Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
32d0add0 3 Copyright (C) 1994-2015 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
53ce3c39 58#include <sys/stat.h>
96d19272 59#include "completer.h"
34eaf542 60#include "vec.h"
98bfdba5 61#include "c-lang.h"
a766d390 62#include "go-lang.h"
98bfdba5 63#include "valprint.h"
3019eac3 64#include "gdbcore.h" /* for gnutarget */
156942c7 65#include "gdb/gdb-index.h"
60d5a603 66#include <ctype.h>
cbb099e8 67#include "gdb_bfd.h"
4357ac6c 68#include "f-lang.h"
05cba821 69#include "source.h"
614c279d 70#include "filestuff.h"
dc294be5 71#include "build-id.h"
4c2df51b 72
c906108c 73#include <fcntl.h>
c906108c 74#include <sys/types.h>
d8151005 75
34eaf542
TT
76typedef struct symbol *symbolp;
77DEF_VEC_P (symbolp);
78
73be47f5
DE
79/* When == 1, print basic high level tracing messages.
80 When > 1, be more verbose.
45cfd468 81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
73be47f5 82static unsigned int dwarf2_read_debug = 0;
45cfd468 83
d97bc12b 84/* When non-zero, dump DIEs after they are read in. */
ccce17b0 85static unsigned int dwarf2_die_debug = 0;
d97bc12b 86
900e11f9
JK
87/* When non-zero, cross-check physname against demangler. */
88static int check_physname = 0;
89
481860b3 90/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 91static int use_deprecated_index_sections = 0;
481860b3 92
6502dd73
DJ
93static const struct objfile_data *dwarf2_objfile_data_key;
94
f1e6e072
TT
95/* The "aclass" indices for various kinds of computed DWARF symbols. */
96
97static int dwarf2_locexpr_index;
98static int dwarf2_loclist_index;
99static int dwarf2_locexpr_block_index;
100static int dwarf2_loclist_block_index;
101
73869dc2
DE
102/* A descriptor for dwarf sections.
103
104 S.ASECTION, SIZE are typically initialized when the objfile is first
105 scanned. BUFFER, READIN are filled in later when the section is read.
106 If the section contained compressed data then SIZE is updated to record
107 the uncompressed size of the section.
108
109 DWP file format V2 introduces a wrinkle that is easiest to handle by
110 creating the concept of virtual sections contained within a real section.
111 In DWP V2 the sections of the input DWO files are concatenated together
112 into one section, but section offsets are kept relative to the original
113 input section.
114 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
115 the real section this "virtual" section is contained in, and BUFFER,SIZE
116 describe the virtual section. */
117
dce234bc
PP
118struct dwarf2_section_info
119{
73869dc2
DE
120 union
121 {
e5aa3347 122 /* If this is a real section, the bfd section. */
73869dc2
DE
123 asection *asection;
124 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 125 section. */
73869dc2
DE
126 struct dwarf2_section_info *containing_section;
127 } s;
19ac8c2e 128 /* Pointer to section data, only valid if readin. */
d521ce57 129 const gdb_byte *buffer;
73869dc2 130 /* The size of the section, real or virtual. */
dce234bc 131 bfd_size_type size;
73869dc2
DE
132 /* If this is a virtual section, the offset in the real section.
133 Only valid if is_virtual. */
134 bfd_size_type virtual_offset;
be391dca 135 /* True if we have tried to read this section. */
73869dc2
DE
136 char readin;
137 /* True if this is a virtual section, False otherwise.
138 This specifies which of s.asection and s.containing_section to use. */
139 char is_virtual;
dce234bc
PP
140};
141
8b70b953
TT
142typedef struct dwarf2_section_info dwarf2_section_info_def;
143DEF_VEC_O (dwarf2_section_info_def);
144
9291a0cd
TT
145/* All offsets in the index are of this type. It must be
146 architecture-independent. */
147typedef uint32_t offset_type;
148
149DEF_VEC_I (offset_type);
150
156942c7
DE
151/* Ensure only legit values are used. */
152#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
153 do { \
154 gdb_assert ((unsigned int) (value) <= 1); \
155 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
156 } while (0)
157
158/* Ensure only legit values are used. */
159#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
160 do { \
161 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
162 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
163 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
164 } while (0)
165
166/* Ensure we don't use more than the alloted nuber of bits for the CU. */
167#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
168 do { \
169 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
170 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
171 } while (0)
172
9291a0cd
TT
173/* A description of the mapped index. The file format is described in
174 a comment by the code that writes the index. */
175struct mapped_index
176{
559a7a62
JK
177 /* Index data format version. */
178 int version;
179
9291a0cd
TT
180 /* The total length of the buffer. */
181 off_t total_size;
b11b1f88 182
9291a0cd
TT
183 /* A pointer to the address table data. */
184 const gdb_byte *address_table;
b11b1f88 185
9291a0cd
TT
186 /* Size of the address table data in bytes. */
187 offset_type address_table_size;
b11b1f88 188
3876f04e
DE
189 /* The symbol table, implemented as a hash table. */
190 const offset_type *symbol_table;
b11b1f88 191
9291a0cd 192 /* Size in slots, each slot is 2 offset_types. */
3876f04e 193 offset_type symbol_table_slots;
b11b1f88 194
9291a0cd
TT
195 /* A pointer to the constant pool. */
196 const char *constant_pool;
197};
198
95554aad
TT
199typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
200DEF_VEC_P (dwarf2_per_cu_ptr);
201
9cdd5dbd
DE
202/* Collection of data recorded per objfile.
203 This hangs off of dwarf2_objfile_data_key. */
204
6502dd73
DJ
205struct dwarf2_per_objfile
206{
dce234bc
PP
207 struct dwarf2_section_info info;
208 struct dwarf2_section_info abbrev;
209 struct dwarf2_section_info line;
dce234bc
PP
210 struct dwarf2_section_info loc;
211 struct dwarf2_section_info macinfo;
cf2c3c16 212 struct dwarf2_section_info macro;
dce234bc
PP
213 struct dwarf2_section_info str;
214 struct dwarf2_section_info ranges;
3019eac3 215 struct dwarf2_section_info addr;
dce234bc
PP
216 struct dwarf2_section_info frame;
217 struct dwarf2_section_info eh_frame;
9291a0cd 218 struct dwarf2_section_info gdb_index;
ae038cb0 219
8b70b953
TT
220 VEC (dwarf2_section_info_def) *types;
221
be391dca
TT
222 /* Back link. */
223 struct objfile *objfile;
224
d467dd73 225 /* Table of all the compilation units. This is used to locate
10b3939b 226 the target compilation unit of a particular reference. */
ae038cb0
DJ
227 struct dwarf2_per_cu_data **all_comp_units;
228
229 /* The number of compilation units in ALL_COMP_UNITS. */
230 int n_comp_units;
231
1fd400ff 232 /* The number of .debug_types-related CUs. */
d467dd73 233 int n_type_units;
1fd400ff 234
6aa5f3a6
DE
235 /* The number of elements allocated in all_type_units.
236 If there are skeleton-less TUs, we add them to all_type_units lazily. */
237 int n_allocated_type_units;
238
a2ce51a0
DE
239 /* The .debug_types-related CUs (TUs).
240 This is stored in malloc space because we may realloc it. */
b4dd5633 241 struct signatured_type **all_type_units;
1fd400ff 242
f4dc4d17
DE
243 /* Table of struct type_unit_group objects.
244 The hash key is the DW_AT_stmt_list value. */
245 htab_t type_unit_groups;
72dca2f5 246
348e048f
DE
247 /* A table mapping .debug_types signatures to its signatured_type entry.
248 This is NULL if the .debug_types section hasn't been read in yet. */
249 htab_t signatured_types;
250
f4dc4d17
DE
251 /* Type unit statistics, to see how well the scaling improvements
252 are doing. */
253 struct tu_stats
254 {
255 int nr_uniq_abbrev_tables;
256 int nr_symtabs;
257 int nr_symtab_sharers;
258 int nr_stmt_less_type_units;
6aa5f3a6 259 int nr_all_type_units_reallocs;
f4dc4d17
DE
260 } tu_stats;
261
262 /* A chain of compilation units that are currently read in, so that
263 they can be freed later. */
264 struct dwarf2_per_cu_data *read_in_chain;
265
3019eac3
DE
266 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
267 This is NULL if the table hasn't been allocated yet. */
268 htab_t dwo_files;
269
80626a55
DE
270 /* Non-zero if we've check for whether there is a DWP file. */
271 int dwp_checked;
272
273 /* The DWP file if there is one, or NULL. */
274 struct dwp_file *dwp_file;
275
36586728
TT
276 /* The shared '.dwz' file, if one exists. This is used when the
277 original data was compressed using 'dwz -m'. */
278 struct dwz_file *dwz_file;
279
72dca2f5
FR
280 /* A flag indicating wether this objfile has a section loaded at a
281 VMA of 0. */
282 int has_section_at_zero;
9291a0cd 283
ae2de4f8
DE
284 /* True if we are using the mapped index,
285 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
286 unsigned char using_index;
287
ae2de4f8 288 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 289 struct mapped_index *index_table;
98bfdba5 290
7b9f3c50 291 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
292 TUs typically share line table entries with a CU, so we maintain a
293 separate table of all line table entries to support the sharing.
294 Note that while there can be way more TUs than CUs, we've already
295 sorted all the TUs into "type unit groups", grouped by their
296 DW_AT_stmt_list value. Therefore the only sharing done here is with a
297 CU and its associated TU group if there is one. */
7b9f3c50
DE
298 htab_t quick_file_names_table;
299
98bfdba5
PA
300 /* Set during partial symbol reading, to prevent queueing of full
301 symbols. */
302 int reading_partial_symbols;
673bfd45 303
dee91e82 304 /* Table mapping type DIEs to their struct type *.
673bfd45 305 This is NULL if not allocated yet.
02142a6c 306 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 307 htab_t die_type_hash;
95554aad
TT
308
309 /* The CUs we recently read. */
310 VEC (dwarf2_per_cu_ptr) *just_read_cus;
6502dd73
DJ
311};
312
313static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 314
251d32d9 315/* Default names of the debugging sections. */
c906108c 316
233a11ab
CS
317/* Note that if the debugging section has been compressed, it might
318 have a name like .zdebug_info. */
319
9cdd5dbd
DE
320static const struct dwarf2_debug_sections dwarf2_elf_names =
321{
251d32d9
TG
322 { ".debug_info", ".zdebug_info" },
323 { ".debug_abbrev", ".zdebug_abbrev" },
324 { ".debug_line", ".zdebug_line" },
325 { ".debug_loc", ".zdebug_loc" },
326 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 327 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
328 { ".debug_str", ".zdebug_str" },
329 { ".debug_ranges", ".zdebug_ranges" },
330 { ".debug_types", ".zdebug_types" },
3019eac3 331 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
332 { ".debug_frame", ".zdebug_frame" },
333 { ".eh_frame", NULL },
24d3216f
TT
334 { ".gdb_index", ".zgdb_index" },
335 23
251d32d9 336};
c906108c 337
80626a55 338/* List of DWO/DWP sections. */
3019eac3 339
80626a55 340static const struct dwop_section_names
3019eac3
DE
341{
342 struct dwarf2_section_names abbrev_dwo;
343 struct dwarf2_section_names info_dwo;
344 struct dwarf2_section_names line_dwo;
345 struct dwarf2_section_names loc_dwo;
09262596
DE
346 struct dwarf2_section_names macinfo_dwo;
347 struct dwarf2_section_names macro_dwo;
3019eac3
DE
348 struct dwarf2_section_names str_dwo;
349 struct dwarf2_section_names str_offsets_dwo;
350 struct dwarf2_section_names types_dwo;
80626a55
DE
351 struct dwarf2_section_names cu_index;
352 struct dwarf2_section_names tu_index;
3019eac3 353}
80626a55 354dwop_section_names =
3019eac3
DE
355{
356 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
357 { ".debug_info.dwo", ".zdebug_info.dwo" },
358 { ".debug_line.dwo", ".zdebug_line.dwo" },
359 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
360 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
361 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
362 { ".debug_str.dwo", ".zdebug_str.dwo" },
363 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
364 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
365 { ".debug_cu_index", ".zdebug_cu_index" },
366 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
367};
368
c906108c
SS
369/* local data types */
370
107d2387
AC
371/* The data in a compilation unit header, after target2host
372 translation, looks like this. */
c906108c 373struct comp_unit_head
a738430d 374{
c764a876 375 unsigned int length;
a738430d 376 short version;
a738430d
MK
377 unsigned char addr_size;
378 unsigned char signed_addr_p;
b64f50a1 379 sect_offset abbrev_offset;
57349743 380
a738430d
MK
381 /* Size of file offsets; either 4 or 8. */
382 unsigned int offset_size;
57349743 383
a738430d
MK
384 /* Size of the length field; either 4 or 12. */
385 unsigned int initial_length_size;
57349743 386
a738430d
MK
387 /* Offset to the first byte of this compilation unit header in the
388 .debug_info section, for resolving relative reference dies. */
b64f50a1 389 sect_offset offset;
57349743 390
d00adf39
DE
391 /* Offset to first die in this cu from the start of the cu.
392 This will be the first byte following the compilation unit header. */
b64f50a1 393 cu_offset first_die_offset;
a738430d 394};
c906108c 395
3da10d80
KS
396/* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398struct delayed_method_info
399{
400 /* The type to which the method is attached, i.e., its parent class. */
401 struct type *type;
402
403 /* The index of the method in the type's function fieldlists. */
404 int fnfield_index;
405
406 /* The index of the method in the fieldlist. */
407 int index;
408
409 /* The name of the DIE. */
410 const char *name;
411
412 /* The DIE associated with this method. */
413 struct die_info *die;
414};
415
416typedef struct delayed_method_info delayed_method_info;
417DEF_VEC_O (delayed_method_info);
418
e7c27a73
DJ
419/* Internal state when decoding a particular compilation unit. */
420struct dwarf2_cu
421{
422 /* The objfile containing this compilation unit. */
423 struct objfile *objfile;
424
d00adf39 425 /* The header of the compilation unit. */
e7c27a73 426 struct comp_unit_head header;
e142c38c 427
d00adf39
DE
428 /* Base address of this compilation unit. */
429 CORE_ADDR base_address;
430
431 /* Non-zero if base_address has been set. */
432 int base_known;
433
e142c38c
DJ
434 /* The language we are debugging. */
435 enum language language;
436 const struct language_defn *language_defn;
437
b0f35d58
DL
438 const char *producer;
439
e142c38c
DJ
440 /* The generic symbol table building routines have separate lists for
441 file scope symbols and all all other scopes (local scopes). So
442 we need to select the right one to pass to add_symbol_to_list().
443 We do it by keeping a pointer to the correct list in list_in_scope.
444
445 FIXME: The original dwarf code just treated the file scope as the
446 first local scope, and all other local scopes as nested local
447 scopes, and worked fine. Check to see if we really need to
448 distinguish these in buildsym.c. */
449 struct pending **list_in_scope;
450
433df2d4
DE
451 /* The abbrev table for this CU.
452 Normally this points to the abbrev table in the objfile.
453 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
454 struct abbrev_table *abbrev_table;
72bf9492 455
b64f50a1
JK
456 /* Hash table holding all the loaded partial DIEs
457 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
458 htab_t partial_dies;
459
460 /* Storage for things with the same lifetime as this read-in compilation
461 unit, including partial DIEs. */
462 struct obstack comp_unit_obstack;
463
ae038cb0
DJ
464 /* When multiple dwarf2_cu structures are living in memory, this field
465 chains them all together, so that they can be released efficiently.
466 We will probably also want a generation counter so that most-recently-used
467 compilation units are cached... */
468 struct dwarf2_per_cu_data *read_in_chain;
469
69d751e3 470 /* Backlink to our per_cu entry. */
ae038cb0
DJ
471 struct dwarf2_per_cu_data *per_cu;
472
473 /* How many compilation units ago was this CU last referenced? */
474 int last_used;
475
b64f50a1
JK
476 /* A hash table of DIE cu_offset for following references with
477 die_info->offset.sect_off as hash. */
51545339 478 htab_t die_hash;
10b3939b
DJ
479
480 /* Full DIEs if read in. */
481 struct die_info *dies;
482
483 /* A set of pointers to dwarf2_per_cu_data objects for compilation
484 units referenced by this one. Only set during full symbol processing;
485 partial symbol tables do not have dependencies. */
486 htab_t dependencies;
487
cb1df416
DJ
488 /* Header data from the line table, during full symbol processing. */
489 struct line_header *line_header;
490
3da10d80
KS
491 /* A list of methods which need to have physnames computed
492 after all type information has been read. */
493 VEC (delayed_method_info) *method_list;
494
96408a79
SA
495 /* To be copied to symtab->call_site_htab. */
496 htab_t call_site_htab;
497
034e5797
DE
498 /* Non-NULL if this CU came from a DWO file.
499 There is an invariant here that is important to remember:
500 Except for attributes copied from the top level DIE in the "main"
501 (or "stub") file in preparation for reading the DWO file
502 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
503 Either there isn't a DWO file (in which case this is NULL and the point
504 is moot), or there is and either we're not going to read it (in which
505 case this is NULL) or there is and we are reading it (in which case this
506 is non-NULL). */
3019eac3
DE
507 struct dwo_unit *dwo_unit;
508
509 /* The DW_AT_addr_base attribute if present, zero otherwise
510 (zero is a valid value though).
1dbab08b 511 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
512 ULONGEST addr_base;
513
2e3cf129
DE
514 /* The DW_AT_ranges_base attribute if present, zero otherwise
515 (zero is a valid value though).
1dbab08b 516 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 517 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
518 be used without needing to know whether DWO files are in use or not.
519 N.B. This does not apply to DW_AT_ranges appearing in
520 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
521 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
522 DW_AT_ranges_base *would* have to be applied, and we'd have to care
523 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
524 ULONGEST ranges_base;
525
ae038cb0
DJ
526 /* Mark used when releasing cached dies. */
527 unsigned int mark : 1;
528
8be455d7
JK
529 /* This CU references .debug_loc. See the symtab->locations_valid field.
530 This test is imperfect as there may exist optimized debug code not using
531 any location list and still facing inlining issues if handled as
532 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 533 unsigned int has_loclist : 1;
ba919b58 534
1b80a9fa
JK
535 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
536 if all the producer_is_* fields are valid. This information is cached
537 because profiling CU expansion showed excessive time spent in
538 producer_is_gxx_lt_4_6. */
ba919b58
TT
539 unsigned int checked_producer : 1;
540 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 541 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 542 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
543
544 /* When set, the file that we're processing is known to have
545 debugging info for C++ namespaces. GCC 3.3.x did not produce
546 this information, but later versions do. */
547
548 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
549};
550
10b3939b
DJ
551/* Persistent data held for a compilation unit, even when not
552 processing it. We put a pointer to this structure in the
28dee7f5 553 read_symtab_private field of the psymtab. */
10b3939b 554
ae038cb0
DJ
555struct dwarf2_per_cu_data
556{
36586728 557 /* The start offset and length of this compilation unit.
45452591 558 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
559 initial_length_size.
560 If the DIE refers to a DWO file, this is always of the original die,
561 not the DWO file. */
b64f50a1 562 sect_offset offset;
36586728 563 unsigned int length;
ae038cb0
DJ
564
565 /* Flag indicating this compilation unit will be read in before
566 any of the current compilation units are processed. */
c764a876 567 unsigned int queued : 1;
ae038cb0 568
0d99eb77
DE
569 /* This flag will be set when reading partial DIEs if we need to load
570 absolutely all DIEs for this compilation unit, instead of just the ones
571 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
572 hash table and don't find it. */
573 unsigned int load_all_dies : 1;
574
0186c6a7
DE
575 /* Non-zero if this CU is from .debug_types.
576 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
577 this is non-zero. */
3019eac3
DE
578 unsigned int is_debug_types : 1;
579
36586728
TT
580 /* Non-zero if this CU is from the .dwz file. */
581 unsigned int is_dwz : 1;
582
a2ce51a0
DE
583 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
584 This flag is only valid if is_debug_types is true.
585 We can't read a CU directly from a DWO file: There are required
586 attributes in the stub. */
587 unsigned int reading_dwo_directly : 1;
588
7ee85ab1
DE
589 /* Non-zero if the TU has been read.
590 This is used to assist the "Stay in DWO Optimization" for Fission:
591 When reading a DWO, it's faster to read TUs from the DWO instead of
592 fetching them from random other DWOs (due to comdat folding).
593 If the TU has already been read, the optimization is unnecessary
594 (and unwise - we don't want to change where gdb thinks the TU lives
595 "midflight").
596 This flag is only valid if is_debug_types is true. */
597 unsigned int tu_read : 1;
598
3019eac3
DE
599 /* The section this CU/TU lives in.
600 If the DIE refers to a DWO file, this is always the original die,
601 not the DWO file. */
8a0459fd 602 struct dwarf2_section_info *section;
348e048f 603
17ea53c3
JK
604 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
605 of the CU cache it gets reset to NULL again. */
ae038cb0 606 struct dwarf2_cu *cu;
1c379e20 607
9cdd5dbd
DE
608 /* The corresponding objfile.
609 Normally we can get the objfile from dwarf2_per_objfile.
610 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
611 struct objfile *objfile;
612
fffbe6a8
YQ
613 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
614 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
615 union
616 {
617 /* The partial symbol table associated with this compilation unit,
95554aad 618 or NULL for unread partial units. */
9291a0cd
TT
619 struct partial_symtab *psymtab;
620
621 /* Data needed by the "quick" functions. */
622 struct dwarf2_per_cu_quick_data *quick;
623 } v;
95554aad 624
796a7ff8
DE
625 /* The CUs we import using DW_TAG_imported_unit. This is filled in
626 while reading psymtabs, used to compute the psymtab dependencies,
627 and then cleared. Then it is filled in again while reading full
628 symbols, and only deleted when the objfile is destroyed.
629
630 This is also used to work around a difference between the way gold
631 generates .gdb_index version <=7 and the way gdb does. Arguably this
632 is a gold bug. For symbols coming from TUs, gold records in the index
633 the CU that includes the TU instead of the TU itself. This breaks
634 dw2_lookup_symbol: It assumes that if the index says symbol X lives
635 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
636 will find X. Alas TUs live in their own symtab, so after expanding CU Y
637 we need to look in TU Z to find X. Fortunately, this is akin to
638 DW_TAG_imported_unit, so we just use the same mechanism: For
639 .gdb_index version <=7 this also records the TUs that the CU referred
640 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
641 indices so we only pay a price for gold generated indices.
642 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 643 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
644};
645
348e048f
DE
646/* Entry in the signatured_types hash table. */
647
648struct signatured_type
649{
42e7ad6c 650 /* The "per_cu" object of this type.
ac9ec31b 651 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
652 N.B.: This is the first member so that it's easy to convert pointers
653 between them. */
654 struct dwarf2_per_cu_data per_cu;
655
3019eac3 656 /* The type's signature. */
348e048f
DE
657 ULONGEST signature;
658
3019eac3 659 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
660 If this TU is a DWO stub and the definition lives in a DWO file
661 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
662 cu_offset type_offset_in_tu;
663
664 /* Offset in the section of the type's DIE.
665 If the definition lives in a DWO file, this is the offset in the
666 .debug_types.dwo section.
667 The value is zero until the actual value is known.
668 Zero is otherwise not a valid section offset. */
669 sect_offset type_offset_in_section;
0186c6a7
DE
670
671 /* Type units are grouped by their DW_AT_stmt_list entry so that they
672 can share them. This points to the containing symtab. */
673 struct type_unit_group *type_unit_group;
ac9ec31b
DE
674
675 /* The type.
676 The first time we encounter this type we fully read it in and install it
677 in the symbol tables. Subsequent times we only need the type. */
678 struct type *type;
a2ce51a0
DE
679
680 /* Containing DWO unit.
681 This field is valid iff per_cu.reading_dwo_directly. */
682 struct dwo_unit *dwo_unit;
348e048f
DE
683};
684
0186c6a7
DE
685typedef struct signatured_type *sig_type_ptr;
686DEF_VEC_P (sig_type_ptr);
687
094b34ac
DE
688/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
689 This includes type_unit_group and quick_file_names. */
690
691struct stmt_list_hash
692{
693 /* The DWO unit this table is from or NULL if there is none. */
694 struct dwo_unit *dwo_unit;
695
696 /* Offset in .debug_line or .debug_line.dwo. */
697 sect_offset line_offset;
698};
699
f4dc4d17
DE
700/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
701 an object of this type. */
702
703struct type_unit_group
704{
0186c6a7 705 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
706 To simplify things we create an artificial CU that "includes" all the
707 type units using this stmt_list so that the rest of the code still has
708 a "per_cu" handle on the symtab.
709 This PER_CU is recognized by having no section. */
8a0459fd 710#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
711 struct dwarf2_per_cu_data per_cu;
712
0186c6a7
DE
713 /* The TUs that share this DW_AT_stmt_list entry.
714 This is added to while parsing type units to build partial symtabs,
715 and is deleted afterwards and not used again. */
716 VEC (sig_type_ptr) *tus;
f4dc4d17 717
43f3e411 718 /* The compunit symtab.
094b34ac 719 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
720 so we create an essentially anonymous symtab as the compunit symtab. */
721 struct compunit_symtab *compunit_symtab;
f4dc4d17 722
094b34ac
DE
723 /* The data used to construct the hash key. */
724 struct stmt_list_hash hash;
f4dc4d17
DE
725
726 /* The number of symtabs from the line header.
727 The value here must match line_header.num_file_names. */
728 unsigned int num_symtabs;
729
730 /* The symbol tables for this TU (obtained from the files listed in
731 DW_AT_stmt_list).
732 WARNING: The order of entries here must match the order of entries
733 in the line header. After the first TU using this type_unit_group, the
734 line header for the subsequent TUs is recreated from this. This is done
735 because we need to use the same symtabs for each TU using the same
736 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
737 there's no guarantee the line header doesn't have duplicate entries. */
738 struct symtab **symtabs;
739};
740
73869dc2 741/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
742
743struct dwo_sections
744{
745 struct dwarf2_section_info abbrev;
3019eac3
DE
746 struct dwarf2_section_info line;
747 struct dwarf2_section_info loc;
09262596
DE
748 struct dwarf2_section_info macinfo;
749 struct dwarf2_section_info macro;
3019eac3
DE
750 struct dwarf2_section_info str;
751 struct dwarf2_section_info str_offsets;
80626a55
DE
752 /* In the case of a virtual DWO file, these two are unused. */
753 struct dwarf2_section_info info;
3019eac3
DE
754 VEC (dwarf2_section_info_def) *types;
755};
756
c88ee1f0 757/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
758
759struct dwo_unit
760{
761 /* Backlink to the containing struct dwo_file. */
762 struct dwo_file *dwo_file;
763
764 /* The "id" that distinguishes this CU/TU.
765 .debug_info calls this "dwo_id", .debug_types calls this "signature".
766 Since signatures came first, we stick with it for consistency. */
767 ULONGEST signature;
768
769 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 770 struct dwarf2_section_info *section;
3019eac3 771
19ac8c2e 772 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
773 sect_offset offset;
774 unsigned int length;
775
776 /* For types, offset in the type's DIE of the type defined by this TU. */
777 cu_offset type_offset_in_tu;
778};
779
73869dc2
DE
780/* include/dwarf2.h defines the DWP section codes.
781 It defines a max value but it doesn't define a min value, which we
782 use for error checking, so provide one. */
783
784enum dwp_v2_section_ids
785{
786 DW_SECT_MIN = 1
787};
788
80626a55 789/* Data for one DWO file.
57d63ce2
DE
790
791 This includes virtual DWO files (a virtual DWO file is a DWO file as it
792 appears in a DWP file). DWP files don't really have DWO files per se -
793 comdat folding of types "loses" the DWO file they came from, and from
794 a high level view DWP files appear to contain a mass of random types.
795 However, to maintain consistency with the non-DWP case we pretend DWP
796 files contain virtual DWO files, and we assign each TU with one virtual
797 DWO file (generally based on the line and abbrev section offsets -
798 a heuristic that seems to work in practice). */
3019eac3
DE
799
800struct dwo_file
801{
0ac5b59e 802 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
803 For virtual DWO files the name is constructed from the section offsets
804 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
805 from related CU+TUs. */
0ac5b59e
DE
806 const char *dwo_name;
807
808 /* The DW_AT_comp_dir attribute. */
809 const char *comp_dir;
3019eac3 810
80626a55
DE
811 /* The bfd, when the file is open. Otherwise this is NULL.
812 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
813 bfd *dbfd;
3019eac3 814
73869dc2
DE
815 /* The sections that make up this DWO file.
816 Remember that for virtual DWO files in DWP V2, these are virtual
817 sections (for lack of a better name). */
3019eac3
DE
818 struct dwo_sections sections;
819
19c3d4c9
DE
820 /* The CU in the file.
821 We only support one because having more than one requires hacking the
822 dwo_name of each to match, which is highly unlikely to happen.
823 Doing this means all TUs can share comp_dir: We also assume that
824 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
825 struct dwo_unit *cu;
3019eac3
DE
826
827 /* Table of TUs in the file.
828 Each element is a struct dwo_unit. */
829 htab_t tus;
830};
831
80626a55
DE
832/* These sections are what may appear in a DWP file. */
833
834struct dwp_sections
835{
73869dc2 836 /* These are used by both DWP version 1 and 2. */
80626a55
DE
837 struct dwarf2_section_info str;
838 struct dwarf2_section_info cu_index;
839 struct dwarf2_section_info tu_index;
73869dc2
DE
840
841 /* These are only used by DWP version 2 files.
842 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
843 sections are referenced by section number, and are not recorded here.
844 In DWP version 2 there is at most one copy of all these sections, each
845 section being (effectively) comprised of the concatenation of all of the
846 individual sections that exist in the version 1 format.
847 To keep the code simple we treat each of these concatenated pieces as a
848 section itself (a virtual section?). */
849 struct dwarf2_section_info abbrev;
850 struct dwarf2_section_info info;
851 struct dwarf2_section_info line;
852 struct dwarf2_section_info loc;
853 struct dwarf2_section_info macinfo;
854 struct dwarf2_section_info macro;
855 struct dwarf2_section_info str_offsets;
856 struct dwarf2_section_info types;
80626a55
DE
857};
858
73869dc2
DE
859/* These sections are what may appear in a virtual DWO file in DWP version 1.
860 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 861
73869dc2 862struct virtual_v1_dwo_sections
80626a55
DE
863{
864 struct dwarf2_section_info abbrev;
865 struct dwarf2_section_info line;
866 struct dwarf2_section_info loc;
867 struct dwarf2_section_info macinfo;
868 struct dwarf2_section_info macro;
869 struct dwarf2_section_info str_offsets;
870 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 871 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
872 struct dwarf2_section_info info_or_types;
873};
874
73869dc2
DE
875/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
876 In version 2, the sections of the DWO files are concatenated together
877 and stored in one section of that name. Thus each ELF section contains
878 several "virtual" sections. */
879
880struct virtual_v2_dwo_sections
881{
882 bfd_size_type abbrev_offset;
883 bfd_size_type abbrev_size;
884
885 bfd_size_type line_offset;
886 bfd_size_type line_size;
887
888 bfd_size_type loc_offset;
889 bfd_size_type loc_size;
890
891 bfd_size_type macinfo_offset;
892 bfd_size_type macinfo_size;
893
894 bfd_size_type macro_offset;
895 bfd_size_type macro_size;
896
897 bfd_size_type str_offsets_offset;
898 bfd_size_type str_offsets_size;
899
900 /* Each DWP hash table entry records one CU or one TU.
901 That is recorded here, and copied to dwo_unit.section. */
902 bfd_size_type info_or_types_offset;
903 bfd_size_type info_or_types_size;
904};
905
80626a55
DE
906/* Contents of DWP hash tables. */
907
908struct dwp_hash_table
909{
73869dc2 910 uint32_t version, nr_columns;
80626a55 911 uint32_t nr_units, nr_slots;
73869dc2
DE
912 const gdb_byte *hash_table, *unit_table;
913 union
914 {
915 struct
916 {
917 const gdb_byte *indices;
918 } v1;
919 struct
920 {
921 /* This is indexed by column number and gives the id of the section
922 in that column. */
923#define MAX_NR_V2_DWO_SECTIONS \
924 (1 /* .debug_info or .debug_types */ \
925 + 1 /* .debug_abbrev */ \
926 + 1 /* .debug_line */ \
927 + 1 /* .debug_loc */ \
928 + 1 /* .debug_str_offsets */ \
929 + 1 /* .debug_macro or .debug_macinfo */)
930 int section_ids[MAX_NR_V2_DWO_SECTIONS];
931 const gdb_byte *offsets;
932 const gdb_byte *sizes;
933 } v2;
934 } section_pool;
80626a55
DE
935};
936
937/* Data for one DWP file. */
938
939struct dwp_file
940{
941 /* Name of the file. */
942 const char *name;
943
73869dc2
DE
944 /* File format version. */
945 int version;
946
93417882 947 /* The bfd. */
80626a55
DE
948 bfd *dbfd;
949
950 /* Section info for this file. */
951 struct dwp_sections sections;
952
57d63ce2 953 /* Table of CUs in the file. */
80626a55
DE
954 const struct dwp_hash_table *cus;
955
956 /* Table of TUs in the file. */
957 const struct dwp_hash_table *tus;
958
19ac8c2e
DE
959 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
960 htab_t loaded_cus;
961 htab_t loaded_tus;
80626a55 962
73869dc2
DE
963 /* Table to map ELF section numbers to their sections.
964 This is only needed for the DWP V1 file format. */
80626a55
DE
965 unsigned int num_sections;
966 asection **elf_sections;
967};
968
36586728
TT
969/* This represents a '.dwz' file. */
970
971struct dwz_file
972{
973 /* A dwz file can only contain a few sections. */
974 struct dwarf2_section_info abbrev;
975 struct dwarf2_section_info info;
976 struct dwarf2_section_info str;
977 struct dwarf2_section_info line;
978 struct dwarf2_section_info macro;
2ec9a5e0 979 struct dwarf2_section_info gdb_index;
36586728
TT
980
981 /* The dwz's BFD. */
982 bfd *dwz_bfd;
983};
984
0963b4bd
MS
985/* Struct used to pass misc. parameters to read_die_and_children, et
986 al. which are used for both .debug_info and .debug_types dies.
987 All parameters here are unchanging for the life of the call. This
dee91e82 988 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
989
990struct die_reader_specs
991{
a32a8923 992 /* The bfd of die_section. */
93311388
DE
993 bfd* abfd;
994
995 /* The CU of the DIE we are parsing. */
996 struct dwarf2_cu *cu;
997
80626a55 998 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
999 struct dwo_file *dwo_file;
1000
dee91e82 1001 /* The section the die comes from.
3019eac3 1002 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1003 struct dwarf2_section_info *die_section;
1004
1005 /* die_section->buffer. */
d521ce57 1006 const gdb_byte *buffer;
f664829e
DE
1007
1008 /* The end of the buffer. */
1009 const gdb_byte *buffer_end;
a2ce51a0
DE
1010
1011 /* The value of the DW_AT_comp_dir attribute. */
1012 const char *comp_dir;
93311388
DE
1013};
1014
fd820528 1015/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1016typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1017 const gdb_byte *info_ptr,
dee91e82
DE
1018 struct die_info *comp_unit_die,
1019 int has_children,
1020 void *data);
1021
debd256d
JB
1022/* The line number information for a compilation unit (found in the
1023 .debug_line section) begins with a "statement program header",
1024 which contains the following information. */
1025struct line_header
1026{
1027 unsigned int total_length;
1028 unsigned short version;
1029 unsigned int header_length;
1030 unsigned char minimum_instruction_length;
2dc7f7b3 1031 unsigned char maximum_ops_per_instruction;
debd256d
JB
1032 unsigned char default_is_stmt;
1033 int line_base;
1034 unsigned char line_range;
1035 unsigned char opcode_base;
1036
1037 /* standard_opcode_lengths[i] is the number of operands for the
1038 standard opcode whose value is i. This means that
1039 standard_opcode_lengths[0] is unused, and the last meaningful
1040 element is standard_opcode_lengths[opcode_base - 1]. */
1041 unsigned char *standard_opcode_lengths;
1042
1043 /* The include_directories table. NOTE! These strings are not
1044 allocated with xmalloc; instead, they are pointers into
1045 debug_line_buffer. If you try to free them, `free' will get
1046 indigestion. */
1047 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1048 const char **include_dirs;
debd256d
JB
1049
1050 /* The file_names table. NOTE! These strings are not allocated
1051 with xmalloc; instead, they are pointers into debug_line_buffer.
1052 Don't try to free them directly. */
1053 unsigned int num_file_names, file_names_size;
1054 struct file_entry
c906108c 1055 {
d521ce57 1056 const char *name;
debd256d
JB
1057 unsigned int dir_index;
1058 unsigned int mod_time;
1059 unsigned int length;
aaa75496 1060 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 1061 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
1062 } *file_names;
1063
1064 /* The start and end of the statement program following this
6502dd73 1065 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1066 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1067};
c906108c
SS
1068
1069/* When we construct a partial symbol table entry we only
0963b4bd 1070 need this much information. */
c906108c
SS
1071struct partial_die_info
1072 {
72bf9492 1073 /* Offset of this DIE. */
b64f50a1 1074 sect_offset offset;
72bf9492
DJ
1075
1076 /* DWARF-2 tag for this DIE. */
1077 ENUM_BITFIELD(dwarf_tag) tag : 16;
1078
72bf9492
DJ
1079 /* Assorted flags describing the data found in this DIE. */
1080 unsigned int has_children : 1;
1081 unsigned int is_external : 1;
1082 unsigned int is_declaration : 1;
1083 unsigned int has_type : 1;
1084 unsigned int has_specification : 1;
1085 unsigned int has_pc_info : 1;
481860b3 1086 unsigned int may_be_inlined : 1;
72bf9492
DJ
1087
1088 /* Flag set if the SCOPE field of this structure has been
1089 computed. */
1090 unsigned int scope_set : 1;
1091
fa4028e9
JB
1092 /* Flag set if the DIE has a byte_size attribute. */
1093 unsigned int has_byte_size : 1;
1094
98bfdba5
PA
1095 /* Flag set if any of the DIE's children are template arguments. */
1096 unsigned int has_template_arguments : 1;
1097
abc72ce4
DE
1098 /* Flag set if fixup_partial_die has been called on this die. */
1099 unsigned int fixup_called : 1;
1100
36586728
TT
1101 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1102 unsigned int is_dwz : 1;
1103
1104 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1105 unsigned int spec_is_dwz : 1;
1106
72bf9492 1107 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1108 sometimes a default name for unnamed DIEs. */
15d034d0 1109 const char *name;
72bf9492 1110
abc72ce4
DE
1111 /* The linkage name, if present. */
1112 const char *linkage_name;
1113
72bf9492
DJ
1114 /* The scope to prepend to our children. This is generally
1115 allocated on the comp_unit_obstack, so will disappear
1116 when this compilation unit leaves the cache. */
15d034d0 1117 const char *scope;
72bf9492 1118
95554aad
TT
1119 /* Some data associated with the partial DIE. The tag determines
1120 which field is live. */
1121 union
1122 {
1123 /* The location description associated with this DIE, if any. */
1124 struct dwarf_block *locdesc;
1125 /* The offset of an import, for DW_TAG_imported_unit. */
1126 sect_offset offset;
1127 } d;
72bf9492
DJ
1128
1129 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1130 CORE_ADDR lowpc;
1131 CORE_ADDR highpc;
72bf9492 1132
93311388 1133 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1134 DW_AT_sibling, if any. */
abc72ce4
DE
1135 /* NOTE: This member isn't strictly necessary, read_partial_die could
1136 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1137 const gdb_byte *sibling;
72bf9492
DJ
1138
1139 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1140 DW_AT_specification (or DW_AT_abstract_origin or
1141 DW_AT_extension). */
b64f50a1 1142 sect_offset spec_offset;
72bf9492
DJ
1143
1144 /* Pointers to this DIE's parent, first child, and next sibling,
1145 if any. */
1146 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1147 };
1148
0963b4bd 1149/* This data structure holds the information of an abbrev. */
c906108c
SS
1150struct abbrev_info
1151 {
1152 unsigned int number; /* number identifying abbrev */
1153 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1154 unsigned short has_children; /* boolean */
1155 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1156 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1157 struct abbrev_info *next; /* next in chain */
1158 };
1159
1160struct attr_abbrev
1161 {
9d25dd43
DE
1162 ENUM_BITFIELD(dwarf_attribute) name : 16;
1163 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1164 };
1165
433df2d4
DE
1166/* Size of abbrev_table.abbrev_hash_table. */
1167#define ABBREV_HASH_SIZE 121
1168
1169/* Top level data structure to contain an abbreviation table. */
1170
1171struct abbrev_table
1172{
f4dc4d17
DE
1173 /* Where the abbrev table came from.
1174 This is used as a sanity check when the table is used. */
433df2d4
DE
1175 sect_offset offset;
1176
1177 /* Storage for the abbrev table. */
1178 struct obstack abbrev_obstack;
1179
1180 /* Hash table of abbrevs.
1181 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1182 It could be statically allocated, but the previous code didn't so we
1183 don't either. */
1184 struct abbrev_info **abbrevs;
1185};
1186
0963b4bd 1187/* Attributes have a name and a value. */
b60c80d6
DJ
1188struct attribute
1189 {
9d25dd43 1190 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1191 ENUM_BITFIELD(dwarf_form) form : 15;
1192
1193 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1194 field should be in u.str (existing only for DW_STRING) but it is kept
1195 here for better struct attribute alignment. */
1196 unsigned int string_is_canonical : 1;
1197
b60c80d6
DJ
1198 union
1199 {
15d034d0 1200 const char *str;
b60c80d6 1201 struct dwarf_block *blk;
43bbcdc2
PH
1202 ULONGEST unsnd;
1203 LONGEST snd;
b60c80d6 1204 CORE_ADDR addr;
ac9ec31b 1205 ULONGEST signature;
b60c80d6
DJ
1206 }
1207 u;
1208 };
1209
0963b4bd 1210/* This data structure holds a complete die structure. */
c906108c
SS
1211struct die_info
1212 {
76815b17
DE
1213 /* DWARF-2 tag for this DIE. */
1214 ENUM_BITFIELD(dwarf_tag) tag : 16;
1215
1216 /* Number of attributes */
98bfdba5
PA
1217 unsigned char num_attrs;
1218
1219 /* True if we're presently building the full type name for the
1220 type derived from this DIE. */
1221 unsigned char building_fullname : 1;
76815b17 1222
adde2bff
DE
1223 /* True if this die is in process. PR 16581. */
1224 unsigned char in_process : 1;
1225
76815b17
DE
1226 /* Abbrev number */
1227 unsigned int abbrev;
1228
93311388 1229 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1230 sect_offset offset;
78ba4af6
JB
1231
1232 /* The dies in a compilation unit form an n-ary tree. PARENT
1233 points to this die's parent; CHILD points to the first child of
1234 this node; and all the children of a given node are chained
4950bc1c 1235 together via their SIBLING fields. */
639d11d3
DC
1236 struct die_info *child; /* Its first child, if any. */
1237 struct die_info *sibling; /* Its next sibling, if any. */
1238 struct die_info *parent; /* Its parent, if any. */
c906108c 1239
b60c80d6
DJ
1240 /* An array of attributes, with NUM_ATTRS elements. There may be
1241 zero, but it's not common and zero-sized arrays are not
1242 sufficiently portable C. */
1243 struct attribute attrs[1];
c906108c
SS
1244 };
1245
0963b4bd 1246/* Get at parts of an attribute structure. */
c906108c
SS
1247
1248#define DW_STRING(attr) ((attr)->u.str)
8285870a 1249#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1250#define DW_UNSND(attr) ((attr)->u.unsnd)
1251#define DW_BLOCK(attr) ((attr)->u.blk)
1252#define DW_SND(attr) ((attr)->u.snd)
1253#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1254#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1255
0963b4bd 1256/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1257struct dwarf_block
1258 {
56eb65bd 1259 size_t size;
1d6edc3c
JK
1260
1261 /* Valid only if SIZE is not zero. */
d521ce57 1262 const gdb_byte *data;
c906108c
SS
1263 };
1264
c906108c
SS
1265#ifndef ATTR_ALLOC_CHUNK
1266#define ATTR_ALLOC_CHUNK 4
1267#endif
1268
c906108c
SS
1269/* Allocate fields for structs, unions and enums in this size. */
1270#ifndef DW_FIELD_ALLOC_CHUNK
1271#define DW_FIELD_ALLOC_CHUNK 4
1272#endif
1273
c906108c
SS
1274/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1275 but this would require a corresponding change in unpack_field_as_long
1276 and friends. */
1277static int bits_per_byte = 8;
1278
1279/* The routines that read and process dies for a C struct or C++ class
1280 pass lists of data member fields and lists of member function fields
1281 in an instance of a field_info structure, as defined below. */
1282struct field_info
c5aa993b 1283 {
0963b4bd 1284 /* List of data member and baseclasses fields. */
c5aa993b
JM
1285 struct nextfield
1286 {
1287 struct nextfield *next;
1288 int accessibility;
1289 int virtuality;
1290 struct field field;
1291 }
7d0ccb61 1292 *fields, *baseclasses;
c906108c 1293
7d0ccb61 1294 /* Number of fields (including baseclasses). */
c5aa993b 1295 int nfields;
c906108c 1296
c5aa993b
JM
1297 /* Number of baseclasses. */
1298 int nbaseclasses;
c906108c 1299
c5aa993b
JM
1300 /* Set if the accesibility of one of the fields is not public. */
1301 int non_public_fields;
c906108c 1302
c5aa993b
JM
1303 /* Member function fields array, entries are allocated in the order they
1304 are encountered in the object file. */
1305 struct nextfnfield
1306 {
1307 struct nextfnfield *next;
1308 struct fn_field fnfield;
1309 }
1310 *fnfields;
c906108c 1311
c5aa993b
JM
1312 /* Member function fieldlist array, contains name of possibly overloaded
1313 member function, number of overloaded member functions and a pointer
1314 to the head of the member function field chain. */
1315 struct fnfieldlist
1316 {
15d034d0 1317 const char *name;
c5aa993b
JM
1318 int length;
1319 struct nextfnfield *head;
1320 }
1321 *fnfieldlists;
c906108c 1322
c5aa993b
JM
1323 /* Number of entries in the fnfieldlists array. */
1324 int nfnfields;
98751a41
JK
1325
1326 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1327 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1328 struct typedef_field_list
1329 {
1330 struct typedef_field field;
1331 struct typedef_field_list *next;
1332 }
1333 *typedef_field_list;
1334 unsigned typedef_field_list_count;
c5aa993b 1335 };
c906108c 1336
10b3939b
DJ
1337/* One item on the queue of compilation units to read in full symbols
1338 for. */
1339struct dwarf2_queue_item
1340{
1341 struct dwarf2_per_cu_data *per_cu;
95554aad 1342 enum language pretend_language;
10b3939b
DJ
1343 struct dwarf2_queue_item *next;
1344};
1345
1346/* The current queue. */
1347static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1348
ae038cb0
DJ
1349/* Loaded secondary compilation units are kept in memory until they
1350 have not been referenced for the processing of this many
1351 compilation units. Set this to zero to disable caching. Cache
1352 sizes of up to at least twenty will improve startup time for
1353 typical inter-CU-reference binaries, at an obvious memory cost. */
1354static int dwarf2_max_cache_age = 5;
920d2a44
AC
1355static void
1356show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1357 struct cmd_list_element *c, const char *value)
1358{
3e43a32a
MS
1359 fprintf_filtered (file, _("The upper bound on the age of cached "
1360 "dwarf2 compilation units is %s.\n"),
920d2a44
AC
1361 value);
1362}
4390d890 1363\f
c906108c
SS
1364/* local function prototypes */
1365
a32a8923
DE
1366static const char *get_section_name (const struct dwarf2_section_info *);
1367
1368static const char *get_section_file_name (const struct dwarf2_section_info *);
1369
4efb68b1 1370static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1371
918dd910
JK
1372static void dwarf2_find_base_address (struct die_info *die,
1373 struct dwarf2_cu *cu);
1374
0018ea6f
DE
1375static struct partial_symtab *create_partial_symtab
1376 (struct dwarf2_per_cu_data *per_cu, const char *name);
1377
c67a9c90 1378static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1379
72bf9492
DJ
1380static void scan_partial_symbols (struct partial_die_info *,
1381 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1382 int, struct dwarf2_cu *);
c906108c 1383
72bf9492
DJ
1384static void add_partial_symbol (struct partial_die_info *,
1385 struct dwarf2_cu *);
63d06c5c 1386
72bf9492
DJ
1387static void add_partial_namespace (struct partial_die_info *pdi,
1388 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1389 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1390
5d7cb8df 1391static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1392 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1393 struct dwarf2_cu *cu);
1394
72bf9492
DJ
1395static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1396 struct dwarf2_cu *cu);
91c24f0a 1397
bc30ff58
JB
1398static void add_partial_subprogram (struct partial_die_info *pdi,
1399 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1400 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1401
257e7a09
YQ
1402static void dwarf2_read_symtab (struct partial_symtab *,
1403 struct objfile *);
c906108c 1404
a14ed312 1405static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1406
433df2d4
DE
1407static struct abbrev_info *abbrev_table_lookup_abbrev
1408 (const struct abbrev_table *, unsigned int);
1409
1410static struct abbrev_table *abbrev_table_read_table
1411 (struct dwarf2_section_info *, sect_offset);
1412
1413static void abbrev_table_free (struct abbrev_table *);
1414
f4dc4d17
DE
1415static void abbrev_table_free_cleanup (void *);
1416
dee91e82
DE
1417static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1418 struct dwarf2_section_info *);
c906108c 1419
f3dd6933 1420static void dwarf2_free_abbrev_table (void *);
c906108c 1421
d521ce57 1422static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1423
dee91e82 1424static struct partial_die_info *load_partial_dies
d521ce57 1425 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1426
d521ce57
TT
1427static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1428 struct partial_die_info *,
1429 struct abbrev_info *,
1430 unsigned int,
1431 const gdb_byte *);
c906108c 1432
36586728 1433static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1434 struct dwarf2_cu *);
72bf9492
DJ
1435
1436static void fixup_partial_die (struct partial_die_info *,
1437 struct dwarf2_cu *);
1438
d521ce57
TT
1439static const gdb_byte *read_attribute (const struct die_reader_specs *,
1440 struct attribute *, struct attr_abbrev *,
1441 const gdb_byte *);
a8329558 1442
a1855c1d 1443static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1444
a1855c1d 1445static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1446
a1855c1d 1447static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1448
a1855c1d 1449static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1450
a1855c1d 1451static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1452
d521ce57 1453static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1454 unsigned int *);
c906108c 1455
d521ce57 1456static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1457
1458static LONGEST read_checked_initial_length_and_offset
d521ce57 1459 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1460 unsigned int *, unsigned int *);
613e1657 1461
d521ce57
TT
1462static LONGEST read_offset (bfd *, const gdb_byte *,
1463 const struct comp_unit_head *,
c764a876
DE
1464 unsigned int *);
1465
d521ce57 1466static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1467
f4dc4d17
DE
1468static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1469 sect_offset);
1470
d521ce57 1471static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1472
d521ce57 1473static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1474
d521ce57
TT
1475static const char *read_indirect_string (bfd *, const gdb_byte *,
1476 const struct comp_unit_head *,
1477 unsigned int *);
4bdf3d34 1478
d521ce57 1479static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1480
d521ce57 1481static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1482
d521ce57 1483static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1484
d521ce57
TT
1485static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1486 const gdb_byte *,
3019eac3
DE
1487 unsigned int *);
1488
d521ce57 1489static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1490 ULONGEST str_index);
3019eac3 1491
e142c38c 1492static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1493
e142c38c
DJ
1494static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1495 struct dwarf2_cu *);
c906108c 1496
348e048f 1497static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1498 unsigned int);
348e048f 1499
05cf31d1
JB
1500static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1501 struct dwarf2_cu *cu);
1502
e142c38c 1503static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1504
e142c38c 1505static struct die_info *die_specification (struct die_info *die,
f2f0e013 1506 struct dwarf2_cu **);
63d06c5c 1507
debd256d
JB
1508static void free_line_header (struct line_header *lh);
1509
3019eac3
DE
1510static struct line_header *dwarf_decode_line_header (unsigned int offset,
1511 struct dwarf2_cu *cu);
debd256d 1512
f3f5162e 1513static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696
YQ
1514 struct dwarf2_cu *, struct partial_symtab *,
1515 CORE_ADDR);
c906108c 1516
4d663531 1517static void dwarf2_start_subfile (const char *, const char *);
c906108c 1518
43f3e411
DE
1519static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1520 const char *, const char *,
1521 CORE_ADDR);
f4dc4d17 1522
a14ed312 1523static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1524 struct dwarf2_cu *);
c906108c 1525
34eaf542
TT
1526static struct symbol *new_symbol_full (struct die_info *, struct type *,
1527 struct dwarf2_cu *, struct symbol *);
1528
ff39bb5e 1529static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1530 struct dwarf2_cu *);
c906108c 1531
ff39bb5e 1532static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1533 struct type *type,
1534 const char *name,
1535 struct obstack *obstack,
12df843f 1536 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1537 const gdb_byte **bytes,
98bfdba5 1538 struct dwarf2_locexpr_baton **baton);
2df3850c 1539
e7c27a73 1540static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1541
b4ba55a1
JB
1542static int need_gnat_info (struct dwarf2_cu *);
1543
3e43a32a
MS
1544static struct type *die_descriptive_type (struct die_info *,
1545 struct dwarf2_cu *);
b4ba55a1
JB
1546
1547static void set_descriptive_type (struct type *, struct die_info *,
1548 struct dwarf2_cu *);
1549
e7c27a73
DJ
1550static struct type *die_containing_type (struct die_info *,
1551 struct dwarf2_cu *);
c906108c 1552
ff39bb5e 1553static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1554 struct dwarf2_cu *);
c906108c 1555
f792889a 1556static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1557
673bfd45
DE
1558static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1559
0d5cff50 1560static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1561
6e70227d 1562static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1563 const char *suffix, int physname,
1564 struct dwarf2_cu *cu);
63d06c5c 1565
e7c27a73 1566static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1567
348e048f
DE
1568static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1569
e7c27a73 1570static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1571
e7c27a73 1572static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1573
96408a79
SA
1574static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1575
ff013f42
JK
1576static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1577 struct dwarf2_cu *, struct partial_symtab *);
1578
a14ed312 1579static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1580 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1581 struct partial_symtab *);
c906108c 1582
fae299cd
DC
1583static void get_scope_pc_bounds (struct die_info *,
1584 CORE_ADDR *, CORE_ADDR *,
1585 struct dwarf2_cu *);
1586
801e3a5b
JB
1587static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1588 CORE_ADDR, struct dwarf2_cu *);
1589
a14ed312 1590static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1591 struct dwarf2_cu *);
c906108c 1592
a14ed312 1593static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1594 struct type *, struct dwarf2_cu *);
c906108c 1595
a14ed312 1596static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1597 struct die_info *, struct type *,
e7c27a73 1598 struct dwarf2_cu *);
c906108c 1599
a14ed312 1600static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1601 struct type *,
1602 struct dwarf2_cu *);
c906108c 1603
134d01f1 1604static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1605
e7c27a73 1606static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1607
e7c27a73 1608static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1609
5d7cb8df
JK
1610static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1611
27aa8d6a
SW
1612static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1613
74921315
KS
1614static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1615
f55ee35c
JK
1616static struct type *read_module_type (struct die_info *die,
1617 struct dwarf2_cu *cu);
1618
38d518c9 1619static const char *namespace_name (struct die_info *die,
e142c38c 1620 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1621
134d01f1 1622static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1623
e7c27a73 1624static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1625
6e70227d 1626static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1627 struct dwarf2_cu *);
1628
bf6af496 1629static struct die_info *read_die_and_siblings_1
d521ce57 1630 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1631 struct die_info *);
639d11d3 1632
dee91e82 1633static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1634 const gdb_byte *info_ptr,
1635 const gdb_byte **new_info_ptr,
639d11d3
DC
1636 struct die_info *parent);
1637
d521ce57
TT
1638static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1639 struct die_info **, const gdb_byte *,
1640 int *, int);
3019eac3 1641
d521ce57
TT
1642static const gdb_byte *read_full_die (const struct die_reader_specs *,
1643 struct die_info **, const gdb_byte *,
1644 int *);
93311388 1645
e7c27a73 1646static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1647
15d034d0
TT
1648static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1649 struct obstack *);
71c25dea 1650
15d034d0 1651static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1652
15d034d0 1653static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1654 struct die_info *die,
1655 struct dwarf2_cu *cu);
1656
ca69b9e6
DE
1657static const char *dwarf2_physname (const char *name, struct die_info *die,
1658 struct dwarf2_cu *cu);
1659
e142c38c 1660static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1661 struct dwarf2_cu **);
9219021c 1662
f39c6ffd 1663static const char *dwarf_tag_name (unsigned int);
c906108c 1664
f39c6ffd 1665static const char *dwarf_attr_name (unsigned int);
c906108c 1666
f39c6ffd 1667static const char *dwarf_form_name (unsigned int);
c906108c 1668
a14ed312 1669static char *dwarf_bool_name (unsigned int);
c906108c 1670
f39c6ffd 1671static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1672
f9aca02d 1673static struct die_info *sibling_die (struct die_info *);
c906108c 1674
d97bc12b
DE
1675static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1676
1677static void dump_die_for_error (struct die_info *);
1678
1679static void dump_die_1 (struct ui_file *, int level, int max_level,
1680 struct die_info *);
c906108c 1681
d97bc12b 1682/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1683
51545339 1684static void store_in_ref_table (struct die_info *,
10b3939b 1685 struct dwarf2_cu *);
c906108c 1686
ff39bb5e 1687static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1688
ff39bb5e 1689static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1690
348e048f 1691static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1692 const struct attribute *,
348e048f
DE
1693 struct dwarf2_cu **);
1694
10b3939b 1695static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1696 const struct attribute *,
f2f0e013 1697 struct dwarf2_cu **);
c906108c 1698
348e048f 1699static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1700 const struct attribute *,
348e048f
DE
1701 struct dwarf2_cu **);
1702
ac9ec31b
DE
1703static struct type *get_signatured_type (struct die_info *, ULONGEST,
1704 struct dwarf2_cu *);
1705
1706static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1707 const struct attribute *,
ac9ec31b
DE
1708 struct dwarf2_cu *);
1709
e5fe5e75 1710static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1711
52dc124a 1712static void read_signatured_type (struct signatured_type *);
348e048f 1713
c906108c
SS
1714/* memory allocation interface */
1715
7b5a2f43 1716static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1717
b60c80d6 1718static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1719
43f3e411 1720static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1721
6e5a29e1 1722static int attr_form_is_block (const struct attribute *);
8e19ed76 1723
6e5a29e1 1724static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1725
6e5a29e1 1726static int attr_form_is_constant (const struct attribute *);
3690dd37 1727
6e5a29e1 1728static int attr_form_is_ref (const struct attribute *);
7771576e 1729
8cf6f0b1
TT
1730static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1731 struct dwarf2_loclist_baton *baton,
ff39bb5e 1732 const struct attribute *attr);
8cf6f0b1 1733
ff39bb5e 1734static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1735 struct symbol *sym,
f1e6e072
TT
1736 struct dwarf2_cu *cu,
1737 int is_block);
4c2df51b 1738
d521ce57
TT
1739static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1740 const gdb_byte *info_ptr,
1741 struct abbrev_info *abbrev);
4bb7a0a7 1742
72bf9492
DJ
1743static void free_stack_comp_unit (void *);
1744
72bf9492
DJ
1745static hashval_t partial_die_hash (const void *item);
1746
1747static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1748
ae038cb0 1749static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1750 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1751
9816fde3 1752static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1753 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1754
1755static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1756 struct die_info *comp_unit_die,
1757 enum language pretend_language);
93311388 1758
68dc6402 1759static void free_heap_comp_unit (void *);
ae038cb0
DJ
1760
1761static void free_cached_comp_units (void *);
1762
1763static void age_cached_comp_units (void);
1764
dee91e82 1765static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1766
f792889a
DJ
1767static struct type *set_die_type (struct die_info *, struct type *,
1768 struct dwarf2_cu *);
1c379e20 1769
ae038cb0
DJ
1770static void create_all_comp_units (struct objfile *);
1771
0e50663e 1772static int create_all_type_units (struct objfile *);
1fd400ff 1773
95554aad
TT
1774static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1775 enum language);
10b3939b 1776
95554aad
TT
1777static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1778 enum language);
10b3939b 1779
f4dc4d17
DE
1780static void process_full_type_unit (struct dwarf2_per_cu_data *,
1781 enum language);
1782
10b3939b
DJ
1783static void dwarf2_add_dependence (struct dwarf2_cu *,
1784 struct dwarf2_per_cu_data *);
1785
ae038cb0
DJ
1786static void dwarf2_mark (struct dwarf2_cu *);
1787
1788static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1789
b64f50a1 1790static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1791 struct dwarf2_per_cu_data *);
673bfd45 1792
f792889a 1793static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1794
9291a0cd
TT
1795static void dwarf2_release_queue (void *dummy);
1796
95554aad
TT
1797static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1798 enum language pretend_language);
1799
a0f42c21 1800static void process_queue (void);
9291a0cd
TT
1801
1802static void find_file_and_directory (struct die_info *die,
1803 struct dwarf2_cu *cu,
15d034d0 1804 const char **name, const char **comp_dir);
9291a0cd
TT
1805
1806static char *file_full_name (int file, struct line_header *lh,
1807 const char *comp_dir);
1808
d521ce57 1809static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1810 (struct comp_unit_head *header,
1811 struct dwarf2_section_info *section,
d521ce57 1812 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1813 int is_debug_types_section);
1814
fd820528 1815static void init_cutu_and_read_dies
f4dc4d17
DE
1816 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1817 int use_existing_cu, int keep,
3019eac3
DE
1818 die_reader_func_ftype *die_reader_func, void *data);
1819
dee91e82
DE
1820static void init_cutu_and_read_dies_simple
1821 (struct dwarf2_per_cu_data *this_cu,
1822 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1823
673bfd45 1824static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1825
3019eac3
DE
1826static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1827
57d63ce2
DE
1828static struct dwo_unit *lookup_dwo_unit_in_dwp
1829 (struct dwp_file *dwp_file, const char *comp_dir,
1830 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1831
1832static struct dwp_file *get_dwp_file (void);
1833
3019eac3 1834static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1835 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1836
1837static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1838 (struct signatured_type *, const char *, const char *);
3019eac3 1839
89e63ee4
DE
1840static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1841
3019eac3
DE
1842static void free_dwo_file_cleanup (void *);
1843
95554aad
TT
1844static void process_cu_includes (void);
1845
1b80a9fa 1846static void check_producer (struct dwarf2_cu *cu);
4390d890
DE
1847\f
1848/* Various complaints about symbol reading that don't abort the process. */
1849
1850static void
1851dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1852{
1853 complaint (&symfile_complaints,
1854 _("statement list doesn't fit in .debug_line section"));
1855}
1856
1857static void
1858dwarf2_debug_line_missing_file_complaint (void)
1859{
1860 complaint (&symfile_complaints,
1861 _(".debug_line section has line data without a file"));
1862}
1863
1864static void
1865dwarf2_debug_line_missing_end_sequence_complaint (void)
1866{
1867 complaint (&symfile_complaints,
1868 _(".debug_line section has line "
1869 "program sequence without an end"));
1870}
1871
1872static void
1873dwarf2_complex_location_expr_complaint (void)
1874{
1875 complaint (&symfile_complaints, _("location expression too complex"));
1876}
1877
1878static void
1879dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1880 int arg3)
1881{
1882 complaint (&symfile_complaints,
1883 _("const value length mismatch for '%s', got %d, expected %d"),
1884 arg1, arg2, arg3);
1885}
1886
1887static void
1888dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1889{
1890 complaint (&symfile_complaints,
1891 _("debug info runs off end of %s section"
1892 " [in module %s]"),
a32a8923
DE
1893 get_section_name (section),
1894 get_section_file_name (section));
4390d890 1895}
1b80a9fa 1896
4390d890
DE
1897static void
1898dwarf2_macro_malformed_definition_complaint (const char *arg1)
1899{
1900 complaint (&symfile_complaints,
1901 _("macro debug info contains a "
1902 "malformed macro definition:\n`%s'"),
1903 arg1);
1904}
1905
1906static void
1907dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1908{
1909 complaint (&symfile_complaints,
1910 _("invalid attribute class or form for '%s' in '%s'"),
1911 arg1, arg2);
1912}
1913\f
9291a0cd
TT
1914#if WORDS_BIGENDIAN
1915
1916/* Convert VALUE between big- and little-endian. */
1917static offset_type
1918byte_swap (offset_type value)
1919{
1920 offset_type result;
1921
1922 result = (value & 0xff) << 24;
1923 result |= (value & 0xff00) << 8;
1924 result |= (value & 0xff0000) >> 8;
1925 result |= (value & 0xff000000) >> 24;
1926 return result;
1927}
1928
1929#define MAYBE_SWAP(V) byte_swap (V)
1930
1931#else
1932#define MAYBE_SWAP(V) (V)
1933#endif /* WORDS_BIGENDIAN */
1934
31aa7e4e
JB
1935/* Read the given attribute value as an address, taking the attribute's
1936 form into account. */
1937
1938static CORE_ADDR
1939attr_value_as_address (struct attribute *attr)
1940{
1941 CORE_ADDR addr;
1942
1943 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1944 {
1945 /* Aside from a few clearly defined exceptions, attributes that
1946 contain an address must always be in DW_FORM_addr form.
1947 Unfortunately, some compilers happen to be violating this
1948 requirement by encoding addresses using other forms, such
1949 as DW_FORM_data4 for example. For those broken compilers,
1950 we try to do our best, without any guarantee of success,
1951 to interpret the address correctly. It would also be nice
1952 to generate a complaint, but that would require us to maintain
1953 a list of legitimate cases where a non-address form is allowed,
1954 as well as update callers to pass in at least the CU's DWARF
1955 version. This is more overhead than what we're willing to
1956 expand for a pretty rare case. */
1957 addr = DW_UNSND (attr);
1958 }
1959 else
1960 addr = DW_ADDR (attr);
1961
1962 return addr;
1963}
1964
9291a0cd
TT
1965/* The suffix for an index file. */
1966#define INDEX_SUFFIX ".gdb-index"
1967
c906108c 1968/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
1969 information and return true if we have enough to do something.
1970 NAMES points to the dwarf2 section names, or is NULL if the standard
1971 ELF names are used. */
c906108c
SS
1972
1973int
251d32d9
TG
1974dwarf2_has_info (struct objfile *objfile,
1975 const struct dwarf2_debug_sections *names)
c906108c 1976{
be391dca
TT
1977 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1978 if (!dwarf2_per_objfile)
1979 {
1980 /* Initialize per-objfile state. */
1981 struct dwarf2_per_objfile *data
1982 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1983
be391dca
TT
1984 memset (data, 0, sizeof (*data));
1985 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1986 dwarf2_per_objfile = data;
6502dd73 1987
251d32d9
TG
1988 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1989 (void *) names);
be391dca
TT
1990 dwarf2_per_objfile->objfile = objfile;
1991 }
73869dc2
DE
1992 return (!dwarf2_per_objfile->info.is_virtual
1993 && dwarf2_per_objfile->info.s.asection != NULL
1994 && !dwarf2_per_objfile->abbrev.is_virtual
1995 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1996}
1997
1998/* Return the containing section of virtual section SECTION. */
1999
2000static struct dwarf2_section_info *
2001get_containing_section (const struct dwarf2_section_info *section)
2002{
2003 gdb_assert (section->is_virtual);
2004 return section->s.containing_section;
c906108c
SS
2005}
2006
a32a8923
DE
2007/* Return the bfd owner of SECTION. */
2008
2009static struct bfd *
2010get_section_bfd_owner (const struct dwarf2_section_info *section)
2011{
73869dc2
DE
2012 if (section->is_virtual)
2013 {
2014 section = get_containing_section (section);
2015 gdb_assert (!section->is_virtual);
2016 }
2017 return section->s.asection->owner;
a32a8923
DE
2018}
2019
2020/* Return the bfd section of SECTION.
2021 Returns NULL if the section is not present. */
2022
2023static asection *
2024get_section_bfd_section (const struct dwarf2_section_info *section)
2025{
73869dc2
DE
2026 if (section->is_virtual)
2027 {
2028 section = get_containing_section (section);
2029 gdb_assert (!section->is_virtual);
2030 }
2031 return section->s.asection;
a32a8923
DE
2032}
2033
2034/* Return the name of SECTION. */
2035
2036static const char *
2037get_section_name (const struct dwarf2_section_info *section)
2038{
2039 asection *sectp = get_section_bfd_section (section);
2040
2041 gdb_assert (sectp != NULL);
2042 return bfd_section_name (get_section_bfd_owner (section), sectp);
2043}
2044
2045/* Return the name of the file SECTION is in. */
2046
2047static const char *
2048get_section_file_name (const struct dwarf2_section_info *section)
2049{
2050 bfd *abfd = get_section_bfd_owner (section);
2051
2052 return bfd_get_filename (abfd);
2053}
2054
2055/* Return the id of SECTION.
2056 Returns 0 if SECTION doesn't exist. */
2057
2058static int
2059get_section_id (const struct dwarf2_section_info *section)
2060{
2061 asection *sectp = get_section_bfd_section (section);
2062
2063 if (sectp == NULL)
2064 return 0;
2065 return sectp->id;
2066}
2067
2068/* Return the flags of SECTION.
73869dc2 2069 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2070
2071static int
2072get_section_flags (const struct dwarf2_section_info *section)
2073{
2074 asection *sectp = get_section_bfd_section (section);
2075
2076 gdb_assert (sectp != NULL);
2077 return bfd_get_section_flags (sectp->owner, sectp);
2078}
2079
251d32d9
TG
2080/* When loading sections, we look either for uncompressed section or for
2081 compressed section names. */
233a11ab
CS
2082
2083static int
251d32d9
TG
2084section_is_p (const char *section_name,
2085 const struct dwarf2_section_names *names)
233a11ab 2086{
251d32d9
TG
2087 if (names->normal != NULL
2088 && strcmp (section_name, names->normal) == 0)
2089 return 1;
2090 if (names->compressed != NULL
2091 && strcmp (section_name, names->compressed) == 0)
2092 return 1;
2093 return 0;
233a11ab
CS
2094}
2095
c906108c
SS
2096/* This function is mapped across the sections and remembers the
2097 offset and size of each of the debugging sections we are interested
2098 in. */
2099
2100static void
251d32d9 2101dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2102{
251d32d9 2103 const struct dwarf2_debug_sections *names;
dc7650b8 2104 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2105
2106 if (vnames == NULL)
2107 names = &dwarf2_elf_names;
2108 else
2109 names = (const struct dwarf2_debug_sections *) vnames;
2110
dc7650b8
JK
2111 if ((aflag & SEC_HAS_CONTENTS) == 0)
2112 {
2113 }
2114 else if (section_is_p (sectp->name, &names->info))
c906108c 2115 {
73869dc2 2116 dwarf2_per_objfile->info.s.asection = sectp;
dce234bc 2117 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2118 }
251d32d9 2119 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2120 {
73869dc2 2121 dwarf2_per_objfile->abbrev.s.asection = sectp;
dce234bc 2122 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2123 }
251d32d9 2124 else if (section_is_p (sectp->name, &names->line))
c906108c 2125 {
73869dc2 2126 dwarf2_per_objfile->line.s.asection = sectp;
dce234bc 2127 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2128 }
251d32d9 2129 else if (section_is_p (sectp->name, &names->loc))
c906108c 2130 {
73869dc2 2131 dwarf2_per_objfile->loc.s.asection = sectp;
dce234bc 2132 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2133 }
251d32d9 2134 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2135 {
73869dc2 2136 dwarf2_per_objfile->macinfo.s.asection = sectp;
dce234bc 2137 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2138 }
cf2c3c16
TT
2139 else if (section_is_p (sectp->name, &names->macro))
2140 {
73869dc2 2141 dwarf2_per_objfile->macro.s.asection = sectp;
cf2c3c16
TT
2142 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2143 }
251d32d9 2144 else if (section_is_p (sectp->name, &names->str))
c906108c 2145 {
73869dc2 2146 dwarf2_per_objfile->str.s.asection = sectp;
dce234bc 2147 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2148 }
3019eac3
DE
2149 else if (section_is_p (sectp->name, &names->addr))
2150 {
73869dc2 2151 dwarf2_per_objfile->addr.s.asection = sectp;
3019eac3
DE
2152 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2153 }
251d32d9 2154 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2155 {
73869dc2 2156 dwarf2_per_objfile->frame.s.asection = sectp;
dce234bc 2157 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2158 }
251d32d9 2159 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2160 {
73869dc2 2161 dwarf2_per_objfile->eh_frame.s.asection = sectp;
dc7650b8 2162 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2163 }
251d32d9 2164 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2165 {
73869dc2 2166 dwarf2_per_objfile->ranges.s.asection = sectp;
dce234bc 2167 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2168 }
251d32d9 2169 else if (section_is_p (sectp->name, &names->types))
348e048f 2170 {
8b70b953
TT
2171 struct dwarf2_section_info type_section;
2172
2173 memset (&type_section, 0, sizeof (type_section));
73869dc2 2174 type_section.s.asection = sectp;
8b70b953
TT
2175 type_section.size = bfd_get_section_size (sectp);
2176
2177 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2178 &type_section);
348e048f 2179 }
251d32d9 2180 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2181 {
73869dc2 2182 dwarf2_per_objfile->gdb_index.s.asection = sectp;
9291a0cd
TT
2183 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2184 }
dce234bc 2185
72dca2f5
FR
2186 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2187 && bfd_section_vma (abfd, sectp) == 0)
2188 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2189}
2190
fceca515
DE
2191/* A helper function that decides whether a section is empty,
2192 or not present. */
9e0ac564
TT
2193
2194static int
19ac8c2e 2195dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2196{
73869dc2
DE
2197 if (section->is_virtual)
2198 return section->size == 0;
2199 return section->s.asection == NULL || section->size == 0;
9e0ac564
TT
2200}
2201
3019eac3
DE
2202/* Read the contents of the section INFO.
2203 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2204 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2205 of the DWO file.
dce234bc 2206 If the section is compressed, uncompress it before returning. */
c906108c 2207
dce234bc
PP
2208static void
2209dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2210{
a32a8923 2211 asection *sectp;
3019eac3 2212 bfd *abfd;
dce234bc 2213 gdb_byte *buf, *retbuf;
c906108c 2214
be391dca
TT
2215 if (info->readin)
2216 return;
dce234bc 2217 info->buffer = NULL;
be391dca 2218 info->readin = 1;
188dd5d6 2219
9e0ac564 2220 if (dwarf2_section_empty_p (info))
dce234bc 2221 return;
c906108c 2222
a32a8923 2223 sectp = get_section_bfd_section (info);
3019eac3 2224
73869dc2
DE
2225 /* If this is a virtual section we need to read in the real one first. */
2226 if (info->is_virtual)
2227 {
2228 struct dwarf2_section_info *containing_section =
2229 get_containing_section (info);
2230
2231 gdb_assert (sectp != NULL);
2232 if ((sectp->flags & SEC_RELOC) != 0)
2233 {
2234 error (_("Dwarf Error: DWP format V2 with relocations is not"
2235 " supported in section %s [in module %s]"),
2236 get_section_name (info), get_section_file_name (info));
2237 }
2238 dwarf2_read_section (objfile, containing_section);
2239 /* Other code should have already caught virtual sections that don't
2240 fit. */
2241 gdb_assert (info->virtual_offset + info->size
2242 <= containing_section->size);
2243 /* If the real section is empty or there was a problem reading the
2244 section we shouldn't get here. */
2245 gdb_assert (containing_section->buffer != NULL);
2246 info->buffer = containing_section->buffer + info->virtual_offset;
2247 return;
2248 }
2249
4bf44c1c
TT
2250 /* If the section has relocations, we must read it ourselves.
2251 Otherwise we attach it to the BFD. */
2252 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2253 {
d521ce57 2254 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2255 return;
dce234bc 2256 }
dce234bc 2257
4bf44c1c
TT
2258 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2259 info->buffer = buf;
dce234bc
PP
2260
2261 /* When debugging .o files, we may need to apply relocations; see
2262 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2263 We never compress sections in .o files, so we only need to
2264 try this when the section is not compressed. */
ac8035ab 2265 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2266 if (retbuf != NULL)
2267 {
2268 info->buffer = retbuf;
2269 return;
2270 }
2271
a32a8923
DE
2272 abfd = get_section_bfd_owner (info);
2273 gdb_assert (abfd != NULL);
2274
dce234bc
PP
2275 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2276 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2277 {
2278 error (_("Dwarf Error: Can't read DWARF data"
2279 " in section %s [in module %s]"),
2280 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2281 }
dce234bc
PP
2282}
2283
9e0ac564
TT
2284/* A helper function that returns the size of a section in a safe way.
2285 If you are positive that the section has been read before using the
2286 size, then it is safe to refer to the dwarf2_section_info object's
2287 "size" field directly. In other cases, you must call this
2288 function, because for compressed sections the size field is not set
2289 correctly until the section has been read. */
2290
2291static bfd_size_type
2292dwarf2_section_size (struct objfile *objfile,
2293 struct dwarf2_section_info *info)
2294{
2295 if (!info->readin)
2296 dwarf2_read_section (objfile, info);
2297 return info->size;
2298}
2299
dce234bc 2300/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2301 SECTION_NAME. */
af34e669 2302
dce234bc 2303void
3017a003
TG
2304dwarf2_get_section_info (struct objfile *objfile,
2305 enum dwarf2_section_enum sect,
d521ce57 2306 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2307 bfd_size_type *sizep)
2308{
2309 struct dwarf2_per_objfile *data
2310 = objfile_data (objfile, dwarf2_objfile_data_key);
2311 struct dwarf2_section_info *info;
a3b2a86b
TT
2312
2313 /* We may see an objfile without any DWARF, in which case we just
2314 return nothing. */
2315 if (data == NULL)
2316 {
2317 *sectp = NULL;
2318 *bufp = NULL;
2319 *sizep = 0;
2320 return;
2321 }
3017a003
TG
2322 switch (sect)
2323 {
2324 case DWARF2_DEBUG_FRAME:
2325 info = &data->frame;
2326 break;
2327 case DWARF2_EH_FRAME:
2328 info = &data->eh_frame;
2329 break;
2330 default:
2331 gdb_assert_not_reached ("unexpected section");
2332 }
dce234bc 2333
9e0ac564 2334 dwarf2_read_section (objfile, info);
dce234bc 2335
a32a8923 2336 *sectp = get_section_bfd_section (info);
dce234bc
PP
2337 *bufp = info->buffer;
2338 *sizep = info->size;
2339}
2340
36586728
TT
2341/* A helper function to find the sections for a .dwz file. */
2342
2343static void
2344locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2345{
2346 struct dwz_file *dwz_file = arg;
2347
2348 /* Note that we only support the standard ELF names, because .dwz
2349 is ELF-only (at the time of writing). */
2350 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2351 {
73869dc2 2352 dwz_file->abbrev.s.asection = sectp;
36586728
TT
2353 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2354 }
2355 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2356 {
73869dc2 2357 dwz_file->info.s.asection = sectp;
36586728
TT
2358 dwz_file->info.size = bfd_get_section_size (sectp);
2359 }
2360 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2361 {
73869dc2 2362 dwz_file->str.s.asection = sectp;
36586728
TT
2363 dwz_file->str.size = bfd_get_section_size (sectp);
2364 }
2365 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2366 {
73869dc2 2367 dwz_file->line.s.asection = sectp;
36586728
TT
2368 dwz_file->line.size = bfd_get_section_size (sectp);
2369 }
2370 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2371 {
73869dc2 2372 dwz_file->macro.s.asection = sectp;
36586728
TT
2373 dwz_file->macro.size = bfd_get_section_size (sectp);
2374 }
2ec9a5e0
TT
2375 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2376 {
73869dc2 2377 dwz_file->gdb_index.s.asection = sectp;
2ec9a5e0
TT
2378 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2379 }
36586728
TT
2380}
2381
4db1a1dc
TT
2382/* Open the separate '.dwz' debug file, if needed. Return NULL if
2383 there is no .gnu_debugaltlink section in the file. Error if there
2384 is such a section but the file cannot be found. */
36586728
TT
2385
2386static struct dwz_file *
2387dwarf2_get_dwz_file (void)
2388{
4db1a1dc
TT
2389 bfd *dwz_bfd;
2390 char *data;
36586728
TT
2391 struct cleanup *cleanup;
2392 const char *filename;
2393 struct dwz_file *result;
acd13123 2394 bfd_size_type buildid_len_arg;
dc294be5
TT
2395 size_t buildid_len;
2396 bfd_byte *buildid;
36586728
TT
2397
2398 if (dwarf2_per_objfile->dwz_file != NULL)
2399 return dwarf2_per_objfile->dwz_file;
2400
4db1a1dc
TT
2401 bfd_set_error (bfd_error_no_error);
2402 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2403 &buildid_len_arg, &buildid);
4db1a1dc
TT
2404 if (data == NULL)
2405 {
2406 if (bfd_get_error () == bfd_error_no_error)
2407 return NULL;
2408 error (_("could not read '.gnu_debugaltlink' section: %s"),
2409 bfd_errmsg (bfd_get_error ()));
2410 }
36586728 2411 cleanup = make_cleanup (xfree, data);
dc294be5 2412 make_cleanup (xfree, buildid);
36586728 2413
acd13123
TT
2414 buildid_len = (size_t) buildid_len_arg;
2415
f9d83a0b 2416 filename = (const char *) data;
36586728
TT
2417 if (!IS_ABSOLUTE_PATH (filename))
2418 {
4262abfb 2419 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2420 char *rel;
2421
2422 make_cleanup (xfree, abs);
2423 abs = ldirname (abs);
2424 make_cleanup (xfree, abs);
2425
2426 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2427 make_cleanup (xfree, rel);
2428 filename = rel;
2429 }
2430
dc294be5
TT
2431 /* First try the file name given in the section. If that doesn't
2432 work, try to use the build-id instead. */
36586728 2433 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
dc294be5 2434 if (dwz_bfd != NULL)
36586728 2435 {
dc294be5
TT
2436 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2437 {
2438 gdb_bfd_unref (dwz_bfd);
2439 dwz_bfd = NULL;
2440 }
36586728
TT
2441 }
2442
dc294be5
TT
2443 if (dwz_bfd == NULL)
2444 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2445
2446 if (dwz_bfd == NULL)
2447 error (_("could not find '.gnu_debugaltlink' file for %s"),
2448 objfile_name (dwarf2_per_objfile->objfile));
2449
36586728
TT
2450 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2451 struct dwz_file);
2452 result->dwz_bfd = dwz_bfd;
2453
2454 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2455
2456 do_cleanups (cleanup);
2457
13aaf454 2458 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
8d2cc612 2459 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2460 return result;
2461}
9291a0cd 2462\f
7b9f3c50
DE
2463/* DWARF quick_symbols_functions support. */
2464
2465/* TUs can share .debug_line entries, and there can be a lot more TUs than
2466 unique line tables, so we maintain a separate table of all .debug_line
2467 derived entries to support the sharing.
2468 All the quick functions need is the list of file names. We discard the
2469 line_header when we're done and don't need to record it here. */
2470struct quick_file_names
2471{
094b34ac
DE
2472 /* The data used to construct the hash key. */
2473 struct stmt_list_hash hash;
7b9f3c50
DE
2474
2475 /* The number of entries in file_names, real_names. */
2476 unsigned int num_file_names;
2477
2478 /* The file names from the line table, after being run through
2479 file_full_name. */
2480 const char **file_names;
2481
2482 /* The file names from the line table after being run through
2483 gdb_realpath. These are computed lazily. */
2484 const char **real_names;
2485};
2486
2487/* When using the index (and thus not using psymtabs), each CU has an
2488 object of this type. This is used to hold information needed by
2489 the various "quick" methods. */
2490struct dwarf2_per_cu_quick_data
2491{
2492 /* The file table. This can be NULL if there was no file table
2493 or it's currently not read in.
2494 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2495 struct quick_file_names *file_names;
2496
2497 /* The corresponding symbol table. This is NULL if symbols for this
2498 CU have not yet been read. */
43f3e411 2499 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2500
2501 /* A temporary mark bit used when iterating over all CUs in
2502 expand_symtabs_matching. */
2503 unsigned int mark : 1;
2504
2505 /* True if we've tried to read the file table and found there isn't one.
2506 There will be no point in trying to read it again next time. */
2507 unsigned int no_file_data : 1;
2508};
2509
094b34ac
DE
2510/* Utility hash function for a stmt_list_hash. */
2511
2512static hashval_t
2513hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2514{
2515 hashval_t v = 0;
2516
2517 if (stmt_list_hash->dwo_unit != NULL)
2518 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2519 v += stmt_list_hash->line_offset.sect_off;
2520 return v;
2521}
2522
2523/* Utility equality function for a stmt_list_hash. */
2524
2525static int
2526eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2527 const struct stmt_list_hash *rhs)
2528{
2529 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2530 return 0;
2531 if (lhs->dwo_unit != NULL
2532 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2533 return 0;
2534
2535 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2536}
2537
7b9f3c50
DE
2538/* Hash function for a quick_file_names. */
2539
2540static hashval_t
2541hash_file_name_entry (const void *e)
2542{
2543 const struct quick_file_names *file_data = e;
2544
094b34ac 2545 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2546}
2547
2548/* Equality function for a quick_file_names. */
2549
2550static int
2551eq_file_name_entry (const void *a, const void *b)
2552{
2553 const struct quick_file_names *ea = a;
2554 const struct quick_file_names *eb = b;
2555
094b34ac 2556 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2557}
2558
2559/* Delete function for a quick_file_names. */
2560
2561static void
2562delete_file_name_entry (void *e)
2563{
2564 struct quick_file_names *file_data = e;
2565 int i;
2566
2567 for (i = 0; i < file_data->num_file_names; ++i)
2568 {
2569 xfree ((void*) file_data->file_names[i]);
2570 if (file_data->real_names)
2571 xfree ((void*) file_data->real_names[i]);
2572 }
2573
2574 /* The space for the struct itself lives on objfile_obstack,
2575 so we don't free it here. */
2576}
2577
2578/* Create a quick_file_names hash table. */
2579
2580static htab_t
2581create_quick_file_names_table (unsigned int nr_initial_entries)
2582{
2583 return htab_create_alloc (nr_initial_entries,
2584 hash_file_name_entry, eq_file_name_entry,
2585 delete_file_name_entry, xcalloc, xfree);
2586}
9291a0cd 2587
918dd910
JK
2588/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2589 have to be created afterwards. You should call age_cached_comp_units after
2590 processing PER_CU->CU. dw2_setup must have been already called. */
2591
2592static void
2593load_cu (struct dwarf2_per_cu_data *per_cu)
2594{
3019eac3 2595 if (per_cu->is_debug_types)
e5fe5e75 2596 load_full_type_unit (per_cu);
918dd910 2597 else
95554aad 2598 load_full_comp_unit (per_cu, language_minimal);
918dd910 2599
918dd910 2600 gdb_assert (per_cu->cu != NULL);
2dc860c0
DE
2601
2602 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2603}
2604
a0f42c21 2605/* Read in the symbols for PER_CU. */
2fdf6df6 2606
9291a0cd 2607static void
a0f42c21 2608dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2609{
2610 struct cleanup *back_to;
2611
f4dc4d17
DE
2612 /* Skip type_unit_groups, reading the type units they contain
2613 is handled elsewhere. */
2614 if (IS_TYPE_UNIT_GROUP (per_cu))
2615 return;
2616
9291a0cd
TT
2617 back_to = make_cleanup (dwarf2_release_queue, NULL);
2618
95554aad 2619 if (dwarf2_per_objfile->using_index
43f3e411 2620 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2621 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2622 {
2623 queue_comp_unit (per_cu, language_minimal);
2624 load_cu (per_cu);
89e63ee4
DE
2625
2626 /* If we just loaded a CU from a DWO, and we're working with an index
2627 that may badly handle TUs, load all the TUs in that DWO as well.
2628 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2629 if (!per_cu->is_debug_types
2630 && per_cu->cu->dwo_unit != NULL
2631 && dwarf2_per_objfile->index_table != NULL
2632 && dwarf2_per_objfile->index_table->version <= 7
2633 /* DWP files aren't supported yet. */
2634 && get_dwp_file () == NULL)
2635 queue_and_load_all_dwo_tus (per_cu);
95554aad 2636 }
9291a0cd 2637
a0f42c21 2638 process_queue ();
9291a0cd
TT
2639
2640 /* Age the cache, releasing compilation units that have not
2641 been used recently. */
2642 age_cached_comp_units ();
2643
2644 do_cleanups (back_to);
2645}
2646
2647/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2648 the objfile from which this CU came. Returns the resulting symbol
2649 table. */
2fdf6df6 2650
43f3e411 2651static struct compunit_symtab *
a0f42c21 2652dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2653{
95554aad 2654 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2655 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
2656 {
2657 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2658 increment_reading_symtab ();
a0f42c21 2659 dw2_do_instantiate_symtab (per_cu);
95554aad 2660 process_cu_includes ();
9291a0cd
TT
2661 do_cleanups (back_to);
2662 }
f194fefb 2663
43f3e411 2664 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2665}
2666
8832e7e3 2667/* Return the CU/TU given its index.
f4dc4d17
DE
2668
2669 This is intended for loops like:
2670
2671 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2672 + dwarf2_per_objfile->n_type_units); ++i)
2673 {
8832e7e3 2674 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2675
2676 ...;
2677 }
2678*/
2fdf6df6 2679
1fd400ff 2680static struct dwarf2_per_cu_data *
8832e7e3 2681dw2_get_cutu (int index)
1fd400ff
TT
2682{
2683 if (index >= dwarf2_per_objfile->n_comp_units)
2684 {
f4dc4d17 2685 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2686 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2687 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2688 }
2689
2690 return dwarf2_per_objfile->all_comp_units[index];
2691}
2692
8832e7e3
DE
2693/* Return the CU given its index.
2694 This differs from dw2_get_cutu in that it's for when you know INDEX
2695 refers to a CU. */
f4dc4d17
DE
2696
2697static struct dwarf2_per_cu_data *
8832e7e3 2698dw2_get_cu (int index)
f4dc4d17 2699{
8832e7e3 2700 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2701
1fd400ff
TT
2702 return dwarf2_per_objfile->all_comp_units[index];
2703}
2704
2ec9a5e0
TT
2705/* A helper for create_cus_from_index that handles a given list of
2706 CUs. */
2fdf6df6 2707
74a0d9f6 2708static void
2ec9a5e0
TT
2709create_cus_from_index_list (struct objfile *objfile,
2710 const gdb_byte *cu_list, offset_type n_elements,
2711 struct dwarf2_section_info *section,
2712 int is_dwz,
2713 int base_offset)
9291a0cd
TT
2714{
2715 offset_type i;
9291a0cd 2716
2ec9a5e0 2717 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2718 {
2719 struct dwarf2_per_cu_data *the_cu;
2720 ULONGEST offset, length;
2721
74a0d9f6
JK
2722 gdb_static_assert (sizeof (ULONGEST) >= 8);
2723 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2724 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2725 cu_list += 2 * 8;
2726
2727 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2728 struct dwarf2_per_cu_data);
b64f50a1 2729 the_cu->offset.sect_off = offset;
9291a0cd
TT
2730 the_cu->length = length;
2731 the_cu->objfile = objfile;
8a0459fd 2732 the_cu->section = section;
9291a0cd
TT
2733 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2734 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2735 the_cu->is_dwz = is_dwz;
2736 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2737 }
9291a0cd
TT
2738}
2739
2ec9a5e0 2740/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2741 the CU objects for this objfile. */
2ec9a5e0 2742
74a0d9f6 2743static void
2ec9a5e0
TT
2744create_cus_from_index (struct objfile *objfile,
2745 const gdb_byte *cu_list, offset_type cu_list_elements,
2746 const gdb_byte *dwz_list, offset_type dwz_elements)
2747{
2748 struct dwz_file *dwz;
2749
2750 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2751 dwarf2_per_objfile->all_comp_units
2752 = obstack_alloc (&objfile->objfile_obstack,
2753 dwarf2_per_objfile->n_comp_units
2754 * sizeof (struct dwarf2_per_cu_data *));
2755
74a0d9f6
JK
2756 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2757 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2758
2759 if (dwz_elements == 0)
74a0d9f6 2760 return;
2ec9a5e0
TT
2761
2762 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2763 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2764 cu_list_elements / 2);
2ec9a5e0
TT
2765}
2766
1fd400ff 2767/* Create the signatured type hash table from the index. */
673bfd45 2768
74a0d9f6 2769static void
673bfd45 2770create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2771 struct dwarf2_section_info *section,
673bfd45
DE
2772 const gdb_byte *bytes,
2773 offset_type elements)
1fd400ff
TT
2774{
2775 offset_type i;
673bfd45 2776 htab_t sig_types_hash;
1fd400ff 2777
6aa5f3a6
DE
2778 dwarf2_per_objfile->n_type_units
2779 = dwarf2_per_objfile->n_allocated_type_units
2780 = elements / 3;
d467dd73 2781 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
2782 = xmalloc (dwarf2_per_objfile->n_type_units
2783 * sizeof (struct signatured_type *));
1fd400ff 2784
673bfd45 2785 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2786
2787 for (i = 0; i < elements; i += 3)
2788 {
52dc124a
DE
2789 struct signatured_type *sig_type;
2790 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2791 void **slot;
2792
74a0d9f6
JK
2793 gdb_static_assert (sizeof (ULONGEST) >= 8);
2794 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2795 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2796 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2797 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2798 bytes += 3 * 8;
2799
52dc124a 2800 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2801 struct signatured_type);
52dc124a 2802 sig_type->signature = signature;
3019eac3
DE
2803 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2804 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2805 sig_type->per_cu.section = section;
52dc124a
DE
2806 sig_type->per_cu.offset.sect_off = offset;
2807 sig_type->per_cu.objfile = objfile;
2808 sig_type->per_cu.v.quick
1fd400ff
TT
2809 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2810 struct dwarf2_per_cu_quick_data);
2811
52dc124a
DE
2812 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2813 *slot = sig_type;
1fd400ff 2814
b4dd5633 2815 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2816 }
2817
673bfd45 2818 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2819}
2820
9291a0cd
TT
2821/* Read the address map data from the mapped index, and use it to
2822 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2823
9291a0cd
TT
2824static void
2825create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2826{
3e29f34a 2827 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd
TT
2828 const gdb_byte *iter, *end;
2829 struct obstack temp_obstack;
2830 struct addrmap *mutable_map;
2831 struct cleanup *cleanup;
2832 CORE_ADDR baseaddr;
2833
2834 obstack_init (&temp_obstack);
2835 cleanup = make_cleanup_obstack_free (&temp_obstack);
2836 mutable_map = addrmap_create_mutable (&temp_obstack);
2837
2838 iter = index->address_table;
2839 end = iter + index->address_table_size;
2840
2841 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2842
2843 while (iter < end)
2844 {
2845 ULONGEST hi, lo, cu_index;
2846 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2847 iter += 8;
2848 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2849 iter += 8;
2850 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2851 iter += 4;
f652bce2 2852
24a55014 2853 if (lo > hi)
f652bce2 2854 {
24a55014
DE
2855 complaint (&symfile_complaints,
2856 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2857 hex_string (lo), hex_string (hi));
24a55014 2858 continue;
f652bce2 2859 }
24a55014
DE
2860
2861 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2862 {
2863 complaint (&symfile_complaints,
2864 _(".gdb_index address table has invalid CU number %u"),
2865 (unsigned) cu_index);
24a55014 2866 continue;
f652bce2 2867 }
24a55014 2868
3e29f34a
MR
2869 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2870 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2871 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
9291a0cd
TT
2872 }
2873
2874 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2875 &objfile->objfile_obstack);
2876 do_cleanups (cleanup);
2877}
2878
59d7bcaf
JK
2879/* The hash function for strings in the mapped index. This is the same as
2880 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2881 implementation. This is necessary because the hash function is tied to the
2882 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2883 SYMBOL_HASH_NEXT.
2884
2885 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2886
9291a0cd 2887static hashval_t
559a7a62 2888mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2889{
2890 const unsigned char *str = (const unsigned char *) p;
2891 hashval_t r = 0;
2892 unsigned char c;
2893
2894 while ((c = *str++) != 0)
559a7a62
JK
2895 {
2896 if (index_version >= 5)
2897 c = tolower (c);
2898 r = r * 67 + c - 113;
2899 }
9291a0cd
TT
2900
2901 return r;
2902}
2903
2904/* Find a slot in the mapped index INDEX for the object named NAME.
2905 If NAME is found, set *VEC_OUT to point to the CU vector in the
2906 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2907
9291a0cd
TT
2908static int
2909find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2910 offset_type **vec_out)
2911{
0cf03b49
JK
2912 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2913 offset_type hash;
9291a0cd 2914 offset_type slot, step;
559a7a62 2915 int (*cmp) (const char *, const char *);
9291a0cd 2916
0cf03b49
JK
2917 if (current_language->la_language == language_cplus
2918 || current_language->la_language == language_java
2919 || current_language->la_language == language_fortran)
2920 {
2921 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2922 not contain any. */
a8719064 2923
72998fb3 2924 if (strchr (name, '(') != NULL)
0cf03b49 2925 {
72998fb3 2926 char *without_params = cp_remove_params (name);
0cf03b49 2927
72998fb3
DE
2928 if (without_params != NULL)
2929 {
2930 make_cleanup (xfree, without_params);
2931 name = without_params;
2932 }
0cf03b49
JK
2933 }
2934 }
2935
559a7a62 2936 /* Index version 4 did not support case insensitive searches. But the
feea76c2 2937 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
2938 simulate our NAME being searched is also lowercased. */
2939 hash = mapped_index_string_hash ((index->version == 4
2940 && case_sensitivity == case_sensitive_off
2941 ? 5 : index->version),
2942 name);
2943
3876f04e
DE
2944 slot = hash & (index->symbol_table_slots - 1);
2945 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 2946 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
2947
2948 for (;;)
2949 {
2950 /* Convert a slot number to an offset into the table. */
2951 offset_type i = 2 * slot;
2952 const char *str;
3876f04e 2953 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
2954 {
2955 do_cleanups (back_to);
2956 return 0;
2957 }
9291a0cd 2958
3876f04e 2959 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 2960 if (!cmp (name, str))
9291a0cd
TT
2961 {
2962 *vec_out = (offset_type *) (index->constant_pool
3876f04e 2963 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 2964 do_cleanups (back_to);
9291a0cd
TT
2965 return 1;
2966 }
2967
3876f04e 2968 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
2969 }
2970}
2971
2ec9a5e0
TT
2972/* A helper function that reads the .gdb_index from SECTION and fills
2973 in MAP. FILENAME is the name of the file containing the section;
2974 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2975 ok to use deprecated sections.
2976
2977 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2978 out parameters that are filled in with information about the CU and
2979 TU lists in the section.
2980
2981 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 2982
9291a0cd 2983static int
2ec9a5e0
TT
2984read_index_from_section (struct objfile *objfile,
2985 const char *filename,
2986 int deprecated_ok,
2987 struct dwarf2_section_info *section,
2988 struct mapped_index *map,
2989 const gdb_byte **cu_list,
2990 offset_type *cu_list_elements,
2991 const gdb_byte **types_list,
2992 offset_type *types_list_elements)
9291a0cd 2993{
948f8e3d 2994 const gdb_byte *addr;
2ec9a5e0 2995 offset_type version;
b3b272e1 2996 offset_type *metadata;
1fd400ff 2997 int i;
9291a0cd 2998
2ec9a5e0 2999 if (dwarf2_section_empty_p (section))
9291a0cd 3000 return 0;
82430852
JK
3001
3002 /* Older elfutils strip versions could keep the section in the main
3003 executable while splitting it for the separate debug info file. */
a32a8923 3004 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3005 return 0;
3006
2ec9a5e0 3007 dwarf2_read_section (objfile, section);
9291a0cd 3008
2ec9a5e0 3009 addr = section->buffer;
9291a0cd 3010 /* Version check. */
1fd400ff 3011 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3012 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3013 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3014 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3015 indices. */
831adc1f 3016 if (version < 4)
481860b3
GB
3017 {
3018 static int warning_printed = 0;
3019 if (!warning_printed)
3020 {
3021 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3022 filename);
481860b3
GB
3023 warning_printed = 1;
3024 }
3025 return 0;
3026 }
3027 /* Index version 4 uses a different hash function than index version
3028 5 and later.
3029
3030 Versions earlier than 6 did not emit psymbols for inlined
3031 functions. Using these files will cause GDB not to be able to
3032 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3033 indices unless the user has done
3034 "set use-deprecated-index-sections on". */
2ec9a5e0 3035 if (version < 6 && !deprecated_ok)
481860b3
GB
3036 {
3037 static int warning_printed = 0;
3038 if (!warning_printed)
3039 {
e615022a
DE
3040 warning (_("\
3041Skipping deprecated .gdb_index section in %s.\n\
3042Do \"set use-deprecated-index-sections on\" before the file is read\n\
3043to use the section anyway."),
2ec9a5e0 3044 filename);
481860b3
GB
3045 warning_printed = 1;
3046 }
3047 return 0;
3048 }
796a7ff8 3049 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3050 of the TU (for symbols coming from TUs),
3051 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3052 Plus gold-generated indices can have duplicate entries for global symbols,
3053 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3054 These are just performance bugs, and we can't distinguish gdb-generated
3055 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3056
481860b3 3057 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3058 longer backward compatible. */
796a7ff8 3059 if (version > 8)
594e8718 3060 return 0;
9291a0cd 3061
559a7a62 3062 map->version = version;
2ec9a5e0 3063 map->total_size = section->size;
9291a0cd
TT
3064
3065 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3066
3067 i = 0;
2ec9a5e0
TT
3068 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3069 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3070 / 8);
1fd400ff
TT
3071 ++i;
3072
2ec9a5e0
TT
3073 *types_list = addr + MAYBE_SWAP (metadata[i]);
3074 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3075 - MAYBE_SWAP (metadata[i]))
3076 / 8);
987d643c 3077 ++i;
1fd400ff
TT
3078
3079 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3080 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3081 - MAYBE_SWAP (metadata[i]));
3082 ++i;
3083
3876f04e
DE
3084 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3085 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3086 - MAYBE_SWAP (metadata[i]))
3087 / (2 * sizeof (offset_type)));
1fd400ff 3088 ++i;
9291a0cd 3089
f9d83a0b 3090 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3091
2ec9a5e0
TT
3092 return 1;
3093}
3094
3095
3096/* Read the index file. If everything went ok, initialize the "quick"
3097 elements of all the CUs and return 1. Otherwise, return 0. */
3098
3099static int
3100dwarf2_read_index (struct objfile *objfile)
3101{
3102 struct mapped_index local_map, *map;
3103 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3104 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3105 struct dwz_file *dwz;
2ec9a5e0 3106
4262abfb 3107 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3108 use_deprecated_index_sections,
3109 &dwarf2_per_objfile->gdb_index, &local_map,
3110 &cu_list, &cu_list_elements,
3111 &types_list, &types_list_elements))
3112 return 0;
3113
0fefef59 3114 /* Don't use the index if it's empty. */
2ec9a5e0 3115 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3116 return 0;
3117
2ec9a5e0
TT
3118 /* If there is a .dwz file, read it so we can get its CU list as
3119 well. */
4db1a1dc
TT
3120 dwz = dwarf2_get_dwz_file ();
3121 if (dwz != NULL)
2ec9a5e0 3122 {
2ec9a5e0
TT
3123 struct mapped_index dwz_map;
3124 const gdb_byte *dwz_types_ignore;
3125 offset_type dwz_types_elements_ignore;
3126
3127 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3128 1,
3129 &dwz->gdb_index, &dwz_map,
3130 &dwz_list, &dwz_list_elements,
3131 &dwz_types_ignore,
3132 &dwz_types_elements_ignore))
3133 {
3134 warning (_("could not read '.gdb_index' section from %s; skipping"),
3135 bfd_get_filename (dwz->dwz_bfd));
3136 return 0;
3137 }
3138 }
3139
74a0d9f6
JK
3140 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3141 dwz_list_elements);
1fd400ff 3142
8b70b953
TT
3143 if (types_list_elements)
3144 {
3145 struct dwarf2_section_info *section;
3146
3147 /* We can only handle a single .debug_types when we have an
3148 index. */
3149 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3150 return 0;
3151
3152 section = VEC_index (dwarf2_section_info_def,
3153 dwarf2_per_objfile->types, 0);
3154
74a0d9f6
JK
3155 create_signatured_type_table_from_index (objfile, section, types_list,
3156 types_list_elements);
8b70b953 3157 }
9291a0cd 3158
2ec9a5e0
TT
3159 create_addrmap_from_index (objfile, &local_map);
3160
3161 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3162 *map = local_map;
9291a0cd
TT
3163
3164 dwarf2_per_objfile->index_table = map;
3165 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3166 dwarf2_per_objfile->quick_file_names_table =
3167 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3168
3169 return 1;
3170}
3171
3172/* A helper for the "quick" functions which sets the global
3173 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3174
9291a0cd
TT
3175static void
3176dw2_setup (struct objfile *objfile)
3177{
3178 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3179 gdb_assert (dwarf2_per_objfile);
3180}
3181
dee91e82 3182/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3183
dee91e82
DE
3184static void
3185dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3186 const gdb_byte *info_ptr,
dee91e82
DE
3187 struct die_info *comp_unit_die,
3188 int has_children,
3189 void *data)
9291a0cd 3190{
dee91e82
DE
3191 struct dwarf2_cu *cu = reader->cu;
3192 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3193 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3194 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3195 struct line_header *lh;
9291a0cd 3196 struct attribute *attr;
dee91e82 3197 int i;
15d034d0 3198 const char *name, *comp_dir;
7b9f3c50
DE
3199 void **slot;
3200 struct quick_file_names *qfn;
3201 unsigned int line_offset;
9291a0cd 3202
0186c6a7
DE
3203 gdb_assert (! this_cu->is_debug_types);
3204
07261596
TT
3205 /* Our callers never want to match partial units -- instead they
3206 will match the enclosing full CU. */
3207 if (comp_unit_die->tag == DW_TAG_partial_unit)
3208 {
3209 this_cu->v.quick->no_file_data = 1;
3210 return;
3211 }
3212
0186c6a7 3213 lh_cu = this_cu;
7b9f3c50
DE
3214 lh = NULL;
3215 slot = NULL;
3216 line_offset = 0;
dee91e82
DE
3217
3218 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3219 if (attr)
3220 {
7b9f3c50
DE
3221 struct quick_file_names find_entry;
3222
3223 line_offset = DW_UNSND (attr);
3224
3225 /* We may have already read in this line header (TU line header sharing).
3226 If we have we're done. */
094b34ac
DE
3227 find_entry.hash.dwo_unit = cu->dwo_unit;
3228 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3229 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3230 &find_entry, INSERT);
3231 if (*slot != NULL)
3232 {
094b34ac 3233 lh_cu->v.quick->file_names = *slot;
dee91e82 3234 return;
7b9f3c50
DE
3235 }
3236
3019eac3 3237 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3238 }
3239 if (lh == NULL)
3240 {
094b34ac 3241 lh_cu->v.quick->no_file_data = 1;
dee91e82 3242 return;
9291a0cd
TT
3243 }
3244
7b9f3c50 3245 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
094b34ac
DE
3246 qfn->hash.dwo_unit = cu->dwo_unit;
3247 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3248 gdb_assert (slot != NULL);
3249 *slot = qfn;
9291a0cd 3250
dee91e82 3251 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3252
7b9f3c50
DE
3253 qfn->num_file_names = lh->num_file_names;
3254 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3255 lh->num_file_names * sizeof (char *));
9291a0cd 3256 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3257 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3258 qfn->real_names = NULL;
9291a0cd 3259
7b9f3c50 3260 free_line_header (lh);
7b9f3c50 3261
094b34ac 3262 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3263}
3264
3265/* A helper for the "quick" functions which attempts to read the line
3266 table for THIS_CU. */
3267
3268static struct quick_file_names *
e4a48d9d 3269dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3270{
0186c6a7
DE
3271 /* This should never be called for TUs. */
3272 gdb_assert (! this_cu->is_debug_types);
3273 /* Nor type unit groups. */
3274 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3275
dee91e82
DE
3276 if (this_cu->v.quick->file_names != NULL)
3277 return this_cu->v.quick->file_names;
3278 /* If we know there is no line data, no point in looking again. */
3279 if (this_cu->v.quick->no_file_data)
3280 return NULL;
3281
0186c6a7 3282 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3283
3284 if (this_cu->v.quick->no_file_data)
3285 return NULL;
3286 return this_cu->v.quick->file_names;
9291a0cd
TT
3287}
3288
3289/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3290 real path for a given file name from the line table. */
2fdf6df6 3291
9291a0cd 3292static const char *
7b9f3c50
DE
3293dw2_get_real_path (struct objfile *objfile,
3294 struct quick_file_names *qfn, int index)
9291a0cd 3295{
7b9f3c50
DE
3296 if (qfn->real_names == NULL)
3297 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3298 qfn->num_file_names, const char *);
9291a0cd 3299
7b9f3c50
DE
3300 if (qfn->real_names[index] == NULL)
3301 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3302
7b9f3c50 3303 return qfn->real_names[index];
9291a0cd
TT
3304}
3305
3306static struct symtab *
3307dw2_find_last_source_symtab (struct objfile *objfile)
3308{
43f3e411 3309 struct compunit_symtab *cust;
9291a0cd 3310 int index;
ae2de4f8 3311
9291a0cd
TT
3312 dw2_setup (objfile);
3313 index = dwarf2_per_objfile->n_comp_units - 1;
43f3e411
DE
3314 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3315 if (cust == NULL)
3316 return NULL;
3317 return compunit_primary_filetab (cust);
9291a0cd
TT
3318}
3319
7b9f3c50
DE
3320/* Traversal function for dw2_forget_cached_source_info. */
3321
3322static int
3323dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3324{
7b9f3c50 3325 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3326
7b9f3c50 3327 if (file_data->real_names)
9291a0cd 3328 {
7b9f3c50 3329 int i;
9291a0cd 3330
7b9f3c50 3331 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3332 {
7b9f3c50
DE
3333 xfree ((void*) file_data->real_names[i]);
3334 file_data->real_names[i] = NULL;
9291a0cd
TT
3335 }
3336 }
7b9f3c50
DE
3337
3338 return 1;
3339}
3340
3341static void
3342dw2_forget_cached_source_info (struct objfile *objfile)
3343{
3344 dw2_setup (objfile);
3345
3346 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3347 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3348}
3349
f8eba3c6
TT
3350/* Helper function for dw2_map_symtabs_matching_filename that expands
3351 the symtabs and calls the iterator. */
3352
3353static int
3354dw2_map_expand_apply (struct objfile *objfile,
3355 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3356 const char *name, const char *real_path,
f8eba3c6
TT
3357 int (*callback) (struct symtab *, void *),
3358 void *data)
3359{
43f3e411 3360 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3361
3362 /* Don't visit already-expanded CUs. */
43f3e411 3363 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3364 return 0;
3365
3366 /* This may expand more than one symtab, and we want to iterate over
3367 all of them. */
a0f42c21 3368 dw2_instantiate_symtab (per_cu);
f8eba3c6 3369
f5b95b50 3370 return iterate_over_some_symtabs (name, real_path, callback, data,
43f3e411 3371 objfile->compunit_symtabs, last_made);
f8eba3c6
TT
3372}
3373
3374/* Implementation of the map_symtabs_matching_filename method. */
3375
9291a0cd 3376static int
f8eba3c6 3377dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3378 const char *real_path,
f8eba3c6
TT
3379 int (*callback) (struct symtab *, void *),
3380 void *data)
9291a0cd
TT
3381{
3382 int i;
c011a4f4 3383 const char *name_basename = lbasename (name);
9291a0cd
TT
3384
3385 dw2_setup (objfile);
ae2de4f8 3386
848e3e78
DE
3387 /* The rule is CUs specify all the files, including those used by
3388 any TU, so there's no need to scan TUs here. */
f4dc4d17 3389
848e3e78 3390 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3391 {
3392 int j;
8832e7e3 3393 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3394 struct quick_file_names *file_data;
9291a0cd 3395
3d7bb9d9 3396 /* We only need to look at symtabs not already expanded. */
43f3e411 3397 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3398 continue;
3399
e4a48d9d 3400 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3401 if (file_data == NULL)
9291a0cd
TT
3402 continue;
3403
7b9f3c50 3404 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3405 {
7b9f3c50 3406 const char *this_name = file_data->file_names[j];
da235a7c 3407 const char *this_real_name;
9291a0cd 3408
af529f8f 3409 if (compare_filenames_for_search (this_name, name))
9291a0cd 3410 {
f5b95b50 3411 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3412 callback, data))
3413 return 1;
288e77a7 3414 continue;
4aac40c8 3415 }
9291a0cd 3416
c011a4f4
DE
3417 /* Before we invoke realpath, which can get expensive when many
3418 files are involved, do a quick comparison of the basenames. */
3419 if (! basenames_may_differ
3420 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3421 continue;
3422
da235a7c
JK
3423 this_real_name = dw2_get_real_path (objfile, file_data, j);
3424 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3425 {
da235a7c
JK
3426 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3427 callback, data))
3428 return 1;
288e77a7 3429 continue;
da235a7c 3430 }
9291a0cd 3431
da235a7c
JK
3432 if (real_path != NULL)
3433 {
af529f8f
JK
3434 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3435 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3436 if (this_real_name != NULL
af529f8f 3437 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3438 {
f5b95b50 3439 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3440 callback, data))
3441 return 1;
288e77a7 3442 continue;
9291a0cd
TT
3443 }
3444 }
3445 }
3446 }
3447
9291a0cd
TT
3448 return 0;
3449}
3450
da51c347
DE
3451/* Struct used to manage iterating over all CUs looking for a symbol. */
3452
3453struct dw2_symtab_iterator
9291a0cd 3454{
da51c347
DE
3455 /* The internalized form of .gdb_index. */
3456 struct mapped_index *index;
3457 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3458 int want_specific_block;
3459 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3460 Unused if !WANT_SPECIFIC_BLOCK. */
3461 int block_index;
3462 /* The kind of symbol we're looking for. */
3463 domain_enum domain;
3464 /* The list of CUs from the index entry of the symbol,
3465 or NULL if not found. */
3466 offset_type *vec;
3467 /* The next element in VEC to look at. */
3468 int next;
3469 /* The number of elements in VEC, or zero if there is no match. */
3470 int length;
8943b874
DE
3471 /* Have we seen a global version of the symbol?
3472 If so we can ignore all further global instances.
3473 This is to work around gold/15646, inefficient gold-generated
3474 indices. */
3475 int global_seen;
da51c347 3476};
9291a0cd 3477
da51c347
DE
3478/* Initialize the index symtab iterator ITER.
3479 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3480 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3481
9291a0cd 3482static void
da51c347
DE
3483dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3484 struct mapped_index *index,
3485 int want_specific_block,
3486 int block_index,
3487 domain_enum domain,
3488 const char *name)
3489{
3490 iter->index = index;
3491 iter->want_specific_block = want_specific_block;
3492 iter->block_index = block_index;
3493 iter->domain = domain;
3494 iter->next = 0;
8943b874 3495 iter->global_seen = 0;
da51c347
DE
3496
3497 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3498 iter->length = MAYBE_SWAP (*iter->vec);
3499 else
3500 {
3501 iter->vec = NULL;
3502 iter->length = 0;
3503 }
3504}
3505
3506/* Return the next matching CU or NULL if there are no more. */
3507
3508static struct dwarf2_per_cu_data *
3509dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3510{
3511 for ( ; iter->next < iter->length; ++iter->next)
3512 {
3513 offset_type cu_index_and_attrs =
3514 MAYBE_SWAP (iter->vec[iter->next + 1]);
3515 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3516 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3517 int want_static = iter->block_index != GLOBAL_BLOCK;
3518 /* This value is only valid for index versions >= 7. */
3519 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3520 gdb_index_symbol_kind symbol_kind =
3521 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3522 /* Only check the symbol attributes if they're present.
3523 Indices prior to version 7 don't record them,
3524 and indices >= 7 may elide them for certain symbols
3525 (gold does this). */
3526 int attrs_valid =
3527 (iter->index->version >= 7
3528 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3529
3190f0c6
DE
3530 /* Don't crash on bad data. */
3531 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3532 + dwarf2_per_objfile->n_type_units))
3533 {
3534 complaint (&symfile_complaints,
3535 _(".gdb_index entry has bad CU index"
4262abfb
JK
3536 " [in module %s]"),
3537 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3538 continue;
3539 }
3540
8832e7e3 3541 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3542
da51c347 3543 /* Skip if already read in. */
43f3e411 3544 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3545 continue;
3546
8943b874
DE
3547 /* Check static vs global. */
3548 if (attrs_valid)
3549 {
3550 if (iter->want_specific_block
3551 && want_static != is_static)
3552 continue;
3553 /* Work around gold/15646. */
3554 if (!is_static && iter->global_seen)
3555 continue;
3556 if (!is_static)
3557 iter->global_seen = 1;
3558 }
da51c347
DE
3559
3560 /* Only check the symbol's kind if it has one. */
3561 if (attrs_valid)
3562 {
3563 switch (iter->domain)
3564 {
3565 case VAR_DOMAIN:
3566 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3567 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3568 /* Some types are also in VAR_DOMAIN. */
3569 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3570 continue;
3571 break;
3572 case STRUCT_DOMAIN:
3573 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3574 continue;
3575 break;
3576 case LABEL_DOMAIN:
3577 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3578 continue;
3579 break;
3580 default:
3581 break;
3582 }
3583 }
3584
3585 ++iter->next;
3586 return per_cu;
3587 }
3588
3589 return NULL;
3590}
3591
43f3e411 3592static struct compunit_symtab *
da51c347
DE
3593dw2_lookup_symbol (struct objfile *objfile, int block_index,
3594 const char *name, domain_enum domain)
9291a0cd 3595{
43f3e411 3596 struct compunit_symtab *stab_best = NULL;
156942c7
DE
3597 struct mapped_index *index;
3598
9291a0cd
TT
3599 dw2_setup (objfile);
3600
156942c7
DE
3601 index = dwarf2_per_objfile->index_table;
3602
da51c347 3603 /* index is NULL if OBJF_READNOW. */
156942c7 3604 if (index)
9291a0cd 3605 {
da51c347
DE
3606 struct dw2_symtab_iterator iter;
3607 struct dwarf2_per_cu_data *per_cu;
3608
3609 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3610
da51c347 3611 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3612 {
da51c347 3613 struct symbol *sym = NULL;
43f3e411
DE
3614 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3615 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
f194fefb 3616 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347
DE
3617
3618 /* Some caution must be observed with overloaded functions
3619 and methods, since the index will not contain any overload
3620 information (but NAME might contain it). */
f194fefb 3621 sym = block_lookup_symbol (block, name, domain);
1fd400ff 3622
da51c347
DE
3623 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3624 {
3625 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3626 return stab;
3627
3628 stab_best = stab;
9291a0cd 3629 }
da51c347
DE
3630
3631 /* Keep looking through other CUs. */
9291a0cd
TT
3632 }
3633 }
9291a0cd 3634
da51c347 3635 return stab_best;
9291a0cd
TT
3636}
3637
3638static void
3639dw2_print_stats (struct objfile *objfile)
3640{
e4a48d9d 3641 int i, total, count;
9291a0cd
TT
3642
3643 dw2_setup (objfile);
e4a48d9d 3644 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3645 count = 0;
e4a48d9d 3646 for (i = 0; i < total; ++i)
9291a0cd 3647 {
8832e7e3 3648 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3649
43f3e411 3650 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3651 ++count;
3652 }
e4a48d9d 3653 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3654 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3655}
3656
779bd270
DE
3657/* This dumps minimal information about the index.
3658 It is called via "mt print objfiles".
3659 One use is to verify .gdb_index has been loaded by the
3660 gdb.dwarf2/gdb-index.exp testcase. */
3661
9291a0cd
TT
3662static void
3663dw2_dump (struct objfile *objfile)
3664{
779bd270
DE
3665 dw2_setup (objfile);
3666 gdb_assert (dwarf2_per_objfile->using_index);
3667 printf_filtered (".gdb_index:");
3668 if (dwarf2_per_objfile->index_table != NULL)
3669 {
3670 printf_filtered (" version %d\n",
3671 dwarf2_per_objfile->index_table->version);
3672 }
3673 else
3674 printf_filtered (" faked for \"readnow\"\n");
3675 printf_filtered ("\n");
9291a0cd
TT
3676}
3677
3678static void
3189cb12
DE
3679dw2_relocate (struct objfile *objfile,
3680 const struct section_offsets *new_offsets,
3681 const struct section_offsets *delta)
9291a0cd
TT
3682{
3683 /* There's nothing to relocate here. */
3684}
3685
3686static void
3687dw2_expand_symtabs_for_function (struct objfile *objfile,
3688 const char *func_name)
3689{
da51c347
DE
3690 struct mapped_index *index;
3691
3692 dw2_setup (objfile);
3693
3694 index = dwarf2_per_objfile->index_table;
3695
3696 /* index is NULL if OBJF_READNOW. */
3697 if (index)
3698 {
3699 struct dw2_symtab_iterator iter;
3700 struct dwarf2_per_cu_data *per_cu;
3701
3702 /* Note: It doesn't matter what we pass for block_index here. */
3703 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3704 func_name);
3705
3706 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3707 dw2_instantiate_symtab (per_cu);
3708 }
9291a0cd
TT
3709}
3710
3711static void
3712dw2_expand_all_symtabs (struct objfile *objfile)
3713{
3714 int i;
3715
3716 dw2_setup (objfile);
1fd400ff
TT
3717
3718 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3719 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3720 {
8832e7e3 3721 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3722
a0f42c21 3723 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3724 }
3725}
3726
3727static void
652a8996
JK
3728dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3729 const char *fullname)
9291a0cd
TT
3730{
3731 int i;
3732
3733 dw2_setup (objfile);
d4637a04
DE
3734
3735 /* We don't need to consider type units here.
3736 This is only called for examining code, e.g. expand_line_sal.
3737 There can be an order of magnitude (or more) more type units
3738 than comp units, and we avoid them if we can. */
3739
3740 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3741 {
3742 int j;
8832e7e3 3743 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 3744 struct quick_file_names *file_data;
9291a0cd 3745
3d7bb9d9 3746 /* We only need to look at symtabs not already expanded. */
43f3e411 3747 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3748 continue;
3749
e4a48d9d 3750 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3751 if (file_data == NULL)
9291a0cd
TT
3752 continue;
3753
7b9f3c50 3754 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3755 {
652a8996
JK
3756 const char *this_fullname = file_data->file_names[j];
3757
3758 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3759 {
a0f42c21 3760 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3761 break;
3762 }
3763 }
3764 }
3765}
3766
9291a0cd 3767static void
ade7ed9e
DE
3768dw2_map_matching_symbols (struct objfile *objfile,
3769 const char * name, domain_enum namespace,
3770 int global,
40658b94
PH
3771 int (*callback) (struct block *,
3772 struct symbol *, void *),
2edb89d3
JK
3773 void *data, symbol_compare_ftype *match,
3774 symbol_compare_ftype *ordered_compare)
9291a0cd 3775{
40658b94 3776 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3777 current language is Ada for a non-Ada objfile using GNU index. As Ada
3778 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3779}
3780
3781static void
f8eba3c6
TT
3782dw2_expand_symtabs_matching
3783 (struct objfile *objfile,
206f2a57
DE
3784 expand_symtabs_file_matcher_ftype *file_matcher,
3785 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
f8eba3c6
TT
3786 enum search_domain kind,
3787 void *data)
9291a0cd
TT
3788{
3789 int i;
3790 offset_type iter;
4b5246aa 3791 struct mapped_index *index;
9291a0cd
TT
3792
3793 dw2_setup (objfile);
ae2de4f8
DE
3794
3795 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3796 if (!dwarf2_per_objfile->index_table)
3797 return;
4b5246aa 3798 index = dwarf2_per_objfile->index_table;
9291a0cd 3799
7b08b9eb 3800 if (file_matcher != NULL)
24c79950
TT
3801 {
3802 struct cleanup *cleanup;
3803 htab_t visited_found, visited_not_found;
3804
3805 visited_found = htab_create_alloc (10,
3806 htab_hash_pointer, htab_eq_pointer,
3807 NULL, xcalloc, xfree);
3808 cleanup = make_cleanup_htab_delete (visited_found);
3809 visited_not_found = htab_create_alloc (10,
3810 htab_hash_pointer, htab_eq_pointer,
3811 NULL, xcalloc, xfree);
3812 make_cleanup_htab_delete (visited_not_found);
3813
848e3e78
DE
3814 /* The rule is CUs specify all the files, including those used by
3815 any TU, so there's no need to scan TUs here. */
3816
3817 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3818 {
3819 int j;
8832e7e3 3820 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
3821 struct quick_file_names *file_data;
3822 void **slot;
7b08b9eb 3823
24c79950 3824 per_cu->v.quick->mark = 0;
3d7bb9d9 3825
24c79950 3826 /* We only need to look at symtabs not already expanded. */
43f3e411 3827 if (per_cu->v.quick->compunit_symtab)
24c79950 3828 continue;
7b08b9eb 3829
e4a48d9d 3830 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3831 if (file_data == NULL)
3832 continue;
7b08b9eb 3833
24c79950
TT
3834 if (htab_find (visited_not_found, file_data) != NULL)
3835 continue;
3836 else if (htab_find (visited_found, file_data) != NULL)
3837 {
3838 per_cu->v.quick->mark = 1;
3839 continue;
3840 }
3841
3842 for (j = 0; j < file_data->num_file_names; ++j)
3843 {
da235a7c
JK
3844 const char *this_real_name;
3845
fbd9ab74 3846 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3847 {
3848 per_cu->v.quick->mark = 1;
3849 break;
3850 }
da235a7c
JK
3851
3852 /* Before we invoke realpath, which can get expensive when many
3853 files are involved, do a quick comparison of the basenames. */
3854 if (!basenames_may_differ
3855 && !file_matcher (lbasename (file_data->file_names[j]),
3856 data, 1))
3857 continue;
3858
3859 this_real_name = dw2_get_real_path (objfile, file_data, j);
3860 if (file_matcher (this_real_name, data, 0))
3861 {
3862 per_cu->v.quick->mark = 1;
3863 break;
3864 }
24c79950
TT
3865 }
3866
3867 slot = htab_find_slot (per_cu->v.quick->mark
3868 ? visited_found
3869 : visited_not_found,
3870 file_data, INSERT);
3871 *slot = file_data;
3872 }
3873
3874 do_cleanups (cleanup);
3875 }
9291a0cd 3876
3876f04e 3877 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3878 {
3879 offset_type idx = 2 * iter;
3880 const char *name;
3881 offset_type *vec, vec_len, vec_idx;
8943b874 3882 int global_seen = 0;
9291a0cd 3883
3876f04e 3884 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3885 continue;
3886
3876f04e 3887 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3888
206f2a57 3889 if (! (*symbol_matcher) (name, data))
9291a0cd
TT
3890 continue;
3891
3892 /* The name was matched, now expand corresponding CUs that were
3893 marked. */
4b5246aa 3894 vec = (offset_type *) (index->constant_pool
3876f04e 3895 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3896 vec_len = MAYBE_SWAP (vec[0]);
3897 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3898 {
e254ef6a 3899 struct dwarf2_per_cu_data *per_cu;
156942c7 3900 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
3901 /* This value is only valid for index versions >= 7. */
3902 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
3903 gdb_index_symbol_kind symbol_kind =
3904 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3905 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
3906 /* Only check the symbol attributes if they're present.
3907 Indices prior to version 7 don't record them,
3908 and indices >= 7 may elide them for certain symbols
3909 (gold does this). */
3910 int attrs_valid =
3911 (index->version >= 7
3912 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3913
8943b874
DE
3914 /* Work around gold/15646. */
3915 if (attrs_valid)
3916 {
3917 if (!is_static && global_seen)
3918 continue;
3919 if (!is_static)
3920 global_seen = 1;
3921 }
3922
3190f0c6
DE
3923 /* Only check the symbol's kind if it has one. */
3924 if (attrs_valid)
156942c7
DE
3925 {
3926 switch (kind)
3927 {
3928 case VARIABLES_DOMAIN:
3929 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3930 continue;
3931 break;
3932 case FUNCTIONS_DOMAIN:
3933 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3934 continue;
3935 break;
3936 case TYPES_DOMAIN:
3937 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3938 continue;
3939 break;
3940 default:
3941 break;
3942 }
3943 }
3944
3190f0c6
DE
3945 /* Don't crash on bad data. */
3946 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3947 + dwarf2_per_objfile->n_type_units))
3948 {
3949 complaint (&symfile_complaints,
3950 _(".gdb_index entry has bad CU index"
4262abfb 3951 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
3952 continue;
3953 }
3954
8832e7e3 3955 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 3956 if (file_matcher == NULL || per_cu->v.quick->mark)
a0f42c21 3957 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3958 }
3959 }
3960}
3961
43f3e411 3962/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
9703b513
TT
3963 symtab. */
3964
43f3e411
DE
3965static struct compunit_symtab *
3966recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
3967 CORE_ADDR pc)
9703b513
TT
3968{
3969 int i;
3970
43f3e411
DE
3971 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
3972 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
3973 return cust;
9703b513 3974
43f3e411 3975 if (cust->includes == NULL)
a3ec0bb1
DE
3976 return NULL;
3977
43f3e411 3978 for (i = 0; cust->includes[i]; ++i)
9703b513 3979 {
43f3e411 3980 struct compunit_symtab *s = cust->includes[i];
9703b513 3981
43f3e411 3982 s = recursively_find_pc_sect_compunit_symtab (s, pc);
9703b513
TT
3983 if (s != NULL)
3984 return s;
3985 }
3986
3987 return NULL;
3988}
3989
43f3e411
DE
3990static struct compunit_symtab *
3991dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
3992 struct bound_minimal_symbol msymbol,
3993 CORE_ADDR pc,
3994 struct obj_section *section,
3995 int warn_if_readin)
9291a0cd
TT
3996{
3997 struct dwarf2_per_cu_data *data;
43f3e411 3998 struct compunit_symtab *result;
9291a0cd
TT
3999
4000 dw2_setup (objfile);
4001
4002 if (!objfile->psymtabs_addrmap)
4003 return NULL;
4004
4005 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4006 if (!data)
4007 return NULL;
4008
43f3e411 4009 if (warn_if_readin && data->v.quick->compunit_symtab)
abebb8b0 4010 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4011 paddress (get_objfile_arch (objfile), pc));
4012
43f3e411
DE
4013 result
4014 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4015 pc);
9703b513
TT
4016 gdb_assert (result != NULL);
4017 return result;
9291a0cd
TT
4018}
4019
9291a0cd 4020static void
44b13c5a 4021dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4022 void *data, int need_fullname)
9291a0cd
TT
4023{
4024 int i;
24c79950
TT
4025 struct cleanup *cleanup;
4026 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4027 NULL, xcalloc, xfree);
9291a0cd 4028
24c79950 4029 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 4030 dw2_setup (objfile);
ae2de4f8 4031
848e3e78
DE
4032 /* The rule is CUs specify all the files, including those used by
4033 any TU, so there's no need to scan TUs here.
4034 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4035
848e3e78 4036 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950 4037 {
8832e7e3 4038 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
24c79950 4039
43f3e411 4040 if (per_cu->v.quick->compunit_symtab)
24c79950
TT
4041 {
4042 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4043 INSERT);
4044
4045 *slot = per_cu->v.quick->file_names;
4046 }
4047 }
4048
848e3e78 4049 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4050 {
4051 int j;
8832e7e3 4052 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 4053 struct quick_file_names *file_data;
24c79950 4054 void **slot;
9291a0cd 4055
3d7bb9d9 4056 /* We only need to look at symtabs not already expanded. */
43f3e411 4057 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4058 continue;
4059
e4a48d9d 4060 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4061 if (file_data == NULL)
9291a0cd
TT
4062 continue;
4063
24c79950
TT
4064 slot = htab_find_slot (visited, file_data, INSERT);
4065 if (*slot)
4066 {
4067 /* Already visited. */
4068 continue;
4069 }
4070 *slot = file_data;
4071
7b9f3c50 4072 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4073 {
74e2f255
DE
4074 const char *this_real_name;
4075
4076 if (need_fullname)
4077 this_real_name = dw2_get_real_path (objfile, file_data, j);
4078 else
4079 this_real_name = NULL;
7b9f3c50 4080 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4081 }
4082 }
24c79950
TT
4083
4084 do_cleanups (cleanup);
9291a0cd
TT
4085}
4086
4087static int
4088dw2_has_symbols (struct objfile *objfile)
4089{
4090 return 1;
4091}
4092
4093const struct quick_symbol_functions dwarf2_gdb_index_functions =
4094{
4095 dw2_has_symbols,
4096 dw2_find_last_source_symtab,
4097 dw2_forget_cached_source_info,
f8eba3c6 4098 dw2_map_symtabs_matching_filename,
9291a0cd 4099 dw2_lookup_symbol,
9291a0cd
TT
4100 dw2_print_stats,
4101 dw2_dump,
4102 dw2_relocate,
4103 dw2_expand_symtabs_for_function,
4104 dw2_expand_all_symtabs,
652a8996 4105 dw2_expand_symtabs_with_fullname,
40658b94 4106 dw2_map_matching_symbols,
9291a0cd 4107 dw2_expand_symtabs_matching,
43f3e411 4108 dw2_find_pc_sect_compunit_symtab,
9291a0cd
TT
4109 dw2_map_symbol_filenames
4110};
4111
4112/* Initialize for reading DWARF for this objfile. Return 0 if this
4113 file will use psymtabs, or 1 if using the GNU index. */
4114
4115int
4116dwarf2_initialize_objfile (struct objfile *objfile)
4117{
4118 /* If we're about to read full symbols, don't bother with the
4119 indices. In this case we also don't care if some other debug
4120 format is making psymtabs, because they are all about to be
4121 expanded anyway. */
4122 if ((objfile->flags & OBJF_READNOW))
4123 {
4124 int i;
4125
4126 dwarf2_per_objfile->using_index = 1;
4127 create_all_comp_units (objfile);
0e50663e 4128 create_all_type_units (objfile);
7b9f3c50
DE
4129 dwarf2_per_objfile->quick_file_names_table =
4130 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4131
1fd400ff 4132 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4133 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4134 {
8832e7e3 4135 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4136
e254ef6a
DE
4137 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4138 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4139 }
4140
4141 /* Return 1 so that gdb sees the "quick" functions. However,
4142 these functions will be no-ops because we will have expanded
4143 all symtabs. */
4144 return 1;
4145 }
4146
4147 if (dwarf2_read_index (objfile))
4148 return 1;
4149
9291a0cd
TT
4150 return 0;
4151}
4152
4153\f
4154
dce234bc
PP
4155/* Build a partial symbol table. */
4156
4157void
f29dff0a 4158dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4159{
c9bf0622
TT
4160 volatile struct gdb_exception except;
4161
f29dff0a 4162 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4163 {
4164 init_psymbol_list (objfile, 1024);
4165 }
4166
c9bf0622
TT
4167 TRY_CATCH (except, RETURN_MASK_ERROR)
4168 {
4169 /* This isn't really ideal: all the data we allocate on the
4170 objfile's obstack is still uselessly kept around. However,
4171 freeing it seems unsafe. */
4172 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4173
4174 dwarf2_build_psymtabs_hard (objfile);
4175 discard_cleanups (cleanups);
4176 }
4177 if (except.reason < 0)
4178 exception_print (gdb_stderr, except);
c906108c 4179}
c906108c 4180
1ce1cefd
DE
4181/* Return the total length of the CU described by HEADER. */
4182
4183static unsigned int
4184get_cu_length (const struct comp_unit_head *header)
4185{
4186 return header->initial_length_size + header->length;
4187}
4188
45452591
DE
4189/* Return TRUE if OFFSET is within CU_HEADER. */
4190
4191static inline int
b64f50a1 4192offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4193{
b64f50a1 4194 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4195 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4196
b64f50a1 4197 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4198}
4199
3b80fe9b
DE
4200/* Find the base address of the compilation unit for range lists and
4201 location lists. It will normally be specified by DW_AT_low_pc.
4202 In DWARF-3 draft 4, the base address could be overridden by
4203 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4204 compilation units with discontinuous ranges. */
4205
4206static void
4207dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4208{
4209 struct attribute *attr;
4210
4211 cu->base_known = 0;
4212 cu->base_address = 0;
4213
4214 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4215 if (attr)
4216 {
31aa7e4e 4217 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4218 cu->base_known = 1;
4219 }
4220 else
4221 {
4222 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4223 if (attr)
4224 {
31aa7e4e 4225 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4226 cu->base_known = 1;
4227 }
4228 }
4229}
4230
93311388
DE
4231/* Read in the comp unit header information from the debug_info at info_ptr.
4232 NOTE: This leaves members offset, first_die_offset to be filled in
4233 by the caller. */
107d2387 4234
d521ce57 4235static const gdb_byte *
107d2387 4236read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 4237 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
4238{
4239 int signed_addr;
891d2f0b 4240 unsigned int bytes_read;
c764a876
DE
4241
4242 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4243 cu_header->initial_length_size = bytes_read;
4244 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4245 info_ptr += bytes_read;
107d2387
AC
4246 cu_header->version = read_2_bytes (abfd, info_ptr);
4247 info_ptr += 2;
b64f50a1
JK
4248 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4249 &bytes_read);
613e1657 4250 info_ptr += bytes_read;
107d2387
AC
4251 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4252 info_ptr += 1;
4253 signed_addr = bfd_get_sign_extend_vma (abfd);
4254 if (signed_addr < 0)
8e65ff28 4255 internal_error (__FILE__, __LINE__,
e2e0b3e5 4256 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4257 cu_header->signed_addr_p = signed_addr;
c764a876 4258
107d2387
AC
4259 return info_ptr;
4260}
4261
36586728
TT
4262/* Helper function that returns the proper abbrev section for
4263 THIS_CU. */
4264
4265static struct dwarf2_section_info *
4266get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4267{
4268 struct dwarf2_section_info *abbrev;
4269
4270 if (this_cu->is_dwz)
4271 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4272 else
4273 abbrev = &dwarf2_per_objfile->abbrev;
4274
4275 return abbrev;
4276}
4277
9ff913ba
DE
4278/* Subroutine of read_and_check_comp_unit_head and
4279 read_and_check_type_unit_head to simplify them.
4280 Perform various error checking on the header. */
4281
4282static void
4283error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4284 struct dwarf2_section_info *section,
4285 struct dwarf2_section_info *abbrev_section)
9ff913ba 4286{
a32a8923
DE
4287 bfd *abfd = get_section_bfd_owner (section);
4288 const char *filename = get_section_file_name (section);
9ff913ba
DE
4289
4290 if (header->version != 2 && header->version != 3 && header->version != 4)
4291 error (_("Dwarf Error: wrong version in compilation unit header "
4292 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4293 filename);
4294
b64f50a1 4295 if (header->abbrev_offset.sect_off
36586728 4296 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4297 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4298 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4299 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4300 filename);
4301
4302 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4303 avoid potential 32-bit overflow. */
1ce1cefd 4304 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4305 > section->size)
4306 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4307 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4308 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4309 filename);
4310}
4311
4312/* Read in a CU/TU header and perform some basic error checking.
4313 The contents of the header are stored in HEADER.
4314 The result is a pointer to the start of the first DIE. */
adabb602 4315
d521ce57 4316static const gdb_byte *
9ff913ba
DE
4317read_and_check_comp_unit_head (struct comp_unit_head *header,
4318 struct dwarf2_section_info *section,
4bdcc0c1 4319 struct dwarf2_section_info *abbrev_section,
d521ce57 4320 const gdb_byte *info_ptr,
9ff913ba 4321 int is_debug_types_section)
72bf9492 4322{
d521ce57 4323 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4324 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4325
b64f50a1 4326 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4327
72bf9492
DJ
4328 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4329
460c1c54
CC
4330 /* If we're reading a type unit, skip over the signature and
4331 type_offset fields. */
b0df02fd 4332 if (is_debug_types_section)
460c1c54
CC
4333 info_ptr += 8 /*signature*/ + header->offset_size;
4334
b64f50a1 4335 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4336
4bdcc0c1 4337 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4338
4339 return info_ptr;
4340}
4341
348e048f
DE
4342/* Read in the types comp unit header information from .debug_types entry at
4343 types_ptr. The result is a pointer to one past the end of the header. */
4344
d521ce57 4345static const gdb_byte *
9ff913ba
DE
4346read_and_check_type_unit_head (struct comp_unit_head *header,
4347 struct dwarf2_section_info *section,
4bdcc0c1 4348 struct dwarf2_section_info *abbrev_section,
d521ce57 4349 const gdb_byte *info_ptr,
dee91e82
DE
4350 ULONGEST *signature,
4351 cu_offset *type_offset_in_tu)
348e048f 4352{
d521ce57 4353 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4354 bfd *abfd = get_section_bfd_owner (section);
348e048f 4355
b64f50a1 4356 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4357
9ff913ba 4358 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4359
9ff913ba
DE
4360 /* If we're reading a type unit, skip over the signature and
4361 type_offset fields. */
4362 if (signature != NULL)
4363 *signature = read_8_bytes (abfd, info_ptr);
4364 info_ptr += 8;
dee91e82
DE
4365 if (type_offset_in_tu != NULL)
4366 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4367 header->offset_size);
9ff913ba
DE
4368 info_ptr += header->offset_size;
4369
b64f50a1 4370 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4371
4bdcc0c1 4372 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4373
4374 return info_ptr;
348e048f
DE
4375}
4376
f4dc4d17
DE
4377/* Fetch the abbreviation table offset from a comp or type unit header. */
4378
4379static sect_offset
4380read_abbrev_offset (struct dwarf2_section_info *section,
4381 sect_offset offset)
4382{
a32a8923 4383 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4384 const gdb_byte *info_ptr;
f4dc4d17
DE
4385 unsigned int length, initial_length_size, offset_size;
4386 sect_offset abbrev_offset;
4387
4388 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4389 info_ptr = section->buffer + offset.sect_off;
4390 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4391 offset_size = initial_length_size == 4 ? 4 : 8;
4392 info_ptr += initial_length_size + 2 /*version*/;
4393 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4394 return abbrev_offset;
4395}
4396
aaa75496
JB
4397/* Allocate a new partial symtab for file named NAME and mark this new
4398 partial symtab as being an include of PST. */
4399
4400static void
d521ce57 4401dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4402 struct objfile *objfile)
4403{
4404 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4405
fbd9ab74
JK
4406 if (!IS_ABSOLUTE_PATH (subpst->filename))
4407 {
4408 /* It shares objfile->objfile_obstack. */
4409 subpst->dirname = pst->dirname;
4410 }
4411
aaa75496
JB
4412 subpst->section_offsets = pst->section_offsets;
4413 subpst->textlow = 0;
4414 subpst->texthigh = 0;
4415
4416 subpst->dependencies = (struct partial_symtab **)
4417 obstack_alloc (&objfile->objfile_obstack,
4418 sizeof (struct partial_symtab *));
4419 subpst->dependencies[0] = pst;
4420 subpst->number_of_dependencies = 1;
4421
4422 subpst->globals_offset = 0;
4423 subpst->n_global_syms = 0;
4424 subpst->statics_offset = 0;
4425 subpst->n_static_syms = 0;
43f3e411 4426 subpst->compunit_symtab = NULL;
aaa75496
JB
4427 subpst->read_symtab = pst->read_symtab;
4428 subpst->readin = 0;
4429
4430 /* No private part is necessary for include psymtabs. This property
4431 can be used to differentiate between such include psymtabs and
10b3939b 4432 the regular ones. */
58a9656e 4433 subpst->read_symtab_private = NULL;
aaa75496
JB
4434}
4435
4436/* Read the Line Number Program data and extract the list of files
4437 included by the source file represented by PST. Build an include
d85a05f0 4438 partial symtab for each of these included files. */
aaa75496
JB
4439
4440static void
4441dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4442 struct die_info *die,
4443 struct partial_symtab *pst)
aaa75496 4444{
d85a05f0
DJ
4445 struct line_header *lh = NULL;
4446 struct attribute *attr;
aaa75496 4447
d85a05f0
DJ
4448 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4449 if (attr)
3019eac3 4450 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4451 if (lh == NULL)
4452 return; /* No linetable, so no includes. */
4453
c6da4cef 4454 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
c3b7b696 4455 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow);
aaa75496
JB
4456
4457 free_line_header (lh);
4458}
4459
348e048f 4460static hashval_t
52dc124a 4461hash_signatured_type (const void *item)
348e048f 4462{
52dc124a 4463 const struct signatured_type *sig_type = item;
9a619af0 4464
348e048f 4465 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4466 return sig_type->signature;
348e048f
DE
4467}
4468
4469static int
52dc124a 4470eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f
DE
4471{
4472 const struct signatured_type *lhs = item_lhs;
4473 const struct signatured_type *rhs = item_rhs;
9a619af0 4474
348e048f
DE
4475 return lhs->signature == rhs->signature;
4476}
4477
1fd400ff
TT
4478/* Allocate a hash table for signatured types. */
4479
4480static htab_t
673bfd45 4481allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4482{
4483 return htab_create_alloc_ex (41,
52dc124a
DE
4484 hash_signatured_type,
4485 eq_signatured_type,
1fd400ff
TT
4486 NULL,
4487 &objfile->objfile_obstack,
4488 hashtab_obstack_allocate,
4489 dummy_obstack_deallocate);
4490}
4491
d467dd73 4492/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4493
4494static int
d467dd73 4495add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff
TT
4496{
4497 struct signatured_type *sigt = *slot;
b4dd5633 4498 struct signatured_type ***datap = datum;
1fd400ff 4499
b4dd5633 4500 **datap = sigt;
1fd400ff
TT
4501 ++*datap;
4502
4503 return 1;
4504}
4505
c88ee1f0
DE
4506/* Create the hash table of all entries in the .debug_types
4507 (or .debug_types.dwo) section(s).
4508 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4509 otherwise it is NULL.
4510
4511 The result is a pointer to the hash table or NULL if there are no types.
4512
4513 Note: This function processes DWO files only, not DWP files. */
348e048f 4514
3019eac3
DE
4515static htab_t
4516create_debug_types_hash_table (struct dwo_file *dwo_file,
4517 VEC (dwarf2_section_info_def) *types)
348e048f 4518{
3019eac3 4519 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4520 htab_t types_htab = NULL;
8b70b953
TT
4521 int ix;
4522 struct dwarf2_section_info *section;
4bdcc0c1 4523 struct dwarf2_section_info *abbrev_section;
348e048f 4524
3019eac3
DE
4525 if (VEC_empty (dwarf2_section_info_def, types))
4526 return NULL;
348e048f 4527
4bdcc0c1
DE
4528 abbrev_section = (dwo_file != NULL
4529 ? &dwo_file->sections.abbrev
4530 : &dwarf2_per_objfile->abbrev);
4531
09406207
DE
4532 if (dwarf2_read_debug)
4533 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4534 dwo_file ? ".dwo" : "",
a32a8923 4535 get_section_file_name (abbrev_section));
09406207 4536
8b70b953 4537 for (ix = 0;
3019eac3 4538 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4539 ++ix)
4540 {
3019eac3 4541 bfd *abfd;
d521ce57 4542 const gdb_byte *info_ptr, *end_ptr;
348e048f 4543
8b70b953
TT
4544 dwarf2_read_section (objfile, section);
4545 info_ptr = section->buffer;
348e048f 4546
8b70b953
TT
4547 if (info_ptr == NULL)
4548 continue;
348e048f 4549
3019eac3 4550 /* We can't set abfd until now because the section may be empty or
a32a8923
DE
4551 not present, in which case the bfd is unknown. */
4552 abfd = get_section_bfd_owner (section);
3019eac3 4553
dee91e82
DE
4554 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4555 because we don't need to read any dies: the signature is in the
4556 header. */
8b70b953
TT
4557
4558 end_ptr = info_ptr + section->size;
4559 while (info_ptr < end_ptr)
4560 {
b64f50a1 4561 sect_offset offset;
3019eac3 4562 cu_offset type_offset_in_tu;
8b70b953 4563 ULONGEST signature;
52dc124a 4564 struct signatured_type *sig_type;
3019eac3 4565 struct dwo_unit *dwo_tu;
8b70b953 4566 void **slot;
d521ce57 4567 const gdb_byte *ptr = info_ptr;
9ff913ba 4568 struct comp_unit_head header;
dee91e82 4569 unsigned int length;
348e048f 4570
b64f50a1 4571 offset.sect_off = ptr - section->buffer;
348e048f 4572
8b70b953 4573 /* We need to read the type's signature in order to build the hash
9ff913ba 4574 table, but we don't need anything else just yet. */
348e048f 4575
4bdcc0c1
DE
4576 ptr = read_and_check_type_unit_head (&header, section,
4577 abbrev_section, ptr,
3019eac3 4578 &signature, &type_offset_in_tu);
6caca83c 4579
1ce1cefd 4580 length = get_cu_length (&header);
dee91e82 4581
6caca83c 4582 /* Skip dummy type units. */
dee91e82
DE
4583 if (ptr >= info_ptr + length
4584 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4585 {
1ce1cefd 4586 info_ptr += length;
6caca83c
CC
4587 continue;
4588 }
8b70b953 4589
0349ea22
DE
4590 if (types_htab == NULL)
4591 {
4592 if (dwo_file)
4593 types_htab = allocate_dwo_unit_table (objfile);
4594 else
4595 types_htab = allocate_signatured_type_table (objfile);
4596 }
4597
3019eac3
DE
4598 if (dwo_file)
4599 {
4600 sig_type = NULL;
4601 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4602 struct dwo_unit);
4603 dwo_tu->dwo_file = dwo_file;
4604 dwo_tu->signature = signature;
4605 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4606 dwo_tu->section = section;
3019eac3
DE
4607 dwo_tu->offset = offset;
4608 dwo_tu->length = length;
4609 }
4610 else
4611 {
4612 /* N.B.: type_offset is not usable if this type uses a DWO file.
4613 The real type_offset is in the DWO file. */
4614 dwo_tu = NULL;
4615 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4616 struct signatured_type);
4617 sig_type->signature = signature;
4618 sig_type->type_offset_in_tu = type_offset_in_tu;
4619 sig_type->per_cu.objfile = objfile;
4620 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4621 sig_type->per_cu.section = section;
3019eac3
DE
4622 sig_type->per_cu.offset = offset;
4623 sig_type->per_cu.length = length;
4624 }
8b70b953 4625
3019eac3
DE
4626 slot = htab_find_slot (types_htab,
4627 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4628 INSERT);
8b70b953
TT
4629 gdb_assert (slot != NULL);
4630 if (*slot != NULL)
4631 {
3019eac3
DE
4632 sect_offset dup_offset;
4633
4634 if (dwo_file)
4635 {
4636 const struct dwo_unit *dup_tu = *slot;
4637
4638 dup_offset = dup_tu->offset;
4639 }
4640 else
4641 {
4642 const struct signatured_type *dup_tu = *slot;
4643
4644 dup_offset = dup_tu->per_cu.offset;
4645 }
b3c8eb43 4646
8b70b953 4647 complaint (&symfile_complaints,
c88ee1f0 4648 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4649 " the entry at offset 0x%x, signature %s"),
3019eac3 4650 offset.sect_off, dup_offset.sect_off,
4031ecc5 4651 hex_string (signature));
8b70b953 4652 }
3019eac3 4653 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4654
73be47f5 4655 if (dwarf2_read_debug > 1)
4031ecc5 4656 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4657 offset.sect_off,
4031ecc5 4658 hex_string (signature));
348e048f 4659
dee91e82 4660 info_ptr += length;
8b70b953 4661 }
348e048f
DE
4662 }
4663
3019eac3
DE
4664 return types_htab;
4665}
4666
4667/* Create the hash table of all entries in the .debug_types section,
4668 and initialize all_type_units.
4669 The result is zero if there is an error (e.g. missing .debug_types section),
4670 otherwise non-zero. */
4671
4672static int
4673create_all_type_units (struct objfile *objfile)
4674{
4675 htab_t types_htab;
b4dd5633 4676 struct signatured_type **iter;
3019eac3
DE
4677
4678 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4679 if (types_htab == NULL)
4680 {
4681 dwarf2_per_objfile->signatured_types = NULL;
4682 return 0;
4683 }
4684
348e048f
DE
4685 dwarf2_per_objfile->signatured_types = types_htab;
4686
6aa5f3a6
DE
4687 dwarf2_per_objfile->n_type_units
4688 = dwarf2_per_objfile->n_allocated_type_units
4689 = htab_elements (types_htab);
d467dd73 4690 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
4691 = xmalloc (dwarf2_per_objfile->n_type_units
4692 * sizeof (struct signatured_type *));
d467dd73
DE
4693 iter = &dwarf2_per_objfile->all_type_units[0];
4694 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4695 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4696 == dwarf2_per_objfile->n_type_units);
1fd400ff 4697
348e048f
DE
4698 return 1;
4699}
4700
6aa5f3a6
DE
4701/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4702 If SLOT is non-NULL, it is the entry to use in the hash table.
4703 Otherwise we find one. */
4704
4705static struct signatured_type *
4706add_type_unit (ULONGEST sig, void **slot)
4707{
4708 struct objfile *objfile = dwarf2_per_objfile->objfile;
4709 int n_type_units = dwarf2_per_objfile->n_type_units;
4710 struct signatured_type *sig_type;
4711
4712 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4713 ++n_type_units;
4714 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4715 {
4716 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4717 dwarf2_per_objfile->n_allocated_type_units = 1;
4718 dwarf2_per_objfile->n_allocated_type_units *= 2;
4719 dwarf2_per_objfile->all_type_units
4720 = xrealloc (dwarf2_per_objfile->all_type_units,
4721 dwarf2_per_objfile->n_allocated_type_units
4722 * sizeof (struct signatured_type *));
4723 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4724 }
4725 dwarf2_per_objfile->n_type_units = n_type_units;
4726
4727 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4728 struct signatured_type);
4729 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4730 sig_type->signature = sig;
4731 sig_type->per_cu.is_debug_types = 1;
4732 if (dwarf2_per_objfile->using_index)
4733 {
4734 sig_type->per_cu.v.quick =
4735 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4736 struct dwarf2_per_cu_quick_data);
4737 }
4738
4739 if (slot == NULL)
4740 {
4741 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4742 sig_type, INSERT);
4743 }
4744 gdb_assert (*slot == NULL);
4745 *slot = sig_type;
4746 /* The rest of sig_type must be filled in by the caller. */
4747 return sig_type;
4748}
4749
a2ce51a0
DE
4750/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4751 Fill in SIG_ENTRY with DWO_ENTRY. */
4752
4753static void
4754fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4755 struct signatured_type *sig_entry,
4756 struct dwo_unit *dwo_entry)
4757{
7ee85ab1 4758 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4759 gdb_assert (! sig_entry->per_cu.queued);
4760 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
4761 if (dwarf2_per_objfile->using_index)
4762 {
4763 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 4764 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
4765 }
4766 else
4767 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0
DE
4768 gdb_assert (sig_entry->signature == dwo_entry->signature);
4769 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4770 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4771 gdb_assert (sig_entry->dwo_unit == NULL);
4772
4773 sig_entry->per_cu.section = dwo_entry->section;
4774 sig_entry->per_cu.offset = dwo_entry->offset;
4775 sig_entry->per_cu.length = dwo_entry->length;
4776 sig_entry->per_cu.reading_dwo_directly = 1;
4777 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4778 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4779 sig_entry->dwo_unit = dwo_entry;
4780}
4781
4782/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4783 If we haven't read the TU yet, create the signatured_type data structure
4784 for a TU to be read in directly from a DWO file, bypassing the stub.
4785 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4786 using .gdb_index, then when reading a CU we want to stay in the DWO file
4787 containing that CU. Otherwise we could end up reading several other DWO
4788 files (due to comdat folding) to process the transitive closure of all the
4789 mentioned TUs, and that can be slow. The current DWO file will have every
4790 type signature that it needs.
a2ce51a0
DE
4791 We only do this for .gdb_index because in the psymtab case we already have
4792 to read all the DWOs to build the type unit groups. */
4793
4794static struct signatured_type *
4795lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4796{
4797 struct objfile *objfile = dwarf2_per_objfile->objfile;
4798 struct dwo_file *dwo_file;
4799 struct dwo_unit find_dwo_entry, *dwo_entry;
4800 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4801 void **slot;
a2ce51a0
DE
4802
4803 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4804
6aa5f3a6
DE
4805 /* If TU skeletons have been removed then we may not have read in any
4806 TUs yet. */
4807 if (dwarf2_per_objfile->signatured_types == NULL)
4808 {
4809 dwarf2_per_objfile->signatured_types
4810 = allocate_signatured_type_table (objfile);
4811 }
a2ce51a0
DE
4812
4813 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
4814 Use the global signatured_types array to do our own comdat-folding
4815 of types. If this is the first time we're reading this TU, and
4816 the TU has an entry in .gdb_index, replace the recorded data from
4817 .gdb_index with this TU. */
a2ce51a0 4818
a2ce51a0 4819 find_sig_entry.signature = sig;
6aa5f3a6
DE
4820 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4821 &find_sig_entry, INSERT);
4822 sig_entry = *slot;
7ee85ab1
DE
4823
4824 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
4825 read. Don't reassign the global entry to point to this DWO if that's
4826 the case. Also note that if the TU is already being read, it may not
4827 have come from a DWO, the program may be a mix of Fission-compiled
4828 code and non-Fission-compiled code. */
4829
4830 /* Have we already tried to read this TU?
4831 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4832 needn't exist in the global table yet). */
4833 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
4834 return sig_entry;
4835
6aa5f3a6
DE
4836 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4837 dwo_unit of the TU itself. */
4838 dwo_file = cu->dwo_unit->dwo_file;
4839
a2ce51a0
DE
4840 /* Ok, this is the first time we're reading this TU. */
4841 if (dwo_file->tus == NULL)
4842 return NULL;
4843 find_dwo_entry.signature = sig;
4844 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4845 if (dwo_entry == NULL)
4846 return NULL;
4847
6aa5f3a6
DE
4848 /* If the global table doesn't have an entry for this TU, add one. */
4849 if (sig_entry == NULL)
4850 sig_entry = add_type_unit (sig, slot);
4851
a2ce51a0 4852 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 4853 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
4854 return sig_entry;
4855}
4856
a2ce51a0
DE
4857/* Subroutine of lookup_signatured_type.
4858 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
4859 then try the DWP file. If the TU stub (skeleton) has been removed then
4860 it won't be in .gdb_index. */
a2ce51a0
DE
4861
4862static struct signatured_type *
4863lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4864{
4865 struct objfile *objfile = dwarf2_per_objfile->objfile;
4866 struct dwp_file *dwp_file = get_dwp_file ();
4867 struct dwo_unit *dwo_entry;
4868 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4869 void **slot;
a2ce51a0
DE
4870
4871 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4872 gdb_assert (dwp_file != NULL);
4873
6aa5f3a6
DE
4874 /* If TU skeletons have been removed then we may not have read in any
4875 TUs yet. */
4876 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 4877 {
6aa5f3a6
DE
4878 dwarf2_per_objfile->signatured_types
4879 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
4880 }
4881
6aa5f3a6
DE
4882 find_sig_entry.signature = sig;
4883 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4884 &find_sig_entry, INSERT);
4885 sig_entry = *slot;
4886
4887 /* Have we already tried to read this TU?
4888 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4889 needn't exist in the global table yet). */
4890 if (sig_entry != NULL)
4891 return sig_entry;
4892
a2ce51a0
DE
4893 if (dwp_file->tus == NULL)
4894 return NULL;
57d63ce2
DE
4895 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4896 sig, 1 /* is_debug_types */);
a2ce51a0
DE
4897 if (dwo_entry == NULL)
4898 return NULL;
4899
6aa5f3a6 4900 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
4901 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4902
a2ce51a0
DE
4903 return sig_entry;
4904}
4905
380bca97 4906/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
4907 Returns NULL if signature SIG is not present in the table.
4908 It is up to the caller to complain about this. */
348e048f
DE
4909
4910static struct signatured_type *
a2ce51a0 4911lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 4912{
a2ce51a0
DE
4913 if (cu->dwo_unit
4914 && dwarf2_per_objfile->using_index)
4915 {
4916 /* We're in a DWO/DWP file, and we're using .gdb_index.
4917 These cases require special processing. */
4918 if (get_dwp_file () == NULL)
4919 return lookup_dwo_signatured_type (cu, sig);
4920 else
4921 return lookup_dwp_signatured_type (cu, sig);
4922 }
4923 else
4924 {
4925 struct signatured_type find_entry, *entry;
348e048f 4926
a2ce51a0
DE
4927 if (dwarf2_per_objfile->signatured_types == NULL)
4928 return NULL;
4929 find_entry.signature = sig;
4930 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4931 return entry;
4932 }
348e048f 4933}
42e7ad6c
DE
4934\f
4935/* Low level DIE reading support. */
348e048f 4936
d85a05f0
DJ
4937/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4938
4939static void
4940init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 4941 struct dwarf2_cu *cu,
3019eac3
DE
4942 struct dwarf2_section_info *section,
4943 struct dwo_file *dwo_file)
d85a05f0 4944{
fceca515 4945 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 4946 reader->abfd = get_section_bfd_owner (section);
d85a05f0 4947 reader->cu = cu;
3019eac3 4948 reader->dwo_file = dwo_file;
dee91e82
DE
4949 reader->die_section = section;
4950 reader->buffer = section->buffer;
f664829e 4951 reader->buffer_end = section->buffer + section->size;
a2ce51a0 4952 reader->comp_dir = NULL;
d85a05f0
DJ
4953}
4954
b0c7bfa9
DE
4955/* Subroutine of init_cutu_and_read_dies to simplify it.
4956 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4957 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4958 already.
4959
4960 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4961 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
4962 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4963 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
4964 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
4965 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
4966 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4967 are filled in with the info of the DIE from the DWO file.
4968 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4969 provided an abbrev table to use.
4970 The result is non-zero if a valid (non-dummy) DIE was found. */
4971
4972static int
4973read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4974 struct dwo_unit *dwo_unit,
4975 int abbrev_table_provided,
4976 struct die_info *stub_comp_unit_die,
a2ce51a0 4977 const char *stub_comp_dir,
b0c7bfa9 4978 struct die_reader_specs *result_reader,
d521ce57 4979 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
4980 struct die_info **result_comp_unit_die,
4981 int *result_has_children)
4982{
4983 struct objfile *objfile = dwarf2_per_objfile->objfile;
4984 struct dwarf2_cu *cu = this_cu->cu;
4985 struct dwarf2_section_info *section;
4986 bfd *abfd;
d521ce57 4987 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
4988 ULONGEST signature; /* Or dwo_id. */
4989 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4990 int i,num_extra_attrs;
4991 struct dwarf2_section_info *dwo_abbrev_section;
4992 struct attribute *attr;
4993 struct die_info *comp_unit_die;
4994
b0aeadb3
DE
4995 /* At most one of these may be provided. */
4996 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 4997
b0c7bfa9
DE
4998 /* These attributes aren't processed until later:
4999 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
5000 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5001 referenced later. However, these attributes are found in the stub
5002 which we won't have later. In order to not impose this complication
5003 on the rest of the code, we read them here and copy them to the
5004 DWO CU/TU die. */
b0c7bfa9
DE
5005
5006 stmt_list = NULL;
5007 low_pc = NULL;
5008 high_pc = NULL;
5009 ranges = NULL;
5010 comp_dir = NULL;
5011
5012 if (stub_comp_unit_die != NULL)
5013 {
5014 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5015 DWO file. */
5016 if (! this_cu->is_debug_types)
5017 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5018 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5019 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5020 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5021 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5022
5023 /* There should be a DW_AT_addr_base attribute here (if needed).
5024 We need the value before we can process DW_FORM_GNU_addr_index. */
5025 cu->addr_base = 0;
5026 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5027 if (attr)
5028 cu->addr_base = DW_UNSND (attr);
5029
5030 /* There should be a DW_AT_ranges_base attribute here (if needed).
5031 We need the value before we can process DW_AT_ranges. */
5032 cu->ranges_base = 0;
5033 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5034 if (attr)
5035 cu->ranges_base = DW_UNSND (attr);
5036 }
a2ce51a0
DE
5037 else if (stub_comp_dir != NULL)
5038 {
5039 /* Reconstruct the comp_dir attribute to simplify the code below. */
5040 comp_dir = (struct attribute *)
5041 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5042 comp_dir->name = DW_AT_comp_dir;
5043 comp_dir->form = DW_FORM_string;
5044 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5045 DW_STRING (comp_dir) = stub_comp_dir;
5046 }
b0c7bfa9
DE
5047
5048 /* Set up for reading the DWO CU/TU. */
5049 cu->dwo_unit = dwo_unit;
5050 section = dwo_unit->section;
5051 dwarf2_read_section (objfile, section);
a32a8923 5052 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5053 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5054 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5055 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5056
5057 if (this_cu->is_debug_types)
5058 {
5059 ULONGEST header_signature;
5060 cu_offset type_offset_in_tu;
5061 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5062
5063 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5064 dwo_abbrev_section,
5065 info_ptr,
5066 &header_signature,
5067 &type_offset_in_tu);
a2ce51a0
DE
5068 /* This is not an assert because it can be caused by bad debug info. */
5069 if (sig_type->signature != header_signature)
5070 {
5071 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5072 " TU at offset 0x%x [in module %s]"),
5073 hex_string (sig_type->signature),
5074 hex_string (header_signature),
5075 dwo_unit->offset.sect_off,
5076 bfd_get_filename (abfd));
5077 }
b0c7bfa9
DE
5078 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5079 /* For DWOs coming from DWP files, we don't know the CU length
5080 nor the type's offset in the TU until now. */
5081 dwo_unit->length = get_cu_length (&cu->header);
5082 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5083
5084 /* Establish the type offset that can be used to lookup the type.
5085 For DWO files, we don't know it until now. */
5086 sig_type->type_offset_in_section.sect_off =
5087 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5088 }
5089 else
5090 {
5091 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5092 dwo_abbrev_section,
5093 info_ptr, 0);
5094 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5095 /* For DWOs coming from DWP files, we don't know the CU length
5096 until now. */
5097 dwo_unit->length = get_cu_length (&cu->header);
5098 }
5099
02142a6c
DE
5100 /* Replace the CU's original abbrev table with the DWO's.
5101 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5102 if (abbrev_table_provided)
5103 {
5104 /* Don't free the provided abbrev table, the caller of
5105 init_cutu_and_read_dies owns it. */
5106 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5107 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5108 make_cleanup (dwarf2_free_abbrev_table, cu);
5109 }
5110 else
5111 {
5112 dwarf2_free_abbrev_table (cu);
5113 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5114 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5115 }
5116
5117 /* Read in the die, but leave space to copy over the attributes
5118 from the stub. This has the benefit of simplifying the rest of
5119 the code - all the work to maintain the illusion of a single
5120 DW_TAG_{compile,type}_unit DIE is done here. */
5121 num_extra_attrs = ((stmt_list != NULL)
5122 + (low_pc != NULL)
5123 + (high_pc != NULL)
5124 + (ranges != NULL)
5125 + (comp_dir != NULL));
5126 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5127 result_has_children, num_extra_attrs);
5128
5129 /* Copy over the attributes from the stub to the DIE we just read in. */
5130 comp_unit_die = *result_comp_unit_die;
5131 i = comp_unit_die->num_attrs;
5132 if (stmt_list != NULL)
5133 comp_unit_die->attrs[i++] = *stmt_list;
5134 if (low_pc != NULL)
5135 comp_unit_die->attrs[i++] = *low_pc;
5136 if (high_pc != NULL)
5137 comp_unit_die->attrs[i++] = *high_pc;
5138 if (ranges != NULL)
5139 comp_unit_die->attrs[i++] = *ranges;
5140 if (comp_dir != NULL)
5141 comp_unit_die->attrs[i++] = *comp_dir;
5142 comp_unit_die->num_attrs += num_extra_attrs;
5143
bf6af496
DE
5144 if (dwarf2_die_debug)
5145 {
5146 fprintf_unfiltered (gdb_stdlog,
5147 "Read die from %s@0x%x of %s:\n",
a32a8923 5148 get_section_name (section),
bf6af496
DE
5149 (unsigned) (begin_info_ptr - section->buffer),
5150 bfd_get_filename (abfd));
5151 dump_die (comp_unit_die, dwarf2_die_debug);
5152 }
5153
a2ce51a0
DE
5154 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5155 TUs by skipping the stub and going directly to the entry in the DWO file.
5156 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5157 to get it via circuitous means. Blech. */
5158 if (comp_dir != NULL)
5159 result_reader->comp_dir = DW_STRING (comp_dir);
5160
b0c7bfa9
DE
5161 /* Skip dummy compilation units. */
5162 if (info_ptr >= begin_info_ptr + dwo_unit->length
5163 || peek_abbrev_code (abfd, info_ptr) == 0)
5164 return 0;
5165
5166 *result_info_ptr = info_ptr;
5167 return 1;
5168}
5169
5170/* Subroutine of init_cutu_and_read_dies to simplify it.
5171 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5172 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5173
5174static struct dwo_unit *
5175lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5176 struct die_info *comp_unit_die)
5177{
5178 struct dwarf2_cu *cu = this_cu->cu;
5179 struct attribute *attr;
5180 ULONGEST signature;
5181 struct dwo_unit *dwo_unit;
5182 const char *comp_dir, *dwo_name;
5183
a2ce51a0
DE
5184 gdb_assert (cu != NULL);
5185
b0c7bfa9
DE
5186 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5187 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5188 gdb_assert (attr != NULL);
5189 dwo_name = DW_STRING (attr);
5190 comp_dir = NULL;
5191 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5192 if (attr)
5193 comp_dir = DW_STRING (attr);
5194
5195 if (this_cu->is_debug_types)
5196 {
5197 struct signatured_type *sig_type;
5198
5199 /* Since this_cu is the first member of struct signatured_type,
5200 we can go from a pointer to one to a pointer to the other. */
5201 sig_type = (struct signatured_type *) this_cu;
5202 signature = sig_type->signature;
5203 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5204 }
5205 else
5206 {
5207 struct attribute *attr;
5208
5209 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5210 if (! attr)
5211 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5212 " [in module %s]"),
4262abfb 5213 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5214 signature = DW_UNSND (attr);
5215 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5216 signature);
5217 }
5218
b0c7bfa9
DE
5219 return dwo_unit;
5220}
5221
a2ce51a0 5222/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5223 See it for a description of the parameters.
5224 Read a TU directly from a DWO file, bypassing the stub.
5225
5226 Note: This function could be a little bit simpler if we shared cleanups
5227 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5228 to do, so we keep this function self-contained. Or we could move this
5229 into our caller, but it's complex enough already. */
a2ce51a0
DE
5230
5231static void
6aa5f3a6
DE
5232init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5233 int use_existing_cu, int keep,
a2ce51a0
DE
5234 die_reader_func_ftype *die_reader_func,
5235 void *data)
5236{
5237 struct dwarf2_cu *cu;
5238 struct signatured_type *sig_type;
6aa5f3a6 5239 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5240 struct die_reader_specs reader;
5241 const gdb_byte *info_ptr;
5242 struct die_info *comp_unit_die;
5243 int has_children;
5244
5245 /* Verify we can do the following downcast, and that we have the
5246 data we need. */
5247 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5248 sig_type = (struct signatured_type *) this_cu;
5249 gdb_assert (sig_type->dwo_unit != NULL);
5250
5251 cleanups = make_cleanup (null_cleanup, NULL);
5252
6aa5f3a6
DE
5253 if (use_existing_cu && this_cu->cu != NULL)
5254 {
5255 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5256 cu = this_cu->cu;
5257 /* There's no need to do the rereading_dwo_cu handling that
5258 init_cutu_and_read_dies does since we don't read the stub. */
5259 }
5260 else
5261 {
5262 /* If !use_existing_cu, this_cu->cu must be NULL. */
5263 gdb_assert (this_cu->cu == NULL);
5264 cu = xmalloc (sizeof (*cu));
5265 init_one_comp_unit (cu, this_cu);
5266 /* If an error occurs while loading, release our storage. */
5267 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5268 }
5269
5270 /* A future optimization, if needed, would be to use an existing
5271 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5272 could share abbrev tables. */
a2ce51a0
DE
5273
5274 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5275 0 /* abbrev_table_provided */,
5276 NULL /* stub_comp_unit_die */,
5277 sig_type->dwo_unit->dwo_file->comp_dir,
5278 &reader, &info_ptr,
5279 &comp_unit_die, &has_children) == 0)
5280 {
5281 /* Dummy die. */
5282 do_cleanups (cleanups);
5283 return;
5284 }
5285
5286 /* All the "real" work is done here. */
5287 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5288
6aa5f3a6 5289 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5290 but the alternative is making the latter more complex.
5291 This function is only for the special case of using DWO files directly:
5292 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5293 if (free_cu_cleanup != NULL)
a2ce51a0 5294 {
6aa5f3a6
DE
5295 if (keep)
5296 {
5297 /* We've successfully allocated this compilation unit. Let our
5298 caller clean it up when finished with it. */
5299 discard_cleanups (free_cu_cleanup);
a2ce51a0 5300
6aa5f3a6
DE
5301 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5302 So we have to manually free the abbrev table. */
5303 dwarf2_free_abbrev_table (cu);
a2ce51a0 5304
6aa5f3a6
DE
5305 /* Link this CU into read_in_chain. */
5306 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5307 dwarf2_per_objfile->read_in_chain = this_cu;
5308 }
5309 else
5310 do_cleanups (free_cu_cleanup);
a2ce51a0 5311 }
a2ce51a0
DE
5312
5313 do_cleanups (cleanups);
5314}
5315
fd820528 5316/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5317 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5318
f4dc4d17
DE
5319 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5320 Otherwise the table specified in the comp unit header is read in and used.
5321 This is an optimization for when we already have the abbrev table.
5322
dee91e82
DE
5323 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5324 Otherwise, a new CU is allocated with xmalloc.
5325
5326 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5327 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5328
5329 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5330 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5331
70221824 5332static void
fd820528 5333init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5334 struct abbrev_table *abbrev_table,
fd820528
DE
5335 int use_existing_cu, int keep,
5336 die_reader_func_ftype *die_reader_func,
5337 void *data)
c906108c 5338{
dee91e82 5339 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5340 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5341 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5342 struct dwarf2_cu *cu;
d521ce57 5343 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5344 struct die_reader_specs reader;
d85a05f0 5345 struct die_info *comp_unit_die;
dee91e82 5346 int has_children;
d85a05f0 5347 struct attribute *attr;
365156ad 5348 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5349 struct signatured_type *sig_type = NULL;
4bdcc0c1 5350 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5351 /* Non-zero if CU currently points to a DWO file and we need to
5352 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5353 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5354 int rereading_dwo_cu = 0;
c906108c 5355
09406207
DE
5356 if (dwarf2_die_debug)
5357 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5358 this_cu->is_debug_types ? "type" : "comp",
5359 this_cu->offset.sect_off);
5360
dee91e82
DE
5361 if (use_existing_cu)
5362 gdb_assert (keep);
23745b47 5363
a2ce51a0
DE
5364 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5365 file (instead of going through the stub), short-circuit all of this. */
5366 if (this_cu->reading_dwo_directly)
5367 {
5368 /* Narrow down the scope of possibilities to have to understand. */
5369 gdb_assert (this_cu->is_debug_types);
5370 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5371 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5372 die_reader_func, data);
a2ce51a0
DE
5373 return;
5374 }
5375
dee91e82
DE
5376 cleanups = make_cleanup (null_cleanup, NULL);
5377
5378 /* This is cheap if the section is already read in. */
5379 dwarf2_read_section (objfile, section);
5380
5381 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5382
5383 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5384
5385 if (use_existing_cu && this_cu->cu != NULL)
5386 {
5387 cu = this_cu->cu;
42e7ad6c
DE
5388 /* If this CU is from a DWO file we need to start over, we need to
5389 refetch the attributes from the skeleton CU.
5390 This could be optimized by retrieving those attributes from when we
5391 were here the first time: the previous comp_unit_die was stored in
5392 comp_unit_obstack. But there's no data yet that we need this
5393 optimization. */
5394 if (cu->dwo_unit != NULL)
5395 rereading_dwo_cu = 1;
dee91e82
DE
5396 }
5397 else
5398 {
5399 /* If !use_existing_cu, this_cu->cu must be NULL. */
5400 gdb_assert (this_cu->cu == NULL);
dee91e82
DE
5401 cu = xmalloc (sizeof (*cu));
5402 init_one_comp_unit (cu, this_cu);
dee91e82 5403 /* If an error occurs while loading, release our storage. */
365156ad 5404 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5405 }
dee91e82 5406
b0c7bfa9 5407 /* Get the header. */
42e7ad6c
DE
5408 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5409 {
5410 /* We already have the header, there's no need to read it in again. */
5411 info_ptr += cu->header.first_die_offset.cu_off;
5412 }
5413 else
5414 {
3019eac3 5415 if (this_cu->is_debug_types)
dee91e82
DE
5416 {
5417 ULONGEST signature;
42e7ad6c 5418 cu_offset type_offset_in_tu;
dee91e82 5419
4bdcc0c1
DE
5420 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5421 abbrev_section, info_ptr,
42e7ad6c
DE
5422 &signature,
5423 &type_offset_in_tu);
dee91e82 5424
42e7ad6c
DE
5425 /* Since per_cu is the first member of struct signatured_type,
5426 we can go from a pointer to one to a pointer to the other. */
5427 sig_type = (struct signatured_type *) this_cu;
5428 gdb_assert (sig_type->signature == signature);
5429 gdb_assert (sig_type->type_offset_in_tu.cu_off
5430 == type_offset_in_tu.cu_off);
dee91e82
DE
5431 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5432
42e7ad6c
DE
5433 /* LENGTH has not been set yet for type units if we're
5434 using .gdb_index. */
1ce1cefd 5435 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5436
5437 /* Establish the type offset that can be used to lookup the type. */
5438 sig_type->type_offset_in_section.sect_off =
5439 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5440 }
5441 else
5442 {
4bdcc0c1
DE
5443 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5444 abbrev_section,
5445 info_ptr, 0);
dee91e82
DE
5446
5447 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5448 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5449 }
5450 }
10b3939b 5451
6caca83c 5452 /* Skip dummy compilation units. */
dee91e82 5453 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5454 || peek_abbrev_code (abfd, info_ptr) == 0)
5455 {
dee91e82 5456 do_cleanups (cleanups);
21b2bd31 5457 return;
6caca83c
CC
5458 }
5459
433df2d4
DE
5460 /* If we don't have them yet, read the abbrevs for this compilation unit.
5461 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5462 done. Note that it's important that if the CU had an abbrev table
5463 on entry we don't free it when we're done: Somewhere up the call stack
5464 it may be in use. */
f4dc4d17
DE
5465 if (abbrev_table != NULL)
5466 {
5467 gdb_assert (cu->abbrev_table == NULL);
5468 gdb_assert (cu->header.abbrev_offset.sect_off
5469 == abbrev_table->offset.sect_off);
5470 cu->abbrev_table = abbrev_table;
5471 }
5472 else if (cu->abbrev_table == NULL)
dee91e82 5473 {
4bdcc0c1 5474 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5475 make_cleanup (dwarf2_free_abbrev_table, cu);
5476 }
42e7ad6c
DE
5477 else if (rereading_dwo_cu)
5478 {
5479 dwarf2_free_abbrev_table (cu);
5480 dwarf2_read_abbrevs (cu, abbrev_section);
5481 }
af703f96 5482
dee91e82 5483 /* Read the top level CU/TU die. */
3019eac3 5484 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5485 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5486
b0c7bfa9
DE
5487 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5488 from the DWO file.
5489 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5490 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5491 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5492 if (attr)
5493 {
3019eac3 5494 struct dwo_unit *dwo_unit;
b0c7bfa9 5495 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5496
5497 if (has_children)
6a506a2d
DE
5498 {
5499 complaint (&symfile_complaints,
5500 _("compilation unit with DW_AT_GNU_dwo_name"
5501 " has children (offset 0x%x) [in module %s]"),
5502 this_cu->offset.sect_off, bfd_get_filename (abfd));
5503 }
b0c7bfa9 5504 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5505 if (dwo_unit != NULL)
3019eac3 5506 {
6a506a2d
DE
5507 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5508 abbrev_table != NULL,
a2ce51a0 5509 comp_unit_die, NULL,
6a506a2d
DE
5510 &reader, &info_ptr,
5511 &dwo_comp_unit_die, &has_children) == 0)
5512 {
5513 /* Dummy die. */
5514 do_cleanups (cleanups);
5515 return;
5516 }
5517 comp_unit_die = dwo_comp_unit_die;
5518 }
5519 else
5520 {
5521 /* Yikes, we couldn't find the rest of the DIE, we only have
5522 the stub. A complaint has already been logged. There's
5523 not much more we can do except pass on the stub DIE to
5524 die_reader_func. We don't want to throw an error on bad
5525 debug info. */
3019eac3
DE
5526 }
5527 }
5528
b0c7bfa9 5529 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5530 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5531
b0c7bfa9 5532 /* Done, clean up. */
365156ad 5533 if (free_cu_cleanup != NULL)
348e048f 5534 {
365156ad
TT
5535 if (keep)
5536 {
5537 /* We've successfully allocated this compilation unit. Let our
5538 caller clean it up when finished with it. */
5539 discard_cleanups (free_cu_cleanup);
dee91e82 5540
365156ad
TT
5541 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5542 So we have to manually free the abbrev table. */
5543 dwarf2_free_abbrev_table (cu);
dee91e82 5544
365156ad
TT
5545 /* Link this CU into read_in_chain. */
5546 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5547 dwarf2_per_objfile->read_in_chain = this_cu;
5548 }
5549 else
5550 do_cleanups (free_cu_cleanup);
348e048f 5551 }
365156ad
TT
5552
5553 do_cleanups (cleanups);
dee91e82
DE
5554}
5555
33e80786
DE
5556/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5557 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5558 to have already done the lookup to find the DWO file).
dee91e82
DE
5559
5560 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5561 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5562
5563 We fill in THIS_CU->length.
5564
5565 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5566 linker) then DIE_READER_FUNC will not get called.
5567
5568 THIS_CU->cu is always freed when done.
3019eac3
DE
5569 This is done in order to not leave THIS_CU->cu in a state where we have
5570 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5571
5572static void
5573init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5574 struct dwo_file *dwo_file,
dee91e82
DE
5575 die_reader_func_ftype *die_reader_func,
5576 void *data)
5577{
5578 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5579 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5580 bfd *abfd = get_section_bfd_owner (section);
33e80786 5581 struct dwarf2_section_info *abbrev_section;
dee91e82 5582 struct dwarf2_cu cu;
d521ce57 5583 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5584 struct die_reader_specs reader;
5585 struct cleanup *cleanups;
5586 struct die_info *comp_unit_die;
5587 int has_children;
5588
09406207
DE
5589 if (dwarf2_die_debug)
5590 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5591 this_cu->is_debug_types ? "type" : "comp",
5592 this_cu->offset.sect_off);
5593
dee91e82
DE
5594 gdb_assert (this_cu->cu == NULL);
5595
33e80786
DE
5596 abbrev_section = (dwo_file != NULL
5597 ? &dwo_file->sections.abbrev
5598 : get_abbrev_section_for_cu (this_cu));
5599
dee91e82
DE
5600 /* This is cheap if the section is already read in. */
5601 dwarf2_read_section (objfile, section);
5602
5603 init_one_comp_unit (&cu, this_cu);
5604
5605 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5606
5607 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5608 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5609 abbrev_section, info_ptr,
3019eac3 5610 this_cu->is_debug_types);
dee91e82 5611
1ce1cefd 5612 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5613
5614 /* Skip dummy compilation units. */
5615 if (info_ptr >= begin_info_ptr + this_cu->length
5616 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5617 {
dee91e82 5618 do_cleanups (cleanups);
21b2bd31 5619 return;
93311388 5620 }
72bf9492 5621
dee91e82
DE
5622 dwarf2_read_abbrevs (&cu, abbrev_section);
5623 make_cleanup (dwarf2_free_abbrev_table, &cu);
5624
3019eac3 5625 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5626 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5627
5628 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5629
5630 do_cleanups (cleanups);
5631}
5632
3019eac3
DE
5633/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5634 does not lookup the specified DWO file.
5635 This cannot be used to read DWO files.
dee91e82
DE
5636
5637 THIS_CU->cu is always freed when done.
3019eac3
DE
5638 This is done in order to not leave THIS_CU->cu in a state where we have
5639 to care whether it refers to the "main" CU or the DWO CU.
5640 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5641
5642static void
5643init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5644 die_reader_func_ftype *die_reader_func,
5645 void *data)
5646{
33e80786 5647 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5648}
0018ea6f
DE
5649\f
5650/* Type Unit Groups.
dee91e82 5651
0018ea6f
DE
5652 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5653 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5654 so that all types coming from the same compilation (.o file) are grouped
5655 together. A future step could be to put the types in the same symtab as
5656 the CU the types ultimately came from. */
ff013f42 5657
f4dc4d17
DE
5658static hashval_t
5659hash_type_unit_group (const void *item)
5660{
094b34ac 5661 const struct type_unit_group *tu_group = item;
f4dc4d17 5662
094b34ac 5663 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5664}
348e048f
DE
5665
5666static int
f4dc4d17 5667eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5668{
f4dc4d17
DE
5669 const struct type_unit_group *lhs = item_lhs;
5670 const struct type_unit_group *rhs = item_rhs;
348e048f 5671
094b34ac 5672 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5673}
348e048f 5674
f4dc4d17
DE
5675/* Allocate a hash table for type unit groups. */
5676
5677static htab_t
5678allocate_type_unit_groups_table (void)
5679{
5680 return htab_create_alloc_ex (3,
5681 hash_type_unit_group,
5682 eq_type_unit_group,
5683 NULL,
5684 &dwarf2_per_objfile->objfile->objfile_obstack,
5685 hashtab_obstack_allocate,
5686 dummy_obstack_deallocate);
5687}
dee91e82 5688
f4dc4d17
DE
5689/* Type units that don't have DW_AT_stmt_list are grouped into their own
5690 partial symtabs. We combine several TUs per psymtab to not let the size
5691 of any one psymtab grow too big. */
5692#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5693#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5694
094b34ac 5695/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5696 Create the type_unit_group object used to hold one or more TUs. */
5697
5698static struct type_unit_group *
094b34ac 5699create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5700{
5701 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5702 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5703 struct type_unit_group *tu_group;
f4dc4d17
DE
5704
5705 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5706 struct type_unit_group);
094b34ac 5707 per_cu = &tu_group->per_cu;
f4dc4d17 5708 per_cu->objfile = objfile;
f4dc4d17 5709
094b34ac
DE
5710 if (dwarf2_per_objfile->using_index)
5711 {
5712 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5713 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5714 }
5715 else
5716 {
5717 unsigned int line_offset = line_offset_struct.sect_off;
5718 struct partial_symtab *pst;
5719 char *name;
5720
5721 /* Give the symtab a useful name for debug purposes. */
5722 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5723 name = xstrprintf ("<type_units_%d>",
5724 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5725 else
5726 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5727
5728 pst = create_partial_symtab (per_cu, name);
5729 pst->anonymous = 1;
f4dc4d17 5730
094b34ac
DE
5731 xfree (name);
5732 }
f4dc4d17 5733
094b34ac
DE
5734 tu_group->hash.dwo_unit = cu->dwo_unit;
5735 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5736
5737 return tu_group;
5738}
5739
094b34ac
DE
5740/* Look up the type_unit_group for type unit CU, and create it if necessary.
5741 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5742
5743static struct type_unit_group *
ff39bb5e 5744get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5745{
5746 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5747 struct type_unit_group *tu_group;
5748 void **slot;
5749 unsigned int line_offset;
5750 struct type_unit_group type_unit_group_for_lookup;
5751
5752 if (dwarf2_per_objfile->type_unit_groups == NULL)
5753 {
5754 dwarf2_per_objfile->type_unit_groups =
5755 allocate_type_unit_groups_table ();
5756 }
5757
5758 /* Do we need to create a new group, or can we use an existing one? */
5759
5760 if (stmt_list)
5761 {
5762 line_offset = DW_UNSND (stmt_list);
5763 ++tu_stats->nr_symtab_sharers;
5764 }
5765 else
5766 {
5767 /* Ugh, no stmt_list. Rare, but we have to handle it.
5768 We can do various things here like create one group per TU or
5769 spread them over multiple groups to split up the expansion work.
5770 To avoid worst case scenarios (too many groups or too large groups)
5771 we, umm, group them in bunches. */
5772 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5773 | (tu_stats->nr_stmt_less_type_units
5774 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5775 ++tu_stats->nr_stmt_less_type_units;
5776 }
5777
094b34ac
DE
5778 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5779 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5780 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5781 &type_unit_group_for_lookup, INSERT);
5782 if (*slot != NULL)
5783 {
5784 tu_group = *slot;
5785 gdb_assert (tu_group != NULL);
5786 }
5787 else
5788 {
5789 sect_offset line_offset_struct;
5790
5791 line_offset_struct.sect_off = line_offset;
094b34ac 5792 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5793 *slot = tu_group;
5794 ++tu_stats->nr_symtabs;
5795 }
5796
5797 return tu_group;
5798}
0018ea6f
DE
5799\f
5800/* Partial symbol tables. */
5801
5802/* Create a psymtab named NAME and assign it to PER_CU.
5803
5804 The caller must fill in the following details:
5805 dirname, textlow, texthigh. */
5806
5807static struct partial_symtab *
5808create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5809{
5810 struct objfile *objfile = per_cu->objfile;
5811 struct partial_symtab *pst;
5812
5813 pst = start_psymtab_common (objfile, objfile->section_offsets,
5814 name, 0,
5815 objfile->global_psymbols.next,
5816 objfile->static_psymbols.next);
5817
5818 pst->psymtabs_addrmap_supported = 1;
5819
5820 /* This is the glue that links PST into GDB's symbol API. */
5821 pst->read_symtab_private = per_cu;
5822 pst->read_symtab = dwarf2_read_symtab;
5823 per_cu->v.psymtab = pst;
5824
5825 return pst;
5826}
5827
b93601f3
TT
5828/* The DATA object passed to process_psymtab_comp_unit_reader has this
5829 type. */
5830
5831struct process_psymtab_comp_unit_data
5832{
5833 /* True if we are reading a DW_TAG_partial_unit. */
5834
5835 int want_partial_unit;
5836
5837 /* The "pretend" language that is used if the CU doesn't declare a
5838 language. */
5839
5840 enum language pretend_language;
5841};
5842
0018ea6f
DE
5843/* die_reader_func for process_psymtab_comp_unit. */
5844
5845static void
5846process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5847 const gdb_byte *info_ptr,
0018ea6f
DE
5848 struct die_info *comp_unit_die,
5849 int has_children,
5850 void *data)
5851{
5852 struct dwarf2_cu *cu = reader->cu;
5853 struct objfile *objfile = cu->objfile;
3e29f34a 5854 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f
DE
5855 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5856 struct attribute *attr;
5857 CORE_ADDR baseaddr;
5858 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5859 struct partial_symtab *pst;
5860 int has_pc_info;
5861 const char *filename;
b93601f3 5862 struct process_psymtab_comp_unit_data *info = data;
0018ea6f 5863
b93601f3 5864 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
5865 return;
5866
5867 gdb_assert (! per_cu->is_debug_types);
5868
b93601f3 5869 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
5870
5871 cu->list_in_scope = &file_symbols;
5872
5873 /* Allocate a new partial symbol table structure. */
5874 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5875 if (attr == NULL || !DW_STRING (attr))
5876 filename = "";
5877 else
5878 filename = DW_STRING (attr);
5879
5880 pst = create_partial_symtab (per_cu, filename);
5881
5882 /* This must be done before calling dwarf2_build_include_psymtabs. */
5883 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5884 if (attr != NULL)
5885 pst->dirname = DW_STRING (attr);
5886
5887 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5888
5889 dwarf2_find_base_address (comp_unit_die, cu);
5890
5891 /* Possibly set the default values of LOWPC and HIGHPC from
5892 `DW_AT_ranges'. */
5893 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5894 &best_highpc, cu, pst);
5895 if (has_pc_info == 1 && best_lowpc < best_highpc)
5896 /* Store the contiguous range if it is not empty; it can be empty for
5897 CUs with no code. */
5898 addrmap_set_empty (objfile->psymtabs_addrmap,
3e29f34a
MR
5899 gdbarch_adjust_dwarf2_addr (gdbarch,
5900 best_lowpc + baseaddr),
5901 gdbarch_adjust_dwarf2_addr (gdbarch,
5902 best_highpc + baseaddr) - 1,
5903 pst);
0018ea6f
DE
5904
5905 /* Check if comp unit has_children.
5906 If so, read the rest of the partial symbols from this comp unit.
5907 If not, there's no more debug_info for this comp unit. */
5908 if (has_children)
5909 {
5910 struct partial_die_info *first_die;
5911 CORE_ADDR lowpc, highpc;
5912
5913 lowpc = ((CORE_ADDR) -1);
5914 highpc = ((CORE_ADDR) 0);
5915
5916 first_die = load_partial_dies (reader, info_ptr, 1);
5917
5918 scan_partial_symbols (first_die, &lowpc, &highpc,
5919 ! has_pc_info, cu);
5920
5921 /* If we didn't find a lowpc, set it to highpc to avoid
5922 complaints from `maint check'. */
5923 if (lowpc == ((CORE_ADDR) -1))
5924 lowpc = highpc;
5925
5926 /* If the compilation unit didn't have an explicit address range,
5927 then use the information extracted from its child dies. */
5928 if (! has_pc_info)
5929 {
5930 best_lowpc = lowpc;
5931 best_highpc = highpc;
5932 }
5933 }
3e29f34a
MR
5934 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
5935 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
0018ea6f
DE
5936
5937 pst->n_global_syms = objfile->global_psymbols.next -
5938 (objfile->global_psymbols.list + pst->globals_offset);
5939 pst->n_static_syms = objfile->static_psymbols.next -
5940 (objfile->static_psymbols.list + pst->statics_offset);
5941 sort_pst_symbols (objfile, pst);
5942
5943 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5944 {
5945 int i;
5946 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5947 struct dwarf2_per_cu_data *iter;
5948
5949 /* Fill in 'dependencies' here; we fill in 'users' in a
5950 post-pass. */
5951 pst->number_of_dependencies = len;
5952 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5953 len * sizeof (struct symtab *));
5954 for (i = 0;
5955 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5956 i, iter);
5957 ++i)
5958 pst->dependencies[i] = iter->v.psymtab;
5959
5960 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5961 }
5962
5963 /* Get the list of files included in the current compilation unit,
5964 and build a psymtab for each of them. */
5965 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5966
5967 if (dwarf2_read_debug)
5968 {
5969 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5970
5971 fprintf_unfiltered (gdb_stdlog,
5972 "Psymtab for %s unit @0x%x: %s - %s"
5973 ", %d global, %d static syms\n",
5974 per_cu->is_debug_types ? "type" : "comp",
5975 per_cu->offset.sect_off,
5976 paddress (gdbarch, pst->textlow),
5977 paddress (gdbarch, pst->texthigh),
5978 pst->n_global_syms, pst->n_static_syms);
5979 }
5980}
5981
5982/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5983 Process compilation unit THIS_CU for a psymtab. */
5984
5985static void
5986process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
5987 int want_partial_unit,
5988 enum language pretend_language)
0018ea6f 5989{
b93601f3
TT
5990 struct process_psymtab_comp_unit_data info;
5991
0018ea6f
DE
5992 /* If this compilation unit was already read in, free the
5993 cached copy in order to read it in again. This is
5994 necessary because we skipped some symbols when we first
5995 read in the compilation unit (see load_partial_dies).
5996 This problem could be avoided, but the benefit is unclear. */
5997 if (this_cu->cu != NULL)
5998 free_one_cached_comp_unit (this_cu);
5999
6000 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6001 info.want_partial_unit = want_partial_unit;
6002 info.pretend_language = pretend_language;
0018ea6f
DE
6003 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6004 process_psymtab_comp_unit_reader,
b93601f3 6005 &info);
0018ea6f
DE
6006
6007 /* Age out any secondary CUs. */
6008 age_cached_comp_units ();
6009}
f4dc4d17
DE
6010
6011/* Reader function for build_type_psymtabs. */
6012
6013static void
6014build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6015 const gdb_byte *info_ptr,
f4dc4d17
DE
6016 struct die_info *type_unit_die,
6017 int has_children,
6018 void *data)
6019{
6020 struct objfile *objfile = dwarf2_per_objfile->objfile;
6021 struct dwarf2_cu *cu = reader->cu;
6022 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6023 struct signatured_type *sig_type;
f4dc4d17
DE
6024 struct type_unit_group *tu_group;
6025 struct attribute *attr;
6026 struct partial_die_info *first_die;
6027 CORE_ADDR lowpc, highpc;
6028 struct partial_symtab *pst;
6029
6030 gdb_assert (data == NULL);
0186c6a7
DE
6031 gdb_assert (per_cu->is_debug_types);
6032 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6033
6034 if (! has_children)
6035 return;
6036
6037 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6038 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6039
0186c6a7 6040 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6041
6042 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6043 cu->list_in_scope = &file_symbols;
6044 pst = create_partial_symtab (per_cu, "");
6045 pst->anonymous = 1;
6046
6047 first_die = load_partial_dies (reader, info_ptr, 1);
6048
6049 lowpc = (CORE_ADDR) -1;
6050 highpc = (CORE_ADDR) 0;
6051 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6052
6053 pst->n_global_syms = objfile->global_psymbols.next -
6054 (objfile->global_psymbols.list + pst->globals_offset);
6055 pst->n_static_syms = objfile->static_psymbols.next -
6056 (objfile->static_psymbols.list + pst->statics_offset);
5c80ed9d 6057 sort_pst_symbols (objfile, pst);
f4dc4d17
DE
6058}
6059
73051182
DE
6060/* Struct used to sort TUs by their abbreviation table offset. */
6061
6062struct tu_abbrev_offset
6063{
6064 struct signatured_type *sig_type;
6065 sect_offset abbrev_offset;
6066};
6067
6068/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6069
6070static int
6071sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6072{
6073 const struct tu_abbrev_offset * const *a = ap;
6074 const struct tu_abbrev_offset * const *b = bp;
6075 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6076 unsigned int boff = (*b)->abbrev_offset.sect_off;
6077
6078 return (aoff > boff) - (aoff < boff);
6079}
6080
6081/* Efficiently read all the type units.
6082 This does the bulk of the work for build_type_psymtabs.
6083
6084 The efficiency is because we sort TUs by the abbrev table they use and
6085 only read each abbrev table once. In one program there are 200K TUs
6086 sharing 8K abbrev tables.
6087
6088 The main purpose of this function is to support building the
6089 dwarf2_per_objfile->type_unit_groups table.
6090 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6091 can collapse the search space by grouping them by stmt_list.
6092 The savings can be significant, in the same program from above the 200K TUs
6093 share 8K stmt_list tables.
6094
6095 FUNC is expected to call get_type_unit_group, which will create the
6096 struct type_unit_group if necessary and add it to
6097 dwarf2_per_objfile->type_unit_groups. */
6098
6099static void
6100build_type_psymtabs_1 (void)
6101{
6102 struct objfile *objfile = dwarf2_per_objfile->objfile;
6103 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6104 struct cleanup *cleanups;
6105 struct abbrev_table *abbrev_table;
6106 sect_offset abbrev_offset;
6107 struct tu_abbrev_offset *sorted_by_abbrev;
6108 struct type_unit_group **iter;
6109 int i;
6110
6111 /* It's up to the caller to not call us multiple times. */
6112 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6113
6114 if (dwarf2_per_objfile->n_type_units == 0)
6115 return;
6116
6117 /* TUs typically share abbrev tables, and there can be way more TUs than
6118 abbrev tables. Sort by abbrev table to reduce the number of times we
6119 read each abbrev table in.
6120 Alternatives are to punt or to maintain a cache of abbrev tables.
6121 This is simpler and efficient enough for now.
6122
6123 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6124 symtab to use). Typically TUs with the same abbrev offset have the same
6125 stmt_list value too so in practice this should work well.
6126
6127 The basic algorithm here is:
6128
6129 sort TUs by abbrev table
6130 for each TU with same abbrev table:
6131 read abbrev table if first user
6132 read TU top level DIE
6133 [IWBN if DWO skeletons had DW_AT_stmt_list]
6134 call FUNC */
6135
6136 if (dwarf2_read_debug)
6137 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6138
6139 /* Sort in a separate table to maintain the order of all_type_units
6140 for .gdb_index: TU indices directly index all_type_units. */
6141 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6142 dwarf2_per_objfile->n_type_units);
6143 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6144 {
6145 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6146
6147 sorted_by_abbrev[i].sig_type = sig_type;
6148 sorted_by_abbrev[i].abbrev_offset =
6149 read_abbrev_offset (sig_type->per_cu.section,
6150 sig_type->per_cu.offset);
6151 }
6152 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6153 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6154 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6155
6156 abbrev_offset.sect_off = ~(unsigned) 0;
6157 abbrev_table = NULL;
6158 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6159
6160 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6161 {
6162 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6163
6164 /* Switch to the next abbrev table if necessary. */
6165 if (abbrev_table == NULL
6166 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6167 {
6168 if (abbrev_table != NULL)
6169 {
6170 abbrev_table_free (abbrev_table);
6171 /* Reset to NULL in case abbrev_table_read_table throws
6172 an error: abbrev_table_free_cleanup will get called. */
6173 abbrev_table = NULL;
6174 }
6175 abbrev_offset = tu->abbrev_offset;
6176 abbrev_table =
6177 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6178 abbrev_offset);
6179 ++tu_stats->nr_uniq_abbrev_tables;
6180 }
6181
6182 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6183 build_type_psymtabs_reader, NULL);
6184 }
6185
73051182 6186 do_cleanups (cleanups);
6aa5f3a6 6187}
73051182 6188
6aa5f3a6
DE
6189/* Print collected type unit statistics. */
6190
6191static void
6192print_tu_stats (void)
6193{
6194 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6195
6196 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6197 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6198 dwarf2_per_objfile->n_type_units);
6199 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6200 tu_stats->nr_uniq_abbrev_tables);
6201 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6202 tu_stats->nr_symtabs);
6203 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6204 tu_stats->nr_symtab_sharers);
6205 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6206 tu_stats->nr_stmt_less_type_units);
6207 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6208 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6209}
6210
f4dc4d17
DE
6211/* Traversal function for build_type_psymtabs. */
6212
6213static int
6214build_type_psymtab_dependencies (void **slot, void *info)
6215{
6216 struct objfile *objfile = dwarf2_per_objfile->objfile;
6217 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6218 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6219 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6220 int len = VEC_length (sig_type_ptr, tu_group->tus);
6221 struct signatured_type *iter;
f4dc4d17
DE
6222 int i;
6223
6224 gdb_assert (len > 0);
0186c6a7 6225 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6226
6227 pst->number_of_dependencies = len;
6228 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6229 len * sizeof (struct psymtab *));
6230 for (i = 0;
0186c6a7 6231 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6232 ++i)
6233 {
0186c6a7
DE
6234 gdb_assert (iter->per_cu.is_debug_types);
6235 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6236 iter->type_unit_group = tu_group;
f4dc4d17
DE
6237 }
6238
0186c6a7 6239 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6240
6241 return 1;
6242}
6243
6244/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6245 Build partial symbol tables for the .debug_types comp-units. */
6246
6247static void
6248build_type_psymtabs (struct objfile *objfile)
6249{
0e50663e 6250 if (! create_all_type_units (objfile))
348e048f
DE
6251 return;
6252
73051182 6253 build_type_psymtabs_1 ();
6aa5f3a6 6254}
f4dc4d17 6255
6aa5f3a6
DE
6256/* Traversal function for process_skeletonless_type_unit.
6257 Read a TU in a DWO file and build partial symbols for it. */
6258
6259static int
6260process_skeletonless_type_unit (void **slot, void *info)
6261{
6262 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6263 struct objfile *objfile = info;
6264 struct signatured_type find_entry, *entry;
6265
6266 /* If this TU doesn't exist in the global table, add it and read it in. */
6267
6268 if (dwarf2_per_objfile->signatured_types == NULL)
6269 {
6270 dwarf2_per_objfile->signatured_types
6271 = allocate_signatured_type_table (objfile);
6272 }
6273
6274 find_entry.signature = dwo_unit->signature;
6275 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6276 INSERT);
6277 /* If we've already seen this type there's nothing to do. What's happening
6278 is we're doing our own version of comdat-folding here. */
6279 if (*slot != NULL)
6280 return 1;
6281
6282 /* This does the job that create_all_type_units would have done for
6283 this TU. */
6284 entry = add_type_unit (dwo_unit->signature, slot);
6285 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6286 *slot = entry;
6287
6288 /* This does the job that build_type_psymtabs_1 would have done. */
6289 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6290 build_type_psymtabs_reader, NULL);
6291
6292 return 1;
6293}
6294
6295/* Traversal function for process_skeletonless_type_units. */
6296
6297static int
6298process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6299{
6300 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6301
6302 if (dwo_file->tus != NULL)
6303 {
6304 htab_traverse_noresize (dwo_file->tus,
6305 process_skeletonless_type_unit, info);
6306 }
6307
6308 return 1;
6309}
6310
6311/* Scan all TUs of DWO files, verifying we've processed them.
6312 This is needed in case a TU was emitted without its skeleton.
6313 Note: This can't be done until we know what all the DWO files are. */
6314
6315static void
6316process_skeletonless_type_units (struct objfile *objfile)
6317{
6318 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6319 if (get_dwp_file () == NULL
6320 && dwarf2_per_objfile->dwo_files != NULL)
6321 {
6322 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6323 process_dwo_file_for_skeletonless_type_units,
6324 objfile);
6325 }
348e048f
DE
6326}
6327
60606b2c
TT
6328/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6329
6330static void
6331psymtabs_addrmap_cleanup (void *o)
6332{
6333 struct objfile *objfile = o;
ec61707d 6334
60606b2c
TT
6335 objfile->psymtabs_addrmap = NULL;
6336}
6337
95554aad
TT
6338/* Compute the 'user' field for each psymtab in OBJFILE. */
6339
6340static void
6341set_partial_user (struct objfile *objfile)
6342{
6343 int i;
6344
6345 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6346 {
8832e7e3 6347 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6348 struct partial_symtab *pst = per_cu->v.psymtab;
6349 int j;
6350
36586728
TT
6351 if (pst == NULL)
6352 continue;
6353
95554aad
TT
6354 for (j = 0; j < pst->number_of_dependencies; ++j)
6355 {
6356 /* Set the 'user' field only if it is not already set. */
6357 if (pst->dependencies[j]->user == NULL)
6358 pst->dependencies[j]->user = pst;
6359 }
6360 }
6361}
6362
93311388
DE
6363/* Build the partial symbol table by doing a quick pass through the
6364 .debug_info and .debug_abbrev sections. */
72bf9492 6365
93311388 6366static void
c67a9c90 6367dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6368{
60606b2c
TT
6369 struct cleanup *back_to, *addrmap_cleanup;
6370 struct obstack temp_obstack;
21b2bd31 6371 int i;
93311388 6372
45cfd468
DE
6373 if (dwarf2_read_debug)
6374 {
6375 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6376 objfile_name (objfile));
45cfd468
DE
6377 }
6378
98bfdba5
PA
6379 dwarf2_per_objfile->reading_partial_symbols = 1;
6380
be391dca 6381 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6382
93311388
DE
6383 /* Any cached compilation units will be linked by the per-objfile
6384 read_in_chain. Make sure to free them when we're done. */
6385 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6386
348e048f
DE
6387 build_type_psymtabs (objfile);
6388
93311388 6389 create_all_comp_units (objfile);
c906108c 6390
60606b2c
TT
6391 /* Create a temporary address map on a temporary obstack. We later
6392 copy this to the final obstack. */
6393 obstack_init (&temp_obstack);
6394 make_cleanup_obstack_free (&temp_obstack);
6395 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6396 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6397
21b2bd31 6398 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6399 {
8832e7e3 6400 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6401
b93601f3 6402 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6403 }
ff013f42 6404
6aa5f3a6
DE
6405 /* This has to wait until we read the CUs, we need the list of DWOs. */
6406 process_skeletonless_type_units (objfile);
6407
6408 /* Now that all TUs have been processed we can fill in the dependencies. */
6409 if (dwarf2_per_objfile->type_unit_groups != NULL)
6410 {
6411 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6412 build_type_psymtab_dependencies, NULL);
6413 }
6414
6415 if (dwarf2_read_debug)
6416 print_tu_stats ();
6417
95554aad
TT
6418 set_partial_user (objfile);
6419
ff013f42
JK
6420 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6421 &objfile->objfile_obstack);
60606b2c 6422 discard_cleanups (addrmap_cleanup);
ff013f42 6423
ae038cb0 6424 do_cleanups (back_to);
45cfd468
DE
6425
6426 if (dwarf2_read_debug)
6427 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6428 objfile_name (objfile));
ae038cb0
DJ
6429}
6430
3019eac3 6431/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6432
6433static void
dee91e82 6434load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6435 const gdb_byte *info_ptr,
dee91e82
DE
6436 struct die_info *comp_unit_die,
6437 int has_children,
6438 void *data)
ae038cb0 6439{
dee91e82 6440 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6441
95554aad 6442 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6443
ae038cb0
DJ
6444 /* Check if comp unit has_children.
6445 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6446 If not, there's no more debug_info for this comp unit. */
d85a05f0 6447 if (has_children)
dee91e82
DE
6448 load_partial_dies (reader, info_ptr, 0);
6449}
98bfdba5 6450
dee91e82
DE
6451/* Load the partial DIEs for a secondary CU into memory.
6452 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6453
dee91e82
DE
6454static void
6455load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6456{
f4dc4d17
DE
6457 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6458 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6459}
6460
ae038cb0 6461static void
36586728
TT
6462read_comp_units_from_section (struct objfile *objfile,
6463 struct dwarf2_section_info *section,
6464 unsigned int is_dwz,
6465 int *n_allocated,
6466 int *n_comp_units,
6467 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6468{
d521ce57 6469 const gdb_byte *info_ptr;
a32a8923 6470 bfd *abfd = get_section_bfd_owner (section);
be391dca 6471
bf6af496
DE
6472 if (dwarf2_read_debug)
6473 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6474 get_section_name (section),
6475 get_section_file_name (section));
bf6af496 6476
36586728 6477 dwarf2_read_section (objfile, section);
ae038cb0 6478
36586728 6479 info_ptr = section->buffer;
6e70227d 6480
36586728 6481 while (info_ptr < section->buffer + section->size)
ae038cb0 6482 {
c764a876 6483 unsigned int length, initial_length_size;
ae038cb0 6484 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6485 sect_offset offset;
ae038cb0 6486
36586728 6487 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6488
6489 /* Read just enough information to find out where the next
6490 compilation unit is. */
36586728 6491 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6492
6493 /* Save the compilation unit for later lookup. */
6494 this_cu = obstack_alloc (&objfile->objfile_obstack,
6495 sizeof (struct dwarf2_per_cu_data));
6496 memset (this_cu, 0, sizeof (*this_cu));
6497 this_cu->offset = offset;
c764a876 6498 this_cu->length = length + initial_length_size;
36586728 6499 this_cu->is_dwz = is_dwz;
9291a0cd 6500 this_cu->objfile = objfile;
8a0459fd 6501 this_cu->section = section;
ae038cb0 6502
36586728 6503 if (*n_comp_units == *n_allocated)
ae038cb0 6504 {
36586728
TT
6505 *n_allocated *= 2;
6506 *all_comp_units = xrealloc (*all_comp_units,
6507 *n_allocated
6508 * sizeof (struct dwarf2_per_cu_data *));
ae038cb0 6509 }
36586728
TT
6510 (*all_comp_units)[*n_comp_units] = this_cu;
6511 ++*n_comp_units;
ae038cb0
DJ
6512
6513 info_ptr = info_ptr + this_cu->length;
6514 }
36586728
TT
6515}
6516
6517/* Create a list of all compilation units in OBJFILE.
6518 This is only done for -readnow and building partial symtabs. */
6519
6520static void
6521create_all_comp_units (struct objfile *objfile)
6522{
6523 int n_allocated;
6524 int n_comp_units;
6525 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6526 struct dwz_file *dwz;
36586728
TT
6527
6528 n_comp_units = 0;
6529 n_allocated = 10;
6530 all_comp_units = xmalloc (n_allocated
6531 * sizeof (struct dwarf2_per_cu_data *));
6532
6533 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6534 &n_allocated, &n_comp_units, &all_comp_units);
6535
4db1a1dc
TT
6536 dwz = dwarf2_get_dwz_file ();
6537 if (dwz != NULL)
6538 read_comp_units_from_section (objfile, &dwz->info, 1,
6539 &n_allocated, &n_comp_units,
6540 &all_comp_units);
ae038cb0
DJ
6541
6542 dwarf2_per_objfile->all_comp_units
6543 = obstack_alloc (&objfile->objfile_obstack,
6544 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6545 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6546 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6547 xfree (all_comp_units);
6548 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6549}
6550
5734ee8b 6551/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6552 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6553 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6554 DW_AT_ranges). See the comments of add_partial_subprogram on how
6555 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6556
72bf9492
DJ
6557static void
6558scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6559 CORE_ADDR *highpc, int set_addrmap,
6560 struct dwarf2_cu *cu)
c906108c 6561{
72bf9492 6562 struct partial_die_info *pdi;
c906108c 6563
91c24f0a
DC
6564 /* Now, march along the PDI's, descending into ones which have
6565 interesting children but skipping the children of the other ones,
6566 until we reach the end of the compilation unit. */
c906108c 6567
72bf9492 6568 pdi = first_die;
91c24f0a 6569
72bf9492
DJ
6570 while (pdi != NULL)
6571 {
6572 fixup_partial_die (pdi, cu);
c906108c 6573
f55ee35c 6574 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6575 children, so we need to look at them. Ditto for anonymous
6576 enums. */
933c6fe4 6577
72bf9492 6578 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6579 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6580 || pdi->tag == DW_TAG_imported_unit)
c906108c 6581 {
72bf9492 6582 switch (pdi->tag)
c906108c
SS
6583 {
6584 case DW_TAG_subprogram:
cdc07690 6585 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6586 break;
72929c62 6587 case DW_TAG_constant:
c906108c
SS
6588 case DW_TAG_variable:
6589 case DW_TAG_typedef:
91c24f0a 6590 case DW_TAG_union_type:
72bf9492 6591 if (!pdi->is_declaration)
63d06c5c 6592 {
72bf9492 6593 add_partial_symbol (pdi, cu);
63d06c5c
DC
6594 }
6595 break;
c906108c 6596 case DW_TAG_class_type:
680b30c7 6597 case DW_TAG_interface_type:
c906108c 6598 case DW_TAG_structure_type:
72bf9492 6599 if (!pdi->is_declaration)
c906108c 6600 {
72bf9492 6601 add_partial_symbol (pdi, cu);
c906108c
SS
6602 }
6603 break;
91c24f0a 6604 case DW_TAG_enumeration_type:
72bf9492
DJ
6605 if (!pdi->is_declaration)
6606 add_partial_enumeration (pdi, cu);
c906108c
SS
6607 break;
6608 case DW_TAG_base_type:
a02abb62 6609 case DW_TAG_subrange_type:
c906108c 6610 /* File scope base type definitions are added to the partial
c5aa993b 6611 symbol table. */
72bf9492 6612 add_partial_symbol (pdi, cu);
c906108c 6613 break;
d9fa45fe 6614 case DW_TAG_namespace:
cdc07690 6615 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6616 break;
5d7cb8df 6617 case DW_TAG_module:
cdc07690 6618 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6619 break;
95554aad
TT
6620 case DW_TAG_imported_unit:
6621 {
6622 struct dwarf2_per_cu_data *per_cu;
6623
f4dc4d17
DE
6624 /* For now we don't handle imported units in type units. */
6625 if (cu->per_cu->is_debug_types)
6626 {
6627 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6628 " supported in type units [in module %s]"),
4262abfb 6629 objfile_name (cu->objfile));
f4dc4d17
DE
6630 }
6631
95554aad 6632 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6633 pdi->is_dwz,
95554aad
TT
6634 cu->objfile);
6635
6636 /* Go read the partial unit, if needed. */
6637 if (per_cu->v.psymtab == NULL)
b93601f3 6638 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6639
f4dc4d17 6640 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6641 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6642 }
6643 break;
74921315
KS
6644 case DW_TAG_imported_declaration:
6645 add_partial_symbol (pdi, cu);
6646 break;
c906108c
SS
6647 default:
6648 break;
6649 }
6650 }
6651
72bf9492
DJ
6652 /* If the die has a sibling, skip to the sibling. */
6653
6654 pdi = pdi->die_sibling;
6655 }
6656}
6657
6658/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6659
72bf9492 6660 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6661 name is concatenated with "::" and the partial DIE's name. For
6662 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6663 Enumerators are an exception; they use the scope of their parent
6664 enumeration type, i.e. the name of the enumeration type is not
6665 prepended to the enumerator.
91c24f0a 6666
72bf9492
DJ
6667 There are two complexities. One is DW_AT_specification; in this
6668 case "parent" means the parent of the target of the specification,
6669 instead of the direct parent of the DIE. The other is compilers
6670 which do not emit DW_TAG_namespace; in this case we try to guess
6671 the fully qualified name of structure types from their members'
6672 linkage names. This must be done using the DIE's children rather
6673 than the children of any DW_AT_specification target. We only need
6674 to do this for structures at the top level, i.e. if the target of
6675 any DW_AT_specification (if any; otherwise the DIE itself) does not
6676 have a parent. */
6677
6678/* Compute the scope prefix associated with PDI's parent, in
6679 compilation unit CU. The result will be allocated on CU's
6680 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6681 field. NULL is returned if no prefix is necessary. */
15d034d0 6682static const char *
72bf9492
DJ
6683partial_die_parent_scope (struct partial_die_info *pdi,
6684 struct dwarf2_cu *cu)
6685{
15d034d0 6686 const char *grandparent_scope;
72bf9492 6687 struct partial_die_info *parent, *real_pdi;
91c24f0a 6688
72bf9492
DJ
6689 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6690 then this means the parent of the specification DIE. */
6691
6692 real_pdi = pdi;
72bf9492 6693 while (real_pdi->has_specification)
36586728
TT
6694 real_pdi = find_partial_die (real_pdi->spec_offset,
6695 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6696
6697 parent = real_pdi->die_parent;
6698 if (parent == NULL)
6699 return NULL;
6700
6701 if (parent->scope_set)
6702 return parent->scope;
6703
6704 fixup_partial_die (parent, cu);
6705
10b3939b 6706 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6707
acebe513
UW
6708 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6709 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6710 Work around this problem here. */
6711 if (cu->language == language_cplus
6e70227d 6712 && parent->tag == DW_TAG_namespace
acebe513
UW
6713 && strcmp (parent->name, "::") == 0
6714 && grandparent_scope == NULL)
6715 {
6716 parent->scope = NULL;
6717 parent->scope_set = 1;
6718 return NULL;
6719 }
6720
9c6c53f7
SA
6721 if (pdi->tag == DW_TAG_enumerator)
6722 /* Enumerators should not get the name of the enumeration as a prefix. */
6723 parent->scope = grandparent_scope;
6724 else if (parent->tag == DW_TAG_namespace
f55ee35c 6725 || parent->tag == DW_TAG_module
72bf9492
DJ
6726 || parent->tag == DW_TAG_structure_type
6727 || parent->tag == DW_TAG_class_type
680b30c7 6728 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6729 || parent->tag == DW_TAG_union_type
6730 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6731 {
6732 if (grandparent_scope == NULL)
6733 parent->scope = parent->name;
6734 else
3e43a32a
MS
6735 parent->scope = typename_concat (&cu->comp_unit_obstack,
6736 grandparent_scope,
f55ee35c 6737 parent->name, 0, cu);
72bf9492 6738 }
72bf9492
DJ
6739 else
6740 {
6741 /* FIXME drow/2004-04-01: What should we be doing with
6742 function-local names? For partial symbols, we should probably be
6743 ignoring them. */
6744 complaint (&symfile_complaints,
e2e0b3e5 6745 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6746 parent->tag, pdi->offset.sect_off);
72bf9492 6747 parent->scope = grandparent_scope;
c906108c
SS
6748 }
6749
72bf9492
DJ
6750 parent->scope_set = 1;
6751 return parent->scope;
6752}
6753
6754/* Return the fully scoped name associated with PDI, from compilation unit
6755 CU. The result will be allocated with malloc. */
4568ecf9 6756
72bf9492
DJ
6757static char *
6758partial_die_full_name (struct partial_die_info *pdi,
6759 struct dwarf2_cu *cu)
6760{
15d034d0 6761 const char *parent_scope;
72bf9492 6762
98bfdba5
PA
6763 /* If this is a template instantiation, we can not work out the
6764 template arguments from partial DIEs. So, unfortunately, we have
6765 to go through the full DIEs. At least any work we do building
6766 types here will be reused if full symbols are loaded later. */
6767 if (pdi->has_template_arguments)
6768 {
6769 fixup_partial_die (pdi, cu);
6770
6771 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6772 {
6773 struct die_info *die;
6774 struct attribute attr;
6775 struct dwarf2_cu *ref_cu = cu;
6776
b64f50a1 6777 /* DW_FORM_ref_addr is using section offset. */
98bfdba5
PA
6778 attr.name = 0;
6779 attr.form = DW_FORM_ref_addr;
4568ecf9 6780 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6781 die = follow_die_ref (NULL, &attr, &ref_cu);
6782
6783 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6784 }
6785 }
6786
72bf9492
DJ
6787 parent_scope = partial_die_parent_scope (pdi, cu);
6788 if (parent_scope == NULL)
6789 return NULL;
6790 else
f55ee35c 6791 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6792}
6793
6794static void
72bf9492 6795add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6796{
e7c27a73 6797 struct objfile *objfile = cu->objfile;
3e29f34a 6798 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 6799 CORE_ADDR addr = 0;
15d034d0 6800 const char *actual_name = NULL;
e142c38c 6801 CORE_ADDR baseaddr;
15d034d0 6802 char *built_actual_name;
e142c38c
DJ
6803
6804 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6805
15d034d0
TT
6806 built_actual_name = partial_die_full_name (pdi, cu);
6807 if (built_actual_name != NULL)
6808 actual_name = built_actual_name;
63d06c5c 6809
72bf9492
DJ
6810 if (actual_name == NULL)
6811 actual_name = pdi->name;
6812
c906108c
SS
6813 switch (pdi->tag)
6814 {
6815 case DW_TAG_subprogram:
3e29f34a 6816 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
2cfa0c8d 6817 if (pdi->is_external || cu->language == language_ada)
c906108c 6818 {
2cfa0c8d
JB
6819 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6820 of the global scope. But in Ada, we want to be able to access
6821 nested procedures globally. So all Ada subprograms are stored
6822 in the global scope. */
3e29f34a
MR
6823 /* prim_record_minimal_symbol (actual_name, addr, mst_text,
6824 objfile); */
f47fb265 6825 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6826 built_actual_name != NULL,
f47fb265
MS
6827 VAR_DOMAIN, LOC_BLOCK,
6828 &objfile->global_psymbols,
3e29f34a 6829 0, addr, cu->language, objfile);
c906108c
SS
6830 }
6831 else
6832 {
3e29f34a
MR
6833 /* prim_record_minimal_symbol (actual_name, addr, mst_file_text,
6834 objfile); */
f47fb265 6835 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6836 built_actual_name != NULL,
f47fb265
MS
6837 VAR_DOMAIN, LOC_BLOCK,
6838 &objfile->static_psymbols,
3e29f34a 6839 0, addr, cu->language, objfile);
c906108c
SS
6840 }
6841 break;
72929c62
JB
6842 case DW_TAG_constant:
6843 {
6844 struct psymbol_allocation_list *list;
6845
6846 if (pdi->is_external)
6847 list = &objfile->global_psymbols;
6848 else
6849 list = &objfile->static_psymbols;
f47fb265 6850 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6851 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
f47fb265 6852 list, 0, 0, cu->language, objfile);
72929c62
JB
6853 }
6854 break;
c906108c 6855 case DW_TAG_variable:
95554aad
TT
6856 if (pdi->d.locdesc)
6857 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6858
95554aad 6859 if (pdi->d.locdesc
caac4577
JG
6860 && addr == 0
6861 && !dwarf2_per_objfile->has_section_at_zero)
6862 {
6863 /* A global or static variable may also have been stripped
6864 out by the linker if unused, in which case its address
6865 will be nullified; do not add such variables into partial
6866 symbol table then. */
6867 }
6868 else if (pdi->is_external)
c906108c
SS
6869 {
6870 /* Global Variable.
6871 Don't enter into the minimal symbol tables as there is
6872 a minimal symbol table entry from the ELF symbols already.
6873 Enter into partial symbol table if it has a location
6874 descriptor or a type.
6875 If the location descriptor is missing, new_symbol will create
6876 a LOC_UNRESOLVED symbol, the address of the variable will then
6877 be determined from the minimal symbol table whenever the variable
6878 is referenced.
6879 The address for the partial symbol table entry is not
6880 used by GDB, but it comes in handy for debugging partial symbol
6881 table building. */
6882
95554aad 6883 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6884 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6885 built_actual_name != NULL,
f47fb265
MS
6886 VAR_DOMAIN, LOC_STATIC,
6887 &objfile->global_psymbols,
6888 0, addr + baseaddr,
6889 cu->language, objfile);
c906108c
SS
6890 }
6891 else
6892 {
0963b4bd 6893 /* Static Variable. Skip symbols without location descriptors. */
95554aad 6894 if (pdi->d.locdesc == NULL)
decbce07 6895 {
15d034d0 6896 xfree (built_actual_name);
decbce07
MS
6897 return;
6898 }
f47fb265 6899 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 6900 mst_file_data, objfile); */
f47fb265 6901 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6902 built_actual_name != NULL,
f47fb265
MS
6903 VAR_DOMAIN, LOC_STATIC,
6904 &objfile->static_psymbols,
6905 0, addr + baseaddr,
6906 cu->language, objfile);
c906108c
SS
6907 }
6908 break;
6909 case DW_TAG_typedef:
6910 case DW_TAG_base_type:
a02abb62 6911 case DW_TAG_subrange_type:
38d518c9 6912 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6913 built_actual_name != NULL,
176620f1 6914 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 6915 &objfile->static_psymbols,
e142c38c 6916 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6917 break;
74921315 6918 case DW_TAG_imported_declaration:
72bf9492
DJ
6919 case DW_TAG_namespace:
6920 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6921 built_actual_name != NULL,
72bf9492
DJ
6922 VAR_DOMAIN, LOC_TYPEDEF,
6923 &objfile->global_psymbols,
6924 0, (CORE_ADDR) 0, cu->language, objfile);
6925 break;
530e8392
KB
6926 case DW_TAG_module:
6927 add_psymbol_to_list (actual_name, strlen (actual_name),
6928 built_actual_name != NULL,
6929 MODULE_DOMAIN, LOC_TYPEDEF,
6930 &objfile->global_psymbols,
6931 0, (CORE_ADDR) 0, cu->language, objfile);
6932 break;
c906108c 6933 case DW_TAG_class_type:
680b30c7 6934 case DW_TAG_interface_type:
c906108c
SS
6935 case DW_TAG_structure_type:
6936 case DW_TAG_union_type:
6937 case DW_TAG_enumeration_type:
fa4028e9
JB
6938 /* Skip external references. The DWARF standard says in the section
6939 about "Structure, Union, and Class Type Entries": "An incomplete
6940 structure, union or class type is represented by a structure,
6941 union or class entry that does not have a byte size attribute
6942 and that has a DW_AT_declaration attribute." */
6943 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 6944 {
15d034d0 6945 xfree (built_actual_name);
decbce07
MS
6946 return;
6947 }
fa4028e9 6948
63d06c5c
DC
6949 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6950 static vs. global. */
38d518c9 6951 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6952 built_actual_name != NULL,
176620f1 6953 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
6954 (cu->language == language_cplus
6955 || cu->language == language_java)
63d06c5c
DC
6956 ? &objfile->global_psymbols
6957 : &objfile->static_psymbols,
e142c38c 6958 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6959
c906108c
SS
6960 break;
6961 case DW_TAG_enumerator:
38d518c9 6962 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6963 built_actual_name != NULL,
176620f1 6964 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
6965 (cu->language == language_cplus
6966 || cu->language == language_java)
f6fe98ef
DJ
6967 ? &objfile->global_psymbols
6968 : &objfile->static_psymbols,
e142c38c 6969 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
6970 break;
6971 default:
6972 break;
6973 }
5c4e30ca 6974
15d034d0 6975 xfree (built_actual_name);
c906108c
SS
6976}
6977
5c4e30ca
DC
6978/* Read a partial die corresponding to a namespace; also, add a symbol
6979 corresponding to that namespace to the symbol table. NAMESPACE is
6980 the name of the enclosing namespace. */
91c24f0a 6981
72bf9492
DJ
6982static void
6983add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 6984 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 6985 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 6986{
72bf9492 6987 /* Add a symbol for the namespace. */
e7c27a73 6988
72bf9492 6989 add_partial_symbol (pdi, cu);
5c4e30ca
DC
6990
6991 /* Now scan partial symbols in that namespace. */
6992
91c24f0a 6993 if (pdi->has_children)
cdc07690 6994 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
6995}
6996
5d7cb8df
JK
6997/* Read a partial die corresponding to a Fortran module. */
6998
6999static void
7000add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 7001 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 7002{
530e8392
KB
7003 /* Add a symbol for the namespace. */
7004
7005 add_partial_symbol (pdi, cu);
7006
f55ee35c 7007 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7008
7009 if (pdi->has_children)
cdc07690 7010 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7011}
7012
bc30ff58
JB
7013/* Read a partial die corresponding to a subprogram and create a partial
7014 symbol for that subprogram. When the CU language allows it, this
7015 routine also defines a partial symbol for each nested subprogram
cdc07690 7016 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7017 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7018 and highest PC values found in PDI.
6e70227d 7019
cdc07690
YQ
7020 PDI may also be a lexical block, in which case we simply search
7021 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7022 Again, this is only performed when the CU language allows this
7023 type of definitions. */
7024
7025static void
7026add_partial_subprogram (struct partial_die_info *pdi,
7027 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7028 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7029{
7030 if (pdi->tag == DW_TAG_subprogram)
7031 {
7032 if (pdi->has_pc_info)
7033 {
7034 if (pdi->lowpc < *lowpc)
7035 *lowpc = pdi->lowpc;
7036 if (pdi->highpc > *highpc)
7037 *highpc = pdi->highpc;
cdc07690 7038 if (set_addrmap)
5734ee8b 7039 {
5734ee8b 7040 struct objfile *objfile = cu->objfile;
3e29f34a
MR
7041 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7042 CORE_ADDR baseaddr;
7043 CORE_ADDR highpc;
7044 CORE_ADDR lowpc;
5734ee8b
DJ
7045
7046 baseaddr = ANOFFSET (objfile->section_offsets,
7047 SECT_OFF_TEXT (objfile));
3e29f34a
MR
7048 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7049 pdi->lowpc + baseaddr);
7050 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7051 pdi->highpc + baseaddr);
7052 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 7053 cu->per_cu->v.psymtab);
5734ee8b 7054 }
481860b3
GB
7055 }
7056
7057 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7058 {
bc30ff58 7059 if (!pdi->is_declaration)
e8d05480
JB
7060 /* Ignore subprogram DIEs that do not have a name, they are
7061 illegal. Do not emit a complaint at this point, we will
7062 do so when we convert this psymtab into a symtab. */
7063 if (pdi->name)
7064 add_partial_symbol (pdi, cu);
bc30ff58
JB
7065 }
7066 }
6e70227d 7067
bc30ff58
JB
7068 if (! pdi->has_children)
7069 return;
7070
7071 if (cu->language == language_ada)
7072 {
7073 pdi = pdi->die_child;
7074 while (pdi != NULL)
7075 {
7076 fixup_partial_die (pdi, cu);
7077 if (pdi->tag == DW_TAG_subprogram
7078 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7079 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7080 pdi = pdi->die_sibling;
7081 }
7082 }
7083}
7084
91c24f0a
DC
7085/* Read a partial die corresponding to an enumeration type. */
7086
72bf9492
DJ
7087static void
7088add_partial_enumeration (struct partial_die_info *enum_pdi,
7089 struct dwarf2_cu *cu)
91c24f0a 7090{
72bf9492 7091 struct partial_die_info *pdi;
91c24f0a
DC
7092
7093 if (enum_pdi->name != NULL)
72bf9492
DJ
7094 add_partial_symbol (enum_pdi, cu);
7095
7096 pdi = enum_pdi->die_child;
7097 while (pdi)
91c24f0a 7098 {
72bf9492 7099 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7100 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7101 else
72bf9492
DJ
7102 add_partial_symbol (pdi, cu);
7103 pdi = pdi->die_sibling;
91c24f0a 7104 }
91c24f0a
DC
7105}
7106
6caca83c
CC
7107/* Return the initial uleb128 in the die at INFO_PTR. */
7108
7109static unsigned int
d521ce57 7110peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7111{
7112 unsigned int bytes_read;
7113
7114 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7115}
7116
4bb7a0a7
DJ
7117/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7118 Return the corresponding abbrev, or NULL if the number is zero (indicating
7119 an empty DIE). In either case *BYTES_READ will be set to the length of
7120 the initial number. */
7121
7122static struct abbrev_info *
d521ce57 7123peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7124 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7125{
7126 bfd *abfd = cu->objfile->obfd;
7127 unsigned int abbrev_number;
7128 struct abbrev_info *abbrev;
7129
7130 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7131
7132 if (abbrev_number == 0)
7133 return NULL;
7134
433df2d4 7135 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7136 if (!abbrev)
7137 {
422b9917
DE
7138 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7139 " at offset 0x%x [in module %s]"),
7140 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7141 cu->header.offset.sect_off, bfd_get_filename (abfd));
4bb7a0a7
DJ
7142 }
7143
7144 return abbrev;
7145}
7146
93311388
DE
7147/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7148 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7149 DIE. Any children of the skipped DIEs will also be skipped. */
7150
d521ce57
TT
7151static const gdb_byte *
7152skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7153{
dee91e82 7154 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7155 struct abbrev_info *abbrev;
7156 unsigned int bytes_read;
7157
7158 while (1)
7159 {
7160 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7161 if (abbrev == NULL)
7162 return info_ptr + bytes_read;
7163 else
dee91e82 7164 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7165 }
7166}
7167
93311388
DE
7168/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7169 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7170 abbrev corresponding to that skipped uleb128 should be passed in
7171 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7172 children. */
7173
d521ce57
TT
7174static const gdb_byte *
7175skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7176 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7177{
7178 unsigned int bytes_read;
7179 struct attribute attr;
dee91e82
DE
7180 bfd *abfd = reader->abfd;
7181 struct dwarf2_cu *cu = reader->cu;
d521ce57 7182 const gdb_byte *buffer = reader->buffer;
f664829e 7183 const gdb_byte *buffer_end = reader->buffer_end;
d521ce57 7184 const gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
7185 unsigned int form, i;
7186
7187 for (i = 0; i < abbrev->num_attrs; i++)
7188 {
7189 /* The only abbrev we care about is DW_AT_sibling. */
7190 if (abbrev->attrs[i].name == DW_AT_sibling)
7191 {
dee91e82 7192 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7193 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7194 complaint (&symfile_complaints,
7195 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7196 else
b9502d3f
WN
7197 {
7198 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7199 const gdb_byte *sibling_ptr = buffer + off;
7200
7201 if (sibling_ptr < info_ptr)
7202 complaint (&symfile_complaints,
7203 _("DW_AT_sibling points backwards"));
22869d73
KS
7204 else if (sibling_ptr > reader->buffer_end)
7205 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7206 else
7207 return sibling_ptr;
7208 }
4bb7a0a7
DJ
7209 }
7210
7211 /* If it isn't DW_AT_sibling, skip this attribute. */
7212 form = abbrev->attrs[i].form;
7213 skip_attribute:
7214 switch (form)
7215 {
4bb7a0a7 7216 case DW_FORM_ref_addr:
ae411497
TT
7217 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7218 and later it is offset sized. */
7219 if (cu->header.version == 2)
7220 info_ptr += cu->header.addr_size;
7221 else
7222 info_ptr += cu->header.offset_size;
7223 break;
36586728
TT
7224 case DW_FORM_GNU_ref_alt:
7225 info_ptr += cu->header.offset_size;
7226 break;
ae411497 7227 case DW_FORM_addr:
4bb7a0a7
DJ
7228 info_ptr += cu->header.addr_size;
7229 break;
7230 case DW_FORM_data1:
7231 case DW_FORM_ref1:
7232 case DW_FORM_flag:
7233 info_ptr += 1;
7234 break;
2dc7f7b3
TT
7235 case DW_FORM_flag_present:
7236 break;
4bb7a0a7
DJ
7237 case DW_FORM_data2:
7238 case DW_FORM_ref2:
7239 info_ptr += 2;
7240 break;
7241 case DW_FORM_data4:
7242 case DW_FORM_ref4:
7243 info_ptr += 4;
7244 break;
7245 case DW_FORM_data8:
7246 case DW_FORM_ref8:
55f1336d 7247 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7248 info_ptr += 8;
7249 break;
7250 case DW_FORM_string:
9b1c24c8 7251 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7252 info_ptr += bytes_read;
7253 break;
2dc7f7b3 7254 case DW_FORM_sec_offset:
4bb7a0a7 7255 case DW_FORM_strp:
36586728 7256 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7257 info_ptr += cu->header.offset_size;
7258 break;
2dc7f7b3 7259 case DW_FORM_exprloc:
4bb7a0a7
DJ
7260 case DW_FORM_block:
7261 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7262 info_ptr += bytes_read;
7263 break;
7264 case DW_FORM_block1:
7265 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7266 break;
7267 case DW_FORM_block2:
7268 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7269 break;
7270 case DW_FORM_block4:
7271 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7272 break;
7273 case DW_FORM_sdata:
7274 case DW_FORM_udata:
7275 case DW_FORM_ref_udata:
3019eac3
DE
7276 case DW_FORM_GNU_addr_index:
7277 case DW_FORM_GNU_str_index:
d521ce57 7278 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7279 break;
7280 case DW_FORM_indirect:
7281 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7282 info_ptr += bytes_read;
7283 /* We need to continue parsing from here, so just go back to
7284 the top. */
7285 goto skip_attribute;
7286
7287 default:
3e43a32a
MS
7288 error (_("Dwarf Error: Cannot handle %s "
7289 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7290 dwarf_form_name (form),
7291 bfd_get_filename (abfd));
7292 }
7293 }
7294
7295 if (abbrev->has_children)
dee91e82 7296 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7297 else
7298 return info_ptr;
7299}
7300
93311388 7301/* Locate ORIG_PDI's sibling.
dee91e82 7302 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7303
d521ce57 7304static const gdb_byte *
dee91e82
DE
7305locate_pdi_sibling (const struct die_reader_specs *reader,
7306 struct partial_die_info *orig_pdi,
d521ce57 7307 const gdb_byte *info_ptr)
91c24f0a
DC
7308{
7309 /* Do we know the sibling already? */
72bf9492 7310
91c24f0a
DC
7311 if (orig_pdi->sibling)
7312 return orig_pdi->sibling;
7313
7314 /* Are there any children to deal with? */
7315
7316 if (!orig_pdi->has_children)
7317 return info_ptr;
7318
4bb7a0a7 7319 /* Skip the children the long way. */
91c24f0a 7320
dee91e82 7321 return skip_children (reader, info_ptr);
91c24f0a
DC
7322}
7323
257e7a09 7324/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7325 not NULL. */
c906108c
SS
7326
7327static void
257e7a09
YQ
7328dwarf2_read_symtab (struct partial_symtab *self,
7329 struct objfile *objfile)
c906108c 7330{
257e7a09 7331 if (self->readin)
c906108c 7332 {
442e4d9c 7333 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7334 self->filename);
442e4d9c
YQ
7335 }
7336 else
7337 {
7338 if (info_verbose)
c906108c 7339 {
442e4d9c 7340 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7341 self->filename);
442e4d9c 7342 gdb_flush (gdb_stdout);
c906108c 7343 }
c906108c 7344
442e4d9c
YQ
7345 /* Restore our global data. */
7346 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10b3939b 7347
442e4d9c
YQ
7348 /* If this psymtab is constructed from a debug-only objfile, the
7349 has_section_at_zero flag will not necessarily be correct. We
7350 can get the correct value for this flag by looking at the data
7351 associated with the (presumably stripped) associated objfile. */
7352 if (objfile->separate_debug_objfile_backlink)
7353 {
7354 struct dwarf2_per_objfile *dpo_backlink
7355 = objfile_data (objfile->separate_debug_objfile_backlink,
7356 dwarf2_objfile_data_key);
9a619af0 7357
442e4d9c
YQ
7358 dwarf2_per_objfile->has_section_at_zero
7359 = dpo_backlink->has_section_at_zero;
7360 }
b2ab525c 7361
442e4d9c 7362 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7363
257e7a09 7364 psymtab_to_symtab_1 (self);
c906108c 7365
442e4d9c
YQ
7366 /* Finish up the debug error message. */
7367 if (info_verbose)
7368 printf_filtered (_("done.\n"));
c906108c 7369 }
95554aad
TT
7370
7371 process_cu_includes ();
c906108c 7372}
9cdd5dbd
DE
7373\f
7374/* Reading in full CUs. */
c906108c 7375
10b3939b
DJ
7376/* Add PER_CU to the queue. */
7377
7378static void
95554aad
TT
7379queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7380 enum language pretend_language)
10b3939b
DJ
7381{
7382 struct dwarf2_queue_item *item;
7383
7384 per_cu->queued = 1;
7385 item = xmalloc (sizeof (*item));
7386 item->per_cu = per_cu;
95554aad 7387 item->pretend_language = pretend_language;
10b3939b
DJ
7388 item->next = NULL;
7389
7390 if (dwarf2_queue == NULL)
7391 dwarf2_queue = item;
7392 else
7393 dwarf2_queue_tail->next = item;
7394
7395 dwarf2_queue_tail = item;
7396}
7397
89e63ee4
DE
7398/* If PER_CU is not yet queued, add it to the queue.
7399 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7400 dependency.
0907af0c 7401 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7402 meaning either PER_CU is already queued or it is already loaded.
7403
7404 N.B. There is an invariant here that if a CU is queued then it is loaded.
7405 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7406
7407static int
89e63ee4 7408maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7409 struct dwarf2_per_cu_data *per_cu,
7410 enum language pretend_language)
7411{
7412 /* We may arrive here during partial symbol reading, if we need full
7413 DIEs to process an unusual case (e.g. template arguments). Do
7414 not queue PER_CU, just tell our caller to load its DIEs. */
7415 if (dwarf2_per_objfile->reading_partial_symbols)
7416 {
7417 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7418 return 1;
7419 return 0;
7420 }
7421
7422 /* Mark the dependence relation so that we don't flush PER_CU
7423 too early. */
89e63ee4
DE
7424 if (dependent_cu != NULL)
7425 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7426
7427 /* If it's already on the queue, we have nothing to do. */
7428 if (per_cu->queued)
7429 return 0;
7430
7431 /* If the compilation unit is already loaded, just mark it as
7432 used. */
7433 if (per_cu->cu != NULL)
7434 {
7435 per_cu->cu->last_used = 0;
7436 return 0;
7437 }
7438
7439 /* Add it to the queue. */
7440 queue_comp_unit (per_cu, pretend_language);
7441
7442 return 1;
7443}
7444
10b3939b
DJ
7445/* Process the queue. */
7446
7447static void
a0f42c21 7448process_queue (void)
10b3939b
DJ
7449{
7450 struct dwarf2_queue_item *item, *next_item;
7451
45cfd468
DE
7452 if (dwarf2_read_debug)
7453 {
7454 fprintf_unfiltered (gdb_stdlog,
7455 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7456 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7457 }
7458
03dd20cc
DJ
7459 /* The queue starts out with one item, but following a DIE reference
7460 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7461 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7462 {
9291a0cd 7463 if (dwarf2_per_objfile->using_index
43f3e411 7464 ? !item->per_cu->v.quick->compunit_symtab
9291a0cd 7465 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
f4dc4d17
DE
7466 {
7467 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7468 unsigned int debug_print_threshold;
247f5c4f 7469 char buf[100];
f4dc4d17 7470
247f5c4f 7471 if (per_cu->is_debug_types)
f4dc4d17 7472 {
247f5c4f
DE
7473 struct signatured_type *sig_type =
7474 (struct signatured_type *) per_cu;
7475
7476 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7477 hex_string (sig_type->signature),
7478 per_cu->offset.sect_off);
7479 /* There can be 100s of TUs.
7480 Only print them in verbose mode. */
7481 debug_print_threshold = 2;
f4dc4d17 7482 }
247f5c4f 7483 else
73be47f5
DE
7484 {
7485 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7486 debug_print_threshold = 1;
7487 }
247f5c4f 7488
73be47f5 7489 if (dwarf2_read_debug >= debug_print_threshold)
247f5c4f 7490 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7491
7492 if (per_cu->is_debug_types)
7493 process_full_type_unit (per_cu, item->pretend_language);
7494 else
7495 process_full_comp_unit (per_cu, item->pretend_language);
7496
73be47f5 7497 if (dwarf2_read_debug >= debug_print_threshold)
247f5c4f 7498 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7499 }
10b3939b
DJ
7500
7501 item->per_cu->queued = 0;
7502 next_item = item->next;
7503 xfree (item);
7504 }
7505
7506 dwarf2_queue_tail = NULL;
45cfd468
DE
7507
7508 if (dwarf2_read_debug)
7509 {
7510 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7511 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7512 }
10b3939b
DJ
7513}
7514
7515/* Free all allocated queue entries. This function only releases anything if
7516 an error was thrown; if the queue was processed then it would have been
7517 freed as we went along. */
7518
7519static void
7520dwarf2_release_queue (void *dummy)
7521{
7522 struct dwarf2_queue_item *item, *last;
7523
7524 item = dwarf2_queue;
7525 while (item)
7526 {
7527 /* Anything still marked queued is likely to be in an
7528 inconsistent state, so discard it. */
7529 if (item->per_cu->queued)
7530 {
7531 if (item->per_cu->cu != NULL)
dee91e82 7532 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7533 item->per_cu->queued = 0;
7534 }
7535
7536 last = item;
7537 item = item->next;
7538 xfree (last);
7539 }
7540
7541 dwarf2_queue = dwarf2_queue_tail = NULL;
7542}
7543
7544/* Read in full symbols for PST, and anything it depends on. */
7545
c906108c 7546static void
fba45db2 7547psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7548{
10b3939b 7549 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7550 int i;
7551
95554aad
TT
7552 if (pst->readin)
7553 return;
7554
aaa75496 7555 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7556 if (!pst->dependencies[i]->readin
7557 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7558 {
7559 /* Inform about additional files that need to be read in. */
7560 if (info_verbose)
7561 {
a3f17187 7562 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7563 fputs_filtered (" ", gdb_stdout);
7564 wrap_here ("");
7565 fputs_filtered ("and ", gdb_stdout);
7566 wrap_here ("");
7567 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7568 wrap_here (""); /* Flush output. */
aaa75496
JB
7569 gdb_flush (gdb_stdout);
7570 }
7571 psymtab_to_symtab_1 (pst->dependencies[i]);
7572 }
7573
e38df1d0 7574 per_cu = pst->read_symtab_private;
10b3939b
DJ
7575
7576 if (per_cu == NULL)
aaa75496
JB
7577 {
7578 /* It's an include file, no symbols to read for it.
7579 Everything is in the parent symtab. */
7580 pst->readin = 1;
7581 return;
7582 }
c906108c 7583
a0f42c21 7584 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7585}
7586
dee91e82
DE
7587/* Trivial hash function for die_info: the hash value of a DIE
7588 is its offset in .debug_info for this objfile. */
10b3939b 7589
dee91e82
DE
7590static hashval_t
7591die_hash (const void *item)
10b3939b 7592{
dee91e82 7593 const struct die_info *die = item;
6502dd73 7594
dee91e82
DE
7595 return die->offset.sect_off;
7596}
63d06c5c 7597
dee91e82
DE
7598/* Trivial comparison function for die_info structures: two DIEs
7599 are equal if they have the same offset. */
98bfdba5 7600
dee91e82
DE
7601static int
7602die_eq (const void *item_lhs, const void *item_rhs)
7603{
7604 const struct die_info *die_lhs = item_lhs;
7605 const struct die_info *die_rhs = item_rhs;
c906108c 7606
dee91e82
DE
7607 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7608}
c906108c 7609
dee91e82
DE
7610/* die_reader_func for load_full_comp_unit.
7611 This is identical to read_signatured_type_reader,
7612 but is kept separate for now. */
c906108c 7613
dee91e82
DE
7614static void
7615load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7616 const gdb_byte *info_ptr,
dee91e82
DE
7617 struct die_info *comp_unit_die,
7618 int has_children,
7619 void *data)
7620{
7621 struct dwarf2_cu *cu = reader->cu;
95554aad 7622 enum language *language_ptr = data;
6caca83c 7623
dee91e82
DE
7624 gdb_assert (cu->die_hash == NULL);
7625 cu->die_hash =
7626 htab_create_alloc_ex (cu->header.length / 12,
7627 die_hash,
7628 die_eq,
7629 NULL,
7630 &cu->comp_unit_obstack,
7631 hashtab_obstack_allocate,
7632 dummy_obstack_deallocate);
e142c38c 7633
dee91e82
DE
7634 if (has_children)
7635 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7636 &info_ptr, comp_unit_die);
7637 cu->dies = comp_unit_die;
7638 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7639
7640 /* We try not to read any attributes in this function, because not
9cdd5dbd 7641 all CUs needed for references have been loaded yet, and symbol
10b3939b 7642 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7643 or we won't be able to build types correctly.
7644 Similarly, if we do not read the producer, we can not apply
7645 producer-specific interpretation. */
95554aad 7646 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7647}
10b3939b 7648
dee91e82 7649/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7650
dee91e82 7651static void
95554aad
TT
7652load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7653 enum language pretend_language)
dee91e82 7654{
3019eac3 7655 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7656
f4dc4d17
DE
7657 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7658 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7659}
7660
3da10d80
KS
7661/* Add a DIE to the delayed physname list. */
7662
7663static void
7664add_to_method_list (struct type *type, int fnfield_index, int index,
7665 const char *name, struct die_info *die,
7666 struct dwarf2_cu *cu)
7667{
7668 struct delayed_method_info mi;
7669 mi.type = type;
7670 mi.fnfield_index = fnfield_index;
7671 mi.index = index;
7672 mi.name = name;
7673 mi.die = die;
7674 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7675}
7676
7677/* A cleanup for freeing the delayed method list. */
7678
7679static void
7680free_delayed_list (void *ptr)
7681{
7682 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7683 if (cu->method_list != NULL)
7684 {
7685 VEC_free (delayed_method_info, cu->method_list);
7686 cu->method_list = NULL;
7687 }
7688}
7689
7690/* Compute the physnames of any methods on the CU's method list.
7691
7692 The computation of method physnames is delayed in order to avoid the
7693 (bad) condition that one of the method's formal parameters is of an as yet
7694 incomplete type. */
7695
7696static void
7697compute_delayed_physnames (struct dwarf2_cu *cu)
7698{
7699 int i;
7700 struct delayed_method_info *mi;
7701 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7702 {
1d06ead6 7703 const char *physname;
3da10d80
KS
7704 struct fn_fieldlist *fn_flp
7705 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7706 physname = dwarf2_physname (mi->name, mi->die, cu);
005e54bb
DE
7707 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi->index)
7708 = physname ? physname : "";
3da10d80
KS
7709 }
7710}
7711
a766d390
DE
7712/* Go objects should be embedded in a DW_TAG_module DIE,
7713 and it's not clear if/how imported objects will appear.
7714 To keep Go support simple until that's worked out,
7715 go back through what we've read and create something usable.
7716 We could do this while processing each DIE, and feels kinda cleaner,
7717 but that way is more invasive.
7718 This is to, for example, allow the user to type "p var" or "b main"
7719 without having to specify the package name, and allow lookups
7720 of module.object to work in contexts that use the expression
7721 parser. */
7722
7723static void
7724fixup_go_packaging (struct dwarf2_cu *cu)
7725{
7726 char *package_name = NULL;
7727 struct pending *list;
7728 int i;
7729
7730 for (list = global_symbols; list != NULL; list = list->next)
7731 {
7732 for (i = 0; i < list->nsyms; ++i)
7733 {
7734 struct symbol *sym = list->symbol[i];
7735
7736 if (SYMBOL_LANGUAGE (sym) == language_go
7737 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7738 {
7739 char *this_package_name = go_symbol_package_name (sym);
7740
7741 if (this_package_name == NULL)
7742 continue;
7743 if (package_name == NULL)
7744 package_name = this_package_name;
7745 else
7746 {
7747 if (strcmp (package_name, this_package_name) != 0)
7748 complaint (&symfile_complaints,
7749 _("Symtab %s has objects from two different Go packages: %s and %s"),
08be3fe3
DE
7750 (symbol_symtab (sym) != NULL
7751 ? symtab_to_filename_for_display
7752 (symbol_symtab (sym))
4262abfb 7753 : objfile_name (cu->objfile)),
a766d390
DE
7754 this_package_name, package_name);
7755 xfree (this_package_name);
7756 }
7757 }
7758 }
7759 }
7760
7761 if (package_name != NULL)
7762 {
7763 struct objfile *objfile = cu->objfile;
34a68019
TT
7764 const char *saved_package_name
7765 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7766 package_name,
7767 strlen (package_name));
a766d390 7768 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
86f62fd7 7769 saved_package_name, objfile);
a766d390
DE
7770 struct symbol *sym;
7771
7772 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7773
e623cf5d 7774 sym = allocate_symbol (objfile);
f85f34ed 7775 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7776 SYMBOL_SET_NAMES (sym, saved_package_name,
7777 strlen (saved_package_name), 0, objfile);
a766d390
DE
7778 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7779 e.g., "main" finds the "main" module and not C's main(). */
7780 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7781 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7782 SYMBOL_TYPE (sym) = type;
7783
7784 add_symbol_to_list (sym, &global_symbols);
7785
7786 xfree (package_name);
7787 }
7788}
7789
95554aad
TT
7790/* Return the symtab for PER_CU. This works properly regardless of
7791 whether we're using the index or psymtabs. */
7792
43f3e411
DE
7793static struct compunit_symtab *
7794get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad
TT
7795{
7796 return (dwarf2_per_objfile->using_index
43f3e411
DE
7797 ? per_cu->v.quick->compunit_symtab
7798 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
7799}
7800
7801/* A helper function for computing the list of all symbol tables
7802 included by PER_CU. */
7803
7804static void
43f3e411 7805recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 7806 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 7807 struct dwarf2_per_cu_data *per_cu,
43f3e411 7808 struct compunit_symtab *immediate_parent)
95554aad
TT
7809{
7810 void **slot;
7811 int ix;
43f3e411 7812 struct compunit_symtab *cust;
95554aad
TT
7813 struct dwarf2_per_cu_data *iter;
7814
7815 slot = htab_find_slot (all_children, per_cu, INSERT);
7816 if (*slot != NULL)
7817 {
7818 /* This inclusion and its children have been processed. */
7819 return;
7820 }
7821
7822 *slot = per_cu;
7823 /* Only add a CU if it has a symbol table. */
43f3e411
DE
7824 cust = get_compunit_symtab (per_cu);
7825 if (cust != NULL)
ec94af83
DE
7826 {
7827 /* If this is a type unit only add its symbol table if we haven't
7828 seen it yet (type unit per_cu's can share symtabs). */
7829 if (per_cu->is_debug_types)
7830 {
43f3e411 7831 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
7832 if (*slot == NULL)
7833 {
43f3e411
DE
7834 *slot = cust;
7835 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7836 if (cust->user == NULL)
7837 cust->user = immediate_parent;
ec94af83
DE
7838 }
7839 }
7840 else
f9125b6c 7841 {
43f3e411
DE
7842 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7843 if (cust->user == NULL)
7844 cust->user = immediate_parent;
f9125b6c 7845 }
ec94af83 7846 }
95554aad
TT
7847
7848 for (ix = 0;
796a7ff8 7849 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7850 ++ix)
ec94af83
DE
7851 {
7852 recursively_compute_inclusions (result, all_children,
43f3e411 7853 all_type_symtabs, iter, cust);
ec94af83 7854 }
95554aad
TT
7855}
7856
43f3e411 7857/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
7858 PER_CU. */
7859
7860static void
43f3e411 7861compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 7862{
f4dc4d17
DE
7863 gdb_assert (! per_cu->is_debug_types);
7864
796a7ff8 7865 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7866 {
7867 int ix, len;
ec94af83 7868 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
7869 struct compunit_symtab *compunit_symtab_iter;
7870 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 7871 htab_t all_children, all_type_symtabs;
43f3e411 7872 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
7873
7874 /* If we don't have a symtab, we can just skip this case. */
43f3e411 7875 if (cust == NULL)
95554aad
TT
7876 return;
7877
7878 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7879 NULL, xcalloc, xfree);
ec94af83
DE
7880 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7881 NULL, xcalloc, xfree);
95554aad
TT
7882
7883 for (ix = 0;
796a7ff8 7884 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7885 ix, per_cu_iter);
95554aad 7886 ++ix)
ec94af83
DE
7887 {
7888 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 7889 all_type_symtabs, per_cu_iter,
43f3e411 7890 cust);
ec94af83 7891 }
95554aad 7892
ec94af83 7893 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
7894 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7895 cust->includes
95554aad
TT
7896 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7897 (len + 1) * sizeof (struct symtab *));
7898 for (ix = 0;
43f3e411
DE
7899 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7900 compunit_symtab_iter);
95554aad 7901 ++ix)
43f3e411
DE
7902 cust->includes[ix] = compunit_symtab_iter;
7903 cust->includes[len] = NULL;
95554aad 7904
43f3e411 7905 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 7906 htab_delete (all_children);
ec94af83 7907 htab_delete (all_type_symtabs);
95554aad
TT
7908 }
7909}
7910
7911/* Compute the 'includes' field for the symtabs of all the CUs we just
7912 read. */
7913
7914static void
7915process_cu_includes (void)
7916{
7917 int ix;
7918 struct dwarf2_per_cu_data *iter;
7919
7920 for (ix = 0;
7921 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7922 ix, iter);
7923 ++ix)
f4dc4d17
DE
7924 {
7925 if (! iter->is_debug_types)
43f3e411 7926 compute_compunit_symtab_includes (iter);
f4dc4d17 7927 }
95554aad
TT
7928
7929 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7930}
7931
9cdd5dbd 7932/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
7933 already been loaded into memory. */
7934
7935static void
95554aad
TT
7936process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7937 enum language pretend_language)
10b3939b 7938{
10b3939b 7939 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 7940 struct objfile *objfile = per_cu->objfile;
3e29f34a 7941 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 7942 CORE_ADDR lowpc, highpc;
43f3e411 7943 struct compunit_symtab *cust;
3da10d80 7944 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 7945 CORE_ADDR baseaddr;
4359dff1 7946 struct block *static_block;
3e29f34a 7947 CORE_ADDR addr;
10b3939b
DJ
7948
7949 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7950
10b3939b
DJ
7951 buildsym_init ();
7952 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 7953 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
7954
7955 cu->list_in_scope = &file_symbols;
c906108c 7956
95554aad
TT
7957 cu->language = pretend_language;
7958 cu->language_defn = language_def (cu->language);
7959
c906108c 7960 /* Do line number decoding in read_file_scope () */
10b3939b 7961 process_die (cu->dies, cu);
c906108c 7962
a766d390
DE
7963 /* For now fudge the Go package. */
7964 if (cu->language == language_go)
7965 fixup_go_packaging (cu);
7966
3da10d80
KS
7967 /* Now that we have processed all the DIEs in the CU, all the types
7968 should be complete, and it should now be safe to compute all of the
7969 physnames. */
7970 compute_delayed_physnames (cu);
7971 do_cleanups (delayed_list_cleanup);
7972
fae299cd
DC
7973 /* Some compilers don't define a DW_AT_high_pc attribute for the
7974 compilation unit. If the DW_AT_high_pc is missing, synthesize
7975 it, by scanning the DIE's below the compilation unit. */
10b3939b 7976 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 7977
3e29f34a
MR
7978 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
7979 static_block = end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
7980
7981 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7982 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7983 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7984 addrmap to help ensure it has an accurate map of pc values belonging to
7985 this comp unit. */
7986 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7987
43f3e411
DE
7988 cust = end_symtab_from_static_block (static_block,
7989 SECT_OFF_TEXT (objfile), 0);
c906108c 7990
43f3e411 7991 if (cust != NULL)
c906108c 7992 {
df15bd07 7993 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 7994
8be455d7
JK
7995 /* Set symtab language to language from DW_AT_language. If the
7996 compilation is from a C file generated by language preprocessors, do
7997 not set the language if it was already deduced by start_subfile. */
43f3e411
DE
7998 if (!(cu->language == language_c
7999 && COMPUNIT_FILETABS (cust)->language != language_c))
8000 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
8001
8002 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8003 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
8004 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8005 there were bugs in prologue debug info, fixed later in GCC-4.5
8006 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
8007
8008 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8009 needed, it would be wrong due to missing DW_AT_producer there.
8010
8011 Still one can confuse GDB by using non-standard GCC compilation
8012 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8013 */
ab260dad 8014 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 8015 cust->locations_valid = 1;
e0d00bc7
JK
8016
8017 if (gcc_4_minor >= 5)
43f3e411 8018 cust->epilogue_unwind_valid = 1;
96408a79 8019
43f3e411 8020 cust->call_site_htab = cu->call_site_htab;
c906108c 8021 }
9291a0cd
TT
8022
8023 if (dwarf2_per_objfile->using_index)
43f3e411 8024 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
8025 else
8026 {
8027 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8028 pst->compunit_symtab = cust;
9291a0cd
TT
8029 pst->readin = 1;
8030 }
c906108c 8031
95554aad
TT
8032 /* Push it for inclusion processing later. */
8033 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8034
c906108c 8035 do_cleanups (back_to);
f4dc4d17 8036}
45cfd468 8037
f4dc4d17
DE
8038/* Generate full symbol information for type unit PER_CU, whose DIEs have
8039 already been loaded into memory. */
8040
8041static void
8042process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8043 enum language pretend_language)
8044{
8045 struct dwarf2_cu *cu = per_cu->cu;
8046 struct objfile *objfile = per_cu->objfile;
43f3e411 8047 struct compunit_symtab *cust;
f4dc4d17 8048 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8049 struct signatured_type *sig_type;
8050
8051 gdb_assert (per_cu->is_debug_types);
8052 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8053
8054 buildsym_init ();
8055 back_to = make_cleanup (really_free_pendings, NULL);
8056 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8057
8058 cu->list_in_scope = &file_symbols;
8059
8060 cu->language = pretend_language;
8061 cu->language_defn = language_def (cu->language);
8062
8063 /* The symbol tables are set up in read_type_unit_scope. */
8064 process_die (cu->dies, cu);
8065
8066 /* For now fudge the Go package. */
8067 if (cu->language == language_go)
8068 fixup_go_packaging (cu);
8069
8070 /* Now that we have processed all the DIEs in the CU, all the types
8071 should be complete, and it should now be safe to compute all of the
8072 physnames. */
8073 compute_delayed_physnames (cu);
8074 do_cleanups (delayed_list_cleanup);
8075
8076 /* TUs share symbol tables.
8077 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8078 of it with end_expandable_symtab. Otherwise, complete the addition of
8079 this TU's symbols to the existing symtab. */
43f3e411 8080 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 8081 {
43f3e411
DE
8082 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8083 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 8084
43f3e411 8085 if (cust != NULL)
f4dc4d17
DE
8086 {
8087 /* Set symtab language to language from DW_AT_language. If the
8088 compilation is from a C file generated by language preprocessors,
8089 do not set the language if it was already deduced by
8090 start_subfile. */
43f3e411
DE
8091 if (!(cu->language == language_c
8092 && COMPUNIT_FILETABS (cust)->language != language_c))
8093 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
8094 }
8095 }
8096 else
8097 {
0ab9ce85 8098 augment_type_symtab ();
43f3e411 8099 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
8100 }
8101
8102 if (dwarf2_per_objfile->using_index)
43f3e411 8103 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
8104 else
8105 {
8106 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8107 pst->compunit_symtab = cust;
f4dc4d17 8108 pst->readin = 1;
45cfd468 8109 }
f4dc4d17
DE
8110
8111 do_cleanups (back_to);
c906108c
SS
8112}
8113
95554aad
TT
8114/* Process an imported unit DIE. */
8115
8116static void
8117process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8118{
8119 struct attribute *attr;
8120
f4dc4d17
DE
8121 /* For now we don't handle imported units in type units. */
8122 if (cu->per_cu->is_debug_types)
8123 {
8124 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8125 " supported in type units [in module %s]"),
4262abfb 8126 objfile_name (cu->objfile));
f4dc4d17
DE
8127 }
8128
95554aad
TT
8129 attr = dwarf2_attr (die, DW_AT_import, cu);
8130 if (attr != NULL)
8131 {
8132 struct dwarf2_per_cu_data *per_cu;
8133 struct symtab *imported_symtab;
8134 sect_offset offset;
36586728 8135 int is_dwz;
95554aad
TT
8136
8137 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
8138 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8139 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 8140
69d751e3 8141 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8142 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8143 load_full_comp_unit (per_cu, cu->language);
8144
796a7ff8 8145 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8146 per_cu);
8147 }
8148}
8149
adde2bff
DE
8150/* Reset the in_process bit of a die. */
8151
8152static void
8153reset_die_in_process (void *arg)
8154{
8155 struct die_info *die = arg;
8c3cb9fa 8156
adde2bff
DE
8157 die->in_process = 0;
8158}
8159
c906108c
SS
8160/* Process a die and its children. */
8161
8162static void
e7c27a73 8163process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8164{
adde2bff
DE
8165 struct cleanup *in_process;
8166
8167 /* We should only be processing those not already in process. */
8168 gdb_assert (!die->in_process);
8169
8170 die->in_process = 1;
8171 in_process = make_cleanup (reset_die_in_process,die);
8172
c906108c
SS
8173 switch (die->tag)
8174 {
8175 case DW_TAG_padding:
8176 break;
8177 case DW_TAG_compile_unit:
95554aad 8178 case DW_TAG_partial_unit:
e7c27a73 8179 read_file_scope (die, cu);
c906108c 8180 break;
348e048f
DE
8181 case DW_TAG_type_unit:
8182 read_type_unit_scope (die, cu);
8183 break;
c906108c 8184 case DW_TAG_subprogram:
c906108c 8185 case DW_TAG_inlined_subroutine:
edb3359d 8186 read_func_scope (die, cu);
c906108c
SS
8187 break;
8188 case DW_TAG_lexical_block:
14898363
L
8189 case DW_TAG_try_block:
8190 case DW_TAG_catch_block:
e7c27a73 8191 read_lexical_block_scope (die, cu);
c906108c 8192 break;
96408a79
SA
8193 case DW_TAG_GNU_call_site:
8194 read_call_site_scope (die, cu);
8195 break;
c906108c 8196 case DW_TAG_class_type:
680b30c7 8197 case DW_TAG_interface_type:
c906108c
SS
8198 case DW_TAG_structure_type:
8199 case DW_TAG_union_type:
134d01f1 8200 process_structure_scope (die, cu);
c906108c
SS
8201 break;
8202 case DW_TAG_enumeration_type:
134d01f1 8203 process_enumeration_scope (die, cu);
c906108c 8204 break;
134d01f1 8205
f792889a
DJ
8206 /* These dies have a type, but processing them does not create
8207 a symbol or recurse to process the children. Therefore we can
8208 read them on-demand through read_type_die. */
c906108c 8209 case DW_TAG_subroutine_type:
72019c9c 8210 case DW_TAG_set_type:
c906108c 8211 case DW_TAG_array_type:
c906108c 8212 case DW_TAG_pointer_type:
c906108c 8213 case DW_TAG_ptr_to_member_type:
c906108c 8214 case DW_TAG_reference_type:
c906108c 8215 case DW_TAG_string_type:
c906108c 8216 break;
134d01f1 8217
c906108c 8218 case DW_TAG_base_type:
a02abb62 8219 case DW_TAG_subrange_type:
cb249c71 8220 case DW_TAG_typedef:
134d01f1
DJ
8221 /* Add a typedef symbol for the type definition, if it has a
8222 DW_AT_name. */
f792889a 8223 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8224 break;
c906108c 8225 case DW_TAG_common_block:
e7c27a73 8226 read_common_block (die, cu);
c906108c
SS
8227 break;
8228 case DW_TAG_common_inclusion:
8229 break;
d9fa45fe 8230 case DW_TAG_namespace:
4d4ec4e5 8231 cu->processing_has_namespace_info = 1;
e7c27a73 8232 read_namespace (die, cu);
d9fa45fe 8233 break;
5d7cb8df 8234 case DW_TAG_module:
4d4ec4e5 8235 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8236 read_module (die, cu);
8237 break;
d9fa45fe 8238 case DW_TAG_imported_declaration:
74921315
KS
8239 cu->processing_has_namespace_info = 1;
8240 if (read_namespace_alias (die, cu))
8241 break;
8242 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8243 case DW_TAG_imported_module:
4d4ec4e5 8244 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8245 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8246 || cu->language != language_fortran))
8247 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8248 dwarf_tag_name (die->tag));
8249 read_import_statement (die, cu);
d9fa45fe 8250 break;
95554aad
TT
8251
8252 case DW_TAG_imported_unit:
8253 process_imported_unit_die (die, cu);
8254 break;
8255
c906108c 8256 default:
e7c27a73 8257 new_symbol (die, NULL, cu);
c906108c
SS
8258 break;
8259 }
adde2bff
DE
8260
8261 do_cleanups (in_process);
c906108c 8262}
ca69b9e6
DE
8263\f
8264/* DWARF name computation. */
c906108c 8265
94af9270
KS
8266/* A helper function for dwarf2_compute_name which determines whether DIE
8267 needs to have the name of the scope prepended to the name listed in the
8268 die. */
8269
8270static int
8271die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8272{
1c809c68
TT
8273 struct attribute *attr;
8274
94af9270
KS
8275 switch (die->tag)
8276 {
8277 case DW_TAG_namespace:
8278 case DW_TAG_typedef:
8279 case DW_TAG_class_type:
8280 case DW_TAG_interface_type:
8281 case DW_TAG_structure_type:
8282 case DW_TAG_union_type:
8283 case DW_TAG_enumeration_type:
8284 case DW_TAG_enumerator:
8285 case DW_TAG_subprogram:
8286 case DW_TAG_member:
74921315 8287 case DW_TAG_imported_declaration:
94af9270
KS
8288 return 1;
8289
8290 case DW_TAG_variable:
c2b0a229 8291 case DW_TAG_constant:
94af9270
KS
8292 /* We only need to prefix "globally" visible variables. These include
8293 any variable marked with DW_AT_external or any variable that
8294 lives in a namespace. [Variables in anonymous namespaces
8295 require prefixing, but they are not DW_AT_external.] */
8296
8297 if (dwarf2_attr (die, DW_AT_specification, cu))
8298 {
8299 struct dwarf2_cu *spec_cu = cu;
9a619af0 8300
94af9270
KS
8301 return die_needs_namespace (die_specification (die, &spec_cu),
8302 spec_cu);
8303 }
8304
1c809c68 8305 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8306 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8307 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8308 return 0;
8309 /* A variable in a lexical block of some kind does not need a
8310 namespace, even though in C++ such variables may be external
8311 and have a mangled name. */
8312 if (die->parent->tag == DW_TAG_lexical_block
8313 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8314 || die->parent->tag == DW_TAG_catch_block
8315 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8316 return 0;
8317 return 1;
94af9270
KS
8318
8319 default:
8320 return 0;
8321 }
8322}
8323
98bfdba5
PA
8324/* Retrieve the last character from a mem_file. */
8325
8326static void
8327do_ui_file_peek_last (void *object, const char *buffer, long length)
8328{
8329 char *last_char_p = (char *) object;
8330
8331 if (length > 0)
8332 *last_char_p = buffer[length - 1];
8333}
8334
94af9270 8335/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
8336 compute the physname for the object, which include a method's:
8337 - formal parameters (C++/Java),
8338 - receiver type (Go),
8339 - return type (Java).
8340
8341 The term "physname" is a bit confusing.
8342 For C++, for example, it is the demangled name.
8343 For Go, for example, it's the mangled name.
94af9270 8344
af6b7be1
JB
8345 For Ada, return the DIE's linkage name rather than the fully qualified
8346 name. PHYSNAME is ignored..
8347
94af9270
KS
8348 The result is allocated on the objfile_obstack and canonicalized. */
8349
8350static const char *
15d034d0
TT
8351dwarf2_compute_name (const char *name,
8352 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8353 int physname)
8354{
bb5ed363
DE
8355 struct objfile *objfile = cu->objfile;
8356
94af9270
KS
8357 if (name == NULL)
8358 name = dwarf2_name (die, cu);
8359
f55ee35c
JK
8360 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8361 compute it by typename_concat inside GDB. */
8362 if (cu->language == language_ada
8363 || (cu->language == language_fortran && physname))
8364 {
8365 /* For Ada unit, we prefer the linkage name over the name, as
8366 the former contains the exported name, which the user expects
8367 to be able to reference. Ideally, we want the user to be able
8368 to reference this entity using either natural or linkage name,
8369 but we haven't started looking at this enhancement yet. */
8370 struct attribute *attr;
8371
8372 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8373 if (attr == NULL)
8374 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8375 if (attr && DW_STRING (attr))
8376 return DW_STRING (attr);
8377 }
8378
94af9270
KS
8379 /* These are the only languages we know how to qualify names in. */
8380 if (name != NULL
f55ee35c
JK
8381 && (cu->language == language_cplus || cu->language == language_java
8382 || cu->language == language_fortran))
94af9270
KS
8383 {
8384 if (die_needs_namespace (die, cu))
8385 {
8386 long length;
0d5cff50 8387 const char *prefix;
94af9270 8388 struct ui_file *buf;
34a68019
TT
8389 char *intermediate_name;
8390 const char *canonical_name = NULL;
94af9270
KS
8391
8392 prefix = determine_prefix (die, cu);
8393 buf = mem_fileopen ();
8394 if (*prefix != '\0')
8395 {
f55ee35c
JK
8396 char *prefixed_name = typename_concat (NULL, prefix, name,
8397 physname, cu);
9a619af0 8398
94af9270
KS
8399 fputs_unfiltered (prefixed_name, buf);
8400 xfree (prefixed_name);
8401 }
8402 else
62d5b8da 8403 fputs_unfiltered (name, buf);
94af9270 8404
98bfdba5
PA
8405 /* Template parameters may be specified in the DIE's DW_AT_name, or
8406 as children with DW_TAG_template_type_param or
8407 DW_TAG_value_type_param. If the latter, add them to the name
8408 here. If the name already has template parameters, then
8409 skip this step; some versions of GCC emit both, and
8410 it is more efficient to use the pre-computed name.
8411
8412 Something to keep in mind about this process: it is very
8413 unlikely, or in some cases downright impossible, to produce
8414 something that will match the mangled name of a function.
8415 If the definition of the function has the same debug info,
8416 we should be able to match up with it anyway. But fallbacks
8417 using the minimal symbol, for instance to find a method
8418 implemented in a stripped copy of libstdc++, will not work.
8419 If we do not have debug info for the definition, we will have to
8420 match them up some other way.
8421
8422 When we do name matching there is a related problem with function
8423 templates; two instantiated function templates are allowed to
8424 differ only by their return types, which we do not add here. */
8425
8426 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8427 {
8428 struct attribute *attr;
8429 struct die_info *child;
8430 int first = 1;
8431
8432 die->building_fullname = 1;
8433
8434 for (child = die->child; child != NULL; child = child->sibling)
8435 {
8436 struct type *type;
12df843f 8437 LONGEST value;
d521ce57 8438 const gdb_byte *bytes;
98bfdba5
PA
8439 struct dwarf2_locexpr_baton *baton;
8440 struct value *v;
8441
8442 if (child->tag != DW_TAG_template_type_param
8443 && child->tag != DW_TAG_template_value_param)
8444 continue;
8445
8446 if (first)
8447 {
8448 fputs_unfiltered ("<", buf);
8449 first = 0;
8450 }
8451 else
8452 fputs_unfiltered (", ", buf);
8453
8454 attr = dwarf2_attr (child, DW_AT_type, cu);
8455 if (attr == NULL)
8456 {
8457 complaint (&symfile_complaints,
8458 _("template parameter missing DW_AT_type"));
8459 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8460 continue;
8461 }
8462 type = die_type (child, cu);
8463
8464 if (child->tag == DW_TAG_template_type_param)
8465 {
79d43c61 8466 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8467 continue;
8468 }
8469
8470 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8471 if (attr == NULL)
8472 {
8473 complaint (&symfile_complaints,
3e43a32a
MS
8474 _("template parameter missing "
8475 "DW_AT_const_value"));
98bfdba5
PA
8476 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8477 continue;
8478 }
8479
8480 dwarf2_const_value_attr (attr, type, name,
8481 &cu->comp_unit_obstack, cu,
8482 &value, &bytes, &baton);
8483
8484 if (TYPE_NOSIGN (type))
8485 /* GDB prints characters as NUMBER 'CHAR'. If that's
8486 changed, this can use value_print instead. */
8487 c_printchar (value, type, buf);
8488 else
8489 {
8490 struct value_print_options opts;
8491
8492 if (baton != NULL)
8493 v = dwarf2_evaluate_loc_desc (type, NULL,
8494 baton->data,
8495 baton->size,
8496 baton->per_cu);
8497 else if (bytes != NULL)
8498 {
8499 v = allocate_value (type);
8500 memcpy (value_contents_writeable (v), bytes,
8501 TYPE_LENGTH (type));
8502 }
8503 else
8504 v = value_from_longest (type, value);
8505
3e43a32a
MS
8506 /* Specify decimal so that we do not depend on
8507 the radix. */
98bfdba5
PA
8508 get_formatted_print_options (&opts, 'd');
8509 opts.raw = 1;
8510 value_print (v, buf, &opts);
8511 release_value (v);
8512 value_free (v);
8513 }
8514 }
8515
8516 die->building_fullname = 0;
8517
8518 if (!first)
8519 {
8520 /* Close the argument list, with a space if necessary
8521 (nested templates). */
8522 char last_char = '\0';
8523 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8524 if (last_char == '>')
8525 fputs_unfiltered (" >", buf);
8526 else
8527 fputs_unfiltered (">", buf);
8528 }
8529 }
8530
94af9270
KS
8531 /* For Java and C++ methods, append formal parameter type
8532 information, if PHYSNAME. */
6e70227d 8533
94af9270
KS
8534 if (physname && die->tag == DW_TAG_subprogram
8535 && (cu->language == language_cplus
8536 || cu->language == language_java))
8537 {
8538 struct type *type = read_type_die (die, cu);
8539
79d43c61
TT
8540 c_type_print_args (type, buf, 1, cu->language,
8541 &type_print_raw_options);
94af9270
KS
8542
8543 if (cu->language == language_java)
8544 {
8545 /* For java, we must append the return type to method
0963b4bd 8546 names. */
94af9270
KS
8547 if (die->tag == DW_TAG_subprogram)
8548 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8549 0, 0, &type_print_raw_options);
94af9270
KS
8550 }
8551 else if (cu->language == language_cplus)
8552 {
60430eff
DJ
8553 /* Assume that an artificial first parameter is
8554 "this", but do not crash if it is not. RealView
8555 marks unnamed (and thus unused) parameters as
8556 artificial; there is no way to differentiate
8557 the two cases. */
94af9270
KS
8558 if (TYPE_NFIELDS (type) > 0
8559 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8560 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8561 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8562 0))))
94af9270
KS
8563 fputs_unfiltered (" const", buf);
8564 }
8565 }
8566
34a68019 8567 intermediate_name = ui_file_xstrdup (buf, &length);
94af9270
KS
8568 ui_file_delete (buf);
8569
8570 if (cu->language == language_cplus)
34a68019
TT
8571 canonical_name
8572 = dwarf2_canonicalize_name (intermediate_name, cu,
8573 &objfile->per_bfd->storage_obstack);
8574
8575 /* If we only computed INTERMEDIATE_NAME, or if
8576 INTERMEDIATE_NAME is already canonical, then we need to
8577 copy it to the appropriate obstack. */
8578 if (canonical_name == NULL || canonical_name == intermediate_name)
8579 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8580 intermediate_name,
8581 strlen (intermediate_name));
8582 else
8583 name = canonical_name;
9a619af0 8584
34a68019 8585 xfree (intermediate_name);
94af9270
KS
8586 }
8587 }
8588
8589 return name;
8590}
8591
0114d602
DJ
8592/* Return the fully qualified name of DIE, based on its DW_AT_name.
8593 If scope qualifiers are appropriate they will be added. The result
34a68019 8594 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8595 not have a name. NAME may either be from a previous call to
8596 dwarf2_name or NULL.
8597
0963b4bd 8598 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8599
8600static const char *
15d034d0 8601dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8602{
94af9270
KS
8603 return dwarf2_compute_name (name, die, cu, 0);
8604}
0114d602 8605
94af9270
KS
8606/* Construct a physname for the given DIE in CU. NAME may either be
8607 from a previous call to dwarf2_name or NULL. The result will be
8608 allocated on the objfile_objstack or NULL if the DIE does not have a
8609 name.
0114d602 8610
94af9270 8611 The output string will be canonicalized (if C++/Java). */
0114d602 8612
94af9270 8613static const char *
15d034d0 8614dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8615{
bb5ed363 8616 struct objfile *objfile = cu->objfile;
900e11f9
JK
8617 struct attribute *attr;
8618 const char *retval, *mangled = NULL, *canon = NULL;
8619 struct cleanup *back_to;
8620 int need_copy = 1;
8621
8622 /* In this case dwarf2_compute_name is just a shortcut not building anything
8623 on its own. */
8624 if (!die_needs_namespace (die, cu))
8625 return dwarf2_compute_name (name, die, cu, 1);
8626
8627 back_to = make_cleanup (null_cleanup, NULL);
8628
8629 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8630 if (!attr)
8631 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8632
8633 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8634 has computed. */
8635 if (attr && DW_STRING (attr))
8636 {
8637 char *demangled;
8638
8639 mangled = DW_STRING (attr);
8640
8641 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8642 type. It is easier for GDB users to search for such functions as
8643 `name(params)' than `long name(params)'. In such case the minimal
8644 symbol names do not match the full symbol names but for template
8645 functions there is never a need to look up their definition from their
8646 declaration so the only disadvantage remains the minimal symbol
8647 variant `long name(params)' does not have the proper inferior type.
8648 */
8649
a766d390
DE
8650 if (cu->language == language_go)
8651 {
8652 /* This is a lie, but we already lie to the caller new_symbol_full.
8653 new_symbol_full assumes we return the mangled name.
8654 This just undoes that lie until things are cleaned up. */
8655 demangled = NULL;
8656 }
8657 else
8658 {
8de20a37
TT
8659 demangled = gdb_demangle (mangled,
8660 (DMGL_PARAMS | DMGL_ANSI
8661 | (cu->language == language_java
8662 ? DMGL_JAVA | DMGL_RET_POSTFIX
8663 : DMGL_RET_DROP)));
a766d390 8664 }
900e11f9
JK
8665 if (demangled)
8666 {
8667 make_cleanup (xfree, demangled);
8668 canon = demangled;
8669 }
8670 else
8671 {
8672 canon = mangled;
8673 need_copy = 0;
8674 }
8675 }
8676
8677 if (canon == NULL || check_physname)
8678 {
8679 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8680
8681 if (canon != NULL && strcmp (physname, canon) != 0)
8682 {
8683 /* It may not mean a bug in GDB. The compiler could also
8684 compute DW_AT_linkage_name incorrectly. But in such case
8685 GDB would need to be bug-to-bug compatible. */
8686
8687 complaint (&symfile_complaints,
8688 _("Computed physname <%s> does not match demangled <%s> "
8689 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8690 physname, canon, mangled, die->offset.sect_off,
8691 objfile_name (objfile));
900e11f9
JK
8692
8693 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8694 is available here - over computed PHYSNAME. It is safer
8695 against both buggy GDB and buggy compilers. */
8696
8697 retval = canon;
8698 }
8699 else
8700 {
8701 retval = physname;
8702 need_copy = 0;
8703 }
8704 }
8705 else
8706 retval = canon;
8707
8708 if (need_copy)
34a68019
TT
8709 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8710 retval, strlen (retval));
900e11f9
JK
8711
8712 do_cleanups (back_to);
8713 return retval;
0114d602
DJ
8714}
8715
74921315
KS
8716/* Inspect DIE in CU for a namespace alias. If one exists, record
8717 a new symbol for it.
8718
8719 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8720
8721static int
8722read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8723{
8724 struct attribute *attr;
8725
8726 /* If the die does not have a name, this is not a namespace
8727 alias. */
8728 attr = dwarf2_attr (die, DW_AT_name, cu);
8729 if (attr != NULL)
8730 {
8731 int num;
8732 struct die_info *d = die;
8733 struct dwarf2_cu *imported_cu = cu;
8734
8735 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8736 keep inspecting DIEs until we hit the underlying import. */
8737#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8738 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8739 {
8740 attr = dwarf2_attr (d, DW_AT_import, cu);
8741 if (attr == NULL)
8742 break;
8743
8744 d = follow_die_ref (d, attr, &imported_cu);
8745 if (d->tag != DW_TAG_imported_declaration)
8746 break;
8747 }
8748
8749 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8750 {
8751 complaint (&symfile_complaints,
8752 _("DIE at 0x%x has too many recursively imported "
8753 "declarations"), d->offset.sect_off);
8754 return 0;
8755 }
8756
8757 if (attr != NULL)
8758 {
8759 struct type *type;
8760 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8761
8762 type = get_die_type_at_offset (offset, cu->per_cu);
8763 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8764 {
8765 /* This declaration is a global namespace alias. Add
8766 a symbol for it whose type is the aliased namespace. */
8767 new_symbol (die, type, cu);
8768 return 1;
8769 }
8770 }
8771 }
8772
8773 return 0;
8774}
8775
27aa8d6a
SW
8776/* Read the import statement specified by the given die and record it. */
8777
8778static void
8779read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8780{
bb5ed363 8781 struct objfile *objfile = cu->objfile;
27aa8d6a 8782 struct attribute *import_attr;
32019081 8783 struct die_info *imported_die, *child_die;
de4affc9 8784 struct dwarf2_cu *imported_cu;
27aa8d6a 8785 const char *imported_name;
794684b6 8786 const char *imported_name_prefix;
13387711
SW
8787 const char *canonical_name;
8788 const char *import_alias;
8789 const char *imported_declaration = NULL;
794684b6 8790 const char *import_prefix;
32019081
JK
8791 VEC (const_char_ptr) *excludes = NULL;
8792 struct cleanup *cleanups;
13387711 8793
27aa8d6a
SW
8794 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8795 if (import_attr == NULL)
8796 {
8797 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8798 dwarf_tag_name (die->tag));
8799 return;
8800 }
8801
de4affc9
CC
8802 imported_cu = cu;
8803 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8804 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8805 if (imported_name == NULL)
8806 {
8807 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8808
8809 The import in the following code:
8810 namespace A
8811 {
8812 typedef int B;
8813 }
8814
8815 int main ()
8816 {
8817 using A::B;
8818 B b;
8819 return b;
8820 }
8821
8822 ...
8823 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8824 <52> DW_AT_decl_file : 1
8825 <53> DW_AT_decl_line : 6
8826 <54> DW_AT_import : <0x75>
8827 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8828 <59> DW_AT_name : B
8829 <5b> DW_AT_decl_file : 1
8830 <5c> DW_AT_decl_line : 2
8831 <5d> DW_AT_type : <0x6e>
8832 ...
8833 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8834 <76> DW_AT_byte_size : 4
8835 <77> DW_AT_encoding : 5 (signed)
8836
8837 imports the wrong die ( 0x75 instead of 0x58 ).
8838 This case will be ignored until the gcc bug is fixed. */
8839 return;
8840 }
8841
82856980
SW
8842 /* Figure out the local name after import. */
8843 import_alias = dwarf2_name (die, cu);
27aa8d6a 8844
794684b6
SW
8845 /* Figure out where the statement is being imported to. */
8846 import_prefix = determine_prefix (die, cu);
8847
8848 /* Figure out what the scope of the imported die is and prepend it
8849 to the name of the imported die. */
de4affc9 8850 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8851
f55ee35c
JK
8852 if (imported_die->tag != DW_TAG_namespace
8853 && imported_die->tag != DW_TAG_module)
794684b6 8854 {
13387711
SW
8855 imported_declaration = imported_name;
8856 canonical_name = imported_name_prefix;
794684b6 8857 }
13387711 8858 else if (strlen (imported_name_prefix) > 0)
12aaed36
TT
8859 canonical_name = obconcat (&objfile->objfile_obstack,
8860 imported_name_prefix, "::", imported_name,
8861 (char *) NULL);
13387711
SW
8862 else
8863 canonical_name = imported_name;
794684b6 8864
32019081
JK
8865 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8866
8867 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8868 for (child_die = die->child; child_die && child_die->tag;
8869 child_die = sibling_die (child_die))
8870 {
8871 /* DWARF-4: A Fortran use statement with a “rename list” may be
8872 represented by an imported module entry with an import attribute
8873 referring to the module and owned entries corresponding to those
8874 entities that are renamed as part of being imported. */
8875
8876 if (child_die->tag != DW_TAG_imported_declaration)
8877 {
8878 complaint (&symfile_complaints,
8879 _("child DW_TAG_imported_declaration expected "
8880 "- DIE at 0x%x [in module %s]"),
4262abfb 8881 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8882 continue;
8883 }
8884
8885 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8886 if (import_attr == NULL)
8887 {
8888 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8889 dwarf_tag_name (child_die->tag));
8890 continue;
8891 }
8892
8893 imported_cu = cu;
8894 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8895 &imported_cu);
8896 imported_name = dwarf2_name (imported_die, imported_cu);
8897 if (imported_name == NULL)
8898 {
8899 complaint (&symfile_complaints,
8900 _("child DW_TAG_imported_declaration has unknown "
8901 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 8902 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8903 continue;
8904 }
8905
8906 VEC_safe_push (const_char_ptr, excludes, imported_name);
8907
8908 process_die (child_die, cu);
8909 }
8910
c0cc3a76
SW
8911 cp_add_using_directive (import_prefix,
8912 canonical_name,
8913 import_alias,
13387711 8914 imported_declaration,
32019081 8915 excludes,
12aaed36 8916 0,
bb5ed363 8917 &objfile->objfile_obstack);
32019081
JK
8918
8919 do_cleanups (cleanups);
27aa8d6a
SW
8920}
8921
f4dc4d17 8922/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 8923
cb1df416
DJ
8924static void
8925free_cu_line_header (void *arg)
8926{
8927 struct dwarf2_cu *cu = arg;
8928
8929 free_line_header (cu->line_header);
8930 cu->line_header = NULL;
8931}
8932
1b80a9fa
JK
8933/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8934 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8935 this, it was first present in GCC release 4.3.0. */
8936
8937static int
8938producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8939{
8940 if (!cu->checked_producer)
8941 check_producer (cu);
8942
8943 return cu->producer_is_gcc_lt_4_3;
8944}
8945
9291a0cd
TT
8946static void
8947find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 8948 const char **name, const char **comp_dir)
9291a0cd
TT
8949{
8950 struct attribute *attr;
8951
8952 *name = NULL;
8953 *comp_dir = NULL;
8954
8955 /* Find the filename. Do not use dwarf2_name here, since the filename
8956 is not a source language identifier. */
8957 attr = dwarf2_attr (die, DW_AT_name, cu);
8958 if (attr)
8959 {
8960 *name = DW_STRING (attr);
8961 }
8962
8963 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8964 if (attr)
8965 *comp_dir = DW_STRING (attr);
1b80a9fa
JK
8966 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8967 && IS_ABSOLUTE_PATH (*name))
9291a0cd 8968 {
15d034d0
TT
8969 char *d = ldirname (*name);
8970
8971 *comp_dir = d;
8972 if (d != NULL)
8973 make_cleanup (xfree, d);
9291a0cd
TT
8974 }
8975 if (*comp_dir != NULL)
8976 {
8977 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8978 directory, get rid of it. */
8979 char *cp = strchr (*comp_dir, ':');
8980
8981 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8982 *comp_dir = cp + 1;
8983 }
8984
8985 if (*name == NULL)
8986 *name = "<unknown>";
8987}
8988
f4dc4d17
DE
8989/* Handle DW_AT_stmt_list for a compilation unit.
8990 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
8991 COMP_DIR is the compilation directory. LOWPC is passed to
8992 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
8993
8994static void
8995handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 8996 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328
TT
8997{
8998 struct attribute *attr;
2ab95328 8999
f4dc4d17
DE
9000 gdb_assert (! cu->per_cu->is_debug_types);
9001
2ab95328
TT
9002 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9003 if (attr)
9004 {
9005 unsigned int line_offset = DW_UNSND (attr);
9006 struct line_header *line_header
3019eac3 9007 = dwarf_decode_line_header (line_offset, cu);
2ab95328
TT
9008
9009 if (line_header)
dee91e82
DE
9010 {
9011 cu->line_header = line_header;
9012 make_cleanup (free_cu_line_header, cu);
c3b7b696 9013 dwarf_decode_lines (line_header, comp_dir, cu, NULL, lowpc);
dee91e82 9014 }
2ab95328
TT
9015 }
9016}
9017
95554aad 9018/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 9019
c906108c 9020static void
e7c27a73 9021read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9022{
dee91e82 9023 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 9024 struct gdbarch *gdbarch = get_objfile_arch (objfile);
debd256d 9025 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 9026 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9027 CORE_ADDR highpc = ((CORE_ADDR) 0);
9028 struct attribute *attr;
15d034d0
TT
9029 const char *name = NULL;
9030 const char *comp_dir = NULL;
c906108c
SS
9031 struct die_info *child_die;
9032 bfd *abfd = objfile->obfd;
e142c38c 9033 CORE_ADDR baseaddr;
6e70227d 9034
e142c38c 9035 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9036
fae299cd 9037 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9038
9039 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9040 from finish_block. */
2acceee2 9041 if (lowpc == ((CORE_ADDR) -1))
c906108c 9042 lowpc = highpc;
3e29f34a 9043 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 9044
9291a0cd 9045 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 9046
95554aad 9047 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9048
f4b8a18d
KW
9049 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9050 standardised yet. As a workaround for the language detection we fall
9051 back to the DW_AT_producer string. */
9052 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9053 cu->language = language_opencl;
9054
3019eac3
DE
9055 /* Similar hack for Go. */
9056 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9057 set_cu_language (DW_LANG_Go, cu);
9058
f4dc4d17 9059 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
9060
9061 /* Decode line number information if present. We do this before
9062 processing child DIEs, so that the line header table is available
9063 for DW_AT_decl_file. */
c3b7b696 9064 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
3019eac3
DE
9065
9066 /* Process all dies in compilation unit. */
9067 if (die->child != NULL)
9068 {
9069 child_die = die->child;
9070 while (child_die && child_die->tag)
9071 {
9072 process_die (child_die, cu);
9073 child_die = sibling_die (child_die);
9074 }
9075 }
9076
9077 /* Decode macro information, if present. Dwarf 2 macro information
9078 refers to information in the line number info statement program
9079 header, so we can only read it if we've read the header
9080 successfully. */
9081 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9082 if (attr && cu->line_header)
9083 {
9084 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9085 complaint (&symfile_complaints,
9086 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9087
43f3e411 9088 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
9089 }
9090 else
9091 {
9092 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9093 if (attr && cu->line_header)
9094 {
9095 unsigned int macro_offset = DW_UNSND (attr);
9096
43f3e411 9097 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
9098 }
9099 }
9100
9101 do_cleanups (back_to);
9102}
9103
f4dc4d17
DE
9104/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9105 Create the set of symtabs used by this TU, or if this TU is sharing
9106 symtabs with another TU and the symtabs have already been created
9107 then restore those symtabs in the line header.
9108 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9109
9110static void
f4dc4d17 9111setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9112{
f4dc4d17
DE
9113 struct objfile *objfile = dwarf2_per_objfile->objfile;
9114 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9115 struct type_unit_group *tu_group;
9116 int first_time;
9117 struct line_header *lh;
3019eac3 9118 struct attribute *attr;
f4dc4d17 9119 unsigned int i, line_offset;
0186c6a7 9120 struct signatured_type *sig_type;
3019eac3 9121
f4dc4d17 9122 gdb_assert (per_cu->is_debug_types);
0186c6a7 9123 sig_type = (struct signatured_type *) per_cu;
3019eac3 9124
f4dc4d17 9125 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9126
f4dc4d17 9127 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9128 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9129 if (sig_type->type_unit_group == NULL)
9130 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9131 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9132
9133 /* If we've already processed this stmt_list there's no real need to
9134 do it again, we could fake it and just recreate the part we need
9135 (file name,index -> symtab mapping). If data shows this optimization
9136 is useful we can do it then. */
43f3e411 9137 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
9138
9139 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9140 debug info. */
9141 lh = NULL;
9142 if (attr != NULL)
3019eac3 9143 {
f4dc4d17
DE
9144 line_offset = DW_UNSND (attr);
9145 lh = dwarf_decode_line_header (line_offset, cu);
9146 }
9147 if (lh == NULL)
9148 {
9149 if (first_time)
9150 dwarf2_start_symtab (cu, "", NULL, 0);
9151 else
9152 {
9153 gdb_assert (tu_group->symtabs == NULL);
0ab9ce85 9154 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17 9155 }
f4dc4d17 9156 return;
3019eac3
DE
9157 }
9158
f4dc4d17
DE
9159 cu->line_header = lh;
9160 make_cleanup (free_cu_line_header, cu);
3019eac3 9161
f4dc4d17
DE
9162 if (first_time)
9163 {
43f3e411 9164 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9165
f4dc4d17
DE
9166 tu_group->num_symtabs = lh->num_file_names;
9167 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 9168
f4dc4d17
DE
9169 for (i = 0; i < lh->num_file_names; ++i)
9170 {
d521ce57 9171 const char *dir = NULL;
f4dc4d17 9172 struct file_entry *fe = &lh->file_names[i];
3019eac3 9173
f4dc4d17
DE
9174 if (fe->dir_index)
9175 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 9176 dwarf2_start_subfile (fe->name, dir);
3019eac3 9177
f4dc4d17
DE
9178 if (current_subfile->symtab == NULL)
9179 {
9180 /* NOTE: start_subfile will recognize when it's been passed
9181 a file it has already seen. So we can't assume there's a
43f3e411 9182 simple mapping from lh->file_names to subfiles, plus
f4dc4d17 9183 lh->file_names may contain dups. */
43f3e411
DE
9184 current_subfile->symtab
9185 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
9186 }
9187
9188 fe->symtab = current_subfile->symtab;
9189 tu_group->symtabs[i] = fe->symtab;
9190 }
9191 }
9192 else
3019eac3 9193 {
0ab9ce85 9194 restart_symtab (tu_group->compunit_symtab, "", 0);
f4dc4d17
DE
9195
9196 for (i = 0; i < lh->num_file_names; ++i)
9197 {
9198 struct file_entry *fe = &lh->file_names[i];
9199
9200 fe->symtab = tu_group->symtabs[i];
9201 }
3019eac3
DE
9202 }
9203
f4dc4d17
DE
9204 /* The main symtab is allocated last. Type units don't have DW_AT_name
9205 so they don't have a "real" (so to speak) symtab anyway.
9206 There is later code that will assign the main symtab to all symbols
9207 that don't have one. We need to handle the case of a symbol with a
9208 missing symtab (DW_AT_decl_file) anyway. */
9209}
3019eac3 9210
f4dc4d17
DE
9211/* Process DW_TAG_type_unit.
9212 For TUs we want to skip the first top level sibling if it's not the
9213 actual type being defined by this TU. In this case the first top
9214 level sibling is there to provide context only. */
3019eac3 9215
f4dc4d17
DE
9216static void
9217read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9218{
9219 struct die_info *child_die;
3019eac3 9220
f4dc4d17
DE
9221 prepare_one_comp_unit (cu, die, language_minimal);
9222
9223 /* Initialize (or reinitialize) the machinery for building symtabs.
9224 We do this before processing child DIEs, so that the line header table
9225 is available for DW_AT_decl_file. */
9226 setup_type_unit_groups (die, cu);
9227
9228 if (die->child != NULL)
9229 {
9230 child_die = die->child;
9231 while (child_die && child_die->tag)
9232 {
9233 process_die (child_die, cu);
9234 child_die = sibling_die (child_die);
9235 }
9236 }
3019eac3
DE
9237}
9238\f
80626a55
DE
9239/* DWO/DWP files.
9240
9241 http://gcc.gnu.org/wiki/DebugFission
9242 http://gcc.gnu.org/wiki/DebugFissionDWP
9243
9244 To simplify handling of both DWO files ("object" files with the DWARF info)
9245 and DWP files (a file with the DWOs packaged up into one file), we treat
9246 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9247
9248static hashval_t
9249hash_dwo_file (const void *item)
9250{
9251 const struct dwo_file *dwo_file = item;
a2ce51a0 9252 hashval_t hash;
3019eac3 9253
a2ce51a0
DE
9254 hash = htab_hash_string (dwo_file->dwo_name);
9255 if (dwo_file->comp_dir != NULL)
9256 hash += htab_hash_string (dwo_file->comp_dir);
9257 return hash;
3019eac3
DE
9258}
9259
9260static int
9261eq_dwo_file (const void *item_lhs, const void *item_rhs)
9262{
9263 const struct dwo_file *lhs = item_lhs;
9264 const struct dwo_file *rhs = item_rhs;
9265
a2ce51a0
DE
9266 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9267 return 0;
9268 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9269 return lhs->comp_dir == rhs->comp_dir;
9270 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9271}
9272
9273/* Allocate a hash table for DWO files. */
9274
9275static htab_t
9276allocate_dwo_file_hash_table (void)
9277{
9278 struct objfile *objfile = dwarf2_per_objfile->objfile;
9279
9280 return htab_create_alloc_ex (41,
9281 hash_dwo_file,
9282 eq_dwo_file,
9283 NULL,
9284 &objfile->objfile_obstack,
9285 hashtab_obstack_allocate,
9286 dummy_obstack_deallocate);
9287}
9288
80626a55
DE
9289/* Lookup DWO file DWO_NAME. */
9290
9291static void **
0ac5b59e 9292lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9293{
9294 struct dwo_file find_entry;
9295 void **slot;
9296
9297 if (dwarf2_per_objfile->dwo_files == NULL)
9298 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9299
9300 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9301 find_entry.dwo_name = dwo_name;
9302 find_entry.comp_dir = comp_dir;
80626a55
DE
9303 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9304
9305 return slot;
9306}
9307
3019eac3
DE
9308static hashval_t
9309hash_dwo_unit (const void *item)
9310{
9311 const struct dwo_unit *dwo_unit = item;
9312
9313 /* This drops the top 32 bits of the id, but is ok for a hash. */
9314 return dwo_unit->signature;
9315}
9316
9317static int
9318eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9319{
9320 const struct dwo_unit *lhs = item_lhs;
9321 const struct dwo_unit *rhs = item_rhs;
9322
9323 /* The signature is assumed to be unique within the DWO file.
9324 So while object file CU dwo_id's always have the value zero,
9325 that's OK, assuming each object file DWO file has only one CU,
9326 and that's the rule for now. */
9327 return lhs->signature == rhs->signature;
9328}
9329
9330/* Allocate a hash table for DWO CUs,TUs.
9331 There is one of these tables for each of CUs,TUs for each DWO file. */
9332
9333static htab_t
9334allocate_dwo_unit_table (struct objfile *objfile)
9335{
9336 /* Start out with a pretty small number.
9337 Generally DWO files contain only one CU and maybe some TUs. */
9338 return htab_create_alloc_ex (3,
9339 hash_dwo_unit,
9340 eq_dwo_unit,
9341 NULL,
9342 &objfile->objfile_obstack,
9343 hashtab_obstack_allocate,
9344 dummy_obstack_deallocate);
9345}
9346
80626a55 9347/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9348
19c3d4c9 9349struct create_dwo_cu_data
3019eac3
DE
9350{
9351 struct dwo_file *dwo_file;
19c3d4c9 9352 struct dwo_unit dwo_unit;
3019eac3
DE
9353};
9354
19c3d4c9 9355/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9356
9357static void
19c3d4c9
DE
9358create_dwo_cu_reader (const struct die_reader_specs *reader,
9359 const gdb_byte *info_ptr,
9360 struct die_info *comp_unit_die,
9361 int has_children,
9362 void *datap)
3019eac3
DE
9363{
9364 struct dwarf2_cu *cu = reader->cu;
9365 struct objfile *objfile = dwarf2_per_objfile->objfile;
9366 sect_offset offset = cu->per_cu->offset;
8a0459fd 9367 struct dwarf2_section_info *section = cu->per_cu->section;
19c3d4c9 9368 struct create_dwo_cu_data *data = datap;
3019eac3 9369 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9370 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9371 struct attribute *attr;
3019eac3
DE
9372
9373 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9374 if (attr == NULL)
9375 {
19c3d4c9
DE
9376 complaint (&symfile_complaints,
9377 _("Dwarf Error: debug entry at offset 0x%x is missing"
9378 " its dwo_id [in module %s]"),
9379 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9380 return;
9381 }
9382
3019eac3
DE
9383 dwo_unit->dwo_file = dwo_file;
9384 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9385 dwo_unit->section = section;
3019eac3
DE
9386 dwo_unit->offset = offset;
9387 dwo_unit->length = cu->per_cu->length;
9388
09406207 9389 if (dwarf2_read_debug)
4031ecc5
DE
9390 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9391 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9392}
9393
19c3d4c9
DE
9394/* Create the dwo_unit for the lone CU in DWO_FILE.
9395 Note: This function processes DWO files only, not DWP files. */
3019eac3 9396
19c3d4c9
DE
9397static struct dwo_unit *
9398create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9399{
9400 struct objfile *objfile = dwarf2_per_objfile->objfile;
9401 struct dwarf2_section_info *section = &dwo_file->sections.info;
9402 bfd *abfd;
9403 htab_t cu_htab;
d521ce57 9404 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9405 struct create_dwo_cu_data create_dwo_cu_data;
9406 struct dwo_unit *dwo_unit;
3019eac3
DE
9407
9408 dwarf2_read_section (objfile, section);
9409 info_ptr = section->buffer;
9410
9411 if (info_ptr == NULL)
9412 return NULL;
9413
9414 /* We can't set abfd until now because the section may be empty or
9415 not present, in which case section->asection will be NULL. */
a32a8923 9416 abfd = get_section_bfd_owner (section);
3019eac3 9417
09406207 9418 if (dwarf2_read_debug)
19c3d4c9
DE
9419 {
9420 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9421 get_section_name (section),
9422 get_section_file_name (section));
19c3d4c9 9423 }
3019eac3 9424
19c3d4c9
DE
9425 create_dwo_cu_data.dwo_file = dwo_file;
9426 dwo_unit = NULL;
3019eac3
DE
9427
9428 end_ptr = info_ptr + section->size;
9429 while (info_ptr < end_ptr)
9430 {
9431 struct dwarf2_per_cu_data per_cu;
9432
19c3d4c9
DE
9433 memset (&create_dwo_cu_data.dwo_unit, 0,
9434 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9435 memset (&per_cu, 0, sizeof (per_cu));
9436 per_cu.objfile = objfile;
9437 per_cu.is_debug_types = 0;
9438 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9439 per_cu.section = section;
3019eac3 9440
33e80786 9441 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
19c3d4c9
DE
9442 create_dwo_cu_reader,
9443 &create_dwo_cu_data);
9444
9445 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9446 {
9447 /* If we've already found one, complain. We only support one
9448 because having more than one requires hacking the dwo_name of
9449 each to match, which is highly unlikely to happen. */
9450 if (dwo_unit != NULL)
9451 {
9452 complaint (&symfile_complaints,
9453 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9454 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9455 break;
9456 }
9457
9458 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9459 *dwo_unit = create_dwo_cu_data.dwo_unit;
9460 }
3019eac3
DE
9461
9462 info_ptr += per_cu.length;
9463 }
9464
19c3d4c9 9465 return dwo_unit;
3019eac3
DE
9466}
9467
80626a55
DE
9468/* DWP file .debug_{cu,tu}_index section format:
9469 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9470
d2415c6c
DE
9471 DWP Version 1:
9472
80626a55
DE
9473 Both index sections have the same format, and serve to map a 64-bit
9474 signature to a set of section numbers. Each section begins with a header,
9475 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9476 indexes, and a pool of 32-bit section numbers. The index sections will be
9477 aligned at 8-byte boundaries in the file.
9478
d2415c6c
DE
9479 The index section header consists of:
9480
9481 V, 32 bit version number
9482 -, 32 bits unused
9483 N, 32 bit number of compilation units or type units in the index
9484 M, 32 bit number of slots in the hash table
80626a55 9485
d2415c6c 9486 Numbers are recorded using the byte order of the application binary.
80626a55 9487
d2415c6c
DE
9488 The hash table begins at offset 16 in the section, and consists of an array
9489 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9490 order of the application binary). Unused slots in the hash table are 0.
9491 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9492
d2415c6c
DE
9493 The parallel table begins immediately after the hash table
9494 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9495 array of 32-bit indexes (using the byte order of the application binary),
9496 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9497 table contains a 32-bit index into the pool of section numbers. For unused
9498 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9499
73869dc2
DE
9500 The pool of section numbers begins immediately following the hash table
9501 (at offset 16 + 12 * M from the beginning of the section). The pool of
9502 section numbers consists of an array of 32-bit words (using the byte order
9503 of the application binary). Each item in the array is indexed starting
9504 from 0. The hash table entry provides the index of the first section
9505 number in the set. Additional section numbers in the set follow, and the
9506 set is terminated by a 0 entry (section number 0 is not used in ELF).
9507
9508 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9509 section must be the first entry in the set, and the .debug_abbrev.dwo must
9510 be the second entry. Other members of the set may follow in any order.
9511
9512 ---
9513
9514 DWP Version 2:
9515
9516 DWP Version 2 combines all the .debug_info, etc. sections into one,
9517 and the entries in the index tables are now offsets into these sections.
9518 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9519 section.
9520
9521 Index Section Contents:
9522 Header
9523 Hash Table of Signatures dwp_hash_table.hash_table
9524 Parallel Table of Indices dwp_hash_table.unit_table
9525 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9526 Table of Section Sizes dwp_hash_table.v2.sizes
9527
9528 The index section header consists of:
9529
9530 V, 32 bit version number
9531 L, 32 bit number of columns in the table of section offsets
9532 N, 32 bit number of compilation units or type units in the index
9533 M, 32 bit number of slots in the hash table
9534
9535 Numbers are recorded using the byte order of the application binary.
9536
9537 The hash table has the same format as version 1.
9538 The parallel table of indices has the same format as version 1,
9539 except that the entries are origin-1 indices into the table of sections
9540 offsets and the table of section sizes.
9541
9542 The table of offsets begins immediately following the parallel table
9543 (at offset 16 + 12 * M from the beginning of the section). The table is
9544 a two-dimensional array of 32-bit words (using the byte order of the
9545 application binary), with L columns and N+1 rows, in row-major order.
9546 Each row in the array is indexed starting from 0. The first row provides
9547 a key to the remaining rows: each column in this row provides an identifier
9548 for a debug section, and the offsets in the same column of subsequent rows
9549 refer to that section. The section identifiers are:
9550
9551 DW_SECT_INFO 1 .debug_info.dwo
9552 DW_SECT_TYPES 2 .debug_types.dwo
9553 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9554 DW_SECT_LINE 4 .debug_line.dwo
9555 DW_SECT_LOC 5 .debug_loc.dwo
9556 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9557 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9558 DW_SECT_MACRO 8 .debug_macro.dwo
9559
9560 The offsets provided by the CU and TU index sections are the base offsets
9561 for the contributions made by each CU or TU to the corresponding section
9562 in the package file. Each CU and TU header contains an abbrev_offset
9563 field, used to find the abbreviations table for that CU or TU within the
9564 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9565 be interpreted as relative to the base offset given in the index section.
9566 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9567 should be interpreted as relative to the base offset for .debug_line.dwo,
9568 and offsets into other debug sections obtained from DWARF attributes should
9569 also be interpreted as relative to the corresponding base offset.
9570
9571 The table of sizes begins immediately following the table of offsets.
9572 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9573 with L columns and N rows, in row-major order. Each row in the array is
9574 indexed starting from 1 (row 0 is shared by the two tables).
9575
9576 ---
9577
9578 Hash table lookup is handled the same in version 1 and 2:
9579
9580 We assume that N and M will not exceed 2^32 - 1.
9581 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9582
d2415c6c
DE
9583 Given a 64-bit compilation unit signature or a type signature S, an entry
9584 in the hash table is located as follows:
80626a55 9585
d2415c6c
DE
9586 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9587 the low-order k bits all set to 1.
80626a55 9588
d2415c6c 9589 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9590
d2415c6c
DE
9591 3) If the hash table entry at index H matches the signature, use that
9592 entry. If the hash table entry at index H is unused (all zeroes),
9593 terminate the search: the signature is not present in the table.
80626a55 9594
d2415c6c 9595 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9596
d2415c6c 9597 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9598 to stop at an unused slot or find the match. */
80626a55
DE
9599
9600/* Create a hash table to map DWO IDs to their CU/TU entry in
9601 .debug_{info,types}.dwo in DWP_FILE.
9602 Returns NULL if there isn't one.
9603 Note: This function processes DWP files only, not DWO files. */
9604
9605static struct dwp_hash_table *
9606create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9607{
9608 struct objfile *objfile = dwarf2_per_objfile->objfile;
9609 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9610 const gdb_byte *index_ptr, *index_end;
80626a55 9611 struct dwarf2_section_info *index;
73869dc2 9612 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9613 struct dwp_hash_table *htab;
9614
9615 if (is_debug_types)
9616 index = &dwp_file->sections.tu_index;
9617 else
9618 index = &dwp_file->sections.cu_index;
9619
9620 if (dwarf2_section_empty_p (index))
9621 return NULL;
9622 dwarf2_read_section (objfile, index);
9623
9624 index_ptr = index->buffer;
9625 index_end = index_ptr + index->size;
9626
9627 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9628 index_ptr += 4;
9629 if (version == 2)
9630 nr_columns = read_4_bytes (dbfd, index_ptr);
9631 else
9632 nr_columns = 0;
9633 index_ptr += 4;
80626a55
DE
9634 nr_units = read_4_bytes (dbfd, index_ptr);
9635 index_ptr += 4;
9636 nr_slots = read_4_bytes (dbfd, index_ptr);
9637 index_ptr += 4;
9638
73869dc2 9639 if (version != 1 && version != 2)
80626a55 9640 {
21aa081e 9641 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9642 " [in module %s]"),
21aa081e 9643 pulongest (version), dwp_file->name);
80626a55
DE
9644 }
9645 if (nr_slots != (nr_slots & -nr_slots))
9646 {
21aa081e 9647 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9648 " is not power of 2 [in module %s]"),
21aa081e 9649 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9650 }
9651
9652 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9653 htab->version = version;
9654 htab->nr_columns = nr_columns;
80626a55
DE
9655 htab->nr_units = nr_units;
9656 htab->nr_slots = nr_slots;
9657 htab->hash_table = index_ptr;
9658 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9659
9660 /* Exit early if the table is empty. */
9661 if (nr_slots == 0 || nr_units == 0
9662 || (version == 2 && nr_columns == 0))
9663 {
9664 /* All must be zero. */
9665 if (nr_slots != 0 || nr_units != 0
9666 || (version == 2 && nr_columns != 0))
9667 {
9668 complaint (&symfile_complaints,
9669 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9670 " all zero [in modules %s]"),
9671 dwp_file->name);
9672 }
9673 return htab;
9674 }
9675
9676 if (version == 1)
9677 {
9678 htab->section_pool.v1.indices =
9679 htab->unit_table + sizeof (uint32_t) * nr_slots;
9680 /* It's harder to decide whether the section is too small in v1.
9681 V1 is deprecated anyway so we punt. */
9682 }
9683 else
9684 {
9685 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9686 int *ids = htab->section_pool.v2.section_ids;
9687 /* Reverse map for error checking. */
9688 int ids_seen[DW_SECT_MAX + 1];
9689 int i;
9690
9691 if (nr_columns < 2)
9692 {
9693 error (_("Dwarf Error: bad DWP hash table, too few columns"
9694 " in section table [in module %s]"),
9695 dwp_file->name);
9696 }
9697 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9698 {
9699 error (_("Dwarf Error: bad DWP hash table, too many columns"
9700 " in section table [in module %s]"),
9701 dwp_file->name);
9702 }
9703 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9704 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9705 for (i = 0; i < nr_columns; ++i)
9706 {
9707 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9708
9709 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9710 {
9711 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9712 " in section table [in module %s]"),
9713 id, dwp_file->name);
9714 }
9715 if (ids_seen[id] != -1)
9716 {
9717 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9718 " id %d in section table [in module %s]"),
9719 id, dwp_file->name);
9720 }
9721 ids_seen[id] = i;
9722 ids[i] = id;
9723 }
9724 /* Must have exactly one info or types section. */
9725 if (((ids_seen[DW_SECT_INFO] != -1)
9726 + (ids_seen[DW_SECT_TYPES] != -1))
9727 != 1)
9728 {
9729 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9730 " DWO info/types section [in module %s]"),
9731 dwp_file->name);
9732 }
9733 /* Must have an abbrev section. */
9734 if (ids_seen[DW_SECT_ABBREV] == -1)
9735 {
9736 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9737 " section [in module %s]"),
9738 dwp_file->name);
9739 }
9740 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9741 htab->section_pool.v2.sizes =
9742 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9743 * nr_units * nr_columns);
9744 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9745 * nr_units * nr_columns))
9746 > index_end)
9747 {
9748 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9749 " [in module %s]"),
9750 dwp_file->name);
9751 }
9752 }
80626a55
DE
9753
9754 return htab;
9755}
9756
9757/* Update SECTIONS with the data from SECTP.
9758
9759 This function is like the other "locate" section routines that are
9760 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9761 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9762
9763 The result is non-zero for success, or zero if an error was found. */
9764
9765static int
73869dc2
DE
9766locate_v1_virtual_dwo_sections (asection *sectp,
9767 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9768{
9769 const struct dwop_section_names *names = &dwop_section_names;
9770
9771 if (section_is_p (sectp->name, &names->abbrev_dwo))
9772 {
9773 /* There can be only one. */
73869dc2 9774 if (sections->abbrev.s.asection != NULL)
80626a55 9775 return 0;
73869dc2 9776 sections->abbrev.s.asection = sectp;
80626a55
DE
9777 sections->abbrev.size = bfd_get_section_size (sectp);
9778 }
9779 else if (section_is_p (sectp->name, &names->info_dwo)
9780 || section_is_p (sectp->name, &names->types_dwo))
9781 {
9782 /* There can be only one. */
73869dc2 9783 if (sections->info_or_types.s.asection != NULL)
80626a55 9784 return 0;
73869dc2 9785 sections->info_or_types.s.asection = sectp;
80626a55
DE
9786 sections->info_or_types.size = bfd_get_section_size (sectp);
9787 }
9788 else if (section_is_p (sectp->name, &names->line_dwo))
9789 {
9790 /* There can be only one. */
73869dc2 9791 if (sections->line.s.asection != NULL)
80626a55 9792 return 0;
73869dc2 9793 sections->line.s.asection = sectp;
80626a55
DE
9794 sections->line.size = bfd_get_section_size (sectp);
9795 }
9796 else if (section_is_p (sectp->name, &names->loc_dwo))
9797 {
9798 /* There can be only one. */
73869dc2 9799 if (sections->loc.s.asection != NULL)
80626a55 9800 return 0;
73869dc2 9801 sections->loc.s.asection = sectp;
80626a55
DE
9802 sections->loc.size = bfd_get_section_size (sectp);
9803 }
9804 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9805 {
9806 /* There can be only one. */
73869dc2 9807 if (sections->macinfo.s.asection != NULL)
80626a55 9808 return 0;
73869dc2 9809 sections->macinfo.s.asection = sectp;
80626a55
DE
9810 sections->macinfo.size = bfd_get_section_size (sectp);
9811 }
9812 else if (section_is_p (sectp->name, &names->macro_dwo))
9813 {
9814 /* There can be only one. */
73869dc2 9815 if (sections->macro.s.asection != NULL)
80626a55 9816 return 0;
73869dc2 9817 sections->macro.s.asection = sectp;
80626a55
DE
9818 sections->macro.size = bfd_get_section_size (sectp);
9819 }
9820 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9821 {
9822 /* There can be only one. */
73869dc2 9823 if (sections->str_offsets.s.asection != NULL)
80626a55 9824 return 0;
73869dc2 9825 sections->str_offsets.s.asection = sectp;
80626a55
DE
9826 sections->str_offsets.size = bfd_get_section_size (sectp);
9827 }
9828 else
9829 {
9830 /* No other kind of section is valid. */
9831 return 0;
9832 }
9833
9834 return 1;
9835}
9836
73869dc2
DE
9837/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9838 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9839 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9840 This is for DWP version 1 files. */
80626a55
DE
9841
9842static struct dwo_unit *
73869dc2
DE
9843create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9844 uint32_t unit_index,
9845 const char *comp_dir,
9846 ULONGEST signature, int is_debug_types)
80626a55
DE
9847{
9848 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
9849 const struct dwp_hash_table *dwp_htab =
9850 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
9851 bfd *dbfd = dwp_file->dbfd;
9852 const char *kind = is_debug_types ? "TU" : "CU";
9853 struct dwo_file *dwo_file;
9854 struct dwo_unit *dwo_unit;
73869dc2 9855 struct virtual_v1_dwo_sections sections;
80626a55
DE
9856 void **dwo_file_slot;
9857 char *virtual_dwo_name;
9858 struct dwarf2_section_info *cutu;
9859 struct cleanup *cleanups;
9860 int i;
9861
73869dc2
DE
9862 gdb_assert (dwp_file->version == 1);
9863
80626a55
DE
9864 if (dwarf2_read_debug)
9865 {
73869dc2 9866 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 9867 kind,
73869dc2 9868 pulongest (unit_index), hex_string (signature),
80626a55
DE
9869 dwp_file->name);
9870 }
9871
19ac8c2e 9872 /* Fetch the sections of this DWO unit.
80626a55
DE
9873 Put a limit on the number of sections we look for so that bad data
9874 doesn't cause us to loop forever. */
9875
73869dc2 9876#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
9877 (1 /* .debug_info or .debug_types */ \
9878 + 1 /* .debug_abbrev */ \
9879 + 1 /* .debug_line */ \
9880 + 1 /* .debug_loc */ \
9881 + 1 /* .debug_str_offsets */ \
19ac8c2e 9882 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
9883 + 1 /* trailing zero */)
9884
9885 memset (&sections, 0, sizeof (sections));
9886 cleanups = make_cleanup (null_cleanup, 0);
9887
73869dc2 9888 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
9889 {
9890 asection *sectp;
9891 uint32_t section_nr =
9892 read_4_bytes (dbfd,
73869dc2
DE
9893 dwp_htab->section_pool.v1.indices
9894 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
9895
9896 if (section_nr == 0)
9897 break;
9898 if (section_nr >= dwp_file->num_sections)
9899 {
9900 error (_("Dwarf Error: bad DWP hash table, section number too large"
9901 " [in module %s]"),
9902 dwp_file->name);
9903 }
9904
9905 sectp = dwp_file->elf_sections[section_nr];
73869dc2 9906 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
9907 {
9908 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9909 " [in module %s]"),
9910 dwp_file->name);
9911 }
9912 }
9913
9914 if (i < 2
a32a8923
DE
9915 || dwarf2_section_empty_p (&sections.info_or_types)
9916 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
9917 {
9918 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9919 " [in module %s]"),
9920 dwp_file->name);
9921 }
73869dc2 9922 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
9923 {
9924 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9925 " [in module %s]"),
9926 dwp_file->name);
9927 }
9928
9929 /* It's easier for the rest of the code if we fake a struct dwo_file and
9930 have dwo_unit "live" in that. At least for now.
9931
9932 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 9933 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
9934 file, we can combine them back into a virtual DWO file to save space
9935 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
9936 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9937
2792b94d
PM
9938 virtual_dwo_name =
9939 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
9940 get_section_id (&sections.abbrev),
9941 get_section_id (&sections.line),
9942 get_section_id (&sections.loc),
9943 get_section_id (&sections.str_offsets));
80626a55
DE
9944 make_cleanup (xfree, virtual_dwo_name);
9945 /* Can we use an existing virtual DWO file? */
0ac5b59e 9946 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
9947 /* Create one if necessary. */
9948 if (*dwo_file_slot == NULL)
9949 {
9950 if (dwarf2_read_debug)
9951 {
9952 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9953 virtual_dwo_name);
9954 }
9955 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
9956 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9957 virtual_dwo_name,
9958 strlen (virtual_dwo_name));
9959 dwo_file->comp_dir = comp_dir;
80626a55
DE
9960 dwo_file->sections.abbrev = sections.abbrev;
9961 dwo_file->sections.line = sections.line;
9962 dwo_file->sections.loc = sections.loc;
9963 dwo_file->sections.macinfo = sections.macinfo;
9964 dwo_file->sections.macro = sections.macro;
9965 dwo_file->sections.str_offsets = sections.str_offsets;
9966 /* The "str" section is global to the entire DWP file. */
9967 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 9968 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
9969 there's no need to record it in dwo_file.
9970 Also, we can't simply record type sections in dwo_file because
9971 we record a pointer into the vector in dwo_unit. As we collect more
9972 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
9973 for it, invalidating all copies of pointers into the previous
9974 contents. */
80626a55
DE
9975 *dwo_file_slot = dwo_file;
9976 }
9977 else
9978 {
9979 if (dwarf2_read_debug)
9980 {
9981 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9982 virtual_dwo_name);
9983 }
9984 dwo_file = *dwo_file_slot;
9985 }
9986 do_cleanups (cleanups);
9987
9988 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9989 dwo_unit->dwo_file = dwo_file;
9990 dwo_unit->signature = signature;
8a0459fd
DE
9991 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9992 sizeof (struct dwarf2_section_info));
9993 *dwo_unit->section = sections.info_or_types;
57d63ce2 9994 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
9995
9996 return dwo_unit;
9997}
9998
73869dc2
DE
9999/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
10000 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10001 piece within that section used by a TU/CU, return a virtual section
10002 of just that piece. */
10003
10004static struct dwarf2_section_info
10005create_dwp_v2_section (struct dwarf2_section_info *section,
10006 bfd_size_type offset, bfd_size_type size)
10007{
10008 struct dwarf2_section_info result;
10009 asection *sectp;
10010
10011 gdb_assert (section != NULL);
10012 gdb_assert (!section->is_virtual);
10013
10014 memset (&result, 0, sizeof (result));
10015 result.s.containing_section = section;
10016 result.is_virtual = 1;
10017
10018 if (size == 0)
10019 return result;
10020
10021 sectp = get_section_bfd_section (section);
10022
10023 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10024 bounds of the real section. This is a pretty-rare event, so just
10025 flag an error (easier) instead of a warning and trying to cope. */
10026 if (sectp == NULL
10027 || offset + size > bfd_get_section_size (sectp))
10028 {
10029 bfd *abfd = sectp->owner;
10030
10031 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10032 " in section %s [in module %s]"),
10033 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10034 objfile_name (dwarf2_per_objfile->objfile));
10035 }
10036
10037 result.virtual_offset = offset;
10038 result.size = size;
10039 return result;
10040}
10041
10042/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10043 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10044 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10045 This is for DWP version 2 files. */
10046
10047static struct dwo_unit *
10048create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10049 uint32_t unit_index,
10050 const char *comp_dir,
10051 ULONGEST signature, int is_debug_types)
10052{
10053 struct objfile *objfile = dwarf2_per_objfile->objfile;
10054 const struct dwp_hash_table *dwp_htab =
10055 is_debug_types ? dwp_file->tus : dwp_file->cus;
10056 bfd *dbfd = dwp_file->dbfd;
10057 const char *kind = is_debug_types ? "TU" : "CU";
10058 struct dwo_file *dwo_file;
10059 struct dwo_unit *dwo_unit;
10060 struct virtual_v2_dwo_sections sections;
10061 void **dwo_file_slot;
10062 char *virtual_dwo_name;
10063 struct dwarf2_section_info *cutu;
10064 struct cleanup *cleanups;
10065 int i;
10066
10067 gdb_assert (dwp_file->version == 2);
10068
10069 if (dwarf2_read_debug)
10070 {
10071 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10072 kind,
10073 pulongest (unit_index), hex_string (signature),
10074 dwp_file->name);
10075 }
10076
10077 /* Fetch the section offsets of this DWO unit. */
10078
10079 memset (&sections, 0, sizeof (sections));
10080 cleanups = make_cleanup (null_cleanup, 0);
10081
10082 for (i = 0; i < dwp_htab->nr_columns; ++i)
10083 {
10084 uint32_t offset = read_4_bytes (dbfd,
10085 dwp_htab->section_pool.v2.offsets
10086 + (((unit_index - 1) * dwp_htab->nr_columns
10087 + i)
10088 * sizeof (uint32_t)));
10089 uint32_t size = read_4_bytes (dbfd,
10090 dwp_htab->section_pool.v2.sizes
10091 + (((unit_index - 1) * dwp_htab->nr_columns
10092 + i)
10093 * sizeof (uint32_t)));
10094
10095 switch (dwp_htab->section_pool.v2.section_ids[i])
10096 {
10097 case DW_SECT_INFO:
10098 case DW_SECT_TYPES:
10099 sections.info_or_types_offset = offset;
10100 sections.info_or_types_size = size;
10101 break;
10102 case DW_SECT_ABBREV:
10103 sections.abbrev_offset = offset;
10104 sections.abbrev_size = size;
10105 break;
10106 case DW_SECT_LINE:
10107 sections.line_offset = offset;
10108 sections.line_size = size;
10109 break;
10110 case DW_SECT_LOC:
10111 sections.loc_offset = offset;
10112 sections.loc_size = size;
10113 break;
10114 case DW_SECT_STR_OFFSETS:
10115 sections.str_offsets_offset = offset;
10116 sections.str_offsets_size = size;
10117 break;
10118 case DW_SECT_MACINFO:
10119 sections.macinfo_offset = offset;
10120 sections.macinfo_size = size;
10121 break;
10122 case DW_SECT_MACRO:
10123 sections.macro_offset = offset;
10124 sections.macro_size = size;
10125 break;
10126 }
10127 }
10128
10129 /* It's easier for the rest of the code if we fake a struct dwo_file and
10130 have dwo_unit "live" in that. At least for now.
10131
10132 The DWP file can be made up of a random collection of CUs and TUs.
10133 However, for each CU + set of TUs that came from the same original DWO
10134 file, we can combine them back into a virtual DWO file to save space
10135 (fewer struct dwo_file objects to allocate). Remember that for really
10136 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10137
10138 virtual_dwo_name =
10139 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10140 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10141 (long) (sections.line_size ? sections.line_offset : 0),
10142 (long) (sections.loc_size ? sections.loc_offset : 0),
10143 (long) (sections.str_offsets_size
10144 ? sections.str_offsets_offset : 0));
10145 make_cleanup (xfree, virtual_dwo_name);
10146 /* Can we use an existing virtual DWO file? */
10147 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10148 /* Create one if necessary. */
10149 if (*dwo_file_slot == NULL)
10150 {
10151 if (dwarf2_read_debug)
10152 {
10153 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10154 virtual_dwo_name);
10155 }
10156 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10157 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10158 virtual_dwo_name,
10159 strlen (virtual_dwo_name));
10160 dwo_file->comp_dir = comp_dir;
10161 dwo_file->sections.abbrev =
10162 create_dwp_v2_section (&dwp_file->sections.abbrev,
10163 sections.abbrev_offset, sections.abbrev_size);
10164 dwo_file->sections.line =
10165 create_dwp_v2_section (&dwp_file->sections.line,
10166 sections.line_offset, sections.line_size);
10167 dwo_file->sections.loc =
10168 create_dwp_v2_section (&dwp_file->sections.loc,
10169 sections.loc_offset, sections.loc_size);
10170 dwo_file->sections.macinfo =
10171 create_dwp_v2_section (&dwp_file->sections.macinfo,
10172 sections.macinfo_offset, sections.macinfo_size);
10173 dwo_file->sections.macro =
10174 create_dwp_v2_section (&dwp_file->sections.macro,
10175 sections.macro_offset, sections.macro_size);
10176 dwo_file->sections.str_offsets =
10177 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10178 sections.str_offsets_offset,
10179 sections.str_offsets_size);
10180 /* The "str" section is global to the entire DWP file. */
10181 dwo_file->sections.str = dwp_file->sections.str;
10182 /* The info or types section is assigned below to dwo_unit,
10183 there's no need to record it in dwo_file.
10184 Also, we can't simply record type sections in dwo_file because
10185 we record a pointer into the vector in dwo_unit. As we collect more
10186 types we'll grow the vector and eventually have to reallocate space
10187 for it, invalidating all copies of pointers into the previous
10188 contents. */
10189 *dwo_file_slot = dwo_file;
10190 }
10191 else
10192 {
10193 if (dwarf2_read_debug)
10194 {
10195 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10196 virtual_dwo_name);
10197 }
10198 dwo_file = *dwo_file_slot;
10199 }
10200 do_cleanups (cleanups);
10201
10202 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10203 dwo_unit->dwo_file = dwo_file;
10204 dwo_unit->signature = signature;
10205 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10206 sizeof (struct dwarf2_section_info));
10207 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10208 ? &dwp_file->sections.types
10209 : &dwp_file->sections.info,
10210 sections.info_or_types_offset,
10211 sections.info_or_types_size);
10212 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10213
10214 return dwo_unit;
10215}
10216
57d63ce2
DE
10217/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10218 Returns NULL if the signature isn't found. */
80626a55
DE
10219
10220static struct dwo_unit *
57d63ce2
DE
10221lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10222 ULONGEST signature, int is_debug_types)
80626a55 10223{
57d63ce2
DE
10224 const struct dwp_hash_table *dwp_htab =
10225 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10226 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10227 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10228 uint32_t hash = signature & mask;
10229 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10230 unsigned int i;
10231 void **slot;
10232 struct dwo_unit find_dwo_cu, *dwo_cu;
10233
10234 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10235 find_dwo_cu.signature = signature;
19ac8c2e
DE
10236 slot = htab_find_slot (is_debug_types
10237 ? dwp_file->loaded_tus
10238 : dwp_file->loaded_cus,
10239 &find_dwo_cu, INSERT);
80626a55
DE
10240
10241 if (*slot != NULL)
10242 return *slot;
10243
10244 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10245 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10246 {
10247 ULONGEST signature_in_table;
10248
10249 signature_in_table =
57d63ce2 10250 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10251 if (signature_in_table == signature)
10252 {
57d63ce2
DE
10253 uint32_t unit_index =
10254 read_4_bytes (dbfd,
10255 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10256
73869dc2
DE
10257 if (dwp_file->version == 1)
10258 {
10259 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10260 comp_dir, signature,
10261 is_debug_types);
10262 }
10263 else
10264 {
10265 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10266 comp_dir, signature,
10267 is_debug_types);
10268 }
80626a55
DE
10269 return *slot;
10270 }
10271 if (signature_in_table == 0)
10272 return NULL;
10273 hash = (hash + hash2) & mask;
10274 }
10275
10276 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10277 " [in module %s]"),
10278 dwp_file->name);
10279}
10280
ab5088bf 10281/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10282 Open the file specified by FILE_NAME and hand it off to BFD for
10283 preliminary analysis. Return a newly initialized bfd *, which
10284 includes a canonicalized copy of FILE_NAME.
80626a55 10285 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10286 SEARCH_CWD is true if the current directory is to be searched.
10287 It will be searched before debug-file-directory.
13aaf454
DE
10288 If successful, the file is added to the bfd include table of the
10289 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10290 If unable to find/open the file, return NULL.
3019eac3
DE
10291 NOTE: This function is derived from symfile_bfd_open. */
10292
10293static bfd *
6ac97d4c 10294try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
10295{
10296 bfd *sym_bfd;
80626a55 10297 int desc, flags;
3019eac3 10298 char *absolute_name;
9c02c129
DE
10299 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10300 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10301 to debug_file_directory. */
10302 char *search_path;
10303 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10304
6ac97d4c
DE
10305 if (search_cwd)
10306 {
10307 if (*debug_file_directory != '\0')
10308 search_path = concat (".", dirname_separator_string,
10309 debug_file_directory, NULL);
10310 else
10311 search_path = xstrdup (".");
10312 }
9c02c129 10313 else
6ac97d4c 10314 search_path = xstrdup (debug_file_directory);
3019eac3 10315
492c0ab7 10316 flags = OPF_RETURN_REALPATH;
80626a55
DE
10317 if (is_dwp)
10318 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10319 desc = openp (search_path, flags, file_name,
3019eac3 10320 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10321 xfree (search_path);
3019eac3
DE
10322 if (desc < 0)
10323 return NULL;
10324
bb397797 10325 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 10326 xfree (absolute_name);
9c02c129
DE
10327 if (sym_bfd == NULL)
10328 return NULL;
3019eac3
DE
10329 bfd_set_cacheable (sym_bfd, 1);
10330
10331 if (!bfd_check_format (sym_bfd, bfd_object))
10332 {
cbb099e8 10333 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
10334 return NULL;
10335 }
10336
13aaf454
DE
10337 /* Success. Record the bfd as having been included by the objfile's bfd.
10338 This is important because things like demangled_names_hash lives in the
10339 objfile's per_bfd space and may have references to things like symbol
10340 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10341 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10342
3019eac3
DE
10343 return sym_bfd;
10344}
10345
ab5088bf 10346/* Try to open DWO file FILE_NAME.
3019eac3
DE
10347 COMP_DIR is the DW_AT_comp_dir attribute.
10348 The result is the bfd handle of the file.
10349 If there is a problem finding or opening the file, return NULL.
10350 Upon success, the canonicalized path of the file is stored in the bfd,
10351 same as symfile_bfd_open. */
10352
10353static bfd *
ab5088bf 10354open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
10355{
10356 bfd *abfd;
3019eac3 10357
80626a55 10358 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10359 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10360
10361 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10362
10363 if (comp_dir != NULL)
10364 {
80626a55 10365 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
3019eac3
DE
10366
10367 /* NOTE: If comp_dir is a relative path, this will also try the
10368 search path, which seems useful. */
6ac97d4c 10369 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10370 xfree (path_to_try);
10371 if (abfd != NULL)
10372 return abfd;
10373 }
10374
10375 /* That didn't work, try debug-file-directory, which, despite its name,
10376 is a list of paths. */
10377
10378 if (*debug_file_directory == '\0')
10379 return NULL;
10380
6ac97d4c 10381 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10382}
10383
80626a55
DE
10384/* This function is mapped across the sections and remembers the offset and
10385 size of each of the DWO debugging sections we are interested in. */
10386
10387static void
10388dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10389{
10390 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10391 const struct dwop_section_names *names = &dwop_section_names;
10392
10393 if (section_is_p (sectp->name, &names->abbrev_dwo))
10394 {
73869dc2 10395 dwo_sections->abbrev.s.asection = sectp;
80626a55
DE
10396 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10397 }
10398 else if (section_is_p (sectp->name, &names->info_dwo))
10399 {
73869dc2 10400 dwo_sections->info.s.asection = sectp;
80626a55
DE
10401 dwo_sections->info.size = bfd_get_section_size (sectp);
10402 }
10403 else if (section_is_p (sectp->name, &names->line_dwo))
10404 {
73869dc2 10405 dwo_sections->line.s.asection = sectp;
80626a55
DE
10406 dwo_sections->line.size = bfd_get_section_size (sectp);
10407 }
10408 else if (section_is_p (sectp->name, &names->loc_dwo))
10409 {
73869dc2 10410 dwo_sections->loc.s.asection = sectp;
80626a55
DE
10411 dwo_sections->loc.size = bfd_get_section_size (sectp);
10412 }
10413 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10414 {
73869dc2 10415 dwo_sections->macinfo.s.asection = sectp;
80626a55
DE
10416 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10417 }
10418 else if (section_is_p (sectp->name, &names->macro_dwo))
10419 {
73869dc2 10420 dwo_sections->macro.s.asection = sectp;
80626a55
DE
10421 dwo_sections->macro.size = bfd_get_section_size (sectp);
10422 }
10423 else if (section_is_p (sectp->name, &names->str_dwo))
10424 {
73869dc2 10425 dwo_sections->str.s.asection = sectp;
80626a55
DE
10426 dwo_sections->str.size = bfd_get_section_size (sectp);
10427 }
10428 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10429 {
73869dc2 10430 dwo_sections->str_offsets.s.asection = sectp;
80626a55
DE
10431 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10432 }
10433 else if (section_is_p (sectp->name, &names->types_dwo))
10434 {
10435 struct dwarf2_section_info type_section;
10436
10437 memset (&type_section, 0, sizeof (type_section));
73869dc2 10438 type_section.s.asection = sectp;
80626a55
DE
10439 type_section.size = bfd_get_section_size (sectp);
10440 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10441 &type_section);
10442 }
10443}
10444
ab5088bf 10445/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10446 by PER_CU. This is for the non-DWP case.
80626a55 10447 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10448
10449static struct dwo_file *
0ac5b59e
DE
10450open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10451 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10452{
10453 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10454 struct dwo_file *dwo_file;
10455 bfd *dbfd;
3019eac3
DE
10456 struct cleanup *cleanups;
10457
ab5088bf 10458 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
10459 if (dbfd == NULL)
10460 {
10461 if (dwarf2_read_debug)
10462 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10463 return NULL;
10464 }
10465 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10466 dwo_file->dwo_name = dwo_name;
10467 dwo_file->comp_dir = comp_dir;
80626a55 10468 dwo_file->dbfd = dbfd;
3019eac3
DE
10469
10470 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10471
80626a55 10472 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 10473
19c3d4c9 10474 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
10475
10476 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10477 dwo_file->sections.types);
10478
10479 discard_cleanups (cleanups);
10480
80626a55
DE
10481 if (dwarf2_read_debug)
10482 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10483
3019eac3
DE
10484 return dwo_file;
10485}
10486
80626a55 10487/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10488 size of each of the DWP debugging sections common to version 1 and 2 that
10489 we are interested in. */
3019eac3 10490
80626a55 10491static void
73869dc2
DE
10492dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10493 void *dwp_file_ptr)
3019eac3 10494{
80626a55
DE
10495 struct dwp_file *dwp_file = dwp_file_ptr;
10496 const struct dwop_section_names *names = &dwop_section_names;
10497 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10498
80626a55 10499 /* Record the ELF section number for later lookup: this is what the
73869dc2 10500 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10501 gdb_assert (elf_section_nr < dwp_file->num_sections);
10502 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10503
80626a55
DE
10504 /* Look for specific sections that we need. */
10505 if (section_is_p (sectp->name, &names->str_dwo))
10506 {
73869dc2 10507 dwp_file->sections.str.s.asection = sectp;
80626a55
DE
10508 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10509 }
10510 else if (section_is_p (sectp->name, &names->cu_index))
10511 {
73869dc2 10512 dwp_file->sections.cu_index.s.asection = sectp;
80626a55
DE
10513 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10514 }
10515 else if (section_is_p (sectp->name, &names->tu_index))
10516 {
73869dc2 10517 dwp_file->sections.tu_index.s.asection = sectp;
80626a55
DE
10518 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10519 }
10520}
3019eac3 10521
73869dc2
DE
10522/* This function is mapped across the sections and remembers the offset and
10523 size of each of the DWP version 2 debugging sections that we are interested
10524 in. This is split into a separate function because we don't know if we
10525 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10526
10527static void
10528dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10529{
10530 struct dwp_file *dwp_file = dwp_file_ptr;
10531 const struct dwop_section_names *names = &dwop_section_names;
10532 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10533
10534 /* Record the ELF section number for later lookup: this is what the
10535 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10536 gdb_assert (elf_section_nr < dwp_file->num_sections);
10537 dwp_file->elf_sections[elf_section_nr] = sectp;
10538
10539 /* Look for specific sections that we need. */
10540 if (section_is_p (sectp->name, &names->abbrev_dwo))
10541 {
10542 dwp_file->sections.abbrev.s.asection = sectp;
10543 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10544 }
10545 else if (section_is_p (sectp->name, &names->info_dwo))
10546 {
10547 dwp_file->sections.info.s.asection = sectp;
10548 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10549 }
10550 else if (section_is_p (sectp->name, &names->line_dwo))
10551 {
10552 dwp_file->sections.line.s.asection = sectp;
10553 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10554 }
10555 else if (section_is_p (sectp->name, &names->loc_dwo))
10556 {
10557 dwp_file->sections.loc.s.asection = sectp;
10558 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10559 }
10560 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10561 {
10562 dwp_file->sections.macinfo.s.asection = sectp;
10563 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10564 }
10565 else if (section_is_p (sectp->name, &names->macro_dwo))
10566 {
10567 dwp_file->sections.macro.s.asection = sectp;
10568 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10569 }
10570 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10571 {
10572 dwp_file->sections.str_offsets.s.asection = sectp;
10573 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10574 }
10575 else if (section_is_p (sectp->name, &names->types_dwo))
10576 {
10577 dwp_file->sections.types.s.asection = sectp;
10578 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10579 }
10580}
10581
80626a55 10582/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10583
80626a55
DE
10584static hashval_t
10585hash_dwp_loaded_cutus (const void *item)
10586{
10587 const struct dwo_unit *dwo_unit = item;
3019eac3 10588
80626a55
DE
10589 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10590 return dwo_unit->signature;
3019eac3
DE
10591}
10592
80626a55 10593/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10594
80626a55
DE
10595static int
10596eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10597{
80626a55
DE
10598 const struct dwo_unit *dua = a;
10599 const struct dwo_unit *dub = b;
3019eac3 10600
80626a55
DE
10601 return dua->signature == dub->signature;
10602}
3019eac3 10603
80626a55 10604/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10605
80626a55
DE
10606static htab_t
10607allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10608{
10609 return htab_create_alloc_ex (3,
10610 hash_dwp_loaded_cutus,
10611 eq_dwp_loaded_cutus,
10612 NULL,
10613 &objfile->objfile_obstack,
10614 hashtab_obstack_allocate,
10615 dummy_obstack_deallocate);
10616}
3019eac3 10617
ab5088bf
DE
10618/* Try to open DWP file FILE_NAME.
10619 The result is the bfd handle of the file.
10620 If there is a problem finding or opening the file, return NULL.
10621 Upon success, the canonicalized path of the file is stored in the bfd,
10622 same as symfile_bfd_open. */
10623
10624static bfd *
10625open_dwp_file (const char *file_name)
10626{
6ac97d4c
DE
10627 bfd *abfd;
10628
10629 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10630 if (abfd != NULL)
10631 return abfd;
10632
10633 /* Work around upstream bug 15652.
10634 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10635 [Whether that's a "bug" is debatable, but it is getting in our way.]
10636 We have no real idea where the dwp file is, because gdb's realpath-ing
10637 of the executable's path may have discarded the needed info.
10638 [IWBN if the dwp file name was recorded in the executable, akin to
10639 .gnu_debuglink, but that doesn't exist yet.]
10640 Strip the directory from FILE_NAME and search again. */
10641 if (*debug_file_directory != '\0')
10642 {
10643 /* Don't implicitly search the current directory here.
10644 If the user wants to search "." to handle this case,
10645 it must be added to debug-file-directory. */
10646 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10647 0 /*search_cwd*/);
10648 }
10649
10650 return NULL;
ab5088bf
DE
10651}
10652
80626a55
DE
10653/* Initialize the use of the DWP file for the current objfile.
10654 By convention the name of the DWP file is ${objfile}.dwp.
10655 The result is NULL if it can't be found. */
a766d390 10656
80626a55 10657static struct dwp_file *
ab5088bf 10658open_and_init_dwp_file (void)
80626a55
DE
10659{
10660 struct objfile *objfile = dwarf2_per_objfile->objfile;
10661 struct dwp_file *dwp_file;
10662 char *dwp_name;
10663 bfd *dbfd;
10664 struct cleanup *cleanups;
10665
82bf32bc
JK
10666 /* Try to find first .dwp for the binary file before any symbolic links
10667 resolving. */
10668 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
80626a55
DE
10669 cleanups = make_cleanup (xfree, dwp_name);
10670
ab5088bf 10671 dbfd = open_dwp_file (dwp_name);
82bf32bc
JK
10672 if (dbfd == NULL
10673 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10674 {
10675 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10676 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10677 make_cleanup (xfree, dwp_name);
10678 dbfd = open_dwp_file (dwp_name);
10679 }
10680
80626a55
DE
10681 if (dbfd == NULL)
10682 {
10683 if (dwarf2_read_debug)
10684 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10685 do_cleanups (cleanups);
10686 return NULL;
3019eac3 10687 }
80626a55 10688 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 10689 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
10690 dwp_file->dbfd = dbfd;
10691 do_cleanups (cleanups);
c906108c 10692
80626a55
DE
10693 /* +1: section 0 is unused */
10694 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10695 dwp_file->elf_sections =
10696 OBSTACK_CALLOC (&objfile->objfile_obstack,
10697 dwp_file->num_sections, asection *);
10698
73869dc2 10699 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
80626a55
DE
10700
10701 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10702
10703 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10704
73869dc2
DE
10705 /* The DWP file version is stored in the hash table. Oh well. */
10706 if (dwp_file->cus->version != dwp_file->tus->version)
10707 {
10708 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 10709 pretty bizarre. We use pulongest here because that's the established
4d65956b 10710 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
10711 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10712 " TU version %s [in DWP file %s]"),
10713 pulongest (dwp_file->cus->version),
10714 pulongest (dwp_file->tus->version), dwp_name);
73869dc2
DE
10715 }
10716 dwp_file->version = dwp_file->cus->version;
10717
10718 if (dwp_file->version == 2)
10719 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10720
19ac8c2e
DE
10721 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10722 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10723
80626a55
DE
10724 if (dwarf2_read_debug)
10725 {
10726 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10727 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10728 " %s CUs, %s TUs\n",
10729 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10730 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10731 }
10732
10733 return dwp_file;
3019eac3 10734}
c906108c 10735
ab5088bf
DE
10736/* Wrapper around open_and_init_dwp_file, only open it once. */
10737
10738static struct dwp_file *
10739get_dwp_file (void)
10740{
10741 if (! dwarf2_per_objfile->dwp_checked)
10742 {
10743 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10744 dwarf2_per_objfile->dwp_checked = 1;
10745 }
10746 return dwarf2_per_objfile->dwp_file;
10747}
10748
80626a55
DE
10749/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10750 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10751 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10752 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10753 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10754
10755 This is called, for example, when wanting to read a variable with a
10756 complex location. Therefore we don't want to do file i/o for every call.
10757 Therefore we don't want to look for a DWO file on every call.
10758 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10759 then we check if we've already seen DWO_NAME, and only THEN do we check
10760 for a DWO file.
10761
1c658ad5 10762 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 10763 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 10764
3019eac3 10765static struct dwo_unit *
80626a55
DE
10766lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10767 const char *dwo_name, const char *comp_dir,
10768 ULONGEST signature, int is_debug_types)
3019eac3
DE
10769{
10770 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10771 const char *kind = is_debug_types ? "TU" : "CU";
10772 void **dwo_file_slot;
3019eac3 10773 struct dwo_file *dwo_file;
80626a55 10774 struct dwp_file *dwp_file;
cb1df416 10775
6a506a2d
DE
10776 /* First see if there's a DWP file.
10777 If we have a DWP file but didn't find the DWO inside it, don't
10778 look for the original DWO file. It makes gdb behave differently
10779 depending on whether one is debugging in the build tree. */
cf2c3c16 10780
ab5088bf 10781 dwp_file = get_dwp_file ();
80626a55 10782 if (dwp_file != NULL)
cf2c3c16 10783 {
80626a55
DE
10784 const struct dwp_hash_table *dwp_htab =
10785 is_debug_types ? dwp_file->tus : dwp_file->cus;
10786
10787 if (dwp_htab != NULL)
10788 {
10789 struct dwo_unit *dwo_cutu =
57d63ce2
DE
10790 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10791 signature, is_debug_types);
80626a55
DE
10792
10793 if (dwo_cutu != NULL)
10794 {
10795 if (dwarf2_read_debug)
10796 {
10797 fprintf_unfiltered (gdb_stdlog,
10798 "Virtual DWO %s %s found: @%s\n",
10799 kind, hex_string (signature),
10800 host_address_to_string (dwo_cutu));
10801 }
10802 return dwo_cutu;
10803 }
10804 }
10805 }
6a506a2d 10806 else
80626a55 10807 {
6a506a2d 10808 /* No DWP file, look for the DWO file. */
80626a55 10809
6a506a2d
DE
10810 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10811 if (*dwo_file_slot == NULL)
80626a55 10812 {
6a506a2d
DE
10813 /* Read in the file and build a table of the CUs/TUs it contains. */
10814 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 10815 }
6a506a2d
DE
10816 /* NOTE: This will be NULL if unable to open the file. */
10817 dwo_file = *dwo_file_slot;
3019eac3 10818
6a506a2d 10819 if (dwo_file != NULL)
19c3d4c9 10820 {
6a506a2d
DE
10821 struct dwo_unit *dwo_cutu = NULL;
10822
10823 if (is_debug_types && dwo_file->tus)
10824 {
10825 struct dwo_unit find_dwo_cutu;
10826
10827 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10828 find_dwo_cutu.signature = signature;
10829 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10830 }
10831 else if (!is_debug_types && dwo_file->cu)
80626a55 10832 {
6a506a2d
DE
10833 if (signature == dwo_file->cu->signature)
10834 dwo_cutu = dwo_file->cu;
10835 }
10836
10837 if (dwo_cutu != NULL)
10838 {
10839 if (dwarf2_read_debug)
10840 {
10841 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10842 kind, dwo_name, hex_string (signature),
10843 host_address_to_string (dwo_cutu));
10844 }
10845 return dwo_cutu;
80626a55
DE
10846 }
10847 }
2e276125 10848 }
9cdd5dbd 10849
80626a55
DE
10850 /* We didn't find it. This could mean a dwo_id mismatch, or
10851 someone deleted the DWO/DWP file, or the search path isn't set up
10852 correctly to find the file. */
10853
10854 if (dwarf2_read_debug)
10855 {
10856 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10857 kind, dwo_name, hex_string (signature));
10858 }
3019eac3 10859
6656a72d
DE
10860 /* This is a warning and not a complaint because it can be caused by
10861 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
10862 {
10863 /* Print the name of the DWP file if we looked there, helps the user
10864 better diagnose the problem. */
10865 char *dwp_text = NULL;
10866 struct cleanup *cleanups;
10867
10868 if (dwp_file != NULL)
10869 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10870 cleanups = make_cleanup (xfree, dwp_text);
10871
10872 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10873 " [in module %s]"),
10874 kind, dwo_name, hex_string (signature),
10875 dwp_text != NULL ? dwp_text : "",
10876 this_unit->is_debug_types ? "TU" : "CU",
10877 this_unit->offset.sect_off, objfile_name (objfile));
10878
10879 do_cleanups (cleanups);
10880 }
3019eac3 10881 return NULL;
5fb290d7
DJ
10882}
10883
80626a55
DE
10884/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10885 See lookup_dwo_cutu_unit for details. */
10886
10887static struct dwo_unit *
10888lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10889 const char *dwo_name, const char *comp_dir,
10890 ULONGEST signature)
10891{
10892 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10893}
10894
10895/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10896 See lookup_dwo_cutu_unit for details. */
10897
10898static struct dwo_unit *
10899lookup_dwo_type_unit (struct signatured_type *this_tu,
10900 const char *dwo_name, const char *comp_dir)
10901{
10902 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10903}
10904
89e63ee4
DE
10905/* Traversal function for queue_and_load_all_dwo_tus. */
10906
10907static int
10908queue_and_load_dwo_tu (void **slot, void *info)
10909{
10910 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10911 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10912 ULONGEST signature = dwo_unit->signature;
10913 struct signatured_type *sig_type =
10914 lookup_dwo_signatured_type (per_cu->cu, signature);
10915
10916 if (sig_type != NULL)
10917 {
10918 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10919
10920 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10921 a real dependency of PER_CU on SIG_TYPE. That is detected later
10922 while processing PER_CU. */
10923 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10924 load_full_type_unit (sig_cu);
10925 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10926 }
10927
10928 return 1;
10929}
10930
10931/* Queue all TUs contained in the DWO of PER_CU to be read in.
10932 The DWO may have the only definition of the type, though it may not be
10933 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10934 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10935
10936static void
10937queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10938{
10939 struct dwo_unit *dwo_unit;
10940 struct dwo_file *dwo_file;
10941
10942 gdb_assert (!per_cu->is_debug_types);
10943 gdb_assert (get_dwp_file () == NULL);
10944 gdb_assert (per_cu->cu != NULL);
10945
10946 dwo_unit = per_cu->cu->dwo_unit;
10947 gdb_assert (dwo_unit != NULL);
10948
10949 dwo_file = dwo_unit->dwo_file;
10950 if (dwo_file->tus != NULL)
10951 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10952}
10953
3019eac3
DE
10954/* Free all resources associated with DWO_FILE.
10955 Close the DWO file and munmap the sections.
10956 All memory should be on the objfile obstack. */
348e048f
DE
10957
10958static void
3019eac3 10959free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 10960{
3019eac3
DE
10961 int ix;
10962 struct dwarf2_section_info *section;
348e048f 10963
5c6fa7ab 10964 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 10965 gdb_bfd_unref (dwo_file->dbfd);
348e048f 10966
3019eac3
DE
10967 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10968}
348e048f 10969
3019eac3 10970/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 10971
3019eac3
DE
10972static void
10973free_dwo_file_cleanup (void *arg)
10974{
10975 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10976 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 10977
3019eac3
DE
10978 free_dwo_file (dwo_file, objfile);
10979}
348e048f 10980
3019eac3 10981/* Traversal function for free_dwo_files. */
2ab95328 10982
3019eac3
DE
10983static int
10984free_dwo_file_from_slot (void **slot, void *info)
10985{
10986 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10987 struct objfile *objfile = (struct objfile *) info;
348e048f 10988
3019eac3 10989 free_dwo_file (dwo_file, objfile);
348e048f 10990
3019eac3
DE
10991 return 1;
10992}
348e048f 10993
3019eac3 10994/* Free all resources associated with DWO_FILES. */
348e048f 10995
3019eac3
DE
10996static void
10997free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10998{
10999 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 11000}
3019eac3
DE
11001\f
11002/* Read in various DIEs. */
348e048f 11003
d389af10
JK
11004/* qsort helper for inherit_abstract_dies. */
11005
11006static int
11007unsigned_int_compar (const void *ap, const void *bp)
11008{
11009 unsigned int a = *(unsigned int *) ap;
11010 unsigned int b = *(unsigned int *) bp;
11011
11012 return (a > b) - (b > a);
11013}
11014
11015/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11016 Inherit only the children of the DW_AT_abstract_origin DIE not being
11017 already referenced by DW_AT_abstract_origin from the children of the
11018 current DIE. */
d389af10
JK
11019
11020static void
11021inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11022{
11023 struct die_info *child_die;
11024 unsigned die_children_count;
11025 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11026 sect_offset *offsets;
11027 sect_offset *offsets_end, *offsetp;
d389af10
JK
11028 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11029 struct die_info *origin_die;
11030 /* Iterator of the ORIGIN_DIE children. */
11031 struct die_info *origin_child_die;
11032 struct cleanup *cleanups;
11033 struct attribute *attr;
cd02d79d
PA
11034 struct dwarf2_cu *origin_cu;
11035 struct pending **origin_previous_list_in_scope;
d389af10
JK
11036
11037 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11038 if (!attr)
11039 return;
11040
cd02d79d
PA
11041 /* Note that following die references may follow to a die in a
11042 different cu. */
11043
11044 origin_cu = cu;
11045 origin_die = follow_die_ref (die, attr, &origin_cu);
11046
11047 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11048 symbols in. */
11049 origin_previous_list_in_scope = origin_cu->list_in_scope;
11050 origin_cu->list_in_scope = cu->list_in_scope;
11051
edb3359d
DJ
11052 if (die->tag != origin_die->tag
11053 && !(die->tag == DW_TAG_inlined_subroutine
11054 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11055 complaint (&symfile_complaints,
11056 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 11057 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
11058
11059 child_die = die->child;
11060 die_children_count = 0;
11061 while (child_die && child_die->tag)
11062 {
11063 child_die = sibling_die (child_die);
11064 die_children_count++;
11065 }
11066 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11067 cleanups = make_cleanup (xfree, offsets);
11068
11069 offsets_end = offsets;
11070 child_die = die->child;
11071 while (child_die && child_die->tag)
11072 {
c38f313d
DJ
11073 /* For each CHILD_DIE, find the corresponding child of
11074 ORIGIN_DIE. If there is more than one layer of
11075 DW_AT_abstract_origin, follow them all; there shouldn't be,
11076 but GCC versions at least through 4.4 generate this (GCC PR
11077 40573). */
11078 struct die_info *child_origin_die = child_die;
cd02d79d 11079 struct dwarf2_cu *child_origin_cu = cu;
9a619af0 11080
c38f313d
DJ
11081 while (1)
11082 {
cd02d79d
PA
11083 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11084 child_origin_cu);
c38f313d
DJ
11085 if (attr == NULL)
11086 break;
cd02d79d
PA
11087 child_origin_die = follow_die_ref (child_origin_die, attr,
11088 &child_origin_cu);
c38f313d
DJ
11089 }
11090
d389af10
JK
11091 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11092 counterpart may exist. */
c38f313d 11093 if (child_origin_die != child_die)
d389af10 11094 {
edb3359d
DJ
11095 if (child_die->tag != child_origin_die->tag
11096 && !(child_die->tag == DW_TAG_inlined_subroutine
11097 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11098 complaint (&symfile_complaints,
11099 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11100 "different tags"), child_die->offset.sect_off,
11101 child_origin_die->offset.sect_off);
c38f313d
DJ
11102 if (child_origin_die->parent != origin_die)
11103 complaint (&symfile_complaints,
11104 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11105 "different parents"), child_die->offset.sect_off,
11106 child_origin_die->offset.sect_off);
c38f313d
DJ
11107 else
11108 *offsets_end++ = child_origin_die->offset;
d389af10
JK
11109 }
11110 child_die = sibling_die (child_die);
11111 }
11112 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11113 unsigned_int_compar);
11114 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 11115 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
11116 complaint (&symfile_complaints,
11117 _("Multiple children of DIE 0x%x refer "
11118 "to DIE 0x%x as their abstract origin"),
b64f50a1 11119 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
11120
11121 offsetp = offsets;
11122 origin_child_die = origin_die->child;
11123 while (origin_child_die && origin_child_die->tag)
11124 {
11125 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
11126 while (offsetp < offsets_end
11127 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 11128 offsetp++;
b64f50a1
JK
11129 if (offsetp >= offsets_end
11130 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10 11131 {
adde2bff
DE
11132 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11133 Check whether we're already processing ORIGIN_CHILD_DIE.
11134 This can happen with mutually referenced abstract_origins.
11135 PR 16581. */
11136 if (!origin_child_die->in_process)
11137 process_die (origin_child_die, origin_cu);
d389af10
JK
11138 }
11139 origin_child_die = sibling_die (origin_child_die);
11140 }
cd02d79d 11141 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11142
11143 do_cleanups (cleanups);
11144}
11145
c906108c 11146static void
e7c27a73 11147read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11148{
e7c27a73 11149 struct objfile *objfile = cu->objfile;
3e29f34a 11150 struct gdbarch *gdbarch = get_objfile_arch (objfile);
52f0bd74 11151 struct context_stack *new;
c906108c
SS
11152 CORE_ADDR lowpc;
11153 CORE_ADDR highpc;
11154 struct die_info *child_die;
edb3359d 11155 struct attribute *attr, *call_line, *call_file;
15d034d0 11156 const char *name;
e142c38c 11157 CORE_ADDR baseaddr;
801e3a5b 11158 struct block *block;
edb3359d 11159 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11160 VEC (symbolp) *template_args = NULL;
11161 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11162
11163 if (inlined_func)
11164 {
11165 /* If we do not have call site information, we can't show the
11166 caller of this inlined function. That's too confusing, so
11167 only use the scope for local variables. */
11168 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11169 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11170 if (call_line == NULL || call_file == NULL)
11171 {
11172 read_lexical_block_scope (die, cu);
11173 return;
11174 }
11175 }
c906108c 11176
e142c38c
DJ
11177 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11178
94af9270 11179 name = dwarf2_name (die, cu);
c906108c 11180
e8d05480
JB
11181 /* Ignore functions with missing or empty names. These are actually
11182 illegal according to the DWARF standard. */
11183 if (name == NULL)
11184 {
11185 complaint (&symfile_complaints,
b64f50a1
JK
11186 _("missing name for subprogram DIE at %d"),
11187 die->offset.sect_off);
e8d05480
JB
11188 return;
11189 }
11190
11191 /* Ignore functions with missing or invalid low and high pc attributes. */
11192 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11193 {
ae4d0c03
PM
11194 attr = dwarf2_attr (die, DW_AT_external, cu);
11195 if (!attr || !DW_UNSND (attr))
11196 complaint (&symfile_complaints,
3e43a32a
MS
11197 _("cannot get low and high bounds "
11198 "for subprogram DIE at %d"),
b64f50a1 11199 die->offset.sect_off);
e8d05480
JB
11200 return;
11201 }
c906108c 11202
3e29f34a
MR
11203 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11204 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 11205
34eaf542
TT
11206 /* If we have any template arguments, then we must allocate a
11207 different sort of symbol. */
11208 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11209 {
11210 if (child_die->tag == DW_TAG_template_type_param
11211 || child_die->tag == DW_TAG_template_value_param)
11212 {
e623cf5d 11213 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11214 templ_func->base.is_cplus_template_function = 1;
11215 break;
11216 }
11217 }
11218
c906108c 11219 new = push_context (0, lowpc);
34eaf542
TT
11220 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11221 (struct symbol *) templ_func);
4c2df51b 11222
4cecd739
DJ
11223 /* If there is a location expression for DW_AT_frame_base, record
11224 it. */
e142c38c 11225 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11226 if (attr)
f1e6e072 11227 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
4c2df51b 11228
e142c38c 11229 cu->list_in_scope = &local_symbols;
c906108c 11230
639d11d3 11231 if (die->child != NULL)
c906108c 11232 {
639d11d3 11233 child_die = die->child;
c906108c
SS
11234 while (child_die && child_die->tag)
11235 {
34eaf542
TT
11236 if (child_die->tag == DW_TAG_template_type_param
11237 || child_die->tag == DW_TAG_template_value_param)
11238 {
11239 struct symbol *arg = new_symbol (child_die, NULL, cu);
11240
f1078f66
DJ
11241 if (arg != NULL)
11242 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11243 }
11244 else
11245 process_die (child_die, cu);
c906108c
SS
11246 child_die = sibling_die (child_die);
11247 }
11248 }
11249
d389af10
JK
11250 inherit_abstract_dies (die, cu);
11251
4a811a97
UW
11252 /* If we have a DW_AT_specification, we might need to import using
11253 directives from the context of the specification DIE. See the
11254 comment in determine_prefix. */
11255 if (cu->language == language_cplus
11256 && dwarf2_attr (die, DW_AT_specification, cu))
11257 {
11258 struct dwarf2_cu *spec_cu = cu;
11259 struct die_info *spec_die = die_specification (die, &spec_cu);
11260
11261 while (spec_die)
11262 {
11263 child_die = spec_die->child;
11264 while (child_die && child_die->tag)
11265 {
11266 if (child_die->tag == DW_TAG_imported_module)
11267 process_die (child_die, spec_cu);
11268 child_die = sibling_die (child_die);
11269 }
11270
11271 /* In some cases, GCC generates specification DIEs that
11272 themselves contain DW_AT_specification attributes. */
11273 spec_die = die_specification (spec_die, &spec_cu);
11274 }
11275 }
11276
c906108c
SS
11277 new = pop_context ();
11278 /* Make a block for the local symbols within. */
801e3a5b 11279 block = finish_block (new->name, &local_symbols, new->old_blocks,
4d663531 11280 lowpc, highpc);
801e3a5b 11281
df8a16a1 11282 /* For C++, set the block's scope. */
195a3f6c 11283 if ((cu->language == language_cplus || cu->language == language_fortran)
4d4ec4e5 11284 && cu->processing_has_namespace_info)
195a3f6c
TT
11285 block_set_scope (block, determine_prefix (die, cu),
11286 &objfile->objfile_obstack);
df8a16a1 11287
801e3a5b
JB
11288 /* If we have address ranges, record them. */
11289 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11290
3e29f34a
MR
11291 gdbarch_make_symbol_special (gdbarch, new->name, objfile);
11292
34eaf542
TT
11293 /* Attach template arguments to function. */
11294 if (! VEC_empty (symbolp, template_args))
11295 {
11296 gdb_assert (templ_func != NULL);
11297
11298 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11299 templ_func->template_arguments
11300 = obstack_alloc (&objfile->objfile_obstack,
11301 (templ_func->n_template_arguments
11302 * sizeof (struct symbol *)));
11303 memcpy (templ_func->template_arguments,
11304 VEC_address (symbolp, template_args),
11305 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11306 VEC_free (symbolp, template_args);
11307 }
11308
208d8187
JB
11309 /* In C++, we can have functions nested inside functions (e.g., when
11310 a function declares a class that has methods). This means that
11311 when we finish processing a function scope, we may need to go
11312 back to building a containing block's symbol lists. */
11313 local_symbols = new->locals;
27aa8d6a 11314 using_directives = new->using_directives;
208d8187 11315
921e78cf
JB
11316 /* If we've finished processing a top-level function, subsequent
11317 symbols go in the file symbol list. */
11318 if (outermost_context_p ())
e142c38c 11319 cu->list_in_scope = &file_symbols;
c906108c
SS
11320}
11321
11322/* Process all the DIES contained within a lexical block scope. Start
11323 a new scope, process the dies, and then close the scope. */
11324
11325static void
e7c27a73 11326read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11327{
e7c27a73 11328 struct objfile *objfile = cu->objfile;
3e29f34a 11329 struct gdbarch *gdbarch = get_objfile_arch (objfile);
52f0bd74 11330 struct context_stack *new;
c906108c
SS
11331 CORE_ADDR lowpc, highpc;
11332 struct die_info *child_die;
e142c38c
DJ
11333 CORE_ADDR baseaddr;
11334
11335 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11336
11337 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11338 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11339 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11340 be nasty. Might be easier to properly extend generic blocks to
af34e669 11341 describe ranges. */
d85a05f0 11342 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c 11343 return;
3e29f34a
MR
11344 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11345 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c
SS
11346
11347 push_context (0, lowpc);
639d11d3 11348 if (die->child != NULL)
c906108c 11349 {
639d11d3 11350 child_die = die->child;
c906108c
SS
11351 while (child_die && child_die->tag)
11352 {
e7c27a73 11353 process_die (child_die, cu);
c906108c
SS
11354 child_die = sibling_die (child_die);
11355 }
11356 }
11357 new = pop_context ();
11358
8540c487 11359 if (local_symbols != NULL || using_directives != NULL)
c906108c 11360 {
801e3a5b
JB
11361 struct block *block
11362 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
4d663531 11363 highpc);
801e3a5b
JB
11364
11365 /* Note that recording ranges after traversing children, as we
11366 do here, means that recording a parent's ranges entails
11367 walking across all its children's ranges as they appear in
11368 the address map, which is quadratic behavior.
11369
11370 It would be nicer to record the parent's ranges before
11371 traversing its children, simply overriding whatever you find
11372 there. But since we don't even decide whether to create a
11373 block until after we've traversed its children, that's hard
11374 to do. */
11375 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
11376 }
11377 local_symbols = new->locals;
27aa8d6a 11378 using_directives = new->using_directives;
c906108c
SS
11379}
11380
96408a79
SA
11381/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11382
11383static void
11384read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11385{
11386 struct objfile *objfile = cu->objfile;
11387 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11388 CORE_ADDR pc, baseaddr;
11389 struct attribute *attr;
11390 struct call_site *call_site, call_site_local;
11391 void **slot;
11392 int nparams;
11393 struct die_info *child_die;
11394
11395 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11396
11397 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11398 if (!attr)
11399 {
11400 complaint (&symfile_complaints,
11401 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11402 "DIE 0x%x [in module %s]"),
4262abfb 11403 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11404 return;
11405 }
31aa7e4e 11406 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 11407 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
11408
11409 if (cu->call_site_htab == NULL)
11410 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11411 NULL, &objfile->objfile_obstack,
11412 hashtab_obstack_allocate, NULL);
11413 call_site_local.pc = pc;
11414 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11415 if (*slot != NULL)
11416 {
11417 complaint (&symfile_complaints,
11418 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11419 "DIE 0x%x [in module %s]"),
4262abfb
JK
11420 paddress (gdbarch, pc), die->offset.sect_off,
11421 objfile_name (objfile));
96408a79
SA
11422 return;
11423 }
11424
11425 /* Count parameters at the caller. */
11426
11427 nparams = 0;
11428 for (child_die = die->child; child_die && child_die->tag;
11429 child_die = sibling_die (child_die))
11430 {
11431 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11432 {
11433 complaint (&symfile_complaints,
11434 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11435 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11436 child_die->tag, child_die->offset.sect_off,
11437 objfile_name (objfile));
96408a79
SA
11438 continue;
11439 }
11440
11441 nparams++;
11442 }
11443
11444 call_site = obstack_alloc (&objfile->objfile_obstack,
11445 (sizeof (*call_site)
11446 + (sizeof (*call_site->parameter)
11447 * (nparams - 1))));
11448 *slot = call_site;
11449 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11450 call_site->pc = pc;
11451
11452 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11453 {
11454 struct die_info *func_die;
11455
11456 /* Skip also over DW_TAG_inlined_subroutine. */
11457 for (func_die = die->parent;
11458 func_die && func_die->tag != DW_TAG_subprogram
11459 && func_die->tag != DW_TAG_subroutine_type;
11460 func_die = func_die->parent);
11461
11462 /* DW_AT_GNU_all_call_sites is a superset
11463 of DW_AT_GNU_all_tail_call_sites. */
11464 if (func_die
11465 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11466 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11467 {
11468 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11469 not complete. But keep CALL_SITE for look ups via call_site_htab,
11470 both the initial caller containing the real return address PC and
11471 the final callee containing the current PC of a chain of tail
11472 calls do not need to have the tail call list complete. But any
11473 function candidate for a virtual tail call frame searched via
11474 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11475 determined unambiguously. */
11476 }
11477 else
11478 {
11479 struct type *func_type = NULL;
11480
11481 if (func_die)
11482 func_type = get_die_type (func_die, cu);
11483 if (func_type != NULL)
11484 {
11485 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11486
11487 /* Enlist this call site to the function. */
11488 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11489 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11490 }
11491 else
11492 complaint (&symfile_complaints,
11493 _("Cannot find function owning DW_TAG_GNU_call_site "
11494 "DIE 0x%x [in module %s]"),
4262abfb 11495 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11496 }
11497 }
11498
11499 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11500 if (attr == NULL)
11501 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11502 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11503 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11504 /* Keep NULL DWARF_BLOCK. */;
11505 else if (attr_form_is_block (attr))
11506 {
11507 struct dwarf2_locexpr_baton *dlbaton;
11508
11509 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11510 dlbaton->data = DW_BLOCK (attr)->data;
11511 dlbaton->size = DW_BLOCK (attr)->size;
11512 dlbaton->per_cu = cu->per_cu;
11513
11514 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11515 }
7771576e 11516 else if (attr_form_is_ref (attr))
96408a79 11517 {
96408a79
SA
11518 struct dwarf2_cu *target_cu = cu;
11519 struct die_info *target_die;
11520
ac9ec31b 11521 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11522 gdb_assert (target_cu->objfile == objfile);
11523 if (die_is_declaration (target_die, target_cu))
11524 {
9112db09
JK
11525 const char *target_physname = NULL;
11526 struct attribute *target_attr;
11527
11528 /* Prefer the mangled name; otherwise compute the demangled one. */
11529 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11530 if (target_attr == NULL)
11531 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11532 target_cu);
11533 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11534 target_physname = DW_STRING (target_attr);
11535 else
11536 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11537 if (target_physname == NULL)
11538 complaint (&symfile_complaints,
11539 _("DW_AT_GNU_call_site_target target DIE has invalid "
11540 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11541 die->offset.sect_off, objfile_name (objfile));
96408a79 11542 else
7d455152 11543 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11544 }
11545 else
11546 {
11547 CORE_ADDR lowpc;
11548
11549 /* DW_AT_entry_pc should be preferred. */
11550 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11551 complaint (&symfile_complaints,
11552 _("DW_AT_GNU_call_site_target target DIE has invalid "
11553 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11554 die->offset.sect_off, objfile_name (objfile));
96408a79 11555 else
3e29f34a
MR
11556 {
11557 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11558 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11559 }
96408a79
SA
11560 }
11561 }
11562 else
11563 complaint (&symfile_complaints,
11564 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11565 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11566 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11567
11568 call_site->per_cu = cu->per_cu;
11569
11570 for (child_die = die->child;
11571 child_die && child_die->tag;
11572 child_die = sibling_die (child_die))
11573 {
96408a79 11574 struct call_site_parameter *parameter;
1788b2d3 11575 struct attribute *loc, *origin;
96408a79
SA
11576
11577 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11578 {
11579 /* Already printed the complaint above. */
11580 continue;
11581 }
11582
11583 gdb_assert (call_site->parameter_count < nparams);
11584 parameter = &call_site->parameter[call_site->parameter_count];
11585
1788b2d3
JK
11586 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11587 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11588 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11589
24c5c679 11590 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11591 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11592 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11593 {
11594 sect_offset offset;
11595
11596 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11597 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11598 if (!offset_in_cu_p (&cu->header, offset))
11599 {
11600 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11601 binding can be done only inside one CU. Such referenced DIE
11602 therefore cannot be even moved to DW_TAG_partial_unit. */
11603 complaint (&symfile_complaints,
11604 _("DW_AT_abstract_origin offset is not in CU for "
11605 "DW_TAG_GNU_call_site child DIE 0x%x "
11606 "[in module %s]"),
4262abfb 11607 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11608 continue;
11609 }
1788b2d3
JK
11610 parameter->u.param_offset.cu_off = (offset.sect_off
11611 - cu->header.offset.sect_off);
11612 }
11613 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11614 {
11615 complaint (&symfile_complaints,
11616 _("No DW_FORM_block* DW_AT_location for "
11617 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11618 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11619 continue;
11620 }
24c5c679 11621 else
96408a79 11622 {
24c5c679
JK
11623 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11624 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11625 if (parameter->u.dwarf_reg != -1)
11626 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11627 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11628 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11629 &parameter->u.fb_offset))
11630 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11631 else
11632 {
11633 complaint (&symfile_complaints,
11634 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11635 "for DW_FORM_block* DW_AT_location is supported for "
11636 "DW_TAG_GNU_call_site child DIE 0x%x "
11637 "[in module %s]"),
4262abfb 11638 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11639 continue;
11640 }
96408a79
SA
11641 }
11642
11643 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11644 if (!attr_form_is_block (attr))
11645 {
11646 complaint (&symfile_complaints,
11647 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11648 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11649 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11650 continue;
11651 }
11652 parameter->value = DW_BLOCK (attr)->data;
11653 parameter->value_size = DW_BLOCK (attr)->size;
11654
11655 /* Parameters are not pre-cleared by memset above. */
11656 parameter->data_value = NULL;
11657 parameter->data_value_size = 0;
11658 call_site->parameter_count++;
11659
11660 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11661 if (attr)
11662 {
11663 if (!attr_form_is_block (attr))
11664 complaint (&symfile_complaints,
11665 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11666 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11667 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11668 else
11669 {
11670 parameter->data_value = DW_BLOCK (attr)->data;
11671 parameter->data_value_size = DW_BLOCK (attr)->size;
11672 }
11673 }
11674 }
11675}
11676
43039443 11677/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
11678 Return 1 if the attributes are present and valid, otherwise, return 0.
11679 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
11680
11681static int
11682dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
11683 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11684 struct partial_symtab *ranges_pst)
43039443
JK
11685{
11686 struct objfile *objfile = cu->objfile;
3e29f34a 11687 struct gdbarch *gdbarch = get_objfile_arch (objfile);
43039443
JK
11688 struct comp_unit_head *cu_header = &cu->header;
11689 bfd *obfd = objfile->obfd;
11690 unsigned int addr_size = cu_header->addr_size;
11691 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11692 /* Base address selection entry. */
11693 CORE_ADDR base;
11694 int found_base;
11695 unsigned int dummy;
d521ce57 11696 const gdb_byte *buffer;
43039443
JK
11697 CORE_ADDR marker;
11698 int low_set;
11699 CORE_ADDR low = 0;
11700 CORE_ADDR high = 0;
ff013f42 11701 CORE_ADDR baseaddr;
43039443 11702
d00adf39
DE
11703 found_base = cu->base_known;
11704 base = cu->base_address;
43039443 11705
be391dca 11706 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11707 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
11708 {
11709 complaint (&symfile_complaints,
11710 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11711 offset);
11712 return 0;
11713 }
dce234bc 11714 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
11715
11716 /* Read in the largest possible address. */
11717 marker = read_address (obfd, buffer, cu, &dummy);
11718 if ((marker & mask) == mask)
11719 {
11720 /* If we found the largest possible address, then
11721 read the base address. */
11722 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11723 buffer += 2 * addr_size;
11724 offset += 2 * addr_size;
11725 found_base = 1;
11726 }
11727
11728 low_set = 0;
11729
e7030f15 11730 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 11731
43039443
JK
11732 while (1)
11733 {
11734 CORE_ADDR range_beginning, range_end;
11735
11736 range_beginning = read_address (obfd, buffer, cu, &dummy);
11737 buffer += addr_size;
11738 range_end = read_address (obfd, buffer, cu, &dummy);
11739 buffer += addr_size;
11740 offset += 2 * addr_size;
11741
11742 /* An end of list marker is a pair of zero addresses. */
11743 if (range_beginning == 0 && range_end == 0)
11744 /* Found the end of list entry. */
11745 break;
11746
11747 /* Each base address selection entry is a pair of 2 values.
11748 The first is the largest possible address, the second is
11749 the base address. Check for a base address here. */
11750 if ((range_beginning & mask) == mask)
11751 {
11752 /* If we found the largest possible address, then
11753 read the base address. */
11754 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11755 found_base = 1;
11756 continue;
11757 }
11758
11759 if (!found_base)
11760 {
11761 /* We have no valid base address for the ranges
11762 data. */
11763 complaint (&symfile_complaints,
11764 _("Invalid .debug_ranges data (no base address)"));
11765 return 0;
11766 }
11767
9277c30c
UW
11768 if (range_beginning > range_end)
11769 {
11770 /* Inverted range entries are invalid. */
11771 complaint (&symfile_complaints,
11772 _("Invalid .debug_ranges data (inverted range)"));
11773 return 0;
11774 }
11775
11776 /* Empty range entries have no effect. */
11777 if (range_beginning == range_end)
11778 continue;
11779
43039443
JK
11780 range_beginning += base;
11781 range_end += base;
11782
01093045
DE
11783 /* A not-uncommon case of bad debug info.
11784 Don't pollute the addrmap with bad data. */
11785 if (range_beginning + baseaddr == 0
11786 && !dwarf2_per_objfile->has_section_at_zero)
11787 {
11788 complaint (&symfile_complaints,
11789 _(".debug_ranges entry has start address of zero"
4262abfb 11790 " [in module %s]"), objfile_name (objfile));
01093045
DE
11791 continue;
11792 }
11793
9277c30c 11794 if (ranges_pst != NULL)
3e29f34a
MR
11795 {
11796 CORE_ADDR lowpc;
11797 CORE_ADDR highpc;
11798
11799 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11800 range_beginning + baseaddr);
11801 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11802 range_end + baseaddr);
11803 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11804 ranges_pst);
11805 }
ff013f42 11806
43039443
JK
11807 /* FIXME: This is recording everything as a low-high
11808 segment of consecutive addresses. We should have a
11809 data structure for discontiguous block ranges
11810 instead. */
11811 if (! low_set)
11812 {
11813 low = range_beginning;
11814 high = range_end;
11815 low_set = 1;
11816 }
11817 else
11818 {
11819 if (range_beginning < low)
11820 low = range_beginning;
11821 if (range_end > high)
11822 high = range_end;
11823 }
11824 }
11825
11826 if (! low_set)
11827 /* If the first entry is an end-of-list marker, the range
11828 describes an empty scope, i.e. no instructions. */
11829 return 0;
11830
11831 if (low_return)
11832 *low_return = low;
11833 if (high_return)
11834 *high_return = high;
11835 return 1;
11836}
11837
af34e669
DJ
11838/* Get low and high pc attributes from a die. Return 1 if the attributes
11839 are present and valid, otherwise, return 0. Return -1 if the range is
11840 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 11841
c906108c 11842static int
af34e669 11843dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
11844 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11845 struct partial_symtab *pst)
c906108c
SS
11846{
11847 struct attribute *attr;
91da1414 11848 struct attribute *attr_high;
af34e669
DJ
11849 CORE_ADDR low = 0;
11850 CORE_ADDR high = 0;
11851 int ret = 0;
c906108c 11852
91da1414
MW
11853 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11854 if (attr_high)
af34e669 11855 {
e142c38c 11856 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 11857 if (attr)
91da1414 11858 {
31aa7e4e
JB
11859 low = attr_value_as_address (attr);
11860 high = attr_value_as_address (attr_high);
11861 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11862 high += low;
91da1414 11863 }
af34e669
DJ
11864 else
11865 /* Found high w/o low attribute. */
11866 return 0;
11867
11868 /* Found consecutive range of addresses. */
11869 ret = 1;
11870 }
c906108c 11871 else
af34e669 11872 {
e142c38c 11873 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
11874 if (attr != NULL)
11875 {
ab435259
DE
11876 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11877 We take advantage of the fact that DW_AT_ranges does not appear
11878 in DW_TAG_compile_unit of DWO files. */
11879 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11880 unsigned int ranges_offset = (DW_UNSND (attr)
11881 + (need_ranges_base
11882 ? cu->ranges_base
11883 : 0));
2e3cf129 11884
af34e669 11885 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 11886 .debug_ranges section. */
2e3cf129 11887 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
af34e669 11888 return 0;
43039443 11889 /* Found discontinuous range of addresses. */
af34e669
DJ
11890 ret = -1;
11891 }
11892 }
c906108c 11893
9373cf26
JK
11894 /* read_partial_die has also the strict LOW < HIGH requirement. */
11895 if (high <= low)
c906108c
SS
11896 return 0;
11897
11898 /* When using the GNU linker, .gnu.linkonce. sections are used to
11899 eliminate duplicate copies of functions and vtables and such.
11900 The linker will arbitrarily choose one and discard the others.
11901 The AT_*_pc values for such functions refer to local labels in
11902 these sections. If the section from that file was discarded, the
11903 labels are not in the output, so the relocs get a value of 0.
11904 If this is a discarded function, mark the pc bounds as invalid,
11905 so that GDB will ignore it. */
72dca2f5 11906 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
11907 return 0;
11908
11909 *lowpc = low;
96408a79
SA
11910 if (highpc)
11911 *highpc = high;
af34e669 11912 return ret;
c906108c
SS
11913}
11914
b084d499
JB
11915/* Assuming that DIE represents a subprogram DIE or a lexical block, get
11916 its low and high PC addresses. Do nothing if these addresses could not
11917 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11918 and HIGHPC to the high address if greater than HIGHPC. */
11919
11920static void
11921dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11922 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11923 struct dwarf2_cu *cu)
11924{
11925 CORE_ADDR low, high;
11926 struct die_info *child = die->child;
11927
d85a05f0 11928 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
11929 {
11930 *lowpc = min (*lowpc, low);
11931 *highpc = max (*highpc, high);
11932 }
11933
11934 /* If the language does not allow nested subprograms (either inside
11935 subprograms or lexical blocks), we're done. */
11936 if (cu->language != language_ada)
11937 return;
6e70227d 11938
b084d499
JB
11939 /* Check all the children of the given DIE. If it contains nested
11940 subprograms, then check their pc bounds. Likewise, we need to
11941 check lexical blocks as well, as they may also contain subprogram
11942 definitions. */
11943 while (child && child->tag)
11944 {
11945 if (child->tag == DW_TAG_subprogram
11946 || child->tag == DW_TAG_lexical_block)
11947 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11948 child = sibling_die (child);
11949 }
11950}
11951
fae299cd
DC
11952/* Get the low and high pc's represented by the scope DIE, and store
11953 them in *LOWPC and *HIGHPC. If the correct values can't be
11954 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11955
11956static void
11957get_scope_pc_bounds (struct die_info *die,
11958 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11959 struct dwarf2_cu *cu)
11960{
11961 CORE_ADDR best_low = (CORE_ADDR) -1;
11962 CORE_ADDR best_high = (CORE_ADDR) 0;
11963 CORE_ADDR current_low, current_high;
11964
d85a05f0 11965 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
11966 {
11967 best_low = current_low;
11968 best_high = current_high;
11969 }
11970 else
11971 {
11972 struct die_info *child = die->child;
11973
11974 while (child && child->tag)
11975 {
11976 switch (child->tag) {
11977 case DW_TAG_subprogram:
b084d499 11978 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
11979 break;
11980 case DW_TAG_namespace:
f55ee35c 11981 case DW_TAG_module:
fae299cd
DC
11982 /* FIXME: carlton/2004-01-16: Should we do this for
11983 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11984 that current GCC's always emit the DIEs corresponding
11985 to definitions of methods of classes as children of a
11986 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11987 the DIEs giving the declarations, which could be
11988 anywhere). But I don't see any reason why the
11989 standards says that they have to be there. */
11990 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11991
11992 if (current_low != ((CORE_ADDR) -1))
11993 {
11994 best_low = min (best_low, current_low);
11995 best_high = max (best_high, current_high);
11996 }
11997 break;
11998 default:
0963b4bd 11999 /* Ignore. */
fae299cd
DC
12000 break;
12001 }
12002
12003 child = sibling_die (child);
12004 }
12005 }
12006
12007 *lowpc = best_low;
12008 *highpc = best_high;
12009}
12010
801e3a5b
JB
12011/* Record the address ranges for BLOCK, offset by BASEADDR, as given
12012 in DIE. */
380bca97 12013
801e3a5b
JB
12014static void
12015dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12016 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12017{
bb5ed363 12018 struct objfile *objfile = cu->objfile;
3e29f34a 12019 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 12020 struct attribute *attr;
91da1414 12021 struct attribute *attr_high;
801e3a5b 12022
91da1414
MW
12023 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12024 if (attr_high)
801e3a5b 12025 {
801e3a5b
JB
12026 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12027 if (attr)
12028 {
31aa7e4e
JB
12029 CORE_ADDR low = attr_value_as_address (attr);
12030 CORE_ADDR high = attr_value_as_address (attr_high);
12031
12032 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12033 high += low;
9a619af0 12034
3e29f34a
MR
12035 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12036 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12037 record_block_range (block, low, high - 1);
801e3a5b
JB
12038 }
12039 }
12040
12041 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12042 if (attr)
12043 {
bb5ed363 12044 bfd *obfd = objfile->obfd;
ab435259
DE
12045 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12046 We take advantage of the fact that DW_AT_ranges does not appear
12047 in DW_TAG_compile_unit of DWO files. */
12048 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12049
12050 /* The value of the DW_AT_ranges attribute is the offset of the
12051 address range list in the .debug_ranges section. */
ab435259
DE
12052 unsigned long offset = (DW_UNSND (attr)
12053 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12054 const gdb_byte *buffer;
801e3a5b
JB
12055
12056 /* For some target architectures, but not others, the
12057 read_address function sign-extends the addresses it returns.
12058 To recognize base address selection entries, we need a
12059 mask. */
12060 unsigned int addr_size = cu->header.addr_size;
12061 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12062
12063 /* The base address, to which the next pair is relative. Note
12064 that this 'base' is a DWARF concept: most entries in a range
12065 list are relative, to reduce the number of relocs against the
12066 debugging information. This is separate from this function's
12067 'baseaddr' argument, which GDB uses to relocate debugging
12068 information from a shared library based on the address at
12069 which the library was loaded. */
d00adf39
DE
12070 CORE_ADDR base = cu->base_address;
12071 int base_known = cu->base_known;
801e3a5b 12072
d62bfeaf 12073 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12074 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
12075 {
12076 complaint (&symfile_complaints,
12077 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12078 offset);
12079 return;
12080 }
d62bfeaf 12081 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
12082
12083 for (;;)
12084 {
12085 unsigned int bytes_read;
12086 CORE_ADDR start, end;
12087
12088 start = read_address (obfd, buffer, cu, &bytes_read);
12089 buffer += bytes_read;
12090 end = read_address (obfd, buffer, cu, &bytes_read);
12091 buffer += bytes_read;
12092
12093 /* Did we find the end of the range list? */
12094 if (start == 0 && end == 0)
12095 break;
12096
12097 /* Did we find a base address selection entry? */
12098 else if ((start & base_select_mask) == base_select_mask)
12099 {
12100 base = end;
12101 base_known = 1;
12102 }
12103
12104 /* We found an ordinary address range. */
12105 else
12106 {
12107 if (!base_known)
12108 {
12109 complaint (&symfile_complaints,
3e43a32a
MS
12110 _("Invalid .debug_ranges data "
12111 "(no base address)"));
801e3a5b
JB
12112 return;
12113 }
12114
9277c30c
UW
12115 if (start > end)
12116 {
12117 /* Inverted range entries are invalid. */
12118 complaint (&symfile_complaints,
12119 _("Invalid .debug_ranges data "
12120 "(inverted range)"));
12121 return;
12122 }
12123
12124 /* Empty range entries have no effect. */
12125 if (start == end)
12126 continue;
12127
01093045
DE
12128 start += base + baseaddr;
12129 end += base + baseaddr;
12130
12131 /* A not-uncommon case of bad debug info.
12132 Don't pollute the addrmap with bad data. */
12133 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12134 {
12135 complaint (&symfile_complaints,
12136 _(".debug_ranges entry has start address of zero"
4262abfb 12137 " [in module %s]"), objfile_name (objfile));
01093045
DE
12138 continue;
12139 }
12140
3e29f34a
MR
12141 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12142 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
01093045 12143 record_block_range (block, start, end - 1);
801e3a5b
JB
12144 }
12145 }
12146 }
12147}
12148
685b1105
JK
12149/* Check whether the producer field indicates either of GCC < 4.6, or the
12150 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12151
685b1105
JK
12152static void
12153check_producer (struct dwarf2_cu *cu)
60d5a603
JK
12154{
12155 const char *cs;
12156 int major, minor, release;
12157
12158 if (cu->producer == NULL)
12159 {
12160 /* For unknown compilers expect their behavior is DWARF version
12161 compliant.
12162
12163 GCC started to support .debug_types sections by -gdwarf-4 since
12164 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12165 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12166 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12167 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12168 }
685b1105 12169 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
60d5a603 12170 {
685b1105
JK
12171 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12172
ba919b58
TT
12173 cs = &cu->producer[strlen ("GNU ")];
12174 while (*cs && !isdigit (*cs))
12175 cs++;
12176 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12177 {
12178 /* Not recognized as GCC. */
12179 }
12180 else
1b80a9fa
JK
12181 {
12182 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12183 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12184 }
685b1105
JK
12185 }
12186 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12187 cu->producer_is_icc = 1;
12188 else
12189 {
12190 /* For other non-GCC compilers, expect their behavior is DWARF version
12191 compliant. */
60d5a603
JK
12192 }
12193
ba919b58 12194 cu->checked_producer = 1;
685b1105 12195}
ba919b58 12196
685b1105
JK
12197/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12198 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12199 during 4.6.0 experimental. */
12200
12201static int
12202producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12203{
12204 if (!cu->checked_producer)
12205 check_producer (cu);
12206
12207 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12208}
12209
12210/* Return the default accessibility type if it is not overriden by
12211 DW_AT_accessibility. */
12212
12213static enum dwarf_access_attribute
12214dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12215{
12216 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12217 {
12218 /* The default DWARF 2 accessibility for members is public, the default
12219 accessibility for inheritance is private. */
12220
12221 if (die->tag != DW_TAG_inheritance)
12222 return DW_ACCESS_public;
12223 else
12224 return DW_ACCESS_private;
12225 }
12226 else
12227 {
12228 /* DWARF 3+ defines the default accessibility a different way. The same
12229 rules apply now for DW_TAG_inheritance as for the members and it only
12230 depends on the container kind. */
12231
12232 if (die->parent->tag == DW_TAG_class_type)
12233 return DW_ACCESS_private;
12234 else
12235 return DW_ACCESS_public;
12236 }
12237}
12238
74ac6d43
TT
12239/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12240 offset. If the attribute was not found return 0, otherwise return
12241 1. If it was found but could not properly be handled, set *OFFSET
12242 to 0. */
12243
12244static int
12245handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12246 LONGEST *offset)
12247{
12248 struct attribute *attr;
12249
12250 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12251 if (attr != NULL)
12252 {
12253 *offset = 0;
12254
12255 /* Note that we do not check for a section offset first here.
12256 This is because DW_AT_data_member_location is new in DWARF 4,
12257 so if we see it, we can assume that a constant form is really
12258 a constant and not a section offset. */
12259 if (attr_form_is_constant (attr))
12260 *offset = dwarf2_get_attr_constant_value (attr, 0);
12261 else if (attr_form_is_section_offset (attr))
12262 dwarf2_complex_location_expr_complaint ();
12263 else if (attr_form_is_block (attr))
12264 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12265 else
12266 dwarf2_complex_location_expr_complaint ();
12267
12268 return 1;
12269 }
12270
12271 return 0;
12272}
12273
c906108c
SS
12274/* Add an aggregate field to the field list. */
12275
12276static void
107d2387 12277dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12278 struct dwarf2_cu *cu)
6e70227d 12279{
e7c27a73 12280 struct objfile *objfile = cu->objfile;
5e2b427d 12281 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12282 struct nextfield *new_field;
12283 struct attribute *attr;
12284 struct field *fp;
15d034d0 12285 const char *fieldname = "";
c906108c
SS
12286
12287 /* Allocate a new field list entry and link it in. */
12288 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 12289 make_cleanup (xfree, new_field);
c906108c 12290 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12291
12292 if (die->tag == DW_TAG_inheritance)
12293 {
12294 new_field->next = fip->baseclasses;
12295 fip->baseclasses = new_field;
12296 }
12297 else
12298 {
12299 new_field->next = fip->fields;
12300 fip->fields = new_field;
12301 }
c906108c
SS
12302 fip->nfields++;
12303
e142c38c 12304 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12305 if (attr)
12306 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12307 else
12308 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12309 if (new_field->accessibility != DW_ACCESS_public)
12310 fip->non_public_fields = 1;
60d5a603 12311
e142c38c 12312 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12313 if (attr)
12314 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12315 else
12316 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12317
12318 fp = &new_field->field;
a9a9bd0f 12319
e142c38c 12320 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12321 {
74ac6d43
TT
12322 LONGEST offset;
12323
a9a9bd0f 12324 /* Data member other than a C++ static data member. */
6e70227d 12325
c906108c 12326 /* Get type of field. */
e7c27a73 12327 fp->type = die_type (die, cu);
c906108c 12328
d6a843b5 12329 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12330
c906108c 12331 /* Get bit size of field (zero if none). */
e142c38c 12332 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12333 if (attr)
12334 {
12335 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12336 }
12337 else
12338 {
12339 FIELD_BITSIZE (*fp) = 0;
12340 }
12341
12342 /* Get bit offset of field. */
74ac6d43
TT
12343 if (handle_data_member_location (die, cu, &offset))
12344 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12345 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12346 if (attr)
12347 {
5e2b427d 12348 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12349 {
12350 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12351 additional bit offset from the MSB of the containing
12352 anonymous object to the MSB of the field. We don't
12353 have to do anything special since we don't need to
12354 know the size of the anonymous object. */
f41f5e61 12355 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12356 }
12357 else
12358 {
12359 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12360 MSB of the anonymous object, subtract off the number of
12361 bits from the MSB of the field to the MSB of the
12362 object, and then subtract off the number of bits of
12363 the field itself. The result is the bit offset of
12364 the LSB of the field. */
c906108c
SS
12365 int anonymous_size;
12366 int bit_offset = DW_UNSND (attr);
12367
e142c38c 12368 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12369 if (attr)
12370 {
12371 /* The size of the anonymous object containing
12372 the bit field is explicit, so use the
12373 indicated size (in bytes). */
12374 anonymous_size = DW_UNSND (attr);
12375 }
12376 else
12377 {
12378 /* The size of the anonymous object containing
12379 the bit field must be inferred from the type
12380 attribute of the data member containing the
12381 bit field. */
12382 anonymous_size = TYPE_LENGTH (fp->type);
12383 }
f41f5e61
PA
12384 SET_FIELD_BITPOS (*fp,
12385 (FIELD_BITPOS (*fp)
12386 + anonymous_size * bits_per_byte
12387 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12388 }
12389 }
12390
12391 /* Get name of field. */
39cbfefa
DJ
12392 fieldname = dwarf2_name (die, cu);
12393 if (fieldname == NULL)
12394 fieldname = "";
d8151005
DJ
12395
12396 /* The name is already allocated along with this objfile, so we don't
12397 need to duplicate it for the type. */
12398 fp->name = fieldname;
c906108c
SS
12399
12400 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12401 pointer or virtual base class pointer) to private. */
e142c38c 12402 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12403 {
d48cc9dd 12404 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12405 new_field->accessibility = DW_ACCESS_private;
12406 fip->non_public_fields = 1;
12407 }
12408 }
a9a9bd0f 12409 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12410 {
a9a9bd0f
DC
12411 /* C++ static member. */
12412
12413 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12414 is a declaration, but all versions of G++ as of this writing
12415 (so through at least 3.2.1) incorrectly generate
12416 DW_TAG_variable tags. */
6e70227d 12417
ff355380 12418 const char *physname;
c906108c 12419
a9a9bd0f 12420 /* Get name of field. */
39cbfefa
DJ
12421 fieldname = dwarf2_name (die, cu);
12422 if (fieldname == NULL)
c906108c
SS
12423 return;
12424
254e6b9e 12425 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12426 if (attr
12427 /* Only create a symbol if this is an external value.
12428 new_symbol checks this and puts the value in the global symbol
12429 table, which we want. If it is not external, new_symbol
12430 will try to put the value in cu->list_in_scope which is wrong. */
12431 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12432 {
12433 /* A static const member, not much different than an enum as far as
12434 we're concerned, except that we can support more types. */
12435 new_symbol (die, NULL, cu);
12436 }
12437
2df3850c 12438 /* Get physical name. */
ff355380 12439 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12440
d8151005
DJ
12441 /* The name is already allocated along with this objfile, so we don't
12442 need to duplicate it for the type. */
12443 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12444 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12445 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12446 }
12447 else if (die->tag == DW_TAG_inheritance)
12448 {
74ac6d43 12449 LONGEST offset;
d4b96c9a 12450
74ac6d43
TT
12451 /* C++ base class field. */
12452 if (handle_data_member_location (die, cu, &offset))
12453 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12454 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12455 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12456 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12457 fip->nbaseclasses++;
12458 }
12459}
12460
98751a41
JK
12461/* Add a typedef defined in the scope of the FIP's class. */
12462
12463static void
12464dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12465 struct dwarf2_cu *cu)
6e70227d 12466{
98751a41 12467 struct objfile *objfile = cu->objfile;
98751a41
JK
12468 struct typedef_field_list *new_field;
12469 struct attribute *attr;
12470 struct typedef_field *fp;
12471 char *fieldname = "";
12472
12473 /* Allocate a new field list entry and link it in. */
12474 new_field = xzalloc (sizeof (*new_field));
12475 make_cleanup (xfree, new_field);
12476
12477 gdb_assert (die->tag == DW_TAG_typedef);
12478
12479 fp = &new_field->field;
12480
12481 /* Get name of field. */
12482 fp->name = dwarf2_name (die, cu);
12483 if (fp->name == NULL)
12484 return;
12485
12486 fp->type = read_type_die (die, cu);
12487
12488 new_field->next = fip->typedef_field_list;
12489 fip->typedef_field_list = new_field;
12490 fip->typedef_field_list_count++;
12491}
12492
c906108c
SS
12493/* Create the vector of fields, and attach it to the type. */
12494
12495static void
fba45db2 12496dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12497 struct dwarf2_cu *cu)
c906108c
SS
12498{
12499 int nfields = fip->nfields;
12500
12501 /* Record the field count, allocate space for the array of fields,
12502 and create blank accessibility bitfields if necessary. */
12503 TYPE_NFIELDS (type) = nfields;
12504 TYPE_FIELDS (type) = (struct field *)
12505 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12506 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12507
b4ba55a1 12508 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12509 {
12510 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12511
12512 TYPE_FIELD_PRIVATE_BITS (type) =
12513 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12514 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12515
12516 TYPE_FIELD_PROTECTED_BITS (type) =
12517 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12518 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12519
774b6a14
TT
12520 TYPE_FIELD_IGNORE_BITS (type) =
12521 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12522 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12523 }
12524
12525 /* If the type has baseclasses, allocate and clear a bit vector for
12526 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12527 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12528 {
12529 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12530 unsigned char *pointer;
c906108c
SS
12531
12532 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
12533 pointer = TYPE_ALLOC (type, num_bytes);
12534 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12535 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12536 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12537 }
12538
3e43a32a
MS
12539 /* Copy the saved-up fields into the field vector. Start from the head of
12540 the list, adding to the tail of the field array, so that they end up in
12541 the same order in the array in which they were added to the list. */
c906108c
SS
12542 while (nfields-- > 0)
12543 {
7d0ccb61
DJ
12544 struct nextfield *fieldp;
12545
12546 if (fip->fields)
12547 {
12548 fieldp = fip->fields;
12549 fip->fields = fieldp->next;
12550 }
12551 else
12552 {
12553 fieldp = fip->baseclasses;
12554 fip->baseclasses = fieldp->next;
12555 }
12556
12557 TYPE_FIELD (type, nfields) = fieldp->field;
12558 switch (fieldp->accessibility)
c906108c 12559 {
c5aa993b 12560 case DW_ACCESS_private:
b4ba55a1
JB
12561 if (cu->language != language_ada)
12562 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12563 break;
c906108c 12564
c5aa993b 12565 case DW_ACCESS_protected:
b4ba55a1
JB
12566 if (cu->language != language_ada)
12567 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12568 break;
c906108c 12569
c5aa993b
JM
12570 case DW_ACCESS_public:
12571 break;
c906108c 12572
c5aa993b
JM
12573 default:
12574 /* Unknown accessibility. Complain and treat it as public. */
12575 {
e2e0b3e5 12576 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12577 fieldp->accessibility);
c5aa993b
JM
12578 }
12579 break;
c906108c
SS
12580 }
12581 if (nfields < fip->nbaseclasses)
12582 {
7d0ccb61 12583 switch (fieldp->virtuality)
c906108c 12584 {
c5aa993b
JM
12585 case DW_VIRTUALITY_virtual:
12586 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12587 if (cu->language == language_ada)
a73c6dcd 12588 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12589 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12590 break;
c906108c
SS
12591 }
12592 }
c906108c
SS
12593 }
12594}
12595
7d27a96d
TT
12596/* Return true if this member function is a constructor, false
12597 otherwise. */
12598
12599static int
12600dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12601{
12602 const char *fieldname;
12603 const char *typename;
12604 int len;
12605
12606 if (die->parent == NULL)
12607 return 0;
12608
12609 if (die->parent->tag != DW_TAG_structure_type
12610 && die->parent->tag != DW_TAG_union_type
12611 && die->parent->tag != DW_TAG_class_type)
12612 return 0;
12613
12614 fieldname = dwarf2_name (die, cu);
12615 typename = dwarf2_name (die->parent, cu);
12616 if (fieldname == NULL || typename == NULL)
12617 return 0;
12618
12619 len = strlen (fieldname);
12620 return (strncmp (fieldname, typename, len) == 0
12621 && (typename[len] == '\0' || typename[len] == '<'));
12622}
12623
c906108c
SS
12624/* Add a member function to the proper fieldlist. */
12625
12626static void
107d2387 12627dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 12628 struct type *type, struct dwarf2_cu *cu)
c906108c 12629{
e7c27a73 12630 struct objfile *objfile = cu->objfile;
c906108c
SS
12631 struct attribute *attr;
12632 struct fnfieldlist *flp;
12633 int i;
12634 struct fn_field *fnp;
15d034d0 12635 const char *fieldname;
c906108c 12636 struct nextfnfield *new_fnfield;
f792889a 12637 struct type *this_type;
60d5a603 12638 enum dwarf_access_attribute accessibility;
c906108c 12639
b4ba55a1 12640 if (cu->language == language_ada)
a73c6dcd 12641 error (_("unexpected member function in Ada type"));
b4ba55a1 12642
2df3850c 12643 /* Get name of member function. */
39cbfefa
DJ
12644 fieldname = dwarf2_name (die, cu);
12645 if (fieldname == NULL)
2df3850c 12646 return;
c906108c 12647
c906108c
SS
12648 /* Look up member function name in fieldlist. */
12649 for (i = 0; i < fip->nfnfields; i++)
12650 {
27bfe10e 12651 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
12652 break;
12653 }
12654
12655 /* Create new list element if necessary. */
12656 if (i < fip->nfnfields)
12657 flp = &fip->fnfieldlists[i];
12658 else
12659 {
12660 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12661 {
12662 fip->fnfieldlists = (struct fnfieldlist *)
12663 xrealloc (fip->fnfieldlists,
12664 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12665 * sizeof (struct fnfieldlist));
c906108c 12666 if (fip->nfnfields == 0)
c13c43fd 12667 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
12668 }
12669 flp = &fip->fnfieldlists[fip->nfnfields];
12670 flp->name = fieldname;
12671 flp->length = 0;
12672 flp->head = NULL;
3da10d80 12673 i = fip->nfnfields++;
c906108c
SS
12674 }
12675
12676 /* Create a new member function field and chain it to the field list
0963b4bd 12677 entry. */
c906108c 12678 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 12679 make_cleanup (xfree, new_fnfield);
c906108c
SS
12680 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12681 new_fnfield->next = flp->head;
12682 flp->head = new_fnfield;
12683 flp->length++;
12684
12685 /* Fill in the member function field info. */
12686 fnp = &new_fnfield->fnfield;
3da10d80
KS
12687
12688 /* Delay processing of the physname until later. */
12689 if (cu->language == language_cplus || cu->language == language_java)
12690 {
12691 add_to_method_list (type, i, flp->length - 1, fieldname,
12692 die, cu);
12693 }
12694 else
12695 {
1d06ead6 12696 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
12697 fnp->physname = physname ? physname : "";
12698 }
12699
c906108c 12700 fnp->type = alloc_type (objfile);
f792889a
DJ
12701 this_type = read_type_die (die, cu);
12702 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 12703 {
f792889a 12704 int nparams = TYPE_NFIELDS (this_type);
c906108c 12705
f792889a 12706 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
12707 of the method itself (TYPE_CODE_METHOD). */
12708 smash_to_method_type (fnp->type, type,
f792889a
DJ
12709 TYPE_TARGET_TYPE (this_type),
12710 TYPE_FIELDS (this_type),
12711 TYPE_NFIELDS (this_type),
12712 TYPE_VARARGS (this_type));
c906108c
SS
12713
12714 /* Handle static member functions.
c5aa993b 12715 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
12716 member functions. G++ helps GDB by marking the first
12717 parameter for non-static member functions (which is the this
12718 pointer) as artificial. We obtain this information from
12719 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 12720 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
12721 fnp->voffset = VOFFSET_STATIC;
12722 }
12723 else
e2e0b3e5 12724 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 12725 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
12726
12727 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 12728 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 12729 fnp->fcontext = die_containing_type (die, cu);
c906108c 12730
3e43a32a
MS
12731 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12732 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
12733
12734 /* Get accessibility. */
e142c38c 12735 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 12736 if (attr)
60d5a603
JK
12737 accessibility = DW_UNSND (attr);
12738 else
12739 accessibility = dwarf2_default_access_attribute (die, cu);
12740 switch (accessibility)
c906108c 12741 {
60d5a603
JK
12742 case DW_ACCESS_private:
12743 fnp->is_private = 1;
12744 break;
12745 case DW_ACCESS_protected:
12746 fnp->is_protected = 1;
12747 break;
c906108c
SS
12748 }
12749
b02dede2 12750 /* Check for artificial methods. */
e142c38c 12751 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
12752 if (attr && DW_UNSND (attr) != 0)
12753 fnp->is_artificial = 1;
12754
7d27a96d
TT
12755 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12756
0d564a31 12757 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
12758 function. For older versions of GCC, this is an offset in the
12759 appropriate virtual table, as specified by DW_AT_containing_type.
12760 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
12761 to the object address. */
12762
e142c38c 12763 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 12764 if (attr)
8e19ed76 12765 {
aec5aa8b 12766 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 12767 {
aec5aa8b
TT
12768 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12769 {
12770 /* Old-style GCC. */
12771 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12772 }
12773 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12774 || (DW_BLOCK (attr)->size > 1
12775 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12776 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12777 {
12778 struct dwarf_block blk;
12779 int offset;
12780
12781 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12782 ? 1 : 2);
12783 blk.size = DW_BLOCK (attr)->size - offset;
12784 blk.data = DW_BLOCK (attr)->data + offset;
12785 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12786 if ((fnp->voffset % cu->header.addr_size) != 0)
12787 dwarf2_complex_location_expr_complaint ();
12788 else
12789 fnp->voffset /= cu->header.addr_size;
12790 fnp->voffset += 2;
12791 }
12792 else
12793 dwarf2_complex_location_expr_complaint ();
12794
12795 if (!fnp->fcontext)
12796 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12797 }
3690dd37 12798 else if (attr_form_is_section_offset (attr))
8e19ed76 12799 {
4d3c2250 12800 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
12801 }
12802 else
12803 {
4d3c2250
KB
12804 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12805 fieldname);
8e19ed76 12806 }
0d564a31 12807 }
d48cc9dd
DJ
12808 else
12809 {
12810 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12811 if (attr && DW_UNSND (attr))
12812 {
12813 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12814 complaint (&symfile_complaints,
3e43a32a
MS
12815 _("Member function \"%s\" (offset %d) is virtual "
12816 "but the vtable offset is not specified"),
b64f50a1 12817 fieldname, die->offset.sect_off);
9655fd1a 12818 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
12819 TYPE_CPLUS_DYNAMIC (type) = 1;
12820 }
12821 }
c906108c
SS
12822}
12823
12824/* Create the vector of member function fields, and attach it to the type. */
12825
12826static void
fba45db2 12827dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12828 struct dwarf2_cu *cu)
c906108c
SS
12829{
12830 struct fnfieldlist *flp;
c906108c
SS
12831 int i;
12832
b4ba55a1 12833 if (cu->language == language_ada)
a73c6dcd 12834 error (_("unexpected member functions in Ada type"));
b4ba55a1 12835
c906108c
SS
12836 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12837 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12838 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12839
12840 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12841 {
12842 struct nextfnfield *nfp = flp->head;
12843 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12844 int k;
12845
12846 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12847 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12848 fn_flp->fn_fields = (struct fn_field *)
12849 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12850 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 12851 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
12852 }
12853
12854 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
12855}
12856
1168df01
JB
12857/* Returns non-zero if NAME is the name of a vtable member in CU's
12858 language, zero otherwise. */
12859static int
12860is_vtable_name (const char *name, struct dwarf2_cu *cu)
12861{
12862 static const char vptr[] = "_vptr";
987504bb 12863 static const char vtable[] = "vtable";
1168df01 12864
987504bb
JJ
12865 /* Look for the C++ and Java forms of the vtable. */
12866 if ((cu->language == language_java
12867 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12868 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12869 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
12870 return 1;
12871
12872 return 0;
12873}
12874
c0dd20ea 12875/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
12876 functions, with the ABI-specified layout. If TYPE describes
12877 such a structure, smash it into a member function type.
61049d3b
DJ
12878
12879 GCC shouldn't do this; it should just output pointer to member DIEs.
12880 This is GCC PR debug/28767. */
c0dd20ea 12881
0b92b5bb
TT
12882static void
12883quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 12884{
0b92b5bb 12885 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
12886
12887 /* Check for a structure with no name and two children. */
0b92b5bb
TT
12888 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12889 return;
c0dd20ea
DJ
12890
12891 /* Check for __pfn and __delta members. */
0b92b5bb
TT
12892 if (TYPE_FIELD_NAME (type, 0) == NULL
12893 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12894 || TYPE_FIELD_NAME (type, 1) == NULL
12895 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12896 return;
c0dd20ea
DJ
12897
12898 /* Find the type of the method. */
0b92b5bb 12899 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
12900 if (pfn_type == NULL
12901 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12902 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 12903 return;
c0dd20ea
DJ
12904
12905 /* Look for the "this" argument. */
12906 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12907 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 12908 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 12909 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 12910 return;
c0dd20ea
DJ
12911
12912 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
12913 new_type = alloc_type (objfile);
12914 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
12915 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12916 TYPE_VARARGS (pfn_type));
0b92b5bb 12917 smash_to_methodptr_type (type, new_type);
c0dd20ea 12918}
1168df01 12919
685b1105
JK
12920/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12921 (icc). */
12922
12923static int
12924producer_is_icc (struct dwarf2_cu *cu)
12925{
12926 if (!cu->checked_producer)
12927 check_producer (cu);
12928
12929 return cu->producer_is_icc;
12930}
12931
c906108c 12932/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
12933 (definition) to create a type for the structure or union. Fill in
12934 the type's name and general properties; the members will not be
83655187
DE
12935 processed until process_structure_scope. A symbol table entry for
12936 the type will also not be done until process_structure_scope (assuming
12937 the type has a name).
c906108c 12938
c767944b
DJ
12939 NOTE: we need to call these functions regardless of whether or not the
12940 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 12941 structure or union. This gets the type entered into our set of
83655187 12942 user defined types. */
c906108c 12943
f792889a 12944static struct type *
134d01f1 12945read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12946{
e7c27a73 12947 struct objfile *objfile = cu->objfile;
c906108c
SS
12948 struct type *type;
12949 struct attribute *attr;
15d034d0 12950 const char *name;
c906108c 12951
348e048f
DE
12952 /* If the definition of this type lives in .debug_types, read that type.
12953 Don't follow DW_AT_specification though, that will take us back up
12954 the chain and we want to go down. */
45e58e77 12955 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
12956 if (attr)
12957 {
ac9ec31b 12958 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 12959
ac9ec31b 12960 /* The type's CU may not be the same as CU.
02142a6c 12961 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
12962 return set_die_type (die, type, cu);
12963 }
12964
c0dd20ea 12965 type = alloc_type (objfile);
c906108c 12966 INIT_CPLUS_SPECIFIC (type);
93311388 12967
39cbfefa
DJ
12968 name = dwarf2_name (die, cu);
12969 if (name != NULL)
c906108c 12970 {
987504bb
JJ
12971 if (cu->language == language_cplus
12972 || cu->language == language_java)
63d06c5c 12973 {
15d034d0 12974 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
12975
12976 /* dwarf2_full_name might have already finished building the DIE's
12977 type. If so, there is no need to continue. */
12978 if (get_die_type (die, cu) != NULL)
12979 return get_die_type (die, cu);
12980
12981 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
12982 if (die->tag == DW_TAG_structure_type
12983 || die->tag == DW_TAG_class_type)
12984 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
12985 }
12986 else
12987 {
d8151005
DJ
12988 /* The name is already allocated along with this objfile, so
12989 we don't need to duplicate it for the type. */
7d455152 12990 TYPE_TAG_NAME (type) = name;
94af9270
KS
12991 if (die->tag == DW_TAG_class_type)
12992 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 12993 }
c906108c
SS
12994 }
12995
12996 if (die->tag == DW_TAG_structure_type)
12997 {
12998 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12999 }
13000 else if (die->tag == DW_TAG_union_type)
13001 {
13002 TYPE_CODE (type) = TYPE_CODE_UNION;
13003 }
13004 else
13005 {
4753d33b 13006 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
13007 }
13008
0cc2414c
TT
13009 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13010 TYPE_DECLARED_CLASS (type) = 1;
13011
e142c38c 13012 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13013 if (attr)
13014 {
13015 TYPE_LENGTH (type) = DW_UNSND (attr);
13016 }
13017 else
13018 {
13019 TYPE_LENGTH (type) = 0;
13020 }
13021
422b1cb0 13022 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
685b1105
JK
13023 {
13024 /* ICC does not output the required DW_AT_declaration
13025 on incomplete types, but gives them a size of zero. */
422b1cb0 13026 TYPE_STUB (type) = 1;
685b1105
JK
13027 }
13028 else
13029 TYPE_STUB_SUPPORTED (type) = 1;
13030
dc718098 13031 if (die_is_declaration (die, cu))
876cecd0 13032 TYPE_STUB (type) = 1;
a6c727b2
DJ
13033 else if (attr == NULL && die->child == NULL
13034 && producer_is_realview (cu->producer))
13035 /* RealView does not output the required DW_AT_declaration
13036 on incomplete types. */
13037 TYPE_STUB (type) = 1;
dc718098 13038
c906108c
SS
13039 /* We need to add the type field to the die immediately so we don't
13040 infinitely recurse when dealing with pointers to the structure
0963b4bd 13041 type within the structure itself. */
1c379e20 13042 set_die_type (die, type, cu);
c906108c 13043
7e314c57
JK
13044 /* set_die_type should be already done. */
13045 set_descriptive_type (type, die, cu);
13046
c767944b
DJ
13047 return type;
13048}
13049
13050/* Finish creating a structure or union type, including filling in
13051 its members and creating a symbol for it. */
13052
13053static void
13054process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13055{
13056 struct objfile *objfile = cu->objfile;
ca040673 13057 struct die_info *child_die;
c767944b
DJ
13058 struct type *type;
13059
13060 type = get_die_type (die, cu);
13061 if (type == NULL)
13062 type = read_structure_type (die, cu);
13063
e142c38c 13064 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13065 {
13066 struct field_info fi;
34eaf542 13067 VEC (symbolp) *template_args = NULL;
c767944b 13068 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13069
13070 memset (&fi, 0, sizeof (struct field_info));
13071
639d11d3 13072 child_die = die->child;
c906108c
SS
13073
13074 while (child_die && child_die->tag)
13075 {
a9a9bd0f
DC
13076 if (child_die->tag == DW_TAG_member
13077 || child_die->tag == DW_TAG_variable)
c906108c 13078 {
a9a9bd0f
DC
13079 /* NOTE: carlton/2002-11-05: A C++ static data member
13080 should be a DW_TAG_member that is a declaration, but
13081 all versions of G++ as of this writing (so through at
13082 least 3.2.1) incorrectly generate DW_TAG_variable
13083 tags for them instead. */
e7c27a73 13084 dwarf2_add_field (&fi, child_die, cu);
c906108c 13085 }
8713b1b1 13086 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13087 {
0963b4bd 13088 /* C++ member function. */
e7c27a73 13089 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
13090 }
13091 else if (child_die->tag == DW_TAG_inheritance)
13092 {
13093 /* C++ base class field. */
e7c27a73 13094 dwarf2_add_field (&fi, child_die, cu);
c906108c 13095 }
98751a41
JK
13096 else if (child_die->tag == DW_TAG_typedef)
13097 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13098 else if (child_die->tag == DW_TAG_template_type_param
13099 || child_die->tag == DW_TAG_template_value_param)
13100 {
13101 struct symbol *arg = new_symbol (child_die, NULL, cu);
13102
f1078f66
DJ
13103 if (arg != NULL)
13104 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13105 }
13106
c906108c
SS
13107 child_die = sibling_die (child_die);
13108 }
13109
34eaf542
TT
13110 /* Attach template arguments to type. */
13111 if (! VEC_empty (symbolp, template_args))
13112 {
13113 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13114 TYPE_N_TEMPLATE_ARGUMENTS (type)
13115 = VEC_length (symbolp, template_args);
13116 TYPE_TEMPLATE_ARGUMENTS (type)
13117 = obstack_alloc (&objfile->objfile_obstack,
13118 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13119 * sizeof (struct symbol *)));
13120 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13121 VEC_address (symbolp, template_args),
13122 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13123 * sizeof (struct symbol *)));
13124 VEC_free (symbolp, template_args);
13125 }
13126
c906108c
SS
13127 /* Attach fields and member functions to the type. */
13128 if (fi.nfields)
e7c27a73 13129 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13130 if (fi.nfnfields)
13131 {
e7c27a73 13132 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13133
c5aa993b 13134 /* Get the type which refers to the base class (possibly this
c906108c 13135 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13136 class from the DW_AT_containing_type attribute. This use of
13137 DW_AT_containing_type is a GNU extension. */
c906108c 13138
e142c38c 13139 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13140 {
e7c27a73 13141 struct type *t = die_containing_type (die, cu);
c906108c
SS
13142
13143 TYPE_VPTR_BASETYPE (type) = t;
13144 if (type == t)
13145 {
c906108c
SS
13146 int i;
13147
13148 /* Our own class provides vtbl ptr. */
13149 for (i = TYPE_NFIELDS (t) - 1;
13150 i >= TYPE_N_BASECLASSES (t);
13151 --i)
13152 {
0d5cff50 13153 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13154
1168df01 13155 if (is_vtable_name (fieldname, cu))
c906108c
SS
13156 {
13157 TYPE_VPTR_FIELDNO (type) = i;
13158 break;
13159 }
13160 }
13161
13162 /* Complain if virtual function table field not found. */
13163 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13164 complaint (&symfile_complaints,
3e43a32a
MS
13165 _("virtual function table pointer "
13166 "not found when defining class '%s'"),
4d3c2250
KB
13167 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13168 "");
c906108c
SS
13169 }
13170 else
13171 {
13172 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13173 }
13174 }
f6235d4c
EZ
13175 else if (cu->producer
13176 && strncmp (cu->producer,
13177 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13178 {
13179 /* The IBM XLC compiler does not provide direct indication
13180 of the containing type, but the vtable pointer is
13181 always named __vfp. */
13182
13183 int i;
13184
13185 for (i = TYPE_NFIELDS (type) - 1;
13186 i >= TYPE_N_BASECLASSES (type);
13187 --i)
13188 {
13189 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13190 {
13191 TYPE_VPTR_FIELDNO (type) = i;
13192 TYPE_VPTR_BASETYPE (type) = type;
13193 break;
13194 }
13195 }
13196 }
c906108c 13197 }
98751a41
JK
13198
13199 /* Copy fi.typedef_field_list linked list elements content into the
13200 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13201 if (fi.typedef_field_list)
13202 {
13203 int i = fi.typedef_field_list_count;
13204
a0d7a4ff 13205 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
13206 TYPE_TYPEDEF_FIELD_ARRAY (type)
13207 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13208 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13209
13210 /* Reverse the list order to keep the debug info elements order. */
13211 while (--i >= 0)
13212 {
13213 struct typedef_field *dest, *src;
6e70227d 13214
98751a41
JK
13215 dest = &TYPE_TYPEDEF_FIELD (type, i);
13216 src = &fi.typedef_field_list->field;
13217 fi.typedef_field_list = fi.typedef_field_list->next;
13218 *dest = *src;
13219 }
13220 }
c767944b
DJ
13221
13222 do_cleanups (back_to);
eb2a6f42
TT
13223
13224 if (HAVE_CPLUS_STRUCT (type))
13225 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 13226 }
63d06c5c 13227
bb5ed363 13228 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13229
90aeadfc
DC
13230 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13231 snapshots) has been known to create a die giving a declaration
13232 for a class that has, as a child, a die giving a definition for a
13233 nested class. So we have to process our children even if the
13234 current die is a declaration. Normally, of course, a declaration
13235 won't have any children at all. */
134d01f1 13236
ca040673
DE
13237 child_die = die->child;
13238
90aeadfc
DC
13239 while (child_die != NULL && child_die->tag)
13240 {
13241 if (child_die->tag == DW_TAG_member
13242 || child_die->tag == DW_TAG_variable
34eaf542
TT
13243 || child_die->tag == DW_TAG_inheritance
13244 || child_die->tag == DW_TAG_template_value_param
13245 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13246 {
90aeadfc 13247 /* Do nothing. */
134d01f1 13248 }
90aeadfc
DC
13249 else
13250 process_die (child_die, cu);
134d01f1 13251
90aeadfc 13252 child_die = sibling_die (child_die);
134d01f1
DJ
13253 }
13254
fa4028e9
JB
13255 /* Do not consider external references. According to the DWARF standard,
13256 these DIEs are identified by the fact that they have no byte_size
13257 attribute, and a declaration attribute. */
13258 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13259 || !die_is_declaration (die, cu))
c767944b 13260 new_symbol (die, type, cu);
134d01f1
DJ
13261}
13262
55426c9d
JB
13263/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13264 update TYPE using some information only available in DIE's children. */
13265
13266static void
13267update_enumeration_type_from_children (struct die_info *die,
13268 struct type *type,
13269 struct dwarf2_cu *cu)
13270{
13271 struct obstack obstack;
60f7655a 13272 struct die_info *child_die;
55426c9d
JB
13273 int unsigned_enum = 1;
13274 int flag_enum = 1;
13275 ULONGEST mask = 0;
13276 struct cleanup *old_chain;
13277
13278 obstack_init (&obstack);
13279 old_chain = make_cleanup_obstack_free (&obstack);
13280
60f7655a
DE
13281 for (child_die = die->child;
13282 child_die != NULL && child_die->tag;
13283 child_die = sibling_die (child_die))
55426c9d
JB
13284 {
13285 struct attribute *attr;
13286 LONGEST value;
13287 const gdb_byte *bytes;
13288 struct dwarf2_locexpr_baton *baton;
13289 const char *name;
60f7655a 13290
55426c9d
JB
13291 if (child_die->tag != DW_TAG_enumerator)
13292 continue;
13293
13294 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13295 if (attr == NULL)
13296 continue;
13297
13298 name = dwarf2_name (child_die, cu);
13299 if (name == NULL)
13300 name = "<anonymous enumerator>";
13301
13302 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13303 &value, &bytes, &baton);
13304 if (value < 0)
13305 {
13306 unsigned_enum = 0;
13307 flag_enum = 0;
13308 }
13309 else if ((mask & value) != 0)
13310 flag_enum = 0;
13311 else
13312 mask |= value;
13313
13314 /* If we already know that the enum type is neither unsigned, nor
13315 a flag type, no need to look at the rest of the enumerates. */
13316 if (!unsigned_enum && !flag_enum)
13317 break;
55426c9d
JB
13318 }
13319
13320 if (unsigned_enum)
13321 TYPE_UNSIGNED (type) = 1;
13322 if (flag_enum)
13323 TYPE_FLAG_ENUM (type) = 1;
13324
13325 do_cleanups (old_chain);
13326}
13327
134d01f1
DJ
13328/* Given a DW_AT_enumeration_type die, set its type. We do not
13329 complete the type's fields yet, or create any symbols. */
c906108c 13330
f792889a 13331static struct type *
134d01f1 13332read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13333{
e7c27a73 13334 struct objfile *objfile = cu->objfile;
c906108c 13335 struct type *type;
c906108c 13336 struct attribute *attr;
0114d602 13337 const char *name;
134d01f1 13338
348e048f
DE
13339 /* If the definition of this type lives in .debug_types, read that type.
13340 Don't follow DW_AT_specification though, that will take us back up
13341 the chain and we want to go down. */
45e58e77 13342 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13343 if (attr)
13344 {
ac9ec31b 13345 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13346
ac9ec31b 13347 /* The type's CU may not be the same as CU.
02142a6c 13348 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13349 return set_die_type (die, type, cu);
13350 }
13351
c906108c
SS
13352 type = alloc_type (objfile);
13353
13354 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13355 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13356 if (name != NULL)
7d455152 13357 TYPE_TAG_NAME (type) = name;
c906108c 13358
0626fc76
TT
13359 attr = dwarf2_attr (die, DW_AT_type, cu);
13360 if (attr != NULL)
13361 {
13362 struct type *underlying_type = die_type (die, cu);
13363
13364 TYPE_TARGET_TYPE (type) = underlying_type;
13365 }
13366
e142c38c 13367 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13368 if (attr)
13369 {
13370 TYPE_LENGTH (type) = DW_UNSND (attr);
13371 }
13372 else
13373 {
13374 TYPE_LENGTH (type) = 0;
13375 }
13376
137033e9
JB
13377 /* The enumeration DIE can be incomplete. In Ada, any type can be
13378 declared as private in the package spec, and then defined only
13379 inside the package body. Such types are known as Taft Amendment
13380 Types. When another package uses such a type, an incomplete DIE
13381 may be generated by the compiler. */
02eb380e 13382 if (die_is_declaration (die, cu))
876cecd0 13383 TYPE_STUB (type) = 1;
02eb380e 13384
0626fc76
TT
13385 /* Finish the creation of this type by using the enum's children.
13386 We must call this even when the underlying type has been provided
13387 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
13388 update_enumeration_type_from_children (die, type, cu);
13389
0626fc76
TT
13390 /* If this type has an underlying type that is not a stub, then we
13391 may use its attributes. We always use the "unsigned" attribute
13392 in this situation, because ordinarily we guess whether the type
13393 is unsigned -- but the guess can be wrong and the underlying type
13394 can tell us the reality. However, we defer to a local size
13395 attribute if one exists, because this lets the compiler override
13396 the underlying type if needed. */
13397 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13398 {
13399 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13400 if (TYPE_LENGTH (type) == 0)
13401 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13402 }
13403
3d567982
TT
13404 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13405
f792889a 13406 return set_die_type (die, type, cu);
134d01f1
DJ
13407}
13408
13409/* Given a pointer to a die which begins an enumeration, process all
13410 the dies that define the members of the enumeration, and create the
13411 symbol for the enumeration type.
13412
13413 NOTE: We reverse the order of the element list. */
13414
13415static void
13416process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13417{
f792889a 13418 struct type *this_type;
134d01f1 13419
f792889a
DJ
13420 this_type = get_die_type (die, cu);
13421 if (this_type == NULL)
13422 this_type = read_enumeration_type (die, cu);
9dc481d3 13423
639d11d3 13424 if (die->child != NULL)
c906108c 13425 {
9dc481d3
DE
13426 struct die_info *child_die;
13427 struct symbol *sym;
13428 struct field *fields = NULL;
13429 int num_fields = 0;
15d034d0 13430 const char *name;
9dc481d3 13431
639d11d3 13432 child_die = die->child;
c906108c
SS
13433 while (child_die && child_die->tag)
13434 {
13435 if (child_die->tag != DW_TAG_enumerator)
13436 {
e7c27a73 13437 process_die (child_die, cu);
c906108c
SS
13438 }
13439 else
13440 {
39cbfefa
DJ
13441 name = dwarf2_name (child_die, cu);
13442 if (name)
c906108c 13443 {
f792889a 13444 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
13445
13446 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13447 {
13448 fields = (struct field *)
13449 xrealloc (fields,
13450 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13451 * sizeof (struct field));
c906108c
SS
13452 }
13453
3567439c 13454 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13455 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13456 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13457 FIELD_BITSIZE (fields[num_fields]) = 0;
13458
13459 num_fields++;
13460 }
13461 }
13462
13463 child_die = sibling_die (child_die);
13464 }
13465
13466 if (num_fields)
13467 {
f792889a
DJ
13468 TYPE_NFIELDS (this_type) = num_fields;
13469 TYPE_FIELDS (this_type) = (struct field *)
13470 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13471 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13472 sizeof (struct field) * num_fields);
b8c9b27d 13473 xfree (fields);
c906108c 13474 }
c906108c 13475 }
134d01f1 13476
6c83ed52
TT
13477 /* If we are reading an enum from a .debug_types unit, and the enum
13478 is a declaration, and the enum is not the signatured type in the
13479 unit, then we do not want to add a symbol for it. Adding a
13480 symbol would in some cases obscure the true definition of the
13481 enum, giving users an incomplete type when the definition is
13482 actually available. Note that we do not want to do this for all
13483 enums which are just declarations, because C++0x allows forward
13484 enum declarations. */
3019eac3 13485 if (cu->per_cu->is_debug_types
6c83ed52
TT
13486 && die_is_declaration (die, cu))
13487 {
52dc124a 13488 struct signatured_type *sig_type;
6c83ed52 13489
c0f78cd4 13490 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13491 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13492 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13493 return;
13494 }
13495
f792889a 13496 new_symbol (die, this_type, cu);
c906108c
SS
13497}
13498
13499/* Extract all information from a DW_TAG_array_type DIE and put it in
13500 the DIE's type field. For now, this only handles one dimensional
13501 arrays. */
13502
f792889a 13503static struct type *
e7c27a73 13504read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13505{
e7c27a73 13506 struct objfile *objfile = cu->objfile;
c906108c 13507 struct die_info *child_die;
7e314c57 13508 struct type *type;
c906108c
SS
13509 struct type *element_type, *range_type, *index_type;
13510 struct type **range_types = NULL;
13511 struct attribute *attr;
13512 int ndim = 0;
13513 struct cleanup *back_to;
15d034d0 13514 const char *name;
dc53a7ad 13515 unsigned int bit_stride = 0;
c906108c 13516
e7c27a73 13517 element_type = die_type (die, cu);
c906108c 13518
7e314c57
JK
13519 /* The die_type call above may have already set the type for this DIE. */
13520 type = get_die_type (die, cu);
13521 if (type)
13522 return type;
13523
dc53a7ad
JB
13524 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13525 if (attr != NULL)
13526 bit_stride = DW_UNSND (attr) * 8;
13527
13528 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13529 if (attr != NULL)
13530 bit_stride = DW_UNSND (attr);
13531
c906108c
SS
13532 /* Irix 6.2 native cc creates array types without children for
13533 arrays with unspecified length. */
639d11d3 13534 if (die->child == NULL)
c906108c 13535 {
46bf5051 13536 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 13537 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
13538 type = create_array_type_with_stride (NULL, element_type, range_type,
13539 bit_stride);
f792889a 13540 return set_die_type (die, type, cu);
c906108c
SS
13541 }
13542
13543 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13544 child_die = die->child;
c906108c
SS
13545 while (child_die && child_die->tag)
13546 {
13547 if (child_die->tag == DW_TAG_subrange_type)
13548 {
f792889a 13549 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13550
f792889a 13551 if (child_type != NULL)
a02abb62 13552 {
0963b4bd
MS
13553 /* The range type was succesfully read. Save it for the
13554 array type creation. */
a02abb62
JB
13555 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13556 {
13557 range_types = (struct type **)
13558 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13559 * sizeof (struct type *));
13560 if (ndim == 0)
13561 make_cleanup (free_current_contents, &range_types);
13562 }
f792889a 13563 range_types[ndim++] = child_type;
a02abb62 13564 }
c906108c
SS
13565 }
13566 child_die = sibling_die (child_die);
13567 }
13568
13569 /* Dwarf2 dimensions are output from left to right, create the
13570 necessary array types in backwards order. */
7ca2d3a3 13571
c906108c 13572 type = element_type;
7ca2d3a3
DL
13573
13574 if (read_array_order (die, cu) == DW_ORD_col_major)
13575 {
13576 int i = 0;
9a619af0 13577
7ca2d3a3 13578 while (i < ndim)
dc53a7ad
JB
13579 type = create_array_type_with_stride (NULL, type, range_types[i++],
13580 bit_stride);
7ca2d3a3
DL
13581 }
13582 else
13583 {
13584 while (ndim-- > 0)
dc53a7ad
JB
13585 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13586 bit_stride);
7ca2d3a3 13587 }
c906108c 13588
f5f8a009
EZ
13589 /* Understand Dwarf2 support for vector types (like they occur on
13590 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13591 array type. This is not part of the Dwarf2/3 standard yet, but a
13592 custom vendor extension. The main difference between a regular
13593 array and the vector variant is that vectors are passed by value
13594 to functions. */
e142c38c 13595 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 13596 if (attr)
ea37ba09 13597 make_vector_type (type);
f5f8a009 13598
dbc98a8b
KW
13599 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13600 implementation may choose to implement triple vectors using this
13601 attribute. */
13602 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13603 if (attr)
13604 {
13605 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13606 TYPE_LENGTH (type) = DW_UNSND (attr);
13607 else
3e43a32a
MS
13608 complaint (&symfile_complaints,
13609 _("DW_AT_byte_size for array type smaller "
13610 "than the total size of elements"));
dbc98a8b
KW
13611 }
13612
39cbfefa
DJ
13613 name = dwarf2_name (die, cu);
13614 if (name)
13615 TYPE_NAME (type) = name;
6e70227d 13616
0963b4bd 13617 /* Install the type in the die. */
7e314c57
JK
13618 set_die_type (die, type, cu);
13619
13620 /* set_die_type should be already done. */
b4ba55a1
JB
13621 set_descriptive_type (type, die, cu);
13622
c906108c
SS
13623 do_cleanups (back_to);
13624
7e314c57 13625 return type;
c906108c
SS
13626}
13627
7ca2d3a3 13628static enum dwarf_array_dim_ordering
6e70227d 13629read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
13630{
13631 struct attribute *attr;
13632
13633 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13634
13635 if (attr) return DW_SND (attr);
13636
0963b4bd
MS
13637 /* GNU F77 is a special case, as at 08/2004 array type info is the
13638 opposite order to the dwarf2 specification, but data is still
13639 laid out as per normal fortran.
7ca2d3a3 13640
0963b4bd
MS
13641 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13642 version checking. */
7ca2d3a3 13643
905e0470
PM
13644 if (cu->language == language_fortran
13645 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
13646 {
13647 return DW_ORD_row_major;
13648 }
13649
6e70227d 13650 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
13651 {
13652 case array_column_major:
13653 return DW_ORD_col_major;
13654 case array_row_major:
13655 default:
13656 return DW_ORD_row_major;
13657 };
13658}
13659
72019c9c 13660/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 13661 the DIE's type field. */
72019c9c 13662
f792889a 13663static struct type *
72019c9c
GM
13664read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13665{
7e314c57
JK
13666 struct type *domain_type, *set_type;
13667 struct attribute *attr;
f792889a 13668
7e314c57
JK
13669 domain_type = die_type (die, cu);
13670
13671 /* The die_type call above may have already set the type for this DIE. */
13672 set_type = get_die_type (die, cu);
13673 if (set_type)
13674 return set_type;
13675
13676 set_type = create_set_type (NULL, domain_type);
13677
13678 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
13679 if (attr)
13680 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 13681
f792889a 13682 return set_die_type (die, set_type, cu);
72019c9c 13683}
7ca2d3a3 13684
0971de02
TT
13685/* A helper for read_common_block that creates a locexpr baton.
13686 SYM is the symbol which we are marking as computed.
13687 COMMON_DIE is the DIE for the common block.
13688 COMMON_LOC is the location expression attribute for the common
13689 block itself.
13690 MEMBER_LOC is the location expression attribute for the particular
13691 member of the common block that we are processing.
13692 CU is the CU from which the above come. */
13693
13694static void
13695mark_common_block_symbol_computed (struct symbol *sym,
13696 struct die_info *common_die,
13697 struct attribute *common_loc,
13698 struct attribute *member_loc,
13699 struct dwarf2_cu *cu)
13700{
13701 struct objfile *objfile = dwarf2_per_objfile->objfile;
13702 struct dwarf2_locexpr_baton *baton;
13703 gdb_byte *ptr;
13704 unsigned int cu_off;
13705 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13706 LONGEST offset = 0;
13707
13708 gdb_assert (common_loc && member_loc);
13709 gdb_assert (attr_form_is_block (common_loc));
13710 gdb_assert (attr_form_is_block (member_loc)
13711 || attr_form_is_constant (member_loc));
13712
13713 baton = obstack_alloc (&objfile->objfile_obstack,
13714 sizeof (struct dwarf2_locexpr_baton));
13715 baton->per_cu = cu->per_cu;
13716 gdb_assert (baton->per_cu);
13717
13718 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13719
13720 if (attr_form_is_constant (member_loc))
13721 {
13722 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13723 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13724 }
13725 else
13726 baton->size += DW_BLOCK (member_loc)->size;
13727
13728 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13729 baton->data = ptr;
13730
13731 *ptr++ = DW_OP_call4;
13732 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13733 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13734 ptr += 4;
13735
13736 if (attr_form_is_constant (member_loc))
13737 {
13738 *ptr++ = DW_OP_addr;
13739 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13740 ptr += cu->header.addr_size;
13741 }
13742 else
13743 {
13744 /* We have to copy the data here, because DW_OP_call4 will only
13745 use a DW_AT_location attribute. */
13746 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13747 ptr += DW_BLOCK (member_loc)->size;
13748 }
13749
13750 *ptr++ = DW_OP_plus;
13751 gdb_assert (ptr - baton->data == baton->size);
13752
0971de02 13753 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 13754 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
13755}
13756
4357ac6c
TT
13757/* Create appropriate locally-scoped variables for all the
13758 DW_TAG_common_block entries. Also create a struct common_block
13759 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13760 is used to sepate the common blocks name namespace from regular
13761 variable names. */
c906108c
SS
13762
13763static void
e7c27a73 13764read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13765{
0971de02
TT
13766 struct attribute *attr;
13767
13768 attr = dwarf2_attr (die, DW_AT_location, cu);
13769 if (attr)
13770 {
13771 /* Support the .debug_loc offsets. */
13772 if (attr_form_is_block (attr))
13773 {
13774 /* Ok. */
13775 }
13776 else if (attr_form_is_section_offset (attr))
13777 {
13778 dwarf2_complex_location_expr_complaint ();
13779 attr = NULL;
13780 }
13781 else
13782 {
13783 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13784 "common block member");
13785 attr = NULL;
13786 }
13787 }
13788
639d11d3 13789 if (die->child != NULL)
c906108c 13790 {
4357ac6c
TT
13791 struct objfile *objfile = cu->objfile;
13792 struct die_info *child_die;
13793 size_t n_entries = 0, size;
13794 struct common_block *common_block;
13795 struct symbol *sym;
74ac6d43 13796
4357ac6c
TT
13797 for (child_die = die->child;
13798 child_die && child_die->tag;
13799 child_die = sibling_die (child_die))
13800 ++n_entries;
13801
13802 size = (sizeof (struct common_block)
13803 + (n_entries - 1) * sizeof (struct symbol *));
13804 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13805 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13806 common_block->n_entries = 0;
13807
13808 for (child_die = die->child;
13809 child_die && child_die->tag;
13810 child_die = sibling_die (child_die))
13811 {
13812 /* Create the symbol in the DW_TAG_common_block block in the current
13813 symbol scope. */
e7c27a73 13814 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
13815 if (sym != NULL)
13816 {
13817 struct attribute *member_loc;
13818
13819 common_block->contents[common_block->n_entries++] = sym;
13820
13821 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13822 cu);
13823 if (member_loc)
13824 {
13825 /* GDB has handled this for a long time, but it is
13826 not specified by DWARF. It seems to have been
13827 emitted by gfortran at least as recently as:
13828 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13829 complaint (&symfile_complaints,
13830 _("Variable in common block has "
13831 "DW_AT_data_member_location "
13832 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
13833 child_die->offset.sect_off,
13834 objfile_name (cu->objfile));
0971de02
TT
13835
13836 if (attr_form_is_section_offset (member_loc))
13837 dwarf2_complex_location_expr_complaint ();
13838 else if (attr_form_is_constant (member_loc)
13839 || attr_form_is_block (member_loc))
13840 {
13841 if (attr)
13842 mark_common_block_symbol_computed (sym, die, attr,
13843 member_loc, cu);
13844 }
13845 else
13846 dwarf2_complex_location_expr_complaint ();
13847 }
13848 }
c906108c 13849 }
4357ac6c
TT
13850
13851 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13852 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
13853 }
13854}
13855
0114d602 13856/* Create a type for a C++ namespace. */
d9fa45fe 13857
0114d602
DJ
13858static struct type *
13859read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 13860{
e7c27a73 13861 struct objfile *objfile = cu->objfile;
0114d602 13862 const char *previous_prefix, *name;
9219021c 13863 int is_anonymous;
0114d602
DJ
13864 struct type *type;
13865
13866 /* For extensions, reuse the type of the original namespace. */
13867 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13868 {
13869 struct die_info *ext_die;
13870 struct dwarf2_cu *ext_cu = cu;
9a619af0 13871
0114d602
DJ
13872 ext_die = dwarf2_extension (die, &ext_cu);
13873 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
13874
13875 /* EXT_CU may not be the same as CU.
02142a6c 13876 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
13877 return set_die_type (die, type, cu);
13878 }
9219021c 13879
e142c38c 13880 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
13881
13882 /* Now build the name of the current namespace. */
13883
0114d602
DJ
13884 previous_prefix = determine_prefix (die, cu);
13885 if (previous_prefix[0] != '\0')
13886 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 13887 previous_prefix, name, 0, cu);
0114d602
DJ
13888
13889 /* Create the type. */
13890 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13891 objfile);
abee88f2 13892 TYPE_NAME (type) = name;
0114d602
DJ
13893 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13894
60531b24 13895 return set_die_type (die, type, cu);
0114d602
DJ
13896}
13897
13898/* Read a C++ namespace. */
13899
13900static void
13901read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13902{
13903 struct objfile *objfile = cu->objfile;
0114d602 13904 int is_anonymous;
9219021c 13905
5c4e30ca
DC
13906 /* Add a symbol associated to this if we haven't seen the namespace
13907 before. Also, add a using directive if it's an anonymous
13908 namespace. */
9219021c 13909
f2f0e013 13910 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
13911 {
13912 struct type *type;
13913
0114d602 13914 type = read_type_die (die, cu);
e7c27a73 13915 new_symbol (die, type, cu);
5c4e30ca 13916
e8e80198 13917 namespace_name (die, &is_anonymous, cu);
5c4e30ca 13918 if (is_anonymous)
0114d602
DJ
13919 {
13920 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 13921
c0cc3a76 13922 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12aaed36 13923 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 13924 }
5c4e30ca 13925 }
9219021c 13926
639d11d3 13927 if (die->child != NULL)
d9fa45fe 13928 {
639d11d3 13929 struct die_info *child_die = die->child;
6e70227d 13930
d9fa45fe
DC
13931 while (child_die && child_die->tag)
13932 {
e7c27a73 13933 process_die (child_die, cu);
d9fa45fe
DC
13934 child_die = sibling_die (child_die);
13935 }
13936 }
38d518c9
EZ
13937}
13938
f55ee35c
JK
13939/* Read a Fortran module as type. This DIE can be only a declaration used for
13940 imported module. Still we need that type as local Fortran "use ... only"
13941 declaration imports depend on the created type in determine_prefix. */
13942
13943static struct type *
13944read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13945{
13946 struct objfile *objfile = cu->objfile;
15d034d0 13947 const char *module_name;
f55ee35c
JK
13948 struct type *type;
13949
13950 module_name = dwarf2_name (die, cu);
13951 if (!module_name)
3e43a32a
MS
13952 complaint (&symfile_complaints,
13953 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 13954 die->offset.sect_off);
f55ee35c
JK
13955 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13956
13957 /* determine_prefix uses TYPE_TAG_NAME. */
13958 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13959
13960 return set_die_type (die, type, cu);
13961}
13962
5d7cb8df
JK
13963/* Read a Fortran module. */
13964
13965static void
13966read_module (struct die_info *die, struct dwarf2_cu *cu)
13967{
13968 struct die_info *child_die = die->child;
530e8392
KB
13969 struct type *type;
13970
13971 type = read_type_die (die, cu);
13972 new_symbol (die, type, cu);
5d7cb8df 13973
5d7cb8df
JK
13974 while (child_die && child_die->tag)
13975 {
13976 process_die (child_die, cu);
13977 child_die = sibling_die (child_die);
13978 }
13979}
13980
38d518c9
EZ
13981/* Return the name of the namespace represented by DIE. Set
13982 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13983 namespace. */
13984
13985static const char *
e142c38c 13986namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
13987{
13988 struct die_info *current_die;
13989 const char *name = NULL;
13990
13991 /* Loop through the extensions until we find a name. */
13992
13993 for (current_die = die;
13994 current_die != NULL;
f2f0e013 13995 current_die = dwarf2_extension (die, &cu))
38d518c9 13996 {
e142c38c 13997 name = dwarf2_name (current_die, cu);
38d518c9
EZ
13998 if (name != NULL)
13999 break;
14000 }
14001
14002 /* Is it an anonymous namespace? */
14003
14004 *is_anonymous = (name == NULL);
14005 if (*is_anonymous)
2b1dbab0 14006 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
14007
14008 return name;
d9fa45fe
DC
14009}
14010
c906108c
SS
14011/* Extract all information from a DW_TAG_pointer_type DIE and add to
14012 the user defined type vector. */
14013
f792889a 14014static struct type *
e7c27a73 14015read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14016{
5e2b427d 14017 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 14018 struct comp_unit_head *cu_header = &cu->header;
c906108c 14019 struct type *type;
8b2dbe47
KB
14020 struct attribute *attr_byte_size;
14021 struct attribute *attr_address_class;
14022 int byte_size, addr_class;
7e314c57
JK
14023 struct type *target_type;
14024
14025 target_type = die_type (die, cu);
c906108c 14026
7e314c57
JK
14027 /* The die_type call above may have already set the type for this DIE. */
14028 type = get_die_type (die, cu);
14029 if (type)
14030 return type;
14031
14032 type = lookup_pointer_type (target_type);
8b2dbe47 14033
e142c38c 14034 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
14035 if (attr_byte_size)
14036 byte_size = DW_UNSND (attr_byte_size);
c906108c 14037 else
8b2dbe47
KB
14038 byte_size = cu_header->addr_size;
14039
e142c38c 14040 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14041 if (attr_address_class)
14042 addr_class = DW_UNSND (attr_address_class);
14043 else
14044 addr_class = DW_ADDR_none;
14045
14046 /* If the pointer size or address class is different than the
14047 default, create a type variant marked as such and set the
14048 length accordingly. */
14049 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14050 {
5e2b427d 14051 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14052 {
14053 int type_flags;
14054
849957d9 14055 type_flags = gdbarch_address_class_type_flags
5e2b427d 14056 (gdbarch, byte_size, addr_class);
876cecd0
TT
14057 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14058 == 0);
8b2dbe47
KB
14059 type = make_type_with_address_space (type, type_flags);
14060 }
14061 else if (TYPE_LENGTH (type) != byte_size)
14062 {
3e43a32a
MS
14063 complaint (&symfile_complaints,
14064 _("invalid pointer size %d"), byte_size);
8b2dbe47 14065 }
6e70227d 14066 else
9a619af0
MS
14067 {
14068 /* Should we also complain about unhandled address classes? */
14069 }
c906108c 14070 }
8b2dbe47
KB
14071
14072 TYPE_LENGTH (type) = byte_size;
f792889a 14073 return set_die_type (die, type, cu);
c906108c
SS
14074}
14075
14076/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14077 the user defined type vector. */
14078
f792889a 14079static struct type *
e7c27a73 14080read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14081{
14082 struct type *type;
14083 struct type *to_type;
14084 struct type *domain;
14085
e7c27a73
DJ
14086 to_type = die_type (die, cu);
14087 domain = die_containing_type (die, cu);
0d5de010 14088
7e314c57
JK
14089 /* The calls above may have already set the type for this DIE. */
14090 type = get_die_type (die, cu);
14091 if (type)
14092 return type;
14093
0d5de010
DJ
14094 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14095 type = lookup_methodptr_type (to_type);
7078baeb
TT
14096 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14097 {
14098 struct type *new_type = alloc_type (cu->objfile);
14099
14100 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14101 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14102 TYPE_VARARGS (to_type));
14103 type = lookup_methodptr_type (new_type);
14104 }
0d5de010
DJ
14105 else
14106 type = lookup_memberptr_type (to_type, domain);
c906108c 14107
f792889a 14108 return set_die_type (die, type, cu);
c906108c
SS
14109}
14110
14111/* Extract all information from a DW_TAG_reference_type DIE and add to
14112 the user defined type vector. */
14113
f792889a 14114static struct type *
e7c27a73 14115read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14116{
e7c27a73 14117 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14118 struct type *type, *target_type;
c906108c
SS
14119 struct attribute *attr;
14120
7e314c57
JK
14121 target_type = die_type (die, cu);
14122
14123 /* The die_type call above may have already set the type for this DIE. */
14124 type = get_die_type (die, cu);
14125 if (type)
14126 return type;
14127
14128 type = lookup_reference_type (target_type);
e142c38c 14129 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14130 if (attr)
14131 {
14132 TYPE_LENGTH (type) = DW_UNSND (attr);
14133 }
14134 else
14135 {
107d2387 14136 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14137 }
f792889a 14138 return set_die_type (die, type, cu);
c906108c
SS
14139}
14140
cf363f18
MW
14141/* Add the given cv-qualifiers to the element type of the array. GCC
14142 outputs DWARF type qualifiers that apply to an array, not the
14143 element type. But GDB relies on the array element type to carry
14144 the cv-qualifiers. This mimics section 6.7.3 of the C99
14145 specification. */
14146
14147static struct type *
14148add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14149 struct type *base_type, int cnst, int voltl)
14150{
14151 struct type *el_type, *inner_array;
14152
14153 base_type = copy_type (base_type);
14154 inner_array = base_type;
14155
14156 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14157 {
14158 TYPE_TARGET_TYPE (inner_array) =
14159 copy_type (TYPE_TARGET_TYPE (inner_array));
14160 inner_array = TYPE_TARGET_TYPE (inner_array);
14161 }
14162
14163 el_type = TYPE_TARGET_TYPE (inner_array);
14164 cnst |= TYPE_CONST (el_type);
14165 voltl |= TYPE_VOLATILE (el_type);
14166 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14167
14168 return set_die_type (die, base_type, cu);
14169}
14170
f792889a 14171static struct type *
e7c27a73 14172read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14173{
f792889a 14174 struct type *base_type, *cv_type;
c906108c 14175
e7c27a73 14176 base_type = die_type (die, cu);
7e314c57
JK
14177
14178 /* The die_type call above may have already set the type for this DIE. */
14179 cv_type = get_die_type (die, cu);
14180 if (cv_type)
14181 return cv_type;
14182
2f608a3a
KW
14183 /* In case the const qualifier is applied to an array type, the element type
14184 is so qualified, not the array type (section 6.7.3 of C99). */
14185 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14186 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14187
f792889a
DJ
14188 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14189 return set_die_type (die, cv_type, cu);
c906108c
SS
14190}
14191
f792889a 14192static struct type *
e7c27a73 14193read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14194{
f792889a 14195 struct type *base_type, *cv_type;
c906108c 14196
e7c27a73 14197 base_type = die_type (die, cu);
7e314c57
JK
14198
14199 /* The die_type call above may have already set the type for this DIE. */
14200 cv_type = get_die_type (die, cu);
14201 if (cv_type)
14202 return cv_type;
14203
cf363f18
MW
14204 /* In case the volatile qualifier is applied to an array type, the
14205 element type is so qualified, not the array type (section 6.7.3
14206 of C99). */
14207 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14208 return add_array_cv_type (die, cu, base_type, 0, 1);
14209
f792889a
DJ
14210 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14211 return set_die_type (die, cv_type, cu);
c906108c
SS
14212}
14213
06d66ee9
TT
14214/* Handle DW_TAG_restrict_type. */
14215
14216static struct type *
14217read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14218{
14219 struct type *base_type, *cv_type;
14220
14221 base_type = die_type (die, cu);
14222
14223 /* The die_type call above may have already set the type for this DIE. */
14224 cv_type = get_die_type (die, cu);
14225 if (cv_type)
14226 return cv_type;
14227
14228 cv_type = make_restrict_type (base_type);
14229 return set_die_type (die, cv_type, cu);
14230}
14231
c906108c
SS
14232/* Extract all information from a DW_TAG_string_type DIE and add to
14233 the user defined type vector. It isn't really a user defined type,
14234 but it behaves like one, with other DIE's using an AT_user_def_type
14235 attribute to reference it. */
14236
f792889a 14237static struct type *
e7c27a73 14238read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14239{
e7c27a73 14240 struct objfile *objfile = cu->objfile;
3b7538c0 14241 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14242 struct type *type, *range_type, *index_type, *char_type;
14243 struct attribute *attr;
14244 unsigned int length;
14245
e142c38c 14246 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14247 if (attr)
14248 {
14249 length = DW_UNSND (attr);
14250 }
14251 else
14252 {
0963b4bd 14253 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14254 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14255 if (attr)
14256 {
14257 length = DW_UNSND (attr);
14258 }
14259 else
14260 {
14261 length = 1;
14262 }
c906108c 14263 }
6ccb9162 14264
46bf5051 14265 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14266 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14267 char_type = language_string_char_type (cu->language_defn, gdbarch);
14268 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14269
f792889a 14270 return set_die_type (die, type, cu);
c906108c
SS
14271}
14272
4d804846
JB
14273/* Assuming that DIE corresponds to a function, returns nonzero
14274 if the function is prototyped. */
14275
14276static int
14277prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14278{
14279 struct attribute *attr;
14280
14281 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14282 if (attr && (DW_UNSND (attr) != 0))
14283 return 1;
14284
14285 /* The DWARF standard implies that the DW_AT_prototyped attribute
14286 is only meaninful for C, but the concept also extends to other
14287 languages that allow unprototyped functions (Eg: Objective C).
14288 For all other languages, assume that functions are always
14289 prototyped. */
14290 if (cu->language != language_c
14291 && cu->language != language_objc
14292 && cu->language != language_opencl)
14293 return 1;
14294
14295 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14296 prototyped and unprototyped functions; default to prototyped,
14297 since that is more common in modern code (and RealView warns
14298 about unprototyped functions). */
14299 if (producer_is_realview (cu->producer))
14300 return 1;
14301
14302 return 0;
14303}
14304
c906108c
SS
14305/* Handle DIES due to C code like:
14306
14307 struct foo
c5aa993b
JM
14308 {
14309 int (*funcp)(int a, long l);
14310 int b;
14311 };
c906108c 14312
0963b4bd 14313 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14314
f792889a 14315static struct type *
e7c27a73 14316read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14317{
bb5ed363 14318 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14319 struct type *type; /* Type that this function returns. */
14320 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14321 struct attribute *attr;
14322
e7c27a73 14323 type = die_type (die, cu);
7e314c57
JK
14324
14325 /* The die_type call above may have already set the type for this DIE. */
14326 ftype = get_die_type (die, cu);
14327 if (ftype)
14328 return ftype;
14329
0c8b41f1 14330 ftype = lookup_function_type (type);
c906108c 14331
4d804846 14332 if (prototyped_function_p (die, cu))
a6c727b2 14333 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14334
c055b101
CV
14335 /* Store the calling convention in the type if it's available in
14336 the subroutine die. Otherwise set the calling convention to
14337 the default value DW_CC_normal. */
14338 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14339 if (attr)
14340 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14341 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14342 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14343 else
14344 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2 14345
743649fd
MW
14346 /* Record whether the function returns normally to its caller or not
14347 if the DWARF producer set that information. */
14348 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
14349 if (attr && (DW_UNSND (attr) != 0))
14350 TYPE_NO_RETURN (ftype) = 1;
14351
76c10ea2
GM
14352 /* We need to add the subroutine type to the die immediately so
14353 we don't infinitely recurse when dealing with parameters
0963b4bd 14354 declared as the same subroutine type. */
76c10ea2 14355 set_die_type (die, ftype, cu);
6e70227d 14356
639d11d3 14357 if (die->child != NULL)
c906108c 14358 {
bb5ed363 14359 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14360 struct die_info *child_die;
8072405b 14361 int nparams, iparams;
c906108c
SS
14362
14363 /* Count the number of parameters.
14364 FIXME: GDB currently ignores vararg functions, but knows about
14365 vararg member functions. */
8072405b 14366 nparams = 0;
639d11d3 14367 child_die = die->child;
c906108c
SS
14368 while (child_die && child_die->tag)
14369 {
14370 if (child_die->tag == DW_TAG_formal_parameter)
14371 nparams++;
14372 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14373 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14374 child_die = sibling_die (child_die);
14375 }
14376
14377 /* Allocate storage for parameters and fill them in. */
14378 TYPE_NFIELDS (ftype) = nparams;
14379 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14380 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14381
8072405b
JK
14382 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14383 even if we error out during the parameters reading below. */
14384 for (iparams = 0; iparams < nparams; iparams++)
14385 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14386
14387 iparams = 0;
639d11d3 14388 child_die = die->child;
c906108c
SS
14389 while (child_die && child_die->tag)
14390 {
14391 if (child_die->tag == DW_TAG_formal_parameter)
14392 {
3ce3b1ba
PA
14393 struct type *arg_type;
14394
14395 /* DWARF version 2 has no clean way to discern C++
14396 static and non-static member functions. G++ helps
14397 GDB by marking the first parameter for non-static
14398 member functions (which is the this pointer) as
14399 artificial. We pass this information to
14400 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14401
14402 DWARF version 3 added DW_AT_object_pointer, which GCC
14403 4.5 does not yet generate. */
e142c38c 14404 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14405 if (attr)
14406 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14407 else
418835cc
KS
14408 {
14409 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14410
14411 /* GCC/43521: In java, the formal parameter
14412 "this" is sometimes not marked with DW_AT_artificial. */
14413 if (cu->language == language_java)
14414 {
14415 const char *name = dwarf2_name (child_die, cu);
9a619af0 14416
418835cc
KS
14417 if (name && !strcmp (name, "this"))
14418 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14419 }
14420 }
3ce3b1ba
PA
14421 arg_type = die_type (child_die, cu);
14422
14423 /* RealView does not mark THIS as const, which the testsuite
14424 expects. GCC marks THIS as const in method definitions,
14425 but not in the class specifications (GCC PR 43053). */
14426 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14427 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14428 {
14429 int is_this = 0;
14430 struct dwarf2_cu *arg_cu = cu;
14431 const char *name = dwarf2_name (child_die, cu);
14432
14433 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14434 if (attr)
14435 {
14436 /* If the compiler emits this, use it. */
14437 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14438 is_this = 1;
14439 }
14440 else if (name && strcmp (name, "this") == 0)
14441 /* Function definitions will have the argument names. */
14442 is_this = 1;
14443 else if (name == NULL && iparams == 0)
14444 /* Declarations may not have the names, so like
14445 elsewhere in GDB, assume an artificial first
14446 argument is "this". */
14447 is_this = 1;
14448
14449 if (is_this)
14450 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14451 arg_type, 0);
14452 }
14453
14454 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14455 iparams++;
14456 }
14457 child_die = sibling_die (child_die);
14458 }
14459 }
14460
76c10ea2 14461 return ftype;
c906108c
SS
14462}
14463
f792889a 14464static struct type *
e7c27a73 14465read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14466{
e7c27a73 14467 struct objfile *objfile = cu->objfile;
0114d602 14468 const char *name = NULL;
3c8e0968 14469 struct type *this_type, *target_type;
c906108c 14470
94af9270 14471 name = dwarf2_full_name (NULL, die, cu);
f792889a 14472 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602 14473 TYPE_FLAG_TARGET_STUB, NULL, objfile);
abee88f2 14474 TYPE_NAME (this_type) = name;
f792889a 14475 set_die_type (die, this_type, cu);
3c8e0968
DE
14476 target_type = die_type (die, cu);
14477 if (target_type != this_type)
14478 TYPE_TARGET_TYPE (this_type) = target_type;
14479 else
14480 {
14481 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14482 spec and cause infinite loops in GDB. */
14483 complaint (&symfile_complaints,
14484 _("Self-referential DW_TAG_typedef "
14485 "- DIE at 0x%x [in module %s]"),
4262abfb 14486 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14487 TYPE_TARGET_TYPE (this_type) = NULL;
14488 }
f792889a 14489 return this_type;
c906108c
SS
14490}
14491
14492/* Find a representation of a given base type and install
14493 it in the TYPE field of the die. */
14494
f792889a 14495static struct type *
e7c27a73 14496read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14497{
e7c27a73 14498 struct objfile *objfile = cu->objfile;
c906108c
SS
14499 struct type *type;
14500 struct attribute *attr;
14501 int encoding = 0, size = 0;
15d034d0 14502 const char *name;
6ccb9162
UW
14503 enum type_code code = TYPE_CODE_INT;
14504 int type_flags = 0;
14505 struct type *target_type = NULL;
c906108c 14506
e142c38c 14507 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14508 if (attr)
14509 {
14510 encoding = DW_UNSND (attr);
14511 }
e142c38c 14512 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14513 if (attr)
14514 {
14515 size = DW_UNSND (attr);
14516 }
39cbfefa 14517 name = dwarf2_name (die, cu);
6ccb9162 14518 if (!name)
c906108c 14519 {
6ccb9162
UW
14520 complaint (&symfile_complaints,
14521 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14522 }
6ccb9162
UW
14523
14524 switch (encoding)
c906108c 14525 {
6ccb9162
UW
14526 case DW_ATE_address:
14527 /* Turn DW_ATE_address into a void * pointer. */
14528 code = TYPE_CODE_PTR;
14529 type_flags |= TYPE_FLAG_UNSIGNED;
14530 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14531 break;
14532 case DW_ATE_boolean:
14533 code = TYPE_CODE_BOOL;
14534 type_flags |= TYPE_FLAG_UNSIGNED;
14535 break;
14536 case DW_ATE_complex_float:
14537 code = TYPE_CODE_COMPLEX;
14538 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14539 break;
14540 case DW_ATE_decimal_float:
14541 code = TYPE_CODE_DECFLOAT;
14542 break;
14543 case DW_ATE_float:
14544 code = TYPE_CODE_FLT;
14545 break;
14546 case DW_ATE_signed:
14547 break;
14548 case DW_ATE_unsigned:
14549 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
14550 if (cu->language == language_fortran
14551 && name
14552 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14553 code = TYPE_CODE_CHAR;
6ccb9162
UW
14554 break;
14555 case DW_ATE_signed_char:
6e70227d 14556 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14557 || cu->language == language_pascal
14558 || cu->language == language_fortran)
6ccb9162
UW
14559 code = TYPE_CODE_CHAR;
14560 break;
14561 case DW_ATE_unsigned_char:
868a0084 14562 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14563 || cu->language == language_pascal
14564 || cu->language == language_fortran)
6ccb9162
UW
14565 code = TYPE_CODE_CHAR;
14566 type_flags |= TYPE_FLAG_UNSIGNED;
14567 break;
75079b2b
TT
14568 case DW_ATE_UTF:
14569 /* We just treat this as an integer and then recognize the
14570 type by name elsewhere. */
14571 break;
14572
6ccb9162
UW
14573 default:
14574 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14575 dwarf_type_encoding_name (encoding));
14576 break;
c906108c 14577 }
6ccb9162 14578
0114d602
DJ
14579 type = init_type (code, size, type_flags, NULL, objfile);
14580 TYPE_NAME (type) = name;
6ccb9162
UW
14581 TYPE_TARGET_TYPE (type) = target_type;
14582
0114d602 14583 if (name && strcmp (name, "char") == 0)
876cecd0 14584 TYPE_NOSIGN (type) = 1;
0114d602 14585
f792889a 14586 return set_die_type (die, type, cu);
c906108c
SS
14587}
14588
80180f79
SA
14589/* Parse dwarf attribute if it's a block, reference or constant and put the
14590 resulting value of the attribute into struct bound_prop.
14591 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14592
14593static int
14594attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14595 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14596{
14597 struct dwarf2_property_baton *baton;
14598 struct obstack *obstack = &cu->objfile->objfile_obstack;
14599
14600 if (attr == NULL || prop == NULL)
14601 return 0;
14602
14603 if (attr_form_is_block (attr))
14604 {
14605 baton = obstack_alloc (obstack, sizeof (*baton));
14606 baton->referenced_type = NULL;
14607 baton->locexpr.per_cu = cu->per_cu;
14608 baton->locexpr.size = DW_BLOCK (attr)->size;
14609 baton->locexpr.data = DW_BLOCK (attr)->data;
14610 prop->data.baton = baton;
14611 prop->kind = PROP_LOCEXPR;
14612 gdb_assert (prop->data.baton != NULL);
14613 }
14614 else if (attr_form_is_ref (attr))
14615 {
14616 struct dwarf2_cu *target_cu = cu;
14617 struct die_info *target_die;
14618 struct attribute *target_attr;
14619
14620 target_die = follow_die_ref (die, attr, &target_cu);
14621 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14622 if (target_attr == NULL)
14623 return 0;
14624
14625 if (attr_form_is_section_offset (target_attr))
14626 {
14627 baton = obstack_alloc (obstack, sizeof (*baton));
14628 baton->referenced_type = die_type (target_die, target_cu);
14629 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14630 prop->data.baton = baton;
14631 prop->kind = PROP_LOCLIST;
14632 gdb_assert (prop->data.baton != NULL);
14633 }
14634 else if (attr_form_is_block (target_attr))
14635 {
14636 baton = obstack_alloc (obstack, sizeof (*baton));
14637 baton->referenced_type = die_type (target_die, target_cu);
14638 baton->locexpr.per_cu = cu->per_cu;
14639 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14640 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14641 prop->data.baton = baton;
14642 prop->kind = PROP_LOCEXPR;
14643 gdb_assert (prop->data.baton != NULL);
14644 }
14645 else
14646 {
14647 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14648 "dynamic property");
14649 return 0;
14650 }
14651 }
14652 else if (attr_form_is_constant (attr))
14653 {
14654 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14655 prop->kind = PROP_CONST;
14656 }
14657 else
14658 {
14659 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14660 dwarf2_name (die, cu));
14661 return 0;
14662 }
14663
14664 return 1;
14665}
14666
a02abb62
JB
14667/* Read the given DW_AT_subrange DIE. */
14668
f792889a 14669static struct type *
a02abb62
JB
14670read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14671{
4c9ad8c2 14672 struct type *base_type, *orig_base_type;
a02abb62
JB
14673 struct type *range_type;
14674 struct attribute *attr;
729efb13 14675 struct dynamic_prop low, high;
4fae6e18 14676 int low_default_is_valid;
c451ebe5 14677 int high_bound_is_count = 0;
15d034d0 14678 const char *name;
43bbcdc2 14679 LONGEST negative_mask;
e77813c8 14680
4c9ad8c2
TT
14681 orig_base_type = die_type (die, cu);
14682 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14683 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14684 creating the range type, but we use the result of check_typedef
14685 when examining properties of the type. */
14686 base_type = check_typedef (orig_base_type);
a02abb62 14687
7e314c57
JK
14688 /* The die_type call above may have already set the type for this DIE. */
14689 range_type = get_die_type (die, cu);
14690 if (range_type)
14691 return range_type;
14692
729efb13
SA
14693 low.kind = PROP_CONST;
14694 high.kind = PROP_CONST;
14695 high.data.const_val = 0;
14696
4fae6e18
JK
14697 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14698 omitting DW_AT_lower_bound. */
14699 switch (cu->language)
6e70227d 14700 {
4fae6e18
JK
14701 case language_c:
14702 case language_cplus:
729efb13 14703 low.data.const_val = 0;
4fae6e18
JK
14704 low_default_is_valid = 1;
14705 break;
14706 case language_fortran:
729efb13 14707 low.data.const_val = 1;
4fae6e18
JK
14708 low_default_is_valid = 1;
14709 break;
14710 case language_d:
14711 case language_java:
14712 case language_objc:
729efb13 14713 low.data.const_val = 0;
4fae6e18
JK
14714 low_default_is_valid = (cu->header.version >= 4);
14715 break;
14716 case language_ada:
14717 case language_m2:
14718 case language_pascal:
729efb13 14719 low.data.const_val = 1;
4fae6e18
JK
14720 low_default_is_valid = (cu->header.version >= 4);
14721 break;
14722 default:
729efb13 14723 low.data.const_val = 0;
4fae6e18
JK
14724 low_default_is_valid = 0;
14725 break;
a02abb62
JB
14726 }
14727
e142c38c 14728 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 14729 if (attr)
11c1ba78 14730 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
14731 else if (!low_default_is_valid)
14732 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14733 "- DIE at 0x%x [in module %s]"),
4262abfb 14734 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 14735
e142c38c 14736 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 14737 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
14738 {
14739 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 14740 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 14741 {
c451ebe5
SA
14742 /* If bounds are constant do the final calculation here. */
14743 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14744 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14745 else
14746 high_bound_is_count = 1;
c2ff108b 14747 }
e77813c8
PM
14748 }
14749
14750 /* Dwarf-2 specifications explicitly allows to create subrange types
14751 without specifying a base type.
14752 In that case, the base type must be set to the type of
14753 the lower bound, upper bound or count, in that order, if any of these
14754 three attributes references an object that has a type.
14755 If no base type is found, the Dwarf-2 specifications say that
14756 a signed integer type of size equal to the size of an address should
14757 be used.
14758 For the following C code: `extern char gdb_int [];'
14759 GCC produces an empty range DIE.
14760 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 14761 high bound or count are not yet handled by this code. */
e77813c8
PM
14762 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14763 {
14764 struct objfile *objfile = cu->objfile;
14765 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14766 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14767 struct type *int_type = objfile_type (objfile)->builtin_int;
14768
14769 /* Test "int", "long int", and "long long int" objfile types,
14770 and select the first one having a size above or equal to the
14771 architecture address size. */
14772 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14773 base_type = int_type;
14774 else
14775 {
14776 int_type = objfile_type (objfile)->builtin_long;
14777 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14778 base_type = int_type;
14779 else
14780 {
14781 int_type = objfile_type (objfile)->builtin_long_long;
14782 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14783 base_type = int_type;
14784 }
14785 }
14786 }
a02abb62 14787
dbb9c2b1
JB
14788 /* Normally, the DWARF producers are expected to use a signed
14789 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14790 But this is unfortunately not always the case, as witnessed
14791 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14792 is used instead. To work around that ambiguity, we treat
14793 the bounds as signed, and thus sign-extend their values, when
14794 the base type is signed. */
6e70227d 14795 negative_mask =
43bbcdc2 14796 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
729efb13
SA
14797 if (low.kind == PROP_CONST
14798 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14799 low.data.const_val |= negative_mask;
14800 if (high.kind == PROP_CONST
14801 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14802 high.data.const_val |= negative_mask;
43bbcdc2 14803
729efb13 14804 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 14805
c451ebe5
SA
14806 if (high_bound_is_count)
14807 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14808
c2ff108b
JK
14809 /* Ada expects an empty array on no boundary attributes. */
14810 if (attr == NULL && cu->language != language_ada)
729efb13 14811 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 14812
39cbfefa
DJ
14813 name = dwarf2_name (die, cu);
14814 if (name)
14815 TYPE_NAME (range_type) = name;
6e70227d 14816
e142c38c 14817 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
14818 if (attr)
14819 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14820
7e314c57
JK
14821 set_die_type (die, range_type, cu);
14822
14823 /* set_die_type should be already done. */
b4ba55a1
JB
14824 set_descriptive_type (range_type, die, cu);
14825
7e314c57 14826 return range_type;
a02abb62 14827}
6e70227d 14828
f792889a 14829static struct type *
81a17f79
JB
14830read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14831{
14832 struct type *type;
81a17f79 14833
81a17f79
JB
14834 /* For now, we only support the C meaning of an unspecified type: void. */
14835
0114d602
DJ
14836 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14837 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 14838
f792889a 14839 return set_die_type (die, type, cu);
81a17f79 14840}
a02abb62 14841
639d11d3
DC
14842/* Read a single die and all its descendents. Set the die's sibling
14843 field to NULL; set other fields in the die correctly, and set all
14844 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14845 location of the info_ptr after reading all of those dies. PARENT
14846 is the parent of the die in question. */
14847
14848static struct die_info *
dee91e82 14849read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
14850 const gdb_byte *info_ptr,
14851 const gdb_byte **new_info_ptr,
dee91e82 14852 struct die_info *parent)
639d11d3
DC
14853{
14854 struct die_info *die;
d521ce57 14855 const gdb_byte *cur_ptr;
639d11d3
DC
14856 int has_children;
14857
bf6af496 14858 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
14859 if (die == NULL)
14860 {
14861 *new_info_ptr = cur_ptr;
14862 return NULL;
14863 }
93311388 14864 store_in_ref_table (die, reader->cu);
639d11d3
DC
14865
14866 if (has_children)
bf6af496 14867 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
14868 else
14869 {
14870 die->child = NULL;
14871 *new_info_ptr = cur_ptr;
14872 }
14873
14874 die->sibling = NULL;
14875 die->parent = parent;
14876 return die;
14877}
14878
14879/* Read a die, all of its descendents, and all of its siblings; set
14880 all of the fields of all of the dies correctly. Arguments are as
14881 in read_die_and_children. */
14882
14883static struct die_info *
bf6af496 14884read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
14885 const gdb_byte *info_ptr,
14886 const gdb_byte **new_info_ptr,
bf6af496 14887 struct die_info *parent)
639d11d3
DC
14888{
14889 struct die_info *first_die, *last_sibling;
d521ce57 14890 const gdb_byte *cur_ptr;
639d11d3 14891
c906108c 14892 cur_ptr = info_ptr;
639d11d3
DC
14893 first_die = last_sibling = NULL;
14894
14895 while (1)
c906108c 14896 {
639d11d3 14897 struct die_info *die
dee91e82 14898 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 14899
1d325ec1 14900 if (die == NULL)
c906108c 14901 {
639d11d3
DC
14902 *new_info_ptr = cur_ptr;
14903 return first_die;
c906108c 14904 }
1d325ec1
DJ
14905
14906 if (!first_die)
14907 first_die = die;
c906108c 14908 else
1d325ec1
DJ
14909 last_sibling->sibling = die;
14910
14911 last_sibling = die;
c906108c 14912 }
c906108c
SS
14913}
14914
bf6af496
DE
14915/* Read a die, all of its descendents, and all of its siblings; set
14916 all of the fields of all of the dies correctly. Arguments are as
14917 in read_die_and_children.
14918 This the main entry point for reading a DIE and all its children. */
14919
14920static struct die_info *
14921read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
14922 const gdb_byte *info_ptr,
14923 const gdb_byte **new_info_ptr,
bf6af496
DE
14924 struct die_info *parent)
14925{
14926 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14927 new_info_ptr, parent);
14928
14929 if (dwarf2_die_debug)
14930 {
14931 fprintf_unfiltered (gdb_stdlog,
14932 "Read die from %s@0x%x of %s:\n",
a32a8923 14933 get_section_name (reader->die_section),
bf6af496
DE
14934 (unsigned) (info_ptr - reader->die_section->buffer),
14935 bfd_get_filename (reader->abfd));
14936 dump_die (die, dwarf2_die_debug);
14937 }
14938
14939 return die;
14940}
14941
3019eac3
DE
14942/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14943 attributes.
14944 The caller is responsible for filling in the extra attributes
14945 and updating (*DIEP)->num_attrs.
14946 Set DIEP to point to a newly allocated die with its information,
14947 except for its child, sibling, and parent fields.
14948 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 14949
d521ce57 14950static const gdb_byte *
3019eac3 14951read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 14952 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 14953 int *has_children, int num_extra_attrs)
93311388 14954{
b64f50a1
JK
14955 unsigned int abbrev_number, bytes_read, i;
14956 sect_offset offset;
93311388
DE
14957 struct abbrev_info *abbrev;
14958 struct die_info *die;
14959 struct dwarf2_cu *cu = reader->cu;
14960 bfd *abfd = reader->abfd;
14961
b64f50a1 14962 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
14963 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14964 info_ptr += bytes_read;
14965 if (!abbrev_number)
14966 {
14967 *diep = NULL;
14968 *has_children = 0;
14969 return info_ptr;
14970 }
14971
433df2d4 14972 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 14973 if (!abbrev)
348e048f
DE
14974 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14975 abbrev_number,
14976 bfd_get_filename (abfd));
14977
3019eac3 14978 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
14979 die->offset = offset;
14980 die->tag = abbrev->tag;
14981 die->abbrev = abbrev_number;
14982
3019eac3
DE
14983 /* Make the result usable.
14984 The caller needs to update num_attrs after adding the extra
14985 attributes. */
93311388
DE
14986 die->num_attrs = abbrev->num_attrs;
14987
14988 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
14989 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14990 info_ptr);
93311388
DE
14991
14992 *diep = die;
14993 *has_children = abbrev->has_children;
14994 return info_ptr;
14995}
14996
3019eac3
DE
14997/* Read a die and all its attributes.
14998 Set DIEP to point to a newly allocated die with its information,
14999 except for its child, sibling, and parent fields.
15000 Set HAS_CHILDREN to tell whether the die has children or not. */
15001
d521ce57 15002static const gdb_byte *
3019eac3 15003read_full_die (const struct die_reader_specs *reader,
d521ce57 15004 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
15005 int *has_children)
15006{
d521ce57 15007 const gdb_byte *result;
bf6af496
DE
15008
15009 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15010
15011 if (dwarf2_die_debug)
15012 {
15013 fprintf_unfiltered (gdb_stdlog,
15014 "Read die from %s@0x%x of %s:\n",
a32a8923 15015 get_section_name (reader->die_section),
bf6af496
DE
15016 (unsigned) (info_ptr - reader->die_section->buffer),
15017 bfd_get_filename (reader->abfd));
15018 dump_die (*diep, dwarf2_die_debug);
15019 }
15020
15021 return result;
3019eac3 15022}
433df2d4
DE
15023\f
15024/* Abbreviation tables.
3019eac3 15025
433df2d4 15026 In DWARF version 2, the description of the debugging information is
c906108c
SS
15027 stored in a separate .debug_abbrev section. Before we read any
15028 dies from a section we read in all abbreviations and install them
433df2d4
DE
15029 in a hash table. */
15030
15031/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15032
15033static struct abbrev_info *
15034abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15035{
15036 struct abbrev_info *abbrev;
15037
15038 abbrev = (struct abbrev_info *)
15039 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
15040 memset (abbrev, 0, sizeof (struct abbrev_info));
15041 return abbrev;
15042}
15043
15044/* Add an abbreviation to the table. */
c906108c
SS
15045
15046static void
433df2d4
DE
15047abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15048 unsigned int abbrev_number,
15049 struct abbrev_info *abbrev)
15050{
15051 unsigned int hash_number;
15052
15053 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15054 abbrev->next = abbrev_table->abbrevs[hash_number];
15055 abbrev_table->abbrevs[hash_number] = abbrev;
15056}
dee91e82 15057
433df2d4
DE
15058/* Look up an abbrev in the table.
15059 Returns NULL if the abbrev is not found. */
15060
15061static struct abbrev_info *
15062abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15063 unsigned int abbrev_number)
c906108c 15064{
433df2d4
DE
15065 unsigned int hash_number;
15066 struct abbrev_info *abbrev;
15067
15068 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15069 abbrev = abbrev_table->abbrevs[hash_number];
15070
15071 while (abbrev)
15072 {
15073 if (abbrev->number == abbrev_number)
15074 return abbrev;
15075 abbrev = abbrev->next;
15076 }
15077 return NULL;
15078}
15079
15080/* Read in an abbrev table. */
15081
15082static struct abbrev_table *
15083abbrev_table_read_table (struct dwarf2_section_info *section,
15084 sect_offset offset)
15085{
15086 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15087 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15088 struct abbrev_table *abbrev_table;
d521ce57 15089 const gdb_byte *abbrev_ptr;
c906108c
SS
15090 struct abbrev_info *cur_abbrev;
15091 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15092 unsigned int abbrev_form;
f3dd6933
DJ
15093 struct attr_abbrev *cur_attrs;
15094 unsigned int allocated_attrs;
c906108c 15095
70ba0933 15096 abbrev_table = XNEW (struct abbrev_table);
f4dc4d17 15097 abbrev_table->offset = offset;
433df2d4
DE
15098 obstack_init (&abbrev_table->abbrev_obstack);
15099 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15100 (ABBREV_HASH_SIZE
15101 * sizeof (struct abbrev_info *)));
15102 memset (abbrev_table->abbrevs, 0,
15103 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15104
433df2d4
DE
15105 dwarf2_read_section (objfile, section);
15106 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
15107 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15108 abbrev_ptr += bytes_read;
15109
f3dd6933
DJ
15110 allocated_attrs = ATTR_ALLOC_CHUNK;
15111 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 15112
0963b4bd 15113 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15114 while (abbrev_number)
15115 {
433df2d4 15116 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15117
15118 /* read in abbrev header */
15119 cur_abbrev->number = abbrev_number;
15120 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15121 abbrev_ptr += bytes_read;
15122 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15123 abbrev_ptr += 1;
15124
15125 /* now read in declarations */
15126 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15127 abbrev_ptr += bytes_read;
15128 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15129 abbrev_ptr += bytes_read;
15130 while (abbrev_name)
15131 {
f3dd6933 15132 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15133 {
f3dd6933
DJ
15134 allocated_attrs += ATTR_ALLOC_CHUNK;
15135 cur_attrs
15136 = xrealloc (cur_attrs, (allocated_attrs
15137 * sizeof (struct attr_abbrev)));
c906108c 15138 }
ae038cb0 15139
f3dd6933
DJ
15140 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15141 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
15142 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15143 abbrev_ptr += bytes_read;
15144 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15145 abbrev_ptr += bytes_read;
15146 }
15147
433df2d4 15148 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
f3dd6933
DJ
15149 (cur_abbrev->num_attrs
15150 * sizeof (struct attr_abbrev)));
15151 memcpy (cur_abbrev->attrs, cur_attrs,
15152 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15153
433df2d4 15154 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15155
15156 /* Get next abbreviation.
15157 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15158 always properly terminated with an abbrev number of 0.
15159 Exit loop if we encounter an abbreviation which we have
15160 already read (which means we are about to read the abbreviations
15161 for the next compile unit) or if the end of the abbreviation
15162 table is reached. */
433df2d4 15163 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15164 break;
15165 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15166 abbrev_ptr += bytes_read;
433df2d4 15167 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15168 break;
15169 }
f3dd6933
DJ
15170
15171 xfree (cur_attrs);
433df2d4 15172 return abbrev_table;
c906108c
SS
15173}
15174
433df2d4 15175/* Free the resources held by ABBREV_TABLE. */
c906108c 15176
c906108c 15177static void
433df2d4 15178abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15179{
433df2d4
DE
15180 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15181 xfree (abbrev_table);
c906108c
SS
15182}
15183
f4dc4d17
DE
15184/* Same as abbrev_table_free but as a cleanup.
15185 We pass in a pointer to the pointer to the table so that we can
15186 set the pointer to NULL when we're done. It also simplifies
73051182 15187 build_type_psymtabs_1. */
f4dc4d17
DE
15188
15189static void
15190abbrev_table_free_cleanup (void *table_ptr)
15191{
15192 struct abbrev_table **abbrev_table_ptr = table_ptr;
15193
15194 if (*abbrev_table_ptr != NULL)
15195 abbrev_table_free (*abbrev_table_ptr);
15196 *abbrev_table_ptr = NULL;
15197}
15198
433df2d4
DE
15199/* Read the abbrev table for CU from ABBREV_SECTION. */
15200
15201static void
15202dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15203 struct dwarf2_section_info *abbrev_section)
c906108c 15204{
433df2d4
DE
15205 cu->abbrev_table =
15206 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15207}
c906108c 15208
433df2d4 15209/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15210
433df2d4
DE
15211static void
15212dwarf2_free_abbrev_table (void *ptr_to_cu)
15213{
15214 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 15215
a2ce51a0
DE
15216 if (cu->abbrev_table != NULL)
15217 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15218 /* Set this to NULL so that we SEGV if we try to read it later,
15219 and also because free_comp_unit verifies this is NULL. */
15220 cu->abbrev_table = NULL;
15221}
15222\f
72bf9492
DJ
15223/* Returns nonzero if TAG represents a type that we might generate a partial
15224 symbol for. */
15225
15226static int
15227is_type_tag_for_partial (int tag)
15228{
15229 switch (tag)
15230 {
15231#if 0
15232 /* Some types that would be reasonable to generate partial symbols for,
15233 that we don't at present. */
15234 case DW_TAG_array_type:
15235 case DW_TAG_file_type:
15236 case DW_TAG_ptr_to_member_type:
15237 case DW_TAG_set_type:
15238 case DW_TAG_string_type:
15239 case DW_TAG_subroutine_type:
15240#endif
15241 case DW_TAG_base_type:
15242 case DW_TAG_class_type:
680b30c7 15243 case DW_TAG_interface_type:
72bf9492
DJ
15244 case DW_TAG_enumeration_type:
15245 case DW_TAG_structure_type:
15246 case DW_TAG_subrange_type:
15247 case DW_TAG_typedef:
15248 case DW_TAG_union_type:
15249 return 1;
15250 default:
15251 return 0;
15252 }
15253}
15254
15255/* Load all DIEs that are interesting for partial symbols into memory. */
15256
15257static struct partial_die_info *
dee91e82 15258load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15259 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15260{
dee91e82 15261 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15262 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15263 struct partial_die_info *part_die;
15264 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15265 struct abbrev_info *abbrev;
15266 unsigned int bytes_read;
5afb4e99 15267 unsigned int load_all = 0;
72bf9492
DJ
15268 int nesting_level = 1;
15269
15270 parent_die = NULL;
15271 last_die = NULL;
15272
7adf1e79
DE
15273 gdb_assert (cu->per_cu != NULL);
15274 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15275 load_all = 1;
15276
72bf9492
DJ
15277 cu->partial_dies
15278 = htab_create_alloc_ex (cu->header.length / 12,
15279 partial_die_hash,
15280 partial_die_eq,
15281 NULL,
15282 &cu->comp_unit_obstack,
15283 hashtab_obstack_allocate,
15284 dummy_obstack_deallocate);
15285
15286 part_die = obstack_alloc (&cu->comp_unit_obstack,
15287 sizeof (struct partial_die_info));
15288
15289 while (1)
15290 {
15291 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15292
15293 /* A NULL abbrev means the end of a series of children. */
15294 if (abbrev == NULL)
15295 {
15296 if (--nesting_level == 0)
15297 {
15298 /* PART_DIE was probably the last thing allocated on the
15299 comp_unit_obstack, so we could call obstack_free
15300 here. We don't do that because the waste is small,
15301 and will be cleaned up when we're done with this
15302 compilation unit. This way, we're also more robust
15303 against other users of the comp_unit_obstack. */
15304 return first_die;
15305 }
15306 info_ptr += bytes_read;
15307 last_die = parent_die;
15308 parent_die = parent_die->die_parent;
15309 continue;
15310 }
15311
98bfdba5
PA
15312 /* Check for template arguments. We never save these; if
15313 they're seen, we just mark the parent, and go on our way. */
15314 if (parent_die != NULL
15315 && cu->language == language_cplus
15316 && (abbrev->tag == DW_TAG_template_type_param
15317 || abbrev->tag == DW_TAG_template_value_param))
15318 {
15319 parent_die->has_template_arguments = 1;
15320
15321 if (!load_all)
15322 {
15323 /* We don't need a partial DIE for the template argument. */
dee91e82 15324 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15325 continue;
15326 }
15327 }
15328
0d99eb77 15329 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
15330 Skip their other children. */
15331 if (!load_all
15332 && cu->language == language_cplus
15333 && parent_die != NULL
15334 && parent_die->tag == DW_TAG_subprogram)
15335 {
dee91e82 15336 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15337 continue;
15338 }
15339
5afb4e99
DJ
15340 /* Check whether this DIE is interesting enough to save. Normally
15341 we would not be interested in members here, but there may be
15342 later variables referencing them via DW_AT_specification (for
15343 static members). */
15344 if (!load_all
15345 && !is_type_tag_for_partial (abbrev->tag)
72929c62 15346 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
15347 && abbrev->tag != DW_TAG_enumerator
15348 && abbrev->tag != DW_TAG_subprogram
bc30ff58 15349 && abbrev->tag != DW_TAG_lexical_block
72bf9492 15350 && abbrev->tag != DW_TAG_variable
5afb4e99 15351 && abbrev->tag != DW_TAG_namespace
f55ee35c 15352 && abbrev->tag != DW_TAG_module
95554aad 15353 && abbrev->tag != DW_TAG_member
74921315
KS
15354 && abbrev->tag != DW_TAG_imported_unit
15355 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
15356 {
15357 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15358 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
15359 continue;
15360 }
15361
dee91e82
DE
15362 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15363 info_ptr);
72bf9492
DJ
15364
15365 /* This two-pass algorithm for processing partial symbols has a
15366 high cost in cache pressure. Thus, handle some simple cases
15367 here which cover the majority of C partial symbols. DIEs
15368 which neither have specification tags in them, nor could have
15369 specification tags elsewhere pointing at them, can simply be
15370 processed and discarded.
15371
15372 This segment is also optional; scan_partial_symbols and
15373 add_partial_symbol will handle these DIEs if we chain
15374 them in normally. When compilers which do not emit large
15375 quantities of duplicate debug information are more common,
15376 this code can probably be removed. */
15377
15378 /* Any complete simple types at the top level (pretty much all
15379 of them, for a language without namespaces), can be processed
15380 directly. */
15381 if (parent_die == NULL
15382 && part_die->has_specification == 0
15383 && part_die->is_declaration == 0
d8228535 15384 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15385 || part_die->tag == DW_TAG_base_type
15386 || part_die->tag == DW_TAG_subrange_type))
15387 {
15388 if (building_psymtab && part_die->name != NULL)
04a679b8 15389 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15390 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363
DE
15391 &objfile->static_psymbols,
15392 0, (CORE_ADDR) 0, cu->language, objfile);
dee91e82 15393 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15394 continue;
15395 }
15396
d8228535
JK
15397 /* The exception for DW_TAG_typedef with has_children above is
15398 a workaround of GCC PR debug/47510. In the case of this complaint
15399 type_name_no_tag_or_error will error on such types later.
15400
15401 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15402 it could not find the child DIEs referenced later, this is checked
15403 above. In correct DWARF DW_TAG_typedef should have no children. */
15404
15405 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15406 complaint (&symfile_complaints,
15407 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15408 "- DIE at 0x%x [in module %s]"),
4262abfb 15409 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15410
72bf9492
DJ
15411 /* If we're at the second level, and we're an enumerator, and
15412 our parent has no specification (meaning possibly lives in a
15413 namespace elsewhere), then we can add the partial symbol now
15414 instead of queueing it. */
15415 if (part_die->tag == DW_TAG_enumerator
15416 && parent_die != NULL
15417 && parent_die->die_parent == NULL
15418 && parent_die->tag == DW_TAG_enumeration_type
15419 && parent_die->has_specification == 0)
15420 {
15421 if (part_die->name == NULL)
3e43a32a
MS
15422 complaint (&symfile_complaints,
15423 _("malformed enumerator DIE ignored"));
72bf9492 15424 else if (building_psymtab)
04a679b8 15425 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15426 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
15427 (cu->language == language_cplus
15428 || cu->language == language_java)
bb5ed363
DE
15429 ? &objfile->global_psymbols
15430 : &objfile->static_psymbols,
15431 0, (CORE_ADDR) 0, cu->language, objfile);
72bf9492 15432
dee91e82 15433 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15434 continue;
15435 }
15436
15437 /* We'll save this DIE so link it in. */
15438 part_die->die_parent = parent_die;
15439 part_die->die_sibling = NULL;
15440 part_die->die_child = NULL;
15441
15442 if (last_die && last_die == parent_die)
15443 last_die->die_child = part_die;
15444 else if (last_die)
15445 last_die->die_sibling = part_die;
15446
15447 last_die = part_die;
15448
15449 if (first_die == NULL)
15450 first_die = part_die;
15451
15452 /* Maybe add the DIE to the hash table. Not all DIEs that we
15453 find interesting need to be in the hash table, because we
15454 also have the parent/sibling/child chains; only those that we
15455 might refer to by offset later during partial symbol reading.
15456
15457 For now this means things that might have be the target of a
15458 DW_AT_specification, DW_AT_abstract_origin, or
15459 DW_AT_extension. DW_AT_extension will refer only to
15460 namespaces; DW_AT_abstract_origin refers to functions (and
15461 many things under the function DIE, but we do not recurse
15462 into function DIEs during partial symbol reading) and
15463 possibly variables as well; DW_AT_specification refers to
15464 declarations. Declarations ought to have the DW_AT_declaration
15465 flag. It happens that GCC forgets to put it in sometimes, but
15466 only for functions, not for types.
15467
15468 Adding more things than necessary to the hash table is harmless
15469 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15470 wasted time in find_partial_die, when we reread the compilation
15471 unit with load_all_dies set. */
72bf9492 15472
5afb4e99 15473 if (load_all
72929c62 15474 || abbrev->tag == DW_TAG_constant
5afb4e99 15475 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15476 || abbrev->tag == DW_TAG_variable
15477 || abbrev->tag == DW_TAG_namespace
15478 || part_die->is_declaration)
15479 {
15480 void **slot;
15481
15482 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 15483 part_die->offset.sect_off, INSERT);
72bf9492
DJ
15484 *slot = part_die;
15485 }
15486
15487 part_die = obstack_alloc (&cu->comp_unit_obstack,
15488 sizeof (struct partial_die_info));
15489
15490 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 15491 we have no reason to follow the children of structures; for other
98bfdba5
PA
15492 languages we have to, so that we can get at method physnames
15493 to infer fully qualified class names, for DW_AT_specification,
15494 and for C++ template arguments. For C++, we also look one level
15495 inside functions to find template arguments (if the name of the
15496 function does not already contain the template arguments).
bc30ff58
JB
15497
15498 For Ada, we need to scan the children of subprograms and lexical
15499 blocks as well because Ada allows the definition of nested
15500 entities that could be interesting for the debugger, such as
15501 nested subprograms for instance. */
72bf9492 15502 if (last_die->has_children
5afb4e99
DJ
15503 && (load_all
15504 || last_die->tag == DW_TAG_namespace
f55ee35c 15505 || last_die->tag == DW_TAG_module
72bf9492 15506 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15507 || (cu->language == language_cplus
15508 && last_die->tag == DW_TAG_subprogram
15509 && (last_die->name == NULL
15510 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15511 || (cu->language != language_c
15512 && (last_die->tag == DW_TAG_class_type
680b30c7 15513 || last_die->tag == DW_TAG_interface_type
72bf9492 15514 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
15515 || last_die->tag == DW_TAG_union_type))
15516 || (cu->language == language_ada
15517 && (last_die->tag == DW_TAG_subprogram
15518 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
15519 {
15520 nesting_level++;
15521 parent_die = last_die;
15522 continue;
15523 }
15524
15525 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15526 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
15527
15528 /* Back to the top, do it again. */
15529 }
15530}
15531
c906108c
SS
15532/* Read a minimal amount of information into the minimal die structure. */
15533
d521ce57 15534static const gdb_byte *
dee91e82
DE
15535read_partial_die (const struct die_reader_specs *reader,
15536 struct partial_die_info *part_die,
15537 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 15538 const gdb_byte *info_ptr)
c906108c 15539{
dee91e82 15540 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15541 struct objfile *objfile = cu->objfile;
d521ce57 15542 const gdb_byte *buffer = reader->buffer;
fa238c03 15543 unsigned int i;
c906108c 15544 struct attribute attr;
c5aa993b 15545 int has_low_pc_attr = 0;
c906108c 15546 int has_high_pc_attr = 0;
91da1414 15547 int high_pc_relative = 0;
c906108c 15548
72bf9492 15549 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 15550
b64f50a1 15551 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
15552
15553 info_ptr += abbrev_len;
15554
15555 if (abbrev == NULL)
15556 return info_ptr;
15557
c906108c
SS
15558 part_die->tag = abbrev->tag;
15559 part_die->has_children = abbrev->has_children;
c906108c
SS
15560
15561 for (i = 0; i < abbrev->num_attrs; ++i)
15562 {
dee91e82 15563 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
15564
15565 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 15566 partial symbol table. */
c906108c
SS
15567 switch (attr.name)
15568 {
15569 case DW_AT_name:
71c25dea
TT
15570 switch (part_die->tag)
15571 {
15572 case DW_TAG_compile_unit:
95554aad 15573 case DW_TAG_partial_unit:
348e048f 15574 case DW_TAG_type_unit:
71c25dea
TT
15575 /* Compilation units have a DW_AT_name that is a filename, not
15576 a source language identifier. */
15577 case DW_TAG_enumeration_type:
15578 case DW_TAG_enumerator:
15579 /* These tags always have simple identifiers already; no need
15580 to canonicalize them. */
15581 part_die->name = DW_STRING (&attr);
15582 break;
15583 default:
15584 part_die->name
15585 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 15586 &objfile->per_bfd->storage_obstack);
71c25dea
TT
15587 break;
15588 }
c906108c 15589 break;
31ef98ae 15590 case DW_AT_linkage_name:
c906108c 15591 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
15592 /* Note that both forms of linkage name might appear. We
15593 assume they will be the same, and we only store the last
15594 one we see. */
94af9270
KS
15595 if (cu->language == language_ada)
15596 part_die->name = DW_STRING (&attr);
abc72ce4 15597 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
15598 break;
15599 case DW_AT_low_pc:
15600 has_low_pc_attr = 1;
31aa7e4e 15601 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
15602 break;
15603 case DW_AT_high_pc:
15604 has_high_pc_attr = 1;
31aa7e4e
JB
15605 part_die->highpc = attr_value_as_address (&attr);
15606 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15607 high_pc_relative = 1;
c906108c
SS
15608 break;
15609 case DW_AT_location:
0963b4bd 15610 /* Support the .debug_loc offsets. */
8e19ed76
PS
15611 if (attr_form_is_block (&attr))
15612 {
95554aad 15613 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 15614 }
3690dd37 15615 else if (attr_form_is_section_offset (&attr))
8e19ed76 15616 {
4d3c2250 15617 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15618 }
15619 else
15620 {
4d3c2250
KB
15621 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15622 "partial symbol information");
8e19ed76 15623 }
c906108c 15624 break;
c906108c
SS
15625 case DW_AT_external:
15626 part_die->is_external = DW_UNSND (&attr);
15627 break;
15628 case DW_AT_declaration:
15629 part_die->is_declaration = DW_UNSND (&attr);
15630 break;
15631 case DW_AT_type:
15632 part_die->has_type = 1;
15633 break;
15634 case DW_AT_abstract_origin:
15635 case DW_AT_specification:
72bf9492
DJ
15636 case DW_AT_extension:
15637 part_die->has_specification = 1;
c764a876 15638 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
15639 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15640 || cu->per_cu->is_dwz);
c906108c
SS
15641 break;
15642 case DW_AT_sibling:
15643 /* Ignore absolute siblings, they might point outside of
15644 the current compile unit. */
15645 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
15646 complaint (&symfile_complaints,
15647 _("ignoring absolute DW_AT_sibling"));
c906108c 15648 else
b9502d3f
WN
15649 {
15650 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15651 const gdb_byte *sibling_ptr = buffer + off;
15652
15653 if (sibling_ptr < info_ptr)
15654 complaint (&symfile_complaints,
15655 _("DW_AT_sibling points backwards"));
22869d73
KS
15656 else if (sibling_ptr > reader->buffer_end)
15657 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
15658 else
15659 part_die->sibling = sibling_ptr;
15660 }
c906108c 15661 break;
fa4028e9
JB
15662 case DW_AT_byte_size:
15663 part_die->has_byte_size = 1;
15664 break;
68511cec
CES
15665 case DW_AT_calling_convention:
15666 /* DWARF doesn't provide a way to identify a program's source-level
15667 entry point. DW_AT_calling_convention attributes are only meant
15668 to describe functions' calling conventions.
15669
15670 However, because it's a necessary piece of information in
15671 Fortran, and because DW_CC_program is the only piece of debugging
15672 information whose definition refers to a 'main program' at all,
15673 several compilers have begun marking Fortran main programs with
15674 DW_CC_program --- even when those functions use the standard
15675 calling conventions.
15676
15677 So until DWARF specifies a way to provide this information and
15678 compilers pick up the new representation, we'll support this
15679 practice. */
15680 if (DW_UNSND (&attr) == DW_CC_program
15681 && cu->language == language_fortran)
3d548a53 15682 set_objfile_main_name (objfile, part_die->name, language_fortran);
68511cec 15683 break;
481860b3
GB
15684 case DW_AT_inline:
15685 if (DW_UNSND (&attr) == DW_INL_inlined
15686 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15687 part_die->may_be_inlined = 1;
15688 break;
95554aad
TT
15689
15690 case DW_AT_import:
15691 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
15692 {
15693 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15694 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15695 || cu->per_cu->is_dwz);
15696 }
95554aad
TT
15697 break;
15698
c906108c
SS
15699 default:
15700 break;
15701 }
15702 }
15703
91da1414
MW
15704 if (high_pc_relative)
15705 part_die->highpc += part_die->lowpc;
15706
9373cf26
JK
15707 if (has_low_pc_attr && has_high_pc_attr)
15708 {
15709 /* When using the GNU linker, .gnu.linkonce. sections are used to
15710 eliminate duplicate copies of functions and vtables and such.
15711 The linker will arbitrarily choose one and discard the others.
15712 The AT_*_pc values for such functions refer to local labels in
15713 these sections. If the section from that file was discarded, the
15714 labels are not in the output, so the relocs get a value of 0.
15715 If this is a discarded function, mark the pc bounds as invalid,
15716 so that GDB will ignore it. */
15717 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15718 {
bb5ed363 15719 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15720
15721 complaint (&symfile_complaints,
15722 _("DW_AT_low_pc %s is zero "
15723 "for DIE at 0x%x [in module %s]"),
15724 paddress (gdbarch, part_die->lowpc),
4262abfb 15725 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15726 }
15727 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15728 else if (part_die->lowpc >= part_die->highpc)
15729 {
bb5ed363 15730 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15731
15732 complaint (&symfile_complaints,
15733 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15734 "for DIE at 0x%x [in module %s]"),
15735 paddress (gdbarch, part_die->lowpc),
15736 paddress (gdbarch, part_die->highpc),
4262abfb 15737 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15738 }
15739 else
15740 part_die->has_pc_info = 1;
15741 }
85cbf3d3 15742
c906108c
SS
15743 return info_ptr;
15744}
15745
72bf9492
DJ
15746/* Find a cached partial DIE at OFFSET in CU. */
15747
15748static struct partial_die_info *
b64f50a1 15749find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
15750{
15751 struct partial_die_info *lookup_die = NULL;
15752 struct partial_die_info part_die;
15753
15754 part_die.offset = offset;
b64f50a1
JK
15755 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15756 offset.sect_off);
72bf9492 15757
72bf9492
DJ
15758 return lookup_die;
15759}
15760
348e048f
DE
15761/* Find a partial DIE at OFFSET, which may or may not be in CU,
15762 except in the case of .debug_types DIEs which do not reference
15763 outside their CU (they do however referencing other types via
55f1336d 15764 DW_FORM_ref_sig8). */
72bf9492
DJ
15765
15766static struct partial_die_info *
36586728 15767find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 15768{
bb5ed363 15769 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
15770 struct dwarf2_per_cu_data *per_cu = NULL;
15771 struct partial_die_info *pd = NULL;
72bf9492 15772
36586728
TT
15773 if (offset_in_dwz == cu->per_cu->is_dwz
15774 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
15775 {
15776 pd = find_partial_die_in_comp_unit (offset, cu);
15777 if (pd != NULL)
15778 return pd;
0d99eb77
DE
15779 /* We missed recording what we needed.
15780 Load all dies and try again. */
15781 per_cu = cu->per_cu;
5afb4e99 15782 }
0d99eb77
DE
15783 else
15784 {
15785 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 15786 if (cu->per_cu->is_debug_types)
0d99eb77
DE
15787 {
15788 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15789 " external reference to offset 0x%lx [in module %s].\n"),
15790 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15791 bfd_get_filename (objfile->obfd));
15792 }
36586728
TT
15793 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15794 objfile);
72bf9492 15795
0d99eb77
DE
15796 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15797 load_partial_comp_unit (per_cu);
ae038cb0 15798
0d99eb77
DE
15799 per_cu->cu->last_used = 0;
15800 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15801 }
5afb4e99 15802
dee91e82
DE
15803 /* If we didn't find it, and not all dies have been loaded,
15804 load them all and try again. */
15805
5afb4e99
DJ
15806 if (pd == NULL && per_cu->load_all_dies == 0)
15807 {
5afb4e99 15808 per_cu->load_all_dies = 1;
fd820528
DE
15809
15810 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15811 THIS_CU->cu may already be in use. So we can't just free it and
15812 replace its DIEs with the ones we read in. Instead, we leave those
15813 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15814 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15815 set. */
dee91e82 15816 load_partial_comp_unit (per_cu);
5afb4e99
DJ
15817
15818 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15819 }
15820
15821 if (pd == NULL)
15822 internal_error (__FILE__, __LINE__,
3e43a32a
MS
15823 _("could not find partial DIE 0x%x "
15824 "in cache [from module %s]\n"),
b64f50a1 15825 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 15826 return pd;
72bf9492
DJ
15827}
15828
abc72ce4
DE
15829/* See if we can figure out if the class lives in a namespace. We do
15830 this by looking for a member function; its demangled name will
15831 contain namespace info, if there is any. */
15832
15833static void
15834guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15835 struct dwarf2_cu *cu)
15836{
15837 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15838 what template types look like, because the demangler
15839 frequently doesn't give the same name as the debug info. We
15840 could fix this by only using the demangled name to get the
15841 prefix (but see comment in read_structure_type). */
15842
15843 struct partial_die_info *real_pdi;
15844 struct partial_die_info *child_pdi;
15845
15846 /* If this DIE (this DIE's specification, if any) has a parent, then
15847 we should not do this. We'll prepend the parent's fully qualified
15848 name when we create the partial symbol. */
15849
15850 real_pdi = struct_pdi;
15851 while (real_pdi->has_specification)
36586728
TT
15852 real_pdi = find_partial_die (real_pdi->spec_offset,
15853 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
15854
15855 if (real_pdi->die_parent != NULL)
15856 return;
15857
15858 for (child_pdi = struct_pdi->die_child;
15859 child_pdi != NULL;
15860 child_pdi = child_pdi->die_sibling)
15861 {
15862 if (child_pdi->tag == DW_TAG_subprogram
15863 && child_pdi->linkage_name != NULL)
15864 {
15865 char *actual_class_name
15866 = language_class_name_from_physname (cu->language_defn,
15867 child_pdi->linkage_name);
15868 if (actual_class_name != NULL)
15869 {
15870 struct_pdi->name
34a68019 15871 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb
TT
15872 actual_class_name,
15873 strlen (actual_class_name));
abc72ce4
DE
15874 xfree (actual_class_name);
15875 }
15876 break;
15877 }
15878 }
15879}
15880
72bf9492
DJ
15881/* Adjust PART_DIE before generating a symbol for it. This function
15882 may set the is_external flag or change the DIE's name. */
15883
15884static void
15885fixup_partial_die (struct partial_die_info *part_die,
15886 struct dwarf2_cu *cu)
15887{
abc72ce4
DE
15888 /* Once we've fixed up a die, there's no point in doing so again.
15889 This also avoids a memory leak if we were to call
15890 guess_partial_die_structure_name multiple times. */
15891 if (part_die->fixup_called)
15892 return;
15893
72bf9492
DJ
15894 /* If we found a reference attribute and the DIE has no name, try
15895 to find a name in the referred to DIE. */
15896
15897 if (part_die->name == NULL && part_die->has_specification)
15898 {
15899 struct partial_die_info *spec_die;
72bf9492 15900
36586728
TT
15901 spec_die = find_partial_die (part_die->spec_offset,
15902 part_die->spec_is_dwz, cu);
72bf9492 15903
10b3939b 15904 fixup_partial_die (spec_die, cu);
72bf9492
DJ
15905
15906 if (spec_die->name)
15907 {
15908 part_die->name = spec_die->name;
15909
15910 /* Copy DW_AT_external attribute if it is set. */
15911 if (spec_die->is_external)
15912 part_die->is_external = spec_die->is_external;
15913 }
15914 }
15915
15916 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
15917
15918 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 15919 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 15920
abc72ce4
DE
15921 /* If there is no parent die to provide a namespace, and there are
15922 children, see if we can determine the namespace from their linkage
122d1940 15923 name. */
abc72ce4 15924 if (cu->language == language_cplus
8b70b953 15925 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
15926 && part_die->die_parent == NULL
15927 && part_die->has_children
15928 && (part_die->tag == DW_TAG_class_type
15929 || part_die->tag == DW_TAG_structure_type
15930 || part_die->tag == DW_TAG_union_type))
15931 guess_partial_die_structure_name (part_die, cu);
15932
53832f31
TT
15933 /* GCC might emit a nameless struct or union that has a linkage
15934 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15935 if (part_die->name == NULL
96408a79
SA
15936 && (part_die->tag == DW_TAG_class_type
15937 || part_die->tag == DW_TAG_interface_type
15938 || part_die->tag == DW_TAG_structure_type
15939 || part_die->tag == DW_TAG_union_type)
53832f31
TT
15940 && part_die->linkage_name != NULL)
15941 {
15942 char *demangled;
15943
8de20a37 15944 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
15945 if (demangled)
15946 {
96408a79
SA
15947 const char *base;
15948
15949 /* Strip any leading namespaces/classes, keep only the base name.
15950 DW_AT_name for named DIEs does not contain the prefixes. */
15951 base = strrchr (demangled, ':');
15952 if (base && base > demangled && base[-1] == ':')
15953 base++;
15954 else
15955 base = demangled;
15956
34a68019
TT
15957 part_die->name
15958 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15959 base, strlen (base));
53832f31
TT
15960 xfree (demangled);
15961 }
15962 }
15963
abc72ce4 15964 part_die->fixup_called = 1;
72bf9492
DJ
15965}
15966
a8329558 15967/* Read an attribute value described by an attribute form. */
c906108c 15968
d521ce57 15969static const gdb_byte *
dee91e82
DE
15970read_attribute_value (const struct die_reader_specs *reader,
15971 struct attribute *attr, unsigned form,
d521ce57 15972 const gdb_byte *info_ptr)
c906108c 15973{
dee91e82 15974 struct dwarf2_cu *cu = reader->cu;
3e29f34a
MR
15975 struct objfile *objfile = cu->objfile;
15976 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 15977 bfd *abfd = reader->abfd;
e7c27a73 15978 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
15979 unsigned int bytes_read;
15980 struct dwarf_block *blk;
15981
a8329558
KW
15982 attr->form = form;
15983 switch (form)
c906108c 15984 {
c906108c 15985 case DW_FORM_ref_addr:
ae411497 15986 if (cu->header.version == 2)
4568ecf9 15987 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 15988 else
4568ecf9
DE
15989 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15990 &cu->header, &bytes_read);
ae411497
TT
15991 info_ptr += bytes_read;
15992 break;
36586728
TT
15993 case DW_FORM_GNU_ref_alt:
15994 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15995 info_ptr += bytes_read;
15996 break;
ae411497 15997 case DW_FORM_addr:
e7c27a73 15998 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 15999 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 16000 info_ptr += bytes_read;
c906108c
SS
16001 break;
16002 case DW_FORM_block2:
7b5a2f43 16003 blk = dwarf_alloc_block (cu);
c906108c
SS
16004 blk->size = read_2_bytes (abfd, info_ptr);
16005 info_ptr += 2;
16006 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16007 info_ptr += blk->size;
16008 DW_BLOCK (attr) = blk;
16009 break;
16010 case DW_FORM_block4:
7b5a2f43 16011 blk = dwarf_alloc_block (cu);
c906108c
SS
16012 blk->size = read_4_bytes (abfd, info_ptr);
16013 info_ptr += 4;
16014 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16015 info_ptr += blk->size;
16016 DW_BLOCK (attr) = blk;
16017 break;
16018 case DW_FORM_data2:
16019 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16020 info_ptr += 2;
16021 break;
16022 case DW_FORM_data4:
16023 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16024 info_ptr += 4;
16025 break;
16026 case DW_FORM_data8:
16027 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16028 info_ptr += 8;
16029 break;
2dc7f7b3
TT
16030 case DW_FORM_sec_offset:
16031 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16032 info_ptr += bytes_read;
16033 break;
c906108c 16034 case DW_FORM_string:
9b1c24c8 16035 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 16036 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
16037 info_ptr += bytes_read;
16038 break;
4bdf3d34 16039 case DW_FORM_strp:
36586728
TT
16040 if (!cu->per_cu->is_dwz)
16041 {
16042 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16043 &bytes_read);
16044 DW_STRING_IS_CANONICAL (attr) = 0;
16045 info_ptr += bytes_read;
16046 break;
16047 }
16048 /* FALLTHROUGH */
16049 case DW_FORM_GNU_strp_alt:
16050 {
16051 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16052 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16053 &bytes_read);
16054
16055 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16056 DW_STRING_IS_CANONICAL (attr) = 0;
16057 info_ptr += bytes_read;
16058 }
4bdf3d34 16059 break;
2dc7f7b3 16060 case DW_FORM_exprloc:
c906108c 16061 case DW_FORM_block:
7b5a2f43 16062 blk = dwarf_alloc_block (cu);
c906108c
SS
16063 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16064 info_ptr += bytes_read;
16065 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16066 info_ptr += blk->size;
16067 DW_BLOCK (attr) = blk;
16068 break;
16069 case DW_FORM_block1:
7b5a2f43 16070 blk = dwarf_alloc_block (cu);
c906108c
SS
16071 blk->size = read_1_byte (abfd, info_ptr);
16072 info_ptr += 1;
16073 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16074 info_ptr += blk->size;
16075 DW_BLOCK (attr) = blk;
16076 break;
16077 case DW_FORM_data1:
16078 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16079 info_ptr += 1;
16080 break;
16081 case DW_FORM_flag:
16082 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16083 info_ptr += 1;
16084 break;
2dc7f7b3
TT
16085 case DW_FORM_flag_present:
16086 DW_UNSND (attr) = 1;
16087 break;
c906108c
SS
16088 case DW_FORM_sdata:
16089 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16090 info_ptr += bytes_read;
16091 break;
16092 case DW_FORM_udata:
16093 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16094 info_ptr += bytes_read;
16095 break;
16096 case DW_FORM_ref1:
4568ecf9
DE
16097 DW_UNSND (attr) = (cu->header.offset.sect_off
16098 + read_1_byte (abfd, info_ptr));
c906108c
SS
16099 info_ptr += 1;
16100 break;
16101 case DW_FORM_ref2:
4568ecf9
DE
16102 DW_UNSND (attr) = (cu->header.offset.sect_off
16103 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16104 info_ptr += 2;
16105 break;
16106 case DW_FORM_ref4:
4568ecf9
DE
16107 DW_UNSND (attr) = (cu->header.offset.sect_off
16108 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16109 info_ptr += 4;
16110 break;
613e1657 16111 case DW_FORM_ref8:
4568ecf9
DE
16112 DW_UNSND (attr) = (cu->header.offset.sect_off
16113 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16114 info_ptr += 8;
16115 break;
55f1336d 16116 case DW_FORM_ref_sig8:
ac9ec31b 16117 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16118 info_ptr += 8;
16119 break;
c906108c 16120 case DW_FORM_ref_udata:
4568ecf9
DE
16121 DW_UNSND (attr) = (cu->header.offset.sect_off
16122 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16123 info_ptr += bytes_read;
16124 break;
c906108c 16125 case DW_FORM_indirect:
a8329558
KW
16126 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16127 info_ptr += bytes_read;
dee91e82 16128 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 16129 break;
3019eac3
DE
16130 case DW_FORM_GNU_addr_index:
16131 if (reader->dwo_file == NULL)
16132 {
16133 /* For now flag a hard error.
16134 Later we can turn this into a complaint. */
16135 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16136 dwarf_form_name (form),
16137 bfd_get_filename (abfd));
16138 }
16139 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16140 info_ptr += bytes_read;
16141 break;
16142 case DW_FORM_GNU_str_index:
16143 if (reader->dwo_file == NULL)
16144 {
16145 /* For now flag a hard error.
16146 Later we can turn this into a complaint if warranted. */
16147 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16148 dwarf_form_name (form),
16149 bfd_get_filename (abfd));
16150 }
16151 {
16152 ULONGEST str_index =
16153 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16154
342587c4 16155 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16156 DW_STRING_IS_CANONICAL (attr) = 0;
16157 info_ptr += bytes_read;
16158 }
16159 break;
c906108c 16160 default:
8a3fe4f8 16161 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16162 dwarf_form_name (form),
16163 bfd_get_filename (abfd));
c906108c 16164 }
28e94949 16165
36586728 16166 /* Super hack. */
7771576e 16167 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16168 attr->form = DW_FORM_GNU_ref_alt;
16169
28e94949
JB
16170 /* We have seen instances where the compiler tried to emit a byte
16171 size attribute of -1 which ended up being encoded as an unsigned
16172 0xffffffff. Although 0xffffffff is technically a valid size value,
16173 an object of this size seems pretty unlikely so we can relatively
16174 safely treat these cases as if the size attribute was invalid and
16175 treat them as zero by default. */
16176 if (attr->name == DW_AT_byte_size
16177 && form == DW_FORM_data4
16178 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16179 {
16180 complaint
16181 (&symfile_complaints,
43bbcdc2
PH
16182 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16183 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16184 DW_UNSND (attr) = 0;
16185 }
28e94949 16186
c906108c
SS
16187 return info_ptr;
16188}
16189
a8329558
KW
16190/* Read an attribute described by an abbreviated attribute. */
16191
d521ce57 16192static const gdb_byte *
dee91e82
DE
16193read_attribute (const struct die_reader_specs *reader,
16194 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16195 const gdb_byte *info_ptr)
a8329558
KW
16196{
16197 attr->name = abbrev->name;
dee91e82 16198 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
16199}
16200
0963b4bd 16201/* Read dwarf information from a buffer. */
c906108c
SS
16202
16203static unsigned int
a1855c1d 16204read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16205{
fe1b8b76 16206 return bfd_get_8 (abfd, buf);
c906108c
SS
16207}
16208
16209static int
a1855c1d 16210read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16211{
fe1b8b76 16212 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16213}
16214
16215static unsigned int
a1855c1d 16216read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16217{
fe1b8b76 16218 return bfd_get_16 (abfd, buf);
c906108c
SS
16219}
16220
21ae7a4d 16221static int
a1855c1d 16222read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16223{
16224 return bfd_get_signed_16 (abfd, buf);
16225}
16226
c906108c 16227static unsigned int
a1855c1d 16228read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16229{
fe1b8b76 16230 return bfd_get_32 (abfd, buf);
c906108c
SS
16231}
16232
21ae7a4d 16233static int
a1855c1d 16234read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16235{
16236 return bfd_get_signed_32 (abfd, buf);
16237}
16238
93311388 16239static ULONGEST
a1855c1d 16240read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16241{
fe1b8b76 16242 return bfd_get_64 (abfd, buf);
c906108c
SS
16243}
16244
16245static CORE_ADDR
d521ce57 16246read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16247 unsigned int *bytes_read)
c906108c 16248{
e7c27a73 16249 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16250 CORE_ADDR retval = 0;
16251
107d2387 16252 if (cu_header->signed_addr_p)
c906108c 16253 {
107d2387
AC
16254 switch (cu_header->addr_size)
16255 {
16256 case 2:
fe1b8b76 16257 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16258 break;
16259 case 4:
fe1b8b76 16260 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16261 break;
16262 case 8:
fe1b8b76 16263 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16264 break;
16265 default:
8e65ff28 16266 internal_error (__FILE__, __LINE__,
e2e0b3e5 16267 _("read_address: bad switch, signed [in module %s]"),
659b0389 16268 bfd_get_filename (abfd));
107d2387
AC
16269 }
16270 }
16271 else
16272 {
16273 switch (cu_header->addr_size)
16274 {
16275 case 2:
fe1b8b76 16276 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16277 break;
16278 case 4:
fe1b8b76 16279 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16280 break;
16281 case 8:
fe1b8b76 16282 retval = bfd_get_64 (abfd, buf);
107d2387
AC
16283 break;
16284 default:
8e65ff28 16285 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
16286 _("read_address: bad switch, "
16287 "unsigned [in module %s]"),
659b0389 16288 bfd_get_filename (abfd));
107d2387 16289 }
c906108c 16290 }
64367e0a 16291
107d2387
AC
16292 *bytes_read = cu_header->addr_size;
16293 return retval;
c906108c
SS
16294}
16295
f7ef9339 16296/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
16297 specification allows the initial length to take up either 4 bytes
16298 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16299 bytes describe the length and all offsets will be 8 bytes in length
16300 instead of 4.
16301
f7ef9339
KB
16302 An older, non-standard 64-bit format is also handled by this
16303 function. The older format in question stores the initial length
16304 as an 8-byte quantity without an escape value. Lengths greater
16305 than 2^32 aren't very common which means that the initial 4 bytes
16306 is almost always zero. Since a length value of zero doesn't make
16307 sense for the 32-bit format, this initial zero can be considered to
16308 be an escape value which indicates the presence of the older 64-bit
16309 format. As written, the code can't detect (old format) lengths
917c78fc
MK
16310 greater than 4GB. If it becomes necessary to handle lengths
16311 somewhat larger than 4GB, we could allow other small values (such
16312 as the non-sensical values of 1, 2, and 3) to also be used as
16313 escape values indicating the presence of the old format.
f7ef9339 16314
917c78fc
MK
16315 The value returned via bytes_read should be used to increment the
16316 relevant pointer after calling read_initial_length().
c764a876 16317
613e1657
KB
16318 [ Note: read_initial_length() and read_offset() are based on the
16319 document entitled "DWARF Debugging Information Format", revision
f7ef9339 16320 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
16321 from:
16322
f7ef9339 16323 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 16324
613e1657
KB
16325 This document is only a draft and is subject to change. (So beware.)
16326
f7ef9339 16327 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
16328 determined empirically by examining 64-bit ELF files produced by
16329 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
16330
16331 - Kevin, July 16, 2002
613e1657
KB
16332 ] */
16333
16334static LONGEST
d521ce57 16335read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 16336{
fe1b8b76 16337 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 16338
dd373385 16339 if (length == 0xffffffff)
613e1657 16340 {
fe1b8b76 16341 length = bfd_get_64 (abfd, buf + 4);
613e1657 16342 *bytes_read = 12;
613e1657 16343 }
dd373385 16344 else if (length == 0)
f7ef9339 16345 {
dd373385 16346 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 16347 length = bfd_get_64 (abfd, buf);
f7ef9339 16348 *bytes_read = 8;
f7ef9339 16349 }
613e1657
KB
16350 else
16351 {
16352 *bytes_read = 4;
613e1657
KB
16353 }
16354
c764a876
DE
16355 return length;
16356}
dd373385 16357
c764a876
DE
16358/* Cover function for read_initial_length.
16359 Returns the length of the object at BUF, and stores the size of the
16360 initial length in *BYTES_READ and stores the size that offsets will be in
16361 *OFFSET_SIZE.
16362 If the initial length size is not equivalent to that specified in
16363 CU_HEADER then issue a complaint.
16364 This is useful when reading non-comp-unit headers. */
dd373385 16365
c764a876 16366static LONGEST
d521ce57 16367read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
16368 const struct comp_unit_head *cu_header,
16369 unsigned int *bytes_read,
16370 unsigned int *offset_size)
16371{
16372 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16373
16374 gdb_assert (cu_header->initial_length_size == 4
16375 || cu_header->initial_length_size == 8
16376 || cu_header->initial_length_size == 12);
16377
16378 if (cu_header->initial_length_size != *bytes_read)
16379 complaint (&symfile_complaints,
16380 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16381
c764a876 16382 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16383 return length;
613e1657
KB
16384}
16385
16386/* Read an offset from the data stream. The size of the offset is
917c78fc 16387 given by cu_header->offset_size. */
613e1657
KB
16388
16389static LONGEST
d521ce57
TT
16390read_offset (bfd *abfd, const gdb_byte *buf,
16391 const struct comp_unit_head *cu_header,
891d2f0b 16392 unsigned int *bytes_read)
c764a876
DE
16393{
16394 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16395
c764a876
DE
16396 *bytes_read = cu_header->offset_size;
16397 return offset;
16398}
16399
16400/* Read an offset from the data stream. */
16401
16402static LONGEST
d521ce57 16403read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16404{
16405 LONGEST retval = 0;
16406
c764a876 16407 switch (offset_size)
613e1657
KB
16408 {
16409 case 4:
fe1b8b76 16410 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16411 break;
16412 case 8:
fe1b8b76 16413 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16414 break;
16415 default:
8e65ff28 16416 internal_error (__FILE__, __LINE__,
c764a876 16417 _("read_offset_1: bad switch [in module %s]"),
659b0389 16418 bfd_get_filename (abfd));
613e1657
KB
16419 }
16420
917c78fc 16421 return retval;
613e1657
KB
16422}
16423
d521ce57
TT
16424static const gdb_byte *
16425read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16426{
16427 /* If the size of a host char is 8 bits, we can return a pointer
16428 to the buffer, otherwise we have to copy the data to a buffer
16429 allocated on the temporary obstack. */
4bdf3d34 16430 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16431 return buf;
c906108c
SS
16432}
16433
d521ce57
TT
16434static const char *
16435read_direct_string (bfd *abfd, const gdb_byte *buf,
16436 unsigned int *bytes_read_ptr)
c906108c
SS
16437{
16438 /* If the size of a host char is 8 bits, we can return a pointer
16439 to the string, otherwise we have to copy the string to a buffer
16440 allocated on the temporary obstack. */
4bdf3d34 16441 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
16442 if (*buf == '\0')
16443 {
16444 *bytes_read_ptr = 1;
16445 return NULL;
16446 }
d521ce57
TT
16447 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16448 return (const char *) buf;
4bdf3d34
JJ
16449}
16450
d521ce57 16451static const char *
cf2c3c16 16452read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 16453{
be391dca 16454 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 16455 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
16456 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16457 bfd_get_filename (abfd));
dce234bc 16458 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
16459 error (_("DW_FORM_strp pointing outside of "
16460 ".debug_str section [in module %s]"),
16461 bfd_get_filename (abfd));
4bdf3d34 16462 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 16463 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 16464 return NULL;
d521ce57 16465 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
16466}
16467
36586728
TT
16468/* Read a string at offset STR_OFFSET in the .debug_str section from
16469 the .dwz file DWZ. Throw an error if the offset is too large. If
16470 the string consists of a single NUL byte, return NULL; otherwise
16471 return a pointer to the string. */
16472
d521ce57 16473static const char *
36586728
TT
16474read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16475{
16476 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16477
16478 if (dwz->str.buffer == NULL)
16479 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16480 "section [in module %s]"),
16481 bfd_get_filename (dwz->dwz_bfd));
16482 if (str_offset >= dwz->str.size)
16483 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16484 ".debug_str section [in module %s]"),
16485 bfd_get_filename (dwz->dwz_bfd));
16486 gdb_assert (HOST_CHAR_BIT == 8);
16487 if (dwz->str.buffer[str_offset] == '\0')
16488 return NULL;
d521ce57 16489 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
16490}
16491
d521ce57
TT
16492static const char *
16493read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
16494 const struct comp_unit_head *cu_header,
16495 unsigned int *bytes_read_ptr)
16496{
16497 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16498
16499 return read_indirect_string_at_offset (abfd, str_offset);
16500}
16501
12df843f 16502static ULONGEST
d521ce57
TT
16503read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16504 unsigned int *bytes_read_ptr)
c906108c 16505{
12df843f 16506 ULONGEST result;
ce5d95e1 16507 unsigned int num_read;
c906108c
SS
16508 int i, shift;
16509 unsigned char byte;
16510
16511 result = 0;
16512 shift = 0;
16513 num_read = 0;
16514 i = 0;
16515 while (1)
16516 {
fe1b8b76 16517 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16518 buf++;
16519 num_read++;
12df843f 16520 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
16521 if ((byte & 128) == 0)
16522 {
16523 break;
16524 }
16525 shift += 7;
16526 }
16527 *bytes_read_ptr = num_read;
16528 return result;
16529}
16530
12df843f 16531static LONGEST
d521ce57
TT
16532read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16533 unsigned int *bytes_read_ptr)
c906108c 16534{
12df843f 16535 LONGEST result;
77e0b926 16536 int i, shift, num_read;
c906108c
SS
16537 unsigned char byte;
16538
16539 result = 0;
16540 shift = 0;
c906108c
SS
16541 num_read = 0;
16542 i = 0;
16543 while (1)
16544 {
fe1b8b76 16545 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16546 buf++;
16547 num_read++;
12df843f 16548 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
16549 shift += 7;
16550 if ((byte & 128) == 0)
16551 {
16552 break;
16553 }
16554 }
77e0b926 16555 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 16556 result |= -(((LONGEST) 1) << shift);
c906108c
SS
16557 *bytes_read_ptr = num_read;
16558 return result;
16559}
16560
3019eac3
DE
16561/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16562 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16563 ADDR_SIZE is the size of addresses from the CU header. */
16564
16565static CORE_ADDR
16566read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16567{
16568 struct objfile *objfile = dwarf2_per_objfile->objfile;
16569 bfd *abfd = objfile->obfd;
16570 const gdb_byte *info_ptr;
16571
16572 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16573 if (dwarf2_per_objfile->addr.buffer == NULL)
16574 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 16575 objfile_name (objfile));
3019eac3
DE
16576 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16577 error (_("DW_FORM_addr_index pointing outside of "
16578 ".debug_addr section [in module %s]"),
4262abfb 16579 objfile_name (objfile));
3019eac3
DE
16580 info_ptr = (dwarf2_per_objfile->addr.buffer
16581 + addr_base + addr_index * addr_size);
16582 if (addr_size == 4)
16583 return bfd_get_32 (abfd, info_ptr);
16584 else
16585 return bfd_get_64 (abfd, info_ptr);
16586}
16587
16588/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16589
16590static CORE_ADDR
16591read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16592{
16593 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16594}
16595
16596/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16597
16598static CORE_ADDR
d521ce57 16599read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
16600 unsigned int *bytes_read)
16601{
16602 bfd *abfd = cu->objfile->obfd;
16603 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16604
16605 return read_addr_index (cu, addr_index);
16606}
16607
16608/* Data structure to pass results from dwarf2_read_addr_index_reader
16609 back to dwarf2_read_addr_index. */
16610
16611struct dwarf2_read_addr_index_data
16612{
16613 ULONGEST addr_base;
16614 int addr_size;
16615};
16616
16617/* die_reader_func for dwarf2_read_addr_index. */
16618
16619static void
16620dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 16621 const gdb_byte *info_ptr,
3019eac3
DE
16622 struct die_info *comp_unit_die,
16623 int has_children,
16624 void *data)
16625{
16626 struct dwarf2_cu *cu = reader->cu;
16627 struct dwarf2_read_addr_index_data *aidata =
16628 (struct dwarf2_read_addr_index_data *) data;
16629
16630 aidata->addr_base = cu->addr_base;
16631 aidata->addr_size = cu->header.addr_size;
16632}
16633
16634/* Given an index in .debug_addr, fetch the value.
16635 NOTE: This can be called during dwarf expression evaluation,
16636 long after the debug information has been read, and thus per_cu->cu
16637 may no longer exist. */
16638
16639CORE_ADDR
16640dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16641 unsigned int addr_index)
16642{
16643 struct objfile *objfile = per_cu->objfile;
16644 struct dwarf2_cu *cu = per_cu->cu;
16645 ULONGEST addr_base;
16646 int addr_size;
16647
16648 /* This is intended to be called from outside this file. */
16649 dw2_setup (objfile);
16650
16651 /* We need addr_base and addr_size.
16652 If we don't have PER_CU->cu, we have to get it.
16653 Nasty, but the alternative is storing the needed info in PER_CU,
16654 which at this point doesn't seem justified: it's not clear how frequently
16655 it would get used and it would increase the size of every PER_CU.
16656 Entry points like dwarf2_per_cu_addr_size do a similar thing
16657 so we're not in uncharted territory here.
16658 Alas we need to be a bit more complicated as addr_base is contained
16659 in the DIE.
16660
16661 We don't need to read the entire CU(/TU).
16662 We just need the header and top level die.
a1b64ce1 16663
3019eac3 16664 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 16665 For now we skip this optimization. */
3019eac3
DE
16666
16667 if (cu != NULL)
16668 {
16669 addr_base = cu->addr_base;
16670 addr_size = cu->header.addr_size;
16671 }
16672 else
16673 {
16674 struct dwarf2_read_addr_index_data aidata;
16675
a1b64ce1
DE
16676 /* Note: We can't use init_cutu_and_read_dies_simple here,
16677 we need addr_base. */
16678 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16679 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
16680 addr_base = aidata.addr_base;
16681 addr_size = aidata.addr_size;
16682 }
16683
16684 return read_addr_index_1 (addr_index, addr_base, addr_size);
16685}
16686
57d63ce2
DE
16687/* Given a DW_FORM_GNU_str_index, fetch the string.
16688 This is only used by the Fission support. */
3019eac3 16689
d521ce57 16690static const char *
342587c4 16691read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
16692{
16693 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 16694 const char *objf_name = objfile_name (objfile);
3019eac3 16695 bfd *abfd = objfile->obfd;
342587c4 16696 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
16697 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16698 struct dwarf2_section_info *str_offsets_section =
16699 &reader->dwo_file->sections.str_offsets;
d521ce57 16700 const gdb_byte *info_ptr;
3019eac3 16701 ULONGEST str_offset;
57d63ce2 16702 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 16703
73869dc2
DE
16704 dwarf2_read_section (objfile, str_section);
16705 dwarf2_read_section (objfile, str_offsets_section);
16706 if (str_section->buffer == NULL)
57d63ce2 16707 error (_("%s used without .debug_str.dwo section"
3019eac3 16708 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16709 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16710 if (str_offsets_section->buffer == NULL)
57d63ce2 16711 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 16712 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16713 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16714 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 16715 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 16716 " section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16717 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16718 info_ptr = (str_offsets_section->buffer
3019eac3
DE
16719 + str_index * cu->header.offset_size);
16720 if (cu->header.offset_size == 4)
16721 str_offset = bfd_get_32 (abfd, info_ptr);
16722 else
16723 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 16724 if (str_offset >= str_section->size)
57d63ce2 16725 error (_("Offset from %s pointing outside of"
3019eac3 16726 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16727 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16728 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
16729}
16730
3019eac3
DE
16731/* Return the length of an LEB128 number in BUF. */
16732
16733static int
16734leb128_size (const gdb_byte *buf)
16735{
16736 const gdb_byte *begin = buf;
16737 gdb_byte byte;
16738
16739 while (1)
16740 {
16741 byte = *buf++;
16742 if ((byte & 128) == 0)
16743 return buf - begin;
16744 }
16745}
16746
c906108c 16747static void
e142c38c 16748set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
16749{
16750 switch (lang)
16751 {
16752 case DW_LANG_C89:
76bee0cc 16753 case DW_LANG_C99:
0cfd832f 16754 case DW_LANG_C11:
c906108c 16755 case DW_LANG_C:
d1be3247 16756 case DW_LANG_UPC:
e142c38c 16757 cu->language = language_c;
c906108c
SS
16758 break;
16759 case DW_LANG_C_plus_plus:
0cfd832f
MW
16760 case DW_LANG_C_plus_plus_11:
16761 case DW_LANG_C_plus_plus_14:
e142c38c 16762 cu->language = language_cplus;
c906108c 16763 break;
6aecb9c2
JB
16764 case DW_LANG_D:
16765 cu->language = language_d;
16766 break;
c906108c
SS
16767 case DW_LANG_Fortran77:
16768 case DW_LANG_Fortran90:
b21b22e0 16769 case DW_LANG_Fortran95:
e142c38c 16770 cu->language = language_fortran;
c906108c 16771 break;
a766d390
DE
16772 case DW_LANG_Go:
16773 cu->language = language_go;
16774 break;
c906108c 16775 case DW_LANG_Mips_Assembler:
e142c38c 16776 cu->language = language_asm;
c906108c 16777 break;
bebd888e 16778 case DW_LANG_Java:
e142c38c 16779 cu->language = language_java;
bebd888e 16780 break;
c906108c 16781 case DW_LANG_Ada83:
8aaf0b47 16782 case DW_LANG_Ada95:
bc5f45f8
JB
16783 cu->language = language_ada;
16784 break;
72019c9c
GM
16785 case DW_LANG_Modula2:
16786 cu->language = language_m2;
16787 break;
fe8e67fd
PM
16788 case DW_LANG_Pascal83:
16789 cu->language = language_pascal;
16790 break;
22566fbd
DJ
16791 case DW_LANG_ObjC:
16792 cu->language = language_objc;
16793 break;
c906108c
SS
16794 case DW_LANG_Cobol74:
16795 case DW_LANG_Cobol85:
c906108c 16796 default:
e142c38c 16797 cu->language = language_minimal;
c906108c
SS
16798 break;
16799 }
e142c38c 16800 cu->language_defn = language_def (cu->language);
c906108c
SS
16801}
16802
16803/* Return the named attribute or NULL if not there. */
16804
16805static struct attribute *
e142c38c 16806dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 16807{
a48e046c 16808 for (;;)
c906108c 16809 {
a48e046c
TT
16810 unsigned int i;
16811 struct attribute *spec = NULL;
16812
16813 for (i = 0; i < die->num_attrs; ++i)
16814 {
16815 if (die->attrs[i].name == name)
16816 return &die->attrs[i];
16817 if (die->attrs[i].name == DW_AT_specification
16818 || die->attrs[i].name == DW_AT_abstract_origin)
16819 spec = &die->attrs[i];
16820 }
16821
16822 if (!spec)
16823 break;
c906108c 16824
f2f0e013 16825 die = follow_die_ref (die, spec, &cu);
f2f0e013 16826 }
c5aa993b 16827
c906108c
SS
16828 return NULL;
16829}
16830
348e048f
DE
16831/* Return the named attribute or NULL if not there,
16832 but do not follow DW_AT_specification, etc.
16833 This is for use in contexts where we're reading .debug_types dies.
16834 Following DW_AT_specification, DW_AT_abstract_origin will take us
16835 back up the chain, and we want to go down. */
16836
16837static struct attribute *
45e58e77 16838dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
16839{
16840 unsigned int i;
16841
16842 for (i = 0; i < die->num_attrs; ++i)
16843 if (die->attrs[i].name == name)
16844 return &die->attrs[i];
16845
16846 return NULL;
16847}
16848
05cf31d1
JB
16849/* Return non-zero iff the attribute NAME is defined for the given DIE,
16850 and holds a non-zero value. This function should only be used for
2dc7f7b3 16851 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
16852
16853static int
16854dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16855{
16856 struct attribute *attr = dwarf2_attr (die, name, cu);
16857
16858 return (attr && DW_UNSND (attr));
16859}
16860
3ca72b44 16861static int
e142c38c 16862die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 16863{
05cf31d1
JB
16864 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16865 which value is non-zero. However, we have to be careful with
16866 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16867 (via dwarf2_flag_true_p) follows this attribute. So we may
16868 end up accidently finding a declaration attribute that belongs
16869 to a different DIE referenced by the specification attribute,
16870 even though the given DIE does not have a declaration attribute. */
16871 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16872 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
16873}
16874
63d06c5c 16875/* Return the die giving the specification for DIE, if there is
f2f0e013 16876 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
16877 containing the return value on output. If there is no
16878 specification, but there is an abstract origin, that is
16879 returned. */
63d06c5c
DC
16880
16881static struct die_info *
f2f0e013 16882die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 16883{
f2f0e013
DJ
16884 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16885 *spec_cu);
63d06c5c 16886
edb3359d
DJ
16887 if (spec_attr == NULL)
16888 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16889
63d06c5c
DC
16890 if (spec_attr == NULL)
16891 return NULL;
16892 else
f2f0e013 16893 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 16894}
c906108c 16895
debd256d 16896/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
16897 refers to.
16898 NOTE: This is also used as a "cleanup" function. */
16899
debd256d
JB
16900static void
16901free_line_header (struct line_header *lh)
16902{
16903 if (lh->standard_opcode_lengths)
a8bc7b56 16904 xfree (lh->standard_opcode_lengths);
debd256d
JB
16905
16906 /* Remember that all the lh->file_names[i].name pointers are
16907 pointers into debug_line_buffer, and don't need to be freed. */
16908 if (lh->file_names)
a8bc7b56 16909 xfree (lh->file_names);
debd256d
JB
16910
16911 /* Similarly for the include directory names. */
16912 if (lh->include_dirs)
a8bc7b56 16913 xfree (lh->include_dirs);
debd256d 16914
a8bc7b56 16915 xfree (lh);
debd256d
JB
16916}
16917
debd256d 16918/* Add an entry to LH's include directory table. */
ae2de4f8 16919
debd256d 16920static void
d521ce57 16921add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 16922{
debd256d
JB
16923 /* Grow the array if necessary. */
16924 if (lh->include_dirs_size == 0)
c5aa993b 16925 {
debd256d
JB
16926 lh->include_dirs_size = 1; /* for testing */
16927 lh->include_dirs = xmalloc (lh->include_dirs_size
16928 * sizeof (*lh->include_dirs));
16929 }
16930 else if (lh->num_include_dirs >= lh->include_dirs_size)
16931 {
16932 lh->include_dirs_size *= 2;
16933 lh->include_dirs = xrealloc (lh->include_dirs,
16934 (lh->include_dirs_size
16935 * sizeof (*lh->include_dirs)));
c5aa993b 16936 }
c906108c 16937
debd256d
JB
16938 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16939}
6e70227d 16940
debd256d 16941/* Add an entry to LH's file name table. */
ae2de4f8 16942
debd256d
JB
16943static void
16944add_file_name (struct line_header *lh,
d521ce57 16945 const char *name,
debd256d
JB
16946 unsigned int dir_index,
16947 unsigned int mod_time,
16948 unsigned int length)
16949{
16950 struct file_entry *fe;
16951
16952 /* Grow the array if necessary. */
16953 if (lh->file_names_size == 0)
16954 {
16955 lh->file_names_size = 1; /* for testing */
16956 lh->file_names = xmalloc (lh->file_names_size
16957 * sizeof (*lh->file_names));
16958 }
16959 else if (lh->num_file_names >= lh->file_names_size)
16960 {
16961 lh->file_names_size *= 2;
16962 lh->file_names = xrealloc (lh->file_names,
16963 (lh->file_names_size
16964 * sizeof (*lh->file_names)));
16965 }
16966
16967 fe = &lh->file_names[lh->num_file_names++];
16968 fe->name = name;
16969 fe->dir_index = dir_index;
16970 fe->mod_time = mod_time;
16971 fe->length = length;
aaa75496 16972 fe->included_p = 0;
cb1df416 16973 fe->symtab = NULL;
debd256d 16974}
6e70227d 16975
36586728
TT
16976/* A convenience function to find the proper .debug_line section for a
16977 CU. */
16978
16979static struct dwarf2_section_info *
16980get_debug_line_section (struct dwarf2_cu *cu)
16981{
16982 struct dwarf2_section_info *section;
16983
16984 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16985 DWO file. */
16986 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16987 section = &cu->dwo_unit->dwo_file->sections.line;
16988 else if (cu->per_cu->is_dwz)
16989 {
16990 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16991
16992 section = &dwz->line;
16993 }
16994 else
16995 section = &dwarf2_per_objfile->line;
16996
16997 return section;
16998}
16999
debd256d 17000/* Read the statement program header starting at OFFSET in
3019eac3 17001 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 17002 to a struct line_header, allocated using xmalloc.
debd256d
JB
17003
17004 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
17005 the returned object point into the dwarf line section buffer,
17006 and must not be freed. */
ae2de4f8 17007
debd256d 17008static struct line_header *
3019eac3 17009dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
17010{
17011 struct cleanup *back_to;
17012 struct line_header *lh;
d521ce57 17013 const gdb_byte *line_ptr;
c764a876 17014 unsigned int bytes_read, offset_size;
debd256d 17015 int i;
d521ce57 17016 const char *cur_dir, *cur_file;
3019eac3
DE
17017 struct dwarf2_section_info *section;
17018 bfd *abfd;
17019
36586728 17020 section = get_debug_line_section (cu);
3019eac3
DE
17021 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17022 if (section->buffer == NULL)
debd256d 17023 {
3019eac3
DE
17024 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17025 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17026 else
17027 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
17028 return 0;
17029 }
17030
fceca515
DE
17031 /* We can't do this until we know the section is non-empty.
17032 Only then do we know we have such a section. */
a32a8923 17033 abfd = get_section_bfd_owner (section);
fceca515 17034
a738430d
MK
17035 /* Make sure that at least there's room for the total_length field.
17036 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 17037 if (offset + 4 >= section->size)
debd256d 17038 {
4d3c2250 17039 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17040 return 0;
17041 }
17042
17043 lh = xmalloc (sizeof (*lh));
17044 memset (lh, 0, sizeof (*lh));
17045 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17046 (void *) lh);
17047
3019eac3 17048 line_ptr = section->buffer + offset;
debd256d 17049
a738430d 17050 /* Read in the header. */
6e70227d 17051 lh->total_length =
c764a876
DE
17052 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17053 &bytes_read, &offset_size);
debd256d 17054 line_ptr += bytes_read;
3019eac3 17055 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17056 {
4d3c2250 17057 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 17058 do_cleanups (back_to);
debd256d
JB
17059 return 0;
17060 }
17061 lh->statement_program_end = line_ptr + lh->total_length;
17062 lh->version = read_2_bytes (abfd, line_ptr);
17063 line_ptr += 2;
c764a876
DE
17064 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17065 line_ptr += offset_size;
debd256d
JB
17066 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17067 line_ptr += 1;
2dc7f7b3
TT
17068 if (lh->version >= 4)
17069 {
17070 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17071 line_ptr += 1;
17072 }
17073 else
17074 lh->maximum_ops_per_instruction = 1;
17075
17076 if (lh->maximum_ops_per_instruction == 0)
17077 {
17078 lh->maximum_ops_per_instruction = 1;
17079 complaint (&symfile_complaints,
3e43a32a
MS
17080 _("invalid maximum_ops_per_instruction "
17081 "in `.debug_line' section"));
2dc7f7b3
TT
17082 }
17083
debd256d
JB
17084 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17085 line_ptr += 1;
17086 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17087 line_ptr += 1;
17088 lh->line_range = read_1_byte (abfd, line_ptr);
17089 line_ptr += 1;
17090 lh->opcode_base = read_1_byte (abfd, line_ptr);
17091 line_ptr += 1;
17092 lh->standard_opcode_lengths
fe1b8b76 17093 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
17094
17095 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17096 for (i = 1; i < lh->opcode_base; ++i)
17097 {
17098 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17099 line_ptr += 1;
17100 }
17101
a738430d 17102 /* Read directory table. */
9b1c24c8 17103 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17104 {
17105 line_ptr += bytes_read;
17106 add_include_dir (lh, cur_dir);
17107 }
17108 line_ptr += bytes_read;
17109
a738430d 17110 /* Read file name table. */
9b1c24c8 17111 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17112 {
17113 unsigned int dir_index, mod_time, length;
17114
17115 line_ptr += bytes_read;
17116 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17117 line_ptr += bytes_read;
17118 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17119 line_ptr += bytes_read;
17120 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17121 line_ptr += bytes_read;
17122
17123 add_file_name (lh, cur_file, dir_index, mod_time, length);
17124 }
17125 line_ptr += bytes_read;
6e70227d 17126 lh->statement_program_start = line_ptr;
debd256d 17127
3019eac3 17128 if (line_ptr > (section->buffer + section->size))
4d3c2250 17129 complaint (&symfile_complaints,
3e43a32a
MS
17130 _("line number info header doesn't "
17131 "fit in `.debug_line' section"));
debd256d
JB
17132
17133 discard_cleanups (back_to);
17134 return lh;
17135}
c906108c 17136
c6da4cef
DE
17137/* Subroutine of dwarf_decode_lines to simplify it.
17138 Return the file name of the psymtab for included file FILE_INDEX
17139 in line header LH of PST.
17140 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17141 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
17142 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17143
17144 The function creates dangling cleanup registration. */
c6da4cef 17145
d521ce57 17146static const char *
c6da4cef
DE
17147psymtab_include_file_name (const struct line_header *lh, int file_index,
17148 const struct partial_symtab *pst,
17149 const char *comp_dir)
17150{
17151 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
17152 const char *include_name = fe.name;
17153 const char *include_name_to_compare = include_name;
17154 const char *dir_name = NULL;
72b9f47f
TT
17155 const char *pst_filename;
17156 char *copied_name = NULL;
c6da4cef
DE
17157 int file_is_pst;
17158
17159 if (fe.dir_index)
17160 dir_name = lh->include_dirs[fe.dir_index - 1];
17161
17162 if (!IS_ABSOLUTE_PATH (include_name)
17163 && (dir_name != NULL || comp_dir != NULL))
17164 {
17165 /* Avoid creating a duplicate psymtab for PST.
17166 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17167 Before we do the comparison, however, we need to account
17168 for DIR_NAME and COMP_DIR.
17169 First prepend dir_name (if non-NULL). If we still don't
17170 have an absolute path prepend comp_dir (if non-NULL).
17171 However, the directory we record in the include-file's
17172 psymtab does not contain COMP_DIR (to match the
17173 corresponding symtab(s)).
17174
17175 Example:
17176
17177 bash$ cd /tmp
17178 bash$ gcc -g ./hello.c
17179 include_name = "hello.c"
17180 dir_name = "."
17181 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
17182 DW_AT_name = "./hello.c"
17183
17184 */
c6da4cef
DE
17185
17186 if (dir_name != NULL)
17187 {
d521ce57
TT
17188 char *tem = concat (dir_name, SLASH_STRING,
17189 include_name, (char *)NULL);
17190
17191 make_cleanup (xfree, tem);
17192 include_name = tem;
c6da4cef 17193 include_name_to_compare = include_name;
c6da4cef
DE
17194 }
17195 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17196 {
d521ce57
TT
17197 char *tem = concat (comp_dir, SLASH_STRING,
17198 include_name, (char *)NULL);
17199
17200 make_cleanup (xfree, tem);
17201 include_name_to_compare = tem;
c6da4cef
DE
17202 }
17203 }
17204
17205 pst_filename = pst->filename;
17206 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17207 {
72b9f47f
TT
17208 copied_name = concat (pst->dirname, SLASH_STRING,
17209 pst_filename, (char *)NULL);
17210 pst_filename = copied_name;
c6da4cef
DE
17211 }
17212
1e3fad37 17213 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 17214
72b9f47f
TT
17215 if (copied_name != NULL)
17216 xfree (copied_name);
c6da4cef
DE
17217
17218 if (file_is_pst)
17219 return NULL;
17220 return include_name;
17221}
17222
c91513d8
PP
17223/* Ignore this record_line request. */
17224
17225static void
17226noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17227{
17228 return;
17229}
17230
a05a36a5
DE
17231/* Return non-zero if we should add LINE to the line number table.
17232 LINE is the line to add, LAST_LINE is the last line that was added,
17233 LAST_SUBFILE is the subfile for LAST_LINE.
17234 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17235 had a non-zero discriminator.
17236
17237 We have to be careful in the presence of discriminators.
17238 E.g., for this line:
17239
17240 for (i = 0; i < 100000; i++);
17241
17242 clang can emit four line number entries for that one line,
17243 each with a different discriminator.
17244 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17245
17246 However, we want gdb to coalesce all four entries into one.
17247 Otherwise the user could stepi into the middle of the line and
17248 gdb would get confused about whether the pc really was in the
17249 middle of the line.
17250
17251 Things are further complicated by the fact that two consecutive
17252 line number entries for the same line is a heuristic used by gcc
17253 to denote the end of the prologue. So we can't just discard duplicate
17254 entries, we have to be selective about it. The heuristic we use is
17255 that we only collapse consecutive entries for the same line if at least
17256 one of those entries has a non-zero discriminator. PR 17276.
17257
17258 Note: Addresses in the line number state machine can never go backwards
17259 within one sequence, thus this coalescing is ok. */
17260
17261static int
17262dwarf_record_line_p (unsigned int line, unsigned int last_line,
17263 int line_has_non_zero_discriminator,
17264 struct subfile *last_subfile)
17265{
17266 if (current_subfile != last_subfile)
17267 return 1;
17268 if (line != last_line)
17269 return 1;
17270 /* Same line for the same file that we've seen already.
17271 As a last check, for pr 17276, only record the line if the line
17272 has never had a non-zero discriminator. */
17273 if (!line_has_non_zero_discriminator)
17274 return 1;
17275 return 0;
17276}
17277
252a6764
DE
17278/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17279 in the line table of subfile SUBFILE. */
17280
17281static void
17282dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17283 unsigned int line, CORE_ADDR address,
17284 record_line_ftype p_record_line)
17285{
17286 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17287
d5962de5 17288 (*p_record_line) (subfile, line, addr);
252a6764
DE
17289}
17290
17291/* Subroutine of dwarf_decode_lines_1 to simplify it.
17292 Mark the end of a set of line number records.
17293 The arguments are the same as for dwarf_record_line.
17294 If SUBFILE is NULL the request is ignored. */
17295
17296static void
17297dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17298 CORE_ADDR address, record_line_ftype p_record_line)
17299{
17300 if (subfile != NULL)
17301 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17302}
17303
f3f5162e
DE
17304/* Subroutine of dwarf_decode_lines to simplify it.
17305 Process the line number information in LH. */
debd256d 17306
c906108c 17307static void
43f3e411
DE
17308dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17309 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 17310{
d521ce57
TT
17311 const gdb_byte *line_ptr, *extended_end;
17312 const gdb_byte *line_end;
a8c50c1f 17313 unsigned int bytes_read, extended_len;
699ca60a 17314 unsigned char op_code, extended_op;
e142c38c
DJ
17315 CORE_ADDR baseaddr;
17316 struct objfile *objfile = cu->objfile;
f3f5162e 17317 bfd *abfd = objfile->obfd;
fbf65064 17318 struct gdbarch *gdbarch = get_objfile_arch (objfile);
f3f5162e 17319 struct subfile *last_subfile = NULL;
c91513d8
PP
17320 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17321 = record_line;
e142c38c
DJ
17322
17323 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17324
debd256d
JB
17325 line_ptr = lh->statement_program_start;
17326 line_end = lh->statement_program_end;
c906108c
SS
17327
17328 /* Read the statement sequences until there's nothing left. */
17329 while (line_ptr < line_end)
17330 {
3e29f34a
MR
17331 /* State machine registers. Call `gdbarch_adjust_dwarf2_line'
17332 on the initial 0 address as if there was a line entry for it
17333 so that the backend has a chance to adjust it and also record
17334 it in case it needs it. This is currently used by MIPS code,
17335 cf. `mips_adjust_dwarf2_line'. */
17336 CORE_ADDR address = gdbarch_adjust_dwarf2_line (gdbarch, 0, 0);
c906108c
SS
17337 unsigned int file = 1;
17338 unsigned int line = 1;
debd256d 17339 int is_stmt = lh->default_is_stmt;
c906108c 17340 int end_sequence = 0;
2dc7f7b3 17341 unsigned char op_index = 0;
a05a36a5
DE
17342 unsigned int discriminator = 0;
17343 /* The last line number that was recorded, used to coalesce
17344 consecutive entries for the same line. This can happen, for
17345 example, when discriminators are present. PR 17276. */
17346 unsigned int last_line = 0;
17347 int line_has_non_zero_discriminator = 0;
c906108c 17348
aaa75496 17349 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 17350 {
aaa75496 17351 /* Start a subfile for the current file of the state machine. */
debd256d
JB
17352 /* lh->include_dirs and lh->file_names are 0-based, but the
17353 directory and file name numbers in the statement program
17354 are 1-based. */
17355 struct file_entry *fe = &lh->file_names[file - 1];
d521ce57 17356 const char *dir = NULL;
a738430d 17357
debd256d
JB
17358 if (fe->dir_index)
17359 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb 17360
4d663531 17361 dwarf2_start_subfile (fe->name, dir);
c906108c
SS
17362 }
17363
a738430d 17364 /* Decode the table. */
c5aa993b 17365 while (!end_sequence)
c906108c
SS
17366 {
17367 op_code = read_1_byte (abfd, line_ptr);
17368 line_ptr += 1;
59205f5a
JB
17369 if (line_ptr > line_end)
17370 {
17371 dwarf2_debug_line_missing_end_sequence_complaint ();
17372 break;
17373 }
9aa1fe7e 17374
debd256d 17375 if (op_code >= lh->opcode_base)
6e70227d 17376 {
8e07a239 17377 /* Special opcode. */
699ca60a 17378 unsigned char adj_opcode;
3e29f34a 17379 CORE_ADDR addr_adj;
a05a36a5 17380 int line_delta;
8e07a239 17381
debd256d 17382 adj_opcode = op_code - lh->opcode_base;
3e29f34a 17383 addr_adj = (((op_index + (adj_opcode / lh->line_range))
2dc7f7b3
TT
17384 / lh->maximum_ops_per_instruction)
17385 * lh->minimum_instruction_length);
3e29f34a 17386 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
2dc7f7b3
TT
17387 op_index = ((op_index + (adj_opcode / lh->line_range))
17388 % lh->maximum_ops_per_instruction);
a05a36a5
DE
17389 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17390 line += line_delta;
17391 if (line_delta != 0)
17392 line_has_non_zero_discriminator = discriminator != 0;
59205f5a 17393 if (lh->num_file_names < file || file == 0)
25e43795 17394 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
17395 /* For now we ignore lines not starting on an
17396 instruction boundary. */
17397 else if (op_index == 0)
25e43795
DJ
17398 {
17399 lh->file_names[file - 1].included_p = 1;
ca5f395d 17400 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
17401 {
17402 if (last_subfile != current_subfile)
17403 {
252a6764
DE
17404 dwarf_finish_line (gdbarch, last_subfile,
17405 address, p_record_line);
fbf65064 17406 }
a05a36a5
DE
17407 if (dwarf_record_line_p (line, last_line,
17408 line_has_non_zero_discriminator,
17409 last_subfile))
17410 {
17411 dwarf_record_line (gdbarch, current_subfile,
17412 line, address, p_record_line);
17413 }
17414 last_subfile = current_subfile;
17415 last_line = line;
366da635 17416 }
25e43795 17417 }
a05a36a5 17418 discriminator = 0;
9aa1fe7e
GK
17419 }
17420 else switch (op_code)
c906108c
SS
17421 {
17422 case DW_LNS_extended_op:
3e43a32a
MS
17423 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17424 &bytes_read);
473b7be6 17425 line_ptr += bytes_read;
a8c50c1f 17426 extended_end = line_ptr + extended_len;
c906108c
SS
17427 extended_op = read_1_byte (abfd, line_ptr);
17428 line_ptr += 1;
17429 switch (extended_op)
17430 {
17431 case DW_LNE_end_sequence:
c91513d8 17432 p_record_line = record_line;
c906108c 17433 end_sequence = 1;
c906108c
SS
17434 break;
17435 case DW_LNE_set_address:
e7c27a73 17436 address = read_address (abfd, line_ptr, cu, &bytes_read);
c91513d8 17437
c3b7b696
YQ
17438 /* If address < lowpc then it's not a usable value, it's
17439 outside the pc range of the CU. However, we restrict
17440 the test to only address values of zero to preserve
17441 GDB's previous behaviour which is to handle the specific
17442 case of a function being GC'd by the linker. */
17443 if (address == 0 && address < lowpc)
c91513d8
PP
17444 {
17445 /* This line table is for a function which has been
17446 GCd by the linker. Ignore it. PR gdb/12528 */
17447
17448 long line_offset
36586728 17449 = line_ptr - get_debug_line_section (cu)->buffer;
c91513d8
PP
17450
17451 complaint (&symfile_complaints,
17452 _(".debug_line address at offset 0x%lx is 0 "
17453 "[in module %s]"),
4262abfb 17454 line_offset, objfile_name (objfile));
c91513d8 17455 p_record_line = noop_record_line;
37780ee5
DE
17456 /* Note: p_record_line is left as noop_record_line
17457 until we see DW_LNE_end_sequence. */
c91513d8
PP
17458 }
17459
2dc7f7b3 17460 op_index = 0;
107d2387
AC
17461 line_ptr += bytes_read;
17462 address += baseaddr;
3e29f34a 17463 address = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
c906108c
SS
17464 break;
17465 case DW_LNE_define_file:
debd256d 17466 {
d521ce57 17467 const char *cur_file;
debd256d 17468 unsigned int dir_index, mod_time, length;
6e70227d 17469
3e43a32a
MS
17470 cur_file = read_direct_string (abfd, line_ptr,
17471 &bytes_read);
debd256d
JB
17472 line_ptr += bytes_read;
17473 dir_index =
17474 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17475 line_ptr += bytes_read;
17476 mod_time =
17477 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17478 line_ptr += bytes_read;
17479 length =
17480 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17481 line_ptr += bytes_read;
17482 add_file_name (lh, cur_file, dir_index, mod_time, length);
17483 }
c906108c 17484 break;
d0c6ba3d
CC
17485 case DW_LNE_set_discriminator:
17486 /* The discriminator is not interesting to the debugger;
a05a36a5
DE
17487 just ignore it. We still need to check its value though:
17488 if there are consecutive entries for the same
17489 (non-prologue) line we want to coalesce them.
17490 PR 17276. */
17491 discriminator = read_unsigned_leb128 (abfd, line_ptr,
17492 &bytes_read);
17493 line_has_non_zero_discriminator |= discriminator != 0;
17494 line_ptr += bytes_read;
d0c6ba3d 17495 break;
c906108c 17496 default:
4d3c2250 17497 complaint (&symfile_complaints,
e2e0b3e5 17498 _("mangled .debug_line section"));
debd256d 17499 return;
c906108c 17500 }
a8c50c1f
DJ
17501 /* Make sure that we parsed the extended op correctly. If e.g.
17502 we expected a different address size than the producer used,
17503 we may have read the wrong number of bytes. */
17504 if (line_ptr != extended_end)
17505 {
17506 complaint (&symfile_complaints,
17507 _("mangled .debug_line section"));
17508 return;
17509 }
c906108c
SS
17510 break;
17511 case DW_LNS_copy:
59205f5a 17512 if (lh->num_file_names < file || file == 0)
25e43795
DJ
17513 dwarf2_debug_line_missing_file_complaint ();
17514 else
366da635 17515 {
25e43795 17516 lh->file_names[file - 1].included_p = 1;
ca5f395d 17517 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
17518 {
17519 if (last_subfile != current_subfile)
17520 {
252a6764
DE
17521 dwarf_finish_line (gdbarch, last_subfile,
17522 address, p_record_line);
fbf65064 17523 }
a05a36a5
DE
17524 if (dwarf_record_line_p (line, last_line,
17525 line_has_non_zero_discriminator,
17526 last_subfile))
17527 {
17528 dwarf_record_line (gdbarch, current_subfile,
17529 line, address, p_record_line);
17530 }
17531 last_subfile = current_subfile;
17532 last_line = line;
fbf65064 17533 }
366da635 17534 }
a05a36a5 17535 discriminator = 0;
c906108c
SS
17536 break;
17537 case DW_LNS_advance_pc:
2dc7f7b3
TT
17538 {
17539 CORE_ADDR adjust
17540 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
3e29f34a 17541 CORE_ADDR addr_adj;
2dc7f7b3 17542
3e29f34a 17543 addr_adj = (((op_index + adjust)
2dc7f7b3
TT
17544 / lh->maximum_ops_per_instruction)
17545 * lh->minimum_instruction_length);
3e29f34a 17546 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
2dc7f7b3
TT
17547 op_index = ((op_index + adjust)
17548 % lh->maximum_ops_per_instruction);
17549 line_ptr += bytes_read;
17550 }
c906108c
SS
17551 break;
17552 case DW_LNS_advance_line:
a05a36a5
DE
17553 {
17554 int line_delta
17555 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17556
17557 line += line_delta;
17558 if (line_delta != 0)
17559 line_has_non_zero_discriminator = discriminator != 0;
17560 line_ptr += bytes_read;
17561 }
c906108c
SS
17562 break;
17563 case DW_LNS_set_file:
debd256d 17564 {
a738430d
MK
17565 /* The arrays lh->include_dirs and lh->file_names are
17566 0-based, but the directory and file name numbers in
17567 the statement program are 1-based. */
debd256d 17568 struct file_entry *fe;
d521ce57 17569 const char *dir = NULL;
a738430d 17570
debd256d
JB
17571 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17572 line_ptr += bytes_read;
59205f5a 17573 if (lh->num_file_names < file || file == 0)
25e43795
DJ
17574 dwarf2_debug_line_missing_file_complaint ();
17575 else
17576 {
17577 fe = &lh->file_names[file - 1];
17578 if (fe->dir_index)
17579 dir = lh->include_dirs[fe->dir_index - 1];
17580 if (!decode_for_pst_p)
17581 {
17582 last_subfile = current_subfile;
a05a36a5 17583 line_has_non_zero_discriminator = discriminator != 0;
4d663531 17584 dwarf2_start_subfile (fe->name, dir);
25e43795
DJ
17585 }
17586 }
debd256d 17587 }
c906108c
SS
17588 break;
17589 case DW_LNS_set_column:
0ad93d4f 17590 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
17591 line_ptr += bytes_read;
17592 break;
17593 case DW_LNS_negate_stmt:
17594 is_stmt = (!is_stmt);
17595 break;
17596 case DW_LNS_set_basic_block:
c906108c 17597 break;
c2c6d25f
JM
17598 /* Add to the address register of the state machine the
17599 address increment value corresponding to special opcode
a738430d
MK
17600 255. I.e., this value is scaled by the minimum
17601 instruction length since special opcode 255 would have
b021a221 17602 scaled the increment. */
c906108c 17603 case DW_LNS_const_add_pc:
2dc7f7b3
TT
17604 {
17605 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
3e29f34a 17606 CORE_ADDR addr_adj;
2dc7f7b3 17607
3e29f34a 17608 addr_adj = (((op_index + adjust)
2dc7f7b3
TT
17609 / lh->maximum_ops_per_instruction)
17610 * lh->minimum_instruction_length);
3e29f34a 17611 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
2dc7f7b3
TT
17612 op_index = ((op_index + adjust)
17613 % lh->maximum_ops_per_instruction);
17614 }
c906108c
SS
17615 break;
17616 case DW_LNS_fixed_advance_pc:
3e29f34a
MR
17617 {
17618 CORE_ADDR addr_adj;
17619
17620 addr_adj = read_2_bytes (abfd, line_ptr);
17621 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17622 op_index = 0;
17623 line_ptr += 2;
17624 }
c906108c 17625 break;
9aa1fe7e 17626 default:
a738430d
MK
17627 {
17628 /* Unknown standard opcode, ignore it. */
9aa1fe7e 17629 int i;
a738430d 17630
debd256d 17631 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
17632 {
17633 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17634 line_ptr += bytes_read;
17635 }
17636 }
c906108c
SS
17637 }
17638 }
59205f5a
JB
17639 if (lh->num_file_names < file || file == 0)
17640 dwarf2_debug_line_missing_file_complaint ();
17641 else
17642 {
17643 lh->file_names[file - 1].included_p = 1;
17644 if (!decode_for_pst_p)
fbf65064 17645 {
252a6764
DE
17646 dwarf_finish_line (gdbarch, current_subfile, address,
17647 p_record_line);
fbf65064 17648 }
59205f5a 17649 }
c906108c 17650 }
f3f5162e
DE
17651}
17652
17653/* Decode the Line Number Program (LNP) for the given line_header
17654 structure and CU. The actual information extracted and the type
17655 of structures created from the LNP depends on the value of PST.
17656
17657 1. If PST is NULL, then this procedure uses the data from the program
17658 to create all necessary symbol tables, and their linetables.
17659
17660 2. If PST is not NULL, this procedure reads the program to determine
17661 the list of files included by the unit represented by PST, and
17662 builds all the associated partial symbol tables.
17663
17664 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17665 It is used for relative paths in the line table.
17666 NOTE: When processing partial symtabs (pst != NULL),
17667 comp_dir == pst->dirname.
17668
17669 NOTE: It is important that psymtabs have the same file name (via strcmp)
17670 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17671 symtab we don't use it in the name of the psymtabs we create.
17672 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
17673 A good testcase for this is mb-inline.exp.
17674
17675 LOWPC is the lowest address in CU (or 0 if not known). */
f3f5162e
DE
17676
17677static void
17678dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696
YQ
17679 struct dwarf2_cu *cu, struct partial_symtab *pst,
17680 CORE_ADDR lowpc)
f3f5162e
DE
17681{
17682 struct objfile *objfile = cu->objfile;
17683 const int decode_for_pst_p = (pst != NULL);
f3f5162e 17684
43f3e411 17685 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
17686
17687 if (decode_for_pst_p)
17688 {
17689 int file_index;
17690
17691 /* Now that we're done scanning the Line Header Program, we can
17692 create the psymtab of each included file. */
17693 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17694 if (lh->file_names[file_index].included_p == 1)
17695 {
d521ce57 17696 const char *include_name =
c6da4cef
DE
17697 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17698 if (include_name != NULL)
aaa75496
JB
17699 dwarf2_create_include_psymtab (include_name, pst, objfile);
17700 }
17701 }
cb1df416
DJ
17702 else
17703 {
17704 /* Make sure a symtab is created for every file, even files
17705 which contain only variables (i.e. no code with associated
17706 line numbers). */
43f3e411 17707 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 17708 int i;
cb1df416
DJ
17709
17710 for (i = 0; i < lh->num_file_names; i++)
17711 {
d521ce57 17712 const char *dir = NULL;
f3f5162e 17713 struct file_entry *fe;
9a619af0 17714
cb1df416
DJ
17715 fe = &lh->file_names[i];
17716 if (fe->dir_index)
17717 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 17718 dwarf2_start_subfile (fe->name, dir);
cb1df416 17719
cb1df416 17720 if (current_subfile->symtab == NULL)
43f3e411
DE
17721 {
17722 current_subfile->symtab
17723 = allocate_symtab (cust, current_subfile->name);
17724 }
cb1df416
DJ
17725 fe->symtab = current_subfile->symtab;
17726 }
17727 }
c906108c
SS
17728}
17729
17730/* Start a subfile for DWARF. FILENAME is the name of the file and
17731 DIRNAME the name of the source directory which contains FILENAME
4d663531 17732 or NULL if not known.
c906108c
SS
17733 This routine tries to keep line numbers from identical absolute and
17734 relative file names in a common subfile.
17735
17736 Using the `list' example from the GDB testsuite, which resides in
17737 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17738 of /srcdir/list0.c yields the following debugging information for list0.c:
17739
c5aa993b 17740 DW_AT_name: /srcdir/list0.c
4d663531 17741 DW_AT_comp_dir: /compdir
357e46e7 17742 files.files[0].name: list0.h
c5aa993b 17743 files.files[0].dir: /srcdir
357e46e7 17744 files.files[1].name: list0.c
c5aa993b 17745 files.files[1].dir: /srcdir
c906108c
SS
17746
17747 The line number information for list0.c has to end up in a single
4f1520fb
FR
17748 subfile, so that `break /srcdir/list0.c:1' works as expected.
17749 start_subfile will ensure that this happens provided that we pass the
17750 concatenation of files.files[1].dir and files.files[1].name as the
17751 subfile's name. */
c906108c
SS
17752
17753static void
4d663531 17754dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 17755{
d521ce57 17756 char *copy = NULL;
4f1520fb 17757
4d663531 17758 /* In order not to lose the line information directory,
4f1520fb
FR
17759 we concatenate it to the filename when it makes sense.
17760 Note that the Dwarf3 standard says (speaking of filenames in line
17761 information): ``The directory index is ignored for file names
17762 that represent full path names''. Thus ignoring dirname in the
17763 `else' branch below isn't an issue. */
c906108c 17764
d5166ae1 17765 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
17766 {
17767 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17768 filename = copy;
17769 }
c906108c 17770
4d663531 17771 start_subfile (filename);
4f1520fb 17772
d521ce57
TT
17773 if (copy != NULL)
17774 xfree (copy);
c906108c
SS
17775}
17776
f4dc4d17
DE
17777/* Start a symtab for DWARF.
17778 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17779
43f3e411 17780static struct compunit_symtab *
f4dc4d17 17781dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 17782 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 17783{
43f3e411
DE
17784 struct compunit_symtab *cust
17785 = start_symtab (cu->objfile, name, comp_dir, low_pc);
17786
f4dc4d17
DE
17787 record_debugformat ("DWARF 2");
17788 record_producer (cu->producer);
17789
17790 /* We assume that we're processing GCC output. */
17791 processing_gcc_compilation = 2;
17792
4d4ec4e5 17793 cu->processing_has_namespace_info = 0;
43f3e411
DE
17794
17795 return cust;
f4dc4d17
DE
17796}
17797
4c2df51b
DJ
17798static void
17799var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 17800 struct dwarf2_cu *cu)
4c2df51b 17801{
e7c27a73
DJ
17802 struct objfile *objfile = cu->objfile;
17803 struct comp_unit_head *cu_header = &cu->header;
17804
4c2df51b
DJ
17805 /* NOTE drow/2003-01-30: There used to be a comment and some special
17806 code here to turn a symbol with DW_AT_external and a
17807 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17808 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17809 with some versions of binutils) where shared libraries could have
17810 relocations against symbols in their debug information - the
17811 minimal symbol would have the right address, but the debug info
17812 would not. It's no longer necessary, because we will explicitly
17813 apply relocations when we read in the debug information now. */
17814
17815 /* A DW_AT_location attribute with no contents indicates that a
17816 variable has been optimized away. */
17817 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17818 {
f1e6e072 17819 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
17820 return;
17821 }
17822
17823 /* Handle one degenerate form of location expression specially, to
17824 preserve GDB's previous behavior when section offsets are
3019eac3
DE
17825 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17826 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
17827
17828 if (attr_form_is_block (attr)
3019eac3
DE
17829 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17830 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17831 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17832 && (DW_BLOCK (attr)->size
17833 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 17834 {
891d2f0b 17835 unsigned int dummy;
4c2df51b 17836
3019eac3
DE
17837 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17838 SYMBOL_VALUE_ADDRESS (sym) =
17839 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17840 else
17841 SYMBOL_VALUE_ADDRESS (sym) =
17842 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 17843 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
17844 fixup_symbol_section (sym, objfile);
17845 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17846 SYMBOL_SECTION (sym));
4c2df51b
DJ
17847 return;
17848 }
17849
17850 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17851 expression evaluator, and use LOC_COMPUTED only when necessary
17852 (i.e. when the value of a register or memory location is
17853 referenced, or a thread-local block, etc.). Then again, it might
17854 not be worthwhile. I'm assuming that it isn't unless performance
17855 or memory numbers show me otherwise. */
17856
f1e6e072 17857 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 17858
f1e6e072 17859 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 17860 cu->has_loclist = 1;
4c2df51b
DJ
17861}
17862
c906108c
SS
17863/* Given a pointer to a DWARF information entry, figure out if we need
17864 to make a symbol table entry for it, and if so, create a new entry
17865 and return a pointer to it.
17866 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
17867 used the passed type.
17868 If SPACE is not NULL, use it to hold the new symbol. If it is
17869 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
17870
17871static struct symbol *
34eaf542
TT
17872new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17873 struct symbol *space)
c906108c 17874{
e7c27a73 17875 struct objfile *objfile = cu->objfile;
3e29f34a 17876 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 17877 struct symbol *sym = NULL;
15d034d0 17878 const char *name;
c906108c
SS
17879 struct attribute *attr = NULL;
17880 struct attribute *attr2 = NULL;
e142c38c 17881 CORE_ADDR baseaddr;
e37fd15a
SW
17882 struct pending **list_to_add = NULL;
17883
edb3359d 17884 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
17885
17886 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17887
94af9270 17888 name = dwarf2_name (die, cu);
c906108c
SS
17889 if (name)
17890 {
94af9270 17891 const char *linkagename;
34eaf542 17892 int suppress_add = 0;
94af9270 17893
34eaf542
TT
17894 if (space)
17895 sym = space;
17896 else
e623cf5d 17897 sym = allocate_symbol (objfile);
c906108c 17898 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
17899
17900 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 17901 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
17902 linkagename = dwarf2_physname (name, die, cu);
17903 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 17904
f55ee35c
JK
17905 /* Fortran does not have mangling standard and the mangling does differ
17906 between gfortran, iFort etc. */
17907 if (cu->language == language_fortran
b250c185 17908 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 17909 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 17910 dwarf2_full_name (name, die, cu),
29df156d 17911 NULL);
f55ee35c 17912
c906108c 17913 /* Default assumptions.
c5aa993b 17914 Use the passed type or decode it from the die. */
176620f1 17915 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 17916 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
17917 if (type != NULL)
17918 SYMBOL_TYPE (sym) = type;
17919 else
e7c27a73 17920 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
17921 attr = dwarf2_attr (die,
17922 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17923 cu);
c906108c
SS
17924 if (attr)
17925 {
17926 SYMBOL_LINE (sym) = DW_UNSND (attr);
17927 }
cb1df416 17928
edb3359d
DJ
17929 attr = dwarf2_attr (die,
17930 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17931 cu);
cb1df416
DJ
17932 if (attr)
17933 {
17934 int file_index = DW_UNSND (attr);
9a619af0 17935
cb1df416
DJ
17936 if (cu->line_header == NULL
17937 || file_index > cu->line_header->num_file_names)
17938 complaint (&symfile_complaints,
17939 _("file index out of range"));
1c3d648d 17940 else if (file_index > 0)
cb1df416
DJ
17941 {
17942 struct file_entry *fe;
9a619af0 17943
cb1df416 17944 fe = &cu->line_header->file_names[file_index - 1];
08be3fe3 17945 symbol_set_symtab (sym, fe->symtab);
cb1df416
DJ
17946 }
17947 }
17948
c906108c
SS
17949 switch (die->tag)
17950 {
17951 case DW_TAG_label:
e142c38c 17952 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 17953 if (attr)
3e29f34a
MR
17954 {
17955 CORE_ADDR addr;
17956
17957 addr = attr_value_as_address (attr);
17958 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
17959 SYMBOL_VALUE_ADDRESS (sym) = addr;
17960 }
0f5238ed
TT
17961 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17962 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 17963 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 17964 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
17965 break;
17966 case DW_TAG_subprogram:
17967 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17968 finish_block. */
f1e6e072 17969 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 17970 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
17971 if ((attr2 && (DW_UNSND (attr2) != 0))
17972 || cu->language == language_ada)
c906108c 17973 {
2cfa0c8d
JB
17974 /* Subprograms marked external are stored as a global symbol.
17975 Ada subprograms, whether marked external or not, are always
17976 stored as a global symbol, because we want to be able to
17977 access them globally. For instance, we want to be able
17978 to break on a nested subprogram without having to
17979 specify the context. */
e37fd15a 17980 list_to_add = &global_symbols;
c906108c
SS
17981 }
17982 else
17983 {
e37fd15a 17984 list_to_add = cu->list_in_scope;
c906108c
SS
17985 }
17986 break;
edb3359d
DJ
17987 case DW_TAG_inlined_subroutine:
17988 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17989 finish_block. */
f1e6e072 17990 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 17991 SYMBOL_INLINED (sym) = 1;
481860b3 17992 list_to_add = cu->list_in_scope;
edb3359d 17993 break;
34eaf542
TT
17994 case DW_TAG_template_value_param:
17995 suppress_add = 1;
17996 /* Fall through. */
72929c62 17997 case DW_TAG_constant:
c906108c 17998 case DW_TAG_variable:
254e6b9e 17999 case DW_TAG_member:
0963b4bd
MS
18000 /* Compilation with minimal debug info may result in
18001 variables with missing type entries. Change the
18002 misleading `void' type to something sensible. */
c906108c 18003 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 18004 SYMBOL_TYPE (sym)
46bf5051 18005 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 18006
e142c38c 18007 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
18008 /* In the case of DW_TAG_member, we should only be called for
18009 static const members. */
18010 if (die->tag == DW_TAG_member)
18011 {
3863f96c
DE
18012 /* dwarf2_add_field uses die_is_declaration,
18013 so we do the same. */
254e6b9e
DE
18014 gdb_assert (die_is_declaration (die, cu));
18015 gdb_assert (attr);
18016 }
c906108c
SS
18017 if (attr)
18018 {
e7c27a73 18019 dwarf2_const_value (attr, sym, cu);
e142c38c 18020 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 18021 if (!suppress_add)
34eaf542
TT
18022 {
18023 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 18024 list_to_add = &global_symbols;
34eaf542 18025 else
e37fd15a 18026 list_to_add = cu->list_in_scope;
34eaf542 18027 }
c906108c
SS
18028 break;
18029 }
e142c38c 18030 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18031 if (attr)
18032 {
e7c27a73 18033 var_decode_location (attr, sym, cu);
e142c38c 18034 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
18035
18036 /* Fortran explicitly imports any global symbols to the local
18037 scope by DW_TAG_common_block. */
18038 if (cu->language == language_fortran && die->parent
18039 && die->parent->tag == DW_TAG_common_block)
18040 attr2 = NULL;
18041
caac4577
JG
18042 if (SYMBOL_CLASS (sym) == LOC_STATIC
18043 && SYMBOL_VALUE_ADDRESS (sym) == 0
18044 && !dwarf2_per_objfile->has_section_at_zero)
18045 {
18046 /* When a static variable is eliminated by the linker,
18047 the corresponding debug information is not stripped
18048 out, but the variable address is set to null;
18049 do not add such variables into symbol table. */
18050 }
18051 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 18052 {
f55ee35c
JK
18053 /* Workaround gfortran PR debug/40040 - it uses
18054 DW_AT_location for variables in -fPIC libraries which may
18055 get overriden by other libraries/executable and get
18056 a different address. Resolve it by the minimal symbol
18057 which may come from inferior's executable using copy
18058 relocation. Make this workaround only for gfortran as for
18059 other compilers GDB cannot guess the minimal symbol
18060 Fortran mangling kind. */
18061 if (cu->language == language_fortran && die->parent
18062 && die->parent->tag == DW_TAG_module
18063 && cu->producer
18064 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
f1e6e072 18065 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 18066
1c809c68
TT
18067 /* A variable with DW_AT_external is never static,
18068 but it may be block-scoped. */
18069 list_to_add = (cu->list_in_scope == &file_symbols
18070 ? &global_symbols : cu->list_in_scope);
1c809c68 18071 }
c906108c 18072 else
e37fd15a 18073 list_to_add = cu->list_in_scope;
c906108c
SS
18074 }
18075 else
18076 {
18077 /* We do not know the address of this symbol.
c5aa993b
JM
18078 If it is an external symbol and we have type information
18079 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18080 The address of the variable will then be determined from
18081 the minimal symbol table whenever the variable is
18082 referenced. */
e142c38c 18083 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
18084
18085 /* Fortran explicitly imports any global symbols to the local
18086 scope by DW_TAG_common_block. */
18087 if (cu->language == language_fortran && die->parent
18088 && die->parent->tag == DW_TAG_common_block)
18089 {
18090 /* SYMBOL_CLASS doesn't matter here because
18091 read_common_block is going to reset it. */
18092 if (!suppress_add)
18093 list_to_add = cu->list_in_scope;
18094 }
18095 else if (attr2 && (DW_UNSND (attr2) != 0)
18096 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 18097 {
0fe7935b
DJ
18098 /* A variable with DW_AT_external is never static, but it
18099 may be block-scoped. */
18100 list_to_add = (cu->list_in_scope == &file_symbols
18101 ? &global_symbols : cu->list_in_scope);
18102
f1e6e072 18103 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 18104 }
442ddf59
JK
18105 else if (!die_is_declaration (die, cu))
18106 {
18107 /* Use the default LOC_OPTIMIZED_OUT class. */
18108 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
18109 if (!suppress_add)
18110 list_to_add = cu->list_in_scope;
442ddf59 18111 }
c906108c
SS
18112 }
18113 break;
18114 case DW_TAG_formal_parameter:
edb3359d
DJ
18115 /* If we are inside a function, mark this as an argument. If
18116 not, we might be looking at an argument to an inlined function
18117 when we do not have enough information to show inlined frames;
18118 pretend it's a local variable in that case so that the user can
18119 still see it. */
18120 if (context_stack_depth > 0
18121 && context_stack[context_stack_depth - 1].name != NULL)
18122 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 18123 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18124 if (attr)
18125 {
e7c27a73 18126 var_decode_location (attr, sym, cu);
c906108c 18127 }
e142c38c 18128 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18129 if (attr)
18130 {
e7c27a73 18131 dwarf2_const_value (attr, sym, cu);
c906108c 18132 }
f346a30d 18133
e37fd15a 18134 list_to_add = cu->list_in_scope;
c906108c
SS
18135 break;
18136 case DW_TAG_unspecified_parameters:
18137 /* From varargs functions; gdb doesn't seem to have any
18138 interest in this information, so just ignore it for now.
18139 (FIXME?) */
18140 break;
34eaf542
TT
18141 case DW_TAG_template_type_param:
18142 suppress_add = 1;
18143 /* Fall through. */
c906108c 18144 case DW_TAG_class_type:
680b30c7 18145 case DW_TAG_interface_type:
c906108c
SS
18146 case DW_TAG_structure_type:
18147 case DW_TAG_union_type:
72019c9c 18148 case DW_TAG_set_type:
c906108c 18149 case DW_TAG_enumeration_type:
f1e6e072 18150 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18151 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 18152
63d06c5c 18153 {
987504bb 18154 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
18155 really ever be static objects: otherwise, if you try
18156 to, say, break of a class's method and you're in a file
18157 which doesn't mention that class, it won't work unless
18158 the check for all static symbols in lookup_symbol_aux
18159 saves you. See the OtherFileClass tests in
18160 gdb.c++/namespace.exp. */
18161
e37fd15a 18162 if (!suppress_add)
34eaf542 18163 {
34eaf542
TT
18164 list_to_add = (cu->list_in_scope == &file_symbols
18165 && (cu->language == language_cplus
18166 || cu->language == language_java)
18167 ? &global_symbols : cu->list_in_scope);
63d06c5c 18168
64382290
TT
18169 /* The semantics of C++ state that "struct foo {
18170 ... }" also defines a typedef for "foo". A Java
18171 class declaration also defines a typedef for the
18172 class. */
18173 if (cu->language == language_cplus
18174 || cu->language == language_java
18175 || cu->language == language_ada)
18176 {
18177 /* The symbol's name is already allocated along
18178 with this objfile, so we don't need to
18179 duplicate it for the type. */
18180 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18181 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18182 }
63d06c5c
DC
18183 }
18184 }
c906108c
SS
18185 break;
18186 case DW_TAG_typedef:
f1e6e072 18187 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 18188 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18189 list_to_add = cu->list_in_scope;
63d06c5c 18190 break;
c906108c 18191 case DW_TAG_base_type:
a02abb62 18192 case DW_TAG_subrange_type:
f1e6e072 18193 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18194 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18195 list_to_add = cu->list_in_scope;
c906108c
SS
18196 break;
18197 case DW_TAG_enumerator:
e142c38c 18198 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18199 if (attr)
18200 {
e7c27a73 18201 dwarf2_const_value (attr, sym, cu);
c906108c 18202 }
63d06c5c
DC
18203 {
18204 /* NOTE: carlton/2003-11-10: See comment above in the
18205 DW_TAG_class_type, etc. block. */
18206
e142c38c 18207 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
18208 && (cu->language == language_cplus
18209 || cu->language == language_java)
e142c38c 18210 ? &global_symbols : cu->list_in_scope);
63d06c5c 18211 }
c906108c 18212 break;
74921315 18213 case DW_TAG_imported_declaration:
5c4e30ca 18214 case DW_TAG_namespace:
f1e6e072 18215 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 18216 list_to_add = &global_symbols;
5c4e30ca 18217 break;
530e8392
KB
18218 case DW_TAG_module:
18219 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18220 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18221 list_to_add = &global_symbols;
18222 break;
4357ac6c 18223 case DW_TAG_common_block:
f1e6e072 18224 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
18225 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18226 add_symbol_to_list (sym, cu->list_in_scope);
18227 break;
c906108c
SS
18228 default:
18229 /* Not a tag we recognize. Hopefully we aren't processing
18230 trash data, but since we must specifically ignore things
18231 we don't recognize, there is nothing else we should do at
0963b4bd 18232 this point. */
e2e0b3e5 18233 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 18234 dwarf_tag_name (die->tag));
c906108c
SS
18235 break;
18236 }
df8a16a1 18237
e37fd15a
SW
18238 if (suppress_add)
18239 {
18240 sym->hash_next = objfile->template_symbols;
18241 objfile->template_symbols = sym;
18242 list_to_add = NULL;
18243 }
18244
18245 if (list_to_add != NULL)
18246 add_symbol_to_list (sym, list_to_add);
18247
df8a16a1
DJ
18248 /* For the benefit of old versions of GCC, check for anonymous
18249 namespaces based on the demangled name. */
4d4ec4e5 18250 if (!cu->processing_has_namespace_info
94af9270 18251 && cu->language == language_cplus)
a10964d1 18252 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
18253 }
18254 return (sym);
18255}
18256
34eaf542
TT
18257/* A wrapper for new_symbol_full that always allocates a new symbol. */
18258
18259static struct symbol *
18260new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18261{
18262 return new_symbol_full (die, type, cu, NULL);
18263}
18264
98bfdba5
PA
18265/* Given an attr with a DW_FORM_dataN value in host byte order,
18266 zero-extend it as appropriate for the symbol's type. The DWARF
18267 standard (v4) is not entirely clear about the meaning of using
18268 DW_FORM_dataN for a constant with a signed type, where the type is
18269 wider than the data. The conclusion of a discussion on the DWARF
18270 list was that this is unspecified. We choose to always zero-extend
18271 because that is the interpretation long in use by GCC. */
c906108c 18272
98bfdba5 18273static gdb_byte *
ff39bb5e 18274dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 18275 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 18276{
e7c27a73 18277 struct objfile *objfile = cu->objfile;
e17a4113
UW
18278 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18279 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
18280 LONGEST l = DW_UNSND (attr);
18281
18282 if (bits < sizeof (*value) * 8)
18283 {
18284 l &= ((LONGEST) 1 << bits) - 1;
18285 *value = l;
18286 }
18287 else if (bits == sizeof (*value) * 8)
18288 *value = l;
18289 else
18290 {
18291 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18292 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18293 return bytes;
18294 }
18295
18296 return NULL;
18297}
18298
18299/* Read a constant value from an attribute. Either set *VALUE, or if
18300 the value does not fit in *VALUE, set *BYTES - either already
18301 allocated on the objfile obstack, or newly allocated on OBSTACK,
18302 or, set *BATON, if we translated the constant to a location
18303 expression. */
18304
18305static void
ff39bb5e 18306dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
18307 const char *name, struct obstack *obstack,
18308 struct dwarf2_cu *cu,
d521ce57 18309 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
18310 struct dwarf2_locexpr_baton **baton)
18311{
18312 struct objfile *objfile = cu->objfile;
18313 struct comp_unit_head *cu_header = &cu->header;
c906108c 18314 struct dwarf_block *blk;
98bfdba5
PA
18315 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18316 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18317
18318 *value = 0;
18319 *bytes = NULL;
18320 *baton = NULL;
c906108c
SS
18321
18322 switch (attr->form)
18323 {
18324 case DW_FORM_addr:
3019eac3 18325 case DW_FORM_GNU_addr_index:
ac56253d 18326 {
ac56253d
TT
18327 gdb_byte *data;
18328
98bfdba5
PA
18329 if (TYPE_LENGTH (type) != cu_header->addr_size)
18330 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 18331 cu_header->addr_size,
98bfdba5 18332 TYPE_LENGTH (type));
ac56253d
TT
18333 /* Symbols of this form are reasonably rare, so we just
18334 piggyback on the existing location code rather than writing
18335 a new implementation of symbol_computed_ops. */
7919a973 18336 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
98bfdba5
PA
18337 (*baton)->per_cu = cu->per_cu;
18338 gdb_assert ((*baton)->per_cu);
ac56253d 18339
98bfdba5 18340 (*baton)->size = 2 + cu_header->addr_size;
7919a973 18341 data = obstack_alloc (obstack, (*baton)->size);
98bfdba5 18342 (*baton)->data = data;
ac56253d
TT
18343
18344 data[0] = DW_OP_addr;
18345 store_unsigned_integer (&data[1], cu_header->addr_size,
18346 byte_order, DW_ADDR (attr));
18347 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 18348 }
c906108c 18349 break;
4ac36638 18350 case DW_FORM_string:
93b5768b 18351 case DW_FORM_strp:
3019eac3 18352 case DW_FORM_GNU_str_index:
36586728 18353 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
18354 /* DW_STRING is already allocated on the objfile obstack, point
18355 directly to it. */
d521ce57 18356 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 18357 break;
c906108c
SS
18358 case DW_FORM_block1:
18359 case DW_FORM_block2:
18360 case DW_FORM_block4:
18361 case DW_FORM_block:
2dc7f7b3 18362 case DW_FORM_exprloc:
c906108c 18363 blk = DW_BLOCK (attr);
98bfdba5
PA
18364 if (TYPE_LENGTH (type) != blk->size)
18365 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18366 TYPE_LENGTH (type));
18367 *bytes = blk->data;
c906108c 18368 break;
2df3850c
JM
18369
18370 /* The DW_AT_const_value attributes are supposed to carry the
18371 symbol's value "represented as it would be on the target
18372 architecture." By the time we get here, it's already been
18373 converted to host endianness, so we just need to sign- or
18374 zero-extend it as appropriate. */
18375 case DW_FORM_data1:
3aef2284 18376 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 18377 break;
c906108c 18378 case DW_FORM_data2:
3aef2284 18379 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 18380 break;
c906108c 18381 case DW_FORM_data4:
3aef2284 18382 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 18383 break;
c906108c 18384 case DW_FORM_data8:
3aef2284 18385 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
18386 break;
18387
c906108c 18388 case DW_FORM_sdata:
98bfdba5 18389 *value = DW_SND (attr);
2df3850c
JM
18390 break;
18391
c906108c 18392 case DW_FORM_udata:
98bfdba5 18393 *value = DW_UNSND (attr);
c906108c 18394 break;
2df3850c 18395
c906108c 18396 default:
4d3c2250 18397 complaint (&symfile_complaints,
e2e0b3e5 18398 _("unsupported const value attribute form: '%s'"),
4d3c2250 18399 dwarf_form_name (attr->form));
98bfdba5 18400 *value = 0;
c906108c
SS
18401 break;
18402 }
18403}
18404
2df3850c 18405
98bfdba5
PA
18406/* Copy constant value from an attribute to a symbol. */
18407
2df3850c 18408static void
ff39bb5e 18409dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 18410 struct dwarf2_cu *cu)
2df3850c 18411{
98bfdba5
PA
18412 struct objfile *objfile = cu->objfile;
18413 struct comp_unit_head *cu_header = &cu->header;
12df843f 18414 LONGEST value;
d521ce57 18415 const gdb_byte *bytes;
98bfdba5 18416 struct dwarf2_locexpr_baton *baton;
2df3850c 18417
98bfdba5
PA
18418 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18419 SYMBOL_PRINT_NAME (sym),
18420 &objfile->objfile_obstack, cu,
18421 &value, &bytes, &baton);
2df3850c 18422
98bfdba5
PA
18423 if (baton != NULL)
18424 {
98bfdba5 18425 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 18426 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
18427 }
18428 else if (bytes != NULL)
18429 {
18430 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 18431 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
18432 }
18433 else
18434 {
18435 SYMBOL_VALUE (sym) = value;
f1e6e072 18436 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 18437 }
2df3850c
JM
18438}
18439
c906108c
SS
18440/* Return the type of the die in question using its DW_AT_type attribute. */
18441
18442static struct type *
e7c27a73 18443die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18444{
c906108c 18445 struct attribute *type_attr;
c906108c 18446
e142c38c 18447 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
18448 if (!type_attr)
18449 {
18450 /* A missing DW_AT_type represents a void type. */
46bf5051 18451 return objfile_type (cu->objfile)->builtin_void;
c906108c 18452 }
348e048f 18453
673bfd45 18454 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18455}
18456
b4ba55a1
JB
18457/* True iff CU's producer generates GNAT Ada auxiliary information
18458 that allows to find parallel types through that information instead
18459 of having to do expensive parallel lookups by type name. */
18460
18461static int
18462need_gnat_info (struct dwarf2_cu *cu)
18463{
18464 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18465 of GNAT produces this auxiliary information, without any indication
18466 that it is produced. Part of enhancing the FSF version of GNAT
18467 to produce that information will be to put in place an indicator
18468 that we can use in order to determine whether the descriptive type
18469 info is available or not. One suggestion that has been made is
18470 to use a new attribute, attached to the CU die. For now, assume
18471 that the descriptive type info is not available. */
18472 return 0;
18473}
18474
b4ba55a1
JB
18475/* Return the auxiliary type of the die in question using its
18476 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18477 attribute is not present. */
18478
18479static struct type *
18480die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18481{
b4ba55a1 18482 struct attribute *type_attr;
b4ba55a1
JB
18483
18484 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18485 if (!type_attr)
18486 return NULL;
18487
673bfd45 18488 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
18489}
18490
18491/* If DIE has a descriptive_type attribute, then set the TYPE's
18492 descriptive type accordingly. */
18493
18494static void
18495set_descriptive_type (struct type *type, struct die_info *die,
18496 struct dwarf2_cu *cu)
18497{
18498 struct type *descriptive_type = die_descriptive_type (die, cu);
18499
18500 if (descriptive_type)
18501 {
18502 ALLOCATE_GNAT_AUX_TYPE (type);
18503 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18504 }
18505}
18506
c906108c
SS
18507/* Return the containing type of the die in question using its
18508 DW_AT_containing_type attribute. */
18509
18510static struct type *
e7c27a73 18511die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18512{
c906108c 18513 struct attribute *type_attr;
c906108c 18514
e142c38c 18515 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
18516 if (!type_attr)
18517 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 18518 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 18519
673bfd45 18520 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18521}
18522
ac9ec31b
DE
18523/* Return an error marker type to use for the ill formed type in DIE/CU. */
18524
18525static struct type *
18526build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18527{
18528 struct objfile *objfile = dwarf2_per_objfile->objfile;
18529 char *message, *saved;
18530
18531 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 18532 objfile_name (objfile),
ac9ec31b
DE
18533 cu->header.offset.sect_off,
18534 die->offset.sect_off);
18535 saved = obstack_copy0 (&objfile->objfile_obstack,
18536 message, strlen (message));
18537 xfree (message);
18538
18539 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18540}
18541
673bfd45 18542/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
18543 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18544 DW_AT_containing_type.
673bfd45
DE
18545 If there is no type substitute an error marker. */
18546
c906108c 18547static struct type *
ff39bb5e 18548lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 18549 struct dwarf2_cu *cu)
c906108c 18550{
bb5ed363 18551 struct objfile *objfile = cu->objfile;
f792889a
DJ
18552 struct type *this_type;
18553
ac9ec31b
DE
18554 gdb_assert (attr->name == DW_AT_type
18555 || attr->name == DW_AT_GNAT_descriptive_type
18556 || attr->name == DW_AT_containing_type);
18557
673bfd45
DE
18558 /* First see if we have it cached. */
18559
36586728
TT
18560 if (attr->form == DW_FORM_GNU_ref_alt)
18561 {
18562 struct dwarf2_per_cu_data *per_cu;
18563 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18564
18565 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18566 this_type = get_die_type_at_offset (offset, per_cu);
18567 }
7771576e 18568 else if (attr_form_is_ref (attr))
673bfd45 18569 {
b64f50a1 18570 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
18571
18572 this_type = get_die_type_at_offset (offset, cu->per_cu);
18573 }
55f1336d 18574 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 18575 {
ac9ec31b 18576 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 18577
ac9ec31b 18578 return get_signatured_type (die, signature, cu);
673bfd45
DE
18579 }
18580 else
18581 {
ac9ec31b
DE
18582 complaint (&symfile_complaints,
18583 _("Dwarf Error: Bad type attribute %s in DIE"
18584 " at 0x%x [in module %s]"),
18585 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 18586 objfile_name (objfile));
ac9ec31b 18587 return build_error_marker_type (cu, die);
673bfd45
DE
18588 }
18589
18590 /* If not cached we need to read it in. */
18591
18592 if (this_type == NULL)
18593 {
ac9ec31b 18594 struct die_info *type_die = NULL;
673bfd45
DE
18595 struct dwarf2_cu *type_cu = cu;
18596
7771576e 18597 if (attr_form_is_ref (attr))
ac9ec31b
DE
18598 type_die = follow_die_ref (die, attr, &type_cu);
18599 if (type_die == NULL)
18600 return build_error_marker_type (cu, die);
18601 /* If we find the type now, it's probably because the type came
3019eac3
DE
18602 from an inter-CU reference and the type's CU got expanded before
18603 ours. */
ac9ec31b 18604 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
18605 }
18606
18607 /* If we still don't have a type use an error marker. */
18608
18609 if (this_type == NULL)
ac9ec31b 18610 return build_error_marker_type (cu, die);
673bfd45 18611
f792889a 18612 return this_type;
c906108c
SS
18613}
18614
673bfd45
DE
18615/* Return the type in DIE, CU.
18616 Returns NULL for invalid types.
18617
02142a6c 18618 This first does a lookup in die_type_hash,
673bfd45
DE
18619 and only reads the die in if necessary.
18620
18621 NOTE: This can be called when reading in partial or full symbols. */
18622
f792889a 18623static struct type *
e7c27a73 18624read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18625{
f792889a
DJ
18626 struct type *this_type;
18627
18628 this_type = get_die_type (die, cu);
18629 if (this_type)
18630 return this_type;
18631
673bfd45
DE
18632 return read_type_die_1 (die, cu);
18633}
18634
18635/* Read the type in DIE, CU.
18636 Returns NULL for invalid types. */
18637
18638static struct type *
18639read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18640{
18641 struct type *this_type = NULL;
18642
c906108c
SS
18643 switch (die->tag)
18644 {
18645 case DW_TAG_class_type:
680b30c7 18646 case DW_TAG_interface_type:
c906108c
SS
18647 case DW_TAG_structure_type:
18648 case DW_TAG_union_type:
f792889a 18649 this_type = read_structure_type (die, cu);
c906108c
SS
18650 break;
18651 case DW_TAG_enumeration_type:
f792889a 18652 this_type = read_enumeration_type (die, cu);
c906108c
SS
18653 break;
18654 case DW_TAG_subprogram:
18655 case DW_TAG_subroutine_type:
edb3359d 18656 case DW_TAG_inlined_subroutine:
f792889a 18657 this_type = read_subroutine_type (die, cu);
c906108c
SS
18658 break;
18659 case DW_TAG_array_type:
f792889a 18660 this_type = read_array_type (die, cu);
c906108c 18661 break;
72019c9c 18662 case DW_TAG_set_type:
f792889a 18663 this_type = read_set_type (die, cu);
72019c9c 18664 break;
c906108c 18665 case DW_TAG_pointer_type:
f792889a 18666 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
18667 break;
18668 case DW_TAG_ptr_to_member_type:
f792889a 18669 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
18670 break;
18671 case DW_TAG_reference_type:
f792889a 18672 this_type = read_tag_reference_type (die, cu);
c906108c
SS
18673 break;
18674 case DW_TAG_const_type:
f792889a 18675 this_type = read_tag_const_type (die, cu);
c906108c
SS
18676 break;
18677 case DW_TAG_volatile_type:
f792889a 18678 this_type = read_tag_volatile_type (die, cu);
c906108c 18679 break;
06d66ee9
TT
18680 case DW_TAG_restrict_type:
18681 this_type = read_tag_restrict_type (die, cu);
18682 break;
c906108c 18683 case DW_TAG_string_type:
f792889a 18684 this_type = read_tag_string_type (die, cu);
c906108c
SS
18685 break;
18686 case DW_TAG_typedef:
f792889a 18687 this_type = read_typedef (die, cu);
c906108c 18688 break;
a02abb62 18689 case DW_TAG_subrange_type:
f792889a 18690 this_type = read_subrange_type (die, cu);
a02abb62 18691 break;
c906108c 18692 case DW_TAG_base_type:
f792889a 18693 this_type = read_base_type (die, cu);
c906108c 18694 break;
81a17f79 18695 case DW_TAG_unspecified_type:
f792889a 18696 this_type = read_unspecified_type (die, cu);
81a17f79 18697 break;
0114d602
DJ
18698 case DW_TAG_namespace:
18699 this_type = read_namespace_type (die, cu);
18700 break;
f55ee35c
JK
18701 case DW_TAG_module:
18702 this_type = read_module_type (die, cu);
18703 break;
c906108c 18704 default:
3e43a32a
MS
18705 complaint (&symfile_complaints,
18706 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 18707 dwarf_tag_name (die->tag));
c906108c
SS
18708 break;
18709 }
63d06c5c 18710
f792889a 18711 return this_type;
63d06c5c
DC
18712}
18713
abc72ce4
DE
18714/* See if we can figure out if the class lives in a namespace. We do
18715 this by looking for a member function; its demangled name will
18716 contain namespace info, if there is any.
18717 Return the computed name or NULL.
18718 Space for the result is allocated on the objfile's obstack.
18719 This is the full-die version of guess_partial_die_structure_name.
18720 In this case we know DIE has no useful parent. */
18721
18722static char *
18723guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18724{
18725 struct die_info *spec_die;
18726 struct dwarf2_cu *spec_cu;
18727 struct die_info *child;
18728
18729 spec_cu = cu;
18730 spec_die = die_specification (die, &spec_cu);
18731 if (spec_die != NULL)
18732 {
18733 die = spec_die;
18734 cu = spec_cu;
18735 }
18736
18737 for (child = die->child;
18738 child != NULL;
18739 child = child->sibling)
18740 {
18741 if (child->tag == DW_TAG_subprogram)
18742 {
18743 struct attribute *attr;
18744
18745 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18746 if (attr == NULL)
18747 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18748 if (attr != NULL)
18749 {
18750 char *actual_name
18751 = language_class_name_from_physname (cu->language_defn,
18752 DW_STRING (attr));
18753 char *name = NULL;
18754
18755 if (actual_name != NULL)
18756 {
15d034d0 18757 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
18758
18759 if (die_name != NULL
18760 && strcmp (die_name, actual_name) != 0)
18761 {
18762 /* Strip off the class name from the full name.
18763 We want the prefix. */
18764 int die_name_len = strlen (die_name);
18765 int actual_name_len = strlen (actual_name);
18766
18767 /* Test for '::' as a sanity check. */
18768 if (actual_name_len > die_name_len + 2
3e43a32a
MS
18769 && actual_name[actual_name_len
18770 - die_name_len - 1] == ':')
abc72ce4 18771 name =
34a68019 18772 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb
TT
18773 actual_name,
18774 actual_name_len - die_name_len - 2);
abc72ce4
DE
18775 }
18776 }
18777 xfree (actual_name);
18778 return name;
18779 }
18780 }
18781 }
18782
18783 return NULL;
18784}
18785
96408a79
SA
18786/* GCC might emit a nameless typedef that has a linkage name. Determine the
18787 prefix part in such case. See
18788 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18789
18790static char *
18791anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18792{
18793 struct attribute *attr;
18794 char *base;
18795
18796 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18797 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18798 return NULL;
18799
18800 attr = dwarf2_attr (die, DW_AT_name, cu);
18801 if (attr != NULL && DW_STRING (attr) != NULL)
18802 return NULL;
18803
18804 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18805 if (attr == NULL)
18806 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18807 if (attr == NULL || DW_STRING (attr) == NULL)
18808 return NULL;
18809
18810 /* dwarf2_name had to be already called. */
18811 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18812
18813 /* Strip the base name, keep any leading namespaces/classes. */
18814 base = strrchr (DW_STRING (attr), ':');
18815 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18816 return "";
18817
34a68019 18818 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb 18819 DW_STRING (attr), &base[-1] - DW_STRING (attr));
96408a79
SA
18820}
18821
fdde2d81 18822/* Return the name of the namespace/class that DIE is defined within,
0114d602 18823 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 18824
0114d602
DJ
18825 For example, if we're within the method foo() in the following
18826 code:
18827
18828 namespace N {
18829 class C {
18830 void foo () {
18831 }
18832 };
18833 }
18834
18835 then determine_prefix on foo's die will return "N::C". */
fdde2d81 18836
0d5cff50 18837static const char *
e142c38c 18838determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 18839{
0114d602
DJ
18840 struct die_info *parent, *spec_die;
18841 struct dwarf2_cu *spec_cu;
18842 struct type *parent_type;
96408a79 18843 char *retval;
63d06c5c 18844
f55ee35c
JK
18845 if (cu->language != language_cplus && cu->language != language_java
18846 && cu->language != language_fortran)
0114d602
DJ
18847 return "";
18848
96408a79
SA
18849 retval = anonymous_struct_prefix (die, cu);
18850 if (retval)
18851 return retval;
18852
0114d602
DJ
18853 /* We have to be careful in the presence of DW_AT_specification.
18854 For example, with GCC 3.4, given the code
18855
18856 namespace N {
18857 void foo() {
18858 // Definition of N::foo.
18859 }
18860 }
18861
18862 then we'll have a tree of DIEs like this:
18863
18864 1: DW_TAG_compile_unit
18865 2: DW_TAG_namespace // N
18866 3: DW_TAG_subprogram // declaration of N::foo
18867 4: DW_TAG_subprogram // definition of N::foo
18868 DW_AT_specification // refers to die #3
18869
18870 Thus, when processing die #4, we have to pretend that we're in
18871 the context of its DW_AT_specification, namely the contex of die
18872 #3. */
18873 spec_cu = cu;
18874 spec_die = die_specification (die, &spec_cu);
18875 if (spec_die == NULL)
18876 parent = die->parent;
18877 else
63d06c5c 18878 {
0114d602
DJ
18879 parent = spec_die->parent;
18880 cu = spec_cu;
63d06c5c 18881 }
0114d602
DJ
18882
18883 if (parent == NULL)
18884 return "";
98bfdba5
PA
18885 else if (parent->building_fullname)
18886 {
18887 const char *name;
18888 const char *parent_name;
18889
18890 /* It has been seen on RealView 2.2 built binaries,
18891 DW_TAG_template_type_param types actually _defined_ as
18892 children of the parent class:
18893
18894 enum E {};
18895 template class <class Enum> Class{};
18896 Class<enum E> class_e;
18897
18898 1: DW_TAG_class_type (Class)
18899 2: DW_TAG_enumeration_type (E)
18900 3: DW_TAG_enumerator (enum1:0)
18901 3: DW_TAG_enumerator (enum2:1)
18902 ...
18903 2: DW_TAG_template_type_param
18904 DW_AT_type DW_FORM_ref_udata (E)
18905
18906 Besides being broken debug info, it can put GDB into an
18907 infinite loop. Consider:
18908
18909 When we're building the full name for Class<E>, we'll start
18910 at Class, and go look over its template type parameters,
18911 finding E. We'll then try to build the full name of E, and
18912 reach here. We're now trying to build the full name of E,
18913 and look over the parent DIE for containing scope. In the
18914 broken case, if we followed the parent DIE of E, we'd again
18915 find Class, and once again go look at its template type
18916 arguments, etc., etc. Simply don't consider such parent die
18917 as source-level parent of this die (it can't be, the language
18918 doesn't allow it), and break the loop here. */
18919 name = dwarf2_name (die, cu);
18920 parent_name = dwarf2_name (parent, cu);
18921 complaint (&symfile_complaints,
18922 _("template param type '%s' defined within parent '%s'"),
18923 name ? name : "<unknown>",
18924 parent_name ? parent_name : "<unknown>");
18925 return "";
18926 }
63d06c5c 18927 else
0114d602
DJ
18928 switch (parent->tag)
18929 {
63d06c5c 18930 case DW_TAG_namespace:
0114d602 18931 parent_type = read_type_die (parent, cu);
acebe513
UW
18932 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18933 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18934 Work around this problem here. */
18935 if (cu->language == language_cplus
18936 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18937 return "";
0114d602
DJ
18938 /* We give a name to even anonymous namespaces. */
18939 return TYPE_TAG_NAME (parent_type);
63d06c5c 18940 case DW_TAG_class_type:
680b30c7 18941 case DW_TAG_interface_type:
63d06c5c 18942 case DW_TAG_structure_type:
0114d602 18943 case DW_TAG_union_type:
f55ee35c 18944 case DW_TAG_module:
0114d602
DJ
18945 parent_type = read_type_die (parent, cu);
18946 if (TYPE_TAG_NAME (parent_type) != NULL)
18947 return TYPE_TAG_NAME (parent_type);
18948 else
18949 /* An anonymous structure is only allowed non-static data
18950 members; no typedefs, no member functions, et cetera.
18951 So it does not need a prefix. */
18952 return "";
abc72ce4 18953 case DW_TAG_compile_unit:
95554aad 18954 case DW_TAG_partial_unit:
abc72ce4
DE
18955 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18956 if (cu->language == language_cplus
8b70b953 18957 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
18958 && die->child != NULL
18959 && (die->tag == DW_TAG_class_type
18960 || die->tag == DW_TAG_structure_type
18961 || die->tag == DW_TAG_union_type))
18962 {
18963 char *name = guess_full_die_structure_name (die, cu);
18964 if (name != NULL)
18965 return name;
18966 }
18967 return "";
3d567982
TT
18968 case DW_TAG_enumeration_type:
18969 parent_type = read_type_die (parent, cu);
18970 if (TYPE_DECLARED_CLASS (parent_type))
18971 {
18972 if (TYPE_TAG_NAME (parent_type) != NULL)
18973 return TYPE_TAG_NAME (parent_type);
18974 return "";
18975 }
18976 /* Fall through. */
63d06c5c 18977 default:
8176b9b8 18978 return determine_prefix (parent, cu);
63d06c5c 18979 }
63d06c5c
DC
18980}
18981
3e43a32a
MS
18982/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18983 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18984 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18985 an obconcat, otherwise allocate storage for the result. The CU argument is
18986 used to determine the language and hence, the appropriate separator. */
987504bb 18987
f55ee35c 18988#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
18989
18990static char *
f55ee35c
JK
18991typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18992 int physname, struct dwarf2_cu *cu)
63d06c5c 18993{
f55ee35c 18994 const char *lead = "";
5c315b68 18995 const char *sep;
63d06c5c 18996
3e43a32a
MS
18997 if (suffix == NULL || suffix[0] == '\0'
18998 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
18999 sep = "";
19000 else if (cu->language == language_java)
19001 sep = ".";
f55ee35c
JK
19002 else if (cu->language == language_fortran && physname)
19003 {
19004 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
19005 DW_AT_MIPS_linkage_name is preferred and used instead. */
19006
19007 lead = "__";
19008 sep = "_MOD_";
19009 }
987504bb
JJ
19010 else
19011 sep = "::";
63d06c5c 19012
6dd47d34
DE
19013 if (prefix == NULL)
19014 prefix = "";
19015 if (suffix == NULL)
19016 suffix = "";
19017
987504bb
JJ
19018 if (obs == NULL)
19019 {
3e43a32a
MS
19020 char *retval
19021 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 19022
f55ee35c
JK
19023 strcpy (retval, lead);
19024 strcat (retval, prefix);
6dd47d34
DE
19025 strcat (retval, sep);
19026 strcat (retval, suffix);
63d06c5c
DC
19027 return retval;
19028 }
987504bb
JJ
19029 else
19030 {
19031 /* We have an obstack. */
f55ee35c 19032 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 19033 }
63d06c5c
DC
19034}
19035
c906108c
SS
19036/* Return sibling of die, NULL if no sibling. */
19037
f9aca02d 19038static struct die_info *
fba45db2 19039sibling_die (struct die_info *die)
c906108c 19040{
639d11d3 19041 return die->sibling;
c906108c
SS
19042}
19043
71c25dea
TT
19044/* Get name of a die, return NULL if not found. */
19045
15d034d0
TT
19046static const char *
19047dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
19048 struct obstack *obstack)
19049{
19050 if (name && cu->language == language_cplus)
19051 {
19052 char *canon_name = cp_canonicalize_string (name);
19053
19054 if (canon_name != NULL)
19055 {
19056 if (strcmp (canon_name, name) != 0)
10f0c4bb 19057 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
71c25dea
TT
19058 xfree (canon_name);
19059 }
19060 }
19061
19062 return name;
c906108c
SS
19063}
19064
9219021c
DC
19065/* Get name of a die, return NULL if not found. */
19066
15d034d0 19067static const char *
e142c38c 19068dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
19069{
19070 struct attribute *attr;
19071
e142c38c 19072 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31
TT
19073 if ((!attr || !DW_STRING (attr))
19074 && die->tag != DW_TAG_class_type
19075 && die->tag != DW_TAG_interface_type
19076 && die->tag != DW_TAG_structure_type
19077 && die->tag != DW_TAG_union_type)
71c25dea
TT
19078 return NULL;
19079
19080 switch (die->tag)
19081 {
19082 case DW_TAG_compile_unit:
95554aad 19083 case DW_TAG_partial_unit:
71c25dea
TT
19084 /* Compilation units have a DW_AT_name that is a filename, not
19085 a source language identifier. */
19086 case DW_TAG_enumeration_type:
19087 case DW_TAG_enumerator:
19088 /* These tags always have simple identifiers already; no need
19089 to canonicalize them. */
19090 return DW_STRING (attr);
907af001 19091
418835cc
KS
19092 case DW_TAG_subprogram:
19093 /* Java constructors will all be named "<init>", so return
19094 the class name when we see this special case. */
19095 if (cu->language == language_java
19096 && DW_STRING (attr) != NULL
19097 && strcmp (DW_STRING (attr), "<init>") == 0)
19098 {
19099 struct dwarf2_cu *spec_cu = cu;
19100 struct die_info *spec_die;
19101
19102 /* GCJ will output '<init>' for Java constructor names.
19103 For this special case, return the name of the parent class. */
19104
cdc07690 19105 /* GCJ may output subprogram DIEs with AT_specification set.
418835cc
KS
19106 If so, use the name of the specified DIE. */
19107 spec_die = die_specification (die, &spec_cu);
19108 if (spec_die != NULL)
19109 return dwarf2_name (spec_die, spec_cu);
19110
19111 do
19112 {
19113 die = die->parent;
19114 if (die->tag == DW_TAG_class_type)
19115 return dwarf2_name (die, cu);
19116 }
95554aad
TT
19117 while (die->tag != DW_TAG_compile_unit
19118 && die->tag != DW_TAG_partial_unit);
418835cc 19119 }
907af001
UW
19120 break;
19121
19122 case DW_TAG_class_type:
19123 case DW_TAG_interface_type:
19124 case DW_TAG_structure_type:
19125 case DW_TAG_union_type:
19126 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19127 structures or unions. These were of the form "._%d" in GCC 4.1,
19128 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19129 and GCC 4.4. We work around this problem by ignoring these. */
53832f31
TT
19130 if (attr && DW_STRING (attr)
19131 && (strncmp (DW_STRING (attr), "._", 2) == 0
19132 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
907af001 19133 return NULL;
53832f31
TT
19134
19135 /* GCC might emit a nameless typedef that has a linkage name. See
19136 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19137 if (!attr || DW_STRING (attr) == NULL)
19138 {
df5c6c50 19139 char *demangled = NULL;
53832f31
TT
19140
19141 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19142 if (attr == NULL)
19143 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19144
19145 if (attr == NULL || DW_STRING (attr) == NULL)
19146 return NULL;
19147
df5c6c50
JK
19148 /* Avoid demangling DW_STRING (attr) the second time on a second
19149 call for the same DIE. */
19150 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 19151 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
19152
19153 if (demangled)
19154 {
96408a79
SA
19155 char *base;
19156
53832f31 19157 /* FIXME: we already did this for the partial symbol... */
34a68019
TT
19158 DW_STRING (attr)
19159 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19160 demangled, strlen (demangled));
53832f31
TT
19161 DW_STRING_IS_CANONICAL (attr) = 1;
19162 xfree (demangled);
96408a79
SA
19163
19164 /* Strip any leading namespaces/classes, keep only the base name.
19165 DW_AT_name for named DIEs does not contain the prefixes. */
19166 base = strrchr (DW_STRING (attr), ':');
19167 if (base && base > DW_STRING (attr) && base[-1] == ':')
19168 return &base[1];
19169 else
19170 return DW_STRING (attr);
53832f31
TT
19171 }
19172 }
907af001
UW
19173 break;
19174
71c25dea 19175 default:
907af001
UW
19176 break;
19177 }
19178
19179 if (!DW_STRING_IS_CANONICAL (attr))
19180 {
19181 DW_STRING (attr)
19182 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 19183 &cu->objfile->per_bfd->storage_obstack);
907af001 19184 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 19185 }
907af001 19186 return DW_STRING (attr);
9219021c
DC
19187}
19188
19189/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
19190 is none. *EXT_CU is the CU containing DIE on input, and the CU
19191 containing the return value on output. */
9219021c
DC
19192
19193static struct die_info *
f2f0e013 19194dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
19195{
19196 struct attribute *attr;
9219021c 19197
f2f0e013 19198 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
19199 if (attr == NULL)
19200 return NULL;
19201
f2f0e013 19202 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
19203}
19204
c906108c
SS
19205/* Convert a DIE tag into its string name. */
19206
f39c6ffd 19207static const char *
aa1ee363 19208dwarf_tag_name (unsigned tag)
c906108c 19209{
f39c6ffd
TT
19210 const char *name = get_DW_TAG_name (tag);
19211
19212 if (name == NULL)
19213 return "DW_TAG_<unknown>";
19214
19215 return name;
c906108c
SS
19216}
19217
19218/* Convert a DWARF attribute code into its string name. */
19219
f39c6ffd 19220static const char *
aa1ee363 19221dwarf_attr_name (unsigned attr)
c906108c 19222{
f39c6ffd
TT
19223 const char *name;
19224
c764a876 19225#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
19226 if (attr == DW_AT_MIPS_fde)
19227 return "DW_AT_MIPS_fde";
19228#else
19229 if (attr == DW_AT_HP_block_index)
19230 return "DW_AT_HP_block_index";
c764a876 19231#endif
f39c6ffd
TT
19232
19233 name = get_DW_AT_name (attr);
19234
19235 if (name == NULL)
19236 return "DW_AT_<unknown>";
19237
19238 return name;
c906108c
SS
19239}
19240
19241/* Convert a DWARF value form code into its string name. */
19242
f39c6ffd 19243static const char *
aa1ee363 19244dwarf_form_name (unsigned form)
c906108c 19245{
f39c6ffd
TT
19246 const char *name = get_DW_FORM_name (form);
19247
19248 if (name == NULL)
19249 return "DW_FORM_<unknown>";
19250
19251 return name;
c906108c
SS
19252}
19253
19254static char *
fba45db2 19255dwarf_bool_name (unsigned mybool)
c906108c
SS
19256{
19257 if (mybool)
19258 return "TRUE";
19259 else
19260 return "FALSE";
19261}
19262
19263/* Convert a DWARF type code into its string name. */
19264
f39c6ffd 19265static const char *
aa1ee363 19266dwarf_type_encoding_name (unsigned enc)
c906108c 19267{
f39c6ffd 19268 const char *name = get_DW_ATE_name (enc);
c906108c 19269
f39c6ffd
TT
19270 if (name == NULL)
19271 return "DW_ATE_<unknown>";
c906108c 19272
f39c6ffd 19273 return name;
c906108c 19274}
c906108c 19275
f9aca02d 19276static void
d97bc12b 19277dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
19278{
19279 unsigned int i;
19280
d97bc12b
DE
19281 print_spaces (indent, f);
19282 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 19283 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
19284
19285 if (die->parent != NULL)
19286 {
19287 print_spaces (indent, f);
19288 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 19289 die->parent->offset.sect_off);
d97bc12b
DE
19290 }
19291
19292 print_spaces (indent, f);
19293 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 19294 dwarf_bool_name (die->child != NULL));
c906108c 19295
d97bc12b
DE
19296 print_spaces (indent, f);
19297 fprintf_unfiltered (f, " attributes:\n");
19298
c906108c
SS
19299 for (i = 0; i < die->num_attrs; ++i)
19300 {
d97bc12b
DE
19301 print_spaces (indent, f);
19302 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
19303 dwarf_attr_name (die->attrs[i].name),
19304 dwarf_form_name (die->attrs[i].form));
d97bc12b 19305
c906108c
SS
19306 switch (die->attrs[i].form)
19307 {
c906108c 19308 case DW_FORM_addr:
3019eac3 19309 case DW_FORM_GNU_addr_index:
d97bc12b 19310 fprintf_unfiltered (f, "address: ");
5af949e3 19311 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
19312 break;
19313 case DW_FORM_block2:
19314 case DW_FORM_block4:
19315 case DW_FORM_block:
19316 case DW_FORM_block1:
56eb65bd
SP
19317 fprintf_unfiltered (f, "block: size %s",
19318 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 19319 break;
2dc7f7b3 19320 case DW_FORM_exprloc:
56eb65bd
SP
19321 fprintf_unfiltered (f, "expression: size %s",
19322 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 19323 break;
4568ecf9
DE
19324 case DW_FORM_ref_addr:
19325 fprintf_unfiltered (f, "ref address: ");
19326 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19327 break;
36586728
TT
19328 case DW_FORM_GNU_ref_alt:
19329 fprintf_unfiltered (f, "alt ref address: ");
19330 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19331 break;
10b3939b
DJ
19332 case DW_FORM_ref1:
19333 case DW_FORM_ref2:
19334 case DW_FORM_ref4:
4568ecf9
DE
19335 case DW_FORM_ref8:
19336 case DW_FORM_ref_udata:
d97bc12b 19337 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 19338 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 19339 break;
c906108c
SS
19340 case DW_FORM_data1:
19341 case DW_FORM_data2:
19342 case DW_FORM_data4:
ce5d95e1 19343 case DW_FORM_data8:
c906108c
SS
19344 case DW_FORM_udata:
19345 case DW_FORM_sdata:
43bbcdc2
PH
19346 fprintf_unfiltered (f, "constant: %s",
19347 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 19348 break;
2dc7f7b3
TT
19349 case DW_FORM_sec_offset:
19350 fprintf_unfiltered (f, "section offset: %s",
19351 pulongest (DW_UNSND (&die->attrs[i])));
19352 break;
55f1336d 19353 case DW_FORM_ref_sig8:
ac9ec31b
DE
19354 fprintf_unfiltered (f, "signature: %s",
19355 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 19356 break;
c906108c 19357 case DW_FORM_string:
4bdf3d34 19358 case DW_FORM_strp:
3019eac3 19359 case DW_FORM_GNU_str_index:
36586728 19360 case DW_FORM_GNU_strp_alt:
8285870a 19361 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 19362 DW_STRING (&die->attrs[i])
8285870a
JK
19363 ? DW_STRING (&die->attrs[i]) : "",
19364 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
19365 break;
19366 case DW_FORM_flag:
19367 if (DW_UNSND (&die->attrs[i]))
d97bc12b 19368 fprintf_unfiltered (f, "flag: TRUE");
c906108c 19369 else
d97bc12b 19370 fprintf_unfiltered (f, "flag: FALSE");
c906108c 19371 break;
2dc7f7b3
TT
19372 case DW_FORM_flag_present:
19373 fprintf_unfiltered (f, "flag: TRUE");
19374 break;
a8329558 19375 case DW_FORM_indirect:
0963b4bd
MS
19376 /* The reader will have reduced the indirect form to
19377 the "base form" so this form should not occur. */
3e43a32a
MS
19378 fprintf_unfiltered (f,
19379 "unexpected attribute form: DW_FORM_indirect");
a8329558 19380 break;
c906108c 19381 default:
d97bc12b 19382 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 19383 die->attrs[i].form);
d97bc12b 19384 break;
c906108c 19385 }
d97bc12b 19386 fprintf_unfiltered (f, "\n");
c906108c
SS
19387 }
19388}
19389
f9aca02d 19390static void
d97bc12b 19391dump_die_for_error (struct die_info *die)
c906108c 19392{
d97bc12b
DE
19393 dump_die_shallow (gdb_stderr, 0, die);
19394}
19395
19396static void
19397dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19398{
19399 int indent = level * 4;
19400
19401 gdb_assert (die != NULL);
19402
19403 if (level >= max_level)
19404 return;
19405
19406 dump_die_shallow (f, indent, die);
19407
19408 if (die->child != NULL)
c906108c 19409 {
d97bc12b
DE
19410 print_spaces (indent, f);
19411 fprintf_unfiltered (f, " Children:");
19412 if (level + 1 < max_level)
19413 {
19414 fprintf_unfiltered (f, "\n");
19415 dump_die_1 (f, level + 1, max_level, die->child);
19416 }
19417 else
19418 {
3e43a32a
MS
19419 fprintf_unfiltered (f,
19420 " [not printed, max nesting level reached]\n");
d97bc12b
DE
19421 }
19422 }
19423
19424 if (die->sibling != NULL && level > 0)
19425 {
19426 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
19427 }
19428}
19429
d97bc12b
DE
19430/* This is called from the pdie macro in gdbinit.in.
19431 It's not static so gcc will keep a copy callable from gdb. */
19432
19433void
19434dump_die (struct die_info *die, int max_level)
19435{
19436 dump_die_1 (gdb_stdlog, 0, max_level, die);
19437}
19438
f9aca02d 19439static void
51545339 19440store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19441{
51545339 19442 void **slot;
c906108c 19443
b64f50a1
JK
19444 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19445 INSERT);
51545339
DJ
19446
19447 *slot = die;
c906108c
SS
19448}
19449
b64f50a1
JK
19450/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19451 required kind. */
19452
19453static sect_offset
ff39bb5e 19454dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 19455{
4568ecf9 19456 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 19457
7771576e 19458 if (attr_form_is_ref (attr))
b64f50a1 19459 return retval;
93311388 19460
b64f50a1 19461 retval.sect_off = 0;
93311388
DE
19462 complaint (&symfile_complaints,
19463 _("unsupported die ref attribute form: '%s'"),
19464 dwarf_form_name (attr->form));
b64f50a1 19465 return retval;
c906108c
SS
19466}
19467
43bbcdc2
PH
19468/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19469 * the value held by the attribute is not constant. */
a02abb62 19470
43bbcdc2 19471static LONGEST
ff39bb5e 19472dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
19473{
19474 if (attr->form == DW_FORM_sdata)
19475 return DW_SND (attr);
19476 else if (attr->form == DW_FORM_udata
19477 || attr->form == DW_FORM_data1
19478 || attr->form == DW_FORM_data2
19479 || attr->form == DW_FORM_data4
19480 || attr->form == DW_FORM_data8)
19481 return DW_UNSND (attr);
19482 else
19483 {
3e43a32a
MS
19484 complaint (&symfile_complaints,
19485 _("Attribute value is not a constant (%s)"),
a02abb62
JB
19486 dwarf_form_name (attr->form));
19487 return default_value;
19488 }
19489}
19490
348e048f
DE
19491/* Follow reference or signature attribute ATTR of SRC_DIE.
19492 On entry *REF_CU is the CU of SRC_DIE.
19493 On exit *REF_CU is the CU of the result. */
19494
19495static struct die_info *
ff39bb5e 19496follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
19497 struct dwarf2_cu **ref_cu)
19498{
19499 struct die_info *die;
19500
7771576e 19501 if (attr_form_is_ref (attr))
348e048f 19502 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 19503 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
19504 die = follow_die_sig (src_die, attr, ref_cu);
19505 else
19506 {
19507 dump_die_for_error (src_die);
19508 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 19509 objfile_name ((*ref_cu)->objfile));
348e048f
DE
19510 }
19511
19512 return die;
03dd20cc
DJ
19513}
19514
5c631832 19515/* Follow reference OFFSET.
673bfd45
DE
19516 On entry *REF_CU is the CU of the source die referencing OFFSET.
19517 On exit *REF_CU is the CU of the result.
19518 Returns NULL if OFFSET is invalid. */
f504f079 19519
f9aca02d 19520static struct die_info *
36586728
TT
19521follow_die_offset (sect_offset offset, int offset_in_dwz,
19522 struct dwarf2_cu **ref_cu)
c906108c 19523{
10b3939b 19524 struct die_info temp_die;
f2f0e013 19525 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 19526
348e048f
DE
19527 gdb_assert (cu->per_cu != NULL);
19528
98bfdba5
PA
19529 target_cu = cu;
19530
3019eac3 19531 if (cu->per_cu->is_debug_types)
348e048f
DE
19532 {
19533 /* .debug_types CUs cannot reference anything outside their CU.
19534 If they need to, they have to reference a signatured type via
55f1336d 19535 DW_FORM_ref_sig8. */
348e048f 19536 if (! offset_in_cu_p (&cu->header, offset))
5c631832 19537 return NULL;
348e048f 19538 }
36586728
TT
19539 else if (offset_in_dwz != cu->per_cu->is_dwz
19540 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
19541 {
19542 struct dwarf2_per_cu_data *per_cu;
9a619af0 19543
36586728
TT
19544 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19545 cu->objfile);
03dd20cc
DJ
19546
19547 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
19548 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19549 load_full_comp_unit (per_cu, cu->language);
03dd20cc 19550
10b3939b
DJ
19551 target_cu = per_cu->cu;
19552 }
98bfdba5
PA
19553 else if (cu->dies == NULL)
19554 {
19555 /* We're loading full DIEs during partial symbol reading. */
19556 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 19557 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 19558 }
c906108c 19559
f2f0e013 19560 *ref_cu = target_cu;
51545339 19561 temp_die.offset = offset;
b64f50a1 19562 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
5c631832 19563}
10b3939b 19564
5c631832
JK
19565/* Follow reference attribute ATTR of SRC_DIE.
19566 On entry *REF_CU is the CU of SRC_DIE.
19567 On exit *REF_CU is the CU of the result. */
19568
19569static struct die_info *
ff39bb5e 19570follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
19571 struct dwarf2_cu **ref_cu)
19572{
b64f50a1 19573 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
19574 struct dwarf2_cu *cu = *ref_cu;
19575 struct die_info *die;
19576
36586728
TT
19577 die = follow_die_offset (offset,
19578 (attr->form == DW_FORM_GNU_ref_alt
19579 || cu->per_cu->is_dwz),
19580 ref_cu);
5c631832
JK
19581 if (!die)
19582 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19583 "at 0x%x [in module %s]"),
4262abfb
JK
19584 offset.sect_off, src_die->offset.sect_off,
19585 objfile_name (cu->objfile));
348e048f 19586
5c631832
JK
19587 return die;
19588}
19589
d83e736b
JK
19590/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19591 Returned value is intended for DW_OP_call*. Returned
19592 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
19593
19594struct dwarf2_locexpr_baton
8b9737bf
TT
19595dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19596 struct dwarf2_per_cu_data *per_cu,
19597 CORE_ADDR (*get_frame_pc) (void *baton),
19598 void *baton)
5c631832 19599{
918dd910 19600 struct dwarf2_cu *cu;
5c631832
JK
19601 struct die_info *die;
19602 struct attribute *attr;
19603 struct dwarf2_locexpr_baton retval;
19604
8cf6f0b1
TT
19605 dw2_setup (per_cu->objfile);
19606
918dd910
JK
19607 if (per_cu->cu == NULL)
19608 load_cu (per_cu);
19609 cu = per_cu->cu;
19610
36586728 19611 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
19612 if (!die)
19613 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 19614 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
19615
19616 attr = dwarf2_attr (die, DW_AT_location, cu);
19617 if (!attr)
19618 {
e103e986
JK
19619 /* DWARF: "If there is no such attribute, then there is no effect.".
19620 DATA is ignored if SIZE is 0. */
5c631832 19621
e103e986 19622 retval.data = NULL;
5c631832
JK
19623 retval.size = 0;
19624 }
8cf6f0b1
TT
19625 else if (attr_form_is_section_offset (attr))
19626 {
19627 struct dwarf2_loclist_baton loclist_baton;
19628 CORE_ADDR pc = (*get_frame_pc) (baton);
19629 size_t size;
19630
19631 fill_in_loclist_baton (cu, &loclist_baton, attr);
19632
19633 retval.data = dwarf2_find_location_expression (&loclist_baton,
19634 &size, pc);
19635 retval.size = size;
19636 }
5c631832
JK
19637 else
19638 {
19639 if (!attr_form_is_block (attr))
19640 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19641 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 19642 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
19643
19644 retval.data = DW_BLOCK (attr)->data;
19645 retval.size = DW_BLOCK (attr)->size;
19646 }
19647 retval.per_cu = cu->per_cu;
918dd910 19648
918dd910
JK
19649 age_cached_comp_units ();
19650
5c631832 19651 return retval;
348e048f
DE
19652}
19653
8b9737bf
TT
19654/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19655 offset. */
19656
19657struct dwarf2_locexpr_baton
19658dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19659 struct dwarf2_per_cu_data *per_cu,
19660 CORE_ADDR (*get_frame_pc) (void *baton),
19661 void *baton)
19662{
19663 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19664
19665 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19666}
19667
b6807d98
TT
19668/* Write a constant of a given type as target-ordered bytes into
19669 OBSTACK. */
19670
19671static const gdb_byte *
19672write_constant_as_bytes (struct obstack *obstack,
19673 enum bfd_endian byte_order,
19674 struct type *type,
19675 ULONGEST value,
19676 LONGEST *len)
19677{
19678 gdb_byte *result;
19679
19680 *len = TYPE_LENGTH (type);
19681 result = obstack_alloc (obstack, *len);
19682 store_unsigned_integer (result, *len, byte_order, value);
19683
19684 return result;
19685}
19686
19687/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19688 pointer to the constant bytes and set LEN to the length of the
19689 data. If memory is needed, allocate it on OBSTACK. If the DIE
19690 does not have a DW_AT_const_value, return NULL. */
19691
19692const gdb_byte *
19693dwarf2_fetch_constant_bytes (sect_offset offset,
19694 struct dwarf2_per_cu_data *per_cu,
19695 struct obstack *obstack,
19696 LONGEST *len)
19697{
19698 struct dwarf2_cu *cu;
19699 struct die_info *die;
19700 struct attribute *attr;
19701 const gdb_byte *result = NULL;
19702 struct type *type;
19703 LONGEST value;
19704 enum bfd_endian byte_order;
19705
19706 dw2_setup (per_cu->objfile);
19707
19708 if (per_cu->cu == NULL)
19709 load_cu (per_cu);
19710 cu = per_cu->cu;
19711
19712 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19713 if (!die)
19714 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 19715 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
19716
19717
19718 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19719 if (attr == NULL)
19720 return NULL;
19721
19722 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19723 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19724
19725 switch (attr->form)
19726 {
19727 case DW_FORM_addr:
19728 case DW_FORM_GNU_addr_index:
19729 {
19730 gdb_byte *tem;
19731
19732 *len = cu->header.addr_size;
19733 tem = obstack_alloc (obstack, *len);
19734 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19735 result = tem;
19736 }
19737 break;
19738 case DW_FORM_string:
19739 case DW_FORM_strp:
19740 case DW_FORM_GNU_str_index:
19741 case DW_FORM_GNU_strp_alt:
19742 /* DW_STRING is already allocated on the objfile obstack, point
19743 directly to it. */
19744 result = (const gdb_byte *) DW_STRING (attr);
19745 *len = strlen (DW_STRING (attr));
19746 break;
19747 case DW_FORM_block1:
19748 case DW_FORM_block2:
19749 case DW_FORM_block4:
19750 case DW_FORM_block:
19751 case DW_FORM_exprloc:
19752 result = DW_BLOCK (attr)->data;
19753 *len = DW_BLOCK (attr)->size;
19754 break;
19755
19756 /* The DW_AT_const_value attributes are supposed to carry the
19757 symbol's value "represented as it would be on the target
19758 architecture." By the time we get here, it's already been
19759 converted to host endianness, so we just need to sign- or
19760 zero-extend it as appropriate. */
19761 case DW_FORM_data1:
19762 type = die_type (die, cu);
19763 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19764 if (result == NULL)
19765 result = write_constant_as_bytes (obstack, byte_order,
19766 type, value, len);
19767 break;
19768 case DW_FORM_data2:
19769 type = die_type (die, cu);
19770 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19771 if (result == NULL)
19772 result = write_constant_as_bytes (obstack, byte_order,
19773 type, value, len);
19774 break;
19775 case DW_FORM_data4:
19776 type = die_type (die, cu);
19777 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19778 if (result == NULL)
19779 result = write_constant_as_bytes (obstack, byte_order,
19780 type, value, len);
19781 break;
19782 case DW_FORM_data8:
19783 type = die_type (die, cu);
19784 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19785 if (result == NULL)
19786 result = write_constant_as_bytes (obstack, byte_order,
19787 type, value, len);
19788 break;
19789
19790 case DW_FORM_sdata:
19791 type = die_type (die, cu);
19792 result = write_constant_as_bytes (obstack, byte_order,
19793 type, DW_SND (attr), len);
19794 break;
19795
19796 case DW_FORM_udata:
19797 type = die_type (die, cu);
19798 result = write_constant_as_bytes (obstack, byte_order,
19799 type, DW_UNSND (attr), len);
19800 break;
19801
19802 default:
19803 complaint (&symfile_complaints,
19804 _("unsupported const value attribute form: '%s'"),
19805 dwarf_form_name (attr->form));
19806 break;
19807 }
19808
19809 return result;
19810}
19811
8a9b8146
TT
19812/* Return the type of the DIE at DIE_OFFSET in the CU named by
19813 PER_CU. */
19814
19815struct type *
b64f50a1 19816dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
19817 struct dwarf2_per_cu_data *per_cu)
19818{
b64f50a1
JK
19819 sect_offset die_offset_sect;
19820
8a9b8146 19821 dw2_setup (per_cu->objfile);
b64f50a1
JK
19822
19823 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19824 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
19825}
19826
ac9ec31b 19827/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 19828 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
19829 On exit *REF_CU is the CU of the result.
19830 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
19831
19832static struct die_info *
ac9ec31b
DE
19833follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19834 struct dwarf2_cu **ref_cu)
348e048f
DE
19835{
19836 struct objfile *objfile = (*ref_cu)->objfile;
19837 struct die_info temp_die;
348e048f
DE
19838 struct dwarf2_cu *sig_cu;
19839 struct die_info *die;
19840
ac9ec31b
DE
19841 /* While it might be nice to assert sig_type->type == NULL here,
19842 we can get here for DW_AT_imported_declaration where we need
19843 the DIE not the type. */
348e048f
DE
19844
19845 /* If necessary, add it to the queue and load its DIEs. */
19846
95554aad 19847 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 19848 read_signatured_type (sig_type);
348e048f 19849
348e048f 19850 sig_cu = sig_type->per_cu.cu;
69d751e3 19851 gdb_assert (sig_cu != NULL);
3019eac3
DE
19852 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19853 temp_die.offset = sig_type->type_offset_in_section;
b64f50a1
JK
19854 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19855 temp_die.offset.sect_off);
348e048f
DE
19856 if (die)
19857 {
796a7ff8
DE
19858 /* For .gdb_index version 7 keep track of included TUs.
19859 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19860 if (dwarf2_per_objfile->index_table != NULL
19861 && dwarf2_per_objfile->index_table->version <= 7)
19862 {
19863 VEC_safe_push (dwarf2_per_cu_ptr,
19864 (*ref_cu)->per_cu->imported_symtabs,
19865 sig_cu->per_cu);
19866 }
19867
348e048f
DE
19868 *ref_cu = sig_cu;
19869 return die;
19870 }
19871
ac9ec31b
DE
19872 return NULL;
19873}
19874
19875/* Follow signatured type referenced by ATTR in SRC_DIE.
19876 On entry *REF_CU is the CU of SRC_DIE.
19877 On exit *REF_CU is the CU of the result.
19878 The result is the DIE of the type.
19879 If the referenced type cannot be found an error is thrown. */
19880
19881static struct die_info *
ff39bb5e 19882follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
19883 struct dwarf2_cu **ref_cu)
19884{
19885 ULONGEST signature = DW_SIGNATURE (attr);
19886 struct signatured_type *sig_type;
19887 struct die_info *die;
19888
19889 gdb_assert (attr->form == DW_FORM_ref_sig8);
19890
a2ce51a0 19891 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
19892 /* sig_type will be NULL if the signatured type is missing from
19893 the debug info. */
19894 if (sig_type == NULL)
19895 {
19896 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19897 " from DIE at 0x%x [in module %s]"),
19898 hex_string (signature), src_die->offset.sect_off,
4262abfb 19899 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
19900 }
19901
19902 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19903 if (die == NULL)
19904 {
19905 dump_die_for_error (src_die);
19906 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19907 " from DIE at 0x%x [in module %s]"),
19908 hex_string (signature), src_die->offset.sect_off,
4262abfb 19909 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
19910 }
19911
19912 return die;
19913}
19914
19915/* Get the type specified by SIGNATURE referenced in DIE/CU,
19916 reading in and processing the type unit if necessary. */
19917
19918static struct type *
19919get_signatured_type (struct die_info *die, ULONGEST signature,
19920 struct dwarf2_cu *cu)
19921{
19922 struct signatured_type *sig_type;
19923 struct dwarf2_cu *type_cu;
19924 struct die_info *type_die;
19925 struct type *type;
19926
a2ce51a0 19927 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
19928 /* sig_type will be NULL if the signatured type is missing from
19929 the debug info. */
19930 if (sig_type == NULL)
19931 {
19932 complaint (&symfile_complaints,
19933 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19934 " from DIE at 0x%x [in module %s]"),
19935 hex_string (signature), die->offset.sect_off,
4262abfb 19936 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19937 return build_error_marker_type (cu, die);
19938 }
19939
19940 /* If we already know the type we're done. */
19941 if (sig_type->type != NULL)
19942 return sig_type->type;
19943
19944 type_cu = cu;
19945 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19946 if (type_die != NULL)
19947 {
19948 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19949 is created. This is important, for example, because for c++ classes
19950 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19951 type = read_type_die (type_die, type_cu);
19952 if (type == NULL)
19953 {
19954 complaint (&symfile_complaints,
19955 _("Dwarf Error: Cannot build signatured type %s"
19956 " referenced from DIE at 0x%x [in module %s]"),
19957 hex_string (signature), die->offset.sect_off,
4262abfb 19958 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19959 type = build_error_marker_type (cu, die);
19960 }
19961 }
19962 else
19963 {
19964 complaint (&symfile_complaints,
19965 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19966 " from DIE at 0x%x [in module %s]"),
19967 hex_string (signature), die->offset.sect_off,
4262abfb 19968 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19969 type = build_error_marker_type (cu, die);
19970 }
19971 sig_type->type = type;
19972
19973 return type;
19974}
19975
19976/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19977 reading in and processing the type unit if necessary. */
19978
19979static struct type *
ff39bb5e 19980get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 19981 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
19982{
19983 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 19984 if (attr_form_is_ref (attr))
ac9ec31b
DE
19985 {
19986 struct dwarf2_cu *type_cu = cu;
19987 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19988
19989 return read_type_die (type_die, type_cu);
19990 }
19991 else if (attr->form == DW_FORM_ref_sig8)
19992 {
19993 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19994 }
19995 else
19996 {
19997 complaint (&symfile_complaints,
19998 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19999 " at 0x%x [in module %s]"),
20000 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 20001 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
20002 return build_error_marker_type (cu, die);
20003 }
348e048f
DE
20004}
20005
e5fe5e75 20006/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
20007
20008static void
e5fe5e75 20009load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 20010{
52dc124a 20011 struct signatured_type *sig_type;
348e048f 20012
f4dc4d17
DE
20013 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20014 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20015
6721b2ec
DE
20016 /* We have the per_cu, but we need the signatured_type.
20017 Fortunately this is an easy translation. */
20018 gdb_assert (per_cu->is_debug_types);
20019 sig_type = (struct signatured_type *) per_cu;
348e048f 20020
6721b2ec 20021 gdb_assert (per_cu->cu == NULL);
348e048f 20022
52dc124a 20023 read_signatured_type (sig_type);
348e048f 20024
6721b2ec 20025 gdb_assert (per_cu->cu != NULL);
348e048f
DE
20026}
20027
dee91e82
DE
20028/* die_reader_func for read_signatured_type.
20029 This is identical to load_full_comp_unit_reader,
20030 but is kept separate for now. */
348e048f
DE
20031
20032static void
dee91e82 20033read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 20034 const gdb_byte *info_ptr,
dee91e82
DE
20035 struct die_info *comp_unit_die,
20036 int has_children,
20037 void *data)
348e048f 20038{
dee91e82 20039 struct dwarf2_cu *cu = reader->cu;
348e048f 20040
dee91e82
DE
20041 gdb_assert (cu->die_hash == NULL);
20042 cu->die_hash =
20043 htab_create_alloc_ex (cu->header.length / 12,
20044 die_hash,
20045 die_eq,
20046 NULL,
20047 &cu->comp_unit_obstack,
20048 hashtab_obstack_allocate,
20049 dummy_obstack_deallocate);
348e048f 20050
dee91e82
DE
20051 if (has_children)
20052 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20053 &info_ptr, comp_unit_die);
20054 cu->dies = comp_unit_die;
20055 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
20056
20057 /* We try not to read any attributes in this function, because not
9cdd5dbd 20058 all CUs needed for references have been loaded yet, and symbol
348e048f 20059 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
20060 or we won't be able to build types correctly.
20061 Similarly, if we do not read the producer, we can not apply
20062 producer-specific interpretation. */
95554aad 20063 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 20064}
348e048f 20065
3019eac3
DE
20066/* Read in a signatured type and build its CU and DIEs.
20067 If the type is a stub for the real type in a DWO file,
20068 read in the real type from the DWO file as well. */
dee91e82
DE
20069
20070static void
20071read_signatured_type (struct signatured_type *sig_type)
20072{
20073 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 20074
3019eac3 20075 gdb_assert (per_cu->is_debug_types);
dee91e82 20076 gdb_assert (per_cu->cu == NULL);
348e048f 20077
f4dc4d17
DE
20078 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20079 read_signatured_type_reader, NULL);
7ee85ab1 20080 sig_type->per_cu.tu_read = 1;
c906108c
SS
20081}
20082
c906108c
SS
20083/* Decode simple location descriptions.
20084 Given a pointer to a dwarf block that defines a location, compute
20085 the location and return the value.
20086
4cecd739
DJ
20087 NOTE drow/2003-11-18: This function is called in two situations
20088 now: for the address of static or global variables (partial symbols
20089 only) and for offsets into structures which are expected to be
20090 (more or less) constant. The partial symbol case should go away,
20091 and only the constant case should remain. That will let this
20092 function complain more accurately. A few special modes are allowed
20093 without complaint for global variables (for instance, global
20094 register values and thread-local values).
c906108c
SS
20095
20096 A location description containing no operations indicates that the
4cecd739 20097 object is optimized out. The return value is 0 for that case.
6b992462
DJ
20098 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20099 callers will only want a very basic result and this can become a
21ae7a4d
JK
20100 complaint.
20101
20102 Note that stack[0] is unused except as a default error return. */
c906108c
SS
20103
20104static CORE_ADDR
e7c27a73 20105decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 20106{
e7c27a73 20107 struct objfile *objfile = cu->objfile;
56eb65bd
SP
20108 size_t i;
20109 size_t size = blk->size;
d521ce57 20110 const gdb_byte *data = blk->data;
21ae7a4d
JK
20111 CORE_ADDR stack[64];
20112 int stacki;
20113 unsigned int bytes_read, unsnd;
20114 gdb_byte op;
c906108c 20115
21ae7a4d
JK
20116 i = 0;
20117 stacki = 0;
20118 stack[stacki] = 0;
20119 stack[++stacki] = 0;
20120
20121 while (i < size)
20122 {
20123 op = data[i++];
20124 switch (op)
20125 {
20126 case DW_OP_lit0:
20127 case DW_OP_lit1:
20128 case DW_OP_lit2:
20129 case DW_OP_lit3:
20130 case DW_OP_lit4:
20131 case DW_OP_lit5:
20132 case DW_OP_lit6:
20133 case DW_OP_lit7:
20134 case DW_OP_lit8:
20135 case DW_OP_lit9:
20136 case DW_OP_lit10:
20137 case DW_OP_lit11:
20138 case DW_OP_lit12:
20139 case DW_OP_lit13:
20140 case DW_OP_lit14:
20141 case DW_OP_lit15:
20142 case DW_OP_lit16:
20143 case DW_OP_lit17:
20144 case DW_OP_lit18:
20145 case DW_OP_lit19:
20146 case DW_OP_lit20:
20147 case DW_OP_lit21:
20148 case DW_OP_lit22:
20149 case DW_OP_lit23:
20150 case DW_OP_lit24:
20151 case DW_OP_lit25:
20152 case DW_OP_lit26:
20153 case DW_OP_lit27:
20154 case DW_OP_lit28:
20155 case DW_OP_lit29:
20156 case DW_OP_lit30:
20157 case DW_OP_lit31:
20158 stack[++stacki] = op - DW_OP_lit0;
20159 break;
f1bea926 20160
21ae7a4d
JK
20161 case DW_OP_reg0:
20162 case DW_OP_reg1:
20163 case DW_OP_reg2:
20164 case DW_OP_reg3:
20165 case DW_OP_reg4:
20166 case DW_OP_reg5:
20167 case DW_OP_reg6:
20168 case DW_OP_reg7:
20169 case DW_OP_reg8:
20170 case DW_OP_reg9:
20171 case DW_OP_reg10:
20172 case DW_OP_reg11:
20173 case DW_OP_reg12:
20174 case DW_OP_reg13:
20175 case DW_OP_reg14:
20176 case DW_OP_reg15:
20177 case DW_OP_reg16:
20178 case DW_OP_reg17:
20179 case DW_OP_reg18:
20180 case DW_OP_reg19:
20181 case DW_OP_reg20:
20182 case DW_OP_reg21:
20183 case DW_OP_reg22:
20184 case DW_OP_reg23:
20185 case DW_OP_reg24:
20186 case DW_OP_reg25:
20187 case DW_OP_reg26:
20188 case DW_OP_reg27:
20189 case DW_OP_reg28:
20190 case DW_OP_reg29:
20191 case DW_OP_reg30:
20192 case DW_OP_reg31:
20193 stack[++stacki] = op - DW_OP_reg0;
20194 if (i < size)
20195 dwarf2_complex_location_expr_complaint ();
20196 break;
c906108c 20197
21ae7a4d
JK
20198 case DW_OP_regx:
20199 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20200 i += bytes_read;
20201 stack[++stacki] = unsnd;
20202 if (i < size)
20203 dwarf2_complex_location_expr_complaint ();
20204 break;
c906108c 20205
21ae7a4d
JK
20206 case DW_OP_addr:
20207 stack[++stacki] = read_address (objfile->obfd, &data[i],
20208 cu, &bytes_read);
20209 i += bytes_read;
20210 break;
d53d4ac5 20211
21ae7a4d
JK
20212 case DW_OP_const1u:
20213 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20214 i += 1;
20215 break;
20216
20217 case DW_OP_const1s:
20218 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20219 i += 1;
20220 break;
20221
20222 case DW_OP_const2u:
20223 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20224 i += 2;
20225 break;
20226
20227 case DW_OP_const2s:
20228 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20229 i += 2;
20230 break;
d53d4ac5 20231
21ae7a4d
JK
20232 case DW_OP_const4u:
20233 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20234 i += 4;
20235 break;
20236
20237 case DW_OP_const4s:
20238 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20239 i += 4;
20240 break;
20241
585861ea
JK
20242 case DW_OP_const8u:
20243 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20244 i += 8;
20245 break;
20246
21ae7a4d
JK
20247 case DW_OP_constu:
20248 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20249 &bytes_read);
20250 i += bytes_read;
20251 break;
20252
20253 case DW_OP_consts:
20254 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20255 i += bytes_read;
20256 break;
20257
20258 case DW_OP_dup:
20259 stack[stacki + 1] = stack[stacki];
20260 stacki++;
20261 break;
20262
20263 case DW_OP_plus:
20264 stack[stacki - 1] += stack[stacki];
20265 stacki--;
20266 break;
20267
20268 case DW_OP_plus_uconst:
20269 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20270 &bytes_read);
20271 i += bytes_read;
20272 break;
20273
20274 case DW_OP_minus:
20275 stack[stacki - 1] -= stack[stacki];
20276 stacki--;
20277 break;
20278
20279 case DW_OP_deref:
20280 /* If we're not the last op, then we definitely can't encode
20281 this using GDB's address_class enum. This is valid for partial
20282 global symbols, although the variable's address will be bogus
20283 in the psymtab. */
20284 if (i < size)
20285 dwarf2_complex_location_expr_complaint ();
20286 break;
20287
20288 case DW_OP_GNU_push_tls_address:
20289 /* The top of the stack has the offset from the beginning
20290 of the thread control block at which the variable is located. */
20291 /* Nothing should follow this operator, so the top of stack would
20292 be returned. */
20293 /* This is valid for partial global symbols, but the variable's
585861ea
JK
20294 address will be bogus in the psymtab. Make it always at least
20295 non-zero to not look as a variable garbage collected by linker
20296 which have DW_OP_addr 0. */
21ae7a4d
JK
20297 if (i < size)
20298 dwarf2_complex_location_expr_complaint ();
585861ea 20299 stack[stacki]++;
21ae7a4d
JK
20300 break;
20301
20302 case DW_OP_GNU_uninit:
20303 break;
20304
3019eac3 20305 case DW_OP_GNU_addr_index:
49f6c839 20306 case DW_OP_GNU_const_index:
3019eac3
DE
20307 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20308 &bytes_read);
20309 i += bytes_read;
20310 break;
20311
21ae7a4d
JK
20312 default:
20313 {
f39c6ffd 20314 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
20315
20316 if (name)
20317 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20318 name);
20319 else
20320 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20321 op);
20322 }
20323
20324 return (stack[stacki]);
d53d4ac5 20325 }
3c6e0cb3 20326
21ae7a4d
JK
20327 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20328 outside of the allocated space. Also enforce minimum>0. */
20329 if (stacki >= ARRAY_SIZE (stack) - 1)
20330 {
20331 complaint (&symfile_complaints,
20332 _("location description stack overflow"));
20333 return 0;
20334 }
20335
20336 if (stacki <= 0)
20337 {
20338 complaint (&symfile_complaints,
20339 _("location description stack underflow"));
20340 return 0;
20341 }
20342 }
20343 return (stack[stacki]);
c906108c
SS
20344}
20345
20346/* memory allocation interface */
20347
c906108c 20348static struct dwarf_block *
7b5a2f43 20349dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
20350{
20351 struct dwarf_block *blk;
20352
20353 blk = (struct dwarf_block *)
7b5a2f43 20354 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
20355 return (blk);
20356}
20357
c906108c 20358static struct die_info *
b60c80d6 20359dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
20360{
20361 struct die_info *die;
b60c80d6
DJ
20362 size_t size = sizeof (struct die_info);
20363
20364 if (num_attrs > 1)
20365 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 20366
b60c80d6 20367 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
20368 memset (die, 0, sizeof (struct die_info));
20369 return (die);
20370}
2e276125
JB
20371
20372\f
20373/* Macro support. */
20374
233d95b5
JK
20375/* Return file name relative to the compilation directory of file number I in
20376 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 20377 responsible for freeing it. */
233d95b5 20378
2e276125 20379static char *
233d95b5 20380file_file_name (int file, struct line_header *lh)
2e276125 20381{
6a83a1e6
EZ
20382 /* Is the file number a valid index into the line header's file name
20383 table? Remember that file numbers start with one, not zero. */
20384 if (1 <= file && file <= lh->num_file_names)
20385 {
20386 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 20387
233d95b5 20388 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
6a83a1e6 20389 return xstrdup (fe->name);
233d95b5
JK
20390 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20391 fe->name, NULL);
6a83a1e6 20392 }
2e276125
JB
20393 else
20394 {
6a83a1e6
EZ
20395 /* The compiler produced a bogus file number. We can at least
20396 record the macro definitions made in the file, even if we
20397 won't be able to find the file by name. */
20398 char fake_name[80];
9a619af0 20399
8c042590
PM
20400 xsnprintf (fake_name, sizeof (fake_name),
20401 "<bad macro file number %d>", file);
2e276125 20402
6e70227d 20403 complaint (&symfile_complaints,
6a83a1e6
EZ
20404 _("bad file number in macro information (%d)"),
20405 file);
2e276125 20406
6a83a1e6 20407 return xstrdup (fake_name);
2e276125
JB
20408 }
20409}
20410
233d95b5
JK
20411/* Return the full name of file number I in *LH's file name table.
20412 Use COMP_DIR as the name of the current directory of the
20413 compilation. The result is allocated using xmalloc; the caller is
20414 responsible for freeing it. */
20415static char *
20416file_full_name (int file, struct line_header *lh, const char *comp_dir)
20417{
20418 /* Is the file number a valid index into the line header's file name
20419 table? Remember that file numbers start with one, not zero. */
20420 if (1 <= file && file <= lh->num_file_names)
20421 {
20422 char *relative = file_file_name (file, lh);
20423
20424 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20425 return relative;
20426 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20427 }
20428 else
20429 return file_file_name (file, lh);
20430}
20431
2e276125
JB
20432
20433static struct macro_source_file *
20434macro_start_file (int file, int line,
20435 struct macro_source_file *current_file,
43f3e411 20436 struct line_header *lh)
2e276125 20437{
233d95b5
JK
20438 /* File name relative to the compilation directory of this source file. */
20439 char *file_name = file_file_name (file, lh);
2e276125 20440
2e276125 20441 if (! current_file)
abc9d0dc 20442 {
fc474241
DE
20443 /* Note: We don't create a macro table for this compilation unit
20444 at all until we actually get a filename. */
43f3e411 20445 struct macro_table *macro_table = get_macro_table ();
fc474241 20446
abc9d0dc
TT
20447 /* If we have no current file, then this must be the start_file
20448 directive for the compilation unit's main source file. */
fc474241
DE
20449 current_file = macro_set_main (macro_table, file_name);
20450 macro_define_special (macro_table);
abc9d0dc 20451 }
2e276125 20452 else
233d95b5 20453 current_file = macro_include (current_file, line, file_name);
2e276125 20454
233d95b5 20455 xfree (file_name);
6e70227d 20456
2e276125
JB
20457 return current_file;
20458}
20459
20460
20461/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20462 followed by a null byte. */
20463static char *
20464copy_string (const char *buf, int len)
20465{
20466 char *s = xmalloc (len + 1);
9a619af0 20467
2e276125
JB
20468 memcpy (s, buf, len);
20469 s[len] = '\0';
2e276125
JB
20470 return s;
20471}
20472
20473
20474static const char *
20475consume_improper_spaces (const char *p, const char *body)
20476{
20477 if (*p == ' ')
20478 {
4d3c2250 20479 complaint (&symfile_complaints,
3e43a32a
MS
20480 _("macro definition contains spaces "
20481 "in formal argument list:\n`%s'"),
4d3c2250 20482 body);
2e276125
JB
20483
20484 while (*p == ' ')
20485 p++;
20486 }
20487
20488 return p;
20489}
20490
20491
20492static void
20493parse_macro_definition (struct macro_source_file *file, int line,
20494 const char *body)
20495{
20496 const char *p;
20497
20498 /* The body string takes one of two forms. For object-like macro
20499 definitions, it should be:
20500
20501 <macro name> " " <definition>
20502
20503 For function-like macro definitions, it should be:
20504
20505 <macro name> "() " <definition>
20506 or
20507 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20508
20509 Spaces may appear only where explicitly indicated, and in the
20510 <definition>.
20511
20512 The Dwarf 2 spec says that an object-like macro's name is always
20513 followed by a space, but versions of GCC around March 2002 omit
6e70227d 20514 the space when the macro's definition is the empty string.
2e276125
JB
20515
20516 The Dwarf 2 spec says that there should be no spaces between the
20517 formal arguments in a function-like macro's formal argument list,
20518 but versions of GCC around March 2002 include spaces after the
20519 commas. */
20520
20521
20522 /* Find the extent of the macro name. The macro name is terminated
20523 by either a space or null character (for an object-like macro) or
20524 an opening paren (for a function-like macro). */
20525 for (p = body; *p; p++)
20526 if (*p == ' ' || *p == '(')
20527 break;
20528
20529 if (*p == ' ' || *p == '\0')
20530 {
20531 /* It's an object-like macro. */
20532 int name_len = p - body;
20533 char *name = copy_string (body, name_len);
20534 const char *replacement;
20535
20536 if (*p == ' ')
20537 replacement = body + name_len + 1;
20538 else
20539 {
4d3c2250 20540 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20541 replacement = body + name_len;
20542 }
6e70227d 20543
2e276125
JB
20544 macro_define_object (file, line, name, replacement);
20545
20546 xfree (name);
20547 }
20548 else if (*p == '(')
20549 {
20550 /* It's a function-like macro. */
20551 char *name = copy_string (body, p - body);
20552 int argc = 0;
20553 int argv_size = 1;
20554 char **argv = xmalloc (argv_size * sizeof (*argv));
20555
20556 p++;
20557
20558 p = consume_improper_spaces (p, body);
20559
20560 /* Parse the formal argument list. */
20561 while (*p && *p != ')')
20562 {
20563 /* Find the extent of the current argument name. */
20564 const char *arg_start = p;
20565
20566 while (*p && *p != ',' && *p != ')' && *p != ' ')
20567 p++;
20568
20569 if (! *p || p == arg_start)
4d3c2250 20570 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20571 else
20572 {
20573 /* Make sure argv has room for the new argument. */
20574 if (argc >= argv_size)
20575 {
20576 argv_size *= 2;
20577 argv = xrealloc (argv, argv_size * sizeof (*argv));
20578 }
20579
20580 argv[argc++] = copy_string (arg_start, p - arg_start);
20581 }
20582
20583 p = consume_improper_spaces (p, body);
20584
20585 /* Consume the comma, if present. */
20586 if (*p == ',')
20587 {
20588 p++;
20589
20590 p = consume_improper_spaces (p, body);
20591 }
20592 }
20593
20594 if (*p == ')')
20595 {
20596 p++;
20597
20598 if (*p == ' ')
20599 /* Perfectly formed definition, no complaints. */
20600 macro_define_function (file, line, name,
6e70227d 20601 argc, (const char **) argv,
2e276125
JB
20602 p + 1);
20603 else if (*p == '\0')
20604 {
20605 /* Complain, but do define it. */
4d3c2250 20606 dwarf2_macro_malformed_definition_complaint (body);
2e276125 20607 macro_define_function (file, line, name,
6e70227d 20608 argc, (const char **) argv,
2e276125
JB
20609 p);
20610 }
20611 else
20612 /* Just complain. */
4d3c2250 20613 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20614 }
20615 else
20616 /* Just complain. */
4d3c2250 20617 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20618
20619 xfree (name);
20620 {
20621 int i;
20622
20623 for (i = 0; i < argc; i++)
20624 xfree (argv[i]);
20625 }
20626 xfree (argv);
20627 }
20628 else
4d3c2250 20629 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20630}
20631
cf2c3c16
TT
20632/* Skip some bytes from BYTES according to the form given in FORM.
20633 Returns the new pointer. */
2e276125 20634
d521ce57
TT
20635static const gdb_byte *
20636skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
20637 enum dwarf_form form,
20638 unsigned int offset_size,
20639 struct dwarf2_section_info *section)
2e276125 20640{
cf2c3c16 20641 unsigned int bytes_read;
2e276125 20642
cf2c3c16 20643 switch (form)
2e276125 20644 {
cf2c3c16
TT
20645 case DW_FORM_data1:
20646 case DW_FORM_flag:
20647 ++bytes;
20648 break;
20649
20650 case DW_FORM_data2:
20651 bytes += 2;
20652 break;
20653
20654 case DW_FORM_data4:
20655 bytes += 4;
20656 break;
20657
20658 case DW_FORM_data8:
20659 bytes += 8;
20660 break;
20661
20662 case DW_FORM_string:
20663 read_direct_string (abfd, bytes, &bytes_read);
20664 bytes += bytes_read;
20665 break;
20666
20667 case DW_FORM_sec_offset:
20668 case DW_FORM_strp:
36586728 20669 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
20670 bytes += offset_size;
20671 break;
20672
20673 case DW_FORM_block:
20674 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20675 bytes += bytes_read;
20676 break;
20677
20678 case DW_FORM_block1:
20679 bytes += 1 + read_1_byte (abfd, bytes);
20680 break;
20681 case DW_FORM_block2:
20682 bytes += 2 + read_2_bytes (abfd, bytes);
20683 break;
20684 case DW_FORM_block4:
20685 bytes += 4 + read_4_bytes (abfd, bytes);
20686 break;
20687
20688 case DW_FORM_sdata:
20689 case DW_FORM_udata:
3019eac3
DE
20690 case DW_FORM_GNU_addr_index:
20691 case DW_FORM_GNU_str_index:
d521ce57 20692 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
20693 if (bytes == NULL)
20694 {
20695 dwarf2_section_buffer_overflow_complaint (section);
20696 return NULL;
20697 }
cf2c3c16
TT
20698 break;
20699
20700 default:
20701 {
20702 complain:
20703 complaint (&symfile_complaints,
20704 _("invalid form 0x%x in `%s'"),
a32a8923 20705 form, get_section_name (section));
cf2c3c16
TT
20706 return NULL;
20707 }
2e276125
JB
20708 }
20709
cf2c3c16
TT
20710 return bytes;
20711}
757a13d0 20712
cf2c3c16
TT
20713/* A helper for dwarf_decode_macros that handles skipping an unknown
20714 opcode. Returns an updated pointer to the macro data buffer; or,
20715 on error, issues a complaint and returns NULL. */
757a13d0 20716
d521ce57 20717static const gdb_byte *
cf2c3c16 20718skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
20719 const gdb_byte **opcode_definitions,
20720 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
20721 bfd *abfd,
20722 unsigned int offset_size,
20723 struct dwarf2_section_info *section)
20724{
20725 unsigned int bytes_read, i;
20726 unsigned long arg;
d521ce57 20727 const gdb_byte *defn;
2e276125 20728
cf2c3c16 20729 if (opcode_definitions[opcode] == NULL)
2e276125 20730 {
cf2c3c16
TT
20731 complaint (&symfile_complaints,
20732 _("unrecognized DW_MACFINO opcode 0x%x"),
20733 opcode);
20734 return NULL;
20735 }
2e276125 20736
cf2c3c16
TT
20737 defn = opcode_definitions[opcode];
20738 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20739 defn += bytes_read;
2e276125 20740
cf2c3c16
TT
20741 for (i = 0; i < arg; ++i)
20742 {
f664829e
DE
20743 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20744 section);
cf2c3c16
TT
20745 if (mac_ptr == NULL)
20746 {
20747 /* skip_form_bytes already issued the complaint. */
20748 return NULL;
20749 }
20750 }
757a13d0 20751
cf2c3c16
TT
20752 return mac_ptr;
20753}
757a13d0 20754
cf2c3c16
TT
20755/* A helper function which parses the header of a macro section.
20756 If the macro section is the extended (for now called "GNU") type,
20757 then this updates *OFFSET_SIZE. Returns a pointer to just after
20758 the header, or issues a complaint and returns NULL on error. */
757a13d0 20759
d521ce57
TT
20760static const gdb_byte *
20761dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 20762 bfd *abfd,
d521ce57 20763 const gdb_byte *mac_ptr,
cf2c3c16
TT
20764 unsigned int *offset_size,
20765 int section_is_gnu)
20766{
20767 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 20768
cf2c3c16
TT
20769 if (section_is_gnu)
20770 {
20771 unsigned int version, flags;
757a13d0 20772
cf2c3c16
TT
20773 version = read_2_bytes (abfd, mac_ptr);
20774 if (version != 4)
20775 {
20776 complaint (&symfile_complaints,
20777 _("unrecognized version `%d' in .debug_macro section"),
20778 version);
20779 return NULL;
20780 }
20781 mac_ptr += 2;
757a13d0 20782
cf2c3c16
TT
20783 flags = read_1_byte (abfd, mac_ptr);
20784 ++mac_ptr;
20785 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 20786
cf2c3c16
TT
20787 if ((flags & 2) != 0)
20788 /* We don't need the line table offset. */
20789 mac_ptr += *offset_size;
757a13d0 20790
cf2c3c16
TT
20791 /* Vendor opcode descriptions. */
20792 if ((flags & 4) != 0)
20793 {
20794 unsigned int i, count;
757a13d0 20795
cf2c3c16
TT
20796 count = read_1_byte (abfd, mac_ptr);
20797 ++mac_ptr;
20798 for (i = 0; i < count; ++i)
20799 {
20800 unsigned int opcode, bytes_read;
20801 unsigned long arg;
20802
20803 opcode = read_1_byte (abfd, mac_ptr);
20804 ++mac_ptr;
20805 opcode_definitions[opcode] = mac_ptr;
20806 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20807 mac_ptr += bytes_read;
20808 mac_ptr += arg;
20809 }
757a13d0 20810 }
cf2c3c16 20811 }
757a13d0 20812
cf2c3c16
TT
20813 return mac_ptr;
20814}
757a13d0 20815
cf2c3c16 20816/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 20817 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
20818
20819static void
d521ce57
TT
20820dwarf_decode_macro_bytes (bfd *abfd,
20821 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 20822 struct macro_source_file *current_file,
43f3e411 20823 struct line_header *lh,
cf2c3c16 20824 struct dwarf2_section_info *section,
36586728 20825 int section_is_gnu, int section_is_dwz,
cf2c3c16 20826 unsigned int offset_size,
8fc3fc34 20827 htab_t include_hash)
cf2c3c16 20828{
4d663531 20829 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
20830 enum dwarf_macro_record_type macinfo_type;
20831 int at_commandline;
d521ce57 20832 const gdb_byte *opcode_definitions[256];
757a13d0 20833
cf2c3c16
TT
20834 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20835 &offset_size, section_is_gnu);
20836 if (mac_ptr == NULL)
20837 {
20838 /* We already issued a complaint. */
20839 return;
20840 }
757a13d0
JK
20841
20842 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20843 GDB is still reading the definitions from command line. First
20844 DW_MACINFO_start_file will need to be ignored as it was already executed
20845 to create CURRENT_FILE for the main source holding also the command line
20846 definitions. On first met DW_MACINFO_start_file this flag is reset to
20847 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20848
20849 at_commandline = 1;
20850
20851 do
20852 {
20853 /* Do we at least have room for a macinfo type byte? */
20854 if (mac_ptr >= mac_end)
20855 {
f664829e 20856 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
20857 break;
20858 }
20859
20860 macinfo_type = read_1_byte (abfd, mac_ptr);
20861 mac_ptr++;
20862
cf2c3c16
TT
20863 /* Note that we rely on the fact that the corresponding GNU and
20864 DWARF constants are the same. */
757a13d0
JK
20865 switch (macinfo_type)
20866 {
20867 /* A zero macinfo type indicates the end of the macro
20868 information. */
20869 case 0:
20870 break;
2e276125 20871
cf2c3c16
TT
20872 case DW_MACRO_GNU_define:
20873 case DW_MACRO_GNU_undef:
20874 case DW_MACRO_GNU_define_indirect:
20875 case DW_MACRO_GNU_undef_indirect:
36586728
TT
20876 case DW_MACRO_GNU_define_indirect_alt:
20877 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 20878 {
891d2f0b 20879 unsigned int bytes_read;
2e276125 20880 int line;
d521ce57 20881 const char *body;
cf2c3c16 20882 int is_define;
2e276125 20883
cf2c3c16
TT
20884 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20885 mac_ptr += bytes_read;
20886
20887 if (macinfo_type == DW_MACRO_GNU_define
20888 || macinfo_type == DW_MACRO_GNU_undef)
20889 {
20890 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20891 mac_ptr += bytes_read;
20892 }
20893 else
20894 {
20895 LONGEST str_offset;
20896
20897 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20898 mac_ptr += offset_size;
2e276125 20899
36586728 20900 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
20901 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20902 || section_is_dwz)
36586728
TT
20903 {
20904 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20905
20906 body = read_indirect_string_from_dwz (dwz, str_offset);
20907 }
20908 else
20909 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
20910 }
20911
20912 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
20913 || macinfo_type == DW_MACRO_GNU_define_indirect
20914 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 20915 if (! current_file)
757a13d0
JK
20916 {
20917 /* DWARF violation as no main source is present. */
20918 complaint (&symfile_complaints,
20919 _("debug info with no main source gives macro %s "
20920 "on line %d: %s"),
cf2c3c16
TT
20921 is_define ? _("definition") : _("undefinition"),
20922 line, body);
757a13d0
JK
20923 break;
20924 }
3e43a32a
MS
20925 if ((line == 0 && !at_commandline)
20926 || (line != 0 && at_commandline))
4d3c2250 20927 complaint (&symfile_complaints,
757a13d0
JK
20928 _("debug info gives %s macro %s with %s line %d: %s"),
20929 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 20930 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
20931 line == 0 ? _("zero") : _("non-zero"), line, body);
20932
cf2c3c16 20933 if (is_define)
757a13d0 20934 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
20935 else
20936 {
20937 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
20938 || macinfo_type == DW_MACRO_GNU_undef_indirect
20939 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
20940 macro_undef (current_file, line, body);
20941 }
2e276125
JB
20942 }
20943 break;
20944
cf2c3c16 20945 case DW_MACRO_GNU_start_file:
2e276125 20946 {
891d2f0b 20947 unsigned int bytes_read;
2e276125
JB
20948 int line, file;
20949
20950 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20951 mac_ptr += bytes_read;
20952 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20953 mac_ptr += bytes_read;
20954
3e43a32a
MS
20955 if ((line == 0 && !at_commandline)
20956 || (line != 0 && at_commandline))
757a13d0
JK
20957 complaint (&symfile_complaints,
20958 _("debug info gives source %d included "
20959 "from %s at %s line %d"),
20960 file, at_commandline ? _("command-line") : _("file"),
20961 line == 0 ? _("zero") : _("non-zero"), line);
20962
20963 if (at_commandline)
20964 {
cf2c3c16
TT
20965 /* This DW_MACRO_GNU_start_file was executed in the
20966 pass one. */
757a13d0
JK
20967 at_commandline = 0;
20968 }
20969 else
43f3e411 20970 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
20971 }
20972 break;
20973
cf2c3c16 20974 case DW_MACRO_GNU_end_file:
2e276125 20975 if (! current_file)
4d3c2250 20976 complaint (&symfile_complaints,
3e43a32a
MS
20977 _("macro debug info has an unmatched "
20978 "`close_file' directive"));
2e276125
JB
20979 else
20980 {
20981 current_file = current_file->included_by;
20982 if (! current_file)
20983 {
cf2c3c16 20984 enum dwarf_macro_record_type next_type;
2e276125
JB
20985
20986 /* GCC circa March 2002 doesn't produce the zero
20987 type byte marking the end of the compilation
20988 unit. Complain if it's not there, but exit no
20989 matter what. */
20990
20991 /* Do we at least have room for a macinfo type byte? */
20992 if (mac_ptr >= mac_end)
20993 {
f664829e 20994 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
20995 return;
20996 }
20997
20998 /* We don't increment mac_ptr here, so this is just
20999 a look-ahead. */
21000 next_type = read_1_byte (abfd, mac_ptr);
21001 if (next_type != 0)
4d3c2250 21002 complaint (&symfile_complaints,
3e43a32a
MS
21003 _("no terminating 0-type entry for "
21004 "macros in `.debug_macinfo' section"));
2e276125
JB
21005
21006 return;
21007 }
21008 }
21009 break;
21010
cf2c3c16 21011 case DW_MACRO_GNU_transparent_include:
36586728 21012 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21013 {
21014 LONGEST offset;
8fc3fc34 21015 void **slot;
a036ba48
TT
21016 bfd *include_bfd = abfd;
21017 struct dwarf2_section_info *include_section = section;
21018 struct dwarf2_section_info alt_section;
d521ce57 21019 const gdb_byte *include_mac_end = mac_end;
a036ba48 21020 int is_dwz = section_is_dwz;
d521ce57 21021 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
21022
21023 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21024 mac_ptr += offset_size;
21025
a036ba48
TT
21026 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21027 {
21028 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21029
4d663531 21030 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 21031
a036ba48 21032 include_section = &dwz->macro;
a32a8923 21033 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
21034 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21035 is_dwz = 1;
21036 }
21037
21038 new_mac_ptr = include_section->buffer + offset;
21039 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21040
8fc3fc34
TT
21041 if (*slot != NULL)
21042 {
21043 /* This has actually happened; see
21044 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21045 complaint (&symfile_complaints,
21046 _("recursive DW_MACRO_GNU_transparent_include in "
21047 ".debug_macro section"));
21048 }
21049 else
21050 {
d521ce57 21051 *slot = (void *) new_mac_ptr;
36586728 21052
a036ba48 21053 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
43f3e411 21054 include_mac_end, current_file, lh,
36586728 21055 section, section_is_gnu, is_dwz,
4d663531 21056 offset_size, include_hash);
8fc3fc34 21057
d521ce57 21058 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 21059 }
cf2c3c16
TT
21060 }
21061 break;
21062
2e276125 21063 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
21064 if (!section_is_gnu)
21065 {
21066 unsigned int bytes_read;
21067 int constant;
2e276125 21068
cf2c3c16
TT
21069 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21070 mac_ptr += bytes_read;
21071 read_direct_string (abfd, mac_ptr, &bytes_read);
21072 mac_ptr += bytes_read;
2e276125 21073
cf2c3c16
TT
21074 /* We don't recognize any vendor extensions. */
21075 break;
21076 }
21077 /* FALLTHROUGH */
21078
21079 default:
21080 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21081 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21082 section);
21083 if (mac_ptr == NULL)
21084 return;
21085 break;
2e276125 21086 }
757a13d0 21087 } while (macinfo_type != 0);
2e276125 21088}
8e19ed76 21089
cf2c3c16 21090static void
09262596 21091dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 21092 int section_is_gnu)
cf2c3c16 21093{
bb5ed363 21094 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
21095 struct line_header *lh = cu->line_header;
21096 bfd *abfd;
d521ce57 21097 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
21098 struct macro_source_file *current_file = 0;
21099 enum dwarf_macro_record_type macinfo_type;
21100 unsigned int offset_size = cu->header.offset_size;
d521ce57 21101 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
21102 struct cleanup *cleanup;
21103 htab_t include_hash;
21104 void **slot;
09262596
DE
21105 struct dwarf2_section_info *section;
21106 const char *section_name;
21107
21108 if (cu->dwo_unit != NULL)
21109 {
21110 if (section_is_gnu)
21111 {
21112 section = &cu->dwo_unit->dwo_file->sections.macro;
21113 section_name = ".debug_macro.dwo";
21114 }
21115 else
21116 {
21117 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21118 section_name = ".debug_macinfo.dwo";
21119 }
21120 }
21121 else
21122 {
21123 if (section_is_gnu)
21124 {
21125 section = &dwarf2_per_objfile->macro;
21126 section_name = ".debug_macro";
21127 }
21128 else
21129 {
21130 section = &dwarf2_per_objfile->macinfo;
21131 section_name = ".debug_macinfo";
21132 }
21133 }
cf2c3c16 21134
bb5ed363 21135 dwarf2_read_section (objfile, section);
cf2c3c16
TT
21136 if (section->buffer == NULL)
21137 {
fceca515 21138 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
21139 return;
21140 }
a32a8923 21141 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
21142
21143 /* First pass: Find the name of the base filename.
21144 This filename is needed in order to process all macros whose definition
21145 (or undefinition) comes from the command line. These macros are defined
21146 before the first DW_MACINFO_start_file entry, and yet still need to be
21147 associated to the base file.
21148
21149 To determine the base file name, we scan the macro definitions until we
21150 reach the first DW_MACINFO_start_file entry. We then initialize
21151 CURRENT_FILE accordingly so that any macro definition found before the
21152 first DW_MACINFO_start_file can still be associated to the base file. */
21153
21154 mac_ptr = section->buffer + offset;
21155 mac_end = section->buffer + section->size;
21156
21157 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21158 &offset_size, section_is_gnu);
21159 if (mac_ptr == NULL)
21160 {
21161 /* We already issued a complaint. */
21162 return;
21163 }
21164
21165 do
21166 {
21167 /* Do we at least have room for a macinfo type byte? */
21168 if (mac_ptr >= mac_end)
21169 {
21170 /* Complaint is printed during the second pass as GDB will probably
21171 stop the first pass earlier upon finding
21172 DW_MACINFO_start_file. */
21173 break;
21174 }
21175
21176 macinfo_type = read_1_byte (abfd, mac_ptr);
21177 mac_ptr++;
21178
21179 /* Note that we rely on the fact that the corresponding GNU and
21180 DWARF constants are the same. */
21181 switch (macinfo_type)
21182 {
21183 /* A zero macinfo type indicates the end of the macro
21184 information. */
21185 case 0:
21186 break;
21187
21188 case DW_MACRO_GNU_define:
21189 case DW_MACRO_GNU_undef:
21190 /* Only skip the data by MAC_PTR. */
21191 {
21192 unsigned int bytes_read;
21193
21194 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21195 mac_ptr += bytes_read;
21196 read_direct_string (abfd, mac_ptr, &bytes_read);
21197 mac_ptr += bytes_read;
21198 }
21199 break;
21200
21201 case DW_MACRO_GNU_start_file:
21202 {
21203 unsigned int bytes_read;
21204 int line, file;
21205
21206 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21207 mac_ptr += bytes_read;
21208 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21209 mac_ptr += bytes_read;
21210
43f3e411 21211 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
21212 }
21213 break;
21214
21215 case DW_MACRO_GNU_end_file:
21216 /* No data to skip by MAC_PTR. */
21217 break;
21218
21219 case DW_MACRO_GNU_define_indirect:
21220 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
21221 case DW_MACRO_GNU_define_indirect_alt:
21222 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
21223 {
21224 unsigned int bytes_read;
21225
21226 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21227 mac_ptr += bytes_read;
21228 mac_ptr += offset_size;
21229 }
21230 break;
21231
21232 case DW_MACRO_GNU_transparent_include:
f7a35f02 21233 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21234 /* Note that, according to the spec, a transparent include
21235 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21236 skip this opcode. */
21237 mac_ptr += offset_size;
21238 break;
21239
21240 case DW_MACINFO_vendor_ext:
21241 /* Only skip the data by MAC_PTR. */
21242 if (!section_is_gnu)
21243 {
21244 unsigned int bytes_read;
21245
21246 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21247 mac_ptr += bytes_read;
21248 read_direct_string (abfd, mac_ptr, &bytes_read);
21249 mac_ptr += bytes_read;
21250 }
21251 /* FALLTHROUGH */
21252
21253 default:
21254 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21255 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21256 section);
21257 if (mac_ptr == NULL)
21258 return;
21259 break;
21260 }
21261 } while (macinfo_type != 0 && current_file == NULL);
21262
21263 /* Second pass: Process all entries.
21264
21265 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21266 command-line macro definitions/undefinitions. This flag is unset when we
21267 reach the first DW_MACINFO_start_file entry. */
21268
8fc3fc34
TT
21269 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21270 NULL, xcalloc, xfree);
21271 cleanup = make_cleanup_htab_delete (include_hash);
21272 mac_ptr = section->buffer + offset;
21273 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 21274 *slot = (void *) mac_ptr;
8fc3fc34 21275 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
43f3e411 21276 current_file, lh, section,
4d663531 21277 section_is_gnu, 0, offset_size, include_hash);
8fc3fc34 21278 do_cleanups (cleanup);
cf2c3c16
TT
21279}
21280
8e19ed76 21281/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 21282 if so return true else false. */
380bca97 21283
8e19ed76 21284static int
6e5a29e1 21285attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
21286{
21287 return (attr == NULL ? 0 :
21288 attr->form == DW_FORM_block1
21289 || attr->form == DW_FORM_block2
21290 || attr->form == DW_FORM_block4
2dc7f7b3
TT
21291 || attr->form == DW_FORM_block
21292 || attr->form == DW_FORM_exprloc);
8e19ed76 21293}
4c2df51b 21294
c6a0999f
JB
21295/* Return non-zero if ATTR's value is a section offset --- classes
21296 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21297 You may use DW_UNSND (attr) to retrieve such offsets.
21298
21299 Section 7.5.4, "Attribute Encodings", explains that no attribute
21300 may have a value that belongs to more than one of these classes; it
21301 would be ambiguous if we did, because we use the same forms for all
21302 of them. */
380bca97 21303
3690dd37 21304static int
6e5a29e1 21305attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
21306{
21307 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
21308 || attr->form == DW_FORM_data8
21309 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
21310}
21311
3690dd37
JB
21312/* Return non-zero if ATTR's value falls in the 'constant' class, or
21313 zero otherwise. When this function returns true, you can apply
21314 dwarf2_get_attr_constant_value to it.
21315
21316 However, note that for some attributes you must check
21317 attr_form_is_section_offset before using this test. DW_FORM_data4
21318 and DW_FORM_data8 are members of both the constant class, and of
21319 the classes that contain offsets into other debug sections
21320 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21321 that, if an attribute's can be either a constant or one of the
21322 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21323 taken as section offsets, not constants. */
380bca97 21324
3690dd37 21325static int
6e5a29e1 21326attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
21327{
21328 switch (attr->form)
21329 {
21330 case DW_FORM_sdata:
21331 case DW_FORM_udata:
21332 case DW_FORM_data1:
21333 case DW_FORM_data2:
21334 case DW_FORM_data4:
21335 case DW_FORM_data8:
21336 return 1;
21337 default:
21338 return 0;
21339 }
21340}
21341
7771576e
SA
21342
21343/* DW_ADDR is always stored already as sect_offset; despite for the forms
21344 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21345
21346static int
6e5a29e1 21347attr_form_is_ref (const struct attribute *attr)
7771576e
SA
21348{
21349 switch (attr->form)
21350 {
21351 case DW_FORM_ref_addr:
21352 case DW_FORM_ref1:
21353 case DW_FORM_ref2:
21354 case DW_FORM_ref4:
21355 case DW_FORM_ref8:
21356 case DW_FORM_ref_udata:
21357 case DW_FORM_GNU_ref_alt:
21358 return 1;
21359 default:
21360 return 0;
21361 }
21362}
21363
3019eac3
DE
21364/* Return the .debug_loc section to use for CU.
21365 For DWO files use .debug_loc.dwo. */
21366
21367static struct dwarf2_section_info *
21368cu_debug_loc_section (struct dwarf2_cu *cu)
21369{
21370 if (cu->dwo_unit)
21371 return &cu->dwo_unit->dwo_file->sections.loc;
21372 return &dwarf2_per_objfile->loc;
21373}
21374
8cf6f0b1
TT
21375/* A helper function that fills in a dwarf2_loclist_baton. */
21376
21377static void
21378fill_in_loclist_baton (struct dwarf2_cu *cu,
21379 struct dwarf2_loclist_baton *baton,
ff39bb5e 21380 const struct attribute *attr)
8cf6f0b1 21381{
3019eac3
DE
21382 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21383
21384 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
21385
21386 baton->per_cu = cu->per_cu;
21387 gdb_assert (baton->per_cu);
21388 /* We don't know how long the location list is, but make sure we
21389 don't run off the edge of the section. */
3019eac3
DE
21390 baton->size = section->size - DW_UNSND (attr);
21391 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 21392 baton->base_address = cu->base_address;
f664829e 21393 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
21394}
21395
4c2df51b 21396static void
ff39bb5e 21397dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 21398 struct dwarf2_cu *cu, int is_block)
4c2df51b 21399{
bb5ed363 21400 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 21401 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 21402
3690dd37 21403 if (attr_form_is_section_offset (attr)
3019eac3 21404 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
21405 the section. If so, fall through to the complaint in the
21406 other branch. */
3019eac3 21407 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 21408 {
0d53c4c4 21409 struct dwarf2_loclist_baton *baton;
4c2df51b 21410
bb5ed363 21411 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 21412 sizeof (struct dwarf2_loclist_baton));
4c2df51b 21413
8cf6f0b1 21414 fill_in_loclist_baton (cu, baton, attr);
be391dca 21415
d00adf39 21416 if (cu->base_known == 0)
0d53c4c4 21417 complaint (&symfile_complaints,
3e43a32a
MS
21418 _("Location list used without "
21419 "specifying the CU base address."));
4c2df51b 21420
f1e6e072
TT
21421 SYMBOL_ACLASS_INDEX (sym) = (is_block
21422 ? dwarf2_loclist_block_index
21423 : dwarf2_loclist_index);
0d53c4c4
DJ
21424 SYMBOL_LOCATION_BATON (sym) = baton;
21425 }
21426 else
21427 {
21428 struct dwarf2_locexpr_baton *baton;
21429
bb5ed363 21430 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 21431 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
21432 baton->per_cu = cu->per_cu;
21433 gdb_assert (baton->per_cu);
0d53c4c4
DJ
21434
21435 if (attr_form_is_block (attr))
21436 {
21437 /* Note that we're just copying the block's data pointer
21438 here, not the actual data. We're still pointing into the
6502dd73
DJ
21439 info_buffer for SYM's objfile; right now we never release
21440 that buffer, but when we do clean up properly this may
21441 need to change. */
0d53c4c4
DJ
21442 baton->size = DW_BLOCK (attr)->size;
21443 baton->data = DW_BLOCK (attr)->data;
21444 }
21445 else
21446 {
21447 dwarf2_invalid_attrib_class_complaint ("location description",
21448 SYMBOL_NATURAL_NAME (sym));
21449 baton->size = 0;
0d53c4c4 21450 }
6e70227d 21451
f1e6e072
TT
21452 SYMBOL_ACLASS_INDEX (sym) = (is_block
21453 ? dwarf2_locexpr_block_index
21454 : dwarf2_locexpr_index);
0d53c4c4
DJ
21455 SYMBOL_LOCATION_BATON (sym) = baton;
21456 }
4c2df51b 21457}
6502dd73 21458
9aa1f1e3
TT
21459/* Return the OBJFILE associated with the compilation unit CU. If CU
21460 came from a separate debuginfo file, then the master objfile is
21461 returned. */
ae0d2f24
UW
21462
21463struct objfile *
21464dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21465{
9291a0cd 21466 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
21467
21468 /* Return the master objfile, so that we can report and look up the
21469 correct file containing this variable. */
21470 if (objfile->separate_debug_objfile_backlink)
21471 objfile = objfile->separate_debug_objfile_backlink;
21472
21473 return objfile;
21474}
21475
96408a79
SA
21476/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21477 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21478 CU_HEADERP first. */
21479
21480static const struct comp_unit_head *
21481per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21482 struct dwarf2_per_cu_data *per_cu)
21483{
d521ce57 21484 const gdb_byte *info_ptr;
96408a79
SA
21485
21486 if (per_cu->cu)
21487 return &per_cu->cu->header;
21488
8a0459fd 21489 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
21490
21491 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 21492 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
21493
21494 return cu_headerp;
21495}
21496
ae0d2f24
UW
21497/* Return the address size given in the compilation unit header for CU. */
21498
98714339 21499int
ae0d2f24
UW
21500dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21501{
96408a79
SA
21502 struct comp_unit_head cu_header_local;
21503 const struct comp_unit_head *cu_headerp;
c471e790 21504
96408a79
SA
21505 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21506
21507 return cu_headerp->addr_size;
ae0d2f24
UW
21508}
21509
9eae7c52
TT
21510/* Return the offset size given in the compilation unit header for CU. */
21511
21512int
21513dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21514{
96408a79
SA
21515 struct comp_unit_head cu_header_local;
21516 const struct comp_unit_head *cu_headerp;
9c6c53f7 21517
96408a79
SA
21518 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21519
21520 return cu_headerp->offset_size;
21521}
21522
21523/* See its dwarf2loc.h declaration. */
21524
21525int
21526dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21527{
21528 struct comp_unit_head cu_header_local;
21529 const struct comp_unit_head *cu_headerp;
21530
21531 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21532
21533 if (cu_headerp->version == 2)
21534 return cu_headerp->addr_size;
21535 else
21536 return cu_headerp->offset_size;
181cebd4
JK
21537}
21538
9aa1f1e3
TT
21539/* Return the text offset of the CU. The returned offset comes from
21540 this CU's objfile. If this objfile came from a separate debuginfo
21541 file, then the offset may be different from the corresponding
21542 offset in the parent objfile. */
21543
21544CORE_ADDR
21545dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21546{
bb3fa9d0 21547 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
21548
21549 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21550}
21551
348e048f
DE
21552/* Locate the .debug_info compilation unit from CU's objfile which contains
21553 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
21554
21555static struct dwarf2_per_cu_data *
b64f50a1 21556dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 21557 unsigned int offset_in_dwz,
ae038cb0
DJ
21558 struct objfile *objfile)
21559{
21560 struct dwarf2_per_cu_data *this_cu;
21561 int low, high;
36586728 21562 const sect_offset *cu_off;
ae038cb0 21563
ae038cb0
DJ
21564 low = 0;
21565 high = dwarf2_per_objfile->n_comp_units - 1;
21566 while (high > low)
21567 {
36586728 21568 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 21569 int mid = low + (high - low) / 2;
9a619af0 21570
36586728
TT
21571 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21572 cu_off = &mid_cu->offset;
21573 if (mid_cu->is_dwz > offset_in_dwz
21574 || (mid_cu->is_dwz == offset_in_dwz
21575 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
21576 high = mid;
21577 else
21578 low = mid + 1;
21579 }
21580 gdb_assert (low == high);
36586728
TT
21581 this_cu = dwarf2_per_objfile->all_comp_units[low];
21582 cu_off = &this_cu->offset;
21583 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 21584 {
36586728 21585 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
21586 error (_("Dwarf Error: could not find partial DIE containing "
21587 "offset 0x%lx [in module %s]"),
b64f50a1 21588 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 21589
b64f50a1
JK
21590 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21591 <= offset.sect_off);
ae038cb0
DJ
21592 return dwarf2_per_objfile->all_comp_units[low-1];
21593 }
21594 else
21595 {
21596 this_cu = dwarf2_per_objfile->all_comp_units[low];
21597 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
21598 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21599 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21600 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
21601 return this_cu;
21602 }
21603}
21604
23745b47 21605/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 21606
9816fde3 21607static void
23745b47 21608init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 21609{
9816fde3 21610 memset (cu, 0, sizeof (*cu));
23745b47
DE
21611 per_cu->cu = cu;
21612 cu->per_cu = per_cu;
21613 cu->objfile = per_cu->objfile;
93311388 21614 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
21615}
21616
21617/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21618
21619static void
95554aad
TT
21620prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21621 enum language pretend_language)
9816fde3
JK
21622{
21623 struct attribute *attr;
21624
21625 /* Set the language we're debugging. */
21626 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21627 if (attr)
21628 set_cu_language (DW_UNSND (attr), cu);
21629 else
9cded63f 21630 {
95554aad 21631 cu->language = pretend_language;
9cded63f
TT
21632 cu->language_defn = language_def (cu->language);
21633 }
dee91e82
DE
21634
21635 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21636 if (attr)
21637 cu->producer = DW_STRING (attr);
93311388
DE
21638}
21639
ae038cb0
DJ
21640/* Release one cached compilation unit, CU. We unlink it from the tree
21641 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
21642 the caller is responsible for that.
21643 NOTE: DATA is a void * because this function is also used as a
21644 cleanup routine. */
ae038cb0
DJ
21645
21646static void
68dc6402 21647free_heap_comp_unit (void *data)
ae038cb0
DJ
21648{
21649 struct dwarf2_cu *cu = data;
21650
23745b47
DE
21651 gdb_assert (cu->per_cu != NULL);
21652 cu->per_cu->cu = NULL;
ae038cb0
DJ
21653 cu->per_cu = NULL;
21654
21655 obstack_free (&cu->comp_unit_obstack, NULL);
21656
21657 xfree (cu);
21658}
21659
72bf9492 21660/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 21661 when we're finished with it. We can't free the pointer itself, but be
dee91e82 21662 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
21663
21664static void
21665free_stack_comp_unit (void *data)
21666{
21667 struct dwarf2_cu *cu = data;
21668
23745b47
DE
21669 gdb_assert (cu->per_cu != NULL);
21670 cu->per_cu->cu = NULL;
21671 cu->per_cu = NULL;
21672
72bf9492
DJ
21673 obstack_free (&cu->comp_unit_obstack, NULL);
21674 cu->partial_dies = NULL;
ae038cb0
DJ
21675}
21676
21677/* Free all cached compilation units. */
21678
21679static void
21680free_cached_comp_units (void *data)
21681{
21682 struct dwarf2_per_cu_data *per_cu, **last_chain;
21683
21684 per_cu = dwarf2_per_objfile->read_in_chain;
21685 last_chain = &dwarf2_per_objfile->read_in_chain;
21686 while (per_cu != NULL)
21687 {
21688 struct dwarf2_per_cu_data *next_cu;
21689
21690 next_cu = per_cu->cu->read_in_chain;
21691
68dc6402 21692 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
21693 *last_chain = next_cu;
21694
21695 per_cu = next_cu;
21696 }
21697}
21698
21699/* Increase the age counter on each cached compilation unit, and free
21700 any that are too old. */
21701
21702static void
21703age_cached_comp_units (void)
21704{
21705 struct dwarf2_per_cu_data *per_cu, **last_chain;
21706
21707 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21708 per_cu = dwarf2_per_objfile->read_in_chain;
21709 while (per_cu != NULL)
21710 {
21711 per_cu->cu->last_used ++;
21712 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21713 dwarf2_mark (per_cu->cu);
21714 per_cu = per_cu->cu->read_in_chain;
21715 }
21716
21717 per_cu = dwarf2_per_objfile->read_in_chain;
21718 last_chain = &dwarf2_per_objfile->read_in_chain;
21719 while (per_cu != NULL)
21720 {
21721 struct dwarf2_per_cu_data *next_cu;
21722
21723 next_cu = per_cu->cu->read_in_chain;
21724
21725 if (!per_cu->cu->mark)
21726 {
68dc6402 21727 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
21728 *last_chain = next_cu;
21729 }
21730 else
21731 last_chain = &per_cu->cu->read_in_chain;
21732
21733 per_cu = next_cu;
21734 }
21735}
21736
21737/* Remove a single compilation unit from the cache. */
21738
21739static void
dee91e82 21740free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
21741{
21742 struct dwarf2_per_cu_data *per_cu, **last_chain;
21743
21744 per_cu = dwarf2_per_objfile->read_in_chain;
21745 last_chain = &dwarf2_per_objfile->read_in_chain;
21746 while (per_cu != NULL)
21747 {
21748 struct dwarf2_per_cu_data *next_cu;
21749
21750 next_cu = per_cu->cu->read_in_chain;
21751
dee91e82 21752 if (per_cu == target_per_cu)
ae038cb0 21753 {
68dc6402 21754 free_heap_comp_unit (per_cu->cu);
dee91e82 21755 per_cu->cu = NULL;
ae038cb0
DJ
21756 *last_chain = next_cu;
21757 break;
21758 }
21759 else
21760 last_chain = &per_cu->cu->read_in_chain;
21761
21762 per_cu = next_cu;
21763 }
21764}
21765
fe3e1990
DJ
21766/* Release all extra memory associated with OBJFILE. */
21767
21768void
21769dwarf2_free_objfile (struct objfile *objfile)
21770{
21771 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21772
21773 if (dwarf2_per_objfile == NULL)
21774 return;
21775
21776 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21777 free_cached_comp_units (NULL);
21778
7b9f3c50
DE
21779 if (dwarf2_per_objfile->quick_file_names_table)
21780 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 21781
fe3e1990
DJ
21782 /* Everything else should be on the objfile obstack. */
21783}
21784
dee91e82
DE
21785/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21786 We store these in a hash table separate from the DIEs, and preserve them
21787 when the DIEs are flushed out of cache.
21788
21789 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 21790 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
21791 or the type may come from a DWO file. Furthermore, while it's more logical
21792 to use per_cu->section+offset, with Fission the section with the data is in
21793 the DWO file but we don't know that section at the point we need it.
21794 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21795 because we can enter the lookup routine, get_die_type_at_offset, from
21796 outside this file, and thus won't necessarily have PER_CU->cu.
21797 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 21798
dee91e82 21799struct dwarf2_per_cu_offset_and_type
1c379e20 21800{
dee91e82 21801 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 21802 sect_offset offset;
1c379e20
DJ
21803 struct type *type;
21804};
21805
dee91e82 21806/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
21807
21808static hashval_t
dee91e82 21809per_cu_offset_and_type_hash (const void *item)
1c379e20 21810{
dee91e82 21811 const struct dwarf2_per_cu_offset_and_type *ofs = item;
9a619af0 21812
dee91e82 21813 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
21814}
21815
dee91e82 21816/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
21817
21818static int
dee91e82 21819per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 21820{
dee91e82
DE
21821 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21822 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
9a619af0 21823
dee91e82
DE
21824 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21825 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
21826}
21827
21828/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
21829 table if necessary. For convenience, return TYPE.
21830
21831 The DIEs reading must have careful ordering to:
21832 * Not cause infite loops trying to read in DIEs as a prerequisite for
21833 reading current DIE.
21834 * Not trying to dereference contents of still incompletely read in types
21835 while reading in other DIEs.
21836 * Enable referencing still incompletely read in types just by a pointer to
21837 the type without accessing its fields.
21838
21839 Therefore caller should follow these rules:
21840 * Try to fetch any prerequisite types we may need to build this DIE type
21841 before building the type and calling set_die_type.
e71ec853 21842 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
21843 possible before fetching more types to complete the current type.
21844 * Make the type as complete as possible before fetching more types. */
1c379e20 21845
f792889a 21846static struct type *
1c379e20
DJ
21847set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21848{
dee91e82 21849 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 21850 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
21851 struct attribute *attr;
21852 struct dynamic_prop prop;
1c379e20 21853
b4ba55a1
JB
21854 /* For Ada types, make sure that the gnat-specific data is always
21855 initialized (if not already set). There are a few types where
21856 we should not be doing so, because the type-specific area is
21857 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21858 where the type-specific area is used to store the floatformat).
21859 But this is not a problem, because the gnat-specific information
21860 is actually not needed for these types. */
21861 if (need_gnat_info (cu)
21862 && TYPE_CODE (type) != TYPE_CODE_FUNC
21863 && TYPE_CODE (type) != TYPE_CODE_FLT
21864 && !HAVE_GNAT_AUX_INFO (type))
21865 INIT_GNAT_SPECIFIC (type);
21866
3cdcd0ce
JB
21867 /* Read DW_AT_data_location and set in type. */
21868 attr = dwarf2_attr (die, DW_AT_data_location, cu);
21869 if (attr_to_dynamic_prop (attr, die, cu, &prop))
21870 {
21871 TYPE_DATA_LOCATION (type)
21872 = obstack_alloc (&objfile->objfile_obstack, sizeof (prop));
21873 *TYPE_DATA_LOCATION (type) = prop;
21874 }
21875
dee91e82 21876 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 21877 {
dee91e82
DE
21878 dwarf2_per_objfile->die_type_hash =
21879 htab_create_alloc_ex (127,
21880 per_cu_offset_and_type_hash,
21881 per_cu_offset_and_type_eq,
21882 NULL,
21883 &objfile->objfile_obstack,
21884 hashtab_obstack_allocate,
21885 dummy_obstack_deallocate);
f792889a 21886 }
1c379e20 21887
dee91e82 21888 ofs.per_cu = cu->per_cu;
1c379e20
DJ
21889 ofs.offset = die->offset;
21890 ofs.type = type;
dee91e82
DE
21891 slot = (struct dwarf2_per_cu_offset_and_type **)
21892 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
21893 if (*slot)
21894 complaint (&symfile_complaints,
21895 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 21896 die->offset.sect_off);
673bfd45 21897 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 21898 **slot = ofs;
f792889a 21899 return type;
1c379e20
DJ
21900}
21901
02142a6c
DE
21902/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21903 or return NULL if the die does not have a saved type. */
1c379e20
DJ
21904
21905static struct type *
b64f50a1 21906get_die_type_at_offset (sect_offset offset,
673bfd45 21907 struct dwarf2_per_cu_data *per_cu)
1c379e20 21908{
dee91e82 21909 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 21910
dee91e82 21911 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 21912 return NULL;
1c379e20 21913
dee91e82 21914 ofs.per_cu = per_cu;
673bfd45 21915 ofs.offset = offset;
dee91e82 21916 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
1c379e20
DJ
21917 if (slot)
21918 return slot->type;
21919 else
21920 return NULL;
21921}
21922
02142a6c 21923/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
21924 or return NULL if DIE does not have a saved type. */
21925
21926static struct type *
21927get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21928{
21929 return get_die_type_at_offset (die->offset, cu->per_cu);
21930}
21931
10b3939b
DJ
21932/* Add a dependence relationship from CU to REF_PER_CU. */
21933
21934static void
21935dwarf2_add_dependence (struct dwarf2_cu *cu,
21936 struct dwarf2_per_cu_data *ref_per_cu)
21937{
21938 void **slot;
21939
21940 if (cu->dependencies == NULL)
21941 cu->dependencies
21942 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21943 NULL, &cu->comp_unit_obstack,
21944 hashtab_obstack_allocate,
21945 dummy_obstack_deallocate);
21946
21947 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21948 if (*slot == NULL)
21949 *slot = ref_per_cu;
21950}
1c379e20 21951
f504f079
DE
21952/* Subroutine of dwarf2_mark to pass to htab_traverse.
21953 Set the mark field in every compilation unit in the
ae038cb0
DJ
21954 cache that we must keep because we are keeping CU. */
21955
10b3939b
DJ
21956static int
21957dwarf2_mark_helper (void **slot, void *data)
21958{
21959 struct dwarf2_per_cu_data *per_cu;
21960
21961 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
21962
21963 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21964 reading of the chain. As such dependencies remain valid it is not much
21965 useful to track and undo them during QUIT cleanups. */
21966 if (per_cu->cu == NULL)
21967 return 1;
21968
10b3939b
DJ
21969 if (per_cu->cu->mark)
21970 return 1;
21971 per_cu->cu->mark = 1;
21972
21973 if (per_cu->cu->dependencies != NULL)
21974 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21975
21976 return 1;
21977}
21978
f504f079
DE
21979/* Set the mark field in CU and in every other compilation unit in the
21980 cache that we must keep because we are keeping CU. */
21981
ae038cb0
DJ
21982static void
21983dwarf2_mark (struct dwarf2_cu *cu)
21984{
21985 if (cu->mark)
21986 return;
21987 cu->mark = 1;
10b3939b
DJ
21988 if (cu->dependencies != NULL)
21989 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
21990}
21991
21992static void
21993dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21994{
21995 while (per_cu)
21996 {
21997 per_cu->cu->mark = 0;
21998 per_cu = per_cu->cu->read_in_chain;
21999 }
72bf9492
DJ
22000}
22001
72bf9492
DJ
22002/* Trivial hash function for partial_die_info: the hash value of a DIE
22003 is its offset in .debug_info for this objfile. */
22004
22005static hashval_t
22006partial_die_hash (const void *item)
22007{
22008 const struct partial_die_info *part_die = item;
9a619af0 22009
b64f50a1 22010 return part_die->offset.sect_off;
72bf9492
DJ
22011}
22012
22013/* Trivial comparison function for partial_die_info structures: two DIEs
22014 are equal if they have the same offset. */
22015
22016static int
22017partial_die_eq (const void *item_lhs, const void *item_rhs)
22018{
22019 const struct partial_die_info *part_die_lhs = item_lhs;
22020 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 22021
b64f50a1 22022 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
22023}
22024
ae038cb0
DJ
22025static struct cmd_list_element *set_dwarf2_cmdlist;
22026static struct cmd_list_element *show_dwarf2_cmdlist;
22027
22028static void
22029set_dwarf2_cmd (char *args, int from_tty)
22030{
635c7e8a
TT
22031 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
22032 gdb_stdout);
ae038cb0
DJ
22033}
22034
22035static void
22036show_dwarf2_cmd (char *args, int from_tty)
6e70227d 22037{
ae038cb0
DJ
22038 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
22039}
22040
4bf44c1c 22041/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
22042
22043static void
c1bd65d0 22044dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
22045{
22046 struct dwarf2_per_objfile *data = d;
8b70b953 22047 int ix;
8b70b953 22048
626f2d1c
TT
22049 /* Make sure we don't accidentally use dwarf2_per_objfile while
22050 cleaning up. */
22051 dwarf2_per_objfile = NULL;
22052
59b0c7c1
JB
22053 for (ix = 0; ix < data->n_comp_units; ++ix)
22054 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 22055
59b0c7c1 22056 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 22057 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
22058 data->all_type_units[ix]->per_cu.imported_symtabs);
22059 xfree (data->all_type_units);
95554aad 22060
8b70b953 22061 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
22062
22063 if (data->dwo_files)
22064 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
22065 if (data->dwp_file)
22066 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
22067
22068 if (data->dwz_file && data->dwz_file->dwz_bfd)
22069 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
22070}
22071
22072\f
ae2de4f8 22073/* The "save gdb-index" command. */
9291a0cd
TT
22074
22075/* The contents of the hash table we create when building the string
22076 table. */
22077struct strtab_entry
22078{
22079 offset_type offset;
22080 const char *str;
22081};
22082
559a7a62
JK
22083/* Hash function for a strtab_entry.
22084
22085 Function is used only during write_hash_table so no index format backward
22086 compatibility is needed. */
b89be57b 22087
9291a0cd
TT
22088static hashval_t
22089hash_strtab_entry (const void *e)
22090{
22091 const struct strtab_entry *entry = e;
559a7a62 22092 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
22093}
22094
22095/* Equality function for a strtab_entry. */
b89be57b 22096
9291a0cd
TT
22097static int
22098eq_strtab_entry (const void *a, const void *b)
22099{
22100 const struct strtab_entry *ea = a;
22101 const struct strtab_entry *eb = b;
22102 return !strcmp (ea->str, eb->str);
22103}
22104
22105/* Create a strtab_entry hash table. */
b89be57b 22106
9291a0cd
TT
22107static htab_t
22108create_strtab (void)
22109{
22110 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22111 xfree, xcalloc, xfree);
22112}
22113
22114/* Add a string to the constant pool. Return the string's offset in
22115 host order. */
b89be57b 22116
9291a0cd
TT
22117static offset_type
22118add_string (htab_t table, struct obstack *cpool, const char *str)
22119{
22120 void **slot;
22121 struct strtab_entry entry;
22122 struct strtab_entry *result;
22123
22124 entry.str = str;
22125 slot = htab_find_slot (table, &entry, INSERT);
22126 if (*slot)
22127 result = *slot;
22128 else
22129 {
22130 result = XNEW (struct strtab_entry);
22131 result->offset = obstack_object_size (cpool);
22132 result->str = str;
22133 obstack_grow_str0 (cpool, str);
22134 *slot = result;
22135 }
22136 return result->offset;
22137}
22138
22139/* An entry in the symbol table. */
22140struct symtab_index_entry
22141{
22142 /* The name of the symbol. */
22143 const char *name;
22144 /* The offset of the name in the constant pool. */
22145 offset_type index_offset;
22146 /* A sorted vector of the indices of all the CUs that hold an object
22147 of this name. */
22148 VEC (offset_type) *cu_indices;
22149};
22150
22151/* The symbol table. This is a power-of-2-sized hash table. */
22152struct mapped_symtab
22153{
22154 offset_type n_elements;
22155 offset_type size;
22156 struct symtab_index_entry **data;
22157};
22158
22159/* Hash function for a symtab_index_entry. */
b89be57b 22160
9291a0cd
TT
22161static hashval_t
22162hash_symtab_entry (const void *e)
22163{
22164 const struct symtab_index_entry *entry = e;
22165 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22166 sizeof (offset_type) * VEC_length (offset_type,
22167 entry->cu_indices),
22168 0);
22169}
22170
22171/* Equality function for a symtab_index_entry. */
b89be57b 22172
9291a0cd
TT
22173static int
22174eq_symtab_entry (const void *a, const void *b)
22175{
22176 const struct symtab_index_entry *ea = a;
22177 const struct symtab_index_entry *eb = b;
22178 int len = VEC_length (offset_type, ea->cu_indices);
22179 if (len != VEC_length (offset_type, eb->cu_indices))
22180 return 0;
22181 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22182 VEC_address (offset_type, eb->cu_indices),
22183 sizeof (offset_type) * len);
22184}
22185
22186/* Destroy a symtab_index_entry. */
b89be57b 22187
9291a0cd
TT
22188static void
22189delete_symtab_entry (void *p)
22190{
22191 struct symtab_index_entry *entry = p;
22192 VEC_free (offset_type, entry->cu_indices);
22193 xfree (entry);
22194}
22195
22196/* Create a hash table holding symtab_index_entry objects. */
b89be57b 22197
9291a0cd 22198static htab_t
3876f04e 22199create_symbol_hash_table (void)
9291a0cd
TT
22200{
22201 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22202 delete_symtab_entry, xcalloc, xfree);
22203}
22204
22205/* Create a new mapped symtab object. */
b89be57b 22206
9291a0cd
TT
22207static struct mapped_symtab *
22208create_mapped_symtab (void)
22209{
22210 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22211 symtab->n_elements = 0;
22212 symtab->size = 1024;
22213 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22214 return symtab;
22215}
22216
22217/* Destroy a mapped_symtab. */
b89be57b 22218
9291a0cd
TT
22219static void
22220cleanup_mapped_symtab (void *p)
22221{
22222 struct mapped_symtab *symtab = p;
22223 /* The contents of the array are freed when the other hash table is
22224 destroyed. */
22225 xfree (symtab->data);
22226 xfree (symtab);
22227}
22228
22229/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
22230 the slot.
22231
22232 Function is used only during write_hash_table so no index format backward
22233 compatibility is needed. */
b89be57b 22234
9291a0cd
TT
22235static struct symtab_index_entry **
22236find_slot (struct mapped_symtab *symtab, const char *name)
22237{
559a7a62 22238 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
22239
22240 index = hash & (symtab->size - 1);
22241 step = ((hash * 17) & (symtab->size - 1)) | 1;
22242
22243 for (;;)
22244 {
22245 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22246 return &symtab->data[index];
22247 index = (index + step) & (symtab->size - 1);
22248 }
22249}
22250
22251/* Expand SYMTAB's hash table. */
b89be57b 22252
9291a0cd
TT
22253static void
22254hash_expand (struct mapped_symtab *symtab)
22255{
22256 offset_type old_size = symtab->size;
22257 offset_type i;
22258 struct symtab_index_entry **old_entries = symtab->data;
22259
22260 symtab->size *= 2;
22261 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22262
22263 for (i = 0; i < old_size; ++i)
22264 {
22265 if (old_entries[i])
22266 {
22267 struct symtab_index_entry **slot = find_slot (symtab,
22268 old_entries[i]->name);
22269 *slot = old_entries[i];
22270 }
22271 }
22272
22273 xfree (old_entries);
22274}
22275
156942c7
DE
22276/* Add an entry to SYMTAB. NAME is the name of the symbol.
22277 CU_INDEX is the index of the CU in which the symbol appears.
22278 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 22279
9291a0cd
TT
22280static void
22281add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 22282 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
22283 offset_type cu_index)
22284{
22285 struct symtab_index_entry **slot;
156942c7 22286 offset_type cu_index_and_attrs;
9291a0cd
TT
22287
22288 ++symtab->n_elements;
22289 if (4 * symtab->n_elements / 3 >= symtab->size)
22290 hash_expand (symtab);
22291
22292 slot = find_slot (symtab, name);
22293 if (!*slot)
22294 {
22295 *slot = XNEW (struct symtab_index_entry);
22296 (*slot)->name = name;
156942c7 22297 /* index_offset is set later. */
9291a0cd
TT
22298 (*slot)->cu_indices = NULL;
22299 }
156942c7
DE
22300
22301 cu_index_and_attrs = 0;
22302 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22303 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22304 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22305
22306 /* We don't want to record an index value twice as we want to avoid the
22307 duplication.
22308 We process all global symbols and then all static symbols
22309 (which would allow us to avoid the duplication by only having to check
22310 the last entry pushed), but a symbol could have multiple kinds in one CU.
22311 To keep things simple we don't worry about the duplication here and
22312 sort and uniqufy the list after we've processed all symbols. */
22313 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22314}
22315
22316/* qsort helper routine for uniquify_cu_indices. */
22317
22318static int
22319offset_type_compare (const void *ap, const void *bp)
22320{
22321 offset_type a = *(offset_type *) ap;
22322 offset_type b = *(offset_type *) bp;
22323
22324 return (a > b) - (b > a);
22325}
22326
22327/* Sort and remove duplicates of all symbols' cu_indices lists. */
22328
22329static void
22330uniquify_cu_indices (struct mapped_symtab *symtab)
22331{
22332 int i;
22333
22334 for (i = 0; i < symtab->size; ++i)
22335 {
22336 struct symtab_index_entry *entry = symtab->data[i];
22337
22338 if (entry
22339 && entry->cu_indices != NULL)
22340 {
22341 unsigned int next_to_insert, next_to_check;
22342 offset_type last_value;
22343
22344 qsort (VEC_address (offset_type, entry->cu_indices),
22345 VEC_length (offset_type, entry->cu_indices),
22346 sizeof (offset_type), offset_type_compare);
22347
22348 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22349 next_to_insert = 1;
22350 for (next_to_check = 1;
22351 next_to_check < VEC_length (offset_type, entry->cu_indices);
22352 ++next_to_check)
22353 {
22354 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22355 != last_value)
22356 {
22357 last_value = VEC_index (offset_type, entry->cu_indices,
22358 next_to_check);
22359 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22360 last_value);
22361 ++next_to_insert;
22362 }
22363 }
22364 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22365 }
22366 }
9291a0cd
TT
22367}
22368
22369/* Add a vector of indices to the constant pool. */
b89be57b 22370
9291a0cd 22371static offset_type
3876f04e 22372add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
22373 struct symtab_index_entry *entry)
22374{
22375 void **slot;
22376
3876f04e 22377 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
22378 if (!*slot)
22379 {
22380 offset_type len = VEC_length (offset_type, entry->cu_indices);
22381 offset_type val = MAYBE_SWAP (len);
22382 offset_type iter;
22383 int i;
22384
22385 *slot = entry;
22386 entry->index_offset = obstack_object_size (cpool);
22387
22388 obstack_grow (cpool, &val, sizeof (val));
22389 for (i = 0;
22390 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22391 ++i)
22392 {
22393 val = MAYBE_SWAP (iter);
22394 obstack_grow (cpool, &val, sizeof (val));
22395 }
22396 }
22397 else
22398 {
22399 struct symtab_index_entry *old_entry = *slot;
22400 entry->index_offset = old_entry->index_offset;
22401 entry = old_entry;
22402 }
22403 return entry->index_offset;
22404}
22405
22406/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22407 constant pool entries going into the obstack CPOOL. */
b89be57b 22408
9291a0cd
TT
22409static void
22410write_hash_table (struct mapped_symtab *symtab,
22411 struct obstack *output, struct obstack *cpool)
22412{
22413 offset_type i;
3876f04e 22414 htab_t symbol_hash_table;
9291a0cd
TT
22415 htab_t str_table;
22416
3876f04e 22417 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 22418 str_table = create_strtab ();
3876f04e 22419
9291a0cd
TT
22420 /* We add all the index vectors to the constant pool first, to
22421 ensure alignment is ok. */
22422 for (i = 0; i < symtab->size; ++i)
22423 {
22424 if (symtab->data[i])
3876f04e 22425 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
22426 }
22427
22428 /* Now write out the hash table. */
22429 for (i = 0; i < symtab->size; ++i)
22430 {
22431 offset_type str_off, vec_off;
22432
22433 if (symtab->data[i])
22434 {
22435 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22436 vec_off = symtab->data[i]->index_offset;
22437 }
22438 else
22439 {
22440 /* While 0 is a valid constant pool index, it is not valid
22441 to have 0 for both offsets. */
22442 str_off = 0;
22443 vec_off = 0;
22444 }
22445
22446 str_off = MAYBE_SWAP (str_off);
22447 vec_off = MAYBE_SWAP (vec_off);
22448
22449 obstack_grow (output, &str_off, sizeof (str_off));
22450 obstack_grow (output, &vec_off, sizeof (vec_off));
22451 }
22452
22453 htab_delete (str_table);
3876f04e 22454 htab_delete (symbol_hash_table);
9291a0cd
TT
22455}
22456
0a5429f6
DE
22457/* Struct to map psymtab to CU index in the index file. */
22458struct psymtab_cu_index_map
22459{
22460 struct partial_symtab *psymtab;
22461 unsigned int cu_index;
22462};
22463
22464static hashval_t
22465hash_psymtab_cu_index (const void *item)
22466{
22467 const struct psymtab_cu_index_map *map = item;
22468
22469 return htab_hash_pointer (map->psymtab);
22470}
22471
22472static int
22473eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22474{
22475 const struct psymtab_cu_index_map *lhs = item_lhs;
22476 const struct psymtab_cu_index_map *rhs = item_rhs;
22477
22478 return lhs->psymtab == rhs->psymtab;
22479}
22480
22481/* Helper struct for building the address table. */
22482struct addrmap_index_data
22483{
22484 struct objfile *objfile;
22485 struct obstack *addr_obstack;
22486 htab_t cu_index_htab;
22487
22488 /* Non-zero if the previous_* fields are valid.
22489 We can't write an entry until we see the next entry (since it is only then
22490 that we know the end of the entry). */
22491 int previous_valid;
22492 /* Index of the CU in the table of all CUs in the index file. */
22493 unsigned int previous_cu_index;
0963b4bd 22494 /* Start address of the CU. */
0a5429f6
DE
22495 CORE_ADDR previous_cu_start;
22496};
22497
22498/* Write an address entry to OBSTACK. */
b89be57b 22499
9291a0cd 22500static void
0a5429f6
DE
22501add_address_entry (struct objfile *objfile, struct obstack *obstack,
22502 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 22503{
0a5429f6 22504 offset_type cu_index_to_write;
948f8e3d 22505 gdb_byte addr[8];
9291a0cd
TT
22506 CORE_ADDR baseaddr;
22507
22508 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22509
0a5429f6
DE
22510 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22511 obstack_grow (obstack, addr, 8);
22512 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22513 obstack_grow (obstack, addr, 8);
22514 cu_index_to_write = MAYBE_SWAP (cu_index);
22515 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22516}
22517
22518/* Worker function for traversing an addrmap to build the address table. */
22519
22520static int
22521add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22522{
22523 struct addrmap_index_data *data = datap;
22524 struct partial_symtab *pst = obj;
0a5429f6
DE
22525
22526 if (data->previous_valid)
22527 add_address_entry (data->objfile, data->addr_obstack,
22528 data->previous_cu_start, start_addr,
22529 data->previous_cu_index);
22530
22531 data->previous_cu_start = start_addr;
22532 if (pst != NULL)
22533 {
22534 struct psymtab_cu_index_map find_map, *map;
22535 find_map.psymtab = pst;
22536 map = htab_find (data->cu_index_htab, &find_map);
22537 gdb_assert (map != NULL);
22538 data->previous_cu_index = map->cu_index;
22539 data->previous_valid = 1;
22540 }
22541 else
22542 data->previous_valid = 0;
22543
22544 return 0;
22545}
22546
22547/* Write OBJFILE's address map to OBSTACK.
22548 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22549 in the index file. */
22550
22551static void
22552write_address_map (struct objfile *objfile, struct obstack *obstack,
22553 htab_t cu_index_htab)
22554{
22555 struct addrmap_index_data addrmap_index_data;
22556
22557 /* When writing the address table, we have to cope with the fact that
22558 the addrmap iterator only provides the start of a region; we have to
22559 wait until the next invocation to get the start of the next region. */
22560
22561 addrmap_index_data.objfile = objfile;
22562 addrmap_index_data.addr_obstack = obstack;
22563 addrmap_index_data.cu_index_htab = cu_index_htab;
22564 addrmap_index_data.previous_valid = 0;
22565
22566 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22567 &addrmap_index_data);
22568
22569 /* It's highly unlikely the last entry (end address = 0xff...ff)
22570 is valid, but we should still handle it.
22571 The end address is recorded as the start of the next region, but that
22572 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22573 anyway. */
22574 if (addrmap_index_data.previous_valid)
22575 add_address_entry (objfile, obstack,
22576 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22577 addrmap_index_data.previous_cu_index);
9291a0cd
TT
22578}
22579
156942c7
DE
22580/* Return the symbol kind of PSYM. */
22581
22582static gdb_index_symbol_kind
22583symbol_kind (struct partial_symbol *psym)
22584{
22585 domain_enum domain = PSYMBOL_DOMAIN (psym);
22586 enum address_class aclass = PSYMBOL_CLASS (psym);
22587
22588 switch (domain)
22589 {
22590 case VAR_DOMAIN:
22591 switch (aclass)
22592 {
22593 case LOC_BLOCK:
22594 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22595 case LOC_TYPEDEF:
22596 return GDB_INDEX_SYMBOL_KIND_TYPE;
22597 case LOC_COMPUTED:
22598 case LOC_CONST_BYTES:
22599 case LOC_OPTIMIZED_OUT:
22600 case LOC_STATIC:
22601 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22602 case LOC_CONST:
22603 /* Note: It's currently impossible to recognize psyms as enum values
22604 short of reading the type info. For now punt. */
22605 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22606 default:
22607 /* There are other LOC_FOO values that one might want to classify
22608 as variables, but dwarf2read.c doesn't currently use them. */
22609 return GDB_INDEX_SYMBOL_KIND_OTHER;
22610 }
22611 case STRUCT_DOMAIN:
22612 return GDB_INDEX_SYMBOL_KIND_TYPE;
22613 default:
22614 return GDB_INDEX_SYMBOL_KIND_OTHER;
22615 }
22616}
22617
9291a0cd 22618/* Add a list of partial symbols to SYMTAB. */
b89be57b 22619
9291a0cd
TT
22620static void
22621write_psymbols (struct mapped_symtab *symtab,
987d643c 22622 htab_t psyms_seen,
9291a0cd
TT
22623 struct partial_symbol **psymp,
22624 int count,
987d643c
TT
22625 offset_type cu_index,
22626 int is_static)
9291a0cd
TT
22627{
22628 for (; count-- > 0; ++psymp)
22629 {
156942c7
DE
22630 struct partial_symbol *psym = *psymp;
22631 void **slot;
987d643c 22632
156942c7 22633 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 22634 error (_("Ada is not currently supported by the index"));
987d643c 22635
987d643c 22636 /* Only add a given psymbol once. */
156942c7 22637 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
22638 if (!*slot)
22639 {
156942c7
DE
22640 gdb_index_symbol_kind kind = symbol_kind (psym);
22641
22642 *slot = psym;
22643 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22644 is_static, kind, cu_index);
987d643c 22645 }
9291a0cd
TT
22646 }
22647}
22648
22649/* Write the contents of an ("unfinished") obstack to FILE. Throw an
22650 exception if there is an error. */
b89be57b 22651
9291a0cd
TT
22652static void
22653write_obstack (FILE *file, struct obstack *obstack)
22654{
22655 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22656 file)
22657 != obstack_object_size (obstack))
22658 error (_("couldn't data write to file"));
22659}
22660
22661/* Unlink a file if the argument is not NULL. */
b89be57b 22662
9291a0cd
TT
22663static void
22664unlink_if_set (void *p)
22665{
22666 char **filename = p;
22667 if (*filename)
22668 unlink (*filename);
22669}
22670
1fd400ff
TT
22671/* A helper struct used when iterating over debug_types. */
22672struct signatured_type_index_data
22673{
22674 struct objfile *objfile;
22675 struct mapped_symtab *symtab;
22676 struct obstack *types_list;
987d643c 22677 htab_t psyms_seen;
1fd400ff
TT
22678 int cu_index;
22679};
22680
22681/* A helper function that writes a single signatured_type to an
22682 obstack. */
b89be57b 22683
1fd400ff
TT
22684static int
22685write_one_signatured_type (void **slot, void *d)
22686{
22687 struct signatured_type_index_data *info = d;
22688 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 22689 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
22690 gdb_byte val[8];
22691
22692 write_psymbols (info->symtab,
987d643c 22693 info->psyms_seen,
3e43a32a
MS
22694 info->objfile->global_psymbols.list
22695 + psymtab->globals_offset,
987d643c
TT
22696 psymtab->n_global_syms, info->cu_index,
22697 0);
1fd400ff 22698 write_psymbols (info->symtab,
987d643c 22699 info->psyms_seen,
3e43a32a
MS
22700 info->objfile->static_psymbols.list
22701 + psymtab->statics_offset,
987d643c
TT
22702 psymtab->n_static_syms, info->cu_index,
22703 1);
1fd400ff 22704
b64f50a1
JK
22705 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22706 entry->per_cu.offset.sect_off);
1fd400ff 22707 obstack_grow (info->types_list, val, 8);
3019eac3
DE
22708 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22709 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
22710 obstack_grow (info->types_list, val, 8);
22711 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22712 obstack_grow (info->types_list, val, 8);
22713
22714 ++info->cu_index;
22715
22716 return 1;
22717}
22718
95554aad
TT
22719/* Recurse into all "included" dependencies and write their symbols as
22720 if they appeared in this psymtab. */
22721
22722static void
22723recursively_write_psymbols (struct objfile *objfile,
22724 struct partial_symtab *psymtab,
22725 struct mapped_symtab *symtab,
22726 htab_t psyms_seen,
22727 offset_type cu_index)
22728{
22729 int i;
22730
22731 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22732 if (psymtab->dependencies[i]->user != NULL)
22733 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22734 symtab, psyms_seen, cu_index);
22735
22736 write_psymbols (symtab,
22737 psyms_seen,
22738 objfile->global_psymbols.list + psymtab->globals_offset,
22739 psymtab->n_global_syms, cu_index,
22740 0);
22741 write_psymbols (symtab,
22742 psyms_seen,
22743 objfile->static_psymbols.list + psymtab->statics_offset,
22744 psymtab->n_static_syms, cu_index,
22745 1);
22746}
22747
9291a0cd 22748/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 22749
9291a0cd
TT
22750static void
22751write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22752{
22753 struct cleanup *cleanup;
22754 char *filename, *cleanup_filename;
1fd400ff
TT
22755 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22756 struct obstack cu_list, types_cu_list;
9291a0cd
TT
22757 int i;
22758 FILE *out_file;
22759 struct mapped_symtab *symtab;
22760 offset_type val, size_of_contents, total_len;
22761 struct stat st;
987d643c 22762 htab_t psyms_seen;
0a5429f6
DE
22763 htab_t cu_index_htab;
22764 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 22765
9291a0cd
TT
22766 if (dwarf2_per_objfile->using_index)
22767 error (_("Cannot use an index to create the index"));
22768
8b70b953
TT
22769 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22770 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22771
260b681b
DE
22772 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22773 return;
22774
4262abfb
JK
22775 if (stat (objfile_name (objfile), &st) < 0)
22776 perror_with_name (objfile_name (objfile));
9291a0cd 22777
4262abfb 22778 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
22779 INDEX_SUFFIX, (char *) NULL);
22780 cleanup = make_cleanup (xfree, filename);
22781
614c279d 22782 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
22783 if (!out_file)
22784 error (_("Can't open `%s' for writing"), filename);
22785
22786 cleanup_filename = filename;
22787 make_cleanup (unlink_if_set, &cleanup_filename);
22788
22789 symtab = create_mapped_symtab ();
22790 make_cleanup (cleanup_mapped_symtab, symtab);
22791
22792 obstack_init (&addr_obstack);
22793 make_cleanup_obstack_free (&addr_obstack);
22794
22795 obstack_init (&cu_list);
22796 make_cleanup_obstack_free (&cu_list);
22797
1fd400ff
TT
22798 obstack_init (&types_cu_list);
22799 make_cleanup_obstack_free (&types_cu_list);
22800
987d643c
TT
22801 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22802 NULL, xcalloc, xfree);
96408a79 22803 make_cleanup_htab_delete (psyms_seen);
987d643c 22804
0a5429f6
DE
22805 /* While we're scanning CU's create a table that maps a psymtab pointer
22806 (which is what addrmap records) to its index (which is what is recorded
22807 in the index file). This will later be needed to write the address
22808 table. */
22809 cu_index_htab = htab_create_alloc (100,
22810 hash_psymtab_cu_index,
22811 eq_psymtab_cu_index,
22812 NULL, xcalloc, xfree);
96408a79 22813 make_cleanup_htab_delete (cu_index_htab);
0a5429f6
DE
22814 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22815 xmalloc (sizeof (struct psymtab_cu_index_map)
22816 * dwarf2_per_objfile->n_comp_units);
22817 make_cleanup (xfree, psymtab_cu_index_map);
22818
22819 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
22820 work here. Also, the debug_types entries do not appear in
22821 all_comp_units, but only in their own hash table. */
9291a0cd
TT
22822 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22823 {
3e43a32a
MS
22824 struct dwarf2_per_cu_data *per_cu
22825 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 22826 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 22827 gdb_byte val[8];
0a5429f6
DE
22828 struct psymtab_cu_index_map *map;
22829 void **slot;
9291a0cd 22830
92fac807
JK
22831 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22832 It may be referenced from a local scope but in such case it does not
22833 need to be present in .gdb_index. */
22834 if (psymtab == NULL)
22835 continue;
22836
95554aad
TT
22837 if (psymtab->user == NULL)
22838 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 22839
0a5429f6
DE
22840 map = &psymtab_cu_index_map[i];
22841 map->psymtab = psymtab;
22842 map->cu_index = i;
22843 slot = htab_find_slot (cu_index_htab, map, INSERT);
22844 gdb_assert (slot != NULL);
22845 gdb_assert (*slot == NULL);
22846 *slot = map;
9291a0cd 22847
b64f50a1
JK
22848 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22849 per_cu->offset.sect_off);
9291a0cd 22850 obstack_grow (&cu_list, val, 8);
e254ef6a 22851 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
22852 obstack_grow (&cu_list, val, 8);
22853 }
22854
0a5429f6
DE
22855 /* Dump the address map. */
22856 write_address_map (objfile, &addr_obstack, cu_index_htab);
22857
1fd400ff
TT
22858 /* Write out the .debug_type entries, if any. */
22859 if (dwarf2_per_objfile->signatured_types)
22860 {
22861 struct signatured_type_index_data sig_data;
22862
22863 sig_data.objfile = objfile;
22864 sig_data.symtab = symtab;
22865 sig_data.types_list = &types_cu_list;
987d643c 22866 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
22867 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22868 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22869 write_one_signatured_type, &sig_data);
22870 }
22871
156942c7
DE
22872 /* Now that we've processed all symbols we can shrink their cu_indices
22873 lists. */
22874 uniquify_cu_indices (symtab);
22875
9291a0cd
TT
22876 obstack_init (&constant_pool);
22877 make_cleanup_obstack_free (&constant_pool);
22878 obstack_init (&symtab_obstack);
22879 make_cleanup_obstack_free (&symtab_obstack);
22880 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22881
22882 obstack_init (&contents);
22883 make_cleanup_obstack_free (&contents);
1fd400ff 22884 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
22885 total_len = size_of_contents;
22886
22887 /* The version number. */
796a7ff8 22888 val = MAYBE_SWAP (8);
9291a0cd
TT
22889 obstack_grow (&contents, &val, sizeof (val));
22890
22891 /* The offset of the CU list from the start of the file. */
22892 val = MAYBE_SWAP (total_len);
22893 obstack_grow (&contents, &val, sizeof (val));
22894 total_len += obstack_object_size (&cu_list);
22895
1fd400ff
TT
22896 /* The offset of the types CU list from the start of the file. */
22897 val = MAYBE_SWAP (total_len);
22898 obstack_grow (&contents, &val, sizeof (val));
22899 total_len += obstack_object_size (&types_cu_list);
22900
9291a0cd
TT
22901 /* The offset of the address table from the start of the file. */
22902 val = MAYBE_SWAP (total_len);
22903 obstack_grow (&contents, &val, sizeof (val));
22904 total_len += obstack_object_size (&addr_obstack);
22905
22906 /* The offset of the symbol table from the start of the file. */
22907 val = MAYBE_SWAP (total_len);
22908 obstack_grow (&contents, &val, sizeof (val));
22909 total_len += obstack_object_size (&symtab_obstack);
22910
22911 /* The offset of the constant pool from the start of the file. */
22912 val = MAYBE_SWAP (total_len);
22913 obstack_grow (&contents, &val, sizeof (val));
22914 total_len += obstack_object_size (&constant_pool);
22915
22916 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22917
22918 write_obstack (out_file, &contents);
22919 write_obstack (out_file, &cu_list);
1fd400ff 22920 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
22921 write_obstack (out_file, &addr_obstack);
22922 write_obstack (out_file, &symtab_obstack);
22923 write_obstack (out_file, &constant_pool);
22924
22925 fclose (out_file);
22926
22927 /* We want to keep the file, so we set cleanup_filename to NULL
22928 here. See unlink_if_set. */
22929 cleanup_filename = NULL;
22930
22931 do_cleanups (cleanup);
22932}
22933
90476074
TT
22934/* Implementation of the `save gdb-index' command.
22935
22936 Note that the file format used by this command is documented in the
22937 GDB manual. Any changes here must be documented there. */
11570e71 22938
9291a0cd
TT
22939static void
22940save_gdb_index_command (char *arg, int from_tty)
22941{
22942 struct objfile *objfile;
22943
22944 if (!arg || !*arg)
96d19272 22945 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
22946
22947 ALL_OBJFILES (objfile)
22948 {
22949 struct stat st;
22950
22951 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 22952 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
22953 continue;
22954
22955 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22956 if (dwarf2_per_objfile)
22957 {
22958 volatile struct gdb_exception except;
22959
22960 TRY_CATCH (except, RETURN_MASK_ERROR)
22961 {
22962 write_psymtabs_to_index (objfile, arg);
22963 }
22964 if (except.reason < 0)
22965 exception_fprintf (gdb_stderr, except,
22966 _("Error while writing index for `%s': "),
4262abfb 22967 objfile_name (objfile));
9291a0cd
TT
22968 }
22969 }
dce234bc
PP
22970}
22971
9291a0cd
TT
22972\f
22973
9eae7c52
TT
22974int dwarf2_always_disassemble;
22975
22976static void
22977show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22978 struct cmd_list_element *c, const char *value)
22979{
3e43a32a
MS
22980 fprintf_filtered (file,
22981 _("Whether to always disassemble "
22982 "DWARF expressions is %s.\n"),
9eae7c52
TT
22983 value);
22984}
22985
900e11f9
JK
22986static void
22987show_check_physname (struct ui_file *file, int from_tty,
22988 struct cmd_list_element *c, const char *value)
22989{
22990 fprintf_filtered (file,
22991 _("Whether to check \"physname\" is %s.\n"),
22992 value);
22993}
22994
6502dd73
DJ
22995void _initialize_dwarf2_read (void);
22996
22997void
22998_initialize_dwarf2_read (void)
22999{
96d19272
JK
23000 struct cmd_list_element *c;
23001
dce234bc 23002 dwarf2_objfile_data_key
c1bd65d0 23003 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 23004
1bedd215
AC
23005 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
23006Set DWARF 2 specific variables.\n\
23007Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
23008 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
23009 0/*allow-unknown*/, &maintenance_set_cmdlist);
23010
1bedd215
AC
23011 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
23012Show DWARF 2 specific variables\n\
23013Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
23014 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
23015 0/*allow-unknown*/, &maintenance_show_cmdlist);
23016
23017 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
23018 &dwarf2_max_cache_age, _("\
23019Set the upper bound on the age of cached dwarf2 compilation units."), _("\
23020Show the upper bound on the age of cached dwarf2 compilation units."), _("\
23021A higher limit means that cached compilation units will be stored\n\
23022in memory longer, and more total memory will be used. Zero disables\n\
23023caching, which can slow down startup."),
2c5b56ce 23024 NULL,
920d2a44 23025 show_dwarf2_max_cache_age,
2c5b56ce 23026 &set_dwarf2_cmdlist,
ae038cb0 23027 &show_dwarf2_cmdlist);
d97bc12b 23028
9eae7c52
TT
23029 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23030 &dwarf2_always_disassemble, _("\
23031Set whether `info address' always disassembles DWARF expressions."), _("\
23032Show whether `info address' always disassembles DWARF expressions."), _("\
23033When enabled, DWARF expressions are always printed in an assembly-like\n\
23034syntax. When disabled, expressions will be printed in a more\n\
23035conversational style, when possible."),
23036 NULL,
23037 show_dwarf2_always_disassemble,
23038 &set_dwarf2_cmdlist,
23039 &show_dwarf2_cmdlist);
23040
73be47f5 23041 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
45cfd468
DE
23042Set debugging of the dwarf2 reader."), _("\
23043Show debugging of the dwarf2 reader."), _("\
73be47f5
DE
23044When enabled (non-zero), debugging messages are printed during dwarf2\n\
23045reading and symtab expansion. A value of 1 (one) provides basic\n\
23046information. A value greater than 1 provides more verbose information."),
45cfd468
DE
23047 NULL,
23048 NULL,
23049 &setdebuglist, &showdebuglist);
23050
ccce17b0 23051 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
d97bc12b
DE
23052Set debugging of the dwarf2 DIE reader."), _("\
23053Show debugging of the dwarf2 DIE reader."), _("\
23054When enabled (non-zero), DIEs are dumped after they are read in.\n\
23055The value is the maximum depth to print."),
ccce17b0
YQ
23056 NULL,
23057 NULL,
23058 &setdebuglist, &showdebuglist);
9291a0cd 23059
900e11f9
JK
23060 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23061Set cross-checking of \"physname\" code against demangler."), _("\
23062Show cross-checking of \"physname\" code against demangler."), _("\
23063When enabled, GDB's internal \"physname\" code is checked against\n\
23064the demangler."),
23065 NULL, show_check_physname,
23066 &setdebuglist, &showdebuglist);
23067
e615022a
DE
23068 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23069 no_class, &use_deprecated_index_sections, _("\
23070Set whether to use deprecated gdb_index sections."), _("\
23071Show whether to use deprecated gdb_index sections."), _("\
23072When enabled, deprecated .gdb_index sections are used anyway.\n\
23073Normally they are ignored either because of a missing feature or\n\
23074performance issue.\n\
23075Warning: This option must be enabled before gdb reads the file."),
23076 NULL,
23077 NULL,
23078 &setlist, &showlist);
23079
96d19272 23080 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 23081 _("\
fc1a9d6e 23082Save a gdb-index file.\n\
11570e71 23083Usage: save gdb-index DIRECTORY"),
96d19272
JK
23084 &save_cmdlist);
23085 set_cmd_completer (c, filename_completer);
f1e6e072
TT
23086
23087 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23088 &dwarf2_locexpr_funcs);
23089 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23090 &dwarf2_loclist_funcs);
23091
23092 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23093 &dwarf2_block_frame_base_locexpr_funcs);
23094 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23095 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 23096}
This page took 3.327519 seconds and 4 git commands to generate.