* gdb.ada/array_bounds/bar.adb: New file.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
6aba47ca 3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
9b254dd1 4 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
c906108c
SS
5
6 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
7 Inc. with support from Florida State University (under contract
8 with the Ada Joint Program Office), and Silicon Graphics, Inc.
9 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
10 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 11 support.
c906108c 12
c5aa993b 13 This file is part of GDB.
c906108c 14
c5aa993b
JM
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
a9762ec7
JB
17 the Free Software Foundation; either version 3 of the License, or
18 (at your option) any later version.
c906108c 19
a9762ec7
JB
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
c906108c 24
c5aa993b 25 You should have received a copy of the GNU General Public License
a9762ec7 26 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
27
28#include "defs.h"
29#include "bfd.h"
c906108c
SS
30#include "symtab.h"
31#include "gdbtypes.h"
c906108c
SS
32#include "objfiles.h"
33#include "elf/dwarf2.h"
34#include "buildsym.h"
35#include "demangle.h"
36#include "expression.h"
d5166ae1 37#include "filenames.h" /* for DOSish file names */
2e276125 38#include "macrotab.h"
c906108c
SS
39#include "language.h"
40#include "complaints.h"
357e46e7 41#include "bcache.h"
4c2df51b
DJ
42#include "dwarf2expr.h"
43#include "dwarf2loc.h"
9219021c 44#include "cp-support.h"
72bf9492 45#include "hashtab.h"
ae038cb0
DJ
46#include "command.h"
47#include "gdbcmd.h"
4c2df51b 48
c906108c
SS
49#include <fcntl.h>
50#include "gdb_string.h"
4bdf3d34 51#include "gdb_assert.h"
c906108c
SS
52#include <sys/types.h>
53
d8151005
DJ
54/* A note on memory usage for this file.
55
56 At the present time, this code reads the debug info sections into
57 the objfile's objfile_obstack. A definite improvement for startup
58 time, on platforms which do not emit relocations for debug
59 sections, would be to use mmap instead. The object's complete
60 debug information is loaded into memory, partly to simplify
61 absolute DIE references.
62
63 Whether using obstacks or mmap, the sections should remain loaded
64 until the objfile is released, and pointers into the section data
65 can be used for any other data associated to the objfile (symbol
66 names, type names, location expressions to name a few). */
67
107d2387 68#if 0
357e46e7 69/* .debug_info header for a compilation unit
c906108c
SS
70 Because of alignment constraints, this structure has padding and cannot
71 be mapped directly onto the beginning of the .debug_info section. */
72typedef struct comp_unit_header
73 {
74 unsigned int length; /* length of the .debug_info
75 contribution */
76 unsigned short version; /* version number -- 2 for DWARF
77 version 2 */
78 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
79 unsigned char addr_size; /* byte size of an address -- 4 */
80 }
81_COMP_UNIT_HEADER;
82#define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
107d2387 83#endif
c906108c
SS
84
85/* .debug_pubnames header
86 Because of alignment constraints, this structure has padding and cannot
87 be mapped directly onto the beginning of the .debug_info section. */
88typedef struct pubnames_header
89 {
90 unsigned int length; /* length of the .debug_pubnames
91 contribution */
92 unsigned char version; /* version number -- 2 for DWARF
93 version 2 */
94 unsigned int info_offset; /* offset into .debug_info section */
95 unsigned int info_size; /* byte size of .debug_info section
96 portion */
97 }
98_PUBNAMES_HEADER;
99#define _ACTUAL_PUBNAMES_HEADER_SIZE 13
100
101/* .debug_pubnames header
102 Because of alignment constraints, this structure has padding and cannot
103 be mapped directly onto the beginning of the .debug_info section. */
104typedef struct aranges_header
105 {
106 unsigned int length; /* byte len of the .debug_aranges
107 contribution */
108 unsigned short version; /* version number -- 2 for DWARF
109 version 2 */
110 unsigned int info_offset; /* offset into .debug_info section */
111 unsigned char addr_size; /* byte size of an address */
112 unsigned char seg_size; /* byte size of segment descriptor */
113 }
114_ARANGES_HEADER;
115#define _ACTUAL_ARANGES_HEADER_SIZE 12
116
117/* .debug_line statement program prologue
118 Because of alignment constraints, this structure has padding and cannot
119 be mapped directly onto the beginning of the .debug_info section. */
120typedef struct statement_prologue
121 {
122 unsigned int total_length; /* byte length of the statement
123 information */
124 unsigned short version; /* version number -- 2 for DWARF
125 version 2 */
126 unsigned int prologue_length; /* # bytes between prologue &
127 stmt program */
128 unsigned char minimum_instruction_length; /* byte size of
129 smallest instr */
130 unsigned char default_is_stmt; /* initial value of is_stmt
131 register */
132 char line_base;
133 unsigned char line_range;
134 unsigned char opcode_base; /* number assigned to first special
135 opcode */
136 unsigned char *standard_opcode_lengths;
137 }
138_STATEMENT_PROLOGUE;
139
6502dd73
DJ
140static const struct objfile_data *dwarf2_objfile_data_key;
141
142struct dwarf2_per_objfile
143{
144 /* Sizes of debugging sections. */
145 unsigned int info_size;
146 unsigned int abbrev_size;
147 unsigned int line_size;
148 unsigned int pubnames_size;
149 unsigned int aranges_size;
150 unsigned int loc_size;
151 unsigned int macinfo_size;
152 unsigned int str_size;
153 unsigned int ranges_size;
154 unsigned int frame_size;
155 unsigned int eh_frame_size;
156
157 /* Loaded data from the sections. */
fe1b8b76
JB
158 gdb_byte *info_buffer;
159 gdb_byte *abbrev_buffer;
160 gdb_byte *line_buffer;
161 gdb_byte *str_buffer;
162 gdb_byte *macinfo_buffer;
163 gdb_byte *ranges_buffer;
164 gdb_byte *loc_buffer;
ae038cb0 165
10b3939b
DJ
166 /* A list of all the compilation units. This is used to locate
167 the target compilation unit of a particular reference. */
ae038cb0
DJ
168 struct dwarf2_per_cu_data **all_comp_units;
169
170 /* The number of compilation units in ALL_COMP_UNITS. */
171 int n_comp_units;
172
173 /* A chain of compilation units that are currently read in, so that
174 they can be freed later. */
175 struct dwarf2_per_cu_data *read_in_chain;
72dca2f5
FR
176
177 /* A flag indicating wether this objfile has a section loaded at a
178 VMA of 0. */
179 int has_section_at_zero;
6502dd73
DJ
180};
181
182static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 183
086df311
DJ
184static asection *dwarf_info_section;
185static asection *dwarf_abbrev_section;
186static asection *dwarf_line_section;
187static asection *dwarf_pubnames_section;
188static asection *dwarf_aranges_section;
189static asection *dwarf_loc_section;
190static asection *dwarf_macinfo_section;
191static asection *dwarf_str_section;
192static asection *dwarf_ranges_section;
193asection *dwarf_frame_section;
194asection *dwarf_eh_frame_section;
195
c906108c
SS
196/* names of the debugging sections */
197
198#define INFO_SECTION ".debug_info"
199#define ABBREV_SECTION ".debug_abbrev"
200#define LINE_SECTION ".debug_line"
201#define PUBNAMES_SECTION ".debug_pubnames"
202#define ARANGES_SECTION ".debug_aranges"
203#define LOC_SECTION ".debug_loc"
204#define MACINFO_SECTION ".debug_macinfo"
205#define STR_SECTION ".debug_str"
af34e669 206#define RANGES_SECTION ".debug_ranges"
b6af0555
JS
207#define FRAME_SECTION ".debug_frame"
208#define EH_FRAME_SECTION ".eh_frame"
c906108c
SS
209
210/* local data types */
211
57349743
JB
212/* We hold several abbreviation tables in memory at the same time. */
213#ifndef ABBREV_HASH_SIZE
214#define ABBREV_HASH_SIZE 121
215#endif
216
107d2387
AC
217/* The data in a compilation unit header, after target2host
218 translation, looks like this. */
c906108c 219struct comp_unit_head
a738430d
MK
220{
221 unsigned long length;
222 short version;
223 unsigned int abbrev_offset;
224 unsigned char addr_size;
225 unsigned char signed_addr_p;
57349743 226
a738430d
MK
227 /* Size of file offsets; either 4 or 8. */
228 unsigned int offset_size;
57349743 229
a738430d
MK
230 /* Size of the length field; either 4 or 12. */
231 unsigned int initial_length_size;
57349743 232
a738430d
MK
233 /* Offset to the first byte of this compilation unit header in the
234 .debug_info section, for resolving relative reference dies. */
235 unsigned int offset;
57349743 236
a738430d
MK
237 /* Pointer to this compilation unit header in the .debug_info
238 section. */
fe1b8b76 239 gdb_byte *cu_head_ptr;
57349743 240
a738430d
MK
241 /* Pointer to the first die of this compilation unit. This will be
242 the first byte following the compilation unit header. */
fe1b8b76 243 gdb_byte *first_die_ptr;
af34e669 244
a738430d
MK
245 /* Pointer to the next compilation unit header in the program. */
246 struct comp_unit_head *next;
0d53c4c4 247
a738430d
MK
248 /* Base address of this compilation unit. */
249 CORE_ADDR base_address;
0d53c4c4 250
a738430d
MK
251 /* Non-zero if base_address has been set. */
252 int base_known;
253};
c906108c 254
10b3939b
DJ
255/* Fixed size for the DIE hash table. */
256#ifndef REF_HASH_SIZE
257#define REF_HASH_SIZE 1021
258#endif
259
e7c27a73
DJ
260/* Internal state when decoding a particular compilation unit. */
261struct dwarf2_cu
262{
263 /* The objfile containing this compilation unit. */
264 struct objfile *objfile;
265
266 /* The header of the compilation unit.
267
268 FIXME drow/2003-11-10: Some of the things from the comp_unit_head
f3dd6933 269 should logically be moved to the dwarf2_cu structure. */
e7c27a73 270 struct comp_unit_head header;
e142c38c
DJ
271
272 struct function_range *first_fn, *last_fn, *cached_fn;
273
274 /* The language we are debugging. */
275 enum language language;
276 const struct language_defn *language_defn;
277
b0f35d58
DL
278 const char *producer;
279
e142c38c
DJ
280 /* The generic symbol table building routines have separate lists for
281 file scope symbols and all all other scopes (local scopes). So
282 we need to select the right one to pass to add_symbol_to_list().
283 We do it by keeping a pointer to the correct list in list_in_scope.
284
285 FIXME: The original dwarf code just treated the file scope as the
286 first local scope, and all other local scopes as nested local
287 scopes, and worked fine. Check to see if we really need to
288 distinguish these in buildsym.c. */
289 struct pending **list_in_scope;
290
f3dd6933
DJ
291 /* DWARF abbreviation table associated with this compilation unit. */
292 struct abbrev_info **dwarf2_abbrevs;
293
294 /* Storage for the abbrev table. */
295 struct obstack abbrev_obstack;
72bf9492
DJ
296
297 /* Hash table holding all the loaded partial DIEs. */
298 htab_t partial_dies;
299
300 /* Storage for things with the same lifetime as this read-in compilation
301 unit, including partial DIEs. */
302 struct obstack comp_unit_obstack;
303
ae038cb0
DJ
304 /* When multiple dwarf2_cu structures are living in memory, this field
305 chains them all together, so that they can be released efficiently.
306 We will probably also want a generation counter so that most-recently-used
307 compilation units are cached... */
308 struct dwarf2_per_cu_data *read_in_chain;
309
310 /* Backchain to our per_cu entry if the tree has been built. */
311 struct dwarf2_per_cu_data *per_cu;
312
313 /* How many compilation units ago was this CU last referenced? */
314 int last_used;
315
10b3939b
DJ
316 /* A hash table of die offsets for following references. */
317 struct die_info *die_ref_table[REF_HASH_SIZE];
318
319 /* Full DIEs if read in. */
320 struct die_info *dies;
321
322 /* A set of pointers to dwarf2_per_cu_data objects for compilation
323 units referenced by this one. Only set during full symbol processing;
324 partial symbol tables do not have dependencies. */
325 htab_t dependencies;
326
cb1df416
DJ
327 /* Header data from the line table, during full symbol processing. */
328 struct line_header *line_header;
329
ae038cb0
DJ
330 /* Mark used when releasing cached dies. */
331 unsigned int mark : 1;
332
333 /* This flag will be set if this compilation unit might include
334 inter-compilation-unit references. */
335 unsigned int has_form_ref_addr : 1;
336
72bf9492
DJ
337 /* This flag will be set if this compilation unit includes any
338 DW_TAG_namespace DIEs. If we know that there are explicit
339 DIEs for namespaces, we don't need to try to infer them
340 from mangled names. */
341 unsigned int has_namespace_info : 1;
e7c27a73
DJ
342};
343
10b3939b
DJ
344/* Persistent data held for a compilation unit, even when not
345 processing it. We put a pointer to this structure in the
346 read_symtab_private field of the psymtab. If we encounter
347 inter-compilation-unit references, we also maintain a sorted
348 list of all compilation units. */
349
ae038cb0
DJ
350struct dwarf2_per_cu_data
351{
5afb4e99 352 /* The start offset and length of this compilation unit. 2**30-1
ae038cb0
DJ
353 bytes should suffice to store the length of any compilation unit
354 - if it doesn't, GDB will fall over anyway. */
355 unsigned long offset;
5afb4e99 356 unsigned long length : 30;
ae038cb0
DJ
357
358 /* Flag indicating this compilation unit will be read in before
359 any of the current compilation units are processed. */
360 unsigned long queued : 1;
361
5afb4e99
DJ
362 /* This flag will be set if we need to load absolutely all DIEs
363 for this compilation unit, instead of just the ones we think
364 are interesting. It gets set if we look for a DIE in the
365 hash table and don't find it. */
366 unsigned int load_all_dies : 1;
367
ae038cb0
DJ
368 /* Set iff currently read in. */
369 struct dwarf2_cu *cu;
1c379e20
DJ
370
371 /* If full symbols for this CU have been read in, then this field
372 holds a map of DIE offsets to types. It isn't always possible
373 to reconstruct this information later, so we have to preserve
374 it. */
1c379e20 375 htab_t type_hash;
10b3939b 376
31ffec48
DJ
377 /* The partial symbol table associated with this compilation unit,
378 or NULL for partial units (which do not have an associated
379 symtab). */
10b3939b 380 struct partial_symtab *psymtab;
ae038cb0
DJ
381};
382
debd256d
JB
383/* The line number information for a compilation unit (found in the
384 .debug_line section) begins with a "statement program header",
385 which contains the following information. */
386struct line_header
387{
388 unsigned int total_length;
389 unsigned short version;
390 unsigned int header_length;
391 unsigned char minimum_instruction_length;
392 unsigned char default_is_stmt;
393 int line_base;
394 unsigned char line_range;
395 unsigned char opcode_base;
396
397 /* standard_opcode_lengths[i] is the number of operands for the
398 standard opcode whose value is i. This means that
399 standard_opcode_lengths[0] is unused, and the last meaningful
400 element is standard_opcode_lengths[opcode_base - 1]. */
401 unsigned char *standard_opcode_lengths;
402
403 /* The include_directories table. NOTE! These strings are not
404 allocated with xmalloc; instead, they are pointers into
405 debug_line_buffer. If you try to free them, `free' will get
406 indigestion. */
407 unsigned int num_include_dirs, include_dirs_size;
408 char **include_dirs;
409
410 /* The file_names table. NOTE! These strings are not allocated
411 with xmalloc; instead, they are pointers into debug_line_buffer.
412 Don't try to free them directly. */
413 unsigned int num_file_names, file_names_size;
414 struct file_entry
c906108c 415 {
debd256d
JB
416 char *name;
417 unsigned int dir_index;
418 unsigned int mod_time;
419 unsigned int length;
aaa75496 420 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 421 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
422 } *file_names;
423
424 /* The start and end of the statement program following this
6502dd73 425 header. These point into dwarf2_per_objfile->line_buffer. */
fe1b8b76 426 gdb_byte *statement_program_start, *statement_program_end;
debd256d 427};
c906108c
SS
428
429/* When we construct a partial symbol table entry we only
430 need this much information. */
431struct partial_die_info
432 {
72bf9492 433 /* Offset of this DIE. */
c906108c 434 unsigned int offset;
72bf9492
DJ
435
436 /* DWARF-2 tag for this DIE. */
437 ENUM_BITFIELD(dwarf_tag) tag : 16;
438
439 /* Language code associated with this DIE. This is only used
440 for the compilation unit DIE. */
441 unsigned int language : 8;
442
443 /* Assorted flags describing the data found in this DIE. */
444 unsigned int has_children : 1;
445 unsigned int is_external : 1;
446 unsigned int is_declaration : 1;
447 unsigned int has_type : 1;
448 unsigned int has_specification : 1;
aaa75496 449 unsigned int has_stmt_list : 1;
72bf9492
DJ
450 unsigned int has_pc_info : 1;
451
452 /* Flag set if the SCOPE field of this structure has been
453 computed. */
454 unsigned int scope_set : 1;
455
fa4028e9
JB
456 /* Flag set if the DIE has a byte_size attribute. */
457 unsigned int has_byte_size : 1;
458
72bf9492
DJ
459 /* The name of this DIE. Normally the value of DW_AT_name, but
460 sometimes DW_TAG_MIPS_linkage_name or a string computed in some
461 other fashion. */
c906108c 462 char *name;
57c22c6c 463 char *dirname;
72bf9492
DJ
464
465 /* The scope to prepend to our children. This is generally
466 allocated on the comp_unit_obstack, so will disappear
467 when this compilation unit leaves the cache. */
468 char *scope;
469
470 /* The location description associated with this DIE, if any. */
471 struct dwarf_block *locdesc;
472
473 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
474 CORE_ADDR lowpc;
475 CORE_ADDR highpc;
72bf9492
DJ
476
477 /* Pointer into the info_buffer pointing at the target of
478 DW_AT_sibling, if any. */
fe1b8b76 479 gdb_byte *sibling;
72bf9492
DJ
480
481 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
482 DW_AT_specification (or DW_AT_abstract_origin or
483 DW_AT_extension). */
484 unsigned int spec_offset;
485
aaa75496
JB
486 /* If HAS_STMT_LIST, the offset of the Line Number Information data. */
487 unsigned int line_offset;
488
72bf9492
DJ
489 /* Pointers to this DIE's parent, first child, and next sibling,
490 if any. */
491 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
492 };
493
494/* This data structure holds the information of an abbrev. */
495struct abbrev_info
496 {
497 unsigned int number; /* number identifying abbrev */
498 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
499 unsigned short has_children; /* boolean */
500 unsigned short num_attrs; /* number of attributes */
c906108c
SS
501 struct attr_abbrev *attrs; /* an array of attribute descriptions */
502 struct abbrev_info *next; /* next in chain */
503 };
504
505struct attr_abbrev
506 {
507 enum dwarf_attribute name;
508 enum dwarf_form form;
509 };
510
511/* This data structure holds a complete die structure. */
512struct die_info
513 {
c5aa993b 514 enum dwarf_tag tag; /* Tag indicating type of die */
c5aa993b
JM
515 unsigned int abbrev; /* Abbrev number */
516 unsigned int offset; /* Offset in .debug_info section */
517 unsigned int num_attrs; /* Number of attributes */
518 struct attribute *attrs; /* An array of attributes */
519 struct die_info *next_ref; /* Next die in ref hash table */
78ba4af6
JB
520
521 /* The dies in a compilation unit form an n-ary tree. PARENT
522 points to this die's parent; CHILD points to the first child of
523 this node; and all the children of a given node are chained
524 together via their SIBLING fields, terminated by a die whose
525 tag is zero. */
639d11d3
DC
526 struct die_info *child; /* Its first child, if any. */
527 struct die_info *sibling; /* Its next sibling, if any. */
528 struct die_info *parent; /* Its parent, if any. */
78ba4af6 529
c5aa993b 530 struct type *type; /* Cached type information */
c906108c
SS
531 };
532
533/* Attributes have a name and a value */
534struct attribute
535 {
536 enum dwarf_attribute name;
537 enum dwarf_form form;
538 union
539 {
540 char *str;
541 struct dwarf_block *blk;
ce5d95e1
JB
542 unsigned long unsnd;
543 long int snd;
c906108c
SS
544 CORE_ADDR addr;
545 }
546 u;
547 };
548
5fb290d7
DJ
549struct function_range
550{
551 const char *name;
552 CORE_ADDR lowpc, highpc;
553 int seen_line;
554 struct function_range *next;
555};
556
c906108c
SS
557/* Get at parts of an attribute structure */
558
559#define DW_STRING(attr) ((attr)->u.str)
560#define DW_UNSND(attr) ((attr)->u.unsnd)
561#define DW_BLOCK(attr) ((attr)->u.blk)
562#define DW_SND(attr) ((attr)->u.snd)
563#define DW_ADDR(attr) ((attr)->u.addr)
564
565/* Blocks are a bunch of untyped bytes. */
566struct dwarf_block
567 {
568 unsigned int size;
fe1b8b76 569 gdb_byte *data;
c906108c
SS
570 };
571
c906108c
SS
572#ifndef ATTR_ALLOC_CHUNK
573#define ATTR_ALLOC_CHUNK 4
574#endif
575
c906108c
SS
576/* Allocate fields for structs, unions and enums in this size. */
577#ifndef DW_FIELD_ALLOC_CHUNK
578#define DW_FIELD_ALLOC_CHUNK 4
579#endif
580
c906108c
SS
581/* A zeroed version of a partial die for initialization purposes. */
582static struct partial_die_info zeroed_partial_die;
583
c906108c
SS
584/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
585 but this would require a corresponding change in unpack_field_as_long
586 and friends. */
587static int bits_per_byte = 8;
588
589/* The routines that read and process dies for a C struct or C++ class
590 pass lists of data member fields and lists of member function fields
591 in an instance of a field_info structure, as defined below. */
592struct field_info
c5aa993b
JM
593 {
594 /* List of data member and baseclasses fields. */
595 struct nextfield
596 {
597 struct nextfield *next;
598 int accessibility;
599 int virtuality;
600 struct field field;
601 }
602 *fields;
c906108c 603
c5aa993b
JM
604 /* Number of fields. */
605 int nfields;
c906108c 606
c5aa993b
JM
607 /* Number of baseclasses. */
608 int nbaseclasses;
c906108c 609
c5aa993b
JM
610 /* Set if the accesibility of one of the fields is not public. */
611 int non_public_fields;
c906108c 612
c5aa993b
JM
613 /* Member function fields array, entries are allocated in the order they
614 are encountered in the object file. */
615 struct nextfnfield
616 {
617 struct nextfnfield *next;
618 struct fn_field fnfield;
619 }
620 *fnfields;
c906108c 621
c5aa993b
JM
622 /* Member function fieldlist array, contains name of possibly overloaded
623 member function, number of overloaded member functions and a pointer
624 to the head of the member function field chain. */
625 struct fnfieldlist
626 {
627 char *name;
628 int length;
629 struct nextfnfield *head;
630 }
631 *fnfieldlists;
c906108c 632
c5aa993b
JM
633 /* Number of entries in the fnfieldlists array. */
634 int nfnfields;
635 };
c906108c 636
10b3939b
DJ
637/* One item on the queue of compilation units to read in full symbols
638 for. */
639struct dwarf2_queue_item
640{
641 struct dwarf2_per_cu_data *per_cu;
642 struct dwarf2_queue_item *next;
643};
644
645/* The current queue. */
646static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
647
ae038cb0
DJ
648/* Loaded secondary compilation units are kept in memory until they
649 have not been referenced for the processing of this many
650 compilation units. Set this to zero to disable caching. Cache
651 sizes of up to at least twenty will improve startup time for
652 typical inter-CU-reference binaries, at an obvious memory cost. */
653static int dwarf2_max_cache_age = 5;
920d2a44
AC
654static void
655show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
656 struct cmd_list_element *c, const char *value)
657{
658 fprintf_filtered (file, _("\
659The upper bound on the age of cached dwarf2 compilation units is %s.\n"),
660 value);
661}
662
ae038cb0 663
c906108c
SS
664/* Various complaints about symbol reading that don't abort the process */
665
4d3c2250
KB
666static void
667dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 668{
4d3c2250 669 complaint (&symfile_complaints,
e2e0b3e5 670 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
671}
672
25e43795
DJ
673static void
674dwarf2_debug_line_missing_file_complaint (void)
675{
676 complaint (&symfile_complaints,
677 _(".debug_line section has line data without a file"));
678}
679
4d3c2250
KB
680static void
681dwarf2_complex_location_expr_complaint (void)
2e276125 682{
e2e0b3e5 683 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
684}
685
4d3c2250
KB
686static void
687dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
688 int arg3)
2e276125 689{
4d3c2250 690 complaint (&symfile_complaints,
e2e0b3e5 691 _("const value length mismatch for '%s', got %d, expected %d"), arg1,
4d3c2250
KB
692 arg2, arg3);
693}
694
695static void
696dwarf2_macros_too_long_complaint (void)
2e276125 697{
4d3c2250 698 complaint (&symfile_complaints,
e2e0b3e5 699 _("macro info runs off end of `.debug_macinfo' section"));
4d3c2250
KB
700}
701
702static void
703dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 704{
4d3c2250 705 complaint (&symfile_complaints,
e2e0b3e5 706 _("macro debug info contains a malformed macro definition:\n`%s'"),
4d3c2250
KB
707 arg1);
708}
709
710static void
711dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 712{
4d3c2250 713 complaint (&symfile_complaints,
e2e0b3e5 714 _("invalid attribute class or form for '%s' in '%s'"), arg1, arg2);
4d3c2250 715}
c906108c 716
c906108c
SS
717/* local function prototypes */
718
4efb68b1 719static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c
SS
720
721#if 0
a14ed312 722static void dwarf2_build_psymtabs_easy (struct objfile *, int);
c906108c
SS
723#endif
724
aaa75496
JB
725static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
726 struct objfile *);
727
728static void dwarf2_build_include_psymtabs (struct dwarf2_cu *,
729 struct partial_die_info *,
730 struct partial_symtab *);
731
a14ed312 732static void dwarf2_build_psymtabs_hard (struct objfile *, int);
c906108c 733
72bf9492
DJ
734static void scan_partial_symbols (struct partial_die_info *,
735 CORE_ADDR *, CORE_ADDR *,
736 struct dwarf2_cu *);
c906108c 737
72bf9492
DJ
738static void add_partial_symbol (struct partial_die_info *,
739 struct dwarf2_cu *);
63d06c5c 740
72bf9492 741static int pdi_needs_namespace (enum dwarf_tag tag);
91c24f0a 742
72bf9492
DJ
743static void add_partial_namespace (struct partial_die_info *pdi,
744 CORE_ADDR *lowpc, CORE_ADDR *highpc,
745 struct dwarf2_cu *cu);
63d06c5c 746
72bf9492
DJ
747static void add_partial_enumeration (struct partial_die_info *enum_pdi,
748 struct dwarf2_cu *cu);
91c24f0a 749
fe1b8b76
JB
750static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
751 gdb_byte *info_ptr,
752 bfd *abfd,
753 struct dwarf2_cu *cu);
91c24f0a 754
a14ed312 755static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
c906108c 756
a14ed312 757static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 758
fe1b8b76 759gdb_byte *dwarf2_read_section (struct objfile *, asection *);
c906108c 760
e7c27a73 761static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
c906108c 762
f3dd6933 763static void dwarf2_free_abbrev_table (void *);
c906108c 764
fe1b8b76 765static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
891d2f0b 766 struct dwarf2_cu *);
72bf9492 767
57349743 768static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
e7c27a73 769 struct dwarf2_cu *);
c906108c 770
fe1b8b76 771static struct partial_die_info *load_partial_dies (bfd *, gdb_byte *, int,
72bf9492
DJ
772 struct dwarf2_cu *);
773
fe1b8b76
JB
774static gdb_byte *read_partial_die (struct partial_die_info *,
775 struct abbrev_info *abbrev, unsigned int,
776 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 777
72bf9492 778static struct partial_die_info *find_partial_die (unsigned long,
10b3939b 779 struct dwarf2_cu *);
72bf9492
DJ
780
781static void fixup_partial_die (struct partial_die_info *,
782 struct dwarf2_cu *);
783
fe1b8b76
JB
784static gdb_byte *read_full_die (struct die_info **, bfd *, gdb_byte *,
785 struct dwarf2_cu *, int *);
c906108c 786
fe1b8b76
JB
787static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
788 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 789
fe1b8b76
JB
790static gdb_byte *read_attribute_value (struct attribute *, unsigned,
791 bfd *, gdb_byte *, struct dwarf2_cu *);
a8329558 792
fe1b8b76 793static unsigned int read_1_byte (bfd *, gdb_byte *);
c906108c 794
fe1b8b76 795static int read_1_signed_byte (bfd *, gdb_byte *);
c906108c 796
fe1b8b76 797static unsigned int read_2_bytes (bfd *, gdb_byte *);
c906108c 798
fe1b8b76 799static unsigned int read_4_bytes (bfd *, gdb_byte *);
c906108c 800
fe1b8b76 801static unsigned long read_8_bytes (bfd *, gdb_byte *);
c906108c 802
fe1b8b76 803static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 804 unsigned int *);
c906108c 805
fe1b8b76 806static LONGEST read_initial_length (bfd *, gdb_byte *,
891d2f0b 807 struct comp_unit_head *, unsigned int *);
613e1657 808
fe1b8b76 809static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
891d2f0b 810 unsigned int *);
613e1657 811
fe1b8b76 812static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
c906108c 813
fe1b8b76 814static char *read_string (bfd *, gdb_byte *, unsigned int *);
c906108c 815
fe1b8b76
JB
816static char *read_indirect_string (bfd *, gdb_byte *,
817 const struct comp_unit_head *,
818 unsigned int *);
4bdf3d34 819
fe1b8b76 820static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 821
fe1b8b76 822static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 823
fe1b8b76 824static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
4bb7a0a7 825
e142c38c 826static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 827
e142c38c
DJ
828static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
829 struct dwarf2_cu *);
c906108c 830
05cf31d1
JB
831static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
832 struct dwarf2_cu *cu);
833
e142c38c 834static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 835
e142c38c
DJ
836static struct die_info *die_specification (struct die_info *die,
837 struct dwarf2_cu *);
63d06c5c 838
debd256d
JB
839static void free_line_header (struct line_header *lh);
840
aaa75496
JB
841static void add_file_name (struct line_header *, char *, unsigned int,
842 unsigned int, unsigned int);
843
debd256d
JB
844static struct line_header *(dwarf_decode_line_header
845 (unsigned int offset,
e7c27a73 846 bfd *abfd, struct dwarf2_cu *cu));
debd256d
JB
847
848static void dwarf_decode_lines (struct line_header *, char *, bfd *,
aaa75496 849 struct dwarf2_cu *, struct partial_symtab *);
c906108c 850
4f1520fb 851static void dwarf2_start_subfile (char *, char *, char *);
c906108c 852
a14ed312 853static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 854 struct dwarf2_cu *);
c906108c 855
a14ed312 856static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 857 struct dwarf2_cu *);
c906108c 858
2df3850c
JM
859static void dwarf2_const_value_data (struct attribute *attr,
860 struct symbol *sym,
861 int bits);
862
e7c27a73 863static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 864
e7c27a73
DJ
865static struct type *die_containing_type (struct die_info *,
866 struct dwarf2_cu *);
c906108c 867
e7c27a73 868static struct type *tag_type_to_type (struct die_info *, struct dwarf2_cu *);
c906108c 869
e7c27a73 870static void read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 871
086ed43d 872static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 873
fe1b8b76
JB
874static char *typename_concat (struct obstack *,
875 const char *prefix,
876 const char *suffix,
987504bb 877 struct dwarf2_cu *);
63d06c5c 878
e7c27a73 879static void read_typedef (struct die_info *, struct dwarf2_cu *);
c906108c 880
e7c27a73 881static void read_base_type (struct die_info *, struct dwarf2_cu *);
c906108c 882
a02abb62
JB
883static void read_subrange_type (struct die_info *die, struct dwarf2_cu *cu);
884
e7c27a73 885static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 886
e7c27a73 887static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 888
e7c27a73 889static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 890
a14ed312 891static int dwarf2_get_pc_bounds (struct die_info *,
e7c27a73 892 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *);
c906108c 893
fae299cd
DC
894static void get_scope_pc_bounds (struct die_info *,
895 CORE_ADDR *, CORE_ADDR *,
896 struct dwarf2_cu *);
897
801e3a5b
JB
898static void dwarf2_record_block_ranges (struct die_info *, struct block *,
899 CORE_ADDR, struct dwarf2_cu *);
900
a14ed312 901static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 902 struct dwarf2_cu *);
c906108c 903
a14ed312 904static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 905 struct type *, struct dwarf2_cu *);
c906108c 906
a14ed312 907static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 908 struct die_info *, struct type *,
e7c27a73 909 struct dwarf2_cu *);
c906108c 910
a14ed312 911static void dwarf2_attach_fn_fields_to_type (struct field_info *,
e7c27a73 912 struct type *, struct dwarf2_cu *);
c906108c 913
134d01f1
DJ
914static void read_structure_type (struct die_info *, struct dwarf2_cu *);
915
916static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 917
8176b9b8
DC
918static char *determine_class_name (struct die_info *die, struct dwarf2_cu *cu);
919
e7c27a73 920static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 921
e7c27a73 922static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 923
38d518c9 924static const char *namespace_name (struct die_info *die,
e142c38c 925 int *is_anonymous, struct dwarf2_cu *);
38d518c9 926
134d01f1
DJ
927static void read_enumeration_type (struct die_info *, struct dwarf2_cu *);
928
929static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 930
e7c27a73 931static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 932
e7c27a73 933static void read_array_type (struct die_info *, struct dwarf2_cu *);
c906108c 934
7ca2d3a3
DL
935static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
936 struct dwarf2_cu *);
937
e7c27a73 938static void read_tag_pointer_type (struct die_info *, struct dwarf2_cu *);
c906108c 939
e7c27a73
DJ
940static void read_tag_ptr_to_member_type (struct die_info *,
941 struct dwarf2_cu *);
c906108c 942
e7c27a73 943static void read_tag_reference_type (struct die_info *, struct dwarf2_cu *);
c906108c 944
e7c27a73 945static void read_tag_const_type (struct die_info *, struct dwarf2_cu *);
c906108c 946
e7c27a73 947static void read_tag_volatile_type (struct die_info *, struct dwarf2_cu *);
c906108c 948
e7c27a73 949static void read_tag_string_type (struct die_info *, struct dwarf2_cu *);
c906108c 950
e7c27a73 951static void read_subroutine_type (struct die_info *, struct dwarf2_cu *);
c906108c 952
fe1b8b76 953static struct die_info *read_comp_unit (gdb_byte *, bfd *, struct dwarf2_cu *);
c906108c 954
fe1b8b76 955static struct die_info *read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 956 struct dwarf2_cu *,
fe1b8b76 957 gdb_byte **new_info_ptr,
639d11d3
DC
958 struct die_info *parent);
959
fe1b8b76 960static struct die_info *read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 961 struct dwarf2_cu *,
fe1b8b76 962 gdb_byte **new_info_ptr,
639d11d3
DC
963 struct die_info *parent);
964
a14ed312 965static void free_die_list (struct die_info *);
c906108c 966
e7c27a73 967static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 968
e142c38c 969static char *dwarf2_linkage_name (struct die_info *, struct dwarf2_cu *);
c906108c 970
e142c38c 971static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 972
e142c38c
DJ
973static struct die_info *dwarf2_extension (struct die_info *die,
974 struct dwarf2_cu *);
9219021c 975
a14ed312 976static char *dwarf_tag_name (unsigned int);
c906108c 977
a14ed312 978static char *dwarf_attr_name (unsigned int);
c906108c 979
a14ed312 980static char *dwarf_form_name (unsigned int);
c906108c 981
a14ed312 982static char *dwarf_stack_op_name (unsigned int);
c906108c 983
a14ed312 984static char *dwarf_bool_name (unsigned int);
c906108c 985
a14ed312 986static char *dwarf_type_encoding_name (unsigned int);
c906108c
SS
987
988#if 0
a14ed312 989static char *dwarf_cfi_name (unsigned int);
c906108c 990
a14ed312 991struct die_info *copy_die (struct die_info *);
c906108c
SS
992#endif
993
f9aca02d 994static struct die_info *sibling_die (struct die_info *);
c906108c 995
f9aca02d 996static void dump_die (struct die_info *);
c906108c 997
f9aca02d 998static void dump_die_list (struct die_info *);
c906108c 999
10b3939b
DJ
1000static void store_in_ref_table (unsigned int, struct die_info *,
1001 struct dwarf2_cu *);
c906108c 1002
e142c38c
DJ
1003static unsigned int dwarf2_get_ref_die_offset (struct attribute *,
1004 struct dwarf2_cu *);
c906108c 1005
a02abb62
JB
1006static int dwarf2_get_attr_constant_value (struct attribute *, int);
1007
10b3939b
DJ
1008static struct die_info *follow_die_ref (struct die_info *,
1009 struct attribute *,
1010 struct dwarf2_cu *);
c906108c 1011
c906108c
SS
1012/* memory allocation interface */
1013
7b5a2f43 1014static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1015
f3dd6933 1016static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
c906108c 1017
a14ed312 1018static struct die_info *dwarf_alloc_die (void);
c906108c 1019
e142c38c 1020static void initialize_cu_func_list (struct dwarf2_cu *);
5fb290d7 1021
e142c38c
DJ
1022static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1023 struct dwarf2_cu *);
5fb290d7 1024
2e276125 1025static void dwarf_decode_macros (struct line_header *, unsigned int,
e7c27a73 1026 char *, bfd *, struct dwarf2_cu *);
2e276125 1027
8e19ed76
PS
1028static int attr_form_is_block (struct attribute *);
1029
3690dd37
JB
1030static int attr_form_is_section_offset (struct attribute *);
1031
1032static int attr_form_is_constant (struct attribute *);
1033
93e7bd98
DJ
1034static void dwarf2_symbol_mark_computed (struct attribute *attr,
1035 struct symbol *sym,
1036 struct dwarf2_cu *cu);
4c2df51b 1037
fe1b8b76
JB
1038static gdb_byte *skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
1039 struct dwarf2_cu *cu);
4bb7a0a7 1040
72bf9492
DJ
1041static void free_stack_comp_unit (void *);
1042
72bf9492
DJ
1043static hashval_t partial_die_hash (const void *item);
1044
1045static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1046
ae038cb0
DJ
1047static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1048 (unsigned long offset, struct objfile *objfile);
1049
1050static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
1051 (unsigned long offset, struct objfile *objfile);
1052
1053static void free_one_comp_unit (void *);
1054
1055static void free_cached_comp_units (void *);
1056
1057static void age_cached_comp_units (void);
1058
1059static void free_one_cached_comp_unit (void *);
1060
1c379e20
DJ
1061static void set_die_type (struct die_info *, struct type *,
1062 struct dwarf2_cu *);
1063
1c379e20
DJ
1064static void reset_die_and_siblings_types (struct die_info *,
1065 struct dwarf2_cu *);
1c379e20 1066
ae038cb0
DJ
1067static void create_all_comp_units (struct objfile *);
1068
31ffec48
DJ
1069static struct dwarf2_cu *load_full_comp_unit (struct dwarf2_per_cu_data *,
1070 struct objfile *);
10b3939b
DJ
1071
1072static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1073
1074static void dwarf2_add_dependence (struct dwarf2_cu *,
1075 struct dwarf2_per_cu_data *);
1076
ae038cb0
DJ
1077static void dwarf2_mark (struct dwarf2_cu *);
1078
1079static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1080
72019c9c
GM
1081static void read_set_type (struct die_info *, struct dwarf2_cu *);
1082
1083
c906108c
SS
1084/* Try to locate the sections we need for DWARF 2 debugging
1085 information and return true if we have enough to do something. */
1086
1087int
6502dd73 1088dwarf2_has_info (struct objfile *objfile)
c906108c 1089{
6502dd73
DJ
1090 struct dwarf2_per_objfile *data;
1091
1092 /* Initialize per-objfile state. */
1093 data = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
1094 memset (data, 0, sizeof (*data));
1095 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1096 dwarf2_per_objfile = data;
1097
188dd5d6
DJ
1098 dwarf_info_section = 0;
1099 dwarf_abbrev_section = 0;
1100 dwarf_line_section = 0;
1101 dwarf_str_section = 0;
1102 dwarf_macinfo_section = 0;
1103 dwarf_frame_section = 0;
1104 dwarf_eh_frame_section = 0;
1105 dwarf_ranges_section = 0;
1106 dwarf_loc_section = 0;
af34e669 1107
6502dd73 1108 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections, NULL);
188dd5d6 1109 return (dwarf_info_section != NULL && dwarf_abbrev_section != NULL);
c906108c
SS
1110}
1111
1112/* This function is mapped across the sections and remembers the
1113 offset and size of each of the debugging sections we are interested
1114 in. */
1115
1116static void
72dca2f5 1117dwarf2_locate_sections (bfd *abfd, asection *sectp, void *ignore_ptr)
c906108c 1118{
6314a349 1119 if (strcmp (sectp->name, INFO_SECTION) == 0)
c906108c 1120 {
2c500098 1121 dwarf2_per_objfile->info_size = bfd_get_section_size (sectp);
086df311 1122 dwarf_info_section = sectp;
c906108c 1123 }
6314a349 1124 else if (strcmp (sectp->name, ABBREV_SECTION) == 0)
c906108c 1125 {
2c500098 1126 dwarf2_per_objfile->abbrev_size = bfd_get_section_size (sectp);
086df311 1127 dwarf_abbrev_section = sectp;
c906108c 1128 }
6314a349 1129 else if (strcmp (sectp->name, LINE_SECTION) == 0)
c906108c 1130 {
2c500098 1131 dwarf2_per_objfile->line_size = bfd_get_section_size (sectp);
086df311 1132 dwarf_line_section = sectp;
c906108c 1133 }
6314a349 1134 else if (strcmp (sectp->name, PUBNAMES_SECTION) == 0)
c906108c 1135 {
2c500098 1136 dwarf2_per_objfile->pubnames_size = bfd_get_section_size (sectp);
086df311 1137 dwarf_pubnames_section = sectp;
c906108c 1138 }
6314a349 1139 else if (strcmp (sectp->name, ARANGES_SECTION) == 0)
c906108c 1140 {
2c500098 1141 dwarf2_per_objfile->aranges_size = bfd_get_section_size (sectp);
086df311 1142 dwarf_aranges_section = sectp;
c906108c 1143 }
6314a349 1144 else if (strcmp (sectp->name, LOC_SECTION) == 0)
c906108c 1145 {
2c500098 1146 dwarf2_per_objfile->loc_size = bfd_get_section_size (sectp);
086df311 1147 dwarf_loc_section = sectp;
c906108c 1148 }
6314a349 1149 else if (strcmp (sectp->name, MACINFO_SECTION) == 0)
c906108c 1150 {
2c500098 1151 dwarf2_per_objfile->macinfo_size = bfd_get_section_size (sectp);
0cf824c9 1152 dwarf_macinfo_section = sectp;
c906108c 1153 }
6314a349 1154 else if (strcmp (sectp->name, STR_SECTION) == 0)
c906108c 1155 {
2c500098 1156 dwarf2_per_objfile->str_size = bfd_get_section_size (sectp);
086df311 1157 dwarf_str_section = sectp;
c906108c 1158 }
6314a349 1159 else if (strcmp (sectp->name, FRAME_SECTION) == 0)
b6af0555 1160 {
2c500098 1161 dwarf2_per_objfile->frame_size = bfd_get_section_size (sectp);
086df311 1162 dwarf_frame_section = sectp;
b6af0555 1163 }
6314a349 1164 else if (strcmp (sectp->name, EH_FRAME_SECTION) == 0)
b6af0555 1165 {
3799ccc6
EZ
1166 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
1167 if (aflag & SEC_HAS_CONTENTS)
1168 {
2c500098 1169 dwarf2_per_objfile->eh_frame_size = bfd_get_section_size (sectp);
3799ccc6
EZ
1170 dwarf_eh_frame_section = sectp;
1171 }
b6af0555 1172 }
6314a349 1173 else if (strcmp (sectp->name, RANGES_SECTION) == 0)
af34e669 1174 {
2c500098 1175 dwarf2_per_objfile->ranges_size = bfd_get_section_size (sectp);
6f10aeb1 1176 dwarf_ranges_section = sectp;
af34e669 1177 }
72dca2f5
FR
1178
1179 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1180 && bfd_section_vma (abfd, sectp) == 0)
1181 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1182}
1183
1184/* Build a partial symbol table. */
1185
1186void
fba45db2 1187dwarf2_build_psymtabs (struct objfile *objfile, int mainline)
c906108c 1188{
c906108c
SS
1189 /* We definitely need the .debug_info and .debug_abbrev sections */
1190
6502dd73
DJ
1191 dwarf2_per_objfile->info_buffer = dwarf2_read_section (objfile, dwarf_info_section);
1192 dwarf2_per_objfile->abbrev_buffer = dwarf2_read_section (objfile, dwarf_abbrev_section);
188dd5d6
DJ
1193
1194 if (dwarf_line_section)
6502dd73 1195 dwarf2_per_objfile->line_buffer = dwarf2_read_section (objfile, dwarf_line_section);
41ff2da1 1196 else
6502dd73 1197 dwarf2_per_objfile->line_buffer = NULL;
c906108c 1198
188dd5d6 1199 if (dwarf_str_section)
6502dd73 1200 dwarf2_per_objfile->str_buffer = dwarf2_read_section (objfile, dwarf_str_section);
4bdf3d34 1201 else
6502dd73 1202 dwarf2_per_objfile->str_buffer = NULL;
4bdf3d34 1203
188dd5d6 1204 if (dwarf_macinfo_section)
6502dd73 1205 dwarf2_per_objfile->macinfo_buffer = dwarf2_read_section (objfile,
086df311 1206 dwarf_macinfo_section);
2e276125 1207 else
6502dd73 1208 dwarf2_per_objfile->macinfo_buffer = NULL;
2e276125 1209
188dd5d6 1210 if (dwarf_ranges_section)
6502dd73 1211 dwarf2_per_objfile->ranges_buffer = dwarf2_read_section (objfile, dwarf_ranges_section);
af34e669 1212 else
6502dd73 1213 dwarf2_per_objfile->ranges_buffer = NULL;
af34e669 1214
188dd5d6 1215 if (dwarf_loc_section)
6502dd73 1216 dwarf2_per_objfile->loc_buffer = dwarf2_read_section (objfile, dwarf_loc_section);
0d53c4c4 1217 else
6502dd73 1218 dwarf2_per_objfile->loc_buffer = NULL;
0d53c4c4 1219
ef96bde8
EZ
1220 if (mainline
1221 || (objfile->global_psymbols.size == 0
1222 && objfile->static_psymbols.size == 0))
c906108c
SS
1223 {
1224 init_psymbol_list (objfile, 1024);
1225 }
1226
1227#if 0
1228 if (dwarf_aranges_offset && dwarf_pubnames_offset)
1229 {
d4f3574e 1230 /* Things are significantly easier if we have .debug_aranges and
c906108c
SS
1231 .debug_pubnames sections */
1232
d4f3574e 1233 dwarf2_build_psymtabs_easy (objfile, mainline);
c906108c
SS
1234 }
1235 else
1236#endif
1237 /* only test this case for now */
c5aa993b 1238 {
c906108c 1239 /* In this case we have to work a bit harder */
d4f3574e 1240 dwarf2_build_psymtabs_hard (objfile, mainline);
c906108c
SS
1241 }
1242}
1243
1244#if 0
1245/* Build the partial symbol table from the information in the
1246 .debug_pubnames and .debug_aranges sections. */
1247
1248static void
fba45db2 1249dwarf2_build_psymtabs_easy (struct objfile *objfile, int mainline)
c906108c
SS
1250{
1251 bfd *abfd = objfile->obfd;
1252 char *aranges_buffer, *pubnames_buffer;
1253 char *aranges_ptr, *pubnames_ptr;
1254 unsigned int entry_length, version, info_offset, info_size;
1255
1256 pubnames_buffer = dwarf2_read_section (objfile,
086df311 1257 dwarf_pubnames_section);
c906108c 1258 pubnames_ptr = pubnames_buffer;
6502dd73 1259 while ((pubnames_ptr - pubnames_buffer) < dwarf2_per_objfile->pubnames_size)
c906108c 1260 {
613e1657 1261 struct comp_unit_head cu_header;
891d2f0b 1262 unsigned int bytes_read;
613e1657
KB
1263
1264 entry_length = read_initial_length (abfd, pubnames_ptr, &cu_header,
891d2f0b 1265 &bytes_read);
613e1657 1266 pubnames_ptr += bytes_read;
c906108c
SS
1267 version = read_1_byte (abfd, pubnames_ptr);
1268 pubnames_ptr += 1;
1269 info_offset = read_4_bytes (abfd, pubnames_ptr);
1270 pubnames_ptr += 4;
1271 info_size = read_4_bytes (abfd, pubnames_ptr);
1272 pubnames_ptr += 4;
1273 }
1274
1275 aranges_buffer = dwarf2_read_section (objfile,
086df311 1276 dwarf_aranges_section);
c906108c
SS
1277
1278}
1279#endif
1280
107d2387 1281/* Read in the comp unit header information from the debug_info at
917c78fc 1282 info_ptr. */
107d2387 1283
fe1b8b76 1284static gdb_byte *
107d2387 1285read_comp_unit_head (struct comp_unit_head *cu_header,
fe1b8b76 1286 gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
1287{
1288 int signed_addr;
891d2f0b 1289 unsigned int bytes_read;
613e1657
KB
1290 cu_header->length = read_initial_length (abfd, info_ptr, cu_header,
1291 &bytes_read);
1292 info_ptr += bytes_read;
107d2387
AC
1293 cu_header->version = read_2_bytes (abfd, info_ptr);
1294 info_ptr += 2;
613e1657
KB
1295 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
1296 &bytes_read);
1297 info_ptr += bytes_read;
107d2387
AC
1298 cu_header->addr_size = read_1_byte (abfd, info_ptr);
1299 info_ptr += 1;
1300 signed_addr = bfd_get_sign_extend_vma (abfd);
1301 if (signed_addr < 0)
8e65ff28 1302 internal_error (__FILE__, __LINE__,
e2e0b3e5 1303 _("read_comp_unit_head: dwarf from non elf file"));
107d2387
AC
1304 cu_header->signed_addr_p = signed_addr;
1305 return info_ptr;
1306}
1307
fe1b8b76
JB
1308static gdb_byte *
1309partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
72bf9492
DJ
1310 bfd *abfd)
1311{
fe1b8b76 1312 gdb_byte *beg_of_comp_unit = info_ptr;
72bf9492
DJ
1313
1314 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
1315
2b949cb6 1316 if (header->version != 2 && header->version != 3)
8a3fe4f8
AC
1317 error (_("Dwarf Error: wrong version in compilation unit header "
1318 "(is %d, should be %d) [in module %s]"), header->version,
72bf9492
DJ
1319 2, bfd_get_filename (abfd));
1320
1321 if (header->abbrev_offset >= dwarf2_per_objfile->abbrev_size)
8a3fe4f8
AC
1322 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
1323 "(offset 0x%lx + 6) [in module %s]"),
72bf9492
DJ
1324 (long) header->abbrev_offset,
1325 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1326 bfd_get_filename (abfd));
1327
1328 if (beg_of_comp_unit + header->length + header->initial_length_size
1329 > dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
8a3fe4f8
AC
1330 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
1331 "(offset 0x%lx + 0) [in module %s]"),
72bf9492
DJ
1332 (long) header->length,
1333 (long) (beg_of_comp_unit - dwarf2_per_objfile->info_buffer),
1334 bfd_get_filename (abfd));
1335
1336 return info_ptr;
1337}
1338
aaa75496
JB
1339/* Allocate a new partial symtab for file named NAME and mark this new
1340 partial symtab as being an include of PST. */
1341
1342static void
1343dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
1344 struct objfile *objfile)
1345{
1346 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
1347
1348 subpst->section_offsets = pst->section_offsets;
1349 subpst->textlow = 0;
1350 subpst->texthigh = 0;
1351
1352 subpst->dependencies = (struct partial_symtab **)
1353 obstack_alloc (&objfile->objfile_obstack,
1354 sizeof (struct partial_symtab *));
1355 subpst->dependencies[0] = pst;
1356 subpst->number_of_dependencies = 1;
1357
1358 subpst->globals_offset = 0;
1359 subpst->n_global_syms = 0;
1360 subpst->statics_offset = 0;
1361 subpst->n_static_syms = 0;
1362 subpst->symtab = NULL;
1363 subpst->read_symtab = pst->read_symtab;
1364 subpst->readin = 0;
1365
1366 /* No private part is necessary for include psymtabs. This property
1367 can be used to differentiate between such include psymtabs and
10b3939b 1368 the regular ones. */
58a9656e 1369 subpst->read_symtab_private = NULL;
aaa75496
JB
1370}
1371
1372/* Read the Line Number Program data and extract the list of files
1373 included by the source file represented by PST. Build an include
1374 partial symtab for each of these included files.
1375
1376 This procedure assumes that there *is* a Line Number Program in
1377 the given CU. Callers should check that PDI->HAS_STMT_LIST is set
1378 before calling this procedure. */
1379
1380static void
1381dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
1382 struct partial_die_info *pdi,
1383 struct partial_symtab *pst)
1384{
1385 struct objfile *objfile = cu->objfile;
1386 bfd *abfd = objfile->obfd;
1387 struct line_header *lh;
1388
1389 lh = dwarf_decode_line_header (pdi->line_offset, abfd, cu);
1390 if (lh == NULL)
1391 return; /* No linetable, so no includes. */
1392
1393 dwarf_decode_lines (lh, NULL, abfd, cu, pst);
1394
1395 free_line_header (lh);
1396}
1397
1398
c906108c
SS
1399/* Build the partial symbol table by doing a quick pass through the
1400 .debug_info and .debug_abbrev sections. */
1401
1402static void
fba45db2 1403dwarf2_build_psymtabs_hard (struct objfile *objfile, int mainline)
c906108c
SS
1404{
1405 /* Instead of reading this into a big buffer, we should probably use
1406 mmap() on architectures that support it. (FIXME) */
1407 bfd *abfd = objfile->obfd;
fe1b8b76
JB
1408 gdb_byte *info_ptr;
1409 gdb_byte *beg_of_comp_unit;
c906108c
SS
1410 struct partial_die_info comp_unit_die;
1411 struct partial_symtab *pst;
ae038cb0 1412 struct cleanup *back_to;
e142c38c 1413 CORE_ADDR lowpc, highpc, baseaddr;
c906108c 1414
6502dd73 1415 info_ptr = dwarf2_per_objfile->info_buffer;
c906108c 1416
ae038cb0
DJ
1417 /* Any cached compilation units will be linked by the per-objfile
1418 read_in_chain. Make sure to free them when we're done. */
1419 back_to = make_cleanup (free_cached_comp_units, NULL);
1420
10b3939b
DJ
1421 create_all_comp_units (objfile);
1422
6502dd73 1423 /* Since the objects we're extracting from .debug_info vary in
af703f96 1424 length, only the individual functions to extract them (like
72bf9492 1425 read_comp_unit_head and load_partial_die) can really know whether
af703f96
JB
1426 the buffer is large enough to hold another complete object.
1427
6502dd73
DJ
1428 At the moment, they don't actually check that. If .debug_info
1429 holds just one extra byte after the last compilation unit's dies,
1430 then read_comp_unit_head will happily read off the end of the
1431 buffer. read_partial_die is similarly casual. Those functions
1432 should be fixed.
af703f96
JB
1433
1434 For this loop condition, simply checking whether there's any data
1435 left at all should be sufficient. */
6502dd73
DJ
1436 while (info_ptr < (dwarf2_per_objfile->info_buffer
1437 + dwarf2_per_objfile->info_size))
c906108c 1438 {
f3dd6933 1439 struct cleanup *back_to_inner;
e7c27a73 1440 struct dwarf2_cu cu;
72bf9492
DJ
1441 struct abbrev_info *abbrev;
1442 unsigned int bytes_read;
1443 struct dwarf2_per_cu_data *this_cu;
1444
c906108c 1445 beg_of_comp_unit = info_ptr;
c906108c 1446
72bf9492
DJ
1447 memset (&cu, 0, sizeof (cu));
1448
1449 obstack_init (&cu.comp_unit_obstack);
1450
1451 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
1452
e7c27a73 1453 cu.objfile = objfile;
72bf9492 1454 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr, abfd);
e7c27a73 1455
57349743 1456 /* Complete the cu_header */
6502dd73 1457 cu.header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
e7c27a73
DJ
1458 cu.header.first_die_ptr = info_ptr;
1459 cu.header.cu_head_ptr = beg_of_comp_unit;
57349743 1460
e142c38c
DJ
1461 cu.list_in_scope = &file_symbols;
1462
c906108c 1463 /* Read the abbrevs for this compilation unit into a table */
e7c27a73 1464 dwarf2_read_abbrevs (abfd, &cu);
72bf9492 1465 make_cleanup (dwarf2_free_abbrev_table, &cu);
c906108c 1466
10b3939b 1467 this_cu = dwarf2_find_comp_unit (cu.header.offset, objfile);
ae038cb0 1468
c906108c 1469 /* Read the compilation unit die */
72bf9492
DJ
1470 abbrev = peek_die_abbrev (info_ptr, &bytes_read, &cu);
1471 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1472 abfd, info_ptr, &cu);
c906108c 1473
31ffec48
DJ
1474 if (comp_unit_die.tag == DW_TAG_partial_unit)
1475 {
1476 info_ptr = (beg_of_comp_unit + cu.header.length
1477 + cu.header.initial_length_size);
1478 do_cleanups (back_to_inner);
1479 continue;
1480 }
1481
c906108c 1482 /* Set the language we're debugging */
e142c38c 1483 set_cu_language (comp_unit_die.language, &cu);
c906108c
SS
1484
1485 /* Allocate a new partial symbol table structure */
d4f3574e 1486 pst = start_psymtab_common (objfile, objfile->section_offsets,
96baa820 1487 comp_unit_die.name ? comp_unit_die.name : "",
c906108c
SS
1488 comp_unit_die.lowpc,
1489 objfile->global_psymbols.next,
1490 objfile->static_psymbols.next);
1491
ae038cb0
DJ
1492 if (comp_unit_die.dirname)
1493 pst->dirname = xstrdup (comp_unit_die.dirname);
57c22c6c 1494
10b3939b
DJ
1495 pst->read_symtab_private = (char *) this_cu;
1496
613e1657 1497 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
1498
1499 /* Store the function that reads in the rest of the symbol table */
1500 pst->read_symtab = dwarf2_psymtab_to_symtab;
1501
10b3939b
DJ
1502 /* If this compilation unit was already read in, free the
1503 cached copy in order to read it in again. This is
1504 necessary because we skipped some symbols when we first
1505 read in the compilation unit (see load_partial_dies).
1506 This problem could be avoided, but the benefit is
1507 unclear. */
1508 if (this_cu->cu != NULL)
1509 free_one_cached_comp_unit (this_cu->cu);
ae038cb0 1510
10b3939b 1511 cu.per_cu = this_cu;
ae038cb0 1512
10b3939b
DJ
1513 /* Note that this is a pointer to our stack frame, being
1514 added to a global data structure. It will be cleaned up
1515 in free_stack_comp_unit when we finish with this
1516 compilation unit. */
1517 this_cu->cu = &cu;
ae038cb0 1518
10b3939b 1519 this_cu->psymtab = pst;
ae038cb0 1520
c906108c
SS
1521 /* Check if comp unit has_children.
1522 If so, read the rest of the partial symbols from this comp unit.
1523 If not, there's no more debug_info for this comp unit. */
1524 if (comp_unit_die.has_children)
1525 {
72bf9492
DJ
1526 struct partial_die_info *first_die;
1527
91c24f0a
DC
1528 lowpc = ((CORE_ADDR) -1);
1529 highpc = ((CORE_ADDR) 0);
1530
72bf9492
DJ
1531 first_die = load_partial_dies (abfd, info_ptr, 1, &cu);
1532
1533 scan_partial_symbols (first_die, &lowpc, &highpc, &cu);
c906108c 1534
91c24f0a
DC
1535 /* If we didn't find a lowpc, set it to highpc to avoid
1536 complaints from `maint check'. */
1537 if (lowpc == ((CORE_ADDR) -1))
1538 lowpc = highpc;
72bf9492 1539
c906108c
SS
1540 /* If the compilation unit didn't have an explicit address range,
1541 then use the information extracted from its child dies. */
0b010bcc 1542 if (! comp_unit_die.has_pc_info)
c906108c 1543 {
c5aa993b 1544 comp_unit_die.lowpc = lowpc;
c906108c
SS
1545 comp_unit_die.highpc = highpc;
1546 }
1547 }
c5aa993b 1548 pst->textlow = comp_unit_die.lowpc + baseaddr;
c906108c
SS
1549 pst->texthigh = comp_unit_die.highpc + baseaddr;
1550
1551 pst->n_global_syms = objfile->global_psymbols.next -
1552 (objfile->global_psymbols.list + pst->globals_offset);
1553 pst->n_static_syms = objfile->static_psymbols.next -
1554 (objfile->static_psymbols.list + pst->statics_offset);
1555 sort_pst_symbols (pst);
1556
1557 /* If there is already a psymtab or symtab for a file of this
1558 name, remove it. (If there is a symtab, more drastic things
1559 also happen.) This happens in VxWorks. */
1560 free_named_symtabs (pst->filename);
1561
dd373385
EZ
1562 info_ptr = beg_of_comp_unit + cu.header.length
1563 + cu.header.initial_length_size;
1564
aaa75496
JB
1565 if (comp_unit_die.has_stmt_list)
1566 {
1567 /* Get the list of files included in the current compilation unit,
1568 and build a psymtab for each of them. */
1569 dwarf2_build_include_psymtabs (&cu, &comp_unit_die, pst);
1570 }
1571
f3dd6933 1572 do_cleanups (back_to_inner);
c906108c 1573 }
ae038cb0
DJ
1574 do_cleanups (back_to);
1575}
1576
1577/* Load the DIEs for a secondary CU into memory. */
1578
1579static void
1580load_comp_unit (struct dwarf2_per_cu_data *this_cu, struct objfile *objfile)
1581{
1582 bfd *abfd = objfile->obfd;
fe1b8b76 1583 gdb_byte *info_ptr, *beg_of_comp_unit;
ae038cb0
DJ
1584 struct partial_die_info comp_unit_die;
1585 struct dwarf2_cu *cu;
1586 struct abbrev_info *abbrev;
1587 unsigned int bytes_read;
1588 struct cleanup *back_to;
1589
1590 info_ptr = dwarf2_per_objfile->info_buffer + this_cu->offset;
1591 beg_of_comp_unit = info_ptr;
1592
1593 cu = xmalloc (sizeof (struct dwarf2_cu));
1594 memset (cu, 0, sizeof (struct dwarf2_cu));
1595
1596 obstack_init (&cu->comp_unit_obstack);
1597
1598 cu->objfile = objfile;
1599 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr, abfd);
1600
1601 /* Complete the cu_header. */
1602 cu->header.offset = beg_of_comp_unit - dwarf2_per_objfile->info_buffer;
1603 cu->header.first_die_ptr = info_ptr;
1604 cu->header.cu_head_ptr = beg_of_comp_unit;
1605
1606 /* Read the abbrevs for this compilation unit into a table. */
1607 dwarf2_read_abbrevs (abfd, cu);
1608 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
1609
1610 /* Read the compilation unit die. */
1611 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
1612 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
1613 abfd, info_ptr, cu);
1614
1615 /* Set the language we're debugging. */
1616 set_cu_language (comp_unit_die.language, cu);
1617
1618 /* Link this compilation unit into the compilation unit tree. */
1619 this_cu->cu = cu;
1620 cu->per_cu = this_cu;
1621
1622 /* Check if comp unit has_children.
1623 If so, read the rest of the partial symbols from this comp unit.
1624 If not, there's no more debug_info for this comp unit. */
1625 if (comp_unit_die.has_children)
1626 load_partial_dies (abfd, info_ptr, 0, cu);
1627
1628 do_cleanups (back_to);
1629}
1630
1631/* Create a list of all compilation units in OBJFILE. We do this only
1632 if an inter-comp-unit reference is found; presumably if there is one,
1633 there will be many, and one will occur early in the .debug_info section.
1634 So there's no point in building this list incrementally. */
1635
1636static void
1637create_all_comp_units (struct objfile *objfile)
1638{
1639 int n_allocated;
1640 int n_comp_units;
1641 struct dwarf2_per_cu_data **all_comp_units;
fe1b8b76 1642 gdb_byte *info_ptr = dwarf2_per_objfile->info_buffer;
ae038cb0
DJ
1643
1644 n_comp_units = 0;
1645 n_allocated = 10;
1646 all_comp_units = xmalloc (n_allocated
1647 * sizeof (struct dwarf2_per_cu_data *));
1648
1649 while (info_ptr < dwarf2_per_objfile->info_buffer + dwarf2_per_objfile->info_size)
1650 {
1651 struct comp_unit_head cu_header;
fe1b8b76 1652 gdb_byte *beg_of_comp_unit;
ae038cb0
DJ
1653 struct dwarf2_per_cu_data *this_cu;
1654 unsigned long offset;
891d2f0b 1655 unsigned int bytes_read;
ae038cb0
DJ
1656
1657 offset = info_ptr - dwarf2_per_objfile->info_buffer;
1658
1659 /* Read just enough information to find out where the next
1660 compilation unit is. */
dd373385 1661 cu_header.initial_length_size = 0;
ae038cb0
DJ
1662 cu_header.length = read_initial_length (objfile->obfd, info_ptr,
1663 &cu_header, &bytes_read);
1664
1665 /* Save the compilation unit for later lookup. */
1666 this_cu = obstack_alloc (&objfile->objfile_obstack,
1667 sizeof (struct dwarf2_per_cu_data));
1668 memset (this_cu, 0, sizeof (*this_cu));
1669 this_cu->offset = offset;
1670 this_cu->length = cu_header.length + cu_header.initial_length_size;
1671
1672 if (n_comp_units == n_allocated)
1673 {
1674 n_allocated *= 2;
1675 all_comp_units = xrealloc (all_comp_units,
1676 n_allocated
1677 * sizeof (struct dwarf2_per_cu_data *));
1678 }
1679 all_comp_units[n_comp_units++] = this_cu;
1680
1681 info_ptr = info_ptr + this_cu->length;
1682 }
1683
1684 dwarf2_per_objfile->all_comp_units
1685 = obstack_alloc (&objfile->objfile_obstack,
1686 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1687 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
1688 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
1689 xfree (all_comp_units);
1690 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
1691}
1692
72bf9492
DJ
1693/* Process all loaded DIEs for compilation unit CU, starting at FIRST_DIE.
1694 Also set *LOWPC and *HIGHPC to the lowest and highest PC values found
1695 in CU. */
c906108c 1696
72bf9492
DJ
1697static void
1698scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
1699 CORE_ADDR *highpc, struct dwarf2_cu *cu)
c906108c 1700{
e7c27a73 1701 struct objfile *objfile = cu->objfile;
c906108c 1702 bfd *abfd = objfile->obfd;
72bf9492 1703 struct partial_die_info *pdi;
c906108c 1704
91c24f0a
DC
1705 /* Now, march along the PDI's, descending into ones which have
1706 interesting children but skipping the children of the other ones,
1707 until we reach the end of the compilation unit. */
c906108c 1708
72bf9492 1709 pdi = first_die;
91c24f0a 1710
72bf9492
DJ
1711 while (pdi != NULL)
1712 {
1713 fixup_partial_die (pdi, cu);
c906108c 1714
91c24f0a
DC
1715 /* Anonymous namespaces have no name but have interesting
1716 children, so we need to look at them. Ditto for anonymous
1717 enums. */
933c6fe4 1718
72bf9492
DJ
1719 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
1720 || pdi->tag == DW_TAG_enumeration_type)
c906108c 1721 {
72bf9492 1722 switch (pdi->tag)
c906108c
SS
1723 {
1724 case DW_TAG_subprogram:
72bf9492 1725 if (pdi->has_pc_info)
c906108c 1726 {
72bf9492 1727 if (pdi->lowpc < *lowpc)
c906108c 1728 {
72bf9492 1729 *lowpc = pdi->lowpc;
c906108c 1730 }
72bf9492 1731 if (pdi->highpc > *highpc)
c906108c 1732 {
72bf9492 1733 *highpc = pdi->highpc;
c906108c 1734 }
72bf9492 1735 if (!pdi->is_declaration)
c906108c 1736 {
72bf9492 1737 add_partial_symbol (pdi, cu);
c906108c
SS
1738 }
1739 }
1740 break;
1741 case DW_TAG_variable:
1742 case DW_TAG_typedef:
91c24f0a 1743 case DW_TAG_union_type:
72bf9492 1744 if (!pdi->is_declaration)
63d06c5c 1745 {
72bf9492 1746 add_partial_symbol (pdi, cu);
63d06c5c
DC
1747 }
1748 break;
c906108c 1749 case DW_TAG_class_type:
680b30c7 1750 case DW_TAG_interface_type:
c906108c 1751 case DW_TAG_structure_type:
72bf9492 1752 if (!pdi->is_declaration)
c906108c 1753 {
72bf9492 1754 add_partial_symbol (pdi, cu);
c906108c
SS
1755 }
1756 break;
91c24f0a 1757 case DW_TAG_enumeration_type:
72bf9492
DJ
1758 if (!pdi->is_declaration)
1759 add_partial_enumeration (pdi, cu);
c906108c
SS
1760 break;
1761 case DW_TAG_base_type:
a02abb62 1762 case DW_TAG_subrange_type:
c906108c 1763 /* File scope base type definitions are added to the partial
c5aa993b 1764 symbol table. */
72bf9492 1765 add_partial_symbol (pdi, cu);
c906108c 1766 break;
d9fa45fe 1767 case DW_TAG_namespace:
72bf9492 1768 add_partial_namespace (pdi, lowpc, highpc, cu);
91c24f0a 1769 break;
c906108c
SS
1770 default:
1771 break;
1772 }
1773 }
1774
72bf9492
DJ
1775 /* If the die has a sibling, skip to the sibling. */
1776
1777 pdi = pdi->die_sibling;
1778 }
1779}
1780
1781/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 1782
72bf9492 1783 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
1784 name is concatenated with "::" and the partial DIE's name. For
1785 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
1786 Enumerators are an exception; they use the scope of their parent
1787 enumeration type, i.e. the name of the enumeration type is not
1788 prepended to the enumerator.
91c24f0a 1789
72bf9492
DJ
1790 There are two complexities. One is DW_AT_specification; in this
1791 case "parent" means the parent of the target of the specification,
1792 instead of the direct parent of the DIE. The other is compilers
1793 which do not emit DW_TAG_namespace; in this case we try to guess
1794 the fully qualified name of structure types from their members'
1795 linkage names. This must be done using the DIE's children rather
1796 than the children of any DW_AT_specification target. We only need
1797 to do this for structures at the top level, i.e. if the target of
1798 any DW_AT_specification (if any; otherwise the DIE itself) does not
1799 have a parent. */
1800
1801/* Compute the scope prefix associated with PDI's parent, in
1802 compilation unit CU. The result will be allocated on CU's
1803 comp_unit_obstack, or a copy of the already allocated PDI->NAME
1804 field. NULL is returned if no prefix is necessary. */
1805static char *
1806partial_die_parent_scope (struct partial_die_info *pdi,
1807 struct dwarf2_cu *cu)
1808{
1809 char *grandparent_scope;
1810 struct partial_die_info *parent, *real_pdi;
91c24f0a 1811
72bf9492
DJ
1812 /* We need to look at our parent DIE; if we have a DW_AT_specification,
1813 then this means the parent of the specification DIE. */
1814
1815 real_pdi = pdi;
72bf9492 1816 while (real_pdi->has_specification)
10b3939b 1817 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
72bf9492
DJ
1818
1819 parent = real_pdi->die_parent;
1820 if (parent == NULL)
1821 return NULL;
1822
1823 if (parent->scope_set)
1824 return parent->scope;
1825
1826 fixup_partial_die (parent, cu);
1827
10b3939b 1828 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492
DJ
1829
1830 if (parent->tag == DW_TAG_namespace
1831 || parent->tag == DW_TAG_structure_type
1832 || parent->tag == DW_TAG_class_type
680b30c7 1833 || parent->tag == DW_TAG_interface_type
72bf9492
DJ
1834 || parent->tag == DW_TAG_union_type)
1835 {
1836 if (grandparent_scope == NULL)
1837 parent->scope = parent->name;
1838 else
987504bb
JJ
1839 parent->scope = typename_concat (&cu->comp_unit_obstack, grandparent_scope,
1840 parent->name, cu);
72bf9492
DJ
1841 }
1842 else if (parent->tag == DW_TAG_enumeration_type)
1843 /* Enumerators should not get the name of the enumeration as a prefix. */
1844 parent->scope = grandparent_scope;
1845 else
1846 {
1847 /* FIXME drow/2004-04-01: What should we be doing with
1848 function-local names? For partial symbols, we should probably be
1849 ignoring them. */
1850 complaint (&symfile_complaints,
e2e0b3e5 1851 _("unhandled containing DIE tag %d for DIE at %d"),
72bf9492
DJ
1852 parent->tag, pdi->offset);
1853 parent->scope = grandparent_scope;
c906108c
SS
1854 }
1855
72bf9492
DJ
1856 parent->scope_set = 1;
1857 return parent->scope;
1858}
1859
1860/* Return the fully scoped name associated with PDI, from compilation unit
1861 CU. The result will be allocated with malloc. */
1862static char *
1863partial_die_full_name (struct partial_die_info *pdi,
1864 struct dwarf2_cu *cu)
1865{
1866 char *parent_scope;
1867
1868 parent_scope = partial_die_parent_scope (pdi, cu);
1869 if (parent_scope == NULL)
1870 return NULL;
1871 else
987504bb 1872 return typename_concat (NULL, parent_scope, pdi->name, cu);
c906108c
SS
1873}
1874
1875static void
72bf9492 1876add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 1877{
e7c27a73 1878 struct objfile *objfile = cu->objfile;
c906108c 1879 CORE_ADDR addr = 0;
decbce07 1880 char *actual_name = NULL;
72bf9492 1881 const char *my_prefix;
5c4e30ca 1882 const struct partial_symbol *psym = NULL;
e142c38c 1883 CORE_ADDR baseaddr;
72bf9492 1884 int built_actual_name = 0;
e142c38c
DJ
1885
1886 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 1887
72bf9492 1888 if (pdi_needs_namespace (pdi->tag))
63d06c5c 1889 {
72bf9492
DJ
1890 actual_name = partial_die_full_name (pdi, cu);
1891 if (actual_name)
1892 built_actual_name = 1;
63d06c5c
DC
1893 }
1894
72bf9492
DJ
1895 if (actual_name == NULL)
1896 actual_name = pdi->name;
1897
c906108c
SS
1898 switch (pdi->tag)
1899 {
1900 case DW_TAG_subprogram:
1901 if (pdi->is_external)
1902 {
38d518c9 1903 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 1904 mst_text, objfile); */
38d518c9 1905 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1906 VAR_DOMAIN, LOC_BLOCK,
1907 &objfile->global_psymbols,
1908 0, pdi->lowpc + baseaddr,
e142c38c 1909 cu->language, objfile);
c906108c
SS
1910 }
1911 else
1912 {
38d518c9 1913 /*prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 1914 mst_file_text, objfile); */
38d518c9 1915 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1916 VAR_DOMAIN, LOC_BLOCK,
1917 &objfile->static_psymbols,
1918 0, pdi->lowpc + baseaddr,
e142c38c 1919 cu->language, objfile);
c906108c
SS
1920 }
1921 break;
1922 case DW_TAG_variable:
1923 if (pdi->is_external)
1924 {
1925 /* Global Variable.
1926 Don't enter into the minimal symbol tables as there is
1927 a minimal symbol table entry from the ELF symbols already.
1928 Enter into partial symbol table if it has a location
1929 descriptor or a type.
1930 If the location descriptor is missing, new_symbol will create
1931 a LOC_UNRESOLVED symbol, the address of the variable will then
1932 be determined from the minimal symbol table whenever the variable
1933 is referenced.
1934 The address for the partial symbol table entry is not
1935 used by GDB, but it comes in handy for debugging partial symbol
1936 table building. */
1937
1938 if (pdi->locdesc)
e7c27a73 1939 addr = decode_locdesc (pdi->locdesc, cu);
c906108c 1940 if (pdi->locdesc || pdi->has_type)
38d518c9 1941 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1942 VAR_DOMAIN, LOC_STATIC,
1943 &objfile->global_psymbols,
1944 0, addr + baseaddr,
e142c38c 1945 cu->language, objfile);
c906108c
SS
1946 }
1947 else
1948 {
1949 /* Static Variable. Skip symbols without location descriptors. */
1950 if (pdi->locdesc == NULL)
decbce07
MS
1951 {
1952 if (built_actual_name)
1953 xfree (actual_name);
1954 return;
1955 }
e7c27a73 1956 addr = decode_locdesc (pdi->locdesc, cu);
38d518c9 1957 /*prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 1958 mst_file_data, objfile); */
38d518c9 1959 psym = add_psymbol_to_list (actual_name, strlen (actual_name),
5c4e30ca
DC
1960 VAR_DOMAIN, LOC_STATIC,
1961 &objfile->static_psymbols,
1962 0, addr + baseaddr,
e142c38c 1963 cu->language, objfile);
c906108c
SS
1964 }
1965 break;
1966 case DW_TAG_typedef:
1967 case DW_TAG_base_type:
a02abb62 1968 case DW_TAG_subrange_type:
38d518c9 1969 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 1970 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 1971 &objfile->static_psymbols,
e142c38c 1972 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 1973 break;
72bf9492
DJ
1974 case DW_TAG_namespace:
1975 add_psymbol_to_list (actual_name, strlen (actual_name),
1976 VAR_DOMAIN, LOC_TYPEDEF,
1977 &objfile->global_psymbols,
1978 0, (CORE_ADDR) 0, cu->language, objfile);
1979 break;
c906108c 1980 case DW_TAG_class_type:
680b30c7 1981 case DW_TAG_interface_type:
c906108c
SS
1982 case DW_TAG_structure_type:
1983 case DW_TAG_union_type:
1984 case DW_TAG_enumeration_type:
fa4028e9
JB
1985 /* Skip external references. The DWARF standard says in the section
1986 about "Structure, Union, and Class Type Entries": "An incomplete
1987 structure, union or class type is represented by a structure,
1988 union or class entry that does not have a byte size attribute
1989 and that has a DW_AT_declaration attribute." */
1990 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07
MS
1991 {
1992 if (built_actual_name)
1993 xfree (actual_name);
1994 return;
1995 }
fa4028e9 1996
63d06c5c
DC
1997 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
1998 static vs. global. */
38d518c9 1999 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 2000 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
2001 (cu->language == language_cplus
2002 || cu->language == language_java)
63d06c5c
DC
2003 ? &objfile->global_psymbols
2004 : &objfile->static_psymbols,
e142c38c 2005 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 2006
987504bb 2007 if (cu->language == language_cplus
8c6860bb
JB
2008 || cu->language == language_java
2009 || cu->language == language_ada)
c906108c 2010 {
987504bb 2011 /* For C++ and Java, these implicitly act as typedefs as well. */
38d518c9 2012 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 2013 VAR_DOMAIN, LOC_TYPEDEF,
63d06c5c 2014 &objfile->global_psymbols,
e142c38c 2015 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
2016 }
2017 break;
2018 case DW_TAG_enumerator:
38d518c9 2019 add_psymbol_to_list (actual_name, strlen (actual_name),
176620f1 2020 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
2021 (cu->language == language_cplus
2022 || cu->language == language_java)
f6fe98ef
DJ
2023 ? &objfile->global_psymbols
2024 : &objfile->static_psymbols,
e142c38c 2025 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
2026 break;
2027 default:
2028 break;
2029 }
5c4e30ca
DC
2030
2031 /* Check to see if we should scan the name for possible namespace
2032 info. Only do this if this is C++, if we don't have namespace
2033 debugging info in the file, if the psym is of an appropriate type
2034 (otherwise we'll have psym == NULL), and if we actually had a
2035 mangled name to begin with. */
2036
72bf9492
DJ
2037 /* FIXME drow/2004-02-22: Why don't we do this for classes, i.e. the
2038 cases which do not set PSYM above? */
2039
e142c38c 2040 if (cu->language == language_cplus
72bf9492 2041 && cu->has_namespace_info == 0
5c4e30ca
DC
2042 && psym != NULL
2043 && SYMBOL_CPLUS_DEMANGLED_NAME (psym) != NULL)
2044 cp_check_possible_namespace_symbols (SYMBOL_CPLUS_DEMANGLED_NAME (psym),
2045 objfile);
72bf9492
DJ
2046
2047 if (built_actual_name)
2048 xfree (actual_name);
c906108c
SS
2049}
2050
72bf9492
DJ
2051/* Determine whether a die of type TAG living in a C++ class or
2052 namespace needs to have the name of the scope prepended to the
63d06c5c
DC
2053 name listed in the die. */
2054
2055static int
72bf9492 2056pdi_needs_namespace (enum dwarf_tag tag)
63d06c5c 2057{
63d06c5c
DC
2058 switch (tag)
2059 {
72bf9492 2060 case DW_TAG_namespace:
63d06c5c
DC
2061 case DW_TAG_typedef:
2062 case DW_TAG_class_type:
680b30c7 2063 case DW_TAG_interface_type:
63d06c5c
DC
2064 case DW_TAG_structure_type:
2065 case DW_TAG_union_type:
2066 case DW_TAG_enumeration_type:
2067 case DW_TAG_enumerator:
2068 return 1;
2069 default:
2070 return 0;
2071 }
2072}
2073
5c4e30ca
DC
2074/* Read a partial die corresponding to a namespace; also, add a symbol
2075 corresponding to that namespace to the symbol table. NAMESPACE is
2076 the name of the enclosing namespace. */
91c24f0a 2077
72bf9492
DJ
2078static void
2079add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 2080 CORE_ADDR *lowpc, CORE_ADDR *highpc,
72bf9492 2081 struct dwarf2_cu *cu)
91c24f0a 2082{
e7c27a73 2083 struct objfile *objfile = cu->objfile;
5c4e30ca 2084
72bf9492 2085 /* Add a symbol for the namespace. */
e7c27a73 2086
72bf9492 2087 add_partial_symbol (pdi, cu);
5c4e30ca
DC
2088
2089 /* Now scan partial symbols in that namespace. */
2090
91c24f0a 2091 if (pdi->has_children)
72bf9492 2092 scan_partial_symbols (pdi->die_child, lowpc, highpc, cu);
91c24f0a
DC
2093}
2094
72bf9492
DJ
2095/* See if we can figure out if the class lives in a namespace. We do
2096 this by looking for a member function; its demangled name will
2097 contain namespace info, if there is any. */
63d06c5c 2098
72bf9492
DJ
2099static void
2100guess_structure_name (struct partial_die_info *struct_pdi,
2101 struct dwarf2_cu *cu)
63d06c5c 2102{
987504bb
JJ
2103 if ((cu->language == language_cplus
2104 || cu->language == language_java)
72bf9492 2105 && cu->has_namespace_info == 0
63d06c5c
DC
2106 && struct_pdi->has_children)
2107 {
63d06c5c
DC
2108 /* NOTE: carlton/2003-10-07: Getting the info this way changes
2109 what template types look like, because the demangler
2110 frequently doesn't give the same name as the debug info. We
2111 could fix this by only using the demangled name to get the
134d01f1 2112 prefix (but see comment in read_structure_type). */
63d06c5c 2113
72bf9492
DJ
2114 struct partial_die_info *child_pdi = struct_pdi->die_child;
2115 struct partial_die_info *real_pdi;
5d51ca54 2116
72bf9492
DJ
2117 /* If this DIE (this DIE's specification, if any) has a parent, then
2118 we should not do this. We'll prepend the parent's fully qualified
2119 name when we create the partial symbol. */
5d51ca54 2120
72bf9492 2121 real_pdi = struct_pdi;
72bf9492 2122 while (real_pdi->has_specification)
10b3939b 2123 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
63d06c5c 2124
72bf9492
DJ
2125 if (real_pdi->die_parent != NULL)
2126 return;
63d06c5c 2127
72bf9492
DJ
2128 while (child_pdi != NULL)
2129 {
2130 if (child_pdi->tag == DW_TAG_subprogram)
63d06c5c 2131 {
72bf9492 2132 char *actual_class_name
31c27f77
JJ
2133 = language_class_name_from_physname (cu->language_defn,
2134 child_pdi->name);
63d06c5c 2135 if (actual_class_name != NULL)
72bf9492
DJ
2136 {
2137 struct_pdi->name
2138 = obsavestring (actual_class_name,
2139 strlen (actual_class_name),
2140 &cu->comp_unit_obstack);
2141 xfree (actual_class_name);
2142 }
63d06c5c
DC
2143 break;
2144 }
72bf9492
DJ
2145
2146 child_pdi = child_pdi->die_sibling;
63d06c5c
DC
2147 }
2148 }
63d06c5c
DC
2149}
2150
91c24f0a
DC
2151/* Read a partial die corresponding to an enumeration type. */
2152
72bf9492
DJ
2153static void
2154add_partial_enumeration (struct partial_die_info *enum_pdi,
2155 struct dwarf2_cu *cu)
91c24f0a 2156{
e7c27a73 2157 struct objfile *objfile = cu->objfile;
91c24f0a 2158 bfd *abfd = objfile->obfd;
72bf9492 2159 struct partial_die_info *pdi;
91c24f0a
DC
2160
2161 if (enum_pdi->name != NULL)
72bf9492
DJ
2162 add_partial_symbol (enum_pdi, cu);
2163
2164 pdi = enum_pdi->die_child;
2165 while (pdi)
91c24f0a 2166 {
72bf9492 2167 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 2168 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 2169 else
72bf9492
DJ
2170 add_partial_symbol (pdi, cu);
2171 pdi = pdi->die_sibling;
91c24f0a 2172 }
91c24f0a
DC
2173}
2174
4bb7a0a7
DJ
2175/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
2176 Return the corresponding abbrev, or NULL if the number is zero (indicating
2177 an empty DIE). In either case *BYTES_READ will be set to the length of
2178 the initial number. */
2179
2180static struct abbrev_info *
fe1b8b76 2181peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 2182 struct dwarf2_cu *cu)
4bb7a0a7
DJ
2183{
2184 bfd *abfd = cu->objfile->obfd;
2185 unsigned int abbrev_number;
2186 struct abbrev_info *abbrev;
2187
2188 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
2189
2190 if (abbrev_number == 0)
2191 return NULL;
2192
2193 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
2194 if (!abbrev)
2195 {
8a3fe4f8 2196 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"), abbrev_number,
4bb7a0a7
DJ
2197 bfd_get_filename (abfd));
2198 }
2199
2200 return abbrev;
2201}
2202
2203/* Scan the debug information for CU starting at INFO_PTR. Returns a
2204 pointer to the end of a series of DIEs, terminated by an empty
2205 DIE. Any children of the skipped DIEs will also be skipped. */
2206
fe1b8b76
JB
2207static gdb_byte *
2208skip_children (gdb_byte *info_ptr, struct dwarf2_cu *cu)
4bb7a0a7
DJ
2209{
2210 struct abbrev_info *abbrev;
2211 unsigned int bytes_read;
2212
2213 while (1)
2214 {
2215 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
2216 if (abbrev == NULL)
2217 return info_ptr + bytes_read;
2218 else
2219 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
2220 }
2221}
2222
2223/* Scan the debug information for CU starting at INFO_PTR. INFO_PTR
2224 should point just after the initial uleb128 of a DIE, and the
2225 abbrev corresponding to that skipped uleb128 should be passed in
2226 ABBREV. Returns a pointer to this DIE's sibling, skipping any
2227 children. */
2228
fe1b8b76
JB
2229static gdb_byte *
2230skip_one_die (gdb_byte *info_ptr, struct abbrev_info *abbrev,
4bb7a0a7
DJ
2231 struct dwarf2_cu *cu)
2232{
2233 unsigned int bytes_read;
2234 struct attribute attr;
2235 bfd *abfd = cu->objfile->obfd;
2236 unsigned int form, i;
2237
2238 for (i = 0; i < abbrev->num_attrs; i++)
2239 {
2240 /* The only abbrev we care about is DW_AT_sibling. */
2241 if (abbrev->attrs[i].name == DW_AT_sibling)
2242 {
2243 read_attribute (&attr, &abbrev->attrs[i],
2244 abfd, info_ptr, cu);
2245 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 2246 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 2247 else
6502dd73
DJ
2248 return dwarf2_per_objfile->info_buffer
2249 + dwarf2_get_ref_die_offset (&attr, cu);
4bb7a0a7
DJ
2250 }
2251
2252 /* If it isn't DW_AT_sibling, skip this attribute. */
2253 form = abbrev->attrs[i].form;
2254 skip_attribute:
2255 switch (form)
2256 {
2257 case DW_FORM_addr:
2258 case DW_FORM_ref_addr:
2259 info_ptr += cu->header.addr_size;
2260 break;
2261 case DW_FORM_data1:
2262 case DW_FORM_ref1:
2263 case DW_FORM_flag:
2264 info_ptr += 1;
2265 break;
2266 case DW_FORM_data2:
2267 case DW_FORM_ref2:
2268 info_ptr += 2;
2269 break;
2270 case DW_FORM_data4:
2271 case DW_FORM_ref4:
2272 info_ptr += 4;
2273 break;
2274 case DW_FORM_data8:
2275 case DW_FORM_ref8:
2276 info_ptr += 8;
2277 break;
2278 case DW_FORM_string:
2279 read_string (abfd, info_ptr, &bytes_read);
2280 info_ptr += bytes_read;
2281 break;
2282 case DW_FORM_strp:
2283 info_ptr += cu->header.offset_size;
2284 break;
2285 case DW_FORM_block:
2286 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2287 info_ptr += bytes_read;
2288 break;
2289 case DW_FORM_block1:
2290 info_ptr += 1 + read_1_byte (abfd, info_ptr);
2291 break;
2292 case DW_FORM_block2:
2293 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
2294 break;
2295 case DW_FORM_block4:
2296 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
2297 break;
2298 case DW_FORM_sdata:
2299 case DW_FORM_udata:
2300 case DW_FORM_ref_udata:
2301 info_ptr = skip_leb128 (abfd, info_ptr);
2302 break;
2303 case DW_FORM_indirect:
2304 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
2305 info_ptr += bytes_read;
2306 /* We need to continue parsing from here, so just go back to
2307 the top. */
2308 goto skip_attribute;
2309
2310 default:
8a3fe4f8 2311 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
4bb7a0a7
DJ
2312 dwarf_form_name (form),
2313 bfd_get_filename (abfd));
2314 }
2315 }
2316
2317 if (abbrev->has_children)
2318 return skip_children (info_ptr, cu);
2319 else
2320 return info_ptr;
2321}
2322
2323/* Locate ORIG_PDI's sibling; INFO_PTR should point to the start of
2324 the next DIE after ORIG_PDI. */
91c24f0a 2325
fe1b8b76
JB
2326static gdb_byte *
2327locate_pdi_sibling (struct partial_die_info *orig_pdi, gdb_byte *info_ptr,
e7c27a73 2328 bfd *abfd, struct dwarf2_cu *cu)
91c24f0a
DC
2329{
2330 /* Do we know the sibling already? */
72bf9492 2331
91c24f0a
DC
2332 if (orig_pdi->sibling)
2333 return orig_pdi->sibling;
2334
2335 /* Are there any children to deal with? */
2336
2337 if (!orig_pdi->has_children)
2338 return info_ptr;
2339
4bb7a0a7 2340 /* Skip the children the long way. */
91c24f0a 2341
4bb7a0a7 2342 return skip_children (info_ptr, cu);
91c24f0a
DC
2343}
2344
c906108c
SS
2345/* Expand this partial symbol table into a full symbol table. */
2346
2347static void
fba45db2 2348dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
c906108c
SS
2349{
2350 /* FIXME: This is barely more than a stub. */
2351 if (pst != NULL)
2352 {
2353 if (pst->readin)
2354 {
8a3fe4f8 2355 warning (_("bug: psymtab for %s is already read in."), pst->filename);
c906108c
SS
2356 }
2357 else
2358 {
2359 if (info_verbose)
2360 {
a3f17187 2361 printf_filtered (_("Reading in symbols for %s..."), pst->filename);
c906108c
SS
2362 gdb_flush (gdb_stdout);
2363 }
2364
10b3939b
DJ
2365 /* Restore our global data. */
2366 dwarf2_per_objfile = objfile_data (pst->objfile,
2367 dwarf2_objfile_data_key);
2368
c906108c
SS
2369 psymtab_to_symtab_1 (pst);
2370
2371 /* Finish up the debug error message. */
2372 if (info_verbose)
a3f17187 2373 printf_filtered (_("done.\n"));
c906108c
SS
2374 }
2375 }
2376}
2377
10b3939b
DJ
2378/* Add PER_CU to the queue. */
2379
2380static void
2381queue_comp_unit (struct dwarf2_per_cu_data *per_cu)
2382{
2383 struct dwarf2_queue_item *item;
2384
2385 per_cu->queued = 1;
2386 item = xmalloc (sizeof (*item));
2387 item->per_cu = per_cu;
2388 item->next = NULL;
2389
2390 if (dwarf2_queue == NULL)
2391 dwarf2_queue = item;
2392 else
2393 dwarf2_queue_tail->next = item;
2394
2395 dwarf2_queue_tail = item;
2396}
2397
2398/* Process the queue. */
2399
2400static void
2401process_queue (struct objfile *objfile)
2402{
2403 struct dwarf2_queue_item *item, *next_item;
2404
2405 /* Initially, there is just one item on the queue. Load its DIEs,
2406 and the DIEs of any other compilation units it requires,
2407 transitively. */
2408
2409 for (item = dwarf2_queue; item != NULL; item = item->next)
2410 {
2411 /* Read in this compilation unit. This may add new items to
2412 the end of the queue. */
31ffec48 2413 load_full_comp_unit (item->per_cu, objfile);
10b3939b
DJ
2414
2415 item->per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
2416 dwarf2_per_objfile->read_in_chain = item->per_cu;
2417
2418 /* If this compilation unit has already had full symbols created,
2419 reset the TYPE fields in each DIE. */
31ffec48 2420 if (item->per_cu->type_hash)
10b3939b
DJ
2421 reset_die_and_siblings_types (item->per_cu->cu->dies,
2422 item->per_cu->cu);
2423 }
2424
2425 /* Now everything left on the queue needs to be read in. Process
2426 them, one at a time, removing from the queue as we finish. */
2427 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
2428 {
31ffec48 2429 if (item->per_cu->psymtab && !item->per_cu->psymtab->readin)
10b3939b
DJ
2430 process_full_comp_unit (item->per_cu);
2431
2432 item->per_cu->queued = 0;
2433 next_item = item->next;
2434 xfree (item);
2435 }
2436
2437 dwarf2_queue_tail = NULL;
2438}
2439
2440/* Free all allocated queue entries. This function only releases anything if
2441 an error was thrown; if the queue was processed then it would have been
2442 freed as we went along. */
2443
2444static void
2445dwarf2_release_queue (void *dummy)
2446{
2447 struct dwarf2_queue_item *item, *last;
2448
2449 item = dwarf2_queue;
2450 while (item)
2451 {
2452 /* Anything still marked queued is likely to be in an
2453 inconsistent state, so discard it. */
2454 if (item->per_cu->queued)
2455 {
2456 if (item->per_cu->cu != NULL)
2457 free_one_cached_comp_unit (item->per_cu->cu);
2458 item->per_cu->queued = 0;
2459 }
2460
2461 last = item;
2462 item = item->next;
2463 xfree (last);
2464 }
2465
2466 dwarf2_queue = dwarf2_queue_tail = NULL;
2467}
2468
2469/* Read in full symbols for PST, and anything it depends on. */
2470
c906108c 2471static void
fba45db2 2472psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 2473{
10b3939b 2474 struct dwarf2_per_cu_data *per_cu;
c906108c 2475 struct cleanup *back_to;
aaa75496
JB
2476 int i;
2477
2478 for (i = 0; i < pst->number_of_dependencies; i++)
2479 if (!pst->dependencies[i]->readin)
2480 {
2481 /* Inform about additional files that need to be read in. */
2482 if (info_verbose)
2483 {
a3f17187 2484 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
2485 fputs_filtered (" ", gdb_stdout);
2486 wrap_here ("");
2487 fputs_filtered ("and ", gdb_stdout);
2488 wrap_here ("");
2489 printf_filtered ("%s...", pst->dependencies[i]->filename);
2490 wrap_here (""); /* Flush output */
2491 gdb_flush (gdb_stdout);
2492 }
2493 psymtab_to_symtab_1 (pst->dependencies[i]);
2494 }
2495
10b3939b
DJ
2496 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
2497
2498 if (per_cu == NULL)
aaa75496
JB
2499 {
2500 /* It's an include file, no symbols to read for it.
2501 Everything is in the parent symtab. */
2502 pst->readin = 1;
2503 return;
2504 }
c906108c 2505
10b3939b
DJ
2506 back_to = make_cleanup (dwarf2_release_queue, NULL);
2507
2508 queue_comp_unit (per_cu);
2509
2510 process_queue (pst->objfile);
2511
2512 /* Age the cache, releasing compilation units that have not
2513 been used recently. */
2514 age_cached_comp_units ();
2515
2516 do_cleanups (back_to);
2517}
2518
2519/* Load the DIEs associated with PST and PER_CU into memory. */
2520
2521static struct dwarf2_cu *
31ffec48 2522load_full_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
10b3939b 2523{
31ffec48 2524 bfd *abfd = objfile->obfd;
10b3939b
DJ
2525 struct dwarf2_cu *cu;
2526 unsigned long offset;
fe1b8b76 2527 gdb_byte *info_ptr;
10b3939b
DJ
2528 struct cleanup *back_to, *free_cu_cleanup;
2529 struct attribute *attr;
2530 CORE_ADDR baseaddr;
6502dd73 2531
c906108c 2532 /* Set local variables from the partial symbol table info. */
10b3939b 2533 offset = per_cu->offset;
6502dd73
DJ
2534
2535 info_ptr = dwarf2_per_objfile->info_buffer + offset;
63d06c5c 2536
10b3939b
DJ
2537 cu = xmalloc (sizeof (struct dwarf2_cu));
2538 memset (cu, 0, sizeof (struct dwarf2_cu));
c906108c 2539
10b3939b
DJ
2540 /* If an error occurs while loading, release our storage. */
2541 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
c906108c 2542
31ffec48 2543 cu->objfile = objfile;
e7c27a73 2544
c906108c 2545 /* read in the comp_unit header */
10b3939b 2546 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
c906108c
SS
2547
2548 /* Read the abbrevs for this compilation unit */
10b3939b
DJ
2549 dwarf2_read_abbrevs (abfd, cu);
2550 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
2551
2552 cu->header.offset = offset;
c906108c 2553
10b3939b
DJ
2554 cu->per_cu = per_cu;
2555 per_cu->cu = cu;
e142c38c 2556
10b3939b
DJ
2557 /* We use this obstack for block values in dwarf_alloc_block. */
2558 obstack_init (&cu->comp_unit_obstack);
2559
2560 cu->dies = read_comp_unit (info_ptr, abfd, cu);
2561
2562 /* We try not to read any attributes in this function, because not
2563 all objfiles needed for references have been loaded yet, and symbol
2564 table processing isn't initialized. But we have to set the CU language,
2565 or we won't be able to build types correctly. */
2566 attr = dwarf2_attr (cu->dies, DW_AT_language, cu);
2567 if (attr)
2568 set_cu_language (DW_UNSND (attr), cu);
2569 else
2570 set_cu_language (language_minimal, cu);
2571
2572 do_cleanups (back_to);
e142c38c 2573
10b3939b
DJ
2574 /* We've successfully allocated this compilation unit. Let our caller
2575 clean it up when finished with it. */
2576 discard_cleanups (free_cu_cleanup);
c906108c 2577
10b3939b
DJ
2578 return cu;
2579}
2580
2581/* Generate full symbol information for PST and CU, whose DIEs have
2582 already been loaded into memory. */
2583
2584static void
2585process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
2586{
2587 struct partial_symtab *pst = per_cu->psymtab;
2588 struct dwarf2_cu *cu = per_cu->cu;
2589 struct objfile *objfile = pst->objfile;
2590 bfd *abfd = objfile->obfd;
2591 CORE_ADDR lowpc, highpc;
2592 struct symtab *symtab;
2593 struct cleanup *back_to;
2594 struct attribute *attr;
2595 CORE_ADDR baseaddr;
2596
2597 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2598
2599 /* We're in the global namespace. */
2600 processing_current_prefix = "";
2601
2602 buildsym_init ();
2603 back_to = make_cleanup (really_free_pendings, NULL);
2604
2605 cu->list_in_scope = &file_symbols;
c906108c 2606
0d53c4c4
DJ
2607 /* Find the base address of the compilation unit for range lists and
2608 location lists. It will normally be specified by DW_AT_low_pc.
2609 In DWARF-3 draft 4, the base address could be overridden by
2610 DW_AT_entry_pc. It's been removed, but GCC still uses this for
2611 compilation units with discontinuous ranges. */
2612
10b3939b
DJ
2613 cu->header.base_known = 0;
2614 cu->header.base_address = 0;
0d53c4c4 2615
10b3939b 2616 attr = dwarf2_attr (cu->dies, DW_AT_entry_pc, cu);
0d53c4c4
DJ
2617 if (attr)
2618 {
10b3939b
DJ
2619 cu->header.base_address = DW_ADDR (attr);
2620 cu->header.base_known = 1;
0d53c4c4
DJ
2621 }
2622 else
2623 {
10b3939b 2624 attr = dwarf2_attr (cu->dies, DW_AT_low_pc, cu);
0d53c4c4
DJ
2625 if (attr)
2626 {
10b3939b
DJ
2627 cu->header.base_address = DW_ADDR (attr);
2628 cu->header.base_known = 1;
0d53c4c4
DJ
2629 }
2630 }
2631
c906108c 2632 /* Do line number decoding in read_file_scope () */
10b3939b 2633 process_die (cu->dies, cu);
c906108c 2634
fae299cd
DC
2635 /* Some compilers don't define a DW_AT_high_pc attribute for the
2636 compilation unit. If the DW_AT_high_pc is missing, synthesize
2637 it, by scanning the DIE's below the compilation unit. */
10b3939b 2638 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 2639
613e1657 2640 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
c906108c
SS
2641
2642 /* Set symtab language to language from DW_AT_language.
2643 If the compilation is from a C file generated by language preprocessors,
2644 do not set the language if it was already deduced by start_subfile. */
2645 if (symtab != NULL
10b3939b 2646 && !(cu->language == language_c && symtab->language != language_c))
c906108c 2647 {
10b3939b 2648 symtab->language = cu->language;
c906108c
SS
2649 }
2650 pst->symtab = symtab;
2651 pst->readin = 1;
c906108c
SS
2652
2653 do_cleanups (back_to);
2654}
2655
2656/* Process a die and its children. */
2657
2658static void
e7c27a73 2659process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
2660{
2661 switch (die->tag)
2662 {
2663 case DW_TAG_padding:
2664 break;
2665 case DW_TAG_compile_unit:
e7c27a73 2666 read_file_scope (die, cu);
c906108c
SS
2667 break;
2668 case DW_TAG_subprogram:
e7c27a73
DJ
2669 read_subroutine_type (die, cu);
2670 read_func_scope (die, cu);
c906108c
SS
2671 break;
2672 case DW_TAG_inlined_subroutine:
2673 /* FIXME: These are ignored for now.
c5aa993b
JM
2674 They could be used to set breakpoints on all inlined instances
2675 of a function and make GDB `next' properly over inlined functions. */
c906108c
SS
2676 break;
2677 case DW_TAG_lexical_block:
14898363
L
2678 case DW_TAG_try_block:
2679 case DW_TAG_catch_block:
e7c27a73 2680 read_lexical_block_scope (die, cu);
c906108c
SS
2681 break;
2682 case DW_TAG_class_type:
680b30c7 2683 case DW_TAG_interface_type:
c906108c
SS
2684 case DW_TAG_structure_type:
2685 case DW_TAG_union_type:
134d01f1
DJ
2686 read_structure_type (die, cu);
2687 process_structure_scope (die, cu);
c906108c
SS
2688 break;
2689 case DW_TAG_enumeration_type:
134d01f1
DJ
2690 read_enumeration_type (die, cu);
2691 process_enumeration_scope (die, cu);
c906108c 2692 break;
134d01f1
DJ
2693
2694 /* FIXME drow/2004-03-14: These initialize die->type, but do not create
2695 a symbol or process any children. Therefore it doesn't do anything
2696 that won't be done on-demand by read_type_die. */
c906108c 2697 case DW_TAG_subroutine_type:
e7c27a73 2698 read_subroutine_type (die, cu);
c906108c 2699 break;
72019c9c
GM
2700 case DW_TAG_set_type:
2701 read_set_type (die, cu);
2702 break;
c906108c 2703 case DW_TAG_array_type:
e7c27a73 2704 read_array_type (die, cu);
c906108c
SS
2705 break;
2706 case DW_TAG_pointer_type:
e7c27a73 2707 read_tag_pointer_type (die, cu);
c906108c
SS
2708 break;
2709 case DW_TAG_ptr_to_member_type:
e7c27a73 2710 read_tag_ptr_to_member_type (die, cu);
c906108c
SS
2711 break;
2712 case DW_TAG_reference_type:
e7c27a73 2713 read_tag_reference_type (die, cu);
c906108c
SS
2714 break;
2715 case DW_TAG_string_type:
e7c27a73 2716 read_tag_string_type (die, cu);
c906108c 2717 break;
134d01f1
DJ
2718 /* END FIXME */
2719
c906108c 2720 case DW_TAG_base_type:
e7c27a73 2721 read_base_type (die, cu);
134d01f1
DJ
2722 /* Add a typedef symbol for the type definition, if it has a
2723 DW_AT_name. */
2724 new_symbol (die, die->type, cu);
c906108c 2725 break;
a02abb62
JB
2726 case DW_TAG_subrange_type:
2727 read_subrange_type (die, cu);
134d01f1
DJ
2728 /* Add a typedef symbol for the type definition, if it has a
2729 DW_AT_name. */
2730 new_symbol (die, die->type, cu);
a02abb62 2731 break;
c906108c 2732 case DW_TAG_common_block:
e7c27a73 2733 read_common_block (die, cu);
c906108c
SS
2734 break;
2735 case DW_TAG_common_inclusion:
2736 break;
d9fa45fe 2737 case DW_TAG_namespace:
63d06c5c 2738 processing_has_namespace_info = 1;
e7c27a73 2739 read_namespace (die, cu);
d9fa45fe
DC
2740 break;
2741 case DW_TAG_imported_declaration:
2742 case DW_TAG_imported_module:
2743 /* FIXME: carlton/2002-10-16: Eventually, we should use the
2744 information contained in these. DW_TAG_imported_declaration
2745 dies shouldn't have children; DW_TAG_imported_module dies
2746 shouldn't in the C++ case, but conceivably could in the
2747 Fortran case, so we'll have to replace this gdb_assert if
2748 Fortran compilers start generating that info. */
63d06c5c 2749 processing_has_namespace_info = 1;
639d11d3 2750 gdb_assert (die->child == NULL);
d9fa45fe 2751 break;
c906108c 2752 default:
e7c27a73 2753 new_symbol (die, NULL, cu);
c906108c
SS
2754 break;
2755 }
2756}
2757
5fb290d7 2758static void
e142c38c 2759initialize_cu_func_list (struct dwarf2_cu *cu)
5fb290d7 2760{
e142c38c 2761 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5fb290d7
DJ
2762}
2763
cb1df416
DJ
2764static void
2765free_cu_line_header (void *arg)
2766{
2767 struct dwarf2_cu *cu = arg;
2768
2769 free_line_header (cu->line_header);
2770 cu->line_header = NULL;
2771}
2772
c906108c 2773static void
e7c27a73 2774read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 2775{
e7c27a73
DJ
2776 struct objfile *objfile = cu->objfile;
2777 struct comp_unit_head *cu_header = &cu->header;
debd256d 2778 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 2779 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
2780 CORE_ADDR highpc = ((CORE_ADDR) 0);
2781 struct attribute *attr;
e1024ff1 2782 char *name = NULL;
c906108c
SS
2783 char *comp_dir = NULL;
2784 struct die_info *child_die;
2785 bfd *abfd = objfile->obfd;
debd256d 2786 struct line_header *line_header = 0;
e142c38c
DJ
2787 CORE_ADDR baseaddr;
2788
2789 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 2790
fae299cd 2791 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
2792
2793 /* If we didn't find a lowpc, set it to highpc to avoid complaints
2794 from finish_block. */
2acceee2 2795 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
2796 lowpc = highpc;
2797 lowpc += baseaddr;
2798 highpc += baseaddr;
2799
39cbfefa
DJ
2800 /* Find the filename. Do not use dwarf2_name here, since the filename
2801 is not a source language identifier. */
e142c38c 2802 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
2803 if (attr)
2804 {
2805 name = DW_STRING (attr);
2806 }
e1024ff1 2807
e142c38c 2808 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
c906108c 2809 if (attr)
e1024ff1
DJ
2810 comp_dir = DW_STRING (attr);
2811 else if (name != NULL && IS_ABSOLUTE_PATH (name))
c906108c 2812 {
e1024ff1
DJ
2813 comp_dir = ldirname (name);
2814 if (comp_dir != NULL)
2815 make_cleanup (xfree, comp_dir);
2816 }
2817 if (comp_dir != NULL)
2818 {
2819 /* Irix 6.2 native cc prepends <machine>.: to the compilation
2820 directory, get rid of it. */
2821 char *cp = strchr (comp_dir, ':');
c906108c 2822
e1024ff1
DJ
2823 if (cp && cp != comp_dir && cp[-1] == '.' && cp[1] == '/')
2824 comp_dir = cp + 1;
c906108c
SS
2825 }
2826
e1024ff1
DJ
2827 if (name == NULL)
2828 name = "<unknown>";
2829
e142c38c 2830 attr = dwarf2_attr (die, DW_AT_language, cu);
c906108c
SS
2831 if (attr)
2832 {
e142c38c 2833 set_cu_language (DW_UNSND (attr), cu);
c906108c
SS
2834 }
2835
b0f35d58
DL
2836 attr = dwarf2_attr (die, DW_AT_producer, cu);
2837 if (attr)
2838 cu->producer = DW_STRING (attr);
303b6f5d 2839
c906108c
SS
2840 /* We assume that we're processing GCC output. */
2841 processing_gcc_compilation = 2;
c906108c 2842
c906108c
SS
2843 start_symtab (name, comp_dir, lowpc);
2844 record_debugformat ("DWARF 2");
303b6f5d 2845 record_producer (cu->producer);
c906108c 2846
e142c38c 2847 initialize_cu_func_list (cu);
c906108c 2848
cb1df416
DJ
2849 /* Decode line number information if present. We do this before
2850 processing child DIEs, so that the line header table is available
2851 for DW_AT_decl_file. */
e142c38c 2852 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5fb290d7
DJ
2853 if (attr)
2854 {
debd256d 2855 unsigned int line_offset = DW_UNSND (attr);
e7c27a73 2856 line_header = dwarf_decode_line_header (line_offset, abfd, cu);
debd256d
JB
2857 if (line_header)
2858 {
cb1df416
DJ
2859 cu->line_header = line_header;
2860 make_cleanup (free_cu_line_header, cu);
aaa75496 2861 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
debd256d 2862 }
5fb290d7 2863 }
debd256d 2864
cb1df416
DJ
2865 /* Process all dies in compilation unit. */
2866 if (die->child != NULL)
2867 {
2868 child_die = die->child;
2869 while (child_die && child_die->tag)
2870 {
2871 process_die (child_die, cu);
2872 child_die = sibling_die (child_die);
2873 }
2874 }
2875
2e276125
JB
2876 /* Decode macro information, if present. Dwarf 2 macro information
2877 refers to information in the line number info statement program
2878 header, so we can only read it if we've read the header
2879 successfully. */
e142c38c 2880 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
41ff2da1 2881 if (attr && line_header)
2e276125
JB
2882 {
2883 unsigned int macro_offset = DW_UNSND (attr);
2884 dwarf_decode_macros (line_header, macro_offset,
e7c27a73 2885 comp_dir, abfd, cu);
2e276125 2886 }
debd256d 2887 do_cleanups (back_to);
5fb290d7
DJ
2888}
2889
2890static void
e142c38c
DJ
2891add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
2892 struct dwarf2_cu *cu)
5fb290d7
DJ
2893{
2894 struct function_range *thisfn;
2895
2896 thisfn = (struct function_range *)
7b5a2f43 2897 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5fb290d7
DJ
2898 thisfn->name = name;
2899 thisfn->lowpc = lowpc;
2900 thisfn->highpc = highpc;
2901 thisfn->seen_line = 0;
2902 thisfn->next = NULL;
2903
e142c38c
DJ
2904 if (cu->last_fn == NULL)
2905 cu->first_fn = thisfn;
5fb290d7 2906 else
e142c38c 2907 cu->last_fn->next = thisfn;
5fb290d7 2908
e142c38c 2909 cu->last_fn = thisfn;
c906108c
SS
2910}
2911
2912static void
e7c27a73 2913read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 2914{
e7c27a73 2915 struct objfile *objfile = cu->objfile;
52f0bd74 2916 struct context_stack *new;
c906108c
SS
2917 CORE_ADDR lowpc;
2918 CORE_ADDR highpc;
2919 struct die_info *child_die;
2920 struct attribute *attr;
2921 char *name;
fdde2d81
DC
2922 const char *previous_prefix = processing_current_prefix;
2923 struct cleanup *back_to = NULL;
e142c38c 2924 CORE_ADDR baseaddr;
801e3a5b 2925 struct block *block;
c906108c 2926
e142c38c
DJ
2927 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2928
2929 name = dwarf2_linkage_name (die, cu);
c906108c
SS
2930
2931 /* Ignore functions with missing or empty names and functions with
2932 missing or invalid low and high pc attributes. */
e7c27a73 2933 if (name == NULL || !dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
c906108c
SS
2934 return;
2935
987504bb
JJ
2936 if (cu->language == language_cplus
2937 || cu->language == language_java)
fdde2d81 2938 {
086ed43d 2939 struct die_info *spec_die = die_specification (die, cu);
fdde2d81 2940
2a35147e
JB
2941 /* NOTE: carlton/2004-01-23: We have to be careful in the
2942 presence of DW_AT_specification. For example, with GCC 3.4,
2943 given the code
2944
2945 namespace N {
2946 void foo() {
2947 // Definition of N::foo.
2948 }
2949 }
2950
2951 then we'll have a tree of DIEs like this:
2952
2953 1: DW_TAG_compile_unit
2954 2: DW_TAG_namespace // N
2955 3: DW_TAG_subprogram // declaration of N::foo
2956 4: DW_TAG_subprogram // definition of N::foo
2957 DW_AT_specification // refers to die #3
2958
2959 Thus, when processing die #4, we have to pretend that we're
2960 in the context of its DW_AT_specification, namely the contex
2961 of die #3. */
fdde2d81
DC
2962
2963 if (spec_die != NULL)
2964 {
e142c38c 2965 char *specification_prefix = determine_prefix (spec_die, cu);
fdde2d81
DC
2966 processing_current_prefix = specification_prefix;
2967 back_to = make_cleanup (xfree, specification_prefix);
2968 }
2969 }
2970
c906108c
SS
2971 lowpc += baseaddr;
2972 highpc += baseaddr;
2973
5fb290d7 2974 /* Record the function range for dwarf_decode_lines. */
e142c38c 2975 add_to_cu_func_list (name, lowpc, highpc, cu);
5fb290d7 2976
c906108c 2977 new = push_context (0, lowpc);
e7c27a73 2978 new->name = new_symbol (die, die->type, cu);
4c2df51b 2979
4cecd739
DJ
2980 /* If there is a location expression for DW_AT_frame_base, record
2981 it. */
e142c38c 2982 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 2983 if (attr)
c034e007
AC
2984 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
2985 expression is being recorded directly in the function's symbol
2986 and not in a separate frame-base object. I guess this hack is
2987 to avoid adding some sort of frame-base adjunct/annex to the
2988 function's symbol :-(. The problem with doing this is that it
2989 results in a function symbol with a location expression that
2990 has nothing to do with the location of the function, ouch! The
2991 relationship should be: a function's symbol has-a frame base; a
2992 frame-base has-a location expression. */
e7c27a73 2993 dwarf2_symbol_mark_computed (attr, new->name, cu);
4c2df51b 2994
e142c38c 2995 cu->list_in_scope = &local_symbols;
c906108c 2996
639d11d3 2997 if (die->child != NULL)
c906108c 2998 {
639d11d3 2999 child_die = die->child;
c906108c
SS
3000 while (child_die && child_die->tag)
3001 {
e7c27a73 3002 process_die (child_die, cu);
c906108c
SS
3003 child_die = sibling_die (child_die);
3004 }
3005 }
3006
3007 new = pop_context ();
3008 /* Make a block for the local symbols within. */
801e3a5b
JB
3009 block = finish_block (new->name, &local_symbols, new->old_blocks,
3010 lowpc, highpc, objfile);
3011
3012 /* If we have address ranges, record them. */
3013 dwarf2_record_block_ranges (die, block, baseaddr, cu);
208d8187
JB
3014
3015 /* In C++, we can have functions nested inside functions (e.g., when
3016 a function declares a class that has methods). This means that
3017 when we finish processing a function scope, we may need to go
3018 back to building a containing block's symbol lists. */
3019 local_symbols = new->locals;
3020 param_symbols = new->params;
3021
921e78cf
JB
3022 /* If we've finished processing a top-level function, subsequent
3023 symbols go in the file symbol list. */
3024 if (outermost_context_p ())
e142c38c 3025 cu->list_in_scope = &file_symbols;
fdde2d81
DC
3026
3027 processing_current_prefix = previous_prefix;
3028 if (back_to != NULL)
3029 do_cleanups (back_to);
c906108c
SS
3030}
3031
3032/* Process all the DIES contained within a lexical block scope. Start
3033 a new scope, process the dies, and then close the scope. */
3034
3035static void
e7c27a73 3036read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3037{
e7c27a73 3038 struct objfile *objfile = cu->objfile;
52f0bd74 3039 struct context_stack *new;
c906108c
SS
3040 CORE_ADDR lowpc, highpc;
3041 struct die_info *child_die;
e142c38c
DJ
3042 CORE_ADDR baseaddr;
3043
3044 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
3045
3046 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
3047 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
3048 as multiple lexical blocks? Handling children in a sane way would
3049 be nasty. Might be easier to properly extend generic blocks to
3050 describe ranges. */
e7c27a73 3051 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu))
c906108c
SS
3052 return;
3053 lowpc += baseaddr;
3054 highpc += baseaddr;
3055
3056 push_context (0, lowpc);
639d11d3 3057 if (die->child != NULL)
c906108c 3058 {
639d11d3 3059 child_die = die->child;
c906108c
SS
3060 while (child_die && child_die->tag)
3061 {
e7c27a73 3062 process_die (child_die, cu);
c906108c
SS
3063 child_die = sibling_die (child_die);
3064 }
3065 }
3066 new = pop_context ();
3067
3068 if (local_symbols != NULL)
3069 {
801e3a5b
JB
3070 struct block *block
3071 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
3072 highpc, objfile);
3073
3074 /* Note that recording ranges after traversing children, as we
3075 do here, means that recording a parent's ranges entails
3076 walking across all its children's ranges as they appear in
3077 the address map, which is quadratic behavior.
3078
3079 It would be nicer to record the parent's ranges before
3080 traversing its children, simply overriding whatever you find
3081 there. But since we don't even decide whether to create a
3082 block until after we've traversed its children, that's hard
3083 to do. */
3084 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
3085 }
3086 local_symbols = new->locals;
3087}
3088
43039443
JK
3089/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
3090 Return 1 if the attributes are present and valid, otherwise, return 0. */
3091
3092static int
3093dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
3094 CORE_ADDR *high_return, struct dwarf2_cu *cu)
3095{
3096 struct objfile *objfile = cu->objfile;
3097 struct comp_unit_head *cu_header = &cu->header;
3098 bfd *obfd = objfile->obfd;
3099 unsigned int addr_size = cu_header->addr_size;
3100 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3101 /* Base address selection entry. */
3102 CORE_ADDR base;
3103 int found_base;
3104 unsigned int dummy;
3105 gdb_byte *buffer;
3106 CORE_ADDR marker;
3107 int low_set;
3108 CORE_ADDR low = 0;
3109 CORE_ADDR high = 0;
3110
3111 found_base = cu_header->base_known;
3112 base = cu_header->base_address;
3113
3114 if (offset >= dwarf2_per_objfile->ranges_size)
3115 {
3116 complaint (&symfile_complaints,
3117 _("Offset %d out of bounds for DW_AT_ranges attribute"),
3118 offset);
3119 return 0;
3120 }
3121 buffer = dwarf2_per_objfile->ranges_buffer + offset;
3122
3123 /* Read in the largest possible address. */
3124 marker = read_address (obfd, buffer, cu, &dummy);
3125 if ((marker & mask) == mask)
3126 {
3127 /* If we found the largest possible address, then
3128 read the base address. */
3129 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3130 buffer += 2 * addr_size;
3131 offset += 2 * addr_size;
3132 found_base = 1;
3133 }
3134
3135 low_set = 0;
3136
3137 while (1)
3138 {
3139 CORE_ADDR range_beginning, range_end;
3140
3141 range_beginning = read_address (obfd, buffer, cu, &dummy);
3142 buffer += addr_size;
3143 range_end = read_address (obfd, buffer, cu, &dummy);
3144 buffer += addr_size;
3145 offset += 2 * addr_size;
3146
3147 /* An end of list marker is a pair of zero addresses. */
3148 if (range_beginning == 0 && range_end == 0)
3149 /* Found the end of list entry. */
3150 break;
3151
3152 /* Each base address selection entry is a pair of 2 values.
3153 The first is the largest possible address, the second is
3154 the base address. Check for a base address here. */
3155 if ((range_beginning & mask) == mask)
3156 {
3157 /* If we found the largest possible address, then
3158 read the base address. */
3159 base = read_address (obfd, buffer + addr_size, cu, &dummy);
3160 found_base = 1;
3161 continue;
3162 }
3163
3164 if (!found_base)
3165 {
3166 /* We have no valid base address for the ranges
3167 data. */
3168 complaint (&symfile_complaints,
3169 _("Invalid .debug_ranges data (no base address)"));
3170 return 0;
3171 }
3172
3173 range_beginning += base;
3174 range_end += base;
3175
3176 /* FIXME: This is recording everything as a low-high
3177 segment of consecutive addresses. We should have a
3178 data structure for discontiguous block ranges
3179 instead. */
3180 if (! low_set)
3181 {
3182 low = range_beginning;
3183 high = range_end;
3184 low_set = 1;
3185 }
3186 else
3187 {
3188 if (range_beginning < low)
3189 low = range_beginning;
3190 if (range_end > high)
3191 high = range_end;
3192 }
3193 }
3194
3195 if (! low_set)
3196 /* If the first entry is an end-of-list marker, the range
3197 describes an empty scope, i.e. no instructions. */
3198 return 0;
3199
3200 if (low_return)
3201 *low_return = low;
3202 if (high_return)
3203 *high_return = high;
3204 return 1;
3205}
3206
af34e669
DJ
3207/* Get low and high pc attributes from a die. Return 1 if the attributes
3208 are present and valid, otherwise, return 0. Return -1 if the range is
3209 discontinuous, i.e. derived from DW_AT_ranges information. */
c906108c 3210static int
af34e669 3211dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
e7c27a73 3212 CORE_ADDR *highpc, struct dwarf2_cu *cu)
c906108c
SS
3213{
3214 struct attribute *attr;
af34e669
DJ
3215 CORE_ADDR low = 0;
3216 CORE_ADDR high = 0;
3217 int ret = 0;
c906108c 3218
e142c38c 3219 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
c906108c 3220 if (attr)
af34e669
DJ
3221 {
3222 high = DW_ADDR (attr);
e142c38c 3223 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669
DJ
3224 if (attr)
3225 low = DW_ADDR (attr);
3226 else
3227 /* Found high w/o low attribute. */
3228 return 0;
3229
3230 /* Found consecutive range of addresses. */
3231 ret = 1;
3232 }
c906108c 3233 else
af34e669 3234 {
e142c38c 3235 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
3236 if (attr != NULL)
3237 {
af34e669 3238 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 3239 .debug_ranges section. */
43039443 3240 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu))
af34e669 3241 return 0;
43039443 3242 /* Found discontinuous range of addresses. */
af34e669
DJ
3243 ret = -1;
3244 }
3245 }
c906108c
SS
3246
3247 if (high < low)
3248 return 0;
3249
3250 /* When using the GNU linker, .gnu.linkonce. sections are used to
3251 eliminate duplicate copies of functions and vtables and such.
3252 The linker will arbitrarily choose one and discard the others.
3253 The AT_*_pc values for such functions refer to local labels in
3254 these sections. If the section from that file was discarded, the
3255 labels are not in the output, so the relocs get a value of 0.
3256 If this is a discarded function, mark the pc bounds as invalid,
3257 so that GDB will ignore it. */
72dca2f5 3258 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
3259 return 0;
3260
3261 *lowpc = low;
3262 *highpc = high;
af34e669 3263 return ret;
c906108c
SS
3264}
3265
fae299cd
DC
3266/* Get the low and high pc's represented by the scope DIE, and store
3267 them in *LOWPC and *HIGHPC. If the correct values can't be
3268 determined, set *LOWPC to -1 and *HIGHPC to 0. */
3269
3270static void
3271get_scope_pc_bounds (struct die_info *die,
3272 CORE_ADDR *lowpc, CORE_ADDR *highpc,
3273 struct dwarf2_cu *cu)
3274{
3275 CORE_ADDR best_low = (CORE_ADDR) -1;
3276 CORE_ADDR best_high = (CORE_ADDR) 0;
3277 CORE_ADDR current_low, current_high;
3278
3279 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu))
3280 {
3281 best_low = current_low;
3282 best_high = current_high;
3283 }
3284 else
3285 {
3286 struct die_info *child = die->child;
3287
3288 while (child && child->tag)
3289 {
3290 switch (child->tag) {
3291 case DW_TAG_subprogram:
3292 if (dwarf2_get_pc_bounds (child, &current_low, &current_high, cu))
3293 {
3294 best_low = min (best_low, current_low);
3295 best_high = max (best_high, current_high);
3296 }
3297 break;
3298 case DW_TAG_namespace:
3299 /* FIXME: carlton/2004-01-16: Should we do this for
3300 DW_TAG_class_type/DW_TAG_structure_type, too? I think
3301 that current GCC's always emit the DIEs corresponding
3302 to definitions of methods of classes as children of a
3303 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
3304 the DIEs giving the declarations, which could be
3305 anywhere). But I don't see any reason why the
3306 standards says that they have to be there. */
3307 get_scope_pc_bounds (child, &current_low, &current_high, cu);
3308
3309 if (current_low != ((CORE_ADDR) -1))
3310 {
3311 best_low = min (best_low, current_low);
3312 best_high = max (best_high, current_high);
3313 }
3314 break;
3315 default:
3316 /* Ignore. */
3317 break;
3318 }
3319
3320 child = sibling_die (child);
3321 }
3322 }
3323
3324 *lowpc = best_low;
3325 *highpc = best_high;
3326}
3327
801e3a5b
JB
3328/* Record the address ranges for BLOCK, offset by BASEADDR, as given
3329 in DIE. */
3330static void
3331dwarf2_record_block_ranges (struct die_info *die, struct block *block,
3332 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
3333{
3334 struct attribute *attr;
3335
3336 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
3337 if (attr)
3338 {
3339 CORE_ADDR high = DW_ADDR (attr);
3340 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3341 if (attr)
3342 {
3343 CORE_ADDR low = DW_ADDR (attr);
3344 record_block_range (block, baseaddr + low, baseaddr + high - 1);
3345 }
3346 }
3347
3348 attr = dwarf2_attr (die, DW_AT_ranges, cu);
3349 if (attr)
3350 {
3351 bfd *obfd = cu->objfile->obfd;
3352
3353 /* The value of the DW_AT_ranges attribute is the offset of the
3354 address range list in the .debug_ranges section. */
3355 unsigned long offset = DW_UNSND (attr);
3356 gdb_byte *buffer = dwarf2_per_objfile->ranges_buffer + offset;
3357
3358 /* For some target architectures, but not others, the
3359 read_address function sign-extends the addresses it returns.
3360 To recognize base address selection entries, we need a
3361 mask. */
3362 unsigned int addr_size = cu->header.addr_size;
3363 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
3364
3365 /* The base address, to which the next pair is relative. Note
3366 that this 'base' is a DWARF concept: most entries in a range
3367 list are relative, to reduce the number of relocs against the
3368 debugging information. This is separate from this function's
3369 'baseaddr' argument, which GDB uses to relocate debugging
3370 information from a shared library based on the address at
3371 which the library was loaded. */
3372 CORE_ADDR base = cu->header.base_address;
3373 int base_known = cu->header.base_known;
3374
3375 if (offset >= dwarf2_per_objfile->ranges_size)
3376 {
3377 complaint (&symfile_complaints,
3378 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
3379 offset);
3380 return;
3381 }
3382
3383 for (;;)
3384 {
3385 unsigned int bytes_read;
3386 CORE_ADDR start, end;
3387
3388 start = read_address (obfd, buffer, cu, &bytes_read);
3389 buffer += bytes_read;
3390 end = read_address (obfd, buffer, cu, &bytes_read);
3391 buffer += bytes_read;
3392
3393 /* Did we find the end of the range list? */
3394 if (start == 0 && end == 0)
3395 break;
3396
3397 /* Did we find a base address selection entry? */
3398 else if ((start & base_select_mask) == base_select_mask)
3399 {
3400 base = end;
3401 base_known = 1;
3402 }
3403
3404 /* We found an ordinary address range. */
3405 else
3406 {
3407 if (!base_known)
3408 {
3409 complaint (&symfile_complaints,
3410 _("Invalid .debug_ranges data (no base address)"));
3411 return;
3412 }
3413
3414 record_block_range (block,
3415 baseaddr + base + start,
3416 baseaddr + base + end - 1);
3417 }
3418 }
3419 }
3420}
3421
c906108c
SS
3422/* Add an aggregate field to the field list. */
3423
3424static void
107d2387 3425dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73
DJ
3426 struct dwarf2_cu *cu)
3427{
3428 struct objfile *objfile = cu->objfile;
c906108c
SS
3429 struct nextfield *new_field;
3430 struct attribute *attr;
3431 struct field *fp;
3432 char *fieldname = "";
3433
3434 /* Allocate a new field list entry and link it in. */
3435 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 3436 make_cleanup (xfree, new_field);
c906108c
SS
3437 memset (new_field, 0, sizeof (struct nextfield));
3438 new_field->next = fip->fields;
3439 fip->fields = new_field;
3440 fip->nfields++;
3441
3442 /* Handle accessibility and virtuality of field.
3443 The default accessibility for members is public, the default
3444 accessibility for inheritance is private. */
3445 if (die->tag != DW_TAG_inheritance)
3446 new_field->accessibility = DW_ACCESS_public;
3447 else
3448 new_field->accessibility = DW_ACCESS_private;
3449 new_field->virtuality = DW_VIRTUALITY_none;
3450
e142c38c 3451 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
3452 if (attr)
3453 new_field->accessibility = DW_UNSND (attr);
3454 if (new_field->accessibility != DW_ACCESS_public)
3455 fip->non_public_fields = 1;
e142c38c 3456 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
3457 if (attr)
3458 new_field->virtuality = DW_UNSND (attr);
3459
3460 fp = &new_field->field;
a9a9bd0f 3461
e142c38c 3462 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 3463 {
a9a9bd0f
DC
3464 /* Data member other than a C++ static data member. */
3465
c906108c 3466 /* Get type of field. */
e7c27a73 3467 fp->type = die_type (die, cu);
c906108c 3468
01ad7f36
DJ
3469 FIELD_STATIC_KIND (*fp) = 0;
3470
c906108c 3471 /* Get bit size of field (zero if none). */
e142c38c 3472 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
3473 if (attr)
3474 {
3475 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
3476 }
3477 else
3478 {
3479 FIELD_BITSIZE (*fp) = 0;
3480 }
3481
3482 /* Get bit offset of field. */
e142c38c 3483 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c
SS
3484 if (attr)
3485 {
c6a0999f
JB
3486 int byte_offset;
3487
3690dd37
JB
3488 if (attr_form_is_section_offset (attr))
3489 {
3490 dwarf2_complex_location_expr_complaint ();
c6a0999f 3491 byte_offset = 0;
3690dd37
JB
3492 }
3493 else if (attr_form_is_constant (attr))
c6a0999f 3494 byte_offset = dwarf2_get_attr_constant_value (attr, 0);
3690dd37 3495 else
c6a0999f
JB
3496 byte_offset = decode_locdesc (DW_BLOCK (attr), cu);
3497
3498 FIELD_BITPOS (*fp) = byte_offset * bits_per_byte;
c906108c
SS
3499 }
3500 else
3501 FIELD_BITPOS (*fp) = 0;
e142c38c 3502 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
3503 if (attr)
3504 {
3505 if (BITS_BIG_ENDIAN)
3506 {
3507 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
3508 additional bit offset from the MSB of the containing
3509 anonymous object to the MSB of the field. We don't
3510 have to do anything special since we don't need to
3511 know the size of the anonymous object. */
c906108c
SS
3512 FIELD_BITPOS (*fp) += DW_UNSND (attr);
3513 }
3514 else
3515 {
3516 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
3517 MSB of the anonymous object, subtract off the number of
3518 bits from the MSB of the field to the MSB of the
3519 object, and then subtract off the number of bits of
3520 the field itself. The result is the bit offset of
3521 the LSB of the field. */
c906108c
SS
3522 int anonymous_size;
3523 int bit_offset = DW_UNSND (attr);
3524
e142c38c 3525 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
3526 if (attr)
3527 {
3528 /* The size of the anonymous object containing
3529 the bit field is explicit, so use the
3530 indicated size (in bytes). */
3531 anonymous_size = DW_UNSND (attr);
3532 }
3533 else
3534 {
3535 /* The size of the anonymous object containing
3536 the bit field must be inferred from the type
3537 attribute of the data member containing the
3538 bit field. */
3539 anonymous_size = TYPE_LENGTH (fp->type);
3540 }
3541 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
3542 - bit_offset - FIELD_BITSIZE (*fp);
3543 }
3544 }
3545
3546 /* Get name of field. */
39cbfefa
DJ
3547 fieldname = dwarf2_name (die, cu);
3548 if (fieldname == NULL)
3549 fieldname = "";
d8151005
DJ
3550
3551 /* The name is already allocated along with this objfile, so we don't
3552 need to duplicate it for the type. */
3553 fp->name = fieldname;
c906108c
SS
3554
3555 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 3556 pointer or virtual base class pointer) to private. */
e142c38c 3557 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c
SS
3558 {
3559 new_field->accessibility = DW_ACCESS_private;
3560 fip->non_public_fields = 1;
3561 }
3562 }
a9a9bd0f 3563 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 3564 {
a9a9bd0f
DC
3565 /* C++ static member. */
3566
3567 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
3568 is a declaration, but all versions of G++ as of this writing
3569 (so through at least 3.2.1) incorrectly generate
3570 DW_TAG_variable tags. */
3571
c906108c 3572 char *physname;
c906108c 3573
a9a9bd0f 3574 /* Get name of field. */
39cbfefa
DJ
3575 fieldname = dwarf2_name (die, cu);
3576 if (fieldname == NULL)
c906108c
SS
3577 return;
3578
2df3850c 3579 /* Get physical name. */
e142c38c 3580 physname = dwarf2_linkage_name (die, cu);
c906108c 3581
d8151005
DJ
3582 /* The name is already allocated along with this objfile, so we don't
3583 need to duplicate it for the type. */
3584 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 3585 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 3586 FIELD_NAME (*fp) = fieldname;
c906108c
SS
3587 }
3588 else if (die->tag == DW_TAG_inheritance)
3589 {
3590 /* C++ base class field. */
e142c38c 3591 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
c906108c 3592 if (attr)
e7c27a73 3593 FIELD_BITPOS (*fp) = (decode_locdesc (DW_BLOCK (attr), cu)
107d2387 3594 * bits_per_byte);
c906108c 3595 FIELD_BITSIZE (*fp) = 0;
01ad7f36 3596 FIELD_STATIC_KIND (*fp) = 0;
e7c27a73 3597 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
3598 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
3599 fip->nbaseclasses++;
3600 }
3601}
3602
3603/* Create the vector of fields, and attach it to the type. */
3604
3605static void
fba45db2 3606dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 3607 struct dwarf2_cu *cu)
c906108c
SS
3608{
3609 int nfields = fip->nfields;
3610
3611 /* Record the field count, allocate space for the array of fields,
3612 and create blank accessibility bitfields if necessary. */
3613 TYPE_NFIELDS (type) = nfields;
3614 TYPE_FIELDS (type) = (struct field *)
3615 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3616 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3617
3618 if (fip->non_public_fields)
3619 {
3620 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3621
3622 TYPE_FIELD_PRIVATE_BITS (type) =
3623 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3624 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3625
3626 TYPE_FIELD_PROTECTED_BITS (type) =
3627 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3628 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3629
3630 TYPE_FIELD_IGNORE_BITS (type) =
3631 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3632 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3633 }
3634
3635 /* If the type has baseclasses, allocate and clear a bit vector for
3636 TYPE_FIELD_VIRTUAL_BITS. */
3637 if (fip->nbaseclasses)
3638 {
3639 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 3640 unsigned char *pointer;
c906108c
SS
3641
3642 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
3643 pointer = TYPE_ALLOC (type, num_bytes);
3644 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
3645 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
3646 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
3647 }
3648
3649 /* Copy the saved-up fields into the field vector. Start from the head
3650 of the list, adding to the tail of the field array, so that they end
3651 up in the same order in the array in which they were added to the list. */
3652 while (nfields-- > 0)
3653 {
3654 TYPE_FIELD (type, nfields) = fip->fields->field;
3655 switch (fip->fields->accessibility)
3656 {
c5aa993b
JM
3657 case DW_ACCESS_private:
3658 SET_TYPE_FIELD_PRIVATE (type, nfields);
3659 break;
c906108c 3660
c5aa993b
JM
3661 case DW_ACCESS_protected:
3662 SET_TYPE_FIELD_PROTECTED (type, nfields);
3663 break;
c906108c 3664
c5aa993b
JM
3665 case DW_ACCESS_public:
3666 break;
c906108c 3667
c5aa993b
JM
3668 default:
3669 /* Unknown accessibility. Complain and treat it as public. */
3670 {
e2e0b3e5 3671 complaint (&symfile_complaints, _("unsupported accessibility %d"),
4d3c2250 3672 fip->fields->accessibility);
c5aa993b
JM
3673 }
3674 break;
c906108c
SS
3675 }
3676 if (nfields < fip->nbaseclasses)
3677 {
3678 switch (fip->fields->virtuality)
3679 {
c5aa993b
JM
3680 case DW_VIRTUALITY_virtual:
3681 case DW_VIRTUALITY_pure_virtual:
3682 SET_TYPE_FIELD_VIRTUAL (type, nfields);
3683 break;
c906108c
SS
3684 }
3685 }
3686 fip->fields = fip->fields->next;
3687 }
3688}
3689
c906108c
SS
3690/* Add a member function to the proper fieldlist. */
3691
3692static void
107d2387 3693dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 3694 struct type *type, struct dwarf2_cu *cu)
c906108c 3695{
e7c27a73 3696 struct objfile *objfile = cu->objfile;
c906108c
SS
3697 struct attribute *attr;
3698 struct fnfieldlist *flp;
3699 int i;
3700 struct fn_field *fnp;
3701 char *fieldname;
3702 char *physname;
3703 struct nextfnfield *new_fnfield;
3704
2df3850c 3705 /* Get name of member function. */
39cbfefa
DJ
3706 fieldname = dwarf2_name (die, cu);
3707 if (fieldname == NULL)
2df3850c 3708 return;
c906108c 3709
2df3850c 3710 /* Get the mangled name. */
e142c38c 3711 physname = dwarf2_linkage_name (die, cu);
c906108c
SS
3712
3713 /* Look up member function name in fieldlist. */
3714 for (i = 0; i < fip->nfnfields; i++)
3715 {
27bfe10e 3716 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
3717 break;
3718 }
3719
3720 /* Create new list element if necessary. */
3721 if (i < fip->nfnfields)
3722 flp = &fip->fnfieldlists[i];
3723 else
3724 {
3725 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
3726 {
3727 fip->fnfieldlists = (struct fnfieldlist *)
3728 xrealloc (fip->fnfieldlists,
3729 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 3730 * sizeof (struct fnfieldlist));
c906108c 3731 if (fip->nfnfields == 0)
c13c43fd 3732 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
3733 }
3734 flp = &fip->fnfieldlists[fip->nfnfields];
3735 flp->name = fieldname;
3736 flp->length = 0;
3737 flp->head = NULL;
3738 fip->nfnfields++;
3739 }
3740
3741 /* Create a new member function field and chain it to the field list
3742 entry. */
3743 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 3744 make_cleanup (xfree, new_fnfield);
c906108c
SS
3745 memset (new_fnfield, 0, sizeof (struct nextfnfield));
3746 new_fnfield->next = flp->head;
3747 flp->head = new_fnfield;
3748 flp->length++;
3749
3750 /* Fill in the member function field info. */
3751 fnp = &new_fnfield->fnfield;
d8151005
DJ
3752 /* The name is already allocated along with this objfile, so we don't
3753 need to duplicate it for the type. */
3754 fnp->physname = physname ? physname : "";
c906108c
SS
3755 fnp->type = alloc_type (objfile);
3756 if (die->type && TYPE_CODE (die->type) == TYPE_CODE_FUNC)
3757 {
c906108c 3758 int nparams = TYPE_NFIELDS (die->type);
c906108c 3759
e26fb1d7
DC
3760 /* TYPE is the domain of this method, and DIE->TYPE is the type
3761 of the method itself (TYPE_CODE_METHOD). */
3762 smash_to_method_type (fnp->type, type,
ad2f7632
DJ
3763 TYPE_TARGET_TYPE (die->type),
3764 TYPE_FIELDS (die->type),
3765 TYPE_NFIELDS (die->type),
3766 TYPE_VARARGS (die->type));
c906108c
SS
3767
3768 /* Handle static member functions.
c5aa993b
JM
3769 Dwarf2 has no clean way to discern C++ static and non-static
3770 member functions. G++ helps GDB by marking the first
3771 parameter for non-static member functions (which is the
3772 this pointer) as artificial. We obtain this information
3773 from read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
c906108c
SS
3774 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (die->type, 0) == 0)
3775 fnp->voffset = VOFFSET_STATIC;
3776 }
3777 else
e2e0b3e5 3778 complaint (&symfile_complaints, _("member function type missing for '%s'"),
4d3c2250 3779 physname);
c906108c
SS
3780
3781 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 3782 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 3783 fnp->fcontext = die_containing_type (die, cu);
c906108c
SS
3784
3785 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const
3786 and is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
3787
3788 /* Get accessibility. */
e142c38c 3789 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
3790 if (attr)
3791 {
3792 switch (DW_UNSND (attr))
3793 {
c5aa993b
JM
3794 case DW_ACCESS_private:
3795 fnp->is_private = 1;
3796 break;
3797 case DW_ACCESS_protected:
3798 fnp->is_protected = 1;
3799 break;
c906108c
SS
3800 }
3801 }
3802
b02dede2 3803 /* Check for artificial methods. */
e142c38c 3804 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
3805 if (attr && DW_UNSND (attr) != 0)
3806 fnp->is_artificial = 1;
3807
c906108c 3808 /* Get index in virtual function table if it is a virtual member function. */
e142c38c 3809 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
c906108c 3810 if (attr)
8e19ed76
PS
3811 {
3812 /* Support the .debug_loc offsets */
3813 if (attr_form_is_block (attr))
3814 {
e7c27a73 3815 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
8e19ed76 3816 }
3690dd37 3817 else if (attr_form_is_section_offset (attr))
8e19ed76 3818 {
4d3c2250 3819 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
3820 }
3821 else
3822 {
4d3c2250
KB
3823 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
3824 fieldname);
8e19ed76
PS
3825 }
3826 }
c906108c
SS
3827}
3828
3829/* Create the vector of member function fields, and attach it to the type. */
3830
3831static void
fba45db2 3832dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 3833 struct dwarf2_cu *cu)
c906108c
SS
3834{
3835 struct fnfieldlist *flp;
3836 int total_length = 0;
3837 int i;
3838
3839 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3840 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
3841 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
3842
3843 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
3844 {
3845 struct nextfnfield *nfp = flp->head;
3846 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
3847 int k;
3848
3849 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
3850 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
3851 fn_flp->fn_fields = (struct fn_field *)
3852 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
3853 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 3854 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
3855
3856 total_length += flp->length;
3857 }
3858
3859 TYPE_NFN_FIELDS (type) = fip->nfnfields;
3860 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
3861}
3862
1168df01
JB
3863/* Returns non-zero if NAME is the name of a vtable member in CU's
3864 language, zero otherwise. */
3865static int
3866is_vtable_name (const char *name, struct dwarf2_cu *cu)
3867{
3868 static const char vptr[] = "_vptr";
987504bb 3869 static const char vtable[] = "vtable";
1168df01 3870
987504bb
JJ
3871 /* Look for the C++ and Java forms of the vtable. */
3872 if ((cu->language == language_java
3873 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
3874 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
3875 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
3876 return 1;
3877
3878 return 0;
3879}
3880
c0dd20ea
DJ
3881/* GCC outputs unnamed structures that are really pointers to member
3882 functions, with the ABI-specified layout. If DIE (from CU) describes
3883 such a structure, set its type, and return nonzero. Otherwise return
61049d3b
DJ
3884 zero.
3885
3886 GCC shouldn't do this; it should just output pointer to member DIEs.
3887 This is GCC PR debug/28767. */
c0dd20ea
DJ
3888
3889static int
3890quirk_gcc_member_function_pointer (struct die_info *die, struct dwarf2_cu *cu)
3891{
3892 struct objfile *objfile = cu->objfile;
3893 struct type *type;
3894 struct die_info *pfn_die, *delta_die;
3895 struct attribute *pfn_name, *delta_name;
3896 struct type *pfn_type, *domain_type;
3897
3898 /* Check for a structure with no name and two children. */
3899 if (die->tag != DW_TAG_structure_type
3900 || dwarf2_attr (die, DW_AT_name, cu) != NULL
3901 || die->child == NULL
3902 || die->child->sibling == NULL
3903 || (die->child->sibling->sibling != NULL
3904 && die->child->sibling->sibling->tag != DW_TAG_padding))
3905 return 0;
3906
3907 /* Check for __pfn and __delta members. */
3908 pfn_die = die->child;
3909 pfn_name = dwarf2_attr (pfn_die, DW_AT_name, cu);
3910 if (pfn_die->tag != DW_TAG_member
3911 || pfn_name == NULL
3912 || DW_STRING (pfn_name) == NULL
3913 || strcmp ("__pfn", DW_STRING (pfn_name)) != 0)
3914 return 0;
3915
3916 delta_die = pfn_die->sibling;
3917 delta_name = dwarf2_attr (delta_die, DW_AT_name, cu);
3918 if (delta_die->tag != DW_TAG_member
3919 || delta_name == NULL
3920 || DW_STRING (delta_name) == NULL
3921 || strcmp ("__delta", DW_STRING (delta_name)) != 0)
3922 return 0;
3923
3924 /* Find the type of the method. */
3925 pfn_type = die_type (pfn_die, cu);
3926 if (pfn_type == NULL
3927 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
3928 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
3929 return 0;
3930
3931 /* Look for the "this" argument. */
3932 pfn_type = TYPE_TARGET_TYPE (pfn_type);
3933 if (TYPE_NFIELDS (pfn_type) == 0
3934 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
3935 return 0;
3936
3937 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
3938 type = alloc_type (objfile);
3939 smash_to_method_type (type, domain_type, TYPE_TARGET_TYPE (pfn_type),
3940 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
3941 TYPE_VARARGS (pfn_type));
0d5de010 3942 type = lookup_methodptr_type (type);
c0dd20ea
DJ
3943 set_die_type (die, type, cu);
3944
3945 return 1;
3946}
1168df01 3947
c906108c
SS
3948/* Called when we find the DIE that starts a structure or union scope
3949 (definition) to process all dies that define the members of the
3950 structure or union.
3951
3952 NOTE: we need to call struct_type regardless of whether or not the
3953 DIE has an at_name attribute, since it might be an anonymous
3954 structure or union. This gets the type entered into our set of
3955 user defined types.
3956
3957 However, if the structure is incomplete (an opaque struct/union)
3958 then suppress creating a symbol table entry for it since gdb only
3959 wants to find the one with the complete definition. Note that if
3960 it is complete, we just call new_symbol, which does it's own
3961 checking about whether the struct/union is anonymous or not (and
3962 suppresses creating a symbol table entry itself). */
3963
3964static void
134d01f1 3965read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 3966{
e7c27a73 3967 struct objfile *objfile = cu->objfile;
c906108c
SS
3968 struct type *type;
3969 struct attribute *attr;
63d06c5c
DC
3970 const char *previous_prefix = processing_current_prefix;
3971 struct cleanup *back_to = NULL;
39cbfefa 3972 char *name;
c906108c 3973
134d01f1
DJ
3974 if (die->type)
3975 return;
3976
c0dd20ea
DJ
3977 if (quirk_gcc_member_function_pointer (die, cu))
3978 return;
c906108c 3979
c0dd20ea 3980 type = alloc_type (objfile);
c906108c 3981 INIT_CPLUS_SPECIFIC (type);
39cbfefa
DJ
3982 name = dwarf2_name (die, cu);
3983 if (name != NULL)
c906108c 3984 {
987504bb
JJ
3985 if (cu->language == language_cplus
3986 || cu->language == language_java)
63d06c5c 3987 {
8176b9b8
DC
3988 char *new_prefix = determine_class_name (die, cu);
3989 TYPE_TAG_NAME (type) = obsavestring (new_prefix,
3990 strlen (new_prefix),
3991 &objfile->objfile_obstack);
3992 back_to = make_cleanup (xfree, new_prefix);
63d06c5c
DC
3993 processing_current_prefix = new_prefix;
3994 }
3995 else
3996 {
d8151005
DJ
3997 /* The name is already allocated along with this objfile, so
3998 we don't need to duplicate it for the type. */
39cbfefa 3999 TYPE_TAG_NAME (type) = name;
63d06c5c 4000 }
c906108c
SS
4001 }
4002
4003 if (die->tag == DW_TAG_structure_type)
4004 {
4005 TYPE_CODE (type) = TYPE_CODE_STRUCT;
4006 }
4007 else if (die->tag == DW_TAG_union_type)
4008 {
4009 TYPE_CODE (type) = TYPE_CODE_UNION;
4010 }
4011 else
4012 {
4013 /* FIXME: TYPE_CODE_CLASS is currently defined to TYPE_CODE_STRUCT
c5aa993b 4014 in gdbtypes.h. */
c906108c
SS
4015 TYPE_CODE (type) = TYPE_CODE_CLASS;
4016 }
4017
e142c38c 4018 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4019 if (attr)
4020 {
4021 TYPE_LENGTH (type) = DW_UNSND (attr);
4022 }
4023 else
4024 {
4025 TYPE_LENGTH (type) = 0;
4026 }
4027
d77b6808 4028 TYPE_FLAGS (type) |= TYPE_FLAG_STUB_SUPPORTED;
dc718098
JB
4029 if (die_is_declaration (die, cu))
4030 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
4031
c906108c
SS
4032 /* We need to add the type field to the die immediately so we don't
4033 infinitely recurse when dealing with pointers to the structure
4034 type within the structure itself. */
1c379e20 4035 set_die_type (die, type, cu);
c906108c 4036
e142c38c 4037 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
4038 {
4039 struct field_info fi;
4040 struct die_info *child_die;
4041 struct cleanup *back_to = make_cleanup (null_cleanup, NULL);
4042
4043 memset (&fi, 0, sizeof (struct field_info));
4044
639d11d3 4045 child_die = die->child;
c906108c
SS
4046
4047 while (child_die && child_die->tag)
4048 {
a9a9bd0f
DC
4049 if (child_die->tag == DW_TAG_member
4050 || child_die->tag == DW_TAG_variable)
c906108c 4051 {
a9a9bd0f
DC
4052 /* NOTE: carlton/2002-11-05: A C++ static data member
4053 should be a DW_TAG_member that is a declaration, but
4054 all versions of G++ as of this writing (so through at
4055 least 3.2.1) incorrectly generate DW_TAG_variable
4056 tags for them instead. */
e7c27a73 4057 dwarf2_add_field (&fi, child_die, cu);
c906108c 4058 }
8713b1b1 4059 else if (child_die->tag == DW_TAG_subprogram)
c906108c
SS
4060 {
4061 /* C++ member function. */
134d01f1 4062 read_type_die (child_die, cu);
e7c27a73 4063 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
4064 }
4065 else if (child_die->tag == DW_TAG_inheritance)
4066 {
4067 /* C++ base class field. */
e7c27a73 4068 dwarf2_add_field (&fi, child_die, cu);
c906108c 4069 }
c906108c
SS
4070 child_die = sibling_die (child_die);
4071 }
4072
4073 /* Attach fields and member functions to the type. */
4074 if (fi.nfields)
e7c27a73 4075 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
4076 if (fi.nfnfields)
4077 {
e7c27a73 4078 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 4079
c5aa993b 4080 /* Get the type which refers to the base class (possibly this
c906108c
SS
4081 class itself) which contains the vtable pointer for the current
4082 class from the DW_AT_containing_type attribute. */
4083
e142c38c 4084 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 4085 {
e7c27a73 4086 struct type *t = die_containing_type (die, cu);
c906108c
SS
4087
4088 TYPE_VPTR_BASETYPE (type) = t;
4089 if (type == t)
4090 {
c906108c
SS
4091 int i;
4092
4093 /* Our own class provides vtbl ptr. */
4094 for (i = TYPE_NFIELDS (t) - 1;
4095 i >= TYPE_N_BASECLASSES (t);
4096 --i)
4097 {
4098 char *fieldname = TYPE_FIELD_NAME (t, i);
4099
1168df01 4100 if (is_vtable_name (fieldname, cu))
c906108c
SS
4101 {
4102 TYPE_VPTR_FIELDNO (type) = i;
4103 break;
4104 }
4105 }
4106
4107 /* Complain if virtual function table field not found. */
4108 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 4109 complaint (&symfile_complaints,
e2e0b3e5 4110 _("virtual function table pointer not found when defining class '%s'"),
4d3c2250
KB
4111 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
4112 "");
c906108c
SS
4113 }
4114 else
4115 {
4116 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
4117 }
4118 }
f6235d4c
EZ
4119 else if (cu->producer
4120 && strncmp (cu->producer,
4121 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
4122 {
4123 /* The IBM XLC compiler does not provide direct indication
4124 of the containing type, but the vtable pointer is
4125 always named __vfp. */
4126
4127 int i;
4128
4129 for (i = TYPE_NFIELDS (type) - 1;
4130 i >= TYPE_N_BASECLASSES (type);
4131 --i)
4132 {
4133 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
4134 {
4135 TYPE_VPTR_FIELDNO (type) = i;
4136 TYPE_VPTR_BASETYPE (type) = type;
4137 break;
4138 }
4139 }
4140 }
c906108c
SS
4141 }
4142
c906108c
SS
4143 do_cleanups (back_to);
4144 }
63d06c5c
DC
4145
4146 processing_current_prefix = previous_prefix;
4147 if (back_to != NULL)
4148 do_cleanups (back_to);
c906108c
SS
4149}
4150
134d01f1
DJ
4151static void
4152process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
4153{
4154 struct objfile *objfile = cu->objfile;
4155 const char *previous_prefix = processing_current_prefix;
90aeadfc 4156 struct die_info *child_die = die->child;
c906108c 4157
134d01f1
DJ
4158 if (TYPE_TAG_NAME (die->type) != NULL)
4159 processing_current_prefix = TYPE_TAG_NAME (die->type);
c906108c 4160
90aeadfc
DC
4161 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
4162 snapshots) has been known to create a die giving a declaration
4163 for a class that has, as a child, a die giving a definition for a
4164 nested class. So we have to process our children even if the
4165 current die is a declaration. Normally, of course, a declaration
4166 won't have any children at all. */
134d01f1 4167
90aeadfc
DC
4168 while (child_die != NULL && child_die->tag)
4169 {
4170 if (child_die->tag == DW_TAG_member
4171 || child_die->tag == DW_TAG_variable
4172 || child_die->tag == DW_TAG_inheritance)
134d01f1 4173 {
90aeadfc 4174 /* Do nothing. */
134d01f1 4175 }
90aeadfc
DC
4176 else
4177 process_die (child_die, cu);
134d01f1 4178
90aeadfc 4179 child_die = sibling_die (child_die);
134d01f1
DJ
4180 }
4181
fa4028e9
JB
4182 /* Do not consider external references. According to the DWARF standard,
4183 these DIEs are identified by the fact that they have no byte_size
4184 attribute, and a declaration attribute. */
4185 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
4186 || !die_is_declaration (die, cu))
90aeadfc
DC
4187 new_symbol (die, die->type, cu);
4188
134d01f1
DJ
4189 processing_current_prefix = previous_prefix;
4190}
4191
4192/* Given a DW_AT_enumeration_type die, set its type. We do not
4193 complete the type's fields yet, or create any symbols. */
c906108c
SS
4194
4195static void
134d01f1 4196read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4197{
e7c27a73 4198 struct objfile *objfile = cu->objfile;
c906108c 4199 struct type *type;
c906108c 4200 struct attribute *attr;
39cbfefa 4201 char *name;
134d01f1
DJ
4202
4203 if (die->type)
4204 return;
c906108c
SS
4205
4206 type = alloc_type (objfile);
4207
4208 TYPE_CODE (type) = TYPE_CODE_ENUM;
39cbfefa
DJ
4209 name = dwarf2_name (die, cu);
4210 if (name != NULL)
c906108c 4211 {
63d06c5c
DC
4212 if (processing_has_namespace_info)
4213 {
987504bb
JJ
4214 TYPE_TAG_NAME (type) = typename_concat (&objfile->objfile_obstack,
4215 processing_current_prefix,
4216 name, cu);
63d06c5c
DC
4217 }
4218 else
4219 {
d8151005
DJ
4220 /* The name is already allocated along with this objfile, so
4221 we don't need to duplicate it for the type. */
4222 TYPE_TAG_NAME (type) = name;
63d06c5c 4223 }
c906108c
SS
4224 }
4225
e142c38c 4226 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4227 if (attr)
4228 {
4229 TYPE_LENGTH (type) = DW_UNSND (attr);
4230 }
4231 else
4232 {
4233 TYPE_LENGTH (type) = 0;
4234 }
4235
1c379e20 4236 set_die_type (die, type, cu);
134d01f1
DJ
4237}
4238
8176b9b8 4239/* Determine the name of the type represented by DIE, which should be
987504bb 4240 a named C++ or Java compound type. Return the name in question; the caller
8176b9b8
DC
4241 is responsible for xfree()'ing it. */
4242
4243static char *
4244determine_class_name (struct die_info *die, struct dwarf2_cu *cu)
4245{
4246 struct cleanup *back_to = NULL;
4247 struct die_info *spec_die = die_specification (die, cu);
4248 char *new_prefix = NULL;
4249
4250 /* If this is the definition of a class that is declared by another
4251 die, then processing_current_prefix may not be accurate; see
4252 read_func_scope for a similar example. */
4253 if (spec_die != NULL)
4254 {
4255 char *specification_prefix = determine_prefix (spec_die, cu);
4256 processing_current_prefix = specification_prefix;
4257 back_to = make_cleanup (xfree, specification_prefix);
4258 }
4259
4260 /* If we don't have namespace debug info, guess the name by trying
4261 to demangle the names of members, just like we did in
72bf9492 4262 guess_structure_name. */
8176b9b8
DC
4263 if (!processing_has_namespace_info)
4264 {
4265 struct die_info *child;
4266
4267 for (child = die->child;
4268 child != NULL && child->tag != 0;
4269 child = sibling_die (child))
4270 {
4271 if (child->tag == DW_TAG_subprogram)
4272 {
31c27f77
JJ
4273 new_prefix
4274 = language_class_name_from_physname (cu->language_defn,
4275 dwarf2_linkage_name
8176b9b8
DC
4276 (child, cu));
4277
4278 if (new_prefix != NULL)
4279 break;
4280 }
4281 }
4282 }
4283
4284 if (new_prefix == NULL)
4285 {
4286 const char *name = dwarf2_name (die, cu);
987504bb
JJ
4287 new_prefix = typename_concat (NULL, processing_current_prefix,
4288 name ? name : "<<anonymous>>",
4289 cu);
8176b9b8
DC
4290 }
4291
4292 if (back_to != NULL)
4293 do_cleanups (back_to);
4294
4295 return new_prefix;
4296}
4297
134d01f1
DJ
4298/* Given a pointer to a die which begins an enumeration, process all
4299 the dies that define the members of the enumeration, and create the
4300 symbol for the enumeration type.
4301
4302 NOTE: We reverse the order of the element list. */
4303
4304static void
4305process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
4306{
4307 struct objfile *objfile = cu->objfile;
4308 struct die_info *child_die;
4309 struct field *fields;
134d01f1
DJ
4310 struct symbol *sym;
4311 int num_fields;
4312 int unsigned_enum = 1;
39cbfefa 4313 char *name;
134d01f1 4314
c906108c
SS
4315 num_fields = 0;
4316 fields = NULL;
639d11d3 4317 if (die->child != NULL)
c906108c 4318 {
639d11d3 4319 child_die = die->child;
c906108c
SS
4320 while (child_die && child_die->tag)
4321 {
4322 if (child_die->tag != DW_TAG_enumerator)
4323 {
e7c27a73 4324 process_die (child_die, cu);
c906108c
SS
4325 }
4326 else
4327 {
39cbfefa
DJ
4328 name = dwarf2_name (child_die, cu);
4329 if (name)
c906108c 4330 {
134d01f1 4331 sym = new_symbol (child_die, die->type, cu);
c906108c
SS
4332 if (SYMBOL_VALUE (sym) < 0)
4333 unsigned_enum = 0;
4334
4335 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
4336 {
4337 fields = (struct field *)
4338 xrealloc (fields,
4339 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 4340 * sizeof (struct field));
c906108c
SS
4341 }
4342
22abf04a 4343 FIELD_NAME (fields[num_fields]) = DEPRECATED_SYMBOL_NAME (sym);
c906108c
SS
4344 FIELD_TYPE (fields[num_fields]) = NULL;
4345 FIELD_BITPOS (fields[num_fields]) = SYMBOL_VALUE (sym);
4346 FIELD_BITSIZE (fields[num_fields]) = 0;
01ad7f36 4347 FIELD_STATIC_KIND (fields[num_fields]) = 0;
c906108c
SS
4348
4349 num_fields++;
4350 }
4351 }
4352
4353 child_die = sibling_die (child_die);
4354 }
4355
4356 if (num_fields)
4357 {
134d01f1
DJ
4358 TYPE_NFIELDS (die->type) = num_fields;
4359 TYPE_FIELDS (die->type) = (struct field *)
4360 TYPE_ALLOC (die->type, sizeof (struct field) * num_fields);
4361 memcpy (TYPE_FIELDS (die->type), fields,
c906108c 4362 sizeof (struct field) * num_fields);
b8c9b27d 4363 xfree (fields);
c906108c
SS
4364 }
4365 if (unsigned_enum)
134d01f1 4366 TYPE_FLAGS (die->type) |= TYPE_FLAG_UNSIGNED;
c906108c 4367 }
134d01f1
DJ
4368
4369 new_symbol (die, die->type, cu);
c906108c
SS
4370}
4371
4372/* Extract all information from a DW_TAG_array_type DIE and put it in
4373 the DIE's type field. For now, this only handles one dimensional
4374 arrays. */
4375
4376static void
e7c27a73 4377read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4378{
e7c27a73 4379 struct objfile *objfile = cu->objfile;
c906108c
SS
4380 struct die_info *child_die;
4381 struct type *type = NULL;
4382 struct type *element_type, *range_type, *index_type;
4383 struct type **range_types = NULL;
4384 struct attribute *attr;
4385 int ndim = 0;
4386 struct cleanup *back_to;
39cbfefa 4387 char *name;
c906108c
SS
4388
4389 /* Return if we've already decoded this type. */
4390 if (die->type)
4391 {
4392 return;
4393 }
4394
e7c27a73 4395 element_type = die_type (die, cu);
c906108c
SS
4396
4397 /* Irix 6.2 native cc creates array types without children for
4398 arrays with unspecified length. */
639d11d3 4399 if (die->child == NULL)
c906108c 4400 {
6ccb9162 4401 index_type = builtin_type_int32;
c906108c 4402 range_type = create_range_type (NULL, index_type, 0, -1);
1c379e20
DJ
4403 set_die_type (die, create_array_type (NULL, element_type, range_type),
4404 cu);
c906108c
SS
4405 return;
4406 }
4407
4408 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 4409 child_die = die->child;
c906108c
SS
4410 while (child_die && child_die->tag)
4411 {
4412 if (child_die->tag == DW_TAG_subrange_type)
4413 {
a02abb62 4414 read_subrange_type (child_die, cu);
c906108c 4415
a02abb62
JB
4416 if (child_die->type != NULL)
4417 {
4418 /* The range type was succesfully read. Save it for
4419 the array type creation. */
4420 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
4421 {
4422 range_types = (struct type **)
4423 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
4424 * sizeof (struct type *));
4425 if (ndim == 0)
4426 make_cleanup (free_current_contents, &range_types);
4427 }
4428 range_types[ndim++] = child_die->type;
4429 }
c906108c
SS
4430 }
4431 child_die = sibling_die (child_die);
4432 }
4433
4434 /* Dwarf2 dimensions are output from left to right, create the
4435 necessary array types in backwards order. */
7ca2d3a3 4436
c906108c 4437 type = element_type;
7ca2d3a3
DL
4438
4439 if (read_array_order (die, cu) == DW_ORD_col_major)
4440 {
4441 int i = 0;
4442 while (i < ndim)
4443 type = create_array_type (NULL, type, range_types[i++]);
4444 }
4445 else
4446 {
4447 while (ndim-- > 0)
4448 type = create_array_type (NULL, type, range_types[ndim]);
4449 }
c906108c 4450
f5f8a009
EZ
4451 /* Understand Dwarf2 support for vector types (like they occur on
4452 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
4453 array type. This is not part of the Dwarf2/3 standard yet, but a
4454 custom vendor extension. The main difference between a regular
4455 array and the vector variant is that vectors are passed by value
4456 to functions. */
e142c38c 4457 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 4458 if (attr)
ea37ba09 4459 make_vector_type (type);
f5f8a009 4460
39cbfefa
DJ
4461 name = dwarf2_name (die, cu);
4462 if (name)
4463 TYPE_NAME (type) = name;
714e295e 4464
c906108c
SS
4465 do_cleanups (back_to);
4466
4467 /* Install the type in the die. */
1c379e20 4468 set_die_type (die, type, cu);
c906108c
SS
4469}
4470
7ca2d3a3
DL
4471static enum dwarf_array_dim_ordering
4472read_array_order (struct die_info *die, struct dwarf2_cu *cu)
4473{
4474 struct attribute *attr;
4475
4476 attr = dwarf2_attr (die, DW_AT_ordering, cu);
4477
4478 if (attr) return DW_SND (attr);
4479
4480 /*
4481 GNU F77 is a special case, as at 08/2004 array type info is the
4482 opposite order to the dwarf2 specification, but data is still
4483 laid out as per normal fortran.
4484
4485 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
4486 version checking.
4487 */
4488
4489 if (cu->language == language_fortran &&
4490 cu->producer && strstr (cu->producer, "GNU F77"))
4491 {
4492 return DW_ORD_row_major;
4493 }
4494
4495 switch (cu->language_defn->la_array_ordering)
4496 {
4497 case array_column_major:
4498 return DW_ORD_col_major;
4499 case array_row_major:
4500 default:
4501 return DW_ORD_row_major;
4502 };
4503}
4504
72019c9c
GM
4505/* Extract all information from a DW_TAG_set_type DIE and put it in
4506 the DIE's type field. */
4507
4508static void
4509read_set_type (struct die_info *die, struct dwarf2_cu *cu)
4510{
4511 if (die->type == NULL)
4512 die->type = create_set_type ((struct type *) NULL, die_type (die, cu));
4513}
7ca2d3a3 4514
c906108c
SS
4515/* First cut: install each common block member as a global variable. */
4516
4517static void
e7c27a73 4518read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4519{
4520 struct die_info *child_die;
4521 struct attribute *attr;
4522 struct symbol *sym;
4523 CORE_ADDR base = (CORE_ADDR) 0;
4524
e142c38c 4525 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
4526 if (attr)
4527 {
8e19ed76
PS
4528 /* Support the .debug_loc offsets */
4529 if (attr_form_is_block (attr))
4530 {
e7c27a73 4531 base = decode_locdesc (DW_BLOCK (attr), cu);
8e19ed76 4532 }
3690dd37 4533 else if (attr_form_is_section_offset (attr))
8e19ed76 4534 {
4d3c2250 4535 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
4536 }
4537 else
4538 {
4d3c2250
KB
4539 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
4540 "common block member");
8e19ed76 4541 }
c906108c 4542 }
639d11d3 4543 if (die->child != NULL)
c906108c 4544 {
639d11d3 4545 child_die = die->child;
c906108c
SS
4546 while (child_die && child_die->tag)
4547 {
e7c27a73 4548 sym = new_symbol (child_die, NULL, cu);
e142c38c 4549 attr = dwarf2_attr (child_die, DW_AT_data_member_location, cu);
c906108c
SS
4550 if (attr)
4551 {
4552 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 4553 base + decode_locdesc (DW_BLOCK (attr), cu);
c906108c
SS
4554 add_symbol_to_list (sym, &global_symbols);
4555 }
4556 child_die = sibling_die (child_die);
4557 }
4558 }
4559}
4560
d9fa45fe
DC
4561/* Read a C++ namespace. */
4562
d9fa45fe 4563static void
e7c27a73 4564read_namespace (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 4565{
e7c27a73 4566 struct objfile *objfile = cu->objfile;
38d518c9 4567 const char *previous_prefix = processing_current_prefix;
63d06c5c 4568 const char *name;
9219021c
DC
4569 int is_anonymous;
4570 struct die_info *current_die;
987504bb 4571 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
9219021c 4572
e142c38c 4573 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
4574
4575 /* Now build the name of the current namespace. */
4576
38d518c9 4577 if (previous_prefix[0] == '\0')
9219021c 4578 {
38d518c9 4579 processing_current_prefix = name;
9219021c
DC
4580 }
4581 else
4582 {
987504bb
JJ
4583 char *temp_name = typename_concat (NULL, previous_prefix, name, cu);
4584 make_cleanup (xfree, temp_name);
38d518c9 4585 processing_current_prefix = temp_name;
9219021c
DC
4586 }
4587
5c4e30ca
DC
4588 /* Add a symbol associated to this if we haven't seen the namespace
4589 before. Also, add a using directive if it's an anonymous
4590 namespace. */
9219021c 4591
e142c38c 4592 if (dwarf2_extension (die, cu) == NULL)
5c4e30ca
DC
4593 {
4594 struct type *type;
4595
4596 /* FIXME: carlton/2003-06-27: Once GDB is more const-correct,
4597 this cast will hopefully become unnecessary. */
4598 type = init_type (TYPE_CODE_NAMESPACE, 0, 0,
38d518c9 4599 (char *) processing_current_prefix,
5c4e30ca
DC
4600 objfile);
4601 TYPE_TAG_NAME (type) = TYPE_NAME (type);
4602
e7c27a73 4603 new_symbol (die, type, cu);
1c379e20 4604 set_die_type (die, type, cu);
5c4e30ca
DC
4605
4606 if (is_anonymous)
38d518c9
EZ
4607 cp_add_using_directive (processing_current_prefix,
4608 strlen (previous_prefix),
4609 strlen (processing_current_prefix));
5c4e30ca 4610 }
9219021c 4611
639d11d3 4612 if (die->child != NULL)
d9fa45fe 4613 {
639d11d3 4614 struct die_info *child_die = die->child;
d9fa45fe
DC
4615
4616 while (child_die && child_die->tag)
4617 {
e7c27a73 4618 process_die (child_die, cu);
d9fa45fe
DC
4619 child_die = sibling_die (child_die);
4620 }
4621 }
9219021c 4622
38d518c9 4623 processing_current_prefix = previous_prefix;
987504bb 4624 do_cleanups (back_to);
38d518c9
EZ
4625}
4626
4627/* Return the name of the namespace represented by DIE. Set
4628 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
4629 namespace. */
4630
4631static const char *
e142c38c 4632namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
4633{
4634 struct die_info *current_die;
4635 const char *name = NULL;
4636
4637 /* Loop through the extensions until we find a name. */
4638
4639 for (current_die = die;
4640 current_die != NULL;
e142c38c 4641 current_die = dwarf2_extension (die, cu))
38d518c9 4642 {
e142c38c 4643 name = dwarf2_name (current_die, cu);
38d518c9
EZ
4644 if (name != NULL)
4645 break;
4646 }
4647
4648 /* Is it an anonymous namespace? */
4649
4650 *is_anonymous = (name == NULL);
4651 if (*is_anonymous)
4652 name = "(anonymous namespace)";
4653
4654 return name;
d9fa45fe
DC
4655}
4656
c906108c
SS
4657/* Extract all information from a DW_TAG_pointer_type DIE and add to
4658 the user defined type vector. */
4659
4660static void
e7c27a73 4661read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4662{
e7c27a73 4663 struct comp_unit_head *cu_header = &cu->header;
c906108c 4664 struct type *type;
8b2dbe47
KB
4665 struct attribute *attr_byte_size;
4666 struct attribute *attr_address_class;
4667 int byte_size, addr_class;
c906108c
SS
4668
4669 if (die->type)
4670 {
4671 return;
4672 }
4673
e7c27a73 4674 type = lookup_pointer_type (die_type (die, cu));
8b2dbe47 4675
e142c38c 4676 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
4677 if (attr_byte_size)
4678 byte_size = DW_UNSND (attr_byte_size);
c906108c 4679 else
8b2dbe47
KB
4680 byte_size = cu_header->addr_size;
4681
e142c38c 4682 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
4683 if (attr_address_class)
4684 addr_class = DW_UNSND (attr_address_class);
4685 else
4686 addr_class = DW_ADDR_none;
4687
4688 /* If the pointer size or address class is different than the
4689 default, create a type variant marked as such and set the
4690 length accordingly. */
4691 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 4692 {
849957d9 4693 if (gdbarch_address_class_type_flags_p (current_gdbarch))
8b2dbe47
KB
4694 {
4695 int type_flags;
4696
849957d9
UW
4697 type_flags = gdbarch_address_class_type_flags
4698 (current_gdbarch, byte_size, addr_class);
8b2dbe47
KB
4699 gdb_assert ((type_flags & ~TYPE_FLAG_ADDRESS_CLASS_ALL) == 0);
4700 type = make_type_with_address_space (type, type_flags);
4701 }
4702 else if (TYPE_LENGTH (type) != byte_size)
4703 {
e2e0b3e5 4704 complaint (&symfile_complaints, _("invalid pointer size %d"), byte_size);
8b2dbe47
KB
4705 }
4706 else {
4707 /* Should we also complain about unhandled address classes? */
4708 }
c906108c 4709 }
8b2dbe47
KB
4710
4711 TYPE_LENGTH (type) = byte_size;
1c379e20 4712 set_die_type (die, type, cu);
c906108c
SS
4713}
4714
4715/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
4716 the user defined type vector. */
4717
4718static void
e7c27a73 4719read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4720{
e7c27a73 4721 struct objfile *objfile = cu->objfile;
c906108c
SS
4722 struct type *type;
4723 struct type *to_type;
4724 struct type *domain;
4725
4726 if (die->type)
4727 {
4728 return;
4729 }
4730
e7c27a73
DJ
4731 to_type = die_type (die, cu);
4732 domain = die_containing_type (die, cu);
0d5de010
DJ
4733
4734 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
4735 type = lookup_methodptr_type (to_type);
4736 else
4737 type = lookup_memberptr_type (to_type, domain);
c906108c 4738
1c379e20 4739 set_die_type (die, type, cu);
c906108c
SS
4740}
4741
4742/* Extract all information from a DW_TAG_reference_type DIE and add to
4743 the user defined type vector. */
4744
4745static void
e7c27a73 4746read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4747{
e7c27a73 4748 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
4749 struct type *type;
4750 struct attribute *attr;
4751
4752 if (die->type)
4753 {
4754 return;
4755 }
4756
e7c27a73 4757 type = lookup_reference_type (die_type (die, cu));
e142c38c 4758 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4759 if (attr)
4760 {
4761 TYPE_LENGTH (type) = DW_UNSND (attr);
4762 }
4763 else
4764 {
107d2387 4765 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 4766 }
1c379e20 4767 set_die_type (die, type, cu);
c906108c
SS
4768}
4769
4770static void
e7c27a73 4771read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4772{
090c42a4
JB
4773 struct type *base_type;
4774
c906108c
SS
4775 if (die->type)
4776 {
4777 return;
4778 }
4779
e7c27a73 4780 base_type = die_type (die, cu);
1c379e20
DJ
4781 set_die_type (die, make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0),
4782 cu);
c906108c
SS
4783}
4784
4785static void
e7c27a73 4786read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4787{
090c42a4
JB
4788 struct type *base_type;
4789
c906108c
SS
4790 if (die->type)
4791 {
4792 return;
4793 }
4794
e7c27a73 4795 base_type = die_type (die, cu);
1c379e20
DJ
4796 set_die_type (die, make_cv_type (TYPE_CONST (base_type), 1, base_type, 0),
4797 cu);
c906108c
SS
4798}
4799
4800/* Extract all information from a DW_TAG_string_type DIE and add to
4801 the user defined type vector. It isn't really a user defined type,
4802 but it behaves like one, with other DIE's using an AT_user_def_type
4803 attribute to reference it. */
4804
4805static void
e7c27a73 4806read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4807{
e7c27a73 4808 struct objfile *objfile = cu->objfile;
c906108c
SS
4809 struct type *type, *range_type, *index_type, *char_type;
4810 struct attribute *attr;
4811 unsigned int length;
4812
4813 if (die->type)
4814 {
4815 return;
4816 }
4817
e142c38c 4818 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
4819 if (attr)
4820 {
4821 length = DW_UNSND (attr);
4822 }
4823 else
4824 {
b21b22e0 4825 /* check for the DW_AT_byte_size attribute */
e142c38c 4826 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
4827 if (attr)
4828 {
4829 length = DW_UNSND (attr);
4830 }
4831 else
4832 {
4833 length = 1;
4834 }
c906108c 4835 }
6ccb9162
UW
4836
4837 index_type = builtin_type_int32;
c906108c 4838 range_type = create_range_type (NULL, index_type, 1, length);
6ccb9162
UW
4839 type = create_string_type (NULL, range_type);
4840
1c379e20 4841 set_die_type (die, type, cu);
c906108c
SS
4842}
4843
4844/* Handle DIES due to C code like:
4845
4846 struct foo
c5aa993b
JM
4847 {
4848 int (*funcp)(int a, long l);
4849 int b;
4850 };
c906108c
SS
4851
4852 ('funcp' generates a DW_TAG_subroutine_type DIE)
c5aa993b 4853 */
c906108c
SS
4854
4855static void
e7c27a73 4856read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4857{
4858 struct type *type; /* Type that this function returns */
4859 struct type *ftype; /* Function that returns above type */
4860 struct attribute *attr;
4861
4862 /* Decode the type that this subroutine returns */
4863 if (die->type)
4864 {
4865 return;
4866 }
e7c27a73 4867 type = die_type (die, cu);
1326e61b 4868 ftype = make_function_type (type, (struct type **) 0);
c906108c 4869
5b8101ae 4870 /* All functions in C++, Pascal and Java have prototypes. */
e142c38c 4871 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
c906108c 4872 if ((attr && (DW_UNSND (attr) != 0))
987504bb 4873 || cu->language == language_cplus
5b8101ae
PM
4874 || cu->language == language_java
4875 || cu->language == language_pascal)
c906108c
SS
4876 TYPE_FLAGS (ftype) |= TYPE_FLAG_PROTOTYPED;
4877
639d11d3 4878 if (die->child != NULL)
c906108c
SS
4879 {
4880 struct die_info *child_die;
4881 int nparams = 0;
4882 int iparams = 0;
4883
4884 /* Count the number of parameters.
4885 FIXME: GDB currently ignores vararg functions, but knows about
4886 vararg member functions. */
639d11d3 4887 child_die = die->child;
c906108c
SS
4888 while (child_die && child_die->tag)
4889 {
4890 if (child_die->tag == DW_TAG_formal_parameter)
4891 nparams++;
4892 else if (child_die->tag == DW_TAG_unspecified_parameters)
4893 TYPE_FLAGS (ftype) |= TYPE_FLAG_VARARGS;
4894 child_die = sibling_die (child_die);
4895 }
4896
4897 /* Allocate storage for parameters and fill them in. */
4898 TYPE_NFIELDS (ftype) = nparams;
4899 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 4900 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 4901
639d11d3 4902 child_die = die->child;
c906108c
SS
4903 while (child_die && child_die->tag)
4904 {
4905 if (child_die->tag == DW_TAG_formal_parameter)
4906 {
4907 /* Dwarf2 has no clean way to discern C++ static and non-static
c5aa993b
JM
4908 member functions. G++ helps GDB by marking the first
4909 parameter for non-static member functions (which is the
4910 this pointer) as artificial. We pass this information
4911 to dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL. */
e142c38c 4912 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
4913 if (attr)
4914 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
4915 else
4916 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
e7c27a73 4917 TYPE_FIELD_TYPE (ftype, iparams) = die_type (child_die, cu);
c906108c
SS
4918 iparams++;
4919 }
4920 child_die = sibling_die (child_die);
4921 }
4922 }
4923
1c379e20 4924 set_die_type (die, ftype, cu);
c906108c
SS
4925}
4926
4927static void
e7c27a73 4928read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4929{
e7c27a73 4930 struct objfile *objfile = cu->objfile;
2f038fcb
FF
4931 struct attribute *attr;
4932 char *name = NULL;
c906108c
SS
4933
4934 if (!die->type)
4935 {
39cbfefa 4936 name = dwarf2_name (die, cu);
1c379e20
DJ
4937 set_die_type (die, init_type (TYPE_CODE_TYPEDEF, 0,
4938 TYPE_FLAG_TARGET_STUB, name, objfile),
4939 cu);
e7c27a73 4940 TYPE_TARGET_TYPE (die->type) = die_type (die, cu);
c906108c
SS
4941 }
4942}
4943
4944/* Find a representation of a given base type and install
4945 it in the TYPE field of the die. */
4946
4947static void
e7c27a73 4948read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 4949{
e7c27a73 4950 struct objfile *objfile = cu->objfile;
c906108c
SS
4951 struct type *type;
4952 struct attribute *attr;
4953 int encoding = 0, size = 0;
39cbfefa 4954 char *name;
6ccb9162
UW
4955 enum type_code code = TYPE_CODE_INT;
4956 int type_flags = 0;
4957 struct type *target_type = NULL;
c906108c
SS
4958
4959 /* If we've already decoded this die, this is a no-op. */
4960 if (die->type)
4961 {
4962 return;
4963 }
4964
e142c38c 4965 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
4966 if (attr)
4967 {
4968 encoding = DW_UNSND (attr);
4969 }
e142c38c 4970 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
4971 if (attr)
4972 {
4973 size = DW_UNSND (attr);
4974 }
39cbfefa 4975 name = dwarf2_name (die, cu);
6ccb9162 4976 if (!name)
c906108c 4977 {
6ccb9162
UW
4978 complaint (&symfile_complaints,
4979 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 4980 }
6ccb9162
UW
4981
4982 switch (encoding)
c906108c 4983 {
6ccb9162
UW
4984 case DW_ATE_address:
4985 /* Turn DW_ATE_address into a void * pointer. */
4986 code = TYPE_CODE_PTR;
4987 type_flags |= TYPE_FLAG_UNSIGNED;
4988 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4989 break;
4990 case DW_ATE_boolean:
4991 code = TYPE_CODE_BOOL;
4992 type_flags |= TYPE_FLAG_UNSIGNED;
4993 break;
4994 case DW_ATE_complex_float:
4995 code = TYPE_CODE_COMPLEX;
4996 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
4997 break;
4998 case DW_ATE_decimal_float:
4999 code = TYPE_CODE_DECFLOAT;
5000 break;
5001 case DW_ATE_float:
5002 code = TYPE_CODE_FLT;
5003 break;
5004 case DW_ATE_signed:
5005 break;
5006 case DW_ATE_unsigned:
5007 type_flags |= TYPE_FLAG_UNSIGNED;
5008 break;
5009 case DW_ATE_signed_char:
1760d9d5 5010 if (cu->language == language_ada || cu->language == language_m2)
6ccb9162
UW
5011 code = TYPE_CODE_CHAR;
5012 break;
5013 case DW_ATE_unsigned_char:
1760d9d5 5014 if (cu->language == language_ada || cu->language == language_m2)
6ccb9162
UW
5015 code = TYPE_CODE_CHAR;
5016 type_flags |= TYPE_FLAG_UNSIGNED;
5017 break;
5018 default:
5019 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
5020 dwarf_type_encoding_name (encoding));
5021 break;
c906108c 5022 }
6ccb9162
UW
5023
5024 type = init_type (code, size, type_flags, name, objfile);
5025 TYPE_TARGET_TYPE (type) = target_type;
5026
1c379e20 5027 set_die_type (die, type, cu);
c906108c
SS
5028}
5029
a02abb62
JB
5030/* Read the given DW_AT_subrange DIE. */
5031
5032static void
5033read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
5034{
5035 struct type *base_type;
5036 struct type *range_type;
5037 struct attribute *attr;
5038 int low = 0;
5039 int high = -1;
39cbfefa 5040 char *name;
a02abb62
JB
5041
5042 /* If we have already decoded this die, then nothing more to do. */
5043 if (die->type)
5044 return;
5045
5046 base_type = die_type (die, cu);
3d1f72c2 5047 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
a02abb62
JB
5048 {
5049 complaint (&symfile_complaints,
e2e0b3e5 5050 _("DW_AT_type missing from DW_TAG_subrange_type"));
17a912b6 5051 base_type
6ccb9162
UW
5052 = init_type (TYPE_CODE_INT, gdbarch_addr_bit (current_gdbarch) / 8,
5053 0, NULL, cu->objfile);
a02abb62
JB
5054 }
5055
e142c38c 5056 if (cu->language == language_fortran)
a02abb62
JB
5057 {
5058 /* FORTRAN implies a lower bound of 1, if not given. */
5059 low = 1;
5060 }
5061
dd5e6932
DJ
5062 /* FIXME: For variable sized arrays either of these could be
5063 a variable rather than a constant value. We'll allow it,
5064 but we don't know how to handle it. */
e142c38c 5065 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62
JB
5066 if (attr)
5067 low = dwarf2_get_attr_constant_value (attr, 0);
5068
e142c38c 5069 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62
JB
5070 if (attr)
5071 {
5072 if (attr->form == DW_FORM_block1)
5073 {
5074 /* GCC encodes arrays with unspecified or dynamic length
5075 with a DW_FORM_block1 attribute.
5076 FIXME: GDB does not yet know how to handle dynamic
5077 arrays properly, treat them as arrays with unspecified
5078 length for now.
5079
5080 FIXME: jimb/2003-09-22: GDB does not really know
5081 how to handle arrays of unspecified length
5082 either; we just represent them as zero-length
5083 arrays. Choose an appropriate upper bound given
5084 the lower bound we've computed above. */
5085 high = low - 1;
5086 }
5087 else
5088 high = dwarf2_get_attr_constant_value (attr, 1);
5089 }
5090
5091 range_type = create_range_type (NULL, base_type, low, high);
5092
39cbfefa
DJ
5093 name = dwarf2_name (die, cu);
5094 if (name)
5095 TYPE_NAME (range_type) = name;
a02abb62 5096
e142c38c 5097 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
5098 if (attr)
5099 TYPE_LENGTH (range_type) = DW_UNSND (attr);
5100
1c379e20 5101 set_die_type (die, range_type, cu);
a02abb62
JB
5102}
5103
81a17f79
JB
5104static void
5105read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
5106{
5107 struct type *type;
81a17f79
JB
5108
5109 if (die->type)
5110 return;
5111
5112 /* For now, we only support the C meaning of an unspecified type: void. */
5113
39cbfefa 5114 type = init_type (TYPE_CODE_VOID, 0, 0, dwarf2_name (die, cu),
81a17f79
JB
5115 cu->objfile);
5116
5117 set_die_type (die, type, cu);
5118}
a02abb62 5119
c906108c
SS
5120/* Read a whole compilation unit into a linked list of dies. */
5121
f9aca02d 5122static struct die_info *
fe1b8b76 5123read_comp_unit (gdb_byte *info_ptr, bfd *abfd, struct dwarf2_cu *cu)
c906108c 5124{
e7c27a73 5125 return read_die_and_children (info_ptr, abfd, cu, &info_ptr, NULL);
639d11d3
DC
5126}
5127
5128/* Read a single die and all its descendents. Set the die's sibling
5129 field to NULL; set other fields in the die correctly, and set all
5130 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
5131 location of the info_ptr after reading all of those dies. PARENT
5132 is the parent of the die in question. */
5133
5134static struct die_info *
fe1b8b76 5135read_die_and_children (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 5136 struct dwarf2_cu *cu,
fe1b8b76 5137 gdb_byte **new_info_ptr,
639d11d3
DC
5138 struct die_info *parent)
5139{
5140 struct die_info *die;
fe1b8b76 5141 gdb_byte *cur_ptr;
639d11d3
DC
5142 int has_children;
5143
e7c27a73 5144 cur_ptr = read_full_die (&die, abfd, info_ptr, cu, &has_children);
10b3939b 5145 store_in_ref_table (die->offset, die, cu);
639d11d3
DC
5146
5147 if (has_children)
5148 {
e7c27a73 5149 die->child = read_die_and_siblings (cur_ptr, abfd, cu,
639d11d3
DC
5150 new_info_ptr, die);
5151 }
5152 else
5153 {
5154 die->child = NULL;
5155 *new_info_ptr = cur_ptr;
5156 }
5157
5158 die->sibling = NULL;
5159 die->parent = parent;
5160 return die;
5161}
5162
5163/* Read a die, all of its descendents, and all of its siblings; set
5164 all of the fields of all of the dies correctly. Arguments are as
5165 in read_die_and_children. */
5166
5167static struct die_info *
fe1b8b76 5168read_die_and_siblings (gdb_byte *info_ptr, bfd *abfd,
e7c27a73 5169 struct dwarf2_cu *cu,
fe1b8b76 5170 gdb_byte **new_info_ptr,
639d11d3
DC
5171 struct die_info *parent)
5172{
5173 struct die_info *first_die, *last_sibling;
fe1b8b76 5174 gdb_byte *cur_ptr;
639d11d3 5175
c906108c 5176 cur_ptr = info_ptr;
639d11d3
DC
5177 first_die = last_sibling = NULL;
5178
5179 while (1)
c906108c 5180 {
639d11d3 5181 struct die_info *die
e7c27a73 5182 = read_die_and_children (cur_ptr, abfd, cu, &cur_ptr, parent);
639d11d3
DC
5183
5184 if (!first_die)
c906108c 5185 {
639d11d3 5186 first_die = die;
c906108c 5187 }
639d11d3 5188 else
c906108c 5189 {
639d11d3 5190 last_sibling->sibling = die;
c906108c
SS
5191 }
5192
639d11d3 5193 if (die->tag == 0)
c906108c 5194 {
639d11d3
DC
5195 *new_info_ptr = cur_ptr;
5196 return first_die;
c906108c
SS
5197 }
5198 else
5199 {
639d11d3 5200 last_sibling = die;
c906108c
SS
5201 }
5202 }
c906108c
SS
5203}
5204
5205/* Free a linked list of dies. */
5206
5207static void
fba45db2 5208free_die_list (struct die_info *dies)
c906108c
SS
5209{
5210 struct die_info *die, *next;
5211
5212 die = dies;
5213 while (die)
5214 {
639d11d3
DC
5215 if (die->child != NULL)
5216 free_die_list (die->child);
5217 next = die->sibling;
b8c9b27d
KB
5218 xfree (die->attrs);
5219 xfree (die);
c906108c
SS
5220 die = next;
5221 }
5222}
5223
5224/* Read the contents of the section at OFFSET and of size SIZE from the
8b92e4d5 5225 object file specified by OBJFILE into the objfile_obstack and return it. */
c906108c 5226
fe1b8b76 5227gdb_byte *
188dd5d6 5228dwarf2_read_section (struct objfile *objfile, asection *sectp)
c906108c
SS
5229{
5230 bfd *abfd = objfile->obfd;
fe1b8b76 5231 gdb_byte *buf, *retbuf;
2c500098 5232 bfd_size_type size = bfd_get_section_size (sectp);
c906108c
SS
5233
5234 if (size == 0)
5235 return NULL;
5236
fe1b8b76
JB
5237 buf = obstack_alloc (&objfile->objfile_obstack, size);
5238 retbuf = symfile_relocate_debug_section (abfd, sectp, buf);
086df311
DJ
5239 if (retbuf != NULL)
5240 return retbuf;
5241
188dd5d6
DJ
5242 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
5243 || bfd_bread (buf, size, abfd) != size)
8a3fe4f8 5244 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
188dd5d6
DJ
5245 bfd_get_filename (abfd));
5246
c906108c
SS
5247 return buf;
5248}
5249
5250/* In DWARF version 2, the description of the debugging information is
5251 stored in a separate .debug_abbrev section. Before we read any
5252 dies from a section we read in all abbreviations and install them
72bf9492
DJ
5253 in a hash table. This function also sets flags in CU describing
5254 the data found in the abbrev table. */
c906108c
SS
5255
5256static void
e7c27a73 5257dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
c906108c 5258{
e7c27a73 5259 struct comp_unit_head *cu_header = &cu->header;
fe1b8b76 5260 gdb_byte *abbrev_ptr;
c906108c
SS
5261 struct abbrev_info *cur_abbrev;
5262 unsigned int abbrev_number, bytes_read, abbrev_name;
5263 unsigned int abbrev_form, hash_number;
f3dd6933
DJ
5264 struct attr_abbrev *cur_attrs;
5265 unsigned int allocated_attrs;
c906108c 5266
57349743 5267 /* Initialize dwarf2 abbrevs */
f3dd6933
DJ
5268 obstack_init (&cu->abbrev_obstack);
5269 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
5270 (ABBREV_HASH_SIZE
5271 * sizeof (struct abbrev_info *)));
5272 memset (cu->dwarf2_abbrevs, 0,
5273 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 5274
6502dd73 5275 abbrev_ptr = dwarf2_per_objfile->abbrev_buffer + cu_header->abbrev_offset;
c906108c
SS
5276 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5277 abbrev_ptr += bytes_read;
5278
f3dd6933
DJ
5279 allocated_attrs = ATTR_ALLOC_CHUNK;
5280 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
5281
c906108c
SS
5282 /* loop until we reach an abbrev number of 0 */
5283 while (abbrev_number)
5284 {
f3dd6933 5285 cur_abbrev = dwarf_alloc_abbrev (cu);
c906108c
SS
5286
5287 /* read in abbrev header */
5288 cur_abbrev->number = abbrev_number;
5289 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5290 abbrev_ptr += bytes_read;
5291 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
5292 abbrev_ptr += 1;
5293
72bf9492
DJ
5294 if (cur_abbrev->tag == DW_TAG_namespace)
5295 cu->has_namespace_info = 1;
5296
c906108c
SS
5297 /* now read in declarations */
5298 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5299 abbrev_ptr += bytes_read;
5300 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5301 abbrev_ptr += bytes_read;
5302 while (abbrev_name)
5303 {
f3dd6933 5304 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 5305 {
f3dd6933
DJ
5306 allocated_attrs += ATTR_ALLOC_CHUNK;
5307 cur_attrs
5308 = xrealloc (cur_attrs, (allocated_attrs
5309 * sizeof (struct attr_abbrev)));
c906108c 5310 }
ae038cb0
DJ
5311
5312 /* Record whether this compilation unit might have
5313 inter-compilation-unit references. If we don't know what form
5314 this attribute will have, then it might potentially be a
5315 DW_FORM_ref_addr, so we conservatively expect inter-CU
5316 references. */
5317
5318 if (abbrev_form == DW_FORM_ref_addr
5319 || abbrev_form == DW_FORM_indirect)
5320 cu->has_form_ref_addr = 1;
5321
f3dd6933
DJ
5322 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
5323 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
5324 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5325 abbrev_ptr += bytes_read;
5326 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5327 abbrev_ptr += bytes_read;
5328 }
5329
f3dd6933
DJ
5330 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
5331 (cur_abbrev->num_attrs
5332 * sizeof (struct attr_abbrev)));
5333 memcpy (cur_abbrev->attrs, cur_attrs,
5334 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
5335
c906108c 5336 hash_number = abbrev_number % ABBREV_HASH_SIZE;
f3dd6933
DJ
5337 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
5338 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
c906108c
SS
5339
5340 /* Get next abbreviation.
5341 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
5342 always properly terminated with an abbrev number of 0.
5343 Exit loop if we encounter an abbreviation which we have
5344 already read (which means we are about to read the abbreviations
5345 for the next compile unit) or if the end of the abbreviation
5346 table is reached. */
6502dd73
DJ
5347 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev_buffer)
5348 >= dwarf2_per_objfile->abbrev_size)
c906108c
SS
5349 break;
5350 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
5351 abbrev_ptr += bytes_read;
e7c27a73 5352 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
c906108c
SS
5353 break;
5354 }
f3dd6933
DJ
5355
5356 xfree (cur_attrs);
c906108c
SS
5357}
5358
f3dd6933 5359/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 5360
c906108c 5361static void
f3dd6933 5362dwarf2_free_abbrev_table (void *ptr_to_cu)
c906108c 5363{
f3dd6933 5364 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 5365
f3dd6933
DJ
5366 obstack_free (&cu->abbrev_obstack, NULL);
5367 cu->dwarf2_abbrevs = NULL;
c906108c
SS
5368}
5369
5370/* Lookup an abbrev_info structure in the abbrev hash table. */
5371
5372static struct abbrev_info *
e7c27a73 5373dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
c906108c
SS
5374{
5375 unsigned int hash_number;
5376 struct abbrev_info *abbrev;
5377
5378 hash_number = number % ABBREV_HASH_SIZE;
f3dd6933 5379 abbrev = cu->dwarf2_abbrevs[hash_number];
c906108c
SS
5380
5381 while (abbrev)
5382 {
5383 if (abbrev->number == number)
5384 return abbrev;
5385 else
5386 abbrev = abbrev->next;
5387 }
5388 return NULL;
5389}
5390
72bf9492
DJ
5391/* Returns nonzero if TAG represents a type that we might generate a partial
5392 symbol for. */
5393
5394static int
5395is_type_tag_for_partial (int tag)
5396{
5397 switch (tag)
5398 {
5399#if 0
5400 /* Some types that would be reasonable to generate partial symbols for,
5401 that we don't at present. */
5402 case DW_TAG_array_type:
5403 case DW_TAG_file_type:
5404 case DW_TAG_ptr_to_member_type:
5405 case DW_TAG_set_type:
5406 case DW_TAG_string_type:
5407 case DW_TAG_subroutine_type:
5408#endif
5409 case DW_TAG_base_type:
5410 case DW_TAG_class_type:
680b30c7 5411 case DW_TAG_interface_type:
72bf9492
DJ
5412 case DW_TAG_enumeration_type:
5413 case DW_TAG_structure_type:
5414 case DW_TAG_subrange_type:
5415 case DW_TAG_typedef:
5416 case DW_TAG_union_type:
5417 return 1;
5418 default:
5419 return 0;
5420 }
5421}
5422
5423/* Load all DIEs that are interesting for partial symbols into memory. */
5424
5425static struct partial_die_info *
fe1b8b76 5426load_partial_dies (bfd *abfd, gdb_byte *info_ptr, int building_psymtab,
72bf9492
DJ
5427 struct dwarf2_cu *cu)
5428{
5429 struct partial_die_info *part_die;
5430 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
5431 struct abbrev_info *abbrev;
5432 unsigned int bytes_read;
5afb4e99 5433 unsigned int load_all = 0;
72bf9492
DJ
5434
5435 int nesting_level = 1;
5436
5437 parent_die = NULL;
5438 last_die = NULL;
5439
5afb4e99
DJ
5440 if (cu->per_cu && cu->per_cu->load_all_dies)
5441 load_all = 1;
5442
72bf9492
DJ
5443 cu->partial_dies
5444 = htab_create_alloc_ex (cu->header.length / 12,
5445 partial_die_hash,
5446 partial_die_eq,
5447 NULL,
5448 &cu->comp_unit_obstack,
5449 hashtab_obstack_allocate,
5450 dummy_obstack_deallocate);
5451
5452 part_die = obstack_alloc (&cu->comp_unit_obstack,
5453 sizeof (struct partial_die_info));
5454
5455 while (1)
5456 {
5457 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
5458
5459 /* A NULL abbrev means the end of a series of children. */
5460 if (abbrev == NULL)
5461 {
5462 if (--nesting_level == 0)
5463 {
5464 /* PART_DIE was probably the last thing allocated on the
5465 comp_unit_obstack, so we could call obstack_free
5466 here. We don't do that because the waste is small,
5467 and will be cleaned up when we're done with this
5468 compilation unit. This way, we're also more robust
5469 against other users of the comp_unit_obstack. */
5470 return first_die;
5471 }
5472 info_ptr += bytes_read;
5473 last_die = parent_die;
5474 parent_die = parent_die->die_parent;
5475 continue;
5476 }
5477
5afb4e99
DJ
5478 /* Check whether this DIE is interesting enough to save. Normally
5479 we would not be interested in members here, but there may be
5480 later variables referencing them via DW_AT_specification (for
5481 static members). */
5482 if (!load_all
5483 && !is_type_tag_for_partial (abbrev->tag)
72bf9492
DJ
5484 && abbrev->tag != DW_TAG_enumerator
5485 && abbrev->tag != DW_TAG_subprogram
5486 && abbrev->tag != DW_TAG_variable
5afb4e99
DJ
5487 && abbrev->tag != DW_TAG_namespace
5488 && abbrev->tag != DW_TAG_member)
72bf9492
DJ
5489 {
5490 /* Otherwise we skip to the next sibling, if any. */
5491 info_ptr = skip_one_die (info_ptr + bytes_read, abbrev, cu);
5492 continue;
5493 }
5494
5495 info_ptr = read_partial_die (part_die, abbrev, bytes_read,
5496 abfd, info_ptr, cu);
5497
5498 /* This two-pass algorithm for processing partial symbols has a
5499 high cost in cache pressure. Thus, handle some simple cases
5500 here which cover the majority of C partial symbols. DIEs
5501 which neither have specification tags in them, nor could have
5502 specification tags elsewhere pointing at them, can simply be
5503 processed and discarded.
5504
5505 This segment is also optional; scan_partial_symbols and
5506 add_partial_symbol will handle these DIEs if we chain
5507 them in normally. When compilers which do not emit large
5508 quantities of duplicate debug information are more common,
5509 this code can probably be removed. */
5510
5511 /* Any complete simple types at the top level (pretty much all
5512 of them, for a language without namespaces), can be processed
5513 directly. */
5514 if (parent_die == NULL
5515 && part_die->has_specification == 0
5516 && part_die->is_declaration == 0
5517 && (part_die->tag == DW_TAG_typedef
5518 || part_die->tag == DW_TAG_base_type
5519 || part_die->tag == DW_TAG_subrange_type))
5520 {
5521 if (building_psymtab && part_die->name != NULL)
5522 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5523 VAR_DOMAIN, LOC_TYPEDEF,
5524 &cu->objfile->static_psymbols,
5525 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5526 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5527 continue;
5528 }
5529
5530 /* If we're at the second level, and we're an enumerator, and
5531 our parent has no specification (meaning possibly lives in a
5532 namespace elsewhere), then we can add the partial symbol now
5533 instead of queueing it. */
5534 if (part_die->tag == DW_TAG_enumerator
5535 && parent_die != NULL
5536 && parent_die->die_parent == NULL
5537 && parent_die->tag == DW_TAG_enumeration_type
5538 && parent_die->has_specification == 0)
5539 {
5540 if (part_die->name == NULL)
e2e0b3e5 5541 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
72bf9492
DJ
5542 else if (building_psymtab)
5543 add_psymbol_to_list (part_die->name, strlen (part_die->name),
5544 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
5545 (cu->language == language_cplus
5546 || cu->language == language_java)
72bf9492
DJ
5547 ? &cu->objfile->global_psymbols
5548 : &cu->objfile->static_psymbols,
5549 0, (CORE_ADDR) 0, cu->language, cu->objfile);
5550
5551 info_ptr = locate_pdi_sibling (part_die, info_ptr, abfd, cu);
5552 continue;
5553 }
5554
5555 /* We'll save this DIE so link it in. */
5556 part_die->die_parent = parent_die;
5557 part_die->die_sibling = NULL;
5558 part_die->die_child = NULL;
5559
5560 if (last_die && last_die == parent_die)
5561 last_die->die_child = part_die;
5562 else if (last_die)
5563 last_die->die_sibling = part_die;
5564
5565 last_die = part_die;
5566
5567 if (first_die == NULL)
5568 first_die = part_die;
5569
5570 /* Maybe add the DIE to the hash table. Not all DIEs that we
5571 find interesting need to be in the hash table, because we
5572 also have the parent/sibling/child chains; only those that we
5573 might refer to by offset later during partial symbol reading.
5574
5575 For now this means things that might have be the target of a
5576 DW_AT_specification, DW_AT_abstract_origin, or
5577 DW_AT_extension. DW_AT_extension will refer only to
5578 namespaces; DW_AT_abstract_origin refers to functions (and
5579 many things under the function DIE, but we do not recurse
5580 into function DIEs during partial symbol reading) and
5581 possibly variables as well; DW_AT_specification refers to
5582 declarations. Declarations ought to have the DW_AT_declaration
5583 flag. It happens that GCC forgets to put it in sometimes, but
5584 only for functions, not for types.
5585
5586 Adding more things than necessary to the hash table is harmless
5587 except for the performance cost. Adding too few will result in
5afb4e99
DJ
5588 wasted time in find_partial_die, when we reread the compilation
5589 unit with load_all_dies set. */
72bf9492 5590
5afb4e99
DJ
5591 if (load_all
5592 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
5593 || abbrev->tag == DW_TAG_variable
5594 || abbrev->tag == DW_TAG_namespace
5595 || part_die->is_declaration)
5596 {
5597 void **slot;
5598
5599 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
5600 part_die->offset, INSERT);
5601 *slot = part_die;
5602 }
5603
5604 part_die = obstack_alloc (&cu->comp_unit_obstack,
5605 sizeof (struct partial_die_info));
5606
5607 /* For some DIEs we want to follow their children (if any). For C
5608 we have no reason to follow the children of structures; for other
5609 languages we have to, both so that we can get at method physnames
5610 to infer fully qualified class names, and for DW_AT_specification. */
5611 if (last_die->has_children
5afb4e99
DJ
5612 && (load_all
5613 || last_die->tag == DW_TAG_namespace
72bf9492
DJ
5614 || last_die->tag == DW_TAG_enumeration_type
5615 || (cu->language != language_c
5616 && (last_die->tag == DW_TAG_class_type
680b30c7 5617 || last_die->tag == DW_TAG_interface_type
72bf9492
DJ
5618 || last_die->tag == DW_TAG_structure_type
5619 || last_die->tag == DW_TAG_union_type))))
5620 {
5621 nesting_level++;
5622 parent_die = last_die;
5623 continue;
5624 }
5625
5626 /* Otherwise we skip to the next sibling, if any. */
5627 info_ptr = locate_pdi_sibling (last_die, info_ptr, abfd, cu);
5628
5629 /* Back to the top, do it again. */
5630 }
5631}
5632
c906108c
SS
5633/* Read a minimal amount of information into the minimal die structure. */
5634
fe1b8b76 5635static gdb_byte *
72bf9492
DJ
5636read_partial_die (struct partial_die_info *part_die,
5637 struct abbrev_info *abbrev,
5638 unsigned int abbrev_len, bfd *abfd,
fe1b8b76 5639 gdb_byte *info_ptr, struct dwarf2_cu *cu)
c906108c 5640{
72bf9492 5641 unsigned int bytes_read, i;
c906108c 5642 struct attribute attr;
c5aa993b 5643 int has_low_pc_attr = 0;
c906108c
SS
5644 int has_high_pc_attr = 0;
5645
72bf9492 5646 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 5647
6502dd73 5648 part_die->offset = info_ptr - dwarf2_per_objfile->info_buffer;
72bf9492
DJ
5649
5650 info_ptr += abbrev_len;
5651
5652 if (abbrev == NULL)
5653 return info_ptr;
5654
c906108c
SS
5655 part_die->tag = abbrev->tag;
5656 part_die->has_children = abbrev->has_children;
c906108c
SS
5657
5658 for (i = 0; i < abbrev->num_attrs; ++i)
5659 {
e7c27a73 5660 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
c906108c
SS
5661
5662 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 5663 partial symbol table. */
c906108c
SS
5664 switch (attr.name)
5665 {
5666 case DW_AT_name:
5667
5668 /* Prefer DW_AT_MIPS_linkage_name over DW_AT_name. */
5669 if (part_die->name == NULL)
5670 part_die->name = DW_STRING (&attr);
5671 break;
57c22c6c
BR
5672 case DW_AT_comp_dir:
5673 if (part_die->dirname == NULL)
5674 part_die->dirname = DW_STRING (&attr);
5675 break;
c906108c
SS
5676 case DW_AT_MIPS_linkage_name:
5677 part_die->name = DW_STRING (&attr);
5678 break;
5679 case DW_AT_low_pc:
5680 has_low_pc_attr = 1;
5681 part_die->lowpc = DW_ADDR (&attr);
5682 break;
5683 case DW_AT_high_pc:
5684 has_high_pc_attr = 1;
5685 part_die->highpc = DW_ADDR (&attr);
5686 break;
43039443
JK
5687 case DW_AT_ranges:
5688 if (dwarf2_ranges_read (DW_UNSND (&attr), &part_die->lowpc,
5689 &part_die->highpc, cu))
5690 has_low_pc_attr = has_high_pc_attr = 1;
5691 break;
c906108c 5692 case DW_AT_location:
8e19ed76
PS
5693 /* Support the .debug_loc offsets */
5694 if (attr_form_is_block (&attr))
5695 {
5696 part_die->locdesc = DW_BLOCK (&attr);
5697 }
3690dd37 5698 else if (attr_form_is_section_offset (&attr))
8e19ed76 5699 {
4d3c2250 5700 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
5701 }
5702 else
5703 {
4d3c2250
KB
5704 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
5705 "partial symbol information");
8e19ed76 5706 }
c906108c
SS
5707 break;
5708 case DW_AT_language:
5709 part_die->language = DW_UNSND (&attr);
5710 break;
5711 case DW_AT_external:
5712 part_die->is_external = DW_UNSND (&attr);
5713 break;
5714 case DW_AT_declaration:
5715 part_die->is_declaration = DW_UNSND (&attr);
5716 break;
5717 case DW_AT_type:
5718 part_die->has_type = 1;
5719 break;
5720 case DW_AT_abstract_origin:
5721 case DW_AT_specification:
72bf9492
DJ
5722 case DW_AT_extension:
5723 part_die->has_specification = 1;
5724 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr, cu);
c906108c
SS
5725 break;
5726 case DW_AT_sibling:
5727 /* Ignore absolute siblings, they might point outside of
5728 the current compile unit. */
5729 if (attr.form == DW_FORM_ref_addr)
e2e0b3e5 5730 complaint (&symfile_complaints, _("ignoring absolute DW_AT_sibling"));
c906108c 5731 else
6502dd73
DJ
5732 part_die->sibling = dwarf2_per_objfile->info_buffer
5733 + dwarf2_get_ref_die_offset (&attr, cu);
c906108c 5734 break;
aaa75496
JB
5735 case DW_AT_stmt_list:
5736 part_die->has_stmt_list = 1;
5737 part_die->line_offset = DW_UNSND (&attr);
5738 break;
fa4028e9
JB
5739 case DW_AT_byte_size:
5740 part_die->has_byte_size = 1;
5741 break;
68511cec
CES
5742 case DW_AT_calling_convention:
5743 /* DWARF doesn't provide a way to identify a program's source-level
5744 entry point. DW_AT_calling_convention attributes are only meant
5745 to describe functions' calling conventions.
5746
5747 However, because it's a necessary piece of information in
5748 Fortran, and because DW_CC_program is the only piece of debugging
5749 information whose definition refers to a 'main program' at all,
5750 several compilers have begun marking Fortran main programs with
5751 DW_CC_program --- even when those functions use the standard
5752 calling conventions.
5753
5754 So until DWARF specifies a way to provide this information and
5755 compilers pick up the new representation, we'll support this
5756 practice. */
5757 if (DW_UNSND (&attr) == DW_CC_program
5758 && cu->language == language_fortran)
5759 set_main_name (part_die->name);
5760 break;
c906108c
SS
5761 default:
5762 break;
5763 }
5764 }
5765
c906108c
SS
5766 /* When using the GNU linker, .gnu.linkonce. sections are used to
5767 eliminate duplicate copies of functions and vtables and such.
5768 The linker will arbitrarily choose one and discard the others.
5769 The AT_*_pc values for such functions refer to local labels in
5770 these sections. If the section from that file was discarded, the
5771 labels are not in the output, so the relocs get a value of 0.
5772 If this is a discarded function, mark the pc bounds as invalid,
5773 so that GDB will ignore it. */
5774 if (has_low_pc_attr && has_high_pc_attr
5775 && part_die->lowpc < part_die->highpc
5776 && (part_die->lowpc != 0
72dca2f5 5777 || dwarf2_per_objfile->has_section_at_zero))
0b010bcc 5778 part_die->has_pc_info = 1;
c906108c
SS
5779 return info_ptr;
5780}
5781
72bf9492
DJ
5782/* Find a cached partial DIE at OFFSET in CU. */
5783
5784static struct partial_die_info *
5785find_partial_die_in_comp_unit (unsigned long offset, struct dwarf2_cu *cu)
5786{
5787 struct partial_die_info *lookup_die = NULL;
5788 struct partial_die_info part_die;
5789
5790 part_die.offset = offset;
5791 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
5792
72bf9492
DJ
5793 return lookup_die;
5794}
5795
5796/* Find a partial DIE at OFFSET, which may or may not be in CU. */
5797
5798static struct partial_die_info *
10b3939b 5799find_partial_die (unsigned long offset, struct dwarf2_cu *cu)
72bf9492 5800{
5afb4e99
DJ
5801 struct dwarf2_per_cu_data *per_cu = NULL;
5802 struct partial_die_info *pd = NULL;
72bf9492
DJ
5803
5804 if (offset >= cu->header.offset
5805 && offset < cu->header.offset + cu->header.length)
5afb4e99
DJ
5806 {
5807 pd = find_partial_die_in_comp_unit (offset, cu);
5808 if (pd != NULL)
5809 return pd;
5810 }
72bf9492 5811
ae038cb0
DJ
5812 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
5813
ae038cb0
DJ
5814 if (per_cu->cu == NULL)
5815 {
5816 load_comp_unit (per_cu, cu->objfile);
5817 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5818 dwarf2_per_objfile->read_in_chain = per_cu;
5819 }
5820
5821 per_cu->cu->last_used = 0;
5afb4e99
DJ
5822 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5823
5824 if (pd == NULL && per_cu->load_all_dies == 0)
5825 {
5826 struct cleanup *back_to;
5827 struct partial_die_info comp_unit_die;
5828 struct abbrev_info *abbrev;
5829 unsigned int bytes_read;
5830 char *info_ptr;
5831
5832 per_cu->load_all_dies = 1;
5833
5834 /* Re-read the DIEs. */
5835 back_to = make_cleanup (null_cleanup, 0);
5836 if (per_cu->cu->dwarf2_abbrevs == NULL)
5837 {
5838 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
5839 back_to = make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5840 }
5841 info_ptr = per_cu->cu->header.first_die_ptr;
5842 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
5843 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
5844 per_cu->cu->objfile->obfd, info_ptr,
5845 per_cu->cu);
5846 if (comp_unit_die.has_children)
5847 load_partial_dies (per_cu->cu->objfile->obfd, info_ptr, 0, per_cu->cu);
5848 do_cleanups (back_to);
5849
5850 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
5851 }
5852
5853 if (pd == NULL)
5854 internal_error (__FILE__, __LINE__,
5855 _("could not find partial DIE 0x%lx in cache [from module %s]\n"),
5856 offset, bfd_get_filename (cu->objfile->obfd));
5857 return pd;
72bf9492
DJ
5858}
5859
5860/* Adjust PART_DIE before generating a symbol for it. This function
5861 may set the is_external flag or change the DIE's name. */
5862
5863static void
5864fixup_partial_die (struct partial_die_info *part_die,
5865 struct dwarf2_cu *cu)
5866{
5867 /* If we found a reference attribute and the DIE has no name, try
5868 to find a name in the referred to DIE. */
5869
5870 if (part_die->name == NULL && part_die->has_specification)
5871 {
5872 struct partial_die_info *spec_die;
72bf9492 5873
10b3939b 5874 spec_die = find_partial_die (part_die->spec_offset, cu);
72bf9492 5875
10b3939b 5876 fixup_partial_die (spec_die, cu);
72bf9492
DJ
5877
5878 if (spec_die->name)
5879 {
5880 part_die->name = spec_die->name;
5881
5882 /* Copy DW_AT_external attribute if it is set. */
5883 if (spec_die->is_external)
5884 part_die->is_external = spec_die->is_external;
5885 }
5886 }
5887
5888 /* Set default names for some unnamed DIEs. */
5889 if (part_die->name == NULL && (part_die->tag == DW_TAG_structure_type
5890 || part_die->tag == DW_TAG_class_type))
5891 part_die->name = "(anonymous class)";
5892
5893 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
5894 part_die->name = "(anonymous namespace)";
5895
5896 if (part_die->tag == DW_TAG_structure_type
5897 || part_die->tag == DW_TAG_class_type
5898 || part_die->tag == DW_TAG_union_type)
5899 guess_structure_name (part_die, cu);
5900}
5901
639d11d3
DC
5902/* Read the die from the .debug_info section buffer. Set DIEP to
5903 point to a newly allocated die with its information, except for its
5904 child, sibling, and parent fields. Set HAS_CHILDREN to tell
5905 whether the die has children or not. */
c906108c 5906
fe1b8b76
JB
5907static gdb_byte *
5908read_full_die (struct die_info **diep, bfd *abfd, gdb_byte *info_ptr,
e7c27a73 5909 struct dwarf2_cu *cu, int *has_children)
c906108c
SS
5910{
5911 unsigned int abbrev_number, bytes_read, i, offset;
5912 struct abbrev_info *abbrev;
5913 struct die_info *die;
5914
6502dd73 5915 offset = info_ptr - dwarf2_per_objfile->info_buffer;
c906108c
SS
5916 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
5917 info_ptr += bytes_read;
5918 if (!abbrev_number)
5919 {
5920 die = dwarf_alloc_die ();
5921 die->tag = 0;
5922 die->abbrev = abbrev_number;
5923 die->type = NULL;
5924 *diep = die;
639d11d3 5925 *has_children = 0;
c906108c
SS
5926 return info_ptr;
5927 }
5928
e7c27a73 5929 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
c906108c
SS
5930 if (!abbrev)
5931 {
8a3fe4f8 5932 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
72bf9492 5933 abbrev_number,
639d11d3 5934 bfd_get_filename (abfd));
c906108c
SS
5935 }
5936 die = dwarf_alloc_die ();
5937 die->offset = offset;
5938 die->tag = abbrev->tag;
c906108c
SS
5939 die->abbrev = abbrev_number;
5940 die->type = NULL;
5941
5942 die->num_attrs = abbrev->num_attrs;
5943 die->attrs = (struct attribute *)
5944 xmalloc (die->num_attrs * sizeof (struct attribute));
5945
5946 for (i = 0; i < abbrev->num_attrs; ++i)
5947 {
5948 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
e7c27a73 5949 abfd, info_ptr, cu);
10b3939b
DJ
5950
5951 /* If this attribute is an absolute reference to a different
5952 compilation unit, make sure that compilation unit is loaded
5953 also. */
5954 if (die->attrs[i].form == DW_FORM_ref_addr
5955 && (DW_ADDR (&die->attrs[i]) < cu->header.offset
5956 || (DW_ADDR (&die->attrs[i])
5957 >= cu->header.offset + cu->header.length)))
5958 {
5959 struct dwarf2_per_cu_data *per_cu;
5960 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (&die->attrs[i]),
5961 cu->objfile);
5962
5963 /* Mark the dependence relation so that we don't flush PER_CU
5964 too early. */
5965 dwarf2_add_dependence (cu, per_cu);
5966
5967 /* If it's already on the queue, we have nothing to do. */
5968 if (per_cu->queued)
5969 continue;
5970
5971 /* If the compilation unit is already loaded, just mark it as
5972 used. */
5973 if (per_cu->cu != NULL)
5974 {
5975 per_cu->cu->last_used = 0;
5976 continue;
5977 }
5978
5979 /* Add it to the queue. */
5980 queue_comp_unit (per_cu);
5981 }
c906108c
SS
5982 }
5983
5984 *diep = die;
639d11d3 5985 *has_children = abbrev->has_children;
c906108c
SS
5986 return info_ptr;
5987}
5988
a8329558 5989/* Read an attribute value described by an attribute form. */
c906108c 5990
fe1b8b76 5991static gdb_byte *
a8329558 5992read_attribute_value (struct attribute *attr, unsigned form,
fe1b8b76 5993 bfd *abfd, gdb_byte *info_ptr,
e7c27a73 5994 struct dwarf2_cu *cu)
c906108c 5995{
e7c27a73 5996 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
5997 unsigned int bytes_read;
5998 struct dwarf_block *blk;
5999
a8329558
KW
6000 attr->form = form;
6001 switch (form)
c906108c
SS
6002 {
6003 case DW_FORM_addr:
6004 case DW_FORM_ref_addr:
e7c27a73 6005 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 6006 info_ptr += bytes_read;
c906108c
SS
6007 break;
6008 case DW_FORM_block2:
7b5a2f43 6009 blk = dwarf_alloc_block (cu);
c906108c
SS
6010 blk->size = read_2_bytes (abfd, info_ptr);
6011 info_ptr += 2;
6012 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6013 info_ptr += blk->size;
6014 DW_BLOCK (attr) = blk;
6015 break;
6016 case DW_FORM_block4:
7b5a2f43 6017 blk = dwarf_alloc_block (cu);
c906108c
SS
6018 blk->size = read_4_bytes (abfd, info_ptr);
6019 info_ptr += 4;
6020 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6021 info_ptr += blk->size;
6022 DW_BLOCK (attr) = blk;
6023 break;
6024 case DW_FORM_data2:
6025 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
6026 info_ptr += 2;
6027 break;
6028 case DW_FORM_data4:
6029 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
6030 info_ptr += 4;
6031 break;
6032 case DW_FORM_data8:
6033 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
6034 info_ptr += 8;
6035 break;
6036 case DW_FORM_string:
6037 DW_STRING (attr) = read_string (abfd, info_ptr, &bytes_read);
6038 info_ptr += bytes_read;
6039 break;
4bdf3d34
JJ
6040 case DW_FORM_strp:
6041 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
6042 &bytes_read);
6043 info_ptr += bytes_read;
6044 break;
c906108c 6045 case DW_FORM_block:
7b5a2f43 6046 blk = dwarf_alloc_block (cu);
c906108c
SS
6047 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6048 info_ptr += bytes_read;
6049 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6050 info_ptr += blk->size;
6051 DW_BLOCK (attr) = blk;
6052 break;
6053 case DW_FORM_block1:
7b5a2f43 6054 blk = dwarf_alloc_block (cu);
c906108c
SS
6055 blk->size = read_1_byte (abfd, info_ptr);
6056 info_ptr += 1;
6057 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
6058 info_ptr += blk->size;
6059 DW_BLOCK (attr) = blk;
6060 break;
6061 case DW_FORM_data1:
6062 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
6063 info_ptr += 1;
6064 break;
6065 case DW_FORM_flag:
6066 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
6067 info_ptr += 1;
6068 break;
6069 case DW_FORM_sdata:
6070 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
6071 info_ptr += bytes_read;
6072 break;
6073 case DW_FORM_udata:
6074 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6075 info_ptr += bytes_read;
6076 break;
6077 case DW_FORM_ref1:
10b3939b 6078 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
c906108c
SS
6079 info_ptr += 1;
6080 break;
6081 case DW_FORM_ref2:
10b3939b 6082 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
c906108c
SS
6083 info_ptr += 2;
6084 break;
6085 case DW_FORM_ref4:
10b3939b 6086 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
c906108c
SS
6087 info_ptr += 4;
6088 break;
613e1657 6089 case DW_FORM_ref8:
10b3939b 6090 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
613e1657
KB
6091 info_ptr += 8;
6092 break;
c906108c 6093 case DW_FORM_ref_udata:
10b3939b
DJ
6094 DW_ADDR (attr) = (cu->header.offset
6095 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
6096 info_ptr += bytes_read;
6097 break;
c906108c 6098 case DW_FORM_indirect:
a8329558
KW
6099 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
6100 info_ptr += bytes_read;
e7c27a73 6101 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
a8329558 6102 break;
c906108c 6103 default:
8a3fe4f8 6104 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
6105 dwarf_form_name (form),
6106 bfd_get_filename (abfd));
c906108c
SS
6107 }
6108 return info_ptr;
6109}
6110
a8329558
KW
6111/* Read an attribute described by an abbreviated attribute. */
6112
fe1b8b76 6113static gdb_byte *
a8329558 6114read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
fe1b8b76 6115 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
a8329558
KW
6116{
6117 attr->name = abbrev->name;
e7c27a73 6118 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
a8329558
KW
6119}
6120
c906108c
SS
6121/* read dwarf information from a buffer */
6122
6123static unsigned int
fe1b8b76 6124read_1_byte (bfd *abfd, gdb_byte *buf)
c906108c 6125{
fe1b8b76 6126 return bfd_get_8 (abfd, buf);
c906108c
SS
6127}
6128
6129static int
fe1b8b76 6130read_1_signed_byte (bfd *abfd, gdb_byte *buf)
c906108c 6131{
fe1b8b76 6132 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
6133}
6134
6135static unsigned int
fe1b8b76 6136read_2_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6137{
fe1b8b76 6138 return bfd_get_16 (abfd, buf);
c906108c
SS
6139}
6140
6141static int
fe1b8b76 6142read_2_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6143{
fe1b8b76 6144 return bfd_get_signed_16 (abfd, buf);
c906108c
SS
6145}
6146
6147static unsigned int
fe1b8b76 6148read_4_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6149{
fe1b8b76 6150 return bfd_get_32 (abfd, buf);
c906108c
SS
6151}
6152
6153static int
fe1b8b76 6154read_4_signed_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6155{
fe1b8b76 6156 return bfd_get_signed_32 (abfd, buf);
c906108c
SS
6157}
6158
ce5d95e1 6159static unsigned long
fe1b8b76 6160read_8_bytes (bfd *abfd, gdb_byte *buf)
c906108c 6161{
fe1b8b76 6162 return bfd_get_64 (abfd, buf);
c906108c
SS
6163}
6164
6165static CORE_ADDR
fe1b8b76 6166read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 6167 unsigned int *bytes_read)
c906108c 6168{
e7c27a73 6169 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
6170 CORE_ADDR retval = 0;
6171
107d2387 6172 if (cu_header->signed_addr_p)
c906108c 6173 {
107d2387
AC
6174 switch (cu_header->addr_size)
6175 {
6176 case 2:
fe1b8b76 6177 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
6178 break;
6179 case 4:
fe1b8b76 6180 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
6181 break;
6182 case 8:
fe1b8b76 6183 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
6184 break;
6185 default:
8e65ff28 6186 internal_error (__FILE__, __LINE__,
e2e0b3e5 6187 _("read_address: bad switch, signed [in module %s]"),
659b0389 6188 bfd_get_filename (abfd));
107d2387
AC
6189 }
6190 }
6191 else
6192 {
6193 switch (cu_header->addr_size)
6194 {
6195 case 2:
fe1b8b76 6196 retval = bfd_get_16 (abfd, buf);
107d2387
AC
6197 break;
6198 case 4:
fe1b8b76 6199 retval = bfd_get_32 (abfd, buf);
107d2387
AC
6200 break;
6201 case 8:
fe1b8b76 6202 retval = bfd_get_64 (abfd, buf);
107d2387
AC
6203 break;
6204 default:
8e65ff28 6205 internal_error (__FILE__, __LINE__,
e2e0b3e5 6206 _("read_address: bad switch, unsigned [in module %s]"),
659b0389 6207 bfd_get_filename (abfd));
107d2387 6208 }
c906108c 6209 }
64367e0a 6210
107d2387
AC
6211 *bytes_read = cu_header->addr_size;
6212 return retval;
c906108c
SS
6213}
6214
f7ef9339 6215/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
6216 specification allows the initial length to take up either 4 bytes
6217 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
6218 bytes describe the length and all offsets will be 8 bytes in length
6219 instead of 4.
6220
f7ef9339
KB
6221 An older, non-standard 64-bit format is also handled by this
6222 function. The older format in question stores the initial length
6223 as an 8-byte quantity without an escape value. Lengths greater
6224 than 2^32 aren't very common which means that the initial 4 bytes
6225 is almost always zero. Since a length value of zero doesn't make
6226 sense for the 32-bit format, this initial zero can be considered to
6227 be an escape value which indicates the presence of the older 64-bit
6228 format. As written, the code can't detect (old format) lengths
917c78fc
MK
6229 greater than 4GB. If it becomes necessary to handle lengths
6230 somewhat larger than 4GB, we could allow other small values (such
6231 as the non-sensical values of 1, 2, and 3) to also be used as
6232 escape values indicating the presence of the old format.
f7ef9339 6233
917c78fc
MK
6234 The value returned via bytes_read should be used to increment the
6235 relevant pointer after calling read_initial_length().
613e1657
KB
6236
6237 As a side effect, this function sets the fields initial_length_size
6238 and offset_size in cu_header to the values appropriate for the
6239 length field. (The format of the initial length field determines
dd373385 6240 the width of file offsets to be fetched later with read_offset().)
613e1657
KB
6241
6242 [ Note: read_initial_length() and read_offset() are based on the
6243 document entitled "DWARF Debugging Information Format", revision
f7ef9339 6244 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
6245 from:
6246
f7ef9339 6247 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
613e1657
KB
6248
6249 This document is only a draft and is subject to change. (So beware.)
6250
f7ef9339 6251 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
6252 determined empirically by examining 64-bit ELF files produced by
6253 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
6254
6255 - Kevin, July 16, 2002
613e1657
KB
6256 ] */
6257
6258static LONGEST
fe1b8b76 6259read_initial_length (bfd *abfd, gdb_byte *buf, struct comp_unit_head *cu_header,
891d2f0b 6260 unsigned int *bytes_read)
613e1657 6261{
fe1b8b76 6262 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 6263
dd373385 6264 if (length == 0xffffffff)
613e1657 6265 {
fe1b8b76 6266 length = bfd_get_64 (abfd, buf + 4);
613e1657 6267 *bytes_read = 12;
613e1657 6268 }
dd373385 6269 else if (length == 0)
f7ef9339 6270 {
dd373385 6271 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 6272 length = bfd_get_64 (abfd, buf);
f7ef9339 6273 *bytes_read = 8;
f7ef9339 6274 }
613e1657
KB
6275 else
6276 {
6277 *bytes_read = 4;
613e1657
KB
6278 }
6279
dd373385
EZ
6280 if (cu_header)
6281 {
6282 gdb_assert (cu_header->initial_length_size == 0
6283 || cu_header->initial_length_size == 4
6284 || cu_header->initial_length_size == 8
6285 || cu_header->initial_length_size == 12);
6286
6287 if (cu_header->initial_length_size != 0
6288 && cu_header->initial_length_size != *bytes_read)
6289 complaint (&symfile_complaints,
6290 _("intermixed 32-bit and 64-bit DWARF sections"));
6291
6292 cu_header->initial_length_size = *bytes_read;
6293 cu_header->offset_size = (*bytes_read == 4) ? 4 : 8;
6294 }
6295
6296 return length;
613e1657
KB
6297}
6298
6299/* Read an offset from the data stream. The size of the offset is
917c78fc 6300 given by cu_header->offset_size. */
613e1657
KB
6301
6302static LONGEST
fe1b8b76 6303read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
891d2f0b 6304 unsigned int *bytes_read)
613e1657
KB
6305{
6306 LONGEST retval = 0;
6307
6308 switch (cu_header->offset_size)
6309 {
6310 case 4:
fe1b8b76 6311 retval = bfd_get_32 (abfd, buf);
613e1657
KB
6312 *bytes_read = 4;
6313 break;
6314 case 8:
fe1b8b76 6315 retval = bfd_get_64 (abfd, buf);
613e1657
KB
6316 *bytes_read = 8;
6317 break;
6318 default:
8e65ff28 6319 internal_error (__FILE__, __LINE__,
e2e0b3e5 6320 _("read_offset: bad switch [in module %s]"),
659b0389 6321 bfd_get_filename (abfd));
613e1657
KB
6322 }
6323
917c78fc 6324 return retval;
613e1657
KB
6325}
6326
fe1b8b76
JB
6327static gdb_byte *
6328read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
c906108c
SS
6329{
6330 /* If the size of a host char is 8 bits, we can return a pointer
6331 to the buffer, otherwise we have to copy the data to a buffer
6332 allocated on the temporary obstack. */
4bdf3d34 6333 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 6334 return buf;
c906108c
SS
6335}
6336
6337static char *
fe1b8b76 6338read_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c
SS
6339{
6340 /* If the size of a host char is 8 bits, we can return a pointer
6341 to the string, otherwise we have to copy the string to a buffer
6342 allocated on the temporary obstack. */
4bdf3d34 6343 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
6344 if (*buf == '\0')
6345 {
6346 *bytes_read_ptr = 1;
6347 return NULL;
6348 }
fe1b8b76
JB
6349 *bytes_read_ptr = strlen ((char *) buf) + 1;
6350 return (char *) buf;
4bdf3d34
JJ
6351}
6352
6353static char *
fe1b8b76 6354read_indirect_string (bfd *abfd, gdb_byte *buf,
4bdf3d34
JJ
6355 const struct comp_unit_head *cu_header,
6356 unsigned int *bytes_read_ptr)
6357{
6358 LONGEST str_offset = read_offset (abfd, buf, cu_header,
891d2f0b 6359 bytes_read_ptr);
c906108c 6360
6502dd73 6361 if (dwarf2_per_objfile->str_buffer == NULL)
c906108c 6362 {
8a3fe4f8 6363 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
659b0389 6364 bfd_get_filename (abfd));
4bdf3d34 6365 return NULL;
c906108c 6366 }
6502dd73 6367 if (str_offset >= dwarf2_per_objfile->str_size)
c906108c 6368 {
8a3fe4f8 6369 error (_("DW_FORM_strp pointing outside of .debug_str section [in module %s]"),
659b0389 6370 bfd_get_filename (abfd));
c906108c
SS
6371 return NULL;
6372 }
4bdf3d34 6373 gdb_assert (HOST_CHAR_BIT == 8);
6502dd73 6374 if (dwarf2_per_objfile->str_buffer[str_offset] == '\0')
4bdf3d34 6375 return NULL;
fe1b8b76 6376 return (char *) (dwarf2_per_objfile->str_buffer + str_offset);
c906108c
SS
6377}
6378
ce5d95e1 6379static unsigned long
fe1b8b76 6380read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 6381{
ce5d95e1
JB
6382 unsigned long result;
6383 unsigned int num_read;
c906108c
SS
6384 int i, shift;
6385 unsigned char byte;
6386
6387 result = 0;
6388 shift = 0;
6389 num_read = 0;
6390 i = 0;
6391 while (1)
6392 {
fe1b8b76 6393 byte = bfd_get_8 (abfd, buf);
c906108c
SS
6394 buf++;
6395 num_read++;
ce5d95e1 6396 result |= ((unsigned long)(byte & 127) << shift);
c906108c
SS
6397 if ((byte & 128) == 0)
6398 {
6399 break;
6400 }
6401 shift += 7;
6402 }
6403 *bytes_read_ptr = num_read;
6404 return result;
6405}
6406
ce5d95e1 6407static long
fe1b8b76 6408read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 6409{
ce5d95e1 6410 long result;
77e0b926 6411 int i, shift, num_read;
c906108c
SS
6412 unsigned char byte;
6413
6414 result = 0;
6415 shift = 0;
c906108c
SS
6416 num_read = 0;
6417 i = 0;
6418 while (1)
6419 {
fe1b8b76 6420 byte = bfd_get_8 (abfd, buf);
c906108c
SS
6421 buf++;
6422 num_read++;
ce5d95e1 6423 result |= ((long)(byte & 127) << shift);
c906108c
SS
6424 shift += 7;
6425 if ((byte & 128) == 0)
6426 {
6427 break;
6428 }
6429 }
77e0b926
DJ
6430 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
6431 result |= -(((long)1) << shift);
c906108c
SS
6432 *bytes_read_ptr = num_read;
6433 return result;
6434}
6435
4bb7a0a7
DJ
6436/* Return a pointer to just past the end of an LEB128 number in BUF. */
6437
fe1b8b76
JB
6438static gdb_byte *
6439skip_leb128 (bfd *abfd, gdb_byte *buf)
4bb7a0a7
DJ
6440{
6441 int byte;
6442
6443 while (1)
6444 {
fe1b8b76 6445 byte = bfd_get_8 (abfd, buf);
4bb7a0a7
DJ
6446 buf++;
6447 if ((byte & 128) == 0)
6448 return buf;
6449 }
6450}
6451
c906108c 6452static void
e142c38c 6453set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
6454{
6455 switch (lang)
6456 {
6457 case DW_LANG_C89:
6458 case DW_LANG_C:
e142c38c 6459 cu->language = language_c;
c906108c
SS
6460 break;
6461 case DW_LANG_C_plus_plus:
e142c38c 6462 cu->language = language_cplus;
c906108c
SS
6463 break;
6464 case DW_LANG_Fortran77:
6465 case DW_LANG_Fortran90:
b21b22e0 6466 case DW_LANG_Fortran95:
e142c38c 6467 cu->language = language_fortran;
c906108c
SS
6468 break;
6469 case DW_LANG_Mips_Assembler:
e142c38c 6470 cu->language = language_asm;
c906108c 6471 break;
bebd888e 6472 case DW_LANG_Java:
e142c38c 6473 cu->language = language_java;
bebd888e 6474 break;
c906108c 6475 case DW_LANG_Ada83:
8aaf0b47 6476 case DW_LANG_Ada95:
bc5f45f8
JB
6477 cu->language = language_ada;
6478 break;
72019c9c
GM
6479 case DW_LANG_Modula2:
6480 cu->language = language_m2;
6481 break;
fe8e67fd
PM
6482 case DW_LANG_Pascal83:
6483 cu->language = language_pascal;
6484 break;
c906108c
SS
6485 case DW_LANG_Cobol74:
6486 case DW_LANG_Cobol85:
c906108c 6487 default:
e142c38c 6488 cu->language = language_minimal;
c906108c
SS
6489 break;
6490 }
e142c38c 6491 cu->language_defn = language_def (cu->language);
c906108c
SS
6492}
6493
6494/* Return the named attribute or NULL if not there. */
6495
6496static struct attribute *
e142c38c 6497dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c
SS
6498{
6499 unsigned int i;
6500 struct attribute *spec = NULL;
6501
6502 for (i = 0; i < die->num_attrs; ++i)
6503 {
6504 if (die->attrs[i].name == name)
10b3939b 6505 return &die->attrs[i];
c906108c
SS
6506 if (die->attrs[i].name == DW_AT_specification
6507 || die->attrs[i].name == DW_AT_abstract_origin)
6508 spec = &die->attrs[i];
6509 }
c906108c 6510
10b3939b
DJ
6511 if (spec)
6512 return dwarf2_attr (follow_die_ref (die, spec, cu), name, cu);
c5aa993b 6513
c906108c
SS
6514 return NULL;
6515}
6516
05cf31d1
JB
6517/* Return non-zero iff the attribute NAME is defined for the given DIE,
6518 and holds a non-zero value. This function should only be used for
6519 DW_FORM_flag attributes. */
6520
6521static int
6522dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
6523{
6524 struct attribute *attr = dwarf2_attr (die, name, cu);
6525
6526 return (attr && DW_UNSND (attr));
6527}
6528
3ca72b44 6529static int
e142c38c 6530die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 6531{
05cf31d1
JB
6532 /* A DIE is a declaration if it has a DW_AT_declaration attribute
6533 which value is non-zero. However, we have to be careful with
6534 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
6535 (via dwarf2_flag_true_p) follows this attribute. So we may
6536 end up accidently finding a declaration attribute that belongs
6537 to a different DIE referenced by the specification attribute,
6538 even though the given DIE does not have a declaration attribute. */
6539 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
6540 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
6541}
6542
63d06c5c
DC
6543/* Return the die giving the specification for DIE, if there is
6544 one. */
6545
6546static struct die_info *
e142c38c 6547die_specification (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 6548{
e142c38c 6549 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification, cu);
63d06c5c
DC
6550
6551 if (spec_attr == NULL)
6552 return NULL;
6553 else
10b3939b 6554 return follow_die_ref (die, spec_attr, cu);
63d06c5c 6555}
c906108c 6556
debd256d
JB
6557/* Free the line_header structure *LH, and any arrays and strings it
6558 refers to. */
6559static void
6560free_line_header (struct line_header *lh)
6561{
6562 if (lh->standard_opcode_lengths)
a8bc7b56 6563 xfree (lh->standard_opcode_lengths);
debd256d
JB
6564
6565 /* Remember that all the lh->file_names[i].name pointers are
6566 pointers into debug_line_buffer, and don't need to be freed. */
6567 if (lh->file_names)
a8bc7b56 6568 xfree (lh->file_names);
debd256d
JB
6569
6570 /* Similarly for the include directory names. */
6571 if (lh->include_dirs)
a8bc7b56 6572 xfree (lh->include_dirs);
debd256d 6573
a8bc7b56 6574 xfree (lh);
debd256d
JB
6575}
6576
6577
6578/* Add an entry to LH's include directory table. */
6579static void
6580add_include_dir (struct line_header *lh, char *include_dir)
c906108c 6581{
debd256d
JB
6582 /* Grow the array if necessary. */
6583 if (lh->include_dirs_size == 0)
c5aa993b 6584 {
debd256d
JB
6585 lh->include_dirs_size = 1; /* for testing */
6586 lh->include_dirs = xmalloc (lh->include_dirs_size
6587 * sizeof (*lh->include_dirs));
6588 }
6589 else if (lh->num_include_dirs >= lh->include_dirs_size)
6590 {
6591 lh->include_dirs_size *= 2;
6592 lh->include_dirs = xrealloc (lh->include_dirs,
6593 (lh->include_dirs_size
6594 * sizeof (*lh->include_dirs)));
c5aa993b 6595 }
c906108c 6596
debd256d
JB
6597 lh->include_dirs[lh->num_include_dirs++] = include_dir;
6598}
6599
6600
6601/* Add an entry to LH's file name table. */
6602static void
6603add_file_name (struct line_header *lh,
6604 char *name,
6605 unsigned int dir_index,
6606 unsigned int mod_time,
6607 unsigned int length)
6608{
6609 struct file_entry *fe;
6610
6611 /* Grow the array if necessary. */
6612 if (lh->file_names_size == 0)
6613 {
6614 lh->file_names_size = 1; /* for testing */
6615 lh->file_names = xmalloc (lh->file_names_size
6616 * sizeof (*lh->file_names));
6617 }
6618 else if (lh->num_file_names >= lh->file_names_size)
6619 {
6620 lh->file_names_size *= 2;
6621 lh->file_names = xrealloc (lh->file_names,
6622 (lh->file_names_size
6623 * sizeof (*lh->file_names)));
6624 }
6625
6626 fe = &lh->file_names[lh->num_file_names++];
6627 fe->name = name;
6628 fe->dir_index = dir_index;
6629 fe->mod_time = mod_time;
6630 fe->length = length;
aaa75496 6631 fe->included_p = 0;
cb1df416 6632 fe->symtab = NULL;
debd256d
JB
6633}
6634
6635
6636/* Read the statement program header starting at OFFSET in
6502dd73
DJ
6637 .debug_line, according to the endianness of ABFD. Return a pointer
6638 to a struct line_header, allocated using xmalloc.
debd256d
JB
6639
6640 NOTE: the strings in the include directory and file name tables of
6641 the returned object point into debug_line_buffer, and must not be
6642 freed. */
6643static struct line_header *
6644dwarf_decode_line_header (unsigned int offset, bfd *abfd,
e7c27a73 6645 struct dwarf2_cu *cu)
debd256d
JB
6646{
6647 struct cleanup *back_to;
6648 struct line_header *lh;
fe1b8b76 6649 gdb_byte *line_ptr;
891d2f0b 6650 unsigned int bytes_read;
debd256d
JB
6651 int i;
6652 char *cur_dir, *cur_file;
6653
6502dd73 6654 if (dwarf2_per_objfile->line_buffer == NULL)
debd256d 6655 {
e2e0b3e5 6656 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
6657 return 0;
6658 }
6659
a738430d
MK
6660 /* Make sure that at least there's room for the total_length field.
6661 That could be 12 bytes long, but we're just going to fudge that. */
6502dd73 6662 if (offset + 4 >= dwarf2_per_objfile->line_size)
debd256d 6663 {
4d3c2250 6664 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
6665 return 0;
6666 }
6667
6668 lh = xmalloc (sizeof (*lh));
6669 memset (lh, 0, sizeof (*lh));
6670 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
6671 (void *) lh);
6672
6502dd73 6673 line_ptr = dwarf2_per_objfile->line_buffer + offset;
debd256d 6674
a738430d 6675 /* Read in the header. */
dd373385
EZ
6676 lh->total_length =
6677 read_initial_length (abfd, line_ptr, &cu->header, &bytes_read);
debd256d 6678 line_ptr += bytes_read;
6502dd73
DJ
6679 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line_buffer
6680 + dwarf2_per_objfile->line_size))
debd256d 6681 {
4d3c2250 6682 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
6683 return 0;
6684 }
6685 lh->statement_program_end = line_ptr + lh->total_length;
6686 lh->version = read_2_bytes (abfd, line_ptr);
6687 line_ptr += 2;
e7c27a73 6688 lh->header_length = read_offset (abfd, line_ptr, &cu->header, &bytes_read);
debd256d
JB
6689 line_ptr += bytes_read;
6690 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
6691 line_ptr += 1;
6692 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
6693 line_ptr += 1;
6694 lh->line_base = read_1_signed_byte (abfd, line_ptr);
6695 line_ptr += 1;
6696 lh->line_range = read_1_byte (abfd, line_ptr);
6697 line_ptr += 1;
6698 lh->opcode_base = read_1_byte (abfd, line_ptr);
6699 line_ptr += 1;
6700 lh->standard_opcode_lengths
fe1b8b76 6701 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
6702
6703 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
6704 for (i = 1; i < lh->opcode_base; ++i)
6705 {
6706 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
6707 line_ptr += 1;
6708 }
6709
a738430d 6710 /* Read directory table. */
debd256d
JB
6711 while ((cur_dir = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6712 {
6713 line_ptr += bytes_read;
6714 add_include_dir (lh, cur_dir);
6715 }
6716 line_ptr += bytes_read;
6717
a738430d 6718 /* Read file name table. */
debd256d
JB
6719 while ((cur_file = read_string (abfd, line_ptr, &bytes_read)) != NULL)
6720 {
6721 unsigned int dir_index, mod_time, length;
6722
6723 line_ptr += bytes_read;
6724 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6725 line_ptr += bytes_read;
6726 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6727 line_ptr += bytes_read;
6728 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6729 line_ptr += bytes_read;
6730
6731 add_file_name (lh, cur_file, dir_index, mod_time, length);
6732 }
6733 line_ptr += bytes_read;
6734 lh->statement_program_start = line_ptr;
6735
6502dd73
DJ
6736 if (line_ptr > (dwarf2_per_objfile->line_buffer
6737 + dwarf2_per_objfile->line_size))
4d3c2250 6738 complaint (&symfile_complaints,
e2e0b3e5 6739 _("line number info header doesn't fit in `.debug_line' section"));
debd256d
JB
6740
6741 discard_cleanups (back_to);
6742 return lh;
6743}
c906108c 6744
5fb290d7
DJ
6745/* This function exists to work around a bug in certain compilers
6746 (particularly GCC 2.95), in which the first line number marker of a
6747 function does not show up until after the prologue, right before
6748 the second line number marker. This function shifts ADDRESS down
6749 to the beginning of the function if necessary, and is called on
6750 addresses passed to record_line. */
6751
6752static CORE_ADDR
e142c38c 6753check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
5fb290d7
DJ
6754{
6755 struct function_range *fn;
6756
6757 /* Find the function_range containing address. */
e142c38c 6758 if (!cu->first_fn)
5fb290d7
DJ
6759 return address;
6760
e142c38c
DJ
6761 if (!cu->cached_fn)
6762 cu->cached_fn = cu->first_fn;
5fb290d7 6763
e142c38c 6764 fn = cu->cached_fn;
5fb290d7
DJ
6765 while (fn)
6766 if (fn->lowpc <= address && fn->highpc > address)
6767 goto found;
6768 else
6769 fn = fn->next;
6770
e142c38c
DJ
6771 fn = cu->first_fn;
6772 while (fn && fn != cu->cached_fn)
5fb290d7
DJ
6773 if (fn->lowpc <= address && fn->highpc > address)
6774 goto found;
6775 else
6776 fn = fn->next;
6777
6778 return address;
6779
6780 found:
6781 if (fn->seen_line)
6782 return address;
6783 if (address != fn->lowpc)
4d3c2250 6784 complaint (&symfile_complaints,
e2e0b3e5 6785 _("misplaced first line number at 0x%lx for '%s'"),
4d3c2250 6786 (unsigned long) address, fn->name);
5fb290d7
DJ
6787 fn->seen_line = 1;
6788 return fn->lowpc;
6789}
6790
aaa75496
JB
6791/* Decode the Line Number Program (LNP) for the given line_header
6792 structure and CU. The actual information extracted and the type
6793 of structures created from the LNP depends on the value of PST.
6794
6795 1. If PST is NULL, then this procedure uses the data from the program
6796 to create all necessary symbol tables, and their linetables.
6797 The compilation directory of the file is passed in COMP_DIR,
6798 and must not be NULL.
6799
6800 2. If PST is not NULL, this procedure reads the program to determine
6801 the list of files included by the unit represented by PST, and
6802 builds all the associated partial symbol tables. In this case,
6803 the value of COMP_DIR is ignored, and can thus be NULL (the COMP_DIR
6804 is not used to compute the full name of the symtab, and therefore
6805 omitting it when building the partial symtab does not introduce
6806 the potential for inconsistency - a partial symtab and its associated
6807 symbtab having a different fullname -). */
debd256d 6808
c906108c 6809static void
debd256d 6810dwarf_decode_lines (struct line_header *lh, char *comp_dir, bfd *abfd,
aaa75496 6811 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 6812{
a8c50c1f 6813 gdb_byte *line_ptr, *extended_end;
fe1b8b76 6814 gdb_byte *line_end;
a8c50c1f 6815 unsigned int bytes_read, extended_len;
c906108c 6816 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
6817 CORE_ADDR baseaddr;
6818 struct objfile *objfile = cu->objfile;
aaa75496 6819 const int decode_for_pst_p = (pst != NULL);
cb1df416 6820 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
e142c38c
DJ
6821
6822 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6823
debd256d
JB
6824 line_ptr = lh->statement_program_start;
6825 line_end = lh->statement_program_end;
c906108c
SS
6826
6827 /* Read the statement sequences until there's nothing left. */
6828 while (line_ptr < line_end)
6829 {
6830 /* state machine registers */
6831 CORE_ADDR address = 0;
6832 unsigned int file = 1;
6833 unsigned int line = 1;
6834 unsigned int column = 0;
debd256d 6835 int is_stmt = lh->default_is_stmt;
c906108c
SS
6836 int basic_block = 0;
6837 int end_sequence = 0;
6838
aaa75496 6839 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 6840 {
aaa75496 6841 /* Start a subfile for the current file of the state machine. */
debd256d
JB
6842 /* lh->include_dirs and lh->file_names are 0-based, but the
6843 directory and file name numbers in the statement program
6844 are 1-based. */
6845 struct file_entry *fe = &lh->file_names[file - 1];
4f1520fb 6846 char *dir = NULL;
a738430d 6847
debd256d
JB
6848 if (fe->dir_index)
6849 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
6850
6851 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
6852 }
6853
a738430d 6854 /* Decode the table. */
c5aa993b 6855 while (!end_sequence)
c906108c
SS
6856 {
6857 op_code = read_1_byte (abfd, line_ptr);
6858 line_ptr += 1;
9aa1fe7e 6859
debd256d 6860 if (op_code >= lh->opcode_base)
a738430d
MK
6861 {
6862 /* Special operand. */
debd256d
JB
6863 adj_opcode = op_code - lh->opcode_base;
6864 address += (adj_opcode / lh->line_range)
6865 * lh->minimum_instruction_length;
6866 line += lh->line_base + (adj_opcode % lh->line_range);
25e43795
DJ
6867 if (lh->num_file_names < file)
6868 dwarf2_debug_line_missing_file_complaint ();
6869 else
6870 {
6871 lh->file_names[file - 1].included_p = 1;
6872 if (!decode_for_pst_p)
6873 {
6874 if (last_subfile != current_subfile)
6875 {
6876 if (last_subfile)
6877 record_line (last_subfile, 0, address);
6878 last_subfile = current_subfile;
6879 }
6880 /* Append row to matrix using current values. */
6881 record_line (current_subfile, line,
6882 check_cu_functions (address, cu));
366da635 6883 }
25e43795 6884 }
9aa1fe7e
GK
6885 basic_block = 1;
6886 }
6887 else switch (op_code)
c906108c
SS
6888 {
6889 case DW_LNS_extended_op:
a8c50c1f 6890 extended_len = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
473b7be6 6891 line_ptr += bytes_read;
a8c50c1f 6892 extended_end = line_ptr + extended_len;
c906108c
SS
6893 extended_op = read_1_byte (abfd, line_ptr);
6894 line_ptr += 1;
6895 switch (extended_op)
6896 {
6897 case DW_LNE_end_sequence:
6898 end_sequence = 1;
25e43795
DJ
6899
6900 if (lh->num_file_names < file)
6901 dwarf2_debug_line_missing_file_complaint ();
6902 else
6903 {
6904 lh->file_names[file - 1].included_p = 1;
6905 if (!decode_for_pst_p)
6906 record_line (current_subfile, 0, address);
6907 }
c906108c
SS
6908 break;
6909 case DW_LNE_set_address:
e7c27a73 6910 address = read_address (abfd, line_ptr, cu, &bytes_read);
107d2387
AC
6911 line_ptr += bytes_read;
6912 address += baseaddr;
c906108c
SS
6913 break;
6914 case DW_LNE_define_file:
debd256d
JB
6915 {
6916 char *cur_file;
6917 unsigned int dir_index, mod_time, length;
6918
6919 cur_file = read_string (abfd, line_ptr, &bytes_read);
6920 line_ptr += bytes_read;
6921 dir_index =
6922 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6923 line_ptr += bytes_read;
6924 mod_time =
6925 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6926 line_ptr += bytes_read;
6927 length =
6928 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6929 line_ptr += bytes_read;
6930 add_file_name (lh, cur_file, dir_index, mod_time, length);
6931 }
c906108c
SS
6932 break;
6933 default:
4d3c2250 6934 complaint (&symfile_complaints,
e2e0b3e5 6935 _("mangled .debug_line section"));
debd256d 6936 return;
c906108c 6937 }
a8c50c1f
DJ
6938 /* Make sure that we parsed the extended op correctly. If e.g.
6939 we expected a different address size than the producer used,
6940 we may have read the wrong number of bytes. */
6941 if (line_ptr != extended_end)
6942 {
6943 complaint (&symfile_complaints,
6944 _("mangled .debug_line section"));
6945 return;
6946 }
c906108c
SS
6947 break;
6948 case DW_LNS_copy:
25e43795
DJ
6949 if (lh->num_file_names < file)
6950 dwarf2_debug_line_missing_file_complaint ();
6951 else
366da635 6952 {
25e43795
DJ
6953 lh->file_names[file - 1].included_p = 1;
6954 if (!decode_for_pst_p)
6955 {
6956 if (last_subfile != current_subfile)
6957 {
6958 if (last_subfile)
6959 record_line (last_subfile, 0, address);
6960 last_subfile = current_subfile;
6961 }
6962 record_line (current_subfile, line,
6963 check_cu_functions (address, cu));
6964 }
366da635 6965 }
c906108c
SS
6966 basic_block = 0;
6967 break;
6968 case DW_LNS_advance_pc:
debd256d 6969 address += lh->minimum_instruction_length
c906108c
SS
6970 * read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6971 line_ptr += bytes_read;
6972 break;
6973 case DW_LNS_advance_line:
6974 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
6975 line_ptr += bytes_read;
6976 break;
6977 case DW_LNS_set_file:
debd256d 6978 {
a738430d
MK
6979 /* The arrays lh->include_dirs and lh->file_names are
6980 0-based, but the directory and file name numbers in
6981 the statement program are 1-based. */
debd256d 6982 struct file_entry *fe;
4f1520fb 6983 char *dir = NULL;
a738430d 6984
debd256d
JB
6985 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
6986 line_ptr += bytes_read;
25e43795
DJ
6987 if (lh->num_file_names < file)
6988 dwarf2_debug_line_missing_file_complaint ();
6989 else
6990 {
6991 fe = &lh->file_names[file - 1];
6992 if (fe->dir_index)
6993 dir = lh->include_dirs[fe->dir_index - 1];
6994 if (!decode_for_pst_p)
6995 {
6996 last_subfile = current_subfile;
6997 dwarf2_start_subfile (fe->name, dir, comp_dir);
6998 }
6999 }
debd256d 7000 }
c906108c
SS
7001 break;
7002 case DW_LNS_set_column:
7003 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7004 line_ptr += bytes_read;
7005 break;
7006 case DW_LNS_negate_stmt:
7007 is_stmt = (!is_stmt);
7008 break;
7009 case DW_LNS_set_basic_block:
7010 basic_block = 1;
7011 break;
c2c6d25f
JM
7012 /* Add to the address register of the state machine the
7013 address increment value corresponding to special opcode
a738430d
MK
7014 255. I.e., this value is scaled by the minimum
7015 instruction length since special opcode 255 would have
7016 scaled the the increment. */
c906108c 7017 case DW_LNS_const_add_pc:
debd256d
JB
7018 address += (lh->minimum_instruction_length
7019 * ((255 - lh->opcode_base) / lh->line_range));
c906108c
SS
7020 break;
7021 case DW_LNS_fixed_advance_pc:
7022 address += read_2_bytes (abfd, line_ptr);
7023 line_ptr += 2;
7024 break;
9aa1fe7e 7025 default:
a738430d
MK
7026 {
7027 /* Unknown standard opcode, ignore it. */
9aa1fe7e 7028 int i;
a738430d 7029
debd256d 7030 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
7031 {
7032 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
7033 line_ptr += bytes_read;
7034 }
7035 }
c906108c
SS
7036 }
7037 }
7038 }
aaa75496
JB
7039
7040 if (decode_for_pst_p)
7041 {
7042 int file_index;
7043
7044 /* Now that we're done scanning the Line Header Program, we can
7045 create the psymtab of each included file. */
7046 for (file_index = 0; file_index < lh->num_file_names; file_index++)
7047 if (lh->file_names[file_index].included_p == 1)
7048 {
5b5464ad
JB
7049 const struct file_entry fe = lh->file_names [file_index];
7050 char *include_name = fe.name;
7051 char *dir_name = NULL;
7052 char *pst_filename = pst->filename;
7053
7054 if (fe.dir_index)
7055 dir_name = lh->include_dirs[fe.dir_index - 1];
7056
7057 if (!IS_ABSOLUTE_PATH (include_name) && dir_name != NULL)
7058 {
1754f103
MK
7059 include_name = concat (dir_name, SLASH_STRING,
7060 include_name, (char *)NULL);
5b5464ad
JB
7061 make_cleanup (xfree, include_name);
7062 }
7063
7064 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
7065 {
1754f103
MK
7066 pst_filename = concat (pst->dirname, SLASH_STRING,
7067 pst_filename, (char *)NULL);
5b5464ad
JB
7068 make_cleanup (xfree, pst_filename);
7069 }
7070
7071 if (strcmp (include_name, pst_filename) != 0)
aaa75496
JB
7072 dwarf2_create_include_psymtab (include_name, pst, objfile);
7073 }
7074 }
cb1df416
DJ
7075 else
7076 {
7077 /* Make sure a symtab is created for every file, even files
7078 which contain only variables (i.e. no code with associated
7079 line numbers). */
7080
7081 int i;
7082 struct file_entry *fe;
7083
7084 for (i = 0; i < lh->num_file_names; i++)
7085 {
7086 char *dir = NULL;
7087 fe = &lh->file_names[i];
7088 if (fe->dir_index)
7089 dir = lh->include_dirs[fe->dir_index - 1];
7090 dwarf2_start_subfile (fe->name, dir, comp_dir);
7091
7092 /* Skip the main file; we don't need it, and it must be
7093 allocated last, so that it will show up before the
7094 non-primary symtabs in the objfile's symtab list. */
7095 if (current_subfile == first_subfile)
7096 continue;
7097
7098 if (current_subfile->symtab == NULL)
7099 current_subfile->symtab = allocate_symtab (current_subfile->name,
7100 cu->objfile);
7101 fe->symtab = current_subfile->symtab;
7102 }
7103 }
c906108c
SS
7104}
7105
7106/* Start a subfile for DWARF. FILENAME is the name of the file and
7107 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
7108 or NULL if not known. COMP_DIR is the compilation directory for the
7109 linetable's compilation unit or NULL if not known.
c906108c
SS
7110 This routine tries to keep line numbers from identical absolute and
7111 relative file names in a common subfile.
7112
7113 Using the `list' example from the GDB testsuite, which resides in
7114 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
7115 of /srcdir/list0.c yields the following debugging information for list0.c:
7116
c5aa993b
JM
7117 DW_AT_name: /srcdir/list0.c
7118 DW_AT_comp_dir: /compdir
357e46e7 7119 files.files[0].name: list0.h
c5aa993b 7120 files.files[0].dir: /srcdir
357e46e7 7121 files.files[1].name: list0.c
c5aa993b 7122 files.files[1].dir: /srcdir
c906108c
SS
7123
7124 The line number information for list0.c has to end up in a single
4f1520fb
FR
7125 subfile, so that `break /srcdir/list0.c:1' works as expected.
7126 start_subfile will ensure that this happens provided that we pass the
7127 concatenation of files.files[1].dir and files.files[1].name as the
7128 subfile's name. */
c906108c
SS
7129
7130static void
4f1520fb 7131dwarf2_start_subfile (char *filename, char *dirname, char *comp_dir)
c906108c 7132{
4f1520fb
FR
7133 char *fullname;
7134
7135 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
7136 `start_symtab' will always pass the contents of DW_AT_comp_dir as
7137 second argument to start_subfile. To be consistent, we do the
7138 same here. In order not to lose the line information directory,
7139 we concatenate it to the filename when it makes sense.
7140 Note that the Dwarf3 standard says (speaking of filenames in line
7141 information): ``The directory index is ignored for file names
7142 that represent full path names''. Thus ignoring dirname in the
7143 `else' branch below isn't an issue. */
c906108c 7144
d5166ae1 7145 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
4f1520fb
FR
7146 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
7147 else
7148 fullname = filename;
c906108c 7149
4f1520fb
FR
7150 start_subfile (fullname, comp_dir);
7151
7152 if (fullname != filename)
7153 xfree (fullname);
c906108c
SS
7154}
7155
4c2df51b
DJ
7156static void
7157var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 7158 struct dwarf2_cu *cu)
4c2df51b 7159{
e7c27a73
DJ
7160 struct objfile *objfile = cu->objfile;
7161 struct comp_unit_head *cu_header = &cu->header;
7162
4c2df51b
DJ
7163 /* NOTE drow/2003-01-30: There used to be a comment and some special
7164 code here to turn a symbol with DW_AT_external and a
7165 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
7166 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
7167 with some versions of binutils) where shared libraries could have
7168 relocations against symbols in their debug information - the
7169 minimal symbol would have the right address, but the debug info
7170 would not. It's no longer necessary, because we will explicitly
7171 apply relocations when we read in the debug information now. */
7172
7173 /* A DW_AT_location attribute with no contents indicates that a
7174 variable has been optimized away. */
7175 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
7176 {
7177 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
7178 return;
7179 }
7180
7181 /* Handle one degenerate form of location expression specially, to
7182 preserve GDB's previous behavior when section offsets are
7183 specified. If this is just a DW_OP_addr then mark this symbol
7184 as LOC_STATIC. */
7185
7186 if (attr_form_is_block (attr)
7187 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
7188 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
7189 {
891d2f0b 7190 unsigned int dummy;
4c2df51b
DJ
7191
7192 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 7193 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
4c2df51b
DJ
7194 fixup_symbol_section (sym, objfile);
7195 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
7196 SYMBOL_SECTION (sym));
7197 SYMBOL_CLASS (sym) = LOC_STATIC;
7198 return;
7199 }
7200
7201 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
7202 expression evaluator, and use LOC_COMPUTED only when necessary
7203 (i.e. when the value of a register or memory location is
7204 referenced, or a thread-local block, etc.). Then again, it might
7205 not be worthwhile. I'm assuming that it isn't unless performance
7206 or memory numbers show me otherwise. */
7207
e7c27a73 7208 dwarf2_symbol_mark_computed (attr, sym, cu);
4c2df51b
DJ
7209 SYMBOL_CLASS (sym) = LOC_COMPUTED;
7210}
7211
c906108c
SS
7212/* Given a pointer to a DWARF information entry, figure out if we need
7213 to make a symbol table entry for it, and if so, create a new entry
7214 and return a pointer to it.
7215 If TYPE is NULL, determine symbol type from the die, otherwise
2df3850c 7216 used the passed type. */
c906108c
SS
7217
7218static struct symbol *
e7c27a73 7219new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
c906108c 7220{
e7c27a73 7221 struct objfile *objfile = cu->objfile;
c906108c
SS
7222 struct symbol *sym = NULL;
7223 char *name;
7224 struct attribute *attr = NULL;
7225 struct attribute *attr2 = NULL;
e142c38c
DJ
7226 CORE_ADDR baseaddr;
7227
7228 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 7229
5c4e30ca 7230 if (die->tag != DW_TAG_namespace)
e142c38c 7231 name = dwarf2_linkage_name (die, cu);
5c4e30ca
DC
7232 else
7233 name = TYPE_NAME (type);
7234
c906108c
SS
7235 if (name)
7236 {
4a146b47 7237 sym = (struct symbol *) obstack_alloc (&objfile->objfile_obstack,
c906108c
SS
7238 sizeof (struct symbol));
7239 OBJSTAT (objfile, n_syms++);
7240 memset (sym, 0, sizeof (struct symbol));
2de7ced7
DJ
7241
7242 /* Cache this symbol's name and the name's demangled form (if any). */
e142c38c 7243 SYMBOL_LANGUAGE (sym) = cu->language;
2de7ced7 7244 SYMBOL_SET_NAMES (sym, name, strlen (name), objfile);
c906108c
SS
7245
7246 /* Default assumptions.
c5aa993b 7247 Use the passed type or decode it from the die. */
176620f1 7248 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
875dc2fc 7249 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
7250 if (type != NULL)
7251 SYMBOL_TYPE (sym) = type;
7252 else
e7c27a73 7253 SYMBOL_TYPE (sym) = die_type (die, cu);
e142c38c 7254 attr = dwarf2_attr (die, DW_AT_decl_line, cu);
c906108c
SS
7255 if (attr)
7256 {
7257 SYMBOL_LINE (sym) = DW_UNSND (attr);
7258 }
cb1df416
DJ
7259
7260 attr = dwarf2_attr (die, DW_AT_decl_file, cu);
7261 if (attr)
7262 {
7263 int file_index = DW_UNSND (attr);
7264 if (cu->line_header == NULL
7265 || file_index > cu->line_header->num_file_names)
7266 complaint (&symfile_complaints,
7267 _("file index out of range"));
1c3d648d 7268 else if (file_index > 0)
cb1df416
DJ
7269 {
7270 struct file_entry *fe;
7271 fe = &cu->line_header->file_names[file_index - 1];
7272 SYMBOL_SYMTAB (sym) = fe->symtab;
7273 }
7274 }
7275
c906108c
SS
7276 switch (die->tag)
7277 {
7278 case DW_TAG_label:
e142c38c 7279 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
7280 if (attr)
7281 {
7282 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
7283 }
7284 SYMBOL_CLASS (sym) = LOC_LABEL;
7285 break;
7286 case DW_TAG_subprogram:
7287 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
7288 finish_block. */
7289 SYMBOL_CLASS (sym) = LOC_BLOCK;
e142c38c 7290 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c
SS
7291 if (attr2 && (DW_UNSND (attr2) != 0))
7292 {
7293 add_symbol_to_list (sym, &global_symbols);
7294 }
7295 else
7296 {
e142c38c 7297 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7298 }
7299 break;
7300 case DW_TAG_variable:
7301 /* Compilation with minimal debug info may result in variables
7302 with missing type entries. Change the misleading `void' type
7303 to something sensible. */
7304 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499
UW
7305 SYMBOL_TYPE (sym)
7306 = builtin_type (current_gdbarch)->nodebug_data_symbol;
7307
e142c38c 7308 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
7309 if (attr)
7310 {
e7c27a73 7311 dwarf2_const_value (attr, sym, cu);
e142c38c 7312 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c
SS
7313 if (attr2 && (DW_UNSND (attr2) != 0))
7314 add_symbol_to_list (sym, &global_symbols);
7315 else
e142c38c 7316 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7317 break;
7318 }
e142c38c 7319 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
7320 if (attr)
7321 {
e7c27a73 7322 var_decode_location (attr, sym, cu);
e142c38c 7323 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 7324 if (attr2 && (DW_UNSND (attr2) != 0))
4c2df51b 7325 add_symbol_to_list (sym, &global_symbols);
c906108c 7326 else
e142c38c 7327 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7328 }
7329 else
7330 {
7331 /* We do not know the address of this symbol.
c5aa993b
JM
7332 If it is an external symbol and we have type information
7333 for it, enter the symbol as a LOC_UNRESOLVED symbol.
7334 The address of the variable will then be determined from
7335 the minimal symbol table whenever the variable is
7336 referenced. */
e142c38c 7337 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 7338 if (attr2 && (DW_UNSND (attr2) != 0)
e142c38c 7339 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c
SS
7340 {
7341 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
7342 add_symbol_to_list (sym, &global_symbols);
7343 }
7344 }
7345 break;
7346 case DW_TAG_formal_parameter:
e142c38c 7347 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
7348 if (attr)
7349 {
e7c27a73 7350 var_decode_location (attr, sym, cu);
7cf6e574
DJ
7351 /* FIXME drow/2003-07-31: Is LOC_COMPUTED_ARG necessary? */
7352 if (SYMBOL_CLASS (sym) == LOC_COMPUTED)
7353 SYMBOL_CLASS (sym) = LOC_COMPUTED_ARG;
c906108c 7354 }
e142c38c 7355 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
7356 if (attr)
7357 {
e7c27a73 7358 dwarf2_const_value (attr, sym, cu);
c906108c 7359 }
e142c38c 7360 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7361 break;
7362 case DW_TAG_unspecified_parameters:
7363 /* From varargs functions; gdb doesn't seem to have any
7364 interest in this information, so just ignore it for now.
7365 (FIXME?) */
7366 break;
7367 case DW_TAG_class_type:
680b30c7 7368 case DW_TAG_interface_type:
c906108c
SS
7369 case DW_TAG_structure_type:
7370 case DW_TAG_union_type:
72019c9c 7371 case DW_TAG_set_type:
c906108c
SS
7372 case DW_TAG_enumeration_type:
7373 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 7374 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 7375
63d06c5c
DC
7376 /* Make sure that the symbol includes appropriate enclosing
7377 classes/namespaces in its name. These are calculated in
134d01f1 7378 read_structure_type, and the correct name is saved in
63d06c5c
DC
7379 the type. */
7380
987504bb
JJ
7381 if (cu->language == language_cplus
7382 || cu->language == language_java)
c906108c 7383 {
63d06c5c
DC
7384 struct type *type = SYMBOL_TYPE (sym);
7385
7386 if (TYPE_TAG_NAME (type) != NULL)
7387 {
7388 /* FIXME: carlton/2003-11-10: Should this use
7389 SYMBOL_SET_NAMES instead? (The same problem also
d8151005
DJ
7390 arises further down in this function.) */
7391 /* The type's name is already allocated along with
7392 this objfile, so we don't need to duplicate it
7393 for the symbol. */
7394 SYMBOL_LINKAGE_NAME (sym) = TYPE_TAG_NAME (type);
63d06c5c 7395 }
c906108c 7396 }
63d06c5c
DC
7397
7398 {
987504bb 7399 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
7400 really ever be static objects: otherwise, if you try
7401 to, say, break of a class's method and you're in a file
7402 which doesn't mention that class, it won't work unless
7403 the check for all static symbols in lookup_symbol_aux
7404 saves you. See the OtherFileClass tests in
7405 gdb.c++/namespace.exp. */
7406
7407 struct pending **list_to_add;
7408
e142c38c 7409 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
7410 && (cu->language == language_cplus
7411 || cu->language == language_java)
e142c38c 7412 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
7413
7414 add_symbol_to_list (sym, list_to_add);
7415
7416 /* The semantics of C++ state that "struct foo { ... }" also
987504bb
JJ
7417 defines a typedef for "foo". A Java class declaration also
7418 defines a typedef for the class. Synthesize a typedef symbol
7419 so that "ptype foo" works as expected. */
7420 if (cu->language == language_cplus
8c6860bb
JB
7421 || cu->language == language_java
7422 || cu->language == language_ada)
63d06c5c
DC
7423 {
7424 struct symbol *typedef_sym = (struct symbol *)
4a146b47 7425 obstack_alloc (&objfile->objfile_obstack,
63d06c5c
DC
7426 sizeof (struct symbol));
7427 *typedef_sym = *sym;
7428 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
d8151005
DJ
7429 /* The symbol's name is already allocated along with
7430 this objfile, so we don't need to duplicate it for
7431 the type. */
63d06c5c 7432 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
77ef991d 7433 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
63d06c5c
DC
7434 add_symbol_to_list (typedef_sym, list_to_add);
7435 }
7436 }
c906108c
SS
7437 break;
7438 case DW_TAG_typedef:
63d06c5c
DC
7439 if (processing_has_namespace_info
7440 && processing_current_prefix[0] != '\0')
7441 {
987504bb
JJ
7442 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7443 processing_current_prefix,
7444 name, cu);
63d06c5c
DC
7445 }
7446 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7447 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 7448 add_symbol_to_list (sym, cu->list_in_scope);
63d06c5c 7449 break;
c906108c 7450 case DW_TAG_base_type:
a02abb62 7451 case DW_TAG_subrange_type:
c906108c 7452 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 7453 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e142c38c 7454 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
7455 break;
7456 case DW_TAG_enumerator:
63d06c5c
DC
7457 if (processing_has_namespace_info
7458 && processing_current_prefix[0] != '\0')
7459 {
987504bb
JJ
7460 SYMBOL_LINKAGE_NAME (sym) = typename_concat (&objfile->objfile_obstack,
7461 processing_current_prefix,
7462 name, cu);
63d06c5c 7463 }
e142c38c 7464 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
7465 if (attr)
7466 {
e7c27a73 7467 dwarf2_const_value (attr, sym, cu);
c906108c 7468 }
63d06c5c
DC
7469 {
7470 /* NOTE: carlton/2003-11-10: See comment above in the
7471 DW_TAG_class_type, etc. block. */
7472
7473 struct pending **list_to_add;
7474
e142c38c 7475 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
7476 && (cu->language == language_cplus
7477 || cu->language == language_java)
e142c38c 7478 ? &global_symbols : cu->list_in_scope);
63d06c5c
DC
7479
7480 add_symbol_to_list (sym, list_to_add);
7481 }
c906108c 7482 break;
5c4e30ca
DC
7483 case DW_TAG_namespace:
7484 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
7485 add_symbol_to_list (sym, &global_symbols);
7486 break;
c906108c
SS
7487 default:
7488 /* Not a tag we recognize. Hopefully we aren't processing
7489 trash data, but since we must specifically ignore things
7490 we don't recognize, there is nothing else we should do at
7491 this point. */
e2e0b3e5 7492 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 7493 dwarf_tag_name (die->tag));
c906108c
SS
7494 break;
7495 }
7496 }
7497 return (sym);
7498}
7499
7500/* Copy constant value from an attribute to a symbol. */
7501
7502static void
107d2387 7503dwarf2_const_value (struct attribute *attr, struct symbol *sym,
e7c27a73 7504 struct dwarf2_cu *cu)
c906108c 7505{
e7c27a73
DJ
7506 struct objfile *objfile = cu->objfile;
7507 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
7508 struct dwarf_block *blk;
7509
7510 switch (attr->form)
7511 {
7512 case DW_FORM_addr:
107d2387 7513 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != cu_header->addr_size)
22abf04a 7514 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
4d3c2250
KB
7515 cu_header->addr_size,
7516 TYPE_LENGTH (SYMBOL_TYPE
7517 (sym)));
4e38b386 7518 SYMBOL_VALUE_BYTES (sym) =
4a146b47 7519 obstack_alloc (&objfile->objfile_obstack, cu_header->addr_size);
fbd9dcd3
AC
7520 /* NOTE: cagney/2003-05-09: In-lined store_address call with
7521 it's body - store_unsigned_integer. */
7522 store_unsigned_integer (SYMBOL_VALUE_BYTES (sym), cu_header->addr_size,
7523 DW_ADDR (attr));
c906108c
SS
7524 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7525 break;
7526 case DW_FORM_block1:
7527 case DW_FORM_block2:
7528 case DW_FORM_block4:
7529 case DW_FORM_block:
7530 blk = DW_BLOCK (attr);
7531 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) != blk->size)
22abf04a 7532 dwarf2_const_value_length_mismatch_complaint (DEPRECATED_SYMBOL_NAME (sym),
4d3c2250
KB
7533 blk->size,
7534 TYPE_LENGTH (SYMBOL_TYPE
7535 (sym)));
4e38b386 7536 SYMBOL_VALUE_BYTES (sym) =
4a146b47 7537 obstack_alloc (&objfile->objfile_obstack, blk->size);
c906108c
SS
7538 memcpy (SYMBOL_VALUE_BYTES (sym), blk->data, blk->size);
7539 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
7540 break;
2df3850c
JM
7541
7542 /* The DW_AT_const_value attributes are supposed to carry the
7543 symbol's value "represented as it would be on the target
7544 architecture." By the time we get here, it's already been
7545 converted to host endianness, so we just need to sign- or
7546 zero-extend it as appropriate. */
7547 case DW_FORM_data1:
7548 dwarf2_const_value_data (attr, sym, 8);
7549 break;
c906108c 7550 case DW_FORM_data2:
2df3850c
JM
7551 dwarf2_const_value_data (attr, sym, 16);
7552 break;
c906108c 7553 case DW_FORM_data4:
2df3850c
JM
7554 dwarf2_const_value_data (attr, sym, 32);
7555 break;
c906108c 7556 case DW_FORM_data8:
2df3850c
JM
7557 dwarf2_const_value_data (attr, sym, 64);
7558 break;
7559
c906108c 7560 case DW_FORM_sdata:
2df3850c
JM
7561 SYMBOL_VALUE (sym) = DW_SND (attr);
7562 SYMBOL_CLASS (sym) = LOC_CONST;
7563 break;
7564
c906108c
SS
7565 case DW_FORM_udata:
7566 SYMBOL_VALUE (sym) = DW_UNSND (attr);
7567 SYMBOL_CLASS (sym) = LOC_CONST;
7568 break;
2df3850c 7569
c906108c 7570 default:
4d3c2250 7571 complaint (&symfile_complaints,
e2e0b3e5 7572 _("unsupported const value attribute form: '%s'"),
4d3c2250 7573 dwarf_form_name (attr->form));
c906108c
SS
7574 SYMBOL_VALUE (sym) = 0;
7575 SYMBOL_CLASS (sym) = LOC_CONST;
7576 break;
7577 }
7578}
7579
2df3850c
JM
7580
7581/* Given an attr with a DW_FORM_dataN value in host byte order, sign-
7582 or zero-extend it as appropriate for the symbol's type. */
7583static void
7584dwarf2_const_value_data (struct attribute *attr,
7585 struct symbol *sym,
7586 int bits)
7587{
7588 LONGEST l = DW_UNSND (attr);
7589
7590 if (bits < sizeof (l) * 8)
7591 {
7592 if (TYPE_UNSIGNED (SYMBOL_TYPE (sym)))
7593 l &= ((LONGEST) 1 << bits) - 1;
7594 else
bf9198f1 7595 l = (l << (sizeof (l) * 8 - bits)) >> (sizeof (l) * 8 - bits);
2df3850c
JM
7596 }
7597
7598 SYMBOL_VALUE (sym) = l;
7599 SYMBOL_CLASS (sym) = LOC_CONST;
7600}
7601
7602
c906108c
SS
7603/* Return the type of the die in question using its DW_AT_type attribute. */
7604
7605static struct type *
e7c27a73 7606die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7607{
7608 struct type *type;
7609 struct attribute *type_attr;
7610 struct die_info *type_die;
c906108c 7611
e142c38c 7612 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
7613 if (!type_attr)
7614 {
7615 /* A missing DW_AT_type represents a void type. */
6ccb9162 7616 return builtin_type (current_gdbarch)->builtin_void;
c906108c
SS
7617 }
7618 else
10b3939b
DJ
7619 type_die = follow_die_ref (die, type_attr, cu);
7620
e7c27a73 7621 type = tag_type_to_type (type_die, cu);
c906108c
SS
7622 if (!type)
7623 {
7624 dump_die (type_die);
8a3fe4f8 7625 error (_("Dwarf Error: Problem turning type die at offset into gdb type [in module %s]"),
e7c27a73 7626 cu->objfile->name);
c906108c
SS
7627 }
7628 return type;
7629}
7630
7631/* Return the containing type of the die in question using its
7632 DW_AT_containing_type attribute. */
7633
7634static struct type *
e7c27a73 7635die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7636{
7637 struct type *type = NULL;
7638 struct attribute *type_attr;
7639 struct die_info *type_die = NULL;
c906108c 7640
e142c38c 7641 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
c906108c
SS
7642 if (type_attr)
7643 {
10b3939b 7644 type_die = follow_die_ref (die, type_attr, cu);
e7c27a73 7645 type = tag_type_to_type (type_die, cu);
c906108c
SS
7646 }
7647 if (!type)
7648 {
7649 if (type_die)
7650 dump_die (type_die);
8a3fe4f8 7651 error (_("Dwarf Error: Problem turning containing type into gdb type [in module %s]"),
e7c27a73 7652 cu->objfile->name);
c906108c
SS
7653 }
7654 return type;
7655}
7656
c906108c 7657static struct type *
e7c27a73 7658tag_type_to_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7659{
7660 if (die->type)
7661 {
7662 return die->type;
7663 }
7664 else
7665 {
e7c27a73 7666 read_type_die (die, cu);
c906108c
SS
7667 if (!die->type)
7668 {
7669 dump_die (die);
8a3fe4f8 7670 error (_("Dwarf Error: Cannot find type of die [in module %s]"),
e7c27a73 7671 cu->objfile->name);
c906108c
SS
7672 }
7673 return die->type;
7674 }
7675}
7676
7677static void
e7c27a73 7678read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7679{
e142c38c 7680 char *prefix = determine_prefix (die, cu);
63d06c5c
DC
7681 const char *old_prefix = processing_current_prefix;
7682 struct cleanup *back_to = make_cleanup (xfree, prefix);
7683 processing_current_prefix = prefix;
7684
c906108c
SS
7685 switch (die->tag)
7686 {
7687 case DW_TAG_class_type:
680b30c7 7688 case DW_TAG_interface_type:
c906108c
SS
7689 case DW_TAG_structure_type:
7690 case DW_TAG_union_type:
134d01f1 7691 read_structure_type (die, cu);
c906108c
SS
7692 break;
7693 case DW_TAG_enumeration_type:
134d01f1 7694 read_enumeration_type (die, cu);
c906108c
SS
7695 break;
7696 case DW_TAG_subprogram:
7697 case DW_TAG_subroutine_type:
e7c27a73 7698 read_subroutine_type (die, cu);
c906108c
SS
7699 break;
7700 case DW_TAG_array_type:
e7c27a73 7701 read_array_type (die, cu);
c906108c 7702 break;
72019c9c
GM
7703 case DW_TAG_set_type:
7704 read_set_type (die, cu);
7705 break;
c906108c 7706 case DW_TAG_pointer_type:
e7c27a73 7707 read_tag_pointer_type (die, cu);
c906108c
SS
7708 break;
7709 case DW_TAG_ptr_to_member_type:
e7c27a73 7710 read_tag_ptr_to_member_type (die, cu);
c906108c
SS
7711 break;
7712 case DW_TAG_reference_type:
e7c27a73 7713 read_tag_reference_type (die, cu);
c906108c
SS
7714 break;
7715 case DW_TAG_const_type:
e7c27a73 7716 read_tag_const_type (die, cu);
c906108c
SS
7717 break;
7718 case DW_TAG_volatile_type:
e7c27a73 7719 read_tag_volatile_type (die, cu);
c906108c
SS
7720 break;
7721 case DW_TAG_string_type:
e7c27a73 7722 read_tag_string_type (die, cu);
c906108c
SS
7723 break;
7724 case DW_TAG_typedef:
e7c27a73 7725 read_typedef (die, cu);
c906108c 7726 break;
a02abb62
JB
7727 case DW_TAG_subrange_type:
7728 read_subrange_type (die, cu);
7729 break;
c906108c 7730 case DW_TAG_base_type:
e7c27a73 7731 read_base_type (die, cu);
c906108c 7732 break;
81a17f79
JB
7733 case DW_TAG_unspecified_type:
7734 read_unspecified_type (die, cu);
7735 break;
c906108c 7736 default:
a1f5b845 7737 complaint (&symfile_complaints, _("unexpected tag in read_type_die: '%s'"),
4d3c2250 7738 dwarf_tag_name (die->tag));
c906108c
SS
7739 break;
7740 }
63d06c5c
DC
7741
7742 processing_current_prefix = old_prefix;
7743 do_cleanups (back_to);
7744}
7745
fdde2d81
DC
7746/* Return the name of the namespace/class that DIE is defined within,
7747 or "" if we can't tell. The caller should xfree the result. */
7748
7749/* NOTE: carlton/2004-01-23: See read_func_scope (and the comment
7750 therein) for an example of how to use this function to deal with
7751 DW_AT_specification. */
7752
7753static char *
e142c38c 7754determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c
DC
7755{
7756 struct die_info *parent;
7757
987504bb
JJ
7758 if (cu->language != language_cplus
7759 && cu->language != language_java)
63d06c5c
DC
7760 return NULL;
7761
7762 parent = die->parent;
7763
7764 if (parent == NULL)
7765 {
8176b9b8 7766 return xstrdup ("");
63d06c5c
DC
7767 }
7768 else
7769 {
63d06c5c
DC
7770 switch (parent->tag) {
7771 case DW_TAG_namespace:
7772 {
8176b9b8
DC
7773 /* FIXME: carlton/2004-03-05: Should I follow extension dies
7774 before doing this check? */
7775 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
7776 {
7777 return xstrdup (TYPE_TAG_NAME (parent->type));
7778 }
7779 else
7780 {
7781 int dummy;
7782 char *parent_prefix = determine_prefix (parent, cu);
987504bb 7783 char *retval = typename_concat (NULL, parent_prefix,
8176b9b8 7784 namespace_name (parent, &dummy,
987504bb
JJ
7785 cu),
7786 cu);
8176b9b8
DC
7787 xfree (parent_prefix);
7788 return retval;
7789 }
63d06c5c
DC
7790 }
7791 break;
7792 case DW_TAG_class_type:
680b30c7 7793 case DW_TAG_interface_type:
63d06c5c
DC
7794 case DW_TAG_structure_type:
7795 {
8176b9b8 7796 if (parent->type != NULL && TYPE_TAG_NAME (parent->type) != NULL)
63d06c5c 7797 {
8176b9b8 7798 return xstrdup (TYPE_TAG_NAME (parent->type));
63d06c5c
DC
7799 }
7800 else
8176b9b8
DC
7801 {
7802 const char *old_prefix = processing_current_prefix;
7803 char *new_prefix = determine_prefix (parent, cu);
7804 char *retval;
7805
7806 processing_current_prefix = new_prefix;
7807 retval = determine_class_name (parent, cu);
7808 processing_current_prefix = old_prefix;
7809
7810 xfree (new_prefix);
7811 return retval;
7812 }
63d06c5c 7813 }
63d06c5c 7814 default:
8176b9b8 7815 return determine_prefix (parent, cu);
63d06c5c 7816 }
63d06c5c
DC
7817 }
7818}
7819
987504bb
JJ
7820/* Return a newly-allocated string formed by concatenating PREFIX and
7821 SUFFIX with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
7822 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null,
7823 perform an obconcat, otherwise allocate storage for the result. The CU argument
7824 is used to determine the language and hence, the appropriate separator. */
7825
7826#define MAX_SEP_LEN 2 /* sizeof ("::") */
63d06c5c
DC
7827
7828static char *
987504bb
JJ
7829typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
7830 struct dwarf2_cu *cu)
63d06c5c 7831{
987504bb 7832 char *sep;
63d06c5c 7833
987504bb
JJ
7834 if (suffix == NULL || suffix[0] == '\0' || prefix == NULL || prefix[0] == '\0')
7835 sep = "";
7836 else if (cu->language == language_java)
7837 sep = ".";
7838 else
7839 sep = "::";
63d06c5c 7840
987504bb
JJ
7841 if (obs == NULL)
7842 {
7843 char *retval = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
7844 retval[0] = '\0';
7845
7846 if (prefix)
7847 {
7848 strcpy (retval, prefix);
7849 strcat (retval, sep);
7850 }
7851 if (suffix)
7852 strcat (retval, suffix);
7853
63d06c5c
DC
7854 return retval;
7855 }
987504bb
JJ
7856 else
7857 {
7858 /* We have an obstack. */
7859 return obconcat (obs, prefix, sep, suffix);
7860 }
63d06c5c
DC
7861}
7862
c906108c
SS
7863#if 0
7864struct die_info *
fba45db2 7865copy_die (struct die_info *old_die)
c906108c
SS
7866{
7867 struct die_info *new_die;
7868 int i, num_attrs;
7869
7870 new_die = (struct die_info *) xmalloc (sizeof (struct die_info));
7871 memset (new_die, 0, sizeof (struct die_info));
7872
7873 new_die->tag = old_die->tag;
7874 new_die->has_children = old_die->has_children;
7875 new_die->abbrev = old_die->abbrev;
7876 new_die->offset = old_die->offset;
7877 new_die->type = NULL;
7878
7879 num_attrs = old_die->num_attrs;
7880 new_die->num_attrs = num_attrs;
7881 new_die->attrs = (struct attribute *)
7882 xmalloc (num_attrs * sizeof (struct attribute));
7883
7884 for (i = 0; i < old_die->num_attrs; ++i)
7885 {
7886 new_die->attrs[i].name = old_die->attrs[i].name;
7887 new_die->attrs[i].form = old_die->attrs[i].form;
7888 new_die->attrs[i].u.addr = old_die->attrs[i].u.addr;
7889 }
7890
7891 new_die->next = NULL;
7892 return new_die;
7893}
7894#endif
7895
7896/* Return sibling of die, NULL if no sibling. */
7897
f9aca02d 7898static struct die_info *
fba45db2 7899sibling_die (struct die_info *die)
c906108c 7900{
639d11d3 7901 return die->sibling;
c906108c
SS
7902}
7903
7904/* Get linkage name of a die, return NULL if not found. */
7905
7906static char *
e142c38c 7907dwarf2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7908{
7909 struct attribute *attr;
7910
e142c38c 7911 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
c906108c
SS
7912 if (attr && DW_STRING (attr))
7913 return DW_STRING (attr);
e142c38c 7914 attr = dwarf2_attr (die, DW_AT_name, cu);
c906108c
SS
7915 if (attr && DW_STRING (attr))
7916 return DW_STRING (attr);
7917 return NULL;
7918}
7919
9219021c
DC
7920/* Get name of a die, return NULL if not found. */
7921
7922static char *
e142c38c 7923dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
7924{
7925 struct attribute *attr;
7926
e142c38c 7927 attr = dwarf2_attr (die, DW_AT_name, cu);
9219021c
DC
7928 if (attr && DW_STRING (attr))
7929 return DW_STRING (attr);
7930 return NULL;
7931}
7932
7933/* Return the die that this die in an extension of, or NULL if there
7934 is none. */
7935
7936static struct die_info *
e142c38c 7937dwarf2_extension (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
7938{
7939 struct attribute *attr;
9219021c 7940
e142c38c 7941 attr = dwarf2_attr (die, DW_AT_extension, cu);
9219021c
DC
7942 if (attr == NULL)
7943 return NULL;
7944
10b3939b 7945 return follow_die_ref (die, attr, cu);
9219021c
DC
7946}
7947
c906108c
SS
7948/* Convert a DIE tag into its string name. */
7949
7950static char *
aa1ee363 7951dwarf_tag_name (unsigned tag)
c906108c
SS
7952{
7953 switch (tag)
7954 {
7955 case DW_TAG_padding:
7956 return "DW_TAG_padding";
7957 case DW_TAG_array_type:
7958 return "DW_TAG_array_type";
7959 case DW_TAG_class_type:
7960 return "DW_TAG_class_type";
7961 case DW_TAG_entry_point:
7962 return "DW_TAG_entry_point";
7963 case DW_TAG_enumeration_type:
7964 return "DW_TAG_enumeration_type";
7965 case DW_TAG_formal_parameter:
7966 return "DW_TAG_formal_parameter";
7967 case DW_TAG_imported_declaration:
7968 return "DW_TAG_imported_declaration";
7969 case DW_TAG_label:
7970 return "DW_TAG_label";
7971 case DW_TAG_lexical_block:
7972 return "DW_TAG_lexical_block";
7973 case DW_TAG_member:
7974 return "DW_TAG_member";
7975 case DW_TAG_pointer_type:
7976 return "DW_TAG_pointer_type";
7977 case DW_TAG_reference_type:
7978 return "DW_TAG_reference_type";
7979 case DW_TAG_compile_unit:
7980 return "DW_TAG_compile_unit";
7981 case DW_TAG_string_type:
7982 return "DW_TAG_string_type";
7983 case DW_TAG_structure_type:
7984 return "DW_TAG_structure_type";
7985 case DW_TAG_subroutine_type:
7986 return "DW_TAG_subroutine_type";
7987 case DW_TAG_typedef:
7988 return "DW_TAG_typedef";
7989 case DW_TAG_union_type:
7990 return "DW_TAG_union_type";
7991 case DW_TAG_unspecified_parameters:
7992 return "DW_TAG_unspecified_parameters";
7993 case DW_TAG_variant:
7994 return "DW_TAG_variant";
7995 case DW_TAG_common_block:
7996 return "DW_TAG_common_block";
7997 case DW_TAG_common_inclusion:
7998 return "DW_TAG_common_inclusion";
7999 case DW_TAG_inheritance:
8000 return "DW_TAG_inheritance";
8001 case DW_TAG_inlined_subroutine:
8002 return "DW_TAG_inlined_subroutine";
8003 case DW_TAG_module:
8004 return "DW_TAG_module";
8005 case DW_TAG_ptr_to_member_type:
8006 return "DW_TAG_ptr_to_member_type";
8007 case DW_TAG_set_type:
8008 return "DW_TAG_set_type";
8009 case DW_TAG_subrange_type:
8010 return "DW_TAG_subrange_type";
8011 case DW_TAG_with_stmt:
8012 return "DW_TAG_with_stmt";
8013 case DW_TAG_access_declaration:
8014 return "DW_TAG_access_declaration";
8015 case DW_TAG_base_type:
8016 return "DW_TAG_base_type";
8017 case DW_TAG_catch_block:
8018 return "DW_TAG_catch_block";
8019 case DW_TAG_const_type:
8020 return "DW_TAG_const_type";
8021 case DW_TAG_constant:
8022 return "DW_TAG_constant";
8023 case DW_TAG_enumerator:
8024 return "DW_TAG_enumerator";
8025 case DW_TAG_file_type:
8026 return "DW_TAG_file_type";
8027 case DW_TAG_friend:
8028 return "DW_TAG_friend";
8029 case DW_TAG_namelist:
8030 return "DW_TAG_namelist";
8031 case DW_TAG_namelist_item:
8032 return "DW_TAG_namelist_item";
8033 case DW_TAG_packed_type:
8034 return "DW_TAG_packed_type";
8035 case DW_TAG_subprogram:
8036 return "DW_TAG_subprogram";
8037 case DW_TAG_template_type_param:
8038 return "DW_TAG_template_type_param";
8039 case DW_TAG_template_value_param:
8040 return "DW_TAG_template_value_param";
8041 case DW_TAG_thrown_type:
8042 return "DW_TAG_thrown_type";
8043 case DW_TAG_try_block:
8044 return "DW_TAG_try_block";
8045 case DW_TAG_variant_part:
8046 return "DW_TAG_variant_part";
8047 case DW_TAG_variable:
8048 return "DW_TAG_variable";
8049 case DW_TAG_volatile_type:
8050 return "DW_TAG_volatile_type";
d9fa45fe
DC
8051 case DW_TAG_dwarf_procedure:
8052 return "DW_TAG_dwarf_procedure";
8053 case DW_TAG_restrict_type:
8054 return "DW_TAG_restrict_type";
8055 case DW_TAG_interface_type:
8056 return "DW_TAG_interface_type";
8057 case DW_TAG_namespace:
8058 return "DW_TAG_namespace";
8059 case DW_TAG_imported_module:
8060 return "DW_TAG_imported_module";
8061 case DW_TAG_unspecified_type:
8062 return "DW_TAG_unspecified_type";
8063 case DW_TAG_partial_unit:
8064 return "DW_TAG_partial_unit";
8065 case DW_TAG_imported_unit:
8066 return "DW_TAG_imported_unit";
b7619582
GF
8067 case DW_TAG_condition:
8068 return "DW_TAG_condition";
8069 case DW_TAG_shared_type:
8070 return "DW_TAG_shared_type";
c906108c
SS
8071 case DW_TAG_MIPS_loop:
8072 return "DW_TAG_MIPS_loop";
b7619582
GF
8073 case DW_TAG_HP_array_descriptor:
8074 return "DW_TAG_HP_array_descriptor";
c906108c
SS
8075 case DW_TAG_format_label:
8076 return "DW_TAG_format_label";
8077 case DW_TAG_function_template:
8078 return "DW_TAG_function_template";
8079 case DW_TAG_class_template:
8080 return "DW_TAG_class_template";
b7619582
GF
8081 case DW_TAG_GNU_BINCL:
8082 return "DW_TAG_GNU_BINCL";
8083 case DW_TAG_GNU_EINCL:
8084 return "DW_TAG_GNU_EINCL";
8085 case DW_TAG_upc_shared_type:
8086 return "DW_TAG_upc_shared_type";
8087 case DW_TAG_upc_strict_type:
8088 return "DW_TAG_upc_strict_type";
8089 case DW_TAG_upc_relaxed_type:
8090 return "DW_TAG_upc_relaxed_type";
8091 case DW_TAG_PGI_kanji_type:
8092 return "DW_TAG_PGI_kanji_type";
8093 case DW_TAG_PGI_interface_block:
8094 return "DW_TAG_PGI_interface_block";
c906108c
SS
8095 default:
8096 return "DW_TAG_<unknown>";
8097 }
8098}
8099
8100/* Convert a DWARF attribute code into its string name. */
8101
8102static char *
aa1ee363 8103dwarf_attr_name (unsigned attr)
c906108c
SS
8104{
8105 switch (attr)
8106 {
8107 case DW_AT_sibling:
8108 return "DW_AT_sibling";
8109 case DW_AT_location:
8110 return "DW_AT_location";
8111 case DW_AT_name:
8112 return "DW_AT_name";
8113 case DW_AT_ordering:
8114 return "DW_AT_ordering";
8115 case DW_AT_subscr_data:
8116 return "DW_AT_subscr_data";
8117 case DW_AT_byte_size:
8118 return "DW_AT_byte_size";
8119 case DW_AT_bit_offset:
8120 return "DW_AT_bit_offset";
8121 case DW_AT_bit_size:
8122 return "DW_AT_bit_size";
8123 case DW_AT_element_list:
8124 return "DW_AT_element_list";
8125 case DW_AT_stmt_list:
8126 return "DW_AT_stmt_list";
8127 case DW_AT_low_pc:
8128 return "DW_AT_low_pc";
8129 case DW_AT_high_pc:
8130 return "DW_AT_high_pc";
8131 case DW_AT_language:
8132 return "DW_AT_language";
8133 case DW_AT_member:
8134 return "DW_AT_member";
8135 case DW_AT_discr:
8136 return "DW_AT_discr";
8137 case DW_AT_discr_value:
8138 return "DW_AT_discr_value";
8139 case DW_AT_visibility:
8140 return "DW_AT_visibility";
8141 case DW_AT_import:
8142 return "DW_AT_import";
8143 case DW_AT_string_length:
8144 return "DW_AT_string_length";
8145 case DW_AT_common_reference:
8146 return "DW_AT_common_reference";
8147 case DW_AT_comp_dir:
8148 return "DW_AT_comp_dir";
8149 case DW_AT_const_value:
8150 return "DW_AT_const_value";
8151 case DW_AT_containing_type:
8152 return "DW_AT_containing_type";
8153 case DW_AT_default_value:
8154 return "DW_AT_default_value";
8155 case DW_AT_inline:
8156 return "DW_AT_inline";
8157 case DW_AT_is_optional:
8158 return "DW_AT_is_optional";
8159 case DW_AT_lower_bound:
8160 return "DW_AT_lower_bound";
8161 case DW_AT_producer:
8162 return "DW_AT_producer";
8163 case DW_AT_prototyped:
8164 return "DW_AT_prototyped";
8165 case DW_AT_return_addr:
8166 return "DW_AT_return_addr";
8167 case DW_AT_start_scope:
8168 return "DW_AT_start_scope";
09fa0d7c
JK
8169 case DW_AT_bit_stride:
8170 return "DW_AT_bit_stride";
c906108c
SS
8171 case DW_AT_upper_bound:
8172 return "DW_AT_upper_bound";
8173 case DW_AT_abstract_origin:
8174 return "DW_AT_abstract_origin";
8175 case DW_AT_accessibility:
8176 return "DW_AT_accessibility";
8177 case DW_AT_address_class:
8178 return "DW_AT_address_class";
8179 case DW_AT_artificial:
8180 return "DW_AT_artificial";
8181 case DW_AT_base_types:
8182 return "DW_AT_base_types";
8183 case DW_AT_calling_convention:
8184 return "DW_AT_calling_convention";
8185 case DW_AT_count:
8186 return "DW_AT_count";
8187 case DW_AT_data_member_location:
8188 return "DW_AT_data_member_location";
8189 case DW_AT_decl_column:
8190 return "DW_AT_decl_column";
8191 case DW_AT_decl_file:
8192 return "DW_AT_decl_file";
8193 case DW_AT_decl_line:
8194 return "DW_AT_decl_line";
8195 case DW_AT_declaration:
8196 return "DW_AT_declaration";
8197 case DW_AT_discr_list:
8198 return "DW_AT_discr_list";
8199 case DW_AT_encoding:
8200 return "DW_AT_encoding";
8201 case DW_AT_external:
8202 return "DW_AT_external";
8203 case DW_AT_frame_base:
8204 return "DW_AT_frame_base";
8205 case DW_AT_friend:
8206 return "DW_AT_friend";
8207 case DW_AT_identifier_case:
8208 return "DW_AT_identifier_case";
8209 case DW_AT_macro_info:
8210 return "DW_AT_macro_info";
8211 case DW_AT_namelist_items:
8212 return "DW_AT_namelist_items";
8213 case DW_AT_priority:
8214 return "DW_AT_priority";
8215 case DW_AT_segment:
8216 return "DW_AT_segment";
8217 case DW_AT_specification:
8218 return "DW_AT_specification";
8219 case DW_AT_static_link:
8220 return "DW_AT_static_link";
8221 case DW_AT_type:
8222 return "DW_AT_type";
8223 case DW_AT_use_location:
8224 return "DW_AT_use_location";
8225 case DW_AT_variable_parameter:
8226 return "DW_AT_variable_parameter";
8227 case DW_AT_virtuality:
8228 return "DW_AT_virtuality";
8229 case DW_AT_vtable_elem_location:
8230 return "DW_AT_vtable_elem_location";
b7619582 8231 /* DWARF 3 values. */
d9fa45fe
DC
8232 case DW_AT_allocated:
8233 return "DW_AT_allocated";
8234 case DW_AT_associated:
8235 return "DW_AT_associated";
8236 case DW_AT_data_location:
8237 return "DW_AT_data_location";
09fa0d7c
JK
8238 case DW_AT_byte_stride:
8239 return "DW_AT_byte_stride";
d9fa45fe
DC
8240 case DW_AT_entry_pc:
8241 return "DW_AT_entry_pc";
8242 case DW_AT_use_UTF8:
8243 return "DW_AT_use_UTF8";
8244 case DW_AT_extension:
8245 return "DW_AT_extension";
8246 case DW_AT_ranges:
8247 return "DW_AT_ranges";
8248 case DW_AT_trampoline:
8249 return "DW_AT_trampoline";
8250 case DW_AT_call_column:
8251 return "DW_AT_call_column";
8252 case DW_AT_call_file:
8253 return "DW_AT_call_file";
8254 case DW_AT_call_line:
8255 return "DW_AT_call_line";
b7619582
GF
8256 case DW_AT_description:
8257 return "DW_AT_description";
8258 case DW_AT_binary_scale:
8259 return "DW_AT_binary_scale";
8260 case DW_AT_decimal_scale:
8261 return "DW_AT_decimal_scale";
8262 case DW_AT_small:
8263 return "DW_AT_small";
8264 case DW_AT_decimal_sign:
8265 return "DW_AT_decimal_sign";
8266 case DW_AT_digit_count:
8267 return "DW_AT_digit_count";
8268 case DW_AT_picture_string:
8269 return "DW_AT_picture_string";
8270 case DW_AT_mutable:
8271 return "DW_AT_mutable";
8272 case DW_AT_threads_scaled:
8273 return "DW_AT_threads_scaled";
8274 case DW_AT_explicit:
8275 return "DW_AT_explicit";
8276 case DW_AT_object_pointer:
8277 return "DW_AT_object_pointer";
8278 case DW_AT_endianity:
8279 return "DW_AT_endianity";
8280 case DW_AT_elemental:
8281 return "DW_AT_elemental";
8282 case DW_AT_pure:
8283 return "DW_AT_pure";
8284 case DW_AT_recursive:
8285 return "DW_AT_recursive";
c906108c 8286#ifdef MIPS
b7619582 8287 /* SGI/MIPS extensions. */
c906108c
SS
8288 case DW_AT_MIPS_fde:
8289 return "DW_AT_MIPS_fde";
8290 case DW_AT_MIPS_loop_begin:
8291 return "DW_AT_MIPS_loop_begin";
8292 case DW_AT_MIPS_tail_loop_begin:
8293 return "DW_AT_MIPS_tail_loop_begin";
8294 case DW_AT_MIPS_epilog_begin:
8295 return "DW_AT_MIPS_epilog_begin";
8296 case DW_AT_MIPS_loop_unroll_factor:
8297 return "DW_AT_MIPS_loop_unroll_factor";
8298 case DW_AT_MIPS_software_pipeline_depth:
8299 return "DW_AT_MIPS_software_pipeline_depth";
8300 case DW_AT_MIPS_linkage_name:
8301 return "DW_AT_MIPS_linkage_name";
b7619582
GF
8302 case DW_AT_MIPS_stride:
8303 return "DW_AT_MIPS_stride";
8304 case DW_AT_MIPS_abstract_name:
8305 return "DW_AT_MIPS_abstract_name";
8306 case DW_AT_MIPS_clone_origin:
8307 return "DW_AT_MIPS_clone_origin";
8308 case DW_AT_MIPS_has_inlines:
8309 return "DW_AT_MIPS_has_inlines";
8310#endif
8311 /* HP extensions. */
8312 case DW_AT_HP_block_index:
8313 return "DW_AT_HP_block_index";
8314 case DW_AT_HP_unmodifiable:
8315 return "DW_AT_HP_unmodifiable";
8316 case DW_AT_HP_actuals_stmt_list:
8317 return "DW_AT_HP_actuals_stmt_list";
8318 case DW_AT_HP_proc_per_section:
8319 return "DW_AT_HP_proc_per_section";
8320 case DW_AT_HP_raw_data_ptr:
8321 return "DW_AT_HP_raw_data_ptr";
8322 case DW_AT_HP_pass_by_reference:
8323 return "DW_AT_HP_pass_by_reference";
8324 case DW_AT_HP_opt_level:
8325 return "DW_AT_HP_opt_level";
8326 case DW_AT_HP_prof_version_id:
8327 return "DW_AT_HP_prof_version_id";
8328 case DW_AT_HP_opt_flags:
8329 return "DW_AT_HP_opt_flags";
8330 case DW_AT_HP_cold_region_low_pc:
8331 return "DW_AT_HP_cold_region_low_pc";
8332 case DW_AT_HP_cold_region_high_pc:
8333 return "DW_AT_HP_cold_region_high_pc";
8334 case DW_AT_HP_all_variables_modifiable:
8335 return "DW_AT_HP_all_variables_modifiable";
8336 case DW_AT_HP_linkage_name:
8337 return "DW_AT_HP_linkage_name";
8338 case DW_AT_HP_prof_flags:
8339 return "DW_AT_HP_prof_flags";
8340 /* GNU extensions. */
c906108c
SS
8341 case DW_AT_sf_names:
8342 return "DW_AT_sf_names";
8343 case DW_AT_src_info:
8344 return "DW_AT_src_info";
8345 case DW_AT_mac_info:
8346 return "DW_AT_mac_info";
8347 case DW_AT_src_coords:
8348 return "DW_AT_src_coords";
8349 case DW_AT_body_begin:
8350 return "DW_AT_body_begin";
8351 case DW_AT_body_end:
8352 return "DW_AT_body_end";
f5f8a009
EZ
8353 case DW_AT_GNU_vector:
8354 return "DW_AT_GNU_vector";
b7619582
GF
8355 /* VMS extensions. */
8356 case DW_AT_VMS_rtnbeg_pd_address:
8357 return "DW_AT_VMS_rtnbeg_pd_address";
8358 /* UPC extension. */
8359 case DW_AT_upc_threads_scaled:
8360 return "DW_AT_upc_threads_scaled";
8361 /* PGI (STMicroelectronics) extensions. */
8362 case DW_AT_PGI_lbase:
8363 return "DW_AT_PGI_lbase";
8364 case DW_AT_PGI_soffset:
8365 return "DW_AT_PGI_soffset";
8366 case DW_AT_PGI_lstride:
8367 return "DW_AT_PGI_lstride";
c906108c
SS
8368 default:
8369 return "DW_AT_<unknown>";
8370 }
8371}
8372
8373/* Convert a DWARF value form code into its string name. */
8374
8375static char *
aa1ee363 8376dwarf_form_name (unsigned form)
c906108c
SS
8377{
8378 switch (form)
8379 {
8380 case DW_FORM_addr:
8381 return "DW_FORM_addr";
8382 case DW_FORM_block2:
8383 return "DW_FORM_block2";
8384 case DW_FORM_block4:
8385 return "DW_FORM_block4";
8386 case DW_FORM_data2:
8387 return "DW_FORM_data2";
8388 case DW_FORM_data4:
8389 return "DW_FORM_data4";
8390 case DW_FORM_data8:
8391 return "DW_FORM_data8";
8392 case DW_FORM_string:
8393 return "DW_FORM_string";
8394 case DW_FORM_block:
8395 return "DW_FORM_block";
8396 case DW_FORM_block1:
8397 return "DW_FORM_block1";
8398 case DW_FORM_data1:
8399 return "DW_FORM_data1";
8400 case DW_FORM_flag:
8401 return "DW_FORM_flag";
8402 case DW_FORM_sdata:
8403 return "DW_FORM_sdata";
8404 case DW_FORM_strp:
8405 return "DW_FORM_strp";
8406 case DW_FORM_udata:
8407 return "DW_FORM_udata";
8408 case DW_FORM_ref_addr:
8409 return "DW_FORM_ref_addr";
8410 case DW_FORM_ref1:
8411 return "DW_FORM_ref1";
8412 case DW_FORM_ref2:
8413 return "DW_FORM_ref2";
8414 case DW_FORM_ref4:
8415 return "DW_FORM_ref4";
8416 case DW_FORM_ref8:
8417 return "DW_FORM_ref8";
8418 case DW_FORM_ref_udata:
8419 return "DW_FORM_ref_udata";
8420 case DW_FORM_indirect:
8421 return "DW_FORM_indirect";
8422 default:
8423 return "DW_FORM_<unknown>";
8424 }
8425}
8426
8427/* Convert a DWARF stack opcode into its string name. */
8428
8429static char *
aa1ee363 8430dwarf_stack_op_name (unsigned op)
c906108c
SS
8431{
8432 switch (op)
8433 {
8434 case DW_OP_addr:
8435 return "DW_OP_addr";
8436 case DW_OP_deref:
8437 return "DW_OP_deref";
8438 case DW_OP_const1u:
8439 return "DW_OP_const1u";
8440 case DW_OP_const1s:
8441 return "DW_OP_const1s";
8442 case DW_OP_const2u:
8443 return "DW_OP_const2u";
8444 case DW_OP_const2s:
8445 return "DW_OP_const2s";
8446 case DW_OP_const4u:
8447 return "DW_OP_const4u";
8448 case DW_OP_const4s:
8449 return "DW_OP_const4s";
8450 case DW_OP_const8u:
8451 return "DW_OP_const8u";
8452 case DW_OP_const8s:
8453 return "DW_OP_const8s";
8454 case DW_OP_constu:
8455 return "DW_OP_constu";
8456 case DW_OP_consts:
8457 return "DW_OP_consts";
8458 case DW_OP_dup:
8459 return "DW_OP_dup";
8460 case DW_OP_drop:
8461 return "DW_OP_drop";
8462 case DW_OP_over:
8463 return "DW_OP_over";
8464 case DW_OP_pick:
8465 return "DW_OP_pick";
8466 case DW_OP_swap:
8467 return "DW_OP_swap";
8468 case DW_OP_rot:
8469 return "DW_OP_rot";
8470 case DW_OP_xderef:
8471 return "DW_OP_xderef";
8472 case DW_OP_abs:
8473 return "DW_OP_abs";
8474 case DW_OP_and:
8475 return "DW_OP_and";
8476 case DW_OP_div:
8477 return "DW_OP_div";
8478 case DW_OP_minus:
8479 return "DW_OP_minus";
8480 case DW_OP_mod:
8481 return "DW_OP_mod";
8482 case DW_OP_mul:
8483 return "DW_OP_mul";
8484 case DW_OP_neg:
8485 return "DW_OP_neg";
8486 case DW_OP_not:
8487 return "DW_OP_not";
8488 case DW_OP_or:
8489 return "DW_OP_or";
8490 case DW_OP_plus:
8491 return "DW_OP_plus";
8492 case DW_OP_plus_uconst:
8493 return "DW_OP_plus_uconst";
8494 case DW_OP_shl:
8495 return "DW_OP_shl";
8496 case DW_OP_shr:
8497 return "DW_OP_shr";
8498 case DW_OP_shra:
8499 return "DW_OP_shra";
8500 case DW_OP_xor:
8501 return "DW_OP_xor";
8502 case DW_OP_bra:
8503 return "DW_OP_bra";
8504 case DW_OP_eq:
8505 return "DW_OP_eq";
8506 case DW_OP_ge:
8507 return "DW_OP_ge";
8508 case DW_OP_gt:
8509 return "DW_OP_gt";
8510 case DW_OP_le:
8511 return "DW_OP_le";
8512 case DW_OP_lt:
8513 return "DW_OP_lt";
8514 case DW_OP_ne:
8515 return "DW_OP_ne";
8516 case DW_OP_skip:
8517 return "DW_OP_skip";
8518 case DW_OP_lit0:
8519 return "DW_OP_lit0";
8520 case DW_OP_lit1:
8521 return "DW_OP_lit1";
8522 case DW_OP_lit2:
8523 return "DW_OP_lit2";
8524 case DW_OP_lit3:
8525 return "DW_OP_lit3";
8526 case DW_OP_lit4:
8527 return "DW_OP_lit4";
8528 case DW_OP_lit5:
8529 return "DW_OP_lit5";
8530 case DW_OP_lit6:
8531 return "DW_OP_lit6";
8532 case DW_OP_lit7:
8533 return "DW_OP_lit7";
8534 case DW_OP_lit8:
8535 return "DW_OP_lit8";
8536 case DW_OP_lit9:
8537 return "DW_OP_lit9";
8538 case DW_OP_lit10:
8539 return "DW_OP_lit10";
8540 case DW_OP_lit11:
8541 return "DW_OP_lit11";
8542 case DW_OP_lit12:
8543 return "DW_OP_lit12";
8544 case DW_OP_lit13:
8545 return "DW_OP_lit13";
8546 case DW_OP_lit14:
8547 return "DW_OP_lit14";
8548 case DW_OP_lit15:
8549 return "DW_OP_lit15";
8550 case DW_OP_lit16:
8551 return "DW_OP_lit16";
8552 case DW_OP_lit17:
8553 return "DW_OP_lit17";
8554 case DW_OP_lit18:
8555 return "DW_OP_lit18";
8556 case DW_OP_lit19:
8557 return "DW_OP_lit19";
8558 case DW_OP_lit20:
8559 return "DW_OP_lit20";
8560 case DW_OP_lit21:
8561 return "DW_OP_lit21";
8562 case DW_OP_lit22:
8563 return "DW_OP_lit22";
8564 case DW_OP_lit23:
8565 return "DW_OP_lit23";
8566 case DW_OP_lit24:
8567 return "DW_OP_lit24";
8568 case DW_OP_lit25:
8569 return "DW_OP_lit25";
8570 case DW_OP_lit26:
8571 return "DW_OP_lit26";
8572 case DW_OP_lit27:
8573 return "DW_OP_lit27";
8574 case DW_OP_lit28:
8575 return "DW_OP_lit28";
8576 case DW_OP_lit29:
8577 return "DW_OP_lit29";
8578 case DW_OP_lit30:
8579 return "DW_OP_lit30";
8580 case DW_OP_lit31:
8581 return "DW_OP_lit31";
8582 case DW_OP_reg0:
8583 return "DW_OP_reg0";
8584 case DW_OP_reg1:
8585 return "DW_OP_reg1";
8586 case DW_OP_reg2:
8587 return "DW_OP_reg2";
8588 case DW_OP_reg3:
8589 return "DW_OP_reg3";
8590 case DW_OP_reg4:
8591 return "DW_OP_reg4";
8592 case DW_OP_reg5:
8593 return "DW_OP_reg5";
8594 case DW_OP_reg6:
8595 return "DW_OP_reg6";
8596 case DW_OP_reg7:
8597 return "DW_OP_reg7";
8598 case DW_OP_reg8:
8599 return "DW_OP_reg8";
8600 case DW_OP_reg9:
8601 return "DW_OP_reg9";
8602 case DW_OP_reg10:
8603 return "DW_OP_reg10";
8604 case DW_OP_reg11:
8605 return "DW_OP_reg11";
8606 case DW_OP_reg12:
8607 return "DW_OP_reg12";
8608 case DW_OP_reg13:
8609 return "DW_OP_reg13";
8610 case DW_OP_reg14:
8611 return "DW_OP_reg14";
8612 case DW_OP_reg15:
8613 return "DW_OP_reg15";
8614 case DW_OP_reg16:
8615 return "DW_OP_reg16";
8616 case DW_OP_reg17:
8617 return "DW_OP_reg17";
8618 case DW_OP_reg18:
8619 return "DW_OP_reg18";
8620 case DW_OP_reg19:
8621 return "DW_OP_reg19";
8622 case DW_OP_reg20:
8623 return "DW_OP_reg20";
8624 case DW_OP_reg21:
8625 return "DW_OP_reg21";
8626 case DW_OP_reg22:
8627 return "DW_OP_reg22";
8628 case DW_OP_reg23:
8629 return "DW_OP_reg23";
8630 case DW_OP_reg24:
8631 return "DW_OP_reg24";
8632 case DW_OP_reg25:
8633 return "DW_OP_reg25";
8634 case DW_OP_reg26:
8635 return "DW_OP_reg26";
8636 case DW_OP_reg27:
8637 return "DW_OP_reg27";
8638 case DW_OP_reg28:
8639 return "DW_OP_reg28";
8640 case DW_OP_reg29:
8641 return "DW_OP_reg29";
8642 case DW_OP_reg30:
8643 return "DW_OP_reg30";
8644 case DW_OP_reg31:
8645 return "DW_OP_reg31";
8646 case DW_OP_breg0:
8647 return "DW_OP_breg0";
8648 case DW_OP_breg1:
8649 return "DW_OP_breg1";
8650 case DW_OP_breg2:
8651 return "DW_OP_breg2";
8652 case DW_OP_breg3:
8653 return "DW_OP_breg3";
8654 case DW_OP_breg4:
8655 return "DW_OP_breg4";
8656 case DW_OP_breg5:
8657 return "DW_OP_breg5";
8658 case DW_OP_breg6:
8659 return "DW_OP_breg6";
8660 case DW_OP_breg7:
8661 return "DW_OP_breg7";
8662 case DW_OP_breg8:
8663 return "DW_OP_breg8";
8664 case DW_OP_breg9:
8665 return "DW_OP_breg9";
8666 case DW_OP_breg10:
8667 return "DW_OP_breg10";
8668 case DW_OP_breg11:
8669 return "DW_OP_breg11";
8670 case DW_OP_breg12:
8671 return "DW_OP_breg12";
8672 case DW_OP_breg13:
8673 return "DW_OP_breg13";
8674 case DW_OP_breg14:
8675 return "DW_OP_breg14";
8676 case DW_OP_breg15:
8677 return "DW_OP_breg15";
8678 case DW_OP_breg16:
8679 return "DW_OP_breg16";
8680 case DW_OP_breg17:
8681 return "DW_OP_breg17";
8682 case DW_OP_breg18:
8683 return "DW_OP_breg18";
8684 case DW_OP_breg19:
8685 return "DW_OP_breg19";
8686 case DW_OP_breg20:
8687 return "DW_OP_breg20";
8688 case DW_OP_breg21:
8689 return "DW_OP_breg21";
8690 case DW_OP_breg22:
8691 return "DW_OP_breg22";
8692 case DW_OP_breg23:
8693 return "DW_OP_breg23";
8694 case DW_OP_breg24:
8695 return "DW_OP_breg24";
8696 case DW_OP_breg25:
8697 return "DW_OP_breg25";
8698 case DW_OP_breg26:
8699 return "DW_OP_breg26";
8700 case DW_OP_breg27:
8701 return "DW_OP_breg27";
8702 case DW_OP_breg28:
8703 return "DW_OP_breg28";
8704 case DW_OP_breg29:
8705 return "DW_OP_breg29";
8706 case DW_OP_breg30:
8707 return "DW_OP_breg30";
8708 case DW_OP_breg31:
8709 return "DW_OP_breg31";
8710 case DW_OP_regx:
8711 return "DW_OP_regx";
8712 case DW_OP_fbreg:
8713 return "DW_OP_fbreg";
8714 case DW_OP_bregx:
8715 return "DW_OP_bregx";
8716 case DW_OP_piece:
8717 return "DW_OP_piece";
8718 case DW_OP_deref_size:
8719 return "DW_OP_deref_size";
8720 case DW_OP_xderef_size:
8721 return "DW_OP_xderef_size";
8722 case DW_OP_nop:
8723 return "DW_OP_nop";
b7619582 8724 /* DWARF 3 extensions. */
ed348acc
EZ
8725 case DW_OP_push_object_address:
8726 return "DW_OP_push_object_address";
8727 case DW_OP_call2:
8728 return "DW_OP_call2";
8729 case DW_OP_call4:
8730 return "DW_OP_call4";
8731 case DW_OP_call_ref:
8732 return "DW_OP_call_ref";
b7619582
GF
8733 /* GNU extensions. */
8734 case DW_OP_form_tls_address:
8735 return "DW_OP_form_tls_address";
8736 case DW_OP_call_frame_cfa:
8737 return "DW_OP_call_frame_cfa";
8738 case DW_OP_bit_piece:
8739 return "DW_OP_bit_piece";
ed348acc
EZ
8740 case DW_OP_GNU_push_tls_address:
8741 return "DW_OP_GNU_push_tls_address";
42be36b3
CT
8742 case DW_OP_GNU_uninit:
8743 return "DW_OP_GNU_uninit";
b7619582
GF
8744 /* HP extensions. */
8745 case DW_OP_HP_is_value:
8746 return "DW_OP_HP_is_value";
8747 case DW_OP_HP_fltconst4:
8748 return "DW_OP_HP_fltconst4";
8749 case DW_OP_HP_fltconst8:
8750 return "DW_OP_HP_fltconst8";
8751 case DW_OP_HP_mod_range:
8752 return "DW_OP_HP_mod_range";
8753 case DW_OP_HP_unmod_range:
8754 return "DW_OP_HP_unmod_range";
8755 case DW_OP_HP_tls:
8756 return "DW_OP_HP_tls";
c906108c
SS
8757 default:
8758 return "OP_<unknown>";
8759 }
8760}
8761
8762static char *
fba45db2 8763dwarf_bool_name (unsigned mybool)
c906108c
SS
8764{
8765 if (mybool)
8766 return "TRUE";
8767 else
8768 return "FALSE";
8769}
8770
8771/* Convert a DWARF type code into its string name. */
8772
8773static char *
aa1ee363 8774dwarf_type_encoding_name (unsigned enc)
c906108c
SS
8775{
8776 switch (enc)
8777 {
b7619582
GF
8778 case DW_ATE_void:
8779 return "DW_ATE_void";
c906108c
SS
8780 case DW_ATE_address:
8781 return "DW_ATE_address";
8782 case DW_ATE_boolean:
8783 return "DW_ATE_boolean";
8784 case DW_ATE_complex_float:
8785 return "DW_ATE_complex_float";
8786 case DW_ATE_float:
8787 return "DW_ATE_float";
8788 case DW_ATE_signed:
8789 return "DW_ATE_signed";
8790 case DW_ATE_signed_char:
8791 return "DW_ATE_signed_char";
8792 case DW_ATE_unsigned:
8793 return "DW_ATE_unsigned";
8794 case DW_ATE_unsigned_char:
8795 return "DW_ATE_unsigned_char";
b7619582 8796 /* DWARF 3. */
d9fa45fe
DC
8797 case DW_ATE_imaginary_float:
8798 return "DW_ATE_imaginary_float";
b7619582
GF
8799 case DW_ATE_packed_decimal:
8800 return "DW_ATE_packed_decimal";
8801 case DW_ATE_numeric_string:
8802 return "DW_ATE_numeric_string";
8803 case DW_ATE_edited:
8804 return "DW_ATE_edited";
8805 case DW_ATE_signed_fixed:
8806 return "DW_ATE_signed_fixed";
8807 case DW_ATE_unsigned_fixed:
8808 return "DW_ATE_unsigned_fixed";
8809 case DW_ATE_decimal_float:
8810 return "DW_ATE_decimal_float";
8811 /* HP extensions. */
8812 case DW_ATE_HP_float80:
8813 return "DW_ATE_HP_float80";
8814 case DW_ATE_HP_complex_float80:
8815 return "DW_ATE_HP_complex_float80";
8816 case DW_ATE_HP_float128:
8817 return "DW_ATE_HP_float128";
8818 case DW_ATE_HP_complex_float128:
8819 return "DW_ATE_HP_complex_float128";
8820 case DW_ATE_HP_floathpintel:
8821 return "DW_ATE_HP_floathpintel";
8822 case DW_ATE_HP_imaginary_float80:
8823 return "DW_ATE_HP_imaginary_float80";
8824 case DW_ATE_HP_imaginary_float128:
8825 return "DW_ATE_HP_imaginary_float128";
c906108c
SS
8826 default:
8827 return "DW_ATE_<unknown>";
8828 }
8829}
8830
8831/* Convert a DWARF call frame info operation to its string name. */
8832
8833#if 0
8834static char *
aa1ee363 8835dwarf_cfi_name (unsigned cfi_opc)
c906108c
SS
8836{
8837 switch (cfi_opc)
8838 {
8839 case DW_CFA_advance_loc:
8840 return "DW_CFA_advance_loc";
8841 case DW_CFA_offset:
8842 return "DW_CFA_offset";
8843 case DW_CFA_restore:
8844 return "DW_CFA_restore";
8845 case DW_CFA_nop:
8846 return "DW_CFA_nop";
8847 case DW_CFA_set_loc:
8848 return "DW_CFA_set_loc";
8849 case DW_CFA_advance_loc1:
8850 return "DW_CFA_advance_loc1";
8851 case DW_CFA_advance_loc2:
8852 return "DW_CFA_advance_loc2";
8853 case DW_CFA_advance_loc4:
8854 return "DW_CFA_advance_loc4";
8855 case DW_CFA_offset_extended:
8856 return "DW_CFA_offset_extended";
8857 case DW_CFA_restore_extended:
8858 return "DW_CFA_restore_extended";
8859 case DW_CFA_undefined:
8860 return "DW_CFA_undefined";
8861 case DW_CFA_same_value:
8862 return "DW_CFA_same_value";
8863 case DW_CFA_register:
8864 return "DW_CFA_register";
8865 case DW_CFA_remember_state:
8866 return "DW_CFA_remember_state";
8867 case DW_CFA_restore_state:
8868 return "DW_CFA_restore_state";
8869 case DW_CFA_def_cfa:
8870 return "DW_CFA_def_cfa";
8871 case DW_CFA_def_cfa_register:
8872 return "DW_CFA_def_cfa_register";
8873 case DW_CFA_def_cfa_offset:
8874 return "DW_CFA_def_cfa_offset";
b7619582 8875 /* DWARF 3. */
985cb1a3
JM
8876 case DW_CFA_def_cfa_expression:
8877 return "DW_CFA_def_cfa_expression";
8878 case DW_CFA_expression:
8879 return "DW_CFA_expression";
8880 case DW_CFA_offset_extended_sf:
8881 return "DW_CFA_offset_extended_sf";
8882 case DW_CFA_def_cfa_sf:
8883 return "DW_CFA_def_cfa_sf";
8884 case DW_CFA_def_cfa_offset_sf:
8885 return "DW_CFA_def_cfa_offset_sf";
b7619582
GF
8886 case DW_CFA_val_offset:
8887 return "DW_CFA_val_offset";
8888 case DW_CFA_val_offset_sf:
8889 return "DW_CFA_val_offset_sf";
8890 case DW_CFA_val_expression:
8891 return "DW_CFA_val_expression";
8892 /* SGI/MIPS specific. */
c906108c
SS
8893 case DW_CFA_MIPS_advance_loc8:
8894 return "DW_CFA_MIPS_advance_loc8";
b7619582 8895 /* GNU extensions. */
985cb1a3
JM
8896 case DW_CFA_GNU_window_save:
8897 return "DW_CFA_GNU_window_save";
8898 case DW_CFA_GNU_args_size:
8899 return "DW_CFA_GNU_args_size";
8900 case DW_CFA_GNU_negative_offset_extended:
8901 return "DW_CFA_GNU_negative_offset_extended";
c906108c
SS
8902 default:
8903 return "DW_CFA_<unknown>";
8904 }
8905}
8906#endif
8907
f9aca02d 8908static void
fba45db2 8909dump_die (struct die_info *die)
c906108c
SS
8910{
8911 unsigned int i;
8912
48cd0caa 8913 fprintf_unfiltered (gdb_stderr, "Die: %s (abbrev = %d, offset = %d)\n",
c906108c 8914 dwarf_tag_name (die->tag), die->abbrev, die->offset);
48cd0caa 8915 fprintf_unfiltered (gdb_stderr, "\thas children: %s\n",
639d11d3 8916 dwarf_bool_name (die->child != NULL));
c906108c 8917
48cd0caa 8918 fprintf_unfiltered (gdb_stderr, "\tattributes:\n");
c906108c
SS
8919 for (i = 0; i < die->num_attrs; ++i)
8920 {
48cd0caa 8921 fprintf_unfiltered (gdb_stderr, "\t\t%s (%s) ",
c906108c
SS
8922 dwarf_attr_name (die->attrs[i].name),
8923 dwarf_form_name (die->attrs[i].form));
8924 switch (die->attrs[i].form)
8925 {
8926 case DW_FORM_ref_addr:
8927 case DW_FORM_addr:
48cd0caa 8928 fprintf_unfiltered (gdb_stderr, "address: ");
66bf4b3a 8929 deprecated_print_address_numeric (DW_ADDR (&die->attrs[i]), 1, gdb_stderr);
c906108c
SS
8930 break;
8931 case DW_FORM_block2:
8932 case DW_FORM_block4:
8933 case DW_FORM_block:
8934 case DW_FORM_block1:
48cd0caa 8935 fprintf_unfiltered (gdb_stderr, "block: size %d", DW_BLOCK (&die->attrs[i])->size);
c906108c 8936 break;
10b3939b
DJ
8937 case DW_FORM_ref1:
8938 case DW_FORM_ref2:
8939 case DW_FORM_ref4:
8940 fprintf_unfiltered (gdb_stderr, "constant ref: %ld (adjusted)",
8941 (long) (DW_ADDR (&die->attrs[i])));
8942 break;
c906108c
SS
8943 case DW_FORM_data1:
8944 case DW_FORM_data2:
8945 case DW_FORM_data4:
ce5d95e1 8946 case DW_FORM_data8:
c906108c
SS
8947 case DW_FORM_udata:
8948 case DW_FORM_sdata:
48cd0caa 8949 fprintf_unfiltered (gdb_stderr, "constant: %ld", DW_UNSND (&die->attrs[i]));
c906108c
SS
8950 break;
8951 case DW_FORM_string:
4bdf3d34 8952 case DW_FORM_strp:
48cd0caa 8953 fprintf_unfiltered (gdb_stderr, "string: \"%s\"",
c906108c 8954 DW_STRING (&die->attrs[i])
c5aa993b 8955 ? DW_STRING (&die->attrs[i]) : "");
c906108c
SS
8956 break;
8957 case DW_FORM_flag:
8958 if (DW_UNSND (&die->attrs[i]))
48cd0caa 8959 fprintf_unfiltered (gdb_stderr, "flag: TRUE");
c906108c 8960 else
48cd0caa 8961 fprintf_unfiltered (gdb_stderr, "flag: FALSE");
c906108c 8962 break;
a8329558
KW
8963 case DW_FORM_indirect:
8964 /* the reader will have reduced the indirect form to
8965 the "base form" so this form should not occur */
48cd0caa 8966 fprintf_unfiltered (gdb_stderr, "unexpected attribute form: DW_FORM_indirect");
a8329558 8967 break;
c906108c 8968 default:
48cd0caa 8969 fprintf_unfiltered (gdb_stderr, "unsupported attribute form: %d.",
c5aa993b 8970 die->attrs[i].form);
c906108c 8971 }
48cd0caa 8972 fprintf_unfiltered (gdb_stderr, "\n");
c906108c
SS
8973 }
8974}
8975
f9aca02d 8976static void
fba45db2 8977dump_die_list (struct die_info *die)
c906108c
SS
8978{
8979 while (die)
8980 {
8981 dump_die (die);
639d11d3
DC
8982 if (die->child != NULL)
8983 dump_die_list (die->child);
8984 if (die->sibling != NULL)
8985 dump_die_list (die->sibling);
c906108c
SS
8986 }
8987}
8988
f9aca02d 8989static void
10b3939b
DJ
8990store_in_ref_table (unsigned int offset, struct die_info *die,
8991 struct dwarf2_cu *cu)
c906108c
SS
8992{
8993 int h;
8994 struct die_info *old;
8995
8996 h = (offset % REF_HASH_SIZE);
10b3939b 8997 old = cu->die_ref_table[h];
c906108c 8998 die->next_ref = old;
10b3939b 8999 cu->die_ref_table[h] = die;
c906108c
SS
9000}
9001
9002static unsigned int
e142c38c 9003dwarf2_get_ref_die_offset (struct attribute *attr, struct dwarf2_cu *cu)
c906108c
SS
9004{
9005 unsigned int result = 0;
9006
9007 switch (attr->form)
9008 {
9009 case DW_FORM_ref_addr:
c906108c
SS
9010 case DW_FORM_ref1:
9011 case DW_FORM_ref2:
9012 case DW_FORM_ref4:
613e1657 9013 case DW_FORM_ref8:
c906108c 9014 case DW_FORM_ref_udata:
10b3939b 9015 result = DW_ADDR (attr);
c906108c
SS
9016 break;
9017 default:
4d3c2250 9018 complaint (&symfile_complaints,
e2e0b3e5 9019 _("unsupported die ref attribute form: '%s'"),
4d3c2250 9020 dwarf_form_name (attr->form));
c906108c
SS
9021 }
9022 return result;
9023}
9024
a02abb62
JB
9025/* Return the constant value held by the given attribute. Return -1
9026 if the value held by the attribute is not constant. */
9027
9028static int
9029dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
9030{
9031 if (attr->form == DW_FORM_sdata)
9032 return DW_SND (attr);
9033 else if (attr->form == DW_FORM_udata
9034 || attr->form == DW_FORM_data1
9035 || attr->form == DW_FORM_data2
9036 || attr->form == DW_FORM_data4
9037 || attr->form == DW_FORM_data8)
9038 return DW_UNSND (attr);
9039 else
9040 {
e2e0b3e5 9041 complaint (&symfile_complaints, _("Attribute value is not a constant (%s)"),
a02abb62
JB
9042 dwarf_form_name (attr->form));
9043 return default_value;
9044 }
9045}
9046
f9aca02d 9047static struct die_info *
10b3939b
DJ
9048follow_die_ref (struct die_info *src_die, struct attribute *attr,
9049 struct dwarf2_cu *cu)
c906108c
SS
9050{
9051 struct die_info *die;
10b3939b 9052 unsigned int offset;
c906108c 9053 int h;
10b3939b
DJ
9054 struct die_info temp_die;
9055 struct dwarf2_cu *target_cu;
9056
9057 offset = dwarf2_get_ref_die_offset (attr, cu);
9058
9059 if (DW_ADDR (attr) < cu->header.offset
9060 || DW_ADDR (attr) >= cu->header.offset + cu->header.length)
9061 {
9062 struct dwarf2_per_cu_data *per_cu;
9063 per_cu = dwarf2_find_containing_comp_unit (DW_ADDR (attr),
9064 cu->objfile);
9065 target_cu = per_cu->cu;
9066 }
9067 else
9068 target_cu = cu;
c906108c
SS
9069
9070 h = (offset % REF_HASH_SIZE);
10b3939b 9071 die = target_cu->die_ref_table[h];
c906108c
SS
9072 while (die)
9073 {
9074 if (die->offset == offset)
10b3939b 9075 return die;
c906108c
SS
9076 die = die->next_ref;
9077 }
10b3939b 9078
8a3fe4f8
AC
9079 error (_("Dwarf Error: Cannot find DIE at 0x%lx referenced from DIE "
9080 "at 0x%lx [in module %s]"),
10b3939b
DJ
9081 (long) src_die->offset, (long) offset, cu->objfile->name);
9082
c906108c
SS
9083 return NULL;
9084}
9085
c906108c
SS
9086/* Decode simple location descriptions.
9087 Given a pointer to a dwarf block that defines a location, compute
9088 the location and return the value.
9089
4cecd739
DJ
9090 NOTE drow/2003-11-18: This function is called in two situations
9091 now: for the address of static or global variables (partial symbols
9092 only) and for offsets into structures which are expected to be
9093 (more or less) constant. The partial symbol case should go away,
9094 and only the constant case should remain. That will let this
9095 function complain more accurately. A few special modes are allowed
9096 without complaint for global variables (for instance, global
9097 register values and thread-local values).
c906108c
SS
9098
9099 A location description containing no operations indicates that the
4cecd739 9100 object is optimized out. The return value is 0 for that case.
6b992462
DJ
9101 FIXME drow/2003-11-16: No callers check for this case any more; soon all
9102 callers will only want a very basic result and this can become a
9103 complaint.
c906108c 9104
c906108c
SS
9105 Note that stack[0] is unused except as a default error return.
9106 Note that stack overflow is not yet handled. */
9107
9108static CORE_ADDR
e7c27a73 9109decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 9110{
e7c27a73
DJ
9111 struct objfile *objfile = cu->objfile;
9112 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
9113 int i;
9114 int size = blk->size;
fe1b8b76 9115 gdb_byte *data = blk->data;
c906108c
SS
9116 CORE_ADDR stack[64];
9117 int stacki;
9118 unsigned int bytes_read, unsnd;
fe1b8b76 9119 gdb_byte op;
c906108c
SS
9120
9121 i = 0;
9122 stacki = 0;
9123 stack[stacki] = 0;
c906108c
SS
9124
9125 while (i < size)
9126 {
c906108c
SS
9127 op = data[i++];
9128 switch (op)
9129 {
f1bea926
JM
9130 case DW_OP_lit0:
9131 case DW_OP_lit1:
9132 case DW_OP_lit2:
9133 case DW_OP_lit3:
9134 case DW_OP_lit4:
9135 case DW_OP_lit5:
9136 case DW_OP_lit6:
9137 case DW_OP_lit7:
9138 case DW_OP_lit8:
9139 case DW_OP_lit9:
9140 case DW_OP_lit10:
9141 case DW_OP_lit11:
9142 case DW_OP_lit12:
9143 case DW_OP_lit13:
9144 case DW_OP_lit14:
9145 case DW_OP_lit15:
9146 case DW_OP_lit16:
9147 case DW_OP_lit17:
9148 case DW_OP_lit18:
9149 case DW_OP_lit19:
9150 case DW_OP_lit20:
9151 case DW_OP_lit21:
9152 case DW_OP_lit22:
9153 case DW_OP_lit23:
9154 case DW_OP_lit24:
9155 case DW_OP_lit25:
9156 case DW_OP_lit26:
9157 case DW_OP_lit27:
9158 case DW_OP_lit28:
9159 case DW_OP_lit29:
9160 case DW_OP_lit30:
9161 case DW_OP_lit31:
9162 stack[++stacki] = op - DW_OP_lit0;
9163 break;
9164
c906108c
SS
9165 case DW_OP_reg0:
9166 case DW_OP_reg1:
9167 case DW_OP_reg2:
9168 case DW_OP_reg3:
9169 case DW_OP_reg4:
9170 case DW_OP_reg5:
9171 case DW_OP_reg6:
9172 case DW_OP_reg7:
9173 case DW_OP_reg8:
9174 case DW_OP_reg9:
9175 case DW_OP_reg10:
9176 case DW_OP_reg11:
9177 case DW_OP_reg12:
9178 case DW_OP_reg13:
9179 case DW_OP_reg14:
9180 case DW_OP_reg15:
9181 case DW_OP_reg16:
9182 case DW_OP_reg17:
9183 case DW_OP_reg18:
9184 case DW_OP_reg19:
9185 case DW_OP_reg20:
9186 case DW_OP_reg21:
9187 case DW_OP_reg22:
9188 case DW_OP_reg23:
9189 case DW_OP_reg24:
9190 case DW_OP_reg25:
9191 case DW_OP_reg26:
9192 case DW_OP_reg27:
9193 case DW_OP_reg28:
9194 case DW_OP_reg29:
9195 case DW_OP_reg30:
9196 case DW_OP_reg31:
c906108c 9197 stack[++stacki] = op - DW_OP_reg0;
4cecd739
DJ
9198 if (i < size)
9199 dwarf2_complex_location_expr_complaint ();
c906108c
SS
9200 break;
9201
9202 case DW_OP_regx:
c906108c
SS
9203 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9204 i += bytes_read;
c906108c 9205 stack[++stacki] = unsnd;
4cecd739
DJ
9206 if (i < size)
9207 dwarf2_complex_location_expr_complaint ();
c906108c
SS
9208 break;
9209
9210 case DW_OP_addr:
107d2387 9211 stack[++stacki] = read_address (objfile->obfd, &data[i],
e7c27a73 9212 cu, &bytes_read);
107d2387 9213 i += bytes_read;
c906108c
SS
9214 break;
9215
9216 case DW_OP_const1u:
9217 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
9218 i += 1;
9219 break;
9220
9221 case DW_OP_const1s:
9222 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
9223 i += 1;
9224 break;
9225
9226 case DW_OP_const2u:
9227 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
9228 i += 2;
9229 break;
9230
9231 case DW_OP_const2s:
9232 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
9233 i += 2;
9234 break;
9235
9236 case DW_OP_const4u:
9237 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
9238 i += 4;
9239 break;
9240
9241 case DW_OP_const4s:
9242 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
9243 i += 4;
9244 break;
9245
9246 case DW_OP_constu:
9247 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
c5aa993b 9248 &bytes_read);
c906108c
SS
9249 i += bytes_read;
9250 break;
9251
9252 case DW_OP_consts:
9253 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
9254 i += bytes_read;
9255 break;
9256
f1bea926
JM
9257 case DW_OP_dup:
9258 stack[stacki + 1] = stack[stacki];
9259 stacki++;
9260 break;
9261
c906108c
SS
9262 case DW_OP_plus:
9263 stack[stacki - 1] += stack[stacki];
9264 stacki--;
9265 break;
9266
9267 case DW_OP_plus_uconst:
9268 stack[stacki] += read_unsigned_leb128 (NULL, (data + i), &bytes_read);
9269 i += bytes_read;
9270 break;
9271
9272 case DW_OP_minus:
f1bea926 9273 stack[stacki - 1] -= stack[stacki];
c906108c
SS
9274 stacki--;
9275 break;
9276
7a292a7a 9277 case DW_OP_deref:
7a292a7a 9278 /* If we're not the last op, then we definitely can't encode
4cecd739
DJ
9279 this using GDB's address_class enum. This is valid for partial
9280 global symbols, although the variable's address will be bogus
9281 in the psymtab. */
7a292a7a 9282 if (i < size)
4d3c2250 9283 dwarf2_complex_location_expr_complaint ();
7a292a7a
SS
9284 break;
9285
9d774e44 9286 case DW_OP_GNU_push_tls_address:
9d774e44
EZ
9287 /* The top of the stack has the offset from the beginning
9288 of the thread control block at which the variable is located. */
9289 /* Nothing should follow this operator, so the top of stack would
9290 be returned. */
4cecd739
DJ
9291 /* This is valid for partial global symbols, but the variable's
9292 address will be bogus in the psymtab. */
9d774e44 9293 if (i < size)
4d3c2250 9294 dwarf2_complex_location_expr_complaint ();
9d774e44
EZ
9295 break;
9296
42be36b3
CT
9297 case DW_OP_GNU_uninit:
9298 break;
9299
c906108c 9300 default:
e2e0b3e5 9301 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
4d3c2250 9302 dwarf_stack_op_name (op));
c906108c
SS
9303 return (stack[stacki]);
9304 }
9305 }
9306 return (stack[stacki]);
9307}
9308
9309/* memory allocation interface */
9310
c906108c 9311static struct dwarf_block *
7b5a2f43 9312dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
9313{
9314 struct dwarf_block *blk;
9315
9316 blk = (struct dwarf_block *)
7b5a2f43 9317 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
9318 return (blk);
9319}
9320
9321static struct abbrev_info *
f3dd6933 9322dwarf_alloc_abbrev (struct dwarf2_cu *cu)
c906108c
SS
9323{
9324 struct abbrev_info *abbrev;
9325
f3dd6933
DJ
9326 abbrev = (struct abbrev_info *)
9327 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
c906108c
SS
9328 memset (abbrev, 0, sizeof (struct abbrev_info));
9329 return (abbrev);
9330}
9331
9332static struct die_info *
fba45db2 9333dwarf_alloc_die (void)
c906108c
SS
9334{
9335 struct die_info *die;
9336
9337 die = (struct die_info *) xmalloc (sizeof (struct die_info));
9338 memset (die, 0, sizeof (struct die_info));
9339 return (die);
9340}
2e276125
JB
9341
9342\f
9343/* Macro support. */
9344
9345
9346/* Return the full name of file number I in *LH's file name table.
9347 Use COMP_DIR as the name of the current directory of the
9348 compilation. The result is allocated using xmalloc; the caller is
9349 responsible for freeing it. */
9350static char *
9351file_full_name (int file, struct line_header *lh, const char *comp_dir)
9352{
6a83a1e6
EZ
9353 /* Is the file number a valid index into the line header's file name
9354 table? Remember that file numbers start with one, not zero. */
9355 if (1 <= file && file <= lh->num_file_names)
9356 {
9357 struct file_entry *fe = &lh->file_names[file - 1];
2e276125 9358
6a83a1e6
EZ
9359 if (IS_ABSOLUTE_PATH (fe->name))
9360 return xstrdup (fe->name);
9361 else
9362 {
9363 const char *dir;
9364 int dir_len;
9365 char *full_name;
9366
9367 if (fe->dir_index)
9368 dir = lh->include_dirs[fe->dir_index - 1];
9369 else
9370 dir = comp_dir;
9371
9372 if (dir)
9373 {
9374 dir_len = strlen (dir);
9375 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
9376 strcpy (full_name, dir);
9377 full_name[dir_len] = '/';
9378 strcpy (full_name + dir_len + 1, fe->name);
9379 return full_name;
9380 }
9381 else
9382 return xstrdup (fe->name);
9383 }
9384 }
2e276125
JB
9385 else
9386 {
6a83a1e6
EZ
9387 /* The compiler produced a bogus file number. We can at least
9388 record the macro definitions made in the file, even if we
9389 won't be able to find the file by name. */
9390 char fake_name[80];
9391 sprintf (fake_name, "<bad macro file number %d>", file);
2e276125 9392
6a83a1e6
EZ
9393 complaint (&symfile_complaints,
9394 _("bad file number in macro information (%d)"),
9395 file);
2e276125 9396
6a83a1e6 9397 return xstrdup (fake_name);
2e276125
JB
9398 }
9399}
9400
9401
9402static struct macro_source_file *
9403macro_start_file (int file, int line,
9404 struct macro_source_file *current_file,
9405 const char *comp_dir,
9406 struct line_header *lh, struct objfile *objfile)
9407{
9408 /* The full name of this source file. */
9409 char *full_name = file_full_name (file, lh, comp_dir);
9410
9411 /* We don't create a macro table for this compilation unit
9412 at all until we actually get a filename. */
9413 if (! pending_macros)
4a146b47 9414 pending_macros = new_macro_table (&objfile->objfile_obstack,
af5f3db6 9415 objfile->macro_cache);
2e276125
JB
9416
9417 if (! current_file)
9418 /* If we have no current file, then this must be the start_file
9419 directive for the compilation unit's main source file. */
9420 current_file = macro_set_main (pending_macros, full_name);
9421 else
9422 current_file = macro_include (current_file, line, full_name);
9423
9424 xfree (full_name);
9425
9426 return current_file;
9427}
9428
9429
9430/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
9431 followed by a null byte. */
9432static char *
9433copy_string (const char *buf, int len)
9434{
9435 char *s = xmalloc (len + 1);
9436 memcpy (s, buf, len);
9437 s[len] = '\0';
9438
9439 return s;
9440}
9441
9442
9443static const char *
9444consume_improper_spaces (const char *p, const char *body)
9445{
9446 if (*p == ' ')
9447 {
4d3c2250 9448 complaint (&symfile_complaints,
e2e0b3e5 9449 _("macro definition contains spaces in formal argument list:\n`%s'"),
4d3c2250 9450 body);
2e276125
JB
9451
9452 while (*p == ' ')
9453 p++;
9454 }
9455
9456 return p;
9457}
9458
9459
9460static void
9461parse_macro_definition (struct macro_source_file *file, int line,
9462 const char *body)
9463{
9464 const char *p;
9465
9466 /* The body string takes one of two forms. For object-like macro
9467 definitions, it should be:
9468
9469 <macro name> " " <definition>
9470
9471 For function-like macro definitions, it should be:
9472
9473 <macro name> "() " <definition>
9474 or
9475 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
9476
9477 Spaces may appear only where explicitly indicated, and in the
9478 <definition>.
9479
9480 The Dwarf 2 spec says that an object-like macro's name is always
9481 followed by a space, but versions of GCC around March 2002 omit
9482 the space when the macro's definition is the empty string.
9483
9484 The Dwarf 2 spec says that there should be no spaces between the
9485 formal arguments in a function-like macro's formal argument list,
9486 but versions of GCC around March 2002 include spaces after the
9487 commas. */
9488
9489
9490 /* Find the extent of the macro name. The macro name is terminated
9491 by either a space or null character (for an object-like macro) or
9492 an opening paren (for a function-like macro). */
9493 for (p = body; *p; p++)
9494 if (*p == ' ' || *p == '(')
9495 break;
9496
9497 if (*p == ' ' || *p == '\0')
9498 {
9499 /* It's an object-like macro. */
9500 int name_len = p - body;
9501 char *name = copy_string (body, name_len);
9502 const char *replacement;
9503
9504 if (*p == ' ')
9505 replacement = body + name_len + 1;
9506 else
9507 {
4d3c2250 9508 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9509 replacement = body + name_len;
9510 }
9511
9512 macro_define_object (file, line, name, replacement);
9513
9514 xfree (name);
9515 }
9516 else if (*p == '(')
9517 {
9518 /* It's a function-like macro. */
9519 char *name = copy_string (body, p - body);
9520 int argc = 0;
9521 int argv_size = 1;
9522 char **argv = xmalloc (argv_size * sizeof (*argv));
9523
9524 p++;
9525
9526 p = consume_improper_spaces (p, body);
9527
9528 /* Parse the formal argument list. */
9529 while (*p && *p != ')')
9530 {
9531 /* Find the extent of the current argument name. */
9532 const char *arg_start = p;
9533
9534 while (*p && *p != ',' && *p != ')' && *p != ' ')
9535 p++;
9536
9537 if (! *p || p == arg_start)
4d3c2250 9538 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9539 else
9540 {
9541 /* Make sure argv has room for the new argument. */
9542 if (argc >= argv_size)
9543 {
9544 argv_size *= 2;
9545 argv = xrealloc (argv, argv_size * sizeof (*argv));
9546 }
9547
9548 argv[argc++] = copy_string (arg_start, p - arg_start);
9549 }
9550
9551 p = consume_improper_spaces (p, body);
9552
9553 /* Consume the comma, if present. */
9554 if (*p == ',')
9555 {
9556 p++;
9557
9558 p = consume_improper_spaces (p, body);
9559 }
9560 }
9561
9562 if (*p == ')')
9563 {
9564 p++;
9565
9566 if (*p == ' ')
9567 /* Perfectly formed definition, no complaints. */
9568 macro_define_function (file, line, name,
9569 argc, (const char **) argv,
9570 p + 1);
9571 else if (*p == '\0')
9572 {
9573 /* Complain, but do define it. */
4d3c2250 9574 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9575 macro_define_function (file, line, name,
9576 argc, (const char **) argv,
9577 p);
9578 }
9579 else
9580 /* Just complain. */
4d3c2250 9581 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9582 }
9583 else
9584 /* Just complain. */
4d3c2250 9585 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9586
9587 xfree (name);
9588 {
9589 int i;
9590
9591 for (i = 0; i < argc; i++)
9592 xfree (argv[i]);
9593 }
9594 xfree (argv);
9595 }
9596 else
4d3c2250 9597 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
9598}
9599
9600
9601static void
9602dwarf_decode_macros (struct line_header *lh, unsigned int offset,
9603 char *comp_dir, bfd *abfd,
e7c27a73 9604 struct dwarf2_cu *cu)
2e276125 9605{
fe1b8b76 9606 gdb_byte *mac_ptr, *mac_end;
2e276125
JB
9607 struct macro_source_file *current_file = 0;
9608
6502dd73 9609 if (dwarf2_per_objfile->macinfo_buffer == NULL)
2e276125 9610 {
e2e0b3e5 9611 complaint (&symfile_complaints, _("missing .debug_macinfo section"));
2e276125
JB
9612 return;
9613 }
9614
6502dd73
DJ
9615 mac_ptr = dwarf2_per_objfile->macinfo_buffer + offset;
9616 mac_end = dwarf2_per_objfile->macinfo_buffer
9617 + dwarf2_per_objfile->macinfo_size;
2e276125
JB
9618
9619 for (;;)
9620 {
9621 enum dwarf_macinfo_record_type macinfo_type;
9622
9623 /* Do we at least have room for a macinfo type byte? */
9624 if (mac_ptr >= mac_end)
9625 {
4d3c2250 9626 dwarf2_macros_too_long_complaint ();
2e276125
JB
9627 return;
9628 }
9629
9630 macinfo_type = read_1_byte (abfd, mac_ptr);
9631 mac_ptr++;
9632
9633 switch (macinfo_type)
9634 {
9635 /* A zero macinfo type indicates the end of the macro
9636 information. */
9637 case 0:
9638 return;
9639
9640 case DW_MACINFO_define:
9641 case DW_MACINFO_undef:
9642 {
891d2f0b 9643 unsigned int bytes_read;
2e276125
JB
9644 int line;
9645 char *body;
9646
9647 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9648 mac_ptr += bytes_read;
9649 body = read_string (abfd, mac_ptr, &bytes_read);
9650 mac_ptr += bytes_read;
9651
9652 if (! current_file)
4d3c2250 9653 complaint (&symfile_complaints,
e2e0b3e5 9654 _("debug info gives macro %s outside of any file: %s"),
4d3c2250
KB
9655 macinfo_type ==
9656 DW_MACINFO_define ? "definition" : macinfo_type ==
9657 DW_MACINFO_undef ? "undefinition" :
9658 "something-or-other", body);
2e276125
JB
9659 else
9660 {
9661 if (macinfo_type == DW_MACINFO_define)
9662 parse_macro_definition (current_file, line, body);
9663 else if (macinfo_type == DW_MACINFO_undef)
9664 macro_undef (current_file, line, body);
9665 }
9666 }
9667 break;
9668
9669 case DW_MACINFO_start_file:
9670 {
891d2f0b 9671 unsigned int bytes_read;
2e276125
JB
9672 int line, file;
9673
9674 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9675 mac_ptr += bytes_read;
9676 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9677 mac_ptr += bytes_read;
9678
9679 current_file = macro_start_file (file, line,
9680 current_file, comp_dir,
e7c27a73 9681 lh, cu->objfile);
2e276125
JB
9682 }
9683 break;
9684
9685 case DW_MACINFO_end_file:
9686 if (! current_file)
4d3c2250 9687 complaint (&symfile_complaints,
e2e0b3e5 9688 _("macro debug info has an unmatched `close_file' directive"));
2e276125
JB
9689 else
9690 {
9691 current_file = current_file->included_by;
9692 if (! current_file)
9693 {
9694 enum dwarf_macinfo_record_type next_type;
9695
9696 /* GCC circa March 2002 doesn't produce the zero
9697 type byte marking the end of the compilation
9698 unit. Complain if it's not there, but exit no
9699 matter what. */
9700
9701 /* Do we at least have room for a macinfo type byte? */
9702 if (mac_ptr >= mac_end)
9703 {
4d3c2250 9704 dwarf2_macros_too_long_complaint ();
2e276125
JB
9705 return;
9706 }
9707
9708 /* We don't increment mac_ptr here, so this is just
9709 a look-ahead. */
9710 next_type = read_1_byte (abfd, mac_ptr);
9711 if (next_type != 0)
4d3c2250 9712 complaint (&symfile_complaints,
e2e0b3e5 9713 _("no terminating 0-type entry for macros in `.debug_macinfo' section"));
2e276125
JB
9714
9715 return;
9716 }
9717 }
9718 break;
9719
9720 case DW_MACINFO_vendor_ext:
9721 {
891d2f0b 9722 unsigned int bytes_read;
2e276125
JB
9723 int constant;
9724 char *string;
9725
9726 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
9727 mac_ptr += bytes_read;
9728 string = read_string (abfd, mac_ptr, &bytes_read);
9729 mac_ptr += bytes_read;
9730
9731 /* We don't recognize any vendor extensions. */
9732 }
9733 break;
9734 }
9735 }
9736}
8e19ed76
PS
9737
9738/* Check if the attribute's form is a DW_FORM_block*
9739 if so return true else false. */
9740static int
9741attr_form_is_block (struct attribute *attr)
9742{
9743 return (attr == NULL ? 0 :
9744 attr->form == DW_FORM_block1
9745 || attr->form == DW_FORM_block2
9746 || attr->form == DW_FORM_block4
9747 || attr->form == DW_FORM_block);
9748}
4c2df51b 9749
c6a0999f
JB
9750/* Return non-zero if ATTR's value is a section offset --- classes
9751 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
9752 You may use DW_UNSND (attr) to retrieve such offsets.
9753
9754 Section 7.5.4, "Attribute Encodings", explains that no attribute
9755 may have a value that belongs to more than one of these classes; it
9756 would be ambiguous if we did, because we use the same forms for all
9757 of them. */
3690dd37
JB
9758static int
9759attr_form_is_section_offset (struct attribute *attr)
9760{
9761 return (attr->form == DW_FORM_data4
9762 || attr->form == DW_FORM_data8);
9763}
9764
9765
9766/* Return non-zero if ATTR's value falls in the 'constant' class, or
9767 zero otherwise. When this function returns true, you can apply
9768 dwarf2_get_attr_constant_value to it.
9769
9770 However, note that for some attributes you must check
9771 attr_form_is_section_offset before using this test. DW_FORM_data4
9772 and DW_FORM_data8 are members of both the constant class, and of
9773 the classes that contain offsets into other debug sections
9774 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
9775 that, if an attribute's can be either a constant or one of the
9776 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
9777 taken as section offsets, not constants. */
9778static int
9779attr_form_is_constant (struct attribute *attr)
9780{
9781 switch (attr->form)
9782 {
9783 case DW_FORM_sdata:
9784 case DW_FORM_udata:
9785 case DW_FORM_data1:
9786 case DW_FORM_data2:
9787 case DW_FORM_data4:
9788 case DW_FORM_data8:
9789 return 1;
9790 default:
9791 return 0;
9792 }
9793}
9794
4c2df51b
DJ
9795static void
9796dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 9797 struct dwarf2_cu *cu)
4c2df51b 9798{
93e7bd98
DJ
9799 struct objfile *objfile = cu->objfile;
9800
9801 /* Save the master objfile, so that we can report and look up the
9802 correct file containing this variable. */
9803 if (objfile->separate_debug_objfile_backlink)
9804 objfile = objfile->separate_debug_objfile_backlink;
9805
3690dd37 9806 if (attr_form_is_section_offset (attr)
99bcc461
DJ
9807 /* ".debug_loc" may not exist at all, or the offset may be outside
9808 the section. If so, fall through to the complaint in the
9809 other branch. */
9810 && DW_UNSND (attr) < dwarf2_per_objfile->loc_size)
4c2df51b 9811 {
0d53c4c4 9812 struct dwarf2_loclist_baton *baton;
4c2df51b 9813
4a146b47 9814 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 9815 sizeof (struct dwarf2_loclist_baton));
93e7bd98 9816 baton->objfile = objfile;
4c2df51b 9817
0d53c4c4
DJ
9818 /* We don't know how long the location list is, but make sure we
9819 don't run off the edge of the section. */
6502dd73
DJ
9820 baton->size = dwarf2_per_objfile->loc_size - DW_UNSND (attr);
9821 baton->data = dwarf2_per_objfile->loc_buffer + DW_UNSND (attr);
e7c27a73
DJ
9822 baton->base_address = cu->header.base_address;
9823 if (cu->header.base_known == 0)
0d53c4c4 9824 complaint (&symfile_complaints,
e2e0b3e5 9825 _("Location list used without specifying the CU base address."));
4c2df51b 9826
a67af2b9 9827 SYMBOL_OPS (sym) = &dwarf2_loclist_funcs;
0d53c4c4
DJ
9828 SYMBOL_LOCATION_BATON (sym) = baton;
9829 }
9830 else
9831 {
9832 struct dwarf2_locexpr_baton *baton;
9833
4a146b47 9834 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 9835 sizeof (struct dwarf2_locexpr_baton));
93e7bd98 9836 baton->objfile = objfile;
0d53c4c4
DJ
9837
9838 if (attr_form_is_block (attr))
9839 {
9840 /* Note that we're just copying the block's data pointer
9841 here, not the actual data. We're still pointing into the
6502dd73
DJ
9842 info_buffer for SYM's objfile; right now we never release
9843 that buffer, but when we do clean up properly this may
9844 need to change. */
0d53c4c4
DJ
9845 baton->size = DW_BLOCK (attr)->size;
9846 baton->data = DW_BLOCK (attr)->data;
9847 }
9848 else
9849 {
9850 dwarf2_invalid_attrib_class_complaint ("location description",
9851 SYMBOL_NATURAL_NAME (sym));
9852 baton->size = 0;
9853 baton->data = NULL;
9854 }
9855
a67af2b9 9856 SYMBOL_OPS (sym) = &dwarf2_locexpr_funcs;
0d53c4c4
DJ
9857 SYMBOL_LOCATION_BATON (sym) = baton;
9858 }
4c2df51b 9859}
6502dd73 9860
ae038cb0 9861/* Locate the compilation unit from CU's objfile which contains the
10b3939b 9862 DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
9863
9864static struct dwarf2_per_cu_data *
9865dwarf2_find_containing_comp_unit (unsigned long offset,
9866 struct objfile *objfile)
9867{
9868 struct dwarf2_per_cu_data *this_cu;
9869 int low, high;
9870
ae038cb0
DJ
9871 low = 0;
9872 high = dwarf2_per_objfile->n_comp_units - 1;
9873 while (high > low)
9874 {
9875 int mid = low + (high - low) / 2;
9876 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
9877 high = mid;
9878 else
9879 low = mid + 1;
9880 }
9881 gdb_assert (low == high);
9882 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
9883 {
10b3939b 9884 if (low == 0)
8a3fe4f8
AC
9885 error (_("Dwarf Error: could not find partial DIE containing "
9886 "offset 0x%lx [in module %s]"),
10b3939b
DJ
9887 (long) offset, bfd_get_filename (objfile->obfd));
9888
ae038cb0
DJ
9889 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
9890 return dwarf2_per_objfile->all_comp_units[low-1];
9891 }
9892 else
9893 {
9894 this_cu = dwarf2_per_objfile->all_comp_units[low];
9895 if (low == dwarf2_per_objfile->n_comp_units - 1
9896 && offset >= this_cu->offset + this_cu->length)
8a3fe4f8 9897 error (_("invalid dwarf2 offset %ld"), offset);
ae038cb0
DJ
9898 gdb_assert (offset < this_cu->offset + this_cu->length);
9899 return this_cu;
9900 }
9901}
9902
10b3939b
DJ
9903/* Locate the compilation unit from OBJFILE which is located at exactly
9904 OFFSET. Raises an error on failure. */
9905
ae038cb0
DJ
9906static struct dwarf2_per_cu_data *
9907dwarf2_find_comp_unit (unsigned long offset, struct objfile *objfile)
9908{
9909 struct dwarf2_per_cu_data *this_cu;
9910 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
9911 if (this_cu->offset != offset)
8a3fe4f8 9912 error (_("no compilation unit with offset %ld."), offset);
ae038cb0
DJ
9913 return this_cu;
9914}
9915
9916/* Release one cached compilation unit, CU. We unlink it from the tree
9917 of compilation units, but we don't remove it from the read_in_chain;
9918 the caller is responsible for that. */
9919
9920static void
9921free_one_comp_unit (void *data)
9922{
9923 struct dwarf2_cu *cu = data;
9924
9925 if (cu->per_cu != NULL)
9926 cu->per_cu->cu = NULL;
9927 cu->per_cu = NULL;
9928
9929 obstack_free (&cu->comp_unit_obstack, NULL);
10b3939b
DJ
9930 if (cu->dies)
9931 free_die_list (cu->dies);
ae038cb0
DJ
9932
9933 xfree (cu);
9934}
9935
72bf9492 9936/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0
DJ
9937 when we're finished with it. We can't free the pointer itself, but be
9938 sure to unlink it from the cache. Also release any associated storage
9939 and perform cache maintenance.
72bf9492
DJ
9940
9941 Only used during partial symbol parsing. */
9942
9943static void
9944free_stack_comp_unit (void *data)
9945{
9946 struct dwarf2_cu *cu = data;
9947
9948 obstack_free (&cu->comp_unit_obstack, NULL);
9949 cu->partial_dies = NULL;
ae038cb0
DJ
9950
9951 if (cu->per_cu != NULL)
9952 {
9953 /* This compilation unit is on the stack in our caller, so we
9954 should not xfree it. Just unlink it. */
9955 cu->per_cu->cu = NULL;
9956 cu->per_cu = NULL;
9957
9958 /* If we had a per-cu pointer, then we may have other compilation
9959 units loaded, so age them now. */
9960 age_cached_comp_units ();
9961 }
9962}
9963
9964/* Free all cached compilation units. */
9965
9966static void
9967free_cached_comp_units (void *data)
9968{
9969 struct dwarf2_per_cu_data *per_cu, **last_chain;
9970
9971 per_cu = dwarf2_per_objfile->read_in_chain;
9972 last_chain = &dwarf2_per_objfile->read_in_chain;
9973 while (per_cu != NULL)
9974 {
9975 struct dwarf2_per_cu_data *next_cu;
9976
9977 next_cu = per_cu->cu->read_in_chain;
9978
9979 free_one_comp_unit (per_cu->cu);
9980 *last_chain = next_cu;
9981
9982 per_cu = next_cu;
9983 }
9984}
9985
9986/* Increase the age counter on each cached compilation unit, and free
9987 any that are too old. */
9988
9989static void
9990age_cached_comp_units (void)
9991{
9992 struct dwarf2_per_cu_data *per_cu, **last_chain;
9993
9994 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
9995 per_cu = dwarf2_per_objfile->read_in_chain;
9996 while (per_cu != NULL)
9997 {
9998 per_cu->cu->last_used ++;
9999 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
10000 dwarf2_mark (per_cu->cu);
10001 per_cu = per_cu->cu->read_in_chain;
10002 }
10003
10004 per_cu = dwarf2_per_objfile->read_in_chain;
10005 last_chain = &dwarf2_per_objfile->read_in_chain;
10006 while (per_cu != NULL)
10007 {
10008 struct dwarf2_per_cu_data *next_cu;
10009
10010 next_cu = per_cu->cu->read_in_chain;
10011
10012 if (!per_cu->cu->mark)
10013 {
10014 free_one_comp_unit (per_cu->cu);
10015 *last_chain = next_cu;
10016 }
10017 else
10018 last_chain = &per_cu->cu->read_in_chain;
10019
10020 per_cu = next_cu;
10021 }
10022}
10023
10024/* Remove a single compilation unit from the cache. */
10025
10026static void
10027free_one_cached_comp_unit (void *target_cu)
10028{
10029 struct dwarf2_per_cu_data *per_cu, **last_chain;
10030
10031 per_cu = dwarf2_per_objfile->read_in_chain;
10032 last_chain = &dwarf2_per_objfile->read_in_chain;
10033 while (per_cu != NULL)
10034 {
10035 struct dwarf2_per_cu_data *next_cu;
10036
10037 next_cu = per_cu->cu->read_in_chain;
10038
10039 if (per_cu->cu == target_cu)
10040 {
10041 free_one_comp_unit (per_cu->cu);
10042 *last_chain = next_cu;
10043 break;
10044 }
10045 else
10046 last_chain = &per_cu->cu->read_in_chain;
10047
10048 per_cu = next_cu;
10049 }
10050}
10051
fe3e1990
DJ
10052/* Release all extra memory associated with OBJFILE. */
10053
10054void
10055dwarf2_free_objfile (struct objfile *objfile)
10056{
10057 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10058
10059 if (dwarf2_per_objfile == NULL)
10060 return;
10061
10062 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
10063 free_cached_comp_units (NULL);
10064
10065 /* Everything else should be on the objfile obstack. */
10066}
10067
1c379e20
DJ
10068/* A pair of DIE offset and GDB type pointer. We store these
10069 in a hash table separate from the DIEs, and preserve them
10070 when the DIEs are flushed out of cache. */
10071
10072struct dwarf2_offset_and_type
10073{
10074 unsigned int offset;
10075 struct type *type;
10076};
10077
10078/* Hash function for a dwarf2_offset_and_type. */
10079
10080static hashval_t
10081offset_and_type_hash (const void *item)
10082{
10083 const struct dwarf2_offset_and_type *ofs = item;
10084 return ofs->offset;
10085}
10086
10087/* Equality function for a dwarf2_offset_and_type. */
10088
10089static int
10090offset_and_type_eq (const void *item_lhs, const void *item_rhs)
10091{
10092 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
10093 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
10094 return ofs_lhs->offset == ofs_rhs->offset;
10095}
10096
10097/* Set the type associated with DIE to TYPE. Save it in CU's hash
10098 table if necessary. */
10099
10100static void
10101set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
10102{
10103 struct dwarf2_offset_and_type **slot, ofs;
10104
10105 die->type = type;
10106
10107 if (cu->per_cu == NULL)
10108 return;
10109
10110 if (cu->per_cu->type_hash == NULL)
10111 cu->per_cu->type_hash
10112 = htab_create_alloc_ex (cu->header.length / 24,
10113 offset_and_type_hash,
10114 offset_and_type_eq,
10115 NULL,
10116 &cu->objfile->objfile_obstack,
10117 hashtab_obstack_allocate,
10118 dummy_obstack_deallocate);
10119
10120 ofs.offset = die->offset;
10121 ofs.type = type;
10122 slot = (struct dwarf2_offset_and_type **)
10123 htab_find_slot_with_hash (cu->per_cu->type_hash, &ofs, ofs.offset, INSERT);
10124 *slot = obstack_alloc (&cu->objfile->objfile_obstack, sizeof (**slot));
10125 **slot = ofs;
10126}
10127
1c379e20
DJ
10128/* Find the type for DIE in TYPE_HASH, or return NULL if DIE does not
10129 have a saved type. */
10130
10131static struct type *
10132get_die_type (struct die_info *die, htab_t type_hash)
10133{
10134 struct dwarf2_offset_and_type *slot, ofs;
10135
10136 ofs.offset = die->offset;
10137 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
10138 if (slot)
10139 return slot->type;
10140 else
10141 return NULL;
10142}
10143
10144/* Restore the types of the DIE tree starting at START_DIE from the hash
10145 table saved in CU. */
10146
10147static void
10148reset_die_and_siblings_types (struct die_info *start_die, struct dwarf2_cu *cu)
10149{
10150 struct die_info *die;
10151
10152 if (cu->per_cu->type_hash == NULL)
10153 return;
10154
10155 for (die = start_die; die != NULL; die = die->sibling)
10156 {
10157 die->type = get_die_type (die, cu->per_cu->type_hash);
10158 if (die->child != NULL)
10159 reset_die_and_siblings_types (die->child, cu);
10160 }
10161}
10162
10b3939b
DJ
10163/* Set the mark field in CU and in every other compilation unit in the
10164 cache that we must keep because we are keeping CU. */
10165
10166/* Add a dependence relationship from CU to REF_PER_CU. */
10167
10168static void
10169dwarf2_add_dependence (struct dwarf2_cu *cu,
10170 struct dwarf2_per_cu_data *ref_per_cu)
10171{
10172 void **slot;
10173
10174 if (cu->dependencies == NULL)
10175 cu->dependencies
10176 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
10177 NULL, &cu->comp_unit_obstack,
10178 hashtab_obstack_allocate,
10179 dummy_obstack_deallocate);
10180
10181 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
10182 if (*slot == NULL)
10183 *slot = ref_per_cu;
10184}
1c379e20 10185
ae038cb0
DJ
10186/* Set the mark field in CU and in every other compilation unit in the
10187 cache that we must keep because we are keeping CU. */
10188
10b3939b
DJ
10189static int
10190dwarf2_mark_helper (void **slot, void *data)
10191{
10192 struct dwarf2_per_cu_data *per_cu;
10193
10194 per_cu = (struct dwarf2_per_cu_data *) *slot;
10195 if (per_cu->cu->mark)
10196 return 1;
10197 per_cu->cu->mark = 1;
10198
10199 if (per_cu->cu->dependencies != NULL)
10200 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
10201
10202 return 1;
10203}
10204
ae038cb0
DJ
10205static void
10206dwarf2_mark (struct dwarf2_cu *cu)
10207{
10208 if (cu->mark)
10209 return;
10210 cu->mark = 1;
10b3939b
DJ
10211 if (cu->dependencies != NULL)
10212 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
10213}
10214
10215static void
10216dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
10217{
10218 while (per_cu)
10219 {
10220 per_cu->cu->mark = 0;
10221 per_cu = per_cu->cu->read_in_chain;
10222 }
72bf9492
DJ
10223}
10224
72bf9492
DJ
10225/* Trivial hash function for partial_die_info: the hash value of a DIE
10226 is its offset in .debug_info for this objfile. */
10227
10228static hashval_t
10229partial_die_hash (const void *item)
10230{
10231 const struct partial_die_info *part_die = item;
10232 return part_die->offset;
10233}
10234
10235/* Trivial comparison function for partial_die_info structures: two DIEs
10236 are equal if they have the same offset. */
10237
10238static int
10239partial_die_eq (const void *item_lhs, const void *item_rhs)
10240{
10241 const struct partial_die_info *part_die_lhs = item_lhs;
10242 const struct partial_die_info *part_die_rhs = item_rhs;
10243 return part_die_lhs->offset == part_die_rhs->offset;
10244}
10245
ae038cb0
DJ
10246static struct cmd_list_element *set_dwarf2_cmdlist;
10247static struct cmd_list_element *show_dwarf2_cmdlist;
10248
10249static void
10250set_dwarf2_cmd (char *args, int from_tty)
10251{
10252 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
10253}
10254
10255static void
10256show_dwarf2_cmd (char *args, int from_tty)
10257{
10258 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
10259}
10260
6502dd73
DJ
10261void _initialize_dwarf2_read (void);
10262
10263void
10264_initialize_dwarf2_read (void)
10265{
10266 dwarf2_objfile_data_key = register_objfile_data ();
ae038cb0 10267
1bedd215
AC
10268 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
10269Set DWARF 2 specific variables.\n\
10270Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
10271 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
10272 0/*allow-unknown*/, &maintenance_set_cmdlist);
10273
1bedd215
AC
10274 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
10275Show DWARF 2 specific variables\n\
10276Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
10277 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
10278 0/*allow-unknown*/, &maintenance_show_cmdlist);
10279
10280 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
10281 &dwarf2_max_cache_age, _("\
10282Set the upper bound on the age of cached dwarf2 compilation units."), _("\
10283Show the upper bound on the age of cached dwarf2 compilation units."), _("\
10284A higher limit means that cached compilation units will be stored\n\
10285in memory longer, and more total memory will be used. Zero disables\n\
10286caching, which can slow down startup."),
2c5b56ce 10287 NULL,
920d2a44 10288 show_dwarf2_max_cache_age,
2c5b56ce 10289 &set_dwarf2_cmdlist,
ae038cb0 10290 &show_dwarf2_cmdlist);
6502dd73 10291}
This page took 1.32471 seconds and 4 git commands to generate.