doc: Fix substitute-path example
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
32d0add0 3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
53ce3c39 58#include <sys/stat.h>
96d19272 59#include "completer.h"
34eaf542 60#include "vec.h"
98bfdba5 61#include "c-lang.h"
a766d390 62#include "go-lang.h"
98bfdba5 63#include "valprint.h"
3019eac3 64#include "gdbcore.h" /* for gnutarget */
156942c7 65#include "gdb/gdb-index.h"
60d5a603 66#include <ctype.h>
cbb099e8 67#include "gdb_bfd.h"
4357ac6c 68#include "f-lang.h"
05cba821 69#include "source.h"
614c279d 70#include "filestuff.h"
dc294be5 71#include "build-id.h"
22cee43f 72#include "namespace.h"
4c2df51b 73
c906108c 74#include <fcntl.h>
c906108c 75#include <sys/types.h>
d8151005 76
34eaf542
TT
77typedef struct symbol *symbolp;
78DEF_VEC_P (symbolp);
79
73be47f5
DE
80/* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
b4f54984
DE
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83static unsigned int dwarf_read_debug = 0;
45cfd468 84
d97bc12b 85/* When non-zero, dump DIEs after they are read in. */
b4f54984 86static unsigned int dwarf_die_debug = 0;
d97bc12b 87
27e0867f
DE
88/* When non-zero, dump line number entries as they are read in. */
89static unsigned int dwarf_line_debug = 0;
90
900e11f9
JK
91/* When non-zero, cross-check physname against demangler. */
92static int check_physname = 0;
93
481860b3 94/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 95static int use_deprecated_index_sections = 0;
481860b3 96
6502dd73
DJ
97static const struct objfile_data *dwarf2_objfile_data_key;
98
f1e6e072
TT
99/* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101static int dwarf2_locexpr_index;
102static int dwarf2_loclist_index;
103static int dwarf2_locexpr_block_index;
104static int dwarf2_loclist_block_index;
105
73869dc2
DE
106/* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
dce234bc
PP
122struct dwarf2_section_info
123{
73869dc2
DE
124 union
125 {
e5aa3347 126 /* If this is a real section, the bfd section. */
049412e3 127 asection *section;
73869dc2 128 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 129 section. */
73869dc2
DE
130 struct dwarf2_section_info *containing_section;
131 } s;
19ac8c2e 132 /* Pointer to section data, only valid if readin. */
d521ce57 133 const gdb_byte *buffer;
73869dc2 134 /* The size of the section, real or virtual. */
dce234bc 135 bfd_size_type size;
73869dc2
DE
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
be391dca 139 /* True if we have tried to read this section. */
73869dc2
DE
140 char readin;
141 /* True if this is a virtual section, False otherwise.
049412e3 142 This specifies which of s.section and s.containing_section to use. */
73869dc2 143 char is_virtual;
dce234bc
PP
144};
145
8b70b953
TT
146typedef struct dwarf2_section_info dwarf2_section_info_def;
147DEF_VEC_O (dwarf2_section_info_def);
148
9291a0cd
TT
149/* All offsets in the index are of this type. It must be
150 architecture-independent. */
151typedef uint32_t offset_type;
152
153DEF_VEC_I (offset_type);
154
156942c7
DE
155/* Ensure only legit values are used. */
156#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162/* Ensure only legit values are used. */
163#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170/* Ensure we don't use more than the alloted nuber of bits for the CU. */
171#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
9291a0cd
TT
177/* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179struct mapped_index
180{
559a7a62
JK
181 /* Index data format version. */
182 int version;
183
9291a0cd
TT
184 /* The total length of the buffer. */
185 off_t total_size;
b11b1f88 186
9291a0cd
TT
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
b11b1f88 189
9291a0cd
TT
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
b11b1f88 192
3876f04e
DE
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
b11b1f88 195
9291a0cd 196 /* Size in slots, each slot is 2 offset_types. */
3876f04e 197 offset_type symbol_table_slots;
b11b1f88 198
9291a0cd
TT
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201};
202
95554aad
TT
203typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204DEF_VEC_P (dwarf2_per_cu_ptr);
205
52059ffd
TT
206struct tu_stats
207{
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213};
214
9cdd5dbd
DE
215/* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
6502dd73
DJ
218struct dwarf2_per_objfile
219{
dce234bc
PP
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
dce234bc
PP
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
cf2c3c16 225 struct dwarf2_section_info macro;
dce234bc
PP
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
3019eac3 228 struct dwarf2_section_info addr;
dce234bc
PP
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
9291a0cd 231 struct dwarf2_section_info gdb_index;
ae038cb0 232
8b70b953
TT
233 VEC (dwarf2_section_info_def) *types;
234
be391dca
TT
235 /* Back link. */
236 struct objfile *objfile;
237
d467dd73 238 /* Table of all the compilation units. This is used to locate
10b3939b 239 the target compilation unit of a particular reference. */
ae038cb0
DJ
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
1fd400ff 245 /* The number of .debug_types-related CUs. */
d467dd73 246 int n_type_units;
1fd400ff 247
6aa5f3a6
DE
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
a2ce51a0
DE
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
b4dd5633 254 struct signatured_type **all_type_units;
1fd400ff 255
f4dc4d17
DE
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
72dca2f5 259
348e048f
DE
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
f4dc4d17
DE
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
52059ffd 266 struct tu_stats tu_stats;
f4dc4d17
DE
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
3019eac3
DE
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
80626a55
DE
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
36586728
TT
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
72dca2f5
FR
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
9291a0cd 289
ae2de4f8
DE
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
292 unsigned char using_index;
293
ae2de4f8 294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 295 struct mapped_index *index_table;
98bfdba5 296
7b9f3c50 297 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
7b9f3c50
DE
304 htab_t quick_file_names_table;
305
98bfdba5
PA
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
673bfd45 309
dee91e82 310 /* Table mapping type DIEs to their struct type *.
673bfd45 311 This is NULL if not allocated yet.
02142a6c 312 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 313 htab_t die_type_hash;
95554aad
TT
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
527f3840
JK
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
6502dd73
DJ
320};
321
322static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 323
251d32d9 324/* Default names of the debugging sections. */
c906108c 325
233a11ab
CS
326/* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
9cdd5dbd
DE
329static const struct dwarf2_debug_sections dwarf2_elf_names =
330{
251d32d9
TG
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 336 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
3019eac3 340 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
24d3216f
TT
343 { ".gdb_index", ".zgdb_index" },
344 23
251d32d9 345};
c906108c 346
80626a55 347/* List of DWO/DWP sections. */
3019eac3 348
80626a55 349static const struct dwop_section_names
3019eac3
DE
350{
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
09262596
DE
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
3019eac3
DE
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
80626a55
DE
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
3019eac3 362}
80626a55 363dwop_section_names =
3019eac3
DE
364{
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
376};
377
c906108c
SS
378/* local data types */
379
107d2387
AC
380/* The data in a compilation unit header, after target2host
381 translation, looks like this. */
c906108c 382struct comp_unit_head
a738430d 383{
c764a876 384 unsigned int length;
a738430d 385 short version;
a738430d
MK
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
b64f50a1 388 sect_offset abbrev_offset;
57349743 389
a738430d
MK
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
57349743 392
a738430d
MK
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
57349743 395
a738430d
MK
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
b64f50a1 398 sect_offset offset;
57349743 399
d00adf39
DE
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
b64f50a1 402 cu_offset first_die_offset;
a738430d 403};
c906108c 404
3da10d80
KS
405/* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407struct delayed_method_info
408{
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423};
424
425typedef struct delayed_method_info delayed_method_info;
426DEF_VEC_O (delayed_method_info);
427
e7c27a73
DJ
428/* Internal state when decoding a particular compilation unit. */
429struct dwarf2_cu
430{
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
d00adf39 434 /* The header of the compilation unit. */
e7c27a73 435 struct comp_unit_head header;
e142c38c 436
d00adf39
DE
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
e142c38c
DJ
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
b0f35d58
DL
447 const char *producer;
448
e142c38c
DJ
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
433df2d4
DE
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
72bf9492 464
b64f50a1
JK
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
ae038cb0
DJ
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
69d751e3 479 /* Backlink to our per_cu entry. */
ae038cb0
DJ
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
b64f50a1
JK
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
51545339 487 htab_t die_hash;
10b3939b
DJ
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
cb1df416
DJ
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
3da10d80
KS
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
96408a79
SA
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
034e5797
DE
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
3019eac3
DE
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
1dbab08b 520 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
521 ULONGEST addr_base;
522
2e3cf129
DE
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
1dbab08b 525 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 526 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
533 ULONGEST ranges_base;
534
ae038cb0
DJ
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
8be455d7
JK
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 542 unsigned int has_loclist : 1;
ba919b58 543
1b80a9fa
JK
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
ba919b58
TT
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 550 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 551 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
558};
559
10b3939b
DJ
560/* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
28dee7f5 562 read_symtab_private field of the psymtab. */
10b3939b 563
ae038cb0
DJ
564struct dwarf2_per_cu_data
565{
36586728 566 /* The start offset and length of this compilation unit.
45452591 567 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
b64f50a1 571 sect_offset offset;
36586728 572 unsigned int length;
ae038cb0
DJ
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
c764a876 576 unsigned int queued : 1;
ae038cb0 577
0d99eb77
DE
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
0186c6a7
DE
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
3019eac3
DE
587 unsigned int is_debug_types : 1;
588
36586728
TT
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
a2ce51a0
DE
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
7ee85ab1
DE
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
3019eac3
DE
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
8a0459fd 611 struct dwarf2_section_info *section;
348e048f 612
17ea53c3 613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
cc12ce38
DE
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
ae038cb0 616 struct dwarf2_cu *cu;
1c379e20 617
9cdd5dbd
DE
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
621 struct objfile *objfile;
622
fffbe6a8
YQ
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
95554aad 628 or NULL for unread partial units. */
9291a0cd
TT
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
95554aad 634
796a7ff8
DE
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
654};
655
348e048f
DE
656/* Entry in the signatured_types hash table. */
657
658struct signatured_type
659{
42e7ad6c 660 /* The "per_cu" object of this type.
ac9ec31b 661 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
3019eac3 666 /* The type's signature. */
348e048f
DE
667 ULONGEST signature;
668
3019eac3 669 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
0186c6a7
DE
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
ac9ec31b
DE
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
a2ce51a0
DE
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
348e048f
DE
693};
694
0186c6a7
DE
695typedef struct signatured_type *sig_type_ptr;
696DEF_VEC_P (sig_type_ptr);
697
094b34ac
DE
698/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701struct stmt_list_hash
702{
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708};
709
f4dc4d17
DE
710/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713struct type_unit_group
714{
0186c6a7 715 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
8a0459fd 720#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
721 struct dwarf2_per_cu_data per_cu;
722
0186c6a7
DE
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
f4dc4d17 727
43f3e411 728 /* The compunit symtab.
094b34ac 729 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
f4dc4d17 732
094b34ac
DE
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
f4dc4d17
DE
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749};
750
73869dc2 751/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
752
753struct dwo_sections
754{
755 struct dwarf2_section_info abbrev;
3019eac3
DE
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
09262596
DE
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
3019eac3
DE
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
80626a55
DE
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
3019eac3
DE
764 VEC (dwarf2_section_info_def) *types;
765};
766
c88ee1f0 767/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
768
769struct dwo_unit
770{
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 780 struct dwarf2_section_info *section;
3019eac3 781
19ac8c2e 782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788};
789
73869dc2
DE
790/* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794enum dwp_v2_section_ids
795{
796 DW_SECT_MIN = 1
797};
798
80626a55 799/* Data for one DWO file.
57d63ce2
DE
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
3019eac3
DE
809
810struct dwo_file
811{
0ac5b59e 812 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
0ac5b59e
DE
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
3019eac3 820
80626a55
DE
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
3019eac3 824
73869dc2
DE
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
3019eac3
DE
828 struct dwo_sections sections;
829
19c3d4c9
DE
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
3019eac3
DE
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840};
841
80626a55
DE
842/* These sections are what may appear in a DWP file. */
843
844struct dwp_sections
845{
73869dc2 846 /* These are used by both DWP version 1 and 2. */
80626a55
DE
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
73869dc2
DE
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
80626a55
DE
867};
868
73869dc2
DE
869/* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 871
73869dc2 872struct virtual_v1_dwo_sections
80626a55
DE
873{
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 881 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
882 struct dwarf2_section_info info_or_types;
883};
884
73869dc2
DE
885/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890struct virtual_v2_dwo_sections
891{
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914};
915
80626a55
DE
916/* Contents of DWP hash tables. */
917
918struct dwp_hash_table
919{
73869dc2 920 uint32_t version, nr_columns;
80626a55 921 uint32_t nr_units, nr_slots;
73869dc2
DE
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933#define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
80626a55
DE
945};
946
947/* Data for one DWP file. */
948
949struct dwp_file
950{
951 /* Name of the file. */
952 const char *name;
953
73869dc2
DE
954 /* File format version. */
955 int version;
956
93417882 957 /* The bfd. */
80626a55
DE
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
57d63ce2 963 /* Table of CUs in the file. */
80626a55
DE
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
19ac8c2e
DE
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
80626a55 972
73869dc2
DE
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
80626a55
DE
975 unsigned int num_sections;
976 asection **elf_sections;
977};
978
36586728
TT
979/* This represents a '.dwz' file. */
980
981struct dwz_file
982{
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
2ec9a5e0 989 struct dwarf2_section_info gdb_index;
36586728
TT
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993};
994
0963b4bd
MS
995/* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
dee91e82 998 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
999
1000struct die_reader_specs
1001{
a32a8923 1002 /* The bfd of die_section. */
93311388
DE
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
80626a55 1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1009 struct dwo_file *dwo_file;
1010
dee91e82 1011 /* The section the die comes from.
3019eac3 1012 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
d521ce57 1016 const gdb_byte *buffer;
f664829e
DE
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
a2ce51a0
DE
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
93311388
DE
1023};
1024
fd820528 1025/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1026typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1027 const gdb_byte *info_ptr,
dee91e82
DE
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
52059ffd
TT
1032struct file_entry
1033{
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
83769d0b
DE
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
52059ffd
TT
1042};
1043
debd256d
JB
1044/* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047struct line_header
1048{
527f3840
JK
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
debd256d
JB
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
2dc7f7b3 1059 unsigned char maximum_ops_per_instruction;
debd256d
JB
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1076 const char **include_dirs;
debd256d
JB
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
52059ffd 1082 struct file_entry *file_names;
debd256d
JB
1083
1084 /* The start and end of the statement program following this
6502dd73 1085 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1086 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1087};
c906108c
SS
1088
1089/* When we construct a partial symbol table entry we only
0963b4bd 1090 need this much information. */
c906108c
SS
1091struct partial_die_info
1092 {
72bf9492 1093 /* Offset of this DIE. */
b64f50a1 1094 sect_offset offset;
72bf9492
DJ
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
72bf9492
DJ
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
481860b3 1106 unsigned int may_be_inlined : 1;
72bf9492
DJ
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
fa4028e9
JB
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
ff908ebf
AW
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
98bfdba5
PA
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
abc72ce4
DE
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
36586728
TT
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
72bf9492 1130 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1131 sometimes a default name for unnamed DIEs. */
15d034d0 1132 const char *name;
72bf9492 1133
abc72ce4
DE
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
72bf9492
DJ
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
15d034d0 1140 const char *scope;
72bf9492 1141
95554aad
TT
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
72bf9492
DJ
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
72bf9492 1155
93311388 1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1157 DW_AT_sibling, if any. */
abc72ce4
DE
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1160 const gdb_byte *sibling;
72bf9492
DJ
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
b64f50a1 1165 sect_offset spec_offset;
72bf9492
DJ
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1170 };
1171
0963b4bd 1172/* This data structure holds the information of an abbrev. */
c906108c
SS
1173struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183struct attr_abbrev
1184 {
9d25dd43
DE
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1187 };
1188
433df2d4
DE
1189/* Size of abbrev_table.abbrev_hash_table. */
1190#define ABBREV_HASH_SIZE 121
1191
1192/* Top level data structure to contain an abbreviation table. */
1193
1194struct abbrev_table
1195{
f4dc4d17
DE
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
433df2d4
DE
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208};
1209
0963b4bd 1210/* Attributes have a name and a value. */
b60c80d6
DJ
1211struct attribute
1212 {
9d25dd43 1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
b60c80d6
DJ
1221 union
1222 {
15d034d0 1223 const char *str;
b60c80d6 1224 struct dwarf_block *blk;
43bbcdc2
PH
1225 ULONGEST unsnd;
1226 LONGEST snd;
b60c80d6 1227 CORE_ADDR addr;
ac9ec31b 1228 ULONGEST signature;
b60c80d6
DJ
1229 }
1230 u;
1231 };
1232
0963b4bd 1233/* This data structure holds a complete die structure. */
c906108c
SS
1234struct die_info
1235 {
76815b17
DE
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
98bfdba5
PA
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
76815b17 1245
adde2bff
DE
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
76815b17
DE
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
93311388 1252 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1253 sect_offset offset;
78ba4af6
JB
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
4950bc1c 1258 together via their SIBLING fields. */
639d11d3
DC
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
c906108c 1262
b60c80d6
DJ
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
c906108c
SS
1267 };
1268
0963b4bd 1269/* Get at parts of an attribute structure. */
c906108c
SS
1270
1271#define DW_STRING(attr) ((attr)->u.str)
8285870a 1272#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1273#define DW_UNSND(attr) ((attr)->u.unsnd)
1274#define DW_BLOCK(attr) ((attr)->u.blk)
1275#define DW_SND(attr) ((attr)->u.snd)
1276#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1277#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1278
0963b4bd 1279/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1280struct dwarf_block
1281 {
56eb65bd 1282 size_t size;
1d6edc3c
JK
1283
1284 /* Valid only if SIZE is not zero. */
d521ce57 1285 const gdb_byte *data;
c906108c
SS
1286 };
1287
c906108c
SS
1288#ifndef ATTR_ALLOC_CHUNK
1289#define ATTR_ALLOC_CHUNK 4
1290#endif
1291
c906108c
SS
1292/* Allocate fields for structs, unions and enums in this size. */
1293#ifndef DW_FIELD_ALLOC_CHUNK
1294#define DW_FIELD_ALLOC_CHUNK 4
1295#endif
1296
c906108c
SS
1297/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300static int bits_per_byte = 8;
1301
52059ffd
TT
1302struct nextfield
1303{
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308};
1309
1310struct nextfnfield
1311{
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314};
1315
1316struct fnfieldlist
1317{
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321};
1322
1323struct typedef_field_list
1324{
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327};
1328
c906108c
SS
1329/* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332struct field_info
c5aa993b 1333 {
0963b4bd 1334 /* List of data member and baseclasses fields. */
52059ffd 1335 struct nextfield *fields, *baseclasses;
c906108c 1336
7d0ccb61 1337 /* Number of fields (including baseclasses). */
c5aa993b 1338 int nfields;
c906108c 1339
c5aa993b
JM
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
c906108c 1342
c5aa993b
JM
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
c906108c 1345
c5aa993b
JM
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
52059ffd 1348 struct nextfnfield *fnfields;
c906108c 1349
c5aa993b
JM
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
52059ffd 1353 struct fnfieldlist *fnfieldlists;
c906108c 1354
c5aa993b
JM
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
98751a41
JK
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
52059ffd 1360 struct typedef_field_list *typedef_field_list;
98751a41 1361 unsigned typedef_field_list_count;
c5aa993b 1362 };
c906108c 1363
10b3939b
DJ
1364/* One item on the queue of compilation units to read in full symbols
1365 for. */
1366struct dwarf2_queue_item
1367{
1368 struct dwarf2_per_cu_data *per_cu;
95554aad 1369 enum language pretend_language;
10b3939b
DJ
1370 struct dwarf2_queue_item *next;
1371};
1372
1373/* The current queue. */
1374static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
ae038cb0
DJ
1376/* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1381static int dwarf_max_cache_age = 5;
920d2a44 1382static void
b4f54984
DE
1383show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
920d2a44 1385{
3e43a32a 1386 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1387 "DWARF compilation units is %s.\n"),
920d2a44
AC
1388 value);
1389}
4390d890 1390\f
c906108c
SS
1391/* local function prototypes */
1392
a32a8923
DE
1393static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
4efb68b1 1397static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1398
918dd910
JK
1399static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
0018ea6f
DE
1402static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
c67a9c90 1405static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1406
72bf9492
DJ
1407static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1409 int, struct dwarf2_cu *);
c906108c 1410
72bf9492
DJ
1411static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
63d06c5c 1413
72bf9492
DJ
1414static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1416 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1417
5d7cb8df 1418static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1419 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1420 struct dwarf2_cu *cu);
1421
72bf9492
DJ
1422static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
91c24f0a 1424
bc30ff58
JB
1425static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1427 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1428
257e7a09
YQ
1429static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
c906108c 1431
a14ed312 1432static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1433
433df2d4
DE
1434static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440static void abbrev_table_free (struct abbrev_table *);
1441
f4dc4d17
DE
1442static void abbrev_table_free_cleanup (void *);
1443
dee91e82
DE
1444static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
c906108c 1446
f3dd6933 1447static void dwarf2_free_abbrev_table (void *);
c906108c 1448
d521ce57 1449static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1450
dee91e82 1451static struct partial_die_info *load_partial_dies
d521ce57 1452 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1453
d521ce57
TT
1454static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
c906108c 1459
36586728 1460static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1461 struct dwarf2_cu *);
72bf9492
DJ
1462
1463static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
d521ce57
TT
1466static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
a8329558 1469
a1855c1d 1470static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1471
a1855c1d 1472static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1473
a1855c1d 1474static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1475
a1855c1d 1476static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1477
a1855c1d 1478static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1479
d521ce57 1480static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1481 unsigned int *);
c906108c 1482
d521ce57 1483static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1484
1485static LONGEST read_checked_initial_length_and_offset
d521ce57 1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1487 unsigned int *, unsigned int *);
613e1657 1488
d521ce57
TT
1489static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
c764a876
DE
1491 unsigned int *);
1492
d521ce57 1493static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1494
f4dc4d17
DE
1495static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
d521ce57 1498static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1499
d521ce57 1500static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1501
d521ce57
TT
1502static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
4bdf3d34 1505
d521ce57 1506static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1507
d521ce57 1508static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1509
d521ce57 1510static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1511
d521ce57
TT
1512static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
3019eac3
DE
1514 unsigned int *);
1515
d521ce57 1516static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1517 ULONGEST str_index);
3019eac3 1518
e142c38c 1519static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1520
e142c38c
DJ
1521static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
c906108c 1523
348e048f 1524static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1525 unsigned int);
348e048f 1526
7d45c7c3
KB
1527static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1528 struct dwarf2_cu *cu);
1529
05cf31d1
JB
1530static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1531 struct dwarf2_cu *cu);
1532
e142c38c 1533static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1534
e142c38c 1535static struct die_info *die_specification (struct die_info *die,
f2f0e013 1536 struct dwarf2_cu **);
63d06c5c 1537
debd256d
JB
1538static void free_line_header (struct line_header *lh);
1539
3019eac3
DE
1540static struct line_header *dwarf_decode_line_header (unsigned int offset,
1541 struct dwarf2_cu *cu);
debd256d 1542
f3f5162e 1543static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1544 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1545 CORE_ADDR, int decode_mapping);
c906108c 1546
4d663531 1547static void dwarf2_start_subfile (const char *, const char *);
c906108c 1548
43f3e411
DE
1549static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1550 const char *, const char *,
1551 CORE_ADDR);
f4dc4d17 1552
a14ed312 1553static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1554 struct dwarf2_cu *);
c906108c 1555
34eaf542
TT
1556static struct symbol *new_symbol_full (struct die_info *, struct type *,
1557 struct dwarf2_cu *, struct symbol *);
1558
ff39bb5e 1559static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1560 struct dwarf2_cu *);
c906108c 1561
ff39bb5e 1562static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1563 struct type *type,
1564 const char *name,
1565 struct obstack *obstack,
12df843f 1566 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1567 const gdb_byte **bytes,
98bfdba5 1568 struct dwarf2_locexpr_baton **baton);
2df3850c 1569
e7c27a73 1570static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1571
b4ba55a1
JB
1572static int need_gnat_info (struct dwarf2_cu *);
1573
3e43a32a
MS
1574static struct type *die_descriptive_type (struct die_info *,
1575 struct dwarf2_cu *);
b4ba55a1
JB
1576
1577static void set_descriptive_type (struct type *, struct die_info *,
1578 struct dwarf2_cu *);
1579
e7c27a73
DJ
1580static struct type *die_containing_type (struct die_info *,
1581 struct dwarf2_cu *);
c906108c 1582
ff39bb5e 1583static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1584 struct dwarf2_cu *);
c906108c 1585
f792889a 1586static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1587
673bfd45
DE
1588static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1589
0d5cff50 1590static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1591
6e70227d 1592static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1593 const char *suffix, int physname,
1594 struct dwarf2_cu *cu);
63d06c5c 1595
e7c27a73 1596static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1597
348e048f
DE
1598static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1599
e7c27a73 1600static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1601
e7c27a73 1602static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1603
96408a79
SA
1604static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1605
ff013f42
JK
1606static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *, struct partial_symtab *);
1608
a14ed312 1609static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1610 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1611 struct partial_symtab *);
c906108c 1612
fae299cd
DC
1613static void get_scope_pc_bounds (struct die_info *,
1614 CORE_ADDR *, CORE_ADDR *,
1615 struct dwarf2_cu *);
1616
801e3a5b
JB
1617static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1618 CORE_ADDR, struct dwarf2_cu *);
1619
a14ed312 1620static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1621 struct dwarf2_cu *);
c906108c 1622
a14ed312 1623static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1624 struct type *, struct dwarf2_cu *);
c906108c 1625
a14ed312 1626static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1627 struct die_info *, struct type *,
e7c27a73 1628 struct dwarf2_cu *);
c906108c 1629
a14ed312 1630static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1631 struct type *,
1632 struct dwarf2_cu *);
c906108c 1633
134d01f1 1634static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1635
e7c27a73 1636static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1637
e7c27a73 1638static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1639
5d7cb8df
JK
1640static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1641
22cee43f
PMR
1642static struct using_direct **using_directives (enum language);
1643
27aa8d6a
SW
1644static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1645
74921315
KS
1646static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1647
f55ee35c
JK
1648static struct type *read_module_type (struct die_info *die,
1649 struct dwarf2_cu *cu);
1650
38d518c9 1651static const char *namespace_name (struct die_info *die,
e142c38c 1652 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1653
134d01f1 1654static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1655
e7c27a73 1656static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1657
6e70227d 1658static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1659 struct dwarf2_cu *);
1660
bf6af496 1661static struct die_info *read_die_and_siblings_1
d521ce57 1662 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1663 struct die_info *);
639d11d3 1664
dee91e82 1665static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1666 const gdb_byte *info_ptr,
1667 const gdb_byte **new_info_ptr,
639d11d3
DC
1668 struct die_info *parent);
1669
d521ce57
TT
1670static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1671 struct die_info **, const gdb_byte *,
1672 int *, int);
3019eac3 1673
d521ce57
TT
1674static const gdb_byte *read_full_die (const struct die_reader_specs *,
1675 struct die_info **, const gdb_byte *,
1676 int *);
93311388 1677
e7c27a73 1678static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1679
15d034d0
TT
1680static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1681 struct obstack *);
71c25dea 1682
15d034d0 1683static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1684
15d034d0 1685static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1686 struct die_info *die,
1687 struct dwarf2_cu *cu);
1688
ca69b9e6
DE
1689static const char *dwarf2_physname (const char *name, struct die_info *die,
1690 struct dwarf2_cu *cu);
1691
e142c38c 1692static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1693 struct dwarf2_cu **);
9219021c 1694
f39c6ffd 1695static const char *dwarf_tag_name (unsigned int);
c906108c 1696
f39c6ffd 1697static const char *dwarf_attr_name (unsigned int);
c906108c 1698
f39c6ffd 1699static const char *dwarf_form_name (unsigned int);
c906108c 1700
a14ed312 1701static char *dwarf_bool_name (unsigned int);
c906108c 1702
f39c6ffd 1703static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1704
f9aca02d 1705static struct die_info *sibling_die (struct die_info *);
c906108c 1706
d97bc12b
DE
1707static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1708
1709static void dump_die_for_error (struct die_info *);
1710
1711static void dump_die_1 (struct ui_file *, int level, int max_level,
1712 struct die_info *);
c906108c 1713
d97bc12b 1714/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1715
51545339 1716static void store_in_ref_table (struct die_info *,
10b3939b 1717 struct dwarf2_cu *);
c906108c 1718
ff39bb5e 1719static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1720
ff39bb5e 1721static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1722
348e048f 1723static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1724 const struct attribute *,
348e048f
DE
1725 struct dwarf2_cu **);
1726
10b3939b 1727static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1728 const struct attribute *,
f2f0e013 1729 struct dwarf2_cu **);
c906108c 1730
348e048f 1731static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1732 const struct attribute *,
348e048f
DE
1733 struct dwarf2_cu **);
1734
ac9ec31b
DE
1735static struct type *get_signatured_type (struct die_info *, ULONGEST,
1736 struct dwarf2_cu *);
1737
1738static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1739 const struct attribute *,
ac9ec31b
DE
1740 struct dwarf2_cu *);
1741
e5fe5e75 1742static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1743
52dc124a 1744static void read_signatured_type (struct signatured_type *);
348e048f 1745
63e43d3a
PMR
1746static int attr_to_dynamic_prop (const struct attribute *attr,
1747 struct die_info *die, struct dwarf2_cu *cu,
1748 struct dynamic_prop *prop);
1749
c906108c
SS
1750/* memory allocation interface */
1751
7b5a2f43 1752static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1753
b60c80d6 1754static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1755
43f3e411 1756static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1757
6e5a29e1 1758static int attr_form_is_block (const struct attribute *);
8e19ed76 1759
6e5a29e1 1760static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1761
6e5a29e1 1762static int attr_form_is_constant (const struct attribute *);
3690dd37 1763
6e5a29e1 1764static int attr_form_is_ref (const struct attribute *);
7771576e 1765
8cf6f0b1
TT
1766static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1767 struct dwarf2_loclist_baton *baton,
ff39bb5e 1768 const struct attribute *attr);
8cf6f0b1 1769
ff39bb5e 1770static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1771 struct symbol *sym,
f1e6e072
TT
1772 struct dwarf2_cu *cu,
1773 int is_block);
4c2df51b 1774
d521ce57
TT
1775static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1776 const gdb_byte *info_ptr,
1777 struct abbrev_info *abbrev);
4bb7a0a7 1778
72bf9492
DJ
1779static void free_stack_comp_unit (void *);
1780
72bf9492
DJ
1781static hashval_t partial_die_hash (const void *item);
1782
1783static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1784
ae038cb0 1785static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1786 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1787
9816fde3 1788static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1789 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1790
1791static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1792 struct die_info *comp_unit_die,
1793 enum language pretend_language);
93311388 1794
68dc6402 1795static void free_heap_comp_unit (void *);
ae038cb0
DJ
1796
1797static void free_cached_comp_units (void *);
1798
1799static void age_cached_comp_units (void);
1800
dee91e82 1801static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1802
f792889a
DJ
1803static struct type *set_die_type (struct die_info *, struct type *,
1804 struct dwarf2_cu *);
1c379e20 1805
ae038cb0
DJ
1806static void create_all_comp_units (struct objfile *);
1807
0e50663e 1808static int create_all_type_units (struct objfile *);
1fd400ff 1809
95554aad
TT
1810static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1811 enum language);
10b3939b 1812
95554aad
TT
1813static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1814 enum language);
10b3939b 1815
f4dc4d17
DE
1816static void process_full_type_unit (struct dwarf2_per_cu_data *,
1817 enum language);
1818
10b3939b
DJ
1819static void dwarf2_add_dependence (struct dwarf2_cu *,
1820 struct dwarf2_per_cu_data *);
1821
ae038cb0
DJ
1822static void dwarf2_mark (struct dwarf2_cu *);
1823
1824static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1825
b64f50a1 1826static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1827 struct dwarf2_per_cu_data *);
673bfd45 1828
f792889a 1829static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1830
9291a0cd
TT
1831static void dwarf2_release_queue (void *dummy);
1832
95554aad
TT
1833static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1834 enum language pretend_language);
1835
a0f42c21 1836static void process_queue (void);
9291a0cd
TT
1837
1838static void find_file_and_directory (struct die_info *die,
1839 struct dwarf2_cu *cu,
15d034d0 1840 const char **name, const char **comp_dir);
9291a0cd
TT
1841
1842static char *file_full_name (int file, struct line_header *lh,
1843 const char *comp_dir);
1844
d521ce57 1845static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1846 (struct comp_unit_head *header,
1847 struct dwarf2_section_info *section,
d521ce57 1848 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1849 int is_debug_types_section);
1850
fd820528 1851static void init_cutu_and_read_dies
f4dc4d17
DE
1852 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1853 int use_existing_cu, int keep,
3019eac3
DE
1854 die_reader_func_ftype *die_reader_func, void *data);
1855
dee91e82
DE
1856static void init_cutu_and_read_dies_simple
1857 (struct dwarf2_per_cu_data *this_cu,
1858 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1859
673bfd45 1860static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1861
3019eac3
DE
1862static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1863
57d63ce2
DE
1864static struct dwo_unit *lookup_dwo_unit_in_dwp
1865 (struct dwp_file *dwp_file, const char *comp_dir,
1866 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1867
1868static struct dwp_file *get_dwp_file (void);
1869
3019eac3 1870static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1871 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1872
1873static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1874 (struct signatured_type *, const char *, const char *);
3019eac3 1875
89e63ee4
DE
1876static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1877
3019eac3
DE
1878static void free_dwo_file_cleanup (void *);
1879
95554aad
TT
1880static void process_cu_includes (void);
1881
1b80a9fa 1882static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
1883
1884static void free_line_header_voidp (void *arg);
4390d890
DE
1885\f
1886/* Various complaints about symbol reading that don't abort the process. */
1887
1888static void
1889dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1890{
1891 complaint (&symfile_complaints,
1892 _("statement list doesn't fit in .debug_line section"));
1893}
1894
1895static void
1896dwarf2_debug_line_missing_file_complaint (void)
1897{
1898 complaint (&symfile_complaints,
1899 _(".debug_line section has line data without a file"));
1900}
1901
1902static void
1903dwarf2_debug_line_missing_end_sequence_complaint (void)
1904{
1905 complaint (&symfile_complaints,
1906 _(".debug_line section has line "
1907 "program sequence without an end"));
1908}
1909
1910static void
1911dwarf2_complex_location_expr_complaint (void)
1912{
1913 complaint (&symfile_complaints, _("location expression too complex"));
1914}
1915
1916static void
1917dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1918 int arg3)
1919{
1920 complaint (&symfile_complaints,
1921 _("const value length mismatch for '%s', got %d, expected %d"),
1922 arg1, arg2, arg3);
1923}
1924
1925static void
1926dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1927{
1928 complaint (&symfile_complaints,
1929 _("debug info runs off end of %s section"
1930 " [in module %s]"),
a32a8923
DE
1931 get_section_name (section),
1932 get_section_file_name (section));
4390d890 1933}
1b80a9fa 1934
4390d890
DE
1935static void
1936dwarf2_macro_malformed_definition_complaint (const char *arg1)
1937{
1938 complaint (&symfile_complaints,
1939 _("macro debug info contains a "
1940 "malformed macro definition:\n`%s'"),
1941 arg1);
1942}
1943
1944static void
1945dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1946{
1947 complaint (&symfile_complaints,
1948 _("invalid attribute class or form for '%s' in '%s'"),
1949 arg1, arg2);
1950}
527f3840
JK
1951
1952/* Hash function for line_header_hash. */
1953
1954static hashval_t
1955line_header_hash (const struct line_header *ofs)
1956{
1957 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1958}
1959
1960/* Hash function for htab_create_alloc_ex for line_header_hash. */
1961
1962static hashval_t
1963line_header_hash_voidp (const void *item)
1964{
1965 const struct line_header *ofs = item;
1966
1967 return line_header_hash (ofs);
1968}
1969
1970/* Equality function for line_header_hash. */
1971
1972static int
1973line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1974{
1975 const struct line_header *ofs_lhs = item_lhs;
1976 const struct line_header *ofs_rhs = item_rhs;
1977
1978 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1979 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1980}
1981
4390d890 1982\f
9291a0cd
TT
1983#if WORDS_BIGENDIAN
1984
1985/* Convert VALUE between big- and little-endian. */
1986static offset_type
1987byte_swap (offset_type value)
1988{
1989 offset_type result;
1990
1991 result = (value & 0xff) << 24;
1992 result |= (value & 0xff00) << 8;
1993 result |= (value & 0xff0000) >> 8;
1994 result |= (value & 0xff000000) >> 24;
1995 return result;
1996}
1997
1998#define MAYBE_SWAP(V) byte_swap (V)
1999
2000#else
2001#define MAYBE_SWAP(V) (V)
2002#endif /* WORDS_BIGENDIAN */
2003
31aa7e4e
JB
2004/* Read the given attribute value as an address, taking the attribute's
2005 form into account. */
2006
2007static CORE_ADDR
2008attr_value_as_address (struct attribute *attr)
2009{
2010 CORE_ADDR addr;
2011
2012 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2013 {
2014 /* Aside from a few clearly defined exceptions, attributes that
2015 contain an address must always be in DW_FORM_addr form.
2016 Unfortunately, some compilers happen to be violating this
2017 requirement by encoding addresses using other forms, such
2018 as DW_FORM_data4 for example. For those broken compilers,
2019 we try to do our best, without any guarantee of success,
2020 to interpret the address correctly. It would also be nice
2021 to generate a complaint, but that would require us to maintain
2022 a list of legitimate cases where a non-address form is allowed,
2023 as well as update callers to pass in at least the CU's DWARF
2024 version. This is more overhead than what we're willing to
2025 expand for a pretty rare case. */
2026 addr = DW_UNSND (attr);
2027 }
2028 else
2029 addr = DW_ADDR (attr);
2030
2031 return addr;
2032}
2033
9291a0cd
TT
2034/* The suffix for an index file. */
2035#define INDEX_SUFFIX ".gdb-index"
2036
c906108c 2037/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2038 information and return true if we have enough to do something.
2039 NAMES points to the dwarf2 section names, or is NULL if the standard
2040 ELF names are used. */
c906108c
SS
2041
2042int
251d32d9
TG
2043dwarf2_has_info (struct objfile *objfile,
2044 const struct dwarf2_debug_sections *names)
c906108c 2045{
be391dca
TT
2046 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2047 if (!dwarf2_per_objfile)
2048 {
2049 /* Initialize per-objfile state. */
2050 struct dwarf2_per_objfile *data
8d749320 2051 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
9a619af0 2052
be391dca
TT
2053 memset (data, 0, sizeof (*data));
2054 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2055 dwarf2_per_objfile = data;
6502dd73 2056
251d32d9
TG
2057 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2058 (void *) names);
be391dca
TT
2059 dwarf2_per_objfile->objfile = objfile;
2060 }
73869dc2 2061 return (!dwarf2_per_objfile->info.is_virtual
049412e3 2062 && dwarf2_per_objfile->info.s.section != NULL
73869dc2 2063 && !dwarf2_per_objfile->abbrev.is_virtual
049412e3 2064 && dwarf2_per_objfile->abbrev.s.section != NULL);
73869dc2
DE
2065}
2066
2067/* Return the containing section of virtual section SECTION. */
2068
2069static struct dwarf2_section_info *
2070get_containing_section (const struct dwarf2_section_info *section)
2071{
2072 gdb_assert (section->is_virtual);
2073 return section->s.containing_section;
c906108c
SS
2074}
2075
a32a8923
DE
2076/* Return the bfd owner of SECTION. */
2077
2078static struct bfd *
2079get_section_bfd_owner (const struct dwarf2_section_info *section)
2080{
73869dc2
DE
2081 if (section->is_virtual)
2082 {
2083 section = get_containing_section (section);
2084 gdb_assert (!section->is_virtual);
2085 }
049412e3 2086 return section->s.section->owner;
a32a8923
DE
2087}
2088
2089/* Return the bfd section of SECTION.
2090 Returns NULL if the section is not present. */
2091
2092static asection *
2093get_section_bfd_section (const struct dwarf2_section_info *section)
2094{
73869dc2
DE
2095 if (section->is_virtual)
2096 {
2097 section = get_containing_section (section);
2098 gdb_assert (!section->is_virtual);
2099 }
049412e3 2100 return section->s.section;
a32a8923
DE
2101}
2102
2103/* Return the name of SECTION. */
2104
2105static const char *
2106get_section_name (const struct dwarf2_section_info *section)
2107{
2108 asection *sectp = get_section_bfd_section (section);
2109
2110 gdb_assert (sectp != NULL);
2111 return bfd_section_name (get_section_bfd_owner (section), sectp);
2112}
2113
2114/* Return the name of the file SECTION is in. */
2115
2116static const char *
2117get_section_file_name (const struct dwarf2_section_info *section)
2118{
2119 bfd *abfd = get_section_bfd_owner (section);
2120
2121 return bfd_get_filename (abfd);
2122}
2123
2124/* Return the id of SECTION.
2125 Returns 0 if SECTION doesn't exist. */
2126
2127static int
2128get_section_id (const struct dwarf2_section_info *section)
2129{
2130 asection *sectp = get_section_bfd_section (section);
2131
2132 if (sectp == NULL)
2133 return 0;
2134 return sectp->id;
2135}
2136
2137/* Return the flags of SECTION.
73869dc2 2138 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2139
2140static int
2141get_section_flags (const struct dwarf2_section_info *section)
2142{
2143 asection *sectp = get_section_bfd_section (section);
2144
2145 gdb_assert (sectp != NULL);
2146 return bfd_get_section_flags (sectp->owner, sectp);
2147}
2148
251d32d9
TG
2149/* When loading sections, we look either for uncompressed section or for
2150 compressed section names. */
233a11ab
CS
2151
2152static int
251d32d9
TG
2153section_is_p (const char *section_name,
2154 const struct dwarf2_section_names *names)
233a11ab 2155{
251d32d9
TG
2156 if (names->normal != NULL
2157 && strcmp (section_name, names->normal) == 0)
2158 return 1;
2159 if (names->compressed != NULL
2160 && strcmp (section_name, names->compressed) == 0)
2161 return 1;
2162 return 0;
233a11ab
CS
2163}
2164
c906108c
SS
2165/* This function is mapped across the sections and remembers the
2166 offset and size of each of the debugging sections we are interested
2167 in. */
2168
2169static void
251d32d9 2170dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2171{
251d32d9 2172 const struct dwarf2_debug_sections *names;
dc7650b8 2173 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2174
2175 if (vnames == NULL)
2176 names = &dwarf2_elf_names;
2177 else
2178 names = (const struct dwarf2_debug_sections *) vnames;
2179
dc7650b8
JK
2180 if ((aflag & SEC_HAS_CONTENTS) == 0)
2181 {
2182 }
2183 else if (section_is_p (sectp->name, &names->info))
c906108c 2184 {
049412e3 2185 dwarf2_per_objfile->info.s.section = sectp;
dce234bc 2186 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2187 }
251d32d9 2188 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2189 {
049412e3 2190 dwarf2_per_objfile->abbrev.s.section = sectp;
dce234bc 2191 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2192 }
251d32d9 2193 else if (section_is_p (sectp->name, &names->line))
c906108c 2194 {
049412e3 2195 dwarf2_per_objfile->line.s.section = sectp;
dce234bc 2196 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2197 }
251d32d9 2198 else if (section_is_p (sectp->name, &names->loc))
c906108c 2199 {
049412e3 2200 dwarf2_per_objfile->loc.s.section = sectp;
dce234bc 2201 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2202 }
251d32d9 2203 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2204 {
049412e3 2205 dwarf2_per_objfile->macinfo.s.section = sectp;
dce234bc 2206 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2207 }
cf2c3c16
TT
2208 else if (section_is_p (sectp->name, &names->macro))
2209 {
049412e3 2210 dwarf2_per_objfile->macro.s.section = sectp;
cf2c3c16
TT
2211 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2212 }
251d32d9 2213 else if (section_is_p (sectp->name, &names->str))
c906108c 2214 {
049412e3 2215 dwarf2_per_objfile->str.s.section = sectp;
dce234bc 2216 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2217 }
3019eac3
DE
2218 else if (section_is_p (sectp->name, &names->addr))
2219 {
049412e3 2220 dwarf2_per_objfile->addr.s.section = sectp;
3019eac3
DE
2221 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2222 }
251d32d9 2223 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2224 {
049412e3 2225 dwarf2_per_objfile->frame.s.section = sectp;
dce234bc 2226 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2227 }
251d32d9 2228 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2229 {
049412e3 2230 dwarf2_per_objfile->eh_frame.s.section = sectp;
dc7650b8 2231 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2232 }
251d32d9 2233 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2234 {
049412e3 2235 dwarf2_per_objfile->ranges.s.section = sectp;
dce234bc 2236 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2237 }
251d32d9 2238 else if (section_is_p (sectp->name, &names->types))
348e048f 2239 {
8b70b953
TT
2240 struct dwarf2_section_info type_section;
2241
2242 memset (&type_section, 0, sizeof (type_section));
049412e3 2243 type_section.s.section = sectp;
8b70b953
TT
2244 type_section.size = bfd_get_section_size (sectp);
2245
2246 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2247 &type_section);
348e048f 2248 }
251d32d9 2249 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2250 {
049412e3 2251 dwarf2_per_objfile->gdb_index.s.section = sectp;
9291a0cd
TT
2252 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2253 }
dce234bc 2254
b4e1fd61 2255 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
72dca2f5
FR
2256 && bfd_section_vma (abfd, sectp) == 0)
2257 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2258}
2259
fceca515
DE
2260/* A helper function that decides whether a section is empty,
2261 or not present. */
9e0ac564
TT
2262
2263static int
19ac8c2e 2264dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2265{
73869dc2
DE
2266 if (section->is_virtual)
2267 return section->size == 0;
049412e3 2268 return section->s.section == NULL || section->size == 0;
9e0ac564
TT
2269}
2270
3019eac3
DE
2271/* Read the contents of the section INFO.
2272 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2273 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2274 of the DWO file.
dce234bc 2275 If the section is compressed, uncompress it before returning. */
c906108c 2276
dce234bc
PP
2277static void
2278dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2279{
a32a8923 2280 asection *sectp;
3019eac3 2281 bfd *abfd;
dce234bc 2282 gdb_byte *buf, *retbuf;
c906108c 2283
be391dca
TT
2284 if (info->readin)
2285 return;
dce234bc 2286 info->buffer = NULL;
be391dca 2287 info->readin = 1;
188dd5d6 2288
9e0ac564 2289 if (dwarf2_section_empty_p (info))
dce234bc 2290 return;
c906108c 2291
a32a8923 2292 sectp = get_section_bfd_section (info);
3019eac3 2293
73869dc2
DE
2294 /* If this is a virtual section we need to read in the real one first. */
2295 if (info->is_virtual)
2296 {
2297 struct dwarf2_section_info *containing_section =
2298 get_containing_section (info);
2299
2300 gdb_assert (sectp != NULL);
2301 if ((sectp->flags & SEC_RELOC) != 0)
2302 {
2303 error (_("Dwarf Error: DWP format V2 with relocations is not"
2304 " supported in section %s [in module %s]"),
2305 get_section_name (info), get_section_file_name (info));
2306 }
2307 dwarf2_read_section (objfile, containing_section);
2308 /* Other code should have already caught virtual sections that don't
2309 fit. */
2310 gdb_assert (info->virtual_offset + info->size
2311 <= containing_section->size);
2312 /* If the real section is empty or there was a problem reading the
2313 section we shouldn't get here. */
2314 gdb_assert (containing_section->buffer != NULL);
2315 info->buffer = containing_section->buffer + info->virtual_offset;
2316 return;
2317 }
2318
4bf44c1c
TT
2319 /* If the section has relocations, we must read it ourselves.
2320 Otherwise we attach it to the BFD. */
2321 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2322 {
d521ce57 2323 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2324 return;
dce234bc 2325 }
dce234bc 2326
4bf44c1c
TT
2327 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2328 info->buffer = buf;
dce234bc
PP
2329
2330 /* When debugging .o files, we may need to apply relocations; see
2331 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2332 We never compress sections in .o files, so we only need to
2333 try this when the section is not compressed. */
ac8035ab 2334 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2335 if (retbuf != NULL)
2336 {
2337 info->buffer = retbuf;
2338 return;
2339 }
2340
a32a8923
DE
2341 abfd = get_section_bfd_owner (info);
2342 gdb_assert (abfd != NULL);
2343
dce234bc
PP
2344 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2345 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2346 {
2347 error (_("Dwarf Error: Can't read DWARF data"
2348 " in section %s [in module %s]"),
2349 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2350 }
dce234bc
PP
2351}
2352
9e0ac564
TT
2353/* A helper function that returns the size of a section in a safe way.
2354 If you are positive that the section has been read before using the
2355 size, then it is safe to refer to the dwarf2_section_info object's
2356 "size" field directly. In other cases, you must call this
2357 function, because for compressed sections the size field is not set
2358 correctly until the section has been read. */
2359
2360static bfd_size_type
2361dwarf2_section_size (struct objfile *objfile,
2362 struct dwarf2_section_info *info)
2363{
2364 if (!info->readin)
2365 dwarf2_read_section (objfile, info);
2366 return info->size;
2367}
2368
dce234bc 2369/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2370 SECTION_NAME. */
af34e669 2371
dce234bc 2372void
3017a003
TG
2373dwarf2_get_section_info (struct objfile *objfile,
2374 enum dwarf2_section_enum sect,
d521ce57 2375 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2376 bfd_size_type *sizep)
2377{
2378 struct dwarf2_per_objfile *data
2379 = objfile_data (objfile, dwarf2_objfile_data_key);
2380 struct dwarf2_section_info *info;
a3b2a86b
TT
2381
2382 /* We may see an objfile without any DWARF, in which case we just
2383 return nothing. */
2384 if (data == NULL)
2385 {
2386 *sectp = NULL;
2387 *bufp = NULL;
2388 *sizep = 0;
2389 return;
2390 }
3017a003
TG
2391 switch (sect)
2392 {
2393 case DWARF2_DEBUG_FRAME:
2394 info = &data->frame;
2395 break;
2396 case DWARF2_EH_FRAME:
2397 info = &data->eh_frame;
2398 break;
2399 default:
2400 gdb_assert_not_reached ("unexpected section");
2401 }
dce234bc 2402
9e0ac564 2403 dwarf2_read_section (objfile, info);
dce234bc 2404
a32a8923 2405 *sectp = get_section_bfd_section (info);
dce234bc
PP
2406 *bufp = info->buffer;
2407 *sizep = info->size;
2408}
2409
36586728
TT
2410/* A helper function to find the sections for a .dwz file. */
2411
2412static void
2413locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2414{
2415 struct dwz_file *dwz_file = arg;
2416
2417 /* Note that we only support the standard ELF names, because .dwz
2418 is ELF-only (at the time of writing). */
2419 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2420 {
049412e3 2421 dwz_file->abbrev.s.section = sectp;
36586728
TT
2422 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2423 }
2424 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2425 {
049412e3 2426 dwz_file->info.s.section = sectp;
36586728
TT
2427 dwz_file->info.size = bfd_get_section_size (sectp);
2428 }
2429 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2430 {
049412e3 2431 dwz_file->str.s.section = sectp;
36586728
TT
2432 dwz_file->str.size = bfd_get_section_size (sectp);
2433 }
2434 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2435 {
049412e3 2436 dwz_file->line.s.section = sectp;
36586728
TT
2437 dwz_file->line.size = bfd_get_section_size (sectp);
2438 }
2439 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2440 {
049412e3 2441 dwz_file->macro.s.section = sectp;
36586728
TT
2442 dwz_file->macro.size = bfd_get_section_size (sectp);
2443 }
2ec9a5e0
TT
2444 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2445 {
049412e3 2446 dwz_file->gdb_index.s.section = sectp;
2ec9a5e0
TT
2447 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2448 }
36586728
TT
2449}
2450
4db1a1dc
TT
2451/* Open the separate '.dwz' debug file, if needed. Return NULL if
2452 there is no .gnu_debugaltlink section in the file. Error if there
2453 is such a section but the file cannot be found. */
36586728
TT
2454
2455static struct dwz_file *
2456dwarf2_get_dwz_file (void)
2457{
4db1a1dc
TT
2458 bfd *dwz_bfd;
2459 char *data;
36586728
TT
2460 struct cleanup *cleanup;
2461 const char *filename;
2462 struct dwz_file *result;
acd13123 2463 bfd_size_type buildid_len_arg;
dc294be5
TT
2464 size_t buildid_len;
2465 bfd_byte *buildid;
36586728
TT
2466
2467 if (dwarf2_per_objfile->dwz_file != NULL)
2468 return dwarf2_per_objfile->dwz_file;
2469
4db1a1dc
TT
2470 bfd_set_error (bfd_error_no_error);
2471 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2472 &buildid_len_arg, &buildid);
4db1a1dc
TT
2473 if (data == NULL)
2474 {
2475 if (bfd_get_error () == bfd_error_no_error)
2476 return NULL;
2477 error (_("could not read '.gnu_debugaltlink' section: %s"),
2478 bfd_errmsg (bfd_get_error ()));
2479 }
36586728 2480 cleanup = make_cleanup (xfree, data);
dc294be5 2481 make_cleanup (xfree, buildid);
36586728 2482
acd13123
TT
2483 buildid_len = (size_t) buildid_len_arg;
2484
f9d83a0b 2485 filename = (const char *) data;
36586728
TT
2486 if (!IS_ABSOLUTE_PATH (filename))
2487 {
4262abfb 2488 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2489 char *rel;
2490
2491 make_cleanup (xfree, abs);
2492 abs = ldirname (abs);
2493 make_cleanup (xfree, abs);
2494
2495 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2496 make_cleanup (xfree, rel);
2497 filename = rel;
2498 }
2499
dc294be5
TT
2500 /* First try the file name given in the section. If that doesn't
2501 work, try to use the build-id instead. */
36586728 2502 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
dc294be5 2503 if (dwz_bfd != NULL)
36586728 2504 {
dc294be5
TT
2505 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2506 {
2507 gdb_bfd_unref (dwz_bfd);
2508 dwz_bfd = NULL;
2509 }
36586728
TT
2510 }
2511
dc294be5
TT
2512 if (dwz_bfd == NULL)
2513 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2514
2515 if (dwz_bfd == NULL)
2516 error (_("could not find '.gnu_debugaltlink' file for %s"),
2517 objfile_name (dwarf2_per_objfile->objfile));
2518
36586728
TT
2519 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2520 struct dwz_file);
2521 result->dwz_bfd = dwz_bfd;
2522
2523 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2524
2525 do_cleanups (cleanup);
2526
13aaf454 2527 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
8d2cc612 2528 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2529 return result;
2530}
9291a0cd 2531\f
7b9f3c50
DE
2532/* DWARF quick_symbols_functions support. */
2533
2534/* TUs can share .debug_line entries, and there can be a lot more TUs than
2535 unique line tables, so we maintain a separate table of all .debug_line
2536 derived entries to support the sharing.
2537 All the quick functions need is the list of file names. We discard the
2538 line_header when we're done and don't need to record it here. */
2539struct quick_file_names
2540{
094b34ac
DE
2541 /* The data used to construct the hash key. */
2542 struct stmt_list_hash hash;
7b9f3c50
DE
2543
2544 /* The number of entries in file_names, real_names. */
2545 unsigned int num_file_names;
2546
2547 /* The file names from the line table, after being run through
2548 file_full_name. */
2549 const char **file_names;
2550
2551 /* The file names from the line table after being run through
2552 gdb_realpath. These are computed lazily. */
2553 const char **real_names;
2554};
2555
2556/* When using the index (and thus not using psymtabs), each CU has an
2557 object of this type. This is used to hold information needed by
2558 the various "quick" methods. */
2559struct dwarf2_per_cu_quick_data
2560{
2561 /* The file table. This can be NULL if there was no file table
2562 or it's currently not read in.
2563 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2564 struct quick_file_names *file_names;
2565
2566 /* The corresponding symbol table. This is NULL if symbols for this
2567 CU have not yet been read. */
43f3e411 2568 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2569
2570 /* A temporary mark bit used when iterating over all CUs in
2571 expand_symtabs_matching. */
2572 unsigned int mark : 1;
2573
2574 /* True if we've tried to read the file table and found there isn't one.
2575 There will be no point in trying to read it again next time. */
2576 unsigned int no_file_data : 1;
2577};
2578
094b34ac
DE
2579/* Utility hash function for a stmt_list_hash. */
2580
2581static hashval_t
2582hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2583{
2584 hashval_t v = 0;
2585
2586 if (stmt_list_hash->dwo_unit != NULL)
2587 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2588 v += stmt_list_hash->line_offset.sect_off;
2589 return v;
2590}
2591
2592/* Utility equality function for a stmt_list_hash. */
2593
2594static int
2595eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2596 const struct stmt_list_hash *rhs)
2597{
2598 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2599 return 0;
2600 if (lhs->dwo_unit != NULL
2601 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2602 return 0;
2603
2604 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2605}
2606
7b9f3c50
DE
2607/* Hash function for a quick_file_names. */
2608
2609static hashval_t
2610hash_file_name_entry (const void *e)
2611{
2612 const struct quick_file_names *file_data = e;
2613
094b34ac 2614 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2615}
2616
2617/* Equality function for a quick_file_names. */
2618
2619static int
2620eq_file_name_entry (const void *a, const void *b)
2621{
2622 const struct quick_file_names *ea = a;
2623 const struct quick_file_names *eb = b;
2624
094b34ac 2625 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2626}
2627
2628/* Delete function for a quick_file_names. */
2629
2630static void
2631delete_file_name_entry (void *e)
2632{
2633 struct quick_file_names *file_data = e;
2634 int i;
2635
2636 for (i = 0; i < file_data->num_file_names; ++i)
2637 {
2638 xfree ((void*) file_data->file_names[i]);
2639 if (file_data->real_names)
2640 xfree ((void*) file_data->real_names[i]);
2641 }
2642
2643 /* The space for the struct itself lives on objfile_obstack,
2644 so we don't free it here. */
2645}
2646
2647/* Create a quick_file_names hash table. */
2648
2649static htab_t
2650create_quick_file_names_table (unsigned int nr_initial_entries)
2651{
2652 return htab_create_alloc (nr_initial_entries,
2653 hash_file_name_entry, eq_file_name_entry,
2654 delete_file_name_entry, xcalloc, xfree);
2655}
9291a0cd 2656
918dd910
JK
2657/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2658 have to be created afterwards. You should call age_cached_comp_units after
2659 processing PER_CU->CU. dw2_setup must have been already called. */
2660
2661static void
2662load_cu (struct dwarf2_per_cu_data *per_cu)
2663{
3019eac3 2664 if (per_cu->is_debug_types)
e5fe5e75 2665 load_full_type_unit (per_cu);
918dd910 2666 else
95554aad 2667 load_full_comp_unit (per_cu, language_minimal);
918dd910 2668
cc12ce38
DE
2669 if (per_cu->cu == NULL)
2670 return; /* Dummy CU. */
2dc860c0
DE
2671
2672 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2673}
2674
a0f42c21 2675/* Read in the symbols for PER_CU. */
2fdf6df6 2676
9291a0cd 2677static void
a0f42c21 2678dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2679{
2680 struct cleanup *back_to;
2681
f4dc4d17
DE
2682 /* Skip type_unit_groups, reading the type units they contain
2683 is handled elsewhere. */
2684 if (IS_TYPE_UNIT_GROUP (per_cu))
2685 return;
2686
9291a0cd
TT
2687 back_to = make_cleanup (dwarf2_release_queue, NULL);
2688
95554aad 2689 if (dwarf2_per_objfile->using_index
43f3e411 2690 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2691 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2692 {
2693 queue_comp_unit (per_cu, language_minimal);
2694 load_cu (per_cu);
89e63ee4
DE
2695
2696 /* If we just loaded a CU from a DWO, and we're working with an index
2697 that may badly handle TUs, load all the TUs in that DWO as well.
2698 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2699 if (!per_cu->is_debug_types
cc12ce38 2700 && per_cu->cu != NULL
89e63ee4
DE
2701 && per_cu->cu->dwo_unit != NULL
2702 && dwarf2_per_objfile->index_table != NULL
2703 && dwarf2_per_objfile->index_table->version <= 7
2704 /* DWP files aren't supported yet. */
2705 && get_dwp_file () == NULL)
2706 queue_and_load_all_dwo_tus (per_cu);
95554aad 2707 }
9291a0cd 2708
a0f42c21 2709 process_queue ();
9291a0cd
TT
2710
2711 /* Age the cache, releasing compilation units that have not
2712 been used recently. */
2713 age_cached_comp_units ();
2714
2715 do_cleanups (back_to);
2716}
2717
2718/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2719 the objfile from which this CU came. Returns the resulting symbol
2720 table. */
2fdf6df6 2721
43f3e411 2722static struct compunit_symtab *
a0f42c21 2723dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2724{
95554aad 2725 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2726 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
2727 {
2728 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2729 increment_reading_symtab ();
a0f42c21 2730 dw2_do_instantiate_symtab (per_cu);
95554aad 2731 process_cu_includes ();
9291a0cd
TT
2732 do_cleanups (back_to);
2733 }
f194fefb 2734
43f3e411 2735 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2736}
2737
8832e7e3 2738/* Return the CU/TU given its index.
f4dc4d17
DE
2739
2740 This is intended for loops like:
2741
2742 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2743 + dwarf2_per_objfile->n_type_units); ++i)
2744 {
8832e7e3 2745 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2746
2747 ...;
2748 }
2749*/
2fdf6df6 2750
1fd400ff 2751static struct dwarf2_per_cu_data *
8832e7e3 2752dw2_get_cutu (int index)
1fd400ff
TT
2753{
2754 if (index >= dwarf2_per_objfile->n_comp_units)
2755 {
f4dc4d17 2756 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2757 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2758 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2759 }
2760
2761 return dwarf2_per_objfile->all_comp_units[index];
2762}
2763
8832e7e3
DE
2764/* Return the CU given its index.
2765 This differs from dw2_get_cutu in that it's for when you know INDEX
2766 refers to a CU. */
f4dc4d17
DE
2767
2768static struct dwarf2_per_cu_data *
8832e7e3 2769dw2_get_cu (int index)
f4dc4d17 2770{
8832e7e3 2771 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2772
1fd400ff
TT
2773 return dwarf2_per_objfile->all_comp_units[index];
2774}
2775
2ec9a5e0
TT
2776/* A helper for create_cus_from_index that handles a given list of
2777 CUs. */
2fdf6df6 2778
74a0d9f6 2779static void
2ec9a5e0
TT
2780create_cus_from_index_list (struct objfile *objfile,
2781 const gdb_byte *cu_list, offset_type n_elements,
2782 struct dwarf2_section_info *section,
2783 int is_dwz,
2784 int base_offset)
9291a0cd
TT
2785{
2786 offset_type i;
9291a0cd 2787
2ec9a5e0 2788 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2789 {
2790 struct dwarf2_per_cu_data *the_cu;
2791 ULONGEST offset, length;
2792
74a0d9f6
JK
2793 gdb_static_assert (sizeof (ULONGEST) >= 8);
2794 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2795 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2796 cu_list += 2 * 8;
2797
2798 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2799 struct dwarf2_per_cu_data);
b64f50a1 2800 the_cu->offset.sect_off = offset;
9291a0cd
TT
2801 the_cu->length = length;
2802 the_cu->objfile = objfile;
8a0459fd 2803 the_cu->section = section;
9291a0cd
TT
2804 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2805 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2806 the_cu->is_dwz = is_dwz;
2807 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2808 }
9291a0cd
TT
2809}
2810
2ec9a5e0 2811/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2812 the CU objects for this objfile. */
2ec9a5e0 2813
74a0d9f6 2814static void
2ec9a5e0
TT
2815create_cus_from_index (struct objfile *objfile,
2816 const gdb_byte *cu_list, offset_type cu_list_elements,
2817 const gdb_byte *dwz_list, offset_type dwz_elements)
2818{
2819 struct dwz_file *dwz;
2820
2821 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
8d749320
SM
2822 dwarf2_per_objfile->all_comp_units =
2823 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2824 dwarf2_per_objfile->n_comp_units);
2ec9a5e0 2825
74a0d9f6
JK
2826 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2827 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2828
2829 if (dwz_elements == 0)
74a0d9f6 2830 return;
2ec9a5e0
TT
2831
2832 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2833 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2834 cu_list_elements / 2);
2ec9a5e0
TT
2835}
2836
1fd400ff 2837/* Create the signatured type hash table from the index. */
673bfd45 2838
74a0d9f6 2839static void
673bfd45 2840create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2841 struct dwarf2_section_info *section,
673bfd45
DE
2842 const gdb_byte *bytes,
2843 offset_type elements)
1fd400ff
TT
2844{
2845 offset_type i;
673bfd45 2846 htab_t sig_types_hash;
1fd400ff 2847
6aa5f3a6
DE
2848 dwarf2_per_objfile->n_type_units
2849 = dwarf2_per_objfile->n_allocated_type_units
2850 = elements / 3;
8d749320
SM
2851 dwarf2_per_objfile->all_type_units =
2852 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
1fd400ff 2853
673bfd45 2854 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2855
2856 for (i = 0; i < elements; i += 3)
2857 {
52dc124a
DE
2858 struct signatured_type *sig_type;
2859 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2860 void **slot;
2861
74a0d9f6
JK
2862 gdb_static_assert (sizeof (ULONGEST) >= 8);
2863 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2864 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2865 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2866 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2867 bytes += 3 * 8;
2868
52dc124a 2869 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2870 struct signatured_type);
52dc124a 2871 sig_type->signature = signature;
3019eac3
DE
2872 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2873 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2874 sig_type->per_cu.section = section;
52dc124a
DE
2875 sig_type->per_cu.offset.sect_off = offset;
2876 sig_type->per_cu.objfile = objfile;
2877 sig_type->per_cu.v.quick
1fd400ff
TT
2878 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2879 struct dwarf2_per_cu_quick_data);
2880
52dc124a
DE
2881 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2882 *slot = sig_type;
1fd400ff 2883
b4dd5633 2884 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2885 }
2886
673bfd45 2887 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2888}
2889
9291a0cd
TT
2890/* Read the address map data from the mapped index, and use it to
2891 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2892
9291a0cd
TT
2893static void
2894create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2895{
3e29f34a 2896 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd
TT
2897 const gdb_byte *iter, *end;
2898 struct obstack temp_obstack;
2899 struct addrmap *mutable_map;
2900 struct cleanup *cleanup;
2901 CORE_ADDR baseaddr;
2902
2903 obstack_init (&temp_obstack);
2904 cleanup = make_cleanup_obstack_free (&temp_obstack);
2905 mutable_map = addrmap_create_mutable (&temp_obstack);
2906
2907 iter = index->address_table;
2908 end = iter + index->address_table_size;
2909
2910 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2911
2912 while (iter < end)
2913 {
2914 ULONGEST hi, lo, cu_index;
2915 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2916 iter += 8;
2917 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2918 iter += 8;
2919 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2920 iter += 4;
f652bce2 2921
24a55014 2922 if (lo > hi)
f652bce2 2923 {
24a55014
DE
2924 complaint (&symfile_complaints,
2925 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2926 hex_string (lo), hex_string (hi));
24a55014 2927 continue;
f652bce2 2928 }
24a55014
DE
2929
2930 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2931 {
2932 complaint (&symfile_complaints,
2933 _(".gdb_index address table has invalid CU number %u"),
2934 (unsigned) cu_index);
24a55014 2935 continue;
f652bce2 2936 }
24a55014 2937
3e29f34a
MR
2938 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2939 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2940 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
9291a0cd
TT
2941 }
2942
2943 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2944 &objfile->objfile_obstack);
2945 do_cleanups (cleanup);
2946}
2947
59d7bcaf
JK
2948/* The hash function for strings in the mapped index. This is the same as
2949 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2950 implementation. This is necessary because the hash function is tied to the
2951 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2952 SYMBOL_HASH_NEXT.
2953
2954 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2955
9291a0cd 2956static hashval_t
559a7a62 2957mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2958{
2959 const unsigned char *str = (const unsigned char *) p;
2960 hashval_t r = 0;
2961 unsigned char c;
2962
2963 while ((c = *str++) != 0)
559a7a62
JK
2964 {
2965 if (index_version >= 5)
2966 c = tolower (c);
2967 r = r * 67 + c - 113;
2968 }
9291a0cd
TT
2969
2970 return r;
2971}
2972
2973/* Find a slot in the mapped index INDEX for the object named NAME.
2974 If NAME is found, set *VEC_OUT to point to the CU vector in the
2975 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2976
9291a0cd
TT
2977static int
2978find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2979 offset_type **vec_out)
2980{
0cf03b49
JK
2981 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2982 offset_type hash;
9291a0cd 2983 offset_type slot, step;
559a7a62 2984 int (*cmp) (const char *, const char *);
9291a0cd 2985
0cf03b49
JK
2986 if (current_language->la_language == language_cplus
2987 || current_language->la_language == language_java
45280282
IB
2988 || current_language->la_language == language_fortran
2989 || current_language->la_language == language_d)
0cf03b49
JK
2990 {
2991 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2992 not contain any. */
a8719064 2993
72998fb3 2994 if (strchr (name, '(') != NULL)
0cf03b49 2995 {
72998fb3 2996 char *without_params = cp_remove_params (name);
0cf03b49 2997
72998fb3
DE
2998 if (without_params != NULL)
2999 {
3000 make_cleanup (xfree, without_params);
3001 name = without_params;
3002 }
0cf03b49
JK
3003 }
3004 }
3005
559a7a62 3006 /* Index version 4 did not support case insensitive searches. But the
feea76c2 3007 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
3008 simulate our NAME being searched is also lowercased. */
3009 hash = mapped_index_string_hash ((index->version == 4
3010 && case_sensitivity == case_sensitive_off
3011 ? 5 : index->version),
3012 name);
3013
3876f04e
DE
3014 slot = hash & (index->symbol_table_slots - 1);
3015 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 3016 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3017
3018 for (;;)
3019 {
3020 /* Convert a slot number to an offset into the table. */
3021 offset_type i = 2 * slot;
3022 const char *str;
3876f04e 3023 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
3024 {
3025 do_cleanups (back_to);
3026 return 0;
3027 }
9291a0cd 3028
3876f04e 3029 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 3030 if (!cmp (name, str))
9291a0cd
TT
3031 {
3032 *vec_out = (offset_type *) (index->constant_pool
3876f04e 3033 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 3034 do_cleanups (back_to);
9291a0cd
TT
3035 return 1;
3036 }
3037
3876f04e 3038 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
3039 }
3040}
3041
2ec9a5e0
TT
3042/* A helper function that reads the .gdb_index from SECTION and fills
3043 in MAP. FILENAME is the name of the file containing the section;
3044 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3045 ok to use deprecated sections.
3046
3047 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3048 out parameters that are filled in with information about the CU and
3049 TU lists in the section.
3050
3051 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3052
9291a0cd 3053static int
2ec9a5e0
TT
3054read_index_from_section (struct objfile *objfile,
3055 const char *filename,
3056 int deprecated_ok,
3057 struct dwarf2_section_info *section,
3058 struct mapped_index *map,
3059 const gdb_byte **cu_list,
3060 offset_type *cu_list_elements,
3061 const gdb_byte **types_list,
3062 offset_type *types_list_elements)
9291a0cd 3063{
948f8e3d 3064 const gdb_byte *addr;
2ec9a5e0 3065 offset_type version;
b3b272e1 3066 offset_type *metadata;
1fd400ff 3067 int i;
9291a0cd 3068
2ec9a5e0 3069 if (dwarf2_section_empty_p (section))
9291a0cd 3070 return 0;
82430852
JK
3071
3072 /* Older elfutils strip versions could keep the section in the main
3073 executable while splitting it for the separate debug info file. */
a32a8923 3074 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3075 return 0;
3076
2ec9a5e0 3077 dwarf2_read_section (objfile, section);
9291a0cd 3078
2ec9a5e0 3079 addr = section->buffer;
9291a0cd 3080 /* Version check. */
1fd400ff 3081 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3082 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3083 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3084 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3085 indices. */
831adc1f 3086 if (version < 4)
481860b3
GB
3087 {
3088 static int warning_printed = 0;
3089 if (!warning_printed)
3090 {
3091 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3092 filename);
481860b3
GB
3093 warning_printed = 1;
3094 }
3095 return 0;
3096 }
3097 /* Index version 4 uses a different hash function than index version
3098 5 and later.
3099
3100 Versions earlier than 6 did not emit psymbols for inlined
3101 functions. Using these files will cause GDB not to be able to
3102 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3103 indices unless the user has done
3104 "set use-deprecated-index-sections on". */
2ec9a5e0 3105 if (version < 6 && !deprecated_ok)
481860b3
GB
3106 {
3107 static int warning_printed = 0;
3108 if (!warning_printed)
3109 {
e615022a
DE
3110 warning (_("\
3111Skipping deprecated .gdb_index section in %s.\n\
3112Do \"set use-deprecated-index-sections on\" before the file is read\n\
3113to use the section anyway."),
2ec9a5e0 3114 filename);
481860b3
GB
3115 warning_printed = 1;
3116 }
3117 return 0;
3118 }
796a7ff8 3119 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3120 of the TU (for symbols coming from TUs),
3121 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3122 Plus gold-generated indices can have duplicate entries for global symbols,
3123 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3124 These are just performance bugs, and we can't distinguish gdb-generated
3125 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3126
481860b3 3127 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3128 longer backward compatible. */
796a7ff8 3129 if (version > 8)
594e8718 3130 return 0;
9291a0cd 3131
559a7a62 3132 map->version = version;
2ec9a5e0 3133 map->total_size = section->size;
9291a0cd
TT
3134
3135 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3136
3137 i = 0;
2ec9a5e0
TT
3138 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3139 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3140 / 8);
1fd400ff
TT
3141 ++i;
3142
2ec9a5e0
TT
3143 *types_list = addr + MAYBE_SWAP (metadata[i]);
3144 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3145 - MAYBE_SWAP (metadata[i]))
3146 / 8);
987d643c 3147 ++i;
1fd400ff
TT
3148
3149 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3150 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3151 - MAYBE_SWAP (metadata[i]));
3152 ++i;
3153
3876f04e
DE
3154 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3155 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3156 - MAYBE_SWAP (metadata[i]))
3157 / (2 * sizeof (offset_type)));
1fd400ff 3158 ++i;
9291a0cd 3159
f9d83a0b 3160 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3161
2ec9a5e0
TT
3162 return 1;
3163}
3164
3165
3166/* Read the index file. If everything went ok, initialize the "quick"
3167 elements of all the CUs and return 1. Otherwise, return 0. */
3168
3169static int
3170dwarf2_read_index (struct objfile *objfile)
3171{
3172 struct mapped_index local_map, *map;
3173 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3174 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3175 struct dwz_file *dwz;
2ec9a5e0 3176
4262abfb 3177 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3178 use_deprecated_index_sections,
3179 &dwarf2_per_objfile->gdb_index, &local_map,
3180 &cu_list, &cu_list_elements,
3181 &types_list, &types_list_elements))
3182 return 0;
3183
0fefef59 3184 /* Don't use the index if it's empty. */
2ec9a5e0 3185 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3186 return 0;
3187
2ec9a5e0
TT
3188 /* If there is a .dwz file, read it so we can get its CU list as
3189 well. */
4db1a1dc
TT
3190 dwz = dwarf2_get_dwz_file ();
3191 if (dwz != NULL)
2ec9a5e0 3192 {
2ec9a5e0
TT
3193 struct mapped_index dwz_map;
3194 const gdb_byte *dwz_types_ignore;
3195 offset_type dwz_types_elements_ignore;
3196
3197 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3198 1,
3199 &dwz->gdb_index, &dwz_map,
3200 &dwz_list, &dwz_list_elements,
3201 &dwz_types_ignore,
3202 &dwz_types_elements_ignore))
3203 {
3204 warning (_("could not read '.gdb_index' section from %s; skipping"),
3205 bfd_get_filename (dwz->dwz_bfd));
3206 return 0;
3207 }
3208 }
3209
74a0d9f6
JK
3210 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3211 dwz_list_elements);
1fd400ff 3212
8b70b953
TT
3213 if (types_list_elements)
3214 {
3215 struct dwarf2_section_info *section;
3216
3217 /* We can only handle a single .debug_types when we have an
3218 index. */
3219 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3220 return 0;
3221
3222 section = VEC_index (dwarf2_section_info_def,
3223 dwarf2_per_objfile->types, 0);
3224
74a0d9f6
JK
3225 create_signatured_type_table_from_index (objfile, section, types_list,
3226 types_list_elements);
8b70b953 3227 }
9291a0cd 3228
2ec9a5e0
TT
3229 create_addrmap_from_index (objfile, &local_map);
3230
8d749320 3231 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
2ec9a5e0 3232 *map = local_map;
9291a0cd
TT
3233
3234 dwarf2_per_objfile->index_table = map;
3235 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3236 dwarf2_per_objfile->quick_file_names_table =
3237 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3238
3239 return 1;
3240}
3241
3242/* A helper for the "quick" functions which sets the global
3243 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3244
9291a0cd
TT
3245static void
3246dw2_setup (struct objfile *objfile)
3247{
3248 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3249 gdb_assert (dwarf2_per_objfile);
3250}
3251
dee91e82 3252/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3253
dee91e82
DE
3254static void
3255dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3256 const gdb_byte *info_ptr,
dee91e82
DE
3257 struct die_info *comp_unit_die,
3258 int has_children,
3259 void *data)
9291a0cd 3260{
dee91e82
DE
3261 struct dwarf2_cu *cu = reader->cu;
3262 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3263 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3264 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3265 struct line_header *lh;
9291a0cd 3266 struct attribute *attr;
dee91e82 3267 int i;
15d034d0 3268 const char *name, *comp_dir;
7b9f3c50
DE
3269 void **slot;
3270 struct quick_file_names *qfn;
3271 unsigned int line_offset;
9291a0cd 3272
0186c6a7
DE
3273 gdb_assert (! this_cu->is_debug_types);
3274
07261596
TT
3275 /* Our callers never want to match partial units -- instead they
3276 will match the enclosing full CU. */
3277 if (comp_unit_die->tag == DW_TAG_partial_unit)
3278 {
3279 this_cu->v.quick->no_file_data = 1;
3280 return;
3281 }
3282
0186c6a7 3283 lh_cu = this_cu;
7b9f3c50
DE
3284 lh = NULL;
3285 slot = NULL;
3286 line_offset = 0;
dee91e82
DE
3287
3288 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3289 if (attr)
3290 {
7b9f3c50
DE
3291 struct quick_file_names find_entry;
3292
3293 line_offset = DW_UNSND (attr);
3294
3295 /* We may have already read in this line header (TU line header sharing).
3296 If we have we're done. */
094b34ac
DE
3297 find_entry.hash.dwo_unit = cu->dwo_unit;
3298 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3299 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3300 &find_entry, INSERT);
3301 if (*slot != NULL)
3302 {
094b34ac 3303 lh_cu->v.quick->file_names = *slot;
dee91e82 3304 return;
7b9f3c50
DE
3305 }
3306
3019eac3 3307 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3308 }
3309 if (lh == NULL)
3310 {
094b34ac 3311 lh_cu->v.quick->no_file_data = 1;
dee91e82 3312 return;
9291a0cd
TT
3313 }
3314
8d749320 3315 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
094b34ac
DE
3316 qfn->hash.dwo_unit = cu->dwo_unit;
3317 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3318 gdb_assert (slot != NULL);
3319 *slot = qfn;
9291a0cd 3320
dee91e82 3321 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3322
7b9f3c50 3323 qfn->num_file_names = lh->num_file_names;
8d749320
SM
3324 qfn->file_names =
3325 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
9291a0cd 3326 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3327 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3328 qfn->real_names = NULL;
9291a0cd 3329
7b9f3c50 3330 free_line_header (lh);
7b9f3c50 3331
094b34ac 3332 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3333}
3334
3335/* A helper for the "quick" functions which attempts to read the line
3336 table for THIS_CU. */
3337
3338static struct quick_file_names *
e4a48d9d 3339dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3340{
0186c6a7
DE
3341 /* This should never be called for TUs. */
3342 gdb_assert (! this_cu->is_debug_types);
3343 /* Nor type unit groups. */
3344 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3345
dee91e82
DE
3346 if (this_cu->v.quick->file_names != NULL)
3347 return this_cu->v.quick->file_names;
3348 /* If we know there is no line data, no point in looking again. */
3349 if (this_cu->v.quick->no_file_data)
3350 return NULL;
3351
0186c6a7 3352 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3353
3354 if (this_cu->v.quick->no_file_data)
3355 return NULL;
3356 return this_cu->v.quick->file_names;
9291a0cd
TT
3357}
3358
3359/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3360 real path for a given file name from the line table. */
2fdf6df6 3361
9291a0cd 3362static const char *
7b9f3c50
DE
3363dw2_get_real_path (struct objfile *objfile,
3364 struct quick_file_names *qfn, int index)
9291a0cd 3365{
7b9f3c50
DE
3366 if (qfn->real_names == NULL)
3367 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3368 qfn->num_file_names, const char *);
9291a0cd 3369
7b9f3c50
DE
3370 if (qfn->real_names[index] == NULL)
3371 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3372
7b9f3c50 3373 return qfn->real_names[index];
9291a0cd
TT
3374}
3375
3376static struct symtab *
3377dw2_find_last_source_symtab (struct objfile *objfile)
3378{
43f3e411 3379 struct compunit_symtab *cust;
9291a0cd 3380 int index;
ae2de4f8 3381
9291a0cd
TT
3382 dw2_setup (objfile);
3383 index = dwarf2_per_objfile->n_comp_units - 1;
43f3e411
DE
3384 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3385 if (cust == NULL)
3386 return NULL;
3387 return compunit_primary_filetab (cust);
9291a0cd
TT
3388}
3389
7b9f3c50
DE
3390/* Traversal function for dw2_forget_cached_source_info. */
3391
3392static int
3393dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3394{
7b9f3c50 3395 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3396
7b9f3c50 3397 if (file_data->real_names)
9291a0cd 3398 {
7b9f3c50 3399 int i;
9291a0cd 3400
7b9f3c50 3401 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3402 {
7b9f3c50
DE
3403 xfree ((void*) file_data->real_names[i]);
3404 file_data->real_names[i] = NULL;
9291a0cd
TT
3405 }
3406 }
7b9f3c50
DE
3407
3408 return 1;
3409}
3410
3411static void
3412dw2_forget_cached_source_info (struct objfile *objfile)
3413{
3414 dw2_setup (objfile);
3415
3416 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3417 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3418}
3419
f8eba3c6
TT
3420/* Helper function for dw2_map_symtabs_matching_filename that expands
3421 the symtabs and calls the iterator. */
3422
3423static int
3424dw2_map_expand_apply (struct objfile *objfile,
3425 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3426 const char *name, const char *real_path,
f8eba3c6
TT
3427 int (*callback) (struct symtab *, void *),
3428 void *data)
3429{
43f3e411 3430 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3431
3432 /* Don't visit already-expanded CUs. */
43f3e411 3433 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3434 return 0;
3435
3436 /* This may expand more than one symtab, and we want to iterate over
3437 all of them. */
a0f42c21 3438 dw2_instantiate_symtab (per_cu);
f8eba3c6 3439
f5b95b50 3440 return iterate_over_some_symtabs (name, real_path, callback, data,
43f3e411 3441 objfile->compunit_symtabs, last_made);
f8eba3c6
TT
3442}
3443
3444/* Implementation of the map_symtabs_matching_filename method. */
3445
9291a0cd 3446static int
f8eba3c6 3447dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3448 const char *real_path,
f8eba3c6
TT
3449 int (*callback) (struct symtab *, void *),
3450 void *data)
9291a0cd
TT
3451{
3452 int i;
c011a4f4 3453 const char *name_basename = lbasename (name);
9291a0cd
TT
3454
3455 dw2_setup (objfile);
ae2de4f8 3456
848e3e78
DE
3457 /* The rule is CUs specify all the files, including those used by
3458 any TU, so there's no need to scan TUs here. */
f4dc4d17 3459
848e3e78 3460 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3461 {
3462 int j;
8832e7e3 3463 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3464 struct quick_file_names *file_data;
9291a0cd 3465
3d7bb9d9 3466 /* We only need to look at symtabs not already expanded. */
43f3e411 3467 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3468 continue;
3469
e4a48d9d 3470 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3471 if (file_data == NULL)
9291a0cd
TT
3472 continue;
3473
7b9f3c50 3474 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3475 {
7b9f3c50 3476 const char *this_name = file_data->file_names[j];
da235a7c 3477 const char *this_real_name;
9291a0cd 3478
af529f8f 3479 if (compare_filenames_for_search (this_name, name))
9291a0cd 3480 {
f5b95b50 3481 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3482 callback, data))
3483 return 1;
288e77a7 3484 continue;
4aac40c8 3485 }
9291a0cd 3486
c011a4f4
DE
3487 /* Before we invoke realpath, which can get expensive when many
3488 files are involved, do a quick comparison of the basenames. */
3489 if (! basenames_may_differ
3490 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3491 continue;
3492
da235a7c
JK
3493 this_real_name = dw2_get_real_path (objfile, file_data, j);
3494 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3495 {
da235a7c
JK
3496 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3497 callback, data))
3498 return 1;
288e77a7 3499 continue;
da235a7c 3500 }
9291a0cd 3501
da235a7c
JK
3502 if (real_path != NULL)
3503 {
af529f8f
JK
3504 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3505 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3506 if (this_real_name != NULL
af529f8f 3507 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3508 {
f5b95b50 3509 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3510 callback, data))
3511 return 1;
288e77a7 3512 continue;
9291a0cd
TT
3513 }
3514 }
3515 }
3516 }
3517
9291a0cd
TT
3518 return 0;
3519}
3520
da51c347
DE
3521/* Struct used to manage iterating over all CUs looking for a symbol. */
3522
3523struct dw2_symtab_iterator
9291a0cd 3524{
da51c347
DE
3525 /* The internalized form of .gdb_index. */
3526 struct mapped_index *index;
3527 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3528 int want_specific_block;
3529 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3530 Unused if !WANT_SPECIFIC_BLOCK. */
3531 int block_index;
3532 /* The kind of symbol we're looking for. */
3533 domain_enum domain;
3534 /* The list of CUs from the index entry of the symbol,
3535 or NULL if not found. */
3536 offset_type *vec;
3537 /* The next element in VEC to look at. */
3538 int next;
3539 /* The number of elements in VEC, or zero if there is no match. */
3540 int length;
8943b874
DE
3541 /* Have we seen a global version of the symbol?
3542 If so we can ignore all further global instances.
3543 This is to work around gold/15646, inefficient gold-generated
3544 indices. */
3545 int global_seen;
da51c347 3546};
9291a0cd 3547
da51c347
DE
3548/* Initialize the index symtab iterator ITER.
3549 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3550 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3551
9291a0cd 3552static void
da51c347
DE
3553dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3554 struct mapped_index *index,
3555 int want_specific_block,
3556 int block_index,
3557 domain_enum domain,
3558 const char *name)
3559{
3560 iter->index = index;
3561 iter->want_specific_block = want_specific_block;
3562 iter->block_index = block_index;
3563 iter->domain = domain;
3564 iter->next = 0;
8943b874 3565 iter->global_seen = 0;
da51c347
DE
3566
3567 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3568 iter->length = MAYBE_SWAP (*iter->vec);
3569 else
3570 {
3571 iter->vec = NULL;
3572 iter->length = 0;
3573 }
3574}
3575
3576/* Return the next matching CU or NULL if there are no more. */
3577
3578static struct dwarf2_per_cu_data *
3579dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3580{
3581 for ( ; iter->next < iter->length; ++iter->next)
3582 {
3583 offset_type cu_index_and_attrs =
3584 MAYBE_SWAP (iter->vec[iter->next + 1]);
3585 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3586 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3587 int want_static = iter->block_index != GLOBAL_BLOCK;
3588 /* This value is only valid for index versions >= 7. */
3589 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3590 gdb_index_symbol_kind symbol_kind =
3591 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3592 /* Only check the symbol attributes if they're present.
3593 Indices prior to version 7 don't record them,
3594 and indices >= 7 may elide them for certain symbols
3595 (gold does this). */
3596 int attrs_valid =
3597 (iter->index->version >= 7
3598 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3599
3190f0c6
DE
3600 /* Don't crash on bad data. */
3601 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3602 + dwarf2_per_objfile->n_type_units))
3603 {
3604 complaint (&symfile_complaints,
3605 _(".gdb_index entry has bad CU index"
4262abfb
JK
3606 " [in module %s]"),
3607 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3608 continue;
3609 }
3610
8832e7e3 3611 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3612
da51c347 3613 /* Skip if already read in. */
43f3e411 3614 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3615 continue;
3616
8943b874
DE
3617 /* Check static vs global. */
3618 if (attrs_valid)
3619 {
3620 if (iter->want_specific_block
3621 && want_static != is_static)
3622 continue;
3623 /* Work around gold/15646. */
3624 if (!is_static && iter->global_seen)
3625 continue;
3626 if (!is_static)
3627 iter->global_seen = 1;
3628 }
da51c347
DE
3629
3630 /* Only check the symbol's kind if it has one. */
3631 if (attrs_valid)
3632 {
3633 switch (iter->domain)
3634 {
3635 case VAR_DOMAIN:
3636 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3637 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3638 /* Some types are also in VAR_DOMAIN. */
3639 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3640 continue;
3641 break;
3642 case STRUCT_DOMAIN:
3643 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3644 continue;
3645 break;
3646 case LABEL_DOMAIN:
3647 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3648 continue;
3649 break;
3650 default:
3651 break;
3652 }
3653 }
3654
3655 ++iter->next;
3656 return per_cu;
3657 }
3658
3659 return NULL;
3660}
3661
43f3e411 3662static struct compunit_symtab *
da51c347
DE
3663dw2_lookup_symbol (struct objfile *objfile, int block_index,
3664 const char *name, domain_enum domain)
9291a0cd 3665{
43f3e411 3666 struct compunit_symtab *stab_best = NULL;
156942c7
DE
3667 struct mapped_index *index;
3668
9291a0cd
TT
3669 dw2_setup (objfile);
3670
156942c7
DE
3671 index = dwarf2_per_objfile->index_table;
3672
da51c347 3673 /* index is NULL if OBJF_READNOW. */
156942c7 3674 if (index)
9291a0cd 3675 {
da51c347
DE
3676 struct dw2_symtab_iterator iter;
3677 struct dwarf2_per_cu_data *per_cu;
3678
3679 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3680
da51c347 3681 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3682 {
b2e2f908 3683 struct symbol *sym, *with_opaque = NULL;
43f3e411
DE
3684 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3685 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
f194fefb 3686 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 3687
b2e2f908
DE
3688 sym = block_find_symbol (block, name, domain,
3689 block_find_non_opaque_type_preferred,
3690 &with_opaque);
3691
da51c347
DE
3692 /* Some caution must be observed with overloaded functions
3693 and methods, since the index will not contain any overload
3694 information (but NAME might contain it). */
da51c347 3695
b2e2f908
DE
3696 if (sym != NULL
3697 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3698 return stab;
3699 if (with_opaque != NULL
3700 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3701 stab_best = stab;
da51c347
DE
3702
3703 /* Keep looking through other CUs. */
9291a0cd
TT
3704 }
3705 }
9291a0cd 3706
da51c347 3707 return stab_best;
9291a0cd
TT
3708}
3709
3710static void
3711dw2_print_stats (struct objfile *objfile)
3712{
e4a48d9d 3713 int i, total, count;
9291a0cd
TT
3714
3715 dw2_setup (objfile);
e4a48d9d 3716 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3717 count = 0;
e4a48d9d 3718 for (i = 0; i < total; ++i)
9291a0cd 3719 {
8832e7e3 3720 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3721
43f3e411 3722 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3723 ++count;
3724 }
e4a48d9d 3725 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3726 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3727}
3728
779bd270
DE
3729/* This dumps minimal information about the index.
3730 It is called via "mt print objfiles".
3731 One use is to verify .gdb_index has been loaded by the
3732 gdb.dwarf2/gdb-index.exp testcase. */
3733
9291a0cd
TT
3734static void
3735dw2_dump (struct objfile *objfile)
3736{
779bd270
DE
3737 dw2_setup (objfile);
3738 gdb_assert (dwarf2_per_objfile->using_index);
3739 printf_filtered (".gdb_index:");
3740 if (dwarf2_per_objfile->index_table != NULL)
3741 {
3742 printf_filtered (" version %d\n",
3743 dwarf2_per_objfile->index_table->version);
3744 }
3745 else
3746 printf_filtered (" faked for \"readnow\"\n");
3747 printf_filtered ("\n");
9291a0cd
TT
3748}
3749
3750static void
3189cb12
DE
3751dw2_relocate (struct objfile *objfile,
3752 const struct section_offsets *new_offsets,
3753 const struct section_offsets *delta)
9291a0cd
TT
3754{
3755 /* There's nothing to relocate here. */
3756}
3757
3758static void
3759dw2_expand_symtabs_for_function (struct objfile *objfile,
3760 const char *func_name)
3761{
da51c347
DE
3762 struct mapped_index *index;
3763
3764 dw2_setup (objfile);
3765
3766 index = dwarf2_per_objfile->index_table;
3767
3768 /* index is NULL if OBJF_READNOW. */
3769 if (index)
3770 {
3771 struct dw2_symtab_iterator iter;
3772 struct dwarf2_per_cu_data *per_cu;
3773
3774 /* Note: It doesn't matter what we pass for block_index here. */
3775 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3776 func_name);
3777
3778 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3779 dw2_instantiate_symtab (per_cu);
3780 }
9291a0cd
TT
3781}
3782
3783static void
3784dw2_expand_all_symtabs (struct objfile *objfile)
3785{
3786 int i;
3787
3788 dw2_setup (objfile);
1fd400ff
TT
3789
3790 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3791 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3792 {
8832e7e3 3793 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3794
a0f42c21 3795 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3796 }
3797}
3798
3799static void
652a8996
JK
3800dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3801 const char *fullname)
9291a0cd
TT
3802{
3803 int i;
3804
3805 dw2_setup (objfile);
d4637a04
DE
3806
3807 /* We don't need to consider type units here.
3808 This is only called for examining code, e.g. expand_line_sal.
3809 There can be an order of magnitude (or more) more type units
3810 than comp units, and we avoid them if we can. */
3811
3812 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3813 {
3814 int j;
8832e7e3 3815 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 3816 struct quick_file_names *file_data;
9291a0cd 3817
3d7bb9d9 3818 /* We only need to look at symtabs not already expanded. */
43f3e411 3819 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3820 continue;
3821
e4a48d9d 3822 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3823 if (file_data == NULL)
9291a0cd
TT
3824 continue;
3825
7b9f3c50 3826 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3827 {
652a8996
JK
3828 const char *this_fullname = file_data->file_names[j];
3829
3830 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3831 {
a0f42c21 3832 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3833 break;
3834 }
3835 }
3836 }
3837}
3838
9291a0cd 3839static void
ade7ed9e 3840dw2_map_matching_symbols (struct objfile *objfile,
fe978cb0 3841 const char * name, domain_enum domain,
ade7ed9e 3842 int global,
40658b94
PH
3843 int (*callback) (struct block *,
3844 struct symbol *, void *),
2edb89d3
JK
3845 void *data, symbol_compare_ftype *match,
3846 symbol_compare_ftype *ordered_compare)
9291a0cd 3847{
40658b94 3848 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3849 current language is Ada for a non-Ada objfile using GNU index. As Ada
3850 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3851}
3852
3853static void
f8eba3c6
TT
3854dw2_expand_symtabs_matching
3855 (struct objfile *objfile,
206f2a57
DE
3856 expand_symtabs_file_matcher_ftype *file_matcher,
3857 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
276d885b 3858 expand_symtabs_exp_notify_ftype *expansion_notify,
f8eba3c6
TT
3859 enum search_domain kind,
3860 void *data)
9291a0cd
TT
3861{
3862 int i;
3863 offset_type iter;
4b5246aa 3864 struct mapped_index *index;
9291a0cd
TT
3865
3866 dw2_setup (objfile);
ae2de4f8
DE
3867
3868 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3869 if (!dwarf2_per_objfile->index_table)
3870 return;
4b5246aa 3871 index = dwarf2_per_objfile->index_table;
9291a0cd 3872
7b08b9eb 3873 if (file_matcher != NULL)
24c79950
TT
3874 {
3875 struct cleanup *cleanup;
3876 htab_t visited_found, visited_not_found;
3877
3878 visited_found = htab_create_alloc (10,
3879 htab_hash_pointer, htab_eq_pointer,
3880 NULL, xcalloc, xfree);
3881 cleanup = make_cleanup_htab_delete (visited_found);
3882 visited_not_found = htab_create_alloc (10,
3883 htab_hash_pointer, htab_eq_pointer,
3884 NULL, xcalloc, xfree);
3885 make_cleanup_htab_delete (visited_not_found);
3886
848e3e78
DE
3887 /* The rule is CUs specify all the files, including those used by
3888 any TU, so there's no need to scan TUs here. */
3889
3890 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3891 {
3892 int j;
8832e7e3 3893 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
3894 struct quick_file_names *file_data;
3895 void **slot;
7b08b9eb 3896
61d96d7e
DE
3897 QUIT;
3898
24c79950 3899 per_cu->v.quick->mark = 0;
3d7bb9d9 3900
24c79950 3901 /* We only need to look at symtabs not already expanded. */
43f3e411 3902 if (per_cu->v.quick->compunit_symtab)
24c79950 3903 continue;
7b08b9eb 3904
e4a48d9d 3905 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3906 if (file_data == NULL)
3907 continue;
7b08b9eb 3908
24c79950
TT
3909 if (htab_find (visited_not_found, file_data) != NULL)
3910 continue;
3911 else if (htab_find (visited_found, file_data) != NULL)
3912 {
3913 per_cu->v.quick->mark = 1;
3914 continue;
3915 }
3916
3917 for (j = 0; j < file_data->num_file_names; ++j)
3918 {
da235a7c
JK
3919 const char *this_real_name;
3920
fbd9ab74 3921 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3922 {
3923 per_cu->v.quick->mark = 1;
3924 break;
3925 }
da235a7c
JK
3926
3927 /* Before we invoke realpath, which can get expensive when many
3928 files are involved, do a quick comparison of the basenames. */
3929 if (!basenames_may_differ
3930 && !file_matcher (lbasename (file_data->file_names[j]),
3931 data, 1))
3932 continue;
3933
3934 this_real_name = dw2_get_real_path (objfile, file_data, j);
3935 if (file_matcher (this_real_name, data, 0))
3936 {
3937 per_cu->v.quick->mark = 1;
3938 break;
3939 }
24c79950
TT
3940 }
3941
3942 slot = htab_find_slot (per_cu->v.quick->mark
3943 ? visited_found
3944 : visited_not_found,
3945 file_data, INSERT);
3946 *slot = file_data;
3947 }
3948
3949 do_cleanups (cleanup);
3950 }
9291a0cd 3951
3876f04e 3952 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3953 {
3954 offset_type idx = 2 * iter;
3955 const char *name;
3956 offset_type *vec, vec_len, vec_idx;
8943b874 3957 int global_seen = 0;
9291a0cd 3958
61d96d7e
DE
3959 QUIT;
3960
3876f04e 3961 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3962 continue;
3963
3876f04e 3964 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3965
206f2a57 3966 if (! (*symbol_matcher) (name, data))
9291a0cd
TT
3967 continue;
3968
3969 /* The name was matched, now expand corresponding CUs that were
3970 marked. */
4b5246aa 3971 vec = (offset_type *) (index->constant_pool
3876f04e 3972 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3973 vec_len = MAYBE_SWAP (vec[0]);
3974 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3975 {
e254ef6a 3976 struct dwarf2_per_cu_data *per_cu;
156942c7 3977 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
3978 /* This value is only valid for index versions >= 7. */
3979 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
3980 gdb_index_symbol_kind symbol_kind =
3981 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3982 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
3983 /* Only check the symbol attributes if they're present.
3984 Indices prior to version 7 don't record them,
3985 and indices >= 7 may elide them for certain symbols
3986 (gold does this). */
3987 int attrs_valid =
3988 (index->version >= 7
3989 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3990
8943b874
DE
3991 /* Work around gold/15646. */
3992 if (attrs_valid)
3993 {
3994 if (!is_static && global_seen)
3995 continue;
3996 if (!is_static)
3997 global_seen = 1;
3998 }
3999
3190f0c6
DE
4000 /* Only check the symbol's kind if it has one. */
4001 if (attrs_valid)
156942c7
DE
4002 {
4003 switch (kind)
4004 {
4005 case VARIABLES_DOMAIN:
4006 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4007 continue;
4008 break;
4009 case FUNCTIONS_DOMAIN:
4010 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4011 continue;
4012 break;
4013 case TYPES_DOMAIN:
4014 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4015 continue;
4016 break;
4017 default:
4018 break;
4019 }
4020 }
4021
3190f0c6
DE
4022 /* Don't crash on bad data. */
4023 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4024 + dwarf2_per_objfile->n_type_units))
4025 {
4026 complaint (&symfile_complaints,
4027 _(".gdb_index entry has bad CU index"
4262abfb 4028 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
4029 continue;
4030 }
4031
8832e7e3 4032 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 4033 if (file_matcher == NULL || per_cu->v.quick->mark)
276d885b
GB
4034 {
4035 int symtab_was_null =
4036 (per_cu->v.quick->compunit_symtab == NULL);
4037
4038 dw2_instantiate_symtab (per_cu);
4039
4040 if (expansion_notify != NULL
4041 && symtab_was_null
4042 && per_cu->v.quick->compunit_symtab != NULL)
4043 {
4044 expansion_notify (per_cu->v.quick->compunit_symtab,
4045 data);
4046 }
4047 }
9291a0cd
TT
4048 }
4049 }
4050}
4051
43f3e411 4052/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
9703b513
TT
4053 symtab. */
4054
43f3e411
DE
4055static struct compunit_symtab *
4056recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4057 CORE_ADDR pc)
9703b513
TT
4058{
4059 int i;
4060
43f3e411
DE
4061 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4062 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4063 return cust;
9703b513 4064
43f3e411 4065 if (cust->includes == NULL)
a3ec0bb1
DE
4066 return NULL;
4067
43f3e411 4068 for (i = 0; cust->includes[i]; ++i)
9703b513 4069 {
43f3e411 4070 struct compunit_symtab *s = cust->includes[i];
9703b513 4071
43f3e411 4072 s = recursively_find_pc_sect_compunit_symtab (s, pc);
9703b513
TT
4073 if (s != NULL)
4074 return s;
4075 }
4076
4077 return NULL;
4078}
4079
43f3e411
DE
4080static struct compunit_symtab *
4081dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4082 struct bound_minimal_symbol msymbol,
4083 CORE_ADDR pc,
4084 struct obj_section *section,
4085 int warn_if_readin)
9291a0cd
TT
4086{
4087 struct dwarf2_per_cu_data *data;
43f3e411 4088 struct compunit_symtab *result;
9291a0cd
TT
4089
4090 dw2_setup (objfile);
4091
4092 if (!objfile->psymtabs_addrmap)
4093 return NULL;
4094
4095 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4096 if (!data)
4097 return NULL;
4098
43f3e411 4099 if (warn_if_readin && data->v.quick->compunit_symtab)
abebb8b0 4100 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4101 paddress (get_objfile_arch (objfile), pc));
4102
43f3e411
DE
4103 result
4104 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4105 pc);
9703b513
TT
4106 gdb_assert (result != NULL);
4107 return result;
9291a0cd
TT
4108}
4109
9291a0cd 4110static void
44b13c5a 4111dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4112 void *data, int need_fullname)
9291a0cd
TT
4113{
4114 int i;
24c79950
TT
4115 struct cleanup *cleanup;
4116 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4117 NULL, xcalloc, xfree);
9291a0cd 4118
24c79950 4119 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 4120 dw2_setup (objfile);
ae2de4f8 4121
848e3e78
DE
4122 /* The rule is CUs specify all the files, including those used by
4123 any TU, so there's no need to scan TUs here.
4124 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4125
848e3e78 4126 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950 4127 {
8832e7e3 4128 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
24c79950 4129
43f3e411 4130 if (per_cu->v.quick->compunit_symtab)
24c79950
TT
4131 {
4132 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4133 INSERT);
4134
4135 *slot = per_cu->v.quick->file_names;
4136 }
4137 }
4138
848e3e78 4139 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4140 {
4141 int j;
8832e7e3 4142 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 4143 struct quick_file_names *file_data;
24c79950 4144 void **slot;
9291a0cd 4145
3d7bb9d9 4146 /* We only need to look at symtabs not already expanded. */
43f3e411 4147 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4148 continue;
4149
e4a48d9d 4150 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4151 if (file_data == NULL)
9291a0cd
TT
4152 continue;
4153
24c79950
TT
4154 slot = htab_find_slot (visited, file_data, INSERT);
4155 if (*slot)
4156 {
4157 /* Already visited. */
4158 continue;
4159 }
4160 *slot = file_data;
4161
7b9f3c50 4162 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4163 {
74e2f255
DE
4164 const char *this_real_name;
4165
4166 if (need_fullname)
4167 this_real_name = dw2_get_real_path (objfile, file_data, j);
4168 else
4169 this_real_name = NULL;
7b9f3c50 4170 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4171 }
4172 }
24c79950
TT
4173
4174 do_cleanups (cleanup);
9291a0cd
TT
4175}
4176
4177static int
4178dw2_has_symbols (struct objfile *objfile)
4179{
4180 return 1;
4181}
4182
4183const struct quick_symbol_functions dwarf2_gdb_index_functions =
4184{
4185 dw2_has_symbols,
4186 dw2_find_last_source_symtab,
4187 dw2_forget_cached_source_info,
f8eba3c6 4188 dw2_map_symtabs_matching_filename,
9291a0cd 4189 dw2_lookup_symbol,
9291a0cd
TT
4190 dw2_print_stats,
4191 dw2_dump,
4192 dw2_relocate,
4193 dw2_expand_symtabs_for_function,
4194 dw2_expand_all_symtabs,
652a8996 4195 dw2_expand_symtabs_with_fullname,
40658b94 4196 dw2_map_matching_symbols,
9291a0cd 4197 dw2_expand_symtabs_matching,
43f3e411 4198 dw2_find_pc_sect_compunit_symtab,
9291a0cd
TT
4199 dw2_map_symbol_filenames
4200};
4201
4202/* Initialize for reading DWARF for this objfile. Return 0 if this
4203 file will use psymtabs, or 1 if using the GNU index. */
4204
4205int
4206dwarf2_initialize_objfile (struct objfile *objfile)
4207{
4208 /* If we're about to read full symbols, don't bother with the
4209 indices. In this case we also don't care if some other debug
4210 format is making psymtabs, because they are all about to be
4211 expanded anyway. */
4212 if ((objfile->flags & OBJF_READNOW))
4213 {
4214 int i;
4215
4216 dwarf2_per_objfile->using_index = 1;
4217 create_all_comp_units (objfile);
0e50663e 4218 create_all_type_units (objfile);
7b9f3c50
DE
4219 dwarf2_per_objfile->quick_file_names_table =
4220 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4221
1fd400ff 4222 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4223 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4224 {
8832e7e3 4225 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4226
e254ef6a
DE
4227 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4228 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4229 }
4230
4231 /* Return 1 so that gdb sees the "quick" functions. However,
4232 these functions will be no-ops because we will have expanded
4233 all symtabs. */
4234 return 1;
4235 }
4236
4237 if (dwarf2_read_index (objfile))
4238 return 1;
4239
9291a0cd
TT
4240 return 0;
4241}
4242
4243\f
4244
dce234bc
PP
4245/* Build a partial symbol table. */
4246
4247void
f29dff0a 4248dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4249{
c9bf0622 4250
f29dff0a 4251 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4252 {
4253 init_psymbol_list (objfile, 1024);
4254 }
4255
492d29ea 4256 TRY
c9bf0622
TT
4257 {
4258 /* This isn't really ideal: all the data we allocate on the
4259 objfile's obstack is still uselessly kept around. However,
4260 freeing it seems unsafe. */
4261 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4262
4263 dwarf2_build_psymtabs_hard (objfile);
4264 discard_cleanups (cleanups);
4265 }
492d29ea
PA
4266 CATCH (except, RETURN_MASK_ERROR)
4267 {
4268 exception_print (gdb_stderr, except);
4269 }
4270 END_CATCH
c906108c 4271}
c906108c 4272
1ce1cefd
DE
4273/* Return the total length of the CU described by HEADER. */
4274
4275static unsigned int
4276get_cu_length (const struct comp_unit_head *header)
4277{
4278 return header->initial_length_size + header->length;
4279}
4280
45452591
DE
4281/* Return TRUE if OFFSET is within CU_HEADER. */
4282
4283static inline int
b64f50a1 4284offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4285{
b64f50a1 4286 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4287 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4288
b64f50a1 4289 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4290}
4291
3b80fe9b
DE
4292/* Find the base address of the compilation unit for range lists and
4293 location lists. It will normally be specified by DW_AT_low_pc.
4294 In DWARF-3 draft 4, the base address could be overridden by
4295 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4296 compilation units with discontinuous ranges. */
4297
4298static void
4299dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4300{
4301 struct attribute *attr;
4302
4303 cu->base_known = 0;
4304 cu->base_address = 0;
4305
4306 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4307 if (attr)
4308 {
31aa7e4e 4309 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4310 cu->base_known = 1;
4311 }
4312 else
4313 {
4314 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4315 if (attr)
4316 {
31aa7e4e 4317 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4318 cu->base_known = 1;
4319 }
4320 }
4321}
4322
93311388
DE
4323/* Read in the comp unit header information from the debug_info at info_ptr.
4324 NOTE: This leaves members offset, first_die_offset to be filled in
4325 by the caller. */
107d2387 4326
d521ce57 4327static const gdb_byte *
107d2387 4328read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 4329 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
4330{
4331 int signed_addr;
891d2f0b 4332 unsigned int bytes_read;
c764a876
DE
4333
4334 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4335 cu_header->initial_length_size = bytes_read;
4336 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4337 info_ptr += bytes_read;
107d2387
AC
4338 cu_header->version = read_2_bytes (abfd, info_ptr);
4339 info_ptr += 2;
b64f50a1
JK
4340 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4341 &bytes_read);
613e1657 4342 info_ptr += bytes_read;
107d2387
AC
4343 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4344 info_ptr += 1;
4345 signed_addr = bfd_get_sign_extend_vma (abfd);
4346 if (signed_addr < 0)
8e65ff28 4347 internal_error (__FILE__, __LINE__,
e2e0b3e5 4348 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4349 cu_header->signed_addr_p = signed_addr;
c764a876 4350
107d2387
AC
4351 return info_ptr;
4352}
4353
36586728
TT
4354/* Helper function that returns the proper abbrev section for
4355 THIS_CU. */
4356
4357static struct dwarf2_section_info *
4358get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4359{
4360 struct dwarf2_section_info *abbrev;
4361
4362 if (this_cu->is_dwz)
4363 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4364 else
4365 abbrev = &dwarf2_per_objfile->abbrev;
4366
4367 return abbrev;
4368}
4369
9ff913ba
DE
4370/* Subroutine of read_and_check_comp_unit_head and
4371 read_and_check_type_unit_head to simplify them.
4372 Perform various error checking on the header. */
4373
4374static void
4375error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4376 struct dwarf2_section_info *section,
4377 struct dwarf2_section_info *abbrev_section)
9ff913ba 4378{
a32a8923
DE
4379 bfd *abfd = get_section_bfd_owner (section);
4380 const char *filename = get_section_file_name (section);
9ff913ba
DE
4381
4382 if (header->version != 2 && header->version != 3 && header->version != 4)
4383 error (_("Dwarf Error: wrong version in compilation unit header "
4384 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4385 filename);
4386
b64f50a1 4387 if (header->abbrev_offset.sect_off
36586728 4388 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4389 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4390 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4391 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4392 filename);
4393
4394 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4395 avoid potential 32-bit overflow. */
1ce1cefd 4396 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4397 > section->size)
4398 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4399 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4400 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4401 filename);
4402}
4403
4404/* Read in a CU/TU header and perform some basic error checking.
4405 The contents of the header are stored in HEADER.
4406 The result is a pointer to the start of the first DIE. */
adabb602 4407
d521ce57 4408static const gdb_byte *
9ff913ba
DE
4409read_and_check_comp_unit_head (struct comp_unit_head *header,
4410 struct dwarf2_section_info *section,
4bdcc0c1 4411 struct dwarf2_section_info *abbrev_section,
d521ce57 4412 const gdb_byte *info_ptr,
9ff913ba 4413 int is_debug_types_section)
72bf9492 4414{
d521ce57 4415 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4416 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4417
b64f50a1 4418 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4419
72bf9492
DJ
4420 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4421
460c1c54
CC
4422 /* If we're reading a type unit, skip over the signature and
4423 type_offset fields. */
b0df02fd 4424 if (is_debug_types_section)
460c1c54
CC
4425 info_ptr += 8 /*signature*/ + header->offset_size;
4426
b64f50a1 4427 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4428
4bdcc0c1 4429 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4430
4431 return info_ptr;
4432}
4433
348e048f
DE
4434/* Read in the types comp unit header information from .debug_types entry at
4435 types_ptr. The result is a pointer to one past the end of the header. */
4436
d521ce57 4437static const gdb_byte *
9ff913ba
DE
4438read_and_check_type_unit_head (struct comp_unit_head *header,
4439 struct dwarf2_section_info *section,
4bdcc0c1 4440 struct dwarf2_section_info *abbrev_section,
d521ce57 4441 const gdb_byte *info_ptr,
dee91e82
DE
4442 ULONGEST *signature,
4443 cu_offset *type_offset_in_tu)
348e048f 4444{
d521ce57 4445 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4446 bfd *abfd = get_section_bfd_owner (section);
348e048f 4447
b64f50a1 4448 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4449
9ff913ba 4450 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4451
9ff913ba
DE
4452 /* If we're reading a type unit, skip over the signature and
4453 type_offset fields. */
4454 if (signature != NULL)
4455 *signature = read_8_bytes (abfd, info_ptr);
4456 info_ptr += 8;
dee91e82
DE
4457 if (type_offset_in_tu != NULL)
4458 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4459 header->offset_size);
9ff913ba
DE
4460 info_ptr += header->offset_size;
4461
b64f50a1 4462 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4463
4bdcc0c1 4464 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4465
4466 return info_ptr;
348e048f
DE
4467}
4468
f4dc4d17
DE
4469/* Fetch the abbreviation table offset from a comp or type unit header. */
4470
4471static sect_offset
4472read_abbrev_offset (struct dwarf2_section_info *section,
4473 sect_offset offset)
4474{
a32a8923 4475 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4476 const gdb_byte *info_ptr;
f4dc4d17
DE
4477 unsigned int length, initial_length_size, offset_size;
4478 sect_offset abbrev_offset;
4479
4480 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4481 info_ptr = section->buffer + offset.sect_off;
4482 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4483 offset_size = initial_length_size == 4 ? 4 : 8;
4484 info_ptr += initial_length_size + 2 /*version*/;
4485 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4486 return abbrev_offset;
4487}
4488
aaa75496
JB
4489/* Allocate a new partial symtab for file named NAME and mark this new
4490 partial symtab as being an include of PST. */
4491
4492static void
d521ce57 4493dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4494 struct objfile *objfile)
4495{
4496 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4497
fbd9ab74
JK
4498 if (!IS_ABSOLUTE_PATH (subpst->filename))
4499 {
4500 /* It shares objfile->objfile_obstack. */
4501 subpst->dirname = pst->dirname;
4502 }
4503
aaa75496
JB
4504 subpst->textlow = 0;
4505 subpst->texthigh = 0;
4506
8d749320
SM
4507 subpst->dependencies
4508 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
aaa75496
JB
4509 subpst->dependencies[0] = pst;
4510 subpst->number_of_dependencies = 1;
4511
4512 subpst->globals_offset = 0;
4513 subpst->n_global_syms = 0;
4514 subpst->statics_offset = 0;
4515 subpst->n_static_syms = 0;
43f3e411 4516 subpst->compunit_symtab = NULL;
aaa75496
JB
4517 subpst->read_symtab = pst->read_symtab;
4518 subpst->readin = 0;
4519
4520 /* No private part is necessary for include psymtabs. This property
4521 can be used to differentiate between such include psymtabs and
10b3939b 4522 the regular ones. */
58a9656e 4523 subpst->read_symtab_private = NULL;
aaa75496
JB
4524}
4525
4526/* Read the Line Number Program data and extract the list of files
4527 included by the source file represented by PST. Build an include
d85a05f0 4528 partial symtab for each of these included files. */
aaa75496
JB
4529
4530static void
4531dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4532 struct die_info *die,
4533 struct partial_symtab *pst)
aaa75496 4534{
d85a05f0
DJ
4535 struct line_header *lh = NULL;
4536 struct attribute *attr;
aaa75496 4537
d85a05f0
DJ
4538 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4539 if (attr)
3019eac3 4540 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4541 if (lh == NULL)
4542 return; /* No linetable, so no includes. */
4543
c6da4cef 4544 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
527f3840 4545 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
aaa75496
JB
4546
4547 free_line_header (lh);
4548}
4549
348e048f 4550static hashval_t
52dc124a 4551hash_signatured_type (const void *item)
348e048f 4552{
52dc124a 4553 const struct signatured_type *sig_type = item;
9a619af0 4554
348e048f 4555 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4556 return sig_type->signature;
348e048f
DE
4557}
4558
4559static int
52dc124a 4560eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f
DE
4561{
4562 const struct signatured_type *lhs = item_lhs;
4563 const struct signatured_type *rhs = item_rhs;
9a619af0 4564
348e048f
DE
4565 return lhs->signature == rhs->signature;
4566}
4567
1fd400ff
TT
4568/* Allocate a hash table for signatured types. */
4569
4570static htab_t
673bfd45 4571allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4572{
4573 return htab_create_alloc_ex (41,
52dc124a
DE
4574 hash_signatured_type,
4575 eq_signatured_type,
1fd400ff
TT
4576 NULL,
4577 &objfile->objfile_obstack,
4578 hashtab_obstack_allocate,
4579 dummy_obstack_deallocate);
4580}
4581
d467dd73 4582/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4583
4584static int
d467dd73 4585add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff
TT
4586{
4587 struct signatured_type *sigt = *slot;
b4dd5633 4588 struct signatured_type ***datap = datum;
1fd400ff 4589
b4dd5633 4590 **datap = sigt;
1fd400ff
TT
4591 ++*datap;
4592
4593 return 1;
4594}
4595
c88ee1f0
DE
4596/* Create the hash table of all entries in the .debug_types
4597 (or .debug_types.dwo) section(s).
4598 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4599 otherwise it is NULL.
4600
4601 The result is a pointer to the hash table or NULL if there are no types.
4602
4603 Note: This function processes DWO files only, not DWP files. */
348e048f 4604
3019eac3
DE
4605static htab_t
4606create_debug_types_hash_table (struct dwo_file *dwo_file,
4607 VEC (dwarf2_section_info_def) *types)
348e048f 4608{
3019eac3 4609 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4610 htab_t types_htab = NULL;
8b70b953
TT
4611 int ix;
4612 struct dwarf2_section_info *section;
4bdcc0c1 4613 struct dwarf2_section_info *abbrev_section;
348e048f 4614
3019eac3
DE
4615 if (VEC_empty (dwarf2_section_info_def, types))
4616 return NULL;
348e048f 4617
4bdcc0c1
DE
4618 abbrev_section = (dwo_file != NULL
4619 ? &dwo_file->sections.abbrev
4620 : &dwarf2_per_objfile->abbrev);
4621
b4f54984 4622 if (dwarf_read_debug)
09406207
DE
4623 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4624 dwo_file ? ".dwo" : "",
a32a8923 4625 get_section_file_name (abbrev_section));
09406207 4626
8b70b953 4627 for (ix = 0;
3019eac3 4628 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4629 ++ix)
4630 {
3019eac3 4631 bfd *abfd;
d521ce57 4632 const gdb_byte *info_ptr, *end_ptr;
348e048f 4633
8b70b953
TT
4634 dwarf2_read_section (objfile, section);
4635 info_ptr = section->buffer;
348e048f 4636
8b70b953
TT
4637 if (info_ptr == NULL)
4638 continue;
348e048f 4639
3019eac3 4640 /* We can't set abfd until now because the section may be empty or
a32a8923
DE
4641 not present, in which case the bfd is unknown. */
4642 abfd = get_section_bfd_owner (section);
3019eac3 4643
dee91e82
DE
4644 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4645 because we don't need to read any dies: the signature is in the
4646 header. */
8b70b953
TT
4647
4648 end_ptr = info_ptr + section->size;
4649 while (info_ptr < end_ptr)
4650 {
b64f50a1 4651 sect_offset offset;
3019eac3 4652 cu_offset type_offset_in_tu;
8b70b953 4653 ULONGEST signature;
52dc124a 4654 struct signatured_type *sig_type;
3019eac3 4655 struct dwo_unit *dwo_tu;
8b70b953 4656 void **slot;
d521ce57 4657 const gdb_byte *ptr = info_ptr;
9ff913ba 4658 struct comp_unit_head header;
dee91e82 4659 unsigned int length;
348e048f 4660
b64f50a1 4661 offset.sect_off = ptr - section->buffer;
348e048f 4662
8b70b953 4663 /* We need to read the type's signature in order to build the hash
9ff913ba 4664 table, but we don't need anything else just yet. */
348e048f 4665
4bdcc0c1
DE
4666 ptr = read_and_check_type_unit_head (&header, section,
4667 abbrev_section, ptr,
3019eac3 4668 &signature, &type_offset_in_tu);
6caca83c 4669
1ce1cefd 4670 length = get_cu_length (&header);
dee91e82 4671
6caca83c 4672 /* Skip dummy type units. */
dee91e82
DE
4673 if (ptr >= info_ptr + length
4674 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4675 {
1ce1cefd 4676 info_ptr += length;
6caca83c
CC
4677 continue;
4678 }
8b70b953 4679
0349ea22
DE
4680 if (types_htab == NULL)
4681 {
4682 if (dwo_file)
4683 types_htab = allocate_dwo_unit_table (objfile);
4684 else
4685 types_htab = allocate_signatured_type_table (objfile);
4686 }
4687
3019eac3
DE
4688 if (dwo_file)
4689 {
4690 sig_type = NULL;
4691 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4692 struct dwo_unit);
4693 dwo_tu->dwo_file = dwo_file;
4694 dwo_tu->signature = signature;
4695 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4696 dwo_tu->section = section;
3019eac3
DE
4697 dwo_tu->offset = offset;
4698 dwo_tu->length = length;
4699 }
4700 else
4701 {
4702 /* N.B.: type_offset is not usable if this type uses a DWO file.
4703 The real type_offset is in the DWO file. */
4704 dwo_tu = NULL;
4705 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4706 struct signatured_type);
4707 sig_type->signature = signature;
4708 sig_type->type_offset_in_tu = type_offset_in_tu;
4709 sig_type->per_cu.objfile = objfile;
4710 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4711 sig_type->per_cu.section = section;
3019eac3
DE
4712 sig_type->per_cu.offset = offset;
4713 sig_type->per_cu.length = length;
4714 }
8b70b953 4715
3019eac3
DE
4716 slot = htab_find_slot (types_htab,
4717 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4718 INSERT);
8b70b953
TT
4719 gdb_assert (slot != NULL);
4720 if (*slot != NULL)
4721 {
3019eac3
DE
4722 sect_offset dup_offset;
4723
4724 if (dwo_file)
4725 {
4726 const struct dwo_unit *dup_tu = *slot;
4727
4728 dup_offset = dup_tu->offset;
4729 }
4730 else
4731 {
4732 const struct signatured_type *dup_tu = *slot;
4733
4734 dup_offset = dup_tu->per_cu.offset;
4735 }
b3c8eb43 4736
8b70b953 4737 complaint (&symfile_complaints,
c88ee1f0 4738 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4739 " the entry at offset 0x%x, signature %s"),
3019eac3 4740 offset.sect_off, dup_offset.sect_off,
4031ecc5 4741 hex_string (signature));
8b70b953 4742 }
3019eac3 4743 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4744
b4f54984 4745 if (dwarf_read_debug > 1)
4031ecc5 4746 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4747 offset.sect_off,
4031ecc5 4748 hex_string (signature));
348e048f 4749
dee91e82 4750 info_ptr += length;
8b70b953 4751 }
348e048f
DE
4752 }
4753
3019eac3
DE
4754 return types_htab;
4755}
4756
4757/* Create the hash table of all entries in the .debug_types section,
4758 and initialize all_type_units.
4759 The result is zero if there is an error (e.g. missing .debug_types section),
4760 otherwise non-zero. */
4761
4762static int
4763create_all_type_units (struct objfile *objfile)
4764{
4765 htab_t types_htab;
b4dd5633 4766 struct signatured_type **iter;
3019eac3
DE
4767
4768 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4769 if (types_htab == NULL)
4770 {
4771 dwarf2_per_objfile->signatured_types = NULL;
4772 return 0;
4773 }
4774
348e048f
DE
4775 dwarf2_per_objfile->signatured_types = types_htab;
4776
6aa5f3a6
DE
4777 dwarf2_per_objfile->n_type_units
4778 = dwarf2_per_objfile->n_allocated_type_units
4779 = htab_elements (types_htab);
8d749320
SM
4780 dwarf2_per_objfile->all_type_units =
4781 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
d467dd73
DE
4782 iter = &dwarf2_per_objfile->all_type_units[0];
4783 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4784 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4785 == dwarf2_per_objfile->n_type_units);
1fd400ff 4786
348e048f
DE
4787 return 1;
4788}
4789
6aa5f3a6
DE
4790/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4791 If SLOT is non-NULL, it is the entry to use in the hash table.
4792 Otherwise we find one. */
4793
4794static struct signatured_type *
4795add_type_unit (ULONGEST sig, void **slot)
4796{
4797 struct objfile *objfile = dwarf2_per_objfile->objfile;
4798 int n_type_units = dwarf2_per_objfile->n_type_units;
4799 struct signatured_type *sig_type;
4800
4801 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4802 ++n_type_units;
4803 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4804 {
4805 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4806 dwarf2_per_objfile->n_allocated_type_units = 1;
4807 dwarf2_per_objfile->n_allocated_type_units *= 2;
4808 dwarf2_per_objfile->all_type_units
4809 = xrealloc (dwarf2_per_objfile->all_type_units,
4810 dwarf2_per_objfile->n_allocated_type_units
4811 * sizeof (struct signatured_type *));
4812 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4813 }
4814 dwarf2_per_objfile->n_type_units = n_type_units;
4815
4816 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4817 struct signatured_type);
4818 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4819 sig_type->signature = sig;
4820 sig_type->per_cu.is_debug_types = 1;
4821 if (dwarf2_per_objfile->using_index)
4822 {
4823 sig_type->per_cu.v.quick =
4824 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4825 struct dwarf2_per_cu_quick_data);
4826 }
4827
4828 if (slot == NULL)
4829 {
4830 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4831 sig_type, INSERT);
4832 }
4833 gdb_assert (*slot == NULL);
4834 *slot = sig_type;
4835 /* The rest of sig_type must be filled in by the caller. */
4836 return sig_type;
4837}
4838
a2ce51a0
DE
4839/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4840 Fill in SIG_ENTRY with DWO_ENTRY. */
4841
4842static void
4843fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4844 struct signatured_type *sig_entry,
4845 struct dwo_unit *dwo_entry)
4846{
7ee85ab1 4847 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4848 gdb_assert (! sig_entry->per_cu.queued);
4849 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
4850 if (dwarf2_per_objfile->using_index)
4851 {
4852 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 4853 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
4854 }
4855 else
4856 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0
DE
4857 gdb_assert (sig_entry->signature == dwo_entry->signature);
4858 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4859 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4860 gdb_assert (sig_entry->dwo_unit == NULL);
4861
4862 sig_entry->per_cu.section = dwo_entry->section;
4863 sig_entry->per_cu.offset = dwo_entry->offset;
4864 sig_entry->per_cu.length = dwo_entry->length;
4865 sig_entry->per_cu.reading_dwo_directly = 1;
4866 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4867 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4868 sig_entry->dwo_unit = dwo_entry;
4869}
4870
4871/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4872 If we haven't read the TU yet, create the signatured_type data structure
4873 for a TU to be read in directly from a DWO file, bypassing the stub.
4874 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4875 using .gdb_index, then when reading a CU we want to stay in the DWO file
4876 containing that CU. Otherwise we could end up reading several other DWO
4877 files (due to comdat folding) to process the transitive closure of all the
4878 mentioned TUs, and that can be slow. The current DWO file will have every
4879 type signature that it needs.
a2ce51a0
DE
4880 We only do this for .gdb_index because in the psymtab case we already have
4881 to read all the DWOs to build the type unit groups. */
4882
4883static struct signatured_type *
4884lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4885{
4886 struct objfile *objfile = dwarf2_per_objfile->objfile;
4887 struct dwo_file *dwo_file;
4888 struct dwo_unit find_dwo_entry, *dwo_entry;
4889 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4890 void **slot;
a2ce51a0
DE
4891
4892 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4893
6aa5f3a6
DE
4894 /* If TU skeletons have been removed then we may not have read in any
4895 TUs yet. */
4896 if (dwarf2_per_objfile->signatured_types == NULL)
4897 {
4898 dwarf2_per_objfile->signatured_types
4899 = allocate_signatured_type_table (objfile);
4900 }
a2ce51a0
DE
4901
4902 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
4903 Use the global signatured_types array to do our own comdat-folding
4904 of types. If this is the first time we're reading this TU, and
4905 the TU has an entry in .gdb_index, replace the recorded data from
4906 .gdb_index with this TU. */
a2ce51a0 4907
a2ce51a0 4908 find_sig_entry.signature = sig;
6aa5f3a6
DE
4909 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4910 &find_sig_entry, INSERT);
4911 sig_entry = *slot;
7ee85ab1
DE
4912
4913 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
4914 read. Don't reassign the global entry to point to this DWO if that's
4915 the case. Also note that if the TU is already being read, it may not
4916 have come from a DWO, the program may be a mix of Fission-compiled
4917 code and non-Fission-compiled code. */
4918
4919 /* Have we already tried to read this TU?
4920 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4921 needn't exist in the global table yet). */
4922 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
4923 return sig_entry;
4924
6aa5f3a6
DE
4925 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4926 dwo_unit of the TU itself. */
4927 dwo_file = cu->dwo_unit->dwo_file;
4928
a2ce51a0
DE
4929 /* Ok, this is the first time we're reading this TU. */
4930 if (dwo_file->tus == NULL)
4931 return NULL;
4932 find_dwo_entry.signature = sig;
4933 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4934 if (dwo_entry == NULL)
4935 return NULL;
4936
6aa5f3a6
DE
4937 /* If the global table doesn't have an entry for this TU, add one. */
4938 if (sig_entry == NULL)
4939 sig_entry = add_type_unit (sig, slot);
4940
a2ce51a0 4941 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 4942 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
4943 return sig_entry;
4944}
4945
a2ce51a0
DE
4946/* Subroutine of lookup_signatured_type.
4947 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
4948 then try the DWP file. If the TU stub (skeleton) has been removed then
4949 it won't be in .gdb_index. */
a2ce51a0
DE
4950
4951static struct signatured_type *
4952lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4953{
4954 struct objfile *objfile = dwarf2_per_objfile->objfile;
4955 struct dwp_file *dwp_file = get_dwp_file ();
4956 struct dwo_unit *dwo_entry;
4957 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4958 void **slot;
a2ce51a0
DE
4959
4960 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4961 gdb_assert (dwp_file != NULL);
4962
6aa5f3a6
DE
4963 /* If TU skeletons have been removed then we may not have read in any
4964 TUs yet. */
4965 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 4966 {
6aa5f3a6
DE
4967 dwarf2_per_objfile->signatured_types
4968 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
4969 }
4970
6aa5f3a6
DE
4971 find_sig_entry.signature = sig;
4972 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4973 &find_sig_entry, INSERT);
4974 sig_entry = *slot;
4975
4976 /* Have we already tried to read this TU?
4977 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4978 needn't exist in the global table yet). */
4979 if (sig_entry != NULL)
4980 return sig_entry;
4981
a2ce51a0
DE
4982 if (dwp_file->tus == NULL)
4983 return NULL;
57d63ce2
DE
4984 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4985 sig, 1 /* is_debug_types */);
a2ce51a0
DE
4986 if (dwo_entry == NULL)
4987 return NULL;
4988
6aa5f3a6 4989 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
4990 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4991
a2ce51a0
DE
4992 return sig_entry;
4993}
4994
380bca97 4995/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
4996 Returns NULL if signature SIG is not present in the table.
4997 It is up to the caller to complain about this. */
348e048f
DE
4998
4999static struct signatured_type *
a2ce51a0 5000lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 5001{
a2ce51a0
DE
5002 if (cu->dwo_unit
5003 && dwarf2_per_objfile->using_index)
5004 {
5005 /* We're in a DWO/DWP file, and we're using .gdb_index.
5006 These cases require special processing. */
5007 if (get_dwp_file () == NULL)
5008 return lookup_dwo_signatured_type (cu, sig);
5009 else
5010 return lookup_dwp_signatured_type (cu, sig);
5011 }
5012 else
5013 {
5014 struct signatured_type find_entry, *entry;
348e048f 5015
a2ce51a0
DE
5016 if (dwarf2_per_objfile->signatured_types == NULL)
5017 return NULL;
5018 find_entry.signature = sig;
5019 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
5020 return entry;
5021 }
348e048f 5022}
42e7ad6c
DE
5023\f
5024/* Low level DIE reading support. */
348e048f 5025
d85a05f0
DJ
5026/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5027
5028static void
5029init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 5030 struct dwarf2_cu *cu,
3019eac3
DE
5031 struct dwarf2_section_info *section,
5032 struct dwo_file *dwo_file)
d85a05f0 5033{
fceca515 5034 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 5035 reader->abfd = get_section_bfd_owner (section);
d85a05f0 5036 reader->cu = cu;
3019eac3 5037 reader->dwo_file = dwo_file;
dee91e82
DE
5038 reader->die_section = section;
5039 reader->buffer = section->buffer;
f664829e 5040 reader->buffer_end = section->buffer + section->size;
a2ce51a0 5041 reader->comp_dir = NULL;
d85a05f0
DJ
5042}
5043
b0c7bfa9
DE
5044/* Subroutine of init_cutu_and_read_dies to simplify it.
5045 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5046 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5047 already.
5048
5049 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5050 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
5051 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5052 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
5053 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5054 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
5055 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5056 are filled in with the info of the DIE from the DWO file.
5057 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5058 provided an abbrev table to use.
5059 The result is non-zero if a valid (non-dummy) DIE was found. */
5060
5061static int
5062read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5063 struct dwo_unit *dwo_unit,
5064 int abbrev_table_provided,
5065 struct die_info *stub_comp_unit_die,
a2ce51a0 5066 const char *stub_comp_dir,
b0c7bfa9 5067 struct die_reader_specs *result_reader,
d521ce57 5068 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
5069 struct die_info **result_comp_unit_die,
5070 int *result_has_children)
5071{
5072 struct objfile *objfile = dwarf2_per_objfile->objfile;
5073 struct dwarf2_cu *cu = this_cu->cu;
5074 struct dwarf2_section_info *section;
5075 bfd *abfd;
d521ce57 5076 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
5077 ULONGEST signature; /* Or dwo_id. */
5078 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5079 int i,num_extra_attrs;
5080 struct dwarf2_section_info *dwo_abbrev_section;
5081 struct attribute *attr;
5082 struct die_info *comp_unit_die;
5083
b0aeadb3
DE
5084 /* At most one of these may be provided. */
5085 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 5086
b0c7bfa9
DE
5087 /* These attributes aren't processed until later:
5088 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
5089 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5090 referenced later. However, these attributes are found in the stub
5091 which we won't have later. In order to not impose this complication
5092 on the rest of the code, we read them here and copy them to the
5093 DWO CU/TU die. */
b0c7bfa9
DE
5094
5095 stmt_list = NULL;
5096 low_pc = NULL;
5097 high_pc = NULL;
5098 ranges = NULL;
5099 comp_dir = NULL;
5100
5101 if (stub_comp_unit_die != NULL)
5102 {
5103 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5104 DWO file. */
5105 if (! this_cu->is_debug_types)
5106 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5107 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5108 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5109 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5110 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5111
5112 /* There should be a DW_AT_addr_base attribute here (if needed).
5113 We need the value before we can process DW_FORM_GNU_addr_index. */
5114 cu->addr_base = 0;
5115 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5116 if (attr)
5117 cu->addr_base = DW_UNSND (attr);
5118
5119 /* There should be a DW_AT_ranges_base attribute here (if needed).
5120 We need the value before we can process DW_AT_ranges. */
5121 cu->ranges_base = 0;
5122 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5123 if (attr)
5124 cu->ranges_base = DW_UNSND (attr);
5125 }
a2ce51a0
DE
5126 else if (stub_comp_dir != NULL)
5127 {
5128 /* Reconstruct the comp_dir attribute to simplify the code below. */
8d749320 5129 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
a2ce51a0
DE
5130 comp_dir->name = DW_AT_comp_dir;
5131 comp_dir->form = DW_FORM_string;
5132 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5133 DW_STRING (comp_dir) = stub_comp_dir;
5134 }
b0c7bfa9
DE
5135
5136 /* Set up for reading the DWO CU/TU. */
5137 cu->dwo_unit = dwo_unit;
5138 section = dwo_unit->section;
5139 dwarf2_read_section (objfile, section);
a32a8923 5140 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5141 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5142 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5143 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5144
5145 if (this_cu->is_debug_types)
5146 {
5147 ULONGEST header_signature;
5148 cu_offset type_offset_in_tu;
5149 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5150
5151 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5152 dwo_abbrev_section,
5153 info_ptr,
5154 &header_signature,
5155 &type_offset_in_tu);
a2ce51a0
DE
5156 /* This is not an assert because it can be caused by bad debug info. */
5157 if (sig_type->signature != header_signature)
5158 {
5159 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5160 " TU at offset 0x%x [in module %s]"),
5161 hex_string (sig_type->signature),
5162 hex_string (header_signature),
5163 dwo_unit->offset.sect_off,
5164 bfd_get_filename (abfd));
5165 }
b0c7bfa9
DE
5166 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5167 /* For DWOs coming from DWP files, we don't know the CU length
5168 nor the type's offset in the TU until now. */
5169 dwo_unit->length = get_cu_length (&cu->header);
5170 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5171
5172 /* Establish the type offset that can be used to lookup the type.
5173 For DWO files, we don't know it until now. */
5174 sig_type->type_offset_in_section.sect_off =
5175 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5176 }
5177 else
5178 {
5179 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5180 dwo_abbrev_section,
5181 info_ptr, 0);
5182 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5183 /* For DWOs coming from DWP files, we don't know the CU length
5184 until now. */
5185 dwo_unit->length = get_cu_length (&cu->header);
5186 }
5187
02142a6c
DE
5188 /* Replace the CU's original abbrev table with the DWO's.
5189 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5190 if (abbrev_table_provided)
5191 {
5192 /* Don't free the provided abbrev table, the caller of
5193 init_cutu_and_read_dies owns it. */
5194 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5195 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5196 make_cleanup (dwarf2_free_abbrev_table, cu);
5197 }
5198 else
5199 {
5200 dwarf2_free_abbrev_table (cu);
5201 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5202 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5203 }
5204
5205 /* Read in the die, but leave space to copy over the attributes
5206 from the stub. This has the benefit of simplifying the rest of
5207 the code - all the work to maintain the illusion of a single
5208 DW_TAG_{compile,type}_unit DIE is done here. */
5209 num_extra_attrs = ((stmt_list != NULL)
5210 + (low_pc != NULL)
5211 + (high_pc != NULL)
5212 + (ranges != NULL)
5213 + (comp_dir != NULL));
5214 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5215 result_has_children, num_extra_attrs);
5216
5217 /* Copy over the attributes from the stub to the DIE we just read in. */
5218 comp_unit_die = *result_comp_unit_die;
5219 i = comp_unit_die->num_attrs;
5220 if (stmt_list != NULL)
5221 comp_unit_die->attrs[i++] = *stmt_list;
5222 if (low_pc != NULL)
5223 comp_unit_die->attrs[i++] = *low_pc;
5224 if (high_pc != NULL)
5225 comp_unit_die->attrs[i++] = *high_pc;
5226 if (ranges != NULL)
5227 comp_unit_die->attrs[i++] = *ranges;
5228 if (comp_dir != NULL)
5229 comp_unit_die->attrs[i++] = *comp_dir;
5230 comp_unit_die->num_attrs += num_extra_attrs;
5231
b4f54984 5232 if (dwarf_die_debug)
bf6af496
DE
5233 {
5234 fprintf_unfiltered (gdb_stdlog,
5235 "Read die from %s@0x%x of %s:\n",
a32a8923 5236 get_section_name (section),
bf6af496
DE
5237 (unsigned) (begin_info_ptr - section->buffer),
5238 bfd_get_filename (abfd));
b4f54984 5239 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
5240 }
5241
a2ce51a0
DE
5242 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5243 TUs by skipping the stub and going directly to the entry in the DWO file.
5244 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5245 to get it via circuitous means. Blech. */
5246 if (comp_dir != NULL)
5247 result_reader->comp_dir = DW_STRING (comp_dir);
5248
b0c7bfa9
DE
5249 /* Skip dummy compilation units. */
5250 if (info_ptr >= begin_info_ptr + dwo_unit->length
5251 || peek_abbrev_code (abfd, info_ptr) == 0)
5252 return 0;
5253
5254 *result_info_ptr = info_ptr;
5255 return 1;
5256}
5257
5258/* Subroutine of init_cutu_and_read_dies to simplify it.
5259 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5260 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5261
5262static struct dwo_unit *
5263lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5264 struct die_info *comp_unit_die)
5265{
5266 struct dwarf2_cu *cu = this_cu->cu;
5267 struct attribute *attr;
5268 ULONGEST signature;
5269 struct dwo_unit *dwo_unit;
5270 const char *comp_dir, *dwo_name;
5271
a2ce51a0
DE
5272 gdb_assert (cu != NULL);
5273
b0c7bfa9 5274 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7d45c7c3
KB
5275 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5276 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
b0c7bfa9
DE
5277
5278 if (this_cu->is_debug_types)
5279 {
5280 struct signatured_type *sig_type;
5281
5282 /* Since this_cu is the first member of struct signatured_type,
5283 we can go from a pointer to one to a pointer to the other. */
5284 sig_type = (struct signatured_type *) this_cu;
5285 signature = sig_type->signature;
5286 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5287 }
5288 else
5289 {
5290 struct attribute *attr;
5291
5292 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5293 if (! attr)
5294 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5295 " [in module %s]"),
4262abfb 5296 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5297 signature = DW_UNSND (attr);
5298 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5299 signature);
5300 }
5301
b0c7bfa9
DE
5302 return dwo_unit;
5303}
5304
a2ce51a0 5305/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5306 See it for a description of the parameters.
5307 Read a TU directly from a DWO file, bypassing the stub.
5308
5309 Note: This function could be a little bit simpler if we shared cleanups
5310 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5311 to do, so we keep this function self-contained. Or we could move this
5312 into our caller, but it's complex enough already. */
a2ce51a0
DE
5313
5314static void
6aa5f3a6
DE
5315init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5316 int use_existing_cu, int keep,
a2ce51a0
DE
5317 die_reader_func_ftype *die_reader_func,
5318 void *data)
5319{
5320 struct dwarf2_cu *cu;
5321 struct signatured_type *sig_type;
6aa5f3a6 5322 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5323 struct die_reader_specs reader;
5324 const gdb_byte *info_ptr;
5325 struct die_info *comp_unit_die;
5326 int has_children;
5327
5328 /* Verify we can do the following downcast, and that we have the
5329 data we need. */
5330 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5331 sig_type = (struct signatured_type *) this_cu;
5332 gdb_assert (sig_type->dwo_unit != NULL);
5333
5334 cleanups = make_cleanup (null_cleanup, NULL);
5335
6aa5f3a6
DE
5336 if (use_existing_cu && this_cu->cu != NULL)
5337 {
5338 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5339 cu = this_cu->cu;
5340 /* There's no need to do the rereading_dwo_cu handling that
5341 init_cutu_and_read_dies does since we don't read the stub. */
5342 }
5343 else
5344 {
5345 /* If !use_existing_cu, this_cu->cu must be NULL. */
5346 gdb_assert (this_cu->cu == NULL);
8d749320 5347 cu = XNEW (struct dwarf2_cu);
6aa5f3a6
DE
5348 init_one_comp_unit (cu, this_cu);
5349 /* If an error occurs while loading, release our storage. */
5350 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5351 }
5352
5353 /* A future optimization, if needed, would be to use an existing
5354 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5355 could share abbrev tables. */
a2ce51a0
DE
5356
5357 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5358 0 /* abbrev_table_provided */,
5359 NULL /* stub_comp_unit_die */,
5360 sig_type->dwo_unit->dwo_file->comp_dir,
5361 &reader, &info_ptr,
5362 &comp_unit_die, &has_children) == 0)
5363 {
5364 /* Dummy die. */
5365 do_cleanups (cleanups);
5366 return;
5367 }
5368
5369 /* All the "real" work is done here. */
5370 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5371
6aa5f3a6 5372 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5373 but the alternative is making the latter more complex.
5374 This function is only for the special case of using DWO files directly:
5375 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5376 if (free_cu_cleanup != NULL)
a2ce51a0 5377 {
6aa5f3a6
DE
5378 if (keep)
5379 {
5380 /* We've successfully allocated this compilation unit. Let our
5381 caller clean it up when finished with it. */
5382 discard_cleanups (free_cu_cleanup);
a2ce51a0 5383
6aa5f3a6
DE
5384 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5385 So we have to manually free the abbrev table. */
5386 dwarf2_free_abbrev_table (cu);
a2ce51a0 5387
6aa5f3a6
DE
5388 /* Link this CU into read_in_chain. */
5389 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5390 dwarf2_per_objfile->read_in_chain = this_cu;
5391 }
5392 else
5393 do_cleanups (free_cu_cleanup);
a2ce51a0 5394 }
a2ce51a0
DE
5395
5396 do_cleanups (cleanups);
5397}
5398
fd820528 5399/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5400 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5401
f4dc4d17
DE
5402 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5403 Otherwise the table specified in the comp unit header is read in and used.
5404 This is an optimization for when we already have the abbrev table.
5405
dee91e82
DE
5406 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5407 Otherwise, a new CU is allocated with xmalloc.
5408
5409 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5410 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5411
5412 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5413 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5414
70221824 5415static void
fd820528 5416init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5417 struct abbrev_table *abbrev_table,
fd820528
DE
5418 int use_existing_cu, int keep,
5419 die_reader_func_ftype *die_reader_func,
5420 void *data)
c906108c 5421{
dee91e82 5422 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5423 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5424 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5425 struct dwarf2_cu *cu;
d521ce57 5426 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5427 struct die_reader_specs reader;
d85a05f0 5428 struct die_info *comp_unit_die;
dee91e82 5429 int has_children;
d85a05f0 5430 struct attribute *attr;
365156ad 5431 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5432 struct signatured_type *sig_type = NULL;
4bdcc0c1 5433 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5434 /* Non-zero if CU currently points to a DWO file and we need to
5435 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5436 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5437 int rereading_dwo_cu = 0;
c906108c 5438
b4f54984 5439 if (dwarf_die_debug)
09406207
DE
5440 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5441 this_cu->is_debug_types ? "type" : "comp",
5442 this_cu->offset.sect_off);
5443
dee91e82
DE
5444 if (use_existing_cu)
5445 gdb_assert (keep);
23745b47 5446
a2ce51a0
DE
5447 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5448 file (instead of going through the stub), short-circuit all of this. */
5449 if (this_cu->reading_dwo_directly)
5450 {
5451 /* Narrow down the scope of possibilities to have to understand. */
5452 gdb_assert (this_cu->is_debug_types);
5453 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5454 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5455 die_reader_func, data);
a2ce51a0
DE
5456 return;
5457 }
5458
dee91e82
DE
5459 cleanups = make_cleanup (null_cleanup, NULL);
5460
5461 /* This is cheap if the section is already read in. */
5462 dwarf2_read_section (objfile, section);
5463
5464 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5465
5466 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5467
5468 if (use_existing_cu && this_cu->cu != NULL)
5469 {
5470 cu = this_cu->cu;
42e7ad6c
DE
5471 /* If this CU is from a DWO file we need to start over, we need to
5472 refetch the attributes from the skeleton CU.
5473 This could be optimized by retrieving those attributes from when we
5474 were here the first time: the previous comp_unit_die was stored in
5475 comp_unit_obstack. But there's no data yet that we need this
5476 optimization. */
5477 if (cu->dwo_unit != NULL)
5478 rereading_dwo_cu = 1;
dee91e82
DE
5479 }
5480 else
5481 {
5482 /* If !use_existing_cu, this_cu->cu must be NULL. */
5483 gdb_assert (this_cu->cu == NULL);
8d749320 5484 cu = XNEW (struct dwarf2_cu);
dee91e82 5485 init_one_comp_unit (cu, this_cu);
dee91e82 5486 /* If an error occurs while loading, release our storage. */
365156ad 5487 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5488 }
dee91e82 5489
b0c7bfa9 5490 /* Get the header. */
42e7ad6c
DE
5491 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5492 {
5493 /* We already have the header, there's no need to read it in again. */
5494 info_ptr += cu->header.first_die_offset.cu_off;
5495 }
5496 else
5497 {
3019eac3 5498 if (this_cu->is_debug_types)
dee91e82
DE
5499 {
5500 ULONGEST signature;
42e7ad6c 5501 cu_offset type_offset_in_tu;
dee91e82 5502
4bdcc0c1
DE
5503 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5504 abbrev_section, info_ptr,
42e7ad6c
DE
5505 &signature,
5506 &type_offset_in_tu);
dee91e82 5507
42e7ad6c
DE
5508 /* Since per_cu is the first member of struct signatured_type,
5509 we can go from a pointer to one to a pointer to the other. */
5510 sig_type = (struct signatured_type *) this_cu;
5511 gdb_assert (sig_type->signature == signature);
5512 gdb_assert (sig_type->type_offset_in_tu.cu_off
5513 == type_offset_in_tu.cu_off);
dee91e82
DE
5514 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5515
42e7ad6c
DE
5516 /* LENGTH has not been set yet for type units if we're
5517 using .gdb_index. */
1ce1cefd 5518 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5519
5520 /* Establish the type offset that can be used to lookup the type. */
5521 sig_type->type_offset_in_section.sect_off =
5522 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5523 }
5524 else
5525 {
4bdcc0c1
DE
5526 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5527 abbrev_section,
5528 info_ptr, 0);
dee91e82
DE
5529
5530 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5531 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5532 }
5533 }
10b3939b 5534
6caca83c 5535 /* Skip dummy compilation units. */
dee91e82 5536 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5537 || peek_abbrev_code (abfd, info_ptr) == 0)
5538 {
dee91e82 5539 do_cleanups (cleanups);
21b2bd31 5540 return;
6caca83c
CC
5541 }
5542
433df2d4
DE
5543 /* If we don't have them yet, read the abbrevs for this compilation unit.
5544 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5545 done. Note that it's important that if the CU had an abbrev table
5546 on entry we don't free it when we're done: Somewhere up the call stack
5547 it may be in use. */
f4dc4d17
DE
5548 if (abbrev_table != NULL)
5549 {
5550 gdb_assert (cu->abbrev_table == NULL);
5551 gdb_assert (cu->header.abbrev_offset.sect_off
5552 == abbrev_table->offset.sect_off);
5553 cu->abbrev_table = abbrev_table;
5554 }
5555 else if (cu->abbrev_table == NULL)
dee91e82 5556 {
4bdcc0c1 5557 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5558 make_cleanup (dwarf2_free_abbrev_table, cu);
5559 }
42e7ad6c
DE
5560 else if (rereading_dwo_cu)
5561 {
5562 dwarf2_free_abbrev_table (cu);
5563 dwarf2_read_abbrevs (cu, abbrev_section);
5564 }
af703f96 5565
dee91e82 5566 /* Read the top level CU/TU die. */
3019eac3 5567 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5568 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5569
b0c7bfa9
DE
5570 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5571 from the DWO file.
5572 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5573 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5574 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5575 if (attr)
5576 {
3019eac3 5577 struct dwo_unit *dwo_unit;
b0c7bfa9 5578 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5579
5580 if (has_children)
6a506a2d
DE
5581 {
5582 complaint (&symfile_complaints,
5583 _("compilation unit with DW_AT_GNU_dwo_name"
5584 " has children (offset 0x%x) [in module %s]"),
5585 this_cu->offset.sect_off, bfd_get_filename (abfd));
5586 }
b0c7bfa9 5587 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5588 if (dwo_unit != NULL)
3019eac3 5589 {
6a506a2d
DE
5590 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5591 abbrev_table != NULL,
a2ce51a0 5592 comp_unit_die, NULL,
6a506a2d
DE
5593 &reader, &info_ptr,
5594 &dwo_comp_unit_die, &has_children) == 0)
5595 {
5596 /* Dummy die. */
5597 do_cleanups (cleanups);
5598 return;
5599 }
5600 comp_unit_die = dwo_comp_unit_die;
5601 }
5602 else
5603 {
5604 /* Yikes, we couldn't find the rest of the DIE, we only have
5605 the stub. A complaint has already been logged. There's
5606 not much more we can do except pass on the stub DIE to
5607 die_reader_func. We don't want to throw an error on bad
5608 debug info. */
3019eac3
DE
5609 }
5610 }
5611
b0c7bfa9 5612 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5613 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5614
b0c7bfa9 5615 /* Done, clean up. */
365156ad 5616 if (free_cu_cleanup != NULL)
348e048f 5617 {
365156ad
TT
5618 if (keep)
5619 {
5620 /* We've successfully allocated this compilation unit. Let our
5621 caller clean it up when finished with it. */
5622 discard_cleanups (free_cu_cleanup);
dee91e82 5623
365156ad
TT
5624 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5625 So we have to manually free the abbrev table. */
5626 dwarf2_free_abbrev_table (cu);
dee91e82 5627
365156ad
TT
5628 /* Link this CU into read_in_chain. */
5629 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5630 dwarf2_per_objfile->read_in_chain = this_cu;
5631 }
5632 else
5633 do_cleanups (free_cu_cleanup);
348e048f 5634 }
365156ad
TT
5635
5636 do_cleanups (cleanups);
dee91e82
DE
5637}
5638
33e80786
DE
5639/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5640 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5641 to have already done the lookup to find the DWO file).
dee91e82
DE
5642
5643 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5644 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5645
5646 We fill in THIS_CU->length.
5647
5648 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5649 linker) then DIE_READER_FUNC will not get called.
5650
5651 THIS_CU->cu is always freed when done.
3019eac3
DE
5652 This is done in order to not leave THIS_CU->cu in a state where we have
5653 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5654
5655static void
5656init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5657 struct dwo_file *dwo_file,
dee91e82
DE
5658 die_reader_func_ftype *die_reader_func,
5659 void *data)
5660{
5661 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5662 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5663 bfd *abfd = get_section_bfd_owner (section);
33e80786 5664 struct dwarf2_section_info *abbrev_section;
dee91e82 5665 struct dwarf2_cu cu;
d521ce57 5666 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5667 struct die_reader_specs reader;
5668 struct cleanup *cleanups;
5669 struct die_info *comp_unit_die;
5670 int has_children;
5671
b4f54984 5672 if (dwarf_die_debug)
09406207
DE
5673 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5674 this_cu->is_debug_types ? "type" : "comp",
5675 this_cu->offset.sect_off);
5676
dee91e82
DE
5677 gdb_assert (this_cu->cu == NULL);
5678
33e80786
DE
5679 abbrev_section = (dwo_file != NULL
5680 ? &dwo_file->sections.abbrev
5681 : get_abbrev_section_for_cu (this_cu));
5682
dee91e82
DE
5683 /* This is cheap if the section is already read in. */
5684 dwarf2_read_section (objfile, section);
5685
5686 init_one_comp_unit (&cu, this_cu);
5687
5688 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5689
5690 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5691 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5692 abbrev_section, info_ptr,
3019eac3 5693 this_cu->is_debug_types);
dee91e82 5694
1ce1cefd 5695 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5696
5697 /* Skip dummy compilation units. */
5698 if (info_ptr >= begin_info_ptr + this_cu->length
5699 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5700 {
dee91e82 5701 do_cleanups (cleanups);
21b2bd31 5702 return;
93311388 5703 }
72bf9492 5704
dee91e82
DE
5705 dwarf2_read_abbrevs (&cu, abbrev_section);
5706 make_cleanup (dwarf2_free_abbrev_table, &cu);
5707
3019eac3 5708 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5709 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5710
5711 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5712
5713 do_cleanups (cleanups);
5714}
5715
3019eac3
DE
5716/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5717 does not lookup the specified DWO file.
5718 This cannot be used to read DWO files.
dee91e82
DE
5719
5720 THIS_CU->cu is always freed when done.
3019eac3
DE
5721 This is done in order to not leave THIS_CU->cu in a state where we have
5722 to care whether it refers to the "main" CU or the DWO CU.
5723 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5724
5725static void
5726init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5727 die_reader_func_ftype *die_reader_func,
5728 void *data)
5729{
33e80786 5730 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5731}
0018ea6f
DE
5732\f
5733/* Type Unit Groups.
dee91e82 5734
0018ea6f
DE
5735 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5736 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5737 so that all types coming from the same compilation (.o file) are grouped
5738 together. A future step could be to put the types in the same symtab as
5739 the CU the types ultimately came from. */
ff013f42 5740
f4dc4d17
DE
5741static hashval_t
5742hash_type_unit_group (const void *item)
5743{
094b34ac 5744 const struct type_unit_group *tu_group = item;
f4dc4d17 5745
094b34ac 5746 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5747}
348e048f
DE
5748
5749static int
f4dc4d17 5750eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5751{
f4dc4d17
DE
5752 const struct type_unit_group *lhs = item_lhs;
5753 const struct type_unit_group *rhs = item_rhs;
348e048f 5754
094b34ac 5755 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5756}
348e048f 5757
f4dc4d17
DE
5758/* Allocate a hash table for type unit groups. */
5759
5760static htab_t
5761allocate_type_unit_groups_table (void)
5762{
5763 return htab_create_alloc_ex (3,
5764 hash_type_unit_group,
5765 eq_type_unit_group,
5766 NULL,
5767 &dwarf2_per_objfile->objfile->objfile_obstack,
5768 hashtab_obstack_allocate,
5769 dummy_obstack_deallocate);
5770}
dee91e82 5771
f4dc4d17
DE
5772/* Type units that don't have DW_AT_stmt_list are grouped into their own
5773 partial symtabs. We combine several TUs per psymtab to not let the size
5774 of any one psymtab grow too big. */
5775#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5776#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5777
094b34ac 5778/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5779 Create the type_unit_group object used to hold one or more TUs. */
5780
5781static struct type_unit_group *
094b34ac 5782create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5783{
5784 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5785 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5786 struct type_unit_group *tu_group;
f4dc4d17
DE
5787
5788 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5789 struct type_unit_group);
094b34ac 5790 per_cu = &tu_group->per_cu;
f4dc4d17 5791 per_cu->objfile = objfile;
f4dc4d17 5792
094b34ac
DE
5793 if (dwarf2_per_objfile->using_index)
5794 {
5795 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5796 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5797 }
5798 else
5799 {
5800 unsigned int line_offset = line_offset_struct.sect_off;
5801 struct partial_symtab *pst;
5802 char *name;
5803
5804 /* Give the symtab a useful name for debug purposes. */
5805 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5806 name = xstrprintf ("<type_units_%d>",
5807 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5808 else
5809 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5810
5811 pst = create_partial_symtab (per_cu, name);
5812 pst->anonymous = 1;
f4dc4d17 5813
094b34ac
DE
5814 xfree (name);
5815 }
f4dc4d17 5816
094b34ac
DE
5817 tu_group->hash.dwo_unit = cu->dwo_unit;
5818 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5819
5820 return tu_group;
5821}
5822
094b34ac
DE
5823/* Look up the type_unit_group for type unit CU, and create it if necessary.
5824 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5825
5826static struct type_unit_group *
ff39bb5e 5827get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5828{
5829 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5830 struct type_unit_group *tu_group;
5831 void **slot;
5832 unsigned int line_offset;
5833 struct type_unit_group type_unit_group_for_lookup;
5834
5835 if (dwarf2_per_objfile->type_unit_groups == NULL)
5836 {
5837 dwarf2_per_objfile->type_unit_groups =
5838 allocate_type_unit_groups_table ();
5839 }
5840
5841 /* Do we need to create a new group, or can we use an existing one? */
5842
5843 if (stmt_list)
5844 {
5845 line_offset = DW_UNSND (stmt_list);
5846 ++tu_stats->nr_symtab_sharers;
5847 }
5848 else
5849 {
5850 /* Ugh, no stmt_list. Rare, but we have to handle it.
5851 We can do various things here like create one group per TU or
5852 spread them over multiple groups to split up the expansion work.
5853 To avoid worst case scenarios (too many groups or too large groups)
5854 we, umm, group them in bunches. */
5855 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5856 | (tu_stats->nr_stmt_less_type_units
5857 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5858 ++tu_stats->nr_stmt_less_type_units;
5859 }
5860
094b34ac
DE
5861 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5862 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5863 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5864 &type_unit_group_for_lookup, INSERT);
5865 if (*slot != NULL)
5866 {
5867 tu_group = *slot;
5868 gdb_assert (tu_group != NULL);
5869 }
5870 else
5871 {
5872 sect_offset line_offset_struct;
5873
5874 line_offset_struct.sect_off = line_offset;
094b34ac 5875 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5876 *slot = tu_group;
5877 ++tu_stats->nr_symtabs;
5878 }
5879
5880 return tu_group;
5881}
0018ea6f
DE
5882\f
5883/* Partial symbol tables. */
5884
5885/* Create a psymtab named NAME and assign it to PER_CU.
5886
5887 The caller must fill in the following details:
5888 dirname, textlow, texthigh. */
5889
5890static struct partial_symtab *
5891create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5892{
5893 struct objfile *objfile = per_cu->objfile;
5894 struct partial_symtab *pst;
5895
18a94d75 5896 pst = start_psymtab_common (objfile, name, 0,
0018ea6f
DE
5897 objfile->global_psymbols.next,
5898 objfile->static_psymbols.next);
5899
5900 pst->psymtabs_addrmap_supported = 1;
5901
5902 /* This is the glue that links PST into GDB's symbol API. */
5903 pst->read_symtab_private = per_cu;
5904 pst->read_symtab = dwarf2_read_symtab;
5905 per_cu->v.psymtab = pst;
5906
5907 return pst;
5908}
5909
b93601f3
TT
5910/* The DATA object passed to process_psymtab_comp_unit_reader has this
5911 type. */
5912
5913struct process_psymtab_comp_unit_data
5914{
5915 /* True if we are reading a DW_TAG_partial_unit. */
5916
5917 int want_partial_unit;
5918
5919 /* The "pretend" language that is used if the CU doesn't declare a
5920 language. */
5921
5922 enum language pretend_language;
5923};
5924
0018ea6f
DE
5925/* die_reader_func for process_psymtab_comp_unit. */
5926
5927static void
5928process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5929 const gdb_byte *info_ptr,
0018ea6f
DE
5930 struct die_info *comp_unit_die,
5931 int has_children,
5932 void *data)
5933{
5934 struct dwarf2_cu *cu = reader->cu;
5935 struct objfile *objfile = cu->objfile;
3e29f34a 5936 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f 5937 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0018ea6f
DE
5938 CORE_ADDR baseaddr;
5939 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5940 struct partial_symtab *pst;
5941 int has_pc_info;
5942 const char *filename;
b93601f3 5943 struct process_psymtab_comp_unit_data *info = data;
0018ea6f 5944
b93601f3 5945 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
5946 return;
5947
5948 gdb_assert (! per_cu->is_debug_types);
5949
b93601f3 5950 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
5951
5952 cu->list_in_scope = &file_symbols;
5953
5954 /* Allocate a new partial symbol table structure. */
7d45c7c3
KB
5955 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5956 if (filename == NULL)
0018ea6f 5957 filename = "";
0018ea6f
DE
5958
5959 pst = create_partial_symtab (per_cu, filename);
5960
5961 /* This must be done before calling dwarf2_build_include_psymtabs. */
7d45c7c3 5962 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
0018ea6f
DE
5963
5964 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5965
5966 dwarf2_find_base_address (comp_unit_die, cu);
5967
5968 /* Possibly set the default values of LOWPC and HIGHPC from
5969 `DW_AT_ranges'. */
5970 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5971 &best_highpc, cu, pst);
5972 if (has_pc_info == 1 && best_lowpc < best_highpc)
5973 /* Store the contiguous range if it is not empty; it can be empty for
5974 CUs with no code. */
5975 addrmap_set_empty (objfile->psymtabs_addrmap,
3e29f34a
MR
5976 gdbarch_adjust_dwarf2_addr (gdbarch,
5977 best_lowpc + baseaddr),
5978 gdbarch_adjust_dwarf2_addr (gdbarch,
5979 best_highpc + baseaddr) - 1,
5980 pst);
0018ea6f
DE
5981
5982 /* Check if comp unit has_children.
5983 If so, read the rest of the partial symbols from this comp unit.
5984 If not, there's no more debug_info for this comp unit. */
5985 if (has_children)
5986 {
5987 struct partial_die_info *first_die;
5988 CORE_ADDR lowpc, highpc;
5989
5990 lowpc = ((CORE_ADDR) -1);
5991 highpc = ((CORE_ADDR) 0);
5992
5993 first_die = load_partial_dies (reader, info_ptr, 1);
5994
5995 scan_partial_symbols (first_die, &lowpc, &highpc,
5996 ! has_pc_info, cu);
5997
5998 /* If we didn't find a lowpc, set it to highpc to avoid
5999 complaints from `maint check'. */
6000 if (lowpc == ((CORE_ADDR) -1))
6001 lowpc = highpc;
6002
6003 /* If the compilation unit didn't have an explicit address range,
6004 then use the information extracted from its child dies. */
6005 if (! has_pc_info)
6006 {
6007 best_lowpc = lowpc;
6008 best_highpc = highpc;
6009 }
6010 }
3e29f34a
MR
6011 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6012 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
0018ea6f 6013
8763cede 6014 end_psymtab_common (objfile, pst);
0018ea6f
DE
6015
6016 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6017 {
6018 int i;
6019 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6020 struct dwarf2_per_cu_data *iter;
6021
6022 /* Fill in 'dependencies' here; we fill in 'users' in a
6023 post-pass. */
6024 pst->number_of_dependencies = len;
8d749320
SM
6025 pst->dependencies =
6026 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
0018ea6f
DE
6027 for (i = 0;
6028 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6029 i, iter);
6030 ++i)
6031 pst->dependencies[i] = iter->v.psymtab;
6032
6033 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6034 }
6035
6036 /* Get the list of files included in the current compilation unit,
6037 and build a psymtab for each of them. */
6038 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6039
b4f54984 6040 if (dwarf_read_debug)
0018ea6f
DE
6041 {
6042 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6043
6044 fprintf_unfiltered (gdb_stdlog,
6045 "Psymtab for %s unit @0x%x: %s - %s"
6046 ", %d global, %d static syms\n",
6047 per_cu->is_debug_types ? "type" : "comp",
6048 per_cu->offset.sect_off,
6049 paddress (gdbarch, pst->textlow),
6050 paddress (gdbarch, pst->texthigh),
6051 pst->n_global_syms, pst->n_static_syms);
6052 }
6053}
6054
6055/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6056 Process compilation unit THIS_CU for a psymtab. */
6057
6058static void
6059process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6060 int want_partial_unit,
6061 enum language pretend_language)
0018ea6f 6062{
b93601f3
TT
6063 struct process_psymtab_comp_unit_data info;
6064
0018ea6f
DE
6065 /* If this compilation unit was already read in, free the
6066 cached copy in order to read it in again. This is
6067 necessary because we skipped some symbols when we first
6068 read in the compilation unit (see load_partial_dies).
6069 This problem could be avoided, but the benefit is unclear. */
6070 if (this_cu->cu != NULL)
6071 free_one_cached_comp_unit (this_cu);
6072
6073 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6074 info.want_partial_unit = want_partial_unit;
6075 info.pretend_language = pretend_language;
0018ea6f
DE
6076 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6077 process_psymtab_comp_unit_reader,
b93601f3 6078 &info);
0018ea6f
DE
6079
6080 /* Age out any secondary CUs. */
6081 age_cached_comp_units ();
6082}
f4dc4d17
DE
6083
6084/* Reader function for build_type_psymtabs. */
6085
6086static void
6087build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6088 const gdb_byte *info_ptr,
f4dc4d17
DE
6089 struct die_info *type_unit_die,
6090 int has_children,
6091 void *data)
6092{
6093 struct objfile *objfile = dwarf2_per_objfile->objfile;
6094 struct dwarf2_cu *cu = reader->cu;
6095 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6096 struct signatured_type *sig_type;
f4dc4d17
DE
6097 struct type_unit_group *tu_group;
6098 struct attribute *attr;
6099 struct partial_die_info *first_die;
6100 CORE_ADDR lowpc, highpc;
6101 struct partial_symtab *pst;
6102
6103 gdb_assert (data == NULL);
0186c6a7
DE
6104 gdb_assert (per_cu->is_debug_types);
6105 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6106
6107 if (! has_children)
6108 return;
6109
6110 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6111 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6112
0186c6a7 6113 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6114
6115 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6116 cu->list_in_scope = &file_symbols;
6117 pst = create_partial_symtab (per_cu, "");
6118 pst->anonymous = 1;
6119
6120 first_die = load_partial_dies (reader, info_ptr, 1);
6121
6122 lowpc = (CORE_ADDR) -1;
6123 highpc = (CORE_ADDR) 0;
6124 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6125
8763cede 6126 end_psymtab_common (objfile, pst);
f4dc4d17
DE
6127}
6128
73051182
DE
6129/* Struct used to sort TUs by their abbreviation table offset. */
6130
6131struct tu_abbrev_offset
6132{
6133 struct signatured_type *sig_type;
6134 sect_offset abbrev_offset;
6135};
6136
6137/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6138
6139static int
6140sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6141{
6142 const struct tu_abbrev_offset * const *a = ap;
6143 const struct tu_abbrev_offset * const *b = bp;
6144 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6145 unsigned int boff = (*b)->abbrev_offset.sect_off;
6146
6147 return (aoff > boff) - (aoff < boff);
6148}
6149
6150/* Efficiently read all the type units.
6151 This does the bulk of the work for build_type_psymtabs.
6152
6153 The efficiency is because we sort TUs by the abbrev table they use and
6154 only read each abbrev table once. In one program there are 200K TUs
6155 sharing 8K abbrev tables.
6156
6157 The main purpose of this function is to support building the
6158 dwarf2_per_objfile->type_unit_groups table.
6159 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6160 can collapse the search space by grouping them by stmt_list.
6161 The savings can be significant, in the same program from above the 200K TUs
6162 share 8K stmt_list tables.
6163
6164 FUNC is expected to call get_type_unit_group, which will create the
6165 struct type_unit_group if necessary and add it to
6166 dwarf2_per_objfile->type_unit_groups. */
6167
6168static void
6169build_type_psymtabs_1 (void)
6170{
6171 struct objfile *objfile = dwarf2_per_objfile->objfile;
6172 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6173 struct cleanup *cleanups;
6174 struct abbrev_table *abbrev_table;
6175 sect_offset abbrev_offset;
6176 struct tu_abbrev_offset *sorted_by_abbrev;
6177 struct type_unit_group **iter;
6178 int i;
6179
6180 /* It's up to the caller to not call us multiple times. */
6181 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6182
6183 if (dwarf2_per_objfile->n_type_units == 0)
6184 return;
6185
6186 /* TUs typically share abbrev tables, and there can be way more TUs than
6187 abbrev tables. Sort by abbrev table to reduce the number of times we
6188 read each abbrev table in.
6189 Alternatives are to punt or to maintain a cache of abbrev tables.
6190 This is simpler and efficient enough for now.
6191
6192 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6193 symtab to use). Typically TUs with the same abbrev offset have the same
6194 stmt_list value too so in practice this should work well.
6195
6196 The basic algorithm here is:
6197
6198 sort TUs by abbrev table
6199 for each TU with same abbrev table:
6200 read abbrev table if first user
6201 read TU top level DIE
6202 [IWBN if DWO skeletons had DW_AT_stmt_list]
6203 call FUNC */
6204
b4f54984 6205 if (dwarf_read_debug)
73051182
DE
6206 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6207
6208 /* Sort in a separate table to maintain the order of all_type_units
6209 for .gdb_index: TU indices directly index all_type_units. */
6210 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6211 dwarf2_per_objfile->n_type_units);
6212 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6213 {
6214 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6215
6216 sorted_by_abbrev[i].sig_type = sig_type;
6217 sorted_by_abbrev[i].abbrev_offset =
6218 read_abbrev_offset (sig_type->per_cu.section,
6219 sig_type->per_cu.offset);
6220 }
6221 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6222 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6223 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6224
6225 abbrev_offset.sect_off = ~(unsigned) 0;
6226 abbrev_table = NULL;
6227 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6228
6229 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6230 {
6231 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6232
6233 /* Switch to the next abbrev table if necessary. */
6234 if (abbrev_table == NULL
6235 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6236 {
6237 if (abbrev_table != NULL)
6238 {
6239 abbrev_table_free (abbrev_table);
6240 /* Reset to NULL in case abbrev_table_read_table throws
6241 an error: abbrev_table_free_cleanup will get called. */
6242 abbrev_table = NULL;
6243 }
6244 abbrev_offset = tu->abbrev_offset;
6245 abbrev_table =
6246 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6247 abbrev_offset);
6248 ++tu_stats->nr_uniq_abbrev_tables;
6249 }
6250
6251 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6252 build_type_psymtabs_reader, NULL);
6253 }
6254
73051182 6255 do_cleanups (cleanups);
6aa5f3a6 6256}
73051182 6257
6aa5f3a6
DE
6258/* Print collected type unit statistics. */
6259
6260static void
6261print_tu_stats (void)
6262{
6263 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6264
6265 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6266 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6267 dwarf2_per_objfile->n_type_units);
6268 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6269 tu_stats->nr_uniq_abbrev_tables);
6270 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6271 tu_stats->nr_symtabs);
6272 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6273 tu_stats->nr_symtab_sharers);
6274 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6275 tu_stats->nr_stmt_less_type_units);
6276 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6277 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6278}
6279
f4dc4d17
DE
6280/* Traversal function for build_type_psymtabs. */
6281
6282static int
6283build_type_psymtab_dependencies (void **slot, void *info)
6284{
6285 struct objfile *objfile = dwarf2_per_objfile->objfile;
6286 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6287 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6288 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6289 int len = VEC_length (sig_type_ptr, tu_group->tus);
6290 struct signatured_type *iter;
f4dc4d17
DE
6291 int i;
6292
6293 gdb_assert (len > 0);
0186c6a7 6294 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6295
6296 pst->number_of_dependencies = len;
8d749320
SM
6297 pst->dependencies =
6298 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
f4dc4d17 6299 for (i = 0;
0186c6a7 6300 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6301 ++i)
6302 {
0186c6a7
DE
6303 gdb_assert (iter->per_cu.is_debug_types);
6304 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6305 iter->type_unit_group = tu_group;
f4dc4d17
DE
6306 }
6307
0186c6a7 6308 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6309
6310 return 1;
6311}
6312
6313/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6314 Build partial symbol tables for the .debug_types comp-units. */
6315
6316static void
6317build_type_psymtabs (struct objfile *objfile)
6318{
0e50663e 6319 if (! create_all_type_units (objfile))
348e048f
DE
6320 return;
6321
73051182 6322 build_type_psymtabs_1 ();
6aa5f3a6 6323}
f4dc4d17 6324
6aa5f3a6
DE
6325/* Traversal function for process_skeletonless_type_unit.
6326 Read a TU in a DWO file and build partial symbols for it. */
6327
6328static int
6329process_skeletonless_type_unit (void **slot, void *info)
6330{
6331 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6332 struct objfile *objfile = info;
6333 struct signatured_type find_entry, *entry;
6334
6335 /* If this TU doesn't exist in the global table, add it and read it in. */
6336
6337 if (dwarf2_per_objfile->signatured_types == NULL)
6338 {
6339 dwarf2_per_objfile->signatured_types
6340 = allocate_signatured_type_table (objfile);
6341 }
6342
6343 find_entry.signature = dwo_unit->signature;
6344 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6345 INSERT);
6346 /* If we've already seen this type there's nothing to do. What's happening
6347 is we're doing our own version of comdat-folding here. */
6348 if (*slot != NULL)
6349 return 1;
6350
6351 /* This does the job that create_all_type_units would have done for
6352 this TU. */
6353 entry = add_type_unit (dwo_unit->signature, slot);
6354 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6355 *slot = entry;
6356
6357 /* This does the job that build_type_psymtabs_1 would have done. */
6358 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6359 build_type_psymtabs_reader, NULL);
6360
6361 return 1;
6362}
6363
6364/* Traversal function for process_skeletonless_type_units. */
6365
6366static int
6367process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6368{
6369 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6370
6371 if (dwo_file->tus != NULL)
6372 {
6373 htab_traverse_noresize (dwo_file->tus,
6374 process_skeletonless_type_unit, info);
6375 }
6376
6377 return 1;
6378}
6379
6380/* Scan all TUs of DWO files, verifying we've processed them.
6381 This is needed in case a TU was emitted without its skeleton.
6382 Note: This can't be done until we know what all the DWO files are. */
6383
6384static void
6385process_skeletonless_type_units (struct objfile *objfile)
6386{
6387 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6388 if (get_dwp_file () == NULL
6389 && dwarf2_per_objfile->dwo_files != NULL)
6390 {
6391 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6392 process_dwo_file_for_skeletonless_type_units,
6393 objfile);
6394 }
348e048f
DE
6395}
6396
60606b2c
TT
6397/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6398
6399static void
6400psymtabs_addrmap_cleanup (void *o)
6401{
6402 struct objfile *objfile = o;
ec61707d 6403
60606b2c
TT
6404 objfile->psymtabs_addrmap = NULL;
6405}
6406
95554aad
TT
6407/* Compute the 'user' field for each psymtab in OBJFILE. */
6408
6409static void
6410set_partial_user (struct objfile *objfile)
6411{
6412 int i;
6413
6414 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6415 {
8832e7e3 6416 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6417 struct partial_symtab *pst = per_cu->v.psymtab;
6418 int j;
6419
36586728
TT
6420 if (pst == NULL)
6421 continue;
6422
95554aad
TT
6423 for (j = 0; j < pst->number_of_dependencies; ++j)
6424 {
6425 /* Set the 'user' field only if it is not already set. */
6426 if (pst->dependencies[j]->user == NULL)
6427 pst->dependencies[j]->user = pst;
6428 }
6429 }
6430}
6431
93311388
DE
6432/* Build the partial symbol table by doing a quick pass through the
6433 .debug_info and .debug_abbrev sections. */
72bf9492 6434
93311388 6435static void
c67a9c90 6436dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6437{
60606b2c
TT
6438 struct cleanup *back_to, *addrmap_cleanup;
6439 struct obstack temp_obstack;
21b2bd31 6440 int i;
93311388 6441
b4f54984 6442 if (dwarf_read_debug)
45cfd468
DE
6443 {
6444 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6445 objfile_name (objfile));
45cfd468
DE
6446 }
6447
98bfdba5
PA
6448 dwarf2_per_objfile->reading_partial_symbols = 1;
6449
be391dca 6450 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6451
93311388
DE
6452 /* Any cached compilation units will be linked by the per-objfile
6453 read_in_chain. Make sure to free them when we're done. */
6454 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6455
348e048f
DE
6456 build_type_psymtabs (objfile);
6457
93311388 6458 create_all_comp_units (objfile);
c906108c 6459
60606b2c
TT
6460 /* Create a temporary address map on a temporary obstack. We later
6461 copy this to the final obstack. */
6462 obstack_init (&temp_obstack);
6463 make_cleanup_obstack_free (&temp_obstack);
6464 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6465 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6466
21b2bd31 6467 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6468 {
8832e7e3 6469 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6470
b93601f3 6471 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6472 }
ff013f42 6473
6aa5f3a6
DE
6474 /* This has to wait until we read the CUs, we need the list of DWOs. */
6475 process_skeletonless_type_units (objfile);
6476
6477 /* Now that all TUs have been processed we can fill in the dependencies. */
6478 if (dwarf2_per_objfile->type_unit_groups != NULL)
6479 {
6480 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6481 build_type_psymtab_dependencies, NULL);
6482 }
6483
b4f54984 6484 if (dwarf_read_debug)
6aa5f3a6
DE
6485 print_tu_stats ();
6486
95554aad
TT
6487 set_partial_user (objfile);
6488
ff013f42
JK
6489 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6490 &objfile->objfile_obstack);
60606b2c 6491 discard_cleanups (addrmap_cleanup);
ff013f42 6492
ae038cb0 6493 do_cleanups (back_to);
45cfd468 6494
b4f54984 6495 if (dwarf_read_debug)
45cfd468 6496 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6497 objfile_name (objfile));
ae038cb0
DJ
6498}
6499
3019eac3 6500/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6501
6502static void
dee91e82 6503load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6504 const gdb_byte *info_ptr,
dee91e82
DE
6505 struct die_info *comp_unit_die,
6506 int has_children,
6507 void *data)
ae038cb0 6508{
dee91e82 6509 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6510
95554aad 6511 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6512
ae038cb0
DJ
6513 /* Check if comp unit has_children.
6514 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6515 If not, there's no more debug_info for this comp unit. */
d85a05f0 6516 if (has_children)
dee91e82
DE
6517 load_partial_dies (reader, info_ptr, 0);
6518}
98bfdba5 6519
dee91e82
DE
6520/* Load the partial DIEs for a secondary CU into memory.
6521 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6522
dee91e82
DE
6523static void
6524load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6525{
f4dc4d17
DE
6526 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6527 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6528}
6529
ae038cb0 6530static void
36586728
TT
6531read_comp_units_from_section (struct objfile *objfile,
6532 struct dwarf2_section_info *section,
6533 unsigned int is_dwz,
6534 int *n_allocated,
6535 int *n_comp_units,
6536 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6537{
d521ce57 6538 const gdb_byte *info_ptr;
a32a8923 6539 bfd *abfd = get_section_bfd_owner (section);
be391dca 6540
b4f54984 6541 if (dwarf_read_debug)
bf6af496 6542 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6543 get_section_name (section),
6544 get_section_file_name (section));
bf6af496 6545
36586728 6546 dwarf2_read_section (objfile, section);
ae038cb0 6547
36586728 6548 info_ptr = section->buffer;
6e70227d 6549
36586728 6550 while (info_ptr < section->buffer + section->size)
ae038cb0 6551 {
c764a876 6552 unsigned int length, initial_length_size;
ae038cb0 6553 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6554 sect_offset offset;
ae038cb0 6555
36586728 6556 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6557
6558 /* Read just enough information to find out where the next
6559 compilation unit is. */
36586728 6560 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6561
6562 /* Save the compilation unit for later lookup. */
8d749320 6563 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
ae038cb0
DJ
6564 memset (this_cu, 0, sizeof (*this_cu));
6565 this_cu->offset = offset;
c764a876 6566 this_cu->length = length + initial_length_size;
36586728 6567 this_cu->is_dwz = is_dwz;
9291a0cd 6568 this_cu->objfile = objfile;
8a0459fd 6569 this_cu->section = section;
ae038cb0 6570
36586728 6571 if (*n_comp_units == *n_allocated)
ae038cb0 6572 {
36586728
TT
6573 *n_allocated *= 2;
6574 *all_comp_units = xrealloc (*all_comp_units,
6575 *n_allocated
6576 * sizeof (struct dwarf2_per_cu_data *));
ae038cb0 6577 }
36586728
TT
6578 (*all_comp_units)[*n_comp_units] = this_cu;
6579 ++*n_comp_units;
ae038cb0
DJ
6580
6581 info_ptr = info_ptr + this_cu->length;
6582 }
36586728
TT
6583}
6584
6585/* Create a list of all compilation units in OBJFILE.
6586 This is only done for -readnow and building partial symtabs. */
6587
6588static void
6589create_all_comp_units (struct objfile *objfile)
6590{
6591 int n_allocated;
6592 int n_comp_units;
6593 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6594 struct dwz_file *dwz;
36586728
TT
6595
6596 n_comp_units = 0;
6597 n_allocated = 10;
8d749320 6598 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
36586728
TT
6599
6600 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6601 &n_allocated, &n_comp_units, &all_comp_units);
6602
4db1a1dc
TT
6603 dwz = dwarf2_get_dwz_file ();
6604 if (dwz != NULL)
6605 read_comp_units_from_section (objfile, &dwz->info, 1,
6606 &n_allocated, &n_comp_units,
6607 &all_comp_units);
ae038cb0 6608
8d749320
SM
6609 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6610 struct dwarf2_per_cu_data *,
6611 n_comp_units);
ae038cb0
DJ
6612 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6613 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6614 xfree (all_comp_units);
6615 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6616}
6617
5734ee8b 6618/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6619 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6620 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6621 DW_AT_ranges). See the comments of add_partial_subprogram on how
6622 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6623
72bf9492
DJ
6624static void
6625scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6626 CORE_ADDR *highpc, int set_addrmap,
6627 struct dwarf2_cu *cu)
c906108c 6628{
72bf9492 6629 struct partial_die_info *pdi;
c906108c 6630
91c24f0a
DC
6631 /* Now, march along the PDI's, descending into ones which have
6632 interesting children but skipping the children of the other ones,
6633 until we reach the end of the compilation unit. */
c906108c 6634
72bf9492 6635 pdi = first_die;
91c24f0a 6636
72bf9492
DJ
6637 while (pdi != NULL)
6638 {
6639 fixup_partial_die (pdi, cu);
c906108c 6640
f55ee35c 6641 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6642 children, so we need to look at them. Ditto for anonymous
6643 enums. */
933c6fe4 6644
72bf9492 6645 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6646 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6647 || pdi->tag == DW_TAG_imported_unit)
c906108c 6648 {
72bf9492 6649 switch (pdi->tag)
c906108c
SS
6650 {
6651 case DW_TAG_subprogram:
cdc07690 6652 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6653 break;
72929c62 6654 case DW_TAG_constant:
c906108c
SS
6655 case DW_TAG_variable:
6656 case DW_TAG_typedef:
91c24f0a 6657 case DW_TAG_union_type:
72bf9492 6658 if (!pdi->is_declaration)
63d06c5c 6659 {
72bf9492 6660 add_partial_symbol (pdi, cu);
63d06c5c
DC
6661 }
6662 break;
c906108c 6663 case DW_TAG_class_type:
680b30c7 6664 case DW_TAG_interface_type:
c906108c 6665 case DW_TAG_structure_type:
72bf9492 6666 if (!pdi->is_declaration)
c906108c 6667 {
72bf9492 6668 add_partial_symbol (pdi, cu);
c906108c
SS
6669 }
6670 break;
91c24f0a 6671 case DW_TAG_enumeration_type:
72bf9492
DJ
6672 if (!pdi->is_declaration)
6673 add_partial_enumeration (pdi, cu);
c906108c
SS
6674 break;
6675 case DW_TAG_base_type:
a02abb62 6676 case DW_TAG_subrange_type:
c906108c 6677 /* File scope base type definitions are added to the partial
c5aa993b 6678 symbol table. */
72bf9492 6679 add_partial_symbol (pdi, cu);
c906108c 6680 break;
d9fa45fe 6681 case DW_TAG_namespace:
cdc07690 6682 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6683 break;
5d7cb8df 6684 case DW_TAG_module:
cdc07690 6685 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6686 break;
95554aad
TT
6687 case DW_TAG_imported_unit:
6688 {
6689 struct dwarf2_per_cu_data *per_cu;
6690
f4dc4d17
DE
6691 /* For now we don't handle imported units in type units. */
6692 if (cu->per_cu->is_debug_types)
6693 {
6694 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6695 " supported in type units [in module %s]"),
4262abfb 6696 objfile_name (cu->objfile));
f4dc4d17
DE
6697 }
6698
95554aad 6699 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6700 pdi->is_dwz,
95554aad
TT
6701 cu->objfile);
6702
6703 /* Go read the partial unit, if needed. */
6704 if (per_cu->v.psymtab == NULL)
b93601f3 6705 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6706
f4dc4d17 6707 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6708 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6709 }
6710 break;
74921315
KS
6711 case DW_TAG_imported_declaration:
6712 add_partial_symbol (pdi, cu);
6713 break;
c906108c
SS
6714 default:
6715 break;
6716 }
6717 }
6718
72bf9492
DJ
6719 /* If the die has a sibling, skip to the sibling. */
6720
6721 pdi = pdi->die_sibling;
6722 }
6723}
6724
6725/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6726
72bf9492 6727 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6728 name is concatenated with "::" and the partial DIE's name. For
6729 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6730 Enumerators are an exception; they use the scope of their parent
6731 enumeration type, i.e. the name of the enumeration type is not
6732 prepended to the enumerator.
91c24f0a 6733
72bf9492
DJ
6734 There are two complexities. One is DW_AT_specification; in this
6735 case "parent" means the parent of the target of the specification,
6736 instead of the direct parent of the DIE. The other is compilers
6737 which do not emit DW_TAG_namespace; in this case we try to guess
6738 the fully qualified name of structure types from their members'
6739 linkage names. This must be done using the DIE's children rather
6740 than the children of any DW_AT_specification target. We only need
6741 to do this for structures at the top level, i.e. if the target of
6742 any DW_AT_specification (if any; otherwise the DIE itself) does not
6743 have a parent. */
6744
6745/* Compute the scope prefix associated with PDI's parent, in
6746 compilation unit CU. The result will be allocated on CU's
6747 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6748 field. NULL is returned if no prefix is necessary. */
15d034d0 6749static const char *
72bf9492
DJ
6750partial_die_parent_scope (struct partial_die_info *pdi,
6751 struct dwarf2_cu *cu)
6752{
15d034d0 6753 const char *grandparent_scope;
72bf9492 6754 struct partial_die_info *parent, *real_pdi;
91c24f0a 6755
72bf9492
DJ
6756 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6757 then this means the parent of the specification DIE. */
6758
6759 real_pdi = pdi;
72bf9492 6760 while (real_pdi->has_specification)
36586728
TT
6761 real_pdi = find_partial_die (real_pdi->spec_offset,
6762 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6763
6764 parent = real_pdi->die_parent;
6765 if (parent == NULL)
6766 return NULL;
6767
6768 if (parent->scope_set)
6769 return parent->scope;
6770
6771 fixup_partial_die (parent, cu);
6772
10b3939b 6773 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6774
acebe513
UW
6775 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6776 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6777 Work around this problem here. */
6778 if (cu->language == language_cplus
6e70227d 6779 && parent->tag == DW_TAG_namespace
acebe513
UW
6780 && strcmp (parent->name, "::") == 0
6781 && grandparent_scope == NULL)
6782 {
6783 parent->scope = NULL;
6784 parent->scope_set = 1;
6785 return NULL;
6786 }
6787
9c6c53f7
SA
6788 if (pdi->tag == DW_TAG_enumerator)
6789 /* Enumerators should not get the name of the enumeration as a prefix. */
6790 parent->scope = grandparent_scope;
6791 else if (parent->tag == DW_TAG_namespace
f55ee35c 6792 || parent->tag == DW_TAG_module
72bf9492
DJ
6793 || parent->tag == DW_TAG_structure_type
6794 || parent->tag == DW_TAG_class_type
680b30c7 6795 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6796 || parent->tag == DW_TAG_union_type
6797 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6798 {
6799 if (grandparent_scope == NULL)
6800 parent->scope = parent->name;
6801 else
3e43a32a
MS
6802 parent->scope = typename_concat (&cu->comp_unit_obstack,
6803 grandparent_scope,
f55ee35c 6804 parent->name, 0, cu);
72bf9492 6805 }
72bf9492
DJ
6806 else
6807 {
6808 /* FIXME drow/2004-04-01: What should we be doing with
6809 function-local names? For partial symbols, we should probably be
6810 ignoring them. */
6811 complaint (&symfile_complaints,
e2e0b3e5 6812 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6813 parent->tag, pdi->offset.sect_off);
72bf9492 6814 parent->scope = grandparent_scope;
c906108c
SS
6815 }
6816
72bf9492
DJ
6817 parent->scope_set = 1;
6818 return parent->scope;
6819}
6820
6821/* Return the fully scoped name associated with PDI, from compilation unit
6822 CU. The result will be allocated with malloc. */
4568ecf9 6823
72bf9492
DJ
6824static char *
6825partial_die_full_name (struct partial_die_info *pdi,
6826 struct dwarf2_cu *cu)
6827{
15d034d0 6828 const char *parent_scope;
72bf9492 6829
98bfdba5
PA
6830 /* If this is a template instantiation, we can not work out the
6831 template arguments from partial DIEs. So, unfortunately, we have
6832 to go through the full DIEs. At least any work we do building
6833 types here will be reused if full symbols are loaded later. */
6834 if (pdi->has_template_arguments)
6835 {
6836 fixup_partial_die (pdi, cu);
6837
6838 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6839 {
6840 struct die_info *die;
6841 struct attribute attr;
6842 struct dwarf2_cu *ref_cu = cu;
6843
b64f50a1 6844 /* DW_FORM_ref_addr is using section offset. */
98bfdba5
PA
6845 attr.name = 0;
6846 attr.form = DW_FORM_ref_addr;
4568ecf9 6847 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6848 die = follow_die_ref (NULL, &attr, &ref_cu);
6849
6850 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6851 }
6852 }
6853
72bf9492
DJ
6854 parent_scope = partial_die_parent_scope (pdi, cu);
6855 if (parent_scope == NULL)
6856 return NULL;
6857 else
f55ee35c 6858 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6859}
6860
6861static void
72bf9492 6862add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6863{
e7c27a73 6864 struct objfile *objfile = cu->objfile;
3e29f34a 6865 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 6866 CORE_ADDR addr = 0;
15d034d0 6867 const char *actual_name = NULL;
e142c38c 6868 CORE_ADDR baseaddr;
15d034d0 6869 char *built_actual_name;
e142c38c
DJ
6870
6871 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6872
15d034d0
TT
6873 built_actual_name = partial_die_full_name (pdi, cu);
6874 if (built_actual_name != NULL)
6875 actual_name = built_actual_name;
63d06c5c 6876
72bf9492
DJ
6877 if (actual_name == NULL)
6878 actual_name = pdi->name;
6879
c906108c
SS
6880 switch (pdi->tag)
6881 {
6882 case DW_TAG_subprogram:
3e29f34a 6883 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
2cfa0c8d 6884 if (pdi->is_external || cu->language == language_ada)
c906108c 6885 {
2cfa0c8d
JB
6886 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6887 of the global scope. But in Ada, we want to be able to access
6888 nested procedures globally. So all Ada subprograms are stored
6889 in the global scope. */
f47fb265 6890 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6891 built_actual_name != NULL,
f47fb265
MS
6892 VAR_DOMAIN, LOC_BLOCK,
6893 &objfile->global_psymbols,
1762568f 6894 addr, cu->language, objfile);
c906108c
SS
6895 }
6896 else
6897 {
f47fb265 6898 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6899 built_actual_name != NULL,
f47fb265
MS
6900 VAR_DOMAIN, LOC_BLOCK,
6901 &objfile->static_psymbols,
1762568f 6902 addr, cu->language, objfile);
c906108c
SS
6903 }
6904 break;
72929c62
JB
6905 case DW_TAG_constant:
6906 {
6907 struct psymbol_allocation_list *list;
6908
6909 if (pdi->is_external)
6910 list = &objfile->global_psymbols;
6911 else
6912 list = &objfile->static_psymbols;
f47fb265 6913 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6914 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
1762568f 6915 list, 0, cu->language, objfile);
72929c62
JB
6916 }
6917 break;
c906108c 6918 case DW_TAG_variable:
95554aad
TT
6919 if (pdi->d.locdesc)
6920 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6921
95554aad 6922 if (pdi->d.locdesc
caac4577
JG
6923 && addr == 0
6924 && !dwarf2_per_objfile->has_section_at_zero)
6925 {
6926 /* A global or static variable may also have been stripped
6927 out by the linker if unused, in which case its address
6928 will be nullified; do not add such variables into partial
6929 symbol table then. */
6930 }
6931 else if (pdi->is_external)
c906108c
SS
6932 {
6933 /* Global Variable.
6934 Don't enter into the minimal symbol tables as there is
6935 a minimal symbol table entry from the ELF symbols already.
6936 Enter into partial symbol table if it has a location
6937 descriptor or a type.
6938 If the location descriptor is missing, new_symbol will create
6939 a LOC_UNRESOLVED symbol, the address of the variable will then
6940 be determined from the minimal symbol table whenever the variable
6941 is referenced.
6942 The address for the partial symbol table entry is not
6943 used by GDB, but it comes in handy for debugging partial symbol
6944 table building. */
6945
95554aad 6946 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6947 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6948 built_actual_name != NULL,
f47fb265
MS
6949 VAR_DOMAIN, LOC_STATIC,
6950 &objfile->global_psymbols,
1762568f 6951 addr + baseaddr,
f47fb265 6952 cu->language, objfile);
c906108c
SS
6953 }
6954 else
6955 {
ff908ebf
AW
6956 int has_loc = pdi->d.locdesc != NULL;
6957
6958 /* Static Variable. Skip symbols whose value we cannot know (those
6959 without location descriptors or constant values). */
6960 if (!has_loc && !pdi->has_const_value)
decbce07 6961 {
15d034d0 6962 xfree (built_actual_name);
decbce07
MS
6963 return;
6964 }
ff908ebf 6965
f47fb265 6966 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6967 built_actual_name != NULL,
f47fb265
MS
6968 VAR_DOMAIN, LOC_STATIC,
6969 &objfile->static_psymbols,
ff908ebf 6970 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
f47fb265 6971 cu->language, objfile);
c906108c
SS
6972 }
6973 break;
6974 case DW_TAG_typedef:
6975 case DW_TAG_base_type:
a02abb62 6976 case DW_TAG_subrange_type:
38d518c9 6977 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6978 built_actual_name != NULL,
176620f1 6979 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 6980 &objfile->static_psymbols,
1762568f 6981 0, cu->language, objfile);
c906108c 6982 break;
74921315 6983 case DW_TAG_imported_declaration:
72bf9492
DJ
6984 case DW_TAG_namespace:
6985 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6986 built_actual_name != NULL,
72bf9492
DJ
6987 VAR_DOMAIN, LOC_TYPEDEF,
6988 &objfile->global_psymbols,
1762568f 6989 0, cu->language, objfile);
72bf9492 6990 break;
530e8392
KB
6991 case DW_TAG_module:
6992 add_psymbol_to_list (actual_name, strlen (actual_name),
6993 built_actual_name != NULL,
6994 MODULE_DOMAIN, LOC_TYPEDEF,
6995 &objfile->global_psymbols,
1762568f 6996 0, cu->language, objfile);
530e8392 6997 break;
c906108c 6998 case DW_TAG_class_type:
680b30c7 6999 case DW_TAG_interface_type:
c906108c
SS
7000 case DW_TAG_structure_type:
7001 case DW_TAG_union_type:
7002 case DW_TAG_enumeration_type:
fa4028e9
JB
7003 /* Skip external references. The DWARF standard says in the section
7004 about "Structure, Union, and Class Type Entries": "An incomplete
7005 structure, union or class type is represented by a structure,
7006 union or class entry that does not have a byte size attribute
7007 and that has a DW_AT_declaration attribute." */
7008 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 7009 {
15d034d0 7010 xfree (built_actual_name);
decbce07
MS
7011 return;
7012 }
fa4028e9 7013
63d06c5c
DC
7014 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7015 static vs. global. */
38d518c9 7016 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7017 built_actual_name != NULL,
176620f1 7018 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
7019 (cu->language == language_cplus
7020 || cu->language == language_java)
63d06c5c
DC
7021 ? &objfile->global_psymbols
7022 : &objfile->static_psymbols,
1762568f 7023 0, cu->language, objfile);
c906108c 7024
c906108c
SS
7025 break;
7026 case DW_TAG_enumerator:
38d518c9 7027 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7028 built_actual_name != NULL,
176620f1 7029 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
7030 (cu->language == language_cplus
7031 || cu->language == language_java)
f6fe98ef
DJ
7032 ? &objfile->global_psymbols
7033 : &objfile->static_psymbols,
1762568f 7034 0, cu->language, objfile);
c906108c
SS
7035 break;
7036 default:
7037 break;
7038 }
5c4e30ca 7039
15d034d0 7040 xfree (built_actual_name);
c906108c
SS
7041}
7042
5c4e30ca
DC
7043/* Read a partial die corresponding to a namespace; also, add a symbol
7044 corresponding to that namespace to the symbol table. NAMESPACE is
7045 the name of the enclosing namespace. */
91c24f0a 7046
72bf9492
DJ
7047static void
7048add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 7049 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7050 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 7051{
72bf9492 7052 /* Add a symbol for the namespace. */
e7c27a73 7053
72bf9492 7054 add_partial_symbol (pdi, cu);
5c4e30ca
DC
7055
7056 /* Now scan partial symbols in that namespace. */
7057
91c24f0a 7058 if (pdi->has_children)
cdc07690 7059 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
7060}
7061
5d7cb8df
JK
7062/* Read a partial die corresponding to a Fortran module. */
7063
7064static void
7065add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 7066 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 7067{
530e8392
KB
7068 /* Add a symbol for the namespace. */
7069
7070 add_partial_symbol (pdi, cu);
7071
f55ee35c 7072 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7073
7074 if (pdi->has_children)
cdc07690 7075 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7076}
7077
bc30ff58
JB
7078/* Read a partial die corresponding to a subprogram and create a partial
7079 symbol for that subprogram. When the CU language allows it, this
7080 routine also defines a partial symbol for each nested subprogram
cdc07690 7081 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7082 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7083 and highest PC values found in PDI.
6e70227d 7084
cdc07690
YQ
7085 PDI may also be a lexical block, in which case we simply search
7086 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7087 Again, this is only performed when the CU language allows this
7088 type of definitions. */
7089
7090static void
7091add_partial_subprogram (struct partial_die_info *pdi,
7092 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7093 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7094{
7095 if (pdi->tag == DW_TAG_subprogram)
7096 {
7097 if (pdi->has_pc_info)
7098 {
7099 if (pdi->lowpc < *lowpc)
7100 *lowpc = pdi->lowpc;
7101 if (pdi->highpc > *highpc)
7102 *highpc = pdi->highpc;
cdc07690 7103 if (set_addrmap)
5734ee8b 7104 {
5734ee8b 7105 struct objfile *objfile = cu->objfile;
3e29f34a
MR
7106 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7107 CORE_ADDR baseaddr;
7108 CORE_ADDR highpc;
7109 CORE_ADDR lowpc;
5734ee8b
DJ
7110
7111 baseaddr = ANOFFSET (objfile->section_offsets,
7112 SECT_OFF_TEXT (objfile));
3e29f34a
MR
7113 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7114 pdi->lowpc + baseaddr);
7115 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7116 pdi->highpc + baseaddr);
7117 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 7118 cu->per_cu->v.psymtab);
5734ee8b 7119 }
481860b3
GB
7120 }
7121
7122 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7123 {
bc30ff58 7124 if (!pdi->is_declaration)
e8d05480
JB
7125 /* Ignore subprogram DIEs that do not have a name, they are
7126 illegal. Do not emit a complaint at this point, we will
7127 do so when we convert this psymtab into a symtab. */
7128 if (pdi->name)
7129 add_partial_symbol (pdi, cu);
bc30ff58
JB
7130 }
7131 }
6e70227d 7132
bc30ff58
JB
7133 if (! pdi->has_children)
7134 return;
7135
7136 if (cu->language == language_ada)
7137 {
7138 pdi = pdi->die_child;
7139 while (pdi != NULL)
7140 {
7141 fixup_partial_die (pdi, cu);
7142 if (pdi->tag == DW_TAG_subprogram
7143 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7144 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7145 pdi = pdi->die_sibling;
7146 }
7147 }
7148}
7149
91c24f0a
DC
7150/* Read a partial die corresponding to an enumeration type. */
7151
72bf9492
DJ
7152static void
7153add_partial_enumeration (struct partial_die_info *enum_pdi,
7154 struct dwarf2_cu *cu)
91c24f0a 7155{
72bf9492 7156 struct partial_die_info *pdi;
91c24f0a
DC
7157
7158 if (enum_pdi->name != NULL)
72bf9492
DJ
7159 add_partial_symbol (enum_pdi, cu);
7160
7161 pdi = enum_pdi->die_child;
7162 while (pdi)
91c24f0a 7163 {
72bf9492 7164 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7165 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7166 else
72bf9492
DJ
7167 add_partial_symbol (pdi, cu);
7168 pdi = pdi->die_sibling;
91c24f0a 7169 }
91c24f0a
DC
7170}
7171
6caca83c
CC
7172/* Return the initial uleb128 in the die at INFO_PTR. */
7173
7174static unsigned int
d521ce57 7175peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7176{
7177 unsigned int bytes_read;
7178
7179 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7180}
7181
4bb7a0a7
DJ
7182/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7183 Return the corresponding abbrev, or NULL if the number is zero (indicating
7184 an empty DIE). In either case *BYTES_READ will be set to the length of
7185 the initial number. */
7186
7187static struct abbrev_info *
d521ce57 7188peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7189 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7190{
7191 bfd *abfd = cu->objfile->obfd;
7192 unsigned int abbrev_number;
7193 struct abbrev_info *abbrev;
7194
7195 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7196
7197 if (abbrev_number == 0)
7198 return NULL;
7199
433df2d4 7200 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7201 if (!abbrev)
7202 {
422b9917
DE
7203 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7204 " at offset 0x%x [in module %s]"),
7205 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7206 cu->header.offset.sect_off, bfd_get_filename (abfd));
4bb7a0a7
DJ
7207 }
7208
7209 return abbrev;
7210}
7211
93311388
DE
7212/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7213 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7214 DIE. Any children of the skipped DIEs will also be skipped. */
7215
d521ce57
TT
7216static const gdb_byte *
7217skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7218{
dee91e82 7219 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7220 struct abbrev_info *abbrev;
7221 unsigned int bytes_read;
7222
7223 while (1)
7224 {
7225 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7226 if (abbrev == NULL)
7227 return info_ptr + bytes_read;
7228 else
dee91e82 7229 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7230 }
7231}
7232
93311388
DE
7233/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7234 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7235 abbrev corresponding to that skipped uleb128 should be passed in
7236 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7237 children. */
7238
d521ce57
TT
7239static const gdb_byte *
7240skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7241 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7242{
7243 unsigned int bytes_read;
7244 struct attribute attr;
dee91e82
DE
7245 bfd *abfd = reader->abfd;
7246 struct dwarf2_cu *cu = reader->cu;
d521ce57 7247 const gdb_byte *buffer = reader->buffer;
f664829e 7248 const gdb_byte *buffer_end = reader->buffer_end;
d521ce57 7249 const gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
7250 unsigned int form, i;
7251
7252 for (i = 0; i < abbrev->num_attrs; i++)
7253 {
7254 /* The only abbrev we care about is DW_AT_sibling. */
7255 if (abbrev->attrs[i].name == DW_AT_sibling)
7256 {
dee91e82 7257 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7258 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7259 complaint (&symfile_complaints,
7260 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7261 else
b9502d3f
WN
7262 {
7263 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7264 const gdb_byte *sibling_ptr = buffer + off;
7265
7266 if (sibling_ptr < info_ptr)
7267 complaint (&symfile_complaints,
7268 _("DW_AT_sibling points backwards"));
22869d73
KS
7269 else if (sibling_ptr > reader->buffer_end)
7270 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7271 else
7272 return sibling_ptr;
7273 }
4bb7a0a7
DJ
7274 }
7275
7276 /* If it isn't DW_AT_sibling, skip this attribute. */
7277 form = abbrev->attrs[i].form;
7278 skip_attribute:
7279 switch (form)
7280 {
4bb7a0a7 7281 case DW_FORM_ref_addr:
ae411497
TT
7282 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7283 and later it is offset sized. */
7284 if (cu->header.version == 2)
7285 info_ptr += cu->header.addr_size;
7286 else
7287 info_ptr += cu->header.offset_size;
7288 break;
36586728
TT
7289 case DW_FORM_GNU_ref_alt:
7290 info_ptr += cu->header.offset_size;
7291 break;
ae411497 7292 case DW_FORM_addr:
4bb7a0a7
DJ
7293 info_ptr += cu->header.addr_size;
7294 break;
7295 case DW_FORM_data1:
7296 case DW_FORM_ref1:
7297 case DW_FORM_flag:
7298 info_ptr += 1;
7299 break;
2dc7f7b3
TT
7300 case DW_FORM_flag_present:
7301 break;
4bb7a0a7
DJ
7302 case DW_FORM_data2:
7303 case DW_FORM_ref2:
7304 info_ptr += 2;
7305 break;
7306 case DW_FORM_data4:
7307 case DW_FORM_ref4:
7308 info_ptr += 4;
7309 break;
7310 case DW_FORM_data8:
7311 case DW_FORM_ref8:
55f1336d 7312 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7313 info_ptr += 8;
7314 break;
7315 case DW_FORM_string:
9b1c24c8 7316 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7317 info_ptr += bytes_read;
7318 break;
2dc7f7b3 7319 case DW_FORM_sec_offset:
4bb7a0a7 7320 case DW_FORM_strp:
36586728 7321 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7322 info_ptr += cu->header.offset_size;
7323 break;
2dc7f7b3 7324 case DW_FORM_exprloc:
4bb7a0a7
DJ
7325 case DW_FORM_block:
7326 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7327 info_ptr += bytes_read;
7328 break;
7329 case DW_FORM_block1:
7330 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7331 break;
7332 case DW_FORM_block2:
7333 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7334 break;
7335 case DW_FORM_block4:
7336 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7337 break;
7338 case DW_FORM_sdata:
7339 case DW_FORM_udata:
7340 case DW_FORM_ref_udata:
3019eac3
DE
7341 case DW_FORM_GNU_addr_index:
7342 case DW_FORM_GNU_str_index:
d521ce57 7343 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7344 break;
7345 case DW_FORM_indirect:
7346 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7347 info_ptr += bytes_read;
7348 /* We need to continue parsing from here, so just go back to
7349 the top. */
7350 goto skip_attribute;
7351
7352 default:
3e43a32a
MS
7353 error (_("Dwarf Error: Cannot handle %s "
7354 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7355 dwarf_form_name (form),
7356 bfd_get_filename (abfd));
7357 }
7358 }
7359
7360 if (abbrev->has_children)
dee91e82 7361 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7362 else
7363 return info_ptr;
7364}
7365
93311388 7366/* Locate ORIG_PDI's sibling.
dee91e82 7367 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7368
d521ce57 7369static const gdb_byte *
dee91e82
DE
7370locate_pdi_sibling (const struct die_reader_specs *reader,
7371 struct partial_die_info *orig_pdi,
d521ce57 7372 const gdb_byte *info_ptr)
91c24f0a
DC
7373{
7374 /* Do we know the sibling already? */
72bf9492 7375
91c24f0a
DC
7376 if (orig_pdi->sibling)
7377 return orig_pdi->sibling;
7378
7379 /* Are there any children to deal with? */
7380
7381 if (!orig_pdi->has_children)
7382 return info_ptr;
7383
4bb7a0a7 7384 /* Skip the children the long way. */
91c24f0a 7385
dee91e82 7386 return skip_children (reader, info_ptr);
91c24f0a
DC
7387}
7388
257e7a09 7389/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7390 not NULL. */
c906108c
SS
7391
7392static void
257e7a09
YQ
7393dwarf2_read_symtab (struct partial_symtab *self,
7394 struct objfile *objfile)
c906108c 7395{
257e7a09 7396 if (self->readin)
c906108c 7397 {
442e4d9c 7398 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7399 self->filename);
442e4d9c
YQ
7400 }
7401 else
7402 {
7403 if (info_verbose)
c906108c 7404 {
442e4d9c 7405 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7406 self->filename);
442e4d9c 7407 gdb_flush (gdb_stdout);
c906108c 7408 }
c906108c 7409
442e4d9c
YQ
7410 /* Restore our global data. */
7411 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10b3939b 7412
442e4d9c
YQ
7413 /* If this psymtab is constructed from a debug-only objfile, the
7414 has_section_at_zero flag will not necessarily be correct. We
7415 can get the correct value for this flag by looking at the data
7416 associated with the (presumably stripped) associated objfile. */
7417 if (objfile->separate_debug_objfile_backlink)
7418 {
7419 struct dwarf2_per_objfile *dpo_backlink
7420 = objfile_data (objfile->separate_debug_objfile_backlink,
7421 dwarf2_objfile_data_key);
9a619af0 7422
442e4d9c
YQ
7423 dwarf2_per_objfile->has_section_at_zero
7424 = dpo_backlink->has_section_at_zero;
7425 }
b2ab525c 7426
442e4d9c 7427 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7428
257e7a09 7429 psymtab_to_symtab_1 (self);
c906108c 7430
442e4d9c
YQ
7431 /* Finish up the debug error message. */
7432 if (info_verbose)
7433 printf_filtered (_("done.\n"));
c906108c 7434 }
95554aad
TT
7435
7436 process_cu_includes ();
c906108c 7437}
9cdd5dbd
DE
7438\f
7439/* Reading in full CUs. */
c906108c 7440
10b3939b
DJ
7441/* Add PER_CU to the queue. */
7442
7443static void
95554aad
TT
7444queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7445 enum language pretend_language)
10b3939b
DJ
7446{
7447 struct dwarf2_queue_item *item;
7448
7449 per_cu->queued = 1;
8d749320 7450 item = XNEW (struct dwarf2_queue_item);
10b3939b 7451 item->per_cu = per_cu;
95554aad 7452 item->pretend_language = pretend_language;
10b3939b
DJ
7453 item->next = NULL;
7454
7455 if (dwarf2_queue == NULL)
7456 dwarf2_queue = item;
7457 else
7458 dwarf2_queue_tail->next = item;
7459
7460 dwarf2_queue_tail = item;
7461}
7462
89e63ee4
DE
7463/* If PER_CU is not yet queued, add it to the queue.
7464 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7465 dependency.
0907af0c 7466 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7467 meaning either PER_CU is already queued or it is already loaded.
7468
7469 N.B. There is an invariant here that if a CU is queued then it is loaded.
7470 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7471
7472static int
89e63ee4 7473maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7474 struct dwarf2_per_cu_data *per_cu,
7475 enum language pretend_language)
7476{
7477 /* We may arrive here during partial symbol reading, if we need full
7478 DIEs to process an unusual case (e.g. template arguments). Do
7479 not queue PER_CU, just tell our caller to load its DIEs. */
7480 if (dwarf2_per_objfile->reading_partial_symbols)
7481 {
7482 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7483 return 1;
7484 return 0;
7485 }
7486
7487 /* Mark the dependence relation so that we don't flush PER_CU
7488 too early. */
89e63ee4
DE
7489 if (dependent_cu != NULL)
7490 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7491
7492 /* If it's already on the queue, we have nothing to do. */
7493 if (per_cu->queued)
7494 return 0;
7495
7496 /* If the compilation unit is already loaded, just mark it as
7497 used. */
7498 if (per_cu->cu != NULL)
7499 {
7500 per_cu->cu->last_used = 0;
7501 return 0;
7502 }
7503
7504 /* Add it to the queue. */
7505 queue_comp_unit (per_cu, pretend_language);
7506
7507 return 1;
7508}
7509
10b3939b
DJ
7510/* Process the queue. */
7511
7512static void
a0f42c21 7513process_queue (void)
10b3939b
DJ
7514{
7515 struct dwarf2_queue_item *item, *next_item;
7516
b4f54984 7517 if (dwarf_read_debug)
45cfd468
DE
7518 {
7519 fprintf_unfiltered (gdb_stdlog,
7520 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7521 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7522 }
7523
03dd20cc
DJ
7524 /* The queue starts out with one item, but following a DIE reference
7525 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7526 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7527 {
cc12ce38
DE
7528 if ((dwarf2_per_objfile->using_index
7529 ? !item->per_cu->v.quick->compunit_symtab
7530 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7531 /* Skip dummy CUs. */
7532 && item->per_cu->cu != NULL)
f4dc4d17
DE
7533 {
7534 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7535 unsigned int debug_print_threshold;
247f5c4f 7536 char buf[100];
f4dc4d17 7537
247f5c4f 7538 if (per_cu->is_debug_types)
f4dc4d17 7539 {
247f5c4f
DE
7540 struct signatured_type *sig_type =
7541 (struct signatured_type *) per_cu;
7542
7543 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7544 hex_string (sig_type->signature),
7545 per_cu->offset.sect_off);
7546 /* There can be 100s of TUs.
7547 Only print them in verbose mode. */
7548 debug_print_threshold = 2;
f4dc4d17 7549 }
247f5c4f 7550 else
73be47f5
DE
7551 {
7552 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7553 debug_print_threshold = 1;
7554 }
247f5c4f 7555
b4f54984 7556 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7557 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7558
7559 if (per_cu->is_debug_types)
7560 process_full_type_unit (per_cu, item->pretend_language);
7561 else
7562 process_full_comp_unit (per_cu, item->pretend_language);
7563
b4f54984 7564 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7565 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7566 }
10b3939b
DJ
7567
7568 item->per_cu->queued = 0;
7569 next_item = item->next;
7570 xfree (item);
7571 }
7572
7573 dwarf2_queue_tail = NULL;
45cfd468 7574
b4f54984 7575 if (dwarf_read_debug)
45cfd468
DE
7576 {
7577 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7578 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7579 }
10b3939b
DJ
7580}
7581
7582/* Free all allocated queue entries. This function only releases anything if
7583 an error was thrown; if the queue was processed then it would have been
7584 freed as we went along. */
7585
7586static void
7587dwarf2_release_queue (void *dummy)
7588{
7589 struct dwarf2_queue_item *item, *last;
7590
7591 item = dwarf2_queue;
7592 while (item)
7593 {
7594 /* Anything still marked queued is likely to be in an
7595 inconsistent state, so discard it. */
7596 if (item->per_cu->queued)
7597 {
7598 if (item->per_cu->cu != NULL)
dee91e82 7599 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7600 item->per_cu->queued = 0;
7601 }
7602
7603 last = item;
7604 item = item->next;
7605 xfree (last);
7606 }
7607
7608 dwarf2_queue = dwarf2_queue_tail = NULL;
7609}
7610
7611/* Read in full symbols for PST, and anything it depends on. */
7612
c906108c 7613static void
fba45db2 7614psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7615{
10b3939b 7616 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7617 int i;
7618
95554aad
TT
7619 if (pst->readin)
7620 return;
7621
aaa75496 7622 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7623 if (!pst->dependencies[i]->readin
7624 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7625 {
7626 /* Inform about additional files that need to be read in. */
7627 if (info_verbose)
7628 {
a3f17187 7629 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7630 fputs_filtered (" ", gdb_stdout);
7631 wrap_here ("");
7632 fputs_filtered ("and ", gdb_stdout);
7633 wrap_here ("");
7634 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7635 wrap_here (""); /* Flush output. */
aaa75496
JB
7636 gdb_flush (gdb_stdout);
7637 }
7638 psymtab_to_symtab_1 (pst->dependencies[i]);
7639 }
7640
e38df1d0 7641 per_cu = pst->read_symtab_private;
10b3939b
DJ
7642
7643 if (per_cu == NULL)
aaa75496
JB
7644 {
7645 /* It's an include file, no symbols to read for it.
7646 Everything is in the parent symtab. */
7647 pst->readin = 1;
7648 return;
7649 }
c906108c 7650
a0f42c21 7651 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7652}
7653
dee91e82
DE
7654/* Trivial hash function for die_info: the hash value of a DIE
7655 is its offset in .debug_info for this objfile. */
10b3939b 7656
dee91e82
DE
7657static hashval_t
7658die_hash (const void *item)
10b3939b 7659{
dee91e82 7660 const struct die_info *die = item;
6502dd73 7661
dee91e82
DE
7662 return die->offset.sect_off;
7663}
63d06c5c 7664
dee91e82
DE
7665/* Trivial comparison function for die_info structures: two DIEs
7666 are equal if they have the same offset. */
98bfdba5 7667
dee91e82
DE
7668static int
7669die_eq (const void *item_lhs, const void *item_rhs)
7670{
7671 const struct die_info *die_lhs = item_lhs;
7672 const struct die_info *die_rhs = item_rhs;
c906108c 7673
dee91e82
DE
7674 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7675}
c906108c 7676
dee91e82
DE
7677/* die_reader_func for load_full_comp_unit.
7678 This is identical to read_signatured_type_reader,
7679 but is kept separate for now. */
c906108c 7680
dee91e82
DE
7681static void
7682load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7683 const gdb_byte *info_ptr,
dee91e82
DE
7684 struct die_info *comp_unit_die,
7685 int has_children,
7686 void *data)
7687{
7688 struct dwarf2_cu *cu = reader->cu;
95554aad 7689 enum language *language_ptr = data;
6caca83c 7690
dee91e82
DE
7691 gdb_assert (cu->die_hash == NULL);
7692 cu->die_hash =
7693 htab_create_alloc_ex (cu->header.length / 12,
7694 die_hash,
7695 die_eq,
7696 NULL,
7697 &cu->comp_unit_obstack,
7698 hashtab_obstack_allocate,
7699 dummy_obstack_deallocate);
e142c38c 7700
dee91e82
DE
7701 if (has_children)
7702 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7703 &info_ptr, comp_unit_die);
7704 cu->dies = comp_unit_die;
7705 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7706
7707 /* We try not to read any attributes in this function, because not
9cdd5dbd 7708 all CUs needed for references have been loaded yet, and symbol
10b3939b 7709 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7710 or we won't be able to build types correctly.
7711 Similarly, if we do not read the producer, we can not apply
7712 producer-specific interpretation. */
95554aad 7713 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7714}
10b3939b 7715
dee91e82 7716/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7717
dee91e82 7718static void
95554aad
TT
7719load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7720 enum language pretend_language)
dee91e82 7721{
3019eac3 7722 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7723
f4dc4d17
DE
7724 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7725 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7726}
7727
3da10d80
KS
7728/* Add a DIE to the delayed physname list. */
7729
7730static void
7731add_to_method_list (struct type *type, int fnfield_index, int index,
7732 const char *name, struct die_info *die,
7733 struct dwarf2_cu *cu)
7734{
7735 struct delayed_method_info mi;
7736 mi.type = type;
7737 mi.fnfield_index = fnfield_index;
7738 mi.index = index;
7739 mi.name = name;
7740 mi.die = die;
7741 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7742}
7743
7744/* A cleanup for freeing the delayed method list. */
7745
7746static void
7747free_delayed_list (void *ptr)
7748{
7749 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7750 if (cu->method_list != NULL)
7751 {
7752 VEC_free (delayed_method_info, cu->method_list);
7753 cu->method_list = NULL;
7754 }
7755}
7756
7757/* Compute the physnames of any methods on the CU's method list.
7758
7759 The computation of method physnames is delayed in order to avoid the
7760 (bad) condition that one of the method's formal parameters is of an as yet
7761 incomplete type. */
7762
7763static void
7764compute_delayed_physnames (struct dwarf2_cu *cu)
7765{
7766 int i;
7767 struct delayed_method_info *mi;
7768 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7769 {
1d06ead6 7770 const char *physname;
3da10d80
KS
7771 struct fn_fieldlist *fn_flp
7772 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7773 physname = dwarf2_physname (mi->name, mi->die, cu);
005e54bb
DE
7774 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7775 = physname ? physname : "";
3da10d80
KS
7776 }
7777}
7778
a766d390
DE
7779/* Go objects should be embedded in a DW_TAG_module DIE,
7780 and it's not clear if/how imported objects will appear.
7781 To keep Go support simple until that's worked out,
7782 go back through what we've read and create something usable.
7783 We could do this while processing each DIE, and feels kinda cleaner,
7784 but that way is more invasive.
7785 This is to, for example, allow the user to type "p var" or "b main"
7786 without having to specify the package name, and allow lookups
7787 of module.object to work in contexts that use the expression
7788 parser. */
7789
7790static void
7791fixup_go_packaging (struct dwarf2_cu *cu)
7792{
7793 char *package_name = NULL;
7794 struct pending *list;
7795 int i;
7796
7797 for (list = global_symbols; list != NULL; list = list->next)
7798 {
7799 for (i = 0; i < list->nsyms; ++i)
7800 {
7801 struct symbol *sym = list->symbol[i];
7802
7803 if (SYMBOL_LANGUAGE (sym) == language_go
7804 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7805 {
7806 char *this_package_name = go_symbol_package_name (sym);
7807
7808 if (this_package_name == NULL)
7809 continue;
7810 if (package_name == NULL)
7811 package_name = this_package_name;
7812 else
7813 {
7814 if (strcmp (package_name, this_package_name) != 0)
7815 complaint (&symfile_complaints,
7816 _("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
7817 (symbol_symtab (sym) != NULL
7818 ? symtab_to_filename_for_display
7819 (symbol_symtab (sym))
4262abfb 7820 : objfile_name (cu->objfile)),
a766d390
DE
7821 this_package_name, package_name);
7822 xfree (this_package_name);
7823 }
7824 }
7825 }
7826 }
7827
7828 if (package_name != NULL)
7829 {
7830 struct objfile *objfile = cu->objfile;
34a68019
TT
7831 const char *saved_package_name
7832 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7833 package_name,
7834 strlen (package_name));
a766d390 7835 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
86f62fd7 7836 saved_package_name, objfile);
a766d390
DE
7837 struct symbol *sym;
7838
7839 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7840
e623cf5d 7841 sym = allocate_symbol (objfile);
f85f34ed 7842 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7843 SYMBOL_SET_NAMES (sym, saved_package_name,
7844 strlen (saved_package_name), 0, objfile);
a766d390
DE
7845 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7846 e.g., "main" finds the "main" module and not C's main(). */
7847 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7848 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7849 SYMBOL_TYPE (sym) = type;
7850
7851 add_symbol_to_list (sym, &global_symbols);
7852
7853 xfree (package_name);
7854 }
7855}
7856
95554aad
TT
7857/* Return the symtab for PER_CU. This works properly regardless of
7858 whether we're using the index or psymtabs. */
7859
43f3e411
DE
7860static struct compunit_symtab *
7861get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad
TT
7862{
7863 return (dwarf2_per_objfile->using_index
43f3e411
DE
7864 ? per_cu->v.quick->compunit_symtab
7865 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
7866}
7867
7868/* A helper function for computing the list of all symbol tables
7869 included by PER_CU. */
7870
7871static void
43f3e411 7872recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 7873 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 7874 struct dwarf2_per_cu_data *per_cu,
43f3e411 7875 struct compunit_symtab *immediate_parent)
95554aad
TT
7876{
7877 void **slot;
7878 int ix;
43f3e411 7879 struct compunit_symtab *cust;
95554aad
TT
7880 struct dwarf2_per_cu_data *iter;
7881
7882 slot = htab_find_slot (all_children, per_cu, INSERT);
7883 if (*slot != NULL)
7884 {
7885 /* This inclusion and its children have been processed. */
7886 return;
7887 }
7888
7889 *slot = per_cu;
7890 /* Only add a CU if it has a symbol table. */
43f3e411
DE
7891 cust = get_compunit_symtab (per_cu);
7892 if (cust != NULL)
ec94af83
DE
7893 {
7894 /* If this is a type unit only add its symbol table if we haven't
7895 seen it yet (type unit per_cu's can share symtabs). */
7896 if (per_cu->is_debug_types)
7897 {
43f3e411 7898 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
7899 if (*slot == NULL)
7900 {
43f3e411
DE
7901 *slot = cust;
7902 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7903 if (cust->user == NULL)
7904 cust->user = immediate_parent;
ec94af83
DE
7905 }
7906 }
7907 else
f9125b6c 7908 {
43f3e411
DE
7909 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7910 if (cust->user == NULL)
7911 cust->user = immediate_parent;
f9125b6c 7912 }
ec94af83 7913 }
95554aad
TT
7914
7915 for (ix = 0;
796a7ff8 7916 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7917 ++ix)
ec94af83
DE
7918 {
7919 recursively_compute_inclusions (result, all_children,
43f3e411 7920 all_type_symtabs, iter, cust);
ec94af83 7921 }
95554aad
TT
7922}
7923
43f3e411 7924/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
7925 PER_CU. */
7926
7927static void
43f3e411 7928compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 7929{
f4dc4d17
DE
7930 gdb_assert (! per_cu->is_debug_types);
7931
796a7ff8 7932 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7933 {
7934 int ix, len;
ec94af83 7935 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
7936 struct compunit_symtab *compunit_symtab_iter;
7937 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 7938 htab_t all_children, all_type_symtabs;
43f3e411 7939 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
7940
7941 /* If we don't have a symtab, we can just skip this case. */
43f3e411 7942 if (cust == NULL)
95554aad
TT
7943 return;
7944
7945 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7946 NULL, xcalloc, xfree);
ec94af83
DE
7947 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7948 NULL, xcalloc, xfree);
95554aad
TT
7949
7950 for (ix = 0;
796a7ff8 7951 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7952 ix, per_cu_iter);
95554aad 7953 ++ix)
ec94af83
DE
7954 {
7955 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 7956 all_type_symtabs, per_cu_iter,
43f3e411 7957 cust);
ec94af83 7958 }
95554aad 7959
ec94af83 7960 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
7961 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7962 cust->includes
8d749320
SM
7963 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7964 struct compunit_symtab *, len + 1);
95554aad 7965 for (ix = 0;
43f3e411
DE
7966 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7967 compunit_symtab_iter);
95554aad 7968 ++ix)
43f3e411
DE
7969 cust->includes[ix] = compunit_symtab_iter;
7970 cust->includes[len] = NULL;
95554aad 7971
43f3e411 7972 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 7973 htab_delete (all_children);
ec94af83 7974 htab_delete (all_type_symtabs);
95554aad
TT
7975 }
7976}
7977
7978/* Compute the 'includes' field for the symtabs of all the CUs we just
7979 read. */
7980
7981static void
7982process_cu_includes (void)
7983{
7984 int ix;
7985 struct dwarf2_per_cu_data *iter;
7986
7987 for (ix = 0;
7988 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7989 ix, iter);
7990 ++ix)
f4dc4d17
DE
7991 {
7992 if (! iter->is_debug_types)
43f3e411 7993 compute_compunit_symtab_includes (iter);
f4dc4d17 7994 }
95554aad
TT
7995
7996 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7997}
7998
9cdd5dbd 7999/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
8000 already been loaded into memory. */
8001
8002static void
95554aad
TT
8003process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8004 enum language pretend_language)
10b3939b 8005{
10b3939b 8006 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 8007 struct objfile *objfile = per_cu->objfile;
3e29f34a 8008 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 8009 CORE_ADDR lowpc, highpc;
43f3e411 8010 struct compunit_symtab *cust;
3da10d80 8011 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 8012 CORE_ADDR baseaddr;
4359dff1 8013 struct block *static_block;
3e29f34a 8014 CORE_ADDR addr;
10b3939b
DJ
8015
8016 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8017
10b3939b
DJ
8018 buildsym_init ();
8019 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 8020 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
8021
8022 cu->list_in_scope = &file_symbols;
c906108c 8023
95554aad
TT
8024 cu->language = pretend_language;
8025 cu->language_defn = language_def (cu->language);
8026
c906108c 8027 /* Do line number decoding in read_file_scope () */
10b3939b 8028 process_die (cu->dies, cu);
c906108c 8029
a766d390
DE
8030 /* For now fudge the Go package. */
8031 if (cu->language == language_go)
8032 fixup_go_packaging (cu);
8033
3da10d80
KS
8034 /* Now that we have processed all the DIEs in the CU, all the types
8035 should be complete, and it should now be safe to compute all of the
8036 physnames. */
8037 compute_delayed_physnames (cu);
8038 do_cleanups (delayed_list_cleanup);
8039
fae299cd
DC
8040 /* Some compilers don't define a DW_AT_high_pc attribute for the
8041 compilation unit. If the DW_AT_high_pc is missing, synthesize
8042 it, by scanning the DIE's below the compilation unit. */
10b3939b 8043 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 8044
3e29f34a
MR
8045 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8046 static_block = end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
8047
8048 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8049 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8050 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8051 addrmap to help ensure it has an accurate map of pc values belonging to
8052 this comp unit. */
8053 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8054
43f3e411
DE
8055 cust = end_symtab_from_static_block (static_block,
8056 SECT_OFF_TEXT (objfile), 0);
c906108c 8057
43f3e411 8058 if (cust != NULL)
c906108c 8059 {
df15bd07 8060 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 8061
8be455d7
JK
8062 /* Set symtab language to language from DW_AT_language. If the
8063 compilation is from a C file generated by language preprocessors, do
8064 not set the language if it was already deduced by start_subfile. */
43f3e411 8065 if (!(cu->language == language_c
40e3ad0e 8066 && COMPUNIT_FILETABS (cust)->language != language_unknown))
43f3e411 8067 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
8068
8069 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8070 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
8071 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8072 there were bugs in prologue debug info, fixed later in GCC-4.5
8073 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
8074
8075 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8076 needed, it would be wrong due to missing DW_AT_producer there.
8077
8078 Still one can confuse GDB by using non-standard GCC compilation
8079 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8080 */
ab260dad 8081 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 8082 cust->locations_valid = 1;
e0d00bc7
JK
8083
8084 if (gcc_4_minor >= 5)
43f3e411 8085 cust->epilogue_unwind_valid = 1;
96408a79 8086
43f3e411 8087 cust->call_site_htab = cu->call_site_htab;
c906108c 8088 }
9291a0cd
TT
8089
8090 if (dwarf2_per_objfile->using_index)
43f3e411 8091 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
8092 else
8093 {
8094 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8095 pst->compunit_symtab = cust;
9291a0cd
TT
8096 pst->readin = 1;
8097 }
c906108c 8098
95554aad
TT
8099 /* Push it for inclusion processing later. */
8100 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8101
c906108c 8102 do_cleanups (back_to);
f4dc4d17 8103}
45cfd468 8104
f4dc4d17
DE
8105/* Generate full symbol information for type unit PER_CU, whose DIEs have
8106 already been loaded into memory. */
8107
8108static void
8109process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8110 enum language pretend_language)
8111{
8112 struct dwarf2_cu *cu = per_cu->cu;
8113 struct objfile *objfile = per_cu->objfile;
43f3e411 8114 struct compunit_symtab *cust;
f4dc4d17 8115 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8116 struct signatured_type *sig_type;
8117
8118 gdb_assert (per_cu->is_debug_types);
8119 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8120
8121 buildsym_init ();
8122 back_to = make_cleanup (really_free_pendings, NULL);
8123 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8124
8125 cu->list_in_scope = &file_symbols;
8126
8127 cu->language = pretend_language;
8128 cu->language_defn = language_def (cu->language);
8129
8130 /* The symbol tables are set up in read_type_unit_scope. */
8131 process_die (cu->dies, cu);
8132
8133 /* For now fudge the Go package. */
8134 if (cu->language == language_go)
8135 fixup_go_packaging (cu);
8136
8137 /* Now that we have processed all the DIEs in the CU, all the types
8138 should be complete, and it should now be safe to compute all of the
8139 physnames. */
8140 compute_delayed_physnames (cu);
8141 do_cleanups (delayed_list_cleanup);
8142
8143 /* TUs share symbol tables.
8144 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8145 of it with end_expandable_symtab. Otherwise, complete the addition of
8146 this TU's symbols to the existing symtab. */
43f3e411 8147 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 8148 {
43f3e411
DE
8149 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8150 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 8151
43f3e411 8152 if (cust != NULL)
f4dc4d17
DE
8153 {
8154 /* Set symtab language to language from DW_AT_language. If the
8155 compilation is from a C file generated by language preprocessors,
8156 do not set the language if it was already deduced by
8157 start_subfile. */
43f3e411
DE
8158 if (!(cu->language == language_c
8159 && COMPUNIT_FILETABS (cust)->language != language_c))
8160 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
8161 }
8162 }
8163 else
8164 {
0ab9ce85 8165 augment_type_symtab ();
43f3e411 8166 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
8167 }
8168
8169 if (dwarf2_per_objfile->using_index)
43f3e411 8170 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
8171 else
8172 {
8173 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8174 pst->compunit_symtab = cust;
f4dc4d17 8175 pst->readin = 1;
45cfd468 8176 }
f4dc4d17
DE
8177
8178 do_cleanups (back_to);
c906108c
SS
8179}
8180
95554aad
TT
8181/* Process an imported unit DIE. */
8182
8183static void
8184process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8185{
8186 struct attribute *attr;
8187
f4dc4d17
DE
8188 /* For now we don't handle imported units in type units. */
8189 if (cu->per_cu->is_debug_types)
8190 {
8191 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8192 " supported in type units [in module %s]"),
4262abfb 8193 objfile_name (cu->objfile));
f4dc4d17
DE
8194 }
8195
95554aad
TT
8196 attr = dwarf2_attr (die, DW_AT_import, cu);
8197 if (attr != NULL)
8198 {
8199 struct dwarf2_per_cu_data *per_cu;
8200 struct symtab *imported_symtab;
8201 sect_offset offset;
36586728 8202 int is_dwz;
95554aad
TT
8203
8204 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
8205 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8206 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 8207
69d751e3 8208 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8209 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8210 load_full_comp_unit (per_cu, cu->language);
8211
796a7ff8 8212 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8213 per_cu);
8214 }
8215}
8216
adde2bff
DE
8217/* Reset the in_process bit of a die. */
8218
8219static void
8220reset_die_in_process (void *arg)
8221{
8222 struct die_info *die = arg;
8c3cb9fa 8223
adde2bff
DE
8224 die->in_process = 0;
8225}
8226
c906108c
SS
8227/* Process a die and its children. */
8228
8229static void
e7c27a73 8230process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8231{
adde2bff
DE
8232 struct cleanup *in_process;
8233
8234 /* We should only be processing those not already in process. */
8235 gdb_assert (!die->in_process);
8236
8237 die->in_process = 1;
8238 in_process = make_cleanup (reset_die_in_process,die);
8239
c906108c
SS
8240 switch (die->tag)
8241 {
8242 case DW_TAG_padding:
8243 break;
8244 case DW_TAG_compile_unit:
95554aad 8245 case DW_TAG_partial_unit:
e7c27a73 8246 read_file_scope (die, cu);
c906108c 8247 break;
348e048f
DE
8248 case DW_TAG_type_unit:
8249 read_type_unit_scope (die, cu);
8250 break;
c906108c 8251 case DW_TAG_subprogram:
c906108c 8252 case DW_TAG_inlined_subroutine:
edb3359d 8253 read_func_scope (die, cu);
c906108c
SS
8254 break;
8255 case DW_TAG_lexical_block:
14898363
L
8256 case DW_TAG_try_block:
8257 case DW_TAG_catch_block:
e7c27a73 8258 read_lexical_block_scope (die, cu);
c906108c 8259 break;
96408a79
SA
8260 case DW_TAG_GNU_call_site:
8261 read_call_site_scope (die, cu);
8262 break;
c906108c 8263 case DW_TAG_class_type:
680b30c7 8264 case DW_TAG_interface_type:
c906108c
SS
8265 case DW_TAG_structure_type:
8266 case DW_TAG_union_type:
134d01f1 8267 process_structure_scope (die, cu);
c906108c
SS
8268 break;
8269 case DW_TAG_enumeration_type:
134d01f1 8270 process_enumeration_scope (die, cu);
c906108c 8271 break;
134d01f1 8272
f792889a
DJ
8273 /* These dies have a type, but processing them does not create
8274 a symbol or recurse to process the children. Therefore we can
8275 read them on-demand through read_type_die. */
c906108c 8276 case DW_TAG_subroutine_type:
72019c9c 8277 case DW_TAG_set_type:
c906108c 8278 case DW_TAG_array_type:
c906108c 8279 case DW_TAG_pointer_type:
c906108c 8280 case DW_TAG_ptr_to_member_type:
c906108c 8281 case DW_TAG_reference_type:
c906108c 8282 case DW_TAG_string_type:
c906108c 8283 break;
134d01f1 8284
c906108c 8285 case DW_TAG_base_type:
a02abb62 8286 case DW_TAG_subrange_type:
cb249c71 8287 case DW_TAG_typedef:
134d01f1
DJ
8288 /* Add a typedef symbol for the type definition, if it has a
8289 DW_AT_name. */
f792889a 8290 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8291 break;
c906108c 8292 case DW_TAG_common_block:
e7c27a73 8293 read_common_block (die, cu);
c906108c
SS
8294 break;
8295 case DW_TAG_common_inclusion:
8296 break;
d9fa45fe 8297 case DW_TAG_namespace:
4d4ec4e5 8298 cu->processing_has_namespace_info = 1;
e7c27a73 8299 read_namespace (die, cu);
d9fa45fe 8300 break;
5d7cb8df 8301 case DW_TAG_module:
4d4ec4e5 8302 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8303 read_module (die, cu);
8304 break;
d9fa45fe 8305 case DW_TAG_imported_declaration:
74921315
KS
8306 cu->processing_has_namespace_info = 1;
8307 if (read_namespace_alias (die, cu))
8308 break;
8309 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8310 case DW_TAG_imported_module:
4d4ec4e5 8311 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8312 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8313 || cu->language != language_fortran))
8314 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8315 dwarf_tag_name (die->tag));
8316 read_import_statement (die, cu);
d9fa45fe 8317 break;
95554aad
TT
8318
8319 case DW_TAG_imported_unit:
8320 process_imported_unit_die (die, cu);
8321 break;
8322
c906108c 8323 default:
e7c27a73 8324 new_symbol (die, NULL, cu);
c906108c
SS
8325 break;
8326 }
adde2bff
DE
8327
8328 do_cleanups (in_process);
c906108c 8329}
ca69b9e6
DE
8330\f
8331/* DWARF name computation. */
c906108c 8332
94af9270
KS
8333/* A helper function for dwarf2_compute_name which determines whether DIE
8334 needs to have the name of the scope prepended to the name listed in the
8335 die. */
8336
8337static int
8338die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8339{
1c809c68
TT
8340 struct attribute *attr;
8341
94af9270
KS
8342 switch (die->tag)
8343 {
8344 case DW_TAG_namespace:
8345 case DW_TAG_typedef:
8346 case DW_TAG_class_type:
8347 case DW_TAG_interface_type:
8348 case DW_TAG_structure_type:
8349 case DW_TAG_union_type:
8350 case DW_TAG_enumeration_type:
8351 case DW_TAG_enumerator:
8352 case DW_TAG_subprogram:
08a76f8a 8353 case DW_TAG_inlined_subroutine:
94af9270 8354 case DW_TAG_member:
74921315 8355 case DW_TAG_imported_declaration:
94af9270
KS
8356 return 1;
8357
8358 case DW_TAG_variable:
c2b0a229 8359 case DW_TAG_constant:
94af9270
KS
8360 /* We only need to prefix "globally" visible variables. These include
8361 any variable marked with DW_AT_external or any variable that
8362 lives in a namespace. [Variables in anonymous namespaces
8363 require prefixing, but they are not DW_AT_external.] */
8364
8365 if (dwarf2_attr (die, DW_AT_specification, cu))
8366 {
8367 struct dwarf2_cu *spec_cu = cu;
9a619af0 8368
94af9270
KS
8369 return die_needs_namespace (die_specification (die, &spec_cu),
8370 spec_cu);
8371 }
8372
1c809c68 8373 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8374 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8375 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8376 return 0;
8377 /* A variable in a lexical block of some kind does not need a
8378 namespace, even though in C++ such variables may be external
8379 and have a mangled name. */
8380 if (die->parent->tag == DW_TAG_lexical_block
8381 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8382 || die->parent->tag == DW_TAG_catch_block
8383 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8384 return 0;
8385 return 1;
94af9270
KS
8386
8387 default:
8388 return 0;
8389 }
8390}
8391
98bfdba5
PA
8392/* Retrieve the last character from a mem_file. */
8393
8394static void
8395do_ui_file_peek_last (void *object, const char *buffer, long length)
8396{
8397 char *last_char_p = (char *) object;
8398
8399 if (length > 0)
8400 *last_char_p = buffer[length - 1];
8401}
8402
94af9270 8403/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
8404 compute the physname for the object, which include a method's:
8405 - formal parameters (C++/Java),
8406 - receiver type (Go),
8407 - return type (Java).
8408
8409 The term "physname" is a bit confusing.
8410 For C++, for example, it is the demangled name.
8411 For Go, for example, it's the mangled name.
94af9270 8412
af6b7be1
JB
8413 For Ada, return the DIE's linkage name rather than the fully qualified
8414 name. PHYSNAME is ignored..
8415
94af9270
KS
8416 The result is allocated on the objfile_obstack and canonicalized. */
8417
8418static const char *
15d034d0
TT
8419dwarf2_compute_name (const char *name,
8420 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8421 int physname)
8422{
bb5ed363
DE
8423 struct objfile *objfile = cu->objfile;
8424
94af9270
KS
8425 if (name == NULL)
8426 name = dwarf2_name (die, cu);
8427
2ee7123e
DE
8428 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8429 but otherwise compute it by typename_concat inside GDB.
8430 FIXME: Actually this is not really true, or at least not always true.
8431 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8432 Fortran names because there is no mangling standard. So new_symbol_full
8433 will set the demangled name to the result of dwarf2_full_name, and it is
8434 the demangled name that GDB uses if it exists. */
f55ee35c
JK
8435 if (cu->language == language_ada
8436 || (cu->language == language_fortran && physname))
8437 {
8438 /* For Ada unit, we prefer the linkage name over the name, as
8439 the former contains the exported name, which the user expects
8440 to be able to reference. Ideally, we want the user to be able
8441 to reference this entity using either natural or linkage name,
8442 but we haven't started looking at this enhancement yet. */
2ee7123e 8443 const char *linkage_name;
f55ee35c 8444
2ee7123e
DE
8445 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8446 if (linkage_name == NULL)
8447 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8448 if (linkage_name != NULL)
8449 return linkage_name;
f55ee35c
JK
8450 }
8451
94af9270
KS
8452 /* These are the only languages we know how to qualify names in. */
8453 if (name != NULL
f55ee35c 8454 && (cu->language == language_cplus || cu->language == language_java
45280282 8455 || cu->language == language_fortran || cu->language == language_d))
94af9270
KS
8456 {
8457 if (die_needs_namespace (die, cu))
8458 {
8459 long length;
0d5cff50 8460 const char *prefix;
94af9270 8461 struct ui_file *buf;
34a68019
TT
8462 char *intermediate_name;
8463 const char *canonical_name = NULL;
94af9270
KS
8464
8465 prefix = determine_prefix (die, cu);
8466 buf = mem_fileopen ();
8467 if (*prefix != '\0')
8468 {
f55ee35c
JK
8469 char *prefixed_name = typename_concat (NULL, prefix, name,
8470 physname, cu);
9a619af0 8471
94af9270
KS
8472 fputs_unfiltered (prefixed_name, buf);
8473 xfree (prefixed_name);
8474 }
8475 else
62d5b8da 8476 fputs_unfiltered (name, buf);
94af9270 8477
98bfdba5
PA
8478 /* Template parameters may be specified in the DIE's DW_AT_name, or
8479 as children with DW_TAG_template_type_param or
8480 DW_TAG_value_type_param. If the latter, add them to the name
8481 here. If the name already has template parameters, then
8482 skip this step; some versions of GCC emit both, and
8483 it is more efficient to use the pre-computed name.
8484
8485 Something to keep in mind about this process: it is very
8486 unlikely, or in some cases downright impossible, to produce
8487 something that will match the mangled name of a function.
8488 If the definition of the function has the same debug info,
8489 we should be able to match up with it anyway. But fallbacks
8490 using the minimal symbol, for instance to find a method
8491 implemented in a stripped copy of libstdc++, will not work.
8492 If we do not have debug info for the definition, we will have to
8493 match them up some other way.
8494
8495 When we do name matching there is a related problem with function
8496 templates; two instantiated function templates are allowed to
8497 differ only by their return types, which we do not add here. */
8498
8499 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8500 {
8501 struct attribute *attr;
8502 struct die_info *child;
8503 int first = 1;
8504
8505 die->building_fullname = 1;
8506
8507 for (child = die->child; child != NULL; child = child->sibling)
8508 {
8509 struct type *type;
12df843f 8510 LONGEST value;
d521ce57 8511 const gdb_byte *bytes;
98bfdba5
PA
8512 struct dwarf2_locexpr_baton *baton;
8513 struct value *v;
8514
8515 if (child->tag != DW_TAG_template_type_param
8516 && child->tag != DW_TAG_template_value_param)
8517 continue;
8518
8519 if (first)
8520 {
8521 fputs_unfiltered ("<", buf);
8522 first = 0;
8523 }
8524 else
8525 fputs_unfiltered (", ", buf);
8526
8527 attr = dwarf2_attr (child, DW_AT_type, cu);
8528 if (attr == NULL)
8529 {
8530 complaint (&symfile_complaints,
8531 _("template parameter missing DW_AT_type"));
8532 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8533 continue;
8534 }
8535 type = die_type (child, cu);
8536
8537 if (child->tag == DW_TAG_template_type_param)
8538 {
79d43c61 8539 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8540 continue;
8541 }
8542
8543 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8544 if (attr == NULL)
8545 {
8546 complaint (&symfile_complaints,
3e43a32a
MS
8547 _("template parameter missing "
8548 "DW_AT_const_value"));
98bfdba5
PA
8549 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8550 continue;
8551 }
8552
8553 dwarf2_const_value_attr (attr, type, name,
8554 &cu->comp_unit_obstack, cu,
8555 &value, &bytes, &baton);
8556
8557 if (TYPE_NOSIGN (type))
8558 /* GDB prints characters as NUMBER 'CHAR'. If that's
8559 changed, this can use value_print instead. */
8560 c_printchar (value, type, buf);
8561 else
8562 {
8563 struct value_print_options opts;
8564
8565 if (baton != NULL)
8566 v = dwarf2_evaluate_loc_desc (type, NULL,
8567 baton->data,
8568 baton->size,
8569 baton->per_cu);
8570 else if (bytes != NULL)
8571 {
8572 v = allocate_value (type);
8573 memcpy (value_contents_writeable (v), bytes,
8574 TYPE_LENGTH (type));
8575 }
8576 else
8577 v = value_from_longest (type, value);
8578
3e43a32a
MS
8579 /* Specify decimal so that we do not depend on
8580 the radix. */
98bfdba5
PA
8581 get_formatted_print_options (&opts, 'd');
8582 opts.raw = 1;
8583 value_print (v, buf, &opts);
8584 release_value (v);
8585 value_free (v);
8586 }
8587 }
8588
8589 die->building_fullname = 0;
8590
8591 if (!first)
8592 {
8593 /* Close the argument list, with a space if necessary
8594 (nested templates). */
8595 char last_char = '\0';
8596 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8597 if (last_char == '>')
8598 fputs_unfiltered (" >", buf);
8599 else
8600 fputs_unfiltered (">", buf);
8601 }
8602 }
8603
94af9270
KS
8604 /* For Java and C++ methods, append formal parameter type
8605 information, if PHYSNAME. */
6e70227d 8606
94af9270
KS
8607 if (physname && die->tag == DW_TAG_subprogram
8608 && (cu->language == language_cplus
8609 || cu->language == language_java))
8610 {
8611 struct type *type = read_type_die (die, cu);
8612
79d43c61
TT
8613 c_type_print_args (type, buf, 1, cu->language,
8614 &type_print_raw_options);
94af9270
KS
8615
8616 if (cu->language == language_java)
8617 {
8618 /* For java, we must append the return type to method
0963b4bd 8619 names. */
94af9270
KS
8620 if (die->tag == DW_TAG_subprogram)
8621 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8622 0, 0, &type_print_raw_options);
94af9270
KS
8623 }
8624 else if (cu->language == language_cplus)
8625 {
60430eff
DJ
8626 /* Assume that an artificial first parameter is
8627 "this", but do not crash if it is not. RealView
8628 marks unnamed (and thus unused) parameters as
8629 artificial; there is no way to differentiate
8630 the two cases. */
94af9270
KS
8631 if (TYPE_NFIELDS (type) > 0
8632 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8633 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8634 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8635 0))))
94af9270
KS
8636 fputs_unfiltered (" const", buf);
8637 }
8638 }
8639
34a68019 8640 intermediate_name = ui_file_xstrdup (buf, &length);
94af9270
KS
8641 ui_file_delete (buf);
8642
8643 if (cu->language == language_cplus)
34a68019
TT
8644 canonical_name
8645 = dwarf2_canonicalize_name (intermediate_name, cu,
8646 &objfile->per_bfd->storage_obstack);
8647
8648 /* If we only computed INTERMEDIATE_NAME, or if
8649 INTERMEDIATE_NAME is already canonical, then we need to
8650 copy it to the appropriate obstack. */
8651 if (canonical_name == NULL || canonical_name == intermediate_name)
8652 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8653 intermediate_name,
8654 strlen (intermediate_name));
8655 else
8656 name = canonical_name;
9a619af0 8657
34a68019 8658 xfree (intermediate_name);
94af9270
KS
8659 }
8660 }
8661
8662 return name;
8663}
8664
0114d602
DJ
8665/* Return the fully qualified name of DIE, based on its DW_AT_name.
8666 If scope qualifiers are appropriate they will be added. The result
34a68019 8667 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8668 not have a name. NAME may either be from a previous call to
8669 dwarf2_name or NULL.
8670
0963b4bd 8671 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8672
8673static const char *
15d034d0 8674dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8675{
94af9270
KS
8676 return dwarf2_compute_name (name, die, cu, 0);
8677}
0114d602 8678
94af9270
KS
8679/* Construct a physname for the given DIE in CU. NAME may either be
8680 from a previous call to dwarf2_name or NULL. The result will be
8681 allocated on the objfile_objstack or NULL if the DIE does not have a
8682 name.
0114d602 8683
94af9270 8684 The output string will be canonicalized (if C++/Java). */
0114d602 8685
94af9270 8686static const char *
15d034d0 8687dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8688{
bb5ed363 8689 struct objfile *objfile = cu->objfile;
900e11f9
JK
8690 struct attribute *attr;
8691 const char *retval, *mangled = NULL, *canon = NULL;
8692 struct cleanup *back_to;
8693 int need_copy = 1;
8694
8695 /* In this case dwarf2_compute_name is just a shortcut not building anything
8696 on its own. */
8697 if (!die_needs_namespace (die, cu))
8698 return dwarf2_compute_name (name, die, cu, 1);
8699
8700 back_to = make_cleanup (null_cleanup, NULL);
8701
7d45c7c3
KB
8702 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8703 if (mangled == NULL)
8704 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
900e11f9
JK
8705
8706 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8707 has computed. */
7d45c7c3 8708 if (mangled != NULL)
900e11f9
JK
8709 {
8710 char *demangled;
8711
900e11f9
JK
8712 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8713 type. It is easier for GDB users to search for such functions as
8714 `name(params)' than `long name(params)'. In such case the minimal
8715 symbol names do not match the full symbol names but for template
8716 functions there is never a need to look up their definition from their
8717 declaration so the only disadvantage remains the minimal symbol
8718 variant `long name(params)' does not have the proper inferior type.
8719 */
8720
a766d390
DE
8721 if (cu->language == language_go)
8722 {
8723 /* This is a lie, but we already lie to the caller new_symbol_full.
8724 new_symbol_full assumes we return the mangled name.
8725 This just undoes that lie until things are cleaned up. */
8726 demangled = NULL;
8727 }
8728 else
8729 {
8de20a37
TT
8730 demangled = gdb_demangle (mangled,
8731 (DMGL_PARAMS | DMGL_ANSI
8732 | (cu->language == language_java
8733 ? DMGL_JAVA | DMGL_RET_POSTFIX
8734 : DMGL_RET_DROP)));
a766d390 8735 }
900e11f9
JK
8736 if (demangled)
8737 {
8738 make_cleanup (xfree, demangled);
8739 canon = demangled;
8740 }
8741 else
8742 {
8743 canon = mangled;
8744 need_copy = 0;
8745 }
8746 }
8747
8748 if (canon == NULL || check_physname)
8749 {
8750 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8751
8752 if (canon != NULL && strcmp (physname, canon) != 0)
8753 {
8754 /* It may not mean a bug in GDB. The compiler could also
8755 compute DW_AT_linkage_name incorrectly. But in such case
8756 GDB would need to be bug-to-bug compatible. */
8757
8758 complaint (&symfile_complaints,
8759 _("Computed physname <%s> does not match demangled <%s> "
8760 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8761 physname, canon, mangled, die->offset.sect_off,
8762 objfile_name (objfile));
900e11f9
JK
8763
8764 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8765 is available here - over computed PHYSNAME. It is safer
8766 against both buggy GDB and buggy compilers. */
8767
8768 retval = canon;
8769 }
8770 else
8771 {
8772 retval = physname;
8773 need_copy = 0;
8774 }
8775 }
8776 else
8777 retval = canon;
8778
8779 if (need_copy)
34a68019
TT
8780 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8781 retval, strlen (retval));
900e11f9
JK
8782
8783 do_cleanups (back_to);
8784 return retval;
0114d602
DJ
8785}
8786
74921315
KS
8787/* Inspect DIE in CU for a namespace alias. If one exists, record
8788 a new symbol for it.
8789
8790 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8791
8792static int
8793read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8794{
8795 struct attribute *attr;
8796
8797 /* If the die does not have a name, this is not a namespace
8798 alias. */
8799 attr = dwarf2_attr (die, DW_AT_name, cu);
8800 if (attr != NULL)
8801 {
8802 int num;
8803 struct die_info *d = die;
8804 struct dwarf2_cu *imported_cu = cu;
8805
8806 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8807 keep inspecting DIEs until we hit the underlying import. */
8808#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8809 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8810 {
8811 attr = dwarf2_attr (d, DW_AT_import, cu);
8812 if (attr == NULL)
8813 break;
8814
8815 d = follow_die_ref (d, attr, &imported_cu);
8816 if (d->tag != DW_TAG_imported_declaration)
8817 break;
8818 }
8819
8820 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8821 {
8822 complaint (&symfile_complaints,
8823 _("DIE at 0x%x has too many recursively imported "
8824 "declarations"), d->offset.sect_off);
8825 return 0;
8826 }
8827
8828 if (attr != NULL)
8829 {
8830 struct type *type;
8831 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8832
8833 type = get_die_type_at_offset (offset, cu->per_cu);
8834 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8835 {
8836 /* This declaration is a global namespace alias. Add
8837 a symbol for it whose type is the aliased namespace. */
8838 new_symbol (die, type, cu);
8839 return 1;
8840 }
8841 }
8842 }
8843
8844 return 0;
8845}
8846
22cee43f
PMR
8847/* Return the using directives repository (global or local?) to use in the
8848 current context for LANGUAGE.
8849
8850 For Ada, imported declarations can materialize renamings, which *may* be
8851 global. However it is impossible (for now?) in DWARF to distinguish
8852 "external" imported declarations and "static" ones. As all imported
8853 declarations seem to be static in all other languages, make them all CU-wide
8854 global only in Ada. */
8855
8856static struct using_direct **
8857using_directives (enum language language)
8858{
8859 if (language == language_ada && context_stack_depth == 0)
8860 return &global_using_directives;
8861 else
8862 return &local_using_directives;
8863}
8864
27aa8d6a
SW
8865/* Read the import statement specified by the given die and record it. */
8866
8867static void
8868read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8869{
bb5ed363 8870 struct objfile *objfile = cu->objfile;
27aa8d6a 8871 struct attribute *import_attr;
32019081 8872 struct die_info *imported_die, *child_die;
de4affc9 8873 struct dwarf2_cu *imported_cu;
27aa8d6a 8874 const char *imported_name;
794684b6 8875 const char *imported_name_prefix;
13387711
SW
8876 const char *canonical_name;
8877 const char *import_alias;
8878 const char *imported_declaration = NULL;
794684b6 8879 const char *import_prefix;
32019081
JK
8880 VEC (const_char_ptr) *excludes = NULL;
8881 struct cleanup *cleanups;
13387711 8882
27aa8d6a
SW
8883 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8884 if (import_attr == NULL)
8885 {
8886 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8887 dwarf_tag_name (die->tag));
8888 return;
8889 }
8890
de4affc9
CC
8891 imported_cu = cu;
8892 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8893 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8894 if (imported_name == NULL)
8895 {
8896 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8897
8898 The import in the following code:
8899 namespace A
8900 {
8901 typedef int B;
8902 }
8903
8904 int main ()
8905 {
8906 using A::B;
8907 B b;
8908 return b;
8909 }
8910
8911 ...
8912 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8913 <52> DW_AT_decl_file : 1
8914 <53> DW_AT_decl_line : 6
8915 <54> DW_AT_import : <0x75>
8916 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8917 <59> DW_AT_name : B
8918 <5b> DW_AT_decl_file : 1
8919 <5c> DW_AT_decl_line : 2
8920 <5d> DW_AT_type : <0x6e>
8921 ...
8922 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8923 <76> DW_AT_byte_size : 4
8924 <77> DW_AT_encoding : 5 (signed)
8925
8926 imports the wrong die ( 0x75 instead of 0x58 ).
8927 This case will be ignored until the gcc bug is fixed. */
8928 return;
8929 }
8930
82856980
SW
8931 /* Figure out the local name after import. */
8932 import_alias = dwarf2_name (die, cu);
27aa8d6a 8933
794684b6
SW
8934 /* Figure out where the statement is being imported to. */
8935 import_prefix = determine_prefix (die, cu);
8936
8937 /* Figure out what the scope of the imported die is and prepend it
8938 to the name of the imported die. */
de4affc9 8939 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8940
f55ee35c
JK
8941 if (imported_die->tag != DW_TAG_namespace
8942 && imported_die->tag != DW_TAG_module)
794684b6 8943 {
13387711
SW
8944 imported_declaration = imported_name;
8945 canonical_name = imported_name_prefix;
794684b6 8946 }
13387711 8947 else if (strlen (imported_name_prefix) > 0)
12aaed36 8948 canonical_name = obconcat (&objfile->objfile_obstack,
45280282
IB
8949 imported_name_prefix,
8950 (cu->language == language_d ? "." : "::"),
8951 imported_name, (char *) NULL);
13387711
SW
8952 else
8953 canonical_name = imported_name;
794684b6 8954
32019081
JK
8955 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8956
8957 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8958 for (child_die = die->child; child_die && child_die->tag;
8959 child_die = sibling_die (child_die))
8960 {
8961 /* DWARF-4: A Fortran use statement with a “rename list” may be
8962 represented by an imported module entry with an import attribute
8963 referring to the module and owned entries corresponding to those
8964 entities that are renamed as part of being imported. */
8965
8966 if (child_die->tag != DW_TAG_imported_declaration)
8967 {
8968 complaint (&symfile_complaints,
8969 _("child DW_TAG_imported_declaration expected "
8970 "- DIE at 0x%x [in module %s]"),
4262abfb 8971 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8972 continue;
8973 }
8974
8975 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8976 if (import_attr == NULL)
8977 {
8978 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8979 dwarf_tag_name (child_die->tag));
8980 continue;
8981 }
8982
8983 imported_cu = cu;
8984 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8985 &imported_cu);
8986 imported_name = dwarf2_name (imported_die, imported_cu);
8987 if (imported_name == NULL)
8988 {
8989 complaint (&symfile_complaints,
8990 _("child DW_TAG_imported_declaration has unknown "
8991 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 8992 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8993 continue;
8994 }
8995
8996 VEC_safe_push (const_char_ptr, excludes, imported_name);
8997
8998 process_die (child_die, cu);
8999 }
9000
22cee43f
PMR
9001 add_using_directive (using_directives (cu->language),
9002 import_prefix,
9003 canonical_name,
9004 import_alias,
9005 imported_declaration,
9006 excludes,
9007 0,
9008 &objfile->objfile_obstack);
32019081
JK
9009
9010 do_cleanups (cleanups);
27aa8d6a
SW
9011}
9012
f4dc4d17 9013/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 9014
cb1df416
DJ
9015static void
9016free_cu_line_header (void *arg)
9017{
9018 struct dwarf2_cu *cu = arg;
9019
9020 free_line_header (cu->line_header);
9021 cu->line_header = NULL;
9022}
9023
1b80a9fa
JK
9024/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9025 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9026 this, it was first present in GCC release 4.3.0. */
9027
9028static int
9029producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9030{
9031 if (!cu->checked_producer)
9032 check_producer (cu);
9033
9034 return cu->producer_is_gcc_lt_4_3;
9035}
9036
9291a0cd
TT
9037static void
9038find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 9039 const char **name, const char **comp_dir)
9291a0cd 9040{
9291a0cd
TT
9041 /* Find the filename. Do not use dwarf2_name here, since the filename
9042 is not a source language identifier. */
7d45c7c3
KB
9043 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9044 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9291a0cd 9045
7d45c7c3
KB
9046 if (*comp_dir == NULL
9047 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9048 && IS_ABSOLUTE_PATH (*name))
9291a0cd 9049 {
15d034d0
TT
9050 char *d = ldirname (*name);
9051
9052 *comp_dir = d;
9053 if (d != NULL)
9054 make_cleanup (xfree, d);
9291a0cd
TT
9055 }
9056 if (*comp_dir != NULL)
9057 {
9058 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9059 directory, get rid of it. */
9060 char *cp = strchr (*comp_dir, ':');
9061
9062 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9063 *comp_dir = cp + 1;
9064 }
9065
9066 if (*name == NULL)
9067 *name = "<unknown>";
9068}
9069
f4dc4d17
DE
9070/* Handle DW_AT_stmt_list for a compilation unit.
9071 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
9072 COMP_DIR is the compilation directory. LOWPC is passed to
9073 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
9074
9075static void
9076handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 9077 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 9078{
527f3840 9079 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 9080 struct attribute *attr;
527f3840
JK
9081 unsigned int line_offset;
9082 struct line_header line_header_local;
9083 hashval_t line_header_local_hash;
9084 unsigned u;
9085 void **slot;
9086 int decode_mapping;
2ab95328 9087
f4dc4d17
DE
9088 gdb_assert (! cu->per_cu->is_debug_types);
9089
2ab95328 9090 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
9091 if (attr == NULL)
9092 return;
9093
9094 line_offset = DW_UNSND (attr);
9095
9096 /* The line header hash table is only created if needed (it exists to
9097 prevent redundant reading of the line table for partial_units).
9098 If we're given a partial_unit, we'll need it. If we're given a
9099 compile_unit, then use the line header hash table if it's already
9100 created, but don't create one just yet. */
9101
9102 if (dwarf2_per_objfile->line_header_hash == NULL
9103 && die->tag == DW_TAG_partial_unit)
2ab95328 9104 {
527f3840
JK
9105 dwarf2_per_objfile->line_header_hash
9106 = htab_create_alloc_ex (127, line_header_hash_voidp,
9107 line_header_eq_voidp,
9108 free_line_header_voidp,
9109 &objfile->objfile_obstack,
9110 hashtab_obstack_allocate,
9111 dummy_obstack_deallocate);
9112 }
2ab95328 9113
527f3840
JK
9114 line_header_local.offset.sect_off = line_offset;
9115 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9116 line_header_local_hash = line_header_hash (&line_header_local);
9117 if (dwarf2_per_objfile->line_header_hash != NULL)
9118 {
9119 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9120 &line_header_local,
9121 line_header_local_hash, NO_INSERT);
9122
9123 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9124 is not present in *SLOT (since if there is something in *SLOT then
9125 it will be for a partial_unit). */
9126 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 9127 {
527f3840
JK
9128 gdb_assert (*slot != NULL);
9129 cu->line_header = *slot;
9130 return;
dee91e82 9131 }
2ab95328 9132 }
527f3840
JK
9133
9134 /* dwarf_decode_line_header does not yet provide sufficient information.
9135 We always have to call also dwarf_decode_lines for it. */
9136 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9137 if (cu->line_header == NULL)
9138 return;
9139
9140 if (dwarf2_per_objfile->line_header_hash == NULL)
9141 slot = NULL;
9142 else
9143 {
9144 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9145 &line_header_local,
9146 line_header_local_hash, INSERT);
9147 gdb_assert (slot != NULL);
9148 }
9149 if (slot != NULL && *slot == NULL)
9150 {
9151 /* This newly decoded line number information unit will be owned
9152 by line_header_hash hash table. */
9153 *slot = cu->line_header;
9154 }
9155 else
9156 {
9157 /* We cannot free any current entry in (*slot) as that struct line_header
9158 may be already used by multiple CUs. Create only temporary decoded
9159 line_header for this CU - it may happen at most once for each line
9160 number information unit. And if we're not using line_header_hash
9161 then this is what we want as well. */
9162 gdb_assert (die->tag != DW_TAG_partial_unit);
9163 make_cleanup (free_cu_line_header, cu);
9164 }
9165 decode_mapping = (die->tag != DW_TAG_partial_unit);
9166 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9167 decode_mapping);
2ab95328
TT
9168}
9169
95554aad 9170/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 9171
c906108c 9172static void
e7c27a73 9173read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9174{
dee91e82 9175 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 9176 struct gdbarch *gdbarch = get_objfile_arch (objfile);
debd256d 9177 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 9178 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9179 CORE_ADDR highpc = ((CORE_ADDR) 0);
9180 struct attribute *attr;
15d034d0
TT
9181 const char *name = NULL;
9182 const char *comp_dir = NULL;
c906108c
SS
9183 struct die_info *child_die;
9184 bfd *abfd = objfile->obfd;
e142c38c 9185 CORE_ADDR baseaddr;
6e70227d 9186
e142c38c 9187 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9188
fae299cd 9189 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9190
9191 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9192 from finish_block. */
2acceee2 9193 if (lowpc == ((CORE_ADDR) -1))
c906108c 9194 lowpc = highpc;
3e29f34a 9195 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 9196
9291a0cd 9197 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 9198
95554aad 9199 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9200
f4b8a18d
KW
9201 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9202 standardised yet. As a workaround for the language detection we fall
9203 back to the DW_AT_producer string. */
9204 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9205 cu->language = language_opencl;
9206
3019eac3
DE
9207 /* Similar hack for Go. */
9208 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9209 set_cu_language (DW_LANG_Go, cu);
9210
f4dc4d17 9211 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
9212
9213 /* Decode line number information if present. We do this before
9214 processing child DIEs, so that the line header table is available
9215 for DW_AT_decl_file. */
c3b7b696 9216 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
3019eac3
DE
9217
9218 /* Process all dies in compilation unit. */
9219 if (die->child != NULL)
9220 {
9221 child_die = die->child;
9222 while (child_die && child_die->tag)
9223 {
9224 process_die (child_die, cu);
9225 child_die = sibling_die (child_die);
9226 }
9227 }
9228
9229 /* Decode macro information, if present. Dwarf 2 macro information
9230 refers to information in the line number info statement program
9231 header, so we can only read it if we've read the header
9232 successfully. */
9233 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9234 if (attr && cu->line_header)
9235 {
9236 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9237 complaint (&symfile_complaints,
9238 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9239
43f3e411 9240 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
9241 }
9242 else
9243 {
9244 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9245 if (attr && cu->line_header)
9246 {
9247 unsigned int macro_offset = DW_UNSND (attr);
9248
43f3e411 9249 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
9250 }
9251 }
9252
9253 do_cleanups (back_to);
9254}
9255
f4dc4d17
DE
9256/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9257 Create the set of symtabs used by this TU, or if this TU is sharing
9258 symtabs with another TU and the symtabs have already been created
9259 then restore those symtabs in the line header.
9260 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9261
9262static void
f4dc4d17 9263setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9264{
f4dc4d17
DE
9265 struct objfile *objfile = dwarf2_per_objfile->objfile;
9266 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9267 struct type_unit_group *tu_group;
9268 int first_time;
9269 struct line_header *lh;
3019eac3 9270 struct attribute *attr;
f4dc4d17 9271 unsigned int i, line_offset;
0186c6a7 9272 struct signatured_type *sig_type;
3019eac3 9273
f4dc4d17 9274 gdb_assert (per_cu->is_debug_types);
0186c6a7 9275 sig_type = (struct signatured_type *) per_cu;
3019eac3 9276
f4dc4d17 9277 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9278
f4dc4d17 9279 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9280 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9281 if (sig_type->type_unit_group == NULL)
9282 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9283 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9284
9285 /* If we've already processed this stmt_list there's no real need to
9286 do it again, we could fake it and just recreate the part we need
9287 (file name,index -> symtab mapping). If data shows this optimization
9288 is useful we can do it then. */
43f3e411 9289 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
9290
9291 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9292 debug info. */
9293 lh = NULL;
9294 if (attr != NULL)
3019eac3 9295 {
f4dc4d17
DE
9296 line_offset = DW_UNSND (attr);
9297 lh = dwarf_decode_line_header (line_offset, cu);
9298 }
9299 if (lh == NULL)
9300 {
9301 if (first_time)
9302 dwarf2_start_symtab (cu, "", NULL, 0);
9303 else
9304 {
9305 gdb_assert (tu_group->symtabs == NULL);
0ab9ce85 9306 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9307 }
f4dc4d17 9308 return;
3019eac3
DE
9309 }
9310
f4dc4d17
DE
9311 cu->line_header = lh;
9312 make_cleanup (free_cu_line_header, cu);
3019eac3 9313
f4dc4d17
DE
9314 if (first_time)
9315 {
43f3e411 9316 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9317
f4dc4d17
DE
9318 tu_group->num_symtabs = lh->num_file_names;
9319 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 9320
f4dc4d17
DE
9321 for (i = 0; i < lh->num_file_names; ++i)
9322 {
d521ce57 9323 const char *dir = NULL;
f4dc4d17 9324 struct file_entry *fe = &lh->file_names[i];
3019eac3 9325
afa6c9ab 9326 if (fe->dir_index && lh->include_dirs != NULL)
f4dc4d17 9327 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 9328 dwarf2_start_subfile (fe->name, dir);
3019eac3 9329
f4dc4d17
DE
9330 if (current_subfile->symtab == NULL)
9331 {
9332 /* NOTE: start_subfile will recognize when it's been passed
9333 a file it has already seen. So we can't assume there's a
43f3e411 9334 simple mapping from lh->file_names to subfiles, plus
f4dc4d17 9335 lh->file_names may contain dups. */
43f3e411
DE
9336 current_subfile->symtab
9337 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
9338 }
9339
9340 fe->symtab = current_subfile->symtab;
9341 tu_group->symtabs[i] = fe->symtab;
9342 }
9343 }
9344 else
3019eac3 9345 {
0ab9ce85 9346 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17
DE
9347
9348 for (i = 0; i < lh->num_file_names; ++i)
9349 {
9350 struct file_entry *fe = &lh->file_names[i];
9351
9352 fe->symtab = tu_group->symtabs[i];
9353 }
3019eac3
DE
9354 }
9355
f4dc4d17
DE
9356 /* The main symtab is allocated last. Type units don't have DW_AT_name
9357 so they don't have a "real" (so to speak) symtab anyway.
9358 There is later code that will assign the main symtab to all symbols
9359 that don't have one. We need to handle the case of a symbol with a
9360 missing symtab (DW_AT_decl_file) anyway. */
9361}
3019eac3 9362
f4dc4d17
DE
9363/* Process DW_TAG_type_unit.
9364 For TUs we want to skip the first top level sibling if it's not the
9365 actual type being defined by this TU. In this case the first top
9366 level sibling is there to provide context only. */
3019eac3 9367
f4dc4d17
DE
9368static void
9369read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9370{
9371 struct die_info *child_die;
3019eac3 9372
f4dc4d17
DE
9373 prepare_one_comp_unit (cu, die, language_minimal);
9374
9375 /* Initialize (or reinitialize) the machinery for building symtabs.
9376 We do this before processing child DIEs, so that the line header table
9377 is available for DW_AT_decl_file. */
9378 setup_type_unit_groups (die, cu);
9379
9380 if (die->child != NULL)
9381 {
9382 child_die = die->child;
9383 while (child_die && child_die->tag)
9384 {
9385 process_die (child_die, cu);
9386 child_die = sibling_die (child_die);
9387 }
9388 }
3019eac3
DE
9389}
9390\f
80626a55
DE
9391/* DWO/DWP files.
9392
9393 http://gcc.gnu.org/wiki/DebugFission
9394 http://gcc.gnu.org/wiki/DebugFissionDWP
9395
9396 To simplify handling of both DWO files ("object" files with the DWARF info)
9397 and DWP files (a file with the DWOs packaged up into one file), we treat
9398 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9399
9400static hashval_t
9401hash_dwo_file (const void *item)
9402{
9403 const struct dwo_file *dwo_file = item;
a2ce51a0 9404 hashval_t hash;
3019eac3 9405
a2ce51a0
DE
9406 hash = htab_hash_string (dwo_file->dwo_name);
9407 if (dwo_file->comp_dir != NULL)
9408 hash += htab_hash_string (dwo_file->comp_dir);
9409 return hash;
3019eac3
DE
9410}
9411
9412static int
9413eq_dwo_file (const void *item_lhs, const void *item_rhs)
9414{
9415 const struct dwo_file *lhs = item_lhs;
9416 const struct dwo_file *rhs = item_rhs;
9417
a2ce51a0
DE
9418 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9419 return 0;
9420 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9421 return lhs->comp_dir == rhs->comp_dir;
9422 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9423}
9424
9425/* Allocate a hash table for DWO files. */
9426
9427static htab_t
9428allocate_dwo_file_hash_table (void)
9429{
9430 struct objfile *objfile = dwarf2_per_objfile->objfile;
9431
9432 return htab_create_alloc_ex (41,
9433 hash_dwo_file,
9434 eq_dwo_file,
9435 NULL,
9436 &objfile->objfile_obstack,
9437 hashtab_obstack_allocate,
9438 dummy_obstack_deallocate);
9439}
9440
80626a55
DE
9441/* Lookup DWO file DWO_NAME. */
9442
9443static void **
0ac5b59e 9444lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9445{
9446 struct dwo_file find_entry;
9447 void **slot;
9448
9449 if (dwarf2_per_objfile->dwo_files == NULL)
9450 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9451
9452 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9453 find_entry.dwo_name = dwo_name;
9454 find_entry.comp_dir = comp_dir;
80626a55
DE
9455 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9456
9457 return slot;
9458}
9459
3019eac3
DE
9460static hashval_t
9461hash_dwo_unit (const void *item)
9462{
9463 const struct dwo_unit *dwo_unit = item;
9464
9465 /* This drops the top 32 bits of the id, but is ok for a hash. */
9466 return dwo_unit->signature;
9467}
9468
9469static int
9470eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9471{
9472 const struct dwo_unit *lhs = item_lhs;
9473 const struct dwo_unit *rhs = item_rhs;
9474
9475 /* The signature is assumed to be unique within the DWO file.
9476 So while object file CU dwo_id's always have the value zero,
9477 that's OK, assuming each object file DWO file has only one CU,
9478 and that's the rule for now. */
9479 return lhs->signature == rhs->signature;
9480}
9481
9482/* Allocate a hash table for DWO CUs,TUs.
9483 There is one of these tables for each of CUs,TUs for each DWO file. */
9484
9485static htab_t
9486allocate_dwo_unit_table (struct objfile *objfile)
9487{
9488 /* Start out with a pretty small number.
9489 Generally DWO files contain only one CU and maybe some TUs. */
9490 return htab_create_alloc_ex (3,
9491 hash_dwo_unit,
9492 eq_dwo_unit,
9493 NULL,
9494 &objfile->objfile_obstack,
9495 hashtab_obstack_allocate,
9496 dummy_obstack_deallocate);
9497}
9498
80626a55 9499/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9500
19c3d4c9 9501struct create_dwo_cu_data
3019eac3
DE
9502{
9503 struct dwo_file *dwo_file;
19c3d4c9 9504 struct dwo_unit dwo_unit;
3019eac3
DE
9505};
9506
19c3d4c9 9507/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9508
9509static void
19c3d4c9
DE
9510create_dwo_cu_reader (const struct die_reader_specs *reader,
9511 const gdb_byte *info_ptr,
9512 struct die_info *comp_unit_die,
9513 int has_children,
9514 void *datap)
3019eac3
DE
9515{
9516 struct dwarf2_cu *cu = reader->cu;
9517 struct objfile *objfile = dwarf2_per_objfile->objfile;
9518 sect_offset offset = cu->per_cu->offset;
8a0459fd 9519 struct dwarf2_section_info *section = cu->per_cu->section;
19c3d4c9 9520 struct create_dwo_cu_data *data = datap;
3019eac3 9521 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9522 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9523 struct attribute *attr;
3019eac3
DE
9524
9525 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9526 if (attr == NULL)
9527 {
19c3d4c9
DE
9528 complaint (&symfile_complaints,
9529 _("Dwarf Error: debug entry at offset 0x%x is missing"
9530 " its dwo_id [in module %s]"),
9531 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9532 return;
9533 }
9534
3019eac3
DE
9535 dwo_unit->dwo_file = dwo_file;
9536 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9537 dwo_unit->section = section;
3019eac3
DE
9538 dwo_unit->offset = offset;
9539 dwo_unit->length = cu->per_cu->length;
9540
b4f54984 9541 if (dwarf_read_debug)
4031ecc5
DE
9542 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9543 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9544}
9545
19c3d4c9
DE
9546/* Create the dwo_unit for the lone CU in DWO_FILE.
9547 Note: This function processes DWO files only, not DWP files. */
3019eac3 9548
19c3d4c9
DE
9549static struct dwo_unit *
9550create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9551{
9552 struct objfile *objfile = dwarf2_per_objfile->objfile;
9553 struct dwarf2_section_info *section = &dwo_file->sections.info;
9554 bfd *abfd;
9555 htab_t cu_htab;
d521ce57 9556 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9557 struct create_dwo_cu_data create_dwo_cu_data;
9558 struct dwo_unit *dwo_unit;
3019eac3
DE
9559
9560 dwarf2_read_section (objfile, section);
9561 info_ptr = section->buffer;
9562
9563 if (info_ptr == NULL)
9564 return NULL;
9565
9566 /* We can't set abfd until now because the section may be empty or
9567 not present, in which case section->asection will be NULL. */
a32a8923 9568 abfd = get_section_bfd_owner (section);
3019eac3 9569
b4f54984 9570 if (dwarf_read_debug)
19c3d4c9
DE
9571 {
9572 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9573 get_section_name (section),
9574 get_section_file_name (section));
19c3d4c9 9575 }
3019eac3 9576
19c3d4c9
DE
9577 create_dwo_cu_data.dwo_file = dwo_file;
9578 dwo_unit = NULL;
3019eac3
DE
9579
9580 end_ptr = info_ptr + section->size;
9581 while (info_ptr < end_ptr)
9582 {
9583 struct dwarf2_per_cu_data per_cu;
9584
19c3d4c9
DE
9585 memset (&create_dwo_cu_data.dwo_unit, 0,
9586 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9587 memset (&per_cu, 0, sizeof (per_cu));
9588 per_cu.objfile = objfile;
9589 per_cu.is_debug_types = 0;
9590 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9591 per_cu.section = section;
3019eac3 9592
33e80786 9593 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
19c3d4c9
DE
9594 create_dwo_cu_reader,
9595 &create_dwo_cu_data);
9596
9597 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9598 {
9599 /* If we've already found one, complain. We only support one
9600 because having more than one requires hacking the dwo_name of
9601 each to match, which is highly unlikely to happen. */
9602 if (dwo_unit != NULL)
9603 {
9604 complaint (&symfile_complaints,
9605 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9606 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9607 break;
9608 }
9609
9610 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9611 *dwo_unit = create_dwo_cu_data.dwo_unit;
9612 }
3019eac3
DE
9613
9614 info_ptr += per_cu.length;
9615 }
9616
19c3d4c9 9617 return dwo_unit;
3019eac3
DE
9618}
9619
80626a55
DE
9620/* DWP file .debug_{cu,tu}_index section format:
9621 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9622
d2415c6c
DE
9623 DWP Version 1:
9624
80626a55
DE
9625 Both index sections have the same format, and serve to map a 64-bit
9626 signature to a set of section numbers. Each section begins with a header,
9627 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9628 indexes, and a pool of 32-bit section numbers. The index sections will be
9629 aligned at 8-byte boundaries in the file.
9630
d2415c6c
DE
9631 The index section header consists of:
9632
9633 V, 32 bit version number
9634 -, 32 bits unused
9635 N, 32 bit number of compilation units or type units in the index
9636 M, 32 bit number of slots in the hash table
80626a55 9637
d2415c6c 9638 Numbers are recorded using the byte order of the application binary.
80626a55 9639
d2415c6c
DE
9640 The hash table begins at offset 16 in the section, and consists of an array
9641 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9642 order of the application binary). Unused slots in the hash table are 0.
9643 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9644
d2415c6c
DE
9645 The parallel table begins immediately after the hash table
9646 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9647 array of 32-bit indexes (using the byte order of the application binary),
9648 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9649 table contains a 32-bit index into the pool of section numbers. For unused
9650 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9651
73869dc2
DE
9652 The pool of section numbers begins immediately following the hash table
9653 (at offset 16 + 12 * M from the beginning of the section). The pool of
9654 section numbers consists of an array of 32-bit words (using the byte order
9655 of the application binary). Each item in the array is indexed starting
9656 from 0. The hash table entry provides the index of the first section
9657 number in the set. Additional section numbers in the set follow, and the
9658 set is terminated by a 0 entry (section number 0 is not used in ELF).
9659
9660 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9661 section must be the first entry in the set, and the .debug_abbrev.dwo must
9662 be the second entry. Other members of the set may follow in any order.
9663
9664 ---
9665
9666 DWP Version 2:
9667
9668 DWP Version 2 combines all the .debug_info, etc. sections into one,
9669 and the entries in the index tables are now offsets into these sections.
9670 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9671 section.
9672
9673 Index Section Contents:
9674 Header
9675 Hash Table of Signatures dwp_hash_table.hash_table
9676 Parallel Table of Indices dwp_hash_table.unit_table
9677 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9678 Table of Section Sizes dwp_hash_table.v2.sizes
9679
9680 The index section header consists of:
9681
9682 V, 32 bit version number
9683 L, 32 bit number of columns in the table of section offsets
9684 N, 32 bit number of compilation units or type units in the index
9685 M, 32 bit number of slots in the hash table
9686
9687 Numbers are recorded using the byte order of the application binary.
9688
9689 The hash table has the same format as version 1.
9690 The parallel table of indices has the same format as version 1,
9691 except that the entries are origin-1 indices into the table of sections
9692 offsets and the table of section sizes.
9693
9694 The table of offsets begins immediately following the parallel table
9695 (at offset 16 + 12 * M from the beginning of the section). The table is
9696 a two-dimensional array of 32-bit words (using the byte order of the
9697 application binary), with L columns and N+1 rows, in row-major order.
9698 Each row in the array is indexed starting from 0. The first row provides
9699 a key to the remaining rows: each column in this row provides an identifier
9700 for a debug section, and the offsets in the same column of subsequent rows
9701 refer to that section. The section identifiers are:
9702
9703 DW_SECT_INFO 1 .debug_info.dwo
9704 DW_SECT_TYPES 2 .debug_types.dwo
9705 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9706 DW_SECT_LINE 4 .debug_line.dwo
9707 DW_SECT_LOC 5 .debug_loc.dwo
9708 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9709 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9710 DW_SECT_MACRO 8 .debug_macro.dwo
9711
9712 The offsets provided by the CU and TU index sections are the base offsets
9713 for the contributions made by each CU or TU to the corresponding section
9714 in the package file. Each CU and TU header contains an abbrev_offset
9715 field, used to find the abbreviations table for that CU or TU within the
9716 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9717 be interpreted as relative to the base offset given in the index section.
9718 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9719 should be interpreted as relative to the base offset for .debug_line.dwo,
9720 and offsets into other debug sections obtained from DWARF attributes should
9721 also be interpreted as relative to the corresponding base offset.
9722
9723 The table of sizes begins immediately following the table of offsets.
9724 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9725 with L columns and N rows, in row-major order. Each row in the array is
9726 indexed starting from 1 (row 0 is shared by the two tables).
9727
9728 ---
9729
9730 Hash table lookup is handled the same in version 1 and 2:
9731
9732 We assume that N and M will not exceed 2^32 - 1.
9733 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9734
d2415c6c
DE
9735 Given a 64-bit compilation unit signature or a type signature S, an entry
9736 in the hash table is located as follows:
80626a55 9737
d2415c6c
DE
9738 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9739 the low-order k bits all set to 1.
80626a55 9740
d2415c6c 9741 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9742
d2415c6c
DE
9743 3) If the hash table entry at index H matches the signature, use that
9744 entry. If the hash table entry at index H is unused (all zeroes),
9745 terminate the search: the signature is not present in the table.
80626a55 9746
d2415c6c 9747 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9748
d2415c6c 9749 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9750 to stop at an unused slot or find the match. */
80626a55
DE
9751
9752/* Create a hash table to map DWO IDs to their CU/TU entry in
9753 .debug_{info,types}.dwo in DWP_FILE.
9754 Returns NULL if there isn't one.
9755 Note: This function processes DWP files only, not DWO files. */
9756
9757static struct dwp_hash_table *
9758create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9759{
9760 struct objfile *objfile = dwarf2_per_objfile->objfile;
9761 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9762 const gdb_byte *index_ptr, *index_end;
80626a55 9763 struct dwarf2_section_info *index;
73869dc2 9764 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9765 struct dwp_hash_table *htab;
9766
9767 if (is_debug_types)
9768 index = &dwp_file->sections.tu_index;
9769 else
9770 index = &dwp_file->sections.cu_index;
9771
9772 if (dwarf2_section_empty_p (index))
9773 return NULL;
9774 dwarf2_read_section (objfile, index);
9775
9776 index_ptr = index->buffer;
9777 index_end = index_ptr + index->size;
9778
9779 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9780 index_ptr += 4;
9781 if (version == 2)
9782 nr_columns = read_4_bytes (dbfd, index_ptr);
9783 else
9784 nr_columns = 0;
9785 index_ptr += 4;
80626a55
DE
9786 nr_units = read_4_bytes (dbfd, index_ptr);
9787 index_ptr += 4;
9788 nr_slots = read_4_bytes (dbfd, index_ptr);
9789 index_ptr += 4;
9790
73869dc2 9791 if (version != 1 && version != 2)
80626a55 9792 {
21aa081e 9793 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9794 " [in module %s]"),
21aa081e 9795 pulongest (version), dwp_file->name);
80626a55
DE
9796 }
9797 if (nr_slots != (nr_slots & -nr_slots))
9798 {
21aa081e 9799 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9800 " is not power of 2 [in module %s]"),
21aa081e 9801 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9802 }
9803
9804 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9805 htab->version = version;
9806 htab->nr_columns = nr_columns;
80626a55
DE
9807 htab->nr_units = nr_units;
9808 htab->nr_slots = nr_slots;
9809 htab->hash_table = index_ptr;
9810 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9811
9812 /* Exit early if the table is empty. */
9813 if (nr_slots == 0 || nr_units == 0
9814 || (version == 2 && nr_columns == 0))
9815 {
9816 /* All must be zero. */
9817 if (nr_slots != 0 || nr_units != 0
9818 || (version == 2 && nr_columns != 0))
9819 {
9820 complaint (&symfile_complaints,
9821 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9822 " all zero [in modules %s]"),
9823 dwp_file->name);
9824 }
9825 return htab;
9826 }
9827
9828 if (version == 1)
9829 {
9830 htab->section_pool.v1.indices =
9831 htab->unit_table + sizeof (uint32_t) * nr_slots;
9832 /* It's harder to decide whether the section is too small in v1.
9833 V1 is deprecated anyway so we punt. */
9834 }
9835 else
9836 {
9837 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9838 int *ids = htab->section_pool.v2.section_ids;
9839 /* Reverse map for error checking. */
9840 int ids_seen[DW_SECT_MAX + 1];
9841 int i;
9842
9843 if (nr_columns < 2)
9844 {
9845 error (_("Dwarf Error: bad DWP hash table, too few columns"
9846 " in section table [in module %s]"),
9847 dwp_file->name);
9848 }
9849 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9850 {
9851 error (_("Dwarf Error: bad DWP hash table, too many columns"
9852 " in section table [in module %s]"),
9853 dwp_file->name);
9854 }
9855 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9856 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9857 for (i = 0; i < nr_columns; ++i)
9858 {
9859 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9860
9861 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9862 {
9863 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9864 " in section table [in module %s]"),
9865 id, dwp_file->name);
9866 }
9867 if (ids_seen[id] != -1)
9868 {
9869 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9870 " id %d in section table [in module %s]"),
9871 id, dwp_file->name);
9872 }
9873 ids_seen[id] = i;
9874 ids[i] = id;
9875 }
9876 /* Must have exactly one info or types section. */
9877 if (((ids_seen[DW_SECT_INFO] != -1)
9878 + (ids_seen[DW_SECT_TYPES] != -1))
9879 != 1)
9880 {
9881 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9882 " DWO info/types section [in module %s]"),
9883 dwp_file->name);
9884 }
9885 /* Must have an abbrev section. */
9886 if (ids_seen[DW_SECT_ABBREV] == -1)
9887 {
9888 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9889 " section [in module %s]"),
9890 dwp_file->name);
9891 }
9892 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9893 htab->section_pool.v2.sizes =
9894 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9895 * nr_units * nr_columns);
9896 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9897 * nr_units * nr_columns))
9898 > index_end)
9899 {
9900 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9901 " [in module %s]"),
9902 dwp_file->name);
9903 }
9904 }
80626a55
DE
9905
9906 return htab;
9907}
9908
9909/* Update SECTIONS with the data from SECTP.
9910
9911 This function is like the other "locate" section routines that are
9912 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9913 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9914
9915 The result is non-zero for success, or zero if an error was found. */
9916
9917static int
73869dc2
DE
9918locate_v1_virtual_dwo_sections (asection *sectp,
9919 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9920{
9921 const struct dwop_section_names *names = &dwop_section_names;
9922
9923 if (section_is_p (sectp->name, &names->abbrev_dwo))
9924 {
9925 /* There can be only one. */
049412e3 9926 if (sections->abbrev.s.section != NULL)
80626a55 9927 return 0;
049412e3 9928 sections->abbrev.s.section = sectp;
80626a55
DE
9929 sections->abbrev.size = bfd_get_section_size (sectp);
9930 }
9931 else if (section_is_p (sectp->name, &names->info_dwo)
9932 || section_is_p (sectp->name, &names->types_dwo))
9933 {
9934 /* There can be only one. */
049412e3 9935 if (sections->info_or_types.s.section != NULL)
80626a55 9936 return 0;
049412e3 9937 sections->info_or_types.s.section = sectp;
80626a55
DE
9938 sections->info_or_types.size = bfd_get_section_size (sectp);
9939 }
9940 else if (section_is_p (sectp->name, &names->line_dwo))
9941 {
9942 /* There can be only one. */
049412e3 9943 if (sections->line.s.section != NULL)
80626a55 9944 return 0;
049412e3 9945 sections->line.s.section = sectp;
80626a55
DE
9946 sections->line.size = bfd_get_section_size (sectp);
9947 }
9948 else if (section_is_p (sectp->name, &names->loc_dwo))
9949 {
9950 /* There can be only one. */
049412e3 9951 if (sections->loc.s.section != NULL)
80626a55 9952 return 0;
049412e3 9953 sections->loc.s.section = sectp;
80626a55
DE
9954 sections->loc.size = bfd_get_section_size (sectp);
9955 }
9956 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9957 {
9958 /* There can be only one. */
049412e3 9959 if (sections->macinfo.s.section != NULL)
80626a55 9960 return 0;
049412e3 9961 sections->macinfo.s.section = sectp;
80626a55
DE
9962 sections->macinfo.size = bfd_get_section_size (sectp);
9963 }
9964 else if (section_is_p (sectp->name, &names->macro_dwo))
9965 {
9966 /* There can be only one. */
049412e3 9967 if (sections->macro.s.section != NULL)
80626a55 9968 return 0;
049412e3 9969 sections->macro.s.section = sectp;
80626a55
DE
9970 sections->macro.size = bfd_get_section_size (sectp);
9971 }
9972 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9973 {
9974 /* There can be only one. */
049412e3 9975 if (sections->str_offsets.s.section != NULL)
80626a55 9976 return 0;
049412e3 9977 sections->str_offsets.s.section = sectp;
80626a55
DE
9978 sections->str_offsets.size = bfd_get_section_size (sectp);
9979 }
9980 else
9981 {
9982 /* No other kind of section is valid. */
9983 return 0;
9984 }
9985
9986 return 1;
9987}
9988
73869dc2
DE
9989/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9990 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9991 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9992 This is for DWP version 1 files. */
80626a55
DE
9993
9994static struct dwo_unit *
73869dc2
DE
9995create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9996 uint32_t unit_index,
9997 const char *comp_dir,
9998 ULONGEST signature, int is_debug_types)
80626a55
DE
9999{
10000 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
10001 const struct dwp_hash_table *dwp_htab =
10002 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
10003 bfd *dbfd = dwp_file->dbfd;
10004 const char *kind = is_debug_types ? "TU" : "CU";
10005 struct dwo_file *dwo_file;
10006 struct dwo_unit *dwo_unit;
73869dc2 10007 struct virtual_v1_dwo_sections sections;
80626a55
DE
10008 void **dwo_file_slot;
10009 char *virtual_dwo_name;
10010 struct dwarf2_section_info *cutu;
10011 struct cleanup *cleanups;
10012 int i;
10013
73869dc2
DE
10014 gdb_assert (dwp_file->version == 1);
10015
b4f54984 10016 if (dwarf_read_debug)
80626a55 10017 {
73869dc2 10018 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 10019 kind,
73869dc2 10020 pulongest (unit_index), hex_string (signature),
80626a55
DE
10021 dwp_file->name);
10022 }
10023
19ac8c2e 10024 /* Fetch the sections of this DWO unit.
80626a55
DE
10025 Put a limit on the number of sections we look for so that bad data
10026 doesn't cause us to loop forever. */
10027
73869dc2 10028#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
10029 (1 /* .debug_info or .debug_types */ \
10030 + 1 /* .debug_abbrev */ \
10031 + 1 /* .debug_line */ \
10032 + 1 /* .debug_loc */ \
10033 + 1 /* .debug_str_offsets */ \
19ac8c2e 10034 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
10035 + 1 /* trailing zero */)
10036
10037 memset (&sections, 0, sizeof (sections));
10038 cleanups = make_cleanup (null_cleanup, 0);
10039
73869dc2 10040 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
10041 {
10042 asection *sectp;
10043 uint32_t section_nr =
10044 read_4_bytes (dbfd,
73869dc2
DE
10045 dwp_htab->section_pool.v1.indices
10046 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
10047
10048 if (section_nr == 0)
10049 break;
10050 if (section_nr >= dwp_file->num_sections)
10051 {
10052 error (_("Dwarf Error: bad DWP hash table, section number too large"
10053 " [in module %s]"),
10054 dwp_file->name);
10055 }
10056
10057 sectp = dwp_file->elf_sections[section_nr];
73869dc2 10058 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
10059 {
10060 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10061 " [in module %s]"),
10062 dwp_file->name);
10063 }
10064 }
10065
10066 if (i < 2
a32a8923
DE
10067 || dwarf2_section_empty_p (&sections.info_or_types)
10068 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
10069 {
10070 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10071 " [in module %s]"),
10072 dwp_file->name);
10073 }
73869dc2 10074 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
10075 {
10076 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10077 " [in module %s]"),
10078 dwp_file->name);
10079 }
10080
10081 /* It's easier for the rest of the code if we fake a struct dwo_file and
10082 have dwo_unit "live" in that. At least for now.
10083
10084 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 10085 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
10086 file, we can combine them back into a virtual DWO file to save space
10087 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
10088 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10089
2792b94d
PM
10090 virtual_dwo_name =
10091 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
10092 get_section_id (&sections.abbrev),
10093 get_section_id (&sections.line),
10094 get_section_id (&sections.loc),
10095 get_section_id (&sections.str_offsets));
80626a55
DE
10096 make_cleanup (xfree, virtual_dwo_name);
10097 /* Can we use an existing virtual DWO file? */
0ac5b59e 10098 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
10099 /* Create one if necessary. */
10100 if (*dwo_file_slot == NULL)
10101 {
b4f54984 10102 if (dwarf_read_debug)
80626a55
DE
10103 {
10104 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10105 virtual_dwo_name);
10106 }
10107 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10108 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10109 virtual_dwo_name,
10110 strlen (virtual_dwo_name));
10111 dwo_file->comp_dir = comp_dir;
80626a55
DE
10112 dwo_file->sections.abbrev = sections.abbrev;
10113 dwo_file->sections.line = sections.line;
10114 dwo_file->sections.loc = sections.loc;
10115 dwo_file->sections.macinfo = sections.macinfo;
10116 dwo_file->sections.macro = sections.macro;
10117 dwo_file->sections.str_offsets = sections.str_offsets;
10118 /* The "str" section is global to the entire DWP file. */
10119 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 10120 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
10121 there's no need to record it in dwo_file.
10122 Also, we can't simply record type sections in dwo_file because
10123 we record a pointer into the vector in dwo_unit. As we collect more
10124 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
10125 for it, invalidating all copies of pointers into the previous
10126 contents. */
80626a55
DE
10127 *dwo_file_slot = dwo_file;
10128 }
10129 else
10130 {
b4f54984 10131 if (dwarf_read_debug)
80626a55
DE
10132 {
10133 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10134 virtual_dwo_name);
10135 }
10136 dwo_file = *dwo_file_slot;
10137 }
10138 do_cleanups (cleanups);
10139
10140 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10141 dwo_unit->dwo_file = dwo_file;
10142 dwo_unit->signature = signature;
8d749320
SM
10143 dwo_unit->section =
10144 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
8a0459fd 10145 *dwo_unit->section = sections.info_or_types;
57d63ce2 10146 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
10147
10148 return dwo_unit;
10149}
10150
73869dc2
DE
10151/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10152 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10153 piece within that section used by a TU/CU, return a virtual section
10154 of just that piece. */
10155
10156static struct dwarf2_section_info
10157create_dwp_v2_section (struct dwarf2_section_info *section,
10158 bfd_size_type offset, bfd_size_type size)
10159{
10160 struct dwarf2_section_info result;
10161 asection *sectp;
10162
10163 gdb_assert (section != NULL);
10164 gdb_assert (!section->is_virtual);
10165
10166 memset (&result, 0, sizeof (result));
10167 result.s.containing_section = section;
10168 result.is_virtual = 1;
10169
10170 if (size == 0)
10171 return result;
10172
10173 sectp = get_section_bfd_section (section);
10174
10175 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10176 bounds of the real section. This is a pretty-rare event, so just
10177 flag an error (easier) instead of a warning and trying to cope. */
10178 if (sectp == NULL
10179 || offset + size > bfd_get_section_size (sectp))
10180 {
10181 bfd *abfd = sectp->owner;
10182
10183 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10184 " in section %s [in module %s]"),
10185 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10186 objfile_name (dwarf2_per_objfile->objfile));
10187 }
10188
10189 result.virtual_offset = offset;
10190 result.size = size;
10191 return result;
10192}
10193
10194/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10195 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10196 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10197 This is for DWP version 2 files. */
10198
10199static struct dwo_unit *
10200create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10201 uint32_t unit_index,
10202 const char *comp_dir,
10203 ULONGEST signature, int is_debug_types)
10204{
10205 struct objfile *objfile = dwarf2_per_objfile->objfile;
10206 const struct dwp_hash_table *dwp_htab =
10207 is_debug_types ? dwp_file->tus : dwp_file->cus;
10208 bfd *dbfd = dwp_file->dbfd;
10209 const char *kind = is_debug_types ? "TU" : "CU";
10210 struct dwo_file *dwo_file;
10211 struct dwo_unit *dwo_unit;
10212 struct virtual_v2_dwo_sections sections;
10213 void **dwo_file_slot;
10214 char *virtual_dwo_name;
10215 struct dwarf2_section_info *cutu;
10216 struct cleanup *cleanups;
10217 int i;
10218
10219 gdb_assert (dwp_file->version == 2);
10220
b4f54984 10221 if (dwarf_read_debug)
73869dc2
DE
10222 {
10223 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10224 kind,
10225 pulongest (unit_index), hex_string (signature),
10226 dwp_file->name);
10227 }
10228
10229 /* Fetch the section offsets of this DWO unit. */
10230
10231 memset (&sections, 0, sizeof (sections));
10232 cleanups = make_cleanup (null_cleanup, 0);
10233
10234 for (i = 0; i < dwp_htab->nr_columns; ++i)
10235 {
10236 uint32_t offset = read_4_bytes (dbfd,
10237 dwp_htab->section_pool.v2.offsets
10238 + (((unit_index - 1) * dwp_htab->nr_columns
10239 + i)
10240 * sizeof (uint32_t)));
10241 uint32_t size = read_4_bytes (dbfd,
10242 dwp_htab->section_pool.v2.sizes
10243 + (((unit_index - 1) * dwp_htab->nr_columns
10244 + i)
10245 * sizeof (uint32_t)));
10246
10247 switch (dwp_htab->section_pool.v2.section_ids[i])
10248 {
10249 case DW_SECT_INFO:
10250 case DW_SECT_TYPES:
10251 sections.info_or_types_offset = offset;
10252 sections.info_or_types_size = size;
10253 break;
10254 case DW_SECT_ABBREV:
10255 sections.abbrev_offset = offset;
10256 sections.abbrev_size = size;
10257 break;
10258 case DW_SECT_LINE:
10259 sections.line_offset = offset;
10260 sections.line_size = size;
10261 break;
10262 case DW_SECT_LOC:
10263 sections.loc_offset = offset;
10264 sections.loc_size = size;
10265 break;
10266 case DW_SECT_STR_OFFSETS:
10267 sections.str_offsets_offset = offset;
10268 sections.str_offsets_size = size;
10269 break;
10270 case DW_SECT_MACINFO:
10271 sections.macinfo_offset = offset;
10272 sections.macinfo_size = size;
10273 break;
10274 case DW_SECT_MACRO:
10275 sections.macro_offset = offset;
10276 sections.macro_size = size;
10277 break;
10278 }
10279 }
10280
10281 /* It's easier for the rest of the code if we fake a struct dwo_file and
10282 have dwo_unit "live" in that. At least for now.
10283
10284 The DWP file can be made up of a random collection of CUs and TUs.
10285 However, for each CU + set of TUs that came from the same original DWO
10286 file, we can combine them back into a virtual DWO file to save space
10287 (fewer struct dwo_file objects to allocate). Remember that for really
10288 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10289
10290 virtual_dwo_name =
10291 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10292 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10293 (long) (sections.line_size ? sections.line_offset : 0),
10294 (long) (sections.loc_size ? sections.loc_offset : 0),
10295 (long) (sections.str_offsets_size
10296 ? sections.str_offsets_offset : 0));
10297 make_cleanup (xfree, virtual_dwo_name);
10298 /* Can we use an existing virtual DWO file? */
10299 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10300 /* Create one if necessary. */
10301 if (*dwo_file_slot == NULL)
10302 {
b4f54984 10303 if (dwarf_read_debug)
73869dc2
DE
10304 {
10305 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10306 virtual_dwo_name);
10307 }
10308 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10309 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10310 virtual_dwo_name,
10311 strlen (virtual_dwo_name));
10312 dwo_file->comp_dir = comp_dir;
10313 dwo_file->sections.abbrev =
10314 create_dwp_v2_section (&dwp_file->sections.abbrev,
10315 sections.abbrev_offset, sections.abbrev_size);
10316 dwo_file->sections.line =
10317 create_dwp_v2_section (&dwp_file->sections.line,
10318 sections.line_offset, sections.line_size);
10319 dwo_file->sections.loc =
10320 create_dwp_v2_section (&dwp_file->sections.loc,
10321 sections.loc_offset, sections.loc_size);
10322 dwo_file->sections.macinfo =
10323 create_dwp_v2_section (&dwp_file->sections.macinfo,
10324 sections.macinfo_offset, sections.macinfo_size);
10325 dwo_file->sections.macro =
10326 create_dwp_v2_section (&dwp_file->sections.macro,
10327 sections.macro_offset, sections.macro_size);
10328 dwo_file->sections.str_offsets =
10329 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10330 sections.str_offsets_offset,
10331 sections.str_offsets_size);
10332 /* The "str" section is global to the entire DWP file. */
10333 dwo_file->sections.str = dwp_file->sections.str;
10334 /* The info or types section is assigned below to dwo_unit,
10335 there's no need to record it in dwo_file.
10336 Also, we can't simply record type sections in dwo_file because
10337 we record a pointer into the vector in dwo_unit. As we collect more
10338 types we'll grow the vector and eventually have to reallocate space
10339 for it, invalidating all copies of pointers into the previous
10340 contents. */
10341 *dwo_file_slot = dwo_file;
10342 }
10343 else
10344 {
b4f54984 10345 if (dwarf_read_debug)
73869dc2
DE
10346 {
10347 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10348 virtual_dwo_name);
10349 }
10350 dwo_file = *dwo_file_slot;
10351 }
10352 do_cleanups (cleanups);
10353
10354 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10355 dwo_unit->dwo_file = dwo_file;
10356 dwo_unit->signature = signature;
8d749320
SM
10357 dwo_unit->section =
10358 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
73869dc2
DE
10359 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10360 ? &dwp_file->sections.types
10361 : &dwp_file->sections.info,
10362 sections.info_or_types_offset,
10363 sections.info_or_types_size);
10364 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10365
10366 return dwo_unit;
10367}
10368
57d63ce2
DE
10369/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10370 Returns NULL if the signature isn't found. */
80626a55
DE
10371
10372static struct dwo_unit *
57d63ce2
DE
10373lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10374 ULONGEST signature, int is_debug_types)
80626a55 10375{
57d63ce2
DE
10376 const struct dwp_hash_table *dwp_htab =
10377 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10378 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10379 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10380 uint32_t hash = signature & mask;
10381 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10382 unsigned int i;
10383 void **slot;
10384 struct dwo_unit find_dwo_cu, *dwo_cu;
10385
10386 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10387 find_dwo_cu.signature = signature;
19ac8c2e
DE
10388 slot = htab_find_slot (is_debug_types
10389 ? dwp_file->loaded_tus
10390 : dwp_file->loaded_cus,
10391 &find_dwo_cu, INSERT);
80626a55
DE
10392
10393 if (*slot != NULL)
10394 return *slot;
10395
10396 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10397 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10398 {
10399 ULONGEST signature_in_table;
10400
10401 signature_in_table =
57d63ce2 10402 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10403 if (signature_in_table == signature)
10404 {
57d63ce2
DE
10405 uint32_t unit_index =
10406 read_4_bytes (dbfd,
10407 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10408
73869dc2
DE
10409 if (dwp_file->version == 1)
10410 {
10411 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10412 comp_dir, signature,
10413 is_debug_types);
10414 }
10415 else
10416 {
10417 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10418 comp_dir, signature,
10419 is_debug_types);
10420 }
80626a55
DE
10421 return *slot;
10422 }
10423 if (signature_in_table == 0)
10424 return NULL;
10425 hash = (hash + hash2) & mask;
10426 }
10427
10428 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10429 " [in module %s]"),
10430 dwp_file->name);
10431}
10432
ab5088bf 10433/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10434 Open the file specified by FILE_NAME and hand it off to BFD for
10435 preliminary analysis. Return a newly initialized bfd *, which
10436 includes a canonicalized copy of FILE_NAME.
80626a55 10437 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10438 SEARCH_CWD is true if the current directory is to be searched.
10439 It will be searched before debug-file-directory.
13aaf454
DE
10440 If successful, the file is added to the bfd include table of the
10441 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10442 If unable to find/open the file, return NULL.
3019eac3
DE
10443 NOTE: This function is derived from symfile_bfd_open. */
10444
10445static bfd *
6ac97d4c 10446try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
10447{
10448 bfd *sym_bfd;
80626a55 10449 int desc, flags;
3019eac3 10450 char *absolute_name;
9c02c129
DE
10451 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10452 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10453 to debug_file_directory. */
10454 char *search_path;
10455 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10456
6ac97d4c
DE
10457 if (search_cwd)
10458 {
10459 if (*debug_file_directory != '\0')
10460 search_path = concat (".", dirname_separator_string,
10461 debug_file_directory, NULL);
10462 else
10463 search_path = xstrdup (".");
10464 }
9c02c129 10465 else
6ac97d4c 10466 search_path = xstrdup (debug_file_directory);
3019eac3 10467
492c0ab7 10468 flags = OPF_RETURN_REALPATH;
80626a55
DE
10469 if (is_dwp)
10470 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10471 desc = openp (search_path, flags, file_name,
3019eac3 10472 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10473 xfree (search_path);
3019eac3
DE
10474 if (desc < 0)
10475 return NULL;
10476
bb397797 10477 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 10478 xfree (absolute_name);
9c02c129
DE
10479 if (sym_bfd == NULL)
10480 return NULL;
3019eac3
DE
10481 bfd_set_cacheable (sym_bfd, 1);
10482
10483 if (!bfd_check_format (sym_bfd, bfd_object))
10484 {
cbb099e8 10485 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
10486 return NULL;
10487 }
10488
13aaf454
DE
10489 /* Success. Record the bfd as having been included by the objfile's bfd.
10490 This is important because things like demangled_names_hash lives in the
10491 objfile's per_bfd space and may have references to things like symbol
10492 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10493 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10494
3019eac3
DE
10495 return sym_bfd;
10496}
10497
ab5088bf 10498/* Try to open DWO file FILE_NAME.
3019eac3
DE
10499 COMP_DIR is the DW_AT_comp_dir attribute.
10500 The result is the bfd handle of the file.
10501 If there is a problem finding or opening the file, return NULL.
10502 Upon success, the canonicalized path of the file is stored in the bfd,
10503 same as symfile_bfd_open. */
10504
10505static bfd *
ab5088bf 10506open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
10507{
10508 bfd *abfd;
3019eac3 10509
80626a55 10510 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10511 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10512
10513 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10514
10515 if (comp_dir != NULL)
10516 {
80626a55 10517 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
3019eac3
DE
10518
10519 /* NOTE: If comp_dir is a relative path, this will also try the
10520 search path, which seems useful. */
6ac97d4c 10521 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10522 xfree (path_to_try);
10523 if (abfd != NULL)
10524 return abfd;
10525 }
10526
10527 /* That didn't work, try debug-file-directory, which, despite its name,
10528 is a list of paths. */
10529
10530 if (*debug_file_directory == '\0')
10531 return NULL;
10532
6ac97d4c 10533 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10534}
10535
80626a55
DE
10536/* This function is mapped across the sections and remembers the offset and
10537 size of each of the DWO debugging sections we are interested in. */
10538
10539static void
10540dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10541{
10542 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10543 const struct dwop_section_names *names = &dwop_section_names;
10544
10545 if (section_is_p (sectp->name, &names->abbrev_dwo))
10546 {
049412e3 10547 dwo_sections->abbrev.s.section = sectp;
80626a55
DE
10548 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10549 }
10550 else if (section_is_p (sectp->name, &names->info_dwo))
10551 {
049412e3 10552 dwo_sections->info.s.section = sectp;
80626a55
DE
10553 dwo_sections->info.size = bfd_get_section_size (sectp);
10554 }
10555 else if (section_is_p (sectp->name, &names->line_dwo))
10556 {
049412e3 10557 dwo_sections->line.s.section = sectp;
80626a55
DE
10558 dwo_sections->line.size = bfd_get_section_size (sectp);
10559 }
10560 else if (section_is_p (sectp->name, &names->loc_dwo))
10561 {
049412e3 10562 dwo_sections->loc.s.section = sectp;
80626a55
DE
10563 dwo_sections->loc.size = bfd_get_section_size (sectp);
10564 }
10565 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10566 {
049412e3 10567 dwo_sections->macinfo.s.section = sectp;
80626a55
DE
10568 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10569 }
10570 else if (section_is_p (sectp->name, &names->macro_dwo))
10571 {
049412e3 10572 dwo_sections->macro.s.section = sectp;
80626a55
DE
10573 dwo_sections->macro.size = bfd_get_section_size (sectp);
10574 }
10575 else if (section_is_p (sectp->name, &names->str_dwo))
10576 {
049412e3 10577 dwo_sections->str.s.section = sectp;
80626a55
DE
10578 dwo_sections->str.size = bfd_get_section_size (sectp);
10579 }
10580 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10581 {
049412e3 10582 dwo_sections->str_offsets.s.section = sectp;
80626a55
DE
10583 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10584 }
10585 else if (section_is_p (sectp->name, &names->types_dwo))
10586 {
10587 struct dwarf2_section_info type_section;
10588
10589 memset (&type_section, 0, sizeof (type_section));
049412e3 10590 type_section.s.section = sectp;
80626a55
DE
10591 type_section.size = bfd_get_section_size (sectp);
10592 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10593 &type_section);
10594 }
10595}
10596
ab5088bf 10597/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10598 by PER_CU. This is for the non-DWP case.
80626a55 10599 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10600
10601static struct dwo_file *
0ac5b59e
DE
10602open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10603 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10604{
10605 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10606 struct dwo_file *dwo_file;
10607 bfd *dbfd;
3019eac3
DE
10608 struct cleanup *cleanups;
10609
ab5088bf 10610 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
10611 if (dbfd == NULL)
10612 {
b4f54984 10613 if (dwarf_read_debug)
80626a55
DE
10614 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10615 return NULL;
10616 }
10617 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10618 dwo_file->dwo_name = dwo_name;
10619 dwo_file->comp_dir = comp_dir;
80626a55 10620 dwo_file->dbfd = dbfd;
3019eac3
DE
10621
10622 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10623
80626a55 10624 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 10625
19c3d4c9 10626 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
10627
10628 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10629 dwo_file->sections.types);
10630
10631 discard_cleanups (cleanups);
10632
b4f54984 10633 if (dwarf_read_debug)
80626a55
DE
10634 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10635
3019eac3
DE
10636 return dwo_file;
10637}
10638
80626a55 10639/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10640 size of each of the DWP debugging sections common to version 1 and 2 that
10641 we are interested in. */
3019eac3 10642
80626a55 10643static void
73869dc2
DE
10644dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10645 void *dwp_file_ptr)
3019eac3 10646{
80626a55
DE
10647 struct dwp_file *dwp_file = dwp_file_ptr;
10648 const struct dwop_section_names *names = &dwop_section_names;
10649 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10650
80626a55 10651 /* Record the ELF section number for later lookup: this is what the
73869dc2 10652 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10653 gdb_assert (elf_section_nr < dwp_file->num_sections);
10654 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10655
80626a55
DE
10656 /* Look for specific sections that we need. */
10657 if (section_is_p (sectp->name, &names->str_dwo))
10658 {
049412e3 10659 dwp_file->sections.str.s.section = sectp;
80626a55
DE
10660 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10661 }
10662 else if (section_is_p (sectp->name, &names->cu_index))
10663 {
049412e3 10664 dwp_file->sections.cu_index.s.section = sectp;
80626a55
DE
10665 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10666 }
10667 else if (section_is_p (sectp->name, &names->tu_index))
10668 {
049412e3 10669 dwp_file->sections.tu_index.s.section = sectp;
80626a55
DE
10670 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10671 }
10672}
3019eac3 10673
73869dc2
DE
10674/* This function is mapped across the sections and remembers the offset and
10675 size of each of the DWP version 2 debugging sections that we are interested
10676 in. This is split into a separate function because we don't know if we
10677 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10678
10679static void
10680dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10681{
10682 struct dwp_file *dwp_file = dwp_file_ptr;
10683 const struct dwop_section_names *names = &dwop_section_names;
10684 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10685
10686 /* Record the ELF section number for later lookup: this is what the
10687 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10688 gdb_assert (elf_section_nr < dwp_file->num_sections);
10689 dwp_file->elf_sections[elf_section_nr] = sectp;
10690
10691 /* Look for specific sections that we need. */
10692 if (section_is_p (sectp->name, &names->abbrev_dwo))
10693 {
049412e3 10694 dwp_file->sections.abbrev.s.section = sectp;
73869dc2
DE
10695 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10696 }
10697 else if (section_is_p (sectp->name, &names->info_dwo))
10698 {
049412e3 10699 dwp_file->sections.info.s.section = sectp;
73869dc2
DE
10700 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10701 }
10702 else if (section_is_p (sectp->name, &names->line_dwo))
10703 {
049412e3 10704 dwp_file->sections.line.s.section = sectp;
73869dc2
DE
10705 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10706 }
10707 else if (section_is_p (sectp->name, &names->loc_dwo))
10708 {
049412e3 10709 dwp_file->sections.loc.s.section = sectp;
73869dc2
DE
10710 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10711 }
10712 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10713 {
049412e3 10714 dwp_file->sections.macinfo.s.section = sectp;
73869dc2
DE
10715 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10716 }
10717 else if (section_is_p (sectp->name, &names->macro_dwo))
10718 {
049412e3 10719 dwp_file->sections.macro.s.section = sectp;
73869dc2
DE
10720 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10721 }
10722 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10723 {
049412e3 10724 dwp_file->sections.str_offsets.s.section = sectp;
73869dc2
DE
10725 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10726 }
10727 else if (section_is_p (sectp->name, &names->types_dwo))
10728 {
049412e3 10729 dwp_file->sections.types.s.section = sectp;
73869dc2
DE
10730 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10731 }
10732}
10733
80626a55 10734/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10735
80626a55
DE
10736static hashval_t
10737hash_dwp_loaded_cutus (const void *item)
10738{
10739 const struct dwo_unit *dwo_unit = item;
3019eac3 10740
80626a55
DE
10741 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10742 return dwo_unit->signature;
3019eac3
DE
10743}
10744
80626a55 10745/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10746
80626a55
DE
10747static int
10748eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10749{
80626a55
DE
10750 const struct dwo_unit *dua = a;
10751 const struct dwo_unit *dub = b;
3019eac3 10752
80626a55
DE
10753 return dua->signature == dub->signature;
10754}
3019eac3 10755
80626a55 10756/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10757
80626a55
DE
10758static htab_t
10759allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10760{
10761 return htab_create_alloc_ex (3,
10762 hash_dwp_loaded_cutus,
10763 eq_dwp_loaded_cutus,
10764 NULL,
10765 &objfile->objfile_obstack,
10766 hashtab_obstack_allocate,
10767 dummy_obstack_deallocate);
10768}
3019eac3 10769
ab5088bf
DE
10770/* Try to open DWP file FILE_NAME.
10771 The result is the bfd handle of the file.
10772 If there is a problem finding or opening the file, return NULL.
10773 Upon success, the canonicalized path of the file is stored in the bfd,
10774 same as symfile_bfd_open. */
10775
10776static bfd *
10777open_dwp_file (const char *file_name)
10778{
6ac97d4c
DE
10779 bfd *abfd;
10780
10781 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10782 if (abfd != NULL)
10783 return abfd;
10784
10785 /* Work around upstream bug 15652.
10786 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10787 [Whether that's a "bug" is debatable, but it is getting in our way.]
10788 We have no real idea where the dwp file is, because gdb's realpath-ing
10789 of the executable's path may have discarded the needed info.
10790 [IWBN if the dwp file name was recorded in the executable, akin to
10791 .gnu_debuglink, but that doesn't exist yet.]
10792 Strip the directory from FILE_NAME and search again. */
10793 if (*debug_file_directory != '\0')
10794 {
10795 /* Don't implicitly search the current directory here.
10796 If the user wants to search "." to handle this case,
10797 it must be added to debug-file-directory. */
10798 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10799 0 /*search_cwd*/);
10800 }
10801
10802 return NULL;
ab5088bf
DE
10803}
10804
80626a55
DE
10805/* Initialize the use of the DWP file for the current objfile.
10806 By convention the name of the DWP file is ${objfile}.dwp.
10807 The result is NULL if it can't be found. */
a766d390 10808
80626a55 10809static struct dwp_file *
ab5088bf 10810open_and_init_dwp_file (void)
80626a55
DE
10811{
10812 struct objfile *objfile = dwarf2_per_objfile->objfile;
10813 struct dwp_file *dwp_file;
10814 char *dwp_name;
10815 bfd *dbfd;
10816 struct cleanup *cleanups;
10817
82bf32bc
JK
10818 /* Try to find first .dwp for the binary file before any symbolic links
10819 resolving. */
10820 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
80626a55
DE
10821 cleanups = make_cleanup (xfree, dwp_name);
10822
ab5088bf 10823 dbfd = open_dwp_file (dwp_name);
82bf32bc
JK
10824 if (dbfd == NULL
10825 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10826 {
10827 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10828 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10829 make_cleanup (xfree, dwp_name);
10830 dbfd = open_dwp_file (dwp_name);
10831 }
10832
80626a55
DE
10833 if (dbfd == NULL)
10834 {
b4f54984 10835 if (dwarf_read_debug)
80626a55
DE
10836 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10837 do_cleanups (cleanups);
10838 return NULL;
3019eac3 10839 }
80626a55 10840 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 10841 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
10842 dwp_file->dbfd = dbfd;
10843 do_cleanups (cleanups);
c906108c 10844
80626a55
DE
10845 /* +1: section 0 is unused */
10846 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10847 dwp_file->elf_sections =
10848 OBSTACK_CALLOC (&objfile->objfile_obstack,
10849 dwp_file->num_sections, asection *);
10850
73869dc2 10851 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
80626a55
DE
10852
10853 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10854
10855 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10856
73869dc2
DE
10857 /* The DWP file version is stored in the hash table. Oh well. */
10858 if (dwp_file->cus->version != dwp_file->tus->version)
10859 {
10860 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 10861 pretty bizarre. We use pulongest here because that's the established
4d65956b 10862 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
10863 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10864 " TU version %s [in DWP file %s]"),
10865 pulongest (dwp_file->cus->version),
10866 pulongest (dwp_file->tus->version), dwp_name);
73869dc2
DE
10867 }
10868 dwp_file->version = dwp_file->cus->version;
10869
10870 if (dwp_file->version == 2)
10871 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10872
19ac8c2e
DE
10873 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10874 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10875
b4f54984 10876 if (dwarf_read_debug)
80626a55
DE
10877 {
10878 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10879 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10880 " %s CUs, %s TUs\n",
10881 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10882 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10883 }
10884
10885 return dwp_file;
3019eac3 10886}
c906108c 10887
ab5088bf
DE
10888/* Wrapper around open_and_init_dwp_file, only open it once. */
10889
10890static struct dwp_file *
10891get_dwp_file (void)
10892{
10893 if (! dwarf2_per_objfile->dwp_checked)
10894 {
10895 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10896 dwarf2_per_objfile->dwp_checked = 1;
10897 }
10898 return dwarf2_per_objfile->dwp_file;
10899}
10900
80626a55
DE
10901/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10902 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10903 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10904 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10905 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10906
10907 This is called, for example, when wanting to read a variable with a
10908 complex location. Therefore we don't want to do file i/o for every call.
10909 Therefore we don't want to look for a DWO file on every call.
10910 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10911 then we check if we've already seen DWO_NAME, and only THEN do we check
10912 for a DWO file.
10913
1c658ad5 10914 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 10915 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 10916
3019eac3 10917static struct dwo_unit *
80626a55
DE
10918lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10919 const char *dwo_name, const char *comp_dir,
10920 ULONGEST signature, int is_debug_types)
3019eac3
DE
10921{
10922 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10923 const char *kind = is_debug_types ? "TU" : "CU";
10924 void **dwo_file_slot;
3019eac3 10925 struct dwo_file *dwo_file;
80626a55 10926 struct dwp_file *dwp_file;
cb1df416 10927
6a506a2d
DE
10928 /* First see if there's a DWP file.
10929 If we have a DWP file but didn't find the DWO inside it, don't
10930 look for the original DWO file. It makes gdb behave differently
10931 depending on whether one is debugging in the build tree. */
cf2c3c16 10932
ab5088bf 10933 dwp_file = get_dwp_file ();
80626a55 10934 if (dwp_file != NULL)
cf2c3c16 10935 {
80626a55
DE
10936 const struct dwp_hash_table *dwp_htab =
10937 is_debug_types ? dwp_file->tus : dwp_file->cus;
10938
10939 if (dwp_htab != NULL)
10940 {
10941 struct dwo_unit *dwo_cutu =
57d63ce2
DE
10942 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10943 signature, is_debug_types);
80626a55
DE
10944
10945 if (dwo_cutu != NULL)
10946 {
b4f54984 10947 if (dwarf_read_debug)
80626a55
DE
10948 {
10949 fprintf_unfiltered (gdb_stdlog,
10950 "Virtual DWO %s %s found: @%s\n",
10951 kind, hex_string (signature),
10952 host_address_to_string (dwo_cutu));
10953 }
10954 return dwo_cutu;
10955 }
10956 }
10957 }
6a506a2d 10958 else
80626a55 10959 {
6a506a2d 10960 /* No DWP file, look for the DWO file. */
80626a55 10961
6a506a2d
DE
10962 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10963 if (*dwo_file_slot == NULL)
80626a55 10964 {
6a506a2d
DE
10965 /* Read in the file and build a table of the CUs/TUs it contains. */
10966 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 10967 }
6a506a2d
DE
10968 /* NOTE: This will be NULL if unable to open the file. */
10969 dwo_file = *dwo_file_slot;
3019eac3 10970
6a506a2d 10971 if (dwo_file != NULL)
19c3d4c9 10972 {
6a506a2d
DE
10973 struct dwo_unit *dwo_cutu = NULL;
10974
10975 if (is_debug_types && dwo_file->tus)
10976 {
10977 struct dwo_unit find_dwo_cutu;
10978
10979 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10980 find_dwo_cutu.signature = signature;
10981 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10982 }
10983 else if (!is_debug_types && dwo_file->cu)
80626a55 10984 {
6a506a2d
DE
10985 if (signature == dwo_file->cu->signature)
10986 dwo_cutu = dwo_file->cu;
10987 }
10988
10989 if (dwo_cutu != NULL)
10990 {
b4f54984 10991 if (dwarf_read_debug)
6a506a2d
DE
10992 {
10993 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10994 kind, dwo_name, hex_string (signature),
10995 host_address_to_string (dwo_cutu));
10996 }
10997 return dwo_cutu;
80626a55
DE
10998 }
10999 }
2e276125 11000 }
9cdd5dbd 11001
80626a55
DE
11002 /* We didn't find it. This could mean a dwo_id mismatch, or
11003 someone deleted the DWO/DWP file, or the search path isn't set up
11004 correctly to find the file. */
11005
b4f54984 11006 if (dwarf_read_debug)
80626a55
DE
11007 {
11008 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11009 kind, dwo_name, hex_string (signature));
11010 }
3019eac3 11011
6656a72d
DE
11012 /* This is a warning and not a complaint because it can be caused by
11013 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
11014 {
11015 /* Print the name of the DWP file if we looked there, helps the user
11016 better diagnose the problem. */
11017 char *dwp_text = NULL;
11018 struct cleanup *cleanups;
11019
11020 if (dwp_file != NULL)
11021 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11022 cleanups = make_cleanup (xfree, dwp_text);
11023
11024 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11025 " [in module %s]"),
11026 kind, dwo_name, hex_string (signature),
11027 dwp_text != NULL ? dwp_text : "",
11028 this_unit->is_debug_types ? "TU" : "CU",
11029 this_unit->offset.sect_off, objfile_name (objfile));
11030
11031 do_cleanups (cleanups);
11032 }
3019eac3 11033 return NULL;
5fb290d7
DJ
11034}
11035
80626a55
DE
11036/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11037 See lookup_dwo_cutu_unit for details. */
11038
11039static struct dwo_unit *
11040lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11041 const char *dwo_name, const char *comp_dir,
11042 ULONGEST signature)
11043{
11044 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11045}
11046
11047/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11048 See lookup_dwo_cutu_unit for details. */
11049
11050static struct dwo_unit *
11051lookup_dwo_type_unit (struct signatured_type *this_tu,
11052 const char *dwo_name, const char *comp_dir)
11053{
11054 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11055}
11056
89e63ee4
DE
11057/* Traversal function for queue_and_load_all_dwo_tus. */
11058
11059static int
11060queue_and_load_dwo_tu (void **slot, void *info)
11061{
11062 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11063 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11064 ULONGEST signature = dwo_unit->signature;
11065 struct signatured_type *sig_type =
11066 lookup_dwo_signatured_type (per_cu->cu, signature);
11067
11068 if (sig_type != NULL)
11069 {
11070 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11071
11072 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11073 a real dependency of PER_CU on SIG_TYPE. That is detected later
11074 while processing PER_CU. */
11075 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11076 load_full_type_unit (sig_cu);
11077 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11078 }
11079
11080 return 1;
11081}
11082
11083/* Queue all TUs contained in the DWO of PER_CU to be read in.
11084 The DWO may have the only definition of the type, though it may not be
11085 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11086 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11087
11088static void
11089queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11090{
11091 struct dwo_unit *dwo_unit;
11092 struct dwo_file *dwo_file;
11093
11094 gdb_assert (!per_cu->is_debug_types);
11095 gdb_assert (get_dwp_file () == NULL);
11096 gdb_assert (per_cu->cu != NULL);
11097
11098 dwo_unit = per_cu->cu->dwo_unit;
11099 gdb_assert (dwo_unit != NULL);
11100
11101 dwo_file = dwo_unit->dwo_file;
11102 if (dwo_file->tus != NULL)
11103 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11104}
11105
3019eac3
DE
11106/* Free all resources associated with DWO_FILE.
11107 Close the DWO file and munmap the sections.
11108 All memory should be on the objfile obstack. */
348e048f
DE
11109
11110static void
3019eac3 11111free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 11112{
3019eac3
DE
11113 int ix;
11114 struct dwarf2_section_info *section;
348e048f 11115
5c6fa7ab 11116 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 11117 gdb_bfd_unref (dwo_file->dbfd);
348e048f 11118
3019eac3
DE
11119 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11120}
348e048f 11121
3019eac3 11122/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 11123
3019eac3
DE
11124static void
11125free_dwo_file_cleanup (void *arg)
11126{
11127 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11128 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 11129
3019eac3
DE
11130 free_dwo_file (dwo_file, objfile);
11131}
348e048f 11132
3019eac3 11133/* Traversal function for free_dwo_files. */
2ab95328 11134
3019eac3
DE
11135static int
11136free_dwo_file_from_slot (void **slot, void *info)
11137{
11138 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11139 struct objfile *objfile = (struct objfile *) info;
348e048f 11140
3019eac3 11141 free_dwo_file (dwo_file, objfile);
348e048f 11142
3019eac3
DE
11143 return 1;
11144}
348e048f 11145
3019eac3 11146/* Free all resources associated with DWO_FILES. */
348e048f 11147
3019eac3
DE
11148static void
11149free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11150{
11151 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 11152}
3019eac3
DE
11153\f
11154/* Read in various DIEs. */
348e048f 11155
d389af10
JK
11156/* qsort helper for inherit_abstract_dies. */
11157
11158static int
11159unsigned_int_compar (const void *ap, const void *bp)
11160{
11161 unsigned int a = *(unsigned int *) ap;
11162 unsigned int b = *(unsigned int *) bp;
11163
11164 return (a > b) - (b > a);
11165}
11166
11167/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11168 Inherit only the children of the DW_AT_abstract_origin DIE not being
11169 already referenced by DW_AT_abstract_origin from the children of the
11170 current DIE. */
d389af10
JK
11171
11172static void
11173inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11174{
11175 struct die_info *child_die;
11176 unsigned die_children_count;
11177 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11178 sect_offset *offsets;
11179 sect_offset *offsets_end, *offsetp;
d389af10
JK
11180 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11181 struct die_info *origin_die;
11182 /* Iterator of the ORIGIN_DIE children. */
11183 struct die_info *origin_child_die;
11184 struct cleanup *cleanups;
11185 struct attribute *attr;
cd02d79d
PA
11186 struct dwarf2_cu *origin_cu;
11187 struct pending **origin_previous_list_in_scope;
d389af10
JK
11188
11189 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11190 if (!attr)
11191 return;
11192
cd02d79d
PA
11193 /* Note that following die references may follow to a die in a
11194 different cu. */
11195
11196 origin_cu = cu;
11197 origin_die = follow_die_ref (die, attr, &origin_cu);
11198
11199 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11200 symbols in. */
11201 origin_previous_list_in_scope = origin_cu->list_in_scope;
11202 origin_cu->list_in_scope = cu->list_in_scope;
11203
edb3359d
DJ
11204 if (die->tag != origin_die->tag
11205 && !(die->tag == DW_TAG_inlined_subroutine
11206 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11207 complaint (&symfile_complaints,
11208 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 11209 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
11210
11211 child_die = die->child;
11212 die_children_count = 0;
11213 while (child_die && child_die->tag)
11214 {
11215 child_die = sibling_die (child_die);
11216 die_children_count++;
11217 }
8d749320 11218 offsets = XNEWVEC (sect_offset, die_children_count);
d389af10
JK
11219 cleanups = make_cleanup (xfree, offsets);
11220
11221 offsets_end = offsets;
3ea89b92
PMR
11222 for (child_die = die->child;
11223 child_die && child_die->tag;
11224 child_die = sibling_die (child_die))
11225 {
11226 struct die_info *child_origin_die;
11227 struct dwarf2_cu *child_origin_cu;
11228
11229 /* We are trying to process concrete instance entries:
11230 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11231 it's not relevant to our analysis here. i.e. detecting DIEs that are
11232 present in the abstract instance but not referenced in the concrete
11233 one. */
11234 if (child_die->tag == DW_TAG_GNU_call_site)
11235 continue;
11236
c38f313d
DJ
11237 /* For each CHILD_DIE, find the corresponding child of
11238 ORIGIN_DIE. If there is more than one layer of
11239 DW_AT_abstract_origin, follow them all; there shouldn't be,
11240 but GCC versions at least through 4.4 generate this (GCC PR
11241 40573). */
3ea89b92
PMR
11242 child_origin_die = child_die;
11243 child_origin_cu = cu;
c38f313d
DJ
11244 while (1)
11245 {
cd02d79d
PA
11246 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11247 child_origin_cu);
c38f313d
DJ
11248 if (attr == NULL)
11249 break;
cd02d79d
PA
11250 child_origin_die = follow_die_ref (child_origin_die, attr,
11251 &child_origin_cu);
c38f313d
DJ
11252 }
11253
d389af10
JK
11254 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11255 counterpart may exist. */
c38f313d 11256 if (child_origin_die != child_die)
d389af10 11257 {
edb3359d
DJ
11258 if (child_die->tag != child_origin_die->tag
11259 && !(child_die->tag == DW_TAG_inlined_subroutine
11260 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11261 complaint (&symfile_complaints,
11262 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11263 "different tags"), child_die->offset.sect_off,
11264 child_origin_die->offset.sect_off);
c38f313d
DJ
11265 if (child_origin_die->parent != origin_die)
11266 complaint (&symfile_complaints,
11267 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11268 "different parents"), child_die->offset.sect_off,
11269 child_origin_die->offset.sect_off);
c38f313d
DJ
11270 else
11271 *offsets_end++ = child_origin_die->offset;
d389af10 11272 }
d389af10
JK
11273 }
11274 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11275 unsigned_int_compar);
11276 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 11277 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
11278 complaint (&symfile_complaints,
11279 _("Multiple children of DIE 0x%x refer "
11280 "to DIE 0x%x as their abstract origin"),
b64f50a1 11281 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
11282
11283 offsetp = offsets;
11284 origin_child_die = origin_die->child;
11285 while (origin_child_die && origin_child_die->tag)
11286 {
11287 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
11288 while (offsetp < offsets_end
11289 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 11290 offsetp++;
b64f50a1
JK
11291 if (offsetp >= offsets_end
11292 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10 11293 {
adde2bff
DE
11294 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11295 Check whether we're already processing ORIGIN_CHILD_DIE.
11296 This can happen with mutually referenced abstract_origins.
11297 PR 16581. */
11298 if (!origin_child_die->in_process)
11299 process_die (origin_child_die, origin_cu);
d389af10
JK
11300 }
11301 origin_child_die = sibling_die (origin_child_die);
11302 }
cd02d79d 11303 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11304
11305 do_cleanups (cleanups);
11306}
11307
c906108c 11308static void
e7c27a73 11309read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11310{
e7c27a73 11311 struct objfile *objfile = cu->objfile;
3e29f34a 11312 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11313 struct context_stack *newobj;
c906108c
SS
11314 CORE_ADDR lowpc;
11315 CORE_ADDR highpc;
11316 struct die_info *child_die;
edb3359d 11317 struct attribute *attr, *call_line, *call_file;
15d034d0 11318 const char *name;
e142c38c 11319 CORE_ADDR baseaddr;
801e3a5b 11320 struct block *block;
edb3359d 11321 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11322 VEC (symbolp) *template_args = NULL;
11323 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11324
11325 if (inlined_func)
11326 {
11327 /* If we do not have call site information, we can't show the
11328 caller of this inlined function. That's too confusing, so
11329 only use the scope for local variables. */
11330 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11331 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11332 if (call_line == NULL || call_file == NULL)
11333 {
11334 read_lexical_block_scope (die, cu);
11335 return;
11336 }
11337 }
c906108c 11338
e142c38c
DJ
11339 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11340
94af9270 11341 name = dwarf2_name (die, cu);
c906108c 11342
e8d05480
JB
11343 /* Ignore functions with missing or empty names. These are actually
11344 illegal according to the DWARF standard. */
11345 if (name == NULL)
11346 {
11347 complaint (&symfile_complaints,
b64f50a1
JK
11348 _("missing name for subprogram DIE at %d"),
11349 die->offset.sect_off);
e8d05480
JB
11350 return;
11351 }
11352
11353 /* Ignore functions with missing or invalid low and high pc attributes. */
11354 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11355 {
ae4d0c03
PM
11356 attr = dwarf2_attr (die, DW_AT_external, cu);
11357 if (!attr || !DW_UNSND (attr))
11358 complaint (&symfile_complaints,
3e43a32a
MS
11359 _("cannot get low and high bounds "
11360 "for subprogram DIE at %d"),
b64f50a1 11361 die->offset.sect_off);
e8d05480
JB
11362 return;
11363 }
c906108c 11364
3e29f34a
MR
11365 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11366 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 11367
34eaf542
TT
11368 /* If we have any template arguments, then we must allocate a
11369 different sort of symbol. */
11370 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11371 {
11372 if (child_die->tag == DW_TAG_template_type_param
11373 || child_die->tag == DW_TAG_template_value_param)
11374 {
e623cf5d 11375 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11376 templ_func->base.is_cplus_template_function = 1;
11377 break;
11378 }
11379 }
11380
fe978cb0
PA
11381 newobj = push_context (0, lowpc);
11382 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
34eaf542 11383 (struct symbol *) templ_func);
4c2df51b 11384
4cecd739
DJ
11385 /* If there is a location expression for DW_AT_frame_base, record
11386 it. */
e142c38c 11387 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11388 if (attr)
fe978cb0 11389 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 11390
63e43d3a
PMR
11391 /* If there is a location for the static link, record it. */
11392 newobj->static_link = NULL;
11393 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11394 if (attr)
11395 {
11396 newobj->static_link = obstack_alloc (&objfile->objfile_obstack,
11397 sizeof (*newobj->static_link));
11398 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11399 }
11400
e142c38c 11401 cu->list_in_scope = &local_symbols;
c906108c 11402
639d11d3 11403 if (die->child != NULL)
c906108c 11404 {
639d11d3 11405 child_die = die->child;
c906108c
SS
11406 while (child_die && child_die->tag)
11407 {
34eaf542
TT
11408 if (child_die->tag == DW_TAG_template_type_param
11409 || child_die->tag == DW_TAG_template_value_param)
11410 {
11411 struct symbol *arg = new_symbol (child_die, NULL, cu);
11412
f1078f66
DJ
11413 if (arg != NULL)
11414 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11415 }
11416 else
11417 process_die (child_die, cu);
c906108c
SS
11418 child_die = sibling_die (child_die);
11419 }
11420 }
11421
d389af10
JK
11422 inherit_abstract_dies (die, cu);
11423
4a811a97
UW
11424 /* If we have a DW_AT_specification, we might need to import using
11425 directives from the context of the specification DIE. See the
11426 comment in determine_prefix. */
11427 if (cu->language == language_cplus
11428 && dwarf2_attr (die, DW_AT_specification, cu))
11429 {
11430 struct dwarf2_cu *spec_cu = cu;
11431 struct die_info *spec_die = die_specification (die, &spec_cu);
11432
11433 while (spec_die)
11434 {
11435 child_die = spec_die->child;
11436 while (child_die && child_die->tag)
11437 {
11438 if (child_die->tag == DW_TAG_imported_module)
11439 process_die (child_die, spec_cu);
11440 child_die = sibling_die (child_die);
11441 }
11442
11443 /* In some cases, GCC generates specification DIEs that
11444 themselves contain DW_AT_specification attributes. */
11445 spec_die = die_specification (spec_die, &spec_cu);
11446 }
11447 }
11448
fe978cb0 11449 newobj = pop_context ();
c906108c 11450 /* Make a block for the local symbols within. */
fe978cb0 11451 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
63e43d3a 11452 newobj->static_link, lowpc, highpc);
801e3a5b 11453
df8a16a1 11454 /* For C++, set the block's scope. */
45280282
IB
11455 if ((cu->language == language_cplus
11456 || cu->language == language_fortran
11457 || cu->language == language_d)
4d4ec4e5 11458 && cu->processing_has_namespace_info)
195a3f6c
TT
11459 block_set_scope (block, determine_prefix (die, cu),
11460 &objfile->objfile_obstack);
df8a16a1 11461
801e3a5b
JB
11462 /* If we have address ranges, record them. */
11463 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11464
fe978cb0 11465 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
3e29f34a 11466
34eaf542
TT
11467 /* Attach template arguments to function. */
11468 if (! VEC_empty (symbolp, template_args))
11469 {
11470 gdb_assert (templ_func != NULL);
11471
11472 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11473 templ_func->template_arguments
8d749320
SM
11474 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11475 templ_func->n_template_arguments);
34eaf542
TT
11476 memcpy (templ_func->template_arguments,
11477 VEC_address (symbolp, template_args),
11478 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11479 VEC_free (symbolp, template_args);
11480 }
11481
208d8187
JB
11482 /* In C++, we can have functions nested inside functions (e.g., when
11483 a function declares a class that has methods). This means that
11484 when we finish processing a function scope, we may need to go
11485 back to building a containing block's symbol lists. */
fe978cb0 11486 local_symbols = newobj->locals;
22cee43f 11487 local_using_directives = newobj->local_using_directives;
208d8187 11488
921e78cf
JB
11489 /* If we've finished processing a top-level function, subsequent
11490 symbols go in the file symbol list. */
11491 if (outermost_context_p ())
e142c38c 11492 cu->list_in_scope = &file_symbols;
c906108c
SS
11493}
11494
11495/* Process all the DIES contained within a lexical block scope. Start
11496 a new scope, process the dies, and then close the scope. */
11497
11498static void
e7c27a73 11499read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11500{
e7c27a73 11501 struct objfile *objfile = cu->objfile;
3e29f34a 11502 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11503 struct context_stack *newobj;
c906108c
SS
11504 CORE_ADDR lowpc, highpc;
11505 struct die_info *child_die;
e142c38c
DJ
11506 CORE_ADDR baseaddr;
11507
11508 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11509
11510 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11511 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11512 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11513 be nasty. Might be easier to properly extend generic blocks to
af34e669 11514 describe ranges. */
d85a05f0 11515 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c 11516 return;
3e29f34a
MR
11517 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11518 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c
SS
11519
11520 push_context (0, lowpc);
639d11d3 11521 if (die->child != NULL)
c906108c 11522 {
639d11d3 11523 child_die = die->child;
c906108c
SS
11524 while (child_die && child_die->tag)
11525 {
e7c27a73 11526 process_die (child_die, cu);
c906108c
SS
11527 child_die = sibling_die (child_die);
11528 }
11529 }
3ea89b92 11530 inherit_abstract_dies (die, cu);
fe978cb0 11531 newobj = pop_context ();
c906108c 11532
22cee43f 11533 if (local_symbols != NULL || local_using_directives != NULL)
c906108c 11534 {
801e3a5b 11535 struct block *block
63e43d3a 11536 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
fe978cb0 11537 newobj->start_addr, highpc);
801e3a5b
JB
11538
11539 /* Note that recording ranges after traversing children, as we
11540 do here, means that recording a parent's ranges entails
11541 walking across all its children's ranges as they appear in
11542 the address map, which is quadratic behavior.
11543
11544 It would be nicer to record the parent's ranges before
11545 traversing its children, simply overriding whatever you find
11546 there. But since we don't even decide whether to create a
11547 block until after we've traversed its children, that's hard
11548 to do. */
11549 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 11550 }
fe978cb0 11551 local_symbols = newobj->locals;
22cee43f 11552 local_using_directives = newobj->local_using_directives;
c906108c
SS
11553}
11554
96408a79
SA
11555/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11556
11557static void
11558read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11559{
11560 struct objfile *objfile = cu->objfile;
11561 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11562 CORE_ADDR pc, baseaddr;
11563 struct attribute *attr;
11564 struct call_site *call_site, call_site_local;
11565 void **slot;
11566 int nparams;
11567 struct die_info *child_die;
11568
11569 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11570
11571 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11572 if (!attr)
11573 {
11574 complaint (&symfile_complaints,
11575 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11576 "DIE 0x%x [in module %s]"),
4262abfb 11577 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11578 return;
11579 }
31aa7e4e 11580 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 11581 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
11582
11583 if (cu->call_site_htab == NULL)
11584 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11585 NULL, &objfile->objfile_obstack,
11586 hashtab_obstack_allocate, NULL);
11587 call_site_local.pc = pc;
11588 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11589 if (*slot != NULL)
11590 {
11591 complaint (&symfile_complaints,
11592 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11593 "DIE 0x%x [in module %s]"),
4262abfb
JK
11594 paddress (gdbarch, pc), die->offset.sect_off,
11595 objfile_name (objfile));
96408a79
SA
11596 return;
11597 }
11598
11599 /* Count parameters at the caller. */
11600
11601 nparams = 0;
11602 for (child_die = die->child; child_die && child_die->tag;
11603 child_die = sibling_die (child_die))
11604 {
11605 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11606 {
11607 complaint (&symfile_complaints,
11608 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11609 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11610 child_die->tag, child_die->offset.sect_off,
11611 objfile_name (objfile));
96408a79
SA
11612 continue;
11613 }
11614
11615 nparams++;
11616 }
11617
11618 call_site = obstack_alloc (&objfile->objfile_obstack,
11619 (sizeof (*call_site)
11620 + (sizeof (*call_site->parameter)
11621 * (nparams - 1))));
11622 *slot = call_site;
11623 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11624 call_site->pc = pc;
11625
11626 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11627 {
11628 struct die_info *func_die;
11629
11630 /* Skip also over DW_TAG_inlined_subroutine. */
11631 for (func_die = die->parent;
11632 func_die && func_die->tag != DW_TAG_subprogram
11633 && func_die->tag != DW_TAG_subroutine_type;
11634 func_die = func_die->parent);
11635
11636 /* DW_AT_GNU_all_call_sites is a superset
11637 of DW_AT_GNU_all_tail_call_sites. */
11638 if (func_die
11639 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11640 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11641 {
11642 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11643 not complete. But keep CALL_SITE for look ups via call_site_htab,
11644 both the initial caller containing the real return address PC and
11645 the final callee containing the current PC of a chain of tail
11646 calls do not need to have the tail call list complete. But any
11647 function candidate for a virtual tail call frame searched via
11648 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11649 determined unambiguously. */
11650 }
11651 else
11652 {
11653 struct type *func_type = NULL;
11654
11655 if (func_die)
11656 func_type = get_die_type (func_die, cu);
11657 if (func_type != NULL)
11658 {
11659 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11660
11661 /* Enlist this call site to the function. */
11662 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11663 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11664 }
11665 else
11666 complaint (&symfile_complaints,
11667 _("Cannot find function owning DW_TAG_GNU_call_site "
11668 "DIE 0x%x [in module %s]"),
4262abfb 11669 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11670 }
11671 }
11672
11673 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11674 if (attr == NULL)
11675 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11676 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11677 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11678 /* Keep NULL DWARF_BLOCK. */;
11679 else if (attr_form_is_block (attr))
11680 {
11681 struct dwarf2_locexpr_baton *dlbaton;
11682
8d749320 11683 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
96408a79
SA
11684 dlbaton->data = DW_BLOCK (attr)->data;
11685 dlbaton->size = DW_BLOCK (attr)->size;
11686 dlbaton->per_cu = cu->per_cu;
11687
11688 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11689 }
7771576e 11690 else if (attr_form_is_ref (attr))
96408a79 11691 {
96408a79
SA
11692 struct dwarf2_cu *target_cu = cu;
11693 struct die_info *target_die;
11694
ac9ec31b 11695 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11696 gdb_assert (target_cu->objfile == objfile);
11697 if (die_is_declaration (target_die, target_cu))
11698 {
7d45c7c3 11699 const char *target_physname;
9112db09
JK
11700
11701 /* Prefer the mangled name; otherwise compute the demangled one. */
7d45c7c3
KB
11702 target_physname = dwarf2_string_attr (target_die,
11703 DW_AT_linkage_name,
11704 target_cu);
11705 if (target_physname == NULL)
11706 target_physname = dwarf2_string_attr (target_die,
11707 DW_AT_MIPS_linkage_name,
11708 target_cu);
11709 if (target_physname == NULL)
9112db09 11710 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11711 if (target_physname == NULL)
11712 complaint (&symfile_complaints,
11713 _("DW_AT_GNU_call_site_target target DIE has invalid "
11714 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11715 die->offset.sect_off, objfile_name (objfile));
96408a79 11716 else
7d455152 11717 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11718 }
11719 else
11720 {
11721 CORE_ADDR lowpc;
11722
11723 /* DW_AT_entry_pc should be preferred. */
11724 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11725 complaint (&symfile_complaints,
11726 _("DW_AT_GNU_call_site_target target DIE has invalid "
11727 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11728 die->offset.sect_off, objfile_name (objfile));
96408a79 11729 else
3e29f34a
MR
11730 {
11731 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11732 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11733 }
96408a79
SA
11734 }
11735 }
11736 else
11737 complaint (&symfile_complaints,
11738 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11739 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11740 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11741
11742 call_site->per_cu = cu->per_cu;
11743
11744 for (child_die = die->child;
11745 child_die && child_die->tag;
11746 child_die = sibling_die (child_die))
11747 {
96408a79 11748 struct call_site_parameter *parameter;
1788b2d3 11749 struct attribute *loc, *origin;
96408a79
SA
11750
11751 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11752 {
11753 /* Already printed the complaint above. */
11754 continue;
11755 }
11756
11757 gdb_assert (call_site->parameter_count < nparams);
11758 parameter = &call_site->parameter[call_site->parameter_count];
11759
1788b2d3
JK
11760 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11761 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11762 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11763
24c5c679 11764 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11765 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11766 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11767 {
11768 sect_offset offset;
11769
11770 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11771 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11772 if (!offset_in_cu_p (&cu->header, offset))
11773 {
11774 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11775 binding can be done only inside one CU. Such referenced DIE
11776 therefore cannot be even moved to DW_TAG_partial_unit. */
11777 complaint (&symfile_complaints,
11778 _("DW_AT_abstract_origin offset is not in CU for "
11779 "DW_TAG_GNU_call_site child DIE 0x%x "
11780 "[in module %s]"),
4262abfb 11781 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11782 continue;
11783 }
1788b2d3
JK
11784 parameter->u.param_offset.cu_off = (offset.sect_off
11785 - cu->header.offset.sect_off);
11786 }
11787 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11788 {
11789 complaint (&symfile_complaints,
11790 _("No DW_FORM_block* DW_AT_location for "
11791 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11792 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11793 continue;
11794 }
24c5c679 11795 else
96408a79 11796 {
24c5c679
JK
11797 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11798 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11799 if (parameter->u.dwarf_reg != -1)
11800 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11801 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11802 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11803 &parameter->u.fb_offset))
11804 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11805 else
11806 {
11807 complaint (&symfile_complaints,
11808 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11809 "for DW_FORM_block* DW_AT_location is supported for "
11810 "DW_TAG_GNU_call_site child DIE 0x%x "
11811 "[in module %s]"),
4262abfb 11812 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11813 continue;
11814 }
96408a79
SA
11815 }
11816
11817 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11818 if (!attr_form_is_block (attr))
11819 {
11820 complaint (&symfile_complaints,
11821 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11822 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11823 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11824 continue;
11825 }
11826 parameter->value = DW_BLOCK (attr)->data;
11827 parameter->value_size = DW_BLOCK (attr)->size;
11828
11829 /* Parameters are not pre-cleared by memset above. */
11830 parameter->data_value = NULL;
11831 parameter->data_value_size = 0;
11832 call_site->parameter_count++;
11833
11834 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11835 if (attr)
11836 {
11837 if (!attr_form_is_block (attr))
11838 complaint (&symfile_complaints,
11839 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11840 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11841 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11842 else
11843 {
11844 parameter->data_value = DW_BLOCK (attr)->data;
11845 parameter->data_value_size = DW_BLOCK (attr)->size;
11846 }
11847 }
11848 }
11849}
11850
43039443 11851/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
11852 Return 1 if the attributes are present and valid, otherwise, return 0.
11853 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
11854
11855static int
11856dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
11857 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11858 struct partial_symtab *ranges_pst)
43039443
JK
11859{
11860 struct objfile *objfile = cu->objfile;
3e29f34a 11861 struct gdbarch *gdbarch = get_objfile_arch (objfile);
43039443
JK
11862 struct comp_unit_head *cu_header = &cu->header;
11863 bfd *obfd = objfile->obfd;
11864 unsigned int addr_size = cu_header->addr_size;
11865 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11866 /* Base address selection entry. */
11867 CORE_ADDR base;
11868 int found_base;
11869 unsigned int dummy;
d521ce57 11870 const gdb_byte *buffer;
43039443
JK
11871 CORE_ADDR marker;
11872 int low_set;
11873 CORE_ADDR low = 0;
11874 CORE_ADDR high = 0;
ff013f42 11875 CORE_ADDR baseaddr;
43039443 11876
d00adf39
DE
11877 found_base = cu->base_known;
11878 base = cu->base_address;
43039443 11879
be391dca 11880 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11881 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
11882 {
11883 complaint (&symfile_complaints,
11884 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11885 offset);
11886 return 0;
11887 }
dce234bc 11888 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
11889
11890 /* Read in the largest possible address. */
11891 marker = read_address (obfd, buffer, cu, &dummy);
11892 if ((marker & mask) == mask)
11893 {
11894 /* If we found the largest possible address, then
11895 read the base address. */
11896 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11897 buffer += 2 * addr_size;
11898 offset += 2 * addr_size;
11899 found_base = 1;
11900 }
11901
11902 low_set = 0;
11903
e7030f15 11904 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 11905
43039443
JK
11906 while (1)
11907 {
11908 CORE_ADDR range_beginning, range_end;
11909
11910 range_beginning = read_address (obfd, buffer, cu, &dummy);
11911 buffer += addr_size;
11912 range_end = read_address (obfd, buffer, cu, &dummy);
11913 buffer += addr_size;
11914 offset += 2 * addr_size;
11915
11916 /* An end of list marker is a pair of zero addresses. */
11917 if (range_beginning == 0 && range_end == 0)
11918 /* Found the end of list entry. */
11919 break;
11920
11921 /* Each base address selection entry is a pair of 2 values.
11922 The first is the largest possible address, the second is
11923 the base address. Check for a base address here. */
11924 if ((range_beginning & mask) == mask)
11925 {
11926 /* If we found the largest possible address, then
11927 read the base address. */
11928 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11929 found_base = 1;
11930 continue;
11931 }
11932
11933 if (!found_base)
11934 {
11935 /* We have no valid base address for the ranges
11936 data. */
11937 complaint (&symfile_complaints,
11938 _("Invalid .debug_ranges data (no base address)"));
11939 return 0;
11940 }
11941
9277c30c
UW
11942 if (range_beginning > range_end)
11943 {
11944 /* Inverted range entries are invalid. */
11945 complaint (&symfile_complaints,
11946 _("Invalid .debug_ranges data (inverted range)"));
11947 return 0;
11948 }
11949
11950 /* Empty range entries have no effect. */
11951 if (range_beginning == range_end)
11952 continue;
11953
43039443
JK
11954 range_beginning += base;
11955 range_end += base;
11956
01093045
DE
11957 /* A not-uncommon case of bad debug info.
11958 Don't pollute the addrmap with bad data. */
11959 if (range_beginning + baseaddr == 0
11960 && !dwarf2_per_objfile->has_section_at_zero)
11961 {
11962 complaint (&symfile_complaints,
11963 _(".debug_ranges entry has start address of zero"
4262abfb 11964 " [in module %s]"), objfile_name (objfile));
01093045
DE
11965 continue;
11966 }
11967
9277c30c 11968 if (ranges_pst != NULL)
3e29f34a
MR
11969 {
11970 CORE_ADDR lowpc;
11971 CORE_ADDR highpc;
11972
11973 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11974 range_beginning + baseaddr);
11975 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11976 range_end + baseaddr);
11977 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11978 ranges_pst);
11979 }
ff013f42 11980
43039443
JK
11981 /* FIXME: This is recording everything as a low-high
11982 segment of consecutive addresses. We should have a
11983 data structure for discontiguous block ranges
11984 instead. */
11985 if (! low_set)
11986 {
11987 low = range_beginning;
11988 high = range_end;
11989 low_set = 1;
11990 }
11991 else
11992 {
11993 if (range_beginning < low)
11994 low = range_beginning;
11995 if (range_end > high)
11996 high = range_end;
11997 }
11998 }
11999
12000 if (! low_set)
12001 /* If the first entry is an end-of-list marker, the range
12002 describes an empty scope, i.e. no instructions. */
12003 return 0;
12004
12005 if (low_return)
12006 *low_return = low;
12007 if (high_return)
12008 *high_return = high;
12009 return 1;
12010}
12011
af34e669
DJ
12012/* Get low and high pc attributes from a die. Return 1 if the attributes
12013 are present and valid, otherwise, return 0. Return -1 if the range is
12014 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 12015
c906108c 12016static int
af34e669 12017dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
12018 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12019 struct partial_symtab *pst)
c906108c
SS
12020{
12021 struct attribute *attr;
91da1414 12022 struct attribute *attr_high;
af34e669
DJ
12023 CORE_ADDR low = 0;
12024 CORE_ADDR high = 0;
12025 int ret = 0;
c906108c 12026
91da1414
MW
12027 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12028 if (attr_high)
af34e669 12029 {
e142c38c 12030 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 12031 if (attr)
91da1414 12032 {
31aa7e4e
JB
12033 low = attr_value_as_address (attr);
12034 high = attr_value_as_address (attr_high);
12035 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12036 high += low;
91da1414 12037 }
af34e669
DJ
12038 else
12039 /* Found high w/o low attribute. */
12040 return 0;
12041
12042 /* Found consecutive range of addresses. */
12043 ret = 1;
12044 }
c906108c 12045 else
af34e669 12046 {
e142c38c 12047 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
12048 if (attr != NULL)
12049 {
ab435259
DE
12050 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12051 We take advantage of the fact that DW_AT_ranges does not appear
12052 in DW_TAG_compile_unit of DWO files. */
12053 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12054 unsigned int ranges_offset = (DW_UNSND (attr)
12055 + (need_ranges_base
12056 ? cu->ranges_base
12057 : 0));
2e3cf129 12058
af34e669 12059 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 12060 .debug_ranges section. */
2e3cf129 12061 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
af34e669 12062 return 0;
43039443 12063 /* Found discontinuous range of addresses. */
af34e669
DJ
12064 ret = -1;
12065 }
12066 }
c906108c 12067
9373cf26
JK
12068 /* read_partial_die has also the strict LOW < HIGH requirement. */
12069 if (high <= low)
c906108c
SS
12070 return 0;
12071
12072 /* When using the GNU linker, .gnu.linkonce. sections are used to
12073 eliminate duplicate copies of functions and vtables and such.
12074 The linker will arbitrarily choose one and discard the others.
12075 The AT_*_pc values for such functions refer to local labels in
12076 these sections. If the section from that file was discarded, the
12077 labels are not in the output, so the relocs get a value of 0.
12078 If this is a discarded function, mark the pc bounds as invalid,
12079 so that GDB will ignore it. */
72dca2f5 12080 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
12081 return 0;
12082
12083 *lowpc = low;
96408a79
SA
12084 if (highpc)
12085 *highpc = high;
af34e669 12086 return ret;
c906108c
SS
12087}
12088
b084d499
JB
12089/* Assuming that DIE represents a subprogram DIE or a lexical block, get
12090 its low and high PC addresses. Do nothing if these addresses could not
12091 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12092 and HIGHPC to the high address if greater than HIGHPC. */
12093
12094static void
12095dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12096 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12097 struct dwarf2_cu *cu)
12098{
12099 CORE_ADDR low, high;
12100 struct die_info *child = die->child;
12101
d85a05f0 12102 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
12103 {
12104 *lowpc = min (*lowpc, low);
12105 *highpc = max (*highpc, high);
12106 }
12107
12108 /* If the language does not allow nested subprograms (either inside
12109 subprograms or lexical blocks), we're done. */
12110 if (cu->language != language_ada)
12111 return;
6e70227d 12112
b084d499
JB
12113 /* Check all the children of the given DIE. If it contains nested
12114 subprograms, then check their pc bounds. Likewise, we need to
12115 check lexical blocks as well, as they may also contain subprogram
12116 definitions. */
12117 while (child && child->tag)
12118 {
12119 if (child->tag == DW_TAG_subprogram
12120 || child->tag == DW_TAG_lexical_block)
12121 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12122 child = sibling_die (child);
12123 }
12124}
12125
fae299cd
DC
12126/* Get the low and high pc's represented by the scope DIE, and store
12127 them in *LOWPC and *HIGHPC. If the correct values can't be
12128 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12129
12130static void
12131get_scope_pc_bounds (struct die_info *die,
12132 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12133 struct dwarf2_cu *cu)
12134{
12135 CORE_ADDR best_low = (CORE_ADDR) -1;
12136 CORE_ADDR best_high = (CORE_ADDR) 0;
12137 CORE_ADDR current_low, current_high;
12138
d85a05f0 12139 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
12140 {
12141 best_low = current_low;
12142 best_high = current_high;
12143 }
12144 else
12145 {
12146 struct die_info *child = die->child;
12147
12148 while (child && child->tag)
12149 {
12150 switch (child->tag) {
12151 case DW_TAG_subprogram:
b084d499 12152 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
12153 break;
12154 case DW_TAG_namespace:
f55ee35c 12155 case DW_TAG_module:
fae299cd
DC
12156 /* FIXME: carlton/2004-01-16: Should we do this for
12157 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12158 that current GCC's always emit the DIEs corresponding
12159 to definitions of methods of classes as children of a
12160 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12161 the DIEs giving the declarations, which could be
12162 anywhere). But I don't see any reason why the
12163 standards says that they have to be there. */
12164 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12165
12166 if (current_low != ((CORE_ADDR) -1))
12167 {
12168 best_low = min (best_low, current_low);
12169 best_high = max (best_high, current_high);
12170 }
12171 break;
12172 default:
0963b4bd 12173 /* Ignore. */
fae299cd
DC
12174 break;
12175 }
12176
12177 child = sibling_die (child);
12178 }
12179 }
12180
12181 *lowpc = best_low;
12182 *highpc = best_high;
12183}
12184
801e3a5b
JB
12185/* Record the address ranges for BLOCK, offset by BASEADDR, as given
12186 in DIE. */
380bca97 12187
801e3a5b
JB
12188static void
12189dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12190 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12191{
bb5ed363 12192 struct objfile *objfile = cu->objfile;
3e29f34a 12193 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 12194 struct attribute *attr;
91da1414 12195 struct attribute *attr_high;
801e3a5b 12196
91da1414
MW
12197 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12198 if (attr_high)
801e3a5b 12199 {
801e3a5b
JB
12200 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12201 if (attr)
12202 {
31aa7e4e
JB
12203 CORE_ADDR low = attr_value_as_address (attr);
12204 CORE_ADDR high = attr_value_as_address (attr_high);
12205
12206 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12207 high += low;
9a619af0 12208
3e29f34a
MR
12209 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12210 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12211 record_block_range (block, low, high - 1);
801e3a5b
JB
12212 }
12213 }
12214
12215 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12216 if (attr)
12217 {
bb5ed363 12218 bfd *obfd = objfile->obfd;
ab435259
DE
12219 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12220 We take advantage of the fact that DW_AT_ranges does not appear
12221 in DW_TAG_compile_unit of DWO files. */
12222 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12223
12224 /* The value of the DW_AT_ranges attribute is the offset of the
12225 address range list in the .debug_ranges section. */
ab435259
DE
12226 unsigned long offset = (DW_UNSND (attr)
12227 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12228 const gdb_byte *buffer;
801e3a5b
JB
12229
12230 /* For some target architectures, but not others, the
12231 read_address function sign-extends the addresses it returns.
12232 To recognize base address selection entries, we need a
12233 mask. */
12234 unsigned int addr_size = cu->header.addr_size;
12235 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12236
12237 /* The base address, to which the next pair is relative. Note
12238 that this 'base' is a DWARF concept: most entries in a range
12239 list are relative, to reduce the number of relocs against the
12240 debugging information. This is separate from this function's
12241 'baseaddr' argument, which GDB uses to relocate debugging
12242 information from a shared library based on the address at
12243 which the library was loaded. */
d00adf39
DE
12244 CORE_ADDR base = cu->base_address;
12245 int base_known = cu->base_known;
801e3a5b 12246
d62bfeaf 12247 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12248 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
12249 {
12250 complaint (&symfile_complaints,
12251 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12252 offset);
12253 return;
12254 }
d62bfeaf 12255 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
12256
12257 for (;;)
12258 {
12259 unsigned int bytes_read;
12260 CORE_ADDR start, end;
12261
12262 start = read_address (obfd, buffer, cu, &bytes_read);
12263 buffer += bytes_read;
12264 end = read_address (obfd, buffer, cu, &bytes_read);
12265 buffer += bytes_read;
12266
12267 /* Did we find the end of the range list? */
12268 if (start == 0 && end == 0)
12269 break;
12270
12271 /* Did we find a base address selection entry? */
12272 else if ((start & base_select_mask) == base_select_mask)
12273 {
12274 base = end;
12275 base_known = 1;
12276 }
12277
12278 /* We found an ordinary address range. */
12279 else
12280 {
12281 if (!base_known)
12282 {
12283 complaint (&symfile_complaints,
3e43a32a
MS
12284 _("Invalid .debug_ranges data "
12285 "(no base address)"));
801e3a5b
JB
12286 return;
12287 }
12288
9277c30c
UW
12289 if (start > end)
12290 {
12291 /* Inverted range entries are invalid. */
12292 complaint (&symfile_complaints,
12293 _("Invalid .debug_ranges data "
12294 "(inverted range)"));
12295 return;
12296 }
12297
12298 /* Empty range entries have no effect. */
12299 if (start == end)
12300 continue;
12301
01093045
DE
12302 start += base + baseaddr;
12303 end += base + baseaddr;
12304
12305 /* A not-uncommon case of bad debug info.
12306 Don't pollute the addrmap with bad data. */
12307 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12308 {
12309 complaint (&symfile_complaints,
12310 _(".debug_ranges entry has start address of zero"
4262abfb 12311 " [in module %s]"), objfile_name (objfile));
01093045
DE
12312 continue;
12313 }
12314
3e29f34a
MR
12315 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12316 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
01093045 12317 record_block_range (block, start, end - 1);
801e3a5b
JB
12318 }
12319 }
12320 }
12321}
12322
685b1105
JK
12323/* Check whether the producer field indicates either of GCC < 4.6, or the
12324 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12325
685b1105
JK
12326static void
12327check_producer (struct dwarf2_cu *cu)
60d5a603
JK
12328{
12329 const char *cs;
38360086 12330 int major, minor;
60d5a603
JK
12331
12332 if (cu->producer == NULL)
12333 {
12334 /* For unknown compilers expect their behavior is DWARF version
12335 compliant.
12336
12337 GCC started to support .debug_types sections by -gdwarf-4 since
12338 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12339 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12340 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12341 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12342 }
b1ffba5a 12343 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 12344 {
38360086
MW
12345 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12346 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 12347 }
61012eef 12348 else if (startswith (cu->producer, "Intel(R) C"))
685b1105
JK
12349 cu->producer_is_icc = 1;
12350 else
12351 {
12352 /* For other non-GCC compilers, expect their behavior is DWARF version
12353 compliant. */
60d5a603
JK
12354 }
12355
ba919b58 12356 cu->checked_producer = 1;
685b1105 12357}
ba919b58 12358
685b1105
JK
12359/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12360 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12361 during 4.6.0 experimental. */
12362
12363static int
12364producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12365{
12366 if (!cu->checked_producer)
12367 check_producer (cu);
12368
12369 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12370}
12371
12372/* Return the default accessibility type if it is not overriden by
12373 DW_AT_accessibility. */
12374
12375static enum dwarf_access_attribute
12376dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12377{
12378 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12379 {
12380 /* The default DWARF 2 accessibility for members is public, the default
12381 accessibility for inheritance is private. */
12382
12383 if (die->tag != DW_TAG_inheritance)
12384 return DW_ACCESS_public;
12385 else
12386 return DW_ACCESS_private;
12387 }
12388 else
12389 {
12390 /* DWARF 3+ defines the default accessibility a different way. The same
12391 rules apply now for DW_TAG_inheritance as for the members and it only
12392 depends on the container kind. */
12393
12394 if (die->parent->tag == DW_TAG_class_type)
12395 return DW_ACCESS_private;
12396 else
12397 return DW_ACCESS_public;
12398 }
12399}
12400
74ac6d43
TT
12401/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12402 offset. If the attribute was not found return 0, otherwise return
12403 1. If it was found but could not properly be handled, set *OFFSET
12404 to 0. */
12405
12406static int
12407handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12408 LONGEST *offset)
12409{
12410 struct attribute *attr;
12411
12412 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12413 if (attr != NULL)
12414 {
12415 *offset = 0;
12416
12417 /* Note that we do not check for a section offset first here.
12418 This is because DW_AT_data_member_location is new in DWARF 4,
12419 so if we see it, we can assume that a constant form is really
12420 a constant and not a section offset. */
12421 if (attr_form_is_constant (attr))
12422 *offset = dwarf2_get_attr_constant_value (attr, 0);
12423 else if (attr_form_is_section_offset (attr))
12424 dwarf2_complex_location_expr_complaint ();
12425 else if (attr_form_is_block (attr))
12426 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12427 else
12428 dwarf2_complex_location_expr_complaint ();
12429
12430 return 1;
12431 }
12432
12433 return 0;
12434}
12435
c906108c
SS
12436/* Add an aggregate field to the field list. */
12437
12438static void
107d2387 12439dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12440 struct dwarf2_cu *cu)
6e70227d 12441{
e7c27a73 12442 struct objfile *objfile = cu->objfile;
5e2b427d 12443 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12444 struct nextfield *new_field;
12445 struct attribute *attr;
12446 struct field *fp;
15d034d0 12447 const char *fieldname = "";
c906108c
SS
12448
12449 /* Allocate a new field list entry and link it in. */
8d749320 12450 new_field = XNEW (struct nextfield);
b8c9b27d 12451 make_cleanup (xfree, new_field);
c906108c 12452 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12453
12454 if (die->tag == DW_TAG_inheritance)
12455 {
12456 new_field->next = fip->baseclasses;
12457 fip->baseclasses = new_field;
12458 }
12459 else
12460 {
12461 new_field->next = fip->fields;
12462 fip->fields = new_field;
12463 }
c906108c
SS
12464 fip->nfields++;
12465
e142c38c 12466 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12467 if (attr)
12468 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12469 else
12470 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12471 if (new_field->accessibility != DW_ACCESS_public)
12472 fip->non_public_fields = 1;
60d5a603 12473
e142c38c 12474 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12475 if (attr)
12476 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12477 else
12478 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12479
12480 fp = &new_field->field;
a9a9bd0f 12481
e142c38c 12482 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12483 {
74ac6d43
TT
12484 LONGEST offset;
12485
a9a9bd0f 12486 /* Data member other than a C++ static data member. */
6e70227d 12487
c906108c 12488 /* Get type of field. */
e7c27a73 12489 fp->type = die_type (die, cu);
c906108c 12490
d6a843b5 12491 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12492
c906108c 12493 /* Get bit size of field (zero if none). */
e142c38c 12494 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12495 if (attr)
12496 {
12497 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12498 }
12499 else
12500 {
12501 FIELD_BITSIZE (*fp) = 0;
12502 }
12503
12504 /* Get bit offset of field. */
74ac6d43
TT
12505 if (handle_data_member_location (die, cu, &offset))
12506 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12507 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12508 if (attr)
12509 {
5e2b427d 12510 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12511 {
12512 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12513 additional bit offset from the MSB of the containing
12514 anonymous object to the MSB of the field. We don't
12515 have to do anything special since we don't need to
12516 know the size of the anonymous object. */
f41f5e61 12517 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12518 }
12519 else
12520 {
12521 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12522 MSB of the anonymous object, subtract off the number of
12523 bits from the MSB of the field to the MSB of the
12524 object, and then subtract off the number of bits of
12525 the field itself. The result is the bit offset of
12526 the LSB of the field. */
c906108c
SS
12527 int anonymous_size;
12528 int bit_offset = DW_UNSND (attr);
12529
e142c38c 12530 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12531 if (attr)
12532 {
12533 /* The size of the anonymous object containing
12534 the bit field is explicit, so use the
12535 indicated size (in bytes). */
12536 anonymous_size = DW_UNSND (attr);
12537 }
12538 else
12539 {
12540 /* The size of the anonymous object containing
12541 the bit field must be inferred from the type
12542 attribute of the data member containing the
12543 bit field. */
12544 anonymous_size = TYPE_LENGTH (fp->type);
12545 }
f41f5e61
PA
12546 SET_FIELD_BITPOS (*fp,
12547 (FIELD_BITPOS (*fp)
12548 + anonymous_size * bits_per_byte
12549 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12550 }
12551 }
12552
12553 /* Get name of field. */
39cbfefa
DJ
12554 fieldname = dwarf2_name (die, cu);
12555 if (fieldname == NULL)
12556 fieldname = "";
d8151005
DJ
12557
12558 /* The name is already allocated along with this objfile, so we don't
12559 need to duplicate it for the type. */
12560 fp->name = fieldname;
c906108c
SS
12561
12562 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12563 pointer or virtual base class pointer) to private. */
e142c38c 12564 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12565 {
d48cc9dd 12566 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12567 new_field->accessibility = DW_ACCESS_private;
12568 fip->non_public_fields = 1;
12569 }
12570 }
a9a9bd0f 12571 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12572 {
a9a9bd0f
DC
12573 /* C++ static member. */
12574
12575 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12576 is a declaration, but all versions of G++ as of this writing
12577 (so through at least 3.2.1) incorrectly generate
12578 DW_TAG_variable tags. */
6e70227d 12579
ff355380 12580 const char *physname;
c906108c 12581
a9a9bd0f 12582 /* Get name of field. */
39cbfefa
DJ
12583 fieldname = dwarf2_name (die, cu);
12584 if (fieldname == NULL)
c906108c
SS
12585 return;
12586
254e6b9e 12587 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12588 if (attr
12589 /* Only create a symbol if this is an external value.
12590 new_symbol checks this and puts the value in the global symbol
12591 table, which we want. If it is not external, new_symbol
12592 will try to put the value in cu->list_in_scope which is wrong. */
12593 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12594 {
12595 /* A static const member, not much different than an enum as far as
12596 we're concerned, except that we can support more types. */
12597 new_symbol (die, NULL, cu);
12598 }
12599
2df3850c 12600 /* Get physical name. */
ff355380 12601 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12602
d8151005
DJ
12603 /* The name is already allocated along with this objfile, so we don't
12604 need to duplicate it for the type. */
12605 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12606 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12607 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12608 }
12609 else if (die->tag == DW_TAG_inheritance)
12610 {
74ac6d43 12611 LONGEST offset;
d4b96c9a 12612
74ac6d43
TT
12613 /* C++ base class field. */
12614 if (handle_data_member_location (die, cu, &offset))
12615 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12616 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12617 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12618 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12619 fip->nbaseclasses++;
12620 }
12621}
12622
98751a41
JK
12623/* Add a typedef defined in the scope of the FIP's class. */
12624
12625static void
12626dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12627 struct dwarf2_cu *cu)
6e70227d 12628{
98751a41 12629 struct objfile *objfile = cu->objfile;
98751a41
JK
12630 struct typedef_field_list *new_field;
12631 struct attribute *attr;
12632 struct typedef_field *fp;
12633 char *fieldname = "";
12634
12635 /* Allocate a new field list entry and link it in. */
8d749320 12636 new_field = XCNEW (struct typedef_field_list);
98751a41
JK
12637 make_cleanup (xfree, new_field);
12638
12639 gdb_assert (die->tag == DW_TAG_typedef);
12640
12641 fp = &new_field->field;
12642
12643 /* Get name of field. */
12644 fp->name = dwarf2_name (die, cu);
12645 if (fp->name == NULL)
12646 return;
12647
12648 fp->type = read_type_die (die, cu);
12649
12650 new_field->next = fip->typedef_field_list;
12651 fip->typedef_field_list = new_field;
12652 fip->typedef_field_list_count++;
12653}
12654
c906108c
SS
12655/* Create the vector of fields, and attach it to the type. */
12656
12657static void
fba45db2 12658dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12659 struct dwarf2_cu *cu)
c906108c
SS
12660{
12661 int nfields = fip->nfields;
12662
12663 /* Record the field count, allocate space for the array of fields,
12664 and create blank accessibility bitfields if necessary. */
12665 TYPE_NFIELDS (type) = nfields;
12666 TYPE_FIELDS (type) = (struct field *)
12667 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12668 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12669
b4ba55a1 12670 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12671 {
12672 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12673
12674 TYPE_FIELD_PRIVATE_BITS (type) =
12675 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12676 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12677
12678 TYPE_FIELD_PROTECTED_BITS (type) =
12679 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12680 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12681
774b6a14
TT
12682 TYPE_FIELD_IGNORE_BITS (type) =
12683 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12684 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12685 }
12686
12687 /* If the type has baseclasses, allocate and clear a bit vector for
12688 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12689 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12690 {
12691 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12692 unsigned char *pointer;
c906108c
SS
12693
12694 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
12695 pointer = TYPE_ALLOC (type, num_bytes);
12696 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12697 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12698 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12699 }
12700
3e43a32a
MS
12701 /* Copy the saved-up fields into the field vector. Start from the head of
12702 the list, adding to the tail of the field array, so that they end up in
12703 the same order in the array in which they were added to the list. */
c906108c
SS
12704 while (nfields-- > 0)
12705 {
7d0ccb61
DJ
12706 struct nextfield *fieldp;
12707
12708 if (fip->fields)
12709 {
12710 fieldp = fip->fields;
12711 fip->fields = fieldp->next;
12712 }
12713 else
12714 {
12715 fieldp = fip->baseclasses;
12716 fip->baseclasses = fieldp->next;
12717 }
12718
12719 TYPE_FIELD (type, nfields) = fieldp->field;
12720 switch (fieldp->accessibility)
c906108c 12721 {
c5aa993b 12722 case DW_ACCESS_private:
b4ba55a1
JB
12723 if (cu->language != language_ada)
12724 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12725 break;
c906108c 12726
c5aa993b 12727 case DW_ACCESS_protected:
b4ba55a1
JB
12728 if (cu->language != language_ada)
12729 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12730 break;
c906108c 12731
c5aa993b
JM
12732 case DW_ACCESS_public:
12733 break;
c906108c 12734
c5aa993b
JM
12735 default:
12736 /* Unknown accessibility. Complain and treat it as public. */
12737 {
e2e0b3e5 12738 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12739 fieldp->accessibility);
c5aa993b
JM
12740 }
12741 break;
c906108c
SS
12742 }
12743 if (nfields < fip->nbaseclasses)
12744 {
7d0ccb61 12745 switch (fieldp->virtuality)
c906108c 12746 {
c5aa993b
JM
12747 case DW_VIRTUALITY_virtual:
12748 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12749 if (cu->language == language_ada)
a73c6dcd 12750 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12751 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12752 break;
c906108c
SS
12753 }
12754 }
c906108c
SS
12755 }
12756}
12757
7d27a96d
TT
12758/* Return true if this member function is a constructor, false
12759 otherwise. */
12760
12761static int
12762dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12763{
12764 const char *fieldname;
fe978cb0 12765 const char *type_name;
7d27a96d
TT
12766 int len;
12767
12768 if (die->parent == NULL)
12769 return 0;
12770
12771 if (die->parent->tag != DW_TAG_structure_type
12772 && die->parent->tag != DW_TAG_union_type
12773 && die->parent->tag != DW_TAG_class_type)
12774 return 0;
12775
12776 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
12777 type_name = dwarf2_name (die->parent, cu);
12778 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
12779 return 0;
12780
12781 len = strlen (fieldname);
fe978cb0
PA
12782 return (strncmp (fieldname, type_name, len) == 0
12783 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
12784}
12785
c906108c
SS
12786/* Add a member function to the proper fieldlist. */
12787
12788static void
107d2387 12789dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 12790 struct type *type, struct dwarf2_cu *cu)
c906108c 12791{
e7c27a73 12792 struct objfile *objfile = cu->objfile;
c906108c
SS
12793 struct attribute *attr;
12794 struct fnfieldlist *flp;
12795 int i;
12796 struct fn_field *fnp;
15d034d0 12797 const char *fieldname;
c906108c 12798 struct nextfnfield *new_fnfield;
f792889a 12799 struct type *this_type;
60d5a603 12800 enum dwarf_access_attribute accessibility;
c906108c 12801
b4ba55a1 12802 if (cu->language == language_ada)
a73c6dcd 12803 error (_("unexpected member function in Ada type"));
b4ba55a1 12804
2df3850c 12805 /* Get name of member function. */
39cbfefa
DJ
12806 fieldname = dwarf2_name (die, cu);
12807 if (fieldname == NULL)
2df3850c 12808 return;
c906108c 12809
c906108c
SS
12810 /* Look up member function name in fieldlist. */
12811 for (i = 0; i < fip->nfnfields; i++)
12812 {
27bfe10e 12813 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
12814 break;
12815 }
12816
12817 /* Create new list element if necessary. */
12818 if (i < fip->nfnfields)
12819 flp = &fip->fnfieldlists[i];
12820 else
12821 {
12822 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12823 {
12824 fip->fnfieldlists = (struct fnfieldlist *)
12825 xrealloc (fip->fnfieldlists,
12826 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12827 * sizeof (struct fnfieldlist));
c906108c 12828 if (fip->nfnfields == 0)
c13c43fd 12829 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
12830 }
12831 flp = &fip->fnfieldlists[fip->nfnfields];
12832 flp->name = fieldname;
12833 flp->length = 0;
12834 flp->head = NULL;
3da10d80 12835 i = fip->nfnfields++;
c906108c
SS
12836 }
12837
12838 /* Create a new member function field and chain it to the field list
0963b4bd 12839 entry. */
8d749320 12840 new_fnfield = XNEW (struct nextfnfield);
b8c9b27d 12841 make_cleanup (xfree, new_fnfield);
c906108c
SS
12842 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12843 new_fnfield->next = flp->head;
12844 flp->head = new_fnfield;
12845 flp->length++;
12846
12847 /* Fill in the member function field info. */
12848 fnp = &new_fnfield->fnfield;
3da10d80
KS
12849
12850 /* Delay processing of the physname until later. */
12851 if (cu->language == language_cplus || cu->language == language_java)
12852 {
12853 add_to_method_list (type, i, flp->length - 1, fieldname,
12854 die, cu);
12855 }
12856 else
12857 {
1d06ead6 12858 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
12859 fnp->physname = physname ? physname : "";
12860 }
12861
c906108c 12862 fnp->type = alloc_type (objfile);
f792889a
DJ
12863 this_type = read_type_die (die, cu);
12864 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 12865 {
f792889a 12866 int nparams = TYPE_NFIELDS (this_type);
c906108c 12867
f792889a 12868 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
12869 of the method itself (TYPE_CODE_METHOD). */
12870 smash_to_method_type (fnp->type, type,
f792889a
DJ
12871 TYPE_TARGET_TYPE (this_type),
12872 TYPE_FIELDS (this_type),
12873 TYPE_NFIELDS (this_type),
12874 TYPE_VARARGS (this_type));
c906108c
SS
12875
12876 /* Handle static member functions.
c5aa993b 12877 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
12878 member functions. G++ helps GDB by marking the first
12879 parameter for non-static member functions (which is the this
12880 pointer) as artificial. We obtain this information from
12881 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 12882 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
12883 fnp->voffset = VOFFSET_STATIC;
12884 }
12885 else
e2e0b3e5 12886 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 12887 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
12888
12889 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 12890 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 12891 fnp->fcontext = die_containing_type (die, cu);
c906108c 12892
3e43a32a
MS
12893 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12894 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
12895
12896 /* Get accessibility. */
e142c38c 12897 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 12898 if (attr)
aead7601 12899 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
60d5a603
JK
12900 else
12901 accessibility = dwarf2_default_access_attribute (die, cu);
12902 switch (accessibility)
c906108c 12903 {
60d5a603
JK
12904 case DW_ACCESS_private:
12905 fnp->is_private = 1;
12906 break;
12907 case DW_ACCESS_protected:
12908 fnp->is_protected = 1;
12909 break;
c906108c
SS
12910 }
12911
b02dede2 12912 /* Check for artificial methods. */
e142c38c 12913 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
12914 if (attr && DW_UNSND (attr) != 0)
12915 fnp->is_artificial = 1;
12916
7d27a96d
TT
12917 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12918
0d564a31 12919 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
12920 function. For older versions of GCC, this is an offset in the
12921 appropriate virtual table, as specified by DW_AT_containing_type.
12922 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
12923 to the object address. */
12924
e142c38c 12925 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 12926 if (attr)
8e19ed76 12927 {
aec5aa8b 12928 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 12929 {
aec5aa8b
TT
12930 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12931 {
12932 /* Old-style GCC. */
12933 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12934 }
12935 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12936 || (DW_BLOCK (attr)->size > 1
12937 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12938 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12939 {
12940 struct dwarf_block blk;
12941 int offset;
12942
12943 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12944 ? 1 : 2);
12945 blk.size = DW_BLOCK (attr)->size - offset;
12946 blk.data = DW_BLOCK (attr)->data + offset;
12947 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12948 if ((fnp->voffset % cu->header.addr_size) != 0)
12949 dwarf2_complex_location_expr_complaint ();
12950 else
12951 fnp->voffset /= cu->header.addr_size;
12952 fnp->voffset += 2;
12953 }
12954 else
12955 dwarf2_complex_location_expr_complaint ();
12956
12957 if (!fnp->fcontext)
7e993ebf
KS
12958 {
12959 /* If there is no `this' field and no DW_AT_containing_type,
12960 we cannot actually find a base class context for the
12961 vtable! */
12962 if (TYPE_NFIELDS (this_type) == 0
12963 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12964 {
12965 complaint (&symfile_complaints,
12966 _("cannot determine context for virtual member "
12967 "function \"%s\" (offset %d)"),
12968 fieldname, die->offset.sect_off);
12969 }
12970 else
12971 {
12972 fnp->fcontext
12973 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12974 }
12975 }
aec5aa8b 12976 }
3690dd37 12977 else if (attr_form_is_section_offset (attr))
8e19ed76 12978 {
4d3c2250 12979 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
12980 }
12981 else
12982 {
4d3c2250
KB
12983 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12984 fieldname);
8e19ed76 12985 }
0d564a31 12986 }
d48cc9dd
DJ
12987 else
12988 {
12989 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12990 if (attr && DW_UNSND (attr))
12991 {
12992 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12993 complaint (&symfile_complaints,
3e43a32a
MS
12994 _("Member function \"%s\" (offset %d) is virtual "
12995 "but the vtable offset is not specified"),
b64f50a1 12996 fieldname, die->offset.sect_off);
9655fd1a 12997 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
12998 TYPE_CPLUS_DYNAMIC (type) = 1;
12999 }
13000 }
c906108c
SS
13001}
13002
13003/* Create the vector of member function fields, and attach it to the type. */
13004
13005static void
fba45db2 13006dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 13007 struct dwarf2_cu *cu)
c906108c
SS
13008{
13009 struct fnfieldlist *flp;
c906108c
SS
13010 int i;
13011
b4ba55a1 13012 if (cu->language == language_ada)
a73c6dcd 13013 error (_("unexpected member functions in Ada type"));
b4ba55a1 13014
c906108c
SS
13015 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13016 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13017 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13018
13019 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13020 {
13021 struct nextfnfield *nfp = flp->head;
13022 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13023 int k;
13024
13025 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13026 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13027 fn_flp->fn_fields = (struct fn_field *)
13028 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13029 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 13030 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
13031 }
13032
13033 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
13034}
13035
1168df01
JB
13036/* Returns non-zero if NAME is the name of a vtable member in CU's
13037 language, zero otherwise. */
13038static int
13039is_vtable_name (const char *name, struct dwarf2_cu *cu)
13040{
13041 static const char vptr[] = "_vptr";
987504bb 13042 static const char vtable[] = "vtable";
1168df01 13043
987504bb
JJ
13044 /* Look for the C++ and Java forms of the vtable. */
13045 if ((cu->language == language_java
61012eef
GB
13046 && startswith (name, vtable))
13047 || (startswith (name, vptr)
987504bb 13048 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
13049 return 1;
13050
13051 return 0;
13052}
13053
c0dd20ea 13054/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
13055 functions, with the ABI-specified layout. If TYPE describes
13056 such a structure, smash it into a member function type.
61049d3b
DJ
13057
13058 GCC shouldn't do this; it should just output pointer to member DIEs.
13059 This is GCC PR debug/28767. */
c0dd20ea 13060
0b92b5bb
TT
13061static void
13062quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 13063{
09e2d7c7 13064 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
13065
13066 /* Check for a structure with no name and two children. */
0b92b5bb
TT
13067 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13068 return;
c0dd20ea
DJ
13069
13070 /* Check for __pfn and __delta members. */
0b92b5bb
TT
13071 if (TYPE_FIELD_NAME (type, 0) == NULL
13072 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13073 || TYPE_FIELD_NAME (type, 1) == NULL
13074 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13075 return;
c0dd20ea
DJ
13076
13077 /* Find the type of the method. */
0b92b5bb 13078 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
13079 if (pfn_type == NULL
13080 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13081 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 13082 return;
c0dd20ea
DJ
13083
13084 /* Look for the "this" argument. */
13085 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13086 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 13087 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 13088 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 13089 return;
c0dd20ea 13090
09e2d7c7 13091 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 13092 new_type = alloc_type (objfile);
09e2d7c7 13093 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
13094 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13095 TYPE_VARARGS (pfn_type));
0b92b5bb 13096 smash_to_methodptr_type (type, new_type);
c0dd20ea 13097}
1168df01 13098
685b1105
JK
13099/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13100 (icc). */
13101
13102static int
13103producer_is_icc (struct dwarf2_cu *cu)
13104{
13105 if (!cu->checked_producer)
13106 check_producer (cu);
13107
13108 return cu->producer_is_icc;
13109}
13110
c906108c 13111/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
13112 (definition) to create a type for the structure or union. Fill in
13113 the type's name and general properties; the members will not be
83655187
DE
13114 processed until process_structure_scope. A symbol table entry for
13115 the type will also not be done until process_structure_scope (assuming
13116 the type has a name).
c906108c 13117
c767944b
DJ
13118 NOTE: we need to call these functions regardless of whether or not the
13119 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 13120 structure or union. This gets the type entered into our set of
83655187 13121 user defined types. */
c906108c 13122
f792889a 13123static struct type *
134d01f1 13124read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13125{
e7c27a73 13126 struct objfile *objfile = cu->objfile;
c906108c
SS
13127 struct type *type;
13128 struct attribute *attr;
15d034d0 13129 const char *name;
c906108c 13130
348e048f
DE
13131 /* If the definition of this type lives in .debug_types, read that type.
13132 Don't follow DW_AT_specification though, that will take us back up
13133 the chain and we want to go down. */
45e58e77 13134 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13135 if (attr)
13136 {
ac9ec31b 13137 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13138
ac9ec31b 13139 /* The type's CU may not be the same as CU.
02142a6c 13140 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13141 return set_die_type (die, type, cu);
13142 }
13143
c0dd20ea 13144 type = alloc_type (objfile);
c906108c 13145 INIT_CPLUS_SPECIFIC (type);
93311388 13146
39cbfefa
DJ
13147 name = dwarf2_name (die, cu);
13148 if (name != NULL)
c906108c 13149 {
987504bb 13150 if (cu->language == language_cplus
45280282
IB
13151 || cu->language == language_java
13152 || cu->language == language_d)
63d06c5c 13153 {
15d034d0 13154 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
13155
13156 /* dwarf2_full_name might have already finished building the DIE's
13157 type. If so, there is no need to continue. */
13158 if (get_die_type (die, cu) != NULL)
13159 return get_die_type (die, cu);
13160
13161 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
13162 if (die->tag == DW_TAG_structure_type
13163 || die->tag == DW_TAG_class_type)
13164 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
13165 }
13166 else
13167 {
d8151005
DJ
13168 /* The name is already allocated along with this objfile, so
13169 we don't need to duplicate it for the type. */
7d455152 13170 TYPE_TAG_NAME (type) = name;
94af9270
KS
13171 if (die->tag == DW_TAG_class_type)
13172 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 13173 }
c906108c
SS
13174 }
13175
13176 if (die->tag == DW_TAG_structure_type)
13177 {
13178 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13179 }
13180 else if (die->tag == DW_TAG_union_type)
13181 {
13182 TYPE_CODE (type) = TYPE_CODE_UNION;
13183 }
13184 else
13185 {
4753d33b 13186 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
13187 }
13188
0cc2414c
TT
13189 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13190 TYPE_DECLARED_CLASS (type) = 1;
13191
e142c38c 13192 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13193 if (attr)
13194 {
13195 TYPE_LENGTH (type) = DW_UNSND (attr);
13196 }
13197 else
13198 {
13199 TYPE_LENGTH (type) = 0;
13200 }
13201
422b1cb0 13202 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
685b1105
JK
13203 {
13204 /* ICC does not output the required DW_AT_declaration
13205 on incomplete types, but gives them a size of zero. */
422b1cb0 13206 TYPE_STUB (type) = 1;
685b1105
JK
13207 }
13208 else
13209 TYPE_STUB_SUPPORTED (type) = 1;
13210
dc718098 13211 if (die_is_declaration (die, cu))
876cecd0 13212 TYPE_STUB (type) = 1;
a6c727b2
DJ
13213 else if (attr == NULL && die->child == NULL
13214 && producer_is_realview (cu->producer))
13215 /* RealView does not output the required DW_AT_declaration
13216 on incomplete types. */
13217 TYPE_STUB (type) = 1;
dc718098 13218
c906108c
SS
13219 /* We need to add the type field to the die immediately so we don't
13220 infinitely recurse when dealing with pointers to the structure
0963b4bd 13221 type within the structure itself. */
1c379e20 13222 set_die_type (die, type, cu);
c906108c 13223
7e314c57
JK
13224 /* set_die_type should be already done. */
13225 set_descriptive_type (type, die, cu);
13226
c767944b
DJ
13227 return type;
13228}
13229
13230/* Finish creating a structure or union type, including filling in
13231 its members and creating a symbol for it. */
13232
13233static void
13234process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13235{
13236 struct objfile *objfile = cu->objfile;
ca040673 13237 struct die_info *child_die;
c767944b
DJ
13238 struct type *type;
13239
13240 type = get_die_type (die, cu);
13241 if (type == NULL)
13242 type = read_structure_type (die, cu);
13243
e142c38c 13244 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13245 {
13246 struct field_info fi;
34eaf542 13247 VEC (symbolp) *template_args = NULL;
c767944b 13248 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13249
13250 memset (&fi, 0, sizeof (struct field_info));
13251
639d11d3 13252 child_die = die->child;
c906108c
SS
13253
13254 while (child_die && child_die->tag)
13255 {
a9a9bd0f
DC
13256 if (child_die->tag == DW_TAG_member
13257 || child_die->tag == DW_TAG_variable)
c906108c 13258 {
a9a9bd0f
DC
13259 /* NOTE: carlton/2002-11-05: A C++ static data member
13260 should be a DW_TAG_member that is a declaration, but
13261 all versions of G++ as of this writing (so through at
13262 least 3.2.1) incorrectly generate DW_TAG_variable
13263 tags for them instead. */
e7c27a73 13264 dwarf2_add_field (&fi, child_die, cu);
c906108c 13265 }
8713b1b1 13266 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13267 {
0963b4bd 13268 /* C++ member function. */
e7c27a73 13269 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
13270 }
13271 else if (child_die->tag == DW_TAG_inheritance)
13272 {
13273 /* C++ base class field. */
e7c27a73 13274 dwarf2_add_field (&fi, child_die, cu);
c906108c 13275 }
98751a41
JK
13276 else if (child_die->tag == DW_TAG_typedef)
13277 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13278 else if (child_die->tag == DW_TAG_template_type_param
13279 || child_die->tag == DW_TAG_template_value_param)
13280 {
13281 struct symbol *arg = new_symbol (child_die, NULL, cu);
13282
f1078f66
DJ
13283 if (arg != NULL)
13284 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13285 }
13286
c906108c
SS
13287 child_die = sibling_die (child_die);
13288 }
13289
34eaf542
TT
13290 /* Attach template arguments to type. */
13291 if (! VEC_empty (symbolp, template_args))
13292 {
13293 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13294 TYPE_N_TEMPLATE_ARGUMENTS (type)
13295 = VEC_length (symbolp, template_args);
13296 TYPE_TEMPLATE_ARGUMENTS (type)
8d749320
SM
13297 = XOBNEWVEC (&objfile->objfile_obstack,
13298 struct symbol *,
13299 TYPE_N_TEMPLATE_ARGUMENTS (type));
34eaf542
TT
13300 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13301 VEC_address (symbolp, template_args),
13302 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13303 * sizeof (struct symbol *)));
13304 VEC_free (symbolp, template_args);
13305 }
13306
c906108c
SS
13307 /* Attach fields and member functions to the type. */
13308 if (fi.nfields)
e7c27a73 13309 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13310 if (fi.nfnfields)
13311 {
e7c27a73 13312 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13313
c5aa993b 13314 /* Get the type which refers to the base class (possibly this
c906108c 13315 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13316 class from the DW_AT_containing_type attribute. This use of
13317 DW_AT_containing_type is a GNU extension. */
c906108c 13318
e142c38c 13319 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13320 {
e7c27a73 13321 struct type *t = die_containing_type (die, cu);
c906108c 13322
ae6ae975 13323 set_type_vptr_basetype (type, t);
c906108c
SS
13324 if (type == t)
13325 {
c906108c
SS
13326 int i;
13327
13328 /* Our own class provides vtbl ptr. */
13329 for (i = TYPE_NFIELDS (t) - 1;
13330 i >= TYPE_N_BASECLASSES (t);
13331 --i)
13332 {
0d5cff50 13333 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13334
1168df01 13335 if (is_vtable_name (fieldname, cu))
c906108c 13336 {
ae6ae975 13337 set_type_vptr_fieldno (type, i);
c906108c
SS
13338 break;
13339 }
13340 }
13341
13342 /* Complain if virtual function table field not found. */
13343 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13344 complaint (&symfile_complaints,
3e43a32a
MS
13345 _("virtual function table pointer "
13346 "not found when defining class '%s'"),
4d3c2250
KB
13347 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13348 "");
c906108c
SS
13349 }
13350 else
13351 {
ae6ae975 13352 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
13353 }
13354 }
f6235d4c 13355 else if (cu->producer
61012eef 13356 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
13357 {
13358 /* The IBM XLC compiler does not provide direct indication
13359 of the containing type, but the vtable pointer is
13360 always named __vfp. */
13361
13362 int i;
13363
13364 for (i = TYPE_NFIELDS (type) - 1;
13365 i >= TYPE_N_BASECLASSES (type);
13366 --i)
13367 {
13368 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13369 {
ae6ae975
DE
13370 set_type_vptr_fieldno (type, i);
13371 set_type_vptr_basetype (type, type);
f6235d4c
EZ
13372 break;
13373 }
13374 }
13375 }
c906108c 13376 }
98751a41
JK
13377
13378 /* Copy fi.typedef_field_list linked list elements content into the
13379 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13380 if (fi.typedef_field_list)
13381 {
13382 int i = fi.typedef_field_list_count;
13383
a0d7a4ff 13384 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
13385 TYPE_TYPEDEF_FIELD_ARRAY (type)
13386 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13387 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13388
13389 /* Reverse the list order to keep the debug info elements order. */
13390 while (--i >= 0)
13391 {
13392 struct typedef_field *dest, *src;
6e70227d 13393
98751a41
JK
13394 dest = &TYPE_TYPEDEF_FIELD (type, i);
13395 src = &fi.typedef_field_list->field;
13396 fi.typedef_field_list = fi.typedef_field_list->next;
13397 *dest = *src;
13398 }
13399 }
c767944b
DJ
13400
13401 do_cleanups (back_to);
eb2a6f42
TT
13402
13403 if (HAVE_CPLUS_STRUCT (type))
13404 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 13405 }
63d06c5c 13406
bb5ed363 13407 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13408
90aeadfc
DC
13409 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13410 snapshots) has been known to create a die giving a declaration
13411 for a class that has, as a child, a die giving a definition for a
13412 nested class. So we have to process our children even if the
13413 current die is a declaration. Normally, of course, a declaration
13414 won't have any children at all. */
134d01f1 13415
ca040673
DE
13416 child_die = die->child;
13417
90aeadfc
DC
13418 while (child_die != NULL && child_die->tag)
13419 {
13420 if (child_die->tag == DW_TAG_member
13421 || child_die->tag == DW_TAG_variable
34eaf542
TT
13422 || child_die->tag == DW_TAG_inheritance
13423 || child_die->tag == DW_TAG_template_value_param
13424 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13425 {
90aeadfc 13426 /* Do nothing. */
134d01f1 13427 }
90aeadfc
DC
13428 else
13429 process_die (child_die, cu);
134d01f1 13430
90aeadfc 13431 child_die = sibling_die (child_die);
134d01f1
DJ
13432 }
13433
fa4028e9
JB
13434 /* Do not consider external references. According to the DWARF standard,
13435 these DIEs are identified by the fact that they have no byte_size
13436 attribute, and a declaration attribute. */
13437 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13438 || !die_is_declaration (die, cu))
c767944b 13439 new_symbol (die, type, cu);
134d01f1
DJ
13440}
13441
55426c9d
JB
13442/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13443 update TYPE using some information only available in DIE's children. */
13444
13445static void
13446update_enumeration_type_from_children (struct die_info *die,
13447 struct type *type,
13448 struct dwarf2_cu *cu)
13449{
13450 struct obstack obstack;
60f7655a 13451 struct die_info *child_die;
55426c9d
JB
13452 int unsigned_enum = 1;
13453 int flag_enum = 1;
13454 ULONGEST mask = 0;
13455 struct cleanup *old_chain;
13456
13457 obstack_init (&obstack);
13458 old_chain = make_cleanup_obstack_free (&obstack);
13459
60f7655a
DE
13460 for (child_die = die->child;
13461 child_die != NULL && child_die->tag;
13462 child_die = sibling_die (child_die))
55426c9d
JB
13463 {
13464 struct attribute *attr;
13465 LONGEST value;
13466 const gdb_byte *bytes;
13467 struct dwarf2_locexpr_baton *baton;
13468 const char *name;
60f7655a 13469
55426c9d
JB
13470 if (child_die->tag != DW_TAG_enumerator)
13471 continue;
13472
13473 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13474 if (attr == NULL)
13475 continue;
13476
13477 name = dwarf2_name (child_die, cu);
13478 if (name == NULL)
13479 name = "<anonymous enumerator>";
13480
13481 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13482 &value, &bytes, &baton);
13483 if (value < 0)
13484 {
13485 unsigned_enum = 0;
13486 flag_enum = 0;
13487 }
13488 else if ((mask & value) != 0)
13489 flag_enum = 0;
13490 else
13491 mask |= value;
13492
13493 /* If we already know that the enum type is neither unsigned, nor
13494 a flag type, no need to look at the rest of the enumerates. */
13495 if (!unsigned_enum && !flag_enum)
13496 break;
55426c9d
JB
13497 }
13498
13499 if (unsigned_enum)
13500 TYPE_UNSIGNED (type) = 1;
13501 if (flag_enum)
13502 TYPE_FLAG_ENUM (type) = 1;
13503
13504 do_cleanups (old_chain);
13505}
13506
134d01f1
DJ
13507/* Given a DW_AT_enumeration_type die, set its type. We do not
13508 complete the type's fields yet, or create any symbols. */
c906108c 13509
f792889a 13510static struct type *
134d01f1 13511read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13512{
e7c27a73 13513 struct objfile *objfile = cu->objfile;
c906108c 13514 struct type *type;
c906108c 13515 struct attribute *attr;
0114d602 13516 const char *name;
134d01f1 13517
348e048f
DE
13518 /* If the definition of this type lives in .debug_types, read that type.
13519 Don't follow DW_AT_specification though, that will take us back up
13520 the chain and we want to go down. */
45e58e77 13521 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13522 if (attr)
13523 {
ac9ec31b 13524 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13525
ac9ec31b 13526 /* The type's CU may not be the same as CU.
02142a6c 13527 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13528 return set_die_type (die, type, cu);
13529 }
13530
c906108c
SS
13531 type = alloc_type (objfile);
13532
13533 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13534 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13535 if (name != NULL)
7d455152 13536 TYPE_TAG_NAME (type) = name;
c906108c 13537
0626fc76
TT
13538 attr = dwarf2_attr (die, DW_AT_type, cu);
13539 if (attr != NULL)
13540 {
13541 struct type *underlying_type = die_type (die, cu);
13542
13543 TYPE_TARGET_TYPE (type) = underlying_type;
13544 }
13545
e142c38c 13546 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13547 if (attr)
13548 {
13549 TYPE_LENGTH (type) = DW_UNSND (attr);
13550 }
13551 else
13552 {
13553 TYPE_LENGTH (type) = 0;
13554 }
13555
137033e9
JB
13556 /* The enumeration DIE can be incomplete. In Ada, any type can be
13557 declared as private in the package spec, and then defined only
13558 inside the package body. Such types are known as Taft Amendment
13559 Types. When another package uses such a type, an incomplete DIE
13560 may be generated by the compiler. */
02eb380e 13561 if (die_is_declaration (die, cu))
876cecd0 13562 TYPE_STUB (type) = 1;
02eb380e 13563
0626fc76
TT
13564 /* Finish the creation of this type by using the enum's children.
13565 We must call this even when the underlying type has been provided
13566 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
13567 update_enumeration_type_from_children (die, type, cu);
13568
0626fc76
TT
13569 /* If this type has an underlying type that is not a stub, then we
13570 may use its attributes. We always use the "unsigned" attribute
13571 in this situation, because ordinarily we guess whether the type
13572 is unsigned -- but the guess can be wrong and the underlying type
13573 can tell us the reality. However, we defer to a local size
13574 attribute if one exists, because this lets the compiler override
13575 the underlying type if needed. */
13576 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13577 {
13578 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13579 if (TYPE_LENGTH (type) == 0)
13580 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13581 }
13582
3d567982
TT
13583 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13584
f792889a 13585 return set_die_type (die, type, cu);
134d01f1
DJ
13586}
13587
13588/* Given a pointer to a die which begins an enumeration, process all
13589 the dies that define the members of the enumeration, and create the
13590 symbol for the enumeration type.
13591
13592 NOTE: We reverse the order of the element list. */
13593
13594static void
13595process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13596{
f792889a 13597 struct type *this_type;
134d01f1 13598
f792889a
DJ
13599 this_type = get_die_type (die, cu);
13600 if (this_type == NULL)
13601 this_type = read_enumeration_type (die, cu);
9dc481d3 13602
639d11d3 13603 if (die->child != NULL)
c906108c 13604 {
9dc481d3
DE
13605 struct die_info *child_die;
13606 struct symbol *sym;
13607 struct field *fields = NULL;
13608 int num_fields = 0;
15d034d0 13609 const char *name;
9dc481d3 13610
639d11d3 13611 child_die = die->child;
c906108c
SS
13612 while (child_die && child_die->tag)
13613 {
13614 if (child_die->tag != DW_TAG_enumerator)
13615 {
e7c27a73 13616 process_die (child_die, cu);
c906108c
SS
13617 }
13618 else
13619 {
39cbfefa
DJ
13620 name = dwarf2_name (child_die, cu);
13621 if (name)
c906108c 13622 {
f792889a 13623 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
13624
13625 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13626 {
13627 fields = (struct field *)
13628 xrealloc (fields,
13629 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13630 * sizeof (struct field));
c906108c
SS
13631 }
13632
3567439c 13633 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13634 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13635 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13636 FIELD_BITSIZE (fields[num_fields]) = 0;
13637
13638 num_fields++;
13639 }
13640 }
13641
13642 child_die = sibling_die (child_die);
13643 }
13644
13645 if (num_fields)
13646 {
f792889a
DJ
13647 TYPE_NFIELDS (this_type) = num_fields;
13648 TYPE_FIELDS (this_type) = (struct field *)
13649 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13650 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13651 sizeof (struct field) * num_fields);
b8c9b27d 13652 xfree (fields);
c906108c 13653 }
c906108c 13654 }
134d01f1 13655
6c83ed52
TT
13656 /* If we are reading an enum from a .debug_types unit, and the enum
13657 is a declaration, and the enum is not the signatured type in the
13658 unit, then we do not want to add a symbol for it. Adding a
13659 symbol would in some cases obscure the true definition of the
13660 enum, giving users an incomplete type when the definition is
13661 actually available. Note that we do not want to do this for all
13662 enums which are just declarations, because C++0x allows forward
13663 enum declarations. */
3019eac3 13664 if (cu->per_cu->is_debug_types
6c83ed52
TT
13665 && die_is_declaration (die, cu))
13666 {
52dc124a 13667 struct signatured_type *sig_type;
6c83ed52 13668
c0f78cd4 13669 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13670 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13671 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13672 return;
13673 }
13674
f792889a 13675 new_symbol (die, this_type, cu);
c906108c
SS
13676}
13677
13678/* Extract all information from a DW_TAG_array_type DIE and put it in
13679 the DIE's type field. For now, this only handles one dimensional
13680 arrays. */
13681
f792889a 13682static struct type *
e7c27a73 13683read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13684{
e7c27a73 13685 struct objfile *objfile = cu->objfile;
c906108c 13686 struct die_info *child_die;
7e314c57 13687 struct type *type;
c906108c
SS
13688 struct type *element_type, *range_type, *index_type;
13689 struct type **range_types = NULL;
13690 struct attribute *attr;
13691 int ndim = 0;
13692 struct cleanup *back_to;
15d034d0 13693 const char *name;
dc53a7ad 13694 unsigned int bit_stride = 0;
c906108c 13695
e7c27a73 13696 element_type = die_type (die, cu);
c906108c 13697
7e314c57
JK
13698 /* The die_type call above may have already set the type for this DIE. */
13699 type = get_die_type (die, cu);
13700 if (type)
13701 return type;
13702
dc53a7ad
JB
13703 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13704 if (attr != NULL)
13705 bit_stride = DW_UNSND (attr) * 8;
13706
13707 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13708 if (attr != NULL)
13709 bit_stride = DW_UNSND (attr);
13710
c906108c
SS
13711 /* Irix 6.2 native cc creates array types without children for
13712 arrays with unspecified length. */
639d11d3 13713 if (die->child == NULL)
c906108c 13714 {
46bf5051 13715 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 13716 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
13717 type = create_array_type_with_stride (NULL, element_type, range_type,
13718 bit_stride);
f792889a 13719 return set_die_type (die, type, cu);
c906108c
SS
13720 }
13721
13722 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13723 child_die = die->child;
c906108c
SS
13724 while (child_die && child_die->tag)
13725 {
13726 if (child_die->tag == DW_TAG_subrange_type)
13727 {
f792889a 13728 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13729
f792889a 13730 if (child_type != NULL)
a02abb62 13731 {
0963b4bd
MS
13732 /* The range type was succesfully read. Save it for the
13733 array type creation. */
a02abb62
JB
13734 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13735 {
13736 range_types = (struct type **)
13737 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13738 * sizeof (struct type *));
13739 if (ndim == 0)
13740 make_cleanup (free_current_contents, &range_types);
13741 }
f792889a 13742 range_types[ndim++] = child_type;
a02abb62 13743 }
c906108c
SS
13744 }
13745 child_die = sibling_die (child_die);
13746 }
13747
13748 /* Dwarf2 dimensions are output from left to right, create the
13749 necessary array types in backwards order. */
7ca2d3a3 13750
c906108c 13751 type = element_type;
7ca2d3a3
DL
13752
13753 if (read_array_order (die, cu) == DW_ORD_col_major)
13754 {
13755 int i = 0;
9a619af0 13756
7ca2d3a3 13757 while (i < ndim)
dc53a7ad
JB
13758 type = create_array_type_with_stride (NULL, type, range_types[i++],
13759 bit_stride);
7ca2d3a3
DL
13760 }
13761 else
13762 {
13763 while (ndim-- > 0)
dc53a7ad
JB
13764 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13765 bit_stride);
7ca2d3a3 13766 }
c906108c 13767
f5f8a009
EZ
13768 /* Understand Dwarf2 support for vector types (like they occur on
13769 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13770 array type. This is not part of the Dwarf2/3 standard yet, but a
13771 custom vendor extension. The main difference between a regular
13772 array and the vector variant is that vectors are passed by value
13773 to functions. */
e142c38c 13774 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 13775 if (attr)
ea37ba09 13776 make_vector_type (type);
f5f8a009 13777
dbc98a8b
KW
13778 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13779 implementation may choose to implement triple vectors using this
13780 attribute. */
13781 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13782 if (attr)
13783 {
13784 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13785 TYPE_LENGTH (type) = DW_UNSND (attr);
13786 else
3e43a32a
MS
13787 complaint (&symfile_complaints,
13788 _("DW_AT_byte_size for array type smaller "
13789 "than the total size of elements"));
dbc98a8b
KW
13790 }
13791
39cbfefa
DJ
13792 name = dwarf2_name (die, cu);
13793 if (name)
13794 TYPE_NAME (type) = name;
6e70227d 13795
0963b4bd 13796 /* Install the type in the die. */
7e314c57
JK
13797 set_die_type (die, type, cu);
13798
13799 /* set_die_type should be already done. */
b4ba55a1
JB
13800 set_descriptive_type (type, die, cu);
13801
c906108c
SS
13802 do_cleanups (back_to);
13803
7e314c57 13804 return type;
c906108c
SS
13805}
13806
7ca2d3a3 13807static enum dwarf_array_dim_ordering
6e70227d 13808read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
13809{
13810 struct attribute *attr;
13811
13812 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13813
aead7601
SM
13814 if (attr)
13815 return (enum dwarf_array_dim_ordering) DW_SND (attr);
7ca2d3a3 13816
0963b4bd
MS
13817 /* GNU F77 is a special case, as at 08/2004 array type info is the
13818 opposite order to the dwarf2 specification, but data is still
13819 laid out as per normal fortran.
7ca2d3a3 13820
0963b4bd
MS
13821 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13822 version checking. */
7ca2d3a3 13823
905e0470
PM
13824 if (cu->language == language_fortran
13825 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
13826 {
13827 return DW_ORD_row_major;
13828 }
13829
6e70227d 13830 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
13831 {
13832 case array_column_major:
13833 return DW_ORD_col_major;
13834 case array_row_major:
13835 default:
13836 return DW_ORD_row_major;
13837 };
13838}
13839
72019c9c 13840/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 13841 the DIE's type field. */
72019c9c 13842
f792889a 13843static struct type *
72019c9c
GM
13844read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13845{
7e314c57
JK
13846 struct type *domain_type, *set_type;
13847 struct attribute *attr;
f792889a 13848
7e314c57
JK
13849 domain_type = die_type (die, cu);
13850
13851 /* The die_type call above may have already set the type for this DIE. */
13852 set_type = get_die_type (die, cu);
13853 if (set_type)
13854 return set_type;
13855
13856 set_type = create_set_type (NULL, domain_type);
13857
13858 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
13859 if (attr)
13860 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 13861
f792889a 13862 return set_die_type (die, set_type, cu);
72019c9c 13863}
7ca2d3a3 13864
0971de02
TT
13865/* A helper for read_common_block that creates a locexpr baton.
13866 SYM is the symbol which we are marking as computed.
13867 COMMON_DIE is the DIE for the common block.
13868 COMMON_LOC is the location expression attribute for the common
13869 block itself.
13870 MEMBER_LOC is the location expression attribute for the particular
13871 member of the common block that we are processing.
13872 CU is the CU from which the above come. */
13873
13874static void
13875mark_common_block_symbol_computed (struct symbol *sym,
13876 struct die_info *common_die,
13877 struct attribute *common_loc,
13878 struct attribute *member_loc,
13879 struct dwarf2_cu *cu)
13880{
13881 struct objfile *objfile = dwarf2_per_objfile->objfile;
13882 struct dwarf2_locexpr_baton *baton;
13883 gdb_byte *ptr;
13884 unsigned int cu_off;
13885 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13886 LONGEST offset = 0;
13887
13888 gdb_assert (common_loc && member_loc);
13889 gdb_assert (attr_form_is_block (common_loc));
13890 gdb_assert (attr_form_is_block (member_loc)
13891 || attr_form_is_constant (member_loc));
13892
8d749320 13893 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
0971de02
TT
13894 baton->per_cu = cu->per_cu;
13895 gdb_assert (baton->per_cu);
13896
13897 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13898
13899 if (attr_form_is_constant (member_loc))
13900 {
13901 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13902 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13903 }
13904 else
13905 baton->size += DW_BLOCK (member_loc)->size;
13906
13907 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13908 baton->data = ptr;
13909
13910 *ptr++ = DW_OP_call4;
13911 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13912 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13913 ptr += 4;
13914
13915 if (attr_form_is_constant (member_loc))
13916 {
13917 *ptr++ = DW_OP_addr;
13918 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13919 ptr += cu->header.addr_size;
13920 }
13921 else
13922 {
13923 /* We have to copy the data here, because DW_OP_call4 will only
13924 use a DW_AT_location attribute. */
13925 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13926 ptr += DW_BLOCK (member_loc)->size;
13927 }
13928
13929 *ptr++ = DW_OP_plus;
13930 gdb_assert (ptr - baton->data == baton->size);
13931
0971de02 13932 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 13933 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
13934}
13935
4357ac6c
TT
13936/* Create appropriate locally-scoped variables for all the
13937 DW_TAG_common_block entries. Also create a struct common_block
13938 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13939 is used to sepate the common blocks name namespace from regular
13940 variable names. */
c906108c
SS
13941
13942static void
e7c27a73 13943read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13944{
0971de02
TT
13945 struct attribute *attr;
13946
13947 attr = dwarf2_attr (die, DW_AT_location, cu);
13948 if (attr)
13949 {
13950 /* Support the .debug_loc offsets. */
13951 if (attr_form_is_block (attr))
13952 {
13953 /* Ok. */
13954 }
13955 else if (attr_form_is_section_offset (attr))
13956 {
13957 dwarf2_complex_location_expr_complaint ();
13958 attr = NULL;
13959 }
13960 else
13961 {
13962 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13963 "common block member");
13964 attr = NULL;
13965 }
13966 }
13967
639d11d3 13968 if (die->child != NULL)
c906108c 13969 {
4357ac6c
TT
13970 struct objfile *objfile = cu->objfile;
13971 struct die_info *child_die;
13972 size_t n_entries = 0, size;
13973 struct common_block *common_block;
13974 struct symbol *sym;
74ac6d43 13975
4357ac6c
TT
13976 for (child_die = die->child;
13977 child_die && child_die->tag;
13978 child_die = sibling_die (child_die))
13979 ++n_entries;
13980
13981 size = (sizeof (struct common_block)
13982 + (n_entries - 1) * sizeof (struct symbol *));
13983 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13984 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13985 common_block->n_entries = 0;
13986
13987 for (child_die = die->child;
13988 child_die && child_die->tag;
13989 child_die = sibling_die (child_die))
13990 {
13991 /* Create the symbol in the DW_TAG_common_block block in the current
13992 symbol scope. */
e7c27a73 13993 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
13994 if (sym != NULL)
13995 {
13996 struct attribute *member_loc;
13997
13998 common_block->contents[common_block->n_entries++] = sym;
13999
14000 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14001 cu);
14002 if (member_loc)
14003 {
14004 /* GDB has handled this for a long time, but it is
14005 not specified by DWARF. It seems to have been
14006 emitted by gfortran at least as recently as:
14007 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14008 complaint (&symfile_complaints,
14009 _("Variable in common block has "
14010 "DW_AT_data_member_location "
14011 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
14012 child_die->offset.sect_off,
14013 objfile_name (cu->objfile));
0971de02
TT
14014
14015 if (attr_form_is_section_offset (member_loc))
14016 dwarf2_complex_location_expr_complaint ();
14017 else if (attr_form_is_constant (member_loc)
14018 || attr_form_is_block (member_loc))
14019 {
14020 if (attr)
14021 mark_common_block_symbol_computed (sym, die, attr,
14022 member_loc, cu);
14023 }
14024 else
14025 dwarf2_complex_location_expr_complaint ();
14026 }
14027 }
c906108c 14028 }
4357ac6c
TT
14029
14030 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14031 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
14032 }
14033}
14034
0114d602 14035/* Create a type for a C++ namespace. */
d9fa45fe 14036
0114d602
DJ
14037static struct type *
14038read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 14039{
e7c27a73 14040 struct objfile *objfile = cu->objfile;
0114d602 14041 const char *previous_prefix, *name;
9219021c 14042 int is_anonymous;
0114d602
DJ
14043 struct type *type;
14044
14045 /* For extensions, reuse the type of the original namespace. */
14046 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14047 {
14048 struct die_info *ext_die;
14049 struct dwarf2_cu *ext_cu = cu;
9a619af0 14050
0114d602
DJ
14051 ext_die = dwarf2_extension (die, &ext_cu);
14052 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
14053
14054 /* EXT_CU may not be the same as CU.
02142a6c 14055 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
14056 return set_die_type (die, type, cu);
14057 }
9219021c 14058
e142c38c 14059 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
14060
14061 /* Now build the name of the current namespace. */
14062
0114d602
DJ
14063 previous_prefix = determine_prefix (die, cu);
14064 if (previous_prefix[0] != '\0')
14065 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 14066 previous_prefix, name, 0, cu);
0114d602
DJ
14067
14068 /* Create the type. */
14069 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14070 objfile);
abee88f2 14071 TYPE_NAME (type) = name;
0114d602
DJ
14072 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14073
60531b24 14074 return set_die_type (die, type, cu);
0114d602
DJ
14075}
14076
22cee43f 14077/* Read a namespace scope. */
0114d602
DJ
14078
14079static void
14080read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14081{
14082 struct objfile *objfile = cu->objfile;
0114d602 14083 int is_anonymous;
9219021c 14084
5c4e30ca
DC
14085 /* Add a symbol associated to this if we haven't seen the namespace
14086 before. Also, add a using directive if it's an anonymous
14087 namespace. */
9219021c 14088
f2f0e013 14089 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
14090 {
14091 struct type *type;
14092
0114d602 14093 type = read_type_die (die, cu);
e7c27a73 14094 new_symbol (die, type, cu);
5c4e30ca 14095
e8e80198 14096 namespace_name (die, &is_anonymous, cu);
5c4e30ca 14097 if (is_anonymous)
0114d602
DJ
14098 {
14099 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 14100
22cee43f
PMR
14101 add_using_directive (using_directives (cu->language),
14102 previous_prefix, TYPE_NAME (type), NULL,
14103 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 14104 }
5c4e30ca 14105 }
9219021c 14106
639d11d3 14107 if (die->child != NULL)
d9fa45fe 14108 {
639d11d3 14109 struct die_info *child_die = die->child;
6e70227d 14110
d9fa45fe
DC
14111 while (child_die && child_die->tag)
14112 {
e7c27a73 14113 process_die (child_die, cu);
d9fa45fe
DC
14114 child_die = sibling_die (child_die);
14115 }
14116 }
38d518c9
EZ
14117}
14118
f55ee35c
JK
14119/* Read a Fortran module as type. This DIE can be only a declaration used for
14120 imported module. Still we need that type as local Fortran "use ... only"
14121 declaration imports depend on the created type in determine_prefix. */
14122
14123static struct type *
14124read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14125{
14126 struct objfile *objfile = cu->objfile;
15d034d0 14127 const char *module_name;
f55ee35c
JK
14128 struct type *type;
14129
14130 module_name = dwarf2_name (die, cu);
14131 if (!module_name)
3e43a32a
MS
14132 complaint (&symfile_complaints,
14133 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 14134 die->offset.sect_off);
f55ee35c
JK
14135 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14136
14137 /* determine_prefix uses TYPE_TAG_NAME. */
14138 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14139
14140 return set_die_type (die, type, cu);
14141}
14142
5d7cb8df
JK
14143/* Read a Fortran module. */
14144
14145static void
14146read_module (struct die_info *die, struct dwarf2_cu *cu)
14147{
14148 struct die_info *child_die = die->child;
530e8392
KB
14149 struct type *type;
14150
14151 type = read_type_die (die, cu);
14152 new_symbol (die, type, cu);
5d7cb8df 14153
5d7cb8df
JK
14154 while (child_die && child_die->tag)
14155 {
14156 process_die (child_die, cu);
14157 child_die = sibling_die (child_die);
14158 }
14159}
14160
38d518c9
EZ
14161/* Return the name of the namespace represented by DIE. Set
14162 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14163 namespace. */
14164
14165static const char *
e142c38c 14166namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
14167{
14168 struct die_info *current_die;
14169 const char *name = NULL;
14170
14171 /* Loop through the extensions until we find a name. */
14172
14173 for (current_die = die;
14174 current_die != NULL;
f2f0e013 14175 current_die = dwarf2_extension (die, &cu))
38d518c9 14176 {
96553a0c
DE
14177 /* We don't use dwarf2_name here so that we can detect the absence
14178 of a name -> anonymous namespace. */
7d45c7c3 14179 name = dwarf2_string_attr (die, DW_AT_name, cu);
96553a0c 14180
38d518c9
EZ
14181 if (name != NULL)
14182 break;
14183 }
14184
14185 /* Is it an anonymous namespace? */
14186
14187 *is_anonymous = (name == NULL);
14188 if (*is_anonymous)
2b1dbab0 14189 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
14190
14191 return name;
d9fa45fe
DC
14192}
14193
c906108c
SS
14194/* Extract all information from a DW_TAG_pointer_type DIE and add to
14195 the user defined type vector. */
14196
f792889a 14197static struct type *
e7c27a73 14198read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14199{
5e2b427d 14200 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 14201 struct comp_unit_head *cu_header = &cu->header;
c906108c 14202 struct type *type;
8b2dbe47
KB
14203 struct attribute *attr_byte_size;
14204 struct attribute *attr_address_class;
14205 int byte_size, addr_class;
7e314c57
JK
14206 struct type *target_type;
14207
14208 target_type = die_type (die, cu);
c906108c 14209
7e314c57
JK
14210 /* The die_type call above may have already set the type for this DIE. */
14211 type = get_die_type (die, cu);
14212 if (type)
14213 return type;
14214
14215 type = lookup_pointer_type (target_type);
8b2dbe47 14216
e142c38c 14217 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
14218 if (attr_byte_size)
14219 byte_size = DW_UNSND (attr_byte_size);
c906108c 14220 else
8b2dbe47
KB
14221 byte_size = cu_header->addr_size;
14222
e142c38c 14223 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14224 if (attr_address_class)
14225 addr_class = DW_UNSND (attr_address_class);
14226 else
14227 addr_class = DW_ADDR_none;
14228
14229 /* If the pointer size or address class is different than the
14230 default, create a type variant marked as such and set the
14231 length accordingly. */
14232 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14233 {
5e2b427d 14234 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14235 {
14236 int type_flags;
14237
849957d9 14238 type_flags = gdbarch_address_class_type_flags
5e2b427d 14239 (gdbarch, byte_size, addr_class);
876cecd0
TT
14240 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14241 == 0);
8b2dbe47
KB
14242 type = make_type_with_address_space (type, type_flags);
14243 }
14244 else if (TYPE_LENGTH (type) != byte_size)
14245 {
3e43a32a
MS
14246 complaint (&symfile_complaints,
14247 _("invalid pointer size %d"), byte_size);
8b2dbe47 14248 }
6e70227d 14249 else
9a619af0
MS
14250 {
14251 /* Should we also complain about unhandled address classes? */
14252 }
c906108c 14253 }
8b2dbe47
KB
14254
14255 TYPE_LENGTH (type) = byte_size;
f792889a 14256 return set_die_type (die, type, cu);
c906108c
SS
14257}
14258
14259/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14260 the user defined type vector. */
14261
f792889a 14262static struct type *
e7c27a73 14263read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14264{
14265 struct type *type;
14266 struct type *to_type;
14267 struct type *domain;
14268
e7c27a73
DJ
14269 to_type = die_type (die, cu);
14270 domain = die_containing_type (die, cu);
0d5de010 14271
7e314c57
JK
14272 /* The calls above may have already set the type for this DIE. */
14273 type = get_die_type (die, cu);
14274 if (type)
14275 return type;
14276
0d5de010
DJ
14277 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14278 type = lookup_methodptr_type (to_type);
7078baeb
TT
14279 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14280 {
14281 struct type *new_type = alloc_type (cu->objfile);
14282
14283 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14284 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14285 TYPE_VARARGS (to_type));
14286 type = lookup_methodptr_type (new_type);
14287 }
0d5de010
DJ
14288 else
14289 type = lookup_memberptr_type (to_type, domain);
c906108c 14290
f792889a 14291 return set_die_type (die, type, cu);
c906108c
SS
14292}
14293
14294/* Extract all information from a DW_TAG_reference_type DIE and add to
14295 the user defined type vector. */
14296
f792889a 14297static struct type *
e7c27a73 14298read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14299{
e7c27a73 14300 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14301 struct type *type, *target_type;
c906108c
SS
14302 struct attribute *attr;
14303
7e314c57
JK
14304 target_type = die_type (die, cu);
14305
14306 /* The die_type call above may have already set the type for this DIE. */
14307 type = get_die_type (die, cu);
14308 if (type)
14309 return type;
14310
14311 type = lookup_reference_type (target_type);
e142c38c 14312 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14313 if (attr)
14314 {
14315 TYPE_LENGTH (type) = DW_UNSND (attr);
14316 }
14317 else
14318 {
107d2387 14319 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14320 }
f792889a 14321 return set_die_type (die, type, cu);
c906108c
SS
14322}
14323
cf363f18
MW
14324/* Add the given cv-qualifiers to the element type of the array. GCC
14325 outputs DWARF type qualifiers that apply to an array, not the
14326 element type. But GDB relies on the array element type to carry
14327 the cv-qualifiers. This mimics section 6.7.3 of the C99
14328 specification. */
14329
14330static struct type *
14331add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14332 struct type *base_type, int cnst, int voltl)
14333{
14334 struct type *el_type, *inner_array;
14335
14336 base_type = copy_type (base_type);
14337 inner_array = base_type;
14338
14339 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14340 {
14341 TYPE_TARGET_TYPE (inner_array) =
14342 copy_type (TYPE_TARGET_TYPE (inner_array));
14343 inner_array = TYPE_TARGET_TYPE (inner_array);
14344 }
14345
14346 el_type = TYPE_TARGET_TYPE (inner_array);
14347 cnst |= TYPE_CONST (el_type);
14348 voltl |= TYPE_VOLATILE (el_type);
14349 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14350
14351 return set_die_type (die, base_type, cu);
14352}
14353
f792889a 14354static struct type *
e7c27a73 14355read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14356{
f792889a 14357 struct type *base_type, *cv_type;
c906108c 14358
e7c27a73 14359 base_type = die_type (die, cu);
7e314c57
JK
14360
14361 /* The die_type call above may have already set the type for this DIE. */
14362 cv_type = get_die_type (die, cu);
14363 if (cv_type)
14364 return cv_type;
14365
2f608a3a
KW
14366 /* In case the const qualifier is applied to an array type, the element type
14367 is so qualified, not the array type (section 6.7.3 of C99). */
14368 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14369 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14370
f792889a
DJ
14371 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14372 return set_die_type (die, cv_type, cu);
c906108c
SS
14373}
14374
f792889a 14375static struct type *
e7c27a73 14376read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14377{
f792889a 14378 struct type *base_type, *cv_type;
c906108c 14379
e7c27a73 14380 base_type = die_type (die, cu);
7e314c57
JK
14381
14382 /* The die_type call above may have already set the type for this DIE. */
14383 cv_type = get_die_type (die, cu);
14384 if (cv_type)
14385 return cv_type;
14386
cf363f18
MW
14387 /* In case the volatile qualifier is applied to an array type, the
14388 element type is so qualified, not the array type (section 6.7.3
14389 of C99). */
14390 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14391 return add_array_cv_type (die, cu, base_type, 0, 1);
14392
f792889a
DJ
14393 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14394 return set_die_type (die, cv_type, cu);
c906108c
SS
14395}
14396
06d66ee9
TT
14397/* Handle DW_TAG_restrict_type. */
14398
14399static struct type *
14400read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14401{
14402 struct type *base_type, *cv_type;
14403
14404 base_type = die_type (die, cu);
14405
14406 /* The die_type call above may have already set the type for this DIE. */
14407 cv_type = get_die_type (die, cu);
14408 if (cv_type)
14409 return cv_type;
14410
14411 cv_type = make_restrict_type (base_type);
14412 return set_die_type (die, cv_type, cu);
14413}
14414
a2c2acaf
MW
14415/* Handle DW_TAG_atomic_type. */
14416
14417static struct type *
14418read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14419{
14420 struct type *base_type, *cv_type;
14421
14422 base_type = die_type (die, cu);
14423
14424 /* The die_type call above may have already set the type for this DIE. */
14425 cv_type = get_die_type (die, cu);
14426 if (cv_type)
14427 return cv_type;
14428
14429 cv_type = make_atomic_type (base_type);
14430 return set_die_type (die, cv_type, cu);
14431}
14432
c906108c
SS
14433/* Extract all information from a DW_TAG_string_type DIE and add to
14434 the user defined type vector. It isn't really a user defined type,
14435 but it behaves like one, with other DIE's using an AT_user_def_type
14436 attribute to reference it. */
14437
f792889a 14438static struct type *
e7c27a73 14439read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14440{
e7c27a73 14441 struct objfile *objfile = cu->objfile;
3b7538c0 14442 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14443 struct type *type, *range_type, *index_type, *char_type;
14444 struct attribute *attr;
14445 unsigned int length;
14446
e142c38c 14447 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14448 if (attr)
14449 {
14450 length = DW_UNSND (attr);
14451 }
14452 else
14453 {
0963b4bd 14454 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14455 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14456 if (attr)
14457 {
14458 length = DW_UNSND (attr);
14459 }
14460 else
14461 {
14462 length = 1;
14463 }
c906108c 14464 }
6ccb9162 14465
46bf5051 14466 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14467 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14468 char_type = language_string_char_type (cu->language_defn, gdbarch);
14469 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14470
f792889a 14471 return set_die_type (die, type, cu);
c906108c
SS
14472}
14473
4d804846
JB
14474/* Assuming that DIE corresponds to a function, returns nonzero
14475 if the function is prototyped. */
14476
14477static int
14478prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14479{
14480 struct attribute *attr;
14481
14482 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14483 if (attr && (DW_UNSND (attr) != 0))
14484 return 1;
14485
14486 /* The DWARF standard implies that the DW_AT_prototyped attribute
14487 is only meaninful for C, but the concept also extends to other
14488 languages that allow unprototyped functions (Eg: Objective C).
14489 For all other languages, assume that functions are always
14490 prototyped. */
14491 if (cu->language != language_c
14492 && cu->language != language_objc
14493 && cu->language != language_opencl)
14494 return 1;
14495
14496 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14497 prototyped and unprototyped functions; default to prototyped,
14498 since that is more common in modern code (and RealView warns
14499 about unprototyped functions). */
14500 if (producer_is_realview (cu->producer))
14501 return 1;
14502
14503 return 0;
14504}
14505
c906108c
SS
14506/* Handle DIES due to C code like:
14507
14508 struct foo
c5aa993b
JM
14509 {
14510 int (*funcp)(int a, long l);
14511 int b;
14512 };
c906108c 14513
0963b4bd 14514 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14515
f792889a 14516static struct type *
e7c27a73 14517read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14518{
bb5ed363 14519 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14520 struct type *type; /* Type that this function returns. */
14521 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14522 struct attribute *attr;
14523
e7c27a73 14524 type = die_type (die, cu);
7e314c57
JK
14525
14526 /* The die_type call above may have already set the type for this DIE. */
14527 ftype = get_die_type (die, cu);
14528 if (ftype)
14529 return ftype;
14530
0c8b41f1 14531 ftype = lookup_function_type (type);
c906108c 14532
4d804846 14533 if (prototyped_function_p (die, cu))
a6c727b2 14534 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14535
c055b101
CV
14536 /* Store the calling convention in the type if it's available in
14537 the subroutine die. Otherwise set the calling convention to
14538 the default value DW_CC_normal. */
14539 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14540 if (attr)
14541 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14542 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14543 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14544 else
14545 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 14546
743649fd
MW
14547 /* Record whether the function returns normally to its caller or not
14548 if the DWARF producer set that information. */
14549 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14550 if (attr && (DW_UNSND (attr) != 0))
14551 TYPE_NO_RETURN (ftype) = 1;
14552
76c10ea2
GM
14553 /* We need to add the subroutine type to the die immediately so
14554 we don't infinitely recurse when dealing with parameters
0963b4bd 14555 declared as the same subroutine type. */
76c10ea2 14556 set_die_type (die, ftype, cu);
6e70227d 14557
639d11d3 14558 if (die->child != NULL)
c906108c 14559 {
bb5ed363 14560 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14561 struct die_info *child_die;
8072405b 14562 int nparams, iparams;
c906108c
SS
14563
14564 /* Count the number of parameters.
14565 FIXME: GDB currently ignores vararg functions, but knows about
14566 vararg member functions. */
8072405b 14567 nparams = 0;
639d11d3 14568 child_die = die->child;
c906108c
SS
14569 while (child_die && child_die->tag)
14570 {
14571 if (child_die->tag == DW_TAG_formal_parameter)
14572 nparams++;
14573 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14574 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14575 child_die = sibling_die (child_die);
14576 }
14577
14578 /* Allocate storage for parameters and fill them in. */
14579 TYPE_NFIELDS (ftype) = nparams;
14580 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14581 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14582
8072405b
JK
14583 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14584 even if we error out during the parameters reading below. */
14585 for (iparams = 0; iparams < nparams; iparams++)
14586 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14587
14588 iparams = 0;
639d11d3 14589 child_die = die->child;
c906108c
SS
14590 while (child_die && child_die->tag)
14591 {
14592 if (child_die->tag == DW_TAG_formal_parameter)
14593 {
3ce3b1ba
PA
14594 struct type *arg_type;
14595
14596 /* DWARF version 2 has no clean way to discern C++
14597 static and non-static member functions. G++ helps
14598 GDB by marking the first parameter for non-static
14599 member functions (which is the this pointer) as
14600 artificial. We pass this information to
14601 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14602
14603 DWARF version 3 added DW_AT_object_pointer, which GCC
14604 4.5 does not yet generate. */
e142c38c 14605 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14606 if (attr)
14607 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14608 else
418835cc
KS
14609 {
14610 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14611
14612 /* GCC/43521: In java, the formal parameter
14613 "this" is sometimes not marked with DW_AT_artificial. */
14614 if (cu->language == language_java)
14615 {
14616 const char *name = dwarf2_name (child_die, cu);
9a619af0 14617
418835cc
KS
14618 if (name && !strcmp (name, "this"))
14619 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14620 }
14621 }
3ce3b1ba
PA
14622 arg_type = die_type (child_die, cu);
14623
14624 /* RealView does not mark THIS as const, which the testsuite
14625 expects. GCC marks THIS as const in method definitions,
14626 but not in the class specifications (GCC PR 43053). */
14627 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14628 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14629 {
14630 int is_this = 0;
14631 struct dwarf2_cu *arg_cu = cu;
14632 const char *name = dwarf2_name (child_die, cu);
14633
14634 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14635 if (attr)
14636 {
14637 /* If the compiler emits this, use it. */
14638 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14639 is_this = 1;
14640 }
14641 else if (name && strcmp (name, "this") == 0)
14642 /* Function definitions will have the argument names. */
14643 is_this = 1;
14644 else if (name == NULL && iparams == 0)
14645 /* Declarations may not have the names, so like
14646 elsewhere in GDB, assume an artificial first
14647 argument is "this". */
14648 is_this = 1;
14649
14650 if (is_this)
14651 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14652 arg_type, 0);
14653 }
14654
14655 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14656 iparams++;
14657 }
14658 child_die = sibling_die (child_die);
14659 }
14660 }
14661
76c10ea2 14662 return ftype;
c906108c
SS
14663}
14664
f792889a 14665static struct type *
e7c27a73 14666read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14667{
e7c27a73 14668 struct objfile *objfile = cu->objfile;
0114d602 14669 const char *name = NULL;
3c8e0968 14670 struct type *this_type, *target_type;
c906108c 14671
94af9270 14672 name = dwarf2_full_name (NULL, die, cu);
f792889a 14673 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602 14674 TYPE_FLAG_TARGET_STUB, NULL, objfile);
abee88f2 14675 TYPE_NAME (this_type) = name;
f792889a 14676 set_die_type (die, this_type, cu);
3c8e0968
DE
14677 target_type = die_type (die, cu);
14678 if (target_type != this_type)
14679 TYPE_TARGET_TYPE (this_type) = target_type;
14680 else
14681 {
14682 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14683 spec and cause infinite loops in GDB. */
14684 complaint (&symfile_complaints,
14685 _("Self-referential DW_TAG_typedef "
14686 "- DIE at 0x%x [in module %s]"),
4262abfb 14687 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14688 TYPE_TARGET_TYPE (this_type) = NULL;
14689 }
f792889a 14690 return this_type;
c906108c
SS
14691}
14692
14693/* Find a representation of a given base type and install
14694 it in the TYPE field of the die. */
14695
f792889a 14696static struct type *
e7c27a73 14697read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14698{
e7c27a73 14699 struct objfile *objfile = cu->objfile;
c906108c
SS
14700 struct type *type;
14701 struct attribute *attr;
14702 int encoding = 0, size = 0;
15d034d0 14703 const char *name;
6ccb9162
UW
14704 enum type_code code = TYPE_CODE_INT;
14705 int type_flags = 0;
14706 struct type *target_type = NULL;
c906108c 14707
e142c38c 14708 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14709 if (attr)
14710 {
14711 encoding = DW_UNSND (attr);
14712 }
e142c38c 14713 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14714 if (attr)
14715 {
14716 size = DW_UNSND (attr);
14717 }
39cbfefa 14718 name = dwarf2_name (die, cu);
6ccb9162 14719 if (!name)
c906108c 14720 {
6ccb9162
UW
14721 complaint (&symfile_complaints,
14722 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14723 }
6ccb9162
UW
14724
14725 switch (encoding)
c906108c 14726 {
6ccb9162
UW
14727 case DW_ATE_address:
14728 /* Turn DW_ATE_address into a void * pointer. */
14729 code = TYPE_CODE_PTR;
14730 type_flags |= TYPE_FLAG_UNSIGNED;
14731 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14732 break;
14733 case DW_ATE_boolean:
14734 code = TYPE_CODE_BOOL;
14735 type_flags |= TYPE_FLAG_UNSIGNED;
14736 break;
14737 case DW_ATE_complex_float:
14738 code = TYPE_CODE_COMPLEX;
14739 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14740 break;
14741 case DW_ATE_decimal_float:
14742 code = TYPE_CODE_DECFLOAT;
14743 break;
14744 case DW_ATE_float:
14745 code = TYPE_CODE_FLT;
14746 break;
14747 case DW_ATE_signed:
14748 break;
14749 case DW_ATE_unsigned:
14750 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
14751 if (cu->language == language_fortran
14752 && name
61012eef 14753 && startswith (name, "character("))
3b2b8fea 14754 code = TYPE_CODE_CHAR;
6ccb9162
UW
14755 break;
14756 case DW_ATE_signed_char:
6e70227d 14757 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14758 || cu->language == language_pascal
14759 || cu->language == language_fortran)
6ccb9162
UW
14760 code = TYPE_CODE_CHAR;
14761 break;
14762 case DW_ATE_unsigned_char:
868a0084 14763 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14764 || cu->language == language_pascal
14765 || cu->language == language_fortran)
6ccb9162
UW
14766 code = TYPE_CODE_CHAR;
14767 type_flags |= TYPE_FLAG_UNSIGNED;
14768 break;
75079b2b
TT
14769 case DW_ATE_UTF:
14770 /* We just treat this as an integer and then recognize the
14771 type by name elsewhere. */
14772 break;
14773
6ccb9162
UW
14774 default:
14775 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14776 dwarf_type_encoding_name (encoding));
14777 break;
c906108c 14778 }
6ccb9162 14779
0114d602
DJ
14780 type = init_type (code, size, type_flags, NULL, objfile);
14781 TYPE_NAME (type) = name;
6ccb9162
UW
14782 TYPE_TARGET_TYPE (type) = target_type;
14783
0114d602 14784 if (name && strcmp (name, "char") == 0)
876cecd0 14785 TYPE_NOSIGN (type) = 1;
0114d602 14786
f792889a 14787 return set_die_type (die, type, cu);
c906108c
SS
14788}
14789
80180f79
SA
14790/* Parse dwarf attribute if it's a block, reference or constant and put the
14791 resulting value of the attribute into struct bound_prop.
14792 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14793
14794static int
14795attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14796 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14797{
14798 struct dwarf2_property_baton *baton;
14799 struct obstack *obstack = &cu->objfile->objfile_obstack;
14800
14801 if (attr == NULL || prop == NULL)
14802 return 0;
14803
14804 if (attr_form_is_block (attr))
14805 {
8d749320 14806 baton = XOBNEW (obstack, struct dwarf2_property_baton);
80180f79
SA
14807 baton->referenced_type = NULL;
14808 baton->locexpr.per_cu = cu->per_cu;
14809 baton->locexpr.size = DW_BLOCK (attr)->size;
14810 baton->locexpr.data = DW_BLOCK (attr)->data;
14811 prop->data.baton = baton;
14812 prop->kind = PROP_LOCEXPR;
14813 gdb_assert (prop->data.baton != NULL);
14814 }
14815 else if (attr_form_is_ref (attr))
14816 {
14817 struct dwarf2_cu *target_cu = cu;
14818 struct die_info *target_die;
14819 struct attribute *target_attr;
14820
14821 target_die = follow_die_ref (die, attr, &target_cu);
14822 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
14823 if (target_attr == NULL)
14824 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14825 target_cu);
80180f79
SA
14826 if (target_attr == NULL)
14827 return 0;
14828
df25ebbd 14829 switch (target_attr->name)
80180f79 14830 {
df25ebbd
JB
14831 case DW_AT_location:
14832 if (attr_form_is_section_offset (target_attr))
14833 {
8d749320 14834 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
14835 baton->referenced_type = die_type (target_die, target_cu);
14836 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14837 prop->data.baton = baton;
14838 prop->kind = PROP_LOCLIST;
14839 gdb_assert (prop->data.baton != NULL);
14840 }
14841 else if (attr_form_is_block (target_attr))
14842 {
8d749320 14843 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
14844 baton->referenced_type = die_type (target_die, target_cu);
14845 baton->locexpr.per_cu = cu->per_cu;
14846 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14847 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14848 prop->data.baton = baton;
14849 prop->kind = PROP_LOCEXPR;
14850 gdb_assert (prop->data.baton != NULL);
14851 }
14852 else
14853 {
14854 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14855 "dynamic property");
14856 return 0;
14857 }
14858 break;
14859 case DW_AT_data_member_location:
14860 {
14861 LONGEST offset;
14862
14863 if (!handle_data_member_location (target_die, target_cu,
14864 &offset))
14865 return 0;
14866
8d749320 14867 baton = XOBNEW (obstack, struct dwarf2_property_baton);
6ad395a7
JB
14868 baton->referenced_type = read_type_die (target_die->parent,
14869 target_cu);
df25ebbd
JB
14870 baton->offset_info.offset = offset;
14871 baton->offset_info.type = die_type (target_die, target_cu);
14872 prop->data.baton = baton;
14873 prop->kind = PROP_ADDR_OFFSET;
14874 break;
14875 }
80180f79
SA
14876 }
14877 }
14878 else if (attr_form_is_constant (attr))
14879 {
14880 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14881 prop->kind = PROP_CONST;
14882 }
14883 else
14884 {
14885 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14886 dwarf2_name (die, cu));
14887 return 0;
14888 }
14889
14890 return 1;
14891}
14892
a02abb62
JB
14893/* Read the given DW_AT_subrange DIE. */
14894
f792889a 14895static struct type *
a02abb62
JB
14896read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14897{
4c9ad8c2 14898 struct type *base_type, *orig_base_type;
a02abb62
JB
14899 struct type *range_type;
14900 struct attribute *attr;
729efb13 14901 struct dynamic_prop low, high;
4fae6e18 14902 int low_default_is_valid;
c451ebe5 14903 int high_bound_is_count = 0;
15d034d0 14904 const char *name;
43bbcdc2 14905 LONGEST negative_mask;
e77813c8 14906
4c9ad8c2
TT
14907 orig_base_type = die_type (die, cu);
14908 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14909 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14910 creating the range type, but we use the result of check_typedef
14911 when examining properties of the type. */
14912 base_type = check_typedef (orig_base_type);
a02abb62 14913
7e314c57
JK
14914 /* The die_type call above may have already set the type for this DIE. */
14915 range_type = get_die_type (die, cu);
14916 if (range_type)
14917 return range_type;
14918
729efb13
SA
14919 low.kind = PROP_CONST;
14920 high.kind = PROP_CONST;
14921 high.data.const_val = 0;
14922
4fae6e18
JK
14923 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14924 omitting DW_AT_lower_bound. */
14925 switch (cu->language)
6e70227d 14926 {
4fae6e18
JK
14927 case language_c:
14928 case language_cplus:
729efb13 14929 low.data.const_val = 0;
4fae6e18
JK
14930 low_default_is_valid = 1;
14931 break;
14932 case language_fortran:
729efb13 14933 low.data.const_val = 1;
4fae6e18
JK
14934 low_default_is_valid = 1;
14935 break;
14936 case language_d:
14937 case language_java:
14938 case language_objc:
729efb13 14939 low.data.const_val = 0;
4fae6e18
JK
14940 low_default_is_valid = (cu->header.version >= 4);
14941 break;
14942 case language_ada:
14943 case language_m2:
14944 case language_pascal:
729efb13 14945 low.data.const_val = 1;
4fae6e18
JK
14946 low_default_is_valid = (cu->header.version >= 4);
14947 break;
14948 default:
729efb13 14949 low.data.const_val = 0;
4fae6e18
JK
14950 low_default_is_valid = 0;
14951 break;
a02abb62
JB
14952 }
14953
e142c38c 14954 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 14955 if (attr)
11c1ba78 14956 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
14957 else if (!low_default_is_valid)
14958 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14959 "- DIE at 0x%x [in module %s]"),
4262abfb 14960 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 14961
e142c38c 14962 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 14963 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
14964 {
14965 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 14966 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 14967 {
c451ebe5
SA
14968 /* If bounds are constant do the final calculation here. */
14969 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14970 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14971 else
14972 high_bound_is_count = 1;
c2ff108b 14973 }
e77813c8
PM
14974 }
14975
14976 /* Dwarf-2 specifications explicitly allows to create subrange types
14977 without specifying a base type.
14978 In that case, the base type must be set to the type of
14979 the lower bound, upper bound or count, in that order, if any of these
14980 three attributes references an object that has a type.
14981 If no base type is found, the Dwarf-2 specifications say that
14982 a signed integer type of size equal to the size of an address should
14983 be used.
14984 For the following C code: `extern char gdb_int [];'
14985 GCC produces an empty range DIE.
14986 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 14987 high bound or count are not yet handled by this code. */
e77813c8
PM
14988 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14989 {
14990 struct objfile *objfile = cu->objfile;
14991 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14992 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14993 struct type *int_type = objfile_type (objfile)->builtin_int;
14994
14995 /* Test "int", "long int", and "long long int" objfile types,
14996 and select the first one having a size above or equal to the
14997 architecture address size. */
14998 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14999 base_type = int_type;
15000 else
15001 {
15002 int_type = objfile_type (objfile)->builtin_long;
15003 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15004 base_type = int_type;
15005 else
15006 {
15007 int_type = objfile_type (objfile)->builtin_long_long;
15008 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15009 base_type = int_type;
15010 }
15011 }
15012 }
a02abb62 15013
dbb9c2b1
JB
15014 /* Normally, the DWARF producers are expected to use a signed
15015 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15016 But this is unfortunately not always the case, as witnessed
15017 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15018 is used instead. To work around that ambiguity, we treat
15019 the bounds as signed, and thus sign-extend their values, when
15020 the base type is signed. */
6e70227d 15021 negative_mask =
43bbcdc2 15022 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
729efb13
SA
15023 if (low.kind == PROP_CONST
15024 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15025 low.data.const_val |= negative_mask;
15026 if (high.kind == PROP_CONST
15027 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15028 high.data.const_val |= negative_mask;
43bbcdc2 15029
729efb13 15030 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 15031
c451ebe5
SA
15032 if (high_bound_is_count)
15033 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15034
c2ff108b
JK
15035 /* Ada expects an empty array on no boundary attributes. */
15036 if (attr == NULL && cu->language != language_ada)
729efb13 15037 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 15038
39cbfefa
DJ
15039 name = dwarf2_name (die, cu);
15040 if (name)
15041 TYPE_NAME (range_type) = name;
6e70227d 15042
e142c38c 15043 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
15044 if (attr)
15045 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15046
7e314c57
JK
15047 set_die_type (die, range_type, cu);
15048
15049 /* set_die_type should be already done. */
b4ba55a1
JB
15050 set_descriptive_type (range_type, die, cu);
15051
7e314c57 15052 return range_type;
a02abb62 15053}
6e70227d 15054
f792889a 15055static struct type *
81a17f79
JB
15056read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15057{
15058 struct type *type;
81a17f79 15059
81a17f79
JB
15060 /* For now, we only support the C meaning of an unspecified type: void. */
15061
0114d602
DJ
15062 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15063 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 15064
f792889a 15065 return set_die_type (die, type, cu);
81a17f79 15066}
a02abb62 15067
639d11d3
DC
15068/* Read a single die and all its descendents. Set the die's sibling
15069 field to NULL; set other fields in the die correctly, and set all
15070 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15071 location of the info_ptr after reading all of those dies. PARENT
15072 is the parent of the die in question. */
15073
15074static struct die_info *
dee91e82 15075read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
15076 const gdb_byte *info_ptr,
15077 const gdb_byte **new_info_ptr,
dee91e82 15078 struct die_info *parent)
639d11d3
DC
15079{
15080 struct die_info *die;
d521ce57 15081 const gdb_byte *cur_ptr;
639d11d3
DC
15082 int has_children;
15083
bf6af496 15084 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
15085 if (die == NULL)
15086 {
15087 *new_info_ptr = cur_ptr;
15088 return NULL;
15089 }
93311388 15090 store_in_ref_table (die, reader->cu);
639d11d3
DC
15091
15092 if (has_children)
bf6af496 15093 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
15094 else
15095 {
15096 die->child = NULL;
15097 *new_info_ptr = cur_ptr;
15098 }
15099
15100 die->sibling = NULL;
15101 die->parent = parent;
15102 return die;
15103}
15104
15105/* Read a die, all of its descendents, and all of its siblings; set
15106 all of the fields of all of the dies correctly. Arguments are as
15107 in read_die_and_children. */
15108
15109static struct die_info *
bf6af496 15110read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
15111 const gdb_byte *info_ptr,
15112 const gdb_byte **new_info_ptr,
bf6af496 15113 struct die_info *parent)
639d11d3
DC
15114{
15115 struct die_info *first_die, *last_sibling;
d521ce57 15116 const gdb_byte *cur_ptr;
639d11d3 15117
c906108c 15118 cur_ptr = info_ptr;
639d11d3
DC
15119 first_die = last_sibling = NULL;
15120
15121 while (1)
c906108c 15122 {
639d11d3 15123 struct die_info *die
dee91e82 15124 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 15125
1d325ec1 15126 if (die == NULL)
c906108c 15127 {
639d11d3
DC
15128 *new_info_ptr = cur_ptr;
15129 return first_die;
c906108c 15130 }
1d325ec1
DJ
15131
15132 if (!first_die)
15133 first_die = die;
c906108c 15134 else
1d325ec1
DJ
15135 last_sibling->sibling = die;
15136
15137 last_sibling = die;
c906108c 15138 }
c906108c
SS
15139}
15140
bf6af496
DE
15141/* Read a die, all of its descendents, and all of its siblings; set
15142 all of the fields of all of the dies correctly. Arguments are as
15143 in read_die_and_children.
15144 This the main entry point for reading a DIE and all its children. */
15145
15146static struct die_info *
15147read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
15148 const gdb_byte *info_ptr,
15149 const gdb_byte **new_info_ptr,
bf6af496
DE
15150 struct die_info *parent)
15151{
15152 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15153 new_info_ptr, parent);
15154
b4f54984 15155 if (dwarf_die_debug)
bf6af496
DE
15156 {
15157 fprintf_unfiltered (gdb_stdlog,
15158 "Read die from %s@0x%x of %s:\n",
a32a8923 15159 get_section_name (reader->die_section),
bf6af496
DE
15160 (unsigned) (info_ptr - reader->die_section->buffer),
15161 bfd_get_filename (reader->abfd));
b4f54984 15162 dump_die (die, dwarf_die_debug);
bf6af496
DE
15163 }
15164
15165 return die;
15166}
15167
3019eac3
DE
15168/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15169 attributes.
15170 The caller is responsible for filling in the extra attributes
15171 and updating (*DIEP)->num_attrs.
15172 Set DIEP to point to a newly allocated die with its information,
15173 except for its child, sibling, and parent fields.
15174 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 15175
d521ce57 15176static const gdb_byte *
3019eac3 15177read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 15178 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 15179 int *has_children, int num_extra_attrs)
93311388 15180{
b64f50a1
JK
15181 unsigned int abbrev_number, bytes_read, i;
15182 sect_offset offset;
93311388
DE
15183 struct abbrev_info *abbrev;
15184 struct die_info *die;
15185 struct dwarf2_cu *cu = reader->cu;
15186 bfd *abfd = reader->abfd;
15187
b64f50a1 15188 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
15189 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15190 info_ptr += bytes_read;
15191 if (!abbrev_number)
15192 {
15193 *diep = NULL;
15194 *has_children = 0;
15195 return info_ptr;
15196 }
15197
433df2d4 15198 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 15199 if (!abbrev)
348e048f
DE
15200 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15201 abbrev_number,
15202 bfd_get_filename (abfd));
15203
3019eac3 15204 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
15205 die->offset = offset;
15206 die->tag = abbrev->tag;
15207 die->abbrev = abbrev_number;
15208
3019eac3
DE
15209 /* Make the result usable.
15210 The caller needs to update num_attrs after adding the extra
15211 attributes. */
93311388
DE
15212 die->num_attrs = abbrev->num_attrs;
15213
15214 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
15215 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15216 info_ptr);
93311388
DE
15217
15218 *diep = die;
15219 *has_children = abbrev->has_children;
15220 return info_ptr;
15221}
15222
3019eac3
DE
15223/* Read a die and all its attributes.
15224 Set DIEP to point to a newly allocated die with its information,
15225 except for its child, sibling, and parent fields.
15226 Set HAS_CHILDREN to tell whether the die has children or not. */
15227
d521ce57 15228static const gdb_byte *
3019eac3 15229read_full_die (const struct die_reader_specs *reader,
d521ce57 15230 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
15231 int *has_children)
15232{
d521ce57 15233 const gdb_byte *result;
bf6af496
DE
15234
15235 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15236
b4f54984 15237 if (dwarf_die_debug)
bf6af496
DE
15238 {
15239 fprintf_unfiltered (gdb_stdlog,
15240 "Read die from %s@0x%x of %s:\n",
a32a8923 15241 get_section_name (reader->die_section),
bf6af496
DE
15242 (unsigned) (info_ptr - reader->die_section->buffer),
15243 bfd_get_filename (reader->abfd));
b4f54984 15244 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
15245 }
15246
15247 return result;
3019eac3 15248}
433df2d4
DE
15249\f
15250/* Abbreviation tables.
3019eac3 15251
433df2d4 15252 In DWARF version 2, the description of the debugging information is
c906108c
SS
15253 stored in a separate .debug_abbrev section. Before we read any
15254 dies from a section we read in all abbreviations and install them
433df2d4
DE
15255 in a hash table. */
15256
15257/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15258
15259static struct abbrev_info *
15260abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15261{
15262 struct abbrev_info *abbrev;
15263
8d749320 15264 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
433df2d4 15265 memset (abbrev, 0, sizeof (struct abbrev_info));
8d749320 15266
433df2d4
DE
15267 return abbrev;
15268}
15269
15270/* Add an abbreviation to the table. */
c906108c
SS
15271
15272static void
433df2d4
DE
15273abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15274 unsigned int abbrev_number,
15275 struct abbrev_info *abbrev)
15276{
15277 unsigned int hash_number;
15278
15279 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15280 abbrev->next = abbrev_table->abbrevs[hash_number];
15281 abbrev_table->abbrevs[hash_number] = abbrev;
15282}
dee91e82 15283
433df2d4
DE
15284/* Look up an abbrev in the table.
15285 Returns NULL if the abbrev is not found. */
15286
15287static struct abbrev_info *
15288abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15289 unsigned int abbrev_number)
c906108c 15290{
433df2d4
DE
15291 unsigned int hash_number;
15292 struct abbrev_info *abbrev;
15293
15294 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15295 abbrev = abbrev_table->abbrevs[hash_number];
15296
15297 while (abbrev)
15298 {
15299 if (abbrev->number == abbrev_number)
15300 return abbrev;
15301 abbrev = abbrev->next;
15302 }
15303 return NULL;
15304}
15305
15306/* Read in an abbrev table. */
15307
15308static struct abbrev_table *
15309abbrev_table_read_table (struct dwarf2_section_info *section,
15310 sect_offset offset)
15311{
15312 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15313 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15314 struct abbrev_table *abbrev_table;
d521ce57 15315 const gdb_byte *abbrev_ptr;
c906108c
SS
15316 struct abbrev_info *cur_abbrev;
15317 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15318 unsigned int abbrev_form;
f3dd6933
DJ
15319 struct attr_abbrev *cur_attrs;
15320 unsigned int allocated_attrs;
c906108c 15321
70ba0933 15322 abbrev_table = XNEW (struct abbrev_table);
f4dc4d17 15323 abbrev_table->offset = offset;
433df2d4 15324 obstack_init (&abbrev_table->abbrev_obstack);
8d749320
SM
15325 abbrev_table->abbrevs =
15326 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15327 ABBREV_HASH_SIZE);
433df2d4
DE
15328 memset (abbrev_table->abbrevs, 0,
15329 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15330
433df2d4
DE
15331 dwarf2_read_section (objfile, section);
15332 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
15333 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15334 abbrev_ptr += bytes_read;
15335
f3dd6933 15336 allocated_attrs = ATTR_ALLOC_CHUNK;
8d749320 15337 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
6e70227d 15338
0963b4bd 15339 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15340 while (abbrev_number)
15341 {
433df2d4 15342 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15343
15344 /* read in abbrev header */
15345 cur_abbrev->number = abbrev_number;
aead7601
SM
15346 cur_abbrev->tag
15347 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
c906108c
SS
15348 abbrev_ptr += bytes_read;
15349 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15350 abbrev_ptr += 1;
15351
15352 /* now read in declarations */
15353 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15354 abbrev_ptr += bytes_read;
15355 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15356 abbrev_ptr += bytes_read;
15357 while (abbrev_name)
15358 {
f3dd6933 15359 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15360 {
f3dd6933
DJ
15361 allocated_attrs += ATTR_ALLOC_CHUNK;
15362 cur_attrs
15363 = xrealloc (cur_attrs, (allocated_attrs
15364 * sizeof (struct attr_abbrev)));
c906108c 15365 }
ae038cb0 15366
aead7601
SM
15367 cur_attrs[cur_abbrev->num_attrs].name
15368 = (enum dwarf_attribute) abbrev_name;
15369 cur_attrs[cur_abbrev->num_attrs++].form
15370 = (enum dwarf_form) abbrev_form;
c906108c
SS
15371 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15372 abbrev_ptr += bytes_read;
15373 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15374 abbrev_ptr += bytes_read;
15375 }
15376
8d749320
SM
15377 cur_abbrev->attrs =
15378 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15379 cur_abbrev->num_attrs);
f3dd6933
DJ
15380 memcpy (cur_abbrev->attrs, cur_attrs,
15381 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15382
433df2d4 15383 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15384
15385 /* Get next abbreviation.
15386 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15387 always properly terminated with an abbrev number of 0.
15388 Exit loop if we encounter an abbreviation which we have
15389 already read (which means we are about to read the abbreviations
15390 for the next compile unit) or if the end of the abbreviation
15391 table is reached. */
433df2d4 15392 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15393 break;
15394 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15395 abbrev_ptr += bytes_read;
433df2d4 15396 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15397 break;
15398 }
f3dd6933
DJ
15399
15400 xfree (cur_attrs);
433df2d4 15401 return abbrev_table;
c906108c
SS
15402}
15403
433df2d4 15404/* Free the resources held by ABBREV_TABLE. */
c906108c 15405
c906108c 15406static void
433df2d4 15407abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15408{
433df2d4
DE
15409 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15410 xfree (abbrev_table);
c906108c
SS
15411}
15412
f4dc4d17
DE
15413/* Same as abbrev_table_free but as a cleanup.
15414 We pass in a pointer to the pointer to the table so that we can
15415 set the pointer to NULL when we're done. It also simplifies
73051182 15416 build_type_psymtabs_1. */
f4dc4d17
DE
15417
15418static void
15419abbrev_table_free_cleanup (void *table_ptr)
15420{
15421 struct abbrev_table **abbrev_table_ptr = table_ptr;
15422
15423 if (*abbrev_table_ptr != NULL)
15424 abbrev_table_free (*abbrev_table_ptr);
15425 *abbrev_table_ptr = NULL;
15426}
15427
433df2d4
DE
15428/* Read the abbrev table for CU from ABBREV_SECTION. */
15429
15430static void
15431dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15432 struct dwarf2_section_info *abbrev_section)
c906108c 15433{
433df2d4
DE
15434 cu->abbrev_table =
15435 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15436}
c906108c 15437
433df2d4 15438/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15439
433df2d4
DE
15440static void
15441dwarf2_free_abbrev_table (void *ptr_to_cu)
15442{
15443 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 15444
a2ce51a0
DE
15445 if (cu->abbrev_table != NULL)
15446 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15447 /* Set this to NULL so that we SEGV if we try to read it later,
15448 and also because free_comp_unit verifies this is NULL. */
15449 cu->abbrev_table = NULL;
15450}
15451\f
72bf9492
DJ
15452/* Returns nonzero if TAG represents a type that we might generate a partial
15453 symbol for. */
15454
15455static int
15456is_type_tag_for_partial (int tag)
15457{
15458 switch (tag)
15459 {
15460#if 0
15461 /* Some types that would be reasonable to generate partial symbols for,
15462 that we don't at present. */
15463 case DW_TAG_array_type:
15464 case DW_TAG_file_type:
15465 case DW_TAG_ptr_to_member_type:
15466 case DW_TAG_set_type:
15467 case DW_TAG_string_type:
15468 case DW_TAG_subroutine_type:
15469#endif
15470 case DW_TAG_base_type:
15471 case DW_TAG_class_type:
680b30c7 15472 case DW_TAG_interface_type:
72bf9492
DJ
15473 case DW_TAG_enumeration_type:
15474 case DW_TAG_structure_type:
15475 case DW_TAG_subrange_type:
15476 case DW_TAG_typedef:
15477 case DW_TAG_union_type:
15478 return 1;
15479 default:
15480 return 0;
15481 }
15482}
15483
15484/* Load all DIEs that are interesting for partial symbols into memory. */
15485
15486static struct partial_die_info *
dee91e82 15487load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15488 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15489{
dee91e82 15490 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15491 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15492 struct partial_die_info *part_die;
15493 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15494 struct abbrev_info *abbrev;
15495 unsigned int bytes_read;
5afb4e99 15496 unsigned int load_all = 0;
72bf9492
DJ
15497 int nesting_level = 1;
15498
15499 parent_die = NULL;
15500 last_die = NULL;
15501
7adf1e79
DE
15502 gdb_assert (cu->per_cu != NULL);
15503 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15504 load_all = 1;
15505
72bf9492
DJ
15506 cu->partial_dies
15507 = htab_create_alloc_ex (cu->header.length / 12,
15508 partial_die_hash,
15509 partial_die_eq,
15510 NULL,
15511 &cu->comp_unit_obstack,
15512 hashtab_obstack_allocate,
15513 dummy_obstack_deallocate);
15514
8d749320 15515 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15516
15517 while (1)
15518 {
15519 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15520
15521 /* A NULL abbrev means the end of a series of children. */
15522 if (abbrev == NULL)
15523 {
15524 if (--nesting_level == 0)
15525 {
15526 /* PART_DIE was probably the last thing allocated on the
15527 comp_unit_obstack, so we could call obstack_free
15528 here. We don't do that because the waste is small,
15529 and will be cleaned up when we're done with this
15530 compilation unit. This way, we're also more robust
15531 against other users of the comp_unit_obstack. */
15532 return first_die;
15533 }
15534 info_ptr += bytes_read;
15535 last_die = parent_die;
15536 parent_die = parent_die->die_parent;
15537 continue;
15538 }
15539
98bfdba5
PA
15540 /* Check for template arguments. We never save these; if
15541 they're seen, we just mark the parent, and go on our way. */
15542 if (parent_die != NULL
15543 && cu->language == language_cplus
15544 && (abbrev->tag == DW_TAG_template_type_param
15545 || abbrev->tag == DW_TAG_template_value_param))
15546 {
15547 parent_die->has_template_arguments = 1;
15548
15549 if (!load_all)
15550 {
15551 /* We don't need a partial DIE for the template argument. */
dee91e82 15552 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15553 continue;
15554 }
15555 }
15556
0d99eb77 15557 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
15558 Skip their other children. */
15559 if (!load_all
15560 && cu->language == language_cplus
15561 && parent_die != NULL
15562 && parent_die->tag == DW_TAG_subprogram)
15563 {
dee91e82 15564 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15565 continue;
15566 }
15567
5afb4e99
DJ
15568 /* Check whether this DIE is interesting enough to save. Normally
15569 we would not be interested in members here, but there may be
15570 later variables referencing them via DW_AT_specification (for
15571 static members). */
15572 if (!load_all
15573 && !is_type_tag_for_partial (abbrev->tag)
72929c62 15574 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
15575 && abbrev->tag != DW_TAG_enumerator
15576 && abbrev->tag != DW_TAG_subprogram
bc30ff58 15577 && abbrev->tag != DW_TAG_lexical_block
72bf9492 15578 && abbrev->tag != DW_TAG_variable
5afb4e99 15579 && abbrev->tag != DW_TAG_namespace
f55ee35c 15580 && abbrev->tag != DW_TAG_module
95554aad 15581 && abbrev->tag != DW_TAG_member
74921315
KS
15582 && abbrev->tag != DW_TAG_imported_unit
15583 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
15584 {
15585 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15586 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
15587 continue;
15588 }
15589
dee91e82
DE
15590 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15591 info_ptr);
72bf9492
DJ
15592
15593 /* This two-pass algorithm for processing partial symbols has a
15594 high cost in cache pressure. Thus, handle some simple cases
15595 here which cover the majority of C partial symbols. DIEs
15596 which neither have specification tags in them, nor could have
15597 specification tags elsewhere pointing at them, can simply be
15598 processed and discarded.
15599
15600 This segment is also optional; scan_partial_symbols and
15601 add_partial_symbol will handle these DIEs if we chain
15602 them in normally. When compilers which do not emit large
15603 quantities of duplicate debug information are more common,
15604 this code can probably be removed. */
15605
15606 /* Any complete simple types at the top level (pretty much all
15607 of them, for a language without namespaces), can be processed
15608 directly. */
15609 if (parent_die == NULL
15610 && part_die->has_specification == 0
15611 && part_die->is_declaration == 0
d8228535 15612 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15613 || part_die->tag == DW_TAG_base_type
15614 || part_die->tag == DW_TAG_subrange_type))
15615 {
15616 if (building_psymtab && part_die->name != NULL)
04a679b8 15617 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15618 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363 15619 &objfile->static_psymbols,
1762568f 15620 0, cu->language, objfile);
dee91e82 15621 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15622 continue;
15623 }
15624
d8228535
JK
15625 /* The exception for DW_TAG_typedef with has_children above is
15626 a workaround of GCC PR debug/47510. In the case of this complaint
15627 type_name_no_tag_or_error will error on such types later.
15628
15629 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15630 it could not find the child DIEs referenced later, this is checked
15631 above. In correct DWARF DW_TAG_typedef should have no children. */
15632
15633 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15634 complaint (&symfile_complaints,
15635 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15636 "- DIE at 0x%x [in module %s]"),
4262abfb 15637 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15638
72bf9492
DJ
15639 /* If we're at the second level, and we're an enumerator, and
15640 our parent has no specification (meaning possibly lives in a
15641 namespace elsewhere), then we can add the partial symbol now
15642 instead of queueing it. */
15643 if (part_die->tag == DW_TAG_enumerator
15644 && parent_die != NULL
15645 && parent_die->die_parent == NULL
15646 && parent_die->tag == DW_TAG_enumeration_type
15647 && parent_die->has_specification == 0)
15648 {
15649 if (part_die->name == NULL)
3e43a32a
MS
15650 complaint (&symfile_complaints,
15651 _("malformed enumerator DIE ignored"));
72bf9492 15652 else if (building_psymtab)
04a679b8 15653 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15654 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
15655 (cu->language == language_cplus
15656 || cu->language == language_java)
bb5ed363
DE
15657 ? &objfile->global_psymbols
15658 : &objfile->static_psymbols,
1762568f 15659 0, cu->language, objfile);
72bf9492 15660
dee91e82 15661 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15662 continue;
15663 }
15664
15665 /* We'll save this DIE so link it in. */
15666 part_die->die_parent = parent_die;
15667 part_die->die_sibling = NULL;
15668 part_die->die_child = NULL;
15669
15670 if (last_die && last_die == parent_die)
15671 last_die->die_child = part_die;
15672 else if (last_die)
15673 last_die->die_sibling = part_die;
15674
15675 last_die = part_die;
15676
15677 if (first_die == NULL)
15678 first_die = part_die;
15679
15680 /* Maybe add the DIE to the hash table. Not all DIEs that we
15681 find interesting need to be in the hash table, because we
15682 also have the parent/sibling/child chains; only those that we
15683 might refer to by offset later during partial symbol reading.
15684
15685 For now this means things that might have be the target of a
15686 DW_AT_specification, DW_AT_abstract_origin, or
15687 DW_AT_extension. DW_AT_extension will refer only to
15688 namespaces; DW_AT_abstract_origin refers to functions (and
15689 many things under the function DIE, but we do not recurse
15690 into function DIEs during partial symbol reading) and
15691 possibly variables as well; DW_AT_specification refers to
15692 declarations. Declarations ought to have the DW_AT_declaration
15693 flag. It happens that GCC forgets to put it in sometimes, but
15694 only for functions, not for types.
15695
15696 Adding more things than necessary to the hash table is harmless
15697 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15698 wasted time in find_partial_die, when we reread the compilation
15699 unit with load_all_dies set. */
72bf9492 15700
5afb4e99 15701 if (load_all
72929c62 15702 || abbrev->tag == DW_TAG_constant
5afb4e99 15703 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15704 || abbrev->tag == DW_TAG_variable
15705 || abbrev->tag == DW_TAG_namespace
15706 || part_die->is_declaration)
15707 {
15708 void **slot;
15709
15710 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 15711 part_die->offset.sect_off, INSERT);
72bf9492
DJ
15712 *slot = part_die;
15713 }
15714
8d749320 15715 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15716
15717 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 15718 we have no reason to follow the children of structures; for other
98bfdba5
PA
15719 languages we have to, so that we can get at method physnames
15720 to infer fully qualified class names, for DW_AT_specification,
15721 and for C++ template arguments. For C++, we also look one level
15722 inside functions to find template arguments (if the name of the
15723 function does not already contain the template arguments).
bc30ff58
JB
15724
15725 For Ada, we need to scan the children of subprograms and lexical
15726 blocks as well because Ada allows the definition of nested
15727 entities that could be interesting for the debugger, such as
15728 nested subprograms for instance. */
72bf9492 15729 if (last_die->has_children
5afb4e99
DJ
15730 && (load_all
15731 || last_die->tag == DW_TAG_namespace
f55ee35c 15732 || last_die->tag == DW_TAG_module
72bf9492 15733 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15734 || (cu->language == language_cplus
15735 && last_die->tag == DW_TAG_subprogram
15736 && (last_die->name == NULL
15737 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15738 || (cu->language != language_c
15739 && (last_die->tag == DW_TAG_class_type
680b30c7 15740 || last_die->tag == DW_TAG_interface_type
72bf9492 15741 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
15742 || last_die->tag == DW_TAG_union_type))
15743 || (cu->language == language_ada
15744 && (last_die->tag == DW_TAG_subprogram
15745 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
15746 {
15747 nesting_level++;
15748 parent_die = last_die;
15749 continue;
15750 }
15751
15752 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15753 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
15754
15755 /* Back to the top, do it again. */
15756 }
15757}
15758
c906108c
SS
15759/* Read a minimal amount of information into the minimal die structure. */
15760
d521ce57 15761static const gdb_byte *
dee91e82
DE
15762read_partial_die (const struct die_reader_specs *reader,
15763 struct partial_die_info *part_die,
15764 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 15765 const gdb_byte *info_ptr)
c906108c 15766{
dee91e82 15767 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15768 struct objfile *objfile = cu->objfile;
d521ce57 15769 const gdb_byte *buffer = reader->buffer;
fa238c03 15770 unsigned int i;
c906108c 15771 struct attribute attr;
c5aa993b 15772 int has_low_pc_attr = 0;
c906108c 15773 int has_high_pc_attr = 0;
91da1414 15774 int high_pc_relative = 0;
c906108c 15775
72bf9492 15776 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 15777
b64f50a1 15778 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
15779
15780 info_ptr += abbrev_len;
15781
15782 if (abbrev == NULL)
15783 return info_ptr;
15784
c906108c
SS
15785 part_die->tag = abbrev->tag;
15786 part_die->has_children = abbrev->has_children;
c906108c
SS
15787
15788 for (i = 0; i < abbrev->num_attrs; ++i)
15789 {
dee91e82 15790 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
15791
15792 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 15793 partial symbol table. */
c906108c
SS
15794 switch (attr.name)
15795 {
15796 case DW_AT_name:
71c25dea
TT
15797 switch (part_die->tag)
15798 {
15799 case DW_TAG_compile_unit:
95554aad 15800 case DW_TAG_partial_unit:
348e048f 15801 case DW_TAG_type_unit:
71c25dea
TT
15802 /* Compilation units have a DW_AT_name that is a filename, not
15803 a source language identifier. */
15804 case DW_TAG_enumeration_type:
15805 case DW_TAG_enumerator:
15806 /* These tags always have simple identifiers already; no need
15807 to canonicalize them. */
15808 part_die->name = DW_STRING (&attr);
15809 break;
15810 default:
15811 part_die->name
15812 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 15813 &objfile->per_bfd->storage_obstack);
71c25dea
TT
15814 break;
15815 }
c906108c 15816 break;
31ef98ae 15817 case DW_AT_linkage_name:
c906108c 15818 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
15819 /* Note that both forms of linkage name might appear. We
15820 assume they will be the same, and we only store the last
15821 one we see. */
94af9270
KS
15822 if (cu->language == language_ada)
15823 part_die->name = DW_STRING (&attr);
abc72ce4 15824 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
15825 break;
15826 case DW_AT_low_pc:
15827 has_low_pc_attr = 1;
31aa7e4e 15828 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
15829 break;
15830 case DW_AT_high_pc:
15831 has_high_pc_attr = 1;
31aa7e4e
JB
15832 part_die->highpc = attr_value_as_address (&attr);
15833 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15834 high_pc_relative = 1;
c906108c
SS
15835 break;
15836 case DW_AT_location:
0963b4bd 15837 /* Support the .debug_loc offsets. */
8e19ed76
PS
15838 if (attr_form_is_block (&attr))
15839 {
95554aad 15840 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 15841 }
3690dd37 15842 else if (attr_form_is_section_offset (&attr))
8e19ed76 15843 {
4d3c2250 15844 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15845 }
15846 else
15847 {
4d3c2250
KB
15848 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15849 "partial symbol information");
8e19ed76 15850 }
c906108c 15851 break;
c906108c
SS
15852 case DW_AT_external:
15853 part_die->is_external = DW_UNSND (&attr);
15854 break;
15855 case DW_AT_declaration:
15856 part_die->is_declaration = DW_UNSND (&attr);
15857 break;
15858 case DW_AT_type:
15859 part_die->has_type = 1;
15860 break;
15861 case DW_AT_abstract_origin:
15862 case DW_AT_specification:
72bf9492
DJ
15863 case DW_AT_extension:
15864 part_die->has_specification = 1;
c764a876 15865 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
15866 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15867 || cu->per_cu->is_dwz);
c906108c
SS
15868 break;
15869 case DW_AT_sibling:
15870 /* Ignore absolute siblings, they might point outside of
15871 the current compile unit. */
15872 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
15873 complaint (&symfile_complaints,
15874 _("ignoring absolute DW_AT_sibling"));
c906108c 15875 else
b9502d3f
WN
15876 {
15877 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15878 const gdb_byte *sibling_ptr = buffer + off;
15879
15880 if (sibling_ptr < info_ptr)
15881 complaint (&symfile_complaints,
15882 _("DW_AT_sibling points backwards"));
22869d73
KS
15883 else if (sibling_ptr > reader->buffer_end)
15884 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
15885 else
15886 part_die->sibling = sibling_ptr;
15887 }
c906108c 15888 break;
fa4028e9
JB
15889 case DW_AT_byte_size:
15890 part_die->has_byte_size = 1;
15891 break;
ff908ebf
AW
15892 case DW_AT_const_value:
15893 part_die->has_const_value = 1;
15894 break;
68511cec
CES
15895 case DW_AT_calling_convention:
15896 /* DWARF doesn't provide a way to identify a program's source-level
15897 entry point. DW_AT_calling_convention attributes are only meant
15898 to describe functions' calling conventions.
15899
15900 However, because it's a necessary piece of information in
15901 Fortran, and because DW_CC_program is the only piece of debugging
15902 information whose definition refers to a 'main program' at all,
15903 several compilers have begun marking Fortran main programs with
15904 DW_CC_program --- even when those functions use the standard
15905 calling conventions.
15906
15907 So until DWARF specifies a way to provide this information and
15908 compilers pick up the new representation, we'll support this
15909 practice. */
15910 if (DW_UNSND (&attr) == DW_CC_program
15911 && cu->language == language_fortran)
3d548a53 15912 set_objfile_main_name (objfile, part_die->name, language_fortran);
68511cec 15913 break;
481860b3
GB
15914 case DW_AT_inline:
15915 if (DW_UNSND (&attr) == DW_INL_inlined
15916 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15917 part_die->may_be_inlined = 1;
15918 break;
95554aad
TT
15919
15920 case DW_AT_import:
15921 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
15922 {
15923 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15924 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15925 || cu->per_cu->is_dwz);
15926 }
95554aad
TT
15927 break;
15928
c906108c
SS
15929 default:
15930 break;
15931 }
15932 }
15933
91da1414
MW
15934 if (high_pc_relative)
15935 part_die->highpc += part_die->lowpc;
15936
9373cf26
JK
15937 if (has_low_pc_attr && has_high_pc_attr)
15938 {
15939 /* When using the GNU linker, .gnu.linkonce. sections are used to
15940 eliminate duplicate copies of functions and vtables and such.
15941 The linker will arbitrarily choose one and discard the others.
15942 The AT_*_pc values for such functions refer to local labels in
15943 these sections. If the section from that file was discarded, the
15944 labels are not in the output, so the relocs get a value of 0.
15945 If this is a discarded function, mark the pc bounds as invalid,
15946 so that GDB will ignore it. */
15947 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15948 {
bb5ed363 15949 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15950
15951 complaint (&symfile_complaints,
15952 _("DW_AT_low_pc %s is zero "
15953 "for DIE at 0x%x [in module %s]"),
15954 paddress (gdbarch, part_die->lowpc),
4262abfb 15955 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15956 }
15957 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15958 else if (part_die->lowpc >= part_die->highpc)
15959 {
bb5ed363 15960 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15961
15962 complaint (&symfile_complaints,
15963 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15964 "for DIE at 0x%x [in module %s]"),
15965 paddress (gdbarch, part_die->lowpc),
15966 paddress (gdbarch, part_die->highpc),
4262abfb 15967 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15968 }
15969 else
15970 part_die->has_pc_info = 1;
15971 }
85cbf3d3 15972
c906108c
SS
15973 return info_ptr;
15974}
15975
72bf9492
DJ
15976/* Find a cached partial DIE at OFFSET in CU. */
15977
15978static struct partial_die_info *
b64f50a1 15979find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
15980{
15981 struct partial_die_info *lookup_die = NULL;
15982 struct partial_die_info part_die;
15983
15984 part_die.offset = offset;
b64f50a1
JK
15985 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15986 offset.sect_off);
72bf9492 15987
72bf9492
DJ
15988 return lookup_die;
15989}
15990
348e048f
DE
15991/* Find a partial DIE at OFFSET, which may or may not be in CU,
15992 except in the case of .debug_types DIEs which do not reference
15993 outside their CU (they do however referencing other types via
55f1336d 15994 DW_FORM_ref_sig8). */
72bf9492
DJ
15995
15996static struct partial_die_info *
36586728 15997find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 15998{
bb5ed363 15999 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
16000 struct dwarf2_per_cu_data *per_cu = NULL;
16001 struct partial_die_info *pd = NULL;
72bf9492 16002
36586728
TT
16003 if (offset_in_dwz == cu->per_cu->is_dwz
16004 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
16005 {
16006 pd = find_partial_die_in_comp_unit (offset, cu);
16007 if (pd != NULL)
16008 return pd;
0d99eb77
DE
16009 /* We missed recording what we needed.
16010 Load all dies and try again. */
16011 per_cu = cu->per_cu;
5afb4e99 16012 }
0d99eb77
DE
16013 else
16014 {
16015 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 16016 if (cu->per_cu->is_debug_types)
0d99eb77
DE
16017 {
16018 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16019 " external reference to offset 0x%lx [in module %s].\n"),
16020 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16021 bfd_get_filename (objfile->obfd));
16022 }
36586728
TT
16023 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16024 objfile);
72bf9492 16025
0d99eb77
DE
16026 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16027 load_partial_comp_unit (per_cu);
ae038cb0 16028
0d99eb77
DE
16029 per_cu->cu->last_used = 0;
16030 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16031 }
5afb4e99 16032
dee91e82
DE
16033 /* If we didn't find it, and not all dies have been loaded,
16034 load them all and try again. */
16035
5afb4e99
DJ
16036 if (pd == NULL && per_cu->load_all_dies == 0)
16037 {
5afb4e99 16038 per_cu->load_all_dies = 1;
fd820528
DE
16039
16040 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16041 THIS_CU->cu may already be in use. So we can't just free it and
16042 replace its DIEs with the ones we read in. Instead, we leave those
16043 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16044 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16045 set. */
dee91e82 16046 load_partial_comp_unit (per_cu);
5afb4e99
DJ
16047
16048 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16049 }
16050
16051 if (pd == NULL)
16052 internal_error (__FILE__, __LINE__,
3e43a32a
MS
16053 _("could not find partial DIE 0x%x "
16054 "in cache [from module %s]\n"),
b64f50a1 16055 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 16056 return pd;
72bf9492
DJ
16057}
16058
abc72ce4
DE
16059/* See if we can figure out if the class lives in a namespace. We do
16060 this by looking for a member function; its demangled name will
16061 contain namespace info, if there is any. */
16062
16063static void
16064guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16065 struct dwarf2_cu *cu)
16066{
16067 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16068 what template types look like, because the demangler
16069 frequently doesn't give the same name as the debug info. We
16070 could fix this by only using the demangled name to get the
16071 prefix (but see comment in read_structure_type). */
16072
16073 struct partial_die_info *real_pdi;
16074 struct partial_die_info *child_pdi;
16075
16076 /* If this DIE (this DIE's specification, if any) has a parent, then
16077 we should not do this. We'll prepend the parent's fully qualified
16078 name when we create the partial symbol. */
16079
16080 real_pdi = struct_pdi;
16081 while (real_pdi->has_specification)
36586728
TT
16082 real_pdi = find_partial_die (real_pdi->spec_offset,
16083 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
16084
16085 if (real_pdi->die_parent != NULL)
16086 return;
16087
16088 for (child_pdi = struct_pdi->die_child;
16089 child_pdi != NULL;
16090 child_pdi = child_pdi->die_sibling)
16091 {
16092 if (child_pdi->tag == DW_TAG_subprogram
16093 && child_pdi->linkage_name != NULL)
16094 {
16095 char *actual_class_name
16096 = language_class_name_from_physname (cu->language_defn,
16097 child_pdi->linkage_name);
16098 if (actual_class_name != NULL)
16099 {
16100 struct_pdi->name
34a68019 16101 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb
TT
16102 actual_class_name,
16103 strlen (actual_class_name));
abc72ce4
DE
16104 xfree (actual_class_name);
16105 }
16106 break;
16107 }
16108 }
16109}
16110
72bf9492
DJ
16111/* Adjust PART_DIE before generating a symbol for it. This function
16112 may set the is_external flag or change the DIE's name. */
16113
16114static void
16115fixup_partial_die (struct partial_die_info *part_die,
16116 struct dwarf2_cu *cu)
16117{
abc72ce4
DE
16118 /* Once we've fixed up a die, there's no point in doing so again.
16119 This also avoids a memory leak if we were to call
16120 guess_partial_die_structure_name multiple times. */
16121 if (part_die->fixup_called)
16122 return;
16123
72bf9492
DJ
16124 /* If we found a reference attribute and the DIE has no name, try
16125 to find a name in the referred to DIE. */
16126
16127 if (part_die->name == NULL && part_die->has_specification)
16128 {
16129 struct partial_die_info *spec_die;
72bf9492 16130
36586728
TT
16131 spec_die = find_partial_die (part_die->spec_offset,
16132 part_die->spec_is_dwz, cu);
72bf9492 16133
10b3939b 16134 fixup_partial_die (spec_die, cu);
72bf9492
DJ
16135
16136 if (spec_die->name)
16137 {
16138 part_die->name = spec_die->name;
16139
16140 /* Copy DW_AT_external attribute if it is set. */
16141 if (spec_die->is_external)
16142 part_die->is_external = spec_die->is_external;
16143 }
16144 }
16145
16146 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
16147
16148 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 16149 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 16150
abc72ce4
DE
16151 /* If there is no parent die to provide a namespace, and there are
16152 children, see if we can determine the namespace from their linkage
122d1940 16153 name. */
abc72ce4 16154 if (cu->language == language_cplus
8b70b953 16155 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
16156 && part_die->die_parent == NULL
16157 && part_die->has_children
16158 && (part_die->tag == DW_TAG_class_type
16159 || part_die->tag == DW_TAG_structure_type
16160 || part_die->tag == DW_TAG_union_type))
16161 guess_partial_die_structure_name (part_die, cu);
16162
53832f31
TT
16163 /* GCC might emit a nameless struct or union that has a linkage
16164 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16165 if (part_die->name == NULL
96408a79
SA
16166 && (part_die->tag == DW_TAG_class_type
16167 || part_die->tag == DW_TAG_interface_type
16168 || part_die->tag == DW_TAG_structure_type
16169 || part_die->tag == DW_TAG_union_type)
53832f31
TT
16170 && part_die->linkage_name != NULL)
16171 {
16172 char *demangled;
16173
8de20a37 16174 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
16175 if (demangled)
16176 {
96408a79
SA
16177 const char *base;
16178
16179 /* Strip any leading namespaces/classes, keep only the base name.
16180 DW_AT_name for named DIEs does not contain the prefixes. */
16181 base = strrchr (demangled, ':');
16182 if (base && base > demangled && base[-1] == ':')
16183 base++;
16184 else
16185 base = demangled;
16186
34a68019
TT
16187 part_die->name
16188 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16189 base, strlen (base));
53832f31
TT
16190 xfree (demangled);
16191 }
16192 }
16193
abc72ce4 16194 part_die->fixup_called = 1;
72bf9492
DJ
16195}
16196
a8329558 16197/* Read an attribute value described by an attribute form. */
c906108c 16198
d521ce57 16199static const gdb_byte *
dee91e82
DE
16200read_attribute_value (const struct die_reader_specs *reader,
16201 struct attribute *attr, unsigned form,
d521ce57 16202 const gdb_byte *info_ptr)
c906108c 16203{
dee91e82 16204 struct dwarf2_cu *cu = reader->cu;
3e29f34a
MR
16205 struct objfile *objfile = cu->objfile;
16206 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 16207 bfd *abfd = reader->abfd;
e7c27a73 16208 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16209 unsigned int bytes_read;
16210 struct dwarf_block *blk;
16211
aead7601 16212 attr->form = (enum dwarf_form) form;
a8329558 16213 switch (form)
c906108c 16214 {
c906108c 16215 case DW_FORM_ref_addr:
ae411497 16216 if (cu->header.version == 2)
4568ecf9 16217 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 16218 else
4568ecf9
DE
16219 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16220 &cu->header, &bytes_read);
ae411497
TT
16221 info_ptr += bytes_read;
16222 break;
36586728
TT
16223 case DW_FORM_GNU_ref_alt:
16224 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16225 info_ptr += bytes_read;
16226 break;
ae411497 16227 case DW_FORM_addr:
e7c27a73 16228 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 16229 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 16230 info_ptr += bytes_read;
c906108c
SS
16231 break;
16232 case DW_FORM_block2:
7b5a2f43 16233 blk = dwarf_alloc_block (cu);
c906108c
SS
16234 blk->size = read_2_bytes (abfd, info_ptr);
16235 info_ptr += 2;
16236 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16237 info_ptr += blk->size;
16238 DW_BLOCK (attr) = blk;
16239 break;
16240 case DW_FORM_block4:
7b5a2f43 16241 blk = dwarf_alloc_block (cu);
c906108c
SS
16242 blk->size = read_4_bytes (abfd, info_ptr);
16243 info_ptr += 4;
16244 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16245 info_ptr += blk->size;
16246 DW_BLOCK (attr) = blk;
16247 break;
16248 case DW_FORM_data2:
16249 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16250 info_ptr += 2;
16251 break;
16252 case DW_FORM_data4:
16253 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16254 info_ptr += 4;
16255 break;
16256 case DW_FORM_data8:
16257 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16258 info_ptr += 8;
16259 break;
2dc7f7b3
TT
16260 case DW_FORM_sec_offset:
16261 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16262 info_ptr += bytes_read;
16263 break;
c906108c 16264 case DW_FORM_string:
9b1c24c8 16265 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 16266 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
16267 info_ptr += bytes_read;
16268 break;
4bdf3d34 16269 case DW_FORM_strp:
36586728
TT
16270 if (!cu->per_cu->is_dwz)
16271 {
16272 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16273 &bytes_read);
16274 DW_STRING_IS_CANONICAL (attr) = 0;
16275 info_ptr += bytes_read;
16276 break;
16277 }
16278 /* FALLTHROUGH */
16279 case DW_FORM_GNU_strp_alt:
16280 {
16281 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16282 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16283 &bytes_read);
16284
16285 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16286 DW_STRING_IS_CANONICAL (attr) = 0;
16287 info_ptr += bytes_read;
16288 }
4bdf3d34 16289 break;
2dc7f7b3 16290 case DW_FORM_exprloc:
c906108c 16291 case DW_FORM_block:
7b5a2f43 16292 blk = dwarf_alloc_block (cu);
c906108c
SS
16293 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16294 info_ptr += bytes_read;
16295 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16296 info_ptr += blk->size;
16297 DW_BLOCK (attr) = blk;
16298 break;
16299 case DW_FORM_block1:
7b5a2f43 16300 blk = dwarf_alloc_block (cu);
c906108c
SS
16301 blk->size = read_1_byte (abfd, info_ptr);
16302 info_ptr += 1;
16303 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16304 info_ptr += blk->size;
16305 DW_BLOCK (attr) = blk;
16306 break;
16307 case DW_FORM_data1:
16308 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16309 info_ptr += 1;
16310 break;
16311 case DW_FORM_flag:
16312 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16313 info_ptr += 1;
16314 break;
2dc7f7b3
TT
16315 case DW_FORM_flag_present:
16316 DW_UNSND (attr) = 1;
16317 break;
c906108c
SS
16318 case DW_FORM_sdata:
16319 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16320 info_ptr += bytes_read;
16321 break;
16322 case DW_FORM_udata:
16323 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16324 info_ptr += bytes_read;
16325 break;
16326 case DW_FORM_ref1:
4568ecf9
DE
16327 DW_UNSND (attr) = (cu->header.offset.sect_off
16328 + read_1_byte (abfd, info_ptr));
c906108c
SS
16329 info_ptr += 1;
16330 break;
16331 case DW_FORM_ref2:
4568ecf9
DE
16332 DW_UNSND (attr) = (cu->header.offset.sect_off
16333 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16334 info_ptr += 2;
16335 break;
16336 case DW_FORM_ref4:
4568ecf9
DE
16337 DW_UNSND (attr) = (cu->header.offset.sect_off
16338 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16339 info_ptr += 4;
16340 break;
613e1657 16341 case DW_FORM_ref8:
4568ecf9
DE
16342 DW_UNSND (attr) = (cu->header.offset.sect_off
16343 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16344 info_ptr += 8;
16345 break;
55f1336d 16346 case DW_FORM_ref_sig8:
ac9ec31b 16347 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16348 info_ptr += 8;
16349 break;
c906108c 16350 case DW_FORM_ref_udata:
4568ecf9
DE
16351 DW_UNSND (attr) = (cu->header.offset.sect_off
16352 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16353 info_ptr += bytes_read;
16354 break;
c906108c 16355 case DW_FORM_indirect:
a8329558
KW
16356 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16357 info_ptr += bytes_read;
dee91e82 16358 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 16359 break;
3019eac3
DE
16360 case DW_FORM_GNU_addr_index:
16361 if (reader->dwo_file == NULL)
16362 {
16363 /* For now flag a hard error.
16364 Later we can turn this into a complaint. */
16365 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16366 dwarf_form_name (form),
16367 bfd_get_filename (abfd));
16368 }
16369 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16370 info_ptr += bytes_read;
16371 break;
16372 case DW_FORM_GNU_str_index:
16373 if (reader->dwo_file == NULL)
16374 {
16375 /* For now flag a hard error.
16376 Later we can turn this into a complaint if warranted. */
16377 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16378 dwarf_form_name (form),
16379 bfd_get_filename (abfd));
16380 }
16381 {
16382 ULONGEST str_index =
16383 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16384
342587c4 16385 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16386 DW_STRING_IS_CANONICAL (attr) = 0;
16387 info_ptr += bytes_read;
16388 }
16389 break;
c906108c 16390 default:
8a3fe4f8 16391 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16392 dwarf_form_name (form),
16393 bfd_get_filename (abfd));
c906108c 16394 }
28e94949 16395
36586728 16396 /* Super hack. */
7771576e 16397 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16398 attr->form = DW_FORM_GNU_ref_alt;
16399
28e94949
JB
16400 /* We have seen instances where the compiler tried to emit a byte
16401 size attribute of -1 which ended up being encoded as an unsigned
16402 0xffffffff. Although 0xffffffff is technically a valid size value,
16403 an object of this size seems pretty unlikely so we can relatively
16404 safely treat these cases as if the size attribute was invalid and
16405 treat them as zero by default. */
16406 if (attr->name == DW_AT_byte_size
16407 && form == DW_FORM_data4
16408 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16409 {
16410 complaint
16411 (&symfile_complaints,
43bbcdc2
PH
16412 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16413 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16414 DW_UNSND (attr) = 0;
16415 }
28e94949 16416
c906108c
SS
16417 return info_ptr;
16418}
16419
a8329558
KW
16420/* Read an attribute described by an abbreviated attribute. */
16421
d521ce57 16422static const gdb_byte *
dee91e82
DE
16423read_attribute (const struct die_reader_specs *reader,
16424 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16425 const gdb_byte *info_ptr)
a8329558
KW
16426{
16427 attr->name = abbrev->name;
dee91e82 16428 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
16429}
16430
0963b4bd 16431/* Read dwarf information from a buffer. */
c906108c
SS
16432
16433static unsigned int
a1855c1d 16434read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16435{
fe1b8b76 16436 return bfd_get_8 (abfd, buf);
c906108c
SS
16437}
16438
16439static int
a1855c1d 16440read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16441{
fe1b8b76 16442 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16443}
16444
16445static unsigned int
a1855c1d 16446read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16447{
fe1b8b76 16448 return bfd_get_16 (abfd, buf);
c906108c
SS
16449}
16450
21ae7a4d 16451static int
a1855c1d 16452read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16453{
16454 return bfd_get_signed_16 (abfd, buf);
16455}
16456
c906108c 16457static unsigned int
a1855c1d 16458read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16459{
fe1b8b76 16460 return bfd_get_32 (abfd, buf);
c906108c
SS
16461}
16462
21ae7a4d 16463static int
a1855c1d 16464read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16465{
16466 return bfd_get_signed_32 (abfd, buf);
16467}
16468
93311388 16469static ULONGEST
a1855c1d 16470read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16471{
fe1b8b76 16472 return bfd_get_64 (abfd, buf);
c906108c
SS
16473}
16474
16475static CORE_ADDR
d521ce57 16476read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16477 unsigned int *bytes_read)
c906108c 16478{
e7c27a73 16479 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16480 CORE_ADDR retval = 0;
16481
107d2387 16482 if (cu_header->signed_addr_p)
c906108c 16483 {
107d2387
AC
16484 switch (cu_header->addr_size)
16485 {
16486 case 2:
fe1b8b76 16487 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16488 break;
16489 case 4:
fe1b8b76 16490 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16491 break;
16492 case 8:
fe1b8b76 16493 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16494 break;
16495 default:
8e65ff28 16496 internal_error (__FILE__, __LINE__,
e2e0b3e5 16497 _("read_address: bad switch, signed [in module %s]"),
659b0389 16498 bfd_get_filename (abfd));
107d2387
AC
16499 }
16500 }
16501 else
16502 {
16503 switch (cu_header->addr_size)
16504 {
16505 case 2:
fe1b8b76 16506 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16507 break;
16508 case 4:
fe1b8b76 16509 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16510 break;
16511 case 8:
fe1b8b76 16512 retval = bfd_get_64 (abfd, buf);
107d2387
AC
16513 break;
16514 default:
8e65ff28 16515 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
16516 _("read_address: bad switch, "
16517 "unsigned [in module %s]"),
659b0389 16518 bfd_get_filename (abfd));
107d2387 16519 }
c906108c 16520 }
64367e0a 16521
107d2387
AC
16522 *bytes_read = cu_header->addr_size;
16523 return retval;
c906108c
SS
16524}
16525
f7ef9339 16526/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
16527 specification allows the initial length to take up either 4 bytes
16528 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16529 bytes describe the length and all offsets will be 8 bytes in length
16530 instead of 4.
16531
f7ef9339
KB
16532 An older, non-standard 64-bit format is also handled by this
16533 function. The older format in question stores the initial length
16534 as an 8-byte quantity without an escape value. Lengths greater
16535 than 2^32 aren't very common which means that the initial 4 bytes
16536 is almost always zero. Since a length value of zero doesn't make
16537 sense for the 32-bit format, this initial zero can be considered to
16538 be an escape value which indicates the presence of the older 64-bit
16539 format. As written, the code can't detect (old format) lengths
917c78fc
MK
16540 greater than 4GB. If it becomes necessary to handle lengths
16541 somewhat larger than 4GB, we could allow other small values (such
16542 as the non-sensical values of 1, 2, and 3) to also be used as
16543 escape values indicating the presence of the old format.
f7ef9339 16544
917c78fc
MK
16545 The value returned via bytes_read should be used to increment the
16546 relevant pointer after calling read_initial_length().
c764a876 16547
613e1657
KB
16548 [ Note: read_initial_length() and read_offset() are based on the
16549 document entitled "DWARF Debugging Information Format", revision
f7ef9339 16550 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
16551 from:
16552
f7ef9339 16553 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 16554
613e1657
KB
16555 This document is only a draft and is subject to change. (So beware.)
16556
f7ef9339 16557 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
16558 determined empirically by examining 64-bit ELF files produced by
16559 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
16560
16561 - Kevin, July 16, 2002
613e1657
KB
16562 ] */
16563
16564static LONGEST
d521ce57 16565read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 16566{
fe1b8b76 16567 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 16568
dd373385 16569 if (length == 0xffffffff)
613e1657 16570 {
fe1b8b76 16571 length = bfd_get_64 (abfd, buf + 4);
613e1657 16572 *bytes_read = 12;
613e1657 16573 }
dd373385 16574 else if (length == 0)
f7ef9339 16575 {
dd373385 16576 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 16577 length = bfd_get_64 (abfd, buf);
f7ef9339 16578 *bytes_read = 8;
f7ef9339 16579 }
613e1657
KB
16580 else
16581 {
16582 *bytes_read = 4;
613e1657
KB
16583 }
16584
c764a876
DE
16585 return length;
16586}
dd373385 16587
c764a876
DE
16588/* Cover function for read_initial_length.
16589 Returns the length of the object at BUF, and stores the size of the
16590 initial length in *BYTES_READ and stores the size that offsets will be in
16591 *OFFSET_SIZE.
16592 If the initial length size is not equivalent to that specified in
16593 CU_HEADER then issue a complaint.
16594 This is useful when reading non-comp-unit headers. */
dd373385 16595
c764a876 16596static LONGEST
d521ce57 16597read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
16598 const struct comp_unit_head *cu_header,
16599 unsigned int *bytes_read,
16600 unsigned int *offset_size)
16601{
16602 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16603
16604 gdb_assert (cu_header->initial_length_size == 4
16605 || cu_header->initial_length_size == 8
16606 || cu_header->initial_length_size == 12);
16607
16608 if (cu_header->initial_length_size != *bytes_read)
16609 complaint (&symfile_complaints,
16610 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16611
c764a876 16612 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16613 return length;
613e1657
KB
16614}
16615
16616/* Read an offset from the data stream. The size of the offset is
917c78fc 16617 given by cu_header->offset_size. */
613e1657
KB
16618
16619static LONGEST
d521ce57
TT
16620read_offset (bfd *abfd, const gdb_byte *buf,
16621 const struct comp_unit_head *cu_header,
891d2f0b 16622 unsigned int *bytes_read)
c764a876
DE
16623{
16624 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16625
c764a876
DE
16626 *bytes_read = cu_header->offset_size;
16627 return offset;
16628}
16629
16630/* Read an offset from the data stream. */
16631
16632static LONGEST
d521ce57 16633read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16634{
16635 LONGEST retval = 0;
16636
c764a876 16637 switch (offset_size)
613e1657
KB
16638 {
16639 case 4:
fe1b8b76 16640 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16641 break;
16642 case 8:
fe1b8b76 16643 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16644 break;
16645 default:
8e65ff28 16646 internal_error (__FILE__, __LINE__,
c764a876 16647 _("read_offset_1: bad switch [in module %s]"),
659b0389 16648 bfd_get_filename (abfd));
613e1657
KB
16649 }
16650
917c78fc 16651 return retval;
613e1657
KB
16652}
16653
d521ce57
TT
16654static const gdb_byte *
16655read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16656{
16657 /* If the size of a host char is 8 bits, we can return a pointer
16658 to the buffer, otherwise we have to copy the data to a buffer
16659 allocated on the temporary obstack. */
4bdf3d34 16660 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16661 return buf;
c906108c
SS
16662}
16663
d521ce57
TT
16664static const char *
16665read_direct_string (bfd *abfd, const gdb_byte *buf,
16666 unsigned int *bytes_read_ptr)
c906108c
SS
16667{
16668 /* If the size of a host char is 8 bits, we can return a pointer
16669 to the string, otherwise we have to copy the string to a buffer
16670 allocated on the temporary obstack. */
4bdf3d34 16671 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
16672 if (*buf == '\0')
16673 {
16674 *bytes_read_ptr = 1;
16675 return NULL;
16676 }
d521ce57
TT
16677 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16678 return (const char *) buf;
4bdf3d34
JJ
16679}
16680
d521ce57 16681static const char *
cf2c3c16 16682read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 16683{
be391dca 16684 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 16685 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
16686 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16687 bfd_get_filename (abfd));
dce234bc 16688 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
16689 error (_("DW_FORM_strp pointing outside of "
16690 ".debug_str section [in module %s]"),
16691 bfd_get_filename (abfd));
4bdf3d34 16692 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 16693 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 16694 return NULL;
d521ce57 16695 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
16696}
16697
36586728
TT
16698/* Read a string at offset STR_OFFSET in the .debug_str section from
16699 the .dwz file DWZ. Throw an error if the offset is too large. If
16700 the string consists of a single NUL byte, return NULL; otherwise
16701 return a pointer to the string. */
16702
d521ce57 16703static const char *
36586728
TT
16704read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16705{
16706 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16707
16708 if (dwz->str.buffer == NULL)
16709 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16710 "section [in module %s]"),
16711 bfd_get_filename (dwz->dwz_bfd));
16712 if (str_offset >= dwz->str.size)
16713 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16714 ".debug_str section [in module %s]"),
16715 bfd_get_filename (dwz->dwz_bfd));
16716 gdb_assert (HOST_CHAR_BIT == 8);
16717 if (dwz->str.buffer[str_offset] == '\0')
16718 return NULL;
d521ce57 16719 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
16720}
16721
d521ce57
TT
16722static const char *
16723read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
16724 const struct comp_unit_head *cu_header,
16725 unsigned int *bytes_read_ptr)
16726{
16727 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16728
16729 return read_indirect_string_at_offset (abfd, str_offset);
16730}
16731
12df843f 16732static ULONGEST
d521ce57
TT
16733read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16734 unsigned int *bytes_read_ptr)
c906108c 16735{
12df843f 16736 ULONGEST result;
ce5d95e1 16737 unsigned int num_read;
c906108c
SS
16738 int i, shift;
16739 unsigned char byte;
16740
16741 result = 0;
16742 shift = 0;
16743 num_read = 0;
16744 i = 0;
16745 while (1)
16746 {
fe1b8b76 16747 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16748 buf++;
16749 num_read++;
12df843f 16750 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
16751 if ((byte & 128) == 0)
16752 {
16753 break;
16754 }
16755 shift += 7;
16756 }
16757 *bytes_read_ptr = num_read;
16758 return result;
16759}
16760
12df843f 16761static LONGEST
d521ce57
TT
16762read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16763 unsigned int *bytes_read_ptr)
c906108c 16764{
12df843f 16765 LONGEST result;
77e0b926 16766 int i, shift, num_read;
c906108c
SS
16767 unsigned char byte;
16768
16769 result = 0;
16770 shift = 0;
c906108c
SS
16771 num_read = 0;
16772 i = 0;
16773 while (1)
16774 {
fe1b8b76 16775 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16776 buf++;
16777 num_read++;
12df843f 16778 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
16779 shift += 7;
16780 if ((byte & 128) == 0)
16781 {
16782 break;
16783 }
16784 }
77e0b926 16785 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 16786 result |= -(((LONGEST) 1) << shift);
c906108c
SS
16787 *bytes_read_ptr = num_read;
16788 return result;
16789}
16790
3019eac3
DE
16791/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16792 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16793 ADDR_SIZE is the size of addresses from the CU header. */
16794
16795static CORE_ADDR
16796read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16797{
16798 struct objfile *objfile = dwarf2_per_objfile->objfile;
16799 bfd *abfd = objfile->obfd;
16800 const gdb_byte *info_ptr;
16801
16802 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16803 if (dwarf2_per_objfile->addr.buffer == NULL)
16804 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 16805 objfile_name (objfile));
3019eac3
DE
16806 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16807 error (_("DW_FORM_addr_index pointing outside of "
16808 ".debug_addr section [in module %s]"),
4262abfb 16809 objfile_name (objfile));
3019eac3
DE
16810 info_ptr = (dwarf2_per_objfile->addr.buffer
16811 + addr_base + addr_index * addr_size);
16812 if (addr_size == 4)
16813 return bfd_get_32 (abfd, info_ptr);
16814 else
16815 return bfd_get_64 (abfd, info_ptr);
16816}
16817
16818/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16819
16820static CORE_ADDR
16821read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16822{
16823 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16824}
16825
16826/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16827
16828static CORE_ADDR
d521ce57 16829read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
16830 unsigned int *bytes_read)
16831{
16832 bfd *abfd = cu->objfile->obfd;
16833 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16834
16835 return read_addr_index (cu, addr_index);
16836}
16837
16838/* Data structure to pass results from dwarf2_read_addr_index_reader
16839 back to dwarf2_read_addr_index. */
16840
16841struct dwarf2_read_addr_index_data
16842{
16843 ULONGEST addr_base;
16844 int addr_size;
16845};
16846
16847/* die_reader_func for dwarf2_read_addr_index. */
16848
16849static void
16850dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 16851 const gdb_byte *info_ptr,
3019eac3
DE
16852 struct die_info *comp_unit_die,
16853 int has_children,
16854 void *data)
16855{
16856 struct dwarf2_cu *cu = reader->cu;
16857 struct dwarf2_read_addr_index_data *aidata =
16858 (struct dwarf2_read_addr_index_data *) data;
16859
16860 aidata->addr_base = cu->addr_base;
16861 aidata->addr_size = cu->header.addr_size;
16862}
16863
16864/* Given an index in .debug_addr, fetch the value.
16865 NOTE: This can be called during dwarf expression evaluation,
16866 long after the debug information has been read, and thus per_cu->cu
16867 may no longer exist. */
16868
16869CORE_ADDR
16870dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16871 unsigned int addr_index)
16872{
16873 struct objfile *objfile = per_cu->objfile;
16874 struct dwarf2_cu *cu = per_cu->cu;
16875 ULONGEST addr_base;
16876 int addr_size;
16877
16878 /* This is intended to be called from outside this file. */
16879 dw2_setup (objfile);
16880
16881 /* We need addr_base and addr_size.
16882 If we don't have PER_CU->cu, we have to get it.
16883 Nasty, but the alternative is storing the needed info in PER_CU,
16884 which at this point doesn't seem justified: it's not clear how frequently
16885 it would get used and it would increase the size of every PER_CU.
16886 Entry points like dwarf2_per_cu_addr_size do a similar thing
16887 so we're not in uncharted territory here.
16888 Alas we need to be a bit more complicated as addr_base is contained
16889 in the DIE.
16890
16891 We don't need to read the entire CU(/TU).
16892 We just need the header and top level die.
a1b64ce1 16893
3019eac3 16894 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 16895 For now we skip this optimization. */
3019eac3
DE
16896
16897 if (cu != NULL)
16898 {
16899 addr_base = cu->addr_base;
16900 addr_size = cu->header.addr_size;
16901 }
16902 else
16903 {
16904 struct dwarf2_read_addr_index_data aidata;
16905
a1b64ce1
DE
16906 /* Note: We can't use init_cutu_and_read_dies_simple here,
16907 we need addr_base. */
16908 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16909 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
16910 addr_base = aidata.addr_base;
16911 addr_size = aidata.addr_size;
16912 }
16913
16914 return read_addr_index_1 (addr_index, addr_base, addr_size);
16915}
16916
57d63ce2
DE
16917/* Given a DW_FORM_GNU_str_index, fetch the string.
16918 This is only used by the Fission support. */
3019eac3 16919
d521ce57 16920static const char *
342587c4 16921read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
16922{
16923 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 16924 const char *objf_name = objfile_name (objfile);
3019eac3 16925 bfd *abfd = objfile->obfd;
342587c4 16926 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
16927 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16928 struct dwarf2_section_info *str_offsets_section =
16929 &reader->dwo_file->sections.str_offsets;
d521ce57 16930 const gdb_byte *info_ptr;
3019eac3 16931 ULONGEST str_offset;
57d63ce2 16932 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 16933
73869dc2
DE
16934 dwarf2_read_section (objfile, str_section);
16935 dwarf2_read_section (objfile, str_offsets_section);
16936 if (str_section->buffer == NULL)
57d63ce2 16937 error (_("%s used without .debug_str.dwo section"
3019eac3 16938 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16939 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16940 if (str_offsets_section->buffer == NULL)
57d63ce2 16941 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 16942 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16943 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16944 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 16945 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 16946 " section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16947 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16948 info_ptr = (str_offsets_section->buffer
3019eac3
DE
16949 + str_index * cu->header.offset_size);
16950 if (cu->header.offset_size == 4)
16951 str_offset = bfd_get_32 (abfd, info_ptr);
16952 else
16953 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 16954 if (str_offset >= str_section->size)
57d63ce2 16955 error (_("Offset from %s pointing outside of"
3019eac3 16956 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16957 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16958 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
16959}
16960
3019eac3
DE
16961/* Return the length of an LEB128 number in BUF. */
16962
16963static int
16964leb128_size (const gdb_byte *buf)
16965{
16966 const gdb_byte *begin = buf;
16967 gdb_byte byte;
16968
16969 while (1)
16970 {
16971 byte = *buf++;
16972 if ((byte & 128) == 0)
16973 return buf - begin;
16974 }
16975}
16976
c906108c 16977static void
e142c38c 16978set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
16979{
16980 switch (lang)
16981 {
16982 case DW_LANG_C89:
76bee0cc 16983 case DW_LANG_C99:
0cfd832f 16984 case DW_LANG_C11:
c906108c 16985 case DW_LANG_C:
d1be3247 16986 case DW_LANG_UPC:
e142c38c 16987 cu->language = language_c;
c906108c
SS
16988 break;
16989 case DW_LANG_C_plus_plus:
0cfd832f
MW
16990 case DW_LANG_C_plus_plus_11:
16991 case DW_LANG_C_plus_plus_14:
e142c38c 16992 cu->language = language_cplus;
c906108c 16993 break;
6aecb9c2
JB
16994 case DW_LANG_D:
16995 cu->language = language_d;
16996 break;
c906108c
SS
16997 case DW_LANG_Fortran77:
16998 case DW_LANG_Fortran90:
b21b22e0 16999 case DW_LANG_Fortran95:
f7de9aab
MW
17000 case DW_LANG_Fortran03:
17001 case DW_LANG_Fortran08:
e142c38c 17002 cu->language = language_fortran;
c906108c 17003 break;
a766d390
DE
17004 case DW_LANG_Go:
17005 cu->language = language_go;
17006 break;
c906108c 17007 case DW_LANG_Mips_Assembler:
e142c38c 17008 cu->language = language_asm;
c906108c 17009 break;
bebd888e 17010 case DW_LANG_Java:
e142c38c 17011 cu->language = language_java;
bebd888e 17012 break;
c906108c 17013 case DW_LANG_Ada83:
8aaf0b47 17014 case DW_LANG_Ada95:
bc5f45f8
JB
17015 cu->language = language_ada;
17016 break;
72019c9c
GM
17017 case DW_LANG_Modula2:
17018 cu->language = language_m2;
17019 break;
fe8e67fd
PM
17020 case DW_LANG_Pascal83:
17021 cu->language = language_pascal;
17022 break;
22566fbd
DJ
17023 case DW_LANG_ObjC:
17024 cu->language = language_objc;
17025 break;
c906108c
SS
17026 case DW_LANG_Cobol74:
17027 case DW_LANG_Cobol85:
c906108c 17028 default:
e142c38c 17029 cu->language = language_minimal;
c906108c
SS
17030 break;
17031 }
e142c38c 17032 cu->language_defn = language_def (cu->language);
c906108c
SS
17033}
17034
17035/* Return the named attribute or NULL if not there. */
17036
17037static struct attribute *
e142c38c 17038dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 17039{
a48e046c 17040 for (;;)
c906108c 17041 {
a48e046c
TT
17042 unsigned int i;
17043 struct attribute *spec = NULL;
17044
17045 for (i = 0; i < die->num_attrs; ++i)
17046 {
17047 if (die->attrs[i].name == name)
17048 return &die->attrs[i];
17049 if (die->attrs[i].name == DW_AT_specification
17050 || die->attrs[i].name == DW_AT_abstract_origin)
17051 spec = &die->attrs[i];
17052 }
17053
17054 if (!spec)
17055 break;
c906108c 17056
f2f0e013 17057 die = follow_die_ref (die, spec, &cu);
f2f0e013 17058 }
c5aa993b 17059
c906108c
SS
17060 return NULL;
17061}
17062
348e048f
DE
17063/* Return the named attribute or NULL if not there,
17064 but do not follow DW_AT_specification, etc.
17065 This is for use in contexts where we're reading .debug_types dies.
17066 Following DW_AT_specification, DW_AT_abstract_origin will take us
17067 back up the chain, and we want to go down. */
17068
17069static struct attribute *
45e58e77 17070dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
17071{
17072 unsigned int i;
17073
17074 for (i = 0; i < die->num_attrs; ++i)
17075 if (die->attrs[i].name == name)
17076 return &die->attrs[i];
17077
17078 return NULL;
17079}
17080
7d45c7c3
KB
17081/* Return the string associated with a string-typed attribute, or NULL if it
17082 is either not found or is of an incorrect type. */
17083
17084static const char *
17085dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17086{
17087 struct attribute *attr;
17088 const char *str = NULL;
17089
17090 attr = dwarf2_attr (die, name, cu);
17091
17092 if (attr != NULL)
17093 {
17094 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17095 || attr->form == DW_FORM_GNU_strp_alt)
17096 str = DW_STRING (attr);
17097 else
17098 complaint (&symfile_complaints,
17099 _("string type expected for attribute %s for "
17100 "DIE at 0x%x in module %s"),
17101 dwarf_attr_name (name), die->offset.sect_off,
17102 objfile_name (cu->objfile));
17103 }
17104
17105 return str;
17106}
17107
05cf31d1
JB
17108/* Return non-zero iff the attribute NAME is defined for the given DIE,
17109 and holds a non-zero value. This function should only be used for
2dc7f7b3 17110 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
17111
17112static int
17113dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17114{
17115 struct attribute *attr = dwarf2_attr (die, name, cu);
17116
17117 return (attr && DW_UNSND (attr));
17118}
17119
3ca72b44 17120static int
e142c38c 17121die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 17122{
05cf31d1
JB
17123 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17124 which value is non-zero. However, we have to be careful with
17125 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17126 (via dwarf2_flag_true_p) follows this attribute. So we may
17127 end up accidently finding a declaration attribute that belongs
17128 to a different DIE referenced by the specification attribute,
17129 even though the given DIE does not have a declaration attribute. */
17130 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17131 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
17132}
17133
63d06c5c 17134/* Return the die giving the specification for DIE, if there is
f2f0e013 17135 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
17136 containing the return value on output. If there is no
17137 specification, but there is an abstract origin, that is
17138 returned. */
63d06c5c
DC
17139
17140static struct die_info *
f2f0e013 17141die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 17142{
f2f0e013
DJ
17143 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17144 *spec_cu);
63d06c5c 17145
edb3359d
DJ
17146 if (spec_attr == NULL)
17147 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17148
63d06c5c
DC
17149 if (spec_attr == NULL)
17150 return NULL;
17151 else
f2f0e013 17152 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 17153}
c906108c 17154
debd256d 17155/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
17156 refers to.
17157 NOTE: This is also used as a "cleanup" function. */
17158
debd256d
JB
17159static void
17160free_line_header (struct line_header *lh)
17161{
17162 if (lh->standard_opcode_lengths)
a8bc7b56 17163 xfree (lh->standard_opcode_lengths);
debd256d
JB
17164
17165 /* Remember that all the lh->file_names[i].name pointers are
17166 pointers into debug_line_buffer, and don't need to be freed. */
17167 if (lh->file_names)
a8bc7b56 17168 xfree (lh->file_names);
debd256d
JB
17169
17170 /* Similarly for the include directory names. */
17171 if (lh->include_dirs)
a8bc7b56 17172 xfree (lh->include_dirs);
debd256d 17173
a8bc7b56 17174 xfree (lh);
debd256d
JB
17175}
17176
527f3840
JK
17177/* Stub for free_line_header to match void * callback types. */
17178
17179static void
17180free_line_header_voidp (void *arg)
17181{
17182 struct line_header *lh = arg;
17183
17184 free_line_header (lh);
17185}
17186
debd256d 17187/* Add an entry to LH's include directory table. */
ae2de4f8 17188
debd256d 17189static void
d521ce57 17190add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 17191{
27e0867f
DE
17192 if (dwarf_line_debug >= 2)
17193 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17194 lh->num_include_dirs + 1, include_dir);
17195
debd256d
JB
17196 /* Grow the array if necessary. */
17197 if (lh->include_dirs_size == 0)
c5aa993b 17198 {
debd256d 17199 lh->include_dirs_size = 1; /* for testing */
8d749320 17200 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
debd256d
JB
17201 }
17202 else if (lh->num_include_dirs >= lh->include_dirs_size)
17203 {
17204 lh->include_dirs_size *= 2;
8d749320
SM
17205 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17206 lh->include_dirs_size);
c5aa993b 17207 }
c906108c 17208
debd256d
JB
17209 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17210}
6e70227d 17211
debd256d 17212/* Add an entry to LH's file name table. */
ae2de4f8 17213
debd256d
JB
17214static void
17215add_file_name (struct line_header *lh,
d521ce57 17216 const char *name,
debd256d
JB
17217 unsigned int dir_index,
17218 unsigned int mod_time,
17219 unsigned int length)
17220{
17221 struct file_entry *fe;
17222
27e0867f
DE
17223 if (dwarf_line_debug >= 2)
17224 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17225 lh->num_file_names + 1, name);
17226
debd256d
JB
17227 /* Grow the array if necessary. */
17228 if (lh->file_names_size == 0)
17229 {
17230 lh->file_names_size = 1; /* for testing */
8d749320 17231 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
debd256d
JB
17232 }
17233 else if (lh->num_file_names >= lh->file_names_size)
17234 {
17235 lh->file_names_size *= 2;
17236 lh->file_names = xrealloc (lh->file_names,
17237 (lh->file_names_size
17238 * sizeof (*lh->file_names)));
17239 }
17240
17241 fe = &lh->file_names[lh->num_file_names++];
17242 fe->name = name;
17243 fe->dir_index = dir_index;
17244 fe->mod_time = mod_time;
17245 fe->length = length;
aaa75496 17246 fe->included_p = 0;
cb1df416 17247 fe->symtab = NULL;
debd256d 17248}
6e70227d 17249
83769d0b 17250/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
17251
17252static struct dwarf2_section_info *
17253get_debug_line_section (struct dwarf2_cu *cu)
17254{
17255 struct dwarf2_section_info *section;
17256
17257 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17258 DWO file. */
17259 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17260 section = &cu->dwo_unit->dwo_file->sections.line;
17261 else if (cu->per_cu->is_dwz)
17262 {
17263 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17264
17265 section = &dwz->line;
17266 }
17267 else
17268 section = &dwarf2_per_objfile->line;
17269
17270 return section;
17271}
17272
debd256d 17273/* Read the statement program header starting at OFFSET in
3019eac3 17274 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 17275 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
17276 Returns NULL if there is a problem reading the header, e.g., if it
17277 has a version we don't understand.
debd256d
JB
17278
17279 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
17280 the returned object point into the dwarf line section buffer,
17281 and must not be freed. */
ae2de4f8 17282
debd256d 17283static struct line_header *
3019eac3 17284dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
17285{
17286 struct cleanup *back_to;
17287 struct line_header *lh;
d521ce57 17288 const gdb_byte *line_ptr;
c764a876 17289 unsigned int bytes_read, offset_size;
debd256d 17290 int i;
d521ce57 17291 const char *cur_dir, *cur_file;
3019eac3
DE
17292 struct dwarf2_section_info *section;
17293 bfd *abfd;
17294
36586728 17295 section = get_debug_line_section (cu);
3019eac3
DE
17296 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17297 if (section->buffer == NULL)
debd256d 17298 {
3019eac3
DE
17299 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17300 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17301 else
17302 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
17303 return 0;
17304 }
17305
fceca515
DE
17306 /* We can't do this until we know the section is non-empty.
17307 Only then do we know we have such a section. */
a32a8923 17308 abfd = get_section_bfd_owner (section);
fceca515 17309
a738430d
MK
17310 /* Make sure that at least there's room for the total_length field.
17311 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 17312 if (offset + 4 >= section->size)
debd256d 17313 {
4d3c2250 17314 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17315 return 0;
17316 }
17317
8d749320 17318 lh = XNEW (struct line_header);
debd256d
JB
17319 memset (lh, 0, sizeof (*lh));
17320 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17321 (void *) lh);
17322
527f3840
JK
17323 lh->offset.sect_off = offset;
17324 lh->offset_in_dwz = cu->per_cu->is_dwz;
17325
3019eac3 17326 line_ptr = section->buffer + offset;
debd256d 17327
a738430d 17328 /* Read in the header. */
6e70227d 17329 lh->total_length =
c764a876
DE
17330 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17331 &bytes_read, &offset_size);
debd256d 17332 line_ptr += bytes_read;
3019eac3 17333 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17334 {
4d3c2250 17335 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 17336 do_cleanups (back_to);
debd256d
JB
17337 return 0;
17338 }
17339 lh->statement_program_end = line_ptr + lh->total_length;
17340 lh->version = read_2_bytes (abfd, line_ptr);
17341 line_ptr += 2;
cd366ee8
DE
17342 if (lh->version > 4)
17343 {
17344 /* This is a version we don't understand. The format could have
17345 changed in ways we don't handle properly so just punt. */
17346 complaint (&symfile_complaints,
17347 _("unsupported version in .debug_line section"));
17348 return NULL;
17349 }
c764a876
DE
17350 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17351 line_ptr += offset_size;
debd256d
JB
17352 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17353 line_ptr += 1;
2dc7f7b3
TT
17354 if (lh->version >= 4)
17355 {
17356 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17357 line_ptr += 1;
17358 }
17359 else
17360 lh->maximum_ops_per_instruction = 1;
17361
17362 if (lh->maximum_ops_per_instruction == 0)
17363 {
17364 lh->maximum_ops_per_instruction = 1;
17365 complaint (&symfile_complaints,
3e43a32a
MS
17366 _("invalid maximum_ops_per_instruction "
17367 "in `.debug_line' section"));
2dc7f7b3
TT
17368 }
17369
debd256d
JB
17370 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17371 line_ptr += 1;
17372 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17373 line_ptr += 1;
17374 lh->line_range = read_1_byte (abfd, line_ptr);
17375 line_ptr += 1;
17376 lh->opcode_base = read_1_byte (abfd, line_ptr);
17377 line_ptr += 1;
8d749320 17378 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
debd256d
JB
17379
17380 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17381 for (i = 1; i < lh->opcode_base; ++i)
17382 {
17383 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17384 line_ptr += 1;
17385 }
17386
a738430d 17387 /* Read directory table. */
9b1c24c8 17388 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17389 {
17390 line_ptr += bytes_read;
17391 add_include_dir (lh, cur_dir);
17392 }
17393 line_ptr += bytes_read;
17394
a738430d 17395 /* Read file name table. */
9b1c24c8 17396 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17397 {
17398 unsigned int dir_index, mod_time, length;
17399
17400 line_ptr += bytes_read;
17401 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17402 line_ptr += bytes_read;
17403 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17404 line_ptr += bytes_read;
17405 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17406 line_ptr += bytes_read;
17407
17408 add_file_name (lh, cur_file, dir_index, mod_time, length);
17409 }
17410 line_ptr += bytes_read;
6e70227d 17411 lh->statement_program_start = line_ptr;
debd256d 17412
3019eac3 17413 if (line_ptr > (section->buffer + section->size))
4d3c2250 17414 complaint (&symfile_complaints,
3e43a32a
MS
17415 _("line number info header doesn't "
17416 "fit in `.debug_line' section"));
debd256d
JB
17417
17418 discard_cleanups (back_to);
17419 return lh;
17420}
c906108c 17421
c6da4cef
DE
17422/* Subroutine of dwarf_decode_lines to simplify it.
17423 Return the file name of the psymtab for included file FILE_INDEX
17424 in line header LH of PST.
17425 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17426 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
17427 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17428
17429 The function creates dangling cleanup registration. */
c6da4cef 17430
d521ce57 17431static const char *
c6da4cef
DE
17432psymtab_include_file_name (const struct line_header *lh, int file_index,
17433 const struct partial_symtab *pst,
17434 const char *comp_dir)
17435{
17436 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
17437 const char *include_name = fe.name;
17438 const char *include_name_to_compare = include_name;
17439 const char *dir_name = NULL;
72b9f47f
TT
17440 const char *pst_filename;
17441 char *copied_name = NULL;
c6da4cef
DE
17442 int file_is_pst;
17443
afa6c9ab 17444 if (fe.dir_index && lh->include_dirs != NULL)
c6da4cef
DE
17445 dir_name = lh->include_dirs[fe.dir_index - 1];
17446
17447 if (!IS_ABSOLUTE_PATH (include_name)
17448 && (dir_name != NULL || comp_dir != NULL))
17449 {
17450 /* Avoid creating a duplicate psymtab for PST.
17451 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17452 Before we do the comparison, however, we need to account
17453 for DIR_NAME and COMP_DIR.
17454 First prepend dir_name (if non-NULL). If we still don't
17455 have an absolute path prepend comp_dir (if non-NULL).
17456 However, the directory we record in the include-file's
17457 psymtab does not contain COMP_DIR (to match the
17458 corresponding symtab(s)).
17459
17460 Example:
17461
17462 bash$ cd /tmp
17463 bash$ gcc -g ./hello.c
17464 include_name = "hello.c"
17465 dir_name = "."
17466 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
17467 DW_AT_name = "./hello.c"
17468
17469 */
c6da4cef
DE
17470
17471 if (dir_name != NULL)
17472 {
d521ce57
TT
17473 char *tem = concat (dir_name, SLASH_STRING,
17474 include_name, (char *)NULL);
17475
17476 make_cleanup (xfree, tem);
17477 include_name = tem;
c6da4cef 17478 include_name_to_compare = include_name;
c6da4cef
DE
17479 }
17480 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17481 {
d521ce57
TT
17482 char *tem = concat (comp_dir, SLASH_STRING,
17483 include_name, (char *)NULL);
17484
17485 make_cleanup (xfree, tem);
17486 include_name_to_compare = tem;
c6da4cef
DE
17487 }
17488 }
17489
17490 pst_filename = pst->filename;
17491 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17492 {
72b9f47f
TT
17493 copied_name = concat (pst->dirname, SLASH_STRING,
17494 pst_filename, (char *)NULL);
17495 pst_filename = copied_name;
c6da4cef
DE
17496 }
17497
1e3fad37 17498 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 17499
72b9f47f
TT
17500 if (copied_name != NULL)
17501 xfree (copied_name);
c6da4cef
DE
17502
17503 if (file_is_pst)
17504 return NULL;
17505 return include_name;
17506}
17507
d9b3de22
DE
17508/* State machine to track the state of the line number program. */
17509
17510typedef struct
17511{
17512 /* These are part of the standard DWARF line number state machine. */
17513
17514 unsigned char op_index;
17515 unsigned int file;
17516 unsigned int line;
17517 CORE_ADDR address;
17518 int is_stmt;
17519 unsigned int discriminator;
17520
17521 /* Additional bits of state we need to track. */
17522
17523 /* The last file that we called dwarf2_start_subfile for.
17524 This is only used for TLLs. */
17525 unsigned int last_file;
17526 /* The last file a line number was recorded for. */
17527 struct subfile *last_subfile;
17528
17529 /* The function to call to record a line. */
17530 record_line_ftype *record_line;
17531
17532 /* The last line number that was recorded, used to coalesce
17533 consecutive entries for the same line. This can happen, for
17534 example, when discriminators are present. PR 17276. */
17535 unsigned int last_line;
17536 int line_has_non_zero_discriminator;
17537} lnp_state_machine;
17538
17539/* There's a lot of static state to pass to dwarf_record_line.
17540 This keeps it all together. */
17541
17542typedef struct
17543{
17544 /* The gdbarch. */
17545 struct gdbarch *gdbarch;
17546
17547 /* The line number header. */
17548 struct line_header *line_header;
17549
17550 /* Non-zero if we're recording lines.
17551 Otherwise we're building partial symtabs and are just interested in
17552 finding include files mentioned by the line number program. */
17553 int record_lines_p;
17554} lnp_reader_state;
17555
c91513d8
PP
17556/* Ignore this record_line request. */
17557
17558static void
17559noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17560{
17561 return;
17562}
17563
a05a36a5
DE
17564/* Return non-zero if we should add LINE to the line number table.
17565 LINE is the line to add, LAST_LINE is the last line that was added,
17566 LAST_SUBFILE is the subfile for LAST_LINE.
17567 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17568 had a non-zero discriminator.
17569
17570 We have to be careful in the presence of discriminators.
17571 E.g., for this line:
17572
17573 for (i = 0; i < 100000; i++);
17574
17575 clang can emit four line number entries for that one line,
17576 each with a different discriminator.
17577 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17578
17579 However, we want gdb to coalesce all four entries into one.
17580 Otherwise the user could stepi into the middle of the line and
17581 gdb would get confused about whether the pc really was in the
17582 middle of the line.
17583
17584 Things are further complicated by the fact that two consecutive
17585 line number entries for the same line is a heuristic used by gcc
17586 to denote the end of the prologue. So we can't just discard duplicate
17587 entries, we have to be selective about it. The heuristic we use is
17588 that we only collapse consecutive entries for the same line if at least
17589 one of those entries has a non-zero discriminator. PR 17276.
17590
17591 Note: Addresses in the line number state machine can never go backwards
17592 within one sequence, thus this coalescing is ok. */
17593
17594static int
17595dwarf_record_line_p (unsigned int line, unsigned int last_line,
17596 int line_has_non_zero_discriminator,
17597 struct subfile *last_subfile)
17598{
17599 if (current_subfile != last_subfile)
17600 return 1;
17601 if (line != last_line)
17602 return 1;
17603 /* Same line for the same file that we've seen already.
17604 As a last check, for pr 17276, only record the line if the line
17605 has never had a non-zero discriminator. */
17606 if (!line_has_non_zero_discriminator)
17607 return 1;
17608 return 0;
17609}
17610
252a6764
DE
17611/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17612 in the line table of subfile SUBFILE. */
17613
17614static void
d9b3de22
DE
17615dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17616 unsigned int line, CORE_ADDR address,
17617 record_line_ftype p_record_line)
252a6764
DE
17618{
17619 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17620
27e0867f
DE
17621 if (dwarf_line_debug)
17622 {
17623 fprintf_unfiltered (gdb_stdlog,
17624 "Recording line %u, file %s, address %s\n",
17625 line, lbasename (subfile->name),
17626 paddress (gdbarch, address));
17627 }
17628
d5962de5 17629 (*p_record_line) (subfile, line, addr);
252a6764
DE
17630}
17631
17632/* Subroutine of dwarf_decode_lines_1 to simplify it.
17633 Mark the end of a set of line number records.
d9b3de22 17634 The arguments are the same as for dwarf_record_line_1.
252a6764
DE
17635 If SUBFILE is NULL the request is ignored. */
17636
17637static void
17638dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17639 CORE_ADDR address, record_line_ftype p_record_line)
17640{
27e0867f
DE
17641 if (subfile == NULL)
17642 return;
17643
17644 if (dwarf_line_debug)
17645 {
17646 fprintf_unfiltered (gdb_stdlog,
17647 "Finishing current line, file %s, address %s\n",
17648 lbasename (subfile->name),
17649 paddress (gdbarch, address));
17650 }
17651
d9b3de22
DE
17652 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17653}
17654
17655/* Record the line in STATE.
17656 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17657
17658static void
17659dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17660 int end_sequence)
17661{
17662 const struct line_header *lh = reader->line_header;
17663 unsigned int file, line, discriminator;
17664 int is_stmt;
17665
17666 file = state->file;
17667 line = state->line;
17668 is_stmt = state->is_stmt;
17669 discriminator = state->discriminator;
17670
17671 if (dwarf_line_debug)
17672 {
17673 fprintf_unfiltered (gdb_stdlog,
17674 "Processing actual line %u: file %u,"
17675 " address %s, is_stmt %u, discrim %u\n",
17676 line, file,
17677 paddress (reader->gdbarch, state->address),
17678 is_stmt, discriminator);
17679 }
17680
17681 if (file == 0 || file - 1 >= lh->num_file_names)
17682 dwarf2_debug_line_missing_file_complaint ();
17683 /* For now we ignore lines not starting on an instruction boundary.
17684 But not when processing end_sequence for compatibility with the
17685 previous version of the code. */
17686 else if (state->op_index == 0 || end_sequence)
17687 {
17688 lh->file_names[file - 1].included_p = 1;
17689 if (reader->record_lines_p && is_stmt)
17690 {
e815d2d2 17691 if (state->last_subfile != current_subfile || end_sequence)
d9b3de22
DE
17692 {
17693 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17694 state->address, state->record_line);
17695 }
17696
17697 if (!end_sequence)
17698 {
17699 if (dwarf_record_line_p (line, state->last_line,
17700 state->line_has_non_zero_discriminator,
17701 state->last_subfile))
17702 {
17703 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17704 line, state->address,
17705 state->record_line);
17706 }
17707 state->last_subfile = current_subfile;
17708 state->last_line = line;
17709 }
17710 }
17711 }
17712}
17713
17714/* Initialize STATE for the start of a line number program. */
17715
17716static void
17717init_lnp_state_machine (lnp_state_machine *state,
17718 const lnp_reader_state *reader)
17719{
17720 memset (state, 0, sizeof (*state));
17721
17722 /* Just starting, there is no "last file". */
17723 state->last_file = 0;
17724 state->last_subfile = NULL;
17725
17726 state->record_line = record_line;
17727
17728 state->last_line = 0;
17729 state->line_has_non_zero_discriminator = 0;
17730
17731 /* Initialize these according to the DWARF spec. */
17732 state->op_index = 0;
17733 state->file = 1;
17734 state->line = 1;
17735 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17736 was a line entry for it so that the backend has a chance to adjust it
17737 and also record it in case it needs it. This is currently used by MIPS
17738 code, cf. `mips_adjust_dwarf2_line'. */
17739 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17740 state->is_stmt = reader->line_header->default_is_stmt;
17741 state->discriminator = 0;
252a6764
DE
17742}
17743
924c2928
DE
17744/* Check address and if invalid nop-out the rest of the lines in this
17745 sequence. */
17746
17747static void
d9b3de22 17748check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
924c2928
DE
17749 const gdb_byte *line_ptr,
17750 CORE_ADDR lowpc, CORE_ADDR address)
17751{
17752 /* If address < lowpc then it's not a usable value, it's outside the
17753 pc range of the CU. However, we restrict the test to only address
17754 values of zero to preserve GDB's previous behaviour which is to
17755 handle the specific case of a function being GC'd by the linker. */
17756
17757 if (address == 0 && address < lowpc)
17758 {
17759 /* This line table is for a function which has been
17760 GCd by the linker. Ignore it. PR gdb/12528 */
17761
17762 struct objfile *objfile = cu->objfile;
17763 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17764
17765 complaint (&symfile_complaints,
17766 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17767 line_offset, objfile_name (objfile));
d9b3de22
DE
17768 state->record_line = noop_record_line;
17769 /* Note: sm.record_line is left as noop_record_line
924c2928
DE
17770 until we see DW_LNE_end_sequence. */
17771 }
17772}
17773
f3f5162e 17774/* Subroutine of dwarf_decode_lines to simplify it.
d9b3de22
DE
17775 Process the line number information in LH.
17776 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17777 program in order to set included_p for every referenced header. */
debd256d 17778
c906108c 17779static void
43f3e411
DE
17780dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17781 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 17782{
d521ce57
TT
17783 const gdb_byte *line_ptr, *extended_end;
17784 const gdb_byte *line_end;
a8c50c1f 17785 unsigned int bytes_read, extended_len;
699ca60a 17786 unsigned char op_code, extended_op;
e142c38c
DJ
17787 CORE_ADDR baseaddr;
17788 struct objfile *objfile = cu->objfile;
f3f5162e 17789 bfd *abfd = objfile->obfd;
fbf65064 17790 struct gdbarch *gdbarch = get_objfile_arch (objfile);
d9b3de22
DE
17791 /* Non-zero if we're recording line info (as opposed to building partial
17792 symtabs). */
17793 int record_lines_p = !decode_for_pst_p;
17794 /* A collection of things we need to pass to dwarf_record_line. */
17795 lnp_reader_state reader_state;
e142c38c
DJ
17796
17797 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17798
debd256d
JB
17799 line_ptr = lh->statement_program_start;
17800 line_end = lh->statement_program_end;
c906108c 17801
d9b3de22
DE
17802 reader_state.gdbarch = gdbarch;
17803 reader_state.line_header = lh;
17804 reader_state.record_lines_p = record_lines_p;
17805
c906108c
SS
17806 /* Read the statement sequences until there's nothing left. */
17807 while (line_ptr < line_end)
17808 {
d9b3de22
DE
17809 /* The DWARF line number program state machine. */
17810 lnp_state_machine state_machine;
c906108c 17811 int end_sequence = 0;
d9b3de22
DE
17812
17813 /* Reset the state machine at the start of each sequence. */
17814 init_lnp_state_machine (&state_machine, &reader_state);
17815
17816 if (record_lines_p && lh->num_file_names >= state_machine.file)
c906108c 17817 {
aaa75496 17818 /* Start a subfile for the current file of the state machine. */
debd256d
JB
17819 /* lh->include_dirs and lh->file_names are 0-based, but the
17820 directory and file name numbers in the statement program
17821 are 1-based. */
d9b3de22 17822 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
d521ce57 17823 const char *dir = NULL;
a738430d 17824
afa6c9ab 17825 if (fe->dir_index && lh->include_dirs != NULL)
debd256d 17826 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb 17827
4d663531 17828 dwarf2_start_subfile (fe->name, dir);
c906108c
SS
17829 }
17830
a738430d 17831 /* Decode the table. */
d9b3de22 17832 while (line_ptr < line_end && !end_sequence)
c906108c
SS
17833 {
17834 op_code = read_1_byte (abfd, line_ptr);
17835 line_ptr += 1;
9aa1fe7e 17836
debd256d 17837 if (op_code >= lh->opcode_base)
6e70227d 17838 {
8e07a239 17839 /* Special opcode. */
699ca60a 17840 unsigned char adj_opcode;
3e29f34a 17841 CORE_ADDR addr_adj;
a05a36a5 17842 int line_delta;
8e07a239 17843
debd256d 17844 adj_opcode = op_code - lh->opcode_base;
d9b3de22
DE
17845 addr_adj = (((state_machine.op_index
17846 + (adj_opcode / lh->line_range))
2dc7f7b3
TT
17847 / lh->maximum_ops_per_instruction)
17848 * lh->minimum_instruction_length);
d9b3de22
DE
17849 state_machine.address
17850 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17851 state_machine.op_index = ((state_machine.op_index
17852 + (adj_opcode / lh->line_range))
17853 % lh->maximum_ops_per_instruction);
a05a36a5 17854 line_delta = lh->line_base + (adj_opcode % lh->line_range);
d9b3de22 17855 state_machine.line += line_delta;
a05a36a5 17856 if (line_delta != 0)
d9b3de22
DE
17857 state_machine.line_has_non_zero_discriminator
17858 = state_machine.discriminator != 0;
17859
17860 dwarf_record_line (&reader_state, &state_machine, 0);
17861 state_machine.discriminator = 0;
9aa1fe7e
GK
17862 }
17863 else switch (op_code)
c906108c
SS
17864 {
17865 case DW_LNS_extended_op:
3e43a32a
MS
17866 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17867 &bytes_read);
473b7be6 17868 line_ptr += bytes_read;
a8c50c1f 17869 extended_end = line_ptr + extended_len;
c906108c
SS
17870 extended_op = read_1_byte (abfd, line_ptr);
17871 line_ptr += 1;
17872 switch (extended_op)
17873 {
17874 case DW_LNE_end_sequence:
d9b3de22 17875 state_machine.record_line = record_line;
c906108c 17876 end_sequence = 1;
c906108c
SS
17877 break;
17878 case DW_LNE_set_address:
d9b3de22
DE
17879 {
17880 CORE_ADDR address
17881 = read_address (abfd, line_ptr, cu, &bytes_read);
17882
17883 line_ptr += bytes_read;
17884 check_line_address (cu, &state_machine, line_ptr,
17885 lowpc, address);
17886 state_machine.op_index = 0;
17887 address += baseaddr;
17888 state_machine.address
17889 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17890 }
c906108c
SS
17891 break;
17892 case DW_LNE_define_file:
debd256d 17893 {
d521ce57 17894 const char *cur_file;
debd256d 17895 unsigned int dir_index, mod_time, length;
6e70227d 17896
3e43a32a
MS
17897 cur_file = read_direct_string (abfd, line_ptr,
17898 &bytes_read);
debd256d
JB
17899 line_ptr += bytes_read;
17900 dir_index =
17901 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17902 line_ptr += bytes_read;
17903 mod_time =
17904 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17905 line_ptr += bytes_read;
17906 length =
17907 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17908 line_ptr += bytes_read;
17909 add_file_name (lh, cur_file, dir_index, mod_time, length);
17910 }
c906108c 17911 break;
d0c6ba3d
CC
17912 case DW_LNE_set_discriminator:
17913 /* The discriminator is not interesting to the debugger;
a05a36a5
DE
17914 just ignore it. We still need to check its value though:
17915 if there are consecutive entries for the same
17916 (non-prologue) line we want to coalesce them.
17917 PR 17276. */
d9b3de22
DE
17918 state_machine.discriminator
17919 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17920 state_machine.line_has_non_zero_discriminator
17921 |= state_machine.discriminator != 0;
a05a36a5 17922 line_ptr += bytes_read;
d0c6ba3d 17923 break;
c906108c 17924 default:
4d3c2250 17925 complaint (&symfile_complaints,
e2e0b3e5 17926 _("mangled .debug_line section"));
debd256d 17927 return;
c906108c 17928 }
a8c50c1f
DJ
17929 /* Make sure that we parsed the extended op correctly. If e.g.
17930 we expected a different address size than the producer used,
17931 we may have read the wrong number of bytes. */
17932 if (line_ptr != extended_end)
17933 {
17934 complaint (&symfile_complaints,
17935 _("mangled .debug_line section"));
17936 return;
17937 }
c906108c
SS
17938 break;
17939 case DW_LNS_copy:
d9b3de22
DE
17940 dwarf_record_line (&reader_state, &state_machine, 0);
17941 state_machine.discriminator = 0;
c906108c
SS
17942 break;
17943 case DW_LNS_advance_pc:
2dc7f7b3
TT
17944 {
17945 CORE_ADDR adjust
17946 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
3e29f34a 17947 CORE_ADDR addr_adj;
2dc7f7b3 17948
d9b3de22 17949 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
17950 / lh->maximum_ops_per_instruction)
17951 * lh->minimum_instruction_length);
d9b3de22
DE
17952 state_machine.address
17953 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17954 state_machine.op_index = ((state_machine.op_index + adjust)
17955 % lh->maximum_ops_per_instruction);
2dc7f7b3
TT
17956 line_ptr += bytes_read;
17957 }
c906108c
SS
17958 break;
17959 case DW_LNS_advance_line:
a05a36a5
DE
17960 {
17961 int line_delta
17962 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17963
d9b3de22 17964 state_machine.line += line_delta;
a05a36a5 17965 if (line_delta != 0)
d9b3de22
DE
17966 state_machine.line_has_non_zero_discriminator
17967 = state_machine.discriminator != 0;
a05a36a5
DE
17968 line_ptr += bytes_read;
17969 }
c906108c
SS
17970 break;
17971 case DW_LNS_set_file:
d9b3de22
DE
17972 {
17973 /* The arrays lh->include_dirs and lh->file_names are
17974 0-based, but the directory and file name numbers in
17975 the statement program are 1-based. */
17976 struct file_entry *fe;
17977 const char *dir = NULL;
17978
17979 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
17980 &bytes_read);
17981 line_ptr += bytes_read;
17982 if (state_machine.file == 0
17983 || state_machine.file - 1 >= lh->num_file_names)
17984 dwarf2_debug_line_missing_file_complaint ();
17985 else
17986 {
17987 fe = &lh->file_names[state_machine.file - 1];
17988 if (fe->dir_index && lh->include_dirs != NULL)
17989 dir = lh->include_dirs[fe->dir_index - 1];
17990 if (record_lines_p)
17991 {
17992 state_machine.last_subfile = current_subfile;
17993 state_machine.line_has_non_zero_discriminator
17994 = state_machine.discriminator != 0;
17995 dwarf2_start_subfile (fe->name, dir);
17996 }
17997 }
17998 }
c906108c
SS
17999 break;
18000 case DW_LNS_set_column:
0ad93d4f 18001 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
18002 line_ptr += bytes_read;
18003 break;
18004 case DW_LNS_negate_stmt:
d9b3de22 18005 state_machine.is_stmt = (!state_machine.is_stmt);
c906108c
SS
18006 break;
18007 case DW_LNS_set_basic_block:
c906108c 18008 break;
c2c6d25f
JM
18009 /* Add to the address register of the state machine the
18010 address increment value corresponding to special opcode
a738430d
MK
18011 255. I.e., this value is scaled by the minimum
18012 instruction length since special opcode 255 would have
b021a221 18013 scaled the increment. */
c906108c 18014 case DW_LNS_const_add_pc:
2dc7f7b3
TT
18015 {
18016 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
3e29f34a 18017 CORE_ADDR addr_adj;
2dc7f7b3 18018
d9b3de22 18019 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
18020 / lh->maximum_ops_per_instruction)
18021 * lh->minimum_instruction_length);
d9b3de22
DE
18022 state_machine.address
18023 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18024 state_machine.op_index = ((state_machine.op_index + adjust)
18025 % lh->maximum_ops_per_instruction);
2dc7f7b3 18026 }
c906108c
SS
18027 break;
18028 case DW_LNS_fixed_advance_pc:
3e29f34a
MR
18029 {
18030 CORE_ADDR addr_adj;
18031
18032 addr_adj = read_2_bytes (abfd, line_ptr);
d9b3de22
DE
18033 state_machine.address
18034 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18035 state_machine.op_index = 0;
3e29f34a
MR
18036 line_ptr += 2;
18037 }
c906108c 18038 break;
9aa1fe7e 18039 default:
a738430d
MK
18040 {
18041 /* Unknown standard opcode, ignore it. */
9aa1fe7e 18042 int i;
a738430d 18043
debd256d 18044 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
18045 {
18046 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18047 line_ptr += bytes_read;
18048 }
18049 }
c906108c
SS
18050 }
18051 }
d9b3de22
DE
18052
18053 if (!end_sequence)
18054 dwarf2_debug_line_missing_end_sequence_complaint ();
18055
18056 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18057 in which case we still finish recording the last line). */
18058 dwarf_record_line (&reader_state, &state_machine, 1);
c906108c 18059 }
f3f5162e
DE
18060}
18061
18062/* Decode the Line Number Program (LNP) for the given line_header
18063 structure and CU. The actual information extracted and the type
18064 of structures created from the LNP depends on the value of PST.
18065
18066 1. If PST is NULL, then this procedure uses the data from the program
18067 to create all necessary symbol tables, and their linetables.
18068
18069 2. If PST is not NULL, this procedure reads the program to determine
18070 the list of files included by the unit represented by PST, and
18071 builds all the associated partial symbol tables.
18072
18073 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18074 It is used for relative paths in the line table.
18075 NOTE: When processing partial symtabs (pst != NULL),
18076 comp_dir == pst->dirname.
18077
18078 NOTE: It is important that psymtabs have the same file name (via strcmp)
18079 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18080 symtab we don't use it in the name of the psymtabs we create.
18081 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
18082 A good testcase for this is mb-inline.exp.
18083
527f3840
JK
18084 LOWPC is the lowest address in CU (or 0 if not known).
18085
18086 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18087 for its PC<->lines mapping information. Otherwise only the filename
18088 table is read in. */
f3f5162e
DE
18089
18090static void
18091dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 18092 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 18093 CORE_ADDR lowpc, int decode_mapping)
f3f5162e
DE
18094{
18095 struct objfile *objfile = cu->objfile;
18096 const int decode_for_pst_p = (pst != NULL);
f3f5162e 18097
527f3840
JK
18098 if (decode_mapping)
18099 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
18100
18101 if (decode_for_pst_p)
18102 {
18103 int file_index;
18104
18105 /* Now that we're done scanning the Line Header Program, we can
18106 create the psymtab of each included file. */
18107 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18108 if (lh->file_names[file_index].included_p == 1)
18109 {
d521ce57 18110 const char *include_name =
c6da4cef
DE
18111 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18112 if (include_name != NULL)
aaa75496
JB
18113 dwarf2_create_include_psymtab (include_name, pst, objfile);
18114 }
18115 }
cb1df416
DJ
18116 else
18117 {
18118 /* Make sure a symtab is created for every file, even files
18119 which contain only variables (i.e. no code with associated
18120 line numbers). */
43f3e411 18121 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 18122 int i;
cb1df416
DJ
18123
18124 for (i = 0; i < lh->num_file_names; i++)
18125 {
d521ce57 18126 const char *dir = NULL;
f3f5162e 18127 struct file_entry *fe;
9a619af0 18128
cb1df416 18129 fe = &lh->file_names[i];
afa6c9ab 18130 if (fe->dir_index && lh->include_dirs != NULL)
cb1df416 18131 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 18132 dwarf2_start_subfile (fe->name, dir);
cb1df416 18133
cb1df416 18134 if (current_subfile->symtab == NULL)
43f3e411
DE
18135 {
18136 current_subfile->symtab
18137 = allocate_symtab (cust, current_subfile->name);
18138 }
cb1df416
DJ
18139 fe->symtab = current_subfile->symtab;
18140 }
18141 }
c906108c
SS
18142}
18143
18144/* Start a subfile for DWARF. FILENAME is the name of the file and
18145 DIRNAME the name of the source directory which contains FILENAME
4d663531 18146 or NULL if not known.
c906108c
SS
18147 This routine tries to keep line numbers from identical absolute and
18148 relative file names in a common subfile.
18149
18150 Using the `list' example from the GDB testsuite, which resides in
18151 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18152 of /srcdir/list0.c yields the following debugging information for list0.c:
18153
c5aa993b 18154 DW_AT_name: /srcdir/list0.c
4d663531 18155 DW_AT_comp_dir: /compdir
357e46e7 18156 files.files[0].name: list0.h
c5aa993b 18157 files.files[0].dir: /srcdir
357e46e7 18158 files.files[1].name: list0.c
c5aa993b 18159 files.files[1].dir: /srcdir
c906108c
SS
18160
18161 The line number information for list0.c has to end up in a single
4f1520fb
FR
18162 subfile, so that `break /srcdir/list0.c:1' works as expected.
18163 start_subfile will ensure that this happens provided that we pass the
18164 concatenation of files.files[1].dir and files.files[1].name as the
18165 subfile's name. */
c906108c
SS
18166
18167static void
4d663531 18168dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 18169{
d521ce57 18170 char *copy = NULL;
4f1520fb 18171
4d663531 18172 /* In order not to lose the line information directory,
4f1520fb
FR
18173 we concatenate it to the filename when it makes sense.
18174 Note that the Dwarf3 standard says (speaking of filenames in line
18175 information): ``The directory index is ignored for file names
18176 that represent full path names''. Thus ignoring dirname in the
18177 `else' branch below isn't an issue. */
c906108c 18178
d5166ae1 18179 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
18180 {
18181 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18182 filename = copy;
18183 }
c906108c 18184
4d663531 18185 start_subfile (filename);
4f1520fb 18186
d521ce57
TT
18187 if (copy != NULL)
18188 xfree (copy);
c906108c
SS
18189}
18190
f4dc4d17
DE
18191/* Start a symtab for DWARF.
18192 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18193
43f3e411 18194static struct compunit_symtab *
f4dc4d17 18195dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 18196 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 18197{
43f3e411
DE
18198 struct compunit_symtab *cust
18199 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18200
f4dc4d17
DE
18201 record_debugformat ("DWARF 2");
18202 record_producer (cu->producer);
18203
18204 /* We assume that we're processing GCC output. */
18205 processing_gcc_compilation = 2;
18206
4d4ec4e5 18207 cu->processing_has_namespace_info = 0;
43f3e411
DE
18208
18209 return cust;
f4dc4d17
DE
18210}
18211
4c2df51b
DJ
18212static void
18213var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 18214 struct dwarf2_cu *cu)
4c2df51b 18215{
e7c27a73
DJ
18216 struct objfile *objfile = cu->objfile;
18217 struct comp_unit_head *cu_header = &cu->header;
18218
4c2df51b
DJ
18219 /* NOTE drow/2003-01-30: There used to be a comment and some special
18220 code here to turn a symbol with DW_AT_external and a
18221 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18222 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18223 with some versions of binutils) where shared libraries could have
18224 relocations against symbols in their debug information - the
18225 minimal symbol would have the right address, but the debug info
18226 would not. It's no longer necessary, because we will explicitly
18227 apply relocations when we read in the debug information now. */
18228
18229 /* A DW_AT_location attribute with no contents indicates that a
18230 variable has been optimized away. */
18231 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18232 {
f1e6e072 18233 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
18234 return;
18235 }
18236
18237 /* Handle one degenerate form of location expression specially, to
18238 preserve GDB's previous behavior when section offsets are
3019eac3
DE
18239 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18240 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
18241
18242 if (attr_form_is_block (attr)
3019eac3
DE
18243 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18244 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18245 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18246 && (DW_BLOCK (attr)->size
18247 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 18248 {
891d2f0b 18249 unsigned int dummy;
4c2df51b 18250
3019eac3
DE
18251 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18252 SYMBOL_VALUE_ADDRESS (sym) =
18253 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18254 else
18255 SYMBOL_VALUE_ADDRESS (sym) =
18256 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 18257 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
18258 fixup_symbol_section (sym, objfile);
18259 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18260 SYMBOL_SECTION (sym));
4c2df51b
DJ
18261 return;
18262 }
18263
18264 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18265 expression evaluator, and use LOC_COMPUTED only when necessary
18266 (i.e. when the value of a register or memory location is
18267 referenced, or a thread-local block, etc.). Then again, it might
18268 not be worthwhile. I'm assuming that it isn't unless performance
18269 or memory numbers show me otherwise. */
18270
f1e6e072 18271 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 18272
f1e6e072 18273 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 18274 cu->has_loclist = 1;
4c2df51b
DJ
18275}
18276
c906108c
SS
18277/* Given a pointer to a DWARF information entry, figure out if we need
18278 to make a symbol table entry for it, and if so, create a new entry
18279 and return a pointer to it.
18280 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
18281 used the passed type.
18282 If SPACE is not NULL, use it to hold the new symbol. If it is
18283 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
18284
18285static struct symbol *
34eaf542
TT
18286new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18287 struct symbol *space)
c906108c 18288{
e7c27a73 18289 struct objfile *objfile = cu->objfile;
3e29f34a 18290 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 18291 struct symbol *sym = NULL;
15d034d0 18292 const char *name;
c906108c
SS
18293 struct attribute *attr = NULL;
18294 struct attribute *attr2 = NULL;
e142c38c 18295 CORE_ADDR baseaddr;
e37fd15a
SW
18296 struct pending **list_to_add = NULL;
18297
edb3359d 18298 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
18299
18300 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18301
94af9270 18302 name = dwarf2_name (die, cu);
c906108c
SS
18303 if (name)
18304 {
94af9270 18305 const char *linkagename;
34eaf542 18306 int suppress_add = 0;
94af9270 18307
34eaf542
TT
18308 if (space)
18309 sym = space;
18310 else
e623cf5d 18311 sym = allocate_symbol (objfile);
c906108c 18312 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
18313
18314 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 18315 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
18316 linkagename = dwarf2_physname (name, die, cu);
18317 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 18318
f55ee35c
JK
18319 /* Fortran does not have mangling standard and the mangling does differ
18320 between gfortran, iFort etc. */
18321 if (cu->language == language_fortran
b250c185 18322 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 18323 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 18324 dwarf2_full_name (name, die, cu),
29df156d 18325 NULL);
f55ee35c 18326
c906108c 18327 /* Default assumptions.
c5aa993b 18328 Use the passed type or decode it from the die. */
176620f1 18329 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 18330 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
18331 if (type != NULL)
18332 SYMBOL_TYPE (sym) = type;
18333 else
e7c27a73 18334 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
18335 attr = dwarf2_attr (die,
18336 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18337 cu);
c906108c
SS
18338 if (attr)
18339 {
18340 SYMBOL_LINE (sym) = DW_UNSND (attr);
18341 }
cb1df416 18342
edb3359d
DJ
18343 attr = dwarf2_attr (die,
18344 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18345 cu);
cb1df416
DJ
18346 if (attr)
18347 {
18348 int file_index = DW_UNSND (attr);
9a619af0 18349
cb1df416
DJ
18350 if (cu->line_header == NULL
18351 || file_index > cu->line_header->num_file_names)
18352 complaint (&symfile_complaints,
18353 _("file index out of range"));
1c3d648d 18354 else if (file_index > 0)
cb1df416
DJ
18355 {
18356 struct file_entry *fe;
9a619af0 18357
cb1df416 18358 fe = &cu->line_header->file_names[file_index - 1];
08be3fe3 18359 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
18360 }
18361 }
18362
c906108c
SS
18363 switch (die->tag)
18364 {
18365 case DW_TAG_label:
e142c38c 18366 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 18367 if (attr)
3e29f34a
MR
18368 {
18369 CORE_ADDR addr;
18370
18371 addr = attr_value_as_address (attr);
18372 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18373 SYMBOL_VALUE_ADDRESS (sym) = addr;
18374 }
0f5238ed
TT
18375 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18376 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 18377 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 18378 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
18379 break;
18380 case DW_TAG_subprogram:
18381 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18382 finish_block. */
f1e6e072 18383 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 18384 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
18385 if ((attr2 && (DW_UNSND (attr2) != 0))
18386 || cu->language == language_ada)
c906108c 18387 {
2cfa0c8d
JB
18388 /* Subprograms marked external are stored as a global symbol.
18389 Ada subprograms, whether marked external or not, are always
18390 stored as a global symbol, because we want to be able to
18391 access them globally. For instance, we want to be able
18392 to break on a nested subprogram without having to
18393 specify the context. */
e37fd15a 18394 list_to_add = &global_symbols;
c906108c
SS
18395 }
18396 else
18397 {
e37fd15a 18398 list_to_add = cu->list_in_scope;
c906108c
SS
18399 }
18400 break;
edb3359d
DJ
18401 case DW_TAG_inlined_subroutine:
18402 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18403 finish_block. */
f1e6e072 18404 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 18405 SYMBOL_INLINED (sym) = 1;
481860b3 18406 list_to_add = cu->list_in_scope;
edb3359d 18407 break;
34eaf542
TT
18408 case DW_TAG_template_value_param:
18409 suppress_add = 1;
18410 /* Fall through. */
72929c62 18411 case DW_TAG_constant:
c906108c 18412 case DW_TAG_variable:
254e6b9e 18413 case DW_TAG_member:
0963b4bd
MS
18414 /* Compilation with minimal debug info may result in
18415 variables with missing type entries. Change the
18416 misleading `void' type to something sensible. */
c906108c 18417 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 18418 SYMBOL_TYPE (sym)
46bf5051 18419 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 18420
e142c38c 18421 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
18422 /* In the case of DW_TAG_member, we should only be called for
18423 static const members. */
18424 if (die->tag == DW_TAG_member)
18425 {
3863f96c
DE
18426 /* dwarf2_add_field uses die_is_declaration,
18427 so we do the same. */
254e6b9e
DE
18428 gdb_assert (die_is_declaration (die, cu));
18429 gdb_assert (attr);
18430 }
c906108c
SS
18431 if (attr)
18432 {
e7c27a73 18433 dwarf2_const_value (attr, sym, cu);
e142c38c 18434 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 18435 if (!suppress_add)
34eaf542
TT
18436 {
18437 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 18438 list_to_add = &global_symbols;
34eaf542 18439 else
e37fd15a 18440 list_to_add = cu->list_in_scope;
34eaf542 18441 }
c906108c
SS
18442 break;
18443 }
e142c38c 18444 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18445 if (attr)
18446 {
e7c27a73 18447 var_decode_location (attr, sym, cu);
e142c38c 18448 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
18449
18450 /* Fortran explicitly imports any global symbols to the local
18451 scope by DW_TAG_common_block. */
18452 if (cu->language == language_fortran && die->parent
18453 && die->parent->tag == DW_TAG_common_block)
18454 attr2 = NULL;
18455
caac4577
JG
18456 if (SYMBOL_CLASS (sym) == LOC_STATIC
18457 && SYMBOL_VALUE_ADDRESS (sym) == 0
18458 && !dwarf2_per_objfile->has_section_at_zero)
18459 {
18460 /* When a static variable is eliminated by the linker,
18461 the corresponding debug information is not stripped
18462 out, but the variable address is set to null;
18463 do not add such variables into symbol table. */
18464 }
18465 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 18466 {
f55ee35c
JK
18467 /* Workaround gfortran PR debug/40040 - it uses
18468 DW_AT_location for variables in -fPIC libraries which may
18469 get overriden by other libraries/executable and get
18470 a different address. Resolve it by the minimal symbol
18471 which may come from inferior's executable using copy
18472 relocation. Make this workaround only for gfortran as for
18473 other compilers GDB cannot guess the minimal symbol
18474 Fortran mangling kind. */
18475 if (cu->language == language_fortran && die->parent
18476 && die->parent->tag == DW_TAG_module
18477 && cu->producer
61012eef 18478 && startswith (cu->producer, "GNU Fortran "))
f1e6e072 18479 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 18480
1c809c68
TT
18481 /* A variable with DW_AT_external is never static,
18482 but it may be block-scoped. */
18483 list_to_add = (cu->list_in_scope == &file_symbols
18484 ? &global_symbols : cu->list_in_scope);
1c809c68 18485 }
c906108c 18486 else
e37fd15a 18487 list_to_add = cu->list_in_scope;
c906108c
SS
18488 }
18489 else
18490 {
18491 /* We do not know the address of this symbol.
c5aa993b
JM
18492 If it is an external symbol and we have type information
18493 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18494 The address of the variable will then be determined from
18495 the minimal symbol table whenever the variable is
18496 referenced. */
e142c38c 18497 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
18498
18499 /* Fortran explicitly imports any global symbols to the local
18500 scope by DW_TAG_common_block. */
18501 if (cu->language == language_fortran && die->parent
18502 && die->parent->tag == DW_TAG_common_block)
18503 {
18504 /* SYMBOL_CLASS doesn't matter here because
18505 read_common_block is going to reset it. */
18506 if (!suppress_add)
18507 list_to_add = cu->list_in_scope;
18508 }
18509 else if (attr2 && (DW_UNSND (attr2) != 0)
18510 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 18511 {
0fe7935b
DJ
18512 /* A variable with DW_AT_external is never static, but it
18513 may be block-scoped. */
18514 list_to_add = (cu->list_in_scope == &file_symbols
18515 ? &global_symbols : cu->list_in_scope);
18516
f1e6e072 18517 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 18518 }
442ddf59
JK
18519 else if (!die_is_declaration (die, cu))
18520 {
18521 /* Use the default LOC_OPTIMIZED_OUT class. */
18522 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
18523 if (!suppress_add)
18524 list_to_add = cu->list_in_scope;
442ddf59 18525 }
c906108c
SS
18526 }
18527 break;
18528 case DW_TAG_formal_parameter:
edb3359d
DJ
18529 /* If we are inside a function, mark this as an argument. If
18530 not, we might be looking at an argument to an inlined function
18531 when we do not have enough information to show inlined frames;
18532 pretend it's a local variable in that case so that the user can
18533 still see it. */
18534 if (context_stack_depth > 0
18535 && context_stack[context_stack_depth - 1].name != NULL)
18536 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 18537 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18538 if (attr)
18539 {
e7c27a73 18540 var_decode_location (attr, sym, cu);
c906108c 18541 }
e142c38c 18542 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18543 if (attr)
18544 {
e7c27a73 18545 dwarf2_const_value (attr, sym, cu);
c906108c 18546 }
f346a30d 18547
e37fd15a 18548 list_to_add = cu->list_in_scope;
c906108c
SS
18549 break;
18550 case DW_TAG_unspecified_parameters:
18551 /* From varargs functions; gdb doesn't seem to have any
18552 interest in this information, so just ignore it for now.
18553 (FIXME?) */
18554 break;
34eaf542
TT
18555 case DW_TAG_template_type_param:
18556 suppress_add = 1;
18557 /* Fall through. */
c906108c 18558 case DW_TAG_class_type:
680b30c7 18559 case DW_TAG_interface_type:
c906108c
SS
18560 case DW_TAG_structure_type:
18561 case DW_TAG_union_type:
72019c9c 18562 case DW_TAG_set_type:
c906108c 18563 case DW_TAG_enumeration_type:
f1e6e072 18564 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18565 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 18566
63d06c5c 18567 {
987504bb 18568 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
18569 really ever be static objects: otherwise, if you try
18570 to, say, break of a class's method and you're in a file
18571 which doesn't mention that class, it won't work unless
18572 the check for all static symbols in lookup_symbol_aux
18573 saves you. See the OtherFileClass tests in
18574 gdb.c++/namespace.exp. */
18575
e37fd15a 18576 if (!suppress_add)
34eaf542 18577 {
34eaf542
TT
18578 list_to_add = (cu->list_in_scope == &file_symbols
18579 && (cu->language == language_cplus
18580 || cu->language == language_java)
18581 ? &global_symbols : cu->list_in_scope);
63d06c5c 18582
64382290
TT
18583 /* The semantics of C++ state that "struct foo {
18584 ... }" also defines a typedef for "foo". A Java
18585 class declaration also defines a typedef for the
18586 class. */
18587 if (cu->language == language_cplus
18588 || cu->language == language_java
45280282
IB
18589 || cu->language == language_ada
18590 || cu->language == language_d)
64382290
TT
18591 {
18592 /* The symbol's name is already allocated along
18593 with this objfile, so we don't need to
18594 duplicate it for the type. */
18595 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18596 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18597 }
63d06c5c
DC
18598 }
18599 }
c906108c
SS
18600 break;
18601 case DW_TAG_typedef:
f1e6e072 18602 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 18603 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18604 list_to_add = cu->list_in_scope;
63d06c5c 18605 break;
c906108c 18606 case DW_TAG_base_type:
a02abb62 18607 case DW_TAG_subrange_type:
f1e6e072 18608 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18609 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18610 list_to_add = cu->list_in_scope;
c906108c
SS
18611 break;
18612 case DW_TAG_enumerator:
e142c38c 18613 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18614 if (attr)
18615 {
e7c27a73 18616 dwarf2_const_value (attr, sym, cu);
c906108c 18617 }
63d06c5c
DC
18618 {
18619 /* NOTE: carlton/2003-11-10: See comment above in the
18620 DW_TAG_class_type, etc. block. */
18621
e142c38c 18622 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
18623 && (cu->language == language_cplus
18624 || cu->language == language_java)
e142c38c 18625 ? &global_symbols : cu->list_in_scope);
63d06c5c 18626 }
c906108c 18627 break;
74921315 18628 case DW_TAG_imported_declaration:
5c4e30ca 18629 case DW_TAG_namespace:
f1e6e072 18630 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 18631 list_to_add = &global_symbols;
5c4e30ca 18632 break;
530e8392
KB
18633 case DW_TAG_module:
18634 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18635 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18636 list_to_add = &global_symbols;
18637 break;
4357ac6c 18638 case DW_TAG_common_block:
f1e6e072 18639 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
18640 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18641 add_symbol_to_list (sym, cu->list_in_scope);
18642 break;
c906108c
SS
18643 default:
18644 /* Not a tag we recognize. Hopefully we aren't processing
18645 trash data, but since we must specifically ignore things
18646 we don't recognize, there is nothing else we should do at
0963b4bd 18647 this point. */
e2e0b3e5 18648 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 18649 dwarf_tag_name (die->tag));
c906108c
SS
18650 break;
18651 }
df8a16a1 18652
e37fd15a
SW
18653 if (suppress_add)
18654 {
18655 sym->hash_next = objfile->template_symbols;
18656 objfile->template_symbols = sym;
18657 list_to_add = NULL;
18658 }
18659
18660 if (list_to_add != NULL)
18661 add_symbol_to_list (sym, list_to_add);
18662
df8a16a1
DJ
18663 /* For the benefit of old versions of GCC, check for anonymous
18664 namespaces based on the demangled name. */
4d4ec4e5 18665 if (!cu->processing_has_namespace_info
94af9270 18666 && cu->language == language_cplus)
a10964d1 18667 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
18668 }
18669 return (sym);
18670}
18671
34eaf542
TT
18672/* A wrapper for new_symbol_full that always allocates a new symbol. */
18673
18674static struct symbol *
18675new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18676{
18677 return new_symbol_full (die, type, cu, NULL);
18678}
18679
98bfdba5
PA
18680/* Given an attr with a DW_FORM_dataN value in host byte order,
18681 zero-extend it as appropriate for the symbol's type. The DWARF
18682 standard (v4) is not entirely clear about the meaning of using
18683 DW_FORM_dataN for a constant with a signed type, where the type is
18684 wider than the data. The conclusion of a discussion on the DWARF
18685 list was that this is unspecified. We choose to always zero-extend
18686 because that is the interpretation long in use by GCC. */
c906108c 18687
98bfdba5 18688static gdb_byte *
ff39bb5e 18689dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 18690 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 18691{
e7c27a73 18692 struct objfile *objfile = cu->objfile;
e17a4113
UW
18693 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18694 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
18695 LONGEST l = DW_UNSND (attr);
18696
18697 if (bits < sizeof (*value) * 8)
18698 {
18699 l &= ((LONGEST) 1 << bits) - 1;
18700 *value = l;
18701 }
18702 else if (bits == sizeof (*value) * 8)
18703 *value = l;
18704 else
18705 {
18706 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18707 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18708 return bytes;
18709 }
18710
18711 return NULL;
18712}
18713
18714/* Read a constant value from an attribute. Either set *VALUE, or if
18715 the value does not fit in *VALUE, set *BYTES - either already
18716 allocated on the objfile obstack, or newly allocated on OBSTACK,
18717 or, set *BATON, if we translated the constant to a location
18718 expression. */
18719
18720static void
ff39bb5e 18721dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
18722 const char *name, struct obstack *obstack,
18723 struct dwarf2_cu *cu,
d521ce57 18724 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
18725 struct dwarf2_locexpr_baton **baton)
18726{
18727 struct objfile *objfile = cu->objfile;
18728 struct comp_unit_head *cu_header = &cu->header;
c906108c 18729 struct dwarf_block *blk;
98bfdba5
PA
18730 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18731 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18732
18733 *value = 0;
18734 *bytes = NULL;
18735 *baton = NULL;
c906108c
SS
18736
18737 switch (attr->form)
18738 {
18739 case DW_FORM_addr:
3019eac3 18740 case DW_FORM_GNU_addr_index:
ac56253d 18741 {
ac56253d
TT
18742 gdb_byte *data;
18743
98bfdba5
PA
18744 if (TYPE_LENGTH (type) != cu_header->addr_size)
18745 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 18746 cu_header->addr_size,
98bfdba5 18747 TYPE_LENGTH (type));
ac56253d
TT
18748 /* Symbols of this form are reasonably rare, so we just
18749 piggyback on the existing location code rather than writing
18750 a new implementation of symbol_computed_ops. */
8d749320 18751 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
98bfdba5
PA
18752 (*baton)->per_cu = cu->per_cu;
18753 gdb_assert ((*baton)->per_cu);
ac56253d 18754
98bfdba5 18755 (*baton)->size = 2 + cu_header->addr_size;
7919a973 18756 data = obstack_alloc (obstack, (*baton)->size);
98bfdba5 18757 (*baton)->data = data;
ac56253d
TT
18758
18759 data[0] = DW_OP_addr;
18760 store_unsigned_integer (&data[1], cu_header->addr_size,
18761 byte_order, DW_ADDR (attr));
18762 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 18763 }
c906108c 18764 break;
4ac36638 18765 case DW_FORM_string:
93b5768b 18766 case DW_FORM_strp:
3019eac3 18767 case DW_FORM_GNU_str_index:
36586728 18768 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
18769 /* DW_STRING is already allocated on the objfile obstack, point
18770 directly to it. */
d521ce57 18771 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 18772 break;
c906108c
SS
18773 case DW_FORM_block1:
18774 case DW_FORM_block2:
18775 case DW_FORM_block4:
18776 case DW_FORM_block:
2dc7f7b3 18777 case DW_FORM_exprloc:
c906108c 18778 blk = DW_BLOCK (attr);
98bfdba5
PA
18779 if (TYPE_LENGTH (type) != blk->size)
18780 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18781 TYPE_LENGTH (type));
18782 *bytes = blk->data;
c906108c 18783 break;
2df3850c
JM
18784
18785 /* The DW_AT_const_value attributes are supposed to carry the
18786 symbol's value "represented as it would be on the target
18787 architecture." By the time we get here, it's already been
18788 converted to host endianness, so we just need to sign- or
18789 zero-extend it as appropriate. */
18790 case DW_FORM_data1:
3aef2284 18791 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 18792 break;
c906108c 18793 case DW_FORM_data2:
3aef2284 18794 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 18795 break;
c906108c 18796 case DW_FORM_data4:
3aef2284 18797 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 18798 break;
c906108c 18799 case DW_FORM_data8:
3aef2284 18800 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
18801 break;
18802
c906108c 18803 case DW_FORM_sdata:
98bfdba5 18804 *value = DW_SND (attr);
2df3850c
JM
18805 break;
18806
c906108c 18807 case DW_FORM_udata:
98bfdba5 18808 *value = DW_UNSND (attr);
c906108c 18809 break;
2df3850c 18810
c906108c 18811 default:
4d3c2250 18812 complaint (&symfile_complaints,
e2e0b3e5 18813 _("unsupported const value attribute form: '%s'"),
4d3c2250 18814 dwarf_form_name (attr->form));
98bfdba5 18815 *value = 0;
c906108c
SS
18816 break;
18817 }
18818}
18819
2df3850c 18820
98bfdba5
PA
18821/* Copy constant value from an attribute to a symbol. */
18822
2df3850c 18823static void
ff39bb5e 18824dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 18825 struct dwarf2_cu *cu)
2df3850c 18826{
98bfdba5
PA
18827 struct objfile *objfile = cu->objfile;
18828 struct comp_unit_head *cu_header = &cu->header;
12df843f 18829 LONGEST value;
d521ce57 18830 const gdb_byte *bytes;
98bfdba5 18831 struct dwarf2_locexpr_baton *baton;
2df3850c 18832
98bfdba5
PA
18833 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18834 SYMBOL_PRINT_NAME (sym),
18835 &objfile->objfile_obstack, cu,
18836 &value, &bytes, &baton);
2df3850c 18837
98bfdba5
PA
18838 if (baton != NULL)
18839 {
98bfdba5 18840 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 18841 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
18842 }
18843 else if (bytes != NULL)
18844 {
18845 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 18846 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
18847 }
18848 else
18849 {
18850 SYMBOL_VALUE (sym) = value;
f1e6e072 18851 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 18852 }
2df3850c
JM
18853}
18854
c906108c
SS
18855/* Return the type of the die in question using its DW_AT_type attribute. */
18856
18857static struct type *
e7c27a73 18858die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18859{
c906108c 18860 struct attribute *type_attr;
c906108c 18861
e142c38c 18862 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
18863 if (!type_attr)
18864 {
18865 /* A missing DW_AT_type represents a void type. */
46bf5051 18866 return objfile_type (cu->objfile)->builtin_void;
c906108c 18867 }
348e048f 18868
673bfd45 18869 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18870}
18871
b4ba55a1
JB
18872/* True iff CU's producer generates GNAT Ada auxiliary information
18873 that allows to find parallel types through that information instead
18874 of having to do expensive parallel lookups by type name. */
18875
18876static int
18877need_gnat_info (struct dwarf2_cu *cu)
18878{
18879 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18880 of GNAT produces this auxiliary information, without any indication
18881 that it is produced. Part of enhancing the FSF version of GNAT
18882 to produce that information will be to put in place an indicator
18883 that we can use in order to determine whether the descriptive type
18884 info is available or not. One suggestion that has been made is
18885 to use a new attribute, attached to the CU die. For now, assume
18886 that the descriptive type info is not available. */
18887 return 0;
18888}
18889
b4ba55a1
JB
18890/* Return the auxiliary type of the die in question using its
18891 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18892 attribute is not present. */
18893
18894static struct type *
18895die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18896{
b4ba55a1 18897 struct attribute *type_attr;
b4ba55a1
JB
18898
18899 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18900 if (!type_attr)
18901 return NULL;
18902
673bfd45 18903 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
18904}
18905
18906/* If DIE has a descriptive_type attribute, then set the TYPE's
18907 descriptive type accordingly. */
18908
18909static void
18910set_descriptive_type (struct type *type, struct die_info *die,
18911 struct dwarf2_cu *cu)
18912{
18913 struct type *descriptive_type = die_descriptive_type (die, cu);
18914
18915 if (descriptive_type)
18916 {
18917 ALLOCATE_GNAT_AUX_TYPE (type);
18918 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18919 }
18920}
18921
c906108c
SS
18922/* Return the containing type of the die in question using its
18923 DW_AT_containing_type attribute. */
18924
18925static struct type *
e7c27a73 18926die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18927{
c906108c 18928 struct attribute *type_attr;
c906108c 18929
e142c38c 18930 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
18931 if (!type_attr)
18932 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 18933 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 18934
673bfd45 18935 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18936}
18937
ac9ec31b
DE
18938/* Return an error marker type to use for the ill formed type in DIE/CU. */
18939
18940static struct type *
18941build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18942{
18943 struct objfile *objfile = dwarf2_per_objfile->objfile;
18944 char *message, *saved;
18945
18946 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 18947 objfile_name (objfile),
ac9ec31b
DE
18948 cu->header.offset.sect_off,
18949 die->offset.sect_off);
18950 saved = obstack_copy0 (&objfile->objfile_obstack,
18951 message, strlen (message));
18952 xfree (message);
18953
18954 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18955}
18956
673bfd45 18957/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
18958 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18959 DW_AT_containing_type.
673bfd45
DE
18960 If there is no type substitute an error marker. */
18961
c906108c 18962static struct type *
ff39bb5e 18963lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 18964 struct dwarf2_cu *cu)
c906108c 18965{
bb5ed363 18966 struct objfile *objfile = cu->objfile;
f792889a
DJ
18967 struct type *this_type;
18968
ac9ec31b
DE
18969 gdb_assert (attr->name == DW_AT_type
18970 || attr->name == DW_AT_GNAT_descriptive_type
18971 || attr->name == DW_AT_containing_type);
18972
673bfd45
DE
18973 /* First see if we have it cached. */
18974
36586728
TT
18975 if (attr->form == DW_FORM_GNU_ref_alt)
18976 {
18977 struct dwarf2_per_cu_data *per_cu;
18978 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18979
18980 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18981 this_type = get_die_type_at_offset (offset, per_cu);
18982 }
7771576e 18983 else if (attr_form_is_ref (attr))
673bfd45 18984 {
b64f50a1 18985 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
18986
18987 this_type = get_die_type_at_offset (offset, cu->per_cu);
18988 }
55f1336d 18989 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 18990 {
ac9ec31b 18991 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 18992
ac9ec31b 18993 return get_signatured_type (die, signature, cu);
673bfd45
DE
18994 }
18995 else
18996 {
ac9ec31b
DE
18997 complaint (&symfile_complaints,
18998 _("Dwarf Error: Bad type attribute %s in DIE"
18999 " at 0x%x [in module %s]"),
19000 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 19001 objfile_name (objfile));
ac9ec31b 19002 return build_error_marker_type (cu, die);
673bfd45
DE
19003 }
19004
19005 /* If not cached we need to read it in. */
19006
19007 if (this_type == NULL)
19008 {
ac9ec31b 19009 struct die_info *type_die = NULL;
673bfd45
DE
19010 struct dwarf2_cu *type_cu = cu;
19011
7771576e 19012 if (attr_form_is_ref (attr))
ac9ec31b
DE
19013 type_die = follow_die_ref (die, attr, &type_cu);
19014 if (type_die == NULL)
19015 return build_error_marker_type (cu, die);
19016 /* If we find the type now, it's probably because the type came
3019eac3
DE
19017 from an inter-CU reference and the type's CU got expanded before
19018 ours. */
ac9ec31b 19019 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
19020 }
19021
19022 /* If we still don't have a type use an error marker. */
19023
19024 if (this_type == NULL)
ac9ec31b 19025 return build_error_marker_type (cu, die);
673bfd45 19026
f792889a 19027 return this_type;
c906108c
SS
19028}
19029
673bfd45
DE
19030/* Return the type in DIE, CU.
19031 Returns NULL for invalid types.
19032
02142a6c 19033 This first does a lookup in die_type_hash,
673bfd45
DE
19034 and only reads the die in if necessary.
19035
19036 NOTE: This can be called when reading in partial or full symbols. */
19037
f792889a 19038static struct type *
e7c27a73 19039read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19040{
f792889a
DJ
19041 struct type *this_type;
19042
19043 this_type = get_die_type (die, cu);
19044 if (this_type)
19045 return this_type;
19046
673bfd45
DE
19047 return read_type_die_1 (die, cu);
19048}
19049
19050/* Read the type in DIE, CU.
19051 Returns NULL for invalid types. */
19052
19053static struct type *
19054read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19055{
19056 struct type *this_type = NULL;
19057
c906108c
SS
19058 switch (die->tag)
19059 {
19060 case DW_TAG_class_type:
680b30c7 19061 case DW_TAG_interface_type:
c906108c
SS
19062 case DW_TAG_structure_type:
19063 case DW_TAG_union_type:
f792889a 19064 this_type = read_structure_type (die, cu);
c906108c
SS
19065 break;
19066 case DW_TAG_enumeration_type:
f792889a 19067 this_type = read_enumeration_type (die, cu);
c906108c
SS
19068 break;
19069 case DW_TAG_subprogram:
19070 case DW_TAG_subroutine_type:
edb3359d 19071 case DW_TAG_inlined_subroutine:
f792889a 19072 this_type = read_subroutine_type (die, cu);
c906108c
SS
19073 break;
19074 case DW_TAG_array_type:
f792889a 19075 this_type = read_array_type (die, cu);
c906108c 19076 break;
72019c9c 19077 case DW_TAG_set_type:
f792889a 19078 this_type = read_set_type (die, cu);
72019c9c 19079 break;
c906108c 19080 case DW_TAG_pointer_type:
f792889a 19081 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
19082 break;
19083 case DW_TAG_ptr_to_member_type:
f792889a 19084 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
19085 break;
19086 case DW_TAG_reference_type:
f792889a 19087 this_type = read_tag_reference_type (die, cu);
c906108c
SS
19088 break;
19089 case DW_TAG_const_type:
f792889a 19090 this_type = read_tag_const_type (die, cu);
c906108c
SS
19091 break;
19092 case DW_TAG_volatile_type:
f792889a 19093 this_type = read_tag_volatile_type (die, cu);
c906108c 19094 break;
06d66ee9
TT
19095 case DW_TAG_restrict_type:
19096 this_type = read_tag_restrict_type (die, cu);
19097 break;
c906108c 19098 case DW_TAG_string_type:
f792889a 19099 this_type = read_tag_string_type (die, cu);
c906108c
SS
19100 break;
19101 case DW_TAG_typedef:
f792889a 19102 this_type = read_typedef (die, cu);
c906108c 19103 break;
a02abb62 19104 case DW_TAG_subrange_type:
f792889a 19105 this_type = read_subrange_type (die, cu);
a02abb62 19106 break;
c906108c 19107 case DW_TAG_base_type:
f792889a 19108 this_type = read_base_type (die, cu);
c906108c 19109 break;
81a17f79 19110 case DW_TAG_unspecified_type:
f792889a 19111 this_type = read_unspecified_type (die, cu);
81a17f79 19112 break;
0114d602
DJ
19113 case DW_TAG_namespace:
19114 this_type = read_namespace_type (die, cu);
19115 break;
f55ee35c
JK
19116 case DW_TAG_module:
19117 this_type = read_module_type (die, cu);
19118 break;
a2c2acaf
MW
19119 case DW_TAG_atomic_type:
19120 this_type = read_tag_atomic_type (die, cu);
19121 break;
c906108c 19122 default:
3e43a32a
MS
19123 complaint (&symfile_complaints,
19124 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 19125 dwarf_tag_name (die->tag));
c906108c
SS
19126 break;
19127 }
63d06c5c 19128
f792889a 19129 return this_type;
63d06c5c
DC
19130}
19131
abc72ce4
DE
19132/* See if we can figure out if the class lives in a namespace. We do
19133 this by looking for a member function; its demangled name will
19134 contain namespace info, if there is any.
19135 Return the computed name or NULL.
19136 Space for the result is allocated on the objfile's obstack.
19137 This is the full-die version of guess_partial_die_structure_name.
19138 In this case we know DIE has no useful parent. */
19139
19140static char *
19141guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19142{
19143 struct die_info *spec_die;
19144 struct dwarf2_cu *spec_cu;
19145 struct die_info *child;
19146
19147 spec_cu = cu;
19148 spec_die = die_specification (die, &spec_cu);
19149 if (spec_die != NULL)
19150 {
19151 die = spec_die;
19152 cu = spec_cu;
19153 }
19154
19155 for (child = die->child;
19156 child != NULL;
19157 child = child->sibling)
19158 {
19159 if (child->tag == DW_TAG_subprogram)
19160 {
7d45c7c3 19161 const char *linkage_name;
abc72ce4 19162
7d45c7c3
KB
19163 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19164 if (linkage_name == NULL)
19165 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19166 cu);
19167 if (linkage_name != NULL)
abc72ce4
DE
19168 {
19169 char *actual_name
19170 = language_class_name_from_physname (cu->language_defn,
7d45c7c3 19171 linkage_name);
abc72ce4
DE
19172 char *name = NULL;
19173
19174 if (actual_name != NULL)
19175 {
15d034d0 19176 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
19177
19178 if (die_name != NULL
19179 && strcmp (die_name, actual_name) != 0)
19180 {
19181 /* Strip off the class name from the full name.
19182 We want the prefix. */
19183 int die_name_len = strlen (die_name);
19184 int actual_name_len = strlen (actual_name);
19185
19186 /* Test for '::' as a sanity check. */
19187 if (actual_name_len > die_name_len + 2
3e43a32a
MS
19188 && actual_name[actual_name_len
19189 - die_name_len - 1] == ':')
abc72ce4 19190 name =
34a68019 19191 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb
TT
19192 actual_name,
19193 actual_name_len - die_name_len - 2);
abc72ce4
DE
19194 }
19195 }
19196 xfree (actual_name);
19197 return name;
19198 }
19199 }
19200 }
19201
19202 return NULL;
19203}
19204
96408a79
SA
19205/* GCC might emit a nameless typedef that has a linkage name. Determine the
19206 prefix part in such case. See
19207 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19208
19209static char *
19210anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19211{
19212 struct attribute *attr;
19213 char *base;
19214
19215 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19216 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19217 return NULL;
19218
7d45c7c3 19219 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
96408a79
SA
19220 return NULL;
19221
19222 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19223 if (attr == NULL)
19224 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19225 if (attr == NULL || DW_STRING (attr) == NULL)
19226 return NULL;
19227
19228 /* dwarf2_name had to be already called. */
19229 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19230
19231 /* Strip the base name, keep any leading namespaces/classes. */
19232 base = strrchr (DW_STRING (attr), ':');
19233 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19234 return "";
19235
34a68019 19236 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb 19237 DW_STRING (attr), &base[-1] - DW_STRING (attr));
96408a79
SA
19238}
19239
fdde2d81 19240/* Return the name of the namespace/class that DIE is defined within,
0114d602 19241 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 19242
0114d602
DJ
19243 For example, if we're within the method foo() in the following
19244 code:
19245
19246 namespace N {
19247 class C {
19248 void foo () {
19249 }
19250 };
19251 }
19252
19253 then determine_prefix on foo's die will return "N::C". */
fdde2d81 19254
0d5cff50 19255static const char *
e142c38c 19256determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 19257{
0114d602
DJ
19258 struct die_info *parent, *spec_die;
19259 struct dwarf2_cu *spec_cu;
19260 struct type *parent_type;
96408a79 19261 char *retval;
63d06c5c 19262
f55ee35c 19263 if (cu->language != language_cplus && cu->language != language_java
45280282 19264 && cu->language != language_fortran && cu->language != language_d)
0114d602
DJ
19265 return "";
19266
96408a79
SA
19267 retval = anonymous_struct_prefix (die, cu);
19268 if (retval)
19269 return retval;
19270
0114d602
DJ
19271 /* We have to be careful in the presence of DW_AT_specification.
19272 For example, with GCC 3.4, given the code
19273
19274 namespace N {
19275 void foo() {
19276 // Definition of N::foo.
19277 }
19278 }
19279
19280 then we'll have a tree of DIEs like this:
19281
19282 1: DW_TAG_compile_unit
19283 2: DW_TAG_namespace // N
19284 3: DW_TAG_subprogram // declaration of N::foo
19285 4: DW_TAG_subprogram // definition of N::foo
19286 DW_AT_specification // refers to die #3
19287
19288 Thus, when processing die #4, we have to pretend that we're in
19289 the context of its DW_AT_specification, namely the contex of die
19290 #3. */
19291 spec_cu = cu;
19292 spec_die = die_specification (die, &spec_cu);
19293 if (spec_die == NULL)
19294 parent = die->parent;
19295 else
63d06c5c 19296 {
0114d602
DJ
19297 parent = spec_die->parent;
19298 cu = spec_cu;
63d06c5c 19299 }
0114d602
DJ
19300
19301 if (parent == NULL)
19302 return "";
98bfdba5
PA
19303 else if (parent->building_fullname)
19304 {
19305 const char *name;
19306 const char *parent_name;
19307
19308 /* It has been seen on RealView 2.2 built binaries,
19309 DW_TAG_template_type_param types actually _defined_ as
19310 children of the parent class:
19311
19312 enum E {};
19313 template class <class Enum> Class{};
19314 Class<enum E> class_e;
19315
19316 1: DW_TAG_class_type (Class)
19317 2: DW_TAG_enumeration_type (E)
19318 3: DW_TAG_enumerator (enum1:0)
19319 3: DW_TAG_enumerator (enum2:1)
19320 ...
19321 2: DW_TAG_template_type_param
19322 DW_AT_type DW_FORM_ref_udata (E)
19323
19324 Besides being broken debug info, it can put GDB into an
19325 infinite loop. Consider:
19326
19327 When we're building the full name for Class<E>, we'll start
19328 at Class, and go look over its template type parameters,
19329 finding E. We'll then try to build the full name of E, and
19330 reach here. We're now trying to build the full name of E,
19331 and look over the parent DIE for containing scope. In the
19332 broken case, if we followed the parent DIE of E, we'd again
19333 find Class, and once again go look at its template type
19334 arguments, etc., etc. Simply don't consider such parent die
19335 as source-level parent of this die (it can't be, the language
19336 doesn't allow it), and break the loop here. */
19337 name = dwarf2_name (die, cu);
19338 parent_name = dwarf2_name (parent, cu);
19339 complaint (&symfile_complaints,
19340 _("template param type '%s' defined within parent '%s'"),
19341 name ? name : "<unknown>",
19342 parent_name ? parent_name : "<unknown>");
19343 return "";
19344 }
63d06c5c 19345 else
0114d602
DJ
19346 switch (parent->tag)
19347 {
63d06c5c 19348 case DW_TAG_namespace:
0114d602 19349 parent_type = read_type_die (parent, cu);
acebe513
UW
19350 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19351 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19352 Work around this problem here. */
19353 if (cu->language == language_cplus
19354 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19355 return "";
0114d602
DJ
19356 /* We give a name to even anonymous namespaces. */
19357 return TYPE_TAG_NAME (parent_type);
63d06c5c 19358 case DW_TAG_class_type:
680b30c7 19359 case DW_TAG_interface_type:
63d06c5c 19360 case DW_TAG_structure_type:
0114d602 19361 case DW_TAG_union_type:
f55ee35c 19362 case DW_TAG_module:
0114d602
DJ
19363 parent_type = read_type_die (parent, cu);
19364 if (TYPE_TAG_NAME (parent_type) != NULL)
19365 return TYPE_TAG_NAME (parent_type);
19366 else
19367 /* An anonymous structure is only allowed non-static data
19368 members; no typedefs, no member functions, et cetera.
19369 So it does not need a prefix. */
19370 return "";
abc72ce4 19371 case DW_TAG_compile_unit:
95554aad 19372 case DW_TAG_partial_unit:
abc72ce4
DE
19373 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19374 if (cu->language == language_cplus
8b70b953 19375 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
19376 && die->child != NULL
19377 && (die->tag == DW_TAG_class_type
19378 || die->tag == DW_TAG_structure_type
19379 || die->tag == DW_TAG_union_type))
19380 {
19381 char *name = guess_full_die_structure_name (die, cu);
19382 if (name != NULL)
19383 return name;
19384 }
19385 return "";
3d567982
TT
19386 case DW_TAG_enumeration_type:
19387 parent_type = read_type_die (parent, cu);
19388 if (TYPE_DECLARED_CLASS (parent_type))
19389 {
19390 if (TYPE_TAG_NAME (parent_type) != NULL)
19391 return TYPE_TAG_NAME (parent_type);
19392 return "";
19393 }
19394 /* Fall through. */
63d06c5c 19395 default:
8176b9b8 19396 return determine_prefix (parent, cu);
63d06c5c 19397 }
63d06c5c
DC
19398}
19399
3e43a32a
MS
19400/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19401 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19402 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19403 an obconcat, otherwise allocate storage for the result. The CU argument is
19404 used to determine the language and hence, the appropriate separator. */
987504bb 19405
f55ee35c 19406#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
19407
19408static char *
f55ee35c
JK
19409typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19410 int physname, struct dwarf2_cu *cu)
63d06c5c 19411{
f55ee35c 19412 const char *lead = "";
5c315b68 19413 const char *sep;
63d06c5c 19414
3e43a32a
MS
19415 if (suffix == NULL || suffix[0] == '\0'
19416 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
19417 sep = "";
19418 else if (cu->language == language_java)
19419 sep = ".";
45280282
IB
19420 else if (cu->language == language_d)
19421 {
19422 /* For D, the 'main' function could be defined in any module, but it
19423 should never be prefixed. */
19424 if (strcmp (suffix, "D main") == 0)
19425 {
19426 prefix = "";
19427 sep = "";
19428 }
19429 else
19430 sep = ".";
19431 }
f55ee35c
JK
19432 else if (cu->language == language_fortran && physname)
19433 {
19434 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19435 DW_AT_MIPS_linkage_name is preferred and used instead. */
19436
19437 lead = "__";
19438 sep = "_MOD_";
19439 }
987504bb
JJ
19440 else
19441 sep = "::";
63d06c5c 19442
6dd47d34
DE
19443 if (prefix == NULL)
19444 prefix = "";
19445 if (suffix == NULL)
19446 suffix = "";
19447
987504bb
JJ
19448 if (obs == NULL)
19449 {
3e43a32a
MS
19450 char *retval
19451 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 19452
f55ee35c
JK
19453 strcpy (retval, lead);
19454 strcat (retval, prefix);
6dd47d34
DE
19455 strcat (retval, sep);
19456 strcat (retval, suffix);
63d06c5c
DC
19457 return retval;
19458 }
987504bb
JJ
19459 else
19460 {
19461 /* We have an obstack. */
f55ee35c 19462 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 19463 }
63d06c5c
DC
19464}
19465
c906108c
SS
19466/* Return sibling of die, NULL if no sibling. */
19467
f9aca02d 19468static struct die_info *
fba45db2 19469sibling_die (struct die_info *die)
c906108c 19470{
639d11d3 19471 return die->sibling;
c906108c
SS
19472}
19473
71c25dea
TT
19474/* Get name of a die, return NULL if not found. */
19475
15d034d0
TT
19476static const char *
19477dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
19478 struct obstack *obstack)
19479{
19480 if (name && cu->language == language_cplus)
19481 {
19482 char *canon_name = cp_canonicalize_string (name);
19483
19484 if (canon_name != NULL)
19485 {
19486 if (strcmp (canon_name, name) != 0)
10f0c4bb 19487 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
71c25dea
TT
19488 xfree (canon_name);
19489 }
19490 }
19491
19492 return name;
c906108c
SS
19493}
19494
96553a0c
DE
19495/* Get name of a die, return NULL if not found.
19496 Anonymous namespaces are converted to their magic string. */
9219021c 19497
15d034d0 19498static const char *
e142c38c 19499dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
19500{
19501 struct attribute *attr;
19502
e142c38c 19503 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 19504 if ((!attr || !DW_STRING (attr))
96553a0c 19505 && die->tag != DW_TAG_namespace
53832f31
TT
19506 && die->tag != DW_TAG_class_type
19507 && die->tag != DW_TAG_interface_type
19508 && die->tag != DW_TAG_structure_type
19509 && die->tag != DW_TAG_union_type)
71c25dea
TT
19510 return NULL;
19511
19512 switch (die->tag)
19513 {
19514 case DW_TAG_compile_unit:
95554aad 19515 case DW_TAG_partial_unit:
71c25dea
TT
19516 /* Compilation units have a DW_AT_name that is a filename, not
19517 a source language identifier. */
19518 case DW_TAG_enumeration_type:
19519 case DW_TAG_enumerator:
19520 /* These tags always have simple identifiers already; no need
19521 to canonicalize them. */
19522 return DW_STRING (attr);
907af001 19523
96553a0c
DE
19524 case DW_TAG_namespace:
19525 if (attr != NULL && DW_STRING (attr) != NULL)
19526 return DW_STRING (attr);
19527 return CP_ANONYMOUS_NAMESPACE_STR;
19528
418835cc
KS
19529 case DW_TAG_subprogram:
19530 /* Java constructors will all be named "<init>", so return
19531 the class name when we see this special case. */
19532 if (cu->language == language_java
19533 && DW_STRING (attr) != NULL
19534 && strcmp (DW_STRING (attr), "<init>") == 0)
19535 {
19536 struct dwarf2_cu *spec_cu = cu;
19537 struct die_info *spec_die;
19538
19539 /* GCJ will output '<init>' for Java constructor names.
19540 For this special case, return the name of the parent class. */
19541
cdc07690 19542 /* GCJ may output subprogram DIEs with AT_specification set.
418835cc
KS
19543 If so, use the name of the specified DIE. */
19544 spec_die = die_specification (die, &spec_cu);
19545 if (spec_die != NULL)
19546 return dwarf2_name (spec_die, spec_cu);
19547
19548 do
19549 {
19550 die = die->parent;
19551 if (die->tag == DW_TAG_class_type)
19552 return dwarf2_name (die, cu);
19553 }
95554aad
TT
19554 while (die->tag != DW_TAG_compile_unit
19555 && die->tag != DW_TAG_partial_unit);
418835cc 19556 }
907af001
UW
19557 break;
19558
19559 case DW_TAG_class_type:
19560 case DW_TAG_interface_type:
19561 case DW_TAG_structure_type:
19562 case DW_TAG_union_type:
19563 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19564 structures or unions. These were of the form "._%d" in GCC 4.1,
19565 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19566 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 19567 if (attr && DW_STRING (attr)
61012eef
GB
19568 && (startswith (DW_STRING (attr), "._")
19569 || startswith (DW_STRING (attr), "<anonymous")))
907af001 19570 return NULL;
53832f31
TT
19571
19572 /* GCC might emit a nameless typedef that has a linkage name. See
19573 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19574 if (!attr || DW_STRING (attr) == NULL)
19575 {
df5c6c50 19576 char *demangled = NULL;
53832f31
TT
19577
19578 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19579 if (attr == NULL)
19580 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19581
19582 if (attr == NULL || DW_STRING (attr) == NULL)
19583 return NULL;
19584
df5c6c50
JK
19585 /* Avoid demangling DW_STRING (attr) the second time on a second
19586 call for the same DIE. */
19587 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 19588 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
19589
19590 if (demangled)
19591 {
96408a79
SA
19592 char *base;
19593
53832f31 19594 /* FIXME: we already did this for the partial symbol... */
34a68019
TT
19595 DW_STRING (attr)
19596 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19597 demangled, strlen (demangled));
53832f31
TT
19598 DW_STRING_IS_CANONICAL (attr) = 1;
19599 xfree (demangled);
96408a79
SA
19600
19601 /* Strip any leading namespaces/classes, keep only the base name.
19602 DW_AT_name for named DIEs does not contain the prefixes. */
19603 base = strrchr (DW_STRING (attr), ':');
19604 if (base && base > DW_STRING (attr) && base[-1] == ':')
19605 return &base[1];
19606 else
19607 return DW_STRING (attr);
53832f31
TT
19608 }
19609 }
907af001
UW
19610 break;
19611
71c25dea 19612 default:
907af001
UW
19613 break;
19614 }
19615
19616 if (!DW_STRING_IS_CANONICAL (attr))
19617 {
19618 DW_STRING (attr)
19619 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 19620 &cu->objfile->per_bfd->storage_obstack);
907af001 19621 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 19622 }
907af001 19623 return DW_STRING (attr);
9219021c
DC
19624}
19625
19626/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
19627 is none. *EXT_CU is the CU containing DIE on input, and the CU
19628 containing the return value on output. */
9219021c
DC
19629
19630static struct die_info *
f2f0e013 19631dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
19632{
19633 struct attribute *attr;
9219021c 19634
f2f0e013 19635 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
19636 if (attr == NULL)
19637 return NULL;
19638
f2f0e013 19639 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
19640}
19641
c906108c
SS
19642/* Convert a DIE tag into its string name. */
19643
f39c6ffd 19644static const char *
aa1ee363 19645dwarf_tag_name (unsigned tag)
c906108c 19646{
f39c6ffd
TT
19647 const char *name = get_DW_TAG_name (tag);
19648
19649 if (name == NULL)
19650 return "DW_TAG_<unknown>";
19651
19652 return name;
c906108c
SS
19653}
19654
19655/* Convert a DWARF attribute code into its string name. */
19656
f39c6ffd 19657static const char *
aa1ee363 19658dwarf_attr_name (unsigned attr)
c906108c 19659{
f39c6ffd
TT
19660 const char *name;
19661
c764a876 19662#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
19663 if (attr == DW_AT_MIPS_fde)
19664 return "DW_AT_MIPS_fde";
19665#else
19666 if (attr == DW_AT_HP_block_index)
19667 return "DW_AT_HP_block_index";
c764a876 19668#endif
f39c6ffd
TT
19669
19670 name = get_DW_AT_name (attr);
19671
19672 if (name == NULL)
19673 return "DW_AT_<unknown>";
19674
19675 return name;
c906108c
SS
19676}
19677
19678/* Convert a DWARF value form code into its string name. */
19679
f39c6ffd 19680static const char *
aa1ee363 19681dwarf_form_name (unsigned form)
c906108c 19682{
f39c6ffd
TT
19683 const char *name = get_DW_FORM_name (form);
19684
19685 if (name == NULL)
19686 return "DW_FORM_<unknown>";
19687
19688 return name;
c906108c
SS
19689}
19690
19691static char *
fba45db2 19692dwarf_bool_name (unsigned mybool)
c906108c
SS
19693{
19694 if (mybool)
19695 return "TRUE";
19696 else
19697 return "FALSE";
19698}
19699
19700/* Convert a DWARF type code into its string name. */
19701
f39c6ffd 19702static const char *
aa1ee363 19703dwarf_type_encoding_name (unsigned enc)
c906108c 19704{
f39c6ffd 19705 const char *name = get_DW_ATE_name (enc);
c906108c 19706
f39c6ffd
TT
19707 if (name == NULL)
19708 return "DW_ATE_<unknown>";
c906108c 19709
f39c6ffd 19710 return name;
c906108c 19711}
c906108c 19712
f9aca02d 19713static void
d97bc12b 19714dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
19715{
19716 unsigned int i;
19717
d97bc12b
DE
19718 print_spaces (indent, f);
19719 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 19720 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
19721
19722 if (die->parent != NULL)
19723 {
19724 print_spaces (indent, f);
19725 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 19726 die->parent->offset.sect_off);
d97bc12b
DE
19727 }
19728
19729 print_spaces (indent, f);
19730 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 19731 dwarf_bool_name (die->child != NULL));
c906108c 19732
d97bc12b
DE
19733 print_spaces (indent, f);
19734 fprintf_unfiltered (f, " attributes:\n");
19735
c906108c
SS
19736 for (i = 0; i < die->num_attrs; ++i)
19737 {
d97bc12b
DE
19738 print_spaces (indent, f);
19739 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
19740 dwarf_attr_name (die->attrs[i].name),
19741 dwarf_form_name (die->attrs[i].form));
d97bc12b 19742
c906108c
SS
19743 switch (die->attrs[i].form)
19744 {
c906108c 19745 case DW_FORM_addr:
3019eac3 19746 case DW_FORM_GNU_addr_index:
d97bc12b 19747 fprintf_unfiltered (f, "address: ");
5af949e3 19748 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
19749 break;
19750 case DW_FORM_block2:
19751 case DW_FORM_block4:
19752 case DW_FORM_block:
19753 case DW_FORM_block1:
56eb65bd
SP
19754 fprintf_unfiltered (f, "block: size %s",
19755 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 19756 break;
2dc7f7b3 19757 case DW_FORM_exprloc:
56eb65bd
SP
19758 fprintf_unfiltered (f, "expression: size %s",
19759 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 19760 break;
4568ecf9
DE
19761 case DW_FORM_ref_addr:
19762 fprintf_unfiltered (f, "ref address: ");
19763 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19764 break;
36586728
TT
19765 case DW_FORM_GNU_ref_alt:
19766 fprintf_unfiltered (f, "alt ref address: ");
19767 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19768 break;
10b3939b
DJ
19769 case DW_FORM_ref1:
19770 case DW_FORM_ref2:
19771 case DW_FORM_ref4:
4568ecf9
DE
19772 case DW_FORM_ref8:
19773 case DW_FORM_ref_udata:
d97bc12b 19774 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 19775 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 19776 break;
c906108c
SS
19777 case DW_FORM_data1:
19778 case DW_FORM_data2:
19779 case DW_FORM_data4:
ce5d95e1 19780 case DW_FORM_data8:
c906108c
SS
19781 case DW_FORM_udata:
19782 case DW_FORM_sdata:
43bbcdc2
PH
19783 fprintf_unfiltered (f, "constant: %s",
19784 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 19785 break;
2dc7f7b3
TT
19786 case DW_FORM_sec_offset:
19787 fprintf_unfiltered (f, "section offset: %s",
19788 pulongest (DW_UNSND (&die->attrs[i])));
19789 break;
55f1336d 19790 case DW_FORM_ref_sig8:
ac9ec31b
DE
19791 fprintf_unfiltered (f, "signature: %s",
19792 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 19793 break;
c906108c 19794 case DW_FORM_string:
4bdf3d34 19795 case DW_FORM_strp:
3019eac3 19796 case DW_FORM_GNU_str_index:
36586728 19797 case DW_FORM_GNU_strp_alt:
8285870a 19798 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 19799 DW_STRING (&die->attrs[i])
8285870a
JK
19800 ? DW_STRING (&die->attrs[i]) : "",
19801 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
19802 break;
19803 case DW_FORM_flag:
19804 if (DW_UNSND (&die->attrs[i]))
d97bc12b 19805 fprintf_unfiltered (f, "flag: TRUE");
c906108c 19806 else
d97bc12b 19807 fprintf_unfiltered (f, "flag: FALSE");
c906108c 19808 break;
2dc7f7b3
TT
19809 case DW_FORM_flag_present:
19810 fprintf_unfiltered (f, "flag: TRUE");
19811 break;
a8329558 19812 case DW_FORM_indirect:
0963b4bd
MS
19813 /* The reader will have reduced the indirect form to
19814 the "base form" so this form should not occur. */
3e43a32a
MS
19815 fprintf_unfiltered (f,
19816 "unexpected attribute form: DW_FORM_indirect");
a8329558 19817 break;
c906108c 19818 default:
d97bc12b 19819 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 19820 die->attrs[i].form);
d97bc12b 19821 break;
c906108c 19822 }
d97bc12b 19823 fprintf_unfiltered (f, "\n");
c906108c
SS
19824 }
19825}
19826
f9aca02d 19827static void
d97bc12b 19828dump_die_for_error (struct die_info *die)
c906108c 19829{
d97bc12b
DE
19830 dump_die_shallow (gdb_stderr, 0, die);
19831}
19832
19833static void
19834dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19835{
19836 int indent = level * 4;
19837
19838 gdb_assert (die != NULL);
19839
19840 if (level >= max_level)
19841 return;
19842
19843 dump_die_shallow (f, indent, die);
19844
19845 if (die->child != NULL)
c906108c 19846 {
d97bc12b
DE
19847 print_spaces (indent, f);
19848 fprintf_unfiltered (f, " Children:");
19849 if (level + 1 < max_level)
19850 {
19851 fprintf_unfiltered (f, "\n");
19852 dump_die_1 (f, level + 1, max_level, die->child);
19853 }
19854 else
19855 {
3e43a32a
MS
19856 fprintf_unfiltered (f,
19857 " [not printed, max nesting level reached]\n");
d97bc12b
DE
19858 }
19859 }
19860
19861 if (die->sibling != NULL && level > 0)
19862 {
19863 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
19864 }
19865}
19866
d97bc12b
DE
19867/* This is called from the pdie macro in gdbinit.in.
19868 It's not static so gcc will keep a copy callable from gdb. */
19869
19870void
19871dump_die (struct die_info *die, int max_level)
19872{
19873 dump_die_1 (gdb_stdlog, 0, max_level, die);
19874}
19875
f9aca02d 19876static void
51545339 19877store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19878{
51545339 19879 void **slot;
c906108c 19880
b64f50a1
JK
19881 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19882 INSERT);
51545339
DJ
19883
19884 *slot = die;
c906108c
SS
19885}
19886
b64f50a1
JK
19887/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19888 required kind. */
19889
19890static sect_offset
ff39bb5e 19891dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 19892{
4568ecf9 19893 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 19894
7771576e 19895 if (attr_form_is_ref (attr))
b64f50a1 19896 return retval;
93311388 19897
b64f50a1 19898 retval.sect_off = 0;
93311388
DE
19899 complaint (&symfile_complaints,
19900 _("unsupported die ref attribute form: '%s'"),
19901 dwarf_form_name (attr->form));
b64f50a1 19902 return retval;
c906108c
SS
19903}
19904
43bbcdc2
PH
19905/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19906 * the value held by the attribute is not constant. */
a02abb62 19907
43bbcdc2 19908static LONGEST
ff39bb5e 19909dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
19910{
19911 if (attr->form == DW_FORM_sdata)
19912 return DW_SND (attr);
19913 else if (attr->form == DW_FORM_udata
19914 || attr->form == DW_FORM_data1
19915 || attr->form == DW_FORM_data2
19916 || attr->form == DW_FORM_data4
19917 || attr->form == DW_FORM_data8)
19918 return DW_UNSND (attr);
19919 else
19920 {
3e43a32a
MS
19921 complaint (&symfile_complaints,
19922 _("Attribute value is not a constant (%s)"),
a02abb62
JB
19923 dwarf_form_name (attr->form));
19924 return default_value;
19925 }
19926}
19927
348e048f
DE
19928/* Follow reference or signature attribute ATTR of SRC_DIE.
19929 On entry *REF_CU is the CU of SRC_DIE.
19930 On exit *REF_CU is the CU of the result. */
19931
19932static struct die_info *
ff39bb5e 19933follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
19934 struct dwarf2_cu **ref_cu)
19935{
19936 struct die_info *die;
19937
7771576e 19938 if (attr_form_is_ref (attr))
348e048f 19939 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 19940 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
19941 die = follow_die_sig (src_die, attr, ref_cu);
19942 else
19943 {
19944 dump_die_for_error (src_die);
19945 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 19946 objfile_name ((*ref_cu)->objfile));
348e048f
DE
19947 }
19948
19949 return die;
03dd20cc
DJ
19950}
19951
5c631832 19952/* Follow reference OFFSET.
673bfd45
DE
19953 On entry *REF_CU is the CU of the source die referencing OFFSET.
19954 On exit *REF_CU is the CU of the result.
19955 Returns NULL if OFFSET is invalid. */
f504f079 19956
f9aca02d 19957static struct die_info *
36586728
TT
19958follow_die_offset (sect_offset offset, int offset_in_dwz,
19959 struct dwarf2_cu **ref_cu)
c906108c 19960{
10b3939b 19961 struct die_info temp_die;
f2f0e013 19962 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 19963
348e048f
DE
19964 gdb_assert (cu->per_cu != NULL);
19965
98bfdba5
PA
19966 target_cu = cu;
19967
3019eac3 19968 if (cu->per_cu->is_debug_types)
348e048f
DE
19969 {
19970 /* .debug_types CUs cannot reference anything outside their CU.
19971 If they need to, they have to reference a signatured type via
55f1336d 19972 DW_FORM_ref_sig8. */
348e048f 19973 if (! offset_in_cu_p (&cu->header, offset))
5c631832 19974 return NULL;
348e048f 19975 }
36586728
TT
19976 else if (offset_in_dwz != cu->per_cu->is_dwz
19977 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
19978 {
19979 struct dwarf2_per_cu_data *per_cu;
9a619af0 19980
36586728
TT
19981 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19982 cu->objfile);
03dd20cc
DJ
19983
19984 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
19985 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19986 load_full_comp_unit (per_cu, cu->language);
03dd20cc 19987
10b3939b
DJ
19988 target_cu = per_cu->cu;
19989 }
98bfdba5
PA
19990 else if (cu->dies == NULL)
19991 {
19992 /* We're loading full DIEs during partial symbol reading. */
19993 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 19994 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 19995 }
c906108c 19996
f2f0e013 19997 *ref_cu = target_cu;
51545339 19998 temp_die.offset = offset;
b64f50a1 19999 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
5c631832 20000}
10b3939b 20001
5c631832
JK
20002/* Follow reference attribute ATTR of SRC_DIE.
20003 On entry *REF_CU is the CU of SRC_DIE.
20004 On exit *REF_CU is the CU of the result. */
20005
20006static struct die_info *
ff39bb5e 20007follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
20008 struct dwarf2_cu **ref_cu)
20009{
b64f50a1 20010 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
20011 struct dwarf2_cu *cu = *ref_cu;
20012 struct die_info *die;
20013
36586728
TT
20014 die = follow_die_offset (offset,
20015 (attr->form == DW_FORM_GNU_ref_alt
20016 || cu->per_cu->is_dwz),
20017 ref_cu);
5c631832
JK
20018 if (!die)
20019 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20020 "at 0x%x [in module %s]"),
4262abfb
JK
20021 offset.sect_off, src_die->offset.sect_off,
20022 objfile_name (cu->objfile));
348e048f 20023
5c631832
JK
20024 return die;
20025}
20026
d83e736b
JK
20027/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20028 Returned value is intended for DW_OP_call*. Returned
20029 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
20030
20031struct dwarf2_locexpr_baton
8b9737bf
TT
20032dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20033 struct dwarf2_per_cu_data *per_cu,
20034 CORE_ADDR (*get_frame_pc) (void *baton),
20035 void *baton)
5c631832 20036{
918dd910 20037 struct dwarf2_cu *cu;
5c631832
JK
20038 struct die_info *die;
20039 struct attribute *attr;
20040 struct dwarf2_locexpr_baton retval;
20041
8cf6f0b1
TT
20042 dw2_setup (per_cu->objfile);
20043
918dd910
JK
20044 if (per_cu->cu == NULL)
20045 load_cu (per_cu);
20046 cu = per_cu->cu;
cc12ce38
DE
20047 if (cu == NULL)
20048 {
20049 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20050 Instead just throw an error, not much else we can do. */
20051 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20052 offset.sect_off, objfile_name (per_cu->objfile));
20053 }
918dd910 20054
36586728 20055 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
20056 if (!die)
20057 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20058 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20059
20060 attr = dwarf2_attr (die, DW_AT_location, cu);
20061 if (!attr)
20062 {
e103e986
JK
20063 /* DWARF: "If there is no such attribute, then there is no effect.".
20064 DATA is ignored if SIZE is 0. */
5c631832 20065
e103e986 20066 retval.data = NULL;
5c631832
JK
20067 retval.size = 0;
20068 }
8cf6f0b1
TT
20069 else if (attr_form_is_section_offset (attr))
20070 {
20071 struct dwarf2_loclist_baton loclist_baton;
20072 CORE_ADDR pc = (*get_frame_pc) (baton);
20073 size_t size;
20074
20075 fill_in_loclist_baton (cu, &loclist_baton, attr);
20076
20077 retval.data = dwarf2_find_location_expression (&loclist_baton,
20078 &size, pc);
20079 retval.size = size;
20080 }
5c631832
JK
20081 else
20082 {
20083 if (!attr_form_is_block (attr))
20084 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20085 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 20086 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20087
20088 retval.data = DW_BLOCK (attr)->data;
20089 retval.size = DW_BLOCK (attr)->size;
20090 }
20091 retval.per_cu = cu->per_cu;
918dd910 20092
918dd910
JK
20093 age_cached_comp_units ();
20094
5c631832 20095 return retval;
348e048f
DE
20096}
20097
8b9737bf
TT
20098/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20099 offset. */
20100
20101struct dwarf2_locexpr_baton
20102dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20103 struct dwarf2_per_cu_data *per_cu,
20104 CORE_ADDR (*get_frame_pc) (void *baton),
20105 void *baton)
20106{
20107 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20108
20109 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20110}
20111
b6807d98
TT
20112/* Write a constant of a given type as target-ordered bytes into
20113 OBSTACK. */
20114
20115static const gdb_byte *
20116write_constant_as_bytes (struct obstack *obstack,
20117 enum bfd_endian byte_order,
20118 struct type *type,
20119 ULONGEST value,
20120 LONGEST *len)
20121{
20122 gdb_byte *result;
20123
20124 *len = TYPE_LENGTH (type);
20125 result = obstack_alloc (obstack, *len);
20126 store_unsigned_integer (result, *len, byte_order, value);
20127
20128 return result;
20129}
20130
20131/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20132 pointer to the constant bytes and set LEN to the length of the
20133 data. If memory is needed, allocate it on OBSTACK. If the DIE
20134 does not have a DW_AT_const_value, return NULL. */
20135
20136const gdb_byte *
20137dwarf2_fetch_constant_bytes (sect_offset offset,
20138 struct dwarf2_per_cu_data *per_cu,
20139 struct obstack *obstack,
20140 LONGEST *len)
20141{
20142 struct dwarf2_cu *cu;
20143 struct die_info *die;
20144 struct attribute *attr;
20145 const gdb_byte *result = NULL;
20146 struct type *type;
20147 LONGEST value;
20148 enum bfd_endian byte_order;
20149
20150 dw2_setup (per_cu->objfile);
20151
20152 if (per_cu->cu == NULL)
20153 load_cu (per_cu);
20154 cu = per_cu->cu;
cc12ce38
DE
20155 if (cu == NULL)
20156 {
20157 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20158 Instead just throw an error, not much else we can do. */
20159 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20160 offset.sect_off, objfile_name (per_cu->objfile));
20161 }
b6807d98
TT
20162
20163 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20164 if (!die)
20165 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20166 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
20167
20168
20169 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20170 if (attr == NULL)
20171 return NULL;
20172
20173 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20174 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20175
20176 switch (attr->form)
20177 {
20178 case DW_FORM_addr:
20179 case DW_FORM_GNU_addr_index:
20180 {
20181 gdb_byte *tem;
20182
20183 *len = cu->header.addr_size;
20184 tem = obstack_alloc (obstack, *len);
20185 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20186 result = tem;
20187 }
20188 break;
20189 case DW_FORM_string:
20190 case DW_FORM_strp:
20191 case DW_FORM_GNU_str_index:
20192 case DW_FORM_GNU_strp_alt:
20193 /* DW_STRING is already allocated on the objfile obstack, point
20194 directly to it. */
20195 result = (const gdb_byte *) DW_STRING (attr);
20196 *len = strlen (DW_STRING (attr));
20197 break;
20198 case DW_FORM_block1:
20199 case DW_FORM_block2:
20200 case DW_FORM_block4:
20201 case DW_FORM_block:
20202 case DW_FORM_exprloc:
20203 result = DW_BLOCK (attr)->data;
20204 *len = DW_BLOCK (attr)->size;
20205 break;
20206
20207 /* The DW_AT_const_value attributes are supposed to carry the
20208 symbol's value "represented as it would be on the target
20209 architecture." By the time we get here, it's already been
20210 converted to host endianness, so we just need to sign- or
20211 zero-extend it as appropriate. */
20212 case DW_FORM_data1:
20213 type = die_type (die, cu);
20214 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20215 if (result == NULL)
20216 result = write_constant_as_bytes (obstack, byte_order,
20217 type, value, len);
20218 break;
20219 case DW_FORM_data2:
20220 type = die_type (die, cu);
20221 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20222 if (result == NULL)
20223 result = write_constant_as_bytes (obstack, byte_order,
20224 type, value, len);
20225 break;
20226 case DW_FORM_data4:
20227 type = die_type (die, cu);
20228 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20229 if (result == NULL)
20230 result = write_constant_as_bytes (obstack, byte_order,
20231 type, value, len);
20232 break;
20233 case DW_FORM_data8:
20234 type = die_type (die, cu);
20235 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20236 if (result == NULL)
20237 result = write_constant_as_bytes (obstack, byte_order,
20238 type, value, len);
20239 break;
20240
20241 case DW_FORM_sdata:
20242 type = die_type (die, cu);
20243 result = write_constant_as_bytes (obstack, byte_order,
20244 type, DW_SND (attr), len);
20245 break;
20246
20247 case DW_FORM_udata:
20248 type = die_type (die, cu);
20249 result = write_constant_as_bytes (obstack, byte_order,
20250 type, DW_UNSND (attr), len);
20251 break;
20252
20253 default:
20254 complaint (&symfile_complaints,
20255 _("unsupported const value attribute form: '%s'"),
20256 dwarf_form_name (attr->form));
20257 break;
20258 }
20259
20260 return result;
20261}
20262
8a9b8146
TT
20263/* Return the type of the DIE at DIE_OFFSET in the CU named by
20264 PER_CU. */
20265
20266struct type *
b64f50a1 20267dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
20268 struct dwarf2_per_cu_data *per_cu)
20269{
b64f50a1
JK
20270 sect_offset die_offset_sect;
20271
8a9b8146 20272 dw2_setup (per_cu->objfile);
b64f50a1
JK
20273
20274 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20275 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
20276}
20277
ac9ec31b 20278/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 20279 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
20280 On exit *REF_CU is the CU of the result.
20281 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
20282
20283static struct die_info *
ac9ec31b
DE
20284follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20285 struct dwarf2_cu **ref_cu)
348e048f
DE
20286{
20287 struct objfile *objfile = (*ref_cu)->objfile;
20288 struct die_info temp_die;
348e048f
DE
20289 struct dwarf2_cu *sig_cu;
20290 struct die_info *die;
20291
ac9ec31b
DE
20292 /* While it might be nice to assert sig_type->type == NULL here,
20293 we can get here for DW_AT_imported_declaration where we need
20294 the DIE not the type. */
348e048f
DE
20295
20296 /* If necessary, add it to the queue and load its DIEs. */
20297
95554aad 20298 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 20299 read_signatured_type (sig_type);
348e048f 20300
348e048f 20301 sig_cu = sig_type->per_cu.cu;
69d751e3 20302 gdb_assert (sig_cu != NULL);
3019eac3
DE
20303 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20304 temp_die.offset = sig_type->type_offset_in_section;
b64f50a1
JK
20305 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
20306 temp_die.offset.sect_off);
348e048f
DE
20307 if (die)
20308 {
796a7ff8
DE
20309 /* For .gdb_index version 7 keep track of included TUs.
20310 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20311 if (dwarf2_per_objfile->index_table != NULL
20312 && dwarf2_per_objfile->index_table->version <= 7)
20313 {
20314 VEC_safe_push (dwarf2_per_cu_ptr,
20315 (*ref_cu)->per_cu->imported_symtabs,
20316 sig_cu->per_cu);
20317 }
20318
348e048f
DE
20319 *ref_cu = sig_cu;
20320 return die;
20321 }
20322
ac9ec31b
DE
20323 return NULL;
20324}
20325
20326/* Follow signatured type referenced by ATTR in SRC_DIE.
20327 On entry *REF_CU is the CU of SRC_DIE.
20328 On exit *REF_CU is the CU of the result.
20329 The result is the DIE of the type.
20330 If the referenced type cannot be found an error is thrown. */
20331
20332static struct die_info *
ff39bb5e 20333follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
20334 struct dwarf2_cu **ref_cu)
20335{
20336 ULONGEST signature = DW_SIGNATURE (attr);
20337 struct signatured_type *sig_type;
20338 struct die_info *die;
20339
20340 gdb_assert (attr->form == DW_FORM_ref_sig8);
20341
a2ce51a0 20342 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
20343 /* sig_type will be NULL if the signatured type is missing from
20344 the debug info. */
20345 if (sig_type == NULL)
20346 {
20347 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20348 " from DIE at 0x%x [in module %s]"),
20349 hex_string (signature), src_die->offset.sect_off,
4262abfb 20350 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20351 }
20352
20353 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20354 if (die == NULL)
20355 {
20356 dump_die_for_error (src_die);
20357 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20358 " from DIE at 0x%x [in module %s]"),
20359 hex_string (signature), src_die->offset.sect_off,
4262abfb 20360 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20361 }
20362
20363 return die;
20364}
20365
20366/* Get the type specified by SIGNATURE referenced in DIE/CU,
20367 reading in and processing the type unit if necessary. */
20368
20369static struct type *
20370get_signatured_type (struct die_info *die, ULONGEST signature,
20371 struct dwarf2_cu *cu)
20372{
20373 struct signatured_type *sig_type;
20374 struct dwarf2_cu *type_cu;
20375 struct die_info *type_die;
20376 struct type *type;
20377
a2ce51a0 20378 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
20379 /* sig_type will be NULL if the signatured type is missing from
20380 the debug info. */
20381 if (sig_type == NULL)
20382 {
20383 complaint (&symfile_complaints,
20384 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20385 " from DIE at 0x%x [in module %s]"),
20386 hex_string (signature), die->offset.sect_off,
4262abfb 20387 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20388 return build_error_marker_type (cu, die);
20389 }
20390
20391 /* If we already know the type we're done. */
20392 if (sig_type->type != NULL)
20393 return sig_type->type;
20394
20395 type_cu = cu;
20396 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20397 if (type_die != NULL)
20398 {
20399 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20400 is created. This is important, for example, because for c++ classes
20401 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20402 type = read_type_die (type_die, type_cu);
20403 if (type == NULL)
20404 {
20405 complaint (&symfile_complaints,
20406 _("Dwarf Error: Cannot build signatured type %s"
20407 " referenced from DIE at 0x%x [in module %s]"),
20408 hex_string (signature), die->offset.sect_off,
4262abfb 20409 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20410 type = build_error_marker_type (cu, die);
20411 }
20412 }
20413 else
20414 {
20415 complaint (&symfile_complaints,
20416 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20417 " from DIE at 0x%x [in module %s]"),
20418 hex_string (signature), die->offset.sect_off,
4262abfb 20419 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20420 type = build_error_marker_type (cu, die);
20421 }
20422 sig_type->type = type;
20423
20424 return type;
20425}
20426
20427/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20428 reading in and processing the type unit if necessary. */
20429
20430static struct type *
ff39bb5e 20431get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 20432 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
20433{
20434 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 20435 if (attr_form_is_ref (attr))
ac9ec31b
DE
20436 {
20437 struct dwarf2_cu *type_cu = cu;
20438 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20439
20440 return read_type_die (type_die, type_cu);
20441 }
20442 else if (attr->form == DW_FORM_ref_sig8)
20443 {
20444 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20445 }
20446 else
20447 {
20448 complaint (&symfile_complaints,
20449 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20450 " at 0x%x [in module %s]"),
20451 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 20452 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20453 return build_error_marker_type (cu, die);
20454 }
348e048f
DE
20455}
20456
e5fe5e75 20457/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
20458
20459static void
e5fe5e75 20460load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 20461{
52dc124a 20462 struct signatured_type *sig_type;
348e048f 20463
f4dc4d17
DE
20464 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20465 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20466
6721b2ec
DE
20467 /* We have the per_cu, but we need the signatured_type.
20468 Fortunately this is an easy translation. */
20469 gdb_assert (per_cu->is_debug_types);
20470 sig_type = (struct signatured_type *) per_cu;
348e048f 20471
6721b2ec 20472 gdb_assert (per_cu->cu == NULL);
348e048f 20473
52dc124a 20474 read_signatured_type (sig_type);
348e048f 20475
6721b2ec 20476 gdb_assert (per_cu->cu != NULL);
348e048f
DE
20477}
20478
dee91e82
DE
20479/* die_reader_func for read_signatured_type.
20480 This is identical to load_full_comp_unit_reader,
20481 but is kept separate for now. */
348e048f
DE
20482
20483static void
dee91e82 20484read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 20485 const gdb_byte *info_ptr,
dee91e82
DE
20486 struct die_info *comp_unit_die,
20487 int has_children,
20488 void *data)
348e048f 20489{
dee91e82 20490 struct dwarf2_cu *cu = reader->cu;
348e048f 20491
dee91e82
DE
20492 gdb_assert (cu->die_hash == NULL);
20493 cu->die_hash =
20494 htab_create_alloc_ex (cu->header.length / 12,
20495 die_hash,
20496 die_eq,
20497 NULL,
20498 &cu->comp_unit_obstack,
20499 hashtab_obstack_allocate,
20500 dummy_obstack_deallocate);
348e048f 20501
dee91e82
DE
20502 if (has_children)
20503 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20504 &info_ptr, comp_unit_die);
20505 cu->dies = comp_unit_die;
20506 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
20507
20508 /* We try not to read any attributes in this function, because not
9cdd5dbd 20509 all CUs needed for references have been loaded yet, and symbol
348e048f 20510 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
20511 or we won't be able to build types correctly.
20512 Similarly, if we do not read the producer, we can not apply
20513 producer-specific interpretation. */
95554aad 20514 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 20515}
348e048f 20516
3019eac3
DE
20517/* Read in a signatured type and build its CU and DIEs.
20518 If the type is a stub for the real type in a DWO file,
20519 read in the real type from the DWO file as well. */
dee91e82
DE
20520
20521static void
20522read_signatured_type (struct signatured_type *sig_type)
20523{
20524 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 20525
3019eac3 20526 gdb_assert (per_cu->is_debug_types);
dee91e82 20527 gdb_assert (per_cu->cu == NULL);
348e048f 20528
f4dc4d17
DE
20529 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20530 read_signatured_type_reader, NULL);
7ee85ab1 20531 sig_type->per_cu.tu_read = 1;
c906108c
SS
20532}
20533
c906108c
SS
20534/* Decode simple location descriptions.
20535 Given a pointer to a dwarf block that defines a location, compute
20536 the location and return the value.
20537
4cecd739
DJ
20538 NOTE drow/2003-11-18: This function is called in two situations
20539 now: for the address of static or global variables (partial symbols
20540 only) and for offsets into structures which are expected to be
20541 (more or less) constant. The partial symbol case should go away,
20542 and only the constant case should remain. That will let this
20543 function complain more accurately. A few special modes are allowed
20544 without complaint for global variables (for instance, global
20545 register values and thread-local values).
c906108c
SS
20546
20547 A location description containing no operations indicates that the
4cecd739 20548 object is optimized out. The return value is 0 for that case.
6b992462
DJ
20549 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20550 callers will only want a very basic result and this can become a
21ae7a4d
JK
20551 complaint.
20552
20553 Note that stack[0] is unused except as a default error return. */
c906108c
SS
20554
20555static CORE_ADDR
e7c27a73 20556decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 20557{
e7c27a73 20558 struct objfile *objfile = cu->objfile;
56eb65bd
SP
20559 size_t i;
20560 size_t size = blk->size;
d521ce57 20561 const gdb_byte *data = blk->data;
21ae7a4d
JK
20562 CORE_ADDR stack[64];
20563 int stacki;
20564 unsigned int bytes_read, unsnd;
20565 gdb_byte op;
c906108c 20566
21ae7a4d
JK
20567 i = 0;
20568 stacki = 0;
20569 stack[stacki] = 0;
20570 stack[++stacki] = 0;
20571
20572 while (i < size)
20573 {
20574 op = data[i++];
20575 switch (op)
20576 {
20577 case DW_OP_lit0:
20578 case DW_OP_lit1:
20579 case DW_OP_lit2:
20580 case DW_OP_lit3:
20581 case DW_OP_lit4:
20582 case DW_OP_lit5:
20583 case DW_OP_lit6:
20584 case DW_OP_lit7:
20585 case DW_OP_lit8:
20586 case DW_OP_lit9:
20587 case DW_OP_lit10:
20588 case DW_OP_lit11:
20589 case DW_OP_lit12:
20590 case DW_OP_lit13:
20591 case DW_OP_lit14:
20592 case DW_OP_lit15:
20593 case DW_OP_lit16:
20594 case DW_OP_lit17:
20595 case DW_OP_lit18:
20596 case DW_OP_lit19:
20597 case DW_OP_lit20:
20598 case DW_OP_lit21:
20599 case DW_OP_lit22:
20600 case DW_OP_lit23:
20601 case DW_OP_lit24:
20602 case DW_OP_lit25:
20603 case DW_OP_lit26:
20604 case DW_OP_lit27:
20605 case DW_OP_lit28:
20606 case DW_OP_lit29:
20607 case DW_OP_lit30:
20608 case DW_OP_lit31:
20609 stack[++stacki] = op - DW_OP_lit0;
20610 break;
f1bea926 20611
21ae7a4d
JK
20612 case DW_OP_reg0:
20613 case DW_OP_reg1:
20614 case DW_OP_reg2:
20615 case DW_OP_reg3:
20616 case DW_OP_reg4:
20617 case DW_OP_reg5:
20618 case DW_OP_reg6:
20619 case DW_OP_reg7:
20620 case DW_OP_reg8:
20621 case DW_OP_reg9:
20622 case DW_OP_reg10:
20623 case DW_OP_reg11:
20624 case DW_OP_reg12:
20625 case DW_OP_reg13:
20626 case DW_OP_reg14:
20627 case DW_OP_reg15:
20628 case DW_OP_reg16:
20629 case DW_OP_reg17:
20630 case DW_OP_reg18:
20631 case DW_OP_reg19:
20632 case DW_OP_reg20:
20633 case DW_OP_reg21:
20634 case DW_OP_reg22:
20635 case DW_OP_reg23:
20636 case DW_OP_reg24:
20637 case DW_OP_reg25:
20638 case DW_OP_reg26:
20639 case DW_OP_reg27:
20640 case DW_OP_reg28:
20641 case DW_OP_reg29:
20642 case DW_OP_reg30:
20643 case DW_OP_reg31:
20644 stack[++stacki] = op - DW_OP_reg0;
20645 if (i < size)
20646 dwarf2_complex_location_expr_complaint ();
20647 break;
c906108c 20648
21ae7a4d
JK
20649 case DW_OP_regx:
20650 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20651 i += bytes_read;
20652 stack[++stacki] = unsnd;
20653 if (i < size)
20654 dwarf2_complex_location_expr_complaint ();
20655 break;
c906108c 20656
21ae7a4d
JK
20657 case DW_OP_addr:
20658 stack[++stacki] = read_address (objfile->obfd, &data[i],
20659 cu, &bytes_read);
20660 i += bytes_read;
20661 break;
d53d4ac5 20662
21ae7a4d
JK
20663 case DW_OP_const1u:
20664 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20665 i += 1;
20666 break;
20667
20668 case DW_OP_const1s:
20669 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20670 i += 1;
20671 break;
20672
20673 case DW_OP_const2u:
20674 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20675 i += 2;
20676 break;
20677
20678 case DW_OP_const2s:
20679 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20680 i += 2;
20681 break;
d53d4ac5 20682
21ae7a4d
JK
20683 case DW_OP_const4u:
20684 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20685 i += 4;
20686 break;
20687
20688 case DW_OP_const4s:
20689 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20690 i += 4;
20691 break;
20692
585861ea
JK
20693 case DW_OP_const8u:
20694 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20695 i += 8;
20696 break;
20697
21ae7a4d
JK
20698 case DW_OP_constu:
20699 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20700 &bytes_read);
20701 i += bytes_read;
20702 break;
20703
20704 case DW_OP_consts:
20705 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20706 i += bytes_read;
20707 break;
20708
20709 case DW_OP_dup:
20710 stack[stacki + 1] = stack[stacki];
20711 stacki++;
20712 break;
20713
20714 case DW_OP_plus:
20715 stack[stacki - 1] += stack[stacki];
20716 stacki--;
20717 break;
20718
20719 case DW_OP_plus_uconst:
20720 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20721 &bytes_read);
20722 i += bytes_read;
20723 break;
20724
20725 case DW_OP_minus:
20726 stack[stacki - 1] -= stack[stacki];
20727 stacki--;
20728 break;
20729
20730 case DW_OP_deref:
20731 /* If we're not the last op, then we definitely can't encode
20732 this using GDB's address_class enum. This is valid for partial
20733 global symbols, although the variable's address will be bogus
20734 in the psymtab. */
20735 if (i < size)
20736 dwarf2_complex_location_expr_complaint ();
20737 break;
20738
20739 case DW_OP_GNU_push_tls_address:
20740 /* The top of the stack has the offset from the beginning
20741 of the thread control block at which the variable is located. */
20742 /* Nothing should follow this operator, so the top of stack would
20743 be returned. */
20744 /* This is valid for partial global symbols, but the variable's
585861ea
JK
20745 address will be bogus in the psymtab. Make it always at least
20746 non-zero to not look as a variable garbage collected by linker
20747 which have DW_OP_addr 0. */
21ae7a4d
JK
20748 if (i < size)
20749 dwarf2_complex_location_expr_complaint ();
585861ea 20750 stack[stacki]++;
21ae7a4d
JK
20751 break;
20752
20753 case DW_OP_GNU_uninit:
20754 break;
20755
3019eac3 20756 case DW_OP_GNU_addr_index:
49f6c839 20757 case DW_OP_GNU_const_index:
3019eac3
DE
20758 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20759 &bytes_read);
20760 i += bytes_read;
20761 break;
20762
21ae7a4d
JK
20763 default:
20764 {
f39c6ffd 20765 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
20766
20767 if (name)
20768 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20769 name);
20770 else
20771 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20772 op);
20773 }
20774
20775 return (stack[stacki]);
d53d4ac5 20776 }
3c6e0cb3 20777
21ae7a4d
JK
20778 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20779 outside of the allocated space. Also enforce minimum>0. */
20780 if (stacki >= ARRAY_SIZE (stack) - 1)
20781 {
20782 complaint (&symfile_complaints,
20783 _("location description stack overflow"));
20784 return 0;
20785 }
20786
20787 if (stacki <= 0)
20788 {
20789 complaint (&symfile_complaints,
20790 _("location description stack underflow"));
20791 return 0;
20792 }
20793 }
20794 return (stack[stacki]);
c906108c
SS
20795}
20796
20797/* memory allocation interface */
20798
c906108c 20799static struct dwarf_block *
7b5a2f43 20800dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c 20801{
8d749320 20802 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
c906108c
SS
20803}
20804
c906108c 20805static struct die_info *
b60c80d6 20806dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
20807{
20808 struct die_info *die;
b60c80d6
DJ
20809 size_t size = sizeof (struct die_info);
20810
20811 if (num_attrs > 1)
20812 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 20813
b60c80d6 20814 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
20815 memset (die, 0, sizeof (struct die_info));
20816 return (die);
20817}
2e276125
JB
20818
20819\f
20820/* Macro support. */
20821
233d95b5
JK
20822/* Return file name relative to the compilation directory of file number I in
20823 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 20824 responsible for freeing it. */
233d95b5 20825
2e276125 20826static char *
233d95b5 20827file_file_name (int file, struct line_header *lh)
2e276125 20828{
6a83a1e6
EZ
20829 /* Is the file number a valid index into the line header's file name
20830 table? Remember that file numbers start with one, not zero. */
20831 if (1 <= file && file <= lh->num_file_names)
20832 {
20833 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 20834
afa6c9ab
SL
20835 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20836 || lh->include_dirs == NULL)
6a83a1e6 20837 return xstrdup (fe->name);
233d95b5
JK
20838 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20839 fe->name, NULL);
6a83a1e6 20840 }
2e276125
JB
20841 else
20842 {
6a83a1e6
EZ
20843 /* The compiler produced a bogus file number. We can at least
20844 record the macro definitions made in the file, even if we
20845 won't be able to find the file by name. */
20846 char fake_name[80];
9a619af0 20847
8c042590
PM
20848 xsnprintf (fake_name, sizeof (fake_name),
20849 "<bad macro file number %d>", file);
2e276125 20850
6e70227d 20851 complaint (&symfile_complaints,
6a83a1e6
EZ
20852 _("bad file number in macro information (%d)"),
20853 file);
2e276125 20854
6a83a1e6 20855 return xstrdup (fake_name);
2e276125
JB
20856 }
20857}
20858
233d95b5
JK
20859/* Return the full name of file number I in *LH's file name table.
20860 Use COMP_DIR as the name of the current directory of the
20861 compilation. The result is allocated using xmalloc; the caller is
20862 responsible for freeing it. */
20863static char *
20864file_full_name (int file, struct line_header *lh, const char *comp_dir)
20865{
20866 /* Is the file number a valid index into the line header's file name
20867 table? Remember that file numbers start with one, not zero. */
20868 if (1 <= file && file <= lh->num_file_names)
20869 {
20870 char *relative = file_file_name (file, lh);
20871
20872 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20873 return relative;
20874 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20875 }
20876 else
20877 return file_file_name (file, lh);
20878}
20879
2e276125
JB
20880
20881static struct macro_source_file *
20882macro_start_file (int file, int line,
20883 struct macro_source_file *current_file,
43f3e411 20884 struct line_header *lh)
2e276125 20885{
233d95b5
JK
20886 /* File name relative to the compilation directory of this source file. */
20887 char *file_name = file_file_name (file, lh);
2e276125 20888
2e276125 20889 if (! current_file)
abc9d0dc 20890 {
fc474241
DE
20891 /* Note: We don't create a macro table for this compilation unit
20892 at all until we actually get a filename. */
43f3e411 20893 struct macro_table *macro_table = get_macro_table ();
fc474241 20894
abc9d0dc
TT
20895 /* If we have no current file, then this must be the start_file
20896 directive for the compilation unit's main source file. */
fc474241
DE
20897 current_file = macro_set_main (macro_table, file_name);
20898 macro_define_special (macro_table);
abc9d0dc 20899 }
2e276125 20900 else
233d95b5 20901 current_file = macro_include (current_file, line, file_name);
2e276125 20902
233d95b5 20903 xfree (file_name);
6e70227d 20904
2e276125
JB
20905 return current_file;
20906}
20907
20908
20909/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20910 followed by a null byte. */
20911static char *
20912copy_string (const char *buf, int len)
20913{
20914 char *s = xmalloc (len + 1);
9a619af0 20915
2e276125
JB
20916 memcpy (s, buf, len);
20917 s[len] = '\0';
2e276125
JB
20918 return s;
20919}
20920
20921
20922static const char *
20923consume_improper_spaces (const char *p, const char *body)
20924{
20925 if (*p == ' ')
20926 {
4d3c2250 20927 complaint (&symfile_complaints,
3e43a32a
MS
20928 _("macro definition contains spaces "
20929 "in formal argument list:\n`%s'"),
4d3c2250 20930 body);
2e276125
JB
20931
20932 while (*p == ' ')
20933 p++;
20934 }
20935
20936 return p;
20937}
20938
20939
20940static void
20941parse_macro_definition (struct macro_source_file *file, int line,
20942 const char *body)
20943{
20944 const char *p;
20945
20946 /* The body string takes one of two forms. For object-like macro
20947 definitions, it should be:
20948
20949 <macro name> " " <definition>
20950
20951 For function-like macro definitions, it should be:
20952
20953 <macro name> "() " <definition>
20954 or
20955 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20956
20957 Spaces may appear only where explicitly indicated, and in the
20958 <definition>.
20959
20960 The Dwarf 2 spec says that an object-like macro's name is always
20961 followed by a space, but versions of GCC around March 2002 omit
6e70227d 20962 the space when the macro's definition is the empty string.
2e276125
JB
20963
20964 The Dwarf 2 spec says that there should be no spaces between the
20965 formal arguments in a function-like macro's formal argument list,
20966 but versions of GCC around March 2002 include spaces after the
20967 commas. */
20968
20969
20970 /* Find the extent of the macro name. The macro name is terminated
20971 by either a space or null character (for an object-like macro) or
20972 an opening paren (for a function-like macro). */
20973 for (p = body; *p; p++)
20974 if (*p == ' ' || *p == '(')
20975 break;
20976
20977 if (*p == ' ' || *p == '\0')
20978 {
20979 /* It's an object-like macro. */
20980 int name_len = p - body;
20981 char *name = copy_string (body, name_len);
20982 const char *replacement;
20983
20984 if (*p == ' ')
20985 replacement = body + name_len + 1;
20986 else
20987 {
4d3c2250 20988 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20989 replacement = body + name_len;
20990 }
6e70227d 20991
2e276125
JB
20992 macro_define_object (file, line, name, replacement);
20993
20994 xfree (name);
20995 }
20996 else if (*p == '(')
20997 {
20998 /* It's a function-like macro. */
20999 char *name = copy_string (body, p - body);
21000 int argc = 0;
21001 int argv_size = 1;
8d749320 21002 char **argv = XNEWVEC (char *, argv_size);
2e276125
JB
21003
21004 p++;
21005
21006 p = consume_improper_spaces (p, body);
21007
21008 /* Parse the formal argument list. */
21009 while (*p && *p != ')')
21010 {
21011 /* Find the extent of the current argument name. */
21012 const char *arg_start = p;
21013
21014 while (*p && *p != ',' && *p != ')' && *p != ' ')
21015 p++;
21016
21017 if (! *p || p == arg_start)
4d3c2250 21018 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21019 else
21020 {
21021 /* Make sure argv has room for the new argument. */
21022 if (argc >= argv_size)
21023 {
21024 argv_size *= 2;
21025 argv = xrealloc (argv, argv_size * sizeof (*argv));
21026 }
21027
21028 argv[argc++] = copy_string (arg_start, p - arg_start);
21029 }
21030
21031 p = consume_improper_spaces (p, body);
21032
21033 /* Consume the comma, if present. */
21034 if (*p == ',')
21035 {
21036 p++;
21037
21038 p = consume_improper_spaces (p, body);
21039 }
21040 }
21041
21042 if (*p == ')')
21043 {
21044 p++;
21045
21046 if (*p == ' ')
21047 /* Perfectly formed definition, no complaints. */
21048 macro_define_function (file, line, name,
6e70227d 21049 argc, (const char **) argv,
2e276125
JB
21050 p + 1);
21051 else if (*p == '\0')
21052 {
21053 /* Complain, but do define it. */
4d3c2250 21054 dwarf2_macro_malformed_definition_complaint (body);
2e276125 21055 macro_define_function (file, line, name,
6e70227d 21056 argc, (const char **) argv,
2e276125
JB
21057 p);
21058 }
21059 else
21060 /* Just complain. */
4d3c2250 21061 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21062 }
21063 else
21064 /* Just complain. */
4d3c2250 21065 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21066
21067 xfree (name);
21068 {
21069 int i;
21070
21071 for (i = 0; i < argc; i++)
21072 xfree (argv[i]);
21073 }
21074 xfree (argv);
21075 }
21076 else
4d3c2250 21077 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21078}
21079
cf2c3c16
TT
21080/* Skip some bytes from BYTES according to the form given in FORM.
21081 Returns the new pointer. */
2e276125 21082
d521ce57
TT
21083static const gdb_byte *
21084skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
21085 enum dwarf_form form,
21086 unsigned int offset_size,
21087 struct dwarf2_section_info *section)
2e276125 21088{
cf2c3c16 21089 unsigned int bytes_read;
2e276125 21090
cf2c3c16 21091 switch (form)
2e276125 21092 {
cf2c3c16
TT
21093 case DW_FORM_data1:
21094 case DW_FORM_flag:
21095 ++bytes;
21096 break;
21097
21098 case DW_FORM_data2:
21099 bytes += 2;
21100 break;
21101
21102 case DW_FORM_data4:
21103 bytes += 4;
21104 break;
21105
21106 case DW_FORM_data8:
21107 bytes += 8;
21108 break;
21109
21110 case DW_FORM_string:
21111 read_direct_string (abfd, bytes, &bytes_read);
21112 bytes += bytes_read;
21113 break;
21114
21115 case DW_FORM_sec_offset:
21116 case DW_FORM_strp:
36586728 21117 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
21118 bytes += offset_size;
21119 break;
21120
21121 case DW_FORM_block:
21122 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21123 bytes += bytes_read;
21124 break;
21125
21126 case DW_FORM_block1:
21127 bytes += 1 + read_1_byte (abfd, bytes);
21128 break;
21129 case DW_FORM_block2:
21130 bytes += 2 + read_2_bytes (abfd, bytes);
21131 break;
21132 case DW_FORM_block4:
21133 bytes += 4 + read_4_bytes (abfd, bytes);
21134 break;
21135
21136 case DW_FORM_sdata:
21137 case DW_FORM_udata:
3019eac3
DE
21138 case DW_FORM_GNU_addr_index:
21139 case DW_FORM_GNU_str_index:
d521ce57 21140 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
21141 if (bytes == NULL)
21142 {
21143 dwarf2_section_buffer_overflow_complaint (section);
21144 return NULL;
21145 }
cf2c3c16
TT
21146 break;
21147
21148 default:
21149 {
21150 complain:
21151 complaint (&symfile_complaints,
21152 _("invalid form 0x%x in `%s'"),
a32a8923 21153 form, get_section_name (section));
cf2c3c16
TT
21154 return NULL;
21155 }
2e276125
JB
21156 }
21157
cf2c3c16
TT
21158 return bytes;
21159}
757a13d0 21160
cf2c3c16
TT
21161/* A helper for dwarf_decode_macros that handles skipping an unknown
21162 opcode. Returns an updated pointer to the macro data buffer; or,
21163 on error, issues a complaint and returns NULL. */
757a13d0 21164
d521ce57 21165static const gdb_byte *
cf2c3c16 21166skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
21167 const gdb_byte **opcode_definitions,
21168 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
21169 bfd *abfd,
21170 unsigned int offset_size,
21171 struct dwarf2_section_info *section)
21172{
21173 unsigned int bytes_read, i;
21174 unsigned long arg;
d521ce57 21175 const gdb_byte *defn;
2e276125 21176
cf2c3c16 21177 if (opcode_definitions[opcode] == NULL)
2e276125 21178 {
cf2c3c16
TT
21179 complaint (&symfile_complaints,
21180 _("unrecognized DW_MACFINO opcode 0x%x"),
21181 opcode);
21182 return NULL;
21183 }
2e276125 21184
cf2c3c16
TT
21185 defn = opcode_definitions[opcode];
21186 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21187 defn += bytes_read;
2e276125 21188
cf2c3c16
TT
21189 for (i = 0; i < arg; ++i)
21190 {
aead7601
SM
21191 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21192 (enum dwarf_form) defn[i], offset_size,
f664829e 21193 section);
cf2c3c16
TT
21194 if (mac_ptr == NULL)
21195 {
21196 /* skip_form_bytes already issued the complaint. */
21197 return NULL;
21198 }
21199 }
757a13d0 21200
cf2c3c16
TT
21201 return mac_ptr;
21202}
757a13d0 21203
cf2c3c16
TT
21204/* A helper function which parses the header of a macro section.
21205 If the macro section is the extended (for now called "GNU") type,
21206 then this updates *OFFSET_SIZE. Returns a pointer to just after
21207 the header, or issues a complaint and returns NULL on error. */
757a13d0 21208
d521ce57
TT
21209static const gdb_byte *
21210dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 21211 bfd *abfd,
d521ce57 21212 const gdb_byte *mac_ptr,
cf2c3c16
TT
21213 unsigned int *offset_size,
21214 int section_is_gnu)
21215{
21216 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 21217
cf2c3c16
TT
21218 if (section_is_gnu)
21219 {
21220 unsigned int version, flags;
757a13d0 21221
cf2c3c16
TT
21222 version = read_2_bytes (abfd, mac_ptr);
21223 if (version != 4)
21224 {
21225 complaint (&symfile_complaints,
21226 _("unrecognized version `%d' in .debug_macro section"),
21227 version);
21228 return NULL;
21229 }
21230 mac_ptr += 2;
757a13d0 21231
cf2c3c16
TT
21232 flags = read_1_byte (abfd, mac_ptr);
21233 ++mac_ptr;
21234 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 21235
cf2c3c16
TT
21236 if ((flags & 2) != 0)
21237 /* We don't need the line table offset. */
21238 mac_ptr += *offset_size;
757a13d0 21239
cf2c3c16
TT
21240 /* Vendor opcode descriptions. */
21241 if ((flags & 4) != 0)
21242 {
21243 unsigned int i, count;
757a13d0 21244
cf2c3c16
TT
21245 count = read_1_byte (abfd, mac_ptr);
21246 ++mac_ptr;
21247 for (i = 0; i < count; ++i)
21248 {
21249 unsigned int opcode, bytes_read;
21250 unsigned long arg;
21251
21252 opcode = read_1_byte (abfd, mac_ptr);
21253 ++mac_ptr;
21254 opcode_definitions[opcode] = mac_ptr;
21255 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21256 mac_ptr += bytes_read;
21257 mac_ptr += arg;
21258 }
757a13d0 21259 }
cf2c3c16 21260 }
757a13d0 21261
cf2c3c16
TT
21262 return mac_ptr;
21263}
757a13d0 21264
cf2c3c16 21265/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 21266 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
21267
21268static void
d521ce57
TT
21269dwarf_decode_macro_bytes (bfd *abfd,
21270 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 21271 struct macro_source_file *current_file,
43f3e411 21272 struct line_header *lh,
cf2c3c16 21273 struct dwarf2_section_info *section,
36586728 21274 int section_is_gnu, int section_is_dwz,
cf2c3c16 21275 unsigned int offset_size,
8fc3fc34 21276 htab_t include_hash)
cf2c3c16 21277{
4d663531 21278 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
21279 enum dwarf_macro_record_type macinfo_type;
21280 int at_commandline;
d521ce57 21281 const gdb_byte *opcode_definitions[256];
757a13d0 21282
cf2c3c16
TT
21283 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21284 &offset_size, section_is_gnu);
21285 if (mac_ptr == NULL)
21286 {
21287 /* We already issued a complaint. */
21288 return;
21289 }
757a13d0
JK
21290
21291 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21292 GDB is still reading the definitions from command line. First
21293 DW_MACINFO_start_file will need to be ignored as it was already executed
21294 to create CURRENT_FILE for the main source holding also the command line
21295 definitions. On first met DW_MACINFO_start_file this flag is reset to
21296 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21297
21298 at_commandline = 1;
21299
21300 do
21301 {
21302 /* Do we at least have room for a macinfo type byte? */
21303 if (mac_ptr >= mac_end)
21304 {
f664829e 21305 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
21306 break;
21307 }
21308
aead7601 21309 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
757a13d0
JK
21310 mac_ptr++;
21311
cf2c3c16
TT
21312 /* Note that we rely on the fact that the corresponding GNU and
21313 DWARF constants are the same. */
757a13d0
JK
21314 switch (macinfo_type)
21315 {
21316 /* A zero macinfo type indicates the end of the macro
21317 information. */
21318 case 0:
21319 break;
2e276125 21320
cf2c3c16
TT
21321 case DW_MACRO_GNU_define:
21322 case DW_MACRO_GNU_undef:
21323 case DW_MACRO_GNU_define_indirect:
21324 case DW_MACRO_GNU_undef_indirect:
36586728
TT
21325 case DW_MACRO_GNU_define_indirect_alt:
21326 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 21327 {
891d2f0b 21328 unsigned int bytes_read;
2e276125 21329 int line;
d521ce57 21330 const char *body;
cf2c3c16 21331 int is_define;
2e276125 21332
cf2c3c16
TT
21333 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21334 mac_ptr += bytes_read;
21335
21336 if (macinfo_type == DW_MACRO_GNU_define
21337 || macinfo_type == DW_MACRO_GNU_undef)
21338 {
21339 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21340 mac_ptr += bytes_read;
21341 }
21342 else
21343 {
21344 LONGEST str_offset;
21345
21346 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21347 mac_ptr += offset_size;
2e276125 21348
36586728 21349 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
21350 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21351 || section_is_dwz)
36586728
TT
21352 {
21353 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21354
21355 body = read_indirect_string_from_dwz (dwz, str_offset);
21356 }
21357 else
21358 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
21359 }
21360
21361 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
21362 || macinfo_type == DW_MACRO_GNU_define_indirect
21363 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 21364 if (! current_file)
757a13d0
JK
21365 {
21366 /* DWARF violation as no main source is present. */
21367 complaint (&symfile_complaints,
21368 _("debug info with no main source gives macro %s "
21369 "on line %d: %s"),
cf2c3c16
TT
21370 is_define ? _("definition") : _("undefinition"),
21371 line, body);
757a13d0
JK
21372 break;
21373 }
3e43a32a
MS
21374 if ((line == 0 && !at_commandline)
21375 || (line != 0 && at_commandline))
4d3c2250 21376 complaint (&symfile_complaints,
757a13d0
JK
21377 _("debug info gives %s macro %s with %s line %d: %s"),
21378 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 21379 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
21380 line == 0 ? _("zero") : _("non-zero"), line, body);
21381
cf2c3c16 21382 if (is_define)
757a13d0 21383 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
21384 else
21385 {
21386 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
21387 || macinfo_type == DW_MACRO_GNU_undef_indirect
21388 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
21389 macro_undef (current_file, line, body);
21390 }
2e276125
JB
21391 }
21392 break;
21393
cf2c3c16 21394 case DW_MACRO_GNU_start_file:
2e276125 21395 {
891d2f0b 21396 unsigned int bytes_read;
2e276125
JB
21397 int line, file;
21398
21399 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21400 mac_ptr += bytes_read;
21401 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21402 mac_ptr += bytes_read;
21403
3e43a32a
MS
21404 if ((line == 0 && !at_commandline)
21405 || (line != 0 && at_commandline))
757a13d0
JK
21406 complaint (&symfile_complaints,
21407 _("debug info gives source %d included "
21408 "from %s at %s line %d"),
21409 file, at_commandline ? _("command-line") : _("file"),
21410 line == 0 ? _("zero") : _("non-zero"), line);
21411
21412 if (at_commandline)
21413 {
cf2c3c16
TT
21414 /* This DW_MACRO_GNU_start_file was executed in the
21415 pass one. */
757a13d0
JK
21416 at_commandline = 0;
21417 }
21418 else
43f3e411 21419 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
21420 }
21421 break;
21422
cf2c3c16 21423 case DW_MACRO_GNU_end_file:
2e276125 21424 if (! current_file)
4d3c2250 21425 complaint (&symfile_complaints,
3e43a32a
MS
21426 _("macro debug info has an unmatched "
21427 "`close_file' directive"));
2e276125
JB
21428 else
21429 {
21430 current_file = current_file->included_by;
21431 if (! current_file)
21432 {
cf2c3c16 21433 enum dwarf_macro_record_type next_type;
2e276125
JB
21434
21435 /* GCC circa March 2002 doesn't produce the zero
21436 type byte marking the end of the compilation
21437 unit. Complain if it's not there, but exit no
21438 matter what. */
21439
21440 /* Do we at least have room for a macinfo type byte? */
21441 if (mac_ptr >= mac_end)
21442 {
f664829e 21443 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
21444 return;
21445 }
21446
21447 /* We don't increment mac_ptr here, so this is just
21448 a look-ahead. */
aead7601
SM
21449 next_type
21450 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21451 mac_ptr);
2e276125 21452 if (next_type != 0)
4d3c2250 21453 complaint (&symfile_complaints,
3e43a32a
MS
21454 _("no terminating 0-type entry for "
21455 "macros in `.debug_macinfo' section"));
2e276125
JB
21456
21457 return;
21458 }
21459 }
21460 break;
21461
cf2c3c16 21462 case DW_MACRO_GNU_transparent_include:
36586728 21463 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21464 {
21465 LONGEST offset;
8fc3fc34 21466 void **slot;
a036ba48
TT
21467 bfd *include_bfd = abfd;
21468 struct dwarf2_section_info *include_section = section;
21469 struct dwarf2_section_info alt_section;
d521ce57 21470 const gdb_byte *include_mac_end = mac_end;
a036ba48 21471 int is_dwz = section_is_dwz;
d521ce57 21472 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
21473
21474 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21475 mac_ptr += offset_size;
21476
a036ba48
TT
21477 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21478 {
21479 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21480
4d663531 21481 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 21482
a036ba48 21483 include_section = &dwz->macro;
a32a8923 21484 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
21485 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21486 is_dwz = 1;
21487 }
21488
21489 new_mac_ptr = include_section->buffer + offset;
21490 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21491
8fc3fc34
TT
21492 if (*slot != NULL)
21493 {
21494 /* This has actually happened; see
21495 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21496 complaint (&symfile_complaints,
21497 _("recursive DW_MACRO_GNU_transparent_include in "
21498 ".debug_macro section"));
21499 }
21500 else
21501 {
d521ce57 21502 *slot = (void *) new_mac_ptr;
36586728 21503
a036ba48 21504 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
43f3e411 21505 include_mac_end, current_file, lh,
36586728 21506 section, section_is_gnu, is_dwz,
4d663531 21507 offset_size, include_hash);
8fc3fc34 21508
d521ce57 21509 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 21510 }
cf2c3c16
TT
21511 }
21512 break;
21513
2e276125 21514 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
21515 if (!section_is_gnu)
21516 {
21517 unsigned int bytes_read;
21518 int constant;
2e276125 21519
cf2c3c16
TT
21520 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21521 mac_ptr += bytes_read;
21522 read_direct_string (abfd, mac_ptr, &bytes_read);
21523 mac_ptr += bytes_read;
2e276125 21524
cf2c3c16
TT
21525 /* We don't recognize any vendor extensions. */
21526 break;
21527 }
21528 /* FALLTHROUGH */
21529
21530 default:
21531 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21532 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21533 section);
21534 if (mac_ptr == NULL)
21535 return;
21536 break;
2e276125 21537 }
757a13d0 21538 } while (macinfo_type != 0);
2e276125 21539}
8e19ed76 21540
cf2c3c16 21541static void
09262596 21542dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 21543 int section_is_gnu)
cf2c3c16 21544{
bb5ed363 21545 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
21546 struct line_header *lh = cu->line_header;
21547 bfd *abfd;
d521ce57 21548 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
21549 struct macro_source_file *current_file = 0;
21550 enum dwarf_macro_record_type macinfo_type;
21551 unsigned int offset_size = cu->header.offset_size;
d521ce57 21552 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
21553 struct cleanup *cleanup;
21554 htab_t include_hash;
21555 void **slot;
09262596
DE
21556 struct dwarf2_section_info *section;
21557 const char *section_name;
21558
21559 if (cu->dwo_unit != NULL)
21560 {
21561 if (section_is_gnu)
21562 {
21563 section = &cu->dwo_unit->dwo_file->sections.macro;
21564 section_name = ".debug_macro.dwo";
21565 }
21566 else
21567 {
21568 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21569 section_name = ".debug_macinfo.dwo";
21570 }
21571 }
21572 else
21573 {
21574 if (section_is_gnu)
21575 {
21576 section = &dwarf2_per_objfile->macro;
21577 section_name = ".debug_macro";
21578 }
21579 else
21580 {
21581 section = &dwarf2_per_objfile->macinfo;
21582 section_name = ".debug_macinfo";
21583 }
21584 }
cf2c3c16 21585
bb5ed363 21586 dwarf2_read_section (objfile, section);
cf2c3c16
TT
21587 if (section->buffer == NULL)
21588 {
fceca515 21589 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
21590 return;
21591 }
a32a8923 21592 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
21593
21594 /* First pass: Find the name of the base filename.
21595 This filename is needed in order to process all macros whose definition
21596 (or undefinition) comes from the command line. These macros are defined
21597 before the first DW_MACINFO_start_file entry, and yet still need to be
21598 associated to the base file.
21599
21600 To determine the base file name, we scan the macro definitions until we
21601 reach the first DW_MACINFO_start_file entry. We then initialize
21602 CURRENT_FILE accordingly so that any macro definition found before the
21603 first DW_MACINFO_start_file can still be associated to the base file. */
21604
21605 mac_ptr = section->buffer + offset;
21606 mac_end = section->buffer + section->size;
21607
21608 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21609 &offset_size, section_is_gnu);
21610 if (mac_ptr == NULL)
21611 {
21612 /* We already issued a complaint. */
21613 return;
21614 }
21615
21616 do
21617 {
21618 /* Do we at least have room for a macinfo type byte? */
21619 if (mac_ptr >= mac_end)
21620 {
21621 /* Complaint is printed during the second pass as GDB will probably
21622 stop the first pass earlier upon finding
21623 DW_MACINFO_start_file. */
21624 break;
21625 }
21626
aead7601 21627 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
cf2c3c16
TT
21628 mac_ptr++;
21629
21630 /* Note that we rely on the fact that the corresponding GNU and
21631 DWARF constants are the same. */
21632 switch (macinfo_type)
21633 {
21634 /* A zero macinfo type indicates the end of the macro
21635 information. */
21636 case 0:
21637 break;
21638
21639 case DW_MACRO_GNU_define:
21640 case DW_MACRO_GNU_undef:
21641 /* Only skip the data by MAC_PTR. */
21642 {
21643 unsigned int bytes_read;
21644
21645 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21646 mac_ptr += bytes_read;
21647 read_direct_string (abfd, mac_ptr, &bytes_read);
21648 mac_ptr += bytes_read;
21649 }
21650 break;
21651
21652 case DW_MACRO_GNU_start_file:
21653 {
21654 unsigned int bytes_read;
21655 int line, file;
21656
21657 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21658 mac_ptr += bytes_read;
21659 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21660 mac_ptr += bytes_read;
21661
43f3e411 21662 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
21663 }
21664 break;
21665
21666 case DW_MACRO_GNU_end_file:
21667 /* No data to skip by MAC_PTR. */
21668 break;
21669
21670 case DW_MACRO_GNU_define_indirect:
21671 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
21672 case DW_MACRO_GNU_define_indirect_alt:
21673 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
21674 {
21675 unsigned int bytes_read;
21676
21677 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21678 mac_ptr += bytes_read;
21679 mac_ptr += offset_size;
21680 }
21681 break;
21682
21683 case DW_MACRO_GNU_transparent_include:
f7a35f02 21684 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21685 /* Note that, according to the spec, a transparent include
21686 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21687 skip this opcode. */
21688 mac_ptr += offset_size;
21689 break;
21690
21691 case DW_MACINFO_vendor_ext:
21692 /* Only skip the data by MAC_PTR. */
21693 if (!section_is_gnu)
21694 {
21695 unsigned int bytes_read;
21696
21697 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21698 mac_ptr += bytes_read;
21699 read_direct_string (abfd, mac_ptr, &bytes_read);
21700 mac_ptr += bytes_read;
21701 }
21702 /* FALLTHROUGH */
21703
21704 default:
21705 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21706 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21707 section);
21708 if (mac_ptr == NULL)
21709 return;
21710 break;
21711 }
21712 } while (macinfo_type != 0 && current_file == NULL);
21713
21714 /* Second pass: Process all entries.
21715
21716 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21717 command-line macro definitions/undefinitions. This flag is unset when we
21718 reach the first DW_MACINFO_start_file entry. */
21719
8fc3fc34
TT
21720 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21721 NULL, xcalloc, xfree);
21722 cleanup = make_cleanup_htab_delete (include_hash);
21723 mac_ptr = section->buffer + offset;
21724 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 21725 *slot = (void *) mac_ptr;
8fc3fc34 21726 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
43f3e411 21727 current_file, lh, section,
4d663531 21728 section_is_gnu, 0, offset_size, include_hash);
8fc3fc34 21729 do_cleanups (cleanup);
cf2c3c16
TT
21730}
21731
8e19ed76 21732/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 21733 if so return true else false. */
380bca97 21734
8e19ed76 21735static int
6e5a29e1 21736attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
21737{
21738 return (attr == NULL ? 0 :
21739 attr->form == DW_FORM_block1
21740 || attr->form == DW_FORM_block2
21741 || attr->form == DW_FORM_block4
2dc7f7b3
TT
21742 || attr->form == DW_FORM_block
21743 || attr->form == DW_FORM_exprloc);
8e19ed76 21744}
4c2df51b 21745
c6a0999f
JB
21746/* Return non-zero if ATTR's value is a section offset --- classes
21747 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21748 You may use DW_UNSND (attr) to retrieve such offsets.
21749
21750 Section 7.5.4, "Attribute Encodings", explains that no attribute
21751 may have a value that belongs to more than one of these classes; it
21752 would be ambiguous if we did, because we use the same forms for all
21753 of them. */
380bca97 21754
3690dd37 21755static int
6e5a29e1 21756attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
21757{
21758 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
21759 || attr->form == DW_FORM_data8
21760 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
21761}
21762
3690dd37
JB
21763/* Return non-zero if ATTR's value falls in the 'constant' class, or
21764 zero otherwise. When this function returns true, you can apply
21765 dwarf2_get_attr_constant_value to it.
21766
21767 However, note that for some attributes you must check
21768 attr_form_is_section_offset before using this test. DW_FORM_data4
21769 and DW_FORM_data8 are members of both the constant class, and of
21770 the classes that contain offsets into other debug sections
21771 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21772 that, if an attribute's can be either a constant or one of the
21773 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21774 taken as section offsets, not constants. */
380bca97 21775
3690dd37 21776static int
6e5a29e1 21777attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
21778{
21779 switch (attr->form)
21780 {
21781 case DW_FORM_sdata:
21782 case DW_FORM_udata:
21783 case DW_FORM_data1:
21784 case DW_FORM_data2:
21785 case DW_FORM_data4:
21786 case DW_FORM_data8:
21787 return 1;
21788 default:
21789 return 0;
21790 }
21791}
21792
7771576e
SA
21793
21794/* DW_ADDR is always stored already as sect_offset; despite for the forms
21795 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21796
21797static int
6e5a29e1 21798attr_form_is_ref (const struct attribute *attr)
7771576e
SA
21799{
21800 switch (attr->form)
21801 {
21802 case DW_FORM_ref_addr:
21803 case DW_FORM_ref1:
21804 case DW_FORM_ref2:
21805 case DW_FORM_ref4:
21806 case DW_FORM_ref8:
21807 case DW_FORM_ref_udata:
21808 case DW_FORM_GNU_ref_alt:
21809 return 1;
21810 default:
21811 return 0;
21812 }
21813}
21814
3019eac3
DE
21815/* Return the .debug_loc section to use for CU.
21816 For DWO files use .debug_loc.dwo. */
21817
21818static struct dwarf2_section_info *
21819cu_debug_loc_section (struct dwarf2_cu *cu)
21820{
21821 if (cu->dwo_unit)
21822 return &cu->dwo_unit->dwo_file->sections.loc;
21823 return &dwarf2_per_objfile->loc;
21824}
21825
8cf6f0b1
TT
21826/* A helper function that fills in a dwarf2_loclist_baton. */
21827
21828static void
21829fill_in_loclist_baton (struct dwarf2_cu *cu,
21830 struct dwarf2_loclist_baton *baton,
ff39bb5e 21831 const struct attribute *attr)
8cf6f0b1 21832{
3019eac3
DE
21833 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21834
21835 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
21836
21837 baton->per_cu = cu->per_cu;
21838 gdb_assert (baton->per_cu);
21839 /* We don't know how long the location list is, but make sure we
21840 don't run off the edge of the section. */
3019eac3
DE
21841 baton->size = section->size - DW_UNSND (attr);
21842 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 21843 baton->base_address = cu->base_address;
f664829e 21844 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
21845}
21846
4c2df51b 21847static void
ff39bb5e 21848dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 21849 struct dwarf2_cu *cu, int is_block)
4c2df51b 21850{
bb5ed363 21851 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 21852 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 21853
3690dd37 21854 if (attr_form_is_section_offset (attr)
3019eac3 21855 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
21856 the section. If so, fall through to the complaint in the
21857 other branch. */
3019eac3 21858 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 21859 {
0d53c4c4 21860 struct dwarf2_loclist_baton *baton;
4c2df51b 21861
8d749320 21862 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
4c2df51b 21863
8cf6f0b1 21864 fill_in_loclist_baton (cu, baton, attr);
be391dca 21865
d00adf39 21866 if (cu->base_known == 0)
0d53c4c4 21867 complaint (&symfile_complaints,
3e43a32a
MS
21868 _("Location list used without "
21869 "specifying the CU base address."));
4c2df51b 21870
f1e6e072
TT
21871 SYMBOL_ACLASS_INDEX (sym) = (is_block
21872 ? dwarf2_loclist_block_index
21873 : dwarf2_loclist_index);
0d53c4c4
DJ
21874 SYMBOL_LOCATION_BATON (sym) = baton;
21875 }
21876 else
21877 {
21878 struct dwarf2_locexpr_baton *baton;
21879
8d749320 21880 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
ae0d2f24
UW
21881 baton->per_cu = cu->per_cu;
21882 gdb_assert (baton->per_cu);
0d53c4c4
DJ
21883
21884 if (attr_form_is_block (attr))
21885 {
21886 /* Note that we're just copying the block's data pointer
21887 here, not the actual data. We're still pointing into the
6502dd73
DJ
21888 info_buffer for SYM's objfile; right now we never release
21889 that buffer, but when we do clean up properly this may
21890 need to change. */
0d53c4c4
DJ
21891 baton->size = DW_BLOCK (attr)->size;
21892 baton->data = DW_BLOCK (attr)->data;
21893 }
21894 else
21895 {
21896 dwarf2_invalid_attrib_class_complaint ("location description",
21897 SYMBOL_NATURAL_NAME (sym));
21898 baton->size = 0;
0d53c4c4 21899 }
6e70227d 21900
f1e6e072
TT
21901 SYMBOL_ACLASS_INDEX (sym) = (is_block
21902 ? dwarf2_locexpr_block_index
21903 : dwarf2_locexpr_index);
0d53c4c4
DJ
21904 SYMBOL_LOCATION_BATON (sym) = baton;
21905 }
4c2df51b 21906}
6502dd73 21907
9aa1f1e3
TT
21908/* Return the OBJFILE associated with the compilation unit CU. If CU
21909 came from a separate debuginfo file, then the master objfile is
21910 returned. */
ae0d2f24
UW
21911
21912struct objfile *
21913dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21914{
9291a0cd 21915 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
21916
21917 /* Return the master objfile, so that we can report and look up the
21918 correct file containing this variable. */
21919 if (objfile->separate_debug_objfile_backlink)
21920 objfile = objfile->separate_debug_objfile_backlink;
21921
21922 return objfile;
21923}
21924
96408a79
SA
21925/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21926 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21927 CU_HEADERP first. */
21928
21929static const struct comp_unit_head *
21930per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21931 struct dwarf2_per_cu_data *per_cu)
21932{
d521ce57 21933 const gdb_byte *info_ptr;
96408a79
SA
21934
21935 if (per_cu->cu)
21936 return &per_cu->cu->header;
21937
8a0459fd 21938 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
21939
21940 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 21941 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
21942
21943 return cu_headerp;
21944}
21945
ae0d2f24
UW
21946/* Return the address size given in the compilation unit header for CU. */
21947
98714339 21948int
ae0d2f24
UW
21949dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21950{
96408a79
SA
21951 struct comp_unit_head cu_header_local;
21952 const struct comp_unit_head *cu_headerp;
c471e790 21953
96408a79
SA
21954 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21955
21956 return cu_headerp->addr_size;
ae0d2f24
UW
21957}
21958
9eae7c52
TT
21959/* Return the offset size given in the compilation unit header for CU. */
21960
21961int
21962dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21963{
96408a79
SA
21964 struct comp_unit_head cu_header_local;
21965 const struct comp_unit_head *cu_headerp;
9c6c53f7 21966
96408a79
SA
21967 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21968
21969 return cu_headerp->offset_size;
21970}
21971
21972/* See its dwarf2loc.h declaration. */
21973
21974int
21975dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21976{
21977 struct comp_unit_head cu_header_local;
21978 const struct comp_unit_head *cu_headerp;
21979
21980 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21981
21982 if (cu_headerp->version == 2)
21983 return cu_headerp->addr_size;
21984 else
21985 return cu_headerp->offset_size;
181cebd4
JK
21986}
21987
9aa1f1e3
TT
21988/* Return the text offset of the CU. The returned offset comes from
21989 this CU's objfile. If this objfile came from a separate debuginfo
21990 file, then the offset may be different from the corresponding
21991 offset in the parent objfile. */
21992
21993CORE_ADDR
21994dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21995{
bb3fa9d0 21996 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
21997
21998 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21999}
22000
348e048f
DE
22001/* Locate the .debug_info compilation unit from CU's objfile which contains
22002 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
22003
22004static struct dwarf2_per_cu_data *
b64f50a1 22005dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 22006 unsigned int offset_in_dwz,
ae038cb0
DJ
22007 struct objfile *objfile)
22008{
22009 struct dwarf2_per_cu_data *this_cu;
22010 int low, high;
36586728 22011 const sect_offset *cu_off;
ae038cb0 22012
ae038cb0
DJ
22013 low = 0;
22014 high = dwarf2_per_objfile->n_comp_units - 1;
22015 while (high > low)
22016 {
36586728 22017 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 22018 int mid = low + (high - low) / 2;
9a619af0 22019
36586728
TT
22020 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22021 cu_off = &mid_cu->offset;
22022 if (mid_cu->is_dwz > offset_in_dwz
22023 || (mid_cu->is_dwz == offset_in_dwz
22024 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
22025 high = mid;
22026 else
22027 low = mid + 1;
22028 }
22029 gdb_assert (low == high);
36586728
TT
22030 this_cu = dwarf2_per_objfile->all_comp_units[low];
22031 cu_off = &this_cu->offset;
22032 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 22033 {
36586728 22034 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
22035 error (_("Dwarf Error: could not find partial DIE containing "
22036 "offset 0x%lx [in module %s]"),
b64f50a1 22037 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 22038
b64f50a1
JK
22039 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22040 <= offset.sect_off);
ae038cb0
DJ
22041 return dwarf2_per_objfile->all_comp_units[low-1];
22042 }
22043 else
22044 {
22045 this_cu = dwarf2_per_objfile->all_comp_units[low];
22046 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
22047 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22048 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22049 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
22050 return this_cu;
22051 }
22052}
22053
23745b47 22054/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 22055
9816fde3 22056static void
23745b47 22057init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 22058{
9816fde3 22059 memset (cu, 0, sizeof (*cu));
23745b47
DE
22060 per_cu->cu = cu;
22061 cu->per_cu = per_cu;
22062 cu->objfile = per_cu->objfile;
93311388 22063 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
22064}
22065
22066/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22067
22068static void
95554aad
TT
22069prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22070 enum language pretend_language)
9816fde3
JK
22071{
22072 struct attribute *attr;
22073
22074 /* Set the language we're debugging. */
22075 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22076 if (attr)
22077 set_cu_language (DW_UNSND (attr), cu);
22078 else
9cded63f 22079 {
95554aad 22080 cu->language = pretend_language;
9cded63f
TT
22081 cu->language_defn = language_def (cu->language);
22082 }
dee91e82 22083
7d45c7c3 22084 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
93311388
DE
22085}
22086
ae038cb0
DJ
22087/* Release one cached compilation unit, CU. We unlink it from the tree
22088 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
22089 the caller is responsible for that.
22090 NOTE: DATA is a void * because this function is also used as a
22091 cleanup routine. */
ae038cb0
DJ
22092
22093static void
68dc6402 22094free_heap_comp_unit (void *data)
ae038cb0
DJ
22095{
22096 struct dwarf2_cu *cu = data;
22097
23745b47
DE
22098 gdb_assert (cu->per_cu != NULL);
22099 cu->per_cu->cu = NULL;
ae038cb0
DJ
22100 cu->per_cu = NULL;
22101
22102 obstack_free (&cu->comp_unit_obstack, NULL);
22103
22104 xfree (cu);
22105}
22106
72bf9492 22107/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 22108 when we're finished with it. We can't free the pointer itself, but be
dee91e82 22109 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
22110
22111static void
22112free_stack_comp_unit (void *data)
22113{
22114 struct dwarf2_cu *cu = data;
22115
23745b47
DE
22116 gdb_assert (cu->per_cu != NULL);
22117 cu->per_cu->cu = NULL;
22118 cu->per_cu = NULL;
22119
72bf9492
DJ
22120 obstack_free (&cu->comp_unit_obstack, NULL);
22121 cu->partial_dies = NULL;
ae038cb0
DJ
22122}
22123
22124/* Free all cached compilation units. */
22125
22126static void
22127free_cached_comp_units (void *data)
22128{
22129 struct dwarf2_per_cu_data *per_cu, **last_chain;
22130
22131 per_cu = dwarf2_per_objfile->read_in_chain;
22132 last_chain = &dwarf2_per_objfile->read_in_chain;
22133 while (per_cu != NULL)
22134 {
22135 struct dwarf2_per_cu_data *next_cu;
22136
22137 next_cu = per_cu->cu->read_in_chain;
22138
68dc6402 22139 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22140 *last_chain = next_cu;
22141
22142 per_cu = next_cu;
22143 }
22144}
22145
22146/* Increase the age counter on each cached compilation unit, and free
22147 any that are too old. */
22148
22149static void
22150age_cached_comp_units (void)
22151{
22152 struct dwarf2_per_cu_data *per_cu, **last_chain;
22153
22154 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22155 per_cu = dwarf2_per_objfile->read_in_chain;
22156 while (per_cu != NULL)
22157 {
22158 per_cu->cu->last_used ++;
b4f54984 22159 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
22160 dwarf2_mark (per_cu->cu);
22161 per_cu = per_cu->cu->read_in_chain;
22162 }
22163
22164 per_cu = dwarf2_per_objfile->read_in_chain;
22165 last_chain = &dwarf2_per_objfile->read_in_chain;
22166 while (per_cu != NULL)
22167 {
22168 struct dwarf2_per_cu_data *next_cu;
22169
22170 next_cu = per_cu->cu->read_in_chain;
22171
22172 if (!per_cu->cu->mark)
22173 {
68dc6402 22174 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22175 *last_chain = next_cu;
22176 }
22177 else
22178 last_chain = &per_cu->cu->read_in_chain;
22179
22180 per_cu = next_cu;
22181 }
22182}
22183
22184/* Remove a single compilation unit from the cache. */
22185
22186static void
dee91e82 22187free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
22188{
22189 struct dwarf2_per_cu_data *per_cu, **last_chain;
22190
22191 per_cu = dwarf2_per_objfile->read_in_chain;
22192 last_chain = &dwarf2_per_objfile->read_in_chain;
22193 while (per_cu != NULL)
22194 {
22195 struct dwarf2_per_cu_data *next_cu;
22196
22197 next_cu = per_cu->cu->read_in_chain;
22198
dee91e82 22199 if (per_cu == target_per_cu)
ae038cb0 22200 {
68dc6402 22201 free_heap_comp_unit (per_cu->cu);
dee91e82 22202 per_cu->cu = NULL;
ae038cb0
DJ
22203 *last_chain = next_cu;
22204 break;
22205 }
22206 else
22207 last_chain = &per_cu->cu->read_in_chain;
22208
22209 per_cu = next_cu;
22210 }
22211}
22212
fe3e1990
DJ
22213/* Release all extra memory associated with OBJFILE. */
22214
22215void
22216dwarf2_free_objfile (struct objfile *objfile)
22217{
22218 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22219
22220 if (dwarf2_per_objfile == NULL)
22221 return;
22222
22223 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22224 free_cached_comp_units (NULL);
22225
7b9f3c50
DE
22226 if (dwarf2_per_objfile->quick_file_names_table)
22227 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 22228
527f3840
JK
22229 if (dwarf2_per_objfile->line_header_hash)
22230 htab_delete (dwarf2_per_objfile->line_header_hash);
22231
fe3e1990
DJ
22232 /* Everything else should be on the objfile obstack. */
22233}
22234
dee91e82
DE
22235/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22236 We store these in a hash table separate from the DIEs, and preserve them
22237 when the DIEs are flushed out of cache.
22238
22239 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 22240 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
22241 or the type may come from a DWO file. Furthermore, while it's more logical
22242 to use per_cu->section+offset, with Fission the section with the data is in
22243 the DWO file but we don't know that section at the point we need it.
22244 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22245 because we can enter the lookup routine, get_die_type_at_offset, from
22246 outside this file, and thus won't necessarily have PER_CU->cu.
22247 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 22248
dee91e82 22249struct dwarf2_per_cu_offset_and_type
1c379e20 22250{
dee91e82 22251 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 22252 sect_offset offset;
1c379e20
DJ
22253 struct type *type;
22254};
22255
dee91e82 22256/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22257
22258static hashval_t
dee91e82 22259per_cu_offset_and_type_hash (const void *item)
1c379e20 22260{
dee91e82 22261 const struct dwarf2_per_cu_offset_and_type *ofs = item;
9a619af0 22262
dee91e82 22263 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
22264}
22265
dee91e82 22266/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22267
22268static int
dee91e82 22269per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 22270{
dee91e82
DE
22271 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
22272 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
9a619af0 22273
dee91e82
DE
22274 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22275 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
22276}
22277
22278/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
22279 table if necessary. For convenience, return TYPE.
22280
22281 The DIEs reading must have careful ordering to:
22282 * Not cause infite loops trying to read in DIEs as a prerequisite for
22283 reading current DIE.
22284 * Not trying to dereference contents of still incompletely read in types
22285 while reading in other DIEs.
22286 * Enable referencing still incompletely read in types just by a pointer to
22287 the type without accessing its fields.
22288
22289 Therefore caller should follow these rules:
22290 * Try to fetch any prerequisite types we may need to build this DIE type
22291 before building the type and calling set_die_type.
e71ec853 22292 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
22293 possible before fetching more types to complete the current type.
22294 * Make the type as complete as possible before fetching more types. */
1c379e20 22295
f792889a 22296static struct type *
1c379e20
DJ
22297set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22298{
dee91e82 22299 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 22300 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
22301 struct attribute *attr;
22302 struct dynamic_prop prop;
1c379e20 22303
b4ba55a1
JB
22304 /* For Ada types, make sure that the gnat-specific data is always
22305 initialized (if not already set). There are a few types where
22306 we should not be doing so, because the type-specific area is
22307 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22308 where the type-specific area is used to store the floatformat).
22309 But this is not a problem, because the gnat-specific information
22310 is actually not needed for these types. */
22311 if (need_gnat_info (cu)
22312 && TYPE_CODE (type) != TYPE_CODE_FUNC
22313 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
22314 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22315 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22316 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
22317 && !HAVE_GNAT_AUX_INFO (type))
22318 INIT_GNAT_SPECIFIC (type);
22319
3cdcd0ce
JB
22320 /* Read DW_AT_data_location and set in type. */
22321 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22322 if (attr_to_dynamic_prop (attr, die, cu, &prop))
93a8e227 22323 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
3cdcd0ce 22324
dee91e82 22325 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22326 {
dee91e82
DE
22327 dwarf2_per_objfile->die_type_hash =
22328 htab_create_alloc_ex (127,
22329 per_cu_offset_and_type_hash,
22330 per_cu_offset_and_type_eq,
22331 NULL,
22332 &objfile->objfile_obstack,
22333 hashtab_obstack_allocate,
22334 dummy_obstack_deallocate);
f792889a 22335 }
1c379e20 22336
dee91e82 22337 ofs.per_cu = cu->per_cu;
1c379e20
DJ
22338 ofs.offset = die->offset;
22339 ofs.type = type;
dee91e82
DE
22340 slot = (struct dwarf2_per_cu_offset_and_type **)
22341 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
22342 if (*slot)
22343 complaint (&symfile_complaints,
22344 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 22345 die->offset.sect_off);
8d749320
SM
22346 *slot = XOBNEW (&objfile->objfile_obstack,
22347 struct dwarf2_per_cu_offset_and_type);
1c379e20 22348 **slot = ofs;
f792889a 22349 return type;
1c379e20
DJ
22350}
22351
02142a6c
DE
22352/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22353 or return NULL if the die does not have a saved type. */
1c379e20
DJ
22354
22355static struct type *
b64f50a1 22356get_die_type_at_offset (sect_offset offset,
673bfd45 22357 struct dwarf2_per_cu_data *per_cu)
1c379e20 22358{
dee91e82 22359 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 22360
dee91e82 22361 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22362 return NULL;
1c379e20 22363
dee91e82 22364 ofs.per_cu = per_cu;
673bfd45 22365 ofs.offset = offset;
dee91e82 22366 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
1c379e20
DJ
22367 if (slot)
22368 return slot->type;
22369 else
22370 return NULL;
22371}
22372
02142a6c 22373/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
22374 or return NULL if DIE does not have a saved type. */
22375
22376static struct type *
22377get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22378{
22379 return get_die_type_at_offset (die->offset, cu->per_cu);
22380}
22381
10b3939b
DJ
22382/* Add a dependence relationship from CU to REF_PER_CU. */
22383
22384static void
22385dwarf2_add_dependence (struct dwarf2_cu *cu,
22386 struct dwarf2_per_cu_data *ref_per_cu)
22387{
22388 void **slot;
22389
22390 if (cu->dependencies == NULL)
22391 cu->dependencies
22392 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22393 NULL, &cu->comp_unit_obstack,
22394 hashtab_obstack_allocate,
22395 dummy_obstack_deallocate);
22396
22397 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22398 if (*slot == NULL)
22399 *slot = ref_per_cu;
22400}
1c379e20 22401
f504f079
DE
22402/* Subroutine of dwarf2_mark to pass to htab_traverse.
22403 Set the mark field in every compilation unit in the
ae038cb0
DJ
22404 cache that we must keep because we are keeping CU. */
22405
10b3939b
DJ
22406static int
22407dwarf2_mark_helper (void **slot, void *data)
22408{
22409 struct dwarf2_per_cu_data *per_cu;
22410
22411 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
22412
22413 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22414 reading of the chain. As such dependencies remain valid it is not much
22415 useful to track and undo them during QUIT cleanups. */
22416 if (per_cu->cu == NULL)
22417 return 1;
22418
10b3939b
DJ
22419 if (per_cu->cu->mark)
22420 return 1;
22421 per_cu->cu->mark = 1;
22422
22423 if (per_cu->cu->dependencies != NULL)
22424 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22425
22426 return 1;
22427}
22428
f504f079
DE
22429/* Set the mark field in CU and in every other compilation unit in the
22430 cache that we must keep because we are keeping CU. */
22431
ae038cb0
DJ
22432static void
22433dwarf2_mark (struct dwarf2_cu *cu)
22434{
22435 if (cu->mark)
22436 return;
22437 cu->mark = 1;
10b3939b
DJ
22438 if (cu->dependencies != NULL)
22439 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
22440}
22441
22442static void
22443dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22444{
22445 while (per_cu)
22446 {
22447 per_cu->cu->mark = 0;
22448 per_cu = per_cu->cu->read_in_chain;
22449 }
72bf9492
DJ
22450}
22451
72bf9492
DJ
22452/* Trivial hash function for partial_die_info: the hash value of a DIE
22453 is its offset in .debug_info for this objfile. */
22454
22455static hashval_t
22456partial_die_hash (const void *item)
22457{
22458 const struct partial_die_info *part_die = item;
9a619af0 22459
b64f50a1 22460 return part_die->offset.sect_off;
72bf9492
DJ
22461}
22462
22463/* Trivial comparison function for partial_die_info structures: two DIEs
22464 are equal if they have the same offset. */
22465
22466static int
22467partial_die_eq (const void *item_lhs, const void *item_rhs)
22468{
22469 const struct partial_die_info *part_die_lhs = item_lhs;
22470 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 22471
b64f50a1 22472 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
22473}
22474
b4f54984
DE
22475static struct cmd_list_element *set_dwarf_cmdlist;
22476static struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
22477
22478static void
b4f54984 22479set_dwarf_cmd (char *args, int from_tty)
ae038cb0 22480{
b4f54984 22481 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 22482 gdb_stdout);
ae038cb0
DJ
22483}
22484
22485static void
b4f54984 22486show_dwarf_cmd (char *args, int from_tty)
6e70227d 22487{
b4f54984 22488 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
22489}
22490
4bf44c1c 22491/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
22492
22493static void
c1bd65d0 22494dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
22495{
22496 struct dwarf2_per_objfile *data = d;
8b70b953 22497 int ix;
8b70b953 22498
626f2d1c
TT
22499 /* Make sure we don't accidentally use dwarf2_per_objfile while
22500 cleaning up. */
22501 dwarf2_per_objfile = NULL;
22502
59b0c7c1
JB
22503 for (ix = 0; ix < data->n_comp_units; ++ix)
22504 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 22505
59b0c7c1 22506 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 22507 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
22508 data->all_type_units[ix]->per_cu.imported_symtabs);
22509 xfree (data->all_type_units);
95554aad 22510
8b70b953 22511 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
22512
22513 if (data->dwo_files)
22514 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
22515 if (data->dwp_file)
22516 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
22517
22518 if (data->dwz_file && data->dwz_file->dwz_bfd)
22519 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
22520}
22521
22522\f
ae2de4f8 22523/* The "save gdb-index" command. */
9291a0cd
TT
22524
22525/* The contents of the hash table we create when building the string
22526 table. */
22527struct strtab_entry
22528{
22529 offset_type offset;
22530 const char *str;
22531};
22532
559a7a62
JK
22533/* Hash function for a strtab_entry.
22534
22535 Function is used only during write_hash_table so no index format backward
22536 compatibility is needed. */
b89be57b 22537
9291a0cd
TT
22538static hashval_t
22539hash_strtab_entry (const void *e)
22540{
22541 const struct strtab_entry *entry = e;
559a7a62 22542 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
22543}
22544
22545/* Equality function for a strtab_entry. */
b89be57b 22546
9291a0cd
TT
22547static int
22548eq_strtab_entry (const void *a, const void *b)
22549{
22550 const struct strtab_entry *ea = a;
22551 const struct strtab_entry *eb = b;
22552 return !strcmp (ea->str, eb->str);
22553}
22554
22555/* Create a strtab_entry hash table. */
b89be57b 22556
9291a0cd
TT
22557static htab_t
22558create_strtab (void)
22559{
22560 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22561 xfree, xcalloc, xfree);
22562}
22563
22564/* Add a string to the constant pool. Return the string's offset in
22565 host order. */
b89be57b 22566
9291a0cd
TT
22567static offset_type
22568add_string (htab_t table, struct obstack *cpool, const char *str)
22569{
22570 void **slot;
22571 struct strtab_entry entry;
22572 struct strtab_entry *result;
22573
22574 entry.str = str;
22575 slot = htab_find_slot (table, &entry, INSERT);
22576 if (*slot)
22577 result = *slot;
22578 else
22579 {
22580 result = XNEW (struct strtab_entry);
22581 result->offset = obstack_object_size (cpool);
22582 result->str = str;
22583 obstack_grow_str0 (cpool, str);
22584 *slot = result;
22585 }
22586 return result->offset;
22587}
22588
22589/* An entry in the symbol table. */
22590struct symtab_index_entry
22591{
22592 /* The name of the symbol. */
22593 const char *name;
22594 /* The offset of the name in the constant pool. */
22595 offset_type index_offset;
22596 /* A sorted vector of the indices of all the CUs that hold an object
22597 of this name. */
22598 VEC (offset_type) *cu_indices;
22599};
22600
22601/* The symbol table. This is a power-of-2-sized hash table. */
22602struct mapped_symtab
22603{
22604 offset_type n_elements;
22605 offset_type size;
22606 struct symtab_index_entry **data;
22607};
22608
22609/* Hash function for a symtab_index_entry. */
b89be57b 22610
9291a0cd
TT
22611static hashval_t
22612hash_symtab_entry (const void *e)
22613{
22614 const struct symtab_index_entry *entry = e;
22615 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22616 sizeof (offset_type) * VEC_length (offset_type,
22617 entry->cu_indices),
22618 0);
22619}
22620
22621/* Equality function for a symtab_index_entry. */
b89be57b 22622
9291a0cd
TT
22623static int
22624eq_symtab_entry (const void *a, const void *b)
22625{
22626 const struct symtab_index_entry *ea = a;
22627 const struct symtab_index_entry *eb = b;
22628 int len = VEC_length (offset_type, ea->cu_indices);
22629 if (len != VEC_length (offset_type, eb->cu_indices))
22630 return 0;
22631 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22632 VEC_address (offset_type, eb->cu_indices),
22633 sizeof (offset_type) * len);
22634}
22635
22636/* Destroy a symtab_index_entry. */
b89be57b 22637
9291a0cd
TT
22638static void
22639delete_symtab_entry (void *p)
22640{
22641 struct symtab_index_entry *entry = p;
22642 VEC_free (offset_type, entry->cu_indices);
22643 xfree (entry);
22644}
22645
22646/* Create a hash table holding symtab_index_entry objects. */
b89be57b 22647
9291a0cd 22648static htab_t
3876f04e 22649create_symbol_hash_table (void)
9291a0cd
TT
22650{
22651 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22652 delete_symtab_entry, xcalloc, xfree);
22653}
22654
22655/* Create a new mapped symtab object. */
b89be57b 22656
9291a0cd
TT
22657static struct mapped_symtab *
22658create_mapped_symtab (void)
22659{
22660 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22661 symtab->n_elements = 0;
22662 symtab->size = 1024;
22663 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22664 return symtab;
22665}
22666
22667/* Destroy a mapped_symtab. */
b89be57b 22668
9291a0cd
TT
22669static void
22670cleanup_mapped_symtab (void *p)
22671{
22672 struct mapped_symtab *symtab = p;
22673 /* The contents of the array are freed when the other hash table is
22674 destroyed. */
22675 xfree (symtab->data);
22676 xfree (symtab);
22677}
22678
22679/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
22680 the slot.
22681
22682 Function is used only during write_hash_table so no index format backward
22683 compatibility is needed. */
b89be57b 22684
9291a0cd
TT
22685static struct symtab_index_entry **
22686find_slot (struct mapped_symtab *symtab, const char *name)
22687{
559a7a62 22688 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
22689
22690 index = hash & (symtab->size - 1);
22691 step = ((hash * 17) & (symtab->size - 1)) | 1;
22692
22693 for (;;)
22694 {
22695 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22696 return &symtab->data[index];
22697 index = (index + step) & (symtab->size - 1);
22698 }
22699}
22700
22701/* Expand SYMTAB's hash table. */
b89be57b 22702
9291a0cd
TT
22703static void
22704hash_expand (struct mapped_symtab *symtab)
22705{
22706 offset_type old_size = symtab->size;
22707 offset_type i;
22708 struct symtab_index_entry **old_entries = symtab->data;
22709
22710 symtab->size *= 2;
22711 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22712
22713 for (i = 0; i < old_size; ++i)
22714 {
22715 if (old_entries[i])
22716 {
22717 struct symtab_index_entry **slot = find_slot (symtab,
22718 old_entries[i]->name);
22719 *slot = old_entries[i];
22720 }
22721 }
22722
22723 xfree (old_entries);
22724}
22725
156942c7
DE
22726/* Add an entry to SYMTAB. NAME is the name of the symbol.
22727 CU_INDEX is the index of the CU in which the symbol appears.
22728 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 22729
9291a0cd
TT
22730static void
22731add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 22732 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
22733 offset_type cu_index)
22734{
22735 struct symtab_index_entry **slot;
156942c7 22736 offset_type cu_index_and_attrs;
9291a0cd
TT
22737
22738 ++symtab->n_elements;
22739 if (4 * symtab->n_elements / 3 >= symtab->size)
22740 hash_expand (symtab);
22741
22742 slot = find_slot (symtab, name);
22743 if (!*slot)
22744 {
22745 *slot = XNEW (struct symtab_index_entry);
22746 (*slot)->name = name;
156942c7 22747 /* index_offset is set later. */
9291a0cd
TT
22748 (*slot)->cu_indices = NULL;
22749 }
156942c7
DE
22750
22751 cu_index_and_attrs = 0;
22752 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22753 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22754 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22755
22756 /* We don't want to record an index value twice as we want to avoid the
22757 duplication.
22758 We process all global symbols and then all static symbols
22759 (which would allow us to avoid the duplication by only having to check
22760 the last entry pushed), but a symbol could have multiple kinds in one CU.
22761 To keep things simple we don't worry about the duplication here and
22762 sort and uniqufy the list after we've processed all symbols. */
22763 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22764}
22765
22766/* qsort helper routine for uniquify_cu_indices. */
22767
22768static int
22769offset_type_compare (const void *ap, const void *bp)
22770{
22771 offset_type a = *(offset_type *) ap;
22772 offset_type b = *(offset_type *) bp;
22773
22774 return (a > b) - (b > a);
22775}
22776
22777/* Sort and remove duplicates of all symbols' cu_indices lists. */
22778
22779static void
22780uniquify_cu_indices (struct mapped_symtab *symtab)
22781{
22782 int i;
22783
22784 for (i = 0; i < symtab->size; ++i)
22785 {
22786 struct symtab_index_entry *entry = symtab->data[i];
22787
22788 if (entry
22789 && entry->cu_indices != NULL)
22790 {
22791 unsigned int next_to_insert, next_to_check;
22792 offset_type last_value;
22793
22794 qsort (VEC_address (offset_type, entry->cu_indices),
22795 VEC_length (offset_type, entry->cu_indices),
22796 sizeof (offset_type), offset_type_compare);
22797
22798 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22799 next_to_insert = 1;
22800 for (next_to_check = 1;
22801 next_to_check < VEC_length (offset_type, entry->cu_indices);
22802 ++next_to_check)
22803 {
22804 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22805 != last_value)
22806 {
22807 last_value = VEC_index (offset_type, entry->cu_indices,
22808 next_to_check);
22809 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22810 last_value);
22811 ++next_to_insert;
22812 }
22813 }
22814 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22815 }
22816 }
9291a0cd
TT
22817}
22818
22819/* Add a vector of indices to the constant pool. */
b89be57b 22820
9291a0cd 22821static offset_type
3876f04e 22822add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
22823 struct symtab_index_entry *entry)
22824{
22825 void **slot;
22826
3876f04e 22827 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
22828 if (!*slot)
22829 {
22830 offset_type len = VEC_length (offset_type, entry->cu_indices);
22831 offset_type val = MAYBE_SWAP (len);
22832 offset_type iter;
22833 int i;
22834
22835 *slot = entry;
22836 entry->index_offset = obstack_object_size (cpool);
22837
22838 obstack_grow (cpool, &val, sizeof (val));
22839 for (i = 0;
22840 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22841 ++i)
22842 {
22843 val = MAYBE_SWAP (iter);
22844 obstack_grow (cpool, &val, sizeof (val));
22845 }
22846 }
22847 else
22848 {
22849 struct symtab_index_entry *old_entry = *slot;
22850 entry->index_offset = old_entry->index_offset;
22851 entry = old_entry;
22852 }
22853 return entry->index_offset;
22854}
22855
22856/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22857 constant pool entries going into the obstack CPOOL. */
b89be57b 22858
9291a0cd
TT
22859static void
22860write_hash_table (struct mapped_symtab *symtab,
22861 struct obstack *output, struct obstack *cpool)
22862{
22863 offset_type i;
3876f04e 22864 htab_t symbol_hash_table;
9291a0cd
TT
22865 htab_t str_table;
22866
3876f04e 22867 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 22868 str_table = create_strtab ();
3876f04e 22869
9291a0cd
TT
22870 /* We add all the index vectors to the constant pool first, to
22871 ensure alignment is ok. */
22872 for (i = 0; i < symtab->size; ++i)
22873 {
22874 if (symtab->data[i])
3876f04e 22875 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
22876 }
22877
22878 /* Now write out the hash table. */
22879 for (i = 0; i < symtab->size; ++i)
22880 {
22881 offset_type str_off, vec_off;
22882
22883 if (symtab->data[i])
22884 {
22885 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22886 vec_off = symtab->data[i]->index_offset;
22887 }
22888 else
22889 {
22890 /* While 0 is a valid constant pool index, it is not valid
22891 to have 0 for both offsets. */
22892 str_off = 0;
22893 vec_off = 0;
22894 }
22895
22896 str_off = MAYBE_SWAP (str_off);
22897 vec_off = MAYBE_SWAP (vec_off);
22898
22899 obstack_grow (output, &str_off, sizeof (str_off));
22900 obstack_grow (output, &vec_off, sizeof (vec_off));
22901 }
22902
22903 htab_delete (str_table);
3876f04e 22904 htab_delete (symbol_hash_table);
9291a0cd
TT
22905}
22906
0a5429f6
DE
22907/* Struct to map psymtab to CU index in the index file. */
22908struct psymtab_cu_index_map
22909{
22910 struct partial_symtab *psymtab;
22911 unsigned int cu_index;
22912};
22913
22914static hashval_t
22915hash_psymtab_cu_index (const void *item)
22916{
22917 const struct psymtab_cu_index_map *map = item;
22918
22919 return htab_hash_pointer (map->psymtab);
22920}
22921
22922static int
22923eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22924{
22925 const struct psymtab_cu_index_map *lhs = item_lhs;
22926 const struct psymtab_cu_index_map *rhs = item_rhs;
22927
22928 return lhs->psymtab == rhs->psymtab;
22929}
22930
22931/* Helper struct for building the address table. */
22932struct addrmap_index_data
22933{
22934 struct objfile *objfile;
22935 struct obstack *addr_obstack;
22936 htab_t cu_index_htab;
22937
22938 /* Non-zero if the previous_* fields are valid.
22939 We can't write an entry until we see the next entry (since it is only then
22940 that we know the end of the entry). */
22941 int previous_valid;
22942 /* Index of the CU in the table of all CUs in the index file. */
22943 unsigned int previous_cu_index;
0963b4bd 22944 /* Start address of the CU. */
0a5429f6
DE
22945 CORE_ADDR previous_cu_start;
22946};
22947
22948/* Write an address entry to OBSTACK. */
b89be57b 22949
9291a0cd 22950static void
0a5429f6
DE
22951add_address_entry (struct objfile *objfile, struct obstack *obstack,
22952 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 22953{
0a5429f6 22954 offset_type cu_index_to_write;
948f8e3d 22955 gdb_byte addr[8];
9291a0cd
TT
22956 CORE_ADDR baseaddr;
22957
22958 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22959
0a5429f6
DE
22960 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22961 obstack_grow (obstack, addr, 8);
22962 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22963 obstack_grow (obstack, addr, 8);
22964 cu_index_to_write = MAYBE_SWAP (cu_index);
22965 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22966}
22967
22968/* Worker function for traversing an addrmap to build the address table. */
22969
22970static int
22971add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22972{
22973 struct addrmap_index_data *data = datap;
22974 struct partial_symtab *pst = obj;
0a5429f6
DE
22975
22976 if (data->previous_valid)
22977 add_address_entry (data->objfile, data->addr_obstack,
22978 data->previous_cu_start, start_addr,
22979 data->previous_cu_index);
22980
22981 data->previous_cu_start = start_addr;
22982 if (pst != NULL)
22983 {
22984 struct psymtab_cu_index_map find_map, *map;
22985 find_map.psymtab = pst;
22986 map = htab_find (data->cu_index_htab, &find_map);
22987 gdb_assert (map != NULL);
22988 data->previous_cu_index = map->cu_index;
22989 data->previous_valid = 1;
22990 }
22991 else
22992 data->previous_valid = 0;
22993
22994 return 0;
22995}
22996
22997/* Write OBJFILE's address map to OBSTACK.
22998 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22999 in the index file. */
23000
23001static void
23002write_address_map (struct objfile *objfile, struct obstack *obstack,
23003 htab_t cu_index_htab)
23004{
23005 struct addrmap_index_data addrmap_index_data;
23006
23007 /* When writing the address table, we have to cope with the fact that
23008 the addrmap iterator only provides the start of a region; we have to
23009 wait until the next invocation to get the start of the next region. */
23010
23011 addrmap_index_data.objfile = objfile;
23012 addrmap_index_data.addr_obstack = obstack;
23013 addrmap_index_data.cu_index_htab = cu_index_htab;
23014 addrmap_index_data.previous_valid = 0;
23015
23016 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23017 &addrmap_index_data);
23018
23019 /* It's highly unlikely the last entry (end address = 0xff...ff)
23020 is valid, but we should still handle it.
23021 The end address is recorded as the start of the next region, but that
23022 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23023 anyway. */
23024 if (addrmap_index_data.previous_valid)
23025 add_address_entry (objfile, obstack,
23026 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23027 addrmap_index_data.previous_cu_index);
9291a0cd
TT
23028}
23029
156942c7
DE
23030/* Return the symbol kind of PSYM. */
23031
23032static gdb_index_symbol_kind
23033symbol_kind (struct partial_symbol *psym)
23034{
23035 domain_enum domain = PSYMBOL_DOMAIN (psym);
23036 enum address_class aclass = PSYMBOL_CLASS (psym);
23037
23038 switch (domain)
23039 {
23040 case VAR_DOMAIN:
23041 switch (aclass)
23042 {
23043 case LOC_BLOCK:
23044 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23045 case LOC_TYPEDEF:
23046 return GDB_INDEX_SYMBOL_KIND_TYPE;
23047 case LOC_COMPUTED:
23048 case LOC_CONST_BYTES:
23049 case LOC_OPTIMIZED_OUT:
23050 case LOC_STATIC:
23051 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23052 case LOC_CONST:
23053 /* Note: It's currently impossible to recognize psyms as enum values
23054 short of reading the type info. For now punt. */
23055 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23056 default:
23057 /* There are other LOC_FOO values that one might want to classify
23058 as variables, but dwarf2read.c doesn't currently use them. */
23059 return GDB_INDEX_SYMBOL_KIND_OTHER;
23060 }
23061 case STRUCT_DOMAIN:
23062 return GDB_INDEX_SYMBOL_KIND_TYPE;
23063 default:
23064 return GDB_INDEX_SYMBOL_KIND_OTHER;
23065 }
23066}
23067
9291a0cd 23068/* Add a list of partial symbols to SYMTAB. */
b89be57b 23069
9291a0cd
TT
23070static void
23071write_psymbols (struct mapped_symtab *symtab,
987d643c 23072 htab_t psyms_seen,
9291a0cd
TT
23073 struct partial_symbol **psymp,
23074 int count,
987d643c
TT
23075 offset_type cu_index,
23076 int is_static)
9291a0cd
TT
23077{
23078 for (; count-- > 0; ++psymp)
23079 {
156942c7
DE
23080 struct partial_symbol *psym = *psymp;
23081 void **slot;
987d643c 23082
156942c7 23083 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 23084 error (_("Ada is not currently supported by the index"));
987d643c 23085
987d643c 23086 /* Only add a given psymbol once. */
156942c7 23087 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
23088 if (!*slot)
23089 {
156942c7
DE
23090 gdb_index_symbol_kind kind = symbol_kind (psym);
23091
23092 *slot = psym;
23093 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23094 is_static, kind, cu_index);
987d643c 23095 }
9291a0cd
TT
23096 }
23097}
23098
23099/* Write the contents of an ("unfinished") obstack to FILE. Throw an
23100 exception if there is an error. */
b89be57b 23101
9291a0cd
TT
23102static void
23103write_obstack (FILE *file, struct obstack *obstack)
23104{
23105 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23106 file)
23107 != obstack_object_size (obstack))
23108 error (_("couldn't data write to file"));
23109}
23110
23111/* Unlink a file if the argument is not NULL. */
b89be57b 23112
9291a0cd
TT
23113static void
23114unlink_if_set (void *p)
23115{
23116 char **filename = p;
23117 if (*filename)
23118 unlink (*filename);
23119}
23120
1fd400ff
TT
23121/* A helper struct used when iterating over debug_types. */
23122struct signatured_type_index_data
23123{
23124 struct objfile *objfile;
23125 struct mapped_symtab *symtab;
23126 struct obstack *types_list;
987d643c 23127 htab_t psyms_seen;
1fd400ff
TT
23128 int cu_index;
23129};
23130
23131/* A helper function that writes a single signatured_type to an
23132 obstack. */
b89be57b 23133
1fd400ff
TT
23134static int
23135write_one_signatured_type (void **slot, void *d)
23136{
23137 struct signatured_type_index_data *info = d;
23138 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 23139 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
23140 gdb_byte val[8];
23141
23142 write_psymbols (info->symtab,
987d643c 23143 info->psyms_seen,
3e43a32a
MS
23144 info->objfile->global_psymbols.list
23145 + psymtab->globals_offset,
987d643c
TT
23146 psymtab->n_global_syms, info->cu_index,
23147 0);
1fd400ff 23148 write_psymbols (info->symtab,
987d643c 23149 info->psyms_seen,
3e43a32a
MS
23150 info->objfile->static_psymbols.list
23151 + psymtab->statics_offset,
987d643c
TT
23152 psymtab->n_static_syms, info->cu_index,
23153 1);
1fd400ff 23154
b64f50a1
JK
23155 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23156 entry->per_cu.offset.sect_off);
1fd400ff 23157 obstack_grow (info->types_list, val, 8);
3019eac3
DE
23158 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23159 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
23160 obstack_grow (info->types_list, val, 8);
23161 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23162 obstack_grow (info->types_list, val, 8);
23163
23164 ++info->cu_index;
23165
23166 return 1;
23167}
23168
95554aad
TT
23169/* Recurse into all "included" dependencies and write their symbols as
23170 if they appeared in this psymtab. */
23171
23172static void
23173recursively_write_psymbols (struct objfile *objfile,
23174 struct partial_symtab *psymtab,
23175 struct mapped_symtab *symtab,
23176 htab_t psyms_seen,
23177 offset_type cu_index)
23178{
23179 int i;
23180
23181 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23182 if (psymtab->dependencies[i]->user != NULL)
23183 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23184 symtab, psyms_seen, cu_index);
23185
23186 write_psymbols (symtab,
23187 psyms_seen,
23188 objfile->global_psymbols.list + psymtab->globals_offset,
23189 psymtab->n_global_syms, cu_index,
23190 0);
23191 write_psymbols (symtab,
23192 psyms_seen,
23193 objfile->static_psymbols.list + psymtab->statics_offset,
23194 psymtab->n_static_syms, cu_index,
23195 1);
23196}
23197
9291a0cd 23198/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 23199
9291a0cd
TT
23200static void
23201write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23202{
23203 struct cleanup *cleanup;
23204 char *filename, *cleanup_filename;
1fd400ff
TT
23205 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23206 struct obstack cu_list, types_cu_list;
9291a0cd
TT
23207 int i;
23208 FILE *out_file;
23209 struct mapped_symtab *symtab;
23210 offset_type val, size_of_contents, total_len;
23211 struct stat st;
987d643c 23212 htab_t psyms_seen;
0a5429f6
DE
23213 htab_t cu_index_htab;
23214 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 23215
9291a0cd
TT
23216 if (dwarf2_per_objfile->using_index)
23217 error (_("Cannot use an index to create the index"));
23218
8b70b953
TT
23219 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23220 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23221
260b681b
DE
23222 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23223 return;
23224
4262abfb
JK
23225 if (stat (objfile_name (objfile), &st) < 0)
23226 perror_with_name (objfile_name (objfile));
9291a0cd 23227
4262abfb 23228 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
23229 INDEX_SUFFIX, (char *) NULL);
23230 cleanup = make_cleanup (xfree, filename);
23231
614c279d 23232 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
23233 if (!out_file)
23234 error (_("Can't open `%s' for writing"), filename);
23235
23236 cleanup_filename = filename;
23237 make_cleanup (unlink_if_set, &cleanup_filename);
23238
23239 symtab = create_mapped_symtab ();
23240 make_cleanup (cleanup_mapped_symtab, symtab);
23241
23242 obstack_init (&addr_obstack);
23243 make_cleanup_obstack_free (&addr_obstack);
23244
23245 obstack_init (&cu_list);
23246 make_cleanup_obstack_free (&cu_list);
23247
1fd400ff
TT
23248 obstack_init (&types_cu_list);
23249 make_cleanup_obstack_free (&types_cu_list);
23250
987d643c
TT
23251 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23252 NULL, xcalloc, xfree);
96408a79 23253 make_cleanup_htab_delete (psyms_seen);
987d643c 23254
0a5429f6
DE
23255 /* While we're scanning CU's create a table that maps a psymtab pointer
23256 (which is what addrmap records) to its index (which is what is recorded
23257 in the index file). This will later be needed to write the address
23258 table. */
23259 cu_index_htab = htab_create_alloc (100,
23260 hash_psymtab_cu_index,
23261 eq_psymtab_cu_index,
23262 NULL, xcalloc, xfree);
96408a79 23263 make_cleanup_htab_delete (cu_index_htab);
8d749320
SM
23264 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23265 dwarf2_per_objfile->n_comp_units);
0a5429f6
DE
23266 make_cleanup (xfree, psymtab_cu_index_map);
23267
23268 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
23269 work here. Also, the debug_types entries do not appear in
23270 all_comp_units, but only in their own hash table. */
9291a0cd
TT
23271 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23272 {
3e43a32a
MS
23273 struct dwarf2_per_cu_data *per_cu
23274 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 23275 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 23276 gdb_byte val[8];
0a5429f6
DE
23277 struct psymtab_cu_index_map *map;
23278 void **slot;
9291a0cd 23279
92fac807
JK
23280 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23281 It may be referenced from a local scope but in such case it does not
23282 need to be present in .gdb_index. */
23283 if (psymtab == NULL)
23284 continue;
23285
95554aad
TT
23286 if (psymtab->user == NULL)
23287 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 23288
0a5429f6
DE
23289 map = &psymtab_cu_index_map[i];
23290 map->psymtab = psymtab;
23291 map->cu_index = i;
23292 slot = htab_find_slot (cu_index_htab, map, INSERT);
23293 gdb_assert (slot != NULL);
23294 gdb_assert (*slot == NULL);
23295 *slot = map;
9291a0cd 23296
b64f50a1
JK
23297 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23298 per_cu->offset.sect_off);
9291a0cd 23299 obstack_grow (&cu_list, val, 8);
e254ef6a 23300 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
23301 obstack_grow (&cu_list, val, 8);
23302 }
23303
0a5429f6
DE
23304 /* Dump the address map. */
23305 write_address_map (objfile, &addr_obstack, cu_index_htab);
23306
1fd400ff
TT
23307 /* Write out the .debug_type entries, if any. */
23308 if (dwarf2_per_objfile->signatured_types)
23309 {
23310 struct signatured_type_index_data sig_data;
23311
23312 sig_data.objfile = objfile;
23313 sig_data.symtab = symtab;
23314 sig_data.types_list = &types_cu_list;
987d643c 23315 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
23316 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23317 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23318 write_one_signatured_type, &sig_data);
23319 }
23320
156942c7
DE
23321 /* Now that we've processed all symbols we can shrink their cu_indices
23322 lists. */
23323 uniquify_cu_indices (symtab);
23324
9291a0cd
TT
23325 obstack_init (&constant_pool);
23326 make_cleanup_obstack_free (&constant_pool);
23327 obstack_init (&symtab_obstack);
23328 make_cleanup_obstack_free (&symtab_obstack);
23329 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23330
23331 obstack_init (&contents);
23332 make_cleanup_obstack_free (&contents);
1fd400ff 23333 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
23334 total_len = size_of_contents;
23335
23336 /* The version number. */
796a7ff8 23337 val = MAYBE_SWAP (8);
9291a0cd
TT
23338 obstack_grow (&contents, &val, sizeof (val));
23339
23340 /* The offset of the CU list from the start of the file. */
23341 val = MAYBE_SWAP (total_len);
23342 obstack_grow (&contents, &val, sizeof (val));
23343 total_len += obstack_object_size (&cu_list);
23344
1fd400ff
TT
23345 /* The offset of the types CU list from the start of the file. */
23346 val = MAYBE_SWAP (total_len);
23347 obstack_grow (&contents, &val, sizeof (val));
23348 total_len += obstack_object_size (&types_cu_list);
23349
9291a0cd
TT
23350 /* The offset of the address table from the start of the file. */
23351 val = MAYBE_SWAP (total_len);
23352 obstack_grow (&contents, &val, sizeof (val));
23353 total_len += obstack_object_size (&addr_obstack);
23354
23355 /* The offset of the symbol table from the start of the file. */
23356 val = MAYBE_SWAP (total_len);
23357 obstack_grow (&contents, &val, sizeof (val));
23358 total_len += obstack_object_size (&symtab_obstack);
23359
23360 /* The offset of the constant pool from the start of the file. */
23361 val = MAYBE_SWAP (total_len);
23362 obstack_grow (&contents, &val, sizeof (val));
23363 total_len += obstack_object_size (&constant_pool);
23364
23365 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23366
23367 write_obstack (out_file, &contents);
23368 write_obstack (out_file, &cu_list);
1fd400ff 23369 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
23370 write_obstack (out_file, &addr_obstack);
23371 write_obstack (out_file, &symtab_obstack);
23372 write_obstack (out_file, &constant_pool);
23373
23374 fclose (out_file);
23375
23376 /* We want to keep the file, so we set cleanup_filename to NULL
23377 here. See unlink_if_set. */
23378 cleanup_filename = NULL;
23379
23380 do_cleanups (cleanup);
23381}
23382
90476074
TT
23383/* Implementation of the `save gdb-index' command.
23384
23385 Note that the file format used by this command is documented in the
23386 GDB manual. Any changes here must be documented there. */
11570e71 23387
9291a0cd
TT
23388static void
23389save_gdb_index_command (char *arg, int from_tty)
23390{
23391 struct objfile *objfile;
23392
23393 if (!arg || !*arg)
96d19272 23394 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
23395
23396 ALL_OBJFILES (objfile)
23397 {
23398 struct stat st;
23399
23400 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 23401 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
23402 continue;
23403
23404 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
23405 if (dwarf2_per_objfile)
23406 {
9291a0cd 23407
492d29ea 23408 TRY
9291a0cd
TT
23409 {
23410 write_psymtabs_to_index (objfile, arg);
23411 }
492d29ea
PA
23412 CATCH (except, RETURN_MASK_ERROR)
23413 {
23414 exception_fprintf (gdb_stderr, except,
23415 _("Error while writing index for `%s': "),
23416 objfile_name (objfile));
23417 }
23418 END_CATCH
9291a0cd
TT
23419 }
23420 }
dce234bc
PP
23421}
23422
9291a0cd
TT
23423\f
23424
b4f54984 23425int dwarf_always_disassemble;
9eae7c52
TT
23426
23427static void
b4f54984
DE
23428show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23429 struct cmd_list_element *c, const char *value)
9eae7c52 23430{
3e43a32a
MS
23431 fprintf_filtered (file,
23432 _("Whether to always disassemble "
23433 "DWARF expressions is %s.\n"),
9eae7c52
TT
23434 value);
23435}
23436
900e11f9
JK
23437static void
23438show_check_physname (struct ui_file *file, int from_tty,
23439 struct cmd_list_element *c, const char *value)
23440{
23441 fprintf_filtered (file,
23442 _("Whether to check \"physname\" is %s.\n"),
23443 value);
23444}
23445
6502dd73
DJ
23446void _initialize_dwarf2_read (void);
23447
23448void
23449_initialize_dwarf2_read (void)
23450{
96d19272
JK
23451 struct cmd_list_element *c;
23452
dce234bc 23453 dwarf2_objfile_data_key
c1bd65d0 23454 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 23455
b4f54984
DE
23456 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23457Set DWARF specific variables.\n\
23458Configure DWARF variables such as the cache size"),
23459 &set_dwarf_cmdlist, "maintenance set dwarf ",
ae038cb0
DJ
23460 0/*allow-unknown*/, &maintenance_set_cmdlist);
23461
b4f54984
DE
23462 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23463Show DWARF specific variables\n\
23464Show DWARF variables such as the cache size"),
23465 &show_dwarf_cmdlist, "maintenance show dwarf ",
ae038cb0
DJ
23466 0/*allow-unknown*/, &maintenance_show_cmdlist);
23467
23468 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
b4f54984
DE
23469 &dwarf_max_cache_age, _("\
23470Set the upper bound on the age of cached DWARF compilation units."), _("\
23471Show the upper bound on the age of cached DWARF compilation units."), _("\
7915a72c
AC
23472A higher limit means that cached compilation units will be stored\n\
23473in memory longer, and more total memory will be used. Zero disables\n\
23474caching, which can slow down startup."),
2c5b56ce 23475 NULL,
b4f54984
DE
23476 show_dwarf_max_cache_age,
23477 &set_dwarf_cmdlist,
23478 &show_dwarf_cmdlist);
d97bc12b 23479
9eae7c52 23480 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
b4f54984 23481 &dwarf_always_disassemble, _("\
9eae7c52
TT
23482Set whether `info address' always disassembles DWARF expressions."), _("\
23483Show whether `info address' always disassembles DWARF expressions."), _("\
23484When enabled, DWARF expressions are always printed in an assembly-like\n\
23485syntax. When disabled, expressions will be printed in a more\n\
23486conversational style, when possible."),
23487 NULL,
b4f54984
DE
23488 show_dwarf_always_disassemble,
23489 &set_dwarf_cmdlist,
23490 &show_dwarf_cmdlist);
23491
23492 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23493Set debugging of the DWARF reader."), _("\
23494Show debugging of the DWARF reader."), _("\
23495When enabled (non-zero), debugging messages are printed during DWARF\n\
73be47f5
DE
23496reading and symtab expansion. A value of 1 (one) provides basic\n\
23497information. A value greater than 1 provides more verbose information."),
45cfd468
DE
23498 NULL,
23499 NULL,
23500 &setdebuglist, &showdebuglist);
23501
b4f54984
DE
23502 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23503Set debugging of the DWARF DIE reader."), _("\
23504Show debugging of the DWARF DIE reader."), _("\
d97bc12b
DE
23505When enabled (non-zero), DIEs are dumped after they are read in.\n\
23506The value is the maximum depth to print."),
ccce17b0
YQ
23507 NULL,
23508 NULL,
23509 &setdebuglist, &showdebuglist);
9291a0cd 23510
27e0867f
DE
23511 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23512Set debugging of the dwarf line reader."), _("\
23513Show debugging of the dwarf line reader."), _("\
23514When enabled (non-zero), line number entries are dumped as they are read in.\n\
23515A value of 1 (one) provides basic information.\n\
23516A value greater than 1 provides more verbose information."),
23517 NULL,
23518 NULL,
23519 &setdebuglist, &showdebuglist);
23520
900e11f9
JK
23521 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23522Set cross-checking of \"physname\" code against demangler."), _("\
23523Show cross-checking of \"physname\" code against demangler."), _("\
23524When enabled, GDB's internal \"physname\" code is checked against\n\
23525the demangler."),
23526 NULL, show_check_physname,
23527 &setdebuglist, &showdebuglist);
23528
e615022a
DE
23529 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23530 no_class, &use_deprecated_index_sections, _("\
23531Set whether to use deprecated gdb_index sections."), _("\
23532Show whether to use deprecated gdb_index sections."), _("\
23533When enabled, deprecated .gdb_index sections are used anyway.\n\
23534Normally they are ignored either because of a missing feature or\n\
23535performance issue.\n\
23536Warning: This option must be enabled before gdb reads the file."),
23537 NULL,
23538 NULL,
23539 &setlist, &showlist);
23540
96d19272 23541 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 23542 _("\
fc1a9d6e 23543Save a gdb-index file.\n\
11570e71 23544Usage: save gdb-index DIRECTORY"),
96d19272
JK
23545 &save_cmdlist);
23546 set_cmd_completer (c, filename_completer);
f1e6e072
TT
23547
23548 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23549 &dwarf2_locexpr_funcs);
23550 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23551 &dwarf2_loclist_funcs);
23552
23553 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23554 &dwarf2_block_frame_base_locexpr_funcs);
23555 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23556 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 23557}
This page took 3.574436 seconds and 4 git commands to generate.