Fix library-list.dtd -> library-list-svr4.dtd
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
ecd75fc8 3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
9291a0cd 58#include "exceptions.h"
53ce3c39 59#include <sys/stat.h>
96d19272 60#include "completer.h"
34eaf542 61#include "vec.h"
98bfdba5 62#include "c-lang.h"
a766d390 63#include "go-lang.h"
98bfdba5 64#include "valprint.h"
3019eac3 65#include "gdbcore.h" /* for gnutarget */
156942c7 66#include "gdb/gdb-index.h"
60d5a603 67#include <ctype.h>
cbb099e8 68#include "gdb_bfd.h"
4357ac6c 69#include "f-lang.h"
05cba821 70#include "source.h"
614c279d 71#include "filestuff.h"
dc294be5 72#include "build-id.h"
4c2df51b 73
c906108c 74#include <fcntl.h>
c906108c 75#include <sys/types.h>
d8151005 76
34eaf542
TT
77typedef struct symbol *symbolp;
78DEF_VEC_P (symbolp);
79
73be47f5
DE
80/* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
45cfd468 82 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
73be47f5 83static unsigned int dwarf2_read_debug = 0;
45cfd468 84
d97bc12b 85/* When non-zero, dump DIEs after they are read in. */
ccce17b0 86static unsigned int dwarf2_die_debug = 0;
d97bc12b 87
900e11f9
JK
88/* When non-zero, cross-check physname against demangler. */
89static int check_physname = 0;
90
481860b3 91/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 92static int use_deprecated_index_sections = 0;
481860b3 93
6502dd73
DJ
94static const struct objfile_data *dwarf2_objfile_data_key;
95
f1e6e072
TT
96/* The "aclass" indices for various kinds of computed DWARF symbols. */
97
98static int dwarf2_locexpr_index;
99static int dwarf2_loclist_index;
100static int dwarf2_locexpr_block_index;
101static int dwarf2_loclist_block_index;
102
73869dc2
DE
103/* A descriptor for dwarf sections.
104
105 S.ASECTION, SIZE are typically initialized when the objfile is first
106 scanned. BUFFER, READIN are filled in later when the section is read.
107 If the section contained compressed data then SIZE is updated to record
108 the uncompressed size of the section.
109
110 DWP file format V2 introduces a wrinkle that is easiest to handle by
111 creating the concept of virtual sections contained within a real section.
112 In DWP V2 the sections of the input DWO files are concatenated together
113 into one section, but section offsets are kept relative to the original
114 input section.
115 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
116 the real section this "virtual" section is contained in, and BUFFER,SIZE
117 describe the virtual section. */
118
dce234bc
PP
119struct dwarf2_section_info
120{
73869dc2
DE
121 union
122 {
e5aa3347 123 /* If this is a real section, the bfd section. */
73869dc2
DE
124 asection *asection;
125 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 126 section. */
73869dc2
DE
127 struct dwarf2_section_info *containing_section;
128 } s;
19ac8c2e 129 /* Pointer to section data, only valid if readin. */
d521ce57 130 const gdb_byte *buffer;
73869dc2 131 /* The size of the section, real or virtual. */
dce234bc 132 bfd_size_type size;
73869dc2
DE
133 /* If this is a virtual section, the offset in the real section.
134 Only valid if is_virtual. */
135 bfd_size_type virtual_offset;
be391dca 136 /* True if we have tried to read this section. */
73869dc2
DE
137 char readin;
138 /* True if this is a virtual section, False otherwise.
139 This specifies which of s.asection and s.containing_section to use. */
140 char is_virtual;
dce234bc
PP
141};
142
8b70b953
TT
143typedef struct dwarf2_section_info dwarf2_section_info_def;
144DEF_VEC_O (dwarf2_section_info_def);
145
9291a0cd
TT
146/* All offsets in the index are of this type. It must be
147 architecture-independent. */
148typedef uint32_t offset_type;
149
150DEF_VEC_I (offset_type);
151
156942c7
DE
152/* Ensure only legit values are used. */
153#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
154 do { \
155 gdb_assert ((unsigned int) (value) <= 1); \
156 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
157 } while (0)
158
159/* Ensure only legit values are used. */
160#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
161 do { \
162 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
163 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
164 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
165 } while (0)
166
167/* Ensure we don't use more than the alloted nuber of bits for the CU. */
168#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
169 do { \
170 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
171 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
172 } while (0)
173
9291a0cd
TT
174/* A description of the mapped index. The file format is described in
175 a comment by the code that writes the index. */
176struct mapped_index
177{
559a7a62
JK
178 /* Index data format version. */
179 int version;
180
9291a0cd
TT
181 /* The total length of the buffer. */
182 off_t total_size;
b11b1f88 183
9291a0cd
TT
184 /* A pointer to the address table data. */
185 const gdb_byte *address_table;
b11b1f88 186
9291a0cd
TT
187 /* Size of the address table data in bytes. */
188 offset_type address_table_size;
b11b1f88 189
3876f04e
DE
190 /* The symbol table, implemented as a hash table. */
191 const offset_type *symbol_table;
b11b1f88 192
9291a0cd 193 /* Size in slots, each slot is 2 offset_types. */
3876f04e 194 offset_type symbol_table_slots;
b11b1f88 195
9291a0cd
TT
196 /* A pointer to the constant pool. */
197 const char *constant_pool;
198};
199
95554aad
TT
200typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
201DEF_VEC_P (dwarf2_per_cu_ptr);
202
9cdd5dbd
DE
203/* Collection of data recorded per objfile.
204 This hangs off of dwarf2_objfile_data_key. */
205
6502dd73
DJ
206struct dwarf2_per_objfile
207{
dce234bc
PP
208 struct dwarf2_section_info info;
209 struct dwarf2_section_info abbrev;
210 struct dwarf2_section_info line;
dce234bc
PP
211 struct dwarf2_section_info loc;
212 struct dwarf2_section_info macinfo;
cf2c3c16 213 struct dwarf2_section_info macro;
dce234bc
PP
214 struct dwarf2_section_info str;
215 struct dwarf2_section_info ranges;
3019eac3 216 struct dwarf2_section_info addr;
dce234bc
PP
217 struct dwarf2_section_info frame;
218 struct dwarf2_section_info eh_frame;
9291a0cd 219 struct dwarf2_section_info gdb_index;
ae038cb0 220
8b70b953
TT
221 VEC (dwarf2_section_info_def) *types;
222
be391dca
TT
223 /* Back link. */
224 struct objfile *objfile;
225
d467dd73 226 /* Table of all the compilation units. This is used to locate
10b3939b 227 the target compilation unit of a particular reference. */
ae038cb0
DJ
228 struct dwarf2_per_cu_data **all_comp_units;
229
230 /* The number of compilation units in ALL_COMP_UNITS. */
231 int n_comp_units;
232
1fd400ff 233 /* The number of .debug_types-related CUs. */
d467dd73 234 int n_type_units;
1fd400ff 235
6aa5f3a6
DE
236 /* The number of elements allocated in all_type_units.
237 If there are skeleton-less TUs, we add them to all_type_units lazily. */
238 int n_allocated_type_units;
239
a2ce51a0
DE
240 /* The .debug_types-related CUs (TUs).
241 This is stored in malloc space because we may realloc it. */
b4dd5633 242 struct signatured_type **all_type_units;
1fd400ff 243
f4dc4d17
DE
244 /* Table of struct type_unit_group objects.
245 The hash key is the DW_AT_stmt_list value. */
246 htab_t type_unit_groups;
72dca2f5 247
348e048f
DE
248 /* A table mapping .debug_types signatures to its signatured_type entry.
249 This is NULL if the .debug_types section hasn't been read in yet. */
250 htab_t signatured_types;
251
f4dc4d17
DE
252 /* Type unit statistics, to see how well the scaling improvements
253 are doing. */
254 struct tu_stats
255 {
256 int nr_uniq_abbrev_tables;
257 int nr_symtabs;
258 int nr_symtab_sharers;
259 int nr_stmt_less_type_units;
6aa5f3a6 260 int nr_all_type_units_reallocs;
f4dc4d17
DE
261 } tu_stats;
262
263 /* A chain of compilation units that are currently read in, so that
264 they can be freed later. */
265 struct dwarf2_per_cu_data *read_in_chain;
266
3019eac3
DE
267 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
268 This is NULL if the table hasn't been allocated yet. */
269 htab_t dwo_files;
270
80626a55
DE
271 /* Non-zero if we've check for whether there is a DWP file. */
272 int dwp_checked;
273
274 /* The DWP file if there is one, or NULL. */
275 struct dwp_file *dwp_file;
276
36586728
TT
277 /* The shared '.dwz' file, if one exists. This is used when the
278 original data was compressed using 'dwz -m'. */
279 struct dwz_file *dwz_file;
280
72dca2f5
FR
281 /* A flag indicating wether this objfile has a section loaded at a
282 VMA of 0. */
283 int has_section_at_zero;
9291a0cd 284
ae2de4f8
DE
285 /* True if we are using the mapped index,
286 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
287 unsigned char using_index;
288
ae2de4f8 289 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 290 struct mapped_index *index_table;
98bfdba5 291
7b9f3c50 292 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
293 TUs typically share line table entries with a CU, so we maintain a
294 separate table of all line table entries to support the sharing.
295 Note that while there can be way more TUs than CUs, we've already
296 sorted all the TUs into "type unit groups", grouped by their
297 DW_AT_stmt_list value. Therefore the only sharing done here is with a
298 CU and its associated TU group if there is one. */
7b9f3c50
DE
299 htab_t quick_file_names_table;
300
98bfdba5
PA
301 /* Set during partial symbol reading, to prevent queueing of full
302 symbols. */
303 int reading_partial_symbols;
673bfd45 304
dee91e82 305 /* Table mapping type DIEs to their struct type *.
673bfd45 306 This is NULL if not allocated yet.
02142a6c 307 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 308 htab_t die_type_hash;
95554aad
TT
309
310 /* The CUs we recently read. */
311 VEC (dwarf2_per_cu_ptr) *just_read_cus;
6502dd73
DJ
312};
313
314static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 315
251d32d9 316/* Default names of the debugging sections. */
c906108c 317
233a11ab
CS
318/* Note that if the debugging section has been compressed, it might
319 have a name like .zdebug_info. */
320
9cdd5dbd
DE
321static const struct dwarf2_debug_sections dwarf2_elf_names =
322{
251d32d9
TG
323 { ".debug_info", ".zdebug_info" },
324 { ".debug_abbrev", ".zdebug_abbrev" },
325 { ".debug_line", ".zdebug_line" },
326 { ".debug_loc", ".zdebug_loc" },
327 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 328 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
329 { ".debug_str", ".zdebug_str" },
330 { ".debug_ranges", ".zdebug_ranges" },
331 { ".debug_types", ".zdebug_types" },
3019eac3 332 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
333 { ".debug_frame", ".zdebug_frame" },
334 { ".eh_frame", NULL },
24d3216f
TT
335 { ".gdb_index", ".zgdb_index" },
336 23
251d32d9 337};
c906108c 338
80626a55 339/* List of DWO/DWP sections. */
3019eac3 340
80626a55 341static const struct dwop_section_names
3019eac3
DE
342{
343 struct dwarf2_section_names abbrev_dwo;
344 struct dwarf2_section_names info_dwo;
345 struct dwarf2_section_names line_dwo;
346 struct dwarf2_section_names loc_dwo;
09262596
DE
347 struct dwarf2_section_names macinfo_dwo;
348 struct dwarf2_section_names macro_dwo;
3019eac3
DE
349 struct dwarf2_section_names str_dwo;
350 struct dwarf2_section_names str_offsets_dwo;
351 struct dwarf2_section_names types_dwo;
80626a55
DE
352 struct dwarf2_section_names cu_index;
353 struct dwarf2_section_names tu_index;
3019eac3 354}
80626a55 355dwop_section_names =
3019eac3
DE
356{
357 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
358 { ".debug_info.dwo", ".zdebug_info.dwo" },
359 { ".debug_line.dwo", ".zdebug_line.dwo" },
360 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
361 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
362 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
363 { ".debug_str.dwo", ".zdebug_str.dwo" },
364 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
365 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
366 { ".debug_cu_index", ".zdebug_cu_index" },
367 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
368};
369
c906108c
SS
370/* local data types */
371
107d2387
AC
372/* The data in a compilation unit header, after target2host
373 translation, looks like this. */
c906108c 374struct comp_unit_head
a738430d 375{
c764a876 376 unsigned int length;
a738430d 377 short version;
a738430d
MK
378 unsigned char addr_size;
379 unsigned char signed_addr_p;
b64f50a1 380 sect_offset abbrev_offset;
57349743 381
a738430d
MK
382 /* Size of file offsets; either 4 or 8. */
383 unsigned int offset_size;
57349743 384
a738430d
MK
385 /* Size of the length field; either 4 or 12. */
386 unsigned int initial_length_size;
57349743 387
a738430d
MK
388 /* Offset to the first byte of this compilation unit header in the
389 .debug_info section, for resolving relative reference dies. */
b64f50a1 390 sect_offset offset;
57349743 391
d00adf39
DE
392 /* Offset to first die in this cu from the start of the cu.
393 This will be the first byte following the compilation unit header. */
b64f50a1 394 cu_offset first_die_offset;
a738430d 395};
c906108c 396
3da10d80
KS
397/* Type used for delaying computation of method physnames.
398 See comments for compute_delayed_physnames. */
399struct delayed_method_info
400{
401 /* The type to which the method is attached, i.e., its parent class. */
402 struct type *type;
403
404 /* The index of the method in the type's function fieldlists. */
405 int fnfield_index;
406
407 /* The index of the method in the fieldlist. */
408 int index;
409
410 /* The name of the DIE. */
411 const char *name;
412
413 /* The DIE associated with this method. */
414 struct die_info *die;
415};
416
417typedef struct delayed_method_info delayed_method_info;
418DEF_VEC_O (delayed_method_info);
419
e7c27a73
DJ
420/* Internal state when decoding a particular compilation unit. */
421struct dwarf2_cu
422{
423 /* The objfile containing this compilation unit. */
424 struct objfile *objfile;
425
d00adf39 426 /* The header of the compilation unit. */
e7c27a73 427 struct comp_unit_head header;
e142c38c 428
d00adf39
DE
429 /* Base address of this compilation unit. */
430 CORE_ADDR base_address;
431
432 /* Non-zero if base_address has been set. */
433 int base_known;
434
e142c38c
DJ
435 /* The language we are debugging. */
436 enum language language;
437 const struct language_defn *language_defn;
438
b0f35d58
DL
439 const char *producer;
440
e142c38c
DJ
441 /* The generic symbol table building routines have separate lists for
442 file scope symbols and all all other scopes (local scopes). So
443 we need to select the right one to pass to add_symbol_to_list().
444 We do it by keeping a pointer to the correct list in list_in_scope.
445
446 FIXME: The original dwarf code just treated the file scope as the
447 first local scope, and all other local scopes as nested local
448 scopes, and worked fine. Check to see if we really need to
449 distinguish these in buildsym.c. */
450 struct pending **list_in_scope;
451
433df2d4
DE
452 /* The abbrev table for this CU.
453 Normally this points to the abbrev table in the objfile.
454 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
455 struct abbrev_table *abbrev_table;
72bf9492 456
b64f50a1
JK
457 /* Hash table holding all the loaded partial DIEs
458 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
459 htab_t partial_dies;
460
461 /* Storage for things with the same lifetime as this read-in compilation
462 unit, including partial DIEs. */
463 struct obstack comp_unit_obstack;
464
ae038cb0
DJ
465 /* When multiple dwarf2_cu structures are living in memory, this field
466 chains them all together, so that they can be released efficiently.
467 We will probably also want a generation counter so that most-recently-used
468 compilation units are cached... */
469 struct dwarf2_per_cu_data *read_in_chain;
470
69d751e3 471 /* Backlink to our per_cu entry. */
ae038cb0
DJ
472 struct dwarf2_per_cu_data *per_cu;
473
474 /* How many compilation units ago was this CU last referenced? */
475 int last_used;
476
b64f50a1
JK
477 /* A hash table of DIE cu_offset for following references with
478 die_info->offset.sect_off as hash. */
51545339 479 htab_t die_hash;
10b3939b
DJ
480
481 /* Full DIEs if read in. */
482 struct die_info *dies;
483
484 /* A set of pointers to dwarf2_per_cu_data objects for compilation
485 units referenced by this one. Only set during full symbol processing;
486 partial symbol tables do not have dependencies. */
487 htab_t dependencies;
488
cb1df416
DJ
489 /* Header data from the line table, during full symbol processing. */
490 struct line_header *line_header;
491
3da10d80
KS
492 /* A list of methods which need to have physnames computed
493 after all type information has been read. */
494 VEC (delayed_method_info) *method_list;
495
96408a79
SA
496 /* To be copied to symtab->call_site_htab. */
497 htab_t call_site_htab;
498
034e5797
DE
499 /* Non-NULL if this CU came from a DWO file.
500 There is an invariant here that is important to remember:
501 Except for attributes copied from the top level DIE in the "main"
502 (or "stub") file in preparation for reading the DWO file
503 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
504 Either there isn't a DWO file (in which case this is NULL and the point
505 is moot), or there is and either we're not going to read it (in which
506 case this is NULL) or there is and we are reading it (in which case this
507 is non-NULL). */
3019eac3
DE
508 struct dwo_unit *dwo_unit;
509
510 /* The DW_AT_addr_base attribute if present, zero otherwise
511 (zero is a valid value though).
1dbab08b 512 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
513 ULONGEST addr_base;
514
2e3cf129
DE
515 /* The DW_AT_ranges_base attribute if present, zero otherwise
516 (zero is a valid value though).
1dbab08b 517 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 518 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
519 be used without needing to know whether DWO files are in use or not.
520 N.B. This does not apply to DW_AT_ranges appearing in
521 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
522 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
523 DW_AT_ranges_base *would* have to be applied, and we'd have to care
524 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
525 ULONGEST ranges_base;
526
ae038cb0
DJ
527 /* Mark used when releasing cached dies. */
528 unsigned int mark : 1;
529
8be455d7
JK
530 /* This CU references .debug_loc. See the symtab->locations_valid field.
531 This test is imperfect as there may exist optimized debug code not using
532 any location list and still facing inlining issues if handled as
533 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 534 unsigned int has_loclist : 1;
ba919b58 535
1b80a9fa
JK
536 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
537 if all the producer_is_* fields are valid. This information is cached
538 because profiling CU expansion showed excessive time spent in
539 producer_is_gxx_lt_4_6. */
ba919b58
TT
540 unsigned int checked_producer : 1;
541 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 542 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 543 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
544
545 /* When set, the file that we're processing is known to have
546 debugging info for C++ namespaces. GCC 3.3.x did not produce
547 this information, but later versions do. */
548
549 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
550};
551
10b3939b
DJ
552/* Persistent data held for a compilation unit, even when not
553 processing it. We put a pointer to this structure in the
28dee7f5 554 read_symtab_private field of the psymtab. */
10b3939b 555
ae038cb0
DJ
556struct dwarf2_per_cu_data
557{
36586728 558 /* The start offset and length of this compilation unit.
45452591 559 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
560 initial_length_size.
561 If the DIE refers to a DWO file, this is always of the original die,
562 not the DWO file. */
b64f50a1 563 sect_offset offset;
36586728 564 unsigned int length;
ae038cb0
DJ
565
566 /* Flag indicating this compilation unit will be read in before
567 any of the current compilation units are processed. */
c764a876 568 unsigned int queued : 1;
ae038cb0 569
0d99eb77
DE
570 /* This flag will be set when reading partial DIEs if we need to load
571 absolutely all DIEs for this compilation unit, instead of just the ones
572 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
573 hash table and don't find it. */
574 unsigned int load_all_dies : 1;
575
0186c6a7
DE
576 /* Non-zero if this CU is from .debug_types.
577 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
578 this is non-zero. */
3019eac3
DE
579 unsigned int is_debug_types : 1;
580
36586728
TT
581 /* Non-zero if this CU is from the .dwz file. */
582 unsigned int is_dwz : 1;
583
a2ce51a0
DE
584 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
585 This flag is only valid if is_debug_types is true.
586 We can't read a CU directly from a DWO file: There are required
587 attributes in the stub. */
588 unsigned int reading_dwo_directly : 1;
589
7ee85ab1
DE
590 /* Non-zero if the TU has been read.
591 This is used to assist the "Stay in DWO Optimization" for Fission:
592 When reading a DWO, it's faster to read TUs from the DWO instead of
593 fetching them from random other DWOs (due to comdat folding).
594 If the TU has already been read, the optimization is unnecessary
595 (and unwise - we don't want to change where gdb thinks the TU lives
596 "midflight").
597 This flag is only valid if is_debug_types is true. */
598 unsigned int tu_read : 1;
599
3019eac3
DE
600 /* The section this CU/TU lives in.
601 If the DIE refers to a DWO file, this is always the original die,
602 not the DWO file. */
8a0459fd 603 struct dwarf2_section_info *section;
348e048f 604
17ea53c3
JK
605 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
606 of the CU cache it gets reset to NULL again. */
ae038cb0 607 struct dwarf2_cu *cu;
1c379e20 608
9cdd5dbd
DE
609 /* The corresponding objfile.
610 Normally we can get the objfile from dwarf2_per_objfile.
611 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
612 struct objfile *objfile;
613
fffbe6a8
YQ
614 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
615 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
616 union
617 {
618 /* The partial symbol table associated with this compilation unit,
95554aad 619 or NULL for unread partial units. */
9291a0cd
TT
620 struct partial_symtab *psymtab;
621
622 /* Data needed by the "quick" functions. */
623 struct dwarf2_per_cu_quick_data *quick;
624 } v;
95554aad 625
796a7ff8
DE
626 /* The CUs we import using DW_TAG_imported_unit. This is filled in
627 while reading psymtabs, used to compute the psymtab dependencies,
628 and then cleared. Then it is filled in again while reading full
629 symbols, and only deleted when the objfile is destroyed.
630
631 This is also used to work around a difference between the way gold
632 generates .gdb_index version <=7 and the way gdb does. Arguably this
633 is a gold bug. For symbols coming from TUs, gold records in the index
634 the CU that includes the TU instead of the TU itself. This breaks
635 dw2_lookup_symbol: It assumes that if the index says symbol X lives
636 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
637 will find X. Alas TUs live in their own symtab, so after expanding CU Y
638 we need to look in TU Z to find X. Fortunately, this is akin to
639 DW_TAG_imported_unit, so we just use the same mechanism: For
640 .gdb_index version <=7 this also records the TUs that the CU referred
641 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
642 indices so we only pay a price for gold generated indices.
643 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 644 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
645};
646
348e048f
DE
647/* Entry in the signatured_types hash table. */
648
649struct signatured_type
650{
42e7ad6c 651 /* The "per_cu" object of this type.
ac9ec31b 652 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
653 N.B.: This is the first member so that it's easy to convert pointers
654 between them. */
655 struct dwarf2_per_cu_data per_cu;
656
3019eac3 657 /* The type's signature. */
348e048f
DE
658 ULONGEST signature;
659
3019eac3 660 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
661 If this TU is a DWO stub and the definition lives in a DWO file
662 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
663 cu_offset type_offset_in_tu;
664
665 /* Offset in the section of the type's DIE.
666 If the definition lives in a DWO file, this is the offset in the
667 .debug_types.dwo section.
668 The value is zero until the actual value is known.
669 Zero is otherwise not a valid section offset. */
670 sect_offset type_offset_in_section;
0186c6a7
DE
671
672 /* Type units are grouped by their DW_AT_stmt_list entry so that they
673 can share them. This points to the containing symtab. */
674 struct type_unit_group *type_unit_group;
ac9ec31b
DE
675
676 /* The type.
677 The first time we encounter this type we fully read it in and install it
678 in the symbol tables. Subsequent times we only need the type. */
679 struct type *type;
a2ce51a0
DE
680
681 /* Containing DWO unit.
682 This field is valid iff per_cu.reading_dwo_directly. */
683 struct dwo_unit *dwo_unit;
348e048f
DE
684};
685
0186c6a7
DE
686typedef struct signatured_type *sig_type_ptr;
687DEF_VEC_P (sig_type_ptr);
688
094b34ac
DE
689/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
690 This includes type_unit_group and quick_file_names. */
691
692struct stmt_list_hash
693{
694 /* The DWO unit this table is from or NULL if there is none. */
695 struct dwo_unit *dwo_unit;
696
697 /* Offset in .debug_line or .debug_line.dwo. */
698 sect_offset line_offset;
699};
700
f4dc4d17
DE
701/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
702 an object of this type. */
703
704struct type_unit_group
705{
0186c6a7 706 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
707 To simplify things we create an artificial CU that "includes" all the
708 type units using this stmt_list so that the rest of the code still has
709 a "per_cu" handle on the symtab.
710 This PER_CU is recognized by having no section. */
8a0459fd 711#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
712 struct dwarf2_per_cu_data per_cu;
713
0186c6a7
DE
714 /* The TUs that share this DW_AT_stmt_list entry.
715 This is added to while parsing type units to build partial symtabs,
716 and is deleted afterwards and not used again. */
717 VEC (sig_type_ptr) *tus;
f4dc4d17
DE
718
719 /* The primary symtab.
094b34ac
DE
720 Type units in a group needn't all be defined in the same source file,
721 so we create an essentially anonymous symtab as the primary symtab. */
f4dc4d17
DE
722 struct symtab *primary_symtab;
723
094b34ac
DE
724 /* The data used to construct the hash key. */
725 struct stmt_list_hash hash;
f4dc4d17
DE
726
727 /* The number of symtabs from the line header.
728 The value here must match line_header.num_file_names. */
729 unsigned int num_symtabs;
730
731 /* The symbol tables for this TU (obtained from the files listed in
732 DW_AT_stmt_list).
733 WARNING: The order of entries here must match the order of entries
734 in the line header. After the first TU using this type_unit_group, the
735 line header for the subsequent TUs is recreated from this. This is done
736 because we need to use the same symtabs for each TU using the same
737 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
738 there's no guarantee the line header doesn't have duplicate entries. */
739 struct symtab **symtabs;
740};
741
73869dc2 742/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
743
744struct dwo_sections
745{
746 struct dwarf2_section_info abbrev;
3019eac3
DE
747 struct dwarf2_section_info line;
748 struct dwarf2_section_info loc;
09262596
DE
749 struct dwarf2_section_info macinfo;
750 struct dwarf2_section_info macro;
3019eac3
DE
751 struct dwarf2_section_info str;
752 struct dwarf2_section_info str_offsets;
80626a55
DE
753 /* In the case of a virtual DWO file, these two are unused. */
754 struct dwarf2_section_info info;
3019eac3
DE
755 VEC (dwarf2_section_info_def) *types;
756};
757
c88ee1f0 758/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
759
760struct dwo_unit
761{
762 /* Backlink to the containing struct dwo_file. */
763 struct dwo_file *dwo_file;
764
765 /* The "id" that distinguishes this CU/TU.
766 .debug_info calls this "dwo_id", .debug_types calls this "signature".
767 Since signatures came first, we stick with it for consistency. */
768 ULONGEST signature;
769
770 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 771 struct dwarf2_section_info *section;
3019eac3 772
19ac8c2e 773 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
774 sect_offset offset;
775 unsigned int length;
776
777 /* For types, offset in the type's DIE of the type defined by this TU. */
778 cu_offset type_offset_in_tu;
779};
780
73869dc2
DE
781/* include/dwarf2.h defines the DWP section codes.
782 It defines a max value but it doesn't define a min value, which we
783 use for error checking, so provide one. */
784
785enum dwp_v2_section_ids
786{
787 DW_SECT_MIN = 1
788};
789
80626a55 790/* Data for one DWO file.
57d63ce2
DE
791
792 This includes virtual DWO files (a virtual DWO file is a DWO file as it
793 appears in a DWP file). DWP files don't really have DWO files per se -
794 comdat folding of types "loses" the DWO file they came from, and from
795 a high level view DWP files appear to contain a mass of random types.
796 However, to maintain consistency with the non-DWP case we pretend DWP
797 files contain virtual DWO files, and we assign each TU with one virtual
798 DWO file (generally based on the line and abbrev section offsets -
799 a heuristic that seems to work in practice). */
3019eac3
DE
800
801struct dwo_file
802{
0ac5b59e 803 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
804 For virtual DWO files the name is constructed from the section offsets
805 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
806 from related CU+TUs. */
0ac5b59e
DE
807 const char *dwo_name;
808
809 /* The DW_AT_comp_dir attribute. */
810 const char *comp_dir;
3019eac3 811
80626a55
DE
812 /* The bfd, when the file is open. Otherwise this is NULL.
813 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
814 bfd *dbfd;
3019eac3 815
73869dc2
DE
816 /* The sections that make up this DWO file.
817 Remember that for virtual DWO files in DWP V2, these are virtual
818 sections (for lack of a better name). */
3019eac3
DE
819 struct dwo_sections sections;
820
19c3d4c9
DE
821 /* The CU in the file.
822 We only support one because having more than one requires hacking the
823 dwo_name of each to match, which is highly unlikely to happen.
824 Doing this means all TUs can share comp_dir: We also assume that
825 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
826 struct dwo_unit *cu;
3019eac3
DE
827
828 /* Table of TUs in the file.
829 Each element is a struct dwo_unit. */
830 htab_t tus;
831};
832
80626a55
DE
833/* These sections are what may appear in a DWP file. */
834
835struct dwp_sections
836{
73869dc2 837 /* These are used by both DWP version 1 and 2. */
80626a55
DE
838 struct dwarf2_section_info str;
839 struct dwarf2_section_info cu_index;
840 struct dwarf2_section_info tu_index;
73869dc2
DE
841
842 /* These are only used by DWP version 2 files.
843 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
844 sections are referenced by section number, and are not recorded here.
845 In DWP version 2 there is at most one copy of all these sections, each
846 section being (effectively) comprised of the concatenation of all of the
847 individual sections that exist in the version 1 format.
848 To keep the code simple we treat each of these concatenated pieces as a
849 section itself (a virtual section?). */
850 struct dwarf2_section_info abbrev;
851 struct dwarf2_section_info info;
852 struct dwarf2_section_info line;
853 struct dwarf2_section_info loc;
854 struct dwarf2_section_info macinfo;
855 struct dwarf2_section_info macro;
856 struct dwarf2_section_info str_offsets;
857 struct dwarf2_section_info types;
80626a55
DE
858};
859
73869dc2
DE
860/* These sections are what may appear in a virtual DWO file in DWP version 1.
861 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 862
73869dc2 863struct virtual_v1_dwo_sections
80626a55
DE
864{
865 struct dwarf2_section_info abbrev;
866 struct dwarf2_section_info line;
867 struct dwarf2_section_info loc;
868 struct dwarf2_section_info macinfo;
869 struct dwarf2_section_info macro;
870 struct dwarf2_section_info str_offsets;
871 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 872 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
873 struct dwarf2_section_info info_or_types;
874};
875
73869dc2
DE
876/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
877 In version 2, the sections of the DWO files are concatenated together
878 and stored in one section of that name. Thus each ELF section contains
879 several "virtual" sections. */
880
881struct virtual_v2_dwo_sections
882{
883 bfd_size_type abbrev_offset;
884 bfd_size_type abbrev_size;
885
886 bfd_size_type line_offset;
887 bfd_size_type line_size;
888
889 bfd_size_type loc_offset;
890 bfd_size_type loc_size;
891
892 bfd_size_type macinfo_offset;
893 bfd_size_type macinfo_size;
894
895 bfd_size_type macro_offset;
896 bfd_size_type macro_size;
897
898 bfd_size_type str_offsets_offset;
899 bfd_size_type str_offsets_size;
900
901 /* Each DWP hash table entry records one CU or one TU.
902 That is recorded here, and copied to dwo_unit.section. */
903 bfd_size_type info_or_types_offset;
904 bfd_size_type info_or_types_size;
905};
906
80626a55
DE
907/* Contents of DWP hash tables. */
908
909struct dwp_hash_table
910{
73869dc2 911 uint32_t version, nr_columns;
80626a55 912 uint32_t nr_units, nr_slots;
73869dc2
DE
913 const gdb_byte *hash_table, *unit_table;
914 union
915 {
916 struct
917 {
918 const gdb_byte *indices;
919 } v1;
920 struct
921 {
922 /* This is indexed by column number and gives the id of the section
923 in that column. */
924#define MAX_NR_V2_DWO_SECTIONS \
925 (1 /* .debug_info or .debug_types */ \
926 + 1 /* .debug_abbrev */ \
927 + 1 /* .debug_line */ \
928 + 1 /* .debug_loc */ \
929 + 1 /* .debug_str_offsets */ \
930 + 1 /* .debug_macro or .debug_macinfo */)
931 int section_ids[MAX_NR_V2_DWO_SECTIONS];
932 const gdb_byte *offsets;
933 const gdb_byte *sizes;
934 } v2;
935 } section_pool;
80626a55
DE
936};
937
938/* Data for one DWP file. */
939
940struct dwp_file
941{
942 /* Name of the file. */
943 const char *name;
944
73869dc2
DE
945 /* File format version. */
946 int version;
947
93417882 948 /* The bfd. */
80626a55
DE
949 bfd *dbfd;
950
951 /* Section info for this file. */
952 struct dwp_sections sections;
953
57d63ce2 954 /* Table of CUs in the file. */
80626a55
DE
955 const struct dwp_hash_table *cus;
956
957 /* Table of TUs in the file. */
958 const struct dwp_hash_table *tus;
959
19ac8c2e
DE
960 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
961 htab_t loaded_cus;
962 htab_t loaded_tus;
80626a55 963
73869dc2
DE
964 /* Table to map ELF section numbers to their sections.
965 This is only needed for the DWP V1 file format. */
80626a55
DE
966 unsigned int num_sections;
967 asection **elf_sections;
968};
969
36586728
TT
970/* This represents a '.dwz' file. */
971
972struct dwz_file
973{
974 /* A dwz file can only contain a few sections. */
975 struct dwarf2_section_info abbrev;
976 struct dwarf2_section_info info;
977 struct dwarf2_section_info str;
978 struct dwarf2_section_info line;
979 struct dwarf2_section_info macro;
2ec9a5e0 980 struct dwarf2_section_info gdb_index;
36586728
TT
981
982 /* The dwz's BFD. */
983 bfd *dwz_bfd;
984};
985
0963b4bd
MS
986/* Struct used to pass misc. parameters to read_die_and_children, et
987 al. which are used for both .debug_info and .debug_types dies.
988 All parameters here are unchanging for the life of the call. This
dee91e82 989 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
990
991struct die_reader_specs
992{
a32a8923 993 /* The bfd of die_section. */
93311388
DE
994 bfd* abfd;
995
996 /* The CU of the DIE we are parsing. */
997 struct dwarf2_cu *cu;
998
80626a55 999 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1000 struct dwo_file *dwo_file;
1001
dee91e82 1002 /* The section the die comes from.
3019eac3 1003 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1004 struct dwarf2_section_info *die_section;
1005
1006 /* die_section->buffer. */
d521ce57 1007 const gdb_byte *buffer;
f664829e
DE
1008
1009 /* The end of the buffer. */
1010 const gdb_byte *buffer_end;
a2ce51a0
DE
1011
1012 /* The value of the DW_AT_comp_dir attribute. */
1013 const char *comp_dir;
93311388
DE
1014};
1015
fd820528 1016/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1017typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1018 const gdb_byte *info_ptr,
dee91e82
DE
1019 struct die_info *comp_unit_die,
1020 int has_children,
1021 void *data);
1022
debd256d
JB
1023/* The line number information for a compilation unit (found in the
1024 .debug_line section) begins with a "statement program header",
1025 which contains the following information. */
1026struct line_header
1027{
1028 unsigned int total_length;
1029 unsigned short version;
1030 unsigned int header_length;
1031 unsigned char minimum_instruction_length;
2dc7f7b3 1032 unsigned char maximum_ops_per_instruction;
debd256d
JB
1033 unsigned char default_is_stmt;
1034 int line_base;
1035 unsigned char line_range;
1036 unsigned char opcode_base;
1037
1038 /* standard_opcode_lengths[i] is the number of operands for the
1039 standard opcode whose value is i. This means that
1040 standard_opcode_lengths[0] is unused, and the last meaningful
1041 element is standard_opcode_lengths[opcode_base - 1]. */
1042 unsigned char *standard_opcode_lengths;
1043
1044 /* The include_directories table. NOTE! These strings are not
1045 allocated with xmalloc; instead, they are pointers into
1046 debug_line_buffer. If you try to free them, `free' will get
1047 indigestion. */
1048 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1049 const char **include_dirs;
debd256d
JB
1050
1051 /* The file_names table. NOTE! These strings are not allocated
1052 with xmalloc; instead, they are pointers into debug_line_buffer.
1053 Don't try to free them directly. */
1054 unsigned int num_file_names, file_names_size;
1055 struct file_entry
c906108c 1056 {
d521ce57 1057 const char *name;
debd256d
JB
1058 unsigned int dir_index;
1059 unsigned int mod_time;
1060 unsigned int length;
aaa75496 1061 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 1062 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
1063 } *file_names;
1064
1065 /* The start and end of the statement program following this
6502dd73 1066 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1067 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1068};
c906108c
SS
1069
1070/* When we construct a partial symbol table entry we only
0963b4bd 1071 need this much information. */
c906108c
SS
1072struct partial_die_info
1073 {
72bf9492 1074 /* Offset of this DIE. */
b64f50a1 1075 sect_offset offset;
72bf9492
DJ
1076
1077 /* DWARF-2 tag for this DIE. */
1078 ENUM_BITFIELD(dwarf_tag) tag : 16;
1079
72bf9492
DJ
1080 /* Assorted flags describing the data found in this DIE. */
1081 unsigned int has_children : 1;
1082 unsigned int is_external : 1;
1083 unsigned int is_declaration : 1;
1084 unsigned int has_type : 1;
1085 unsigned int has_specification : 1;
1086 unsigned int has_pc_info : 1;
481860b3 1087 unsigned int may_be_inlined : 1;
72bf9492
DJ
1088
1089 /* Flag set if the SCOPE field of this structure has been
1090 computed. */
1091 unsigned int scope_set : 1;
1092
fa4028e9
JB
1093 /* Flag set if the DIE has a byte_size attribute. */
1094 unsigned int has_byte_size : 1;
1095
98bfdba5
PA
1096 /* Flag set if any of the DIE's children are template arguments. */
1097 unsigned int has_template_arguments : 1;
1098
abc72ce4
DE
1099 /* Flag set if fixup_partial_die has been called on this die. */
1100 unsigned int fixup_called : 1;
1101
36586728
TT
1102 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1103 unsigned int is_dwz : 1;
1104
1105 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1106 unsigned int spec_is_dwz : 1;
1107
72bf9492 1108 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1109 sometimes a default name for unnamed DIEs. */
15d034d0 1110 const char *name;
72bf9492 1111
abc72ce4
DE
1112 /* The linkage name, if present. */
1113 const char *linkage_name;
1114
72bf9492
DJ
1115 /* The scope to prepend to our children. This is generally
1116 allocated on the comp_unit_obstack, so will disappear
1117 when this compilation unit leaves the cache. */
15d034d0 1118 const char *scope;
72bf9492 1119
95554aad
TT
1120 /* Some data associated with the partial DIE. The tag determines
1121 which field is live. */
1122 union
1123 {
1124 /* The location description associated with this DIE, if any. */
1125 struct dwarf_block *locdesc;
1126 /* The offset of an import, for DW_TAG_imported_unit. */
1127 sect_offset offset;
1128 } d;
72bf9492
DJ
1129
1130 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1131 CORE_ADDR lowpc;
1132 CORE_ADDR highpc;
72bf9492 1133
93311388 1134 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1135 DW_AT_sibling, if any. */
abc72ce4
DE
1136 /* NOTE: This member isn't strictly necessary, read_partial_die could
1137 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1138 const gdb_byte *sibling;
72bf9492
DJ
1139
1140 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1141 DW_AT_specification (or DW_AT_abstract_origin or
1142 DW_AT_extension). */
b64f50a1 1143 sect_offset spec_offset;
72bf9492
DJ
1144
1145 /* Pointers to this DIE's parent, first child, and next sibling,
1146 if any. */
1147 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1148 };
1149
0963b4bd 1150/* This data structure holds the information of an abbrev. */
c906108c
SS
1151struct abbrev_info
1152 {
1153 unsigned int number; /* number identifying abbrev */
1154 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1155 unsigned short has_children; /* boolean */
1156 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1157 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1158 struct abbrev_info *next; /* next in chain */
1159 };
1160
1161struct attr_abbrev
1162 {
9d25dd43
DE
1163 ENUM_BITFIELD(dwarf_attribute) name : 16;
1164 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1165 };
1166
433df2d4
DE
1167/* Size of abbrev_table.abbrev_hash_table. */
1168#define ABBREV_HASH_SIZE 121
1169
1170/* Top level data structure to contain an abbreviation table. */
1171
1172struct abbrev_table
1173{
f4dc4d17
DE
1174 /* Where the abbrev table came from.
1175 This is used as a sanity check when the table is used. */
433df2d4
DE
1176 sect_offset offset;
1177
1178 /* Storage for the abbrev table. */
1179 struct obstack abbrev_obstack;
1180
1181 /* Hash table of abbrevs.
1182 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1183 It could be statically allocated, but the previous code didn't so we
1184 don't either. */
1185 struct abbrev_info **abbrevs;
1186};
1187
0963b4bd 1188/* Attributes have a name and a value. */
b60c80d6
DJ
1189struct attribute
1190 {
9d25dd43 1191 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1192 ENUM_BITFIELD(dwarf_form) form : 15;
1193
1194 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1195 field should be in u.str (existing only for DW_STRING) but it is kept
1196 here for better struct attribute alignment. */
1197 unsigned int string_is_canonical : 1;
1198
b60c80d6
DJ
1199 union
1200 {
15d034d0 1201 const char *str;
b60c80d6 1202 struct dwarf_block *blk;
43bbcdc2
PH
1203 ULONGEST unsnd;
1204 LONGEST snd;
b60c80d6 1205 CORE_ADDR addr;
ac9ec31b 1206 ULONGEST signature;
b60c80d6
DJ
1207 }
1208 u;
1209 };
1210
0963b4bd 1211/* This data structure holds a complete die structure. */
c906108c
SS
1212struct die_info
1213 {
76815b17
DE
1214 /* DWARF-2 tag for this DIE. */
1215 ENUM_BITFIELD(dwarf_tag) tag : 16;
1216
1217 /* Number of attributes */
98bfdba5
PA
1218 unsigned char num_attrs;
1219
1220 /* True if we're presently building the full type name for the
1221 type derived from this DIE. */
1222 unsigned char building_fullname : 1;
76815b17 1223
adde2bff
DE
1224 /* True if this die is in process. PR 16581. */
1225 unsigned char in_process : 1;
1226
76815b17
DE
1227 /* Abbrev number */
1228 unsigned int abbrev;
1229
93311388 1230 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1231 sect_offset offset;
78ba4af6
JB
1232
1233 /* The dies in a compilation unit form an n-ary tree. PARENT
1234 points to this die's parent; CHILD points to the first child of
1235 this node; and all the children of a given node are chained
4950bc1c 1236 together via their SIBLING fields. */
639d11d3
DC
1237 struct die_info *child; /* Its first child, if any. */
1238 struct die_info *sibling; /* Its next sibling, if any. */
1239 struct die_info *parent; /* Its parent, if any. */
c906108c 1240
b60c80d6
DJ
1241 /* An array of attributes, with NUM_ATTRS elements. There may be
1242 zero, but it's not common and zero-sized arrays are not
1243 sufficiently portable C. */
1244 struct attribute attrs[1];
c906108c
SS
1245 };
1246
0963b4bd 1247/* Get at parts of an attribute structure. */
c906108c
SS
1248
1249#define DW_STRING(attr) ((attr)->u.str)
8285870a 1250#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1251#define DW_UNSND(attr) ((attr)->u.unsnd)
1252#define DW_BLOCK(attr) ((attr)->u.blk)
1253#define DW_SND(attr) ((attr)->u.snd)
1254#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1255#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1256
0963b4bd 1257/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1258struct dwarf_block
1259 {
56eb65bd 1260 size_t size;
1d6edc3c
JK
1261
1262 /* Valid only if SIZE is not zero. */
d521ce57 1263 const gdb_byte *data;
c906108c
SS
1264 };
1265
c906108c
SS
1266#ifndef ATTR_ALLOC_CHUNK
1267#define ATTR_ALLOC_CHUNK 4
1268#endif
1269
c906108c
SS
1270/* Allocate fields for structs, unions and enums in this size. */
1271#ifndef DW_FIELD_ALLOC_CHUNK
1272#define DW_FIELD_ALLOC_CHUNK 4
1273#endif
1274
c906108c
SS
1275/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1276 but this would require a corresponding change in unpack_field_as_long
1277 and friends. */
1278static int bits_per_byte = 8;
1279
1280/* The routines that read and process dies for a C struct or C++ class
1281 pass lists of data member fields and lists of member function fields
1282 in an instance of a field_info structure, as defined below. */
1283struct field_info
c5aa993b 1284 {
0963b4bd 1285 /* List of data member and baseclasses fields. */
c5aa993b
JM
1286 struct nextfield
1287 {
1288 struct nextfield *next;
1289 int accessibility;
1290 int virtuality;
1291 struct field field;
1292 }
7d0ccb61 1293 *fields, *baseclasses;
c906108c 1294
7d0ccb61 1295 /* Number of fields (including baseclasses). */
c5aa993b 1296 int nfields;
c906108c 1297
c5aa993b
JM
1298 /* Number of baseclasses. */
1299 int nbaseclasses;
c906108c 1300
c5aa993b
JM
1301 /* Set if the accesibility of one of the fields is not public. */
1302 int non_public_fields;
c906108c 1303
c5aa993b
JM
1304 /* Member function fields array, entries are allocated in the order they
1305 are encountered in the object file. */
1306 struct nextfnfield
1307 {
1308 struct nextfnfield *next;
1309 struct fn_field fnfield;
1310 }
1311 *fnfields;
c906108c 1312
c5aa993b
JM
1313 /* Member function fieldlist array, contains name of possibly overloaded
1314 member function, number of overloaded member functions and a pointer
1315 to the head of the member function field chain. */
1316 struct fnfieldlist
1317 {
15d034d0 1318 const char *name;
c5aa993b
JM
1319 int length;
1320 struct nextfnfield *head;
1321 }
1322 *fnfieldlists;
c906108c 1323
c5aa993b
JM
1324 /* Number of entries in the fnfieldlists array. */
1325 int nfnfields;
98751a41
JK
1326
1327 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1328 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1329 struct typedef_field_list
1330 {
1331 struct typedef_field field;
1332 struct typedef_field_list *next;
1333 }
1334 *typedef_field_list;
1335 unsigned typedef_field_list_count;
c5aa993b 1336 };
c906108c 1337
10b3939b
DJ
1338/* One item on the queue of compilation units to read in full symbols
1339 for. */
1340struct dwarf2_queue_item
1341{
1342 struct dwarf2_per_cu_data *per_cu;
95554aad 1343 enum language pretend_language;
10b3939b
DJ
1344 struct dwarf2_queue_item *next;
1345};
1346
1347/* The current queue. */
1348static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1349
ae038cb0
DJ
1350/* Loaded secondary compilation units are kept in memory until they
1351 have not been referenced for the processing of this many
1352 compilation units. Set this to zero to disable caching. Cache
1353 sizes of up to at least twenty will improve startup time for
1354 typical inter-CU-reference binaries, at an obvious memory cost. */
1355static int dwarf2_max_cache_age = 5;
920d2a44
AC
1356static void
1357show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1358 struct cmd_list_element *c, const char *value)
1359{
3e43a32a
MS
1360 fprintf_filtered (file, _("The upper bound on the age of cached "
1361 "dwarf2 compilation units is %s.\n"),
920d2a44
AC
1362 value);
1363}
4390d890 1364\f
c906108c
SS
1365/* local function prototypes */
1366
a32a8923
DE
1367static const char *get_section_name (const struct dwarf2_section_info *);
1368
1369static const char *get_section_file_name (const struct dwarf2_section_info *);
1370
4efb68b1 1371static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1372
918dd910
JK
1373static void dwarf2_find_base_address (struct die_info *die,
1374 struct dwarf2_cu *cu);
1375
0018ea6f
DE
1376static struct partial_symtab *create_partial_symtab
1377 (struct dwarf2_per_cu_data *per_cu, const char *name);
1378
c67a9c90 1379static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1380
72bf9492
DJ
1381static void scan_partial_symbols (struct partial_die_info *,
1382 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1383 int, struct dwarf2_cu *);
c906108c 1384
72bf9492
DJ
1385static void add_partial_symbol (struct partial_die_info *,
1386 struct dwarf2_cu *);
63d06c5c 1387
72bf9492
DJ
1388static void add_partial_namespace (struct partial_die_info *pdi,
1389 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1390 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1391
5d7cb8df 1392static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1393 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1394 struct dwarf2_cu *cu);
1395
72bf9492
DJ
1396static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1397 struct dwarf2_cu *cu);
91c24f0a 1398
bc30ff58
JB
1399static void add_partial_subprogram (struct partial_die_info *pdi,
1400 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1401 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1402
257e7a09
YQ
1403static void dwarf2_read_symtab (struct partial_symtab *,
1404 struct objfile *);
c906108c 1405
a14ed312 1406static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1407
433df2d4
DE
1408static struct abbrev_info *abbrev_table_lookup_abbrev
1409 (const struct abbrev_table *, unsigned int);
1410
1411static struct abbrev_table *abbrev_table_read_table
1412 (struct dwarf2_section_info *, sect_offset);
1413
1414static void abbrev_table_free (struct abbrev_table *);
1415
f4dc4d17
DE
1416static void abbrev_table_free_cleanup (void *);
1417
dee91e82
DE
1418static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1419 struct dwarf2_section_info *);
c906108c 1420
f3dd6933 1421static void dwarf2_free_abbrev_table (void *);
c906108c 1422
d521ce57 1423static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1424
dee91e82 1425static struct partial_die_info *load_partial_dies
d521ce57 1426 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1427
d521ce57
TT
1428static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1429 struct partial_die_info *,
1430 struct abbrev_info *,
1431 unsigned int,
1432 const gdb_byte *);
c906108c 1433
36586728 1434static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1435 struct dwarf2_cu *);
72bf9492
DJ
1436
1437static void fixup_partial_die (struct partial_die_info *,
1438 struct dwarf2_cu *);
1439
d521ce57
TT
1440static const gdb_byte *read_attribute (const struct die_reader_specs *,
1441 struct attribute *, struct attr_abbrev *,
1442 const gdb_byte *);
a8329558 1443
a1855c1d 1444static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1445
a1855c1d 1446static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1447
a1855c1d 1448static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1449
a1855c1d 1450static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1451
a1855c1d 1452static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1453
d521ce57 1454static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1455 unsigned int *);
c906108c 1456
d521ce57 1457static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1458
1459static LONGEST read_checked_initial_length_and_offset
d521ce57 1460 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1461 unsigned int *, unsigned int *);
613e1657 1462
d521ce57
TT
1463static LONGEST read_offset (bfd *, const gdb_byte *,
1464 const struct comp_unit_head *,
c764a876
DE
1465 unsigned int *);
1466
d521ce57 1467static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1468
f4dc4d17
DE
1469static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1470 sect_offset);
1471
d521ce57 1472static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1473
d521ce57 1474static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1475
d521ce57
TT
1476static const char *read_indirect_string (bfd *, const gdb_byte *,
1477 const struct comp_unit_head *,
1478 unsigned int *);
4bdf3d34 1479
d521ce57 1480static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1481
d521ce57 1482static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1483
d521ce57 1484static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1485
d521ce57
TT
1486static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1487 const gdb_byte *,
3019eac3
DE
1488 unsigned int *);
1489
d521ce57 1490static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1491 ULONGEST str_index);
3019eac3 1492
e142c38c 1493static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1494
e142c38c
DJ
1495static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1496 struct dwarf2_cu *);
c906108c 1497
348e048f 1498static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1499 unsigned int);
348e048f 1500
05cf31d1
JB
1501static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1502 struct dwarf2_cu *cu);
1503
e142c38c 1504static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1505
e142c38c 1506static struct die_info *die_specification (struct die_info *die,
f2f0e013 1507 struct dwarf2_cu **);
63d06c5c 1508
debd256d
JB
1509static void free_line_header (struct line_header *lh);
1510
3019eac3
DE
1511static struct line_header *dwarf_decode_line_header (unsigned int offset,
1512 struct dwarf2_cu *cu);
debd256d 1513
f3f5162e 1514static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696
YQ
1515 struct dwarf2_cu *, struct partial_symtab *,
1516 CORE_ADDR);
c906108c 1517
d521ce57 1518static void dwarf2_start_subfile (const char *, const char *, const char *);
c906108c 1519
f4dc4d17 1520static void dwarf2_start_symtab (struct dwarf2_cu *,
15d034d0 1521 const char *, const char *, CORE_ADDR);
f4dc4d17 1522
a14ed312 1523static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1524 struct dwarf2_cu *);
c906108c 1525
34eaf542
TT
1526static struct symbol *new_symbol_full (struct die_info *, struct type *,
1527 struct dwarf2_cu *, struct symbol *);
1528
ff39bb5e 1529static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1530 struct dwarf2_cu *);
c906108c 1531
ff39bb5e 1532static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1533 struct type *type,
1534 const char *name,
1535 struct obstack *obstack,
12df843f 1536 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1537 const gdb_byte **bytes,
98bfdba5 1538 struct dwarf2_locexpr_baton **baton);
2df3850c 1539
e7c27a73 1540static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1541
b4ba55a1
JB
1542static int need_gnat_info (struct dwarf2_cu *);
1543
3e43a32a
MS
1544static struct type *die_descriptive_type (struct die_info *,
1545 struct dwarf2_cu *);
b4ba55a1
JB
1546
1547static void set_descriptive_type (struct type *, struct die_info *,
1548 struct dwarf2_cu *);
1549
e7c27a73
DJ
1550static struct type *die_containing_type (struct die_info *,
1551 struct dwarf2_cu *);
c906108c 1552
ff39bb5e 1553static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1554 struct dwarf2_cu *);
c906108c 1555
f792889a 1556static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1557
673bfd45
DE
1558static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1559
0d5cff50 1560static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1561
6e70227d 1562static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1563 const char *suffix, int physname,
1564 struct dwarf2_cu *cu);
63d06c5c 1565
e7c27a73 1566static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1567
348e048f
DE
1568static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1569
e7c27a73 1570static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1571
e7c27a73 1572static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1573
96408a79
SA
1574static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1575
ff013f42
JK
1576static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1577 struct dwarf2_cu *, struct partial_symtab *);
1578
a14ed312 1579static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1580 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1581 struct partial_symtab *);
c906108c 1582
fae299cd
DC
1583static void get_scope_pc_bounds (struct die_info *,
1584 CORE_ADDR *, CORE_ADDR *,
1585 struct dwarf2_cu *);
1586
801e3a5b
JB
1587static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1588 CORE_ADDR, struct dwarf2_cu *);
1589
a14ed312 1590static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1591 struct dwarf2_cu *);
c906108c 1592
a14ed312 1593static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1594 struct type *, struct dwarf2_cu *);
c906108c 1595
a14ed312 1596static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1597 struct die_info *, struct type *,
e7c27a73 1598 struct dwarf2_cu *);
c906108c 1599
a14ed312 1600static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1601 struct type *,
1602 struct dwarf2_cu *);
c906108c 1603
134d01f1 1604static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1605
e7c27a73 1606static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1607
e7c27a73 1608static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1609
5d7cb8df
JK
1610static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1611
27aa8d6a
SW
1612static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1613
74921315
KS
1614static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1615
f55ee35c
JK
1616static struct type *read_module_type (struct die_info *die,
1617 struct dwarf2_cu *cu);
1618
38d518c9 1619static const char *namespace_name (struct die_info *die,
e142c38c 1620 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1621
134d01f1 1622static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1623
e7c27a73 1624static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1625
6e70227d 1626static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1627 struct dwarf2_cu *);
1628
bf6af496 1629static struct die_info *read_die_and_siblings_1
d521ce57 1630 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1631 struct die_info *);
639d11d3 1632
dee91e82 1633static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1634 const gdb_byte *info_ptr,
1635 const gdb_byte **new_info_ptr,
639d11d3
DC
1636 struct die_info *parent);
1637
d521ce57
TT
1638static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1639 struct die_info **, const gdb_byte *,
1640 int *, int);
3019eac3 1641
d521ce57
TT
1642static const gdb_byte *read_full_die (const struct die_reader_specs *,
1643 struct die_info **, const gdb_byte *,
1644 int *);
93311388 1645
e7c27a73 1646static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1647
15d034d0
TT
1648static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1649 struct obstack *);
71c25dea 1650
15d034d0 1651static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1652
15d034d0 1653static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1654 struct die_info *die,
1655 struct dwarf2_cu *cu);
1656
ca69b9e6
DE
1657static const char *dwarf2_physname (const char *name, struct die_info *die,
1658 struct dwarf2_cu *cu);
1659
e142c38c 1660static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1661 struct dwarf2_cu **);
9219021c 1662
f39c6ffd 1663static const char *dwarf_tag_name (unsigned int);
c906108c 1664
f39c6ffd 1665static const char *dwarf_attr_name (unsigned int);
c906108c 1666
f39c6ffd 1667static const char *dwarf_form_name (unsigned int);
c906108c 1668
a14ed312 1669static char *dwarf_bool_name (unsigned int);
c906108c 1670
f39c6ffd 1671static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1672
f9aca02d 1673static struct die_info *sibling_die (struct die_info *);
c906108c 1674
d97bc12b
DE
1675static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1676
1677static void dump_die_for_error (struct die_info *);
1678
1679static void dump_die_1 (struct ui_file *, int level, int max_level,
1680 struct die_info *);
c906108c 1681
d97bc12b 1682/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1683
51545339 1684static void store_in_ref_table (struct die_info *,
10b3939b 1685 struct dwarf2_cu *);
c906108c 1686
ff39bb5e 1687static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1688
ff39bb5e 1689static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1690
348e048f 1691static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1692 const struct attribute *,
348e048f
DE
1693 struct dwarf2_cu **);
1694
10b3939b 1695static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1696 const struct attribute *,
f2f0e013 1697 struct dwarf2_cu **);
c906108c 1698
348e048f 1699static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1700 const struct attribute *,
348e048f
DE
1701 struct dwarf2_cu **);
1702
ac9ec31b
DE
1703static struct type *get_signatured_type (struct die_info *, ULONGEST,
1704 struct dwarf2_cu *);
1705
1706static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1707 const struct attribute *,
ac9ec31b
DE
1708 struct dwarf2_cu *);
1709
e5fe5e75 1710static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1711
52dc124a 1712static void read_signatured_type (struct signatured_type *);
348e048f 1713
c906108c
SS
1714/* memory allocation interface */
1715
7b5a2f43 1716static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1717
b60c80d6 1718static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1719
09262596 1720static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
15d034d0 1721 const char *, int);
2e276125 1722
6e5a29e1 1723static int attr_form_is_block (const struct attribute *);
8e19ed76 1724
6e5a29e1 1725static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1726
6e5a29e1 1727static int attr_form_is_constant (const struct attribute *);
3690dd37 1728
6e5a29e1 1729static int attr_form_is_ref (const struct attribute *);
7771576e 1730
8cf6f0b1
TT
1731static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1732 struct dwarf2_loclist_baton *baton,
ff39bb5e 1733 const struct attribute *attr);
8cf6f0b1 1734
ff39bb5e 1735static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1736 struct symbol *sym,
f1e6e072
TT
1737 struct dwarf2_cu *cu,
1738 int is_block);
4c2df51b 1739
d521ce57
TT
1740static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1741 const gdb_byte *info_ptr,
1742 struct abbrev_info *abbrev);
4bb7a0a7 1743
72bf9492
DJ
1744static void free_stack_comp_unit (void *);
1745
72bf9492
DJ
1746static hashval_t partial_die_hash (const void *item);
1747
1748static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1749
ae038cb0 1750static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1751 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1752
9816fde3 1753static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1754 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1755
1756static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1757 struct die_info *comp_unit_die,
1758 enum language pretend_language);
93311388 1759
68dc6402 1760static void free_heap_comp_unit (void *);
ae038cb0
DJ
1761
1762static void free_cached_comp_units (void *);
1763
1764static void age_cached_comp_units (void);
1765
dee91e82 1766static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1767
f792889a
DJ
1768static struct type *set_die_type (struct die_info *, struct type *,
1769 struct dwarf2_cu *);
1c379e20 1770
ae038cb0
DJ
1771static void create_all_comp_units (struct objfile *);
1772
0e50663e 1773static int create_all_type_units (struct objfile *);
1fd400ff 1774
95554aad
TT
1775static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1776 enum language);
10b3939b 1777
95554aad
TT
1778static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1779 enum language);
10b3939b 1780
f4dc4d17
DE
1781static void process_full_type_unit (struct dwarf2_per_cu_data *,
1782 enum language);
1783
10b3939b
DJ
1784static void dwarf2_add_dependence (struct dwarf2_cu *,
1785 struct dwarf2_per_cu_data *);
1786
ae038cb0
DJ
1787static void dwarf2_mark (struct dwarf2_cu *);
1788
1789static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1790
b64f50a1 1791static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1792 struct dwarf2_per_cu_data *);
673bfd45 1793
f792889a 1794static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1795
9291a0cd
TT
1796static void dwarf2_release_queue (void *dummy);
1797
95554aad
TT
1798static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1799 enum language pretend_language);
1800
a0f42c21 1801static void process_queue (void);
9291a0cd
TT
1802
1803static void find_file_and_directory (struct die_info *die,
1804 struct dwarf2_cu *cu,
15d034d0 1805 const char **name, const char **comp_dir);
9291a0cd
TT
1806
1807static char *file_full_name (int file, struct line_header *lh,
1808 const char *comp_dir);
1809
d521ce57 1810static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1811 (struct comp_unit_head *header,
1812 struct dwarf2_section_info *section,
d521ce57 1813 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1814 int is_debug_types_section);
1815
fd820528 1816static void init_cutu_and_read_dies
f4dc4d17
DE
1817 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1818 int use_existing_cu, int keep,
3019eac3
DE
1819 die_reader_func_ftype *die_reader_func, void *data);
1820
dee91e82
DE
1821static void init_cutu_and_read_dies_simple
1822 (struct dwarf2_per_cu_data *this_cu,
1823 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1824
673bfd45 1825static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1826
3019eac3
DE
1827static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1828
57d63ce2
DE
1829static struct dwo_unit *lookup_dwo_unit_in_dwp
1830 (struct dwp_file *dwp_file, const char *comp_dir,
1831 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1832
1833static struct dwp_file *get_dwp_file (void);
1834
3019eac3 1835static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1836 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1837
1838static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1839 (struct signatured_type *, const char *, const char *);
3019eac3 1840
89e63ee4
DE
1841static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1842
3019eac3
DE
1843static void free_dwo_file_cleanup (void *);
1844
95554aad
TT
1845static void process_cu_includes (void);
1846
1b80a9fa 1847static void check_producer (struct dwarf2_cu *cu);
4390d890
DE
1848\f
1849/* Various complaints about symbol reading that don't abort the process. */
1850
1851static void
1852dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1853{
1854 complaint (&symfile_complaints,
1855 _("statement list doesn't fit in .debug_line section"));
1856}
1857
1858static void
1859dwarf2_debug_line_missing_file_complaint (void)
1860{
1861 complaint (&symfile_complaints,
1862 _(".debug_line section has line data without a file"));
1863}
1864
1865static void
1866dwarf2_debug_line_missing_end_sequence_complaint (void)
1867{
1868 complaint (&symfile_complaints,
1869 _(".debug_line section has line "
1870 "program sequence without an end"));
1871}
1872
1873static void
1874dwarf2_complex_location_expr_complaint (void)
1875{
1876 complaint (&symfile_complaints, _("location expression too complex"));
1877}
1878
1879static void
1880dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1881 int arg3)
1882{
1883 complaint (&symfile_complaints,
1884 _("const value length mismatch for '%s', got %d, expected %d"),
1885 arg1, arg2, arg3);
1886}
1887
1888static void
1889dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1890{
1891 complaint (&symfile_complaints,
1892 _("debug info runs off end of %s section"
1893 " [in module %s]"),
a32a8923
DE
1894 get_section_name (section),
1895 get_section_file_name (section));
4390d890 1896}
1b80a9fa 1897
4390d890
DE
1898static void
1899dwarf2_macro_malformed_definition_complaint (const char *arg1)
1900{
1901 complaint (&symfile_complaints,
1902 _("macro debug info contains a "
1903 "malformed macro definition:\n`%s'"),
1904 arg1);
1905}
1906
1907static void
1908dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1909{
1910 complaint (&symfile_complaints,
1911 _("invalid attribute class or form for '%s' in '%s'"),
1912 arg1, arg2);
1913}
1914\f
9291a0cd
TT
1915#if WORDS_BIGENDIAN
1916
1917/* Convert VALUE between big- and little-endian. */
1918static offset_type
1919byte_swap (offset_type value)
1920{
1921 offset_type result;
1922
1923 result = (value & 0xff) << 24;
1924 result |= (value & 0xff00) << 8;
1925 result |= (value & 0xff0000) >> 8;
1926 result |= (value & 0xff000000) >> 24;
1927 return result;
1928}
1929
1930#define MAYBE_SWAP(V) byte_swap (V)
1931
1932#else
1933#define MAYBE_SWAP(V) (V)
1934#endif /* WORDS_BIGENDIAN */
1935
31aa7e4e
JB
1936/* Read the given attribute value as an address, taking the attribute's
1937 form into account. */
1938
1939static CORE_ADDR
1940attr_value_as_address (struct attribute *attr)
1941{
1942 CORE_ADDR addr;
1943
1944 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1945 {
1946 /* Aside from a few clearly defined exceptions, attributes that
1947 contain an address must always be in DW_FORM_addr form.
1948 Unfortunately, some compilers happen to be violating this
1949 requirement by encoding addresses using other forms, such
1950 as DW_FORM_data4 for example. For those broken compilers,
1951 we try to do our best, without any guarantee of success,
1952 to interpret the address correctly. It would also be nice
1953 to generate a complaint, but that would require us to maintain
1954 a list of legitimate cases where a non-address form is allowed,
1955 as well as update callers to pass in at least the CU's DWARF
1956 version. This is more overhead than what we're willing to
1957 expand for a pretty rare case. */
1958 addr = DW_UNSND (attr);
1959 }
1960 else
1961 addr = DW_ADDR (attr);
1962
1963 return addr;
1964}
1965
9291a0cd
TT
1966/* The suffix for an index file. */
1967#define INDEX_SUFFIX ".gdb-index"
1968
c906108c 1969/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
1970 information and return true if we have enough to do something.
1971 NAMES points to the dwarf2 section names, or is NULL if the standard
1972 ELF names are used. */
c906108c
SS
1973
1974int
251d32d9
TG
1975dwarf2_has_info (struct objfile *objfile,
1976 const struct dwarf2_debug_sections *names)
c906108c 1977{
be391dca
TT
1978 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1979 if (!dwarf2_per_objfile)
1980 {
1981 /* Initialize per-objfile state. */
1982 struct dwarf2_per_objfile *data
1983 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1984
be391dca
TT
1985 memset (data, 0, sizeof (*data));
1986 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1987 dwarf2_per_objfile = data;
6502dd73 1988
251d32d9
TG
1989 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1990 (void *) names);
be391dca
TT
1991 dwarf2_per_objfile->objfile = objfile;
1992 }
73869dc2
DE
1993 return (!dwarf2_per_objfile->info.is_virtual
1994 && dwarf2_per_objfile->info.s.asection != NULL
1995 && !dwarf2_per_objfile->abbrev.is_virtual
1996 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1997}
1998
1999/* Return the containing section of virtual section SECTION. */
2000
2001static struct dwarf2_section_info *
2002get_containing_section (const struct dwarf2_section_info *section)
2003{
2004 gdb_assert (section->is_virtual);
2005 return section->s.containing_section;
c906108c
SS
2006}
2007
a32a8923
DE
2008/* Return the bfd owner of SECTION. */
2009
2010static struct bfd *
2011get_section_bfd_owner (const struct dwarf2_section_info *section)
2012{
73869dc2
DE
2013 if (section->is_virtual)
2014 {
2015 section = get_containing_section (section);
2016 gdb_assert (!section->is_virtual);
2017 }
2018 return section->s.asection->owner;
a32a8923
DE
2019}
2020
2021/* Return the bfd section of SECTION.
2022 Returns NULL if the section is not present. */
2023
2024static asection *
2025get_section_bfd_section (const struct dwarf2_section_info *section)
2026{
73869dc2
DE
2027 if (section->is_virtual)
2028 {
2029 section = get_containing_section (section);
2030 gdb_assert (!section->is_virtual);
2031 }
2032 return section->s.asection;
a32a8923
DE
2033}
2034
2035/* Return the name of SECTION. */
2036
2037static const char *
2038get_section_name (const struct dwarf2_section_info *section)
2039{
2040 asection *sectp = get_section_bfd_section (section);
2041
2042 gdb_assert (sectp != NULL);
2043 return bfd_section_name (get_section_bfd_owner (section), sectp);
2044}
2045
2046/* Return the name of the file SECTION is in. */
2047
2048static const char *
2049get_section_file_name (const struct dwarf2_section_info *section)
2050{
2051 bfd *abfd = get_section_bfd_owner (section);
2052
2053 return bfd_get_filename (abfd);
2054}
2055
2056/* Return the id of SECTION.
2057 Returns 0 if SECTION doesn't exist. */
2058
2059static int
2060get_section_id (const struct dwarf2_section_info *section)
2061{
2062 asection *sectp = get_section_bfd_section (section);
2063
2064 if (sectp == NULL)
2065 return 0;
2066 return sectp->id;
2067}
2068
2069/* Return the flags of SECTION.
73869dc2 2070 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2071
2072static int
2073get_section_flags (const struct dwarf2_section_info *section)
2074{
2075 asection *sectp = get_section_bfd_section (section);
2076
2077 gdb_assert (sectp != NULL);
2078 return bfd_get_section_flags (sectp->owner, sectp);
2079}
2080
251d32d9
TG
2081/* When loading sections, we look either for uncompressed section or for
2082 compressed section names. */
233a11ab
CS
2083
2084static int
251d32d9
TG
2085section_is_p (const char *section_name,
2086 const struct dwarf2_section_names *names)
233a11ab 2087{
251d32d9
TG
2088 if (names->normal != NULL
2089 && strcmp (section_name, names->normal) == 0)
2090 return 1;
2091 if (names->compressed != NULL
2092 && strcmp (section_name, names->compressed) == 0)
2093 return 1;
2094 return 0;
233a11ab
CS
2095}
2096
c906108c
SS
2097/* This function is mapped across the sections and remembers the
2098 offset and size of each of the debugging sections we are interested
2099 in. */
2100
2101static void
251d32d9 2102dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2103{
251d32d9 2104 const struct dwarf2_debug_sections *names;
dc7650b8 2105 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2106
2107 if (vnames == NULL)
2108 names = &dwarf2_elf_names;
2109 else
2110 names = (const struct dwarf2_debug_sections *) vnames;
2111
dc7650b8
JK
2112 if ((aflag & SEC_HAS_CONTENTS) == 0)
2113 {
2114 }
2115 else if (section_is_p (sectp->name, &names->info))
c906108c 2116 {
73869dc2 2117 dwarf2_per_objfile->info.s.asection = sectp;
dce234bc 2118 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2119 }
251d32d9 2120 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2121 {
73869dc2 2122 dwarf2_per_objfile->abbrev.s.asection = sectp;
dce234bc 2123 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2124 }
251d32d9 2125 else if (section_is_p (sectp->name, &names->line))
c906108c 2126 {
73869dc2 2127 dwarf2_per_objfile->line.s.asection = sectp;
dce234bc 2128 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2129 }
251d32d9 2130 else if (section_is_p (sectp->name, &names->loc))
c906108c 2131 {
73869dc2 2132 dwarf2_per_objfile->loc.s.asection = sectp;
dce234bc 2133 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2134 }
251d32d9 2135 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2136 {
73869dc2 2137 dwarf2_per_objfile->macinfo.s.asection = sectp;
dce234bc 2138 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2139 }
cf2c3c16
TT
2140 else if (section_is_p (sectp->name, &names->macro))
2141 {
73869dc2 2142 dwarf2_per_objfile->macro.s.asection = sectp;
cf2c3c16
TT
2143 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2144 }
251d32d9 2145 else if (section_is_p (sectp->name, &names->str))
c906108c 2146 {
73869dc2 2147 dwarf2_per_objfile->str.s.asection = sectp;
dce234bc 2148 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2149 }
3019eac3
DE
2150 else if (section_is_p (sectp->name, &names->addr))
2151 {
73869dc2 2152 dwarf2_per_objfile->addr.s.asection = sectp;
3019eac3
DE
2153 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2154 }
251d32d9 2155 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2156 {
73869dc2 2157 dwarf2_per_objfile->frame.s.asection = sectp;
dce234bc 2158 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2159 }
251d32d9 2160 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2161 {
73869dc2 2162 dwarf2_per_objfile->eh_frame.s.asection = sectp;
dc7650b8 2163 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2164 }
251d32d9 2165 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2166 {
73869dc2 2167 dwarf2_per_objfile->ranges.s.asection = sectp;
dce234bc 2168 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2169 }
251d32d9 2170 else if (section_is_p (sectp->name, &names->types))
348e048f 2171 {
8b70b953
TT
2172 struct dwarf2_section_info type_section;
2173
2174 memset (&type_section, 0, sizeof (type_section));
73869dc2 2175 type_section.s.asection = sectp;
8b70b953
TT
2176 type_section.size = bfd_get_section_size (sectp);
2177
2178 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2179 &type_section);
348e048f 2180 }
251d32d9 2181 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2182 {
73869dc2 2183 dwarf2_per_objfile->gdb_index.s.asection = sectp;
9291a0cd
TT
2184 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2185 }
dce234bc 2186
72dca2f5
FR
2187 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2188 && bfd_section_vma (abfd, sectp) == 0)
2189 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2190}
2191
fceca515
DE
2192/* A helper function that decides whether a section is empty,
2193 or not present. */
9e0ac564
TT
2194
2195static int
19ac8c2e 2196dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2197{
73869dc2
DE
2198 if (section->is_virtual)
2199 return section->size == 0;
2200 return section->s.asection == NULL || section->size == 0;
9e0ac564
TT
2201}
2202
3019eac3
DE
2203/* Read the contents of the section INFO.
2204 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2205 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2206 of the DWO file.
dce234bc 2207 If the section is compressed, uncompress it before returning. */
c906108c 2208
dce234bc
PP
2209static void
2210dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2211{
a32a8923 2212 asection *sectp;
3019eac3 2213 bfd *abfd;
dce234bc 2214 gdb_byte *buf, *retbuf;
c906108c 2215
be391dca
TT
2216 if (info->readin)
2217 return;
dce234bc 2218 info->buffer = NULL;
be391dca 2219 info->readin = 1;
188dd5d6 2220
9e0ac564 2221 if (dwarf2_section_empty_p (info))
dce234bc 2222 return;
c906108c 2223
a32a8923 2224 sectp = get_section_bfd_section (info);
3019eac3 2225
73869dc2
DE
2226 /* If this is a virtual section we need to read in the real one first. */
2227 if (info->is_virtual)
2228 {
2229 struct dwarf2_section_info *containing_section =
2230 get_containing_section (info);
2231
2232 gdb_assert (sectp != NULL);
2233 if ((sectp->flags & SEC_RELOC) != 0)
2234 {
2235 error (_("Dwarf Error: DWP format V2 with relocations is not"
2236 " supported in section %s [in module %s]"),
2237 get_section_name (info), get_section_file_name (info));
2238 }
2239 dwarf2_read_section (objfile, containing_section);
2240 /* Other code should have already caught virtual sections that don't
2241 fit. */
2242 gdb_assert (info->virtual_offset + info->size
2243 <= containing_section->size);
2244 /* If the real section is empty or there was a problem reading the
2245 section we shouldn't get here. */
2246 gdb_assert (containing_section->buffer != NULL);
2247 info->buffer = containing_section->buffer + info->virtual_offset;
2248 return;
2249 }
2250
4bf44c1c
TT
2251 /* If the section has relocations, we must read it ourselves.
2252 Otherwise we attach it to the BFD. */
2253 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2254 {
d521ce57 2255 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2256 return;
dce234bc 2257 }
dce234bc 2258
4bf44c1c
TT
2259 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2260 info->buffer = buf;
dce234bc
PP
2261
2262 /* When debugging .o files, we may need to apply relocations; see
2263 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2264 We never compress sections in .o files, so we only need to
2265 try this when the section is not compressed. */
ac8035ab 2266 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2267 if (retbuf != NULL)
2268 {
2269 info->buffer = retbuf;
2270 return;
2271 }
2272
a32a8923
DE
2273 abfd = get_section_bfd_owner (info);
2274 gdb_assert (abfd != NULL);
2275
dce234bc
PP
2276 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2277 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2278 {
2279 error (_("Dwarf Error: Can't read DWARF data"
2280 " in section %s [in module %s]"),
2281 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2282 }
dce234bc
PP
2283}
2284
9e0ac564
TT
2285/* A helper function that returns the size of a section in a safe way.
2286 If you are positive that the section has been read before using the
2287 size, then it is safe to refer to the dwarf2_section_info object's
2288 "size" field directly. In other cases, you must call this
2289 function, because for compressed sections the size field is not set
2290 correctly until the section has been read. */
2291
2292static bfd_size_type
2293dwarf2_section_size (struct objfile *objfile,
2294 struct dwarf2_section_info *info)
2295{
2296 if (!info->readin)
2297 dwarf2_read_section (objfile, info);
2298 return info->size;
2299}
2300
dce234bc 2301/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2302 SECTION_NAME. */
af34e669 2303
dce234bc 2304void
3017a003
TG
2305dwarf2_get_section_info (struct objfile *objfile,
2306 enum dwarf2_section_enum sect,
d521ce57 2307 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2308 bfd_size_type *sizep)
2309{
2310 struct dwarf2_per_objfile *data
2311 = objfile_data (objfile, dwarf2_objfile_data_key);
2312 struct dwarf2_section_info *info;
a3b2a86b
TT
2313
2314 /* We may see an objfile without any DWARF, in which case we just
2315 return nothing. */
2316 if (data == NULL)
2317 {
2318 *sectp = NULL;
2319 *bufp = NULL;
2320 *sizep = 0;
2321 return;
2322 }
3017a003
TG
2323 switch (sect)
2324 {
2325 case DWARF2_DEBUG_FRAME:
2326 info = &data->frame;
2327 break;
2328 case DWARF2_EH_FRAME:
2329 info = &data->eh_frame;
2330 break;
2331 default:
2332 gdb_assert_not_reached ("unexpected section");
2333 }
dce234bc 2334
9e0ac564 2335 dwarf2_read_section (objfile, info);
dce234bc 2336
a32a8923 2337 *sectp = get_section_bfd_section (info);
dce234bc
PP
2338 *bufp = info->buffer;
2339 *sizep = info->size;
2340}
2341
36586728
TT
2342/* A helper function to find the sections for a .dwz file. */
2343
2344static void
2345locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2346{
2347 struct dwz_file *dwz_file = arg;
2348
2349 /* Note that we only support the standard ELF names, because .dwz
2350 is ELF-only (at the time of writing). */
2351 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2352 {
73869dc2 2353 dwz_file->abbrev.s.asection = sectp;
36586728
TT
2354 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2355 }
2356 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2357 {
73869dc2 2358 dwz_file->info.s.asection = sectp;
36586728
TT
2359 dwz_file->info.size = bfd_get_section_size (sectp);
2360 }
2361 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2362 {
73869dc2 2363 dwz_file->str.s.asection = sectp;
36586728
TT
2364 dwz_file->str.size = bfd_get_section_size (sectp);
2365 }
2366 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2367 {
73869dc2 2368 dwz_file->line.s.asection = sectp;
36586728
TT
2369 dwz_file->line.size = bfd_get_section_size (sectp);
2370 }
2371 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2372 {
73869dc2 2373 dwz_file->macro.s.asection = sectp;
36586728
TT
2374 dwz_file->macro.size = bfd_get_section_size (sectp);
2375 }
2ec9a5e0
TT
2376 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2377 {
73869dc2 2378 dwz_file->gdb_index.s.asection = sectp;
2ec9a5e0
TT
2379 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2380 }
36586728
TT
2381}
2382
4db1a1dc
TT
2383/* Open the separate '.dwz' debug file, if needed. Return NULL if
2384 there is no .gnu_debugaltlink section in the file. Error if there
2385 is such a section but the file cannot be found. */
36586728
TT
2386
2387static struct dwz_file *
2388dwarf2_get_dwz_file (void)
2389{
4db1a1dc
TT
2390 bfd *dwz_bfd;
2391 char *data;
36586728
TT
2392 struct cleanup *cleanup;
2393 const char *filename;
2394 struct dwz_file *result;
acd13123 2395 bfd_size_type buildid_len_arg;
dc294be5
TT
2396 size_t buildid_len;
2397 bfd_byte *buildid;
36586728
TT
2398
2399 if (dwarf2_per_objfile->dwz_file != NULL)
2400 return dwarf2_per_objfile->dwz_file;
2401
4db1a1dc
TT
2402 bfd_set_error (bfd_error_no_error);
2403 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2404 &buildid_len_arg, &buildid);
4db1a1dc
TT
2405 if (data == NULL)
2406 {
2407 if (bfd_get_error () == bfd_error_no_error)
2408 return NULL;
2409 error (_("could not read '.gnu_debugaltlink' section: %s"),
2410 bfd_errmsg (bfd_get_error ()));
2411 }
36586728 2412 cleanup = make_cleanup (xfree, data);
dc294be5 2413 make_cleanup (xfree, buildid);
36586728 2414
acd13123
TT
2415 buildid_len = (size_t) buildid_len_arg;
2416
f9d83a0b 2417 filename = (const char *) data;
36586728
TT
2418 if (!IS_ABSOLUTE_PATH (filename))
2419 {
4262abfb 2420 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2421 char *rel;
2422
2423 make_cleanup (xfree, abs);
2424 abs = ldirname (abs);
2425 make_cleanup (xfree, abs);
2426
2427 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2428 make_cleanup (xfree, rel);
2429 filename = rel;
2430 }
2431
dc294be5
TT
2432 /* First try the file name given in the section. If that doesn't
2433 work, try to use the build-id instead. */
36586728 2434 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
dc294be5 2435 if (dwz_bfd != NULL)
36586728 2436 {
dc294be5
TT
2437 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2438 {
2439 gdb_bfd_unref (dwz_bfd);
2440 dwz_bfd = NULL;
2441 }
36586728
TT
2442 }
2443
dc294be5
TT
2444 if (dwz_bfd == NULL)
2445 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2446
2447 if (dwz_bfd == NULL)
2448 error (_("could not find '.gnu_debugaltlink' file for %s"),
2449 objfile_name (dwarf2_per_objfile->objfile));
2450
36586728
TT
2451 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2452 struct dwz_file);
2453 result->dwz_bfd = dwz_bfd;
2454
2455 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2456
2457 do_cleanups (cleanup);
2458
13aaf454 2459 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
8d2cc612 2460 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2461 return result;
2462}
9291a0cd 2463\f
7b9f3c50
DE
2464/* DWARF quick_symbols_functions support. */
2465
2466/* TUs can share .debug_line entries, and there can be a lot more TUs than
2467 unique line tables, so we maintain a separate table of all .debug_line
2468 derived entries to support the sharing.
2469 All the quick functions need is the list of file names. We discard the
2470 line_header when we're done and don't need to record it here. */
2471struct quick_file_names
2472{
094b34ac
DE
2473 /* The data used to construct the hash key. */
2474 struct stmt_list_hash hash;
7b9f3c50
DE
2475
2476 /* The number of entries in file_names, real_names. */
2477 unsigned int num_file_names;
2478
2479 /* The file names from the line table, after being run through
2480 file_full_name. */
2481 const char **file_names;
2482
2483 /* The file names from the line table after being run through
2484 gdb_realpath. These are computed lazily. */
2485 const char **real_names;
2486};
2487
2488/* When using the index (and thus not using psymtabs), each CU has an
2489 object of this type. This is used to hold information needed by
2490 the various "quick" methods. */
2491struct dwarf2_per_cu_quick_data
2492{
2493 /* The file table. This can be NULL if there was no file table
2494 or it's currently not read in.
2495 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2496 struct quick_file_names *file_names;
2497
2498 /* The corresponding symbol table. This is NULL if symbols for this
2499 CU have not yet been read. */
2500 struct symtab *symtab;
2501
2502 /* A temporary mark bit used when iterating over all CUs in
2503 expand_symtabs_matching. */
2504 unsigned int mark : 1;
2505
2506 /* True if we've tried to read the file table and found there isn't one.
2507 There will be no point in trying to read it again next time. */
2508 unsigned int no_file_data : 1;
2509};
2510
094b34ac
DE
2511/* Utility hash function for a stmt_list_hash. */
2512
2513static hashval_t
2514hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2515{
2516 hashval_t v = 0;
2517
2518 if (stmt_list_hash->dwo_unit != NULL)
2519 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2520 v += stmt_list_hash->line_offset.sect_off;
2521 return v;
2522}
2523
2524/* Utility equality function for a stmt_list_hash. */
2525
2526static int
2527eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2528 const struct stmt_list_hash *rhs)
2529{
2530 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2531 return 0;
2532 if (lhs->dwo_unit != NULL
2533 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2534 return 0;
2535
2536 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2537}
2538
7b9f3c50
DE
2539/* Hash function for a quick_file_names. */
2540
2541static hashval_t
2542hash_file_name_entry (const void *e)
2543{
2544 const struct quick_file_names *file_data = e;
2545
094b34ac 2546 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2547}
2548
2549/* Equality function for a quick_file_names. */
2550
2551static int
2552eq_file_name_entry (const void *a, const void *b)
2553{
2554 const struct quick_file_names *ea = a;
2555 const struct quick_file_names *eb = b;
2556
094b34ac 2557 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2558}
2559
2560/* Delete function for a quick_file_names. */
2561
2562static void
2563delete_file_name_entry (void *e)
2564{
2565 struct quick_file_names *file_data = e;
2566 int i;
2567
2568 for (i = 0; i < file_data->num_file_names; ++i)
2569 {
2570 xfree ((void*) file_data->file_names[i]);
2571 if (file_data->real_names)
2572 xfree ((void*) file_data->real_names[i]);
2573 }
2574
2575 /* The space for the struct itself lives on objfile_obstack,
2576 so we don't free it here. */
2577}
2578
2579/* Create a quick_file_names hash table. */
2580
2581static htab_t
2582create_quick_file_names_table (unsigned int nr_initial_entries)
2583{
2584 return htab_create_alloc (nr_initial_entries,
2585 hash_file_name_entry, eq_file_name_entry,
2586 delete_file_name_entry, xcalloc, xfree);
2587}
9291a0cd 2588
918dd910
JK
2589/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2590 have to be created afterwards. You should call age_cached_comp_units after
2591 processing PER_CU->CU. dw2_setup must have been already called. */
2592
2593static void
2594load_cu (struct dwarf2_per_cu_data *per_cu)
2595{
3019eac3 2596 if (per_cu->is_debug_types)
e5fe5e75 2597 load_full_type_unit (per_cu);
918dd910 2598 else
95554aad 2599 load_full_comp_unit (per_cu, language_minimal);
918dd910 2600
918dd910 2601 gdb_assert (per_cu->cu != NULL);
2dc860c0
DE
2602
2603 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2604}
2605
a0f42c21 2606/* Read in the symbols for PER_CU. */
2fdf6df6 2607
9291a0cd 2608static void
a0f42c21 2609dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2610{
2611 struct cleanup *back_to;
2612
f4dc4d17
DE
2613 /* Skip type_unit_groups, reading the type units they contain
2614 is handled elsewhere. */
2615 if (IS_TYPE_UNIT_GROUP (per_cu))
2616 return;
2617
9291a0cd
TT
2618 back_to = make_cleanup (dwarf2_release_queue, NULL);
2619
95554aad
TT
2620 if (dwarf2_per_objfile->using_index
2621 ? per_cu->v.quick->symtab == NULL
2622 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2623 {
2624 queue_comp_unit (per_cu, language_minimal);
2625 load_cu (per_cu);
89e63ee4
DE
2626
2627 /* If we just loaded a CU from a DWO, and we're working with an index
2628 that may badly handle TUs, load all the TUs in that DWO as well.
2629 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2630 if (!per_cu->is_debug_types
2631 && per_cu->cu->dwo_unit != NULL
2632 && dwarf2_per_objfile->index_table != NULL
2633 && dwarf2_per_objfile->index_table->version <= 7
2634 /* DWP files aren't supported yet. */
2635 && get_dwp_file () == NULL)
2636 queue_and_load_all_dwo_tus (per_cu);
95554aad 2637 }
9291a0cd 2638
a0f42c21 2639 process_queue ();
9291a0cd
TT
2640
2641 /* Age the cache, releasing compilation units that have not
2642 been used recently. */
2643 age_cached_comp_units ();
2644
2645 do_cleanups (back_to);
2646}
2647
2648/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2649 the objfile from which this CU came. Returns the resulting symbol
2650 table. */
2fdf6df6 2651
9291a0cd 2652static struct symtab *
a0f42c21 2653dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2654{
95554aad 2655 gdb_assert (dwarf2_per_objfile->using_index);
9291a0cd
TT
2656 if (!per_cu->v.quick->symtab)
2657 {
2658 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2659 increment_reading_symtab ();
a0f42c21 2660 dw2_do_instantiate_symtab (per_cu);
95554aad 2661 process_cu_includes ();
9291a0cd
TT
2662 do_cleanups (back_to);
2663 }
2664 return per_cu->v.quick->symtab;
2665}
2666
8832e7e3 2667/* Return the CU/TU given its index.
f4dc4d17
DE
2668
2669 This is intended for loops like:
2670
2671 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2672 + dwarf2_per_objfile->n_type_units); ++i)
2673 {
8832e7e3 2674 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2675
2676 ...;
2677 }
2678*/
2fdf6df6 2679
1fd400ff 2680static struct dwarf2_per_cu_data *
8832e7e3 2681dw2_get_cutu (int index)
1fd400ff
TT
2682{
2683 if (index >= dwarf2_per_objfile->n_comp_units)
2684 {
f4dc4d17 2685 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2686 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2687 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2688 }
2689
2690 return dwarf2_per_objfile->all_comp_units[index];
2691}
2692
8832e7e3
DE
2693/* Return the CU given its index.
2694 This differs from dw2_get_cutu in that it's for when you know INDEX
2695 refers to a CU. */
f4dc4d17
DE
2696
2697static struct dwarf2_per_cu_data *
8832e7e3 2698dw2_get_cu (int index)
f4dc4d17 2699{
8832e7e3 2700 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2701
1fd400ff
TT
2702 return dwarf2_per_objfile->all_comp_units[index];
2703}
2704
2ec9a5e0
TT
2705/* A helper for create_cus_from_index that handles a given list of
2706 CUs. */
2fdf6df6 2707
74a0d9f6 2708static void
2ec9a5e0
TT
2709create_cus_from_index_list (struct objfile *objfile,
2710 const gdb_byte *cu_list, offset_type n_elements,
2711 struct dwarf2_section_info *section,
2712 int is_dwz,
2713 int base_offset)
9291a0cd
TT
2714{
2715 offset_type i;
9291a0cd 2716
2ec9a5e0 2717 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2718 {
2719 struct dwarf2_per_cu_data *the_cu;
2720 ULONGEST offset, length;
2721
74a0d9f6
JK
2722 gdb_static_assert (sizeof (ULONGEST) >= 8);
2723 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2724 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2725 cu_list += 2 * 8;
2726
2727 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2728 struct dwarf2_per_cu_data);
b64f50a1 2729 the_cu->offset.sect_off = offset;
9291a0cd
TT
2730 the_cu->length = length;
2731 the_cu->objfile = objfile;
8a0459fd 2732 the_cu->section = section;
9291a0cd
TT
2733 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2734 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2735 the_cu->is_dwz = is_dwz;
2736 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2737 }
9291a0cd
TT
2738}
2739
2ec9a5e0 2740/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2741 the CU objects for this objfile. */
2ec9a5e0 2742
74a0d9f6 2743static void
2ec9a5e0
TT
2744create_cus_from_index (struct objfile *objfile,
2745 const gdb_byte *cu_list, offset_type cu_list_elements,
2746 const gdb_byte *dwz_list, offset_type dwz_elements)
2747{
2748 struct dwz_file *dwz;
2749
2750 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2751 dwarf2_per_objfile->all_comp_units
2752 = obstack_alloc (&objfile->objfile_obstack,
2753 dwarf2_per_objfile->n_comp_units
2754 * sizeof (struct dwarf2_per_cu_data *));
2755
74a0d9f6
JK
2756 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2757 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2758
2759 if (dwz_elements == 0)
74a0d9f6 2760 return;
2ec9a5e0
TT
2761
2762 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2763 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2764 cu_list_elements / 2);
2ec9a5e0
TT
2765}
2766
1fd400ff 2767/* Create the signatured type hash table from the index. */
673bfd45 2768
74a0d9f6 2769static void
673bfd45 2770create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2771 struct dwarf2_section_info *section,
673bfd45
DE
2772 const gdb_byte *bytes,
2773 offset_type elements)
1fd400ff
TT
2774{
2775 offset_type i;
673bfd45 2776 htab_t sig_types_hash;
1fd400ff 2777
6aa5f3a6
DE
2778 dwarf2_per_objfile->n_type_units
2779 = dwarf2_per_objfile->n_allocated_type_units
2780 = elements / 3;
d467dd73 2781 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
2782 = xmalloc (dwarf2_per_objfile->n_type_units
2783 * sizeof (struct signatured_type *));
1fd400ff 2784
673bfd45 2785 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2786
2787 for (i = 0; i < elements; i += 3)
2788 {
52dc124a
DE
2789 struct signatured_type *sig_type;
2790 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2791 void **slot;
2792
74a0d9f6
JK
2793 gdb_static_assert (sizeof (ULONGEST) >= 8);
2794 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2795 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2796 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2797 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2798 bytes += 3 * 8;
2799
52dc124a 2800 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2801 struct signatured_type);
52dc124a 2802 sig_type->signature = signature;
3019eac3
DE
2803 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2804 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2805 sig_type->per_cu.section = section;
52dc124a
DE
2806 sig_type->per_cu.offset.sect_off = offset;
2807 sig_type->per_cu.objfile = objfile;
2808 sig_type->per_cu.v.quick
1fd400ff
TT
2809 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2810 struct dwarf2_per_cu_quick_data);
2811
52dc124a
DE
2812 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2813 *slot = sig_type;
1fd400ff 2814
b4dd5633 2815 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2816 }
2817
673bfd45 2818 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2819}
2820
9291a0cd
TT
2821/* Read the address map data from the mapped index, and use it to
2822 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2823
9291a0cd
TT
2824static void
2825create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2826{
2827 const gdb_byte *iter, *end;
2828 struct obstack temp_obstack;
2829 struct addrmap *mutable_map;
2830 struct cleanup *cleanup;
2831 CORE_ADDR baseaddr;
2832
2833 obstack_init (&temp_obstack);
2834 cleanup = make_cleanup_obstack_free (&temp_obstack);
2835 mutable_map = addrmap_create_mutable (&temp_obstack);
2836
2837 iter = index->address_table;
2838 end = iter + index->address_table_size;
2839
2840 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2841
2842 while (iter < end)
2843 {
2844 ULONGEST hi, lo, cu_index;
2845 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2846 iter += 8;
2847 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2848 iter += 8;
2849 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2850 iter += 4;
f652bce2 2851
24a55014 2852 if (lo > hi)
f652bce2 2853 {
24a55014
DE
2854 complaint (&symfile_complaints,
2855 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2856 hex_string (lo), hex_string (hi));
24a55014 2857 continue;
f652bce2 2858 }
24a55014
DE
2859
2860 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2861 {
2862 complaint (&symfile_complaints,
2863 _(".gdb_index address table has invalid CU number %u"),
2864 (unsigned) cu_index);
24a55014 2865 continue;
f652bce2 2866 }
24a55014
DE
2867
2868 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
8832e7e3 2869 dw2_get_cutu (cu_index));
9291a0cd
TT
2870 }
2871
2872 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2873 &objfile->objfile_obstack);
2874 do_cleanups (cleanup);
2875}
2876
59d7bcaf
JK
2877/* The hash function for strings in the mapped index. This is the same as
2878 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2879 implementation. This is necessary because the hash function is tied to the
2880 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2881 SYMBOL_HASH_NEXT.
2882
2883 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2884
9291a0cd 2885static hashval_t
559a7a62 2886mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2887{
2888 const unsigned char *str = (const unsigned char *) p;
2889 hashval_t r = 0;
2890 unsigned char c;
2891
2892 while ((c = *str++) != 0)
559a7a62
JK
2893 {
2894 if (index_version >= 5)
2895 c = tolower (c);
2896 r = r * 67 + c - 113;
2897 }
9291a0cd
TT
2898
2899 return r;
2900}
2901
2902/* Find a slot in the mapped index INDEX for the object named NAME.
2903 If NAME is found, set *VEC_OUT to point to the CU vector in the
2904 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2905
9291a0cd
TT
2906static int
2907find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2908 offset_type **vec_out)
2909{
0cf03b49
JK
2910 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2911 offset_type hash;
9291a0cd 2912 offset_type slot, step;
559a7a62 2913 int (*cmp) (const char *, const char *);
9291a0cd 2914
0cf03b49
JK
2915 if (current_language->la_language == language_cplus
2916 || current_language->la_language == language_java
2917 || current_language->la_language == language_fortran)
2918 {
2919 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2920 not contain any. */
2921 const char *paren = strchr (name, '(');
2922
2923 if (paren)
2924 {
2925 char *dup;
2926
2927 dup = xmalloc (paren - name + 1);
2928 memcpy (dup, name, paren - name);
2929 dup[paren - name] = 0;
2930
2931 make_cleanup (xfree, dup);
2932 name = dup;
2933 }
2934 }
2935
559a7a62 2936 /* Index version 4 did not support case insensitive searches. But the
feea76c2 2937 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
2938 simulate our NAME being searched is also lowercased. */
2939 hash = mapped_index_string_hash ((index->version == 4
2940 && case_sensitivity == case_sensitive_off
2941 ? 5 : index->version),
2942 name);
2943
3876f04e
DE
2944 slot = hash & (index->symbol_table_slots - 1);
2945 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 2946 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
2947
2948 for (;;)
2949 {
2950 /* Convert a slot number to an offset into the table. */
2951 offset_type i = 2 * slot;
2952 const char *str;
3876f04e 2953 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
2954 {
2955 do_cleanups (back_to);
2956 return 0;
2957 }
9291a0cd 2958
3876f04e 2959 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 2960 if (!cmp (name, str))
9291a0cd
TT
2961 {
2962 *vec_out = (offset_type *) (index->constant_pool
3876f04e 2963 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 2964 do_cleanups (back_to);
9291a0cd
TT
2965 return 1;
2966 }
2967
3876f04e 2968 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
2969 }
2970}
2971
2ec9a5e0
TT
2972/* A helper function that reads the .gdb_index from SECTION and fills
2973 in MAP. FILENAME is the name of the file containing the section;
2974 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2975 ok to use deprecated sections.
2976
2977 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2978 out parameters that are filled in with information about the CU and
2979 TU lists in the section.
2980
2981 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 2982
9291a0cd 2983static int
2ec9a5e0
TT
2984read_index_from_section (struct objfile *objfile,
2985 const char *filename,
2986 int deprecated_ok,
2987 struct dwarf2_section_info *section,
2988 struct mapped_index *map,
2989 const gdb_byte **cu_list,
2990 offset_type *cu_list_elements,
2991 const gdb_byte **types_list,
2992 offset_type *types_list_elements)
9291a0cd 2993{
948f8e3d 2994 const gdb_byte *addr;
2ec9a5e0 2995 offset_type version;
b3b272e1 2996 offset_type *metadata;
1fd400ff 2997 int i;
9291a0cd 2998
2ec9a5e0 2999 if (dwarf2_section_empty_p (section))
9291a0cd 3000 return 0;
82430852
JK
3001
3002 /* Older elfutils strip versions could keep the section in the main
3003 executable while splitting it for the separate debug info file. */
a32a8923 3004 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3005 return 0;
3006
2ec9a5e0 3007 dwarf2_read_section (objfile, section);
9291a0cd 3008
2ec9a5e0 3009 addr = section->buffer;
9291a0cd 3010 /* Version check. */
1fd400ff 3011 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3012 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3013 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3014 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3015 indices. */
831adc1f 3016 if (version < 4)
481860b3
GB
3017 {
3018 static int warning_printed = 0;
3019 if (!warning_printed)
3020 {
3021 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3022 filename);
481860b3
GB
3023 warning_printed = 1;
3024 }
3025 return 0;
3026 }
3027 /* Index version 4 uses a different hash function than index version
3028 5 and later.
3029
3030 Versions earlier than 6 did not emit psymbols for inlined
3031 functions. Using these files will cause GDB not to be able to
3032 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3033 indices unless the user has done
3034 "set use-deprecated-index-sections on". */
2ec9a5e0 3035 if (version < 6 && !deprecated_ok)
481860b3
GB
3036 {
3037 static int warning_printed = 0;
3038 if (!warning_printed)
3039 {
e615022a
DE
3040 warning (_("\
3041Skipping deprecated .gdb_index section in %s.\n\
3042Do \"set use-deprecated-index-sections on\" before the file is read\n\
3043to use the section anyway."),
2ec9a5e0 3044 filename);
481860b3
GB
3045 warning_printed = 1;
3046 }
3047 return 0;
3048 }
796a7ff8 3049 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3050 of the TU (for symbols coming from TUs),
3051 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3052 Plus gold-generated indices can have duplicate entries for global symbols,
3053 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3054 These are just performance bugs, and we can't distinguish gdb-generated
3055 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3056
481860b3 3057 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3058 longer backward compatible. */
796a7ff8 3059 if (version > 8)
594e8718 3060 return 0;
9291a0cd 3061
559a7a62 3062 map->version = version;
2ec9a5e0 3063 map->total_size = section->size;
9291a0cd
TT
3064
3065 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3066
3067 i = 0;
2ec9a5e0
TT
3068 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3069 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3070 / 8);
1fd400ff
TT
3071 ++i;
3072
2ec9a5e0
TT
3073 *types_list = addr + MAYBE_SWAP (metadata[i]);
3074 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3075 - MAYBE_SWAP (metadata[i]))
3076 / 8);
987d643c 3077 ++i;
1fd400ff
TT
3078
3079 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3080 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3081 - MAYBE_SWAP (metadata[i]));
3082 ++i;
3083
3876f04e
DE
3084 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3085 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3086 - MAYBE_SWAP (metadata[i]))
3087 / (2 * sizeof (offset_type)));
1fd400ff 3088 ++i;
9291a0cd 3089
f9d83a0b 3090 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3091
2ec9a5e0
TT
3092 return 1;
3093}
3094
3095
3096/* Read the index file. If everything went ok, initialize the "quick"
3097 elements of all the CUs and return 1. Otherwise, return 0. */
3098
3099static int
3100dwarf2_read_index (struct objfile *objfile)
3101{
3102 struct mapped_index local_map, *map;
3103 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3104 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3105 struct dwz_file *dwz;
2ec9a5e0 3106
4262abfb 3107 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3108 use_deprecated_index_sections,
3109 &dwarf2_per_objfile->gdb_index, &local_map,
3110 &cu_list, &cu_list_elements,
3111 &types_list, &types_list_elements))
3112 return 0;
3113
0fefef59 3114 /* Don't use the index if it's empty. */
2ec9a5e0 3115 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3116 return 0;
3117
2ec9a5e0
TT
3118 /* If there is a .dwz file, read it so we can get its CU list as
3119 well. */
4db1a1dc
TT
3120 dwz = dwarf2_get_dwz_file ();
3121 if (dwz != NULL)
2ec9a5e0 3122 {
2ec9a5e0
TT
3123 struct mapped_index dwz_map;
3124 const gdb_byte *dwz_types_ignore;
3125 offset_type dwz_types_elements_ignore;
3126
3127 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3128 1,
3129 &dwz->gdb_index, &dwz_map,
3130 &dwz_list, &dwz_list_elements,
3131 &dwz_types_ignore,
3132 &dwz_types_elements_ignore))
3133 {
3134 warning (_("could not read '.gdb_index' section from %s; skipping"),
3135 bfd_get_filename (dwz->dwz_bfd));
3136 return 0;
3137 }
3138 }
3139
74a0d9f6
JK
3140 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3141 dwz_list_elements);
1fd400ff 3142
8b70b953
TT
3143 if (types_list_elements)
3144 {
3145 struct dwarf2_section_info *section;
3146
3147 /* We can only handle a single .debug_types when we have an
3148 index. */
3149 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3150 return 0;
3151
3152 section = VEC_index (dwarf2_section_info_def,
3153 dwarf2_per_objfile->types, 0);
3154
74a0d9f6
JK
3155 create_signatured_type_table_from_index (objfile, section, types_list,
3156 types_list_elements);
8b70b953 3157 }
9291a0cd 3158
2ec9a5e0
TT
3159 create_addrmap_from_index (objfile, &local_map);
3160
3161 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3162 *map = local_map;
9291a0cd
TT
3163
3164 dwarf2_per_objfile->index_table = map;
3165 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3166 dwarf2_per_objfile->quick_file_names_table =
3167 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3168
3169 return 1;
3170}
3171
3172/* A helper for the "quick" functions which sets the global
3173 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3174
9291a0cd
TT
3175static void
3176dw2_setup (struct objfile *objfile)
3177{
3178 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3179 gdb_assert (dwarf2_per_objfile);
3180}
3181
dee91e82 3182/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3183
dee91e82
DE
3184static void
3185dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3186 const gdb_byte *info_ptr,
dee91e82
DE
3187 struct die_info *comp_unit_die,
3188 int has_children,
3189 void *data)
9291a0cd 3190{
dee91e82
DE
3191 struct dwarf2_cu *cu = reader->cu;
3192 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3193 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3194 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3195 struct line_header *lh;
9291a0cd 3196 struct attribute *attr;
dee91e82 3197 int i;
15d034d0 3198 const char *name, *comp_dir;
7b9f3c50
DE
3199 void **slot;
3200 struct quick_file_names *qfn;
3201 unsigned int line_offset;
9291a0cd 3202
0186c6a7
DE
3203 gdb_assert (! this_cu->is_debug_types);
3204
07261596
TT
3205 /* Our callers never want to match partial units -- instead they
3206 will match the enclosing full CU. */
3207 if (comp_unit_die->tag == DW_TAG_partial_unit)
3208 {
3209 this_cu->v.quick->no_file_data = 1;
3210 return;
3211 }
3212
0186c6a7 3213 lh_cu = this_cu;
7b9f3c50
DE
3214 lh = NULL;
3215 slot = NULL;
3216 line_offset = 0;
dee91e82
DE
3217
3218 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3219 if (attr)
3220 {
7b9f3c50
DE
3221 struct quick_file_names find_entry;
3222
3223 line_offset = DW_UNSND (attr);
3224
3225 /* We may have already read in this line header (TU line header sharing).
3226 If we have we're done. */
094b34ac
DE
3227 find_entry.hash.dwo_unit = cu->dwo_unit;
3228 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3229 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3230 &find_entry, INSERT);
3231 if (*slot != NULL)
3232 {
094b34ac 3233 lh_cu->v.quick->file_names = *slot;
dee91e82 3234 return;
7b9f3c50
DE
3235 }
3236
3019eac3 3237 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3238 }
3239 if (lh == NULL)
3240 {
094b34ac 3241 lh_cu->v.quick->no_file_data = 1;
dee91e82 3242 return;
9291a0cd
TT
3243 }
3244
7b9f3c50 3245 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
094b34ac
DE
3246 qfn->hash.dwo_unit = cu->dwo_unit;
3247 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3248 gdb_assert (slot != NULL);
3249 *slot = qfn;
9291a0cd 3250
dee91e82 3251 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3252
7b9f3c50
DE
3253 qfn->num_file_names = lh->num_file_names;
3254 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3255 lh->num_file_names * sizeof (char *));
9291a0cd 3256 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3257 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3258 qfn->real_names = NULL;
9291a0cd 3259
7b9f3c50 3260 free_line_header (lh);
7b9f3c50 3261
094b34ac 3262 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3263}
3264
3265/* A helper for the "quick" functions which attempts to read the line
3266 table for THIS_CU. */
3267
3268static struct quick_file_names *
e4a48d9d 3269dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3270{
0186c6a7
DE
3271 /* This should never be called for TUs. */
3272 gdb_assert (! this_cu->is_debug_types);
3273 /* Nor type unit groups. */
3274 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3275
dee91e82
DE
3276 if (this_cu->v.quick->file_names != NULL)
3277 return this_cu->v.quick->file_names;
3278 /* If we know there is no line data, no point in looking again. */
3279 if (this_cu->v.quick->no_file_data)
3280 return NULL;
3281
0186c6a7 3282 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3283
3284 if (this_cu->v.quick->no_file_data)
3285 return NULL;
3286 return this_cu->v.quick->file_names;
9291a0cd
TT
3287}
3288
3289/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3290 real path for a given file name from the line table. */
2fdf6df6 3291
9291a0cd 3292static const char *
7b9f3c50
DE
3293dw2_get_real_path (struct objfile *objfile,
3294 struct quick_file_names *qfn, int index)
9291a0cd 3295{
7b9f3c50
DE
3296 if (qfn->real_names == NULL)
3297 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3298 qfn->num_file_names, const char *);
9291a0cd 3299
7b9f3c50
DE
3300 if (qfn->real_names[index] == NULL)
3301 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3302
7b9f3c50 3303 return qfn->real_names[index];
9291a0cd
TT
3304}
3305
3306static struct symtab *
3307dw2_find_last_source_symtab (struct objfile *objfile)
3308{
3309 int index;
ae2de4f8 3310
9291a0cd
TT
3311 dw2_setup (objfile);
3312 index = dwarf2_per_objfile->n_comp_units - 1;
8832e7e3 3313 return dw2_instantiate_symtab (dw2_get_cutu (index));
9291a0cd
TT
3314}
3315
7b9f3c50
DE
3316/* Traversal function for dw2_forget_cached_source_info. */
3317
3318static int
3319dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3320{
7b9f3c50 3321 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3322
7b9f3c50 3323 if (file_data->real_names)
9291a0cd 3324 {
7b9f3c50 3325 int i;
9291a0cd 3326
7b9f3c50 3327 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3328 {
7b9f3c50
DE
3329 xfree ((void*) file_data->real_names[i]);
3330 file_data->real_names[i] = NULL;
9291a0cd
TT
3331 }
3332 }
7b9f3c50
DE
3333
3334 return 1;
3335}
3336
3337static void
3338dw2_forget_cached_source_info (struct objfile *objfile)
3339{
3340 dw2_setup (objfile);
3341
3342 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3343 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3344}
3345
f8eba3c6
TT
3346/* Helper function for dw2_map_symtabs_matching_filename that expands
3347 the symtabs and calls the iterator. */
3348
3349static int
3350dw2_map_expand_apply (struct objfile *objfile,
3351 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3352 const char *name, const char *real_path,
f8eba3c6
TT
3353 int (*callback) (struct symtab *, void *),
3354 void *data)
3355{
3356 struct symtab *last_made = objfile->symtabs;
3357
3358 /* Don't visit already-expanded CUs. */
3359 if (per_cu->v.quick->symtab)
3360 return 0;
3361
3362 /* This may expand more than one symtab, and we want to iterate over
3363 all of them. */
a0f42c21 3364 dw2_instantiate_symtab (per_cu);
f8eba3c6 3365
f5b95b50 3366 return iterate_over_some_symtabs (name, real_path, callback, data,
f8eba3c6
TT
3367 objfile->symtabs, last_made);
3368}
3369
3370/* Implementation of the map_symtabs_matching_filename method. */
3371
9291a0cd 3372static int
f8eba3c6 3373dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3374 const char *real_path,
f8eba3c6
TT
3375 int (*callback) (struct symtab *, void *),
3376 void *data)
9291a0cd
TT
3377{
3378 int i;
c011a4f4 3379 const char *name_basename = lbasename (name);
9291a0cd
TT
3380
3381 dw2_setup (objfile);
ae2de4f8 3382
848e3e78
DE
3383 /* The rule is CUs specify all the files, including those used by
3384 any TU, so there's no need to scan TUs here. */
f4dc4d17 3385
848e3e78 3386 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3387 {
3388 int j;
8832e7e3 3389 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3390 struct quick_file_names *file_data;
9291a0cd 3391
3d7bb9d9 3392 /* We only need to look at symtabs not already expanded. */
e254ef6a 3393 if (per_cu->v.quick->symtab)
9291a0cd
TT
3394 continue;
3395
e4a48d9d 3396 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3397 if (file_data == NULL)
9291a0cd
TT
3398 continue;
3399
7b9f3c50 3400 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3401 {
7b9f3c50 3402 const char *this_name = file_data->file_names[j];
da235a7c 3403 const char *this_real_name;
9291a0cd 3404
af529f8f 3405 if (compare_filenames_for_search (this_name, name))
9291a0cd 3406 {
f5b95b50 3407 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3408 callback, data))
3409 return 1;
288e77a7 3410 continue;
4aac40c8 3411 }
9291a0cd 3412
c011a4f4
DE
3413 /* Before we invoke realpath, which can get expensive when many
3414 files are involved, do a quick comparison of the basenames. */
3415 if (! basenames_may_differ
3416 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3417 continue;
3418
da235a7c
JK
3419 this_real_name = dw2_get_real_path (objfile, file_data, j);
3420 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3421 {
da235a7c
JK
3422 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3423 callback, data))
3424 return 1;
288e77a7 3425 continue;
da235a7c 3426 }
9291a0cd 3427
da235a7c
JK
3428 if (real_path != NULL)
3429 {
af529f8f
JK
3430 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3431 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3432 if (this_real_name != NULL
af529f8f 3433 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3434 {
f5b95b50 3435 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3436 callback, data))
3437 return 1;
288e77a7 3438 continue;
9291a0cd
TT
3439 }
3440 }
3441 }
3442 }
3443
9291a0cd
TT
3444 return 0;
3445}
3446
da51c347
DE
3447/* Struct used to manage iterating over all CUs looking for a symbol. */
3448
3449struct dw2_symtab_iterator
9291a0cd 3450{
da51c347
DE
3451 /* The internalized form of .gdb_index. */
3452 struct mapped_index *index;
3453 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3454 int want_specific_block;
3455 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3456 Unused if !WANT_SPECIFIC_BLOCK. */
3457 int block_index;
3458 /* The kind of symbol we're looking for. */
3459 domain_enum domain;
3460 /* The list of CUs from the index entry of the symbol,
3461 or NULL if not found. */
3462 offset_type *vec;
3463 /* The next element in VEC to look at. */
3464 int next;
3465 /* The number of elements in VEC, or zero if there is no match. */
3466 int length;
8943b874
DE
3467 /* Have we seen a global version of the symbol?
3468 If so we can ignore all further global instances.
3469 This is to work around gold/15646, inefficient gold-generated
3470 indices. */
3471 int global_seen;
da51c347 3472};
9291a0cd 3473
da51c347
DE
3474/* Initialize the index symtab iterator ITER.
3475 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3476 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3477
9291a0cd 3478static void
da51c347
DE
3479dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3480 struct mapped_index *index,
3481 int want_specific_block,
3482 int block_index,
3483 domain_enum domain,
3484 const char *name)
3485{
3486 iter->index = index;
3487 iter->want_specific_block = want_specific_block;
3488 iter->block_index = block_index;
3489 iter->domain = domain;
3490 iter->next = 0;
8943b874 3491 iter->global_seen = 0;
da51c347
DE
3492
3493 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3494 iter->length = MAYBE_SWAP (*iter->vec);
3495 else
3496 {
3497 iter->vec = NULL;
3498 iter->length = 0;
3499 }
3500}
3501
3502/* Return the next matching CU or NULL if there are no more. */
3503
3504static struct dwarf2_per_cu_data *
3505dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3506{
3507 for ( ; iter->next < iter->length; ++iter->next)
3508 {
3509 offset_type cu_index_and_attrs =
3510 MAYBE_SWAP (iter->vec[iter->next + 1]);
3511 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3512 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3513 int want_static = iter->block_index != GLOBAL_BLOCK;
3514 /* This value is only valid for index versions >= 7. */
3515 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3516 gdb_index_symbol_kind symbol_kind =
3517 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3518 /* Only check the symbol attributes if they're present.
3519 Indices prior to version 7 don't record them,
3520 and indices >= 7 may elide them for certain symbols
3521 (gold does this). */
3522 int attrs_valid =
3523 (iter->index->version >= 7
3524 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3525
3190f0c6
DE
3526 /* Don't crash on bad data. */
3527 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3528 + dwarf2_per_objfile->n_type_units))
3529 {
3530 complaint (&symfile_complaints,
3531 _(".gdb_index entry has bad CU index"
4262abfb
JK
3532 " [in module %s]"),
3533 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3534 continue;
3535 }
3536
8832e7e3 3537 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3538
da51c347
DE
3539 /* Skip if already read in. */
3540 if (per_cu->v.quick->symtab)
3541 continue;
3542
8943b874
DE
3543 /* Check static vs global. */
3544 if (attrs_valid)
3545 {
3546 if (iter->want_specific_block
3547 && want_static != is_static)
3548 continue;
3549 /* Work around gold/15646. */
3550 if (!is_static && iter->global_seen)
3551 continue;
3552 if (!is_static)
3553 iter->global_seen = 1;
3554 }
da51c347
DE
3555
3556 /* Only check the symbol's kind if it has one. */
3557 if (attrs_valid)
3558 {
3559 switch (iter->domain)
3560 {
3561 case VAR_DOMAIN:
3562 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3563 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3564 /* Some types are also in VAR_DOMAIN. */
3565 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3566 continue;
3567 break;
3568 case STRUCT_DOMAIN:
3569 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3570 continue;
3571 break;
3572 case LABEL_DOMAIN:
3573 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3574 continue;
3575 break;
3576 default:
3577 break;
3578 }
3579 }
3580
3581 ++iter->next;
3582 return per_cu;
3583 }
3584
3585 return NULL;
3586}
3587
3588static struct symtab *
3589dw2_lookup_symbol (struct objfile *objfile, int block_index,
3590 const char *name, domain_enum domain)
9291a0cd 3591{
da51c347 3592 struct symtab *stab_best = NULL;
156942c7
DE
3593 struct mapped_index *index;
3594
9291a0cd
TT
3595 dw2_setup (objfile);
3596
156942c7
DE
3597 index = dwarf2_per_objfile->index_table;
3598
da51c347 3599 /* index is NULL if OBJF_READNOW. */
156942c7 3600 if (index)
9291a0cd 3601 {
da51c347
DE
3602 struct dw2_symtab_iterator iter;
3603 struct dwarf2_per_cu_data *per_cu;
3604
3605 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3606
da51c347 3607 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3608 {
da51c347
DE
3609 struct symbol *sym = NULL;
3610 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3611
3612 /* Some caution must be observed with overloaded functions
3613 and methods, since the index will not contain any overload
3614 information (but NAME might contain it). */
3615 if (stab->primary)
9291a0cd 3616 {
346d1dfe 3617 const struct blockvector *bv = BLOCKVECTOR (stab);
da51c347 3618 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
156942c7 3619
da51c347
DE
3620 sym = lookup_block_symbol (block, name, domain);
3621 }
1fd400ff 3622
da51c347
DE
3623 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3624 {
3625 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3626 return stab;
3627
3628 stab_best = stab;
9291a0cd 3629 }
da51c347
DE
3630
3631 /* Keep looking through other CUs. */
9291a0cd
TT
3632 }
3633 }
9291a0cd 3634
da51c347 3635 return stab_best;
9291a0cd
TT
3636}
3637
3638static void
3639dw2_print_stats (struct objfile *objfile)
3640{
e4a48d9d 3641 int i, total, count;
9291a0cd
TT
3642
3643 dw2_setup (objfile);
e4a48d9d 3644 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3645 count = 0;
e4a48d9d 3646 for (i = 0; i < total; ++i)
9291a0cd 3647 {
8832e7e3 3648 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3649
e254ef6a 3650 if (!per_cu->v.quick->symtab)
9291a0cd
TT
3651 ++count;
3652 }
e4a48d9d 3653 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3654 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3655}
3656
779bd270
DE
3657/* This dumps minimal information about the index.
3658 It is called via "mt print objfiles".
3659 One use is to verify .gdb_index has been loaded by the
3660 gdb.dwarf2/gdb-index.exp testcase. */
3661
9291a0cd
TT
3662static void
3663dw2_dump (struct objfile *objfile)
3664{
779bd270
DE
3665 dw2_setup (objfile);
3666 gdb_assert (dwarf2_per_objfile->using_index);
3667 printf_filtered (".gdb_index:");
3668 if (dwarf2_per_objfile->index_table != NULL)
3669 {
3670 printf_filtered (" version %d\n",
3671 dwarf2_per_objfile->index_table->version);
3672 }
3673 else
3674 printf_filtered (" faked for \"readnow\"\n");
3675 printf_filtered ("\n");
9291a0cd
TT
3676}
3677
3678static void
3189cb12
DE
3679dw2_relocate (struct objfile *objfile,
3680 const struct section_offsets *new_offsets,
3681 const struct section_offsets *delta)
9291a0cd
TT
3682{
3683 /* There's nothing to relocate here. */
3684}
3685
3686static void
3687dw2_expand_symtabs_for_function (struct objfile *objfile,
3688 const char *func_name)
3689{
da51c347
DE
3690 struct mapped_index *index;
3691
3692 dw2_setup (objfile);
3693
3694 index = dwarf2_per_objfile->index_table;
3695
3696 /* index is NULL if OBJF_READNOW. */
3697 if (index)
3698 {
3699 struct dw2_symtab_iterator iter;
3700 struct dwarf2_per_cu_data *per_cu;
3701
3702 /* Note: It doesn't matter what we pass for block_index here. */
3703 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3704 func_name);
3705
3706 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3707 dw2_instantiate_symtab (per_cu);
3708 }
9291a0cd
TT
3709}
3710
3711static void
3712dw2_expand_all_symtabs (struct objfile *objfile)
3713{
3714 int i;
3715
3716 dw2_setup (objfile);
1fd400ff
TT
3717
3718 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3719 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3720 {
8832e7e3 3721 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3722
a0f42c21 3723 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3724 }
3725}
3726
3727static void
652a8996
JK
3728dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3729 const char *fullname)
9291a0cd
TT
3730{
3731 int i;
3732
3733 dw2_setup (objfile);
d4637a04
DE
3734
3735 /* We don't need to consider type units here.
3736 This is only called for examining code, e.g. expand_line_sal.
3737 There can be an order of magnitude (or more) more type units
3738 than comp units, and we avoid them if we can. */
3739
3740 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3741 {
3742 int j;
8832e7e3 3743 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 3744 struct quick_file_names *file_data;
9291a0cd 3745
3d7bb9d9 3746 /* We only need to look at symtabs not already expanded. */
e254ef6a 3747 if (per_cu->v.quick->symtab)
9291a0cd
TT
3748 continue;
3749
e4a48d9d 3750 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3751 if (file_data == NULL)
9291a0cd
TT
3752 continue;
3753
7b9f3c50 3754 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3755 {
652a8996
JK
3756 const char *this_fullname = file_data->file_names[j];
3757
3758 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3759 {
a0f42c21 3760 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3761 break;
3762 }
3763 }
3764 }
3765}
3766
9291a0cd 3767static void
ade7ed9e
DE
3768dw2_map_matching_symbols (struct objfile *objfile,
3769 const char * name, domain_enum namespace,
3770 int global,
40658b94
PH
3771 int (*callback) (struct block *,
3772 struct symbol *, void *),
2edb89d3
JK
3773 void *data, symbol_compare_ftype *match,
3774 symbol_compare_ftype *ordered_compare)
9291a0cd 3775{
40658b94 3776 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3777 current language is Ada for a non-Ada objfile using GNU index. As Ada
3778 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3779}
3780
3781static void
f8eba3c6
TT
3782dw2_expand_symtabs_matching
3783 (struct objfile *objfile,
206f2a57
DE
3784 expand_symtabs_file_matcher_ftype *file_matcher,
3785 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
f8eba3c6
TT
3786 enum search_domain kind,
3787 void *data)
9291a0cd
TT
3788{
3789 int i;
3790 offset_type iter;
4b5246aa 3791 struct mapped_index *index;
9291a0cd
TT
3792
3793 dw2_setup (objfile);
ae2de4f8
DE
3794
3795 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3796 if (!dwarf2_per_objfile->index_table)
3797 return;
4b5246aa 3798 index = dwarf2_per_objfile->index_table;
9291a0cd 3799
7b08b9eb 3800 if (file_matcher != NULL)
24c79950
TT
3801 {
3802 struct cleanup *cleanup;
3803 htab_t visited_found, visited_not_found;
3804
3805 visited_found = htab_create_alloc (10,
3806 htab_hash_pointer, htab_eq_pointer,
3807 NULL, xcalloc, xfree);
3808 cleanup = make_cleanup_htab_delete (visited_found);
3809 visited_not_found = htab_create_alloc (10,
3810 htab_hash_pointer, htab_eq_pointer,
3811 NULL, xcalloc, xfree);
3812 make_cleanup_htab_delete (visited_not_found);
3813
848e3e78
DE
3814 /* The rule is CUs specify all the files, including those used by
3815 any TU, so there's no need to scan TUs here. */
3816
3817 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3818 {
3819 int j;
8832e7e3 3820 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
3821 struct quick_file_names *file_data;
3822 void **slot;
7b08b9eb 3823
24c79950 3824 per_cu->v.quick->mark = 0;
3d7bb9d9 3825
24c79950
TT
3826 /* We only need to look at symtabs not already expanded. */
3827 if (per_cu->v.quick->symtab)
3828 continue;
7b08b9eb 3829
e4a48d9d 3830 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3831 if (file_data == NULL)
3832 continue;
7b08b9eb 3833
24c79950
TT
3834 if (htab_find (visited_not_found, file_data) != NULL)
3835 continue;
3836 else if (htab_find (visited_found, file_data) != NULL)
3837 {
3838 per_cu->v.quick->mark = 1;
3839 continue;
3840 }
3841
3842 for (j = 0; j < file_data->num_file_names; ++j)
3843 {
da235a7c
JK
3844 const char *this_real_name;
3845
fbd9ab74 3846 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3847 {
3848 per_cu->v.quick->mark = 1;
3849 break;
3850 }
da235a7c
JK
3851
3852 /* Before we invoke realpath, which can get expensive when many
3853 files are involved, do a quick comparison of the basenames. */
3854 if (!basenames_may_differ
3855 && !file_matcher (lbasename (file_data->file_names[j]),
3856 data, 1))
3857 continue;
3858
3859 this_real_name = dw2_get_real_path (objfile, file_data, j);
3860 if (file_matcher (this_real_name, data, 0))
3861 {
3862 per_cu->v.quick->mark = 1;
3863 break;
3864 }
24c79950
TT
3865 }
3866
3867 slot = htab_find_slot (per_cu->v.quick->mark
3868 ? visited_found
3869 : visited_not_found,
3870 file_data, INSERT);
3871 *slot = file_data;
3872 }
3873
3874 do_cleanups (cleanup);
3875 }
9291a0cd 3876
3876f04e 3877 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3878 {
3879 offset_type idx = 2 * iter;
3880 const char *name;
3881 offset_type *vec, vec_len, vec_idx;
8943b874 3882 int global_seen = 0;
9291a0cd 3883
3876f04e 3884 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3885 continue;
3886
3876f04e 3887 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3888
206f2a57 3889 if (! (*symbol_matcher) (name, data))
9291a0cd
TT
3890 continue;
3891
3892 /* The name was matched, now expand corresponding CUs that were
3893 marked. */
4b5246aa 3894 vec = (offset_type *) (index->constant_pool
3876f04e 3895 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3896 vec_len = MAYBE_SWAP (vec[0]);
3897 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3898 {
e254ef6a 3899 struct dwarf2_per_cu_data *per_cu;
156942c7 3900 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
3901 /* This value is only valid for index versions >= 7. */
3902 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
3903 gdb_index_symbol_kind symbol_kind =
3904 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3905 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
3906 /* Only check the symbol attributes if they're present.
3907 Indices prior to version 7 don't record them,
3908 and indices >= 7 may elide them for certain symbols
3909 (gold does this). */
3910 int attrs_valid =
3911 (index->version >= 7
3912 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3913
8943b874
DE
3914 /* Work around gold/15646. */
3915 if (attrs_valid)
3916 {
3917 if (!is_static && global_seen)
3918 continue;
3919 if (!is_static)
3920 global_seen = 1;
3921 }
3922
3190f0c6
DE
3923 /* Only check the symbol's kind if it has one. */
3924 if (attrs_valid)
156942c7
DE
3925 {
3926 switch (kind)
3927 {
3928 case VARIABLES_DOMAIN:
3929 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3930 continue;
3931 break;
3932 case FUNCTIONS_DOMAIN:
3933 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3934 continue;
3935 break;
3936 case TYPES_DOMAIN:
3937 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3938 continue;
3939 break;
3940 default:
3941 break;
3942 }
3943 }
3944
3190f0c6
DE
3945 /* Don't crash on bad data. */
3946 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3947 + dwarf2_per_objfile->n_type_units))
3948 {
3949 complaint (&symfile_complaints,
3950 _(".gdb_index entry has bad CU index"
4262abfb 3951 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
3952 continue;
3953 }
3954
8832e7e3 3955 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 3956 if (file_matcher == NULL || per_cu->v.quick->mark)
a0f42c21 3957 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3958 }
3959 }
3960}
3961
9703b513
TT
3962/* A helper for dw2_find_pc_sect_symtab which finds the most specific
3963 symtab. */
3964
3965static struct symtab *
3966recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3967{
3968 int i;
3969
3970 if (BLOCKVECTOR (symtab) != NULL
3971 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3972 return symtab;
3973
a3ec0bb1
DE
3974 if (symtab->includes == NULL)
3975 return NULL;
3976
9703b513
TT
3977 for (i = 0; symtab->includes[i]; ++i)
3978 {
a3ec0bb1 3979 struct symtab *s = symtab->includes[i];
9703b513
TT
3980
3981 s = recursively_find_pc_sect_symtab (s, pc);
3982 if (s != NULL)
3983 return s;
3984 }
3985
3986 return NULL;
3987}
3988
9291a0cd
TT
3989static struct symtab *
3990dw2_find_pc_sect_symtab (struct objfile *objfile,
77e371c0 3991 struct bound_minimal_symbol msymbol,
9291a0cd
TT
3992 CORE_ADDR pc,
3993 struct obj_section *section,
3994 int warn_if_readin)
3995{
3996 struct dwarf2_per_cu_data *data;
9703b513 3997 struct symtab *result;
9291a0cd
TT
3998
3999 dw2_setup (objfile);
4000
4001 if (!objfile->psymtabs_addrmap)
4002 return NULL;
4003
4004 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4005 if (!data)
4006 return NULL;
4007
4008 if (warn_if_readin && data->v.quick->symtab)
abebb8b0 4009 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4010 paddress (get_objfile_arch (objfile), pc));
4011
9703b513
TT
4012 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4013 gdb_assert (result != NULL);
4014 return result;
9291a0cd
TT
4015}
4016
9291a0cd 4017static void
44b13c5a 4018dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4019 void *data, int need_fullname)
9291a0cd
TT
4020{
4021 int i;
24c79950
TT
4022 struct cleanup *cleanup;
4023 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4024 NULL, xcalloc, xfree);
9291a0cd 4025
24c79950 4026 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 4027 dw2_setup (objfile);
ae2de4f8 4028
848e3e78
DE
4029 /* The rule is CUs specify all the files, including those used by
4030 any TU, so there's no need to scan TUs here.
4031 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4032
848e3e78 4033 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950 4034 {
8832e7e3 4035 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
24c79950
TT
4036
4037 if (per_cu->v.quick->symtab)
4038 {
4039 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4040 INSERT);
4041
4042 *slot = per_cu->v.quick->file_names;
4043 }
4044 }
4045
848e3e78 4046 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4047 {
4048 int j;
8832e7e3 4049 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 4050 struct quick_file_names *file_data;
24c79950 4051 void **slot;
9291a0cd 4052
3d7bb9d9 4053 /* We only need to look at symtabs not already expanded. */
e254ef6a 4054 if (per_cu->v.quick->symtab)
9291a0cd
TT
4055 continue;
4056
e4a48d9d 4057 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4058 if (file_data == NULL)
9291a0cd
TT
4059 continue;
4060
24c79950
TT
4061 slot = htab_find_slot (visited, file_data, INSERT);
4062 if (*slot)
4063 {
4064 /* Already visited. */
4065 continue;
4066 }
4067 *slot = file_data;
4068
7b9f3c50 4069 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4070 {
74e2f255
DE
4071 const char *this_real_name;
4072
4073 if (need_fullname)
4074 this_real_name = dw2_get_real_path (objfile, file_data, j);
4075 else
4076 this_real_name = NULL;
7b9f3c50 4077 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4078 }
4079 }
24c79950
TT
4080
4081 do_cleanups (cleanup);
9291a0cd
TT
4082}
4083
4084static int
4085dw2_has_symbols (struct objfile *objfile)
4086{
4087 return 1;
4088}
4089
4090const struct quick_symbol_functions dwarf2_gdb_index_functions =
4091{
4092 dw2_has_symbols,
4093 dw2_find_last_source_symtab,
4094 dw2_forget_cached_source_info,
f8eba3c6 4095 dw2_map_symtabs_matching_filename,
9291a0cd 4096 dw2_lookup_symbol,
9291a0cd
TT
4097 dw2_print_stats,
4098 dw2_dump,
4099 dw2_relocate,
4100 dw2_expand_symtabs_for_function,
4101 dw2_expand_all_symtabs,
652a8996 4102 dw2_expand_symtabs_with_fullname,
40658b94 4103 dw2_map_matching_symbols,
9291a0cd
TT
4104 dw2_expand_symtabs_matching,
4105 dw2_find_pc_sect_symtab,
9291a0cd
TT
4106 dw2_map_symbol_filenames
4107};
4108
4109/* Initialize for reading DWARF for this objfile. Return 0 if this
4110 file will use psymtabs, or 1 if using the GNU index. */
4111
4112int
4113dwarf2_initialize_objfile (struct objfile *objfile)
4114{
4115 /* If we're about to read full symbols, don't bother with the
4116 indices. In this case we also don't care if some other debug
4117 format is making psymtabs, because they are all about to be
4118 expanded anyway. */
4119 if ((objfile->flags & OBJF_READNOW))
4120 {
4121 int i;
4122
4123 dwarf2_per_objfile->using_index = 1;
4124 create_all_comp_units (objfile);
0e50663e 4125 create_all_type_units (objfile);
7b9f3c50
DE
4126 dwarf2_per_objfile->quick_file_names_table =
4127 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4128
1fd400ff 4129 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4130 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4131 {
8832e7e3 4132 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4133
e254ef6a
DE
4134 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4135 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4136 }
4137
4138 /* Return 1 so that gdb sees the "quick" functions. However,
4139 these functions will be no-ops because we will have expanded
4140 all symtabs. */
4141 return 1;
4142 }
4143
4144 if (dwarf2_read_index (objfile))
4145 return 1;
4146
9291a0cd
TT
4147 return 0;
4148}
4149
4150\f
4151
dce234bc
PP
4152/* Build a partial symbol table. */
4153
4154void
f29dff0a 4155dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4156{
c9bf0622
TT
4157 volatile struct gdb_exception except;
4158
f29dff0a 4159 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4160 {
4161 init_psymbol_list (objfile, 1024);
4162 }
4163
c9bf0622
TT
4164 TRY_CATCH (except, RETURN_MASK_ERROR)
4165 {
4166 /* This isn't really ideal: all the data we allocate on the
4167 objfile's obstack is still uselessly kept around. However,
4168 freeing it seems unsafe. */
4169 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4170
4171 dwarf2_build_psymtabs_hard (objfile);
4172 discard_cleanups (cleanups);
4173 }
4174 if (except.reason < 0)
4175 exception_print (gdb_stderr, except);
c906108c 4176}
c906108c 4177
1ce1cefd
DE
4178/* Return the total length of the CU described by HEADER. */
4179
4180static unsigned int
4181get_cu_length (const struct comp_unit_head *header)
4182{
4183 return header->initial_length_size + header->length;
4184}
4185
45452591
DE
4186/* Return TRUE if OFFSET is within CU_HEADER. */
4187
4188static inline int
b64f50a1 4189offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4190{
b64f50a1 4191 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4192 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4193
b64f50a1 4194 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4195}
4196
3b80fe9b
DE
4197/* Find the base address of the compilation unit for range lists and
4198 location lists. It will normally be specified by DW_AT_low_pc.
4199 In DWARF-3 draft 4, the base address could be overridden by
4200 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4201 compilation units with discontinuous ranges. */
4202
4203static void
4204dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4205{
4206 struct attribute *attr;
4207
4208 cu->base_known = 0;
4209 cu->base_address = 0;
4210
4211 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4212 if (attr)
4213 {
31aa7e4e 4214 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4215 cu->base_known = 1;
4216 }
4217 else
4218 {
4219 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4220 if (attr)
4221 {
31aa7e4e 4222 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4223 cu->base_known = 1;
4224 }
4225 }
4226}
4227
93311388
DE
4228/* Read in the comp unit header information from the debug_info at info_ptr.
4229 NOTE: This leaves members offset, first_die_offset to be filled in
4230 by the caller. */
107d2387 4231
d521ce57 4232static const gdb_byte *
107d2387 4233read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 4234 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
4235{
4236 int signed_addr;
891d2f0b 4237 unsigned int bytes_read;
c764a876
DE
4238
4239 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4240 cu_header->initial_length_size = bytes_read;
4241 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4242 info_ptr += bytes_read;
107d2387
AC
4243 cu_header->version = read_2_bytes (abfd, info_ptr);
4244 info_ptr += 2;
b64f50a1
JK
4245 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4246 &bytes_read);
613e1657 4247 info_ptr += bytes_read;
107d2387
AC
4248 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4249 info_ptr += 1;
4250 signed_addr = bfd_get_sign_extend_vma (abfd);
4251 if (signed_addr < 0)
8e65ff28 4252 internal_error (__FILE__, __LINE__,
e2e0b3e5 4253 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4254 cu_header->signed_addr_p = signed_addr;
c764a876 4255
107d2387
AC
4256 return info_ptr;
4257}
4258
36586728
TT
4259/* Helper function that returns the proper abbrev section for
4260 THIS_CU. */
4261
4262static struct dwarf2_section_info *
4263get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4264{
4265 struct dwarf2_section_info *abbrev;
4266
4267 if (this_cu->is_dwz)
4268 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4269 else
4270 abbrev = &dwarf2_per_objfile->abbrev;
4271
4272 return abbrev;
4273}
4274
9ff913ba
DE
4275/* Subroutine of read_and_check_comp_unit_head and
4276 read_and_check_type_unit_head to simplify them.
4277 Perform various error checking on the header. */
4278
4279static void
4280error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4281 struct dwarf2_section_info *section,
4282 struct dwarf2_section_info *abbrev_section)
9ff913ba 4283{
a32a8923
DE
4284 bfd *abfd = get_section_bfd_owner (section);
4285 const char *filename = get_section_file_name (section);
9ff913ba
DE
4286
4287 if (header->version != 2 && header->version != 3 && header->version != 4)
4288 error (_("Dwarf Error: wrong version in compilation unit header "
4289 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4290 filename);
4291
b64f50a1 4292 if (header->abbrev_offset.sect_off
36586728 4293 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4294 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4295 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4296 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4297 filename);
4298
4299 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4300 avoid potential 32-bit overflow. */
1ce1cefd 4301 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4302 > section->size)
4303 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4304 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4305 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4306 filename);
4307}
4308
4309/* Read in a CU/TU header and perform some basic error checking.
4310 The contents of the header are stored in HEADER.
4311 The result is a pointer to the start of the first DIE. */
adabb602 4312
d521ce57 4313static const gdb_byte *
9ff913ba
DE
4314read_and_check_comp_unit_head (struct comp_unit_head *header,
4315 struct dwarf2_section_info *section,
4bdcc0c1 4316 struct dwarf2_section_info *abbrev_section,
d521ce57 4317 const gdb_byte *info_ptr,
9ff913ba 4318 int is_debug_types_section)
72bf9492 4319{
d521ce57 4320 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4321 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4322
b64f50a1 4323 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4324
72bf9492
DJ
4325 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4326
460c1c54
CC
4327 /* If we're reading a type unit, skip over the signature and
4328 type_offset fields. */
b0df02fd 4329 if (is_debug_types_section)
460c1c54
CC
4330 info_ptr += 8 /*signature*/ + header->offset_size;
4331
b64f50a1 4332 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4333
4bdcc0c1 4334 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4335
4336 return info_ptr;
4337}
4338
348e048f
DE
4339/* Read in the types comp unit header information from .debug_types entry at
4340 types_ptr. The result is a pointer to one past the end of the header. */
4341
d521ce57 4342static const gdb_byte *
9ff913ba
DE
4343read_and_check_type_unit_head (struct comp_unit_head *header,
4344 struct dwarf2_section_info *section,
4bdcc0c1 4345 struct dwarf2_section_info *abbrev_section,
d521ce57 4346 const gdb_byte *info_ptr,
dee91e82
DE
4347 ULONGEST *signature,
4348 cu_offset *type_offset_in_tu)
348e048f 4349{
d521ce57 4350 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4351 bfd *abfd = get_section_bfd_owner (section);
348e048f 4352
b64f50a1 4353 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4354
9ff913ba 4355 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4356
9ff913ba
DE
4357 /* If we're reading a type unit, skip over the signature and
4358 type_offset fields. */
4359 if (signature != NULL)
4360 *signature = read_8_bytes (abfd, info_ptr);
4361 info_ptr += 8;
dee91e82
DE
4362 if (type_offset_in_tu != NULL)
4363 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4364 header->offset_size);
9ff913ba
DE
4365 info_ptr += header->offset_size;
4366
b64f50a1 4367 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4368
4bdcc0c1 4369 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4370
4371 return info_ptr;
348e048f
DE
4372}
4373
f4dc4d17
DE
4374/* Fetch the abbreviation table offset from a comp or type unit header. */
4375
4376static sect_offset
4377read_abbrev_offset (struct dwarf2_section_info *section,
4378 sect_offset offset)
4379{
a32a8923 4380 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4381 const gdb_byte *info_ptr;
f4dc4d17
DE
4382 unsigned int length, initial_length_size, offset_size;
4383 sect_offset abbrev_offset;
4384
4385 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4386 info_ptr = section->buffer + offset.sect_off;
4387 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4388 offset_size = initial_length_size == 4 ? 4 : 8;
4389 info_ptr += initial_length_size + 2 /*version*/;
4390 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4391 return abbrev_offset;
4392}
4393
aaa75496
JB
4394/* Allocate a new partial symtab for file named NAME and mark this new
4395 partial symtab as being an include of PST. */
4396
4397static void
d521ce57 4398dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4399 struct objfile *objfile)
4400{
4401 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4402
fbd9ab74
JK
4403 if (!IS_ABSOLUTE_PATH (subpst->filename))
4404 {
4405 /* It shares objfile->objfile_obstack. */
4406 subpst->dirname = pst->dirname;
4407 }
4408
aaa75496
JB
4409 subpst->section_offsets = pst->section_offsets;
4410 subpst->textlow = 0;
4411 subpst->texthigh = 0;
4412
4413 subpst->dependencies = (struct partial_symtab **)
4414 obstack_alloc (&objfile->objfile_obstack,
4415 sizeof (struct partial_symtab *));
4416 subpst->dependencies[0] = pst;
4417 subpst->number_of_dependencies = 1;
4418
4419 subpst->globals_offset = 0;
4420 subpst->n_global_syms = 0;
4421 subpst->statics_offset = 0;
4422 subpst->n_static_syms = 0;
4423 subpst->symtab = NULL;
4424 subpst->read_symtab = pst->read_symtab;
4425 subpst->readin = 0;
4426
4427 /* No private part is necessary for include psymtabs. This property
4428 can be used to differentiate between such include psymtabs and
10b3939b 4429 the regular ones. */
58a9656e 4430 subpst->read_symtab_private = NULL;
aaa75496
JB
4431}
4432
4433/* Read the Line Number Program data and extract the list of files
4434 included by the source file represented by PST. Build an include
d85a05f0 4435 partial symtab for each of these included files. */
aaa75496
JB
4436
4437static void
4438dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4439 struct die_info *die,
4440 struct partial_symtab *pst)
aaa75496 4441{
d85a05f0
DJ
4442 struct line_header *lh = NULL;
4443 struct attribute *attr;
aaa75496 4444
d85a05f0
DJ
4445 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4446 if (attr)
3019eac3 4447 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4448 if (lh == NULL)
4449 return; /* No linetable, so no includes. */
4450
c6da4cef 4451 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
c3b7b696 4452 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow);
aaa75496
JB
4453
4454 free_line_header (lh);
4455}
4456
348e048f 4457static hashval_t
52dc124a 4458hash_signatured_type (const void *item)
348e048f 4459{
52dc124a 4460 const struct signatured_type *sig_type = item;
9a619af0 4461
348e048f 4462 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4463 return sig_type->signature;
348e048f
DE
4464}
4465
4466static int
52dc124a 4467eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f
DE
4468{
4469 const struct signatured_type *lhs = item_lhs;
4470 const struct signatured_type *rhs = item_rhs;
9a619af0 4471
348e048f
DE
4472 return lhs->signature == rhs->signature;
4473}
4474
1fd400ff
TT
4475/* Allocate a hash table for signatured types. */
4476
4477static htab_t
673bfd45 4478allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4479{
4480 return htab_create_alloc_ex (41,
52dc124a
DE
4481 hash_signatured_type,
4482 eq_signatured_type,
1fd400ff
TT
4483 NULL,
4484 &objfile->objfile_obstack,
4485 hashtab_obstack_allocate,
4486 dummy_obstack_deallocate);
4487}
4488
d467dd73 4489/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4490
4491static int
d467dd73 4492add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff
TT
4493{
4494 struct signatured_type *sigt = *slot;
b4dd5633 4495 struct signatured_type ***datap = datum;
1fd400ff 4496
b4dd5633 4497 **datap = sigt;
1fd400ff
TT
4498 ++*datap;
4499
4500 return 1;
4501}
4502
c88ee1f0
DE
4503/* Create the hash table of all entries in the .debug_types
4504 (or .debug_types.dwo) section(s).
4505 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4506 otherwise it is NULL.
4507
4508 The result is a pointer to the hash table or NULL if there are no types.
4509
4510 Note: This function processes DWO files only, not DWP files. */
348e048f 4511
3019eac3
DE
4512static htab_t
4513create_debug_types_hash_table (struct dwo_file *dwo_file,
4514 VEC (dwarf2_section_info_def) *types)
348e048f 4515{
3019eac3 4516 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4517 htab_t types_htab = NULL;
8b70b953
TT
4518 int ix;
4519 struct dwarf2_section_info *section;
4bdcc0c1 4520 struct dwarf2_section_info *abbrev_section;
348e048f 4521
3019eac3
DE
4522 if (VEC_empty (dwarf2_section_info_def, types))
4523 return NULL;
348e048f 4524
4bdcc0c1
DE
4525 abbrev_section = (dwo_file != NULL
4526 ? &dwo_file->sections.abbrev
4527 : &dwarf2_per_objfile->abbrev);
4528
09406207
DE
4529 if (dwarf2_read_debug)
4530 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4531 dwo_file ? ".dwo" : "",
a32a8923 4532 get_section_file_name (abbrev_section));
09406207 4533
8b70b953 4534 for (ix = 0;
3019eac3 4535 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4536 ++ix)
4537 {
3019eac3 4538 bfd *abfd;
d521ce57 4539 const gdb_byte *info_ptr, *end_ptr;
348e048f 4540
8b70b953
TT
4541 dwarf2_read_section (objfile, section);
4542 info_ptr = section->buffer;
348e048f 4543
8b70b953
TT
4544 if (info_ptr == NULL)
4545 continue;
348e048f 4546
3019eac3 4547 /* We can't set abfd until now because the section may be empty or
a32a8923
DE
4548 not present, in which case the bfd is unknown. */
4549 abfd = get_section_bfd_owner (section);
3019eac3 4550
dee91e82
DE
4551 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4552 because we don't need to read any dies: the signature is in the
4553 header. */
8b70b953
TT
4554
4555 end_ptr = info_ptr + section->size;
4556 while (info_ptr < end_ptr)
4557 {
b64f50a1 4558 sect_offset offset;
3019eac3 4559 cu_offset type_offset_in_tu;
8b70b953 4560 ULONGEST signature;
52dc124a 4561 struct signatured_type *sig_type;
3019eac3 4562 struct dwo_unit *dwo_tu;
8b70b953 4563 void **slot;
d521ce57 4564 const gdb_byte *ptr = info_ptr;
9ff913ba 4565 struct comp_unit_head header;
dee91e82 4566 unsigned int length;
348e048f 4567
b64f50a1 4568 offset.sect_off = ptr - section->buffer;
348e048f 4569
8b70b953 4570 /* We need to read the type's signature in order to build the hash
9ff913ba 4571 table, but we don't need anything else just yet. */
348e048f 4572
4bdcc0c1
DE
4573 ptr = read_and_check_type_unit_head (&header, section,
4574 abbrev_section, ptr,
3019eac3 4575 &signature, &type_offset_in_tu);
6caca83c 4576
1ce1cefd 4577 length = get_cu_length (&header);
dee91e82 4578
6caca83c 4579 /* Skip dummy type units. */
dee91e82
DE
4580 if (ptr >= info_ptr + length
4581 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4582 {
1ce1cefd 4583 info_ptr += length;
6caca83c
CC
4584 continue;
4585 }
8b70b953 4586
0349ea22
DE
4587 if (types_htab == NULL)
4588 {
4589 if (dwo_file)
4590 types_htab = allocate_dwo_unit_table (objfile);
4591 else
4592 types_htab = allocate_signatured_type_table (objfile);
4593 }
4594
3019eac3
DE
4595 if (dwo_file)
4596 {
4597 sig_type = NULL;
4598 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4599 struct dwo_unit);
4600 dwo_tu->dwo_file = dwo_file;
4601 dwo_tu->signature = signature;
4602 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4603 dwo_tu->section = section;
3019eac3
DE
4604 dwo_tu->offset = offset;
4605 dwo_tu->length = length;
4606 }
4607 else
4608 {
4609 /* N.B.: type_offset is not usable if this type uses a DWO file.
4610 The real type_offset is in the DWO file. */
4611 dwo_tu = NULL;
4612 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4613 struct signatured_type);
4614 sig_type->signature = signature;
4615 sig_type->type_offset_in_tu = type_offset_in_tu;
4616 sig_type->per_cu.objfile = objfile;
4617 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4618 sig_type->per_cu.section = section;
3019eac3
DE
4619 sig_type->per_cu.offset = offset;
4620 sig_type->per_cu.length = length;
4621 }
8b70b953 4622
3019eac3
DE
4623 slot = htab_find_slot (types_htab,
4624 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4625 INSERT);
8b70b953
TT
4626 gdb_assert (slot != NULL);
4627 if (*slot != NULL)
4628 {
3019eac3
DE
4629 sect_offset dup_offset;
4630
4631 if (dwo_file)
4632 {
4633 const struct dwo_unit *dup_tu = *slot;
4634
4635 dup_offset = dup_tu->offset;
4636 }
4637 else
4638 {
4639 const struct signatured_type *dup_tu = *slot;
4640
4641 dup_offset = dup_tu->per_cu.offset;
4642 }
b3c8eb43 4643
8b70b953 4644 complaint (&symfile_complaints,
c88ee1f0 4645 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4646 " the entry at offset 0x%x, signature %s"),
3019eac3 4647 offset.sect_off, dup_offset.sect_off,
4031ecc5 4648 hex_string (signature));
8b70b953 4649 }
3019eac3 4650 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4651
73be47f5 4652 if (dwarf2_read_debug > 1)
4031ecc5 4653 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4654 offset.sect_off,
4031ecc5 4655 hex_string (signature));
348e048f 4656
dee91e82 4657 info_ptr += length;
8b70b953 4658 }
348e048f
DE
4659 }
4660
3019eac3
DE
4661 return types_htab;
4662}
4663
4664/* Create the hash table of all entries in the .debug_types section,
4665 and initialize all_type_units.
4666 The result is zero if there is an error (e.g. missing .debug_types section),
4667 otherwise non-zero. */
4668
4669static int
4670create_all_type_units (struct objfile *objfile)
4671{
4672 htab_t types_htab;
b4dd5633 4673 struct signatured_type **iter;
3019eac3
DE
4674
4675 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4676 if (types_htab == NULL)
4677 {
4678 dwarf2_per_objfile->signatured_types = NULL;
4679 return 0;
4680 }
4681
348e048f
DE
4682 dwarf2_per_objfile->signatured_types = types_htab;
4683
6aa5f3a6
DE
4684 dwarf2_per_objfile->n_type_units
4685 = dwarf2_per_objfile->n_allocated_type_units
4686 = htab_elements (types_htab);
d467dd73 4687 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
4688 = xmalloc (dwarf2_per_objfile->n_type_units
4689 * sizeof (struct signatured_type *));
d467dd73
DE
4690 iter = &dwarf2_per_objfile->all_type_units[0];
4691 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4692 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4693 == dwarf2_per_objfile->n_type_units);
1fd400ff 4694
348e048f
DE
4695 return 1;
4696}
4697
6aa5f3a6
DE
4698/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4699 If SLOT is non-NULL, it is the entry to use in the hash table.
4700 Otherwise we find one. */
4701
4702static struct signatured_type *
4703add_type_unit (ULONGEST sig, void **slot)
4704{
4705 struct objfile *objfile = dwarf2_per_objfile->objfile;
4706 int n_type_units = dwarf2_per_objfile->n_type_units;
4707 struct signatured_type *sig_type;
4708
4709 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4710 ++n_type_units;
4711 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4712 {
4713 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4714 dwarf2_per_objfile->n_allocated_type_units = 1;
4715 dwarf2_per_objfile->n_allocated_type_units *= 2;
4716 dwarf2_per_objfile->all_type_units
4717 = xrealloc (dwarf2_per_objfile->all_type_units,
4718 dwarf2_per_objfile->n_allocated_type_units
4719 * sizeof (struct signatured_type *));
4720 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4721 }
4722 dwarf2_per_objfile->n_type_units = n_type_units;
4723
4724 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4725 struct signatured_type);
4726 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4727 sig_type->signature = sig;
4728 sig_type->per_cu.is_debug_types = 1;
4729 if (dwarf2_per_objfile->using_index)
4730 {
4731 sig_type->per_cu.v.quick =
4732 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4733 struct dwarf2_per_cu_quick_data);
4734 }
4735
4736 if (slot == NULL)
4737 {
4738 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4739 sig_type, INSERT);
4740 }
4741 gdb_assert (*slot == NULL);
4742 *slot = sig_type;
4743 /* The rest of sig_type must be filled in by the caller. */
4744 return sig_type;
4745}
4746
a2ce51a0
DE
4747/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4748 Fill in SIG_ENTRY with DWO_ENTRY. */
4749
4750static void
4751fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4752 struct signatured_type *sig_entry,
4753 struct dwo_unit *dwo_entry)
4754{
7ee85ab1 4755 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4756 gdb_assert (! sig_entry->per_cu.queued);
4757 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
4758 if (dwarf2_per_objfile->using_index)
4759 {
4760 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4761 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4762 }
4763 else
4764 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0
DE
4765 gdb_assert (sig_entry->signature == dwo_entry->signature);
4766 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4767 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4768 gdb_assert (sig_entry->dwo_unit == NULL);
4769
4770 sig_entry->per_cu.section = dwo_entry->section;
4771 sig_entry->per_cu.offset = dwo_entry->offset;
4772 sig_entry->per_cu.length = dwo_entry->length;
4773 sig_entry->per_cu.reading_dwo_directly = 1;
4774 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4775 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4776 sig_entry->dwo_unit = dwo_entry;
4777}
4778
4779/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4780 If we haven't read the TU yet, create the signatured_type data structure
4781 for a TU to be read in directly from a DWO file, bypassing the stub.
4782 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4783 using .gdb_index, then when reading a CU we want to stay in the DWO file
4784 containing that CU. Otherwise we could end up reading several other DWO
4785 files (due to comdat folding) to process the transitive closure of all the
4786 mentioned TUs, and that can be slow. The current DWO file will have every
4787 type signature that it needs.
a2ce51a0
DE
4788 We only do this for .gdb_index because in the psymtab case we already have
4789 to read all the DWOs to build the type unit groups. */
4790
4791static struct signatured_type *
4792lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4793{
4794 struct objfile *objfile = dwarf2_per_objfile->objfile;
4795 struct dwo_file *dwo_file;
4796 struct dwo_unit find_dwo_entry, *dwo_entry;
4797 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4798 void **slot;
a2ce51a0
DE
4799
4800 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4801
6aa5f3a6
DE
4802 /* If TU skeletons have been removed then we may not have read in any
4803 TUs yet. */
4804 if (dwarf2_per_objfile->signatured_types == NULL)
4805 {
4806 dwarf2_per_objfile->signatured_types
4807 = allocate_signatured_type_table (objfile);
4808 }
a2ce51a0
DE
4809
4810 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
4811 Use the global signatured_types array to do our own comdat-folding
4812 of types. If this is the first time we're reading this TU, and
4813 the TU has an entry in .gdb_index, replace the recorded data from
4814 .gdb_index with this TU. */
a2ce51a0 4815
a2ce51a0 4816 find_sig_entry.signature = sig;
6aa5f3a6
DE
4817 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4818 &find_sig_entry, INSERT);
4819 sig_entry = *slot;
7ee85ab1
DE
4820
4821 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
4822 read. Don't reassign the global entry to point to this DWO if that's
4823 the case. Also note that if the TU is already being read, it may not
4824 have come from a DWO, the program may be a mix of Fission-compiled
4825 code and non-Fission-compiled code. */
4826
4827 /* Have we already tried to read this TU?
4828 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4829 needn't exist in the global table yet). */
4830 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
4831 return sig_entry;
4832
6aa5f3a6
DE
4833 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4834 dwo_unit of the TU itself. */
4835 dwo_file = cu->dwo_unit->dwo_file;
4836
a2ce51a0
DE
4837 /* Ok, this is the first time we're reading this TU. */
4838 if (dwo_file->tus == NULL)
4839 return NULL;
4840 find_dwo_entry.signature = sig;
4841 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4842 if (dwo_entry == NULL)
4843 return NULL;
4844
6aa5f3a6
DE
4845 /* If the global table doesn't have an entry for this TU, add one. */
4846 if (sig_entry == NULL)
4847 sig_entry = add_type_unit (sig, slot);
4848
a2ce51a0 4849 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 4850 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
4851 return sig_entry;
4852}
4853
a2ce51a0
DE
4854/* Subroutine of lookup_signatured_type.
4855 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
4856 then try the DWP file. If the TU stub (skeleton) has been removed then
4857 it won't be in .gdb_index. */
a2ce51a0
DE
4858
4859static struct signatured_type *
4860lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4861{
4862 struct objfile *objfile = dwarf2_per_objfile->objfile;
4863 struct dwp_file *dwp_file = get_dwp_file ();
4864 struct dwo_unit *dwo_entry;
4865 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4866 void **slot;
a2ce51a0
DE
4867
4868 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4869 gdb_assert (dwp_file != NULL);
4870
6aa5f3a6
DE
4871 /* If TU skeletons have been removed then we may not have read in any
4872 TUs yet. */
4873 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 4874 {
6aa5f3a6
DE
4875 dwarf2_per_objfile->signatured_types
4876 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
4877 }
4878
6aa5f3a6
DE
4879 find_sig_entry.signature = sig;
4880 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4881 &find_sig_entry, INSERT);
4882 sig_entry = *slot;
4883
4884 /* Have we already tried to read this TU?
4885 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4886 needn't exist in the global table yet). */
4887 if (sig_entry != NULL)
4888 return sig_entry;
4889
a2ce51a0
DE
4890 if (dwp_file->tus == NULL)
4891 return NULL;
57d63ce2
DE
4892 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4893 sig, 1 /* is_debug_types */);
a2ce51a0
DE
4894 if (dwo_entry == NULL)
4895 return NULL;
4896
6aa5f3a6 4897 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
4898 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4899
a2ce51a0
DE
4900 return sig_entry;
4901}
4902
380bca97 4903/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
4904 Returns NULL if signature SIG is not present in the table.
4905 It is up to the caller to complain about this. */
348e048f
DE
4906
4907static struct signatured_type *
a2ce51a0 4908lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 4909{
a2ce51a0
DE
4910 if (cu->dwo_unit
4911 && dwarf2_per_objfile->using_index)
4912 {
4913 /* We're in a DWO/DWP file, and we're using .gdb_index.
4914 These cases require special processing. */
4915 if (get_dwp_file () == NULL)
4916 return lookup_dwo_signatured_type (cu, sig);
4917 else
4918 return lookup_dwp_signatured_type (cu, sig);
4919 }
4920 else
4921 {
4922 struct signatured_type find_entry, *entry;
348e048f 4923
a2ce51a0
DE
4924 if (dwarf2_per_objfile->signatured_types == NULL)
4925 return NULL;
4926 find_entry.signature = sig;
4927 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4928 return entry;
4929 }
348e048f 4930}
42e7ad6c
DE
4931\f
4932/* Low level DIE reading support. */
348e048f 4933
d85a05f0
DJ
4934/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4935
4936static void
4937init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 4938 struct dwarf2_cu *cu,
3019eac3
DE
4939 struct dwarf2_section_info *section,
4940 struct dwo_file *dwo_file)
d85a05f0 4941{
fceca515 4942 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 4943 reader->abfd = get_section_bfd_owner (section);
d85a05f0 4944 reader->cu = cu;
3019eac3 4945 reader->dwo_file = dwo_file;
dee91e82
DE
4946 reader->die_section = section;
4947 reader->buffer = section->buffer;
f664829e 4948 reader->buffer_end = section->buffer + section->size;
a2ce51a0 4949 reader->comp_dir = NULL;
d85a05f0
DJ
4950}
4951
b0c7bfa9
DE
4952/* Subroutine of init_cutu_and_read_dies to simplify it.
4953 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4954 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4955 already.
4956
4957 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4958 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
4959 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4960 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
4961 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
4962 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
4963 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4964 are filled in with the info of the DIE from the DWO file.
4965 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4966 provided an abbrev table to use.
4967 The result is non-zero if a valid (non-dummy) DIE was found. */
4968
4969static int
4970read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4971 struct dwo_unit *dwo_unit,
4972 int abbrev_table_provided,
4973 struct die_info *stub_comp_unit_die,
a2ce51a0 4974 const char *stub_comp_dir,
b0c7bfa9 4975 struct die_reader_specs *result_reader,
d521ce57 4976 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
4977 struct die_info **result_comp_unit_die,
4978 int *result_has_children)
4979{
4980 struct objfile *objfile = dwarf2_per_objfile->objfile;
4981 struct dwarf2_cu *cu = this_cu->cu;
4982 struct dwarf2_section_info *section;
4983 bfd *abfd;
d521ce57 4984 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
4985 ULONGEST signature; /* Or dwo_id. */
4986 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4987 int i,num_extra_attrs;
4988 struct dwarf2_section_info *dwo_abbrev_section;
4989 struct attribute *attr;
4990 struct die_info *comp_unit_die;
4991
b0aeadb3
DE
4992 /* At most one of these may be provided. */
4993 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 4994
b0c7bfa9
DE
4995 /* These attributes aren't processed until later:
4996 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
4997 DW_AT_comp_dir is used now, to find the DWO file, but it is also
4998 referenced later. However, these attributes are found in the stub
4999 which we won't have later. In order to not impose this complication
5000 on the rest of the code, we read them here and copy them to the
5001 DWO CU/TU die. */
b0c7bfa9
DE
5002
5003 stmt_list = NULL;
5004 low_pc = NULL;
5005 high_pc = NULL;
5006 ranges = NULL;
5007 comp_dir = NULL;
5008
5009 if (stub_comp_unit_die != NULL)
5010 {
5011 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5012 DWO file. */
5013 if (! this_cu->is_debug_types)
5014 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5015 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5016 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5017 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5018 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5019
5020 /* There should be a DW_AT_addr_base attribute here (if needed).
5021 We need the value before we can process DW_FORM_GNU_addr_index. */
5022 cu->addr_base = 0;
5023 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5024 if (attr)
5025 cu->addr_base = DW_UNSND (attr);
5026
5027 /* There should be a DW_AT_ranges_base attribute here (if needed).
5028 We need the value before we can process DW_AT_ranges. */
5029 cu->ranges_base = 0;
5030 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5031 if (attr)
5032 cu->ranges_base = DW_UNSND (attr);
5033 }
a2ce51a0
DE
5034 else if (stub_comp_dir != NULL)
5035 {
5036 /* Reconstruct the comp_dir attribute to simplify the code below. */
5037 comp_dir = (struct attribute *)
5038 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5039 comp_dir->name = DW_AT_comp_dir;
5040 comp_dir->form = DW_FORM_string;
5041 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5042 DW_STRING (comp_dir) = stub_comp_dir;
5043 }
b0c7bfa9
DE
5044
5045 /* Set up for reading the DWO CU/TU. */
5046 cu->dwo_unit = dwo_unit;
5047 section = dwo_unit->section;
5048 dwarf2_read_section (objfile, section);
a32a8923 5049 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5050 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5051 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5052 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5053
5054 if (this_cu->is_debug_types)
5055 {
5056 ULONGEST header_signature;
5057 cu_offset type_offset_in_tu;
5058 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5059
5060 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5061 dwo_abbrev_section,
5062 info_ptr,
5063 &header_signature,
5064 &type_offset_in_tu);
a2ce51a0
DE
5065 /* This is not an assert because it can be caused by bad debug info. */
5066 if (sig_type->signature != header_signature)
5067 {
5068 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5069 " TU at offset 0x%x [in module %s]"),
5070 hex_string (sig_type->signature),
5071 hex_string (header_signature),
5072 dwo_unit->offset.sect_off,
5073 bfd_get_filename (abfd));
5074 }
b0c7bfa9
DE
5075 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5076 /* For DWOs coming from DWP files, we don't know the CU length
5077 nor the type's offset in the TU until now. */
5078 dwo_unit->length = get_cu_length (&cu->header);
5079 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5080
5081 /* Establish the type offset that can be used to lookup the type.
5082 For DWO files, we don't know it until now. */
5083 sig_type->type_offset_in_section.sect_off =
5084 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5085 }
5086 else
5087 {
5088 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5089 dwo_abbrev_section,
5090 info_ptr, 0);
5091 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5092 /* For DWOs coming from DWP files, we don't know the CU length
5093 until now. */
5094 dwo_unit->length = get_cu_length (&cu->header);
5095 }
5096
02142a6c
DE
5097 /* Replace the CU's original abbrev table with the DWO's.
5098 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5099 if (abbrev_table_provided)
5100 {
5101 /* Don't free the provided abbrev table, the caller of
5102 init_cutu_and_read_dies owns it. */
5103 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5104 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5105 make_cleanup (dwarf2_free_abbrev_table, cu);
5106 }
5107 else
5108 {
5109 dwarf2_free_abbrev_table (cu);
5110 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5111 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5112 }
5113
5114 /* Read in the die, but leave space to copy over the attributes
5115 from the stub. This has the benefit of simplifying the rest of
5116 the code - all the work to maintain the illusion of a single
5117 DW_TAG_{compile,type}_unit DIE is done here. */
5118 num_extra_attrs = ((stmt_list != NULL)
5119 + (low_pc != NULL)
5120 + (high_pc != NULL)
5121 + (ranges != NULL)
5122 + (comp_dir != NULL));
5123 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5124 result_has_children, num_extra_attrs);
5125
5126 /* Copy over the attributes from the stub to the DIE we just read in. */
5127 comp_unit_die = *result_comp_unit_die;
5128 i = comp_unit_die->num_attrs;
5129 if (stmt_list != NULL)
5130 comp_unit_die->attrs[i++] = *stmt_list;
5131 if (low_pc != NULL)
5132 comp_unit_die->attrs[i++] = *low_pc;
5133 if (high_pc != NULL)
5134 comp_unit_die->attrs[i++] = *high_pc;
5135 if (ranges != NULL)
5136 comp_unit_die->attrs[i++] = *ranges;
5137 if (comp_dir != NULL)
5138 comp_unit_die->attrs[i++] = *comp_dir;
5139 comp_unit_die->num_attrs += num_extra_attrs;
5140
bf6af496
DE
5141 if (dwarf2_die_debug)
5142 {
5143 fprintf_unfiltered (gdb_stdlog,
5144 "Read die from %s@0x%x of %s:\n",
a32a8923 5145 get_section_name (section),
bf6af496
DE
5146 (unsigned) (begin_info_ptr - section->buffer),
5147 bfd_get_filename (abfd));
5148 dump_die (comp_unit_die, dwarf2_die_debug);
5149 }
5150
a2ce51a0
DE
5151 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5152 TUs by skipping the stub and going directly to the entry in the DWO file.
5153 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5154 to get it via circuitous means. Blech. */
5155 if (comp_dir != NULL)
5156 result_reader->comp_dir = DW_STRING (comp_dir);
5157
b0c7bfa9
DE
5158 /* Skip dummy compilation units. */
5159 if (info_ptr >= begin_info_ptr + dwo_unit->length
5160 || peek_abbrev_code (abfd, info_ptr) == 0)
5161 return 0;
5162
5163 *result_info_ptr = info_ptr;
5164 return 1;
5165}
5166
5167/* Subroutine of init_cutu_and_read_dies to simplify it.
5168 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5169 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5170
5171static struct dwo_unit *
5172lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5173 struct die_info *comp_unit_die)
5174{
5175 struct dwarf2_cu *cu = this_cu->cu;
5176 struct attribute *attr;
5177 ULONGEST signature;
5178 struct dwo_unit *dwo_unit;
5179 const char *comp_dir, *dwo_name;
5180
a2ce51a0
DE
5181 gdb_assert (cu != NULL);
5182
b0c7bfa9
DE
5183 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5184 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5185 gdb_assert (attr != NULL);
5186 dwo_name = DW_STRING (attr);
5187 comp_dir = NULL;
5188 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5189 if (attr)
5190 comp_dir = DW_STRING (attr);
5191
5192 if (this_cu->is_debug_types)
5193 {
5194 struct signatured_type *sig_type;
5195
5196 /* Since this_cu is the first member of struct signatured_type,
5197 we can go from a pointer to one to a pointer to the other. */
5198 sig_type = (struct signatured_type *) this_cu;
5199 signature = sig_type->signature;
5200 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5201 }
5202 else
5203 {
5204 struct attribute *attr;
5205
5206 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5207 if (! attr)
5208 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5209 " [in module %s]"),
4262abfb 5210 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5211 signature = DW_UNSND (attr);
5212 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5213 signature);
5214 }
5215
b0c7bfa9
DE
5216 return dwo_unit;
5217}
5218
a2ce51a0 5219/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5220 See it for a description of the parameters.
5221 Read a TU directly from a DWO file, bypassing the stub.
5222
5223 Note: This function could be a little bit simpler if we shared cleanups
5224 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5225 to do, so we keep this function self-contained. Or we could move this
5226 into our caller, but it's complex enough already. */
a2ce51a0
DE
5227
5228static void
6aa5f3a6
DE
5229init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5230 int use_existing_cu, int keep,
a2ce51a0
DE
5231 die_reader_func_ftype *die_reader_func,
5232 void *data)
5233{
5234 struct dwarf2_cu *cu;
5235 struct signatured_type *sig_type;
6aa5f3a6 5236 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5237 struct die_reader_specs reader;
5238 const gdb_byte *info_ptr;
5239 struct die_info *comp_unit_die;
5240 int has_children;
5241
5242 /* Verify we can do the following downcast, and that we have the
5243 data we need. */
5244 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5245 sig_type = (struct signatured_type *) this_cu;
5246 gdb_assert (sig_type->dwo_unit != NULL);
5247
5248 cleanups = make_cleanup (null_cleanup, NULL);
5249
6aa5f3a6
DE
5250 if (use_existing_cu && this_cu->cu != NULL)
5251 {
5252 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5253 cu = this_cu->cu;
5254 /* There's no need to do the rereading_dwo_cu handling that
5255 init_cutu_and_read_dies does since we don't read the stub. */
5256 }
5257 else
5258 {
5259 /* If !use_existing_cu, this_cu->cu must be NULL. */
5260 gdb_assert (this_cu->cu == NULL);
5261 cu = xmalloc (sizeof (*cu));
5262 init_one_comp_unit (cu, this_cu);
5263 /* If an error occurs while loading, release our storage. */
5264 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5265 }
5266
5267 /* A future optimization, if needed, would be to use an existing
5268 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5269 could share abbrev tables. */
a2ce51a0
DE
5270
5271 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5272 0 /* abbrev_table_provided */,
5273 NULL /* stub_comp_unit_die */,
5274 sig_type->dwo_unit->dwo_file->comp_dir,
5275 &reader, &info_ptr,
5276 &comp_unit_die, &has_children) == 0)
5277 {
5278 /* Dummy die. */
5279 do_cleanups (cleanups);
5280 return;
5281 }
5282
5283 /* All the "real" work is done here. */
5284 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5285
6aa5f3a6 5286 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5287 but the alternative is making the latter more complex.
5288 This function is only for the special case of using DWO files directly:
5289 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5290 if (free_cu_cleanup != NULL)
a2ce51a0 5291 {
6aa5f3a6
DE
5292 if (keep)
5293 {
5294 /* We've successfully allocated this compilation unit. Let our
5295 caller clean it up when finished with it. */
5296 discard_cleanups (free_cu_cleanup);
a2ce51a0 5297
6aa5f3a6
DE
5298 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5299 So we have to manually free the abbrev table. */
5300 dwarf2_free_abbrev_table (cu);
a2ce51a0 5301
6aa5f3a6
DE
5302 /* Link this CU into read_in_chain. */
5303 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5304 dwarf2_per_objfile->read_in_chain = this_cu;
5305 }
5306 else
5307 do_cleanups (free_cu_cleanup);
a2ce51a0 5308 }
a2ce51a0
DE
5309
5310 do_cleanups (cleanups);
5311}
5312
fd820528 5313/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5314 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5315
f4dc4d17
DE
5316 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5317 Otherwise the table specified in the comp unit header is read in and used.
5318 This is an optimization for when we already have the abbrev table.
5319
dee91e82
DE
5320 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5321 Otherwise, a new CU is allocated with xmalloc.
5322
5323 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5324 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5325
5326 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5327 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5328
70221824 5329static void
fd820528 5330init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5331 struct abbrev_table *abbrev_table,
fd820528
DE
5332 int use_existing_cu, int keep,
5333 die_reader_func_ftype *die_reader_func,
5334 void *data)
c906108c 5335{
dee91e82 5336 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5337 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5338 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5339 struct dwarf2_cu *cu;
d521ce57 5340 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5341 struct die_reader_specs reader;
d85a05f0 5342 struct die_info *comp_unit_die;
dee91e82 5343 int has_children;
d85a05f0 5344 struct attribute *attr;
365156ad 5345 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5346 struct signatured_type *sig_type = NULL;
4bdcc0c1 5347 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5348 /* Non-zero if CU currently points to a DWO file and we need to
5349 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5350 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5351 int rereading_dwo_cu = 0;
c906108c 5352
09406207
DE
5353 if (dwarf2_die_debug)
5354 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5355 this_cu->is_debug_types ? "type" : "comp",
5356 this_cu->offset.sect_off);
5357
dee91e82
DE
5358 if (use_existing_cu)
5359 gdb_assert (keep);
23745b47 5360
a2ce51a0
DE
5361 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5362 file (instead of going through the stub), short-circuit all of this. */
5363 if (this_cu->reading_dwo_directly)
5364 {
5365 /* Narrow down the scope of possibilities to have to understand. */
5366 gdb_assert (this_cu->is_debug_types);
5367 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5368 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5369 die_reader_func, data);
a2ce51a0
DE
5370 return;
5371 }
5372
dee91e82
DE
5373 cleanups = make_cleanup (null_cleanup, NULL);
5374
5375 /* This is cheap if the section is already read in. */
5376 dwarf2_read_section (objfile, section);
5377
5378 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5379
5380 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5381
5382 if (use_existing_cu && this_cu->cu != NULL)
5383 {
5384 cu = this_cu->cu;
42e7ad6c
DE
5385 /* If this CU is from a DWO file we need to start over, we need to
5386 refetch the attributes from the skeleton CU.
5387 This could be optimized by retrieving those attributes from when we
5388 were here the first time: the previous comp_unit_die was stored in
5389 comp_unit_obstack. But there's no data yet that we need this
5390 optimization. */
5391 if (cu->dwo_unit != NULL)
5392 rereading_dwo_cu = 1;
dee91e82
DE
5393 }
5394 else
5395 {
5396 /* If !use_existing_cu, this_cu->cu must be NULL. */
5397 gdb_assert (this_cu->cu == NULL);
dee91e82
DE
5398 cu = xmalloc (sizeof (*cu));
5399 init_one_comp_unit (cu, this_cu);
dee91e82 5400 /* If an error occurs while loading, release our storage. */
365156ad 5401 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5402 }
dee91e82 5403
b0c7bfa9 5404 /* Get the header. */
42e7ad6c
DE
5405 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5406 {
5407 /* We already have the header, there's no need to read it in again. */
5408 info_ptr += cu->header.first_die_offset.cu_off;
5409 }
5410 else
5411 {
3019eac3 5412 if (this_cu->is_debug_types)
dee91e82
DE
5413 {
5414 ULONGEST signature;
42e7ad6c 5415 cu_offset type_offset_in_tu;
dee91e82 5416
4bdcc0c1
DE
5417 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5418 abbrev_section, info_ptr,
42e7ad6c
DE
5419 &signature,
5420 &type_offset_in_tu);
dee91e82 5421
42e7ad6c
DE
5422 /* Since per_cu is the first member of struct signatured_type,
5423 we can go from a pointer to one to a pointer to the other. */
5424 sig_type = (struct signatured_type *) this_cu;
5425 gdb_assert (sig_type->signature == signature);
5426 gdb_assert (sig_type->type_offset_in_tu.cu_off
5427 == type_offset_in_tu.cu_off);
dee91e82
DE
5428 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5429
42e7ad6c
DE
5430 /* LENGTH has not been set yet for type units if we're
5431 using .gdb_index. */
1ce1cefd 5432 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5433
5434 /* Establish the type offset that can be used to lookup the type. */
5435 sig_type->type_offset_in_section.sect_off =
5436 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5437 }
5438 else
5439 {
4bdcc0c1
DE
5440 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5441 abbrev_section,
5442 info_ptr, 0);
dee91e82
DE
5443
5444 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5445 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5446 }
5447 }
10b3939b 5448
6caca83c 5449 /* Skip dummy compilation units. */
dee91e82 5450 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5451 || peek_abbrev_code (abfd, info_ptr) == 0)
5452 {
dee91e82 5453 do_cleanups (cleanups);
21b2bd31 5454 return;
6caca83c
CC
5455 }
5456
433df2d4
DE
5457 /* If we don't have them yet, read the abbrevs for this compilation unit.
5458 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5459 done. Note that it's important that if the CU had an abbrev table
5460 on entry we don't free it when we're done: Somewhere up the call stack
5461 it may be in use. */
f4dc4d17
DE
5462 if (abbrev_table != NULL)
5463 {
5464 gdb_assert (cu->abbrev_table == NULL);
5465 gdb_assert (cu->header.abbrev_offset.sect_off
5466 == abbrev_table->offset.sect_off);
5467 cu->abbrev_table = abbrev_table;
5468 }
5469 else if (cu->abbrev_table == NULL)
dee91e82 5470 {
4bdcc0c1 5471 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5472 make_cleanup (dwarf2_free_abbrev_table, cu);
5473 }
42e7ad6c
DE
5474 else if (rereading_dwo_cu)
5475 {
5476 dwarf2_free_abbrev_table (cu);
5477 dwarf2_read_abbrevs (cu, abbrev_section);
5478 }
af703f96 5479
dee91e82 5480 /* Read the top level CU/TU die. */
3019eac3 5481 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5482 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5483
b0c7bfa9
DE
5484 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5485 from the DWO file.
5486 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5487 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5488 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5489 if (attr)
5490 {
3019eac3 5491 struct dwo_unit *dwo_unit;
b0c7bfa9 5492 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5493
5494 if (has_children)
6a506a2d
DE
5495 {
5496 complaint (&symfile_complaints,
5497 _("compilation unit with DW_AT_GNU_dwo_name"
5498 " has children (offset 0x%x) [in module %s]"),
5499 this_cu->offset.sect_off, bfd_get_filename (abfd));
5500 }
b0c7bfa9 5501 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5502 if (dwo_unit != NULL)
3019eac3 5503 {
6a506a2d
DE
5504 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5505 abbrev_table != NULL,
a2ce51a0 5506 comp_unit_die, NULL,
6a506a2d
DE
5507 &reader, &info_ptr,
5508 &dwo_comp_unit_die, &has_children) == 0)
5509 {
5510 /* Dummy die. */
5511 do_cleanups (cleanups);
5512 return;
5513 }
5514 comp_unit_die = dwo_comp_unit_die;
5515 }
5516 else
5517 {
5518 /* Yikes, we couldn't find the rest of the DIE, we only have
5519 the stub. A complaint has already been logged. There's
5520 not much more we can do except pass on the stub DIE to
5521 die_reader_func. We don't want to throw an error on bad
5522 debug info. */
3019eac3
DE
5523 }
5524 }
5525
b0c7bfa9 5526 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5527 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5528
b0c7bfa9 5529 /* Done, clean up. */
365156ad 5530 if (free_cu_cleanup != NULL)
348e048f 5531 {
365156ad
TT
5532 if (keep)
5533 {
5534 /* We've successfully allocated this compilation unit. Let our
5535 caller clean it up when finished with it. */
5536 discard_cleanups (free_cu_cleanup);
dee91e82 5537
365156ad
TT
5538 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5539 So we have to manually free the abbrev table. */
5540 dwarf2_free_abbrev_table (cu);
dee91e82 5541
365156ad
TT
5542 /* Link this CU into read_in_chain. */
5543 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5544 dwarf2_per_objfile->read_in_chain = this_cu;
5545 }
5546 else
5547 do_cleanups (free_cu_cleanup);
348e048f 5548 }
365156ad
TT
5549
5550 do_cleanups (cleanups);
dee91e82
DE
5551}
5552
33e80786
DE
5553/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5554 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5555 to have already done the lookup to find the DWO file).
dee91e82
DE
5556
5557 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5558 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5559
5560 We fill in THIS_CU->length.
5561
5562 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5563 linker) then DIE_READER_FUNC will not get called.
5564
5565 THIS_CU->cu is always freed when done.
3019eac3
DE
5566 This is done in order to not leave THIS_CU->cu in a state where we have
5567 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5568
5569static void
5570init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5571 struct dwo_file *dwo_file,
dee91e82
DE
5572 die_reader_func_ftype *die_reader_func,
5573 void *data)
5574{
5575 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5576 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5577 bfd *abfd = get_section_bfd_owner (section);
33e80786 5578 struct dwarf2_section_info *abbrev_section;
dee91e82 5579 struct dwarf2_cu cu;
d521ce57 5580 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5581 struct die_reader_specs reader;
5582 struct cleanup *cleanups;
5583 struct die_info *comp_unit_die;
5584 int has_children;
5585
09406207
DE
5586 if (dwarf2_die_debug)
5587 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5588 this_cu->is_debug_types ? "type" : "comp",
5589 this_cu->offset.sect_off);
5590
dee91e82
DE
5591 gdb_assert (this_cu->cu == NULL);
5592
33e80786
DE
5593 abbrev_section = (dwo_file != NULL
5594 ? &dwo_file->sections.abbrev
5595 : get_abbrev_section_for_cu (this_cu));
5596
dee91e82
DE
5597 /* This is cheap if the section is already read in. */
5598 dwarf2_read_section (objfile, section);
5599
5600 init_one_comp_unit (&cu, this_cu);
5601
5602 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5603
5604 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5605 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5606 abbrev_section, info_ptr,
3019eac3 5607 this_cu->is_debug_types);
dee91e82 5608
1ce1cefd 5609 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5610
5611 /* Skip dummy compilation units. */
5612 if (info_ptr >= begin_info_ptr + this_cu->length
5613 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5614 {
dee91e82 5615 do_cleanups (cleanups);
21b2bd31 5616 return;
93311388 5617 }
72bf9492 5618
dee91e82
DE
5619 dwarf2_read_abbrevs (&cu, abbrev_section);
5620 make_cleanup (dwarf2_free_abbrev_table, &cu);
5621
3019eac3 5622 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5623 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5624
5625 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5626
5627 do_cleanups (cleanups);
5628}
5629
3019eac3
DE
5630/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5631 does not lookup the specified DWO file.
5632 This cannot be used to read DWO files.
dee91e82
DE
5633
5634 THIS_CU->cu is always freed when done.
3019eac3
DE
5635 This is done in order to not leave THIS_CU->cu in a state where we have
5636 to care whether it refers to the "main" CU or the DWO CU.
5637 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5638
5639static void
5640init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5641 die_reader_func_ftype *die_reader_func,
5642 void *data)
5643{
33e80786 5644 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5645}
0018ea6f
DE
5646\f
5647/* Type Unit Groups.
dee91e82 5648
0018ea6f
DE
5649 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5650 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5651 so that all types coming from the same compilation (.o file) are grouped
5652 together. A future step could be to put the types in the same symtab as
5653 the CU the types ultimately came from. */
ff013f42 5654
f4dc4d17
DE
5655static hashval_t
5656hash_type_unit_group (const void *item)
5657{
094b34ac 5658 const struct type_unit_group *tu_group = item;
f4dc4d17 5659
094b34ac 5660 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5661}
348e048f
DE
5662
5663static int
f4dc4d17 5664eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5665{
f4dc4d17
DE
5666 const struct type_unit_group *lhs = item_lhs;
5667 const struct type_unit_group *rhs = item_rhs;
348e048f 5668
094b34ac 5669 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5670}
348e048f 5671
f4dc4d17
DE
5672/* Allocate a hash table for type unit groups. */
5673
5674static htab_t
5675allocate_type_unit_groups_table (void)
5676{
5677 return htab_create_alloc_ex (3,
5678 hash_type_unit_group,
5679 eq_type_unit_group,
5680 NULL,
5681 &dwarf2_per_objfile->objfile->objfile_obstack,
5682 hashtab_obstack_allocate,
5683 dummy_obstack_deallocate);
5684}
dee91e82 5685
f4dc4d17
DE
5686/* Type units that don't have DW_AT_stmt_list are grouped into their own
5687 partial symtabs. We combine several TUs per psymtab to not let the size
5688 of any one psymtab grow too big. */
5689#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5690#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5691
094b34ac 5692/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5693 Create the type_unit_group object used to hold one or more TUs. */
5694
5695static struct type_unit_group *
094b34ac 5696create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5697{
5698 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5699 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5700 struct type_unit_group *tu_group;
f4dc4d17
DE
5701
5702 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5703 struct type_unit_group);
094b34ac 5704 per_cu = &tu_group->per_cu;
f4dc4d17 5705 per_cu->objfile = objfile;
f4dc4d17 5706
094b34ac
DE
5707 if (dwarf2_per_objfile->using_index)
5708 {
5709 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5710 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5711 }
5712 else
5713 {
5714 unsigned int line_offset = line_offset_struct.sect_off;
5715 struct partial_symtab *pst;
5716 char *name;
5717
5718 /* Give the symtab a useful name for debug purposes. */
5719 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5720 name = xstrprintf ("<type_units_%d>",
5721 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5722 else
5723 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5724
5725 pst = create_partial_symtab (per_cu, name);
5726 pst->anonymous = 1;
f4dc4d17 5727
094b34ac
DE
5728 xfree (name);
5729 }
f4dc4d17 5730
094b34ac
DE
5731 tu_group->hash.dwo_unit = cu->dwo_unit;
5732 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5733
5734 return tu_group;
5735}
5736
094b34ac
DE
5737/* Look up the type_unit_group for type unit CU, and create it if necessary.
5738 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5739
5740static struct type_unit_group *
ff39bb5e 5741get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5742{
5743 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5744 struct type_unit_group *tu_group;
5745 void **slot;
5746 unsigned int line_offset;
5747 struct type_unit_group type_unit_group_for_lookup;
5748
5749 if (dwarf2_per_objfile->type_unit_groups == NULL)
5750 {
5751 dwarf2_per_objfile->type_unit_groups =
5752 allocate_type_unit_groups_table ();
5753 }
5754
5755 /* Do we need to create a new group, or can we use an existing one? */
5756
5757 if (stmt_list)
5758 {
5759 line_offset = DW_UNSND (stmt_list);
5760 ++tu_stats->nr_symtab_sharers;
5761 }
5762 else
5763 {
5764 /* Ugh, no stmt_list. Rare, but we have to handle it.
5765 We can do various things here like create one group per TU or
5766 spread them over multiple groups to split up the expansion work.
5767 To avoid worst case scenarios (too many groups or too large groups)
5768 we, umm, group them in bunches. */
5769 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5770 | (tu_stats->nr_stmt_less_type_units
5771 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5772 ++tu_stats->nr_stmt_less_type_units;
5773 }
5774
094b34ac
DE
5775 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5776 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5777 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5778 &type_unit_group_for_lookup, INSERT);
5779 if (*slot != NULL)
5780 {
5781 tu_group = *slot;
5782 gdb_assert (tu_group != NULL);
5783 }
5784 else
5785 {
5786 sect_offset line_offset_struct;
5787
5788 line_offset_struct.sect_off = line_offset;
094b34ac 5789 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5790 *slot = tu_group;
5791 ++tu_stats->nr_symtabs;
5792 }
5793
5794 return tu_group;
5795}
0018ea6f
DE
5796\f
5797/* Partial symbol tables. */
5798
5799/* Create a psymtab named NAME and assign it to PER_CU.
5800
5801 The caller must fill in the following details:
5802 dirname, textlow, texthigh. */
5803
5804static struct partial_symtab *
5805create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5806{
5807 struct objfile *objfile = per_cu->objfile;
5808 struct partial_symtab *pst;
5809
5810 pst = start_psymtab_common (objfile, objfile->section_offsets,
5811 name, 0,
5812 objfile->global_psymbols.next,
5813 objfile->static_psymbols.next);
5814
5815 pst->psymtabs_addrmap_supported = 1;
5816
5817 /* This is the glue that links PST into GDB's symbol API. */
5818 pst->read_symtab_private = per_cu;
5819 pst->read_symtab = dwarf2_read_symtab;
5820 per_cu->v.psymtab = pst;
5821
5822 return pst;
5823}
5824
b93601f3
TT
5825/* The DATA object passed to process_psymtab_comp_unit_reader has this
5826 type. */
5827
5828struct process_psymtab_comp_unit_data
5829{
5830 /* True if we are reading a DW_TAG_partial_unit. */
5831
5832 int want_partial_unit;
5833
5834 /* The "pretend" language that is used if the CU doesn't declare a
5835 language. */
5836
5837 enum language pretend_language;
5838};
5839
0018ea6f
DE
5840/* die_reader_func for process_psymtab_comp_unit. */
5841
5842static void
5843process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5844 const gdb_byte *info_ptr,
0018ea6f
DE
5845 struct die_info *comp_unit_die,
5846 int has_children,
5847 void *data)
5848{
5849 struct dwarf2_cu *cu = reader->cu;
5850 struct objfile *objfile = cu->objfile;
5851 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5852 struct attribute *attr;
5853 CORE_ADDR baseaddr;
5854 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5855 struct partial_symtab *pst;
5856 int has_pc_info;
5857 const char *filename;
b93601f3 5858 struct process_psymtab_comp_unit_data *info = data;
0018ea6f 5859
b93601f3 5860 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
5861 return;
5862
5863 gdb_assert (! per_cu->is_debug_types);
5864
b93601f3 5865 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
5866
5867 cu->list_in_scope = &file_symbols;
5868
5869 /* Allocate a new partial symbol table structure. */
5870 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5871 if (attr == NULL || !DW_STRING (attr))
5872 filename = "";
5873 else
5874 filename = DW_STRING (attr);
5875
5876 pst = create_partial_symtab (per_cu, filename);
5877
5878 /* This must be done before calling dwarf2_build_include_psymtabs. */
5879 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5880 if (attr != NULL)
5881 pst->dirname = DW_STRING (attr);
5882
5883 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5884
5885 dwarf2_find_base_address (comp_unit_die, cu);
5886
5887 /* Possibly set the default values of LOWPC and HIGHPC from
5888 `DW_AT_ranges'. */
5889 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5890 &best_highpc, cu, pst);
5891 if (has_pc_info == 1 && best_lowpc < best_highpc)
5892 /* Store the contiguous range if it is not empty; it can be empty for
5893 CUs with no code. */
5894 addrmap_set_empty (objfile->psymtabs_addrmap,
5895 best_lowpc + baseaddr,
5896 best_highpc + baseaddr - 1, pst);
5897
5898 /* Check if comp unit has_children.
5899 If so, read the rest of the partial symbols from this comp unit.
5900 If not, there's no more debug_info for this comp unit. */
5901 if (has_children)
5902 {
5903 struct partial_die_info *first_die;
5904 CORE_ADDR lowpc, highpc;
5905
5906 lowpc = ((CORE_ADDR) -1);
5907 highpc = ((CORE_ADDR) 0);
5908
5909 first_die = load_partial_dies (reader, info_ptr, 1);
5910
5911 scan_partial_symbols (first_die, &lowpc, &highpc,
5912 ! has_pc_info, cu);
5913
5914 /* If we didn't find a lowpc, set it to highpc to avoid
5915 complaints from `maint check'. */
5916 if (lowpc == ((CORE_ADDR) -1))
5917 lowpc = highpc;
5918
5919 /* If the compilation unit didn't have an explicit address range,
5920 then use the information extracted from its child dies. */
5921 if (! has_pc_info)
5922 {
5923 best_lowpc = lowpc;
5924 best_highpc = highpc;
5925 }
5926 }
5927 pst->textlow = best_lowpc + baseaddr;
5928 pst->texthigh = best_highpc + baseaddr;
5929
5930 pst->n_global_syms = objfile->global_psymbols.next -
5931 (objfile->global_psymbols.list + pst->globals_offset);
5932 pst->n_static_syms = objfile->static_psymbols.next -
5933 (objfile->static_psymbols.list + pst->statics_offset);
5934 sort_pst_symbols (objfile, pst);
5935
5936 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5937 {
5938 int i;
5939 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5940 struct dwarf2_per_cu_data *iter;
5941
5942 /* Fill in 'dependencies' here; we fill in 'users' in a
5943 post-pass. */
5944 pst->number_of_dependencies = len;
5945 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5946 len * sizeof (struct symtab *));
5947 for (i = 0;
5948 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5949 i, iter);
5950 ++i)
5951 pst->dependencies[i] = iter->v.psymtab;
5952
5953 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5954 }
5955
5956 /* Get the list of files included in the current compilation unit,
5957 and build a psymtab for each of them. */
5958 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5959
5960 if (dwarf2_read_debug)
5961 {
5962 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5963
5964 fprintf_unfiltered (gdb_stdlog,
5965 "Psymtab for %s unit @0x%x: %s - %s"
5966 ", %d global, %d static syms\n",
5967 per_cu->is_debug_types ? "type" : "comp",
5968 per_cu->offset.sect_off,
5969 paddress (gdbarch, pst->textlow),
5970 paddress (gdbarch, pst->texthigh),
5971 pst->n_global_syms, pst->n_static_syms);
5972 }
5973}
5974
5975/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5976 Process compilation unit THIS_CU for a psymtab. */
5977
5978static void
5979process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
5980 int want_partial_unit,
5981 enum language pretend_language)
0018ea6f 5982{
b93601f3
TT
5983 struct process_psymtab_comp_unit_data info;
5984
0018ea6f
DE
5985 /* If this compilation unit was already read in, free the
5986 cached copy in order to read it in again. This is
5987 necessary because we skipped some symbols when we first
5988 read in the compilation unit (see load_partial_dies).
5989 This problem could be avoided, but the benefit is unclear. */
5990 if (this_cu->cu != NULL)
5991 free_one_cached_comp_unit (this_cu);
5992
5993 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
5994 info.want_partial_unit = want_partial_unit;
5995 info.pretend_language = pretend_language;
0018ea6f
DE
5996 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
5997 process_psymtab_comp_unit_reader,
b93601f3 5998 &info);
0018ea6f
DE
5999
6000 /* Age out any secondary CUs. */
6001 age_cached_comp_units ();
6002}
f4dc4d17
DE
6003
6004/* Reader function for build_type_psymtabs. */
6005
6006static void
6007build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6008 const gdb_byte *info_ptr,
f4dc4d17
DE
6009 struct die_info *type_unit_die,
6010 int has_children,
6011 void *data)
6012{
6013 struct objfile *objfile = dwarf2_per_objfile->objfile;
6014 struct dwarf2_cu *cu = reader->cu;
6015 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6016 struct signatured_type *sig_type;
f4dc4d17
DE
6017 struct type_unit_group *tu_group;
6018 struct attribute *attr;
6019 struct partial_die_info *first_die;
6020 CORE_ADDR lowpc, highpc;
6021 struct partial_symtab *pst;
6022
6023 gdb_assert (data == NULL);
0186c6a7
DE
6024 gdb_assert (per_cu->is_debug_types);
6025 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6026
6027 if (! has_children)
6028 return;
6029
6030 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6031 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6032
0186c6a7 6033 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6034
6035 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6036 cu->list_in_scope = &file_symbols;
6037 pst = create_partial_symtab (per_cu, "");
6038 pst->anonymous = 1;
6039
6040 first_die = load_partial_dies (reader, info_ptr, 1);
6041
6042 lowpc = (CORE_ADDR) -1;
6043 highpc = (CORE_ADDR) 0;
6044 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6045
6046 pst->n_global_syms = objfile->global_psymbols.next -
6047 (objfile->global_psymbols.list + pst->globals_offset);
6048 pst->n_static_syms = objfile->static_psymbols.next -
6049 (objfile->static_psymbols.list + pst->statics_offset);
5c80ed9d 6050 sort_pst_symbols (objfile, pst);
f4dc4d17
DE
6051}
6052
73051182
DE
6053/* Struct used to sort TUs by their abbreviation table offset. */
6054
6055struct tu_abbrev_offset
6056{
6057 struct signatured_type *sig_type;
6058 sect_offset abbrev_offset;
6059};
6060
6061/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6062
6063static int
6064sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6065{
6066 const struct tu_abbrev_offset * const *a = ap;
6067 const struct tu_abbrev_offset * const *b = bp;
6068 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6069 unsigned int boff = (*b)->abbrev_offset.sect_off;
6070
6071 return (aoff > boff) - (aoff < boff);
6072}
6073
6074/* Efficiently read all the type units.
6075 This does the bulk of the work for build_type_psymtabs.
6076
6077 The efficiency is because we sort TUs by the abbrev table they use and
6078 only read each abbrev table once. In one program there are 200K TUs
6079 sharing 8K abbrev tables.
6080
6081 The main purpose of this function is to support building the
6082 dwarf2_per_objfile->type_unit_groups table.
6083 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6084 can collapse the search space by grouping them by stmt_list.
6085 The savings can be significant, in the same program from above the 200K TUs
6086 share 8K stmt_list tables.
6087
6088 FUNC is expected to call get_type_unit_group, which will create the
6089 struct type_unit_group if necessary and add it to
6090 dwarf2_per_objfile->type_unit_groups. */
6091
6092static void
6093build_type_psymtabs_1 (void)
6094{
6095 struct objfile *objfile = dwarf2_per_objfile->objfile;
6096 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6097 struct cleanup *cleanups;
6098 struct abbrev_table *abbrev_table;
6099 sect_offset abbrev_offset;
6100 struct tu_abbrev_offset *sorted_by_abbrev;
6101 struct type_unit_group **iter;
6102 int i;
6103
6104 /* It's up to the caller to not call us multiple times. */
6105 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6106
6107 if (dwarf2_per_objfile->n_type_units == 0)
6108 return;
6109
6110 /* TUs typically share abbrev tables, and there can be way more TUs than
6111 abbrev tables. Sort by abbrev table to reduce the number of times we
6112 read each abbrev table in.
6113 Alternatives are to punt or to maintain a cache of abbrev tables.
6114 This is simpler and efficient enough for now.
6115
6116 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6117 symtab to use). Typically TUs with the same abbrev offset have the same
6118 stmt_list value too so in practice this should work well.
6119
6120 The basic algorithm here is:
6121
6122 sort TUs by abbrev table
6123 for each TU with same abbrev table:
6124 read abbrev table if first user
6125 read TU top level DIE
6126 [IWBN if DWO skeletons had DW_AT_stmt_list]
6127 call FUNC */
6128
6129 if (dwarf2_read_debug)
6130 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6131
6132 /* Sort in a separate table to maintain the order of all_type_units
6133 for .gdb_index: TU indices directly index all_type_units. */
6134 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6135 dwarf2_per_objfile->n_type_units);
6136 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6137 {
6138 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6139
6140 sorted_by_abbrev[i].sig_type = sig_type;
6141 sorted_by_abbrev[i].abbrev_offset =
6142 read_abbrev_offset (sig_type->per_cu.section,
6143 sig_type->per_cu.offset);
6144 }
6145 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6146 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6147 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6148
6149 abbrev_offset.sect_off = ~(unsigned) 0;
6150 abbrev_table = NULL;
6151 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6152
6153 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6154 {
6155 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6156
6157 /* Switch to the next abbrev table if necessary. */
6158 if (abbrev_table == NULL
6159 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6160 {
6161 if (abbrev_table != NULL)
6162 {
6163 abbrev_table_free (abbrev_table);
6164 /* Reset to NULL in case abbrev_table_read_table throws
6165 an error: abbrev_table_free_cleanup will get called. */
6166 abbrev_table = NULL;
6167 }
6168 abbrev_offset = tu->abbrev_offset;
6169 abbrev_table =
6170 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6171 abbrev_offset);
6172 ++tu_stats->nr_uniq_abbrev_tables;
6173 }
6174
6175 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6176 build_type_psymtabs_reader, NULL);
6177 }
6178
73051182 6179 do_cleanups (cleanups);
6aa5f3a6 6180}
73051182 6181
6aa5f3a6
DE
6182/* Print collected type unit statistics. */
6183
6184static void
6185print_tu_stats (void)
6186{
6187 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6188
6189 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6190 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6191 dwarf2_per_objfile->n_type_units);
6192 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6193 tu_stats->nr_uniq_abbrev_tables);
6194 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6195 tu_stats->nr_symtabs);
6196 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6197 tu_stats->nr_symtab_sharers);
6198 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6199 tu_stats->nr_stmt_less_type_units);
6200 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6201 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6202}
6203
f4dc4d17
DE
6204/* Traversal function for build_type_psymtabs. */
6205
6206static int
6207build_type_psymtab_dependencies (void **slot, void *info)
6208{
6209 struct objfile *objfile = dwarf2_per_objfile->objfile;
6210 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6211 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6212 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6213 int len = VEC_length (sig_type_ptr, tu_group->tus);
6214 struct signatured_type *iter;
f4dc4d17
DE
6215 int i;
6216
6217 gdb_assert (len > 0);
0186c6a7 6218 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6219
6220 pst->number_of_dependencies = len;
6221 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6222 len * sizeof (struct psymtab *));
6223 for (i = 0;
0186c6a7 6224 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6225 ++i)
6226 {
0186c6a7
DE
6227 gdb_assert (iter->per_cu.is_debug_types);
6228 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6229 iter->type_unit_group = tu_group;
f4dc4d17
DE
6230 }
6231
0186c6a7 6232 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6233
6234 return 1;
6235}
6236
6237/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6238 Build partial symbol tables for the .debug_types comp-units. */
6239
6240static void
6241build_type_psymtabs (struct objfile *objfile)
6242{
0e50663e 6243 if (! create_all_type_units (objfile))
348e048f
DE
6244 return;
6245
73051182 6246 build_type_psymtabs_1 ();
6aa5f3a6 6247}
f4dc4d17 6248
6aa5f3a6
DE
6249/* Traversal function for process_skeletonless_type_unit.
6250 Read a TU in a DWO file and build partial symbols for it. */
6251
6252static int
6253process_skeletonless_type_unit (void **slot, void *info)
6254{
6255 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6256 struct objfile *objfile = info;
6257 struct signatured_type find_entry, *entry;
6258
6259 /* If this TU doesn't exist in the global table, add it and read it in. */
6260
6261 if (dwarf2_per_objfile->signatured_types == NULL)
6262 {
6263 dwarf2_per_objfile->signatured_types
6264 = allocate_signatured_type_table (objfile);
6265 }
6266
6267 find_entry.signature = dwo_unit->signature;
6268 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6269 INSERT);
6270 /* If we've already seen this type there's nothing to do. What's happening
6271 is we're doing our own version of comdat-folding here. */
6272 if (*slot != NULL)
6273 return 1;
6274
6275 /* This does the job that create_all_type_units would have done for
6276 this TU. */
6277 entry = add_type_unit (dwo_unit->signature, slot);
6278 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6279 *slot = entry;
6280
6281 /* This does the job that build_type_psymtabs_1 would have done. */
6282 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6283 build_type_psymtabs_reader, NULL);
6284
6285 return 1;
6286}
6287
6288/* Traversal function for process_skeletonless_type_units. */
6289
6290static int
6291process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6292{
6293 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6294
6295 if (dwo_file->tus != NULL)
6296 {
6297 htab_traverse_noresize (dwo_file->tus,
6298 process_skeletonless_type_unit, info);
6299 }
6300
6301 return 1;
6302}
6303
6304/* Scan all TUs of DWO files, verifying we've processed them.
6305 This is needed in case a TU was emitted without its skeleton.
6306 Note: This can't be done until we know what all the DWO files are. */
6307
6308static void
6309process_skeletonless_type_units (struct objfile *objfile)
6310{
6311 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6312 if (get_dwp_file () == NULL
6313 && dwarf2_per_objfile->dwo_files != NULL)
6314 {
6315 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6316 process_dwo_file_for_skeletonless_type_units,
6317 objfile);
6318 }
348e048f
DE
6319}
6320
60606b2c
TT
6321/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6322
6323static void
6324psymtabs_addrmap_cleanup (void *o)
6325{
6326 struct objfile *objfile = o;
ec61707d 6327
60606b2c
TT
6328 objfile->psymtabs_addrmap = NULL;
6329}
6330
95554aad
TT
6331/* Compute the 'user' field for each psymtab in OBJFILE. */
6332
6333static void
6334set_partial_user (struct objfile *objfile)
6335{
6336 int i;
6337
6338 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6339 {
8832e7e3 6340 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6341 struct partial_symtab *pst = per_cu->v.psymtab;
6342 int j;
6343
36586728
TT
6344 if (pst == NULL)
6345 continue;
6346
95554aad
TT
6347 for (j = 0; j < pst->number_of_dependencies; ++j)
6348 {
6349 /* Set the 'user' field only if it is not already set. */
6350 if (pst->dependencies[j]->user == NULL)
6351 pst->dependencies[j]->user = pst;
6352 }
6353 }
6354}
6355
93311388
DE
6356/* Build the partial symbol table by doing a quick pass through the
6357 .debug_info and .debug_abbrev sections. */
72bf9492 6358
93311388 6359static void
c67a9c90 6360dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6361{
60606b2c
TT
6362 struct cleanup *back_to, *addrmap_cleanup;
6363 struct obstack temp_obstack;
21b2bd31 6364 int i;
93311388 6365
45cfd468
DE
6366 if (dwarf2_read_debug)
6367 {
6368 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6369 objfile_name (objfile));
45cfd468
DE
6370 }
6371
98bfdba5
PA
6372 dwarf2_per_objfile->reading_partial_symbols = 1;
6373
be391dca 6374 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6375
93311388
DE
6376 /* Any cached compilation units will be linked by the per-objfile
6377 read_in_chain. Make sure to free them when we're done. */
6378 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6379
348e048f
DE
6380 build_type_psymtabs (objfile);
6381
93311388 6382 create_all_comp_units (objfile);
c906108c 6383
60606b2c
TT
6384 /* Create a temporary address map on a temporary obstack. We later
6385 copy this to the final obstack. */
6386 obstack_init (&temp_obstack);
6387 make_cleanup_obstack_free (&temp_obstack);
6388 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6389 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6390
21b2bd31 6391 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6392 {
8832e7e3 6393 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6394
b93601f3 6395 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6396 }
ff013f42 6397
6aa5f3a6
DE
6398 /* This has to wait until we read the CUs, we need the list of DWOs. */
6399 process_skeletonless_type_units (objfile);
6400
6401 /* Now that all TUs have been processed we can fill in the dependencies. */
6402 if (dwarf2_per_objfile->type_unit_groups != NULL)
6403 {
6404 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6405 build_type_psymtab_dependencies, NULL);
6406 }
6407
6408 if (dwarf2_read_debug)
6409 print_tu_stats ();
6410
95554aad
TT
6411 set_partial_user (objfile);
6412
ff013f42
JK
6413 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6414 &objfile->objfile_obstack);
60606b2c 6415 discard_cleanups (addrmap_cleanup);
ff013f42 6416
ae038cb0 6417 do_cleanups (back_to);
45cfd468
DE
6418
6419 if (dwarf2_read_debug)
6420 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6421 objfile_name (objfile));
ae038cb0
DJ
6422}
6423
3019eac3 6424/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6425
6426static void
dee91e82 6427load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6428 const gdb_byte *info_ptr,
dee91e82
DE
6429 struct die_info *comp_unit_die,
6430 int has_children,
6431 void *data)
ae038cb0 6432{
dee91e82 6433 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6434
95554aad 6435 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6436
ae038cb0
DJ
6437 /* Check if comp unit has_children.
6438 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6439 If not, there's no more debug_info for this comp unit. */
d85a05f0 6440 if (has_children)
dee91e82
DE
6441 load_partial_dies (reader, info_ptr, 0);
6442}
98bfdba5 6443
dee91e82
DE
6444/* Load the partial DIEs for a secondary CU into memory.
6445 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6446
dee91e82
DE
6447static void
6448load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6449{
f4dc4d17
DE
6450 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6451 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6452}
6453
ae038cb0 6454static void
36586728
TT
6455read_comp_units_from_section (struct objfile *objfile,
6456 struct dwarf2_section_info *section,
6457 unsigned int is_dwz,
6458 int *n_allocated,
6459 int *n_comp_units,
6460 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6461{
d521ce57 6462 const gdb_byte *info_ptr;
a32a8923 6463 bfd *abfd = get_section_bfd_owner (section);
be391dca 6464
bf6af496
DE
6465 if (dwarf2_read_debug)
6466 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6467 get_section_name (section),
6468 get_section_file_name (section));
bf6af496 6469
36586728 6470 dwarf2_read_section (objfile, section);
ae038cb0 6471
36586728 6472 info_ptr = section->buffer;
6e70227d 6473
36586728 6474 while (info_ptr < section->buffer + section->size)
ae038cb0 6475 {
c764a876 6476 unsigned int length, initial_length_size;
ae038cb0 6477 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6478 sect_offset offset;
ae038cb0 6479
36586728 6480 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6481
6482 /* Read just enough information to find out where the next
6483 compilation unit is. */
36586728 6484 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6485
6486 /* Save the compilation unit for later lookup. */
6487 this_cu = obstack_alloc (&objfile->objfile_obstack,
6488 sizeof (struct dwarf2_per_cu_data));
6489 memset (this_cu, 0, sizeof (*this_cu));
6490 this_cu->offset = offset;
c764a876 6491 this_cu->length = length + initial_length_size;
36586728 6492 this_cu->is_dwz = is_dwz;
9291a0cd 6493 this_cu->objfile = objfile;
8a0459fd 6494 this_cu->section = section;
ae038cb0 6495
36586728 6496 if (*n_comp_units == *n_allocated)
ae038cb0 6497 {
36586728
TT
6498 *n_allocated *= 2;
6499 *all_comp_units = xrealloc (*all_comp_units,
6500 *n_allocated
6501 * sizeof (struct dwarf2_per_cu_data *));
ae038cb0 6502 }
36586728
TT
6503 (*all_comp_units)[*n_comp_units] = this_cu;
6504 ++*n_comp_units;
ae038cb0
DJ
6505
6506 info_ptr = info_ptr + this_cu->length;
6507 }
36586728
TT
6508}
6509
6510/* Create a list of all compilation units in OBJFILE.
6511 This is only done for -readnow and building partial symtabs. */
6512
6513static void
6514create_all_comp_units (struct objfile *objfile)
6515{
6516 int n_allocated;
6517 int n_comp_units;
6518 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6519 struct dwz_file *dwz;
36586728
TT
6520
6521 n_comp_units = 0;
6522 n_allocated = 10;
6523 all_comp_units = xmalloc (n_allocated
6524 * sizeof (struct dwarf2_per_cu_data *));
6525
6526 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6527 &n_allocated, &n_comp_units, &all_comp_units);
6528
4db1a1dc
TT
6529 dwz = dwarf2_get_dwz_file ();
6530 if (dwz != NULL)
6531 read_comp_units_from_section (objfile, &dwz->info, 1,
6532 &n_allocated, &n_comp_units,
6533 &all_comp_units);
ae038cb0
DJ
6534
6535 dwarf2_per_objfile->all_comp_units
6536 = obstack_alloc (&objfile->objfile_obstack,
6537 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6538 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6539 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6540 xfree (all_comp_units);
6541 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6542}
6543
5734ee8b 6544/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6545 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6546 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6547 DW_AT_ranges). See the comments of add_partial_subprogram on how
6548 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6549
72bf9492
DJ
6550static void
6551scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6552 CORE_ADDR *highpc, int set_addrmap,
6553 struct dwarf2_cu *cu)
c906108c 6554{
72bf9492 6555 struct partial_die_info *pdi;
c906108c 6556
91c24f0a
DC
6557 /* Now, march along the PDI's, descending into ones which have
6558 interesting children but skipping the children of the other ones,
6559 until we reach the end of the compilation unit. */
c906108c 6560
72bf9492 6561 pdi = first_die;
91c24f0a 6562
72bf9492
DJ
6563 while (pdi != NULL)
6564 {
6565 fixup_partial_die (pdi, cu);
c906108c 6566
f55ee35c 6567 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6568 children, so we need to look at them. Ditto for anonymous
6569 enums. */
933c6fe4 6570
72bf9492 6571 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6572 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6573 || pdi->tag == DW_TAG_imported_unit)
c906108c 6574 {
72bf9492 6575 switch (pdi->tag)
c906108c
SS
6576 {
6577 case DW_TAG_subprogram:
cdc07690 6578 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6579 break;
72929c62 6580 case DW_TAG_constant:
c906108c
SS
6581 case DW_TAG_variable:
6582 case DW_TAG_typedef:
91c24f0a 6583 case DW_TAG_union_type:
72bf9492 6584 if (!pdi->is_declaration)
63d06c5c 6585 {
72bf9492 6586 add_partial_symbol (pdi, cu);
63d06c5c
DC
6587 }
6588 break;
c906108c 6589 case DW_TAG_class_type:
680b30c7 6590 case DW_TAG_interface_type:
c906108c 6591 case DW_TAG_structure_type:
72bf9492 6592 if (!pdi->is_declaration)
c906108c 6593 {
72bf9492 6594 add_partial_symbol (pdi, cu);
c906108c
SS
6595 }
6596 break;
91c24f0a 6597 case DW_TAG_enumeration_type:
72bf9492
DJ
6598 if (!pdi->is_declaration)
6599 add_partial_enumeration (pdi, cu);
c906108c
SS
6600 break;
6601 case DW_TAG_base_type:
a02abb62 6602 case DW_TAG_subrange_type:
c906108c 6603 /* File scope base type definitions are added to the partial
c5aa993b 6604 symbol table. */
72bf9492 6605 add_partial_symbol (pdi, cu);
c906108c 6606 break;
d9fa45fe 6607 case DW_TAG_namespace:
cdc07690 6608 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6609 break;
5d7cb8df 6610 case DW_TAG_module:
cdc07690 6611 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6612 break;
95554aad
TT
6613 case DW_TAG_imported_unit:
6614 {
6615 struct dwarf2_per_cu_data *per_cu;
6616
f4dc4d17
DE
6617 /* For now we don't handle imported units in type units. */
6618 if (cu->per_cu->is_debug_types)
6619 {
6620 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6621 " supported in type units [in module %s]"),
4262abfb 6622 objfile_name (cu->objfile));
f4dc4d17
DE
6623 }
6624
95554aad 6625 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6626 pdi->is_dwz,
95554aad
TT
6627 cu->objfile);
6628
6629 /* Go read the partial unit, if needed. */
6630 if (per_cu->v.psymtab == NULL)
b93601f3 6631 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6632
f4dc4d17 6633 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6634 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6635 }
6636 break;
74921315
KS
6637 case DW_TAG_imported_declaration:
6638 add_partial_symbol (pdi, cu);
6639 break;
c906108c
SS
6640 default:
6641 break;
6642 }
6643 }
6644
72bf9492
DJ
6645 /* If the die has a sibling, skip to the sibling. */
6646
6647 pdi = pdi->die_sibling;
6648 }
6649}
6650
6651/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6652
72bf9492 6653 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6654 name is concatenated with "::" and the partial DIE's name. For
6655 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6656 Enumerators are an exception; they use the scope of their parent
6657 enumeration type, i.e. the name of the enumeration type is not
6658 prepended to the enumerator.
91c24f0a 6659
72bf9492
DJ
6660 There are two complexities. One is DW_AT_specification; in this
6661 case "parent" means the parent of the target of the specification,
6662 instead of the direct parent of the DIE. The other is compilers
6663 which do not emit DW_TAG_namespace; in this case we try to guess
6664 the fully qualified name of structure types from their members'
6665 linkage names. This must be done using the DIE's children rather
6666 than the children of any DW_AT_specification target. We only need
6667 to do this for structures at the top level, i.e. if the target of
6668 any DW_AT_specification (if any; otherwise the DIE itself) does not
6669 have a parent. */
6670
6671/* Compute the scope prefix associated with PDI's parent, in
6672 compilation unit CU. The result will be allocated on CU's
6673 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6674 field. NULL is returned if no prefix is necessary. */
15d034d0 6675static const char *
72bf9492
DJ
6676partial_die_parent_scope (struct partial_die_info *pdi,
6677 struct dwarf2_cu *cu)
6678{
15d034d0 6679 const char *grandparent_scope;
72bf9492 6680 struct partial_die_info *parent, *real_pdi;
91c24f0a 6681
72bf9492
DJ
6682 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6683 then this means the parent of the specification DIE. */
6684
6685 real_pdi = pdi;
72bf9492 6686 while (real_pdi->has_specification)
36586728
TT
6687 real_pdi = find_partial_die (real_pdi->spec_offset,
6688 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6689
6690 parent = real_pdi->die_parent;
6691 if (parent == NULL)
6692 return NULL;
6693
6694 if (parent->scope_set)
6695 return parent->scope;
6696
6697 fixup_partial_die (parent, cu);
6698
10b3939b 6699 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6700
acebe513
UW
6701 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6702 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6703 Work around this problem here. */
6704 if (cu->language == language_cplus
6e70227d 6705 && parent->tag == DW_TAG_namespace
acebe513
UW
6706 && strcmp (parent->name, "::") == 0
6707 && grandparent_scope == NULL)
6708 {
6709 parent->scope = NULL;
6710 parent->scope_set = 1;
6711 return NULL;
6712 }
6713
9c6c53f7
SA
6714 if (pdi->tag == DW_TAG_enumerator)
6715 /* Enumerators should not get the name of the enumeration as a prefix. */
6716 parent->scope = grandparent_scope;
6717 else if (parent->tag == DW_TAG_namespace
f55ee35c 6718 || parent->tag == DW_TAG_module
72bf9492
DJ
6719 || parent->tag == DW_TAG_structure_type
6720 || parent->tag == DW_TAG_class_type
680b30c7 6721 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6722 || parent->tag == DW_TAG_union_type
6723 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6724 {
6725 if (grandparent_scope == NULL)
6726 parent->scope = parent->name;
6727 else
3e43a32a
MS
6728 parent->scope = typename_concat (&cu->comp_unit_obstack,
6729 grandparent_scope,
f55ee35c 6730 parent->name, 0, cu);
72bf9492 6731 }
72bf9492
DJ
6732 else
6733 {
6734 /* FIXME drow/2004-04-01: What should we be doing with
6735 function-local names? For partial symbols, we should probably be
6736 ignoring them. */
6737 complaint (&symfile_complaints,
e2e0b3e5 6738 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6739 parent->tag, pdi->offset.sect_off);
72bf9492 6740 parent->scope = grandparent_scope;
c906108c
SS
6741 }
6742
72bf9492
DJ
6743 parent->scope_set = 1;
6744 return parent->scope;
6745}
6746
6747/* Return the fully scoped name associated with PDI, from compilation unit
6748 CU. The result will be allocated with malloc. */
4568ecf9 6749
72bf9492
DJ
6750static char *
6751partial_die_full_name (struct partial_die_info *pdi,
6752 struct dwarf2_cu *cu)
6753{
15d034d0 6754 const char *parent_scope;
72bf9492 6755
98bfdba5
PA
6756 /* If this is a template instantiation, we can not work out the
6757 template arguments from partial DIEs. So, unfortunately, we have
6758 to go through the full DIEs. At least any work we do building
6759 types here will be reused if full symbols are loaded later. */
6760 if (pdi->has_template_arguments)
6761 {
6762 fixup_partial_die (pdi, cu);
6763
6764 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6765 {
6766 struct die_info *die;
6767 struct attribute attr;
6768 struct dwarf2_cu *ref_cu = cu;
6769
b64f50a1 6770 /* DW_FORM_ref_addr is using section offset. */
98bfdba5
PA
6771 attr.name = 0;
6772 attr.form = DW_FORM_ref_addr;
4568ecf9 6773 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6774 die = follow_die_ref (NULL, &attr, &ref_cu);
6775
6776 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6777 }
6778 }
6779
72bf9492
DJ
6780 parent_scope = partial_die_parent_scope (pdi, cu);
6781 if (parent_scope == NULL)
6782 return NULL;
6783 else
f55ee35c 6784 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6785}
6786
6787static void
72bf9492 6788add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6789{
e7c27a73 6790 struct objfile *objfile = cu->objfile;
c906108c 6791 CORE_ADDR addr = 0;
15d034d0 6792 const char *actual_name = NULL;
e142c38c 6793 CORE_ADDR baseaddr;
15d034d0 6794 char *built_actual_name;
e142c38c
DJ
6795
6796 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6797
15d034d0
TT
6798 built_actual_name = partial_die_full_name (pdi, cu);
6799 if (built_actual_name != NULL)
6800 actual_name = built_actual_name;
63d06c5c 6801
72bf9492
DJ
6802 if (actual_name == NULL)
6803 actual_name = pdi->name;
6804
c906108c
SS
6805 switch (pdi->tag)
6806 {
6807 case DW_TAG_subprogram:
2cfa0c8d 6808 if (pdi->is_external || cu->language == language_ada)
c906108c 6809 {
2cfa0c8d
JB
6810 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6811 of the global scope. But in Ada, we want to be able to access
6812 nested procedures globally. So all Ada subprograms are stored
6813 in the global scope. */
f47fb265 6814 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 6815 mst_text, objfile); */
f47fb265 6816 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6817 built_actual_name != NULL,
f47fb265
MS
6818 VAR_DOMAIN, LOC_BLOCK,
6819 &objfile->global_psymbols,
6820 0, pdi->lowpc + baseaddr,
6821 cu->language, objfile);
c906108c
SS
6822 }
6823 else
6824 {
f47fb265 6825 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 6826 mst_file_text, objfile); */
f47fb265 6827 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6828 built_actual_name != NULL,
f47fb265
MS
6829 VAR_DOMAIN, LOC_BLOCK,
6830 &objfile->static_psymbols,
6831 0, pdi->lowpc + baseaddr,
6832 cu->language, objfile);
c906108c
SS
6833 }
6834 break;
72929c62
JB
6835 case DW_TAG_constant:
6836 {
6837 struct psymbol_allocation_list *list;
6838
6839 if (pdi->is_external)
6840 list = &objfile->global_psymbols;
6841 else
6842 list = &objfile->static_psymbols;
f47fb265 6843 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6844 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
f47fb265 6845 list, 0, 0, cu->language, objfile);
72929c62
JB
6846 }
6847 break;
c906108c 6848 case DW_TAG_variable:
95554aad
TT
6849 if (pdi->d.locdesc)
6850 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6851
95554aad 6852 if (pdi->d.locdesc
caac4577
JG
6853 && addr == 0
6854 && !dwarf2_per_objfile->has_section_at_zero)
6855 {
6856 /* A global or static variable may also have been stripped
6857 out by the linker if unused, in which case its address
6858 will be nullified; do not add such variables into partial
6859 symbol table then. */
6860 }
6861 else if (pdi->is_external)
c906108c
SS
6862 {
6863 /* Global Variable.
6864 Don't enter into the minimal symbol tables as there is
6865 a minimal symbol table entry from the ELF symbols already.
6866 Enter into partial symbol table if it has a location
6867 descriptor or a type.
6868 If the location descriptor is missing, new_symbol will create
6869 a LOC_UNRESOLVED symbol, the address of the variable will then
6870 be determined from the minimal symbol table whenever the variable
6871 is referenced.
6872 The address for the partial symbol table entry is not
6873 used by GDB, but it comes in handy for debugging partial symbol
6874 table building. */
6875
95554aad 6876 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6877 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6878 built_actual_name != NULL,
f47fb265
MS
6879 VAR_DOMAIN, LOC_STATIC,
6880 &objfile->global_psymbols,
6881 0, addr + baseaddr,
6882 cu->language, objfile);
c906108c
SS
6883 }
6884 else
6885 {
0963b4bd 6886 /* Static Variable. Skip symbols without location descriptors. */
95554aad 6887 if (pdi->d.locdesc == NULL)
decbce07 6888 {
15d034d0 6889 xfree (built_actual_name);
decbce07
MS
6890 return;
6891 }
f47fb265 6892 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 6893 mst_file_data, objfile); */
f47fb265 6894 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6895 built_actual_name != NULL,
f47fb265
MS
6896 VAR_DOMAIN, LOC_STATIC,
6897 &objfile->static_psymbols,
6898 0, addr + baseaddr,
6899 cu->language, objfile);
c906108c
SS
6900 }
6901 break;
6902 case DW_TAG_typedef:
6903 case DW_TAG_base_type:
a02abb62 6904 case DW_TAG_subrange_type:
38d518c9 6905 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6906 built_actual_name != NULL,
176620f1 6907 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 6908 &objfile->static_psymbols,
e142c38c 6909 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6910 break;
74921315 6911 case DW_TAG_imported_declaration:
72bf9492
DJ
6912 case DW_TAG_namespace:
6913 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6914 built_actual_name != NULL,
72bf9492
DJ
6915 VAR_DOMAIN, LOC_TYPEDEF,
6916 &objfile->global_psymbols,
6917 0, (CORE_ADDR) 0, cu->language, objfile);
6918 break;
530e8392
KB
6919 case DW_TAG_module:
6920 add_psymbol_to_list (actual_name, strlen (actual_name),
6921 built_actual_name != NULL,
6922 MODULE_DOMAIN, LOC_TYPEDEF,
6923 &objfile->global_psymbols,
6924 0, (CORE_ADDR) 0, cu->language, objfile);
6925 break;
c906108c 6926 case DW_TAG_class_type:
680b30c7 6927 case DW_TAG_interface_type:
c906108c
SS
6928 case DW_TAG_structure_type:
6929 case DW_TAG_union_type:
6930 case DW_TAG_enumeration_type:
fa4028e9
JB
6931 /* Skip external references. The DWARF standard says in the section
6932 about "Structure, Union, and Class Type Entries": "An incomplete
6933 structure, union or class type is represented by a structure,
6934 union or class entry that does not have a byte size attribute
6935 and that has a DW_AT_declaration attribute." */
6936 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 6937 {
15d034d0 6938 xfree (built_actual_name);
decbce07
MS
6939 return;
6940 }
fa4028e9 6941
63d06c5c
DC
6942 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6943 static vs. global. */
38d518c9 6944 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6945 built_actual_name != NULL,
176620f1 6946 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
6947 (cu->language == language_cplus
6948 || cu->language == language_java)
63d06c5c
DC
6949 ? &objfile->global_psymbols
6950 : &objfile->static_psymbols,
e142c38c 6951 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6952
c906108c
SS
6953 break;
6954 case DW_TAG_enumerator:
38d518c9 6955 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6956 built_actual_name != NULL,
176620f1 6957 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
6958 (cu->language == language_cplus
6959 || cu->language == language_java)
f6fe98ef
DJ
6960 ? &objfile->global_psymbols
6961 : &objfile->static_psymbols,
e142c38c 6962 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
6963 break;
6964 default:
6965 break;
6966 }
5c4e30ca 6967
15d034d0 6968 xfree (built_actual_name);
c906108c
SS
6969}
6970
5c4e30ca
DC
6971/* Read a partial die corresponding to a namespace; also, add a symbol
6972 corresponding to that namespace to the symbol table. NAMESPACE is
6973 the name of the enclosing namespace. */
91c24f0a 6974
72bf9492
DJ
6975static void
6976add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 6977 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 6978 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 6979{
72bf9492 6980 /* Add a symbol for the namespace. */
e7c27a73 6981
72bf9492 6982 add_partial_symbol (pdi, cu);
5c4e30ca
DC
6983
6984 /* Now scan partial symbols in that namespace. */
6985
91c24f0a 6986 if (pdi->has_children)
cdc07690 6987 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
6988}
6989
5d7cb8df
JK
6990/* Read a partial die corresponding to a Fortran module. */
6991
6992static void
6993add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 6994 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 6995{
530e8392
KB
6996 /* Add a symbol for the namespace. */
6997
6998 add_partial_symbol (pdi, cu);
6999
f55ee35c 7000 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7001
7002 if (pdi->has_children)
cdc07690 7003 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7004}
7005
bc30ff58
JB
7006/* Read a partial die corresponding to a subprogram and create a partial
7007 symbol for that subprogram. When the CU language allows it, this
7008 routine also defines a partial symbol for each nested subprogram
cdc07690 7009 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7010 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7011 and highest PC values found in PDI.
6e70227d 7012
cdc07690
YQ
7013 PDI may also be a lexical block, in which case we simply search
7014 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7015 Again, this is only performed when the CU language allows this
7016 type of definitions. */
7017
7018static void
7019add_partial_subprogram (struct partial_die_info *pdi,
7020 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7021 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7022{
7023 if (pdi->tag == DW_TAG_subprogram)
7024 {
7025 if (pdi->has_pc_info)
7026 {
7027 if (pdi->lowpc < *lowpc)
7028 *lowpc = pdi->lowpc;
7029 if (pdi->highpc > *highpc)
7030 *highpc = pdi->highpc;
cdc07690 7031 if (set_addrmap)
5734ee8b
DJ
7032 {
7033 CORE_ADDR baseaddr;
7034 struct objfile *objfile = cu->objfile;
7035
7036 baseaddr = ANOFFSET (objfile->section_offsets,
7037 SECT_OFF_TEXT (objfile));
7038 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
7039 pdi->lowpc + baseaddr,
7040 pdi->highpc - 1 + baseaddr,
9291a0cd 7041 cu->per_cu->v.psymtab);
5734ee8b 7042 }
481860b3
GB
7043 }
7044
7045 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7046 {
bc30ff58 7047 if (!pdi->is_declaration)
e8d05480
JB
7048 /* Ignore subprogram DIEs that do not have a name, they are
7049 illegal. Do not emit a complaint at this point, we will
7050 do so when we convert this psymtab into a symtab. */
7051 if (pdi->name)
7052 add_partial_symbol (pdi, cu);
bc30ff58
JB
7053 }
7054 }
6e70227d 7055
bc30ff58
JB
7056 if (! pdi->has_children)
7057 return;
7058
7059 if (cu->language == language_ada)
7060 {
7061 pdi = pdi->die_child;
7062 while (pdi != NULL)
7063 {
7064 fixup_partial_die (pdi, cu);
7065 if (pdi->tag == DW_TAG_subprogram
7066 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7067 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7068 pdi = pdi->die_sibling;
7069 }
7070 }
7071}
7072
91c24f0a
DC
7073/* Read a partial die corresponding to an enumeration type. */
7074
72bf9492
DJ
7075static void
7076add_partial_enumeration (struct partial_die_info *enum_pdi,
7077 struct dwarf2_cu *cu)
91c24f0a 7078{
72bf9492 7079 struct partial_die_info *pdi;
91c24f0a
DC
7080
7081 if (enum_pdi->name != NULL)
72bf9492
DJ
7082 add_partial_symbol (enum_pdi, cu);
7083
7084 pdi = enum_pdi->die_child;
7085 while (pdi)
91c24f0a 7086 {
72bf9492 7087 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7088 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7089 else
72bf9492
DJ
7090 add_partial_symbol (pdi, cu);
7091 pdi = pdi->die_sibling;
91c24f0a 7092 }
91c24f0a
DC
7093}
7094
6caca83c
CC
7095/* Return the initial uleb128 in the die at INFO_PTR. */
7096
7097static unsigned int
d521ce57 7098peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7099{
7100 unsigned int bytes_read;
7101
7102 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7103}
7104
4bb7a0a7
DJ
7105/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7106 Return the corresponding abbrev, or NULL if the number is zero (indicating
7107 an empty DIE). In either case *BYTES_READ will be set to the length of
7108 the initial number. */
7109
7110static struct abbrev_info *
d521ce57 7111peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7112 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7113{
7114 bfd *abfd = cu->objfile->obfd;
7115 unsigned int abbrev_number;
7116 struct abbrev_info *abbrev;
7117
7118 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7119
7120 if (abbrev_number == 0)
7121 return NULL;
7122
433df2d4 7123 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7124 if (!abbrev)
7125 {
3e43a32a
MS
7126 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7127 abbrev_number, bfd_get_filename (abfd));
4bb7a0a7
DJ
7128 }
7129
7130 return abbrev;
7131}
7132
93311388
DE
7133/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7134 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7135 DIE. Any children of the skipped DIEs will also be skipped. */
7136
d521ce57
TT
7137static const gdb_byte *
7138skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7139{
dee91e82 7140 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7141 struct abbrev_info *abbrev;
7142 unsigned int bytes_read;
7143
7144 while (1)
7145 {
7146 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7147 if (abbrev == NULL)
7148 return info_ptr + bytes_read;
7149 else
dee91e82 7150 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7151 }
7152}
7153
93311388
DE
7154/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7155 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7156 abbrev corresponding to that skipped uleb128 should be passed in
7157 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7158 children. */
7159
d521ce57
TT
7160static const gdb_byte *
7161skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7162 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7163{
7164 unsigned int bytes_read;
7165 struct attribute attr;
dee91e82
DE
7166 bfd *abfd = reader->abfd;
7167 struct dwarf2_cu *cu = reader->cu;
d521ce57 7168 const gdb_byte *buffer = reader->buffer;
f664829e 7169 const gdb_byte *buffer_end = reader->buffer_end;
d521ce57 7170 const gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
7171 unsigned int form, i;
7172
7173 for (i = 0; i < abbrev->num_attrs; i++)
7174 {
7175 /* The only abbrev we care about is DW_AT_sibling. */
7176 if (abbrev->attrs[i].name == DW_AT_sibling)
7177 {
dee91e82 7178 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7179 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7180 complaint (&symfile_complaints,
7181 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7182 else
b9502d3f
WN
7183 {
7184 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7185 const gdb_byte *sibling_ptr = buffer + off;
7186
7187 if (sibling_ptr < info_ptr)
7188 complaint (&symfile_complaints,
7189 _("DW_AT_sibling points backwards"));
22869d73
KS
7190 else if (sibling_ptr > reader->buffer_end)
7191 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7192 else
7193 return sibling_ptr;
7194 }
4bb7a0a7
DJ
7195 }
7196
7197 /* If it isn't DW_AT_sibling, skip this attribute. */
7198 form = abbrev->attrs[i].form;
7199 skip_attribute:
7200 switch (form)
7201 {
4bb7a0a7 7202 case DW_FORM_ref_addr:
ae411497
TT
7203 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7204 and later it is offset sized. */
7205 if (cu->header.version == 2)
7206 info_ptr += cu->header.addr_size;
7207 else
7208 info_ptr += cu->header.offset_size;
7209 break;
36586728
TT
7210 case DW_FORM_GNU_ref_alt:
7211 info_ptr += cu->header.offset_size;
7212 break;
ae411497 7213 case DW_FORM_addr:
4bb7a0a7
DJ
7214 info_ptr += cu->header.addr_size;
7215 break;
7216 case DW_FORM_data1:
7217 case DW_FORM_ref1:
7218 case DW_FORM_flag:
7219 info_ptr += 1;
7220 break;
2dc7f7b3
TT
7221 case DW_FORM_flag_present:
7222 break;
4bb7a0a7
DJ
7223 case DW_FORM_data2:
7224 case DW_FORM_ref2:
7225 info_ptr += 2;
7226 break;
7227 case DW_FORM_data4:
7228 case DW_FORM_ref4:
7229 info_ptr += 4;
7230 break;
7231 case DW_FORM_data8:
7232 case DW_FORM_ref8:
55f1336d 7233 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7234 info_ptr += 8;
7235 break;
7236 case DW_FORM_string:
9b1c24c8 7237 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7238 info_ptr += bytes_read;
7239 break;
2dc7f7b3 7240 case DW_FORM_sec_offset:
4bb7a0a7 7241 case DW_FORM_strp:
36586728 7242 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7243 info_ptr += cu->header.offset_size;
7244 break;
2dc7f7b3 7245 case DW_FORM_exprloc:
4bb7a0a7
DJ
7246 case DW_FORM_block:
7247 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7248 info_ptr += bytes_read;
7249 break;
7250 case DW_FORM_block1:
7251 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7252 break;
7253 case DW_FORM_block2:
7254 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7255 break;
7256 case DW_FORM_block4:
7257 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7258 break;
7259 case DW_FORM_sdata:
7260 case DW_FORM_udata:
7261 case DW_FORM_ref_udata:
3019eac3
DE
7262 case DW_FORM_GNU_addr_index:
7263 case DW_FORM_GNU_str_index:
d521ce57 7264 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7265 break;
7266 case DW_FORM_indirect:
7267 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7268 info_ptr += bytes_read;
7269 /* We need to continue parsing from here, so just go back to
7270 the top. */
7271 goto skip_attribute;
7272
7273 default:
3e43a32a
MS
7274 error (_("Dwarf Error: Cannot handle %s "
7275 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7276 dwarf_form_name (form),
7277 bfd_get_filename (abfd));
7278 }
7279 }
7280
7281 if (abbrev->has_children)
dee91e82 7282 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7283 else
7284 return info_ptr;
7285}
7286
93311388 7287/* Locate ORIG_PDI's sibling.
dee91e82 7288 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7289
d521ce57 7290static const gdb_byte *
dee91e82
DE
7291locate_pdi_sibling (const struct die_reader_specs *reader,
7292 struct partial_die_info *orig_pdi,
d521ce57 7293 const gdb_byte *info_ptr)
91c24f0a
DC
7294{
7295 /* Do we know the sibling already? */
72bf9492 7296
91c24f0a
DC
7297 if (orig_pdi->sibling)
7298 return orig_pdi->sibling;
7299
7300 /* Are there any children to deal with? */
7301
7302 if (!orig_pdi->has_children)
7303 return info_ptr;
7304
4bb7a0a7 7305 /* Skip the children the long way. */
91c24f0a 7306
dee91e82 7307 return skip_children (reader, info_ptr);
91c24f0a
DC
7308}
7309
257e7a09 7310/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7311 not NULL. */
c906108c
SS
7312
7313static void
257e7a09
YQ
7314dwarf2_read_symtab (struct partial_symtab *self,
7315 struct objfile *objfile)
c906108c 7316{
257e7a09 7317 if (self->readin)
c906108c 7318 {
442e4d9c 7319 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7320 self->filename);
442e4d9c
YQ
7321 }
7322 else
7323 {
7324 if (info_verbose)
c906108c 7325 {
442e4d9c 7326 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7327 self->filename);
442e4d9c 7328 gdb_flush (gdb_stdout);
c906108c 7329 }
c906108c 7330
442e4d9c
YQ
7331 /* Restore our global data. */
7332 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10b3939b 7333
442e4d9c
YQ
7334 /* If this psymtab is constructed from a debug-only objfile, the
7335 has_section_at_zero flag will not necessarily be correct. We
7336 can get the correct value for this flag by looking at the data
7337 associated with the (presumably stripped) associated objfile. */
7338 if (objfile->separate_debug_objfile_backlink)
7339 {
7340 struct dwarf2_per_objfile *dpo_backlink
7341 = objfile_data (objfile->separate_debug_objfile_backlink,
7342 dwarf2_objfile_data_key);
9a619af0 7343
442e4d9c
YQ
7344 dwarf2_per_objfile->has_section_at_zero
7345 = dpo_backlink->has_section_at_zero;
7346 }
b2ab525c 7347
442e4d9c 7348 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7349
257e7a09 7350 psymtab_to_symtab_1 (self);
c906108c 7351
442e4d9c
YQ
7352 /* Finish up the debug error message. */
7353 if (info_verbose)
7354 printf_filtered (_("done.\n"));
c906108c 7355 }
95554aad
TT
7356
7357 process_cu_includes ();
c906108c 7358}
9cdd5dbd
DE
7359\f
7360/* Reading in full CUs. */
c906108c 7361
10b3939b
DJ
7362/* Add PER_CU to the queue. */
7363
7364static void
95554aad
TT
7365queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7366 enum language pretend_language)
10b3939b
DJ
7367{
7368 struct dwarf2_queue_item *item;
7369
7370 per_cu->queued = 1;
7371 item = xmalloc (sizeof (*item));
7372 item->per_cu = per_cu;
95554aad 7373 item->pretend_language = pretend_language;
10b3939b
DJ
7374 item->next = NULL;
7375
7376 if (dwarf2_queue == NULL)
7377 dwarf2_queue = item;
7378 else
7379 dwarf2_queue_tail->next = item;
7380
7381 dwarf2_queue_tail = item;
7382}
7383
89e63ee4
DE
7384/* If PER_CU is not yet queued, add it to the queue.
7385 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7386 dependency.
0907af0c 7387 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7388 meaning either PER_CU is already queued or it is already loaded.
7389
7390 N.B. There is an invariant here that if a CU is queued then it is loaded.
7391 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7392
7393static int
89e63ee4 7394maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7395 struct dwarf2_per_cu_data *per_cu,
7396 enum language pretend_language)
7397{
7398 /* We may arrive here during partial symbol reading, if we need full
7399 DIEs to process an unusual case (e.g. template arguments). Do
7400 not queue PER_CU, just tell our caller to load its DIEs. */
7401 if (dwarf2_per_objfile->reading_partial_symbols)
7402 {
7403 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7404 return 1;
7405 return 0;
7406 }
7407
7408 /* Mark the dependence relation so that we don't flush PER_CU
7409 too early. */
89e63ee4
DE
7410 if (dependent_cu != NULL)
7411 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7412
7413 /* If it's already on the queue, we have nothing to do. */
7414 if (per_cu->queued)
7415 return 0;
7416
7417 /* If the compilation unit is already loaded, just mark it as
7418 used. */
7419 if (per_cu->cu != NULL)
7420 {
7421 per_cu->cu->last_used = 0;
7422 return 0;
7423 }
7424
7425 /* Add it to the queue. */
7426 queue_comp_unit (per_cu, pretend_language);
7427
7428 return 1;
7429}
7430
10b3939b
DJ
7431/* Process the queue. */
7432
7433static void
a0f42c21 7434process_queue (void)
10b3939b
DJ
7435{
7436 struct dwarf2_queue_item *item, *next_item;
7437
45cfd468
DE
7438 if (dwarf2_read_debug)
7439 {
7440 fprintf_unfiltered (gdb_stdlog,
7441 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7442 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7443 }
7444
03dd20cc
DJ
7445 /* The queue starts out with one item, but following a DIE reference
7446 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7447 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7448 {
9291a0cd
TT
7449 if (dwarf2_per_objfile->using_index
7450 ? !item->per_cu->v.quick->symtab
7451 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
f4dc4d17
DE
7452 {
7453 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7454 unsigned int debug_print_threshold;
247f5c4f 7455 char buf[100];
f4dc4d17 7456
247f5c4f 7457 if (per_cu->is_debug_types)
f4dc4d17 7458 {
247f5c4f
DE
7459 struct signatured_type *sig_type =
7460 (struct signatured_type *) per_cu;
7461
7462 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7463 hex_string (sig_type->signature),
7464 per_cu->offset.sect_off);
7465 /* There can be 100s of TUs.
7466 Only print them in verbose mode. */
7467 debug_print_threshold = 2;
f4dc4d17 7468 }
247f5c4f 7469 else
73be47f5
DE
7470 {
7471 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7472 debug_print_threshold = 1;
7473 }
247f5c4f 7474
73be47f5 7475 if (dwarf2_read_debug >= debug_print_threshold)
247f5c4f 7476 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7477
7478 if (per_cu->is_debug_types)
7479 process_full_type_unit (per_cu, item->pretend_language);
7480 else
7481 process_full_comp_unit (per_cu, item->pretend_language);
7482
73be47f5 7483 if (dwarf2_read_debug >= debug_print_threshold)
247f5c4f 7484 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7485 }
10b3939b
DJ
7486
7487 item->per_cu->queued = 0;
7488 next_item = item->next;
7489 xfree (item);
7490 }
7491
7492 dwarf2_queue_tail = NULL;
45cfd468
DE
7493
7494 if (dwarf2_read_debug)
7495 {
7496 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7497 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7498 }
10b3939b
DJ
7499}
7500
7501/* Free all allocated queue entries. This function only releases anything if
7502 an error was thrown; if the queue was processed then it would have been
7503 freed as we went along. */
7504
7505static void
7506dwarf2_release_queue (void *dummy)
7507{
7508 struct dwarf2_queue_item *item, *last;
7509
7510 item = dwarf2_queue;
7511 while (item)
7512 {
7513 /* Anything still marked queued is likely to be in an
7514 inconsistent state, so discard it. */
7515 if (item->per_cu->queued)
7516 {
7517 if (item->per_cu->cu != NULL)
dee91e82 7518 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7519 item->per_cu->queued = 0;
7520 }
7521
7522 last = item;
7523 item = item->next;
7524 xfree (last);
7525 }
7526
7527 dwarf2_queue = dwarf2_queue_tail = NULL;
7528}
7529
7530/* Read in full symbols for PST, and anything it depends on. */
7531
c906108c 7532static void
fba45db2 7533psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7534{
10b3939b 7535 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7536 int i;
7537
95554aad
TT
7538 if (pst->readin)
7539 return;
7540
aaa75496 7541 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7542 if (!pst->dependencies[i]->readin
7543 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7544 {
7545 /* Inform about additional files that need to be read in. */
7546 if (info_verbose)
7547 {
a3f17187 7548 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7549 fputs_filtered (" ", gdb_stdout);
7550 wrap_here ("");
7551 fputs_filtered ("and ", gdb_stdout);
7552 wrap_here ("");
7553 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7554 wrap_here (""); /* Flush output. */
aaa75496
JB
7555 gdb_flush (gdb_stdout);
7556 }
7557 psymtab_to_symtab_1 (pst->dependencies[i]);
7558 }
7559
e38df1d0 7560 per_cu = pst->read_symtab_private;
10b3939b
DJ
7561
7562 if (per_cu == NULL)
aaa75496
JB
7563 {
7564 /* It's an include file, no symbols to read for it.
7565 Everything is in the parent symtab. */
7566 pst->readin = 1;
7567 return;
7568 }
c906108c 7569
a0f42c21 7570 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7571}
7572
dee91e82
DE
7573/* Trivial hash function for die_info: the hash value of a DIE
7574 is its offset in .debug_info for this objfile. */
10b3939b 7575
dee91e82
DE
7576static hashval_t
7577die_hash (const void *item)
10b3939b 7578{
dee91e82 7579 const struct die_info *die = item;
6502dd73 7580
dee91e82
DE
7581 return die->offset.sect_off;
7582}
63d06c5c 7583
dee91e82
DE
7584/* Trivial comparison function for die_info structures: two DIEs
7585 are equal if they have the same offset. */
98bfdba5 7586
dee91e82
DE
7587static int
7588die_eq (const void *item_lhs, const void *item_rhs)
7589{
7590 const struct die_info *die_lhs = item_lhs;
7591 const struct die_info *die_rhs = item_rhs;
c906108c 7592
dee91e82
DE
7593 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7594}
c906108c 7595
dee91e82
DE
7596/* die_reader_func for load_full_comp_unit.
7597 This is identical to read_signatured_type_reader,
7598 but is kept separate for now. */
c906108c 7599
dee91e82
DE
7600static void
7601load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7602 const gdb_byte *info_ptr,
dee91e82
DE
7603 struct die_info *comp_unit_die,
7604 int has_children,
7605 void *data)
7606{
7607 struct dwarf2_cu *cu = reader->cu;
95554aad 7608 enum language *language_ptr = data;
6caca83c 7609
dee91e82
DE
7610 gdb_assert (cu->die_hash == NULL);
7611 cu->die_hash =
7612 htab_create_alloc_ex (cu->header.length / 12,
7613 die_hash,
7614 die_eq,
7615 NULL,
7616 &cu->comp_unit_obstack,
7617 hashtab_obstack_allocate,
7618 dummy_obstack_deallocate);
e142c38c 7619
dee91e82
DE
7620 if (has_children)
7621 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7622 &info_ptr, comp_unit_die);
7623 cu->dies = comp_unit_die;
7624 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7625
7626 /* We try not to read any attributes in this function, because not
9cdd5dbd 7627 all CUs needed for references have been loaded yet, and symbol
10b3939b 7628 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7629 or we won't be able to build types correctly.
7630 Similarly, if we do not read the producer, we can not apply
7631 producer-specific interpretation. */
95554aad 7632 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7633}
10b3939b 7634
dee91e82 7635/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7636
dee91e82 7637static void
95554aad
TT
7638load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7639 enum language pretend_language)
dee91e82 7640{
3019eac3 7641 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7642
f4dc4d17
DE
7643 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7644 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7645}
7646
3da10d80
KS
7647/* Add a DIE to the delayed physname list. */
7648
7649static void
7650add_to_method_list (struct type *type, int fnfield_index, int index,
7651 const char *name, struct die_info *die,
7652 struct dwarf2_cu *cu)
7653{
7654 struct delayed_method_info mi;
7655 mi.type = type;
7656 mi.fnfield_index = fnfield_index;
7657 mi.index = index;
7658 mi.name = name;
7659 mi.die = die;
7660 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7661}
7662
7663/* A cleanup for freeing the delayed method list. */
7664
7665static void
7666free_delayed_list (void *ptr)
7667{
7668 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7669 if (cu->method_list != NULL)
7670 {
7671 VEC_free (delayed_method_info, cu->method_list);
7672 cu->method_list = NULL;
7673 }
7674}
7675
7676/* Compute the physnames of any methods on the CU's method list.
7677
7678 The computation of method physnames is delayed in order to avoid the
7679 (bad) condition that one of the method's formal parameters is of an as yet
7680 incomplete type. */
7681
7682static void
7683compute_delayed_physnames (struct dwarf2_cu *cu)
7684{
7685 int i;
7686 struct delayed_method_info *mi;
7687 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7688 {
1d06ead6 7689 const char *physname;
3da10d80
KS
7690 struct fn_fieldlist *fn_flp
7691 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7692 physname = dwarf2_physname (mi->name, mi->die, cu);
3da10d80
KS
7693 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7694 }
7695}
7696
a766d390
DE
7697/* Go objects should be embedded in a DW_TAG_module DIE,
7698 and it's not clear if/how imported objects will appear.
7699 To keep Go support simple until that's worked out,
7700 go back through what we've read and create something usable.
7701 We could do this while processing each DIE, and feels kinda cleaner,
7702 but that way is more invasive.
7703 This is to, for example, allow the user to type "p var" or "b main"
7704 without having to specify the package name, and allow lookups
7705 of module.object to work in contexts that use the expression
7706 parser. */
7707
7708static void
7709fixup_go_packaging (struct dwarf2_cu *cu)
7710{
7711 char *package_name = NULL;
7712 struct pending *list;
7713 int i;
7714
7715 for (list = global_symbols; list != NULL; list = list->next)
7716 {
7717 for (i = 0; i < list->nsyms; ++i)
7718 {
7719 struct symbol *sym = list->symbol[i];
7720
7721 if (SYMBOL_LANGUAGE (sym) == language_go
7722 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7723 {
7724 char *this_package_name = go_symbol_package_name (sym);
7725
7726 if (this_package_name == NULL)
7727 continue;
7728 if (package_name == NULL)
7729 package_name = this_package_name;
7730 else
7731 {
7732 if (strcmp (package_name, this_package_name) != 0)
7733 complaint (&symfile_complaints,
7734 _("Symtab %s has objects from two different Go packages: %s and %s"),
210bbc17 7735 (SYMBOL_SYMTAB (sym)
05cba821 7736 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
4262abfb 7737 : objfile_name (cu->objfile)),
a766d390
DE
7738 this_package_name, package_name);
7739 xfree (this_package_name);
7740 }
7741 }
7742 }
7743 }
7744
7745 if (package_name != NULL)
7746 {
7747 struct objfile *objfile = cu->objfile;
34a68019
TT
7748 const char *saved_package_name
7749 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7750 package_name,
7751 strlen (package_name));
a766d390 7752 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
86f62fd7 7753 saved_package_name, objfile);
a766d390
DE
7754 struct symbol *sym;
7755
7756 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7757
e623cf5d 7758 sym = allocate_symbol (objfile);
f85f34ed 7759 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7760 SYMBOL_SET_NAMES (sym, saved_package_name,
7761 strlen (saved_package_name), 0, objfile);
a766d390
DE
7762 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7763 e.g., "main" finds the "main" module and not C's main(). */
7764 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7765 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7766 SYMBOL_TYPE (sym) = type;
7767
7768 add_symbol_to_list (sym, &global_symbols);
7769
7770 xfree (package_name);
7771 }
7772}
7773
95554aad
TT
7774/* Return the symtab for PER_CU. This works properly regardless of
7775 whether we're using the index or psymtabs. */
7776
7777static struct symtab *
7778get_symtab (struct dwarf2_per_cu_data *per_cu)
7779{
7780 return (dwarf2_per_objfile->using_index
7781 ? per_cu->v.quick->symtab
7782 : per_cu->v.psymtab->symtab);
7783}
7784
7785/* A helper function for computing the list of all symbol tables
7786 included by PER_CU. */
7787
7788static void
ec94af83
DE
7789recursively_compute_inclusions (VEC (symtab_ptr) **result,
7790 htab_t all_children, htab_t all_type_symtabs,
f9125b6c
TT
7791 struct dwarf2_per_cu_data *per_cu,
7792 struct symtab *immediate_parent)
95554aad
TT
7793{
7794 void **slot;
7795 int ix;
ec94af83 7796 struct symtab *symtab;
95554aad
TT
7797 struct dwarf2_per_cu_data *iter;
7798
7799 slot = htab_find_slot (all_children, per_cu, INSERT);
7800 if (*slot != NULL)
7801 {
7802 /* This inclusion and its children have been processed. */
7803 return;
7804 }
7805
7806 *slot = per_cu;
7807 /* Only add a CU if it has a symbol table. */
ec94af83
DE
7808 symtab = get_symtab (per_cu);
7809 if (symtab != NULL)
7810 {
7811 /* If this is a type unit only add its symbol table if we haven't
7812 seen it yet (type unit per_cu's can share symtabs). */
7813 if (per_cu->is_debug_types)
7814 {
7815 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7816 if (*slot == NULL)
7817 {
7818 *slot = symtab;
7819 VEC_safe_push (symtab_ptr, *result, symtab);
f9125b6c
TT
7820 if (symtab->user == NULL)
7821 symtab->user = immediate_parent;
ec94af83
DE
7822 }
7823 }
7824 else
f9125b6c
TT
7825 {
7826 VEC_safe_push (symtab_ptr, *result, symtab);
7827 if (symtab->user == NULL)
7828 symtab->user = immediate_parent;
7829 }
ec94af83 7830 }
95554aad
TT
7831
7832 for (ix = 0;
796a7ff8 7833 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7834 ++ix)
ec94af83
DE
7835 {
7836 recursively_compute_inclusions (result, all_children,
f9125b6c 7837 all_type_symtabs, iter, symtab);
ec94af83 7838 }
95554aad
TT
7839}
7840
7841/* Compute the symtab 'includes' fields for the symtab related to
7842 PER_CU. */
7843
7844static void
7845compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7846{
f4dc4d17
DE
7847 gdb_assert (! per_cu->is_debug_types);
7848
796a7ff8 7849 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7850 {
7851 int ix, len;
ec94af83
DE
7852 struct dwarf2_per_cu_data *per_cu_iter;
7853 struct symtab *symtab_iter;
7854 VEC (symtab_ptr) *result_symtabs = NULL;
7855 htab_t all_children, all_type_symtabs;
95554aad
TT
7856 struct symtab *symtab = get_symtab (per_cu);
7857
7858 /* If we don't have a symtab, we can just skip this case. */
7859 if (symtab == NULL)
7860 return;
7861
7862 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7863 NULL, xcalloc, xfree);
ec94af83
DE
7864 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7865 NULL, xcalloc, xfree);
95554aad
TT
7866
7867 for (ix = 0;
796a7ff8 7868 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7869 ix, per_cu_iter);
95554aad 7870 ++ix)
ec94af83
DE
7871 {
7872 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c
TT
7873 all_type_symtabs, per_cu_iter,
7874 symtab);
ec94af83 7875 }
95554aad 7876
ec94af83
DE
7877 /* Now we have a transitive closure of all the included symtabs. */
7878 len = VEC_length (symtab_ptr, result_symtabs);
95554aad
TT
7879 symtab->includes
7880 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7881 (len + 1) * sizeof (struct symtab *));
7882 for (ix = 0;
ec94af83 7883 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
95554aad 7884 ++ix)
ec94af83 7885 symtab->includes[ix] = symtab_iter;
95554aad
TT
7886 symtab->includes[len] = NULL;
7887
ec94af83 7888 VEC_free (symtab_ptr, result_symtabs);
95554aad 7889 htab_delete (all_children);
ec94af83 7890 htab_delete (all_type_symtabs);
95554aad
TT
7891 }
7892}
7893
7894/* Compute the 'includes' field for the symtabs of all the CUs we just
7895 read. */
7896
7897static void
7898process_cu_includes (void)
7899{
7900 int ix;
7901 struct dwarf2_per_cu_data *iter;
7902
7903 for (ix = 0;
7904 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7905 ix, iter);
7906 ++ix)
f4dc4d17
DE
7907 {
7908 if (! iter->is_debug_types)
7909 compute_symtab_includes (iter);
7910 }
95554aad
TT
7911
7912 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7913}
7914
9cdd5dbd 7915/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
7916 already been loaded into memory. */
7917
7918static void
95554aad
TT
7919process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7920 enum language pretend_language)
10b3939b 7921{
10b3939b 7922 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 7923 struct objfile *objfile = per_cu->objfile;
10b3939b
DJ
7924 CORE_ADDR lowpc, highpc;
7925 struct symtab *symtab;
3da10d80 7926 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 7927 CORE_ADDR baseaddr;
4359dff1 7928 struct block *static_block;
10b3939b
DJ
7929
7930 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7931
10b3939b
DJ
7932 buildsym_init ();
7933 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 7934 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
7935
7936 cu->list_in_scope = &file_symbols;
c906108c 7937
95554aad
TT
7938 cu->language = pretend_language;
7939 cu->language_defn = language_def (cu->language);
7940
c906108c 7941 /* Do line number decoding in read_file_scope () */
10b3939b 7942 process_die (cu->dies, cu);
c906108c 7943
a766d390
DE
7944 /* For now fudge the Go package. */
7945 if (cu->language == language_go)
7946 fixup_go_packaging (cu);
7947
3da10d80
KS
7948 /* Now that we have processed all the DIEs in the CU, all the types
7949 should be complete, and it should now be safe to compute all of the
7950 physnames. */
7951 compute_delayed_physnames (cu);
7952 do_cleanups (delayed_list_cleanup);
7953
fae299cd
DC
7954 /* Some compilers don't define a DW_AT_high_pc attribute for the
7955 compilation unit. If the DW_AT_high_pc is missing, synthesize
7956 it, by scanning the DIE's below the compilation unit. */
10b3939b 7957 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 7958
36586728 7959 static_block
ff546935 7960 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
4359dff1
JK
7961
7962 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7963 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7964 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7965 addrmap to help ensure it has an accurate map of pc values belonging to
7966 this comp unit. */
7967 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7968
7969 symtab = end_symtab_from_static_block (static_block, objfile,
7970 SECT_OFF_TEXT (objfile), 0);
c906108c 7971
8be455d7 7972 if (symtab != NULL)
c906108c 7973 {
df15bd07 7974 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 7975
8be455d7
JK
7976 /* Set symtab language to language from DW_AT_language. If the
7977 compilation is from a C file generated by language preprocessors, do
7978 not set the language if it was already deduced by start_subfile. */
7979 if (!(cu->language == language_c && symtab->language != language_c))
7980 symtab->language = cu->language;
7981
7982 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7983 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
7984 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7985 there were bugs in prologue debug info, fixed later in GCC-4.5
7986 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
7987
7988 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7989 needed, it would be wrong due to missing DW_AT_producer there.
7990
7991 Still one can confuse GDB by using non-standard GCC compilation
7992 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7993 */
ab260dad 7994 if (cu->has_loclist && gcc_4_minor >= 5)
8be455d7 7995 symtab->locations_valid = 1;
e0d00bc7
JK
7996
7997 if (gcc_4_minor >= 5)
7998 symtab->epilogue_unwind_valid = 1;
96408a79
SA
7999
8000 symtab->call_site_htab = cu->call_site_htab;
c906108c 8001 }
9291a0cd
TT
8002
8003 if (dwarf2_per_objfile->using_index)
8004 per_cu->v.quick->symtab = symtab;
8005 else
8006 {
8007 struct partial_symtab *pst = per_cu->v.psymtab;
8008 pst->symtab = symtab;
8009 pst->readin = 1;
8010 }
c906108c 8011
95554aad
TT
8012 /* Push it for inclusion processing later. */
8013 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8014
c906108c 8015 do_cleanups (back_to);
f4dc4d17 8016}
45cfd468 8017
f4dc4d17
DE
8018/* Generate full symbol information for type unit PER_CU, whose DIEs have
8019 already been loaded into memory. */
8020
8021static void
8022process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8023 enum language pretend_language)
8024{
8025 struct dwarf2_cu *cu = per_cu->cu;
8026 struct objfile *objfile = per_cu->objfile;
8027 struct symtab *symtab;
8028 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8029 struct signatured_type *sig_type;
8030
8031 gdb_assert (per_cu->is_debug_types);
8032 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8033
8034 buildsym_init ();
8035 back_to = make_cleanup (really_free_pendings, NULL);
8036 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8037
8038 cu->list_in_scope = &file_symbols;
8039
8040 cu->language = pretend_language;
8041 cu->language_defn = language_def (cu->language);
8042
8043 /* The symbol tables are set up in read_type_unit_scope. */
8044 process_die (cu->dies, cu);
8045
8046 /* For now fudge the Go package. */
8047 if (cu->language == language_go)
8048 fixup_go_packaging (cu);
8049
8050 /* Now that we have processed all the DIEs in the CU, all the types
8051 should be complete, and it should now be safe to compute all of the
8052 physnames. */
8053 compute_delayed_physnames (cu);
8054 do_cleanups (delayed_list_cleanup);
8055
8056 /* TUs share symbol tables.
8057 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8058 of it with end_expandable_symtab. Otherwise, complete the addition of
8059 this TU's symbols to the existing symtab. */
0186c6a7 8060 if (sig_type->type_unit_group->primary_symtab == NULL)
45cfd468 8061 {
f4dc4d17 8062 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
0186c6a7 8063 sig_type->type_unit_group->primary_symtab = symtab;
f4dc4d17
DE
8064
8065 if (symtab != NULL)
8066 {
8067 /* Set symtab language to language from DW_AT_language. If the
8068 compilation is from a C file generated by language preprocessors,
8069 do not set the language if it was already deduced by
8070 start_subfile. */
8071 if (!(cu->language == language_c && symtab->language != language_c))
8072 symtab->language = cu->language;
8073 }
8074 }
8075 else
8076 {
8077 augment_type_symtab (objfile,
0186c6a7
DE
8078 sig_type->type_unit_group->primary_symtab);
8079 symtab = sig_type->type_unit_group->primary_symtab;
f4dc4d17
DE
8080 }
8081
8082 if (dwarf2_per_objfile->using_index)
8083 per_cu->v.quick->symtab = symtab;
8084 else
8085 {
8086 struct partial_symtab *pst = per_cu->v.psymtab;
8087 pst->symtab = symtab;
8088 pst->readin = 1;
45cfd468 8089 }
f4dc4d17
DE
8090
8091 do_cleanups (back_to);
c906108c
SS
8092}
8093
95554aad
TT
8094/* Process an imported unit DIE. */
8095
8096static void
8097process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8098{
8099 struct attribute *attr;
8100
f4dc4d17
DE
8101 /* For now we don't handle imported units in type units. */
8102 if (cu->per_cu->is_debug_types)
8103 {
8104 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8105 " supported in type units [in module %s]"),
4262abfb 8106 objfile_name (cu->objfile));
f4dc4d17
DE
8107 }
8108
95554aad
TT
8109 attr = dwarf2_attr (die, DW_AT_import, cu);
8110 if (attr != NULL)
8111 {
8112 struct dwarf2_per_cu_data *per_cu;
8113 struct symtab *imported_symtab;
8114 sect_offset offset;
36586728 8115 int is_dwz;
95554aad
TT
8116
8117 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
8118 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8119 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 8120
69d751e3 8121 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8122 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8123 load_full_comp_unit (per_cu, cu->language);
8124
796a7ff8 8125 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8126 per_cu);
8127 }
8128}
8129
adde2bff
DE
8130/* Reset the in_process bit of a die. */
8131
8132static void
8133reset_die_in_process (void *arg)
8134{
8135 struct die_info *die = arg;
8c3cb9fa 8136
adde2bff
DE
8137 die->in_process = 0;
8138}
8139
c906108c
SS
8140/* Process a die and its children. */
8141
8142static void
e7c27a73 8143process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8144{
adde2bff
DE
8145 struct cleanup *in_process;
8146
8147 /* We should only be processing those not already in process. */
8148 gdb_assert (!die->in_process);
8149
8150 die->in_process = 1;
8151 in_process = make_cleanup (reset_die_in_process,die);
8152
c906108c
SS
8153 switch (die->tag)
8154 {
8155 case DW_TAG_padding:
8156 break;
8157 case DW_TAG_compile_unit:
95554aad 8158 case DW_TAG_partial_unit:
e7c27a73 8159 read_file_scope (die, cu);
c906108c 8160 break;
348e048f
DE
8161 case DW_TAG_type_unit:
8162 read_type_unit_scope (die, cu);
8163 break;
c906108c 8164 case DW_TAG_subprogram:
c906108c 8165 case DW_TAG_inlined_subroutine:
edb3359d 8166 read_func_scope (die, cu);
c906108c
SS
8167 break;
8168 case DW_TAG_lexical_block:
14898363
L
8169 case DW_TAG_try_block:
8170 case DW_TAG_catch_block:
e7c27a73 8171 read_lexical_block_scope (die, cu);
c906108c 8172 break;
96408a79
SA
8173 case DW_TAG_GNU_call_site:
8174 read_call_site_scope (die, cu);
8175 break;
c906108c 8176 case DW_TAG_class_type:
680b30c7 8177 case DW_TAG_interface_type:
c906108c
SS
8178 case DW_TAG_structure_type:
8179 case DW_TAG_union_type:
134d01f1 8180 process_structure_scope (die, cu);
c906108c
SS
8181 break;
8182 case DW_TAG_enumeration_type:
134d01f1 8183 process_enumeration_scope (die, cu);
c906108c 8184 break;
134d01f1 8185
f792889a
DJ
8186 /* These dies have a type, but processing them does not create
8187 a symbol or recurse to process the children. Therefore we can
8188 read them on-demand through read_type_die. */
c906108c 8189 case DW_TAG_subroutine_type:
72019c9c 8190 case DW_TAG_set_type:
c906108c 8191 case DW_TAG_array_type:
c906108c 8192 case DW_TAG_pointer_type:
c906108c 8193 case DW_TAG_ptr_to_member_type:
c906108c 8194 case DW_TAG_reference_type:
c906108c 8195 case DW_TAG_string_type:
c906108c 8196 break;
134d01f1 8197
c906108c 8198 case DW_TAG_base_type:
a02abb62 8199 case DW_TAG_subrange_type:
cb249c71 8200 case DW_TAG_typedef:
134d01f1
DJ
8201 /* Add a typedef symbol for the type definition, if it has a
8202 DW_AT_name. */
f792889a 8203 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8204 break;
c906108c 8205 case DW_TAG_common_block:
e7c27a73 8206 read_common_block (die, cu);
c906108c
SS
8207 break;
8208 case DW_TAG_common_inclusion:
8209 break;
d9fa45fe 8210 case DW_TAG_namespace:
4d4ec4e5 8211 cu->processing_has_namespace_info = 1;
e7c27a73 8212 read_namespace (die, cu);
d9fa45fe 8213 break;
5d7cb8df 8214 case DW_TAG_module:
4d4ec4e5 8215 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8216 read_module (die, cu);
8217 break;
d9fa45fe 8218 case DW_TAG_imported_declaration:
74921315
KS
8219 cu->processing_has_namespace_info = 1;
8220 if (read_namespace_alias (die, cu))
8221 break;
8222 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8223 case DW_TAG_imported_module:
4d4ec4e5 8224 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8225 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8226 || cu->language != language_fortran))
8227 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8228 dwarf_tag_name (die->tag));
8229 read_import_statement (die, cu);
d9fa45fe 8230 break;
95554aad
TT
8231
8232 case DW_TAG_imported_unit:
8233 process_imported_unit_die (die, cu);
8234 break;
8235
c906108c 8236 default:
e7c27a73 8237 new_symbol (die, NULL, cu);
c906108c
SS
8238 break;
8239 }
adde2bff
DE
8240
8241 do_cleanups (in_process);
c906108c 8242}
ca69b9e6
DE
8243\f
8244/* DWARF name computation. */
c906108c 8245
94af9270
KS
8246/* A helper function for dwarf2_compute_name which determines whether DIE
8247 needs to have the name of the scope prepended to the name listed in the
8248 die. */
8249
8250static int
8251die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8252{
1c809c68
TT
8253 struct attribute *attr;
8254
94af9270
KS
8255 switch (die->tag)
8256 {
8257 case DW_TAG_namespace:
8258 case DW_TAG_typedef:
8259 case DW_TAG_class_type:
8260 case DW_TAG_interface_type:
8261 case DW_TAG_structure_type:
8262 case DW_TAG_union_type:
8263 case DW_TAG_enumeration_type:
8264 case DW_TAG_enumerator:
8265 case DW_TAG_subprogram:
8266 case DW_TAG_member:
74921315 8267 case DW_TAG_imported_declaration:
94af9270
KS
8268 return 1;
8269
8270 case DW_TAG_variable:
c2b0a229 8271 case DW_TAG_constant:
94af9270
KS
8272 /* We only need to prefix "globally" visible variables. These include
8273 any variable marked with DW_AT_external or any variable that
8274 lives in a namespace. [Variables in anonymous namespaces
8275 require prefixing, but they are not DW_AT_external.] */
8276
8277 if (dwarf2_attr (die, DW_AT_specification, cu))
8278 {
8279 struct dwarf2_cu *spec_cu = cu;
9a619af0 8280
94af9270
KS
8281 return die_needs_namespace (die_specification (die, &spec_cu),
8282 spec_cu);
8283 }
8284
1c809c68 8285 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8286 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8287 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8288 return 0;
8289 /* A variable in a lexical block of some kind does not need a
8290 namespace, even though in C++ such variables may be external
8291 and have a mangled name. */
8292 if (die->parent->tag == DW_TAG_lexical_block
8293 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8294 || die->parent->tag == DW_TAG_catch_block
8295 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8296 return 0;
8297 return 1;
94af9270
KS
8298
8299 default:
8300 return 0;
8301 }
8302}
8303
98bfdba5
PA
8304/* Retrieve the last character from a mem_file. */
8305
8306static void
8307do_ui_file_peek_last (void *object, const char *buffer, long length)
8308{
8309 char *last_char_p = (char *) object;
8310
8311 if (length > 0)
8312 *last_char_p = buffer[length - 1];
8313}
8314
94af9270 8315/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
8316 compute the physname for the object, which include a method's:
8317 - formal parameters (C++/Java),
8318 - receiver type (Go),
8319 - return type (Java).
8320
8321 The term "physname" is a bit confusing.
8322 For C++, for example, it is the demangled name.
8323 For Go, for example, it's the mangled name.
94af9270 8324
af6b7be1
JB
8325 For Ada, return the DIE's linkage name rather than the fully qualified
8326 name. PHYSNAME is ignored..
8327
94af9270
KS
8328 The result is allocated on the objfile_obstack and canonicalized. */
8329
8330static const char *
15d034d0
TT
8331dwarf2_compute_name (const char *name,
8332 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8333 int physname)
8334{
bb5ed363
DE
8335 struct objfile *objfile = cu->objfile;
8336
94af9270
KS
8337 if (name == NULL)
8338 name = dwarf2_name (die, cu);
8339
f55ee35c
JK
8340 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8341 compute it by typename_concat inside GDB. */
8342 if (cu->language == language_ada
8343 || (cu->language == language_fortran && physname))
8344 {
8345 /* For Ada unit, we prefer the linkage name over the name, as
8346 the former contains the exported name, which the user expects
8347 to be able to reference. Ideally, we want the user to be able
8348 to reference this entity using either natural or linkage name,
8349 but we haven't started looking at this enhancement yet. */
8350 struct attribute *attr;
8351
8352 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8353 if (attr == NULL)
8354 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8355 if (attr && DW_STRING (attr))
8356 return DW_STRING (attr);
8357 }
8358
94af9270
KS
8359 /* These are the only languages we know how to qualify names in. */
8360 if (name != NULL
f55ee35c
JK
8361 && (cu->language == language_cplus || cu->language == language_java
8362 || cu->language == language_fortran))
94af9270
KS
8363 {
8364 if (die_needs_namespace (die, cu))
8365 {
8366 long length;
0d5cff50 8367 const char *prefix;
94af9270 8368 struct ui_file *buf;
34a68019
TT
8369 char *intermediate_name;
8370 const char *canonical_name = NULL;
94af9270
KS
8371
8372 prefix = determine_prefix (die, cu);
8373 buf = mem_fileopen ();
8374 if (*prefix != '\0')
8375 {
f55ee35c
JK
8376 char *prefixed_name = typename_concat (NULL, prefix, name,
8377 physname, cu);
9a619af0 8378
94af9270
KS
8379 fputs_unfiltered (prefixed_name, buf);
8380 xfree (prefixed_name);
8381 }
8382 else
62d5b8da 8383 fputs_unfiltered (name, buf);
94af9270 8384
98bfdba5
PA
8385 /* Template parameters may be specified in the DIE's DW_AT_name, or
8386 as children with DW_TAG_template_type_param or
8387 DW_TAG_value_type_param. If the latter, add them to the name
8388 here. If the name already has template parameters, then
8389 skip this step; some versions of GCC emit both, and
8390 it is more efficient to use the pre-computed name.
8391
8392 Something to keep in mind about this process: it is very
8393 unlikely, or in some cases downright impossible, to produce
8394 something that will match the mangled name of a function.
8395 If the definition of the function has the same debug info,
8396 we should be able to match up with it anyway. But fallbacks
8397 using the minimal symbol, for instance to find a method
8398 implemented in a stripped copy of libstdc++, will not work.
8399 If we do not have debug info for the definition, we will have to
8400 match them up some other way.
8401
8402 When we do name matching there is a related problem with function
8403 templates; two instantiated function templates are allowed to
8404 differ only by their return types, which we do not add here. */
8405
8406 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8407 {
8408 struct attribute *attr;
8409 struct die_info *child;
8410 int first = 1;
8411
8412 die->building_fullname = 1;
8413
8414 for (child = die->child; child != NULL; child = child->sibling)
8415 {
8416 struct type *type;
12df843f 8417 LONGEST value;
d521ce57 8418 const gdb_byte *bytes;
98bfdba5
PA
8419 struct dwarf2_locexpr_baton *baton;
8420 struct value *v;
8421
8422 if (child->tag != DW_TAG_template_type_param
8423 && child->tag != DW_TAG_template_value_param)
8424 continue;
8425
8426 if (first)
8427 {
8428 fputs_unfiltered ("<", buf);
8429 first = 0;
8430 }
8431 else
8432 fputs_unfiltered (", ", buf);
8433
8434 attr = dwarf2_attr (child, DW_AT_type, cu);
8435 if (attr == NULL)
8436 {
8437 complaint (&symfile_complaints,
8438 _("template parameter missing DW_AT_type"));
8439 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8440 continue;
8441 }
8442 type = die_type (child, cu);
8443
8444 if (child->tag == DW_TAG_template_type_param)
8445 {
79d43c61 8446 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8447 continue;
8448 }
8449
8450 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8451 if (attr == NULL)
8452 {
8453 complaint (&symfile_complaints,
3e43a32a
MS
8454 _("template parameter missing "
8455 "DW_AT_const_value"));
98bfdba5
PA
8456 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8457 continue;
8458 }
8459
8460 dwarf2_const_value_attr (attr, type, name,
8461 &cu->comp_unit_obstack, cu,
8462 &value, &bytes, &baton);
8463
8464 if (TYPE_NOSIGN (type))
8465 /* GDB prints characters as NUMBER 'CHAR'. If that's
8466 changed, this can use value_print instead. */
8467 c_printchar (value, type, buf);
8468 else
8469 {
8470 struct value_print_options opts;
8471
8472 if (baton != NULL)
8473 v = dwarf2_evaluate_loc_desc (type, NULL,
8474 baton->data,
8475 baton->size,
8476 baton->per_cu);
8477 else if (bytes != NULL)
8478 {
8479 v = allocate_value (type);
8480 memcpy (value_contents_writeable (v), bytes,
8481 TYPE_LENGTH (type));
8482 }
8483 else
8484 v = value_from_longest (type, value);
8485
3e43a32a
MS
8486 /* Specify decimal so that we do not depend on
8487 the radix. */
98bfdba5
PA
8488 get_formatted_print_options (&opts, 'd');
8489 opts.raw = 1;
8490 value_print (v, buf, &opts);
8491 release_value (v);
8492 value_free (v);
8493 }
8494 }
8495
8496 die->building_fullname = 0;
8497
8498 if (!first)
8499 {
8500 /* Close the argument list, with a space if necessary
8501 (nested templates). */
8502 char last_char = '\0';
8503 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8504 if (last_char == '>')
8505 fputs_unfiltered (" >", buf);
8506 else
8507 fputs_unfiltered (">", buf);
8508 }
8509 }
8510
94af9270
KS
8511 /* For Java and C++ methods, append formal parameter type
8512 information, if PHYSNAME. */
6e70227d 8513
94af9270
KS
8514 if (physname && die->tag == DW_TAG_subprogram
8515 && (cu->language == language_cplus
8516 || cu->language == language_java))
8517 {
8518 struct type *type = read_type_die (die, cu);
8519
79d43c61
TT
8520 c_type_print_args (type, buf, 1, cu->language,
8521 &type_print_raw_options);
94af9270
KS
8522
8523 if (cu->language == language_java)
8524 {
8525 /* For java, we must append the return type to method
0963b4bd 8526 names. */
94af9270
KS
8527 if (die->tag == DW_TAG_subprogram)
8528 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8529 0, 0, &type_print_raw_options);
94af9270
KS
8530 }
8531 else if (cu->language == language_cplus)
8532 {
60430eff
DJ
8533 /* Assume that an artificial first parameter is
8534 "this", but do not crash if it is not. RealView
8535 marks unnamed (and thus unused) parameters as
8536 artificial; there is no way to differentiate
8537 the two cases. */
94af9270
KS
8538 if (TYPE_NFIELDS (type) > 0
8539 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8540 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8541 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8542 0))))
94af9270
KS
8543 fputs_unfiltered (" const", buf);
8544 }
8545 }
8546
34a68019 8547 intermediate_name = ui_file_xstrdup (buf, &length);
94af9270
KS
8548 ui_file_delete (buf);
8549
8550 if (cu->language == language_cplus)
34a68019
TT
8551 canonical_name
8552 = dwarf2_canonicalize_name (intermediate_name, cu,
8553 &objfile->per_bfd->storage_obstack);
8554
8555 /* If we only computed INTERMEDIATE_NAME, or if
8556 INTERMEDIATE_NAME is already canonical, then we need to
8557 copy it to the appropriate obstack. */
8558 if (canonical_name == NULL || canonical_name == intermediate_name)
8559 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8560 intermediate_name,
8561 strlen (intermediate_name));
8562 else
8563 name = canonical_name;
9a619af0 8564
34a68019 8565 xfree (intermediate_name);
94af9270
KS
8566 }
8567 }
8568
8569 return name;
8570}
8571
0114d602
DJ
8572/* Return the fully qualified name of DIE, based on its DW_AT_name.
8573 If scope qualifiers are appropriate they will be added. The result
34a68019 8574 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8575 not have a name. NAME may either be from a previous call to
8576 dwarf2_name or NULL.
8577
0963b4bd 8578 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8579
8580static const char *
15d034d0 8581dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8582{
94af9270
KS
8583 return dwarf2_compute_name (name, die, cu, 0);
8584}
0114d602 8585
94af9270
KS
8586/* Construct a physname for the given DIE in CU. NAME may either be
8587 from a previous call to dwarf2_name or NULL. The result will be
8588 allocated on the objfile_objstack or NULL if the DIE does not have a
8589 name.
0114d602 8590
94af9270 8591 The output string will be canonicalized (if C++/Java). */
0114d602 8592
94af9270 8593static const char *
15d034d0 8594dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8595{
bb5ed363 8596 struct objfile *objfile = cu->objfile;
900e11f9
JK
8597 struct attribute *attr;
8598 const char *retval, *mangled = NULL, *canon = NULL;
8599 struct cleanup *back_to;
8600 int need_copy = 1;
8601
8602 /* In this case dwarf2_compute_name is just a shortcut not building anything
8603 on its own. */
8604 if (!die_needs_namespace (die, cu))
8605 return dwarf2_compute_name (name, die, cu, 1);
8606
8607 back_to = make_cleanup (null_cleanup, NULL);
8608
8609 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8610 if (!attr)
8611 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8612
8613 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8614 has computed. */
8615 if (attr && DW_STRING (attr))
8616 {
8617 char *demangled;
8618
8619 mangled = DW_STRING (attr);
8620
8621 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8622 type. It is easier for GDB users to search for such functions as
8623 `name(params)' than `long name(params)'. In such case the minimal
8624 symbol names do not match the full symbol names but for template
8625 functions there is never a need to look up their definition from their
8626 declaration so the only disadvantage remains the minimal symbol
8627 variant `long name(params)' does not have the proper inferior type.
8628 */
8629
a766d390
DE
8630 if (cu->language == language_go)
8631 {
8632 /* This is a lie, but we already lie to the caller new_symbol_full.
8633 new_symbol_full assumes we return the mangled name.
8634 This just undoes that lie until things are cleaned up. */
8635 demangled = NULL;
8636 }
8637 else
8638 {
8de20a37
TT
8639 demangled = gdb_demangle (mangled,
8640 (DMGL_PARAMS | DMGL_ANSI
8641 | (cu->language == language_java
8642 ? DMGL_JAVA | DMGL_RET_POSTFIX
8643 : DMGL_RET_DROP)));
a766d390 8644 }
900e11f9
JK
8645 if (demangled)
8646 {
8647 make_cleanup (xfree, demangled);
8648 canon = demangled;
8649 }
8650 else
8651 {
8652 canon = mangled;
8653 need_copy = 0;
8654 }
8655 }
8656
8657 if (canon == NULL || check_physname)
8658 {
8659 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8660
8661 if (canon != NULL && strcmp (physname, canon) != 0)
8662 {
8663 /* It may not mean a bug in GDB. The compiler could also
8664 compute DW_AT_linkage_name incorrectly. But in such case
8665 GDB would need to be bug-to-bug compatible. */
8666
8667 complaint (&symfile_complaints,
8668 _("Computed physname <%s> does not match demangled <%s> "
8669 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8670 physname, canon, mangled, die->offset.sect_off,
8671 objfile_name (objfile));
900e11f9
JK
8672
8673 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8674 is available here - over computed PHYSNAME. It is safer
8675 against both buggy GDB and buggy compilers. */
8676
8677 retval = canon;
8678 }
8679 else
8680 {
8681 retval = physname;
8682 need_copy = 0;
8683 }
8684 }
8685 else
8686 retval = canon;
8687
8688 if (need_copy)
34a68019
TT
8689 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8690 retval, strlen (retval));
900e11f9
JK
8691
8692 do_cleanups (back_to);
8693 return retval;
0114d602
DJ
8694}
8695
74921315
KS
8696/* Inspect DIE in CU for a namespace alias. If one exists, record
8697 a new symbol for it.
8698
8699 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8700
8701static int
8702read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8703{
8704 struct attribute *attr;
8705
8706 /* If the die does not have a name, this is not a namespace
8707 alias. */
8708 attr = dwarf2_attr (die, DW_AT_name, cu);
8709 if (attr != NULL)
8710 {
8711 int num;
8712 struct die_info *d = die;
8713 struct dwarf2_cu *imported_cu = cu;
8714
8715 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8716 keep inspecting DIEs until we hit the underlying import. */
8717#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8718 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8719 {
8720 attr = dwarf2_attr (d, DW_AT_import, cu);
8721 if (attr == NULL)
8722 break;
8723
8724 d = follow_die_ref (d, attr, &imported_cu);
8725 if (d->tag != DW_TAG_imported_declaration)
8726 break;
8727 }
8728
8729 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8730 {
8731 complaint (&symfile_complaints,
8732 _("DIE at 0x%x has too many recursively imported "
8733 "declarations"), d->offset.sect_off);
8734 return 0;
8735 }
8736
8737 if (attr != NULL)
8738 {
8739 struct type *type;
8740 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8741
8742 type = get_die_type_at_offset (offset, cu->per_cu);
8743 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8744 {
8745 /* This declaration is a global namespace alias. Add
8746 a symbol for it whose type is the aliased namespace. */
8747 new_symbol (die, type, cu);
8748 return 1;
8749 }
8750 }
8751 }
8752
8753 return 0;
8754}
8755
27aa8d6a
SW
8756/* Read the import statement specified by the given die and record it. */
8757
8758static void
8759read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8760{
bb5ed363 8761 struct objfile *objfile = cu->objfile;
27aa8d6a 8762 struct attribute *import_attr;
32019081 8763 struct die_info *imported_die, *child_die;
de4affc9 8764 struct dwarf2_cu *imported_cu;
27aa8d6a 8765 const char *imported_name;
794684b6 8766 const char *imported_name_prefix;
13387711
SW
8767 const char *canonical_name;
8768 const char *import_alias;
8769 const char *imported_declaration = NULL;
794684b6 8770 const char *import_prefix;
32019081
JK
8771 VEC (const_char_ptr) *excludes = NULL;
8772 struct cleanup *cleanups;
13387711 8773
27aa8d6a
SW
8774 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8775 if (import_attr == NULL)
8776 {
8777 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8778 dwarf_tag_name (die->tag));
8779 return;
8780 }
8781
de4affc9
CC
8782 imported_cu = cu;
8783 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8784 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8785 if (imported_name == NULL)
8786 {
8787 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8788
8789 The import in the following code:
8790 namespace A
8791 {
8792 typedef int B;
8793 }
8794
8795 int main ()
8796 {
8797 using A::B;
8798 B b;
8799 return b;
8800 }
8801
8802 ...
8803 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8804 <52> DW_AT_decl_file : 1
8805 <53> DW_AT_decl_line : 6
8806 <54> DW_AT_import : <0x75>
8807 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8808 <59> DW_AT_name : B
8809 <5b> DW_AT_decl_file : 1
8810 <5c> DW_AT_decl_line : 2
8811 <5d> DW_AT_type : <0x6e>
8812 ...
8813 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8814 <76> DW_AT_byte_size : 4
8815 <77> DW_AT_encoding : 5 (signed)
8816
8817 imports the wrong die ( 0x75 instead of 0x58 ).
8818 This case will be ignored until the gcc bug is fixed. */
8819 return;
8820 }
8821
82856980
SW
8822 /* Figure out the local name after import. */
8823 import_alias = dwarf2_name (die, cu);
27aa8d6a 8824
794684b6
SW
8825 /* Figure out where the statement is being imported to. */
8826 import_prefix = determine_prefix (die, cu);
8827
8828 /* Figure out what the scope of the imported die is and prepend it
8829 to the name of the imported die. */
de4affc9 8830 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8831
f55ee35c
JK
8832 if (imported_die->tag != DW_TAG_namespace
8833 && imported_die->tag != DW_TAG_module)
794684b6 8834 {
13387711
SW
8835 imported_declaration = imported_name;
8836 canonical_name = imported_name_prefix;
794684b6 8837 }
13387711 8838 else if (strlen (imported_name_prefix) > 0)
12aaed36
TT
8839 canonical_name = obconcat (&objfile->objfile_obstack,
8840 imported_name_prefix, "::", imported_name,
8841 (char *) NULL);
13387711
SW
8842 else
8843 canonical_name = imported_name;
794684b6 8844
32019081
JK
8845 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8846
8847 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8848 for (child_die = die->child; child_die && child_die->tag;
8849 child_die = sibling_die (child_die))
8850 {
8851 /* DWARF-4: A Fortran use statement with a “rename list” may be
8852 represented by an imported module entry with an import attribute
8853 referring to the module and owned entries corresponding to those
8854 entities that are renamed as part of being imported. */
8855
8856 if (child_die->tag != DW_TAG_imported_declaration)
8857 {
8858 complaint (&symfile_complaints,
8859 _("child DW_TAG_imported_declaration expected "
8860 "- DIE at 0x%x [in module %s]"),
4262abfb 8861 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8862 continue;
8863 }
8864
8865 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8866 if (import_attr == NULL)
8867 {
8868 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8869 dwarf_tag_name (child_die->tag));
8870 continue;
8871 }
8872
8873 imported_cu = cu;
8874 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8875 &imported_cu);
8876 imported_name = dwarf2_name (imported_die, imported_cu);
8877 if (imported_name == NULL)
8878 {
8879 complaint (&symfile_complaints,
8880 _("child DW_TAG_imported_declaration has unknown "
8881 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 8882 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8883 continue;
8884 }
8885
8886 VEC_safe_push (const_char_ptr, excludes, imported_name);
8887
8888 process_die (child_die, cu);
8889 }
8890
c0cc3a76
SW
8891 cp_add_using_directive (import_prefix,
8892 canonical_name,
8893 import_alias,
13387711 8894 imported_declaration,
32019081 8895 excludes,
12aaed36 8896 0,
bb5ed363 8897 &objfile->objfile_obstack);
32019081
JK
8898
8899 do_cleanups (cleanups);
27aa8d6a
SW
8900}
8901
f4dc4d17 8902/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 8903
cb1df416
DJ
8904static void
8905free_cu_line_header (void *arg)
8906{
8907 struct dwarf2_cu *cu = arg;
8908
8909 free_line_header (cu->line_header);
8910 cu->line_header = NULL;
8911}
8912
1b80a9fa
JK
8913/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8914 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8915 this, it was first present in GCC release 4.3.0. */
8916
8917static int
8918producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8919{
8920 if (!cu->checked_producer)
8921 check_producer (cu);
8922
8923 return cu->producer_is_gcc_lt_4_3;
8924}
8925
9291a0cd
TT
8926static void
8927find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 8928 const char **name, const char **comp_dir)
9291a0cd
TT
8929{
8930 struct attribute *attr;
8931
8932 *name = NULL;
8933 *comp_dir = NULL;
8934
8935 /* Find the filename. Do not use dwarf2_name here, since the filename
8936 is not a source language identifier. */
8937 attr = dwarf2_attr (die, DW_AT_name, cu);
8938 if (attr)
8939 {
8940 *name = DW_STRING (attr);
8941 }
8942
8943 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8944 if (attr)
8945 *comp_dir = DW_STRING (attr);
1b80a9fa
JK
8946 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8947 && IS_ABSOLUTE_PATH (*name))
9291a0cd 8948 {
15d034d0
TT
8949 char *d = ldirname (*name);
8950
8951 *comp_dir = d;
8952 if (d != NULL)
8953 make_cleanup (xfree, d);
9291a0cd
TT
8954 }
8955 if (*comp_dir != NULL)
8956 {
8957 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8958 directory, get rid of it. */
8959 char *cp = strchr (*comp_dir, ':');
8960
8961 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8962 *comp_dir = cp + 1;
8963 }
8964
8965 if (*name == NULL)
8966 *name = "<unknown>";
8967}
8968
f4dc4d17
DE
8969/* Handle DW_AT_stmt_list for a compilation unit.
8970 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
8971 COMP_DIR is the compilation directory. LOWPC is passed to
8972 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
8973
8974static void
8975handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 8976 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328
TT
8977{
8978 struct attribute *attr;
2ab95328 8979
f4dc4d17
DE
8980 gdb_assert (! cu->per_cu->is_debug_types);
8981
2ab95328
TT
8982 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8983 if (attr)
8984 {
8985 unsigned int line_offset = DW_UNSND (attr);
8986 struct line_header *line_header
3019eac3 8987 = dwarf_decode_line_header (line_offset, cu);
2ab95328
TT
8988
8989 if (line_header)
dee91e82
DE
8990 {
8991 cu->line_header = line_header;
8992 make_cleanup (free_cu_line_header, cu);
c3b7b696 8993 dwarf_decode_lines (line_header, comp_dir, cu, NULL, lowpc);
dee91e82 8994 }
2ab95328
TT
8995 }
8996}
8997
95554aad 8998/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 8999
c906108c 9000static void
e7c27a73 9001read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9002{
dee91e82 9003 struct objfile *objfile = dwarf2_per_objfile->objfile;
debd256d 9004 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 9005 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9006 CORE_ADDR highpc = ((CORE_ADDR) 0);
9007 struct attribute *attr;
15d034d0
TT
9008 const char *name = NULL;
9009 const char *comp_dir = NULL;
c906108c
SS
9010 struct die_info *child_die;
9011 bfd *abfd = objfile->obfd;
e142c38c 9012 CORE_ADDR baseaddr;
6e70227d 9013
e142c38c 9014 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9015
fae299cd 9016 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9017
9018 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9019 from finish_block. */
2acceee2 9020 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
9021 lowpc = highpc;
9022 lowpc += baseaddr;
9023 highpc += baseaddr;
9024
9291a0cd 9025 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 9026
95554aad 9027 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9028
f4b8a18d
KW
9029 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9030 standardised yet. As a workaround for the language detection we fall
9031 back to the DW_AT_producer string. */
9032 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9033 cu->language = language_opencl;
9034
3019eac3
DE
9035 /* Similar hack for Go. */
9036 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9037 set_cu_language (DW_LANG_Go, cu);
9038
f4dc4d17 9039 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
9040
9041 /* Decode line number information if present. We do this before
9042 processing child DIEs, so that the line header table is available
9043 for DW_AT_decl_file. */
c3b7b696 9044 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
3019eac3
DE
9045
9046 /* Process all dies in compilation unit. */
9047 if (die->child != NULL)
9048 {
9049 child_die = die->child;
9050 while (child_die && child_die->tag)
9051 {
9052 process_die (child_die, cu);
9053 child_die = sibling_die (child_die);
9054 }
9055 }
9056
9057 /* Decode macro information, if present. Dwarf 2 macro information
9058 refers to information in the line number info statement program
9059 header, so we can only read it if we've read the header
9060 successfully. */
9061 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9062 if (attr && cu->line_header)
9063 {
9064 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9065 complaint (&symfile_complaints,
9066 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9067
09262596 9068 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
3019eac3
DE
9069 }
9070 else
9071 {
9072 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9073 if (attr && cu->line_header)
9074 {
9075 unsigned int macro_offset = DW_UNSND (attr);
9076
09262596 9077 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
3019eac3
DE
9078 }
9079 }
9080
9081 do_cleanups (back_to);
9082}
9083
f4dc4d17
DE
9084/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9085 Create the set of symtabs used by this TU, or if this TU is sharing
9086 symtabs with another TU and the symtabs have already been created
9087 then restore those symtabs in the line header.
9088 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9089
9090static void
f4dc4d17 9091setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9092{
f4dc4d17
DE
9093 struct objfile *objfile = dwarf2_per_objfile->objfile;
9094 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9095 struct type_unit_group *tu_group;
9096 int first_time;
9097 struct line_header *lh;
3019eac3 9098 struct attribute *attr;
f4dc4d17 9099 unsigned int i, line_offset;
0186c6a7 9100 struct signatured_type *sig_type;
3019eac3 9101
f4dc4d17 9102 gdb_assert (per_cu->is_debug_types);
0186c6a7 9103 sig_type = (struct signatured_type *) per_cu;
3019eac3 9104
f4dc4d17 9105 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9106
f4dc4d17 9107 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9108 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9109 if (sig_type->type_unit_group == NULL)
9110 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9111 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9112
9113 /* If we've already processed this stmt_list there's no real need to
9114 do it again, we could fake it and just recreate the part we need
9115 (file name,index -> symtab mapping). If data shows this optimization
9116 is useful we can do it then. */
9117 first_time = tu_group->primary_symtab == NULL;
9118
9119 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9120 debug info. */
9121 lh = NULL;
9122 if (attr != NULL)
3019eac3 9123 {
f4dc4d17
DE
9124 line_offset = DW_UNSND (attr);
9125 lh = dwarf_decode_line_header (line_offset, cu);
9126 }
9127 if (lh == NULL)
9128 {
9129 if (first_time)
9130 dwarf2_start_symtab (cu, "", NULL, 0);
9131 else
9132 {
9133 gdb_assert (tu_group->symtabs == NULL);
9134 restart_symtab (0);
9135 }
9136 /* Note: The primary symtab will get allocated at the end. */
9137 return;
3019eac3
DE
9138 }
9139
f4dc4d17
DE
9140 cu->line_header = lh;
9141 make_cleanup (free_cu_line_header, cu);
3019eac3 9142
f4dc4d17
DE
9143 if (first_time)
9144 {
9145 dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9146
f4dc4d17
DE
9147 tu_group->num_symtabs = lh->num_file_names;
9148 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 9149
f4dc4d17
DE
9150 for (i = 0; i < lh->num_file_names; ++i)
9151 {
d521ce57 9152 const char *dir = NULL;
f4dc4d17 9153 struct file_entry *fe = &lh->file_names[i];
3019eac3 9154
f4dc4d17
DE
9155 if (fe->dir_index)
9156 dir = lh->include_dirs[fe->dir_index - 1];
9157 dwarf2_start_subfile (fe->name, dir, NULL);
3019eac3 9158
f4dc4d17
DE
9159 /* Note: We don't have to watch for the main subfile here, type units
9160 don't have DW_AT_name. */
3019eac3 9161
f4dc4d17
DE
9162 if (current_subfile->symtab == NULL)
9163 {
9164 /* NOTE: start_subfile will recognize when it's been passed
9165 a file it has already seen. So we can't assume there's a
9166 simple mapping from lh->file_names to subfiles,
9167 lh->file_names may contain dups. */
9168 current_subfile->symtab = allocate_symtab (current_subfile->name,
9169 objfile);
9170 }
9171
9172 fe->symtab = current_subfile->symtab;
9173 tu_group->symtabs[i] = fe->symtab;
9174 }
9175 }
9176 else
3019eac3 9177 {
f4dc4d17
DE
9178 restart_symtab (0);
9179
9180 for (i = 0; i < lh->num_file_names; ++i)
9181 {
9182 struct file_entry *fe = &lh->file_names[i];
9183
9184 fe->symtab = tu_group->symtabs[i];
9185 }
3019eac3
DE
9186 }
9187
f4dc4d17
DE
9188 /* The main symtab is allocated last. Type units don't have DW_AT_name
9189 so they don't have a "real" (so to speak) symtab anyway.
9190 There is later code that will assign the main symtab to all symbols
9191 that don't have one. We need to handle the case of a symbol with a
9192 missing symtab (DW_AT_decl_file) anyway. */
9193}
3019eac3 9194
f4dc4d17
DE
9195/* Process DW_TAG_type_unit.
9196 For TUs we want to skip the first top level sibling if it's not the
9197 actual type being defined by this TU. In this case the first top
9198 level sibling is there to provide context only. */
3019eac3 9199
f4dc4d17
DE
9200static void
9201read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9202{
9203 struct die_info *child_die;
3019eac3 9204
f4dc4d17
DE
9205 prepare_one_comp_unit (cu, die, language_minimal);
9206
9207 /* Initialize (or reinitialize) the machinery for building symtabs.
9208 We do this before processing child DIEs, so that the line header table
9209 is available for DW_AT_decl_file. */
9210 setup_type_unit_groups (die, cu);
9211
9212 if (die->child != NULL)
9213 {
9214 child_die = die->child;
9215 while (child_die && child_die->tag)
9216 {
9217 process_die (child_die, cu);
9218 child_die = sibling_die (child_die);
9219 }
9220 }
3019eac3
DE
9221}
9222\f
80626a55
DE
9223/* DWO/DWP files.
9224
9225 http://gcc.gnu.org/wiki/DebugFission
9226 http://gcc.gnu.org/wiki/DebugFissionDWP
9227
9228 To simplify handling of both DWO files ("object" files with the DWARF info)
9229 and DWP files (a file with the DWOs packaged up into one file), we treat
9230 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9231
9232static hashval_t
9233hash_dwo_file (const void *item)
9234{
9235 const struct dwo_file *dwo_file = item;
a2ce51a0 9236 hashval_t hash;
3019eac3 9237
a2ce51a0
DE
9238 hash = htab_hash_string (dwo_file->dwo_name);
9239 if (dwo_file->comp_dir != NULL)
9240 hash += htab_hash_string (dwo_file->comp_dir);
9241 return hash;
3019eac3
DE
9242}
9243
9244static int
9245eq_dwo_file (const void *item_lhs, const void *item_rhs)
9246{
9247 const struct dwo_file *lhs = item_lhs;
9248 const struct dwo_file *rhs = item_rhs;
9249
a2ce51a0
DE
9250 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9251 return 0;
9252 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9253 return lhs->comp_dir == rhs->comp_dir;
9254 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9255}
9256
9257/* Allocate a hash table for DWO files. */
9258
9259static htab_t
9260allocate_dwo_file_hash_table (void)
9261{
9262 struct objfile *objfile = dwarf2_per_objfile->objfile;
9263
9264 return htab_create_alloc_ex (41,
9265 hash_dwo_file,
9266 eq_dwo_file,
9267 NULL,
9268 &objfile->objfile_obstack,
9269 hashtab_obstack_allocate,
9270 dummy_obstack_deallocate);
9271}
9272
80626a55
DE
9273/* Lookup DWO file DWO_NAME. */
9274
9275static void **
0ac5b59e 9276lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9277{
9278 struct dwo_file find_entry;
9279 void **slot;
9280
9281 if (dwarf2_per_objfile->dwo_files == NULL)
9282 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9283
9284 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9285 find_entry.dwo_name = dwo_name;
9286 find_entry.comp_dir = comp_dir;
80626a55
DE
9287 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9288
9289 return slot;
9290}
9291
3019eac3
DE
9292static hashval_t
9293hash_dwo_unit (const void *item)
9294{
9295 const struct dwo_unit *dwo_unit = item;
9296
9297 /* This drops the top 32 bits of the id, but is ok for a hash. */
9298 return dwo_unit->signature;
9299}
9300
9301static int
9302eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9303{
9304 const struct dwo_unit *lhs = item_lhs;
9305 const struct dwo_unit *rhs = item_rhs;
9306
9307 /* The signature is assumed to be unique within the DWO file.
9308 So while object file CU dwo_id's always have the value zero,
9309 that's OK, assuming each object file DWO file has only one CU,
9310 and that's the rule for now. */
9311 return lhs->signature == rhs->signature;
9312}
9313
9314/* Allocate a hash table for DWO CUs,TUs.
9315 There is one of these tables for each of CUs,TUs for each DWO file. */
9316
9317static htab_t
9318allocate_dwo_unit_table (struct objfile *objfile)
9319{
9320 /* Start out with a pretty small number.
9321 Generally DWO files contain only one CU and maybe some TUs. */
9322 return htab_create_alloc_ex (3,
9323 hash_dwo_unit,
9324 eq_dwo_unit,
9325 NULL,
9326 &objfile->objfile_obstack,
9327 hashtab_obstack_allocate,
9328 dummy_obstack_deallocate);
9329}
9330
80626a55 9331/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9332
19c3d4c9 9333struct create_dwo_cu_data
3019eac3
DE
9334{
9335 struct dwo_file *dwo_file;
19c3d4c9 9336 struct dwo_unit dwo_unit;
3019eac3
DE
9337};
9338
19c3d4c9 9339/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9340
9341static void
19c3d4c9
DE
9342create_dwo_cu_reader (const struct die_reader_specs *reader,
9343 const gdb_byte *info_ptr,
9344 struct die_info *comp_unit_die,
9345 int has_children,
9346 void *datap)
3019eac3
DE
9347{
9348 struct dwarf2_cu *cu = reader->cu;
9349 struct objfile *objfile = dwarf2_per_objfile->objfile;
9350 sect_offset offset = cu->per_cu->offset;
8a0459fd 9351 struct dwarf2_section_info *section = cu->per_cu->section;
19c3d4c9 9352 struct create_dwo_cu_data *data = datap;
3019eac3 9353 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9354 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9355 struct attribute *attr;
3019eac3
DE
9356
9357 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9358 if (attr == NULL)
9359 {
19c3d4c9
DE
9360 complaint (&symfile_complaints,
9361 _("Dwarf Error: debug entry at offset 0x%x is missing"
9362 " its dwo_id [in module %s]"),
9363 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9364 return;
9365 }
9366
3019eac3
DE
9367 dwo_unit->dwo_file = dwo_file;
9368 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9369 dwo_unit->section = section;
3019eac3
DE
9370 dwo_unit->offset = offset;
9371 dwo_unit->length = cu->per_cu->length;
9372
09406207 9373 if (dwarf2_read_debug)
4031ecc5
DE
9374 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9375 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9376}
9377
19c3d4c9
DE
9378/* Create the dwo_unit for the lone CU in DWO_FILE.
9379 Note: This function processes DWO files only, not DWP files. */
3019eac3 9380
19c3d4c9
DE
9381static struct dwo_unit *
9382create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9383{
9384 struct objfile *objfile = dwarf2_per_objfile->objfile;
9385 struct dwarf2_section_info *section = &dwo_file->sections.info;
9386 bfd *abfd;
9387 htab_t cu_htab;
d521ce57 9388 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9389 struct create_dwo_cu_data create_dwo_cu_data;
9390 struct dwo_unit *dwo_unit;
3019eac3
DE
9391
9392 dwarf2_read_section (objfile, section);
9393 info_ptr = section->buffer;
9394
9395 if (info_ptr == NULL)
9396 return NULL;
9397
9398 /* We can't set abfd until now because the section may be empty or
9399 not present, in which case section->asection will be NULL. */
a32a8923 9400 abfd = get_section_bfd_owner (section);
3019eac3 9401
09406207 9402 if (dwarf2_read_debug)
19c3d4c9
DE
9403 {
9404 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9405 get_section_name (section),
9406 get_section_file_name (section));
19c3d4c9 9407 }
3019eac3 9408
19c3d4c9
DE
9409 create_dwo_cu_data.dwo_file = dwo_file;
9410 dwo_unit = NULL;
3019eac3
DE
9411
9412 end_ptr = info_ptr + section->size;
9413 while (info_ptr < end_ptr)
9414 {
9415 struct dwarf2_per_cu_data per_cu;
9416
19c3d4c9
DE
9417 memset (&create_dwo_cu_data.dwo_unit, 0,
9418 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9419 memset (&per_cu, 0, sizeof (per_cu));
9420 per_cu.objfile = objfile;
9421 per_cu.is_debug_types = 0;
9422 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9423 per_cu.section = section;
3019eac3 9424
33e80786 9425 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
19c3d4c9
DE
9426 create_dwo_cu_reader,
9427 &create_dwo_cu_data);
9428
9429 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9430 {
9431 /* If we've already found one, complain. We only support one
9432 because having more than one requires hacking the dwo_name of
9433 each to match, which is highly unlikely to happen. */
9434 if (dwo_unit != NULL)
9435 {
9436 complaint (&symfile_complaints,
9437 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9438 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9439 break;
9440 }
9441
9442 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9443 *dwo_unit = create_dwo_cu_data.dwo_unit;
9444 }
3019eac3
DE
9445
9446 info_ptr += per_cu.length;
9447 }
9448
19c3d4c9 9449 return dwo_unit;
3019eac3
DE
9450}
9451
80626a55
DE
9452/* DWP file .debug_{cu,tu}_index section format:
9453 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9454
d2415c6c
DE
9455 DWP Version 1:
9456
80626a55
DE
9457 Both index sections have the same format, and serve to map a 64-bit
9458 signature to a set of section numbers. Each section begins with a header,
9459 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9460 indexes, and a pool of 32-bit section numbers. The index sections will be
9461 aligned at 8-byte boundaries in the file.
9462
d2415c6c
DE
9463 The index section header consists of:
9464
9465 V, 32 bit version number
9466 -, 32 bits unused
9467 N, 32 bit number of compilation units or type units in the index
9468 M, 32 bit number of slots in the hash table
80626a55 9469
d2415c6c 9470 Numbers are recorded using the byte order of the application binary.
80626a55 9471
d2415c6c
DE
9472 The hash table begins at offset 16 in the section, and consists of an array
9473 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9474 order of the application binary). Unused slots in the hash table are 0.
9475 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9476
d2415c6c
DE
9477 The parallel table begins immediately after the hash table
9478 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9479 array of 32-bit indexes (using the byte order of the application binary),
9480 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9481 table contains a 32-bit index into the pool of section numbers. For unused
9482 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9483
73869dc2
DE
9484 The pool of section numbers begins immediately following the hash table
9485 (at offset 16 + 12 * M from the beginning of the section). The pool of
9486 section numbers consists of an array of 32-bit words (using the byte order
9487 of the application binary). Each item in the array is indexed starting
9488 from 0. The hash table entry provides the index of the first section
9489 number in the set. Additional section numbers in the set follow, and the
9490 set is terminated by a 0 entry (section number 0 is not used in ELF).
9491
9492 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9493 section must be the first entry in the set, and the .debug_abbrev.dwo must
9494 be the second entry. Other members of the set may follow in any order.
9495
9496 ---
9497
9498 DWP Version 2:
9499
9500 DWP Version 2 combines all the .debug_info, etc. sections into one,
9501 and the entries in the index tables are now offsets into these sections.
9502 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9503 section.
9504
9505 Index Section Contents:
9506 Header
9507 Hash Table of Signatures dwp_hash_table.hash_table
9508 Parallel Table of Indices dwp_hash_table.unit_table
9509 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9510 Table of Section Sizes dwp_hash_table.v2.sizes
9511
9512 The index section header consists of:
9513
9514 V, 32 bit version number
9515 L, 32 bit number of columns in the table of section offsets
9516 N, 32 bit number of compilation units or type units in the index
9517 M, 32 bit number of slots in the hash table
9518
9519 Numbers are recorded using the byte order of the application binary.
9520
9521 The hash table has the same format as version 1.
9522 The parallel table of indices has the same format as version 1,
9523 except that the entries are origin-1 indices into the table of sections
9524 offsets and the table of section sizes.
9525
9526 The table of offsets begins immediately following the parallel table
9527 (at offset 16 + 12 * M from the beginning of the section). The table is
9528 a two-dimensional array of 32-bit words (using the byte order of the
9529 application binary), with L columns and N+1 rows, in row-major order.
9530 Each row in the array is indexed starting from 0. The first row provides
9531 a key to the remaining rows: each column in this row provides an identifier
9532 for a debug section, and the offsets in the same column of subsequent rows
9533 refer to that section. The section identifiers are:
9534
9535 DW_SECT_INFO 1 .debug_info.dwo
9536 DW_SECT_TYPES 2 .debug_types.dwo
9537 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9538 DW_SECT_LINE 4 .debug_line.dwo
9539 DW_SECT_LOC 5 .debug_loc.dwo
9540 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9541 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9542 DW_SECT_MACRO 8 .debug_macro.dwo
9543
9544 The offsets provided by the CU and TU index sections are the base offsets
9545 for the contributions made by each CU or TU to the corresponding section
9546 in the package file. Each CU and TU header contains an abbrev_offset
9547 field, used to find the abbreviations table for that CU or TU within the
9548 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9549 be interpreted as relative to the base offset given in the index section.
9550 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9551 should be interpreted as relative to the base offset for .debug_line.dwo,
9552 and offsets into other debug sections obtained from DWARF attributes should
9553 also be interpreted as relative to the corresponding base offset.
9554
9555 The table of sizes begins immediately following the table of offsets.
9556 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9557 with L columns and N rows, in row-major order. Each row in the array is
9558 indexed starting from 1 (row 0 is shared by the two tables).
9559
9560 ---
9561
9562 Hash table lookup is handled the same in version 1 and 2:
9563
9564 We assume that N and M will not exceed 2^32 - 1.
9565 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9566
d2415c6c
DE
9567 Given a 64-bit compilation unit signature or a type signature S, an entry
9568 in the hash table is located as follows:
80626a55 9569
d2415c6c
DE
9570 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9571 the low-order k bits all set to 1.
80626a55 9572
d2415c6c 9573 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9574
d2415c6c
DE
9575 3) If the hash table entry at index H matches the signature, use that
9576 entry. If the hash table entry at index H is unused (all zeroes),
9577 terminate the search: the signature is not present in the table.
80626a55 9578
d2415c6c 9579 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9580
d2415c6c 9581 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9582 to stop at an unused slot or find the match. */
80626a55
DE
9583
9584/* Create a hash table to map DWO IDs to their CU/TU entry in
9585 .debug_{info,types}.dwo in DWP_FILE.
9586 Returns NULL if there isn't one.
9587 Note: This function processes DWP files only, not DWO files. */
9588
9589static struct dwp_hash_table *
9590create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9591{
9592 struct objfile *objfile = dwarf2_per_objfile->objfile;
9593 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9594 const gdb_byte *index_ptr, *index_end;
80626a55 9595 struct dwarf2_section_info *index;
73869dc2 9596 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9597 struct dwp_hash_table *htab;
9598
9599 if (is_debug_types)
9600 index = &dwp_file->sections.tu_index;
9601 else
9602 index = &dwp_file->sections.cu_index;
9603
9604 if (dwarf2_section_empty_p (index))
9605 return NULL;
9606 dwarf2_read_section (objfile, index);
9607
9608 index_ptr = index->buffer;
9609 index_end = index_ptr + index->size;
9610
9611 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9612 index_ptr += 4;
9613 if (version == 2)
9614 nr_columns = read_4_bytes (dbfd, index_ptr);
9615 else
9616 nr_columns = 0;
9617 index_ptr += 4;
80626a55
DE
9618 nr_units = read_4_bytes (dbfd, index_ptr);
9619 index_ptr += 4;
9620 nr_slots = read_4_bytes (dbfd, index_ptr);
9621 index_ptr += 4;
9622
73869dc2 9623 if (version != 1 && version != 2)
80626a55 9624 {
21aa081e 9625 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9626 " [in module %s]"),
21aa081e 9627 pulongest (version), dwp_file->name);
80626a55
DE
9628 }
9629 if (nr_slots != (nr_slots & -nr_slots))
9630 {
21aa081e 9631 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9632 " is not power of 2 [in module %s]"),
21aa081e 9633 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9634 }
9635
9636 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9637 htab->version = version;
9638 htab->nr_columns = nr_columns;
80626a55
DE
9639 htab->nr_units = nr_units;
9640 htab->nr_slots = nr_slots;
9641 htab->hash_table = index_ptr;
9642 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9643
9644 /* Exit early if the table is empty. */
9645 if (nr_slots == 0 || nr_units == 0
9646 || (version == 2 && nr_columns == 0))
9647 {
9648 /* All must be zero. */
9649 if (nr_slots != 0 || nr_units != 0
9650 || (version == 2 && nr_columns != 0))
9651 {
9652 complaint (&symfile_complaints,
9653 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9654 " all zero [in modules %s]"),
9655 dwp_file->name);
9656 }
9657 return htab;
9658 }
9659
9660 if (version == 1)
9661 {
9662 htab->section_pool.v1.indices =
9663 htab->unit_table + sizeof (uint32_t) * nr_slots;
9664 /* It's harder to decide whether the section is too small in v1.
9665 V1 is deprecated anyway so we punt. */
9666 }
9667 else
9668 {
9669 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9670 int *ids = htab->section_pool.v2.section_ids;
9671 /* Reverse map for error checking. */
9672 int ids_seen[DW_SECT_MAX + 1];
9673 int i;
9674
9675 if (nr_columns < 2)
9676 {
9677 error (_("Dwarf Error: bad DWP hash table, too few columns"
9678 " in section table [in module %s]"),
9679 dwp_file->name);
9680 }
9681 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9682 {
9683 error (_("Dwarf Error: bad DWP hash table, too many columns"
9684 " in section table [in module %s]"),
9685 dwp_file->name);
9686 }
9687 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9688 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9689 for (i = 0; i < nr_columns; ++i)
9690 {
9691 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9692
9693 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9694 {
9695 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9696 " in section table [in module %s]"),
9697 id, dwp_file->name);
9698 }
9699 if (ids_seen[id] != -1)
9700 {
9701 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9702 " id %d in section table [in module %s]"),
9703 id, dwp_file->name);
9704 }
9705 ids_seen[id] = i;
9706 ids[i] = id;
9707 }
9708 /* Must have exactly one info or types section. */
9709 if (((ids_seen[DW_SECT_INFO] != -1)
9710 + (ids_seen[DW_SECT_TYPES] != -1))
9711 != 1)
9712 {
9713 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9714 " DWO info/types section [in module %s]"),
9715 dwp_file->name);
9716 }
9717 /* Must have an abbrev section. */
9718 if (ids_seen[DW_SECT_ABBREV] == -1)
9719 {
9720 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9721 " section [in module %s]"),
9722 dwp_file->name);
9723 }
9724 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9725 htab->section_pool.v2.sizes =
9726 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9727 * nr_units * nr_columns);
9728 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9729 * nr_units * nr_columns))
9730 > index_end)
9731 {
9732 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9733 " [in module %s]"),
9734 dwp_file->name);
9735 }
9736 }
80626a55
DE
9737
9738 return htab;
9739}
9740
9741/* Update SECTIONS with the data from SECTP.
9742
9743 This function is like the other "locate" section routines that are
9744 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9745 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9746
9747 The result is non-zero for success, or zero if an error was found. */
9748
9749static int
73869dc2
DE
9750locate_v1_virtual_dwo_sections (asection *sectp,
9751 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9752{
9753 const struct dwop_section_names *names = &dwop_section_names;
9754
9755 if (section_is_p (sectp->name, &names->abbrev_dwo))
9756 {
9757 /* There can be only one. */
73869dc2 9758 if (sections->abbrev.s.asection != NULL)
80626a55 9759 return 0;
73869dc2 9760 sections->abbrev.s.asection = sectp;
80626a55
DE
9761 sections->abbrev.size = bfd_get_section_size (sectp);
9762 }
9763 else if (section_is_p (sectp->name, &names->info_dwo)
9764 || section_is_p (sectp->name, &names->types_dwo))
9765 {
9766 /* There can be only one. */
73869dc2 9767 if (sections->info_or_types.s.asection != NULL)
80626a55 9768 return 0;
73869dc2 9769 sections->info_or_types.s.asection = sectp;
80626a55
DE
9770 sections->info_or_types.size = bfd_get_section_size (sectp);
9771 }
9772 else if (section_is_p (sectp->name, &names->line_dwo))
9773 {
9774 /* There can be only one. */
73869dc2 9775 if (sections->line.s.asection != NULL)
80626a55 9776 return 0;
73869dc2 9777 sections->line.s.asection = sectp;
80626a55
DE
9778 sections->line.size = bfd_get_section_size (sectp);
9779 }
9780 else if (section_is_p (sectp->name, &names->loc_dwo))
9781 {
9782 /* There can be only one. */
73869dc2 9783 if (sections->loc.s.asection != NULL)
80626a55 9784 return 0;
73869dc2 9785 sections->loc.s.asection = sectp;
80626a55
DE
9786 sections->loc.size = bfd_get_section_size (sectp);
9787 }
9788 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9789 {
9790 /* There can be only one. */
73869dc2 9791 if (sections->macinfo.s.asection != NULL)
80626a55 9792 return 0;
73869dc2 9793 sections->macinfo.s.asection = sectp;
80626a55
DE
9794 sections->macinfo.size = bfd_get_section_size (sectp);
9795 }
9796 else if (section_is_p (sectp->name, &names->macro_dwo))
9797 {
9798 /* There can be only one. */
73869dc2 9799 if (sections->macro.s.asection != NULL)
80626a55 9800 return 0;
73869dc2 9801 sections->macro.s.asection = sectp;
80626a55
DE
9802 sections->macro.size = bfd_get_section_size (sectp);
9803 }
9804 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9805 {
9806 /* There can be only one. */
73869dc2 9807 if (sections->str_offsets.s.asection != NULL)
80626a55 9808 return 0;
73869dc2 9809 sections->str_offsets.s.asection = sectp;
80626a55
DE
9810 sections->str_offsets.size = bfd_get_section_size (sectp);
9811 }
9812 else
9813 {
9814 /* No other kind of section is valid. */
9815 return 0;
9816 }
9817
9818 return 1;
9819}
9820
73869dc2
DE
9821/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9822 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9823 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9824 This is for DWP version 1 files. */
80626a55
DE
9825
9826static struct dwo_unit *
73869dc2
DE
9827create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9828 uint32_t unit_index,
9829 const char *comp_dir,
9830 ULONGEST signature, int is_debug_types)
80626a55
DE
9831{
9832 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
9833 const struct dwp_hash_table *dwp_htab =
9834 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
9835 bfd *dbfd = dwp_file->dbfd;
9836 const char *kind = is_debug_types ? "TU" : "CU";
9837 struct dwo_file *dwo_file;
9838 struct dwo_unit *dwo_unit;
73869dc2 9839 struct virtual_v1_dwo_sections sections;
80626a55
DE
9840 void **dwo_file_slot;
9841 char *virtual_dwo_name;
9842 struct dwarf2_section_info *cutu;
9843 struct cleanup *cleanups;
9844 int i;
9845
73869dc2
DE
9846 gdb_assert (dwp_file->version == 1);
9847
80626a55
DE
9848 if (dwarf2_read_debug)
9849 {
73869dc2 9850 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 9851 kind,
73869dc2 9852 pulongest (unit_index), hex_string (signature),
80626a55
DE
9853 dwp_file->name);
9854 }
9855
19ac8c2e 9856 /* Fetch the sections of this DWO unit.
80626a55
DE
9857 Put a limit on the number of sections we look for so that bad data
9858 doesn't cause us to loop forever. */
9859
73869dc2 9860#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
9861 (1 /* .debug_info or .debug_types */ \
9862 + 1 /* .debug_abbrev */ \
9863 + 1 /* .debug_line */ \
9864 + 1 /* .debug_loc */ \
9865 + 1 /* .debug_str_offsets */ \
19ac8c2e 9866 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
9867 + 1 /* trailing zero */)
9868
9869 memset (&sections, 0, sizeof (sections));
9870 cleanups = make_cleanup (null_cleanup, 0);
9871
73869dc2 9872 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
9873 {
9874 asection *sectp;
9875 uint32_t section_nr =
9876 read_4_bytes (dbfd,
73869dc2
DE
9877 dwp_htab->section_pool.v1.indices
9878 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
9879
9880 if (section_nr == 0)
9881 break;
9882 if (section_nr >= dwp_file->num_sections)
9883 {
9884 error (_("Dwarf Error: bad DWP hash table, section number too large"
9885 " [in module %s]"),
9886 dwp_file->name);
9887 }
9888
9889 sectp = dwp_file->elf_sections[section_nr];
73869dc2 9890 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
9891 {
9892 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9893 " [in module %s]"),
9894 dwp_file->name);
9895 }
9896 }
9897
9898 if (i < 2
a32a8923
DE
9899 || dwarf2_section_empty_p (&sections.info_or_types)
9900 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
9901 {
9902 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9903 " [in module %s]"),
9904 dwp_file->name);
9905 }
73869dc2 9906 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
9907 {
9908 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9909 " [in module %s]"),
9910 dwp_file->name);
9911 }
9912
9913 /* It's easier for the rest of the code if we fake a struct dwo_file and
9914 have dwo_unit "live" in that. At least for now.
9915
9916 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 9917 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
9918 file, we can combine them back into a virtual DWO file to save space
9919 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
9920 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9921
2792b94d
PM
9922 virtual_dwo_name =
9923 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
9924 get_section_id (&sections.abbrev),
9925 get_section_id (&sections.line),
9926 get_section_id (&sections.loc),
9927 get_section_id (&sections.str_offsets));
80626a55
DE
9928 make_cleanup (xfree, virtual_dwo_name);
9929 /* Can we use an existing virtual DWO file? */
0ac5b59e 9930 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
9931 /* Create one if necessary. */
9932 if (*dwo_file_slot == NULL)
9933 {
9934 if (dwarf2_read_debug)
9935 {
9936 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9937 virtual_dwo_name);
9938 }
9939 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
9940 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9941 virtual_dwo_name,
9942 strlen (virtual_dwo_name));
9943 dwo_file->comp_dir = comp_dir;
80626a55
DE
9944 dwo_file->sections.abbrev = sections.abbrev;
9945 dwo_file->sections.line = sections.line;
9946 dwo_file->sections.loc = sections.loc;
9947 dwo_file->sections.macinfo = sections.macinfo;
9948 dwo_file->sections.macro = sections.macro;
9949 dwo_file->sections.str_offsets = sections.str_offsets;
9950 /* The "str" section is global to the entire DWP file. */
9951 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 9952 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
9953 there's no need to record it in dwo_file.
9954 Also, we can't simply record type sections in dwo_file because
9955 we record a pointer into the vector in dwo_unit. As we collect more
9956 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
9957 for it, invalidating all copies of pointers into the previous
9958 contents. */
80626a55
DE
9959 *dwo_file_slot = dwo_file;
9960 }
9961 else
9962 {
9963 if (dwarf2_read_debug)
9964 {
9965 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9966 virtual_dwo_name);
9967 }
9968 dwo_file = *dwo_file_slot;
9969 }
9970 do_cleanups (cleanups);
9971
9972 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9973 dwo_unit->dwo_file = dwo_file;
9974 dwo_unit->signature = signature;
8a0459fd
DE
9975 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9976 sizeof (struct dwarf2_section_info));
9977 *dwo_unit->section = sections.info_or_types;
57d63ce2 9978 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
9979
9980 return dwo_unit;
9981}
9982
73869dc2
DE
9983/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9984 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9985 piece within that section used by a TU/CU, return a virtual section
9986 of just that piece. */
9987
9988static struct dwarf2_section_info
9989create_dwp_v2_section (struct dwarf2_section_info *section,
9990 bfd_size_type offset, bfd_size_type size)
9991{
9992 struct dwarf2_section_info result;
9993 asection *sectp;
9994
9995 gdb_assert (section != NULL);
9996 gdb_assert (!section->is_virtual);
9997
9998 memset (&result, 0, sizeof (result));
9999 result.s.containing_section = section;
10000 result.is_virtual = 1;
10001
10002 if (size == 0)
10003 return result;
10004
10005 sectp = get_section_bfd_section (section);
10006
10007 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10008 bounds of the real section. This is a pretty-rare event, so just
10009 flag an error (easier) instead of a warning and trying to cope. */
10010 if (sectp == NULL
10011 || offset + size > bfd_get_section_size (sectp))
10012 {
10013 bfd *abfd = sectp->owner;
10014
10015 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10016 " in section %s [in module %s]"),
10017 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10018 objfile_name (dwarf2_per_objfile->objfile));
10019 }
10020
10021 result.virtual_offset = offset;
10022 result.size = size;
10023 return result;
10024}
10025
10026/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10027 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10028 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10029 This is for DWP version 2 files. */
10030
10031static struct dwo_unit *
10032create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10033 uint32_t unit_index,
10034 const char *comp_dir,
10035 ULONGEST signature, int is_debug_types)
10036{
10037 struct objfile *objfile = dwarf2_per_objfile->objfile;
10038 const struct dwp_hash_table *dwp_htab =
10039 is_debug_types ? dwp_file->tus : dwp_file->cus;
10040 bfd *dbfd = dwp_file->dbfd;
10041 const char *kind = is_debug_types ? "TU" : "CU";
10042 struct dwo_file *dwo_file;
10043 struct dwo_unit *dwo_unit;
10044 struct virtual_v2_dwo_sections sections;
10045 void **dwo_file_slot;
10046 char *virtual_dwo_name;
10047 struct dwarf2_section_info *cutu;
10048 struct cleanup *cleanups;
10049 int i;
10050
10051 gdb_assert (dwp_file->version == 2);
10052
10053 if (dwarf2_read_debug)
10054 {
10055 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10056 kind,
10057 pulongest (unit_index), hex_string (signature),
10058 dwp_file->name);
10059 }
10060
10061 /* Fetch the section offsets of this DWO unit. */
10062
10063 memset (&sections, 0, sizeof (sections));
10064 cleanups = make_cleanup (null_cleanup, 0);
10065
10066 for (i = 0; i < dwp_htab->nr_columns; ++i)
10067 {
10068 uint32_t offset = read_4_bytes (dbfd,
10069 dwp_htab->section_pool.v2.offsets
10070 + (((unit_index - 1) * dwp_htab->nr_columns
10071 + i)
10072 * sizeof (uint32_t)));
10073 uint32_t size = read_4_bytes (dbfd,
10074 dwp_htab->section_pool.v2.sizes
10075 + (((unit_index - 1) * dwp_htab->nr_columns
10076 + i)
10077 * sizeof (uint32_t)));
10078
10079 switch (dwp_htab->section_pool.v2.section_ids[i])
10080 {
10081 case DW_SECT_INFO:
10082 case DW_SECT_TYPES:
10083 sections.info_or_types_offset = offset;
10084 sections.info_or_types_size = size;
10085 break;
10086 case DW_SECT_ABBREV:
10087 sections.abbrev_offset = offset;
10088 sections.abbrev_size = size;
10089 break;
10090 case DW_SECT_LINE:
10091 sections.line_offset = offset;
10092 sections.line_size = size;
10093 break;
10094 case DW_SECT_LOC:
10095 sections.loc_offset = offset;
10096 sections.loc_size = size;
10097 break;
10098 case DW_SECT_STR_OFFSETS:
10099 sections.str_offsets_offset = offset;
10100 sections.str_offsets_size = size;
10101 break;
10102 case DW_SECT_MACINFO:
10103 sections.macinfo_offset = offset;
10104 sections.macinfo_size = size;
10105 break;
10106 case DW_SECT_MACRO:
10107 sections.macro_offset = offset;
10108 sections.macro_size = size;
10109 break;
10110 }
10111 }
10112
10113 /* It's easier for the rest of the code if we fake a struct dwo_file and
10114 have dwo_unit "live" in that. At least for now.
10115
10116 The DWP file can be made up of a random collection of CUs and TUs.
10117 However, for each CU + set of TUs that came from the same original DWO
10118 file, we can combine them back into a virtual DWO file to save space
10119 (fewer struct dwo_file objects to allocate). Remember that for really
10120 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10121
10122 virtual_dwo_name =
10123 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10124 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10125 (long) (sections.line_size ? sections.line_offset : 0),
10126 (long) (sections.loc_size ? sections.loc_offset : 0),
10127 (long) (sections.str_offsets_size
10128 ? sections.str_offsets_offset : 0));
10129 make_cleanup (xfree, virtual_dwo_name);
10130 /* Can we use an existing virtual DWO file? */
10131 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10132 /* Create one if necessary. */
10133 if (*dwo_file_slot == NULL)
10134 {
10135 if (dwarf2_read_debug)
10136 {
10137 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10138 virtual_dwo_name);
10139 }
10140 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10141 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10142 virtual_dwo_name,
10143 strlen (virtual_dwo_name));
10144 dwo_file->comp_dir = comp_dir;
10145 dwo_file->sections.abbrev =
10146 create_dwp_v2_section (&dwp_file->sections.abbrev,
10147 sections.abbrev_offset, sections.abbrev_size);
10148 dwo_file->sections.line =
10149 create_dwp_v2_section (&dwp_file->sections.line,
10150 sections.line_offset, sections.line_size);
10151 dwo_file->sections.loc =
10152 create_dwp_v2_section (&dwp_file->sections.loc,
10153 sections.loc_offset, sections.loc_size);
10154 dwo_file->sections.macinfo =
10155 create_dwp_v2_section (&dwp_file->sections.macinfo,
10156 sections.macinfo_offset, sections.macinfo_size);
10157 dwo_file->sections.macro =
10158 create_dwp_v2_section (&dwp_file->sections.macro,
10159 sections.macro_offset, sections.macro_size);
10160 dwo_file->sections.str_offsets =
10161 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10162 sections.str_offsets_offset,
10163 sections.str_offsets_size);
10164 /* The "str" section is global to the entire DWP file. */
10165 dwo_file->sections.str = dwp_file->sections.str;
10166 /* The info or types section is assigned below to dwo_unit,
10167 there's no need to record it in dwo_file.
10168 Also, we can't simply record type sections in dwo_file because
10169 we record a pointer into the vector in dwo_unit. As we collect more
10170 types we'll grow the vector and eventually have to reallocate space
10171 for it, invalidating all copies of pointers into the previous
10172 contents. */
10173 *dwo_file_slot = dwo_file;
10174 }
10175 else
10176 {
10177 if (dwarf2_read_debug)
10178 {
10179 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10180 virtual_dwo_name);
10181 }
10182 dwo_file = *dwo_file_slot;
10183 }
10184 do_cleanups (cleanups);
10185
10186 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10187 dwo_unit->dwo_file = dwo_file;
10188 dwo_unit->signature = signature;
10189 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10190 sizeof (struct dwarf2_section_info));
10191 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10192 ? &dwp_file->sections.types
10193 : &dwp_file->sections.info,
10194 sections.info_or_types_offset,
10195 sections.info_or_types_size);
10196 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10197
10198 return dwo_unit;
10199}
10200
57d63ce2
DE
10201/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10202 Returns NULL if the signature isn't found. */
80626a55
DE
10203
10204static struct dwo_unit *
57d63ce2
DE
10205lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10206 ULONGEST signature, int is_debug_types)
80626a55 10207{
57d63ce2
DE
10208 const struct dwp_hash_table *dwp_htab =
10209 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10210 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10211 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10212 uint32_t hash = signature & mask;
10213 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10214 unsigned int i;
10215 void **slot;
10216 struct dwo_unit find_dwo_cu, *dwo_cu;
10217
10218 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10219 find_dwo_cu.signature = signature;
19ac8c2e
DE
10220 slot = htab_find_slot (is_debug_types
10221 ? dwp_file->loaded_tus
10222 : dwp_file->loaded_cus,
10223 &find_dwo_cu, INSERT);
80626a55
DE
10224
10225 if (*slot != NULL)
10226 return *slot;
10227
10228 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10229 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10230 {
10231 ULONGEST signature_in_table;
10232
10233 signature_in_table =
57d63ce2 10234 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10235 if (signature_in_table == signature)
10236 {
57d63ce2
DE
10237 uint32_t unit_index =
10238 read_4_bytes (dbfd,
10239 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10240
73869dc2
DE
10241 if (dwp_file->version == 1)
10242 {
10243 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10244 comp_dir, signature,
10245 is_debug_types);
10246 }
10247 else
10248 {
10249 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10250 comp_dir, signature,
10251 is_debug_types);
10252 }
80626a55
DE
10253 return *slot;
10254 }
10255 if (signature_in_table == 0)
10256 return NULL;
10257 hash = (hash + hash2) & mask;
10258 }
10259
10260 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10261 " [in module %s]"),
10262 dwp_file->name);
10263}
10264
ab5088bf 10265/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10266 Open the file specified by FILE_NAME and hand it off to BFD for
10267 preliminary analysis. Return a newly initialized bfd *, which
10268 includes a canonicalized copy of FILE_NAME.
80626a55 10269 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10270 SEARCH_CWD is true if the current directory is to be searched.
10271 It will be searched before debug-file-directory.
13aaf454
DE
10272 If successful, the file is added to the bfd include table of the
10273 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10274 If unable to find/open the file, return NULL.
3019eac3
DE
10275 NOTE: This function is derived from symfile_bfd_open. */
10276
10277static bfd *
6ac97d4c 10278try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
10279{
10280 bfd *sym_bfd;
80626a55 10281 int desc, flags;
3019eac3 10282 char *absolute_name;
9c02c129
DE
10283 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10284 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10285 to debug_file_directory. */
10286 char *search_path;
10287 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10288
6ac97d4c
DE
10289 if (search_cwd)
10290 {
10291 if (*debug_file_directory != '\0')
10292 search_path = concat (".", dirname_separator_string,
10293 debug_file_directory, NULL);
10294 else
10295 search_path = xstrdup (".");
10296 }
9c02c129 10297 else
6ac97d4c 10298 search_path = xstrdup (debug_file_directory);
3019eac3 10299
492c0ab7 10300 flags = OPF_RETURN_REALPATH;
80626a55
DE
10301 if (is_dwp)
10302 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10303 desc = openp (search_path, flags, file_name,
3019eac3 10304 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10305 xfree (search_path);
3019eac3
DE
10306 if (desc < 0)
10307 return NULL;
10308
bb397797 10309 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 10310 xfree (absolute_name);
9c02c129
DE
10311 if (sym_bfd == NULL)
10312 return NULL;
3019eac3
DE
10313 bfd_set_cacheable (sym_bfd, 1);
10314
10315 if (!bfd_check_format (sym_bfd, bfd_object))
10316 {
cbb099e8 10317 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
10318 return NULL;
10319 }
10320
13aaf454
DE
10321 /* Success. Record the bfd as having been included by the objfile's bfd.
10322 This is important because things like demangled_names_hash lives in the
10323 objfile's per_bfd space and may have references to things like symbol
10324 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10325 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10326
3019eac3
DE
10327 return sym_bfd;
10328}
10329
ab5088bf 10330/* Try to open DWO file FILE_NAME.
3019eac3
DE
10331 COMP_DIR is the DW_AT_comp_dir attribute.
10332 The result is the bfd handle of the file.
10333 If there is a problem finding or opening the file, return NULL.
10334 Upon success, the canonicalized path of the file is stored in the bfd,
10335 same as symfile_bfd_open. */
10336
10337static bfd *
ab5088bf 10338open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
10339{
10340 bfd *abfd;
3019eac3 10341
80626a55 10342 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10343 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10344
10345 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10346
10347 if (comp_dir != NULL)
10348 {
80626a55 10349 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
3019eac3
DE
10350
10351 /* NOTE: If comp_dir is a relative path, this will also try the
10352 search path, which seems useful. */
6ac97d4c 10353 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10354 xfree (path_to_try);
10355 if (abfd != NULL)
10356 return abfd;
10357 }
10358
10359 /* That didn't work, try debug-file-directory, which, despite its name,
10360 is a list of paths. */
10361
10362 if (*debug_file_directory == '\0')
10363 return NULL;
10364
6ac97d4c 10365 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10366}
10367
80626a55
DE
10368/* This function is mapped across the sections and remembers the offset and
10369 size of each of the DWO debugging sections we are interested in. */
10370
10371static void
10372dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10373{
10374 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10375 const struct dwop_section_names *names = &dwop_section_names;
10376
10377 if (section_is_p (sectp->name, &names->abbrev_dwo))
10378 {
73869dc2 10379 dwo_sections->abbrev.s.asection = sectp;
80626a55
DE
10380 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10381 }
10382 else if (section_is_p (sectp->name, &names->info_dwo))
10383 {
73869dc2 10384 dwo_sections->info.s.asection = sectp;
80626a55
DE
10385 dwo_sections->info.size = bfd_get_section_size (sectp);
10386 }
10387 else if (section_is_p (sectp->name, &names->line_dwo))
10388 {
73869dc2 10389 dwo_sections->line.s.asection = sectp;
80626a55
DE
10390 dwo_sections->line.size = bfd_get_section_size (sectp);
10391 }
10392 else if (section_is_p (sectp->name, &names->loc_dwo))
10393 {
73869dc2 10394 dwo_sections->loc.s.asection = sectp;
80626a55
DE
10395 dwo_sections->loc.size = bfd_get_section_size (sectp);
10396 }
10397 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10398 {
73869dc2 10399 dwo_sections->macinfo.s.asection = sectp;
80626a55
DE
10400 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10401 }
10402 else if (section_is_p (sectp->name, &names->macro_dwo))
10403 {
73869dc2 10404 dwo_sections->macro.s.asection = sectp;
80626a55
DE
10405 dwo_sections->macro.size = bfd_get_section_size (sectp);
10406 }
10407 else if (section_is_p (sectp->name, &names->str_dwo))
10408 {
73869dc2 10409 dwo_sections->str.s.asection = sectp;
80626a55
DE
10410 dwo_sections->str.size = bfd_get_section_size (sectp);
10411 }
10412 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10413 {
73869dc2 10414 dwo_sections->str_offsets.s.asection = sectp;
80626a55
DE
10415 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10416 }
10417 else if (section_is_p (sectp->name, &names->types_dwo))
10418 {
10419 struct dwarf2_section_info type_section;
10420
10421 memset (&type_section, 0, sizeof (type_section));
73869dc2 10422 type_section.s.asection = sectp;
80626a55
DE
10423 type_section.size = bfd_get_section_size (sectp);
10424 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10425 &type_section);
10426 }
10427}
10428
ab5088bf 10429/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10430 by PER_CU. This is for the non-DWP case.
80626a55 10431 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10432
10433static struct dwo_file *
0ac5b59e
DE
10434open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10435 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10436{
10437 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10438 struct dwo_file *dwo_file;
10439 bfd *dbfd;
3019eac3
DE
10440 struct cleanup *cleanups;
10441
ab5088bf 10442 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
10443 if (dbfd == NULL)
10444 {
10445 if (dwarf2_read_debug)
10446 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10447 return NULL;
10448 }
10449 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10450 dwo_file->dwo_name = dwo_name;
10451 dwo_file->comp_dir = comp_dir;
80626a55 10452 dwo_file->dbfd = dbfd;
3019eac3
DE
10453
10454 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10455
80626a55 10456 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 10457
19c3d4c9 10458 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
10459
10460 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10461 dwo_file->sections.types);
10462
10463 discard_cleanups (cleanups);
10464
80626a55
DE
10465 if (dwarf2_read_debug)
10466 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10467
3019eac3
DE
10468 return dwo_file;
10469}
10470
80626a55 10471/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10472 size of each of the DWP debugging sections common to version 1 and 2 that
10473 we are interested in. */
3019eac3 10474
80626a55 10475static void
73869dc2
DE
10476dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10477 void *dwp_file_ptr)
3019eac3 10478{
80626a55
DE
10479 struct dwp_file *dwp_file = dwp_file_ptr;
10480 const struct dwop_section_names *names = &dwop_section_names;
10481 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10482
80626a55 10483 /* Record the ELF section number for later lookup: this is what the
73869dc2 10484 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10485 gdb_assert (elf_section_nr < dwp_file->num_sections);
10486 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10487
80626a55
DE
10488 /* Look for specific sections that we need. */
10489 if (section_is_p (sectp->name, &names->str_dwo))
10490 {
73869dc2 10491 dwp_file->sections.str.s.asection = sectp;
80626a55
DE
10492 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10493 }
10494 else if (section_is_p (sectp->name, &names->cu_index))
10495 {
73869dc2 10496 dwp_file->sections.cu_index.s.asection = sectp;
80626a55
DE
10497 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10498 }
10499 else if (section_is_p (sectp->name, &names->tu_index))
10500 {
73869dc2 10501 dwp_file->sections.tu_index.s.asection = sectp;
80626a55
DE
10502 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10503 }
10504}
3019eac3 10505
73869dc2
DE
10506/* This function is mapped across the sections and remembers the offset and
10507 size of each of the DWP version 2 debugging sections that we are interested
10508 in. This is split into a separate function because we don't know if we
10509 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10510
10511static void
10512dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10513{
10514 struct dwp_file *dwp_file = dwp_file_ptr;
10515 const struct dwop_section_names *names = &dwop_section_names;
10516 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10517
10518 /* Record the ELF section number for later lookup: this is what the
10519 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10520 gdb_assert (elf_section_nr < dwp_file->num_sections);
10521 dwp_file->elf_sections[elf_section_nr] = sectp;
10522
10523 /* Look for specific sections that we need. */
10524 if (section_is_p (sectp->name, &names->abbrev_dwo))
10525 {
10526 dwp_file->sections.abbrev.s.asection = sectp;
10527 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10528 }
10529 else if (section_is_p (sectp->name, &names->info_dwo))
10530 {
10531 dwp_file->sections.info.s.asection = sectp;
10532 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10533 }
10534 else if (section_is_p (sectp->name, &names->line_dwo))
10535 {
10536 dwp_file->sections.line.s.asection = sectp;
10537 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10538 }
10539 else if (section_is_p (sectp->name, &names->loc_dwo))
10540 {
10541 dwp_file->sections.loc.s.asection = sectp;
10542 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10543 }
10544 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10545 {
10546 dwp_file->sections.macinfo.s.asection = sectp;
10547 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10548 }
10549 else if (section_is_p (sectp->name, &names->macro_dwo))
10550 {
10551 dwp_file->sections.macro.s.asection = sectp;
10552 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10553 }
10554 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10555 {
10556 dwp_file->sections.str_offsets.s.asection = sectp;
10557 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10558 }
10559 else if (section_is_p (sectp->name, &names->types_dwo))
10560 {
10561 dwp_file->sections.types.s.asection = sectp;
10562 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10563 }
10564}
10565
80626a55 10566/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10567
80626a55
DE
10568static hashval_t
10569hash_dwp_loaded_cutus (const void *item)
10570{
10571 const struct dwo_unit *dwo_unit = item;
3019eac3 10572
80626a55
DE
10573 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10574 return dwo_unit->signature;
3019eac3
DE
10575}
10576
80626a55 10577/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10578
80626a55
DE
10579static int
10580eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10581{
80626a55
DE
10582 const struct dwo_unit *dua = a;
10583 const struct dwo_unit *dub = b;
3019eac3 10584
80626a55
DE
10585 return dua->signature == dub->signature;
10586}
3019eac3 10587
80626a55 10588/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10589
80626a55
DE
10590static htab_t
10591allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10592{
10593 return htab_create_alloc_ex (3,
10594 hash_dwp_loaded_cutus,
10595 eq_dwp_loaded_cutus,
10596 NULL,
10597 &objfile->objfile_obstack,
10598 hashtab_obstack_allocate,
10599 dummy_obstack_deallocate);
10600}
3019eac3 10601
ab5088bf
DE
10602/* Try to open DWP file FILE_NAME.
10603 The result is the bfd handle of the file.
10604 If there is a problem finding or opening the file, return NULL.
10605 Upon success, the canonicalized path of the file is stored in the bfd,
10606 same as symfile_bfd_open. */
10607
10608static bfd *
10609open_dwp_file (const char *file_name)
10610{
6ac97d4c
DE
10611 bfd *abfd;
10612
10613 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10614 if (abfd != NULL)
10615 return abfd;
10616
10617 /* Work around upstream bug 15652.
10618 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10619 [Whether that's a "bug" is debatable, but it is getting in our way.]
10620 We have no real idea where the dwp file is, because gdb's realpath-ing
10621 of the executable's path may have discarded the needed info.
10622 [IWBN if the dwp file name was recorded in the executable, akin to
10623 .gnu_debuglink, but that doesn't exist yet.]
10624 Strip the directory from FILE_NAME and search again. */
10625 if (*debug_file_directory != '\0')
10626 {
10627 /* Don't implicitly search the current directory here.
10628 If the user wants to search "." to handle this case,
10629 it must be added to debug-file-directory. */
10630 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10631 0 /*search_cwd*/);
10632 }
10633
10634 return NULL;
ab5088bf
DE
10635}
10636
80626a55
DE
10637/* Initialize the use of the DWP file for the current objfile.
10638 By convention the name of the DWP file is ${objfile}.dwp.
10639 The result is NULL if it can't be found. */
a766d390 10640
80626a55 10641static struct dwp_file *
ab5088bf 10642open_and_init_dwp_file (void)
80626a55
DE
10643{
10644 struct objfile *objfile = dwarf2_per_objfile->objfile;
10645 struct dwp_file *dwp_file;
10646 char *dwp_name;
10647 bfd *dbfd;
10648 struct cleanup *cleanups;
10649
82bf32bc
JK
10650 /* Try to find first .dwp for the binary file before any symbolic links
10651 resolving. */
10652 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
80626a55
DE
10653 cleanups = make_cleanup (xfree, dwp_name);
10654
ab5088bf 10655 dbfd = open_dwp_file (dwp_name);
82bf32bc
JK
10656 if (dbfd == NULL
10657 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10658 {
10659 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10660 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10661 make_cleanup (xfree, dwp_name);
10662 dbfd = open_dwp_file (dwp_name);
10663 }
10664
80626a55
DE
10665 if (dbfd == NULL)
10666 {
10667 if (dwarf2_read_debug)
10668 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10669 do_cleanups (cleanups);
10670 return NULL;
3019eac3 10671 }
80626a55 10672 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 10673 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
10674 dwp_file->dbfd = dbfd;
10675 do_cleanups (cleanups);
c906108c 10676
80626a55
DE
10677 /* +1: section 0 is unused */
10678 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10679 dwp_file->elf_sections =
10680 OBSTACK_CALLOC (&objfile->objfile_obstack,
10681 dwp_file->num_sections, asection *);
10682
73869dc2 10683 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
80626a55
DE
10684
10685 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10686
10687 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10688
73869dc2
DE
10689 /* The DWP file version is stored in the hash table. Oh well. */
10690 if (dwp_file->cus->version != dwp_file->tus->version)
10691 {
10692 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 10693 pretty bizarre. We use pulongest here because that's the established
4d65956b 10694 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
10695 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10696 " TU version %s [in DWP file %s]"),
10697 pulongest (dwp_file->cus->version),
10698 pulongest (dwp_file->tus->version), dwp_name);
73869dc2
DE
10699 }
10700 dwp_file->version = dwp_file->cus->version;
10701
10702 if (dwp_file->version == 2)
10703 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10704
19ac8c2e
DE
10705 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10706 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10707
80626a55
DE
10708 if (dwarf2_read_debug)
10709 {
10710 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10711 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10712 " %s CUs, %s TUs\n",
10713 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10714 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10715 }
10716
10717 return dwp_file;
3019eac3 10718}
c906108c 10719
ab5088bf
DE
10720/* Wrapper around open_and_init_dwp_file, only open it once. */
10721
10722static struct dwp_file *
10723get_dwp_file (void)
10724{
10725 if (! dwarf2_per_objfile->dwp_checked)
10726 {
10727 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10728 dwarf2_per_objfile->dwp_checked = 1;
10729 }
10730 return dwarf2_per_objfile->dwp_file;
10731}
10732
80626a55
DE
10733/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10734 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10735 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10736 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10737 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10738
10739 This is called, for example, when wanting to read a variable with a
10740 complex location. Therefore we don't want to do file i/o for every call.
10741 Therefore we don't want to look for a DWO file on every call.
10742 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10743 then we check if we've already seen DWO_NAME, and only THEN do we check
10744 for a DWO file.
10745
1c658ad5 10746 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 10747 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 10748
3019eac3 10749static struct dwo_unit *
80626a55
DE
10750lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10751 const char *dwo_name, const char *comp_dir,
10752 ULONGEST signature, int is_debug_types)
3019eac3
DE
10753{
10754 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10755 const char *kind = is_debug_types ? "TU" : "CU";
10756 void **dwo_file_slot;
3019eac3 10757 struct dwo_file *dwo_file;
80626a55 10758 struct dwp_file *dwp_file;
cb1df416 10759
6a506a2d
DE
10760 /* First see if there's a DWP file.
10761 If we have a DWP file but didn't find the DWO inside it, don't
10762 look for the original DWO file. It makes gdb behave differently
10763 depending on whether one is debugging in the build tree. */
cf2c3c16 10764
ab5088bf 10765 dwp_file = get_dwp_file ();
80626a55 10766 if (dwp_file != NULL)
cf2c3c16 10767 {
80626a55
DE
10768 const struct dwp_hash_table *dwp_htab =
10769 is_debug_types ? dwp_file->tus : dwp_file->cus;
10770
10771 if (dwp_htab != NULL)
10772 {
10773 struct dwo_unit *dwo_cutu =
57d63ce2
DE
10774 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10775 signature, is_debug_types);
80626a55
DE
10776
10777 if (dwo_cutu != NULL)
10778 {
10779 if (dwarf2_read_debug)
10780 {
10781 fprintf_unfiltered (gdb_stdlog,
10782 "Virtual DWO %s %s found: @%s\n",
10783 kind, hex_string (signature),
10784 host_address_to_string (dwo_cutu));
10785 }
10786 return dwo_cutu;
10787 }
10788 }
10789 }
6a506a2d 10790 else
80626a55 10791 {
6a506a2d 10792 /* No DWP file, look for the DWO file. */
80626a55 10793
6a506a2d
DE
10794 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10795 if (*dwo_file_slot == NULL)
80626a55 10796 {
6a506a2d
DE
10797 /* Read in the file and build a table of the CUs/TUs it contains. */
10798 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 10799 }
6a506a2d
DE
10800 /* NOTE: This will be NULL if unable to open the file. */
10801 dwo_file = *dwo_file_slot;
3019eac3 10802
6a506a2d 10803 if (dwo_file != NULL)
19c3d4c9 10804 {
6a506a2d
DE
10805 struct dwo_unit *dwo_cutu = NULL;
10806
10807 if (is_debug_types && dwo_file->tus)
10808 {
10809 struct dwo_unit find_dwo_cutu;
10810
10811 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10812 find_dwo_cutu.signature = signature;
10813 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10814 }
10815 else if (!is_debug_types && dwo_file->cu)
80626a55 10816 {
6a506a2d
DE
10817 if (signature == dwo_file->cu->signature)
10818 dwo_cutu = dwo_file->cu;
10819 }
10820
10821 if (dwo_cutu != NULL)
10822 {
10823 if (dwarf2_read_debug)
10824 {
10825 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10826 kind, dwo_name, hex_string (signature),
10827 host_address_to_string (dwo_cutu));
10828 }
10829 return dwo_cutu;
80626a55
DE
10830 }
10831 }
2e276125 10832 }
9cdd5dbd 10833
80626a55
DE
10834 /* We didn't find it. This could mean a dwo_id mismatch, or
10835 someone deleted the DWO/DWP file, or the search path isn't set up
10836 correctly to find the file. */
10837
10838 if (dwarf2_read_debug)
10839 {
10840 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10841 kind, dwo_name, hex_string (signature));
10842 }
3019eac3 10843
6656a72d
DE
10844 /* This is a warning and not a complaint because it can be caused by
10845 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
10846 {
10847 /* Print the name of the DWP file if we looked there, helps the user
10848 better diagnose the problem. */
10849 char *dwp_text = NULL;
10850 struct cleanup *cleanups;
10851
10852 if (dwp_file != NULL)
10853 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10854 cleanups = make_cleanup (xfree, dwp_text);
10855
10856 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10857 " [in module %s]"),
10858 kind, dwo_name, hex_string (signature),
10859 dwp_text != NULL ? dwp_text : "",
10860 this_unit->is_debug_types ? "TU" : "CU",
10861 this_unit->offset.sect_off, objfile_name (objfile));
10862
10863 do_cleanups (cleanups);
10864 }
3019eac3 10865 return NULL;
5fb290d7
DJ
10866}
10867
80626a55
DE
10868/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10869 See lookup_dwo_cutu_unit for details. */
10870
10871static struct dwo_unit *
10872lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10873 const char *dwo_name, const char *comp_dir,
10874 ULONGEST signature)
10875{
10876 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10877}
10878
10879/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10880 See lookup_dwo_cutu_unit for details. */
10881
10882static struct dwo_unit *
10883lookup_dwo_type_unit (struct signatured_type *this_tu,
10884 const char *dwo_name, const char *comp_dir)
10885{
10886 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10887}
10888
89e63ee4
DE
10889/* Traversal function for queue_and_load_all_dwo_tus. */
10890
10891static int
10892queue_and_load_dwo_tu (void **slot, void *info)
10893{
10894 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10895 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10896 ULONGEST signature = dwo_unit->signature;
10897 struct signatured_type *sig_type =
10898 lookup_dwo_signatured_type (per_cu->cu, signature);
10899
10900 if (sig_type != NULL)
10901 {
10902 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10903
10904 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10905 a real dependency of PER_CU on SIG_TYPE. That is detected later
10906 while processing PER_CU. */
10907 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10908 load_full_type_unit (sig_cu);
10909 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10910 }
10911
10912 return 1;
10913}
10914
10915/* Queue all TUs contained in the DWO of PER_CU to be read in.
10916 The DWO may have the only definition of the type, though it may not be
10917 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10918 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10919
10920static void
10921queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10922{
10923 struct dwo_unit *dwo_unit;
10924 struct dwo_file *dwo_file;
10925
10926 gdb_assert (!per_cu->is_debug_types);
10927 gdb_assert (get_dwp_file () == NULL);
10928 gdb_assert (per_cu->cu != NULL);
10929
10930 dwo_unit = per_cu->cu->dwo_unit;
10931 gdb_assert (dwo_unit != NULL);
10932
10933 dwo_file = dwo_unit->dwo_file;
10934 if (dwo_file->tus != NULL)
10935 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10936}
10937
3019eac3
DE
10938/* Free all resources associated with DWO_FILE.
10939 Close the DWO file and munmap the sections.
10940 All memory should be on the objfile obstack. */
348e048f
DE
10941
10942static void
3019eac3 10943free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 10944{
3019eac3
DE
10945 int ix;
10946 struct dwarf2_section_info *section;
348e048f 10947
5c6fa7ab 10948 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 10949 gdb_bfd_unref (dwo_file->dbfd);
348e048f 10950
3019eac3
DE
10951 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10952}
348e048f 10953
3019eac3 10954/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 10955
3019eac3
DE
10956static void
10957free_dwo_file_cleanup (void *arg)
10958{
10959 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10960 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 10961
3019eac3
DE
10962 free_dwo_file (dwo_file, objfile);
10963}
348e048f 10964
3019eac3 10965/* Traversal function for free_dwo_files. */
2ab95328 10966
3019eac3
DE
10967static int
10968free_dwo_file_from_slot (void **slot, void *info)
10969{
10970 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10971 struct objfile *objfile = (struct objfile *) info;
348e048f 10972
3019eac3 10973 free_dwo_file (dwo_file, objfile);
348e048f 10974
3019eac3
DE
10975 return 1;
10976}
348e048f 10977
3019eac3 10978/* Free all resources associated with DWO_FILES. */
348e048f 10979
3019eac3
DE
10980static void
10981free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10982{
10983 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 10984}
3019eac3
DE
10985\f
10986/* Read in various DIEs. */
348e048f 10987
d389af10
JK
10988/* qsort helper for inherit_abstract_dies. */
10989
10990static int
10991unsigned_int_compar (const void *ap, const void *bp)
10992{
10993 unsigned int a = *(unsigned int *) ap;
10994 unsigned int b = *(unsigned int *) bp;
10995
10996 return (a > b) - (b > a);
10997}
10998
10999/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11000 Inherit only the children of the DW_AT_abstract_origin DIE not being
11001 already referenced by DW_AT_abstract_origin from the children of the
11002 current DIE. */
d389af10
JK
11003
11004static void
11005inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11006{
11007 struct die_info *child_die;
11008 unsigned die_children_count;
11009 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11010 sect_offset *offsets;
11011 sect_offset *offsets_end, *offsetp;
d389af10
JK
11012 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11013 struct die_info *origin_die;
11014 /* Iterator of the ORIGIN_DIE children. */
11015 struct die_info *origin_child_die;
11016 struct cleanup *cleanups;
11017 struct attribute *attr;
cd02d79d
PA
11018 struct dwarf2_cu *origin_cu;
11019 struct pending **origin_previous_list_in_scope;
d389af10
JK
11020
11021 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11022 if (!attr)
11023 return;
11024
cd02d79d
PA
11025 /* Note that following die references may follow to a die in a
11026 different cu. */
11027
11028 origin_cu = cu;
11029 origin_die = follow_die_ref (die, attr, &origin_cu);
11030
11031 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11032 symbols in. */
11033 origin_previous_list_in_scope = origin_cu->list_in_scope;
11034 origin_cu->list_in_scope = cu->list_in_scope;
11035
edb3359d
DJ
11036 if (die->tag != origin_die->tag
11037 && !(die->tag == DW_TAG_inlined_subroutine
11038 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11039 complaint (&symfile_complaints,
11040 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 11041 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
11042
11043 child_die = die->child;
11044 die_children_count = 0;
11045 while (child_die && child_die->tag)
11046 {
11047 child_die = sibling_die (child_die);
11048 die_children_count++;
11049 }
11050 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11051 cleanups = make_cleanup (xfree, offsets);
11052
11053 offsets_end = offsets;
11054 child_die = die->child;
11055 while (child_die && child_die->tag)
11056 {
c38f313d
DJ
11057 /* For each CHILD_DIE, find the corresponding child of
11058 ORIGIN_DIE. If there is more than one layer of
11059 DW_AT_abstract_origin, follow them all; there shouldn't be,
11060 but GCC versions at least through 4.4 generate this (GCC PR
11061 40573). */
11062 struct die_info *child_origin_die = child_die;
cd02d79d 11063 struct dwarf2_cu *child_origin_cu = cu;
9a619af0 11064
c38f313d
DJ
11065 while (1)
11066 {
cd02d79d
PA
11067 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11068 child_origin_cu);
c38f313d
DJ
11069 if (attr == NULL)
11070 break;
cd02d79d
PA
11071 child_origin_die = follow_die_ref (child_origin_die, attr,
11072 &child_origin_cu);
c38f313d
DJ
11073 }
11074
d389af10
JK
11075 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11076 counterpart may exist. */
c38f313d 11077 if (child_origin_die != child_die)
d389af10 11078 {
edb3359d
DJ
11079 if (child_die->tag != child_origin_die->tag
11080 && !(child_die->tag == DW_TAG_inlined_subroutine
11081 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11082 complaint (&symfile_complaints,
11083 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11084 "different tags"), child_die->offset.sect_off,
11085 child_origin_die->offset.sect_off);
c38f313d
DJ
11086 if (child_origin_die->parent != origin_die)
11087 complaint (&symfile_complaints,
11088 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11089 "different parents"), child_die->offset.sect_off,
11090 child_origin_die->offset.sect_off);
c38f313d
DJ
11091 else
11092 *offsets_end++ = child_origin_die->offset;
d389af10
JK
11093 }
11094 child_die = sibling_die (child_die);
11095 }
11096 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11097 unsigned_int_compar);
11098 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 11099 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
11100 complaint (&symfile_complaints,
11101 _("Multiple children of DIE 0x%x refer "
11102 "to DIE 0x%x as their abstract origin"),
b64f50a1 11103 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
11104
11105 offsetp = offsets;
11106 origin_child_die = origin_die->child;
11107 while (origin_child_die && origin_child_die->tag)
11108 {
11109 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
11110 while (offsetp < offsets_end
11111 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 11112 offsetp++;
b64f50a1
JK
11113 if (offsetp >= offsets_end
11114 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10 11115 {
adde2bff
DE
11116 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11117 Check whether we're already processing ORIGIN_CHILD_DIE.
11118 This can happen with mutually referenced abstract_origins.
11119 PR 16581. */
11120 if (!origin_child_die->in_process)
11121 process_die (origin_child_die, origin_cu);
d389af10
JK
11122 }
11123 origin_child_die = sibling_die (origin_child_die);
11124 }
cd02d79d 11125 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11126
11127 do_cleanups (cleanups);
11128}
11129
c906108c 11130static void
e7c27a73 11131read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11132{
e7c27a73 11133 struct objfile *objfile = cu->objfile;
52f0bd74 11134 struct context_stack *new;
c906108c
SS
11135 CORE_ADDR lowpc;
11136 CORE_ADDR highpc;
11137 struct die_info *child_die;
edb3359d 11138 struct attribute *attr, *call_line, *call_file;
15d034d0 11139 const char *name;
e142c38c 11140 CORE_ADDR baseaddr;
801e3a5b 11141 struct block *block;
edb3359d 11142 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11143 VEC (symbolp) *template_args = NULL;
11144 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11145
11146 if (inlined_func)
11147 {
11148 /* If we do not have call site information, we can't show the
11149 caller of this inlined function. That's too confusing, so
11150 only use the scope for local variables. */
11151 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11152 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11153 if (call_line == NULL || call_file == NULL)
11154 {
11155 read_lexical_block_scope (die, cu);
11156 return;
11157 }
11158 }
c906108c 11159
e142c38c
DJ
11160 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11161
94af9270 11162 name = dwarf2_name (die, cu);
c906108c 11163
e8d05480
JB
11164 /* Ignore functions with missing or empty names. These are actually
11165 illegal according to the DWARF standard. */
11166 if (name == NULL)
11167 {
11168 complaint (&symfile_complaints,
b64f50a1
JK
11169 _("missing name for subprogram DIE at %d"),
11170 die->offset.sect_off);
e8d05480
JB
11171 return;
11172 }
11173
11174 /* Ignore functions with missing or invalid low and high pc attributes. */
11175 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11176 {
ae4d0c03
PM
11177 attr = dwarf2_attr (die, DW_AT_external, cu);
11178 if (!attr || !DW_UNSND (attr))
11179 complaint (&symfile_complaints,
3e43a32a
MS
11180 _("cannot get low and high bounds "
11181 "for subprogram DIE at %d"),
b64f50a1 11182 die->offset.sect_off);
e8d05480
JB
11183 return;
11184 }
c906108c
SS
11185
11186 lowpc += baseaddr;
11187 highpc += baseaddr;
11188
34eaf542
TT
11189 /* If we have any template arguments, then we must allocate a
11190 different sort of symbol. */
11191 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11192 {
11193 if (child_die->tag == DW_TAG_template_type_param
11194 || child_die->tag == DW_TAG_template_value_param)
11195 {
e623cf5d 11196 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11197 templ_func->base.is_cplus_template_function = 1;
11198 break;
11199 }
11200 }
11201
c906108c 11202 new = push_context (0, lowpc);
34eaf542
TT
11203 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11204 (struct symbol *) templ_func);
4c2df51b 11205
4cecd739
DJ
11206 /* If there is a location expression for DW_AT_frame_base, record
11207 it. */
e142c38c 11208 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11209 if (attr)
f1e6e072 11210 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
4c2df51b 11211
e142c38c 11212 cu->list_in_scope = &local_symbols;
c906108c 11213
639d11d3 11214 if (die->child != NULL)
c906108c 11215 {
639d11d3 11216 child_die = die->child;
c906108c
SS
11217 while (child_die && child_die->tag)
11218 {
34eaf542
TT
11219 if (child_die->tag == DW_TAG_template_type_param
11220 || child_die->tag == DW_TAG_template_value_param)
11221 {
11222 struct symbol *arg = new_symbol (child_die, NULL, cu);
11223
f1078f66
DJ
11224 if (arg != NULL)
11225 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11226 }
11227 else
11228 process_die (child_die, cu);
c906108c
SS
11229 child_die = sibling_die (child_die);
11230 }
11231 }
11232
d389af10
JK
11233 inherit_abstract_dies (die, cu);
11234
4a811a97
UW
11235 /* If we have a DW_AT_specification, we might need to import using
11236 directives from the context of the specification DIE. See the
11237 comment in determine_prefix. */
11238 if (cu->language == language_cplus
11239 && dwarf2_attr (die, DW_AT_specification, cu))
11240 {
11241 struct dwarf2_cu *spec_cu = cu;
11242 struct die_info *spec_die = die_specification (die, &spec_cu);
11243
11244 while (spec_die)
11245 {
11246 child_die = spec_die->child;
11247 while (child_die && child_die->tag)
11248 {
11249 if (child_die->tag == DW_TAG_imported_module)
11250 process_die (child_die, spec_cu);
11251 child_die = sibling_die (child_die);
11252 }
11253
11254 /* In some cases, GCC generates specification DIEs that
11255 themselves contain DW_AT_specification attributes. */
11256 spec_die = die_specification (spec_die, &spec_cu);
11257 }
11258 }
11259
c906108c
SS
11260 new = pop_context ();
11261 /* Make a block for the local symbols within. */
801e3a5b
JB
11262 block = finish_block (new->name, &local_symbols, new->old_blocks,
11263 lowpc, highpc, objfile);
11264
df8a16a1 11265 /* For C++, set the block's scope. */
195a3f6c 11266 if ((cu->language == language_cplus || cu->language == language_fortran)
4d4ec4e5 11267 && cu->processing_has_namespace_info)
195a3f6c
TT
11268 block_set_scope (block, determine_prefix (die, cu),
11269 &objfile->objfile_obstack);
df8a16a1 11270
801e3a5b
JB
11271 /* If we have address ranges, record them. */
11272 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11273
34eaf542
TT
11274 /* Attach template arguments to function. */
11275 if (! VEC_empty (symbolp, template_args))
11276 {
11277 gdb_assert (templ_func != NULL);
11278
11279 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11280 templ_func->template_arguments
11281 = obstack_alloc (&objfile->objfile_obstack,
11282 (templ_func->n_template_arguments
11283 * sizeof (struct symbol *)));
11284 memcpy (templ_func->template_arguments,
11285 VEC_address (symbolp, template_args),
11286 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11287 VEC_free (symbolp, template_args);
11288 }
11289
208d8187
JB
11290 /* In C++, we can have functions nested inside functions (e.g., when
11291 a function declares a class that has methods). This means that
11292 when we finish processing a function scope, we may need to go
11293 back to building a containing block's symbol lists. */
11294 local_symbols = new->locals;
27aa8d6a 11295 using_directives = new->using_directives;
208d8187 11296
921e78cf
JB
11297 /* If we've finished processing a top-level function, subsequent
11298 symbols go in the file symbol list. */
11299 if (outermost_context_p ())
e142c38c 11300 cu->list_in_scope = &file_symbols;
c906108c
SS
11301}
11302
11303/* Process all the DIES contained within a lexical block scope. Start
11304 a new scope, process the dies, and then close the scope. */
11305
11306static void
e7c27a73 11307read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11308{
e7c27a73 11309 struct objfile *objfile = cu->objfile;
52f0bd74 11310 struct context_stack *new;
c906108c
SS
11311 CORE_ADDR lowpc, highpc;
11312 struct die_info *child_die;
e142c38c
DJ
11313 CORE_ADDR baseaddr;
11314
11315 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11316
11317 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11318 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11319 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11320 be nasty. Might be easier to properly extend generic blocks to
af34e669 11321 describe ranges. */
d85a05f0 11322 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
11323 return;
11324 lowpc += baseaddr;
11325 highpc += baseaddr;
11326
11327 push_context (0, lowpc);
639d11d3 11328 if (die->child != NULL)
c906108c 11329 {
639d11d3 11330 child_die = die->child;
c906108c
SS
11331 while (child_die && child_die->tag)
11332 {
e7c27a73 11333 process_die (child_die, cu);
c906108c
SS
11334 child_die = sibling_die (child_die);
11335 }
11336 }
11337 new = pop_context ();
11338
8540c487 11339 if (local_symbols != NULL || using_directives != NULL)
c906108c 11340 {
801e3a5b
JB
11341 struct block *block
11342 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11343 highpc, objfile);
11344
11345 /* Note that recording ranges after traversing children, as we
11346 do here, means that recording a parent's ranges entails
11347 walking across all its children's ranges as they appear in
11348 the address map, which is quadratic behavior.
11349
11350 It would be nicer to record the parent's ranges before
11351 traversing its children, simply overriding whatever you find
11352 there. But since we don't even decide whether to create a
11353 block until after we've traversed its children, that's hard
11354 to do. */
11355 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
11356 }
11357 local_symbols = new->locals;
27aa8d6a 11358 using_directives = new->using_directives;
c906108c
SS
11359}
11360
96408a79
SA
11361/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11362
11363static void
11364read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11365{
11366 struct objfile *objfile = cu->objfile;
11367 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11368 CORE_ADDR pc, baseaddr;
11369 struct attribute *attr;
11370 struct call_site *call_site, call_site_local;
11371 void **slot;
11372 int nparams;
11373 struct die_info *child_die;
11374
11375 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11376
11377 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11378 if (!attr)
11379 {
11380 complaint (&symfile_complaints,
11381 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11382 "DIE 0x%x [in module %s]"),
4262abfb 11383 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11384 return;
11385 }
31aa7e4e 11386 pc = attr_value_as_address (attr) + baseaddr;
96408a79
SA
11387
11388 if (cu->call_site_htab == NULL)
11389 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11390 NULL, &objfile->objfile_obstack,
11391 hashtab_obstack_allocate, NULL);
11392 call_site_local.pc = pc;
11393 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11394 if (*slot != NULL)
11395 {
11396 complaint (&symfile_complaints,
11397 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11398 "DIE 0x%x [in module %s]"),
4262abfb
JK
11399 paddress (gdbarch, pc), die->offset.sect_off,
11400 objfile_name (objfile));
96408a79
SA
11401 return;
11402 }
11403
11404 /* Count parameters at the caller. */
11405
11406 nparams = 0;
11407 for (child_die = die->child; child_die && child_die->tag;
11408 child_die = sibling_die (child_die))
11409 {
11410 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11411 {
11412 complaint (&symfile_complaints,
11413 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11414 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11415 child_die->tag, child_die->offset.sect_off,
11416 objfile_name (objfile));
96408a79
SA
11417 continue;
11418 }
11419
11420 nparams++;
11421 }
11422
11423 call_site = obstack_alloc (&objfile->objfile_obstack,
11424 (sizeof (*call_site)
11425 + (sizeof (*call_site->parameter)
11426 * (nparams - 1))));
11427 *slot = call_site;
11428 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11429 call_site->pc = pc;
11430
11431 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11432 {
11433 struct die_info *func_die;
11434
11435 /* Skip also over DW_TAG_inlined_subroutine. */
11436 for (func_die = die->parent;
11437 func_die && func_die->tag != DW_TAG_subprogram
11438 && func_die->tag != DW_TAG_subroutine_type;
11439 func_die = func_die->parent);
11440
11441 /* DW_AT_GNU_all_call_sites is a superset
11442 of DW_AT_GNU_all_tail_call_sites. */
11443 if (func_die
11444 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11445 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11446 {
11447 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11448 not complete. But keep CALL_SITE for look ups via call_site_htab,
11449 both the initial caller containing the real return address PC and
11450 the final callee containing the current PC of a chain of tail
11451 calls do not need to have the tail call list complete. But any
11452 function candidate for a virtual tail call frame searched via
11453 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11454 determined unambiguously. */
11455 }
11456 else
11457 {
11458 struct type *func_type = NULL;
11459
11460 if (func_die)
11461 func_type = get_die_type (func_die, cu);
11462 if (func_type != NULL)
11463 {
11464 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11465
11466 /* Enlist this call site to the function. */
11467 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11468 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11469 }
11470 else
11471 complaint (&symfile_complaints,
11472 _("Cannot find function owning DW_TAG_GNU_call_site "
11473 "DIE 0x%x [in module %s]"),
4262abfb 11474 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11475 }
11476 }
11477
11478 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11479 if (attr == NULL)
11480 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11481 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11482 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11483 /* Keep NULL DWARF_BLOCK. */;
11484 else if (attr_form_is_block (attr))
11485 {
11486 struct dwarf2_locexpr_baton *dlbaton;
11487
11488 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11489 dlbaton->data = DW_BLOCK (attr)->data;
11490 dlbaton->size = DW_BLOCK (attr)->size;
11491 dlbaton->per_cu = cu->per_cu;
11492
11493 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11494 }
7771576e 11495 else if (attr_form_is_ref (attr))
96408a79 11496 {
96408a79
SA
11497 struct dwarf2_cu *target_cu = cu;
11498 struct die_info *target_die;
11499
ac9ec31b 11500 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11501 gdb_assert (target_cu->objfile == objfile);
11502 if (die_is_declaration (target_die, target_cu))
11503 {
9112db09
JK
11504 const char *target_physname = NULL;
11505 struct attribute *target_attr;
11506
11507 /* Prefer the mangled name; otherwise compute the demangled one. */
11508 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11509 if (target_attr == NULL)
11510 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11511 target_cu);
11512 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11513 target_physname = DW_STRING (target_attr);
11514 else
11515 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11516 if (target_physname == NULL)
11517 complaint (&symfile_complaints,
11518 _("DW_AT_GNU_call_site_target target DIE has invalid "
11519 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11520 die->offset.sect_off, objfile_name (objfile));
96408a79 11521 else
7d455152 11522 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11523 }
11524 else
11525 {
11526 CORE_ADDR lowpc;
11527
11528 /* DW_AT_entry_pc should be preferred. */
11529 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11530 complaint (&symfile_complaints,
11531 _("DW_AT_GNU_call_site_target target DIE has invalid "
11532 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11533 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11534 else
11535 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11536 }
11537 }
11538 else
11539 complaint (&symfile_complaints,
11540 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11541 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11542 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11543
11544 call_site->per_cu = cu->per_cu;
11545
11546 for (child_die = die->child;
11547 child_die && child_die->tag;
11548 child_die = sibling_die (child_die))
11549 {
96408a79 11550 struct call_site_parameter *parameter;
1788b2d3 11551 struct attribute *loc, *origin;
96408a79
SA
11552
11553 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11554 {
11555 /* Already printed the complaint above. */
11556 continue;
11557 }
11558
11559 gdb_assert (call_site->parameter_count < nparams);
11560 parameter = &call_site->parameter[call_site->parameter_count];
11561
1788b2d3
JK
11562 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11563 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11564 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11565
24c5c679 11566 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11567 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11568 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11569 {
11570 sect_offset offset;
11571
11572 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11573 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11574 if (!offset_in_cu_p (&cu->header, offset))
11575 {
11576 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11577 binding can be done only inside one CU. Such referenced DIE
11578 therefore cannot be even moved to DW_TAG_partial_unit. */
11579 complaint (&symfile_complaints,
11580 _("DW_AT_abstract_origin offset is not in CU for "
11581 "DW_TAG_GNU_call_site child DIE 0x%x "
11582 "[in module %s]"),
4262abfb 11583 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11584 continue;
11585 }
1788b2d3
JK
11586 parameter->u.param_offset.cu_off = (offset.sect_off
11587 - cu->header.offset.sect_off);
11588 }
11589 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11590 {
11591 complaint (&symfile_complaints,
11592 _("No DW_FORM_block* DW_AT_location for "
11593 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11594 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11595 continue;
11596 }
24c5c679 11597 else
96408a79 11598 {
24c5c679
JK
11599 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11600 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11601 if (parameter->u.dwarf_reg != -1)
11602 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11603 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11604 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11605 &parameter->u.fb_offset))
11606 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11607 else
11608 {
11609 complaint (&symfile_complaints,
11610 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11611 "for DW_FORM_block* DW_AT_location is supported for "
11612 "DW_TAG_GNU_call_site child DIE 0x%x "
11613 "[in module %s]"),
4262abfb 11614 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11615 continue;
11616 }
96408a79
SA
11617 }
11618
11619 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11620 if (!attr_form_is_block (attr))
11621 {
11622 complaint (&symfile_complaints,
11623 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11624 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11625 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11626 continue;
11627 }
11628 parameter->value = DW_BLOCK (attr)->data;
11629 parameter->value_size = DW_BLOCK (attr)->size;
11630
11631 /* Parameters are not pre-cleared by memset above. */
11632 parameter->data_value = NULL;
11633 parameter->data_value_size = 0;
11634 call_site->parameter_count++;
11635
11636 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11637 if (attr)
11638 {
11639 if (!attr_form_is_block (attr))
11640 complaint (&symfile_complaints,
11641 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11642 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11643 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11644 else
11645 {
11646 parameter->data_value = DW_BLOCK (attr)->data;
11647 parameter->data_value_size = DW_BLOCK (attr)->size;
11648 }
11649 }
11650 }
11651}
11652
43039443 11653/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
11654 Return 1 if the attributes are present and valid, otherwise, return 0.
11655 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
11656
11657static int
11658dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
11659 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11660 struct partial_symtab *ranges_pst)
43039443
JK
11661{
11662 struct objfile *objfile = cu->objfile;
11663 struct comp_unit_head *cu_header = &cu->header;
11664 bfd *obfd = objfile->obfd;
11665 unsigned int addr_size = cu_header->addr_size;
11666 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11667 /* Base address selection entry. */
11668 CORE_ADDR base;
11669 int found_base;
11670 unsigned int dummy;
d521ce57 11671 const gdb_byte *buffer;
43039443
JK
11672 CORE_ADDR marker;
11673 int low_set;
11674 CORE_ADDR low = 0;
11675 CORE_ADDR high = 0;
ff013f42 11676 CORE_ADDR baseaddr;
43039443 11677
d00adf39
DE
11678 found_base = cu->base_known;
11679 base = cu->base_address;
43039443 11680
be391dca 11681 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11682 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
11683 {
11684 complaint (&symfile_complaints,
11685 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11686 offset);
11687 return 0;
11688 }
dce234bc 11689 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
11690
11691 /* Read in the largest possible address. */
11692 marker = read_address (obfd, buffer, cu, &dummy);
11693 if ((marker & mask) == mask)
11694 {
11695 /* If we found the largest possible address, then
11696 read the base address. */
11697 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11698 buffer += 2 * addr_size;
11699 offset += 2 * addr_size;
11700 found_base = 1;
11701 }
11702
11703 low_set = 0;
11704
e7030f15 11705 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 11706
43039443
JK
11707 while (1)
11708 {
11709 CORE_ADDR range_beginning, range_end;
11710
11711 range_beginning = read_address (obfd, buffer, cu, &dummy);
11712 buffer += addr_size;
11713 range_end = read_address (obfd, buffer, cu, &dummy);
11714 buffer += addr_size;
11715 offset += 2 * addr_size;
11716
11717 /* An end of list marker is a pair of zero addresses. */
11718 if (range_beginning == 0 && range_end == 0)
11719 /* Found the end of list entry. */
11720 break;
11721
11722 /* Each base address selection entry is a pair of 2 values.
11723 The first is the largest possible address, the second is
11724 the base address. Check for a base address here. */
11725 if ((range_beginning & mask) == mask)
11726 {
11727 /* If we found the largest possible address, then
11728 read the base address. */
11729 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11730 found_base = 1;
11731 continue;
11732 }
11733
11734 if (!found_base)
11735 {
11736 /* We have no valid base address for the ranges
11737 data. */
11738 complaint (&symfile_complaints,
11739 _("Invalid .debug_ranges data (no base address)"));
11740 return 0;
11741 }
11742
9277c30c
UW
11743 if (range_beginning > range_end)
11744 {
11745 /* Inverted range entries are invalid. */
11746 complaint (&symfile_complaints,
11747 _("Invalid .debug_ranges data (inverted range)"));
11748 return 0;
11749 }
11750
11751 /* Empty range entries have no effect. */
11752 if (range_beginning == range_end)
11753 continue;
11754
43039443
JK
11755 range_beginning += base;
11756 range_end += base;
11757
01093045
DE
11758 /* A not-uncommon case of bad debug info.
11759 Don't pollute the addrmap with bad data. */
11760 if (range_beginning + baseaddr == 0
11761 && !dwarf2_per_objfile->has_section_at_zero)
11762 {
11763 complaint (&symfile_complaints,
11764 _(".debug_ranges entry has start address of zero"
4262abfb 11765 " [in module %s]"), objfile_name (objfile));
01093045
DE
11766 continue;
11767 }
11768
9277c30c 11769 if (ranges_pst != NULL)
ff013f42 11770 addrmap_set_empty (objfile->psymtabs_addrmap,
3e43a32a
MS
11771 range_beginning + baseaddr,
11772 range_end - 1 + baseaddr,
ff013f42
JK
11773 ranges_pst);
11774
43039443
JK
11775 /* FIXME: This is recording everything as a low-high
11776 segment of consecutive addresses. We should have a
11777 data structure for discontiguous block ranges
11778 instead. */
11779 if (! low_set)
11780 {
11781 low = range_beginning;
11782 high = range_end;
11783 low_set = 1;
11784 }
11785 else
11786 {
11787 if (range_beginning < low)
11788 low = range_beginning;
11789 if (range_end > high)
11790 high = range_end;
11791 }
11792 }
11793
11794 if (! low_set)
11795 /* If the first entry is an end-of-list marker, the range
11796 describes an empty scope, i.e. no instructions. */
11797 return 0;
11798
11799 if (low_return)
11800 *low_return = low;
11801 if (high_return)
11802 *high_return = high;
11803 return 1;
11804}
11805
af34e669
DJ
11806/* Get low and high pc attributes from a die. Return 1 if the attributes
11807 are present and valid, otherwise, return 0. Return -1 if the range is
11808 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 11809
c906108c 11810static int
af34e669 11811dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
11812 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11813 struct partial_symtab *pst)
c906108c
SS
11814{
11815 struct attribute *attr;
91da1414 11816 struct attribute *attr_high;
af34e669
DJ
11817 CORE_ADDR low = 0;
11818 CORE_ADDR high = 0;
11819 int ret = 0;
c906108c 11820
91da1414
MW
11821 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11822 if (attr_high)
af34e669 11823 {
e142c38c 11824 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 11825 if (attr)
91da1414 11826 {
31aa7e4e
JB
11827 low = attr_value_as_address (attr);
11828 high = attr_value_as_address (attr_high);
11829 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11830 high += low;
91da1414 11831 }
af34e669
DJ
11832 else
11833 /* Found high w/o low attribute. */
11834 return 0;
11835
11836 /* Found consecutive range of addresses. */
11837 ret = 1;
11838 }
c906108c 11839 else
af34e669 11840 {
e142c38c 11841 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
11842 if (attr != NULL)
11843 {
ab435259
DE
11844 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11845 We take advantage of the fact that DW_AT_ranges does not appear
11846 in DW_TAG_compile_unit of DWO files. */
11847 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11848 unsigned int ranges_offset = (DW_UNSND (attr)
11849 + (need_ranges_base
11850 ? cu->ranges_base
11851 : 0));
2e3cf129 11852
af34e669 11853 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 11854 .debug_ranges section. */
2e3cf129 11855 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
af34e669 11856 return 0;
43039443 11857 /* Found discontinuous range of addresses. */
af34e669
DJ
11858 ret = -1;
11859 }
11860 }
c906108c 11861
9373cf26
JK
11862 /* read_partial_die has also the strict LOW < HIGH requirement. */
11863 if (high <= low)
c906108c
SS
11864 return 0;
11865
11866 /* When using the GNU linker, .gnu.linkonce. sections are used to
11867 eliminate duplicate copies of functions and vtables and such.
11868 The linker will arbitrarily choose one and discard the others.
11869 The AT_*_pc values for such functions refer to local labels in
11870 these sections. If the section from that file was discarded, the
11871 labels are not in the output, so the relocs get a value of 0.
11872 If this is a discarded function, mark the pc bounds as invalid,
11873 so that GDB will ignore it. */
72dca2f5 11874 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
11875 return 0;
11876
11877 *lowpc = low;
96408a79
SA
11878 if (highpc)
11879 *highpc = high;
af34e669 11880 return ret;
c906108c
SS
11881}
11882
b084d499
JB
11883/* Assuming that DIE represents a subprogram DIE or a lexical block, get
11884 its low and high PC addresses. Do nothing if these addresses could not
11885 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11886 and HIGHPC to the high address if greater than HIGHPC. */
11887
11888static void
11889dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11890 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11891 struct dwarf2_cu *cu)
11892{
11893 CORE_ADDR low, high;
11894 struct die_info *child = die->child;
11895
d85a05f0 11896 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
11897 {
11898 *lowpc = min (*lowpc, low);
11899 *highpc = max (*highpc, high);
11900 }
11901
11902 /* If the language does not allow nested subprograms (either inside
11903 subprograms or lexical blocks), we're done. */
11904 if (cu->language != language_ada)
11905 return;
6e70227d 11906
b084d499
JB
11907 /* Check all the children of the given DIE. If it contains nested
11908 subprograms, then check their pc bounds. Likewise, we need to
11909 check lexical blocks as well, as they may also contain subprogram
11910 definitions. */
11911 while (child && child->tag)
11912 {
11913 if (child->tag == DW_TAG_subprogram
11914 || child->tag == DW_TAG_lexical_block)
11915 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11916 child = sibling_die (child);
11917 }
11918}
11919
fae299cd
DC
11920/* Get the low and high pc's represented by the scope DIE, and store
11921 them in *LOWPC and *HIGHPC. If the correct values can't be
11922 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11923
11924static void
11925get_scope_pc_bounds (struct die_info *die,
11926 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11927 struct dwarf2_cu *cu)
11928{
11929 CORE_ADDR best_low = (CORE_ADDR) -1;
11930 CORE_ADDR best_high = (CORE_ADDR) 0;
11931 CORE_ADDR current_low, current_high;
11932
d85a05f0 11933 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
11934 {
11935 best_low = current_low;
11936 best_high = current_high;
11937 }
11938 else
11939 {
11940 struct die_info *child = die->child;
11941
11942 while (child && child->tag)
11943 {
11944 switch (child->tag) {
11945 case DW_TAG_subprogram:
b084d499 11946 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
11947 break;
11948 case DW_TAG_namespace:
f55ee35c 11949 case DW_TAG_module:
fae299cd
DC
11950 /* FIXME: carlton/2004-01-16: Should we do this for
11951 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11952 that current GCC's always emit the DIEs corresponding
11953 to definitions of methods of classes as children of a
11954 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11955 the DIEs giving the declarations, which could be
11956 anywhere). But I don't see any reason why the
11957 standards says that they have to be there. */
11958 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11959
11960 if (current_low != ((CORE_ADDR) -1))
11961 {
11962 best_low = min (best_low, current_low);
11963 best_high = max (best_high, current_high);
11964 }
11965 break;
11966 default:
0963b4bd 11967 /* Ignore. */
fae299cd
DC
11968 break;
11969 }
11970
11971 child = sibling_die (child);
11972 }
11973 }
11974
11975 *lowpc = best_low;
11976 *highpc = best_high;
11977}
11978
801e3a5b
JB
11979/* Record the address ranges for BLOCK, offset by BASEADDR, as given
11980 in DIE. */
380bca97 11981
801e3a5b
JB
11982static void
11983dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11984 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11985{
bb5ed363 11986 struct objfile *objfile = cu->objfile;
801e3a5b 11987 struct attribute *attr;
91da1414 11988 struct attribute *attr_high;
801e3a5b 11989
91da1414
MW
11990 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11991 if (attr_high)
801e3a5b 11992 {
801e3a5b
JB
11993 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11994 if (attr)
11995 {
31aa7e4e
JB
11996 CORE_ADDR low = attr_value_as_address (attr);
11997 CORE_ADDR high = attr_value_as_address (attr_high);
11998
11999 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12000 high += low;
9a619af0 12001
801e3a5b
JB
12002 record_block_range (block, baseaddr + low, baseaddr + high - 1);
12003 }
12004 }
12005
12006 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12007 if (attr)
12008 {
bb5ed363 12009 bfd *obfd = objfile->obfd;
ab435259
DE
12010 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12011 We take advantage of the fact that DW_AT_ranges does not appear
12012 in DW_TAG_compile_unit of DWO files. */
12013 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12014
12015 /* The value of the DW_AT_ranges attribute is the offset of the
12016 address range list in the .debug_ranges section. */
ab435259
DE
12017 unsigned long offset = (DW_UNSND (attr)
12018 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12019 const gdb_byte *buffer;
801e3a5b
JB
12020
12021 /* For some target architectures, but not others, the
12022 read_address function sign-extends the addresses it returns.
12023 To recognize base address selection entries, we need a
12024 mask. */
12025 unsigned int addr_size = cu->header.addr_size;
12026 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12027
12028 /* The base address, to which the next pair is relative. Note
12029 that this 'base' is a DWARF concept: most entries in a range
12030 list are relative, to reduce the number of relocs against the
12031 debugging information. This is separate from this function's
12032 'baseaddr' argument, which GDB uses to relocate debugging
12033 information from a shared library based on the address at
12034 which the library was loaded. */
d00adf39
DE
12035 CORE_ADDR base = cu->base_address;
12036 int base_known = cu->base_known;
801e3a5b 12037
d62bfeaf 12038 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12039 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
12040 {
12041 complaint (&symfile_complaints,
12042 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12043 offset);
12044 return;
12045 }
d62bfeaf 12046 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
12047
12048 for (;;)
12049 {
12050 unsigned int bytes_read;
12051 CORE_ADDR start, end;
12052
12053 start = read_address (obfd, buffer, cu, &bytes_read);
12054 buffer += bytes_read;
12055 end = read_address (obfd, buffer, cu, &bytes_read);
12056 buffer += bytes_read;
12057
12058 /* Did we find the end of the range list? */
12059 if (start == 0 && end == 0)
12060 break;
12061
12062 /* Did we find a base address selection entry? */
12063 else if ((start & base_select_mask) == base_select_mask)
12064 {
12065 base = end;
12066 base_known = 1;
12067 }
12068
12069 /* We found an ordinary address range. */
12070 else
12071 {
12072 if (!base_known)
12073 {
12074 complaint (&symfile_complaints,
3e43a32a
MS
12075 _("Invalid .debug_ranges data "
12076 "(no base address)"));
801e3a5b
JB
12077 return;
12078 }
12079
9277c30c
UW
12080 if (start > end)
12081 {
12082 /* Inverted range entries are invalid. */
12083 complaint (&symfile_complaints,
12084 _("Invalid .debug_ranges data "
12085 "(inverted range)"));
12086 return;
12087 }
12088
12089 /* Empty range entries have no effect. */
12090 if (start == end)
12091 continue;
12092
01093045
DE
12093 start += base + baseaddr;
12094 end += base + baseaddr;
12095
12096 /* A not-uncommon case of bad debug info.
12097 Don't pollute the addrmap with bad data. */
12098 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12099 {
12100 complaint (&symfile_complaints,
12101 _(".debug_ranges entry has start address of zero"
4262abfb 12102 " [in module %s]"), objfile_name (objfile));
01093045
DE
12103 continue;
12104 }
12105
12106 record_block_range (block, start, end - 1);
801e3a5b
JB
12107 }
12108 }
12109 }
12110}
12111
685b1105
JK
12112/* Check whether the producer field indicates either of GCC < 4.6, or the
12113 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12114
685b1105
JK
12115static void
12116check_producer (struct dwarf2_cu *cu)
60d5a603
JK
12117{
12118 const char *cs;
12119 int major, minor, release;
12120
12121 if (cu->producer == NULL)
12122 {
12123 /* For unknown compilers expect their behavior is DWARF version
12124 compliant.
12125
12126 GCC started to support .debug_types sections by -gdwarf-4 since
12127 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12128 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12129 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12130 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12131 }
685b1105 12132 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
60d5a603 12133 {
685b1105
JK
12134 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12135
ba919b58
TT
12136 cs = &cu->producer[strlen ("GNU ")];
12137 while (*cs && !isdigit (*cs))
12138 cs++;
12139 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12140 {
12141 /* Not recognized as GCC. */
12142 }
12143 else
1b80a9fa
JK
12144 {
12145 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12146 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12147 }
685b1105
JK
12148 }
12149 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12150 cu->producer_is_icc = 1;
12151 else
12152 {
12153 /* For other non-GCC compilers, expect their behavior is DWARF version
12154 compliant. */
60d5a603
JK
12155 }
12156
ba919b58 12157 cu->checked_producer = 1;
685b1105 12158}
ba919b58 12159
685b1105
JK
12160/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12161 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12162 during 4.6.0 experimental. */
12163
12164static int
12165producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12166{
12167 if (!cu->checked_producer)
12168 check_producer (cu);
12169
12170 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12171}
12172
12173/* Return the default accessibility type if it is not overriden by
12174 DW_AT_accessibility. */
12175
12176static enum dwarf_access_attribute
12177dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12178{
12179 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12180 {
12181 /* The default DWARF 2 accessibility for members is public, the default
12182 accessibility for inheritance is private. */
12183
12184 if (die->tag != DW_TAG_inheritance)
12185 return DW_ACCESS_public;
12186 else
12187 return DW_ACCESS_private;
12188 }
12189 else
12190 {
12191 /* DWARF 3+ defines the default accessibility a different way. The same
12192 rules apply now for DW_TAG_inheritance as for the members and it only
12193 depends on the container kind. */
12194
12195 if (die->parent->tag == DW_TAG_class_type)
12196 return DW_ACCESS_private;
12197 else
12198 return DW_ACCESS_public;
12199 }
12200}
12201
74ac6d43
TT
12202/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12203 offset. If the attribute was not found return 0, otherwise return
12204 1. If it was found but could not properly be handled, set *OFFSET
12205 to 0. */
12206
12207static int
12208handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12209 LONGEST *offset)
12210{
12211 struct attribute *attr;
12212
12213 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12214 if (attr != NULL)
12215 {
12216 *offset = 0;
12217
12218 /* Note that we do not check for a section offset first here.
12219 This is because DW_AT_data_member_location is new in DWARF 4,
12220 so if we see it, we can assume that a constant form is really
12221 a constant and not a section offset. */
12222 if (attr_form_is_constant (attr))
12223 *offset = dwarf2_get_attr_constant_value (attr, 0);
12224 else if (attr_form_is_section_offset (attr))
12225 dwarf2_complex_location_expr_complaint ();
12226 else if (attr_form_is_block (attr))
12227 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12228 else
12229 dwarf2_complex_location_expr_complaint ();
12230
12231 return 1;
12232 }
12233
12234 return 0;
12235}
12236
c906108c
SS
12237/* Add an aggregate field to the field list. */
12238
12239static void
107d2387 12240dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12241 struct dwarf2_cu *cu)
6e70227d 12242{
e7c27a73 12243 struct objfile *objfile = cu->objfile;
5e2b427d 12244 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12245 struct nextfield *new_field;
12246 struct attribute *attr;
12247 struct field *fp;
15d034d0 12248 const char *fieldname = "";
c906108c
SS
12249
12250 /* Allocate a new field list entry and link it in. */
12251 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 12252 make_cleanup (xfree, new_field);
c906108c 12253 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12254
12255 if (die->tag == DW_TAG_inheritance)
12256 {
12257 new_field->next = fip->baseclasses;
12258 fip->baseclasses = new_field;
12259 }
12260 else
12261 {
12262 new_field->next = fip->fields;
12263 fip->fields = new_field;
12264 }
c906108c
SS
12265 fip->nfields++;
12266
e142c38c 12267 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12268 if (attr)
12269 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12270 else
12271 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12272 if (new_field->accessibility != DW_ACCESS_public)
12273 fip->non_public_fields = 1;
60d5a603 12274
e142c38c 12275 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12276 if (attr)
12277 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12278 else
12279 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12280
12281 fp = &new_field->field;
a9a9bd0f 12282
e142c38c 12283 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12284 {
74ac6d43
TT
12285 LONGEST offset;
12286
a9a9bd0f 12287 /* Data member other than a C++ static data member. */
6e70227d 12288
c906108c 12289 /* Get type of field. */
e7c27a73 12290 fp->type = die_type (die, cu);
c906108c 12291
d6a843b5 12292 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12293
c906108c 12294 /* Get bit size of field (zero if none). */
e142c38c 12295 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12296 if (attr)
12297 {
12298 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12299 }
12300 else
12301 {
12302 FIELD_BITSIZE (*fp) = 0;
12303 }
12304
12305 /* Get bit offset of field. */
74ac6d43
TT
12306 if (handle_data_member_location (die, cu, &offset))
12307 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12308 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12309 if (attr)
12310 {
5e2b427d 12311 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12312 {
12313 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12314 additional bit offset from the MSB of the containing
12315 anonymous object to the MSB of the field. We don't
12316 have to do anything special since we don't need to
12317 know the size of the anonymous object. */
f41f5e61 12318 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12319 }
12320 else
12321 {
12322 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12323 MSB of the anonymous object, subtract off the number of
12324 bits from the MSB of the field to the MSB of the
12325 object, and then subtract off the number of bits of
12326 the field itself. The result is the bit offset of
12327 the LSB of the field. */
c906108c
SS
12328 int anonymous_size;
12329 int bit_offset = DW_UNSND (attr);
12330
e142c38c 12331 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12332 if (attr)
12333 {
12334 /* The size of the anonymous object containing
12335 the bit field is explicit, so use the
12336 indicated size (in bytes). */
12337 anonymous_size = DW_UNSND (attr);
12338 }
12339 else
12340 {
12341 /* The size of the anonymous object containing
12342 the bit field must be inferred from the type
12343 attribute of the data member containing the
12344 bit field. */
12345 anonymous_size = TYPE_LENGTH (fp->type);
12346 }
f41f5e61
PA
12347 SET_FIELD_BITPOS (*fp,
12348 (FIELD_BITPOS (*fp)
12349 + anonymous_size * bits_per_byte
12350 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12351 }
12352 }
12353
12354 /* Get name of field. */
39cbfefa
DJ
12355 fieldname = dwarf2_name (die, cu);
12356 if (fieldname == NULL)
12357 fieldname = "";
d8151005
DJ
12358
12359 /* The name is already allocated along with this objfile, so we don't
12360 need to duplicate it for the type. */
12361 fp->name = fieldname;
c906108c
SS
12362
12363 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12364 pointer or virtual base class pointer) to private. */
e142c38c 12365 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12366 {
d48cc9dd 12367 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12368 new_field->accessibility = DW_ACCESS_private;
12369 fip->non_public_fields = 1;
12370 }
12371 }
a9a9bd0f 12372 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12373 {
a9a9bd0f
DC
12374 /* C++ static member. */
12375
12376 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12377 is a declaration, but all versions of G++ as of this writing
12378 (so through at least 3.2.1) incorrectly generate
12379 DW_TAG_variable tags. */
6e70227d 12380
ff355380 12381 const char *physname;
c906108c 12382
a9a9bd0f 12383 /* Get name of field. */
39cbfefa
DJ
12384 fieldname = dwarf2_name (die, cu);
12385 if (fieldname == NULL)
c906108c
SS
12386 return;
12387
254e6b9e 12388 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12389 if (attr
12390 /* Only create a symbol if this is an external value.
12391 new_symbol checks this and puts the value in the global symbol
12392 table, which we want. If it is not external, new_symbol
12393 will try to put the value in cu->list_in_scope which is wrong. */
12394 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12395 {
12396 /* A static const member, not much different than an enum as far as
12397 we're concerned, except that we can support more types. */
12398 new_symbol (die, NULL, cu);
12399 }
12400
2df3850c 12401 /* Get physical name. */
ff355380 12402 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12403
d8151005
DJ
12404 /* The name is already allocated along with this objfile, so we don't
12405 need to duplicate it for the type. */
12406 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12407 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12408 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12409 }
12410 else if (die->tag == DW_TAG_inheritance)
12411 {
74ac6d43 12412 LONGEST offset;
d4b96c9a 12413
74ac6d43
TT
12414 /* C++ base class field. */
12415 if (handle_data_member_location (die, cu, &offset))
12416 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12417 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12418 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12419 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12420 fip->nbaseclasses++;
12421 }
12422}
12423
98751a41
JK
12424/* Add a typedef defined in the scope of the FIP's class. */
12425
12426static void
12427dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12428 struct dwarf2_cu *cu)
6e70227d 12429{
98751a41 12430 struct objfile *objfile = cu->objfile;
98751a41
JK
12431 struct typedef_field_list *new_field;
12432 struct attribute *attr;
12433 struct typedef_field *fp;
12434 char *fieldname = "";
12435
12436 /* Allocate a new field list entry and link it in. */
12437 new_field = xzalloc (sizeof (*new_field));
12438 make_cleanup (xfree, new_field);
12439
12440 gdb_assert (die->tag == DW_TAG_typedef);
12441
12442 fp = &new_field->field;
12443
12444 /* Get name of field. */
12445 fp->name = dwarf2_name (die, cu);
12446 if (fp->name == NULL)
12447 return;
12448
12449 fp->type = read_type_die (die, cu);
12450
12451 new_field->next = fip->typedef_field_list;
12452 fip->typedef_field_list = new_field;
12453 fip->typedef_field_list_count++;
12454}
12455
c906108c
SS
12456/* Create the vector of fields, and attach it to the type. */
12457
12458static void
fba45db2 12459dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12460 struct dwarf2_cu *cu)
c906108c
SS
12461{
12462 int nfields = fip->nfields;
12463
12464 /* Record the field count, allocate space for the array of fields,
12465 and create blank accessibility bitfields if necessary. */
12466 TYPE_NFIELDS (type) = nfields;
12467 TYPE_FIELDS (type) = (struct field *)
12468 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12469 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12470
b4ba55a1 12471 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12472 {
12473 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12474
12475 TYPE_FIELD_PRIVATE_BITS (type) =
12476 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12477 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12478
12479 TYPE_FIELD_PROTECTED_BITS (type) =
12480 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12481 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12482
774b6a14
TT
12483 TYPE_FIELD_IGNORE_BITS (type) =
12484 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12485 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12486 }
12487
12488 /* If the type has baseclasses, allocate and clear a bit vector for
12489 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12490 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12491 {
12492 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12493 unsigned char *pointer;
c906108c
SS
12494
12495 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
12496 pointer = TYPE_ALLOC (type, num_bytes);
12497 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12498 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12499 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12500 }
12501
3e43a32a
MS
12502 /* Copy the saved-up fields into the field vector. Start from the head of
12503 the list, adding to the tail of the field array, so that they end up in
12504 the same order in the array in which they were added to the list. */
c906108c
SS
12505 while (nfields-- > 0)
12506 {
7d0ccb61
DJ
12507 struct nextfield *fieldp;
12508
12509 if (fip->fields)
12510 {
12511 fieldp = fip->fields;
12512 fip->fields = fieldp->next;
12513 }
12514 else
12515 {
12516 fieldp = fip->baseclasses;
12517 fip->baseclasses = fieldp->next;
12518 }
12519
12520 TYPE_FIELD (type, nfields) = fieldp->field;
12521 switch (fieldp->accessibility)
c906108c 12522 {
c5aa993b 12523 case DW_ACCESS_private:
b4ba55a1
JB
12524 if (cu->language != language_ada)
12525 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12526 break;
c906108c 12527
c5aa993b 12528 case DW_ACCESS_protected:
b4ba55a1
JB
12529 if (cu->language != language_ada)
12530 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12531 break;
c906108c 12532
c5aa993b
JM
12533 case DW_ACCESS_public:
12534 break;
c906108c 12535
c5aa993b
JM
12536 default:
12537 /* Unknown accessibility. Complain and treat it as public. */
12538 {
e2e0b3e5 12539 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12540 fieldp->accessibility);
c5aa993b
JM
12541 }
12542 break;
c906108c
SS
12543 }
12544 if (nfields < fip->nbaseclasses)
12545 {
7d0ccb61 12546 switch (fieldp->virtuality)
c906108c 12547 {
c5aa993b
JM
12548 case DW_VIRTUALITY_virtual:
12549 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12550 if (cu->language == language_ada)
a73c6dcd 12551 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12552 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12553 break;
c906108c
SS
12554 }
12555 }
c906108c
SS
12556 }
12557}
12558
7d27a96d
TT
12559/* Return true if this member function is a constructor, false
12560 otherwise. */
12561
12562static int
12563dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12564{
12565 const char *fieldname;
12566 const char *typename;
12567 int len;
12568
12569 if (die->parent == NULL)
12570 return 0;
12571
12572 if (die->parent->tag != DW_TAG_structure_type
12573 && die->parent->tag != DW_TAG_union_type
12574 && die->parent->tag != DW_TAG_class_type)
12575 return 0;
12576
12577 fieldname = dwarf2_name (die, cu);
12578 typename = dwarf2_name (die->parent, cu);
12579 if (fieldname == NULL || typename == NULL)
12580 return 0;
12581
12582 len = strlen (fieldname);
12583 return (strncmp (fieldname, typename, len) == 0
12584 && (typename[len] == '\0' || typename[len] == '<'));
12585}
12586
c906108c
SS
12587/* Add a member function to the proper fieldlist. */
12588
12589static void
107d2387 12590dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 12591 struct type *type, struct dwarf2_cu *cu)
c906108c 12592{
e7c27a73 12593 struct objfile *objfile = cu->objfile;
c906108c
SS
12594 struct attribute *attr;
12595 struct fnfieldlist *flp;
12596 int i;
12597 struct fn_field *fnp;
15d034d0 12598 const char *fieldname;
c906108c 12599 struct nextfnfield *new_fnfield;
f792889a 12600 struct type *this_type;
60d5a603 12601 enum dwarf_access_attribute accessibility;
c906108c 12602
b4ba55a1 12603 if (cu->language == language_ada)
a73c6dcd 12604 error (_("unexpected member function in Ada type"));
b4ba55a1 12605
2df3850c 12606 /* Get name of member function. */
39cbfefa
DJ
12607 fieldname = dwarf2_name (die, cu);
12608 if (fieldname == NULL)
2df3850c 12609 return;
c906108c 12610
c906108c
SS
12611 /* Look up member function name in fieldlist. */
12612 for (i = 0; i < fip->nfnfields; i++)
12613 {
27bfe10e 12614 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
12615 break;
12616 }
12617
12618 /* Create new list element if necessary. */
12619 if (i < fip->nfnfields)
12620 flp = &fip->fnfieldlists[i];
12621 else
12622 {
12623 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12624 {
12625 fip->fnfieldlists = (struct fnfieldlist *)
12626 xrealloc (fip->fnfieldlists,
12627 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12628 * sizeof (struct fnfieldlist));
c906108c 12629 if (fip->nfnfields == 0)
c13c43fd 12630 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
12631 }
12632 flp = &fip->fnfieldlists[fip->nfnfields];
12633 flp->name = fieldname;
12634 flp->length = 0;
12635 flp->head = NULL;
3da10d80 12636 i = fip->nfnfields++;
c906108c
SS
12637 }
12638
12639 /* Create a new member function field and chain it to the field list
0963b4bd 12640 entry. */
c906108c 12641 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 12642 make_cleanup (xfree, new_fnfield);
c906108c
SS
12643 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12644 new_fnfield->next = flp->head;
12645 flp->head = new_fnfield;
12646 flp->length++;
12647
12648 /* Fill in the member function field info. */
12649 fnp = &new_fnfield->fnfield;
3da10d80
KS
12650
12651 /* Delay processing of the physname until later. */
12652 if (cu->language == language_cplus || cu->language == language_java)
12653 {
12654 add_to_method_list (type, i, flp->length - 1, fieldname,
12655 die, cu);
12656 }
12657 else
12658 {
1d06ead6 12659 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
12660 fnp->physname = physname ? physname : "";
12661 }
12662
c906108c 12663 fnp->type = alloc_type (objfile);
f792889a
DJ
12664 this_type = read_type_die (die, cu);
12665 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 12666 {
f792889a 12667 int nparams = TYPE_NFIELDS (this_type);
c906108c 12668
f792889a 12669 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
12670 of the method itself (TYPE_CODE_METHOD). */
12671 smash_to_method_type (fnp->type, type,
f792889a
DJ
12672 TYPE_TARGET_TYPE (this_type),
12673 TYPE_FIELDS (this_type),
12674 TYPE_NFIELDS (this_type),
12675 TYPE_VARARGS (this_type));
c906108c
SS
12676
12677 /* Handle static member functions.
c5aa993b 12678 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
12679 member functions. G++ helps GDB by marking the first
12680 parameter for non-static member functions (which is the this
12681 pointer) as artificial. We obtain this information from
12682 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 12683 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
12684 fnp->voffset = VOFFSET_STATIC;
12685 }
12686 else
e2e0b3e5 12687 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 12688 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
12689
12690 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 12691 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 12692 fnp->fcontext = die_containing_type (die, cu);
c906108c 12693
3e43a32a
MS
12694 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12695 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
12696
12697 /* Get accessibility. */
e142c38c 12698 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 12699 if (attr)
60d5a603
JK
12700 accessibility = DW_UNSND (attr);
12701 else
12702 accessibility = dwarf2_default_access_attribute (die, cu);
12703 switch (accessibility)
c906108c 12704 {
60d5a603
JK
12705 case DW_ACCESS_private:
12706 fnp->is_private = 1;
12707 break;
12708 case DW_ACCESS_protected:
12709 fnp->is_protected = 1;
12710 break;
c906108c
SS
12711 }
12712
b02dede2 12713 /* Check for artificial methods. */
e142c38c 12714 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
12715 if (attr && DW_UNSND (attr) != 0)
12716 fnp->is_artificial = 1;
12717
7d27a96d
TT
12718 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12719
0d564a31 12720 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
12721 function. For older versions of GCC, this is an offset in the
12722 appropriate virtual table, as specified by DW_AT_containing_type.
12723 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
12724 to the object address. */
12725
e142c38c 12726 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 12727 if (attr)
8e19ed76 12728 {
aec5aa8b 12729 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 12730 {
aec5aa8b
TT
12731 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12732 {
12733 /* Old-style GCC. */
12734 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12735 }
12736 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12737 || (DW_BLOCK (attr)->size > 1
12738 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12739 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12740 {
12741 struct dwarf_block blk;
12742 int offset;
12743
12744 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12745 ? 1 : 2);
12746 blk.size = DW_BLOCK (attr)->size - offset;
12747 blk.data = DW_BLOCK (attr)->data + offset;
12748 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12749 if ((fnp->voffset % cu->header.addr_size) != 0)
12750 dwarf2_complex_location_expr_complaint ();
12751 else
12752 fnp->voffset /= cu->header.addr_size;
12753 fnp->voffset += 2;
12754 }
12755 else
12756 dwarf2_complex_location_expr_complaint ();
12757
12758 if (!fnp->fcontext)
12759 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12760 }
3690dd37 12761 else if (attr_form_is_section_offset (attr))
8e19ed76 12762 {
4d3c2250 12763 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
12764 }
12765 else
12766 {
4d3c2250
KB
12767 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12768 fieldname);
8e19ed76 12769 }
0d564a31 12770 }
d48cc9dd
DJ
12771 else
12772 {
12773 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12774 if (attr && DW_UNSND (attr))
12775 {
12776 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12777 complaint (&symfile_complaints,
3e43a32a
MS
12778 _("Member function \"%s\" (offset %d) is virtual "
12779 "but the vtable offset is not specified"),
b64f50a1 12780 fieldname, die->offset.sect_off);
9655fd1a 12781 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
12782 TYPE_CPLUS_DYNAMIC (type) = 1;
12783 }
12784 }
c906108c
SS
12785}
12786
12787/* Create the vector of member function fields, and attach it to the type. */
12788
12789static void
fba45db2 12790dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12791 struct dwarf2_cu *cu)
c906108c
SS
12792{
12793 struct fnfieldlist *flp;
c906108c
SS
12794 int i;
12795
b4ba55a1 12796 if (cu->language == language_ada)
a73c6dcd 12797 error (_("unexpected member functions in Ada type"));
b4ba55a1 12798
c906108c
SS
12799 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12800 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12801 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12802
12803 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12804 {
12805 struct nextfnfield *nfp = flp->head;
12806 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12807 int k;
12808
12809 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12810 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12811 fn_flp->fn_fields = (struct fn_field *)
12812 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12813 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 12814 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
12815 }
12816
12817 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
12818}
12819
1168df01
JB
12820/* Returns non-zero if NAME is the name of a vtable member in CU's
12821 language, zero otherwise. */
12822static int
12823is_vtable_name (const char *name, struct dwarf2_cu *cu)
12824{
12825 static const char vptr[] = "_vptr";
987504bb 12826 static const char vtable[] = "vtable";
1168df01 12827
987504bb
JJ
12828 /* Look for the C++ and Java forms of the vtable. */
12829 if ((cu->language == language_java
12830 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12831 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12832 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
12833 return 1;
12834
12835 return 0;
12836}
12837
c0dd20ea 12838/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
12839 functions, with the ABI-specified layout. If TYPE describes
12840 such a structure, smash it into a member function type.
61049d3b
DJ
12841
12842 GCC shouldn't do this; it should just output pointer to member DIEs.
12843 This is GCC PR debug/28767. */
c0dd20ea 12844
0b92b5bb
TT
12845static void
12846quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 12847{
0b92b5bb 12848 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
12849
12850 /* Check for a structure with no name and two children. */
0b92b5bb
TT
12851 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12852 return;
c0dd20ea
DJ
12853
12854 /* Check for __pfn and __delta members. */
0b92b5bb
TT
12855 if (TYPE_FIELD_NAME (type, 0) == NULL
12856 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12857 || TYPE_FIELD_NAME (type, 1) == NULL
12858 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12859 return;
c0dd20ea
DJ
12860
12861 /* Find the type of the method. */
0b92b5bb 12862 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
12863 if (pfn_type == NULL
12864 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12865 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 12866 return;
c0dd20ea
DJ
12867
12868 /* Look for the "this" argument. */
12869 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12870 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 12871 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 12872 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 12873 return;
c0dd20ea
DJ
12874
12875 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
12876 new_type = alloc_type (objfile);
12877 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
12878 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12879 TYPE_VARARGS (pfn_type));
0b92b5bb 12880 smash_to_methodptr_type (type, new_type);
c0dd20ea 12881}
1168df01 12882
685b1105
JK
12883/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12884 (icc). */
12885
12886static int
12887producer_is_icc (struct dwarf2_cu *cu)
12888{
12889 if (!cu->checked_producer)
12890 check_producer (cu);
12891
12892 return cu->producer_is_icc;
12893}
12894
c906108c 12895/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
12896 (definition) to create a type for the structure or union. Fill in
12897 the type's name and general properties; the members will not be
83655187
DE
12898 processed until process_structure_scope. A symbol table entry for
12899 the type will also not be done until process_structure_scope (assuming
12900 the type has a name).
c906108c 12901
c767944b
DJ
12902 NOTE: we need to call these functions regardless of whether or not the
12903 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 12904 structure or union. This gets the type entered into our set of
83655187 12905 user defined types. */
c906108c 12906
f792889a 12907static struct type *
134d01f1 12908read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12909{
e7c27a73 12910 struct objfile *objfile = cu->objfile;
c906108c
SS
12911 struct type *type;
12912 struct attribute *attr;
15d034d0 12913 const char *name;
c906108c 12914
348e048f
DE
12915 /* If the definition of this type lives in .debug_types, read that type.
12916 Don't follow DW_AT_specification though, that will take us back up
12917 the chain and we want to go down. */
45e58e77 12918 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
12919 if (attr)
12920 {
ac9ec31b 12921 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 12922
ac9ec31b 12923 /* The type's CU may not be the same as CU.
02142a6c 12924 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
12925 return set_die_type (die, type, cu);
12926 }
12927
c0dd20ea 12928 type = alloc_type (objfile);
c906108c 12929 INIT_CPLUS_SPECIFIC (type);
93311388 12930
39cbfefa
DJ
12931 name = dwarf2_name (die, cu);
12932 if (name != NULL)
c906108c 12933 {
987504bb
JJ
12934 if (cu->language == language_cplus
12935 || cu->language == language_java)
63d06c5c 12936 {
15d034d0 12937 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
12938
12939 /* dwarf2_full_name might have already finished building the DIE's
12940 type. If so, there is no need to continue. */
12941 if (get_die_type (die, cu) != NULL)
12942 return get_die_type (die, cu);
12943
12944 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
12945 if (die->tag == DW_TAG_structure_type
12946 || die->tag == DW_TAG_class_type)
12947 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
12948 }
12949 else
12950 {
d8151005
DJ
12951 /* The name is already allocated along with this objfile, so
12952 we don't need to duplicate it for the type. */
7d455152 12953 TYPE_TAG_NAME (type) = name;
94af9270
KS
12954 if (die->tag == DW_TAG_class_type)
12955 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 12956 }
c906108c
SS
12957 }
12958
12959 if (die->tag == DW_TAG_structure_type)
12960 {
12961 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12962 }
12963 else if (die->tag == DW_TAG_union_type)
12964 {
12965 TYPE_CODE (type) = TYPE_CODE_UNION;
12966 }
12967 else
12968 {
c906108c
SS
12969 TYPE_CODE (type) = TYPE_CODE_CLASS;
12970 }
12971
0cc2414c
TT
12972 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12973 TYPE_DECLARED_CLASS (type) = 1;
12974
e142c38c 12975 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12976 if (attr)
12977 {
12978 TYPE_LENGTH (type) = DW_UNSND (attr);
12979 }
12980 else
12981 {
12982 TYPE_LENGTH (type) = 0;
12983 }
12984
422b1cb0 12985 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
685b1105
JK
12986 {
12987 /* ICC does not output the required DW_AT_declaration
12988 on incomplete types, but gives them a size of zero. */
422b1cb0 12989 TYPE_STUB (type) = 1;
685b1105
JK
12990 }
12991 else
12992 TYPE_STUB_SUPPORTED (type) = 1;
12993
dc718098 12994 if (die_is_declaration (die, cu))
876cecd0 12995 TYPE_STUB (type) = 1;
a6c727b2
DJ
12996 else if (attr == NULL && die->child == NULL
12997 && producer_is_realview (cu->producer))
12998 /* RealView does not output the required DW_AT_declaration
12999 on incomplete types. */
13000 TYPE_STUB (type) = 1;
dc718098 13001
c906108c
SS
13002 /* We need to add the type field to the die immediately so we don't
13003 infinitely recurse when dealing with pointers to the structure
0963b4bd 13004 type within the structure itself. */
1c379e20 13005 set_die_type (die, type, cu);
c906108c 13006
7e314c57
JK
13007 /* set_die_type should be already done. */
13008 set_descriptive_type (type, die, cu);
13009
c767944b
DJ
13010 return type;
13011}
13012
13013/* Finish creating a structure or union type, including filling in
13014 its members and creating a symbol for it. */
13015
13016static void
13017process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13018{
13019 struct objfile *objfile = cu->objfile;
13020 struct die_info *child_die = die->child;
13021 struct type *type;
13022
13023 type = get_die_type (die, cu);
13024 if (type == NULL)
13025 type = read_structure_type (die, cu);
13026
e142c38c 13027 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13028 {
13029 struct field_info fi;
13030 struct die_info *child_die;
34eaf542 13031 VEC (symbolp) *template_args = NULL;
c767944b 13032 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13033
13034 memset (&fi, 0, sizeof (struct field_info));
13035
639d11d3 13036 child_die = die->child;
c906108c
SS
13037
13038 while (child_die && child_die->tag)
13039 {
a9a9bd0f
DC
13040 if (child_die->tag == DW_TAG_member
13041 || child_die->tag == DW_TAG_variable)
c906108c 13042 {
a9a9bd0f
DC
13043 /* NOTE: carlton/2002-11-05: A C++ static data member
13044 should be a DW_TAG_member that is a declaration, but
13045 all versions of G++ as of this writing (so through at
13046 least 3.2.1) incorrectly generate DW_TAG_variable
13047 tags for them instead. */
e7c27a73 13048 dwarf2_add_field (&fi, child_die, cu);
c906108c 13049 }
8713b1b1 13050 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13051 {
0963b4bd 13052 /* C++ member function. */
e7c27a73 13053 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
13054 }
13055 else if (child_die->tag == DW_TAG_inheritance)
13056 {
13057 /* C++ base class field. */
e7c27a73 13058 dwarf2_add_field (&fi, child_die, cu);
c906108c 13059 }
98751a41
JK
13060 else if (child_die->tag == DW_TAG_typedef)
13061 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13062 else if (child_die->tag == DW_TAG_template_type_param
13063 || child_die->tag == DW_TAG_template_value_param)
13064 {
13065 struct symbol *arg = new_symbol (child_die, NULL, cu);
13066
f1078f66
DJ
13067 if (arg != NULL)
13068 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13069 }
13070
c906108c
SS
13071 child_die = sibling_die (child_die);
13072 }
13073
34eaf542
TT
13074 /* Attach template arguments to type. */
13075 if (! VEC_empty (symbolp, template_args))
13076 {
13077 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13078 TYPE_N_TEMPLATE_ARGUMENTS (type)
13079 = VEC_length (symbolp, template_args);
13080 TYPE_TEMPLATE_ARGUMENTS (type)
13081 = obstack_alloc (&objfile->objfile_obstack,
13082 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13083 * sizeof (struct symbol *)));
13084 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13085 VEC_address (symbolp, template_args),
13086 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13087 * sizeof (struct symbol *)));
13088 VEC_free (symbolp, template_args);
13089 }
13090
c906108c
SS
13091 /* Attach fields and member functions to the type. */
13092 if (fi.nfields)
e7c27a73 13093 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13094 if (fi.nfnfields)
13095 {
e7c27a73 13096 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13097
c5aa993b 13098 /* Get the type which refers to the base class (possibly this
c906108c 13099 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13100 class from the DW_AT_containing_type attribute. This use of
13101 DW_AT_containing_type is a GNU extension. */
c906108c 13102
e142c38c 13103 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13104 {
e7c27a73 13105 struct type *t = die_containing_type (die, cu);
c906108c
SS
13106
13107 TYPE_VPTR_BASETYPE (type) = t;
13108 if (type == t)
13109 {
c906108c
SS
13110 int i;
13111
13112 /* Our own class provides vtbl ptr. */
13113 for (i = TYPE_NFIELDS (t) - 1;
13114 i >= TYPE_N_BASECLASSES (t);
13115 --i)
13116 {
0d5cff50 13117 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13118
1168df01 13119 if (is_vtable_name (fieldname, cu))
c906108c
SS
13120 {
13121 TYPE_VPTR_FIELDNO (type) = i;
13122 break;
13123 }
13124 }
13125
13126 /* Complain if virtual function table field not found. */
13127 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13128 complaint (&symfile_complaints,
3e43a32a
MS
13129 _("virtual function table pointer "
13130 "not found when defining class '%s'"),
4d3c2250
KB
13131 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13132 "");
c906108c
SS
13133 }
13134 else
13135 {
13136 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13137 }
13138 }
f6235d4c
EZ
13139 else if (cu->producer
13140 && strncmp (cu->producer,
13141 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13142 {
13143 /* The IBM XLC compiler does not provide direct indication
13144 of the containing type, but the vtable pointer is
13145 always named __vfp. */
13146
13147 int i;
13148
13149 for (i = TYPE_NFIELDS (type) - 1;
13150 i >= TYPE_N_BASECLASSES (type);
13151 --i)
13152 {
13153 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13154 {
13155 TYPE_VPTR_FIELDNO (type) = i;
13156 TYPE_VPTR_BASETYPE (type) = type;
13157 break;
13158 }
13159 }
13160 }
c906108c 13161 }
98751a41
JK
13162
13163 /* Copy fi.typedef_field_list linked list elements content into the
13164 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13165 if (fi.typedef_field_list)
13166 {
13167 int i = fi.typedef_field_list_count;
13168
a0d7a4ff 13169 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
13170 TYPE_TYPEDEF_FIELD_ARRAY (type)
13171 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13172 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13173
13174 /* Reverse the list order to keep the debug info elements order. */
13175 while (--i >= 0)
13176 {
13177 struct typedef_field *dest, *src;
6e70227d 13178
98751a41
JK
13179 dest = &TYPE_TYPEDEF_FIELD (type, i);
13180 src = &fi.typedef_field_list->field;
13181 fi.typedef_field_list = fi.typedef_field_list->next;
13182 *dest = *src;
13183 }
13184 }
c767944b
DJ
13185
13186 do_cleanups (back_to);
eb2a6f42
TT
13187
13188 if (HAVE_CPLUS_STRUCT (type))
13189 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 13190 }
63d06c5c 13191
bb5ed363 13192 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13193
90aeadfc
DC
13194 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13195 snapshots) has been known to create a die giving a declaration
13196 for a class that has, as a child, a die giving a definition for a
13197 nested class. So we have to process our children even if the
13198 current die is a declaration. Normally, of course, a declaration
13199 won't have any children at all. */
134d01f1 13200
90aeadfc
DC
13201 while (child_die != NULL && child_die->tag)
13202 {
13203 if (child_die->tag == DW_TAG_member
13204 || child_die->tag == DW_TAG_variable
34eaf542
TT
13205 || child_die->tag == DW_TAG_inheritance
13206 || child_die->tag == DW_TAG_template_value_param
13207 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13208 {
90aeadfc 13209 /* Do nothing. */
134d01f1 13210 }
90aeadfc
DC
13211 else
13212 process_die (child_die, cu);
134d01f1 13213
90aeadfc 13214 child_die = sibling_die (child_die);
134d01f1
DJ
13215 }
13216
fa4028e9
JB
13217 /* Do not consider external references. According to the DWARF standard,
13218 these DIEs are identified by the fact that they have no byte_size
13219 attribute, and a declaration attribute. */
13220 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13221 || !die_is_declaration (die, cu))
c767944b 13222 new_symbol (die, type, cu);
134d01f1
DJ
13223}
13224
55426c9d
JB
13225/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13226 update TYPE using some information only available in DIE's children. */
13227
13228static void
13229update_enumeration_type_from_children (struct die_info *die,
13230 struct type *type,
13231 struct dwarf2_cu *cu)
13232{
13233 struct obstack obstack;
13234 struct die_info *child_die = die->child;
13235 int unsigned_enum = 1;
13236 int flag_enum = 1;
13237 ULONGEST mask = 0;
13238 struct cleanup *old_chain;
13239
13240 obstack_init (&obstack);
13241 old_chain = make_cleanup_obstack_free (&obstack);
13242
13243 while (child_die != NULL && child_die->tag)
13244 {
13245 struct attribute *attr;
13246 LONGEST value;
13247 const gdb_byte *bytes;
13248 struct dwarf2_locexpr_baton *baton;
13249 const char *name;
13250 if (child_die->tag != DW_TAG_enumerator)
13251 continue;
13252
13253 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13254 if (attr == NULL)
13255 continue;
13256
13257 name = dwarf2_name (child_die, cu);
13258 if (name == NULL)
13259 name = "<anonymous enumerator>";
13260
13261 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13262 &value, &bytes, &baton);
13263 if (value < 0)
13264 {
13265 unsigned_enum = 0;
13266 flag_enum = 0;
13267 }
13268 else if ((mask & value) != 0)
13269 flag_enum = 0;
13270 else
13271 mask |= value;
13272
13273 /* If we already know that the enum type is neither unsigned, nor
13274 a flag type, no need to look at the rest of the enumerates. */
13275 if (!unsigned_enum && !flag_enum)
13276 break;
13277 child_die = sibling_die (child_die);
13278 }
13279
13280 if (unsigned_enum)
13281 TYPE_UNSIGNED (type) = 1;
13282 if (flag_enum)
13283 TYPE_FLAG_ENUM (type) = 1;
13284
13285 do_cleanups (old_chain);
13286}
13287
134d01f1
DJ
13288/* Given a DW_AT_enumeration_type die, set its type. We do not
13289 complete the type's fields yet, or create any symbols. */
c906108c 13290
f792889a 13291static struct type *
134d01f1 13292read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13293{
e7c27a73 13294 struct objfile *objfile = cu->objfile;
c906108c 13295 struct type *type;
c906108c 13296 struct attribute *attr;
0114d602 13297 const char *name;
134d01f1 13298
348e048f
DE
13299 /* If the definition of this type lives in .debug_types, read that type.
13300 Don't follow DW_AT_specification though, that will take us back up
13301 the chain and we want to go down. */
45e58e77 13302 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13303 if (attr)
13304 {
ac9ec31b 13305 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13306
ac9ec31b 13307 /* The type's CU may not be the same as CU.
02142a6c 13308 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13309 return set_die_type (die, type, cu);
13310 }
13311
c906108c
SS
13312 type = alloc_type (objfile);
13313
13314 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13315 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13316 if (name != NULL)
7d455152 13317 TYPE_TAG_NAME (type) = name;
c906108c 13318
0626fc76
TT
13319 attr = dwarf2_attr (die, DW_AT_type, cu);
13320 if (attr != NULL)
13321 {
13322 struct type *underlying_type = die_type (die, cu);
13323
13324 TYPE_TARGET_TYPE (type) = underlying_type;
13325 }
13326
e142c38c 13327 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13328 if (attr)
13329 {
13330 TYPE_LENGTH (type) = DW_UNSND (attr);
13331 }
13332 else
13333 {
13334 TYPE_LENGTH (type) = 0;
13335 }
13336
137033e9
JB
13337 /* The enumeration DIE can be incomplete. In Ada, any type can be
13338 declared as private in the package spec, and then defined only
13339 inside the package body. Such types are known as Taft Amendment
13340 Types. When another package uses such a type, an incomplete DIE
13341 may be generated by the compiler. */
02eb380e 13342 if (die_is_declaration (die, cu))
876cecd0 13343 TYPE_STUB (type) = 1;
02eb380e 13344
0626fc76
TT
13345 /* Finish the creation of this type by using the enum's children.
13346 We must call this even when the underlying type has been provided
13347 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
13348 update_enumeration_type_from_children (die, type, cu);
13349
0626fc76
TT
13350 /* If this type has an underlying type that is not a stub, then we
13351 may use its attributes. We always use the "unsigned" attribute
13352 in this situation, because ordinarily we guess whether the type
13353 is unsigned -- but the guess can be wrong and the underlying type
13354 can tell us the reality. However, we defer to a local size
13355 attribute if one exists, because this lets the compiler override
13356 the underlying type if needed. */
13357 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13358 {
13359 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13360 if (TYPE_LENGTH (type) == 0)
13361 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13362 }
13363
3d567982
TT
13364 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13365
f792889a 13366 return set_die_type (die, type, cu);
134d01f1
DJ
13367}
13368
13369/* Given a pointer to a die which begins an enumeration, process all
13370 the dies that define the members of the enumeration, and create the
13371 symbol for the enumeration type.
13372
13373 NOTE: We reverse the order of the element list. */
13374
13375static void
13376process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13377{
f792889a 13378 struct type *this_type;
134d01f1 13379
f792889a
DJ
13380 this_type = get_die_type (die, cu);
13381 if (this_type == NULL)
13382 this_type = read_enumeration_type (die, cu);
9dc481d3 13383
639d11d3 13384 if (die->child != NULL)
c906108c 13385 {
9dc481d3
DE
13386 struct die_info *child_die;
13387 struct symbol *sym;
13388 struct field *fields = NULL;
13389 int num_fields = 0;
15d034d0 13390 const char *name;
9dc481d3 13391
639d11d3 13392 child_die = die->child;
c906108c
SS
13393 while (child_die && child_die->tag)
13394 {
13395 if (child_die->tag != DW_TAG_enumerator)
13396 {
e7c27a73 13397 process_die (child_die, cu);
c906108c
SS
13398 }
13399 else
13400 {
39cbfefa
DJ
13401 name = dwarf2_name (child_die, cu);
13402 if (name)
c906108c 13403 {
f792889a 13404 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
13405
13406 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13407 {
13408 fields = (struct field *)
13409 xrealloc (fields,
13410 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13411 * sizeof (struct field));
c906108c
SS
13412 }
13413
3567439c 13414 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13415 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13416 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13417 FIELD_BITSIZE (fields[num_fields]) = 0;
13418
13419 num_fields++;
13420 }
13421 }
13422
13423 child_die = sibling_die (child_die);
13424 }
13425
13426 if (num_fields)
13427 {
f792889a
DJ
13428 TYPE_NFIELDS (this_type) = num_fields;
13429 TYPE_FIELDS (this_type) = (struct field *)
13430 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13431 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13432 sizeof (struct field) * num_fields);
b8c9b27d 13433 xfree (fields);
c906108c 13434 }
c906108c 13435 }
134d01f1 13436
6c83ed52
TT
13437 /* If we are reading an enum from a .debug_types unit, and the enum
13438 is a declaration, and the enum is not the signatured type in the
13439 unit, then we do not want to add a symbol for it. Adding a
13440 symbol would in some cases obscure the true definition of the
13441 enum, giving users an incomplete type when the definition is
13442 actually available. Note that we do not want to do this for all
13443 enums which are just declarations, because C++0x allows forward
13444 enum declarations. */
3019eac3 13445 if (cu->per_cu->is_debug_types
6c83ed52
TT
13446 && die_is_declaration (die, cu))
13447 {
52dc124a 13448 struct signatured_type *sig_type;
6c83ed52 13449
c0f78cd4 13450 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13451 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13452 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13453 return;
13454 }
13455
f792889a 13456 new_symbol (die, this_type, cu);
c906108c
SS
13457}
13458
13459/* Extract all information from a DW_TAG_array_type DIE and put it in
13460 the DIE's type field. For now, this only handles one dimensional
13461 arrays. */
13462
f792889a 13463static struct type *
e7c27a73 13464read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13465{
e7c27a73 13466 struct objfile *objfile = cu->objfile;
c906108c 13467 struct die_info *child_die;
7e314c57 13468 struct type *type;
c906108c
SS
13469 struct type *element_type, *range_type, *index_type;
13470 struct type **range_types = NULL;
13471 struct attribute *attr;
13472 int ndim = 0;
13473 struct cleanup *back_to;
15d034d0 13474 const char *name;
dc53a7ad 13475 unsigned int bit_stride = 0;
c906108c 13476
e7c27a73 13477 element_type = die_type (die, cu);
c906108c 13478
7e314c57
JK
13479 /* The die_type call above may have already set the type for this DIE. */
13480 type = get_die_type (die, cu);
13481 if (type)
13482 return type;
13483
dc53a7ad
JB
13484 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13485 if (attr != NULL)
13486 bit_stride = DW_UNSND (attr) * 8;
13487
13488 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13489 if (attr != NULL)
13490 bit_stride = DW_UNSND (attr);
13491
c906108c
SS
13492 /* Irix 6.2 native cc creates array types without children for
13493 arrays with unspecified length. */
639d11d3 13494 if (die->child == NULL)
c906108c 13495 {
46bf5051 13496 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 13497 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
13498 type = create_array_type_with_stride (NULL, element_type, range_type,
13499 bit_stride);
f792889a 13500 return set_die_type (die, type, cu);
c906108c
SS
13501 }
13502
13503 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13504 child_die = die->child;
c906108c
SS
13505 while (child_die && child_die->tag)
13506 {
13507 if (child_die->tag == DW_TAG_subrange_type)
13508 {
f792889a 13509 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13510
f792889a 13511 if (child_type != NULL)
a02abb62 13512 {
0963b4bd
MS
13513 /* The range type was succesfully read. Save it for the
13514 array type creation. */
a02abb62
JB
13515 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13516 {
13517 range_types = (struct type **)
13518 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13519 * sizeof (struct type *));
13520 if (ndim == 0)
13521 make_cleanup (free_current_contents, &range_types);
13522 }
f792889a 13523 range_types[ndim++] = child_type;
a02abb62 13524 }
c906108c
SS
13525 }
13526 child_die = sibling_die (child_die);
13527 }
13528
13529 /* Dwarf2 dimensions are output from left to right, create the
13530 necessary array types in backwards order. */
7ca2d3a3 13531
c906108c 13532 type = element_type;
7ca2d3a3
DL
13533
13534 if (read_array_order (die, cu) == DW_ORD_col_major)
13535 {
13536 int i = 0;
9a619af0 13537
7ca2d3a3 13538 while (i < ndim)
dc53a7ad
JB
13539 type = create_array_type_with_stride (NULL, type, range_types[i++],
13540 bit_stride);
7ca2d3a3
DL
13541 }
13542 else
13543 {
13544 while (ndim-- > 0)
dc53a7ad
JB
13545 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13546 bit_stride);
7ca2d3a3 13547 }
c906108c 13548
f5f8a009
EZ
13549 /* Understand Dwarf2 support for vector types (like they occur on
13550 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13551 array type. This is not part of the Dwarf2/3 standard yet, but a
13552 custom vendor extension. The main difference between a regular
13553 array and the vector variant is that vectors are passed by value
13554 to functions. */
e142c38c 13555 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 13556 if (attr)
ea37ba09 13557 make_vector_type (type);
f5f8a009 13558
dbc98a8b
KW
13559 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13560 implementation may choose to implement triple vectors using this
13561 attribute. */
13562 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13563 if (attr)
13564 {
13565 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13566 TYPE_LENGTH (type) = DW_UNSND (attr);
13567 else
3e43a32a
MS
13568 complaint (&symfile_complaints,
13569 _("DW_AT_byte_size for array type smaller "
13570 "than the total size of elements"));
dbc98a8b
KW
13571 }
13572
39cbfefa
DJ
13573 name = dwarf2_name (die, cu);
13574 if (name)
13575 TYPE_NAME (type) = name;
6e70227d 13576
0963b4bd 13577 /* Install the type in the die. */
7e314c57
JK
13578 set_die_type (die, type, cu);
13579
13580 /* set_die_type should be already done. */
b4ba55a1
JB
13581 set_descriptive_type (type, die, cu);
13582
c906108c
SS
13583 do_cleanups (back_to);
13584
7e314c57 13585 return type;
c906108c
SS
13586}
13587
7ca2d3a3 13588static enum dwarf_array_dim_ordering
6e70227d 13589read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
13590{
13591 struct attribute *attr;
13592
13593 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13594
13595 if (attr) return DW_SND (attr);
13596
0963b4bd
MS
13597 /* GNU F77 is a special case, as at 08/2004 array type info is the
13598 opposite order to the dwarf2 specification, but data is still
13599 laid out as per normal fortran.
7ca2d3a3 13600
0963b4bd
MS
13601 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13602 version checking. */
7ca2d3a3 13603
905e0470
PM
13604 if (cu->language == language_fortran
13605 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
13606 {
13607 return DW_ORD_row_major;
13608 }
13609
6e70227d 13610 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
13611 {
13612 case array_column_major:
13613 return DW_ORD_col_major;
13614 case array_row_major:
13615 default:
13616 return DW_ORD_row_major;
13617 };
13618}
13619
72019c9c 13620/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 13621 the DIE's type field. */
72019c9c 13622
f792889a 13623static struct type *
72019c9c
GM
13624read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13625{
7e314c57
JK
13626 struct type *domain_type, *set_type;
13627 struct attribute *attr;
f792889a 13628
7e314c57
JK
13629 domain_type = die_type (die, cu);
13630
13631 /* The die_type call above may have already set the type for this DIE. */
13632 set_type = get_die_type (die, cu);
13633 if (set_type)
13634 return set_type;
13635
13636 set_type = create_set_type (NULL, domain_type);
13637
13638 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
13639 if (attr)
13640 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 13641
f792889a 13642 return set_die_type (die, set_type, cu);
72019c9c 13643}
7ca2d3a3 13644
0971de02
TT
13645/* A helper for read_common_block that creates a locexpr baton.
13646 SYM is the symbol which we are marking as computed.
13647 COMMON_DIE is the DIE for the common block.
13648 COMMON_LOC is the location expression attribute for the common
13649 block itself.
13650 MEMBER_LOC is the location expression attribute for the particular
13651 member of the common block that we are processing.
13652 CU is the CU from which the above come. */
13653
13654static void
13655mark_common_block_symbol_computed (struct symbol *sym,
13656 struct die_info *common_die,
13657 struct attribute *common_loc,
13658 struct attribute *member_loc,
13659 struct dwarf2_cu *cu)
13660{
13661 struct objfile *objfile = dwarf2_per_objfile->objfile;
13662 struct dwarf2_locexpr_baton *baton;
13663 gdb_byte *ptr;
13664 unsigned int cu_off;
13665 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13666 LONGEST offset = 0;
13667
13668 gdb_assert (common_loc && member_loc);
13669 gdb_assert (attr_form_is_block (common_loc));
13670 gdb_assert (attr_form_is_block (member_loc)
13671 || attr_form_is_constant (member_loc));
13672
13673 baton = obstack_alloc (&objfile->objfile_obstack,
13674 sizeof (struct dwarf2_locexpr_baton));
13675 baton->per_cu = cu->per_cu;
13676 gdb_assert (baton->per_cu);
13677
13678 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13679
13680 if (attr_form_is_constant (member_loc))
13681 {
13682 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13683 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13684 }
13685 else
13686 baton->size += DW_BLOCK (member_loc)->size;
13687
13688 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13689 baton->data = ptr;
13690
13691 *ptr++ = DW_OP_call4;
13692 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13693 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13694 ptr += 4;
13695
13696 if (attr_form_is_constant (member_loc))
13697 {
13698 *ptr++ = DW_OP_addr;
13699 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13700 ptr += cu->header.addr_size;
13701 }
13702 else
13703 {
13704 /* We have to copy the data here, because DW_OP_call4 will only
13705 use a DW_AT_location attribute. */
13706 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13707 ptr += DW_BLOCK (member_loc)->size;
13708 }
13709
13710 *ptr++ = DW_OP_plus;
13711 gdb_assert (ptr - baton->data == baton->size);
13712
0971de02 13713 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 13714 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
13715}
13716
4357ac6c
TT
13717/* Create appropriate locally-scoped variables for all the
13718 DW_TAG_common_block entries. Also create a struct common_block
13719 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13720 is used to sepate the common blocks name namespace from regular
13721 variable names. */
c906108c
SS
13722
13723static void
e7c27a73 13724read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13725{
0971de02
TT
13726 struct attribute *attr;
13727
13728 attr = dwarf2_attr (die, DW_AT_location, cu);
13729 if (attr)
13730 {
13731 /* Support the .debug_loc offsets. */
13732 if (attr_form_is_block (attr))
13733 {
13734 /* Ok. */
13735 }
13736 else if (attr_form_is_section_offset (attr))
13737 {
13738 dwarf2_complex_location_expr_complaint ();
13739 attr = NULL;
13740 }
13741 else
13742 {
13743 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13744 "common block member");
13745 attr = NULL;
13746 }
13747 }
13748
639d11d3 13749 if (die->child != NULL)
c906108c 13750 {
4357ac6c
TT
13751 struct objfile *objfile = cu->objfile;
13752 struct die_info *child_die;
13753 size_t n_entries = 0, size;
13754 struct common_block *common_block;
13755 struct symbol *sym;
74ac6d43 13756
4357ac6c
TT
13757 for (child_die = die->child;
13758 child_die && child_die->tag;
13759 child_die = sibling_die (child_die))
13760 ++n_entries;
13761
13762 size = (sizeof (struct common_block)
13763 + (n_entries - 1) * sizeof (struct symbol *));
13764 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13765 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13766 common_block->n_entries = 0;
13767
13768 for (child_die = die->child;
13769 child_die && child_die->tag;
13770 child_die = sibling_die (child_die))
13771 {
13772 /* Create the symbol in the DW_TAG_common_block block in the current
13773 symbol scope. */
e7c27a73 13774 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
13775 if (sym != NULL)
13776 {
13777 struct attribute *member_loc;
13778
13779 common_block->contents[common_block->n_entries++] = sym;
13780
13781 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13782 cu);
13783 if (member_loc)
13784 {
13785 /* GDB has handled this for a long time, but it is
13786 not specified by DWARF. It seems to have been
13787 emitted by gfortran at least as recently as:
13788 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13789 complaint (&symfile_complaints,
13790 _("Variable in common block has "
13791 "DW_AT_data_member_location "
13792 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
13793 child_die->offset.sect_off,
13794 objfile_name (cu->objfile));
0971de02
TT
13795
13796 if (attr_form_is_section_offset (member_loc))
13797 dwarf2_complex_location_expr_complaint ();
13798 else if (attr_form_is_constant (member_loc)
13799 || attr_form_is_block (member_loc))
13800 {
13801 if (attr)
13802 mark_common_block_symbol_computed (sym, die, attr,
13803 member_loc, cu);
13804 }
13805 else
13806 dwarf2_complex_location_expr_complaint ();
13807 }
13808 }
c906108c 13809 }
4357ac6c
TT
13810
13811 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13812 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
13813 }
13814}
13815
0114d602 13816/* Create a type for a C++ namespace. */
d9fa45fe 13817
0114d602
DJ
13818static struct type *
13819read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 13820{
e7c27a73 13821 struct objfile *objfile = cu->objfile;
0114d602 13822 const char *previous_prefix, *name;
9219021c 13823 int is_anonymous;
0114d602
DJ
13824 struct type *type;
13825
13826 /* For extensions, reuse the type of the original namespace. */
13827 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13828 {
13829 struct die_info *ext_die;
13830 struct dwarf2_cu *ext_cu = cu;
9a619af0 13831
0114d602
DJ
13832 ext_die = dwarf2_extension (die, &ext_cu);
13833 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
13834
13835 /* EXT_CU may not be the same as CU.
02142a6c 13836 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
13837 return set_die_type (die, type, cu);
13838 }
9219021c 13839
e142c38c 13840 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
13841
13842 /* Now build the name of the current namespace. */
13843
0114d602
DJ
13844 previous_prefix = determine_prefix (die, cu);
13845 if (previous_prefix[0] != '\0')
13846 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 13847 previous_prefix, name, 0, cu);
0114d602
DJ
13848
13849 /* Create the type. */
13850 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13851 objfile);
abee88f2 13852 TYPE_NAME (type) = name;
0114d602
DJ
13853 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13854
60531b24 13855 return set_die_type (die, type, cu);
0114d602
DJ
13856}
13857
13858/* Read a C++ namespace. */
13859
13860static void
13861read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13862{
13863 struct objfile *objfile = cu->objfile;
0114d602 13864 int is_anonymous;
9219021c 13865
5c4e30ca
DC
13866 /* Add a symbol associated to this if we haven't seen the namespace
13867 before. Also, add a using directive if it's an anonymous
13868 namespace. */
9219021c 13869
f2f0e013 13870 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
13871 {
13872 struct type *type;
13873
0114d602 13874 type = read_type_die (die, cu);
e7c27a73 13875 new_symbol (die, type, cu);
5c4e30ca 13876
e8e80198 13877 namespace_name (die, &is_anonymous, cu);
5c4e30ca 13878 if (is_anonymous)
0114d602
DJ
13879 {
13880 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 13881
c0cc3a76 13882 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12aaed36 13883 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 13884 }
5c4e30ca 13885 }
9219021c 13886
639d11d3 13887 if (die->child != NULL)
d9fa45fe 13888 {
639d11d3 13889 struct die_info *child_die = die->child;
6e70227d 13890
d9fa45fe
DC
13891 while (child_die && child_die->tag)
13892 {
e7c27a73 13893 process_die (child_die, cu);
d9fa45fe
DC
13894 child_die = sibling_die (child_die);
13895 }
13896 }
38d518c9
EZ
13897}
13898
f55ee35c
JK
13899/* Read a Fortran module as type. This DIE can be only a declaration used for
13900 imported module. Still we need that type as local Fortran "use ... only"
13901 declaration imports depend on the created type in determine_prefix. */
13902
13903static struct type *
13904read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13905{
13906 struct objfile *objfile = cu->objfile;
15d034d0 13907 const char *module_name;
f55ee35c
JK
13908 struct type *type;
13909
13910 module_name = dwarf2_name (die, cu);
13911 if (!module_name)
3e43a32a
MS
13912 complaint (&symfile_complaints,
13913 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 13914 die->offset.sect_off);
f55ee35c
JK
13915 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13916
13917 /* determine_prefix uses TYPE_TAG_NAME. */
13918 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13919
13920 return set_die_type (die, type, cu);
13921}
13922
5d7cb8df
JK
13923/* Read a Fortran module. */
13924
13925static void
13926read_module (struct die_info *die, struct dwarf2_cu *cu)
13927{
13928 struct die_info *child_die = die->child;
530e8392
KB
13929 struct type *type;
13930
13931 type = read_type_die (die, cu);
13932 new_symbol (die, type, cu);
5d7cb8df 13933
5d7cb8df
JK
13934 while (child_die && child_die->tag)
13935 {
13936 process_die (child_die, cu);
13937 child_die = sibling_die (child_die);
13938 }
13939}
13940
38d518c9
EZ
13941/* Return the name of the namespace represented by DIE. Set
13942 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13943 namespace. */
13944
13945static const char *
e142c38c 13946namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
13947{
13948 struct die_info *current_die;
13949 const char *name = NULL;
13950
13951 /* Loop through the extensions until we find a name. */
13952
13953 for (current_die = die;
13954 current_die != NULL;
f2f0e013 13955 current_die = dwarf2_extension (die, &cu))
38d518c9 13956 {
e142c38c 13957 name = dwarf2_name (current_die, cu);
38d518c9
EZ
13958 if (name != NULL)
13959 break;
13960 }
13961
13962 /* Is it an anonymous namespace? */
13963
13964 *is_anonymous = (name == NULL);
13965 if (*is_anonymous)
2b1dbab0 13966 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
13967
13968 return name;
d9fa45fe
DC
13969}
13970
c906108c
SS
13971/* Extract all information from a DW_TAG_pointer_type DIE and add to
13972 the user defined type vector. */
13973
f792889a 13974static struct type *
e7c27a73 13975read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13976{
5e2b427d 13977 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 13978 struct comp_unit_head *cu_header = &cu->header;
c906108c 13979 struct type *type;
8b2dbe47
KB
13980 struct attribute *attr_byte_size;
13981 struct attribute *attr_address_class;
13982 int byte_size, addr_class;
7e314c57
JK
13983 struct type *target_type;
13984
13985 target_type = die_type (die, cu);
c906108c 13986
7e314c57
JK
13987 /* The die_type call above may have already set the type for this DIE. */
13988 type = get_die_type (die, cu);
13989 if (type)
13990 return type;
13991
13992 type = lookup_pointer_type (target_type);
8b2dbe47 13993
e142c38c 13994 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
13995 if (attr_byte_size)
13996 byte_size = DW_UNSND (attr_byte_size);
c906108c 13997 else
8b2dbe47
KB
13998 byte_size = cu_header->addr_size;
13999
e142c38c 14000 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14001 if (attr_address_class)
14002 addr_class = DW_UNSND (attr_address_class);
14003 else
14004 addr_class = DW_ADDR_none;
14005
14006 /* If the pointer size or address class is different than the
14007 default, create a type variant marked as such and set the
14008 length accordingly. */
14009 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14010 {
5e2b427d 14011 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14012 {
14013 int type_flags;
14014
849957d9 14015 type_flags = gdbarch_address_class_type_flags
5e2b427d 14016 (gdbarch, byte_size, addr_class);
876cecd0
TT
14017 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14018 == 0);
8b2dbe47
KB
14019 type = make_type_with_address_space (type, type_flags);
14020 }
14021 else if (TYPE_LENGTH (type) != byte_size)
14022 {
3e43a32a
MS
14023 complaint (&symfile_complaints,
14024 _("invalid pointer size %d"), byte_size);
8b2dbe47 14025 }
6e70227d 14026 else
9a619af0
MS
14027 {
14028 /* Should we also complain about unhandled address classes? */
14029 }
c906108c 14030 }
8b2dbe47
KB
14031
14032 TYPE_LENGTH (type) = byte_size;
f792889a 14033 return set_die_type (die, type, cu);
c906108c
SS
14034}
14035
14036/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14037 the user defined type vector. */
14038
f792889a 14039static struct type *
e7c27a73 14040read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14041{
14042 struct type *type;
14043 struct type *to_type;
14044 struct type *domain;
14045
e7c27a73
DJ
14046 to_type = die_type (die, cu);
14047 domain = die_containing_type (die, cu);
0d5de010 14048
7e314c57
JK
14049 /* The calls above may have already set the type for this DIE. */
14050 type = get_die_type (die, cu);
14051 if (type)
14052 return type;
14053
0d5de010
DJ
14054 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14055 type = lookup_methodptr_type (to_type);
7078baeb
TT
14056 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14057 {
14058 struct type *new_type = alloc_type (cu->objfile);
14059
14060 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14061 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14062 TYPE_VARARGS (to_type));
14063 type = lookup_methodptr_type (new_type);
14064 }
0d5de010
DJ
14065 else
14066 type = lookup_memberptr_type (to_type, domain);
c906108c 14067
f792889a 14068 return set_die_type (die, type, cu);
c906108c
SS
14069}
14070
14071/* Extract all information from a DW_TAG_reference_type DIE and add to
14072 the user defined type vector. */
14073
f792889a 14074static struct type *
e7c27a73 14075read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14076{
e7c27a73 14077 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14078 struct type *type, *target_type;
c906108c
SS
14079 struct attribute *attr;
14080
7e314c57
JK
14081 target_type = die_type (die, cu);
14082
14083 /* The die_type call above may have already set the type for this DIE. */
14084 type = get_die_type (die, cu);
14085 if (type)
14086 return type;
14087
14088 type = lookup_reference_type (target_type);
e142c38c 14089 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14090 if (attr)
14091 {
14092 TYPE_LENGTH (type) = DW_UNSND (attr);
14093 }
14094 else
14095 {
107d2387 14096 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14097 }
f792889a 14098 return set_die_type (die, type, cu);
c906108c
SS
14099}
14100
cf363f18
MW
14101/* Add the given cv-qualifiers to the element type of the array. GCC
14102 outputs DWARF type qualifiers that apply to an array, not the
14103 element type. But GDB relies on the array element type to carry
14104 the cv-qualifiers. This mimics section 6.7.3 of the C99
14105 specification. */
14106
14107static struct type *
14108add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14109 struct type *base_type, int cnst, int voltl)
14110{
14111 struct type *el_type, *inner_array;
14112
14113 base_type = copy_type (base_type);
14114 inner_array = base_type;
14115
14116 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14117 {
14118 TYPE_TARGET_TYPE (inner_array) =
14119 copy_type (TYPE_TARGET_TYPE (inner_array));
14120 inner_array = TYPE_TARGET_TYPE (inner_array);
14121 }
14122
14123 el_type = TYPE_TARGET_TYPE (inner_array);
14124 cnst |= TYPE_CONST (el_type);
14125 voltl |= TYPE_VOLATILE (el_type);
14126 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14127
14128 return set_die_type (die, base_type, cu);
14129}
14130
f792889a 14131static struct type *
e7c27a73 14132read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14133{
f792889a 14134 struct type *base_type, *cv_type;
c906108c 14135
e7c27a73 14136 base_type = die_type (die, cu);
7e314c57
JK
14137
14138 /* The die_type call above may have already set the type for this DIE. */
14139 cv_type = get_die_type (die, cu);
14140 if (cv_type)
14141 return cv_type;
14142
2f608a3a
KW
14143 /* In case the const qualifier is applied to an array type, the element type
14144 is so qualified, not the array type (section 6.7.3 of C99). */
14145 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14146 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14147
f792889a
DJ
14148 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14149 return set_die_type (die, cv_type, cu);
c906108c
SS
14150}
14151
f792889a 14152static struct type *
e7c27a73 14153read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14154{
f792889a 14155 struct type *base_type, *cv_type;
c906108c 14156
e7c27a73 14157 base_type = die_type (die, cu);
7e314c57
JK
14158
14159 /* The die_type call above may have already set the type for this DIE. */
14160 cv_type = get_die_type (die, cu);
14161 if (cv_type)
14162 return cv_type;
14163
cf363f18
MW
14164 /* In case the volatile qualifier is applied to an array type, the
14165 element type is so qualified, not the array type (section 6.7.3
14166 of C99). */
14167 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14168 return add_array_cv_type (die, cu, base_type, 0, 1);
14169
f792889a
DJ
14170 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14171 return set_die_type (die, cv_type, cu);
c906108c
SS
14172}
14173
06d66ee9
TT
14174/* Handle DW_TAG_restrict_type. */
14175
14176static struct type *
14177read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14178{
14179 struct type *base_type, *cv_type;
14180
14181 base_type = die_type (die, cu);
14182
14183 /* The die_type call above may have already set the type for this DIE. */
14184 cv_type = get_die_type (die, cu);
14185 if (cv_type)
14186 return cv_type;
14187
14188 cv_type = make_restrict_type (base_type);
14189 return set_die_type (die, cv_type, cu);
14190}
14191
c906108c
SS
14192/* Extract all information from a DW_TAG_string_type DIE and add to
14193 the user defined type vector. It isn't really a user defined type,
14194 but it behaves like one, with other DIE's using an AT_user_def_type
14195 attribute to reference it. */
14196
f792889a 14197static struct type *
e7c27a73 14198read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14199{
e7c27a73 14200 struct objfile *objfile = cu->objfile;
3b7538c0 14201 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14202 struct type *type, *range_type, *index_type, *char_type;
14203 struct attribute *attr;
14204 unsigned int length;
14205
e142c38c 14206 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14207 if (attr)
14208 {
14209 length = DW_UNSND (attr);
14210 }
14211 else
14212 {
0963b4bd 14213 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14214 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14215 if (attr)
14216 {
14217 length = DW_UNSND (attr);
14218 }
14219 else
14220 {
14221 length = 1;
14222 }
c906108c 14223 }
6ccb9162 14224
46bf5051 14225 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14226 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14227 char_type = language_string_char_type (cu->language_defn, gdbarch);
14228 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14229
f792889a 14230 return set_die_type (die, type, cu);
c906108c
SS
14231}
14232
4d804846
JB
14233/* Assuming that DIE corresponds to a function, returns nonzero
14234 if the function is prototyped. */
14235
14236static int
14237prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14238{
14239 struct attribute *attr;
14240
14241 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14242 if (attr && (DW_UNSND (attr) != 0))
14243 return 1;
14244
14245 /* The DWARF standard implies that the DW_AT_prototyped attribute
14246 is only meaninful for C, but the concept also extends to other
14247 languages that allow unprototyped functions (Eg: Objective C).
14248 For all other languages, assume that functions are always
14249 prototyped. */
14250 if (cu->language != language_c
14251 && cu->language != language_objc
14252 && cu->language != language_opencl)
14253 return 1;
14254
14255 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14256 prototyped and unprototyped functions; default to prototyped,
14257 since that is more common in modern code (and RealView warns
14258 about unprototyped functions). */
14259 if (producer_is_realview (cu->producer))
14260 return 1;
14261
14262 return 0;
14263}
14264
c906108c
SS
14265/* Handle DIES due to C code like:
14266
14267 struct foo
c5aa993b
JM
14268 {
14269 int (*funcp)(int a, long l);
14270 int b;
14271 };
c906108c 14272
0963b4bd 14273 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14274
f792889a 14275static struct type *
e7c27a73 14276read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14277{
bb5ed363 14278 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14279 struct type *type; /* Type that this function returns. */
14280 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14281 struct attribute *attr;
14282
e7c27a73 14283 type = die_type (die, cu);
7e314c57
JK
14284
14285 /* The die_type call above may have already set the type for this DIE. */
14286 ftype = get_die_type (die, cu);
14287 if (ftype)
14288 return ftype;
14289
0c8b41f1 14290 ftype = lookup_function_type (type);
c906108c 14291
4d804846 14292 if (prototyped_function_p (die, cu))
a6c727b2 14293 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14294
c055b101
CV
14295 /* Store the calling convention in the type if it's available in
14296 the subroutine die. Otherwise set the calling convention to
14297 the default value DW_CC_normal. */
14298 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14299 if (attr)
14300 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14301 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14302 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14303 else
14304 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2
GM
14305
14306 /* We need to add the subroutine type to the die immediately so
14307 we don't infinitely recurse when dealing with parameters
0963b4bd 14308 declared as the same subroutine type. */
76c10ea2 14309 set_die_type (die, ftype, cu);
6e70227d 14310
639d11d3 14311 if (die->child != NULL)
c906108c 14312 {
bb5ed363 14313 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14314 struct die_info *child_die;
8072405b 14315 int nparams, iparams;
c906108c
SS
14316
14317 /* Count the number of parameters.
14318 FIXME: GDB currently ignores vararg functions, but knows about
14319 vararg member functions. */
8072405b 14320 nparams = 0;
639d11d3 14321 child_die = die->child;
c906108c
SS
14322 while (child_die && child_die->tag)
14323 {
14324 if (child_die->tag == DW_TAG_formal_parameter)
14325 nparams++;
14326 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14327 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14328 child_die = sibling_die (child_die);
14329 }
14330
14331 /* Allocate storage for parameters and fill them in. */
14332 TYPE_NFIELDS (ftype) = nparams;
14333 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14334 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14335
8072405b
JK
14336 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14337 even if we error out during the parameters reading below. */
14338 for (iparams = 0; iparams < nparams; iparams++)
14339 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14340
14341 iparams = 0;
639d11d3 14342 child_die = die->child;
c906108c
SS
14343 while (child_die && child_die->tag)
14344 {
14345 if (child_die->tag == DW_TAG_formal_parameter)
14346 {
3ce3b1ba
PA
14347 struct type *arg_type;
14348
14349 /* DWARF version 2 has no clean way to discern C++
14350 static and non-static member functions. G++ helps
14351 GDB by marking the first parameter for non-static
14352 member functions (which is the this pointer) as
14353 artificial. We pass this information to
14354 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14355
14356 DWARF version 3 added DW_AT_object_pointer, which GCC
14357 4.5 does not yet generate. */
e142c38c 14358 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14359 if (attr)
14360 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14361 else
418835cc
KS
14362 {
14363 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14364
14365 /* GCC/43521: In java, the formal parameter
14366 "this" is sometimes not marked with DW_AT_artificial. */
14367 if (cu->language == language_java)
14368 {
14369 const char *name = dwarf2_name (child_die, cu);
9a619af0 14370
418835cc
KS
14371 if (name && !strcmp (name, "this"))
14372 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14373 }
14374 }
3ce3b1ba
PA
14375 arg_type = die_type (child_die, cu);
14376
14377 /* RealView does not mark THIS as const, which the testsuite
14378 expects. GCC marks THIS as const in method definitions,
14379 but not in the class specifications (GCC PR 43053). */
14380 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14381 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14382 {
14383 int is_this = 0;
14384 struct dwarf2_cu *arg_cu = cu;
14385 const char *name = dwarf2_name (child_die, cu);
14386
14387 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14388 if (attr)
14389 {
14390 /* If the compiler emits this, use it. */
14391 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14392 is_this = 1;
14393 }
14394 else if (name && strcmp (name, "this") == 0)
14395 /* Function definitions will have the argument names. */
14396 is_this = 1;
14397 else if (name == NULL && iparams == 0)
14398 /* Declarations may not have the names, so like
14399 elsewhere in GDB, assume an artificial first
14400 argument is "this". */
14401 is_this = 1;
14402
14403 if (is_this)
14404 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14405 arg_type, 0);
14406 }
14407
14408 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14409 iparams++;
14410 }
14411 child_die = sibling_die (child_die);
14412 }
14413 }
14414
76c10ea2 14415 return ftype;
c906108c
SS
14416}
14417
f792889a 14418static struct type *
e7c27a73 14419read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14420{
e7c27a73 14421 struct objfile *objfile = cu->objfile;
0114d602 14422 const char *name = NULL;
3c8e0968 14423 struct type *this_type, *target_type;
c906108c 14424
94af9270 14425 name = dwarf2_full_name (NULL, die, cu);
f792889a 14426 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602 14427 TYPE_FLAG_TARGET_STUB, NULL, objfile);
abee88f2 14428 TYPE_NAME (this_type) = name;
f792889a 14429 set_die_type (die, this_type, cu);
3c8e0968
DE
14430 target_type = die_type (die, cu);
14431 if (target_type != this_type)
14432 TYPE_TARGET_TYPE (this_type) = target_type;
14433 else
14434 {
14435 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14436 spec and cause infinite loops in GDB. */
14437 complaint (&symfile_complaints,
14438 _("Self-referential DW_TAG_typedef "
14439 "- DIE at 0x%x [in module %s]"),
4262abfb 14440 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14441 TYPE_TARGET_TYPE (this_type) = NULL;
14442 }
f792889a 14443 return this_type;
c906108c
SS
14444}
14445
14446/* Find a representation of a given base type and install
14447 it in the TYPE field of the die. */
14448
f792889a 14449static struct type *
e7c27a73 14450read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14451{
e7c27a73 14452 struct objfile *objfile = cu->objfile;
c906108c
SS
14453 struct type *type;
14454 struct attribute *attr;
14455 int encoding = 0, size = 0;
15d034d0 14456 const char *name;
6ccb9162
UW
14457 enum type_code code = TYPE_CODE_INT;
14458 int type_flags = 0;
14459 struct type *target_type = NULL;
c906108c 14460
e142c38c 14461 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14462 if (attr)
14463 {
14464 encoding = DW_UNSND (attr);
14465 }
e142c38c 14466 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14467 if (attr)
14468 {
14469 size = DW_UNSND (attr);
14470 }
39cbfefa 14471 name = dwarf2_name (die, cu);
6ccb9162 14472 if (!name)
c906108c 14473 {
6ccb9162
UW
14474 complaint (&symfile_complaints,
14475 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14476 }
6ccb9162
UW
14477
14478 switch (encoding)
c906108c 14479 {
6ccb9162
UW
14480 case DW_ATE_address:
14481 /* Turn DW_ATE_address into a void * pointer. */
14482 code = TYPE_CODE_PTR;
14483 type_flags |= TYPE_FLAG_UNSIGNED;
14484 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14485 break;
14486 case DW_ATE_boolean:
14487 code = TYPE_CODE_BOOL;
14488 type_flags |= TYPE_FLAG_UNSIGNED;
14489 break;
14490 case DW_ATE_complex_float:
14491 code = TYPE_CODE_COMPLEX;
14492 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14493 break;
14494 case DW_ATE_decimal_float:
14495 code = TYPE_CODE_DECFLOAT;
14496 break;
14497 case DW_ATE_float:
14498 code = TYPE_CODE_FLT;
14499 break;
14500 case DW_ATE_signed:
14501 break;
14502 case DW_ATE_unsigned:
14503 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
14504 if (cu->language == language_fortran
14505 && name
14506 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14507 code = TYPE_CODE_CHAR;
6ccb9162
UW
14508 break;
14509 case DW_ATE_signed_char:
6e70227d 14510 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14511 || cu->language == language_pascal
14512 || cu->language == language_fortran)
6ccb9162
UW
14513 code = TYPE_CODE_CHAR;
14514 break;
14515 case DW_ATE_unsigned_char:
868a0084 14516 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14517 || cu->language == language_pascal
14518 || cu->language == language_fortran)
6ccb9162
UW
14519 code = TYPE_CODE_CHAR;
14520 type_flags |= TYPE_FLAG_UNSIGNED;
14521 break;
75079b2b
TT
14522 case DW_ATE_UTF:
14523 /* We just treat this as an integer and then recognize the
14524 type by name elsewhere. */
14525 break;
14526
6ccb9162
UW
14527 default:
14528 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14529 dwarf_type_encoding_name (encoding));
14530 break;
c906108c 14531 }
6ccb9162 14532
0114d602
DJ
14533 type = init_type (code, size, type_flags, NULL, objfile);
14534 TYPE_NAME (type) = name;
6ccb9162
UW
14535 TYPE_TARGET_TYPE (type) = target_type;
14536
0114d602 14537 if (name && strcmp (name, "char") == 0)
876cecd0 14538 TYPE_NOSIGN (type) = 1;
0114d602 14539
f792889a 14540 return set_die_type (die, type, cu);
c906108c
SS
14541}
14542
80180f79
SA
14543/* Parse dwarf attribute if it's a block, reference or constant and put the
14544 resulting value of the attribute into struct bound_prop.
14545 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14546
14547static int
14548attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14549 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14550{
14551 struct dwarf2_property_baton *baton;
14552 struct obstack *obstack = &cu->objfile->objfile_obstack;
14553
14554 if (attr == NULL || prop == NULL)
14555 return 0;
14556
14557 if (attr_form_is_block (attr))
14558 {
14559 baton = obstack_alloc (obstack, sizeof (*baton));
14560 baton->referenced_type = NULL;
14561 baton->locexpr.per_cu = cu->per_cu;
14562 baton->locexpr.size = DW_BLOCK (attr)->size;
14563 baton->locexpr.data = DW_BLOCK (attr)->data;
14564 prop->data.baton = baton;
14565 prop->kind = PROP_LOCEXPR;
14566 gdb_assert (prop->data.baton != NULL);
14567 }
14568 else if (attr_form_is_ref (attr))
14569 {
14570 struct dwarf2_cu *target_cu = cu;
14571 struct die_info *target_die;
14572 struct attribute *target_attr;
14573
14574 target_die = follow_die_ref (die, attr, &target_cu);
14575 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14576 if (target_attr == NULL)
14577 return 0;
14578
14579 if (attr_form_is_section_offset (target_attr))
14580 {
14581 baton = obstack_alloc (obstack, sizeof (*baton));
14582 baton->referenced_type = die_type (target_die, target_cu);
14583 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14584 prop->data.baton = baton;
14585 prop->kind = PROP_LOCLIST;
14586 gdb_assert (prop->data.baton != NULL);
14587 }
14588 else if (attr_form_is_block (target_attr))
14589 {
14590 baton = obstack_alloc (obstack, sizeof (*baton));
14591 baton->referenced_type = die_type (target_die, target_cu);
14592 baton->locexpr.per_cu = cu->per_cu;
14593 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14594 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14595 prop->data.baton = baton;
14596 prop->kind = PROP_LOCEXPR;
14597 gdb_assert (prop->data.baton != NULL);
14598 }
14599 else
14600 {
14601 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14602 "dynamic property");
14603 return 0;
14604 }
14605 }
14606 else if (attr_form_is_constant (attr))
14607 {
14608 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14609 prop->kind = PROP_CONST;
14610 }
14611 else
14612 {
14613 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14614 dwarf2_name (die, cu));
14615 return 0;
14616 }
14617
14618 return 1;
14619}
14620
a02abb62
JB
14621/* Read the given DW_AT_subrange DIE. */
14622
f792889a 14623static struct type *
a02abb62
JB
14624read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14625{
4c9ad8c2 14626 struct type *base_type, *orig_base_type;
a02abb62
JB
14627 struct type *range_type;
14628 struct attribute *attr;
729efb13 14629 struct dynamic_prop low, high;
4fae6e18 14630 int low_default_is_valid;
c451ebe5 14631 int high_bound_is_count = 0;
15d034d0 14632 const char *name;
43bbcdc2 14633 LONGEST negative_mask;
e77813c8 14634
4c9ad8c2
TT
14635 orig_base_type = die_type (die, cu);
14636 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14637 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14638 creating the range type, but we use the result of check_typedef
14639 when examining properties of the type. */
14640 base_type = check_typedef (orig_base_type);
a02abb62 14641
7e314c57
JK
14642 /* The die_type call above may have already set the type for this DIE. */
14643 range_type = get_die_type (die, cu);
14644 if (range_type)
14645 return range_type;
14646
729efb13
SA
14647 low.kind = PROP_CONST;
14648 high.kind = PROP_CONST;
14649 high.data.const_val = 0;
14650
4fae6e18
JK
14651 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14652 omitting DW_AT_lower_bound. */
14653 switch (cu->language)
6e70227d 14654 {
4fae6e18
JK
14655 case language_c:
14656 case language_cplus:
729efb13 14657 low.data.const_val = 0;
4fae6e18
JK
14658 low_default_is_valid = 1;
14659 break;
14660 case language_fortran:
729efb13 14661 low.data.const_val = 1;
4fae6e18
JK
14662 low_default_is_valid = 1;
14663 break;
14664 case language_d:
14665 case language_java:
14666 case language_objc:
729efb13 14667 low.data.const_val = 0;
4fae6e18
JK
14668 low_default_is_valid = (cu->header.version >= 4);
14669 break;
14670 case language_ada:
14671 case language_m2:
14672 case language_pascal:
729efb13 14673 low.data.const_val = 1;
4fae6e18
JK
14674 low_default_is_valid = (cu->header.version >= 4);
14675 break;
14676 default:
729efb13 14677 low.data.const_val = 0;
4fae6e18
JK
14678 low_default_is_valid = 0;
14679 break;
a02abb62
JB
14680 }
14681
e142c38c 14682 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 14683 if (attr)
11c1ba78 14684 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
14685 else if (!low_default_is_valid)
14686 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14687 "- DIE at 0x%x [in module %s]"),
4262abfb 14688 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 14689
e142c38c 14690 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 14691 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
14692 {
14693 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 14694 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 14695 {
c451ebe5
SA
14696 /* If bounds are constant do the final calculation here. */
14697 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14698 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14699 else
14700 high_bound_is_count = 1;
c2ff108b 14701 }
e77813c8
PM
14702 }
14703
14704 /* Dwarf-2 specifications explicitly allows to create subrange types
14705 without specifying a base type.
14706 In that case, the base type must be set to the type of
14707 the lower bound, upper bound or count, in that order, if any of these
14708 three attributes references an object that has a type.
14709 If no base type is found, the Dwarf-2 specifications say that
14710 a signed integer type of size equal to the size of an address should
14711 be used.
14712 For the following C code: `extern char gdb_int [];'
14713 GCC produces an empty range DIE.
14714 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 14715 high bound or count are not yet handled by this code. */
e77813c8
PM
14716 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14717 {
14718 struct objfile *objfile = cu->objfile;
14719 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14720 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14721 struct type *int_type = objfile_type (objfile)->builtin_int;
14722
14723 /* Test "int", "long int", and "long long int" objfile types,
14724 and select the first one having a size above or equal to the
14725 architecture address size. */
14726 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14727 base_type = int_type;
14728 else
14729 {
14730 int_type = objfile_type (objfile)->builtin_long;
14731 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14732 base_type = int_type;
14733 else
14734 {
14735 int_type = objfile_type (objfile)->builtin_long_long;
14736 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14737 base_type = int_type;
14738 }
14739 }
14740 }
a02abb62 14741
dbb9c2b1
JB
14742 /* Normally, the DWARF producers are expected to use a signed
14743 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14744 But this is unfortunately not always the case, as witnessed
14745 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14746 is used instead. To work around that ambiguity, we treat
14747 the bounds as signed, and thus sign-extend their values, when
14748 the base type is signed. */
6e70227d 14749 negative_mask =
43bbcdc2 14750 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
729efb13
SA
14751 if (low.kind == PROP_CONST
14752 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14753 low.data.const_val |= negative_mask;
14754 if (high.kind == PROP_CONST
14755 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14756 high.data.const_val |= negative_mask;
43bbcdc2 14757
729efb13 14758 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 14759
c451ebe5
SA
14760 if (high_bound_is_count)
14761 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14762
c2ff108b
JK
14763 /* Ada expects an empty array on no boundary attributes. */
14764 if (attr == NULL && cu->language != language_ada)
729efb13 14765 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 14766
39cbfefa
DJ
14767 name = dwarf2_name (die, cu);
14768 if (name)
14769 TYPE_NAME (range_type) = name;
6e70227d 14770
e142c38c 14771 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
14772 if (attr)
14773 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14774
7e314c57
JK
14775 set_die_type (die, range_type, cu);
14776
14777 /* set_die_type should be already done. */
b4ba55a1
JB
14778 set_descriptive_type (range_type, die, cu);
14779
7e314c57 14780 return range_type;
a02abb62 14781}
6e70227d 14782
f792889a 14783static struct type *
81a17f79
JB
14784read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14785{
14786 struct type *type;
81a17f79 14787
81a17f79
JB
14788 /* For now, we only support the C meaning of an unspecified type: void. */
14789
0114d602
DJ
14790 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14791 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 14792
f792889a 14793 return set_die_type (die, type, cu);
81a17f79 14794}
a02abb62 14795
639d11d3
DC
14796/* Read a single die and all its descendents. Set the die's sibling
14797 field to NULL; set other fields in the die correctly, and set all
14798 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14799 location of the info_ptr after reading all of those dies. PARENT
14800 is the parent of the die in question. */
14801
14802static struct die_info *
dee91e82 14803read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
14804 const gdb_byte *info_ptr,
14805 const gdb_byte **new_info_ptr,
dee91e82 14806 struct die_info *parent)
639d11d3
DC
14807{
14808 struct die_info *die;
d521ce57 14809 const gdb_byte *cur_ptr;
639d11d3
DC
14810 int has_children;
14811
bf6af496 14812 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
14813 if (die == NULL)
14814 {
14815 *new_info_ptr = cur_ptr;
14816 return NULL;
14817 }
93311388 14818 store_in_ref_table (die, reader->cu);
639d11d3
DC
14819
14820 if (has_children)
bf6af496 14821 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
14822 else
14823 {
14824 die->child = NULL;
14825 *new_info_ptr = cur_ptr;
14826 }
14827
14828 die->sibling = NULL;
14829 die->parent = parent;
14830 return die;
14831}
14832
14833/* Read a die, all of its descendents, and all of its siblings; set
14834 all of the fields of all of the dies correctly. Arguments are as
14835 in read_die_and_children. */
14836
14837static struct die_info *
bf6af496 14838read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
14839 const gdb_byte *info_ptr,
14840 const gdb_byte **new_info_ptr,
bf6af496 14841 struct die_info *parent)
639d11d3
DC
14842{
14843 struct die_info *first_die, *last_sibling;
d521ce57 14844 const gdb_byte *cur_ptr;
639d11d3 14845
c906108c 14846 cur_ptr = info_ptr;
639d11d3
DC
14847 first_die = last_sibling = NULL;
14848
14849 while (1)
c906108c 14850 {
639d11d3 14851 struct die_info *die
dee91e82 14852 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 14853
1d325ec1 14854 if (die == NULL)
c906108c 14855 {
639d11d3
DC
14856 *new_info_ptr = cur_ptr;
14857 return first_die;
c906108c 14858 }
1d325ec1
DJ
14859
14860 if (!first_die)
14861 first_die = die;
c906108c 14862 else
1d325ec1
DJ
14863 last_sibling->sibling = die;
14864
14865 last_sibling = die;
c906108c 14866 }
c906108c
SS
14867}
14868
bf6af496
DE
14869/* Read a die, all of its descendents, and all of its siblings; set
14870 all of the fields of all of the dies correctly. Arguments are as
14871 in read_die_and_children.
14872 This the main entry point for reading a DIE and all its children. */
14873
14874static struct die_info *
14875read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
14876 const gdb_byte *info_ptr,
14877 const gdb_byte **new_info_ptr,
bf6af496
DE
14878 struct die_info *parent)
14879{
14880 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14881 new_info_ptr, parent);
14882
14883 if (dwarf2_die_debug)
14884 {
14885 fprintf_unfiltered (gdb_stdlog,
14886 "Read die from %s@0x%x of %s:\n",
a32a8923 14887 get_section_name (reader->die_section),
bf6af496
DE
14888 (unsigned) (info_ptr - reader->die_section->buffer),
14889 bfd_get_filename (reader->abfd));
14890 dump_die (die, dwarf2_die_debug);
14891 }
14892
14893 return die;
14894}
14895
3019eac3
DE
14896/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14897 attributes.
14898 The caller is responsible for filling in the extra attributes
14899 and updating (*DIEP)->num_attrs.
14900 Set DIEP to point to a newly allocated die with its information,
14901 except for its child, sibling, and parent fields.
14902 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 14903
d521ce57 14904static const gdb_byte *
3019eac3 14905read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 14906 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 14907 int *has_children, int num_extra_attrs)
93311388 14908{
b64f50a1
JK
14909 unsigned int abbrev_number, bytes_read, i;
14910 sect_offset offset;
93311388
DE
14911 struct abbrev_info *abbrev;
14912 struct die_info *die;
14913 struct dwarf2_cu *cu = reader->cu;
14914 bfd *abfd = reader->abfd;
14915
b64f50a1 14916 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
14917 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14918 info_ptr += bytes_read;
14919 if (!abbrev_number)
14920 {
14921 *diep = NULL;
14922 *has_children = 0;
14923 return info_ptr;
14924 }
14925
433df2d4 14926 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 14927 if (!abbrev)
348e048f
DE
14928 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14929 abbrev_number,
14930 bfd_get_filename (abfd));
14931
3019eac3 14932 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
14933 die->offset = offset;
14934 die->tag = abbrev->tag;
14935 die->abbrev = abbrev_number;
14936
3019eac3
DE
14937 /* Make the result usable.
14938 The caller needs to update num_attrs after adding the extra
14939 attributes. */
93311388
DE
14940 die->num_attrs = abbrev->num_attrs;
14941
14942 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
14943 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14944 info_ptr);
93311388
DE
14945
14946 *diep = die;
14947 *has_children = abbrev->has_children;
14948 return info_ptr;
14949}
14950
3019eac3
DE
14951/* Read a die and all its attributes.
14952 Set DIEP to point to a newly allocated die with its information,
14953 except for its child, sibling, and parent fields.
14954 Set HAS_CHILDREN to tell whether the die has children or not. */
14955
d521ce57 14956static const gdb_byte *
3019eac3 14957read_full_die (const struct die_reader_specs *reader,
d521ce57 14958 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
14959 int *has_children)
14960{
d521ce57 14961 const gdb_byte *result;
bf6af496
DE
14962
14963 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14964
14965 if (dwarf2_die_debug)
14966 {
14967 fprintf_unfiltered (gdb_stdlog,
14968 "Read die from %s@0x%x of %s:\n",
a32a8923 14969 get_section_name (reader->die_section),
bf6af496
DE
14970 (unsigned) (info_ptr - reader->die_section->buffer),
14971 bfd_get_filename (reader->abfd));
14972 dump_die (*diep, dwarf2_die_debug);
14973 }
14974
14975 return result;
3019eac3 14976}
433df2d4
DE
14977\f
14978/* Abbreviation tables.
3019eac3 14979
433df2d4 14980 In DWARF version 2, the description of the debugging information is
c906108c
SS
14981 stored in a separate .debug_abbrev section. Before we read any
14982 dies from a section we read in all abbreviations and install them
433df2d4
DE
14983 in a hash table. */
14984
14985/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14986
14987static struct abbrev_info *
14988abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14989{
14990 struct abbrev_info *abbrev;
14991
14992 abbrev = (struct abbrev_info *)
14993 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14994 memset (abbrev, 0, sizeof (struct abbrev_info));
14995 return abbrev;
14996}
14997
14998/* Add an abbreviation to the table. */
c906108c
SS
14999
15000static void
433df2d4
DE
15001abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15002 unsigned int abbrev_number,
15003 struct abbrev_info *abbrev)
15004{
15005 unsigned int hash_number;
15006
15007 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15008 abbrev->next = abbrev_table->abbrevs[hash_number];
15009 abbrev_table->abbrevs[hash_number] = abbrev;
15010}
dee91e82 15011
433df2d4
DE
15012/* Look up an abbrev in the table.
15013 Returns NULL if the abbrev is not found. */
15014
15015static struct abbrev_info *
15016abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15017 unsigned int abbrev_number)
c906108c 15018{
433df2d4
DE
15019 unsigned int hash_number;
15020 struct abbrev_info *abbrev;
15021
15022 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15023 abbrev = abbrev_table->abbrevs[hash_number];
15024
15025 while (abbrev)
15026 {
15027 if (abbrev->number == abbrev_number)
15028 return abbrev;
15029 abbrev = abbrev->next;
15030 }
15031 return NULL;
15032}
15033
15034/* Read in an abbrev table. */
15035
15036static struct abbrev_table *
15037abbrev_table_read_table (struct dwarf2_section_info *section,
15038 sect_offset offset)
15039{
15040 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15041 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15042 struct abbrev_table *abbrev_table;
d521ce57 15043 const gdb_byte *abbrev_ptr;
c906108c
SS
15044 struct abbrev_info *cur_abbrev;
15045 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15046 unsigned int abbrev_form;
f3dd6933
DJ
15047 struct attr_abbrev *cur_attrs;
15048 unsigned int allocated_attrs;
c906108c 15049
70ba0933 15050 abbrev_table = XNEW (struct abbrev_table);
f4dc4d17 15051 abbrev_table->offset = offset;
433df2d4
DE
15052 obstack_init (&abbrev_table->abbrev_obstack);
15053 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15054 (ABBREV_HASH_SIZE
15055 * sizeof (struct abbrev_info *)));
15056 memset (abbrev_table->abbrevs, 0,
15057 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15058
433df2d4
DE
15059 dwarf2_read_section (objfile, section);
15060 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
15061 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15062 abbrev_ptr += bytes_read;
15063
f3dd6933
DJ
15064 allocated_attrs = ATTR_ALLOC_CHUNK;
15065 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 15066
0963b4bd 15067 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15068 while (abbrev_number)
15069 {
433df2d4 15070 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15071
15072 /* read in abbrev header */
15073 cur_abbrev->number = abbrev_number;
15074 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15075 abbrev_ptr += bytes_read;
15076 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15077 abbrev_ptr += 1;
15078
15079 /* now read in declarations */
15080 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15081 abbrev_ptr += bytes_read;
15082 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15083 abbrev_ptr += bytes_read;
15084 while (abbrev_name)
15085 {
f3dd6933 15086 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15087 {
f3dd6933
DJ
15088 allocated_attrs += ATTR_ALLOC_CHUNK;
15089 cur_attrs
15090 = xrealloc (cur_attrs, (allocated_attrs
15091 * sizeof (struct attr_abbrev)));
c906108c 15092 }
ae038cb0 15093
f3dd6933
DJ
15094 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15095 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
15096 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15097 abbrev_ptr += bytes_read;
15098 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15099 abbrev_ptr += bytes_read;
15100 }
15101
433df2d4 15102 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
f3dd6933
DJ
15103 (cur_abbrev->num_attrs
15104 * sizeof (struct attr_abbrev)));
15105 memcpy (cur_abbrev->attrs, cur_attrs,
15106 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15107
433df2d4 15108 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15109
15110 /* Get next abbreviation.
15111 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15112 always properly terminated with an abbrev number of 0.
15113 Exit loop if we encounter an abbreviation which we have
15114 already read (which means we are about to read the abbreviations
15115 for the next compile unit) or if the end of the abbreviation
15116 table is reached. */
433df2d4 15117 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15118 break;
15119 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15120 abbrev_ptr += bytes_read;
433df2d4 15121 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15122 break;
15123 }
f3dd6933
DJ
15124
15125 xfree (cur_attrs);
433df2d4 15126 return abbrev_table;
c906108c
SS
15127}
15128
433df2d4 15129/* Free the resources held by ABBREV_TABLE. */
c906108c 15130
c906108c 15131static void
433df2d4 15132abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15133{
433df2d4
DE
15134 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15135 xfree (abbrev_table);
c906108c
SS
15136}
15137
f4dc4d17
DE
15138/* Same as abbrev_table_free but as a cleanup.
15139 We pass in a pointer to the pointer to the table so that we can
15140 set the pointer to NULL when we're done. It also simplifies
73051182 15141 build_type_psymtabs_1. */
f4dc4d17
DE
15142
15143static void
15144abbrev_table_free_cleanup (void *table_ptr)
15145{
15146 struct abbrev_table **abbrev_table_ptr = table_ptr;
15147
15148 if (*abbrev_table_ptr != NULL)
15149 abbrev_table_free (*abbrev_table_ptr);
15150 *abbrev_table_ptr = NULL;
15151}
15152
433df2d4
DE
15153/* Read the abbrev table for CU from ABBREV_SECTION. */
15154
15155static void
15156dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15157 struct dwarf2_section_info *abbrev_section)
c906108c 15158{
433df2d4
DE
15159 cu->abbrev_table =
15160 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15161}
c906108c 15162
433df2d4 15163/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15164
433df2d4
DE
15165static void
15166dwarf2_free_abbrev_table (void *ptr_to_cu)
15167{
15168 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 15169
a2ce51a0
DE
15170 if (cu->abbrev_table != NULL)
15171 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15172 /* Set this to NULL so that we SEGV if we try to read it later,
15173 and also because free_comp_unit verifies this is NULL. */
15174 cu->abbrev_table = NULL;
15175}
15176\f
72bf9492
DJ
15177/* Returns nonzero if TAG represents a type that we might generate a partial
15178 symbol for. */
15179
15180static int
15181is_type_tag_for_partial (int tag)
15182{
15183 switch (tag)
15184 {
15185#if 0
15186 /* Some types that would be reasonable to generate partial symbols for,
15187 that we don't at present. */
15188 case DW_TAG_array_type:
15189 case DW_TAG_file_type:
15190 case DW_TAG_ptr_to_member_type:
15191 case DW_TAG_set_type:
15192 case DW_TAG_string_type:
15193 case DW_TAG_subroutine_type:
15194#endif
15195 case DW_TAG_base_type:
15196 case DW_TAG_class_type:
680b30c7 15197 case DW_TAG_interface_type:
72bf9492
DJ
15198 case DW_TAG_enumeration_type:
15199 case DW_TAG_structure_type:
15200 case DW_TAG_subrange_type:
15201 case DW_TAG_typedef:
15202 case DW_TAG_union_type:
15203 return 1;
15204 default:
15205 return 0;
15206 }
15207}
15208
15209/* Load all DIEs that are interesting for partial symbols into memory. */
15210
15211static struct partial_die_info *
dee91e82 15212load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15213 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15214{
dee91e82 15215 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15216 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15217 struct partial_die_info *part_die;
15218 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15219 struct abbrev_info *abbrev;
15220 unsigned int bytes_read;
5afb4e99 15221 unsigned int load_all = 0;
72bf9492
DJ
15222 int nesting_level = 1;
15223
15224 parent_die = NULL;
15225 last_die = NULL;
15226
7adf1e79
DE
15227 gdb_assert (cu->per_cu != NULL);
15228 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15229 load_all = 1;
15230
72bf9492
DJ
15231 cu->partial_dies
15232 = htab_create_alloc_ex (cu->header.length / 12,
15233 partial_die_hash,
15234 partial_die_eq,
15235 NULL,
15236 &cu->comp_unit_obstack,
15237 hashtab_obstack_allocate,
15238 dummy_obstack_deallocate);
15239
15240 part_die = obstack_alloc (&cu->comp_unit_obstack,
15241 sizeof (struct partial_die_info));
15242
15243 while (1)
15244 {
15245 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15246
15247 /* A NULL abbrev means the end of a series of children. */
15248 if (abbrev == NULL)
15249 {
15250 if (--nesting_level == 0)
15251 {
15252 /* PART_DIE was probably the last thing allocated on the
15253 comp_unit_obstack, so we could call obstack_free
15254 here. We don't do that because the waste is small,
15255 and will be cleaned up when we're done with this
15256 compilation unit. This way, we're also more robust
15257 against other users of the comp_unit_obstack. */
15258 return first_die;
15259 }
15260 info_ptr += bytes_read;
15261 last_die = parent_die;
15262 parent_die = parent_die->die_parent;
15263 continue;
15264 }
15265
98bfdba5
PA
15266 /* Check for template arguments. We never save these; if
15267 they're seen, we just mark the parent, and go on our way. */
15268 if (parent_die != NULL
15269 && cu->language == language_cplus
15270 && (abbrev->tag == DW_TAG_template_type_param
15271 || abbrev->tag == DW_TAG_template_value_param))
15272 {
15273 parent_die->has_template_arguments = 1;
15274
15275 if (!load_all)
15276 {
15277 /* We don't need a partial DIE for the template argument. */
dee91e82 15278 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15279 continue;
15280 }
15281 }
15282
0d99eb77 15283 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
15284 Skip their other children. */
15285 if (!load_all
15286 && cu->language == language_cplus
15287 && parent_die != NULL
15288 && parent_die->tag == DW_TAG_subprogram)
15289 {
dee91e82 15290 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15291 continue;
15292 }
15293
5afb4e99
DJ
15294 /* Check whether this DIE is interesting enough to save. Normally
15295 we would not be interested in members here, but there may be
15296 later variables referencing them via DW_AT_specification (for
15297 static members). */
15298 if (!load_all
15299 && !is_type_tag_for_partial (abbrev->tag)
72929c62 15300 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
15301 && abbrev->tag != DW_TAG_enumerator
15302 && abbrev->tag != DW_TAG_subprogram
bc30ff58 15303 && abbrev->tag != DW_TAG_lexical_block
72bf9492 15304 && abbrev->tag != DW_TAG_variable
5afb4e99 15305 && abbrev->tag != DW_TAG_namespace
f55ee35c 15306 && abbrev->tag != DW_TAG_module
95554aad 15307 && abbrev->tag != DW_TAG_member
74921315
KS
15308 && abbrev->tag != DW_TAG_imported_unit
15309 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
15310 {
15311 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15312 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
15313 continue;
15314 }
15315
dee91e82
DE
15316 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15317 info_ptr);
72bf9492
DJ
15318
15319 /* This two-pass algorithm for processing partial symbols has a
15320 high cost in cache pressure. Thus, handle some simple cases
15321 here which cover the majority of C partial symbols. DIEs
15322 which neither have specification tags in them, nor could have
15323 specification tags elsewhere pointing at them, can simply be
15324 processed and discarded.
15325
15326 This segment is also optional; scan_partial_symbols and
15327 add_partial_symbol will handle these DIEs if we chain
15328 them in normally. When compilers which do not emit large
15329 quantities of duplicate debug information are more common,
15330 this code can probably be removed. */
15331
15332 /* Any complete simple types at the top level (pretty much all
15333 of them, for a language without namespaces), can be processed
15334 directly. */
15335 if (parent_die == NULL
15336 && part_die->has_specification == 0
15337 && part_die->is_declaration == 0
d8228535 15338 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15339 || part_die->tag == DW_TAG_base_type
15340 || part_die->tag == DW_TAG_subrange_type))
15341 {
15342 if (building_psymtab && part_die->name != NULL)
04a679b8 15343 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15344 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363
DE
15345 &objfile->static_psymbols,
15346 0, (CORE_ADDR) 0, cu->language, objfile);
dee91e82 15347 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15348 continue;
15349 }
15350
d8228535
JK
15351 /* The exception for DW_TAG_typedef with has_children above is
15352 a workaround of GCC PR debug/47510. In the case of this complaint
15353 type_name_no_tag_or_error will error on such types later.
15354
15355 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15356 it could not find the child DIEs referenced later, this is checked
15357 above. In correct DWARF DW_TAG_typedef should have no children. */
15358
15359 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15360 complaint (&symfile_complaints,
15361 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15362 "- DIE at 0x%x [in module %s]"),
4262abfb 15363 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15364
72bf9492
DJ
15365 /* If we're at the second level, and we're an enumerator, and
15366 our parent has no specification (meaning possibly lives in a
15367 namespace elsewhere), then we can add the partial symbol now
15368 instead of queueing it. */
15369 if (part_die->tag == DW_TAG_enumerator
15370 && parent_die != NULL
15371 && parent_die->die_parent == NULL
15372 && parent_die->tag == DW_TAG_enumeration_type
15373 && parent_die->has_specification == 0)
15374 {
15375 if (part_die->name == NULL)
3e43a32a
MS
15376 complaint (&symfile_complaints,
15377 _("malformed enumerator DIE ignored"));
72bf9492 15378 else if (building_psymtab)
04a679b8 15379 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15380 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
15381 (cu->language == language_cplus
15382 || cu->language == language_java)
bb5ed363
DE
15383 ? &objfile->global_psymbols
15384 : &objfile->static_psymbols,
15385 0, (CORE_ADDR) 0, cu->language, objfile);
72bf9492 15386
dee91e82 15387 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15388 continue;
15389 }
15390
15391 /* We'll save this DIE so link it in. */
15392 part_die->die_parent = parent_die;
15393 part_die->die_sibling = NULL;
15394 part_die->die_child = NULL;
15395
15396 if (last_die && last_die == parent_die)
15397 last_die->die_child = part_die;
15398 else if (last_die)
15399 last_die->die_sibling = part_die;
15400
15401 last_die = part_die;
15402
15403 if (first_die == NULL)
15404 first_die = part_die;
15405
15406 /* Maybe add the DIE to the hash table. Not all DIEs that we
15407 find interesting need to be in the hash table, because we
15408 also have the parent/sibling/child chains; only those that we
15409 might refer to by offset later during partial symbol reading.
15410
15411 For now this means things that might have be the target of a
15412 DW_AT_specification, DW_AT_abstract_origin, or
15413 DW_AT_extension. DW_AT_extension will refer only to
15414 namespaces; DW_AT_abstract_origin refers to functions (and
15415 many things under the function DIE, but we do not recurse
15416 into function DIEs during partial symbol reading) and
15417 possibly variables as well; DW_AT_specification refers to
15418 declarations. Declarations ought to have the DW_AT_declaration
15419 flag. It happens that GCC forgets to put it in sometimes, but
15420 only for functions, not for types.
15421
15422 Adding more things than necessary to the hash table is harmless
15423 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15424 wasted time in find_partial_die, when we reread the compilation
15425 unit with load_all_dies set. */
72bf9492 15426
5afb4e99 15427 if (load_all
72929c62 15428 || abbrev->tag == DW_TAG_constant
5afb4e99 15429 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15430 || abbrev->tag == DW_TAG_variable
15431 || abbrev->tag == DW_TAG_namespace
15432 || part_die->is_declaration)
15433 {
15434 void **slot;
15435
15436 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 15437 part_die->offset.sect_off, INSERT);
72bf9492
DJ
15438 *slot = part_die;
15439 }
15440
15441 part_die = obstack_alloc (&cu->comp_unit_obstack,
15442 sizeof (struct partial_die_info));
15443
15444 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 15445 we have no reason to follow the children of structures; for other
98bfdba5
PA
15446 languages we have to, so that we can get at method physnames
15447 to infer fully qualified class names, for DW_AT_specification,
15448 and for C++ template arguments. For C++, we also look one level
15449 inside functions to find template arguments (if the name of the
15450 function does not already contain the template arguments).
bc30ff58
JB
15451
15452 For Ada, we need to scan the children of subprograms and lexical
15453 blocks as well because Ada allows the definition of nested
15454 entities that could be interesting for the debugger, such as
15455 nested subprograms for instance. */
72bf9492 15456 if (last_die->has_children
5afb4e99
DJ
15457 && (load_all
15458 || last_die->tag == DW_TAG_namespace
f55ee35c 15459 || last_die->tag == DW_TAG_module
72bf9492 15460 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15461 || (cu->language == language_cplus
15462 && last_die->tag == DW_TAG_subprogram
15463 && (last_die->name == NULL
15464 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15465 || (cu->language != language_c
15466 && (last_die->tag == DW_TAG_class_type
680b30c7 15467 || last_die->tag == DW_TAG_interface_type
72bf9492 15468 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
15469 || last_die->tag == DW_TAG_union_type))
15470 || (cu->language == language_ada
15471 && (last_die->tag == DW_TAG_subprogram
15472 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
15473 {
15474 nesting_level++;
15475 parent_die = last_die;
15476 continue;
15477 }
15478
15479 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15480 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
15481
15482 /* Back to the top, do it again. */
15483 }
15484}
15485
c906108c
SS
15486/* Read a minimal amount of information into the minimal die structure. */
15487
d521ce57 15488static const gdb_byte *
dee91e82
DE
15489read_partial_die (const struct die_reader_specs *reader,
15490 struct partial_die_info *part_die,
15491 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 15492 const gdb_byte *info_ptr)
c906108c 15493{
dee91e82 15494 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15495 struct objfile *objfile = cu->objfile;
d521ce57 15496 const gdb_byte *buffer = reader->buffer;
fa238c03 15497 unsigned int i;
c906108c 15498 struct attribute attr;
c5aa993b 15499 int has_low_pc_attr = 0;
c906108c 15500 int has_high_pc_attr = 0;
91da1414 15501 int high_pc_relative = 0;
c906108c 15502
72bf9492 15503 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 15504
b64f50a1 15505 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
15506
15507 info_ptr += abbrev_len;
15508
15509 if (abbrev == NULL)
15510 return info_ptr;
15511
c906108c
SS
15512 part_die->tag = abbrev->tag;
15513 part_die->has_children = abbrev->has_children;
c906108c
SS
15514
15515 for (i = 0; i < abbrev->num_attrs; ++i)
15516 {
dee91e82 15517 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
15518
15519 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 15520 partial symbol table. */
c906108c
SS
15521 switch (attr.name)
15522 {
15523 case DW_AT_name:
71c25dea
TT
15524 switch (part_die->tag)
15525 {
15526 case DW_TAG_compile_unit:
95554aad 15527 case DW_TAG_partial_unit:
348e048f 15528 case DW_TAG_type_unit:
71c25dea
TT
15529 /* Compilation units have a DW_AT_name that is a filename, not
15530 a source language identifier. */
15531 case DW_TAG_enumeration_type:
15532 case DW_TAG_enumerator:
15533 /* These tags always have simple identifiers already; no need
15534 to canonicalize them. */
15535 part_die->name = DW_STRING (&attr);
15536 break;
15537 default:
15538 part_die->name
15539 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 15540 &objfile->per_bfd->storage_obstack);
71c25dea
TT
15541 break;
15542 }
c906108c 15543 break;
31ef98ae 15544 case DW_AT_linkage_name:
c906108c 15545 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
15546 /* Note that both forms of linkage name might appear. We
15547 assume they will be the same, and we only store the last
15548 one we see. */
94af9270
KS
15549 if (cu->language == language_ada)
15550 part_die->name = DW_STRING (&attr);
abc72ce4 15551 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
15552 break;
15553 case DW_AT_low_pc:
15554 has_low_pc_attr = 1;
31aa7e4e 15555 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
15556 break;
15557 case DW_AT_high_pc:
15558 has_high_pc_attr = 1;
31aa7e4e
JB
15559 part_die->highpc = attr_value_as_address (&attr);
15560 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15561 high_pc_relative = 1;
c906108c
SS
15562 break;
15563 case DW_AT_location:
0963b4bd 15564 /* Support the .debug_loc offsets. */
8e19ed76
PS
15565 if (attr_form_is_block (&attr))
15566 {
95554aad 15567 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 15568 }
3690dd37 15569 else if (attr_form_is_section_offset (&attr))
8e19ed76 15570 {
4d3c2250 15571 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15572 }
15573 else
15574 {
4d3c2250
KB
15575 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15576 "partial symbol information");
8e19ed76 15577 }
c906108c 15578 break;
c906108c
SS
15579 case DW_AT_external:
15580 part_die->is_external = DW_UNSND (&attr);
15581 break;
15582 case DW_AT_declaration:
15583 part_die->is_declaration = DW_UNSND (&attr);
15584 break;
15585 case DW_AT_type:
15586 part_die->has_type = 1;
15587 break;
15588 case DW_AT_abstract_origin:
15589 case DW_AT_specification:
72bf9492
DJ
15590 case DW_AT_extension:
15591 part_die->has_specification = 1;
c764a876 15592 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
15593 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15594 || cu->per_cu->is_dwz);
c906108c
SS
15595 break;
15596 case DW_AT_sibling:
15597 /* Ignore absolute siblings, they might point outside of
15598 the current compile unit. */
15599 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
15600 complaint (&symfile_complaints,
15601 _("ignoring absolute DW_AT_sibling"));
c906108c 15602 else
b9502d3f
WN
15603 {
15604 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15605 const gdb_byte *sibling_ptr = buffer + off;
15606
15607 if (sibling_ptr < info_ptr)
15608 complaint (&symfile_complaints,
15609 _("DW_AT_sibling points backwards"));
22869d73
KS
15610 else if (sibling_ptr > reader->buffer_end)
15611 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
15612 else
15613 part_die->sibling = sibling_ptr;
15614 }
c906108c 15615 break;
fa4028e9
JB
15616 case DW_AT_byte_size:
15617 part_die->has_byte_size = 1;
15618 break;
68511cec
CES
15619 case DW_AT_calling_convention:
15620 /* DWARF doesn't provide a way to identify a program's source-level
15621 entry point. DW_AT_calling_convention attributes are only meant
15622 to describe functions' calling conventions.
15623
15624 However, because it's a necessary piece of information in
15625 Fortran, and because DW_CC_program is the only piece of debugging
15626 information whose definition refers to a 'main program' at all,
15627 several compilers have begun marking Fortran main programs with
15628 DW_CC_program --- even when those functions use the standard
15629 calling conventions.
15630
15631 So until DWARF specifies a way to provide this information and
15632 compilers pick up the new representation, we'll support this
15633 practice. */
15634 if (DW_UNSND (&attr) == DW_CC_program
15635 && cu->language == language_fortran)
3d548a53 15636 set_objfile_main_name (objfile, part_die->name, language_fortran);
68511cec 15637 break;
481860b3
GB
15638 case DW_AT_inline:
15639 if (DW_UNSND (&attr) == DW_INL_inlined
15640 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15641 part_die->may_be_inlined = 1;
15642 break;
95554aad
TT
15643
15644 case DW_AT_import:
15645 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
15646 {
15647 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15648 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15649 || cu->per_cu->is_dwz);
15650 }
95554aad
TT
15651 break;
15652
c906108c
SS
15653 default:
15654 break;
15655 }
15656 }
15657
91da1414
MW
15658 if (high_pc_relative)
15659 part_die->highpc += part_die->lowpc;
15660
9373cf26
JK
15661 if (has_low_pc_attr && has_high_pc_attr)
15662 {
15663 /* When using the GNU linker, .gnu.linkonce. sections are used to
15664 eliminate duplicate copies of functions and vtables and such.
15665 The linker will arbitrarily choose one and discard the others.
15666 The AT_*_pc values for such functions refer to local labels in
15667 these sections. If the section from that file was discarded, the
15668 labels are not in the output, so the relocs get a value of 0.
15669 If this is a discarded function, mark the pc bounds as invalid,
15670 so that GDB will ignore it. */
15671 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15672 {
bb5ed363 15673 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15674
15675 complaint (&symfile_complaints,
15676 _("DW_AT_low_pc %s is zero "
15677 "for DIE at 0x%x [in module %s]"),
15678 paddress (gdbarch, part_die->lowpc),
4262abfb 15679 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15680 }
15681 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15682 else if (part_die->lowpc >= part_die->highpc)
15683 {
bb5ed363 15684 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15685
15686 complaint (&symfile_complaints,
15687 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15688 "for DIE at 0x%x [in module %s]"),
15689 paddress (gdbarch, part_die->lowpc),
15690 paddress (gdbarch, part_die->highpc),
4262abfb 15691 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15692 }
15693 else
15694 part_die->has_pc_info = 1;
15695 }
85cbf3d3 15696
c906108c
SS
15697 return info_ptr;
15698}
15699
72bf9492
DJ
15700/* Find a cached partial DIE at OFFSET in CU. */
15701
15702static struct partial_die_info *
b64f50a1 15703find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
15704{
15705 struct partial_die_info *lookup_die = NULL;
15706 struct partial_die_info part_die;
15707
15708 part_die.offset = offset;
b64f50a1
JK
15709 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15710 offset.sect_off);
72bf9492 15711
72bf9492
DJ
15712 return lookup_die;
15713}
15714
348e048f
DE
15715/* Find a partial DIE at OFFSET, which may or may not be in CU,
15716 except in the case of .debug_types DIEs which do not reference
15717 outside their CU (they do however referencing other types via
55f1336d 15718 DW_FORM_ref_sig8). */
72bf9492
DJ
15719
15720static struct partial_die_info *
36586728 15721find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 15722{
bb5ed363 15723 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
15724 struct dwarf2_per_cu_data *per_cu = NULL;
15725 struct partial_die_info *pd = NULL;
72bf9492 15726
36586728
TT
15727 if (offset_in_dwz == cu->per_cu->is_dwz
15728 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
15729 {
15730 pd = find_partial_die_in_comp_unit (offset, cu);
15731 if (pd != NULL)
15732 return pd;
0d99eb77
DE
15733 /* We missed recording what we needed.
15734 Load all dies and try again. */
15735 per_cu = cu->per_cu;
5afb4e99 15736 }
0d99eb77
DE
15737 else
15738 {
15739 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 15740 if (cu->per_cu->is_debug_types)
0d99eb77
DE
15741 {
15742 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15743 " external reference to offset 0x%lx [in module %s].\n"),
15744 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15745 bfd_get_filename (objfile->obfd));
15746 }
36586728
TT
15747 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15748 objfile);
72bf9492 15749
0d99eb77
DE
15750 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15751 load_partial_comp_unit (per_cu);
ae038cb0 15752
0d99eb77
DE
15753 per_cu->cu->last_used = 0;
15754 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15755 }
5afb4e99 15756
dee91e82
DE
15757 /* If we didn't find it, and not all dies have been loaded,
15758 load them all and try again. */
15759
5afb4e99
DJ
15760 if (pd == NULL && per_cu->load_all_dies == 0)
15761 {
5afb4e99 15762 per_cu->load_all_dies = 1;
fd820528
DE
15763
15764 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15765 THIS_CU->cu may already be in use. So we can't just free it and
15766 replace its DIEs with the ones we read in. Instead, we leave those
15767 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15768 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15769 set. */
dee91e82 15770 load_partial_comp_unit (per_cu);
5afb4e99
DJ
15771
15772 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15773 }
15774
15775 if (pd == NULL)
15776 internal_error (__FILE__, __LINE__,
3e43a32a
MS
15777 _("could not find partial DIE 0x%x "
15778 "in cache [from module %s]\n"),
b64f50a1 15779 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 15780 return pd;
72bf9492
DJ
15781}
15782
abc72ce4
DE
15783/* See if we can figure out if the class lives in a namespace. We do
15784 this by looking for a member function; its demangled name will
15785 contain namespace info, if there is any. */
15786
15787static void
15788guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15789 struct dwarf2_cu *cu)
15790{
15791 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15792 what template types look like, because the demangler
15793 frequently doesn't give the same name as the debug info. We
15794 could fix this by only using the demangled name to get the
15795 prefix (but see comment in read_structure_type). */
15796
15797 struct partial_die_info *real_pdi;
15798 struct partial_die_info *child_pdi;
15799
15800 /* If this DIE (this DIE's specification, if any) has a parent, then
15801 we should not do this. We'll prepend the parent's fully qualified
15802 name when we create the partial symbol. */
15803
15804 real_pdi = struct_pdi;
15805 while (real_pdi->has_specification)
36586728
TT
15806 real_pdi = find_partial_die (real_pdi->spec_offset,
15807 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
15808
15809 if (real_pdi->die_parent != NULL)
15810 return;
15811
15812 for (child_pdi = struct_pdi->die_child;
15813 child_pdi != NULL;
15814 child_pdi = child_pdi->die_sibling)
15815 {
15816 if (child_pdi->tag == DW_TAG_subprogram
15817 && child_pdi->linkage_name != NULL)
15818 {
15819 char *actual_class_name
15820 = language_class_name_from_physname (cu->language_defn,
15821 child_pdi->linkage_name);
15822 if (actual_class_name != NULL)
15823 {
15824 struct_pdi->name
34a68019 15825 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb
TT
15826 actual_class_name,
15827 strlen (actual_class_name));
abc72ce4
DE
15828 xfree (actual_class_name);
15829 }
15830 break;
15831 }
15832 }
15833}
15834
72bf9492
DJ
15835/* Adjust PART_DIE before generating a symbol for it. This function
15836 may set the is_external flag or change the DIE's name. */
15837
15838static void
15839fixup_partial_die (struct partial_die_info *part_die,
15840 struct dwarf2_cu *cu)
15841{
abc72ce4
DE
15842 /* Once we've fixed up a die, there's no point in doing so again.
15843 This also avoids a memory leak if we were to call
15844 guess_partial_die_structure_name multiple times. */
15845 if (part_die->fixup_called)
15846 return;
15847
72bf9492
DJ
15848 /* If we found a reference attribute and the DIE has no name, try
15849 to find a name in the referred to DIE. */
15850
15851 if (part_die->name == NULL && part_die->has_specification)
15852 {
15853 struct partial_die_info *spec_die;
72bf9492 15854
36586728
TT
15855 spec_die = find_partial_die (part_die->spec_offset,
15856 part_die->spec_is_dwz, cu);
72bf9492 15857
10b3939b 15858 fixup_partial_die (spec_die, cu);
72bf9492
DJ
15859
15860 if (spec_die->name)
15861 {
15862 part_die->name = spec_die->name;
15863
15864 /* Copy DW_AT_external attribute if it is set. */
15865 if (spec_die->is_external)
15866 part_die->is_external = spec_die->is_external;
15867 }
15868 }
15869
15870 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
15871
15872 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 15873 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 15874
abc72ce4
DE
15875 /* If there is no parent die to provide a namespace, and there are
15876 children, see if we can determine the namespace from their linkage
122d1940 15877 name. */
abc72ce4 15878 if (cu->language == language_cplus
8b70b953 15879 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
15880 && part_die->die_parent == NULL
15881 && part_die->has_children
15882 && (part_die->tag == DW_TAG_class_type
15883 || part_die->tag == DW_TAG_structure_type
15884 || part_die->tag == DW_TAG_union_type))
15885 guess_partial_die_structure_name (part_die, cu);
15886
53832f31
TT
15887 /* GCC might emit a nameless struct or union that has a linkage
15888 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15889 if (part_die->name == NULL
96408a79
SA
15890 && (part_die->tag == DW_TAG_class_type
15891 || part_die->tag == DW_TAG_interface_type
15892 || part_die->tag == DW_TAG_structure_type
15893 || part_die->tag == DW_TAG_union_type)
53832f31
TT
15894 && part_die->linkage_name != NULL)
15895 {
15896 char *demangled;
15897
8de20a37 15898 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
15899 if (demangled)
15900 {
96408a79
SA
15901 const char *base;
15902
15903 /* Strip any leading namespaces/classes, keep only the base name.
15904 DW_AT_name for named DIEs does not contain the prefixes. */
15905 base = strrchr (demangled, ':');
15906 if (base && base > demangled && base[-1] == ':')
15907 base++;
15908 else
15909 base = demangled;
15910
34a68019
TT
15911 part_die->name
15912 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15913 base, strlen (base));
53832f31
TT
15914 xfree (demangled);
15915 }
15916 }
15917
abc72ce4 15918 part_die->fixup_called = 1;
72bf9492
DJ
15919}
15920
a8329558 15921/* Read an attribute value described by an attribute form. */
c906108c 15922
d521ce57 15923static const gdb_byte *
dee91e82
DE
15924read_attribute_value (const struct die_reader_specs *reader,
15925 struct attribute *attr, unsigned form,
d521ce57 15926 const gdb_byte *info_ptr)
c906108c 15927{
dee91e82
DE
15928 struct dwarf2_cu *cu = reader->cu;
15929 bfd *abfd = reader->abfd;
e7c27a73 15930 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
15931 unsigned int bytes_read;
15932 struct dwarf_block *blk;
15933
a8329558
KW
15934 attr->form = form;
15935 switch (form)
c906108c 15936 {
c906108c 15937 case DW_FORM_ref_addr:
ae411497 15938 if (cu->header.version == 2)
4568ecf9 15939 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 15940 else
4568ecf9
DE
15941 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15942 &cu->header, &bytes_read);
ae411497
TT
15943 info_ptr += bytes_read;
15944 break;
36586728
TT
15945 case DW_FORM_GNU_ref_alt:
15946 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15947 info_ptr += bytes_read;
15948 break;
ae411497 15949 case DW_FORM_addr:
e7c27a73 15950 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 15951 info_ptr += bytes_read;
c906108c
SS
15952 break;
15953 case DW_FORM_block2:
7b5a2f43 15954 blk = dwarf_alloc_block (cu);
c906108c
SS
15955 blk->size = read_2_bytes (abfd, info_ptr);
15956 info_ptr += 2;
15957 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15958 info_ptr += blk->size;
15959 DW_BLOCK (attr) = blk;
15960 break;
15961 case DW_FORM_block4:
7b5a2f43 15962 blk = dwarf_alloc_block (cu);
c906108c
SS
15963 blk->size = read_4_bytes (abfd, info_ptr);
15964 info_ptr += 4;
15965 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15966 info_ptr += blk->size;
15967 DW_BLOCK (attr) = blk;
15968 break;
15969 case DW_FORM_data2:
15970 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15971 info_ptr += 2;
15972 break;
15973 case DW_FORM_data4:
15974 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15975 info_ptr += 4;
15976 break;
15977 case DW_FORM_data8:
15978 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15979 info_ptr += 8;
15980 break;
2dc7f7b3
TT
15981 case DW_FORM_sec_offset:
15982 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15983 info_ptr += bytes_read;
15984 break;
c906108c 15985 case DW_FORM_string:
9b1c24c8 15986 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 15987 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
15988 info_ptr += bytes_read;
15989 break;
4bdf3d34 15990 case DW_FORM_strp:
36586728
TT
15991 if (!cu->per_cu->is_dwz)
15992 {
15993 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15994 &bytes_read);
15995 DW_STRING_IS_CANONICAL (attr) = 0;
15996 info_ptr += bytes_read;
15997 break;
15998 }
15999 /* FALLTHROUGH */
16000 case DW_FORM_GNU_strp_alt:
16001 {
16002 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16003 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16004 &bytes_read);
16005
16006 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16007 DW_STRING_IS_CANONICAL (attr) = 0;
16008 info_ptr += bytes_read;
16009 }
4bdf3d34 16010 break;
2dc7f7b3 16011 case DW_FORM_exprloc:
c906108c 16012 case DW_FORM_block:
7b5a2f43 16013 blk = dwarf_alloc_block (cu);
c906108c
SS
16014 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16015 info_ptr += bytes_read;
16016 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16017 info_ptr += blk->size;
16018 DW_BLOCK (attr) = blk;
16019 break;
16020 case DW_FORM_block1:
7b5a2f43 16021 blk = dwarf_alloc_block (cu);
c906108c
SS
16022 blk->size = read_1_byte (abfd, info_ptr);
16023 info_ptr += 1;
16024 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16025 info_ptr += blk->size;
16026 DW_BLOCK (attr) = blk;
16027 break;
16028 case DW_FORM_data1:
16029 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16030 info_ptr += 1;
16031 break;
16032 case DW_FORM_flag:
16033 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16034 info_ptr += 1;
16035 break;
2dc7f7b3
TT
16036 case DW_FORM_flag_present:
16037 DW_UNSND (attr) = 1;
16038 break;
c906108c
SS
16039 case DW_FORM_sdata:
16040 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16041 info_ptr += bytes_read;
16042 break;
16043 case DW_FORM_udata:
16044 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16045 info_ptr += bytes_read;
16046 break;
16047 case DW_FORM_ref1:
4568ecf9
DE
16048 DW_UNSND (attr) = (cu->header.offset.sect_off
16049 + read_1_byte (abfd, info_ptr));
c906108c
SS
16050 info_ptr += 1;
16051 break;
16052 case DW_FORM_ref2:
4568ecf9
DE
16053 DW_UNSND (attr) = (cu->header.offset.sect_off
16054 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16055 info_ptr += 2;
16056 break;
16057 case DW_FORM_ref4:
4568ecf9
DE
16058 DW_UNSND (attr) = (cu->header.offset.sect_off
16059 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16060 info_ptr += 4;
16061 break;
613e1657 16062 case DW_FORM_ref8:
4568ecf9
DE
16063 DW_UNSND (attr) = (cu->header.offset.sect_off
16064 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16065 info_ptr += 8;
16066 break;
55f1336d 16067 case DW_FORM_ref_sig8:
ac9ec31b 16068 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16069 info_ptr += 8;
16070 break;
c906108c 16071 case DW_FORM_ref_udata:
4568ecf9
DE
16072 DW_UNSND (attr) = (cu->header.offset.sect_off
16073 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16074 info_ptr += bytes_read;
16075 break;
c906108c 16076 case DW_FORM_indirect:
a8329558
KW
16077 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16078 info_ptr += bytes_read;
dee91e82 16079 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 16080 break;
3019eac3
DE
16081 case DW_FORM_GNU_addr_index:
16082 if (reader->dwo_file == NULL)
16083 {
16084 /* For now flag a hard error.
16085 Later we can turn this into a complaint. */
16086 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16087 dwarf_form_name (form),
16088 bfd_get_filename (abfd));
16089 }
16090 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16091 info_ptr += bytes_read;
16092 break;
16093 case DW_FORM_GNU_str_index:
16094 if (reader->dwo_file == NULL)
16095 {
16096 /* For now flag a hard error.
16097 Later we can turn this into a complaint if warranted. */
16098 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16099 dwarf_form_name (form),
16100 bfd_get_filename (abfd));
16101 }
16102 {
16103 ULONGEST str_index =
16104 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16105
342587c4 16106 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16107 DW_STRING_IS_CANONICAL (attr) = 0;
16108 info_ptr += bytes_read;
16109 }
16110 break;
c906108c 16111 default:
8a3fe4f8 16112 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16113 dwarf_form_name (form),
16114 bfd_get_filename (abfd));
c906108c 16115 }
28e94949 16116
36586728 16117 /* Super hack. */
7771576e 16118 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16119 attr->form = DW_FORM_GNU_ref_alt;
16120
28e94949
JB
16121 /* We have seen instances where the compiler tried to emit a byte
16122 size attribute of -1 which ended up being encoded as an unsigned
16123 0xffffffff. Although 0xffffffff is technically a valid size value,
16124 an object of this size seems pretty unlikely so we can relatively
16125 safely treat these cases as if the size attribute was invalid and
16126 treat them as zero by default. */
16127 if (attr->name == DW_AT_byte_size
16128 && form == DW_FORM_data4
16129 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16130 {
16131 complaint
16132 (&symfile_complaints,
43bbcdc2
PH
16133 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16134 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16135 DW_UNSND (attr) = 0;
16136 }
28e94949 16137
c906108c
SS
16138 return info_ptr;
16139}
16140
a8329558
KW
16141/* Read an attribute described by an abbreviated attribute. */
16142
d521ce57 16143static const gdb_byte *
dee91e82
DE
16144read_attribute (const struct die_reader_specs *reader,
16145 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16146 const gdb_byte *info_ptr)
a8329558
KW
16147{
16148 attr->name = abbrev->name;
dee91e82 16149 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
16150}
16151
0963b4bd 16152/* Read dwarf information from a buffer. */
c906108c
SS
16153
16154static unsigned int
a1855c1d 16155read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16156{
fe1b8b76 16157 return bfd_get_8 (abfd, buf);
c906108c
SS
16158}
16159
16160static int
a1855c1d 16161read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16162{
fe1b8b76 16163 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16164}
16165
16166static unsigned int
a1855c1d 16167read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16168{
fe1b8b76 16169 return bfd_get_16 (abfd, buf);
c906108c
SS
16170}
16171
21ae7a4d 16172static int
a1855c1d 16173read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16174{
16175 return bfd_get_signed_16 (abfd, buf);
16176}
16177
c906108c 16178static unsigned int
a1855c1d 16179read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16180{
fe1b8b76 16181 return bfd_get_32 (abfd, buf);
c906108c
SS
16182}
16183
21ae7a4d 16184static int
a1855c1d 16185read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16186{
16187 return bfd_get_signed_32 (abfd, buf);
16188}
16189
93311388 16190static ULONGEST
a1855c1d 16191read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16192{
fe1b8b76 16193 return bfd_get_64 (abfd, buf);
c906108c
SS
16194}
16195
16196static CORE_ADDR
d521ce57 16197read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16198 unsigned int *bytes_read)
c906108c 16199{
e7c27a73 16200 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16201 CORE_ADDR retval = 0;
16202
107d2387 16203 if (cu_header->signed_addr_p)
c906108c 16204 {
107d2387
AC
16205 switch (cu_header->addr_size)
16206 {
16207 case 2:
fe1b8b76 16208 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16209 break;
16210 case 4:
fe1b8b76 16211 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16212 break;
16213 case 8:
fe1b8b76 16214 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16215 break;
16216 default:
8e65ff28 16217 internal_error (__FILE__, __LINE__,
e2e0b3e5 16218 _("read_address: bad switch, signed [in module %s]"),
659b0389 16219 bfd_get_filename (abfd));
107d2387
AC
16220 }
16221 }
16222 else
16223 {
16224 switch (cu_header->addr_size)
16225 {
16226 case 2:
fe1b8b76 16227 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16228 break;
16229 case 4:
fe1b8b76 16230 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16231 break;
16232 case 8:
fe1b8b76 16233 retval = bfd_get_64 (abfd, buf);
107d2387
AC
16234 break;
16235 default:
8e65ff28 16236 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
16237 _("read_address: bad switch, "
16238 "unsigned [in module %s]"),
659b0389 16239 bfd_get_filename (abfd));
107d2387 16240 }
c906108c 16241 }
64367e0a 16242
107d2387
AC
16243 *bytes_read = cu_header->addr_size;
16244 return retval;
c906108c
SS
16245}
16246
f7ef9339 16247/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
16248 specification allows the initial length to take up either 4 bytes
16249 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16250 bytes describe the length and all offsets will be 8 bytes in length
16251 instead of 4.
16252
f7ef9339
KB
16253 An older, non-standard 64-bit format is also handled by this
16254 function. The older format in question stores the initial length
16255 as an 8-byte quantity without an escape value. Lengths greater
16256 than 2^32 aren't very common which means that the initial 4 bytes
16257 is almost always zero. Since a length value of zero doesn't make
16258 sense for the 32-bit format, this initial zero can be considered to
16259 be an escape value which indicates the presence of the older 64-bit
16260 format. As written, the code can't detect (old format) lengths
917c78fc
MK
16261 greater than 4GB. If it becomes necessary to handle lengths
16262 somewhat larger than 4GB, we could allow other small values (such
16263 as the non-sensical values of 1, 2, and 3) to also be used as
16264 escape values indicating the presence of the old format.
f7ef9339 16265
917c78fc
MK
16266 The value returned via bytes_read should be used to increment the
16267 relevant pointer after calling read_initial_length().
c764a876 16268
613e1657
KB
16269 [ Note: read_initial_length() and read_offset() are based on the
16270 document entitled "DWARF Debugging Information Format", revision
f7ef9339 16271 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
16272 from:
16273
f7ef9339 16274 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 16275
613e1657
KB
16276 This document is only a draft and is subject to change. (So beware.)
16277
f7ef9339 16278 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
16279 determined empirically by examining 64-bit ELF files produced by
16280 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
16281
16282 - Kevin, July 16, 2002
613e1657
KB
16283 ] */
16284
16285static LONGEST
d521ce57 16286read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 16287{
fe1b8b76 16288 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 16289
dd373385 16290 if (length == 0xffffffff)
613e1657 16291 {
fe1b8b76 16292 length = bfd_get_64 (abfd, buf + 4);
613e1657 16293 *bytes_read = 12;
613e1657 16294 }
dd373385 16295 else if (length == 0)
f7ef9339 16296 {
dd373385 16297 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 16298 length = bfd_get_64 (abfd, buf);
f7ef9339 16299 *bytes_read = 8;
f7ef9339 16300 }
613e1657
KB
16301 else
16302 {
16303 *bytes_read = 4;
613e1657
KB
16304 }
16305
c764a876
DE
16306 return length;
16307}
dd373385 16308
c764a876
DE
16309/* Cover function for read_initial_length.
16310 Returns the length of the object at BUF, and stores the size of the
16311 initial length in *BYTES_READ and stores the size that offsets will be in
16312 *OFFSET_SIZE.
16313 If the initial length size is not equivalent to that specified in
16314 CU_HEADER then issue a complaint.
16315 This is useful when reading non-comp-unit headers. */
dd373385 16316
c764a876 16317static LONGEST
d521ce57 16318read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
16319 const struct comp_unit_head *cu_header,
16320 unsigned int *bytes_read,
16321 unsigned int *offset_size)
16322{
16323 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16324
16325 gdb_assert (cu_header->initial_length_size == 4
16326 || cu_header->initial_length_size == 8
16327 || cu_header->initial_length_size == 12);
16328
16329 if (cu_header->initial_length_size != *bytes_read)
16330 complaint (&symfile_complaints,
16331 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16332
c764a876 16333 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16334 return length;
613e1657
KB
16335}
16336
16337/* Read an offset from the data stream. The size of the offset is
917c78fc 16338 given by cu_header->offset_size. */
613e1657
KB
16339
16340static LONGEST
d521ce57
TT
16341read_offset (bfd *abfd, const gdb_byte *buf,
16342 const struct comp_unit_head *cu_header,
891d2f0b 16343 unsigned int *bytes_read)
c764a876
DE
16344{
16345 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16346
c764a876
DE
16347 *bytes_read = cu_header->offset_size;
16348 return offset;
16349}
16350
16351/* Read an offset from the data stream. */
16352
16353static LONGEST
d521ce57 16354read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16355{
16356 LONGEST retval = 0;
16357
c764a876 16358 switch (offset_size)
613e1657
KB
16359 {
16360 case 4:
fe1b8b76 16361 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16362 break;
16363 case 8:
fe1b8b76 16364 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16365 break;
16366 default:
8e65ff28 16367 internal_error (__FILE__, __LINE__,
c764a876 16368 _("read_offset_1: bad switch [in module %s]"),
659b0389 16369 bfd_get_filename (abfd));
613e1657
KB
16370 }
16371
917c78fc 16372 return retval;
613e1657
KB
16373}
16374
d521ce57
TT
16375static const gdb_byte *
16376read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16377{
16378 /* If the size of a host char is 8 bits, we can return a pointer
16379 to the buffer, otherwise we have to copy the data to a buffer
16380 allocated on the temporary obstack. */
4bdf3d34 16381 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16382 return buf;
c906108c
SS
16383}
16384
d521ce57
TT
16385static const char *
16386read_direct_string (bfd *abfd, const gdb_byte *buf,
16387 unsigned int *bytes_read_ptr)
c906108c
SS
16388{
16389 /* If the size of a host char is 8 bits, we can return a pointer
16390 to the string, otherwise we have to copy the string to a buffer
16391 allocated on the temporary obstack. */
4bdf3d34 16392 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
16393 if (*buf == '\0')
16394 {
16395 *bytes_read_ptr = 1;
16396 return NULL;
16397 }
d521ce57
TT
16398 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16399 return (const char *) buf;
4bdf3d34
JJ
16400}
16401
d521ce57 16402static const char *
cf2c3c16 16403read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 16404{
be391dca 16405 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 16406 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
16407 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16408 bfd_get_filename (abfd));
dce234bc 16409 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
16410 error (_("DW_FORM_strp pointing outside of "
16411 ".debug_str section [in module %s]"),
16412 bfd_get_filename (abfd));
4bdf3d34 16413 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 16414 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 16415 return NULL;
d521ce57 16416 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
16417}
16418
36586728
TT
16419/* Read a string at offset STR_OFFSET in the .debug_str section from
16420 the .dwz file DWZ. Throw an error if the offset is too large. If
16421 the string consists of a single NUL byte, return NULL; otherwise
16422 return a pointer to the string. */
16423
d521ce57 16424static const char *
36586728
TT
16425read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16426{
16427 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16428
16429 if (dwz->str.buffer == NULL)
16430 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16431 "section [in module %s]"),
16432 bfd_get_filename (dwz->dwz_bfd));
16433 if (str_offset >= dwz->str.size)
16434 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16435 ".debug_str section [in module %s]"),
16436 bfd_get_filename (dwz->dwz_bfd));
16437 gdb_assert (HOST_CHAR_BIT == 8);
16438 if (dwz->str.buffer[str_offset] == '\0')
16439 return NULL;
d521ce57 16440 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
16441}
16442
d521ce57
TT
16443static const char *
16444read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
16445 const struct comp_unit_head *cu_header,
16446 unsigned int *bytes_read_ptr)
16447{
16448 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16449
16450 return read_indirect_string_at_offset (abfd, str_offset);
16451}
16452
12df843f 16453static ULONGEST
d521ce57
TT
16454read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16455 unsigned int *bytes_read_ptr)
c906108c 16456{
12df843f 16457 ULONGEST result;
ce5d95e1 16458 unsigned int num_read;
c906108c
SS
16459 int i, shift;
16460 unsigned char byte;
16461
16462 result = 0;
16463 shift = 0;
16464 num_read = 0;
16465 i = 0;
16466 while (1)
16467 {
fe1b8b76 16468 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16469 buf++;
16470 num_read++;
12df843f 16471 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
16472 if ((byte & 128) == 0)
16473 {
16474 break;
16475 }
16476 shift += 7;
16477 }
16478 *bytes_read_ptr = num_read;
16479 return result;
16480}
16481
12df843f 16482static LONGEST
d521ce57
TT
16483read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16484 unsigned int *bytes_read_ptr)
c906108c 16485{
12df843f 16486 LONGEST result;
77e0b926 16487 int i, shift, num_read;
c906108c
SS
16488 unsigned char byte;
16489
16490 result = 0;
16491 shift = 0;
c906108c
SS
16492 num_read = 0;
16493 i = 0;
16494 while (1)
16495 {
fe1b8b76 16496 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16497 buf++;
16498 num_read++;
12df843f 16499 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
16500 shift += 7;
16501 if ((byte & 128) == 0)
16502 {
16503 break;
16504 }
16505 }
77e0b926 16506 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 16507 result |= -(((LONGEST) 1) << shift);
c906108c
SS
16508 *bytes_read_ptr = num_read;
16509 return result;
16510}
16511
3019eac3
DE
16512/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16513 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16514 ADDR_SIZE is the size of addresses from the CU header. */
16515
16516static CORE_ADDR
16517read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16518{
16519 struct objfile *objfile = dwarf2_per_objfile->objfile;
16520 bfd *abfd = objfile->obfd;
16521 const gdb_byte *info_ptr;
16522
16523 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16524 if (dwarf2_per_objfile->addr.buffer == NULL)
16525 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 16526 objfile_name (objfile));
3019eac3
DE
16527 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16528 error (_("DW_FORM_addr_index pointing outside of "
16529 ".debug_addr section [in module %s]"),
4262abfb 16530 objfile_name (objfile));
3019eac3
DE
16531 info_ptr = (dwarf2_per_objfile->addr.buffer
16532 + addr_base + addr_index * addr_size);
16533 if (addr_size == 4)
16534 return bfd_get_32 (abfd, info_ptr);
16535 else
16536 return bfd_get_64 (abfd, info_ptr);
16537}
16538
16539/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16540
16541static CORE_ADDR
16542read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16543{
16544 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16545}
16546
16547/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16548
16549static CORE_ADDR
d521ce57 16550read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
16551 unsigned int *bytes_read)
16552{
16553 bfd *abfd = cu->objfile->obfd;
16554 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16555
16556 return read_addr_index (cu, addr_index);
16557}
16558
16559/* Data structure to pass results from dwarf2_read_addr_index_reader
16560 back to dwarf2_read_addr_index. */
16561
16562struct dwarf2_read_addr_index_data
16563{
16564 ULONGEST addr_base;
16565 int addr_size;
16566};
16567
16568/* die_reader_func for dwarf2_read_addr_index. */
16569
16570static void
16571dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 16572 const gdb_byte *info_ptr,
3019eac3
DE
16573 struct die_info *comp_unit_die,
16574 int has_children,
16575 void *data)
16576{
16577 struct dwarf2_cu *cu = reader->cu;
16578 struct dwarf2_read_addr_index_data *aidata =
16579 (struct dwarf2_read_addr_index_data *) data;
16580
16581 aidata->addr_base = cu->addr_base;
16582 aidata->addr_size = cu->header.addr_size;
16583}
16584
16585/* Given an index in .debug_addr, fetch the value.
16586 NOTE: This can be called during dwarf expression evaluation,
16587 long after the debug information has been read, and thus per_cu->cu
16588 may no longer exist. */
16589
16590CORE_ADDR
16591dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16592 unsigned int addr_index)
16593{
16594 struct objfile *objfile = per_cu->objfile;
16595 struct dwarf2_cu *cu = per_cu->cu;
16596 ULONGEST addr_base;
16597 int addr_size;
16598
16599 /* This is intended to be called from outside this file. */
16600 dw2_setup (objfile);
16601
16602 /* We need addr_base and addr_size.
16603 If we don't have PER_CU->cu, we have to get it.
16604 Nasty, but the alternative is storing the needed info in PER_CU,
16605 which at this point doesn't seem justified: it's not clear how frequently
16606 it would get used and it would increase the size of every PER_CU.
16607 Entry points like dwarf2_per_cu_addr_size do a similar thing
16608 so we're not in uncharted territory here.
16609 Alas we need to be a bit more complicated as addr_base is contained
16610 in the DIE.
16611
16612 We don't need to read the entire CU(/TU).
16613 We just need the header and top level die.
a1b64ce1 16614
3019eac3 16615 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 16616 For now we skip this optimization. */
3019eac3
DE
16617
16618 if (cu != NULL)
16619 {
16620 addr_base = cu->addr_base;
16621 addr_size = cu->header.addr_size;
16622 }
16623 else
16624 {
16625 struct dwarf2_read_addr_index_data aidata;
16626
a1b64ce1
DE
16627 /* Note: We can't use init_cutu_and_read_dies_simple here,
16628 we need addr_base. */
16629 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16630 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
16631 addr_base = aidata.addr_base;
16632 addr_size = aidata.addr_size;
16633 }
16634
16635 return read_addr_index_1 (addr_index, addr_base, addr_size);
16636}
16637
57d63ce2
DE
16638/* Given a DW_FORM_GNU_str_index, fetch the string.
16639 This is only used by the Fission support. */
3019eac3 16640
d521ce57 16641static const char *
342587c4 16642read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
16643{
16644 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 16645 const char *objf_name = objfile_name (objfile);
3019eac3 16646 bfd *abfd = objfile->obfd;
342587c4 16647 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
16648 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16649 struct dwarf2_section_info *str_offsets_section =
16650 &reader->dwo_file->sections.str_offsets;
d521ce57 16651 const gdb_byte *info_ptr;
3019eac3 16652 ULONGEST str_offset;
57d63ce2 16653 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 16654
73869dc2
DE
16655 dwarf2_read_section (objfile, str_section);
16656 dwarf2_read_section (objfile, str_offsets_section);
16657 if (str_section->buffer == NULL)
57d63ce2 16658 error (_("%s used without .debug_str.dwo section"
3019eac3 16659 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16660 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16661 if (str_offsets_section->buffer == NULL)
57d63ce2 16662 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 16663 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16664 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16665 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 16666 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 16667 " section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16668 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16669 info_ptr = (str_offsets_section->buffer
3019eac3
DE
16670 + str_index * cu->header.offset_size);
16671 if (cu->header.offset_size == 4)
16672 str_offset = bfd_get_32 (abfd, info_ptr);
16673 else
16674 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 16675 if (str_offset >= str_section->size)
57d63ce2 16676 error (_("Offset from %s pointing outside of"
3019eac3 16677 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16678 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16679 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
16680}
16681
3019eac3
DE
16682/* Return the length of an LEB128 number in BUF. */
16683
16684static int
16685leb128_size (const gdb_byte *buf)
16686{
16687 const gdb_byte *begin = buf;
16688 gdb_byte byte;
16689
16690 while (1)
16691 {
16692 byte = *buf++;
16693 if ((byte & 128) == 0)
16694 return buf - begin;
16695 }
16696}
16697
c906108c 16698static void
e142c38c 16699set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
16700{
16701 switch (lang)
16702 {
16703 case DW_LANG_C89:
76bee0cc 16704 case DW_LANG_C99:
c906108c 16705 case DW_LANG_C:
d1be3247 16706 case DW_LANG_UPC:
e142c38c 16707 cu->language = language_c;
c906108c
SS
16708 break;
16709 case DW_LANG_C_plus_plus:
e142c38c 16710 cu->language = language_cplus;
c906108c 16711 break;
6aecb9c2
JB
16712 case DW_LANG_D:
16713 cu->language = language_d;
16714 break;
c906108c
SS
16715 case DW_LANG_Fortran77:
16716 case DW_LANG_Fortran90:
b21b22e0 16717 case DW_LANG_Fortran95:
e142c38c 16718 cu->language = language_fortran;
c906108c 16719 break;
a766d390
DE
16720 case DW_LANG_Go:
16721 cu->language = language_go;
16722 break;
c906108c 16723 case DW_LANG_Mips_Assembler:
e142c38c 16724 cu->language = language_asm;
c906108c 16725 break;
bebd888e 16726 case DW_LANG_Java:
e142c38c 16727 cu->language = language_java;
bebd888e 16728 break;
c906108c 16729 case DW_LANG_Ada83:
8aaf0b47 16730 case DW_LANG_Ada95:
bc5f45f8
JB
16731 cu->language = language_ada;
16732 break;
72019c9c
GM
16733 case DW_LANG_Modula2:
16734 cu->language = language_m2;
16735 break;
fe8e67fd
PM
16736 case DW_LANG_Pascal83:
16737 cu->language = language_pascal;
16738 break;
22566fbd
DJ
16739 case DW_LANG_ObjC:
16740 cu->language = language_objc;
16741 break;
c906108c
SS
16742 case DW_LANG_Cobol74:
16743 case DW_LANG_Cobol85:
c906108c 16744 default:
e142c38c 16745 cu->language = language_minimal;
c906108c
SS
16746 break;
16747 }
e142c38c 16748 cu->language_defn = language_def (cu->language);
c906108c
SS
16749}
16750
16751/* Return the named attribute or NULL if not there. */
16752
16753static struct attribute *
e142c38c 16754dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 16755{
a48e046c 16756 for (;;)
c906108c 16757 {
a48e046c
TT
16758 unsigned int i;
16759 struct attribute *spec = NULL;
16760
16761 for (i = 0; i < die->num_attrs; ++i)
16762 {
16763 if (die->attrs[i].name == name)
16764 return &die->attrs[i];
16765 if (die->attrs[i].name == DW_AT_specification
16766 || die->attrs[i].name == DW_AT_abstract_origin)
16767 spec = &die->attrs[i];
16768 }
16769
16770 if (!spec)
16771 break;
c906108c 16772
f2f0e013 16773 die = follow_die_ref (die, spec, &cu);
f2f0e013 16774 }
c5aa993b 16775
c906108c
SS
16776 return NULL;
16777}
16778
348e048f
DE
16779/* Return the named attribute or NULL if not there,
16780 but do not follow DW_AT_specification, etc.
16781 This is for use in contexts where we're reading .debug_types dies.
16782 Following DW_AT_specification, DW_AT_abstract_origin will take us
16783 back up the chain, and we want to go down. */
16784
16785static struct attribute *
45e58e77 16786dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
16787{
16788 unsigned int i;
16789
16790 for (i = 0; i < die->num_attrs; ++i)
16791 if (die->attrs[i].name == name)
16792 return &die->attrs[i];
16793
16794 return NULL;
16795}
16796
05cf31d1
JB
16797/* Return non-zero iff the attribute NAME is defined for the given DIE,
16798 and holds a non-zero value. This function should only be used for
2dc7f7b3 16799 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
16800
16801static int
16802dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16803{
16804 struct attribute *attr = dwarf2_attr (die, name, cu);
16805
16806 return (attr && DW_UNSND (attr));
16807}
16808
3ca72b44 16809static int
e142c38c 16810die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 16811{
05cf31d1
JB
16812 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16813 which value is non-zero. However, we have to be careful with
16814 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16815 (via dwarf2_flag_true_p) follows this attribute. So we may
16816 end up accidently finding a declaration attribute that belongs
16817 to a different DIE referenced by the specification attribute,
16818 even though the given DIE does not have a declaration attribute. */
16819 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16820 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
16821}
16822
63d06c5c 16823/* Return the die giving the specification for DIE, if there is
f2f0e013 16824 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
16825 containing the return value on output. If there is no
16826 specification, but there is an abstract origin, that is
16827 returned. */
63d06c5c
DC
16828
16829static struct die_info *
f2f0e013 16830die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 16831{
f2f0e013
DJ
16832 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16833 *spec_cu);
63d06c5c 16834
edb3359d
DJ
16835 if (spec_attr == NULL)
16836 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16837
63d06c5c
DC
16838 if (spec_attr == NULL)
16839 return NULL;
16840 else
f2f0e013 16841 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 16842}
c906108c 16843
debd256d 16844/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
16845 refers to.
16846 NOTE: This is also used as a "cleanup" function. */
16847
debd256d
JB
16848static void
16849free_line_header (struct line_header *lh)
16850{
16851 if (lh->standard_opcode_lengths)
a8bc7b56 16852 xfree (lh->standard_opcode_lengths);
debd256d
JB
16853
16854 /* Remember that all the lh->file_names[i].name pointers are
16855 pointers into debug_line_buffer, and don't need to be freed. */
16856 if (lh->file_names)
a8bc7b56 16857 xfree (lh->file_names);
debd256d
JB
16858
16859 /* Similarly for the include directory names. */
16860 if (lh->include_dirs)
a8bc7b56 16861 xfree (lh->include_dirs);
debd256d 16862
a8bc7b56 16863 xfree (lh);
debd256d
JB
16864}
16865
debd256d 16866/* Add an entry to LH's include directory table. */
ae2de4f8 16867
debd256d 16868static void
d521ce57 16869add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 16870{
debd256d
JB
16871 /* Grow the array if necessary. */
16872 if (lh->include_dirs_size == 0)
c5aa993b 16873 {
debd256d
JB
16874 lh->include_dirs_size = 1; /* for testing */
16875 lh->include_dirs = xmalloc (lh->include_dirs_size
16876 * sizeof (*lh->include_dirs));
16877 }
16878 else if (lh->num_include_dirs >= lh->include_dirs_size)
16879 {
16880 lh->include_dirs_size *= 2;
16881 lh->include_dirs = xrealloc (lh->include_dirs,
16882 (lh->include_dirs_size
16883 * sizeof (*lh->include_dirs)));
c5aa993b 16884 }
c906108c 16885
debd256d
JB
16886 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16887}
6e70227d 16888
debd256d 16889/* Add an entry to LH's file name table. */
ae2de4f8 16890
debd256d
JB
16891static void
16892add_file_name (struct line_header *lh,
d521ce57 16893 const char *name,
debd256d
JB
16894 unsigned int dir_index,
16895 unsigned int mod_time,
16896 unsigned int length)
16897{
16898 struct file_entry *fe;
16899
16900 /* Grow the array if necessary. */
16901 if (lh->file_names_size == 0)
16902 {
16903 lh->file_names_size = 1; /* for testing */
16904 lh->file_names = xmalloc (lh->file_names_size
16905 * sizeof (*lh->file_names));
16906 }
16907 else if (lh->num_file_names >= lh->file_names_size)
16908 {
16909 lh->file_names_size *= 2;
16910 lh->file_names = xrealloc (lh->file_names,
16911 (lh->file_names_size
16912 * sizeof (*lh->file_names)));
16913 }
16914
16915 fe = &lh->file_names[lh->num_file_names++];
16916 fe->name = name;
16917 fe->dir_index = dir_index;
16918 fe->mod_time = mod_time;
16919 fe->length = length;
aaa75496 16920 fe->included_p = 0;
cb1df416 16921 fe->symtab = NULL;
debd256d 16922}
6e70227d 16923
36586728
TT
16924/* A convenience function to find the proper .debug_line section for a
16925 CU. */
16926
16927static struct dwarf2_section_info *
16928get_debug_line_section (struct dwarf2_cu *cu)
16929{
16930 struct dwarf2_section_info *section;
16931
16932 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16933 DWO file. */
16934 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16935 section = &cu->dwo_unit->dwo_file->sections.line;
16936 else if (cu->per_cu->is_dwz)
16937 {
16938 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16939
16940 section = &dwz->line;
16941 }
16942 else
16943 section = &dwarf2_per_objfile->line;
16944
16945 return section;
16946}
16947
debd256d 16948/* Read the statement program header starting at OFFSET in
3019eac3 16949 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 16950 to a struct line_header, allocated using xmalloc.
debd256d
JB
16951
16952 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
16953 the returned object point into the dwarf line section buffer,
16954 and must not be freed. */
ae2de4f8 16955
debd256d 16956static struct line_header *
3019eac3 16957dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
16958{
16959 struct cleanup *back_to;
16960 struct line_header *lh;
d521ce57 16961 const gdb_byte *line_ptr;
c764a876 16962 unsigned int bytes_read, offset_size;
debd256d 16963 int i;
d521ce57 16964 const char *cur_dir, *cur_file;
3019eac3
DE
16965 struct dwarf2_section_info *section;
16966 bfd *abfd;
16967
36586728 16968 section = get_debug_line_section (cu);
3019eac3
DE
16969 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16970 if (section->buffer == NULL)
debd256d 16971 {
3019eac3
DE
16972 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16973 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16974 else
16975 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
16976 return 0;
16977 }
16978
fceca515
DE
16979 /* We can't do this until we know the section is non-empty.
16980 Only then do we know we have such a section. */
a32a8923 16981 abfd = get_section_bfd_owner (section);
fceca515 16982
a738430d
MK
16983 /* Make sure that at least there's room for the total_length field.
16984 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 16985 if (offset + 4 >= section->size)
debd256d 16986 {
4d3c2250 16987 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
16988 return 0;
16989 }
16990
16991 lh = xmalloc (sizeof (*lh));
16992 memset (lh, 0, sizeof (*lh));
16993 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16994 (void *) lh);
16995
3019eac3 16996 line_ptr = section->buffer + offset;
debd256d 16997
a738430d 16998 /* Read in the header. */
6e70227d 16999 lh->total_length =
c764a876
DE
17000 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17001 &bytes_read, &offset_size);
debd256d 17002 line_ptr += bytes_read;
3019eac3 17003 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17004 {
4d3c2250 17005 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 17006 do_cleanups (back_to);
debd256d
JB
17007 return 0;
17008 }
17009 lh->statement_program_end = line_ptr + lh->total_length;
17010 lh->version = read_2_bytes (abfd, line_ptr);
17011 line_ptr += 2;
c764a876
DE
17012 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17013 line_ptr += offset_size;
debd256d
JB
17014 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17015 line_ptr += 1;
2dc7f7b3
TT
17016 if (lh->version >= 4)
17017 {
17018 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17019 line_ptr += 1;
17020 }
17021 else
17022 lh->maximum_ops_per_instruction = 1;
17023
17024 if (lh->maximum_ops_per_instruction == 0)
17025 {
17026 lh->maximum_ops_per_instruction = 1;
17027 complaint (&symfile_complaints,
3e43a32a
MS
17028 _("invalid maximum_ops_per_instruction "
17029 "in `.debug_line' section"));
2dc7f7b3
TT
17030 }
17031
debd256d
JB
17032 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17033 line_ptr += 1;
17034 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17035 line_ptr += 1;
17036 lh->line_range = read_1_byte (abfd, line_ptr);
17037 line_ptr += 1;
17038 lh->opcode_base = read_1_byte (abfd, line_ptr);
17039 line_ptr += 1;
17040 lh->standard_opcode_lengths
fe1b8b76 17041 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
17042
17043 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17044 for (i = 1; i < lh->opcode_base; ++i)
17045 {
17046 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17047 line_ptr += 1;
17048 }
17049
a738430d 17050 /* Read directory table. */
9b1c24c8 17051 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17052 {
17053 line_ptr += bytes_read;
17054 add_include_dir (lh, cur_dir);
17055 }
17056 line_ptr += bytes_read;
17057
a738430d 17058 /* Read file name table. */
9b1c24c8 17059 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17060 {
17061 unsigned int dir_index, mod_time, length;
17062
17063 line_ptr += bytes_read;
17064 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17065 line_ptr += bytes_read;
17066 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17067 line_ptr += bytes_read;
17068 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17069 line_ptr += bytes_read;
17070
17071 add_file_name (lh, cur_file, dir_index, mod_time, length);
17072 }
17073 line_ptr += bytes_read;
6e70227d 17074 lh->statement_program_start = line_ptr;
debd256d 17075
3019eac3 17076 if (line_ptr > (section->buffer + section->size))
4d3c2250 17077 complaint (&symfile_complaints,
3e43a32a
MS
17078 _("line number info header doesn't "
17079 "fit in `.debug_line' section"));
debd256d
JB
17080
17081 discard_cleanups (back_to);
17082 return lh;
17083}
c906108c 17084
c6da4cef
DE
17085/* Subroutine of dwarf_decode_lines to simplify it.
17086 Return the file name of the psymtab for included file FILE_INDEX
17087 in line header LH of PST.
17088 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17089 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
17090 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17091
17092 The function creates dangling cleanup registration. */
c6da4cef 17093
d521ce57 17094static const char *
c6da4cef
DE
17095psymtab_include_file_name (const struct line_header *lh, int file_index,
17096 const struct partial_symtab *pst,
17097 const char *comp_dir)
17098{
17099 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
17100 const char *include_name = fe.name;
17101 const char *include_name_to_compare = include_name;
17102 const char *dir_name = NULL;
72b9f47f
TT
17103 const char *pst_filename;
17104 char *copied_name = NULL;
c6da4cef
DE
17105 int file_is_pst;
17106
17107 if (fe.dir_index)
17108 dir_name = lh->include_dirs[fe.dir_index - 1];
17109
17110 if (!IS_ABSOLUTE_PATH (include_name)
17111 && (dir_name != NULL || comp_dir != NULL))
17112 {
17113 /* Avoid creating a duplicate psymtab for PST.
17114 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17115 Before we do the comparison, however, we need to account
17116 for DIR_NAME and COMP_DIR.
17117 First prepend dir_name (if non-NULL). If we still don't
17118 have an absolute path prepend comp_dir (if non-NULL).
17119 However, the directory we record in the include-file's
17120 psymtab does not contain COMP_DIR (to match the
17121 corresponding symtab(s)).
17122
17123 Example:
17124
17125 bash$ cd /tmp
17126 bash$ gcc -g ./hello.c
17127 include_name = "hello.c"
17128 dir_name = "."
17129 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
17130 DW_AT_name = "./hello.c"
17131
17132 */
c6da4cef
DE
17133
17134 if (dir_name != NULL)
17135 {
d521ce57
TT
17136 char *tem = concat (dir_name, SLASH_STRING,
17137 include_name, (char *)NULL);
17138
17139 make_cleanup (xfree, tem);
17140 include_name = tem;
c6da4cef 17141 include_name_to_compare = include_name;
c6da4cef
DE
17142 }
17143 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17144 {
d521ce57
TT
17145 char *tem = concat (comp_dir, SLASH_STRING,
17146 include_name, (char *)NULL);
17147
17148 make_cleanup (xfree, tem);
17149 include_name_to_compare = tem;
c6da4cef
DE
17150 }
17151 }
17152
17153 pst_filename = pst->filename;
17154 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17155 {
72b9f47f
TT
17156 copied_name = concat (pst->dirname, SLASH_STRING,
17157 pst_filename, (char *)NULL);
17158 pst_filename = copied_name;
c6da4cef
DE
17159 }
17160
1e3fad37 17161 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 17162
72b9f47f
TT
17163 if (copied_name != NULL)
17164 xfree (copied_name);
c6da4cef
DE
17165
17166 if (file_is_pst)
17167 return NULL;
17168 return include_name;
17169}
17170
c91513d8
PP
17171/* Ignore this record_line request. */
17172
17173static void
17174noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17175{
17176 return;
17177}
17178
a05a36a5
DE
17179/* Return non-zero if we should add LINE to the line number table.
17180 LINE is the line to add, LAST_LINE is the last line that was added,
17181 LAST_SUBFILE is the subfile for LAST_LINE.
17182 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17183 had a non-zero discriminator.
17184
17185 We have to be careful in the presence of discriminators.
17186 E.g., for this line:
17187
17188 for (i = 0; i < 100000; i++);
17189
17190 clang can emit four line number entries for that one line,
17191 each with a different discriminator.
17192 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17193
17194 However, we want gdb to coalesce all four entries into one.
17195 Otherwise the user could stepi into the middle of the line and
17196 gdb would get confused about whether the pc really was in the
17197 middle of the line.
17198
17199 Things are further complicated by the fact that two consecutive
17200 line number entries for the same line is a heuristic used by gcc
17201 to denote the end of the prologue. So we can't just discard duplicate
17202 entries, we have to be selective about it. The heuristic we use is
17203 that we only collapse consecutive entries for the same line if at least
17204 one of those entries has a non-zero discriminator. PR 17276.
17205
17206 Note: Addresses in the line number state machine can never go backwards
17207 within one sequence, thus this coalescing is ok. */
17208
17209static int
17210dwarf_record_line_p (unsigned int line, unsigned int last_line,
17211 int line_has_non_zero_discriminator,
17212 struct subfile *last_subfile)
17213{
17214 if (current_subfile != last_subfile)
17215 return 1;
17216 if (line != last_line)
17217 return 1;
17218 /* Same line for the same file that we've seen already.
17219 As a last check, for pr 17276, only record the line if the line
17220 has never had a non-zero discriminator. */
17221 if (!line_has_non_zero_discriminator)
17222 return 1;
17223 return 0;
17224}
17225
252a6764
DE
17226/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17227 in the line table of subfile SUBFILE. */
17228
17229static void
17230dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17231 unsigned int line, CORE_ADDR address,
17232 record_line_ftype p_record_line)
17233{
17234 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17235
d5962de5 17236 (*p_record_line) (subfile, line, addr);
252a6764
DE
17237}
17238
17239/* Subroutine of dwarf_decode_lines_1 to simplify it.
17240 Mark the end of a set of line number records.
17241 The arguments are the same as for dwarf_record_line.
17242 If SUBFILE is NULL the request is ignored. */
17243
17244static void
17245dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17246 CORE_ADDR address, record_line_ftype p_record_line)
17247{
17248 if (subfile != NULL)
17249 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17250}
17251
f3f5162e
DE
17252/* Subroutine of dwarf_decode_lines to simplify it.
17253 Process the line number information in LH. */
debd256d 17254
c906108c 17255static void
f3f5162e 17256dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
c3b7b696
YQ
17257 struct dwarf2_cu *cu, const int decode_for_pst_p,
17258 CORE_ADDR lowpc)
c906108c 17259{
d521ce57
TT
17260 const gdb_byte *line_ptr, *extended_end;
17261 const gdb_byte *line_end;
a8c50c1f 17262 unsigned int bytes_read, extended_len;
699ca60a 17263 unsigned char op_code, extended_op;
e142c38c
DJ
17264 CORE_ADDR baseaddr;
17265 struct objfile *objfile = cu->objfile;
f3f5162e 17266 bfd *abfd = objfile->obfd;
fbf65064 17267 struct gdbarch *gdbarch = get_objfile_arch (objfile);
f3f5162e 17268 struct subfile *last_subfile = NULL;
c91513d8
PP
17269 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17270 = record_line;
e142c38c
DJ
17271
17272 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17273
debd256d
JB
17274 line_ptr = lh->statement_program_start;
17275 line_end = lh->statement_program_end;
c906108c
SS
17276
17277 /* Read the statement sequences until there's nothing left. */
17278 while (line_ptr < line_end)
17279 {
17280 /* state machine registers */
17281 CORE_ADDR address = 0;
17282 unsigned int file = 1;
17283 unsigned int line = 1;
debd256d 17284 int is_stmt = lh->default_is_stmt;
c906108c 17285 int end_sequence = 0;
2dc7f7b3 17286 unsigned char op_index = 0;
a05a36a5
DE
17287 unsigned int discriminator = 0;
17288 /* The last line number that was recorded, used to coalesce
17289 consecutive entries for the same line. This can happen, for
17290 example, when discriminators are present. PR 17276. */
17291 unsigned int last_line = 0;
17292 int line_has_non_zero_discriminator = 0;
c906108c 17293
aaa75496 17294 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 17295 {
aaa75496 17296 /* Start a subfile for the current file of the state machine. */
debd256d
JB
17297 /* lh->include_dirs and lh->file_names are 0-based, but the
17298 directory and file name numbers in the statement program
17299 are 1-based. */
17300 struct file_entry *fe = &lh->file_names[file - 1];
d521ce57 17301 const char *dir = NULL;
a738430d 17302
debd256d
JB
17303 if (fe->dir_index)
17304 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
17305
17306 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
17307 }
17308
a738430d 17309 /* Decode the table. */
c5aa993b 17310 while (!end_sequence)
c906108c
SS
17311 {
17312 op_code = read_1_byte (abfd, line_ptr);
17313 line_ptr += 1;
59205f5a
JB
17314 if (line_ptr > line_end)
17315 {
17316 dwarf2_debug_line_missing_end_sequence_complaint ();
17317 break;
17318 }
9aa1fe7e 17319
debd256d 17320 if (op_code >= lh->opcode_base)
6e70227d 17321 {
8e07a239 17322 /* Special opcode. */
699ca60a 17323 unsigned char adj_opcode;
a05a36a5 17324 int line_delta;
8e07a239 17325
debd256d 17326 adj_opcode = op_code - lh->opcode_base;
2dc7f7b3
TT
17327 address += (((op_index + (adj_opcode / lh->line_range))
17328 / lh->maximum_ops_per_instruction)
17329 * lh->minimum_instruction_length);
17330 op_index = ((op_index + (adj_opcode / lh->line_range))
17331 % lh->maximum_ops_per_instruction);
a05a36a5
DE
17332 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17333 line += line_delta;
17334 if (line_delta != 0)
17335 line_has_non_zero_discriminator = discriminator != 0;
59205f5a 17336 if (lh->num_file_names < file || file == 0)
25e43795 17337 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
17338 /* For now we ignore lines not starting on an
17339 instruction boundary. */
17340 else if (op_index == 0)
25e43795
DJ
17341 {
17342 lh->file_names[file - 1].included_p = 1;
ca5f395d 17343 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
17344 {
17345 if (last_subfile != current_subfile)
17346 {
252a6764
DE
17347 dwarf_finish_line (gdbarch, last_subfile,
17348 address, p_record_line);
fbf65064 17349 }
a05a36a5
DE
17350 if (dwarf_record_line_p (line, last_line,
17351 line_has_non_zero_discriminator,
17352 last_subfile))
17353 {
17354 dwarf_record_line (gdbarch, current_subfile,
17355 line, address, p_record_line);
17356 }
17357 last_subfile = current_subfile;
17358 last_line = line;
366da635 17359 }
25e43795 17360 }
a05a36a5 17361 discriminator = 0;
9aa1fe7e
GK
17362 }
17363 else switch (op_code)
c906108c
SS
17364 {
17365 case DW_LNS_extended_op:
3e43a32a
MS
17366 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17367 &bytes_read);
473b7be6 17368 line_ptr += bytes_read;
a8c50c1f 17369 extended_end = line_ptr + extended_len;
c906108c
SS
17370 extended_op = read_1_byte (abfd, line_ptr);
17371 line_ptr += 1;
17372 switch (extended_op)
17373 {
17374 case DW_LNE_end_sequence:
c91513d8 17375 p_record_line = record_line;
c906108c 17376 end_sequence = 1;
c906108c
SS
17377 break;
17378 case DW_LNE_set_address:
e7c27a73 17379 address = read_address (abfd, line_ptr, cu, &bytes_read);
c91513d8 17380
c3b7b696
YQ
17381 /* If address < lowpc then it's not a usable value, it's
17382 outside the pc range of the CU. However, we restrict
17383 the test to only address values of zero to preserve
17384 GDB's previous behaviour which is to handle the specific
17385 case of a function being GC'd by the linker. */
17386 if (address == 0 && address < lowpc)
c91513d8
PP
17387 {
17388 /* This line table is for a function which has been
17389 GCd by the linker. Ignore it. PR gdb/12528 */
17390
17391 long line_offset
36586728 17392 = line_ptr - get_debug_line_section (cu)->buffer;
c91513d8
PP
17393
17394 complaint (&symfile_complaints,
17395 _(".debug_line address at offset 0x%lx is 0 "
17396 "[in module %s]"),
4262abfb 17397 line_offset, objfile_name (objfile));
c91513d8 17398 p_record_line = noop_record_line;
37780ee5
DE
17399 /* Note: p_record_line is left as noop_record_line
17400 until we see DW_LNE_end_sequence. */
c91513d8
PP
17401 }
17402
2dc7f7b3 17403 op_index = 0;
107d2387
AC
17404 line_ptr += bytes_read;
17405 address += baseaddr;
c906108c
SS
17406 break;
17407 case DW_LNE_define_file:
debd256d 17408 {
d521ce57 17409 const char *cur_file;
debd256d 17410 unsigned int dir_index, mod_time, length;
6e70227d 17411
3e43a32a
MS
17412 cur_file = read_direct_string (abfd, line_ptr,
17413 &bytes_read);
debd256d
JB
17414 line_ptr += bytes_read;
17415 dir_index =
17416 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17417 line_ptr += bytes_read;
17418 mod_time =
17419 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17420 line_ptr += bytes_read;
17421 length =
17422 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17423 line_ptr += bytes_read;
17424 add_file_name (lh, cur_file, dir_index, mod_time, length);
17425 }
c906108c 17426 break;
d0c6ba3d
CC
17427 case DW_LNE_set_discriminator:
17428 /* The discriminator is not interesting to the debugger;
a05a36a5
DE
17429 just ignore it. We still need to check its value though:
17430 if there are consecutive entries for the same
17431 (non-prologue) line we want to coalesce them.
17432 PR 17276. */
17433 discriminator = read_unsigned_leb128 (abfd, line_ptr,
17434 &bytes_read);
17435 line_has_non_zero_discriminator |= discriminator != 0;
17436 line_ptr += bytes_read;
d0c6ba3d 17437 break;
c906108c 17438 default:
4d3c2250 17439 complaint (&symfile_complaints,
e2e0b3e5 17440 _("mangled .debug_line section"));
debd256d 17441 return;
c906108c 17442 }
a8c50c1f
DJ
17443 /* Make sure that we parsed the extended op correctly. If e.g.
17444 we expected a different address size than the producer used,
17445 we may have read the wrong number of bytes. */
17446 if (line_ptr != extended_end)
17447 {
17448 complaint (&symfile_complaints,
17449 _("mangled .debug_line section"));
17450 return;
17451 }
c906108c
SS
17452 break;
17453 case DW_LNS_copy:
59205f5a 17454 if (lh->num_file_names < file || file == 0)
25e43795
DJ
17455 dwarf2_debug_line_missing_file_complaint ();
17456 else
366da635 17457 {
25e43795 17458 lh->file_names[file - 1].included_p = 1;
ca5f395d 17459 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
17460 {
17461 if (last_subfile != current_subfile)
17462 {
252a6764
DE
17463 dwarf_finish_line (gdbarch, last_subfile,
17464 address, p_record_line);
fbf65064 17465 }
a05a36a5
DE
17466 if (dwarf_record_line_p (line, last_line,
17467 line_has_non_zero_discriminator,
17468 last_subfile))
17469 {
17470 dwarf_record_line (gdbarch, current_subfile,
17471 line, address, p_record_line);
17472 }
17473 last_subfile = current_subfile;
17474 last_line = line;
fbf65064 17475 }
366da635 17476 }
a05a36a5 17477 discriminator = 0;
c906108c
SS
17478 break;
17479 case DW_LNS_advance_pc:
2dc7f7b3
TT
17480 {
17481 CORE_ADDR adjust
17482 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17483
17484 address += (((op_index + adjust)
17485 / lh->maximum_ops_per_instruction)
17486 * lh->minimum_instruction_length);
17487 op_index = ((op_index + adjust)
17488 % lh->maximum_ops_per_instruction);
17489 line_ptr += bytes_read;
17490 }
c906108c
SS
17491 break;
17492 case DW_LNS_advance_line:
a05a36a5
DE
17493 {
17494 int line_delta
17495 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17496
17497 line += line_delta;
17498 if (line_delta != 0)
17499 line_has_non_zero_discriminator = discriminator != 0;
17500 line_ptr += bytes_read;
17501 }
c906108c
SS
17502 break;
17503 case DW_LNS_set_file:
debd256d 17504 {
a738430d
MK
17505 /* The arrays lh->include_dirs and lh->file_names are
17506 0-based, but the directory and file name numbers in
17507 the statement program are 1-based. */
debd256d 17508 struct file_entry *fe;
d521ce57 17509 const char *dir = NULL;
a738430d 17510
debd256d
JB
17511 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17512 line_ptr += bytes_read;
59205f5a 17513 if (lh->num_file_names < file || file == 0)
25e43795
DJ
17514 dwarf2_debug_line_missing_file_complaint ();
17515 else
17516 {
17517 fe = &lh->file_names[file - 1];
17518 if (fe->dir_index)
17519 dir = lh->include_dirs[fe->dir_index - 1];
17520 if (!decode_for_pst_p)
17521 {
17522 last_subfile = current_subfile;
a05a36a5 17523 line_has_non_zero_discriminator = discriminator != 0;
25e43795
DJ
17524 dwarf2_start_subfile (fe->name, dir, comp_dir);
17525 }
17526 }
debd256d 17527 }
c906108c
SS
17528 break;
17529 case DW_LNS_set_column:
0ad93d4f 17530 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
17531 line_ptr += bytes_read;
17532 break;
17533 case DW_LNS_negate_stmt:
17534 is_stmt = (!is_stmt);
17535 break;
17536 case DW_LNS_set_basic_block:
c906108c 17537 break;
c2c6d25f
JM
17538 /* Add to the address register of the state machine the
17539 address increment value corresponding to special opcode
a738430d
MK
17540 255. I.e., this value is scaled by the minimum
17541 instruction length since special opcode 255 would have
b021a221 17542 scaled the increment. */
c906108c 17543 case DW_LNS_const_add_pc:
2dc7f7b3
TT
17544 {
17545 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17546
17547 address += (((op_index + adjust)
17548 / lh->maximum_ops_per_instruction)
17549 * lh->minimum_instruction_length);
17550 op_index = ((op_index + adjust)
17551 % lh->maximum_ops_per_instruction);
17552 }
c906108c
SS
17553 break;
17554 case DW_LNS_fixed_advance_pc:
17555 address += read_2_bytes (abfd, line_ptr);
2dc7f7b3 17556 op_index = 0;
c906108c
SS
17557 line_ptr += 2;
17558 break;
9aa1fe7e 17559 default:
a738430d
MK
17560 {
17561 /* Unknown standard opcode, ignore it. */
9aa1fe7e 17562 int i;
a738430d 17563
debd256d 17564 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
17565 {
17566 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17567 line_ptr += bytes_read;
17568 }
17569 }
c906108c
SS
17570 }
17571 }
59205f5a
JB
17572 if (lh->num_file_names < file || file == 0)
17573 dwarf2_debug_line_missing_file_complaint ();
17574 else
17575 {
17576 lh->file_names[file - 1].included_p = 1;
17577 if (!decode_for_pst_p)
fbf65064 17578 {
252a6764
DE
17579 dwarf_finish_line (gdbarch, current_subfile, address,
17580 p_record_line);
fbf65064 17581 }
59205f5a 17582 }
c906108c 17583 }
f3f5162e
DE
17584}
17585
17586/* Decode the Line Number Program (LNP) for the given line_header
17587 structure and CU. The actual information extracted and the type
17588 of structures created from the LNP depends on the value of PST.
17589
17590 1. If PST is NULL, then this procedure uses the data from the program
17591 to create all necessary symbol tables, and their linetables.
17592
17593 2. If PST is not NULL, this procedure reads the program to determine
17594 the list of files included by the unit represented by PST, and
17595 builds all the associated partial symbol tables.
17596
17597 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17598 It is used for relative paths in the line table.
17599 NOTE: When processing partial symtabs (pst != NULL),
17600 comp_dir == pst->dirname.
17601
17602 NOTE: It is important that psymtabs have the same file name (via strcmp)
17603 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17604 symtab we don't use it in the name of the psymtabs we create.
17605 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
17606 A good testcase for this is mb-inline.exp.
17607
17608 LOWPC is the lowest address in CU (or 0 if not known). */
f3f5162e
DE
17609
17610static void
17611dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696
YQ
17612 struct dwarf2_cu *cu, struct partial_symtab *pst,
17613 CORE_ADDR lowpc)
f3f5162e
DE
17614{
17615 struct objfile *objfile = cu->objfile;
17616 const int decode_for_pst_p = (pst != NULL);
17617 struct subfile *first_subfile = current_subfile;
17618
c3b7b696 17619 dwarf_decode_lines_1 (lh, comp_dir, cu, decode_for_pst_p, lowpc);
aaa75496
JB
17620
17621 if (decode_for_pst_p)
17622 {
17623 int file_index;
17624
17625 /* Now that we're done scanning the Line Header Program, we can
17626 create the psymtab of each included file. */
17627 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17628 if (lh->file_names[file_index].included_p == 1)
17629 {
d521ce57 17630 const char *include_name =
c6da4cef
DE
17631 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17632 if (include_name != NULL)
aaa75496
JB
17633 dwarf2_create_include_psymtab (include_name, pst, objfile);
17634 }
17635 }
cb1df416
DJ
17636 else
17637 {
17638 /* Make sure a symtab is created for every file, even files
17639 which contain only variables (i.e. no code with associated
17640 line numbers). */
cb1df416 17641 int i;
cb1df416
DJ
17642
17643 for (i = 0; i < lh->num_file_names; i++)
17644 {
d521ce57 17645 const char *dir = NULL;
f3f5162e 17646 struct file_entry *fe;
9a619af0 17647
cb1df416
DJ
17648 fe = &lh->file_names[i];
17649 if (fe->dir_index)
17650 dir = lh->include_dirs[fe->dir_index - 1];
17651 dwarf2_start_subfile (fe->name, dir, comp_dir);
17652
17653 /* Skip the main file; we don't need it, and it must be
17654 allocated last, so that it will show up before the
17655 non-primary symtabs in the objfile's symtab list. */
17656 if (current_subfile == first_subfile)
17657 continue;
17658
17659 if (current_subfile->symtab == NULL)
17660 current_subfile->symtab = allocate_symtab (current_subfile->name,
bb5ed363 17661 objfile);
cb1df416
DJ
17662 fe->symtab = current_subfile->symtab;
17663 }
17664 }
c906108c
SS
17665}
17666
17667/* Start a subfile for DWARF. FILENAME is the name of the file and
17668 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
17669 or NULL if not known. COMP_DIR is the compilation directory for the
17670 linetable's compilation unit or NULL if not known.
c906108c
SS
17671 This routine tries to keep line numbers from identical absolute and
17672 relative file names in a common subfile.
17673
17674 Using the `list' example from the GDB testsuite, which resides in
17675 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17676 of /srcdir/list0.c yields the following debugging information for list0.c:
17677
c5aa993b
JM
17678 DW_AT_name: /srcdir/list0.c
17679 DW_AT_comp_dir: /compdir
357e46e7 17680 files.files[0].name: list0.h
c5aa993b 17681 files.files[0].dir: /srcdir
357e46e7 17682 files.files[1].name: list0.c
c5aa993b 17683 files.files[1].dir: /srcdir
c906108c
SS
17684
17685 The line number information for list0.c has to end up in a single
4f1520fb
FR
17686 subfile, so that `break /srcdir/list0.c:1' works as expected.
17687 start_subfile will ensure that this happens provided that we pass the
17688 concatenation of files.files[1].dir and files.files[1].name as the
17689 subfile's name. */
c906108c
SS
17690
17691static void
d521ce57 17692dwarf2_start_subfile (const char *filename, const char *dirname,
3e43a32a 17693 const char *comp_dir)
c906108c 17694{
d521ce57 17695 char *copy = NULL;
4f1520fb
FR
17696
17697 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17698 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17699 second argument to start_subfile. To be consistent, we do the
17700 same here. In order not to lose the line information directory,
17701 we concatenate it to the filename when it makes sense.
17702 Note that the Dwarf3 standard says (speaking of filenames in line
17703 information): ``The directory index is ignored for file names
17704 that represent full path names''. Thus ignoring dirname in the
17705 `else' branch below isn't an issue. */
c906108c 17706
d5166ae1 17707 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
17708 {
17709 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17710 filename = copy;
17711 }
c906108c 17712
d521ce57 17713 start_subfile (filename, comp_dir);
4f1520fb 17714
d521ce57
TT
17715 if (copy != NULL)
17716 xfree (copy);
c906108c
SS
17717}
17718
f4dc4d17
DE
17719/* Start a symtab for DWARF.
17720 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17721
17722static void
17723dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 17724 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17
DE
17725{
17726 start_symtab (name, comp_dir, low_pc);
17727 record_debugformat ("DWARF 2");
17728 record_producer (cu->producer);
17729
17730 /* We assume that we're processing GCC output. */
17731 processing_gcc_compilation = 2;
17732
4d4ec4e5 17733 cu->processing_has_namespace_info = 0;
f4dc4d17
DE
17734}
17735
4c2df51b
DJ
17736static void
17737var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 17738 struct dwarf2_cu *cu)
4c2df51b 17739{
e7c27a73
DJ
17740 struct objfile *objfile = cu->objfile;
17741 struct comp_unit_head *cu_header = &cu->header;
17742
4c2df51b
DJ
17743 /* NOTE drow/2003-01-30: There used to be a comment and some special
17744 code here to turn a symbol with DW_AT_external and a
17745 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17746 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17747 with some versions of binutils) where shared libraries could have
17748 relocations against symbols in their debug information - the
17749 minimal symbol would have the right address, but the debug info
17750 would not. It's no longer necessary, because we will explicitly
17751 apply relocations when we read in the debug information now. */
17752
17753 /* A DW_AT_location attribute with no contents indicates that a
17754 variable has been optimized away. */
17755 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17756 {
f1e6e072 17757 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
17758 return;
17759 }
17760
17761 /* Handle one degenerate form of location expression specially, to
17762 preserve GDB's previous behavior when section offsets are
3019eac3
DE
17763 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17764 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
17765
17766 if (attr_form_is_block (attr)
3019eac3
DE
17767 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17768 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17769 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17770 && (DW_BLOCK (attr)->size
17771 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 17772 {
891d2f0b 17773 unsigned int dummy;
4c2df51b 17774
3019eac3
DE
17775 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17776 SYMBOL_VALUE_ADDRESS (sym) =
17777 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17778 else
17779 SYMBOL_VALUE_ADDRESS (sym) =
17780 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 17781 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
17782 fixup_symbol_section (sym, objfile);
17783 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17784 SYMBOL_SECTION (sym));
4c2df51b
DJ
17785 return;
17786 }
17787
17788 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17789 expression evaluator, and use LOC_COMPUTED only when necessary
17790 (i.e. when the value of a register or memory location is
17791 referenced, or a thread-local block, etc.). Then again, it might
17792 not be worthwhile. I'm assuming that it isn't unless performance
17793 or memory numbers show me otherwise. */
17794
f1e6e072 17795 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 17796
f1e6e072 17797 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 17798 cu->has_loclist = 1;
4c2df51b
DJ
17799}
17800
c906108c
SS
17801/* Given a pointer to a DWARF information entry, figure out if we need
17802 to make a symbol table entry for it, and if so, create a new entry
17803 and return a pointer to it.
17804 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
17805 used the passed type.
17806 If SPACE is not NULL, use it to hold the new symbol. If it is
17807 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
17808
17809static struct symbol *
34eaf542
TT
17810new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17811 struct symbol *space)
c906108c 17812{
e7c27a73 17813 struct objfile *objfile = cu->objfile;
c906108c 17814 struct symbol *sym = NULL;
15d034d0 17815 const char *name;
c906108c
SS
17816 struct attribute *attr = NULL;
17817 struct attribute *attr2 = NULL;
e142c38c 17818 CORE_ADDR baseaddr;
e37fd15a
SW
17819 struct pending **list_to_add = NULL;
17820
edb3359d 17821 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
17822
17823 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17824
94af9270 17825 name = dwarf2_name (die, cu);
c906108c
SS
17826 if (name)
17827 {
94af9270 17828 const char *linkagename;
34eaf542 17829 int suppress_add = 0;
94af9270 17830
34eaf542
TT
17831 if (space)
17832 sym = space;
17833 else
e623cf5d 17834 sym = allocate_symbol (objfile);
c906108c 17835 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
17836
17837 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 17838 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
17839 linkagename = dwarf2_physname (name, die, cu);
17840 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 17841
f55ee35c
JK
17842 /* Fortran does not have mangling standard and the mangling does differ
17843 between gfortran, iFort etc. */
17844 if (cu->language == language_fortran
b250c185 17845 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 17846 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 17847 dwarf2_full_name (name, die, cu),
29df156d 17848 NULL);
f55ee35c 17849
c906108c 17850 /* Default assumptions.
c5aa993b 17851 Use the passed type or decode it from the die. */
176620f1 17852 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 17853 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
17854 if (type != NULL)
17855 SYMBOL_TYPE (sym) = type;
17856 else
e7c27a73 17857 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
17858 attr = dwarf2_attr (die,
17859 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17860 cu);
c906108c
SS
17861 if (attr)
17862 {
17863 SYMBOL_LINE (sym) = DW_UNSND (attr);
17864 }
cb1df416 17865
edb3359d
DJ
17866 attr = dwarf2_attr (die,
17867 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17868 cu);
cb1df416
DJ
17869 if (attr)
17870 {
17871 int file_index = DW_UNSND (attr);
9a619af0 17872
cb1df416
DJ
17873 if (cu->line_header == NULL
17874 || file_index > cu->line_header->num_file_names)
17875 complaint (&symfile_complaints,
17876 _("file index out of range"));
1c3d648d 17877 else if (file_index > 0)
cb1df416
DJ
17878 {
17879 struct file_entry *fe;
9a619af0 17880
cb1df416
DJ
17881 fe = &cu->line_header->file_names[file_index - 1];
17882 SYMBOL_SYMTAB (sym) = fe->symtab;
17883 }
17884 }
17885
c906108c
SS
17886 switch (die->tag)
17887 {
17888 case DW_TAG_label:
e142c38c 17889 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 17890 if (attr)
31aa7e4e
JB
17891 SYMBOL_VALUE_ADDRESS (sym)
17892 = attr_value_as_address (attr) + baseaddr;
0f5238ed
TT
17893 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17894 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 17895 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 17896 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
17897 break;
17898 case DW_TAG_subprogram:
17899 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17900 finish_block. */
f1e6e072 17901 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 17902 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
17903 if ((attr2 && (DW_UNSND (attr2) != 0))
17904 || cu->language == language_ada)
c906108c 17905 {
2cfa0c8d
JB
17906 /* Subprograms marked external are stored as a global symbol.
17907 Ada subprograms, whether marked external or not, are always
17908 stored as a global symbol, because we want to be able to
17909 access them globally. For instance, we want to be able
17910 to break on a nested subprogram without having to
17911 specify the context. */
e37fd15a 17912 list_to_add = &global_symbols;
c906108c
SS
17913 }
17914 else
17915 {
e37fd15a 17916 list_to_add = cu->list_in_scope;
c906108c
SS
17917 }
17918 break;
edb3359d
DJ
17919 case DW_TAG_inlined_subroutine:
17920 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17921 finish_block. */
f1e6e072 17922 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 17923 SYMBOL_INLINED (sym) = 1;
481860b3 17924 list_to_add = cu->list_in_scope;
edb3359d 17925 break;
34eaf542
TT
17926 case DW_TAG_template_value_param:
17927 suppress_add = 1;
17928 /* Fall through. */
72929c62 17929 case DW_TAG_constant:
c906108c 17930 case DW_TAG_variable:
254e6b9e 17931 case DW_TAG_member:
0963b4bd
MS
17932 /* Compilation with minimal debug info may result in
17933 variables with missing type entries. Change the
17934 misleading `void' type to something sensible. */
c906108c 17935 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 17936 SYMBOL_TYPE (sym)
46bf5051 17937 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 17938
e142c38c 17939 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
17940 /* In the case of DW_TAG_member, we should only be called for
17941 static const members. */
17942 if (die->tag == DW_TAG_member)
17943 {
3863f96c
DE
17944 /* dwarf2_add_field uses die_is_declaration,
17945 so we do the same. */
254e6b9e
DE
17946 gdb_assert (die_is_declaration (die, cu));
17947 gdb_assert (attr);
17948 }
c906108c
SS
17949 if (attr)
17950 {
e7c27a73 17951 dwarf2_const_value (attr, sym, cu);
e142c38c 17952 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 17953 if (!suppress_add)
34eaf542
TT
17954 {
17955 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 17956 list_to_add = &global_symbols;
34eaf542 17957 else
e37fd15a 17958 list_to_add = cu->list_in_scope;
34eaf542 17959 }
c906108c
SS
17960 break;
17961 }
e142c38c 17962 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
17963 if (attr)
17964 {
e7c27a73 17965 var_decode_location (attr, sym, cu);
e142c38c 17966 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
17967
17968 /* Fortran explicitly imports any global symbols to the local
17969 scope by DW_TAG_common_block. */
17970 if (cu->language == language_fortran && die->parent
17971 && die->parent->tag == DW_TAG_common_block)
17972 attr2 = NULL;
17973
caac4577
JG
17974 if (SYMBOL_CLASS (sym) == LOC_STATIC
17975 && SYMBOL_VALUE_ADDRESS (sym) == 0
17976 && !dwarf2_per_objfile->has_section_at_zero)
17977 {
17978 /* When a static variable is eliminated by the linker,
17979 the corresponding debug information is not stripped
17980 out, but the variable address is set to null;
17981 do not add such variables into symbol table. */
17982 }
17983 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 17984 {
f55ee35c
JK
17985 /* Workaround gfortran PR debug/40040 - it uses
17986 DW_AT_location for variables in -fPIC libraries which may
17987 get overriden by other libraries/executable and get
17988 a different address. Resolve it by the minimal symbol
17989 which may come from inferior's executable using copy
17990 relocation. Make this workaround only for gfortran as for
17991 other compilers GDB cannot guess the minimal symbol
17992 Fortran mangling kind. */
17993 if (cu->language == language_fortran && die->parent
17994 && die->parent->tag == DW_TAG_module
17995 && cu->producer
17996 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
f1e6e072 17997 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 17998
1c809c68
TT
17999 /* A variable with DW_AT_external is never static,
18000 but it may be block-scoped. */
18001 list_to_add = (cu->list_in_scope == &file_symbols
18002 ? &global_symbols : cu->list_in_scope);
1c809c68 18003 }
c906108c 18004 else
e37fd15a 18005 list_to_add = cu->list_in_scope;
c906108c
SS
18006 }
18007 else
18008 {
18009 /* We do not know the address of this symbol.
c5aa993b
JM
18010 If it is an external symbol and we have type information
18011 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18012 The address of the variable will then be determined from
18013 the minimal symbol table whenever the variable is
18014 referenced. */
e142c38c 18015 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
18016
18017 /* Fortran explicitly imports any global symbols to the local
18018 scope by DW_TAG_common_block. */
18019 if (cu->language == language_fortran && die->parent
18020 && die->parent->tag == DW_TAG_common_block)
18021 {
18022 /* SYMBOL_CLASS doesn't matter here because
18023 read_common_block is going to reset it. */
18024 if (!suppress_add)
18025 list_to_add = cu->list_in_scope;
18026 }
18027 else if (attr2 && (DW_UNSND (attr2) != 0)
18028 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 18029 {
0fe7935b
DJ
18030 /* A variable with DW_AT_external is never static, but it
18031 may be block-scoped. */
18032 list_to_add = (cu->list_in_scope == &file_symbols
18033 ? &global_symbols : cu->list_in_scope);
18034
f1e6e072 18035 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 18036 }
442ddf59
JK
18037 else if (!die_is_declaration (die, cu))
18038 {
18039 /* Use the default LOC_OPTIMIZED_OUT class. */
18040 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
18041 if (!suppress_add)
18042 list_to_add = cu->list_in_scope;
442ddf59 18043 }
c906108c
SS
18044 }
18045 break;
18046 case DW_TAG_formal_parameter:
edb3359d
DJ
18047 /* If we are inside a function, mark this as an argument. If
18048 not, we might be looking at an argument to an inlined function
18049 when we do not have enough information to show inlined frames;
18050 pretend it's a local variable in that case so that the user can
18051 still see it. */
18052 if (context_stack_depth > 0
18053 && context_stack[context_stack_depth - 1].name != NULL)
18054 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 18055 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18056 if (attr)
18057 {
e7c27a73 18058 var_decode_location (attr, sym, cu);
c906108c 18059 }
e142c38c 18060 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18061 if (attr)
18062 {
e7c27a73 18063 dwarf2_const_value (attr, sym, cu);
c906108c 18064 }
f346a30d 18065
e37fd15a 18066 list_to_add = cu->list_in_scope;
c906108c
SS
18067 break;
18068 case DW_TAG_unspecified_parameters:
18069 /* From varargs functions; gdb doesn't seem to have any
18070 interest in this information, so just ignore it for now.
18071 (FIXME?) */
18072 break;
34eaf542
TT
18073 case DW_TAG_template_type_param:
18074 suppress_add = 1;
18075 /* Fall through. */
c906108c 18076 case DW_TAG_class_type:
680b30c7 18077 case DW_TAG_interface_type:
c906108c
SS
18078 case DW_TAG_structure_type:
18079 case DW_TAG_union_type:
72019c9c 18080 case DW_TAG_set_type:
c906108c 18081 case DW_TAG_enumeration_type:
f1e6e072 18082 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18083 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 18084
63d06c5c 18085 {
987504bb 18086 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
18087 really ever be static objects: otherwise, if you try
18088 to, say, break of a class's method and you're in a file
18089 which doesn't mention that class, it won't work unless
18090 the check for all static symbols in lookup_symbol_aux
18091 saves you. See the OtherFileClass tests in
18092 gdb.c++/namespace.exp. */
18093
e37fd15a 18094 if (!suppress_add)
34eaf542 18095 {
34eaf542
TT
18096 list_to_add = (cu->list_in_scope == &file_symbols
18097 && (cu->language == language_cplus
18098 || cu->language == language_java)
18099 ? &global_symbols : cu->list_in_scope);
63d06c5c 18100
64382290
TT
18101 /* The semantics of C++ state that "struct foo {
18102 ... }" also defines a typedef for "foo". A Java
18103 class declaration also defines a typedef for the
18104 class. */
18105 if (cu->language == language_cplus
18106 || cu->language == language_java
18107 || cu->language == language_ada)
18108 {
18109 /* The symbol's name is already allocated along
18110 with this objfile, so we don't need to
18111 duplicate it for the type. */
18112 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18113 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18114 }
63d06c5c
DC
18115 }
18116 }
c906108c
SS
18117 break;
18118 case DW_TAG_typedef:
f1e6e072 18119 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 18120 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18121 list_to_add = cu->list_in_scope;
63d06c5c 18122 break;
c906108c 18123 case DW_TAG_base_type:
a02abb62 18124 case DW_TAG_subrange_type:
f1e6e072 18125 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18126 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18127 list_to_add = cu->list_in_scope;
c906108c
SS
18128 break;
18129 case DW_TAG_enumerator:
e142c38c 18130 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18131 if (attr)
18132 {
e7c27a73 18133 dwarf2_const_value (attr, sym, cu);
c906108c 18134 }
63d06c5c
DC
18135 {
18136 /* NOTE: carlton/2003-11-10: See comment above in the
18137 DW_TAG_class_type, etc. block. */
18138
e142c38c 18139 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
18140 && (cu->language == language_cplus
18141 || cu->language == language_java)
e142c38c 18142 ? &global_symbols : cu->list_in_scope);
63d06c5c 18143 }
c906108c 18144 break;
74921315 18145 case DW_TAG_imported_declaration:
5c4e30ca 18146 case DW_TAG_namespace:
f1e6e072 18147 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 18148 list_to_add = &global_symbols;
5c4e30ca 18149 break;
530e8392
KB
18150 case DW_TAG_module:
18151 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18152 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18153 list_to_add = &global_symbols;
18154 break;
4357ac6c 18155 case DW_TAG_common_block:
f1e6e072 18156 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
18157 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18158 add_symbol_to_list (sym, cu->list_in_scope);
18159 break;
c906108c
SS
18160 default:
18161 /* Not a tag we recognize. Hopefully we aren't processing
18162 trash data, but since we must specifically ignore things
18163 we don't recognize, there is nothing else we should do at
0963b4bd 18164 this point. */
e2e0b3e5 18165 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 18166 dwarf_tag_name (die->tag));
c906108c
SS
18167 break;
18168 }
df8a16a1 18169
e37fd15a
SW
18170 if (suppress_add)
18171 {
18172 sym->hash_next = objfile->template_symbols;
18173 objfile->template_symbols = sym;
18174 list_to_add = NULL;
18175 }
18176
18177 if (list_to_add != NULL)
18178 add_symbol_to_list (sym, list_to_add);
18179
df8a16a1
DJ
18180 /* For the benefit of old versions of GCC, check for anonymous
18181 namespaces based on the demangled name. */
4d4ec4e5 18182 if (!cu->processing_has_namespace_info
94af9270 18183 && cu->language == language_cplus)
a10964d1 18184 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
18185 }
18186 return (sym);
18187}
18188
34eaf542
TT
18189/* A wrapper for new_symbol_full that always allocates a new symbol. */
18190
18191static struct symbol *
18192new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18193{
18194 return new_symbol_full (die, type, cu, NULL);
18195}
18196
98bfdba5
PA
18197/* Given an attr with a DW_FORM_dataN value in host byte order,
18198 zero-extend it as appropriate for the symbol's type. The DWARF
18199 standard (v4) is not entirely clear about the meaning of using
18200 DW_FORM_dataN for a constant with a signed type, where the type is
18201 wider than the data. The conclusion of a discussion on the DWARF
18202 list was that this is unspecified. We choose to always zero-extend
18203 because that is the interpretation long in use by GCC. */
c906108c 18204
98bfdba5 18205static gdb_byte *
ff39bb5e 18206dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 18207 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 18208{
e7c27a73 18209 struct objfile *objfile = cu->objfile;
e17a4113
UW
18210 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18211 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
18212 LONGEST l = DW_UNSND (attr);
18213
18214 if (bits < sizeof (*value) * 8)
18215 {
18216 l &= ((LONGEST) 1 << bits) - 1;
18217 *value = l;
18218 }
18219 else if (bits == sizeof (*value) * 8)
18220 *value = l;
18221 else
18222 {
18223 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18224 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18225 return bytes;
18226 }
18227
18228 return NULL;
18229}
18230
18231/* Read a constant value from an attribute. Either set *VALUE, or if
18232 the value does not fit in *VALUE, set *BYTES - either already
18233 allocated on the objfile obstack, or newly allocated on OBSTACK,
18234 or, set *BATON, if we translated the constant to a location
18235 expression. */
18236
18237static void
ff39bb5e 18238dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
18239 const char *name, struct obstack *obstack,
18240 struct dwarf2_cu *cu,
d521ce57 18241 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
18242 struct dwarf2_locexpr_baton **baton)
18243{
18244 struct objfile *objfile = cu->objfile;
18245 struct comp_unit_head *cu_header = &cu->header;
c906108c 18246 struct dwarf_block *blk;
98bfdba5
PA
18247 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18248 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18249
18250 *value = 0;
18251 *bytes = NULL;
18252 *baton = NULL;
c906108c
SS
18253
18254 switch (attr->form)
18255 {
18256 case DW_FORM_addr:
3019eac3 18257 case DW_FORM_GNU_addr_index:
ac56253d 18258 {
ac56253d
TT
18259 gdb_byte *data;
18260
98bfdba5
PA
18261 if (TYPE_LENGTH (type) != cu_header->addr_size)
18262 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 18263 cu_header->addr_size,
98bfdba5 18264 TYPE_LENGTH (type));
ac56253d
TT
18265 /* Symbols of this form are reasonably rare, so we just
18266 piggyback on the existing location code rather than writing
18267 a new implementation of symbol_computed_ops. */
7919a973 18268 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
98bfdba5
PA
18269 (*baton)->per_cu = cu->per_cu;
18270 gdb_assert ((*baton)->per_cu);
ac56253d 18271
98bfdba5 18272 (*baton)->size = 2 + cu_header->addr_size;
7919a973 18273 data = obstack_alloc (obstack, (*baton)->size);
98bfdba5 18274 (*baton)->data = data;
ac56253d
TT
18275
18276 data[0] = DW_OP_addr;
18277 store_unsigned_integer (&data[1], cu_header->addr_size,
18278 byte_order, DW_ADDR (attr));
18279 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 18280 }
c906108c 18281 break;
4ac36638 18282 case DW_FORM_string:
93b5768b 18283 case DW_FORM_strp:
3019eac3 18284 case DW_FORM_GNU_str_index:
36586728 18285 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
18286 /* DW_STRING is already allocated on the objfile obstack, point
18287 directly to it. */
d521ce57 18288 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 18289 break;
c906108c
SS
18290 case DW_FORM_block1:
18291 case DW_FORM_block2:
18292 case DW_FORM_block4:
18293 case DW_FORM_block:
2dc7f7b3 18294 case DW_FORM_exprloc:
c906108c 18295 blk = DW_BLOCK (attr);
98bfdba5
PA
18296 if (TYPE_LENGTH (type) != blk->size)
18297 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18298 TYPE_LENGTH (type));
18299 *bytes = blk->data;
c906108c 18300 break;
2df3850c
JM
18301
18302 /* The DW_AT_const_value attributes are supposed to carry the
18303 symbol's value "represented as it would be on the target
18304 architecture." By the time we get here, it's already been
18305 converted to host endianness, so we just need to sign- or
18306 zero-extend it as appropriate. */
18307 case DW_FORM_data1:
3aef2284 18308 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 18309 break;
c906108c 18310 case DW_FORM_data2:
3aef2284 18311 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 18312 break;
c906108c 18313 case DW_FORM_data4:
3aef2284 18314 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 18315 break;
c906108c 18316 case DW_FORM_data8:
3aef2284 18317 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
18318 break;
18319
c906108c 18320 case DW_FORM_sdata:
98bfdba5 18321 *value = DW_SND (attr);
2df3850c
JM
18322 break;
18323
c906108c 18324 case DW_FORM_udata:
98bfdba5 18325 *value = DW_UNSND (attr);
c906108c 18326 break;
2df3850c 18327
c906108c 18328 default:
4d3c2250 18329 complaint (&symfile_complaints,
e2e0b3e5 18330 _("unsupported const value attribute form: '%s'"),
4d3c2250 18331 dwarf_form_name (attr->form));
98bfdba5 18332 *value = 0;
c906108c
SS
18333 break;
18334 }
18335}
18336
2df3850c 18337
98bfdba5
PA
18338/* Copy constant value from an attribute to a symbol. */
18339
2df3850c 18340static void
ff39bb5e 18341dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 18342 struct dwarf2_cu *cu)
2df3850c 18343{
98bfdba5
PA
18344 struct objfile *objfile = cu->objfile;
18345 struct comp_unit_head *cu_header = &cu->header;
12df843f 18346 LONGEST value;
d521ce57 18347 const gdb_byte *bytes;
98bfdba5 18348 struct dwarf2_locexpr_baton *baton;
2df3850c 18349
98bfdba5
PA
18350 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18351 SYMBOL_PRINT_NAME (sym),
18352 &objfile->objfile_obstack, cu,
18353 &value, &bytes, &baton);
2df3850c 18354
98bfdba5
PA
18355 if (baton != NULL)
18356 {
98bfdba5 18357 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 18358 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
18359 }
18360 else if (bytes != NULL)
18361 {
18362 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 18363 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
18364 }
18365 else
18366 {
18367 SYMBOL_VALUE (sym) = value;
f1e6e072 18368 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 18369 }
2df3850c
JM
18370}
18371
c906108c
SS
18372/* Return the type of the die in question using its DW_AT_type attribute. */
18373
18374static struct type *
e7c27a73 18375die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18376{
c906108c 18377 struct attribute *type_attr;
c906108c 18378
e142c38c 18379 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
18380 if (!type_attr)
18381 {
18382 /* A missing DW_AT_type represents a void type. */
46bf5051 18383 return objfile_type (cu->objfile)->builtin_void;
c906108c 18384 }
348e048f 18385
673bfd45 18386 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18387}
18388
b4ba55a1
JB
18389/* True iff CU's producer generates GNAT Ada auxiliary information
18390 that allows to find parallel types through that information instead
18391 of having to do expensive parallel lookups by type name. */
18392
18393static int
18394need_gnat_info (struct dwarf2_cu *cu)
18395{
18396 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18397 of GNAT produces this auxiliary information, without any indication
18398 that it is produced. Part of enhancing the FSF version of GNAT
18399 to produce that information will be to put in place an indicator
18400 that we can use in order to determine whether the descriptive type
18401 info is available or not. One suggestion that has been made is
18402 to use a new attribute, attached to the CU die. For now, assume
18403 that the descriptive type info is not available. */
18404 return 0;
18405}
18406
b4ba55a1
JB
18407/* Return the auxiliary type of the die in question using its
18408 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18409 attribute is not present. */
18410
18411static struct type *
18412die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18413{
b4ba55a1 18414 struct attribute *type_attr;
b4ba55a1
JB
18415
18416 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18417 if (!type_attr)
18418 return NULL;
18419
673bfd45 18420 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
18421}
18422
18423/* If DIE has a descriptive_type attribute, then set the TYPE's
18424 descriptive type accordingly. */
18425
18426static void
18427set_descriptive_type (struct type *type, struct die_info *die,
18428 struct dwarf2_cu *cu)
18429{
18430 struct type *descriptive_type = die_descriptive_type (die, cu);
18431
18432 if (descriptive_type)
18433 {
18434 ALLOCATE_GNAT_AUX_TYPE (type);
18435 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18436 }
18437}
18438
c906108c
SS
18439/* Return the containing type of the die in question using its
18440 DW_AT_containing_type attribute. */
18441
18442static struct type *
e7c27a73 18443die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18444{
c906108c 18445 struct attribute *type_attr;
c906108c 18446
e142c38c 18447 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
18448 if (!type_attr)
18449 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 18450 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 18451
673bfd45 18452 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18453}
18454
ac9ec31b
DE
18455/* Return an error marker type to use for the ill formed type in DIE/CU. */
18456
18457static struct type *
18458build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18459{
18460 struct objfile *objfile = dwarf2_per_objfile->objfile;
18461 char *message, *saved;
18462
18463 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 18464 objfile_name (objfile),
ac9ec31b
DE
18465 cu->header.offset.sect_off,
18466 die->offset.sect_off);
18467 saved = obstack_copy0 (&objfile->objfile_obstack,
18468 message, strlen (message));
18469 xfree (message);
18470
18471 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18472}
18473
673bfd45 18474/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
18475 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18476 DW_AT_containing_type.
673bfd45
DE
18477 If there is no type substitute an error marker. */
18478
c906108c 18479static struct type *
ff39bb5e 18480lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 18481 struct dwarf2_cu *cu)
c906108c 18482{
bb5ed363 18483 struct objfile *objfile = cu->objfile;
f792889a
DJ
18484 struct type *this_type;
18485
ac9ec31b
DE
18486 gdb_assert (attr->name == DW_AT_type
18487 || attr->name == DW_AT_GNAT_descriptive_type
18488 || attr->name == DW_AT_containing_type);
18489
673bfd45
DE
18490 /* First see if we have it cached. */
18491
36586728
TT
18492 if (attr->form == DW_FORM_GNU_ref_alt)
18493 {
18494 struct dwarf2_per_cu_data *per_cu;
18495 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18496
18497 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18498 this_type = get_die_type_at_offset (offset, per_cu);
18499 }
7771576e 18500 else if (attr_form_is_ref (attr))
673bfd45 18501 {
b64f50a1 18502 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
18503
18504 this_type = get_die_type_at_offset (offset, cu->per_cu);
18505 }
55f1336d 18506 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 18507 {
ac9ec31b 18508 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 18509
ac9ec31b 18510 return get_signatured_type (die, signature, cu);
673bfd45
DE
18511 }
18512 else
18513 {
ac9ec31b
DE
18514 complaint (&symfile_complaints,
18515 _("Dwarf Error: Bad type attribute %s in DIE"
18516 " at 0x%x [in module %s]"),
18517 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 18518 objfile_name (objfile));
ac9ec31b 18519 return build_error_marker_type (cu, die);
673bfd45
DE
18520 }
18521
18522 /* If not cached we need to read it in. */
18523
18524 if (this_type == NULL)
18525 {
ac9ec31b 18526 struct die_info *type_die = NULL;
673bfd45
DE
18527 struct dwarf2_cu *type_cu = cu;
18528
7771576e 18529 if (attr_form_is_ref (attr))
ac9ec31b
DE
18530 type_die = follow_die_ref (die, attr, &type_cu);
18531 if (type_die == NULL)
18532 return build_error_marker_type (cu, die);
18533 /* If we find the type now, it's probably because the type came
3019eac3
DE
18534 from an inter-CU reference and the type's CU got expanded before
18535 ours. */
ac9ec31b 18536 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
18537 }
18538
18539 /* If we still don't have a type use an error marker. */
18540
18541 if (this_type == NULL)
ac9ec31b 18542 return build_error_marker_type (cu, die);
673bfd45 18543
f792889a 18544 return this_type;
c906108c
SS
18545}
18546
673bfd45
DE
18547/* Return the type in DIE, CU.
18548 Returns NULL for invalid types.
18549
02142a6c 18550 This first does a lookup in die_type_hash,
673bfd45
DE
18551 and only reads the die in if necessary.
18552
18553 NOTE: This can be called when reading in partial or full symbols. */
18554
f792889a 18555static struct type *
e7c27a73 18556read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18557{
f792889a
DJ
18558 struct type *this_type;
18559
18560 this_type = get_die_type (die, cu);
18561 if (this_type)
18562 return this_type;
18563
673bfd45
DE
18564 return read_type_die_1 (die, cu);
18565}
18566
18567/* Read the type in DIE, CU.
18568 Returns NULL for invalid types. */
18569
18570static struct type *
18571read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18572{
18573 struct type *this_type = NULL;
18574
c906108c
SS
18575 switch (die->tag)
18576 {
18577 case DW_TAG_class_type:
680b30c7 18578 case DW_TAG_interface_type:
c906108c
SS
18579 case DW_TAG_structure_type:
18580 case DW_TAG_union_type:
f792889a 18581 this_type = read_structure_type (die, cu);
c906108c
SS
18582 break;
18583 case DW_TAG_enumeration_type:
f792889a 18584 this_type = read_enumeration_type (die, cu);
c906108c
SS
18585 break;
18586 case DW_TAG_subprogram:
18587 case DW_TAG_subroutine_type:
edb3359d 18588 case DW_TAG_inlined_subroutine:
f792889a 18589 this_type = read_subroutine_type (die, cu);
c906108c
SS
18590 break;
18591 case DW_TAG_array_type:
f792889a 18592 this_type = read_array_type (die, cu);
c906108c 18593 break;
72019c9c 18594 case DW_TAG_set_type:
f792889a 18595 this_type = read_set_type (die, cu);
72019c9c 18596 break;
c906108c 18597 case DW_TAG_pointer_type:
f792889a 18598 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
18599 break;
18600 case DW_TAG_ptr_to_member_type:
f792889a 18601 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
18602 break;
18603 case DW_TAG_reference_type:
f792889a 18604 this_type = read_tag_reference_type (die, cu);
c906108c
SS
18605 break;
18606 case DW_TAG_const_type:
f792889a 18607 this_type = read_tag_const_type (die, cu);
c906108c
SS
18608 break;
18609 case DW_TAG_volatile_type:
f792889a 18610 this_type = read_tag_volatile_type (die, cu);
c906108c 18611 break;
06d66ee9
TT
18612 case DW_TAG_restrict_type:
18613 this_type = read_tag_restrict_type (die, cu);
18614 break;
c906108c 18615 case DW_TAG_string_type:
f792889a 18616 this_type = read_tag_string_type (die, cu);
c906108c
SS
18617 break;
18618 case DW_TAG_typedef:
f792889a 18619 this_type = read_typedef (die, cu);
c906108c 18620 break;
a02abb62 18621 case DW_TAG_subrange_type:
f792889a 18622 this_type = read_subrange_type (die, cu);
a02abb62 18623 break;
c906108c 18624 case DW_TAG_base_type:
f792889a 18625 this_type = read_base_type (die, cu);
c906108c 18626 break;
81a17f79 18627 case DW_TAG_unspecified_type:
f792889a 18628 this_type = read_unspecified_type (die, cu);
81a17f79 18629 break;
0114d602
DJ
18630 case DW_TAG_namespace:
18631 this_type = read_namespace_type (die, cu);
18632 break;
f55ee35c
JK
18633 case DW_TAG_module:
18634 this_type = read_module_type (die, cu);
18635 break;
c906108c 18636 default:
3e43a32a
MS
18637 complaint (&symfile_complaints,
18638 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 18639 dwarf_tag_name (die->tag));
c906108c
SS
18640 break;
18641 }
63d06c5c 18642
f792889a 18643 return this_type;
63d06c5c
DC
18644}
18645
abc72ce4
DE
18646/* See if we can figure out if the class lives in a namespace. We do
18647 this by looking for a member function; its demangled name will
18648 contain namespace info, if there is any.
18649 Return the computed name or NULL.
18650 Space for the result is allocated on the objfile's obstack.
18651 This is the full-die version of guess_partial_die_structure_name.
18652 In this case we know DIE has no useful parent. */
18653
18654static char *
18655guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18656{
18657 struct die_info *spec_die;
18658 struct dwarf2_cu *spec_cu;
18659 struct die_info *child;
18660
18661 spec_cu = cu;
18662 spec_die = die_specification (die, &spec_cu);
18663 if (spec_die != NULL)
18664 {
18665 die = spec_die;
18666 cu = spec_cu;
18667 }
18668
18669 for (child = die->child;
18670 child != NULL;
18671 child = child->sibling)
18672 {
18673 if (child->tag == DW_TAG_subprogram)
18674 {
18675 struct attribute *attr;
18676
18677 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18678 if (attr == NULL)
18679 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18680 if (attr != NULL)
18681 {
18682 char *actual_name
18683 = language_class_name_from_physname (cu->language_defn,
18684 DW_STRING (attr));
18685 char *name = NULL;
18686
18687 if (actual_name != NULL)
18688 {
15d034d0 18689 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
18690
18691 if (die_name != NULL
18692 && strcmp (die_name, actual_name) != 0)
18693 {
18694 /* Strip off the class name from the full name.
18695 We want the prefix. */
18696 int die_name_len = strlen (die_name);
18697 int actual_name_len = strlen (actual_name);
18698
18699 /* Test for '::' as a sanity check. */
18700 if (actual_name_len > die_name_len + 2
3e43a32a
MS
18701 && actual_name[actual_name_len
18702 - die_name_len - 1] == ':')
abc72ce4 18703 name =
34a68019 18704 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb
TT
18705 actual_name,
18706 actual_name_len - die_name_len - 2);
abc72ce4
DE
18707 }
18708 }
18709 xfree (actual_name);
18710 return name;
18711 }
18712 }
18713 }
18714
18715 return NULL;
18716}
18717
96408a79
SA
18718/* GCC might emit a nameless typedef that has a linkage name. Determine the
18719 prefix part in such case. See
18720 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18721
18722static char *
18723anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18724{
18725 struct attribute *attr;
18726 char *base;
18727
18728 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18729 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18730 return NULL;
18731
18732 attr = dwarf2_attr (die, DW_AT_name, cu);
18733 if (attr != NULL && DW_STRING (attr) != NULL)
18734 return NULL;
18735
18736 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18737 if (attr == NULL)
18738 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18739 if (attr == NULL || DW_STRING (attr) == NULL)
18740 return NULL;
18741
18742 /* dwarf2_name had to be already called. */
18743 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18744
18745 /* Strip the base name, keep any leading namespaces/classes. */
18746 base = strrchr (DW_STRING (attr), ':');
18747 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18748 return "";
18749
34a68019 18750 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb 18751 DW_STRING (attr), &base[-1] - DW_STRING (attr));
96408a79
SA
18752}
18753
fdde2d81 18754/* Return the name of the namespace/class that DIE is defined within,
0114d602 18755 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 18756
0114d602
DJ
18757 For example, if we're within the method foo() in the following
18758 code:
18759
18760 namespace N {
18761 class C {
18762 void foo () {
18763 }
18764 };
18765 }
18766
18767 then determine_prefix on foo's die will return "N::C". */
fdde2d81 18768
0d5cff50 18769static const char *
e142c38c 18770determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 18771{
0114d602
DJ
18772 struct die_info *parent, *spec_die;
18773 struct dwarf2_cu *spec_cu;
18774 struct type *parent_type;
96408a79 18775 char *retval;
63d06c5c 18776
f55ee35c
JK
18777 if (cu->language != language_cplus && cu->language != language_java
18778 && cu->language != language_fortran)
0114d602
DJ
18779 return "";
18780
96408a79
SA
18781 retval = anonymous_struct_prefix (die, cu);
18782 if (retval)
18783 return retval;
18784
0114d602
DJ
18785 /* We have to be careful in the presence of DW_AT_specification.
18786 For example, with GCC 3.4, given the code
18787
18788 namespace N {
18789 void foo() {
18790 // Definition of N::foo.
18791 }
18792 }
18793
18794 then we'll have a tree of DIEs like this:
18795
18796 1: DW_TAG_compile_unit
18797 2: DW_TAG_namespace // N
18798 3: DW_TAG_subprogram // declaration of N::foo
18799 4: DW_TAG_subprogram // definition of N::foo
18800 DW_AT_specification // refers to die #3
18801
18802 Thus, when processing die #4, we have to pretend that we're in
18803 the context of its DW_AT_specification, namely the contex of die
18804 #3. */
18805 spec_cu = cu;
18806 spec_die = die_specification (die, &spec_cu);
18807 if (spec_die == NULL)
18808 parent = die->parent;
18809 else
63d06c5c 18810 {
0114d602
DJ
18811 parent = spec_die->parent;
18812 cu = spec_cu;
63d06c5c 18813 }
0114d602
DJ
18814
18815 if (parent == NULL)
18816 return "";
98bfdba5
PA
18817 else if (parent->building_fullname)
18818 {
18819 const char *name;
18820 const char *parent_name;
18821
18822 /* It has been seen on RealView 2.2 built binaries,
18823 DW_TAG_template_type_param types actually _defined_ as
18824 children of the parent class:
18825
18826 enum E {};
18827 template class <class Enum> Class{};
18828 Class<enum E> class_e;
18829
18830 1: DW_TAG_class_type (Class)
18831 2: DW_TAG_enumeration_type (E)
18832 3: DW_TAG_enumerator (enum1:0)
18833 3: DW_TAG_enumerator (enum2:1)
18834 ...
18835 2: DW_TAG_template_type_param
18836 DW_AT_type DW_FORM_ref_udata (E)
18837
18838 Besides being broken debug info, it can put GDB into an
18839 infinite loop. Consider:
18840
18841 When we're building the full name for Class<E>, we'll start
18842 at Class, and go look over its template type parameters,
18843 finding E. We'll then try to build the full name of E, and
18844 reach here. We're now trying to build the full name of E,
18845 and look over the parent DIE for containing scope. In the
18846 broken case, if we followed the parent DIE of E, we'd again
18847 find Class, and once again go look at its template type
18848 arguments, etc., etc. Simply don't consider such parent die
18849 as source-level parent of this die (it can't be, the language
18850 doesn't allow it), and break the loop here. */
18851 name = dwarf2_name (die, cu);
18852 parent_name = dwarf2_name (parent, cu);
18853 complaint (&symfile_complaints,
18854 _("template param type '%s' defined within parent '%s'"),
18855 name ? name : "<unknown>",
18856 parent_name ? parent_name : "<unknown>");
18857 return "";
18858 }
63d06c5c 18859 else
0114d602
DJ
18860 switch (parent->tag)
18861 {
63d06c5c 18862 case DW_TAG_namespace:
0114d602 18863 parent_type = read_type_die (parent, cu);
acebe513
UW
18864 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18865 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18866 Work around this problem here. */
18867 if (cu->language == language_cplus
18868 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18869 return "";
0114d602
DJ
18870 /* We give a name to even anonymous namespaces. */
18871 return TYPE_TAG_NAME (parent_type);
63d06c5c 18872 case DW_TAG_class_type:
680b30c7 18873 case DW_TAG_interface_type:
63d06c5c 18874 case DW_TAG_structure_type:
0114d602 18875 case DW_TAG_union_type:
f55ee35c 18876 case DW_TAG_module:
0114d602
DJ
18877 parent_type = read_type_die (parent, cu);
18878 if (TYPE_TAG_NAME (parent_type) != NULL)
18879 return TYPE_TAG_NAME (parent_type);
18880 else
18881 /* An anonymous structure is only allowed non-static data
18882 members; no typedefs, no member functions, et cetera.
18883 So it does not need a prefix. */
18884 return "";
abc72ce4 18885 case DW_TAG_compile_unit:
95554aad 18886 case DW_TAG_partial_unit:
abc72ce4
DE
18887 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18888 if (cu->language == language_cplus
8b70b953 18889 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
18890 && die->child != NULL
18891 && (die->tag == DW_TAG_class_type
18892 || die->tag == DW_TAG_structure_type
18893 || die->tag == DW_TAG_union_type))
18894 {
18895 char *name = guess_full_die_structure_name (die, cu);
18896 if (name != NULL)
18897 return name;
18898 }
18899 return "";
3d567982
TT
18900 case DW_TAG_enumeration_type:
18901 parent_type = read_type_die (parent, cu);
18902 if (TYPE_DECLARED_CLASS (parent_type))
18903 {
18904 if (TYPE_TAG_NAME (parent_type) != NULL)
18905 return TYPE_TAG_NAME (parent_type);
18906 return "";
18907 }
18908 /* Fall through. */
63d06c5c 18909 default:
8176b9b8 18910 return determine_prefix (parent, cu);
63d06c5c 18911 }
63d06c5c
DC
18912}
18913
3e43a32a
MS
18914/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18915 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18916 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18917 an obconcat, otherwise allocate storage for the result. The CU argument is
18918 used to determine the language and hence, the appropriate separator. */
987504bb 18919
f55ee35c 18920#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
18921
18922static char *
f55ee35c
JK
18923typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18924 int physname, struct dwarf2_cu *cu)
63d06c5c 18925{
f55ee35c 18926 const char *lead = "";
5c315b68 18927 const char *sep;
63d06c5c 18928
3e43a32a
MS
18929 if (suffix == NULL || suffix[0] == '\0'
18930 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
18931 sep = "";
18932 else if (cu->language == language_java)
18933 sep = ".";
f55ee35c
JK
18934 else if (cu->language == language_fortran && physname)
18935 {
18936 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18937 DW_AT_MIPS_linkage_name is preferred and used instead. */
18938
18939 lead = "__";
18940 sep = "_MOD_";
18941 }
987504bb
JJ
18942 else
18943 sep = "::";
63d06c5c 18944
6dd47d34
DE
18945 if (prefix == NULL)
18946 prefix = "";
18947 if (suffix == NULL)
18948 suffix = "";
18949
987504bb
JJ
18950 if (obs == NULL)
18951 {
3e43a32a
MS
18952 char *retval
18953 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 18954
f55ee35c
JK
18955 strcpy (retval, lead);
18956 strcat (retval, prefix);
6dd47d34
DE
18957 strcat (retval, sep);
18958 strcat (retval, suffix);
63d06c5c
DC
18959 return retval;
18960 }
987504bb
JJ
18961 else
18962 {
18963 /* We have an obstack. */
f55ee35c 18964 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 18965 }
63d06c5c
DC
18966}
18967
c906108c
SS
18968/* Return sibling of die, NULL if no sibling. */
18969
f9aca02d 18970static struct die_info *
fba45db2 18971sibling_die (struct die_info *die)
c906108c 18972{
639d11d3 18973 return die->sibling;
c906108c
SS
18974}
18975
71c25dea
TT
18976/* Get name of a die, return NULL if not found. */
18977
15d034d0
TT
18978static const char *
18979dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
18980 struct obstack *obstack)
18981{
18982 if (name && cu->language == language_cplus)
18983 {
18984 char *canon_name = cp_canonicalize_string (name);
18985
18986 if (canon_name != NULL)
18987 {
18988 if (strcmp (canon_name, name) != 0)
10f0c4bb 18989 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
71c25dea
TT
18990 xfree (canon_name);
18991 }
18992 }
18993
18994 return name;
c906108c
SS
18995}
18996
9219021c
DC
18997/* Get name of a die, return NULL if not found. */
18998
15d034d0 18999static const char *
e142c38c 19000dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
19001{
19002 struct attribute *attr;
19003
e142c38c 19004 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31
TT
19005 if ((!attr || !DW_STRING (attr))
19006 && die->tag != DW_TAG_class_type
19007 && die->tag != DW_TAG_interface_type
19008 && die->tag != DW_TAG_structure_type
19009 && die->tag != DW_TAG_union_type)
71c25dea
TT
19010 return NULL;
19011
19012 switch (die->tag)
19013 {
19014 case DW_TAG_compile_unit:
95554aad 19015 case DW_TAG_partial_unit:
71c25dea
TT
19016 /* Compilation units have a DW_AT_name that is a filename, not
19017 a source language identifier. */
19018 case DW_TAG_enumeration_type:
19019 case DW_TAG_enumerator:
19020 /* These tags always have simple identifiers already; no need
19021 to canonicalize them. */
19022 return DW_STRING (attr);
907af001 19023
418835cc
KS
19024 case DW_TAG_subprogram:
19025 /* Java constructors will all be named "<init>", so return
19026 the class name when we see this special case. */
19027 if (cu->language == language_java
19028 && DW_STRING (attr) != NULL
19029 && strcmp (DW_STRING (attr), "<init>") == 0)
19030 {
19031 struct dwarf2_cu *spec_cu = cu;
19032 struct die_info *spec_die;
19033
19034 /* GCJ will output '<init>' for Java constructor names.
19035 For this special case, return the name of the parent class. */
19036
cdc07690 19037 /* GCJ may output subprogram DIEs with AT_specification set.
418835cc
KS
19038 If so, use the name of the specified DIE. */
19039 spec_die = die_specification (die, &spec_cu);
19040 if (spec_die != NULL)
19041 return dwarf2_name (spec_die, spec_cu);
19042
19043 do
19044 {
19045 die = die->parent;
19046 if (die->tag == DW_TAG_class_type)
19047 return dwarf2_name (die, cu);
19048 }
95554aad
TT
19049 while (die->tag != DW_TAG_compile_unit
19050 && die->tag != DW_TAG_partial_unit);
418835cc 19051 }
907af001
UW
19052 break;
19053
19054 case DW_TAG_class_type:
19055 case DW_TAG_interface_type:
19056 case DW_TAG_structure_type:
19057 case DW_TAG_union_type:
19058 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19059 structures or unions. These were of the form "._%d" in GCC 4.1,
19060 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19061 and GCC 4.4. We work around this problem by ignoring these. */
53832f31
TT
19062 if (attr && DW_STRING (attr)
19063 && (strncmp (DW_STRING (attr), "._", 2) == 0
19064 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
907af001 19065 return NULL;
53832f31
TT
19066
19067 /* GCC might emit a nameless typedef that has a linkage name. See
19068 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19069 if (!attr || DW_STRING (attr) == NULL)
19070 {
df5c6c50 19071 char *demangled = NULL;
53832f31
TT
19072
19073 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19074 if (attr == NULL)
19075 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19076
19077 if (attr == NULL || DW_STRING (attr) == NULL)
19078 return NULL;
19079
df5c6c50
JK
19080 /* Avoid demangling DW_STRING (attr) the second time on a second
19081 call for the same DIE. */
19082 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 19083 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
19084
19085 if (demangled)
19086 {
96408a79
SA
19087 char *base;
19088
53832f31 19089 /* FIXME: we already did this for the partial symbol... */
34a68019
TT
19090 DW_STRING (attr)
19091 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19092 demangled, strlen (demangled));
53832f31
TT
19093 DW_STRING_IS_CANONICAL (attr) = 1;
19094 xfree (demangled);
96408a79
SA
19095
19096 /* Strip any leading namespaces/classes, keep only the base name.
19097 DW_AT_name for named DIEs does not contain the prefixes. */
19098 base = strrchr (DW_STRING (attr), ':');
19099 if (base && base > DW_STRING (attr) && base[-1] == ':')
19100 return &base[1];
19101 else
19102 return DW_STRING (attr);
53832f31
TT
19103 }
19104 }
907af001
UW
19105 break;
19106
71c25dea 19107 default:
907af001
UW
19108 break;
19109 }
19110
19111 if (!DW_STRING_IS_CANONICAL (attr))
19112 {
19113 DW_STRING (attr)
19114 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 19115 &cu->objfile->per_bfd->storage_obstack);
907af001 19116 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 19117 }
907af001 19118 return DW_STRING (attr);
9219021c
DC
19119}
19120
19121/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
19122 is none. *EXT_CU is the CU containing DIE on input, and the CU
19123 containing the return value on output. */
9219021c
DC
19124
19125static struct die_info *
f2f0e013 19126dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
19127{
19128 struct attribute *attr;
9219021c 19129
f2f0e013 19130 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
19131 if (attr == NULL)
19132 return NULL;
19133
f2f0e013 19134 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
19135}
19136
c906108c
SS
19137/* Convert a DIE tag into its string name. */
19138
f39c6ffd 19139static const char *
aa1ee363 19140dwarf_tag_name (unsigned tag)
c906108c 19141{
f39c6ffd
TT
19142 const char *name = get_DW_TAG_name (tag);
19143
19144 if (name == NULL)
19145 return "DW_TAG_<unknown>";
19146
19147 return name;
c906108c
SS
19148}
19149
19150/* Convert a DWARF attribute code into its string name. */
19151
f39c6ffd 19152static const char *
aa1ee363 19153dwarf_attr_name (unsigned attr)
c906108c 19154{
f39c6ffd
TT
19155 const char *name;
19156
c764a876 19157#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
19158 if (attr == DW_AT_MIPS_fde)
19159 return "DW_AT_MIPS_fde";
19160#else
19161 if (attr == DW_AT_HP_block_index)
19162 return "DW_AT_HP_block_index";
c764a876 19163#endif
f39c6ffd
TT
19164
19165 name = get_DW_AT_name (attr);
19166
19167 if (name == NULL)
19168 return "DW_AT_<unknown>";
19169
19170 return name;
c906108c
SS
19171}
19172
19173/* Convert a DWARF value form code into its string name. */
19174
f39c6ffd 19175static const char *
aa1ee363 19176dwarf_form_name (unsigned form)
c906108c 19177{
f39c6ffd
TT
19178 const char *name = get_DW_FORM_name (form);
19179
19180 if (name == NULL)
19181 return "DW_FORM_<unknown>";
19182
19183 return name;
c906108c
SS
19184}
19185
19186static char *
fba45db2 19187dwarf_bool_name (unsigned mybool)
c906108c
SS
19188{
19189 if (mybool)
19190 return "TRUE";
19191 else
19192 return "FALSE";
19193}
19194
19195/* Convert a DWARF type code into its string name. */
19196
f39c6ffd 19197static const char *
aa1ee363 19198dwarf_type_encoding_name (unsigned enc)
c906108c 19199{
f39c6ffd 19200 const char *name = get_DW_ATE_name (enc);
c906108c 19201
f39c6ffd
TT
19202 if (name == NULL)
19203 return "DW_ATE_<unknown>";
c906108c 19204
f39c6ffd 19205 return name;
c906108c 19206}
c906108c 19207
f9aca02d 19208static void
d97bc12b 19209dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
19210{
19211 unsigned int i;
19212
d97bc12b
DE
19213 print_spaces (indent, f);
19214 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 19215 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
19216
19217 if (die->parent != NULL)
19218 {
19219 print_spaces (indent, f);
19220 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 19221 die->parent->offset.sect_off);
d97bc12b
DE
19222 }
19223
19224 print_spaces (indent, f);
19225 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 19226 dwarf_bool_name (die->child != NULL));
c906108c 19227
d97bc12b
DE
19228 print_spaces (indent, f);
19229 fprintf_unfiltered (f, " attributes:\n");
19230
c906108c
SS
19231 for (i = 0; i < die->num_attrs; ++i)
19232 {
d97bc12b
DE
19233 print_spaces (indent, f);
19234 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
19235 dwarf_attr_name (die->attrs[i].name),
19236 dwarf_form_name (die->attrs[i].form));
d97bc12b 19237
c906108c
SS
19238 switch (die->attrs[i].form)
19239 {
c906108c 19240 case DW_FORM_addr:
3019eac3 19241 case DW_FORM_GNU_addr_index:
d97bc12b 19242 fprintf_unfiltered (f, "address: ");
5af949e3 19243 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
19244 break;
19245 case DW_FORM_block2:
19246 case DW_FORM_block4:
19247 case DW_FORM_block:
19248 case DW_FORM_block1:
56eb65bd
SP
19249 fprintf_unfiltered (f, "block: size %s",
19250 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 19251 break;
2dc7f7b3 19252 case DW_FORM_exprloc:
56eb65bd
SP
19253 fprintf_unfiltered (f, "expression: size %s",
19254 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 19255 break;
4568ecf9
DE
19256 case DW_FORM_ref_addr:
19257 fprintf_unfiltered (f, "ref address: ");
19258 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19259 break;
36586728
TT
19260 case DW_FORM_GNU_ref_alt:
19261 fprintf_unfiltered (f, "alt ref address: ");
19262 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19263 break;
10b3939b
DJ
19264 case DW_FORM_ref1:
19265 case DW_FORM_ref2:
19266 case DW_FORM_ref4:
4568ecf9
DE
19267 case DW_FORM_ref8:
19268 case DW_FORM_ref_udata:
d97bc12b 19269 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 19270 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 19271 break;
c906108c
SS
19272 case DW_FORM_data1:
19273 case DW_FORM_data2:
19274 case DW_FORM_data4:
ce5d95e1 19275 case DW_FORM_data8:
c906108c
SS
19276 case DW_FORM_udata:
19277 case DW_FORM_sdata:
43bbcdc2
PH
19278 fprintf_unfiltered (f, "constant: %s",
19279 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 19280 break;
2dc7f7b3
TT
19281 case DW_FORM_sec_offset:
19282 fprintf_unfiltered (f, "section offset: %s",
19283 pulongest (DW_UNSND (&die->attrs[i])));
19284 break;
55f1336d 19285 case DW_FORM_ref_sig8:
ac9ec31b
DE
19286 fprintf_unfiltered (f, "signature: %s",
19287 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 19288 break;
c906108c 19289 case DW_FORM_string:
4bdf3d34 19290 case DW_FORM_strp:
3019eac3 19291 case DW_FORM_GNU_str_index:
36586728 19292 case DW_FORM_GNU_strp_alt:
8285870a 19293 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 19294 DW_STRING (&die->attrs[i])
8285870a
JK
19295 ? DW_STRING (&die->attrs[i]) : "",
19296 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
19297 break;
19298 case DW_FORM_flag:
19299 if (DW_UNSND (&die->attrs[i]))
d97bc12b 19300 fprintf_unfiltered (f, "flag: TRUE");
c906108c 19301 else
d97bc12b 19302 fprintf_unfiltered (f, "flag: FALSE");
c906108c 19303 break;
2dc7f7b3
TT
19304 case DW_FORM_flag_present:
19305 fprintf_unfiltered (f, "flag: TRUE");
19306 break;
a8329558 19307 case DW_FORM_indirect:
0963b4bd
MS
19308 /* The reader will have reduced the indirect form to
19309 the "base form" so this form should not occur. */
3e43a32a
MS
19310 fprintf_unfiltered (f,
19311 "unexpected attribute form: DW_FORM_indirect");
a8329558 19312 break;
c906108c 19313 default:
d97bc12b 19314 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 19315 die->attrs[i].form);
d97bc12b 19316 break;
c906108c 19317 }
d97bc12b 19318 fprintf_unfiltered (f, "\n");
c906108c
SS
19319 }
19320}
19321
f9aca02d 19322static void
d97bc12b 19323dump_die_for_error (struct die_info *die)
c906108c 19324{
d97bc12b
DE
19325 dump_die_shallow (gdb_stderr, 0, die);
19326}
19327
19328static void
19329dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19330{
19331 int indent = level * 4;
19332
19333 gdb_assert (die != NULL);
19334
19335 if (level >= max_level)
19336 return;
19337
19338 dump_die_shallow (f, indent, die);
19339
19340 if (die->child != NULL)
c906108c 19341 {
d97bc12b
DE
19342 print_spaces (indent, f);
19343 fprintf_unfiltered (f, " Children:");
19344 if (level + 1 < max_level)
19345 {
19346 fprintf_unfiltered (f, "\n");
19347 dump_die_1 (f, level + 1, max_level, die->child);
19348 }
19349 else
19350 {
3e43a32a
MS
19351 fprintf_unfiltered (f,
19352 " [not printed, max nesting level reached]\n");
d97bc12b
DE
19353 }
19354 }
19355
19356 if (die->sibling != NULL && level > 0)
19357 {
19358 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
19359 }
19360}
19361
d97bc12b
DE
19362/* This is called from the pdie macro in gdbinit.in.
19363 It's not static so gcc will keep a copy callable from gdb. */
19364
19365void
19366dump_die (struct die_info *die, int max_level)
19367{
19368 dump_die_1 (gdb_stdlog, 0, max_level, die);
19369}
19370
f9aca02d 19371static void
51545339 19372store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19373{
51545339 19374 void **slot;
c906108c 19375
b64f50a1
JK
19376 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19377 INSERT);
51545339
DJ
19378
19379 *slot = die;
c906108c
SS
19380}
19381
b64f50a1
JK
19382/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19383 required kind. */
19384
19385static sect_offset
ff39bb5e 19386dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 19387{
4568ecf9 19388 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 19389
7771576e 19390 if (attr_form_is_ref (attr))
b64f50a1 19391 return retval;
93311388 19392
b64f50a1 19393 retval.sect_off = 0;
93311388
DE
19394 complaint (&symfile_complaints,
19395 _("unsupported die ref attribute form: '%s'"),
19396 dwarf_form_name (attr->form));
b64f50a1 19397 return retval;
c906108c
SS
19398}
19399
43bbcdc2
PH
19400/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19401 * the value held by the attribute is not constant. */
a02abb62 19402
43bbcdc2 19403static LONGEST
ff39bb5e 19404dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
19405{
19406 if (attr->form == DW_FORM_sdata)
19407 return DW_SND (attr);
19408 else if (attr->form == DW_FORM_udata
19409 || attr->form == DW_FORM_data1
19410 || attr->form == DW_FORM_data2
19411 || attr->form == DW_FORM_data4
19412 || attr->form == DW_FORM_data8)
19413 return DW_UNSND (attr);
19414 else
19415 {
3e43a32a
MS
19416 complaint (&symfile_complaints,
19417 _("Attribute value is not a constant (%s)"),
a02abb62
JB
19418 dwarf_form_name (attr->form));
19419 return default_value;
19420 }
19421}
19422
348e048f
DE
19423/* Follow reference or signature attribute ATTR of SRC_DIE.
19424 On entry *REF_CU is the CU of SRC_DIE.
19425 On exit *REF_CU is the CU of the result. */
19426
19427static struct die_info *
ff39bb5e 19428follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
19429 struct dwarf2_cu **ref_cu)
19430{
19431 struct die_info *die;
19432
7771576e 19433 if (attr_form_is_ref (attr))
348e048f 19434 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 19435 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
19436 die = follow_die_sig (src_die, attr, ref_cu);
19437 else
19438 {
19439 dump_die_for_error (src_die);
19440 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 19441 objfile_name ((*ref_cu)->objfile));
348e048f
DE
19442 }
19443
19444 return die;
03dd20cc
DJ
19445}
19446
5c631832 19447/* Follow reference OFFSET.
673bfd45
DE
19448 On entry *REF_CU is the CU of the source die referencing OFFSET.
19449 On exit *REF_CU is the CU of the result.
19450 Returns NULL if OFFSET is invalid. */
f504f079 19451
f9aca02d 19452static struct die_info *
36586728
TT
19453follow_die_offset (sect_offset offset, int offset_in_dwz,
19454 struct dwarf2_cu **ref_cu)
c906108c 19455{
10b3939b 19456 struct die_info temp_die;
f2f0e013 19457 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 19458
348e048f
DE
19459 gdb_assert (cu->per_cu != NULL);
19460
98bfdba5
PA
19461 target_cu = cu;
19462
3019eac3 19463 if (cu->per_cu->is_debug_types)
348e048f
DE
19464 {
19465 /* .debug_types CUs cannot reference anything outside their CU.
19466 If they need to, they have to reference a signatured type via
55f1336d 19467 DW_FORM_ref_sig8. */
348e048f 19468 if (! offset_in_cu_p (&cu->header, offset))
5c631832 19469 return NULL;
348e048f 19470 }
36586728
TT
19471 else if (offset_in_dwz != cu->per_cu->is_dwz
19472 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
19473 {
19474 struct dwarf2_per_cu_data *per_cu;
9a619af0 19475
36586728
TT
19476 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19477 cu->objfile);
03dd20cc
DJ
19478
19479 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
19480 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19481 load_full_comp_unit (per_cu, cu->language);
03dd20cc 19482
10b3939b
DJ
19483 target_cu = per_cu->cu;
19484 }
98bfdba5
PA
19485 else if (cu->dies == NULL)
19486 {
19487 /* We're loading full DIEs during partial symbol reading. */
19488 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 19489 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 19490 }
c906108c 19491
f2f0e013 19492 *ref_cu = target_cu;
51545339 19493 temp_die.offset = offset;
b64f50a1 19494 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
5c631832 19495}
10b3939b 19496
5c631832
JK
19497/* Follow reference attribute ATTR of SRC_DIE.
19498 On entry *REF_CU is the CU of SRC_DIE.
19499 On exit *REF_CU is the CU of the result. */
19500
19501static struct die_info *
ff39bb5e 19502follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
19503 struct dwarf2_cu **ref_cu)
19504{
b64f50a1 19505 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
19506 struct dwarf2_cu *cu = *ref_cu;
19507 struct die_info *die;
19508
36586728
TT
19509 die = follow_die_offset (offset,
19510 (attr->form == DW_FORM_GNU_ref_alt
19511 || cu->per_cu->is_dwz),
19512 ref_cu);
5c631832
JK
19513 if (!die)
19514 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19515 "at 0x%x [in module %s]"),
4262abfb
JK
19516 offset.sect_off, src_die->offset.sect_off,
19517 objfile_name (cu->objfile));
348e048f 19518
5c631832
JK
19519 return die;
19520}
19521
d83e736b
JK
19522/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19523 Returned value is intended for DW_OP_call*. Returned
19524 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
19525
19526struct dwarf2_locexpr_baton
8b9737bf
TT
19527dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19528 struct dwarf2_per_cu_data *per_cu,
19529 CORE_ADDR (*get_frame_pc) (void *baton),
19530 void *baton)
5c631832 19531{
918dd910 19532 struct dwarf2_cu *cu;
5c631832
JK
19533 struct die_info *die;
19534 struct attribute *attr;
19535 struct dwarf2_locexpr_baton retval;
19536
8cf6f0b1
TT
19537 dw2_setup (per_cu->objfile);
19538
918dd910
JK
19539 if (per_cu->cu == NULL)
19540 load_cu (per_cu);
19541 cu = per_cu->cu;
19542
36586728 19543 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
19544 if (!die)
19545 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 19546 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
19547
19548 attr = dwarf2_attr (die, DW_AT_location, cu);
19549 if (!attr)
19550 {
e103e986
JK
19551 /* DWARF: "If there is no such attribute, then there is no effect.".
19552 DATA is ignored if SIZE is 0. */
5c631832 19553
e103e986 19554 retval.data = NULL;
5c631832
JK
19555 retval.size = 0;
19556 }
8cf6f0b1
TT
19557 else if (attr_form_is_section_offset (attr))
19558 {
19559 struct dwarf2_loclist_baton loclist_baton;
19560 CORE_ADDR pc = (*get_frame_pc) (baton);
19561 size_t size;
19562
19563 fill_in_loclist_baton (cu, &loclist_baton, attr);
19564
19565 retval.data = dwarf2_find_location_expression (&loclist_baton,
19566 &size, pc);
19567 retval.size = size;
19568 }
5c631832
JK
19569 else
19570 {
19571 if (!attr_form_is_block (attr))
19572 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19573 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 19574 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
19575
19576 retval.data = DW_BLOCK (attr)->data;
19577 retval.size = DW_BLOCK (attr)->size;
19578 }
19579 retval.per_cu = cu->per_cu;
918dd910 19580
918dd910
JK
19581 age_cached_comp_units ();
19582
5c631832 19583 return retval;
348e048f
DE
19584}
19585
8b9737bf
TT
19586/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19587 offset. */
19588
19589struct dwarf2_locexpr_baton
19590dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19591 struct dwarf2_per_cu_data *per_cu,
19592 CORE_ADDR (*get_frame_pc) (void *baton),
19593 void *baton)
19594{
19595 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19596
19597 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19598}
19599
b6807d98
TT
19600/* Write a constant of a given type as target-ordered bytes into
19601 OBSTACK. */
19602
19603static const gdb_byte *
19604write_constant_as_bytes (struct obstack *obstack,
19605 enum bfd_endian byte_order,
19606 struct type *type,
19607 ULONGEST value,
19608 LONGEST *len)
19609{
19610 gdb_byte *result;
19611
19612 *len = TYPE_LENGTH (type);
19613 result = obstack_alloc (obstack, *len);
19614 store_unsigned_integer (result, *len, byte_order, value);
19615
19616 return result;
19617}
19618
19619/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19620 pointer to the constant bytes and set LEN to the length of the
19621 data. If memory is needed, allocate it on OBSTACK. If the DIE
19622 does not have a DW_AT_const_value, return NULL. */
19623
19624const gdb_byte *
19625dwarf2_fetch_constant_bytes (sect_offset offset,
19626 struct dwarf2_per_cu_data *per_cu,
19627 struct obstack *obstack,
19628 LONGEST *len)
19629{
19630 struct dwarf2_cu *cu;
19631 struct die_info *die;
19632 struct attribute *attr;
19633 const gdb_byte *result = NULL;
19634 struct type *type;
19635 LONGEST value;
19636 enum bfd_endian byte_order;
19637
19638 dw2_setup (per_cu->objfile);
19639
19640 if (per_cu->cu == NULL)
19641 load_cu (per_cu);
19642 cu = per_cu->cu;
19643
19644 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19645 if (!die)
19646 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 19647 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
19648
19649
19650 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19651 if (attr == NULL)
19652 return NULL;
19653
19654 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19655 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19656
19657 switch (attr->form)
19658 {
19659 case DW_FORM_addr:
19660 case DW_FORM_GNU_addr_index:
19661 {
19662 gdb_byte *tem;
19663
19664 *len = cu->header.addr_size;
19665 tem = obstack_alloc (obstack, *len);
19666 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19667 result = tem;
19668 }
19669 break;
19670 case DW_FORM_string:
19671 case DW_FORM_strp:
19672 case DW_FORM_GNU_str_index:
19673 case DW_FORM_GNU_strp_alt:
19674 /* DW_STRING is already allocated on the objfile obstack, point
19675 directly to it. */
19676 result = (const gdb_byte *) DW_STRING (attr);
19677 *len = strlen (DW_STRING (attr));
19678 break;
19679 case DW_FORM_block1:
19680 case DW_FORM_block2:
19681 case DW_FORM_block4:
19682 case DW_FORM_block:
19683 case DW_FORM_exprloc:
19684 result = DW_BLOCK (attr)->data;
19685 *len = DW_BLOCK (attr)->size;
19686 break;
19687
19688 /* The DW_AT_const_value attributes are supposed to carry the
19689 symbol's value "represented as it would be on the target
19690 architecture." By the time we get here, it's already been
19691 converted to host endianness, so we just need to sign- or
19692 zero-extend it as appropriate. */
19693 case DW_FORM_data1:
19694 type = die_type (die, cu);
19695 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19696 if (result == NULL)
19697 result = write_constant_as_bytes (obstack, byte_order,
19698 type, value, len);
19699 break;
19700 case DW_FORM_data2:
19701 type = die_type (die, cu);
19702 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19703 if (result == NULL)
19704 result = write_constant_as_bytes (obstack, byte_order,
19705 type, value, len);
19706 break;
19707 case DW_FORM_data4:
19708 type = die_type (die, cu);
19709 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19710 if (result == NULL)
19711 result = write_constant_as_bytes (obstack, byte_order,
19712 type, value, len);
19713 break;
19714 case DW_FORM_data8:
19715 type = die_type (die, cu);
19716 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19717 if (result == NULL)
19718 result = write_constant_as_bytes (obstack, byte_order,
19719 type, value, len);
19720 break;
19721
19722 case DW_FORM_sdata:
19723 type = die_type (die, cu);
19724 result = write_constant_as_bytes (obstack, byte_order,
19725 type, DW_SND (attr), len);
19726 break;
19727
19728 case DW_FORM_udata:
19729 type = die_type (die, cu);
19730 result = write_constant_as_bytes (obstack, byte_order,
19731 type, DW_UNSND (attr), len);
19732 break;
19733
19734 default:
19735 complaint (&symfile_complaints,
19736 _("unsupported const value attribute form: '%s'"),
19737 dwarf_form_name (attr->form));
19738 break;
19739 }
19740
19741 return result;
19742}
19743
8a9b8146
TT
19744/* Return the type of the DIE at DIE_OFFSET in the CU named by
19745 PER_CU. */
19746
19747struct type *
b64f50a1 19748dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
19749 struct dwarf2_per_cu_data *per_cu)
19750{
b64f50a1
JK
19751 sect_offset die_offset_sect;
19752
8a9b8146 19753 dw2_setup (per_cu->objfile);
b64f50a1
JK
19754
19755 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19756 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
19757}
19758
ac9ec31b 19759/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 19760 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
19761 On exit *REF_CU is the CU of the result.
19762 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
19763
19764static struct die_info *
ac9ec31b
DE
19765follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19766 struct dwarf2_cu **ref_cu)
348e048f
DE
19767{
19768 struct objfile *objfile = (*ref_cu)->objfile;
19769 struct die_info temp_die;
348e048f
DE
19770 struct dwarf2_cu *sig_cu;
19771 struct die_info *die;
19772
ac9ec31b
DE
19773 /* While it might be nice to assert sig_type->type == NULL here,
19774 we can get here for DW_AT_imported_declaration where we need
19775 the DIE not the type. */
348e048f
DE
19776
19777 /* If necessary, add it to the queue and load its DIEs. */
19778
95554aad 19779 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 19780 read_signatured_type (sig_type);
348e048f 19781
348e048f 19782 sig_cu = sig_type->per_cu.cu;
69d751e3 19783 gdb_assert (sig_cu != NULL);
3019eac3
DE
19784 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19785 temp_die.offset = sig_type->type_offset_in_section;
b64f50a1
JK
19786 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19787 temp_die.offset.sect_off);
348e048f
DE
19788 if (die)
19789 {
796a7ff8
DE
19790 /* For .gdb_index version 7 keep track of included TUs.
19791 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19792 if (dwarf2_per_objfile->index_table != NULL
19793 && dwarf2_per_objfile->index_table->version <= 7)
19794 {
19795 VEC_safe_push (dwarf2_per_cu_ptr,
19796 (*ref_cu)->per_cu->imported_symtabs,
19797 sig_cu->per_cu);
19798 }
19799
348e048f
DE
19800 *ref_cu = sig_cu;
19801 return die;
19802 }
19803
ac9ec31b
DE
19804 return NULL;
19805}
19806
19807/* Follow signatured type referenced by ATTR in SRC_DIE.
19808 On entry *REF_CU is the CU of SRC_DIE.
19809 On exit *REF_CU is the CU of the result.
19810 The result is the DIE of the type.
19811 If the referenced type cannot be found an error is thrown. */
19812
19813static struct die_info *
ff39bb5e 19814follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
19815 struct dwarf2_cu **ref_cu)
19816{
19817 ULONGEST signature = DW_SIGNATURE (attr);
19818 struct signatured_type *sig_type;
19819 struct die_info *die;
19820
19821 gdb_assert (attr->form == DW_FORM_ref_sig8);
19822
a2ce51a0 19823 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
19824 /* sig_type will be NULL if the signatured type is missing from
19825 the debug info. */
19826 if (sig_type == NULL)
19827 {
19828 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19829 " from DIE at 0x%x [in module %s]"),
19830 hex_string (signature), src_die->offset.sect_off,
4262abfb 19831 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
19832 }
19833
19834 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19835 if (die == NULL)
19836 {
19837 dump_die_for_error (src_die);
19838 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19839 " from DIE at 0x%x [in module %s]"),
19840 hex_string (signature), src_die->offset.sect_off,
4262abfb 19841 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
19842 }
19843
19844 return die;
19845}
19846
19847/* Get the type specified by SIGNATURE referenced in DIE/CU,
19848 reading in and processing the type unit if necessary. */
19849
19850static struct type *
19851get_signatured_type (struct die_info *die, ULONGEST signature,
19852 struct dwarf2_cu *cu)
19853{
19854 struct signatured_type *sig_type;
19855 struct dwarf2_cu *type_cu;
19856 struct die_info *type_die;
19857 struct type *type;
19858
a2ce51a0 19859 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
19860 /* sig_type will be NULL if the signatured type is missing from
19861 the debug info. */
19862 if (sig_type == NULL)
19863 {
19864 complaint (&symfile_complaints,
19865 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19866 " from DIE at 0x%x [in module %s]"),
19867 hex_string (signature), die->offset.sect_off,
4262abfb 19868 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19869 return build_error_marker_type (cu, die);
19870 }
19871
19872 /* If we already know the type we're done. */
19873 if (sig_type->type != NULL)
19874 return sig_type->type;
19875
19876 type_cu = cu;
19877 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19878 if (type_die != NULL)
19879 {
19880 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19881 is created. This is important, for example, because for c++ classes
19882 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19883 type = read_type_die (type_die, type_cu);
19884 if (type == NULL)
19885 {
19886 complaint (&symfile_complaints,
19887 _("Dwarf Error: Cannot build signatured type %s"
19888 " referenced from DIE at 0x%x [in module %s]"),
19889 hex_string (signature), die->offset.sect_off,
4262abfb 19890 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19891 type = build_error_marker_type (cu, die);
19892 }
19893 }
19894 else
19895 {
19896 complaint (&symfile_complaints,
19897 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19898 " from DIE at 0x%x [in module %s]"),
19899 hex_string (signature), die->offset.sect_off,
4262abfb 19900 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19901 type = build_error_marker_type (cu, die);
19902 }
19903 sig_type->type = type;
19904
19905 return type;
19906}
19907
19908/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19909 reading in and processing the type unit if necessary. */
19910
19911static struct type *
ff39bb5e 19912get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 19913 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
19914{
19915 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 19916 if (attr_form_is_ref (attr))
ac9ec31b
DE
19917 {
19918 struct dwarf2_cu *type_cu = cu;
19919 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19920
19921 return read_type_die (type_die, type_cu);
19922 }
19923 else if (attr->form == DW_FORM_ref_sig8)
19924 {
19925 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19926 }
19927 else
19928 {
19929 complaint (&symfile_complaints,
19930 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19931 " at 0x%x [in module %s]"),
19932 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 19933 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19934 return build_error_marker_type (cu, die);
19935 }
348e048f
DE
19936}
19937
e5fe5e75 19938/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
19939
19940static void
e5fe5e75 19941load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 19942{
52dc124a 19943 struct signatured_type *sig_type;
348e048f 19944
f4dc4d17
DE
19945 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19946 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19947
6721b2ec
DE
19948 /* We have the per_cu, but we need the signatured_type.
19949 Fortunately this is an easy translation. */
19950 gdb_assert (per_cu->is_debug_types);
19951 sig_type = (struct signatured_type *) per_cu;
348e048f 19952
6721b2ec 19953 gdb_assert (per_cu->cu == NULL);
348e048f 19954
52dc124a 19955 read_signatured_type (sig_type);
348e048f 19956
6721b2ec 19957 gdb_assert (per_cu->cu != NULL);
348e048f
DE
19958}
19959
dee91e82
DE
19960/* die_reader_func for read_signatured_type.
19961 This is identical to load_full_comp_unit_reader,
19962 but is kept separate for now. */
348e048f
DE
19963
19964static void
dee91e82 19965read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 19966 const gdb_byte *info_ptr,
dee91e82
DE
19967 struct die_info *comp_unit_die,
19968 int has_children,
19969 void *data)
348e048f 19970{
dee91e82 19971 struct dwarf2_cu *cu = reader->cu;
348e048f 19972
dee91e82
DE
19973 gdb_assert (cu->die_hash == NULL);
19974 cu->die_hash =
19975 htab_create_alloc_ex (cu->header.length / 12,
19976 die_hash,
19977 die_eq,
19978 NULL,
19979 &cu->comp_unit_obstack,
19980 hashtab_obstack_allocate,
19981 dummy_obstack_deallocate);
348e048f 19982
dee91e82
DE
19983 if (has_children)
19984 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19985 &info_ptr, comp_unit_die);
19986 cu->dies = comp_unit_die;
19987 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
19988
19989 /* We try not to read any attributes in this function, because not
9cdd5dbd 19990 all CUs needed for references have been loaded yet, and symbol
348e048f 19991 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
19992 or we won't be able to build types correctly.
19993 Similarly, if we do not read the producer, we can not apply
19994 producer-specific interpretation. */
95554aad 19995 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 19996}
348e048f 19997
3019eac3
DE
19998/* Read in a signatured type and build its CU and DIEs.
19999 If the type is a stub for the real type in a DWO file,
20000 read in the real type from the DWO file as well. */
dee91e82
DE
20001
20002static void
20003read_signatured_type (struct signatured_type *sig_type)
20004{
20005 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 20006
3019eac3 20007 gdb_assert (per_cu->is_debug_types);
dee91e82 20008 gdb_assert (per_cu->cu == NULL);
348e048f 20009
f4dc4d17
DE
20010 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20011 read_signatured_type_reader, NULL);
7ee85ab1 20012 sig_type->per_cu.tu_read = 1;
c906108c
SS
20013}
20014
c906108c
SS
20015/* Decode simple location descriptions.
20016 Given a pointer to a dwarf block that defines a location, compute
20017 the location and return the value.
20018
4cecd739
DJ
20019 NOTE drow/2003-11-18: This function is called in two situations
20020 now: for the address of static or global variables (partial symbols
20021 only) and for offsets into structures which are expected to be
20022 (more or less) constant. The partial symbol case should go away,
20023 and only the constant case should remain. That will let this
20024 function complain more accurately. A few special modes are allowed
20025 without complaint for global variables (for instance, global
20026 register values and thread-local values).
c906108c
SS
20027
20028 A location description containing no operations indicates that the
4cecd739 20029 object is optimized out. The return value is 0 for that case.
6b992462
DJ
20030 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20031 callers will only want a very basic result and this can become a
21ae7a4d
JK
20032 complaint.
20033
20034 Note that stack[0] is unused except as a default error return. */
c906108c
SS
20035
20036static CORE_ADDR
e7c27a73 20037decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 20038{
e7c27a73 20039 struct objfile *objfile = cu->objfile;
56eb65bd
SP
20040 size_t i;
20041 size_t size = blk->size;
d521ce57 20042 const gdb_byte *data = blk->data;
21ae7a4d
JK
20043 CORE_ADDR stack[64];
20044 int stacki;
20045 unsigned int bytes_read, unsnd;
20046 gdb_byte op;
c906108c 20047
21ae7a4d
JK
20048 i = 0;
20049 stacki = 0;
20050 stack[stacki] = 0;
20051 stack[++stacki] = 0;
20052
20053 while (i < size)
20054 {
20055 op = data[i++];
20056 switch (op)
20057 {
20058 case DW_OP_lit0:
20059 case DW_OP_lit1:
20060 case DW_OP_lit2:
20061 case DW_OP_lit3:
20062 case DW_OP_lit4:
20063 case DW_OP_lit5:
20064 case DW_OP_lit6:
20065 case DW_OP_lit7:
20066 case DW_OP_lit8:
20067 case DW_OP_lit9:
20068 case DW_OP_lit10:
20069 case DW_OP_lit11:
20070 case DW_OP_lit12:
20071 case DW_OP_lit13:
20072 case DW_OP_lit14:
20073 case DW_OP_lit15:
20074 case DW_OP_lit16:
20075 case DW_OP_lit17:
20076 case DW_OP_lit18:
20077 case DW_OP_lit19:
20078 case DW_OP_lit20:
20079 case DW_OP_lit21:
20080 case DW_OP_lit22:
20081 case DW_OP_lit23:
20082 case DW_OP_lit24:
20083 case DW_OP_lit25:
20084 case DW_OP_lit26:
20085 case DW_OP_lit27:
20086 case DW_OP_lit28:
20087 case DW_OP_lit29:
20088 case DW_OP_lit30:
20089 case DW_OP_lit31:
20090 stack[++stacki] = op - DW_OP_lit0;
20091 break;
f1bea926 20092
21ae7a4d
JK
20093 case DW_OP_reg0:
20094 case DW_OP_reg1:
20095 case DW_OP_reg2:
20096 case DW_OP_reg3:
20097 case DW_OP_reg4:
20098 case DW_OP_reg5:
20099 case DW_OP_reg6:
20100 case DW_OP_reg7:
20101 case DW_OP_reg8:
20102 case DW_OP_reg9:
20103 case DW_OP_reg10:
20104 case DW_OP_reg11:
20105 case DW_OP_reg12:
20106 case DW_OP_reg13:
20107 case DW_OP_reg14:
20108 case DW_OP_reg15:
20109 case DW_OP_reg16:
20110 case DW_OP_reg17:
20111 case DW_OP_reg18:
20112 case DW_OP_reg19:
20113 case DW_OP_reg20:
20114 case DW_OP_reg21:
20115 case DW_OP_reg22:
20116 case DW_OP_reg23:
20117 case DW_OP_reg24:
20118 case DW_OP_reg25:
20119 case DW_OP_reg26:
20120 case DW_OP_reg27:
20121 case DW_OP_reg28:
20122 case DW_OP_reg29:
20123 case DW_OP_reg30:
20124 case DW_OP_reg31:
20125 stack[++stacki] = op - DW_OP_reg0;
20126 if (i < size)
20127 dwarf2_complex_location_expr_complaint ();
20128 break;
c906108c 20129
21ae7a4d
JK
20130 case DW_OP_regx:
20131 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20132 i += bytes_read;
20133 stack[++stacki] = unsnd;
20134 if (i < size)
20135 dwarf2_complex_location_expr_complaint ();
20136 break;
c906108c 20137
21ae7a4d
JK
20138 case DW_OP_addr:
20139 stack[++stacki] = read_address (objfile->obfd, &data[i],
20140 cu, &bytes_read);
20141 i += bytes_read;
20142 break;
d53d4ac5 20143
21ae7a4d
JK
20144 case DW_OP_const1u:
20145 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20146 i += 1;
20147 break;
20148
20149 case DW_OP_const1s:
20150 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20151 i += 1;
20152 break;
20153
20154 case DW_OP_const2u:
20155 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20156 i += 2;
20157 break;
20158
20159 case DW_OP_const2s:
20160 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20161 i += 2;
20162 break;
d53d4ac5 20163
21ae7a4d
JK
20164 case DW_OP_const4u:
20165 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20166 i += 4;
20167 break;
20168
20169 case DW_OP_const4s:
20170 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20171 i += 4;
20172 break;
20173
585861ea
JK
20174 case DW_OP_const8u:
20175 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20176 i += 8;
20177 break;
20178
21ae7a4d
JK
20179 case DW_OP_constu:
20180 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20181 &bytes_read);
20182 i += bytes_read;
20183 break;
20184
20185 case DW_OP_consts:
20186 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20187 i += bytes_read;
20188 break;
20189
20190 case DW_OP_dup:
20191 stack[stacki + 1] = stack[stacki];
20192 stacki++;
20193 break;
20194
20195 case DW_OP_plus:
20196 stack[stacki - 1] += stack[stacki];
20197 stacki--;
20198 break;
20199
20200 case DW_OP_plus_uconst:
20201 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20202 &bytes_read);
20203 i += bytes_read;
20204 break;
20205
20206 case DW_OP_minus:
20207 stack[stacki - 1] -= stack[stacki];
20208 stacki--;
20209 break;
20210
20211 case DW_OP_deref:
20212 /* If we're not the last op, then we definitely can't encode
20213 this using GDB's address_class enum. This is valid for partial
20214 global symbols, although the variable's address will be bogus
20215 in the psymtab. */
20216 if (i < size)
20217 dwarf2_complex_location_expr_complaint ();
20218 break;
20219
20220 case DW_OP_GNU_push_tls_address:
20221 /* The top of the stack has the offset from the beginning
20222 of the thread control block at which the variable is located. */
20223 /* Nothing should follow this operator, so the top of stack would
20224 be returned. */
20225 /* This is valid for partial global symbols, but the variable's
585861ea
JK
20226 address will be bogus in the psymtab. Make it always at least
20227 non-zero to not look as a variable garbage collected by linker
20228 which have DW_OP_addr 0. */
21ae7a4d
JK
20229 if (i < size)
20230 dwarf2_complex_location_expr_complaint ();
585861ea 20231 stack[stacki]++;
21ae7a4d
JK
20232 break;
20233
20234 case DW_OP_GNU_uninit:
20235 break;
20236
3019eac3 20237 case DW_OP_GNU_addr_index:
49f6c839 20238 case DW_OP_GNU_const_index:
3019eac3
DE
20239 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20240 &bytes_read);
20241 i += bytes_read;
20242 break;
20243
21ae7a4d
JK
20244 default:
20245 {
f39c6ffd 20246 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
20247
20248 if (name)
20249 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20250 name);
20251 else
20252 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20253 op);
20254 }
20255
20256 return (stack[stacki]);
d53d4ac5 20257 }
3c6e0cb3 20258
21ae7a4d
JK
20259 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20260 outside of the allocated space. Also enforce minimum>0. */
20261 if (stacki >= ARRAY_SIZE (stack) - 1)
20262 {
20263 complaint (&symfile_complaints,
20264 _("location description stack overflow"));
20265 return 0;
20266 }
20267
20268 if (stacki <= 0)
20269 {
20270 complaint (&symfile_complaints,
20271 _("location description stack underflow"));
20272 return 0;
20273 }
20274 }
20275 return (stack[stacki]);
c906108c
SS
20276}
20277
20278/* memory allocation interface */
20279
c906108c 20280static struct dwarf_block *
7b5a2f43 20281dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
20282{
20283 struct dwarf_block *blk;
20284
20285 blk = (struct dwarf_block *)
7b5a2f43 20286 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
20287 return (blk);
20288}
20289
c906108c 20290static struct die_info *
b60c80d6 20291dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
20292{
20293 struct die_info *die;
b60c80d6
DJ
20294 size_t size = sizeof (struct die_info);
20295
20296 if (num_attrs > 1)
20297 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 20298
b60c80d6 20299 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
20300 memset (die, 0, sizeof (struct die_info));
20301 return (die);
20302}
2e276125
JB
20303
20304\f
20305/* Macro support. */
20306
233d95b5
JK
20307/* Return file name relative to the compilation directory of file number I in
20308 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 20309 responsible for freeing it. */
233d95b5 20310
2e276125 20311static char *
233d95b5 20312file_file_name (int file, struct line_header *lh)
2e276125 20313{
6a83a1e6
EZ
20314 /* Is the file number a valid index into the line header's file name
20315 table? Remember that file numbers start with one, not zero. */
20316 if (1 <= file && file <= lh->num_file_names)
20317 {
20318 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 20319
233d95b5 20320 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
6a83a1e6 20321 return xstrdup (fe->name);
233d95b5
JK
20322 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20323 fe->name, NULL);
6a83a1e6 20324 }
2e276125
JB
20325 else
20326 {
6a83a1e6
EZ
20327 /* The compiler produced a bogus file number. We can at least
20328 record the macro definitions made in the file, even if we
20329 won't be able to find the file by name. */
20330 char fake_name[80];
9a619af0 20331
8c042590
PM
20332 xsnprintf (fake_name, sizeof (fake_name),
20333 "<bad macro file number %d>", file);
2e276125 20334
6e70227d 20335 complaint (&symfile_complaints,
6a83a1e6
EZ
20336 _("bad file number in macro information (%d)"),
20337 file);
2e276125 20338
6a83a1e6 20339 return xstrdup (fake_name);
2e276125
JB
20340 }
20341}
20342
233d95b5
JK
20343/* Return the full name of file number I in *LH's file name table.
20344 Use COMP_DIR as the name of the current directory of the
20345 compilation. The result is allocated using xmalloc; the caller is
20346 responsible for freeing it. */
20347static char *
20348file_full_name (int file, struct line_header *lh, const char *comp_dir)
20349{
20350 /* Is the file number a valid index into the line header's file name
20351 table? Remember that file numbers start with one, not zero. */
20352 if (1 <= file && file <= lh->num_file_names)
20353 {
20354 char *relative = file_file_name (file, lh);
20355
20356 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20357 return relative;
20358 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20359 }
20360 else
20361 return file_file_name (file, lh);
20362}
20363
2e276125
JB
20364
20365static struct macro_source_file *
20366macro_start_file (int file, int line,
20367 struct macro_source_file *current_file,
20368 const char *comp_dir,
20369 struct line_header *lh, struct objfile *objfile)
20370{
233d95b5
JK
20371 /* File name relative to the compilation directory of this source file. */
20372 char *file_name = file_file_name (file, lh);
2e276125 20373
2e276125 20374 if (! current_file)
abc9d0dc 20375 {
fc474241
DE
20376 /* Note: We don't create a macro table for this compilation unit
20377 at all until we actually get a filename. */
20378 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
20379
abc9d0dc
TT
20380 /* If we have no current file, then this must be the start_file
20381 directive for the compilation unit's main source file. */
fc474241
DE
20382 current_file = macro_set_main (macro_table, file_name);
20383 macro_define_special (macro_table);
abc9d0dc 20384 }
2e276125 20385 else
233d95b5 20386 current_file = macro_include (current_file, line, file_name);
2e276125 20387
233d95b5 20388 xfree (file_name);
6e70227d 20389
2e276125
JB
20390 return current_file;
20391}
20392
20393
20394/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20395 followed by a null byte. */
20396static char *
20397copy_string (const char *buf, int len)
20398{
20399 char *s = xmalloc (len + 1);
9a619af0 20400
2e276125
JB
20401 memcpy (s, buf, len);
20402 s[len] = '\0';
2e276125
JB
20403 return s;
20404}
20405
20406
20407static const char *
20408consume_improper_spaces (const char *p, const char *body)
20409{
20410 if (*p == ' ')
20411 {
4d3c2250 20412 complaint (&symfile_complaints,
3e43a32a
MS
20413 _("macro definition contains spaces "
20414 "in formal argument list:\n`%s'"),
4d3c2250 20415 body);
2e276125
JB
20416
20417 while (*p == ' ')
20418 p++;
20419 }
20420
20421 return p;
20422}
20423
20424
20425static void
20426parse_macro_definition (struct macro_source_file *file, int line,
20427 const char *body)
20428{
20429 const char *p;
20430
20431 /* The body string takes one of two forms. For object-like macro
20432 definitions, it should be:
20433
20434 <macro name> " " <definition>
20435
20436 For function-like macro definitions, it should be:
20437
20438 <macro name> "() " <definition>
20439 or
20440 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20441
20442 Spaces may appear only where explicitly indicated, and in the
20443 <definition>.
20444
20445 The Dwarf 2 spec says that an object-like macro's name is always
20446 followed by a space, but versions of GCC around March 2002 omit
6e70227d 20447 the space when the macro's definition is the empty string.
2e276125
JB
20448
20449 The Dwarf 2 spec says that there should be no spaces between the
20450 formal arguments in a function-like macro's formal argument list,
20451 but versions of GCC around March 2002 include spaces after the
20452 commas. */
20453
20454
20455 /* Find the extent of the macro name. The macro name is terminated
20456 by either a space or null character (for an object-like macro) or
20457 an opening paren (for a function-like macro). */
20458 for (p = body; *p; p++)
20459 if (*p == ' ' || *p == '(')
20460 break;
20461
20462 if (*p == ' ' || *p == '\0')
20463 {
20464 /* It's an object-like macro. */
20465 int name_len = p - body;
20466 char *name = copy_string (body, name_len);
20467 const char *replacement;
20468
20469 if (*p == ' ')
20470 replacement = body + name_len + 1;
20471 else
20472 {
4d3c2250 20473 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20474 replacement = body + name_len;
20475 }
6e70227d 20476
2e276125
JB
20477 macro_define_object (file, line, name, replacement);
20478
20479 xfree (name);
20480 }
20481 else if (*p == '(')
20482 {
20483 /* It's a function-like macro. */
20484 char *name = copy_string (body, p - body);
20485 int argc = 0;
20486 int argv_size = 1;
20487 char **argv = xmalloc (argv_size * sizeof (*argv));
20488
20489 p++;
20490
20491 p = consume_improper_spaces (p, body);
20492
20493 /* Parse the formal argument list. */
20494 while (*p && *p != ')')
20495 {
20496 /* Find the extent of the current argument name. */
20497 const char *arg_start = p;
20498
20499 while (*p && *p != ',' && *p != ')' && *p != ' ')
20500 p++;
20501
20502 if (! *p || p == arg_start)
4d3c2250 20503 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20504 else
20505 {
20506 /* Make sure argv has room for the new argument. */
20507 if (argc >= argv_size)
20508 {
20509 argv_size *= 2;
20510 argv = xrealloc (argv, argv_size * sizeof (*argv));
20511 }
20512
20513 argv[argc++] = copy_string (arg_start, p - arg_start);
20514 }
20515
20516 p = consume_improper_spaces (p, body);
20517
20518 /* Consume the comma, if present. */
20519 if (*p == ',')
20520 {
20521 p++;
20522
20523 p = consume_improper_spaces (p, body);
20524 }
20525 }
20526
20527 if (*p == ')')
20528 {
20529 p++;
20530
20531 if (*p == ' ')
20532 /* Perfectly formed definition, no complaints. */
20533 macro_define_function (file, line, name,
6e70227d 20534 argc, (const char **) argv,
2e276125
JB
20535 p + 1);
20536 else if (*p == '\0')
20537 {
20538 /* Complain, but do define it. */
4d3c2250 20539 dwarf2_macro_malformed_definition_complaint (body);
2e276125 20540 macro_define_function (file, line, name,
6e70227d 20541 argc, (const char **) argv,
2e276125
JB
20542 p);
20543 }
20544 else
20545 /* Just complain. */
4d3c2250 20546 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20547 }
20548 else
20549 /* Just complain. */
4d3c2250 20550 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20551
20552 xfree (name);
20553 {
20554 int i;
20555
20556 for (i = 0; i < argc; i++)
20557 xfree (argv[i]);
20558 }
20559 xfree (argv);
20560 }
20561 else
4d3c2250 20562 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20563}
20564
cf2c3c16
TT
20565/* Skip some bytes from BYTES according to the form given in FORM.
20566 Returns the new pointer. */
2e276125 20567
d521ce57
TT
20568static const gdb_byte *
20569skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
20570 enum dwarf_form form,
20571 unsigned int offset_size,
20572 struct dwarf2_section_info *section)
2e276125 20573{
cf2c3c16 20574 unsigned int bytes_read;
2e276125 20575
cf2c3c16 20576 switch (form)
2e276125 20577 {
cf2c3c16
TT
20578 case DW_FORM_data1:
20579 case DW_FORM_flag:
20580 ++bytes;
20581 break;
20582
20583 case DW_FORM_data2:
20584 bytes += 2;
20585 break;
20586
20587 case DW_FORM_data4:
20588 bytes += 4;
20589 break;
20590
20591 case DW_FORM_data8:
20592 bytes += 8;
20593 break;
20594
20595 case DW_FORM_string:
20596 read_direct_string (abfd, bytes, &bytes_read);
20597 bytes += bytes_read;
20598 break;
20599
20600 case DW_FORM_sec_offset:
20601 case DW_FORM_strp:
36586728 20602 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
20603 bytes += offset_size;
20604 break;
20605
20606 case DW_FORM_block:
20607 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20608 bytes += bytes_read;
20609 break;
20610
20611 case DW_FORM_block1:
20612 bytes += 1 + read_1_byte (abfd, bytes);
20613 break;
20614 case DW_FORM_block2:
20615 bytes += 2 + read_2_bytes (abfd, bytes);
20616 break;
20617 case DW_FORM_block4:
20618 bytes += 4 + read_4_bytes (abfd, bytes);
20619 break;
20620
20621 case DW_FORM_sdata:
20622 case DW_FORM_udata:
3019eac3
DE
20623 case DW_FORM_GNU_addr_index:
20624 case DW_FORM_GNU_str_index:
d521ce57 20625 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
20626 if (bytes == NULL)
20627 {
20628 dwarf2_section_buffer_overflow_complaint (section);
20629 return NULL;
20630 }
cf2c3c16
TT
20631 break;
20632
20633 default:
20634 {
20635 complain:
20636 complaint (&symfile_complaints,
20637 _("invalid form 0x%x in `%s'"),
a32a8923 20638 form, get_section_name (section));
cf2c3c16
TT
20639 return NULL;
20640 }
2e276125
JB
20641 }
20642
cf2c3c16
TT
20643 return bytes;
20644}
757a13d0 20645
cf2c3c16
TT
20646/* A helper for dwarf_decode_macros that handles skipping an unknown
20647 opcode. Returns an updated pointer to the macro data buffer; or,
20648 on error, issues a complaint and returns NULL. */
757a13d0 20649
d521ce57 20650static const gdb_byte *
cf2c3c16 20651skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
20652 const gdb_byte **opcode_definitions,
20653 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
20654 bfd *abfd,
20655 unsigned int offset_size,
20656 struct dwarf2_section_info *section)
20657{
20658 unsigned int bytes_read, i;
20659 unsigned long arg;
d521ce57 20660 const gdb_byte *defn;
2e276125 20661
cf2c3c16 20662 if (opcode_definitions[opcode] == NULL)
2e276125 20663 {
cf2c3c16
TT
20664 complaint (&symfile_complaints,
20665 _("unrecognized DW_MACFINO opcode 0x%x"),
20666 opcode);
20667 return NULL;
20668 }
2e276125 20669
cf2c3c16
TT
20670 defn = opcode_definitions[opcode];
20671 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20672 defn += bytes_read;
2e276125 20673
cf2c3c16
TT
20674 for (i = 0; i < arg; ++i)
20675 {
f664829e
DE
20676 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20677 section);
cf2c3c16
TT
20678 if (mac_ptr == NULL)
20679 {
20680 /* skip_form_bytes already issued the complaint. */
20681 return NULL;
20682 }
20683 }
757a13d0 20684
cf2c3c16
TT
20685 return mac_ptr;
20686}
757a13d0 20687
cf2c3c16
TT
20688/* A helper function which parses the header of a macro section.
20689 If the macro section is the extended (for now called "GNU") type,
20690 then this updates *OFFSET_SIZE. Returns a pointer to just after
20691 the header, or issues a complaint and returns NULL on error. */
757a13d0 20692
d521ce57
TT
20693static const gdb_byte *
20694dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 20695 bfd *abfd,
d521ce57 20696 const gdb_byte *mac_ptr,
cf2c3c16
TT
20697 unsigned int *offset_size,
20698 int section_is_gnu)
20699{
20700 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 20701
cf2c3c16
TT
20702 if (section_is_gnu)
20703 {
20704 unsigned int version, flags;
757a13d0 20705
cf2c3c16
TT
20706 version = read_2_bytes (abfd, mac_ptr);
20707 if (version != 4)
20708 {
20709 complaint (&symfile_complaints,
20710 _("unrecognized version `%d' in .debug_macro section"),
20711 version);
20712 return NULL;
20713 }
20714 mac_ptr += 2;
757a13d0 20715
cf2c3c16
TT
20716 flags = read_1_byte (abfd, mac_ptr);
20717 ++mac_ptr;
20718 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 20719
cf2c3c16
TT
20720 if ((flags & 2) != 0)
20721 /* We don't need the line table offset. */
20722 mac_ptr += *offset_size;
757a13d0 20723
cf2c3c16
TT
20724 /* Vendor opcode descriptions. */
20725 if ((flags & 4) != 0)
20726 {
20727 unsigned int i, count;
757a13d0 20728
cf2c3c16
TT
20729 count = read_1_byte (abfd, mac_ptr);
20730 ++mac_ptr;
20731 for (i = 0; i < count; ++i)
20732 {
20733 unsigned int opcode, bytes_read;
20734 unsigned long arg;
20735
20736 opcode = read_1_byte (abfd, mac_ptr);
20737 ++mac_ptr;
20738 opcode_definitions[opcode] = mac_ptr;
20739 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20740 mac_ptr += bytes_read;
20741 mac_ptr += arg;
20742 }
757a13d0 20743 }
cf2c3c16 20744 }
757a13d0 20745
cf2c3c16
TT
20746 return mac_ptr;
20747}
757a13d0 20748
cf2c3c16 20749/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 20750 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
20751
20752static void
d521ce57
TT
20753dwarf_decode_macro_bytes (bfd *abfd,
20754 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 20755 struct macro_source_file *current_file,
15d034d0 20756 struct line_header *lh, const char *comp_dir,
cf2c3c16 20757 struct dwarf2_section_info *section,
36586728 20758 int section_is_gnu, int section_is_dwz,
cf2c3c16 20759 unsigned int offset_size,
8fc3fc34
TT
20760 struct objfile *objfile,
20761 htab_t include_hash)
cf2c3c16
TT
20762{
20763 enum dwarf_macro_record_type macinfo_type;
20764 int at_commandline;
d521ce57 20765 const gdb_byte *opcode_definitions[256];
757a13d0 20766
cf2c3c16
TT
20767 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20768 &offset_size, section_is_gnu);
20769 if (mac_ptr == NULL)
20770 {
20771 /* We already issued a complaint. */
20772 return;
20773 }
757a13d0
JK
20774
20775 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20776 GDB is still reading the definitions from command line. First
20777 DW_MACINFO_start_file will need to be ignored as it was already executed
20778 to create CURRENT_FILE for the main source holding also the command line
20779 definitions. On first met DW_MACINFO_start_file this flag is reset to
20780 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20781
20782 at_commandline = 1;
20783
20784 do
20785 {
20786 /* Do we at least have room for a macinfo type byte? */
20787 if (mac_ptr >= mac_end)
20788 {
f664829e 20789 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
20790 break;
20791 }
20792
20793 macinfo_type = read_1_byte (abfd, mac_ptr);
20794 mac_ptr++;
20795
cf2c3c16
TT
20796 /* Note that we rely on the fact that the corresponding GNU and
20797 DWARF constants are the same. */
757a13d0
JK
20798 switch (macinfo_type)
20799 {
20800 /* A zero macinfo type indicates the end of the macro
20801 information. */
20802 case 0:
20803 break;
2e276125 20804
cf2c3c16
TT
20805 case DW_MACRO_GNU_define:
20806 case DW_MACRO_GNU_undef:
20807 case DW_MACRO_GNU_define_indirect:
20808 case DW_MACRO_GNU_undef_indirect:
36586728
TT
20809 case DW_MACRO_GNU_define_indirect_alt:
20810 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 20811 {
891d2f0b 20812 unsigned int bytes_read;
2e276125 20813 int line;
d521ce57 20814 const char *body;
cf2c3c16 20815 int is_define;
2e276125 20816
cf2c3c16
TT
20817 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20818 mac_ptr += bytes_read;
20819
20820 if (macinfo_type == DW_MACRO_GNU_define
20821 || macinfo_type == DW_MACRO_GNU_undef)
20822 {
20823 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20824 mac_ptr += bytes_read;
20825 }
20826 else
20827 {
20828 LONGEST str_offset;
20829
20830 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20831 mac_ptr += offset_size;
2e276125 20832
36586728 20833 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
20834 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20835 || section_is_dwz)
36586728
TT
20836 {
20837 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20838
20839 body = read_indirect_string_from_dwz (dwz, str_offset);
20840 }
20841 else
20842 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
20843 }
20844
20845 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
20846 || macinfo_type == DW_MACRO_GNU_define_indirect
20847 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 20848 if (! current_file)
757a13d0
JK
20849 {
20850 /* DWARF violation as no main source is present. */
20851 complaint (&symfile_complaints,
20852 _("debug info with no main source gives macro %s "
20853 "on line %d: %s"),
cf2c3c16
TT
20854 is_define ? _("definition") : _("undefinition"),
20855 line, body);
757a13d0
JK
20856 break;
20857 }
3e43a32a
MS
20858 if ((line == 0 && !at_commandline)
20859 || (line != 0 && at_commandline))
4d3c2250 20860 complaint (&symfile_complaints,
757a13d0
JK
20861 _("debug info gives %s macro %s with %s line %d: %s"),
20862 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 20863 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
20864 line == 0 ? _("zero") : _("non-zero"), line, body);
20865
cf2c3c16 20866 if (is_define)
757a13d0 20867 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
20868 else
20869 {
20870 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
20871 || macinfo_type == DW_MACRO_GNU_undef_indirect
20872 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
20873 macro_undef (current_file, line, body);
20874 }
2e276125
JB
20875 }
20876 break;
20877
cf2c3c16 20878 case DW_MACRO_GNU_start_file:
2e276125 20879 {
891d2f0b 20880 unsigned int bytes_read;
2e276125
JB
20881 int line, file;
20882
20883 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20884 mac_ptr += bytes_read;
20885 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20886 mac_ptr += bytes_read;
20887
3e43a32a
MS
20888 if ((line == 0 && !at_commandline)
20889 || (line != 0 && at_commandline))
757a13d0
JK
20890 complaint (&symfile_complaints,
20891 _("debug info gives source %d included "
20892 "from %s at %s line %d"),
20893 file, at_commandline ? _("command-line") : _("file"),
20894 line == 0 ? _("zero") : _("non-zero"), line);
20895
20896 if (at_commandline)
20897 {
cf2c3c16
TT
20898 /* This DW_MACRO_GNU_start_file was executed in the
20899 pass one. */
757a13d0
JK
20900 at_commandline = 0;
20901 }
20902 else
20903 current_file = macro_start_file (file, line,
20904 current_file, comp_dir,
cf2c3c16 20905 lh, objfile);
2e276125
JB
20906 }
20907 break;
20908
cf2c3c16 20909 case DW_MACRO_GNU_end_file:
2e276125 20910 if (! current_file)
4d3c2250 20911 complaint (&symfile_complaints,
3e43a32a
MS
20912 _("macro debug info has an unmatched "
20913 "`close_file' directive"));
2e276125
JB
20914 else
20915 {
20916 current_file = current_file->included_by;
20917 if (! current_file)
20918 {
cf2c3c16 20919 enum dwarf_macro_record_type next_type;
2e276125
JB
20920
20921 /* GCC circa March 2002 doesn't produce the zero
20922 type byte marking the end of the compilation
20923 unit. Complain if it's not there, but exit no
20924 matter what. */
20925
20926 /* Do we at least have room for a macinfo type byte? */
20927 if (mac_ptr >= mac_end)
20928 {
f664829e 20929 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
20930 return;
20931 }
20932
20933 /* We don't increment mac_ptr here, so this is just
20934 a look-ahead. */
20935 next_type = read_1_byte (abfd, mac_ptr);
20936 if (next_type != 0)
4d3c2250 20937 complaint (&symfile_complaints,
3e43a32a
MS
20938 _("no terminating 0-type entry for "
20939 "macros in `.debug_macinfo' section"));
2e276125
JB
20940
20941 return;
20942 }
20943 }
20944 break;
20945
cf2c3c16 20946 case DW_MACRO_GNU_transparent_include:
36586728 20947 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
20948 {
20949 LONGEST offset;
8fc3fc34 20950 void **slot;
a036ba48
TT
20951 bfd *include_bfd = abfd;
20952 struct dwarf2_section_info *include_section = section;
20953 struct dwarf2_section_info alt_section;
d521ce57 20954 const gdb_byte *include_mac_end = mac_end;
a036ba48 20955 int is_dwz = section_is_dwz;
d521ce57 20956 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
20957
20958 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20959 mac_ptr += offset_size;
20960
a036ba48
TT
20961 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20962 {
20963 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20964
20965 dwarf2_read_section (dwarf2_per_objfile->objfile,
20966 &dwz->macro);
20967
a036ba48 20968 include_section = &dwz->macro;
a32a8923 20969 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
20970 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20971 is_dwz = 1;
20972 }
20973
20974 new_mac_ptr = include_section->buffer + offset;
20975 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20976
8fc3fc34
TT
20977 if (*slot != NULL)
20978 {
20979 /* This has actually happened; see
20980 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20981 complaint (&symfile_complaints,
20982 _("recursive DW_MACRO_GNU_transparent_include in "
20983 ".debug_macro section"));
20984 }
20985 else
20986 {
d521ce57 20987 *slot = (void *) new_mac_ptr;
36586728 20988
a036ba48 20989 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
36586728 20990 include_mac_end, current_file,
8fc3fc34 20991 lh, comp_dir,
36586728 20992 section, section_is_gnu, is_dwz,
8fc3fc34
TT
20993 offset_size, objfile, include_hash);
20994
d521ce57 20995 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 20996 }
cf2c3c16
TT
20997 }
20998 break;
20999
2e276125 21000 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
21001 if (!section_is_gnu)
21002 {
21003 unsigned int bytes_read;
21004 int constant;
2e276125 21005
cf2c3c16
TT
21006 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21007 mac_ptr += bytes_read;
21008 read_direct_string (abfd, mac_ptr, &bytes_read);
21009 mac_ptr += bytes_read;
2e276125 21010
cf2c3c16
TT
21011 /* We don't recognize any vendor extensions. */
21012 break;
21013 }
21014 /* FALLTHROUGH */
21015
21016 default:
21017 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21018 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21019 section);
21020 if (mac_ptr == NULL)
21021 return;
21022 break;
2e276125 21023 }
757a13d0 21024 } while (macinfo_type != 0);
2e276125 21025}
8e19ed76 21026
cf2c3c16 21027static void
09262596 21028dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
15d034d0 21029 const char *comp_dir, int section_is_gnu)
cf2c3c16 21030{
bb5ed363 21031 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
21032 struct line_header *lh = cu->line_header;
21033 bfd *abfd;
d521ce57 21034 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
21035 struct macro_source_file *current_file = 0;
21036 enum dwarf_macro_record_type macinfo_type;
21037 unsigned int offset_size = cu->header.offset_size;
d521ce57 21038 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
21039 struct cleanup *cleanup;
21040 htab_t include_hash;
21041 void **slot;
09262596
DE
21042 struct dwarf2_section_info *section;
21043 const char *section_name;
21044
21045 if (cu->dwo_unit != NULL)
21046 {
21047 if (section_is_gnu)
21048 {
21049 section = &cu->dwo_unit->dwo_file->sections.macro;
21050 section_name = ".debug_macro.dwo";
21051 }
21052 else
21053 {
21054 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21055 section_name = ".debug_macinfo.dwo";
21056 }
21057 }
21058 else
21059 {
21060 if (section_is_gnu)
21061 {
21062 section = &dwarf2_per_objfile->macro;
21063 section_name = ".debug_macro";
21064 }
21065 else
21066 {
21067 section = &dwarf2_per_objfile->macinfo;
21068 section_name = ".debug_macinfo";
21069 }
21070 }
cf2c3c16 21071
bb5ed363 21072 dwarf2_read_section (objfile, section);
cf2c3c16
TT
21073 if (section->buffer == NULL)
21074 {
fceca515 21075 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
21076 return;
21077 }
a32a8923 21078 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
21079
21080 /* First pass: Find the name of the base filename.
21081 This filename is needed in order to process all macros whose definition
21082 (or undefinition) comes from the command line. These macros are defined
21083 before the first DW_MACINFO_start_file entry, and yet still need to be
21084 associated to the base file.
21085
21086 To determine the base file name, we scan the macro definitions until we
21087 reach the first DW_MACINFO_start_file entry. We then initialize
21088 CURRENT_FILE accordingly so that any macro definition found before the
21089 first DW_MACINFO_start_file can still be associated to the base file. */
21090
21091 mac_ptr = section->buffer + offset;
21092 mac_end = section->buffer + section->size;
21093
21094 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21095 &offset_size, section_is_gnu);
21096 if (mac_ptr == NULL)
21097 {
21098 /* We already issued a complaint. */
21099 return;
21100 }
21101
21102 do
21103 {
21104 /* Do we at least have room for a macinfo type byte? */
21105 if (mac_ptr >= mac_end)
21106 {
21107 /* Complaint is printed during the second pass as GDB will probably
21108 stop the first pass earlier upon finding
21109 DW_MACINFO_start_file. */
21110 break;
21111 }
21112
21113 macinfo_type = read_1_byte (abfd, mac_ptr);
21114 mac_ptr++;
21115
21116 /* Note that we rely on the fact that the corresponding GNU and
21117 DWARF constants are the same. */
21118 switch (macinfo_type)
21119 {
21120 /* A zero macinfo type indicates the end of the macro
21121 information. */
21122 case 0:
21123 break;
21124
21125 case DW_MACRO_GNU_define:
21126 case DW_MACRO_GNU_undef:
21127 /* Only skip the data by MAC_PTR. */
21128 {
21129 unsigned int bytes_read;
21130
21131 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21132 mac_ptr += bytes_read;
21133 read_direct_string (abfd, mac_ptr, &bytes_read);
21134 mac_ptr += bytes_read;
21135 }
21136 break;
21137
21138 case DW_MACRO_GNU_start_file:
21139 {
21140 unsigned int bytes_read;
21141 int line, file;
21142
21143 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21144 mac_ptr += bytes_read;
21145 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21146 mac_ptr += bytes_read;
21147
21148 current_file = macro_start_file (file, line, current_file,
bb5ed363 21149 comp_dir, lh, objfile);
cf2c3c16
TT
21150 }
21151 break;
21152
21153 case DW_MACRO_GNU_end_file:
21154 /* No data to skip by MAC_PTR. */
21155 break;
21156
21157 case DW_MACRO_GNU_define_indirect:
21158 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
21159 case DW_MACRO_GNU_define_indirect_alt:
21160 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
21161 {
21162 unsigned int bytes_read;
21163
21164 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21165 mac_ptr += bytes_read;
21166 mac_ptr += offset_size;
21167 }
21168 break;
21169
21170 case DW_MACRO_GNU_transparent_include:
f7a35f02 21171 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21172 /* Note that, according to the spec, a transparent include
21173 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21174 skip this opcode. */
21175 mac_ptr += offset_size;
21176 break;
21177
21178 case DW_MACINFO_vendor_ext:
21179 /* Only skip the data by MAC_PTR. */
21180 if (!section_is_gnu)
21181 {
21182 unsigned int bytes_read;
21183
21184 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21185 mac_ptr += bytes_read;
21186 read_direct_string (abfd, mac_ptr, &bytes_read);
21187 mac_ptr += bytes_read;
21188 }
21189 /* FALLTHROUGH */
21190
21191 default:
21192 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21193 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21194 section);
21195 if (mac_ptr == NULL)
21196 return;
21197 break;
21198 }
21199 } while (macinfo_type != 0 && current_file == NULL);
21200
21201 /* Second pass: Process all entries.
21202
21203 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21204 command-line macro definitions/undefinitions. This flag is unset when we
21205 reach the first DW_MACINFO_start_file entry. */
21206
8fc3fc34
TT
21207 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21208 NULL, xcalloc, xfree);
21209 cleanup = make_cleanup_htab_delete (include_hash);
21210 mac_ptr = section->buffer + offset;
21211 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 21212 *slot = (void *) mac_ptr;
8fc3fc34 21213 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
36586728
TT
21214 current_file, lh, comp_dir, section,
21215 section_is_gnu, 0,
8fc3fc34
TT
21216 offset_size, objfile, include_hash);
21217 do_cleanups (cleanup);
cf2c3c16
TT
21218}
21219
8e19ed76 21220/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 21221 if so return true else false. */
380bca97 21222
8e19ed76 21223static int
6e5a29e1 21224attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
21225{
21226 return (attr == NULL ? 0 :
21227 attr->form == DW_FORM_block1
21228 || attr->form == DW_FORM_block2
21229 || attr->form == DW_FORM_block4
2dc7f7b3
TT
21230 || attr->form == DW_FORM_block
21231 || attr->form == DW_FORM_exprloc);
8e19ed76 21232}
4c2df51b 21233
c6a0999f
JB
21234/* Return non-zero if ATTR's value is a section offset --- classes
21235 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21236 You may use DW_UNSND (attr) to retrieve such offsets.
21237
21238 Section 7.5.4, "Attribute Encodings", explains that no attribute
21239 may have a value that belongs to more than one of these classes; it
21240 would be ambiguous if we did, because we use the same forms for all
21241 of them. */
380bca97 21242
3690dd37 21243static int
6e5a29e1 21244attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
21245{
21246 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
21247 || attr->form == DW_FORM_data8
21248 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
21249}
21250
3690dd37
JB
21251/* Return non-zero if ATTR's value falls in the 'constant' class, or
21252 zero otherwise. When this function returns true, you can apply
21253 dwarf2_get_attr_constant_value to it.
21254
21255 However, note that for some attributes you must check
21256 attr_form_is_section_offset before using this test. DW_FORM_data4
21257 and DW_FORM_data8 are members of both the constant class, and of
21258 the classes that contain offsets into other debug sections
21259 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21260 that, if an attribute's can be either a constant or one of the
21261 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21262 taken as section offsets, not constants. */
380bca97 21263
3690dd37 21264static int
6e5a29e1 21265attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
21266{
21267 switch (attr->form)
21268 {
21269 case DW_FORM_sdata:
21270 case DW_FORM_udata:
21271 case DW_FORM_data1:
21272 case DW_FORM_data2:
21273 case DW_FORM_data4:
21274 case DW_FORM_data8:
21275 return 1;
21276 default:
21277 return 0;
21278 }
21279}
21280
7771576e
SA
21281
21282/* DW_ADDR is always stored already as sect_offset; despite for the forms
21283 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21284
21285static int
6e5a29e1 21286attr_form_is_ref (const struct attribute *attr)
7771576e
SA
21287{
21288 switch (attr->form)
21289 {
21290 case DW_FORM_ref_addr:
21291 case DW_FORM_ref1:
21292 case DW_FORM_ref2:
21293 case DW_FORM_ref4:
21294 case DW_FORM_ref8:
21295 case DW_FORM_ref_udata:
21296 case DW_FORM_GNU_ref_alt:
21297 return 1;
21298 default:
21299 return 0;
21300 }
21301}
21302
3019eac3
DE
21303/* Return the .debug_loc section to use for CU.
21304 For DWO files use .debug_loc.dwo. */
21305
21306static struct dwarf2_section_info *
21307cu_debug_loc_section (struct dwarf2_cu *cu)
21308{
21309 if (cu->dwo_unit)
21310 return &cu->dwo_unit->dwo_file->sections.loc;
21311 return &dwarf2_per_objfile->loc;
21312}
21313
8cf6f0b1
TT
21314/* A helper function that fills in a dwarf2_loclist_baton. */
21315
21316static void
21317fill_in_loclist_baton (struct dwarf2_cu *cu,
21318 struct dwarf2_loclist_baton *baton,
ff39bb5e 21319 const struct attribute *attr)
8cf6f0b1 21320{
3019eac3
DE
21321 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21322
21323 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
21324
21325 baton->per_cu = cu->per_cu;
21326 gdb_assert (baton->per_cu);
21327 /* We don't know how long the location list is, but make sure we
21328 don't run off the edge of the section. */
3019eac3
DE
21329 baton->size = section->size - DW_UNSND (attr);
21330 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 21331 baton->base_address = cu->base_address;
f664829e 21332 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
21333}
21334
4c2df51b 21335static void
ff39bb5e 21336dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 21337 struct dwarf2_cu *cu, int is_block)
4c2df51b 21338{
bb5ed363 21339 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 21340 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 21341
3690dd37 21342 if (attr_form_is_section_offset (attr)
3019eac3 21343 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
21344 the section. If so, fall through to the complaint in the
21345 other branch. */
3019eac3 21346 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 21347 {
0d53c4c4 21348 struct dwarf2_loclist_baton *baton;
4c2df51b 21349
bb5ed363 21350 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 21351 sizeof (struct dwarf2_loclist_baton));
4c2df51b 21352
8cf6f0b1 21353 fill_in_loclist_baton (cu, baton, attr);
be391dca 21354
d00adf39 21355 if (cu->base_known == 0)
0d53c4c4 21356 complaint (&symfile_complaints,
3e43a32a
MS
21357 _("Location list used without "
21358 "specifying the CU base address."));
4c2df51b 21359
f1e6e072
TT
21360 SYMBOL_ACLASS_INDEX (sym) = (is_block
21361 ? dwarf2_loclist_block_index
21362 : dwarf2_loclist_index);
0d53c4c4
DJ
21363 SYMBOL_LOCATION_BATON (sym) = baton;
21364 }
21365 else
21366 {
21367 struct dwarf2_locexpr_baton *baton;
21368
bb5ed363 21369 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 21370 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
21371 baton->per_cu = cu->per_cu;
21372 gdb_assert (baton->per_cu);
0d53c4c4
DJ
21373
21374 if (attr_form_is_block (attr))
21375 {
21376 /* Note that we're just copying the block's data pointer
21377 here, not the actual data. We're still pointing into the
6502dd73
DJ
21378 info_buffer for SYM's objfile; right now we never release
21379 that buffer, but when we do clean up properly this may
21380 need to change. */
0d53c4c4
DJ
21381 baton->size = DW_BLOCK (attr)->size;
21382 baton->data = DW_BLOCK (attr)->data;
21383 }
21384 else
21385 {
21386 dwarf2_invalid_attrib_class_complaint ("location description",
21387 SYMBOL_NATURAL_NAME (sym));
21388 baton->size = 0;
0d53c4c4 21389 }
6e70227d 21390
f1e6e072
TT
21391 SYMBOL_ACLASS_INDEX (sym) = (is_block
21392 ? dwarf2_locexpr_block_index
21393 : dwarf2_locexpr_index);
0d53c4c4
DJ
21394 SYMBOL_LOCATION_BATON (sym) = baton;
21395 }
4c2df51b 21396}
6502dd73 21397
9aa1f1e3
TT
21398/* Return the OBJFILE associated with the compilation unit CU. If CU
21399 came from a separate debuginfo file, then the master objfile is
21400 returned. */
ae0d2f24
UW
21401
21402struct objfile *
21403dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21404{
9291a0cd 21405 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
21406
21407 /* Return the master objfile, so that we can report and look up the
21408 correct file containing this variable. */
21409 if (objfile->separate_debug_objfile_backlink)
21410 objfile = objfile->separate_debug_objfile_backlink;
21411
21412 return objfile;
21413}
21414
96408a79
SA
21415/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21416 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21417 CU_HEADERP first. */
21418
21419static const struct comp_unit_head *
21420per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21421 struct dwarf2_per_cu_data *per_cu)
21422{
d521ce57 21423 const gdb_byte *info_ptr;
96408a79
SA
21424
21425 if (per_cu->cu)
21426 return &per_cu->cu->header;
21427
8a0459fd 21428 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
21429
21430 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 21431 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
21432
21433 return cu_headerp;
21434}
21435
ae0d2f24
UW
21436/* Return the address size given in the compilation unit header for CU. */
21437
98714339 21438int
ae0d2f24
UW
21439dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21440{
96408a79
SA
21441 struct comp_unit_head cu_header_local;
21442 const struct comp_unit_head *cu_headerp;
c471e790 21443
96408a79
SA
21444 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21445
21446 return cu_headerp->addr_size;
ae0d2f24
UW
21447}
21448
9eae7c52
TT
21449/* Return the offset size given in the compilation unit header for CU. */
21450
21451int
21452dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21453{
96408a79
SA
21454 struct comp_unit_head cu_header_local;
21455 const struct comp_unit_head *cu_headerp;
9c6c53f7 21456
96408a79
SA
21457 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21458
21459 return cu_headerp->offset_size;
21460}
21461
21462/* See its dwarf2loc.h declaration. */
21463
21464int
21465dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21466{
21467 struct comp_unit_head cu_header_local;
21468 const struct comp_unit_head *cu_headerp;
21469
21470 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21471
21472 if (cu_headerp->version == 2)
21473 return cu_headerp->addr_size;
21474 else
21475 return cu_headerp->offset_size;
181cebd4
JK
21476}
21477
9aa1f1e3
TT
21478/* Return the text offset of the CU. The returned offset comes from
21479 this CU's objfile. If this objfile came from a separate debuginfo
21480 file, then the offset may be different from the corresponding
21481 offset in the parent objfile. */
21482
21483CORE_ADDR
21484dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21485{
bb3fa9d0 21486 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
21487
21488 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21489}
21490
348e048f
DE
21491/* Locate the .debug_info compilation unit from CU's objfile which contains
21492 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
21493
21494static struct dwarf2_per_cu_data *
b64f50a1 21495dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 21496 unsigned int offset_in_dwz,
ae038cb0
DJ
21497 struct objfile *objfile)
21498{
21499 struct dwarf2_per_cu_data *this_cu;
21500 int low, high;
36586728 21501 const sect_offset *cu_off;
ae038cb0 21502
ae038cb0
DJ
21503 low = 0;
21504 high = dwarf2_per_objfile->n_comp_units - 1;
21505 while (high > low)
21506 {
36586728 21507 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 21508 int mid = low + (high - low) / 2;
9a619af0 21509
36586728
TT
21510 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21511 cu_off = &mid_cu->offset;
21512 if (mid_cu->is_dwz > offset_in_dwz
21513 || (mid_cu->is_dwz == offset_in_dwz
21514 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
21515 high = mid;
21516 else
21517 low = mid + 1;
21518 }
21519 gdb_assert (low == high);
36586728
TT
21520 this_cu = dwarf2_per_objfile->all_comp_units[low];
21521 cu_off = &this_cu->offset;
21522 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 21523 {
36586728 21524 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
21525 error (_("Dwarf Error: could not find partial DIE containing "
21526 "offset 0x%lx [in module %s]"),
b64f50a1 21527 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 21528
b64f50a1
JK
21529 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21530 <= offset.sect_off);
ae038cb0
DJ
21531 return dwarf2_per_objfile->all_comp_units[low-1];
21532 }
21533 else
21534 {
21535 this_cu = dwarf2_per_objfile->all_comp_units[low];
21536 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
21537 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21538 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21539 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
21540 return this_cu;
21541 }
21542}
21543
23745b47 21544/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 21545
9816fde3 21546static void
23745b47 21547init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 21548{
9816fde3 21549 memset (cu, 0, sizeof (*cu));
23745b47
DE
21550 per_cu->cu = cu;
21551 cu->per_cu = per_cu;
21552 cu->objfile = per_cu->objfile;
93311388 21553 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
21554}
21555
21556/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21557
21558static void
95554aad
TT
21559prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21560 enum language pretend_language)
9816fde3
JK
21561{
21562 struct attribute *attr;
21563
21564 /* Set the language we're debugging. */
21565 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21566 if (attr)
21567 set_cu_language (DW_UNSND (attr), cu);
21568 else
9cded63f 21569 {
95554aad 21570 cu->language = pretend_language;
9cded63f
TT
21571 cu->language_defn = language_def (cu->language);
21572 }
dee91e82
DE
21573
21574 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21575 if (attr)
21576 cu->producer = DW_STRING (attr);
93311388
DE
21577}
21578
ae038cb0
DJ
21579/* Release one cached compilation unit, CU. We unlink it from the tree
21580 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
21581 the caller is responsible for that.
21582 NOTE: DATA is a void * because this function is also used as a
21583 cleanup routine. */
ae038cb0
DJ
21584
21585static void
68dc6402 21586free_heap_comp_unit (void *data)
ae038cb0
DJ
21587{
21588 struct dwarf2_cu *cu = data;
21589
23745b47
DE
21590 gdb_assert (cu->per_cu != NULL);
21591 cu->per_cu->cu = NULL;
ae038cb0
DJ
21592 cu->per_cu = NULL;
21593
21594 obstack_free (&cu->comp_unit_obstack, NULL);
21595
21596 xfree (cu);
21597}
21598
72bf9492 21599/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 21600 when we're finished with it. We can't free the pointer itself, but be
dee91e82 21601 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
21602
21603static void
21604free_stack_comp_unit (void *data)
21605{
21606 struct dwarf2_cu *cu = data;
21607
23745b47
DE
21608 gdb_assert (cu->per_cu != NULL);
21609 cu->per_cu->cu = NULL;
21610 cu->per_cu = NULL;
21611
72bf9492
DJ
21612 obstack_free (&cu->comp_unit_obstack, NULL);
21613 cu->partial_dies = NULL;
ae038cb0
DJ
21614}
21615
21616/* Free all cached compilation units. */
21617
21618static void
21619free_cached_comp_units (void *data)
21620{
21621 struct dwarf2_per_cu_data *per_cu, **last_chain;
21622
21623 per_cu = dwarf2_per_objfile->read_in_chain;
21624 last_chain = &dwarf2_per_objfile->read_in_chain;
21625 while (per_cu != NULL)
21626 {
21627 struct dwarf2_per_cu_data *next_cu;
21628
21629 next_cu = per_cu->cu->read_in_chain;
21630
68dc6402 21631 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
21632 *last_chain = next_cu;
21633
21634 per_cu = next_cu;
21635 }
21636}
21637
21638/* Increase the age counter on each cached compilation unit, and free
21639 any that are too old. */
21640
21641static void
21642age_cached_comp_units (void)
21643{
21644 struct dwarf2_per_cu_data *per_cu, **last_chain;
21645
21646 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21647 per_cu = dwarf2_per_objfile->read_in_chain;
21648 while (per_cu != NULL)
21649 {
21650 per_cu->cu->last_used ++;
21651 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21652 dwarf2_mark (per_cu->cu);
21653 per_cu = per_cu->cu->read_in_chain;
21654 }
21655
21656 per_cu = dwarf2_per_objfile->read_in_chain;
21657 last_chain = &dwarf2_per_objfile->read_in_chain;
21658 while (per_cu != NULL)
21659 {
21660 struct dwarf2_per_cu_data *next_cu;
21661
21662 next_cu = per_cu->cu->read_in_chain;
21663
21664 if (!per_cu->cu->mark)
21665 {
68dc6402 21666 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
21667 *last_chain = next_cu;
21668 }
21669 else
21670 last_chain = &per_cu->cu->read_in_chain;
21671
21672 per_cu = next_cu;
21673 }
21674}
21675
21676/* Remove a single compilation unit from the cache. */
21677
21678static void
dee91e82 21679free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
21680{
21681 struct dwarf2_per_cu_data *per_cu, **last_chain;
21682
21683 per_cu = dwarf2_per_objfile->read_in_chain;
21684 last_chain = &dwarf2_per_objfile->read_in_chain;
21685 while (per_cu != NULL)
21686 {
21687 struct dwarf2_per_cu_data *next_cu;
21688
21689 next_cu = per_cu->cu->read_in_chain;
21690
dee91e82 21691 if (per_cu == target_per_cu)
ae038cb0 21692 {
68dc6402 21693 free_heap_comp_unit (per_cu->cu);
dee91e82 21694 per_cu->cu = NULL;
ae038cb0
DJ
21695 *last_chain = next_cu;
21696 break;
21697 }
21698 else
21699 last_chain = &per_cu->cu->read_in_chain;
21700
21701 per_cu = next_cu;
21702 }
21703}
21704
fe3e1990
DJ
21705/* Release all extra memory associated with OBJFILE. */
21706
21707void
21708dwarf2_free_objfile (struct objfile *objfile)
21709{
21710 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21711
21712 if (dwarf2_per_objfile == NULL)
21713 return;
21714
21715 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21716 free_cached_comp_units (NULL);
21717
7b9f3c50
DE
21718 if (dwarf2_per_objfile->quick_file_names_table)
21719 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 21720
fe3e1990
DJ
21721 /* Everything else should be on the objfile obstack. */
21722}
21723
dee91e82
DE
21724/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21725 We store these in a hash table separate from the DIEs, and preserve them
21726 when the DIEs are flushed out of cache.
21727
21728 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 21729 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
21730 or the type may come from a DWO file. Furthermore, while it's more logical
21731 to use per_cu->section+offset, with Fission the section with the data is in
21732 the DWO file but we don't know that section at the point we need it.
21733 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21734 because we can enter the lookup routine, get_die_type_at_offset, from
21735 outside this file, and thus won't necessarily have PER_CU->cu.
21736 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 21737
dee91e82 21738struct dwarf2_per_cu_offset_and_type
1c379e20 21739{
dee91e82 21740 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 21741 sect_offset offset;
1c379e20
DJ
21742 struct type *type;
21743};
21744
dee91e82 21745/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
21746
21747static hashval_t
dee91e82 21748per_cu_offset_and_type_hash (const void *item)
1c379e20 21749{
dee91e82 21750 const struct dwarf2_per_cu_offset_and_type *ofs = item;
9a619af0 21751
dee91e82 21752 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
21753}
21754
dee91e82 21755/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
21756
21757static int
dee91e82 21758per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 21759{
dee91e82
DE
21760 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21761 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
9a619af0 21762
dee91e82
DE
21763 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21764 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
21765}
21766
21767/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
21768 table if necessary. For convenience, return TYPE.
21769
21770 The DIEs reading must have careful ordering to:
21771 * Not cause infite loops trying to read in DIEs as a prerequisite for
21772 reading current DIE.
21773 * Not trying to dereference contents of still incompletely read in types
21774 while reading in other DIEs.
21775 * Enable referencing still incompletely read in types just by a pointer to
21776 the type without accessing its fields.
21777
21778 Therefore caller should follow these rules:
21779 * Try to fetch any prerequisite types we may need to build this DIE type
21780 before building the type and calling set_die_type.
e71ec853 21781 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
21782 possible before fetching more types to complete the current type.
21783 * Make the type as complete as possible before fetching more types. */
1c379e20 21784
f792889a 21785static struct type *
1c379e20
DJ
21786set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21787{
dee91e82 21788 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 21789 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
21790 struct attribute *attr;
21791 struct dynamic_prop prop;
1c379e20 21792
b4ba55a1
JB
21793 /* For Ada types, make sure that the gnat-specific data is always
21794 initialized (if not already set). There are a few types where
21795 we should not be doing so, because the type-specific area is
21796 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21797 where the type-specific area is used to store the floatformat).
21798 But this is not a problem, because the gnat-specific information
21799 is actually not needed for these types. */
21800 if (need_gnat_info (cu)
21801 && TYPE_CODE (type) != TYPE_CODE_FUNC
21802 && TYPE_CODE (type) != TYPE_CODE_FLT
21803 && !HAVE_GNAT_AUX_INFO (type))
21804 INIT_GNAT_SPECIFIC (type);
21805
3cdcd0ce
JB
21806 /* Read DW_AT_data_location and set in type. */
21807 attr = dwarf2_attr (die, DW_AT_data_location, cu);
21808 if (attr_to_dynamic_prop (attr, die, cu, &prop))
21809 {
21810 TYPE_DATA_LOCATION (type)
21811 = obstack_alloc (&objfile->objfile_obstack, sizeof (prop));
21812 *TYPE_DATA_LOCATION (type) = prop;
21813 }
21814
dee91e82 21815 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 21816 {
dee91e82
DE
21817 dwarf2_per_objfile->die_type_hash =
21818 htab_create_alloc_ex (127,
21819 per_cu_offset_and_type_hash,
21820 per_cu_offset_and_type_eq,
21821 NULL,
21822 &objfile->objfile_obstack,
21823 hashtab_obstack_allocate,
21824 dummy_obstack_deallocate);
f792889a 21825 }
1c379e20 21826
dee91e82 21827 ofs.per_cu = cu->per_cu;
1c379e20
DJ
21828 ofs.offset = die->offset;
21829 ofs.type = type;
dee91e82
DE
21830 slot = (struct dwarf2_per_cu_offset_and_type **)
21831 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
21832 if (*slot)
21833 complaint (&symfile_complaints,
21834 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 21835 die->offset.sect_off);
673bfd45 21836 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 21837 **slot = ofs;
f792889a 21838 return type;
1c379e20
DJ
21839}
21840
02142a6c
DE
21841/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21842 or return NULL if the die does not have a saved type. */
1c379e20
DJ
21843
21844static struct type *
b64f50a1 21845get_die_type_at_offset (sect_offset offset,
673bfd45 21846 struct dwarf2_per_cu_data *per_cu)
1c379e20 21847{
dee91e82 21848 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 21849
dee91e82 21850 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 21851 return NULL;
1c379e20 21852
dee91e82 21853 ofs.per_cu = per_cu;
673bfd45 21854 ofs.offset = offset;
dee91e82 21855 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
1c379e20
DJ
21856 if (slot)
21857 return slot->type;
21858 else
21859 return NULL;
21860}
21861
02142a6c 21862/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
21863 or return NULL if DIE does not have a saved type. */
21864
21865static struct type *
21866get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21867{
21868 return get_die_type_at_offset (die->offset, cu->per_cu);
21869}
21870
10b3939b
DJ
21871/* Add a dependence relationship from CU to REF_PER_CU. */
21872
21873static void
21874dwarf2_add_dependence (struct dwarf2_cu *cu,
21875 struct dwarf2_per_cu_data *ref_per_cu)
21876{
21877 void **slot;
21878
21879 if (cu->dependencies == NULL)
21880 cu->dependencies
21881 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21882 NULL, &cu->comp_unit_obstack,
21883 hashtab_obstack_allocate,
21884 dummy_obstack_deallocate);
21885
21886 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21887 if (*slot == NULL)
21888 *slot = ref_per_cu;
21889}
1c379e20 21890
f504f079
DE
21891/* Subroutine of dwarf2_mark to pass to htab_traverse.
21892 Set the mark field in every compilation unit in the
ae038cb0
DJ
21893 cache that we must keep because we are keeping CU. */
21894
10b3939b
DJ
21895static int
21896dwarf2_mark_helper (void **slot, void *data)
21897{
21898 struct dwarf2_per_cu_data *per_cu;
21899
21900 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
21901
21902 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21903 reading of the chain. As such dependencies remain valid it is not much
21904 useful to track and undo them during QUIT cleanups. */
21905 if (per_cu->cu == NULL)
21906 return 1;
21907
10b3939b
DJ
21908 if (per_cu->cu->mark)
21909 return 1;
21910 per_cu->cu->mark = 1;
21911
21912 if (per_cu->cu->dependencies != NULL)
21913 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21914
21915 return 1;
21916}
21917
f504f079
DE
21918/* Set the mark field in CU and in every other compilation unit in the
21919 cache that we must keep because we are keeping CU. */
21920
ae038cb0
DJ
21921static void
21922dwarf2_mark (struct dwarf2_cu *cu)
21923{
21924 if (cu->mark)
21925 return;
21926 cu->mark = 1;
10b3939b
DJ
21927 if (cu->dependencies != NULL)
21928 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
21929}
21930
21931static void
21932dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21933{
21934 while (per_cu)
21935 {
21936 per_cu->cu->mark = 0;
21937 per_cu = per_cu->cu->read_in_chain;
21938 }
72bf9492
DJ
21939}
21940
72bf9492
DJ
21941/* Trivial hash function for partial_die_info: the hash value of a DIE
21942 is its offset in .debug_info for this objfile. */
21943
21944static hashval_t
21945partial_die_hash (const void *item)
21946{
21947 const struct partial_die_info *part_die = item;
9a619af0 21948
b64f50a1 21949 return part_die->offset.sect_off;
72bf9492
DJ
21950}
21951
21952/* Trivial comparison function for partial_die_info structures: two DIEs
21953 are equal if they have the same offset. */
21954
21955static int
21956partial_die_eq (const void *item_lhs, const void *item_rhs)
21957{
21958 const struct partial_die_info *part_die_lhs = item_lhs;
21959 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 21960
b64f50a1 21961 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
21962}
21963
ae038cb0
DJ
21964static struct cmd_list_element *set_dwarf2_cmdlist;
21965static struct cmd_list_element *show_dwarf2_cmdlist;
21966
21967static void
21968set_dwarf2_cmd (char *args, int from_tty)
21969{
635c7e8a
TT
21970 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
21971 gdb_stdout);
ae038cb0
DJ
21972}
21973
21974static void
21975show_dwarf2_cmd (char *args, int from_tty)
6e70227d 21976{
ae038cb0
DJ
21977 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21978}
21979
4bf44c1c 21980/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
21981
21982static void
c1bd65d0 21983dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
21984{
21985 struct dwarf2_per_objfile *data = d;
8b70b953 21986 int ix;
8b70b953 21987
626f2d1c
TT
21988 /* Make sure we don't accidentally use dwarf2_per_objfile while
21989 cleaning up. */
21990 dwarf2_per_objfile = NULL;
21991
59b0c7c1
JB
21992 for (ix = 0; ix < data->n_comp_units; ++ix)
21993 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 21994
59b0c7c1 21995 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 21996 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
21997 data->all_type_units[ix]->per_cu.imported_symtabs);
21998 xfree (data->all_type_units);
95554aad 21999
8b70b953 22000 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
22001
22002 if (data->dwo_files)
22003 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
22004 if (data->dwp_file)
22005 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
22006
22007 if (data->dwz_file && data->dwz_file->dwz_bfd)
22008 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
22009}
22010
22011\f
ae2de4f8 22012/* The "save gdb-index" command. */
9291a0cd
TT
22013
22014/* The contents of the hash table we create when building the string
22015 table. */
22016struct strtab_entry
22017{
22018 offset_type offset;
22019 const char *str;
22020};
22021
559a7a62
JK
22022/* Hash function for a strtab_entry.
22023
22024 Function is used only during write_hash_table so no index format backward
22025 compatibility is needed. */
b89be57b 22026
9291a0cd
TT
22027static hashval_t
22028hash_strtab_entry (const void *e)
22029{
22030 const struct strtab_entry *entry = e;
559a7a62 22031 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
22032}
22033
22034/* Equality function for a strtab_entry. */
b89be57b 22035
9291a0cd
TT
22036static int
22037eq_strtab_entry (const void *a, const void *b)
22038{
22039 const struct strtab_entry *ea = a;
22040 const struct strtab_entry *eb = b;
22041 return !strcmp (ea->str, eb->str);
22042}
22043
22044/* Create a strtab_entry hash table. */
b89be57b 22045
9291a0cd
TT
22046static htab_t
22047create_strtab (void)
22048{
22049 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22050 xfree, xcalloc, xfree);
22051}
22052
22053/* Add a string to the constant pool. Return the string's offset in
22054 host order. */
b89be57b 22055
9291a0cd
TT
22056static offset_type
22057add_string (htab_t table, struct obstack *cpool, const char *str)
22058{
22059 void **slot;
22060 struct strtab_entry entry;
22061 struct strtab_entry *result;
22062
22063 entry.str = str;
22064 slot = htab_find_slot (table, &entry, INSERT);
22065 if (*slot)
22066 result = *slot;
22067 else
22068 {
22069 result = XNEW (struct strtab_entry);
22070 result->offset = obstack_object_size (cpool);
22071 result->str = str;
22072 obstack_grow_str0 (cpool, str);
22073 *slot = result;
22074 }
22075 return result->offset;
22076}
22077
22078/* An entry in the symbol table. */
22079struct symtab_index_entry
22080{
22081 /* The name of the symbol. */
22082 const char *name;
22083 /* The offset of the name in the constant pool. */
22084 offset_type index_offset;
22085 /* A sorted vector of the indices of all the CUs that hold an object
22086 of this name. */
22087 VEC (offset_type) *cu_indices;
22088};
22089
22090/* The symbol table. This is a power-of-2-sized hash table. */
22091struct mapped_symtab
22092{
22093 offset_type n_elements;
22094 offset_type size;
22095 struct symtab_index_entry **data;
22096};
22097
22098/* Hash function for a symtab_index_entry. */
b89be57b 22099
9291a0cd
TT
22100static hashval_t
22101hash_symtab_entry (const void *e)
22102{
22103 const struct symtab_index_entry *entry = e;
22104 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22105 sizeof (offset_type) * VEC_length (offset_type,
22106 entry->cu_indices),
22107 0);
22108}
22109
22110/* Equality function for a symtab_index_entry. */
b89be57b 22111
9291a0cd
TT
22112static int
22113eq_symtab_entry (const void *a, const void *b)
22114{
22115 const struct symtab_index_entry *ea = a;
22116 const struct symtab_index_entry *eb = b;
22117 int len = VEC_length (offset_type, ea->cu_indices);
22118 if (len != VEC_length (offset_type, eb->cu_indices))
22119 return 0;
22120 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22121 VEC_address (offset_type, eb->cu_indices),
22122 sizeof (offset_type) * len);
22123}
22124
22125/* Destroy a symtab_index_entry. */
b89be57b 22126
9291a0cd
TT
22127static void
22128delete_symtab_entry (void *p)
22129{
22130 struct symtab_index_entry *entry = p;
22131 VEC_free (offset_type, entry->cu_indices);
22132 xfree (entry);
22133}
22134
22135/* Create a hash table holding symtab_index_entry objects. */
b89be57b 22136
9291a0cd 22137static htab_t
3876f04e 22138create_symbol_hash_table (void)
9291a0cd
TT
22139{
22140 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22141 delete_symtab_entry, xcalloc, xfree);
22142}
22143
22144/* Create a new mapped symtab object. */
b89be57b 22145
9291a0cd
TT
22146static struct mapped_symtab *
22147create_mapped_symtab (void)
22148{
22149 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22150 symtab->n_elements = 0;
22151 symtab->size = 1024;
22152 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22153 return symtab;
22154}
22155
22156/* Destroy a mapped_symtab. */
b89be57b 22157
9291a0cd
TT
22158static void
22159cleanup_mapped_symtab (void *p)
22160{
22161 struct mapped_symtab *symtab = p;
22162 /* The contents of the array are freed when the other hash table is
22163 destroyed. */
22164 xfree (symtab->data);
22165 xfree (symtab);
22166}
22167
22168/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
22169 the slot.
22170
22171 Function is used only during write_hash_table so no index format backward
22172 compatibility is needed. */
b89be57b 22173
9291a0cd
TT
22174static struct symtab_index_entry **
22175find_slot (struct mapped_symtab *symtab, const char *name)
22176{
559a7a62 22177 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
22178
22179 index = hash & (symtab->size - 1);
22180 step = ((hash * 17) & (symtab->size - 1)) | 1;
22181
22182 for (;;)
22183 {
22184 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22185 return &symtab->data[index];
22186 index = (index + step) & (symtab->size - 1);
22187 }
22188}
22189
22190/* Expand SYMTAB's hash table. */
b89be57b 22191
9291a0cd
TT
22192static void
22193hash_expand (struct mapped_symtab *symtab)
22194{
22195 offset_type old_size = symtab->size;
22196 offset_type i;
22197 struct symtab_index_entry **old_entries = symtab->data;
22198
22199 symtab->size *= 2;
22200 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22201
22202 for (i = 0; i < old_size; ++i)
22203 {
22204 if (old_entries[i])
22205 {
22206 struct symtab_index_entry **slot = find_slot (symtab,
22207 old_entries[i]->name);
22208 *slot = old_entries[i];
22209 }
22210 }
22211
22212 xfree (old_entries);
22213}
22214
156942c7
DE
22215/* Add an entry to SYMTAB. NAME is the name of the symbol.
22216 CU_INDEX is the index of the CU in which the symbol appears.
22217 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 22218
9291a0cd
TT
22219static void
22220add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 22221 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
22222 offset_type cu_index)
22223{
22224 struct symtab_index_entry **slot;
156942c7 22225 offset_type cu_index_and_attrs;
9291a0cd
TT
22226
22227 ++symtab->n_elements;
22228 if (4 * symtab->n_elements / 3 >= symtab->size)
22229 hash_expand (symtab);
22230
22231 slot = find_slot (symtab, name);
22232 if (!*slot)
22233 {
22234 *slot = XNEW (struct symtab_index_entry);
22235 (*slot)->name = name;
156942c7 22236 /* index_offset is set later. */
9291a0cd
TT
22237 (*slot)->cu_indices = NULL;
22238 }
156942c7
DE
22239
22240 cu_index_and_attrs = 0;
22241 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22242 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22243 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22244
22245 /* We don't want to record an index value twice as we want to avoid the
22246 duplication.
22247 We process all global symbols and then all static symbols
22248 (which would allow us to avoid the duplication by only having to check
22249 the last entry pushed), but a symbol could have multiple kinds in one CU.
22250 To keep things simple we don't worry about the duplication here and
22251 sort and uniqufy the list after we've processed all symbols. */
22252 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22253}
22254
22255/* qsort helper routine for uniquify_cu_indices. */
22256
22257static int
22258offset_type_compare (const void *ap, const void *bp)
22259{
22260 offset_type a = *(offset_type *) ap;
22261 offset_type b = *(offset_type *) bp;
22262
22263 return (a > b) - (b > a);
22264}
22265
22266/* Sort and remove duplicates of all symbols' cu_indices lists. */
22267
22268static void
22269uniquify_cu_indices (struct mapped_symtab *symtab)
22270{
22271 int i;
22272
22273 for (i = 0; i < symtab->size; ++i)
22274 {
22275 struct symtab_index_entry *entry = symtab->data[i];
22276
22277 if (entry
22278 && entry->cu_indices != NULL)
22279 {
22280 unsigned int next_to_insert, next_to_check;
22281 offset_type last_value;
22282
22283 qsort (VEC_address (offset_type, entry->cu_indices),
22284 VEC_length (offset_type, entry->cu_indices),
22285 sizeof (offset_type), offset_type_compare);
22286
22287 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22288 next_to_insert = 1;
22289 for (next_to_check = 1;
22290 next_to_check < VEC_length (offset_type, entry->cu_indices);
22291 ++next_to_check)
22292 {
22293 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22294 != last_value)
22295 {
22296 last_value = VEC_index (offset_type, entry->cu_indices,
22297 next_to_check);
22298 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22299 last_value);
22300 ++next_to_insert;
22301 }
22302 }
22303 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22304 }
22305 }
9291a0cd
TT
22306}
22307
22308/* Add a vector of indices to the constant pool. */
b89be57b 22309
9291a0cd 22310static offset_type
3876f04e 22311add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
22312 struct symtab_index_entry *entry)
22313{
22314 void **slot;
22315
3876f04e 22316 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
22317 if (!*slot)
22318 {
22319 offset_type len = VEC_length (offset_type, entry->cu_indices);
22320 offset_type val = MAYBE_SWAP (len);
22321 offset_type iter;
22322 int i;
22323
22324 *slot = entry;
22325 entry->index_offset = obstack_object_size (cpool);
22326
22327 obstack_grow (cpool, &val, sizeof (val));
22328 for (i = 0;
22329 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22330 ++i)
22331 {
22332 val = MAYBE_SWAP (iter);
22333 obstack_grow (cpool, &val, sizeof (val));
22334 }
22335 }
22336 else
22337 {
22338 struct symtab_index_entry *old_entry = *slot;
22339 entry->index_offset = old_entry->index_offset;
22340 entry = old_entry;
22341 }
22342 return entry->index_offset;
22343}
22344
22345/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22346 constant pool entries going into the obstack CPOOL. */
b89be57b 22347
9291a0cd
TT
22348static void
22349write_hash_table (struct mapped_symtab *symtab,
22350 struct obstack *output, struct obstack *cpool)
22351{
22352 offset_type i;
3876f04e 22353 htab_t symbol_hash_table;
9291a0cd
TT
22354 htab_t str_table;
22355
3876f04e 22356 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 22357 str_table = create_strtab ();
3876f04e 22358
9291a0cd
TT
22359 /* We add all the index vectors to the constant pool first, to
22360 ensure alignment is ok. */
22361 for (i = 0; i < symtab->size; ++i)
22362 {
22363 if (symtab->data[i])
3876f04e 22364 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
22365 }
22366
22367 /* Now write out the hash table. */
22368 for (i = 0; i < symtab->size; ++i)
22369 {
22370 offset_type str_off, vec_off;
22371
22372 if (symtab->data[i])
22373 {
22374 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22375 vec_off = symtab->data[i]->index_offset;
22376 }
22377 else
22378 {
22379 /* While 0 is a valid constant pool index, it is not valid
22380 to have 0 for both offsets. */
22381 str_off = 0;
22382 vec_off = 0;
22383 }
22384
22385 str_off = MAYBE_SWAP (str_off);
22386 vec_off = MAYBE_SWAP (vec_off);
22387
22388 obstack_grow (output, &str_off, sizeof (str_off));
22389 obstack_grow (output, &vec_off, sizeof (vec_off));
22390 }
22391
22392 htab_delete (str_table);
3876f04e 22393 htab_delete (symbol_hash_table);
9291a0cd
TT
22394}
22395
0a5429f6
DE
22396/* Struct to map psymtab to CU index in the index file. */
22397struct psymtab_cu_index_map
22398{
22399 struct partial_symtab *psymtab;
22400 unsigned int cu_index;
22401};
22402
22403static hashval_t
22404hash_psymtab_cu_index (const void *item)
22405{
22406 const struct psymtab_cu_index_map *map = item;
22407
22408 return htab_hash_pointer (map->psymtab);
22409}
22410
22411static int
22412eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22413{
22414 const struct psymtab_cu_index_map *lhs = item_lhs;
22415 const struct psymtab_cu_index_map *rhs = item_rhs;
22416
22417 return lhs->psymtab == rhs->psymtab;
22418}
22419
22420/* Helper struct for building the address table. */
22421struct addrmap_index_data
22422{
22423 struct objfile *objfile;
22424 struct obstack *addr_obstack;
22425 htab_t cu_index_htab;
22426
22427 /* Non-zero if the previous_* fields are valid.
22428 We can't write an entry until we see the next entry (since it is only then
22429 that we know the end of the entry). */
22430 int previous_valid;
22431 /* Index of the CU in the table of all CUs in the index file. */
22432 unsigned int previous_cu_index;
0963b4bd 22433 /* Start address of the CU. */
0a5429f6
DE
22434 CORE_ADDR previous_cu_start;
22435};
22436
22437/* Write an address entry to OBSTACK. */
b89be57b 22438
9291a0cd 22439static void
0a5429f6
DE
22440add_address_entry (struct objfile *objfile, struct obstack *obstack,
22441 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 22442{
0a5429f6 22443 offset_type cu_index_to_write;
948f8e3d 22444 gdb_byte addr[8];
9291a0cd
TT
22445 CORE_ADDR baseaddr;
22446
22447 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22448
0a5429f6
DE
22449 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22450 obstack_grow (obstack, addr, 8);
22451 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22452 obstack_grow (obstack, addr, 8);
22453 cu_index_to_write = MAYBE_SWAP (cu_index);
22454 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22455}
22456
22457/* Worker function for traversing an addrmap to build the address table. */
22458
22459static int
22460add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22461{
22462 struct addrmap_index_data *data = datap;
22463 struct partial_symtab *pst = obj;
0a5429f6
DE
22464
22465 if (data->previous_valid)
22466 add_address_entry (data->objfile, data->addr_obstack,
22467 data->previous_cu_start, start_addr,
22468 data->previous_cu_index);
22469
22470 data->previous_cu_start = start_addr;
22471 if (pst != NULL)
22472 {
22473 struct psymtab_cu_index_map find_map, *map;
22474 find_map.psymtab = pst;
22475 map = htab_find (data->cu_index_htab, &find_map);
22476 gdb_assert (map != NULL);
22477 data->previous_cu_index = map->cu_index;
22478 data->previous_valid = 1;
22479 }
22480 else
22481 data->previous_valid = 0;
22482
22483 return 0;
22484}
22485
22486/* Write OBJFILE's address map to OBSTACK.
22487 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22488 in the index file. */
22489
22490static void
22491write_address_map (struct objfile *objfile, struct obstack *obstack,
22492 htab_t cu_index_htab)
22493{
22494 struct addrmap_index_data addrmap_index_data;
22495
22496 /* When writing the address table, we have to cope with the fact that
22497 the addrmap iterator only provides the start of a region; we have to
22498 wait until the next invocation to get the start of the next region. */
22499
22500 addrmap_index_data.objfile = objfile;
22501 addrmap_index_data.addr_obstack = obstack;
22502 addrmap_index_data.cu_index_htab = cu_index_htab;
22503 addrmap_index_data.previous_valid = 0;
22504
22505 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22506 &addrmap_index_data);
22507
22508 /* It's highly unlikely the last entry (end address = 0xff...ff)
22509 is valid, but we should still handle it.
22510 The end address is recorded as the start of the next region, but that
22511 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22512 anyway. */
22513 if (addrmap_index_data.previous_valid)
22514 add_address_entry (objfile, obstack,
22515 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22516 addrmap_index_data.previous_cu_index);
9291a0cd
TT
22517}
22518
156942c7
DE
22519/* Return the symbol kind of PSYM. */
22520
22521static gdb_index_symbol_kind
22522symbol_kind (struct partial_symbol *psym)
22523{
22524 domain_enum domain = PSYMBOL_DOMAIN (psym);
22525 enum address_class aclass = PSYMBOL_CLASS (psym);
22526
22527 switch (domain)
22528 {
22529 case VAR_DOMAIN:
22530 switch (aclass)
22531 {
22532 case LOC_BLOCK:
22533 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22534 case LOC_TYPEDEF:
22535 return GDB_INDEX_SYMBOL_KIND_TYPE;
22536 case LOC_COMPUTED:
22537 case LOC_CONST_BYTES:
22538 case LOC_OPTIMIZED_OUT:
22539 case LOC_STATIC:
22540 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22541 case LOC_CONST:
22542 /* Note: It's currently impossible to recognize psyms as enum values
22543 short of reading the type info. For now punt. */
22544 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22545 default:
22546 /* There are other LOC_FOO values that one might want to classify
22547 as variables, but dwarf2read.c doesn't currently use them. */
22548 return GDB_INDEX_SYMBOL_KIND_OTHER;
22549 }
22550 case STRUCT_DOMAIN:
22551 return GDB_INDEX_SYMBOL_KIND_TYPE;
22552 default:
22553 return GDB_INDEX_SYMBOL_KIND_OTHER;
22554 }
22555}
22556
9291a0cd 22557/* Add a list of partial symbols to SYMTAB. */
b89be57b 22558
9291a0cd
TT
22559static void
22560write_psymbols (struct mapped_symtab *symtab,
987d643c 22561 htab_t psyms_seen,
9291a0cd
TT
22562 struct partial_symbol **psymp,
22563 int count,
987d643c
TT
22564 offset_type cu_index,
22565 int is_static)
9291a0cd
TT
22566{
22567 for (; count-- > 0; ++psymp)
22568 {
156942c7
DE
22569 struct partial_symbol *psym = *psymp;
22570 void **slot;
987d643c 22571
156942c7 22572 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 22573 error (_("Ada is not currently supported by the index"));
987d643c 22574
987d643c 22575 /* Only add a given psymbol once. */
156942c7 22576 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
22577 if (!*slot)
22578 {
156942c7
DE
22579 gdb_index_symbol_kind kind = symbol_kind (psym);
22580
22581 *slot = psym;
22582 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22583 is_static, kind, cu_index);
987d643c 22584 }
9291a0cd
TT
22585 }
22586}
22587
22588/* Write the contents of an ("unfinished") obstack to FILE. Throw an
22589 exception if there is an error. */
b89be57b 22590
9291a0cd
TT
22591static void
22592write_obstack (FILE *file, struct obstack *obstack)
22593{
22594 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22595 file)
22596 != obstack_object_size (obstack))
22597 error (_("couldn't data write to file"));
22598}
22599
22600/* Unlink a file if the argument is not NULL. */
b89be57b 22601
9291a0cd
TT
22602static void
22603unlink_if_set (void *p)
22604{
22605 char **filename = p;
22606 if (*filename)
22607 unlink (*filename);
22608}
22609
1fd400ff
TT
22610/* A helper struct used when iterating over debug_types. */
22611struct signatured_type_index_data
22612{
22613 struct objfile *objfile;
22614 struct mapped_symtab *symtab;
22615 struct obstack *types_list;
987d643c 22616 htab_t psyms_seen;
1fd400ff
TT
22617 int cu_index;
22618};
22619
22620/* A helper function that writes a single signatured_type to an
22621 obstack. */
b89be57b 22622
1fd400ff
TT
22623static int
22624write_one_signatured_type (void **slot, void *d)
22625{
22626 struct signatured_type_index_data *info = d;
22627 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 22628 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
22629 gdb_byte val[8];
22630
22631 write_psymbols (info->symtab,
987d643c 22632 info->psyms_seen,
3e43a32a
MS
22633 info->objfile->global_psymbols.list
22634 + psymtab->globals_offset,
987d643c
TT
22635 psymtab->n_global_syms, info->cu_index,
22636 0);
1fd400ff 22637 write_psymbols (info->symtab,
987d643c 22638 info->psyms_seen,
3e43a32a
MS
22639 info->objfile->static_psymbols.list
22640 + psymtab->statics_offset,
987d643c
TT
22641 psymtab->n_static_syms, info->cu_index,
22642 1);
1fd400ff 22643
b64f50a1
JK
22644 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22645 entry->per_cu.offset.sect_off);
1fd400ff 22646 obstack_grow (info->types_list, val, 8);
3019eac3
DE
22647 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22648 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
22649 obstack_grow (info->types_list, val, 8);
22650 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22651 obstack_grow (info->types_list, val, 8);
22652
22653 ++info->cu_index;
22654
22655 return 1;
22656}
22657
95554aad
TT
22658/* Recurse into all "included" dependencies and write their symbols as
22659 if they appeared in this psymtab. */
22660
22661static void
22662recursively_write_psymbols (struct objfile *objfile,
22663 struct partial_symtab *psymtab,
22664 struct mapped_symtab *symtab,
22665 htab_t psyms_seen,
22666 offset_type cu_index)
22667{
22668 int i;
22669
22670 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22671 if (psymtab->dependencies[i]->user != NULL)
22672 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22673 symtab, psyms_seen, cu_index);
22674
22675 write_psymbols (symtab,
22676 psyms_seen,
22677 objfile->global_psymbols.list + psymtab->globals_offset,
22678 psymtab->n_global_syms, cu_index,
22679 0);
22680 write_psymbols (symtab,
22681 psyms_seen,
22682 objfile->static_psymbols.list + psymtab->statics_offset,
22683 psymtab->n_static_syms, cu_index,
22684 1);
22685}
22686
9291a0cd 22687/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 22688
9291a0cd
TT
22689static void
22690write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22691{
22692 struct cleanup *cleanup;
22693 char *filename, *cleanup_filename;
1fd400ff
TT
22694 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22695 struct obstack cu_list, types_cu_list;
9291a0cd
TT
22696 int i;
22697 FILE *out_file;
22698 struct mapped_symtab *symtab;
22699 offset_type val, size_of_contents, total_len;
22700 struct stat st;
987d643c 22701 htab_t psyms_seen;
0a5429f6
DE
22702 htab_t cu_index_htab;
22703 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 22704
9291a0cd
TT
22705 if (dwarf2_per_objfile->using_index)
22706 error (_("Cannot use an index to create the index"));
22707
8b70b953
TT
22708 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22709 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22710
260b681b
DE
22711 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22712 return;
22713
4262abfb
JK
22714 if (stat (objfile_name (objfile), &st) < 0)
22715 perror_with_name (objfile_name (objfile));
9291a0cd 22716
4262abfb 22717 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
22718 INDEX_SUFFIX, (char *) NULL);
22719 cleanup = make_cleanup (xfree, filename);
22720
614c279d 22721 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
22722 if (!out_file)
22723 error (_("Can't open `%s' for writing"), filename);
22724
22725 cleanup_filename = filename;
22726 make_cleanup (unlink_if_set, &cleanup_filename);
22727
22728 symtab = create_mapped_symtab ();
22729 make_cleanup (cleanup_mapped_symtab, symtab);
22730
22731 obstack_init (&addr_obstack);
22732 make_cleanup_obstack_free (&addr_obstack);
22733
22734 obstack_init (&cu_list);
22735 make_cleanup_obstack_free (&cu_list);
22736
1fd400ff
TT
22737 obstack_init (&types_cu_list);
22738 make_cleanup_obstack_free (&types_cu_list);
22739
987d643c
TT
22740 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22741 NULL, xcalloc, xfree);
96408a79 22742 make_cleanup_htab_delete (psyms_seen);
987d643c 22743
0a5429f6
DE
22744 /* While we're scanning CU's create a table that maps a psymtab pointer
22745 (which is what addrmap records) to its index (which is what is recorded
22746 in the index file). This will later be needed to write the address
22747 table. */
22748 cu_index_htab = htab_create_alloc (100,
22749 hash_psymtab_cu_index,
22750 eq_psymtab_cu_index,
22751 NULL, xcalloc, xfree);
96408a79 22752 make_cleanup_htab_delete (cu_index_htab);
0a5429f6
DE
22753 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22754 xmalloc (sizeof (struct psymtab_cu_index_map)
22755 * dwarf2_per_objfile->n_comp_units);
22756 make_cleanup (xfree, psymtab_cu_index_map);
22757
22758 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
22759 work here. Also, the debug_types entries do not appear in
22760 all_comp_units, but only in their own hash table. */
9291a0cd
TT
22761 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22762 {
3e43a32a
MS
22763 struct dwarf2_per_cu_data *per_cu
22764 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 22765 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 22766 gdb_byte val[8];
0a5429f6
DE
22767 struct psymtab_cu_index_map *map;
22768 void **slot;
9291a0cd 22769
92fac807
JK
22770 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22771 It may be referenced from a local scope but in such case it does not
22772 need to be present in .gdb_index. */
22773 if (psymtab == NULL)
22774 continue;
22775
95554aad
TT
22776 if (psymtab->user == NULL)
22777 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 22778
0a5429f6
DE
22779 map = &psymtab_cu_index_map[i];
22780 map->psymtab = psymtab;
22781 map->cu_index = i;
22782 slot = htab_find_slot (cu_index_htab, map, INSERT);
22783 gdb_assert (slot != NULL);
22784 gdb_assert (*slot == NULL);
22785 *slot = map;
9291a0cd 22786
b64f50a1
JK
22787 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22788 per_cu->offset.sect_off);
9291a0cd 22789 obstack_grow (&cu_list, val, 8);
e254ef6a 22790 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
22791 obstack_grow (&cu_list, val, 8);
22792 }
22793
0a5429f6
DE
22794 /* Dump the address map. */
22795 write_address_map (objfile, &addr_obstack, cu_index_htab);
22796
1fd400ff
TT
22797 /* Write out the .debug_type entries, if any. */
22798 if (dwarf2_per_objfile->signatured_types)
22799 {
22800 struct signatured_type_index_data sig_data;
22801
22802 sig_data.objfile = objfile;
22803 sig_data.symtab = symtab;
22804 sig_data.types_list = &types_cu_list;
987d643c 22805 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
22806 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22807 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22808 write_one_signatured_type, &sig_data);
22809 }
22810
156942c7
DE
22811 /* Now that we've processed all symbols we can shrink their cu_indices
22812 lists. */
22813 uniquify_cu_indices (symtab);
22814
9291a0cd
TT
22815 obstack_init (&constant_pool);
22816 make_cleanup_obstack_free (&constant_pool);
22817 obstack_init (&symtab_obstack);
22818 make_cleanup_obstack_free (&symtab_obstack);
22819 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22820
22821 obstack_init (&contents);
22822 make_cleanup_obstack_free (&contents);
1fd400ff 22823 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
22824 total_len = size_of_contents;
22825
22826 /* The version number. */
796a7ff8 22827 val = MAYBE_SWAP (8);
9291a0cd
TT
22828 obstack_grow (&contents, &val, sizeof (val));
22829
22830 /* The offset of the CU list from the start of the file. */
22831 val = MAYBE_SWAP (total_len);
22832 obstack_grow (&contents, &val, sizeof (val));
22833 total_len += obstack_object_size (&cu_list);
22834
1fd400ff
TT
22835 /* The offset of the types CU list from the start of the file. */
22836 val = MAYBE_SWAP (total_len);
22837 obstack_grow (&contents, &val, sizeof (val));
22838 total_len += obstack_object_size (&types_cu_list);
22839
9291a0cd
TT
22840 /* The offset of the address table from the start of the file. */
22841 val = MAYBE_SWAP (total_len);
22842 obstack_grow (&contents, &val, sizeof (val));
22843 total_len += obstack_object_size (&addr_obstack);
22844
22845 /* The offset of the symbol table from the start of the file. */
22846 val = MAYBE_SWAP (total_len);
22847 obstack_grow (&contents, &val, sizeof (val));
22848 total_len += obstack_object_size (&symtab_obstack);
22849
22850 /* The offset of the constant pool from the start of the file. */
22851 val = MAYBE_SWAP (total_len);
22852 obstack_grow (&contents, &val, sizeof (val));
22853 total_len += obstack_object_size (&constant_pool);
22854
22855 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22856
22857 write_obstack (out_file, &contents);
22858 write_obstack (out_file, &cu_list);
1fd400ff 22859 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
22860 write_obstack (out_file, &addr_obstack);
22861 write_obstack (out_file, &symtab_obstack);
22862 write_obstack (out_file, &constant_pool);
22863
22864 fclose (out_file);
22865
22866 /* We want to keep the file, so we set cleanup_filename to NULL
22867 here. See unlink_if_set. */
22868 cleanup_filename = NULL;
22869
22870 do_cleanups (cleanup);
22871}
22872
90476074
TT
22873/* Implementation of the `save gdb-index' command.
22874
22875 Note that the file format used by this command is documented in the
22876 GDB manual. Any changes here must be documented there. */
11570e71 22877
9291a0cd
TT
22878static void
22879save_gdb_index_command (char *arg, int from_tty)
22880{
22881 struct objfile *objfile;
22882
22883 if (!arg || !*arg)
96d19272 22884 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
22885
22886 ALL_OBJFILES (objfile)
22887 {
22888 struct stat st;
22889
22890 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 22891 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
22892 continue;
22893
22894 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22895 if (dwarf2_per_objfile)
22896 {
22897 volatile struct gdb_exception except;
22898
22899 TRY_CATCH (except, RETURN_MASK_ERROR)
22900 {
22901 write_psymtabs_to_index (objfile, arg);
22902 }
22903 if (except.reason < 0)
22904 exception_fprintf (gdb_stderr, except,
22905 _("Error while writing index for `%s': "),
4262abfb 22906 objfile_name (objfile));
9291a0cd
TT
22907 }
22908 }
dce234bc
PP
22909}
22910
9291a0cd
TT
22911\f
22912
9eae7c52
TT
22913int dwarf2_always_disassemble;
22914
22915static void
22916show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22917 struct cmd_list_element *c, const char *value)
22918{
3e43a32a
MS
22919 fprintf_filtered (file,
22920 _("Whether to always disassemble "
22921 "DWARF expressions is %s.\n"),
9eae7c52
TT
22922 value);
22923}
22924
900e11f9
JK
22925static void
22926show_check_physname (struct ui_file *file, int from_tty,
22927 struct cmd_list_element *c, const char *value)
22928{
22929 fprintf_filtered (file,
22930 _("Whether to check \"physname\" is %s.\n"),
22931 value);
22932}
22933
6502dd73
DJ
22934void _initialize_dwarf2_read (void);
22935
22936void
22937_initialize_dwarf2_read (void)
22938{
96d19272
JK
22939 struct cmd_list_element *c;
22940
dce234bc 22941 dwarf2_objfile_data_key
c1bd65d0 22942 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 22943
1bedd215
AC
22944 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22945Set DWARF 2 specific variables.\n\
22946Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
22947 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22948 0/*allow-unknown*/, &maintenance_set_cmdlist);
22949
1bedd215
AC
22950 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22951Show DWARF 2 specific variables\n\
22952Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
22953 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22954 0/*allow-unknown*/, &maintenance_show_cmdlist);
22955
22956 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
22957 &dwarf2_max_cache_age, _("\
22958Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22959Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22960A higher limit means that cached compilation units will be stored\n\
22961in memory longer, and more total memory will be used. Zero disables\n\
22962caching, which can slow down startup."),
2c5b56ce 22963 NULL,
920d2a44 22964 show_dwarf2_max_cache_age,
2c5b56ce 22965 &set_dwarf2_cmdlist,
ae038cb0 22966 &show_dwarf2_cmdlist);
d97bc12b 22967
9eae7c52
TT
22968 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22969 &dwarf2_always_disassemble, _("\
22970Set whether `info address' always disassembles DWARF expressions."), _("\
22971Show whether `info address' always disassembles DWARF expressions."), _("\
22972When enabled, DWARF expressions are always printed in an assembly-like\n\
22973syntax. When disabled, expressions will be printed in a more\n\
22974conversational style, when possible."),
22975 NULL,
22976 show_dwarf2_always_disassemble,
22977 &set_dwarf2_cmdlist,
22978 &show_dwarf2_cmdlist);
22979
73be47f5 22980 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
45cfd468
DE
22981Set debugging of the dwarf2 reader."), _("\
22982Show debugging of the dwarf2 reader."), _("\
73be47f5
DE
22983When enabled (non-zero), debugging messages are printed during dwarf2\n\
22984reading and symtab expansion. A value of 1 (one) provides basic\n\
22985information. A value greater than 1 provides more verbose information."),
45cfd468
DE
22986 NULL,
22987 NULL,
22988 &setdebuglist, &showdebuglist);
22989
ccce17b0 22990 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
d97bc12b
DE
22991Set debugging of the dwarf2 DIE reader."), _("\
22992Show debugging of the dwarf2 DIE reader."), _("\
22993When enabled (non-zero), DIEs are dumped after they are read in.\n\
22994The value is the maximum depth to print."),
ccce17b0
YQ
22995 NULL,
22996 NULL,
22997 &setdebuglist, &showdebuglist);
9291a0cd 22998
900e11f9
JK
22999 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23000Set cross-checking of \"physname\" code against demangler."), _("\
23001Show cross-checking of \"physname\" code against demangler."), _("\
23002When enabled, GDB's internal \"physname\" code is checked against\n\
23003the demangler."),
23004 NULL, show_check_physname,
23005 &setdebuglist, &showdebuglist);
23006
e615022a
DE
23007 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23008 no_class, &use_deprecated_index_sections, _("\
23009Set whether to use deprecated gdb_index sections."), _("\
23010Show whether to use deprecated gdb_index sections."), _("\
23011When enabled, deprecated .gdb_index sections are used anyway.\n\
23012Normally they are ignored either because of a missing feature or\n\
23013performance issue.\n\
23014Warning: This option must be enabled before gdb reads the file."),
23015 NULL,
23016 NULL,
23017 &setlist, &showlist);
23018
96d19272 23019 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 23020 _("\
fc1a9d6e 23021Save a gdb-index file.\n\
11570e71 23022Usage: save gdb-index DIRECTORY"),
96d19272
JK
23023 &save_cmdlist);
23024 set_cmd_completer (c, filename_completer);
f1e6e072
TT
23025
23026 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23027 &dwarf2_locexpr_funcs);
23028 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23029 &dwarf2_loclist_funcs);
23030
23031 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23032 &dwarf2_block_frame_base_locexpr_funcs);
23033 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23034 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 23035}
This page took 3.499076 seconds and 4 git commands to generate.