointer to member DIEs.
13104 This is GCC PR debug/28767. */
c0dd20ea 13105
0b92b5bb
TT
13106static void
13107quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 13108{
09e2d7c7 13109 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
13110
13111 /* Check for a structure with no name and two children. */
0b92b5bb
TT
13112 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13113 return;
c0dd20ea
DJ
13114
13115 /* Check for __pfn and __delta members. */
0b92b5bb
TT
13116 if (TYPE_FIELD_NAME (type, 0) == NULL
13117 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13118 || TYPE_FIELD_NAME (type, 1) == NULL
13119 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13120 return;
c0dd20ea
DJ
13121
13122 /* Find the type of the method. */
0b92b5bb 13123 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
13124 if (pfn_type == NULL
13125 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13126 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 13127 return;
c0dd20ea
DJ
13128
13129 /* Look for the "this" argument. */
13130 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13131 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 13132 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 13133 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 13134 return;
c0dd20ea 13135
09e2d7c7 13136 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 13137 new_type = alloc_type (objfile);
09e2d7c7 13138 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
13139 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13140 TYPE_VARARGS (pfn_type));
0b92b5bb 13141 smash_to_methodptr_type (type, new_type);
c0dd20ea 13142}
1168df01 13143
685b1105
JK
13144/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13145 (icc). */
13146
13147static int
13148producer_is_icc (struct dwarf2_cu *cu)
13149{
13150 if (!cu->checked_producer)
13151 check_producer (cu);
13152
13153 return cu->producer_is_icc;
13154}
13155
c906108c 13156/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
13157 (definition) to create a type for the structure or union. Fill in
13158 the type's name and general properties; the members will not be
83655187
DE
13159 processed until process_structure_scope. A symbol table entry for
13160 the type will also not be done until process_structure_scope (assuming
13161 the type has a name).
c906108c 13162
c767944b
DJ
13163 NOTE: we need to call these functions regardless of whether or not the
13164 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 13165 structure or union. This gets the type entered into our set of
83655187 13166 user defined types. */
c906108c 13167
f792889a 13168static struct type *
134d01f1 13169read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13170{
e7c27a73 13171 struct objfile *objfile = cu->objfile;
c906108c
SS
13172 struct type *type;
13173 struct attribute *attr;
15d034d0 13174 const char *name;
c906108c 13175
348e048f
DE
13176 /* If the definition of this type lives in .debug_types, read that type.
13177 Don't follow DW_AT_specification though, that will take us back up
13178 the chain and we want to go down. */
45e58e77 13179 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13180 if (attr)
13181 {
ac9ec31b 13182 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13183
ac9ec31b 13184 /* The type's CU may not be the same as CU.
02142a6c 13185 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13186 return set_die_type (die, type, cu);
13187 }
13188
c0dd20ea 13189 type = alloc_type (objfile);
c906108c 13190 INIT_CPLUS_SPECIFIC (type);
93311388 13191
39cbfefa
DJ
13192 name = dwarf2_name (die, cu);
13193 if (name != NULL)
c906108c 13194 {
987504bb 13195 if (cu->language == language_cplus
45280282 13196 || cu->language == language_java
c44af4eb
TT
13197 || cu->language == language_d
13198 || cu->language == language_rust)
63d06c5c 13199 {
15d034d0 13200 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
13201
13202 /* dwarf2_full_name might have already finished building the DIE's
13203 type. If so, there is no need to continue. */
13204 if (get_die_type (die, cu) != NULL)
13205 return get_die_type (die, cu);
13206
13207 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
13208 if (die->tag == DW_TAG_structure_type
13209 || die->tag == DW_TAG_class_type)
13210 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
13211 }
13212 else
13213 {
d8151005
DJ
13214 /* The name is already allocated along with this objfile, so
13215 we don't need to duplicate it for the type. */
7d455152 13216 TYPE_TAG_NAME (type) = name;
94af9270
KS
13217 if (die->tag == DW_TAG_class_type)
13218 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 13219 }
c906108c
SS
13220 }
13221
13222 if (die->tag == DW_TAG_structure_type)
13223 {
13224 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13225 }
13226 else if (die->tag == DW_TAG_union_type)
13227 {
13228 TYPE_CODE (type) = TYPE_CODE_UNION;
13229 }
13230 else
13231 {
4753d33b 13232 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
13233 }
13234
0cc2414c
TT
13235 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13236 TYPE_DECLARED_CLASS (type) = 1;
13237
e142c38c 13238 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13239 if (attr)
13240 {
155bfbd3
JB
13241 if (attr_form_is_constant (attr))
13242 TYPE_LENGTH (type) = DW_UNSND (attr);
13243 else
13244 {
13245 /* For the moment, dynamic type sizes are not supported
13246 by GDB's struct type. The actual size is determined
13247 on-demand when resolving the type of a given object,
13248 so set the type's length to zero for now. Otherwise,
13249 we record an expression as the length, and that expression
13250 could lead to a very large value, which could eventually
13251 lead to us trying to allocate that much memory when creating
13252 a value of that type. */
13253 TYPE_LENGTH (type) = 0;
13254 }
c906108c
SS
13255 }
13256 else
13257 {
13258 TYPE_LENGTH (type) = 0;
13259 }
13260
422b1cb0 13261 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
685b1105
JK
13262 {
13263 /* ICC does not output the required DW_AT_declaration
13264 on incomplete types, but gives them a size of zero. */
422b1cb0 13265 TYPE_STUB (type) = 1;
685b1105
JK
13266 }
13267 else
13268 TYPE_STUB_SUPPORTED (type) = 1;
13269
dc718098 13270 if (die_is_declaration (die, cu))
876cecd0 13271 TYPE_STUB (type) = 1;
a6c727b2
DJ
13272 else if (attr == NULL && die->child == NULL
13273 && producer_is_realview (cu->producer))
13274 /* RealView does not output the required DW_AT_declaration
13275 on incomplete types. */
13276 TYPE_STUB (type) = 1;
dc718098 13277
c906108c
SS
13278 /* We need to add the type field to the die immediately so we don't
13279 infinitely recurse when dealing with pointers to the structure
0963b4bd 13280 type within the structure itself. */
1c379e20 13281 set_die_type (die, type, cu);
c906108c 13282
7e314c57
JK
13283 /* set_die_type should be already done. */
13284 set_descriptive_type (type, die, cu);
13285
c767944b
DJ
13286 return type;
13287}
13288
13289/* Finish creating a structure or union type, including filling in
13290 its members and creating a symbol for it. */
13291
13292static void
13293process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13294{
13295 struct objfile *objfile = cu->objfile;
ca040673 13296 struct die_info *child_die;
c767944b
DJ
13297 struct type *type;
13298
13299 type = get_die_type (die, cu);
13300 if (type == NULL)
13301 type = read_structure_type (die, cu);
13302
e142c38c 13303 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13304 {
13305 struct field_info fi;
34eaf542 13306 VEC (symbolp) *template_args = NULL;
c767944b 13307 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13308
13309 memset (&fi, 0, sizeof (struct field_info));
13310
639d11d3 13311 child_die = die->child;
c906108c
SS
13312
13313 while (child_die && child_die->tag)
13314 {
a9a9bd0f
DC
13315 if (child_die->tag == DW_TAG_member
13316 || child_die->tag == DW_TAG_variable)
c906108c 13317 {
a9a9bd0f
DC
13318 /* NOTE: carlton/2002-11-05: A C++ static data member
13319 should be a DW_TAG_member that is a declaration, but
13320 all versions of G++ as of this writing (so through at
13321 least 3.2.1) incorrectly generate DW_TAG_variable
13322 tags for them instead. */
e7c27a73 13323 dwarf2_add_field (&fi, child_die, cu);
c906108c 13324 }
8713b1b1 13325 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13326 {
e98c9e7c
TT
13327 /* Rust doesn't have member functions in the C++ sense.
13328 However, it does emit ordinary functions as children
13329 of a struct DIE. */
13330 if (cu->language == language_rust)
13331 read_func_scope (child_die, cu);
13332 else
13333 {
13334 /* C++ member function. */
13335 dwarf2_add_member_fn (&fi, child_die, type, cu);
13336 }
c906108c
SS
13337 }
13338 else if (child_die->tag == DW_TAG_inheritance)
13339 {
13340 /* C++ base class field. */
e7c27a73 13341 dwarf2_add_field (&fi, child_die, cu);
c906108c 13342 }
98751a41
JK
13343 else if (child_die->tag == DW_TAG_typedef)
13344 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13345 else if (child_die->tag == DW_TAG_template_type_param
13346 || child_die->tag == DW_TAG_template_value_param)
13347 {
13348 struct symbol *arg = new_symbol (child_die, NULL, cu);
13349
f1078f66
DJ
13350 if (arg != NULL)
13351 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13352 }
13353
c906108c
SS
13354 child_die = sibling_die (child_die);
13355 }
13356
34eaf542
TT
13357 /* Attach template arguments to type. */
13358 if (! VEC_empty (symbolp, template_args))
13359 {
13360 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13361 TYPE_N_TEMPLATE_ARGUMENTS (type)
13362 = VEC_length (symbolp, template_args);
13363 TYPE_TEMPLATE_ARGUMENTS (type)
8d749320
SM
13364 = XOBNEWVEC (&objfile->objfile_obstack,
13365 struct symbol *,
13366 TYPE_N_TEMPLATE_ARGUMENTS (type));
34eaf542
TT
13367 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13368 VEC_address (symbolp, template_args),
13369 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13370 * sizeof (struct symbol *)));
13371 VEC_free (symbolp, template_args);
13372 }
13373
c906108c
SS
13374 /* Attach fields and member functions to the type. */
13375 if (fi.nfields)
e7c27a73 13376 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13377 if (fi.nfnfields)
13378 {
e7c27a73 13379 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13380
c5aa993b 13381 /* Get the type which refers to the base class (possibly this
c906108c 13382 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13383 class from the DW_AT_containing_type attribute. This use of
13384 DW_AT_containing_type is a GNU extension. */
c906108c 13385
e142c38c 13386 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13387 {
e7c27a73 13388 struct type *t = die_containing_type (die, cu);
c906108c 13389
ae6ae975 13390 set_type_vptr_basetype (type, t);
c906108c
SS
13391 if (type == t)
13392 {
c906108c
SS
13393 int i;
13394
13395 /* Our own class provides vtbl ptr. */
13396 for (i = TYPE_NFIELDS (t) - 1;
13397 i >= TYPE_N_BASECLASSES (t);
13398 --i)
13399 {
0d5cff50 13400 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13401
1168df01 13402 if (is_vtable_name (fieldname, cu))
c906108c 13403 {
ae6ae975 13404 set_type_vptr_fieldno (type, i);
c906108c
SS
13405 break;
13406 }
13407 }
13408
13409 /* Complain if virtual function table field not found. */
13410 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13411 complaint (&symfile_complaints,
3e43a32a
MS
13412 _("virtual function table pointer "
13413 "not found when defining class '%s'"),
4d3c2250
KB
13414 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13415 "");
c906108c
SS
13416 }
13417 else
13418 {
ae6ae975 13419 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
13420 }
13421 }
f6235d4c 13422 else if (cu->producer
61012eef 13423 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
13424 {
13425 /* The IBM XLC compiler does not provide direct indication
13426 of the containing type, but the vtable pointer is
13427 always named __vfp. */
13428
13429 int i;
13430
13431 for (i = TYPE_NFIELDS (type) - 1;
13432 i >= TYPE_N_BASECLASSES (type);
13433 --i)
13434 {
13435 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13436 {
ae6ae975
DE
13437 set_type_vptr_fieldno (type, i);
13438 set_type_vptr_basetype (type, type);
f6235d4c
EZ
13439 break;
13440 }
13441 }
13442 }
c906108c 13443 }
98751a41
JK
13444
13445 /* Copy fi.typedef_field_list linked list elements content into the
13446 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13447 if (fi.typedef_field_list)
13448 {
13449 int i = fi.typedef_field_list_count;
13450
a0d7a4ff 13451 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41 13452 TYPE_TYPEDEF_FIELD_ARRAY (type)
224c3ddb
SM
13453 = ((struct typedef_field *)
13454 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
98751a41
JK
13455 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13456
13457 /* Reverse the list order to keep the debug info elements order. */
13458 while (--i >= 0)
13459 {
13460 struct typedef_field *dest, *src;
6e70227d 13461
98751a41
JK
13462 dest = &TYPE_TYPEDEF_FIELD (type, i);
13463 src = &fi.typedef_field_list->field;
13464 fi.typedef_field_list = fi.typedef_field_list->next;
13465 *dest = *src;
13466 }
13467 }
c767944b
DJ
13468
13469 do_cleanups (back_to);
eb2a6f42
TT
13470
13471 if (HAVE_CPLUS_STRUCT (type))
13472 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 13473 }
63d06c5c 13474
bb5ed363 13475 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13476
90aeadfc
DC
13477 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13478 snapshots) has been known to create a die giving a declaration
13479 for a class that has, as a child, a die giving a definition for a
13480 nested class. So we have to process our children even if the
13481 current die is a declaration. Normally, of course, a declaration
13482 won't have any children at all. */
134d01f1 13483
ca040673
DE
13484 child_die = die->child;
13485
90aeadfc
DC
13486 while (child_die != NULL && child_die->tag)
13487 {
13488 if (child_die->tag == DW_TAG_member
13489 || child_die->tag == DW_TAG_variable
34eaf542
TT
13490 || child_die->tag == DW_TAG_inheritance
13491 || child_die->tag == DW_TAG_template_value_param
13492 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13493 {
90aeadfc 13494 /* Do nothing. */
134d01f1 13495 }
90aeadfc
DC
13496 else
13497 process_die (child_die, cu);
134d01f1 13498
90aeadfc 13499 child_die = sibling_die (child_die);
134d01f1
DJ
13500 }
13501
fa4028e9
JB
13502 /* Do not consider external references. According to the DWARF standard,
13503 these DIEs are identified by the fact that they have no byte_size
13504 attribute, and a declaration attribute. */
13505 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13506 || !die_is_declaration (die, cu))
c767944b 13507 new_symbol (die, type, cu);
134d01f1
DJ
13508}
13509
55426c9d
JB
13510/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13511 update TYPE using some information only available in DIE's children. */
13512
13513static void
13514update_enumeration_type_from_children (struct die_info *die,
13515 struct type *type,
13516 struct dwarf2_cu *cu)
13517{
13518 struct obstack obstack;
60f7655a 13519 struct die_info *child_die;
55426c9d
JB
13520 int unsigned_enum = 1;
13521 int flag_enum = 1;
13522 ULONGEST mask = 0;
13523 struct cleanup *old_chain;
13524
13525 obstack_init (&obstack);
13526 old_chain = make_cleanup_obstack_free (&obstack);
13527
60f7655a
DE
13528 for (child_die = die->child;
13529 child_die != NULL && child_die->tag;
13530 child_die = sibling_die (child_die))
55426c9d
JB
13531 {
13532 struct attribute *attr;
13533 LONGEST value;
13534 const gdb_byte *bytes;
13535 struct dwarf2_locexpr_baton *baton;
13536 const char *name;
60f7655a 13537
55426c9d
JB
13538 if (child_die->tag != DW_TAG_enumerator)
13539 continue;
13540
13541 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13542 if (attr == NULL)
13543 continue;
13544
13545 name = dwarf2_name (child_die, cu);
13546 if (name == NULL)
13547 name = "<anonymous enumerator>";
13548
13549 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13550 &value, &bytes, &baton);
13551 if (value < 0)
13552 {
13553 unsigned_enum = 0;
13554 flag_enum = 0;
13555 }
13556 else if ((mask & value) != 0)
13557 flag_enum = 0;
13558 else
13559 mask |= value;
13560
13561 /* If we already know that the enum type is neither unsigned, nor
13562 a flag type, no need to look at the rest of the enumerates. */
13563 if (!unsigned_enum && !flag_enum)
13564 break;
55426c9d
JB
13565 }
13566
13567 if (unsigned_enum)
13568 TYPE_UNSIGNED (type) = 1;
13569 if (flag_enum)
13570 TYPE_FLAG_ENUM (type) = 1;
13571
13572 do_cleanups (old_chain);
13573}
13574
134d01f1
DJ
13575/* Given a DW_AT_enumeration_type die, set its type. We do not
13576 complete the type's fields yet, or create any symbols. */
c906108c 13577
f792889a 13578static struct type *
134d01f1 13579read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13580{
e7c27a73 13581 struct objfile *objfile = cu->objfile;
c906108c 13582 struct type *type;
c906108c 13583 struct attribute *attr;
0114d602 13584 const char *name;
134d01f1 13585
348e048f
DE
13586 /* If the definition of this type lives in .debug_types, read that type.
13587 Don't follow DW_AT_specification though, that will take us back up
13588 the chain and we want to go down. */
45e58e77 13589 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13590 if (attr)
13591 {
ac9ec31b 13592 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13593
ac9ec31b 13594 /* The type's CU may not be the same as CU.
02142a6c 13595 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13596 return set_die_type (die, type, cu);
13597 }
13598
c906108c
SS
13599 type = alloc_type (objfile);
13600
13601 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13602 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13603 if (name != NULL)
7d455152 13604 TYPE_TAG_NAME (type) = name;
c906108c 13605
0626fc76
TT
13606 attr = dwarf2_attr (die, DW_AT_type, cu);
13607 if (attr != NULL)
13608 {
13609 struct type *underlying_type = die_type (die, cu);
13610
13611 TYPE_TARGET_TYPE (type) = underlying_type;
13612 }
13613
e142c38c 13614 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13615 if (attr)
13616 {
13617 TYPE_LENGTH (type) = DW_UNSND (attr);
13618 }
13619 else
13620 {
13621 TYPE_LENGTH (type) = 0;
13622 }
13623
137033e9
JB
13624 /* The enumeration DIE can be incomplete. In Ada, any type can be
13625 declared as private in the package spec, and then defined only
13626 inside the package body. Such types are known as Taft Amendment
13627 Types. When another package uses such a type, an incomplete DIE
13628 may be generated by the compiler. */
02eb380e 13629 if (die_is_declaration (die, cu))
876cecd0 13630 TYPE_STUB (type) = 1;
02eb380e 13631
0626fc76
TT
13632 /* Finish the creation of this type by using the enum's children.
13633 We must call this even when the underlying type has been provided
13634 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
13635 update_enumeration_type_from_children (die, type, cu);
13636
0626fc76
TT
13637 /* If this type has an underlying type that is not a stub, then we
13638 may use its attributes. We always use the "unsigned" attribute
13639 in this situation, because ordinarily we guess whether the type
13640 is unsigned -- but the guess can be wrong and the underlying type
13641 can tell us the reality. However, we defer to a local size
13642 attribute if one exists, because this lets the compiler override
13643 the underlying type if needed. */
13644 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13645 {
13646 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13647 if (TYPE_LENGTH (type) == 0)
13648 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13649 }
13650
3d567982
TT
13651 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13652
f792889a 13653 return set_die_type (die, type, cu);
134d01f1
DJ
13654}
13655
13656/* Given a pointer to a die which begins an enumeration, process all
13657 the dies that define the members of the enumeration, and create the
13658 symbol for the enumeration type.
13659
13660 NOTE: We reverse the order of the element list. */
13661
13662static void
13663process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13664{
f792889a 13665 struct type *this_type;
134d01f1 13666
f792889a
DJ
13667 this_type = get_die_type (die, cu);
13668 if (this_type == NULL)
13669 this_type = read_enumeration_type (die, cu);
9dc481d3 13670
639d11d3 13671 if (die->child != NULL)
c906108c 13672 {
9dc481d3
DE
13673 struct die_info *child_die;
13674 struct symbol *sym;
13675 struct field *fields = NULL;
13676 int num_fields = 0;
15d034d0 13677 const char *name;
9dc481d3 13678
639d11d3 13679 child_die = die->child;
c906108c
SS
13680 while (child_die && child_die->tag)
13681 {
13682 if (child_die->tag != DW_TAG_enumerator)
13683 {
e7c27a73 13684 process_die (child_die, cu);
c906108c
SS
13685 }
13686 else
13687 {
39cbfefa
DJ
13688 name = dwarf2_name (child_die, cu);
13689 if (name)
c906108c 13690 {
f792889a 13691 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
13692
13693 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13694 {
13695 fields = (struct field *)
13696 xrealloc (fields,
13697 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13698 * sizeof (struct field));
c906108c
SS
13699 }
13700
3567439c 13701 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13702 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13703 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13704 FIELD_BITSIZE (fields[num_fields]) = 0;
13705
13706 num_fields++;
13707 }
13708 }
13709
13710 child_die = sibling_die (child_die);
13711 }
13712
13713 if (num_fields)
13714 {
f792889a
DJ
13715 TYPE_NFIELDS (this_type) = num_fields;
13716 TYPE_FIELDS (this_type) = (struct field *)
13717 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13718 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13719 sizeof (struct field) * num_fields);
b8c9b27d 13720 xfree (fields);
c906108c 13721 }
c906108c 13722 }
134d01f1 13723
6c83ed52
TT
13724 /* If we are reading an enum from a .debug_types unit, and the enum
13725 is a declaration, and the enum is not the signatured type in the
13726 unit, then we do not want to add a symbol for it. Adding a
13727 symbol would in some cases obscure the true definition of the
13728 enum, giving users an incomplete type when the definition is
13729 actually available. Note that we do not want to do this for all
13730 enums which are just declarations, because C++0x allows forward
13731 enum declarations. */
3019eac3 13732 if (cu->per_cu->is_debug_types
6c83ed52
TT
13733 && die_is_declaration (die, cu))
13734 {
52dc124a 13735 struct signatured_type *sig_type;
6c83ed52 13736
c0f78cd4 13737 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13738 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13739 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13740 return;
13741 }
13742
f792889a 13743 new_symbol (die, this_type, cu);
c906108c
SS
13744}
13745
13746/* Extract all information from a DW_TAG_array_type DIE and put it in
13747 the DIE's type field. For now, this only handles one dimensional
13748 arrays. */
13749
f792889a 13750static struct type *
e7c27a73 13751read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13752{
e7c27a73 13753 struct objfile *objfile = cu->objfile;
c906108c 13754 struct die_info *child_die;
7e314c57 13755 struct type *type;
c906108c
SS
13756 struct type *element_type, *range_type, *index_type;
13757 struct type **range_types = NULL;
13758 struct attribute *attr;
13759 int ndim = 0;
13760 struct cleanup *back_to;
15d034d0 13761 const char *name;
dc53a7ad 13762 unsigned int bit_stride = 0;
c906108c 13763
e7c27a73 13764 element_type = die_type (die, cu);
c906108c 13765
7e314c57
JK
13766 /* The die_type call above may have already set the type for this DIE. */
13767 type = get_die_type (die, cu);
13768 if (type)
13769 return type;
13770
dc53a7ad
JB
13771 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13772 if (attr != NULL)
13773 bit_stride = DW_UNSND (attr) * 8;
13774
13775 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13776 if (attr != NULL)
13777 bit_stride = DW_UNSND (attr);
13778
c906108c
SS
13779 /* Irix 6.2 native cc creates array types without children for
13780 arrays with unspecified length. */
639d11d3 13781 if (die->child == NULL)
c906108c 13782 {
46bf5051 13783 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 13784 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
13785 type = create_array_type_with_stride (NULL, element_type, range_type,
13786 bit_stride);
f792889a 13787 return set_die_type (die, type, cu);
c906108c
SS
13788 }
13789
13790 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13791 child_die = die->child;
c906108c
SS
13792 while (child_die && child_die->tag)
13793 {
13794 if (child_die->tag == DW_TAG_subrange_type)
13795 {
f792889a 13796 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13797
f792889a 13798 if (child_type != NULL)
a02abb62 13799 {
0963b4bd
MS
13800 /* The range type was succesfully read. Save it for the
13801 array type creation. */
a02abb62
JB
13802 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13803 {
13804 range_types = (struct type **)
13805 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13806 * sizeof (struct type *));
13807 if (ndim == 0)
13808 make_cleanup (free_current_contents, &range_types);
13809 }
f792889a 13810 range_types[ndim++] = child_type;
a02abb62 13811 }
c906108c
SS
13812 }
13813 child_die = sibling_die (child_die);
13814 }
13815
13816 /* Dwarf2 dimensions are output from left to right, create the
13817 necessary array types in backwards order. */
7ca2d3a3 13818
c906108c 13819 type = element_type;
7ca2d3a3
DL
13820
13821 if (read_array_order (die, cu) == DW_ORD_col_major)
13822 {
13823 int i = 0;
9a619af0 13824
7ca2d3a3 13825 while (i < ndim)
dc53a7ad
JB
13826 type = create_array_type_with_stride (NULL, type, range_types[i++],
13827 bit_stride);
7ca2d3a3
DL
13828 }
13829 else
13830 {
13831 while (ndim-- > 0)
dc53a7ad
JB
13832 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13833 bit_stride);
7ca2d3a3 13834 }
c906108c 13835
f5f8a009
EZ
13836 /* Understand Dwarf2 support for vector types (like they occur on
13837 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13838 array type. This is not part of the Dwarf2/3 standard yet, but a
13839 custom vendor extension. The main difference between a regular
13840 array and the vector variant is that vectors are passed by value
13841 to functions. */
e142c38c 13842 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 13843 if (attr)
ea37ba09 13844 make_vector_type (type);
f5f8a009 13845
dbc98a8b
KW
13846 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13847 implementation may choose to implement triple vectors using this
13848 attribute. */
13849 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13850 if (attr)
13851 {
13852 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13853 TYPE_LENGTH (type) = DW_UNSND (attr);
13854 else
3e43a32a
MS
13855 complaint (&symfile_complaints,
13856 _("DW_AT_byte_size for array type smaller "
13857 "than the total size of elements"));
dbc98a8b
KW
13858 }
13859
39cbfefa
DJ
13860 name = dwarf2_name (die, cu);
13861 if (name)
13862 TYPE_NAME (type) = name;
6e70227d 13863
0963b4bd 13864 /* Install the type in the die. */
7e314c57
JK
13865 set_die_type (die, type, cu);
13866
13867 /* set_die_type should be already done. */
b4ba55a1
JB
13868 set_descriptive_type (type, die, cu);
13869
c906108c
SS
13870 do_cleanups (back_to);
13871
7e314c57 13872 return type;
c906108c
SS
13873}
13874
7ca2d3a3 13875static enum dwarf_array_dim_ordering
6e70227d 13876read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
13877{
13878 struct attribute *attr;
13879
13880 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13881
aead7601
SM
13882 if (attr)
13883 return (enum dwarf_array_dim_ordering) DW_SND (attr);
7ca2d3a3 13884
0963b4bd
MS
13885 /* GNU F77 is a special case, as at 08/2004 array type info is the
13886 opposite order to the dwarf2 specification, but data is still
13887 laid out as per normal fortran.
7ca2d3a3 13888
0963b4bd
MS
13889 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13890 version checking. */
7ca2d3a3 13891
905e0470
PM
13892 if (cu->language == language_fortran
13893 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
13894 {
13895 return DW_ORD_row_major;
13896 }
13897
6e70227d 13898 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
13899 {
13900 case array_column_major:
13901 return DW_ORD_col_major;
13902 case array_row_major:
13903 default:
13904 return DW_ORD_row_major;
13905 };
13906}
13907
72019c9c 13908/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 13909 the DIE's type field. */
72019c9c 13910
f792889a 13911static struct type *
72019c9c
GM
13912read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13913{
7e314c57
JK
13914 struct type *domain_type, *set_type;
13915 struct attribute *attr;
f792889a 13916
7e314c57
JK
13917 domain_type = die_type (die, cu);
13918
13919 /* The die_type call above may have already set the type for this DIE. */
13920 set_type = get_die_type (die, cu);
13921 if (set_type)
13922 return set_type;
13923
13924 set_type = create_set_type (NULL, domain_type);
13925
13926 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
13927 if (attr)
13928 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 13929
f792889a 13930 return set_die_type (die, set_type, cu);
72019c9c 13931}
7ca2d3a3 13932
0971de02
TT
13933/* A helper for read_common_block that creates a locexpr baton.
13934 SYM is the symbol which we are marking as computed.
13935 COMMON_DIE is the DIE for the common block.
13936 COMMON_LOC is the location expression attribute for the common
13937 block itself.
13938 MEMBER_LOC is the location expression attribute for the particular
13939 member of the common block that we are processing.
13940 CU is the CU from which the above come. */
13941
13942static void
13943mark_common_block_symbol_computed (struct symbol *sym,
13944 struct die_info *common_die,
13945 struct attribute *common_loc,
13946 struct attribute *member_loc,
13947 struct dwarf2_cu *cu)
13948{
13949 struct objfile *objfile = dwarf2_per_objfile->objfile;
13950 struct dwarf2_locexpr_baton *baton;
13951 gdb_byte *ptr;
13952 unsigned int cu_off;
13953 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13954 LONGEST offset = 0;
13955
13956 gdb_assert (common_loc && member_loc);
13957 gdb_assert (attr_form_is_block (common_loc));
13958 gdb_assert (attr_form_is_block (member_loc)
13959 || attr_form_is_constant (member_loc));
13960
8d749320 13961 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
0971de02
TT
13962 baton->per_cu = cu->per_cu;
13963 gdb_assert (baton->per_cu);
13964
13965 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13966
13967 if (attr_form_is_constant (member_loc))
13968 {
13969 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13970 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13971 }
13972 else
13973 baton->size += DW_BLOCK (member_loc)->size;
13974
224c3ddb 13975 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
0971de02
TT
13976 baton->data = ptr;
13977
13978 *ptr++ = DW_OP_call4;
13979 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13980 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13981 ptr += 4;
13982
13983 if (attr_form_is_constant (member_loc))
13984 {
13985 *ptr++ = DW_OP_addr;
13986 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13987 ptr += cu->header.addr_size;
13988 }
13989 else
13990 {
13991 /* We have to copy the data here, because DW_OP_call4 will only
13992 use a DW_AT_location attribute. */
13993 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13994 ptr += DW_BLOCK (member_loc)->size;
13995 }
13996
13997 *ptr++ = DW_OP_plus;
13998 gdb_assert (ptr - baton->data == baton->size);
13999
0971de02 14000 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 14001 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
14002}
14003
4357ac6c
TT
14004/* Create appropriate locally-scoped variables for all the
14005 DW_TAG_common_block entries. Also create a struct common_block
14006 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
14007 is used to sepate the common blocks name namespace from regular
14008 variable names. */
c906108c
SS
14009
14010static void
e7c27a73 14011read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14012{
0971de02
TT
14013 struct attribute *attr;
14014
14015 attr = dwarf2_attr (die, DW_AT_location, cu);
14016 if (attr)
14017 {
14018 /* Support the .debug_loc offsets. */
14019 if (attr_form_is_block (attr))
14020 {
14021 /* Ok. */
14022 }
14023 else if (attr_form_is_section_offset (attr))
14024 {
14025 dwarf2_complex_location_expr_complaint ();
14026 attr = NULL;
14027 }
14028 else
14029 {
14030 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14031 "common block member");
14032 attr = NULL;
14033 }
14034 }
14035
639d11d3 14036 if (die->child != NULL)
c906108c 14037 {
4357ac6c
TT
14038 struct objfile *objfile = cu->objfile;
14039 struct die_info *child_die;
14040 size_t n_entries = 0, size;
14041 struct common_block *common_block;
14042 struct symbol *sym;
74ac6d43 14043
4357ac6c
TT
14044 for (child_die = die->child;
14045 child_die && child_die->tag;
14046 child_die = sibling_die (child_die))
14047 ++n_entries;
14048
14049 size = (sizeof (struct common_block)
14050 + (n_entries - 1) * sizeof (struct symbol *));
224c3ddb
SM
14051 common_block
14052 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14053 size);
4357ac6c
TT
14054 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14055 common_block->n_entries = 0;
14056
14057 for (child_die = die->child;
14058 child_die && child_die->tag;
14059 child_die = sibling_die (child_die))
14060 {
14061 /* Create the symbol in the DW_TAG_common_block block in the current
14062 symbol scope. */
e7c27a73 14063 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
14064 if (sym != NULL)
14065 {
14066 struct attribute *member_loc;
14067
14068 common_block->contents[common_block->n_entries++] = sym;
14069
14070 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14071 cu);
14072 if (member_loc)
14073 {
14074 /* GDB has handled this for a long time, but it is
14075 not specified by DWARF. It seems to have been
14076 emitted by gfortran at least as recently as:
14077 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14078 complaint (&symfile_complaints,
14079 _("Variable in common block has "
14080 "DW_AT_data_member_location "
14081 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
14082 child_die->offset.sect_off,
14083 objfile_name (cu->objfile));
0971de02
TT
14084
14085 if (attr_form_is_section_offset (member_loc))
14086 dwarf2_complex_location_expr_complaint ();
14087 else if (attr_form_is_constant (member_loc)
14088 || attr_form_is_block (member_loc))
14089 {
14090 if (attr)
14091 mark_common_block_symbol_computed (sym, die, attr,
14092 member_loc, cu);
14093 }
14094 else
14095 dwarf2_complex_location_expr_complaint ();
14096 }
14097 }
c906108c 14098 }
4357ac6c
TT
14099
14100 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14101 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
14102 }
14103}
14104
0114d602 14105/* Create a type for a C++ namespace. */
d9fa45fe 14106
0114d602
DJ
14107static struct type *
14108read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 14109{
e7c27a73 14110 struct objfile *objfile = cu->objfile;
0114d602 14111 const char *previous_prefix, *name;
9219021c 14112 int is_anonymous;
0114d602
DJ
14113 struct type *type;
14114
14115 /* For extensions, reuse the type of the original namespace. */
14116 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14117 {
14118 struct die_info *ext_die;
14119 struct dwarf2_cu *ext_cu = cu;
9a619af0 14120
0114d602
DJ
14121 ext_die = dwarf2_extension (die, &ext_cu);
14122 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
14123
14124 /* EXT_CU may not be the same as CU.
02142a6c 14125 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
14126 return set_die_type (die, type, cu);
14127 }
9219021c 14128
e142c38c 14129 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
14130
14131 /* Now build the name of the current namespace. */
14132
0114d602
DJ
14133 previous_prefix = determine_prefix (die, cu);
14134 if (previous_prefix[0] != '\0')
14135 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 14136 previous_prefix, name, 0, cu);
0114d602
DJ
14137
14138 /* Create the type. */
19f392bc 14139 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
0114d602
DJ
14140 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14141
60531b24 14142 return set_die_type (die, type, cu);
0114d602
DJ
14143}
14144
22cee43f 14145/* Read a namespace scope. */
0114d602
DJ
14146
14147static void
14148read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14149{
14150 struct objfile *objfile = cu->objfile;
0114d602 14151 int is_anonymous;
9219021c 14152
5c4e30ca
DC
14153 /* Add a symbol associated to this if we haven't seen the namespace
14154 before. Also, add a using directive if it's an anonymous
14155 namespace. */
9219021c 14156
f2f0e013 14157 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
14158 {
14159 struct type *type;
14160
0114d602 14161 type = read_type_die (die, cu);
e7c27a73 14162 new_symbol (die, type, cu);
5c4e30ca 14163
e8e80198 14164 namespace_name (die, &is_anonymous, cu);
5c4e30ca 14165 if (is_anonymous)
0114d602
DJ
14166 {
14167 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 14168
22cee43f
PMR
14169 add_using_directive (using_directives (cu->language),
14170 previous_prefix, TYPE_NAME (type), NULL,
14171 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 14172 }
5c4e30ca 14173 }
9219021c 14174
639d11d3 14175 if (die->child != NULL)
d9fa45fe 14176 {
639d11d3 14177 struct die_info *child_die = die->child;
6e70227d 14178
d9fa45fe
DC
14179 while (child_die && child_die->tag)
14180 {
e7c27a73 14181 process_die (child_die, cu);
d9fa45fe
DC
14182 child_die = sibling_die (child_die);
14183 }
14184 }
38d518c9
EZ
14185}
14186
f55ee35c
JK
14187/* Read a Fortran module as type. This DIE can be only a declaration used for
14188 imported module. Still we need that type as local Fortran "use ... only"
14189 declaration imports depend on the created type in determine_prefix. */
14190
14191static struct type *
14192read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14193{
14194 struct objfile *objfile = cu->objfile;
15d034d0 14195 const char *module_name;
f55ee35c
JK
14196 struct type *type;
14197
14198 module_name = dwarf2_name (die, cu);
14199 if (!module_name)
3e43a32a
MS
14200 complaint (&symfile_complaints,
14201 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 14202 die->offset.sect_off);
19f392bc 14203 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
f55ee35c
JK
14204
14205 /* determine_prefix uses TYPE_TAG_NAME. */
14206 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14207
14208 return set_die_type (die, type, cu);
14209}
14210
5d7cb8df
JK
14211/* Read a Fortran module. */
14212
14213static void
14214read_module (struct die_info *die, struct dwarf2_cu *cu)
14215{
14216 struct die_info *child_die = die->child;
530e8392
KB
14217 struct type *type;
14218
14219 type = read_type_die (die, cu);
14220 new_symbol (die, type, cu);
5d7cb8df 14221
5d7cb8df
JK
14222 while (child_die && child_die->tag)
14223 {
14224 process_die (child_die, cu);
14225 child_die = sibling_die (child_die);
14226 }
14227}
14228
38d518c9
EZ
14229/* Return the name of the namespace represented by DIE. Set
14230 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14231 namespace. */
14232
14233static const char *
e142c38c 14234namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
14235{
14236 struct die_info *current_die;
14237 const char *name = NULL;
14238
14239 /* Loop through the extensions until we find a name. */
14240
14241 for (current_die = die;
14242 current_die != NULL;
f2f0e013 14243 current_die = dwarf2_extension (die, &cu))
38d518c9 14244 {
96553a0c
DE
14245 /* We don't use dwarf2_name here so that we can detect the absence
14246 of a name -> anonymous namespace. */
7d45c7c3 14247 name = dwarf2_string_attr (die, DW_AT_name, cu);
96553a0c 14248
38d518c9
EZ
14249 if (name != NULL)
14250 break;
14251 }
14252
14253 /* Is it an anonymous namespace? */
14254
14255 *is_anonymous = (name == NULL);
14256 if (*is_anonymous)
2b1dbab0 14257 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
14258
14259 return name;
d9fa45fe
DC
14260}
14261
c906108c
SS
14262/* Extract all information from a DW_TAG_pointer_type DIE and add to
14263 the user defined type vector. */
14264
f792889a 14265static struct type *
e7c27a73 14266read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14267{
5e2b427d 14268 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 14269 struct comp_unit_head *cu_header = &cu->header;
c906108c 14270 struct type *type;
8b2dbe47
KB
14271 struct attribute *attr_byte_size;
14272 struct attribute *attr_address_class;
14273 int byte_size, addr_class;
7e314c57
JK
14274 struct type *target_type;
14275
14276 target_type = die_type (die, cu);
c906108c 14277
7e314c57
JK
14278 /* The die_type call above may have already set the type for this DIE. */
14279 type = get_die_type (die, cu);
14280 if (type)
14281 return type;
14282
14283 type = lookup_pointer_type (target_type);
8b2dbe47 14284
e142c38c 14285 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
14286 if (attr_byte_size)
14287 byte_size = DW_UNSND (attr_byte_size);
c906108c 14288 else
8b2dbe47
KB
14289 byte_size = cu_header->addr_size;
14290
e142c38c 14291 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14292 if (attr_address_class)
14293 addr_class = DW_UNSND (attr_address_class);
14294 else
14295 addr_class = DW_ADDR_none;
14296
14297 /* If the pointer size or address class is different than the
14298 default, create a type variant marked as such and set the
14299 length accordingly. */
14300 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14301 {
5e2b427d 14302 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14303 {
14304 int type_flags;
14305
849957d9 14306 type_flags = gdbarch_address_class_type_flags
5e2b427d 14307 (gdbarch, byte_size, addr_class);
876cecd0
TT
14308 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14309 == 0);
8b2dbe47
KB
14310 type = make_type_with_address_space (type, type_flags);
14311 }
14312 else if (TYPE_LENGTH (type) != byte_size)
14313 {
3e43a32a
MS
14314 complaint (&symfile_complaints,
14315 _("invalid pointer size %d"), byte_size);
8b2dbe47 14316 }
6e70227d 14317 else
9a619af0
MS
14318 {
14319 /* Should we also complain about unhandled address classes? */
14320 }
c906108c 14321 }
8b2dbe47
KB
14322
14323 TYPE_LENGTH (type) = byte_size;
f792889a 14324 return set_die_type (die, type, cu);
c906108c
SS
14325}
14326
14327/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14328 the user defined type vector. */
14329
f792889a 14330static struct type *
e7c27a73 14331read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14332{
14333 struct type *type;
14334 struct type *to_type;
14335 struct type *domain;
14336
e7c27a73
DJ
14337 to_type = die_type (die, cu);
14338 domain = die_containing_type (die, cu);
0d5de010 14339
7e314c57
JK
14340 /* The calls above may have already set the type for this DIE. */
14341 type = get_die_type (die, cu);
14342 if (type)
14343 return type;
14344
0d5de010
DJ
14345 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14346 type = lookup_methodptr_type (to_type);
7078baeb
TT
14347 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14348 {
14349 struct type *new_type = alloc_type (cu->objfile);
14350
14351 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14352 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14353 TYPE_VARARGS (to_type));
14354 type = lookup_methodptr_type (new_type);
14355 }
0d5de010
DJ
14356 else
14357 type = lookup_memberptr_type (to_type, domain);
c906108c 14358
f792889a 14359 return set_die_type (die, type, cu);
c906108c
SS
14360}
14361
14362/* Extract all information from a DW_TAG_reference_type DIE and add to
14363 the user defined type vector. */
14364
f792889a 14365static struct type *
e7c27a73 14366read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14367{
e7c27a73 14368 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14369 struct type *type, *target_type;
c906108c
SS
14370 struct attribute *attr;
14371
7e314c57
JK
14372 target_type = die_type (die, cu);
14373
14374 /* The die_type call above may have already set the type for this DIE. */
14375 type = get_die_type (die, cu);
14376 if (type)
14377 return type;
14378
14379 type = lookup_reference_type (target_type);
e142c38c 14380 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14381 if (attr)
14382 {
14383 TYPE_LENGTH (type) = DW_UNSND (attr);
14384 }
14385 else
14386 {
107d2387 14387 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14388 }
f792889a 14389 return set_die_type (die, type, cu);
c906108c
SS
14390}
14391
cf363f18
MW
14392/* Add the given cv-qualifiers to the element type of the array. GCC
14393 outputs DWARF type qualifiers that apply to an array, not the
14394 element type. But GDB relies on the array element type to carry
14395 the cv-qualifiers. This mimics section 6.7.3 of the C99
14396 specification. */
14397
14398static struct type *
14399add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14400 struct type *base_type, int cnst, int voltl)
14401{
14402 struct type *el_type, *inner_array;
14403
14404 base_type = copy_type (base_type);
14405 inner_array = base_type;
14406
14407 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14408 {
14409 TYPE_TARGET_TYPE (inner_array) =
14410 copy_type (TYPE_TARGET_TYPE (inner_array));
14411 inner_array = TYPE_TARGET_TYPE (inner_array);
14412 }
14413
14414 el_type = TYPE_TARGET_TYPE (inner_array);
14415 cnst |= TYPE_CONST (el_type);
14416 voltl |= TYPE_VOLATILE (el_type);
14417 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14418
14419 return set_die_type (die, base_type, cu);
14420}
14421
f792889a 14422static struct type *
e7c27a73 14423read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14424{
f792889a 14425 struct type *base_type, *cv_type;
c906108c 14426
e7c27a73 14427 base_type = die_type (die, cu);
7e314c57
JK
14428
14429 /* The die_type call above may have already set the type for this DIE. */
14430 cv_type = get_die_type (die, cu);
14431 if (cv_type)
14432 return cv_type;
14433
2f608a3a
KW
14434 /* In case the const qualifier is applied to an array type, the element type
14435 is so qualified, not the array type (section 6.7.3 of C99). */
14436 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14437 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14438
f792889a
DJ
14439 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14440 return set_die_type (die, cv_type, cu);
c906108c
SS
14441}
14442
f792889a 14443static struct type *
e7c27a73 14444read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14445{
f792889a 14446 struct type *base_type, *cv_type;
c906108c 14447
e7c27a73 14448 base_type = die_type (die, cu);
7e314c57
JK
14449
14450 /* The die_type call above may have already set the type for this DIE. */
14451 cv_type = get_die_type (die, cu);
14452 if (cv_type)
14453 return cv_type;
14454
cf363f18
MW
14455 /* In case the volatile qualifier is applied to an array type, the
14456 element type is so qualified, not the array type (section 6.7.3
14457 of C99). */
14458 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14459 return add_array_cv_type (die, cu, base_type, 0, 1);
14460
f792889a
DJ
14461 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14462 return set_die_type (die, cv_type, cu);
c906108c
SS
14463}
14464
06d66ee9
TT
14465/* Handle DW_TAG_restrict_type. */
14466
14467static struct type *
14468read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14469{
14470 struct type *base_type, *cv_type;
14471
14472 base_type = die_type (die, cu);
14473
14474 /* The die_type call above may have already set the type for this DIE. */
14475 cv_type = get_die_type (die, cu);
14476 if (cv_type)
14477 return cv_type;
14478
14479 cv_type = make_restrict_type (base_type);
14480 return set_die_type (die, cv_type, cu);
14481}
14482
a2c2acaf
MW
14483/* Handle DW_TAG_atomic_type. */
14484
14485static struct type *
14486read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14487{
14488 struct type *base_type, *cv_type;
14489
14490 base_type = die_type (die, cu);
14491
14492 /* The die_type call above may have already set the type for this DIE. */
14493 cv_type = get_die_type (die, cu);
14494 if (cv_type)
14495 return cv_type;
14496
14497 cv_type = make_atomic_type (base_type);
14498 return set_die_type (die, cv_type, cu);
14499}
14500
c906108c
SS
14501/* Extract all information from a DW_TAG_string_type DIE and add to
14502 the user defined type vector. It isn't really a user defined type,
14503 but it behaves like one, with other DIE's using an AT_user_def_type
14504 attribute to reference it. */
14505
f792889a 14506static struct type *
e7c27a73 14507read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14508{
e7c27a73 14509 struct objfile *objfile = cu->objfile;
3b7538c0 14510 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14511 struct type *type, *range_type, *index_type, *char_type;
14512 struct attribute *attr;
14513 unsigned int length;
14514
e142c38c 14515 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14516 if (attr)
14517 {
14518 length = DW_UNSND (attr);
14519 }
14520 else
14521 {
0963b4bd 14522 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14523 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14524 if (attr)
14525 {
14526 length = DW_UNSND (attr);
14527 }
14528 else
14529 {
14530 length = 1;
14531 }
c906108c 14532 }
6ccb9162 14533
46bf5051 14534 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14535 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14536 char_type = language_string_char_type (cu->language_defn, gdbarch);
14537 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14538
f792889a 14539 return set_die_type (die, type, cu);
c906108c
SS
14540}
14541
4d804846
JB
14542/* Assuming that DIE corresponds to a function, returns nonzero
14543 if the function is prototyped. */
14544
14545static int
14546prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14547{
14548 struct attribute *attr;
14549
14550 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14551 if (attr && (DW_UNSND (attr) != 0))
14552 return 1;
14553
14554 /* The DWARF standard implies that the DW_AT_prototyped attribute
14555 is only meaninful for C, but the concept also extends to other
14556 languages that allow unprototyped functions (Eg: Objective C).
14557 For all other languages, assume that functions are always
14558 prototyped. */
14559 if (cu->language != language_c
14560 && cu->language != language_objc
14561 && cu->language != language_opencl)
14562 return 1;
14563
14564 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14565 prototyped and unprototyped functions; default to prototyped,
14566 since that is more common in modern code (and RealView warns
14567 about unprototyped functions). */
14568 if (producer_is_realview (cu->producer))
14569 return 1;
14570
14571 return 0;
14572}
14573
c906108c
SS
14574/* Handle DIES due to C code like:
14575
14576 struct foo
c5aa993b
JM
14577 {
14578 int (*funcp)(int a, long l);
14579 int b;
14580 };
c906108c 14581
0963b4bd 14582 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14583
f792889a 14584static struct type *
e7c27a73 14585read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14586{
bb5ed363 14587 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14588 struct type *type; /* Type that this function returns. */
14589 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14590 struct attribute *attr;
14591
e7c27a73 14592 type = die_type (die, cu);
7e314c57
JK
14593
14594 /* The die_type call above may have already set the type for this DIE. */
14595 ftype = get_die_type (die, cu);
14596 if (ftype)
14597 return ftype;
14598
0c8b41f1 14599 ftype = lookup_function_type (type);
c906108c 14600
4d804846 14601 if (prototyped_function_p (die, cu))
a6c727b2 14602 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14603
c055b101
CV
14604 /* Store the calling convention in the type if it's available in
14605 the subroutine die. Otherwise set the calling convention to
14606 the default value DW_CC_normal. */
14607 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14608 if (attr)
14609 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14610 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14611 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14612 else
14613 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 14614
743649fd
MW
14615 /* Record whether the function returns normally to its caller or not
14616 if the DWARF producer set that information. */
14617 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14618 if (attr && (DW_UNSND (attr) != 0))
14619 TYPE_NO_RETURN (ftype) = 1;
14620
76c10ea2
GM
14621 /* We need to add the subroutine type to the die immediately so
14622 we don't infinitely recurse when dealing with parameters
0963b4bd 14623 declared as the same subroutine type. */
76c10ea2 14624 set_die_type (die, ftype, cu);
6e70227d 14625
639d11d3 14626 if (die->child != NULL)
c906108c 14627 {
bb5ed363 14628 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14629 struct die_info *child_die;
8072405b 14630 int nparams, iparams;
c906108c
SS
14631
14632 /* Count the number of parameters.
14633 FIXME: GDB currently ignores vararg functions, but knows about
14634 vararg member functions. */
8072405b 14635 nparams = 0;
639d11d3 14636 child_die = die->child;
c906108c
SS
14637 while (child_die && child_die->tag)
14638 {
14639 if (child_die->tag == DW_TAG_formal_parameter)
14640 nparams++;
14641 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14642 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14643 child_die = sibling_die (child_die);
14644 }
14645
14646 /* Allocate storage for parameters and fill them in. */
14647 TYPE_NFIELDS (ftype) = nparams;
14648 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14649 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14650
8072405b
JK
14651 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14652 even if we error out during the parameters reading below. */
14653 for (iparams = 0; iparams < nparams; iparams++)
14654 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14655
14656 iparams = 0;
639d11d3 14657 child_die = die->child;
c906108c
SS
14658 while (child_die && child_die->tag)
14659 {
14660 if (child_die->tag == DW_TAG_formal_parameter)
14661 {
3ce3b1ba
PA
14662 struct type *arg_type;
14663
14664 /* DWARF version 2 has no clean way to discern C++
14665 static and non-static member functions. G++ helps
14666 GDB by marking the first parameter for non-static
14667 member functions (which is the this pointer) as
14668 artificial. We pass this information to
14669 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14670
14671 DWARF version 3 added DW_AT_object_pointer, which GCC
14672 4.5 does not yet generate. */
e142c38c 14673 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14674 if (attr)
14675 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14676 else
418835cc
KS
14677 {
14678 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14679
14680 /* GCC/43521: In java, the formal parameter
14681 "this" is sometimes not marked with DW_AT_artificial. */
14682 if (cu->language == language_java)
14683 {
14684 const char *name = dwarf2_name (child_die, cu);
9a619af0 14685
418835cc
KS
14686 if (name && !strcmp (name, "this"))
14687 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14688 }
14689 }
3ce3b1ba
PA
14690 arg_type = die_type (child_die, cu);
14691
14692 /* RealView does not mark THIS as const, which the testsuite
14693 expects. GCC marks THIS as const in method definitions,
14694 but not in the class specifications (GCC PR 43053). */
14695 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14696 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14697 {
14698 int is_this = 0;
14699 struct dwarf2_cu *arg_cu = cu;
14700 const char *name = dwarf2_name (child_die, cu);
14701
14702 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14703 if (attr)
14704 {
14705 /* If the compiler emits this, use it. */
14706 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14707 is_this = 1;
14708 }
14709 else if (name && strcmp (name, "this") == 0)
14710 /* Function definitions will have the argument names. */
14711 is_this = 1;
14712 else if (name == NULL && iparams == 0)
14713 /* Declarations may not have the names, so like
14714 elsewhere in GDB, assume an artificial first
14715 argument is "this". */
14716 is_this = 1;
14717
14718 if (is_this)
14719 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14720 arg_type, 0);
14721 }
14722
14723 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14724 iparams++;
14725 }
14726 child_die = sibling_die (child_die);
14727 }
14728 }
14729
76c10ea2 14730 return ftype;
c906108c
SS
14731}
14732
f792889a 14733static struct type *
e7c27a73 14734read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14735{
e7c27a73 14736 struct objfile *objfile = cu->objfile;
0114d602 14737 const char *name = NULL;
3c8e0968 14738 struct type *this_type, *target_type;
c906108c 14739
94af9270 14740 name = dwarf2_full_name (NULL, die, cu);
19f392bc
UW
14741 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
14742 TYPE_TARGET_STUB (this_type) = 1;
f792889a 14743 set_die_type (die, this_type, cu);
3c8e0968
DE
14744 target_type = die_type (die, cu);
14745 if (target_type != this_type)
14746 TYPE_TARGET_TYPE (this_type) = target_type;
14747 else
14748 {
14749 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14750 spec and cause infinite loops in GDB. */
14751 complaint (&symfile_complaints,
14752 _("Self-referential DW_TAG_typedef "
14753 "- DIE at 0x%x [in module %s]"),
4262abfb 14754 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14755 TYPE_TARGET_TYPE (this_type) = NULL;
14756 }
f792889a 14757 return this_type;
c906108c
SS
14758}
14759
14760/* Find a representation of a given base type and install
14761 it in the TYPE field of the die. */
14762
f792889a 14763static struct type *
e7c27a73 14764read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14765{
e7c27a73 14766 struct objfile *objfile = cu->objfile;
c906108c
SS
14767 struct type *type;
14768 struct attribute *attr;
19f392bc 14769 int encoding = 0, bits = 0;
15d034d0 14770 const char *name;
c906108c 14771
e142c38c 14772 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14773 if (attr)
14774 {
14775 encoding = DW_UNSND (attr);
14776 }
e142c38c 14777 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14778 if (attr)
14779 {
19f392bc 14780 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
c906108c 14781 }
39cbfefa 14782 name = dwarf2_name (die, cu);
6ccb9162 14783 if (!name)
c906108c 14784 {
6ccb9162
UW
14785 complaint (&symfile_complaints,
14786 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14787 }
6ccb9162
UW
14788
14789 switch (encoding)
c906108c 14790 {
6ccb9162
UW
14791 case DW_ATE_address:
14792 /* Turn DW_ATE_address into a void * pointer. */
19f392bc
UW
14793 type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
14794 type = init_pointer_type (objfile, bits, name, type);
6ccb9162
UW
14795 break;
14796 case DW_ATE_boolean:
19f392bc 14797 type = init_boolean_type (objfile, bits, 1, name);
6ccb9162
UW
14798 break;
14799 case DW_ATE_complex_float:
19f392bc
UW
14800 type = init_float_type (objfile, bits / 2, NULL, NULL);
14801 type = init_complex_type (objfile, name, type);
6ccb9162
UW
14802 break;
14803 case DW_ATE_decimal_float:
19f392bc 14804 type = init_decfloat_type (objfile, bits, name);
6ccb9162
UW
14805 break;
14806 case DW_ATE_float:
19f392bc 14807 type = init_float_type (objfile, bits, name, NULL);
6ccb9162
UW
14808 break;
14809 case DW_ATE_signed:
19f392bc 14810 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
14811 break;
14812 case DW_ATE_unsigned:
3b2b8fea
TT
14813 if (cu->language == language_fortran
14814 && name
61012eef 14815 && startswith (name, "character("))
19f392bc
UW
14816 type = init_character_type (objfile, bits, 1, name);
14817 else
14818 type = init_integer_type (objfile, bits, 1, name);
6ccb9162
UW
14819 break;
14820 case DW_ATE_signed_char:
6e70227d 14821 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14822 || cu->language == language_pascal
14823 || cu->language == language_fortran)
19f392bc
UW
14824 type = init_character_type (objfile, bits, 0, name);
14825 else
14826 type = init_integer_type (objfile, bits, 0, name);
6ccb9162
UW
14827 break;
14828 case DW_ATE_unsigned_char:
868a0084 14829 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea 14830 || cu->language == language_pascal
c44af4eb
TT
14831 || cu->language == language_fortran
14832 || cu->language == language_rust)
19f392bc
UW
14833 type = init_character_type (objfile, bits, 1, name);
14834 else
14835 type = init_integer_type (objfile, bits, 1, name);
6ccb9162 14836 break;
75079b2b
TT
14837 case DW_ATE_UTF:
14838 /* We just treat this as an integer and then recognize the
14839 type by name elsewhere. */
19f392bc 14840 type = init_integer_type (objfile, bits, 0, name);
75079b2b
TT
14841 break;
14842
6ccb9162
UW
14843 default:
14844 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14845 dwarf_type_encoding_name (encoding));
19f392bc
UW
14846 type = init_type (objfile, TYPE_CODE_ERROR,
14847 bits / TARGET_CHAR_BIT, name);
6ccb9162 14848 break;
c906108c 14849 }
6ccb9162 14850
0114d602 14851 if (name && strcmp (name, "char") == 0)
876cecd0 14852 TYPE_NOSIGN (type) = 1;
0114d602 14853
f792889a 14854 return set_die_type (die, type, cu);
c906108c
SS
14855}
14856
80180f79
SA
14857/* Parse dwarf attribute if it's a block, reference or constant and put the
14858 resulting value of the attribute into struct bound_prop.
14859 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14860
14861static int
14862attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14863 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14864{
14865 struct dwarf2_property_baton *baton;
14866 struct obstack *obstack = &cu->objfile->objfile_obstack;
14867
14868 if (attr == NULL || prop == NULL)
14869 return 0;
14870
14871 if (attr_form_is_block (attr))
14872 {
8d749320 14873 baton = XOBNEW (obstack, struct dwarf2_property_baton);
80180f79
SA
14874 baton->referenced_type = NULL;
14875 baton->locexpr.per_cu = cu->per_cu;
14876 baton->locexpr.size = DW_BLOCK (attr)->size;
14877 baton->locexpr.data = DW_BLOCK (attr)->data;
14878 prop->data.baton = baton;
14879 prop->kind = PROP_LOCEXPR;
14880 gdb_assert (prop->data.baton != NULL);
14881 }
14882 else if (attr_form_is_ref (attr))
14883 {
14884 struct dwarf2_cu *target_cu = cu;
14885 struct die_info *target_die;
14886 struct attribute *target_attr;
14887
14888 target_die = follow_die_ref (die, attr, &target_cu);
14889 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
14890 if (target_attr == NULL)
14891 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14892 target_cu);
80180f79
SA
14893 if (target_attr == NULL)
14894 return 0;
14895
df25ebbd 14896 switch (target_attr->name)
80180f79 14897 {
df25ebbd
JB
14898 case DW_AT_location:
14899 if (attr_form_is_section_offset (target_attr))
14900 {
8d749320 14901 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
14902 baton->referenced_type = die_type (target_die, target_cu);
14903 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14904 prop->data.baton = baton;
14905 prop->kind = PROP_LOCLIST;
14906 gdb_assert (prop->data.baton != NULL);
14907 }
14908 else if (attr_form_is_block (target_attr))
14909 {
8d749320 14910 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
14911 baton->referenced_type = die_type (target_die, target_cu);
14912 baton->locexpr.per_cu = cu->per_cu;
14913 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14914 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14915 prop->data.baton = baton;
14916 prop->kind = PROP_LOCEXPR;
14917 gdb_assert (prop->data.baton != NULL);
14918 }
14919 else
14920 {
14921 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14922 "dynamic property");
14923 return 0;
14924 }
14925 break;
14926 case DW_AT_data_member_location:
14927 {
14928 LONGEST offset;
14929
14930 if (!handle_data_member_location (target_die, target_cu,
14931 &offset))
14932 return 0;
14933
8d749320 14934 baton = XOBNEW (obstack, struct dwarf2_property_baton);
6ad395a7
JB
14935 baton->referenced_type = read_type_die (target_die->parent,
14936 target_cu);
df25ebbd
JB
14937 baton->offset_info.offset = offset;
14938 baton->offset_info.type = die_type (target_die, target_cu);
14939 prop->data.baton = baton;
14940 prop->kind = PROP_ADDR_OFFSET;
14941 break;
14942 }
80180f79
SA
14943 }
14944 }
14945 else if (attr_form_is_constant (attr))
14946 {
14947 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14948 prop->kind = PROP_CONST;
14949 }
14950 else
14951 {
14952 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14953 dwarf2_name (die, cu));
14954 return 0;
14955 }
14956
14957 return 1;
14958}
14959
a02abb62
JB
14960/* Read the given DW_AT_subrange DIE. */
14961
f792889a 14962static struct type *
a02abb62
JB
14963read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14964{
4c9ad8c2 14965 struct type *base_type, *orig_base_type;
a02abb62
JB
14966 struct type *range_type;
14967 struct attribute *attr;
729efb13 14968 struct dynamic_prop low, high;
4fae6e18 14969 int low_default_is_valid;
c451ebe5 14970 int high_bound_is_count = 0;
15d034d0 14971 const char *name;
43bbcdc2 14972 LONGEST negative_mask;
e77813c8 14973
4c9ad8c2
TT
14974 orig_base_type = die_type (die, cu);
14975 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14976 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14977 creating the range type, but we use the result of check_typedef
14978 when examining properties of the type. */
14979 base_type = check_typedef (orig_base_type);
a02abb62 14980
7e314c57
JK
14981 /* The die_type call above may have already set the type for this DIE. */
14982 range_type = get_die_type (die, cu);
14983 if (range_type)
14984 return range_type;
14985
729efb13
SA
14986 low.kind = PROP_CONST;
14987 high.kind = PROP_CONST;
14988 high.data.const_val = 0;
14989
4fae6e18
JK
14990 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14991 omitting DW_AT_lower_bound. */
14992 switch (cu->language)
6e70227d 14993 {
4fae6e18
JK
14994 case language_c:
14995 case language_cplus:
729efb13 14996 low.data.const_val = 0;
4fae6e18
JK
14997 low_default_is_valid = 1;
14998 break;
14999 case language_fortran:
729efb13 15000 low.data.const_val = 1;
4fae6e18
JK
15001 low_default_is_valid = 1;
15002 break;
15003 case language_d:
15004 case language_java:
15005 case language_objc:
c44af4eb 15006 case language_rust:
729efb13 15007 low.data.const_val = 0;
4fae6e18
JK
15008 low_default_is_valid = (cu->header.version >= 4);
15009 break;
15010 case language_ada:
15011 case language_m2:
15012 case language_pascal:
729efb13 15013 low.data.const_val = 1;
4fae6e18
JK
15014 low_default_is_valid = (cu->header.version >= 4);
15015 break;
15016 default:
729efb13 15017 low.data.const_val = 0;
4fae6e18
JK
15018 low_default_is_valid = 0;
15019 break;
a02abb62
JB
15020 }
15021
e142c38c 15022 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 15023 if (attr)
11c1ba78 15024 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
15025 else if (!low_default_is_valid)
15026 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
15027 "- DIE at 0x%x [in module %s]"),
4262abfb 15028 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 15029
e142c38c 15030 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 15031 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
15032 {
15033 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 15034 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 15035 {
c451ebe5
SA
15036 /* If bounds are constant do the final calculation here. */
15037 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
15038 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15039 else
15040 high_bound_is_count = 1;
c2ff108b 15041 }
e77813c8
PM
15042 }
15043
15044 /* Dwarf-2 specifications explicitly allows to create subrange types
15045 without specifying a base type.
15046 In that case, the base type must be set to the type of
15047 the lower bound, upper bound or count, in that order, if any of these
15048 three attributes references an object that has a type.
15049 If no base type is found, the Dwarf-2 specifications say that
15050 a signed integer type of size equal to the size of an address should
15051 be used.
15052 For the following C code: `extern char gdb_int [];'
15053 GCC produces an empty range DIE.
15054 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 15055 high bound or count are not yet handled by this code. */
e77813c8
PM
15056 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15057 {
15058 struct objfile *objfile = cu->objfile;
15059 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15060 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15061 struct type *int_type = objfile_type (objfile)->builtin_int;
15062
15063 /* Test "int", "long int", and "long long int" objfile types,
15064 and select the first one having a size above or equal to the
15065 architecture address size. */
15066 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15067 base_type = int_type;
15068 else
15069 {
15070 int_type = objfile_type (objfile)->builtin_long;
15071 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15072 base_type = int_type;
15073 else
15074 {
15075 int_type = objfile_type (objfile)->builtin_long_long;
15076 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15077 base_type = int_type;
15078 }
15079 }
15080 }
a02abb62 15081
dbb9c2b1
JB
15082 /* Normally, the DWARF producers are expected to use a signed
15083 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15084 But this is unfortunately not always the case, as witnessed
15085 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15086 is used instead. To work around that ambiguity, we treat
15087 the bounds as signed, and thus sign-extend their values, when
15088 the base type is signed. */
6e70227d 15089 negative_mask =
66c6502d 15090 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
729efb13
SA
15091 if (low.kind == PROP_CONST
15092 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15093 low.data.const_val |= negative_mask;
15094 if (high.kind == PROP_CONST
15095 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15096 high.data.const_val |= negative_mask;
43bbcdc2 15097
729efb13 15098 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 15099
c451ebe5
SA
15100 if (high_bound_is_count)
15101 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15102
c2ff108b
JK
15103 /* Ada expects an empty array on no boundary attributes. */
15104 if (attr == NULL && cu->language != language_ada)
729efb13 15105 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 15106
39cbfefa
DJ
15107 name = dwarf2_name (die, cu);
15108 if (name)
15109 TYPE_NAME (range_type) = name;
6e70227d 15110
e142c38c 15111 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
15112 if (attr)
15113 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15114
7e314c57
JK
15115 set_die_type (die, range_type, cu);
15116
15117 /* set_die_type should be already done. */
b4ba55a1
JB
15118 set_descriptive_type (range_type, die, cu);
15119
7e314c57 15120 return range_type;
a02abb62 15121}
6e70227d 15122
f792889a 15123static struct type *
81a17f79
JB
15124read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15125{
15126 struct type *type;
81a17f79 15127
81a17f79
JB
15128 /* For now, we only support the C meaning of an unspecified type: void. */
15129
19f392bc 15130 type = init_type (cu->objfile, TYPE_CODE_VOID, 0, NULL);
0114d602 15131 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 15132
f792889a 15133 return set_die_type (die, type, cu);
81a17f79 15134}
a02abb62 15135
639d11d3
DC
15136/* Read a single die and all its descendents. Set the die's sibling
15137 field to NULL; set other fields in the die correctly, and set all
15138 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15139 location of the info_ptr after reading all of those dies. PARENT
15140 is the parent of the die in question. */
15141
15142static struct die_info *
dee91e82 15143read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
15144 const gdb_byte *info_ptr,
15145 const gdb_byte **new_info_ptr,
dee91e82 15146 struct die_info *parent)
639d11d3
DC
15147{
15148 struct die_info *die;
d521ce57 15149 const gdb_byte *cur_ptr;
639d11d3
DC
15150 int has_children;
15151
bf6af496 15152 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
15153 if (die == NULL)
15154 {
15155 *new_info_ptr = cur_ptr;
15156 return NULL;
15157 }
93311388 15158 store_in_ref_table (die, reader->cu);
639d11d3
DC
15159
15160 if (has_children)
bf6af496 15161 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
15162 else
15163 {
15164 die->child = NULL;
15165 *new_info_ptr = cur_ptr;
15166 }
15167
15168 die->sibling = NULL;
15169 die->parent = parent;
15170 return die;
15171}
15172
15173/* Read a die, all of its descendents, and all of its siblings; set
15174 all of the fields of all of the dies correctly. Arguments are as
15175 in read_die_and_children. */
15176
15177static struct die_info *
bf6af496 15178read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
15179 const gdb_byte *info_ptr,
15180 const gdb_byte **new_info_ptr,
bf6af496 15181 struct die_info *parent)
639d11d3
DC
15182{
15183 struct die_info *first_die, *last_sibling;
d521ce57 15184 const gdb_byte *cur_ptr;
639d11d3 15185
c906108c 15186 cur_ptr = info_ptr;
639d11d3
DC
15187 first_die = last_sibling = NULL;
15188
15189 while (1)
c906108c 15190 {
639d11d3 15191 struct die_info *die
dee91e82 15192 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 15193
1d325ec1 15194 if (die == NULL)
c906108c 15195 {
639d11d3
DC
15196 *new_info_ptr = cur_ptr;
15197 return first_die;
c906108c 15198 }
1d325ec1
DJ
15199
15200 if (!first_die)
15201 first_die = die;
c906108c 15202 else
1d325ec1
DJ
15203 last_sibling->sibling = die;
15204
15205 last_sibling = die;
c906108c 15206 }
c906108c
SS
15207}
15208
bf6af496
DE
15209/* Read a die, all of its descendents, and all of its siblings; set
15210 all of the fields of all of the dies correctly. Arguments are as
15211 in read_die_and_children.
15212 This the main entry point for reading a DIE and all its children. */
15213
15214static struct die_info *
15215read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
15216 const gdb_byte *info_ptr,
15217 const gdb_byte **new_info_ptr,
bf6af496
DE
15218 struct die_info *parent)
15219{
15220 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15221 new_info_ptr, parent);
15222
b4f54984 15223 if (dwarf_die_debug)
bf6af496
DE
15224 {
15225 fprintf_unfiltered (gdb_stdlog,
15226 "Read die from %s@0x%x of %s:\n",
a32a8923 15227 get_section_name (reader->die_section),
bf6af496
DE
15228 (unsigned) (info_ptr - reader->die_section->buffer),
15229 bfd_get_filename (reader->abfd));
b4f54984 15230 dump_die (die, dwarf_die_debug);
bf6af496
DE
15231 }
15232
15233 return die;
15234}
15235
3019eac3
DE
15236/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15237 attributes.
15238 The caller is responsible for filling in the extra attributes
15239 and updating (*DIEP)->num_attrs.
15240 Set DIEP to point to a newly allocated die with its information,
15241 except for its child, sibling, and parent fields.
15242 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 15243
d521ce57 15244static const gdb_byte *
3019eac3 15245read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 15246 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 15247 int *has_children, int num_extra_attrs)
93311388 15248{
b64f50a1
JK
15249 unsigned int abbrev_number, bytes_read, i;
15250 sect_offset offset;
93311388
DE
15251 struct abbrev_info *abbrev;
15252 struct die_info *die;
15253 struct dwarf2_cu *cu = reader->cu;
15254 bfd *abfd = reader->abfd;
15255
b64f50a1 15256 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
15257 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15258 info_ptr += bytes_read;
15259 if (!abbrev_number)
15260 {
15261 *diep = NULL;
15262 *has_children = 0;
15263 return info_ptr;
15264 }
15265
433df2d4 15266 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 15267 if (!abbrev)
348e048f
DE
15268 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15269 abbrev_number,
15270 bfd_get_filename (abfd));
15271
3019eac3 15272 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
15273 die->offset = offset;
15274 die->tag = abbrev->tag;
15275 die->abbrev = abbrev_number;
15276
3019eac3
DE
15277 /* Make the result usable.
15278 The caller needs to update num_attrs after adding the extra
15279 attributes. */
93311388
DE
15280 die->num_attrs = abbrev->num_attrs;
15281
15282 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
15283 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15284 info_ptr);
93311388
DE
15285
15286 *diep = die;
15287 *has_children = abbrev->has_children;
15288 return info_ptr;
15289}
15290
3019eac3
DE
15291/* Read a die and all its attributes.
15292 Set DIEP to point to a newly allocated die with its information,
15293 except for its child, sibling, and parent fields.
15294 Set HAS_CHILDREN to tell whether the die has children or not. */
15295
d521ce57 15296static const gdb_byte *
3019eac3 15297read_full_die (const struct die_reader_specs *reader,
d521ce57 15298 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
15299 int *has_children)
15300{
d521ce57 15301 const gdb_byte *result;
bf6af496
DE
15302
15303 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15304
b4f54984 15305 if (dwarf_die_debug)
bf6af496
DE
15306 {
15307 fprintf_unfiltered (gdb_stdlog,
15308 "Read die from %s@0x%x of %s:\n",
a32a8923 15309 get_section_name (reader->die_section),
bf6af496
DE
15310 (unsigned) (info_ptr - reader->die_section->buffer),
15311 bfd_get_filename (reader->abfd));
b4f54984 15312 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
15313 }
15314
15315 return result;
3019eac3 15316}
433df2d4
DE
15317\f
15318/* Abbreviation tables.
3019eac3 15319
433df2d4 15320 In DWARF version 2, the description of the debugging information is
c906108c
SS
15321 stored in a separate .debug_abbrev section. Before we read any
15322 dies from a section we read in all abbreviations and install them
433df2d4
DE
15323 in a hash table. */
15324
15325/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15326
15327static struct abbrev_info *
15328abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15329{
15330 struct abbrev_info *abbrev;
15331
8d749320 15332 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
433df2d4 15333 memset (abbrev, 0, sizeof (struct abbrev_info));
8d749320 15334
433df2d4
DE
15335 return abbrev;
15336}
15337
15338/* Add an abbreviation to the table. */
c906108c
SS
15339
15340static void
433df2d4
DE
15341abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15342 unsigned int abbrev_number,
15343 struct abbrev_info *abbrev)
15344{
15345 unsigned int hash_number;
15346
15347 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15348 abbrev->next = abbrev_table->abbrevs[hash_number];
15349 abbrev_table->abbrevs[hash_number] = abbrev;
15350}
dee91e82 15351
433df2d4
DE
15352/* Look up an abbrev in the table.
15353 Returns NULL if the abbrev is not found. */
15354
15355static struct abbrev_info *
15356abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15357 unsigned int abbrev_number)
c906108c 15358{
433df2d4
DE
15359 unsigned int hash_number;
15360 struct abbrev_info *abbrev;
15361
15362 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15363 abbrev = abbrev_table->abbrevs[hash_number];
15364
15365 while (abbrev)
15366 {
15367 if (abbrev->number == abbrev_number)
15368 return abbrev;
15369 abbrev = abbrev->next;
15370 }
15371 return NULL;
15372}
15373
15374/* Read in an abbrev table. */
15375
15376static struct abbrev_table *
15377abbrev_table_read_table (struct dwarf2_section_info *section,
15378 sect_offset offset)
15379{
15380 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15381 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15382 struct abbrev_table *abbrev_table;
d521ce57 15383 const gdb_byte *abbrev_ptr;
c906108c
SS
15384 struct abbrev_info *cur_abbrev;
15385 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15386 unsigned int abbrev_form;
f3dd6933
DJ
15387 struct attr_abbrev *cur_attrs;
15388 unsigned int allocated_attrs;
c906108c 15389
70ba0933 15390 abbrev_table = XNEW (struct abbrev_table);
f4dc4d17 15391 abbrev_table->offset = offset;
433df2d4 15392 obstack_init (&abbrev_table->abbrev_obstack);
8d749320
SM
15393 abbrev_table->abbrevs =
15394 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15395 ABBREV_HASH_SIZE);
433df2d4
DE
15396 memset (abbrev_table->abbrevs, 0,
15397 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15398
433df2d4
DE
15399 dwarf2_read_section (objfile, section);
15400 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
15401 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15402 abbrev_ptr += bytes_read;
15403
f3dd6933 15404 allocated_attrs = ATTR_ALLOC_CHUNK;
8d749320 15405 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
6e70227d 15406
0963b4bd 15407 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15408 while (abbrev_number)
15409 {
433df2d4 15410 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15411
15412 /* read in abbrev header */
15413 cur_abbrev->number = abbrev_number;
aead7601
SM
15414 cur_abbrev->tag
15415 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
c906108c
SS
15416 abbrev_ptr += bytes_read;
15417 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15418 abbrev_ptr += 1;
15419
15420 /* now read in declarations */
15421 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15422 abbrev_ptr += bytes_read;
15423 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15424 abbrev_ptr += bytes_read;
15425 while (abbrev_name)
15426 {
f3dd6933 15427 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15428 {
f3dd6933
DJ
15429 allocated_attrs += ATTR_ALLOC_CHUNK;
15430 cur_attrs
224c3ddb 15431 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
c906108c 15432 }
ae038cb0 15433
aead7601
SM
15434 cur_attrs[cur_abbrev->num_attrs].name
15435 = (enum dwarf_attribute) abbrev_name;
15436 cur_attrs[cur_abbrev->num_attrs++].form
15437 = (enum dwarf_form) abbrev_form;
c906108c
SS
15438 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15439 abbrev_ptr += bytes_read;
15440 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15441 abbrev_ptr += bytes_read;
15442 }
15443
8d749320
SM
15444 cur_abbrev->attrs =
15445 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15446 cur_abbrev->num_attrs);
f3dd6933
DJ
15447 memcpy (cur_abbrev->attrs, cur_attrs,
15448 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15449
433df2d4 15450 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15451
15452 /* Get next abbreviation.
15453 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15454 always properly terminated with an abbrev number of 0.
15455 Exit loop if we encounter an abbreviation which we have
15456 already read (which means we are about to read the abbreviations
15457 for the next compile unit) or if the end of the abbreviation
15458 table is reached. */
433df2d4 15459 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15460 break;
15461 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15462 abbrev_ptr += bytes_read;
433df2d4 15463 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15464 break;
15465 }
f3dd6933
DJ
15466
15467 xfree (cur_attrs);
433df2d4 15468 return abbrev_table;
c906108c
SS
15469}
15470
433df2d4 15471/* Free the resources held by ABBREV_TABLE. */
c906108c 15472
c906108c 15473static void
433df2d4 15474abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15475{
433df2d4
DE
15476 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15477 xfree (abbrev_table);
c906108c
SS
15478}
15479
f4dc4d17
DE
15480/* Same as abbrev_table_free but as a cleanup.
15481 We pass in a pointer to the pointer to the table so that we can
15482 set the pointer to NULL when we're done. It also simplifies
73051182 15483 build_type_psymtabs_1. */
f4dc4d17
DE
15484
15485static void
15486abbrev_table_free_cleanup (void *table_ptr)
15487{
9a3c8263 15488 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
f4dc4d17
DE
15489
15490 if (*abbrev_table_ptr != NULL)
15491 abbrev_table_free (*abbrev_table_ptr);
15492 *abbrev_table_ptr = NULL;
15493}
15494
433df2d4
DE
15495/* Read the abbrev table for CU from ABBREV_SECTION. */
15496
15497static void
15498dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15499 struct dwarf2_section_info *abbrev_section)
c906108c 15500{
433df2d4
DE
15501 cu->abbrev_table =
15502 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15503}
c906108c 15504
433df2d4 15505/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15506
433df2d4
DE
15507static void
15508dwarf2_free_abbrev_table (void *ptr_to_cu)
15509{
9a3c8263 15510 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
c906108c 15511
a2ce51a0
DE
15512 if (cu->abbrev_table != NULL)
15513 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15514 /* Set this to NULL so that we SEGV if we try to read it later,
15515 and also because free_comp_unit verifies this is NULL. */
15516 cu->abbrev_table = NULL;
15517}
15518\f
72bf9492
DJ
15519/* Returns nonzero if TAG represents a type that we might generate a partial
15520 symbol for. */
15521
15522static int
15523is_type_tag_for_partial (int tag)
15524{
15525 switch (tag)
15526 {
15527#if 0
15528 /* Some types that would be reasonable to generate partial symbols for,
15529 that we don't at present. */
15530 case DW_TAG_array_type:
15531 case DW_TAG_file_type:
15532 case DW_TAG_ptr_to_member_type:
15533 case DW_TAG_set_type:
15534 case DW_TAG_string_type:
15535 case DW_TAG_subroutine_type:
15536#endif
15537 case DW_TAG_base_type:
15538 case DW_TAG_class_type:
680b30c7 15539 case DW_TAG_interface_type:
72bf9492
DJ
15540 case DW_TAG_enumeration_type:
15541 case DW_TAG_structure_type:
15542 case DW_TAG_subrange_type:
15543 case DW_TAG_typedef:
15544 case DW_TAG_union_type:
15545 return 1;
15546 default:
15547 return 0;
15548 }
15549}
15550
15551/* Load all DIEs that are interesting for partial symbols into memory. */
15552
15553static struct partial_die_info *
dee91e82 15554load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15555 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15556{
dee91e82 15557 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15558 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15559 struct partial_die_info *part_die;
15560 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15561 struct abbrev_info *abbrev;
15562 unsigned int bytes_read;
5afb4e99 15563 unsigned int load_all = 0;
72bf9492
DJ
15564 int nesting_level = 1;
15565
15566 parent_die = NULL;
15567 last_die = NULL;
15568
7adf1e79
DE
15569 gdb_assert (cu->per_cu != NULL);
15570 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15571 load_all = 1;
15572
72bf9492
DJ
15573 cu->partial_dies
15574 = htab_create_alloc_ex (cu->header.length / 12,
15575 partial_die_hash,
15576 partial_die_eq,
15577 NULL,
15578 &cu->comp_unit_obstack,
15579 hashtab_obstack_allocate,
15580 dummy_obstack_deallocate);
15581
8d749320 15582 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15583
15584 while (1)
15585 {
15586 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15587
15588 /* A NULL abbrev means the end of a series of children. */
15589 if (abbrev == NULL)
15590 {
15591 if (--nesting_level == 0)
15592 {
15593 /* PART_DIE was probably the last thing allocated on the
15594 comp_unit_obstack, so we could call obstack_free
15595 here. We don't do that because the waste is small,
15596 and will be cleaned up when we're done with this
15597 compilation unit. This way, we're also more robust
15598 against other users of the comp_unit_obstack. */
15599 return first_die;
15600 }
15601 info_ptr += bytes_read;
15602 last_die = parent_die;
15603 parent_die = parent_die->die_parent;
15604 continue;
15605 }
15606
98bfdba5
PA
15607 /* Check for template arguments. We never save these; if
15608 they're seen, we just mark the parent, and go on our way. */
15609 if (parent_die != NULL
15610 && cu->language == language_cplus
15611 && (abbrev->tag == DW_TAG_template_type_param
15612 || abbrev->tag == DW_TAG_template_value_param))
15613 {
15614 parent_die->has_template_arguments = 1;
15615
15616 if (!load_all)
15617 {
15618 /* We don't need a partial DIE for the template argument. */
dee91e82 15619 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15620 continue;
15621 }
15622 }
15623
0d99eb77 15624 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
15625 Skip their other children. */
15626 if (!load_all
15627 && cu->language == language_cplus
15628 && parent_die != NULL
15629 && parent_die->tag == DW_TAG_subprogram)
15630 {
dee91e82 15631 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15632 continue;
15633 }
15634
5afb4e99
DJ
15635 /* Check whether this DIE is interesting enough to save. Normally
15636 we would not be interested in members here, but there may be
15637 later variables referencing them via DW_AT_specification (for
15638 static members). */
15639 if (!load_all
15640 && !is_type_tag_for_partial (abbrev->tag)
72929c62 15641 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
15642 && abbrev->tag != DW_TAG_enumerator
15643 && abbrev->tag != DW_TAG_subprogram
bc30ff58 15644 && abbrev->tag != DW_TAG_lexical_block
72bf9492 15645 && abbrev->tag != DW_TAG_variable
5afb4e99 15646 && abbrev->tag != DW_TAG_namespace
f55ee35c 15647 && abbrev->tag != DW_TAG_module
95554aad 15648 && abbrev->tag != DW_TAG_member
74921315
KS
15649 && abbrev->tag != DW_TAG_imported_unit
15650 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
15651 {
15652 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15653 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
15654 continue;
15655 }
15656
dee91e82
DE
15657 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15658 info_ptr);
72bf9492
DJ
15659
15660 /* This two-pass algorithm for processing partial symbols has a
15661 high cost in cache pressure. Thus, handle some simple cases
15662 here which cover the majority of C partial symbols. DIEs
15663 which neither have specification tags in them, nor could have
15664 specification tags elsewhere pointing at them, can simply be
15665 processed and discarded.
15666
15667 This segment is also optional; scan_partial_symbols and
15668 add_partial_symbol will handle these DIEs if we chain
15669 them in normally. When compilers which do not emit large
15670 quantities of duplicate debug information are more common,
15671 this code can probably be removed. */
15672
15673 /* Any complete simple types at the top level (pretty much all
15674 of them, for a language without namespaces), can be processed
15675 directly. */
15676 if (parent_die == NULL
15677 && part_die->has_specification == 0
15678 && part_die->is_declaration == 0
d8228535 15679 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15680 || part_die->tag == DW_TAG_base_type
15681 || part_die->tag == DW_TAG_subrange_type))
15682 {
15683 if (building_psymtab && part_die->name != NULL)
04a679b8 15684 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15685 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363 15686 &objfile->static_psymbols,
1762568f 15687 0, cu->language, objfile);
dee91e82 15688 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15689 continue;
15690 }
15691
d8228535
JK
15692 /* The exception for DW_TAG_typedef with has_children above is
15693 a workaround of GCC PR debug/47510. In the case of this complaint
15694 type_name_no_tag_or_error will error on such types later.
15695
15696 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15697 it could not find the child DIEs referenced later, this is checked
15698 above. In correct DWARF DW_TAG_typedef should have no children. */
15699
15700 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15701 complaint (&symfile_complaints,
15702 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15703 "- DIE at 0x%x [in module %s]"),
4262abfb 15704 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15705
72bf9492
DJ
15706 /* If we're at the second level, and we're an enumerator, and
15707 our parent has no specification (meaning possibly lives in a
15708 namespace elsewhere), then we can add the partial symbol now
15709 instead of queueing it. */
15710 if (part_die->tag == DW_TAG_enumerator
15711 && parent_die != NULL
15712 && parent_die->die_parent == NULL
15713 && parent_die->tag == DW_TAG_enumeration_type
15714 && parent_die->has_specification == 0)
15715 {
15716 if (part_die->name == NULL)
3e43a32a
MS
15717 complaint (&symfile_complaints,
15718 _("malformed enumerator DIE ignored"));
72bf9492 15719 else if (building_psymtab)
04a679b8 15720 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15721 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
15722 (cu->language == language_cplus
15723 || cu->language == language_java)
bb5ed363
DE
15724 ? &objfile->global_psymbols
15725 : &objfile->static_psymbols,
1762568f 15726 0, cu->language, objfile);
72bf9492 15727
dee91e82 15728 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15729 continue;
15730 }
15731
15732 /* We'll save this DIE so link it in. */
15733 part_die->die_parent = parent_die;
15734 part_die->die_sibling = NULL;
15735 part_die->die_child = NULL;
15736
15737 if (last_die && last_die == parent_die)
15738 last_die->die_child = part_die;
15739 else if (last_die)
15740 last_die->die_sibling = part_die;
15741
15742 last_die = part_die;
15743
15744 if (first_die == NULL)
15745 first_die = part_die;
15746
15747 /* Maybe add the DIE to the hash table. Not all DIEs that we
15748 find interesting need to be in the hash table, because we
15749 also have the parent/sibling/child chains; only those that we
15750 might refer to by offset later during partial symbol reading.
15751
15752 For now this means things that might have be the target of a
15753 DW_AT_specification, DW_AT_abstract_origin, or
15754 DW_AT_extension. DW_AT_extension will refer only to
15755 namespaces; DW_AT_abstract_origin refers to functions (and
15756 many things under the function DIE, but we do not recurse
15757 into function DIEs during partial symbol reading) and
15758 possibly variables as well; DW_AT_specification refers to
15759 declarations. Declarations ought to have the DW_AT_declaration
15760 flag. It happens that GCC forgets to put it in sometimes, but
15761 only for functions, not for types.
15762
15763 Adding more things than necessary to the hash table is harmless
15764 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15765 wasted time in find_partial_die, when we reread the compilation
15766 unit with load_all_dies set. */
72bf9492 15767
5afb4e99 15768 if (load_all
72929c62 15769 || abbrev->tag == DW_TAG_constant
5afb4e99 15770 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15771 || abbrev->tag == DW_TAG_variable
15772 || abbrev->tag == DW_TAG_namespace
15773 || part_die->is_declaration)
15774 {
15775 void **slot;
15776
15777 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 15778 part_die->offset.sect_off, INSERT);
72bf9492
DJ
15779 *slot = part_die;
15780 }
15781
8d749320 15782 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15783
15784 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 15785 we have no reason to follow the children of structures; for other
98bfdba5
PA
15786 languages we have to, so that we can get at method physnames
15787 to infer fully qualified class names, for DW_AT_specification,
15788 and for C++ template arguments. For C++, we also look one level
15789 inside functions to find template arguments (if the name of the
15790 function does not already contain the template arguments).
bc30ff58
JB
15791
15792 For Ada, we need to scan the children of subprograms and lexical
15793 blocks as well because Ada allows the definition of nested
15794 entities that could be interesting for the debugger, such as
15795 nested subprograms for instance. */
72bf9492 15796 if (last_die->has_children
5afb4e99
DJ
15797 && (load_all
15798 || last_die->tag == DW_TAG_namespace
f55ee35c 15799 || last_die->tag == DW_TAG_module
72bf9492 15800 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15801 || (cu->language == language_cplus
15802 && last_die->tag == DW_TAG_subprogram
15803 && (last_die->name == NULL
15804 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15805 || (cu->language != language_c
15806 && (last_die->tag == DW_TAG_class_type
680b30c7 15807 || last_die->tag == DW_TAG_interface_type
72bf9492 15808 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
15809 || last_die->tag == DW_TAG_union_type))
15810 || (cu->language == language_ada
15811 && (last_die->tag == DW_TAG_subprogram
15812 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
15813 {
15814 nesting_level++;
15815 parent_die = last_die;
15816 continue;
15817 }
15818
15819 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15820 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
15821
15822 /* Back to the top, do it again. */
15823 }
15824}
15825
c906108c
SS
15826/* Read a minimal amount of information into the minimal die structure. */
15827
d521ce57 15828static const gdb_byte *
dee91e82
DE
15829read_partial_die (const struct die_reader_specs *reader,
15830 struct partial_die_info *part_die,
15831 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 15832 const gdb_byte *info_ptr)
c906108c 15833{
dee91e82 15834 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15835 struct objfile *objfile = cu->objfile;
d521ce57 15836 const gdb_byte *buffer = reader->buffer;
fa238c03 15837 unsigned int i;
c906108c 15838 struct attribute attr;
c5aa993b 15839 int has_low_pc_attr = 0;
c906108c 15840 int has_high_pc_attr = 0;
91da1414 15841 int high_pc_relative = 0;
c906108c 15842
72bf9492 15843 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 15844
b64f50a1 15845 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
15846
15847 info_ptr += abbrev_len;
15848
15849 if (abbrev == NULL)
15850 return info_ptr;
15851
c906108c
SS
15852 part_die->tag = abbrev->tag;
15853 part_die->has_children = abbrev->has_children;
c906108c
SS
15854
15855 for (i = 0; i < abbrev->num_attrs; ++i)
15856 {
dee91e82 15857 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
15858
15859 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 15860 partial symbol table. */
c906108c
SS
15861 switch (attr.name)
15862 {
15863 case DW_AT_name:
71c25dea
TT
15864 switch (part_die->tag)
15865 {
15866 case DW_TAG_compile_unit:
95554aad 15867 case DW_TAG_partial_unit:
348e048f 15868 case DW_TAG_type_unit:
71c25dea
TT
15869 /* Compilation units have a DW_AT_name that is a filename, not
15870 a source language identifier. */
15871 case DW_TAG_enumeration_type:
15872 case DW_TAG_enumerator:
15873 /* These tags always have simple identifiers already; no need
15874 to canonicalize them. */
15875 part_die->name = DW_STRING (&attr);
15876 break;
15877 default:
15878 part_die->name
15879 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 15880 &objfile->per_bfd->storage_obstack);
71c25dea
TT
15881 break;
15882 }
c906108c 15883 break;
31ef98ae 15884 case DW_AT_linkage_name:
c906108c 15885 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
15886 /* Note that both forms of linkage name might appear. We
15887 assume they will be the same, and we only store the last
15888 one we see. */
94af9270
KS
15889 if (cu->language == language_ada)
15890 part_die->name = DW_STRING (&attr);
abc72ce4 15891 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
15892 break;
15893 case DW_AT_low_pc:
15894 has_low_pc_attr = 1;
31aa7e4e 15895 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
15896 break;
15897 case DW_AT_high_pc:
15898 has_high_pc_attr = 1;
31aa7e4e
JB
15899 part_die->highpc = attr_value_as_address (&attr);
15900 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15901 high_pc_relative = 1;
c906108c
SS
15902 break;
15903 case DW_AT_location:
0963b4bd 15904 /* Support the .debug_loc offsets. */
8e19ed76
PS
15905 if (attr_form_is_block (&attr))
15906 {
95554aad 15907 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 15908 }
3690dd37 15909 else if (attr_form_is_section_offset (&attr))
8e19ed76 15910 {
4d3c2250 15911 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15912 }
15913 else
15914 {
4d3c2250
KB
15915 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15916 "partial symbol information");
8e19ed76 15917 }
c906108c 15918 break;
c906108c
SS
15919 case DW_AT_external:
15920 part_die->is_external = DW_UNSND (&attr);
15921 break;
15922 case DW_AT_declaration:
15923 part_die->is_declaration = DW_UNSND (&attr);
15924 break;
15925 case DW_AT_type:
15926 part_die->has_type = 1;
15927 break;
15928 case DW_AT_abstract_origin:
15929 case DW_AT_specification:
72bf9492
DJ
15930 case DW_AT_extension:
15931 part_die->has_specification = 1;
c764a876 15932 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
15933 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15934 || cu->per_cu->is_dwz);
c906108c
SS
15935 break;
15936 case DW_AT_sibling:
15937 /* Ignore absolute siblings, they might point outside of
15938 the current compile unit. */
15939 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
15940 complaint (&symfile_complaints,
15941 _("ignoring absolute DW_AT_sibling"));
c906108c 15942 else
b9502d3f
WN
15943 {
15944 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15945 const gdb_byte *sibling_ptr = buffer + off;
15946
15947 if (sibling_ptr < info_ptr)
15948 complaint (&symfile_complaints,
15949 _("DW_AT_sibling points backwards"));
22869d73
KS
15950 else if (sibling_ptr > reader->buffer_end)
15951 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
15952 else
15953 part_die->sibling = sibling_ptr;
15954 }
c906108c 15955 break;
fa4028e9
JB
15956 case DW_AT_byte_size:
15957 part_die->has_byte_size = 1;
15958 break;
ff908ebf
AW
15959 case DW_AT_const_value:
15960 part_die->has_const_value = 1;
15961 break;
68511cec
CES
15962 case DW_AT_calling_convention:
15963 /* DWARF doesn't provide a way to identify a program's source-level
15964 entry point. DW_AT_calling_convention attributes are only meant
15965 to describe functions' calling conventions.
15966
15967 However, because it's a necessary piece of information in
15968 Fortran, and because DW_CC_program is the only piece of debugging
15969 information whose definition refers to a 'main program' at all,
15970 several compilers have begun marking Fortran main programs with
15971 DW_CC_program --- even when those functions use the standard
15972 calling conventions.
15973
15974 So until DWARF specifies a way to provide this information and
15975 compilers pick up the new representation, we'll support this
15976 practice. */
15977 if (DW_UNSND (&attr) == DW_CC_program
dc365182
JH
15978 && cu->language == language_fortran
15979 && part_die->name != NULL)
3d548a53 15980 set_objfile_main_name (objfile, part_die->name, language_fortran);
68511cec 15981 break;
481860b3
GB
15982 case DW_AT_inline:
15983 if (DW_UNSND (&attr) == DW_INL_inlined
15984 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15985 part_die->may_be_inlined = 1;
15986 break;
95554aad
TT
15987
15988 case DW_AT_import:
15989 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
15990 {
15991 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15992 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15993 || cu->per_cu->is_dwz);
15994 }
95554aad
TT
15995 break;
15996
c906108c
SS
15997 default:
15998 break;
15999 }
16000 }
16001
91da1414
MW
16002 if (high_pc_relative)
16003 part_die->highpc += part_die->lowpc;
16004
9373cf26
JK
16005 if (has_low_pc_attr && has_high_pc_attr)
16006 {
16007 /* When using the GNU linker, .gnu.linkonce. sections are used to
16008 eliminate duplicate copies of functions and vtables and such.
16009 The linker will arbitrarily choose one and discard the others.
16010 The AT_*_pc values for such functions refer to local labels in
16011 these sections. If the section from that file was discarded, the
16012 labels are not in the output, so the relocs get a value of 0.
16013 If this is a discarded function, mark the pc bounds as invalid,
16014 so that GDB will ignore it. */
16015 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
16016 {
bb5ed363 16017 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
16018
16019 complaint (&symfile_complaints,
16020 _("DW_AT_low_pc %s is zero "
16021 "for DIE at 0x%x [in module %s]"),
16022 paddress (gdbarch, part_die->lowpc),
4262abfb 16023 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
16024 }
16025 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
16026 else if (part_die->lowpc >= part_die->highpc)
16027 {
bb5ed363 16028 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
16029
16030 complaint (&symfile_complaints,
16031 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
16032 "for DIE at 0x%x [in module %s]"),
16033 paddress (gdbarch, part_die->lowpc),
16034 paddress (gdbarch, part_die->highpc),
4262abfb 16035 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
16036 }
16037 else
16038 part_die->has_pc_info = 1;
16039 }
85cbf3d3 16040
c906108c
SS
16041 return info_ptr;
16042}
16043
72bf9492
DJ
16044/* Find a cached partial DIE at OFFSET in CU. */
16045
16046static struct partial_die_info *
b64f50a1 16047find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
16048{
16049 struct partial_die_info *lookup_die = NULL;
16050 struct partial_die_info part_die;
16051
16052 part_die.offset = offset;
9a3c8263
SM
16053 lookup_die = ((struct partial_die_info *)
16054 htab_find_with_hash (cu->partial_dies, &part_die,
16055 offset.sect_off));
72bf9492 16056
72bf9492
DJ
16057 return lookup_die;
16058}
16059
348e048f
DE
16060/* Find a partial DIE at OFFSET, which may or may not be in CU,
16061 except in the case of .debug_types DIEs which do not reference
16062 outside their CU (they do however referencing other types via
55f1336d 16063 DW_FORM_ref_sig8). */
72bf9492
DJ
16064
16065static struct partial_die_info *
36586728 16066find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 16067{
bb5ed363 16068 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
16069 struct dwarf2_per_cu_data *per_cu = NULL;
16070 struct partial_die_info *pd = NULL;
72bf9492 16071
36586728
TT
16072 if (offset_in_dwz == cu->per_cu->is_dwz
16073 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
16074 {
16075 pd = find_partial_die_in_comp_unit (offset, cu);
16076 if (pd != NULL)
16077 return pd;
0d99eb77
DE
16078 /* We missed recording what we needed.
16079 Load all dies and try again. */
16080 per_cu = cu->per_cu;
5afb4e99 16081 }
0d99eb77
DE
16082 else
16083 {
16084 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 16085 if (cu->per_cu->is_debug_types)
0d99eb77
DE
16086 {
16087 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16088 " external reference to offset 0x%lx [in module %s].\n"),
16089 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16090 bfd_get_filename (objfile->obfd));
16091 }
36586728
TT
16092 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16093 objfile);
72bf9492 16094
0d99eb77
DE
16095 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16096 load_partial_comp_unit (per_cu);
ae038cb0 16097
0d99eb77
DE
16098 per_cu->cu->last_used = 0;
16099 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16100 }
5afb4e99 16101
dee91e82
DE
16102 /* If we didn't find it, and not all dies have been loaded,
16103 load them all and try again. */
16104
5afb4e99
DJ
16105 if (pd == NULL && per_cu->load_all_dies == 0)
16106 {
5afb4e99 16107 per_cu->load_all_dies = 1;
fd820528
DE
16108
16109 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16110 THIS_CU->cu may already be in use. So we can't just free it and
16111 replace its DIEs with the ones we read in. Instead, we leave those
16112 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16113 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16114 set. */
dee91e82 16115 load_partial_comp_unit (per_cu);
5afb4e99
DJ
16116
16117 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16118 }
16119
16120 if (pd == NULL)
16121 internal_error (__FILE__, __LINE__,
3e43a32a
MS
16122 _("could not find partial DIE 0x%x "
16123 "in cache [from module %s]\n"),
b64f50a1 16124 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 16125 return pd;
72bf9492
DJ
16126}
16127
abc72ce4
DE
16128/* See if we can figure out if the class lives in a namespace. We do
16129 this by looking for a member function; its demangled name will
16130 contain namespace info, if there is any. */
16131
16132static void
16133guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16134 struct dwarf2_cu *cu)
16135{
16136 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16137 what template types look like, because the demangler
16138 frequently doesn't give the same name as the debug info. We
16139 could fix this by only using the demangled name to get the
16140 prefix (but see comment in read_structure_type). */
16141
16142 struct partial_die_info *real_pdi;
16143 struct partial_die_info *child_pdi;
16144
16145 /* If this DIE (this DIE's specification, if any) has a parent, then
16146 we should not do this. We'll prepend the parent's fully qualified
16147 name when we create the partial symbol. */
16148
16149 real_pdi = struct_pdi;
16150 while (real_pdi->has_specification)
36586728
TT
16151 real_pdi = find_partial_die (real_pdi->spec_offset,
16152 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
16153
16154 if (real_pdi->die_parent != NULL)
16155 return;
16156
16157 for (child_pdi = struct_pdi->die_child;
16158 child_pdi != NULL;
16159 child_pdi = child_pdi->die_sibling)
16160 {
16161 if (child_pdi->tag == DW_TAG_subprogram
16162 && child_pdi->linkage_name != NULL)
16163 {
16164 char *actual_class_name
16165 = language_class_name_from_physname (cu->language_defn,
16166 child_pdi->linkage_name);
16167 if (actual_class_name != NULL)
16168 {
16169 struct_pdi->name
224c3ddb
SM
16170 = ((const char *)
16171 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16172 actual_class_name,
16173 strlen (actual_class_name)));
abc72ce4
DE
16174 xfree (actual_class_name);
16175 }
16176 break;
16177 }
16178 }
16179}
16180
72bf9492
DJ
16181/* Adjust PART_DIE before generating a symbol for it. This function
16182 may set the is_external flag or change the DIE's name. */
16183
16184static void
16185fixup_partial_die (struct partial_die_info *part_die,
16186 struct dwarf2_cu *cu)
16187{
abc72ce4
DE
16188 /* Once we've fixed up a die, there's no point in doing so again.
16189 This also avoids a memory leak if we were to call
16190 guess_partial_die_structure_name multiple times. */
16191 if (part_die->fixup_called)
16192 return;
16193
72bf9492
DJ
16194 /* If we found a reference attribute and the DIE has no name, try
16195 to find a name in the referred to DIE. */
16196
16197 if (part_die->name == NULL && part_die->has_specification)
16198 {
16199 struct partial_die_info *spec_die;
72bf9492 16200
36586728
TT
16201 spec_die = find_partial_die (part_die->spec_offset,
16202 part_die->spec_is_dwz, cu);
72bf9492 16203
10b3939b 16204 fixup_partial_die (spec_die, cu);
72bf9492
DJ
16205
16206 if (spec_die->name)
16207 {
16208 part_die->name = spec_die->name;
16209
16210 /* Copy DW_AT_external attribute if it is set. */
16211 if (spec_die->is_external)
16212 part_die->is_external = spec_die->is_external;
16213 }
16214 }
16215
16216 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
16217
16218 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 16219 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 16220
abc72ce4
DE
16221 /* If there is no parent die to provide a namespace, and there are
16222 children, see if we can determine the namespace from their linkage
122d1940 16223 name. */
abc72ce4 16224 if (cu->language == language_cplus
8b70b953 16225 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
16226 && part_die->die_parent == NULL
16227 && part_die->has_children
16228 && (part_die->tag == DW_TAG_class_type
16229 || part_die->tag == DW_TAG_structure_type
16230 || part_die->tag == DW_TAG_union_type))
16231 guess_partial_die_structure_name (part_die, cu);
16232
53832f31
TT
16233 /* GCC might emit a nameless struct or union that has a linkage
16234 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16235 if (part_die->name == NULL
96408a79
SA
16236 && (part_die->tag == DW_TAG_class_type
16237 || part_die->tag == DW_TAG_interface_type
16238 || part_die->tag == DW_TAG_structure_type
16239 || part_die->tag == DW_TAG_union_type)
53832f31
TT
16240 && part_die->linkage_name != NULL)
16241 {
16242 char *demangled;
16243
8de20a37 16244 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
16245 if (demangled)
16246 {
96408a79
SA
16247 const char *base;
16248
16249 /* Strip any leading namespaces/classes, keep only the base name.
16250 DW_AT_name for named DIEs does not contain the prefixes. */
16251 base = strrchr (demangled, ':');
16252 if (base && base > demangled && base[-1] == ':')
16253 base++;
16254 else
16255 base = demangled;
16256
34a68019 16257 part_die->name
224c3ddb
SM
16258 = ((const char *)
16259 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16260 base, strlen (base)));
53832f31
TT
16261 xfree (demangled);
16262 }
16263 }
16264
abc72ce4 16265 part_die->fixup_called = 1;
72bf9492
DJ
16266}
16267
a8329558 16268/* Read an attribute value described by an attribute form. */
c906108c 16269
d521ce57 16270static const gdb_byte *
dee91e82
DE
16271read_attribute_value (const struct die_reader_specs *reader,
16272 struct attribute *attr, unsigned form,
d521ce57 16273 const gdb_byte *info_ptr)
c906108c 16274{
dee91e82 16275 struct dwarf2_cu *cu = reader->cu;
3e29f34a
MR
16276 struct objfile *objfile = cu->objfile;
16277 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 16278 bfd *abfd = reader->abfd;
e7c27a73 16279 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16280 unsigned int bytes_read;
16281 struct dwarf_block *blk;
16282
aead7601 16283 attr->form = (enum dwarf_form) form;
a8329558 16284 switch (form)
c906108c 16285 {
c906108c 16286 case DW_FORM_ref_addr:
ae411497 16287 if (cu->header.version == 2)
4568ecf9 16288 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 16289 else
4568ecf9
DE
16290 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16291 &cu->header, &bytes_read);
ae411497
TT
16292 info_ptr += bytes_read;
16293 break;
36586728
TT
16294 case DW_FORM_GNU_ref_alt:
16295 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16296 info_ptr += bytes_read;
16297 break;
ae411497 16298 case DW_FORM_addr:
e7c27a73 16299 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 16300 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 16301 info_ptr += bytes_read;
c906108c
SS
16302 break;
16303 case DW_FORM_block2:
7b5a2f43 16304 blk = dwarf_alloc_block (cu);
c906108c
SS
16305 blk->size = read_2_bytes (abfd, info_ptr);
16306 info_ptr += 2;
16307 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16308 info_ptr += blk->size;
16309 DW_BLOCK (attr) = blk;
16310 break;
16311 case DW_FORM_block4:
7b5a2f43 16312 blk = dwarf_alloc_block (cu);
c906108c
SS
16313 blk->size = read_4_bytes (abfd, info_ptr);
16314 info_ptr += 4;
16315 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16316 info_ptr += blk->size;
16317 DW_BLOCK (attr) = blk;
16318 break;
16319 case DW_FORM_data2:
16320 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16321 info_ptr += 2;
16322 break;
16323 case DW_FORM_data4:
16324 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16325 info_ptr += 4;
16326 break;
16327 case DW_FORM_data8:
16328 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16329 info_ptr += 8;
16330 break;
2dc7f7b3
TT
16331 case DW_FORM_sec_offset:
16332 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16333 info_ptr += bytes_read;
16334 break;
c906108c 16335 case DW_FORM_string:
9b1c24c8 16336 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 16337 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
16338 info_ptr += bytes_read;
16339 break;
4bdf3d34 16340 case DW_FORM_strp:
36586728
TT
16341 if (!cu->per_cu->is_dwz)
16342 {
16343 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16344 &bytes_read);
16345 DW_STRING_IS_CANONICAL (attr) = 0;
16346 info_ptr += bytes_read;
16347 break;
16348 }
16349 /* FALLTHROUGH */
16350 case DW_FORM_GNU_strp_alt:
16351 {
16352 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16353 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16354 &bytes_read);
16355
16356 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16357 DW_STRING_IS_CANONICAL (attr) = 0;
16358 info_ptr += bytes_read;
16359 }
4bdf3d34 16360 break;
2dc7f7b3 16361 case DW_FORM_exprloc:
c906108c 16362 case DW_FORM_block:
7b5a2f43 16363 blk = dwarf_alloc_block (cu);
c906108c
SS
16364 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16365 info_ptr += bytes_read;
16366 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16367 info_ptr += blk->size;
16368 DW_BLOCK (attr) = blk;
16369 break;
16370 case DW_FORM_block1:
7b5a2f43 16371 blk = dwarf_alloc_block (cu);
c906108c
SS
16372 blk->size = read_1_byte (abfd, info_ptr);
16373 info_ptr += 1;
16374 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16375 info_ptr += blk->size;
16376 DW_BLOCK (attr) = blk;
16377 break;
16378 case DW_FORM_data1:
16379 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16380 info_ptr += 1;
16381 break;
16382 case DW_FORM_flag:
16383 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16384 info_ptr += 1;
16385 break;
2dc7f7b3
TT
16386 case DW_FORM_flag_present:
16387 DW_UNSND (attr) = 1;
16388 break;
c906108c
SS
16389 case DW_FORM_sdata:
16390 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16391 info_ptr += bytes_read;
16392 break;
16393 case DW_FORM_udata:
16394 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16395 info_ptr += bytes_read;
16396 break;
16397 case DW_FORM_ref1:
4568ecf9
DE
16398 DW_UNSND (attr) = (cu->header.offset.sect_off
16399 + read_1_byte (abfd, info_ptr));
c906108c
SS
16400 info_ptr += 1;
16401 break;
16402 case DW_FORM_ref2:
4568ecf9
DE
16403 DW_UNSND (attr) = (cu->header.offset.sect_off
16404 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16405 info_ptr += 2;
16406 break;
16407 case DW_FORM_ref4:
4568ecf9
DE
16408 DW_UNSND (attr) = (cu->header.offset.sect_off
16409 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16410 info_ptr += 4;
16411 break;
613e1657 16412 case DW_FORM_ref8:
4568ecf9
DE
16413 DW_UNSND (attr) = (cu->header.offset.sect_off
16414 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16415 info_ptr += 8;
16416 break;
55f1336d 16417 case DW_FORM_ref_sig8:
ac9ec31b 16418 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16419 info_ptr += 8;
16420 break;
c906108c 16421 case DW_FORM_ref_udata:
4568ecf9
DE
16422 DW_UNSND (attr) = (cu->header.offset.sect_off
16423 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16424 info_ptr += bytes_read;
16425 break;
c906108c 16426 case DW_FORM_indirect:
a8329558
KW
16427 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16428 info_ptr += bytes_read;
dee91e82 16429 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 16430 break;
3019eac3
DE
16431 case DW_FORM_GNU_addr_index:
16432 if (reader->dwo_file == NULL)
16433 {
16434 /* For now flag a hard error.
16435 Later we can turn this into a complaint. */
16436 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16437 dwarf_form_name (form),
16438 bfd_get_filename (abfd));
16439 }
16440 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16441 info_ptr += bytes_read;
16442 break;
16443 case DW_FORM_GNU_str_index:
16444 if (reader->dwo_file == NULL)
16445 {
16446 /* For now flag a hard error.
16447 Later we can turn this into a complaint if warranted. */
16448 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16449 dwarf_form_name (form),
16450 bfd_get_filename (abfd));
16451 }
16452 {
16453 ULONGEST str_index =
16454 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16455
342587c4 16456 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16457 DW_STRING_IS_CANONICAL (attr) = 0;
16458 info_ptr += bytes_read;
16459 }
16460 break;
c906108c 16461 default:
8a3fe4f8 16462 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16463 dwarf_form_name (form),
16464 bfd_get_filename (abfd));
c906108c 16465 }
28e94949 16466
36586728 16467 /* Super hack. */
7771576e 16468 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16469 attr->form = DW_FORM_GNU_ref_alt;
16470
28e94949
JB
16471 /* We have seen instances where the compiler tried to emit a byte
16472 size attribute of -1 which ended up being encoded as an unsigned
16473 0xffffffff. Although 0xffffffff is technically a valid size value,
16474 an object of this size seems pretty unlikely so we can relatively
16475 safely treat these cases as if the size attribute was invalid and
16476 treat them as zero by default. */
16477 if (attr->name == DW_AT_byte_size
16478 && form == DW_FORM_data4
16479 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16480 {
16481 complaint
16482 (&symfile_complaints,
43bbcdc2
PH
16483 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16484 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16485 DW_UNSND (attr) = 0;
16486 }
28e94949 16487
c906108c
SS
16488 return info_ptr;
16489}
16490
a8329558
KW
16491/* Read an attribute described by an abbreviated attribute. */
16492
d521ce57 16493static const gdb_byte *
dee91e82
DE
16494read_attribute (const struct die_reader_specs *reader,
16495 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16496 const gdb_byte *info_ptr)
a8329558
KW
16497{
16498 attr->name = abbrev->name;
dee91e82 16499 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
16500}
16501
0963b4bd 16502/* Read dwarf information from a buffer. */
c906108c
SS
16503
16504static unsigned int
a1855c1d 16505read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16506{
fe1b8b76 16507 return bfd_get_8 (abfd, buf);
c906108c
SS
16508}
16509
16510static int
a1855c1d 16511read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16512{
fe1b8b76 16513 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16514}
16515
16516static unsigned int
a1855c1d 16517read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16518{
fe1b8b76 16519 return bfd_get_16 (abfd, buf);
c906108c
SS
16520}
16521
21ae7a4d 16522static int
a1855c1d 16523read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16524{
16525 return bfd_get_signed_16 (abfd, buf);
16526}
16527
c906108c 16528static unsigned int
a1855c1d 16529read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16530{
fe1b8b76 16531 return bfd_get_32 (abfd, buf);
c906108c
SS
16532}
16533
21ae7a4d 16534static int
a1855c1d 16535read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16536{
16537 return bfd_get_signed_32 (abfd, buf);
16538}
16539
93311388 16540static ULONGEST
a1855c1d 16541read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16542{
fe1b8b76 16543 return bfd_get_64 (abfd, buf);
c906108c
SS
16544}
16545
16546static CORE_ADDR
d521ce57 16547read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16548 unsigned int *bytes_read)
c906108c 16549{
e7c27a73 16550 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16551 CORE_ADDR retval = 0;
16552
107d2387 16553 if (cu_header->signed_addr_p)
c906108c 16554 {
107d2387
AC
16555 switch (cu_header->addr_size)
16556 {
16557 case 2:
fe1b8b76 16558 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16559 break;
16560 case 4:
fe1b8b76 16561 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16562 break;
16563 case 8:
fe1b8b76 16564 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16565 break;
16566 default:
8e65ff28 16567 internal_error (__FILE__, __LINE__,
e2e0b3e5 16568 _("read_address: bad switch, signed [in module %s]"),
659b0389 16569 bfd_get_filename (abfd));
107d2387
AC
16570 }
16571 }
16572 else
16573 {
16574 switch (cu_header->addr_size)
16575 {
16576 case 2:
fe1b8b76 16577 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16578 break;
16579 case 4:
fe1b8b76 16580 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16581 break;
16582 case 8:
fe1b8b76 16583 retval = bfd_get_64 (abfd, buf);
107d2387
AC
16584 break;
16585 default:
8e65ff28 16586 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
16587 _("read_address: bad switch, "
16588 "unsigned [in module %s]"),
659b0389 16589 bfd_get_filename (abfd));
107d2387 16590 }
c906108c 16591 }
64367e0a 16592
107d2387
AC
16593 *bytes_read = cu_header->addr_size;
16594 return retval;
c906108c
SS
16595}
16596
f7ef9339 16597/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
16598 specification allows the initial length to take up either 4 bytes
16599 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16600 bytes describe the length and all offsets will be 8 bytes in length
16601 instead of 4.
16602
f7ef9339
KB
16603 An older, non-standard 64-bit format is also handled by this
16604 function. The older format in question stores the initial length
16605 as an 8-byte quantity without an escape value. Lengths greater
16606 than 2^32 aren't very common which means that the initial 4 bytes
16607 is almost always zero. Since a length value of zero doesn't make
16608 sense for the 32-bit format, this initial zero can be considered to
16609 be an escape value which indicates the presence of the older 64-bit
16610 format. As written, the code can't detect (old format) lengths
917c78fc
MK
16611 greater than 4GB. If it becomes necessary to handle lengths
16612 somewhat larger than 4GB, we could allow other small values (such
16613 as the non-sensical values of 1, 2, and 3) to also be used as
16614 escape values indicating the presence of the old format.
f7ef9339 16615
917c78fc
MK
16616 The value returned via bytes_read should be used to increment the
16617 relevant pointer after calling read_initial_length().
c764a876 16618
613e1657
KB
16619 [ Note: read_initial_length() and read_offset() are based on the
16620 document entitled "DWARF Debugging Information Format", revision
f7ef9339 16621 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
16622 from:
16623
f7ef9339 16624 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 16625
613e1657
KB
16626 This document is only a draft and is subject to change. (So beware.)
16627
f7ef9339 16628 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
16629 determined empirically by examining 64-bit ELF files produced by
16630 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
16631
16632 - Kevin, July 16, 2002
613e1657
KB
16633 ] */
16634
16635static LONGEST
d521ce57 16636read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 16637{
fe1b8b76 16638 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 16639
dd373385 16640 if (length == 0xffffffff)
613e1657 16641 {
fe1b8b76 16642 length = bfd_get_64 (abfd, buf + 4);
613e1657 16643 *bytes_read = 12;
613e1657 16644 }
dd373385 16645 else if (length == 0)
f7ef9339 16646 {
dd373385 16647 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 16648 length = bfd_get_64 (abfd, buf);
f7ef9339 16649 *bytes_read = 8;
f7ef9339 16650 }
613e1657
KB
16651 else
16652 {
16653 *bytes_read = 4;
613e1657
KB
16654 }
16655
c764a876
DE
16656 return length;
16657}
dd373385 16658
c764a876
DE
16659/* Cover function for read_initial_length.
16660 Returns the length of the object at BUF, and stores the size of the
16661 initial length in *BYTES_READ and stores the size that offsets will be in
16662 *OFFSET_SIZE.
16663 If the initial length size is not equivalent to that specified in
16664 CU_HEADER then issue a complaint.
16665 This is useful when reading non-comp-unit headers. */
dd373385 16666
c764a876 16667static LONGEST
d521ce57 16668read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
16669 const struct comp_unit_head *cu_header,
16670 unsigned int *bytes_read,
16671 unsigned int *offset_size)
16672{
16673 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16674
16675 gdb_assert (cu_header->initial_length_size == 4
16676 || cu_header->initial_length_size == 8
16677 || cu_header->initial_length_size == 12);
16678
16679 if (cu_header->initial_length_size != *bytes_read)
16680 complaint (&symfile_complaints,
16681 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16682
c764a876 16683 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16684 return length;
613e1657
KB
16685}
16686
16687/* Read an offset from the data stream. The size of the offset is
917c78fc 16688 given by cu_header->offset_size. */
613e1657
KB
16689
16690static LONGEST
d521ce57
TT
16691read_offset (bfd *abfd, const gdb_byte *buf,
16692 const struct comp_unit_head *cu_header,
891d2f0b 16693 unsigned int *bytes_read)
c764a876
DE
16694{
16695 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16696
c764a876
DE
16697 *bytes_read = cu_header->offset_size;
16698 return offset;
16699}
16700
16701/* Read an offset from the data stream. */
16702
16703static LONGEST
d521ce57 16704read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16705{
16706 LONGEST retval = 0;
16707
c764a876 16708 switch (offset_size)
613e1657
KB
16709 {
16710 case 4:
fe1b8b76 16711 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16712 break;
16713 case 8:
fe1b8b76 16714 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16715 break;
16716 default:
8e65ff28 16717 internal_error (__FILE__, __LINE__,
c764a876 16718 _("read_offset_1: bad switch [in module %s]"),
659b0389 16719 bfd_get_filename (abfd));
613e1657
KB
16720 }
16721
917c78fc 16722 return retval;
613e1657
KB
16723}
16724
d521ce57
TT
16725static const gdb_byte *
16726read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16727{
16728 /* If the size of a host char is 8 bits, we can return a pointer
16729 to the buffer, otherwise we have to copy the data to a buffer
16730 allocated on the temporary obstack. */
4bdf3d34 16731 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16732 return buf;
c906108c
SS
16733}
16734
d521ce57
TT
16735static const char *
16736read_direct_string (bfd *abfd, const gdb_byte *buf,
16737 unsigned int *bytes_read_ptr)
c906108c
SS
16738{
16739 /* If the size of a host char is 8 bits, we can return a pointer
16740 to the string, otherwise we have to copy the string to a buffer
16741 allocated on the temporary obstack. */
4bdf3d34 16742 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
16743 if (*buf == '\0')
16744 {
16745 *bytes_read_ptr = 1;
16746 return NULL;
16747 }
d521ce57
TT
16748 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16749 return (const char *) buf;
4bdf3d34
JJ
16750}
16751
d521ce57 16752static const char *
cf2c3c16 16753read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 16754{
be391dca 16755 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 16756 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
16757 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16758 bfd_get_filename (abfd));
dce234bc 16759 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
16760 error (_("DW_FORM_strp pointing outside of "
16761 ".debug_str section [in module %s]"),
16762 bfd_get_filename (abfd));
4bdf3d34 16763 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 16764 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 16765 return NULL;
d521ce57 16766 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
16767}
16768
36586728
TT
16769/* Read a string at offset STR_OFFSET in the .debug_str section from
16770 the .dwz file DWZ. Throw an error if the offset is too large. If
16771 the string consists of a single NUL byte, return NULL; otherwise
16772 return a pointer to the string. */
16773
d521ce57 16774static const char *
36586728
TT
16775read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16776{
16777 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16778
16779 if (dwz->str.buffer == NULL)
16780 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16781 "section [in module %s]"),
16782 bfd_get_filename (dwz->dwz_bfd));
16783 if (str_offset >= dwz->str.size)
16784 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16785 ".debug_str section [in module %s]"),
16786 bfd_get_filename (dwz->dwz_bfd));
16787 gdb_assert (HOST_CHAR_BIT == 8);
16788 if (dwz->str.buffer[str_offset] == '\0')
16789 return NULL;
d521ce57 16790 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
16791}
16792
d521ce57
TT
16793static const char *
16794read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
16795 const struct comp_unit_head *cu_header,
16796 unsigned int *bytes_read_ptr)
16797{
16798 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16799
16800 return read_indirect_string_at_offset (abfd, str_offset);
16801}
16802
12df843f 16803static ULONGEST
d521ce57
TT
16804read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16805 unsigned int *bytes_read_ptr)
c906108c 16806{
12df843f 16807 ULONGEST result;
ce5d95e1 16808 unsigned int num_read;
870f88f7 16809 int shift;
c906108c
SS
16810 unsigned char byte;
16811
16812 result = 0;
16813 shift = 0;
16814 num_read = 0;
c906108c
SS
16815 while (1)
16816 {
fe1b8b76 16817 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16818 buf++;
16819 num_read++;
12df843f 16820 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
16821 if ((byte & 128) == 0)
16822 {
16823 break;
16824 }
16825 shift += 7;
16826 }
16827 *bytes_read_ptr = num_read;
16828 return result;
16829}
16830
12df843f 16831static LONGEST
d521ce57
TT
16832read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16833 unsigned int *bytes_read_ptr)
c906108c 16834{
12df843f 16835 LONGEST result;
870f88f7 16836 int shift, num_read;
c906108c
SS
16837 unsigned char byte;
16838
16839 result = 0;
16840 shift = 0;
c906108c 16841 num_read = 0;
c906108c
SS
16842 while (1)
16843 {
fe1b8b76 16844 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16845 buf++;
16846 num_read++;
12df843f 16847 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
16848 shift += 7;
16849 if ((byte & 128) == 0)
16850 {
16851 break;
16852 }
16853 }
77e0b926 16854 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 16855 result |= -(((LONGEST) 1) << shift);
c906108c
SS
16856 *bytes_read_ptr = num_read;
16857 return result;
16858}
16859
3019eac3
DE
16860/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16861 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16862 ADDR_SIZE is the size of addresses from the CU header. */
16863
16864static CORE_ADDR
16865read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16866{
16867 struct objfile *objfile = dwarf2_per_objfile->objfile;
16868 bfd *abfd = objfile->obfd;
16869 const gdb_byte *info_ptr;
16870
16871 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16872 if (dwarf2_per_objfile->addr.buffer == NULL)
16873 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 16874 objfile_name (objfile));
3019eac3
DE
16875 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16876 error (_("DW_FORM_addr_index pointing outside of "
16877 ".debug_addr section [in module %s]"),
4262abfb 16878 objfile_name (objfile));
3019eac3
DE
16879 info_ptr = (dwarf2_per_objfile->addr.buffer
16880 + addr_base + addr_index * addr_size);
16881 if (addr_size == 4)
16882 return bfd_get_32 (abfd, info_ptr);
16883 else
16884 return bfd_get_64 (abfd, info_ptr);
16885}
16886
16887/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16888
16889static CORE_ADDR
16890read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16891{
16892 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16893}
16894
16895/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16896
16897static CORE_ADDR
d521ce57 16898read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
16899 unsigned int *bytes_read)
16900{
16901 bfd *abfd = cu->objfile->obfd;
16902 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16903
16904 return read_addr_index (cu, addr_index);
16905}
16906
16907/* Data structure to pass results from dwarf2_read_addr_index_reader
16908 back to dwarf2_read_addr_index. */
16909
16910struct dwarf2_read_addr_index_data
16911{
16912 ULONGEST addr_base;
16913 int addr_size;
16914};
16915
16916/* die_reader_func for dwarf2_read_addr_index. */
16917
16918static void
16919dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 16920 const gdb_byte *info_ptr,
3019eac3
DE
16921 struct die_info *comp_unit_die,
16922 int has_children,
16923 void *data)
16924{
16925 struct dwarf2_cu *cu = reader->cu;
16926 struct dwarf2_read_addr_index_data *aidata =
16927 (struct dwarf2_read_addr_index_data *) data;
16928
16929 aidata->addr_base = cu->addr_base;
16930 aidata->addr_size = cu->header.addr_size;
16931}
16932
16933/* Given an index in .debug_addr, fetch the value.
16934 NOTE: This can be called during dwarf expression evaluation,
16935 long after the debug information has been read, and thus per_cu->cu
16936 may no longer exist. */
16937
16938CORE_ADDR
16939dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16940 unsigned int addr_index)
16941{
16942 struct objfile *objfile = per_cu->objfile;
16943 struct dwarf2_cu *cu = per_cu->cu;
16944 ULONGEST addr_base;
16945 int addr_size;
16946
16947 /* This is intended to be called from outside this file. */
16948 dw2_setup (objfile);
16949
16950 /* We need addr_base and addr_size.
16951 If we don't have PER_CU->cu, we have to get it.
16952 Nasty, but the alternative is storing the needed info in PER_CU,
16953 which at this point doesn't seem justified: it's not clear how frequently
16954 it would get used and it would increase the size of every PER_CU.
16955 Entry points like dwarf2_per_cu_addr_size do a similar thing
16956 so we're not in uncharted territory here.
16957 Alas we need to be a bit more complicated as addr_base is contained
16958 in the DIE.
16959
16960 We don't need to read the entire CU(/TU).
16961 We just need the header and top level die.
a1b64ce1 16962
3019eac3 16963 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 16964 For now we skip this optimization. */
3019eac3
DE
16965
16966 if (cu != NULL)
16967 {
16968 addr_base = cu->addr_base;
16969 addr_size = cu->header.addr_size;
16970 }
16971 else
16972 {
16973 struct dwarf2_read_addr_index_data aidata;
16974
a1b64ce1
DE
16975 /* Note: We can't use init_cutu_and_read_dies_simple here,
16976 we need addr_base. */
16977 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16978 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
16979 addr_base = aidata.addr_base;
16980 addr_size = aidata.addr_size;
16981 }
16982
16983 return read_addr_index_1 (addr_index, addr_base, addr_size);
16984}
16985
57d63ce2
DE
16986/* Given a DW_FORM_GNU_str_index, fetch the string.
16987 This is only used by the Fission support. */
3019eac3 16988
d521ce57 16989static const char *
342587c4 16990read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
16991{
16992 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 16993 const char *objf_name = objfile_name (objfile);
3019eac3 16994 bfd *abfd = objfile->obfd;
342587c4 16995 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
16996 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16997 struct dwarf2_section_info *str_offsets_section =
16998 &reader->dwo_file->sections.str_offsets;
d521ce57 16999 const gdb_byte *info_ptr;
3019eac3 17000 ULONGEST str_offset;
57d63ce2 17001 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 17002
73869dc2
DE
17003 dwarf2_read_section (objfile, str_section);
17004 dwarf2_read_section (objfile, str_offsets_section);
17005 if (str_section->buffer == NULL)
57d63ce2 17006 error (_("%s used without .debug_str.dwo section"
3019eac3 17007 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 17008 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 17009 if (str_offsets_section->buffer == NULL)
57d63ce2 17010 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 17011 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 17012 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 17013 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 17014 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 17015 " section in CU at offset 0x%lx [in module %s]"),
c5164cbc 17016 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 17017 info_ptr = (str_offsets_section->buffer
3019eac3
DE
17018 + str_index * cu->header.offset_size);
17019 if (cu->header.offset_size == 4)
17020 str_offset = bfd_get_32 (abfd, info_ptr);
17021 else
17022 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 17023 if (str_offset >= str_section->size)
57d63ce2 17024 error (_("Offset from %s pointing outside of"
3019eac3 17025 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
c5164cbc 17026 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 17027 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
17028}
17029
3019eac3
DE
17030/* Return the length of an LEB128 number in BUF. */
17031
17032static int
17033leb128_size (const gdb_byte *buf)
17034{
17035 const gdb_byte *begin = buf;
17036 gdb_byte byte;
17037
17038 while (1)
17039 {
17040 byte = *buf++;
17041 if ((byte & 128) == 0)
17042 return buf - begin;
17043 }
17044}
17045
c906108c 17046static void
e142c38c 17047set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
17048{
17049 switch (lang)
17050 {
17051 case DW_LANG_C89:
76bee0cc 17052 case DW_LANG_C99:
0cfd832f 17053 case DW_LANG_C11:
c906108c 17054 case DW_LANG_C:
d1be3247 17055 case DW_LANG_UPC:
e142c38c 17056 cu->language = language_c;
c906108c
SS
17057 break;
17058 case DW_LANG_C_plus_plus:
0cfd832f
MW
17059 case DW_LANG_C_plus_plus_11:
17060 case DW_LANG_C_plus_plus_14:
e142c38c 17061 cu->language = language_cplus;
c906108c 17062 break;
6aecb9c2
JB
17063 case DW_LANG_D:
17064 cu->language = language_d;
17065 break;
c906108c
SS
17066 case DW_LANG_Fortran77:
17067 case DW_LANG_Fortran90:
b21b22e0 17068 case DW_LANG_Fortran95:
f7de9aab
MW
17069 case DW_LANG_Fortran03:
17070 case DW_LANG_Fortran08:
e142c38c 17071 cu->language = language_fortran;
c906108c 17072 break;
a766d390
DE
17073 case DW_LANG_Go:
17074 cu->language = language_go;
17075 break;
c906108c 17076 case DW_LANG_Mips_Assembler:
e142c38c 17077 cu->language = language_asm;
c906108c 17078 break;
bebd888e 17079 case DW_LANG_Java:
e142c38c 17080 cu->language = language_java;
bebd888e 17081 break;
c906108c 17082 case DW_LANG_Ada83:
8aaf0b47 17083 case DW_LANG_Ada95:
bc5f45f8
JB
17084 cu->language = language_ada;
17085 break;
72019c9c
GM
17086 case DW_LANG_Modula2:
17087 cu->language = language_m2;
17088 break;
fe8e67fd
PM
17089 case DW_LANG_Pascal83:
17090 cu->language = language_pascal;
17091 break;
22566fbd
DJ
17092 case DW_LANG_ObjC:
17093 cu->language = language_objc;
17094 break;
c44af4eb
TT
17095 case DW_LANG_Rust:
17096 case DW_LANG_Rust_old:
17097 cu->language = language_rust;
17098 break;
c906108c
SS
17099 case DW_LANG_Cobol74:
17100 case DW_LANG_Cobol85:
c906108c 17101 default:
e142c38c 17102 cu->language = language_minimal;
c906108c
SS
17103 break;
17104 }
e142c38c 17105 cu->language_defn = language_def (cu->language);
c906108c
SS
17106}
17107
17108/* Return the named attribute or NULL if not there. */
17109
17110static struct attribute *
e142c38c 17111dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 17112{
a48e046c 17113 for (;;)
c906108c 17114 {
a48e046c
TT
17115 unsigned int i;
17116 struct attribute *spec = NULL;
17117
17118 for (i = 0; i < die->num_attrs; ++i)
17119 {
17120 if (die->attrs[i].name == name)
17121 return &die->attrs[i];
17122 if (die->attrs[i].name == DW_AT_specification
17123 || die->attrs[i].name == DW_AT_abstract_origin)
17124 spec = &die->attrs[i];
17125 }
17126
17127 if (!spec)
17128 break;
c906108c 17129
f2f0e013 17130 die = follow_die_ref (die, spec, &cu);
f2f0e013 17131 }
c5aa993b 17132
c906108c
SS
17133 return NULL;
17134}
17135
348e048f
DE
17136/* Return the named attribute or NULL if not there,
17137 but do not follow DW_AT_specification, etc.
17138 This is for use in contexts where we're reading .debug_types dies.
17139 Following DW_AT_specification, DW_AT_abstract_origin will take us
17140 back up the chain, and we want to go down. */
17141
17142static struct attribute *
45e58e77 17143dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
17144{
17145 unsigned int i;
17146
17147 for (i = 0; i < die->num_attrs; ++i)
17148 if (die->attrs[i].name == name)
17149 return &die->attrs[i];
17150
17151 return NULL;
17152}
17153
7d45c7c3
KB
17154/* Return the string associated with a string-typed attribute, or NULL if it
17155 is either not found or is of an incorrect type. */
17156
17157static const char *
17158dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17159{
17160 struct attribute *attr;
17161 const char *str = NULL;
17162
17163 attr = dwarf2_attr (die, name, cu);
17164
17165 if (attr != NULL)
17166 {
17167 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17168 || attr->form == DW_FORM_GNU_strp_alt)
17169 str = DW_STRING (attr);
17170 else
17171 complaint (&symfile_complaints,
17172 _("string type expected for attribute %s for "
17173 "DIE at 0x%x in module %s"),
17174 dwarf_attr_name (name), die->offset.sect_off,
17175 objfile_name (cu->objfile));
17176 }
17177
17178 return str;
17179}
17180
05cf31d1
JB
17181/* Return non-zero iff the attribute NAME is defined for the given DIE,
17182 and holds a non-zero value. This function should only be used for
2dc7f7b3 17183 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
17184
17185static int
17186dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17187{
17188 struct attribute *attr = dwarf2_attr (die, name, cu);
17189
17190 return (attr && DW_UNSND (attr));
17191}
17192
3ca72b44 17193static int
e142c38c 17194die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 17195{
05cf31d1
JB
17196 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17197 which value is non-zero. However, we have to be careful with
17198 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17199 (via dwarf2_flag_true_p) follows this attribute. So we may
17200 end up accidently finding a declaration attribute that belongs
17201 to a different DIE referenced by the specification attribute,
17202 even though the given DIE does not have a declaration attribute. */
17203 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17204 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
17205}
17206
63d06c5c 17207/* Return the die giving the specification for DIE, if there is
f2f0e013 17208 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
17209 containing the return value on output. If there is no
17210 specification, but there is an abstract origin, that is
17211 returned. */
63d06c5c
DC
17212
17213static struct die_info *
f2f0e013 17214die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 17215{
f2f0e013
DJ
17216 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17217 *spec_cu);
63d06c5c 17218
edb3359d
DJ
17219 if (spec_attr == NULL)
17220 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17221
63d06c5c
DC
17222 if (spec_attr == NULL)
17223 return NULL;
17224 else
f2f0e013 17225 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 17226}
c906108c 17227
debd256d 17228/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
17229 refers to.
17230 NOTE: This is also used as a "cleanup" function. */
17231
debd256d
JB
17232static void
17233free_line_header (struct line_header *lh)
17234{
17235 if (lh->standard_opcode_lengths)
a8bc7b56 17236 xfree (lh->standard_opcode_lengths);
debd256d
JB
17237
17238 /* Remember that all the lh->file_names[i].name pointers are
17239 pointers into debug_line_buffer, and don't need to be freed. */
17240 if (lh->file_names)
a8bc7b56 17241 xfree (lh->file_names);
debd256d
JB
17242
17243 /* Similarly for the include directory names. */
17244 if (lh->include_dirs)
a8bc7b56 17245 xfree (lh->include_dirs);
debd256d 17246
a8bc7b56 17247 xfree (lh);
debd256d
JB
17248}
17249
527f3840
JK
17250/* Stub for free_line_header to match void * callback types. */
17251
17252static void
17253free_line_header_voidp (void *arg)
17254{
9a3c8263 17255 struct line_header *lh = (struct line_header *) arg;
527f3840
JK
17256
17257 free_line_header (lh);
17258}
17259
debd256d 17260/* Add an entry to LH's include directory table. */
ae2de4f8 17261
debd256d 17262static void
d521ce57 17263add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 17264{
27e0867f
DE
17265 if (dwarf_line_debug >= 2)
17266 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17267 lh->num_include_dirs + 1, include_dir);
17268
debd256d
JB
17269 /* Grow the array if necessary. */
17270 if (lh->include_dirs_size == 0)
c5aa993b 17271 {
debd256d 17272 lh->include_dirs_size = 1; /* for testing */
8d749320 17273 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
debd256d
JB
17274 }
17275 else if (lh->num_include_dirs >= lh->include_dirs_size)
17276 {
17277 lh->include_dirs_size *= 2;
8d749320
SM
17278 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17279 lh->include_dirs_size);
c5aa993b 17280 }
c906108c 17281
debd256d
JB
17282 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17283}
6e70227d 17284
debd256d 17285/* Add an entry to LH's file name table. */
ae2de4f8 17286
debd256d
JB
17287static void
17288add_file_name (struct line_header *lh,
d521ce57 17289 const char *name,
debd256d
JB
17290 unsigned int dir_index,
17291 unsigned int mod_time,
17292 unsigned int length)
17293{
17294 struct file_entry *fe;
17295
27e0867f
DE
17296 if (dwarf_line_debug >= 2)
17297 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17298 lh->num_file_names + 1, name);
17299
debd256d
JB
17300 /* Grow the array if necessary. */
17301 if (lh->file_names_size == 0)
17302 {
17303 lh->file_names_size = 1; /* for testing */
8d749320 17304 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
debd256d
JB
17305 }
17306 else if (lh->num_file_names >= lh->file_names_size)
17307 {
17308 lh->file_names_size *= 2;
224c3ddb
SM
17309 lh->file_names
17310 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
debd256d
JB
17311 }
17312
17313 fe = &lh->file_names[lh->num_file_names++];
17314 fe->name = name;
17315 fe->dir_index = dir_index;
17316 fe->mod_time = mod_time;
17317 fe->length = length;
aaa75496 17318 fe->included_p = 0;
cb1df416 17319 fe->symtab = NULL;
debd256d 17320}
6e70227d 17321
83769d0b 17322/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
17323
17324static struct dwarf2_section_info *
17325get_debug_line_section (struct dwarf2_cu *cu)
17326{
17327 struct dwarf2_section_info *section;
17328
17329 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17330 DWO file. */
17331 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17332 section = &cu->dwo_unit->dwo_file->sections.line;
17333 else if (cu->per_cu->is_dwz)
17334 {
17335 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17336
17337 section = &dwz->line;
17338 }
17339 else
17340 section = &dwarf2_per_objfile->line;
17341
17342 return section;
17343}
17344
debd256d 17345/* Read the statement program header starting at OFFSET in
3019eac3 17346 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 17347 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
17348 Returns NULL if there is a problem reading the header, e.g., if it
17349 has a version we don't understand.
debd256d
JB
17350
17351 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
17352 the returned object point into the dwarf line section buffer,
17353 and must not be freed. */
ae2de4f8 17354
debd256d 17355static struct line_header *
3019eac3 17356dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
17357{
17358 struct cleanup *back_to;
17359 struct line_header *lh;
d521ce57 17360 const gdb_byte *line_ptr;
c764a876 17361 unsigned int bytes_read, offset_size;
debd256d 17362 int i;
d521ce57 17363 const char *cur_dir, *cur_file;
3019eac3
DE
17364 struct dwarf2_section_info *section;
17365 bfd *abfd;
17366
36586728 17367 section = get_debug_line_section (cu);
3019eac3
DE
17368 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17369 if (section->buffer == NULL)
debd256d 17370 {
3019eac3
DE
17371 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17372 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17373 else
17374 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
17375 return 0;
17376 }
17377
fceca515
DE
17378 /* We can't do this until we know the section is non-empty.
17379 Only then do we know we have such a section. */
a32a8923 17380 abfd = get_section_bfd_owner (section);
fceca515 17381
a738430d
MK
17382 /* Make sure that at least there's room for the total_length field.
17383 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 17384 if (offset + 4 >= section->size)
debd256d 17385 {
4d3c2250 17386 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17387 return 0;
17388 }
17389
8d749320 17390 lh = XNEW (struct line_header);
debd256d
JB
17391 memset (lh, 0, sizeof (*lh));
17392 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17393 (void *) lh);
17394
527f3840
JK
17395 lh->offset.sect_off = offset;
17396 lh->offset_in_dwz = cu->per_cu->is_dwz;
17397
3019eac3 17398 line_ptr = section->buffer + offset;
debd256d 17399
a738430d 17400 /* Read in the header. */
6e70227d 17401 lh->total_length =
c764a876
DE
17402 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17403 &bytes_read, &offset_size);
debd256d 17404 line_ptr += bytes_read;
3019eac3 17405 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17406 {
4d3c2250 17407 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 17408 do_cleanups (back_to);
debd256d
JB
17409 return 0;
17410 }
17411 lh->statement_program_end = line_ptr + lh->total_length;
17412 lh->version = read_2_bytes (abfd, line_ptr);
17413 line_ptr += 2;
cd366ee8
DE
17414 if (lh->version > 4)
17415 {
17416 /* This is a version we don't understand. The format could have
17417 changed in ways we don't handle properly so just punt. */
17418 complaint (&symfile_complaints,
17419 _("unsupported version in .debug_line section"));
17420 return NULL;
17421 }
c764a876
DE
17422 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17423 line_ptr += offset_size;
debd256d
JB
17424 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17425 line_ptr += 1;
2dc7f7b3
TT
17426 if (lh->version >= 4)
17427 {
17428 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17429 line_ptr += 1;
17430 }
17431 else
17432 lh->maximum_ops_per_instruction = 1;
17433
17434 if (lh->maximum_ops_per_instruction == 0)
17435 {
17436 lh->maximum_ops_per_instruction = 1;
17437 complaint (&symfile_complaints,
3e43a32a
MS
17438 _("invalid maximum_ops_per_instruction "
17439 "in `.debug_line' section"));
2dc7f7b3
TT
17440 }
17441
debd256d
JB
17442 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17443 line_ptr += 1;
17444 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17445 line_ptr += 1;
17446 lh->line_range = read_1_byte (abfd, line_ptr);
17447 line_ptr += 1;
17448 lh->opcode_base = read_1_byte (abfd, line_ptr);
17449 line_ptr += 1;
8d749320 17450 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
debd256d
JB
17451
17452 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17453 for (i = 1; i < lh->opcode_base; ++i)
17454 {
17455 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17456 line_ptr += 1;
17457 }
17458
a738430d 17459 /* Read directory table. */
9b1c24c8 17460 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17461 {
17462 line_ptr += bytes_read;
17463 add_include_dir (lh, cur_dir);
17464 }
17465 line_ptr += bytes_read;
17466
a738430d 17467 /* Read file name table. */
9b1c24c8 17468 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17469 {
17470 unsigned int dir_index, mod_time, length;
17471
17472 line_ptr += bytes_read;
17473 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17474 line_ptr += bytes_read;
17475 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17476 line_ptr += bytes_read;
17477 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17478 line_ptr += bytes_read;
17479
17480 add_file_name (lh, cur_file, dir_index, mod_time, length);
17481 }
17482 line_ptr += bytes_read;
6e70227d 17483 lh->statement_program_start = line_ptr;
debd256d 17484
3019eac3 17485 if (line_ptr > (section->buffer + section->size))
4d3c2250 17486 complaint (&symfile_complaints,
3e43a32a
MS
17487 _("line number info header doesn't "
17488 "fit in `.debug_line' section"));
debd256d
JB
17489
17490 discard_cleanups (back_to);
17491 return lh;
17492}
c906108c 17493
c6da4cef
DE
17494/* Subroutine of dwarf_decode_lines to simplify it.
17495 Return the file name of the psymtab for included file FILE_INDEX
17496 in line header LH of PST.
17497 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17498 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
17499 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17500
17501 The function creates dangling cleanup registration. */
c6da4cef 17502
d521ce57 17503static const char *
c6da4cef
DE
17504psymtab_include_file_name (const struct line_header *lh, int file_index,
17505 const struct partial_symtab *pst,
17506 const char *comp_dir)
17507{
17508 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
17509 const char *include_name = fe.name;
17510 const char *include_name_to_compare = include_name;
17511 const char *dir_name = NULL;
72b9f47f
TT
17512 const char *pst_filename;
17513 char *copied_name = NULL;
c6da4cef
DE
17514 int file_is_pst;
17515
afa6c9ab 17516 if (fe.dir_index && lh->include_dirs != NULL)
c6da4cef
DE
17517 dir_name = lh->include_dirs[fe.dir_index - 1];
17518
17519 if (!IS_ABSOLUTE_PATH (include_name)
17520 && (dir_name != NULL || comp_dir != NULL))
17521 {
17522 /* Avoid creating a duplicate psymtab for PST.
17523 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17524 Before we do the comparison, however, we need to account
17525 for DIR_NAME and COMP_DIR.
17526 First prepend dir_name (if non-NULL). If we still don't
17527 have an absolute path prepend comp_dir (if non-NULL).
17528 However, the directory we record in the include-file's
17529 psymtab does not contain COMP_DIR (to match the
17530 corresponding symtab(s)).
17531
17532 Example:
17533
17534 bash$ cd /tmp
17535 bash$ gcc -g ./hello.c
17536 include_name = "hello.c"
17537 dir_name = "."
17538 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
17539 DW_AT_name = "./hello.c"
17540
17541 */
c6da4cef
DE
17542
17543 if (dir_name != NULL)
17544 {
d521ce57
TT
17545 char *tem = concat (dir_name, SLASH_STRING,
17546 include_name, (char *)NULL);
17547
17548 make_cleanup (xfree, tem);
17549 include_name = tem;
c6da4cef 17550 include_name_to_compare = include_name;
c6da4cef
DE
17551 }
17552 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17553 {
d521ce57
TT
17554 char *tem = concat (comp_dir, SLASH_STRING,
17555 include_name, (char *)NULL);
17556
17557 make_cleanup (xfree, tem);
17558 include_name_to_compare = tem;
c6da4cef
DE
17559 }
17560 }
17561
17562 pst_filename = pst->filename;
17563 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17564 {
72b9f47f
TT
17565 copied_name = concat (pst->dirname, SLASH_STRING,
17566 pst_filename, (char *)NULL);
17567 pst_filename = copied_name;
c6da4cef
DE
17568 }
17569
1e3fad37 17570 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 17571
72b9f47f
TT
17572 if (copied_name != NULL)
17573 xfree (copied_name);
c6da4cef
DE
17574
17575 if (file_is_pst)
17576 return NULL;
17577 return include_name;
17578}
17579
d9b3de22
DE
17580/* State machine to track the state of the line number program. */
17581
17582typedef struct
17583{
17584 /* These are part of the standard DWARF line number state machine. */
17585
17586 unsigned char op_index;
17587 unsigned int file;
17588 unsigned int line;
17589 CORE_ADDR address;
17590 int is_stmt;
17591 unsigned int discriminator;
17592
17593 /* Additional bits of state we need to track. */
17594
17595 /* The last file that we called dwarf2_start_subfile for.
17596 This is only used for TLLs. */
17597 unsigned int last_file;
17598 /* The last file a line number was recorded for. */
17599 struct subfile *last_subfile;
17600
17601 /* The function to call to record a line. */
17602 record_line_ftype *record_line;
17603
17604 /* The last line number that was recorded, used to coalesce
17605 consecutive entries for the same line. This can happen, for
17606 example, when discriminators are present. PR 17276. */
17607 unsigned int last_line;
17608 int line_has_non_zero_discriminator;
17609} lnp_state_machine;
17610
17611/* There's a lot of static state to pass to dwarf_record_line.
17612 This keeps it all together. */
17613
17614typedef struct
17615{
17616 /* The gdbarch. */
17617 struct gdbarch *gdbarch;
17618
17619 /* The line number header. */
17620 struct line_header *line_header;
17621
17622 /* Non-zero if we're recording lines.
17623 Otherwise we're building partial symtabs and are just interested in
17624 finding include files mentioned by the line number program. */
17625 int record_lines_p;
17626} lnp_reader_state;
17627
c91513d8
PP
17628/* Ignore this record_line request. */
17629
17630static void
17631noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17632{
17633 return;
17634}
17635
a05a36a5
DE
17636/* Return non-zero if we should add LINE to the line number table.
17637 LINE is the line to add, LAST_LINE is the last line that was added,
17638 LAST_SUBFILE is the subfile for LAST_LINE.
17639 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17640 had a non-zero discriminator.
17641
17642 We have to be careful in the presence of discriminators.
17643 E.g., for this line:
17644
17645 for (i = 0; i < 100000; i++);
17646
17647 clang can emit four line number entries for that one line,
17648 each with a different discriminator.
17649 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17650
17651 However, we want gdb to coalesce all four entries into one.
17652 Otherwise the user could stepi into the middle of the line and
17653 gdb would get confused about whether the pc really was in the
17654 middle of the line.
17655
17656 Things are further complicated by the fact that two consecutive
17657 line number entries for the same line is a heuristic used by gcc
17658 to denote the end of the prologue. So we can't just discard duplicate
17659 entries, we have to be selective about it. The heuristic we use is
17660 that we only collapse consecutive entries for the same line if at least
17661 one of those entries has a non-zero discriminator. PR 17276.
17662
17663 Note: Addresses in the line number state machine can never go backwards
17664 within one sequence, thus this coalescing is ok. */
17665
17666static int
17667dwarf_record_line_p (unsigned int line, unsigned int last_line,
17668 int line_has_non_zero_discriminator,
17669 struct subfile *last_subfile)
17670{
17671 if (current_subfile != last_subfile)
17672 return 1;
17673 if (line != last_line)
17674 return 1;
17675 /* Same line for the same file that we've seen already.
17676 As a last check, for pr 17276, only record the line if the line
17677 has never had a non-zero discriminator. */
17678 if (!line_has_non_zero_discriminator)
17679 return 1;
17680 return 0;
17681}
17682
252a6764
DE
17683/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17684 in the line table of subfile SUBFILE. */
17685
17686static void
d9b3de22
DE
17687dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17688 unsigned int line, CORE_ADDR address,
17689 record_line_ftype p_record_line)
252a6764
DE
17690{
17691 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17692
27e0867f
DE
17693 if (dwarf_line_debug)
17694 {
17695 fprintf_unfiltered (gdb_stdlog,
17696 "Recording line %u, file %s, address %s\n",
17697 line, lbasename (subfile->name),
17698 paddress (gdbarch, address));
17699 }
17700
d5962de5 17701 (*p_record_line) (subfile, line, addr);
252a6764
DE
17702}
17703
17704/* Subroutine of dwarf_decode_lines_1 to simplify it.
17705 Mark the end of a set of line number records.
d9b3de22 17706 The arguments are the same as for dwarf_record_line_1.
252a6764
DE
17707 If SUBFILE is NULL the request is ignored. */
17708
17709static void
17710dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17711 CORE_ADDR address, record_line_ftype p_record_line)
17712{
27e0867f
DE
17713 if (subfile == NULL)
17714 return;
17715
17716 if (dwarf_line_debug)
17717 {
17718 fprintf_unfiltered (gdb_stdlog,
17719 "Finishing current line, file %s, address %s\n",
17720 lbasename (subfile->name),
17721 paddress (gdbarch, address));
17722 }
17723
d9b3de22
DE
17724 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17725}
17726
17727/* Record the line in STATE.
17728 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17729
17730static void
17731dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17732 int end_sequence)
17733{
17734 const struct line_header *lh = reader->line_header;
17735 unsigned int file, line, discriminator;
17736 int is_stmt;
17737
17738 file = state->file;
17739 line = state->line;
17740 is_stmt = state->is_stmt;
17741 discriminator = state->discriminator;
17742
17743 if (dwarf_line_debug)
17744 {
17745 fprintf_unfiltered (gdb_stdlog,
17746 "Processing actual line %u: file %u,"
17747 " address %s, is_stmt %u, discrim %u\n",
17748 line, file,
17749 paddress (reader->gdbarch, state->address),
17750 is_stmt, discriminator);
17751 }
17752
17753 if (file == 0 || file - 1 >= lh->num_file_names)
17754 dwarf2_debug_line_missing_file_complaint ();
17755 /* For now we ignore lines not starting on an instruction boundary.
17756 But not when processing end_sequence for compatibility with the
17757 previous version of the code. */
17758 else if (state->op_index == 0 || end_sequence)
17759 {
17760 lh->file_names[file - 1].included_p = 1;
17761 if (reader->record_lines_p && is_stmt)
17762 {
e815d2d2 17763 if (state->last_subfile != current_subfile || end_sequence)
d9b3de22
DE
17764 {
17765 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17766 state->address, state->record_line);
17767 }
17768
17769 if (!end_sequence)
17770 {
17771 if (dwarf_record_line_p (line, state->last_line,
17772 state->line_has_non_zero_discriminator,
17773 state->last_subfile))
17774 {
17775 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17776 line, state->address,
17777 state->record_line);
17778 }
17779 state->last_subfile = current_subfile;
17780 state->last_line = line;
17781 }
17782 }
17783 }
17784}
17785
17786/* Initialize STATE for the start of a line number program. */
17787
17788static void
17789init_lnp_state_machine (lnp_state_machine *state,
17790 const lnp_reader_state *reader)
17791{
17792 memset (state, 0, sizeof (*state));
17793
17794 /* Just starting, there is no "last file". */
17795 state->last_file = 0;
17796 state->last_subfile = NULL;
17797
17798 state->record_line = record_line;
17799
17800 state->last_line = 0;
17801 state->line_has_non_zero_discriminator = 0;
17802
17803 /* Initialize these according to the DWARF spec. */
17804 state->op_index = 0;
17805 state->file = 1;
17806 state->line = 1;
17807 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17808 was a line entry for it so that the backend has a chance to adjust it
17809 and also record it in case it needs it. This is currently used by MIPS
17810 code, cf. `mips_adjust_dwarf2_line'. */
17811 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17812 state->is_stmt = reader->line_header->default_is_stmt;
17813 state->discriminator = 0;
252a6764
DE
17814}
17815
924c2928
DE
17816/* Check address and if invalid nop-out the rest of the lines in this
17817 sequence. */
17818
17819static void
d9b3de22 17820check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
924c2928
DE
17821 const gdb_byte *line_ptr,
17822 CORE_ADDR lowpc, CORE_ADDR address)
17823{
17824 /* If address < lowpc then it's not a usable value, it's outside the
17825 pc range of the CU. However, we restrict the test to only address
17826 values of zero to preserve GDB's previous behaviour which is to
17827 handle the specific case of a function being GC'd by the linker. */
17828
17829 if (address == 0 && address < lowpc)
17830 {
17831 /* This line table is for a function which has been
17832 GCd by the linker. Ignore it. PR gdb/12528 */
17833
17834 struct objfile *objfile = cu->objfile;
17835 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17836
17837 complaint (&symfile_complaints,
17838 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17839 line_offset, objfile_name (objfile));
d9b3de22
DE
17840 state->record_line = noop_record_line;
17841 /* Note: sm.record_line is left as noop_record_line
924c2928
DE
17842 until we see DW_LNE_end_sequence. */
17843 }
17844}
17845
f3f5162e 17846/* Subroutine of dwarf_decode_lines to simplify it.
d9b3de22
DE
17847 Process the line number information in LH.
17848 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17849 program in order to set included_p for every referenced header. */
debd256d 17850
c906108c 17851static void
43f3e411
DE
17852dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17853 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 17854{
d521ce57
TT
17855 const gdb_byte *line_ptr, *extended_end;
17856 const gdb_byte *line_end;
a8c50c1f 17857 unsigned int bytes_read, extended_len;
699ca60a 17858 unsigned char op_code, extended_op;
e142c38c
DJ
17859 CORE_ADDR baseaddr;
17860 struct objfile *objfile = cu->objfile;
f3f5162e 17861 bfd *abfd = objfile->obfd;
fbf65064 17862 struct gdbarch *gdbarch = get_objfile_arch (objfile);
d9b3de22
DE
17863 /* Non-zero if we're recording line info (as opposed to building partial
17864 symtabs). */
17865 int record_lines_p = !decode_for_pst_p;
17866 /* A collection of things we need to pass to dwarf_record_line. */
17867 lnp_reader_state reader_state;
e142c38c
DJ
17868
17869 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17870
debd256d
JB
17871 line_ptr = lh->statement_program_start;
17872 line_end = lh->statement_program_end;
c906108c 17873
d9b3de22
DE
17874 reader_state.gdbarch = gdbarch;
17875 reader_state.line_header = lh;
17876 reader_state.record_lines_p = record_lines_p;
17877
c906108c
SS
17878 /* Read the statement sequences until there's nothing left. */
17879 while (line_ptr < line_end)
17880 {
d9b3de22
DE
17881 /* The DWARF line number program state machine. */
17882 lnp_state_machine state_machine;
c906108c 17883 int end_sequence = 0;
d9b3de22
DE
17884
17885 /* Reset the state machine at the start of each sequence. */
17886 init_lnp_state_machine (&state_machine, &reader_state);
17887
17888 if (record_lines_p && lh->num_file_names >= state_machine.file)
c906108c 17889 {
aaa75496 17890 /* Start a subfile for the current file of the state machine. */
debd256d
JB
17891 /* lh->include_dirs and lh->file_names are 0-based, but the
17892 directory and file name numbers in the statement program
17893 are 1-based. */
d9b3de22 17894 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
d521ce57 17895 const char *dir = NULL;
a738430d 17896
afa6c9ab 17897 if (fe->dir_index && lh->include_dirs != NULL)
debd256d 17898 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb 17899
4d663531 17900 dwarf2_start_subfile (fe->name, dir);
c906108c
SS
17901 }
17902
a738430d 17903 /* Decode the table. */
d9b3de22 17904 while (line_ptr < line_end && !end_sequence)
c906108c
SS
17905 {
17906 op_code = read_1_byte (abfd, line_ptr);
17907 line_ptr += 1;
9aa1fe7e 17908
debd256d 17909 if (op_code >= lh->opcode_base)
6e70227d 17910 {
8e07a239 17911 /* Special opcode. */
699ca60a 17912 unsigned char adj_opcode;
3e29f34a 17913 CORE_ADDR addr_adj;
a05a36a5 17914 int line_delta;
8e07a239 17915
debd256d 17916 adj_opcode = op_code - lh->opcode_base;
d9b3de22
DE
17917 addr_adj = (((state_machine.op_index
17918 + (adj_opcode / lh->line_range))
2dc7f7b3
TT
17919 / lh->maximum_ops_per_instruction)
17920 * lh->minimum_instruction_length);
d9b3de22
DE
17921 state_machine.address
17922 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17923 state_machine.op_index = ((state_machine.op_index
17924 + (adj_opcode / lh->line_range))
17925 % lh->maximum_ops_per_instruction);
a05a36a5 17926 line_delta = lh->line_base + (adj_opcode % lh->line_range);
d9b3de22 17927 state_machine.line += line_delta;
a05a36a5 17928 if (line_delta != 0)
d9b3de22
DE
17929 state_machine.line_has_non_zero_discriminator
17930 = state_machine.discriminator != 0;
17931
17932 dwarf_record_line (&reader_state, &state_machine, 0);
17933 state_machine.discriminator = 0;
9aa1fe7e
GK
17934 }
17935 else switch (op_code)
c906108c
SS
17936 {
17937 case DW_LNS_extended_op:
3e43a32a
MS
17938 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17939 &bytes_read);
473b7be6 17940 line_ptr += bytes_read;
a8c50c1f 17941 extended_end = line_ptr + extended_len;
c906108c
SS
17942 extended_op = read_1_byte (abfd, line_ptr);
17943 line_ptr += 1;
17944 switch (extended_op)
17945 {
17946 case DW_LNE_end_sequence:
d9b3de22 17947 state_machine.record_line = record_line;
c906108c 17948 end_sequence = 1;
c906108c
SS
17949 break;
17950 case DW_LNE_set_address:
d9b3de22
DE
17951 {
17952 CORE_ADDR address
17953 = read_address (abfd, line_ptr, cu, &bytes_read);
17954
17955 line_ptr += bytes_read;
17956 check_line_address (cu, &state_machine, line_ptr,
17957 lowpc, address);
17958 state_machine.op_index = 0;
17959 address += baseaddr;
17960 state_machine.address
17961 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17962 }
c906108c
SS
17963 break;
17964 case DW_LNE_define_file:
debd256d 17965 {
d521ce57 17966 const char *cur_file;
debd256d 17967 unsigned int dir_index, mod_time, length;
6e70227d 17968
3e43a32a
MS
17969 cur_file = read_direct_string (abfd, line_ptr,
17970 &bytes_read);
debd256d
JB
17971 line_ptr += bytes_read;
17972 dir_index =
17973 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17974 line_ptr += bytes_read;
17975 mod_time =
17976 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17977 line_ptr += bytes_read;
17978 length =
17979 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17980 line_ptr += bytes_read;
17981 add_file_name (lh, cur_file, dir_index, mod_time, length);
17982 }
c906108c 17983 break;
d0c6ba3d
CC
17984 case DW_LNE_set_discriminator:
17985 /* The discriminator is not interesting to the debugger;
a05a36a5
DE
17986 just ignore it. We still need to check its value though:
17987 if there are consecutive entries for the same
17988 (non-prologue) line we want to coalesce them.
17989 PR 17276. */
d9b3de22
DE
17990 state_machine.discriminator
17991 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17992 state_machine.line_has_non_zero_discriminator
17993 |= state_machine.discriminator != 0;
a05a36a5 17994 line_ptr += bytes_read;
d0c6ba3d 17995 break;
c906108c 17996 default:
4d3c2250 17997 complaint (&symfile_complaints,
e2e0b3e5 17998 _("mangled .debug_line section"));
debd256d 17999 return;
c906108c 18000 }
a8c50c1f
DJ
18001 /* Make sure that we parsed the extended op correctly. If e.g.
18002 we expected a different address size than the producer used,
18003 we may have read the wrong number of bytes. */
18004 if (line_ptr != extended_end)
18005 {
18006 complaint (&symfile_complaints,
18007 _("mangled .debug_line section"));
18008 return;
18009 }
c906108c
SS
18010 break;
18011 case DW_LNS_copy:
d9b3de22
DE
18012 dwarf_record_line (&reader_state, &state_machine, 0);
18013 state_machine.discriminator = 0;
c906108c
SS
18014 break;
18015 case DW_LNS_advance_pc:
2dc7f7b3
TT
18016 {
18017 CORE_ADDR adjust
18018 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
3e29f34a 18019 CORE_ADDR addr_adj;
2dc7f7b3 18020
d9b3de22 18021 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
18022 / lh->maximum_ops_per_instruction)
18023 * lh->minimum_instruction_length);
d9b3de22
DE
18024 state_machine.address
18025 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18026 state_machine.op_index = ((state_machine.op_index + adjust)
18027 % lh->maximum_ops_per_instruction);
2dc7f7b3
TT
18028 line_ptr += bytes_read;
18029 }
c906108c
SS
18030 break;
18031 case DW_LNS_advance_line:
a05a36a5
DE
18032 {
18033 int line_delta
18034 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
18035
d9b3de22 18036 state_machine.line += line_delta;
a05a36a5 18037 if (line_delta != 0)
d9b3de22
DE
18038 state_machine.line_has_non_zero_discriminator
18039 = state_machine.discriminator != 0;
a05a36a5
DE
18040 line_ptr += bytes_read;
18041 }
c906108c
SS
18042 break;
18043 case DW_LNS_set_file:
d9b3de22
DE
18044 {
18045 /* The arrays lh->include_dirs and lh->file_names are
18046 0-based, but the directory and file name numbers in
18047 the statement program are 1-based. */
18048 struct file_entry *fe;
18049 const char *dir = NULL;
18050
18051 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
18052 &bytes_read);
18053 line_ptr += bytes_read;
18054 if (state_machine.file == 0
18055 || state_machine.file - 1 >= lh->num_file_names)
18056 dwarf2_debug_line_missing_file_complaint ();
18057 else
18058 {
18059 fe = &lh->file_names[state_machine.file - 1];
18060 if (fe->dir_index && lh->include_dirs != NULL)
18061 dir = lh->include_dirs[fe->dir_index - 1];
18062 if (record_lines_p)
18063 {
18064 state_machine.last_subfile = current_subfile;
18065 state_machine.line_has_non_zero_discriminator
18066 = state_machine.discriminator != 0;
18067 dwarf2_start_subfile (fe->name, dir);
18068 }
18069 }
18070 }
c906108c
SS
18071 break;
18072 case DW_LNS_set_column:
0ad93d4f 18073 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
18074 line_ptr += bytes_read;
18075 break;
18076 case DW_LNS_negate_stmt:
d9b3de22 18077 state_machine.is_stmt = (!state_machine.is_stmt);
c906108c
SS
18078 break;
18079 case DW_LNS_set_basic_block:
c906108c 18080 break;
c2c6d25f
JM
18081 /* Add to the address register of the state machine the
18082 address increment value corresponding to special opcode
a738430d
MK
18083 255. I.e., this value is scaled by the minimum
18084 instruction length since special opcode 255 would have
b021a221 18085 scaled the increment. */
c906108c 18086 case DW_LNS_const_add_pc:
2dc7f7b3
TT
18087 {
18088 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
3e29f34a 18089 CORE_ADDR addr_adj;
2dc7f7b3 18090
d9b3de22 18091 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
18092 / lh->maximum_ops_per_instruction)
18093 * lh->minimum_instruction_length);
d9b3de22
DE
18094 state_machine.address
18095 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18096 state_machine.op_index = ((state_machine.op_index + adjust)
18097 % lh->maximum_ops_per_instruction);
2dc7f7b3 18098 }
c906108c
SS
18099 break;
18100 case DW_LNS_fixed_advance_pc:
3e29f34a
MR
18101 {
18102 CORE_ADDR addr_adj;
18103
18104 addr_adj = read_2_bytes (abfd, line_ptr);
d9b3de22
DE
18105 state_machine.address
18106 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18107 state_machine.op_index = 0;
3e29f34a
MR
18108 line_ptr += 2;
18109 }
c906108c 18110 break;
9aa1fe7e 18111 default:
a738430d
MK
18112 {
18113 /* Unknown standard opcode, ignore it. */
9aa1fe7e 18114 int i;
a738430d 18115
debd256d 18116 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
18117 {
18118 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18119 line_ptr += bytes_read;
18120 }
18121 }
c906108c
SS
18122 }
18123 }
d9b3de22
DE
18124
18125 if (!end_sequence)
18126 dwarf2_debug_line_missing_end_sequence_complaint ();
18127
18128 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18129 in which case we still finish recording the last line). */
18130 dwarf_record_line (&reader_state, &state_machine, 1);
c906108c 18131 }
f3f5162e
DE
18132}
18133
18134/* Decode the Line Number Program (LNP) for the given line_header
18135 structure and CU. The actual information extracted and the type
18136 of structures created from the LNP depends on the value of PST.
18137
18138 1. If PST is NULL, then this procedure uses the data from the program
18139 to create all necessary symbol tables, and their linetables.
18140
18141 2. If PST is not NULL, this procedure reads the program to determine
18142 the list of files included by the unit represented by PST, and
18143 builds all the associated partial symbol tables.
18144
18145 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18146 It is used for relative paths in the line table.
18147 NOTE: When processing partial symtabs (pst != NULL),
18148 comp_dir == pst->dirname.
18149
18150 NOTE: It is important that psymtabs have the same file name (via strcmp)
18151 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18152 symtab we don't use it in the name of the psymtabs we create.
18153 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
18154 A good testcase for this is mb-inline.exp.
18155
527f3840
JK
18156 LOWPC is the lowest address in CU (or 0 if not known).
18157
18158 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18159 for its PC<->lines mapping information. Otherwise only the filename
18160 table is read in. */
f3f5162e
DE
18161
18162static void
18163dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 18164 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 18165 CORE_ADDR lowpc, int decode_mapping)
f3f5162e
DE
18166{
18167 struct objfile *objfile = cu->objfile;
18168 const int decode_for_pst_p = (pst != NULL);
f3f5162e 18169
527f3840
JK
18170 if (decode_mapping)
18171 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
18172
18173 if (decode_for_pst_p)
18174 {
18175 int file_index;
18176
18177 /* Now that we're done scanning the Line Header Program, we can
18178 create the psymtab of each included file. */
18179 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18180 if (lh->file_names[file_index].included_p == 1)
18181 {
d521ce57 18182 const char *include_name =
c6da4cef
DE
18183 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18184 if (include_name != NULL)
aaa75496
JB
18185 dwarf2_create_include_psymtab (include_name, pst, objfile);
18186 }
18187 }
cb1df416
DJ
18188 else
18189 {
18190 /* Make sure a symtab is created for every file, even files
18191 which contain only variables (i.e. no code with associated
18192 line numbers). */
43f3e411 18193 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 18194 int i;
cb1df416
DJ
18195
18196 for (i = 0; i < lh->num_file_names; i++)
18197 {
d521ce57 18198 const char *dir = NULL;
f3f5162e 18199 struct file_entry *fe;
9a619af0 18200
cb1df416 18201 fe = &lh->file_names[i];
afa6c9ab 18202 if (fe->dir_index && lh->include_dirs != NULL)
cb1df416 18203 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 18204 dwarf2_start_subfile (fe->name, dir);
cb1df416 18205
cb1df416 18206 if (current_subfile->symtab == NULL)
43f3e411
DE
18207 {
18208 current_subfile->symtab
18209 = allocate_symtab (cust, current_subfile->name);
18210 }
cb1df416
DJ
18211 fe->symtab = current_subfile->symtab;
18212 }
18213 }
c906108c
SS
18214}
18215
18216/* Start a subfile for DWARF. FILENAME is the name of the file and
18217 DIRNAME the name of the source directory which contains FILENAME
4d663531 18218 or NULL if not known.
c906108c
SS
18219 This routine tries to keep line numbers from identical absolute and
18220 relative file names in a common subfile.
18221
18222 Using the `list' example from the GDB testsuite, which resides in
18223 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18224 of /srcdir/list0.c yields the following debugging information for list0.c:
18225
c5aa993b 18226 DW_AT_name: /srcdir/list0.c
4d663531 18227 DW_AT_comp_dir: /compdir
357e46e7 18228 files.files[0].name: list0.h
c5aa993b 18229 files.files[0].dir: /srcdir
357e46e7 18230 files.files[1].name: list0.c
c5aa993b 18231 files.files[1].dir: /srcdir
c906108c
SS
18232
18233 The line number information for list0.c has to end up in a single
4f1520fb
FR
18234 subfile, so that `break /srcdir/list0.c:1' works as expected.
18235 start_subfile will ensure that this happens provided that we pass the
18236 concatenation of files.files[1].dir and files.files[1].name as the
18237 subfile's name. */
c906108c
SS
18238
18239static void
4d663531 18240dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 18241{
d521ce57 18242 char *copy = NULL;
4f1520fb 18243
4d663531 18244 /* In order not to lose the line information directory,
4f1520fb
FR
18245 we concatenate it to the filename when it makes sense.
18246 Note that the Dwarf3 standard says (speaking of filenames in line
18247 information): ``The directory index is ignored for file names
18248 that represent full path names''. Thus ignoring dirname in the
18249 `else' branch below isn't an issue. */
c906108c 18250
d5166ae1 18251 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
18252 {
18253 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18254 filename = copy;
18255 }
c906108c 18256
4d663531 18257 start_subfile (filename);
4f1520fb 18258
d521ce57
TT
18259 if (copy != NULL)
18260 xfree (copy);
c906108c
SS
18261}
18262
f4dc4d17
DE
18263/* Start a symtab for DWARF.
18264 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18265
43f3e411 18266static struct compunit_symtab *
f4dc4d17 18267dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 18268 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 18269{
43f3e411
DE
18270 struct compunit_symtab *cust
18271 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18272
f4dc4d17
DE
18273 record_debugformat ("DWARF 2");
18274 record_producer (cu->producer);
18275
18276 /* We assume that we're processing GCC output. */
18277 processing_gcc_compilation = 2;
18278
4d4ec4e5 18279 cu->processing_has_namespace_info = 0;
43f3e411
DE
18280
18281 return cust;
f4dc4d17
DE
18282}
18283
4c2df51b
DJ
18284static void
18285var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 18286 struct dwarf2_cu *cu)
4c2df51b 18287{
e7c27a73
DJ
18288 struct objfile *objfile = cu->objfile;
18289 struct comp_unit_head *cu_header = &cu->header;
18290
4c2df51b
DJ
18291 /* NOTE drow/2003-01-30: There used to be a comment and some special
18292 code here to turn a symbol with DW_AT_external and a
18293 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18294 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18295 with some versions of binutils) where shared libraries could have
18296 relocations against symbols in their debug information - the
18297 minimal symbol would have the right address, but the debug info
18298 would not. It's no longer necessary, because we will explicitly
18299 apply relocations when we read in the debug information now. */
18300
18301 /* A DW_AT_location attribute with no contents indicates that a
18302 variable has been optimized away. */
18303 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18304 {
f1e6e072 18305 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
18306 return;
18307 }
18308
18309 /* Handle one degenerate form of location expression specially, to
18310 preserve GDB's previous behavior when section offsets are
3019eac3
DE
18311 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18312 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
18313
18314 if (attr_form_is_block (attr)
3019eac3
DE
18315 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18316 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18317 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18318 && (DW_BLOCK (attr)->size
18319 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 18320 {
891d2f0b 18321 unsigned int dummy;
4c2df51b 18322
3019eac3
DE
18323 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18324 SYMBOL_VALUE_ADDRESS (sym) =
18325 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18326 else
18327 SYMBOL_VALUE_ADDRESS (sym) =
18328 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 18329 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
18330 fixup_symbol_section (sym, objfile);
18331 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18332 SYMBOL_SECTION (sym));
4c2df51b
DJ
18333 return;
18334 }
18335
18336 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18337 expression evaluator, and use LOC_COMPUTED only when necessary
18338 (i.e. when the value of a register or memory location is
18339 referenced, or a thread-local block, etc.). Then again, it might
18340 not be worthwhile. I'm assuming that it isn't unless performance
18341 or memory numbers show me otherwise. */
18342
f1e6e072 18343 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 18344
f1e6e072 18345 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 18346 cu->has_loclist = 1;
4c2df51b
DJ
18347}
18348
c906108c
SS
18349/* Given a pointer to a DWARF information entry, figure out if we need
18350 to make a symbol table entry for it, and if so, create a new entry
18351 and return a pointer to it.
18352 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
18353 used the passed type.
18354 If SPACE is not NULL, use it to hold the new symbol. If it is
18355 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
18356
18357static struct symbol *
34eaf542
TT
18358new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18359 struct symbol *space)
c906108c 18360{
e7c27a73 18361 struct objfile *objfile = cu->objfile;
3e29f34a 18362 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 18363 struct symbol *sym = NULL;
15d034d0 18364 const char *name;
c906108c
SS
18365 struct attribute *attr = NULL;
18366 struct attribute *attr2 = NULL;
e142c38c 18367 CORE_ADDR baseaddr;
e37fd15a
SW
18368 struct pending **list_to_add = NULL;
18369
edb3359d 18370 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
18371
18372 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18373
94af9270 18374 name = dwarf2_name (die, cu);
c906108c
SS
18375 if (name)
18376 {
94af9270 18377 const char *linkagename;
34eaf542 18378 int suppress_add = 0;
94af9270 18379
34eaf542
TT
18380 if (space)
18381 sym = space;
18382 else
e623cf5d 18383 sym = allocate_symbol (objfile);
c906108c 18384 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
18385
18386 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 18387 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
18388 linkagename = dwarf2_physname (name, die, cu);
18389 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 18390
f55ee35c
JK
18391 /* Fortran does not have mangling standard and the mangling does differ
18392 between gfortran, iFort etc. */
18393 if (cu->language == language_fortran
b250c185 18394 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 18395 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 18396 dwarf2_full_name (name, die, cu),
29df156d 18397 NULL);
f55ee35c 18398
c906108c 18399 /* Default assumptions.
c5aa993b 18400 Use the passed type or decode it from the die. */
176620f1 18401 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 18402 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
18403 if (type != NULL)
18404 SYMBOL_TYPE (sym) = type;
18405 else
e7c27a73 18406 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
18407 attr = dwarf2_attr (die,
18408 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18409 cu);
c906108c
SS
18410 if (attr)
18411 {
18412 SYMBOL_LINE (sym) = DW_UNSND (attr);
18413 }
cb1df416 18414
edb3359d
DJ
18415 attr = dwarf2_attr (die,
18416 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18417 cu);
cb1df416
DJ
18418 if (attr)
18419 {
18420 int file_index = DW_UNSND (attr);
9a619af0 18421
cb1df416
DJ
18422 if (cu->line_header == NULL
18423 || file_index > cu->line_header->num_file_names)
18424 complaint (&symfile_complaints,
18425 _("file index out of range"));
1c3d648d 18426 else if (file_index > 0)
cb1df416
DJ
18427 {
18428 struct file_entry *fe;
9a619af0 18429
cb1df416 18430 fe = &cu->line_header->file_names[file_index - 1];
08be3fe3 18431 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
18432 }
18433 }
18434
c906108c
SS
18435 switch (die->tag)
18436 {
18437 case DW_TAG_label:
e142c38c 18438 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 18439 if (attr)
3e29f34a
MR
18440 {
18441 CORE_ADDR addr;
18442
18443 addr = attr_value_as_address (attr);
18444 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18445 SYMBOL_VALUE_ADDRESS (sym) = addr;
18446 }
0f5238ed
TT
18447 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18448 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 18449 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 18450 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
18451 break;
18452 case DW_TAG_subprogram:
18453 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18454 finish_block. */
f1e6e072 18455 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 18456 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
18457 if ((attr2 && (DW_UNSND (attr2) != 0))
18458 || cu->language == language_ada)
c906108c 18459 {
2cfa0c8d
JB
18460 /* Subprograms marked external are stored as a global symbol.
18461 Ada subprograms, whether marked external or not, are always
18462 stored as a global symbol, because we want to be able to
18463 access them globally. For instance, we want to be able
18464 to break on a nested subprogram without having to
18465 specify the context. */
e37fd15a 18466 list_to_add = &global_symbols;
c906108c
SS
18467 }
18468 else
18469 {
e37fd15a 18470 list_to_add = cu->list_in_scope;
c906108c
SS
18471 }
18472 break;
edb3359d
DJ
18473 case DW_TAG_inlined_subroutine:
18474 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18475 finish_block. */
f1e6e072 18476 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 18477 SYMBOL_INLINED (sym) = 1;
481860b3 18478 list_to_add = cu->list_in_scope;
edb3359d 18479 break;
34eaf542
TT
18480 case DW_TAG_template_value_param:
18481 suppress_add = 1;
18482 /* Fall through. */
72929c62 18483 case DW_TAG_constant:
c906108c 18484 case DW_TAG_variable:
254e6b9e 18485 case DW_TAG_member:
0963b4bd
MS
18486 /* Compilation with minimal debug info may result in
18487 variables with missing type entries. Change the
18488 misleading `void' type to something sensible. */
c906108c 18489 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 18490 SYMBOL_TYPE (sym)
46bf5051 18491 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 18492
e142c38c 18493 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
18494 /* In the case of DW_TAG_member, we should only be called for
18495 static const members. */
18496 if (die->tag == DW_TAG_member)
18497 {
3863f96c
DE
18498 /* dwarf2_add_field uses die_is_declaration,
18499 so we do the same. */
254e6b9e
DE
18500 gdb_assert (die_is_declaration (die, cu));
18501 gdb_assert (attr);
18502 }
c906108c
SS
18503 if (attr)
18504 {
e7c27a73 18505 dwarf2_const_value (attr, sym, cu);
e142c38c 18506 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 18507 if (!suppress_add)
34eaf542
TT
18508 {
18509 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 18510 list_to_add = &global_symbols;
34eaf542 18511 else
e37fd15a 18512 list_to_add = cu->list_in_scope;
34eaf542 18513 }
c906108c
SS
18514 break;
18515 }
e142c38c 18516 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18517 if (attr)
18518 {
e7c27a73 18519 var_decode_location (attr, sym, cu);
e142c38c 18520 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
18521
18522 /* Fortran explicitly imports any global symbols to the local
18523 scope by DW_TAG_common_block. */
18524 if (cu->language == language_fortran && die->parent
18525 && die->parent->tag == DW_TAG_common_block)
18526 attr2 = NULL;
18527
caac4577
JG
18528 if (SYMBOL_CLASS (sym) == LOC_STATIC
18529 && SYMBOL_VALUE_ADDRESS (sym) == 0
18530 && !dwarf2_per_objfile->has_section_at_zero)
18531 {
18532 /* When a static variable is eliminated by the linker,
18533 the corresponding debug information is not stripped
18534 out, but the variable address is set to null;
18535 do not add such variables into symbol table. */
18536 }
18537 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 18538 {
f55ee35c
JK
18539 /* Workaround gfortran PR debug/40040 - it uses
18540 DW_AT_location for variables in -fPIC libraries which may
18541 get overriden by other libraries/executable and get
18542 a different address. Resolve it by the minimal symbol
18543 which may come from inferior's executable using copy
18544 relocation. Make this workaround only for gfortran as for
18545 other compilers GDB cannot guess the minimal symbol
18546 Fortran mangling kind. */
18547 if (cu->language == language_fortran && die->parent
18548 && die->parent->tag == DW_TAG_module
18549 && cu->producer
28586665 18550 && startswith (cu->producer, "GNU Fortran"))
f1e6e072 18551 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 18552
1c809c68
TT
18553 /* A variable with DW_AT_external is never static,
18554 but it may be block-scoped. */
18555 list_to_add = (cu->list_in_scope == &file_symbols
18556 ? &global_symbols : cu->list_in_scope);
1c809c68 18557 }
c906108c 18558 else
e37fd15a 18559 list_to_add = cu->list_in_scope;
c906108c
SS
18560 }
18561 else
18562 {
18563 /* We do not know the address of this symbol.
c5aa993b
JM
18564 If it is an external symbol and we have type information
18565 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18566 The address of the variable will then be determined from
18567 the minimal symbol table whenever the variable is
18568 referenced. */
e142c38c 18569 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
18570
18571 /* Fortran explicitly imports any global symbols to the local
18572 scope by DW_TAG_common_block. */
18573 if (cu->language == language_fortran && die->parent
18574 && die->parent->tag == DW_TAG_common_block)
18575 {
18576 /* SYMBOL_CLASS doesn't matter here because
18577 read_common_block is going to reset it. */
18578 if (!suppress_add)
18579 list_to_add = cu->list_in_scope;
18580 }
18581 else if (attr2 && (DW_UNSND (attr2) != 0)
18582 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 18583 {
0fe7935b
DJ
18584 /* A variable with DW_AT_external is never static, but it
18585 may be block-scoped. */
18586 list_to_add = (cu->list_in_scope == &file_symbols
18587 ? &global_symbols : cu->list_in_scope);
18588
f1e6e072 18589 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 18590 }
442ddf59
JK
18591 else if (!die_is_declaration (die, cu))
18592 {
18593 /* Use the default LOC_OPTIMIZED_OUT class. */
18594 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
18595 if (!suppress_add)
18596 list_to_add = cu->list_in_scope;
442ddf59 18597 }
c906108c
SS
18598 }
18599 break;
18600 case DW_TAG_formal_parameter:
edb3359d
DJ
18601 /* If we are inside a function, mark this as an argument. If
18602 not, we might be looking at an argument to an inlined function
18603 when we do not have enough information to show inlined frames;
18604 pretend it's a local variable in that case so that the user can
18605 still see it. */
18606 if (context_stack_depth > 0
18607 && context_stack[context_stack_depth - 1].name != NULL)
18608 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 18609 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18610 if (attr)
18611 {
e7c27a73 18612 var_decode_location (attr, sym, cu);
c906108c 18613 }
e142c38c 18614 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18615 if (attr)
18616 {
e7c27a73 18617 dwarf2_const_value (attr, sym, cu);
c906108c 18618 }
f346a30d 18619
e37fd15a 18620 list_to_add = cu->list_in_scope;
c906108c
SS
18621 break;
18622 case DW_TAG_unspecified_parameters:
18623 /* From varargs functions; gdb doesn't seem to have any
18624 interest in this information, so just ignore it for now.
18625 (FIXME?) */
18626 break;
34eaf542
TT
18627 case DW_TAG_template_type_param:
18628 suppress_add = 1;
18629 /* Fall through. */
c906108c 18630 case DW_TAG_class_type:
680b30c7 18631 case DW_TAG_interface_type:
c906108c
SS
18632 case DW_TAG_structure_type:
18633 case DW_TAG_union_type:
72019c9c 18634 case DW_TAG_set_type:
c906108c 18635 case DW_TAG_enumeration_type:
f1e6e072 18636 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18637 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 18638
63d06c5c 18639 {
987504bb 18640 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
18641 really ever be static objects: otherwise, if you try
18642 to, say, break of a class's method and you're in a file
18643 which doesn't mention that class, it won't work unless
18644 the check for all static symbols in lookup_symbol_aux
18645 saves you. See the OtherFileClass tests in
18646 gdb.c++/namespace.exp. */
18647
e37fd15a 18648 if (!suppress_add)
34eaf542 18649 {
34eaf542
TT
18650 list_to_add = (cu->list_in_scope == &file_symbols
18651 && (cu->language == language_cplus
18652 || cu->language == language_java)
18653 ? &global_symbols : cu->list_in_scope);
63d06c5c 18654
64382290
TT
18655 /* The semantics of C++ state that "struct foo {
18656 ... }" also defines a typedef for "foo". A Java
18657 class declaration also defines a typedef for the
18658 class. */
18659 if (cu->language == language_cplus
18660 || cu->language == language_java
45280282 18661 || cu->language == language_ada
c44af4eb
TT
18662 || cu->language == language_d
18663 || cu->language == language_rust)
64382290
TT
18664 {
18665 /* The symbol's name is already allocated along
18666 with this objfile, so we don't need to
18667 duplicate it for the type. */
18668 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18669 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18670 }
63d06c5c
DC
18671 }
18672 }
c906108c
SS
18673 break;
18674 case DW_TAG_typedef:
f1e6e072 18675 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 18676 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18677 list_to_add = cu->list_in_scope;
63d06c5c 18678 break;
c906108c 18679 case DW_TAG_base_type:
a02abb62 18680 case DW_TAG_subrange_type:
f1e6e072 18681 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18682 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18683 list_to_add = cu->list_in_scope;
c906108c
SS
18684 break;
18685 case DW_TAG_enumerator:
e142c38c 18686 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18687 if (attr)
18688 {
e7c27a73 18689 dwarf2_const_value (attr, sym, cu);
c906108c 18690 }
63d06c5c
DC
18691 {
18692 /* NOTE: carlton/2003-11-10: See comment above in the
18693 DW_TAG_class_type, etc. block. */
18694
e142c38c 18695 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
18696 && (cu->language == language_cplus
18697 || cu->language == language_java)
e142c38c 18698 ? &global_symbols : cu->list_in_scope);
63d06c5c 18699 }
c906108c 18700 break;
74921315 18701 case DW_TAG_imported_declaration:
5c4e30ca 18702 case DW_TAG_namespace:
f1e6e072 18703 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 18704 list_to_add = &global_symbols;
5c4e30ca 18705 break;
530e8392
KB
18706 case DW_TAG_module:
18707 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18708 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18709 list_to_add = &global_symbols;
18710 break;
4357ac6c 18711 case DW_TAG_common_block:
f1e6e072 18712 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
18713 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18714 add_symbol_to_list (sym, cu->list_in_scope);
18715 break;
c906108c
SS
18716 default:
18717 /* Not a tag we recognize. Hopefully we aren't processing
18718 trash data, but since we must specifically ignore things
18719 we don't recognize, there is nothing else we should do at
0963b4bd 18720 this point. */
e2e0b3e5 18721 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 18722 dwarf_tag_name (die->tag));
c906108c
SS
18723 break;
18724 }
df8a16a1 18725
e37fd15a
SW
18726 if (suppress_add)
18727 {
18728 sym->hash_next = objfile->template_symbols;
18729 objfile->template_symbols = sym;
18730 list_to_add = NULL;
18731 }
18732
18733 if (list_to_add != NULL)
18734 add_symbol_to_list (sym, list_to_add);
18735
df8a16a1
DJ
18736 /* For the benefit of old versions of GCC, check for anonymous
18737 namespaces based on the demangled name. */
4d4ec4e5 18738 if (!cu->processing_has_namespace_info
94af9270 18739 && cu->language == language_cplus)
a10964d1 18740 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
18741 }
18742 return (sym);
18743}
18744
34eaf542
TT
18745/* A wrapper for new_symbol_full that always allocates a new symbol. */
18746
18747static struct symbol *
18748new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18749{
18750 return new_symbol_full (die, type, cu, NULL);
18751}
18752
98bfdba5
PA
18753/* Given an attr with a DW_FORM_dataN value in host byte order,
18754 zero-extend it as appropriate for the symbol's type. The DWARF
18755 standard (v4) is not entirely clear about the meaning of using
18756 DW_FORM_dataN for a constant with a signed type, where the type is
18757 wider than the data. The conclusion of a discussion on the DWARF
18758 list was that this is unspecified. We choose to always zero-extend
18759 because that is the interpretation long in use by GCC. */
c906108c 18760
98bfdba5 18761static gdb_byte *
ff39bb5e 18762dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 18763 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 18764{
e7c27a73 18765 struct objfile *objfile = cu->objfile;
e17a4113
UW
18766 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18767 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
18768 LONGEST l = DW_UNSND (attr);
18769
18770 if (bits < sizeof (*value) * 8)
18771 {
18772 l &= ((LONGEST) 1 << bits) - 1;
18773 *value = l;
18774 }
18775 else if (bits == sizeof (*value) * 8)
18776 *value = l;
18777 else
18778 {
224c3ddb 18779 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
98bfdba5
PA
18780 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18781 return bytes;
18782 }
18783
18784 return NULL;
18785}
18786
18787/* Read a constant value from an attribute. Either set *VALUE, or if
18788 the value does not fit in *VALUE, set *BYTES - either already
18789 allocated on the objfile obstack, or newly allocated on OBSTACK,
18790 or, set *BATON, if we translated the constant to a location
18791 expression. */
18792
18793static void
ff39bb5e 18794dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
18795 const char *name, struct obstack *obstack,
18796 struct dwarf2_cu *cu,
d521ce57 18797 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
18798 struct dwarf2_locexpr_baton **baton)
18799{
18800 struct objfile *objfile = cu->objfile;
18801 struct comp_unit_head *cu_header = &cu->header;
c906108c 18802 struct dwarf_block *blk;
98bfdba5
PA
18803 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18804 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18805
18806 *value = 0;
18807 *bytes = NULL;
18808 *baton = NULL;
c906108c
SS
18809
18810 switch (attr->form)
18811 {
18812 case DW_FORM_addr:
3019eac3 18813 case DW_FORM_GNU_addr_index:
ac56253d 18814 {
ac56253d
TT
18815 gdb_byte *data;
18816
98bfdba5
PA
18817 if (TYPE_LENGTH (type) != cu_header->addr_size)
18818 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 18819 cu_header->addr_size,
98bfdba5 18820 TYPE_LENGTH (type));
ac56253d
TT
18821 /* Symbols of this form are reasonably rare, so we just
18822 piggyback on the existing location code rather than writing
18823 a new implementation of symbol_computed_ops. */
8d749320 18824 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
98bfdba5
PA
18825 (*baton)->per_cu = cu->per_cu;
18826 gdb_assert ((*baton)->per_cu);
ac56253d 18827
98bfdba5 18828 (*baton)->size = 2 + cu_header->addr_size;
224c3ddb 18829 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
98bfdba5 18830 (*baton)->data = data;
ac56253d
TT
18831
18832 data[0] = DW_OP_addr;
18833 store_unsigned_integer (&data[1], cu_header->addr_size,
18834 byte_order, DW_ADDR (attr));
18835 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 18836 }
c906108c 18837 break;
4ac36638 18838 case DW_FORM_string:
93b5768b 18839 case DW_FORM_strp:
3019eac3 18840 case DW_FORM_GNU_str_index:
36586728 18841 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
18842 /* DW_STRING is already allocated on the objfile obstack, point
18843 directly to it. */
d521ce57 18844 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 18845 break;
c906108c
SS
18846 case DW_FORM_block1:
18847 case DW_FORM_block2:
18848 case DW_FORM_block4:
18849 case DW_FORM_block:
2dc7f7b3 18850 case DW_FORM_exprloc:
c906108c 18851 blk = DW_BLOCK (attr);
98bfdba5
PA
18852 if (TYPE_LENGTH (type) != blk->size)
18853 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18854 TYPE_LENGTH (type));
18855 *bytes = blk->data;
c906108c 18856 break;
2df3850c
JM
18857
18858 /* The DW_AT_const_value attributes are supposed to carry the
18859 symbol's value "represented as it would be on the target
18860 architecture." By the time we get here, it's already been
18861 converted to host endianness, so we just need to sign- or
18862 zero-extend it as appropriate. */
18863 case DW_FORM_data1:
3aef2284 18864 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 18865 break;
c906108c 18866 case DW_FORM_data2:
3aef2284 18867 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 18868 break;
c906108c 18869 case DW_FORM_data4:
3aef2284 18870 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 18871 break;
c906108c 18872 case DW_FORM_data8:
3aef2284 18873 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
18874 break;
18875
c906108c 18876 case DW_FORM_sdata:
98bfdba5 18877 *value = DW_SND (attr);
2df3850c
JM
18878 break;
18879
c906108c 18880 case DW_FORM_udata:
98bfdba5 18881 *value = DW_UNSND (attr);
c906108c 18882 break;
2df3850c 18883
c906108c 18884 default:
4d3c2250 18885 complaint (&symfile_complaints,
e2e0b3e5 18886 _("unsupported const value attribute form: '%s'"),
4d3c2250 18887 dwarf_form_name (attr->form));
98bfdba5 18888 *value = 0;
c906108c
SS
18889 break;
18890 }
18891}
18892
2df3850c 18893
98bfdba5
PA
18894/* Copy constant value from an attribute to a symbol. */
18895
2df3850c 18896static void
ff39bb5e 18897dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 18898 struct dwarf2_cu *cu)
2df3850c 18899{
98bfdba5 18900 struct objfile *objfile = cu->objfile;
12df843f 18901 LONGEST value;
d521ce57 18902 const gdb_byte *bytes;
98bfdba5 18903 struct dwarf2_locexpr_baton *baton;
2df3850c 18904
98bfdba5
PA
18905 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18906 SYMBOL_PRINT_NAME (sym),
18907 &objfile->objfile_obstack, cu,
18908 &value, &bytes, &baton);
2df3850c 18909
98bfdba5
PA
18910 if (baton != NULL)
18911 {
98bfdba5 18912 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 18913 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
18914 }
18915 else if (bytes != NULL)
18916 {
18917 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 18918 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
18919 }
18920 else
18921 {
18922 SYMBOL_VALUE (sym) = value;
f1e6e072 18923 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 18924 }
2df3850c
JM
18925}
18926
c906108c
SS
18927/* Return the type of the die in question using its DW_AT_type attribute. */
18928
18929static struct type *
e7c27a73 18930die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18931{
c906108c 18932 struct attribute *type_attr;
c906108c 18933
e142c38c 18934 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
18935 if (!type_attr)
18936 {
18937 /* A missing DW_AT_type represents a void type. */
46bf5051 18938 return objfile_type (cu->objfile)->builtin_void;
c906108c 18939 }
348e048f 18940
673bfd45 18941 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18942}
18943
b4ba55a1
JB
18944/* True iff CU's producer generates GNAT Ada auxiliary information
18945 that allows to find parallel types through that information instead
18946 of having to do expensive parallel lookups by type name. */
18947
18948static int
18949need_gnat_info (struct dwarf2_cu *cu)
18950{
18951 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18952 of GNAT produces this auxiliary information, without any indication
18953 that it is produced. Part of enhancing the FSF version of GNAT
18954 to produce that information will be to put in place an indicator
18955 that we can use in order to determine whether the descriptive type
18956 info is available or not. One suggestion that has been made is
18957 to use a new attribute, attached to the CU die. For now, assume
18958 that the descriptive type info is not available. */
18959 return 0;
18960}
18961
b4ba55a1
JB
18962/* Return the auxiliary type of the die in question using its
18963 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18964 attribute is not present. */
18965
18966static struct type *
18967die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18968{
b4ba55a1 18969 struct attribute *type_attr;
b4ba55a1
JB
18970
18971 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18972 if (!type_attr)
18973 return NULL;
18974
673bfd45 18975 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
18976}
18977
18978/* If DIE has a descriptive_type attribute, then set the TYPE's
18979 descriptive type accordingly. */
18980
18981static void
18982set_descriptive_type (struct type *type, struct die_info *die,
18983 struct dwarf2_cu *cu)
18984{
18985 struct type *descriptive_type = die_descriptive_type (die, cu);
18986
18987 if (descriptive_type)
18988 {
18989 ALLOCATE_GNAT_AUX_TYPE (type);
18990 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18991 }
18992}
18993
c906108c
SS
18994/* Return the containing type of the die in question using its
18995 DW_AT_containing_type attribute. */
18996
18997static struct type *
e7c27a73 18998die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18999{
c906108c 19000 struct attribute *type_attr;
c906108c 19001
e142c38c 19002 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
19003 if (!type_attr)
19004 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 19005 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 19006
673bfd45 19007 return lookup_die_type (die, type_attr, cu);
c906108c
SS
19008}
19009
ac9ec31b
DE
19010/* Return an error marker type to use for the ill formed type in DIE/CU. */
19011
19012static struct type *
19013build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
19014{
19015 struct objfile *objfile = dwarf2_per_objfile->objfile;
19016 char *message, *saved;
19017
19018 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 19019 objfile_name (objfile),
ac9ec31b
DE
19020 cu->header.offset.sect_off,
19021 die->offset.sect_off);
224c3ddb
SM
19022 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
19023 message, strlen (message));
ac9ec31b
DE
19024 xfree (message);
19025
19f392bc 19026 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
ac9ec31b
DE
19027}
19028
673bfd45 19029/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
19030 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
19031 DW_AT_containing_type.
673bfd45
DE
19032 If there is no type substitute an error marker. */
19033
c906108c 19034static struct type *
ff39bb5e 19035lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 19036 struct dwarf2_cu *cu)
c906108c 19037{
bb5ed363 19038 struct objfile *objfile = cu->objfile;
f792889a
DJ
19039 struct type *this_type;
19040
ac9ec31b
DE
19041 gdb_assert (attr->name == DW_AT_type
19042 || attr->name == DW_AT_GNAT_descriptive_type
19043 || attr->name == DW_AT_containing_type);
19044
673bfd45
DE
19045 /* First see if we have it cached. */
19046
36586728
TT
19047 if (attr->form == DW_FORM_GNU_ref_alt)
19048 {
19049 struct dwarf2_per_cu_data *per_cu;
19050 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19051
19052 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
19053 this_type = get_die_type_at_offset (offset, per_cu);
19054 }
7771576e 19055 else if (attr_form_is_ref (attr))
673bfd45 19056 {
b64f50a1 19057 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
19058
19059 this_type = get_die_type_at_offset (offset, cu->per_cu);
19060 }
55f1336d 19061 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 19062 {
ac9ec31b 19063 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 19064
ac9ec31b 19065 return get_signatured_type (die, signature, cu);
673bfd45
DE
19066 }
19067 else
19068 {
ac9ec31b
DE
19069 complaint (&symfile_complaints,
19070 _("Dwarf Error: Bad type attribute %s in DIE"
19071 " at 0x%x [in module %s]"),
19072 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 19073 objfile_name (objfile));
ac9ec31b 19074 return build_error_marker_type (cu, die);
673bfd45
DE
19075 }
19076
19077 /* If not cached we need to read it in. */
19078
19079 if (this_type == NULL)
19080 {
ac9ec31b 19081 struct die_info *type_die = NULL;
673bfd45
DE
19082 struct dwarf2_cu *type_cu = cu;
19083
7771576e 19084 if (attr_form_is_ref (attr))
ac9ec31b
DE
19085 type_die = follow_die_ref (die, attr, &type_cu);
19086 if (type_die == NULL)
19087 return build_error_marker_type (cu, die);
19088 /* If we find the type now, it's probably because the type came
3019eac3
DE
19089 from an inter-CU reference and the type's CU got expanded before
19090 ours. */
ac9ec31b 19091 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
19092 }
19093
19094 /* If we still don't have a type use an error marker. */
19095
19096 if (this_type == NULL)
ac9ec31b 19097 return build_error_marker_type (cu, die);
673bfd45 19098
f792889a 19099 return this_type;
c906108c
SS
19100}
19101
673bfd45
DE
19102/* Return the type in DIE, CU.
19103 Returns NULL for invalid types.
19104
02142a6c 19105 This first does a lookup in die_type_hash,
673bfd45
DE
19106 and only reads the die in if necessary.
19107
19108 NOTE: This can be called when reading in partial or full symbols. */
19109
f792889a 19110static struct type *
e7c27a73 19111read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19112{
f792889a
DJ
19113 struct type *this_type;
19114
19115 this_type = get_die_type (die, cu);
19116 if (this_type)
19117 return this_type;
19118
673bfd45
DE
19119 return read_type_die_1 (die, cu);
19120}
19121
19122/* Read the type in DIE, CU.
19123 Returns NULL for invalid types. */
19124
19125static struct type *
19126read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19127{
19128 struct type *this_type = NULL;
19129
c906108c
SS
19130 switch (die->tag)
19131 {
19132 case DW_TAG_class_type:
680b30c7 19133 case DW_TAG_interface_type:
c906108c
SS
19134 case DW_TAG_structure_type:
19135 case DW_TAG_union_type:
f792889a 19136 this_type = read_structure_type (die, cu);
c906108c
SS
19137 break;
19138 case DW_TAG_enumeration_type:
f792889a 19139 this_type = read_enumeration_type (die, cu);
c906108c
SS
19140 break;
19141 case DW_TAG_subprogram:
19142 case DW_TAG_subroutine_type:
edb3359d 19143 case DW_TAG_inlined_subroutine:
f792889a 19144 this_type = read_subroutine_type (die, cu);
c906108c
SS
19145 break;
19146 case DW_TAG_array_type:
f792889a 19147 this_type = read_array_type (die, cu);
c906108c 19148 break;
72019c9c 19149 case DW_TAG_set_type:
f792889a 19150 this_type = read_set_type (die, cu);
72019c9c 19151 break;
c906108c 19152 case DW_TAG_pointer_type:
f792889a 19153 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
19154 break;
19155 case DW_TAG_ptr_to_member_type:
f792889a 19156 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
19157 break;
19158 case DW_TAG_reference_type:
f792889a 19159 this_type = read_tag_reference_type (die, cu);
c906108c
SS
19160 break;
19161 case DW_TAG_const_type:
f792889a 19162 this_type = read_tag_const_type (die, cu);
c906108c
SS
19163 break;
19164 case DW_TAG_volatile_type:
f792889a 19165 this_type = read_tag_volatile_type (die, cu);
c906108c 19166 break;
06d66ee9
TT
19167 case DW_TAG_restrict_type:
19168 this_type = read_tag_restrict_type (die, cu);
19169 break;
c906108c 19170 case DW_TAG_string_type:
f792889a 19171 this_type = read_tag_string_type (die, cu);
c906108c
SS
19172 break;
19173 case DW_TAG_typedef:
f792889a 19174 this_type = read_typedef (die, cu);
c906108c 19175 break;
a02abb62 19176 case DW_TAG_subrange_type:
f792889a 19177 this_type = read_subrange_type (die, cu);
a02abb62 19178 break;
c906108c 19179 case DW_TAG_base_type:
f792889a 19180 this_type = read_base_type (die, cu);
c906108c 19181 break;
81a17f79 19182 case DW_TAG_unspecified_type:
f792889a 19183 this_type = read_unspecified_type (die, cu);
81a17f79 19184 break;
0114d602
DJ
19185 case DW_TAG_namespace:
19186 this_type = read_namespace_type (die, cu);
19187 break;
f55ee35c
JK
19188 case DW_TAG_module:
19189 this_type = read_module_type (die, cu);
19190 break;
a2c2acaf
MW
19191 case DW_TAG_atomic_type:
19192 this_type = read_tag_atomic_type (die, cu);
19193 break;
c906108c 19194 default:
3e43a32a
MS
19195 complaint (&symfile_complaints,
19196 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 19197 dwarf_tag_name (die->tag));
c906108c
SS
19198 break;
19199 }
63d06c5c 19200
f792889a 19201 return this_type;
63d06c5c
DC
19202}
19203
abc72ce4
DE
19204/* See if we can figure out if the class lives in a namespace. We do
19205 this by looking for a member function; its demangled name will
19206 contain namespace info, if there is any.
19207 Return the computed name or NULL.
19208 Space for the result is allocated on the objfile's obstack.
19209 This is the full-die version of guess_partial_die_structure_name.
19210 In this case we know DIE has no useful parent. */
19211
19212static char *
19213guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19214{
19215 struct die_info *spec_die;
19216 struct dwarf2_cu *spec_cu;
19217 struct die_info *child;
19218
19219 spec_cu = cu;
19220 spec_die = die_specification (die, &spec_cu);
19221 if (spec_die != NULL)
19222 {
19223 die = spec_die;
19224 cu = spec_cu;
19225 }
19226
19227 for (child = die->child;
19228 child != NULL;
19229 child = child->sibling)
19230 {
19231 if (child->tag == DW_TAG_subprogram)
19232 {
7d45c7c3 19233 const char *linkage_name;
abc72ce4 19234
7d45c7c3
KB
19235 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19236 if (linkage_name == NULL)
19237 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19238 cu);
19239 if (linkage_name != NULL)
abc72ce4
DE
19240 {
19241 char *actual_name
19242 = language_class_name_from_physname (cu->language_defn,
7d45c7c3 19243 linkage_name);
abc72ce4
DE
19244 char *name = NULL;
19245
19246 if (actual_name != NULL)
19247 {
15d034d0 19248 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
19249
19250 if (die_name != NULL
19251 && strcmp (die_name, actual_name) != 0)
19252 {
19253 /* Strip off the class name from the full name.
19254 We want the prefix. */
19255 int die_name_len = strlen (die_name);
19256 int actual_name_len = strlen (actual_name);
19257
19258 /* Test for '::' as a sanity check. */
19259 if (actual_name_len > die_name_len + 2
3e43a32a
MS
19260 && actual_name[actual_name_len
19261 - die_name_len - 1] == ':')
224c3ddb
SM
19262 name = (char *) obstack_copy0 (
19263 &cu->objfile->per_bfd->storage_obstack,
19264 actual_name, actual_name_len - die_name_len - 2);
abc72ce4
DE
19265 }
19266 }
19267 xfree (actual_name);
19268 return name;
19269 }
19270 }
19271 }
19272
19273 return NULL;
19274}
19275
96408a79
SA
19276/* GCC might emit a nameless typedef that has a linkage name. Determine the
19277 prefix part in such case. See
19278 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19279
19280static char *
19281anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19282{
19283 struct attribute *attr;
e6a959d6 19284 const char *base;
96408a79
SA
19285
19286 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19287 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19288 return NULL;
19289
7d45c7c3 19290 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
96408a79
SA
19291 return NULL;
19292
19293 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19294 if (attr == NULL)
19295 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19296 if (attr == NULL || DW_STRING (attr) == NULL)
19297 return NULL;
19298
19299 /* dwarf2_name had to be already called. */
19300 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19301
19302 /* Strip the base name, keep any leading namespaces/classes. */
19303 base = strrchr (DW_STRING (attr), ':');
19304 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19305 return "";
19306
224c3ddb
SM
19307 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19308 DW_STRING (attr),
19309 &base[-1] - DW_STRING (attr));
96408a79
SA
19310}
19311
fdde2d81 19312/* Return the name of the namespace/class that DIE is defined within,
0114d602 19313 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 19314
0114d602
DJ
19315 For example, if we're within the method foo() in the following
19316 code:
19317
19318 namespace N {
19319 class C {
19320 void foo () {
19321 }
19322 };
19323 }
19324
19325 then determine_prefix on foo's die will return "N::C". */
fdde2d81 19326
0d5cff50 19327static const char *
e142c38c 19328determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 19329{
0114d602
DJ
19330 struct die_info *parent, *spec_die;
19331 struct dwarf2_cu *spec_cu;
19332 struct type *parent_type;
96408a79 19333 char *retval;
63d06c5c 19334
f55ee35c 19335 if (cu->language != language_cplus && cu->language != language_java
c44af4eb
TT
19336 && cu->language != language_fortran && cu->language != language_d
19337 && cu->language != language_rust)
0114d602
DJ
19338 return "";
19339
96408a79
SA
19340 retval = anonymous_struct_prefix (die, cu);
19341 if (retval)
19342 return retval;
19343
0114d602
DJ
19344 /* We have to be careful in the presence of DW_AT_specification.
19345 For example, with GCC 3.4, given the code
19346
19347 namespace N {
19348 void foo() {
19349 // Definition of N::foo.
19350 }
19351 }
19352
19353 then we'll have a tree of DIEs like this:
19354
19355 1: DW_TAG_compile_unit
19356 2: DW_TAG_namespace // N
19357 3: DW_TAG_subprogram // declaration of N::foo
19358 4: DW_TAG_subprogram // definition of N::foo
19359 DW_AT_specification // refers to die #3
19360
19361 Thus, when processing die #4, we have to pretend that we're in
19362 the context of its DW_AT_specification, namely the contex of die
19363 #3. */
19364 spec_cu = cu;
19365 spec_die = die_specification (die, &spec_cu);
19366 if (spec_die == NULL)
19367 parent = die->parent;
19368 else
63d06c5c 19369 {
0114d602
DJ
19370 parent = spec_die->parent;
19371 cu = spec_cu;
63d06c5c 19372 }
0114d602
DJ
19373
19374 if (parent == NULL)
19375 return "";
98bfdba5
PA
19376 else if (parent->building_fullname)
19377 {
19378 const char *name;
19379 const char *parent_name;
19380
19381 /* It has been seen on RealView 2.2 built binaries,
19382 DW_TAG_template_type_param types actually _defined_ as
19383 children of the parent class:
19384
19385 enum E {};
19386 template class <class Enum> Class{};
19387 Class<enum E> class_e;
19388
19389 1: DW_TAG_class_type (Class)
19390 2: DW_TAG_enumeration_type (E)
19391 3: DW_TAG_enumerator (enum1:0)
19392 3: DW_TAG_enumerator (enum2:1)
19393 ...
19394 2: DW_TAG_template_type_param
19395 DW_AT_type DW_FORM_ref_udata (E)
19396
19397 Besides being broken debug info, it can put GDB into an
19398 infinite loop. Consider:
19399
19400 When we're building the full name for Class<E>, we'll start
19401 at Class, and go look over its template type parameters,
19402 finding E. We'll then try to build the full name of E, and
19403 reach here. We're now trying to build the full name of E,
19404 and look over the parent DIE for containing scope. In the
19405 broken case, if we followed the parent DIE of E, we'd again
19406 find Class, and once again go look at its template type
19407 arguments, etc., etc. Simply don't consider such parent die
19408 as source-level parent of this die (it can't be, the language
19409 doesn't allow it), and break the loop here. */
19410 name = dwarf2_name (die, cu);
19411 parent_name = dwarf2_name (parent, cu);
19412 complaint (&symfile_complaints,
19413 _("template param type '%s' defined within parent '%s'"),
19414 name ? name : "<unknown>",
19415 parent_name ? parent_name : "<unknown>");
19416 return "";
19417 }
63d06c5c 19418 else
0114d602
DJ
19419 switch (parent->tag)
19420 {
63d06c5c 19421 case DW_TAG_namespace:
0114d602 19422 parent_type = read_type_die (parent, cu);
acebe513
UW
19423 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19424 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19425 Work around this problem here. */
19426 if (cu->language == language_cplus
19427 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19428 return "";
0114d602
DJ
19429 /* We give a name to even anonymous namespaces. */
19430 return TYPE_TAG_NAME (parent_type);
63d06c5c 19431 case DW_TAG_class_type:
680b30c7 19432 case DW_TAG_interface_type:
63d06c5c 19433 case DW_TAG_structure_type:
0114d602 19434 case DW_TAG_union_type:
f55ee35c 19435 case DW_TAG_module:
0114d602
DJ
19436 parent_type = read_type_die (parent, cu);
19437 if (TYPE_TAG_NAME (parent_type) != NULL)
19438 return TYPE_TAG_NAME (parent_type);
19439 else
19440 /* An anonymous structure is only allowed non-static data
19441 members; no typedefs, no member functions, et cetera.
19442 So it does not need a prefix. */
19443 return "";
abc72ce4 19444 case DW_TAG_compile_unit:
95554aad 19445 case DW_TAG_partial_unit:
abc72ce4
DE
19446 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19447 if (cu->language == language_cplus
8b70b953 19448 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
19449 && die->child != NULL
19450 && (die->tag == DW_TAG_class_type
19451 || die->tag == DW_TAG_structure_type
19452 || die->tag == DW_TAG_union_type))
19453 {
19454 char *name = guess_full_die_structure_name (die, cu);
19455 if (name != NULL)
19456 return name;
19457 }
19458 return "";
3d567982
TT
19459 case DW_TAG_enumeration_type:
19460 parent_type = read_type_die (parent, cu);
19461 if (TYPE_DECLARED_CLASS (parent_type))
19462 {
19463 if (TYPE_TAG_NAME (parent_type) != NULL)
19464 return TYPE_TAG_NAME (parent_type);
19465 return "";
19466 }
19467 /* Fall through. */
63d06c5c 19468 default:
8176b9b8 19469 return determine_prefix (parent, cu);
63d06c5c 19470 }
63d06c5c
DC
19471}
19472
3e43a32a
MS
19473/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19474 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19475 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19476 an obconcat, otherwise allocate storage for the result. The CU argument is
19477 used to determine the language and hence, the appropriate separator. */
987504bb 19478
f55ee35c 19479#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
19480
19481static char *
f55ee35c
JK
19482typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19483 int physname, struct dwarf2_cu *cu)
63d06c5c 19484{
f55ee35c 19485 const char *lead = "";
5c315b68 19486 const char *sep;
63d06c5c 19487
3e43a32a
MS
19488 if (suffix == NULL || suffix[0] == '\0'
19489 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
19490 sep = "";
19491 else if (cu->language == language_java)
19492 sep = ".";
45280282
IB
19493 else if (cu->language == language_d)
19494 {
19495 /* For D, the 'main' function could be defined in any module, but it
19496 should never be prefixed. */
19497 if (strcmp (suffix, "D main") == 0)
19498 {
19499 prefix = "";
19500 sep = "";
19501 }
19502 else
19503 sep = ".";
19504 }
f55ee35c
JK
19505 else if (cu->language == language_fortran && physname)
19506 {
19507 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19508 DW_AT_MIPS_linkage_name is preferred and used instead. */
19509
19510 lead = "__";
19511 sep = "_MOD_";
19512 }
987504bb
JJ
19513 else
19514 sep = "::";
63d06c5c 19515
6dd47d34
DE
19516 if (prefix == NULL)
19517 prefix = "";
19518 if (suffix == NULL)
19519 suffix = "";
19520
987504bb
JJ
19521 if (obs == NULL)
19522 {
3e43a32a 19523 char *retval
224c3ddb
SM
19524 = ((char *)
19525 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
9a619af0 19526
f55ee35c
JK
19527 strcpy (retval, lead);
19528 strcat (retval, prefix);
6dd47d34
DE
19529 strcat (retval, sep);
19530 strcat (retval, suffix);
63d06c5c
DC
19531 return retval;
19532 }
987504bb
JJ
19533 else
19534 {
19535 /* We have an obstack. */
f55ee35c 19536 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 19537 }
63d06c5c
DC
19538}
19539
c906108c
SS
19540/* Return sibling of die, NULL if no sibling. */
19541
f9aca02d 19542static struct die_info *
fba45db2 19543sibling_die (struct die_info *die)
c906108c 19544{
639d11d3 19545 return die->sibling;
c906108c
SS
19546}
19547
71c25dea
TT
19548/* Get name of a die, return NULL if not found. */
19549
15d034d0
TT
19550static const char *
19551dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
19552 struct obstack *obstack)
19553{
19554 if (name && cu->language == language_cplus)
19555 {
19556 char *canon_name = cp_canonicalize_string (name);
19557
19558 if (canon_name != NULL)
19559 {
19560 if (strcmp (canon_name, name) != 0)
224c3ddb
SM
19561 name = (const char *) obstack_copy0 (obstack, canon_name,
19562 strlen (canon_name));
71c25dea
TT
19563 xfree (canon_name);
19564 }
19565 }
19566
19567 return name;
c906108c
SS
19568}
19569
96553a0c
DE
19570/* Get name of a die, return NULL if not found.
19571 Anonymous namespaces are converted to their magic string. */
9219021c 19572
15d034d0 19573static const char *
e142c38c 19574dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
19575{
19576 struct attribute *attr;
19577
e142c38c 19578 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 19579 if ((!attr || !DW_STRING (attr))
96553a0c 19580 && die->tag != DW_TAG_namespace
53832f31
TT
19581 && die->tag != DW_TAG_class_type
19582 && die->tag != DW_TAG_interface_type
19583 && die->tag != DW_TAG_structure_type
19584 && die->tag != DW_TAG_union_type)
71c25dea
TT
19585 return NULL;
19586
19587 switch (die->tag)
19588 {
19589 case DW_TAG_compile_unit:
95554aad 19590 case DW_TAG_partial_unit:
71c25dea
TT
19591 /* Compilation units have a DW_AT_name that is a filename, not
19592 a source language identifier. */
19593 case DW_TAG_enumeration_type:
19594 case DW_TAG_enumerator:
19595 /* These tags always have simple identifiers already; no need
19596 to canonicalize them. */
19597 return DW_STRING (attr);
907af001 19598
96553a0c
DE
19599 case DW_TAG_namespace:
19600 if (attr != NULL && DW_STRING (attr) != NULL)
19601 return DW_STRING (attr);
19602 return CP_ANONYMOUS_NAMESPACE_STR;
19603
418835cc
KS
19604 case DW_TAG_subprogram:
19605 /* Java constructors will all be named "<init>", so return
19606 the class name when we see this special case. */
19607 if (cu->language == language_java
19608 && DW_STRING (attr) != NULL
19609 && strcmp (DW_STRING (attr), "<init>") == 0)
19610 {
19611 struct dwarf2_cu *spec_cu = cu;
19612 struct die_info *spec_die;
19613
19614 /* GCJ will output '<init>' for Java constructor names.
19615 For this special case, return the name of the parent class. */
19616
cdc07690 19617 /* GCJ may output subprogram DIEs with AT_specification set.
418835cc
KS
19618 If so, use the name of the specified DIE. */
19619 spec_die = die_specification (die, &spec_cu);
19620 if (spec_die != NULL)
19621 return dwarf2_name (spec_die, spec_cu);
19622
19623 do
19624 {
19625 die = die->parent;
19626 if (die->tag == DW_TAG_class_type)
19627 return dwarf2_name (die, cu);
19628 }
95554aad
TT
19629 while (die->tag != DW_TAG_compile_unit
19630 && die->tag != DW_TAG_partial_unit);
418835cc 19631 }
907af001
UW
19632 break;
19633
19634 case DW_TAG_class_type:
19635 case DW_TAG_interface_type:
19636 case DW_TAG_structure_type:
19637 case DW_TAG_union_type:
19638 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19639 structures or unions. These were of the form "._%d" in GCC 4.1,
19640 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19641 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 19642 if (attr && DW_STRING (attr)
61012eef
GB
19643 && (startswith (DW_STRING (attr), "._")
19644 || startswith (DW_STRING (attr), "<anonymous")))
907af001 19645 return NULL;
53832f31
TT
19646
19647 /* GCC might emit a nameless typedef that has a linkage name. See
19648 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19649 if (!attr || DW_STRING (attr) == NULL)
19650 {
df5c6c50 19651 char *demangled = NULL;
53832f31
TT
19652
19653 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19654 if (attr == NULL)
19655 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19656
19657 if (attr == NULL || DW_STRING (attr) == NULL)
19658 return NULL;
19659
df5c6c50
JK
19660 /* Avoid demangling DW_STRING (attr) the second time on a second
19661 call for the same DIE. */
19662 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 19663 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
19664
19665 if (demangled)
19666 {
e6a959d6 19667 const char *base;
96408a79 19668
53832f31 19669 /* FIXME: we already did this for the partial symbol... */
34a68019 19670 DW_STRING (attr)
224c3ddb
SM
19671 = ((const char *)
19672 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19673 demangled, strlen (demangled)));
53832f31
TT
19674 DW_STRING_IS_CANONICAL (attr) = 1;
19675 xfree (demangled);
96408a79
SA
19676
19677 /* Strip any leading namespaces/classes, keep only the base name.
19678 DW_AT_name for named DIEs does not contain the prefixes. */
19679 base = strrchr (DW_STRING (attr), ':');
19680 if (base && base > DW_STRING (attr) && base[-1] == ':')
19681 return &base[1];
19682 else
19683 return DW_STRING (attr);
53832f31
TT
19684 }
19685 }
907af001
UW
19686 break;
19687
71c25dea 19688 default:
907af001
UW
19689 break;
19690 }
19691
19692 if (!DW_STRING_IS_CANONICAL (attr))
19693 {
19694 DW_STRING (attr)
19695 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 19696 &cu->objfile->per_bfd->storage_obstack);
907af001 19697 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 19698 }
907af001 19699 return DW_STRING (attr);
9219021c
DC
19700}
19701
19702/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
19703 is none. *EXT_CU is the CU containing DIE on input, and the CU
19704 containing the return value on output. */
9219021c
DC
19705
19706static struct die_info *
f2f0e013 19707dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
19708{
19709 struct attribute *attr;
9219021c 19710
f2f0e013 19711 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
19712 if (attr == NULL)
19713 return NULL;
19714
f2f0e013 19715 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
19716}
19717
c906108c
SS
19718/* Convert a DIE tag into its string name. */
19719
f39c6ffd 19720static const char *
aa1ee363 19721dwarf_tag_name (unsigned tag)
c906108c 19722{
f39c6ffd
TT
19723 const char *name = get_DW_TAG_name (tag);
19724
19725 if (name == NULL)
19726 return "DW_TAG_<unknown>";
19727
19728 return name;
c906108c
SS
19729}
19730
19731/* Convert a DWARF attribute code into its string name. */
19732
f39c6ffd 19733static const char *
aa1ee363 19734dwarf_attr_name (unsigned attr)
c906108c 19735{
f39c6ffd
TT
19736 const char *name;
19737
c764a876 19738#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
19739 if (attr == DW_AT_MIPS_fde)
19740 return "DW_AT_MIPS_fde";
19741#else
19742 if (attr == DW_AT_HP_block_index)
19743 return "DW_AT_HP_block_index";
c764a876 19744#endif
f39c6ffd
TT
19745
19746 name = get_DW_AT_name (attr);
19747
19748 if (name == NULL)
19749 return "DW_AT_<unknown>";
19750
19751 return name;
c906108c
SS
19752}
19753
19754/* Convert a DWARF value form code into its string name. */
19755
f39c6ffd 19756static const char *
aa1ee363 19757dwarf_form_name (unsigned form)
c906108c 19758{
f39c6ffd
TT
19759 const char *name = get_DW_FORM_name (form);
19760
19761 if (name == NULL)
19762 return "DW_FORM_<unknown>";
19763
19764 return name;
c906108c
SS
19765}
19766
19767static char *
fba45db2 19768dwarf_bool_name (unsigned mybool)
c906108c
SS
19769{
19770 if (mybool)
19771 return "TRUE";
19772 else
19773 return "FALSE";
19774}
19775
19776/* Convert a DWARF type code into its string name. */
19777
f39c6ffd 19778static const char *
aa1ee363 19779dwarf_type_encoding_name (unsigned enc)
c906108c 19780{
f39c6ffd 19781 const char *name = get_DW_ATE_name (enc);
c906108c 19782
f39c6ffd
TT
19783 if (name == NULL)
19784 return "DW_ATE_<unknown>";
c906108c 19785
f39c6ffd 19786 return name;
c906108c 19787}
c906108c 19788
f9aca02d 19789static void
d97bc12b 19790dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
19791{
19792 unsigned int i;
19793
d97bc12b
DE
19794 print_spaces (indent, f);
19795 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 19796 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
19797
19798 if (die->parent != NULL)
19799 {
19800 print_spaces (indent, f);
19801 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 19802 die->parent->offset.sect_off);
d97bc12b
DE
19803 }
19804
19805 print_spaces (indent, f);
19806 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 19807 dwarf_bool_name (die->child != NULL));
c906108c 19808
d97bc12b
DE
19809 print_spaces (indent, f);
19810 fprintf_unfiltered (f, " attributes:\n");
19811
c906108c
SS
19812 for (i = 0; i < die->num_attrs; ++i)
19813 {
d97bc12b
DE
19814 print_spaces (indent, f);
19815 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
19816 dwarf_attr_name (die->attrs[i].name),
19817 dwarf_form_name (die->attrs[i].form));
d97bc12b 19818
c906108c
SS
19819 switch (die->attrs[i].form)
19820 {
c906108c 19821 case DW_FORM_addr:
3019eac3 19822 case DW_FORM_GNU_addr_index:
d97bc12b 19823 fprintf_unfiltered (f, "address: ");
5af949e3 19824 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
19825 break;
19826 case DW_FORM_block2:
19827 case DW_FORM_block4:
19828 case DW_FORM_block:
19829 case DW_FORM_block1:
56eb65bd
SP
19830 fprintf_unfiltered (f, "block: size %s",
19831 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 19832 break;
2dc7f7b3 19833 case DW_FORM_exprloc:
56eb65bd
SP
19834 fprintf_unfiltered (f, "expression: size %s",
19835 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 19836 break;
4568ecf9
DE
19837 case DW_FORM_ref_addr:
19838 fprintf_unfiltered (f, "ref address: ");
19839 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19840 break;
36586728
TT
19841 case DW_FORM_GNU_ref_alt:
19842 fprintf_unfiltered (f, "alt ref address: ");
19843 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19844 break;
10b3939b
DJ
19845 case DW_FORM_ref1:
19846 case DW_FORM_ref2:
19847 case DW_FORM_ref4:
4568ecf9
DE
19848 case DW_FORM_ref8:
19849 case DW_FORM_ref_udata:
d97bc12b 19850 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 19851 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 19852 break;
c906108c
SS
19853 case DW_FORM_data1:
19854 case DW_FORM_data2:
19855 case DW_FORM_data4:
ce5d95e1 19856 case DW_FORM_data8:
c906108c
SS
19857 case DW_FORM_udata:
19858 case DW_FORM_sdata:
43bbcdc2
PH
19859 fprintf_unfiltered (f, "constant: %s",
19860 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 19861 break;
2dc7f7b3
TT
19862 case DW_FORM_sec_offset:
19863 fprintf_unfiltered (f, "section offset: %s",
19864 pulongest (DW_UNSND (&die->attrs[i])));
19865 break;
55f1336d 19866 case DW_FORM_ref_sig8:
ac9ec31b
DE
19867 fprintf_unfiltered (f, "signature: %s",
19868 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 19869 break;
c906108c 19870 case DW_FORM_string:
4bdf3d34 19871 case DW_FORM_strp:
3019eac3 19872 case DW_FORM_GNU_str_index:
36586728 19873 case DW_FORM_GNU_strp_alt:
8285870a 19874 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 19875 DW_STRING (&die->attrs[i])
8285870a
JK
19876 ? DW_STRING (&die->attrs[i]) : "",
19877 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
19878 break;
19879 case DW_FORM_flag:
19880 if (DW_UNSND (&die->attrs[i]))
d97bc12b 19881 fprintf_unfiltered (f, "flag: TRUE");
c906108c 19882 else
d97bc12b 19883 fprintf_unfiltered (f, "flag: FALSE");
c906108c 19884 break;
2dc7f7b3
TT
19885 case DW_FORM_flag_present:
19886 fprintf_unfiltered (f, "flag: TRUE");
19887 break;
a8329558 19888 case DW_FORM_indirect:
0963b4bd
MS
19889 /* The reader will have reduced the indirect form to
19890 the "base form" so this form should not occur. */
3e43a32a
MS
19891 fprintf_unfiltered (f,
19892 "unexpected attribute form: DW_FORM_indirect");
a8329558 19893 break;
c906108c 19894 default:
d97bc12b 19895 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 19896 die->attrs[i].form);
d97bc12b 19897 break;
c906108c 19898 }
d97bc12b 19899 fprintf_unfiltered (f, "\n");
c906108c
SS
19900 }
19901}
19902
f9aca02d 19903static void
d97bc12b 19904dump_die_for_error (struct die_info *die)
c906108c 19905{
d97bc12b
DE
19906 dump_die_shallow (gdb_stderr, 0, die);
19907}
19908
19909static void
19910dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19911{
19912 int indent = level * 4;
19913
19914 gdb_assert (die != NULL);
19915
19916 if (level >= max_level)
19917 return;
19918
19919 dump_die_shallow (f, indent, die);
19920
19921 if (die->child != NULL)
c906108c 19922 {
d97bc12b
DE
19923 print_spaces (indent, f);
19924 fprintf_unfiltered (f, " Children:");
19925 if (level + 1 < max_level)
19926 {
19927 fprintf_unfiltered (f, "\n");
19928 dump_die_1 (f, level + 1, max_level, die->child);
19929 }
19930 else
19931 {
3e43a32a
MS
19932 fprintf_unfiltered (f,
19933 " [not printed, max nesting level reached]\n");
d97bc12b
DE
19934 }
19935 }
19936
19937 if (die->sibling != NULL && level > 0)
19938 {
19939 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
19940 }
19941}
19942
d97bc12b
DE
19943/* This is called from the pdie macro in gdbinit.in.
19944 It's not static so gcc will keep a copy callable from gdb. */
19945
19946void
19947dump_die (struct die_info *die, int max_level)
19948{
19949 dump_die_1 (gdb_stdlog, 0, max_level, die);
19950}
19951
f9aca02d 19952static void
51545339 19953store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19954{
51545339 19955 void **slot;
c906108c 19956
b64f50a1
JK
19957 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19958 INSERT);
51545339
DJ
19959
19960 *slot = die;
c906108c
SS
19961}
19962
b64f50a1
JK
19963/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19964 required kind. */
19965
19966static sect_offset
ff39bb5e 19967dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 19968{
4568ecf9 19969 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 19970
7771576e 19971 if (attr_form_is_ref (attr))
b64f50a1 19972 return retval;
93311388 19973
b64f50a1 19974 retval.sect_off = 0;
93311388
DE
19975 complaint (&symfile_complaints,
19976 _("unsupported die ref attribute form: '%s'"),
19977 dwarf_form_name (attr->form));
b64f50a1 19978 return retval;
c906108c
SS
19979}
19980
43bbcdc2
PH
19981/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19982 * the value held by the attribute is not constant. */
a02abb62 19983
43bbcdc2 19984static LONGEST
ff39bb5e 19985dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
19986{
19987 if (attr->form == DW_FORM_sdata)
19988 return DW_SND (attr);
19989 else if (attr->form == DW_FORM_udata
19990 || attr->form == DW_FORM_data1
19991 || attr->form == DW_FORM_data2
19992 || attr->form == DW_FORM_data4
19993 || attr->form == DW_FORM_data8)
19994 return DW_UNSND (attr);
19995 else
19996 {
3e43a32a
MS
19997 complaint (&symfile_complaints,
19998 _("Attribute value is not a constant (%s)"),
a02abb62
JB
19999 dwarf_form_name (attr->form));
20000 return default_value;
20001 }
20002}
20003
348e048f
DE
20004/* Follow reference or signature attribute ATTR of SRC_DIE.
20005 On entry *REF_CU is the CU of SRC_DIE.
20006 On exit *REF_CU is the CU of the result. */
20007
20008static struct die_info *
ff39bb5e 20009follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
20010 struct dwarf2_cu **ref_cu)
20011{
20012 struct die_info *die;
20013
7771576e 20014 if (attr_form_is_ref (attr))
348e048f 20015 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 20016 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
20017 die = follow_die_sig (src_die, attr, ref_cu);
20018 else
20019 {
20020 dump_die_for_error (src_die);
20021 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 20022 objfile_name ((*ref_cu)->objfile));
348e048f
DE
20023 }
20024
20025 return die;
03dd20cc
DJ
20026}
20027
5c631832 20028/* Follow reference OFFSET.
673bfd45
DE
20029 On entry *REF_CU is the CU of the source die referencing OFFSET.
20030 On exit *REF_CU is the CU of the result.
20031 Returns NULL if OFFSET is invalid. */
f504f079 20032
f9aca02d 20033static struct die_info *
36586728
TT
20034follow_die_offset (sect_offset offset, int offset_in_dwz,
20035 struct dwarf2_cu **ref_cu)
c906108c 20036{
10b3939b 20037 struct die_info temp_die;
f2f0e013 20038 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 20039
348e048f
DE
20040 gdb_assert (cu->per_cu != NULL);
20041
98bfdba5
PA
20042 target_cu = cu;
20043
3019eac3 20044 if (cu->per_cu->is_debug_types)
348e048f
DE
20045 {
20046 /* .debug_types CUs cannot reference anything outside their CU.
20047 If they need to, they have to reference a signatured type via
55f1336d 20048 DW_FORM_ref_sig8. */
348e048f 20049 if (! offset_in_cu_p (&cu->header, offset))
5c631832 20050 return NULL;
348e048f 20051 }
36586728
TT
20052 else if (offset_in_dwz != cu->per_cu->is_dwz
20053 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
20054 {
20055 struct dwarf2_per_cu_data *per_cu;
9a619af0 20056
36586728
TT
20057 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
20058 cu->objfile);
03dd20cc
DJ
20059
20060 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
20061 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20062 load_full_comp_unit (per_cu, cu->language);
03dd20cc 20063
10b3939b
DJ
20064 target_cu = per_cu->cu;
20065 }
98bfdba5
PA
20066 else if (cu->dies == NULL)
20067 {
20068 /* We're loading full DIEs during partial symbol reading. */
20069 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 20070 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 20071 }
c906108c 20072
f2f0e013 20073 *ref_cu = target_cu;
51545339 20074 temp_die.offset = offset;
9a3c8263
SM
20075 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20076 &temp_die, offset.sect_off);
5c631832 20077}
10b3939b 20078
5c631832
JK
20079/* Follow reference attribute ATTR of SRC_DIE.
20080 On entry *REF_CU is the CU of SRC_DIE.
20081 On exit *REF_CU is the CU of the result. */
20082
20083static struct die_info *
ff39bb5e 20084follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
20085 struct dwarf2_cu **ref_cu)
20086{
b64f50a1 20087 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
20088 struct dwarf2_cu *cu = *ref_cu;
20089 struct die_info *die;
20090
36586728
TT
20091 die = follow_die_offset (offset,
20092 (attr->form == DW_FORM_GNU_ref_alt
20093 || cu->per_cu->is_dwz),
20094 ref_cu);
5c631832
JK
20095 if (!die)
20096 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20097 "at 0x%x [in module %s]"),
4262abfb
JK
20098 offset.sect_off, src_die->offset.sect_off,
20099 objfile_name (cu->objfile));
348e048f 20100
5c631832
JK
20101 return die;
20102}
20103
d83e736b
JK
20104/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20105 Returned value is intended for DW_OP_call*. Returned
20106 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
20107
20108struct dwarf2_locexpr_baton
8b9737bf
TT
20109dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20110 struct dwarf2_per_cu_data *per_cu,
20111 CORE_ADDR (*get_frame_pc) (void *baton),
20112 void *baton)
5c631832 20113{
918dd910 20114 struct dwarf2_cu *cu;
5c631832
JK
20115 struct die_info *die;
20116 struct attribute *attr;
20117 struct dwarf2_locexpr_baton retval;
20118
8cf6f0b1
TT
20119 dw2_setup (per_cu->objfile);
20120
918dd910
JK
20121 if (per_cu->cu == NULL)
20122 load_cu (per_cu);
20123 cu = per_cu->cu;
cc12ce38
DE
20124 if (cu == NULL)
20125 {
20126 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20127 Instead just throw an error, not much else we can do. */
20128 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20129 offset.sect_off, objfile_name (per_cu->objfile));
20130 }
918dd910 20131
36586728 20132 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
20133 if (!die)
20134 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20135 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20136
20137 attr = dwarf2_attr (die, DW_AT_location, cu);
20138 if (!attr)
20139 {
e103e986
JK
20140 /* DWARF: "If there is no such attribute, then there is no effect.".
20141 DATA is ignored if SIZE is 0. */
5c631832 20142
e103e986 20143 retval.data = NULL;
5c631832
JK
20144 retval.size = 0;
20145 }
8cf6f0b1
TT
20146 else if (attr_form_is_section_offset (attr))
20147 {
20148 struct dwarf2_loclist_baton loclist_baton;
20149 CORE_ADDR pc = (*get_frame_pc) (baton);
20150 size_t size;
20151
20152 fill_in_loclist_baton (cu, &loclist_baton, attr);
20153
20154 retval.data = dwarf2_find_location_expression (&loclist_baton,
20155 &size, pc);
20156 retval.size = size;
20157 }
5c631832
JK
20158 else
20159 {
20160 if (!attr_form_is_block (attr))
20161 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20162 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 20163 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20164
20165 retval.data = DW_BLOCK (attr)->data;
20166 retval.size = DW_BLOCK (attr)->size;
20167 }
20168 retval.per_cu = cu->per_cu;
918dd910 20169
918dd910
JK
20170 age_cached_comp_units ();
20171
5c631832 20172 return retval;
348e048f
DE
20173}
20174
8b9737bf
TT
20175/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20176 offset. */
20177
20178struct dwarf2_locexpr_baton
20179dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20180 struct dwarf2_per_cu_data *per_cu,
20181 CORE_ADDR (*get_frame_pc) (void *baton),
20182 void *baton)
20183{
20184 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20185
20186 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20187}
20188
b6807d98
TT
20189/* Write a constant of a given type as target-ordered bytes into
20190 OBSTACK. */
20191
20192static const gdb_byte *
20193write_constant_as_bytes (struct obstack *obstack,
20194 enum bfd_endian byte_order,
20195 struct type *type,
20196 ULONGEST value,
20197 LONGEST *len)
20198{
20199 gdb_byte *result;
20200
20201 *len = TYPE_LENGTH (type);
224c3ddb 20202 result = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20203 store_unsigned_integer (result, *len, byte_order, value);
20204
20205 return result;
20206}
20207
20208/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20209 pointer to the constant bytes and set LEN to the length of the
20210 data. If memory is needed, allocate it on OBSTACK. If the DIE
20211 does not have a DW_AT_const_value, return NULL. */
20212
20213const gdb_byte *
20214dwarf2_fetch_constant_bytes (sect_offset offset,
20215 struct dwarf2_per_cu_data *per_cu,
20216 struct obstack *obstack,
20217 LONGEST *len)
20218{
20219 struct dwarf2_cu *cu;
20220 struct die_info *die;
20221 struct attribute *attr;
20222 const gdb_byte *result = NULL;
20223 struct type *type;
20224 LONGEST value;
20225 enum bfd_endian byte_order;
20226
20227 dw2_setup (per_cu->objfile);
20228
20229 if (per_cu->cu == NULL)
20230 load_cu (per_cu);
20231 cu = per_cu->cu;
cc12ce38
DE
20232 if (cu == NULL)
20233 {
20234 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20235 Instead just throw an error, not much else we can do. */
20236 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20237 offset.sect_off, objfile_name (per_cu->objfile));
20238 }
b6807d98
TT
20239
20240 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20241 if (!die)
20242 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20243 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
20244
20245
20246 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20247 if (attr == NULL)
20248 return NULL;
20249
20250 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20251 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20252
20253 switch (attr->form)
20254 {
20255 case DW_FORM_addr:
20256 case DW_FORM_GNU_addr_index:
20257 {
20258 gdb_byte *tem;
20259
20260 *len = cu->header.addr_size;
224c3ddb 20261 tem = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20262 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20263 result = tem;
20264 }
20265 break;
20266 case DW_FORM_string:
20267 case DW_FORM_strp:
20268 case DW_FORM_GNU_str_index:
20269 case DW_FORM_GNU_strp_alt:
20270 /* DW_STRING is already allocated on the objfile obstack, point
20271 directly to it. */
20272 result = (const gdb_byte *) DW_STRING (attr);
20273 *len = strlen (DW_STRING (attr));
20274 break;
20275 case DW_FORM_block1:
20276 case DW_FORM_block2:
20277 case DW_FORM_block4:
20278 case DW_FORM_block:
20279 case DW_FORM_exprloc:
20280 result = DW_BLOCK (attr)->data;
20281 *len = DW_BLOCK (attr)->size;
20282 break;
20283
20284 /* The DW_AT_const_value attributes are supposed to carry the
20285 symbol's value "represented as it would be on the target
20286 architecture." By the time we get here, it's already been
20287 converted to host endianness, so we just need to sign- or
20288 zero-extend it as appropriate. */
20289 case DW_FORM_data1:
20290 type = die_type (die, cu);
20291 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20292 if (result == NULL)
20293 result = write_constant_as_bytes (obstack, byte_order,
20294 type, value, len);
20295 break;
20296 case DW_FORM_data2:
20297 type = die_type (die, cu);
20298 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20299 if (result == NULL)
20300 result = write_constant_as_bytes (obstack, byte_order,
20301 type, value, len);
20302 break;
20303 case DW_FORM_data4:
20304 type = die_type (die, cu);
20305 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20306 if (result == NULL)
20307 result = write_constant_as_bytes (obstack, byte_order,
20308 type, value, len);
20309 break;
20310 case DW_FORM_data8:
20311 type = die_type (die, cu);
20312 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20313 if (result == NULL)
20314 result = write_constant_as_bytes (obstack, byte_order,
20315 type, value, len);
20316 break;
20317
20318 case DW_FORM_sdata:
20319 type = die_type (die, cu);
20320 result = write_constant_as_bytes (obstack, byte_order,
20321 type, DW_SND (attr), len);
20322 break;
20323
20324 case DW_FORM_udata:
20325 type = die_type (die, cu);
20326 result = write_constant_as_bytes (obstack, byte_order,
20327 type, DW_UNSND (attr), len);
20328 break;
20329
20330 default:
20331 complaint (&symfile_complaints,
20332 _("unsupported const value attribute form: '%s'"),
20333 dwarf_form_name (attr->form));
20334 break;
20335 }
20336
20337 return result;
20338}
20339
8a9b8146
TT
20340/* Return the type of the DIE at DIE_OFFSET in the CU named by
20341 PER_CU. */
20342
20343struct type *
b64f50a1 20344dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
20345 struct dwarf2_per_cu_data *per_cu)
20346{
b64f50a1
JK
20347 sect_offset die_offset_sect;
20348
8a9b8146 20349 dw2_setup (per_cu->objfile);
b64f50a1
JK
20350
20351 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20352 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
20353}
20354
ac9ec31b 20355/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 20356 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
20357 On exit *REF_CU is the CU of the result.
20358 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
20359
20360static struct die_info *
ac9ec31b
DE
20361follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20362 struct dwarf2_cu **ref_cu)
348e048f 20363{
348e048f 20364 struct die_info temp_die;
348e048f
DE
20365 struct dwarf2_cu *sig_cu;
20366 struct die_info *die;
20367
ac9ec31b
DE
20368 /* While it might be nice to assert sig_type->type == NULL here,
20369 we can get here for DW_AT_imported_declaration where we need
20370 the DIE not the type. */
348e048f
DE
20371
20372 /* If necessary, add it to the queue and load its DIEs. */
20373
95554aad 20374 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 20375 read_signatured_type (sig_type);
348e048f 20376
348e048f 20377 sig_cu = sig_type->per_cu.cu;
69d751e3 20378 gdb_assert (sig_cu != NULL);
3019eac3
DE
20379 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20380 temp_die.offset = sig_type->type_offset_in_section;
9a3c8263
SM
20381 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20382 temp_die.offset.sect_off);
348e048f
DE
20383 if (die)
20384 {
796a7ff8
DE
20385 /* For .gdb_index version 7 keep track of included TUs.
20386 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20387 if (dwarf2_per_objfile->index_table != NULL
20388 && dwarf2_per_objfile->index_table->version <= 7)
20389 {
20390 VEC_safe_push (dwarf2_per_cu_ptr,
20391 (*ref_cu)->per_cu->imported_symtabs,
20392 sig_cu->per_cu);
20393 }
20394
348e048f
DE
20395 *ref_cu = sig_cu;
20396 return die;
20397 }
20398
ac9ec31b
DE
20399 return NULL;
20400}
20401
20402/* Follow signatured type referenced by ATTR in SRC_DIE.
20403 On entry *REF_CU is the CU of SRC_DIE.
20404 On exit *REF_CU is the CU of the result.
20405 The result is the DIE of the type.
20406 If the referenced type cannot be found an error is thrown. */
20407
20408static struct die_info *
ff39bb5e 20409follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
20410 struct dwarf2_cu **ref_cu)
20411{
20412 ULONGEST signature = DW_SIGNATURE (attr);
20413 struct signatured_type *sig_type;
20414 struct die_info *die;
20415
20416 gdb_assert (attr->form == DW_FORM_ref_sig8);
20417
a2ce51a0 20418 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
20419 /* sig_type will be NULL if the signatured type is missing from
20420 the debug info. */
20421 if (sig_type == NULL)
20422 {
20423 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20424 " from DIE at 0x%x [in module %s]"),
20425 hex_string (signature), src_die->offset.sect_off,
4262abfb 20426 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20427 }
20428
20429 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20430 if (die == NULL)
20431 {
20432 dump_die_for_error (src_die);
20433 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20434 " from DIE at 0x%x [in module %s]"),
20435 hex_string (signature), src_die->offset.sect_off,
4262abfb 20436 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20437 }
20438
20439 return die;
20440}
20441
20442/* Get the type specified by SIGNATURE referenced in DIE/CU,
20443 reading in and processing the type unit if necessary. */
20444
20445static struct type *
20446get_signatured_type (struct die_info *die, ULONGEST signature,
20447 struct dwarf2_cu *cu)
20448{
20449 struct signatured_type *sig_type;
20450 struct dwarf2_cu *type_cu;
20451 struct die_info *type_die;
20452 struct type *type;
20453
a2ce51a0 20454 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
20455 /* sig_type will be NULL if the signatured type is missing from
20456 the debug info. */
20457 if (sig_type == NULL)
20458 {
20459 complaint (&symfile_complaints,
20460 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20461 " from DIE at 0x%x [in module %s]"),
20462 hex_string (signature), die->offset.sect_off,
4262abfb 20463 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20464 return build_error_marker_type (cu, die);
20465 }
20466
20467 /* If we already know the type we're done. */
20468 if (sig_type->type != NULL)
20469 return sig_type->type;
20470
20471 type_cu = cu;
20472 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20473 if (type_die != NULL)
20474 {
20475 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20476 is created. This is important, for example, because for c++ classes
20477 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20478 type = read_type_die (type_die, type_cu);
20479 if (type == NULL)
20480 {
20481 complaint (&symfile_complaints,
20482 _("Dwarf Error: Cannot build signatured type %s"
20483 " referenced from DIE at 0x%x [in module %s]"),
20484 hex_string (signature), die->offset.sect_off,
4262abfb 20485 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20486 type = build_error_marker_type (cu, die);
20487 }
20488 }
20489 else
20490 {
20491 complaint (&symfile_complaints,
20492 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20493 " from DIE at 0x%x [in module %s]"),
20494 hex_string (signature), die->offset.sect_off,
4262abfb 20495 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20496 type = build_error_marker_type (cu, die);
20497 }
20498 sig_type->type = type;
20499
20500 return type;
20501}
20502
20503/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20504 reading in and processing the type unit if necessary. */
20505
20506static struct type *
ff39bb5e 20507get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 20508 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
20509{
20510 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 20511 if (attr_form_is_ref (attr))
ac9ec31b
DE
20512 {
20513 struct dwarf2_cu *type_cu = cu;
20514 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20515
20516 return read_type_die (type_die, type_cu);
20517 }
20518 else if (attr->form == DW_FORM_ref_sig8)
20519 {
20520 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20521 }
20522 else
20523 {
20524 complaint (&symfile_complaints,
20525 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20526 " at 0x%x [in module %s]"),
20527 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 20528 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20529 return build_error_marker_type (cu, die);
20530 }
348e048f
DE
20531}
20532
e5fe5e75 20533/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
20534
20535static void
e5fe5e75 20536load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 20537{
52dc124a 20538 struct signatured_type *sig_type;
348e048f 20539
f4dc4d17
DE
20540 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20541 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20542
6721b2ec
DE
20543 /* We have the per_cu, but we need the signatured_type.
20544 Fortunately this is an easy translation. */
20545 gdb_assert (per_cu->is_debug_types);
20546 sig_type = (struct signatured_type *) per_cu;
348e048f 20547
6721b2ec 20548 gdb_assert (per_cu->cu == NULL);
348e048f 20549
52dc124a 20550 read_signatured_type (sig_type);
348e048f 20551
6721b2ec 20552 gdb_assert (per_cu->cu != NULL);
348e048f
DE
20553}
20554
dee91e82
DE
20555/* die_reader_func for read_signatured_type.
20556 This is identical to load_full_comp_unit_reader,
20557 but is kept separate for now. */
348e048f
DE
20558
20559static void
dee91e82 20560read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 20561 const gdb_byte *info_ptr,
dee91e82
DE
20562 struct die_info *comp_unit_die,
20563 int has_children,
20564 void *data)
348e048f 20565{
dee91e82 20566 struct dwarf2_cu *cu = reader->cu;
348e048f 20567
dee91e82
DE
20568 gdb_assert (cu->die_hash == NULL);
20569 cu->die_hash =
20570 htab_create_alloc_ex (cu->header.length / 12,
20571 die_hash,
20572 die_eq,
20573 NULL,
20574 &cu->comp_unit_obstack,
20575 hashtab_obstack_allocate,
20576 dummy_obstack_deallocate);
348e048f 20577
dee91e82
DE
20578 if (has_children)
20579 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20580 &info_ptr, comp_unit_die);
20581 cu->dies = comp_unit_die;
20582 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
20583
20584 /* We try not to read any attributes in this function, because not
9cdd5dbd 20585 all CUs needed for references have been loaded yet, and symbol
348e048f 20586 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
20587 or we won't be able to build types correctly.
20588 Similarly, if we do not read the producer, we can not apply
20589 producer-specific interpretation. */
95554aad 20590 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 20591}
348e048f 20592
3019eac3
DE
20593/* Read in a signatured type and build its CU and DIEs.
20594 If the type is a stub for the real type in a DWO file,
20595 read in the real type from the DWO file as well. */
dee91e82
DE
20596
20597static void
20598read_signatured_type (struct signatured_type *sig_type)
20599{
20600 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 20601
3019eac3 20602 gdb_assert (per_cu->is_debug_types);
dee91e82 20603 gdb_assert (per_cu->cu == NULL);
348e048f 20604
f4dc4d17
DE
20605 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20606 read_signatured_type_reader, NULL);
7ee85ab1 20607 sig_type->per_cu.tu_read = 1;
c906108c
SS
20608}
20609
c906108c
SS
20610/* Decode simple location descriptions.
20611 Given a pointer to a dwarf block that defines a location, compute
20612 the location and return the value.
20613
4cecd739
DJ
20614 NOTE drow/2003-11-18: This function is called in two situations
20615 now: for the address of static or global variables (partial symbols
20616 only) and for offsets into structures which are expected to be
20617 (more or less) constant. The partial symbol case should go away,
20618 and only the constant case should remain. That will let this
20619 function complain more accurately. A few special modes are allowed
20620 without complaint for global variables (for instance, global
20621 register values and thread-local values).
c906108c
SS
20622
20623 A location description containing no operations indicates that the
4cecd739 20624 object is optimized out. The return value is 0 for that case.
6b992462
DJ
20625 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20626 callers will only want a very basic result and this can become a
21ae7a4d
JK
20627 complaint.
20628
20629 Note that stack[0] is unused except as a default error return. */
c906108c
SS
20630
20631static CORE_ADDR
e7c27a73 20632decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 20633{
e7c27a73 20634 struct objfile *objfile = cu->objfile;
56eb65bd
SP
20635 size_t i;
20636 size_t size = blk->size;
d521ce57 20637 const gdb_byte *data = blk->data;
21ae7a4d
JK
20638 CORE_ADDR stack[64];
20639 int stacki;
20640 unsigned int bytes_read, unsnd;
20641 gdb_byte op;
c906108c 20642
21ae7a4d
JK
20643 i = 0;
20644 stacki = 0;
20645 stack[stacki] = 0;
20646 stack[++stacki] = 0;
20647
20648 while (i < size)
20649 {
20650 op = data[i++];
20651 switch (op)
20652 {
20653 case DW_OP_lit0:
20654 case DW_OP_lit1:
20655 case DW_OP_lit2:
20656 case DW_OP_lit3:
20657 case DW_OP_lit4:
20658 case DW_OP_lit5:
20659 case DW_OP_lit6:
20660 case DW_OP_lit7:
20661 case DW_OP_lit8:
20662 case DW_OP_lit9:
20663 case DW_OP_lit10:
20664 case DW_OP_lit11:
20665 case DW_OP_lit12:
20666 case DW_OP_lit13:
20667 case DW_OP_lit14:
20668 case DW_OP_lit15:
20669 case DW_OP_lit16:
20670 case DW_OP_lit17:
20671 case DW_OP_lit18:
20672 case DW_OP_lit19:
20673 case DW_OP_lit20:
20674 case DW_OP_lit21:
20675 case DW_OP_lit22:
20676 case DW_OP_lit23:
20677 case DW_OP_lit24:
20678 case DW_OP_lit25:
20679 case DW_OP_lit26:
20680 case DW_OP_lit27:
20681 case DW_OP_lit28:
20682 case DW_OP_lit29:
20683 case DW_OP_lit30:
20684 case DW_OP_lit31:
20685 stack[++stacki] = op - DW_OP_lit0;
20686 break;
f1bea926 20687
21ae7a4d
JK
20688 case DW_OP_reg0:
20689 case DW_OP_reg1:
20690 case DW_OP_reg2:
20691 case DW_OP_reg3:
20692 case DW_OP_reg4:
20693 case DW_OP_reg5:
20694 case DW_OP_reg6:
20695 case DW_OP_reg7:
20696 case DW_OP_reg8:
20697 case DW_OP_reg9:
20698 case DW_OP_reg10:
20699 case DW_OP_reg11:
20700 case DW_OP_reg12:
20701 case DW_OP_reg13:
20702 case DW_OP_reg14:
20703 case DW_OP_reg15:
20704 case DW_OP_reg16:
20705 case DW_OP_reg17:
20706 case DW_OP_reg18:
20707 case DW_OP_reg19:
20708 case DW_OP_reg20:
20709 case DW_OP_reg21:
20710 case DW_OP_reg22:
20711 case DW_OP_reg23:
20712 case DW_OP_reg24:
20713 case DW_OP_reg25:
20714 case DW_OP_reg26:
20715 case DW_OP_reg27:
20716 case DW_OP_reg28:
20717 case DW_OP_reg29:
20718 case DW_OP_reg30:
20719 case DW_OP_reg31:
20720 stack[++stacki] = op - DW_OP_reg0;
20721 if (i < size)
20722 dwarf2_complex_location_expr_complaint ();
20723 break;
c906108c 20724
21ae7a4d
JK
20725 case DW_OP_regx:
20726 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20727 i += bytes_read;
20728 stack[++stacki] = unsnd;
20729 if (i < size)
20730 dwarf2_complex_location_expr_complaint ();
20731 break;
c906108c 20732
21ae7a4d
JK
20733 case DW_OP_addr:
20734 stack[++stacki] = read_address (objfile->obfd, &data[i],
20735 cu, &bytes_read);
20736 i += bytes_read;
20737 break;
d53d4ac5 20738
21ae7a4d
JK
20739 case DW_OP_const1u:
20740 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20741 i += 1;
20742 break;
20743
20744 case DW_OP_const1s:
20745 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20746 i += 1;
20747 break;
20748
20749 case DW_OP_const2u:
20750 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20751 i += 2;
20752 break;
20753
20754 case DW_OP_const2s:
20755 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20756 i += 2;
20757 break;
d53d4ac5 20758
21ae7a4d
JK
20759 case DW_OP_const4u:
20760 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20761 i += 4;
20762 break;
20763
20764 case DW_OP_const4s:
20765 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20766 i += 4;
20767 break;
20768
585861ea
JK
20769 case DW_OP_const8u:
20770 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20771 i += 8;
20772 break;
20773
21ae7a4d
JK
20774 case DW_OP_constu:
20775 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20776 &bytes_read);
20777 i += bytes_read;
20778 break;
20779
20780 case DW_OP_consts:
20781 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20782 i += bytes_read;
20783 break;
20784
20785 case DW_OP_dup:
20786 stack[stacki + 1] = stack[stacki];
20787 stacki++;
20788 break;
20789
20790 case DW_OP_plus:
20791 stack[stacki - 1] += stack[stacki];
20792 stacki--;
20793 break;
20794
20795 case DW_OP_plus_uconst:
20796 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20797 &bytes_read);
20798 i += bytes_read;
20799 break;
20800
20801 case DW_OP_minus:
20802 stack[stacki - 1] -= stack[stacki];
20803 stacki--;
20804 break;
20805
20806 case DW_OP_deref:
20807 /* If we're not the last op, then we definitely can't encode
20808 this using GDB's address_class enum. This is valid for partial
20809 global symbols, although the variable's address will be bogus
20810 in the psymtab. */
20811 if (i < size)
20812 dwarf2_complex_location_expr_complaint ();
20813 break;
20814
20815 case DW_OP_GNU_push_tls_address:
4aa4e28b 20816 case DW_OP_form_tls_address:
21ae7a4d
JK
20817 /* The top of the stack has the offset from the beginning
20818 of the thread control block at which the variable is located. */
20819 /* Nothing should follow this operator, so the top of stack would
20820 be returned. */
20821 /* This is valid for partial global symbols, but the variable's
585861ea
JK
20822 address will be bogus in the psymtab. Make it always at least
20823 non-zero to not look as a variable garbage collected by linker
20824 which have DW_OP_addr 0. */
21ae7a4d
JK
20825 if (i < size)
20826 dwarf2_complex_location_expr_complaint ();
585861ea 20827 stack[stacki]++;
21ae7a4d
JK
20828 break;
20829
20830 case DW_OP_GNU_uninit:
20831 break;
20832
3019eac3 20833 case DW_OP_GNU_addr_index:
49f6c839 20834 case DW_OP_GNU_const_index:
3019eac3
DE
20835 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20836 &bytes_read);
20837 i += bytes_read;
20838 break;
20839
21ae7a4d
JK
20840 default:
20841 {
f39c6ffd 20842 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
20843
20844 if (name)
20845 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20846 name);
20847 else
20848 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20849 op);
20850 }
20851
20852 return (stack[stacki]);
d53d4ac5 20853 }
3c6e0cb3 20854
21ae7a4d
JK
20855 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20856 outside of the allocated space. Also enforce minimum>0. */
20857 if (stacki >= ARRAY_SIZE (stack) - 1)
20858 {
20859 complaint (&symfile_complaints,
20860 _("location description stack overflow"));
20861 return 0;
20862 }
20863
20864 if (stacki <= 0)
20865 {
20866 complaint (&symfile_complaints,
20867 _("location description stack underflow"));
20868 return 0;
20869 }
20870 }
20871 return (stack[stacki]);
c906108c
SS
20872}
20873
20874/* memory allocation interface */
20875
c906108c 20876static struct dwarf_block *
7b5a2f43 20877dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c 20878{
8d749320 20879 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
c906108c
SS
20880}
20881
c906108c 20882static struct die_info *
b60c80d6 20883dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
20884{
20885 struct die_info *die;
b60c80d6
DJ
20886 size_t size = sizeof (struct die_info);
20887
20888 if (num_attrs > 1)
20889 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 20890
b60c80d6 20891 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
20892 memset (die, 0, sizeof (struct die_info));
20893 return (die);
20894}
2e276125
JB
20895
20896\f
20897/* Macro support. */
20898
233d95b5
JK
20899/* Return file name relative to the compilation directory of file number I in
20900 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 20901 responsible for freeing it. */
233d95b5 20902
2e276125 20903static char *
233d95b5 20904file_file_name (int file, struct line_header *lh)
2e276125 20905{
6a83a1e6
EZ
20906 /* Is the file number a valid index into the line header's file name
20907 table? Remember that file numbers start with one, not zero. */
20908 if (1 <= file && file <= lh->num_file_names)
20909 {
20910 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 20911
afa6c9ab
SL
20912 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20913 || lh->include_dirs == NULL)
6a83a1e6 20914 return xstrdup (fe->name);
233d95b5 20915 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
b36cec19 20916 fe->name, (char *) NULL);
6a83a1e6 20917 }
2e276125
JB
20918 else
20919 {
6a83a1e6
EZ
20920 /* The compiler produced a bogus file number. We can at least
20921 record the macro definitions made in the file, even if we
20922 won't be able to find the file by name. */
20923 char fake_name[80];
9a619af0 20924
8c042590
PM
20925 xsnprintf (fake_name, sizeof (fake_name),
20926 "<bad macro file number %d>", file);
2e276125 20927
6e70227d 20928 complaint (&symfile_complaints,
6a83a1e6
EZ
20929 _("bad file number in macro information (%d)"),
20930 file);
2e276125 20931
6a83a1e6 20932 return xstrdup (fake_name);
2e276125
JB
20933 }
20934}
20935
233d95b5
JK
20936/* Return the full name of file number I in *LH's file name table.
20937 Use COMP_DIR as the name of the current directory of the
20938 compilation. The result is allocated using xmalloc; the caller is
20939 responsible for freeing it. */
20940static char *
20941file_full_name (int file, struct line_header *lh, const char *comp_dir)
20942{
20943 /* Is the file number a valid index into the line header's file name
20944 table? Remember that file numbers start with one, not zero. */
20945 if (1 <= file && file <= lh->num_file_names)
20946 {
20947 char *relative = file_file_name (file, lh);
20948
20949 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20950 return relative;
b36cec19
PA
20951 return reconcat (relative, comp_dir, SLASH_STRING,
20952 relative, (char *) NULL);
233d95b5
JK
20953 }
20954 else
20955 return file_file_name (file, lh);
20956}
20957
2e276125
JB
20958
20959static struct macro_source_file *
20960macro_start_file (int file, int line,
20961 struct macro_source_file *current_file,
43f3e411 20962 struct line_header *lh)
2e276125 20963{
233d95b5
JK
20964 /* File name relative to the compilation directory of this source file. */
20965 char *file_name = file_file_name (file, lh);
2e276125 20966
2e276125 20967 if (! current_file)
abc9d0dc 20968 {
fc474241
DE
20969 /* Note: We don't create a macro table for this compilation unit
20970 at all until we actually get a filename. */
43f3e411 20971 struct macro_table *macro_table = get_macro_table ();
fc474241 20972
abc9d0dc
TT
20973 /* If we have no current file, then this must be the start_file
20974 directive for the compilation unit's main source file. */
fc474241
DE
20975 current_file = macro_set_main (macro_table, file_name);
20976 macro_define_special (macro_table);
abc9d0dc 20977 }
2e276125 20978 else
233d95b5 20979 current_file = macro_include (current_file, line, file_name);
2e276125 20980
233d95b5 20981 xfree (file_name);
6e70227d 20982
2e276125
JB
20983 return current_file;
20984}
20985
20986
20987/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20988 followed by a null byte. */
20989static char *
20990copy_string (const char *buf, int len)
20991{
224c3ddb 20992 char *s = (char *) xmalloc (len + 1);
9a619af0 20993
2e276125
JB
20994 memcpy (s, buf, len);
20995 s[len] = '\0';
2e276125
JB
20996 return s;
20997}
20998
20999
21000static const char *
21001consume_improper_spaces (const char *p, const char *body)
21002{
21003 if (*p == ' ')
21004 {
4d3c2250 21005 complaint (&symfile_complaints,
3e43a32a
MS
21006 _("macro definition contains spaces "
21007 "in formal argument list:\n`%s'"),
4d3c2250 21008 body);
2e276125
JB
21009
21010 while (*p == ' ')
21011 p++;
21012 }
21013
21014 return p;
21015}
21016
21017
21018static void
21019parse_macro_definition (struct macro_source_file *file, int line,
21020 const char *body)
21021{
21022 const char *p;
21023
21024 /* The body string takes one of two forms. For object-like macro
21025 definitions, it should be:
21026
21027 <macro name> " " <definition>
21028
21029 For function-like macro definitions, it should be:
21030
21031 <macro name> "() " <definition>
21032 or
21033 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
21034
21035 Spaces may appear only where explicitly indicated, and in the
21036 <definition>.
21037
21038 The Dwarf 2 spec says that an object-like macro's name is always
21039 followed by a space, but versions of GCC around March 2002 omit
6e70227d 21040 the space when the macro's definition is the empty string.
2e276125
JB
21041
21042 The Dwarf 2 spec says that there should be no spaces between the
21043 formal arguments in a function-like macro's formal argument list,
21044 but versions of GCC around March 2002 include spaces after the
21045 commas. */
21046
21047
21048 /* Find the extent of the macro name. The macro name is terminated
21049 by either a space or null character (for an object-like macro) or
21050 an opening paren (for a function-like macro). */
21051 for (p = body; *p; p++)
21052 if (*p == ' ' || *p == '(')
21053 break;
21054
21055 if (*p == ' ' || *p == '\0')
21056 {
21057 /* It's an object-like macro. */
21058 int name_len = p - body;
21059 char *name = copy_string (body, name_len);
21060 const char *replacement;
21061
21062 if (*p == ' ')
21063 replacement = body + name_len + 1;
21064 else
21065 {
4d3c2250 21066 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21067 replacement = body + name_len;
21068 }
6e70227d 21069
2e276125
JB
21070 macro_define_object (file, line, name, replacement);
21071
21072 xfree (name);
21073 }
21074 else if (*p == '(')
21075 {
21076 /* It's a function-like macro. */
21077 char *name = copy_string (body, p - body);
21078 int argc = 0;
21079 int argv_size = 1;
8d749320 21080 char **argv = XNEWVEC (char *, argv_size);
2e276125
JB
21081
21082 p++;
21083
21084 p = consume_improper_spaces (p, body);
21085
21086 /* Parse the formal argument list. */
21087 while (*p && *p != ')')
21088 {
21089 /* Find the extent of the current argument name. */
21090 const char *arg_start = p;
21091
21092 while (*p && *p != ',' && *p != ')' && *p != ' ')
21093 p++;
21094
21095 if (! *p || p == arg_start)
4d3c2250 21096 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21097 else
21098 {
21099 /* Make sure argv has room for the new argument. */
21100 if (argc >= argv_size)
21101 {
21102 argv_size *= 2;
224c3ddb 21103 argv = XRESIZEVEC (char *, argv, argv_size);
2e276125
JB
21104 }
21105
21106 argv[argc++] = copy_string (arg_start, p - arg_start);
21107 }
21108
21109 p = consume_improper_spaces (p, body);
21110
21111 /* Consume the comma, if present. */
21112 if (*p == ',')
21113 {
21114 p++;
21115
21116 p = consume_improper_spaces (p, body);
21117 }
21118 }
21119
21120 if (*p == ')')
21121 {
21122 p++;
21123
21124 if (*p == ' ')
21125 /* Perfectly formed definition, no complaints. */
21126 macro_define_function (file, line, name,
6e70227d 21127 argc, (const char **) argv,
2e276125
JB
21128 p + 1);
21129 else if (*p == '\0')
21130 {
21131 /* Complain, but do define it. */
4d3c2250 21132 dwarf2_macro_malformed_definition_complaint (body);
2e276125 21133 macro_define_function (file, line, name,
6e70227d 21134 argc, (const char **) argv,
2e276125
JB
21135 p);
21136 }
21137 else
21138 /* Just complain. */
4d3c2250 21139 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21140 }
21141 else
21142 /* Just complain. */
4d3c2250 21143 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21144
21145 xfree (name);
21146 {
21147 int i;
21148
21149 for (i = 0; i < argc; i++)
21150 xfree (argv[i]);
21151 }
21152 xfree (argv);
21153 }
21154 else
4d3c2250 21155 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21156}
21157
cf2c3c16
TT
21158/* Skip some bytes from BYTES according to the form given in FORM.
21159 Returns the new pointer. */
2e276125 21160
d521ce57
TT
21161static const gdb_byte *
21162skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
21163 enum dwarf_form form,
21164 unsigned int offset_size,
21165 struct dwarf2_section_info *section)
2e276125 21166{
cf2c3c16 21167 unsigned int bytes_read;
2e276125 21168
cf2c3c16 21169 switch (form)
2e276125 21170 {
cf2c3c16
TT
21171 case DW_FORM_data1:
21172 case DW_FORM_flag:
21173 ++bytes;
21174 break;
21175
21176 case DW_FORM_data2:
21177 bytes += 2;
21178 break;
21179
21180 case DW_FORM_data4:
21181 bytes += 4;
21182 break;
21183
21184 case DW_FORM_data8:
21185 bytes += 8;
21186 break;
21187
21188 case DW_FORM_string:
21189 read_direct_string (abfd, bytes, &bytes_read);
21190 bytes += bytes_read;
21191 break;
21192
21193 case DW_FORM_sec_offset:
21194 case DW_FORM_strp:
36586728 21195 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
21196 bytes += offset_size;
21197 break;
21198
21199 case DW_FORM_block:
21200 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21201 bytes += bytes_read;
21202 break;
21203
21204 case DW_FORM_block1:
21205 bytes += 1 + read_1_byte (abfd, bytes);
21206 break;
21207 case DW_FORM_block2:
21208 bytes += 2 + read_2_bytes (abfd, bytes);
21209 break;
21210 case DW_FORM_block4:
21211 bytes += 4 + read_4_bytes (abfd, bytes);
21212 break;
21213
21214 case DW_FORM_sdata:
21215 case DW_FORM_udata:
3019eac3
DE
21216 case DW_FORM_GNU_addr_index:
21217 case DW_FORM_GNU_str_index:
d521ce57 21218 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
21219 if (bytes == NULL)
21220 {
21221 dwarf2_section_buffer_overflow_complaint (section);
21222 return NULL;
21223 }
cf2c3c16
TT
21224 break;
21225
21226 default:
21227 {
21228 complain:
21229 complaint (&symfile_complaints,
21230 _("invalid form 0x%x in `%s'"),
a32a8923 21231 form, get_section_name (section));
cf2c3c16
TT
21232 return NULL;
21233 }
2e276125
JB
21234 }
21235
cf2c3c16
TT
21236 return bytes;
21237}
757a13d0 21238
cf2c3c16
TT
21239/* A helper for dwarf_decode_macros that handles skipping an unknown
21240 opcode. Returns an updated pointer to the macro data buffer; or,
21241 on error, issues a complaint and returns NULL. */
757a13d0 21242
d521ce57 21243static const gdb_byte *
cf2c3c16 21244skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
21245 const gdb_byte **opcode_definitions,
21246 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
21247 bfd *abfd,
21248 unsigned int offset_size,
21249 struct dwarf2_section_info *section)
21250{
21251 unsigned int bytes_read, i;
21252 unsigned long arg;
d521ce57 21253 const gdb_byte *defn;
2e276125 21254
cf2c3c16 21255 if (opcode_definitions[opcode] == NULL)
2e276125 21256 {
cf2c3c16
TT
21257 complaint (&symfile_complaints,
21258 _("unrecognized DW_MACFINO opcode 0x%x"),
21259 opcode);
21260 return NULL;
21261 }
2e276125 21262
cf2c3c16
TT
21263 defn = opcode_definitions[opcode];
21264 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21265 defn += bytes_read;
2e276125 21266
cf2c3c16
TT
21267 for (i = 0; i < arg; ++i)
21268 {
aead7601
SM
21269 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21270 (enum dwarf_form) defn[i], offset_size,
f664829e 21271 section);
cf2c3c16
TT
21272 if (mac_ptr == NULL)
21273 {
21274 /* skip_form_bytes already issued the complaint. */
21275 return NULL;
21276 }
21277 }
757a13d0 21278
cf2c3c16
TT
21279 return mac_ptr;
21280}
757a13d0 21281
cf2c3c16
TT
21282/* A helper function which parses the header of a macro section.
21283 If the macro section is the extended (for now called "GNU") type,
21284 then this updates *OFFSET_SIZE. Returns a pointer to just after
21285 the header, or issues a complaint and returns NULL on error. */
757a13d0 21286
d521ce57
TT
21287static const gdb_byte *
21288dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 21289 bfd *abfd,
d521ce57 21290 const gdb_byte *mac_ptr,
cf2c3c16
TT
21291 unsigned int *offset_size,
21292 int section_is_gnu)
21293{
21294 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 21295
cf2c3c16
TT
21296 if (section_is_gnu)
21297 {
21298 unsigned int version, flags;
757a13d0 21299
cf2c3c16
TT
21300 version = read_2_bytes (abfd, mac_ptr);
21301 if (version != 4)
21302 {
21303 complaint (&symfile_complaints,
21304 _("unrecognized version `%d' in .debug_macro section"),
21305 version);
21306 return NULL;
21307 }
21308 mac_ptr += 2;
757a13d0 21309
cf2c3c16
TT
21310 flags = read_1_byte (abfd, mac_ptr);
21311 ++mac_ptr;
21312 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 21313
cf2c3c16
TT
21314 if ((flags & 2) != 0)
21315 /* We don't need the line table offset. */
21316 mac_ptr += *offset_size;
757a13d0 21317
cf2c3c16
TT
21318 /* Vendor opcode descriptions. */
21319 if ((flags & 4) != 0)
21320 {
21321 unsigned int i, count;
757a13d0 21322
cf2c3c16
TT
21323 count = read_1_byte (abfd, mac_ptr);
21324 ++mac_ptr;
21325 for (i = 0; i < count; ++i)
21326 {
21327 unsigned int opcode, bytes_read;
21328 unsigned long arg;
21329
21330 opcode = read_1_byte (abfd, mac_ptr);
21331 ++mac_ptr;
21332 opcode_definitions[opcode] = mac_ptr;
21333 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21334 mac_ptr += bytes_read;
21335 mac_ptr += arg;
21336 }
757a13d0 21337 }
cf2c3c16 21338 }
757a13d0 21339
cf2c3c16
TT
21340 return mac_ptr;
21341}
757a13d0 21342
cf2c3c16 21343/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 21344 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
21345
21346static void
d521ce57
TT
21347dwarf_decode_macro_bytes (bfd *abfd,
21348 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 21349 struct macro_source_file *current_file,
43f3e411 21350 struct line_header *lh,
cf2c3c16 21351 struct dwarf2_section_info *section,
36586728 21352 int section_is_gnu, int section_is_dwz,
cf2c3c16 21353 unsigned int offset_size,
8fc3fc34 21354 htab_t include_hash)
cf2c3c16 21355{
4d663531 21356 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
21357 enum dwarf_macro_record_type macinfo_type;
21358 int at_commandline;
d521ce57 21359 const gdb_byte *opcode_definitions[256];
757a13d0 21360
cf2c3c16
TT
21361 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21362 &offset_size, section_is_gnu);
21363 if (mac_ptr == NULL)
21364 {
21365 /* We already issued a complaint. */
21366 return;
21367 }
757a13d0
JK
21368
21369 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21370 GDB is still reading the definitions from command line. First
21371 DW_MACINFO_start_file will need to be ignored as it was already executed
21372 to create CURRENT_FILE for the main source holding also the command line
21373 definitions. On first met DW_MACINFO_start_file this flag is reset to
21374 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21375
21376 at_commandline = 1;
21377
21378 do
21379 {
21380 /* Do we at least have room for a macinfo type byte? */
21381 if (mac_ptr >= mac_end)
21382 {
f664829e 21383 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
21384 break;
21385 }
21386
aead7601 21387 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
757a13d0
JK
21388 mac_ptr++;
21389
cf2c3c16
TT
21390 /* Note that we rely on the fact that the corresponding GNU and
21391 DWARF constants are the same. */
757a13d0
JK
21392 switch (macinfo_type)
21393 {
21394 /* A zero macinfo type indicates the end of the macro
21395 information. */
21396 case 0:
21397 break;
2e276125 21398
cf2c3c16
TT
21399 case DW_MACRO_GNU_define:
21400 case DW_MACRO_GNU_undef:
21401 case DW_MACRO_GNU_define_indirect:
21402 case DW_MACRO_GNU_undef_indirect:
36586728
TT
21403 case DW_MACRO_GNU_define_indirect_alt:
21404 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 21405 {
891d2f0b 21406 unsigned int bytes_read;
2e276125 21407 int line;
d521ce57 21408 const char *body;
cf2c3c16 21409 int is_define;
2e276125 21410
cf2c3c16
TT
21411 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21412 mac_ptr += bytes_read;
21413
21414 if (macinfo_type == DW_MACRO_GNU_define
21415 || macinfo_type == DW_MACRO_GNU_undef)
21416 {
21417 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21418 mac_ptr += bytes_read;
21419 }
21420 else
21421 {
21422 LONGEST str_offset;
21423
21424 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21425 mac_ptr += offset_size;
2e276125 21426
36586728 21427 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
21428 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21429 || section_is_dwz)
36586728
TT
21430 {
21431 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21432
21433 body = read_indirect_string_from_dwz (dwz, str_offset);
21434 }
21435 else
21436 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
21437 }
21438
21439 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
21440 || macinfo_type == DW_MACRO_GNU_define_indirect
21441 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 21442 if (! current_file)
757a13d0
JK
21443 {
21444 /* DWARF violation as no main source is present. */
21445 complaint (&symfile_complaints,
21446 _("debug info with no main source gives macro %s "
21447 "on line %d: %s"),
cf2c3c16
TT
21448 is_define ? _("definition") : _("undefinition"),
21449 line, body);
757a13d0
JK
21450 break;
21451 }
3e43a32a
MS
21452 if ((line == 0 && !at_commandline)
21453 || (line != 0 && at_commandline))
4d3c2250 21454 complaint (&symfile_complaints,
757a13d0
JK
21455 _("debug info gives %s macro %s with %s line %d: %s"),
21456 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 21457 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
21458 line == 0 ? _("zero") : _("non-zero"), line, body);
21459
cf2c3c16 21460 if (is_define)
757a13d0 21461 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
21462 else
21463 {
21464 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
21465 || macinfo_type == DW_MACRO_GNU_undef_indirect
21466 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
21467 macro_undef (current_file, line, body);
21468 }
2e276125
JB
21469 }
21470 break;
21471
cf2c3c16 21472 case DW_MACRO_GNU_start_file:
2e276125 21473 {
891d2f0b 21474 unsigned int bytes_read;
2e276125
JB
21475 int line, file;
21476
21477 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21478 mac_ptr += bytes_read;
21479 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21480 mac_ptr += bytes_read;
21481
3e43a32a
MS
21482 if ((line == 0 && !at_commandline)
21483 || (line != 0 && at_commandline))
757a13d0
JK
21484 complaint (&symfile_complaints,
21485 _("debug info gives source %d included "
21486 "from %s at %s line %d"),
21487 file, at_commandline ? _("command-line") : _("file"),
21488 line == 0 ? _("zero") : _("non-zero"), line);
21489
21490 if (at_commandline)
21491 {
cf2c3c16
TT
21492 /* This DW_MACRO_GNU_start_file was executed in the
21493 pass one. */
757a13d0
JK
21494 at_commandline = 0;
21495 }
21496 else
43f3e411 21497 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
21498 }
21499 break;
21500
cf2c3c16 21501 case DW_MACRO_GNU_end_file:
2e276125 21502 if (! current_file)
4d3c2250 21503 complaint (&symfile_complaints,
3e43a32a
MS
21504 _("macro debug info has an unmatched "
21505 "`close_file' directive"));
2e276125
JB
21506 else
21507 {
21508 current_file = current_file->included_by;
21509 if (! current_file)
21510 {
cf2c3c16 21511 enum dwarf_macro_record_type next_type;
2e276125
JB
21512
21513 /* GCC circa March 2002 doesn't produce the zero
21514 type byte marking the end of the compilation
21515 unit. Complain if it's not there, but exit no
21516 matter what. */
21517
21518 /* Do we at least have room for a macinfo type byte? */
21519 if (mac_ptr >= mac_end)
21520 {
f664829e 21521 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
21522 return;
21523 }
21524
21525 /* We don't increment mac_ptr here, so this is just
21526 a look-ahead. */
aead7601
SM
21527 next_type
21528 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21529 mac_ptr);
2e276125 21530 if (next_type != 0)
4d3c2250 21531 complaint (&symfile_complaints,
3e43a32a
MS
21532 _("no terminating 0-type entry for "
21533 "macros in `.debug_macinfo' section"));
2e276125
JB
21534
21535 return;
21536 }
21537 }
21538 break;
21539
cf2c3c16 21540 case DW_MACRO_GNU_transparent_include:
36586728 21541 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21542 {
21543 LONGEST offset;
8fc3fc34 21544 void **slot;
a036ba48
TT
21545 bfd *include_bfd = abfd;
21546 struct dwarf2_section_info *include_section = section;
d521ce57 21547 const gdb_byte *include_mac_end = mac_end;
a036ba48 21548 int is_dwz = section_is_dwz;
d521ce57 21549 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
21550
21551 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21552 mac_ptr += offset_size;
21553
a036ba48
TT
21554 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21555 {
21556 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21557
4d663531 21558 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 21559
a036ba48 21560 include_section = &dwz->macro;
a32a8923 21561 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
21562 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21563 is_dwz = 1;
21564 }
21565
21566 new_mac_ptr = include_section->buffer + offset;
21567 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21568
8fc3fc34
TT
21569 if (*slot != NULL)
21570 {
21571 /* This has actually happened; see
21572 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21573 complaint (&symfile_complaints,
21574 _("recursive DW_MACRO_GNU_transparent_include in "
21575 ".debug_macro section"));
21576 }
21577 else
21578 {
d521ce57 21579 *slot = (void *) new_mac_ptr;
36586728 21580
a036ba48 21581 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
43f3e411 21582 include_mac_end, current_file, lh,
36586728 21583 section, section_is_gnu, is_dwz,
4d663531 21584 offset_size, include_hash);
8fc3fc34 21585
d521ce57 21586 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 21587 }
cf2c3c16
TT
21588 }
21589 break;
21590
2e276125 21591 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
21592 if (!section_is_gnu)
21593 {
21594 unsigned int bytes_read;
2e276125 21595
ac298888
TT
21596 /* This reads the constant, but since we don't recognize
21597 any vendor extensions, we ignore it. */
21598 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
cf2c3c16
TT
21599 mac_ptr += bytes_read;
21600 read_direct_string (abfd, mac_ptr, &bytes_read);
21601 mac_ptr += bytes_read;
2e276125 21602
cf2c3c16
TT
21603 /* We don't recognize any vendor extensions. */
21604 break;
21605 }
21606 /* FALLTHROUGH */
21607
21608 default:
21609 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21610 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21611 section);
21612 if (mac_ptr == NULL)
21613 return;
21614 break;
2e276125 21615 }
757a13d0 21616 } while (macinfo_type != 0);
2e276125 21617}
8e19ed76 21618
cf2c3c16 21619static void
09262596 21620dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 21621 int section_is_gnu)
cf2c3c16 21622{
bb5ed363 21623 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
21624 struct line_header *lh = cu->line_header;
21625 bfd *abfd;
d521ce57 21626 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
21627 struct macro_source_file *current_file = 0;
21628 enum dwarf_macro_record_type macinfo_type;
21629 unsigned int offset_size = cu->header.offset_size;
d521ce57 21630 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
21631 struct cleanup *cleanup;
21632 htab_t include_hash;
21633 void **slot;
09262596
DE
21634 struct dwarf2_section_info *section;
21635 const char *section_name;
21636
21637 if (cu->dwo_unit != NULL)
21638 {
21639 if (section_is_gnu)
21640 {
21641 section = &cu->dwo_unit->dwo_file->sections.macro;
21642 section_name = ".debug_macro.dwo";
21643 }
21644 else
21645 {
21646 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21647 section_name = ".debug_macinfo.dwo";
21648 }
21649 }
21650 else
21651 {
21652 if (section_is_gnu)
21653 {
21654 section = &dwarf2_per_objfile->macro;
21655 section_name = ".debug_macro";
21656 }
21657 else
21658 {
21659 section = &dwarf2_per_objfile->macinfo;
21660 section_name = ".debug_macinfo";
21661 }
21662 }
cf2c3c16 21663
bb5ed363 21664 dwarf2_read_section (objfile, section);
cf2c3c16
TT
21665 if (section->buffer == NULL)
21666 {
fceca515 21667 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
21668 return;
21669 }
a32a8923 21670 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
21671
21672 /* First pass: Find the name of the base filename.
21673 This filename is needed in order to process all macros whose definition
21674 (or undefinition) comes from the command line. These macros are defined
21675 before the first DW_MACINFO_start_file entry, and yet still need to be
21676 associated to the base file.
21677
21678 To determine the base file name, we scan the macro definitions until we
21679 reach the first DW_MACINFO_start_file entry. We then initialize
21680 CURRENT_FILE accordingly so that any macro definition found before the
21681 first DW_MACINFO_start_file can still be associated to the base file. */
21682
21683 mac_ptr = section->buffer + offset;
21684 mac_end = section->buffer + section->size;
21685
21686 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21687 &offset_size, section_is_gnu);
21688 if (mac_ptr == NULL)
21689 {
21690 /* We already issued a complaint. */
21691 return;
21692 }
21693
21694 do
21695 {
21696 /* Do we at least have room for a macinfo type byte? */
21697 if (mac_ptr >= mac_end)
21698 {
21699 /* Complaint is printed during the second pass as GDB will probably
21700 stop the first pass earlier upon finding
21701 DW_MACINFO_start_file. */
21702 break;
21703 }
21704
aead7601 21705 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
cf2c3c16
TT
21706 mac_ptr++;
21707
21708 /* Note that we rely on the fact that the corresponding GNU and
21709 DWARF constants are the same. */
21710 switch (macinfo_type)
21711 {
21712 /* A zero macinfo type indicates the end of the macro
21713 information. */
21714 case 0:
21715 break;
21716
21717 case DW_MACRO_GNU_define:
21718 case DW_MACRO_GNU_undef:
21719 /* Only skip the data by MAC_PTR. */
21720 {
21721 unsigned int bytes_read;
21722
21723 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21724 mac_ptr += bytes_read;
21725 read_direct_string (abfd, mac_ptr, &bytes_read);
21726 mac_ptr += bytes_read;
21727 }
21728 break;
21729
21730 case DW_MACRO_GNU_start_file:
21731 {
21732 unsigned int bytes_read;
21733 int line, file;
21734
21735 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21736 mac_ptr += bytes_read;
21737 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21738 mac_ptr += bytes_read;
21739
43f3e411 21740 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
21741 }
21742 break;
21743
21744 case DW_MACRO_GNU_end_file:
21745 /* No data to skip by MAC_PTR. */
21746 break;
21747
21748 case DW_MACRO_GNU_define_indirect:
21749 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
21750 case DW_MACRO_GNU_define_indirect_alt:
21751 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
21752 {
21753 unsigned int bytes_read;
21754
21755 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21756 mac_ptr += bytes_read;
21757 mac_ptr += offset_size;
21758 }
21759 break;
21760
21761 case DW_MACRO_GNU_transparent_include:
f7a35f02 21762 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21763 /* Note that, according to the spec, a transparent include
21764 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21765 skip this opcode. */
21766 mac_ptr += offset_size;
21767 break;
21768
21769 case DW_MACINFO_vendor_ext:
21770 /* Only skip the data by MAC_PTR. */
21771 if (!section_is_gnu)
21772 {
21773 unsigned int bytes_read;
21774
21775 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21776 mac_ptr += bytes_read;
21777 read_direct_string (abfd, mac_ptr, &bytes_read);
21778 mac_ptr += bytes_read;
21779 }
21780 /* FALLTHROUGH */
21781
21782 default:
21783 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21784 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21785 section);
21786 if (mac_ptr == NULL)
21787 return;
21788 break;
21789 }
21790 } while (macinfo_type != 0 && current_file == NULL);
21791
21792 /* Second pass: Process all entries.
21793
21794 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21795 command-line macro definitions/undefinitions. This flag is unset when we
21796 reach the first DW_MACINFO_start_file entry. */
21797
8fc3fc34
TT
21798 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21799 NULL, xcalloc, xfree);
21800 cleanup = make_cleanup_htab_delete (include_hash);
21801 mac_ptr = section->buffer + offset;
21802 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 21803 *slot = (void *) mac_ptr;
8fc3fc34 21804 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
43f3e411 21805 current_file, lh, section,
4d663531 21806 section_is_gnu, 0, offset_size, include_hash);
8fc3fc34 21807 do_cleanups (cleanup);
cf2c3c16
TT
21808}
21809
8e19ed76 21810/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 21811 if so return true else false. */
380bca97 21812
8e19ed76 21813static int
6e5a29e1 21814attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
21815{
21816 return (attr == NULL ? 0 :
21817 attr->form == DW_FORM_block1
21818 || attr->form == DW_FORM_block2
21819 || attr->form == DW_FORM_block4
2dc7f7b3
TT
21820 || attr->form == DW_FORM_block
21821 || attr->form == DW_FORM_exprloc);
8e19ed76 21822}
4c2df51b 21823
c6a0999f
JB
21824/* Return non-zero if ATTR's value is a section offset --- classes
21825 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21826 You may use DW_UNSND (attr) to retrieve such offsets.
21827
21828 Section 7.5.4, "Attribute Encodings", explains that no attribute
21829 may have a value that belongs to more than one of these classes; it
21830 would be ambiguous if we did, because we use the same forms for all
21831 of them. */
380bca97 21832
3690dd37 21833static int
6e5a29e1 21834attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
21835{
21836 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
21837 || attr->form == DW_FORM_data8
21838 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
21839}
21840
3690dd37
JB
21841/* Return non-zero if ATTR's value falls in the 'constant' class, or
21842 zero otherwise. When this function returns true, you can apply
21843 dwarf2_get_attr_constant_value to it.
21844
21845 However, note that for some attributes you must check
21846 attr_form_is_section_offset before using this test. DW_FORM_data4
21847 and DW_FORM_data8 are members of both the constant class, and of
21848 the classes that contain offsets into other debug sections
21849 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21850 that, if an attribute's can be either a constant or one of the
21851 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21852 taken as section offsets, not constants. */
380bca97 21853
3690dd37 21854static int
6e5a29e1 21855attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
21856{
21857 switch (attr->form)
21858 {
21859 case DW_FORM_sdata:
21860 case DW_FORM_udata:
21861 case DW_FORM_data1:
21862 case DW_FORM_data2:
21863 case DW_FORM_data4:
21864 case DW_FORM_data8:
21865 return 1;
21866 default:
21867 return 0;
21868 }
21869}
21870
7771576e
SA
21871
21872/* DW_ADDR is always stored already as sect_offset; despite for the forms
21873 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21874
21875static int
6e5a29e1 21876attr_form_is_ref (const struct attribute *attr)
7771576e
SA
21877{
21878 switch (attr->form)
21879 {
21880 case DW_FORM_ref_addr:
21881 case DW_FORM_ref1:
21882 case DW_FORM_ref2:
21883 case DW_FORM_ref4:
21884 case DW_FORM_ref8:
21885 case DW_FORM_ref_udata:
21886 case DW_FORM_GNU_ref_alt:
21887 return 1;
21888 default:
21889 return 0;
21890 }
21891}
21892
3019eac3
DE
21893/* Return the .debug_loc section to use for CU.
21894 For DWO files use .debug_loc.dwo. */
21895
21896static struct dwarf2_section_info *
21897cu_debug_loc_section (struct dwarf2_cu *cu)
21898{
21899 if (cu->dwo_unit)
21900 return &cu->dwo_unit->dwo_file->sections.loc;
21901 return &dwarf2_per_objfile->loc;
21902}
21903
8cf6f0b1
TT
21904/* A helper function that fills in a dwarf2_loclist_baton. */
21905
21906static void
21907fill_in_loclist_baton (struct dwarf2_cu *cu,
21908 struct dwarf2_loclist_baton *baton,
ff39bb5e 21909 const struct attribute *attr)
8cf6f0b1 21910{
3019eac3
DE
21911 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21912
21913 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
21914
21915 baton->per_cu = cu->per_cu;
21916 gdb_assert (baton->per_cu);
21917 /* We don't know how long the location list is, but make sure we
21918 don't run off the edge of the section. */
3019eac3
DE
21919 baton->size = section->size - DW_UNSND (attr);
21920 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 21921 baton->base_address = cu->base_address;
f664829e 21922 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
21923}
21924
4c2df51b 21925static void
ff39bb5e 21926dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 21927 struct dwarf2_cu *cu, int is_block)
4c2df51b 21928{
bb5ed363 21929 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 21930 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 21931
3690dd37 21932 if (attr_form_is_section_offset (attr)
3019eac3 21933 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
21934 the section. If so, fall through to the complaint in the
21935 other branch. */
3019eac3 21936 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 21937 {
0d53c4c4 21938 struct dwarf2_loclist_baton *baton;
4c2df51b 21939
8d749320 21940 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
4c2df51b 21941
8cf6f0b1 21942 fill_in_loclist_baton (cu, baton, attr);
be391dca 21943
d00adf39 21944 if (cu->base_known == 0)
0d53c4c4 21945 complaint (&symfile_complaints,
3e43a32a
MS
21946 _("Location list used without "
21947 "specifying the CU base address."));
4c2df51b 21948
f1e6e072
TT
21949 SYMBOL_ACLASS_INDEX (sym) = (is_block
21950 ? dwarf2_loclist_block_index
21951 : dwarf2_loclist_index);
0d53c4c4
DJ
21952 SYMBOL_LOCATION_BATON (sym) = baton;
21953 }
21954 else
21955 {
21956 struct dwarf2_locexpr_baton *baton;
21957
8d749320 21958 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
ae0d2f24
UW
21959 baton->per_cu = cu->per_cu;
21960 gdb_assert (baton->per_cu);
0d53c4c4
DJ
21961
21962 if (attr_form_is_block (attr))
21963 {
21964 /* Note that we're just copying the block's data pointer
21965 here, not the actual data. We're still pointing into the
6502dd73
DJ
21966 info_buffer for SYM's objfile; right now we never release
21967 that buffer, but when we do clean up properly this may
21968 need to change. */
0d53c4c4
DJ
21969 baton->size = DW_BLOCK (attr)->size;
21970 baton->data = DW_BLOCK (attr)->data;
21971 }
21972 else
21973 {
21974 dwarf2_invalid_attrib_class_complaint ("location description",
21975 SYMBOL_NATURAL_NAME (sym));
21976 baton->size = 0;
0d53c4c4 21977 }
6e70227d 21978
f1e6e072
TT
21979 SYMBOL_ACLASS_INDEX (sym) = (is_block
21980 ? dwarf2_locexpr_block_index
21981 : dwarf2_locexpr_index);
0d53c4c4
DJ
21982 SYMBOL_LOCATION_BATON (sym) = baton;
21983 }
4c2df51b 21984}
6502dd73 21985
9aa1f1e3
TT
21986/* Return the OBJFILE associated with the compilation unit CU. If CU
21987 came from a separate debuginfo file, then the master objfile is
21988 returned. */
ae0d2f24
UW
21989
21990struct objfile *
21991dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21992{
9291a0cd 21993 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
21994
21995 /* Return the master objfile, so that we can report and look up the
21996 correct file containing this variable. */
21997 if (objfile->separate_debug_objfile_backlink)
21998 objfile = objfile->separate_debug_objfile_backlink;
21999
22000 return objfile;
22001}
22002
96408a79
SA
22003/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
22004 (CU_HEADERP is unused in such case) or prepare a temporary copy at
22005 CU_HEADERP first. */
22006
22007static const struct comp_unit_head *
22008per_cu_header_read_in (struct comp_unit_head *cu_headerp,
22009 struct dwarf2_per_cu_data *per_cu)
22010{
d521ce57 22011 const gdb_byte *info_ptr;
96408a79
SA
22012
22013 if (per_cu->cu)
22014 return &per_cu->cu->header;
22015
8a0459fd 22016 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
22017
22018 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 22019 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
22020
22021 return cu_headerp;
22022}
22023
ae0d2f24
UW
22024/* Return the address size given in the compilation unit header for CU. */
22025
98714339 22026int
ae0d2f24
UW
22027dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
22028{
96408a79
SA
22029 struct comp_unit_head cu_header_local;
22030 const struct comp_unit_head *cu_headerp;
c471e790 22031
96408a79
SA
22032 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22033
22034 return cu_headerp->addr_size;
ae0d2f24
UW
22035}
22036
9eae7c52
TT
22037/* Return the offset size given in the compilation unit header for CU. */
22038
22039int
22040dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
22041{
96408a79
SA
22042 struct comp_unit_head cu_header_local;
22043 const struct comp_unit_head *cu_headerp;
9c6c53f7 22044
96408a79
SA
22045 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22046
22047 return cu_headerp->offset_size;
22048}
22049
22050/* See its dwarf2loc.h declaration. */
22051
22052int
22053dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22054{
22055 struct comp_unit_head cu_header_local;
22056 const struct comp_unit_head *cu_headerp;
22057
22058 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22059
22060 if (cu_headerp->version == 2)
22061 return cu_headerp->addr_size;
22062 else
22063 return cu_headerp->offset_size;
181cebd4
JK
22064}
22065
9aa1f1e3
TT
22066/* Return the text offset of the CU. The returned offset comes from
22067 this CU's objfile. If this objfile came from a separate debuginfo
22068 file, then the offset may be different from the corresponding
22069 offset in the parent objfile. */
22070
22071CORE_ADDR
22072dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22073{
bb3fa9d0 22074 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
22075
22076 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22077}
22078
348e048f
DE
22079/* Locate the .debug_info compilation unit from CU's objfile which contains
22080 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
22081
22082static struct dwarf2_per_cu_data *
b64f50a1 22083dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 22084 unsigned int offset_in_dwz,
ae038cb0
DJ
22085 struct objfile *objfile)
22086{
22087 struct dwarf2_per_cu_data *this_cu;
22088 int low, high;
36586728 22089 const sect_offset *cu_off;
ae038cb0 22090
ae038cb0
DJ
22091 low = 0;
22092 high = dwarf2_per_objfile->n_comp_units - 1;
22093 while (high > low)
22094 {
36586728 22095 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 22096 int mid = low + (high - low) / 2;
9a619af0 22097
36586728
TT
22098 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22099 cu_off = &mid_cu->offset;
22100 if (mid_cu->is_dwz > offset_in_dwz
22101 || (mid_cu->is_dwz == offset_in_dwz
22102 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
22103 high = mid;
22104 else
22105 low = mid + 1;
22106 }
22107 gdb_assert (low == high);
36586728
TT
22108 this_cu = dwarf2_per_objfile->all_comp_units[low];
22109 cu_off = &this_cu->offset;
22110 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 22111 {
36586728 22112 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
22113 error (_("Dwarf Error: could not find partial DIE containing "
22114 "offset 0x%lx [in module %s]"),
b64f50a1 22115 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 22116
b64f50a1
JK
22117 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22118 <= offset.sect_off);
ae038cb0
DJ
22119 return dwarf2_per_objfile->all_comp_units[low-1];
22120 }
22121 else
22122 {
22123 this_cu = dwarf2_per_objfile->all_comp_units[low];
22124 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
22125 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22126 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22127 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
22128 return this_cu;
22129 }
22130}
22131
23745b47 22132/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 22133
9816fde3 22134static void
23745b47 22135init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 22136{
9816fde3 22137 memset (cu, 0, sizeof (*cu));
23745b47
DE
22138 per_cu->cu = cu;
22139 cu->per_cu = per_cu;
22140 cu->objfile = per_cu->objfile;
93311388 22141 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
22142}
22143
22144/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22145
22146static void
95554aad
TT
22147prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22148 enum language pretend_language)
9816fde3
JK
22149{
22150 struct attribute *attr;
22151
22152 /* Set the language we're debugging. */
22153 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22154 if (attr)
22155 set_cu_language (DW_UNSND (attr), cu);
22156 else
9cded63f 22157 {
95554aad 22158 cu->language = pretend_language;
9cded63f
TT
22159 cu->language_defn = language_def (cu->language);
22160 }
dee91e82 22161
7d45c7c3 22162 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
93311388
DE
22163}
22164
ae038cb0
DJ
22165/* Release one cached compilation unit, CU. We unlink it from the tree
22166 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
22167 the caller is responsible for that.
22168 NOTE: DATA is a void * because this function is also used as a
22169 cleanup routine. */
ae038cb0
DJ
22170
22171static void
68dc6402 22172free_heap_comp_unit (void *data)
ae038cb0 22173{
9a3c8263 22174 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
ae038cb0 22175
23745b47
DE
22176 gdb_assert (cu->per_cu != NULL);
22177 cu->per_cu->cu = NULL;
ae038cb0
DJ
22178 cu->per_cu = NULL;
22179
22180 obstack_free (&cu->comp_unit_obstack, NULL);
22181
22182 xfree (cu);
22183}
22184
72bf9492 22185/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 22186 when we're finished with it. We can't free the pointer itself, but be
dee91e82 22187 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
22188
22189static void
22190free_stack_comp_unit (void *data)
22191{
9a3c8263 22192 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
72bf9492 22193
23745b47
DE
22194 gdb_assert (cu->per_cu != NULL);
22195 cu->per_cu->cu = NULL;
22196 cu->per_cu = NULL;
22197
72bf9492
DJ
22198 obstack_free (&cu->comp_unit_obstack, NULL);
22199 cu->partial_dies = NULL;
ae038cb0
DJ
22200}
22201
22202/* Free all cached compilation units. */
22203
22204static void
22205free_cached_comp_units (void *data)
22206{
22207 struct dwarf2_per_cu_data *per_cu, **last_chain;
22208
22209 per_cu = dwarf2_per_objfile->read_in_chain;
22210 last_chain = &dwarf2_per_objfile->read_in_chain;
22211 while (per_cu != NULL)
22212 {
22213 struct dwarf2_per_cu_data *next_cu;
22214
22215 next_cu = per_cu->cu->read_in_chain;
22216
68dc6402 22217 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22218 *last_chain = next_cu;
22219
22220 per_cu = next_cu;
22221 }
22222}
22223
22224/* Increase the age counter on each cached compilation unit, and free
22225 any that are too old. */
22226
22227static void
22228age_cached_comp_units (void)
22229{
22230 struct dwarf2_per_cu_data *per_cu, **last_chain;
22231
22232 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22233 per_cu = dwarf2_per_objfile->read_in_chain;
22234 while (per_cu != NULL)
22235 {
22236 per_cu->cu->last_used ++;
b4f54984 22237 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
22238 dwarf2_mark (per_cu->cu);
22239 per_cu = per_cu->cu->read_in_chain;
22240 }
22241
22242 per_cu = dwarf2_per_objfile->read_in_chain;
22243 last_chain = &dwarf2_per_objfile->read_in_chain;
22244 while (per_cu != NULL)
22245 {
22246 struct dwarf2_per_cu_data *next_cu;
22247
22248 next_cu = per_cu->cu->read_in_chain;
22249
22250 if (!per_cu->cu->mark)
22251 {
68dc6402 22252 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22253 *last_chain = next_cu;
22254 }
22255 else
22256 last_chain = &per_cu->cu->read_in_chain;
22257
22258 per_cu = next_cu;
22259 }
22260}
22261
22262/* Remove a single compilation unit from the cache. */
22263
22264static void
dee91e82 22265free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
22266{
22267 struct dwarf2_per_cu_data *per_cu, **last_chain;
22268
22269 per_cu = dwarf2_per_objfile->read_in_chain;
22270 last_chain = &dwarf2_per_objfile->read_in_chain;
22271 while (per_cu != NULL)
22272 {
22273 struct dwarf2_per_cu_data *next_cu;
22274
22275 next_cu = per_cu->cu->read_in_chain;
22276
dee91e82 22277 if (per_cu == target_per_cu)
ae038cb0 22278 {
68dc6402 22279 free_heap_comp_unit (per_cu->cu);
dee91e82 22280 per_cu->cu = NULL;
ae038cb0
DJ
22281 *last_chain = next_cu;
22282 break;
22283 }
22284 else
22285 last_chain = &per_cu->cu->read_in_chain;
22286
22287 per_cu = next_cu;
22288 }
22289}
22290
fe3e1990
DJ
22291/* Release all extra memory associated with OBJFILE. */
22292
22293void
22294dwarf2_free_objfile (struct objfile *objfile)
22295{
9a3c8263
SM
22296 dwarf2_per_objfile
22297 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22298 dwarf2_objfile_data_key);
fe3e1990
DJ
22299
22300 if (dwarf2_per_objfile == NULL)
22301 return;
22302
22303 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22304 free_cached_comp_units (NULL);
22305
7b9f3c50
DE
22306 if (dwarf2_per_objfile->quick_file_names_table)
22307 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 22308
527f3840
JK
22309 if (dwarf2_per_objfile->line_header_hash)
22310 htab_delete (dwarf2_per_objfile->line_header_hash);
22311
fe3e1990
DJ
22312 /* Everything else should be on the objfile obstack. */
22313}
22314
dee91e82
DE
22315/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22316 We store these in a hash table separate from the DIEs, and preserve them
22317 when the DIEs are flushed out of cache.
22318
22319 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 22320 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
22321 or the type may come from a DWO file. Furthermore, while it's more logical
22322 to use per_cu->section+offset, with Fission the section with the data is in
22323 the DWO file but we don't know that section at the point we need it.
22324 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22325 because we can enter the lookup routine, get_die_type_at_offset, from
22326 outside this file, and thus won't necessarily have PER_CU->cu.
22327 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 22328
dee91e82 22329struct dwarf2_per_cu_offset_and_type
1c379e20 22330{
dee91e82 22331 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 22332 sect_offset offset;
1c379e20
DJ
22333 struct type *type;
22334};
22335
dee91e82 22336/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22337
22338static hashval_t
dee91e82 22339per_cu_offset_and_type_hash (const void *item)
1c379e20 22340{
9a3c8263
SM
22341 const struct dwarf2_per_cu_offset_and_type *ofs
22342 = (const struct dwarf2_per_cu_offset_and_type *) item;
9a619af0 22343
dee91e82 22344 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
22345}
22346
dee91e82 22347/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22348
22349static int
dee91e82 22350per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 22351{
9a3c8263
SM
22352 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22353 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22354 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22355 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
9a619af0 22356
dee91e82
DE
22357 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22358 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
22359}
22360
22361/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
22362 table if necessary. For convenience, return TYPE.
22363
22364 The DIEs reading must have careful ordering to:
22365 * Not cause infite loops trying to read in DIEs as a prerequisite for
22366 reading current DIE.
22367 * Not trying to dereference contents of still incompletely read in types
22368 while reading in other DIEs.
22369 * Enable referencing still incompletely read in types just by a pointer to
22370 the type without accessing its fields.
22371
22372 Therefore caller should follow these rules:
22373 * Try to fetch any prerequisite types we may need to build this DIE type
22374 before building the type and calling set_die_type.
e71ec853 22375 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
22376 possible before fetching more types to complete the current type.
22377 * Make the type as complete as possible before fetching more types. */
1c379e20 22378
f792889a 22379static struct type *
1c379e20
DJ
22380set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22381{
dee91e82 22382 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 22383 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
22384 struct attribute *attr;
22385 struct dynamic_prop prop;
1c379e20 22386
b4ba55a1
JB
22387 /* For Ada types, make sure that the gnat-specific data is always
22388 initialized (if not already set). There are a few types where
22389 we should not be doing so, because the type-specific area is
22390 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22391 where the type-specific area is used to store the floatformat).
22392 But this is not a problem, because the gnat-specific information
22393 is actually not needed for these types. */
22394 if (need_gnat_info (cu)
22395 && TYPE_CODE (type) != TYPE_CODE_FUNC
22396 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
22397 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22398 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22399 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
22400 && !HAVE_GNAT_AUX_INFO (type))
22401 INIT_GNAT_SPECIFIC (type);
22402
3f2f83dd
KB
22403 /* Read DW_AT_allocated and set in type. */
22404 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22405 if (attr_form_is_block (attr))
22406 {
22407 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22408 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22409 }
22410 else if (attr != NULL)
22411 {
22412 complaint (&symfile_complaints,
22413 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22414 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22415 die->offset.sect_off);
22416 }
22417
22418 /* Read DW_AT_associated and set in type. */
22419 attr = dwarf2_attr (die, DW_AT_associated, cu);
22420 if (attr_form_is_block (attr))
22421 {
22422 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22423 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22424 }
22425 else if (attr != NULL)
22426 {
22427 complaint (&symfile_complaints,
22428 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22429 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22430 die->offset.sect_off);
22431 }
22432
3cdcd0ce
JB
22433 /* Read DW_AT_data_location and set in type. */
22434 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22435 if (attr_to_dynamic_prop (attr, die, cu, &prop))
93a8e227 22436 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
3cdcd0ce 22437
dee91e82 22438 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22439 {
dee91e82
DE
22440 dwarf2_per_objfile->die_type_hash =
22441 htab_create_alloc_ex (127,
22442 per_cu_offset_and_type_hash,
22443 per_cu_offset_and_type_eq,
22444 NULL,
22445 &objfile->objfile_obstack,
22446 hashtab_obstack_allocate,
22447 dummy_obstack_deallocate);
f792889a 22448 }
1c379e20 22449
dee91e82 22450 ofs.per_cu = cu->per_cu;
1c379e20
DJ
22451 ofs.offset = die->offset;
22452 ofs.type = type;
dee91e82
DE
22453 slot = (struct dwarf2_per_cu_offset_and_type **)
22454 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
22455 if (*slot)
22456 complaint (&symfile_complaints,
22457 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 22458 die->offset.sect_off);
8d749320
SM
22459 *slot = XOBNEW (&objfile->objfile_obstack,
22460 struct dwarf2_per_cu_offset_and_type);
1c379e20 22461 **slot = ofs;
f792889a 22462 return type;
1c379e20
DJ
22463}
22464
02142a6c
DE
22465/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22466 or return NULL if the die does not have a saved type. */
1c379e20
DJ
22467
22468static struct type *
b64f50a1 22469get_die_type_at_offset (sect_offset offset,
673bfd45 22470 struct dwarf2_per_cu_data *per_cu)
1c379e20 22471{
dee91e82 22472 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 22473
dee91e82 22474 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22475 return NULL;
1c379e20 22476
dee91e82 22477 ofs.per_cu = per_cu;
673bfd45 22478 ofs.offset = offset;
9a3c8263
SM
22479 slot = ((struct dwarf2_per_cu_offset_and_type *)
22480 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
1c379e20
DJ
22481 if (slot)
22482 return slot->type;
22483 else
22484 return NULL;
22485}
22486
02142a6c 22487/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
22488 or return NULL if DIE does not have a saved type. */
22489
22490static struct type *
22491get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22492{
22493 return get_die_type_at_offset (die->offset, cu->per_cu);
22494}
22495
10b3939b
DJ
22496/* Add a dependence relationship from CU to REF_PER_CU. */
22497
22498static void
22499dwarf2_add_dependence (struct dwarf2_cu *cu,
22500 struct dwarf2_per_cu_data *ref_per_cu)
22501{
22502 void **slot;
22503
22504 if (cu->dependencies == NULL)
22505 cu->dependencies
22506 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22507 NULL, &cu->comp_unit_obstack,
22508 hashtab_obstack_allocate,
22509 dummy_obstack_deallocate);
22510
22511 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22512 if (*slot == NULL)
22513 *slot = ref_per_cu;
22514}
1c379e20 22515
f504f079
DE
22516/* Subroutine of dwarf2_mark to pass to htab_traverse.
22517 Set the mark field in every compilation unit in the
ae038cb0
DJ
22518 cache that we must keep because we are keeping CU. */
22519
10b3939b
DJ
22520static int
22521dwarf2_mark_helper (void **slot, void *data)
22522{
22523 struct dwarf2_per_cu_data *per_cu;
22524
22525 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
22526
22527 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22528 reading of the chain. As such dependencies remain valid it is not much
22529 useful to track and undo them during QUIT cleanups. */
22530 if (per_cu->cu == NULL)
22531 return 1;
22532
10b3939b
DJ
22533 if (per_cu->cu->mark)
22534 return 1;
22535 per_cu->cu->mark = 1;
22536
22537 if (per_cu->cu->dependencies != NULL)
22538 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22539
22540 return 1;
22541}
22542
f504f079
DE
22543/* Set the mark field in CU and in every other compilation unit in the
22544 cache that we must keep because we are keeping CU. */
22545
ae038cb0
DJ
22546static void
22547dwarf2_mark (struct dwarf2_cu *cu)
22548{
22549 if (cu->mark)
22550 return;
22551 cu->mark = 1;
10b3939b
DJ
22552 if (cu->dependencies != NULL)
22553 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
22554}
22555
22556static void
22557dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22558{
22559 while (per_cu)
22560 {
22561 per_cu->cu->mark = 0;
22562 per_cu = per_cu->cu->read_in_chain;
22563 }
72bf9492
DJ
22564}
22565
72bf9492
DJ
22566/* Trivial hash function for partial_die_info: the hash value of a DIE
22567 is its offset in .debug_info for this objfile. */
22568
22569static hashval_t
22570partial_die_hash (const void *item)
22571{
9a3c8263
SM
22572 const struct partial_die_info *part_die
22573 = (const struct partial_die_info *) item;
9a619af0 22574
b64f50a1 22575 return part_die->offset.sect_off;
72bf9492
DJ
22576}
22577
22578/* Trivial comparison function for partial_die_info structures: two DIEs
22579 are equal if they have the same offset. */
22580
22581static int
22582partial_die_eq (const void *item_lhs, const void *item_rhs)
22583{
9a3c8263
SM
22584 const struct partial_die_info *part_die_lhs
22585 = (const struct partial_die_info *) item_lhs;
22586 const struct partial_die_info *part_die_rhs
22587 = (const struct partial_die_info *) item_rhs;
9a619af0 22588
b64f50a1 22589 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
22590}
22591
b4f54984
DE
22592static struct cmd_list_element *set_dwarf_cmdlist;
22593static struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
22594
22595static void
b4f54984 22596set_dwarf_cmd (char *args, int from_tty)
ae038cb0 22597{
b4f54984 22598 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 22599 gdb_stdout);
ae038cb0
DJ
22600}
22601
22602static void
b4f54984 22603show_dwarf_cmd (char *args, int from_tty)
6e70227d 22604{
b4f54984 22605 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
22606}
22607
4bf44c1c 22608/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
22609
22610static void
c1bd65d0 22611dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc 22612{
9a3c8263 22613 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
8b70b953 22614 int ix;
8b70b953 22615
626f2d1c
TT
22616 /* Make sure we don't accidentally use dwarf2_per_objfile while
22617 cleaning up. */
22618 dwarf2_per_objfile = NULL;
22619
59b0c7c1
JB
22620 for (ix = 0; ix < data->n_comp_units; ++ix)
22621 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 22622
59b0c7c1 22623 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 22624 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
22625 data->all_type_units[ix]->per_cu.imported_symtabs);
22626 xfree (data->all_type_units);
95554aad 22627
8b70b953 22628 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
22629
22630 if (data->dwo_files)
22631 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
22632 if (data->dwp_file)
22633 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
22634
22635 if (data->dwz_file && data->dwz_file->dwz_bfd)
22636 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
22637}
22638
22639\f
ae2de4f8 22640/* The "save gdb-index" command. */
9291a0cd
TT
22641
22642/* The contents of the hash table we create when building the string
22643 table. */
22644struct strtab_entry
22645{
22646 offset_type offset;
22647 const char *str;
22648};
22649
559a7a62
JK
22650/* Hash function for a strtab_entry.
22651
22652 Function is used only during write_hash_table so no index format backward
22653 compatibility is needed. */
b89be57b 22654
9291a0cd
TT
22655static hashval_t
22656hash_strtab_entry (const void *e)
22657{
9a3c8263 22658 const struct strtab_entry *entry = (const struct strtab_entry *) e;
559a7a62 22659 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
22660}
22661
22662/* Equality function for a strtab_entry. */
b89be57b 22663
9291a0cd
TT
22664static int
22665eq_strtab_entry (const void *a, const void *b)
22666{
9a3c8263
SM
22667 const struct strtab_entry *ea = (const struct strtab_entry *) a;
22668 const struct strtab_entry *eb = (const struct strtab_entry *) b;
9291a0cd
TT
22669 return !strcmp (ea->str, eb->str);
22670}
22671
22672/* Create a strtab_entry hash table. */
b89be57b 22673
9291a0cd
TT
22674static htab_t
22675create_strtab (void)
22676{
22677 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22678 xfree, xcalloc, xfree);
22679}
22680
22681/* Add a string to the constant pool. Return the string's offset in
22682 host order. */
b89be57b 22683
9291a0cd
TT
22684static offset_type
22685add_string (htab_t table, struct obstack *cpool, const char *str)
22686{
22687 void **slot;
22688 struct strtab_entry entry;
22689 struct strtab_entry *result;
22690
22691 entry.str = str;
22692 slot = htab_find_slot (table, &entry, INSERT);
22693 if (*slot)
9a3c8263 22694 result = (struct strtab_entry *) *slot;
9291a0cd
TT
22695 else
22696 {
22697 result = XNEW (struct strtab_entry);
22698 result->offset = obstack_object_size (cpool);
22699 result->str = str;
22700 obstack_grow_str0 (cpool, str);
22701 *slot = result;
22702 }
22703 return result->offset;
22704}
22705
22706/* An entry in the symbol table. */
22707struct symtab_index_entry
22708{
22709 /* The name of the symbol. */
22710 const char *name;
22711 /* The offset of the name in the constant pool. */
22712 offset_type index_offset;
22713 /* A sorted vector of the indices of all the CUs that hold an object
22714 of this name. */
22715 VEC (offset_type) *cu_indices;
22716};
22717
22718/* The symbol table. This is a power-of-2-sized hash table. */
22719struct mapped_symtab
22720{
22721 offset_type n_elements;
22722 offset_type size;
22723 struct symtab_index_entry **data;
22724};
22725
22726/* Hash function for a symtab_index_entry. */
b89be57b 22727
9291a0cd
TT
22728static hashval_t
22729hash_symtab_entry (const void *e)
22730{
9a3c8263
SM
22731 const struct symtab_index_entry *entry
22732 = (const struct symtab_index_entry *) e;
9291a0cd
TT
22733 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22734 sizeof (offset_type) * VEC_length (offset_type,
22735 entry->cu_indices),
22736 0);
22737}
22738
22739/* Equality function for a symtab_index_entry. */
b89be57b 22740
9291a0cd
TT
22741static int
22742eq_symtab_entry (const void *a, const void *b)
22743{
9a3c8263
SM
22744 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
22745 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
9291a0cd
TT
22746 int len = VEC_length (offset_type, ea->cu_indices);
22747 if (len != VEC_length (offset_type, eb->cu_indices))
22748 return 0;
22749 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22750 VEC_address (offset_type, eb->cu_indices),
22751 sizeof (offset_type) * len);
22752}
22753
22754/* Destroy a symtab_index_entry. */
b89be57b 22755
9291a0cd
TT
22756static void
22757delete_symtab_entry (void *p)
22758{
9a3c8263 22759 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
9291a0cd
TT
22760 VEC_free (offset_type, entry->cu_indices);
22761 xfree (entry);
22762}
22763
22764/* Create a hash table holding symtab_index_entry objects. */
b89be57b 22765
9291a0cd 22766static htab_t
3876f04e 22767create_symbol_hash_table (void)
9291a0cd
TT
22768{
22769 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22770 delete_symtab_entry, xcalloc, xfree);
22771}
22772
22773/* Create a new mapped symtab object. */
b89be57b 22774
9291a0cd
TT
22775static struct mapped_symtab *
22776create_mapped_symtab (void)
22777{
22778 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22779 symtab->n_elements = 0;
22780 symtab->size = 1024;
22781 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22782 return symtab;
22783}
22784
22785/* Destroy a mapped_symtab. */
b89be57b 22786
9291a0cd
TT
22787static void
22788cleanup_mapped_symtab (void *p)
22789{
9a3c8263 22790 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
9291a0cd
TT
22791 /* The contents of the array are freed when the other hash table is
22792 destroyed. */
22793 xfree (symtab->data);
22794 xfree (symtab);
22795}
22796
22797/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
22798 the slot.
22799
22800 Function is used only during write_hash_table so no index format backward
22801 compatibility is needed. */
b89be57b 22802
9291a0cd
TT
22803static struct symtab_index_entry **
22804find_slot (struct mapped_symtab *symtab, const char *name)
22805{
559a7a62 22806 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
22807
22808 index = hash & (symtab->size - 1);
22809 step = ((hash * 17) & (symtab->size - 1)) | 1;
22810
22811 for (;;)
22812 {
22813 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22814 return &symtab->data[index];
22815 index = (index + step) & (symtab->size - 1);
22816 }
22817}
22818
22819/* Expand SYMTAB's hash table. */
b89be57b 22820
9291a0cd
TT
22821static void
22822hash_expand (struct mapped_symtab *symtab)
22823{
22824 offset_type old_size = symtab->size;
22825 offset_type i;
22826 struct symtab_index_entry **old_entries = symtab->data;
22827
22828 symtab->size *= 2;
22829 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22830
22831 for (i = 0; i < old_size; ++i)
22832 {
22833 if (old_entries[i])
22834 {
22835 struct symtab_index_entry **slot = find_slot (symtab,
22836 old_entries[i]->name);
22837 *slot = old_entries[i];
22838 }
22839 }
22840
22841 xfree (old_entries);
22842}
22843
156942c7
DE
22844/* Add an entry to SYMTAB. NAME is the name of the symbol.
22845 CU_INDEX is the index of the CU in which the symbol appears.
22846 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 22847
9291a0cd
TT
22848static void
22849add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 22850 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
22851 offset_type cu_index)
22852{
22853 struct symtab_index_entry **slot;
156942c7 22854 offset_type cu_index_and_attrs;
9291a0cd
TT
22855
22856 ++symtab->n_elements;
22857 if (4 * symtab->n_elements / 3 >= symtab->size)
22858 hash_expand (symtab);
22859
22860 slot = find_slot (symtab, name);
22861 if (!*slot)
22862 {
22863 *slot = XNEW (struct symtab_index_entry);
22864 (*slot)->name = name;
156942c7 22865 /* index_offset is set later. */
9291a0cd
TT
22866 (*slot)->cu_indices = NULL;
22867 }
156942c7
DE
22868
22869 cu_index_and_attrs = 0;
22870 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22871 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22872 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22873
22874 /* We don't want to record an index value twice as we want to avoid the
22875 duplication.
22876 We process all global symbols and then all static symbols
22877 (which would allow us to avoid the duplication by only having to check
22878 the last entry pushed), but a symbol could have multiple kinds in one CU.
22879 To keep things simple we don't worry about the duplication here and
22880 sort and uniqufy the list after we've processed all symbols. */
22881 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22882}
22883
22884/* qsort helper routine for uniquify_cu_indices. */
22885
22886static int
22887offset_type_compare (const void *ap, const void *bp)
22888{
22889 offset_type a = *(offset_type *) ap;
22890 offset_type b = *(offset_type *) bp;
22891
22892 return (a > b) - (b > a);
22893}
22894
22895/* Sort and remove duplicates of all symbols' cu_indices lists. */
22896
22897static void
22898uniquify_cu_indices (struct mapped_symtab *symtab)
22899{
22900 int i;
22901
22902 for (i = 0; i < symtab->size; ++i)
22903 {
22904 struct symtab_index_entry *entry = symtab->data[i];
22905
22906 if (entry
22907 && entry->cu_indices != NULL)
22908 {
22909 unsigned int next_to_insert, next_to_check;
22910 offset_type last_value;
22911
22912 qsort (VEC_address (offset_type, entry->cu_indices),
22913 VEC_length (offset_type, entry->cu_indices),
22914 sizeof (offset_type), offset_type_compare);
22915
22916 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22917 next_to_insert = 1;
22918 for (next_to_check = 1;
22919 next_to_check < VEC_length (offset_type, entry->cu_indices);
22920 ++next_to_check)
22921 {
22922 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22923 != last_value)
22924 {
22925 last_value = VEC_index (offset_type, entry->cu_indices,
22926 next_to_check);
22927 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22928 last_value);
22929 ++next_to_insert;
22930 }
22931 }
22932 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22933 }
22934 }
9291a0cd
TT
22935}
22936
22937/* Add a vector of indices to the constant pool. */
b89be57b 22938
9291a0cd 22939static offset_type
3876f04e 22940add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
22941 struct symtab_index_entry *entry)
22942{
22943 void **slot;
22944
3876f04e 22945 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
22946 if (!*slot)
22947 {
22948 offset_type len = VEC_length (offset_type, entry->cu_indices);
22949 offset_type val = MAYBE_SWAP (len);
22950 offset_type iter;
22951 int i;
22952
22953 *slot = entry;
22954 entry->index_offset = obstack_object_size (cpool);
22955
22956 obstack_grow (cpool, &val, sizeof (val));
22957 for (i = 0;
22958 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22959 ++i)
22960 {
22961 val = MAYBE_SWAP (iter);
22962 obstack_grow (cpool, &val, sizeof (val));
22963 }
22964 }
22965 else
22966 {
9a3c8263
SM
22967 struct symtab_index_entry *old_entry
22968 = (struct symtab_index_entry *) *slot;
9291a0cd
TT
22969 entry->index_offset = old_entry->index_offset;
22970 entry = old_entry;
22971 }
22972 return entry->index_offset;
22973}
22974
22975/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22976 constant pool entries going into the obstack CPOOL. */
b89be57b 22977
9291a0cd
TT
22978static void
22979write_hash_table (struct mapped_symtab *symtab,
22980 struct obstack *output, struct obstack *cpool)
22981{
22982 offset_type i;
3876f04e 22983 htab_t symbol_hash_table;
9291a0cd
TT
22984 htab_t str_table;
22985
3876f04e 22986 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 22987 str_table = create_strtab ();
3876f04e 22988
9291a0cd
TT
22989 /* We add all the index vectors to the constant pool first, to
22990 ensure alignment is ok. */
22991 for (i = 0; i < symtab->size; ++i)
22992 {
22993 if (symtab->data[i])
3876f04e 22994 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
22995 }
22996
22997 /* Now write out the hash table. */
22998 for (i = 0; i < symtab->size; ++i)
22999 {
23000 offset_type str_off, vec_off;
23001
23002 if (symtab->data[i])
23003 {
23004 str_off = add_string (str_table, cpool, symtab->data[i]->name);
23005 vec_off = symtab->data[i]->index_offset;
23006 }
23007 else
23008 {
23009 /* While 0 is a valid constant pool index, it is not valid
23010 to have 0 for both offsets. */
23011 str_off = 0;
23012 vec_off = 0;
23013 }
23014
23015 str_off = MAYBE_SWAP (str_off);
23016 vec_off = MAYBE_SWAP (vec_off);
23017
23018 obstack_grow (output, &str_off, sizeof (str_off));
23019 obstack_grow (output, &vec_off, sizeof (vec_off));
23020 }
23021
23022 htab_delete (str_table);
3876f04e 23023 htab_delete (symbol_hash_table);
9291a0cd
TT
23024}
23025
0a5429f6
DE
23026/* Struct to map psymtab to CU index in the index file. */
23027struct psymtab_cu_index_map
23028{
23029 struct partial_symtab *psymtab;
23030 unsigned int cu_index;
23031};
23032
23033static hashval_t
23034hash_psymtab_cu_index (const void *item)
23035{
9a3c8263
SM
23036 const struct psymtab_cu_index_map *map
23037 = (const struct psymtab_cu_index_map *) item;
0a5429f6
DE
23038
23039 return htab_hash_pointer (map->psymtab);
23040}
23041
23042static int
23043eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
23044{
9a3c8263
SM
23045 const struct psymtab_cu_index_map *lhs
23046 = (const struct psymtab_cu_index_map *) item_lhs;
23047 const struct psymtab_cu_index_map *rhs
23048 = (const struct psymtab_cu_index_map *) item_rhs;
0a5429f6
DE
23049
23050 return lhs->psymtab == rhs->psymtab;
23051}
23052
23053/* Helper struct for building the address table. */
23054struct addrmap_index_data
23055{
23056 struct objfile *objfile;
23057 struct obstack *addr_obstack;
23058 htab_t cu_index_htab;
23059
23060 /* Non-zero if the previous_* fields are valid.
23061 We can't write an entry until we see the next entry (since it is only then
23062 that we know the end of the entry). */
23063 int previous_valid;
23064 /* Index of the CU in the table of all CUs in the index file. */
23065 unsigned int previous_cu_index;
0963b4bd 23066 /* Start address of the CU. */
0a5429f6
DE
23067 CORE_ADDR previous_cu_start;
23068};
23069
23070/* Write an address entry to OBSTACK. */
b89be57b 23071
9291a0cd 23072static void
0a5429f6
DE
23073add_address_entry (struct objfile *objfile, struct obstack *obstack,
23074 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 23075{
0a5429f6 23076 offset_type cu_index_to_write;
948f8e3d 23077 gdb_byte addr[8];
9291a0cd
TT
23078 CORE_ADDR baseaddr;
23079
23080 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23081
0a5429f6
DE
23082 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23083 obstack_grow (obstack, addr, 8);
23084 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23085 obstack_grow (obstack, addr, 8);
23086 cu_index_to_write = MAYBE_SWAP (cu_index);
23087 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23088}
23089
23090/* Worker function for traversing an addrmap to build the address table. */
23091
23092static int
23093add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23094{
9a3c8263
SM
23095 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23096 struct partial_symtab *pst = (struct partial_symtab *) obj;
0a5429f6
DE
23097
23098 if (data->previous_valid)
23099 add_address_entry (data->objfile, data->addr_obstack,
23100 data->previous_cu_start, start_addr,
23101 data->previous_cu_index);
23102
23103 data->previous_cu_start = start_addr;
23104 if (pst != NULL)
23105 {
23106 struct psymtab_cu_index_map find_map, *map;
23107 find_map.psymtab = pst;
9a3c8263
SM
23108 map = ((struct psymtab_cu_index_map *)
23109 htab_find (data->cu_index_htab, &find_map));
0a5429f6
DE
23110 gdb_assert (map != NULL);
23111 data->previous_cu_index = map->cu_index;
23112 data->previous_valid = 1;
23113 }
23114 else
23115 data->previous_valid = 0;
23116
23117 return 0;
23118}
23119
23120/* Write OBJFILE's address map to OBSTACK.
23121 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23122 in the index file. */
23123
23124static void
23125write_address_map (struct objfile *objfile, struct obstack *obstack,
23126 htab_t cu_index_htab)
23127{
23128 struct addrmap_index_data addrmap_index_data;
23129
23130 /* When writing the address table, we have to cope with the fact that
23131 the addrmap iterator only provides the start of a region; we have to
23132 wait until the next invocation to get the start of the next region. */
23133
23134 addrmap_index_data.objfile = objfile;
23135 addrmap_index_data.addr_obstack = obstack;
23136 addrmap_index_data.cu_index_htab = cu_index_htab;
23137 addrmap_index_data.previous_valid = 0;
23138
23139 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23140 &addrmap_index_data);
23141
23142 /* It's highly unlikely the last entry (end address = 0xff...ff)
23143 is valid, but we should still handle it.
23144 The end address is recorded as the start of the next region, but that
23145 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23146 anyway. */
23147 if (addrmap_index_data.previous_valid)
23148 add_address_entry (objfile, obstack,
23149 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23150 addrmap_index_data.previous_cu_index);
9291a0cd
TT
23151}
23152
156942c7
DE
23153/* Return the symbol kind of PSYM. */
23154
23155static gdb_index_symbol_kind
23156symbol_kind (struct partial_symbol *psym)
23157{
23158 domain_enum domain = PSYMBOL_DOMAIN (psym);
23159 enum address_class aclass = PSYMBOL_CLASS (psym);
23160
23161 switch (domain)
23162 {
23163 case VAR_DOMAIN:
23164 switch (aclass)
23165 {
23166 case LOC_BLOCK:
23167 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23168 case LOC_TYPEDEF:
23169 return GDB_INDEX_SYMBOL_KIND_TYPE;
23170 case LOC_COMPUTED:
23171 case LOC_CONST_BYTES:
23172 case LOC_OPTIMIZED_OUT:
23173 case LOC_STATIC:
23174 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23175 case LOC_CONST:
23176 /* Note: It's currently impossible to recognize psyms as enum values
23177 short of reading the type info. For now punt. */
23178 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23179 default:
23180 /* There are other LOC_FOO values that one might want to classify
23181 as variables, but dwarf2read.c doesn't currently use them. */
23182 return GDB_INDEX_SYMBOL_KIND_OTHER;
23183 }
23184 case STRUCT_DOMAIN:
23185 return GDB_INDEX_SYMBOL_KIND_TYPE;
23186 default:
23187 return GDB_INDEX_SYMBOL_KIND_OTHER;
23188 }
23189}
23190
9291a0cd 23191/* Add a list of partial symbols to SYMTAB. */
b89be57b 23192
9291a0cd
TT
23193static void
23194write_psymbols (struct mapped_symtab *symtab,
987d643c 23195 htab_t psyms_seen,
9291a0cd
TT
23196 struct partial_symbol **psymp,
23197 int count,
987d643c
TT
23198 offset_type cu_index,
23199 int is_static)
9291a0cd
TT
23200{
23201 for (; count-- > 0; ++psymp)
23202 {
156942c7
DE
23203 struct partial_symbol *psym = *psymp;
23204 void **slot;
987d643c 23205
156942c7 23206 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 23207 error (_("Ada is not currently supported by the index"));
987d643c 23208
987d643c 23209 /* Only add a given psymbol once. */
156942c7 23210 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
23211 if (!*slot)
23212 {
156942c7
DE
23213 gdb_index_symbol_kind kind = symbol_kind (psym);
23214
23215 *slot = psym;
23216 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23217 is_static, kind, cu_index);
987d643c 23218 }
9291a0cd
TT
23219 }
23220}
23221
23222/* Write the contents of an ("unfinished") obstack to FILE. Throw an
23223 exception if there is an error. */
b89be57b 23224
9291a0cd
TT
23225static void
23226write_obstack (FILE *file, struct obstack *obstack)
23227{
23228 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23229 file)
23230 != obstack_object_size (obstack))
23231 error (_("couldn't data write to file"));
23232}
23233
23234/* Unlink a file if the argument is not NULL. */
b89be57b 23235
9291a0cd
TT
23236static void
23237unlink_if_set (void *p)
23238{
9a3c8263 23239 char **filename = (char **) p;
9291a0cd
TT
23240 if (*filename)
23241 unlink (*filename);
23242}
23243
1fd400ff
TT
23244/* A helper struct used when iterating over debug_types. */
23245struct signatured_type_index_data
23246{
23247 struct objfile *objfile;
23248 struct mapped_symtab *symtab;
23249 struct obstack *types_list;
987d643c 23250 htab_t psyms_seen;
1fd400ff
TT
23251 int cu_index;
23252};
23253
23254/* A helper function that writes a single signatured_type to an
23255 obstack. */
b89be57b 23256
1fd400ff
TT
23257static int
23258write_one_signatured_type (void **slot, void *d)
23259{
9a3c8263
SM
23260 struct signatured_type_index_data *info
23261 = (struct signatured_type_index_data *) d;
1fd400ff 23262 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 23263 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
23264 gdb_byte val[8];
23265
23266 write_psymbols (info->symtab,
987d643c 23267 info->psyms_seen,
3e43a32a
MS
23268 info->objfile->global_psymbols.list
23269 + psymtab->globals_offset,
987d643c
TT
23270 psymtab->n_global_syms, info->cu_index,
23271 0);
1fd400ff 23272 write_psymbols (info->symtab,
987d643c 23273 info->psyms_seen,
3e43a32a
MS
23274 info->objfile->static_psymbols.list
23275 + psymtab->statics_offset,
987d643c
TT
23276 psymtab->n_static_syms, info->cu_index,
23277 1);
1fd400ff 23278
b64f50a1
JK
23279 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23280 entry->per_cu.offset.sect_off);
1fd400ff 23281 obstack_grow (info->types_list, val, 8);
3019eac3
DE
23282 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23283 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
23284 obstack_grow (info->types_list, val, 8);
23285 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23286 obstack_grow (info->types_list, val, 8);
23287
23288 ++info->cu_index;
23289
23290 return 1;
23291}
23292
95554aad
TT
23293/* Recurse into all "included" dependencies and write their symbols as
23294 if they appeared in this psymtab. */
23295
23296static void
23297recursively_write_psymbols (struct objfile *objfile,
23298 struct partial_symtab *psymtab,
23299 struct mapped_symtab *symtab,
23300 htab_t psyms_seen,
23301 offset_type cu_index)
23302{
23303 int i;
23304
23305 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23306 if (psymtab->dependencies[i]->user != NULL)
23307 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23308 symtab, psyms_seen, cu_index);
23309
23310 write_psymbols (symtab,
23311 psyms_seen,
23312 objfile->global_psymbols.list + psymtab->globals_offset,
23313 psymtab->n_global_syms, cu_index,
23314 0);
23315 write_psymbols (symtab,
23316 psyms_seen,
23317 objfile->static_psymbols.list + psymtab->statics_offset,
23318 psymtab->n_static_syms, cu_index,
23319 1);
23320}
23321
9291a0cd 23322/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 23323
9291a0cd
TT
23324static void
23325write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23326{
23327 struct cleanup *cleanup;
23328 char *filename, *cleanup_filename;
1fd400ff
TT
23329 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23330 struct obstack cu_list, types_cu_list;
9291a0cd
TT
23331 int i;
23332 FILE *out_file;
23333 struct mapped_symtab *symtab;
23334 offset_type val, size_of_contents, total_len;
23335 struct stat st;
987d643c 23336 htab_t psyms_seen;
0a5429f6
DE
23337 htab_t cu_index_htab;
23338 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 23339
9291a0cd
TT
23340 if (dwarf2_per_objfile->using_index)
23341 error (_("Cannot use an index to create the index"));
23342
8b70b953
TT
23343 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23344 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23345
260b681b
DE
23346 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23347 return;
23348
4262abfb
JK
23349 if (stat (objfile_name (objfile), &st) < 0)
23350 perror_with_name (objfile_name (objfile));
9291a0cd 23351
4262abfb 23352 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
23353 INDEX_SUFFIX, (char *) NULL);
23354 cleanup = make_cleanup (xfree, filename);
23355
614c279d 23356 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
23357 if (!out_file)
23358 error (_("Can't open `%s' for writing"), filename);
23359
23360 cleanup_filename = filename;
23361 make_cleanup (unlink_if_set, &cleanup_filename);
23362
23363 symtab = create_mapped_symtab ();
23364 make_cleanup (cleanup_mapped_symtab, symtab);
23365
23366 obstack_init (&addr_obstack);
23367 make_cleanup_obstack_free (&addr_obstack);
23368
23369 obstack_init (&cu_list);
23370 make_cleanup_obstack_free (&cu_list);
23371
1fd400ff
TT
23372 obstack_init (&types_cu_list);
23373 make_cleanup_obstack_free (&types_cu_list);
23374
987d643c
TT
23375 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23376 NULL, xcalloc, xfree);
96408a79 23377 make_cleanup_htab_delete (psyms_seen);
987d643c 23378
0a5429f6
DE
23379 /* While we're scanning CU's create a table that maps a psymtab pointer
23380 (which is what addrmap records) to its index (which is what is recorded
23381 in the index file). This will later be needed to write the address
23382 table. */
23383 cu_index_htab = htab_create_alloc (100,
23384 hash_psymtab_cu_index,
23385 eq_psymtab_cu_index,
23386 NULL, xcalloc, xfree);
96408a79 23387 make_cleanup_htab_delete (cu_index_htab);
8d749320
SM
23388 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23389 dwarf2_per_objfile->n_comp_units);
0a5429f6
DE
23390 make_cleanup (xfree, psymtab_cu_index_map);
23391
23392 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
23393 work here. Also, the debug_types entries do not appear in
23394 all_comp_units, but only in their own hash table. */
9291a0cd
TT
23395 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23396 {
3e43a32a
MS
23397 struct dwarf2_per_cu_data *per_cu
23398 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 23399 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 23400 gdb_byte val[8];
0a5429f6
DE
23401 struct psymtab_cu_index_map *map;
23402 void **slot;
9291a0cd 23403
92fac807
JK
23404 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23405 It may be referenced from a local scope but in such case it does not
23406 need to be present in .gdb_index. */
23407 if (psymtab == NULL)
23408 continue;
23409
95554aad
TT
23410 if (psymtab->user == NULL)
23411 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 23412
0a5429f6
DE
23413 map = &psymtab_cu_index_map[i];
23414 map->psymtab = psymtab;
23415 map->cu_index = i;
23416 slot = htab_find_slot (cu_index_htab, map, INSERT);
23417 gdb_assert (slot != NULL);
23418 gdb_assert (*slot == NULL);
23419 *slot = map;
9291a0cd 23420
b64f50a1
JK
23421 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23422 per_cu->offset.sect_off);
9291a0cd 23423 obstack_grow (&cu_list, val, 8);
e254ef6a 23424 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
23425 obstack_grow (&cu_list, val, 8);
23426 }
23427
0a5429f6
DE
23428 /* Dump the address map. */
23429 write_address_map (objfile, &addr_obstack, cu_index_htab);
23430
1fd400ff
TT
23431 /* Write out the .debug_type entries, if any. */
23432 if (dwarf2_per_objfile->signatured_types)
23433 {
23434 struct signatured_type_index_data sig_data;
23435
23436 sig_data.objfile = objfile;
23437 sig_data.symtab = symtab;
23438 sig_data.types_list = &types_cu_list;
987d643c 23439 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
23440 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23441 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23442 write_one_signatured_type, &sig_data);
23443 }
23444
156942c7
DE
23445 /* Now that we've processed all symbols we can shrink their cu_indices
23446 lists. */
23447 uniquify_cu_indices (symtab);
23448
9291a0cd
TT
23449 obstack_init (&constant_pool);
23450 make_cleanup_obstack_free (&constant_pool);
23451 obstack_init (&symtab_obstack);
23452 make_cleanup_obstack_free (&symtab_obstack);
23453 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23454
23455 obstack_init (&contents);
23456 make_cleanup_obstack_free (&contents);
1fd400ff 23457 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
23458 total_len = size_of_contents;
23459
23460 /* The version number. */
796a7ff8 23461 val = MAYBE_SWAP (8);
9291a0cd
TT
23462 obstack_grow (&contents, &val, sizeof (val));
23463
23464 /* The offset of the CU list from the start of the file. */
23465 val = MAYBE_SWAP (total_len);
23466 obstack_grow (&contents, &val, sizeof (val));
23467 total_len += obstack_object_size (&cu_list);
23468
1fd400ff
TT
23469 /* The offset of the types CU list from the start of the file. */
23470 val = MAYBE_SWAP (total_len);
23471 obstack_grow (&contents, &val, sizeof (val));
23472 total_len += obstack_object_size (&types_cu_list);
23473
9291a0cd
TT
23474 /* The offset of the address table from the start of the file. */
23475 val = MAYBE_SWAP (total_len);
23476 obstack_grow (&contents, &val, sizeof (val));
23477 total_len += obstack_object_size (&addr_obstack);
23478
23479 /* The offset of the symbol table from the start of the file. */
23480 val = MAYBE_SWAP (total_len);
23481 obstack_grow (&contents, &val, sizeof (val));
23482 total_len += obstack_object_size (&symtab_obstack);
23483
23484 /* The offset of the constant pool from the start of the file. */
23485 val = MAYBE_SWAP (total_len);
23486 obstack_grow (&contents, &val, sizeof (val));
23487 total_len += obstack_object_size (&constant_pool);
23488
23489 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23490
23491 write_obstack (out_file, &contents);
23492 write_obstack (out_file, &cu_list);
1fd400ff 23493 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
23494 write_obstack (out_file, &addr_obstack);
23495 write_obstack (out_file, &symtab_obstack);
23496 write_obstack (out_file, &constant_pool);
23497
23498 fclose (out_file);
23499
23500 /* We want to keep the file, so we set cleanup_filename to NULL
23501 here. See unlink_if_set. */
23502 cleanup_filename = NULL;
23503
23504 do_cleanups (cleanup);
23505}
23506
90476074
TT
23507/* Implementation of the `save gdb-index' command.
23508
23509 Note that the file format used by this command is documented in the
23510 GDB manual. Any changes here must be documented there. */
11570e71 23511
9291a0cd
TT
23512static void
23513save_gdb_index_command (char *arg, int from_tty)
23514{
23515 struct objfile *objfile;
23516
23517 if (!arg || !*arg)
96d19272 23518 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
23519
23520 ALL_OBJFILES (objfile)
23521 {
23522 struct stat st;
23523
23524 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 23525 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
23526 continue;
23527
9a3c8263
SM
23528 dwarf2_per_objfile
23529 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23530 dwarf2_objfile_data_key);
9291a0cd
TT
23531 if (dwarf2_per_objfile)
23532 {
9291a0cd 23533
492d29ea 23534 TRY
9291a0cd
TT
23535 {
23536 write_psymtabs_to_index (objfile, arg);
23537 }
492d29ea
PA
23538 CATCH (except, RETURN_MASK_ERROR)
23539 {
23540 exception_fprintf (gdb_stderr, except,
23541 _("Error while writing index for `%s': "),
23542 objfile_name (objfile));
23543 }
23544 END_CATCH
9291a0cd
TT
23545 }
23546 }
dce234bc
PP
23547}
23548
9291a0cd
TT
23549\f
23550
b4f54984 23551int dwarf_always_disassemble;
9eae7c52
TT
23552
23553static void
b4f54984
DE
23554show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23555 struct cmd_list_element *c, const char *value)
9eae7c52 23556{
3e43a32a
MS
23557 fprintf_filtered (file,
23558 _("Whether to always disassemble "
23559 "DWARF expressions is %s.\n"),
9eae7c52
TT
23560 value);
23561}
23562
900e11f9
JK
23563static void
23564show_check_physname (struct ui_file *file, int from_tty,
23565 struct cmd_list_element *c, const char *value)
23566{
23567 fprintf_filtered (file,
23568 _("Whether to check \"physname\" is %s.\n"),
23569 value);
23570}
23571
6502dd73
DJ
23572void _initialize_dwarf2_read (void);
23573
23574void
23575_initialize_dwarf2_read (void)
23576{
96d19272
JK
23577 struct cmd_list_element *c;
23578
dce234bc 23579 dwarf2_objfile_data_key
c1bd65d0 23580 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 23581
b4f54984
DE
23582 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23583Set DWARF specific variables.\n\
23584Configure DWARF variables such as the cache size"),
23585 &set_dwarf_cmdlist, "maintenance set dwarf ",
ae038cb0
DJ
23586 0/*allow-unknown*/, &maintenance_set_cmdlist);
23587
b4f54984
DE
23588 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23589Show DWARF specific variables\n\
23590Show DWARF variables such as the cache size"),
23591 &show_dwarf_cmdlist, "maintenance show dwarf ",
ae038cb0
DJ
23592 0/*allow-unknown*/, &maintenance_show_cmdlist);
23593
23594 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
b4f54984
DE
23595 &dwarf_max_cache_age, _("\
23596Set the upper bound on the age of cached DWARF compilation units."), _("\
23597Show the upper bound on the age of cached DWARF compilation units."), _("\
7915a72c
AC
23598A higher limit means that cached compilation units will be stored\n\
23599in memory longer, and more total memory will be used. Zero disables\n\
23600caching, which can slow down startup."),
2c5b56ce 23601 NULL,
b4f54984
DE
23602 show_dwarf_max_cache_age,
23603 &set_dwarf_cmdlist,
23604 &show_dwarf_cmdlist);
d97bc12b 23605
9eae7c52 23606 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
b4f54984 23607 &dwarf_always_disassemble, _("\
9eae7c52
TT
23608Set whether `info address' always disassembles DWARF expressions."), _("\
23609Show whether `info address' always disassembles DWARF expressions."), _("\
23610When enabled, DWARF expressions are always printed in an assembly-like\n\
23611syntax. When disabled, expressions will be printed in a more\n\
23612conversational style, when possible."),
23613 NULL,
b4f54984
DE
23614 show_dwarf_always_disassemble,
23615 &set_dwarf_cmdlist,
23616 &show_dwarf_cmdlist);
23617
23618 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23619Set debugging of the DWARF reader."), _("\
23620Show debugging of the DWARF reader."), _("\
23621When enabled (non-zero), debugging messages are printed during DWARF\n\
73be47f5
DE
23622reading and symtab expansion. A value of 1 (one) provides basic\n\
23623information. A value greater than 1 provides more verbose information."),
45cfd468
DE
23624 NULL,
23625 NULL,
23626 &setdebuglist, &showdebuglist);
23627
b4f54984
DE
23628 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23629Set debugging of the DWARF DIE reader."), _("\
23630Show debugging of the DWARF DIE reader."), _("\
d97bc12b
DE
23631When enabled (non-zero), DIEs are dumped after they are read in.\n\
23632The value is the maximum depth to print."),
ccce17b0
YQ
23633 NULL,
23634 NULL,
23635 &setdebuglist, &showdebuglist);
9291a0cd 23636
27e0867f
DE
23637 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23638Set debugging of the dwarf line reader."), _("\
23639Show debugging of the dwarf line reader."), _("\
23640When enabled (non-zero), line number entries are dumped as they are read in.\n\
23641A value of 1 (one) provides basic information.\n\
23642A value greater than 1 provides more verbose information."),
23643 NULL,
23644 NULL,
23645 &setdebuglist, &showdebuglist);
23646
900e11f9
JK
23647 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23648Set cross-checking of \"physname\" code against demangler."), _("\
23649Show cross-checking of \"physname\" code against demangler."), _("\
23650When enabled, GDB's internal \"physname\" code is checked against\n\
23651the demangler."),
23652 NULL, show_check_physname,
23653 &setdebuglist, &showdebuglist);
23654
e615022a
DE
23655 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23656 no_class, &use_deprecated_index_sections, _("\
23657Set whether to use deprecated gdb_index sections."), _("\
23658Show whether to use deprecated gdb_index sections."), _("\
23659When enabled, deprecated .gdb_index sections are used anyway.\n\
23660Normally they are ignored either because of a missing feature or\n\
23661performance issue.\n\
23662Warning: This option must be enabled before gdb reads the file."),
23663 NULL,
23664 NULL,
23665 &setlist, &showlist);
23666
96d19272 23667 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 23668 _("\
fc1a9d6e 23669Save a gdb-index file.\n\
11570e71 23670Usage: save gdb-index DIRECTORY"),
96d19272
JK
23671 &save_cmdlist);
23672 set_cmd_completer (c, filename_completer);
f1e6e072
TT
23673
23674 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23675 &dwarf2_locexpr_funcs);
23676 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23677 &dwarf2_loclist_funcs);
23678
23679 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23680 &dwarf2_block_frame_base_locexpr_funcs);
23681 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23682 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 23683}
This page took 3.843438 seconds and 4 git commands to generate.