[GDBserver] Leave child suspended when step over parent
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
618f726f 3 Copyright (C) 1994-2016 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
53ce3c39 58#include <sys/stat.h>
96d19272 59#include "completer.h"
34eaf542 60#include "vec.h"
98bfdba5 61#include "c-lang.h"
a766d390 62#include "go-lang.h"
98bfdba5 63#include "valprint.h"
3019eac3 64#include "gdbcore.h" /* for gnutarget */
156942c7 65#include "gdb/gdb-index.h"
60d5a603 66#include <ctype.h>
cbb099e8 67#include "gdb_bfd.h"
4357ac6c 68#include "f-lang.h"
05cba821 69#include "source.h"
614c279d 70#include "filestuff.h"
dc294be5 71#include "build-id.h"
22cee43f 72#include "namespace.h"
4c2df51b 73
c906108c 74#include <fcntl.h>
c906108c 75#include <sys/types.h>
d8151005 76
34eaf542
TT
77typedef struct symbol *symbolp;
78DEF_VEC_P (symbolp);
79
73be47f5
DE
80/* When == 1, print basic high level tracing messages.
81 When > 1, be more verbose.
b4f54984
DE
82 This is in contrast to the low level DIE reading of dwarf_die_debug. */
83static unsigned int dwarf_read_debug = 0;
45cfd468 84
d97bc12b 85/* When non-zero, dump DIEs after they are read in. */
b4f54984 86static unsigned int dwarf_die_debug = 0;
d97bc12b 87
27e0867f
DE
88/* When non-zero, dump line number entries as they are read in. */
89static unsigned int dwarf_line_debug = 0;
90
900e11f9
JK
91/* When non-zero, cross-check physname against demangler. */
92static int check_physname = 0;
93
481860b3 94/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 95static int use_deprecated_index_sections = 0;
481860b3 96
6502dd73
DJ
97static const struct objfile_data *dwarf2_objfile_data_key;
98
f1e6e072
TT
99/* The "aclass" indices for various kinds of computed DWARF symbols. */
100
101static int dwarf2_locexpr_index;
102static int dwarf2_loclist_index;
103static int dwarf2_locexpr_block_index;
104static int dwarf2_loclist_block_index;
105
73869dc2
DE
106/* A descriptor for dwarf sections.
107
108 S.ASECTION, SIZE are typically initialized when the objfile is first
109 scanned. BUFFER, READIN are filled in later when the section is read.
110 If the section contained compressed data then SIZE is updated to record
111 the uncompressed size of the section.
112
113 DWP file format V2 introduces a wrinkle that is easiest to handle by
114 creating the concept of virtual sections contained within a real section.
115 In DWP V2 the sections of the input DWO files are concatenated together
116 into one section, but section offsets are kept relative to the original
117 input section.
118 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
119 the real section this "virtual" section is contained in, and BUFFER,SIZE
120 describe the virtual section. */
121
dce234bc
PP
122struct dwarf2_section_info
123{
73869dc2
DE
124 union
125 {
e5aa3347 126 /* If this is a real section, the bfd section. */
049412e3 127 asection *section;
73869dc2 128 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 129 section. */
73869dc2
DE
130 struct dwarf2_section_info *containing_section;
131 } s;
19ac8c2e 132 /* Pointer to section data, only valid if readin. */
d521ce57 133 const gdb_byte *buffer;
73869dc2 134 /* The size of the section, real or virtual. */
dce234bc 135 bfd_size_type size;
73869dc2
DE
136 /* If this is a virtual section, the offset in the real section.
137 Only valid if is_virtual. */
138 bfd_size_type virtual_offset;
be391dca 139 /* True if we have tried to read this section. */
73869dc2
DE
140 char readin;
141 /* True if this is a virtual section, False otherwise.
049412e3 142 This specifies which of s.section and s.containing_section to use. */
73869dc2 143 char is_virtual;
dce234bc
PP
144};
145
8b70b953
TT
146typedef struct dwarf2_section_info dwarf2_section_info_def;
147DEF_VEC_O (dwarf2_section_info_def);
148
9291a0cd
TT
149/* All offsets in the index are of this type. It must be
150 architecture-independent. */
151typedef uint32_t offset_type;
152
153DEF_VEC_I (offset_type);
154
156942c7
DE
155/* Ensure only legit values are used. */
156#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
157 do { \
158 gdb_assert ((unsigned int) (value) <= 1); \
159 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
160 } while (0)
161
162/* Ensure only legit values are used. */
163#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
164 do { \
165 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
166 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
167 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
168 } while (0)
169
170/* Ensure we don't use more than the alloted nuber of bits for the CU. */
171#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
172 do { \
173 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
174 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
175 } while (0)
176
9291a0cd
TT
177/* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179struct mapped_index
180{
559a7a62
JK
181 /* Index data format version. */
182 int version;
183
9291a0cd
TT
184 /* The total length of the buffer. */
185 off_t total_size;
b11b1f88 186
9291a0cd
TT
187 /* A pointer to the address table data. */
188 const gdb_byte *address_table;
b11b1f88 189
9291a0cd
TT
190 /* Size of the address table data in bytes. */
191 offset_type address_table_size;
b11b1f88 192
3876f04e
DE
193 /* The symbol table, implemented as a hash table. */
194 const offset_type *symbol_table;
b11b1f88 195
9291a0cd 196 /* Size in slots, each slot is 2 offset_types. */
3876f04e 197 offset_type symbol_table_slots;
b11b1f88 198
9291a0cd
TT
199 /* A pointer to the constant pool. */
200 const char *constant_pool;
201};
202
95554aad
TT
203typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
204DEF_VEC_P (dwarf2_per_cu_ptr);
205
52059ffd
TT
206struct tu_stats
207{
208 int nr_uniq_abbrev_tables;
209 int nr_symtabs;
210 int nr_symtab_sharers;
211 int nr_stmt_less_type_units;
212 int nr_all_type_units_reallocs;
213};
214
9cdd5dbd
DE
215/* Collection of data recorded per objfile.
216 This hangs off of dwarf2_objfile_data_key. */
217
6502dd73
DJ
218struct dwarf2_per_objfile
219{
dce234bc
PP
220 struct dwarf2_section_info info;
221 struct dwarf2_section_info abbrev;
222 struct dwarf2_section_info line;
dce234bc
PP
223 struct dwarf2_section_info loc;
224 struct dwarf2_section_info macinfo;
cf2c3c16 225 struct dwarf2_section_info macro;
dce234bc
PP
226 struct dwarf2_section_info str;
227 struct dwarf2_section_info ranges;
3019eac3 228 struct dwarf2_section_info addr;
dce234bc
PP
229 struct dwarf2_section_info frame;
230 struct dwarf2_section_info eh_frame;
9291a0cd 231 struct dwarf2_section_info gdb_index;
ae038cb0 232
8b70b953
TT
233 VEC (dwarf2_section_info_def) *types;
234
be391dca
TT
235 /* Back link. */
236 struct objfile *objfile;
237
d467dd73 238 /* Table of all the compilation units. This is used to locate
10b3939b 239 the target compilation unit of a particular reference. */
ae038cb0
DJ
240 struct dwarf2_per_cu_data **all_comp_units;
241
242 /* The number of compilation units in ALL_COMP_UNITS. */
243 int n_comp_units;
244
1fd400ff 245 /* The number of .debug_types-related CUs. */
d467dd73 246 int n_type_units;
1fd400ff 247
6aa5f3a6
DE
248 /* The number of elements allocated in all_type_units.
249 If there are skeleton-less TUs, we add them to all_type_units lazily. */
250 int n_allocated_type_units;
251
a2ce51a0
DE
252 /* The .debug_types-related CUs (TUs).
253 This is stored in malloc space because we may realloc it. */
b4dd5633 254 struct signatured_type **all_type_units;
1fd400ff 255
f4dc4d17
DE
256 /* Table of struct type_unit_group objects.
257 The hash key is the DW_AT_stmt_list value. */
258 htab_t type_unit_groups;
72dca2f5 259
348e048f
DE
260 /* A table mapping .debug_types signatures to its signatured_type entry.
261 This is NULL if the .debug_types section hasn't been read in yet. */
262 htab_t signatured_types;
263
f4dc4d17
DE
264 /* Type unit statistics, to see how well the scaling improvements
265 are doing. */
52059ffd 266 struct tu_stats tu_stats;
f4dc4d17
DE
267
268 /* A chain of compilation units that are currently read in, so that
269 they can be freed later. */
270 struct dwarf2_per_cu_data *read_in_chain;
271
3019eac3
DE
272 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
273 This is NULL if the table hasn't been allocated yet. */
274 htab_t dwo_files;
275
80626a55
DE
276 /* Non-zero if we've check for whether there is a DWP file. */
277 int dwp_checked;
278
279 /* The DWP file if there is one, or NULL. */
280 struct dwp_file *dwp_file;
281
36586728
TT
282 /* The shared '.dwz' file, if one exists. This is used when the
283 original data was compressed using 'dwz -m'. */
284 struct dwz_file *dwz_file;
285
72dca2f5
FR
286 /* A flag indicating wether this objfile has a section loaded at a
287 VMA of 0. */
288 int has_section_at_zero;
9291a0cd 289
ae2de4f8
DE
290 /* True if we are using the mapped index,
291 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
292 unsigned char using_index;
293
ae2de4f8 294 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 295 struct mapped_index *index_table;
98bfdba5 296
7b9f3c50 297 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
298 TUs typically share line table entries with a CU, so we maintain a
299 separate table of all line table entries to support the sharing.
300 Note that while there can be way more TUs than CUs, we've already
301 sorted all the TUs into "type unit groups", grouped by their
302 DW_AT_stmt_list value. Therefore the only sharing done here is with a
303 CU and its associated TU group if there is one. */
7b9f3c50
DE
304 htab_t quick_file_names_table;
305
98bfdba5
PA
306 /* Set during partial symbol reading, to prevent queueing of full
307 symbols. */
308 int reading_partial_symbols;
673bfd45 309
dee91e82 310 /* Table mapping type DIEs to their struct type *.
673bfd45 311 This is NULL if not allocated yet.
02142a6c 312 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 313 htab_t die_type_hash;
95554aad
TT
314
315 /* The CUs we recently read. */
316 VEC (dwarf2_per_cu_ptr) *just_read_cus;
527f3840
JK
317
318 /* Table containing line_header indexed by offset and offset_in_dwz. */
319 htab_t line_header_hash;
6502dd73
DJ
320};
321
322static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 323
251d32d9 324/* Default names of the debugging sections. */
c906108c 325
233a11ab
CS
326/* Note that if the debugging section has been compressed, it might
327 have a name like .zdebug_info. */
328
9cdd5dbd
DE
329static const struct dwarf2_debug_sections dwarf2_elf_names =
330{
251d32d9
TG
331 { ".debug_info", ".zdebug_info" },
332 { ".debug_abbrev", ".zdebug_abbrev" },
333 { ".debug_line", ".zdebug_line" },
334 { ".debug_loc", ".zdebug_loc" },
335 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 336 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
337 { ".debug_str", ".zdebug_str" },
338 { ".debug_ranges", ".zdebug_ranges" },
339 { ".debug_types", ".zdebug_types" },
3019eac3 340 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
341 { ".debug_frame", ".zdebug_frame" },
342 { ".eh_frame", NULL },
24d3216f
TT
343 { ".gdb_index", ".zgdb_index" },
344 23
251d32d9 345};
c906108c 346
80626a55 347/* List of DWO/DWP sections. */
3019eac3 348
80626a55 349static const struct dwop_section_names
3019eac3
DE
350{
351 struct dwarf2_section_names abbrev_dwo;
352 struct dwarf2_section_names info_dwo;
353 struct dwarf2_section_names line_dwo;
354 struct dwarf2_section_names loc_dwo;
09262596
DE
355 struct dwarf2_section_names macinfo_dwo;
356 struct dwarf2_section_names macro_dwo;
3019eac3
DE
357 struct dwarf2_section_names str_dwo;
358 struct dwarf2_section_names str_offsets_dwo;
359 struct dwarf2_section_names types_dwo;
80626a55
DE
360 struct dwarf2_section_names cu_index;
361 struct dwarf2_section_names tu_index;
3019eac3 362}
80626a55 363dwop_section_names =
3019eac3
DE
364{
365 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
366 { ".debug_info.dwo", ".zdebug_info.dwo" },
367 { ".debug_line.dwo", ".zdebug_line.dwo" },
368 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
369 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
370 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
371 { ".debug_str.dwo", ".zdebug_str.dwo" },
372 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
373 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
374 { ".debug_cu_index", ".zdebug_cu_index" },
375 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
376};
377
c906108c
SS
378/* local data types */
379
107d2387
AC
380/* The data in a compilation unit header, after target2host
381 translation, looks like this. */
c906108c 382struct comp_unit_head
a738430d 383{
c764a876 384 unsigned int length;
a738430d 385 short version;
a738430d
MK
386 unsigned char addr_size;
387 unsigned char signed_addr_p;
b64f50a1 388 sect_offset abbrev_offset;
57349743 389
a738430d
MK
390 /* Size of file offsets; either 4 or 8. */
391 unsigned int offset_size;
57349743 392
a738430d
MK
393 /* Size of the length field; either 4 or 12. */
394 unsigned int initial_length_size;
57349743 395
a738430d
MK
396 /* Offset to the first byte of this compilation unit header in the
397 .debug_info section, for resolving relative reference dies. */
b64f50a1 398 sect_offset offset;
57349743 399
d00adf39
DE
400 /* Offset to first die in this cu from the start of the cu.
401 This will be the first byte following the compilation unit header. */
b64f50a1 402 cu_offset first_die_offset;
a738430d 403};
c906108c 404
3da10d80
KS
405/* Type used for delaying computation of method physnames.
406 See comments for compute_delayed_physnames. */
407struct delayed_method_info
408{
409 /* The type to which the method is attached, i.e., its parent class. */
410 struct type *type;
411
412 /* The index of the method in the type's function fieldlists. */
413 int fnfield_index;
414
415 /* The index of the method in the fieldlist. */
416 int index;
417
418 /* The name of the DIE. */
419 const char *name;
420
421 /* The DIE associated with this method. */
422 struct die_info *die;
423};
424
425typedef struct delayed_method_info delayed_method_info;
426DEF_VEC_O (delayed_method_info);
427
e7c27a73
DJ
428/* Internal state when decoding a particular compilation unit. */
429struct dwarf2_cu
430{
431 /* The objfile containing this compilation unit. */
432 struct objfile *objfile;
433
d00adf39 434 /* The header of the compilation unit. */
e7c27a73 435 struct comp_unit_head header;
e142c38c 436
d00adf39
DE
437 /* Base address of this compilation unit. */
438 CORE_ADDR base_address;
439
440 /* Non-zero if base_address has been set. */
441 int base_known;
442
e142c38c
DJ
443 /* The language we are debugging. */
444 enum language language;
445 const struct language_defn *language_defn;
446
b0f35d58
DL
447 const char *producer;
448
e142c38c
DJ
449 /* The generic symbol table building routines have separate lists for
450 file scope symbols and all all other scopes (local scopes). So
451 we need to select the right one to pass to add_symbol_to_list().
452 We do it by keeping a pointer to the correct list in list_in_scope.
453
454 FIXME: The original dwarf code just treated the file scope as the
455 first local scope, and all other local scopes as nested local
456 scopes, and worked fine. Check to see if we really need to
457 distinguish these in buildsym.c. */
458 struct pending **list_in_scope;
459
433df2d4
DE
460 /* The abbrev table for this CU.
461 Normally this points to the abbrev table in the objfile.
462 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
463 struct abbrev_table *abbrev_table;
72bf9492 464
b64f50a1
JK
465 /* Hash table holding all the loaded partial DIEs
466 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
467 htab_t partial_dies;
468
469 /* Storage for things with the same lifetime as this read-in compilation
470 unit, including partial DIEs. */
471 struct obstack comp_unit_obstack;
472
ae038cb0
DJ
473 /* When multiple dwarf2_cu structures are living in memory, this field
474 chains them all together, so that they can be released efficiently.
475 We will probably also want a generation counter so that most-recently-used
476 compilation units are cached... */
477 struct dwarf2_per_cu_data *read_in_chain;
478
69d751e3 479 /* Backlink to our per_cu entry. */
ae038cb0
DJ
480 struct dwarf2_per_cu_data *per_cu;
481
482 /* How many compilation units ago was this CU last referenced? */
483 int last_used;
484
b64f50a1
JK
485 /* A hash table of DIE cu_offset for following references with
486 die_info->offset.sect_off as hash. */
51545339 487 htab_t die_hash;
10b3939b
DJ
488
489 /* Full DIEs if read in. */
490 struct die_info *dies;
491
492 /* A set of pointers to dwarf2_per_cu_data objects for compilation
493 units referenced by this one. Only set during full symbol processing;
494 partial symbol tables do not have dependencies. */
495 htab_t dependencies;
496
cb1df416
DJ
497 /* Header data from the line table, during full symbol processing. */
498 struct line_header *line_header;
499
3da10d80
KS
500 /* A list of methods which need to have physnames computed
501 after all type information has been read. */
502 VEC (delayed_method_info) *method_list;
503
96408a79
SA
504 /* To be copied to symtab->call_site_htab. */
505 htab_t call_site_htab;
506
034e5797
DE
507 /* Non-NULL if this CU came from a DWO file.
508 There is an invariant here that is important to remember:
509 Except for attributes copied from the top level DIE in the "main"
510 (or "stub") file in preparation for reading the DWO file
511 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
512 Either there isn't a DWO file (in which case this is NULL and the point
513 is moot), or there is and either we're not going to read it (in which
514 case this is NULL) or there is and we are reading it (in which case this
515 is non-NULL). */
3019eac3
DE
516 struct dwo_unit *dwo_unit;
517
518 /* The DW_AT_addr_base attribute if present, zero otherwise
519 (zero is a valid value though).
1dbab08b 520 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
521 ULONGEST addr_base;
522
2e3cf129
DE
523 /* The DW_AT_ranges_base attribute if present, zero otherwise
524 (zero is a valid value though).
1dbab08b 525 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 526 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
527 be used without needing to know whether DWO files are in use or not.
528 N.B. This does not apply to DW_AT_ranges appearing in
529 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
530 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
531 DW_AT_ranges_base *would* have to be applied, and we'd have to care
532 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
533 ULONGEST ranges_base;
534
ae038cb0
DJ
535 /* Mark used when releasing cached dies. */
536 unsigned int mark : 1;
537
8be455d7
JK
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 542 unsigned int has_loclist : 1;
ba919b58 543
1b80a9fa
JK
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
ba919b58
TT
548 unsigned int checked_producer : 1;
549 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 550 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 551 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
552
553 /* When set, the file that we're processing is known to have
554 debugging info for C++ namespaces. GCC 3.3.x did not produce
555 this information, but later versions do. */
556
557 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
558};
559
10b3939b
DJ
560/* Persistent data held for a compilation unit, even when not
561 processing it. We put a pointer to this structure in the
28dee7f5 562 read_symtab_private field of the psymtab. */
10b3939b 563
ae038cb0
DJ
564struct dwarf2_per_cu_data
565{
36586728 566 /* The start offset and length of this compilation unit.
45452591 567 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
568 initial_length_size.
569 If the DIE refers to a DWO file, this is always of the original die,
570 not the DWO file. */
b64f50a1 571 sect_offset offset;
36586728 572 unsigned int length;
ae038cb0
DJ
573
574 /* Flag indicating this compilation unit will be read in before
575 any of the current compilation units are processed. */
c764a876 576 unsigned int queued : 1;
ae038cb0 577
0d99eb77
DE
578 /* This flag will be set when reading partial DIEs if we need to load
579 absolutely all DIEs for this compilation unit, instead of just the ones
580 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
581 hash table and don't find it. */
582 unsigned int load_all_dies : 1;
583
0186c6a7
DE
584 /* Non-zero if this CU is from .debug_types.
585 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
586 this is non-zero. */
3019eac3
DE
587 unsigned int is_debug_types : 1;
588
36586728
TT
589 /* Non-zero if this CU is from the .dwz file. */
590 unsigned int is_dwz : 1;
591
a2ce51a0
DE
592 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
593 This flag is only valid if is_debug_types is true.
594 We can't read a CU directly from a DWO file: There are required
595 attributes in the stub. */
596 unsigned int reading_dwo_directly : 1;
597
7ee85ab1
DE
598 /* Non-zero if the TU has been read.
599 This is used to assist the "Stay in DWO Optimization" for Fission:
600 When reading a DWO, it's faster to read TUs from the DWO instead of
601 fetching them from random other DWOs (due to comdat folding).
602 If the TU has already been read, the optimization is unnecessary
603 (and unwise - we don't want to change where gdb thinks the TU lives
604 "midflight").
605 This flag is only valid if is_debug_types is true. */
606 unsigned int tu_read : 1;
607
3019eac3
DE
608 /* The section this CU/TU lives in.
609 If the DIE refers to a DWO file, this is always the original die,
610 not the DWO file. */
8a0459fd 611 struct dwarf2_section_info *section;
348e048f 612
17ea53c3 613 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
cc12ce38
DE
614 of the CU cache it gets reset to NULL again. This is left as NULL for
615 dummy CUs (a CU header, but nothing else). */
ae038cb0 616 struct dwarf2_cu *cu;
1c379e20 617
9cdd5dbd
DE
618 /* The corresponding objfile.
619 Normally we can get the objfile from dwarf2_per_objfile.
620 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
621 struct objfile *objfile;
622
fffbe6a8
YQ
623 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
624 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
625 union
626 {
627 /* The partial symbol table associated with this compilation unit,
95554aad 628 or NULL for unread partial units. */
9291a0cd
TT
629 struct partial_symtab *psymtab;
630
631 /* Data needed by the "quick" functions. */
632 struct dwarf2_per_cu_quick_data *quick;
633 } v;
95554aad 634
796a7ff8
DE
635 /* The CUs we import using DW_TAG_imported_unit. This is filled in
636 while reading psymtabs, used to compute the psymtab dependencies,
637 and then cleared. Then it is filled in again while reading full
638 symbols, and only deleted when the objfile is destroyed.
639
640 This is also used to work around a difference between the way gold
641 generates .gdb_index version <=7 and the way gdb does. Arguably this
642 is a gold bug. For symbols coming from TUs, gold records in the index
643 the CU that includes the TU instead of the TU itself. This breaks
644 dw2_lookup_symbol: It assumes that if the index says symbol X lives
645 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
646 will find X. Alas TUs live in their own symtab, so after expanding CU Y
647 we need to look in TU Z to find X. Fortunately, this is akin to
648 DW_TAG_imported_unit, so we just use the same mechanism: For
649 .gdb_index version <=7 this also records the TUs that the CU referred
650 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
651 indices so we only pay a price for gold generated indices.
652 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 653 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
654};
655
348e048f
DE
656/* Entry in the signatured_types hash table. */
657
658struct signatured_type
659{
42e7ad6c 660 /* The "per_cu" object of this type.
ac9ec31b 661 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
662 N.B.: This is the first member so that it's easy to convert pointers
663 between them. */
664 struct dwarf2_per_cu_data per_cu;
665
3019eac3 666 /* The type's signature. */
348e048f
DE
667 ULONGEST signature;
668
3019eac3 669 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
670 If this TU is a DWO stub and the definition lives in a DWO file
671 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
672 cu_offset type_offset_in_tu;
673
674 /* Offset in the section of the type's DIE.
675 If the definition lives in a DWO file, this is the offset in the
676 .debug_types.dwo section.
677 The value is zero until the actual value is known.
678 Zero is otherwise not a valid section offset. */
679 sect_offset type_offset_in_section;
0186c6a7
DE
680
681 /* Type units are grouped by their DW_AT_stmt_list entry so that they
682 can share them. This points to the containing symtab. */
683 struct type_unit_group *type_unit_group;
ac9ec31b
DE
684
685 /* The type.
686 The first time we encounter this type we fully read it in and install it
687 in the symbol tables. Subsequent times we only need the type. */
688 struct type *type;
a2ce51a0
DE
689
690 /* Containing DWO unit.
691 This field is valid iff per_cu.reading_dwo_directly. */
692 struct dwo_unit *dwo_unit;
348e048f
DE
693};
694
0186c6a7
DE
695typedef struct signatured_type *sig_type_ptr;
696DEF_VEC_P (sig_type_ptr);
697
094b34ac
DE
698/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
699 This includes type_unit_group and quick_file_names. */
700
701struct stmt_list_hash
702{
703 /* The DWO unit this table is from or NULL if there is none. */
704 struct dwo_unit *dwo_unit;
705
706 /* Offset in .debug_line or .debug_line.dwo. */
707 sect_offset line_offset;
708};
709
f4dc4d17
DE
710/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
711 an object of this type. */
712
713struct type_unit_group
714{
0186c6a7 715 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
716 To simplify things we create an artificial CU that "includes" all the
717 type units using this stmt_list so that the rest of the code still has
718 a "per_cu" handle on the symtab.
719 This PER_CU is recognized by having no section. */
8a0459fd 720#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
721 struct dwarf2_per_cu_data per_cu;
722
0186c6a7
DE
723 /* The TUs that share this DW_AT_stmt_list entry.
724 This is added to while parsing type units to build partial symtabs,
725 and is deleted afterwards and not used again. */
726 VEC (sig_type_ptr) *tus;
f4dc4d17 727
43f3e411 728 /* The compunit symtab.
094b34ac 729 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
730 so we create an essentially anonymous symtab as the compunit symtab. */
731 struct compunit_symtab *compunit_symtab;
f4dc4d17 732
094b34ac
DE
733 /* The data used to construct the hash key. */
734 struct stmt_list_hash hash;
f4dc4d17
DE
735
736 /* The number of symtabs from the line header.
737 The value here must match line_header.num_file_names. */
738 unsigned int num_symtabs;
739
740 /* The symbol tables for this TU (obtained from the files listed in
741 DW_AT_stmt_list).
742 WARNING: The order of entries here must match the order of entries
743 in the line header. After the first TU using this type_unit_group, the
744 line header for the subsequent TUs is recreated from this. This is done
745 because we need to use the same symtabs for each TU using the same
746 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
747 there's no guarantee the line header doesn't have duplicate entries. */
748 struct symtab **symtabs;
749};
750
73869dc2 751/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
752
753struct dwo_sections
754{
755 struct dwarf2_section_info abbrev;
3019eac3
DE
756 struct dwarf2_section_info line;
757 struct dwarf2_section_info loc;
09262596
DE
758 struct dwarf2_section_info macinfo;
759 struct dwarf2_section_info macro;
3019eac3
DE
760 struct dwarf2_section_info str;
761 struct dwarf2_section_info str_offsets;
80626a55
DE
762 /* In the case of a virtual DWO file, these two are unused. */
763 struct dwarf2_section_info info;
3019eac3
DE
764 VEC (dwarf2_section_info_def) *types;
765};
766
c88ee1f0 767/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
768
769struct dwo_unit
770{
771 /* Backlink to the containing struct dwo_file. */
772 struct dwo_file *dwo_file;
773
774 /* The "id" that distinguishes this CU/TU.
775 .debug_info calls this "dwo_id", .debug_types calls this "signature".
776 Since signatures came first, we stick with it for consistency. */
777 ULONGEST signature;
778
779 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 780 struct dwarf2_section_info *section;
3019eac3 781
19ac8c2e 782 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
783 sect_offset offset;
784 unsigned int length;
785
786 /* For types, offset in the type's DIE of the type defined by this TU. */
787 cu_offset type_offset_in_tu;
788};
789
73869dc2
DE
790/* include/dwarf2.h defines the DWP section codes.
791 It defines a max value but it doesn't define a min value, which we
792 use for error checking, so provide one. */
793
794enum dwp_v2_section_ids
795{
796 DW_SECT_MIN = 1
797};
798
80626a55 799/* Data for one DWO file.
57d63ce2
DE
800
801 This includes virtual DWO files (a virtual DWO file is a DWO file as it
802 appears in a DWP file). DWP files don't really have DWO files per se -
803 comdat folding of types "loses" the DWO file they came from, and from
804 a high level view DWP files appear to contain a mass of random types.
805 However, to maintain consistency with the non-DWP case we pretend DWP
806 files contain virtual DWO files, and we assign each TU with one virtual
807 DWO file (generally based on the line and abbrev section offsets -
808 a heuristic that seems to work in practice). */
3019eac3
DE
809
810struct dwo_file
811{
0ac5b59e 812 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
813 For virtual DWO files the name is constructed from the section offsets
814 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
815 from related CU+TUs. */
0ac5b59e
DE
816 const char *dwo_name;
817
818 /* The DW_AT_comp_dir attribute. */
819 const char *comp_dir;
3019eac3 820
80626a55
DE
821 /* The bfd, when the file is open. Otherwise this is NULL.
822 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
823 bfd *dbfd;
3019eac3 824
73869dc2
DE
825 /* The sections that make up this DWO file.
826 Remember that for virtual DWO files in DWP V2, these are virtual
827 sections (for lack of a better name). */
3019eac3
DE
828 struct dwo_sections sections;
829
19c3d4c9
DE
830 /* The CU in the file.
831 We only support one because having more than one requires hacking the
832 dwo_name of each to match, which is highly unlikely to happen.
833 Doing this means all TUs can share comp_dir: We also assume that
834 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
835 struct dwo_unit *cu;
3019eac3
DE
836
837 /* Table of TUs in the file.
838 Each element is a struct dwo_unit. */
839 htab_t tus;
840};
841
80626a55
DE
842/* These sections are what may appear in a DWP file. */
843
844struct dwp_sections
845{
73869dc2 846 /* These are used by both DWP version 1 and 2. */
80626a55
DE
847 struct dwarf2_section_info str;
848 struct dwarf2_section_info cu_index;
849 struct dwarf2_section_info tu_index;
73869dc2
DE
850
851 /* These are only used by DWP version 2 files.
852 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
853 sections are referenced by section number, and are not recorded here.
854 In DWP version 2 there is at most one copy of all these sections, each
855 section being (effectively) comprised of the concatenation of all of the
856 individual sections that exist in the version 1 format.
857 To keep the code simple we treat each of these concatenated pieces as a
858 section itself (a virtual section?). */
859 struct dwarf2_section_info abbrev;
860 struct dwarf2_section_info info;
861 struct dwarf2_section_info line;
862 struct dwarf2_section_info loc;
863 struct dwarf2_section_info macinfo;
864 struct dwarf2_section_info macro;
865 struct dwarf2_section_info str_offsets;
866 struct dwarf2_section_info types;
80626a55
DE
867};
868
73869dc2
DE
869/* These sections are what may appear in a virtual DWO file in DWP version 1.
870 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 871
73869dc2 872struct virtual_v1_dwo_sections
80626a55
DE
873{
874 struct dwarf2_section_info abbrev;
875 struct dwarf2_section_info line;
876 struct dwarf2_section_info loc;
877 struct dwarf2_section_info macinfo;
878 struct dwarf2_section_info macro;
879 struct dwarf2_section_info str_offsets;
880 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 881 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
882 struct dwarf2_section_info info_or_types;
883};
884
73869dc2
DE
885/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
886 In version 2, the sections of the DWO files are concatenated together
887 and stored in one section of that name. Thus each ELF section contains
888 several "virtual" sections. */
889
890struct virtual_v2_dwo_sections
891{
892 bfd_size_type abbrev_offset;
893 bfd_size_type abbrev_size;
894
895 bfd_size_type line_offset;
896 bfd_size_type line_size;
897
898 bfd_size_type loc_offset;
899 bfd_size_type loc_size;
900
901 bfd_size_type macinfo_offset;
902 bfd_size_type macinfo_size;
903
904 bfd_size_type macro_offset;
905 bfd_size_type macro_size;
906
907 bfd_size_type str_offsets_offset;
908 bfd_size_type str_offsets_size;
909
910 /* Each DWP hash table entry records one CU or one TU.
911 That is recorded here, and copied to dwo_unit.section. */
912 bfd_size_type info_or_types_offset;
913 bfd_size_type info_or_types_size;
914};
915
80626a55
DE
916/* Contents of DWP hash tables. */
917
918struct dwp_hash_table
919{
73869dc2 920 uint32_t version, nr_columns;
80626a55 921 uint32_t nr_units, nr_slots;
73869dc2
DE
922 const gdb_byte *hash_table, *unit_table;
923 union
924 {
925 struct
926 {
927 const gdb_byte *indices;
928 } v1;
929 struct
930 {
931 /* This is indexed by column number and gives the id of the section
932 in that column. */
933#define MAX_NR_V2_DWO_SECTIONS \
934 (1 /* .debug_info or .debug_types */ \
935 + 1 /* .debug_abbrev */ \
936 + 1 /* .debug_line */ \
937 + 1 /* .debug_loc */ \
938 + 1 /* .debug_str_offsets */ \
939 + 1 /* .debug_macro or .debug_macinfo */)
940 int section_ids[MAX_NR_V2_DWO_SECTIONS];
941 const gdb_byte *offsets;
942 const gdb_byte *sizes;
943 } v2;
944 } section_pool;
80626a55
DE
945};
946
947/* Data for one DWP file. */
948
949struct dwp_file
950{
951 /* Name of the file. */
952 const char *name;
953
73869dc2
DE
954 /* File format version. */
955 int version;
956
93417882 957 /* The bfd. */
80626a55
DE
958 bfd *dbfd;
959
960 /* Section info for this file. */
961 struct dwp_sections sections;
962
57d63ce2 963 /* Table of CUs in the file. */
80626a55
DE
964 const struct dwp_hash_table *cus;
965
966 /* Table of TUs in the file. */
967 const struct dwp_hash_table *tus;
968
19ac8c2e
DE
969 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
970 htab_t loaded_cus;
971 htab_t loaded_tus;
80626a55 972
73869dc2
DE
973 /* Table to map ELF section numbers to their sections.
974 This is only needed for the DWP V1 file format. */
80626a55
DE
975 unsigned int num_sections;
976 asection **elf_sections;
977};
978
36586728
TT
979/* This represents a '.dwz' file. */
980
981struct dwz_file
982{
983 /* A dwz file can only contain a few sections. */
984 struct dwarf2_section_info abbrev;
985 struct dwarf2_section_info info;
986 struct dwarf2_section_info str;
987 struct dwarf2_section_info line;
988 struct dwarf2_section_info macro;
2ec9a5e0 989 struct dwarf2_section_info gdb_index;
36586728
TT
990
991 /* The dwz's BFD. */
992 bfd *dwz_bfd;
993};
994
0963b4bd
MS
995/* Struct used to pass misc. parameters to read_die_and_children, et
996 al. which are used for both .debug_info and .debug_types dies.
997 All parameters here are unchanging for the life of the call. This
dee91e82 998 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
999
1000struct die_reader_specs
1001{
a32a8923 1002 /* The bfd of die_section. */
93311388
DE
1003 bfd* abfd;
1004
1005 /* The CU of the DIE we are parsing. */
1006 struct dwarf2_cu *cu;
1007
80626a55 1008 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1009 struct dwo_file *dwo_file;
1010
dee91e82 1011 /* The section the die comes from.
3019eac3 1012 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1013 struct dwarf2_section_info *die_section;
1014
1015 /* die_section->buffer. */
d521ce57 1016 const gdb_byte *buffer;
f664829e
DE
1017
1018 /* The end of the buffer. */
1019 const gdb_byte *buffer_end;
a2ce51a0
DE
1020
1021 /* The value of the DW_AT_comp_dir attribute. */
1022 const char *comp_dir;
93311388
DE
1023};
1024
fd820528 1025/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1026typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1027 const gdb_byte *info_ptr,
dee91e82
DE
1028 struct die_info *comp_unit_die,
1029 int has_children,
1030 void *data);
1031
52059ffd
TT
1032struct file_entry
1033{
1034 const char *name;
1035 unsigned int dir_index;
1036 unsigned int mod_time;
1037 unsigned int length;
83769d0b
DE
1038 /* Non-zero if referenced by the Line Number Program. */
1039 int included_p;
1040 /* The associated symbol table, if any. */
1041 struct symtab *symtab;
52059ffd
TT
1042};
1043
debd256d
JB
1044/* The line number information for a compilation unit (found in the
1045 .debug_line section) begins with a "statement program header",
1046 which contains the following information. */
1047struct line_header
1048{
527f3840
JK
1049 /* Offset of line number information in .debug_line section. */
1050 sect_offset offset;
1051
1052 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1053 unsigned offset_in_dwz : 1;
1054
debd256d
JB
1055 unsigned int total_length;
1056 unsigned short version;
1057 unsigned int header_length;
1058 unsigned char minimum_instruction_length;
2dc7f7b3 1059 unsigned char maximum_ops_per_instruction;
debd256d
JB
1060 unsigned char default_is_stmt;
1061 int line_base;
1062 unsigned char line_range;
1063 unsigned char opcode_base;
1064
1065 /* standard_opcode_lengths[i] is the number of operands for the
1066 standard opcode whose value is i. This means that
1067 standard_opcode_lengths[0] is unused, and the last meaningful
1068 element is standard_opcode_lengths[opcode_base - 1]. */
1069 unsigned char *standard_opcode_lengths;
1070
1071 /* The include_directories table. NOTE! These strings are not
1072 allocated with xmalloc; instead, they are pointers into
1073 debug_line_buffer. If you try to free them, `free' will get
1074 indigestion. */
1075 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1076 const char **include_dirs;
debd256d
JB
1077
1078 /* The file_names table. NOTE! These strings are not allocated
1079 with xmalloc; instead, they are pointers into debug_line_buffer.
1080 Don't try to free them directly. */
1081 unsigned int num_file_names, file_names_size;
52059ffd 1082 struct file_entry *file_names;
debd256d
JB
1083
1084 /* The start and end of the statement program following this
6502dd73 1085 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1086 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1087};
c906108c
SS
1088
1089/* When we construct a partial symbol table entry we only
0963b4bd 1090 need this much information. */
c906108c
SS
1091struct partial_die_info
1092 {
72bf9492 1093 /* Offset of this DIE. */
b64f50a1 1094 sect_offset offset;
72bf9492
DJ
1095
1096 /* DWARF-2 tag for this DIE. */
1097 ENUM_BITFIELD(dwarf_tag) tag : 16;
1098
72bf9492
DJ
1099 /* Assorted flags describing the data found in this DIE. */
1100 unsigned int has_children : 1;
1101 unsigned int is_external : 1;
1102 unsigned int is_declaration : 1;
1103 unsigned int has_type : 1;
1104 unsigned int has_specification : 1;
1105 unsigned int has_pc_info : 1;
481860b3 1106 unsigned int may_be_inlined : 1;
72bf9492
DJ
1107
1108 /* Flag set if the SCOPE field of this structure has been
1109 computed. */
1110 unsigned int scope_set : 1;
1111
fa4028e9
JB
1112 /* Flag set if the DIE has a byte_size attribute. */
1113 unsigned int has_byte_size : 1;
1114
ff908ebf
AW
1115 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1116 unsigned int has_const_value : 1;
1117
98bfdba5
PA
1118 /* Flag set if any of the DIE's children are template arguments. */
1119 unsigned int has_template_arguments : 1;
1120
abc72ce4
DE
1121 /* Flag set if fixup_partial_die has been called on this die. */
1122 unsigned int fixup_called : 1;
1123
36586728
TT
1124 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1125 unsigned int is_dwz : 1;
1126
1127 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1128 unsigned int spec_is_dwz : 1;
1129
72bf9492 1130 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1131 sometimes a default name for unnamed DIEs. */
15d034d0 1132 const char *name;
72bf9492 1133
abc72ce4
DE
1134 /* The linkage name, if present. */
1135 const char *linkage_name;
1136
72bf9492
DJ
1137 /* The scope to prepend to our children. This is generally
1138 allocated on the comp_unit_obstack, so will disappear
1139 when this compilation unit leaves the cache. */
15d034d0 1140 const char *scope;
72bf9492 1141
95554aad
TT
1142 /* Some data associated with the partial DIE. The tag determines
1143 which field is live. */
1144 union
1145 {
1146 /* The location description associated with this DIE, if any. */
1147 struct dwarf_block *locdesc;
1148 /* The offset of an import, for DW_TAG_imported_unit. */
1149 sect_offset offset;
1150 } d;
72bf9492
DJ
1151
1152 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1153 CORE_ADDR lowpc;
1154 CORE_ADDR highpc;
72bf9492 1155
93311388 1156 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1157 DW_AT_sibling, if any. */
abc72ce4
DE
1158 /* NOTE: This member isn't strictly necessary, read_partial_die could
1159 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1160 const gdb_byte *sibling;
72bf9492
DJ
1161
1162 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1163 DW_AT_specification (or DW_AT_abstract_origin or
1164 DW_AT_extension). */
b64f50a1 1165 sect_offset spec_offset;
72bf9492
DJ
1166
1167 /* Pointers to this DIE's parent, first child, and next sibling,
1168 if any. */
1169 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1170 };
1171
0963b4bd 1172/* This data structure holds the information of an abbrev. */
c906108c
SS
1173struct abbrev_info
1174 {
1175 unsigned int number; /* number identifying abbrev */
1176 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1177 unsigned short has_children; /* boolean */
1178 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1179 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1180 struct abbrev_info *next; /* next in chain */
1181 };
1182
1183struct attr_abbrev
1184 {
9d25dd43
DE
1185 ENUM_BITFIELD(dwarf_attribute) name : 16;
1186 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1187 };
1188
433df2d4
DE
1189/* Size of abbrev_table.abbrev_hash_table. */
1190#define ABBREV_HASH_SIZE 121
1191
1192/* Top level data structure to contain an abbreviation table. */
1193
1194struct abbrev_table
1195{
f4dc4d17
DE
1196 /* Where the abbrev table came from.
1197 This is used as a sanity check when the table is used. */
433df2d4
DE
1198 sect_offset offset;
1199
1200 /* Storage for the abbrev table. */
1201 struct obstack abbrev_obstack;
1202
1203 /* Hash table of abbrevs.
1204 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1205 It could be statically allocated, but the previous code didn't so we
1206 don't either. */
1207 struct abbrev_info **abbrevs;
1208};
1209
0963b4bd 1210/* Attributes have a name and a value. */
b60c80d6
DJ
1211struct attribute
1212 {
9d25dd43 1213 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1214 ENUM_BITFIELD(dwarf_form) form : 15;
1215
1216 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1217 field should be in u.str (existing only for DW_STRING) but it is kept
1218 here for better struct attribute alignment. */
1219 unsigned int string_is_canonical : 1;
1220
b60c80d6
DJ
1221 union
1222 {
15d034d0 1223 const char *str;
b60c80d6 1224 struct dwarf_block *blk;
43bbcdc2
PH
1225 ULONGEST unsnd;
1226 LONGEST snd;
b60c80d6 1227 CORE_ADDR addr;
ac9ec31b 1228 ULONGEST signature;
b60c80d6
DJ
1229 }
1230 u;
1231 };
1232
0963b4bd 1233/* This data structure holds a complete die structure. */
c906108c
SS
1234struct die_info
1235 {
76815b17
DE
1236 /* DWARF-2 tag for this DIE. */
1237 ENUM_BITFIELD(dwarf_tag) tag : 16;
1238
1239 /* Number of attributes */
98bfdba5
PA
1240 unsigned char num_attrs;
1241
1242 /* True if we're presently building the full type name for the
1243 type derived from this DIE. */
1244 unsigned char building_fullname : 1;
76815b17 1245
adde2bff
DE
1246 /* True if this die is in process. PR 16581. */
1247 unsigned char in_process : 1;
1248
76815b17
DE
1249 /* Abbrev number */
1250 unsigned int abbrev;
1251
93311388 1252 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1253 sect_offset offset;
78ba4af6
JB
1254
1255 /* The dies in a compilation unit form an n-ary tree. PARENT
1256 points to this die's parent; CHILD points to the first child of
1257 this node; and all the children of a given node are chained
4950bc1c 1258 together via their SIBLING fields. */
639d11d3
DC
1259 struct die_info *child; /* Its first child, if any. */
1260 struct die_info *sibling; /* Its next sibling, if any. */
1261 struct die_info *parent; /* Its parent, if any. */
c906108c 1262
b60c80d6
DJ
1263 /* An array of attributes, with NUM_ATTRS elements. There may be
1264 zero, but it's not common and zero-sized arrays are not
1265 sufficiently portable C. */
1266 struct attribute attrs[1];
c906108c
SS
1267 };
1268
0963b4bd 1269/* Get at parts of an attribute structure. */
c906108c
SS
1270
1271#define DW_STRING(attr) ((attr)->u.str)
8285870a 1272#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1273#define DW_UNSND(attr) ((attr)->u.unsnd)
1274#define DW_BLOCK(attr) ((attr)->u.blk)
1275#define DW_SND(attr) ((attr)->u.snd)
1276#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1277#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1278
0963b4bd 1279/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1280struct dwarf_block
1281 {
56eb65bd 1282 size_t size;
1d6edc3c
JK
1283
1284 /* Valid only if SIZE is not zero. */
d521ce57 1285 const gdb_byte *data;
c906108c
SS
1286 };
1287
c906108c
SS
1288#ifndef ATTR_ALLOC_CHUNK
1289#define ATTR_ALLOC_CHUNK 4
1290#endif
1291
c906108c
SS
1292/* Allocate fields for structs, unions and enums in this size. */
1293#ifndef DW_FIELD_ALLOC_CHUNK
1294#define DW_FIELD_ALLOC_CHUNK 4
1295#endif
1296
c906108c
SS
1297/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1298 but this would require a corresponding change in unpack_field_as_long
1299 and friends. */
1300static int bits_per_byte = 8;
1301
52059ffd
TT
1302struct nextfield
1303{
1304 struct nextfield *next;
1305 int accessibility;
1306 int virtuality;
1307 struct field field;
1308};
1309
1310struct nextfnfield
1311{
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314};
1315
1316struct fnfieldlist
1317{
1318 const char *name;
1319 int length;
1320 struct nextfnfield *head;
1321};
1322
1323struct typedef_field_list
1324{
1325 struct typedef_field field;
1326 struct typedef_field_list *next;
1327};
1328
c906108c
SS
1329/* The routines that read and process dies for a C struct or C++ class
1330 pass lists of data member fields and lists of member function fields
1331 in an instance of a field_info structure, as defined below. */
1332struct field_info
c5aa993b 1333 {
0963b4bd 1334 /* List of data member and baseclasses fields. */
52059ffd 1335 struct nextfield *fields, *baseclasses;
c906108c 1336
7d0ccb61 1337 /* Number of fields (including baseclasses). */
c5aa993b 1338 int nfields;
c906108c 1339
c5aa993b
JM
1340 /* Number of baseclasses. */
1341 int nbaseclasses;
c906108c 1342
c5aa993b
JM
1343 /* Set if the accesibility of one of the fields is not public. */
1344 int non_public_fields;
c906108c 1345
c5aa993b
JM
1346 /* Member function fields array, entries are allocated in the order they
1347 are encountered in the object file. */
52059ffd 1348 struct nextfnfield *fnfields;
c906108c 1349
c5aa993b
JM
1350 /* Member function fieldlist array, contains name of possibly overloaded
1351 member function, number of overloaded member functions and a pointer
1352 to the head of the member function field chain. */
52059ffd 1353 struct fnfieldlist *fnfieldlists;
c906108c 1354
c5aa993b
JM
1355 /* Number of entries in the fnfieldlists array. */
1356 int nfnfields;
98751a41
JK
1357
1358 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1359 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
52059ffd 1360 struct typedef_field_list *typedef_field_list;
98751a41 1361 unsigned typedef_field_list_count;
c5aa993b 1362 };
c906108c 1363
10b3939b
DJ
1364/* One item on the queue of compilation units to read in full symbols
1365 for. */
1366struct dwarf2_queue_item
1367{
1368 struct dwarf2_per_cu_data *per_cu;
95554aad 1369 enum language pretend_language;
10b3939b
DJ
1370 struct dwarf2_queue_item *next;
1371};
1372
1373/* The current queue. */
1374static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1375
ae038cb0
DJ
1376/* Loaded secondary compilation units are kept in memory until they
1377 have not been referenced for the processing of this many
1378 compilation units. Set this to zero to disable caching. Cache
1379 sizes of up to at least twenty will improve startup time for
1380 typical inter-CU-reference binaries, at an obvious memory cost. */
b4f54984 1381static int dwarf_max_cache_age = 5;
920d2a44 1382static void
b4f54984
DE
1383show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1384 struct cmd_list_element *c, const char *value)
920d2a44 1385{
3e43a32a 1386 fprintf_filtered (file, _("The upper bound on the age of cached "
b4f54984 1387 "DWARF compilation units is %s.\n"),
920d2a44
AC
1388 value);
1389}
4390d890 1390\f
c906108c
SS
1391/* local function prototypes */
1392
a32a8923
DE
1393static const char *get_section_name (const struct dwarf2_section_info *);
1394
1395static const char *get_section_file_name (const struct dwarf2_section_info *);
1396
4efb68b1 1397static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1398
918dd910
JK
1399static void dwarf2_find_base_address (struct die_info *die,
1400 struct dwarf2_cu *cu);
1401
0018ea6f
DE
1402static struct partial_symtab *create_partial_symtab
1403 (struct dwarf2_per_cu_data *per_cu, const char *name);
1404
c67a9c90 1405static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1406
72bf9492
DJ
1407static void scan_partial_symbols (struct partial_die_info *,
1408 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1409 int, struct dwarf2_cu *);
c906108c 1410
72bf9492
DJ
1411static void add_partial_symbol (struct partial_die_info *,
1412 struct dwarf2_cu *);
63d06c5c 1413
72bf9492
DJ
1414static void add_partial_namespace (struct partial_die_info *pdi,
1415 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1416 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1417
5d7cb8df 1418static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1419 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1420 struct dwarf2_cu *cu);
1421
72bf9492
DJ
1422static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1423 struct dwarf2_cu *cu);
91c24f0a 1424
bc30ff58
JB
1425static void add_partial_subprogram (struct partial_die_info *pdi,
1426 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1427 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1428
257e7a09
YQ
1429static void dwarf2_read_symtab (struct partial_symtab *,
1430 struct objfile *);
c906108c 1431
a14ed312 1432static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1433
433df2d4
DE
1434static struct abbrev_info *abbrev_table_lookup_abbrev
1435 (const struct abbrev_table *, unsigned int);
1436
1437static struct abbrev_table *abbrev_table_read_table
1438 (struct dwarf2_section_info *, sect_offset);
1439
1440static void abbrev_table_free (struct abbrev_table *);
1441
f4dc4d17
DE
1442static void abbrev_table_free_cleanup (void *);
1443
dee91e82
DE
1444static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1445 struct dwarf2_section_info *);
c906108c 1446
f3dd6933 1447static void dwarf2_free_abbrev_table (void *);
c906108c 1448
d521ce57 1449static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1450
dee91e82 1451static struct partial_die_info *load_partial_dies
d521ce57 1452 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1453
d521ce57
TT
1454static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1455 struct partial_die_info *,
1456 struct abbrev_info *,
1457 unsigned int,
1458 const gdb_byte *);
c906108c 1459
36586728 1460static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1461 struct dwarf2_cu *);
72bf9492
DJ
1462
1463static void fixup_partial_die (struct partial_die_info *,
1464 struct dwarf2_cu *);
1465
d521ce57
TT
1466static const gdb_byte *read_attribute (const struct die_reader_specs *,
1467 struct attribute *, struct attr_abbrev *,
1468 const gdb_byte *);
a8329558 1469
a1855c1d 1470static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1471
a1855c1d 1472static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1473
a1855c1d 1474static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1475
a1855c1d 1476static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1477
a1855c1d 1478static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1479
d521ce57 1480static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1481 unsigned int *);
c906108c 1482
d521ce57 1483static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1484
1485static LONGEST read_checked_initial_length_and_offset
d521ce57 1486 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1487 unsigned int *, unsigned int *);
613e1657 1488
d521ce57
TT
1489static LONGEST read_offset (bfd *, const gdb_byte *,
1490 const struct comp_unit_head *,
c764a876
DE
1491 unsigned int *);
1492
d521ce57 1493static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1494
f4dc4d17
DE
1495static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1496 sect_offset);
1497
d521ce57 1498static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1499
d521ce57 1500static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1501
d521ce57
TT
1502static const char *read_indirect_string (bfd *, const gdb_byte *,
1503 const struct comp_unit_head *,
1504 unsigned int *);
4bdf3d34 1505
d521ce57 1506static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1507
d521ce57 1508static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1509
d521ce57 1510static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1511
d521ce57
TT
1512static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1513 const gdb_byte *,
3019eac3
DE
1514 unsigned int *);
1515
d521ce57 1516static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1517 ULONGEST str_index);
3019eac3 1518
e142c38c 1519static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1520
e142c38c
DJ
1521static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1522 struct dwarf2_cu *);
c906108c 1523
348e048f 1524static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1525 unsigned int);
348e048f 1526
7d45c7c3
KB
1527static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1528 struct dwarf2_cu *cu);
1529
05cf31d1
JB
1530static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1531 struct dwarf2_cu *cu);
1532
e142c38c 1533static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1534
e142c38c 1535static struct die_info *die_specification (struct die_info *die,
f2f0e013 1536 struct dwarf2_cu **);
63d06c5c 1537
debd256d
JB
1538static void free_line_header (struct line_header *lh);
1539
3019eac3
DE
1540static struct line_header *dwarf_decode_line_header (unsigned int offset,
1541 struct dwarf2_cu *cu);
debd256d 1542
f3f5162e 1543static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696 1544 struct dwarf2_cu *, struct partial_symtab *,
527f3840 1545 CORE_ADDR, int decode_mapping);
c906108c 1546
4d663531 1547static void dwarf2_start_subfile (const char *, const char *);
c906108c 1548
43f3e411
DE
1549static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1550 const char *, const char *,
1551 CORE_ADDR);
f4dc4d17 1552
a14ed312 1553static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1554 struct dwarf2_cu *);
c906108c 1555
34eaf542
TT
1556static struct symbol *new_symbol_full (struct die_info *, struct type *,
1557 struct dwarf2_cu *, struct symbol *);
1558
ff39bb5e 1559static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1560 struct dwarf2_cu *);
c906108c 1561
ff39bb5e 1562static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1563 struct type *type,
1564 const char *name,
1565 struct obstack *obstack,
12df843f 1566 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1567 const gdb_byte **bytes,
98bfdba5 1568 struct dwarf2_locexpr_baton **baton);
2df3850c 1569
e7c27a73 1570static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1571
b4ba55a1
JB
1572static int need_gnat_info (struct dwarf2_cu *);
1573
3e43a32a
MS
1574static struct type *die_descriptive_type (struct die_info *,
1575 struct dwarf2_cu *);
b4ba55a1
JB
1576
1577static void set_descriptive_type (struct type *, struct die_info *,
1578 struct dwarf2_cu *);
1579
e7c27a73
DJ
1580static struct type *die_containing_type (struct die_info *,
1581 struct dwarf2_cu *);
c906108c 1582
ff39bb5e 1583static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1584 struct dwarf2_cu *);
c906108c 1585
f792889a 1586static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1587
673bfd45
DE
1588static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1589
0d5cff50 1590static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1591
6e70227d 1592static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1593 const char *suffix, int physname,
1594 struct dwarf2_cu *cu);
63d06c5c 1595
e7c27a73 1596static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1597
348e048f
DE
1598static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1599
e7c27a73 1600static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1601
e7c27a73 1602static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1603
96408a79
SA
1604static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1605
ff013f42
JK
1606static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1607 struct dwarf2_cu *, struct partial_symtab *);
1608
a14ed312 1609static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1610 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1611 struct partial_symtab *);
c906108c 1612
fae299cd
DC
1613static void get_scope_pc_bounds (struct die_info *,
1614 CORE_ADDR *, CORE_ADDR *,
1615 struct dwarf2_cu *);
1616
801e3a5b
JB
1617static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1618 CORE_ADDR, struct dwarf2_cu *);
1619
a14ed312 1620static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1621 struct dwarf2_cu *);
c906108c 1622
a14ed312 1623static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1624 struct type *, struct dwarf2_cu *);
c906108c 1625
a14ed312 1626static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1627 struct die_info *, struct type *,
e7c27a73 1628 struct dwarf2_cu *);
c906108c 1629
a14ed312 1630static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1631 struct type *,
1632 struct dwarf2_cu *);
c906108c 1633
134d01f1 1634static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1635
e7c27a73 1636static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1637
e7c27a73 1638static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1639
5d7cb8df
JK
1640static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1641
22cee43f
PMR
1642static struct using_direct **using_directives (enum language);
1643
27aa8d6a
SW
1644static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1645
74921315
KS
1646static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1647
f55ee35c
JK
1648static struct type *read_module_type (struct die_info *die,
1649 struct dwarf2_cu *cu);
1650
38d518c9 1651static const char *namespace_name (struct die_info *die,
e142c38c 1652 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1653
134d01f1 1654static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1655
e7c27a73 1656static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1657
6e70227d 1658static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1659 struct dwarf2_cu *);
1660
bf6af496 1661static struct die_info *read_die_and_siblings_1
d521ce57 1662 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1663 struct die_info *);
639d11d3 1664
dee91e82 1665static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1666 const gdb_byte *info_ptr,
1667 const gdb_byte **new_info_ptr,
639d11d3
DC
1668 struct die_info *parent);
1669
d521ce57
TT
1670static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1671 struct die_info **, const gdb_byte *,
1672 int *, int);
3019eac3 1673
d521ce57
TT
1674static const gdb_byte *read_full_die (const struct die_reader_specs *,
1675 struct die_info **, const gdb_byte *,
1676 int *);
93311388 1677
e7c27a73 1678static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1679
15d034d0
TT
1680static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1681 struct obstack *);
71c25dea 1682
15d034d0 1683static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1684
15d034d0 1685static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1686 struct die_info *die,
1687 struct dwarf2_cu *cu);
1688
ca69b9e6
DE
1689static const char *dwarf2_physname (const char *name, struct die_info *die,
1690 struct dwarf2_cu *cu);
1691
e142c38c 1692static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1693 struct dwarf2_cu **);
9219021c 1694
f39c6ffd 1695static const char *dwarf_tag_name (unsigned int);
c906108c 1696
f39c6ffd 1697static const char *dwarf_attr_name (unsigned int);
c906108c 1698
f39c6ffd 1699static const char *dwarf_form_name (unsigned int);
c906108c 1700
a14ed312 1701static char *dwarf_bool_name (unsigned int);
c906108c 1702
f39c6ffd 1703static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1704
f9aca02d 1705static struct die_info *sibling_die (struct die_info *);
c906108c 1706
d97bc12b
DE
1707static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1708
1709static void dump_die_for_error (struct die_info *);
1710
1711static void dump_die_1 (struct ui_file *, int level, int max_level,
1712 struct die_info *);
c906108c 1713
d97bc12b 1714/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1715
51545339 1716static void store_in_ref_table (struct die_info *,
10b3939b 1717 struct dwarf2_cu *);
c906108c 1718
ff39bb5e 1719static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1720
ff39bb5e 1721static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1722
348e048f 1723static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1724 const struct attribute *,
348e048f
DE
1725 struct dwarf2_cu **);
1726
10b3939b 1727static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1728 const struct attribute *,
f2f0e013 1729 struct dwarf2_cu **);
c906108c 1730
348e048f 1731static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1732 const struct attribute *,
348e048f
DE
1733 struct dwarf2_cu **);
1734
ac9ec31b
DE
1735static struct type *get_signatured_type (struct die_info *, ULONGEST,
1736 struct dwarf2_cu *);
1737
1738static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1739 const struct attribute *,
ac9ec31b
DE
1740 struct dwarf2_cu *);
1741
e5fe5e75 1742static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1743
52dc124a 1744static void read_signatured_type (struct signatured_type *);
348e048f 1745
63e43d3a
PMR
1746static int attr_to_dynamic_prop (const struct attribute *attr,
1747 struct die_info *die, struct dwarf2_cu *cu,
1748 struct dynamic_prop *prop);
1749
c906108c
SS
1750/* memory allocation interface */
1751
7b5a2f43 1752static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1753
b60c80d6 1754static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1755
43f3e411 1756static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1757
6e5a29e1 1758static int attr_form_is_block (const struct attribute *);
8e19ed76 1759
6e5a29e1 1760static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1761
6e5a29e1 1762static int attr_form_is_constant (const struct attribute *);
3690dd37 1763
6e5a29e1 1764static int attr_form_is_ref (const struct attribute *);
7771576e 1765
8cf6f0b1
TT
1766static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1767 struct dwarf2_loclist_baton *baton,
ff39bb5e 1768 const struct attribute *attr);
8cf6f0b1 1769
ff39bb5e 1770static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1771 struct symbol *sym,
f1e6e072
TT
1772 struct dwarf2_cu *cu,
1773 int is_block);
4c2df51b 1774
d521ce57
TT
1775static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1776 const gdb_byte *info_ptr,
1777 struct abbrev_info *abbrev);
4bb7a0a7 1778
72bf9492
DJ
1779static void free_stack_comp_unit (void *);
1780
72bf9492
DJ
1781static hashval_t partial_die_hash (const void *item);
1782
1783static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1784
ae038cb0 1785static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1786 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1787
9816fde3 1788static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1789 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1790
1791static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1792 struct die_info *comp_unit_die,
1793 enum language pretend_language);
93311388 1794
68dc6402 1795static void free_heap_comp_unit (void *);
ae038cb0
DJ
1796
1797static void free_cached_comp_units (void *);
1798
1799static void age_cached_comp_units (void);
1800
dee91e82 1801static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1802
f792889a
DJ
1803static struct type *set_die_type (struct die_info *, struct type *,
1804 struct dwarf2_cu *);
1c379e20 1805
ae038cb0
DJ
1806static void create_all_comp_units (struct objfile *);
1807
0e50663e 1808static int create_all_type_units (struct objfile *);
1fd400ff 1809
95554aad
TT
1810static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1811 enum language);
10b3939b 1812
95554aad
TT
1813static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1814 enum language);
10b3939b 1815
f4dc4d17
DE
1816static void process_full_type_unit (struct dwarf2_per_cu_data *,
1817 enum language);
1818
10b3939b
DJ
1819static void dwarf2_add_dependence (struct dwarf2_cu *,
1820 struct dwarf2_per_cu_data *);
1821
ae038cb0
DJ
1822static void dwarf2_mark (struct dwarf2_cu *);
1823
1824static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1825
b64f50a1 1826static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1827 struct dwarf2_per_cu_data *);
673bfd45 1828
f792889a 1829static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1830
9291a0cd
TT
1831static void dwarf2_release_queue (void *dummy);
1832
95554aad
TT
1833static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1834 enum language pretend_language);
1835
a0f42c21 1836static void process_queue (void);
9291a0cd
TT
1837
1838static void find_file_and_directory (struct die_info *die,
1839 struct dwarf2_cu *cu,
15d034d0 1840 const char **name, const char **comp_dir);
9291a0cd
TT
1841
1842static char *file_full_name (int file, struct line_header *lh,
1843 const char *comp_dir);
1844
d521ce57 1845static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1846 (struct comp_unit_head *header,
1847 struct dwarf2_section_info *section,
d521ce57 1848 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1849 int is_debug_types_section);
1850
fd820528 1851static void init_cutu_and_read_dies
f4dc4d17
DE
1852 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1853 int use_existing_cu, int keep,
3019eac3
DE
1854 die_reader_func_ftype *die_reader_func, void *data);
1855
dee91e82
DE
1856static void init_cutu_and_read_dies_simple
1857 (struct dwarf2_per_cu_data *this_cu,
1858 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1859
673bfd45 1860static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1861
3019eac3
DE
1862static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1863
57d63ce2
DE
1864static struct dwo_unit *lookup_dwo_unit_in_dwp
1865 (struct dwp_file *dwp_file, const char *comp_dir,
1866 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1867
1868static struct dwp_file *get_dwp_file (void);
1869
3019eac3 1870static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1871 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1872
1873static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1874 (struct signatured_type *, const char *, const char *);
3019eac3 1875
89e63ee4
DE
1876static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1877
3019eac3
DE
1878static void free_dwo_file_cleanup (void *);
1879
95554aad
TT
1880static void process_cu_includes (void);
1881
1b80a9fa 1882static void check_producer (struct dwarf2_cu *cu);
527f3840
JK
1883
1884static void free_line_header_voidp (void *arg);
4390d890
DE
1885\f
1886/* Various complaints about symbol reading that don't abort the process. */
1887
1888static void
1889dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1890{
1891 complaint (&symfile_complaints,
1892 _("statement list doesn't fit in .debug_line section"));
1893}
1894
1895static void
1896dwarf2_debug_line_missing_file_complaint (void)
1897{
1898 complaint (&symfile_complaints,
1899 _(".debug_line section has line data without a file"));
1900}
1901
1902static void
1903dwarf2_debug_line_missing_end_sequence_complaint (void)
1904{
1905 complaint (&symfile_complaints,
1906 _(".debug_line section has line "
1907 "program sequence without an end"));
1908}
1909
1910static void
1911dwarf2_complex_location_expr_complaint (void)
1912{
1913 complaint (&symfile_complaints, _("location expression too complex"));
1914}
1915
1916static void
1917dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1918 int arg3)
1919{
1920 complaint (&symfile_complaints,
1921 _("const value length mismatch for '%s', got %d, expected %d"),
1922 arg1, arg2, arg3);
1923}
1924
1925static void
1926dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1927{
1928 complaint (&symfile_complaints,
1929 _("debug info runs off end of %s section"
1930 " [in module %s]"),
a32a8923
DE
1931 get_section_name (section),
1932 get_section_file_name (section));
4390d890 1933}
1b80a9fa 1934
4390d890
DE
1935static void
1936dwarf2_macro_malformed_definition_complaint (const char *arg1)
1937{
1938 complaint (&symfile_complaints,
1939 _("macro debug info contains a "
1940 "malformed macro definition:\n`%s'"),
1941 arg1);
1942}
1943
1944static void
1945dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1946{
1947 complaint (&symfile_complaints,
1948 _("invalid attribute class or form for '%s' in '%s'"),
1949 arg1, arg2);
1950}
527f3840
JK
1951
1952/* Hash function for line_header_hash. */
1953
1954static hashval_t
1955line_header_hash (const struct line_header *ofs)
1956{
1957 return ofs->offset.sect_off ^ ofs->offset_in_dwz;
1958}
1959
1960/* Hash function for htab_create_alloc_ex for line_header_hash. */
1961
1962static hashval_t
1963line_header_hash_voidp (const void *item)
1964{
9a3c8263 1965 const struct line_header *ofs = (const struct line_header *) item;
527f3840
JK
1966
1967 return line_header_hash (ofs);
1968}
1969
1970/* Equality function for line_header_hash. */
1971
1972static int
1973line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1974{
9a3c8263
SM
1975 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1976 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
527f3840
JK
1977
1978 return (ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off
1979 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1980}
1981
4390d890 1982\f
9291a0cd
TT
1983#if WORDS_BIGENDIAN
1984
1985/* Convert VALUE between big- and little-endian. */
1986static offset_type
1987byte_swap (offset_type value)
1988{
1989 offset_type result;
1990
1991 result = (value & 0xff) << 24;
1992 result |= (value & 0xff00) << 8;
1993 result |= (value & 0xff0000) >> 8;
1994 result |= (value & 0xff000000) >> 24;
1995 return result;
1996}
1997
1998#define MAYBE_SWAP(V) byte_swap (V)
1999
2000#else
2001#define MAYBE_SWAP(V) (V)
2002#endif /* WORDS_BIGENDIAN */
2003
31aa7e4e
JB
2004/* Read the given attribute value as an address, taking the attribute's
2005 form into account. */
2006
2007static CORE_ADDR
2008attr_value_as_address (struct attribute *attr)
2009{
2010 CORE_ADDR addr;
2011
2012 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
2013 {
2014 /* Aside from a few clearly defined exceptions, attributes that
2015 contain an address must always be in DW_FORM_addr form.
2016 Unfortunately, some compilers happen to be violating this
2017 requirement by encoding addresses using other forms, such
2018 as DW_FORM_data4 for example. For those broken compilers,
2019 we try to do our best, without any guarantee of success,
2020 to interpret the address correctly. It would also be nice
2021 to generate a complaint, but that would require us to maintain
2022 a list of legitimate cases where a non-address form is allowed,
2023 as well as update callers to pass in at least the CU's DWARF
2024 version. This is more overhead than what we're willing to
2025 expand for a pretty rare case. */
2026 addr = DW_UNSND (attr);
2027 }
2028 else
2029 addr = DW_ADDR (attr);
2030
2031 return addr;
2032}
2033
9291a0cd
TT
2034/* The suffix for an index file. */
2035#define INDEX_SUFFIX ".gdb-index"
2036
c906108c 2037/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
2038 information and return true if we have enough to do something.
2039 NAMES points to the dwarf2 section names, or is NULL if the standard
2040 ELF names are used. */
c906108c
SS
2041
2042int
251d32d9
TG
2043dwarf2_has_info (struct objfile *objfile,
2044 const struct dwarf2_debug_sections *names)
c906108c 2045{
9a3c8263
SM
2046 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
2047 objfile_data (objfile, dwarf2_objfile_data_key));
be391dca
TT
2048 if (!dwarf2_per_objfile)
2049 {
2050 /* Initialize per-objfile state. */
2051 struct dwarf2_per_objfile *data
8d749320 2052 = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_objfile);
9a619af0 2053
be391dca
TT
2054 memset (data, 0, sizeof (*data));
2055 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
2056 dwarf2_per_objfile = data;
6502dd73 2057
251d32d9
TG
2058 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
2059 (void *) names);
be391dca
TT
2060 dwarf2_per_objfile->objfile = objfile;
2061 }
73869dc2 2062 return (!dwarf2_per_objfile->info.is_virtual
049412e3 2063 && dwarf2_per_objfile->info.s.section != NULL
73869dc2 2064 && !dwarf2_per_objfile->abbrev.is_virtual
049412e3 2065 && dwarf2_per_objfile->abbrev.s.section != NULL);
73869dc2
DE
2066}
2067
2068/* Return the containing section of virtual section SECTION. */
2069
2070static struct dwarf2_section_info *
2071get_containing_section (const struct dwarf2_section_info *section)
2072{
2073 gdb_assert (section->is_virtual);
2074 return section->s.containing_section;
c906108c
SS
2075}
2076
a32a8923
DE
2077/* Return the bfd owner of SECTION. */
2078
2079static struct bfd *
2080get_section_bfd_owner (const struct dwarf2_section_info *section)
2081{
73869dc2
DE
2082 if (section->is_virtual)
2083 {
2084 section = get_containing_section (section);
2085 gdb_assert (!section->is_virtual);
2086 }
049412e3 2087 return section->s.section->owner;
a32a8923
DE
2088}
2089
2090/* Return the bfd section of SECTION.
2091 Returns NULL if the section is not present. */
2092
2093static asection *
2094get_section_bfd_section (const struct dwarf2_section_info *section)
2095{
73869dc2
DE
2096 if (section->is_virtual)
2097 {
2098 section = get_containing_section (section);
2099 gdb_assert (!section->is_virtual);
2100 }
049412e3 2101 return section->s.section;
a32a8923
DE
2102}
2103
2104/* Return the name of SECTION. */
2105
2106static const char *
2107get_section_name (const struct dwarf2_section_info *section)
2108{
2109 asection *sectp = get_section_bfd_section (section);
2110
2111 gdb_assert (sectp != NULL);
2112 return bfd_section_name (get_section_bfd_owner (section), sectp);
2113}
2114
2115/* Return the name of the file SECTION is in. */
2116
2117static const char *
2118get_section_file_name (const struct dwarf2_section_info *section)
2119{
2120 bfd *abfd = get_section_bfd_owner (section);
2121
2122 return bfd_get_filename (abfd);
2123}
2124
2125/* Return the id of SECTION.
2126 Returns 0 if SECTION doesn't exist. */
2127
2128static int
2129get_section_id (const struct dwarf2_section_info *section)
2130{
2131 asection *sectp = get_section_bfd_section (section);
2132
2133 if (sectp == NULL)
2134 return 0;
2135 return sectp->id;
2136}
2137
2138/* Return the flags of SECTION.
73869dc2 2139 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2140
2141static int
2142get_section_flags (const struct dwarf2_section_info *section)
2143{
2144 asection *sectp = get_section_bfd_section (section);
2145
2146 gdb_assert (sectp != NULL);
2147 return bfd_get_section_flags (sectp->owner, sectp);
2148}
2149
251d32d9
TG
2150/* When loading sections, we look either for uncompressed section or for
2151 compressed section names. */
233a11ab
CS
2152
2153static int
251d32d9
TG
2154section_is_p (const char *section_name,
2155 const struct dwarf2_section_names *names)
233a11ab 2156{
251d32d9
TG
2157 if (names->normal != NULL
2158 && strcmp (section_name, names->normal) == 0)
2159 return 1;
2160 if (names->compressed != NULL
2161 && strcmp (section_name, names->compressed) == 0)
2162 return 1;
2163 return 0;
233a11ab
CS
2164}
2165
c906108c
SS
2166/* This function is mapped across the sections and remembers the
2167 offset and size of each of the debugging sections we are interested
2168 in. */
2169
2170static void
251d32d9 2171dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2172{
251d32d9 2173 const struct dwarf2_debug_sections *names;
dc7650b8 2174 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2175
2176 if (vnames == NULL)
2177 names = &dwarf2_elf_names;
2178 else
2179 names = (const struct dwarf2_debug_sections *) vnames;
2180
dc7650b8
JK
2181 if ((aflag & SEC_HAS_CONTENTS) == 0)
2182 {
2183 }
2184 else if (section_is_p (sectp->name, &names->info))
c906108c 2185 {
049412e3 2186 dwarf2_per_objfile->info.s.section = sectp;
dce234bc 2187 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2188 }
251d32d9 2189 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2190 {
049412e3 2191 dwarf2_per_objfile->abbrev.s.section = sectp;
dce234bc 2192 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2193 }
251d32d9 2194 else if (section_is_p (sectp->name, &names->line))
c906108c 2195 {
049412e3 2196 dwarf2_per_objfile->line.s.section = sectp;
dce234bc 2197 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2198 }
251d32d9 2199 else if (section_is_p (sectp->name, &names->loc))
c906108c 2200 {
049412e3 2201 dwarf2_per_objfile->loc.s.section = sectp;
dce234bc 2202 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2203 }
251d32d9 2204 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2205 {
049412e3 2206 dwarf2_per_objfile->macinfo.s.section = sectp;
dce234bc 2207 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2208 }
cf2c3c16
TT
2209 else if (section_is_p (sectp->name, &names->macro))
2210 {
049412e3 2211 dwarf2_per_objfile->macro.s.section = sectp;
cf2c3c16
TT
2212 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2213 }
251d32d9 2214 else if (section_is_p (sectp->name, &names->str))
c906108c 2215 {
049412e3 2216 dwarf2_per_objfile->str.s.section = sectp;
dce234bc 2217 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2218 }
3019eac3
DE
2219 else if (section_is_p (sectp->name, &names->addr))
2220 {
049412e3 2221 dwarf2_per_objfile->addr.s.section = sectp;
3019eac3
DE
2222 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2223 }
251d32d9 2224 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2225 {
049412e3 2226 dwarf2_per_objfile->frame.s.section = sectp;
dce234bc 2227 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2228 }
251d32d9 2229 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2230 {
049412e3 2231 dwarf2_per_objfile->eh_frame.s.section = sectp;
dc7650b8 2232 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2233 }
251d32d9 2234 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2235 {
049412e3 2236 dwarf2_per_objfile->ranges.s.section = sectp;
dce234bc 2237 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2238 }
251d32d9 2239 else if (section_is_p (sectp->name, &names->types))
348e048f 2240 {
8b70b953
TT
2241 struct dwarf2_section_info type_section;
2242
2243 memset (&type_section, 0, sizeof (type_section));
049412e3 2244 type_section.s.section = sectp;
8b70b953
TT
2245 type_section.size = bfd_get_section_size (sectp);
2246
2247 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2248 &type_section);
348e048f 2249 }
251d32d9 2250 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2251 {
049412e3 2252 dwarf2_per_objfile->gdb_index.s.section = sectp;
9291a0cd
TT
2253 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2254 }
dce234bc 2255
b4e1fd61 2256 if ((bfd_get_section_flags (abfd, sectp) & (SEC_LOAD | SEC_ALLOC))
72dca2f5
FR
2257 && bfd_section_vma (abfd, sectp) == 0)
2258 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2259}
2260
fceca515
DE
2261/* A helper function that decides whether a section is empty,
2262 or not present. */
9e0ac564
TT
2263
2264static int
19ac8c2e 2265dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2266{
73869dc2
DE
2267 if (section->is_virtual)
2268 return section->size == 0;
049412e3 2269 return section->s.section == NULL || section->size == 0;
9e0ac564
TT
2270}
2271
3019eac3
DE
2272/* Read the contents of the section INFO.
2273 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2274 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2275 of the DWO file.
dce234bc 2276 If the section is compressed, uncompress it before returning. */
c906108c 2277
dce234bc
PP
2278static void
2279dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2280{
a32a8923 2281 asection *sectp;
3019eac3 2282 bfd *abfd;
dce234bc 2283 gdb_byte *buf, *retbuf;
c906108c 2284
be391dca
TT
2285 if (info->readin)
2286 return;
dce234bc 2287 info->buffer = NULL;
be391dca 2288 info->readin = 1;
188dd5d6 2289
9e0ac564 2290 if (dwarf2_section_empty_p (info))
dce234bc 2291 return;
c906108c 2292
a32a8923 2293 sectp = get_section_bfd_section (info);
3019eac3 2294
73869dc2
DE
2295 /* If this is a virtual section we need to read in the real one first. */
2296 if (info->is_virtual)
2297 {
2298 struct dwarf2_section_info *containing_section =
2299 get_containing_section (info);
2300
2301 gdb_assert (sectp != NULL);
2302 if ((sectp->flags & SEC_RELOC) != 0)
2303 {
2304 error (_("Dwarf Error: DWP format V2 with relocations is not"
2305 " supported in section %s [in module %s]"),
2306 get_section_name (info), get_section_file_name (info));
2307 }
2308 dwarf2_read_section (objfile, containing_section);
2309 /* Other code should have already caught virtual sections that don't
2310 fit. */
2311 gdb_assert (info->virtual_offset + info->size
2312 <= containing_section->size);
2313 /* If the real section is empty or there was a problem reading the
2314 section we shouldn't get here. */
2315 gdb_assert (containing_section->buffer != NULL);
2316 info->buffer = containing_section->buffer + info->virtual_offset;
2317 return;
2318 }
2319
4bf44c1c
TT
2320 /* If the section has relocations, we must read it ourselves.
2321 Otherwise we attach it to the BFD. */
2322 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2323 {
d521ce57 2324 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2325 return;
dce234bc 2326 }
dce234bc 2327
224c3ddb 2328 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
4bf44c1c 2329 info->buffer = buf;
dce234bc
PP
2330
2331 /* When debugging .o files, we may need to apply relocations; see
2332 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2333 We never compress sections in .o files, so we only need to
2334 try this when the section is not compressed. */
ac8035ab 2335 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2336 if (retbuf != NULL)
2337 {
2338 info->buffer = retbuf;
2339 return;
2340 }
2341
a32a8923
DE
2342 abfd = get_section_bfd_owner (info);
2343 gdb_assert (abfd != NULL);
2344
dce234bc
PP
2345 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2346 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2347 {
2348 error (_("Dwarf Error: Can't read DWARF data"
2349 " in section %s [in module %s]"),
2350 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2351 }
dce234bc
PP
2352}
2353
9e0ac564
TT
2354/* A helper function that returns the size of a section in a safe way.
2355 If you are positive that the section has been read before using the
2356 size, then it is safe to refer to the dwarf2_section_info object's
2357 "size" field directly. In other cases, you must call this
2358 function, because for compressed sections the size field is not set
2359 correctly until the section has been read. */
2360
2361static bfd_size_type
2362dwarf2_section_size (struct objfile *objfile,
2363 struct dwarf2_section_info *info)
2364{
2365 if (!info->readin)
2366 dwarf2_read_section (objfile, info);
2367 return info->size;
2368}
2369
dce234bc 2370/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2371 SECTION_NAME. */
af34e669 2372
dce234bc 2373void
3017a003
TG
2374dwarf2_get_section_info (struct objfile *objfile,
2375 enum dwarf2_section_enum sect,
d521ce57 2376 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2377 bfd_size_type *sizep)
2378{
2379 struct dwarf2_per_objfile *data
9a3c8263
SM
2380 = (struct dwarf2_per_objfile *) objfile_data (objfile,
2381 dwarf2_objfile_data_key);
dce234bc 2382 struct dwarf2_section_info *info;
a3b2a86b
TT
2383
2384 /* We may see an objfile without any DWARF, in which case we just
2385 return nothing. */
2386 if (data == NULL)
2387 {
2388 *sectp = NULL;
2389 *bufp = NULL;
2390 *sizep = 0;
2391 return;
2392 }
3017a003
TG
2393 switch (sect)
2394 {
2395 case DWARF2_DEBUG_FRAME:
2396 info = &data->frame;
2397 break;
2398 case DWARF2_EH_FRAME:
2399 info = &data->eh_frame;
2400 break;
2401 default:
2402 gdb_assert_not_reached ("unexpected section");
2403 }
dce234bc 2404
9e0ac564 2405 dwarf2_read_section (objfile, info);
dce234bc 2406
a32a8923 2407 *sectp = get_section_bfd_section (info);
dce234bc
PP
2408 *bufp = info->buffer;
2409 *sizep = info->size;
2410}
2411
36586728
TT
2412/* A helper function to find the sections for a .dwz file. */
2413
2414static void
2415locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2416{
9a3c8263 2417 struct dwz_file *dwz_file = (struct dwz_file *) arg;
36586728
TT
2418
2419 /* Note that we only support the standard ELF names, because .dwz
2420 is ELF-only (at the time of writing). */
2421 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2422 {
049412e3 2423 dwz_file->abbrev.s.section = sectp;
36586728
TT
2424 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2425 }
2426 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2427 {
049412e3 2428 dwz_file->info.s.section = sectp;
36586728
TT
2429 dwz_file->info.size = bfd_get_section_size (sectp);
2430 }
2431 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2432 {
049412e3 2433 dwz_file->str.s.section = sectp;
36586728
TT
2434 dwz_file->str.size = bfd_get_section_size (sectp);
2435 }
2436 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2437 {
049412e3 2438 dwz_file->line.s.section = sectp;
36586728
TT
2439 dwz_file->line.size = bfd_get_section_size (sectp);
2440 }
2441 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2442 {
049412e3 2443 dwz_file->macro.s.section = sectp;
36586728
TT
2444 dwz_file->macro.size = bfd_get_section_size (sectp);
2445 }
2ec9a5e0
TT
2446 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2447 {
049412e3 2448 dwz_file->gdb_index.s.section = sectp;
2ec9a5e0
TT
2449 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2450 }
36586728
TT
2451}
2452
4db1a1dc
TT
2453/* Open the separate '.dwz' debug file, if needed. Return NULL if
2454 there is no .gnu_debugaltlink section in the file. Error if there
2455 is such a section but the file cannot be found. */
36586728
TT
2456
2457static struct dwz_file *
2458dwarf2_get_dwz_file (void)
2459{
4db1a1dc
TT
2460 bfd *dwz_bfd;
2461 char *data;
36586728
TT
2462 struct cleanup *cleanup;
2463 const char *filename;
2464 struct dwz_file *result;
acd13123 2465 bfd_size_type buildid_len_arg;
dc294be5
TT
2466 size_t buildid_len;
2467 bfd_byte *buildid;
36586728
TT
2468
2469 if (dwarf2_per_objfile->dwz_file != NULL)
2470 return dwarf2_per_objfile->dwz_file;
2471
4db1a1dc
TT
2472 bfd_set_error (bfd_error_no_error);
2473 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2474 &buildid_len_arg, &buildid);
4db1a1dc
TT
2475 if (data == NULL)
2476 {
2477 if (bfd_get_error () == bfd_error_no_error)
2478 return NULL;
2479 error (_("could not read '.gnu_debugaltlink' section: %s"),
2480 bfd_errmsg (bfd_get_error ()));
2481 }
36586728 2482 cleanup = make_cleanup (xfree, data);
dc294be5 2483 make_cleanup (xfree, buildid);
36586728 2484
acd13123
TT
2485 buildid_len = (size_t) buildid_len_arg;
2486
f9d83a0b 2487 filename = (const char *) data;
36586728
TT
2488 if (!IS_ABSOLUTE_PATH (filename))
2489 {
4262abfb 2490 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2491 char *rel;
2492
2493 make_cleanup (xfree, abs);
2494 abs = ldirname (abs);
2495 make_cleanup (xfree, abs);
2496
2497 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2498 make_cleanup (xfree, rel);
2499 filename = rel;
2500 }
2501
dc294be5
TT
2502 /* First try the file name given in the section. If that doesn't
2503 work, try to use the build-id instead. */
36586728 2504 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
dc294be5 2505 if (dwz_bfd != NULL)
36586728 2506 {
dc294be5
TT
2507 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2508 {
2509 gdb_bfd_unref (dwz_bfd);
2510 dwz_bfd = NULL;
2511 }
36586728
TT
2512 }
2513
dc294be5
TT
2514 if (dwz_bfd == NULL)
2515 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2516
2517 if (dwz_bfd == NULL)
2518 error (_("could not find '.gnu_debugaltlink' file for %s"),
2519 objfile_name (dwarf2_per_objfile->objfile));
2520
36586728
TT
2521 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2522 struct dwz_file);
2523 result->dwz_bfd = dwz_bfd;
2524
2525 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2526
2527 do_cleanups (cleanup);
2528
13aaf454 2529 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
8d2cc612 2530 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2531 return result;
2532}
9291a0cd 2533\f
7b9f3c50
DE
2534/* DWARF quick_symbols_functions support. */
2535
2536/* TUs can share .debug_line entries, and there can be a lot more TUs than
2537 unique line tables, so we maintain a separate table of all .debug_line
2538 derived entries to support the sharing.
2539 All the quick functions need is the list of file names. We discard the
2540 line_header when we're done and don't need to record it here. */
2541struct quick_file_names
2542{
094b34ac
DE
2543 /* The data used to construct the hash key. */
2544 struct stmt_list_hash hash;
7b9f3c50
DE
2545
2546 /* The number of entries in file_names, real_names. */
2547 unsigned int num_file_names;
2548
2549 /* The file names from the line table, after being run through
2550 file_full_name. */
2551 const char **file_names;
2552
2553 /* The file names from the line table after being run through
2554 gdb_realpath. These are computed lazily. */
2555 const char **real_names;
2556};
2557
2558/* When using the index (and thus not using psymtabs), each CU has an
2559 object of this type. This is used to hold information needed by
2560 the various "quick" methods. */
2561struct dwarf2_per_cu_quick_data
2562{
2563 /* The file table. This can be NULL if there was no file table
2564 or it's currently not read in.
2565 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2566 struct quick_file_names *file_names;
2567
2568 /* The corresponding symbol table. This is NULL if symbols for this
2569 CU have not yet been read. */
43f3e411 2570 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2571
2572 /* A temporary mark bit used when iterating over all CUs in
2573 expand_symtabs_matching. */
2574 unsigned int mark : 1;
2575
2576 /* True if we've tried to read the file table and found there isn't one.
2577 There will be no point in trying to read it again next time. */
2578 unsigned int no_file_data : 1;
2579};
2580
094b34ac
DE
2581/* Utility hash function for a stmt_list_hash. */
2582
2583static hashval_t
2584hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2585{
2586 hashval_t v = 0;
2587
2588 if (stmt_list_hash->dwo_unit != NULL)
2589 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2590 v += stmt_list_hash->line_offset.sect_off;
2591 return v;
2592}
2593
2594/* Utility equality function for a stmt_list_hash. */
2595
2596static int
2597eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2598 const struct stmt_list_hash *rhs)
2599{
2600 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2601 return 0;
2602 if (lhs->dwo_unit != NULL
2603 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2604 return 0;
2605
2606 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2607}
2608
7b9f3c50
DE
2609/* Hash function for a quick_file_names. */
2610
2611static hashval_t
2612hash_file_name_entry (const void *e)
2613{
9a3c8263
SM
2614 const struct quick_file_names *file_data
2615 = (const struct quick_file_names *) e;
7b9f3c50 2616
094b34ac 2617 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2618}
2619
2620/* Equality function for a quick_file_names. */
2621
2622static int
2623eq_file_name_entry (const void *a, const void *b)
2624{
9a3c8263
SM
2625 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2626 const struct quick_file_names *eb = (const struct quick_file_names *) b;
7b9f3c50 2627
094b34ac 2628 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2629}
2630
2631/* Delete function for a quick_file_names. */
2632
2633static void
2634delete_file_name_entry (void *e)
2635{
9a3c8263 2636 struct quick_file_names *file_data = (struct quick_file_names *) e;
7b9f3c50
DE
2637 int i;
2638
2639 for (i = 0; i < file_data->num_file_names; ++i)
2640 {
2641 xfree ((void*) file_data->file_names[i]);
2642 if (file_data->real_names)
2643 xfree ((void*) file_data->real_names[i]);
2644 }
2645
2646 /* The space for the struct itself lives on objfile_obstack,
2647 so we don't free it here. */
2648}
2649
2650/* Create a quick_file_names hash table. */
2651
2652static htab_t
2653create_quick_file_names_table (unsigned int nr_initial_entries)
2654{
2655 return htab_create_alloc (nr_initial_entries,
2656 hash_file_name_entry, eq_file_name_entry,
2657 delete_file_name_entry, xcalloc, xfree);
2658}
9291a0cd 2659
918dd910
JK
2660/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2661 have to be created afterwards. You should call age_cached_comp_units after
2662 processing PER_CU->CU. dw2_setup must have been already called. */
2663
2664static void
2665load_cu (struct dwarf2_per_cu_data *per_cu)
2666{
3019eac3 2667 if (per_cu->is_debug_types)
e5fe5e75 2668 load_full_type_unit (per_cu);
918dd910 2669 else
95554aad 2670 load_full_comp_unit (per_cu, language_minimal);
918dd910 2671
cc12ce38
DE
2672 if (per_cu->cu == NULL)
2673 return; /* Dummy CU. */
2dc860c0
DE
2674
2675 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2676}
2677
a0f42c21 2678/* Read in the symbols for PER_CU. */
2fdf6df6 2679
9291a0cd 2680static void
a0f42c21 2681dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2682{
2683 struct cleanup *back_to;
2684
f4dc4d17
DE
2685 /* Skip type_unit_groups, reading the type units they contain
2686 is handled elsewhere. */
2687 if (IS_TYPE_UNIT_GROUP (per_cu))
2688 return;
2689
9291a0cd
TT
2690 back_to = make_cleanup (dwarf2_release_queue, NULL);
2691
95554aad 2692 if (dwarf2_per_objfile->using_index
43f3e411 2693 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2694 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2695 {
2696 queue_comp_unit (per_cu, language_minimal);
2697 load_cu (per_cu);
89e63ee4
DE
2698
2699 /* If we just loaded a CU from a DWO, and we're working with an index
2700 that may badly handle TUs, load all the TUs in that DWO as well.
2701 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2702 if (!per_cu->is_debug_types
cc12ce38 2703 && per_cu->cu != NULL
89e63ee4
DE
2704 && per_cu->cu->dwo_unit != NULL
2705 && dwarf2_per_objfile->index_table != NULL
2706 && dwarf2_per_objfile->index_table->version <= 7
2707 /* DWP files aren't supported yet. */
2708 && get_dwp_file () == NULL)
2709 queue_and_load_all_dwo_tus (per_cu);
95554aad 2710 }
9291a0cd 2711
a0f42c21 2712 process_queue ();
9291a0cd
TT
2713
2714 /* Age the cache, releasing compilation units that have not
2715 been used recently. */
2716 age_cached_comp_units ();
2717
2718 do_cleanups (back_to);
2719}
2720
2721/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2722 the objfile from which this CU came. Returns the resulting symbol
2723 table. */
2fdf6df6 2724
43f3e411 2725static struct compunit_symtab *
a0f42c21 2726dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2727{
95554aad 2728 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2729 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
2730 {
2731 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2732 increment_reading_symtab ();
a0f42c21 2733 dw2_do_instantiate_symtab (per_cu);
95554aad 2734 process_cu_includes ();
9291a0cd
TT
2735 do_cleanups (back_to);
2736 }
f194fefb 2737
43f3e411 2738 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2739}
2740
8832e7e3 2741/* Return the CU/TU given its index.
f4dc4d17
DE
2742
2743 This is intended for loops like:
2744
2745 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2746 + dwarf2_per_objfile->n_type_units); ++i)
2747 {
8832e7e3 2748 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2749
2750 ...;
2751 }
2752*/
2fdf6df6 2753
1fd400ff 2754static struct dwarf2_per_cu_data *
8832e7e3 2755dw2_get_cutu (int index)
1fd400ff
TT
2756{
2757 if (index >= dwarf2_per_objfile->n_comp_units)
2758 {
f4dc4d17 2759 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2760 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2761 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2762 }
2763
2764 return dwarf2_per_objfile->all_comp_units[index];
2765}
2766
8832e7e3
DE
2767/* Return the CU given its index.
2768 This differs from dw2_get_cutu in that it's for when you know INDEX
2769 refers to a CU. */
f4dc4d17
DE
2770
2771static struct dwarf2_per_cu_data *
8832e7e3 2772dw2_get_cu (int index)
f4dc4d17 2773{
8832e7e3 2774 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2775
1fd400ff
TT
2776 return dwarf2_per_objfile->all_comp_units[index];
2777}
2778
2ec9a5e0
TT
2779/* A helper for create_cus_from_index that handles a given list of
2780 CUs. */
2fdf6df6 2781
74a0d9f6 2782static void
2ec9a5e0
TT
2783create_cus_from_index_list (struct objfile *objfile,
2784 const gdb_byte *cu_list, offset_type n_elements,
2785 struct dwarf2_section_info *section,
2786 int is_dwz,
2787 int base_offset)
9291a0cd
TT
2788{
2789 offset_type i;
9291a0cd 2790
2ec9a5e0 2791 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2792 {
2793 struct dwarf2_per_cu_data *the_cu;
2794 ULONGEST offset, length;
2795
74a0d9f6
JK
2796 gdb_static_assert (sizeof (ULONGEST) >= 8);
2797 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2798 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2799 cu_list += 2 * 8;
2800
2801 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2802 struct dwarf2_per_cu_data);
b64f50a1 2803 the_cu->offset.sect_off = offset;
9291a0cd
TT
2804 the_cu->length = length;
2805 the_cu->objfile = objfile;
8a0459fd 2806 the_cu->section = section;
9291a0cd
TT
2807 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2808 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2809 the_cu->is_dwz = is_dwz;
2810 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2811 }
9291a0cd
TT
2812}
2813
2ec9a5e0 2814/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2815 the CU objects for this objfile. */
2ec9a5e0 2816
74a0d9f6 2817static void
2ec9a5e0
TT
2818create_cus_from_index (struct objfile *objfile,
2819 const gdb_byte *cu_list, offset_type cu_list_elements,
2820 const gdb_byte *dwz_list, offset_type dwz_elements)
2821{
2822 struct dwz_file *dwz;
2823
2824 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
8d749320
SM
2825 dwarf2_per_objfile->all_comp_units =
2826 XOBNEWVEC (&objfile->objfile_obstack, struct dwarf2_per_cu_data *,
2827 dwarf2_per_objfile->n_comp_units);
2ec9a5e0 2828
74a0d9f6
JK
2829 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2830 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2831
2832 if (dwz_elements == 0)
74a0d9f6 2833 return;
2ec9a5e0
TT
2834
2835 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2836 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2837 cu_list_elements / 2);
2ec9a5e0
TT
2838}
2839
1fd400ff 2840/* Create the signatured type hash table from the index. */
673bfd45 2841
74a0d9f6 2842static void
673bfd45 2843create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2844 struct dwarf2_section_info *section,
673bfd45
DE
2845 const gdb_byte *bytes,
2846 offset_type elements)
1fd400ff
TT
2847{
2848 offset_type i;
673bfd45 2849 htab_t sig_types_hash;
1fd400ff 2850
6aa5f3a6
DE
2851 dwarf2_per_objfile->n_type_units
2852 = dwarf2_per_objfile->n_allocated_type_units
2853 = elements / 3;
8d749320
SM
2854 dwarf2_per_objfile->all_type_units =
2855 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
1fd400ff 2856
673bfd45 2857 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2858
2859 for (i = 0; i < elements; i += 3)
2860 {
52dc124a
DE
2861 struct signatured_type *sig_type;
2862 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2863 void **slot;
2864
74a0d9f6
JK
2865 gdb_static_assert (sizeof (ULONGEST) >= 8);
2866 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2867 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2868 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2869 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2870 bytes += 3 * 8;
2871
52dc124a 2872 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2873 struct signatured_type);
52dc124a 2874 sig_type->signature = signature;
3019eac3
DE
2875 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2876 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2877 sig_type->per_cu.section = section;
52dc124a
DE
2878 sig_type->per_cu.offset.sect_off = offset;
2879 sig_type->per_cu.objfile = objfile;
2880 sig_type->per_cu.v.quick
1fd400ff
TT
2881 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2882 struct dwarf2_per_cu_quick_data);
2883
52dc124a
DE
2884 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2885 *slot = sig_type;
1fd400ff 2886
b4dd5633 2887 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2888 }
2889
673bfd45 2890 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2891}
2892
9291a0cd
TT
2893/* Read the address map data from the mapped index, and use it to
2894 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2895
9291a0cd
TT
2896static void
2897create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2898{
3e29f34a 2899 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd
TT
2900 const gdb_byte *iter, *end;
2901 struct obstack temp_obstack;
2902 struct addrmap *mutable_map;
2903 struct cleanup *cleanup;
2904 CORE_ADDR baseaddr;
2905
2906 obstack_init (&temp_obstack);
2907 cleanup = make_cleanup_obstack_free (&temp_obstack);
2908 mutable_map = addrmap_create_mutable (&temp_obstack);
2909
2910 iter = index->address_table;
2911 end = iter + index->address_table_size;
2912
2913 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2914
2915 while (iter < end)
2916 {
2917 ULONGEST hi, lo, cu_index;
2918 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2919 iter += 8;
2920 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2921 iter += 8;
2922 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2923 iter += 4;
f652bce2 2924
24a55014 2925 if (lo > hi)
f652bce2 2926 {
24a55014
DE
2927 complaint (&symfile_complaints,
2928 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2929 hex_string (lo), hex_string (hi));
24a55014 2930 continue;
f652bce2 2931 }
24a55014
DE
2932
2933 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2934 {
2935 complaint (&symfile_complaints,
2936 _(".gdb_index address table has invalid CU number %u"),
2937 (unsigned) cu_index);
24a55014 2938 continue;
f652bce2 2939 }
24a55014 2940
3e29f34a
MR
2941 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2942 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2943 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
9291a0cd
TT
2944 }
2945
2946 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2947 &objfile->objfile_obstack);
2948 do_cleanups (cleanup);
2949}
2950
59d7bcaf
JK
2951/* The hash function for strings in the mapped index. This is the same as
2952 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2953 implementation. This is necessary because the hash function is tied to the
2954 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2955 SYMBOL_HASH_NEXT.
2956
2957 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2958
9291a0cd 2959static hashval_t
559a7a62 2960mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2961{
2962 const unsigned char *str = (const unsigned char *) p;
2963 hashval_t r = 0;
2964 unsigned char c;
2965
2966 while ((c = *str++) != 0)
559a7a62
JK
2967 {
2968 if (index_version >= 5)
2969 c = tolower (c);
2970 r = r * 67 + c - 113;
2971 }
9291a0cd
TT
2972
2973 return r;
2974}
2975
2976/* Find a slot in the mapped index INDEX for the object named NAME.
2977 If NAME is found, set *VEC_OUT to point to the CU vector in the
2978 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2979
9291a0cd
TT
2980static int
2981find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2982 offset_type **vec_out)
2983{
0cf03b49
JK
2984 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2985 offset_type hash;
9291a0cd 2986 offset_type slot, step;
559a7a62 2987 int (*cmp) (const char *, const char *);
9291a0cd 2988
0cf03b49
JK
2989 if (current_language->la_language == language_cplus
2990 || current_language->la_language == language_java
45280282
IB
2991 || current_language->la_language == language_fortran
2992 || current_language->la_language == language_d)
0cf03b49
JK
2993 {
2994 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2995 not contain any. */
a8719064 2996
72998fb3 2997 if (strchr (name, '(') != NULL)
0cf03b49 2998 {
72998fb3 2999 char *without_params = cp_remove_params (name);
0cf03b49 3000
72998fb3
DE
3001 if (without_params != NULL)
3002 {
3003 make_cleanup (xfree, without_params);
3004 name = without_params;
3005 }
0cf03b49
JK
3006 }
3007 }
3008
559a7a62 3009 /* Index version 4 did not support case insensitive searches. But the
feea76c2 3010 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
3011 simulate our NAME being searched is also lowercased. */
3012 hash = mapped_index_string_hash ((index->version == 4
3013 && case_sensitivity == case_sensitive_off
3014 ? 5 : index->version),
3015 name);
3016
3876f04e
DE
3017 slot = hash & (index->symbol_table_slots - 1);
3018 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 3019 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
3020
3021 for (;;)
3022 {
3023 /* Convert a slot number to an offset into the table. */
3024 offset_type i = 2 * slot;
3025 const char *str;
3876f04e 3026 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
3027 {
3028 do_cleanups (back_to);
3029 return 0;
3030 }
9291a0cd 3031
3876f04e 3032 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 3033 if (!cmp (name, str))
9291a0cd
TT
3034 {
3035 *vec_out = (offset_type *) (index->constant_pool
3876f04e 3036 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 3037 do_cleanups (back_to);
9291a0cd
TT
3038 return 1;
3039 }
3040
3876f04e 3041 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
3042 }
3043}
3044
2ec9a5e0
TT
3045/* A helper function that reads the .gdb_index from SECTION and fills
3046 in MAP. FILENAME is the name of the file containing the section;
3047 it is used for error reporting. DEPRECATED_OK is nonzero if it is
3048 ok to use deprecated sections.
3049
3050 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3051 out parameters that are filled in with information about the CU and
3052 TU lists in the section.
3053
3054 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3055
9291a0cd 3056static int
2ec9a5e0
TT
3057read_index_from_section (struct objfile *objfile,
3058 const char *filename,
3059 int deprecated_ok,
3060 struct dwarf2_section_info *section,
3061 struct mapped_index *map,
3062 const gdb_byte **cu_list,
3063 offset_type *cu_list_elements,
3064 const gdb_byte **types_list,
3065 offset_type *types_list_elements)
9291a0cd 3066{
948f8e3d 3067 const gdb_byte *addr;
2ec9a5e0 3068 offset_type version;
b3b272e1 3069 offset_type *metadata;
1fd400ff 3070 int i;
9291a0cd 3071
2ec9a5e0 3072 if (dwarf2_section_empty_p (section))
9291a0cd 3073 return 0;
82430852
JK
3074
3075 /* Older elfutils strip versions could keep the section in the main
3076 executable while splitting it for the separate debug info file. */
a32a8923 3077 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3078 return 0;
3079
2ec9a5e0 3080 dwarf2_read_section (objfile, section);
9291a0cd 3081
2ec9a5e0 3082 addr = section->buffer;
9291a0cd 3083 /* Version check. */
1fd400ff 3084 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3085 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3086 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3087 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3088 indices. */
831adc1f 3089 if (version < 4)
481860b3
GB
3090 {
3091 static int warning_printed = 0;
3092 if (!warning_printed)
3093 {
3094 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3095 filename);
481860b3
GB
3096 warning_printed = 1;
3097 }
3098 return 0;
3099 }
3100 /* Index version 4 uses a different hash function than index version
3101 5 and later.
3102
3103 Versions earlier than 6 did not emit psymbols for inlined
3104 functions. Using these files will cause GDB not to be able to
3105 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3106 indices unless the user has done
3107 "set use-deprecated-index-sections on". */
2ec9a5e0 3108 if (version < 6 && !deprecated_ok)
481860b3
GB
3109 {
3110 static int warning_printed = 0;
3111 if (!warning_printed)
3112 {
e615022a
DE
3113 warning (_("\
3114Skipping deprecated .gdb_index section in %s.\n\
3115Do \"set use-deprecated-index-sections on\" before the file is read\n\
3116to use the section anyway."),
2ec9a5e0 3117 filename);
481860b3
GB
3118 warning_printed = 1;
3119 }
3120 return 0;
3121 }
796a7ff8 3122 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3123 of the TU (for symbols coming from TUs),
3124 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3125 Plus gold-generated indices can have duplicate entries for global symbols,
3126 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3127 These are just performance bugs, and we can't distinguish gdb-generated
3128 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3129
481860b3 3130 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3131 longer backward compatible. */
796a7ff8 3132 if (version > 8)
594e8718 3133 return 0;
9291a0cd 3134
559a7a62 3135 map->version = version;
2ec9a5e0 3136 map->total_size = section->size;
9291a0cd
TT
3137
3138 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3139
3140 i = 0;
2ec9a5e0
TT
3141 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3142 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3143 / 8);
1fd400ff
TT
3144 ++i;
3145
2ec9a5e0
TT
3146 *types_list = addr + MAYBE_SWAP (metadata[i]);
3147 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3148 - MAYBE_SWAP (metadata[i]))
3149 / 8);
987d643c 3150 ++i;
1fd400ff
TT
3151
3152 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3153 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3154 - MAYBE_SWAP (metadata[i]));
3155 ++i;
3156
3876f04e
DE
3157 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3158 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3159 - MAYBE_SWAP (metadata[i]))
3160 / (2 * sizeof (offset_type)));
1fd400ff 3161 ++i;
9291a0cd 3162
f9d83a0b 3163 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3164
2ec9a5e0
TT
3165 return 1;
3166}
3167
3168
3169/* Read the index file. If everything went ok, initialize the "quick"
3170 elements of all the CUs and return 1. Otherwise, return 0. */
3171
3172static int
3173dwarf2_read_index (struct objfile *objfile)
3174{
3175 struct mapped_index local_map, *map;
3176 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3177 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3178 struct dwz_file *dwz;
2ec9a5e0 3179
4262abfb 3180 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3181 use_deprecated_index_sections,
3182 &dwarf2_per_objfile->gdb_index, &local_map,
3183 &cu_list, &cu_list_elements,
3184 &types_list, &types_list_elements))
3185 return 0;
3186
0fefef59 3187 /* Don't use the index if it's empty. */
2ec9a5e0 3188 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3189 return 0;
3190
2ec9a5e0
TT
3191 /* If there is a .dwz file, read it so we can get its CU list as
3192 well. */
4db1a1dc
TT
3193 dwz = dwarf2_get_dwz_file ();
3194 if (dwz != NULL)
2ec9a5e0 3195 {
2ec9a5e0
TT
3196 struct mapped_index dwz_map;
3197 const gdb_byte *dwz_types_ignore;
3198 offset_type dwz_types_elements_ignore;
3199
3200 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3201 1,
3202 &dwz->gdb_index, &dwz_map,
3203 &dwz_list, &dwz_list_elements,
3204 &dwz_types_ignore,
3205 &dwz_types_elements_ignore))
3206 {
3207 warning (_("could not read '.gdb_index' section from %s; skipping"),
3208 bfd_get_filename (dwz->dwz_bfd));
3209 return 0;
3210 }
3211 }
3212
74a0d9f6
JK
3213 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3214 dwz_list_elements);
1fd400ff 3215
8b70b953
TT
3216 if (types_list_elements)
3217 {
3218 struct dwarf2_section_info *section;
3219
3220 /* We can only handle a single .debug_types when we have an
3221 index. */
3222 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3223 return 0;
3224
3225 section = VEC_index (dwarf2_section_info_def,
3226 dwarf2_per_objfile->types, 0);
3227
74a0d9f6
JK
3228 create_signatured_type_table_from_index (objfile, section, types_list,
3229 types_list_elements);
8b70b953 3230 }
9291a0cd 3231
2ec9a5e0
TT
3232 create_addrmap_from_index (objfile, &local_map);
3233
8d749320 3234 map = XOBNEW (&objfile->objfile_obstack, struct mapped_index);
2ec9a5e0 3235 *map = local_map;
9291a0cd
TT
3236
3237 dwarf2_per_objfile->index_table = map;
3238 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3239 dwarf2_per_objfile->quick_file_names_table =
3240 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3241
3242 return 1;
3243}
3244
3245/* A helper for the "quick" functions which sets the global
3246 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3247
9291a0cd
TT
3248static void
3249dw2_setup (struct objfile *objfile)
3250{
9a3c8263
SM
3251 dwarf2_per_objfile = ((struct dwarf2_per_objfile *)
3252 objfile_data (objfile, dwarf2_objfile_data_key));
9291a0cd
TT
3253 gdb_assert (dwarf2_per_objfile);
3254}
3255
dee91e82 3256/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3257
dee91e82
DE
3258static void
3259dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3260 const gdb_byte *info_ptr,
dee91e82
DE
3261 struct die_info *comp_unit_die,
3262 int has_children,
3263 void *data)
9291a0cd 3264{
dee91e82
DE
3265 struct dwarf2_cu *cu = reader->cu;
3266 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3267 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3268 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3269 struct line_header *lh;
9291a0cd 3270 struct attribute *attr;
dee91e82 3271 int i;
15d034d0 3272 const char *name, *comp_dir;
7b9f3c50
DE
3273 void **slot;
3274 struct quick_file_names *qfn;
3275 unsigned int line_offset;
9291a0cd 3276
0186c6a7
DE
3277 gdb_assert (! this_cu->is_debug_types);
3278
07261596
TT
3279 /* Our callers never want to match partial units -- instead they
3280 will match the enclosing full CU. */
3281 if (comp_unit_die->tag == DW_TAG_partial_unit)
3282 {
3283 this_cu->v.quick->no_file_data = 1;
3284 return;
3285 }
3286
0186c6a7 3287 lh_cu = this_cu;
7b9f3c50
DE
3288 lh = NULL;
3289 slot = NULL;
3290 line_offset = 0;
dee91e82
DE
3291
3292 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3293 if (attr)
3294 {
7b9f3c50
DE
3295 struct quick_file_names find_entry;
3296
3297 line_offset = DW_UNSND (attr);
3298
3299 /* We may have already read in this line header (TU line header sharing).
3300 If we have we're done. */
094b34ac
DE
3301 find_entry.hash.dwo_unit = cu->dwo_unit;
3302 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3303 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3304 &find_entry, INSERT);
3305 if (*slot != NULL)
3306 {
9a3c8263 3307 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
dee91e82 3308 return;
7b9f3c50
DE
3309 }
3310
3019eac3 3311 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3312 }
3313 if (lh == NULL)
3314 {
094b34ac 3315 lh_cu->v.quick->no_file_data = 1;
dee91e82 3316 return;
9291a0cd
TT
3317 }
3318
8d749320 3319 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
094b34ac
DE
3320 qfn->hash.dwo_unit = cu->dwo_unit;
3321 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3322 gdb_assert (slot != NULL);
3323 *slot = qfn;
9291a0cd 3324
dee91e82 3325 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3326
7b9f3c50 3327 qfn->num_file_names = lh->num_file_names;
8d749320
SM
3328 qfn->file_names =
3329 XOBNEWVEC (&objfile->objfile_obstack, const char *, lh->num_file_names);
9291a0cd 3330 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3331 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3332 qfn->real_names = NULL;
9291a0cd 3333
7b9f3c50 3334 free_line_header (lh);
7b9f3c50 3335
094b34ac 3336 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3337}
3338
3339/* A helper for the "quick" functions which attempts to read the line
3340 table for THIS_CU. */
3341
3342static struct quick_file_names *
e4a48d9d 3343dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3344{
0186c6a7
DE
3345 /* This should never be called for TUs. */
3346 gdb_assert (! this_cu->is_debug_types);
3347 /* Nor type unit groups. */
3348 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3349
dee91e82
DE
3350 if (this_cu->v.quick->file_names != NULL)
3351 return this_cu->v.quick->file_names;
3352 /* If we know there is no line data, no point in looking again. */
3353 if (this_cu->v.quick->no_file_data)
3354 return NULL;
3355
0186c6a7 3356 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3357
3358 if (this_cu->v.quick->no_file_data)
3359 return NULL;
3360 return this_cu->v.quick->file_names;
9291a0cd
TT
3361}
3362
3363/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3364 real path for a given file name from the line table. */
2fdf6df6 3365
9291a0cd 3366static const char *
7b9f3c50
DE
3367dw2_get_real_path (struct objfile *objfile,
3368 struct quick_file_names *qfn, int index)
9291a0cd 3369{
7b9f3c50
DE
3370 if (qfn->real_names == NULL)
3371 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3372 qfn->num_file_names, const char *);
9291a0cd 3373
7b9f3c50
DE
3374 if (qfn->real_names[index] == NULL)
3375 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3376
7b9f3c50 3377 return qfn->real_names[index];
9291a0cd
TT
3378}
3379
3380static struct symtab *
3381dw2_find_last_source_symtab (struct objfile *objfile)
3382{
43f3e411 3383 struct compunit_symtab *cust;
9291a0cd 3384 int index;
ae2de4f8 3385
9291a0cd
TT
3386 dw2_setup (objfile);
3387 index = dwarf2_per_objfile->n_comp_units - 1;
43f3e411
DE
3388 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3389 if (cust == NULL)
3390 return NULL;
3391 return compunit_primary_filetab (cust);
9291a0cd
TT
3392}
3393
7b9f3c50
DE
3394/* Traversal function for dw2_forget_cached_source_info. */
3395
3396static int
3397dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3398{
7b9f3c50 3399 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3400
7b9f3c50 3401 if (file_data->real_names)
9291a0cd 3402 {
7b9f3c50 3403 int i;
9291a0cd 3404
7b9f3c50 3405 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3406 {
7b9f3c50
DE
3407 xfree ((void*) file_data->real_names[i]);
3408 file_data->real_names[i] = NULL;
9291a0cd
TT
3409 }
3410 }
7b9f3c50
DE
3411
3412 return 1;
3413}
3414
3415static void
3416dw2_forget_cached_source_info (struct objfile *objfile)
3417{
3418 dw2_setup (objfile);
3419
3420 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3421 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3422}
3423
f8eba3c6
TT
3424/* Helper function for dw2_map_symtabs_matching_filename that expands
3425 the symtabs and calls the iterator. */
3426
3427static int
3428dw2_map_expand_apply (struct objfile *objfile,
3429 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3430 const char *name, const char *real_path,
f8eba3c6
TT
3431 int (*callback) (struct symtab *, void *),
3432 void *data)
3433{
43f3e411 3434 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3435
3436 /* Don't visit already-expanded CUs. */
43f3e411 3437 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3438 return 0;
3439
3440 /* This may expand more than one symtab, and we want to iterate over
3441 all of them. */
a0f42c21 3442 dw2_instantiate_symtab (per_cu);
f8eba3c6 3443
f5b95b50 3444 return iterate_over_some_symtabs (name, real_path, callback, data,
43f3e411 3445 objfile->compunit_symtabs, last_made);
f8eba3c6
TT
3446}
3447
3448/* Implementation of the map_symtabs_matching_filename method. */
3449
9291a0cd 3450static int
f8eba3c6 3451dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3452 const char *real_path,
f8eba3c6
TT
3453 int (*callback) (struct symtab *, void *),
3454 void *data)
9291a0cd
TT
3455{
3456 int i;
c011a4f4 3457 const char *name_basename = lbasename (name);
9291a0cd
TT
3458
3459 dw2_setup (objfile);
ae2de4f8 3460
848e3e78
DE
3461 /* The rule is CUs specify all the files, including those used by
3462 any TU, so there's no need to scan TUs here. */
f4dc4d17 3463
848e3e78 3464 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3465 {
3466 int j;
8832e7e3 3467 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3468 struct quick_file_names *file_data;
9291a0cd 3469
3d7bb9d9 3470 /* We only need to look at symtabs not already expanded. */
43f3e411 3471 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3472 continue;
3473
e4a48d9d 3474 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3475 if (file_data == NULL)
9291a0cd
TT
3476 continue;
3477
7b9f3c50 3478 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3479 {
7b9f3c50 3480 const char *this_name = file_data->file_names[j];
da235a7c 3481 const char *this_real_name;
9291a0cd 3482
af529f8f 3483 if (compare_filenames_for_search (this_name, name))
9291a0cd 3484 {
f5b95b50 3485 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3486 callback, data))
3487 return 1;
288e77a7 3488 continue;
4aac40c8 3489 }
9291a0cd 3490
c011a4f4
DE
3491 /* Before we invoke realpath, which can get expensive when many
3492 files are involved, do a quick comparison of the basenames. */
3493 if (! basenames_may_differ
3494 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3495 continue;
3496
da235a7c
JK
3497 this_real_name = dw2_get_real_path (objfile, file_data, j);
3498 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3499 {
da235a7c
JK
3500 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3501 callback, data))
3502 return 1;
288e77a7 3503 continue;
da235a7c 3504 }
9291a0cd 3505
da235a7c
JK
3506 if (real_path != NULL)
3507 {
af529f8f
JK
3508 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3509 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3510 if (this_real_name != NULL
af529f8f 3511 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3512 {
f5b95b50 3513 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3514 callback, data))
3515 return 1;
288e77a7 3516 continue;
9291a0cd
TT
3517 }
3518 }
3519 }
3520 }
3521
9291a0cd
TT
3522 return 0;
3523}
3524
da51c347
DE
3525/* Struct used to manage iterating over all CUs looking for a symbol. */
3526
3527struct dw2_symtab_iterator
9291a0cd 3528{
da51c347
DE
3529 /* The internalized form of .gdb_index. */
3530 struct mapped_index *index;
3531 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3532 int want_specific_block;
3533 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3534 Unused if !WANT_SPECIFIC_BLOCK. */
3535 int block_index;
3536 /* The kind of symbol we're looking for. */
3537 domain_enum domain;
3538 /* The list of CUs from the index entry of the symbol,
3539 or NULL if not found. */
3540 offset_type *vec;
3541 /* The next element in VEC to look at. */
3542 int next;
3543 /* The number of elements in VEC, or zero if there is no match. */
3544 int length;
8943b874
DE
3545 /* Have we seen a global version of the symbol?
3546 If so we can ignore all further global instances.
3547 This is to work around gold/15646, inefficient gold-generated
3548 indices. */
3549 int global_seen;
da51c347 3550};
9291a0cd 3551
da51c347
DE
3552/* Initialize the index symtab iterator ITER.
3553 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3554 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3555
9291a0cd 3556static void
da51c347
DE
3557dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3558 struct mapped_index *index,
3559 int want_specific_block,
3560 int block_index,
3561 domain_enum domain,
3562 const char *name)
3563{
3564 iter->index = index;
3565 iter->want_specific_block = want_specific_block;
3566 iter->block_index = block_index;
3567 iter->domain = domain;
3568 iter->next = 0;
8943b874 3569 iter->global_seen = 0;
da51c347
DE
3570
3571 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3572 iter->length = MAYBE_SWAP (*iter->vec);
3573 else
3574 {
3575 iter->vec = NULL;
3576 iter->length = 0;
3577 }
3578}
3579
3580/* Return the next matching CU or NULL if there are no more. */
3581
3582static struct dwarf2_per_cu_data *
3583dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3584{
3585 for ( ; iter->next < iter->length; ++iter->next)
3586 {
3587 offset_type cu_index_and_attrs =
3588 MAYBE_SWAP (iter->vec[iter->next + 1]);
3589 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3590 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3591 int want_static = iter->block_index != GLOBAL_BLOCK;
3592 /* This value is only valid for index versions >= 7. */
3593 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3594 gdb_index_symbol_kind symbol_kind =
3595 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3596 /* Only check the symbol attributes if they're present.
3597 Indices prior to version 7 don't record them,
3598 and indices >= 7 may elide them for certain symbols
3599 (gold does this). */
3600 int attrs_valid =
3601 (iter->index->version >= 7
3602 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3603
3190f0c6
DE
3604 /* Don't crash on bad data. */
3605 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3606 + dwarf2_per_objfile->n_type_units))
3607 {
3608 complaint (&symfile_complaints,
3609 _(".gdb_index entry has bad CU index"
4262abfb
JK
3610 " [in module %s]"),
3611 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3612 continue;
3613 }
3614
8832e7e3 3615 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3616
da51c347 3617 /* Skip if already read in. */
43f3e411 3618 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3619 continue;
3620
8943b874
DE
3621 /* Check static vs global. */
3622 if (attrs_valid)
3623 {
3624 if (iter->want_specific_block
3625 && want_static != is_static)
3626 continue;
3627 /* Work around gold/15646. */
3628 if (!is_static && iter->global_seen)
3629 continue;
3630 if (!is_static)
3631 iter->global_seen = 1;
3632 }
da51c347
DE
3633
3634 /* Only check the symbol's kind if it has one. */
3635 if (attrs_valid)
3636 {
3637 switch (iter->domain)
3638 {
3639 case VAR_DOMAIN:
3640 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3641 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3642 /* Some types are also in VAR_DOMAIN. */
3643 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3644 continue;
3645 break;
3646 case STRUCT_DOMAIN:
3647 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3648 continue;
3649 break;
3650 case LABEL_DOMAIN:
3651 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3652 continue;
3653 break;
3654 default:
3655 break;
3656 }
3657 }
3658
3659 ++iter->next;
3660 return per_cu;
3661 }
3662
3663 return NULL;
3664}
3665
43f3e411 3666static struct compunit_symtab *
da51c347
DE
3667dw2_lookup_symbol (struct objfile *objfile, int block_index,
3668 const char *name, domain_enum domain)
9291a0cd 3669{
43f3e411 3670 struct compunit_symtab *stab_best = NULL;
156942c7
DE
3671 struct mapped_index *index;
3672
9291a0cd
TT
3673 dw2_setup (objfile);
3674
156942c7
DE
3675 index = dwarf2_per_objfile->index_table;
3676
da51c347 3677 /* index is NULL if OBJF_READNOW. */
156942c7 3678 if (index)
9291a0cd 3679 {
da51c347
DE
3680 struct dw2_symtab_iterator iter;
3681 struct dwarf2_per_cu_data *per_cu;
3682
3683 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3684
da51c347 3685 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3686 {
b2e2f908 3687 struct symbol *sym, *with_opaque = NULL;
43f3e411
DE
3688 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3689 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
f194fefb 3690 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347 3691
b2e2f908
DE
3692 sym = block_find_symbol (block, name, domain,
3693 block_find_non_opaque_type_preferred,
3694 &with_opaque);
3695
da51c347
DE
3696 /* Some caution must be observed with overloaded functions
3697 and methods, since the index will not contain any overload
3698 information (but NAME might contain it). */
da51c347 3699
b2e2f908
DE
3700 if (sym != NULL
3701 && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3702 return stab;
3703 if (with_opaque != NULL
3704 && strcmp_iw (SYMBOL_SEARCH_NAME (with_opaque), name) == 0)
3705 stab_best = stab;
da51c347
DE
3706
3707 /* Keep looking through other CUs. */
9291a0cd
TT
3708 }
3709 }
9291a0cd 3710
da51c347 3711 return stab_best;
9291a0cd
TT
3712}
3713
3714static void
3715dw2_print_stats (struct objfile *objfile)
3716{
e4a48d9d 3717 int i, total, count;
9291a0cd
TT
3718
3719 dw2_setup (objfile);
e4a48d9d 3720 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3721 count = 0;
e4a48d9d 3722 for (i = 0; i < total; ++i)
9291a0cd 3723 {
8832e7e3 3724 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3725
43f3e411 3726 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3727 ++count;
3728 }
e4a48d9d 3729 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3730 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3731}
3732
779bd270
DE
3733/* This dumps minimal information about the index.
3734 It is called via "mt print objfiles".
3735 One use is to verify .gdb_index has been loaded by the
3736 gdb.dwarf2/gdb-index.exp testcase. */
3737
9291a0cd
TT
3738static void
3739dw2_dump (struct objfile *objfile)
3740{
779bd270
DE
3741 dw2_setup (objfile);
3742 gdb_assert (dwarf2_per_objfile->using_index);
3743 printf_filtered (".gdb_index:");
3744 if (dwarf2_per_objfile->index_table != NULL)
3745 {
3746 printf_filtered (" version %d\n",
3747 dwarf2_per_objfile->index_table->version);
3748 }
3749 else
3750 printf_filtered (" faked for \"readnow\"\n");
3751 printf_filtered ("\n");
9291a0cd
TT
3752}
3753
3754static void
3189cb12
DE
3755dw2_relocate (struct objfile *objfile,
3756 const struct section_offsets *new_offsets,
3757 const struct section_offsets *delta)
9291a0cd
TT
3758{
3759 /* There's nothing to relocate here. */
3760}
3761
3762static void
3763dw2_expand_symtabs_for_function (struct objfile *objfile,
3764 const char *func_name)
3765{
da51c347
DE
3766 struct mapped_index *index;
3767
3768 dw2_setup (objfile);
3769
3770 index = dwarf2_per_objfile->index_table;
3771
3772 /* index is NULL if OBJF_READNOW. */
3773 if (index)
3774 {
3775 struct dw2_symtab_iterator iter;
3776 struct dwarf2_per_cu_data *per_cu;
3777
3778 /* Note: It doesn't matter what we pass for block_index here. */
3779 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3780 func_name);
3781
3782 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3783 dw2_instantiate_symtab (per_cu);
3784 }
9291a0cd
TT
3785}
3786
3787static void
3788dw2_expand_all_symtabs (struct objfile *objfile)
3789{
3790 int i;
3791
3792 dw2_setup (objfile);
1fd400ff
TT
3793
3794 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3795 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3796 {
8832e7e3 3797 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3798
a0f42c21 3799 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3800 }
3801}
3802
3803static void
652a8996
JK
3804dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3805 const char *fullname)
9291a0cd
TT
3806{
3807 int i;
3808
3809 dw2_setup (objfile);
d4637a04
DE
3810
3811 /* We don't need to consider type units here.
3812 This is only called for examining code, e.g. expand_line_sal.
3813 There can be an order of magnitude (or more) more type units
3814 than comp units, and we avoid them if we can. */
3815
3816 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3817 {
3818 int j;
8832e7e3 3819 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 3820 struct quick_file_names *file_data;
9291a0cd 3821
3d7bb9d9 3822 /* We only need to look at symtabs not already expanded. */
43f3e411 3823 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3824 continue;
3825
e4a48d9d 3826 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3827 if (file_data == NULL)
9291a0cd
TT
3828 continue;
3829
7b9f3c50 3830 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3831 {
652a8996
JK
3832 const char *this_fullname = file_data->file_names[j];
3833
3834 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3835 {
a0f42c21 3836 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3837 break;
3838 }
3839 }
3840 }
3841}
3842
9291a0cd 3843static void
ade7ed9e 3844dw2_map_matching_symbols (struct objfile *objfile,
fe978cb0 3845 const char * name, domain_enum domain,
ade7ed9e 3846 int global,
40658b94
PH
3847 int (*callback) (struct block *,
3848 struct symbol *, void *),
2edb89d3
JK
3849 void *data, symbol_compare_ftype *match,
3850 symbol_compare_ftype *ordered_compare)
9291a0cd 3851{
40658b94 3852 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3853 current language is Ada for a non-Ada objfile using GNU index. As Ada
3854 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3855}
3856
3857static void
f8eba3c6
TT
3858dw2_expand_symtabs_matching
3859 (struct objfile *objfile,
206f2a57
DE
3860 expand_symtabs_file_matcher_ftype *file_matcher,
3861 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
276d885b 3862 expand_symtabs_exp_notify_ftype *expansion_notify,
f8eba3c6
TT
3863 enum search_domain kind,
3864 void *data)
9291a0cd
TT
3865{
3866 int i;
3867 offset_type iter;
4b5246aa 3868 struct mapped_index *index;
9291a0cd
TT
3869
3870 dw2_setup (objfile);
ae2de4f8
DE
3871
3872 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3873 if (!dwarf2_per_objfile->index_table)
3874 return;
4b5246aa 3875 index = dwarf2_per_objfile->index_table;
9291a0cd 3876
7b08b9eb 3877 if (file_matcher != NULL)
24c79950
TT
3878 {
3879 struct cleanup *cleanup;
3880 htab_t visited_found, visited_not_found;
3881
3882 visited_found = htab_create_alloc (10,
3883 htab_hash_pointer, htab_eq_pointer,
3884 NULL, xcalloc, xfree);
3885 cleanup = make_cleanup_htab_delete (visited_found);
3886 visited_not_found = htab_create_alloc (10,
3887 htab_hash_pointer, htab_eq_pointer,
3888 NULL, xcalloc, xfree);
3889 make_cleanup_htab_delete (visited_not_found);
3890
848e3e78
DE
3891 /* The rule is CUs specify all the files, including those used by
3892 any TU, so there's no need to scan TUs here. */
3893
3894 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3895 {
3896 int j;
8832e7e3 3897 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
3898 struct quick_file_names *file_data;
3899 void **slot;
7b08b9eb 3900
61d96d7e
DE
3901 QUIT;
3902
24c79950 3903 per_cu->v.quick->mark = 0;
3d7bb9d9 3904
24c79950 3905 /* We only need to look at symtabs not already expanded. */
43f3e411 3906 if (per_cu->v.quick->compunit_symtab)
24c79950 3907 continue;
7b08b9eb 3908
e4a48d9d 3909 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3910 if (file_data == NULL)
3911 continue;
7b08b9eb 3912
24c79950
TT
3913 if (htab_find (visited_not_found, file_data) != NULL)
3914 continue;
3915 else if (htab_find (visited_found, file_data) != NULL)
3916 {
3917 per_cu->v.quick->mark = 1;
3918 continue;
3919 }
3920
3921 for (j = 0; j < file_data->num_file_names; ++j)
3922 {
da235a7c
JK
3923 const char *this_real_name;
3924
fbd9ab74 3925 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3926 {
3927 per_cu->v.quick->mark = 1;
3928 break;
3929 }
da235a7c
JK
3930
3931 /* Before we invoke realpath, which can get expensive when many
3932 files are involved, do a quick comparison of the basenames. */
3933 if (!basenames_may_differ
3934 && !file_matcher (lbasename (file_data->file_names[j]),
3935 data, 1))
3936 continue;
3937
3938 this_real_name = dw2_get_real_path (objfile, file_data, j);
3939 if (file_matcher (this_real_name, data, 0))
3940 {
3941 per_cu->v.quick->mark = 1;
3942 break;
3943 }
24c79950
TT
3944 }
3945
3946 slot = htab_find_slot (per_cu->v.quick->mark
3947 ? visited_found
3948 : visited_not_found,
3949 file_data, INSERT);
3950 *slot = file_data;
3951 }
3952
3953 do_cleanups (cleanup);
3954 }
9291a0cd 3955
3876f04e 3956 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3957 {
3958 offset_type idx = 2 * iter;
3959 const char *name;
3960 offset_type *vec, vec_len, vec_idx;
8943b874 3961 int global_seen = 0;
9291a0cd 3962
61d96d7e
DE
3963 QUIT;
3964
3876f04e 3965 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3966 continue;
3967
3876f04e 3968 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3969
206f2a57 3970 if (! (*symbol_matcher) (name, data))
9291a0cd
TT
3971 continue;
3972
3973 /* The name was matched, now expand corresponding CUs that were
3974 marked. */
4b5246aa 3975 vec = (offset_type *) (index->constant_pool
3876f04e 3976 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3977 vec_len = MAYBE_SWAP (vec[0]);
3978 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3979 {
e254ef6a 3980 struct dwarf2_per_cu_data *per_cu;
156942c7 3981 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
3982 /* This value is only valid for index versions >= 7. */
3983 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
3984 gdb_index_symbol_kind symbol_kind =
3985 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3986 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
3987 /* Only check the symbol attributes if they're present.
3988 Indices prior to version 7 don't record them,
3989 and indices >= 7 may elide them for certain symbols
3990 (gold does this). */
3991 int attrs_valid =
3992 (index->version >= 7
3993 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3994
8943b874
DE
3995 /* Work around gold/15646. */
3996 if (attrs_valid)
3997 {
3998 if (!is_static && global_seen)
3999 continue;
4000 if (!is_static)
4001 global_seen = 1;
4002 }
4003
3190f0c6
DE
4004 /* Only check the symbol's kind if it has one. */
4005 if (attrs_valid)
156942c7
DE
4006 {
4007 switch (kind)
4008 {
4009 case VARIABLES_DOMAIN:
4010 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4011 continue;
4012 break;
4013 case FUNCTIONS_DOMAIN:
4014 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4015 continue;
4016 break;
4017 case TYPES_DOMAIN:
4018 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4019 continue;
4020 break;
4021 default:
4022 break;
4023 }
4024 }
4025
3190f0c6
DE
4026 /* Don't crash on bad data. */
4027 if (cu_index >= (dwarf2_per_objfile->n_comp_units
4028 + dwarf2_per_objfile->n_type_units))
4029 {
4030 complaint (&symfile_complaints,
4031 _(".gdb_index entry has bad CU index"
4262abfb 4032 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
4033 continue;
4034 }
4035
8832e7e3 4036 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 4037 if (file_matcher == NULL || per_cu->v.quick->mark)
276d885b
GB
4038 {
4039 int symtab_was_null =
4040 (per_cu->v.quick->compunit_symtab == NULL);
4041
4042 dw2_instantiate_symtab (per_cu);
4043
4044 if (expansion_notify != NULL
4045 && symtab_was_null
4046 && per_cu->v.quick->compunit_symtab != NULL)
4047 {
4048 expansion_notify (per_cu->v.quick->compunit_symtab,
4049 data);
4050 }
4051 }
9291a0cd
TT
4052 }
4053 }
4054}
4055
43f3e411 4056/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
9703b513
TT
4057 symtab. */
4058
43f3e411
DE
4059static struct compunit_symtab *
4060recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4061 CORE_ADDR pc)
9703b513
TT
4062{
4063 int i;
4064
43f3e411
DE
4065 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4066 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4067 return cust;
9703b513 4068
43f3e411 4069 if (cust->includes == NULL)
a3ec0bb1
DE
4070 return NULL;
4071
43f3e411 4072 for (i = 0; cust->includes[i]; ++i)
9703b513 4073 {
43f3e411 4074 struct compunit_symtab *s = cust->includes[i];
9703b513 4075
43f3e411 4076 s = recursively_find_pc_sect_compunit_symtab (s, pc);
9703b513
TT
4077 if (s != NULL)
4078 return s;
4079 }
4080
4081 return NULL;
4082}
4083
43f3e411
DE
4084static struct compunit_symtab *
4085dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4086 struct bound_minimal_symbol msymbol,
4087 CORE_ADDR pc,
4088 struct obj_section *section,
4089 int warn_if_readin)
9291a0cd
TT
4090{
4091 struct dwarf2_per_cu_data *data;
43f3e411 4092 struct compunit_symtab *result;
9291a0cd
TT
4093
4094 dw2_setup (objfile);
4095
4096 if (!objfile->psymtabs_addrmap)
4097 return NULL;
4098
9a3c8263
SM
4099 data = (struct dwarf2_per_cu_data *) addrmap_find (objfile->psymtabs_addrmap,
4100 pc);
9291a0cd
TT
4101 if (!data)
4102 return NULL;
4103
43f3e411 4104 if (warn_if_readin && data->v.quick->compunit_symtab)
abebb8b0 4105 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4106 paddress (get_objfile_arch (objfile), pc));
4107
43f3e411
DE
4108 result
4109 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4110 pc);
9703b513
TT
4111 gdb_assert (result != NULL);
4112 return result;
9291a0cd
TT
4113}
4114
9291a0cd 4115static void
44b13c5a 4116dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4117 void *data, int need_fullname)
9291a0cd
TT
4118{
4119 int i;
24c79950
TT
4120 struct cleanup *cleanup;
4121 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4122 NULL, xcalloc, xfree);
9291a0cd 4123
24c79950 4124 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 4125 dw2_setup (objfile);
ae2de4f8 4126
848e3e78
DE
4127 /* The rule is CUs specify all the files, including those used by
4128 any TU, so there's no need to scan TUs here.
4129 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4130
848e3e78 4131 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950 4132 {
8832e7e3 4133 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
24c79950 4134
43f3e411 4135 if (per_cu->v.quick->compunit_symtab)
24c79950
TT
4136 {
4137 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4138 INSERT);
4139
4140 *slot = per_cu->v.quick->file_names;
4141 }
4142 }
4143
848e3e78 4144 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4145 {
4146 int j;
8832e7e3 4147 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 4148 struct quick_file_names *file_data;
24c79950 4149 void **slot;
9291a0cd 4150
3d7bb9d9 4151 /* We only need to look at symtabs not already expanded. */
43f3e411 4152 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4153 continue;
4154
e4a48d9d 4155 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4156 if (file_data == NULL)
9291a0cd
TT
4157 continue;
4158
24c79950
TT
4159 slot = htab_find_slot (visited, file_data, INSERT);
4160 if (*slot)
4161 {
4162 /* Already visited. */
4163 continue;
4164 }
4165 *slot = file_data;
4166
7b9f3c50 4167 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4168 {
74e2f255
DE
4169 const char *this_real_name;
4170
4171 if (need_fullname)
4172 this_real_name = dw2_get_real_path (objfile, file_data, j);
4173 else
4174 this_real_name = NULL;
7b9f3c50 4175 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4176 }
4177 }
24c79950
TT
4178
4179 do_cleanups (cleanup);
9291a0cd
TT
4180}
4181
4182static int
4183dw2_has_symbols (struct objfile *objfile)
4184{
4185 return 1;
4186}
4187
4188const struct quick_symbol_functions dwarf2_gdb_index_functions =
4189{
4190 dw2_has_symbols,
4191 dw2_find_last_source_symtab,
4192 dw2_forget_cached_source_info,
f8eba3c6 4193 dw2_map_symtabs_matching_filename,
9291a0cd 4194 dw2_lookup_symbol,
9291a0cd
TT
4195 dw2_print_stats,
4196 dw2_dump,
4197 dw2_relocate,
4198 dw2_expand_symtabs_for_function,
4199 dw2_expand_all_symtabs,
652a8996 4200 dw2_expand_symtabs_with_fullname,
40658b94 4201 dw2_map_matching_symbols,
9291a0cd 4202 dw2_expand_symtabs_matching,
43f3e411 4203 dw2_find_pc_sect_compunit_symtab,
9291a0cd
TT
4204 dw2_map_symbol_filenames
4205};
4206
4207/* Initialize for reading DWARF for this objfile. Return 0 if this
4208 file will use psymtabs, or 1 if using the GNU index. */
4209
4210int
4211dwarf2_initialize_objfile (struct objfile *objfile)
4212{
4213 /* If we're about to read full symbols, don't bother with the
4214 indices. In this case we also don't care if some other debug
4215 format is making psymtabs, because they are all about to be
4216 expanded anyway. */
4217 if ((objfile->flags & OBJF_READNOW))
4218 {
4219 int i;
4220
4221 dwarf2_per_objfile->using_index = 1;
4222 create_all_comp_units (objfile);
0e50663e 4223 create_all_type_units (objfile);
7b9f3c50
DE
4224 dwarf2_per_objfile->quick_file_names_table =
4225 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4226
1fd400ff 4227 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4228 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4229 {
8832e7e3 4230 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4231
e254ef6a
DE
4232 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4233 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4234 }
4235
4236 /* Return 1 so that gdb sees the "quick" functions. However,
4237 these functions will be no-ops because we will have expanded
4238 all symtabs. */
4239 return 1;
4240 }
4241
4242 if (dwarf2_read_index (objfile))
4243 return 1;
4244
9291a0cd
TT
4245 return 0;
4246}
4247
4248\f
4249
dce234bc
PP
4250/* Build a partial symbol table. */
4251
4252void
f29dff0a 4253dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4254{
c9bf0622 4255
f29dff0a 4256 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4257 {
4258 init_psymbol_list (objfile, 1024);
4259 }
4260
492d29ea 4261 TRY
c9bf0622
TT
4262 {
4263 /* This isn't really ideal: all the data we allocate on the
4264 objfile's obstack is still uselessly kept around. However,
4265 freeing it seems unsafe. */
4266 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4267
4268 dwarf2_build_psymtabs_hard (objfile);
4269 discard_cleanups (cleanups);
4270 }
492d29ea
PA
4271 CATCH (except, RETURN_MASK_ERROR)
4272 {
4273 exception_print (gdb_stderr, except);
4274 }
4275 END_CATCH
c906108c 4276}
c906108c 4277
1ce1cefd
DE
4278/* Return the total length of the CU described by HEADER. */
4279
4280static unsigned int
4281get_cu_length (const struct comp_unit_head *header)
4282{
4283 return header->initial_length_size + header->length;
4284}
4285
45452591
DE
4286/* Return TRUE if OFFSET is within CU_HEADER. */
4287
4288static inline int
b64f50a1 4289offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4290{
b64f50a1 4291 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4292 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4293
b64f50a1 4294 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4295}
4296
3b80fe9b
DE
4297/* Find the base address of the compilation unit for range lists and
4298 location lists. It will normally be specified by DW_AT_low_pc.
4299 In DWARF-3 draft 4, the base address could be overridden by
4300 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4301 compilation units with discontinuous ranges. */
4302
4303static void
4304dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4305{
4306 struct attribute *attr;
4307
4308 cu->base_known = 0;
4309 cu->base_address = 0;
4310
4311 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4312 if (attr)
4313 {
31aa7e4e 4314 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4315 cu->base_known = 1;
4316 }
4317 else
4318 {
4319 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4320 if (attr)
4321 {
31aa7e4e 4322 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4323 cu->base_known = 1;
4324 }
4325 }
4326}
4327
93311388
DE
4328/* Read in the comp unit header information from the debug_info at info_ptr.
4329 NOTE: This leaves members offset, first_die_offset to be filled in
4330 by the caller. */
107d2387 4331
d521ce57 4332static const gdb_byte *
107d2387 4333read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 4334 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
4335{
4336 int signed_addr;
891d2f0b 4337 unsigned int bytes_read;
c764a876
DE
4338
4339 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4340 cu_header->initial_length_size = bytes_read;
4341 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4342 info_ptr += bytes_read;
107d2387
AC
4343 cu_header->version = read_2_bytes (abfd, info_ptr);
4344 info_ptr += 2;
b64f50a1
JK
4345 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4346 &bytes_read);
613e1657 4347 info_ptr += bytes_read;
107d2387
AC
4348 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4349 info_ptr += 1;
4350 signed_addr = bfd_get_sign_extend_vma (abfd);
4351 if (signed_addr < 0)
8e65ff28 4352 internal_error (__FILE__, __LINE__,
e2e0b3e5 4353 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4354 cu_header->signed_addr_p = signed_addr;
c764a876 4355
107d2387
AC
4356 return info_ptr;
4357}
4358
36586728
TT
4359/* Helper function that returns the proper abbrev section for
4360 THIS_CU. */
4361
4362static struct dwarf2_section_info *
4363get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4364{
4365 struct dwarf2_section_info *abbrev;
4366
4367 if (this_cu->is_dwz)
4368 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4369 else
4370 abbrev = &dwarf2_per_objfile->abbrev;
4371
4372 return abbrev;
4373}
4374
9ff913ba
DE
4375/* Subroutine of read_and_check_comp_unit_head and
4376 read_and_check_type_unit_head to simplify them.
4377 Perform various error checking on the header. */
4378
4379static void
4380error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4381 struct dwarf2_section_info *section,
4382 struct dwarf2_section_info *abbrev_section)
9ff913ba 4383{
a32a8923
DE
4384 bfd *abfd = get_section_bfd_owner (section);
4385 const char *filename = get_section_file_name (section);
9ff913ba
DE
4386
4387 if (header->version != 2 && header->version != 3 && header->version != 4)
4388 error (_("Dwarf Error: wrong version in compilation unit header "
4389 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4390 filename);
4391
b64f50a1 4392 if (header->abbrev_offset.sect_off
36586728 4393 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4394 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4395 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4396 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4397 filename);
4398
4399 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4400 avoid potential 32-bit overflow. */
1ce1cefd 4401 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4402 > section->size)
4403 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4404 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4405 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4406 filename);
4407}
4408
4409/* Read in a CU/TU header and perform some basic error checking.
4410 The contents of the header are stored in HEADER.
4411 The result is a pointer to the start of the first DIE. */
adabb602 4412
d521ce57 4413static const gdb_byte *
9ff913ba
DE
4414read_and_check_comp_unit_head (struct comp_unit_head *header,
4415 struct dwarf2_section_info *section,
4bdcc0c1 4416 struct dwarf2_section_info *abbrev_section,
d521ce57 4417 const gdb_byte *info_ptr,
9ff913ba 4418 int is_debug_types_section)
72bf9492 4419{
d521ce57 4420 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4421 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4422
b64f50a1 4423 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4424
72bf9492
DJ
4425 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4426
460c1c54
CC
4427 /* If we're reading a type unit, skip over the signature and
4428 type_offset fields. */
b0df02fd 4429 if (is_debug_types_section)
460c1c54
CC
4430 info_ptr += 8 /*signature*/ + header->offset_size;
4431
b64f50a1 4432 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4433
4bdcc0c1 4434 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4435
4436 return info_ptr;
4437}
4438
348e048f
DE
4439/* Read in the types comp unit header information from .debug_types entry at
4440 types_ptr. The result is a pointer to one past the end of the header. */
4441
d521ce57 4442static const gdb_byte *
9ff913ba
DE
4443read_and_check_type_unit_head (struct comp_unit_head *header,
4444 struct dwarf2_section_info *section,
4bdcc0c1 4445 struct dwarf2_section_info *abbrev_section,
d521ce57 4446 const gdb_byte *info_ptr,
dee91e82
DE
4447 ULONGEST *signature,
4448 cu_offset *type_offset_in_tu)
348e048f 4449{
d521ce57 4450 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4451 bfd *abfd = get_section_bfd_owner (section);
348e048f 4452
b64f50a1 4453 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4454
9ff913ba 4455 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4456
9ff913ba
DE
4457 /* If we're reading a type unit, skip over the signature and
4458 type_offset fields. */
4459 if (signature != NULL)
4460 *signature = read_8_bytes (abfd, info_ptr);
4461 info_ptr += 8;
dee91e82
DE
4462 if (type_offset_in_tu != NULL)
4463 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4464 header->offset_size);
9ff913ba
DE
4465 info_ptr += header->offset_size;
4466
b64f50a1 4467 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4468
4bdcc0c1 4469 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4470
4471 return info_ptr;
348e048f
DE
4472}
4473
f4dc4d17
DE
4474/* Fetch the abbreviation table offset from a comp or type unit header. */
4475
4476static sect_offset
4477read_abbrev_offset (struct dwarf2_section_info *section,
4478 sect_offset offset)
4479{
a32a8923 4480 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4481 const gdb_byte *info_ptr;
f4dc4d17
DE
4482 unsigned int length, initial_length_size, offset_size;
4483 sect_offset abbrev_offset;
4484
4485 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4486 info_ptr = section->buffer + offset.sect_off;
4487 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4488 offset_size = initial_length_size == 4 ? 4 : 8;
4489 info_ptr += initial_length_size + 2 /*version*/;
4490 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4491 return abbrev_offset;
4492}
4493
aaa75496
JB
4494/* Allocate a new partial symtab for file named NAME and mark this new
4495 partial symtab as being an include of PST. */
4496
4497static void
d521ce57 4498dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4499 struct objfile *objfile)
4500{
4501 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4502
fbd9ab74
JK
4503 if (!IS_ABSOLUTE_PATH (subpst->filename))
4504 {
4505 /* It shares objfile->objfile_obstack. */
4506 subpst->dirname = pst->dirname;
4507 }
4508
aaa75496
JB
4509 subpst->textlow = 0;
4510 subpst->texthigh = 0;
4511
8d749320
SM
4512 subpst->dependencies
4513 = XOBNEW (&objfile->objfile_obstack, struct partial_symtab *);
aaa75496
JB
4514 subpst->dependencies[0] = pst;
4515 subpst->number_of_dependencies = 1;
4516
4517 subpst->globals_offset = 0;
4518 subpst->n_global_syms = 0;
4519 subpst->statics_offset = 0;
4520 subpst->n_static_syms = 0;
43f3e411 4521 subpst->compunit_symtab = NULL;
aaa75496
JB
4522 subpst->read_symtab = pst->read_symtab;
4523 subpst->readin = 0;
4524
4525 /* No private part is necessary for include psymtabs. This property
4526 can be used to differentiate between such include psymtabs and
10b3939b 4527 the regular ones. */
58a9656e 4528 subpst->read_symtab_private = NULL;
aaa75496
JB
4529}
4530
4531/* Read the Line Number Program data and extract the list of files
4532 included by the source file represented by PST. Build an include
d85a05f0 4533 partial symtab for each of these included files. */
aaa75496
JB
4534
4535static void
4536dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4537 struct die_info *die,
4538 struct partial_symtab *pst)
aaa75496 4539{
d85a05f0
DJ
4540 struct line_header *lh = NULL;
4541 struct attribute *attr;
aaa75496 4542
d85a05f0
DJ
4543 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4544 if (attr)
3019eac3 4545 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4546 if (lh == NULL)
4547 return; /* No linetable, so no includes. */
4548
c6da4cef 4549 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
527f3840 4550 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow, 1);
aaa75496
JB
4551
4552 free_line_header (lh);
4553}
4554
348e048f 4555static hashval_t
52dc124a 4556hash_signatured_type (const void *item)
348e048f 4557{
9a3c8263
SM
4558 const struct signatured_type *sig_type
4559 = (const struct signatured_type *) item;
9a619af0 4560
348e048f 4561 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4562 return sig_type->signature;
348e048f
DE
4563}
4564
4565static int
52dc124a 4566eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f 4567{
9a3c8263
SM
4568 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
4569 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
9a619af0 4570
348e048f
DE
4571 return lhs->signature == rhs->signature;
4572}
4573
1fd400ff
TT
4574/* Allocate a hash table for signatured types. */
4575
4576static htab_t
673bfd45 4577allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4578{
4579 return htab_create_alloc_ex (41,
52dc124a
DE
4580 hash_signatured_type,
4581 eq_signatured_type,
1fd400ff
TT
4582 NULL,
4583 &objfile->objfile_obstack,
4584 hashtab_obstack_allocate,
4585 dummy_obstack_deallocate);
4586}
4587
d467dd73 4588/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4589
4590static int
d467dd73 4591add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff 4592{
9a3c8263
SM
4593 struct signatured_type *sigt = (struct signatured_type *) *slot;
4594 struct signatured_type ***datap = (struct signatured_type ***) datum;
1fd400ff 4595
b4dd5633 4596 **datap = sigt;
1fd400ff
TT
4597 ++*datap;
4598
4599 return 1;
4600}
4601
c88ee1f0
DE
4602/* Create the hash table of all entries in the .debug_types
4603 (or .debug_types.dwo) section(s).
4604 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4605 otherwise it is NULL.
4606
4607 The result is a pointer to the hash table or NULL if there are no types.
4608
4609 Note: This function processes DWO files only, not DWP files. */
348e048f 4610
3019eac3
DE
4611static htab_t
4612create_debug_types_hash_table (struct dwo_file *dwo_file,
4613 VEC (dwarf2_section_info_def) *types)
348e048f 4614{
3019eac3 4615 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4616 htab_t types_htab = NULL;
8b70b953
TT
4617 int ix;
4618 struct dwarf2_section_info *section;
4bdcc0c1 4619 struct dwarf2_section_info *abbrev_section;
348e048f 4620
3019eac3
DE
4621 if (VEC_empty (dwarf2_section_info_def, types))
4622 return NULL;
348e048f 4623
4bdcc0c1
DE
4624 abbrev_section = (dwo_file != NULL
4625 ? &dwo_file->sections.abbrev
4626 : &dwarf2_per_objfile->abbrev);
4627
b4f54984 4628 if (dwarf_read_debug)
09406207
DE
4629 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4630 dwo_file ? ".dwo" : "",
a32a8923 4631 get_section_file_name (abbrev_section));
09406207 4632
8b70b953 4633 for (ix = 0;
3019eac3 4634 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4635 ++ix)
4636 {
3019eac3 4637 bfd *abfd;
d521ce57 4638 const gdb_byte *info_ptr, *end_ptr;
348e048f 4639
8b70b953
TT
4640 dwarf2_read_section (objfile, section);
4641 info_ptr = section->buffer;
348e048f 4642
8b70b953
TT
4643 if (info_ptr == NULL)
4644 continue;
348e048f 4645
3019eac3 4646 /* We can't set abfd until now because the section may be empty or
a32a8923
DE
4647 not present, in which case the bfd is unknown. */
4648 abfd = get_section_bfd_owner (section);
3019eac3 4649
dee91e82
DE
4650 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4651 because we don't need to read any dies: the signature is in the
4652 header. */
8b70b953
TT
4653
4654 end_ptr = info_ptr + section->size;
4655 while (info_ptr < end_ptr)
4656 {
b64f50a1 4657 sect_offset offset;
3019eac3 4658 cu_offset type_offset_in_tu;
8b70b953 4659 ULONGEST signature;
52dc124a 4660 struct signatured_type *sig_type;
3019eac3 4661 struct dwo_unit *dwo_tu;
8b70b953 4662 void **slot;
d521ce57 4663 const gdb_byte *ptr = info_ptr;
9ff913ba 4664 struct comp_unit_head header;
dee91e82 4665 unsigned int length;
348e048f 4666
b64f50a1 4667 offset.sect_off = ptr - section->buffer;
348e048f 4668
8b70b953 4669 /* We need to read the type's signature in order to build the hash
9ff913ba 4670 table, but we don't need anything else just yet. */
348e048f 4671
4bdcc0c1
DE
4672 ptr = read_and_check_type_unit_head (&header, section,
4673 abbrev_section, ptr,
3019eac3 4674 &signature, &type_offset_in_tu);
6caca83c 4675
1ce1cefd 4676 length = get_cu_length (&header);
dee91e82 4677
6caca83c 4678 /* Skip dummy type units. */
dee91e82
DE
4679 if (ptr >= info_ptr + length
4680 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4681 {
1ce1cefd 4682 info_ptr += length;
6caca83c
CC
4683 continue;
4684 }
8b70b953 4685
0349ea22
DE
4686 if (types_htab == NULL)
4687 {
4688 if (dwo_file)
4689 types_htab = allocate_dwo_unit_table (objfile);
4690 else
4691 types_htab = allocate_signatured_type_table (objfile);
4692 }
4693
3019eac3
DE
4694 if (dwo_file)
4695 {
4696 sig_type = NULL;
4697 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4698 struct dwo_unit);
4699 dwo_tu->dwo_file = dwo_file;
4700 dwo_tu->signature = signature;
4701 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4702 dwo_tu->section = section;
3019eac3
DE
4703 dwo_tu->offset = offset;
4704 dwo_tu->length = length;
4705 }
4706 else
4707 {
4708 /* N.B.: type_offset is not usable if this type uses a DWO file.
4709 The real type_offset is in the DWO file. */
4710 dwo_tu = NULL;
4711 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4712 struct signatured_type);
4713 sig_type->signature = signature;
4714 sig_type->type_offset_in_tu = type_offset_in_tu;
4715 sig_type->per_cu.objfile = objfile;
4716 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4717 sig_type->per_cu.section = section;
3019eac3
DE
4718 sig_type->per_cu.offset = offset;
4719 sig_type->per_cu.length = length;
4720 }
8b70b953 4721
3019eac3
DE
4722 slot = htab_find_slot (types_htab,
4723 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4724 INSERT);
8b70b953
TT
4725 gdb_assert (slot != NULL);
4726 if (*slot != NULL)
4727 {
3019eac3
DE
4728 sect_offset dup_offset;
4729
4730 if (dwo_file)
4731 {
9a3c8263
SM
4732 const struct dwo_unit *dup_tu
4733 = (const struct dwo_unit *) *slot;
3019eac3
DE
4734
4735 dup_offset = dup_tu->offset;
4736 }
4737 else
4738 {
9a3c8263
SM
4739 const struct signatured_type *dup_tu
4740 = (const struct signatured_type *) *slot;
3019eac3
DE
4741
4742 dup_offset = dup_tu->per_cu.offset;
4743 }
b3c8eb43 4744
8b70b953 4745 complaint (&symfile_complaints,
c88ee1f0 4746 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4747 " the entry at offset 0x%x, signature %s"),
3019eac3 4748 offset.sect_off, dup_offset.sect_off,
4031ecc5 4749 hex_string (signature));
8b70b953 4750 }
3019eac3 4751 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4752
b4f54984 4753 if (dwarf_read_debug > 1)
4031ecc5 4754 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4755 offset.sect_off,
4031ecc5 4756 hex_string (signature));
348e048f 4757
dee91e82 4758 info_ptr += length;
8b70b953 4759 }
348e048f
DE
4760 }
4761
3019eac3
DE
4762 return types_htab;
4763}
4764
4765/* Create the hash table of all entries in the .debug_types section,
4766 and initialize all_type_units.
4767 The result is zero if there is an error (e.g. missing .debug_types section),
4768 otherwise non-zero. */
4769
4770static int
4771create_all_type_units (struct objfile *objfile)
4772{
4773 htab_t types_htab;
b4dd5633 4774 struct signatured_type **iter;
3019eac3
DE
4775
4776 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4777 if (types_htab == NULL)
4778 {
4779 dwarf2_per_objfile->signatured_types = NULL;
4780 return 0;
4781 }
4782
348e048f
DE
4783 dwarf2_per_objfile->signatured_types = types_htab;
4784
6aa5f3a6
DE
4785 dwarf2_per_objfile->n_type_units
4786 = dwarf2_per_objfile->n_allocated_type_units
4787 = htab_elements (types_htab);
8d749320
SM
4788 dwarf2_per_objfile->all_type_units =
4789 XNEWVEC (struct signatured_type *, dwarf2_per_objfile->n_type_units);
d467dd73
DE
4790 iter = &dwarf2_per_objfile->all_type_units[0];
4791 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4792 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4793 == dwarf2_per_objfile->n_type_units);
1fd400ff 4794
348e048f
DE
4795 return 1;
4796}
4797
6aa5f3a6
DE
4798/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4799 If SLOT is non-NULL, it is the entry to use in the hash table.
4800 Otherwise we find one. */
4801
4802static struct signatured_type *
4803add_type_unit (ULONGEST sig, void **slot)
4804{
4805 struct objfile *objfile = dwarf2_per_objfile->objfile;
4806 int n_type_units = dwarf2_per_objfile->n_type_units;
4807 struct signatured_type *sig_type;
4808
4809 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4810 ++n_type_units;
4811 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4812 {
4813 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4814 dwarf2_per_objfile->n_allocated_type_units = 1;
4815 dwarf2_per_objfile->n_allocated_type_units *= 2;
4816 dwarf2_per_objfile->all_type_units
224c3ddb
SM
4817 = XRESIZEVEC (struct signatured_type *,
4818 dwarf2_per_objfile->all_type_units,
4819 dwarf2_per_objfile->n_allocated_type_units);
6aa5f3a6
DE
4820 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4821 }
4822 dwarf2_per_objfile->n_type_units = n_type_units;
4823
4824 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4825 struct signatured_type);
4826 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4827 sig_type->signature = sig;
4828 sig_type->per_cu.is_debug_types = 1;
4829 if (dwarf2_per_objfile->using_index)
4830 {
4831 sig_type->per_cu.v.quick =
4832 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4833 struct dwarf2_per_cu_quick_data);
4834 }
4835
4836 if (slot == NULL)
4837 {
4838 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4839 sig_type, INSERT);
4840 }
4841 gdb_assert (*slot == NULL);
4842 *slot = sig_type;
4843 /* The rest of sig_type must be filled in by the caller. */
4844 return sig_type;
4845}
4846
a2ce51a0
DE
4847/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4848 Fill in SIG_ENTRY with DWO_ENTRY. */
4849
4850static void
4851fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4852 struct signatured_type *sig_entry,
4853 struct dwo_unit *dwo_entry)
4854{
7ee85ab1 4855 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4856 gdb_assert (! sig_entry->per_cu.queued);
4857 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
4858 if (dwarf2_per_objfile->using_index)
4859 {
4860 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 4861 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
4862 }
4863 else
4864 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0
DE
4865 gdb_assert (sig_entry->signature == dwo_entry->signature);
4866 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4867 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4868 gdb_assert (sig_entry->dwo_unit == NULL);
4869
4870 sig_entry->per_cu.section = dwo_entry->section;
4871 sig_entry->per_cu.offset = dwo_entry->offset;
4872 sig_entry->per_cu.length = dwo_entry->length;
4873 sig_entry->per_cu.reading_dwo_directly = 1;
4874 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4875 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4876 sig_entry->dwo_unit = dwo_entry;
4877}
4878
4879/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4880 If we haven't read the TU yet, create the signatured_type data structure
4881 for a TU to be read in directly from a DWO file, bypassing the stub.
4882 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4883 using .gdb_index, then when reading a CU we want to stay in the DWO file
4884 containing that CU. Otherwise we could end up reading several other DWO
4885 files (due to comdat folding) to process the transitive closure of all the
4886 mentioned TUs, and that can be slow. The current DWO file will have every
4887 type signature that it needs.
a2ce51a0
DE
4888 We only do this for .gdb_index because in the psymtab case we already have
4889 to read all the DWOs to build the type unit groups. */
4890
4891static struct signatured_type *
4892lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4893{
4894 struct objfile *objfile = dwarf2_per_objfile->objfile;
4895 struct dwo_file *dwo_file;
4896 struct dwo_unit find_dwo_entry, *dwo_entry;
4897 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4898 void **slot;
a2ce51a0
DE
4899
4900 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4901
6aa5f3a6
DE
4902 /* If TU skeletons have been removed then we may not have read in any
4903 TUs yet. */
4904 if (dwarf2_per_objfile->signatured_types == NULL)
4905 {
4906 dwarf2_per_objfile->signatured_types
4907 = allocate_signatured_type_table (objfile);
4908 }
a2ce51a0
DE
4909
4910 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
4911 Use the global signatured_types array to do our own comdat-folding
4912 of types. If this is the first time we're reading this TU, and
4913 the TU has an entry in .gdb_index, replace the recorded data from
4914 .gdb_index with this TU. */
a2ce51a0 4915
a2ce51a0 4916 find_sig_entry.signature = sig;
6aa5f3a6
DE
4917 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4918 &find_sig_entry, INSERT);
9a3c8263 4919 sig_entry = (struct signatured_type *) *slot;
7ee85ab1
DE
4920
4921 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
4922 read. Don't reassign the global entry to point to this DWO if that's
4923 the case. Also note that if the TU is already being read, it may not
4924 have come from a DWO, the program may be a mix of Fission-compiled
4925 code and non-Fission-compiled code. */
4926
4927 /* Have we already tried to read this TU?
4928 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4929 needn't exist in the global table yet). */
4930 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
4931 return sig_entry;
4932
6aa5f3a6
DE
4933 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4934 dwo_unit of the TU itself. */
4935 dwo_file = cu->dwo_unit->dwo_file;
4936
a2ce51a0
DE
4937 /* Ok, this is the first time we're reading this TU. */
4938 if (dwo_file->tus == NULL)
4939 return NULL;
4940 find_dwo_entry.signature = sig;
9a3c8263 4941 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
a2ce51a0
DE
4942 if (dwo_entry == NULL)
4943 return NULL;
4944
6aa5f3a6
DE
4945 /* If the global table doesn't have an entry for this TU, add one. */
4946 if (sig_entry == NULL)
4947 sig_entry = add_type_unit (sig, slot);
4948
a2ce51a0 4949 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 4950 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
4951 return sig_entry;
4952}
4953
a2ce51a0
DE
4954/* Subroutine of lookup_signatured_type.
4955 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
4956 then try the DWP file. If the TU stub (skeleton) has been removed then
4957 it won't be in .gdb_index. */
a2ce51a0
DE
4958
4959static struct signatured_type *
4960lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4961{
4962 struct objfile *objfile = dwarf2_per_objfile->objfile;
4963 struct dwp_file *dwp_file = get_dwp_file ();
4964 struct dwo_unit *dwo_entry;
4965 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4966 void **slot;
a2ce51a0
DE
4967
4968 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4969 gdb_assert (dwp_file != NULL);
4970
6aa5f3a6
DE
4971 /* If TU skeletons have been removed then we may not have read in any
4972 TUs yet. */
4973 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 4974 {
6aa5f3a6
DE
4975 dwarf2_per_objfile->signatured_types
4976 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
4977 }
4978
6aa5f3a6
DE
4979 find_sig_entry.signature = sig;
4980 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4981 &find_sig_entry, INSERT);
9a3c8263 4982 sig_entry = (struct signatured_type *) *slot;
6aa5f3a6
DE
4983
4984 /* Have we already tried to read this TU?
4985 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4986 needn't exist in the global table yet). */
4987 if (sig_entry != NULL)
4988 return sig_entry;
4989
a2ce51a0
DE
4990 if (dwp_file->tus == NULL)
4991 return NULL;
57d63ce2
DE
4992 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4993 sig, 1 /* is_debug_types */);
a2ce51a0
DE
4994 if (dwo_entry == NULL)
4995 return NULL;
4996
6aa5f3a6 4997 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
4998 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4999
a2ce51a0
DE
5000 return sig_entry;
5001}
5002
380bca97 5003/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
5004 Returns NULL if signature SIG is not present in the table.
5005 It is up to the caller to complain about this. */
348e048f
DE
5006
5007static struct signatured_type *
a2ce51a0 5008lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 5009{
a2ce51a0
DE
5010 if (cu->dwo_unit
5011 && dwarf2_per_objfile->using_index)
5012 {
5013 /* We're in a DWO/DWP file, and we're using .gdb_index.
5014 These cases require special processing. */
5015 if (get_dwp_file () == NULL)
5016 return lookup_dwo_signatured_type (cu, sig);
5017 else
5018 return lookup_dwp_signatured_type (cu, sig);
5019 }
5020 else
5021 {
5022 struct signatured_type find_entry, *entry;
348e048f 5023
a2ce51a0
DE
5024 if (dwarf2_per_objfile->signatured_types == NULL)
5025 return NULL;
5026 find_entry.signature = sig;
9a3c8263
SM
5027 entry = ((struct signatured_type *)
5028 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
a2ce51a0
DE
5029 return entry;
5030 }
348e048f 5031}
42e7ad6c
DE
5032\f
5033/* Low level DIE reading support. */
348e048f 5034
d85a05f0
DJ
5035/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
5036
5037static void
5038init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 5039 struct dwarf2_cu *cu,
3019eac3
DE
5040 struct dwarf2_section_info *section,
5041 struct dwo_file *dwo_file)
d85a05f0 5042{
fceca515 5043 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 5044 reader->abfd = get_section_bfd_owner (section);
d85a05f0 5045 reader->cu = cu;
3019eac3 5046 reader->dwo_file = dwo_file;
dee91e82
DE
5047 reader->die_section = section;
5048 reader->buffer = section->buffer;
f664829e 5049 reader->buffer_end = section->buffer + section->size;
a2ce51a0 5050 reader->comp_dir = NULL;
d85a05f0
DJ
5051}
5052
b0c7bfa9
DE
5053/* Subroutine of init_cutu_and_read_dies to simplify it.
5054 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
5055 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
5056 already.
5057
5058 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
5059 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
5060 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
5061 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
5062 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
5063 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
5064 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
5065 are filled in with the info of the DIE from the DWO file.
5066 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
5067 provided an abbrev table to use.
5068 The result is non-zero if a valid (non-dummy) DIE was found. */
5069
5070static int
5071read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
5072 struct dwo_unit *dwo_unit,
5073 int abbrev_table_provided,
5074 struct die_info *stub_comp_unit_die,
a2ce51a0 5075 const char *stub_comp_dir,
b0c7bfa9 5076 struct die_reader_specs *result_reader,
d521ce57 5077 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
5078 struct die_info **result_comp_unit_die,
5079 int *result_has_children)
5080{
5081 struct objfile *objfile = dwarf2_per_objfile->objfile;
5082 struct dwarf2_cu *cu = this_cu->cu;
5083 struct dwarf2_section_info *section;
5084 bfd *abfd;
d521ce57 5085 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
5086 ULONGEST signature; /* Or dwo_id. */
5087 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
5088 int i,num_extra_attrs;
5089 struct dwarf2_section_info *dwo_abbrev_section;
5090 struct attribute *attr;
5091 struct die_info *comp_unit_die;
5092
b0aeadb3
DE
5093 /* At most one of these may be provided. */
5094 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 5095
b0c7bfa9
DE
5096 /* These attributes aren't processed until later:
5097 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
5098 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5099 referenced later. However, these attributes are found in the stub
5100 which we won't have later. In order to not impose this complication
5101 on the rest of the code, we read them here and copy them to the
5102 DWO CU/TU die. */
b0c7bfa9
DE
5103
5104 stmt_list = NULL;
5105 low_pc = NULL;
5106 high_pc = NULL;
5107 ranges = NULL;
5108 comp_dir = NULL;
5109
5110 if (stub_comp_unit_die != NULL)
5111 {
5112 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5113 DWO file. */
5114 if (! this_cu->is_debug_types)
5115 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5116 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5117 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5118 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5119 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5120
5121 /* There should be a DW_AT_addr_base attribute here (if needed).
5122 We need the value before we can process DW_FORM_GNU_addr_index. */
5123 cu->addr_base = 0;
5124 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5125 if (attr)
5126 cu->addr_base = DW_UNSND (attr);
5127
5128 /* There should be a DW_AT_ranges_base attribute here (if needed).
5129 We need the value before we can process DW_AT_ranges. */
5130 cu->ranges_base = 0;
5131 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5132 if (attr)
5133 cu->ranges_base = DW_UNSND (attr);
5134 }
a2ce51a0
DE
5135 else if (stub_comp_dir != NULL)
5136 {
5137 /* Reconstruct the comp_dir attribute to simplify the code below. */
8d749320 5138 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
a2ce51a0
DE
5139 comp_dir->name = DW_AT_comp_dir;
5140 comp_dir->form = DW_FORM_string;
5141 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5142 DW_STRING (comp_dir) = stub_comp_dir;
5143 }
b0c7bfa9
DE
5144
5145 /* Set up for reading the DWO CU/TU. */
5146 cu->dwo_unit = dwo_unit;
5147 section = dwo_unit->section;
5148 dwarf2_read_section (objfile, section);
a32a8923 5149 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5150 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5151 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5152 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5153
5154 if (this_cu->is_debug_types)
5155 {
5156 ULONGEST header_signature;
5157 cu_offset type_offset_in_tu;
5158 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5159
5160 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5161 dwo_abbrev_section,
5162 info_ptr,
5163 &header_signature,
5164 &type_offset_in_tu);
a2ce51a0
DE
5165 /* This is not an assert because it can be caused by bad debug info. */
5166 if (sig_type->signature != header_signature)
5167 {
5168 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5169 " TU at offset 0x%x [in module %s]"),
5170 hex_string (sig_type->signature),
5171 hex_string (header_signature),
5172 dwo_unit->offset.sect_off,
5173 bfd_get_filename (abfd));
5174 }
b0c7bfa9
DE
5175 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5176 /* For DWOs coming from DWP files, we don't know the CU length
5177 nor the type's offset in the TU until now. */
5178 dwo_unit->length = get_cu_length (&cu->header);
5179 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5180
5181 /* Establish the type offset that can be used to lookup the type.
5182 For DWO files, we don't know it until now. */
5183 sig_type->type_offset_in_section.sect_off =
5184 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5185 }
5186 else
5187 {
5188 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5189 dwo_abbrev_section,
5190 info_ptr, 0);
5191 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5192 /* For DWOs coming from DWP files, we don't know the CU length
5193 until now. */
5194 dwo_unit->length = get_cu_length (&cu->header);
5195 }
5196
02142a6c
DE
5197 /* Replace the CU's original abbrev table with the DWO's.
5198 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5199 if (abbrev_table_provided)
5200 {
5201 /* Don't free the provided abbrev table, the caller of
5202 init_cutu_and_read_dies owns it. */
5203 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5204 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5205 make_cleanup (dwarf2_free_abbrev_table, cu);
5206 }
5207 else
5208 {
5209 dwarf2_free_abbrev_table (cu);
5210 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5211 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5212 }
5213
5214 /* Read in the die, but leave space to copy over the attributes
5215 from the stub. This has the benefit of simplifying the rest of
5216 the code - all the work to maintain the illusion of a single
5217 DW_TAG_{compile,type}_unit DIE is done here. */
5218 num_extra_attrs = ((stmt_list != NULL)
5219 + (low_pc != NULL)
5220 + (high_pc != NULL)
5221 + (ranges != NULL)
5222 + (comp_dir != NULL));
5223 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5224 result_has_children, num_extra_attrs);
5225
5226 /* Copy over the attributes from the stub to the DIE we just read in. */
5227 comp_unit_die = *result_comp_unit_die;
5228 i = comp_unit_die->num_attrs;
5229 if (stmt_list != NULL)
5230 comp_unit_die->attrs[i++] = *stmt_list;
5231 if (low_pc != NULL)
5232 comp_unit_die->attrs[i++] = *low_pc;
5233 if (high_pc != NULL)
5234 comp_unit_die->attrs[i++] = *high_pc;
5235 if (ranges != NULL)
5236 comp_unit_die->attrs[i++] = *ranges;
5237 if (comp_dir != NULL)
5238 comp_unit_die->attrs[i++] = *comp_dir;
5239 comp_unit_die->num_attrs += num_extra_attrs;
5240
b4f54984 5241 if (dwarf_die_debug)
bf6af496
DE
5242 {
5243 fprintf_unfiltered (gdb_stdlog,
5244 "Read die from %s@0x%x of %s:\n",
a32a8923 5245 get_section_name (section),
bf6af496
DE
5246 (unsigned) (begin_info_ptr - section->buffer),
5247 bfd_get_filename (abfd));
b4f54984 5248 dump_die (comp_unit_die, dwarf_die_debug);
bf6af496
DE
5249 }
5250
a2ce51a0
DE
5251 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5252 TUs by skipping the stub and going directly to the entry in the DWO file.
5253 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5254 to get it via circuitous means. Blech. */
5255 if (comp_dir != NULL)
5256 result_reader->comp_dir = DW_STRING (comp_dir);
5257
b0c7bfa9
DE
5258 /* Skip dummy compilation units. */
5259 if (info_ptr >= begin_info_ptr + dwo_unit->length
5260 || peek_abbrev_code (abfd, info_ptr) == 0)
5261 return 0;
5262
5263 *result_info_ptr = info_ptr;
5264 return 1;
5265}
5266
5267/* Subroutine of init_cutu_and_read_dies to simplify it.
5268 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5269 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5270
5271static struct dwo_unit *
5272lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5273 struct die_info *comp_unit_die)
5274{
5275 struct dwarf2_cu *cu = this_cu->cu;
5276 struct attribute *attr;
5277 ULONGEST signature;
5278 struct dwo_unit *dwo_unit;
5279 const char *comp_dir, *dwo_name;
5280
a2ce51a0
DE
5281 gdb_assert (cu != NULL);
5282
b0c7bfa9 5283 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7d45c7c3
KB
5284 dwo_name = dwarf2_string_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5285 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
b0c7bfa9
DE
5286
5287 if (this_cu->is_debug_types)
5288 {
5289 struct signatured_type *sig_type;
5290
5291 /* Since this_cu is the first member of struct signatured_type,
5292 we can go from a pointer to one to a pointer to the other. */
5293 sig_type = (struct signatured_type *) this_cu;
5294 signature = sig_type->signature;
5295 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5296 }
5297 else
5298 {
5299 struct attribute *attr;
5300
5301 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5302 if (! attr)
5303 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5304 " [in module %s]"),
4262abfb 5305 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5306 signature = DW_UNSND (attr);
5307 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5308 signature);
5309 }
5310
b0c7bfa9
DE
5311 return dwo_unit;
5312}
5313
a2ce51a0 5314/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5315 See it for a description of the parameters.
5316 Read a TU directly from a DWO file, bypassing the stub.
5317
5318 Note: This function could be a little bit simpler if we shared cleanups
5319 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5320 to do, so we keep this function self-contained. Or we could move this
5321 into our caller, but it's complex enough already. */
a2ce51a0
DE
5322
5323static void
6aa5f3a6
DE
5324init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5325 int use_existing_cu, int keep,
a2ce51a0
DE
5326 die_reader_func_ftype *die_reader_func,
5327 void *data)
5328{
5329 struct dwarf2_cu *cu;
5330 struct signatured_type *sig_type;
6aa5f3a6 5331 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5332 struct die_reader_specs reader;
5333 const gdb_byte *info_ptr;
5334 struct die_info *comp_unit_die;
5335 int has_children;
5336
5337 /* Verify we can do the following downcast, and that we have the
5338 data we need. */
5339 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5340 sig_type = (struct signatured_type *) this_cu;
5341 gdb_assert (sig_type->dwo_unit != NULL);
5342
5343 cleanups = make_cleanup (null_cleanup, NULL);
5344
6aa5f3a6
DE
5345 if (use_existing_cu && this_cu->cu != NULL)
5346 {
5347 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5348 cu = this_cu->cu;
5349 /* There's no need to do the rereading_dwo_cu handling that
5350 init_cutu_and_read_dies does since we don't read the stub. */
5351 }
5352 else
5353 {
5354 /* If !use_existing_cu, this_cu->cu must be NULL. */
5355 gdb_assert (this_cu->cu == NULL);
8d749320 5356 cu = XNEW (struct dwarf2_cu);
6aa5f3a6
DE
5357 init_one_comp_unit (cu, this_cu);
5358 /* If an error occurs while loading, release our storage. */
5359 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5360 }
5361
5362 /* A future optimization, if needed, would be to use an existing
5363 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5364 could share abbrev tables. */
a2ce51a0
DE
5365
5366 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5367 0 /* abbrev_table_provided */,
5368 NULL /* stub_comp_unit_die */,
5369 sig_type->dwo_unit->dwo_file->comp_dir,
5370 &reader, &info_ptr,
5371 &comp_unit_die, &has_children) == 0)
5372 {
5373 /* Dummy die. */
5374 do_cleanups (cleanups);
5375 return;
5376 }
5377
5378 /* All the "real" work is done here. */
5379 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5380
6aa5f3a6 5381 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5382 but the alternative is making the latter more complex.
5383 This function is only for the special case of using DWO files directly:
5384 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5385 if (free_cu_cleanup != NULL)
a2ce51a0 5386 {
6aa5f3a6
DE
5387 if (keep)
5388 {
5389 /* We've successfully allocated this compilation unit. Let our
5390 caller clean it up when finished with it. */
5391 discard_cleanups (free_cu_cleanup);
a2ce51a0 5392
6aa5f3a6
DE
5393 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5394 So we have to manually free the abbrev table. */
5395 dwarf2_free_abbrev_table (cu);
a2ce51a0 5396
6aa5f3a6
DE
5397 /* Link this CU into read_in_chain. */
5398 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5399 dwarf2_per_objfile->read_in_chain = this_cu;
5400 }
5401 else
5402 do_cleanups (free_cu_cleanup);
a2ce51a0 5403 }
a2ce51a0
DE
5404
5405 do_cleanups (cleanups);
5406}
5407
fd820528 5408/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5409 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5410
f4dc4d17
DE
5411 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5412 Otherwise the table specified in the comp unit header is read in and used.
5413 This is an optimization for when we already have the abbrev table.
5414
dee91e82
DE
5415 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5416 Otherwise, a new CU is allocated with xmalloc.
5417
5418 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5419 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5420
5421 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5422 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5423
70221824 5424static void
fd820528 5425init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5426 struct abbrev_table *abbrev_table,
fd820528
DE
5427 int use_existing_cu, int keep,
5428 die_reader_func_ftype *die_reader_func,
5429 void *data)
c906108c 5430{
dee91e82 5431 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5432 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5433 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5434 struct dwarf2_cu *cu;
d521ce57 5435 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5436 struct die_reader_specs reader;
d85a05f0 5437 struct die_info *comp_unit_die;
dee91e82 5438 int has_children;
d85a05f0 5439 struct attribute *attr;
365156ad 5440 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5441 struct signatured_type *sig_type = NULL;
4bdcc0c1 5442 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5443 /* Non-zero if CU currently points to a DWO file and we need to
5444 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5445 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5446 int rereading_dwo_cu = 0;
c906108c 5447
b4f54984 5448 if (dwarf_die_debug)
09406207
DE
5449 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5450 this_cu->is_debug_types ? "type" : "comp",
5451 this_cu->offset.sect_off);
5452
dee91e82
DE
5453 if (use_existing_cu)
5454 gdb_assert (keep);
23745b47 5455
a2ce51a0
DE
5456 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5457 file (instead of going through the stub), short-circuit all of this. */
5458 if (this_cu->reading_dwo_directly)
5459 {
5460 /* Narrow down the scope of possibilities to have to understand. */
5461 gdb_assert (this_cu->is_debug_types);
5462 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5463 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5464 die_reader_func, data);
a2ce51a0
DE
5465 return;
5466 }
5467
dee91e82
DE
5468 cleanups = make_cleanup (null_cleanup, NULL);
5469
5470 /* This is cheap if the section is already read in. */
5471 dwarf2_read_section (objfile, section);
5472
5473 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5474
5475 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5476
5477 if (use_existing_cu && this_cu->cu != NULL)
5478 {
5479 cu = this_cu->cu;
42e7ad6c
DE
5480 /* If this CU is from a DWO file we need to start over, we need to
5481 refetch the attributes from the skeleton CU.
5482 This could be optimized by retrieving those attributes from when we
5483 were here the first time: the previous comp_unit_die was stored in
5484 comp_unit_obstack. But there's no data yet that we need this
5485 optimization. */
5486 if (cu->dwo_unit != NULL)
5487 rereading_dwo_cu = 1;
dee91e82
DE
5488 }
5489 else
5490 {
5491 /* If !use_existing_cu, this_cu->cu must be NULL. */
5492 gdb_assert (this_cu->cu == NULL);
8d749320 5493 cu = XNEW (struct dwarf2_cu);
dee91e82 5494 init_one_comp_unit (cu, this_cu);
dee91e82 5495 /* If an error occurs while loading, release our storage. */
365156ad 5496 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5497 }
dee91e82 5498
b0c7bfa9 5499 /* Get the header. */
42e7ad6c
DE
5500 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5501 {
5502 /* We already have the header, there's no need to read it in again. */
5503 info_ptr += cu->header.first_die_offset.cu_off;
5504 }
5505 else
5506 {
3019eac3 5507 if (this_cu->is_debug_types)
dee91e82
DE
5508 {
5509 ULONGEST signature;
42e7ad6c 5510 cu_offset type_offset_in_tu;
dee91e82 5511
4bdcc0c1
DE
5512 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5513 abbrev_section, info_ptr,
42e7ad6c
DE
5514 &signature,
5515 &type_offset_in_tu);
dee91e82 5516
42e7ad6c
DE
5517 /* Since per_cu is the first member of struct signatured_type,
5518 we can go from a pointer to one to a pointer to the other. */
5519 sig_type = (struct signatured_type *) this_cu;
5520 gdb_assert (sig_type->signature == signature);
5521 gdb_assert (sig_type->type_offset_in_tu.cu_off
5522 == type_offset_in_tu.cu_off);
dee91e82
DE
5523 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5524
42e7ad6c
DE
5525 /* LENGTH has not been set yet for type units if we're
5526 using .gdb_index. */
1ce1cefd 5527 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5528
5529 /* Establish the type offset that can be used to lookup the type. */
5530 sig_type->type_offset_in_section.sect_off =
5531 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5532 }
5533 else
5534 {
4bdcc0c1
DE
5535 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5536 abbrev_section,
5537 info_ptr, 0);
dee91e82
DE
5538
5539 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5540 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5541 }
5542 }
10b3939b 5543
6caca83c 5544 /* Skip dummy compilation units. */
dee91e82 5545 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5546 || peek_abbrev_code (abfd, info_ptr) == 0)
5547 {
dee91e82 5548 do_cleanups (cleanups);
21b2bd31 5549 return;
6caca83c
CC
5550 }
5551
433df2d4
DE
5552 /* If we don't have them yet, read the abbrevs for this compilation unit.
5553 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5554 done. Note that it's important that if the CU had an abbrev table
5555 on entry we don't free it when we're done: Somewhere up the call stack
5556 it may be in use. */
f4dc4d17
DE
5557 if (abbrev_table != NULL)
5558 {
5559 gdb_assert (cu->abbrev_table == NULL);
5560 gdb_assert (cu->header.abbrev_offset.sect_off
5561 == abbrev_table->offset.sect_off);
5562 cu->abbrev_table = abbrev_table;
5563 }
5564 else if (cu->abbrev_table == NULL)
dee91e82 5565 {
4bdcc0c1 5566 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5567 make_cleanup (dwarf2_free_abbrev_table, cu);
5568 }
42e7ad6c
DE
5569 else if (rereading_dwo_cu)
5570 {
5571 dwarf2_free_abbrev_table (cu);
5572 dwarf2_read_abbrevs (cu, abbrev_section);
5573 }
af703f96 5574
dee91e82 5575 /* Read the top level CU/TU die. */
3019eac3 5576 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5577 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5578
b0c7bfa9
DE
5579 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5580 from the DWO file.
5581 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5582 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5583 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5584 if (attr)
5585 {
3019eac3 5586 struct dwo_unit *dwo_unit;
b0c7bfa9 5587 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5588
5589 if (has_children)
6a506a2d
DE
5590 {
5591 complaint (&symfile_complaints,
5592 _("compilation unit with DW_AT_GNU_dwo_name"
5593 " has children (offset 0x%x) [in module %s]"),
5594 this_cu->offset.sect_off, bfd_get_filename (abfd));
5595 }
b0c7bfa9 5596 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5597 if (dwo_unit != NULL)
3019eac3 5598 {
6a506a2d
DE
5599 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5600 abbrev_table != NULL,
a2ce51a0 5601 comp_unit_die, NULL,
6a506a2d
DE
5602 &reader, &info_ptr,
5603 &dwo_comp_unit_die, &has_children) == 0)
5604 {
5605 /* Dummy die. */
5606 do_cleanups (cleanups);
5607 return;
5608 }
5609 comp_unit_die = dwo_comp_unit_die;
5610 }
5611 else
5612 {
5613 /* Yikes, we couldn't find the rest of the DIE, we only have
5614 the stub. A complaint has already been logged. There's
5615 not much more we can do except pass on the stub DIE to
5616 die_reader_func. We don't want to throw an error on bad
5617 debug info. */
3019eac3
DE
5618 }
5619 }
5620
b0c7bfa9 5621 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5622 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5623
b0c7bfa9 5624 /* Done, clean up. */
365156ad 5625 if (free_cu_cleanup != NULL)
348e048f 5626 {
365156ad
TT
5627 if (keep)
5628 {
5629 /* We've successfully allocated this compilation unit. Let our
5630 caller clean it up when finished with it. */
5631 discard_cleanups (free_cu_cleanup);
dee91e82 5632
365156ad
TT
5633 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5634 So we have to manually free the abbrev table. */
5635 dwarf2_free_abbrev_table (cu);
dee91e82 5636
365156ad
TT
5637 /* Link this CU into read_in_chain. */
5638 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5639 dwarf2_per_objfile->read_in_chain = this_cu;
5640 }
5641 else
5642 do_cleanups (free_cu_cleanup);
348e048f 5643 }
365156ad
TT
5644
5645 do_cleanups (cleanups);
dee91e82
DE
5646}
5647
33e80786
DE
5648/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5649 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5650 to have already done the lookup to find the DWO file).
dee91e82
DE
5651
5652 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5653 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5654
5655 We fill in THIS_CU->length.
5656
5657 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5658 linker) then DIE_READER_FUNC will not get called.
5659
5660 THIS_CU->cu is always freed when done.
3019eac3
DE
5661 This is done in order to not leave THIS_CU->cu in a state where we have
5662 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5663
5664static void
5665init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5666 struct dwo_file *dwo_file,
dee91e82
DE
5667 die_reader_func_ftype *die_reader_func,
5668 void *data)
5669{
5670 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5671 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5672 bfd *abfd = get_section_bfd_owner (section);
33e80786 5673 struct dwarf2_section_info *abbrev_section;
dee91e82 5674 struct dwarf2_cu cu;
d521ce57 5675 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5676 struct die_reader_specs reader;
5677 struct cleanup *cleanups;
5678 struct die_info *comp_unit_die;
5679 int has_children;
5680
b4f54984 5681 if (dwarf_die_debug)
09406207
DE
5682 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5683 this_cu->is_debug_types ? "type" : "comp",
5684 this_cu->offset.sect_off);
5685
dee91e82
DE
5686 gdb_assert (this_cu->cu == NULL);
5687
33e80786
DE
5688 abbrev_section = (dwo_file != NULL
5689 ? &dwo_file->sections.abbrev
5690 : get_abbrev_section_for_cu (this_cu));
5691
dee91e82
DE
5692 /* This is cheap if the section is already read in. */
5693 dwarf2_read_section (objfile, section);
5694
5695 init_one_comp_unit (&cu, this_cu);
5696
5697 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5698
5699 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5700 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5701 abbrev_section, info_ptr,
3019eac3 5702 this_cu->is_debug_types);
dee91e82 5703
1ce1cefd 5704 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5705
5706 /* Skip dummy compilation units. */
5707 if (info_ptr >= begin_info_ptr + this_cu->length
5708 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5709 {
dee91e82 5710 do_cleanups (cleanups);
21b2bd31 5711 return;
93311388 5712 }
72bf9492 5713
dee91e82
DE
5714 dwarf2_read_abbrevs (&cu, abbrev_section);
5715 make_cleanup (dwarf2_free_abbrev_table, &cu);
5716
3019eac3 5717 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5718 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5719
5720 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5721
5722 do_cleanups (cleanups);
5723}
5724
3019eac3
DE
5725/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5726 does not lookup the specified DWO file.
5727 This cannot be used to read DWO files.
dee91e82
DE
5728
5729 THIS_CU->cu is always freed when done.
3019eac3
DE
5730 This is done in order to not leave THIS_CU->cu in a state where we have
5731 to care whether it refers to the "main" CU or the DWO CU.
5732 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5733
5734static void
5735init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5736 die_reader_func_ftype *die_reader_func,
5737 void *data)
5738{
33e80786 5739 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5740}
0018ea6f
DE
5741\f
5742/* Type Unit Groups.
dee91e82 5743
0018ea6f
DE
5744 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5745 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5746 so that all types coming from the same compilation (.o file) are grouped
5747 together. A future step could be to put the types in the same symtab as
5748 the CU the types ultimately came from. */
ff013f42 5749
f4dc4d17
DE
5750static hashval_t
5751hash_type_unit_group (const void *item)
5752{
9a3c8263
SM
5753 const struct type_unit_group *tu_group
5754 = (const struct type_unit_group *) item;
f4dc4d17 5755
094b34ac 5756 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5757}
348e048f
DE
5758
5759static int
f4dc4d17 5760eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5761{
9a3c8263
SM
5762 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
5763 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
348e048f 5764
094b34ac 5765 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5766}
348e048f 5767
f4dc4d17
DE
5768/* Allocate a hash table for type unit groups. */
5769
5770static htab_t
5771allocate_type_unit_groups_table (void)
5772{
5773 return htab_create_alloc_ex (3,
5774 hash_type_unit_group,
5775 eq_type_unit_group,
5776 NULL,
5777 &dwarf2_per_objfile->objfile->objfile_obstack,
5778 hashtab_obstack_allocate,
5779 dummy_obstack_deallocate);
5780}
dee91e82 5781
f4dc4d17
DE
5782/* Type units that don't have DW_AT_stmt_list are grouped into their own
5783 partial symtabs. We combine several TUs per psymtab to not let the size
5784 of any one psymtab grow too big. */
5785#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5786#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5787
094b34ac 5788/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5789 Create the type_unit_group object used to hold one or more TUs. */
5790
5791static struct type_unit_group *
094b34ac 5792create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5793{
5794 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5795 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5796 struct type_unit_group *tu_group;
f4dc4d17
DE
5797
5798 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5799 struct type_unit_group);
094b34ac 5800 per_cu = &tu_group->per_cu;
f4dc4d17 5801 per_cu->objfile = objfile;
f4dc4d17 5802
094b34ac
DE
5803 if (dwarf2_per_objfile->using_index)
5804 {
5805 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5806 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5807 }
5808 else
5809 {
5810 unsigned int line_offset = line_offset_struct.sect_off;
5811 struct partial_symtab *pst;
5812 char *name;
5813
5814 /* Give the symtab a useful name for debug purposes. */
5815 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5816 name = xstrprintf ("<type_units_%d>",
5817 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5818 else
5819 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5820
5821 pst = create_partial_symtab (per_cu, name);
5822 pst->anonymous = 1;
f4dc4d17 5823
094b34ac
DE
5824 xfree (name);
5825 }
f4dc4d17 5826
094b34ac
DE
5827 tu_group->hash.dwo_unit = cu->dwo_unit;
5828 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5829
5830 return tu_group;
5831}
5832
094b34ac
DE
5833/* Look up the type_unit_group for type unit CU, and create it if necessary.
5834 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5835
5836static struct type_unit_group *
ff39bb5e 5837get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5838{
5839 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5840 struct type_unit_group *tu_group;
5841 void **slot;
5842 unsigned int line_offset;
5843 struct type_unit_group type_unit_group_for_lookup;
5844
5845 if (dwarf2_per_objfile->type_unit_groups == NULL)
5846 {
5847 dwarf2_per_objfile->type_unit_groups =
5848 allocate_type_unit_groups_table ();
5849 }
5850
5851 /* Do we need to create a new group, or can we use an existing one? */
5852
5853 if (stmt_list)
5854 {
5855 line_offset = DW_UNSND (stmt_list);
5856 ++tu_stats->nr_symtab_sharers;
5857 }
5858 else
5859 {
5860 /* Ugh, no stmt_list. Rare, but we have to handle it.
5861 We can do various things here like create one group per TU or
5862 spread them over multiple groups to split up the expansion work.
5863 To avoid worst case scenarios (too many groups or too large groups)
5864 we, umm, group them in bunches. */
5865 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5866 | (tu_stats->nr_stmt_less_type_units
5867 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5868 ++tu_stats->nr_stmt_less_type_units;
5869 }
5870
094b34ac
DE
5871 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5872 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5873 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5874 &type_unit_group_for_lookup, INSERT);
5875 if (*slot != NULL)
5876 {
9a3c8263 5877 tu_group = (struct type_unit_group *) *slot;
f4dc4d17
DE
5878 gdb_assert (tu_group != NULL);
5879 }
5880 else
5881 {
5882 sect_offset line_offset_struct;
5883
5884 line_offset_struct.sect_off = line_offset;
094b34ac 5885 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5886 *slot = tu_group;
5887 ++tu_stats->nr_symtabs;
5888 }
5889
5890 return tu_group;
5891}
0018ea6f
DE
5892\f
5893/* Partial symbol tables. */
5894
5895/* Create a psymtab named NAME and assign it to PER_CU.
5896
5897 The caller must fill in the following details:
5898 dirname, textlow, texthigh. */
5899
5900static struct partial_symtab *
5901create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5902{
5903 struct objfile *objfile = per_cu->objfile;
5904 struct partial_symtab *pst;
5905
18a94d75 5906 pst = start_psymtab_common (objfile, name, 0,
0018ea6f
DE
5907 objfile->global_psymbols.next,
5908 objfile->static_psymbols.next);
5909
5910 pst->psymtabs_addrmap_supported = 1;
5911
5912 /* This is the glue that links PST into GDB's symbol API. */
5913 pst->read_symtab_private = per_cu;
5914 pst->read_symtab = dwarf2_read_symtab;
5915 per_cu->v.psymtab = pst;
5916
5917 return pst;
5918}
5919
b93601f3
TT
5920/* The DATA object passed to process_psymtab_comp_unit_reader has this
5921 type. */
5922
5923struct process_psymtab_comp_unit_data
5924{
5925 /* True if we are reading a DW_TAG_partial_unit. */
5926
5927 int want_partial_unit;
5928
5929 /* The "pretend" language that is used if the CU doesn't declare a
5930 language. */
5931
5932 enum language pretend_language;
5933};
5934
0018ea6f
DE
5935/* die_reader_func for process_psymtab_comp_unit. */
5936
5937static void
5938process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5939 const gdb_byte *info_ptr,
0018ea6f
DE
5940 struct die_info *comp_unit_die,
5941 int has_children,
5942 void *data)
5943{
5944 struct dwarf2_cu *cu = reader->cu;
5945 struct objfile *objfile = cu->objfile;
3e29f34a 5946 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f 5947 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0018ea6f
DE
5948 CORE_ADDR baseaddr;
5949 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5950 struct partial_symtab *pst;
5951 int has_pc_info;
5952 const char *filename;
9a3c8263
SM
5953 struct process_psymtab_comp_unit_data *info
5954 = (struct process_psymtab_comp_unit_data *) data;
0018ea6f 5955
b93601f3 5956 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
5957 return;
5958
5959 gdb_assert (! per_cu->is_debug_types);
5960
b93601f3 5961 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
5962
5963 cu->list_in_scope = &file_symbols;
5964
5965 /* Allocate a new partial symbol table structure. */
7d45c7c3
KB
5966 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
5967 if (filename == NULL)
0018ea6f 5968 filename = "";
0018ea6f
DE
5969
5970 pst = create_partial_symtab (per_cu, filename);
5971
5972 /* This must be done before calling dwarf2_build_include_psymtabs. */
7d45c7c3 5973 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
0018ea6f
DE
5974
5975 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5976
5977 dwarf2_find_base_address (comp_unit_die, cu);
5978
5979 /* Possibly set the default values of LOWPC and HIGHPC from
5980 `DW_AT_ranges'. */
5981 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5982 &best_highpc, cu, pst);
5983 if (has_pc_info == 1 && best_lowpc < best_highpc)
5984 /* Store the contiguous range if it is not empty; it can be empty for
5985 CUs with no code. */
5986 addrmap_set_empty (objfile->psymtabs_addrmap,
3e29f34a
MR
5987 gdbarch_adjust_dwarf2_addr (gdbarch,
5988 best_lowpc + baseaddr),
5989 gdbarch_adjust_dwarf2_addr (gdbarch,
5990 best_highpc + baseaddr) - 1,
5991 pst);
0018ea6f
DE
5992
5993 /* Check if comp unit has_children.
5994 If so, read the rest of the partial symbols from this comp unit.
5995 If not, there's no more debug_info for this comp unit. */
5996 if (has_children)
5997 {
5998 struct partial_die_info *first_die;
5999 CORE_ADDR lowpc, highpc;
6000
6001 lowpc = ((CORE_ADDR) -1);
6002 highpc = ((CORE_ADDR) 0);
6003
6004 first_die = load_partial_dies (reader, info_ptr, 1);
6005
6006 scan_partial_symbols (first_die, &lowpc, &highpc,
6007 ! has_pc_info, cu);
6008
6009 /* If we didn't find a lowpc, set it to highpc to avoid
6010 complaints from `maint check'. */
6011 if (lowpc == ((CORE_ADDR) -1))
6012 lowpc = highpc;
6013
6014 /* If the compilation unit didn't have an explicit address range,
6015 then use the information extracted from its child dies. */
6016 if (! has_pc_info)
6017 {
6018 best_lowpc = lowpc;
6019 best_highpc = highpc;
6020 }
6021 }
3e29f34a
MR
6022 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
6023 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
0018ea6f 6024
8763cede 6025 end_psymtab_common (objfile, pst);
0018ea6f
DE
6026
6027 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6028 {
6029 int i;
6030 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6031 struct dwarf2_per_cu_data *iter;
6032
6033 /* Fill in 'dependencies' here; we fill in 'users' in a
6034 post-pass. */
6035 pst->number_of_dependencies = len;
8d749320
SM
6036 pst->dependencies =
6037 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
0018ea6f
DE
6038 for (i = 0;
6039 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6040 i, iter);
6041 ++i)
6042 pst->dependencies[i] = iter->v.psymtab;
6043
6044 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6045 }
6046
6047 /* Get the list of files included in the current compilation unit,
6048 and build a psymtab for each of them. */
6049 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6050
b4f54984 6051 if (dwarf_read_debug)
0018ea6f
DE
6052 {
6053 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6054
6055 fprintf_unfiltered (gdb_stdlog,
6056 "Psymtab for %s unit @0x%x: %s - %s"
6057 ", %d global, %d static syms\n",
6058 per_cu->is_debug_types ? "type" : "comp",
6059 per_cu->offset.sect_off,
6060 paddress (gdbarch, pst->textlow),
6061 paddress (gdbarch, pst->texthigh),
6062 pst->n_global_syms, pst->n_static_syms);
6063 }
6064}
6065
6066/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6067 Process compilation unit THIS_CU for a psymtab. */
6068
6069static void
6070process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6071 int want_partial_unit,
6072 enum language pretend_language)
0018ea6f 6073{
b93601f3
TT
6074 struct process_psymtab_comp_unit_data info;
6075
0018ea6f
DE
6076 /* If this compilation unit was already read in, free the
6077 cached copy in order to read it in again. This is
6078 necessary because we skipped some symbols when we first
6079 read in the compilation unit (see load_partial_dies).
6080 This problem could be avoided, but the benefit is unclear. */
6081 if (this_cu->cu != NULL)
6082 free_one_cached_comp_unit (this_cu);
6083
6084 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6085 info.want_partial_unit = want_partial_unit;
6086 info.pretend_language = pretend_language;
0018ea6f
DE
6087 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6088 process_psymtab_comp_unit_reader,
b93601f3 6089 &info);
0018ea6f
DE
6090
6091 /* Age out any secondary CUs. */
6092 age_cached_comp_units ();
6093}
f4dc4d17
DE
6094
6095/* Reader function for build_type_psymtabs. */
6096
6097static void
6098build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6099 const gdb_byte *info_ptr,
f4dc4d17
DE
6100 struct die_info *type_unit_die,
6101 int has_children,
6102 void *data)
6103{
6104 struct objfile *objfile = dwarf2_per_objfile->objfile;
6105 struct dwarf2_cu *cu = reader->cu;
6106 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6107 struct signatured_type *sig_type;
f4dc4d17
DE
6108 struct type_unit_group *tu_group;
6109 struct attribute *attr;
6110 struct partial_die_info *first_die;
6111 CORE_ADDR lowpc, highpc;
6112 struct partial_symtab *pst;
6113
6114 gdb_assert (data == NULL);
0186c6a7
DE
6115 gdb_assert (per_cu->is_debug_types);
6116 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6117
6118 if (! has_children)
6119 return;
6120
6121 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6122 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6123
0186c6a7 6124 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6125
6126 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6127 cu->list_in_scope = &file_symbols;
6128 pst = create_partial_symtab (per_cu, "");
6129 pst->anonymous = 1;
6130
6131 first_die = load_partial_dies (reader, info_ptr, 1);
6132
6133 lowpc = (CORE_ADDR) -1;
6134 highpc = (CORE_ADDR) 0;
6135 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6136
8763cede 6137 end_psymtab_common (objfile, pst);
f4dc4d17
DE
6138}
6139
73051182
DE
6140/* Struct used to sort TUs by their abbreviation table offset. */
6141
6142struct tu_abbrev_offset
6143{
6144 struct signatured_type *sig_type;
6145 sect_offset abbrev_offset;
6146};
6147
6148/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6149
6150static int
6151sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6152{
9a3c8263
SM
6153 const struct tu_abbrev_offset * const *a
6154 = (const struct tu_abbrev_offset * const*) ap;
6155 const struct tu_abbrev_offset * const *b
6156 = (const struct tu_abbrev_offset * const*) bp;
73051182
DE
6157 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6158 unsigned int boff = (*b)->abbrev_offset.sect_off;
6159
6160 return (aoff > boff) - (aoff < boff);
6161}
6162
6163/* Efficiently read all the type units.
6164 This does the bulk of the work for build_type_psymtabs.
6165
6166 The efficiency is because we sort TUs by the abbrev table they use and
6167 only read each abbrev table once. In one program there are 200K TUs
6168 sharing 8K abbrev tables.
6169
6170 The main purpose of this function is to support building the
6171 dwarf2_per_objfile->type_unit_groups table.
6172 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6173 can collapse the search space by grouping them by stmt_list.
6174 The savings can be significant, in the same program from above the 200K TUs
6175 share 8K stmt_list tables.
6176
6177 FUNC is expected to call get_type_unit_group, which will create the
6178 struct type_unit_group if necessary and add it to
6179 dwarf2_per_objfile->type_unit_groups. */
6180
6181static void
6182build_type_psymtabs_1 (void)
6183{
6184 struct objfile *objfile = dwarf2_per_objfile->objfile;
6185 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6186 struct cleanup *cleanups;
6187 struct abbrev_table *abbrev_table;
6188 sect_offset abbrev_offset;
6189 struct tu_abbrev_offset *sorted_by_abbrev;
6190 struct type_unit_group **iter;
6191 int i;
6192
6193 /* It's up to the caller to not call us multiple times. */
6194 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6195
6196 if (dwarf2_per_objfile->n_type_units == 0)
6197 return;
6198
6199 /* TUs typically share abbrev tables, and there can be way more TUs than
6200 abbrev tables. Sort by abbrev table to reduce the number of times we
6201 read each abbrev table in.
6202 Alternatives are to punt or to maintain a cache of abbrev tables.
6203 This is simpler and efficient enough for now.
6204
6205 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6206 symtab to use). Typically TUs with the same abbrev offset have the same
6207 stmt_list value too so in practice this should work well.
6208
6209 The basic algorithm here is:
6210
6211 sort TUs by abbrev table
6212 for each TU with same abbrev table:
6213 read abbrev table if first user
6214 read TU top level DIE
6215 [IWBN if DWO skeletons had DW_AT_stmt_list]
6216 call FUNC */
6217
b4f54984 6218 if (dwarf_read_debug)
73051182
DE
6219 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6220
6221 /* Sort in a separate table to maintain the order of all_type_units
6222 for .gdb_index: TU indices directly index all_type_units. */
6223 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6224 dwarf2_per_objfile->n_type_units);
6225 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6226 {
6227 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6228
6229 sorted_by_abbrev[i].sig_type = sig_type;
6230 sorted_by_abbrev[i].abbrev_offset =
6231 read_abbrev_offset (sig_type->per_cu.section,
6232 sig_type->per_cu.offset);
6233 }
6234 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6235 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6236 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6237
6238 abbrev_offset.sect_off = ~(unsigned) 0;
6239 abbrev_table = NULL;
6240 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6241
6242 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6243 {
6244 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6245
6246 /* Switch to the next abbrev table if necessary. */
6247 if (abbrev_table == NULL
6248 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6249 {
6250 if (abbrev_table != NULL)
6251 {
6252 abbrev_table_free (abbrev_table);
6253 /* Reset to NULL in case abbrev_table_read_table throws
6254 an error: abbrev_table_free_cleanup will get called. */
6255 abbrev_table = NULL;
6256 }
6257 abbrev_offset = tu->abbrev_offset;
6258 abbrev_table =
6259 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6260 abbrev_offset);
6261 ++tu_stats->nr_uniq_abbrev_tables;
6262 }
6263
6264 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6265 build_type_psymtabs_reader, NULL);
6266 }
6267
73051182 6268 do_cleanups (cleanups);
6aa5f3a6 6269}
73051182 6270
6aa5f3a6
DE
6271/* Print collected type unit statistics. */
6272
6273static void
6274print_tu_stats (void)
6275{
6276 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6277
6278 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6279 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6280 dwarf2_per_objfile->n_type_units);
6281 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6282 tu_stats->nr_uniq_abbrev_tables);
6283 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6284 tu_stats->nr_symtabs);
6285 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6286 tu_stats->nr_symtab_sharers);
6287 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6288 tu_stats->nr_stmt_less_type_units);
6289 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6290 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6291}
6292
f4dc4d17
DE
6293/* Traversal function for build_type_psymtabs. */
6294
6295static int
6296build_type_psymtab_dependencies (void **slot, void *info)
6297{
6298 struct objfile *objfile = dwarf2_per_objfile->objfile;
6299 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6300 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6301 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6302 int len = VEC_length (sig_type_ptr, tu_group->tus);
6303 struct signatured_type *iter;
f4dc4d17
DE
6304 int i;
6305
6306 gdb_assert (len > 0);
0186c6a7 6307 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6308
6309 pst->number_of_dependencies = len;
8d749320
SM
6310 pst->dependencies =
6311 XOBNEWVEC (&objfile->objfile_obstack, struct partial_symtab *, len);
f4dc4d17 6312 for (i = 0;
0186c6a7 6313 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6314 ++i)
6315 {
0186c6a7
DE
6316 gdb_assert (iter->per_cu.is_debug_types);
6317 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6318 iter->type_unit_group = tu_group;
f4dc4d17
DE
6319 }
6320
0186c6a7 6321 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6322
6323 return 1;
6324}
6325
6326/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6327 Build partial symbol tables for the .debug_types comp-units. */
6328
6329static void
6330build_type_psymtabs (struct objfile *objfile)
6331{
0e50663e 6332 if (! create_all_type_units (objfile))
348e048f
DE
6333 return;
6334
73051182 6335 build_type_psymtabs_1 ();
6aa5f3a6 6336}
f4dc4d17 6337
6aa5f3a6
DE
6338/* Traversal function for process_skeletonless_type_unit.
6339 Read a TU in a DWO file and build partial symbols for it. */
6340
6341static int
6342process_skeletonless_type_unit (void **slot, void *info)
6343{
6344 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
9a3c8263 6345 struct objfile *objfile = (struct objfile *) info;
6aa5f3a6
DE
6346 struct signatured_type find_entry, *entry;
6347
6348 /* If this TU doesn't exist in the global table, add it and read it in. */
6349
6350 if (dwarf2_per_objfile->signatured_types == NULL)
6351 {
6352 dwarf2_per_objfile->signatured_types
6353 = allocate_signatured_type_table (objfile);
6354 }
6355
6356 find_entry.signature = dwo_unit->signature;
6357 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6358 INSERT);
6359 /* If we've already seen this type there's nothing to do. What's happening
6360 is we're doing our own version of comdat-folding here. */
6361 if (*slot != NULL)
6362 return 1;
6363
6364 /* This does the job that create_all_type_units would have done for
6365 this TU. */
6366 entry = add_type_unit (dwo_unit->signature, slot);
6367 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6368 *slot = entry;
6369
6370 /* This does the job that build_type_psymtabs_1 would have done. */
6371 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6372 build_type_psymtabs_reader, NULL);
6373
6374 return 1;
6375}
6376
6377/* Traversal function for process_skeletonless_type_units. */
6378
6379static int
6380process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6381{
6382 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6383
6384 if (dwo_file->tus != NULL)
6385 {
6386 htab_traverse_noresize (dwo_file->tus,
6387 process_skeletonless_type_unit, info);
6388 }
6389
6390 return 1;
6391}
6392
6393/* Scan all TUs of DWO files, verifying we've processed them.
6394 This is needed in case a TU was emitted without its skeleton.
6395 Note: This can't be done until we know what all the DWO files are. */
6396
6397static void
6398process_skeletonless_type_units (struct objfile *objfile)
6399{
6400 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6401 if (get_dwp_file () == NULL
6402 && dwarf2_per_objfile->dwo_files != NULL)
6403 {
6404 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6405 process_dwo_file_for_skeletonless_type_units,
6406 objfile);
6407 }
348e048f
DE
6408}
6409
60606b2c
TT
6410/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6411
6412static void
6413psymtabs_addrmap_cleanup (void *o)
6414{
9a3c8263 6415 struct objfile *objfile = (struct objfile *) o;
ec61707d 6416
60606b2c
TT
6417 objfile->psymtabs_addrmap = NULL;
6418}
6419
95554aad
TT
6420/* Compute the 'user' field for each psymtab in OBJFILE. */
6421
6422static void
6423set_partial_user (struct objfile *objfile)
6424{
6425 int i;
6426
6427 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6428 {
8832e7e3 6429 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6430 struct partial_symtab *pst = per_cu->v.psymtab;
6431 int j;
6432
36586728
TT
6433 if (pst == NULL)
6434 continue;
6435
95554aad
TT
6436 for (j = 0; j < pst->number_of_dependencies; ++j)
6437 {
6438 /* Set the 'user' field only if it is not already set. */
6439 if (pst->dependencies[j]->user == NULL)
6440 pst->dependencies[j]->user = pst;
6441 }
6442 }
6443}
6444
93311388
DE
6445/* Build the partial symbol table by doing a quick pass through the
6446 .debug_info and .debug_abbrev sections. */
72bf9492 6447
93311388 6448static void
c67a9c90 6449dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6450{
60606b2c
TT
6451 struct cleanup *back_to, *addrmap_cleanup;
6452 struct obstack temp_obstack;
21b2bd31 6453 int i;
93311388 6454
b4f54984 6455 if (dwarf_read_debug)
45cfd468
DE
6456 {
6457 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6458 objfile_name (objfile));
45cfd468
DE
6459 }
6460
98bfdba5
PA
6461 dwarf2_per_objfile->reading_partial_symbols = 1;
6462
be391dca 6463 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6464
93311388
DE
6465 /* Any cached compilation units will be linked by the per-objfile
6466 read_in_chain. Make sure to free them when we're done. */
6467 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6468
348e048f
DE
6469 build_type_psymtabs (objfile);
6470
93311388 6471 create_all_comp_units (objfile);
c906108c 6472
60606b2c
TT
6473 /* Create a temporary address map on a temporary obstack. We later
6474 copy this to the final obstack. */
6475 obstack_init (&temp_obstack);
6476 make_cleanup_obstack_free (&temp_obstack);
6477 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6478 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6479
21b2bd31 6480 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6481 {
8832e7e3 6482 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6483
b93601f3 6484 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6485 }
ff013f42 6486
6aa5f3a6
DE
6487 /* This has to wait until we read the CUs, we need the list of DWOs. */
6488 process_skeletonless_type_units (objfile);
6489
6490 /* Now that all TUs have been processed we can fill in the dependencies. */
6491 if (dwarf2_per_objfile->type_unit_groups != NULL)
6492 {
6493 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6494 build_type_psymtab_dependencies, NULL);
6495 }
6496
b4f54984 6497 if (dwarf_read_debug)
6aa5f3a6
DE
6498 print_tu_stats ();
6499
95554aad
TT
6500 set_partial_user (objfile);
6501
ff013f42
JK
6502 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6503 &objfile->objfile_obstack);
60606b2c 6504 discard_cleanups (addrmap_cleanup);
ff013f42 6505
ae038cb0 6506 do_cleanups (back_to);
45cfd468 6507
b4f54984 6508 if (dwarf_read_debug)
45cfd468 6509 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6510 objfile_name (objfile));
ae038cb0
DJ
6511}
6512
3019eac3 6513/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6514
6515static void
dee91e82 6516load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6517 const gdb_byte *info_ptr,
dee91e82
DE
6518 struct die_info *comp_unit_die,
6519 int has_children,
6520 void *data)
ae038cb0 6521{
dee91e82 6522 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6523
95554aad 6524 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6525
ae038cb0
DJ
6526 /* Check if comp unit has_children.
6527 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6528 If not, there's no more debug_info for this comp unit. */
d85a05f0 6529 if (has_children)
dee91e82
DE
6530 load_partial_dies (reader, info_ptr, 0);
6531}
98bfdba5 6532
dee91e82
DE
6533/* Load the partial DIEs for a secondary CU into memory.
6534 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6535
dee91e82
DE
6536static void
6537load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6538{
f4dc4d17
DE
6539 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6540 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6541}
6542
ae038cb0 6543static void
36586728
TT
6544read_comp_units_from_section (struct objfile *objfile,
6545 struct dwarf2_section_info *section,
6546 unsigned int is_dwz,
6547 int *n_allocated,
6548 int *n_comp_units,
6549 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6550{
d521ce57 6551 const gdb_byte *info_ptr;
a32a8923 6552 bfd *abfd = get_section_bfd_owner (section);
be391dca 6553
b4f54984 6554 if (dwarf_read_debug)
bf6af496 6555 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6556 get_section_name (section),
6557 get_section_file_name (section));
bf6af496 6558
36586728 6559 dwarf2_read_section (objfile, section);
ae038cb0 6560
36586728 6561 info_ptr = section->buffer;
6e70227d 6562
36586728 6563 while (info_ptr < section->buffer + section->size)
ae038cb0 6564 {
c764a876 6565 unsigned int length, initial_length_size;
ae038cb0 6566 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6567 sect_offset offset;
ae038cb0 6568
36586728 6569 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6570
6571 /* Read just enough information to find out where the next
6572 compilation unit is. */
36586728 6573 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6574
6575 /* Save the compilation unit for later lookup. */
8d749320 6576 this_cu = XOBNEW (&objfile->objfile_obstack, struct dwarf2_per_cu_data);
ae038cb0
DJ
6577 memset (this_cu, 0, sizeof (*this_cu));
6578 this_cu->offset = offset;
c764a876 6579 this_cu->length = length + initial_length_size;
36586728 6580 this_cu->is_dwz = is_dwz;
9291a0cd 6581 this_cu->objfile = objfile;
8a0459fd 6582 this_cu->section = section;
ae038cb0 6583
36586728 6584 if (*n_comp_units == *n_allocated)
ae038cb0 6585 {
36586728 6586 *n_allocated *= 2;
224c3ddb
SM
6587 *all_comp_units = XRESIZEVEC (struct dwarf2_per_cu_data *,
6588 *all_comp_units, *n_allocated);
ae038cb0 6589 }
36586728
TT
6590 (*all_comp_units)[*n_comp_units] = this_cu;
6591 ++*n_comp_units;
ae038cb0
DJ
6592
6593 info_ptr = info_ptr + this_cu->length;
6594 }
36586728
TT
6595}
6596
6597/* Create a list of all compilation units in OBJFILE.
6598 This is only done for -readnow and building partial symtabs. */
6599
6600static void
6601create_all_comp_units (struct objfile *objfile)
6602{
6603 int n_allocated;
6604 int n_comp_units;
6605 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6606 struct dwz_file *dwz;
36586728
TT
6607
6608 n_comp_units = 0;
6609 n_allocated = 10;
8d749320 6610 all_comp_units = XNEWVEC (struct dwarf2_per_cu_data *, n_allocated);
36586728
TT
6611
6612 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6613 &n_allocated, &n_comp_units, &all_comp_units);
6614
4db1a1dc
TT
6615 dwz = dwarf2_get_dwz_file ();
6616 if (dwz != NULL)
6617 read_comp_units_from_section (objfile, &dwz->info, 1,
6618 &n_allocated, &n_comp_units,
6619 &all_comp_units);
ae038cb0 6620
8d749320
SM
6621 dwarf2_per_objfile->all_comp_units = XOBNEWVEC (&objfile->objfile_obstack,
6622 struct dwarf2_per_cu_data *,
6623 n_comp_units);
ae038cb0
DJ
6624 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6625 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6626 xfree (all_comp_units);
6627 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6628}
6629
5734ee8b 6630/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6631 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6632 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6633 DW_AT_ranges). See the comments of add_partial_subprogram on how
6634 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6635
72bf9492
DJ
6636static void
6637scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6638 CORE_ADDR *highpc, int set_addrmap,
6639 struct dwarf2_cu *cu)
c906108c 6640{
72bf9492 6641 struct partial_die_info *pdi;
c906108c 6642
91c24f0a
DC
6643 /* Now, march along the PDI's, descending into ones which have
6644 interesting children but skipping the children of the other ones,
6645 until we reach the end of the compilation unit. */
c906108c 6646
72bf9492 6647 pdi = first_die;
91c24f0a 6648
72bf9492
DJ
6649 while (pdi != NULL)
6650 {
6651 fixup_partial_die (pdi, cu);
c906108c 6652
f55ee35c 6653 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6654 children, so we need to look at them. Ditto for anonymous
6655 enums. */
933c6fe4 6656
72bf9492 6657 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6658 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6659 || pdi->tag == DW_TAG_imported_unit)
c906108c 6660 {
72bf9492 6661 switch (pdi->tag)
c906108c
SS
6662 {
6663 case DW_TAG_subprogram:
cdc07690 6664 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6665 break;
72929c62 6666 case DW_TAG_constant:
c906108c
SS
6667 case DW_TAG_variable:
6668 case DW_TAG_typedef:
91c24f0a 6669 case DW_TAG_union_type:
72bf9492 6670 if (!pdi->is_declaration)
63d06c5c 6671 {
72bf9492 6672 add_partial_symbol (pdi, cu);
63d06c5c
DC
6673 }
6674 break;
c906108c 6675 case DW_TAG_class_type:
680b30c7 6676 case DW_TAG_interface_type:
c906108c 6677 case DW_TAG_structure_type:
72bf9492 6678 if (!pdi->is_declaration)
c906108c 6679 {
72bf9492 6680 add_partial_symbol (pdi, cu);
c906108c
SS
6681 }
6682 break;
91c24f0a 6683 case DW_TAG_enumeration_type:
72bf9492
DJ
6684 if (!pdi->is_declaration)
6685 add_partial_enumeration (pdi, cu);
c906108c
SS
6686 break;
6687 case DW_TAG_base_type:
a02abb62 6688 case DW_TAG_subrange_type:
c906108c 6689 /* File scope base type definitions are added to the partial
c5aa993b 6690 symbol table. */
72bf9492 6691 add_partial_symbol (pdi, cu);
c906108c 6692 break;
d9fa45fe 6693 case DW_TAG_namespace:
cdc07690 6694 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6695 break;
5d7cb8df 6696 case DW_TAG_module:
cdc07690 6697 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6698 break;
95554aad
TT
6699 case DW_TAG_imported_unit:
6700 {
6701 struct dwarf2_per_cu_data *per_cu;
6702
f4dc4d17
DE
6703 /* For now we don't handle imported units in type units. */
6704 if (cu->per_cu->is_debug_types)
6705 {
6706 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6707 " supported in type units [in module %s]"),
4262abfb 6708 objfile_name (cu->objfile));
f4dc4d17
DE
6709 }
6710
95554aad 6711 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6712 pdi->is_dwz,
95554aad
TT
6713 cu->objfile);
6714
6715 /* Go read the partial unit, if needed. */
6716 if (per_cu->v.psymtab == NULL)
b93601f3 6717 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6718
f4dc4d17 6719 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6720 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6721 }
6722 break;
74921315
KS
6723 case DW_TAG_imported_declaration:
6724 add_partial_symbol (pdi, cu);
6725 break;
c906108c
SS
6726 default:
6727 break;
6728 }
6729 }
6730
72bf9492
DJ
6731 /* If the die has a sibling, skip to the sibling. */
6732
6733 pdi = pdi->die_sibling;
6734 }
6735}
6736
6737/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6738
72bf9492 6739 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6740 name is concatenated with "::" and the partial DIE's name. For
6741 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6742 Enumerators are an exception; they use the scope of their parent
6743 enumeration type, i.e. the name of the enumeration type is not
6744 prepended to the enumerator.
91c24f0a 6745
72bf9492
DJ
6746 There are two complexities. One is DW_AT_specification; in this
6747 case "parent" means the parent of the target of the specification,
6748 instead of the direct parent of the DIE. The other is compilers
6749 which do not emit DW_TAG_namespace; in this case we try to guess
6750 the fully qualified name of structure types from their members'
6751 linkage names. This must be done using the DIE's children rather
6752 than the children of any DW_AT_specification target. We only need
6753 to do this for structures at the top level, i.e. if the target of
6754 any DW_AT_specification (if any; otherwise the DIE itself) does not
6755 have a parent. */
6756
6757/* Compute the scope prefix associated with PDI's parent, in
6758 compilation unit CU. The result will be allocated on CU's
6759 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6760 field. NULL is returned if no prefix is necessary. */
15d034d0 6761static const char *
72bf9492
DJ
6762partial_die_parent_scope (struct partial_die_info *pdi,
6763 struct dwarf2_cu *cu)
6764{
15d034d0 6765 const char *grandparent_scope;
72bf9492 6766 struct partial_die_info *parent, *real_pdi;
91c24f0a 6767
72bf9492
DJ
6768 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6769 then this means the parent of the specification DIE. */
6770
6771 real_pdi = pdi;
72bf9492 6772 while (real_pdi->has_specification)
36586728
TT
6773 real_pdi = find_partial_die (real_pdi->spec_offset,
6774 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6775
6776 parent = real_pdi->die_parent;
6777 if (parent == NULL)
6778 return NULL;
6779
6780 if (parent->scope_set)
6781 return parent->scope;
6782
6783 fixup_partial_die (parent, cu);
6784
10b3939b 6785 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6786
acebe513
UW
6787 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6788 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6789 Work around this problem here. */
6790 if (cu->language == language_cplus
6e70227d 6791 && parent->tag == DW_TAG_namespace
acebe513
UW
6792 && strcmp (parent->name, "::") == 0
6793 && grandparent_scope == NULL)
6794 {
6795 parent->scope = NULL;
6796 parent->scope_set = 1;
6797 return NULL;
6798 }
6799
9c6c53f7
SA
6800 if (pdi->tag == DW_TAG_enumerator)
6801 /* Enumerators should not get the name of the enumeration as a prefix. */
6802 parent->scope = grandparent_scope;
6803 else if (parent->tag == DW_TAG_namespace
f55ee35c 6804 || parent->tag == DW_TAG_module
72bf9492
DJ
6805 || parent->tag == DW_TAG_structure_type
6806 || parent->tag == DW_TAG_class_type
680b30c7 6807 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6808 || parent->tag == DW_TAG_union_type
6809 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6810 {
6811 if (grandparent_scope == NULL)
6812 parent->scope = parent->name;
6813 else
3e43a32a
MS
6814 parent->scope = typename_concat (&cu->comp_unit_obstack,
6815 grandparent_scope,
f55ee35c 6816 parent->name, 0, cu);
72bf9492 6817 }
72bf9492
DJ
6818 else
6819 {
6820 /* FIXME drow/2004-04-01: What should we be doing with
6821 function-local names? For partial symbols, we should probably be
6822 ignoring them. */
6823 complaint (&symfile_complaints,
e2e0b3e5 6824 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6825 parent->tag, pdi->offset.sect_off);
72bf9492 6826 parent->scope = grandparent_scope;
c906108c
SS
6827 }
6828
72bf9492
DJ
6829 parent->scope_set = 1;
6830 return parent->scope;
6831}
6832
6833/* Return the fully scoped name associated with PDI, from compilation unit
6834 CU. The result will be allocated with malloc. */
4568ecf9 6835
72bf9492
DJ
6836static char *
6837partial_die_full_name (struct partial_die_info *pdi,
6838 struct dwarf2_cu *cu)
6839{
15d034d0 6840 const char *parent_scope;
72bf9492 6841
98bfdba5
PA
6842 /* If this is a template instantiation, we can not work out the
6843 template arguments from partial DIEs. So, unfortunately, we have
6844 to go through the full DIEs. At least any work we do building
6845 types here will be reused if full symbols are loaded later. */
6846 if (pdi->has_template_arguments)
6847 {
6848 fixup_partial_die (pdi, cu);
6849
6850 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6851 {
6852 struct die_info *die;
6853 struct attribute attr;
6854 struct dwarf2_cu *ref_cu = cu;
6855
b64f50a1 6856 /* DW_FORM_ref_addr is using section offset. */
b4069958 6857 attr.name = (enum dwarf_attribute) 0;
98bfdba5 6858 attr.form = DW_FORM_ref_addr;
4568ecf9 6859 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6860 die = follow_die_ref (NULL, &attr, &ref_cu);
6861
6862 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6863 }
6864 }
6865
72bf9492
DJ
6866 parent_scope = partial_die_parent_scope (pdi, cu);
6867 if (parent_scope == NULL)
6868 return NULL;
6869 else
f55ee35c 6870 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6871}
6872
6873static void
72bf9492 6874add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6875{
e7c27a73 6876 struct objfile *objfile = cu->objfile;
3e29f34a 6877 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 6878 CORE_ADDR addr = 0;
15d034d0 6879 const char *actual_name = NULL;
e142c38c 6880 CORE_ADDR baseaddr;
15d034d0 6881 char *built_actual_name;
e142c38c
DJ
6882
6883 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6884
15d034d0
TT
6885 built_actual_name = partial_die_full_name (pdi, cu);
6886 if (built_actual_name != NULL)
6887 actual_name = built_actual_name;
63d06c5c 6888
72bf9492
DJ
6889 if (actual_name == NULL)
6890 actual_name = pdi->name;
6891
c906108c
SS
6892 switch (pdi->tag)
6893 {
6894 case DW_TAG_subprogram:
3e29f34a 6895 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
2cfa0c8d 6896 if (pdi->is_external || cu->language == language_ada)
c906108c 6897 {
2cfa0c8d
JB
6898 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6899 of the global scope. But in Ada, we want to be able to access
6900 nested procedures globally. So all Ada subprograms are stored
6901 in the global scope. */
f47fb265 6902 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6903 built_actual_name != NULL,
f47fb265
MS
6904 VAR_DOMAIN, LOC_BLOCK,
6905 &objfile->global_psymbols,
1762568f 6906 addr, cu->language, objfile);
c906108c
SS
6907 }
6908 else
6909 {
f47fb265 6910 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6911 built_actual_name != NULL,
f47fb265
MS
6912 VAR_DOMAIN, LOC_BLOCK,
6913 &objfile->static_psymbols,
1762568f 6914 addr, cu->language, objfile);
c906108c
SS
6915 }
6916 break;
72929c62
JB
6917 case DW_TAG_constant:
6918 {
6919 struct psymbol_allocation_list *list;
6920
6921 if (pdi->is_external)
6922 list = &objfile->global_psymbols;
6923 else
6924 list = &objfile->static_psymbols;
f47fb265 6925 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6926 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
1762568f 6927 list, 0, cu->language, objfile);
72929c62
JB
6928 }
6929 break;
c906108c 6930 case DW_TAG_variable:
95554aad
TT
6931 if (pdi->d.locdesc)
6932 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6933
95554aad 6934 if (pdi->d.locdesc
caac4577
JG
6935 && addr == 0
6936 && !dwarf2_per_objfile->has_section_at_zero)
6937 {
6938 /* A global or static variable may also have been stripped
6939 out by the linker if unused, in which case its address
6940 will be nullified; do not add such variables into partial
6941 symbol table then. */
6942 }
6943 else if (pdi->is_external)
c906108c
SS
6944 {
6945 /* Global Variable.
6946 Don't enter into the minimal symbol tables as there is
6947 a minimal symbol table entry from the ELF symbols already.
6948 Enter into partial symbol table if it has a location
6949 descriptor or a type.
6950 If the location descriptor is missing, new_symbol will create
6951 a LOC_UNRESOLVED symbol, the address of the variable will then
6952 be determined from the minimal symbol table whenever the variable
6953 is referenced.
6954 The address for the partial symbol table entry is not
6955 used by GDB, but it comes in handy for debugging partial symbol
6956 table building. */
6957
95554aad 6958 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6959 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6960 built_actual_name != NULL,
f47fb265
MS
6961 VAR_DOMAIN, LOC_STATIC,
6962 &objfile->global_psymbols,
1762568f 6963 addr + baseaddr,
f47fb265 6964 cu->language, objfile);
c906108c
SS
6965 }
6966 else
6967 {
ff908ebf
AW
6968 int has_loc = pdi->d.locdesc != NULL;
6969
6970 /* Static Variable. Skip symbols whose value we cannot know (those
6971 without location descriptors or constant values). */
6972 if (!has_loc && !pdi->has_const_value)
decbce07 6973 {
15d034d0 6974 xfree (built_actual_name);
decbce07
MS
6975 return;
6976 }
ff908ebf 6977
f47fb265 6978 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6979 built_actual_name != NULL,
f47fb265
MS
6980 VAR_DOMAIN, LOC_STATIC,
6981 &objfile->static_psymbols,
ff908ebf 6982 has_loc ? addr + baseaddr : (CORE_ADDR) 0,
f47fb265 6983 cu->language, objfile);
c906108c
SS
6984 }
6985 break;
6986 case DW_TAG_typedef:
6987 case DW_TAG_base_type:
a02abb62 6988 case DW_TAG_subrange_type:
38d518c9 6989 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6990 built_actual_name != NULL,
176620f1 6991 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 6992 &objfile->static_psymbols,
1762568f 6993 0, cu->language, objfile);
c906108c 6994 break;
74921315 6995 case DW_TAG_imported_declaration:
72bf9492
DJ
6996 case DW_TAG_namespace:
6997 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6998 built_actual_name != NULL,
72bf9492
DJ
6999 VAR_DOMAIN, LOC_TYPEDEF,
7000 &objfile->global_psymbols,
1762568f 7001 0, cu->language, objfile);
72bf9492 7002 break;
530e8392
KB
7003 case DW_TAG_module:
7004 add_psymbol_to_list (actual_name, strlen (actual_name),
7005 built_actual_name != NULL,
7006 MODULE_DOMAIN, LOC_TYPEDEF,
7007 &objfile->global_psymbols,
1762568f 7008 0, cu->language, objfile);
530e8392 7009 break;
c906108c 7010 case DW_TAG_class_type:
680b30c7 7011 case DW_TAG_interface_type:
c906108c
SS
7012 case DW_TAG_structure_type:
7013 case DW_TAG_union_type:
7014 case DW_TAG_enumeration_type:
fa4028e9
JB
7015 /* Skip external references. The DWARF standard says in the section
7016 about "Structure, Union, and Class Type Entries": "An incomplete
7017 structure, union or class type is represented by a structure,
7018 union or class entry that does not have a byte size attribute
7019 and that has a DW_AT_declaration attribute." */
7020 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 7021 {
15d034d0 7022 xfree (built_actual_name);
decbce07
MS
7023 return;
7024 }
fa4028e9 7025
63d06c5c
DC
7026 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
7027 static vs. global. */
38d518c9 7028 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7029 built_actual_name != NULL,
176620f1 7030 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
7031 (cu->language == language_cplus
7032 || cu->language == language_java)
63d06c5c
DC
7033 ? &objfile->global_psymbols
7034 : &objfile->static_psymbols,
1762568f 7035 0, cu->language, objfile);
c906108c 7036
c906108c
SS
7037 break;
7038 case DW_TAG_enumerator:
38d518c9 7039 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 7040 built_actual_name != NULL,
176620f1 7041 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
7042 (cu->language == language_cplus
7043 || cu->language == language_java)
f6fe98ef
DJ
7044 ? &objfile->global_psymbols
7045 : &objfile->static_psymbols,
1762568f 7046 0, cu->language, objfile);
c906108c
SS
7047 break;
7048 default:
7049 break;
7050 }
5c4e30ca 7051
15d034d0 7052 xfree (built_actual_name);
c906108c
SS
7053}
7054
5c4e30ca
DC
7055/* Read a partial die corresponding to a namespace; also, add a symbol
7056 corresponding to that namespace to the symbol table. NAMESPACE is
7057 the name of the enclosing namespace. */
91c24f0a 7058
72bf9492
DJ
7059static void
7060add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 7061 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7062 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 7063{
72bf9492 7064 /* Add a symbol for the namespace. */
e7c27a73 7065
72bf9492 7066 add_partial_symbol (pdi, cu);
5c4e30ca
DC
7067
7068 /* Now scan partial symbols in that namespace. */
7069
91c24f0a 7070 if (pdi->has_children)
cdc07690 7071 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
7072}
7073
5d7cb8df
JK
7074/* Read a partial die corresponding to a Fortran module. */
7075
7076static void
7077add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 7078 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 7079{
530e8392
KB
7080 /* Add a symbol for the namespace. */
7081
7082 add_partial_symbol (pdi, cu);
7083
f55ee35c 7084 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7085
7086 if (pdi->has_children)
cdc07690 7087 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7088}
7089
bc30ff58
JB
7090/* Read a partial die corresponding to a subprogram and create a partial
7091 symbol for that subprogram. When the CU language allows it, this
7092 routine also defines a partial symbol for each nested subprogram
cdc07690 7093 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7094 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7095 and highest PC values found in PDI.
6e70227d 7096
cdc07690
YQ
7097 PDI may also be a lexical block, in which case we simply search
7098 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7099 Again, this is only performed when the CU language allows this
7100 type of definitions. */
7101
7102static void
7103add_partial_subprogram (struct partial_die_info *pdi,
7104 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7105 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7106{
7107 if (pdi->tag == DW_TAG_subprogram)
7108 {
7109 if (pdi->has_pc_info)
7110 {
7111 if (pdi->lowpc < *lowpc)
7112 *lowpc = pdi->lowpc;
7113 if (pdi->highpc > *highpc)
7114 *highpc = pdi->highpc;
cdc07690 7115 if (set_addrmap)
5734ee8b 7116 {
5734ee8b 7117 struct objfile *objfile = cu->objfile;
3e29f34a
MR
7118 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7119 CORE_ADDR baseaddr;
7120 CORE_ADDR highpc;
7121 CORE_ADDR lowpc;
5734ee8b
DJ
7122
7123 baseaddr = ANOFFSET (objfile->section_offsets,
7124 SECT_OFF_TEXT (objfile));
3e29f34a
MR
7125 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7126 pdi->lowpc + baseaddr);
7127 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7128 pdi->highpc + baseaddr);
7129 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 7130 cu->per_cu->v.psymtab);
5734ee8b 7131 }
481860b3
GB
7132 }
7133
7134 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7135 {
bc30ff58 7136 if (!pdi->is_declaration)
e8d05480
JB
7137 /* Ignore subprogram DIEs that do not have a name, they are
7138 illegal. Do not emit a complaint at this point, we will
7139 do so when we convert this psymtab into a symtab. */
7140 if (pdi->name)
7141 add_partial_symbol (pdi, cu);
bc30ff58
JB
7142 }
7143 }
6e70227d 7144
bc30ff58
JB
7145 if (! pdi->has_children)
7146 return;
7147
7148 if (cu->language == language_ada)
7149 {
7150 pdi = pdi->die_child;
7151 while (pdi != NULL)
7152 {
7153 fixup_partial_die (pdi, cu);
7154 if (pdi->tag == DW_TAG_subprogram
7155 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7156 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7157 pdi = pdi->die_sibling;
7158 }
7159 }
7160}
7161
91c24f0a
DC
7162/* Read a partial die corresponding to an enumeration type. */
7163
72bf9492
DJ
7164static void
7165add_partial_enumeration (struct partial_die_info *enum_pdi,
7166 struct dwarf2_cu *cu)
91c24f0a 7167{
72bf9492 7168 struct partial_die_info *pdi;
91c24f0a
DC
7169
7170 if (enum_pdi->name != NULL)
72bf9492
DJ
7171 add_partial_symbol (enum_pdi, cu);
7172
7173 pdi = enum_pdi->die_child;
7174 while (pdi)
91c24f0a 7175 {
72bf9492 7176 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7177 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7178 else
72bf9492
DJ
7179 add_partial_symbol (pdi, cu);
7180 pdi = pdi->die_sibling;
91c24f0a 7181 }
91c24f0a
DC
7182}
7183
6caca83c
CC
7184/* Return the initial uleb128 in the die at INFO_PTR. */
7185
7186static unsigned int
d521ce57 7187peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7188{
7189 unsigned int bytes_read;
7190
7191 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7192}
7193
4bb7a0a7
DJ
7194/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7195 Return the corresponding abbrev, or NULL if the number is zero (indicating
7196 an empty DIE). In either case *BYTES_READ will be set to the length of
7197 the initial number. */
7198
7199static struct abbrev_info *
d521ce57 7200peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7201 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7202{
7203 bfd *abfd = cu->objfile->obfd;
7204 unsigned int abbrev_number;
7205 struct abbrev_info *abbrev;
7206
7207 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7208
7209 if (abbrev_number == 0)
7210 return NULL;
7211
433df2d4 7212 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7213 if (!abbrev)
7214 {
422b9917
DE
7215 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7216 " at offset 0x%x [in module %s]"),
7217 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7218 cu->header.offset.sect_off, bfd_get_filename (abfd));
4bb7a0a7
DJ
7219 }
7220
7221 return abbrev;
7222}
7223
93311388
DE
7224/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7225 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7226 DIE. Any children of the skipped DIEs will also be skipped. */
7227
d521ce57
TT
7228static const gdb_byte *
7229skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7230{
dee91e82 7231 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7232 struct abbrev_info *abbrev;
7233 unsigned int bytes_read;
7234
7235 while (1)
7236 {
7237 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7238 if (abbrev == NULL)
7239 return info_ptr + bytes_read;
7240 else
dee91e82 7241 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7242 }
7243}
7244
93311388
DE
7245/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7246 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7247 abbrev corresponding to that skipped uleb128 should be passed in
7248 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7249 children. */
7250
d521ce57
TT
7251static const gdb_byte *
7252skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7253 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7254{
7255 unsigned int bytes_read;
7256 struct attribute attr;
dee91e82
DE
7257 bfd *abfd = reader->abfd;
7258 struct dwarf2_cu *cu = reader->cu;
d521ce57 7259 const gdb_byte *buffer = reader->buffer;
f664829e 7260 const gdb_byte *buffer_end = reader->buffer_end;
d521ce57 7261 const gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
7262 unsigned int form, i;
7263
7264 for (i = 0; i < abbrev->num_attrs; i++)
7265 {
7266 /* The only abbrev we care about is DW_AT_sibling. */
7267 if (abbrev->attrs[i].name == DW_AT_sibling)
7268 {
dee91e82 7269 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7270 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7271 complaint (&symfile_complaints,
7272 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7273 else
b9502d3f
WN
7274 {
7275 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7276 const gdb_byte *sibling_ptr = buffer + off;
7277
7278 if (sibling_ptr < info_ptr)
7279 complaint (&symfile_complaints,
7280 _("DW_AT_sibling points backwards"));
22869d73
KS
7281 else if (sibling_ptr > reader->buffer_end)
7282 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7283 else
7284 return sibling_ptr;
7285 }
4bb7a0a7
DJ
7286 }
7287
7288 /* If it isn't DW_AT_sibling, skip this attribute. */
7289 form = abbrev->attrs[i].form;
7290 skip_attribute:
7291 switch (form)
7292 {
4bb7a0a7 7293 case DW_FORM_ref_addr:
ae411497
TT
7294 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7295 and later it is offset sized. */
7296 if (cu->header.version == 2)
7297 info_ptr += cu->header.addr_size;
7298 else
7299 info_ptr += cu->header.offset_size;
7300 break;
36586728
TT
7301 case DW_FORM_GNU_ref_alt:
7302 info_ptr += cu->header.offset_size;
7303 break;
ae411497 7304 case DW_FORM_addr:
4bb7a0a7
DJ
7305 info_ptr += cu->header.addr_size;
7306 break;
7307 case DW_FORM_data1:
7308 case DW_FORM_ref1:
7309 case DW_FORM_flag:
7310 info_ptr += 1;
7311 break;
2dc7f7b3
TT
7312 case DW_FORM_flag_present:
7313 break;
4bb7a0a7
DJ
7314 case DW_FORM_data2:
7315 case DW_FORM_ref2:
7316 info_ptr += 2;
7317 break;
7318 case DW_FORM_data4:
7319 case DW_FORM_ref4:
7320 info_ptr += 4;
7321 break;
7322 case DW_FORM_data8:
7323 case DW_FORM_ref8:
55f1336d 7324 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7325 info_ptr += 8;
7326 break;
7327 case DW_FORM_string:
9b1c24c8 7328 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7329 info_ptr += bytes_read;
7330 break;
2dc7f7b3 7331 case DW_FORM_sec_offset:
4bb7a0a7 7332 case DW_FORM_strp:
36586728 7333 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7334 info_ptr += cu->header.offset_size;
7335 break;
2dc7f7b3 7336 case DW_FORM_exprloc:
4bb7a0a7
DJ
7337 case DW_FORM_block:
7338 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7339 info_ptr += bytes_read;
7340 break;
7341 case DW_FORM_block1:
7342 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7343 break;
7344 case DW_FORM_block2:
7345 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7346 break;
7347 case DW_FORM_block4:
7348 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7349 break;
7350 case DW_FORM_sdata:
7351 case DW_FORM_udata:
7352 case DW_FORM_ref_udata:
3019eac3
DE
7353 case DW_FORM_GNU_addr_index:
7354 case DW_FORM_GNU_str_index:
d521ce57 7355 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7356 break;
7357 case DW_FORM_indirect:
7358 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7359 info_ptr += bytes_read;
7360 /* We need to continue parsing from here, so just go back to
7361 the top. */
7362 goto skip_attribute;
7363
7364 default:
3e43a32a
MS
7365 error (_("Dwarf Error: Cannot handle %s "
7366 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7367 dwarf_form_name (form),
7368 bfd_get_filename (abfd));
7369 }
7370 }
7371
7372 if (abbrev->has_children)
dee91e82 7373 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7374 else
7375 return info_ptr;
7376}
7377
93311388 7378/* Locate ORIG_PDI's sibling.
dee91e82 7379 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7380
d521ce57 7381static const gdb_byte *
dee91e82
DE
7382locate_pdi_sibling (const struct die_reader_specs *reader,
7383 struct partial_die_info *orig_pdi,
d521ce57 7384 const gdb_byte *info_ptr)
91c24f0a
DC
7385{
7386 /* Do we know the sibling already? */
72bf9492 7387
91c24f0a
DC
7388 if (orig_pdi->sibling)
7389 return orig_pdi->sibling;
7390
7391 /* Are there any children to deal with? */
7392
7393 if (!orig_pdi->has_children)
7394 return info_ptr;
7395
4bb7a0a7 7396 /* Skip the children the long way. */
91c24f0a 7397
dee91e82 7398 return skip_children (reader, info_ptr);
91c24f0a
DC
7399}
7400
257e7a09 7401/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7402 not NULL. */
c906108c
SS
7403
7404static void
257e7a09
YQ
7405dwarf2_read_symtab (struct partial_symtab *self,
7406 struct objfile *objfile)
c906108c 7407{
257e7a09 7408 if (self->readin)
c906108c 7409 {
442e4d9c 7410 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7411 self->filename);
442e4d9c
YQ
7412 }
7413 else
7414 {
7415 if (info_verbose)
c906108c 7416 {
442e4d9c 7417 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7418 self->filename);
442e4d9c 7419 gdb_flush (gdb_stdout);
c906108c 7420 }
c906108c 7421
442e4d9c 7422 /* Restore our global data. */
9a3c8263
SM
7423 dwarf2_per_objfile
7424 = (struct dwarf2_per_objfile *) objfile_data (objfile,
7425 dwarf2_objfile_data_key);
10b3939b 7426
442e4d9c
YQ
7427 /* If this psymtab is constructed from a debug-only objfile, the
7428 has_section_at_zero flag will not necessarily be correct. We
7429 can get the correct value for this flag by looking at the data
7430 associated with the (presumably stripped) associated objfile. */
7431 if (objfile->separate_debug_objfile_backlink)
7432 {
7433 struct dwarf2_per_objfile *dpo_backlink
9a3c8263
SM
7434 = ((struct dwarf2_per_objfile *)
7435 objfile_data (objfile->separate_debug_objfile_backlink,
7436 dwarf2_objfile_data_key));
9a619af0 7437
442e4d9c
YQ
7438 dwarf2_per_objfile->has_section_at_zero
7439 = dpo_backlink->has_section_at_zero;
7440 }
b2ab525c 7441
442e4d9c 7442 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7443
257e7a09 7444 psymtab_to_symtab_1 (self);
c906108c 7445
442e4d9c
YQ
7446 /* Finish up the debug error message. */
7447 if (info_verbose)
7448 printf_filtered (_("done.\n"));
c906108c 7449 }
95554aad
TT
7450
7451 process_cu_includes ();
c906108c 7452}
9cdd5dbd
DE
7453\f
7454/* Reading in full CUs. */
c906108c 7455
10b3939b
DJ
7456/* Add PER_CU to the queue. */
7457
7458static void
95554aad
TT
7459queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7460 enum language pretend_language)
10b3939b
DJ
7461{
7462 struct dwarf2_queue_item *item;
7463
7464 per_cu->queued = 1;
8d749320 7465 item = XNEW (struct dwarf2_queue_item);
10b3939b 7466 item->per_cu = per_cu;
95554aad 7467 item->pretend_language = pretend_language;
10b3939b
DJ
7468 item->next = NULL;
7469
7470 if (dwarf2_queue == NULL)
7471 dwarf2_queue = item;
7472 else
7473 dwarf2_queue_tail->next = item;
7474
7475 dwarf2_queue_tail = item;
7476}
7477
89e63ee4
DE
7478/* If PER_CU is not yet queued, add it to the queue.
7479 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7480 dependency.
0907af0c 7481 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7482 meaning either PER_CU is already queued or it is already loaded.
7483
7484 N.B. There is an invariant here that if a CU is queued then it is loaded.
7485 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7486
7487static int
89e63ee4 7488maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7489 struct dwarf2_per_cu_data *per_cu,
7490 enum language pretend_language)
7491{
7492 /* We may arrive here during partial symbol reading, if we need full
7493 DIEs to process an unusual case (e.g. template arguments). Do
7494 not queue PER_CU, just tell our caller to load its DIEs. */
7495 if (dwarf2_per_objfile->reading_partial_symbols)
7496 {
7497 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7498 return 1;
7499 return 0;
7500 }
7501
7502 /* Mark the dependence relation so that we don't flush PER_CU
7503 too early. */
89e63ee4
DE
7504 if (dependent_cu != NULL)
7505 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7506
7507 /* If it's already on the queue, we have nothing to do. */
7508 if (per_cu->queued)
7509 return 0;
7510
7511 /* If the compilation unit is already loaded, just mark it as
7512 used. */
7513 if (per_cu->cu != NULL)
7514 {
7515 per_cu->cu->last_used = 0;
7516 return 0;
7517 }
7518
7519 /* Add it to the queue. */
7520 queue_comp_unit (per_cu, pretend_language);
7521
7522 return 1;
7523}
7524
10b3939b
DJ
7525/* Process the queue. */
7526
7527static void
a0f42c21 7528process_queue (void)
10b3939b
DJ
7529{
7530 struct dwarf2_queue_item *item, *next_item;
7531
b4f54984 7532 if (dwarf_read_debug)
45cfd468
DE
7533 {
7534 fprintf_unfiltered (gdb_stdlog,
7535 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7536 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7537 }
7538
03dd20cc
DJ
7539 /* The queue starts out with one item, but following a DIE reference
7540 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7541 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7542 {
cc12ce38
DE
7543 if ((dwarf2_per_objfile->using_index
7544 ? !item->per_cu->v.quick->compunit_symtab
7545 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
7546 /* Skip dummy CUs. */
7547 && item->per_cu->cu != NULL)
f4dc4d17
DE
7548 {
7549 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7550 unsigned int debug_print_threshold;
247f5c4f 7551 char buf[100];
f4dc4d17 7552
247f5c4f 7553 if (per_cu->is_debug_types)
f4dc4d17 7554 {
247f5c4f
DE
7555 struct signatured_type *sig_type =
7556 (struct signatured_type *) per_cu;
7557
7558 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7559 hex_string (sig_type->signature),
7560 per_cu->offset.sect_off);
7561 /* There can be 100s of TUs.
7562 Only print them in verbose mode. */
7563 debug_print_threshold = 2;
f4dc4d17 7564 }
247f5c4f 7565 else
73be47f5
DE
7566 {
7567 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7568 debug_print_threshold = 1;
7569 }
247f5c4f 7570
b4f54984 7571 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7572 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7573
7574 if (per_cu->is_debug_types)
7575 process_full_type_unit (per_cu, item->pretend_language);
7576 else
7577 process_full_comp_unit (per_cu, item->pretend_language);
7578
b4f54984 7579 if (dwarf_read_debug >= debug_print_threshold)
247f5c4f 7580 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7581 }
10b3939b
DJ
7582
7583 item->per_cu->queued = 0;
7584 next_item = item->next;
7585 xfree (item);
7586 }
7587
7588 dwarf2_queue_tail = NULL;
45cfd468 7589
b4f54984 7590 if (dwarf_read_debug)
45cfd468
DE
7591 {
7592 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7593 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7594 }
10b3939b
DJ
7595}
7596
7597/* Free all allocated queue entries. This function only releases anything if
7598 an error was thrown; if the queue was processed then it would have been
7599 freed as we went along. */
7600
7601static void
7602dwarf2_release_queue (void *dummy)
7603{
7604 struct dwarf2_queue_item *item, *last;
7605
7606 item = dwarf2_queue;
7607 while (item)
7608 {
7609 /* Anything still marked queued is likely to be in an
7610 inconsistent state, so discard it. */
7611 if (item->per_cu->queued)
7612 {
7613 if (item->per_cu->cu != NULL)
dee91e82 7614 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7615 item->per_cu->queued = 0;
7616 }
7617
7618 last = item;
7619 item = item->next;
7620 xfree (last);
7621 }
7622
7623 dwarf2_queue = dwarf2_queue_tail = NULL;
7624}
7625
7626/* Read in full symbols for PST, and anything it depends on. */
7627
c906108c 7628static void
fba45db2 7629psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7630{
10b3939b 7631 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7632 int i;
7633
95554aad
TT
7634 if (pst->readin)
7635 return;
7636
aaa75496 7637 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7638 if (!pst->dependencies[i]->readin
7639 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7640 {
7641 /* Inform about additional files that need to be read in. */
7642 if (info_verbose)
7643 {
a3f17187 7644 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7645 fputs_filtered (" ", gdb_stdout);
7646 wrap_here ("");
7647 fputs_filtered ("and ", gdb_stdout);
7648 wrap_here ("");
7649 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7650 wrap_here (""); /* Flush output. */
aaa75496
JB
7651 gdb_flush (gdb_stdout);
7652 }
7653 psymtab_to_symtab_1 (pst->dependencies[i]);
7654 }
7655
9a3c8263 7656 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
10b3939b
DJ
7657
7658 if (per_cu == NULL)
aaa75496
JB
7659 {
7660 /* It's an include file, no symbols to read for it.
7661 Everything is in the parent symtab. */
7662 pst->readin = 1;
7663 return;
7664 }
c906108c 7665
a0f42c21 7666 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7667}
7668
dee91e82
DE
7669/* Trivial hash function for die_info: the hash value of a DIE
7670 is its offset in .debug_info for this objfile. */
10b3939b 7671
dee91e82
DE
7672static hashval_t
7673die_hash (const void *item)
10b3939b 7674{
9a3c8263 7675 const struct die_info *die = (const struct die_info *) item;
6502dd73 7676
dee91e82
DE
7677 return die->offset.sect_off;
7678}
63d06c5c 7679
dee91e82
DE
7680/* Trivial comparison function for die_info structures: two DIEs
7681 are equal if they have the same offset. */
98bfdba5 7682
dee91e82
DE
7683static int
7684die_eq (const void *item_lhs, const void *item_rhs)
7685{
9a3c8263
SM
7686 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
7687 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
c906108c 7688
dee91e82
DE
7689 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7690}
c906108c 7691
dee91e82
DE
7692/* die_reader_func for load_full_comp_unit.
7693 This is identical to read_signatured_type_reader,
7694 but is kept separate for now. */
c906108c 7695
dee91e82
DE
7696static void
7697load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7698 const gdb_byte *info_ptr,
dee91e82
DE
7699 struct die_info *comp_unit_die,
7700 int has_children,
7701 void *data)
7702{
7703 struct dwarf2_cu *cu = reader->cu;
9a3c8263 7704 enum language *language_ptr = (enum language *) data;
6caca83c 7705
dee91e82
DE
7706 gdb_assert (cu->die_hash == NULL);
7707 cu->die_hash =
7708 htab_create_alloc_ex (cu->header.length / 12,
7709 die_hash,
7710 die_eq,
7711 NULL,
7712 &cu->comp_unit_obstack,
7713 hashtab_obstack_allocate,
7714 dummy_obstack_deallocate);
e142c38c 7715
dee91e82
DE
7716 if (has_children)
7717 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7718 &info_ptr, comp_unit_die);
7719 cu->dies = comp_unit_die;
7720 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7721
7722 /* We try not to read any attributes in this function, because not
9cdd5dbd 7723 all CUs needed for references have been loaded yet, and symbol
10b3939b 7724 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7725 or we won't be able to build types correctly.
7726 Similarly, if we do not read the producer, we can not apply
7727 producer-specific interpretation. */
95554aad 7728 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7729}
10b3939b 7730
dee91e82 7731/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7732
dee91e82 7733static void
95554aad
TT
7734load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7735 enum language pretend_language)
dee91e82 7736{
3019eac3 7737 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7738
f4dc4d17
DE
7739 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7740 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7741}
7742
3da10d80
KS
7743/* Add a DIE to the delayed physname list. */
7744
7745static void
7746add_to_method_list (struct type *type, int fnfield_index, int index,
7747 const char *name, struct die_info *die,
7748 struct dwarf2_cu *cu)
7749{
7750 struct delayed_method_info mi;
7751 mi.type = type;
7752 mi.fnfield_index = fnfield_index;
7753 mi.index = index;
7754 mi.name = name;
7755 mi.die = die;
7756 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7757}
7758
7759/* A cleanup for freeing the delayed method list. */
7760
7761static void
7762free_delayed_list (void *ptr)
7763{
7764 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7765 if (cu->method_list != NULL)
7766 {
7767 VEC_free (delayed_method_info, cu->method_list);
7768 cu->method_list = NULL;
7769 }
7770}
7771
7772/* Compute the physnames of any methods on the CU's method list.
7773
7774 The computation of method physnames is delayed in order to avoid the
7775 (bad) condition that one of the method's formal parameters is of an as yet
7776 incomplete type. */
7777
7778static void
7779compute_delayed_physnames (struct dwarf2_cu *cu)
7780{
7781 int i;
7782 struct delayed_method_info *mi;
7783 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7784 {
1d06ead6 7785 const char *physname;
3da10d80
KS
7786 struct fn_fieldlist *fn_flp
7787 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7788 physname = dwarf2_physname (mi->name, mi->die, cu);
005e54bb
DE
7789 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7790 = physname ? physname : "";
3da10d80
KS
7791 }
7792}
7793
a766d390
DE
7794/* Go objects should be embedded in a DW_TAG_module DIE,
7795 and it's not clear if/how imported objects will appear.
7796 To keep Go support simple until that's worked out,
7797 go back through what we've read and create something usable.
7798 We could do this while processing each DIE, and feels kinda cleaner,
7799 but that way is more invasive.
7800 This is to, for example, allow the user to type "p var" or "b main"
7801 without having to specify the package name, and allow lookups
7802 of module.object to work in contexts that use the expression
7803 parser. */
7804
7805static void
7806fixup_go_packaging (struct dwarf2_cu *cu)
7807{
7808 char *package_name = NULL;
7809 struct pending *list;
7810 int i;
7811
7812 for (list = global_symbols; list != NULL; list = list->next)
7813 {
7814 for (i = 0; i < list->nsyms; ++i)
7815 {
7816 struct symbol *sym = list->symbol[i];
7817
7818 if (SYMBOL_LANGUAGE (sym) == language_go
7819 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7820 {
7821 char *this_package_name = go_symbol_package_name (sym);
7822
7823 if (this_package_name == NULL)
7824 continue;
7825 if (package_name == NULL)
7826 package_name = this_package_name;
7827 else
7828 {
7829 if (strcmp (package_name, this_package_name) != 0)
7830 complaint (&symfile_complaints,
7831 _("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
7832 (symbol_symtab (sym) != NULL
7833 ? symtab_to_filename_for_display
7834 (symbol_symtab (sym))
4262abfb 7835 : objfile_name (cu->objfile)),
a766d390
DE
7836 this_package_name, package_name);
7837 xfree (this_package_name);
7838 }
7839 }
7840 }
7841 }
7842
7843 if (package_name != NULL)
7844 {
7845 struct objfile *objfile = cu->objfile;
34a68019 7846 const char *saved_package_name
224c3ddb
SM
7847 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack,
7848 package_name,
7849 strlen (package_name));
a766d390 7850 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
86f62fd7 7851 saved_package_name, objfile);
a766d390
DE
7852 struct symbol *sym;
7853
7854 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7855
e623cf5d 7856 sym = allocate_symbol (objfile);
f85f34ed 7857 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7858 SYMBOL_SET_NAMES (sym, saved_package_name,
7859 strlen (saved_package_name), 0, objfile);
a766d390
DE
7860 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7861 e.g., "main" finds the "main" module and not C's main(). */
7862 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7863 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7864 SYMBOL_TYPE (sym) = type;
7865
7866 add_symbol_to_list (sym, &global_symbols);
7867
7868 xfree (package_name);
7869 }
7870}
7871
95554aad
TT
7872/* Return the symtab for PER_CU. This works properly regardless of
7873 whether we're using the index or psymtabs. */
7874
43f3e411
DE
7875static struct compunit_symtab *
7876get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad
TT
7877{
7878 return (dwarf2_per_objfile->using_index
43f3e411
DE
7879 ? per_cu->v.quick->compunit_symtab
7880 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
7881}
7882
7883/* A helper function for computing the list of all symbol tables
7884 included by PER_CU. */
7885
7886static void
43f3e411 7887recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 7888 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 7889 struct dwarf2_per_cu_data *per_cu,
43f3e411 7890 struct compunit_symtab *immediate_parent)
95554aad
TT
7891{
7892 void **slot;
7893 int ix;
43f3e411 7894 struct compunit_symtab *cust;
95554aad
TT
7895 struct dwarf2_per_cu_data *iter;
7896
7897 slot = htab_find_slot (all_children, per_cu, INSERT);
7898 if (*slot != NULL)
7899 {
7900 /* This inclusion and its children have been processed. */
7901 return;
7902 }
7903
7904 *slot = per_cu;
7905 /* Only add a CU if it has a symbol table. */
43f3e411
DE
7906 cust = get_compunit_symtab (per_cu);
7907 if (cust != NULL)
ec94af83
DE
7908 {
7909 /* If this is a type unit only add its symbol table if we haven't
7910 seen it yet (type unit per_cu's can share symtabs). */
7911 if (per_cu->is_debug_types)
7912 {
43f3e411 7913 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
7914 if (*slot == NULL)
7915 {
43f3e411
DE
7916 *slot = cust;
7917 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7918 if (cust->user == NULL)
7919 cust->user = immediate_parent;
ec94af83
DE
7920 }
7921 }
7922 else
f9125b6c 7923 {
43f3e411
DE
7924 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7925 if (cust->user == NULL)
7926 cust->user = immediate_parent;
f9125b6c 7927 }
ec94af83 7928 }
95554aad
TT
7929
7930 for (ix = 0;
796a7ff8 7931 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7932 ++ix)
ec94af83
DE
7933 {
7934 recursively_compute_inclusions (result, all_children,
43f3e411 7935 all_type_symtabs, iter, cust);
ec94af83 7936 }
95554aad
TT
7937}
7938
43f3e411 7939/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
7940 PER_CU. */
7941
7942static void
43f3e411 7943compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 7944{
f4dc4d17
DE
7945 gdb_assert (! per_cu->is_debug_types);
7946
796a7ff8 7947 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7948 {
7949 int ix, len;
ec94af83 7950 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
7951 struct compunit_symtab *compunit_symtab_iter;
7952 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 7953 htab_t all_children, all_type_symtabs;
43f3e411 7954 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
7955
7956 /* If we don't have a symtab, we can just skip this case. */
43f3e411 7957 if (cust == NULL)
95554aad
TT
7958 return;
7959
7960 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7961 NULL, xcalloc, xfree);
ec94af83
DE
7962 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7963 NULL, xcalloc, xfree);
95554aad
TT
7964
7965 for (ix = 0;
796a7ff8 7966 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7967 ix, per_cu_iter);
95554aad 7968 ++ix)
ec94af83
DE
7969 {
7970 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 7971 all_type_symtabs, per_cu_iter,
43f3e411 7972 cust);
ec94af83 7973 }
95554aad 7974
ec94af83 7975 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
7976 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7977 cust->includes
8d749320
SM
7978 = XOBNEWVEC (&dwarf2_per_objfile->objfile->objfile_obstack,
7979 struct compunit_symtab *, len + 1);
95554aad 7980 for (ix = 0;
43f3e411
DE
7981 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7982 compunit_symtab_iter);
95554aad 7983 ++ix)
43f3e411
DE
7984 cust->includes[ix] = compunit_symtab_iter;
7985 cust->includes[len] = NULL;
95554aad 7986
43f3e411 7987 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 7988 htab_delete (all_children);
ec94af83 7989 htab_delete (all_type_symtabs);
95554aad
TT
7990 }
7991}
7992
7993/* Compute the 'includes' field for the symtabs of all the CUs we just
7994 read. */
7995
7996static void
7997process_cu_includes (void)
7998{
7999 int ix;
8000 struct dwarf2_per_cu_data *iter;
8001
8002 for (ix = 0;
8003 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
8004 ix, iter);
8005 ++ix)
f4dc4d17
DE
8006 {
8007 if (! iter->is_debug_types)
43f3e411 8008 compute_compunit_symtab_includes (iter);
f4dc4d17 8009 }
95554aad
TT
8010
8011 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
8012}
8013
9cdd5dbd 8014/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
8015 already been loaded into memory. */
8016
8017static void
95554aad
TT
8018process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
8019 enum language pretend_language)
10b3939b 8020{
10b3939b 8021 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 8022 struct objfile *objfile = per_cu->objfile;
3e29f34a 8023 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 8024 CORE_ADDR lowpc, highpc;
43f3e411 8025 struct compunit_symtab *cust;
3da10d80 8026 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 8027 CORE_ADDR baseaddr;
4359dff1 8028 struct block *static_block;
3e29f34a 8029 CORE_ADDR addr;
10b3939b
DJ
8030
8031 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8032
10b3939b
DJ
8033 buildsym_init ();
8034 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 8035 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
8036
8037 cu->list_in_scope = &file_symbols;
c906108c 8038
95554aad
TT
8039 cu->language = pretend_language;
8040 cu->language_defn = language_def (cu->language);
8041
c906108c 8042 /* Do line number decoding in read_file_scope () */
10b3939b 8043 process_die (cu->dies, cu);
c906108c 8044
a766d390
DE
8045 /* For now fudge the Go package. */
8046 if (cu->language == language_go)
8047 fixup_go_packaging (cu);
8048
3da10d80
KS
8049 /* Now that we have processed all the DIEs in the CU, all the types
8050 should be complete, and it should now be safe to compute all of the
8051 physnames. */
8052 compute_delayed_physnames (cu);
8053 do_cleanups (delayed_list_cleanup);
8054
fae299cd
DC
8055 /* Some compilers don't define a DW_AT_high_pc attribute for the
8056 compilation unit. If the DW_AT_high_pc is missing, synthesize
8057 it, by scanning the DIE's below the compilation unit. */
10b3939b 8058 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 8059
3e29f34a
MR
8060 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
8061 static_block = end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
8062
8063 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
8064 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
8065 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
8066 addrmap to help ensure it has an accurate map of pc values belonging to
8067 this comp unit. */
8068 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
8069
43f3e411
DE
8070 cust = end_symtab_from_static_block (static_block,
8071 SECT_OFF_TEXT (objfile), 0);
c906108c 8072
43f3e411 8073 if (cust != NULL)
c906108c 8074 {
df15bd07 8075 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 8076
8be455d7
JK
8077 /* Set symtab language to language from DW_AT_language. If the
8078 compilation is from a C file generated by language preprocessors, do
8079 not set the language if it was already deduced by start_subfile. */
43f3e411 8080 if (!(cu->language == language_c
40e3ad0e 8081 && COMPUNIT_FILETABS (cust)->language != language_unknown))
43f3e411 8082 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
8083
8084 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8085 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
8086 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8087 there were bugs in prologue debug info, fixed later in GCC-4.5
8088 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
8089
8090 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8091 needed, it would be wrong due to missing DW_AT_producer there.
8092
8093 Still one can confuse GDB by using non-standard GCC compilation
8094 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8095 */
ab260dad 8096 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 8097 cust->locations_valid = 1;
e0d00bc7
JK
8098
8099 if (gcc_4_minor >= 5)
43f3e411 8100 cust->epilogue_unwind_valid = 1;
96408a79 8101
43f3e411 8102 cust->call_site_htab = cu->call_site_htab;
c906108c 8103 }
9291a0cd
TT
8104
8105 if (dwarf2_per_objfile->using_index)
43f3e411 8106 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
8107 else
8108 {
8109 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8110 pst->compunit_symtab = cust;
9291a0cd
TT
8111 pst->readin = 1;
8112 }
c906108c 8113
95554aad
TT
8114 /* Push it for inclusion processing later. */
8115 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8116
c906108c 8117 do_cleanups (back_to);
f4dc4d17 8118}
45cfd468 8119
f4dc4d17
DE
8120/* Generate full symbol information for type unit PER_CU, whose DIEs have
8121 already been loaded into memory. */
8122
8123static void
8124process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8125 enum language pretend_language)
8126{
8127 struct dwarf2_cu *cu = per_cu->cu;
8128 struct objfile *objfile = per_cu->objfile;
43f3e411 8129 struct compunit_symtab *cust;
f4dc4d17 8130 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8131 struct signatured_type *sig_type;
8132
8133 gdb_assert (per_cu->is_debug_types);
8134 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8135
8136 buildsym_init ();
8137 back_to = make_cleanup (really_free_pendings, NULL);
8138 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8139
8140 cu->list_in_scope = &file_symbols;
8141
8142 cu->language = pretend_language;
8143 cu->language_defn = language_def (cu->language);
8144
8145 /* The symbol tables are set up in read_type_unit_scope. */
8146 process_die (cu->dies, cu);
8147
8148 /* For now fudge the Go package. */
8149 if (cu->language == language_go)
8150 fixup_go_packaging (cu);
8151
8152 /* Now that we have processed all the DIEs in the CU, all the types
8153 should be complete, and it should now be safe to compute all of the
8154 physnames. */
8155 compute_delayed_physnames (cu);
8156 do_cleanups (delayed_list_cleanup);
8157
8158 /* TUs share symbol tables.
8159 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8160 of it with end_expandable_symtab. Otherwise, complete the addition of
8161 this TU's symbols to the existing symtab. */
43f3e411 8162 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 8163 {
43f3e411
DE
8164 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8165 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 8166
43f3e411 8167 if (cust != NULL)
f4dc4d17
DE
8168 {
8169 /* Set symtab language to language from DW_AT_language. If the
8170 compilation is from a C file generated by language preprocessors,
8171 do not set the language if it was already deduced by
8172 start_subfile. */
43f3e411
DE
8173 if (!(cu->language == language_c
8174 && COMPUNIT_FILETABS (cust)->language != language_c))
8175 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
8176 }
8177 }
8178 else
8179 {
0ab9ce85 8180 augment_type_symtab ();
43f3e411 8181 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
8182 }
8183
8184 if (dwarf2_per_objfile->using_index)
43f3e411 8185 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
8186 else
8187 {
8188 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8189 pst->compunit_symtab = cust;
f4dc4d17 8190 pst->readin = 1;
45cfd468 8191 }
f4dc4d17
DE
8192
8193 do_cleanups (back_to);
c906108c
SS
8194}
8195
95554aad
TT
8196/* Process an imported unit DIE. */
8197
8198static void
8199process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8200{
8201 struct attribute *attr;
8202
f4dc4d17
DE
8203 /* For now we don't handle imported units in type units. */
8204 if (cu->per_cu->is_debug_types)
8205 {
8206 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8207 " supported in type units [in module %s]"),
4262abfb 8208 objfile_name (cu->objfile));
f4dc4d17
DE
8209 }
8210
95554aad
TT
8211 attr = dwarf2_attr (die, DW_AT_import, cu);
8212 if (attr != NULL)
8213 {
8214 struct dwarf2_per_cu_data *per_cu;
8215 struct symtab *imported_symtab;
8216 sect_offset offset;
36586728 8217 int is_dwz;
95554aad
TT
8218
8219 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
8220 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8221 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 8222
69d751e3 8223 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8224 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8225 load_full_comp_unit (per_cu, cu->language);
8226
796a7ff8 8227 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8228 per_cu);
8229 }
8230}
8231
adde2bff
DE
8232/* Reset the in_process bit of a die. */
8233
8234static void
8235reset_die_in_process (void *arg)
8236{
9a3c8263 8237 struct die_info *die = (struct die_info *) arg;
8c3cb9fa 8238
adde2bff
DE
8239 die->in_process = 0;
8240}
8241
c906108c
SS
8242/* Process a die and its children. */
8243
8244static void
e7c27a73 8245process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8246{
adde2bff
DE
8247 struct cleanup *in_process;
8248
8249 /* We should only be processing those not already in process. */
8250 gdb_assert (!die->in_process);
8251
8252 die->in_process = 1;
8253 in_process = make_cleanup (reset_die_in_process,die);
8254
c906108c
SS
8255 switch (die->tag)
8256 {
8257 case DW_TAG_padding:
8258 break;
8259 case DW_TAG_compile_unit:
95554aad 8260 case DW_TAG_partial_unit:
e7c27a73 8261 read_file_scope (die, cu);
c906108c 8262 break;
348e048f
DE
8263 case DW_TAG_type_unit:
8264 read_type_unit_scope (die, cu);
8265 break;
c906108c 8266 case DW_TAG_subprogram:
c906108c 8267 case DW_TAG_inlined_subroutine:
edb3359d 8268 read_func_scope (die, cu);
c906108c
SS
8269 break;
8270 case DW_TAG_lexical_block:
14898363
L
8271 case DW_TAG_try_block:
8272 case DW_TAG_catch_block:
e7c27a73 8273 read_lexical_block_scope (die, cu);
c906108c 8274 break;
96408a79
SA
8275 case DW_TAG_GNU_call_site:
8276 read_call_site_scope (die, cu);
8277 break;
c906108c 8278 case DW_TAG_class_type:
680b30c7 8279 case DW_TAG_interface_type:
c906108c
SS
8280 case DW_TAG_structure_type:
8281 case DW_TAG_union_type:
134d01f1 8282 process_structure_scope (die, cu);
c906108c
SS
8283 break;
8284 case DW_TAG_enumeration_type:
134d01f1 8285 process_enumeration_scope (die, cu);
c906108c 8286 break;
134d01f1 8287
f792889a
DJ
8288 /* These dies have a type, but processing them does not create
8289 a symbol or recurse to process the children. Therefore we can
8290 read them on-demand through read_type_die. */
c906108c 8291 case DW_TAG_subroutine_type:
72019c9c 8292 case DW_TAG_set_type:
c906108c 8293 case DW_TAG_array_type:
c906108c 8294 case DW_TAG_pointer_type:
c906108c 8295 case DW_TAG_ptr_to_member_type:
c906108c 8296 case DW_TAG_reference_type:
c906108c 8297 case DW_TAG_string_type:
c906108c 8298 break;
134d01f1 8299
c906108c 8300 case DW_TAG_base_type:
a02abb62 8301 case DW_TAG_subrange_type:
cb249c71 8302 case DW_TAG_typedef:
134d01f1
DJ
8303 /* Add a typedef symbol for the type definition, if it has a
8304 DW_AT_name. */
f792889a 8305 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8306 break;
c906108c 8307 case DW_TAG_common_block:
e7c27a73 8308 read_common_block (die, cu);
c906108c
SS
8309 break;
8310 case DW_TAG_common_inclusion:
8311 break;
d9fa45fe 8312 case DW_TAG_namespace:
4d4ec4e5 8313 cu->processing_has_namespace_info = 1;
e7c27a73 8314 read_namespace (die, cu);
d9fa45fe 8315 break;
5d7cb8df 8316 case DW_TAG_module:
4d4ec4e5 8317 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8318 read_module (die, cu);
8319 break;
d9fa45fe 8320 case DW_TAG_imported_declaration:
74921315
KS
8321 cu->processing_has_namespace_info = 1;
8322 if (read_namespace_alias (die, cu))
8323 break;
8324 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8325 case DW_TAG_imported_module:
4d4ec4e5 8326 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8327 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8328 || cu->language != language_fortran))
8329 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8330 dwarf_tag_name (die->tag));
8331 read_import_statement (die, cu);
d9fa45fe 8332 break;
95554aad
TT
8333
8334 case DW_TAG_imported_unit:
8335 process_imported_unit_die (die, cu);
8336 break;
8337
c906108c 8338 default:
e7c27a73 8339 new_symbol (die, NULL, cu);
c906108c
SS
8340 break;
8341 }
adde2bff
DE
8342
8343 do_cleanups (in_process);
c906108c 8344}
ca69b9e6
DE
8345\f
8346/* DWARF name computation. */
c906108c 8347
94af9270
KS
8348/* A helper function for dwarf2_compute_name which determines whether DIE
8349 needs to have the name of the scope prepended to the name listed in the
8350 die. */
8351
8352static int
8353die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8354{
1c809c68
TT
8355 struct attribute *attr;
8356
94af9270
KS
8357 switch (die->tag)
8358 {
8359 case DW_TAG_namespace:
8360 case DW_TAG_typedef:
8361 case DW_TAG_class_type:
8362 case DW_TAG_interface_type:
8363 case DW_TAG_structure_type:
8364 case DW_TAG_union_type:
8365 case DW_TAG_enumeration_type:
8366 case DW_TAG_enumerator:
8367 case DW_TAG_subprogram:
08a76f8a 8368 case DW_TAG_inlined_subroutine:
94af9270 8369 case DW_TAG_member:
74921315 8370 case DW_TAG_imported_declaration:
94af9270
KS
8371 return 1;
8372
8373 case DW_TAG_variable:
c2b0a229 8374 case DW_TAG_constant:
94af9270
KS
8375 /* We only need to prefix "globally" visible variables. These include
8376 any variable marked with DW_AT_external or any variable that
8377 lives in a namespace. [Variables in anonymous namespaces
8378 require prefixing, but they are not DW_AT_external.] */
8379
8380 if (dwarf2_attr (die, DW_AT_specification, cu))
8381 {
8382 struct dwarf2_cu *spec_cu = cu;
9a619af0 8383
94af9270
KS
8384 return die_needs_namespace (die_specification (die, &spec_cu),
8385 spec_cu);
8386 }
8387
1c809c68 8388 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8389 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8390 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8391 return 0;
8392 /* A variable in a lexical block of some kind does not need a
8393 namespace, even though in C++ such variables may be external
8394 and have a mangled name. */
8395 if (die->parent->tag == DW_TAG_lexical_block
8396 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8397 || die->parent->tag == DW_TAG_catch_block
8398 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8399 return 0;
8400 return 1;
94af9270
KS
8401
8402 default:
8403 return 0;
8404 }
8405}
8406
98bfdba5
PA
8407/* Retrieve the last character from a mem_file. */
8408
8409static void
8410do_ui_file_peek_last (void *object, const char *buffer, long length)
8411{
8412 char *last_char_p = (char *) object;
8413
8414 if (length > 0)
8415 *last_char_p = buffer[length - 1];
8416}
8417
94af9270 8418/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
8419 compute the physname for the object, which include a method's:
8420 - formal parameters (C++/Java),
8421 - receiver type (Go),
8422 - return type (Java).
8423
8424 The term "physname" is a bit confusing.
8425 For C++, for example, it is the demangled name.
8426 For Go, for example, it's the mangled name.
94af9270 8427
af6b7be1
JB
8428 For Ada, return the DIE's linkage name rather than the fully qualified
8429 name. PHYSNAME is ignored..
8430
94af9270
KS
8431 The result is allocated on the objfile_obstack and canonicalized. */
8432
8433static const char *
15d034d0
TT
8434dwarf2_compute_name (const char *name,
8435 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8436 int physname)
8437{
bb5ed363
DE
8438 struct objfile *objfile = cu->objfile;
8439
94af9270
KS
8440 if (name == NULL)
8441 name = dwarf2_name (die, cu);
8442
2ee7123e
DE
8443 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
8444 but otherwise compute it by typename_concat inside GDB.
8445 FIXME: Actually this is not really true, or at least not always true.
8446 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
8447 Fortran names because there is no mangling standard. So new_symbol_full
8448 will set the demangled name to the result of dwarf2_full_name, and it is
8449 the demangled name that GDB uses if it exists. */
f55ee35c
JK
8450 if (cu->language == language_ada
8451 || (cu->language == language_fortran && physname))
8452 {
8453 /* For Ada unit, we prefer the linkage name over the name, as
8454 the former contains the exported name, which the user expects
8455 to be able to reference. Ideally, we want the user to be able
8456 to reference this entity using either natural or linkage name,
8457 but we haven't started looking at this enhancement yet. */
2ee7123e 8458 const char *linkage_name;
f55ee35c 8459
2ee7123e
DE
8460 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8461 if (linkage_name == NULL)
8462 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
8463 if (linkage_name != NULL)
8464 return linkage_name;
f55ee35c
JK
8465 }
8466
94af9270
KS
8467 /* These are the only languages we know how to qualify names in. */
8468 if (name != NULL
f55ee35c 8469 && (cu->language == language_cplus || cu->language == language_java
45280282 8470 || cu->language == language_fortran || cu->language == language_d))
94af9270
KS
8471 {
8472 if (die_needs_namespace (die, cu))
8473 {
8474 long length;
0d5cff50 8475 const char *prefix;
94af9270 8476 struct ui_file *buf;
34a68019
TT
8477 char *intermediate_name;
8478 const char *canonical_name = NULL;
94af9270
KS
8479
8480 prefix = determine_prefix (die, cu);
8481 buf = mem_fileopen ();
8482 if (*prefix != '\0')
8483 {
f55ee35c
JK
8484 char *prefixed_name = typename_concat (NULL, prefix, name,
8485 physname, cu);
9a619af0 8486
94af9270
KS
8487 fputs_unfiltered (prefixed_name, buf);
8488 xfree (prefixed_name);
8489 }
8490 else
62d5b8da 8491 fputs_unfiltered (name, buf);
94af9270 8492
98bfdba5
PA
8493 /* Template parameters may be specified in the DIE's DW_AT_name, or
8494 as children with DW_TAG_template_type_param or
8495 DW_TAG_value_type_param. If the latter, add them to the name
8496 here. If the name already has template parameters, then
8497 skip this step; some versions of GCC emit both, and
8498 it is more efficient to use the pre-computed name.
8499
8500 Something to keep in mind about this process: it is very
8501 unlikely, or in some cases downright impossible, to produce
8502 something that will match the mangled name of a function.
8503 If the definition of the function has the same debug info,
8504 we should be able to match up with it anyway. But fallbacks
8505 using the minimal symbol, for instance to find a method
8506 implemented in a stripped copy of libstdc++, will not work.
8507 If we do not have debug info for the definition, we will have to
8508 match them up some other way.
8509
8510 When we do name matching there is a related problem with function
8511 templates; two instantiated function templates are allowed to
8512 differ only by their return types, which we do not add here. */
8513
8514 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8515 {
8516 struct attribute *attr;
8517 struct die_info *child;
8518 int first = 1;
8519
8520 die->building_fullname = 1;
8521
8522 for (child = die->child; child != NULL; child = child->sibling)
8523 {
8524 struct type *type;
12df843f 8525 LONGEST value;
d521ce57 8526 const gdb_byte *bytes;
98bfdba5
PA
8527 struct dwarf2_locexpr_baton *baton;
8528 struct value *v;
8529
8530 if (child->tag != DW_TAG_template_type_param
8531 && child->tag != DW_TAG_template_value_param)
8532 continue;
8533
8534 if (first)
8535 {
8536 fputs_unfiltered ("<", buf);
8537 first = 0;
8538 }
8539 else
8540 fputs_unfiltered (", ", buf);
8541
8542 attr = dwarf2_attr (child, DW_AT_type, cu);
8543 if (attr == NULL)
8544 {
8545 complaint (&symfile_complaints,
8546 _("template parameter missing DW_AT_type"));
8547 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8548 continue;
8549 }
8550 type = die_type (child, cu);
8551
8552 if (child->tag == DW_TAG_template_type_param)
8553 {
79d43c61 8554 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8555 continue;
8556 }
8557
8558 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8559 if (attr == NULL)
8560 {
8561 complaint (&symfile_complaints,
3e43a32a
MS
8562 _("template parameter missing "
8563 "DW_AT_const_value"));
98bfdba5
PA
8564 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8565 continue;
8566 }
8567
8568 dwarf2_const_value_attr (attr, type, name,
8569 &cu->comp_unit_obstack, cu,
8570 &value, &bytes, &baton);
8571
8572 if (TYPE_NOSIGN (type))
8573 /* GDB prints characters as NUMBER 'CHAR'. If that's
8574 changed, this can use value_print instead. */
8575 c_printchar (value, type, buf);
8576 else
8577 {
8578 struct value_print_options opts;
8579
8580 if (baton != NULL)
8581 v = dwarf2_evaluate_loc_desc (type, NULL,
8582 baton->data,
8583 baton->size,
8584 baton->per_cu);
8585 else if (bytes != NULL)
8586 {
8587 v = allocate_value (type);
8588 memcpy (value_contents_writeable (v), bytes,
8589 TYPE_LENGTH (type));
8590 }
8591 else
8592 v = value_from_longest (type, value);
8593
3e43a32a
MS
8594 /* Specify decimal so that we do not depend on
8595 the radix. */
98bfdba5
PA
8596 get_formatted_print_options (&opts, 'd');
8597 opts.raw = 1;
8598 value_print (v, buf, &opts);
8599 release_value (v);
8600 value_free (v);
8601 }
8602 }
8603
8604 die->building_fullname = 0;
8605
8606 if (!first)
8607 {
8608 /* Close the argument list, with a space if necessary
8609 (nested templates). */
8610 char last_char = '\0';
8611 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8612 if (last_char == '>')
8613 fputs_unfiltered (" >", buf);
8614 else
8615 fputs_unfiltered (">", buf);
8616 }
8617 }
8618
94af9270
KS
8619 /* For Java and C++ methods, append formal parameter type
8620 information, if PHYSNAME. */
6e70227d 8621
94af9270
KS
8622 if (physname && die->tag == DW_TAG_subprogram
8623 && (cu->language == language_cplus
8624 || cu->language == language_java))
8625 {
8626 struct type *type = read_type_die (die, cu);
8627
79d43c61
TT
8628 c_type_print_args (type, buf, 1, cu->language,
8629 &type_print_raw_options);
94af9270
KS
8630
8631 if (cu->language == language_java)
8632 {
8633 /* For java, we must append the return type to method
0963b4bd 8634 names. */
94af9270
KS
8635 if (die->tag == DW_TAG_subprogram)
8636 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8637 0, 0, &type_print_raw_options);
94af9270
KS
8638 }
8639 else if (cu->language == language_cplus)
8640 {
60430eff
DJ
8641 /* Assume that an artificial first parameter is
8642 "this", but do not crash if it is not. RealView
8643 marks unnamed (and thus unused) parameters as
8644 artificial; there is no way to differentiate
8645 the two cases. */
94af9270
KS
8646 if (TYPE_NFIELDS (type) > 0
8647 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8648 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8649 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8650 0))))
94af9270
KS
8651 fputs_unfiltered (" const", buf);
8652 }
8653 }
8654
34a68019 8655 intermediate_name = ui_file_xstrdup (buf, &length);
94af9270
KS
8656 ui_file_delete (buf);
8657
8658 if (cu->language == language_cplus)
34a68019
TT
8659 canonical_name
8660 = dwarf2_canonicalize_name (intermediate_name, cu,
8661 &objfile->per_bfd->storage_obstack);
8662
8663 /* If we only computed INTERMEDIATE_NAME, or if
8664 INTERMEDIATE_NAME is already canonical, then we need to
8665 copy it to the appropriate obstack. */
8666 if (canonical_name == NULL || canonical_name == intermediate_name)
224c3ddb
SM
8667 name = ((const char *)
8668 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8669 intermediate_name,
8670 strlen (intermediate_name)));
34a68019
TT
8671 else
8672 name = canonical_name;
9a619af0 8673
34a68019 8674 xfree (intermediate_name);
94af9270
KS
8675 }
8676 }
8677
8678 return name;
8679}
8680
0114d602
DJ
8681/* Return the fully qualified name of DIE, based on its DW_AT_name.
8682 If scope qualifiers are appropriate they will be added. The result
34a68019 8683 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8684 not have a name. NAME may either be from a previous call to
8685 dwarf2_name or NULL.
8686
0963b4bd 8687 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8688
8689static const char *
15d034d0 8690dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8691{
94af9270
KS
8692 return dwarf2_compute_name (name, die, cu, 0);
8693}
0114d602 8694
94af9270
KS
8695/* Construct a physname for the given DIE in CU. NAME may either be
8696 from a previous call to dwarf2_name or NULL. The result will be
8697 allocated on the objfile_objstack or NULL if the DIE does not have a
8698 name.
0114d602 8699
94af9270 8700 The output string will be canonicalized (if C++/Java). */
0114d602 8701
94af9270 8702static const char *
15d034d0 8703dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8704{
bb5ed363 8705 struct objfile *objfile = cu->objfile;
900e11f9
JK
8706 struct attribute *attr;
8707 const char *retval, *mangled = NULL, *canon = NULL;
8708 struct cleanup *back_to;
8709 int need_copy = 1;
8710
8711 /* In this case dwarf2_compute_name is just a shortcut not building anything
8712 on its own. */
8713 if (!die_needs_namespace (die, cu))
8714 return dwarf2_compute_name (name, die, cu, 1);
8715
8716 back_to = make_cleanup (null_cleanup, NULL);
8717
7d45c7c3
KB
8718 mangled = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
8719 if (mangled == NULL)
8720 mangled = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
900e11f9
JK
8721
8722 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8723 has computed. */
7d45c7c3 8724 if (mangled != NULL)
900e11f9
JK
8725 {
8726 char *demangled;
8727
900e11f9
JK
8728 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8729 type. It is easier for GDB users to search for such functions as
8730 `name(params)' than `long name(params)'. In such case the minimal
8731 symbol names do not match the full symbol names but for template
8732 functions there is never a need to look up their definition from their
8733 declaration so the only disadvantage remains the minimal symbol
8734 variant `long name(params)' does not have the proper inferior type.
8735 */
8736
a766d390
DE
8737 if (cu->language == language_go)
8738 {
8739 /* This is a lie, but we already lie to the caller new_symbol_full.
8740 new_symbol_full assumes we return the mangled name.
8741 This just undoes that lie until things are cleaned up. */
8742 demangled = NULL;
8743 }
8744 else
8745 {
8de20a37
TT
8746 demangled = gdb_demangle (mangled,
8747 (DMGL_PARAMS | DMGL_ANSI
8748 | (cu->language == language_java
8749 ? DMGL_JAVA | DMGL_RET_POSTFIX
8750 : DMGL_RET_DROP)));
a766d390 8751 }
900e11f9
JK
8752 if (demangled)
8753 {
8754 make_cleanup (xfree, demangled);
8755 canon = demangled;
8756 }
8757 else
8758 {
8759 canon = mangled;
8760 need_copy = 0;
8761 }
8762 }
8763
8764 if (canon == NULL || check_physname)
8765 {
8766 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8767
8768 if (canon != NULL && strcmp (physname, canon) != 0)
8769 {
8770 /* It may not mean a bug in GDB. The compiler could also
8771 compute DW_AT_linkage_name incorrectly. But in such case
8772 GDB would need to be bug-to-bug compatible. */
8773
8774 complaint (&symfile_complaints,
8775 _("Computed physname <%s> does not match demangled <%s> "
8776 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8777 physname, canon, mangled, die->offset.sect_off,
8778 objfile_name (objfile));
900e11f9
JK
8779
8780 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8781 is available here - over computed PHYSNAME. It is safer
8782 against both buggy GDB and buggy compilers. */
8783
8784 retval = canon;
8785 }
8786 else
8787 {
8788 retval = physname;
8789 need_copy = 0;
8790 }
8791 }
8792 else
8793 retval = canon;
8794
8795 if (need_copy)
224c3ddb
SM
8796 retval = ((const char *)
8797 obstack_copy0 (&objfile->per_bfd->storage_obstack,
8798 retval, strlen (retval)));
900e11f9
JK
8799
8800 do_cleanups (back_to);
8801 return retval;
0114d602
DJ
8802}
8803
74921315
KS
8804/* Inspect DIE in CU for a namespace alias. If one exists, record
8805 a new symbol for it.
8806
8807 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8808
8809static int
8810read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8811{
8812 struct attribute *attr;
8813
8814 /* If the die does not have a name, this is not a namespace
8815 alias. */
8816 attr = dwarf2_attr (die, DW_AT_name, cu);
8817 if (attr != NULL)
8818 {
8819 int num;
8820 struct die_info *d = die;
8821 struct dwarf2_cu *imported_cu = cu;
8822
8823 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8824 keep inspecting DIEs until we hit the underlying import. */
8825#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8826 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8827 {
8828 attr = dwarf2_attr (d, DW_AT_import, cu);
8829 if (attr == NULL)
8830 break;
8831
8832 d = follow_die_ref (d, attr, &imported_cu);
8833 if (d->tag != DW_TAG_imported_declaration)
8834 break;
8835 }
8836
8837 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8838 {
8839 complaint (&symfile_complaints,
8840 _("DIE at 0x%x has too many recursively imported "
8841 "declarations"), d->offset.sect_off);
8842 return 0;
8843 }
8844
8845 if (attr != NULL)
8846 {
8847 struct type *type;
8848 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8849
8850 type = get_die_type_at_offset (offset, cu->per_cu);
8851 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8852 {
8853 /* This declaration is a global namespace alias. Add
8854 a symbol for it whose type is the aliased namespace. */
8855 new_symbol (die, type, cu);
8856 return 1;
8857 }
8858 }
8859 }
8860
8861 return 0;
8862}
8863
22cee43f
PMR
8864/* Return the using directives repository (global or local?) to use in the
8865 current context for LANGUAGE.
8866
8867 For Ada, imported declarations can materialize renamings, which *may* be
8868 global. However it is impossible (for now?) in DWARF to distinguish
8869 "external" imported declarations and "static" ones. As all imported
8870 declarations seem to be static in all other languages, make them all CU-wide
8871 global only in Ada. */
8872
8873static struct using_direct **
8874using_directives (enum language language)
8875{
8876 if (language == language_ada && context_stack_depth == 0)
8877 return &global_using_directives;
8878 else
8879 return &local_using_directives;
8880}
8881
27aa8d6a
SW
8882/* Read the import statement specified by the given die and record it. */
8883
8884static void
8885read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8886{
bb5ed363 8887 struct objfile *objfile = cu->objfile;
27aa8d6a 8888 struct attribute *import_attr;
32019081 8889 struct die_info *imported_die, *child_die;
de4affc9 8890 struct dwarf2_cu *imported_cu;
27aa8d6a 8891 const char *imported_name;
794684b6 8892 const char *imported_name_prefix;
13387711
SW
8893 const char *canonical_name;
8894 const char *import_alias;
8895 const char *imported_declaration = NULL;
794684b6 8896 const char *import_prefix;
32019081
JK
8897 VEC (const_char_ptr) *excludes = NULL;
8898 struct cleanup *cleanups;
13387711 8899
27aa8d6a
SW
8900 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8901 if (import_attr == NULL)
8902 {
8903 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8904 dwarf_tag_name (die->tag));
8905 return;
8906 }
8907
de4affc9
CC
8908 imported_cu = cu;
8909 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8910 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8911 if (imported_name == NULL)
8912 {
8913 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8914
8915 The import in the following code:
8916 namespace A
8917 {
8918 typedef int B;
8919 }
8920
8921 int main ()
8922 {
8923 using A::B;
8924 B b;
8925 return b;
8926 }
8927
8928 ...
8929 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8930 <52> DW_AT_decl_file : 1
8931 <53> DW_AT_decl_line : 6
8932 <54> DW_AT_import : <0x75>
8933 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8934 <59> DW_AT_name : B
8935 <5b> DW_AT_decl_file : 1
8936 <5c> DW_AT_decl_line : 2
8937 <5d> DW_AT_type : <0x6e>
8938 ...
8939 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8940 <76> DW_AT_byte_size : 4
8941 <77> DW_AT_encoding : 5 (signed)
8942
8943 imports the wrong die ( 0x75 instead of 0x58 ).
8944 This case will be ignored until the gcc bug is fixed. */
8945 return;
8946 }
8947
82856980
SW
8948 /* Figure out the local name after import. */
8949 import_alias = dwarf2_name (die, cu);
27aa8d6a 8950
794684b6
SW
8951 /* Figure out where the statement is being imported to. */
8952 import_prefix = determine_prefix (die, cu);
8953
8954 /* Figure out what the scope of the imported die is and prepend it
8955 to the name of the imported die. */
de4affc9 8956 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8957
f55ee35c
JK
8958 if (imported_die->tag != DW_TAG_namespace
8959 && imported_die->tag != DW_TAG_module)
794684b6 8960 {
13387711
SW
8961 imported_declaration = imported_name;
8962 canonical_name = imported_name_prefix;
794684b6 8963 }
13387711 8964 else if (strlen (imported_name_prefix) > 0)
12aaed36 8965 canonical_name = obconcat (&objfile->objfile_obstack,
45280282
IB
8966 imported_name_prefix,
8967 (cu->language == language_d ? "." : "::"),
8968 imported_name, (char *) NULL);
13387711
SW
8969 else
8970 canonical_name = imported_name;
794684b6 8971
32019081
JK
8972 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8973
8974 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8975 for (child_die = die->child; child_die && child_die->tag;
8976 child_die = sibling_die (child_die))
8977 {
8978 /* DWARF-4: A Fortran use statement with a “rename list” may be
8979 represented by an imported module entry with an import attribute
8980 referring to the module and owned entries corresponding to those
8981 entities that are renamed as part of being imported. */
8982
8983 if (child_die->tag != DW_TAG_imported_declaration)
8984 {
8985 complaint (&symfile_complaints,
8986 _("child DW_TAG_imported_declaration expected "
8987 "- DIE at 0x%x [in module %s]"),
4262abfb 8988 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8989 continue;
8990 }
8991
8992 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8993 if (import_attr == NULL)
8994 {
8995 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8996 dwarf_tag_name (child_die->tag));
8997 continue;
8998 }
8999
9000 imported_cu = cu;
9001 imported_die = follow_die_ref_or_sig (child_die, import_attr,
9002 &imported_cu);
9003 imported_name = dwarf2_name (imported_die, imported_cu);
9004 if (imported_name == NULL)
9005 {
9006 complaint (&symfile_complaints,
9007 _("child DW_TAG_imported_declaration has unknown "
9008 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 9009 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
9010 continue;
9011 }
9012
9013 VEC_safe_push (const_char_ptr, excludes, imported_name);
9014
9015 process_die (child_die, cu);
9016 }
9017
22cee43f
PMR
9018 add_using_directive (using_directives (cu->language),
9019 import_prefix,
9020 canonical_name,
9021 import_alias,
9022 imported_declaration,
9023 excludes,
9024 0,
9025 &objfile->objfile_obstack);
32019081
JK
9026
9027 do_cleanups (cleanups);
27aa8d6a
SW
9028}
9029
f4dc4d17 9030/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 9031
cb1df416
DJ
9032static void
9033free_cu_line_header (void *arg)
9034{
9a3c8263 9035 struct dwarf2_cu *cu = (struct dwarf2_cu *) arg;
cb1df416
DJ
9036
9037 free_line_header (cu->line_header);
9038 cu->line_header = NULL;
9039}
9040
1b80a9fa
JK
9041/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
9042 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
9043 this, it was first present in GCC release 4.3.0. */
9044
9045static int
9046producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
9047{
9048 if (!cu->checked_producer)
9049 check_producer (cu);
9050
9051 return cu->producer_is_gcc_lt_4_3;
9052}
9053
9291a0cd
TT
9054static void
9055find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 9056 const char **name, const char **comp_dir)
9291a0cd 9057{
9291a0cd
TT
9058 /* Find the filename. Do not use dwarf2_name here, since the filename
9059 is not a source language identifier. */
7d45c7c3
KB
9060 *name = dwarf2_string_attr (die, DW_AT_name, cu);
9061 *comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
9291a0cd 9062
7d45c7c3
KB
9063 if (*comp_dir == NULL
9064 && producer_is_gcc_lt_4_3 (cu) && *name != NULL
9065 && IS_ABSOLUTE_PATH (*name))
9291a0cd 9066 {
15d034d0
TT
9067 char *d = ldirname (*name);
9068
9069 *comp_dir = d;
9070 if (d != NULL)
9071 make_cleanup (xfree, d);
9291a0cd
TT
9072 }
9073 if (*comp_dir != NULL)
9074 {
9075 /* Irix 6.2 native cc prepends <machine>.: to the compilation
9076 directory, get rid of it. */
e6a959d6 9077 const char *cp = strchr (*comp_dir, ':');
9291a0cd
TT
9078
9079 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
9080 *comp_dir = cp + 1;
9081 }
9082
9083 if (*name == NULL)
9084 *name = "<unknown>";
9085}
9086
f4dc4d17
DE
9087/* Handle DW_AT_stmt_list for a compilation unit.
9088 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
9089 COMP_DIR is the compilation directory. LOWPC is passed to
9090 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
9091
9092static void
9093handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 9094 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328 9095{
527f3840 9096 struct objfile *objfile = dwarf2_per_objfile->objfile;
2ab95328 9097 struct attribute *attr;
527f3840
JK
9098 unsigned int line_offset;
9099 struct line_header line_header_local;
9100 hashval_t line_header_local_hash;
9101 unsigned u;
9102 void **slot;
9103 int decode_mapping;
2ab95328 9104
f4dc4d17
DE
9105 gdb_assert (! cu->per_cu->is_debug_types);
9106
2ab95328 9107 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
527f3840
JK
9108 if (attr == NULL)
9109 return;
9110
9111 line_offset = DW_UNSND (attr);
9112
9113 /* The line header hash table is only created if needed (it exists to
9114 prevent redundant reading of the line table for partial_units).
9115 If we're given a partial_unit, we'll need it. If we're given a
9116 compile_unit, then use the line header hash table if it's already
9117 created, but don't create one just yet. */
9118
9119 if (dwarf2_per_objfile->line_header_hash == NULL
9120 && die->tag == DW_TAG_partial_unit)
2ab95328 9121 {
527f3840
JK
9122 dwarf2_per_objfile->line_header_hash
9123 = htab_create_alloc_ex (127, line_header_hash_voidp,
9124 line_header_eq_voidp,
9125 free_line_header_voidp,
9126 &objfile->objfile_obstack,
9127 hashtab_obstack_allocate,
9128 dummy_obstack_deallocate);
9129 }
2ab95328 9130
527f3840
JK
9131 line_header_local.offset.sect_off = line_offset;
9132 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
9133 line_header_local_hash = line_header_hash (&line_header_local);
9134 if (dwarf2_per_objfile->line_header_hash != NULL)
9135 {
9136 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9137 &line_header_local,
9138 line_header_local_hash, NO_INSERT);
9139
9140 /* For DW_TAG_compile_unit we need info like symtab::linetable which
9141 is not present in *SLOT (since if there is something in *SLOT then
9142 it will be for a partial_unit). */
9143 if (die->tag == DW_TAG_partial_unit && slot != NULL)
dee91e82 9144 {
527f3840 9145 gdb_assert (*slot != NULL);
9a3c8263 9146 cu->line_header = (struct line_header *) *slot;
527f3840 9147 return;
dee91e82 9148 }
2ab95328 9149 }
527f3840
JK
9150
9151 /* dwarf_decode_line_header does not yet provide sufficient information.
9152 We always have to call also dwarf_decode_lines for it. */
9153 cu->line_header = dwarf_decode_line_header (line_offset, cu);
9154 if (cu->line_header == NULL)
9155 return;
9156
9157 if (dwarf2_per_objfile->line_header_hash == NULL)
9158 slot = NULL;
9159 else
9160 {
9161 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
9162 &line_header_local,
9163 line_header_local_hash, INSERT);
9164 gdb_assert (slot != NULL);
9165 }
9166 if (slot != NULL && *slot == NULL)
9167 {
9168 /* This newly decoded line number information unit will be owned
9169 by line_header_hash hash table. */
9170 *slot = cu->line_header;
9171 }
9172 else
9173 {
9174 /* We cannot free any current entry in (*slot) as that struct line_header
9175 may be already used by multiple CUs. Create only temporary decoded
9176 line_header for this CU - it may happen at most once for each line
9177 number information unit. And if we're not using line_header_hash
9178 then this is what we want as well. */
9179 gdb_assert (die->tag != DW_TAG_partial_unit);
9180 make_cleanup (free_cu_line_header, cu);
9181 }
9182 decode_mapping = (die->tag != DW_TAG_partial_unit);
9183 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
9184 decode_mapping);
2ab95328
TT
9185}
9186
95554aad 9187/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 9188
c906108c 9189static void
e7c27a73 9190read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9191{
dee91e82 9192 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 9193 struct gdbarch *gdbarch = get_objfile_arch (objfile);
debd256d 9194 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 9195 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9196 CORE_ADDR highpc = ((CORE_ADDR) 0);
9197 struct attribute *attr;
15d034d0
TT
9198 const char *name = NULL;
9199 const char *comp_dir = NULL;
c906108c
SS
9200 struct die_info *child_die;
9201 bfd *abfd = objfile->obfd;
e142c38c 9202 CORE_ADDR baseaddr;
6e70227d 9203
e142c38c 9204 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9205
fae299cd 9206 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9207
9208 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9209 from finish_block. */
2acceee2 9210 if (lowpc == ((CORE_ADDR) -1))
c906108c 9211 lowpc = highpc;
3e29f34a 9212 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 9213
9291a0cd 9214 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 9215
95554aad 9216 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9217
f4b8a18d
KW
9218 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9219 standardised yet. As a workaround for the language detection we fall
9220 back to the DW_AT_producer string. */
9221 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9222 cu->language = language_opencl;
9223
3019eac3
DE
9224 /* Similar hack for Go. */
9225 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9226 set_cu_language (DW_LANG_Go, cu);
9227
f4dc4d17 9228 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
9229
9230 /* Decode line number information if present. We do this before
9231 processing child DIEs, so that the line header table is available
9232 for DW_AT_decl_file. */
c3b7b696 9233 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
3019eac3
DE
9234
9235 /* Process all dies in compilation unit. */
9236 if (die->child != NULL)
9237 {
9238 child_die = die->child;
9239 while (child_die && child_die->tag)
9240 {
9241 process_die (child_die, cu);
9242 child_die = sibling_die (child_die);
9243 }
9244 }
9245
9246 /* Decode macro information, if present. Dwarf 2 macro information
9247 refers to information in the line number info statement program
9248 header, so we can only read it if we've read the header
9249 successfully. */
9250 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9251 if (attr && cu->line_header)
9252 {
9253 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9254 complaint (&symfile_complaints,
9255 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9256
43f3e411 9257 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
9258 }
9259 else
9260 {
9261 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9262 if (attr && cu->line_header)
9263 {
9264 unsigned int macro_offset = DW_UNSND (attr);
9265
43f3e411 9266 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
9267 }
9268 }
9269
9270 do_cleanups (back_to);
9271}
9272
f4dc4d17
DE
9273/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9274 Create the set of symtabs used by this TU, or if this TU is sharing
9275 symtabs with another TU and the symtabs have already been created
9276 then restore those symtabs in the line header.
9277 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9278
9279static void
f4dc4d17 9280setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9281{
f4dc4d17
DE
9282 struct objfile *objfile = dwarf2_per_objfile->objfile;
9283 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9284 struct type_unit_group *tu_group;
9285 int first_time;
9286 struct line_header *lh;
3019eac3 9287 struct attribute *attr;
f4dc4d17 9288 unsigned int i, line_offset;
0186c6a7 9289 struct signatured_type *sig_type;
3019eac3 9290
f4dc4d17 9291 gdb_assert (per_cu->is_debug_types);
0186c6a7 9292 sig_type = (struct signatured_type *) per_cu;
3019eac3 9293
f4dc4d17 9294 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9295
f4dc4d17 9296 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9297 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9298 if (sig_type->type_unit_group == NULL)
9299 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9300 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9301
9302 /* If we've already processed this stmt_list there's no real need to
9303 do it again, we could fake it and just recreate the part we need
9304 (file name,index -> symtab mapping). If data shows this optimization
9305 is useful we can do it then. */
43f3e411 9306 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
9307
9308 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9309 debug info. */
9310 lh = NULL;
9311 if (attr != NULL)
3019eac3 9312 {
f4dc4d17
DE
9313 line_offset = DW_UNSND (attr);
9314 lh = dwarf_decode_line_header (line_offset, cu);
9315 }
9316 if (lh == NULL)
9317 {
9318 if (first_time)
9319 dwarf2_start_symtab (cu, "", NULL, 0);
9320 else
9321 {
9322 gdb_assert (tu_group->symtabs == NULL);
0ab9ce85 9323 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9324 }
f4dc4d17 9325 return;
3019eac3
DE
9326 }
9327
f4dc4d17
DE
9328 cu->line_header = lh;
9329 make_cleanup (free_cu_line_header, cu);
3019eac3 9330
f4dc4d17
DE
9331 if (first_time)
9332 {
43f3e411 9333 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9334
1fd60fc0
DE
9335 /* Note: We don't assign tu_group->compunit_symtab yet because we're
9336 still initializing it, and our caller (a few levels up)
9337 process_full_type_unit still needs to know if this is the first
9338 time. */
9339
f4dc4d17
DE
9340 tu_group->num_symtabs = lh->num_file_names;
9341 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 9342
f4dc4d17
DE
9343 for (i = 0; i < lh->num_file_names; ++i)
9344 {
d521ce57 9345 const char *dir = NULL;
f4dc4d17 9346 struct file_entry *fe = &lh->file_names[i];
3019eac3 9347
afa6c9ab 9348 if (fe->dir_index && lh->include_dirs != NULL)
f4dc4d17 9349 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 9350 dwarf2_start_subfile (fe->name, dir);
3019eac3 9351
f4dc4d17
DE
9352 if (current_subfile->symtab == NULL)
9353 {
9354 /* NOTE: start_subfile will recognize when it's been passed
9355 a file it has already seen. So we can't assume there's a
43f3e411 9356 simple mapping from lh->file_names to subfiles, plus
f4dc4d17 9357 lh->file_names may contain dups. */
43f3e411
DE
9358 current_subfile->symtab
9359 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
9360 }
9361
9362 fe->symtab = current_subfile->symtab;
9363 tu_group->symtabs[i] = fe->symtab;
9364 }
9365 }
9366 else
3019eac3 9367 {
0ab9ce85 9368 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17
DE
9369
9370 for (i = 0; i < lh->num_file_names; ++i)
9371 {
9372 struct file_entry *fe = &lh->file_names[i];
9373
9374 fe->symtab = tu_group->symtabs[i];
9375 }
3019eac3
DE
9376 }
9377
f4dc4d17
DE
9378 /* The main symtab is allocated last. Type units don't have DW_AT_name
9379 so they don't have a "real" (so to speak) symtab anyway.
9380 There is later code that will assign the main symtab to all symbols
9381 that don't have one. We need to handle the case of a symbol with a
9382 missing symtab (DW_AT_decl_file) anyway. */
9383}
3019eac3 9384
f4dc4d17
DE
9385/* Process DW_TAG_type_unit.
9386 For TUs we want to skip the first top level sibling if it's not the
9387 actual type being defined by this TU. In this case the first top
9388 level sibling is there to provide context only. */
3019eac3 9389
f4dc4d17
DE
9390static void
9391read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9392{
9393 struct die_info *child_die;
3019eac3 9394
f4dc4d17
DE
9395 prepare_one_comp_unit (cu, die, language_minimal);
9396
9397 /* Initialize (or reinitialize) the machinery for building symtabs.
9398 We do this before processing child DIEs, so that the line header table
9399 is available for DW_AT_decl_file. */
9400 setup_type_unit_groups (die, cu);
9401
9402 if (die->child != NULL)
9403 {
9404 child_die = die->child;
9405 while (child_die && child_die->tag)
9406 {
9407 process_die (child_die, cu);
9408 child_die = sibling_die (child_die);
9409 }
9410 }
3019eac3
DE
9411}
9412\f
80626a55
DE
9413/* DWO/DWP files.
9414
9415 http://gcc.gnu.org/wiki/DebugFission
9416 http://gcc.gnu.org/wiki/DebugFissionDWP
9417
9418 To simplify handling of both DWO files ("object" files with the DWARF info)
9419 and DWP files (a file with the DWOs packaged up into one file), we treat
9420 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9421
9422static hashval_t
9423hash_dwo_file (const void *item)
9424{
9a3c8263 9425 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
a2ce51a0 9426 hashval_t hash;
3019eac3 9427
a2ce51a0
DE
9428 hash = htab_hash_string (dwo_file->dwo_name);
9429 if (dwo_file->comp_dir != NULL)
9430 hash += htab_hash_string (dwo_file->comp_dir);
9431 return hash;
3019eac3
DE
9432}
9433
9434static int
9435eq_dwo_file (const void *item_lhs, const void *item_rhs)
9436{
9a3c8263
SM
9437 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
9438 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
3019eac3 9439
a2ce51a0
DE
9440 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9441 return 0;
9442 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9443 return lhs->comp_dir == rhs->comp_dir;
9444 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9445}
9446
9447/* Allocate a hash table for DWO files. */
9448
9449static htab_t
9450allocate_dwo_file_hash_table (void)
9451{
9452 struct objfile *objfile = dwarf2_per_objfile->objfile;
9453
9454 return htab_create_alloc_ex (41,
9455 hash_dwo_file,
9456 eq_dwo_file,
9457 NULL,
9458 &objfile->objfile_obstack,
9459 hashtab_obstack_allocate,
9460 dummy_obstack_deallocate);
9461}
9462
80626a55
DE
9463/* Lookup DWO file DWO_NAME. */
9464
9465static void **
0ac5b59e 9466lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9467{
9468 struct dwo_file find_entry;
9469 void **slot;
9470
9471 if (dwarf2_per_objfile->dwo_files == NULL)
9472 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9473
9474 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9475 find_entry.dwo_name = dwo_name;
9476 find_entry.comp_dir = comp_dir;
80626a55
DE
9477 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9478
9479 return slot;
9480}
9481
3019eac3
DE
9482static hashval_t
9483hash_dwo_unit (const void *item)
9484{
9a3c8263 9485 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3
DE
9486
9487 /* This drops the top 32 bits of the id, but is ok for a hash. */
9488 return dwo_unit->signature;
9489}
9490
9491static int
9492eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9493{
9a3c8263
SM
9494 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
9495 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
3019eac3
DE
9496
9497 /* The signature is assumed to be unique within the DWO file.
9498 So while object file CU dwo_id's always have the value zero,
9499 that's OK, assuming each object file DWO file has only one CU,
9500 and that's the rule for now. */
9501 return lhs->signature == rhs->signature;
9502}
9503
9504/* Allocate a hash table for DWO CUs,TUs.
9505 There is one of these tables for each of CUs,TUs for each DWO file. */
9506
9507static htab_t
9508allocate_dwo_unit_table (struct objfile *objfile)
9509{
9510 /* Start out with a pretty small number.
9511 Generally DWO files contain only one CU and maybe some TUs. */
9512 return htab_create_alloc_ex (3,
9513 hash_dwo_unit,
9514 eq_dwo_unit,
9515 NULL,
9516 &objfile->objfile_obstack,
9517 hashtab_obstack_allocate,
9518 dummy_obstack_deallocate);
9519}
9520
80626a55 9521/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9522
19c3d4c9 9523struct create_dwo_cu_data
3019eac3
DE
9524{
9525 struct dwo_file *dwo_file;
19c3d4c9 9526 struct dwo_unit dwo_unit;
3019eac3
DE
9527};
9528
19c3d4c9 9529/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9530
9531static void
19c3d4c9
DE
9532create_dwo_cu_reader (const struct die_reader_specs *reader,
9533 const gdb_byte *info_ptr,
9534 struct die_info *comp_unit_die,
9535 int has_children,
9536 void *datap)
3019eac3
DE
9537{
9538 struct dwarf2_cu *cu = reader->cu;
9539 struct objfile *objfile = dwarf2_per_objfile->objfile;
9540 sect_offset offset = cu->per_cu->offset;
8a0459fd 9541 struct dwarf2_section_info *section = cu->per_cu->section;
9a3c8263 9542 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
3019eac3 9543 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9544 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9545 struct attribute *attr;
3019eac3
DE
9546
9547 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9548 if (attr == NULL)
9549 {
19c3d4c9
DE
9550 complaint (&symfile_complaints,
9551 _("Dwarf Error: debug entry at offset 0x%x is missing"
9552 " its dwo_id [in module %s]"),
9553 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9554 return;
9555 }
9556
3019eac3
DE
9557 dwo_unit->dwo_file = dwo_file;
9558 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9559 dwo_unit->section = section;
3019eac3
DE
9560 dwo_unit->offset = offset;
9561 dwo_unit->length = cu->per_cu->length;
9562
b4f54984 9563 if (dwarf_read_debug)
4031ecc5
DE
9564 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9565 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9566}
9567
19c3d4c9
DE
9568/* Create the dwo_unit for the lone CU in DWO_FILE.
9569 Note: This function processes DWO files only, not DWP files. */
3019eac3 9570
19c3d4c9
DE
9571static struct dwo_unit *
9572create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9573{
9574 struct objfile *objfile = dwarf2_per_objfile->objfile;
9575 struct dwarf2_section_info *section = &dwo_file->sections.info;
9576 bfd *abfd;
9577 htab_t cu_htab;
d521ce57 9578 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9579 struct create_dwo_cu_data create_dwo_cu_data;
9580 struct dwo_unit *dwo_unit;
3019eac3
DE
9581
9582 dwarf2_read_section (objfile, section);
9583 info_ptr = section->buffer;
9584
9585 if (info_ptr == NULL)
9586 return NULL;
9587
9588 /* We can't set abfd until now because the section may be empty or
9589 not present, in which case section->asection will be NULL. */
a32a8923 9590 abfd = get_section_bfd_owner (section);
3019eac3 9591
b4f54984 9592 if (dwarf_read_debug)
19c3d4c9
DE
9593 {
9594 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9595 get_section_name (section),
9596 get_section_file_name (section));
19c3d4c9 9597 }
3019eac3 9598
19c3d4c9
DE
9599 create_dwo_cu_data.dwo_file = dwo_file;
9600 dwo_unit = NULL;
3019eac3
DE
9601
9602 end_ptr = info_ptr + section->size;
9603 while (info_ptr < end_ptr)
9604 {
9605 struct dwarf2_per_cu_data per_cu;
9606
19c3d4c9
DE
9607 memset (&create_dwo_cu_data.dwo_unit, 0,
9608 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9609 memset (&per_cu, 0, sizeof (per_cu));
9610 per_cu.objfile = objfile;
9611 per_cu.is_debug_types = 0;
9612 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9613 per_cu.section = section;
3019eac3 9614
33e80786 9615 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
19c3d4c9
DE
9616 create_dwo_cu_reader,
9617 &create_dwo_cu_data);
9618
9619 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9620 {
9621 /* If we've already found one, complain. We only support one
9622 because having more than one requires hacking the dwo_name of
9623 each to match, which is highly unlikely to happen. */
9624 if (dwo_unit != NULL)
9625 {
9626 complaint (&symfile_complaints,
9627 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9628 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9629 break;
9630 }
9631
9632 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9633 *dwo_unit = create_dwo_cu_data.dwo_unit;
9634 }
3019eac3
DE
9635
9636 info_ptr += per_cu.length;
9637 }
9638
19c3d4c9 9639 return dwo_unit;
3019eac3
DE
9640}
9641
80626a55
DE
9642/* DWP file .debug_{cu,tu}_index section format:
9643 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9644
d2415c6c
DE
9645 DWP Version 1:
9646
80626a55
DE
9647 Both index sections have the same format, and serve to map a 64-bit
9648 signature to a set of section numbers. Each section begins with a header,
9649 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9650 indexes, and a pool of 32-bit section numbers. The index sections will be
9651 aligned at 8-byte boundaries in the file.
9652
d2415c6c
DE
9653 The index section header consists of:
9654
9655 V, 32 bit version number
9656 -, 32 bits unused
9657 N, 32 bit number of compilation units or type units in the index
9658 M, 32 bit number of slots in the hash table
80626a55 9659
d2415c6c 9660 Numbers are recorded using the byte order of the application binary.
80626a55 9661
d2415c6c
DE
9662 The hash table begins at offset 16 in the section, and consists of an array
9663 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9664 order of the application binary). Unused slots in the hash table are 0.
9665 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9666
d2415c6c
DE
9667 The parallel table begins immediately after the hash table
9668 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9669 array of 32-bit indexes (using the byte order of the application binary),
9670 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9671 table contains a 32-bit index into the pool of section numbers. For unused
9672 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9673
73869dc2
DE
9674 The pool of section numbers begins immediately following the hash table
9675 (at offset 16 + 12 * M from the beginning of the section). The pool of
9676 section numbers consists of an array of 32-bit words (using the byte order
9677 of the application binary). Each item in the array is indexed starting
9678 from 0. The hash table entry provides the index of the first section
9679 number in the set. Additional section numbers in the set follow, and the
9680 set is terminated by a 0 entry (section number 0 is not used in ELF).
9681
9682 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9683 section must be the first entry in the set, and the .debug_abbrev.dwo must
9684 be the second entry. Other members of the set may follow in any order.
9685
9686 ---
9687
9688 DWP Version 2:
9689
9690 DWP Version 2 combines all the .debug_info, etc. sections into one,
9691 and the entries in the index tables are now offsets into these sections.
9692 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9693 section.
9694
9695 Index Section Contents:
9696 Header
9697 Hash Table of Signatures dwp_hash_table.hash_table
9698 Parallel Table of Indices dwp_hash_table.unit_table
9699 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9700 Table of Section Sizes dwp_hash_table.v2.sizes
9701
9702 The index section header consists of:
9703
9704 V, 32 bit version number
9705 L, 32 bit number of columns in the table of section offsets
9706 N, 32 bit number of compilation units or type units in the index
9707 M, 32 bit number of slots in the hash table
9708
9709 Numbers are recorded using the byte order of the application binary.
9710
9711 The hash table has the same format as version 1.
9712 The parallel table of indices has the same format as version 1,
9713 except that the entries are origin-1 indices into the table of sections
9714 offsets and the table of section sizes.
9715
9716 The table of offsets begins immediately following the parallel table
9717 (at offset 16 + 12 * M from the beginning of the section). The table is
9718 a two-dimensional array of 32-bit words (using the byte order of the
9719 application binary), with L columns and N+1 rows, in row-major order.
9720 Each row in the array is indexed starting from 0. The first row provides
9721 a key to the remaining rows: each column in this row provides an identifier
9722 for a debug section, and the offsets in the same column of subsequent rows
9723 refer to that section. The section identifiers are:
9724
9725 DW_SECT_INFO 1 .debug_info.dwo
9726 DW_SECT_TYPES 2 .debug_types.dwo
9727 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9728 DW_SECT_LINE 4 .debug_line.dwo
9729 DW_SECT_LOC 5 .debug_loc.dwo
9730 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9731 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9732 DW_SECT_MACRO 8 .debug_macro.dwo
9733
9734 The offsets provided by the CU and TU index sections are the base offsets
9735 for the contributions made by each CU or TU to the corresponding section
9736 in the package file. Each CU and TU header contains an abbrev_offset
9737 field, used to find the abbreviations table for that CU or TU within the
9738 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9739 be interpreted as relative to the base offset given in the index section.
9740 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9741 should be interpreted as relative to the base offset for .debug_line.dwo,
9742 and offsets into other debug sections obtained from DWARF attributes should
9743 also be interpreted as relative to the corresponding base offset.
9744
9745 The table of sizes begins immediately following the table of offsets.
9746 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9747 with L columns and N rows, in row-major order. Each row in the array is
9748 indexed starting from 1 (row 0 is shared by the two tables).
9749
9750 ---
9751
9752 Hash table lookup is handled the same in version 1 and 2:
9753
9754 We assume that N and M will not exceed 2^32 - 1.
9755 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9756
d2415c6c
DE
9757 Given a 64-bit compilation unit signature or a type signature S, an entry
9758 in the hash table is located as follows:
80626a55 9759
d2415c6c
DE
9760 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9761 the low-order k bits all set to 1.
80626a55 9762
d2415c6c 9763 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9764
d2415c6c
DE
9765 3) If the hash table entry at index H matches the signature, use that
9766 entry. If the hash table entry at index H is unused (all zeroes),
9767 terminate the search: the signature is not present in the table.
80626a55 9768
d2415c6c 9769 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9770
d2415c6c 9771 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9772 to stop at an unused slot or find the match. */
80626a55
DE
9773
9774/* Create a hash table to map DWO IDs to their CU/TU entry in
9775 .debug_{info,types}.dwo in DWP_FILE.
9776 Returns NULL if there isn't one.
9777 Note: This function processes DWP files only, not DWO files. */
9778
9779static struct dwp_hash_table *
9780create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9781{
9782 struct objfile *objfile = dwarf2_per_objfile->objfile;
9783 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9784 const gdb_byte *index_ptr, *index_end;
80626a55 9785 struct dwarf2_section_info *index;
73869dc2 9786 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9787 struct dwp_hash_table *htab;
9788
9789 if (is_debug_types)
9790 index = &dwp_file->sections.tu_index;
9791 else
9792 index = &dwp_file->sections.cu_index;
9793
9794 if (dwarf2_section_empty_p (index))
9795 return NULL;
9796 dwarf2_read_section (objfile, index);
9797
9798 index_ptr = index->buffer;
9799 index_end = index_ptr + index->size;
9800
9801 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9802 index_ptr += 4;
9803 if (version == 2)
9804 nr_columns = read_4_bytes (dbfd, index_ptr);
9805 else
9806 nr_columns = 0;
9807 index_ptr += 4;
80626a55
DE
9808 nr_units = read_4_bytes (dbfd, index_ptr);
9809 index_ptr += 4;
9810 nr_slots = read_4_bytes (dbfd, index_ptr);
9811 index_ptr += 4;
9812
73869dc2 9813 if (version != 1 && version != 2)
80626a55 9814 {
21aa081e 9815 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9816 " [in module %s]"),
21aa081e 9817 pulongest (version), dwp_file->name);
80626a55
DE
9818 }
9819 if (nr_slots != (nr_slots & -nr_slots))
9820 {
21aa081e 9821 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9822 " is not power of 2 [in module %s]"),
21aa081e 9823 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9824 }
9825
9826 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9827 htab->version = version;
9828 htab->nr_columns = nr_columns;
80626a55
DE
9829 htab->nr_units = nr_units;
9830 htab->nr_slots = nr_slots;
9831 htab->hash_table = index_ptr;
9832 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9833
9834 /* Exit early if the table is empty. */
9835 if (nr_slots == 0 || nr_units == 0
9836 || (version == 2 && nr_columns == 0))
9837 {
9838 /* All must be zero. */
9839 if (nr_slots != 0 || nr_units != 0
9840 || (version == 2 && nr_columns != 0))
9841 {
9842 complaint (&symfile_complaints,
9843 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9844 " all zero [in modules %s]"),
9845 dwp_file->name);
9846 }
9847 return htab;
9848 }
9849
9850 if (version == 1)
9851 {
9852 htab->section_pool.v1.indices =
9853 htab->unit_table + sizeof (uint32_t) * nr_slots;
9854 /* It's harder to decide whether the section is too small in v1.
9855 V1 is deprecated anyway so we punt. */
9856 }
9857 else
9858 {
9859 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9860 int *ids = htab->section_pool.v2.section_ids;
9861 /* Reverse map for error checking. */
9862 int ids_seen[DW_SECT_MAX + 1];
9863 int i;
9864
9865 if (nr_columns < 2)
9866 {
9867 error (_("Dwarf Error: bad DWP hash table, too few columns"
9868 " in section table [in module %s]"),
9869 dwp_file->name);
9870 }
9871 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9872 {
9873 error (_("Dwarf Error: bad DWP hash table, too many columns"
9874 " in section table [in module %s]"),
9875 dwp_file->name);
9876 }
9877 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9878 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9879 for (i = 0; i < nr_columns; ++i)
9880 {
9881 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9882
9883 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9884 {
9885 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9886 " in section table [in module %s]"),
9887 id, dwp_file->name);
9888 }
9889 if (ids_seen[id] != -1)
9890 {
9891 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9892 " id %d in section table [in module %s]"),
9893 id, dwp_file->name);
9894 }
9895 ids_seen[id] = i;
9896 ids[i] = id;
9897 }
9898 /* Must have exactly one info or types section. */
9899 if (((ids_seen[DW_SECT_INFO] != -1)
9900 + (ids_seen[DW_SECT_TYPES] != -1))
9901 != 1)
9902 {
9903 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9904 " DWO info/types section [in module %s]"),
9905 dwp_file->name);
9906 }
9907 /* Must have an abbrev section. */
9908 if (ids_seen[DW_SECT_ABBREV] == -1)
9909 {
9910 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9911 " section [in module %s]"),
9912 dwp_file->name);
9913 }
9914 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9915 htab->section_pool.v2.sizes =
9916 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9917 * nr_units * nr_columns);
9918 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9919 * nr_units * nr_columns))
9920 > index_end)
9921 {
9922 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9923 " [in module %s]"),
9924 dwp_file->name);
9925 }
9926 }
80626a55
DE
9927
9928 return htab;
9929}
9930
9931/* Update SECTIONS with the data from SECTP.
9932
9933 This function is like the other "locate" section routines that are
9934 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9935 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9936
9937 The result is non-zero for success, or zero if an error was found. */
9938
9939static int
73869dc2
DE
9940locate_v1_virtual_dwo_sections (asection *sectp,
9941 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9942{
9943 const struct dwop_section_names *names = &dwop_section_names;
9944
9945 if (section_is_p (sectp->name, &names->abbrev_dwo))
9946 {
9947 /* There can be only one. */
049412e3 9948 if (sections->abbrev.s.section != NULL)
80626a55 9949 return 0;
049412e3 9950 sections->abbrev.s.section = sectp;
80626a55
DE
9951 sections->abbrev.size = bfd_get_section_size (sectp);
9952 }
9953 else if (section_is_p (sectp->name, &names->info_dwo)
9954 || section_is_p (sectp->name, &names->types_dwo))
9955 {
9956 /* There can be only one. */
049412e3 9957 if (sections->info_or_types.s.section != NULL)
80626a55 9958 return 0;
049412e3 9959 sections->info_or_types.s.section = sectp;
80626a55
DE
9960 sections->info_or_types.size = bfd_get_section_size (sectp);
9961 }
9962 else if (section_is_p (sectp->name, &names->line_dwo))
9963 {
9964 /* There can be only one. */
049412e3 9965 if (sections->line.s.section != NULL)
80626a55 9966 return 0;
049412e3 9967 sections->line.s.section = sectp;
80626a55
DE
9968 sections->line.size = bfd_get_section_size (sectp);
9969 }
9970 else if (section_is_p (sectp->name, &names->loc_dwo))
9971 {
9972 /* There can be only one. */
049412e3 9973 if (sections->loc.s.section != NULL)
80626a55 9974 return 0;
049412e3 9975 sections->loc.s.section = sectp;
80626a55
DE
9976 sections->loc.size = bfd_get_section_size (sectp);
9977 }
9978 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9979 {
9980 /* There can be only one. */
049412e3 9981 if (sections->macinfo.s.section != NULL)
80626a55 9982 return 0;
049412e3 9983 sections->macinfo.s.section = sectp;
80626a55
DE
9984 sections->macinfo.size = bfd_get_section_size (sectp);
9985 }
9986 else if (section_is_p (sectp->name, &names->macro_dwo))
9987 {
9988 /* There can be only one. */
049412e3 9989 if (sections->macro.s.section != NULL)
80626a55 9990 return 0;
049412e3 9991 sections->macro.s.section = sectp;
80626a55
DE
9992 sections->macro.size = bfd_get_section_size (sectp);
9993 }
9994 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9995 {
9996 /* There can be only one. */
049412e3 9997 if (sections->str_offsets.s.section != NULL)
80626a55 9998 return 0;
049412e3 9999 sections->str_offsets.s.section = sectp;
80626a55
DE
10000 sections->str_offsets.size = bfd_get_section_size (sectp);
10001 }
10002 else
10003 {
10004 /* No other kind of section is valid. */
10005 return 0;
10006 }
10007
10008 return 1;
10009}
10010
73869dc2
DE
10011/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10012 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10013 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10014 This is for DWP version 1 files. */
80626a55
DE
10015
10016static struct dwo_unit *
73869dc2
DE
10017create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
10018 uint32_t unit_index,
10019 const char *comp_dir,
10020 ULONGEST signature, int is_debug_types)
80626a55
DE
10021{
10022 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
10023 const struct dwp_hash_table *dwp_htab =
10024 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
10025 bfd *dbfd = dwp_file->dbfd;
10026 const char *kind = is_debug_types ? "TU" : "CU";
10027 struct dwo_file *dwo_file;
10028 struct dwo_unit *dwo_unit;
73869dc2 10029 struct virtual_v1_dwo_sections sections;
80626a55
DE
10030 void **dwo_file_slot;
10031 char *virtual_dwo_name;
10032 struct dwarf2_section_info *cutu;
10033 struct cleanup *cleanups;
10034 int i;
10035
73869dc2
DE
10036 gdb_assert (dwp_file->version == 1);
10037
b4f54984 10038 if (dwarf_read_debug)
80626a55 10039 {
73869dc2 10040 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 10041 kind,
73869dc2 10042 pulongest (unit_index), hex_string (signature),
80626a55
DE
10043 dwp_file->name);
10044 }
10045
19ac8c2e 10046 /* Fetch the sections of this DWO unit.
80626a55
DE
10047 Put a limit on the number of sections we look for so that bad data
10048 doesn't cause us to loop forever. */
10049
73869dc2 10050#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
10051 (1 /* .debug_info or .debug_types */ \
10052 + 1 /* .debug_abbrev */ \
10053 + 1 /* .debug_line */ \
10054 + 1 /* .debug_loc */ \
10055 + 1 /* .debug_str_offsets */ \
19ac8c2e 10056 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
10057 + 1 /* trailing zero */)
10058
10059 memset (&sections, 0, sizeof (sections));
10060 cleanups = make_cleanup (null_cleanup, 0);
10061
73869dc2 10062 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
10063 {
10064 asection *sectp;
10065 uint32_t section_nr =
10066 read_4_bytes (dbfd,
73869dc2
DE
10067 dwp_htab->section_pool.v1.indices
10068 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
10069
10070 if (section_nr == 0)
10071 break;
10072 if (section_nr >= dwp_file->num_sections)
10073 {
10074 error (_("Dwarf Error: bad DWP hash table, section number too large"
10075 " [in module %s]"),
10076 dwp_file->name);
10077 }
10078
10079 sectp = dwp_file->elf_sections[section_nr];
73869dc2 10080 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
10081 {
10082 error (_("Dwarf Error: bad DWP hash table, invalid section found"
10083 " [in module %s]"),
10084 dwp_file->name);
10085 }
10086 }
10087
10088 if (i < 2
a32a8923
DE
10089 || dwarf2_section_empty_p (&sections.info_or_types)
10090 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
10091 {
10092 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
10093 " [in module %s]"),
10094 dwp_file->name);
10095 }
73869dc2 10096 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
10097 {
10098 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
10099 " [in module %s]"),
10100 dwp_file->name);
10101 }
10102
10103 /* It's easier for the rest of the code if we fake a struct dwo_file and
10104 have dwo_unit "live" in that. At least for now.
10105
10106 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 10107 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
10108 file, we can combine them back into a virtual DWO file to save space
10109 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
10110 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10111
2792b94d
PM
10112 virtual_dwo_name =
10113 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
10114 get_section_id (&sections.abbrev),
10115 get_section_id (&sections.line),
10116 get_section_id (&sections.loc),
10117 get_section_id (&sections.str_offsets));
80626a55
DE
10118 make_cleanup (xfree, virtual_dwo_name);
10119 /* Can we use an existing virtual DWO file? */
0ac5b59e 10120 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
10121 /* Create one if necessary. */
10122 if (*dwo_file_slot == NULL)
10123 {
b4f54984 10124 if (dwarf_read_debug)
80626a55
DE
10125 {
10126 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10127 virtual_dwo_name);
10128 }
10129 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10130 dwo_file->dwo_name
10131 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10132 virtual_dwo_name,
10133 strlen (virtual_dwo_name));
0ac5b59e 10134 dwo_file->comp_dir = comp_dir;
80626a55
DE
10135 dwo_file->sections.abbrev = sections.abbrev;
10136 dwo_file->sections.line = sections.line;
10137 dwo_file->sections.loc = sections.loc;
10138 dwo_file->sections.macinfo = sections.macinfo;
10139 dwo_file->sections.macro = sections.macro;
10140 dwo_file->sections.str_offsets = sections.str_offsets;
10141 /* The "str" section is global to the entire DWP file. */
10142 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 10143 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
10144 there's no need to record it in dwo_file.
10145 Also, we can't simply record type sections in dwo_file because
10146 we record a pointer into the vector in dwo_unit. As we collect more
10147 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
10148 for it, invalidating all copies of pointers into the previous
10149 contents. */
80626a55
DE
10150 *dwo_file_slot = dwo_file;
10151 }
10152 else
10153 {
b4f54984 10154 if (dwarf_read_debug)
80626a55
DE
10155 {
10156 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10157 virtual_dwo_name);
10158 }
9a3c8263 10159 dwo_file = (struct dwo_file *) *dwo_file_slot;
80626a55
DE
10160 }
10161 do_cleanups (cleanups);
10162
10163 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10164 dwo_unit->dwo_file = dwo_file;
10165 dwo_unit->signature = signature;
8d749320
SM
10166 dwo_unit->section =
10167 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
8a0459fd 10168 *dwo_unit->section = sections.info_or_types;
57d63ce2 10169 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
10170
10171 return dwo_unit;
10172}
10173
73869dc2
DE
10174/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10175 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10176 piece within that section used by a TU/CU, return a virtual section
10177 of just that piece. */
10178
10179static struct dwarf2_section_info
10180create_dwp_v2_section (struct dwarf2_section_info *section,
10181 bfd_size_type offset, bfd_size_type size)
10182{
10183 struct dwarf2_section_info result;
10184 asection *sectp;
10185
10186 gdb_assert (section != NULL);
10187 gdb_assert (!section->is_virtual);
10188
10189 memset (&result, 0, sizeof (result));
10190 result.s.containing_section = section;
10191 result.is_virtual = 1;
10192
10193 if (size == 0)
10194 return result;
10195
10196 sectp = get_section_bfd_section (section);
10197
10198 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10199 bounds of the real section. This is a pretty-rare event, so just
10200 flag an error (easier) instead of a warning and trying to cope. */
10201 if (sectp == NULL
10202 || offset + size > bfd_get_section_size (sectp))
10203 {
10204 bfd *abfd = sectp->owner;
10205
10206 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10207 " in section %s [in module %s]"),
10208 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10209 objfile_name (dwarf2_per_objfile->objfile));
10210 }
10211
10212 result.virtual_offset = offset;
10213 result.size = size;
10214 return result;
10215}
10216
10217/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10218 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10219 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10220 This is for DWP version 2 files. */
10221
10222static struct dwo_unit *
10223create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10224 uint32_t unit_index,
10225 const char *comp_dir,
10226 ULONGEST signature, int is_debug_types)
10227{
10228 struct objfile *objfile = dwarf2_per_objfile->objfile;
10229 const struct dwp_hash_table *dwp_htab =
10230 is_debug_types ? dwp_file->tus : dwp_file->cus;
10231 bfd *dbfd = dwp_file->dbfd;
10232 const char *kind = is_debug_types ? "TU" : "CU";
10233 struct dwo_file *dwo_file;
10234 struct dwo_unit *dwo_unit;
10235 struct virtual_v2_dwo_sections sections;
10236 void **dwo_file_slot;
10237 char *virtual_dwo_name;
10238 struct dwarf2_section_info *cutu;
10239 struct cleanup *cleanups;
10240 int i;
10241
10242 gdb_assert (dwp_file->version == 2);
10243
b4f54984 10244 if (dwarf_read_debug)
73869dc2
DE
10245 {
10246 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10247 kind,
10248 pulongest (unit_index), hex_string (signature),
10249 dwp_file->name);
10250 }
10251
10252 /* Fetch the section offsets of this DWO unit. */
10253
10254 memset (&sections, 0, sizeof (sections));
10255 cleanups = make_cleanup (null_cleanup, 0);
10256
10257 for (i = 0; i < dwp_htab->nr_columns; ++i)
10258 {
10259 uint32_t offset = read_4_bytes (dbfd,
10260 dwp_htab->section_pool.v2.offsets
10261 + (((unit_index - 1) * dwp_htab->nr_columns
10262 + i)
10263 * sizeof (uint32_t)));
10264 uint32_t size = read_4_bytes (dbfd,
10265 dwp_htab->section_pool.v2.sizes
10266 + (((unit_index - 1) * dwp_htab->nr_columns
10267 + i)
10268 * sizeof (uint32_t)));
10269
10270 switch (dwp_htab->section_pool.v2.section_ids[i])
10271 {
10272 case DW_SECT_INFO:
10273 case DW_SECT_TYPES:
10274 sections.info_or_types_offset = offset;
10275 sections.info_or_types_size = size;
10276 break;
10277 case DW_SECT_ABBREV:
10278 sections.abbrev_offset = offset;
10279 sections.abbrev_size = size;
10280 break;
10281 case DW_SECT_LINE:
10282 sections.line_offset = offset;
10283 sections.line_size = size;
10284 break;
10285 case DW_SECT_LOC:
10286 sections.loc_offset = offset;
10287 sections.loc_size = size;
10288 break;
10289 case DW_SECT_STR_OFFSETS:
10290 sections.str_offsets_offset = offset;
10291 sections.str_offsets_size = size;
10292 break;
10293 case DW_SECT_MACINFO:
10294 sections.macinfo_offset = offset;
10295 sections.macinfo_size = size;
10296 break;
10297 case DW_SECT_MACRO:
10298 sections.macro_offset = offset;
10299 sections.macro_size = size;
10300 break;
10301 }
10302 }
10303
10304 /* It's easier for the rest of the code if we fake a struct dwo_file and
10305 have dwo_unit "live" in that. At least for now.
10306
10307 The DWP file can be made up of a random collection of CUs and TUs.
10308 However, for each CU + set of TUs that came from the same original DWO
10309 file, we can combine them back into a virtual DWO file to save space
10310 (fewer struct dwo_file objects to allocate). Remember that for really
10311 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10312
10313 virtual_dwo_name =
10314 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10315 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10316 (long) (sections.line_size ? sections.line_offset : 0),
10317 (long) (sections.loc_size ? sections.loc_offset : 0),
10318 (long) (sections.str_offsets_size
10319 ? sections.str_offsets_offset : 0));
10320 make_cleanup (xfree, virtual_dwo_name);
10321 /* Can we use an existing virtual DWO file? */
10322 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10323 /* Create one if necessary. */
10324 if (*dwo_file_slot == NULL)
10325 {
b4f54984 10326 if (dwarf_read_debug)
73869dc2
DE
10327 {
10328 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10329 virtual_dwo_name);
10330 }
10331 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
224c3ddb
SM
10332 dwo_file->dwo_name
10333 = (const char *) obstack_copy0 (&objfile->objfile_obstack,
10334 virtual_dwo_name,
10335 strlen (virtual_dwo_name));
73869dc2
DE
10336 dwo_file->comp_dir = comp_dir;
10337 dwo_file->sections.abbrev =
10338 create_dwp_v2_section (&dwp_file->sections.abbrev,
10339 sections.abbrev_offset, sections.abbrev_size);
10340 dwo_file->sections.line =
10341 create_dwp_v2_section (&dwp_file->sections.line,
10342 sections.line_offset, sections.line_size);
10343 dwo_file->sections.loc =
10344 create_dwp_v2_section (&dwp_file->sections.loc,
10345 sections.loc_offset, sections.loc_size);
10346 dwo_file->sections.macinfo =
10347 create_dwp_v2_section (&dwp_file->sections.macinfo,
10348 sections.macinfo_offset, sections.macinfo_size);
10349 dwo_file->sections.macro =
10350 create_dwp_v2_section (&dwp_file->sections.macro,
10351 sections.macro_offset, sections.macro_size);
10352 dwo_file->sections.str_offsets =
10353 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10354 sections.str_offsets_offset,
10355 sections.str_offsets_size);
10356 /* The "str" section is global to the entire DWP file. */
10357 dwo_file->sections.str = dwp_file->sections.str;
10358 /* The info or types section is assigned below to dwo_unit,
10359 there's no need to record it in dwo_file.
10360 Also, we can't simply record type sections in dwo_file because
10361 we record a pointer into the vector in dwo_unit. As we collect more
10362 types we'll grow the vector and eventually have to reallocate space
10363 for it, invalidating all copies of pointers into the previous
10364 contents. */
10365 *dwo_file_slot = dwo_file;
10366 }
10367 else
10368 {
b4f54984 10369 if (dwarf_read_debug)
73869dc2
DE
10370 {
10371 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10372 virtual_dwo_name);
10373 }
9a3c8263 10374 dwo_file = (struct dwo_file *) *dwo_file_slot;
73869dc2
DE
10375 }
10376 do_cleanups (cleanups);
10377
10378 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10379 dwo_unit->dwo_file = dwo_file;
10380 dwo_unit->signature = signature;
8d749320
SM
10381 dwo_unit->section =
10382 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
73869dc2
DE
10383 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10384 ? &dwp_file->sections.types
10385 : &dwp_file->sections.info,
10386 sections.info_or_types_offset,
10387 sections.info_or_types_size);
10388 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10389
10390 return dwo_unit;
10391}
10392
57d63ce2
DE
10393/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10394 Returns NULL if the signature isn't found. */
80626a55
DE
10395
10396static struct dwo_unit *
57d63ce2
DE
10397lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10398 ULONGEST signature, int is_debug_types)
80626a55 10399{
57d63ce2
DE
10400 const struct dwp_hash_table *dwp_htab =
10401 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10402 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10403 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10404 uint32_t hash = signature & mask;
10405 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10406 unsigned int i;
10407 void **slot;
10408 struct dwo_unit find_dwo_cu, *dwo_cu;
10409
10410 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10411 find_dwo_cu.signature = signature;
19ac8c2e
DE
10412 slot = htab_find_slot (is_debug_types
10413 ? dwp_file->loaded_tus
10414 : dwp_file->loaded_cus,
10415 &find_dwo_cu, INSERT);
80626a55
DE
10416
10417 if (*slot != NULL)
9a3c8263 10418 return (struct dwo_unit *) *slot;
80626a55
DE
10419
10420 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10421 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10422 {
10423 ULONGEST signature_in_table;
10424
10425 signature_in_table =
57d63ce2 10426 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10427 if (signature_in_table == signature)
10428 {
57d63ce2
DE
10429 uint32_t unit_index =
10430 read_4_bytes (dbfd,
10431 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10432
73869dc2
DE
10433 if (dwp_file->version == 1)
10434 {
10435 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10436 comp_dir, signature,
10437 is_debug_types);
10438 }
10439 else
10440 {
10441 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10442 comp_dir, signature,
10443 is_debug_types);
10444 }
9a3c8263 10445 return (struct dwo_unit *) *slot;
80626a55
DE
10446 }
10447 if (signature_in_table == 0)
10448 return NULL;
10449 hash = (hash + hash2) & mask;
10450 }
10451
10452 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10453 " [in module %s]"),
10454 dwp_file->name);
10455}
10456
ab5088bf 10457/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10458 Open the file specified by FILE_NAME and hand it off to BFD for
10459 preliminary analysis. Return a newly initialized bfd *, which
10460 includes a canonicalized copy of FILE_NAME.
80626a55 10461 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10462 SEARCH_CWD is true if the current directory is to be searched.
10463 It will be searched before debug-file-directory.
13aaf454
DE
10464 If successful, the file is added to the bfd include table of the
10465 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10466 If unable to find/open the file, return NULL.
3019eac3
DE
10467 NOTE: This function is derived from symfile_bfd_open. */
10468
10469static bfd *
6ac97d4c 10470try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
10471{
10472 bfd *sym_bfd;
80626a55 10473 int desc, flags;
3019eac3 10474 char *absolute_name;
9c02c129
DE
10475 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10476 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10477 to debug_file_directory. */
10478 char *search_path;
10479 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10480
6ac97d4c
DE
10481 if (search_cwd)
10482 {
10483 if (*debug_file_directory != '\0')
10484 search_path = concat (".", dirname_separator_string,
10485 debug_file_directory, NULL);
10486 else
10487 search_path = xstrdup (".");
10488 }
9c02c129 10489 else
6ac97d4c 10490 search_path = xstrdup (debug_file_directory);
3019eac3 10491
492c0ab7 10492 flags = OPF_RETURN_REALPATH;
80626a55
DE
10493 if (is_dwp)
10494 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10495 desc = openp (search_path, flags, file_name,
3019eac3 10496 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10497 xfree (search_path);
3019eac3
DE
10498 if (desc < 0)
10499 return NULL;
10500
bb397797 10501 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 10502 xfree (absolute_name);
9c02c129
DE
10503 if (sym_bfd == NULL)
10504 return NULL;
3019eac3
DE
10505 bfd_set_cacheable (sym_bfd, 1);
10506
10507 if (!bfd_check_format (sym_bfd, bfd_object))
10508 {
cbb099e8 10509 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
10510 return NULL;
10511 }
10512
13aaf454
DE
10513 /* Success. Record the bfd as having been included by the objfile's bfd.
10514 This is important because things like demangled_names_hash lives in the
10515 objfile's per_bfd space and may have references to things like symbol
10516 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10517 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10518
3019eac3
DE
10519 return sym_bfd;
10520}
10521
ab5088bf 10522/* Try to open DWO file FILE_NAME.
3019eac3
DE
10523 COMP_DIR is the DW_AT_comp_dir attribute.
10524 The result is the bfd handle of the file.
10525 If there is a problem finding or opening the file, return NULL.
10526 Upon success, the canonicalized path of the file is stored in the bfd,
10527 same as symfile_bfd_open. */
10528
10529static bfd *
ab5088bf 10530open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
10531{
10532 bfd *abfd;
3019eac3 10533
80626a55 10534 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10535 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10536
10537 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10538
10539 if (comp_dir != NULL)
10540 {
80626a55 10541 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
3019eac3
DE
10542
10543 /* NOTE: If comp_dir is a relative path, this will also try the
10544 search path, which seems useful. */
6ac97d4c 10545 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10546 xfree (path_to_try);
10547 if (abfd != NULL)
10548 return abfd;
10549 }
10550
10551 /* That didn't work, try debug-file-directory, which, despite its name,
10552 is a list of paths. */
10553
10554 if (*debug_file_directory == '\0')
10555 return NULL;
10556
6ac97d4c 10557 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10558}
10559
80626a55
DE
10560/* This function is mapped across the sections and remembers the offset and
10561 size of each of the DWO debugging sections we are interested in. */
10562
10563static void
10564dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10565{
9a3c8263 10566 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
80626a55
DE
10567 const struct dwop_section_names *names = &dwop_section_names;
10568
10569 if (section_is_p (sectp->name, &names->abbrev_dwo))
10570 {
049412e3 10571 dwo_sections->abbrev.s.section = sectp;
80626a55
DE
10572 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10573 }
10574 else if (section_is_p (sectp->name, &names->info_dwo))
10575 {
049412e3 10576 dwo_sections->info.s.section = sectp;
80626a55
DE
10577 dwo_sections->info.size = bfd_get_section_size (sectp);
10578 }
10579 else if (section_is_p (sectp->name, &names->line_dwo))
10580 {
049412e3 10581 dwo_sections->line.s.section = sectp;
80626a55
DE
10582 dwo_sections->line.size = bfd_get_section_size (sectp);
10583 }
10584 else if (section_is_p (sectp->name, &names->loc_dwo))
10585 {
049412e3 10586 dwo_sections->loc.s.section = sectp;
80626a55
DE
10587 dwo_sections->loc.size = bfd_get_section_size (sectp);
10588 }
10589 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10590 {
049412e3 10591 dwo_sections->macinfo.s.section = sectp;
80626a55
DE
10592 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10593 }
10594 else if (section_is_p (sectp->name, &names->macro_dwo))
10595 {
049412e3 10596 dwo_sections->macro.s.section = sectp;
80626a55
DE
10597 dwo_sections->macro.size = bfd_get_section_size (sectp);
10598 }
10599 else if (section_is_p (sectp->name, &names->str_dwo))
10600 {
049412e3 10601 dwo_sections->str.s.section = sectp;
80626a55
DE
10602 dwo_sections->str.size = bfd_get_section_size (sectp);
10603 }
10604 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10605 {
049412e3 10606 dwo_sections->str_offsets.s.section = sectp;
80626a55
DE
10607 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10608 }
10609 else if (section_is_p (sectp->name, &names->types_dwo))
10610 {
10611 struct dwarf2_section_info type_section;
10612
10613 memset (&type_section, 0, sizeof (type_section));
049412e3 10614 type_section.s.section = sectp;
80626a55
DE
10615 type_section.size = bfd_get_section_size (sectp);
10616 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10617 &type_section);
10618 }
10619}
10620
ab5088bf 10621/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10622 by PER_CU. This is for the non-DWP case.
80626a55 10623 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10624
10625static struct dwo_file *
0ac5b59e
DE
10626open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10627 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10628{
10629 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10630 struct dwo_file *dwo_file;
10631 bfd *dbfd;
3019eac3
DE
10632 struct cleanup *cleanups;
10633
ab5088bf 10634 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
10635 if (dbfd == NULL)
10636 {
b4f54984 10637 if (dwarf_read_debug)
80626a55
DE
10638 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10639 return NULL;
10640 }
10641 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10642 dwo_file->dwo_name = dwo_name;
10643 dwo_file->comp_dir = comp_dir;
80626a55 10644 dwo_file->dbfd = dbfd;
3019eac3
DE
10645
10646 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10647
80626a55 10648 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 10649
19c3d4c9 10650 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
10651
10652 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10653 dwo_file->sections.types);
10654
10655 discard_cleanups (cleanups);
10656
b4f54984 10657 if (dwarf_read_debug)
80626a55
DE
10658 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10659
3019eac3
DE
10660 return dwo_file;
10661}
10662
80626a55 10663/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10664 size of each of the DWP debugging sections common to version 1 and 2 that
10665 we are interested in. */
3019eac3 10666
80626a55 10667static void
73869dc2
DE
10668dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10669 void *dwp_file_ptr)
3019eac3 10670{
9a3c8263 10671 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
80626a55
DE
10672 const struct dwop_section_names *names = &dwop_section_names;
10673 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10674
80626a55 10675 /* Record the ELF section number for later lookup: this is what the
73869dc2 10676 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10677 gdb_assert (elf_section_nr < dwp_file->num_sections);
10678 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10679
80626a55
DE
10680 /* Look for specific sections that we need. */
10681 if (section_is_p (sectp->name, &names->str_dwo))
10682 {
049412e3 10683 dwp_file->sections.str.s.section = sectp;
80626a55
DE
10684 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10685 }
10686 else if (section_is_p (sectp->name, &names->cu_index))
10687 {
049412e3 10688 dwp_file->sections.cu_index.s.section = sectp;
80626a55
DE
10689 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10690 }
10691 else if (section_is_p (sectp->name, &names->tu_index))
10692 {
049412e3 10693 dwp_file->sections.tu_index.s.section = sectp;
80626a55
DE
10694 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10695 }
10696}
3019eac3 10697
73869dc2
DE
10698/* This function is mapped across the sections and remembers the offset and
10699 size of each of the DWP version 2 debugging sections that we are interested
10700 in. This is split into a separate function because we don't know if we
10701 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10702
10703static void
10704dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10705{
9a3c8263 10706 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
73869dc2
DE
10707 const struct dwop_section_names *names = &dwop_section_names;
10708 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10709
10710 /* Record the ELF section number for later lookup: this is what the
10711 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10712 gdb_assert (elf_section_nr < dwp_file->num_sections);
10713 dwp_file->elf_sections[elf_section_nr] = sectp;
10714
10715 /* Look for specific sections that we need. */
10716 if (section_is_p (sectp->name, &names->abbrev_dwo))
10717 {
049412e3 10718 dwp_file->sections.abbrev.s.section = sectp;
73869dc2
DE
10719 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10720 }
10721 else if (section_is_p (sectp->name, &names->info_dwo))
10722 {
049412e3 10723 dwp_file->sections.info.s.section = sectp;
73869dc2
DE
10724 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10725 }
10726 else if (section_is_p (sectp->name, &names->line_dwo))
10727 {
049412e3 10728 dwp_file->sections.line.s.section = sectp;
73869dc2
DE
10729 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10730 }
10731 else if (section_is_p (sectp->name, &names->loc_dwo))
10732 {
049412e3 10733 dwp_file->sections.loc.s.section = sectp;
73869dc2
DE
10734 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10735 }
10736 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10737 {
049412e3 10738 dwp_file->sections.macinfo.s.section = sectp;
73869dc2
DE
10739 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10740 }
10741 else if (section_is_p (sectp->name, &names->macro_dwo))
10742 {
049412e3 10743 dwp_file->sections.macro.s.section = sectp;
73869dc2
DE
10744 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10745 }
10746 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10747 {
049412e3 10748 dwp_file->sections.str_offsets.s.section = sectp;
73869dc2
DE
10749 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10750 }
10751 else if (section_is_p (sectp->name, &names->types_dwo))
10752 {
049412e3 10753 dwp_file->sections.types.s.section = sectp;
73869dc2
DE
10754 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10755 }
10756}
10757
80626a55 10758/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10759
80626a55
DE
10760static hashval_t
10761hash_dwp_loaded_cutus (const void *item)
10762{
9a3c8263 10763 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
3019eac3 10764
80626a55
DE
10765 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10766 return dwo_unit->signature;
3019eac3
DE
10767}
10768
80626a55 10769/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10770
80626a55
DE
10771static int
10772eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10773{
9a3c8263
SM
10774 const struct dwo_unit *dua = (const struct dwo_unit *) a;
10775 const struct dwo_unit *dub = (const struct dwo_unit *) b;
3019eac3 10776
80626a55
DE
10777 return dua->signature == dub->signature;
10778}
3019eac3 10779
80626a55 10780/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10781
80626a55
DE
10782static htab_t
10783allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10784{
10785 return htab_create_alloc_ex (3,
10786 hash_dwp_loaded_cutus,
10787 eq_dwp_loaded_cutus,
10788 NULL,
10789 &objfile->objfile_obstack,
10790 hashtab_obstack_allocate,
10791 dummy_obstack_deallocate);
10792}
3019eac3 10793
ab5088bf
DE
10794/* Try to open DWP file FILE_NAME.
10795 The result is the bfd handle of the file.
10796 If there is a problem finding or opening the file, return NULL.
10797 Upon success, the canonicalized path of the file is stored in the bfd,
10798 same as symfile_bfd_open. */
10799
10800static bfd *
10801open_dwp_file (const char *file_name)
10802{
6ac97d4c
DE
10803 bfd *abfd;
10804
10805 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10806 if (abfd != NULL)
10807 return abfd;
10808
10809 /* Work around upstream bug 15652.
10810 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10811 [Whether that's a "bug" is debatable, but it is getting in our way.]
10812 We have no real idea where the dwp file is, because gdb's realpath-ing
10813 of the executable's path may have discarded the needed info.
10814 [IWBN if the dwp file name was recorded in the executable, akin to
10815 .gnu_debuglink, but that doesn't exist yet.]
10816 Strip the directory from FILE_NAME and search again. */
10817 if (*debug_file_directory != '\0')
10818 {
10819 /* Don't implicitly search the current directory here.
10820 If the user wants to search "." to handle this case,
10821 it must be added to debug-file-directory. */
10822 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10823 0 /*search_cwd*/);
10824 }
10825
10826 return NULL;
ab5088bf
DE
10827}
10828
80626a55
DE
10829/* Initialize the use of the DWP file for the current objfile.
10830 By convention the name of the DWP file is ${objfile}.dwp.
10831 The result is NULL if it can't be found. */
a766d390 10832
80626a55 10833static struct dwp_file *
ab5088bf 10834open_and_init_dwp_file (void)
80626a55
DE
10835{
10836 struct objfile *objfile = dwarf2_per_objfile->objfile;
10837 struct dwp_file *dwp_file;
10838 char *dwp_name;
10839 bfd *dbfd;
10840 struct cleanup *cleanups;
10841
82bf32bc
JK
10842 /* Try to find first .dwp for the binary file before any symbolic links
10843 resolving. */
10844 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
80626a55
DE
10845 cleanups = make_cleanup (xfree, dwp_name);
10846
ab5088bf 10847 dbfd = open_dwp_file (dwp_name);
82bf32bc
JK
10848 if (dbfd == NULL
10849 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10850 {
10851 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10852 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10853 make_cleanup (xfree, dwp_name);
10854 dbfd = open_dwp_file (dwp_name);
10855 }
10856
80626a55
DE
10857 if (dbfd == NULL)
10858 {
b4f54984 10859 if (dwarf_read_debug)
80626a55
DE
10860 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10861 do_cleanups (cleanups);
10862 return NULL;
3019eac3 10863 }
80626a55 10864 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 10865 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
10866 dwp_file->dbfd = dbfd;
10867 do_cleanups (cleanups);
c906108c 10868
80626a55
DE
10869 /* +1: section 0 is unused */
10870 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10871 dwp_file->elf_sections =
10872 OBSTACK_CALLOC (&objfile->objfile_obstack,
10873 dwp_file->num_sections, asection *);
10874
73869dc2 10875 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
80626a55
DE
10876
10877 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10878
10879 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10880
73869dc2
DE
10881 /* The DWP file version is stored in the hash table. Oh well. */
10882 if (dwp_file->cus->version != dwp_file->tus->version)
10883 {
10884 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 10885 pretty bizarre. We use pulongest here because that's the established
4d65956b 10886 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
10887 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10888 " TU version %s [in DWP file %s]"),
10889 pulongest (dwp_file->cus->version),
10890 pulongest (dwp_file->tus->version), dwp_name);
73869dc2
DE
10891 }
10892 dwp_file->version = dwp_file->cus->version;
10893
10894 if (dwp_file->version == 2)
10895 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10896
19ac8c2e
DE
10897 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10898 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10899
b4f54984 10900 if (dwarf_read_debug)
80626a55
DE
10901 {
10902 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10903 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10904 " %s CUs, %s TUs\n",
10905 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10906 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10907 }
10908
10909 return dwp_file;
3019eac3 10910}
c906108c 10911
ab5088bf
DE
10912/* Wrapper around open_and_init_dwp_file, only open it once. */
10913
10914static struct dwp_file *
10915get_dwp_file (void)
10916{
10917 if (! dwarf2_per_objfile->dwp_checked)
10918 {
10919 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10920 dwarf2_per_objfile->dwp_checked = 1;
10921 }
10922 return dwarf2_per_objfile->dwp_file;
10923}
10924
80626a55
DE
10925/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10926 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10927 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10928 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10929 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10930
10931 This is called, for example, when wanting to read a variable with a
10932 complex location. Therefore we don't want to do file i/o for every call.
10933 Therefore we don't want to look for a DWO file on every call.
10934 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10935 then we check if we've already seen DWO_NAME, and only THEN do we check
10936 for a DWO file.
10937
1c658ad5 10938 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 10939 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 10940
3019eac3 10941static struct dwo_unit *
80626a55
DE
10942lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10943 const char *dwo_name, const char *comp_dir,
10944 ULONGEST signature, int is_debug_types)
3019eac3
DE
10945{
10946 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10947 const char *kind = is_debug_types ? "TU" : "CU";
10948 void **dwo_file_slot;
3019eac3 10949 struct dwo_file *dwo_file;
80626a55 10950 struct dwp_file *dwp_file;
cb1df416 10951
6a506a2d
DE
10952 /* First see if there's a DWP file.
10953 If we have a DWP file but didn't find the DWO inside it, don't
10954 look for the original DWO file. It makes gdb behave differently
10955 depending on whether one is debugging in the build tree. */
cf2c3c16 10956
ab5088bf 10957 dwp_file = get_dwp_file ();
80626a55 10958 if (dwp_file != NULL)
cf2c3c16 10959 {
80626a55
DE
10960 const struct dwp_hash_table *dwp_htab =
10961 is_debug_types ? dwp_file->tus : dwp_file->cus;
10962
10963 if (dwp_htab != NULL)
10964 {
10965 struct dwo_unit *dwo_cutu =
57d63ce2
DE
10966 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10967 signature, is_debug_types);
80626a55
DE
10968
10969 if (dwo_cutu != NULL)
10970 {
b4f54984 10971 if (dwarf_read_debug)
80626a55
DE
10972 {
10973 fprintf_unfiltered (gdb_stdlog,
10974 "Virtual DWO %s %s found: @%s\n",
10975 kind, hex_string (signature),
10976 host_address_to_string (dwo_cutu));
10977 }
10978 return dwo_cutu;
10979 }
10980 }
10981 }
6a506a2d 10982 else
80626a55 10983 {
6a506a2d 10984 /* No DWP file, look for the DWO file. */
80626a55 10985
6a506a2d
DE
10986 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10987 if (*dwo_file_slot == NULL)
80626a55 10988 {
6a506a2d
DE
10989 /* Read in the file and build a table of the CUs/TUs it contains. */
10990 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 10991 }
6a506a2d 10992 /* NOTE: This will be NULL if unable to open the file. */
9a3c8263 10993 dwo_file = (struct dwo_file *) *dwo_file_slot;
3019eac3 10994
6a506a2d 10995 if (dwo_file != NULL)
19c3d4c9 10996 {
6a506a2d
DE
10997 struct dwo_unit *dwo_cutu = NULL;
10998
10999 if (is_debug_types && dwo_file->tus)
11000 {
11001 struct dwo_unit find_dwo_cutu;
11002
11003 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
11004 find_dwo_cutu.signature = signature;
9a3c8263
SM
11005 dwo_cutu
11006 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
6a506a2d
DE
11007 }
11008 else if (!is_debug_types && dwo_file->cu)
80626a55 11009 {
6a506a2d
DE
11010 if (signature == dwo_file->cu->signature)
11011 dwo_cutu = dwo_file->cu;
11012 }
11013
11014 if (dwo_cutu != NULL)
11015 {
b4f54984 11016 if (dwarf_read_debug)
6a506a2d
DE
11017 {
11018 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
11019 kind, dwo_name, hex_string (signature),
11020 host_address_to_string (dwo_cutu));
11021 }
11022 return dwo_cutu;
80626a55
DE
11023 }
11024 }
2e276125 11025 }
9cdd5dbd 11026
80626a55
DE
11027 /* We didn't find it. This could mean a dwo_id mismatch, or
11028 someone deleted the DWO/DWP file, or the search path isn't set up
11029 correctly to find the file. */
11030
b4f54984 11031 if (dwarf_read_debug)
80626a55
DE
11032 {
11033 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
11034 kind, dwo_name, hex_string (signature));
11035 }
3019eac3 11036
6656a72d
DE
11037 /* This is a warning and not a complaint because it can be caused by
11038 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
11039 {
11040 /* Print the name of the DWP file if we looked there, helps the user
11041 better diagnose the problem. */
11042 char *dwp_text = NULL;
11043 struct cleanup *cleanups;
11044
11045 if (dwp_file != NULL)
11046 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
11047 cleanups = make_cleanup (xfree, dwp_text);
11048
11049 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
11050 " [in module %s]"),
11051 kind, dwo_name, hex_string (signature),
11052 dwp_text != NULL ? dwp_text : "",
11053 this_unit->is_debug_types ? "TU" : "CU",
11054 this_unit->offset.sect_off, objfile_name (objfile));
11055
11056 do_cleanups (cleanups);
11057 }
3019eac3 11058 return NULL;
5fb290d7
DJ
11059}
11060
80626a55
DE
11061/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
11062 See lookup_dwo_cutu_unit for details. */
11063
11064static struct dwo_unit *
11065lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
11066 const char *dwo_name, const char *comp_dir,
11067 ULONGEST signature)
11068{
11069 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
11070}
11071
11072/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
11073 See lookup_dwo_cutu_unit for details. */
11074
11075static struct dwo_unit *
11076lookup_dwo_type_unit (struct signatured_type *this_tu,
11077 const char *dwo_name, const char *comp_dir)
11078{
11079 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
11080}
11081
89e63ee4
DE
11082/* Traversal function for queue_and_load_all_dwo_tus. */
11083
11084static int
11085queue_and_load_dwo_tu (void **slot, void *info)
11086{
11087 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
11088 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
11089 ULONGEST signature = dwo_unit->signature;
11090 struct signatured_type *sig_type =
11091 lookup_dwo_signatured_type (per_cu->cu, signature);
11092
11093 if (sig_type != NULL)
11094 {
11095 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
11096
11097 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
11098 a real dependency of PER_CU on SIG_TYPE. That is detected later
11099 while processing PER_CU. */
11100 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
11101 load_full_type_unit (sig_cu);
11102 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
11103 }
11104
11105 return 1;
11106}
11107
11108/* Queue all TUs contained in the DWO of PER_CU to be read in.
11109 The DWO may have the only definition of the type, though it may not be
11110 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
11111 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
11112
11113static void
11114queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
11115{
11116 struct dwo_unit *dwo_unit;
11117 struct dwo_file *dwo_file;
11118
11119 gdb_assert (!per_cu->is_debug_types);
11120 gdb_assert (get_dwp_file () == NULL);
11121 gdb_assert (per_cu->cu != NULL);
11122
11123 dwo_unit = per_cu->cu->dwo_unit;
11124 gdb_assert (dwo_unit != NULL);
11125
11126 dwo_file = dwo_unit->dwo_file;
11127 if (dwo_file->tus != NULL)
11128 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
11129}
11130
3019eac3
DE
11131/* Free all resources associated with DWO_FILE.
11132 Close the DWO file and munmap the sections.
11133 All memory should be on the objfile obstack. */
348e048f
DE
11134
11135static void
3019eac3 11136free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 11137{
3019eac3
DE
11138 int ix;
11139 struct dwarf2_section_info *section;
348e048f 11140
5c6fa7ab 11141 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 11142 gdb_bfd_unref (dwo_file->dbfd);
348e048f 11143
3019eac3
DE
11144 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
11145}
348e048f 11146
3019eac3 11147/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 11148
3019eac3
DE
11149static void
11150free_dwo_file_cleanup (void *arg)
11151{
11152 struct dwo_file *dwo_file = (struct dwo_file *) arg;
11153 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 11154
3019eac3
DE
11155 free_dwo_file (dwo_file, objfile);
11156}
348e048f 11157
3019eac3 11158/* Traversal function for free_dwo_files. */
2ab95328 11159
3019eac3
DE
11160static int
11161free_dwo_file_from_slot (void **slot, void *info)
11162{
11163 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
11164 struct objfile *objfile = (struct objfile *) info;
348e048f 11165
3019eac3 11166 free_dwo_file (dwo_file, objfile);
348e048f 11167
3019eac3
DE
11168 return 1;
11169}
348e048f 11170
3019eac3 11171/* Free all resources associated with DWO_FILES. */
348e048f 11172
3019eac3
DE
11173static void
11174free_dwo_files (htab_t dwo_files, struct objfile *objfile)
11175{
11176 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 11177}
3019eac3
DE
11178\f
11179/* Read in various DIEs. */
348e048f 11180
d389af10
JK
11181/* qsort helper for inherit_abstract_dies. */
11182
11183static int
11184unsigned_int_compar (const void *ap, const void *bp)
11185{
11186 unsigned int a = *(unsigned int *) ap;
11187 unsigned int b = *(unsigned int *) bp;
11188
11189 return (a > b) - (b > a);
11190}
11191
11192/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11193 Inherit only the children of the DW_AT_abstract_origin DIE not being
11194 already referenced by DW_AT_abstract_origin from the children of the
11195 current DIE. */
d389af10
JK
11196
11197static void
11198inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11199{
11200 struct die_info *child_die;
11201 unsigned die_children_count;
11202 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11203 sect_offset *offsets;
11204 sect_offset *offsets_end, *offsetp;
d389af10
JK
11205 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11206 struct die_info *origin_die;
11207 /* Iterator of the ORIGIN_DIE children. */
11208 struct die_info *origin_child_die;
11209 struct cleanup *cleanups;
11210 struct attribute *attr;
cd02d79d
PA
11211 struct dwarf2_cu *origin_cu;
11212 struct pending **origin_previous_list_in_scope;
d389af10
JK
11213
11214 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11215 if (!attr)
11216 return;
11217
cd02d79d
PA
11218 /* Note that following die references may follow to a die in a
11219 different cu. */
11220
11221 origin_cu = cu;
11222 origin_die = follow_die_ref (die, attr, &origin_cu);
11223
11224 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11225 symbols in. */
11226 origin_previous_list_in_scope = origin_cu->list_in_scope;
11227 origin_cu->list_in_scope = cu->list_in_scope;
11228
edb3359d
DJ
11229 if (die->tag != origin_die->tag
11230 && !(die->tag == DW_TAG_inlined_subroutine
11231 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11232 complaint (&symfile_complaints,
11233 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 11234 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
11235
11236 child_die = die->child;
11237 die_children_count = 0;
11238 while (child_die && child_die->tag)
11239 {
11240 child_die = sibling_die (child_die);
11241 die_children_count++;
11242 }
8d749320 11243 offsets = XNEWVEC (sect_offset, die_children_count);
d389af10
JK
11244 cleanups = make_cleanup (xfree, offsets);
11245
11246 offsets_end = offsets;
3ea89b92
PMR
11247 for (child_die = die->child;
11248 child_die && child_die->tag;
11249 child_die = sibling_die (child_die))
11250 {
11251 struct die_info *child_origin_die;
11252 struct dwarf2_cu *child_origin_cu;
11253
11254 /* We are trying to process concrete instance entries:
11255 DW_TAG_GNU_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
11256 it's not relevant to our analysis here. i.e. detecting DIEs that are
11257 present in the abstract instance but not referenced in the concrete
11258 one. */
11259 if (child_die->tag == DW_TAG_GNU_call_site)
11260 continue;
11261
c38f313d
DJ
11262 /* For each CHILD_DIE, find the corresponding child of
11263 ORIGIN_DIE. If there is more than one layer of
11264 DW_AT_abstract_origin, follow them all; there shouldn't be,
11265 but GCC versions at least through 4.4 generate this (GCC PR
11266 40573). */
3ea89b92
PMR
11267 child_origin_die = child_die;
11268 child_origin_cu = cu;
c38f313d
DJ
11269 while (1)
11270 {
cd02d79d
PA
11271 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11272 child_origin_cu);
c38f313d
DJ
11273 if (attr == NULL)
11274 break;
cd02d79d
PA
11275 child_origin_die = follow_die_ref (child_origin_die, attr,
11276 &child_origin_cu);
c38f313d
DJ
11277 }
11278
d389af10
JK
11279 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11280 counterpart may exist. */
c38f313d 11281 if (child_origin_die != child_die)
d389af10 11282 {
edb3359d
DJ
11283 if (child_die->tag != child_origin_die->tag
11284 && !(child_die->tag == DW_TAG_inlined_subroutine
11285 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11286 complaint (&symfile_complaints,
11287 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11288 "different tags"), child_die->offset.sect_off,
11289 child_origin_die->offset.sect_off);
c38f313d
DJ
11290 if (child_origin_die->parent != origin_die)
11291 complaint (&symfile_complaints,
11292 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11293 "different parents"), child_die->offset.sect_off,
11294 child_origin_die->offset.sect_off);
c38f313d
DJ
11295 else
11296 *offsets_end++ = child_origin_die->offset;
d389af10 11297 }
d389af10
JK
11298 }
11299 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11300 unsigned_int_compar);
11301 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 11302 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
11303 complaint (&symfile_complaints,
11304 _("Multiple children of DIE 0x%x refer "
11305 "to DIE 0x%x as their abstract origin"),
b64f50a1 11306 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
11307
11308 offsetp = offsets;
11309 origin_child_die = origin_die->child;
11310 while (origin_child_die && origin_child_die->tag)
11311 {
11312 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
11313 while (offsetp < offsets_end
11314 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 11315 offsetp++;
b64f50a1
JK
11316 if (offsetp >= offsets_end
11317 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10 11318 {
adde2bff
DE
11319 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11320 Check whether we're already processing ORIGIN_CHILD_DIE.
11321 This can happen with mutually referenced abstract_origins.
11322 PR 16581. */
11323 if (!origin_child_die->in_process)
11324 process_die (origin_child_die, origin_cu);
d389af10
JK
11325 }
11326 origin_child_die = sibling_die (origin_child_die);
11327 }
cd02d79d 11328 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11329
11330 do_cleanups (cleanups);
11331}
11332
c906108c 11333static void
e7c27a73 11334read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11335{
e7c27a73 11336 struct objfile *objfile = cu->objfile;
3e29f34a 11337 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11338 struct context_stack *newobj;
c906108c
SS
11339 CORE_ADDR lowpc;
11340 CORE_ADDR highpc;
11341 struct die_info *child_die;
edb3359d 11342 struct attribute *attr, *call_line, *call_file;
15d034d0 11343 const char *name;
e142c38c 11344 CORE_ADDR baseaddr;
801e3a5b 11345 struct block *block;
edb3359d 11346 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11347 VEC (symbolp) *template_args = NULL;
11348 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11349
11350 if (inlined_func)
11351 {
11352 /* If we do not have call site information, we can't show the
11353 caller of this inlined function. That's too confusing, so
11354 only use the scope for local variables. */
11355 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11356 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11357 if (call_line == NULL || call_file == NULL)
11358 {
11359 read_lexical_block_scope (die, cu);
11360 return;
11361 }
11362 }
c906108c 11363
e142c38c
DJ
11364 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11365
94af9270 11366 name = dwarf2_name (die, cu);
c906108c 11367
e8d05480
JB
11368 /* Ignore functions with missing or empty names. These are actually
11369 illegal according to the DWARF standard. */
11370 if (name == NULL)
11371 {
11372 complaint (&symfile_complaints,
b64f50a1
JK
11373 _("missing name for subprogram DIE at %d"),
11374 die->offset.sect_off);
e8d05480
JB
11375 return;
11376 }
11377
11378 /* Ignore functions with missing or invalid low and high pc attributes. */
11379 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11380 {
ae4d0c03
PM
11381 attr = dwarf2_attr (die, DW_AT_external, cu);
11382 if (!attr || !DW_UNSND (attr))
11383 complaint (&symfile_complaints,
3e43a32a
MS
11384 _("cannot get low and high bounds "
11385 "for subprogram DIE at %d"),
b64f50a1 11386 die->offset.sect_off);
e8d05480
JB
11387 return;
11388 }
c906108c 11389
3e29f34a
MR
11390 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11391 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 11392
34eaf542
TT
11393 /* If we have any template arguments, then we must allocate a
11394 different sort of symbol. */
11395 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11396 {
11397 if (child_die->tag == DW_TAG_template_type_param
11398 || child_die->tag == DW_TAG_template_value_param)
11399 {
e623cf5d 11400 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11401 templ_func->base.is_cplus_template_function = 1;
11402 break;
11403 }
11404 }
11405
fe978cb0
PA
11406 newobj = push_context (0, lowpc);
11407 newobj->name = new_symbol_full (die, read_type_die (die, cu), cu,
34eaf542 11408 (struct symbol *) templ_func);
4c2df51b 11409
4cecd739
DJ
11410 /* If there is a location expression for DW_AT_frame_base, record
11411 it. */
e142c38c 11412 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11413 if (attr)
fe978cb0 11414 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
4c2df51b 11415
63e43d3a
PMR
11416 /* If there is a location for the static link, record it. */
11417 newobj->static_link = NULL;
11418 attr = dwarf2_attr (die, DW_AT_static_link, cu);
11419 if (attr)
11420 {
224c3ddb
SM
11421 newobj->static_link
11422 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
63e43d3a
PMR
11423 attr_to_dynamic_prop (attr, die, cu, newobj->static_link);
11424 }
11425
e142c38c 11426 cu->list_in_scope = &local_symbols;
c906108c 11427
639d11d3 11428 if (die->child != NULL)
c906108c 11429 {
639d11d3 11430 child_die = die->child;
c906108c
SS
11431 while (child_die && child_die->tag)
11432 {
34eaf542
TT
11433 if (child_die->tag == DW_TAG_template_type_param
11434 || child_die->tag == DW_TAG_template_value_param)
11435 {
11436 struct symbol *arg = new_symbol (child_die, NULL, cu);
11437
f1078f66
DJ
11438 if (arg != NULL)
11439 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11440 }
11441 else
11442 process_die (child_die, cu);
c906108c
SS
11443 child_die = sibling_die (child_die);
11444 }
11445 }
11446
d389af10
JK
11447 inherit_abstract_dies (die, cu);
11448
4a811a97
UW
11449 /* If we have a DW_AT_specification, we might need to import using
11450 directives from the context of the specification DIE. See the
11451 comment in determine_prefix. */
11452 if (cu->language == language_cplus
11453 && dwarf2_attr (die, DW_AT_specification, cu))
11454 {
11455 struct dwarf2_cu *spec_cu = cu;
11456 struct die_info *spec_die = die_specification (die, &spec_cu);
11457
11458 while (spec_die)
11459 {
11460 child_die = spec_die->child;
11461 while (child_die && child_die->tag)
11462 {
11463 if (child_die->tag == DW_TAG_imported_module)
11464 process_die (child_die, spec_cu);
11465 child_die = sibling_die (child_die);
11466 }
11467
11468 /* In some cases, GCC generates specification DIEs that
11469 themselves contain DW_AT_specification attributes. */
11470 spec_die = die_specification (spec_die, &spec_cu);
11471 }
11472 }
11473
fe978cb0 11474 newobj = pop_context ();
c906108c 11475 /* Make a block for the local symbols within. */
fe978cb0 11476 block = finish_block (newobj->name, &local_symbols, newobj->old_blocks,
63e43d3a 11477 newobj->static_link, lowpc, highpc);
801e3a5b 11478
df8a16a1 11479 /* For C++, set the block's scope. */
45280282
IB
11480 if ((cu->language == language_cplus
11481 || cu->language == language_fortran
11482 || cu->language == language_d)
4d4ec4e5 11483 && cu->processing_has_namespace_info)
195a3f6c
TT
11484 block_set_scope (block, determine_prefix (die, cu),
11485 &objfile->objfile_obstack);
df8a16a1 11486
801e3a5b
JB
11487 /* If we have address ranges, record them. */
11488 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11489
fe978cb0 11490 gdbarch_make_symbol_special (gdbarch, newobj->name, objfile);
3e29f34a 11491
34eaf542
TT
11492 /* Attach template arguments to function. */
11493 if (! VEC_empty (symbolp, template_args))
11494 {
11495 gdb_assert (templ_func != NULL);
11496
11497 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11498 templ_func->template_arguments
8d749320
SM
11499 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
11500 templ_func->n_template_arguments);
34eaf542
TT
11501 memcpy (templ_func->template_arguments,
11502 VEC_address (symbolp, template_args),
11503 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11504 VEC_free (symbolp, template_args);
11505 }
11506
208d8187
JB
11507 /* In C++, we can have functions nested inside functions (e.g., when
11508 a function declares a class that has methods). This means that
11509 when we finish processing a function scope, we may need to go
11510 back to building a containing block's symbol lists. */
fe978cb0 11511 local_symbols = newobj->locals;
22cee43f 11512 local_using_directives = newobj->local_using_directives;
208d8187 11513
921e78cf
JB
11514 /* If we've finished processing a top-level function, subsequent
11515 symbols go in the file symbol list. */
11516 if (outermost_context_p ())
e142c38c 11517 cu->list_in_scope = &file_symbols;
c906108c
SS
11518}
11519
11520/* Process all the DIES contained within a lexical block scope. Start
11521 a new scope, process the dies, and then close the scope. */
11522
11523static void
e7c27a73 11524read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11525{
e7c27a73 11526 struct objfile *objfile = cu->objfile;
3e29f34a 11527 struct gdbarch *gdbarch = get_objfile_arch (objfile);
fe978cb0 11528 struct context_stack *newobj;
c906108c
SS
11529 CORE_ADDR lowpc, highpc;
11530 struct die_info *child_die;
e142c38c
DJ
11531 CORE_ADDR baseaddr;
11532
11533 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11534
11535 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11536 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11537 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11538 be nasty. Might be easier to properly extend generic blocks to
af34e669 11539 describe ranges. */
d85a05f0 11540 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c 11541 return;
3e29f34a
MR
11542 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11543 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c
SS
11544
11545 push_context (0, lowpc);
639d11d3 11546 if (die->child != NULL)
c906108c 11547 {
639d11d3 11548 child_die = die->child;
c906108c
SS
11549 while (child_die && child_die->tag)
11550 {
e7c27a73 11551 process_die (child_die, cu);
c906108c
SS
11552 child_die = sibling_die (child_die);
11553 }
11554 }
3ea89b92 11555 inherit_abstract_dies (die, cu);
fe978cb0 11556 newobj = pop_context ();
c906108c 11557
22cee43f 11558 if (local_symbols != NULL || local_using_directives != NULL)
c906108c 11559 {
801e3a5b 11560 struct block *block
63e43d3a 11561 = finish_block (0, &local_symbols, newobj->old_blocks, NULL,
fe978cb0 11562 newobj->start_addr, highpc);
801e3a5b
JB
11563
11564 /* Note that recording ranges after traversing children, as we
11565 do here, means that recording a parent's ranges entails
11566 walking across all its children's ranges as they appear in
11567 the address map, which is quadratic behavior.
11568
11569 It would be nicer to record the parent's ranges before
11570 traversing its children, simply overriding whatever you find
11571 there. But since we don't even decide whether to create a
11572 block until after we've traversed its children, that's hard
11573 to do. */
11574 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c 11575 }
fe978cb0 11576 local_symbols = newobj->locals;
22cee43f 11577 local_using_directives = newobj->local_using_directives;
c906108c
SS
11578}
11579
96408a79
SA
11580/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11581
11582static void
11583read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11584{
11585 struct objfile *objfile = cu->objfile;
11586 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11587 CORE_ADDR pc, baseaddr;
11588 struct attribute *attr;
11589 struct call_site *call_site, call_site_local;
11590 void **slot;
11591 int nparams;
11592 struct die_info *child_die;
11593
11594 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11595
11596 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11597 if (!attr)
11598 {
11599 complaint (&symfile_complaints,
11600 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11601 "DIE 0x%x [in module %s]"),
4262abfb 11602 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11603 return;
11604 }
31aa7e4e 11605 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 11606 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
11607
11608 if (cu->call_site_htab == NULL)
11609 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11610 NULL, &objfile->objfile_obstack,
11611 hashtab_obstack_allocate, NULL);
11612 call_site_local.pc = pc;
11613 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11614 if (*slot != NULL)
11615 {
11616 complaint (&symfile_complaints,
11617 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11618 "DIE 0x%x [in module %s]"),
4262abfb
JK
11619 paddress (gdbarch, pc), die->offset.sect_off,
11620 objfile_name (objfile));
96408a79
SA
11621 return;
11622 }
11623
11624 /* Count parameters at the caller. */
11625
11626 nparams = 0;
11627 for (child_die = die->child; child_die && child_die->tag;
11628 child_die = sibling_die (child_die))
11629 {
11630 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11631 {
11632 complaint (&symfile_complaints,
11633 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11634 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11635 child_die->tag, child_die->offset.sect_off,
11636 objfile_name (objfile));
96408a79
SA
11637 continue;
11638 }
11639
11640 nparams++;
11641 }
11642
224c3ddb
SM
11643 call_site
11644 = ((struct call_site *)
11645 obstack_alloc (&objfile->objfile_obstack,
11646 sizeof (*call_site)
11647 + (sizeof (*call_site->parameter) * (nparams - 1))));
96408a79
SA
11648 *slot = call_site;
11649 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11650 call_site->pc = pc;
11651
11652 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11653 {
11654 struct die_info *func_die;
11655
11656 /* Skip also over DW_TAG_inlined_subroutine. */
11657 for (func_die = die->parent;
11658 func_die && func_die->tag != DW_TAG_subprogram
11659 && func_die->tag != DW_TAG_subroutine_type;
11660 func_die = func_die->parent);
11661
11662 /* DW_AT_GNU_all_call_sites is a superset
11663 of DW_AT_GNU_all_tail_call_sites. */
11664 if (func_die
11665 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11666 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11667 {
11668 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11669 not complete. But keep CALL_SITE for look ups via call_site_htab,
11670 both the initial caller containing the real return address PC and
11671 the final callee containing the current PC of a chain of tail
11672 calls do not need to have the tail call list complete. But any
11673 function candidate for a virtual tail call frame searched via
11674 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11675 determined unambiguously. */
11676 }
11677 else
11678 {
11679 struct type *func_type = NULL;
11680
11681 if (func_die)
11682 func_type = get_die_type (func_die, cu);
11683 if (func_type != NULL)
11684 {
11685 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11686
11687 /* Enlist this call site to the function. */
11688 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11689 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11690 }
11691 else
11692 complaint (&symfile_complaints,
11693 _("Cannot find function owning DW_TAG_GNU_call_site "
11694 "DIE 0x%x [in module %s]"),
4262abfb 11695 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11696 }
11697 }
11698
11699 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11700 if (attr == NULL)
11701 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11702 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11703 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11704 /* Keep NULL DWARF_BLOCK. */;
11705 else if (attr_form_is_block (attr))
11706 {
11707 struct dwarf2_locexpr_baton *dlbaton;
11708
8d749320 11709 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
96408a79
SA
11710 dlbaton->data = DW_BLOCK (attr)->data;
11711 dlbaton->size = DW_BLOCK (attr)->size;
11712 dlbaton->per_cu = cu->per_cu;
11713
11714 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11715 }
7771576e 11716 else if (attr_form_is_ref (attr))
96408a79 11717 {
96408a79
SA
11718 struct dwarf2_cu *target_cu = cu;
11719 struct die_info *target_die;
11720
ac9ec31b 11721 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11722 gdb_assert (target_cu->objfile == objfile);
11723 if (die_is_declaration (target_die, target_cu))
11724 {
7d45c7c3 11725 const char *target_physname;
9112db09
JK
11726
11727 /* Prefer the mangled name; otherwise compute the demangled one. */
7d45c7c3
KB
11728 target_physname = dwarf2_string_attr (target_die,
11729 DW_AT_linkage_name,
11730 target_cu);
11731 if (target_physname == NULL)
11732 target_physname = dwarf2_string_attr (target_die,
11733 DW_AT_MIPS_linkage_name,
11734 target_cu);
11735 if (target_physname == NULL)
9112db09 11736 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11737 if (target_physname == NULL)
11738 complaint (&symfile_complaints,
11739 _("DW_AT_GNU_call_site_target target DIE has invalid "
11740 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11741 die->offset.sect_off, objfile_name (objfile));
96408a79 11742 else
7d455152 11743 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11744 }
11745 else
11746 {
11747 CORE_ADDR lowpc;
11748
11749 /* DW_AT_entry_pc should be preferred. */
11750 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11751 complaint (&symfile_complaints,
11752 _("DW_AT_GNU_call_site_target target DIE has invalid "
11753 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11754 die->offset.sect_off, objfile_name (objfile));
96408a79 11755 else
3e29f34a
MR
11756 {
11757 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11758 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11759 }
96408a79
SA
11760 }
11761 }
11762 else
11763 complaint (&symfile_complaints,
11764 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11765 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11766 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11767
11768 call_site->per_cu = cu->per_cu;
11769
11770 for (child_die = die->child;
11771 child_die && child_die->tag;
11772 child_die = sibling_die (child_die))
11773 {
96408a79 11774 struct call_site_parameter *parameter;
1788b2d3 11775 struct attribute *loc, *origin;
96408a79
SA
11776
11777 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11778 {
11779 /* Already printed the complaint above. */
11780 continue;
11781 }
11782
11783 gdb_assert (call_site->parameter_count < nparams);
11784 parameter = &call_site->parameter[call_site->parameter_count];
11785
1788b2d3
JK
11786 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11787 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11788 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11789
24c5c679 11790 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11791 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11792 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11793 {
11794 sect_offset offset;
11795
11796 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11797 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11798 if (!offset_in_cu_p (&cu->header, offset))
11799 {
11800 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11801 binding can be done only inside one CU. Such referenced DIE
11802 therefore cannot be even moved to DW_TAG_partial_unit. */
11803 complaint (&symfile_complaints,
11804 _("DW_AT_abstract_origin offset is not in CU for "
11805 "DW_TAG_GNU_call_site child DIE 0x%x "
11806 "[in module %s]"),
4262abfb 11807 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11808 continue;
11809 }
1788b2d3
JK
11810 parameter->u.param_offset.cu_off = (offset.sect_off
11811 - cu->header.offset.sect_off);
11812 }
11813 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11814 {
11815 complaint (&symfile_complaints,
11816 _("No DW_FORM_block* DW_AT_location for "
11817 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11818 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11819 continue;
11820 }
24c5c679 11821 else
96408a79 11822 {
24c5c679
JK
11823 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11824 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11825 if (parameter->u.dwarf_reg != -1)
11826 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11827 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11828 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11829 &parameter->u.fb_offset))
11830 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11831 else
11832 {
11833 complaint (&symfile_complaints,
11834 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11835 "for DW_FORM_block* DW_AT_location is supported for "
11836 "DW_TAG_GNU_call_site child DIE 0x%x "
11837 "[in module %s]"),
4262abfb 11838 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11839 continue;
11840 }
96408a79
SA
11841 }
11842
11843 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11844 if (!attr_form_is_block (attr))
11845 {
11846 complaint (&symfile_complaints,
11847 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11848 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11849 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11850 continue;
11851 }
11852 parameter->value = DW_BLOCK (attr)->data;
11853 parameter->value_size = DW_BLOCK (attr)->size;
11854
11855 /* Parameters are not pre-cleared by memset above. */
11856 parameter->data_value = NULL;
11857 parameter->data_value_size = 0;
11858 call_site->parameter_count++;
11859
11860 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11861 if (attr)
11862 {
11863 if (!attr_form_is_block (attr))
11864 complaint (&symfile_complaints,
11865 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11866 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11867 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11868 else
11869 {
11870 parameter->data_value = DW_BLOCK (attr)->data;
11871 parameter->data_value_size = DW_BLOCK (attr)->size;
11872 }
11873 }
11874 }
11875}
11876
43039443 11877/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
11878 Return 1 if the attributes are present and valid, otherwise, return 0.
11879 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
11880
11881static int
11882dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
11883 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11884 struct partial_symtab *ranges_pst)
43039443
JK
11885{
11886 struct objfile *objfile = cu->objfile;
3e29f34a 11887 struct gdbarch *gdbarch = get_objfile_arch (objfile);
43039443
JK
11888 struct comp_unit_head *cu_header = &cu->header;
11889 bfd *obfd = objfile->obfd;
11890 unsigned int addr_size = cu_header->addr_size;
11891 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11892 /* Base address selection entry. */
11893 CORE_ADDR base;
11894 int found_base;
11895 unsigned int dummy;
d521ce57 11896 const gdb_byte *buffer;
43039443
JK
11897 int low_set;
11898 CORE_ADDR low = 0;
11899 CORE_ADDR high = 0;
ff013f42 11900 CORE_ADDR baseaddr;
43039443 11901
d00adf39
DE
11902 found_base = cu->base_known;
11903 base = cu->base_address;
43039443 11904
be391dca 11905 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11906 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
11907 {
11908 complaint (&symfile_complaints,
11909 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11910 offset);
11911 return 0;
11912 }
dce234bc 11913 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443 11914
43039443
JK
11915 low_set = 0;
11916
e7030f15 11917 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 11918
43039443
JK
11919 while (1)
11920 {
11921 CORE_ADDR range_beginning, range_end;
11922
11923 range_beginning = read_address (obfd, buffer, cu, &dummy);
11924 buffer += addr_size;
11925 range_end = read_address (obfd, buffer, cu, &dummy);
11926 buffer += addr_size;
11927 offset += 2 * addr_size;
11928
11929 /* An end of list marker is a pair of zero addresses. */
11930 if (range_beginning == 0 && range_end == 0)
11931 /* Found the end of list entry. */
11932 break;
11933
11934 /* Each base address selection entry is a pair of 2 values.
11935 The first is the largest possible address, the second is
11936 the base address. Check for a base address here. */
11937 if ((range_beginning & mask) == mask)
11938 {
28d2bfb9
AB
11939 /* If we found the largest possible address, then we already
11940 have the base address in range_end. */
11941 base = range_end;
43039443
JK
11942 found_base = 1;
11943 continue;
11944 }
11945
11946 if (!found_base)
11947 {
11948 /* We have no valid base address for the ranges
11949 data. */
11950 complaint (&symfile_complaints,
11951 _("Invalid .debug_ranges data (no base address)"));
11952 return 0;
11953 }
11954
9277c30c
UW
11955 if (range_beginning > range_end)
11956 {
11957 /* Inverted range entries are invalid. */
11958 complaint (&symfile_complaints,
11959 _("Invalid .debug_ranges data (inverted range)"));
11960 return 0;
11961 }
11962
11963 /* Empty range entries have no effect. */
11964 if (range_beginning == range_end)
11965 continue;
11966
43039443
JK
11967 range_beginning += base;
11968 range_end += base;
11969
01093045
DE
11970 /* A not-uncommon case of bad debug info.
11971 Don't pollute the addrmap with bad data. */
11972 if (range_beginning + baseaddr == 0
11973 && !dwarf2_per_objfile->has_section_at_zero)
11974 {
11975 complaint (&symfile_complaints,
11976 _(".debug_ranges entry has start address of zero"
4262abfb 11977 " [in module %s]"), objfile_name (objfile));
01093045
DE
11978 continue;
11979 }
11980
9277c30c 11981 if (ranges_pst != NULL)
3e29f34a
MR
11982 {
11983 CORE_ADDR lowpc;
11984 CORE_ADDR highpc;
11985
11986 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11987 range_beginning + baseaddr);
11988 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11989 range_end + baseaddr);
11990 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11991 ranges_pst);
11992 }
ff013f42 11993
43039443
JK
11994 /* FIXME: This is recording everything as a low-high
11995 segment of consecutive addresses. We should have a
11996 data structure for discontiguous block ranges
11997 instead. */
11998 if (! low_set)
11999 {
12000 low = range_beginning;
12001 high = range_end;
12002 low_set = 1;
12003 }
12004 else
12005 {
12006 if (range_beginning < low)
12007 low = range_beginning;
12008 if (range_end > high)
12009 high = range_end;
12010 }
12011 }
12012
12013 if (! low_set)
12014 /* If the first entry is an end-of-list marker, the range
12015 describes an empty scope, i.e. no instructions. */
12016 return 0;
12017
12018 if (low_return)
12019 *low_return = low;
12020 if (high_return)
12021 *high_return = high;
12022 return 1;
12023}
12024
af34e669
DJ
12025/* Get low and high pc attributes from a die. Return 1 if the attributes
12026 are present and valid, otherwise, return 0. Return -1 if the range is
12027 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 12028
c906108c 12029static int
af34e669 12030dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
12031 CORE_ADDR *highpc, struct dwarf2_cu *cu,
12032 struct partial_symtab *pst)
c906108c
SS
12033{
12034 struct attribute *attr;
91da1414 12035 struct attribute *attr_high;
af34e669
DJ
12036 CORE_ADDR low = 0;
12037 CORE_ADDR high = 0;
12038 int ret = 0;
c906108c 12039
91da1414
MW
12040 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12041 if (attr_high)
af34e669 12042 {
e142c38c 12043 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 12044 if (attr)
91da1414 12045 {
31aa7e4e
JB
12046 low = attr_value_as_address (attr);
12047 high = attr_value_as_address (attr_high);
12048 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12049 high += low;
91da1414 12050 }
af34e669
DJ
12051 else
12052 /* Found high w/o low attribute. */
12053 return 0;
12054
12055 /* Found consecutive range of addresses. */
12056 ret = 1;
12057 }
c906108c 12058 else
af34e669 12059 {
e142c38c 12060 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
12061 if (attr != NULL)
12062 {
ab435259
DE
12063 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12064 We take advantage of the fact that DW_AT_ranges does not appear
12065 in DW_TAG_compile_unit of DWO files. */
12066 int need_ranges_base = die->tag != DW_TAG_compile_unit;
12067 unsigned int ranges_offset = (DW_UNSND (attr)
12068 + (need_ranges_base
12069 ? cu->ranges_base
12070 : 0));
2e3cf129 12071
af34e669 12072 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 12073 .debug_ranges section. */
2e3cf129 12074 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
af34e669 12075 return 0;
43039443 12076 /* Found discontinuous range of addresses. */
af34e669
DJ
12077 ret = -1;
12078 }
12079 }
c906108c 12080
9373cf26
JK
12081 /* read_partial_die has also the strict LOW < HIGH requirement. */
12082 if (high <= low)
c906108c
SS
12083 return 0;
12084
12085 /* When using the GNU linker, .gnu.linkonce. sections are used to
12086 eliminate duplicate copies of functions and vtables and such.
12087 The linker will arbitrarily choose one and discard the others.
12088 The AT_*_pc values for such functions refer to local labels in
12089 these sections. If the section from that file was discarded, the
12090 labels are not in the output, so the relocs get a value of 0.
12091 If this is a discarded function, mark the pc bounds as invalid,
12092 so that GDB will ignore it. */
72dca2f5 12093 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
12094 return 0;
12095
12096 *lowpc = low;
96408a79
SA
12097 if (highpc)
12098 *highpc = high;
af34e669 12099 return ret;
c906108c
SS
12100}
12101
b084d499
JB
12102/* Assuming that DIE represents a subprogram DIE or a lexical block, get
12103 its low and high PC addresses. Do nothing if these addresses could not
12104 be determined. Otherwise, set LOWPC to the low address if it is smaller,
12105 and HIGHPC to the high address if greater than HIGHPC. */
12106
12107static void
12108dwarf2_get_subprogram_pc_bounds (struct die_info *die,
12109 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12110 struct dwarf2_cu *cu)
12111{
12112 CORE_ADDR low, high;
12113 struct die_info *child = die->child;
12114
d85a05f0 12115 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
12116 {
12117 *lowpc = min (*lowpc, low);
12118 *highpc = max (*highpc, high);
12119 }
12120
12121 /* If the language does not allow nested subprograms (either inside
12122 subprograms or lexical blocks), we're done. */
12123 if (cu->language != language_ada)
12124 return;
6e70227d 12125
b084d499
JB
12126 /* Check all the children of the given DIE. If it contains nested
12127 subprograms, then check their pc bounds. Likewise, we need to
12128 check lexical blocks as well, as they may also contain subprogram
12129 definitions. */
12130 while (child && child->tag)
12131 {
12132 if (child->tag == DW_TAG_subprogram
12133 || child->tag == DW_TAG_lexical_block)
12134 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
12135 child = sibling_die (child);
12136 }
12137}
12138
fae299cd
DC
12139/* Get the low and high pc's represented by the scope DIE, and store
12140 them in *LOWPC and *HIGHPC. If the correct values can't be
12141 determined, set *LOWPC to -1 and *HIGHPC to 0. */
12142
12143static void
12144get_scope_pc_bounds (struct die_info *die,
12145 CORE_ADDR *lowpc, CORE_ADDR *highpc,
12146 struct dwarf2_cu *cu)
12147{
12148 CORE_ADDR best_low = (CORE_ADDR) -1;
12149 CORE_ADDR best_high = (CORE_ADDR) 0;
12150 CORE_ADDR current_low, current_high;
12151
d85a05f0 12152 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
12153 {
12154 best_low = current_low;
12155 best_high = current_high;
12156 }
12157 else
12158 {
12159 struct die_info *child = die->child;
12160
12161 while (child && child->tag)
12162 {
12163 switch (child->tag) {
12164 case DW_TAG_subprogram:
b084d499 12165 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
12166 break;
12167 case DW_TAG_namespace:
f55ee35c 12168 case DW_TAG_module:
fae299cd
DC
12169 /* FIXME: carlton/2004-01-16: Should we do this for
12170 DW_TAG_class_type/DW_TAG_structure_type, too? I think
12171 that current GCC's always emit the DIEs corresponding
12172 to definitions of methods of classes as children of a
12173 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
12174 the DIEs giving the declarations, which could be
12175 anywhere). But I don't see any reason why the
12176 standards says that they have to be there. */
12177 get_scope_pc_bounds (child, &current_low, &current_high, cu);
12178
12179 if (current_low != ((CORE_ADDR) -1))
12180 {
12181 best_low = min (best_low, current_low);
12182 best_high = max (best_high, current_high);
12183 }
12184 break;
12185 default:
0963b4bd 12186 /* Ignore. */
fae299cd
DC
12187 break;
12188 }
12189
12190 child = sibling_die (child);
12191 }
12192 }
12193
12194 *lowpc = best_low;
12195 *highpc = best_high;
12196}
12197
801e3a5b
JB
12198/* Record the address ranges for BLOCK, offset by BASEADDR, as given
12199 in DIE. */
380bca97 12200
801e3a5b
JB
12201static void
12202dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12203 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12204{
bb5ed363 12205 struct objfile *objfile = cu->objfile;
3e29f34a 12206 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 12207 struct attribute *attr;
91da1414 12208 struct attribute *attr_high;
801e3a5b 12209
91da1414
MW
12210 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12211 if (attr_high)
801e3a5b 12212 {
801e3a5b
JB
12213 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12214 if (attr)
12215 {
31aa7e4e
JB
12216 CORE_ADDR low = attr_value_as_address (attr);
12217 CORE_ADDR high = attr_value_as_address (attr_high);
12218
12219 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12220 high += low;
9a619af0 12221
3e29f34a
MR
12222 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12223 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12224 record_block_range (block, low, high - 1);
801e3a5b
JB
12225 }
12226 }
12227
12228 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12229 if (attr)
12230 {
bb5ed363 12231 bfd *obfd = objfile->obfd;
ab435259
DE
12232 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12233 We take advantage of the fact that DW_AT_ranges does not appear
12234 in DW_TAG_compile_unit of DWO files. */
12235 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12236
12237 /* The value of the DW_AT_ranges attribute is the offset of the
12238 address range list in the .debug_ranges section. */
ab435259
DE
12239 unsigned long offset = (DW_UNSND (attr)
12240 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12241 const gdb_byte *buffer;
801e3a5b
JB
12242
12243 /* For some target architectures, but not others, the
12244 read_address function sign-extends the addresses it returns.
12245 To recognize base address selection entries, we need a
12246 mask. */
12247 unsigned int addr_size = cu->header.addr_size;
12248 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12249
12250 /* The base address, to which the next pair is relative. Note
12251 that this 'base' is a DWARF concept: most entries in a range
12252 list are relative, to reduce the number of relocs against the
12253 debugging information. This is separate from this function's
12254 'baseaddr' argument, which GDB uses to relocate debugging
12255 information from a shared library based on the address at
12256 which the library was loaded. */
d00adf39
DE
12257 CORE_ADDR base = cu->base_address;
12258 int base_known = cu->base_known;
801e3a5b 12259
d62bfeaf 12260 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12261 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
12262 {
12263 complaint (&symfile_complaints,
12264 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12265 offset);
12266 return;
12267 }
d62bfeaf 12268 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
12269
12270 for (;;)
12271 {
12272 unsigned int bytes_read;
12273 CORE_ADDR start, end;
12274
12275 start = read_address (obfd, buffer, cu, &bytes_read);
12276 buffer += bytes_read;
12277 end = read_address (obfd, buffer, cu, &bytes_read);
12278 buffer += bytes_read;
12279
12280 /* Did we find the end of the range list? */
12281 if (start == 0 && end == 0)
12282 break;
12283
12284 /* Did we find a base address selection entry? */
12285 else if ((start & base_select_mask) == base_select_mask)
12286 {
12287 base = end;
12288 base_known = 1;
12289 }
12290
12291 /* We found an ordinary address range. */
12292 else
12293 {
12294 if (!base_known)
12295 {
12296 complaint (&symfile_complaints,
3e43a32a
MS
12297 _("Invalid .debug_ranges data "
12298 "(no base address)"));
801e3a5b
JB
12299 return;
12300 }
12301
9277c30c
UW
12302 if (start > end)
12303 {
12304 /* Inverted range entries are invalid. */
12305 complaint (&symfile_complaints,
12306 _("Invalid .debug_ranges data "
12307 "(inverted range)"));
12308 return;
12309 }
12310
12311 /* Empty range entries have no effect. */
12312 if (start == end)
12313 continue;
12314
01093045
DE
12315 start += base + baseaddr;
12316 end += base + baseaddr;
12317
12318 /* A not-uncommon case of bad debug info.
12319 Don't pollute the addrmap with bad data. */
12320 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12321 {
12322 complaint (&symfile_complaints,
12323 _(".debug_ranges entry has start address of zero"
4262abfb 12324 " [in module %s]"), objfile_name (objfile));
01093045
DE
12325 continue;
12326 }
12327
3e29f34a
MR
12328 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12329 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
01093045 12330 record_block_range (block, start, end - 1);
801e3a5b
JB
12331 }
12332 }
12333 }
12334}
12335
685b1105
JK
12336/* Check whether the producer field indicates either of GCC < 4.6, or the
12337 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12338
685b1105
JK
12339static void
12340check_producer (struct dwarf2_cu *cu)
60d5a603
JK
12341{
12342 const char *cs;
38360086 12343 int major, minor;
60d5a603
JK
12344
12345 if (cu->producer == NULL)
12346 {
12347 /* For unknown compilers expect their behavior is DWARF version
12348 compliant.
12349
12350 GCC started to support .debug_types sections by -gdwarf-4 since
12351 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12352 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12353 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12354 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12355 }
b1ffba5a 12356 else if (producer_is_gcc (cu->producer, &major, &minor))
60d5a603 12357 {
38360086
MW
12358 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12359 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
685b1105 12360 }
61012eef 12361 else if (startswith (cu->producer, "Intel(R) C"))
685b1105
JK
12362 cu->producer_is_icc = 1;
12363 else
12364 {
12365 /* For other non-GCC compilers, expect their behavior is DWARF version
12366 compliant. */
60d5a603
JK
12367 }
12368
ba919b58 12369 cu->checked_producer = 1;
685b1105 12370}
ba919b58 12371
685b1105
JK
12372/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12373 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12374 during 4.6.0 experimental. */
12375
12376static int
12377producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12378{
12379 if (!cu->checked_producer)
12380 check_producer (cu);
12381
12382 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12383}
12384
12385/* Return the default accessibility type if it is not overriden by
12386 DW_AT_accessibility. */
12387
12388static enum dwarf_access_attribute
12389dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12390{
12391 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12392 {
12393 /* The default DWARF 2 accessibility for members is public, the default
12394 accessibility for inheritance is private. */
12395
12396 if (die->tag != DW_TAG_inheritance)
12397 return DW_ACCESS_public;
12398 else
12399 return DW_ACCESS_private;
12400 }
12401 else
12402 {
12403 /* DWARF 3+ defines the default accessibility a different way. The same
12404 rules apply now for DW_TAG_inheritance as for the members and it only
12405 depends on the container kind. */
12406
12407 if (die->parent->tag == DW_TAG_class_type)
12408 return DW_ACCESS_private;
12409 else
12410 return DW_ACCESS_public;
12411 }
12412}
12413
74ac6d43
TT
12414/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12415 offset. If the attribute was not found return 0, otherwise return
12416 1. If it was found but could not properly be handled, set *OFFSET
12417 to 0. */
12418
12419static int
12420handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12421 LONGEST *offset)
12422{
12423 struct attribute *attr;
12424
12425 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12426 if (attr != NULL)
12427 {
12428 *offset = 0;
12429
12430 /* Note that we do not check for a section offset first here.
12431 This is because DW_AT_data_member_location is new in DWARF 4,
12432 so if we see it, we can assume that a constant form is really
12433 a constant and not a section offset. */
12434 if (attr_form_is_constant (attr))
12435 *offset = dwarf2_get_attr_constant_value (attr, 0);
12436 else if (attr_form_is_section_offset (attr))
12437 dwarf2_complex_location_expr_complaint ();
12438 else if (attr_form_is_block (attr))
12439 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12440 else
12441 dwarf2_complex_location_expr_complaint ();
12442
12443 return 1;
12444 }
12445
12446 return 0;
12447}
12448
c906108c
SS
12449/* Add an aggregate field to the field list. */
12450
12451static void
107d2387 12452dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12453 struct dwarf2_cu *cu)
6e70227d 12454{
e7c27a73 12455 struct objfile *objfile = cu->objfile;
5e2b427d 12456 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12457 struct nextfield *new_field;
12458 struct attribute *attr;
12459 struct field *fp;
15d034d0 12460 const char *fieldname = "";
c906108c
SS
12461
12462 /* Allocate a new field list entry and link it in. */
8d749320 12463 new_field = XNEW (struct nextfield);
b8c9b27d 12464 make_cleanup (xfree, new_field);
c906108c 12465 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12466
12467 if (die->tag == DW_TAG_inheritance)
12468 {
12469 new_field->next = fip->baseclasses;
12470 fip->baseclasses = new_field;
12471 }
12472 else
12473 {
12474 new_field->next = fip->fields;
12475 fip->fields = new_field;
12476 }
c906108c
SS
12477 fip->nfields++;
12478
e142c38c 12479 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12480 if (attr)
12481 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12482 else
12483 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12484 if (new_field->accessibility != DW_ACCESS_public)
12485 fip->non_public_fields = 1;
60d5a603 12486
e142c38c 12487 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12488 if (attr)
12489 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12490 else
12491 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12492
12493 fp = &new_field->field;
a9a9bd0f 12494
e142c38c 12495 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12496 {
74ac6d43
TT
12497 LONGEST offset;
12498
a9a9bd0f 12499 /* Data member other than a C++ static data member. */
6e70227d 12500
c906108c 12501 /* Get type of field. */
e7c27a73 12502 fp->type = die_type (die, cu);
c906108c 12503
d6a843b5 12504 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12505
c906108c 12506 /* Get bit size of field (zero if none). */
e142c38c 12507 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12508 if (attr)
12509 {
12510 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12511 }
12512 else
12513 {
12514 FIELD_BITSIZE (*fp) = 0;
12515 }
12516
12517 /* Get bit offset of field. */
74ac6d43
TT
12518 if (handle_data_member_location (die, cu, &offset))
12519 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12520 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12521 if (attr)
12522 {
5e2b427d 12523 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12524 {
12525 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12526 additional bit offset from the MSB of the containing
12527 anonymous object to the MSB of the field. We don't
12528 have to do anything special since we don't need to
12529 know the size of the anonymous object. */
f41f5e61 12530 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12531 }
12532 else
12533 {
12534 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12535 MSB of the anonymous object, subtract off the number of
12536 bits from the MSB of the field to the MSB of the
12537 object, and then subtract off the number of bits of
12538 the field itself. The result is the bit offset of
12539 the LSB of the field. */
c906108c
SS
12540 int anonymous_size;
12541 int bit_offset = DW_UNSND (attr);
12542
e142c38c 12543 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12544 if (attr)
12545 {
12546 /* The size of the anonymous object containing
12547 the bit field is explicit, so use the
12548 indicated size (in bytes). */
12549 anonymous_size = DW_UNSND (attr);
12550 }
12551 else
12552 {
12553 /* The size of the anonymous object containing
12554 the bit field must be inferred from the type
12555 attribute of the data member containing the
12556 bit field. */
12557 anonymous_size = TYPE_LENGTH (fp->type);
12558 }
f41f5e61
PA
12559 SET_FIELD_BITPOS (*fp,
12560 (FIELD_BITPOS (*fp)
12561 + anonymous_size * bits_per_byte
12562 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12563 }
12564 }
12565
12566 /* Get name of field. */
39cbfefa
DJ
12567 fieldname = dwarf2_name (die, cu);
12568 if (fieldname == NULL)
12569 fieldname = "";
d8151005
DJ
12570
12571 /* The name is already allocated along with this objfile, so we don't
12572 need to duplicate it for the type. */
12573 fp->name = fieldname;
c906108c
SS
12574
12575 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12576 pointer or virtual base class pointer) to private. */
e142c38c 12577 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12578 {
d48cc9dd 12579 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12580 new_field->accessibility = DW_ACCESS_private;
12581 fip->non_public_fields = 1;
12582 }
12583 }
a9a9bd0f 12584 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12585 {
a9a9bd0f
DC
12586 /* C++ static member. */
12587
12588 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12589 is a declaration, but all versions of G++ as of this writing
12590 (so through at least 3.2.1) incorrectly generate
12591 DW_TAG_variable tags. */
6e70227d 12592
ff355380 12593 const char *physname;
c906108c 12594
a9a9bd0f 12595 /* Get name of field. */
39cbfefa
DJ
12596 fieldname = dwarf2_name (die, cu);
12597 if (fieldname == NULL)
c906108c
SS
12598 return;
12599
254e6b9e 12600 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12601 if (attr
12602 /* Only create a symbol if this is an external value.
12603 new_symbol checks this and puts the value in the global symbol
12604 table, which we want. If it is not external, new_symbol
12605 will try to put the value in cu->list_in_scope which is wrong. */
12606 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12607 {
12608 /* A static const member, not much different than an enum as far as
12609 we're concerned, except that we can support more types. */
12610 new_symbol (die, NULL, cu);
12611 }
12612
2df3850c 12613 /* Get physical name. */
ff355380 12614 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12615
d8151005
DJ
12616 /* The name is already allocated along with this objfile, so we don't
12617 need to duplicate it for the type. */
12618 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12619 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12620 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12621 }
12622 else if (die->tag == DW_TAG_inheritance)
12623 {
74ac6d43 12624 LONGEST offset;
d4b96c9a 12625
74ac6d43
TT
12626 /* C++ base class field. */
12627 if (handle_data_member_location (die, cu, &offset))
12628 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12629 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12630 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12631 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12632 fip->nbaseclasses++;
12633 }
12634}
12635
98751a41
JK
12636/* Add a typedef defined in the scope of the FIP's class. */
12637
12638static void
12639dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12640 struct dwarf2_cu *cu)
6e70227d 12641{
98751a41 12642 struct objfile *objfile = cu->objfile;
98751a41
JK
12643 struct typedef_field_list *new_field;
12644 struct attribute *attr;
12645 struct typedef_field *fp;
12646 char *fieldname = "";
12647
12648 /* Allocate a new field list entry and link it in. */
8d749320 12649 new_field = XCNEW (struct typedef_field_list);
98751a41
JK
12650 make_cleanup (xfree, new_field);
12651
12652 gdb_assert (die->tag == DW_TAG_typedef);
12653
12654 fp = &new_field->field;
12655
12656 /* Get name of field. */
12657 fp->name = dwarf2_name (die, cu);
12658 if (fp->name == NULL)
12659 return;
12660
12661 fp->type = read_type_die (die, cu);
12662
12663 new_field->next = fip->typedef_field_list;
12664 fip->typedef_field_list = new_field;
12665 fip->typedef_field_list_count++;
12666}
12667
c906108c
SS
12668/* Create the vector of fields, and attach it to the type. */
12669
12670static void
fba45db2 12671dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12672 struct dwarf2_cu *cu)
c906108c
SS
12673{
12674 int nfields = fip->nfields;
12675
12676 /* Record the field count, allocate space for the array of fields,
12677 and create blank accessibility bitfields if necessary. */
12678 TYPE_NFIELDS (type) = nfields;
12679 TYPE_FIELDS (type) = (struct field *)
12680 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12681 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12682
b4ba55a1 12683 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12684 {
12685 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12686
12687 TYPE_FIELD_PRIVATE_BITS (type) =
12688 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12689 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12690
12691 TYPE_FIELD_PROTECTED_BITS (type) =
12692 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12693 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12694
774b6a14
TT
12695 TYPE_FIELD_IGNORE_BITS (type) =
12696 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12697 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12698 }
12699
12700 /* If the type has baseclasses, allocate and clear a bit vector for
12701 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12702 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12703 {
12704 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12705 unsigned char *pointer;
c906108c
SS
12706
12707 ALLOCATE_CPLUS_STRUCT_TYPE (type);
224c3ddb 12708 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
fe1b8b76 12709 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12710 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12711 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12712 }
12713
3e43a32a
MS
12714 /* Copy the saved-up fields into the field vector. Start from the head of
12715 the list, adding to the tail of the field array, so that they end up in
12716 the same order in the array in which they were added to the list. */
c906108c
SS
12717 while (nfields-- > 0)
12718 {
7d0ccb61
DJ
12719 struct nextfield *fieldp;
12720
12721 if (fip->fields)
12722 {
12723 fieldp = fip->fields;
12724 fip->fields = fieldp->next;
12725 }
12726 else
12727 {
12728 fieldp = fip->baseclasses;
12729 fip->baseclasses = fieldp->next;
12730 }
12731
12732 TYPE_FIELD (type, nfields) = fieldp->field;
12733 switch (fieldp->accessibility)
c906108c 12734 {
c5aa993b 12735 case DW_ACCESS_private:
b4ba55a1
JB
12736 if (cu->language != language_ada)
12737 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12738 break;
c906108c 12739
c5aa993b 12740 case DW_ACCESS_protected:
b4ba55a1
JB
12741 if (cu->language != language_ada)
12742 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12743 break;
c906108c 12744
c5aa993b
JM
12745 case DW_ACCESS_public:
12746 break;
c906108c 12747
c5aa993b
JM
12748 default:
12749 /* Unknown accessibility. Complain and treat it as public. */
12750 {
e2e0b3e5 12751 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12752 fieldp->accessibility);
c5aa993b
JM
12753 }
12754 break;
c906108c
SS
12755 }
12756 if (nfields < fip->nbaseclasses)
12757 {
7d0ccb61 12758 switch (fieldp->virtuality)
c906108c 12759 {
c5aa993b
JM
12760 case DW_VIRTUALITY_virtual:
12761 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12762 if (cu->language == language_ada)
a73c6dcd 12763 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12764 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12765 break;
c906108c
SS
12766 }
12767 }
c906108c
SS
12768 }
12769}
12770
7d27a96d
TT
12771/* Return true if this member function is a constructor, false
12772 otherwise. */
12773
12774static int
12775dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12776{
12777 const char *fieldname;
fe978cb0 12778 const char *type_name;
7d27a96d
TT
12779 int len;
12780
12781 if (die->parent == NULL)
12782 return 0;
12783
12784 if (die->parent->tag != DW_TAG_structure_type
12785 && die->parent->tag != DW_TAG_union_type
12786 && die->parent->tag != DW_TAG_class_type)
12787 return 0;
12788
12789 fieldname = dwarf2_name (die, cu);
fe978cb0
PA
12790 type_name = dwarf2_name (die->parent, cu);
12791 if (fieldname == NULL || type_name == NULL)
7d27a96d
TT
12792 return 0;
12793
12794 len = strlen (fieldname);
fe978cb0
PA
12795 return (strncmp (fieldname, type_name, len) == 0
12796 && (type_name[len] == '\0' || type_name[len] == '<'));
7d27a96d
TT
12797}
12798
c906108c
SS
12799/* Add a member function to the proper fieldlist. */
12800
12801static void
107d2387 12802dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 12803 struct type *type, struct dwarf2_cu *cu)
c906108c 12804{
e7c27a73 12805 struct objfile *objfile = cu->objfile;
c906108c
SS
12806 struct attribute *attr;
12807 struct fnfieldlist *flp;
12808 int i;
12809 struct fn_field *fnp;
15d034d0 12810 const char *fieldname;
c906108c 12811 struct nextfnfield *new_fnfield;
f792889a 12812 struct type *this_type;
60d5a603 12813 enum dwarf_access_attribute accessibility;
c906108c 12814
b4ba55a1 12815 if (cu->language == language_ada)
a73c6dcd 12816 error (_("unexpected member function in Ada type"));
b4ba55a1 12817
2df3850c 12818 /* Get name of member function. */
39cbfefa
DJ
12819 fieldname = dwarf2_name (die, cu);
12820 if (fieldname == NULL)
2df3850c 12821 return;
c906108c 12822
c906108c
SS
12823 /* Look up member function name in fieldlist. */
12824 for (i = 0; i < fip->nfnfields; i++)
12825 {
27bfe10e 12826 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
12827 break;
12828 }
12829
12830 /* Create new list element if necessary. */
12831 if (i < fip->nfnfields)
12832 flp = &fip->fnfieldlists[i];
12833 else
12834 {
12835 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12836 {
12837 fip->fnfieldlists = (struct fnfieldlist *)
12838 xrealloc (fip->fnfieldlists,
12839 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12840 * sizeof (struct fnfieldlist));
c906108c 12841 if (fip->nfnfields == 0)
c13c43fd 12842 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
12843 }
12844 flp = &fip->fnfieldlists[fip->nfnfields];
12845 flp->name = fieldname;
12846 flp->length = 0;
12847 flp->head = NULL;
3da10d80 12848 i = fip->nfnfields++;
c906108c
SS
12849 }
12850
12851 /* Create a new member function field and chain it to the field list
0963b4bd 12852 entry. */
8d749320 12853 new_fnfield = XNEW (struct nextfnfield);
b8c9b27d 12854 make_cleanup (xfree, new_fnfield);
c906108c
SS
12855 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12856 new_fnfield->next = flp->head;
12857 flp->head = new_fnfield;
12858 flp->length++;
12859
12860 /* Fill in the member function field info. */
12861 fnp = &new_fnfield->fnfield;
3da10d80
KS
12862
12863 /* Delay processing of the physname until later. */
12864 if (cu->language == language_cplus || cu->language == language_java)
12865 {
12866 add_to_method_list (type, i, flp->length - 1, fieldname,
12867 die, cu);
12868 }
12869 else
12870 {
1d06ead6 12871 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
12872 fnp->physname = physname ? physname : "";
12873 }
12874
c906108c 12875 fnp->type = alloc_type (objfile);
f792889a
DJ
12876 this_type = read_type_die (die, cu);
12877 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 12878 {
f792889a 12879 int nparams = TYPE_NFIELDS (this_type);
c906108c 12880
f792889a 12881 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
12882 of the method itself (TYPE_CODE_METHOD). */
12883 smash_to_method_type (fnp->type, type,
f792889a
DJ
12884 TYPE_TARGET_TYPE (this_type),
12885 TYPE_FIELDS (this_type),
12886 TYPE_NFIELDS (this_type),
12887 TYPE_VARARGS (this_type));
c906108c
SS
12888
12889 /* Handle static member functions.
c5aa993b 12890 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
12891 member functions. G++ helps GDB by marking the first
12892 parameter for non-static member functions (which is the this
12893 pointer) as artificial. We obtain this information from
12894 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 12895 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
12896 fnp->voffset = VOFFSET_STATIC;
12897 }
12898 else
e2e0b3e5 12899 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 12900 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
12901
12902 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 12903 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 12904 fnp->fcontext = die_containing_type (die, cu);
c906108c 12905
3e43a32a
MS
12906 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12907 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
12908
12909 /* Get accessibility. */
e142c38c 12910 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 12911 if (attr)
aead7601 12912 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
60d5a603
JK
12913 else
12914 accessibility = dwarf2_default_access_attribute (die, cu);
12915 switch (accessibility)
c906108c 12916 {
60d5a603
JK
12917 case DW_ACCESS_private:
12918 fnp->is_private = 1;
12919 break;
12920 case DW_ACCESS_protected:
12921 fnp->is_protected = 1;
12922 break;
c906108c
SS
12923 }
12924
b02dede2 12925 /* Check for artificial methods. */
e142c38c 12926 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
12927 if (attr && DW_UNSND (attr) != 0)
12928 fnp->is_artificial = 1;
12929
7d27a96d
TT
12930 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12931
0d564a31 12932 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
12933 function. For older versions of GCC, this is an offset in the
12934 appropriate virtual table, as specified by DW_AT_containing_type.
12935 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
12936 to the object address. */
12937
e142c38c 12938 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 12939 if (attr)
8e19ed76 12940 {
aec5aa8b 12941 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 12942 {
aec5aa8b
TT
12943 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12944 {
12945 /* Old-style GCC. */
12946 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12947 }
12948 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12949 || (DW_BLOCK (attr)->size > 1
12950 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12951 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12952 {
12953 struct dwarf_block blk;
12954 int offset;
12955
12956 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12957 ? 1 : 2);
12958 blk.size = DW_BLOCK (attr)->size - offset;
12959 blk.data = DW_BLOCK (attr)->data + offset;
12960 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12961 if ((fnp->voffset % cu->header.addr_size) != 0)
12962 dwarf2_complex_location_expr_complaint ();
12963 else
12964 fnp->voffset /= cu->header.addr_size;
12965 fnp->voffset += 2;
12966 }
12967 else
12968 dwarf2_complex_location_expr_complaint ();
12969
12970 if (!fnp->fcontext)
7e993ebf
KS
12971 {
12972 /* If there is no `this' field and no DW_AT_containing_type,
12973 we cannot actually find a base class context for the
12974 vtable! */
12975 if (TYPE_NFIELDS (this_type) == 0
12976 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
12977 {
12978 complaint (&symfile_complaints,
12979 _("cannot determine context for virtual member "
12980 "function \"%s\" (offset %d)"),
12981 fieldname, die->offset.sect_off);
12982 }
12983 else
12984 {
12985 fnp->fcontext
12986 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12987 }
12988 }
aec5aa8b 12989 }
3690dd37 12990 else if (attr_form_is_section_offset (attr))
8e19ed76 12991 {
4d3c2250 12992 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
12993 }
12994 else
12995 {
4d3c2250
KB
12996 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12997 fieldname);
8e19ed76 12998 }
0d564a31 12999 }
d48cc9dd
DJ
13000 else
13001 {
13002 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
13003 if (attr && DW_UNSND (attr))
13004 {
13005 /* GCC does this, as of 2008-08-25; PR debug/37237. */
13006 complaint (&symfile_complaints,
3e43a32a
MS
13007 _("Member function \"%s\" (offset %d) is virtual "
13008 "but the vtable offset is not specified"),
b64f50a1 13009 fieldname, die->offset.sect_off);
9655fd1a 13010 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
13011 TYPE_CPLUS_DYNAMIC (type) = 1;
13012 }
13013 }
c906108c
SS
13014}
13015
13016/* Create the vector of member function fields, and attach it to the type. */
13017
13018static void
fba45db2 13019dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 13020 struct dwarf2_cu *cu)
c906108c
SS
13021{
13022 struct fnfieldlist *flp;
c906108c
SS
13023 int i;
13024
b4ba55a1 13025 if (cu->language == language_ada)
a73c6dcd 13026 error (_("unexpected member functions in Ada type"));
b4ba55a1 13027
c906108c
SS
13028 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13029 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
13030 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
13031
13032 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
13033 {
13034 struct nextfnfield *nfp = flp->head;
13035 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
13036 int k;
13037
13038 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
13039 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
13040 fn_flp->fn_fields = (struct fn_field *)
13041 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
13042 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 13043 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
13044 }
13045
13046 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
13047}
13048
1168df01
JB
13049/* Returns non-zero if NAME is the name of a vtable member in CU's
13050 language, zero otherwise. */
13051static int
13052is_vtable_name (const char *name, struct dwarf2_cu *cu)
13053{
13054 static const char vptr[] = "_vptr";
987504bb 13055 static const char vtable[] = "vtable";
1168df01 13056
987504bb
JJ
13057 /* Look for the C++ and Java forms of the vtable. */
13058 if ((cu->language == language_java
61012eef
GB
13059 && startswith (name, vtable))
13060 || (startswith (name, vptr)
987504bb 13061 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
13062 return 1;
13063
13064 return 0;
13065}
13066
c0dd20ea 13067/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
13068 functions, with the ABI-specified layout. If TYPE describes
13069 such a structure, smash it into a member function type.
61049d3b
DJ
13070
13071 GCC shouldn't do this; it should just output pointer to member DIEs.
13072 This is GCC PR debug/28767. */
c0dd20ea 13073
0b92b5bb
TT
13074static void
13075quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 13076{
09e2d7c7 13077 struct type *pfn_type, *self_type, *new_type;
c0dd20ea
DJ
13078
13079 /* Check for a structure with no name and two children. */
0b92b5bb
TT
13080 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
13081 return;
c0dd20ea
DJ
13082
13083 /* Check for __pfn and __delta members. */
0b92b5bb
TT
13084 if (TYPE_FIELD_NAME (type, 0) == NULL
13085 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
13086 || TYPE_FIELD_NAME (type, 1) == NULL
13087 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
13088 return;
c0dd20ea
DJ
13089
13090 /* Find the type of the method. */
0b92b5bb 13091 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
13092 if (pfn_type == NULL
13093 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
13094 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 13095 return;
c0dd20ea
DJ
13096
13097 /* Look for the "this" argument. */
13098 pfn_type = TYPE_TARGET_TYPE (pfn_type);
13099 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 13100 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 13101 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 13102 return;
c0dd20ea 13103
09e2d7c7 13104 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb 13105 new_type = alloc_type (objfile);
09e2d7c7 13106 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
13107 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
13108 TYPE_VARARGS (pfn_type));
0b92b5bb 13109 smash_to_methodptr_type (type, new_type);
c0dd20ea 13110}
1168df01 13111
685b1105
JK
13112/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
13113 (icc). */
13114
13115static int
13116producer_is_icc (struct dwarf2_cu *cu)
13117{
13118 if (!cu->checked_producer)
13119 check_producer (cu);
13120
13121 return cu->producer_is_icc;
13122}
13123
c906108c 13124/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
13125 (definition) to create a type for the structure or union. Fill in
13126 the type's name and general properties; the members will not be
83655187
DE
13127 processed until process_structure_scope. A symbol table entry for
13128 the type will also not be done until process_structure_scope (assuming
13129 the type has a name).
c906108c 13130
c767944b
DJ
13131 NOTE: we need to call these functions regardless of whether or not the
13132 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 13133 structure or union. This gets the type entered into our set of
83655187 13134 user defined types. */
c906108c 13135
f792889a 13136static struct type *
134d01f1 13137read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13138{
e7c27a73 13139 struct objfile *objfile = cu->objfile;
c906108c
SS
13140 struct type *type;
13141 struct attribute *attr;
15d034d0 13142 const char *name;
c906108c 13143
348e048f
DE
13144 /* If the definition of this type lives in .debug_types, read that type.
13145 Don't follow DW_AT_specification though, that will take us back up
13146 the chain and we want to go down. */
45e58e77 13147 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13148 if (attr)
13149 {
ac9ec31b 13150 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13151
ac9ec31b 13152 /* The type's CU may not be the same as CU.
02142a6c 13153 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13154 return set_die_type (die, type, cu);
13155 }
13156
c0dd20ea 13157 type = alloc_type (objfile);
c906108c 13158 INIT_CPLUS_SPECIFIC (type);
93311388 13159
39cbfefa
DJ
13160 name = dwarf2_name (die, cu);
13161 if (name != NULL)
c906108c 13162 {
987504bb 13163 if (cu->language == language_cplus
45280282
IB
13164 || cu->language == language_java
13165 || cu->language == language_d)
63d06c5c 13166 {
15d034d0 13167 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
13168
13169 /* dwarf2_full_name might have already finished building the DIE's
13170 type. If so, there is no need to continue. */
13171 if (get_die_type (die, cu) != NULL)
13172 return get_die_type (die, cu);
13173
13174 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
13175 if (die->tag == DW_TAG_structure_type
13176 || die->tag == DW_TAG_class_type)
13177 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
13178 }
13179 else
13180 {
d8151005
DJ
13181 /* The name is already allocated along with this objfile, so
13182 we don't need to duplicate it for the type. */
7d455152 13183 TYPE_TAG_NAME (type) = name;
94af9270
KS
13184 if (die->tag == DW_TAG_class_type)
13185 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 13186 }
c906108c
SS
13187 }
13188
13189 if (die->tag == DW_TAG_structure_type)
13190 {
13191 TYPE_CODE (type) = TYPE_CODE_STRUCT;
13192 }
13193 else if (die->tag == DW_TAG_union_type)
13194 {
13195 TYPE_CODE (type) = TYPE_CODE_UNION;
13196 }
13197 else
13198 {
4753d33b 13199 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
13200 }
13201
0cc2414c
TT
13202 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13203 TYPE_DECLARED_CLASS (type) = 1;
13204
e142c38c 13205 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13206 if (attr)
13207 {
155bfbd3
JB
13208 if (attr_form_is_constant (attr))
13209 TYPE_LENGTH (type) = DW_UNSND (attr);
13210 else
13211 {
13212 /* For the moment, dynamic type sizes are not supported
13213 by GDB's struct type. The actual size is determined
13214 on-demand when resolving the type of a given object,
13215 so set the type's length to zero for now. Otherwise,
13216 we record an expression as the length, and that expression
13217 could lead to a very large value, which could eventually
13218 lead to us trying to allocate that much memory when creating
13219 a value of that type. */
13220 TYPE_LENGTH (type) = 0;
13221 }
c906108c
SS
13222 }
13223 else
13224 {
13225 TYPE_LENGTH (type) = 0;
13226 }
13227
422b1cb0 13228 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
685b1105
JK
13229 {
13230 /* ICC does not output the required DW_AT_declaration
13231 on incomplete types, but gives them a size of zero. */
422b1cb0 13232 TYPE_STUB (type) = 1;
685b1105
JK
13233 }
13234 else
13235 TYPE_STUB_SUPPORTED (type) = 1;
13236
dc718098 13237 if (die_is_declaration (die, cu))
876cecd0 13238 TYPE_STUB (type) = 1;
a6c727b2
DJ
13239 else if (attr == NULL && die->child == NULL
13240 && producer_is_realview (cu->producer))
13241 /* RealView does not output the required DW_AT_declaration
13242 on incomplete types. */
13243 TYPE_STUB (type) = 1;
dc718098 13244
c906108c
SS
13245 /* We need to add the type field to the die immediately so we don't
13246 infinitely recurse when dealing with pointers to the structure
0963b4bd 13247 type within the structure itself. */
1c379e20 13248 set_die_type (die, type, cu);
c906108c 13249
7e314c57
JK
13250 /* set_die_type should be already done. */
13251 set_descriptive_type (type, die, cu);
13252
c767944b
DJ
13253 return type;
13254}
13255
13256/* Finish creating a structure or union type, including filling in
13257 its members and creating a symbol for it. */
13258
13259static void
13260process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13261{
13262 struct objfile *objfile = cu->objfile;
ca040673 13263 struct die_info *child_die;
c767944b
DJ
13264 struct type *type;
13265
13266 type = get_die_type (die, cu);
13267 if (type == NULL)
13268 type = read_structure_type (die, cu);
13269
e142c38c 13270 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13271 {
13272 struct field_info fi;
34eaf542 13273 VEC (symbolp) *template_args = NULL;
c767944b 13274 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13275
13276 memset (&fi, 0, sizeof (struct field_info));
13277
639d11d3 13278 child_die = die->child;
c906108c
SS
13279
13280 while (child_die && child_die->tag)
13281 {
a9a9bd0f
DC
13282 if (child_die->tag == DW_TAG_member
13283 || child_die->tag == DW_TAG_variable)
c906108c 13284 {
a9a9bd0f
DC
13285 /* NOTE: carlton/2002-11-05: A C++ static data member
13286 should be a DW_TAG_member that is a declaration, but
13287 all versions of G++ as of this writing (so through at
13288 least 3.2.1) incorrectly generate DW_TAG_variable
13289 tags for them instead. */
e7c27a73 13290 dwarf2_add_field (&fi, child_die, cu);
c906108c 13291 }
8713b1b1 13292 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13293 {
0963b4bd 13294 /* C++ member function. */
e7c27a73 13295 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
13296 }
13297 else if (child_die->tag == DW_TAG_inheritance)
13298 {
13299 /* C++ base class field. */
e7c27a73 13300 dwarf2_add_field (&fi, child_die, cu);
c906108c 13301 }
98751a41
JK
13302 else if (child_die->tag == DW_TAG_typedef)
13303 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13304 else if (child_die->tag == DW_TAG_template_type_param
13305 || child_die->tag == DW_TAG_template_value_param)
13306 {
13307 struct symbol *arg = new_symbol (child_die, NULL, cu);
13308
f1078f66
DJ
13309 if (arg != NULL)
13310 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13311 }
13312
c906108c
SS
13313 child_die = sibling_die (child_die);
13314 }
13315
34eaf542
TT
13316 /* Attach template arguments to type. */
13317 if (! VEC_empty (symbolp, template_args))
13318 {
13319 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13320 TYPE_N_TEMPLATE_ARGUMENTS (type)
13321 = VEC_length (symbolp, template_args);
13322 TYPE_TEMPLATE_ARGUMENTS (type)
8d749320
SM
13323 = XOBNEWVEC (&objfile->objfile_obstack,
13324 struct symbol *,
13325 TYPE_N_TEMPLATE_ARGUMENTS (type));
34eaf542
TT
13326 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13327 VEC_address (symbolp, template_args),
13328 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13329 * sizeof (struct symbol *)));
13330 VEC_free (symbolp, template_args);
13331 }
13332
c906108c
SS
13333 /* Attach fields and member functions to the type. */
13334 if (fi.nfields)
e7c27a73 13335 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13336 if (fi.nfnfields)
13337 {
e7c27a73 13338 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13339
c5aa993b 13340 /* Get the type which refers to the base class (possibly this
c906108c 13341 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13342 class from the DW_AT_containing_type attribute. This use of
13343 DW_AT_containing_type is a GNU extension. */
c906108c 13344
e142c38c 13345 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13346 {
e7c27a73 13347 struct type *t = die_containing_type (die, cu);
c906108c 13348
ae6ae975 13349 set_type_vptr_basetype (type, t);
c906108c
SS
13350 if (type == t)
13351 {
c906108c
SS
13352 int i;
13353
13354 /* Our own class provides vtbl ptr. */
13355 for (i = TYPE_NFIELDS (t) - 1;
13356 i >= TYPE_N_BASECLASSES (t);
13357 --i)
13358 {
0d5cff50 13359 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13360
1168df01 13361 if (is_vtable_name (fieldname, cu))
c906108c 13362 {
ae6ae975 13363 set_type_vptr_fieldno (type, i);
c906108c
SS
13364 break;
13365 }
13366 }
13367
13368 /* Complain if virtual function table field not found. */
13369 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13370 complaint (&symfile_complaints,
3e43a32a
MS
13371 _("virtual function table pointer "
13372 "not found when defining class '%s'"),
4d3c2250
KB
13373 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13374 "");
c906108c
SS
13375 }
13376 else
13377 {
ae6ae975 13378 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
c906108c
SS
13379 }
13380 }
f6235d4c 13381 else if (cu->producer
61012eef 13382 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
f6235d4c
EZ
13383 {
13384 /* The IBM XLC compiler does not provide direct indication
13385 of the containing type, but the vtable pointer is
13386 always named __vfp. */
13387
13388 int i;
13389
13390 for (i = TYPE_NFIELDS (type) - 1;
13391 i >= TYPE_N_BASECLASSES (type);
13392 --i)
13393 {
13394 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13395 {
ae6ae975
DE
13396 set_type_vptr_fieldno (type, i);
13397 set_type_vptr_basetype (type, type);
f6235d4c
EZ
13398 break;
13399 }
13400 }
13401 }
c906108c 13402 }
98751a41
JK
13403
13404 /* Copy fi.typedef_field_list linked list elements content into the
13405 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13406 if (fi.typedef_field_list)
13407 {
13408 int i = fi.typedef_field_list_count;
13409
a0d7a4ff 13410 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41 13411 TYPE_TYPEDEF_FIELD_ARRAY (type)
224c3ddb
SM
13412 = ((struct typedef_field *)
13413 TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i));
98751a41
JK
13414 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13415
13416 /* Reverse the list order to keep the debug info elements order. */
13417 while (--i >= 0)
13418 {
13419 struct typedef_field *dest, *src;
6e70227d 13420
98751a41
JK
13421 dest = &TYPE_TYPEDEF_FIELD (type, i);
13422 src = &fi.typedef_field_list->field;
13423 fi.typedef_field_list = fi.typedef_field_list->next;
13424 *dest = *src;
13425 }
13426 }
c767944b
DJ
13427
13428 do_cleanups (back_to);
eb2a6f42
TT
13429
13430 if (HAVE_CPLUS_STRUCT (type))
13431 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 13432 }
63d06c5c 13433
bb5ed363 13434 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13435
90aeadfc
DC
13436 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13437 snapshots) has been known to create a die giving a declaration
13438 for a class that has, as a child, a die giving a definition for a
13439 nested class. So we have to process our children even if the
13440 current die is a declaration. Normally, of course, a declaration
13441 won't have any children at all. */
134d01f1 13442
ca040673
DE
13443 child_die = die->child;
13444
90aeadfc
DC
13445 while (child_die != NULL && child_die->tag)
13446 {
13447 if (child_die->tag == DW_TAG_member
13448 || child_die->tag == DW_TAG_variable
34eaf542
TT
13449 || child_die->tag == DW_TAG_inheritance
13450 || child_die->tag == DW_TAG_template_value_param
13451 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13452 {
90aeadfc 13453 /* Do nothing. */
134d01f1 13454 }
90aeadfc
DC
13455 else
13456 process_die (child_die, cu);
134d01f1 13457
90aeadfc 13458 child_die = sibling_die (child_die);
134d01f1
DJ
13459 }
13460
fa4028e9
JB
13461 /* Do not consider external references. According to the DWARF standard,
13462 these DIEs are identified by the fact that they have no byte_size
13463 attribute, and a declaration attribute. */
13464 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13465 || !die_is_declaration (die, cu))
c767944b 13466 new_symbol (die, type, cu);
134d01f1
DJ
13467}
13468
55426c9d
JB
13469/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13470 update TYPE using some information only available in DIE's children. */
13471
13472static void
13473update_enumeration_type_from_children (struct die_info *die,
13474 struct type *type,
13475 struct dwarf2_cu *cu)
13476{
13477 struct obstack obstack;
60f7655a 13478 struct die_info *child_die;
55426c9d
JB
13479 int unsigned_enum = 1;
13480 int flag_enum = 1;
13481 ULONGEST mask = 0;
13482 struct cleanup *old_chain;
13483
13484 obstack_init (&obstack);
13485 old_chain = make_cleanup_obstack_free (&obstack);
13486
60f7655a
DE
13487 for (child_die = die->child;
13488 child_die != NULL && child_die->tag;
13489 child_die = sibling_die (child_die))
55426c9d
JB
13490 {
13491 struct attribute *attr;
13492 LONGEST value;
13493 const gdb_byte *bytes;
13494 struct dwarf2_locexpr_baton *baton;
13495 const char *name;
60f7655a 13496
55426c9d
JB
13497 if (child_die->tag != DW_TAG_enumerator)
13498 continue;
13499
13500 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13501 if (attr == NULL)
13502 continue;
13503
13504 name = dwarf2_name (child_die, cu);
13505 if (name == NULL)
13506 name = "<anonymous enumerator>";
13507
13508 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13509 &value, &bytes, &baton);
13510 if (value < 0)
13511 {
13512 unsigned_enum = 0;
13513 flag_enum = 0;
13514 }
13515 else if ((mask & value) != 0)
13516 flag_enum = 0;
13517 else
13518 mask |= value;
13519
13520 /* If we already know that the enum type is neither unsigned, nor
13521 a flag type, no need to look at the rest of the enumerates. */
13522 if (!unsigned_enum && !flag_enum)
13523 break;
55426c9d
JB
13524 }
13525
13526 if (unsigned_enum)
13527 TYPE_UNSIGNED (type) = 1;
13528 if (flag_enum)
13529 TYPE_FLAG_ENUM (type) = 1;
13530
13531 do_cleanups (old_chain);
13532}
13533
134d01f1
DJ
13534/* Given a DW_AT_enumeration_type die, set its type. We do not
13535 complete the type's fields yet, or create any symbols. */
c906108c 13536
f792889a 13537static struct type *
134d01f1 13538read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13539{
e7c27a73 13540 struct objfile *objfile = cu->objfile;
c906108c 13541 struct type *type;
c906108c 13542 struct attribute *attr;
0114d602 13543 const char *name;
134d01f1 13544
348e048f
DE
13545 /* If the definition of this type lives in .debug_types, read that type.
13546 Don't follow DW_AT_specification though, that will take us back up
13547 the chain and we want to go down. */
45e58e77 13548 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13549 if (attr)
13550 {
ac9ec31b 13551 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13552
ac9ec31b 13553 /* The type's CU may not be the same as CU.
02142a6c 13554 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13555 return set_die_type (die, type, cu);
13556 }
13557
c906108c
SS
13558 type = alloc_type (objfile);
13559
13560 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13561 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13562 if (name != NULL)
7d455152 13563 TYPE_TAG_NAME (type) = name;
c906108c 13564
0626fc76
TT
13565 attr = dwarf2_attr (die, DW_AT_type, cu);
13566 if (attr != NULL)
13567 {
13568 struct type *underlying_type = die_type (die, cu);
13569
13570 TYPE_TARGET_TYPE (type) = underlying_type;
13571 }
13572
e142c38c 13573 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13574 if (attr)
13575 {
13576 TYPE_LENGTH (type) = DW_UNSND (attr);
13577 }
13578 else
13579 {
13580 TYPE_LENGTH (type) = 0;
13581 }
13582
137033e9
JB
13583 /* The enumeration DIE can be incomplete. In Ada, any type can be
13584 declared as private in the package spec, and then defined only
13585 inside the package body. Such types are known as Taft Amendment
13586 Types. When another package uses such a type, an incomplete DIE
13587 may be generated by the compiler. */
02eb380e 13588 if (die_is_declaration (die, cu))
876cecd0 13589 TYPE_STUB (type) = 1;
02eb380e 13590
0626fc76
TT
13591 /* Finish the creation of this type by using the enum's children.
13592 We must call this even when the underlying type has been provided
13593 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
13594 update_enumeration_type_from_children (die, type, cu);
13595
0626fc76
TT
13596 /* If this type has an underlying type that is not a stub, then we
13597 may use its attributes. We always use the "unsigned" attribute
13598 in this situation, because ordinarily we guess whether the type
13599 is unsigned -- but the guess can be wrong and the underlying type
13600 can tell us the reality. However, we defer to a local size
13601 attribute if one exists, because this lets the compiler override
13602 the underlying type if needed. */
13603 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13604 {
13605 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13606 if (TYPE_LENGTH (type) == 0)
13607 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13608 }
13609
3d567982
TT
13610 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13611
f792889a 13612 return set_die_type (die, type, cu);
134d01f1
DJ
13613}
13614
13615/* Given a pointer to a die which begins an enumeration, process all
13616 the dies that define the members of the enumeration, and create the
13617 symbol for the enumeration type.
13618
13619 NOTE: We reverse the order of the element list. */
13620
13621static void
13622process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13623{
f792889a 13624 struct type *this_type;
134d01f1 13625
f792889a
DJ
13626 this_type = get_die_type (die, cu);
13627 if (this_type == NULL)
13628 this_type = read_enumeration_type (die, cu);
9dc481d3 13629
639d11d3 13630 if (die->child != NULL)
c906108c 13631 {
9dc481d3
DE
13632 struct die_info *child_die;
13633 struct symbol *sym;
13634 struct field *fields = NULL;
13635 int num_fields = 0;
15d034d0 13636 const char *name;
9dc481d3 13637
639d11d3 13638 child_die = die->child;
c906108c
SS
13639 while (child_die && child_die->tag)
13640 {
13641 if (child_die->tag != DW_TAG_enumerator)
13642 {
e7c27a73 13643 process_die (child_die, cu);
c906108c
SS
13644 }
13645 else
13646 {
39cbfefa
DJ
13647 name = dwarf2_name (child_die, cu);
13648 if (name)
c906108c 13649 {
f792889a 13650 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
13651
13652 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13653 {
13654 fields = (struct field *)
13655 xrealloc (fields,
13656 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13657 * sizeof (struct field));
c906108c
SS
13658 }
13659
3567439c 13660 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13661 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13662 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13663 FIELD_BITSIZE (fields[num_fields]) = 0;
13664
13665 num_fields++;
13666 }
13667 }
13668
13669 child_die = sibling_die (child_die);
13670 }
13671
13672 if (num_fields)
13673 {
f792889a
DJ
13674 TYPE_NFIELDS (this_type) = num_fields;
13675 TYPE_FIELDS (this_type) = (struct field *)
13676 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13677 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13678 sizeof (struct field) * num_fields);
b8c9b27d 13679 xfree (fields);
c906108c 13680 }
c906108c 13681 }
134d01f1 13682
6c83ed52
TT
13683 /* If we are reading an enum from a .debug_types unit, and the enum
13684 is a declaration, and the enum is not the signatured type in the
13685 unit, then we do not want to add a symbol for it. Adding a
13686 symbol would in some cases obscure the true definition of the
13687 enum, giving users an incomplete type when the definition is
13688 actually available. Note that we do not want to do this for all
13689 enums which are just declarations, because C++0x allows forward
13690 enum declarations. */
3019eac3 13691 if (cu->per_cu->is_debug_types
6c83ed52
TT
13692 && die_is_declaration (die, cu))
13693 {
52dc124a 13694 struct signatured_type *sig_type;
6c83ed52 13695
c0f78cd4 13696 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13697 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13698 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13699 return;
13700 }
13701
f792889a 13702 new_symbol (die, this_type, cu);
c906108c
SS
13703}
13704
13705/* Extract all information from a DW_TAG_array_type DIE and put it in
13706 the DIE's type field. For now, this only handles one dimensional
13707 arrays. */
13708
f792889a 13709static struct type *
e7c27a73 13710read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13711{
e7c27a73 13712 struct objfile *objfile = cu->objfile;
c906108c 13713 struct die_info *child_die;
7e314c57 13714 struct type *type;
c906108c
SS
13715 struct type *element_type, *range_type, *index_type;
13716 struct type **range_types = NULL;
13717 struct attribute *attr;
13718 int ndim = 0;
13719 struct cleanup *back_to;
15d034d0 13720 const char *name;
dc53a7ad 13721 unsigned int bit_stride = 0;
c906108c 13722
e7c27a73 13723 element_type = die_type (die, cu);
c906108c 13724
7e314c57
JK
13725 /* The die_type call above may have already set the type for this DIE. */
13726 type = get_die_type (die, cu);
13727 if (type)
13728 return type;
13729
dc53a7ad
JB
13730 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13731 if (attr != NULL)
13732 bit_stride = DW_UNSND (attr) * 8;
13733
13734 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13735 if (attr != NULL)
13736 bit_stride = DW_UNSND (attr);
13737
c906108c
SS
13738 /* Irix 6.2 native cc creates array types without children for
13739 arrays with unspecified length. */
639d11d3 13740 if (die->child == NULL)
c906108c 13741 {
46bf5051 13742 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 13743 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
13744 type = create_array_type_with_stride (NULL, element_type, range_type,
13745 bit_stride);
f792889a 13746 return set_die_type (die, type, cu);
c906108c
SS
13747 }
13748
13749 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13750 child_die = die->child;
c906108c
SS
13751 while (child_die && child_die->tag)
13752 {
13753 if (child_die->tag == DW_TAG_subrange_type)
13754 {
f792889a 13755 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13756
f792889a 13757 if (child_type != NULL)
a02abb62 13758 {
0963b4bd
MS
13759 /* The range type was succesfully read. Save it for the
13760 array type creation. */
a02abb62
JB
13761 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13762 {
13763 range_types = (struct type **)
13764 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13765 * sizeof (struct type *));
13766 if (ndim == 0)
13767 make_cleanup (free_current_contents, &range_types);
13768 }
f792889a 13769 range_types[ndim++] = child_type;
a02abb62 13770 }
c906108c
SS
13771 }
13772 child_die = sibling_die (child_die);
13773 }
13774
13775 /* Dwarf2 dimensions are output from left to right, create the
13776 necessary array types in backwards order. */
7ca2d3a3 13777
c906108c 13778 type = element_type;
7ca2d3a3
DL
13779
13780 if (read_array_order (die, cu) == DW_ORD_col_major)
13781 {
13782 int i = 0;
9a619af0 13783
7ca2d3a3 13784 while (i < ndim)
dc53a7ad
JB
13785 type = create_array_type_with_stride (NULL, type, range_types[i++],
13786 bit_stride);
7ca2d3a3
DL
13787 }
13788 else
13789 {
13790 while (ndim-- > 0)
dc53a7ad
JB
13791 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13792 bit_stride);
7ca2d3a3 13793 }
c906108c 13794
f5f8a009
EZ
13795 /* Understand Dwarf2 support for vector types (like they occur on
13796 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13797 array type. This is not part of the Dwarf2/3 standard yet, but a
13798 custom vendor extension. The main difference between a regular
13799 array and the vector variant is that vectors are passed by value
13800 to functions. */
e142c38c 13801 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 13802 if (attr)
ea37ba09 13803 make_vector_type (type);
f5f8a009 13804
dbc98a8b
KW
13805 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13806 implementation may choose to implement triple vectors using this
13807 attribute. */
13808 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13809 if (attr)
13810 {
13811 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13812 TYPE_LENGTH (type) = DW_UNSND (attr);
13813 else
3e43a32a
MS
13814 complaint (&symfile_complaints,
13815 _("DW_AT_byte_size for array type smaller "
13816 "than the total size of elements"));
dbc98a8b
KW
13817 }
13818
39cbfefa
DJ
13819 name = dwarf2_name (die, cu);
13820 if (name)
13821 TYPE_NAME (type) = name;
6e70227d 13822
0963b4bd 13823 /* Install the type in the die. */
7e314c57
JK
13824 set_die_type (die, type, cu);
13825
13826 /* set_die_type should be already done. */
b4ba55a1
JB
13827 set_descriptive_type (type, die, cu);
13828
c906108c
SS
13829 do_cleanups (back_to);
13830
7e314c57 13831 return type;
c906108c
SS
13832}
13833
7ca2d3a3 13834static enum dwarf_array_dim_ordering
6e70227d 13835read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
13836{
13837 struct attribute *attr;
13838
13839 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13840
aead7601
SM
13841 if (attr)
13842 return (enum dwarf_array_dim_ordering) DW_SND (attr);
7ca2d3a3 13843
0963b4bd
MS
13844 /* GNU F77 is a special case, as at 08/2004 array type info is the
13845 opposite order to the dwarf2 specification, but data is still
13846 laid out as per normal fortran.
7ca2d3a3 13847
0963b4bd
MS
13848 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13849 version checking. */
7ca2d3a3 13850
905e0470
PM
13851 if (cu->language == language_fortran
13852 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
13853 {
13854 return DW_ORD_row_major;
13855 }
13856
6e70227d 13857 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
13858 {
13859 case array_column_major:
13860 return DW_ORD_col_major;
13861 case array_row_major:
13862 default:
13863 return DW_ORD_row_major;
13864 };
13865}
13866
72019c9c 13867/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 13868 the DIE's type field. */
72019c9c 13869
f792889a 13870static struct type *
72019c9c
GM
13871read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13872{
7e314c57
JK
13873 struct type *domain_type, *set_type;
13874 struct attribute *attr;
f792889a 13875
7e314c57
JK
13876 domain_type = die_type (die, cu);
13877
13878 /* The die_type call above may have already set the type for this DIE. */
13879 set_type = get_die_type (die, cu);
13880 if (set_type)
13881 return set_type;
13882
13883 set_type = create_set_type (NULL, domain_type);
13884
13885 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
13886 if (attr)
13887 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 13888
f792889a 13889 return set_die_type (die, set_type, cu);
72019c9c 13890}
7ca2d3a3 13891
0971de02
TT
13892/* A helper for read_common_block that creates a locexpr baton.
13893 SYM is the symbol which we are marking as computed.
13894 COMMON_DIE is the DIE for the common block.
13895 COMMON_LOC is the location expression attribute for the common
13896 block itself.
13897 MEMBER_LOC is the location expression attribute for the particular
13898 member of the common block that we are processing.
13899 CU is the CU from which the above come. */
13900
13901static void
13902mark_common_block_symbol_computed (struct symbol *sym,
13903 struct die_info *common_die,
13904 struct attribute *common_loc,
13905 struct attribute *member_loc,
13906 struct dwarf2_cu *cu)
13907{
13908 struct objfile *objfile = dwarf2_per_objfile->objfile;
13909 struct dwarf2_locexpr_baton *baton;
13910 gdb_byte *ptr;
13911 unsigned int cu_off;
13912 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13913 LONGEST offset = 0;
13914
13915 gdb_assert (common_loc && member_loc);
13916 gdb_assert (attr_form_is_block (common_loc));
13917 gdb_assert (attr_form_is_block (member_loc)
13918 || attr_form_is_constant (member_loc));
13919
8d749320 13920 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
0971de02
TT
13921 baton->per_cu = cu->per_cu;
13922 gdb_assert (baton->per_cu);
13923
13924 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13925
13926 if (attr_form_is_constant (member_loc))
13927 {
13928 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13929 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13930 }
13931 else
13932 baton->size += DW_BLOCK (member_loc)->size;
13933
224c3ddb 13934 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
0971de02
TT
13935 baton->data = ptr;
13936
13937 *ptr++ = DW_OP_call4;
13938 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13939 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13940 ptr += 4;
13941
13942 if (attr_form_is_constant (member_loc))
13943 {
13944 *ptr++ = DW_OP_addr;
13945 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13946 ptr += cu->header.addr_size;
13947 }
13948 else
13949 {
13950 /* We have to copy the data here, because DW_OP_call4 will only
13951 use a DW_AT_location attribute. */
13952 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13953 ptr += DW_BLOCK (member_loc)->size;
13954 }
13955
13956 *ptr++ = DW_OP_plus;
13957 gdb_assert (ptr - baton->data == baton->size);
13958
0971de02 13959 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 13960 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
13961}
13962
4357ac6c
TT
13963/* Create appropriate locally-scoped variables for all the
13964 DW_TAG_common_block entries. Also create a struct common_block
13965 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13966 is used to sepate the common blocks name namespace from regular
13967 variable names. */
c906108c
SS
13968
13969static void
e7c27a73 13970read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13971{
0971de02
TT
13972 struct attribute *attr;
13973
13974 attr = dwarf2_attr (die, DW_AT_location, cu);
13975 if (attr)
13976 {
13977 /* Support the .debug_loc offsets. */
13978 if (attr_form_is_block (attr))
13979 {
13980 /* Ok. */
13981 }
13982 else if (attr_form_is_section_offset (attr))
13983 {
13984 dwarf2_complex_location_expr_complaint ();
13985 attr = NULL;
13986 }
13987 else
13988 {
13989 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13990 "common block member");
13991 attr = NULL;
13992 }
13993 }
13994
639d11d3 13995 if (die->child != NULL)
c906108c 13996 {
4357ac6c
TT
13997 struct objfile *objfile = cu->objfile;
13998 struct die_info *child_die;
13999 size_t n_entries = 0, size;
14000 struct common_block *common_block;
14001 struct symbol *sym;
74ac6d43 14002
4357ac6c
TT
14003 for (child_die = die->child;
14004 child_die && child_die->tag;
14005 child_die = sibling_die (child_die))
14006 ++n_entries;
14007
14008 size = (sizeof (struct common_block)
14009 + (n_entries - 1) * sizeof (struct symbol *));
224c3ddb
SM
14010 common_block
14011 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
14012 size);
4357ac6c
TT
14013 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
14014 common_block->n_entries = 0;
14015
14016 for (child_die = die->child;
14017 child_die && child_die->tag;
14018 child_die = sibling_die (child_die))
14019 {
14020 /* Create the symbol in the DW_TAG_common_block block in the current
14021 symbol scope. */
e7c27a73 14022 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
14023 if (sym != NULL)
14024 {
14025 struct attribute *member_loc;
14026
14027 common_block->contents[common_block->n_entries++] = sym;
14028
14029 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
14030 cu);
14031 if (member_loc)
14032 {
14033 /* GDB has handled this for a long time, but it is
14034 not specified by DWARF. It seems to have been
14035 emitted by gfortran at least as recently as:
14036 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
14037 complaint (&symfile_complaints,
14038 _("Variable in common block has "
14039 "DW_AT_data_member_location "
14040 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
14041 child_die->offset.sect_off,
14042 objfile_name (cu->objfile));
0971de02
TT
14043
14044 if (attr_form_is_section_offset (member_loc))
14045 dwarf2_complex_location_expr_complaint ();
14046 else if (attr_form_is_constant (member_loc)
14047 || attr_form_is_block (member_loc))
14048 {
14049 if (attr)
14050 mark_common_block_symbol_computed (sym, die, attr,
14051 member_loc, cu);
14052 }
14053 else
14054 dwarf2_complex_location_expr_complaint ();
14055 }
14056 }
c906108c 14057 }
4357ac6c
TT
14058
14059 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
14060 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
14061 }
14062}
14063
0114d602 14064/* Create a type for a C++ namespace. */
d9fa45fe 14065
0114d602
DJ
14066static struct type *
14067read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 14068{
e7c27a73 14069 struct objfile *objfile = cu->objfile;
0114d602 14070 const char *previous_prefix, *name;
9219021c 14071 int is_anonymous;
0114d602
DJ
14072 struct type *type;
14073
14074 /* For extensions, reuse the type of the original namespace. */
14075 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
14076 {
14077 struct die_info *ext_die;
14078 struct dwarf2_cu *ext_cu = cu;
9a619af0 14079
0114d602
DJ
14080 ext_die = dwarf2_extension (die, &ext_cu);
14081 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
14082
14083 /* EXT_CU may not be the same as CU.
02142a6c 14084 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
14085 return set_die_type (die, type, cu);
14086 }
9219021c 14087
e142c38c 14088 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
14089
14090 /* Now build the name of the current namespace. */
14091
0114d602
DJ
14092 previous_prefix = determine_prefix (die, cu);
14093 if (previous_prefix[0] != '\0')
14094 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 14095 previous_prefix, name, 0, cu);
0114d602
DJ
14096
14097 /* Create the type. */
14098 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
14099 objfile);
abee88f2 14100 TYPE_NAME (type) = name;
0114d602
DJ
14101 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14102
60531b24 14103 return set_die_type (die, type, cu);
0114d602
DJ
14104}
14105
22cee43f 14106/* Read a namespace scope. */
0114d602
DJ
14107
14108static void
14109read_namespace (struct die_info *die, struct dwarf2_cu *cu)
14110{
14111 struct objfile *objfile = cu->objfile;
0114d602 14112 int is_anonymous;
9219021c 14113
5c4e30ca
DC
14114 /* Add a symbol associated to this if we haven't seen the namespace
14115 before. Also, add a using directive if it's an anonymous
14116 namespace. */
9219021c 14117
f2f0e013 14118 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
14119 {
14120 struct type *type;
14121
0114d602 14122 type = read_type_die (die, cu);
e7c27a73 14123 new_symbol (die, type, cu);
5c4e30ca 14124
e8e80198 14125 namespace_name (die, &is_anonymous, cu);
5c4e30ca 14126 if (is_anonymous)
0114d602
DJ
14127 {
14128 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 14129
22cee43f
PMR
14130 add_using_directive (using_directives (cu->language),
14131 previous_prefix, TYPE_NAME (type), NULL,
14132 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 14133 }
5c4e30ca 14134 }
9219021c 14135
639d11d3 14136 if (die->child != NULL)
d9fa45fe 14137 {
639d11d3 14138 struct die_info *child_die = die->child;
6e70227d 14139
d9fa45fe
DC
14140 while (child_die && child_die->tag)
14141 {
e7c27a73 14142 process_die (child_die, cu);
d9fa45fe
DC
14143 child_die = sibling_die (child_die);
14144 }
14145 }
38d518c9
EZ
14146}
14147
f55ee35c
JK
14148/* Read a Fortran module as type. This DIE can be only a declaration used for
14149 imported module. Still we need that type as local Fortran "use ... only"
14150 declaration imports depend on the created type in determine_prefix. */
14151
14152static struct type *
14153read_module_type (struct die_info *die, struct dwarf2_cu *cu)
14154{
14155 struct objfile *objfile = cu->objfile;
15d034d0 14156 const char *module_name;
f55ee35c
JK
14157 struct type *type;
14158
14159 module_name = dwarf2_name (die, cu);
14160 if (!module_name)
3e43a32a
MS
14161 complaint (&symfile_complaints,
14162 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 14163 die->offset.sect_off);
f55ee35c
JK
14164 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
14165
14166 /* determine_prefix uses TYPE_TAG_NAME. */
14167 TYPE_TAG_NAME (type) = TYPE_NAME (type);
14168
14169 return set_die_type (die, type, cu);
14170}
14171
5d7cb8df
JK
14172/* Read a Fortran module. */
14173
14174static void
14175read_module (struct die_info *die, struct dwarf2_cu *cu)
14176{
14177 struct die_info *child_die = die->child;
530e8392
KB
14178 struct type *type;
14179
14180 type = read_type_die (die, cu);
14181 new_symbol (die, type, cu);
5d7cb8df 14182
5d7cb8df
JK
14183 while (child_die && child_die->tag)
14184 {
14185 process_die (child_die, cu);
14186 child_die = sibling_die (child_die);
14187 }
14188}
14189
38d518c9
EZ
14190/* Return the name of the namespace represented by DIE. Set
14191 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
14192 namespace. */
14193
14194static const char *
e142c38c 14195namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
14196{
14197 struct die_info *current_die;
14198 const char *name = NULL;
14199
14200 /* Loop through the extensions until we find a name. */
14201
14202 for (current_die = die;
14203 current_die != NULL;
f2f0e013 14204 current_die = dwarf2_extension (die, &cu))
38d518c9 14205 {
96553a0c
DE
14206 /* We don't use dwarf2_name here so that we can detect the absence
14207 of a name -> anonymous namespace. */
7d45c7c3 14208 name = dwarf2_string_attr (die, DW_AT_name, cu);
96553a0c 14209
38d518c9
EZ
14210 if (name != NULL)
14211 break;
14212 }
14213
14214 /* Is it an anonymous namespace? */
14215
14216 *is_anonymous = (name == NULL);
14217 if (*is_anonymous)
2b1dbab0 14218 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
14219
14220 return name;
d9fa45fe
DC
14221}
14222
c906108c
SS
14223/* Extract all information from a DW_TAG_pointer_type DIE and add to
14224 the user defined type vector. */
14225
f792889a 14226static struct type *
e7c27a73 14227read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14228{
5e2b427d 14229 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 14230 struct comp_unit_head *cu_header = &cu->header;
c906108c 14231 struct type *type;
8b2dbe47
KB
14232 struct attribute *attr_byte_size;
14233 struct attribute *attr_address_class;
14234 int byte_size, addr_class;
7e314c57
JK
14235 struct type *target_type;
14236
14237 target_type = die_type (die, cu);
c906108c 14238
7e314c57
JK
14239 /* The die_type call above may have already set the type for this DIE. */
14240 type = get_die_type (die, cu);
14241 if (type)
14242 return type;
14243
14244 type = lookup_pointer_type (target_type);
8b2dbe47 14245
e142c38c 14246 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
14247 if (attr_byte_size)
14248 byte_size = DW_UNSND (attr_byte_size);
c906108c 14249 else
8b2dbe47
KB
14250 byte_size = cu_header->addr_size;
14251
e142c38c 14252 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14253 if (attr_address_class)
14254 addr_class = DW_UNSND (attr_address_class);
14255 else
14256 addr_class = DW_ADDR_none;
14257
14258 /* If the pointer size or address class is different than the
14259 default, create a type variant marked as such and set the
14260 length accordingly. */
14261 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14262 {
5e2b427d 14263 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14264 {
14265 int type_flags;
14266
849957d9 14267 type_flags = gdbarch_address_class_type_flags
5e2b427d 14268 (gdbarch, byte_size, addr_class);
876cecd0
TT
14269 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14270 == 0);
8b2dbe47
KB
14271 type = make_type_with_address_space (type, type_flags);
14272 }
14273 else if (TYPE_LENGTH (type) != byte_size)
14274 {
3e43a32a
MS
14275 complaint (&symfile_complaints,
14276 _("invalid pointer size %d"), byte_size);
8b2dbe47 14277 }
6e70227d 14278 else
9a619af0
MS
14279 {
14280 /* Should we also complain about unhandled address classes? */
14281 }
c906108c 14282 }
8b2dbe47
KB
14283
14284 TYPE_LENGTH (type) = byte_size;
f792889a 14285 return set_die_type (die, type, cu);
c906108c
SS
14286}
14287
14288/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14289 the user defined type vector. */
14290
f792889a 14291static struct type *
e7c27a73 14292read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14293{
14294 struct type *type;
14295 struct type *to_type;
14296 struct type *domain;
14297
e7c27a73
DJ
14298 to_type = die_type (die, cu);
14299 domain = die_containing_type (die, cu);
0d5de010 14300
7e314c57
JK
14301 /* The calls above may have already set the type for this DIE. */
14302 type = get_die_type (die, cu);
14303 if (type)
14304 return type;
14305
0d5de010
DJ
14306 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14307 type = lookup_methodptr_type (to_type);
7078baeb
TT
14308 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14309 {
14310 struct type *new_type = alloc_type (cu->objfile);
14311
14312 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14313 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14314 TYPE_VARARGS (to_type));
14315 type = lookup_methodptr_type (new_type);
14316 }
0d5de010
DJ
14317 else
14318 type = lookup_memberptr_type (to_type, domain);
c906108c 14319
f792889a 14320 return set_die_type (die, type, cu);
c906108c
SS
14321}
14322
14323/* Extract all information from a DW_TAG_reference_type DIE and add to
14324 the user defined type vector. */
14325
f792889a 14326static struct type *
e7c27a73 14327read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14328{
e7c27a73 14329 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14330 struct type *type, *target_type;
c906108c
SS
14331 struct attribute *attr;
14332
7e314c57
JK
14333 target_type = die_type (die, cu);
14334
14335 /* The die_type call above may have already set the type for this DIE. */
14336 type = get_die_type (die, cu);
14337 if (type)
14338 return type;
14339
14340 type = lookup_reference_type (target_type);
e142c38c 14341 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14342 if (attr)
14343 {
14344 TYPE_LENGTH (type) = DW_UNSND (attr);
14345 }
14346 else
14347 {
107d2387 14348 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14349 }
f792889a 14350 return set_die_type (die, type, cu);
c906108c
SS
14351}
14352
cf363f18
MW
14353/* Add the given cv-qualifiers to the element type of the array. GCC
14354 outputs DWARF type qualifiers that apply to an array, not the
14355 element type. But GDB relies on the array element type to carry
14356 the cv-qualifiers. This mimics section 6.7.3 of the C99
14357 specification. */
14358
14359static struct type *
14360add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14361 struct type *base_type, int cnst, int voltl)
14362{
14363 struct type *el_type, *inner_array;
14364
14365 base_type = copy_type (base_type);
14366 inner_array = base_type;
14367
14368 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14369 {
14370 TYPE_TARGET_TYPE (inner_array) =
14371 copy_type (TYPE_TARGET_TYPE (inner_array));
14372 inner_array = TYPE_TARGET_TYPE (inner_array);
14373 }
14374
14375 el_type = TYPE_TARGET_TYPE (inner_array);
14376 cnst |= TYPE_CONST (el_type);
14377 voltl |= TYPE_VOLATILE (el_type);
14378 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14379
14380 return set_die_type (die, base_type, cu);
14381}
14382
f792889a 14383static struct type *
e7c27a73 14384read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14385{
f792889a 14386 struct type *base_type, *cv_type;
c906108c 14387
e7c27a73 14388 base_type = die_type (die, cu);
7e314c57
JK
14389
14390 /* The die_type call above may have already set the type for this DIE. */
14391 cv_type = get_die_type (die, cu);
14392 if (cv_type)
14393 return cv_type;
14394
2f608a3a
KW
14395 /* In case the const qualifier is applied to an array type, the element type
14396 is so qualified, not the array type (section 6.7.3 of C99). */
14397 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14398 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14399
f792889a
DJ
14400 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14401 return set_die_type (die, cv_type, cu);
c906108c
SS
14402}
14403
f792889a 14404static struct type *
e7c27a73 14405read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14406{
f792889a 14407 struct type *base_type, *cv_type;
c906108c 14408
e7c27a73 14409 base_type = die_type (die, cu);
7e314c57
JK
14410
14411 /* The die_type call above may have already set the type for this DIE. */
14412 cv_type = get_die_type (die, cu);
14413 if (cv_type)
14414 return cv_type;
14415
cf363f18
MW
14416 /* In case the volatile qualifier is applied to an array type, the
14417 element type is so qualified, not the array type (section 6.7.3
14418 of C99). */
14419 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14420 return add_array_cv_type (die, cu, base_type, 0, 1);
14421
f792889a
DJ
14422 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14423 return set_die_type (die, cv_type, cu);
c906108c
SS
14424}
14425
06d66ee9
TT
14426/* Handle DW_TAG_restrict_type. */
14427
14428static struct type *
14429read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14430{
14431 struct type *base_type, *cv_type;
14432
14433 base_type = die_type (die, cu);
14434
14435 /* The die_type call above may have already set the type for this DIE. */
14436 cv_type = get_die_type (die, cu);
14437 if (cv_type)
14438 return cv_type;
14439
14440 cv_type = make_restrict_type (base_type);
14441 return set_die_type (die, cv_type, cu);
14442}
14443
a2c2acaf
MW
14444/* Handle DW_TAG_atomic_type. */
14445
14446static struct type *
14447read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
14448{
14449 struct type *base_type, *cv_type;
14450
14451 base_type = die_type (die, cu);
14452
14453 /* The die_type call above may have already set the type for this DIE. */
14454 cv_type = get_die_type (die, cu);
14455 if (cv_type)
14456 return cv_type;
14457
14458 cv_type = make_atomic_type (base_type);
14459 return set_die_type (die, cv_type, cu);
14460}
14461
c906108c
SS
14462/* Extract all information from a DW_TAG_string_type DIE and add to
14463 the user defined type vector. It isn't really a user defined type,
14464 but it behaves like one, with other DIE's using an AT_user_def_type
14465 attribute to reference it. */
14466
f792889a 14467static struct type *
e7c27a73 14468read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14469{
e7c27a73 14470 struct objfile *objfile = cu->objfile;
3b7538c0 14471 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14472 struct type *type, *range_type, *index_type, *char_type;
14473 struct attribute *attr;
14474 unsigned int length;
14475
e142c38c 14476 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14477 if (attr)
14478 {
14479 length = DW_UNSND (attr);
14480 }
14481 else
14482 {
0963b4bd 14483 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14484 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14485 if (attr)
14486 {
14487 length = DW_UNSND (attr);
14488 }
14489 else
14490 {
14491 length = 1;
14492 }
c906108c 14493 }
6ccb9162 14494
46bf5051 14495 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14496 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14497 char_type = language_string_char_type (cu->language_defn, gdbarch);
14498 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14499
f792889a 14500 return set_die_type (die, type, cu);
c906108c
SS
14501}
14502
4d804846
JB
14503/* Assuming that DIE corresponds to a function, returns nonzero
14504 if the function is prototyped. */
14505
14506static int
14507prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14508{
14509 struct attribute *attr;
14510
14511 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14512 if (attr && (DW_UNSND (attr) != 0))
14513 return 1;
14514
14515 /* The DWARF standard implies that the DW_AT_prototyped attribute
14516 is only meaninful for C, but the concept also extends to other
14517 languages that allow unprototyped functions (Eg: Objective C).
14518 For all other languages, assume that functions are always
14519 prototyped. */
14520 if (cu->language != language_c
14521 && cu->language != language_objc
14522 && cu->language != language_opencl)
14523 return 1;
14524
14525 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14526 prototyped and unprototyped functions; default to prototyped,
14527 since that is more common in modern code (and RealView warns
14528 about unprototyped functions). */
14529 if (producer_is_realview (cu->producer))
14530 return 1;
14531
14532 return 0;
14533}
14534
c906108c
SS
14535/* Handle DIES due to C code like:
14536
14537 struct foo
c5aa993b
JM
14538 {
14539 int (*funcp)(int a, long l);
14540 int b;
14541 };
c906108c 14542
0963b4bd 14543 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14544
f792889a 14545static struct type *
e7c27a73 14546read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14547{
bb5ed363 14548 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14549 struct type *type; /* Type that this function returns. */
14550 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14551 struct attribute *attr;
14552
e7c27a73 14553 type = die_type (die, cu);
7e314c57
JK
14554
14555 /* The die_type call above may have already set the type for this DIE. */
14556 ftype = get_die_type (die, cu);
14557 if (ftype)
14558 return ftype;
14559
0c8b41f1 14560 ftype = lookup_function_type (type);
c906108c 14561
4d804846 14562 if (prototyped_function_p (die, cu))
a6c727b2 14563 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14564
c055b101
CV
14565 /* Store the calling convention in the type if it's available in
14566 the subroutine die. Otherwise set the calling convention to
14567 the default value DW_CC_normal. */
14568 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14569 if (attr)
14570 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14571 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14572 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14573 else
14574 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 14575
743649fd
MW
14576 /* Record whether the function returns normally to its caller or not
14577 if the DWARF producer set that information. */
14578 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14579 if (attr && (DW_UNSND (attr) != 0))
14580 TYPE_NO_RETURN (ftype) = 1;
14581
76c10ea2
GM
14582 /* We need to add the subroutine type to the die immediately so
14583 we don't infinitely recurse when dealing with parameters
0963b4bd 14584 declared as the same subroutine type. */
76c10ea2 14585 set_die_type (die, ftype, cu);
6e70227d 14586
639d11d3 14587 if (die->child != NULL)
c906108c 14588 {
bb5ed363 14589 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14590 struct die_info *child_die;
8072405b 14591 int nparams, iparams;
c906108c
SS
14592
14593 /* Count the number of parameters.
14594 FIXME: GDB currently ignores vararg functions, but knows about
14595 vararg member functions. */
8072405b 14596 nparams = 0;
639d11d3 14597 child_die = die->child;
c906108c
SS
14598 while (child_die && child_die->tag)
14599 {
14600 if (child_die->tag == DW_TAG_formal_parameter)
14601 nparams++;
14602 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14603 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14604 child_die = sibling_die (child_die);
14605 }
14606
14607 /* Allocate storage for parameters and fill them in. */
14608 TYPE_NFIELDS (ftype) = nparams;
14609 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14610 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14611
8072405b
JK
14612 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14613 even if we error out during the parameters reading below. */
14614 for (iparams = 0; iparams < nparams; iparams++)
14615 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14616
14617 iparams = 0;
639d11d3 14618 child_die = die->child;
c906108c
SS
14619 while (child_die && child_die->tag)
14620 {
14621 if (child_die->tag == DW_TAG_formal_parameter)
14622 {
3ce3b1ba
PA
14623 struct type *arg_type;
14624
14625 /* DWARF version 2 has no clean way to discern C++
14626 static and non-static member functions. G++ helps
14627 GDB by marking the first parameter for non-static
14628 member functions (which is the this pointer) as
14629 artificial. We pass this information to
14630 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14631
14632 DWARF version 3 added DW_AT_object_pointer, which GCC
14633 4.5 does not yet generate. */
e142c38c 14634 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14635 if (attr)
14636 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14637 else
418835cc
KS
14638 {
14639 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14640
14641 /* GCC/43521: In java, the formal parameter
14642 "this" is sometimes not marked with DW_AT_artificial. */
14643 if (cu->language == language_java)
14644 {
14645 const char *name = dwarf2_name (child_die, cu);
9a619af0 14646
418835cc
KS
14647 if (name && !strcmp (name, "this"))
14648 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14649 }
14650 }
3ce3b1ba
PA
14651 arg_type = die_type (child_die, cu);
14652
14653 /* RealView does not mark THIS as const, which the testsuite
14654 expects. GCC marks THIS as const in method definitions,
14655 but not in the class specifications (GCC PR 43053). */
14656 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14657 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14658 {
14659 int is_this = 0;
14660 struct dwarf2_cu *arg_cu = cu;
14661 const char *name = dwarf2_name (child_die, cu);
14662
14663 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14664 if (attr)
14665 {
14666 /* If the compiler emits this, use it. */
14667 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14668 is_this = 1;
14669 }
14670 else if (name && strcmp (name, "this") == 0)
14671 /* Function definitions will have the argument names. */
14672 is_this = 1;
14673 else if (name == NULL && iparams == 0)
14674 /* Declarations may not have the names, so like
14675 elsewhere in GDB, assume an artificial first
14676 argument is "this". */
14677 is_this = 1;
14678
14679 if (is_this)
14680 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14681 arg_type, 0);
14682 }
14683
14684 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14685 iparams++;
14686 }
14687 child_die = sibling_die (child_die);
14688 }
14689 }
14690
76c10ea2 14691 return ftype;
c906108c
SS
14692}
14693
f792889a 14694static struct type *
e7c27a73 14695read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14696{
e7c27a73 14697 struct objfile *objfile = cu->objfile;
0114d602 14698 const char *name = NULL;
3c8e0968 14699 struct type *this_type, *target_type;
c906108c 14700
94af9270 14701 name = dwarf2_full_name (NULL, die, cu);
f792889a 14702 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602 14703 TYPE_FLAG_TARGET_STUB, NULL, objfile);
abee88f2 14704 TYPE_NAME (this_type) = name;
f792889a 14705 set_die_type (die, this_type, cu);
3c8e0968
DE
14706 target_type = die_type (die, cu);
14707 if (target_type != this_type)
14708 TYPE_TARGET_TYPE (this_type) = target_type;
14709 else
14710 {
14711 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14712 spec and cause infinite loops in GDB. */
14713 complaint (&symfile_complaints,
14714 _("Self-referential DW_TAG_typedef "
14715 "- DIE at 0x%x [in module %s]"),
4262abfb 14716 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14717 TYPE_TARGET_TYPE (this_type) = NULL;
14718 }
f792889a 14719 return this_type;
c906108c
SS
14720}
14721
14722/* Find a representation of a given base type and install
14723 it in the TYPE field of the die. */
14724
f792889a 14725static struct type *
e7c27a73 14726read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14727{
e7c27a73 14728 struct objfile *objfile = cu->objfile;
c906108c
SS
14729 struct type *type;
14730 struct attribute *attr;
14731 int encoding = 0, size = 0;
15d034d0 14732 const char *name;
6ccb9162
UW
14733 enum type_code code = TYPE_CODE_INT;
14734 int type_flags = 0;
14735 struct type *target_type = NULL;
c906108c 14736
e142c38c 14737 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14738 if (attr)
14739 {
14740 encoding = DW_UNSND (attr);
14741 }
e142c38c 14742 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14743 if (attr)
14744 {
14745 size = DW_UNSND (attr);
14746 }
39cbfefa 14747 name = dwarf2_name (die, cu);
6ccb9162 14748 if (!name)
c906108c 14749 {
6ccb9162
UW
14750 complaint (&symfile_complaints,
14751 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14752 }
6ccb9162
UW
14753
14754 switch (encoding)
c906108c 14755 {
6ccb9162
UW
14756 case DW_ATE_address:
14757 /* Turn DW_ATE_address into a void * pointer. */
14758 code = TYPE_CODE_PTR;
14759 type_flags |= TYPE_FLAG_UNSIGNED;
14760 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14761 break;
14762 case DW_ATE_boolean:
14763 code = TYPE_CODE_BOOL;
14764 type_flags |= TYPE_FLAG_UNSIGNED;
14765 break;
14766 case DW_ATE_complex_float:
14767 code = TYPE_CODE_COMPLEX;
14768 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14769 break;
14770 case DW_ATE_decimal_float:
14771 code = TYPE_CODE_DECFLOAT;
14772 break;
14773 case DW_ATE_float:
14774 code = TYPE_CODE_FLT;
14775 break;
14776 case DW_ATE_signed:
14777 break;
14778 case DW_ATE_unsigned:
14779 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
14780 if (cu->language == language_fortran
14781 && name
61012eef 14782 && startswith (name, "character("))
3b2b8fea 14783 code = TYPE_CODE_CHAR;
6ccb9162
UW
14784 break;
14785 case DW_ATE_signed_char:
6e70227d 14786 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14787 || cu->language == language_pascal
14788 || cu->language == language_fortran)
6ccb9162
UW
14789 code = TYPE_CODE_CHAR;
14790 break;
14791 case DW_ATE_unsigned_char:
868a0084 14792 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14793 || cu->language == language_pascal
14794 || cu->language == language_fortran)
6ccb9162
UW
14795 code = TYPE_CODE_CHAR;
14796 type_flags |= TYPE_FLAG_UNSIGNED;
14797 break;
75079b2b
TT
14798 case DW_ATE_UTF:
14799 /* We just treat this as an integer and then recognize the
14800 type by name elsewhere. */
14801 break;
14802
6ccb9162
UW
14803 default:
14804 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14805 dwarf_type_encoding_name (encoding));
14806 break;
c906108c 14807 }
6ccb9162 14808
0114d602
DJ
14809 type = init_type (code, size, type_flags, NULL, objfile);
14810 TYPE_NAME (type) = name;
6ccb9162
UW
14811 TYPE_TARGET_TYPE (type) = target_type;
14812
0114d602 14813 if (name && strcmp (name, "char") == 0)
876cecd0 14814 TYPE_NOSIGN (type) = 1;
0114d602 14815
f792889a 14816 return set_die_type (die, type, cu);
c906108c
SS
14817}
14818
80180f79
SA
14819/* Parse dwarf attribute if it's a block, reference or constant and put the
14820 resulting value of the attribute into struct bound_prop.
14821 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14822
14823static int
14824attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14825 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14826{
14827 struct dwarf2_property_baton *baton;
14828 struct obstack *obstack = &cu->objfile->objfile_obstack;
14829
14830 if (attr == NULL || prop == NULL)
14831 return 0;
14832
14833 if (attr_form_is_block (attr))
14834 {
8d749320 14835 baton = XOBNEW (obstack, struct dwarf2_property_baton);
80180f79
SA
14836 baton->referenced_type = NULL;
14837 baton->locexpr.per_cu = cu->per_cu;
14838 baton->locexpr.size = DW_BLOCK (attr)->size;
14839 baton->locexpr.data = DW_BLOCK (attr)->data;
14840 prop->data.baton = baton;
14841 prop->kind = PROP_LOCEXPR;
14842 gdb_assert (prop->data.baton != NULL);
14843 }
14844 else if (attr_form_is_ref (attr))
14845 {
14846 struct dwarf2_cu *target_cu = cu;
14847 struct die_info *target_die;
14848 struct attribute *target_attr;
14849
14850 target_die = follow_die_ref (die, attr, &target_cu);
14851 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
df25ebbd
JB
14852 if (target_attr == NULL)
14853 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
14854 target_cu);
80180f79
SA
14855 if (target_attr == NULL)
14856 return 0;
14857
df25ebbd 14858 switch (target_attr->name)
80180f79 14859 {
df25ebbd
JB
14860 case DW_AT_location:
14861 if (attr_form_is_section_offset (target_attr))
14862 {
8d749320 14863 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
14864 baton->referenced_type = die_type (target_die, target_cu);
14865 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14866 prop->data.baton = baton;
14867 prop->kind = PROP_LOCLIST;
14868 gdb_assert (prop->data.baton != NULL);
14869 }
14870 else if (attr_form_is_block (target_attr))
14871 {
8d749320 14872 baton = XOBNEW (obstack, struct dwarf2_property_baton);
df25ebbd
JB
14873 baton->referenced_type = die_type (target_die, target_cu);
14874 baton->locexpr.per_cu = cu->per_cu;
14875 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14876 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14877 prop->data.baton = baton;
14878 prop->kind = PROP_LOCEXPR;
14879 gdb_assert (prop->data.baton != NULL);
14880 }
14881 else
14882 {
14883 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14884 "dynamic property");
14885 return 0;
14886 }
14887 break;
14888 case DW_AT_data_member_location:
14889 {
14890 LONGEST offset;
14891
14892 if (!handle_data_member_location (target_die, target_cu,
14893 &offset))
14894 return 0;
14895
8d749320 14896 baton = XOBNEW (obstack, struct dwarf2_property_baton);
6ad395a7
JB
14897 baton->referenced_type = read_type_die (target_die->parent,
14898 target_cu);
df25ebbd
JB
14899 baton->offset_info.offset = offset;
14900 baton->offset_info.type = die_type (target_die, target_cu);
14901 prop->data.baton = baton;
14902 prop->kind = PROP_ADDR_OFFSET;
14903 break;
14904 }
80180f79
SA
14905 }
14906 }
14907 else if (attr_form_is_constant (attr))
14908 {
14909 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14910 prop->kind = PROP_CONST;
14911 }
14912 else
14913 {
14914 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14915 dwarf2_name (die, cu));
14916 return 0;
14917 }
14918
14919 return 1;
14920}
14921
a02abb62
JB
14922/* Read the given DW_AT_subrange DIE. */
14923
f792889a 14924static struct type *
a02abb62
JB
14925read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14926{
4c9ad8c2 14927 struct type *base_type, *orig_base_type;
a02abb62
JB
14928 struct type *range_type;
14929 struct attribute *attr;
729efb13 14930 struct dynamic_prop low, high;
4fae6e18 14931 int low_default_is_valid;
c451ebe5 14932 int high_bound_is_count = 0;
15d034d0 14933 const char *name;
43bbcdc2 14934 LONGEST negative_mask;
e77813c8 14935
4c9ad8c2
TT
14936 orig_base_type = die_type (die, cu);
14937 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14938 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14939 creating the range type, but we use the result of check_typedef
14940 when examining properties of the type. */
14941 base_type = check_typedef (orig_base_type);
a02abb62 14942
7e314c57
JK
14943 /* The die_type call above may have already set the type for this DIE. */
14944 range_type = get_die_type (die, cu);
14945 if (range_type)
14946 return range_type;
14947
729efb13
SA
14948 low.kind = PROP_CONST;
14949 high.kind = PROP_CONST;
14950 high.data.const_val = 0;
14951
4fae6e18
JK
14952 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14953 omitting DW_AT_lower_bound. */
14954 switch (cu->language)
6e70227d 14955 {
4fae6e18
JK
14956 case language_c:
14957 case language_cplus:
729efb13 14958 low.data.const_val = 0;
4fae6e18
JK
14959 low_default_is_valid = 1;
14960 break;
14961 case language_fortran:
729efb13 14962 low.data.const_val = 1;
4fae6e18
JK
14963 low_default_is_valid = 1;
14964 break;
14965 case language_d:
14966 case language_java:
14967 case language_objc:
729efb13 14968 low.data.const_val = 0;
4fae6e18
JK
14969 low_default_is_valid = (cu->header.version >= 4);
14970 break;
14971 case language_ada:
14972 case language_m2:
14973 case language_pascal:
729efb13 14974 low.data.const_val = 1;
4fae6e18
JK
14975 low_default_is_valid = (cu->header.version >= 4);
14976 break;
14977 default:
729efb13 14978 low.data.const_val = 0;
4fae6e18
JK
14979 low_default_is_valid = 0;
14980 break;
a02abb62
JB
14981 }
14982
e142c38c 14983 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 14984 if (attr)
11c1ba78 14985 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
14986 else if (!low_default_is_valid)
14987 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14988 "- DIE at 0x%x [in module %s]"),
4262abfb 14989 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 14990
e142c38c 14991 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 14992 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
14993 {
14994 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 14995 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 14996 {
c451ebe5
SA
14997 /* If bounds are constant do the final calculation here. */
14998 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14999 high.data.const_val = low.data.const_val + high.data.const_val - 1;
15000 else
15001 high_bound_is_count = 1;
c2ff108b 15002 }
e77813c8
PM
15003 }
15004
15005 /* Dwarf-2 specifications explicitly allows to create subrange types
15006 without specifying a base type.
15007 In that case, the base type must be set to the type of
15008 the lower bound, upper bound or count, in that order, if any of these
15009 three attributes references an object that has a type.
15010 If no base type is found, the Dwarf-2 specifications say that
15011 a signed integer type of size equal to the size of an address should
15012 be used.
15013 For the following C code: `extern char gdb_int [];'
15014 GCC produces an empty range DIE.
15015 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 15016 high bound or count are not yet handled by this code. */
e77813c8
PM
15017 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
15018 {
15019 struct objfile *objfile = cu->objfile;
15020 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15021 int addr_size = gdbarch_addr_bit (gdbarch) /8;
15022 struct type *int_type = objfile_type (objfile)->builtin_int;
15023
15024 /* Test "int", "long int", and "long long int" objfile types,
15025 and select the first one having a size above or equal to the
15026 architecture address size. */
15027 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15028 base_type = int_type;
15029 else
15030 {
15031 int_type = objfile_type (objfile)->builtin_long;
15032 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15033 base_type = int_type;
15034 else
15035 {
15036 int_type = objfile_type (objfile)->builtin_long_long;
15037 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
15038 base_type = int_type;
15039 }
15040 }
15041 }
a02abb62 15042
dbb9c2b1
JB
15043 /* Normally, the DWARF producers are expected to use a signed
15044 constant form (Eg. DW_FORM_sdata) to express negative bounds.
15045 But this is unfortunately not always the case, as witnessed
15046 with GCC, for instance, where the ambiguous DW_FORM_dataN form
15047 is used instead. To work around that ambiguity, we treat
15048 the bounds as signed, and thus sign-extend their values, when
15049 the base type is signed. */
6e70227d 15050 negative_mask =
66c6502d 15051 -((LONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
729efb13
SA
15052 if (low.kind == PROP_CONST
15053 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
15054 low.data.const_val |= negative_mask;
15055 if (high.kind == PROP_CONST
15056 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
15057 high.data.const_val |= negative_mask;
43bbcdc2 15058
729efb13 15059 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 15060
c451ebe5
SA
15061 if (high_bound_is_count)
15062 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
15063
c2ff108b
JK
15064 /* Ada expects an empty array on no boundary attributes. */
15065 if (attr == NULL && cu->language != language_ada)
729efb13 15066 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 15067
39cbfefa
DJ
15068 name = dwarf2_name (die, cu);
15069 if (name)
15070 TYPE_NAME (range_type) = name;
6e70227d 15071
e142c38c 15072 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
15073 if (attr)
15074 TYPE_LENGTH (range_type) = DW_UNSND (attr);
15075
7e314c57
JK
15076 set_die_type (die, range_type, cu);
15077
15078 /* set_die_type should be already done. */
b4ba55a1
JB
15079 set_descriptive_type (range_type, die, cu);
15080
7e314c57 15081 return range_type;
a02abb62 15082}
6e70227d 15083
f792889a 15084static struct type *
81a17f79
JB
15085read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
15086{
15087 struct type *type;
81a17f79 15088
81a17f79
JB
15089 /* For now, we only support the C meaning of an unspecified type: void. */
15090
0114d602
DJ
15091 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
15092 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 15093
f792889a 15094 return set_die_type (die, type, cu);
81a17f79 15095}
a02abb62 15096
639d11d3
DC
15097/* Read a single die and all its descendents. Set the die's sibling
15098 field to NULL; set other fields in the die correctly, and set all
15099 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
15100 location of the info_ptr after reading all of those dies. PARENT
15101 is the parent of the die in question. */
15102
15103static struct die_info *
dee91e82 15104read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
15105 const gdb_byte *info_ptr,
15106 const gdb_byte **new_info_ptr,
dee91e82 15107 struct die_info *parent)
639d11d3
DC
15108{
15109 struct die_info *die;
d521ce57 15110 const gdb_byte *cur_ptr;
639d11d3
DC
15111 int has_children;
15112
bf6af496 15113 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
15114 if (die == NULL)
15115 {
15116 *new_info_ptr = cur_ptr;
15117 return NULL;
15118 }
93311388 15119 store_in_ref_table (die, reader->cu);
639d11d3
DC
15120
15121 if (has_children)
bf6af496 15122 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
15123 else
15124 {
15125 die->child = NULL;
15126 *new_info_ptr = cur_ptr;
15127 }
15128
15129 die->sibling = NULL;
15130 die->parent = parent;
15131 return die;
15132}
15133
15134/* Read a die, all of its descendents, and all of its siblings; set
15135 all of the fields of all of the dies correctly. Arguments are as
15136 in read_die_and_children. */
15137
15138static struct die_info *
bf6af496 15139read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
15140 const gdb_byte *info_ptr,
15141 const gdb_byte **new_info_ptr,
bf6af496 15142 struct die_info *parent)
639d11d3
DC
15143{
15144 struct die_info *first_die, *last_sibling;
d521ce57 15145 const gdb_byte *cur_ptr;
639d11d3 15146
c906108c 15147 cur_ptr = info_ptr;
639d11d3
DC
15148 first_die = last_sibling = NULL;
15149
15150 while (1)
c906108c 15151 {
639d11d3 15152 struct die_info *die
dee91e82 15153 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 15154
1d325ec1 15155 if (die == NULL)
c906108c 15156 {
639d11d3
DC
15157 *new_info_ptr = cur_ptr;
15158 return first_die;
c906108c 15159 }
1d325ec1
DJ
15160
15161 if (!first_die)
15162 first_die = die;
c906108c 15163 else
1d325ec1
DJ
15164 last_sibling->sibling = die;
15165
15166 last_sibling = die;
c906108c 15167 }
c906108c
SS
15168}
15169
bf6af496
DE
15170/* Read a die, all of its descendents, and all of its siblings; set
15171 all of the fields of all of the dies correctly. Arguments are as
15172 in read_die_and_children.
15173 This the main entry point for reading a DIE and all its children. */
15174
15175static struct die_info *
15176read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
15177 const gdb_byte *info_ptr,
15178 const gdb_byte **new_info_ptr,
bf6af496
DE
15179 struct die_info *parent)
15180{
15181 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
15182 new_info_ptr, parent);
15183
b4f54984 15184 if (dwarf_die_debug)
bf6af496
DE
15185 {
15186 fprintf_unfiltered (gdb_stdlog,
15187 "Read die from %s@0x%x of %s:\n",
a32a8923 15188 get_section_name (reader->die_section),
bf6af496
DE
15189 (unsigned) (info_ptr - reader->die_section->buffer),
15190 bfd_get_filename (reader->abfd));
b4f54984 15191 dump_die (die, dwarf_die_debug);
bf6af496
DE
15192 }
15193
15194 return die;
15195}
15196
3019eac3
DE
15197/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
15198 attributes.
15199 The caller is responsible for filling in the extra attributes
15200 and updating (*DIEP)->num_attrs.
15201 Set DIEP to point to a newly allocated die with its information,
15202 except for its child, sibling, and parent fields.
15203 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 15204
d521ce57 15205static const gdb_byte *
3019eac3 15206read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 15207 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 15208 int *has_children, int num_extra_attrs)
93311388 15209{
b64f50a1
JK
15210 unsigned int abbrev_number, bytes_read, i;
15211 sect_offset offset;
93311388
DE
15212 struct abbrev_info *abbrev;
15213 struct die_info *die;
15214 struct dwarf2_cu *cu = reader->cu;
15215 bfd *abfd = reader->abfd;
15216
b64f50a1 15217 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
15218 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15219 info_ptr += bytes_read;
15220 if (!abbrev_number)
15221 {
15222 *diep = NULL;
15223 *has_children = 0;
15224 return info_ptr;
15225 }
15226
433df2d4 15227 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 15228 if (!abbrev)
348e048f
DE
15229 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
15230 abbrev_number,
15231 bfd_get_filename (abfd));
15232
3019eac3 15233 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
15234 die->offset = offset;
15235 die->tag = abbrev->tag;
15236 die->abbrev = abbrev_number;
15237
3019eac3
DE
15238 /* Make the result usable.
15239 The caller needs to update num_attrs after adding the extra
15240 attributes. */
93311388
DE
15241 die->num_attrs = abbrev->num_attrs;
15242
15243 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
15244 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
15245 info_ptr);
93311388
DE
15246
15247 *diep = die;
15248 *has_children = abbrev->has_children;
15249 return info_ptr;
15250}
15251
3019eac3
DE
15252/* Read a die and all its attributes.
15253 Set DIEP to point to a newly allocated die with its information,
15254 except for its child, sibling, and parent fields.
15255 Set HAS_CHILDREN to tell whether the die has children or not. */
15256
d521ce57 15257static const gdb_byte *
3019eac3 15258read_full_die (const struct die_reader_specs *reader,
d521ce57 15259 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
15260 int *has_children)
15261{
d521ce57 15262 const gdb_byte *result;
bf6af496
DE
15263
15264 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15265
b4f54984 15266 if (dwarf_die_debug)
bf6af496
DE
15267 {
15268 fprintf_unfiltered (gdb_stdlog,
15269 "Read die from %s@0x%x of %s:\n",
a32a8923 15270 get_section_name (reader->die_section),
bf6af496
DE
15271 (unsigned) (info_ptr - reader->die_section->buffer),
15272 bfd_get_filename (reader->abfd));
b4f54984 15273 dump_die (*diep, dwarf_die_debug);
bf6af496
DE
15274 }
15275
15276 return result;
3019eac3 15277}
433df2d4
DE
15278\f
15279/* Abbreviation tables.
3019eac3 15280
433df2d4 15281 In DWARF version 2, the description of the debugging information is
c906108c
SS
15282 stored in a separate .debug_abbrev section. Before we read any
15283 dies from a section we read in all abbreviations and install them
433df2d4
DE
15284 in a hash table. */
15285
15286/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15287
15288static struct abbrev_info *
15289abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15290{
15291 struct abbrev_info *abbrev;
15292
8d749320 15293 abbrev = XOBNEW (&abbrev_table->abbrev_obstack, struct abbrev_info);
433df2d4 15294 memset (abbrev, 0, sizeof (struct abbrev_info));
8d749320 15295
433df2d4
DE
15296 return abbrev;
15297}
15298
15299/* Add an abbreviation to the table. */
c906108c
SS
15300
15301static void
433df2d4
DE
15302abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15303 unsigned int abbrev_number,
15304 struct abbrev_info *abbrev)
15305{
15306 unsigned int hash_number;
15307
15308 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15309 abbrev->next = abbrev_table->abbrevs[hash_number];
15310 abbrev_table->abbrevs[hash_number] = abbrev;
15311}
dee91e82 15312
433df2d4
DE
15313/* Look up an abbrev in the table.
15314 Returns NULL if the abbrev is not found. */
15315
15316static struct abbrev_info *
15317abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15318 unsigned int abbrev_number)
c906108c 15319{
433df2d4
DE
15320 unsigned int hash_number;
15321 struct abbrev_info *abbrev;
15322
15323 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15324 abbrev = abbrev_table->abbrevs[hash_number];
15325
15326 while (abbrev)
15327 {
15328 if (abbrev->number == abbrev_number)
15329 return abbrev;
15330 abbrev = abbrev->next;
15331 }
15332 return NULL;
15333}
15334
15335/* Read in an abbrev table. */
15336
15337static struct abbrev_table *
15338abbrev_table_read_table (struct dwarf2_section_info *section,
15339 sect_offset offset)
15340{
15341 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15342 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15343 struct abbrev_table *abbrev_table;
d521ce57 15344 const gdb_byte *abbrev_ptr;
c906108c
SS
15345 struct abbrev_info *cur_abbrev;
15346 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15347 unsigned int abbrev_form;
f3dd6933
DJ
15348 struct attr_abbrev *cur_attrs;
15349 unsigned int allocated_attrs;
c906108c 15350
70ba0933 15351 abbrev_table = XNEW (struct abbrev_table);
f4dc4d17 15352 abbrev_table->offset = offset;
433df2d4 15353 obstack_init (&abbrev_table->abbrev_obstack);
8d749320
SM
15354 abbrev_table->abbrevs =
15355 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct abbrev_info *,
15356 ABBREV_HASH_SIZE);
433df2d4
DE
15357 memset (abbrev_table->abbrevs, 0,
15358 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15359
433df2d4
DE
15360 dwarf2_read_section (objfile, section);
15361 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
15362 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15363 abbrev_ptr += bytes_read;
15364
f3dd6933 15365 allocated_attrs = ATTR_ALLOC_CHUNK;
8d749320 15366 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
6e70227d 15367
0963b4bd 15368 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15369 while (abbrev_number)
15370 {
433df2d4 15371 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15372
15373 /* read in abbrev header */
15374 cur_abbrev->number = abbrev_number;
aead7601
SM
15375 cur_abbrev->tag
15376 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
c906108c
SS
15377 abbrev_ptr += bytes_read;
15378 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15379 abbrev_ptr += 1;
15380
15381 /* now read in declarations */
15382 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15383 abbrev_ptr += bytes_read;
15384 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15385 abbrev_ptr += bytes_read;
15386 while (abbrev_name)
15387 {
f3dd6933 15388 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15389 {
f3dd6933
DJ
15390 allocated_attrs += ATTR_ALLOC_CHUNK;
15391 cur_attrs
224c3ddb 15392 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
c906108c 15393 }
ae038cb0 15394
aead7601
SM
15395 cur_attrs[cur_abbrev->num_attrs].name
15396 = (enum dwarf_attribute) abbrev_name;
15397 cur_attrs[cur_abbrev->num_attrs++].form
15398 = (enum dwarf_form) abbrev_form;
c906108c
SS
15399 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15400 abbrev_ptr += bytes_read;
15401 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15402 abbrev_ptr += bytes_read;
15403 }
15404
8d749320
SM
15405 cur_abbrev->attrs =
15406 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
15407 cur_abbrev->num_attrs);
f3dd6933
DJ
15408 memcpy (cur_abbrev->attrs, cur_attrs,
15409 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15410
433df2d4 15411 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15412
15413 /* Get next abbreviation.
15414 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15415 always properly terminated with an abbrev number of 0.
15416 Exit loop if we encounter an abbreviation which we have
15417 already read (which means we are about to read the abbreviations
15418 for the next compile unit) or if the end of the abbreviation
15419 table is reached. */
433df2d4 15420 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15421 break;
15422 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15423 abbrev_ptr += bytes_read;
433df2d4 15424 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15425 break;
15426 }
f3dd6933
DJ
15427
15428 xfree (cur_attrs);
433df2d4 15429 return abbrev_table;
c906108c
SS
15430}
15431
433df2d4 15432/* Free the resources held by ABBREV_TABLE. */
c906108c 15433
c906108c 15434static void
433df2d4 15435abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15436{
433df2d4
DE
15437 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15438 xfree (abbrev_table);
c906108c
SS
15439}
15440
f4dc4d17
DE
15441/* Same as abbrev_table_free but as a cleanup.
15442 We pass in a pointer to the pointer to the table so that we can
15443 set the pointer to NULL when we're done. It also simplifies
73051182 15444 build_type_psymtabs_1. */
f4dc4d17
DE
15445
15446static void
15447abbrev_table_free_cleanup (void *table_ptr)
15448{
9a3c8263 15449 struct abbrev_table **abbrev_table_ptr = (struct abbrev_table **) table_ptr;
f4dc4d17
DE
15450
15451 if (*abbrev_table_ptr != NULL)
15452 abbrev_table_free (*abbrev_table_ptr);
15453 *abbrev_table_ptr = NULL;
15454}
15455
433df2d4
DE
15456/* Read the abbrev table for CU from ABBREV_SECTION. */
15457
15458static void
15459dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15460 struct dwarf2_section_info *abbrev_section)
c906108c 15461{
433df2d4
DE
15462 cu->abbrev_table =
15463 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15464}
c906108c 15465
433df2d4 15466/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15467
433df2d4
DE
15468static void
15469dwarf2_free_abbrev_table (void *ptr_to_cu)
15470{
9a3c8263 15471 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr_to_cu;
c906108c 15472
a2ce51a0
DE
15473 if (cu->abbrev_table != NULL)
15474 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15475 /* Set this to NULL so that we SEGV if we try to read it later,
15476 and also because free_comp_unit verifies this is NULL. */
15477 cu->abbrev_table = NULL;
15478}
15479\f
72bf9492
DJ
15480/* Returns nonzero if TAG represents a type that we might generate a partial
15481 symbol for. */
15482
15483static int
15484is_type_tag_for_partial (int tag)
15485{
15486 switch (tag)
15487 {
15488#if 0
15489 /* Some types that would be reasonable to generate partial symbols for,
15490 that we don't at present. */
15491 case DW_TAG_array_type:
15492 case DW_TAG_file_type:
15493 case DW_TAG_ptr_to_member_type:
15494 case DW_TAG_set_type:
15495 case DW_TAG_string_type:
15496 case DW_TAG_subroutine_type:
15497#endif
15498 case DW_TAG_base_type:
15499 case DW_TAG_class_type:
680b30c7 15500 case DW_TAG_interface_type:
72bf9492
DJ
15501 case DW_TAG_enumeration_type:
15502 case DW_TAG_structure_type:
15503 case DW_TAG_subrange_type:
15504 case DW_TAG_typedef:
15505 case DW_TAG_union_type:
15506 return 1;
15507 default:
15508 return 0;
15509 }
15510}
15511
15512/* Load all DIEs that are interesting for partial symbols into memory. */
15513
15514static struct partial_die_info *
dee91e82 15515load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15516 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15517{
dee91e82 15518 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15519 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15520 struct partial_die_info *part_die;
15521 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15522 struct abbrev_info *abbrev;
15523 unsigned int bytes_read;
5afb4e99 15524 unsigned int load_all = 0;
72bf9492
DJ
15525 int nesting_level = 1;
15526
15527 parent_die = NULL;
15528 last_die = NULL;
15529
7adf1e79
DE
15530 gdb_assert (cu->per_cu != NULL);
15531 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15532 load_all = 1;
15533
72bf9492
DJ
15534 cu->partial_dies
15535 = htab_create_alloc_ex (cu->header.length / 12,
15536 partial_die_hash,
15537 partial_die_eq,
15538 NULL,
15539 &cu->comp_unit_obstack,
15540 hashtab_obstack_allocate,
15541 dummy_obstack_deallocate);
15542
8d749320 15543 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15544
15545 while (1)
15546 {
15547 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15548
15549 /* A NULL abbrev means the end of a series of children. */
15550 if (abbrev == NULL)
15551 {
15552 if (--nesting_level == 0)
15553 {
15554 /* PART_DIE was probably the last thing allocated on the
15555 comp_unit_obstack, so we could call obstack_free
15556 here. We don't do that because the waste is small,
15557 and will be cleaned up when we're done with this
15558 compilation unit. This way, we're also more robust
15559 against other users of the comp_unit_obstack. */
15560 return first_die;
15561 }
15562 info_ptr += bytes_read;
15563 last_die = parent_die;
15564 parent_die = parent_die->die_parent;
15565 continue;
15566 }
15567
98bfdba5
PA
15568 /* Check for template arguments. We never save these; if
15569 they're seen, we just mark the parent, and go on our way. */
15570 if (parent_die != NULL
15571 && cu->language == language_cplus
15572 && (abbrev->tag == DW_TAG_template_type_param
15573 || abbrev->tag == DW_TAG_template_value_param))
15574 {
15575 parent_die->has_template_arguments = 1;
15576
15577 if (!load_all)
15578 {
15579 /* We don't need a partial DIE for the template argument. */
dee91e82 15580 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15581 continue;
15582 }
15583 }
15584
0d99eb77 15585 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
15586 Skip their other children. */
15587 if (!load_all
15588 && cu->language == language_cplus
15589 && parent_die != NULL
15590 && parent_die->tag == DW_TAG_subprogram)
15591 {
dee91e82 15592 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15593 continue;
15594 }
15595
5afb4e99
DJ
15596 /* Check whether this DIE is interesting enough to save. Normally
15597 we would not be interested in members here, but there may be
15598 later variables referencing them via DW_AT_specification (for
15599 static members). */
15600 if (!load_all
15601 && !is_type_tag_for_partial (abbrev->tag)
72929c62 15602 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
15603 && abbrev->tag != DW_TAG_enumerator
15604 && abbrev->tag != DW_TAG_subprogram
bc30ff58 15605 && abbrev->tag != DW_TAG_lexical_block
72bf9492 15606 && abbrev->tag != DW_TAG_variable
5afb4e99 15607 && abbrev->tag != DW_TAG_namespace
f55ee35c 15608 && abbrev->tag != DW_TAG_module
95554aad 15609 && abbrev->tag != DW_TAG_member
74921315
KS
15610 && abbrev->tag != DW_TAG_imported_unit
15611 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
15612 {
15613 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15614 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
15615 continue;
15616 }
15617
dee91e82
DE
15618 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15619 info_ptr);
72bf9492
DJ
15620
15621 /* This two-pass algorithm for processing partial symbols has a
15622 high cost in cache pressure. Thus, handle some simple cases
15623 here which cover the majority of C partial symbols. DIEs
15624 which neither have specification tags in them, nor could have
15625 specification tags elsewhere pointing at them, can simply be
15626 processed and discarded.
15627
15628 This segment is also optional; scan_partial_symbols and
15629 add_partial_symbol will handle these DIEs if we chain
15630 them in normally. When compilers which do not emit large
15631 quantities of duplicate debug information are more common,
15632 this code can probably be removed. */
15633
15634 /* Any complete simple types at the top level (pretty much all
15635 of them, for a language without namespaces), can be processed
15636 directly. */
15637 if (parent_die == NULL
15638 && part_die->has_specification == 0
15639 && part_die->is_declaration == 0
d8228535 15640 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15641 || part_die->tag == DW_TAG_base_type
15642 || part_die->tag == DW_TAG_subrange_type))
15643 {
15644 if (building_psymtab && part_die->name != NULL)
04a679b8 15645 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15646 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363 15647 &objfile->static_psymbols,
1762568f 15648 0, cu->language, objfile);
dee91e82 15649 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15650 continue;
15651 }
15652
d8228535
JK
15653 /* The exception for DW_TAG_typedef with has_children above is
15654 a workaround of GCC PR debug/47510. In the case of this complaint
15655 type_name_no_tag_or_error will error on such types later.
15656
15657 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15658 it could not find the child DIEs referenced later, this is checked
15659 above. In correct DWARF DW_TAG_typedef should have no children. */
15660
15661 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15662 complaint (&symfile_complaints,
15663 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15664 "- DIE at 0x%x [in module %s]"),
4262abfb 15665 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15666
72bf9492
DJ
15667 /* If we're at the second level, and we're an enumerator, and
15668 our parent has no specification (meaning possibly lives in a
15669 namespace elsewhere), then we can add the partial symbol now
15670 instead of queueing it. */
15671 if (part_die->tag == DW_TAG_enumerator
15672 && parent_die != NULL
15673 && parent_die->die_parent == NULL
15674 && parent_die->tag == DW_TAG_enumeration_type
15675 && parent_die->has_specification == 0)
15676 {
15677 if (part_die->name == NULL)
3e43a32a
MS
15678 complaint (&symfile_complaints,
15679 _("malformed enumerator DIE ignored"));
72bf9492 15680 else if (building_psymtab)
04a679b8 15681 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15682 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
15683 (cu->language == language_cplus
15684 || cu->language == language_java)
bb5ed363
DE
15685 ? &objfile->global_psymbols
15686 : &objfile->static_psymbols,
1762568f 15687 0, cu->language, objfile);
72bf9492 15688
dee91e82 15689 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15690 continue;
15691 }
15692
15693 /* We'll save this DIE so link it in. */
15694 part_die->die_parent = parent_die;
15695 part_die->die_sibling = NULL;
15696 part_die->die_child = NULL;
15697
15698 if (last_die && last_die == parent_die)
15699 last_die->die_child = part_die;
15700 else if (last_die)
15701 last_die->die_sibling = part_die;
15702
15703 last_die = part_die;
15704
15705 if (first_die == NULL)
15706 first_die = part_die;
15707
15708 /* Maybe add the DIE to the hash table. Not all DIEs that we
15709 find interesting need to be in the hash table, because we
15710 also have the parent/sibling/child chains; only those that we
15711 might refer to by offset later during partial symbol reading.
15712
15713 For now this means things that might have be the target of a
15714 DW_AT_specification, DW_AT_abstract_origin, or
15715 DW_AT_extension. DW_AT_extension will refer only to
15716 namespaces; DW_AT_abstract_origin refers to functions (and
15717 many things under the function DIE, but we do not recurse
15718 into function DIEs during partial symbol reading) and
15719 possibly variables as well; DW_AT_specification refers to
15720 declarations. Declarations ought to have the DW_AT_declaration
15721 flag. It happens that GCC forgets to put it in sometimes, but
15722 only for functions, not for types.
15723
15724 Adding more things than necessary to the hash table is harmless
15725 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15726 wasted time in find_partial_die, when we reread the compilation
15727 unit with load_all_dies set. */
72bf9492 15728
5afb4e99 15729 if (load_all
72929c62 15730 || abbrev->tag == DW_TAG_constant
5afb4e99 15731 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15732 || abbrev->tag == DW_TAG_variable
15733 || abbrev->tag == DW_TAG_namespace
15734 || part_die->is_declaration)
15735 {
15736 void **slot;
15737
15738 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 15739 part_die->offset.sect_off, INSERT);
72bf9492
DJ
15740 *slot = part_die;
15741 }
15742
8d749320 15743 part_die = XOBNEW (&cu->comp_unit_obstack, struct partial_die_info);
72bf9492
DJ
15744
15745 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 15746 we have no reason to follow the children of structures; for other
98bfdba5
PA
15747 languages we have to, so that we can get at method physnames
15748 to infer fully qualified class names, for DW_AT_specification,
15749 and for C++ template arguments. For C++, we also look one level
15750 inside functions to find template arguments (if the name of the
15751 function does not already contain the template arguments).
bc30ff58
JB
15752
15753 For Ada, we need to scan the children of subprograms and lexical
15754 blocks as well because Ada allows the definition of nested
15755 entities that could be interesting for the debugger, such as
15756 nested subprograms for instance. */
72bf9492 15757 if (last_die->has_children
5afb4e99
DJ
15758 && (load_all
15759 || last_die->tag == DW_TAG_namespace
f55ee35c 15760 || last_die->tag == DW_TAG_module
72bf9492 15761 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15762 || (cu->language == language_cplus
15763 && last_die->tag == DW_TAG_subprogram
15764 && (last_die->name == NULL
15765 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15766 || (cu->language != language_c
15767 && (last_die->tag == DW_TAG_class_type
680b30c7 15768 || last_die->tag == DW_TAG_interface_type
72bf9492 15769 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
15770 || last_die->tag == DW_TAG_union_type))
15771 || (cu->language == language_ada
15772 && (last_die->tag == DW_TAG_subprogram
15773 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
15774 {
15775 nesting_level++;
15776 parent_die = last_die;
15777 continue;
15778 }
15779
15780 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15781 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
15782
15783 /* Back to the top, do it again. */
15784 }
15785}
15786
c906108c
SS
15787/* Read a minimal amount of information into the minimal die structure. */
15788
d521ce57 15789static const gdb_byte *
dee91e82
DE
15790read_partial_die (const struct die_reader_specs *reader,
15791 struct partial_die_info *part_die,
15792 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 15793 const gdb_byte *info_ptr)
c906108c 15794{
dee91e82 15795 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15796 struct objfile *objfile = cu->objfile;
d521ce57 15797 const gdb_byte *buffer = reader->buffer;
fa238c03 15798 unsigned int i;
c906108c 15799 struct attribute attr;
c5aa993b 15800 int has_low_pc_attr = 0;
c906108c 15801 int has_high_pc_attr = 0;
91da1414 15802 int high_pc_relative = 0;
c906108c 15803
72bf9492 15804 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 15805
b64f50a1 15806 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
15807
15808 info_ptr += abbrev_len;
15809
15810 if (abbrev == NULL)
15811 return info_ptr;
15812
c906108c
SS
15813 part_die->tag = abbrev->tag;
15814 part_die->has_children = abbrev->has_children;
c906108c
SS
15815
15816 for (i = 0; i < abbrev->num_attrs; ++i)
15817 {
dee91e82 15818 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
15819
15820 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 15821 partial symbol table. */
c906108c
SS
15822 switch (attr.name)
15823 {
15824 case DW_AT_name:
71c25dea
TT
15825 switch (part_die->tag)
15826 {
15827 case DW_TAG_compile_unit:
95554aad 15828 case DW_TAG_partial_unit:
348e048f 15829 case DW_TAG_type_unit:
71c25dea
TT
15830 /* Compilation units have a DW_AT_name that is a filename, not
15831 a source language identifier. */
15832 case DW_TAG_enumeration_type:
15833 case DW_TAG_enumerator:
15834 /* These tags always have simple identifiers already; no need
15835 to canonicalize them. */
15836 part_die->name = DW_STRING (&attr);
15837 break;
15838 default:
15839 part_die->name
15840 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 15841 &objfile->per_bfd->storage_obstack);
71c25dea
TT
15842 break;
15843 }
c906108c 15844 break;
31ef98ae 15845 case DW_AT_linkage_name:
c906108c 15846 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
15847 /* Note that both forms of linkage name might appear. We
15848 assume they will be the same, and we only store the last
15849 one we see. */
94af9270
KS
15850 if (cu->language == language_ada)
15851 part_die->name = DW_STRING (&attr);
abc72ce4 15852 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
15853 break;
15854 case DW_AT_low_pc:
15855 has_low_pc_attr = 1;
31aa7e4e 15856 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
15857 break;
15858 case DW_AT_high_pc:
15859 has_high_pc_attr = 1;
31aa7e4e
JB
15860 part_die->highpc = attr_value_as_address (&attr);
15861 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15862 high_pc_relative = 1;
c906108c
SS
15863 break;
15864 case DW_AT_location:
0963b4bd 15865 /* Support the .debug_loc offsets. */
8e19ed76
PS
15866 if (attr_form_is_block (&attr))
15867 {
95554aad 15868 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 15869 }
3690dd37 15870 else if (attr_form_is_section_offset (&attr))
8e19ed76 15871 {
4d3c2250 15872 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15873 }
15874 else
15875 {
4d3c2250
KB
15876 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15877 "partial symbol information");
8e19ed76 15878 }
c906108c 15879 break;
c906108c
SS
15880 case DW_AT_external:
15881 part_die->is_external = DW_UNSND (&attr);
15882 break;
15883 case DW_AT_declaration:
15884 part_die->is_declaration = DW_UNSND (&attr);
15885 break;
15886 case DW_AT_type:
15887 part_die->has_type = 1;
15888 break;
15889 case DW_AT_abstract_origin:
15890 case DW_AT_specification:
72bf9492
DJ
15891 case DW_AT_extension:
15892 part_die->has_specification = 1;
c764a876 15893 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
15894 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15895 || cu->per_cu->is_dwz);
c906108c
SS
15896 break;
15897 case DW_AT_sibling:
15898 /* Ignore absolute siblings, they might point outside of
15899 the current compile unit. */
15900 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
15901 complaint (&symfile_complaints,
15902 _("ignoring absolute DW_AT_sibling"));
c906108c 15903 else
b9502d3f
WN
15904 {
15905 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15906 const gdb_byte *sibling_ptr = buffer + off;
15907
15908 if (sibling_ptr < info_ptr)
15909 complaint (&symfile_complaints,
15910 _("DW_AT_sibling points backwards"));
22869d73
KS
15911 else if (sibling_ptr > reader->buffer_end)
15912 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
15913 else
15914 part_die->sibling = sibling_ptr;
15915 }
c906108c 15916 break;
fa4028e9
JB
15917 case DW_AT_byte_size:
15918 part_die->has_byte_size = 1;
15919 break;
ff908ebf
AW
15920 case DW_AT_const_value:
15921 part_die->has_const_value = 1;
15922 break;
68511cec
CES
15923 case DW_AT_calling_convention:
15924 /* DWARF doesn't provide a way to identify a program's source-level
15925 entry point. DW_AT_calling_convention attributes are only meant
15926 to describe functions' calling conventions.
15927
15928 However, because it's a necessary piece of information in
15929 Fortran, and because DW_CC_program is the only piece of debugging
15930 information whose definition refers to a 'main program' at all,
15931 several compilers have begun marking Fortran main programs with
15932 DW_CC_program --- even when those functions use the standard
15933 calling conventions.
15934
15935 So until DWARF specifies a way to provide this information and
15936 compilers pick up the new representation, we'll support this
15937 practice. */
15938 if (DW_UNSND (&attr) == DW_CC_program
dc365182
JH
15939 && cu->language == language_fortran
15940 && part_die->name != NULL)
3d548a53 15941 set_objfile_main_name (objfile, part_die->name, language_fortran);
68511cec 15942 break;
481860b3
GB
15943 case DW_AT_inline:
15944 if (DW_UNSND (&attr) == DW_INL_inlined
15945 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15946 part_die->may_be_inlined = 1;
15947 break;
95554aad
TT
15948
15949 case DW_AT_import:
15950 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
15951 {
15952 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15953 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15954 || cu->per_cu->is_dwz);
15955 }
95554aad
TT
15956 break;
15957
c906108c
SS
15958 default:
15959 break;
15960 }
15961 }
15962
91da1414
MW
15963 if (high_pc_relative)
15964 part_die->highpc += part_die->lowpc;
15965
9373cf26
JK
15966 if (has_low_pc_attr && has_high_pc_attr)
15967 {
15968 /* When using the GNU linker, .gnu.linkonce. sections are used to
15969 eliminate duplicate copies of functions and vtables and such.
15970 The linker will arbitrarily choose one and discard the others.
15971 The AT_*_pc values for such functions refer to local labels in
15972 these sections. If the section from that file was discarded, the
15973 labels are not in the output, so the relocs get a value of 0.
15974 If this is a discarded function, mark the pc bounds as invalid,
15975 so that GDB will ignore it. */
15976 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15977 {
bb5ed363 15978 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15979
15980 complaint (&symfile_complaints,
15981 _("DW_AT_low_pc %s is zero "
15982 "for DIE at 0x%x [in module %s]"),
15983 paddress (gdbarch, part_die->lowpc),
4262abfb 15984 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15985 }
15986 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15987 else if (part_die->lowpc >= part_die->highpc)
15988 {
bb5ed363 15989 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15990
15991 complaint (&symfile_complaints,
15992 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15993 "for DIE at 0x%x [in module %s]"),
15994 paddress (gdbarch, part_die->lowpc),
15995 paddress (gdbarch, part_die->highpc),
4262abfb 15996 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15997 }
15998 else
15999 part_die->has_pc_info = 1;
16000 }
85cbf3d3 16001
c906108c
SS
16002 return info_ptr;
16003}
16004
72bf9492
DJ
16005/* Find a cached partial DIE at OFFSET in CU. */
16006
16007static struct partial_die_info *
b64f50a1 16008find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
16009{
16010 struct partial_die_info *lookup_die = NULL;
16011 struct partial_die_info part_die;
16012
16013 part_die.offset = offset;
9a3c8263
SM
16014 lookup_die = ((struct partial_die_info *)
16015 htab_find_with_hash (cu->partial_dies, &part_die,
16016 offset.sect_off));
72bf9492 16017
72bf9492
DJ
16018 return lookup_die;
16019}
16020
348e048f
DE
16021/* Find a partial DIE at OFFSET, which may or may not be in CU,
16022 except in the case of .debug_types DIEs which do not reference
16023 outside their CU (they do however referencing other types via
55f1336d 16024 DW_FORM_ref_sig8). */
72bf9492
DJ
16025
16026static struct partial_die_info *
36586728 16027find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 16028{
bb5ed363 16029 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
16030 struct dwarf2_per_cu_data *per_cu = NULL;
16031 struct partial_die_info *pd = NULL;
72bf9492 16032
36586728
TT
16033 if (offset_in_dwz == cu->per_cu->is_dwz
16034 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
16035 {
16036 pd = find_partial_die_in_comp_unit (offset, cu);
16037 if (pd != NULL)
16038 return pd;
0d99eb77
DE
16039 /* We missed recording what we needed.
16040 Load all dies and try again. */
16041 per_cu = cu->per_cu;
5afb4e99 16042 }
0d99eb77
DE
16043 else
16044 {
16045 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 16046 if (cu->per_cu->is_debug_types)
0d99eb77
DE
16047 {
16048 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
16049 " external reference to offset 0x%lx [in module %s].\n"),
16050 (long) cu->header.offset.sect_off, (long) offset.sect_off,
16051 bfd_get_filename (objfile->obfd));
16052 }
36586728
TT
16053 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
16054 objfile);
72bf9492 16055
0d99eb77
DE
16056 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
16057 load_partial_comp_unit (per_cu);
ae038cb0 16058
0d99eb77
DE
16059 per_cu->cu->last_used = 0;
16060 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16061 }
5afb4e99 16062
dee91e82
DE
16063 /* If we didn't find it, and not all dies have been loaded,
16064 load them all and try again. */
16065
5afb4e99
DJ
16066 if (pd == NULL && per_cu->load_all_dies == 0)
16067 {
5afb4e99 16068 per_cu->load_all_dies = 1;
fd820528
DE
16069
16070 /* This is nasty. When we reread the DIEs, somewhere up the call chain
16071 THIS_CU->cu may already be in use. So we can't just free it and
16072 replace its DIEs with the ones we read in. Instead, we leave those
16073 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
16074 and clobber THIS_CU->cu->partial_dies with the hash table for the new
16075 set. */
dee91e82 16076 load_partial_comp_unit (per_cu);
5afb4e99
DJ
16077
16078 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
16079 }
16080
16081 if (pd == NULL)
16082 internal_error (__FILE__, __LINE__,
3e43a32a
MS
16083 _("could not find partial DIE 0x%x "
16084 "in cache [from module %s]\n"),
b64f50a1 16085 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 16086 return pd;
72bf9492
DJ
16087}
16088
abc72ce4
DE
16089/* See if we can figure out if the class lives in a namespace. We do
16090 this by looking for a member function; its demangled name will
16091 contain namespace info, if there is any. */
16092
16093static void
16094guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
16095 struct dwarf2_cu *cu)
16096{
16097 /* NOTE: carlton/2003-10-07: Getting the info this way changes
16098 what template types look like, because the demangler
16099 frequently doesn't give the same name as the debug info. We
16100 could fix this by only using the demangled name to get the
16101 prefix (but see comment in read_structure_type). */
16102
16103 struct partial_die_info *real_pdi;
16104 struct partial_die_info *child_pdi;
16105
16106 /* If this DIE (this DIE's specification, if any) has a parent, then
16107 we should not do this. We'll prepend the parent's fully qualified
16108 name when we create the partial symbol. */
16109
16110 real_pdi = struct_pdi;
16111 while (real_pdi->has_specification)
36586728
TT
16112 real_pdi = find_partial_die (real_pdi->spec_offset,
16113 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
16114
16115 if (real_pdi->die_parent != NULL)
16116 return;
16117
16118 for (child_pdi = struct_pdi->die_child;
16119 child_pdi != NULL;
16120 child_pdi = child_pdi->die_sibling)
16121 {
16122 if (child_pdi->tag == DW_TAG_subprogram
16123 && child_pdi->linkage_name != NULL)
16124 {
16125 char *actual_class_name
16126 = language_class_name_from_physname (cu->language_defn,
16127 child_pdi->linkage_name);
16128 if (actual_class_name != NULL)
16129 {
16130 struct_pdi->name
224c3ddb
SM
16131 = ((const char *)
16132 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16133 actual_class_name,
16134 strlen (actual_class_name)));
abc72ce4
DE
16135 xfree (actual_class_name);
16136 }
16137 break;
16138 }
16139 }
16140}
16141
72bf9492
DJ
16142/* Adjust PART_DIE before generating a symbol for it. This function
16143 may set the is_external flag or change the DIE's name. */
16144
16145static void
16146fixup_partial_die (struct partial_die_info *part_die,
16147 struct dwarf2_cu *cu)
16148{
abc72ce4
DE
16149 /* Once we've fixed up a die, there's no point in doing so again.
16150 This also avoids a memory leak if we were to call
16151 guess_partial_die_structure_name multiple times. */
16152 if (part_die->fixup_called)
16153 return;
16154
72bf9492
DJ
16155 /* If we found a reference attribute and the DIE has no name, try
16156 to find a name in the referred to DIE. */
16157
16158 if (part_die->name == NULL && part_die->has_specification)
16159 {
16160 struct partial_die_info *spec_die;
72bf9492 16161
36586728
TT
16162 spec_die = find_partial_die (part_die->spec_offset,
16163 part_die->spec_is_dwz, cu);
72bf9492 16164
10b3939b 16165 fixup_partial_die (spec_die, cu);
72bf9492
DJ
16166
16167 if (spec_die->name)
16168 {
16169 part_die->name = spec_die->name;
16170
16171 /* Copy DW_AT_external attribute if it is set. */
16172 if (spec_die->is_external)
16173 part_die->is_external = spec_die->is_external;
16174 }
16175 }
16176
16177 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
16178
16179 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 16180 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 16181
abc72ce4
DE
16182 /* If there is no parent die to provide a namespace, and there are
16183 children, see if we can determine the namespace from their linkage
122d1940 16184 name. */
abc72ce4 16185 if (cu->language == language_cplus
8b70b953 16186 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
16187 && part_die->die_parent == NULL
16188 && part_die->has_children
16189 && (part_die->tag == DW_TAG_class_type
16190 || part_die->tag == DW_TAG_structure_type
16191 || part_die->tag == DW_TAG_union_type))
16192 guess_partial_die_structure_name (part_die, cu);
16193
53832f31
TT
16194 /* GCC might emit a nameless struct or union that has a linkage
16195 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
16196 if (part_die->name == NULL
96408a79
SA
16197 && (part_die->tag == DW_TAG_class_type
16198 || part_die->tag == DW_TAG_interface_type
16199 || part_die->tag == DW_TAG_structure_type
16200 || part_die->tag == DW_TAG_union_type)
53832f31
TT
16201 && part_die->linkage_name != NULL)
16202 {
16203 char *demangled;
16204
8de20a37 16205 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
16206 if (demangled)
16207 {
96408a79
SA
16208 const char *base;
16209
16210 /* Strip any leading namespaces/classes, keep only the base name.
16211 DW_AT_name for named DIEs does not contain the prefixes. */
16212 base = strrchr (demangled, ':');
16213 if (base && base > demangled && base[-1] == ':')
16214 base++;
16215 else
16216 base = demangled;
16217
34a68019 16218 part_die->name
224c3ddb
SM
16219 = ((const char *)
16220 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
16221 base, strlen (base)));
53832f31
TT
16222 xfree (demangled);
16223 }
16224 }
16225
abc72ce4 16226 part_die->fixup_called = 1;
72bf9492
DJ
16227}
16228
a8329558 16229/* Read an attribute value described by an attribute form. */
c906108c 16230
d521ce57 16231static const gdb_byte *
dee91e82
DE
16232read_attribute_value (const struct die_reader_specs *reader,
16233 struct attribute *attr, unsigned form,
d521ce57 16234 const gdb_byte *info_ptr)
c906108c 16235{
dee91e82 16236 struct dwarf2_cu *cu = reader->cu;
3e29f34a
MR
16237 struct objfile *objfile = cu->objfile;
16238 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 16239 bfd *abfd = reader->abfd;
e7c27a73 16240 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16241 unsigned int bytes_read;
16242 struct dwarf_block *blk;
16243
aead7601 16244 attr->form = (enum dwarf_form) form;
a8329558 16245 switch (form)
c906108c 16246 {
c906108c 16247 case DW_FORM_ref_addr:
ae411497 16248 if (cu->header.version == 2)
4568ecf9 16249 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 16250 else
4568ecf9
DE
16251 DW_UNSND (attr) = read_offset (abfd, info_ptr,
16252 &cu->header, &bytes_read);
ae411497
TT
16253 info_ptr += bytes_read;
16254 break;
36586728
TT
16255 case DW_FORM_GNU_ref_alt:
16256 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16257 info_ptr += bytes_read;
16258 break;
ae411497 16259 case DW_FORM_addr:
e7c27a73 16260 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 16261 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 16262 info_ptr += bytes_read;
c906108c
SS
16263 break;
16264 case DW_FORM_block2:
7b5a2f43 16265 blk = dwarf_alloc_block (cu);
c906108c
SS
16266 blk->size = read_2_bytes (abfd, info_ptr);
16267 info_ptr += 2;
16268 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16269 info_ptr += blk->size;
16270 DW_BLOCK (attr) = blk;
16271 break;
16272 case DW_FORM_block4:
7b5a2f43 16273 blk = dwarf_alloc_block (cu);
c906108c
SS
16274 blk->size = read_4_bytes (abfd, info_ptr);
16275 info_ptr += 4;
16276 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16277 info_ptr += blk->size;
16278 DW_BLOCK (attr) = blk;
16279 break;
16280 case DW_FORM_data2:
16281 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16282 info_ptr += 2;
16283 break;
16284 case DW_FORM_data4:
16285 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16286 info_ptr += 4;
16287 break;
16288 case DW_FORM_data8:
16289 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16290 info_ptr += 8;
16291 break;
2dc7f7b3
TT
16292 case DW_FORM_sec_offset:
16293 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16294 info_ptr += bytes_read;
16295 break;
c906108c 16296 case DW_FORM_string:
9b1c24c8 16297 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 16298 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
16299 info_ptr += bytes_read;
16300 break;
4bdf3d34 16301 case DW_FORM_strp:
36586728
TT
16302 if (!cu->per_cu->is_dwz)
16303 {
16304 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16305 &bytes_read);
16306 DW_STRING_IS_CANONICAL (attr) = 0;
16307 info_ptr += bytes_read;
16308 break;
16309 }
16310 /* FALLTHROUGH */
16311 case DW_FORM_GNU_strp_alt:
16312 {
16313 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16314 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16315 &bytes_read);
16316
16317 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16318 DW_STRING_IS_CANONICAL (attr) = 0;
16319 info_ptr += bytes_read;
16320 }
4bdf3d34 16321 break;
2dc7f7b3 16322 case DW_FORM_exprloc:
c906108c 16323 case DW_FORM_block:
7b5a2f43 16324 blk = dwarf_alloc_block (cu);
c906108c
SS
16325 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16326 info_ptr += bytes_read;
16327 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16328 info_ptr += blk->size;
16329 DW_BLOCK (attr) = blk;
16330 break;
16331 case DW_FORM_block1:
7b5a2f43 16332 blk = dwarf_alloc_block (cu);
c906108c
SS
16333 blk->size = read_1_byte (abfd, info_ptr);
16334 info_ptr += 1;
16335 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16336 info_ptr += blk->size;
16337 DW_BLOCK (attr) = blk;
16338 break;
16339 case DW_FORM_data1:
16340 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16341 info_ptr += 1;
16342 break;
16343 case DW_FORM_flag:
16344 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16345 info_ptr += 1;
16346 break;
2dc7f7b3
TT
16347 case DW_FORM_flag_present:
16348 DW_UNSND (attr) = 1;
16349 break;
c906108c
SS
16350 case DW_FORM_sdata:
16351 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16352 info_ptr += bytes_read;
16353 break;
16354 case DW_FORM_udata:
16355 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16356 info_ptr += bytes_read;
16357 break;
16358 case DW_FORM_ref1:
4568ecf9
DE
16359 DW_UNSND (attr) = (cu->header.offset.sect_off
16360 + read_1_byte (abfd, info_ptr));
c906108c
SS
16361 info_ptr += 1;
16362 break;
16363 case DW_FORM_ref2:
4568ecf9
DE
16364 DW_UNSND (attr) = (cu->header.offset.sect_off
16365 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16366 info_ptr += 2;
16367 break;
16368 case DW_FORM_ref4:
4568ecf9
DE
16369 DW_UNSND (attr) = (cu->header.offset.sect_off
16370 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16371 info_ptr += 4;
16372 break;
613e1657 16373 case DW_FORM_ref8:
4568ecf9
DE
16374 DW_UNSND (attr) = (cu->header.offset.sect_off
16375 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16376 info_ptr += 8;
16377 break;
55f1336d 16378 case DW_FORM_ref_sig8:
ac9ec31b 16379 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16380 info_ptr += 8;
16381 break;
c906108c 16382 case DW_FORM_ref_udata:
4568ecf9
DE
16383 DW_UNSND (attr) = (cu->header.offset.sect_off
16384 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16385 info_ptr += bytes_read;
16386 break;
c906108c 16387 case DW_FORM_indirect:
a8329558
KW
16388 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16389 info_ptr += bytes_read;
dee91e82 16390 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 16391 break;
3019eac3
DE
16392 case DW_FORM_GNU_addr_index:
16393 if (reader->dwo_file == NULL)
16394 {
16395 /* For now flag a hard error.
16396 Later we can turn this into a complaint. */
16397 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16398 dwarf_form_name (form),
16399 bfd_get_filename (abfd));
16400 }
16401 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16402 info_ptr += bytes_read;
16403 break;
16404 case DW_FORM_GNU_str_index:
16405 if (reader->dwo_file == NULL)
16406 {
16407 /* For now flag a hard error.
16408 Later we can turn this into a complaint if warranted. */
16409 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16410 dwarf_form_name (form),
16411 bfd_get_filename (abfd));
16412 }
16413 {
16414 ULONGEST str_index =
16415 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16416
342587c4 16417 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16418 DW_STRING_IS_CANONICAL (attr) = 0;
16419 info_ptr += bytes_read;
16420 }
16421 break;
c906108c 16422 default:
8a3fe4f8 16423 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16424 dwarf_form_name (form),
16425 bfd_get_filename (abfd));
c906108c 16426 }
28e94949 16427
36586728 16428 /* Super hack. */
7771576e 16429 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16430 attr->form = DW_FORM_GNU_ref_alt;
16431
28e94949
JB
16432 /* We have seen instances where the compiler tried to emit a byte
16433 size attribute of -1 which ended up being encoded as an unsigned
16434 0xffffffff. Although 0xffffffff is technically a valid size value,
16435 an object of this size seems pretty unlikely so we can relatively
16436 safely treat these cases as if the size attribute was invalid and
16437 treat them as zero by default. */
16438 if (attr->name == DW_AT_byte_size
16439 && form == DW_FORM_data4
16440 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16441 {
16442 complaint
16443 (&symfile_complaints,
43bbcdc2
PH
16444 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16445 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16446 DW_UNSND (attr) = 0;
16447 }
28e94949 16448
c906108c
SS
16449 return info_ptr;
16450}
16451
a8329558
KW
16452/* Read an attribute described by an abbreviated attribute. */
16453
d521ce57 16454static const gdb_byte *
dee91e82
DE
16455read_attribute (const struct die_reader_specs *reader,
16456 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16457 const gdb_byte *info_ptr)
a8329558
KW
16458{
16459 attr->name = abbrev->name;
dee91e82 16460 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
16461}
16462
0963b4bd 16463/* Read dwarf information from a buffer. */
c906108c
SS
16464
16465static unsigned int
a1855c1d 16466read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16467{
fe1b8b76 16468 return bfd_get_8 (abfd, buf);
c906108c
SS
16469}
16470
16471static int
a1855c1d 16472read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16473{
fe1b8b76 16474 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16475}
16476
16477static unsigned int
a1855c1d 16478read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16479{
fe1b8b76 16480 return bfd_get_16 (abfd, buf);
c906108c
SS
16481}
16482
21ae7a4d 16483static int
a1855c1d 16484read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16485{
16486 return bfd_get_signed_16 (abfd, buf);
16487}
16488
c906108c 16489static unsigned int
a1855c1d 16490read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16491{
fe1b8b76 16492 return bfd_get_32 (abfd, buf);
c906108c
SS
16493}
16494
21ae7a4d 16495static int
a1855c1d 16496read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16497{
16498 return bfd_get_signed_32 (abfd, buf);
16499}
16500
93311388 16501static ULONGEST
a1855c1d 16502read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16503{
fe1b8b76 16504 return bfd_get_64 (abfd, buf);
c906108c
SS
16505}
16506
16507static CORE_ADDR
d521ce57 16508read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16509 unsigned int *bytes_read)
c906108c 16510{
e7c27a73 16511 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16512 CORE_ADDR retval = 0;
16513
107d2387 16514 if (cu_header->signed_addr_p)
c906108c 16515 {
107d2387
AC
16516 switch (cu_header->addr_size)
16517 {
16518 case 2:
fe1b8b76 16519 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16520 break;
16521 case 4:
fe1b8b76 16522 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16523 break;
16524 case 8:
fe1b8b76 16525 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16526 break;
16527 default:
8e65ff28 16528 internal_error (__FILE__, __LINE__,
e2e0b3e5 16529 _("read_address: bad switch, signed [in module %s]"),
659b0389 16530 bfd_get_filename (abfd));
107d2387
AC
16531 }
16532 }
16533 else
16534 {
16535 switch (cu_header->addr_size)
16536 {
16537 case 2:
fe1b8b76 16538 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16539 break;
16540 case 4:
fe1b8b76 16541 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16542 break;
16543 case 8:
fe1b8b76 16544 retval = bfd_get_64 (abfd, buf);
107d2387
AC
16545 break;
16546 default:
8e65ff28 16547 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
16548 _("read_address: bad switch, "
16549 "unsigned [in module %s]"),
659b0389 16550 bfd_get_filename (abfd));
107d2387 16551 }
c906108c 16552 }
64367e0a 16553
107d2387
AC
16554 *bytes_read = cu_header->addr_size;
16555 return retval;
c906108c
SS
16556}
16557
f7ef9339 16558/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
16559 specification allows the initial length to take up either 4 bytes
16560 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16561 bytes describe the length and all offsets will be 8 bytes in length
16562 instead of 4.
16563
f7ef9339
KB
16564 An older, non-standard 64-bit format is also handled by this
16565 function. The older format in question stores the initial length
16566 as an 8-byte quantity without an escape value. Lengths greater
16567 than 2^32 aren't very common which means that the initial 4 bytes
16568 is almost always zero. Since a length value of zero doesn't make
16569 sense for the 32-bit format, this initial zero can be considered to
16570 be an escape value which indicates the presence of the older 64-bit
16571 format. As written, the code can't detect (old format) lengths
917c78fc
MK
16572 greater than 4GB. If it becomes necessary to handle lengths
16573 somewhat larger than 4GB, we could allow other small values (such
16574 as the non-sensical values of 1, 2, and 3) to also be used as
16575 escape values indicating the presence of the old format.
f7ef9339 16576
917c78fc
MK
16577 The value returned via bytes_read should be used to increment the
16578 relevant pointer after calling read_initial_length().
c764a876 16579
613e1657
KB
16580 [ Note: read_initial_length() and read_offset() are based on the
16581 document entitled "DWARF Debugging Information Format", revision
f7ef9339 16582 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
16583 from:
16584
f7ef9339 16585 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 16586
613e1657
KB
16587 This document is only a draft and is subject to change. (So beware.)
16588
f7ef9339 16589 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
16590 determined empirically by examining 64-bit ELF files produced by
16591 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
16592
16593 - Kevin, July 16, 2002
613e1657
KB
16594 ] */
16595
16596static LONGEST
d521ce57 16597read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 16598{
fe1b8b76 16599 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 16600
dd373385 16601 if (length == 0xffffffff)
613e1657 16602 {
fe1b8b76 16603 length = bfd_get_64 (abfd, buf + 4);
613e1657 16604 *bytes_read = 12;
613e1657 16605 }
dd373385 16606 else if (length == 0)
f7ef9339 16607 {
dd373385 16608 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 16609 length = bfd_get_64 (abfd, buf);
f7ef9339 16610 *bytes_read = 8;
f7ef9339 16611 }
613e1657
KB
16612 else
16613 {
16614 *bytes_read = 4;
613e1657
KB
16615 }
16616
c764a876
DE
16617 return length;
16618}
dd373385 16619
c764a876
DE
16620/* Cover function for read_initial_length.
16621 Returns the length of the object at BUF, and stores the size of the
16622 initial length in *BYTES_READ and stores the size that offsets will be in
16623 *OFFSET_SIZE.
16624 If the initial length size is not equivalent to that specified in
16625 CU_HEADER then issue a complaint.
16626 This is useful when reading non-comp-unit headers. */
dd373385 16627
c764a876 16628static LONGEST
d521ce57 16629read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
16630 const struct comp_unit_head *cu_header,
16631 unsigned int *bytes_read,
16632 unsigned int *offset_size)
16633{
16634 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16635
16636 gdb_assert (cu_header->initial_length_size == 4
16637 || cu_header->initial_length_size == 8
16638 || cu_header->initial_length_size == 12);
16639
16640 if (cu_header->initial_length_size != *bytes_read)
16641 complaint (&symfile_complaints,
16642 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16643
c764a876 16644 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16645 return length;
613e1657
KB
16646}
16647
16648/* Read an offset from the data stream. The size of the offset is
917c78fc 16649 given by cu_header->offset_size. */
613e1657
KB
16650
16651static LONGEST
d521ce57
TT
16652read_offset (bfd *abfd, const gdb_byte *buf,
16653 const struct comp_unit_head *cu_header,
891d2f0b 16654 unsigned int *bytes_read)
c764a876
DE
16655{
16656 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16657
c764a876
DE
16658 *bytes_read = cu_header->offset_size;
16659 return offset;
16660}
16661
16662/* Read an offset from the data stream. */
16663
16664static LONGEST
d521ce57 16665read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16666{
16667 LONGEST retval = 0;
16668
c764a876 16669 switch (offset_size)
613e1657
KB
16670 {
16671 case 4:
fe1b8b76 16672 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16673 break;
16674 case 8:
fe1b8b76 16675 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16676 break;
16677 default:
8e65ff28 16678 internal_error (__FILE__, __LINE__,
c764a876 16679 _("read_offset_1: bad switch [in module %s]"),
659b0389 16680 bfd_get_filename (abfd));
613e1657
KB
16681 }
16682
917c78fc 16683 return retval;
613e1657
KB
16684}
16685
d521ce57
TT
16686static const gdb_byte *
16687read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16688{
16689 /* If the size of a host char is 8 bits, we can return a pointer
16690 to the buffer, otherwise we have to copy the data to a buffer
16691 allocated on the temporary obstack. */
4bdf3d34 16692 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16693 return buf;
c906108c
SS
16694}
16695
d521ce57
TT
16696static const char *
16697read_direct_string (bfd *abfd, const gdb_byte *buf,
16698 unsigned int *bytes_read_ptr)
c906108c
SS
16699{
16700 /* If the size of a host char is 8 bits, we can return a pointer
16701 to the string, otherwise we have to copy the string to a buffer
16702 allocated on the temporary obstack. */
4bdf3d34 16703 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
16704 if (*buf == '\0')
16705 {
16706 *bytes_read_ptr = 1;
16707 return NULL;
16708 }
d521ce57
TT
16709 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16710 return (const char *) buf;
4bdf3d34
JJ
16711}
16712
d521ce57 16713static const char *
cf2c3c16 16714read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 16715{
be391dca 16716 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 16717 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
16718 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16719 bfd_get_filename (abfd));
dce234bc 16720 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
16721 error (_("DW_FORM_strp pointing outside of "
16722 ".debug_str section [in module %s]"),
16723 bfd_get_filename (abfd));
4bdf3d34 16724 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 16725 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 16726 return NULL;
d521ce57 16727 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
16728}
16729
36586728
TT
16730/* Read a string at offset STR_OFFSET in the .debug_str section from
16731 the .dwz file DWZ. Throw an error if the offset is too large. If
16732 the string consists of a single NUL byte, return NULL; otherwise
16733 return a pointer to the string. */
16734
d521ce57 16735static const char *
36586728
TT
16736read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16737{
16738 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16739
16740 if (dwz->str.buffer == NULL)
16741 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16742 "section [in module %s]"),
16743 bfd_get_filename (dwz->dwz_bfd));
16744 if (str_offset >= dwz->str.size)
16745 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16746 ".debug_str section [in module %s]"),
16747 bfd_get_filename (dwz->dwz_bfd));
16748 gdb_assert (HOST_CHAR_BIT == 8);
16749 if (dwz->str.buffer[str_offset] == '\0')
16750 return NULL;
d521ce57 16751 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
16752}
16753
d521ce57
TT
16754static const char *
16755read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
16756 const struct comp_unit_head *cu_header,
16757 unsigned int *bytes_read_ptr)
16758{
16759 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16760
16761 return read_indirect_string_at_offset (abfd, str_offset);
16762}
16763
12df843f 16764static ULONGEST
d521ce57
TT
16765read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16766 unsigned int *bytes_read_ptr)
c906108c 16767{
12df843f 16768 ULONGEST result;
ce5d95e1 16769 unsigned int num_read;
c906108c
SS
16770 int i, shift;
16771 unsigned char byte;
16772
16773 result = 0;
16774 shift = 0;
16775 num_read = 0;
16776 i = 0;
16777 while (1)
16778 {
fe1b8b76 16779 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16780 buf++;
16781 num_read++;
12df843f 16782 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
16783 if ((byte & 128) == 0)
16784 {
16785 break;
16786 }
16787 shift += 7;
16788 }
16789 *bytes_read_ptr = num_read;
16790 return result;
16791}
16792
12df843f 16793static LONGEST
d521ce57
TT
16794read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16795 unsigned int *bytes_read_ptr)
c906108c 16796{
12df843f 16797 LONGEST result;
77e0b926 16798 int i, shift, num_read;
c906108c
SS
16799 unsigned char byte;
16800
16801 result = 0;
16802 shift = 0;
c906108c
SS
16803 num_read = 0;
16804 i = 0;
16805 while (1)
16806 {
fe1b8b76 16807 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16808 buf++;
16809 num_read++;
12df843f 16810 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
16811 shift += 7;
16812 if ((byte & 128) == 0)
16813 {
16814 break;
16815 }
16816 }
77e0b926 16817 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 16818 result |= -(((LONGEST) 1) << shift);
c906108c
SS
16819 *bytes_read_ptr = num_read;
16820 return result;
16821}
16822
3019eac3
DE
16823/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16824 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16825 ADDR_SIZE is the size of addresses from the CU header. */
16826
16827static CORE_ADDR
16828read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16829{
16830 struct objfile *objfile = dwarf2_per_objfile->objfile;
16831 bfd *abfd = objfile->obfd;
16832 const gdb_byte *info_ptr;
16833
16834 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16835 if (dwarf2_per_objfile->addr.buffer == NULL)
16836 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 16837 objfile_name (objfile));
3019eac3
DE
16838 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16839 error (_("DW_FORM_addr_index pointing outside of "
16840 ".debug_addr section [in module %s]"),
4262abfb 16841 objfile_name (objfile));
3019eac3
DE
16842 info_ptr = (dwarf2_per_objfile->addr.buffer
16843 + addr_base + addr_index * addr_size);
16844 if (addr_size == 4)
16845 return bfd_get_32 (abfd, info_ptr);
16846 else
16847 return bfd_get_64 (abfd, info_ptr);
16848}
16849
16850/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16851
16852static CORE_ADDR
16853read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16854{
16855 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16856}
16857
16858/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16859
16860static CORE_ADDR
d521ce57 16861read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
16862 unsigned int *bytes_read)
16863{
16864 bfd *abfd = cu->objfile->obfd;
16865 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16866
16867 return read_addr_index (cu, addr_index);
16868}
16869
16870/* Data structure to pass results from dwarf2_read_addr_index_reader
16871 back to dwarf2_read_addr_index. */
16872
16873struct dwarf2_read_addr_index_data
16874{
16875 ULONGEST addr_base;
16876 int addr_size;
16877};
16878
16879/* die_reader_func for dwarf2_read_addr_index. */
16880
16881static void
16882dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 16883 const gdb_byte *info_ptr,
3019eac3
DE
16884 struct die_info *comp_unit_die,
16885 int has_children,
16886 void *data)
16887{
16888 struct dwarf2_cu *cu = reader->cu;
16889 struct dwarf2_read_addr_index_data *aidata =
16890 (struct dwarf2_read_addr_index_data *) data;
16891
16892 aidata->addr_base = cu->addr_base;
16893 aidata->addr_size = cu->header.addr_size;
16894}
16895
16896/* Given an index in .debug_addr, fetch the value.
16897 NOTE: This can be called during dwarf expression evaluation,
16898 long after the debug information has been read, and thus per_cu->cu
16899 may no longer exist. */
16900
16901CORE_ADDR
16902dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16903 unsigned int addr_index)
16904{
16905 struct objfile *objfile = per_cu->objfile;
16906 struct dwarf2_cu *cu = per_cu->cu;
16907 ULONGEST addr_base;
16908 int addr_size;
16909
16910 /* This is intended to be called from outside this file. */
16911 dw2_setup (objfile);
16912
16913 /* We need addr_base and addr_size.
16914 If we don't have PER_CU->cu, we have to get it.
16915 Nasty, but the alternative is storing the needed info in PER_CU,
16916 which at this point doesn't seem justified: it's not clear how frequently
16917 it would get used and it would increase the size of every PER_CU.
16918 Entry points like dwarf2_per_cu_addr_size do a similar thing
16919 so we're not in uncharted territory here.
16920 Alas we need to be a bit more complicated as addr_base is contained
16921 in the DIE.
16922
16923 We don't need to read the entire CU(/TU).
16924 We just need the header and top level die.
a1b64ce1 16925
3019eac3 16926 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 16927 For now we skip this optimization. */
3019eac3
DE
16928
16929 if (cu != NULL)
16930 {
16931 addr_base = cu->addr_base;
16932 addr_size = cu->header.addr_size;
16933 }
16934 else
16935 {
16936 struct dwarf2_read_addr_index_data aidata;
16937
a1b64ce1
DE
16938 /* Note: We can't use init_cutu_and_read_dies_simple here,
16939 we need addr_base. */
16940 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16941 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
16942 addr_base = aidata.addr_base;
16943 addr_size = aidata.addr_size;
16944 }
16945
16946 return read_addr_index_1 (addr_index, addr_base, addr_size);
16947}
16948
57d63ce2
DE
16949/* Given a DW_FORM_GNU_str_index, fetch the string.
16950 This is only used by the Fission support. */
3019eac3 16951
d521ce57 16952static const char *
342587c4 16953read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
16954{
16955 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 16956 const char *objf_name = objfile_name (objfile);
3019eac3 16957 bfd *abfd = objfile->obfd;
342587c4 16958 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
16959 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16960 struct dwarf2_section_info *str_offsets_section =
16961 &reader->dwo_file->sections.str_offsets;
d521ce57 16962 const gdb_byte *info_ptr;
3019eac3 16963 ULONGEST str_offset;
57d63ce2 16964 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 16965
73869dc2
DE
16966 dwarf2_read_section (objfile, str_section);
16967 dwarf2_read_section (objfile, str_offsets_section);
16968 if (str_section->buffer == NULL)
57d63ce2 16969 error (_("%s used without .debug_str.dwo section"
3019eac3 16970 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16971 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16972 if (str_offsets_section->buffer == NULL)
57d63ce2 16973 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 16974 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16975 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16976 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 16977 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 16978 " section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16979 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16980 info_ptr = (str_offsets_section->buffer
3019eac3
DE
16981 + str_index * cu->header.offset_size);
16982 if (cu->header.offset_size == 4)
16983 str_offset = bfd_get_32 (abfd, info_ptr);
16984 else
16985 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 16986 if (str_offset >= str_section->size)
57d63ce2 16987 error (_("Offset from %s pointing outside of"
3019eac3 16988 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16989 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16990 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
16991}
16992
3019eac3
DE
16993/* Return the length of an LEB128 number in BUF. */
16994
16995static int
16996leb128_size (const gdb_byte *buf)
16997{
16998 const gdb_byte *begin = buf;
16999 gdb_byte byte;
17000
17001 while (1)
17002 {
17003 byte = *buf++;
17004 if ((byte & 128) == 0)
17005 return buf - begin;
17006 }
17007}
17008
c906108c 17009static void
e142c38c 17010set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
17011{
17012 switch (lang)
17013 {
17014 case DW_LANG_C89:
76bee0cc 17015 case DW_LANG_C99:
0cfd832f 17016 case DW_LANG_C11:
c906108c 17017 case DW_LANG_C:
d1be3247 17018 case DW_LANG_UPC:
e142c38c 17019 cu->language = language_c;
c906108c
SS
17020 break;
17021 case DW_LANG_C_plus_plus:
0cfd832f
MW
17022 case DW_LANG_C_plus_plus_11:
17023 case DW_LANG_C_plus_plus_14:
e142c38c 17024 cu->language = language_cplus;
c906108c 17025 break;
6aecb9c2
JB
17026 case DW_LANG_D:
17027 cu->language = language_d;
17028 break;
c906108c
SS
17029 case DW_LANG_Fortran77:
17030 case DW_LANG_Fortran90:
b21b22e0 17031 case DW_LANG_Fortran95:
f7de9aab
MW
17032 case DW_LANG_Fortran03:
17033 case DW_LANG_Fortran08:
e142c38c 17034 cu->language = language_fortran;
c906108c 17035 break;
a766d390
DE
17036 case DW_LANG_Go:
17037 cu->language = language_go;
17038 break;
c906108c 17039 case DW_LANG_Mips_Assembler:
e142c38c 17040 cu->language = language_asm;
c906108c 17041 break;
bebd888e 17042 case DW_LANG_Java:
e142c38c 17043 cu->language = language_java;
bebd888e 17044 break;
c906108c 17045 case DW_LANG_Ada83:
8aaf0b47 17046 case DW_LANG_Ada95:
bc5f45f8
JB
17047 cu->language = language_ada;
17048 break;
72019c9c
GM
17049 case DW_LANG_Modula2:
17050 cu->language = language_m2;
17051 break;
fe8e67fd
PM
17052 case DW_LANG_Pascal83:
17053 cu->language = language_pascal;
17054 break;
22566fbd
DJ
17055 case DW_LANG_ObjC:
17056 cu->language = language_objc;
17057 break;
c906108c
SS
17058 case DW_LANG_Cobol74:
17059 case DW_LANG_Cobol85:
c906108c 17060 default:
e142c38c 17061 cu->language = language_minimal;
c906108c
SS
17062 break;
17063 }
e142c38c 17064 cu->language_defn = language_def (cu->language);
c906108c
SS
17065}
17066
17067/* Return the named attribute or NULL if not there. */
17068
17069static struct attribute *
e142c38c 17070dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 17071{
a48e046c 17072 for (;;)
c906108c 17073 {
a48e046c
TT
17074 unsigned int i;
17075 struct attribute *spec = NULL;
17076
17077 for (i = 0; i < die->num_attrs; ++i)
17078 {
17079 if (die->attrs[i].name == name)
17080 return &die->attrs[i];
17081 if (die->attrs[i].name == DW_AT_specification
17082 || die->attrs[i].name == DW_AT_abstract_origin)
17083 spec = &die->attrs[i];
17084 }
17085
17086 if (!spec)
17087 break;
c906108c 17088
f2f0e013 17089 die = follow_die_ref (die, spec, &cu);
f2f0e013 17090 }
c5aa993b 17091
c906108c
SS
17092 return NULL;
17093}
17094
348e048f
DE
17095/* Return the named attribute or NULL if not there,
17096 but do not follow DW_AT_specification, etc.
17097 This is for use in contexts where we're reading .debug_types dies.
17098 Following DW_AT_specification, DW_AT_abstract_origin will take us
17099 back up the chain, and we want to go down. */
17100
17101static struct attribute *
45e58e77 17102dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
17103{
17104 unsigned int i;
17105
17106 for (i = 0; i < die->num_attrs; ++i)
17107 if (die->attrs[i].name == name)
17108 return &die->attrs[i];
17109
17110 return NULL;
17111}
17112
7d45c7c3
KB
17113/* Return the string associated with a string-typed attribute, or NULL if it
17114 is either not found or is of an incorrect type. */
17115
17116static const char *
17117dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
17118{
17119 struct attribute *attr;
17120 const char *str = NULL;
17121
17122 attr = dwarf2_attr (die, name, cu);
17123
17124 if (attr != NULL)
17125 {
17126 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_string
17127 || attr->form == DW_FORM_GNU_strp_alt)
17128 str = DW_STRING (attr);
17129 else
17130 complaint (&symfile_complaints,
17131 _("string type expected for attribute %s for "
17132 "DIE at 0x%x in module %s"),
17133 dwarf_attr_name (name), die->offset.sect_off,
17134 objfile_name (cu->objfile));
17135 }
17136
17137 return str;
17138}
17139
05cf31d1
JB
17140/* Return non-zero iff the attribute NAME is defined for the given DIE,
17141 and holds a non-zero value. This function should only be used for
2dc7f7b3 17142 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
17143
17144static int
17145dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
17146{
17147 struct attribute *attr = dwarf2_attr (die, name, cu);
17148
17149 return (attr && DW_UNSND (attr));
17150}
17151
3ca72b44 17152static int
e142c38c 17153die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 17154{
05cf31d1
JB
17155 /* A DIE is a declaration if it has a DW_AT_declaration attribute
17156 which value is non-zero. However, we have to be careful with
17157 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
17158 (via dwarf2_flag_true_p) follows this attribute. So we may
17159 end up accidently finding a declaration attribute that belongs
17160 to a different DIE referenced by the specification attribute,
17161 even though the given DIE does not have a declaration attribute. */
17162 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
17163 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
17164}
17165
63d06c5c 17166/* Return the die giving the specification for DIE, if there is
f2f0e013 17167 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
17168 containing the return value on output. If there is no
17169 specification, but there is an abstract origin, that is
17170 returned. */
63d06c5c
DC
17171
17172static struct die_info *
f2f0e013 17173die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 17174{
f2f0e013
DJ
17175 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
17176 *spec_cu);
63d06c5c 17177
edb3359d
DJ
17178 if (spec_attr == NULL)
17179 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
17180
63d06c5c
DC
17181 if (spec_attr == NULL)
17182 return NULL;
17183 else
f2f0e013 17184 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 17185}
c906108c 17186
debd256d 17187/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
17188 refers to.
17189 NOTE: This is also used as a "cleanup" function. */
17190
debd256d
JB
17191static void
17192free_line_header (struct line_header *lh)
17193{
17194 if (lh->standard_opcode_lengths)
a8bc7b56 17195 xfree (lh->standard_opcode_lengths);
debd256d
JB
17196
17197 /* Remember that all the lh->file_names[i].name pointers are
17198 pointers into debug_line_buffer, and don't need to be freed. */
17199 if (lh->file_names)
a8bc7b56 17200 xfree (lh->file_names);
debd256d
JB
17201
17202 /* Similarly for the include directory names. */
17203 if (lh->include_dirs)
a8bc7b56 17204 xfree (lh->include_dirs);
debd256d 17205
a8bc7b56 17206 xfree (lh);
debd256d
JB
17207}
17208
527f3840
JK
17209/* Stub for free_line_header to match void * callback types. */
17210
17211static void
17212free_line_header_voidp (void *arg)
17213{
9a3c8263 17214 struct line_header *lh = (struct line_header *) arg;
527f3840
JK
17215
17216 free_line_header (lh);
17217}
17218
debd256d 17219/* Add an entry to LH's include directory table. */
ae2de4f8 17220
debd256d 17221static void
d521ce57 17222add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 17223{
27e0867f
DE
17224 if (dwarf_line_debug >= 2)
17225 fprintf_unfiltered (gdb_stdlog, "Adding dir %u: %s\n",
17226 lh->num_include_dirs + 1, include_dir);
17227
debd256d
JB
17228 /* Grow the array if necessary. */
17229 if (lh->include_dirs_size == 0)
c5aa993b 17230 {
debd256d 17231 lh->include_dirs_size = 1; /* for testing */
8d749320 17232 lh->include_dirs = XNEWVEC (const char *, lh->include_dirs_size);
debd256d
JB
17233 }
17234 else if (lh->num_include_dirs >= lh->include_dirs_size)
17235 {
17236 lh->include_dirs_size *= 2;
8d749320
SM
17237 lh->include_dirs = XRESIZEVEC (const char *, lh->include_dirs,
17238 lh->include_dirs_size);
c5aa993b 17239 }
c906108c 17240
debd256d
JB
17241 lh->include_dirs[lh->num_include_dirs++] = include_dir;
17242}
6e70227d 17243
debd256d 17244/* Add an entry to LH's file name table. */
ae2de4f8 17245
debd256d
JB
17246static void
17247add_file_name (struct line_header *lh,
d521ce57 17248 const char *name,
debd256d
JB
17249 unsigned int dir_index,
17250 unsigned int mod_time,
17251 unsigned int length)
17252{
17253 struct file_entry *fe;
17254
27e0867f
DE
17255 if (dwarf_line_debug >= 2)
17256 fprintf_unfiltered (gdb_stdlog, "Adding file %u: %s\n",
17257 lh->num_file_names + 1, name);
17258
debd256d
JB
17259 /* Grow the array if necessary. */
17260 if (lh->file_names_size == 0)
17261 {
17262 lh->file_names_size = 1; /* for testing */
8d749320 17263 lh->file_names = XNEWVEC (struct file_entry, lh->file_names_size);
debd256d
JB
17264 }
17265 else if (lh->num_file_names >= lh->file_names_size)
17266 {
17267 lh->file_names_size *= 2;
224c3ddb
SM
17268 lh->file_names
17269 = XRESIZEVEC (struct file_entry, lh->file_names, lh->file_names_size);
debd256d
JB
17270 }
17271
17272 fe = &lh->file_names[lh->num_file_names++];
17273 fe->name = name;
17274 fe->dir_index = dir_index;
17275 fe->mod_time = mod_time;
17276 fe->length = length;
aaa75496 17277 fe->included_p = 0;
cb1df416 17278 fe->symtab = NULL;
debd256d 17279}
6e70227d 17280
83769d0b 17281/* A convenience function to find the proper .debug_line section for a CU. */
36586728
TT
17282
17283static struct dwarf2_section_info *
17284get_debug_line_section (struct dwarf2_cu *cu)
17285{
17286 struct dwarf2_section_info *section;
17287
17288 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
17289 DWO file. */
17290 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17291 section = &cu->dwo_unit->dwo_file->sections.line;
17292 else if (cu->per_cu->is_dwz)
17293 {
17294 struct dwz_file *dwz = dwarf2_get_dwz_file ();
17295
17296 section = &dwz->line;
17297 }
17298 else
17299 section = &dwarf2_per_objfile->line;
17300
17301 return section;
17302}
17303
debd256d 17304/* Read the statement program header starting at OFFSET in
3019eac3 17305 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 17306 to a struct line_header, allocated using xmalloc.
cd366ee8
DE
17307 Returns NULL if there is a problem reading the header, e.g., if it
17308 has a version we don't understand.
debd256d
JB
17309
17310 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
17311 the returned object point into the dwarf line section buffer,
17312 and must not be freed. */
ae2de4f8 17313
debd256d 17314static struct line_header *
3019eac3 17315dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
17316{
17317 struct cleanup *back_to;
17318 struct line_header *lh;
d521ce57 17319 const gdb_byte *line_ptr;
c764a876 17320 unsigned int bytes_read, offset_size;
debd256d 17321 int i;
d521ce57 17322 const char *cur_dir, *cur_file;
3019eac3
DE
17323 struct dwarf2_section_info *section;
17324 bfd *abfd;
17325
36586728 17326 section = get_debug_line_section (cu);
3019eac3
DE
17327 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17328 if (section->buffer == NULL)
debd256d 17329 {
3019eac3
DE
17330 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17331 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17332 else
17333 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
17334 return 0;
17335 }
17336
fceca515
DE
17337 /* We can't do this until we know the section is non-empty.
17338 Only then do we know we have such a section. */
a32a8923 17339 abfd = get_section_bfd_owner (section);
fceca515 17340
a738430d
MK
17341 /* Make sure that at least there's room for the total_length field.
17342 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 17343 if (offset + 4 >= section->size)
debd256d 17344 {
4d3c2250 17345 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17346 return 0;
17347 }
17348
8d749320 17349 lh = XNEW (struct line_header);
debd256d
JB
17350 memset (lh, 0, sizeof (*lh));
17351 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17352 (void *) lh);
17353
527f3840
JK
17354 lh->offset.sect_off = offset;
17355 lh->offset_in_dwz = cu->per_cu->is_dwz;
17356
3019eac3 17357 line_ptr = section->buffer + offset;
debd256d 17358
a738430d 17359 /* Read in the header. */
6e70227d 17360 lh->total_length =
c764a876
DE
17361 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17362 &bytes_read, &offset_size);
debd256d 17363 line_ptr += bytes_read;
3019eac3 17364 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17365 {
4d3c2250 17366 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 17367 do_cleanups (back_to);
debd256d
JB
17368 return 0;
17369 }
17370 lh->statement_program_end = line_ptr + lh->total_length;
17371 lh->version = read_2_bytes (abfd, line_ptr);
17372 line_ptr += 2;
cd366ee8
DE
17373 if (lh->version > 4)
17374 {
17375 /* This is a version we don't understand. The format could have
17376 changed in ways we don't handle properly so just punt. */
17377 complaint (&symfile_complaints,
17378 _("unsupported version in .debug_line section"));
17379 return NULL;
17380 }
c764a876
DE
17381 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17382 line_ptr += offset_size;
debd256d
JB
17383 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17384 line_ptr += 1;
2dc7f7b3
TT
17385 if (lh->version >= 4)
17386 {
17387 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17388 line_ptr += 1;
17389 }
17390 else
17391 lh->maximum_ops_per_instruction = 1;
17392
17393 if (lh->maximum_ops_per_instruction == 0)
17394 {
17395 lh->maximum_ops_per_instruction = 1;
17396 complaint (&symfile_complaints,
3e43a32a
MS
17397 _("invalid maximum_ops_per_instruction "
17398 "in `.debug_line' section"));
2dc7f7b3
TT
17399 }
17400
debd256d
JB
17401 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17402 line_ptr += 1;
17403 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17404 line_ptr += 1;
17405 lh->line_range = read_1_byte (abfd, line_ptr);
17406 line_ptr += 1;
17407 lh->opcode_base = read_1_byte (abfd, line_ptr);
17408 line_ptr += 1;
8d749320 17409 lh->standard_opcode_lengths = XNEWVEC (unsigned char, lh->opcode_base);
debd256d
JB
17410
17411 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17412 for (i = 1; i < lh->opcode_base; ++i)
17413 {
17414 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17415 line_ptr += 1;
17416 }
17417
a738430d 17418 /* Read directory table. */
9b1c24c8 17419 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17420 {
17421 line_ptr += bytes_read;
17422 add_include_dir (lh, cur_dir);
17423 }
17424 line_ptr += bytes_read;
17425
a738430d 17426 /* Read file name table. */
9b1c24c8 17427 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17428 {
17429 unsigned int dir_index, mod_time, length;
17430
17431 line_ptr += bytes_read;
17432 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17433 line_ptr += bytes_read;
17434 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17435 line_ptr += bytes_read;
17436 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17437 line_ptr += bytes_read;
17438
17439 add_file_name (lh, cur_file, dir_index, mod_time, length);
17440 }
17441 line_ptr += bytes_read;
6e70227d 17442 lh->statement_program_start = line_ptr;
debd256d 17443
3019eac3 17444 if (line_ptr > (section->buffer + section->size))
4d3c2250 17445 complaint (&symfile_complaints,
3e43a32a
MS
17446 _("line number info header doesn't "
17447 "fit in `.debug_line' section"));
debd256d
JB
17448
17449 discard_cleanups (back_to);
17450 return lh;
17451}
c906108c 17452
c6da4cef
DE
17453/* Subroutine of dwarf_decode_lines to simplify it.
17454 Return the file name of the psymtab for included file FILE_INDEX
17455 in line header LH of PST.
17456 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17457 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
17458 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17459
17460 The function creates dangling cleanup registration. */
c6da4cef 17461
d521ce57 17462static const char *
c6da4cef
DE
17463psymtab_include_file_name (const struct line_header *lh, int file_index,
17464 const struct partial_symtab *pst,
17465 const char *comp_dir)
17466{
17467 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
17468 const char *include_name = fe.name;
17469 const char *include_name_to_compare = include_name;
17470 const char *dir_name = NULL;
72b9f47f
TT
17471 const char *pst_filename;
17472 char *copied_name = NULL;
c6da4cef
DE
17473 int file_is_pst;
17474
afa6c9ab 17475 if (fe.dir_index && lh->include_dirs != NULL)
c6da4cef
DE
17476 dir_name = lh->include_dirs[fe.dir_index - 1];
17477
17478 if (!IS_ABSOLUTE_PATH (include_name)
17479 && (dir_name != NULL || comp_dir != NULL))
17480 {
17481 /* Avoid creating a duplicate psymtab for PST.
17482 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17483 Before we do the comparison, however, we need to account
17484 for DIR_NAME and COMP_DIR.
17485 First prepend dir_name (if non-NULL). If we still don't
17486 have an absolute path prepend comp_dir (if non-NULL).
17487 However, the directory we record in the include-file's
17488 psymtab does not contain COMP_DIR (to match the
17489 corresponding symtab(s)).
17490
17491 Example:
17492
17493 bash$ cd /tmp
17494 bash$ gcc -g ./hello.c
17495 include_name = "hello.c"
17496 dir_name = "."
17497 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
17498 DW_AT_name = "./hello.c"
17499
17500 */
c6da4cef
DE
17501
17502 if (dir_name != NULL)
17503 {
d521ce57
TT
17504 char *tem = concat (dir_name, SLASH_STRING,
17505 include_name, (char *)NULL);
17506
17507 make_cleanup (xfree, tem);
17508 include_name = tem;
c6da4cef 17509 include_name_to_compare = include_name;
c6da4cef
DE
17510 }
17511 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17512 {
d521ce57
TT
17513 char *tem = concat (comp_dir, SLASH_STRING,
17514 include_name, (char *)NULL);
17515
17516 make_cleanup (xfree, tem);
17517 include_name_to_compare = tem;
c6da4cef
DE
17518 }
17519 }
17520
17521 pst_filename = pst->filename;
17522 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17523 {
72b9f47f
TT
17524 copied_name = concat (pst->dirname, SLASH_STRING,
17525 pst_filename, (char *)NULL);
17526 pst_filename = copied_name;
c6da4cef
DE
17527 }
17528
1e3fad37 17529 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 17530
72b9f47f
TT
17531 if (copied_name != NULL)
17532 xfree (copied_name);
c6da4cef
DE
17533
17534 if (file_is_pst)
17535 return NULL;
17536 return include_name;
17537}
17538
d9b3de22
DE
17539/* State machine to track the state of the line number program. */
17540
17541typedef struct
17542{
17543 /* These are part of the standard DWARF line number state machine. */
17544
17545 unsigned char op_index;
17546 unsigned int file;
17547 unsigned int line;
17548 CORE_ADDR address;
17549 int is_stmt;
17550 unsigned int discriminator;
17551
17552 /* Additional bits of state we need to track. */
17553
17554 /* The last file that we called dwarf2_start_subfile for.
17555 This is only used for TLLs. */
17556 unsigned int last_file;
17557 /* The last file a line number was recorded for. */
17558 struct subfile *last_subfile;
17559
17560 /* The function to call to record a line. */
17561 record_line_ftype *record_line;
17562
17563 /* The last line number that was recorded, used to coalesce
17564 consecutive entries for the same line. This can happen, for
17565 example, when discriminators are present. PR 17276. */
17566 unsigned int last_line;
17567 int line_has_non_zero_discriminator;
17568} lnp_state_machine;
17569
17570/* There's a lot of static state to pass to dwarf_record_line.
17571 This keeps it all together. */
17572
17573typedef struct
17574{
17575 /* The gdbarch. */
17576 struct gdbarch *gdbarch;
17577
17578 /* The line number header. */
17579 struct line_header *line_header;
17580
17581 /* Non-zero if we're recording lines.
17582 Otherwise we're building partial symtabs and are just interested in
17583 finding include files mentioned by the line number program. */
17584 int record_lines_p;
17585} lnp_reader_state;
17586
c91513d8
PP
17587/* Ignore this record_line request. */
17588
17589static void
17590noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17591{
17592 return;
17593}
17594
a05a36a5
DE
17595/* Return non-zero if we should add LINE to the line number table.
17596 LINE is the line to add, LAST_LINE is the last line that was added,
17597 LAST_SUBFILE is the subfile for LAST_LINE.
17598 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17599 had a non-zero discriminator.
17600
17601 We have to be careful in the presence of discriminators.
17602 E.g., for this line:
17603
17604 for (i = 0; i < 100000; i++);
17605
17606 clang can emit four line number entries for that one line,
17607 each with a different discriminator.
17608 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17609
17610 However, we want gdb to coalesce all four entries into one.
17611 Otherwise the user could stepi into the middle of the line and
17612 gdb would get confused about whether the pc really was in the
17613 middle of the line.
17614
17615 Things are further complicated by the fact that two consecutive
17616 line number entries for the same line is a heuristic used by gcc
17617 to denote the end of the prologue. So we can't just discard duplicate
17618 entries, we have to be selective about it. The heuristic we use is
17619 that we only collapse consecutive entries for the same line if at least
17620 one of those entries has a non-zero discriminator. PR 17276.
17621
17622 Note: Addresses in the line number state machine can never go backwards
17623 within one sequence, thus this coalescing is ok. */
17624
17625static int
17626dwarf_record_line_p (unsigned int line, unsigned int last_line,
17627 int line_has_non_zero_discriminator,
17628 struct subfile *last_subfile)
17629{
17630 if (current_subfile != last_subfile)
17631 return 1;
17632 if (line != last_line)
17633 return 1;
17634 /* Same line for the same file that we've seen already.
17635 As a last check, for pr 17276, only record the line if the line
17636 has never had a non-zero discriminator. */
17637 if (!line_has_non_zero_discriminator)
17638 return 1;
17639 return 0;
17640}
17641
252a6764
DE
17642/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17643 in the line table of subfile SUBFILE. */
17644
17645static void
d9b3de22
DE
17646dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
17647 unsigned int line, CORE_ADDR address,
17648 record_line_ftype p_record_line)
252a6764
DE
17649{
17650 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17651
27e0867f
DE
17652 if (dwarf_line_debug)
17653 {
17654 fprintf_unfiltered (gdb_stdlog,
17655 "Recording line %u, file %s, address %s\n",
17656 line, lbasename (subfile->name),
17657 paddress (gdbarch, address));
17658 }
17659
d5962de5 17660 (*p_record_line) (subfile, line, addr);
252a6764
DE
17661}
17662
17663/* Subroutine of dwarf_decode_lines_1 to simplify it.
17664 Mark the end of a set of line number records.
d9b3de22 17665 The arguments are the same as for dwarf_record_line_1.
252a6764
DE
17666 If SUBFILE is NULL the request is ignored. */
17667
17668static void
17669dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17670 CORE_ADDR address, record_line_ftype p_record_line)
17671{
27e0867f
DE
17672 if (subfile == NULL)
17673 return;
17674
17675 if (dwarf_line_debug)
17676 {
17677 fprintf_unfiltered (gdb_stdlog,
17678 "Finishing current line, file %s, address %s\n",
17679 lbasename (subfile->name),
17680 paddress (gdbarch, address));
17681 }
17682
d9b3de22
DE
17683 dwarf_record_line_1 (gdbarch, subfile, 0, address, p_record_line);
17684}
17685
17686/* Record the line in STATE.
17687 END_SEQUENCE is non-zero if we're processing the end of a sequence. */
17688
17689static void
17690dwarf_record_line (lnp_reader_state *reader, lnp_state_machine *state,
17691 int end_sequence)
17692{
17693 const struct line_header *lh = reader->line_header;
17694 unsigned int file, line, discriminator;
17695 int is_stmt;
17696
17697 file = state->file;
17698 line = state->line;
17699 is_stmt = state->is_stmt;
17700 discriminator = state->discriminator;
17701
17702 if (dwarf_line_debug)
17703 {
17704 fprintf_unfiltered (gdb_stdlog,
17705 "Processing actual line %u: file %u,"
17706 " address %s, is_stmt %u, discrim %u\n",
17707 line, file,
17708 paddress (reader->gdbarch, state->address),
17709 is_stmt, discriminator);
17710 }
17711
17712 if (file == 0 || file - 1 >= lh->num_file_names)
17713 dwarf2_debug_line_missing_file_complaint ();
17714 /* For now we ignore lines not starting on an instruction boundary.
17715 But not when processing end_sequence for compatibility with the
17716 previous version of the code. */
17717 else if (state->op_index == 0 || end_sequence)
17718 {
17719 lh->file_names[file - 1].included_p = 1;
17720 if (reader->record_lines_p && is_stmt)
17721 {
e815d2d2 17722 if (state->last_subfile != current_subfile || end_sequence)
d9b3de22
DE
17723 {
17724 dwarf_finish_line (reader->gdbarch, state->last_subfile,
17725 state->address, state->record_line);
17726 }
17727
17728 if (!end_sequence)
17729 {
17730 if (dwarf_record_line_p (line, state->last_line,
17731 state->line_has_non_zero_discriminator,
17732 state->last_subfile))
17733 {
17734 dwarf_record_line_1 (reader->gdbarch, current_subfile,
17735 line, state->address,
17736 state->record_line);
17737 }
17738 state->last_subfile = current_subfile;
17739 state->last_line = line;
17740 }
17741 }
17742 }
17743}
17744
17745/* Initialize STATE for the start of a line number program. */
17746
17747static void
17748init_lnp_state_machine (lnp_state_machine *state,
17749 const lnp_reader_state *reader)
17750{
17751 memset (state, 0, sizeof (*state));
17752
17753 /* Just starting, there is no "last file". */
17754 state->last_file = 0;
17755 state->last_subfile = NULL;
17756
17757 state->record_line = record_line;
17758
17759 state->last_line = 0;
17760 state->line_has_non_zero_discriminator = 0;
17761
17762 /* Initialize these according to the DWARF spec. */
17763 state->op_index = 0;
17764 state->file = 1;
17765 state->line = 1;
17766 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
17767 was a line entry for it so that the backend has a chance to adjust it
17768 and also record it in case it needs it. This is currently used by MIPS
17769 code, cf. `mips_adjust_dwarf2_line'. */
17770 state->address = gdbarch_adjust_dwarf2_line (reader->gdbarch, 0, 0);
17771 state->is_stmt = reader->line_header->default_is_stmt;
17772 state->discriminator = 0;
252a6764
DE
17773}
17774
924c2928
DE
17775/* Check address and if invalid nop-out the rest of the lines in this
17776 sequence. */
17777
17778static void
d9b3de22 17779check_line_address (struct dwarf2_cu *cu, lnp_state_machine *state,
924c2928
DE
17780 const gdb_byte *line_ptr,
17781 CORE_ADDR lowpc, CORE_ADDR address)
17782{
17783 /* If address < lowpc then it's not a usable value, it's outside the
17784 pc range of the CU. However, we restrict the test to only address
17785 values of zero to preserve GDB's previous behaviour which is to
17786 handle the specific case of a function being GC'd by the linker. */
17787
17788 if (address == 0 && address < lowpc)
17789 {
17790 /* This line table is for a function which has been
17791 GCd by the linker. Ignore it. PR gdb/12528 */
17792
17793 struct objfile *objfile = cu->objfile;
17794 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
17795
17796 complaint (&symfile_complaints,
17797 _(".debug_line address at offset 0x%lx is 0 [in module %s]"),
17798 line_offset, objfile_name (objfile));
d9b3de22
DE
17799 state->record_line = noop_record_line;
17800 /* Note: sm.record_line is left as noop_record_line
924c2928
DE
17801 until we see DW_LNE_end_sequence. */
17802 }
17803}
17804
f3f5162e 17805/* Subroutine of dwarf_decode_lines to simplify it.
d9b3de22
DE
17806 Process the line number information in LH.
17807 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
17808 program in order to set included_p for every referenced header. */
debd256d 17809
c906108c 17810static void
43f3e411
DE
17811dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17812 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 17813{
d521ce57
TT
17814 const gdb_byte *line_ptr, *extended_end;
17815 const gdb_byte *line_end;
a8c50c1f 17816 unsigned int bytes_read, extended_len;
699ca60a 17817 unsigned char op_code, extended_op;
e142c38c
DJ
17818 CORE_ADDR baseaddr;
17819 struct objfile *objfile = cu->objfile;
f3f5162e 17820 bfd *abfd = objfile->obfd;
fbf65064 17821 struct gdbarch *gdbarch = get_objfile_arch (objfile);
d9b3de22
DE
17822 /* Non-zero if we're recording line info (as opposed to building partial
17823 symtabs). */
17824 int record_lines_p = !decode_for_pst_p;
17825 /* A collection of things we need to pass to dwarf_record_line. */
17826 lnp_reader_state reader_state;
e142c38c
DJ
17827
17828 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17829
debd256d
JB
17830 line_ptr = lh->statement_program_start;
17831 line_end = lh->statement_program_end;
c906108c 17832
d9b3de22
DE
17833 reader_state.gdbarch = gdbarch;
17834 reader_state.line_header = lh;
17835 reader_state.record_lines_p = record_lines_p;
17836
c906108c
SS
17837 /* Read the statement sequences until there's nothing left. */
17838 while (line_ptr < line_end)
17839 {
d9b3de22
DE
17840 /* The DWARF line number program state machine. */
17841 lnp_state_machine state_machine;
c906108c 17842 int end_sequence = 0;
d9b3de22
DE
17843
17844 /* Reset the state machine at the start of each sequence. */
17845 init_lnp_state_machine (&state_machine, &reader_state);
17846
17847 if (record_lines_p && lh->num_file_names >= state_machine.file)
c906108c 17848 {
aaa75496 17849 /* Start a subfile for the current file of the state machine. */
debd256d
JB
17850 /* lh->include_dirs and lh->file_names are 0-based, but the
17851 directory and file name numbers in the statement program
17852 are 1-based. */
d9b3de22 17853 struct file_entry *fe = &lh->file_names[state_machine.file - 1];
d521ce57 17854 const char *dir = NULL;
a738430d 17855
afa6c9ab 17856 if (fe->dir_index && lh->include_dirs != NULL)
debd256d 17857 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb 17858
4d663531 17859 dwarf2_start_subfile (fe->name, dir);
c906108c
SS
17860 }
17861
a738430d 17862 /* Decode the table. */
d9b3de22 17863 while (line_ptr < line_end && !end_sequence)
c906108c
SS
17864 {
17865 op_code = read_1_byte (abfd, line_ptr);
17866 line_ptr += 1;
9aa1fe7e 17867
debd256d 17868 if (op_code >= lh->opcode_base)
6e70227d 17869 {
8e07a239 17870 /* Special opcode. */
699ca60a 17871 unsigned char adj_opcode;
3e29f34a 17872 CORE_ADDR addr_adj;
a05a36a5 17873 int line_delta;
8e07a239 17874
debd256d 17875 adj_opcode = op_code - lh->opcode_base;
d9b3de22
DE
17876 addr_adj = (((state_machine.op_index
17877 + (adj_opcode / lh->line_range))
2dc7f7b3
TT
17878 / lh->maximum_ops_per_instruction)
17879 * lh->minimum_instruction_length);
d9b3de22
DE
17880 state_machine.address
17881 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17882 state_machine.op_index = ((state_machine.op_index
17883 + (adj_opcode / lh->line_range))
17884 % lh->maximum_ops_per_instruction);
a05a36a5 17885 line_delta = lh->line_base + (adj_opcode % lh->line_range);
d9b3de22 17886 state_machine.line += line_delta;
a05a36a5 17887 if (line_delta != 0)
d9b3de22
DE
17888 state_machine.line_has_non_zero_discriminator
17889 = state_machine.discriminator != 0;
17890
17891 dwarf_record_line (&reader_state, &state_machine, 0);
17892 state_machine.discriminator = 0;
9aa1fe7e
GK
17893 }
17894 else switch (op_code)
c906108c
SS
17895 {
17896 case DW_LNS_extended_op:
3e43a32a
MS
17897 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17898 &bytes_read);
473b7be6 17899 line_ptr += bytes_read;
a8c50c1f 17900 extended_end = line_ptr + extended_len;
c906108c
SS
17901 extended_op = read_1_byte (abfd, line_ptr);
17902 line_ptr += 1;
17903 switch (extended_op)
17904 {
17905 case DW_LNE_end_sequence:
d9b3de22 17906 state_machine.record_line = record_line;
c906108c 17907 end_sequence = 1;
c906108c
SS
17908 break;
17909 case DW_LNE_set_address:
d9b3de22
DE
17910 {
17911 CORE_ADDR address
17912 = read_address (abfd, line_ptr, cu, &bytes_read);
17913
17914 line_ptr += bytes_read;
17915 check_line_address (cu, &state_machine, line_ptr,
17916 lowpc, address);
17917 state_machine.op_index = 0;
17918 address += baseaddr;
17919 state_machine.address
17920 = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
17921 }
c906108c
SS
17922 break;
17923 case DW_LNE_define_file:
debd256d 17924 {
d521ce57 17925 const char *cur_file;
debd256d 17926 unsigned int dir_index, mod_time, length;
6e70227d 17927
3e43a32a
MS
17928 cur_file = read_direct_string (abfd, line_ptr,
17929 &bytes_read);
debd256d
JB
17930 line_ptr += bytes_read;
17931 dir_index =
17932 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17933 line_ptr += bytes_read;
17934 mod_time =
17935 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17936 line_ptr += bytes_read;
17937 length =
17938 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17939 line_ptr += bytes_read;
17940 add_file_name (lh, cur_file, dir_index, mod_time, length);
17941 }
c906108c 17942 break;
d0c6ba3d
CC
17943 case DW_LNE_set_discriminator:
17944 /* The discriminator is not interesting to the debugger;
a05a36a5
DE
17945 just ignore it. We still need to check its value though:
17946 if there are consecutive entries for the same
17947 (non-prologue) line we want to coalesce them.
17948 PR 17276. */
d9b3de22
DE
17949 state_machine.discriminator
17950 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17951 state_machine.line_has_non_zero_discriminator
17952 |= state_machine.discriminator != 0;
a05a36a5 17953 line_ptr += bytes_read;
d0c6ba3d 17954 break;
c906108c 17955 default:
4d3c2250 17956 complaint (&symfile_complaints,
e2e0b3e5 17957 _("mangled .debug_line section"));
debd256d 17958 return;
c906108c 17959 }
a8c50c1f
DJ
17960 /* Make sure that we parsed the extended op correctly. If e.g.
17961 we expected a different address size than the producer used,
17962 we may have read the wrong number of bytes. */
17963 if (line_ptr != extended_end)
17964 {
17965 complaint (&symfile_complaints,
17966 _("mangled .debug_line section"));
17967 return;
17968 }
c906108c
SS
17969 break;
17970 case DW_LNS_copy:
d9b3de22
DE
17971 dwarf_record_line (&reader_state, &state_machine, 0);
17972 state_machine.discriminator = 0;
c906108c
SS
17973 break;
17974 case DW_LNS_advance_pc:
2dc7f7b3
TT
17975 {
17976 CORE_ADDR adjust
17977 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
3e29f34a 17978 CORE_ADDR addr_adj;
2dc7f7b3 17979
d9b3de22 17980 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
17981 / lh->maximum_ops_per_instruction)
17982 * lh->minimum_instruction_length);
d9b3de22
DE
17983 state_machine.address
17984 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17985 state_machine.op_index = ((state_machine.op_index + adjust)
17986 % lh->maximum_ops_per_instruction);
2dc7f7b3
TT
17987 line_ptr += bytes_read;
17988 }
c906108c
SS
17989 break;
17990 case DW_LNS_advance_line:
a05a36a5
DE
17991 {
17992 int line_delta
17993 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17994
d9b3de22 17995 state_machine.line += line_delta;
a05a36a5 17996 if (line_delta != 0)
d9b3de22
DE
17997 state_machine.line_has_non_zero_discriminator
17998 = state_machine.discriminator != 0;
a05a36a5
DE
17999 line_ptr += bytes_read;
18000 }
c906108c
SS
18001 break;
18002 case DW_LNS_set_file:
d9b3de22
DE
18003 {
18004 /* The arrays lh->include_dirs and lh->file_names are
18005 0-based, but the directory and file name numbers in
18006 the statement program are 1-based. */
18007 struct file_entry *fe;
18008 const char *dir = NULL;
18009
18010 state_machine.file = read_unsigned_leb128 (abfd, line_ptr,
18011 &bytes_read);
18012 line_ptr += bytes_read;
18013 if (state_machine.file == 0
18014 || state_machine.file - 1 >= lh->num_file_names)
18015 dwarf2_debug_line_missing_file_complaint ();
18016 else
18017 {
18018 fe = &lh->file_names[state_machine.file - 1];
18019 if (fe->dir_index && lh->include_dirs != NULL)
18020 dir = lh->include_dirs[fe->dir_index - 1];
18021 if (record_lines_p)
18022 {
18023 state_machine.last_subfile = current_subfile;
18024 state_machine.line_has_non_zero_discriminator
18025 = state_machine.discriminator != 0;
18026 dwarf2_start_subfile (fe->name, dir);
18027 }
18028 }
18029 }
c906108c
SS
18030 break;
18031 case DW_LNS_set_column:
0ad93d4f 18032 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
18033 line_ptr += bytes_read;
18034 break;
18035 case DW_LNS_negate_stmt:
d9b3de22 18036 state_machine.is_stmt = (!state_machine.is_stmt);
c906108c
SS
18037 break;
18038 case DW_LNS_set_basic_block:
c906108c 18039 break;
c2c6d25f
JM
18040 /* Add to the address register of the state machine the
18041 address increment value corresponding to special opcode
a738430d
MK
18042 255. I.e., this value is scaled by the minimum
18043 instruction length since special opcode 255 would have
b021a221 18044 scaled the increment. */
c906108c 18045 case DW_LNS_const_add_pc:
2dc7f7b3
TT
18046 {
18047 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
3e29f34a 18048 CORE_ADDR addr_adj;
2dc7f7b3 18049
d9b3de22 18050 addr_adj = (((state_machine.op_index + adjust)
2dc7f7b3
TT
18051 / lh->maximum_ops_per_instruction)
18052 * lh->minimum_instruction_length);
d9b3de22
DE
18053 state_machine.address
18054 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18055 state_machine.op_index = ((state_machine.op_index + adjust)
18056 % lh->maximum_ops_per_instruction);
2dc7f7b3 18057 }
c906108c
SS
18058 break;
18059 case DW_LNS_fixed_advance_pc:
3e29f34a
MR
18060 {
18061 CORE_ADDR addr_adj;
18062
18063 addr_adj = read_2_bytes (abfd, line_ptr);
d9b3de22
DE
18064 state_machine.address
18065 += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
18066 state_machine.op_index = 0;
3e29f34a
MR
18067 line_ptr += 2;
18068 }
c906108c 18069 break;
9aa1fe7e 18070 default:
a738430d
MK
18071 {
18072 /* Unknown standard opcode, ignore it. */
9aa1fe7e 18073 int i;
a738430d 18074
debd256d 18075 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
18076 {
18077 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
18078 line_ptr += bytes_read;
18079 }
18080 }
c906108c
SS
18081 }
18082 }
d9b3de22
DE
18083
18084 if (!end_sequence)
18085 dwarf2_debug_line_missing_end_sequence_complaint ();
18086
18087 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
18088 in which case we still finish recording the last line). */
18089 dwarf_record_line (&reader_state, &state_machine, 1);
c906108c 18090 }
f3f5162e
DE
18091}
18092
18093/* Decode the Line Number Program (LNP) for the given line_header
18094 structure and CU. The actual information extracted and the type
18095 of structures created from the LNP depends on the value of PST.
18096
18097 1. If PST is NULL, then this procedure uses the data from the program
18098 to create all necessary symbol tables, and their linetables.
18099
18100 2. If PST is not NULL, this procedure reads the program to determine
18101 the list of files included by the unit represented by PST, and
18102 builds all the associated partial symbol tables.
18103
18104 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
18105 It is used for relative paths in the line table.
18106 NOTE: When processing partial symtabs (pst != NULL),
18107 comp_dir == pst->dirname.
18108
18109 NOTE: It is important that psymtabs have the same file name (via strcmp)
18110 as the corresponding symtab. Since COMP_DIR is not used in the name of the
18111 symtab we don't use it in the name of the psymtabs we create.
18112 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
18113 A good testcase for this is mb-inline.exp.
18114
527f3840
JK
18115 LOWPC is the lowest address in CU (or 0 if not known).
18116
18117 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
18118 for its PC<->lines mapping information. Otherwise only the filename
18119 table is read in. */
f3f5162e
DE
18120
18121static void
18122dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696 18123 struct dwarf2_cu *cu, struct partial_symtab *pst,
527f3840 18124 CORE_ADDR lowpc, int decode_mapping)
f3f5162e
DE
18125{
18126 struct objfile *objfile = cu->objfile;
18127 const int decode_for_pst_p = (pst != NULL);
f3f5162e 18128
527f3840
JK
18129 if (decode_mapping)
18130 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
18131
18132 if (decode_for_pst_p)
18133 {
18134 int file_index;
18135
18136 /* Now that we're done scanning the Line Header Program, we can
18137 create the psymtab of each included file. */
18138 for (file_index = 0; file_index < lh->num_file_names; file_index++)
18139 if (lh->file_names[file_index].included_p == 1)
18140 {
d521ce57 18141 const char *include_name =
c6da4cef
DE
18142 psymtab_include_file_name (lh, file_index, pst, comp_dir);
18143 if (include_name != NULL)
aaa75496
JB
18144 dwarf2_create_include_psymtab (include_name, pst, objfile);
18145 }
18146 }
cb1df416
DJ
18147 else
18148 {
18149 /* Make sure a symtab is created for every file, even files
18150 which contain only variables (i.e. no code with associated
18151 line numbers). */
43f3e411 18152 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 18153 int i;
cb1df416
DJ
18154
18155 for (i = 0; i < lh->num_file_names; i++)
18156 {
d521ce57 18157 const char *dir = NULL;
f3f5162e 18158 struct file_entry *fe;
9a619af0 18159
cb1df416 18160 fe = &lh->file_names[i];
afa6c9ab 18161 if (fe->dir_index && lh->include_dirs != NULL)
cb1df416 18162 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 18163 dwarf2_start_subfile (fe->name, dir);
cb1df416 18164
cb1df416 18165 if (current_subfile->symtab == NULL)
43f3e411
DE
18166 {
18167 current_subfile->symtab
18168 = allocate_symtab (cust, current_subfile->name);
18169 }
cb1df416
DJ
18170 fe->symtab = current_subfile->symtab;
18171 }
18172 }
c906108c
SS
18173}
18174
18175/* Start a subfile for DWARF. FILENAME is the name of the file and
18176 DIRNAME the name of the source directory which contains FILENAME
4d663531 18177 or NULL if not known.
c906108c
SS
18178 This routine tries to keep line numbers from identical absolute and
18179 relative file names in a common subfile.
18180
18181 Using the `list' example from the GDB testsuite, which resides in
18182 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
18183 of /srcdir/list0.c yields the following debugging information for list0.c:
18184
c5aa993b 18185 DW_AT_name: /srcdir/list0.c
4d663531 18186 DW_AT_comp_dir: /compdir
357e46e7 18187 files.files[0].name: list0.h
c5aa993b 18188 files.files[0].dir: /srcdir
357e46e7 18189 files.files[1].name: list0.c
c5aa993b 18190 files.files[1].dir: /srcdir
c906108c
SS
18191
18192 The line number information for list0.c has to end up in a single
4f1520fb
FR
18193 subfile, so that `break /srcdir/list0.c:1' works as expected.
18194 start_subfile will ensure that this happens provided that we pass the
18195 concatenation of files.files[1].dir and files.files[1].name as the
18196 subfile's name. */
c906108c
SS
18197
18198static void
4d663531 18199dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 18200{
d521ce57 18201 char *copy = NULL;
4f1520fb 18202
4d663531 18203 /* In order not to lose the line information directory,
4f1520fb
FR
18204 we concatenate it to the filename when it makes sense.
18205 Note that the Dwarf3 standard says (speaking of filenames in line
18206 information): ``The directory index is ignored for file names
18207 that represent full path names''. Thus ignoring dirname in the
18208 `else' branch below isn't an issue. */
c906108c 18209
d5166ae1 18210 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
18211 {
18212 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
18213 filename = copy;
18214 }
c906108c 18215
4d663531 18216 start_subfile (filename);
4f1520fb 18217
d521ce57
TT
18218 if (copy != NULL)
18219 xfree (copy);
c906108c
SS
18220}
18221
f4dc4d17
DE
18222/* Start a symtab for DWARF.
18223 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
18224
43f3e411 18225static struct compunit_symtab *
f4dc4d17 18226dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 18227 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 18228{
43f3e411
DE
18229 struct compunit_symtab *cust
18230 = start_symtab (cu->objfile, name, comp_dir, low_pc);
18231
f4dc4d17
DE
18232 record_debugformat ("DWARF 2");
18233 record_producer (cu->producer);
18234
18235 /* We assume that we're processing GCC output. */
18236 processing_gcc_compilation = 2;
18237
4d4ec4e5 18238 cu->processing_has_namespace_info = 0;
43f3e411
DE
18239
18240 return cust;
f4dc4d17
DE
18241}
18242
4c2df51b
DJ
18243static void
18244var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 18245 struct dwarf2_cu *cu)
4c2df51b 18246{
e7c27a73
DJ
18247 struct objfile *objfile = cu->objfile;
18248 struct comp_unit_head *cu_header = &cu->header;
18249
4c2df51b
DJ
18250 /* NOTE drow/2003-01-30: There used to be a comment and some special
18251 code here to turn a symbol with DW_AT_external and a
18252 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
18253 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
18254 with some versions of binutils) where shared libraries could have
18255 relocations against symbols in their debug information - the
18256 minimal symbol would have the right address, but the debug info
18257 would not. It's no longer necessary, because we will explicitly
18258 apply relocations when we read in the debug information now. */
18259
18260 /* A DW_AT_location attribute with no contents indicates that a
18261 variable has been optimized away. */
18262 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
18263 {
f1e6e072 18264 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
18265 return;
18266 }
18267
18268 /* Handle one degenerate form of location expression specially, to
18269 preserve GDB's previous behavior when section offsets are
3019eac3
DE
18270 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
18271 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
18272
18273 if (attr_form_is_block (attr)
3019eac3
DE
18274 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
18275 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
18276 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
18277 && (DW_BLOCK (attr)->size
18278 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 18279 {
891d2f0b 18280 unsigned int dummy;
4c2df51b 18281
3019eac3
DE
18282 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
18283 SYMBOL_VALUE_ADDRESS (sym) =
18284 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
18285 else
18286 SYMBOL_VALUE_ADDRESS (sym) =
18287 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 18288 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
18289 fixup_symbol_section (sym, objfile);
18290 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
18291 SYMBOL_SECTION (sym));
4c2df51b
DJ
18292 return;
18293 }
18294
18295 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
18296 expression evaluator, and use LOC_COMPUTED only when necessary
18297 (i.e. when the value of a register or memory location is
18298 referenced, or a thread-local block, etc.). Then again, it might
18299 not be worthwhile. I'm assuming that it isn't unless performance
18300 or memory numbers show me otherwise. */
18301
f1e6e072 18302 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 18303
f1e6e072 18304 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 18305 cu->has_loclist = 1;
4c2df51b
DJ
18306}
18307
c906108c
SS
18308/* Given a pointer to a DWARF information entry, figure out if we need
18309 to make a symbol table entry for it, and if so, create a new entry
18310 and return a pointer to it.
18311 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
18312 used the passed type.
18313 If SPACE is not NULL, use it to hold the new symbol. If it is
18314 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
18315
18316static struct symbol *
34eaf542
TT
18317new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
18318 struct symbol *space)
c906108c 18319{
e7c27a73 18320 struct objfile *objfile = cu->objfile;
3e29f34a 18321 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 18322 struct symbol *sym = NULL;
15d034d0 18323 const char *name;
c906108c
SS
18324 struct attribute *attr = NULL;
18325 struct attribute *attr2 = NULL;
e142c38c 18326 CORE_ADDR baseaddr;
e37fd15a
SW
18327 struct pending **list_to_add = NULL;
18328
edb3359d 18329 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
18330
18331 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 18332
94af9270 18333 name = dwarf2_name (die, cu);
c906108c
SS
18334 if (name)
18335 {
94af9270 18336 const char *linkagename;
34eaf542 18337 int suppress_add = 0;
94af9270 18338
34eaf542
TT
18339 if (space)
18340 sym = space;
18341 else
e623cf5d 18342 sym = allocate_symbol (objfile);
c906108c 18343 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
18344
18345 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 18346 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
18347 linkagename = dwarf2_physname (name, die, cu);
18348 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 18349
f55ee35c
JK
18350 /* Fortran does not have mangling standard and the mangling does differ
18351 between gfortran, iFort etc. */
18352 if (cu->language == language_fortran
b250c185 18353 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 18354 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 18355 dwarf2_full_name (name, die, cu),
29df156d 18356 NULL);
f55ee35c 18357
c906108c 18358 /* Default assumptions.
c5aa993b 18359 Use the passed type or decode it from the die. */
176620f1 18360 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 18361 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
18362 if (type != NULL)
18363 SYMBOL_TYPE (sym) = type;
18364 else
e7c27a73 18365 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
18366 attr = dwarf2_attr (die,
18367 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
18368 cu);
c906108c
SS
18369 if (attr)
18370 {
18371 SYMBOL_LINE (sym) = DW_UNSND (attr);
18372 }
cb1df416 18373
edb3359d
DJ
18374 attr = dwarf2_attr (die,
18375 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
18376 cu);
cb1df416
DJ
18377 if (attr)
18378 {
18379 int file_index = DW_UNSND (attr);
9a619af0 18380
cb1df416
DJ
18381 if (cu->line_header == NULL
18382 || file_index > cu->line_header->num_file_names)
18383 complaint (&symfile_complaints,
18384 _("file index out of range"));
1c3d648d 18385 else if (file_index > 0)
cb1df416
DJ
18386 {
18387 struct file_entry *fe;
9a619af0 18388
cb1df416 18389 fe = &cu->line_header->file_names[file_index - 1];
08be3fe3 18390 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
18391 }
18392 }
18393
c906108c
SS
18394 switch (die->tag)
18395 {
18396 case DW_TAG_label:
e142c38c 18397 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 18398 if (attr)
3e29f34a
MR
18399 {
18400 CORE_ADDR addr;
18401
18402 addr = attr_value_as_address (attr);
18403 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
18404 SYMBOL_VALUE_ADDRESS (sym) = addr;
18405 }
0f5238ed
TT
18406 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
18407 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 18408 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 18409 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
18410 break;
18411 case DW_TAG_subprogram:
18412 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18413 finish_block. */
f1e6e072 18414 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 18415 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
18416 if ((attr2 && (DW_UNSND (attr2) != 0))
18417 || cu->language == language_ada)
c906108c 18418 {
2cfa0c8d
JB
18419 /* Subprograms marked external are stored as a global symbol.
18420 Ada subprograms, whether marked external or not, are always
18421 stored as a global symbol, because we want to be able to
18422 access them globally. For instance, we want to be able
18423 to break on a nested subprogram without having to
18424 specify the context. */
e37fd15a 18425 list_to_add = &global_symbols;
c906108c
SS
18426 }
18427 else
18428 {
e37fd15a 18429 list_to_add = cu->list_in_scope;
c906108c
SS
18430 }
18431 break;
edb3359d
DJ
18432 case DW_TAG_inlined_subroutine:
18433 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
18434 finish_block. */
f1e6e072 18435 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 18436 SYMBOL_INLINED (sym) = 1;
481860b3 18437 list_to_add = cu->list_in_scope;
edb3359d 18438 break;
34eaf542
TT
18439 case DW_TAG_template_value_param:
18440 suppress_add = 1;
18441 /* Fall through. */
72929c62 18442 case DW_TAG_constant:
c906108c 18443 case DW_TAG_variable:
254e6b9e 18444 case DW_TAG_member:
0963b4bd
MS
18445 /* Compilation with minimal debug info may result in
18446 variables with missing type entries. Change the
18447 misleading `void' type to something sensible. */
c906108c 18448 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 18449 SYMBOL_TYPE (sym)
46bf5051 18450 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 18451
e142c38c 18452 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
18453 /* In the case of DW_TAG_member, we should only be called for
18454 static const members. */
18455 if (die->tag == DW_TAG_member)
18456 {
3863f96c
DE
18457 /* dwarf2_add_field uses die_is_declaration,
18458 so we do the same. */
254e6b9e
DE
18459 gdb_assert (die_is_declaration (die, cu));
18460 gdb_assert (attr);
18461 }
c906108c
SS
18462 if (attr)
18463 {
e7c27a73 18464 dwarf2_const_value (attr, sym, cu);
e142c38c 18465 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 18466 if (!suppress_add)
34eaf542
TT
18467 {
18468 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 18469 list_to_add = &global_symbols;
34eaf542 18470 else
e37fd15a 18471 list_to_add = cu->list_in_scope;
34eaf542 18472 }
c906108c
SS
18473 break;
18474 }
e142c38c 18475 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18476 if (attr)
18477 {
e7c27a73 18478 var_decode_location (attr, sym, cu);
e142c38c 18479 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
18480
18481 /* Fortran explicitly imports any global symbols to the local
18482 scope by DW_TAG_common_block. */
18483 if (cu->language == language_fortran && die->parent
18484 && die->parent->tag == DW_TAG_common_block)
18485 attr2 = NULL;
18486
caac4577
JG
18487 if (SYMBOL_CLASS (sym) == LOC_STATIC
18488 && SYMBOL_VALUE_ADDRESS (sym) == 0
18489 && !dwarf2_per_objfile->has_section_at_zero)
18490 {
18491 /* When a static variable is eliminated by the linker,
18492 the corresponding debug information is not stripped
18493 out, but the variable address is set to null;
18494 do not add such variables into symbol table. */
18495 }
18496 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 18497 {
f55ee35c
JK
18498 /* Workaround gfortran PR debug/40040 - it uses
18499 DW_AT_location for variables in -fPIC libraries which may
18500 get overriden by other libraries/executable and get
18501 a different address. Resolve it by the minimal symbol
18502 which may come from inferior's executable using copy
18503 relocation. Make this workaround only for gfortran as for
18504 other compilers GDB cannot guess the minimal symbol
18505 Fortran mangling kind. */
18506 if (cu->language == language_fortran && die->parent
18507 && die->parent->tag == DW_TAG_module
18508 && cu->producer
28586665 18509 && startswith (cu->producer, "GNU Fortran"))
f1e6e072 18510 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 18511
1c809c68
TT
18512 /* A variable with DW_AT_external is never static,
18513 but it may be block-scoped. */
18514 list_to_add = (cu->list_in_scope == &file_symbols
18515 ? &global_symbols : cu->list_in_scope);
1c809c68 18516 }
c906108c 18517 else
e37fd15a 18518 list_to_add = cu->list_in_scope;
c906108c
SS
18519 }
18520 else
18521 {
18522 /* We do not know the address of this symbol.
c5aa993b
JM
18523 If it is an external symbol and we have type information
18524 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18525 The address of the variable will then be determined from
18526 the minimal symbol table whenever the variable is
18527 referenced. */
e142c38c 18528 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
18529
18530 /* Fortran explicitly imports any global symbols to the local
18531 scope by DW_TAG_common_block. */
18532 if (cu->language == language_fortran && die->parent
18533 && die->parent->tag == DW_TAG_common_block)
18534 {
18535 /* SYMBOL_CLASS doesn't matter here because
18536 read_common_block is going to reset it. */
18537 if (!suppress_add)
18538 list_to_add = cu->list_in_scope;
18539 }
18540 else if (attr2 && (DW_UNSND (attr2) != 0)
18541 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 18542 {
0fe7935b
DJ
18543 /* A variable with DW_AT_external is never static, but it
18544 may be block-scoped. */
18545 list_to_add = (cu->list_in_scope == &file_symbols
18546 ? &global_symbols : cu->list_in_scope);
18547
f1e6e072 18548 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 18549 }
442ddf59
JK
18550 else if (!die_is_declaration (die, cu))
18551 {
18552 /* Use the default LOC_OPTIMIZED_OUT class. */
18553 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
18554 if (!suppress_add)
18555 list_to_add = cu->list_in_scope;
442ddf59 18556 }
c906108c
SS
18557 }
18558 break;
18559 case DW_TAG_formal_parameter:
edb3359d
DJ
18560 /* If we are inside a function, mark this as an argument. If
18561 not, we might be looking at an argument to an inlined function
18562 when we do not have enough information to show inlined frames;
18563 pretend it's a local variable in that case so that the user can
18564 still see it. */
18565 if (context_stack_depth > 0
18566 && context_stack[context_stack_depth - 1].name != NULL)
18567 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 18568 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18569 if (attr)
18570 {
e7c27a73 18571 var_decode_location (attr, sym, cu);
c906108c 18572 }
e142c38c 18573 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18574 if (attr)
18575 {
e7c27a73 18576 dwarf2_const_value (attr, sym, cu);
c906108c 18577 }
f346a30d 18578
e37fd15a 18579 list_to_add = cu->list_in_scope;
c906108c
SS
18580 break;
18581 case DW_TAG_unspecified_parameters:
18582 /* From varargs functions; gdb doesn't seem to have any
18583 interest in this information, so just ignore it for now.
18584 (FIXME?) */
18585 break;
34eaf542
TT
18586 case DW_TAG_template_type_param:
18587 suppress_add = 1;
18588 /* Fall through. */
c906108c 18589 case DW_TAG_class_type:
680b30c7 18590 case DW_TAG_interface_type:
c906108c
SS
18591 case DW_TAG_structure_type:
18592 case DW_TAG_union_type:
72019c9c 18593 case DW_TAG_set_type:
c906108c 18594 case DW_TAG_enumeration_type:
f1e6e072 18595 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18596 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 18597
63d06c5c 18598 {
987504bb 18599 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
18600 really ever be static objects: otherwise, if you try
18601 to, say, break of a class's method and you're in a file
18602 which doesn't mention that class, it won't work unless
18603 the check for all static symbols in lookup_symbol_aux
18604 saves you. See the OtherFileClass tests in
18605 gdb.c++/namespace.exp. */
18606
e37fd15a 18607 if (!suppress_add)
34eaf542 18608 {
34eaf542
TT
18609 list_to_add = (cu->list_in_scope == &file_symbols
18610 && (cu->language == language_cplus
18611 || cu->language == language_java)
18612 ? &global_symbols : cu->list_in_scope);
63d06c5c 18613
64382290
TT
18614 /* The semantics of C++ state that "struct foo {
18615 ... }" also defines a typedef for "foo". A Java
18616 class declaration also defines a typedef for the
18617 class. */
18618 if (cu->language == language_cplus
18619 || cu->language == language_java
45280282
IB
18620 || cu->language == language_ada
18621 || cu->language == language_d)
64382290
TT
18622 {
18623 /* The symbol's name is already allocated along
18624 with this objfile, so we don't need to
18625 duplicate it for the type. */
18626 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18627 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18628 }
63d06c5c
DC
18629 }
18630 }
c906108c
SS
18631 break;
18632 case DW_TAG_typedef:
f1e6e072 18633 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 18634 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18635 list_to_add = cu->list_in_scope;
63d06c5c 18636 break;
c906108c 18637 case DW_TAG_base_type:
a02abb62 18638 case DW_TAG_subrange_type:
f1e6e072 18639 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18640 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18641 list_to_add = cu->list_in_scope;
c906108c
SS
18642 break;
18643 case DW_TAG_enumerator:
e142c38c 18644 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18645 if (attr)
18646 {
e7c27a73 18647 dwarf2_const_value (attr, sym, cu);
c906108c 18648 }
63d06c5c
DC
18649 {
18650 /* NOTE: carlton/2003-11-10: See comment above in the
18651 DW_TAG_class_type, etc. block. */
18652
e142c38c 18653 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
18654 && (cu->language == language_cplus
18655 || cu->language == language_java)
e142c38c 18656 ? &global_symbols : cu->list_in_scope);
63d06c5c 18657 }
c906108c 18658 break;
74921315 18659 case DW_TAG_imported_declaration:
5c4e30ca 18660 case DW_TAG_namespace:
f1e6e072 18661 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 18662 list_to_add = &global_symbols;
5c4e30ca 18663 break;
530e8392
KB
18664 case DW_TAG_module:
18665 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18666 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18667 list_to_add = &global_symbols;
18668 break;
4357ac6c 18669 case DW_TAG_common_block:
f1e6e072 18670 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
18671 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18672 add_symbol_to_list (sym, cu->list_in_scope);
18673 break;
c906108c
SS
18674 default:
18675 /* Not a tag we recognize. Hopefully we aren't processing
18676 trash data, but since we must specifically ignore things
18677 we don't recognize, there is nothing else we should do at
0963b4bd 18678 this point. */
e2e0b3e5 18679 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 18680 dwarf_tag_name (die->tag));
c906108c
SS
18681 break;
18682 }
df8a16a1 18683
e37fd15a
SW
18684 if (suppress_add)
18685 {
18686 sym->hash_next = objfile->template_symbols;
18687 objfile->template_symbols = sym;
18688 list_to_add = NULL;
18689 }
18690
18691 if (list_to_add != NULL)
18692 add_symbol_to_list (sym, list_to_add);
18693
df8a16a1
DJ
18694 /* For the benefit of old versions of GCC, check for anonymous
18695 namespaces based on the demangled name. */
4d4ec4e5 18696 if (!cu->processing_has_namespace_info
94af9270 18697 && cu->language == language_cplus)
a10964d1 18698 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
18699 }
18700 return (sym);
18701}
18702
34eaf542
TT
18703/* A wrapper for new_symbol_full that always allocates a new symbol. */
18704
18705static struct symbol *
18706new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18707{
18708 return new_symbol_full (die, type, cu, NULL);
18709}
18710
98bfdba5
PA
18711/* Given an attr with a DW_FORM_dataN value in host byte order,
18712 zero-extend it as appropriate for the symbol's type. The DWARF
18713 standard (v4) is not entirely clear about the meaning of using
18714 DW_FORM_dataN for a constant with a signed type, where the type is
18715 wider than the data. The conclusion of a discussion on the DWARF
18716 list was that this is unspecified. We choose to always zero-extend
18717 because that is the interpretation long in use by GCC. */
c906108c 18718
98bfdba5 18719static gdb_byte *
ff39bb5e 18720dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 18721 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 18722{
e7c27a73 18723 struct objfile *objfile = cu->objfile;
e17a4113
UW
18724 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18725 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
18726 LONGEST l = DW_UNSND (attr);
18727
18728 if (bits < sizeof (*value) * 8)
18729 {
18730 l &= ((LONGEST) 1 << bits) - 1;
18731 *value = l;
18732 }
18733 else if (bits == sizeof (*value) * 8)
18734 *value = l;
18735 else
18736 {
224c3ddb 18737 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
98bfdba5
PA
18738 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18739 return bytes;
18740 }
18741
18742 return NULL;
18743}
18744
18745/* Read a constant value from an attribute. Either set *VALUE, or if
18746 the value does not fit in *VALUE, set *BYTES - either already
18747 allocated on the objfile obstack, or newly allocated on OBSTACK,
18748 or, set *BATON, if we translated the constant to a location
18749 expression. */
18750
18751static void
ff39bb5e 18752dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
18753 const char *name, struct obstack *obstack,
18754 struct dwarf2_cu *cu,
d521ce57 18755 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
18756 struct dwarf2_locexpr_baton **baton)
18757{
18758 struct objfile *objfile = cu->objfile;
18759 struct comp_unit_head *cu_header = &cu->header;
c906108c 18760 struct dwarf_block *blk;
98bfdba5
PA
18761 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18762 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18763
18764 *value = 0;
18765 *bytes = NULL;
18766 *baton = NULL;
c906108c
SS
18767
18768 switch (attr->form)
18769 {
18770 case DW_FORM_addr:
3019eac3 18771 case DW_FORM_GNU_addr_index:
ac56253d 18772 {
ac56253d
TT
18773 gdb_byte *data;
18774
98bfdba5
PA
18775 if (TYPE_LENGTH (type) != cu_header->addr_size)
18776 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 18777 cu_header->addr_size,
98bfdba5 18778 TYPE_LENGTH (type));
ac56253d
TT
18779 /* Symbols of this form are reasonably rare, so we just
18780 piggyback on the existing location code rather than writing
18781 a new implementation of symbol_computed_ops. */
8d749320 18782 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
98bfdba5
PA
18783 (*baton)->per_cu = cu->per_cu;
18784 gdb_assert ((*baton)->per_cu);
ac56253d 18785
98bfdba5 18786 (*baton)->size = 2 + cu_header->addr_size;
224c3ddb 18787 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
98bfdba5 18788 (*baton)->data = data;
ac56253d
TT
18789
18790 data[0] = DW_OP_addr;
18791 store_unsigned_integer (&data[1], cu_header->addr_size,
18792 byte_order, DW_ADDR (attr));
18793 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 18794 }
c906108c 18795 break;
4ac36638 18796 case DW_FORM_string:
93b5768b 18797 case DW_FORM_strp:
3019eac3 18798 case DW_FORM_GNU_str_index:
36586728 18799 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
18800 /* DW_STRING is already allocated on the objfile obstack, point
18801 directly to it. */
d521ce57 18802 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 18803 break;
c906108c
SS
18804 case DW_FORM_block1:
18805 case DW_FORM_block2:
18806 case DW_FORM_block4:
18807 case DW_FORM_block:
2dc7f7b3 18808 case DW_FORM_exprloc:
c906108c 18809 blk = DW_BLOCK (attr);
98bfdba5
PA
18810 if (TYPE_LENGTH (type) != blk->size)
18811 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18812 TYPE_LENGTH (type));
18813 *bytes = blk->data;
c906108c 18814 break;
2df3850c
JM
18815
18816 /* The DW_AT_const_value attributes are supposed to carry the
18817 symbol's value "represented as it would be on the target
18818 architecture." By the time we get here, it's already been
18819 converted to host endianness, so we just need to sign- or
18820 zero-extend it as appropriate. */
18821 case DW_FORM_data1:
3aef2284 18822 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 18823 break;
c906108c 18824 case DW_FORM_data2:
3aef2284 18825 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 18826 break;
c906108c 18827 case DW_FORM_data4:
3aef2284 18828 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 18829 break;
c906108c 18830 case DW_FORM_data8:
3aef2284 18831 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
18832 break;
18833
c906108c 18834 case DW_FORM_sdata:
98bfdba5 18835 *value = DW_SND (attr);
2df3850c
JM
18836 break;
18837
c906108c 18838 case DW_FORM_udata:
98bfdba5 18839 *value = DW_UNSND (attr);
c906108c 18840 break;
2df3850c 18841
c906108c 18842 default:
4d3c2250 18843 complaint (&symfile_complaints,
e2e0b3e5 18844 _("unsupported const value attribute form: '%s'"),
4d3c2250 18845 dwarf_form_name (attr->form));
98bfdba5 18846 *value = 0;
c906108c
SS
18847 break;
18848 }
18849}
18850
2df3850c 18851
98bfdba5
PA
18852/* Copy constant value from an attribute to a symbol. */
18853
2df3850c 18854static void
ff39bb5e 18855dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 18856 struct dwarf2_cu *cu)
2df3850c 18857{
98bfdba5
PA
18858 struct objfile *objfile = cu->objfile;
18859 struct comp_unit_head *cu_header = &cu->header;
12df843f 18860 LONGEST value;
d521ce57 18861 const gdb_byte *bytes;
98bfdba5 18862 struct dwarf2_locexpr_baton *baton;
2df3850c 18863
98bfdba5
PA
18864 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18865 SYMBOL_PRINT_NAME (sym),
18866 &objfile->objfile_obstack, cu,
18867 &value, &bytes, &baton);
2df3850c 18868
98bfdba5
PA
18869 if (baton != NULL)
18870 {
98bfdba5 18871 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 18872 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
18873 }
18874 else if (bytes != NULL)
18875 {
18876 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 18877 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
18878 }
18879 else
18880 {
18881 SYMBOL_VALUE (sym) = value;
f1e6e072 18882 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 18883 }
2df3850c
JM
18884}
18885
c906108c
SS
18886/* Return the type of the die in question using its DW_AT_type attribute. */
18887
18888static struct type *
e7c27a73 18889die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18890{
c906108c 18891 struct attribute *type_attr;
c906108c 18892
e142c38c 18893 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
18894 if (!type_attr)
18895 {
18896 /* A missing DW_AT_type represents a void type. */
46bf5051 18897 return objfile_type (cu->objfile)->builtin_void;
c906108c 18898 }
348e048f 18899
673bfd45 18900 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18901}
18902
b4ba55a1
JB
18903/* True iff CU's producer generates GNAT Ada auxiliary information
18904 that allows to find parallel types through that information instead
18905 of having to do expensive parallel lookups by type name. */
18906
18907static int
18908need_gnat_info (struct dwarf2_cu *cu)
18909{
18910 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18911 of GNAT produces this auxiliary information, without any indication
18912 that it is produced. Part of enhancing the FSF version of GNAT
18913 to produce that information will be to put in place an indicator
18914 that we can use in order to determine whether the descriptive type
18915 info is available or not. One suggestion that has been made is
18916 to use a new attribute, attached to the CU die. For now, assume
18917 that the descriptive type info is not available. */
18918 return 0;
18919}
18920
b4ba55a1
JB
18921/* Return the auxiliary type of the die in question using its
18922 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18923 attribute is not present. */
18924
18925static struct type *
18926die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18927{
b4ba55a1 18928 struct attribute *type_attr;
b4ba55a1
JB
18929
18930 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18931 if (!type_attr)
18932 return NULL;
18933
673bfd45 18934 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
18935}
18936
18937/* If DIE has a descriptive_type attribute, then set the TYPE's
18938 descriptive type accordingly. */
18939
18940static void
18941set_descriptive_type (struct type *type, struct die_info *die,
18942 struct dwarf2_cu *cu)
18943{
18944 struct type *descriptive_type = die_descriptive_type (die, cu);
18945
18946 if (descriptive_type)
18947 {
18948 ALLOCATE_GNAT_AUX_TYPE (type);
18949 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18950 }
18951}
18952
c906108c
SS
18953/* Return the containing type of the die in question using its
18954 DW_AT_containing_type attribute. */
18955
18956static struct type *
e7c27a73 18957die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18958{
c906108c 18959 struct attribute *type_attr;
c906108c 18960
e142c38c 18961 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
18962 if (!type_attr)
18963 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 18964 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 18965
673bfd45 18966 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18967}
18968
ac9ec31b
DE
18969/* Return an error marker type to use for the ill formed type in DIE/CU. */
18970
18971static struct type *
18972build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18973{
18974 struct objfile *objfile = dwarf2_per_objfile->objfile;
18975 char *message, *saved;
18976
18977 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 18978 objfile_name (objfile),
ac9ec31b
DE
18979 cu->header.offset.sect_off,
18980 die->offset.sect_off);
224c3ddb
SM
18981 saved = (char *) obstack_copy0 (&objfile->objfile_obstack,
18982 message, strlen (message));
ac9ec31b
DE
18983 xfree (message);
18984
18985 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18986}
18987
673bfd45 18988/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
18989 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18990 DW_AT_containing_type.
673bfd45
DE
18991 If there is no type substitute an error marker. */
18992
c906108c 18993static struct type *
ff39bb5e 18994lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 18995 struct dwarf2_cu *cu)
c906108c 18996{
bb5ed363 18997 struct objfile *objfile = cu->objfile;
f792889a
DJ
18998 struct type *this_type;
18999
ac9ec31b
DE
19000 gdb_assert (attr->name == DW_AT_type
19001 || attr->name == DW_AT_GNAT_descriptive_type
19002 || attr->name == DW_AT_containing_type);
19003
673bfd45
DE
19004 /* First see if we have it cached. */
19005
36586728
TT
19006 if (attr->form == DW_FORM_GNU_ref_alt)
19007 {
19008 struct dwarf2_per_cu_data *per_cu;
19009 sect_offset offset = dwarf2_get_ref_die_offset (attr);
19010
19011 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
19012 this_type = get_die_type_at_offset (offset, per_cu);
19013 }
7771576e 19014 else if (attr_form_is_ref (attr))
673bfd45 19015 {
b64f50a1 19016 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
19017
19018 this_type = get_die_type_at_offset (offset, cu->per_cu);
19019 }
55f1336d 19020 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 19021 {
ac9ec31b 19022 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 19023
ac9ec31b 19024 return get_signatured_type (die, signature, cu);
673bfd45
DE
19025 }
19026 else
19027 {
ac9ec31b
DE
19028 complaint (&symfile_complaints,
19029 _("Dwarf Error: Bad type attribute %s in DIE"
19030 " at 0x%x [in module %s]"),
19031 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 19032 objfile_name (objfile));
ac9ec31b 19033 return build_error_marker_type (cu, die);
673bfd45
DE
19034 }
19035
19036 /* If not cached we need to read it in. */
19037
19038 if (this_type == NULL)
19039 {
ac9ec31b 19040 struct die_info *type_die = NULL;
673bfd45
DE
19041 struct dwarf2_cu *type_cu = cu;
19042
7771576e 19043 if (attr_form_is_ref (attr))
ac9ec31b
DE
19044 type_die = follow_die_ref (die, attr, &type_cu);
19045 if (type_die == NULL)
19046 return build_error_marker_type (cu, die);
19047 /* If we find the type now, it's probably because the type came
3019eac3
DE
19048 from an inter-CU reference and the type's CU got expanded before
19049 ours. */
ac9ec31b 19050 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
19051 }
19052
19053 /* If we still don't have a type use an error marker. */
19054
19055 if (this_type == NULL)
ac9ec31b 19056 return build_error_marker_type (cu, die);
673bfd45 19057
f792889a 19058 return this_type;
c906108c
SS
19059}
19060
673bfd45
DE
19061/* Return the type in DIE, CU.
19062 Returns NULL for invalid types.
19063
02142a6c 19064 This first does a lookup in die_type_hash,
673bfd45
DE
19065 and only reads the die in if necessary.
19066
19067 NOTE: This can be called when reading in partial or full symbols. */
19068
f792889a 19069static struct type *
e7c27a73 19070read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19071{
f792889a
DJ
19072 struct type *this_type;
19073
19074 this_type = get_die_type (die, cu);
19075 if (this_type)
19076 return this_type;
19077
673bfd45
DE
19078 return read_type_die_1 (die, cu);
19079}
19080
19081/* Read the type in DIE, CU.
19082 Returns NULL for invalid types. */
19083
19084static struct type *
19085read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
19086{
19087 struct type *this_type = NULL;
19088
c906108c
SS
19089 switch (die->tag)
19090 {
19091 case DW_TAG_class_type:
680b30c7 19092 case DW_TAG_interface_type:
c906108c
SS
19093 case DW_TAG_structure_type:
19094 case DW_TAG_union_type:
f792889a 19095 this_type = read_structure_type (die, cu);
c906108c
SS
19096 break;
19097 case DW_TAG_enumeration_type:
f792889a 19098 this_type = read_enumeration_type (die, cu);
c906108c
SS
19099 break;
19100 case DW_TAG_subprogram:
19101 case DW_TAG_subroutine_type:
edb3359d 19102 case DW_TAG_inlined_subroutine:
f792889a 19103 this_type = read_subroutine_type (die, cu);
c906108c
SS
19104 break;
19105 case DW_TAG_array_type:
f792889a 19106 this_type = read_array_type (die, cu);
c906108c 19107 break;
72019c9c 19108 case DW_TAG_set_type:
f792889a 19109 this_type = read_set_type (die, cu);
72019c9c 19110 break;
c906108c 19111 case DW_TAG_pointer_type:
f792889a 19112 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
19113 break;
19114 case DW_TAG_ptr_to_member_type:
f792889a 19115 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
19116 break;
19117 case DW_TAG_reference_type:
f792889a 19118 this_type = read_tag_reference_type (die, cu);
c906108c
SS
19119 break;
19120 case DW_TAG_const_type:
f792889a 19121 this_type = read_tag_const_type (die, cu);
c906108c
SS
19122 break;
19123 case DW_TAG_volatile_type:
f792889a 19124 this_type = read_tag_volatile_type (die, cu);
c906108c 19125 break;
06d66ee9
TT
19126 case DW_TAG_restrict_type:
19127 this_type = read_tag_restrict_type (die, cu);
19128 break;
c906108c 19129 case DW_TAG_string_type:
f792889a 19130 this_type = read_tag_string_type (die, cu);
c906108c
SS
19131 break;
19132 case DW_TAG_typedef:
f792889a 19133 this_type = read_typedef (die, cu);
c906108c 19134 break;
a02abb62 19135 case DW_TAG_subrange_type:
f792889a 19136 this_type = read_subrange_type (die, cu);
a02abb62 19137 break;
c906108c 19138 case DW_TAG_base_type:
f792889a 19139 this_type = read_base_type (die, cu);
c906108c 19140 break;
81a17f79 19141 case DW_TAG_unspecified_type:
f792889a 19142 this_type = read_unspecified_type (die, cu);
81a17f79 19143 break;
0114d602
DJ
19144 case DW_TAG_namespace:
19145 this_type = read_namespace_type (die, cu);
19146 break;
f55ee35c
JK
19147 case DW_TAG_module:
19148 this_type = read_module_type (die, cu);
19149 break;
a2c2acaf
MW
19150 case DW_TAG_atomic_type:
19151 this_type = read_tag_atomic_type (die, cu);
19152 break;
c906108c 19153 default:
3e43a32a
MS
19154 complaint (&symfile_complaints,
19155 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 19156 dwarf_tag_name (die->tag));
c906108c
SS
19157 break;
19158 }
63d06c5c 19159
f792889a 19160 return this_type;
63d06c5c
DC
19161}
19162
abc72ce4
DE
19163/* See if we can figure out if the class lives in a namespace. We do
19164 this by looking for a member function; its demangled name will
19165 contain namespace info, if there is any.
19166 Return the computed name or NULL.
19167 Space for the result is allocated on the objfile's obstack.
19168 This is the full-die version of guess_partial_die_structure_name.
19169 In this case we know DIE has no useful parent. */
19170
19171static char *
19172guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
19173{
19174 struct die_info *spec_die;
19175 struct dwarf2_cu *spec_cu;
19176 struct die_info *child;
19177
19178 spec_cu = cu;
19179 spec_die = die_specification (die, &spec_cu);
19180 if (spec_die != NULL)
19181 {
19182 die = spec_die;
19183 cu = spec_cu;
19184 }
19185
19186 for (child = die->child;
19187 child != NULL;
19188 child = child->sibling)
19189 {
19190 if (child->tag == DW_TAG_subprogram)
19191 {
7d45c7c3 19192 const char *linkage_name;
abc72ce4 19193
7d45c7c3
KB
19194 linkage_name = dwarf2_string_attr (child, DW_AT_linkage_name, cu);
19195 if (linkage_name == NULL)
19196 linkage_name = dwarf2_string_attr (child, DW_AT_MIPS_linkage_name,
19197 cu);
19198 if (linkage_name != NULL)
abc72ce4
DE
19199 {
19200 char *actual_name
19201 = language_class_name_from_physname (cu->language_defn,
7d45c7c3 19202 linkage_name);
abc72ce4
DE
19203 char *name = NULL;
19204
19205 if (actual_name != NULL)
19206 {
15d034d0 19207 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
19208
19209 if (die_name != NULL
19210 && strcmp (die_name, actual_name) != 0)
19211 {
19212 /* Strip off the class name from the full name.
19213 We want the prefix. */
19214 int die_name_len = strlen (die_name);
19215 int actual_name_len = strlen (actual_name);
19216
19217 /* Test for '::' as a sanity check. */
19218 if (actual_name_len > die_name_len + 2
3e43a32a
MS
19219 && actual_name[actual_name_len
19220 - die_name_len - 1] == ':')
224c3ddb
SM
19221 name = (char *) obstack_copy0 (
19222 &cu->objfile->per_bfd->storage_obstack,
19223 actual_name, actual_name_len - die_name_len - 2);
abc72ce4
DE
19224 }
19225 }
19226 xfree (actual_name);
19227 return name;
19228 }
19229 }
19230 }
19231
19232 return NULL;
19233}
19234
96408a79
SA
19235/* GCC might emit a nameless typedef that has a linkage name. Determine the
19236 prefix part in such case. See
19237 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19238
19239static char *
19240anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
19241{
19242 struct attribute *attr;
e6a959d6 19243 const char *base;
96408a79
SA
19244
19245 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
19246 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
19247 return NULL;
19248
7d45c7c3 19249 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
96408a79
SA
19250 return NULL;
19251
19252 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19253 if (attr == NULL)
19254 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19255 if (attr == NULL || DW_STRING (attr) == NULL)
19256 return NULL;
19257
19258 /* dwarf2_name had to be already called. */
19259 gdb_assert (DW_STRING_IS_CANONICAL (attr));
19260
19261 /* Strip the base name, keep any leading namespaces/classes. */
19262 base = strrchr (DW_STRING (attr), ':');
19263 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
19264 return "";
19265
224c3ddb
SM
19266 return (char *) obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19267 DW_STRING (attr),
19268 &base[-1] - DW_STRING (attr));
96408a79
SA
19269}
19270
fdde2d81 19271/* Return the name of the namespace/class that DIE is defined within,
0114d602 19272 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 19273
0114d602
DJ
19274 For example, if we're within the method foo() in the following
19275 code:
19276
19277 namespace N {
19278 class C {
19279 void foo () {
19280 }
19281 };
19282 }
19283
19284 then determine_prefix on foo's die will return "N::C". */
fdde2d81 19285
0d5cff50 19286static const char *
e142c38c 19287determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 19288{
0114d602
DJ
19289 struct die_info *parent, *spec_die;
19290 struct dwarf2_cu *spec_cu;
19291 struct type *parent_type;
96408a79 19292 char *retval;
63d06c5c 19293
f55ee35c 19294 if (cu->language != language_cplus && cu->language != language_java
45280282 19295 && cu->language != language_fortran && cu->language != language_d)
0114d602
DJ
19296 return "";
19297
96408a79
SA
19298 retval = anonymous_struct_prefix (die, cu);
19299 if (retval)
19300 return retval;
19301
0114d602
DJ
19302 /* We have to be careful in the presence of DW_AT_specification.
19303 For example, with GCC 3.4, given the code
19304
19305 namespace N {
19306 void foo() {
19307 // Definition of N::foo.
19308 }
19309 }
19310
19311 then we'll have a tree of DIEs like this:
19312
19313 1: DW_TAG_compile_unit
19314 2: DW_TAG_namespace // N
19315 3: DW_TAG_subprogram // declaration of N::foo
19316 4: DW_TAG_subprogram // definition of N::foo
19317 DW_AT_specification // refers to die #3
19318
19319 Thus, when processing die #4, we have to pretend that we're in
19320 the context of its DW_AT_specification, namely the contex of die
19321 #3. */
19322 spec_cu = cu;
19323 spec_die = die_specification (die, &spec_cu);
19324 if (spec_die == NULL)
19325 parent = die->parent;
19326 else
63d06c5c 19327 {
0114d602
DJ
19328 parent = spec_die->parent;
19329 cu = spec_cu;
63d06c5c 19330 }
0114d602
DJ
19331
19332 if (parent == NULL)
19333 return "";
98bfdba5
PA
19334 else if (parent->building_fullname)
19335 {
19336 const char *name;
19337 const char *parent_name;
19338
19339 /* It has been seen on RealView 2.2 built binaries,
19340 DW_TAG_template_type_param types actually _defined_ as
19341 children of the parent class:
19342
19343 enum E {};
19344 template class <class Enum> Class{};
19345 Class<enum E> class_e;
19346
19347 1: DW_TAG_class_type (Class)
19348 2: DW_TAG_enumeration_type (E)
19349 3: DW_TAG_enumerator (enum1:0)
19350 3: DW_TAG_enumerator (enum2:1)
19351 ...
19352 2: DW_TAG_template_type_param
19353 DW_AT_type DW_FORM_ref_udata (E)
19354
19355 Besides being broken debug info, it can put GDB into an
19356 infinite loop. Consider:
19357
19358 When we're building the full name for Class<E>, we'll start
19359 at Class, and go look over its template type parameters,
19360 finding E. We'll then try to build the full name of E, and
19361 reach here. We're now trying to build the full name of E,
19362 and look over the parent DIE for containing scope. In the
19363 broken case, if we followed the parent DIE of E, we'd again
19364 find Class, and once again go look at its template type
19365 arguments, etc., etc. Simply don't consider such parent die
19366 as source-level parent of this die (it can't be, the language
19367 doesn't allow it), and break the loop here. */
19368 name = dwarf2_name (die, cu);
19369 parent_name = dwarf2_name (parent, cu);
19370 complaint (&symfile_complaints,
19371 _("template param type '%s' defined within parent '%s'"),
19372 name ? name : "<unknown>",
19373 parent_name ? parent_name : "<unknown>");
19374 return "";
19375 }
63d06c5c 19376 else
0114d602
DJ
19377 switch (parent->tag)
19378 {
63d06c5c 19379 case DW_TAG_namespace:
0114d602 19380 parent_type = read_type_die (parent, cu);
acebe513
UW
19381 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
19382 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
19383 Work around this problem here. */
19384 if (cu->language == language_cplus
19385 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
19386 return "";
0114d602
DJ
19387 /* We give a name to even anonymous namespaces. */
19388 return TYPE_TAG_NAME (parent_type);
63d06c5c 19389 case DW_TAG_class_type:
680b30c7 19390 case DW_TAG_interface_type:
63d06c5c 19391 case DW_TAG_structure_type:
0114d602 19392 case DW_TAG_union_type:
f55ee35c 19393 case DW_TAG_module:
0114d602
DJ
19394 parent_type = read_type_die (parent, cu);
19395 if (TYPE_TAG_NAME (parent_type) != NULL)
19396 return TYPE_TAG_NAME (parent_type);
19397 else
19398 /* An anonymous structure is only allowed non-static data
19399 members; no typedefs, no member functions, et cetera.
19400 So it does not need a prefix. */
19401 return "";
abc72ce4 19402 case DW_TAG_compile_unit:
95554aad 19403 case DW_TAG_partial_unit:
abc72ce4
DE
19404 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
19405 if (cu->language == language_cplus
8b70b953 19406 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
19407 && die->child != NULL
19408 && (die->tag == DW_TAG_class_type
19409 || die->tag == DW_TAG_structure_type
19410 || die->tag == DW_TAG_union_type))
19411 {
19412 char *name = guess_full_die_structure_name (die, cu);
19413 if (name != NULL)
19414 return name;
19415 }
19416 return "";
3d567982
TT
19417 case DW_TAG_enumeration_type:
19418 parent_type = read_type_die (parent, cu);
19419 if (TYPE_DECLARED_CLASS (parent_type))
19420 {
19421 if (TYPE_TAG_NAME (parent_type) != NULL)
19422 return TYPE_TAG_NAME (parent_type);
19423 return "";
19424 }
19425 /* Fall through. */
63d06c5c 19426 default:
8176b9b8 19427 return determine_prefix (parent, cu);
63d06c5c 19428 }
63d06c5c
DC
19429}
19430
3e43a32a
MS
19431/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
19432 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
19433 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
19434 an obconcat, otherwise allocate storage for the result. The CU argument is
19435 used to determine the language and hence, the appropriate separator. */
987504bb 19436
f55ee35c 19437#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
19438
19439static char *
f55ee35c
JK
19440typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
19441 int physname, struct dwarf2_cu *cu)
63d06c5c 19442{
f55ee35c 19443 const char *lead = "";
5c315b68 19444 const char *sep;
63d06c5c 19445
3e43a32a
MS
19446 if (suffix == NULL || suffix[0] == '\0'
19447 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
19448 sep = "";
19449 else if (cu->language == language_java)
19450 sep = ".";
45280282
IB
19451 else if (cu->language == language_d)
19452 {
19453 /* For D, the 'main' function could be defined in any module, but it
19454 should never be prefixed. */
19455 if (strcmp (suffix, "D main") == 0)
19456 {
19457 prefix = "";
19458 sep = "";
19459 }
19460 else
19461 sep = ".";
19462 }
f55ee35c
JK
19463 else if (cu->language == language_fortran && physname)
19464 {
19465 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19466 DW_AT_MIPS_linkage_name is preferred and used instead. */
19467
19468 lead = "__";
19469 sep = "_MOD_";
19470 }
987504bb
JJ
19471 else
19472 sep = "::";
63d06c5c 19473
6dd47d34
DE
19474 if (prefix == NULL)
19475 prefix = "";
19476 if (suffix == NULL)
19477 suffix = "";
19478
987504bb
JJ
19479 if (obs == NULL)
19480 {
3e43a32a 19481 char *retval
224c3ddb
SM
19482 = ((char *)
19483 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
9a619af0 19484
f55ee35c
JK
19485 strcpy (retval, lead);
19486 strcat (retval, prefix);
6dd47d34
DE
19487 strcat (retval, sep);
19488 strcat (retval, suffix);
63d06c5c
DC
19489 return retval;
19490 }
987504bb
JJ
19491 else
19492 {
19493 /* We have an obstack. */
f55ee35c 19494 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 19495 }
63d06c5c
DC
19496}
19497
c906108c
SS
19498/* Return sibling of die, NULL if no sibling. */
19499
f9aca02d 19500static struct die_info *
fba45db2 19501sibling_die (struct die_info *die)
c906108c 19502{
639d11d3 19503 return die->sibling;
c906108c
SS
19504}
19505
71c25dea
TT
19506/* Get name of a die, return NULL if not found. */
19507
15d034d0
TT
19508static const char *
19509dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
19510 struct obstack *obstack)
19511{
19512 if (name && cu->language == language_cplus)
19513 {
19514 char *canon_name = cp_canonicalize_string (name);
19515
19516 if (canon_name != NULL)
19517 {
19518 if (strcmp (canon_name, name) != 0)
224c3ddb
SM
19519 name = (const char *) obstack_copy0 (obstack, canon_name,
19520 strlen (canon_name));
71c25dea
TT
19521 xfree (canon_name);
19522 }
19523 }
19524
19525 return name;
c906108c
SS
19526}
19527
96553a0c
DE
19528/* Get name of a die, return NULL if not found.
19529 Anonymous namespaces are converted to their magic string. */
9219021c 19530
15d034d0 19531static const char *
e142c38c 19532dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
19533{
19534 struct attribute *attr;
19535
e142c38c 19536 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31 19537 if ((!attr || !DW_STRING (attr))
96553a0c 19538 && die->tag != DW_TAG_namespace
53832f31
TT
19539 && die->tag != DW_TAG_class_type
19540 && die->tag != DW_TAG_interface_type
19541 && die->tag != DW_TAG_structure_type
19542 && die->tag != DW_TAG_union_type)
71c25dea
TT
19543 return NULL;
19544
19545 switch (die->tag)
19546 {
19547 case DW_TAG_compile_unit:
95554aad 19548 case DW_TAG_partial_unit:
71c25dea
TT
19549 /* Compilation units have a DW_AT_name that is a filename, not
19550 a source language identifier. */
19551 case DW_TAG_enumeration_type:
19552 case DW_TAG_enumerator:
19553 /* These tags always have simple identifiers already; no need
19554 to canonicalize them. */
19555 return DW_STRING (attr);
907af001 19556
96553a0c
DE
19557 case DW_TAG_namespace:
19558 if (attr != NULL && DW_STRING (attr) != NULL)
19559 return DW_STRING (attr);
19560 return CP_ANONYMOUS_NAMESPACE_STR;
19561
418835cc
KS
19562 case DW_TAG_subprogram:
19563 /* Java constructors will all be named "<init>", so return
19564 the class name when we see this special case. */
19565 if (cu->language == language_java
19566 && DW_STRING (attr) != NULL
19567 && strcmp (DW_STRING (attr), "<init>") == 0)
19568 {
19569 struct dwarf2_cu *spec_cu = cu;
19570 struct die_info *spec_die;
19571
19572 /* GCJ will output '<init>' for Java constructor names.
19573 For this special case, return the name of the parent class. */
19574
cdc07690 19575 /* GCJ may output subprogram DIEs with AT_specification set.
418835cc
KS
19576 If so, use the name of the specified DIE. */
19577 spec_die = die_specification (die, &spec_cu);
19578 if (spec_die != NULL)
19579 return dwarf2_name (spec_die, spec_cu);
19580
19581 do
19582 {
19583 die = die->parent;
19584 if (die->tag == DW_TAG_class_type)
19585 return dwarf2_name (die, cu);
19586 }
95554aad
TT
19587 while (die->tag != DW_TAG_compile_unit
19588 && die->tag != DW_TAG_partial_unit);
418835cc 19589 }
907af001
UW
19590 break;
19591
19592 case DW_TAG_class_type:
19593 case DW_TAG_interface_type:
19594 case DW_TAG_structure_type:
19595 case DW_TAG_union_type:
19596 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19597 structures or unions. These were of the form "._%d" in GCC 4.1,
19598 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19599 and GCC 4.4. We work around this problem by ignoring these. */
53832f31 19600 if (attr && DW_STRING (attr)
61012eef
GB
19601 && (startswith (DW_STRING (attr), "._")
19602 || startswith (DW_STRING (attr), "<anonymous")))
907af001 19603 return NULL;
53832f31
TT
19604
19605 /* GCC might emit a nameless typedef that has a linkage name. See
19606 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19607 if (!attr || DW_STRING (attr) == NULL)
19608 {
df5c6c50 19609 char *demangled = NULL;
53832f31
TT
19610
19611 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19612 if (attr == NULL)
19613 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19614
19615 if (attr == NULL || DW_STRING (attr) == NULL)
19616 return NULL;
19617
df5c6c50
JK
19618 /* Avoid demangling DW_STRING (attr) the second time on a second
19619 call for the same DIE. */
19620 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 19621 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
19622
19623 if (demangled)
19624 {
e6a959d6 19625 const char *base;
96408a79 19626
53832f31 19627 /* FIXME: we already did this for the partial symbol... */
34a68019 19628 DW_STRING (attr)
224c3ddb
SM
19629 = ((const char *)
19630 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19631 demangled, strlen (demangled)));
53832f31
TT
19632 DW_STRING_IS_CANONICAL (attr) = 1;
19633 xfree (demangled);
96408a79
SA
19634
19635 /* Strip any leading namespaces/classes, keep only the base name.
19636 DW_AT_name for named DIEs does not contain the prefixes. */
19637 base = strrchr (DW_STRING (attr), ':');
19638 if (base && base > DW_STRING (attr) && base[-1] == ':')
19639 return &base[1];
19640 else
19641 return DW_STRING (attr);
53832f31
TT
19642 }
19643 }
907af001
UW
19644 break;
19645
71c25dea 19646 default:
907af001
UW
19647 break;
19648 }
19649
19650 if (!DW_STRING_IS_CANONICAL (attr))
19651 {
19652 DW_STRING (attr)
19653 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 19654 &cu->objfile->per_bfd->storage_obstack);
907af001 19655 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 19656 }
907af001 19657 return DW_STRING (attr);
9219021c
DC
19658}
19659
19660/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
19661 is none. *EXT_CU is the CU containing DIE on input, and the CU
19662 containing the return value on output. */
9219021c
DC
19663
19664static struct die_info *
f2f0e013 19665dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
19666{
19667 struct attribute *attr;
9219021c 19668
f2f0e013 19669 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
19670 if (attr == NULL)
19671 return NULL;
19672
f2f0e013 19673 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
19674}
19675
c906108c
SS
19676/* Convert a DIE tag into its string name. */
19677
f39c6ffd 19678static const char *
aa1ee363 19679dwarf_tag_name (unsigned tag)
c906108c 19680{
f39c6ffd
TT
19681 const char *name = get_DW_TAG_name (tag);
19682
19683 if (name == NULL)
19684 return "DW_TAG_<unknown>";
19685
19686 return name;
c906108c
SS
19687}
19688
19689/* Convert a DWARF attribute code into its string name. */
19690
f39c6ffd 19691static const char *
aa1ee363 19692dwarf_attr_name (unsigned attr)
c906108c 19693{
f39c6ffd
TT
19694 const char *name;
19695
c764a876 19696#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
19697 if (attr == DW_AT_MIPS_fde)
19698 return "DW_AT_MIPS_fde";
19699#else
19700 if (attr == DW_AT_HP_block_index)
19701 return "DW_AT_HP_block_index";
c764a876 19702#endif
f39c6ffd
TT
19703
19704 name = get_DW_AT_name (attr);
19705
19706 if (name == NULL)
19707 return "DW_AT_<unknown>";
19708
19709 return name;
c906108c
SS
19710}
19711
19712/* Convert a DWARF value form code into its string name. */
19713
f39c6ffd 19714static const char *
aa1ee363 19715dwarf_form_name (unsigned form)
c906108c 19716{
f39c6ffd
TT
19717 const char *name = get_DW_FORM_name (form);
19718
19719 if (name == NULL)
19720 return "DW_FORM_<unknown>";
19721
19722 return name;
c906108c
SS
19723}
19724
19725static char *
fba45db2 19726dwarf_bool_name (unsigned mybool)
c906108c
SS
19727{
19728 if (mybool)
19729 return "TRUE";
19730 else
19731 return "FALSE";
19732}
19733
19734/* Convert a DWARF type code into its string name. */
19735
f39c6ffd 19736static const char *
aa1ee363 19737dwarf_type_encoding_name (unsigned enc)
c906108c 19738{
f39c6ffd 19739 const char *name = get_DW_ATE_name (enc);
c906108c 19740
f39c6ffd
TT
19741 if (name == NULL)
19742 return "DW_ATE_<unknown>";
c906108c 19743
f39c6ffd 19744 return name;
c906108c 19745}
c906108c 19746
f9aca02d 19747static void
d97bc12b 19748dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
19749{
19750 unsigned int i;
19751
d97bc12b
DE
19752 print_spaces (indent, f);
19753 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 19754 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
19755
19756 if (die->parent != NULL)
19757 {
19758 print_spaces (indent, f);
19759 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 19760 die->parent->offset.sect_off);
d97bc12b
DE
19761 }
19762
19763 print_spaces (indent, f);
19764 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 19765 dwarf_bool_name (die->child != NULL));
c906108c 19766
d97bc12b
DE
19767 print_spaces (indent, f);
19768 fprintf_unfiltered (f, " attributes:\n");
19769
c906108c
SS
19770 for (i = 0; i < die->num_attrs; ++i)
19771 {
d97bc12b
DE
19772 print_spaces (indent, f);
19773 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
19774 dwarf_attr_name (die->attrs[i].name),
19775 dwarf_form_name (die->attrs[i].form));
d97bc12b 19776
c906108c
SS
19777 switch (die->attrs[i].form)
19778 {
c906108c 19779 case DW_FORM_addr:
3019eac3 19780 case DW_FORM_GNU_addr_index:
d97bc12b 19781 fprintf_unfiltered (f, "address: ");
5af949e3 19782 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
19783 break;
19784 case DW_FORM_block2:
19785 case DW_FORM_block4:
19786 case DW_FORM_block:
19787 case DW_FORM_block1:
56eb65bd
SP
19788 fprintf_unfiltered (f, "block: size %s",
19789 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 19790 break;
2dc7f7b3 19791 case DW_FORM_exprloc:
56eb65bd
SP
19792 fprintf_unfiltered (f, "expression: size %s",
19793 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 19794 break;
4568ecf9
DE
19795 case DW_FORM_ref_addr:
19796 fprintf_unfiltered (f, "ref address: ");
19797 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19798 break;
36586728
TT
19799 case DW_FORM_GNU_ref_alt:
19800 fprintf_unfiltered (f, "alt ref address: ");
19801 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19802 break;
10b3939b
DJ
19803 case DW_FORM_ref1:
19804 case DW_FORM_ref2:
19805 case DW_FORM_ref4:
4568ecf9
DE
19806 case DW_FORM_ref8:
19807 case DW_FORM_ref_udata:
d97bc12b 19808 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 19809 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 19810 break;
c906108c
SS
19811 case DW_FORM_data1:
19812 case DW_FORM_data2:
19813 case DW_FORM_data4:
ce5d95e1 19814 case DW_FORM_data8:
c906108c
SS
19815 case DW_FORM_udata:
19816 case DW_FORM_sdata:
43bbcdc2
PH
19817 fprintf_unfiltered (f, "constant: %s",
19818 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 19819 break;
2dc7f7b3
TT
19820 case DW_FORM_sec_offset:
19821 fprintf_unfiltered (f, "section offset: %s",
19822 pulongest (DW_UNSND (&die->attrs[i])));
19823 break;
55f1336d 19824 case DW_FORM_ref_sig8:
ac9ec31b
DE
19825 fprintf_unfiltered (f, "signature: %s",
19826 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 19827 break;
c906108c 19828 case DW_FORM_string:
4bdf3d34 19829 case DW_FORM_strp:
3019eac3 19830 case DW_FORM_GNU_str_index:
36586728 19831 case DW_FORM_GNU_strp_alt:
8285870a 19832 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 19833 DW_STRING (&die->attrs[i])
8285870a
JK
19834 ? DW_STRING (&die->attrs[i]) : "",
19835 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
19836 break;
19837 case DW_FORM_flag:
19838 if (DW_UNSND (&die->attrs[i]))
d97bc12b 19839 fprintf_unfiltered (f, "flag: TRUE");
c906108c 19840 else
d97bc12b 19841 fprintf_unfiltered (f, "flag: FALSE");
c906108c 19842 break;
2dc7f7b3
TT
19843 case DW_FORM_flag_present:
19844 fprintf_unfiltered (f, "flag: TRUE");
19845 break;
a8329558 19846 case DW_FORM_indirect:
0963b4bd
MS
19847 /* The reader will have reduced the indirect form to
19848 the "base form" so this form should not occur. */
3e43a32a
MS
19849 fprintf_unfiltered (f,
19850 "unexpected attribute form: DW_FORM_indirect");
a8329558 19851 break;
c906108c 19852 default:
d97bc12b 19853 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 19854 die->attrs[i].form);
d97bc12b 19855 break;
c906108c 19856 }
d97bc12b 19857 fprintf_unfiltered (f, "\n");
c906108c
SS
19858 }
19859}
19860
f9aca02d 19861static void
d97bc12b 19862dump_die_for_error (struct die_info *die)
c906108c 19863{
d97bc12b
DE
19864 dump_die_shallow (gdb_stderr, 0, die);
19865}
19866
19867static void
19868dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19869{
19870 int indent = level * 4;
19871
19872 gdb_assert (die != NULL);
19873
19874 if (level >= max_level)
19875 return;
19876
19877 dump_die_shallow (f, indent, die);
19878
19879 if (die->child != NULL)
c906108c 19880 {
d97bc12b
DE
19881 print_spaces (indent, f);
19882 fprintf_unfiltered (f, " Children:");
19883 if (level + 1 < max_level)
19884 {
19885 fprintf_unfiltered (f, "\n");
19886 dump_die_1 (f, level + 1, max_level, die->child);
19887 }
19888 else
19889 {
3e43a32a
MS
19890 fprintf_unfiltered (f,
19891 " [not printed, max nesting level reached]\n");
d97bc12b
DE
19892 }
19893 }
19894
19895 if (die->sibling != NULL && level > 0)
19896 {
19897 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
19898 }
19899}
19900
d97bc12b
DE
19901/* This is called from the pdie macro in gdbinit.in.
19902 It's not static so gcc will keep a copy callable from gdb. */
19903
19904void
19905dump_die (struct die_info *die, int max_level)
19906{
19907 dump_die_1 (gdb_stdlog, 0, max_level, die);
19908}
19909
f9aca02d 19910static void
51545339 19911store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19912{
51545339 19913 void **slot;
c906108c 19914
b64f50a1
JK
19915 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19916 INSERT);
51545339
DJ
19917
19918 *slot = die;
c906108c
SS
19919}
19920
b64f50a1
JK
19921/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19922 required kind. */
19923
19924static sect_offset
ff39bb5e 19925dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 19926{
4568ecf9 19927 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 19928
7771576e 19929 if (attr_form_is_ref (attr))
b64f50a1 19930 return retval;
93311388 19931
b64f50a1 19932 retval.sect_off = 0;
93311388
DE
19933 complaint (&symfile_complaints,
19934 _("unsupported die ref attribute form: '%s'"),
19935 dwarf_form_name (attr->form));
b64f50a1 19936 return retval;
c906108c
SS
19937}
19938
43bbcdc2
PH
19939/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19940 * the value held by the attribute is not constant. */
a02abb62 19941
43bbcdc2 19942static LONGEST
ff39bb5e 19943dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
19944{
19945 if (attr->form == DW_FORM_sdata)
19946 return DW_SND (attr);
19947 else if (attr->form == DW_FORM_udata
19948 || attr->form == DW_FORM_data1
19949 || attr->form == DW_FORM_data2
19950 || attr->form == DW_FORM_data4
19951 || attr->form == DW_FORM_data8)
19952 return DW_UNSND (attr);
19953 else
19954 {
3e43a32a
MS
19955 complaint (&symfile_complaints,
19956 _("Attribute value is not a constant (%s)"),
a02abb62
JB
19957 dwarf_form_name (attr->form));
19958 return default_value;
19959 }
19960}
19961
348e048f
DE
19962/* Follow reference or signature attribute ATTR of SRC_DIE.
19963 On entry *REF_CU is the CU of SRC_DIE.
19964 On exit *REF_CU is the CU of the result. */
19965
19966static struct die_info *
ff39bb5e 19967follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
19968 struct dwarf2_cu **ref_cu)
19969{
19970 struct die_info *die;
19971
7771576e 19972 if (attr_form_is_ref (attr))
348e048f 19973 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 19974 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
19975 die = follow_die_sig (src_die, attr, ref_cu);
19976 else
19977 {
19978 dump_die_for_error (src_die);
19979 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 19980 objfile_name ((*ref_cu)->objfile));
348e048f
DE
19981 }
19982
19983 return die;
03dd20cc
DJ
19984}
19985
5c631832 19986/* Follow reference OFFSET.
673bfd45
DE
19987 On entry *REF_CU is the CU of the source die referencing OFFSET.
19988 On exit *REF_CU is the CU of the result.
19989 Returns NULL if OFFSET is invalid. */
f504f079 19990
f9aca02d 19991static struct die_info *
36586728
TT
19992follow_die_offset (sect_offset offset, int offset_in_dwz,
19993 struct dwarf2_cu **ref_cu)
c906108c 19994{
10b3939b 19995 struct die_info temp_die;
f2f0e013 19996 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 19997
348e048f
DE
19998 gdb_assert (cu->per_cu != NULL);
19999
98bfdba5
PA
20000 target_cu = cu;
20001
3019eac3 20002 if (cu->per_cu->is_debug_types)
348e048f
DE
20003 {
20004 /* .debug_types CUs cannot reference anything outside their CU.
20005 If they need to, they have to reference a signatured type via
55f1336d 20006 DW_FORM_ref_sig8. */
348e048f 20007 if (! offset_in_cu_p (&cu->header, offset))
5c631832 20008 return NULL;
348e048f 20009 }
36586728
TT
20010 else if (offset_in_dwz != cu->per_cu->is_dwz
20011 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
20012 {
20013 struct dwarf2_per_cu_data *per_cu;
9a619af0 20014
36586728
TT
20015 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
20016 cu->objfile);
03dd20cc
DJ
20017
20018 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
20019 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
20020 load_full_comp_unit (per_cu, cu->language);
03dd20cc 20021
10b3939b
DJ
20022 target_cu = per_cu->cu;
20023 }
98bfdba5
PA
20024 else if (cu->dies == NULL)
20025 {
20026 /* We're loading full DIEs during partial symbol reading. */
20027 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 20028 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 20029 }
c906108c 20030
f2f0e013 20031 *ref_cu = target_cu;
51545339 20032 temp_die.offset = offset;
9a3c8263
SM
20033 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
20034 &temp_die, offset.sect_off);
5c631832 20035}
10b3939b 20036
5c631832
JK
20037/* Follow reference attribute ATTR of SRC_DIE.
20038 On entry *REF_CU is the CU of SRC_DIE.
20039 On exit *REF_CU is the CU of the result. */
20040
20041static struct die_info *
ff39bb5e 20042follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
20043 struct dwarf2_cu **ref_cu)
20044{
b64f50a1 20045 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
20046 struct dwarf2_cu *cu = *ref_cu;
20047 struct die_info *die;
20048
36586728
TT
20049 die = follow_die_offset (offset,
20050 (attr->form == DW_FORM_GNU_ref_alt
20051 || cu->per_cu->is_dwz),
20052 ref_cu);
5c631832
JK
20053 if (!die)
20054 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
20055 "at 0x%x [in module %s]"),
4262abfb
JK
20056 offset.sect_off, src_die->offset.sect_off,
20057 objfile_name (cu->objfile));
348e048f 20058
5c631832
JK
20059 return die;
20060}
20061
d83e736b
JK
20062/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
20063 Returned value is intended for DW_OP_call*. Returned
20064 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
20065
20066struct dwarf2_locexpr_baton
8b9737bf
TT
20067dwarf2_fetch_die_loc_sect_off (sect_offset offset,
20068 struct dwarf2_per_cu_data *per_cu,
20069 CORE_ADDR (*get_frame_pc) (void *baton),
20070 void *baton)
5c631832 20071{
918dd910 20072 struct dwarf2_cu *cu;
5c631832
JK
20073 struct die_info *die;
20074 struct attribute *attr;
20075 struct dwarf2_locexpr_baton retval;
20076
8cf6f0b1
TT
20077 dw2_setup (per_cu->objfile);
20078
918dd910
JK
20079 if (per_cu->cu == NULL)
20080 load_cu (per_cu);
20081 cu = per_cu->cu;
cc12ce38
DE
20082 if (cu == NULL)
20083 {
20084 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20085 Instead just throw an error, not much else we can do. */
20086 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20087 offset.sect_off, objfile_name (per_cu->objfile));
20088 }
918dd910 20089
36586728 20090 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
20091 if (!die)
20092 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20093 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20094
20095 attr = dwarf2_attr (die, DW_AT_location, cu);
20096 if (!attr)
20097 {
e103e986
JK
20098 /* DWARF: "If there is no such attribute, then there is no effect.".
20099 DATA is ignored if SIZE is 0. */
5c631832 20100
e103e986 20101 retval.data = NULL;
5c631832
JK
20102 retval.size = 0;
20103 }
8cf6f0b1
TT
20104 else if (attr_form_is_section_offset (attr))
20105 {
20106 struct dwarf2_loclist_baton loclist_baton;
20107 CORE_ADDR pc = (*get_frame_pc) (baton);
20108 size_t size;
20109
20110 fill_in_loclist_baton (cu, &loclist_baton, attr);
20111
20112 retval.data = dwarf2_find_location_expression (&loclist_baton,
20113 &size, pc);
20114 retval.size = size;
20115 }
5c631832
JK
20116 else
20117 {
20118 if (!attr_form_is_block (attr))
20119 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
20120 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 20121 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
20122
20123 retval.data = DW_BLOCK (attr)->data;
20124 retval.size = DW_BLOCK (attr)->size;
20125 }
20126 retval.per_cu = cu->per_cu;
918dd910 20127
918dd910
JK
20128 age_cached_comp_units ();
20129
5c631832 20130 return retval;
348e048f
DE
20131}
20132
8b9737bf
TT
20133/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
20134 offset. */
20135
20136struct dwarf2_locexpr_baton
20137dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
20138 struct dwarf2_per_cu_data *per_cu,
20139 CORE_ADDR (*get_frame_pc) (void *baton),
20140 void *baton)
20141{
20142 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
20143
20144 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
20145}
20146
b6807d98
TT
20147/* Write a constant of a given type as target-ordered bytes into
20148 OBSTACK. */
20149
20150static const gdb_byte *
20151write_constant_as_bytes (struct obstack *obstack,
20152 enum bfd_endian byte_order,
20153 struct type *type,
20154 ULONGEST value,
20155 LONGEST *len)
20156{
20157 gdb_byte *result;
20158
20159 *len = TYPE_LENGTH (type);
224c3ddb 20160 result = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20161 store_unsigned_integer (result, *len, byte_order, value);
20162
20163 return result;
20164}
20165
20166/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
20167 pointer to the constant bytes and set LEN to the length of the
20168 data. If memory is needed, allocate it on OBSTACK. If the DIE
20169 does not have a DW_AT_const_value, return NULL. */
20170
20171const gdb_byte *
20172dwarf2_fetch_constant_bytes (sect_offset offset,
20173 struct dwarf2_per_cu_data *per_cu,
20174 struct obstack *obstack,
20175 LONGEST *len)
20176{
20177 struct dwarf2_cu *cu;
20178 struct die_info *die;
20179 struct attribute *attr;
20180 const gdb_byte *result = NULL;
20181 struct type *type;
20182 LONGEST value;
20183 enum bfd_endian byte_order;
20184
20185 dw2_setup (per_cu->objfile);
20186
20187 if (per_cu->cu == NULL)
20188 load_cu (per_cu);
20189 cu = per_cu->cu;
cc12ce38
DE
20190 if (cu == NULL)
20191 {
20192 /* We shouldn't get here for a dummy CU, but don't crash on the user.
20193 Instead just throw an error, not much else we can do. */
20194 error (_("Dwarf Error: Dummy CU at 0x%x referenced in module %s"),
20195 offset.sect_off, objfile_name (per_cu->objfile));
20196 }
b6807d98
TT
20197
20198 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
20199 if (!die)
20200 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 20201 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
20202
20203
20204 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20205 if (attr == NULL)
20206 return NULL;
20207
20208 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
20209 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
20210
20211 switch (attr->form)
20212 {
20213 case DW_FORM_addr:
20214 case DW_FORM_GNU_addr_index:
20215 {
20216 gdb_byte *tem;
20217
20218 *len = cu->header.addr_size;
224c3ddb 20219 tem = (gdb_byte *) obstack_alloc (obstack, *len);
b6807d98
TT
20220 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
20221 result = tem;
20222 }
20223 break;
20224 case DW_FORM_string:
20225 case DW_FORM_strp:
20226 case DW_FORM_GNU_str_index:
20227 case DW_FORM_GNU_strp_alt:
20228 /* DW_STRING is already allocated on the objfile obstack, point
20229 directly to it. */
20230 result = (const gdb_byte *) DW_STRING (attr);
20231 *len = strlen (DW_STRING (attr));
20232 break;
20233 case DW_FORM_block1:
20234 case DW_FORM_block2:
20235 case DW_FORM_block4:
20236 case DW_FORM_block:
20237 case DW_FORM_exprloc:
20238 result = DW_BLOCK (attr)->data;
20239 *len = DW_BLOCK (attr)->size;
20240 break;
20241
20242 /* The DW_AT_const_value attributes are supposed to carry the
20243 symbol's value "represented as it would be on the target
20244 architecture." By the time we get here, it's already been
20245 converted to host endianness, so we just need to sign- or
20246 zero-extend it as appropriate. */
20247 case DW_FORM_data1:
20248 type = die_type (die, cu);
20249 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
20250 if (result == NULL)
20251 result = write_constant_as_bytes (obstack, byte_order,
20252 type, value, len);
20253 break;
20254 case DW_FORM_data2:
20255 type = die_type (die, cu);
20256 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
20257 if (result == NULL)
20258 result = write_constant_as_bytes (obstack, byte_order,
20259 type, value, len);
20260 break;
20261 case DW_FORM_data4:
20262 type = die_type (die, cu);
20263 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
20264 if (result == NULL)
20265 result = write_constant_as_bytes (obstack, byte_order,
20266 type, value, len);
20267 break;
20268 case DW_FORM_data8:
20269 type = die_type (die, cu);
20270 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
20271 if (result == NULL)
20272 result = write_constant_as_bytes (obstack, byte_order,
20273 type, value, len);
20274 break;
20275
20276 case DW_FORM_sdata:
20277 type = die_type (die, cu);
20278 result = write_constant_as_bytes (obstack, byte_order,
20279 type, DW_SND (attr), len);
20280 break;
20281
20282 case DW_FORM_udata:
20283 type = die_type (die, cu);
20284 result = write_constant_as_bytes (obstack, byte_order,
20285 type, DW_UNSND (attr), len);
20286 break;
20287
20288 default:
20289 complaint (&symfile_complaints,
20290 _("unsupported const value attribute form: '%s'"),
20291 dwarf_form_name (attr->form));
20292 break;
20293 }
20294
20295 return result;
20296}
20297
8a9b8146
TT
20298/* Return the type of the DIE at DIE_OFFSET in the CU named by
20299 PER_CU. */
20300
20301struct type *
b64f50a1 20302dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
20303 struct dwarf2_per_cu_data *per_cu)
20304{
b64f50a1
JK
20305 sect_offset die_offset_sect;
20306
8a9b8146 20307 dw2_setup (per_cu->objfile);
b64f50a1
JK
20308
20309 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
20310 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
20311}
20312
ac9ec31b 20313/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 20314 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
20315 On exit *REF_CU is the CU of the result.
20316 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
20317
20318static struct die_info *
ac9ec31b
DE
20319follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
20320 struct dwarf2_cu **ref_cu)
348e048f
DE
20321{
20322 struct objfile *objfile = (*ref_cu)->objfile;
20323 struct die_info temp_die;
348e048f
DE
20324 struct dwarf2_cu *sig_cu;
20325 struct die_info *die;
20326
ac9ec31b
DE
20327 /* While it might be nice to assert sig_type->type == NULL here,
20328 we can get here for DW_AT_imported_declaration where we need
20329 the DIE not the type. */
348e048f
DE
20330
20331 /* If necessary, add it to the queue and load its DIEs. */
20332
95554aad 20333 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 20334 read_signatured_type (sig_type);
348e048f 20335
348e048f 20336 sig_cu = sig_type->per_cu.cu;
69d751e3 20337 gdb_assert (sig_cu != NULL);
3019eac3
DE
20338 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
20339 temp_die.offset = sig_type->type_offset_in_section;
9a3c8263
SM
20340 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
20341 temp_die.offset.sect_off);
348e048f
DE
20342 if (die)
20343 {
796a7ff8
DE
20344 /* For .gdb_index version 7 keep track of included TUs.
20345 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
20346 if (dwarf2_per_objfile->index_table != NULL
20347 && dwarf2_per_objfile->index_table->version <= 7)
20348 {
20349 VEC_safe_push (dwarf2_per_cu_ptr,
20350 (*ref_cu)->per_cu->imported_symtabs,
20351 sig_cu->per_cu);
20352 }
20353
348e048f
DE
20354 *ref_cu = sig_cu;
20355 return die;
20356 }
20357
ac9ec31b
DE
20358 return NULL;
20359}
20360
20361/* Follow signatured type referenced by ATTR in SRC_DIE.
20362 On entry *REF_CU is the CU of SRC_DIE.
20363 On exit *REF_CU is the CU of the result.
20364 The result is the DIE of the type.
20365 If the referenced type cannot be found an error is thrown. */
20366
20367static struct die_info *
ff39bb5e 20368follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
20369 struct dwarf2_cu **ref_cu)
20370{
20371 ULONGEST signature = DW_SIGNATURE (attr);
20372 struct signatured_type *sig_type;
20373 struct die_info *die;
20374
20375 gdb_assert (attr->form == DW_FORM_ref_sig8);
20376
a2ce51a0 20377 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
20378 /* sig_type will be NULL if the signatured type is missing from
20379 the debug info. */
20380 if (sig_type == NULL)
20381 {
20382 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
20383 " from DIE at 0x%x [in module %s]"),
20384 hex_string (signature), src_die->offset.sect_off,
4262abfb 20385 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20386 }
20387
20388 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
20389 if (die == NULL)
20390 {
20391 dump_die_for_error (src_die);
20392 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
20393 " from DIE at 0x%x [in module %s]"),
20394 hex_string (signature), src_die->offset.sect_off,
4262abfb 20395 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
20396 }
20397
20398 return die;
20399}
20400
20401/* Get the type specified by SIGNATURE referenced in DIE/CU,
20402 reading in and processing the type unit if necessary. */
20403
20404static struct type *
20405get_signatured_type (struct die_info *die, ULONGEST signature,
20406 struct dwarf2_cu *cu)
20407{
20408 struct signatured_type *sig_type;
20409 struct dwarf2_cu *type_cu;
20410 struct die_info *type_die;
20411 struct type *type;
20412
a2ce51a0 20413 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
20414 /* sig_type will be NULL if the signatured type is missing from
20415 the debug info. */
20416 if (sig_type == NULL)
20417 {
20418 complaint (&symfile_complaints,
20419 _("Dwarf Error: Cannot find signatured DIE %s referenced"
20420 " from DIE at 0x%x [in module %s]"),
20421 hex_string (signature), die->offset.sect_off,
4262abfb 20422 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20423 return build_error_marker_type (cu, die);
20424 }
20425
20426 /* If we already know the type we're done. */
20427 if (sig_type->type != NULL)
20428 return sig_type->type;
20429
20430 type_cu = cu;
20431 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
20432 if (type_die != NULL)
20433 {
20434 /* N.B. We need to call get_die_type to ensure only one type for this DIE
20435 is created. This is important, for example, because for c++ classes
20436 we need TYPE_NAME set which is only done by new_symbol. Blech. */
20437 type = read_type_die (type_die, type_cu);
20438 if (type == NULL)
20439 {
20440 complaint (&symfile_complaints,
20441 _("Dwarf Error: Cannot build signatured type %s"
20442 " referenced from DIE at 0x%x [in module %s]"),
20443 hex_string (signature), die->offset.sect_off,
4262abfb 20444 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20445 type = build_error_marker_type (cu, die);
20446 }
20447 }
20448 else
20449 {
20450 complaint (&symfile_complaints,
20451 _("Dwarf Error: Problem reading signatured DIE %s referenced"
20452 " from DIE at 0x%x [in module %s]"),
20453 hex_string (signature), die->offset.sect_off,
4262abfb 20454 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20455 type = build_error_marker_type (cu, die);
20456 }
20457 sig_type->type = type;
20458
20459 return type;
20460}
20461
20462/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
20463 reading in and processing the type unit if necessary. */
20464
20465static struct type *
ff39bb5e 20466get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 20467 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
20468{
20469 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 20470 if (attr_form_is_ref (attr))
ac9ec31b
DE
20471 {
20472 struct dwarf2_cu *type_cu = cu;
20473 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
20474
20475 return read_type_die (type_die, type_cu);
20476 }
20477 else if (attr->form == DW_FORM_ref_sig8)
20478 {
20479 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
20480 }
20481 else
20482 {
20483 complaint (&symfile_complaints,
20484 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
20485 " at 0x%x [in module %s]"),
20486 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 20487 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20488 return build_error_marker_type (cu, die);
20489 }
348e048f
DE
20490}
20491
e5fe5e75 20492/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
20493
20494static void
e5fe5e75 20495load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 20496{
52dc124a 20497 struct signatured_type *sig_type;
348e048f 20498
f4dc4d17
DE
20499 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20500 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20501
6721b2ec
DE
20502 /* We have the per_cu, but we need the signatured_type.
20503 Fortunately this is an easy translation. */
20504 gdb_assert (per_cu->is_debug_types);
20505 sig_type = (struct signatured_type *) per_cu;
348e048f 20506
6721b2ec 20507 gdb_assert (per_cu->cu == NULL);
348e048f 20508
52dc124a 20509 read_signatured_type (sig_type);
348e048f 20510
6721b2ec 20511 gdb_assert (per_cu->cu != NULL);
348e048f
DE
20512}
20513
dee91e82
DE
20514/* die_reader_func for read_signatured_type.
20515 This is identical to load_full_comp_unit_reader,
20516 but is kept separate for now. */
348e048f
DE
20517
20518static void
dee91e82 20519read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 20520 const gdb_byte *info_ptr,
dee91e82
DE
20521 struct die_info *comp_unit_die,
20522 int has_children,
20523 void *data)
348e048f 20524{
dee91e82 20525 struct dwarf2_cu *cu = reader->cu;
348e048f 20526
dee91e82
DE
20527 gdb_assert (cu->die_hash == NULL);
20528 cu->die_hash =
20529 htab_create_alloc_ex (cu->header.length / 12,
20530 die_hash,
20531 die_eq,
20532 NULL,
20533 &cu->comp_unit_obstack,
20534 hashtab_obstack_allocate,
20535 dummy_obstack_deallocate);
348e048f 20536
dee91e82
DE
20537 if (has_children)
20538 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20539 &info_ptr, comp_unit_die);
20540 cu->dies = comp_unit_die;
20541 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
20542
20543 /* We try not to read any attributes in this function, because not
9cdd5dbd 20544 all CUs needed for references have been loaded yet, and symbol
348e048f 20545 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
20546 or we won't be able to build types correctly.
20547 Similarly, if we do not read the producer, we can not apply
20548 producer-specific interpretation. */
95554aad 20549 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 20550}
348e048f 20551
3019eac3
DE
20552/* Read in a signatured type and build its CU and DIEs.
20553 If the type is a stub for the real type in a DWO file,
20554 read in the real type from the DWO file as well. */
dee91e82
DE
20555
20556static void
20557read_signatured_type (struct signatured_type *sig_type)
20558{
20559 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 20560
3019eac3 20561 gdb_assert (per_cu->is_debug_types);
dee91e82 20562 gdb_assert (per_cu->cu == NULL);
348e048f 20563
f4dc4d17
DE
20564 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20565 read_signatured_type_reader, NULL);
7ee85ab1 20566 sig_type->per_cu.tu_read = 1;
c906108c
SS
20567}
20568
c906108c
SS
20569/* Decode simple location descriptions.
20570 Given a pointer to a dwarf block that defines a location, compute
20571 the location and return the value.
20572
4cecd739
DJ
20573 NOTE drow/2003-11-18: This function is called in two situations
20574 now: for the address of static or global variables (partial symbols
20575 only) and for offsets into structures which are expected to be
20576 (more or less) constant. The partial symbol case should go away,
20577 and only the constant case should remain. That will let this
20578 function complain more accurately. A few special modes are allowed
20579 without complaint for global variables (for instance, global
20580 register values and thread-local values).
c906108c
SS
20581
20582 A location description containing no operations indicates that the
4cecd739 20583 object is optimized out. The return value is 0 for that case.
6b992462
DJ
20584 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20585 callers will only want a very basic result and this can become a
21ae7a4d
JK
20586 complaint.
20587
20588 Note that stack[0] is unused except as a default error return. */
c906108c
SS
20589
20590static CORE_ADDR
e7c27a73 20591decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 20592{
e7c27a73 20593 struct objfile *objfile = cu->objfile;
56eb65bd
SP
20594 size_t i;
20595 size_t size = blk->size;
d521ce57 20596 const gdb_byte *data = blk->data;
21ae7a4d
JK
20597 CORE_ADDR stack[64];
20598 int stacki;
20599 unsigned int bytes_read, unsnd;
20600 gdb_byte op;
c906108c 20601
21ae7a4d
JK
20602 i = 0;
20603 stacki = 0;
20604 stack[stacki] = 0;
20605 stack[++stacki] = 0;
20606
20607 while (i < size)
20608 {
20609 op = data[i++];
20610 switch (op)
20611 {
20612 case DW_OP_lit0:
20613 case DW_OP_lit1:
20614 case DW_OP_lit2:
20615 case DW_OP_lit3:
20616 case DW_OP_lit4:
20617 case DW_OP_lit5:
20618 case DW_OP_lit6:
20619 case DW_OP_lit7:
20620 case DW_OP_lit8:
20621 case DW_OP_lit9:
20622 case DW_OP_lit10:
20623 case DW_OP_lit11:
20624 case DW_OP_lit12:
20625 case DW_OP_lit13:
20626 case DW_OP_lit14:
20627 case DW_OP_lit15:
20628 case DW_OP_lit16:
20629 case DW_OP_lit17:
20630 case DW_OP_lit18:
20631 case DW_OP_lit19:
20632 case DW_OP_lit20:
20633 case DW_OP_lit21:
20634 case DW_OP_lit22:
20635 case DW_OP_lit23:
20636 case DW_OP_lit24:
20637 case DW_OP_lit25:
20638 case DW_OP_lit26:
20639 case DW_OP_lit27:
20640 case DW_OP_lit28:
20641 case DW_OP_lit29:
20642 case DW_OP_lit30:
20643 case DW_OP_lit31:
20644 stack[++stacki] = op - DW_OP_lit0;
20645 break;
f1bea926 20646
21ae7a4d
JK
20647 case DW_OP_reg0:
20648 case DW_OP_reg1:
20649 case DW_OP_reg2:
20650 case DW_OP_reg3:
20651 case DW_OP_reg4:
20652 case DW_OP_reg5:
20653 case DW_OP_reg6:
20654 case DW_OP_reg7:
20655 case DW_OP_reg8:
20656 case DW_OP_reg9:
20657 case DW_OP_reg10:
20658 case DW_OP_reg11:
20659 case DW_OP_reg12:
20660 case DW_OP_reg13:
20661 case DW_OP_reg14:
20662 case DW_OP_reg15:
20663 case DW_OP_reg16:
20664 case DW_OP_reg17:
20665 case DW_OP_reg18:
20666 case DW_OP_reg19:
20667 case DW_OP_reg20:
20668 case DW_OP_reg21:
20669 case DW_OP_reg22:
20670 case DW_OP_reg23:
20671 case DW_OP_reg24:
20672 case DW_OP_reg25:
20673 case DW_OP_reg26:
20674 case DW_OP_reg27:
20675 case DW_OP_reg28:
20676 case DW_OP_reg29:
20677 case DW_OP_reg30:
20678 case DW_OP_reg31:
20679 stack[++stacki] = op - DW_OP_reg0;
20680 if (i < size)
20681 dwarf2_complex_location_expr_complaint ();
20682 break;
c906108c 20683
21ae7a4d
JK
20684 case DW_OP_regx:
20685 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20686 i += bytes_read;
20687 stack[++stacki] = unsnd;
20688 if (i < size)
20689 dwarf2_complex_location_expr_complaint ();
20690 break;
c906108c 20691
21ae7a4d
JK
20692 case DW_OP_addr:
20693 stack[++stacki] = read_address (objfile->obfd, &data[i],
20694 cu, &bytes_read);
20695 i += bytes_read;
20696 break;
d53d4ac5 20697
21ae7a4d
JK
20698 case DW_OP_const1u:
20699 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20700 i += 1;
20701 break;
20702
20703 case DW_OP_const1s:
20704 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20705 i += 1;
20706 break;
20707
20708 case DW_OP_const2u:
20709 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20710 i += 2;
20711 break;
20712
20713 case DW_OP_const2s:
20714 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20715 i += 2;
20716 break;
d53d4ac5 20717
21ae7a4d
JK
20718 case DW_OP_const4u:
20719 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20720 i += 4;
20721 break;
20722
20723 case DW_OP_const4s:
20724 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20725 i += 4;
20726 break;
20727
585861ea
JK
20728 case DW_OP_const8u:
20729 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20730 i += 8;
20731 break;
20732
21ae7a4d
JK
20733 case DW_OP_constu:
20734 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20735 &bytes_read);
20736 i += bytes_read;
20737 break;
20738
20739 case DW_OP_consts:
20740 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20741 i += bytes_read;
20742 break;
20743
20744 case DW_OP_dup:
20745 stack[stacki + 1] = stack[stacki];
20746 stacki++;
20747 break;
20748
20749 case DW_OP_plus:
20750 stack[stacki - 1] += stack[stacki];
20751 stacki--;
20752 break;
20753
20754 case DW_OP_plus_uconst:
20755 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20756 &bytes_read);
20757 i += bytes_read;
20758 break;
20759
20760 case DW_OP_minus:
20761 stack[stacki - 1] -= stack[stacki];
20762 stacki--;
20763 break;
20764
20765 case DW_OP_deref:
20766 /* If we're not the last op, then we definitely can't encode
20767 this using GDB's address_class enum. This is valid for partial
20768 global symbols, although the variable's address will be bogus
20769 in the psymtab. */
20770 if (i < size)
20771 dwarf2_complex_location_expr_complaint ();
20772 break;
20773
20774 case DW_OP_GNU_push_tls_address:
20775 /* The top of the stack has the offset from the beginning
20776 of the thread control block at which the variable is located. */
20777 /* Nothing should follow this operator, so the top of stack would
20778 be returned. */
20779 /* This is valid for partial global symbols, but the variable's
585861ea
JK
20780 address will be bogus in the psymtab. Make it always at least
20781 non-zero to not look as a variable garbage collected by linker
20782 which have DW_OP_addr 0. */
21ae7a4d
JK
20783 if (i < size)
20784 dwarf2_complex_location_expr_complaint ();
585861ea 20785 stack[stacki]++;
21ae7a4d
JK
20786 break;
20787
20788 case DW_OP_GNU_uninit:
20789 break;
20790
3019eac3 20791 case DW_OP_GNU_addr_index:
49f6c839 20792 case DW_OP_GNU_const_index:
3019eac3
DE
20793 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20794 &bytes_read);
20795 i += bytes_read;
20796 break;
20797
21ae7a4d
JK
20798 default:
20799 {
f39c6ffd 20800 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
20801
20802 if (name)
20803 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20804 name);
20805 else
20806 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20807 op);
20808 }
20809
20810 return (stack[stacki]);
d53d4ac5 20811 }
3c6e0cb3 20812
21ae7a4d
JK
20813 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20814 outside of the allocated space. Also enforce minimum>0. */
20815 if (stacki >= ARRAY_SIZE (stack) - 1)
20816 {
20817 complaint (&symfile_complaints,
20818 _("location description stack overflow"));
20819 return 0;
20820 }
20821
20822 if (stacki <= 0)
20823 {
20824 complaint (&symfile_complaints,
20825 _("location description stack underflow"));
20826 return 0;
20827 }
20828 }
20829 return (stack[stacki]);
c906108c
SS
20830}
20831
20832/* memory allocation interface */
20833
c906108c 20834static struct dwarf_block *
7b5a2f43 20835dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c 20836{
8d749320 20837 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
c906108c
SS
20838}
20839
c906108c 20840static struct die_info *
b60c80d6 20841dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
20842{
20843 struct die_info *die;
b60c80d6
DJ
20844 size_t size = sizeof (struct die_info);
20845
20846 if (num_attrs > 1)
20847 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 20848
b60c80d6 20849 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
20850 memset (die, 0, sizeof (struct die_info));
20851 return (die);
20852}
2e276125
JB
20853
20854\f
20855/* Macro support. */
20856
233d95b5
JK
20857/* Return file name relative to the compilation directory of file number I in
20858 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 20859 responsible for freeing it. */
233d95b5 20860
2e276125 20861static char *
233d95b5 20862file_file_name (int file, struct line_header *lh)
2e276125 20863{
6a83a1e6
EZ
20864 /* Is the file number a valid index into the line header's file name
20865 table? Remember that file numbers start with one, not zero. */
20866 if (1 <= file && file <= lh->num_file_names)
20867 {
20868 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 20869
afa6c9ab
SL
20870 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0
20871 || lh->include_dirs == NULL)
6a83a1e6 20872 return xstrdup (fe->name);
233d95b5
JK
20873 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20874 fe->name, NULL);
6a83a1e6 20875 }
2e276125
JB
20876 else
20877 {
6a83a1e6
EZ
20878 /* The compiler produced a bogus file number. We can at least
20879 record the macro definitions made in the file, even if we
20880 won't be able to find the file by name. */
20881 char fake_name[80];
9a619af0 20882
8c042590
PM
20883 xsnprintf (fake_name, sizeof (fake_name),
20884 "<bad macro file number %d>", file);
2e276125 20885
6e70227d 20886 complaint (&symfile_complaints,
6a83a1e6
EZ
20887 _("bad file number in macro information (%d)"),
20888 file);
2e276125 20889
6a83a1e6 20890 return xstrdup (fake_name);
2e276125
JB
20891 }
20892}
20893
233d95b5
JK
20894/* Return the full name of file number I in *LH's file name table.
20895 Use COMP_DIR as the name of the current directory of the
20896 compilation. The result is allocated using xmalloc; the caller is
20897 responsible for freeing it. */
20898static char *
20899file_full_name (int file, struct line_header *lh, const char *comp_dir)
20900{
20901 /* Is the file number a valid index into the line header's file name
20902 table? Remember that file numbers start with one, not zero. */
20903 if (1 <= file && file <= lh->num_file_names)
20904 {
20905 char *relative = file_file_name (file, lh);
20906
20907 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20908 return relative;
20909 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20910 }
20911 else
20912 return file_file_name (file, lh);
20913}
20914
2e276125
JB
20915
20916static struct macro_source_file *
20917macro_start_file (int file, int line,
20918 struct macro_source_file *current_file,
43f3e411 20919 struct line_header *lh)
2e276125 20920{
233d95b5
JK
20921 /* File name relative to the compilation directory of this source file. */
20922 char *file_name = file_file_name (file, lh);
2e276125 20923
2e276125 20924 if (! current_file)
abc9d0dc 20925 {
fc474241
DE
20926 /* Note: We don't create a macro table for this compilation unit
20927 at all until we actually get a filename. */
43f3e411 20928 struct macro_table *macro_table = get_macro_table ();
fc474241 20929
abc9d0dc
TT
20930 /* If we have no current file, then this must be the start_file
20931 directive for the compilation unit's main source file. */
fc474241
DE
20932 current_file = macro_set_main (macro_table, file_name);
20933 macro_define_special (macro_table);
abc9d0dc 20934 }
2e276125 20935 else
233d95b5 20936 current_file = macro_include (current_file, line, file_name);
2e276125 20937
233d95b5 20938 xfree (file_name);
6e70227d 20939
2e276125
JB
20940 return current_file;
20941}
20942
20943
20944/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20945 followed by a null byte. */
20946static char *
20947copy_string (const char *buf, int len)
20948{
224c3ddb 20949 char *s = (char *) xmalloc (len + 1);
9a619af0 20950
2e276125
JB
20951 memcpy (s, buf, len);
20952 s[len] = '\0';
2e276125
JB
20953 return s;
20954}
20955
20956
20957static const char *
20958consume_improper_spaces (const char *p, const char *body)
20959{
20960 if (*p == ' ')
20961 {
4d3c2250 20962 complaint (&symfile_complaints,
3e43a32a
MS
20963 _("macro definition contains spaces "
20964 "in formal argument list:\n`%s'"),
4d3c2250 20965 body);
2e276125
JB
20966
20967 while (*p == ' ')
20968 p++;
20969 }
20970
20971 return p;
20972}
20973
20974
20975static void
20976parse_macro_definition (struct macro_source_file *file, int line,
20977 const char *body)
20978{
20979 const char *p;
20980
20981 /* The body string takes one of two forms. For object-like macro
20982 definitions, it should be:
20983
20984 <macro name> " " <definition>
20985
20986 For function-like macro definitions, it should be:
20987
20988 <macro name> "() " <definition>
20989 or
20990 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20991
20992 Spaces may appear only where explicitly indicated, and in the
20993 <definition>.
20994
20995 The Dwarf 2 spec says that an object-like macro's name is always
20996 followed by a space, but versions of GCC around March 2002 omit
6e70227d 20997 the space when the macro's definition is the empty string.
2e276125
JB
20998
20999 The Dwarf 2 spec says that there should be no spaces between the
21000 formal arguments in a function-like macro's formal argument list,
21001 but versions of GCC around March 2002 include spaces after the
21002 commas. */
21003
21004
21005 /* Find the extent of the macro name. The macro name is terminated
21006 by either a space or null character (for an object-like macro) or
21007 an opening paren (for a function-like macro). */
21008 for (p = body; *p; p++)
21009 if (*p == ' ' || *p == '(')
21010 break;
21011
21012 if (*p == ' ' || *p == '\0')
21013 {
21014 /* It's an object-like macro. */
21015 int name_len = p - body;
21016 char *name = copy_string (body, name_len);
21017 const char *replacement;
21018
21019 if (*p == ' ')
21020 replacement = body + name_len + 1;
21021 else
21022 {
4d3c2250 21023 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21024 replacement = body + name_len;
21025 }
6e70227d 21026
2e276125
JB
21027 macro_define_object (file, line, name, replacement);
21028
21029 xfree (name);
21030 }
21031 else if (*p == '(')
21032 {
21033 /* It's a function-like macro. */
21034 char *name = copy_string (body, p - body);
21035 int argc = 0;
21036 int argv_size = 1;
8d749320 21037 char **argv = XNEWVEC (char *, argv_size);
2e276125
JB
21038
21039 p++;
21040
21041 p = consume_improper_spaces (p, body);
21042
21043 /* Parse the formal argument list. */
21044 while (*p && *p != ')')
21045 {
21046 /* Find the extent of the current argument name. */
21047 const char *arg_start = p;
21048
21049 while (*p && *p != ',' && *p != ')' && *p != ' ')
21050 p++;
21051
21052 if (! *p || p == arg_start)
4d3c2250 21053 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21054 else
21055 {
21056 /* Make sure argv has room for the new argument. */
21057 if (argc >= argv_size)
21058 {
21059 argv_size *= 2;
224c3ddb 21060 argv = XRESIZEVEC (char *, argv, argv_size);
2e276125
JB
21061 }
21062
21063 argv[argc++] = copy_string (arg_start, p - arg_start);
21064 }
21065
21066 p = consume_improper_spaces (p, body);
21067
21068 /* Consume the comma, if present. */
21069 if (*p == ',')
21070 {
21071 p++;
21072
21073 p = consume_improper_spaces (p, body);
21074 }
21075 }
21076
21077 if (*p == ')')
21078 {
21079 p++;
21080
21081 if (*p == ' ')
21082 /* Perfectly formed definition, no complaints. */
21083 macro_define_function (file, line, name,
6e70227d 21084 argc, (const char **) argv,
2e276125
JB
21085 p + 1);
21086 else if (*p == '\0')
21087 {
21088 /* Complain, but do define it. */
4d3c2250 21089 dwarf2_macro_malformed_definition_complaint (body);
2e276125 21090 macro_define_function (file, line, name,
6e70227d 21091 argc, (const char **) argv,
2e276125
JB
21092 p);
21093 }
21094 else
21095 /* Just complain. */
4d3c2250 21096 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21097 }
21098 else
21099 /* Just complain. */
4d3c2250 21100 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21101
21102 xfree (name);
21103 {
21104 int i;
21105
21106 for (i = 0; i < argc; i++)
21107 xfree (argv[i]);
21108 }
21109 xfree (argv);
21110 }
21111 else
4d3c2250 21112 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
21113}
21114
cf2c3c16
TT
21115/* Skip some bytes from BYTES according to the form given in FORM.
21116 Returns the new pointer. */
2e276125 21117
d521ce57
TT
21118static const gdb_byte *
21119skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
21120 enum dwarf_form form,
21121 unsigned int offset_size,
21122 struct dwarf2_section_info *section)
2e276125 21123{
cf2c3c16 21124 unsigned int bytes_read;
2e276125 21125
cf2c3c16 21126 switch (form)
2e276125 21127 {
cf2c3c16
TT
21128 case DW_FORM_data1:
21129 case DW_FORM_flag:
21130 ++bytes;
21131 break;
21132
21133 case DW_FORM_data2:
21134 bytes += 2;
21135 break;
21136
21137 case DW_FORM_data4:
21138 bytes += 4;
21139 break;
21140
21141 case DW_FORM_data8:
21142 bytes += 8;
21143 break;
21144
21145 case DW_FORM_string:
21146 read_direct_string (abfd, bytes, &bytes_read);
21147 bytes += bytes_read;
21148 break;
21149
21150 case DW_FORM_sec_offset:
21151 case DW_FORM_strp:
36586728 21152 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
21153 bytes += offset_size;
21154 break;
21155
21156 case DW_FORM_block:
21157 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
21158 bytes += bytes_read;
21159 break;
21160
21161 case DW_FORM_block1:
21162 bytes += 1 + read_1_byte (abfd, bytes);
21163 break;
21164 case DW_FORM_block2:
21165 bytes += 2 + read_2_bytes (abfd, bytes);
21166 break;
21167 case DW_FORM_block4:
21168 bytes += 4 + read_4_bytes (abfd, bytes);
21169 break;
21170
21171 case DW_FORM_sdata:
21172 case DW_FORM_udata:
3019eac3
DE
21173 case DW_FORM_GNU_addr_index:
21174 case DW_FORM_GNU_str_index:
d521ce57 21175 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
21176 if (bytes == NULL)
21177 {
21178 dwarf2_section_buffer_overflow_complaint (section);
21179 return NULL;
21180 }
cf2c3c16
TT
21181 break;
21182
21183 default:
21184 {
21185 complain:
21186 complaint (&symfile_complaints,
21187 _("invalid form 0x%x in `%s'"),
a32a8923 21188 form, get_section_name (section));
cf2c3c16
TT
21189 return NULL;
21190 }
2e276125
JB
21191 }
21192
cf2c3c16
TT
21193 return bytes;
21194}
757a13d0 21195
cf2c3c16
TT
21196/* A helper for dwarf_decode_macros that handles skipping an unknown
21197 opcode. Returns an updated pointer to the macro data buffer; or,
21198 on error, issues a complaint and returns NULL. */
757a13d0 21199
d521ce57 21200static const gdb_byte *
cf2c3c16 21201skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
21202 const gdb_byte **opcode_definitions,
21203 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
21204 bfd *abfd,
21205 unsigned int offset_size,
21206 struct dwarf2_section_info *section)
21207{
21208 unsigned int bytes_read, i;
21209 unsigned long arg;
d521ce57 21210 const gdb_byte *defn;
2e276125 21211
cf2c3c16 21212 if (opcode_definitions[opcode] == NULL)
2e276125 21213 {
cf2c3c16
TT
21214 complaint (&symfile_complaints,
21215 _("unrecognized DW_MACFINO opcode 0x%x"),
21216 opcode);
21217 return NULL;
21218 }
2e276125 21219
cf2c3c16
TT
21220 defn = opcode_definitions[opcode];
21221 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
21222 defn += bytes_read;
2e276125 21223
cf2c3c16
TT
21224 for (i = 0; i < arg; ++i)
21225 {
aead7601
SM
21226 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
21227 (enum dwarf_form) defn[i], offset_size,
f664829e 21228 section);
cf2c3c16
TT
21229 if (mac_ptr == NULL)
21230 {
21231 /* skip_form_bytes already issued the complaint. */
21232 return NULL;
21233 }
21234 }
757a13d0 21235
cf2c3c16
TT
21236 return mac_ptr;
21237}
757a13d0 21238
cf2c3c16
TT
21239/* A helper function which parses the header of a macro section.
21240 If the macro section is the extended (for now called "GNU") type,
21241 then this updates *OFFSET_SIZE. Returns a pointer to just after
21242 the header, or issues a complaint and returns NULL on error. */
757a13d0 21243
d521ce57
TT
21244static const gdb_byte *
21245dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 21246 bfd *abfd,
d521ce57 21247 const gdb_byte *mac_ptr,
cf2c3c16
TT
21248 unsigned int *offset_size,
21249 int section_is_gnu)
21250{
21251 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 21252
cf2c3c16
TT
21253 if (section_is_gnu)
21254 {
21255 unsigned int version, flags;
757a13d0 21256
cf2c3c16
TT
21257 version = read_2_bytes (abfd, mac_ptr);
21258 if (version != 4)
21259 {
21260 complaint (&symfile_complaints,
21261 _("unrecognized version `%d' in .debug_macro section"),
21262 version);
21263 return NULL;
21264 }
21265 mac_ptr += 2;
757a13d0 21266
cf2c3c16
TT
21267 flags = read_1_byte (abfd, mac_ptr);
21268 ++mac_ptr;
21269 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 21270
cf2c3c16
TT
21271 if ((flags & 2) != 0)
21272 /* We don't need the line table offset. */
21273 mac_ptr += *offset_size;
757a13d0 21274
cf2c3c16
TT
21275 /* Vendor opcode descriptions. */
21276 if ((flags & 4) != 0)
21277 {
21278 unsigned int i, count;
757a13d0 21279
cf2c3c16
TT
21280 count = read_1_byte (abfd, mac_ptr);
21281 ++mac_ptr;
21282 for (i = 0; i < count; ++i)
21283 {
21284 unsigned int opcode, bytes_read;
21285 unsigned long arg;
21286
21287 opcode = read_1_byte (abfd, mac_ptr);
21288 ++mac_ptr;
21289 opcode_definitions[opcode] = mac_ptr;
21290 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21291 mac_ptr += bytes_read;
21292 mac_ptr += arg;
21293 }
757a13d0 21294 }
cf2c3c16 21295 }
757a13d0 21296
cf2c3c16
TT
21297 return mac_ptr;
21298}
757a13d0 21299
cf2c3c16 21300/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 21301 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
21302
21303static void
d521ce57
TT
21304dwarf_decode_macro_bytes (bfd *abfd,
21305 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 21306 struct macro_source_file *current_file,
43f3e411 21307 struct line_header *lh,
cf2c3c16 21308 struct dwarf2_section_info *section,
36586728 21309 int section_is_gnu, int section_is_dwz,
cf2c3c16 21310 unsigned int offset_size,
8fc3fc34 21311 htab_t include_hash)
cf2c3c16 21312{
4d663531 21313 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
21314 enum dwarf_macro_record_type macinfo_type;
21315 int at_commandline;
d521ce57 21316 const gdb_byte *opcode_definitions[256];
757a13d0 21317
cf2c3c16
TT
21318 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21319 &offset_size, section_is_gnu);
21320 if (mac_ptr == NULL)
21321 {
21322 /* We already issued a complaint. */
21323 return;
21324 }
757a13d0
JK
21325
21326 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
21327 GDB is still reading the definitions from command line. First
21328 DW_MACINFO_start_file will need to be ignored as it was already executed
21329 to create CURRENT_FILE for the main source holding also the command line
21330 definitions. On first met DW_MACINFO_start_file this flag is reset to
21331 normally execute all the remaining DW_MACINFO_start_file macinfos. */
21332
21333 at_commandline = 1;
21334
21335 do
21336 {
21337 /* Do we at least have room for a macinfo type byte? */
21338 if (mac_ptr >= mac_end)
21339 {
f664829e 21340 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
21341 break;
21342 }
21343
aead7601 21344 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
757a13d0
JK
21345 mac_ptr++;
21346
cf2c3c16
TT
21347 /* Note that we rely on the fact that the corresponding GNU and
21348 DWARF constants are the same. */
757a13d0
JK
21349 switch (macinfo_type)
21350 {
21351 /* A zero macinfo type indicates the end of the macro
21352 information. */
21353 case 0:
21354 break;
2e276125 21355
cf2c3c16
TT
21356 case DW_MACRO_GNU_define:
21357 case DW_MACRO_GNU_undef:
21358 case DW_MACRO_GNU_define_indirect:
21359 case DW_MACRO_GNU_undef_indirect:
36586728
TT
21360 case DW_MACRO_GNU_define_indirect_alt:
21361 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 21362 {
891d2f0b 21363 unsigned int bytes_read;
2e276125 21364 int line;
d521ce57 21365 const char *body;
cf2c3c16 21366 int is_define;
2e276125 21367
cf2c3c16
TT
21368 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21369 mac_ptr += bytes_read;
21370
21371 if (macinfo_type == DW_MACRO_GNU_define
21372 || macinfo_type == DW_MACRO_GNU_undef)
21373 {
21374 body = read_direct_string (abfd, mac_ptr, &bytes_read);
21375 mac_ptr += bytes_read;
21376 }
21377 else
21378 {
21379 LONGEST str_offset;
21380
21381 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
21382 mac_ptr += offset_size;
2e276125 21383
36586728 21384 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
21385 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
21386 || section_is_dwz)
36586728
TT
21387 {
21388 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21389
21390 body = read_indirect_string_from_dwz (dwz, str_offset);
21391 }
21392 else
21393 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
21394 }
21395
21396 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
21397 || macinfo_type == DW_MACRO_GNU_define_indirect
21398 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 21399 if (! current_file)
757a13d0
JK
21400 {
21401 /* DWARF violation as no main source is present. */
21402 complaint (&symfile_complaints,
21403 _("debug info with no main source gives macro %s "
21404 "on line %d: %s"),
cf2c3c16
TT
21405 is_define ? _("definition") : _("undefinition"),
21406 line, body);
757a13d0
JK
21407 break;
21408 }
3e43a32a
MS
21409 if ((line == 0 && !at_commandline)
21410 || (line != 0 && at_commandline))
4d3c2250 21411 complaint (&symfile_complaints,
757a13d0
JK
21412 _("debug info gives %s macro %s with %s line %d: %s"),
21413 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 21414 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
21415 line == 0 ? _("zero") : _("non-zero"), line, body);
21416
cf2c3c16 21417 if (is_define)
757a13d0 21418 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
21419 else
21420 {
21421 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
21422 || macinfo_type == DW_MACRO_GNU_undef_indirect
21423 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
21424 macro_undef (current_file, line, body);
21425 }
2e276125
JB
21426 }
21427 break;
21428
cf2c3c16 21429 case DW_MACRO_GNU_start_file:
2e276125 21430 {
891d2f0b 21431 unsigned int bytes_read;
2e276125
JB
21432 int line, file;
21433
21434 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21435 mac_ptr += bytes_read;
21436 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21437 mac_ptr += bytes_read;
21438
3e43a32a
MS
21439 if ((line == 0 && !at_commandline)
21440 || (line != 0 && at_commandline))
757a13d0
JK
21441 complaint (&symfile_complaints,
21442 _("debug info gives source %d included "
21443 "from %s at %s line %d"),
21444 file, at_commandline ? _("command-line") : _("file"),
21445 line == 0 ? _("zero") : _("non-zero"), line);
21446
21447 if (at_commandline)
21448 {
cf2c3c16
TT
21449 /* This DW_MACRO_GNU_start_file was executed in the
21450 pass one. */
757a13d0
JK
21451 at_commandline = 0;
21452 }
21453 else
43f3e411 21454 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
21455 }
21456 break;
21457
cf2c3c16 21458 case DW_MACRO_GNU_end_file:
2e276125 21459 if (! current_file)
4d3c2250 21460 complaint (&symfile_complaints,
3e43a32a
MS
21461 _("macro debug info has an unmatched "
21462 "`close_file' directive"));
2e276125
JB
21463 else
21464 {
21465 current_file = current_file->included_by;
21466 if (! current_file)
21467 {
cf2c3c16 21468 enum dwarf_macro_record_type next_type;
2e276125
JB
21469
21470 /* GCC circa March 2002 doesn't produce the zero
21471 type byte marking the end of the compilation
21472 unit. Complain if it's not there, but exit no
21473 matter what. */
21474
21475 /* Do we at least have room for a macinfo type byte? */
21476 if (mac_ptr >= mac_end)
21477 {
f664829e 21478 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
21479 return;
21480 }
21481
21482 /* We don't increment mac_ptr here, so this is just
21483 a look-ahead. */
aead7601
SM
21484 next_type
21485 = (enum dwarf_macro_record_type) read_1_byte (abfd,
21486 mac_ptr);
2e276125 21487 if (next_type != 0)
4d3c2250 21488 complaint (&symfile_complaints,
3e43a32a
MS
21489 _("no terminating 0-type entry for "
21490 "macros in `.debug_macinfo' section"));
2e276125
JB
21491
21492 return;
21493 }
21494 }
21495 break;
21496
cf2c3c16 21497 case DW_MACRO_GNU_transparent_include:
36586728 21498 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21499 {
21500 LONGEST offset;
8fc3fc34 21501 void **slot;
a036ba48
TT
21502 bfd *include_bfd = abfd;
21503 struct dwarf2_section_info *include_section = section;
21504 struct dwarf2_section_info alt_section;
d521ce57 21505 const gdb_byte *include_mac_end = mac_end;
a036ba48 21506 int is_dwz = section_is_dwz;
d521ce57 21507 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
21508
21509 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21510 mac_ptr += offset_size;
21511
a036ba48
TT
21512 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21513 {
21514 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21515
4d663531 21516 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 21517
a036ba48 21518 include_section = &dwz->macro;
a32a8923 21519 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
21520 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21521 is_dwz = 1;
21522 }
21523
21524 new_mac_ptr = include_section->buffer + offset;
21525 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21526
8fc3fc34
TT
21527 if (*slot != NULL)
21528 {
21529 /* This has actually happened; see
21530 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21531 complaint (&symfile_complaints,
21532 _("recursive DW_MACRO_GNU_transparent_include in "
21533 ".debug_macro section"));
21534 }
21535 else
21536 {
d521ce57 21537 *slot = (void *) new_mac_ptr;
36586728 21538
a036ba48 21539 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
43f3e411 21540 include_mac_end, current_file, lh,
36586728 21541 section, section_is_gnu, is_dwz,
4d663531 21542 offset_size, include_hash);
8fc3fc34 21543
d521ce57 21544 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 21545 }
cf2c3c16
TT
21546 }
21547 break;
21548
2e276125 21549 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
21550 if (!section_is_gnu)
21551 {
21552 unsigned int bytes_read;
21553 int constant;
2e276125 21554
cf2c3c16
TT
21555 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21556 mac_ptr += bytes_read;
21557 read_direct_string (abfd, mac_ptr, &bytes_read);
21558 mac_ptr += bytes_read;
2e276125 21559
cf2c3c16
TT
21560 /* We don't recognize any vendor extensions. */
21561 break;
21562 }
21563 /* FALLTHROUGH */
21564
21565 default:
21566 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21567 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21568 section);
21569 if (mac_ptr == NULL)
21570 return;
21571 break;
2e276125 21572 }
757a13d0 21573 } while (macinfo_type != 0);
2e276125 21574}
8e19ed76 21575
cf2c3c16 21576static void
09262596 21577dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 21578 int section_is_gnu)
cf2c3c16 21579{
bb5ed363 21580 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
21581 struct line_header *lh = cu->line_header;
21582 bfd *abfd;
d521ce57 21583 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
21584 struct macro_source_file *current_file = 0;
21585 enum dwarf_macro_record_type macinfo_type;
21586 unsigned int offset_size = cu->header.offset_size;
d521ce57 21587 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
21588 struct cleanup *cleanup;
21589 htab_t include_hash;
21590 void **slot;
09262596
DE
21591 struct dwarf2_section_info *section;
21592 const char *section_name;
21593
21594 if (cu->dwo_unit != NULL)
21595 {
21596 if (section_is_gnu)
21597 {
21598 section = &cu->dwo_unit->dwo_file->sections.macro;
21599 section_name = ".debug_macro.dwo";
21600 }
21601 else
21602 {
21603 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21604 section_name = ".debug_macinfo.dwo";
21605 }
21606 }
21607 else
21608 {
21609 if (section_is_gnu)
21610 {
21611 section = &dwarf2_per_objfile->macro;
21612 section_name = ".debug_macro";
21613 }
21614 else
21615 {
21616 section = &dwarf2_per_objfile->macinfo;
21617 section_name = ".debug_macinfo";
21618 }
21619 }
cf2c3c16 21620
bb5ed363 21621 dwarf2_read_section (objfile, section);
cf2c3c16
TT
21622 if (section->buffer == NULL)
21623 {
fceca515 21624 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
21625 return;
21626 }
a32a8923 21627 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
21628
21629 /* First pass: Find the name of the base filename.
21630 This filename is needed in order to process all macros whose definition
21631 (or undefinition) comes from the command line. These macros are defined
21632 before the first DW_MACINFO_start_file entry, and yet still need to be
21633 associated to the base file.
21634
21635 To determine the base file name, we scan the macro definitions until we
21636 reach the first DW_MACINFO_start_file entry. We then initialize
21637 CURRENT_FILE accordingly so that any macro definition found before the
21638 first DW_MACINFO_start_file can still be associated to the base file. */
21639
21640 mac_ptr = section->buffer + offset;
21641 mac_end = section->buffer + section->size;
21642
21643 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21644 &offset_size, section_is_gnu);
21645 if (mac_ptr == NULL)
21646 {
21647 /* We already issued a complaint. */
21648 return;
21649 }
21650
21651 do
21652 {
21653 /* Do we at least have room for a macinfo type byte? */
21654 if (mac_ptr >= mac_end)
21655 {
21656 /* Complaint is printed during the second pass as GDB will probably
21657 stop the first pass earlier upon finding
21658 DW_MACINFO_start_file. */
21659 break;
21660 }
21661
aead7601 21662 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
cf2c3c16
TT
21663 mac_ptr++;
21664
21665 /* Note that we rely on the fact that the corresponding GNU and
21666 DWARF constants are the same. */
21667 switch (macinfo_type)
21668 {
21669 /* A zero macinfo type indicates the end of the macro
21670 information. */
21671 case 0:
21672 break;
21673
21674 case DW_MACRO_GNU_define:
21675 case DW_MACRO_GNU_undef:
21676 /* Only skip the data by MAC_PTR. */
21677 {
21678 unsigned int bytes_read;
21679
21680 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21681 mac_ptr += bytes_read;
21682 read_direct_string (abfd, mac_ptr, &bytes_read);
21683 mac_ptr += bytes_read;
21684 }
21685 break;
21686
21687 case DW_MACRO_GNU_start_file:
21688 {
21689 unsigned int bytes_read;
21690 int line, file;
21691
21692 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21693 mac_ptr += bytes_read;
21694 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21695 mac_ptr += bytes_read;
21696
43f3e411 21697 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
21698 }
21699 break;
21700
21701 case DW_MACRO_GNU_end_file:
21702 /* No data to skip by MAC_PTR. */
21703 break;
21704
21705 case DW_MACRO_GNU_define_indirect:
21706 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
21707 case DW_MACRO_GNU_define_indirect_alt:
21708 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
21709 {
21710 unsigned int bytes_read;
21711
21712 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21713 mac_ptr += bytes_read;
21714 mac_ptr += offset_size;
21715 }
21716 break;
21717
21718 case DW_MACRO_GNU_transparent_include:
f7a35f02 21719 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21720 /* Note that, according to the spec, a transparent include
21721 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21722 skip this opcode. */
21723 mac_ptr += offset_size;
21724 break;
21725
21726 case DW_MACINFO_vendor_ext:
21727 /* Only skip the data by MAC_PTR. */
21728 if (!section_is_gnu)
21729 {
21730 unsigned int bytes_read;
21731
21732 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21733 mac_ptr += bytes_read;
21734 read_direct_string (abfd, mac_ptr, &bytes_read);
21735 mac_ptr += bytes_read;
21736 }
21737 /* FALLTHROUGH */
21738
21739 default:
21740 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21741 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21742 section);
21743 if (mac_ptr == NULL)
21744 return;
21745 break;
21746 }
21747 } while (macinfo_type != 0 && current_file == NULL);
21748
21749 /* Second pass: Process all entries.
21750
21751 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21752 command-line macro definitions/undefinitions. This flag is unset when we
21753 reach the first DW_MACINFO_start_file entry. */
21754
8fc3fc34
TT
21755 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21756 NULL, xcalloc, xfree);
21757 cleanup = make_cleanup_htab_delete (include_hash);
21758 mac_ptr = section->buffer + offset;
21759 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 21760 *slot = (void *) mac_ptr;
8fc3fc34 21761 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
43f3e411 21762 current_file, lh, section,
4d663531 21763 section_is_gnu, 0, offset_size, include_hash);
8fc3fc34 21764 do_cleanups (cleanup);
cf2c3c16
TT
21765}
21766
8e19ed76 21767/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 21768 if so return true else false. */
380bca97 21769
8e19ed76 21770static int
6e5a29e1 21771attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
21772{
21773 return (attr == NULL ? 0 :
21774 attr->form == DW_FORM_block1
21775 || attr->form == DW_FORM_block2
21776 || attr->form == DW_FORM_block4
2dc7f7b3
TT
21777 || attr->form == DW_FORM_block
21778 || attr->form == DW_FORM_exprloc);
8e19ed76 21779}
4c2df51b 21780
c6a0999f
JB
21781/* Return non-zero if ATTR's value is a section offset --- classes
21782 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21783 You may use DW_UNSND (attr) to retrieve such offsets.
21784
21785 Section 7.5.4, "Attribute Encodings", explains that no attribute
21786 may have a value that belongs to more than one of these classes; it
21787 would be ambiguous if we did, because we use the same forms for all
21788 of them. */
380bca97 21789
3690dd37 21790static int
6e5a29e1 21791attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
21792{
21793 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
21794 || attr->form == DW_FORM_data8
21795 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
21796}
21797
3690dd37
JB
21798/* Return non-zero if ATTR's value falls in the 'constant' class, or
21799 zero otherwise. When this function returns true, you can apply
21800 dwarf2_get_attr_constant_value to it.
21801
21802 However, note that for some attributes you must check
21803 attr_form_is_section_offset before using this test. DW_FORM_data4
21804 and DW_FORM_data8 are members of both the constant class, and of
21805 the classes that contain offsets into other debug sections
21806 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21807 that, if an attribute's can be either a constant or one of the
21808 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21809 taken as section offsets, not constants. */
380bca97 21810
3690dd37 21811static int
6e5a29e1 21812attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
21813{
21814 switch (attr->form)
21815 {
21816 case DW_FORM_sdata:
21817 case DW_FORM_udata:
21818 case DW_FORM_data1:
21819 case DW_FORM_data2:
21820 case DW_FORM_data4:
21821 case DW_FORM_data8:
21822 return 1;
21823 default:
21824 return 0;
21825 }
21826}
21827
7771576e
SA
21828
21829/* DW_ADDR is always stored already as sect_offset; despite for the forms
21830 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21831
21832static int
6e5a29e1 21833attr_form_is_ref (const struct attribute *attr)
7771576e
SA
21834{
21835 switch (attr->form)
21836 {
21837 case DW_FORM_ref_addr:
21838 case DW_FORM_ref1:
21839 case DW_FORM_ref2:
21840 case DW_FORM_ref4:
21841 case DW_FORM_ref8:
21842 case DW_FORM_ref_udata:
21843 case DW_FORM_GNU_ref_alt:
21844 return 1;
21845 default:
21846 return 0;
21847 }
21848}
21849
3019eac3
DE
21850/* Return the .debug_loc section to use for CU.
21851 For DWO files use .debug_loc.dwo. */
21852
21853static struct dwarf2_section_info *
21854cu_debug_loc_section (struct dwarf2_cu *cu)
21855{
21856 if (cu->dwo_unit)
21857 return &cu->dwo_unit->dwo_file->sections.loc;
21858 return &dwarf2_per_objfile->loc;
21859}
21860
8cf6f0b1
TT
21861/* A helper function that fills in a dwarf2_loclist_baton. */
21862
21863static void
21864fill_in_loclist_baton (struct dwarf2_cu *cu,
21865 struct dwarf2_loclist_baton *baton,
ff39bb5e 21866 const struct attribute *attr)
8cf6f0b1 21867{
3019eac3
DE
21868 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21869
21870 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
21871
21872 baton->per_cu = cu->per_cu;
21873 gdb_assert (baton->per_cu);
21874 /* We don't know how long the location list is, but make sure we
21875 don't run off the edge of the section. */
3019eac3
DE
21876 baton->size = section->size - DW_UNSND (attr);
21877 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 21878 baton->base_address = cu->base_address;
f664829e 21879 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
21880}
21881
4c2df51b 21882static void
ff39bb5e 21883dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 21884 struct dwarf2_cu *cu, int is_block)
4c2df51b 21885{
bb5ed363 21886 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 21887 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 21888
3690dd37 21889 if (attr_form_is_section_offset (attr)
3019eac3 21890 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
21891 the section. If so, fall through to the complaint in the
21892 other branch. */
3019eac3 21893 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 21894 {
0d53c4c4 21895 struct dwarf2_loclist_baton *baton;
4c2df51b 21896
8d749320 21897 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
4c2df51b 21898
8cf6f0b1 21899 fill_in_loclist_baton (cu, baton, attr);
be391dca 21900
d00adf39 21901 if (cu->base_known == 0)
0d53c4c4 21902 complaint (&symfile_complaints,
3e43a32a
MS
21903 _("Location list used without "
21904 "specifying the CU base address."));
4c2df51b 21905
f1e6e072
TT
21906 SYMBOL_ACLASS_INDEX (sym) = (is_block
21907 ? dwarf2_loclist_block_index
21908 : dwarf2_loclist_index);
0d53c4c4
DJ
21909 SYMBOL_LOCATION_BATON (sym) = baton;
21910 }
21911 else
21912 {
21913 struct dwarf2_locexpr_baton *baton;
21914
8d749320 21915 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
ae0d2f24
UW
21916 baton->per_cu = cu->per_cu;
21917 gdb_assert (baton->per_cu);
0d53c4c4
DJ
21918
21919 if (attr_form_is_block (attr))
21920 {
21921 /* Note that we're just copying the block's data pointer
21922 here, not the actual data. We're still pointing into the
6502dd73
DJ
21923 info_buffer for SYM's objfile; right now we never release
21924 that buffer, but when we do clean up properly this may
21925 need to change. */
0d53c4c4
DJ
21926 baton->size = DW_BLOCK (attr)->size;
21927 baton->data = DW_BLOCK (attr)->data;
21928 }
21929 else
21930 {
21931 dwarf2_invalid_attrib_class_complaint ("location description",
21932 SYMBOL_NATURAL_NAME (sym));
21933 baton->size = 0;
0d53c4c4 21934 }
6e70227d 21935
f1e6e072
TT
21936 SYMBOL_ACLASS_INDEX (sym) = (is_block
21937 ? dwarf2_locexpr_block_index
21938 : dwarf2_locexpr_index);
0d53c4c4
DJ
21939 SYMBOL_LOCATION_BATON (sym) = baton;
21940 }
4c2df51b 21941}
6502dd73 21942
9aa1f1e3
TT
21943/* Return the OBJFILE associated with the compilation unit CU. If CU
21944 came from a separate debuginfo file, then the master objfile is
21945 returned. */
ae0d2f24
UW
21946
21947struct objfile *
21948dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21949{
9291a0cd 21950 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
21951
21952 /* Return the master objfile, so that we can report and look up the
21953 correct file containing this variable. */
21954 if (objfile->separate_debug_objfile_backlink)
21955 objfile = objfile->separate_debug_objfile_backlink;
21956
21957 return objfile;
21958}
21959
96408a79
SA
21960/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21961 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21962 CU_HEADERP first. */
21963
21964static const struct comp_unit_head *
21965per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21966 struct dwarf2_per_cu_data *per_cu)
21967{
d521ce57 21968 const gdb_byte *info_ptr;
96408a79
SA
21969
21970 if (per_cu->cu)
21971 return &per_cu->cu->header;
21972
8a0459fd 21973 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
21974
21975 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 21976 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
21977
21978 return cu_headerp;
21979}
21980
ae0d2f24
UW
21981/* Return the address size given in the compilation unit header for CU. */
21982
98714339 21983int
ae0d2f24
UW
21984dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21985{
96408a79
SA
21986 struct comp_unit_head cu_header_local;
21987 const struct comp_unit_head *cu_headerp;
c471e790 21988
96408a79
SA
21989 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21990
21991 return cu_headerp->addr_size;
ae0d2f24
UW
21992}
21993
9eae7c52
TT
21994/* Return the offset size given in the compilation unit header for CU. */
21995
21996int
21997dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21998{
96408a79
SA
21999 struct comp_unit_head cu_header_local;
22000 const struct comp_unit_head *cu_headerp;
9c6c53f7 22001
96408a79
SA
22002 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22003
22004 return cu_headerp->offset_size;
22005}
22006
22007/* See its dwarf2loc.h declaration. */
22008
22009int
22010dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
22011{
22012 struct comp_unit_head cu_header_local;
22013 const struct comp_unit_head *cu_headerp;
22014
22015 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
22016
22017 if (cu_headerp->version == 2)
22018 return cu_headerp->addr_size;
22019 else
22020 return cu_headerp->offset_size;
181cebd4
JK
22021}
22022
9aa1f1e3
TT
22023/* Return the text offset of the CU. The returned offset comes from
22024 this CU's objfile. If this objfile came from a separate debuginfo
22025 file, then the offset may be different from the corresponding
22026 offset in the parent objfile. */
22027
22028CORE_ADDR
22029dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
22030{
bb3fa9d0 22031 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
22032
22033 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22034}
22035
348e048f
DE
22036/* Locate the .debug_info compilation unit from CU's objfile which contains
22037 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
22038
22039static struct dwarf2_per_cu_data *
b64f50a1 22040dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 22041 unsigned int offset_in_dwz,
ae038cb0
DJ
22042 struct objfile *objfile)
22043{
22044 struct dwarf2_per_cu_data *this_cu;
22045 int low, high;
36586728 22046 const sect_offset *cu_off;
ae038cb0 22047
ae038cb0
DJ
22048 low = 0;
22049 high = dwarf2_per_objfile->n_comp_units - 1;
22050 while (high > low)
22051 {
36586728 22052 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 22053 int mid = low + (high - low) / 2;
9a619af0 22054
36586728
TT
22055 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
22056 cu_off = &mid_cu->offset;
22057 if (mid_cu->is_dwz > offset_in_dwz
22058 || (mid_cu->is_dwz == offset_in_dwz
22059 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
22060 high = mid;
22061 else
22062 low = mid + 1;
22063 }
22064 gdb_assert (low == high);
36586728
TT
22065 this_cu = dwarf2_per_objfile->all_comp_units[low];
22066 cu_off = &this_cu->offset;
22067 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 22068 {
36586728 22069 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
22070 error (_("Dwarf Error: could not find partial DIE containing "
22071 "offset 0x%lx [in module %s]"),
b64f50a1 22072 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 22073
b64f50a1
JK
22074 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
22075 <= offset.sect_off);
ae038cb0
DJ
22076 return dwarf2_per_objfile->all_comp_units[low-1];
22077 }
22078 else
22079 {
22080 this_cu = dwarf2_per_objfile->all_comp_units[low];
22081 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
22082 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
22083 error (_("invalid dwarf2 offset %u"), offset.sect_off);
22084 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
22085 return this_cu;
22086 }
22087}
22088
23745b47 22089/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 22090
9816fde3 22091static void
23745b47 22092init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 22093{
9816fde3 22094 memset (cu, 0, sizeof (*cu));
23745b47
DE
22095 per_cu->cu = cu;
22096 cu->per_cu = per_cu;
22097 cu->objfile = per_cu->objfile;
93311388 22098 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
22099}
22100
22101/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
22102
22103static void
95554aad
TT
22104prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
22105 enum language pretend_language)
9816fde3
JK
22106{
22107 struct attribute *attr;
22108
22109 /* Set the language we're debugging. */
22110 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
22111 if (attr)
22112 set_cu_language (DW_UNSND (attr), cu);
22113 else
9cded63f 22114 {
95554aad 22115 cu->language = pretend_language;
9cded63f
TT
22116 cu->language_defn = language_def (cu->language);
22117 }
dee91e82 22118
7d45c7c3 22119 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
93311388
DE
22120}
22121
ae038cb0
DJ
22122/* Release one cached compilation unit, CU. We unlink it from the tree
22123 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
22124 the caller is responsible for that.
22125 NOTE: DATA is a void * because this function is also used as a
22126 cleanup routine. */
ae038cb0
DJ
22127
22128static void
68dc6402 22129free_heap_comp_unit (void *data)
ae038cb0 22130{
9a3c8263 22131 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
ae038cb0 22132
23745b47
DE
22133 gdb_assert (cu->per_cu != NULL);
22134 cu->per_cu->cu = NULL;
ae038cb0
DJ
22135 cu->per_cu = NULL;
22136
22137 obstack_free (&cu->comp_unit_obstack, NULL);
22138
22139 xfree (cu);
22140}
22141
72bf9492 22142/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 22143 when we're finished with it. We can't free the pointer itself, but be
dee91e82 22144 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
22145
22146static void
22147free_stack_comp_unit (void *data)
22148{
9a3c8263 22149 struct dwarf2_cu *cu = (struct dwarf2_cu *) data;
72bf9492 22150
23745b47
DE
22151 gdb_assert (cu->per_cu != NULL);
22152 cu->per_cu->cu = NULL;
22153 cu->per_cu = NULL;
22154
72bf9492
DJ
22155 obstack_free (&cu->comp_unit_obstack, NULL);
22156 cu->partial_dies = NULL;
ae038cb0
DJ
22157}
22158
22159/* Free all cached compilation units. */
22160
22161static void
22162free_cached_comp_units (void *data)
22163{
22164 struct dwarf2_per_cu_data *per_cu, **last_chain;
22165
22166 per_cu = dwarf2_per_objfile->read_in_chain;
22167 last_chain = &dwarf2_per_objfile->read_in_chain;
22168 while (per_cu != NULL)
22169 {
22170 struct dwarf2_per_cu_data *next_cu;
22171
22172 next_cu = per_cu->cu->read_in_chain;
22173
68dc6402 22174 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22175 *last_chain = next_cu;
22176
22177 per_cu = next_cu;
22178 }
22179}
22180
22181/* Increase the age counter on each cached compilation unit, and free
22182 any that are too old. */
22183
22184static void
22185age_cached_comp_units (void)
22186{
22187 struct dwarf2_per_cu_data *per_cu, **last_chain;
22188
22189 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
22190 per_cu = dwarf2_per_objfile->read_in_chain;
22191 while (per_cu != NULL)
22192 {
22193 per_cu->cu->last_used ++;
b4f54984 22194 if (per_cu->cu->last_used <= dwarf_max_cache_age)
ae038cb0
DJ
22195 dwarf2_mark (per_cu->cu);
22196 per_cu = per_cu->cu->read_in_chain;
22197 }
22198
22199 per_cu = dwarf2_per_objfile->read_in_chain;
22200 last_chain = &dwarf2_per_objfile->read_in_chain;
22201 while (per_cu != NULL)
22202 {
22203 struct dwarf2_per_cu_data *next_cu;
22204
22205 next_cu = per_cu->cu->read_in_chain;
22206
22207 if (!per_cu->cu->mark)
22208 {
68dc6402 22209 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
22210 *last_chain = next_cu;
22211 }
22212 else
22213 last_chain = &per_cu->cu->read_in_chain;
22214
22215 per_cu = next_cu;
22216 }
22217}
22218
22219/* Remove a single compilation unit from the cache. */
22220
22221static void
dee91e82 22222free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
22223{
22224 struct dwarf2_per_cu_data *per_cu, **last_chain;
22225
22226 per_cu = dwarf2_per_objfile->read_in_chain;
22227 last_chain = &dwarf2_per_objfile->read_in_chain;
22228 while (per_cu != NULL)
22229 {
22230 struct dwarf2_per_cu_data *next_cu;
22231
22232 next_cu = per_cu->cu->read_in_chain;
22233
dee91e82 22234 if (per_cu == target_per_cu)
ae038cb0 22235 {
68dc6402 22236 free_heap_comp_unit (per_cu->cu);
dee91e82 22237 per_cu->cu = NULL;
ae038cb0
DJ
22238 *last_chain = next_cu;
22239 break;
22240 }
22241 else
22242 last_chain = &per_cu->cu->read_in_chain;
22243
22244 per_cu = next_cu;
22245 }
22246}
22247
fe3e1990
DJ
22248/* Release all extra memory associated with OBJFILE. */
22249
22250void
22251dwarf2_free_objfile (struct objfile *objfile)
22252{
9a3c8263
SM
22253 dwarf2_per_objfile
22254 = (struct dwarf2_per_objfile *) objfile_data (objfile,
22255 dwarf2_objfile_data_key);
fe3e1990
DJ
22256
22257 if (dwarf2_per_objfile == NULL)
22258 return;
22259
22260 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
22261 free_cached_comp_units (NULL);
22262
7b9f3c50
DE
22263 if (dwarf2_per_objfile->quick_file_names_table)
22264 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 22265
527f3840
JK
22266 if (dwarf2_per_objfile->line_header_hash)
22267 htab_delete (dwarf2_per_objfile->line_header_hash);
22268
fe3e1990
DJ
22269 /* Everything else should be on the objfile obstack. */
22270}
22271
dee91e82
DE
22272/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
22273 We store these in a hash table separate from the DIEs, and preserve them
22274 when the DIEs are flushed out of cache.
22275
22276 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 22277 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
22278 or the type may come from a DWO file. Furthermore, while it's more logical
22279 to use per_cu->section+offset, with Fission the section with the data is in
22280 the DWO file but we don't know that section at the point we need it.
22281 We have to use something in dwarf2_per_cu_data (or the pointer to it)
22282 because we can enter the lookup routine, get_die_type_at_offset, from
22283 outside this file, and thus won't necessarily have PER_CU->cu.
22284 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 22285
dee91e82 22286struct dwarf2_per_cu_offset_and_type
1c379e20 22287{
dee91e82 22288 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 22289 sect_offset offset;
1c379e20
DJ
22290 struct type *type;
22291};
22292
dee91e82 22293/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22294
22295static hashval_t
dee91e82 22296per_cu_offset_and_type_hash (const void *item)
1c379e20 22297{
9a3c8263
SM
22298 const struct dwarf2_per_cu_offset_and_type *ofs
22299 = (const struct dwarf2_per_cu_offset_and_type *) item;
9a619af0 22300
dee91e82 22301 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
22302}
22303
dee91e82 22304/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
22305
22306static int
dee91e82 22307per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 22308{
9a3c8263
SM
22309 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
22310 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
22311 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
22312 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
9a619af0 22313
dee91e82
DE
22314 return (ofs_lhs->per_cu == ofs_rhs->per_cu
22315 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
22316}
22317
22318/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
22319 table if necessary. For convenience, return TYPE.
22320
22321 The DIEs reading must have careful ordering to:
22322 * Not cause infite loops trying to read in DIEs as a prerequisite for
22323 reading current DIE.
22324 * Not trying to dereference contents of still incompletely read in types
22325 while reading in other DIEs.
22326 * Enable referencing still incompletely read in types just by a pointer to
22327 the type without accessing its fields.
22328
22329 Therefore caller should follow these rules:
22330 * Try to fetch any prerequisite types we may need to build this DIE type
22331 before building the type and calling set_die_type.
e71ec853 22332 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
22333 possible before fetching more types to complete the current type.
22334 * Make the type as complete as possible before fetching more types. */
1c379e20 22335
f792889a 22336static struct type *
1c379e20
DJ
22337set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
22338{
dee91e82 22339 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 22340 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
22341 struct attribute *attr;
22342 struct dynamic_prop prop;
1c379e20 22343
b4ba55a1
JB
22344 /* For Ada types, make sure that the gnat-specific data is always
22345 initialized (if not already set). There are a few types where
22346 we should not be doing so, because the type-specific area is
22347 already used to hold some other piece of info (eg: TYPE_CODE_FLT
22348 where the type-specific area is used to store the floatformat).
22349 But this is not a problem, because the gnat-specific information
22350 is actually not needed for these types. */
22351 if (need_gnat_info (cu)
22352 && TYPE_CODE (type) != TYPE_CODE_FUNC
22353 && TYPE_CODE (type) != TYPE_CODE_FLT
09e2d7c7
DE
22354 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
22355 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
22356 && TYPE_CODE (type) != TYPE_CODE_METHOD
b4ba55a1
JB
22357 && !HAVE_GNAT_AUX_INFO (type))
22358 INIT_GNAT_SPECIFIC (type);
22359
3f2f83dd
KB
22360 /* Read DW_AT_allocated and set in type. */
22361 attr = dwarf2_attr (die, DW_AT_allocated, cu);
22362 if (attr_form_is_block (attr))
22363 {
22364 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22365 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type, objfile);
22366 }
22367 else if (attr != NULL)
22368 {
22369 complaint (&symfile_complaints,
22370 _("DW_AT_allocated has the wrong form (%s) at DIE 0x%x"),
22371 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22372 die->offset.sect_off);
22373 }
22374
22375 /* Read DW_AT_associated and set in type. */
22376 attr = dwarf2_attr (die, DW_AT_associated, cu);
22377 if (attr_form_is_block (attr))
22378 {
22379 if (attr_to_dynamic_prop (attr, die, cu, &prop))
22380 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type, objfile);
22381 }
22382 else if (attr != NULL)
22383 {
22384 complaint (&symfile_complaints,
22385 _("DW_AT_associated has the wrong form (%s) at DIE 0x%x"),
22386 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
22387 die->offset.sect_off);
22388 }
22389
3cdcd0ce
JB
22390 /* Read DW_AT_data_location and set in type. */
22391 attr = dwarf2_attr (die, DW_AT_data_location, cu);
22392 if (attr_to_dynamic_prop (attr, die, cu, &prop))
93a8e227 22393 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type, objfile);
3cdcd0ce 22394
dee91e82 22395 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22396 {
dee91e82
DE
22397 dwarf2_per_objfile->die_type_hash =
22398 htab_create_alloc_ex (127,
22399 per_cu_offset_and_type_hash,
22400 per_cu_offset_and_type_eq,
22401 NULL,
22402 &objfile->objfile_obstack,
22403 hashtab_obstack_allocate,
22404 dummy_obstack_deallocate);
f792889a 22405 }
1c379e20 22406
dee91e82 22407 ofs.per_cu = cu->per_cu;
1c379e20
DJ
22408 ofs.offset = die->offset;
22409 ofs.type = type;
dee91e82
DE
22410 slot = (struct dwarf2_per_cu_offset_and_type **)
22411 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
22412 if (*slot)
22413 complaint (&symfile_complaints,
22414 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 22415 die->offset.sect_off);
8d749320
SM
22416 *slot = XOBNEW (&objfile->objfile_obstack,
22417 struct dwarf2_per_cu_offset_and_type);
1c379e20 22418 **slot = ofs;
f792889a 22419 return type;
1c379e20
DJ
22420}
22421
02142a6c
DE
22422/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
22423 or return NULL if the die does not have a saved type. */
1c379e20
DJ
22424
22425static struct type *
b64f50a1 22426get_die_type_at_offset (sect_offset offset,
673bfd45 22427 struct dwarf2_per_cu_data *per_cu)
1c379e20 22428{
dee91e82 22429 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 22430
dee91e82 22431 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 22432 return NULL;
1c379e20 22433
dee91e82 22434 ofs.per_cu = per_cu;
673bfd45 22435 ofs.offset = offset;
9a3c8263
SM
22436 slot = ((struct dwarf2_per_cu_offset_and_type *)
22437 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
1c379e20
DJ
22438 if (slot)
22439 return slot->type;
22440 else
22441 return NULL;
22442}
22443
02142a6c 22444/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
22445 or return NULL if DIE does not have a saved type. */
22446
22447static struct type *
22448get_die_type (struct die_info *die, struct dwarf2_cu *cu)
22449{
22450 return get_die_type_at_offset (die->offset, cu->per_cu);
22451}
22452
10b3939b
DJ
22453/* Add a dependence relationship from CU to REF_PER_CU. */
22454
22455static void
22456dwarf2_add_dependence (struct dwarf2_cu *cu,
22457 struct dwarf2_per_cu_data *ref_per_cu)
22458{
22459 void **slot;
22460
22461 if (cu->dependencies == NULL)
22462 cu->dependencies
22463 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
22464 NULL, &cu->comp_unit_obstack,
22465 hashtab_obstack_allocate,
22466 dummy_obstack_deallocate);
22467
22468 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
22469 if (*slot == NULL)
22470 *slot = ref_per_cu;
22471}
1c379e20 22472
f504f079
DE
22473/* Subroutine of dwarf2_mark to pass to htab_traverse.
22474 Set the mark field in every compilation unit in the
ae038cb0
DJ
22475 cache that we must keep because we are keeping CU. */
22476
10b3939b
DJ
22477static int
22478dwarf2_mark_helper (void **slot, void *data)
22479{
22480 struct dwarf2_per_cu_data *per_cu;
22481
22482 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
22483
22484 /* cu->dependencies references may not yet have been ever read if QUIT aborts
22485 reading of the chain. As such dependencies remain valid it is not much
22486 useful to track and undo them during QUIT cleanups. */
22487 if (per_cu->cu == NULL)
22488 return 1;
22489
10b3939b
DJ
22490 if (per_cu->cu->mark)
22491 return 1;
22492 per_cu->cu->mark = 1;
22493
22494 if (per_cu->cu->dependencies != NULL)
22495 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
22496
22497 return 1;
22498}
22499
f504f079
DE
22500/* Set the mark field in CU and in every other compilation unit in the
22501 cache that we must keep because we are keeping CU. */
22502
ae038cb0
DJ
22503static void
22504dwarf2_mark (struct dwarf2_cu *cu)
22505{
22506 if (cu->mark)
22507 return;
22508 cu->mark = 1;
10b3939b
DJ
22509 if (cu->dependencies != NULL)
22510 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
22511}
22512
22513static void
22514dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
22515{
22516 while (per_cu)
22517 {
22518 per_cu->cu->mark = 0;
22519 per_cu = per_cu->cu->read_in_chain;
22520 }
72bf9492
DJ
22521}
22522
72bf9492
DJ
22523/* Trivial hash function for partial_die_info: the hash value of a DIE
22524 is its offset in .debug_info for this objfile. */
22525
22526static hashval_t
22527partial_die_hash (const void *item)
22528{
9a3c8263
SM
22529 const struct partial_die_info *part_die
22530 = (const struct partial_die_info *) item;
9a619af0 22531
b64f50a1 22532 return part_die->offset.sect_off;
72bf9492
DJ
22533}
22534
22535/* Trivial comparison function for partial_die_info structures: two DIEs
22536 are equal if they have the same offset. */
22537
22538static int
22539partial_die_eq (const void *item_lhs, const void *item_rhs)
22540{
9a3c8263
SM
22541 const struct partial_die_info *part_die_lhs
22542 = (const struct partial_die_info *) item_lhs;
22543 const struct partial_die_info *part_die_rhs
22544 = (const struct partial_die_info *) item_rhs;
9a619af0 22545
b64f50a1 22546 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
22547}
22548
b4f54984
DE
22549static struct cmd_list_element *set_dwarf_cmdlist;
22550static struct cmd_list_element *show_dwarf_cmdlist;
ae038cb0
DJ
22551
22552static void
b4f54984 22553set_dwarf_cmd (char *args, int from_tty)
ae038cb0 22554{
b4f54984 22555 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
635c7e8a 22556 gdb_stdout);
ae038cb0
DJ
22557}
22558
22559static void
b4f54984 22560show_dwarf_cmd (char *args, int from_tty)
6e70227d 22561{
b4f54984 22562 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
ae038cb0
DJ
22563}
22564
4bf44c1c 22565/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
22566
22567static void
c1bd65d0 22568dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc 22569{
9a3c8263 22570 struct dwarf2_per_objfile *data = (struct dwarf2_per_objfile *) d;
8b70b953 22571 int ix;
8b70b953 22572
626f2d1c
TT
22573 /* Make sure we don't accidentally use dwarf2_per_objfile while
22574 cleaning up. */
22575 dwarf2_per_objfile = NULL;
22576
59b0c7c1
JB
22577 for (ix = 0; ix < data->n_comp_units; ++ix)
22578 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 22579
59b0c7c1 22580 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 22581 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
22582 data->all_type_units[ix]->per_cu.imported_symtabs);
22583 xfree (data->all_type_units);
95554aad 22584
8b70b953 22585 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
22586
22587 if (data->dwo_files)
22588 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
22589 if (data->dwp_file)
22590 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
22591
22592 if (data->dwz_file && data->dwz_file->dwz_bfd)
22593 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
22594}
22595
22596\f
ae2de4f8 22597/* The "save gdb-index" command. */
9291a0cd
TT
22598
22599/* The contents of the hash table we create when building the string
22600 table. */
22601struct strtab_entry
22602{
22603 offset_type offset;
22604 const char *str;
22605};
22606
559a7a62
JK
22607/* Hash function for a strtab_entry.
22608
22609 Function is used only during write_hash_table so no index format backward
22610 compatibility is needed. */
b89be57b 22611
9291a0cd
TT
22612static hashval_t
22613hash_strtab_entry (const void *e)
22614{
9a3c8263 22615 const struct strtab_entry *entry = (const struct strtab_entry *) e;
559a7a62 22616 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
22617}
22618
22619/* Equality function for a strtab_entry. */
b89be57b 22620
9291a0cd
TT
22621static int
22622eq_strtab_entry (const void *a, const void *b)
22623{
9a3c8263
SM
22624 const struct strtab_entry *ea = (const struct strtab_entry *) a;
22625 const struct strtab_entry *eb = (const struct strtab_entry *) b;
9291a0cd
TT
22626 return !strcmp (ea->str, eb->str);
22627}
22628
22629/* Create a strtab_entry hash table. */
b89be57b 22630
9291a0cd
TT
22631static htab_t
22632create_strtab (void)
22633{
22634 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22635 xfree, xcalloc, xfree);
22636}
22637
22638/* Add a string to the constant pool. Return the string's offset in
22639 host order. */
b89be57b 22640
9291a0cd
TT
22641static offset_type
22642add_string (htab_t table, struct obstack *cpool, const char *str)
22643{
22644 void **slot;
22645 struct strtab_entry entry;
22646 struct strtab_entry *result;
22647
22648 entry.str = str;
22649 slot = htab_find_slot (table, &entry, INSERT);
22650 if (*slot)
9a3c8263 22651 result = (struct strtab_entry *) *slot;
9291a0cd
TT
22652 else
22653 {
22654 result = XNEW (struct strtab_entry);
22655 result->offset = obstack_object_size (cpool);
22656 result->str = str;
22657 obstack_grow_str0 (cpool, str);
22658 *slot = result;
22659 }
22660 return result->offset;
22661}
22662
22663/* An entry in the symbol table. */
22664struct symtab_index_entry
22665{
22666 /* The name of the symbol. */
22667 const char *name;
22668 /* The offset of the name in the constant pool. */
22669 offset_type index_offset;
22670 /* A sorted vector of the indices of all the CUs that hold an object
22671 of this name. */
22672 VEC (offset_type) *cu_indices;
22673};
22674
22675/* The symbol table. This is a power-of-2-sized hash table. */
22676struct mapped_symtab
22677{
22678 offset_type n_elements;
22679 offset_type size;
22680 struct symtab_index_entry **data;
22681};
22682
22683/* Hash function for a symtab_index_entry. */
b89be57b 22684
9291a0cd
TT
22685static hashval_t
22686hash_symtab_entry (const void *e)
22687{
9a3c8263
SM
22688 const struct symtab_index_entry *entry
22689 = (const struct symtab_index_entry *) e;
9291a0cd
TT
22690 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22691 sizeof (offset_type) * VEC_length (offset_type,
22692 entry->cu_indices),
22693 0);
22694}
22695
22696/* Equality function for a symtab_index_entry. */
b89be57b 22697
9291a0cd
TT
22698static int
22699eq_symtab_entry (const void *a, const void *b)
22700{
9a3c8263
SM
22701 const struct symtab_index_entry *ea = (const struct symtab_index_entry *) a;
22702 const struct symtab_index_entry *eb = (const struct symtab_index_entry *) b;
9291a0cd
TT
22703 int len = VEC_length (offset_type, ea->cu_indices);
22704 if (len != VEC_length (offset_type, eb->cu_indices))
22705 return 0;
22706 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22707 VEC_address (offset_type, eb->cu_indices),
22708 sizeof (offset_type) * len);
22709}
22710
22711/* Destroy a symtab_index_entry. */
b89be57b 22712
9291a0cd
TT
22713static void
22714delete_symtab_entry (void *p)
22715{
9a3c8263 22716 struct symtab_index_entry *entry = (struct symtab_index_entry *) p;
9291a0cd
TT
22717 VEC_free (offset_type, entry->cu_indices);
22718 xfree (entry);
22719}
22720
22721/* Create a hash table holding symtab_index_entry objects. */
b89be57b 22722
9291a0cd 22723static htab_t
3876f04e 22724create_symbol_hash_table (void)
9291a0cd
TT
22725{
22726 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22727 delete_symtab_entry, xcalloc, xfree);
22728}
22729
22730/* Create a new mapped symtab object. */
b89be57b 22731
9291a0cd
TT
22732static struct mapped_symtab *
22733create_mapped_symtab (void)
22734{
22735 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22736 symtab->n_elements = 0;
22737 symtab->size = 1024;
22738 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22739 return symtab;
22740}
22741
22742/* Destroy a mapped_symtab. */
b89be57b 22743
9291a0cd
TT
22744static void
22745cleanup_mapped_symtab (void *p)
22746{
9a3c8263 22747 struct mapped_symtab *symtab = (struct mapped_symtab *) p;
9291a0cd
TT
22748 /* The contents of the array are freed when the other hash table is
22749 destroyed. */
22750 xfree (symtab->data);
22751 xfree (symtab);
22752}
22753
22754/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
22755 the slot.
22756
22757 Function is used only during write_hash_table so no index format backward
22758 compatibility is needed. */
b89be57b 22759
9291a0cd
TT
22760static struct symtab_index_entry **
22761find_slot (struct mapped_symtab *symtab, const char *name)
22762{
559a7a62 22763 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
22764
22765 index = hash & (symtab->size - 1);
22766 step = ((hash * 17) & (symtab->size - 1)) | 1;
22767
22768 for (;;)
22769 {
22770 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22771 return &symtab->data[index];
22772 index = (index + step) & (symtab->size - 1);
22773 }
22774}
22775
22776/* Expand SYMTAB's hash table. */
b89be57b 22777
9291a0cd
TT
22778static void
22779hash_expand (struct mapped_symtab *symtab)
22780{
22781 offset_type old_size = symtab->size;
22782 offset_type i;
22783 struct symtab_index_entry **old_entries = symtab->data;
22784
22785 symtab->size *= 2;
22786 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22787
22788 for (i = 0; i < old_size; ++i)
22789 {
22790 if (old_entries[i])
22791 {
22792 struct symtab_index_entry **slot = find_slot (symtab,
22793 old_entries[i]->name);
22794 *slot = old_entries[i];
22795 }
22796 }
22797
22798 xfree (old_entries);
22799}
22800
156942c7
DE
22801/* Add an entry to SYMTAB. NAME is the name of the symbol.
22802 CU_INDEX is the index of the CU in which the symbol appears.
22803 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 22804
9291a0cd
TT
22805static void
22806add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 22807 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
22808 offset_type cu_index)
22809{
22810 struct symtab_index_entry **slot;
156942c7 22811 offset_type cu_index_and_attrs;
9291a0cd
TT
22812
22813 ++symtab->n_elements;
22814 if (4 * symtab->n_elements / 3 >= symtab->size)
22815 hash_expand (symtab);
22816
22817 slot = find_slot (symtab, name);
22818 if (!*slot)
22819 {
22820 *slot = XNEW (struct symtab_index_entry);
22821 (*slot)->name = name;
156942c7 22822 /* index_offset is set later. */
9291a0cd
TT
22823 (*slot)->cu_indices = NULL;
22824 }
156942c7
DE
22825
22826 cu_index_and_attrs = 0;
22827 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22828 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22829 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22830
22831 /* We don't want to record an index value twice as we want to avoid the
22832 duplication.
22833 We process all global symbols and then all static symbols
22834 (which would allow us to avoid the duplication by only having to check
22835 the last entry pushed), but a symbol could have multiple kinds in one CU.
22836 To keep things simple we don't worry about the duplication here and
22837 sort and uniqufy the list after we've processed all symbols. */
22838 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22839}
22840
22841/* qsort helper routine for uniquify_cu_indices. */
22842
22843static int
22844offset_type_compare (const void *ap, const void *bp)
22845{
22846 offset_type a = *(offset_type *) ap;
22847 offset_type b = *(offset_type *) bp;
22848
22849 return (a > b) - (b > a);
22850}
22851
22852/* Sort and remove duplicates of all symbols' cu_indices lists. */
22853
22854static void
22855uniquify_cu_indices (struct mapped_symtab *symtab)
22856{
22857 int i;
22858
22859 for (i = 0; i < symtab->size; ++i)
22860 {
22861 struct symtab_index_entry *entry = symtab->data[i];
22862
22863 if (entry
22864 && entry->cu_indices != NULL)
22865 {
22866 unsigned int next_to_insert, next_to_check;
22867 offset_type last_value;
22868
22869 qsort (VEC_address (offset_type, entry->cu_indices),
22870 VEC_length (offset_type, entry->cu_indices),
22871 sizeof (offset_type), offset_type_compare);
22872
22873 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22874 next_to_insert = 1;
22875 for (next_to_check = 1;
22876 next_to_check < VEC_length (offset_type, entry->cu_indices);
22877 ++next_to_check)
22878 {
22879 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22880 != last_value)
22881 {
22882 last_value = VEC_index (offset_type, entry->cu_indices,
22883 next_to_check);
22884 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22885 last_value);
22886 ++next_to_insert;
22887 }
22888 }
22889 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22890 }
22891 }
9291a0cd
TT
22892}
22893
22894/* Add a vector of indices to the constant pool. */
b89be57b 22895
9291a0cd 22896static offset_type
3876f04e 22897add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
22898 struct symtab_index_entry *entry)
22899{
22900 void **slot;
22901
3876f04e 22902 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
22903 if (!*slot)
22904 {
22905 offset_type len = VEC_length (offset_type, entry->cu_indices);
22906 offset_type val = MAYBE_SWAP (len);
22907 offset_type iter;
22908 int i;
22909
22910 *slot = entry;
22911 entry->index_offset = obstack_object_size (cpool);
22912
22913 obstack_grow (cpool, &val, sizeof (val));
22914 for (i = 0;
22915 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22916 ++i)
22917 {
22918 val = MAYBE_SWAP (iter);
22919 obstack_grow (cpool, &val, sizeof (val));
22920 }
22921 }
22922 else
22923 {
9a3c8263
SM
22924 struct symtab_index_entry *old_entry
22925 = (struct symtab_index_entry *) *slot;
9291a0cd
TT
22926 entry->index_offset = old_entry->index_offset;
22927 entry = old_entry;
22928 }
22929 return entry->index_offset;
22930}
22931
22932/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22933 constant pool entries going into the obstack CPOOL. */
b89be57b 22934
9291a0cd
TT
22935static void
22936write_hash_table (struct mapped_symtab *symtab,
22937 struct obstack *output, struct obstack *cpool)
22938{
22939 offset_type i;
3876f04e 22940 htab_t symbol_hash_table;
9291a0cd
TT
22941 htab_t str_table;
22942
3876f04e 22943 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 22944 str_table = create_strtab ();
3876f04e 22945
9291a0cd
TT
22946 /* We add all the index vectors to the constant pool first, to
22947 ensure alignment is ok. */
22948 for (i = 0; i < symtab->size; ++i)
22949 {
22950 if (symtab->data[i])
3876f04e 22951 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
22952 }
22953
22954 /* Now write out the hash table. */
22955 for (i = 0; i < symtab->size; ++i)
22956 {
22957 offset_type str_off, vec_off;
22958
22959 if (symtab->data[i])
22960 {
22961 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22962 vec_off = symtab->data[i]->index_offset;
22963 }
22964 else
22965 {
22966 /* While 0 is a valid constant pool index, it is not valid
22967 to have 0 for both offsets. */
22968 str_off = 0;
22969 vec_off = 0;
22970 }
22971
22972 str_off = MAYBE_SWAP (str_off);
22973 vec_off = MAYBE_SWAP (vec_off);
22974
22975 obstack_grow (output, &str_off, sizeof (str_off));
22976 obstack_grow (output, &vec_off, sizeof (vec_off));
22977 }
22978
22979 htab_delete (str_table);
3876f04e 22980 htab_delete (symbol_hash_table);
9291a0cd
TT
22981}
22982
0a5429f6
DE
22983/* Struct to map psymtab to CU index in the index file. */
22984struct psymtab_cu_index_map
22985{
22986 struct partial_symtab *psymtab;
22987 unsigned int cu_index;
22988};
22989
22990static hashval_t
22991hash_psymtab_cu_index (const void *item)
22992{
9a3c8263
SM
22993 const struct psymtab_cu_index_map *map
22994 = (const struct psymtab_cu_index_map *) item;
0a5429f6
DE
22995
22996 return htab_hash_pointer (map->psymtab);
22997}
22998
22999static int
23000eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
23001{
9a3c8263
SM
23002 const struct psymtab_cu_index_map *lhs
23003 = (const struct psymtab_cu_index_map *) item_lhs;
23004 const struct psymtab_cu_index_map *rhs
23005 = (const struct psymtab_cu_index_map *) item_rhs;
0a5429f6
DE
23006
23007 return lhs->psymtab == rhs->psymtab;
23008}
23009
23010/* Helper struct for building the address table. */
23011struct addrmap_index_data
23012{
23013 struct objfile *objfile;
23014 struct obstack *addr_obstack;
23015 htab_t cu_index_htab;
23016
23017 /* Non-zero if the previous_* fields are valid.
23018 We can't write an entry until we see the next entry (since it is only then
23019 that we know the end of the entry). */
23020 int previous_valid;
23021 /* Index of the CU in the table of all CUs in the index file. */
23022 unsigned int previous_cu_index;
0963b4bd 23023 /* Start address of the CU. */
0a5429f6
DE
23024 CORE_ADDR previous_cu_start;
23025};
23026
23027/* Write an address entry to OBSTACK. */
b89be57b 23028
9291a0cd 23029static void
0a5429f6
DE
23030add_address_entry (struct objfile *objfile, struct obstack *obstack,
23031 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 23032{
0a5429f6 23033 offset_type cu_index_to_write;
948f8e3d 23034 gdb_byte addr[8];
9291a0cd
TT
23035 CORE_ADDR baseaddr;
23036
23037 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23038
0a5429f6
DE
23039 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
23040 obstack_grow (obstack, addr, 8);
23041 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
23042 obstack_grow (obstack, addr, 8);
23043 cu_index_to_write = MAYBE_SWAP (cu_index);
23044 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
23045}
23046
23047/* Worker function for traversing an addrmap to build the address table. */
23048
23049static int
23050add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
23051{
9a3c8263
SM
23052 struct addrmap_index_data *data = (struct addrmap_index_data *) datap;
23053 struct partial_symtab *pst = (struct partial_symtab *) obj;
0a5429f6
DE
23054
23055 if (data->previous_valid)
23056 add_address_entry (data->objfile, data->addr_obstack,
23057 data->previous_cu_start, start_addr,
23058 data->previous_cu_index);
23059
23060 data->previous_cu_start = start_addr;
23061 if (pst != NULL)
23062 {
23063 struct psymtab_cu_index_map find_map, *map;
23064 find_map.psymtab = pst;
9a3c8263
SM
23065 map = ((struct psymtab_cu_index_map *)
23066 htab_find (data->cu_index_htab, &find_map));
0a5429f6
DE
23067 gdb_assert (map != NULL);
23068 data->previous_cu_index = map->cu_index;
23069 data->previous_valid = 1;
23070 }
23071 else
23072 data->previous_valid = 0;
23073
23074 return 0;
23075}
23076
23077/* Write OBJFILE's address map to OBSTACK.
23078 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
23079 in the index file. */
23080
23081static void
23082write_address_map (struct objfile *objfile, struct obstack *obstack,
23083 htab_t cu_index_htab)
23084{
23085 struct addrmap_index_data addrmap_index_data;
23086
23087 /* When writing the address table, we have to cope with the fact that
23088 the addrmap iterator only provides the start of a region; we have to
23089 wait until the next invocation to get the start of the next region. */
23090
23091 addrmap_index_data.objfile = objfile;
23092 addrmap_index_data.addr_obstack = obstack;
23093 addrmap_index_data.cu_index_htab = cu_index_htab;
23094 addrmap_index_data.previous_valid = 0;
23095
23096 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
23097 &addrmap_index_data);
23098
23099 /* It's highly unlikely the last entry (end address = 0xff...ff)
23100 is valid, but we should still handle it.
23101 The end address is recorded as the start of the next region, but that
23102 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
23103 anyway. */
23104 if (addrmap_index_data.previous_valid)
23105 add_address_entry (objfile, obstack,
23106 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
23107 addrmap_index_data.previous_cu_index);
9291a0cd
TT
23108}
23109
156942c7
DE
23110/* Return the symbol kind of PSYM. */
23111
23112static gdb_index_symbol_kind
23113symbol_kind (struct partial_symbol *psym)
23114{
23115 domain_enum domain = PSYMBOL_DOMAIN (psym);
23116 enum address_class aclass = PSYMBOL_CLASS (psym);
23117
23118 switch (domain)
23119 {
23120 case VAR_DOMAIN:
23121 switch (aclass)
23122 {
23123 case LOC_BLOCK:
23124 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
23125 case LOC_TYPEDEF:
23126 return GDB_INDEX_SYMBOL_KIND_TYPE;
23127 case LOC_COMPUTED:
23128 case LOC_CONST_BYTES:
23129 case LOC_OPTIMIZED_OUT:
23130 case LOC_STATIC:
23131 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23132 case LOC_CONST:
23133 /* Note: It's currently impossible to recognize psyms as enum values
23134 short of reading the type info. For now punt. */
23135 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
23136 default:
23137 /* There are other LOC_FOO values that one might want to classify
23138 as variables, but dwarf2read.c doesn't currently use them. */
23139 return GDB_INDEX_SYMBOL_KIND_OTHER;
23140 }
23141 case STRUCT_DOMAIN:
23142 return GDB_INDEX_SYMBOL_KIND_TYPE;
23143 default:
23144 return GDB_INDEX_SYMBOL_KIND_OTHER;
23145 }
23146}
23147
9291a0cd 23148/* Add a list of partial symbols to SYMTAB. */
b89be57b 23149
9291a0cd
TT
23150static void
23151write_psymbols (struct mapped_symtab *symtab,
987d643c 23152 htab_t psyms_seen,
9291a0cd
TT
23153 struct partial_symbol **psymp,
23154 int count,
987d643c
TT
23155 offset_type cu_index,
23156 int is_static)
9291a0cd
TT
23157{
23158 for (; count-- > 0; ++psymp)
23159 {
156942c7
DE
23160 struct partial_symbol *psym = *psymp;
23161 void **slot;
987d643c 23162
156942c7 23163 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 23164 error (_("Ada is not currently supported by the index"));
987d643c 23165
987d643c 23166 /* Only add a given psymbol once. */
156942c7 23167 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
23168 if (!*slot)
23169 {
156942c7
DE
23170 gdb_index_symbol_kind kind = symbol_kind (psym);
23171
23172 *slot = psym;
23173 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
23174 is_static, kind, cu_index);
987d643c 23175 }
9291a0cd
TT
23176 }
23177}
23178
23179/* Write the contents of an ("unfinished") obstack to FILE. Throw an
23180 exception if there is an error. */
b89be57b 23181
9291a0cd
TT
23182static void
23183write_obstack (FILE *file, struct obstack *obstack)
23184{
23185 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
23186 file)
23187 != obstack_object_size (obstack))
23188 error (_("couldn't data write to file"));
23189}
23190
23191/* Unlink a file if the argument is not NULL. */
b89be57b 23192
9291a0cd
TT
23193static void
23194unlink_if_set (void *p)
23195{
9a3c8263 23196 char **filename = (char **) p;
9291a0cd
TT
23197 if (*filename)
23198 unlink (*filename);
23199}
23200
1fd400ff
TT
23201/* A helper struct used when iterating over debug_types. */
23202struct signatured_type_index_data
23203{
23204 struct objfile *objfile;
23205 struct mapped_symtab *symtab;
23206 struct obstack *types_list;
987d643c 23207 htab_t psyms_seen;
1fd400ff
TT
23208 int cu_index;
23209};
23210
23211/* A helper function that writes a single signatured_type to an
23212 obstack. */
b89be57b 23213
1fd400ff
TT
23214static int
23215write_one_signatured_type (void **slot, void *d)
23216{
9a3c8263
SM
23217 struct signatured_type_index_data *info
23218 = (struct signatured_type_index_data *) d;
1fd400ff 23219 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 23220 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
23221 gdb_byte val[8];
23222
23223 write_psymbols (info->symtab,
987d643c 23224 info->psyms_seen,
3e43a32a
MS
23225 info->objfile->global_psymbols.list
23226 + psymtab->globals_offset,
987d643c
TT
23227 psymtab->n_global_syms, info->cu_index,
23228 0);
1fd400ff 23229 write_psymbols (info->symtab,
987d643c 23230 info->psyms_seen,
3e43a32a
MS
23231 info->objfile->static_psymbols.list
23232 + psymtab->statics_offset,
987d643c
TT
23233 psymtab->n_static_syms, info->cu_index,
23234 1);
1fd400ff 23235
b64f50a1
JK
23236 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23237 entry->per_cu.offset.sect_off);
1fd400ff 23238 obstack_grow (info->types_list, val, 8);
3019eac3
DE
23239 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23240 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
23241 obstack_grow (info->types_list, val, 8);
23242 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
23243 obstack_grow (info->types_list, val, 8);
23244
23245 ++info->cu_index;
23246
23247 return 1;
23248}
23249
95554aad
TT
23250/* Recurse into all "included" dependencies and write their symbols as
23251 if they appeared in this psymtab. */
23252
23253static void
23254recursively_write_psymbols (struct objfile *objfile,
23255 struct partial_symtab *psymtab,
23256 struct mapped_symtab *symtab,
23257 htab_t psyms_seen,
23258 offset_type cu_index)
23259{
23260 int i;
23261
23262 for (i = 0; i < psymtab->number_of_dependencies; ++i)
23263 if (psymtab->dependencies[i]->user != NULL)
23264 recursively_write_psymbols (objfile, psymtab->dependencies[i],
23265 symtab, psyms_seen, cu_index);
23266
23267 write_psymbols (symtab,
23268 psyms_seen,
23269 objfile->global_psymbols.list + psymtab->globals_offset,
23270 psymtab->n_global_syms, cu_index,
23271 0);
23272 write_psymbols (symtab,
23273 psyms_seen,
23274 objfile->static_psymbols.list + psymtab->statics_offset,
23275 psymtab->n_static_syms, cu_index,
23276 1);
23277}
23278
9291a0cd 23279/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 23280
9291a0cd
TT
23281static void
23282write_psymtabs_to_index (struct objfile *objfile, const char *dir)
23283{
23284 struct cleanup *cleanup;
23285 char *filename, *cleanup_filename;
1fd400ff
TT
23286 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
23287 struct obstack cu_list, types_cu_list;
9291a0cd
TT
23288 int i;
23289 FILE *out_file;
23290 struct mapped_symtab *symtab;
23291 offset_type val, size_of_contents, total_len;
23292 struct stat st;
987d643c 23293 htab_t psyms_seen;
0a5429f6
DE
23294 htab_t cu_index_htab;
23295 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 23296
9291a0cd
TT
23297 if (dwarf2_per_objfile->using_index)
23298 error (_("Cannot use an index to create the index"));
23299
8b70b953
TT
23300 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
23301 error (_("Cannot make an index when the file has multiple .debug_types sections"));
23302
260b681b
DE
23303 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
23304 return;
23305
4262abfb
JK
23306 if (stat (objfile_name (objfile), &st) < 0)
23307 perror_with_name (objfile_name (objfile));
9291a0cd 23308
4262abfb 23309 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
23310 INDEX_SUFFIX, (char *) NULL);
23311 cleanup = make_cleanup (xfree, filename);
23312
614c279d 23313 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
23314 if (!out_file)
23315 error (_("Can't open `%s' for writing"), filename);
23316
23317 cleanup_filename = filename;
23318 make_cleanup (unlink_if_set, &cleanup_filename);
23319
23320 symtab = create_mapped_symtab ();
23321 make_cleanup (cleanup_mapped_symtab, symtab);
23322
23323 obstack_init (&addr_obstack);
23324 make_cleanup_obstack_free (&addr_obstack);
23325
23326 obstack_init (&cu_list);
23327 make_cleanup_obstack_free (&cu_list);
23328
1fd400ff
TT
23329 obstack_init (&types_cu_list);
23330 make_cleanup_obstack_free (&types_cu_list);
23331
987d643c
TT
23332 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
23333 NULL, xcalloc, xfree);
96408a79 23334 make_cleanup_htab_delete (psyms_seen);
987d643c 23335
0a5429f6
DE
23336 /* While we're scanning CU's create a table that maps a psymtab pointer
23337 (which is what addrmap records) to its index (which is what is recorded
23338 in the index file). This will later be needed to write the address
23339 table. */
23340 cu_index_htab = htab_create_alloc (100,
23341 hash_psymtab_cu_index,
23342 eq_psymtab_cu_index,
23343 NULL, xcalloc, xfree);
96408a79 23344 make_cleanup_htab_delete (cu_index_htab);
8d749320
SM
23345 psymtab_cu_index_map = XNEWVEC (struct psymtab_cu_index_map,
23346 dwarf2_per_objfile->n_comp_units);
0a5429f6
DE
23347 make_cleanup (xfree, psymtab_cu_index_map);
23348
23349 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
23350 work here. Also, the debug_types entries do not appear in
23351 all_comp_units, but only in their own hash table. */
9291a0cd
TT
23352 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
23353 {
3e43a32a
MS
23354 struct dwarf2_per_cu_data *per_cu
23355 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 23356 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 23357 gdb_byte val[8];
0a5429f6
DE
23358 struct psymtab_cu_index_map *map;
23359 void **slot;
9291a0cd 23360
92fac807
JK
23361 /* CU of a shared file from 'dwz -m' may be unused by this main file.
23362 It may be referenced from a local scope but in such case it does not
23363 need to be present in .gdb_index. */
23364 if (psymtab == NULL)
23365 continue;
23366
95554aad
TT
23367 if (psymtab->user == NULL)
23368 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 23369
0a5429f6
DE
23370 map = &psymtab_cu_index_map[i];
23371 map->psymtab = psymtab;
23372 map->cu_index = i;
23373 slot = htab_find_slot (cu_index_htab, map, INSERT);
23374 gdb_assert (slot != NULL);
23375 gdb_assert (*slot == NULL);
23376 *slot = map;
9291a0cd 23377
b64f50a1
JK
23378 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
23379 per_cu->offset.sect_off);
9291a0cd 23380 obstack_grow (&cu_list, val, 8);
e254ef6a 23381 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
23382 obstack_grow (&cu_list, val, 8);
23383 }
23384
0a5429f6
DE
23385 /* Dump the address map. */
23386 write_address_map (objfile, &addr_obstack, cu_index_htab);
23387
1fd400ff
TT
23388 /* Write out the .debug_type entries, if any. */
23389 if (dwarf2_per_objfile->signatured_types)
23390 {
23391 struct signatured_type_index_data sig_data;
23392
23393 sig_data.objfile = objfile;
23394 sig_data.symtab = symtab;
23395 sig_data.types_list = &types_cu_list;
987d643c 23396 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
23397 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
23398 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
23399 write_one_signatured_type, &sig_data);
23400 }
23401
156942c7
DE
23402 /* Now that we've processed all symbols we can shrink their cu_indices
23403 lists. */
23404 uniquify_cu_indices (symtab);
23405
9291a0cd
TT
23406 obstack_init (&constant_pool);
23407 make_cleanup_obstack_free (&constant_pool);
23408 obstack_init (&symtab_obstack);
23409 make_cleanup_obstack_free (&symtab_obstack);
23410 write_hash_table (symtab, &symtab_obstack, &constant_pool);
23411
23412 obstack_init (&contents);
23413 make_cleanup_obstack_free (&contents);
1fd400ff 23414 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
23415 total_len = size_of_contents;
23416
23417 /* The version number. */
796a7ff8 23418 val = MAYBE_SWAP (8);
9291a0cd
TT
23419 obstack_grow (&contents, &val, sizeof (val));
23420
23421 /* The offset of the CU list from the start of the file. */
23422 val = MAYBE_SWAP (total_len);
23423 obstack_grow (&contents, &val, sizeof (val));
23424 total_len += obstack_object_size (&cu_list);
23425
1fd400ff
TT
23426 /* The offset of the types CU list from the start of the file. */
23427 val = MAYBE_SWAP (total_len);
23428 obstack_grow (&contents, &val, sizeof (val));
23429 total_len += obstack_object_size (&types_cu_list);
23430
9291a0cd
TT
23431 /* The offset of the address table from the start of the file. */
23432 val = MAYBE_SWAP (total_len);
23433 obstack_grow (&contents, &val, sizeof (val));
23434 total_len += obstack_object_size (&addr_obstack);
23435
23436 /* The offset of the symbol table from the start of the file. */
23437 val = MAYBE_SWAP (total_len);
23438 obstack_grow (&contents, &val, sizeof (val));
23439 total_len += obstack_object_size (&symtab_obstack);
23440
23441 /* The offset of the constant pool from the start of the file. */
23442 val = MAYBE_SWAP (total_len);
23443 obstack_grow (&contents, &val, sizeof (val));
23444 total_len += obstack_object_size (&constant_pool);
23445
23446 gdb_assert (obstack_object_size (&contents) == size_of_contents);
23447
23448 write_obstack (out_file, &contents);
23449 write_obstack (out_file, &cu_list);
1fd400ff 23450 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
23451 write_obstack (out_file, &addr_obstack);
23452 write_obstack (out_file, &symtab_obstack);
23453 write_obstack (out_file, &constant_pool);
23454
23455 fclose (out_file);
23456
23457 /* We want to keep the file, so we set cleanup_filename to NULL
23458 here. See unlink_if_set. */
23459 cleanup_filename = NULL;
23460
23461 do_cleanups (cleanup);
23462}
23463
90476074
TT
23464/* Implementation of the `save gdb-index' command.
23465
23466 Note that the file format used by this command is documented in the
23467 GDB manual. Any changes here must be documented there. */
11570e71 23468
9291a0cd
TT
23469static void
23470save_gdb_index_command (char *arg, int from_tty)
23471{
23472 struct objfile *objfile;
23473
23474 if (!arg || !*arg)
96d19272 23475 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
23476
23477 ALL_OBJFILES (objfile)
23478 {
23479 struct stat st;
23480
23481 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 23482 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
23483 continue;
23484
9a3c8263
SM
23485 dwarf2_per_objfile
23486 = (struct dwarf2_per_objfile *) objfile_data (objfile,
23487 dwarf2_objfile_data_key);
9291a0cd
TT
23488 if (dwarf2_per_objfile)
23489 {
9291a0cd 23490
492d29ea 23491 TRY
9291a0cd
TT
23492 {
23493 write_psymtabs_to_index (objfile, arg);
23494 }
492d29ea
PA
23495 CATCH (except, RETURN_MASK_ERROR)
23496 {
23497 exception_fprintf (gdb_stderr, except,
23498 _("Error while writing index for `%s': "),
23499 objfile_name (objfile));
23500 }
23501 END_CATCH
9291a0cd
TT
23502 }
23503 }
dce234bc
PP
23504}
23505
9291a0cd
TT
23506\f
23507
b4f54984 23508int dwarf_always_disassemble;
9eae7c52
TT
23509
23510static void
b4f54984
DE
23511show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
23512 struct cmd_list_element *c, const char *value)
9eae7c52 23513{
3e43a32a
MS
23514 fprintf_filtered (file,
23515 _("Whether to always disassemble "
23516 "DWARF expressions is %s.\n"),
9eae7c52
TT
23517 value);
23518}
23519
900e11f9
JK
23520static void
23521show_check_physname (struct ui_file *file, int from_tty,
23522 struct cmd_list_element *c, const char *value)
23523{
23524 fprintf_filtered (file,
23525 _("Whether to check \"physname\" is %s.\n"),
23526 value);
23527}
23528
6502dd73
DJ
23529void _initialize_dwarf2_read (void);
23530
23531void
23532_initialize_dwarf2_read (void)
23533{
96d19272
JK
23534 struct cmd_list_element *c;
23535
dce234bc 23536 dwarf2_objfile_data_key
c1bd65d0 23537 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 23538
b4f54984
DE
23539 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
23540Set DWARF specific variables.\n\
23541Configure DWARF variables such as the cache size"),
23542 &set_dwarf_cmdlist, "maintenance set dwarf ",
ae038cb0
DJ
23543 0/*allow-unknown*/, &maintenance_set_cmdlist);
23544
b4f54984
DE
23545 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
23546Show DWARF specific variables\n\
23547Show DWARF variables such as the cache size"),
23548 &show_dwarf_cmdlist, "maintenance show dwarf ",
ae038cb0
DJ
23549 0/*allow-unknown*/, &maintenance_show_cmdlist);
23550
23551 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
b4f54984
DE
23552 &dwarf_max_cache_age, _("\
23553Set the upper bound on the age of cached DWARF compilation units."), _("\
23554Show the upper bound on the age of cached DWARF compilation units."), _("\
7915a72c
AC
23555A higher limit means that cached compilation units will be stored\n\
23556in memory longer, and more total memory will be used. Zero disables\n\
23557caching, which can slow down startup."),
2c5b56ce 23558 NULL,
b4f54984
DE
23559 show_dwarf_max_cache_age,
23560 &set_dwarf_cmdlist,
23561 &show_dwarf_cmdlist);
d97bc12b 23562
9eae7c52 23563 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
b4f54984 23564 &dwarf_always_disassemble, _("\
9eae7c52
TT
23565Set whether `info address' always disassembles DWARF expressions."), _("\
23566Show whether `info address' always disassembles DWARF expressions."), _("\
23567When enabled, DWARF expressions are always printed in an assembly-like\n\
23568syntax. When disabled, expressions will be printed in a more\n\
23569conversational style, when possible."),
23570 NULL,
b4f54984
DE
23571 show_dwarf_always_disassemble,
23572 &set_dwarf_cmdlist,
23573 &show_dwarf_cmdlist);
23574
23575 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23576Set debugging of the DWARF reader."), _("\
23577Show debugging of the DWARF reader."), _("\
23578When enabled (non-zero), debugging messages are printed during DWARF\n\
73be47f5
DE
23579reading and symtab expansion. A value of 1 (one) provides basic\n\
23580information. A value greater than 1 provides more verbose information."),
45cfd468
DE
23581 NULL,
23582 NULL,
23583 &setdebuglist, &showdebuglist);
23584
b4f54984
DE
23585 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23586Set debugging of the DWARF DIE reader."), _("\
23587Show debugging of the DWARF DIE reader."), _("\
d97bc12b
DE
23588When enabled (non-zero), DIEs are dumped after they are read in.\n\
23589The value is the maximum depth to print."),
ccce17b0
YQ
23590 NULL,
23591 NULL,
23592 &setdebuglist, &showdebuglist);
9291a0cd 23593
27e0867f
DE
23594 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23595Set debugging of the dwarf line reader."), _("\
23596Show debugging of the dwarf line reader."), _("\
23597When enabled (non-zero), line number entries are dumped as they are read in.\n\
23598A value of 1 (one) provides basic information.\n\
23599A value greater than 1 provides more verbose information."),
23600 NULL,
23601 NULL,
23602 &setdebuglist, &showdebuglist);
23603
900e11f9
JK
23604 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23605Set cross-checking of \"physname\" code against demangler."), _("\
23606Show cross-checking of \"physname\" code against demangler."), _("\
23607When enabled, GDB's internal \"physname\" code is checked against\n\
23608the demangler."),
23609 NULL, show_check_physname,
23610 &setdebuglist, &showdebuglist);
23611
e615022a
DE
23612 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23613 no_class, &use_deprecated_index_sections, _("\
23614Set whether to use deprecated gdb_index sections."), _("\
23615Show whether to use deprecated gdb_index sections."), _("\
23616When enabled, deprecated .gdb_index sections are used anyway.\n\
23617Normally they are ignored either because of a missing feature or\n\
23618performance issue.\n\
23619Warning: This option must be enabled before gdb reads the file."),
23620 NULL,
23621 NULL,
23622 &setlist, &showlist);
23623
96d19272 23624 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 23625 _("\
fc1a9d6e 23626Save a gdb-index file.\n\
11570e71 23627Usage: save gdb-index DIRECTORY"),
96d19272
JK
23628 &save_cmdlist);
23629 set_cmd_completer (c, filename_completer);
f1e6e072
TT
23630
23631 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23632 &dwarf2_locexpr_funcs);
23633 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23634 &dwarf2_loclist_funcs);
23635
23636 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23637 &dwarf2_block_frame_base_locexpr_funcs);
23638 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23639 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 23640}
This page took 5.096017 seconds and 4 git commands to generate.