* dwarf2read.c (read_str_index): Delete arg cu. All callers updated.
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
ecd75fc8 3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
9291a0cd 58#include "exceptions.h"
53ce3c39 59#include <sys/stat.h>
96d19272 60#include "completer.h"
34eaf542 61#include "vec.h"
98bfdba5 62#include "c-lang.h"
a766d390 63#include "go-lang.h"
98bfdba5 64#include "valprint.h"
3019eac3 65#include "gdbcore.h" /* for gnutarget */
156942c7 66#include "gdb/gdb-index.h"
60d5a603 67#include <ctype.h>
cbb099e8 68#include "gdb_bfd.h"
4357ac6c 69#include "f-lang.h"
05cba821 70#include "source.h"
614c279d 71#include "filestuff.h"
dc294be5 72#include "build-id.h"
4c2df51b 73
c906108c 74#include <fcntl.h>
0e9f083f 75#include <string.h>
4bdf3d34 76#include "gdb_assert.h"
c906108c 77#include <sys/types.h>
d8151005 78
34eaf542
TT
79typedef struct symbol *symbolp;
80DEF_VEC_P (symbolp);
81
73be47f5
DE
82/* When == 1, print basic high level tracing messages.
83 When > 1, be more verbose.
45cfd468 84 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
73be47f5 85static unsigned int dwarf2_read_debug = 0;
45cfd468 86
d97bc12b 87/* When non-zero, dump DIEs after they are read in. */
ccce17b0 88static unsigned int dwarf2_die_debug = 0;
d97bc12b 89
900e11f9
JK
90/* When non-zero, cross-check physname against demangler. */
91static int check_physname = 0;
92
481860b3 93/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 94static int use_deprecated_index_sections = 0;
481860b3 95
6502dd73
DJ
96static const struct objfile_data *dwarf2_objfile_data_key;
97
f1e6e072
TT
98/* The "aclass" indices for various kinds of computed DWARF symbols. */
99
100static int dwarf2_locexpr_index;
101static int dwarf2_loclist_index;
102static int dwarf2_locexpr_block_index;
103static int dwarf2_loclist_block_index;
104
73869dc2
DE
105/* A descriptor for dwarf sections.
106
107 S.ASECTION, SIZE are typically initialized when the objfile is first
108 scanned. BUFFER, READIN are filled in later when the section is read.
109 If the section contained compressed data then SIZE is updated to record
110 the uncompressed size of the section.
111
112 DWP file format V2 introduces a wrinkle that is easiest to handle by
113 creating the concept of virtual sections contained within a real section.
114 In DWP V2 the sections of the input DWO files are concatenated together
115 into one section, but section offsets are kept relative to the original
116 input section.
117 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
118 the real section this "virtual" section is contained in, and BUFFER,SIZE
119 describe the virtual section. */
120
dce234bc
PP
121struct dwarf2_section_info
122{
73869dc2
DE
123 union
124 {
e5aa3347 125 /* If this is a real section, the bfd section. */
73869dc2
DE
126 asection *asection;
127 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 128 section. */
73869dc2
DE
129 struct dwarf2_section_info *containing_section;
130 } s;
19ac8c2e 131 /* Pointer to section data, only valid if readin. */
d521ce57 132 const gdb_byte *buffer;
73869dc2 133 /* The size of the section, real or virtual. */
dce234bc 134 bfd_size_type size;
73869dc2
DE
135 /* If this is a virtual section, the offset in the real section.
136 Only valid if is_virtual. */
137 bfd_size_type virtual_offset;
be391dca 138 /* True if we have tried to read this section. */
73869dc2
DE
139 char readin;
140 /* True if this is a virtual section, False otherwise.
141 This specifies which of s.asection and s.containing_section to use. */
142 char is_virtual;
dce234bc
PP
143};
144
8b70b953
TT
145typedef struct dwarf2_section_info dwarf2_section_info_def;
146DEF_VEC_O (dwarf2_section_info_def);
147
9291a0cd
TT
148/* All offsets in the index are of this type. It must be
149 architecture-independent. */
150typedef uint32_t offset_type;
151
152DEF_VEC_I (offset_type);
153
156942c7
DE
154/* Ensure only legit values are used. */
155#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
156 do { \
157 gdb_assert ((unsigned int) (value) <= 1); \
158 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
159 } while (0)
160
161/* Ensure only legit values are used. */
162#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
163 do { \
164 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
165 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
166 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
167 } while (0)
168
169/* Ensure we don't use more than the alloted nuber of bits for the CU. */
170#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
171 do { \
172 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
173 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
174 } while (0)
175
9291a0cd
TT
176/* A description of the mapped index. The file format is described in
177 a comment by the code that writes the index. */
178struct mapped_index
179{
559a7a62
JK
180 /* Index data format version. */
181 int version;
182
9291a0cd
TT
183 /* The total length of the buffer. */
184 off_t total_size;
b11b1f88 185
9291a0cd
TT
186 /* A pointer to the address table data. */
187 const gdb_byte *address_table;
b11b1f88 188
9291a0cd
TT
189 /* Size of the address table data in bytes. */
190 offset_type address_table_size;
b11b1f88 191
3876f04e
DE
192 /* The symbol table, implemented as a hash table. */
193 const offset_type *symbol_table;
b11b1f88 194
9291a0cd 195 /* Size in slots, each slot is 2 offset_types. */
3876f04e 196 offset_type symbol_table_slots;
b11b1f88 197
9291a0cd
TT
198 /* A pointer to the constant pool. */
199 const char *constant_pool;
200};
201
95554aad
TT
202typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
203DEF_VEC_P (dwarf2_per_cu_ptr);
204
9cdd5dbd
DE
205/* Collection of data recorded per objfile.
206 This hangs off of dwarf2_objfile_data_key. */
207
6502dd73
DJ
208struct dwarf2_per_objfile
209{
dce234bc
PP
210 struct dwarf2_section_info info;
211 struct dwarf2_section_info abbrev;
212 struct dwarf2_section_info line;
dce234bc
PP
213 struct dwarf2_section_info loc;
214 struct dwarf2_section_info macinfo;
cf2c3c16 215 struct dwarf2_section_info macro;
dce234bc
PP
216 struct dwarf2_section_info str;
217 struct dwarf2_section_info ranges;
3019eac3 218 struct dwarf2_section_info addr;
dce234bc
PP
219 struct dwarf2_section_info frame;
220 struct dwarf2_section_info eh_frame;
9291a0cd 221 struct dwarf2_section_info gdb_index;
ae038cb0 222
8b70b953
TT
223 VEC (dwarf2_section_info_def) *types;
224
be391dca
TT
225 /* Back link. */
226 struct objfile *objfile;
227
d467dd73 228 /* Table of all the compilation units. This is used to locate
10b3939b 229 the target compilation unit of a particular reference. */
ae038cb0
DJ
230 struct dwarf2_per_cu_data **all_comp_units;
231
232 /* The number of compilation units in ALL_COMP_UNITS. */
233 int n_comp_units;
234
1fd400ff 235 /* The number of .debug_types-related CUs. */
d467dd73 236 int n_type_units;
1fd400ff 237
a2ce51a0
DE
238 /* The .debug_types-related CUs (TUs).
239 This is stored in malloc space because we may realloc it. */
b4dd5633 240 struct signatured_type **all_type_units;
1fd400ff 241
f4dc4d17
DE
242 /* The number of entries in all_type_unit_groups. */
243 int n_type_unit_groups;
244
245 /* Table of type unit groups.
246 This exists to make it easy to iterate over all CUs and TU groups. */
247 struct type_unit_group **all_type_unit_groups;
248
249 /* Table of struct type_unit_group objects.
250 The hash key is the DW_AT_stmt_list value. */
251 htab_t type_unit_groups;
72dca2f5 252
348e048f
DE
253 /* A table mapping .debug_types signatures to its signatured_type entry.
254 This is NULL if the .debug_types section hasn't been read in yet. */
255 htab_t signatured_types;
256
f4dc4d17
DE
257 /* Type unit statistics, to see how well the scaling improvements
258 are doing. */
259 struct tu_stats
260 {
261 int nr_uniq_abbrev_tables;
262 int nr_symtabs;
263 int nr_symtab_sharers;
264 int nr_stmt_less_type_units;
265 } tu_stats;
266
267 /* A chain of compilation units that are currently read in, so that
268 they can be freed later. */
269 struct dwarf2_per_cu_data *read_in_chain;
270
3019eac3
DE
271 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
272 This is NULL if the table hasn't been allocated yet. */
273 htab_t dwo_files;
274
80626a55
DE
275 /* Non-zero if we've check for whether there is a DWP file. */
276 int dwp_checked;
277
278 /* The DWP file if there is one, or NULL. */
279 struct dwp_file *dwp_file;
280
36586728
TT
281 /* The shared '.dwz' file, if one exists. This is used when the
282 original data was compressed using 'dwz -m'. */
283 struct dwz_file *dwz_file;
284
72dca2f5
FR
285 /* A flag indicating wether this objfile has a section loaded at a
286 VMA of 0. */
287 int has_section_at_zero;
9291a0cd 288
ae2de4f8
DE
289 /* True if we are using the mapped index,
290 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
291 unsigned char using_index;
292
ae2de4f8 293 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 294 struct mapped_index *index_table;
98bfdba5 295
7b9f3c50 296 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
297 TUs typically share line table entries with a CU, so we maintain a
298 separate table of all line table entries to support the sharing.
299 Note that while there can be way more TUs than CUs, we've already
300 sorted all the TUs into "type unit groups", grouped by their
301 DW_AT_stmt_list value. Therefore the only sharing done here is with a
302 CU and its associated TU group if there is one. */
7b9f3c50
DE
303 htab_t quick_file_names_table;
304
98bfdba5
PA
305 /* Set during partial symbol reading, to prevent queueing of full
306 symbols. */
307 int reading_partial_symbols;
673bfd45 308
dee91e82 309 /* Table mapping type DIEs to their struct type *.
673bfd45 310 This is NULL if not allocated yet.
02142a6c 311 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 312 htab_t die_type_hash;
95554aad
TT
313
314 /* The CUs we recently read. */
315 VEC (dwarf2_per_cu_ptr) *just_read_cus;
6502dd73
DJ
316};
317
318static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 319
251d32d9 320/* Default names of the debugging sections. */
c906108c 321
233a11ab
CS
322/* Note that if the debugging section has been compressed, it might
323 have a name like .zdebug_info. */
324
9cdd5dbd
DE
325static const struct dwarf2_debug_sections dwarf2_elf_names =
326{
251d32d9
TG
327 { ".debug_info", ".zdebug_info" },
328 { ".debug_abbrev", ".zdebug_abbrev" },
329 { ".debug_line", ".zdebug_line" },
330 { ".debug_loc", ".zdebug_loc" },
331 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 332 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
333 { ".debug_str", ".zdebug_str" },
334 { ".debug_ranges", ".zdebug_ranges" },
335 { ".debug_types", ".zdebug_types" },
3019eac3 336 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
337 { ".debug_frame", ".zdebug_frame" },
338 { ".eh_frame", NULL },
24d3216f
TT
339 { ".gdb_index", ".zgdb_index" },
340 23
251d32d9 341};
c906108c 342
80626a55 343/* List of DWO/DWP sections. */
3019eac3 344
80626a55 345static const struct dwop_section_names
3019eac3
DE
346{
347 struct dwarf2_section_names abbrev_dwo;
348 struct dwarf2_section_names info_dwo;
349 struct dwarf2_section_names line_dwo;
350 struct dwarf2_section_names loc_dwo;
09262596
DE
351 struct dwarf2_section_names macinfo_dwo;
352 struct dwarf2_section_names macro_dwo;
3019eac3
DE
353 struct dwarf2_section_names str_dwo;
354 struct dwarf2_section_names str_offsets_dwo;
355 struct dwarf2_section_names types_dwo;
80626a55
DE
356 struct dwarf2_section_names cu_index;
357 struct dwarf2_section_names tu_index;
3019eac3 358}
80626a55 359dwop_section_names =
3019eac3
DE
360{
361 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
362 { ".debug_info.dwo", ".zdebug_info.dwo" },
363 { ".debug_line.dwo", ".zdebug_line.dwo" },
364 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
365 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
366 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
367 { ".debug_str.dwo", ".zdebug_str.dwo" },
368 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
369 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
370 { ".debug_cu_index", ".zdebug_cu_index" },
371 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
372};
373
c906108c
SS
374/* local data types */
375
107d2387
AC
376/* The data in a compilation unit header, after target2host
377 translation, looks like this. */
c906108c 378struct comp_unit_head
a738430d 379{
c764a876 380 unsigned int length;
a738430d 381 short version;
a738430d
MK
382 unsigned char addr_size;
383 unsigned char signed_addr_p;
b64f50a1 384 sect_offset abbrev_offset;
57349743 385
a738430d
MK
386 /* Size of file offsets; either 4 or 8. */
387 unsigned int offset_size;
57349743 388
a738430d
MK
389 /* Size of the length field; either 4 or 12. */
390 unsigned int initial_length_size;
57349743 391
a738430d
MK
392 /* Offset to the first byte of this compilation unit header in the
393 .debug_info section, for resolving relative reference dies. */
b64f50a1 394 sect_offset offset;
57349743 395
d00adf39
DE
396 /* Offset to first die in this cu from the start of the cu.
397 This will be the first byte following the compilation unit header. */
b64f50a1 398 cu_offset first_die_offset;
a738430d 399};
c906108c 400
3da10d80
KS
401/* Type used for delaying computation of method physnames.
402 See comments for compute_delayed_physnames. */
403struct delayed_method_info
404{
405 /* The type to which the method is attached, i.e., its parent class. */
406 struct type *type;
407
408 /* The index of the method in the type's function fieldlists. */
409 int fnfield_index;
410
411 /* The index of the method in the fieldlist. */
412 int index;
413
414 /* The name of the DIE. */
415 const char *name;
416
417 /* The DIE associated with this method. */
418 struct die_info *die;
419};
420
421typedef struct delayed_method_info delayed_method_info;
422DEF_VEC_O (delayed_method_info);
423
e7c27a73
DJ
424/* Internal state when decoding a particular compilation unit. */
425struct dwarf2_cu
426{
427 /* The objfile containing this compilation unit. */
428 struct objfile *objfile;
429
d00adf39 430 /* The header of the compilation unit. */
e7c27a73 431 struct comp_unit_head header;
e142c38c 432
d00adf39
DE
433 /* Base address of this compilation unit. */
434 CORE_ADDR base_address;
435
436 /* Non-zero if base_address has been set. */
437 int base_known;
438
e142c38c
DJ
439 /* The language we are debugging. */
440 enum language language;
441 const struct language_defn *language_defn;
442
b0f35d58
DL
443 const char *producer;
444
e142c38c
DJ
445 /* The generic symbol table building routines have separate lists for
446 file scope symbols and all all other scopes (local scopes). So
447 we need to select the right one to pass to add_symbol_to_list().
448 We do it by keeping a pointer to the correct list in list_in_scope.
449
450 FIXME: The original dwarf code just treated the file scope as the
451 first local scope, and all other local scopes as nested local
452 scopes, and worked fine. Check to see if we really need to
453 distinguish these in buildsym.c. */
454 struct pending **list_in_scope;
455
433df2d4
DE
456 /* The abbrev table for this CU.
457 Normally this points to the abbrev table in the objfile.
458 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
459 struct abbrev_table *abbrev_table;
72bf9492 460
b64f50a1
JK
461 /* Hash table holding all the loaded partial DIEs
462 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
463 htab_t partial_dies;
464
465 /* Storage for things with the same lifetime as this read-in compilation
466 unit, including partial DIEs. */
467 struct obstack comp_unit_obstack;
468
ae038cb0
DJ
469 /* When multiple dwarf2_cu structures are living in memory, this field
470 chains them all together, so that they can be released efficiently.
471 We will probably also want a generation counter so that most-recently-used
472 compilation units are cached... */
473 struct dwarf2_per_cu_data *read_in_chain;
474
69d751e3 475 /* Backlink to our per_cu entry. */
ae038cb0
DJ
476 struct dwarf2_per_cu_data *per_cu;
477
478 /* How many compilation units ago was this CU last referenced? */
479 int last_used;
480
b64f50a1
JK
481 /* A hash table of DIE cu_offset for following references with
482 die_info->offset.sect_off as hash. */
51545339 483 htab_t die_hash;
10b3939b
DJ
484
485 /* Full DIEs if read in. */
486 struct die_info *dies;
487
488 /* A set of pointers to dwarf2_per_cu_data objects for compilation
489 units referenced by this one. Only set during full symbol processing;
490 partial symbol tables do not have dependencies. */
491 htab_t dependencies;
492
cb1df416
DJ
493 /* Header data from the line table, during full symbol processing. */
494 struct line_header *line_header;
495
3da10d80
KS
496 /* A list of methods which need to have physnames computed
497 after all type information has been read. */
498 VEC (delayed_method_info) *method_list;
499
96408a79
SA
500 /* To be copied to symtab->call_site_htab. */
501 htab_t call_site_htab;
502
034e5797
DE
503 /* Non-NULL if this CU came from a DWO file.
504 There is an invariant here that is important to remember:
505 Except for attributes copied from the top level DIE in the "main"
506 (or "stub") file in preparation for reading the DWO file
507 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
508 Either there isn't a DWO file (in which case this is NULL and the point
509 is moot), or there is and either we're not going to read it (in which
510 case this is NULL) or there is and we are reading it (in which case this
511 is non-NULL). */
3019eac3
DE
512 struct dwo_unit *dwo_unit;
513
514 /* The DW_AT_addr_base attribute if present, zero otherwise
515 (zero is a valid value though).
1dbab08b 516 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
517 ULONGEST addr_base;
518
2e3cf129
DE
519 /* The DW_AT_ranges_base attribute if present, zero otherwise
520 (zero is a valid value though).
1dbab08b 521 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 522 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
523 be used without needing to know whether DWO files are in use or not.
524 N.B. This does not apply to DW_AT_ranges appearing in
525 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
526 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
527 DW_AT_ranges_base *would* have to be applied, and we'd have to care
528 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
529 ULONGEST ranges_base;
530
ae038cb0
DJ
531 /* Mark used when releasing cached dies. */
532 unsigned int mark : 1;
533
8be455d7
JK
534 /* This CU references .debug_loc. See the symtab->locations_valid field.
535 This test is imperfect as there may exist optimized debug code not using
536 any location list and still facing inlining issues if handled as
537 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 538 unsigned int has_loclist : 1;
ba919b58 539
1b80a9fa
JK
540 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
541 if all the producer_is_* fields are valid. This information is cached
542 because profiling CU expansion showed excessive time spent in
543 producer_is_gxx_lt_4_6. */
ba919b58
TT
544 unsigned int checked_producer : 1;
545 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 546 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 547 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
548
549 /* When set, the file that we're processing is known to have
550 debugging info for C++ namespaces. GCC 3.3.x did not produce
551 this information, but later versions do. */
552
553 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
554};
555
10b3939b
DJ
556/* Persistent data held for a compilation unit, even when not
557 processing it. We put a pointer to this structure in the
28dee7f5 558 read_symtab_private field of the psymtab. */
10b3939b 559
ae038cb0
DJ
560struct dwarf2_per_cu_data
561{
36586728 562 /* The start offset and length of this compilation unit.
45452591 563 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
564 initial_length_size.
565 If the DIE refers to a DWO file, this is always of the original die,
566 not the DWO file. */
b64f50a1 567 sect_offset offset;
36586728 568 unsigned int length;
ae038cb0
DJ
569
570 /* Flag indicating this compilation unit will be read in before
571 any of the current compilation units are processed. */
c764a876 572 unsigned int queued : 1;
ae038cb0 573
0d99eb77
DE
574 /* This flag will be set when reading partial DIEs if we need to load
575 absolutely all DIEs for this compilation unit, instead of just the ones
576 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
577 hash table and don't find it. */
578 unsigned int load_all_dies : 1;
579
0186c6a7
DE
580 /* Non-zero if this CU is from .debug_types.
581 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
582 this is non-zero. */
3019eac3
DE
583 unsigned int is_debug_types : 1;
584
36586728
TT
585 /* Non-zero if this CU is from the .dwz file. */
586 unsigned int is_dwz : 1;
587
a2ce51a0
DE
588 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
589 This flag is only valid if is_debug_types is true.
590 We can't read a CU directly from a DWO file: There are required
591 attributes in the stub. */
592 unsigned int reading_dwo_directly : 1;
593
7ee85ab1
DE
594 /* Non-zero if the TU has been read.
595 This is used to assist the "Stay in DWO Optimization" for Fission:
596 When reading a DWO, it's faster to read TUs from the DWO instead of
597 fetching them from random other DWOs (due to comdat folding).
598 If the TU has already been read, the optimization is unnecessary
599 (and unwise - we don't want to change where gdb thinks the TU lives
600 "midflight").
601 This flag is only valid if is_debug_types is true. */
602 unsigned int tu_read : 1;
603
3019eac3
DE
604 /* The section this CU/TU lives in.
605 If the DIE refers to a DWO file, this is always the original die,
606 not the DWO file. */
8a0459fd 607 struct dwarf2_section_info *section;
348e048f 608
17ea53c3
JK
609 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
610 of the CU cache it gets reset to NULL again. */
ae038cb0 611 struct dwarf2_cu *cu;
1c379e20 612
9cdd5dbd
DE
613 /* The corresponding objfile.
614 Normally we can get the objfile from dwarf2_per_objfile.
615 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
616 struct objfile *objfile;
617
618 /* When using partial symbol tables, the 'psymtab' field is active.
619 Otherwise the 'quick' field is active. */
620 union
621 {
622 /* The partial symbol table associated with this compilation unit,
95554aad 623 or NULL for unread partial units. */
9291a0cd
TT
624 struct partial_symtab *psymtab;
625
626 /* Data needed by the "quick" functions. */
627 struct dwarf2_per_cu_quick_data *quick;
628 } v;
95554aad 629
796a7ff8
DE
630 /* The CUs we import using DW_TAG_imported_unit. This is filled in
631 while reading psymtabs, used to compute the psymtab dependencies,
632 and then cleared. Then it is filled in again while reading full
633 symbols, and only deleted when the objfile is destroyed.
634
635 This is also used to work around a difference between the way gold
636 generates .gdb_index version <=7 and the way gdb does. Arguably this
637 is a gold bug. For symbols coming from TUs, gold records in the index
638 the CU that includes the TU instead of the TU itself. This breaks
639 dw2_lookup_symbol: It assumes that if the index says symbol X lives
640 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
641 will find X. Alas TUs live in their own symtab, so after expanding CU Y
642 we need to look in TU Z to find X. Fortunately, this is akin to
643 DW_TAG_imported_unit, so we just use the same mechanism: For
644 .gdb_index version <=7 this also records the TUs that the CU referred
645 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
646 indices so we only pay a price for gold generated indices.
647 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 648 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
649};
650
348e048f
DE
651/* Entry in the signatured_types hash table. */
652
653struct signatured_type
654{
42e7ad6c 655 /* The "per_cu" object of this type.
ac9ec31b 656 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
657 N.B.: This is the first member so that it's easy to convert pointers
658 between them. */
659 struct dwarf2_per_cu_data per_cu;
660
3019eac3 661 /* The type's signature. */
348e048f
DE
662 ULONGEST signature;
663
3019eac3 664 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
665 If this TU is a DWO stub and the definition lives in a DWO file
666 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
667 cu_offset type_offset_in_tu;
668
669 /* Offset in the section of the type's DIE.
670 If the definition lives in a DWO file, this is the offset in the
671 .debug_types.dwo section.
672 The value is zero until the actual value is known.
673 Zero is otherwise not a valid section offset. */
674 sect_offset type_offset_in_section;
0186c6a7
DE
675
676 /* Type units are grouped by their DW_AT_stmt_list entry so that they
677 can share them. This points to the containing symtab. */
678 struct type_unit_group *type_unit_group;
ac9ec31b
DE
679
680 /* The type.
681 The first time we encounter this type we fully read it in and install it
682 in the symbol tables. Subsequent times we only need the type. */
683 struct type *type;
a2ce51a0
DE
684
685 /* Containing DWO unit.
686 This field is valid iff per_cu.reading_dwo_directly. */
687 struct dwo_unit *dwo_unit;
348e048f
DE
688};
689
0186c6a7
DE
690typedef struct signatured_type *sig_type_ptr;
691DEF_VEC_P (sig_type_ptr);
692
094b34ac
DE
693/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
694 This includes type_unit_group and quick_file_names. */
695
696struct stmt_list_hash
697{
698 /* The DWO unit this table is from or NULL if there is none. */
699 struct dwo_unit *dwo_unit;
700
701 /* Offset in .debug_line or .debug_line.dwo. */
702 sect_offset line_offset;
703};
704
f4dc4d17
DE
705/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
706 an object of this type. */
707
708struct type_unit_group
709{
0186c6a7 710 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
711 To simplify things we create an artificial CU that "includes" all the
712 type units using this stmt_list so that the rest of the code still has
713 a "per_cu" handle on the symtab.
714 This PER_CU is recognized by having no section. */
8a0459fd 715#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
716 struct dwarf2_per_cu_data per_cu;
717
0186c6a7
DE
718 /* The TUs that share this DW_AT_stmt_list entry.
719 This is added to while parsing type units to build partial symtabs,
720 and is deleted afterwards and not used again. */
721 VEC (sig_type_ptr) *tus;
f4dc4d17
DE
722
723 /* The primary symtab.
094b34ac
DE
724 Type units in a group needn't all be defined in the same source file,
725 so we create an essentially anonymous symtab as the primary symtab. */
f4dc4d17
DE
726 struct symtab *primary_symtab;
727
094b34ac
DE
728 /* The data used to construct the hash key. */
729 struct stmt_list_hash hash;
f4dc4d17
DE
730
731 /* The number of symtabs from the line header.
732 The value here must match line_header.num_file_names. */
733 unsigned int num_symtabs;
734
735 /* The symbol tables for this TU (obtained from the files listed in
736 DW_AT_stmt_list).
737 WARNING: The order of entries here must match the order of entries
738 in the line header. After the first TU using this type_unit_group, the
739 line header for the subsequent TUs is recreated from this. This is done
740 because we need to use the same symtabs for each TU using the same
741 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
742 there's no guarantee the line header doesn't have duplicate entries. */
743 struct symtab **symtabs;
744};
745
73869dc2 746/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
747
748struct dwo_sections
749{
750 struct dwarf2_section_info abbrev;
3019eac3
DE
751 struct dwarf2_section_info line;
752 struct dwarf2_section_info loc;
09262596
DE
753 struct dwarf2_section_info macinfo;
754 struct dwarf2_section_info macro;
3019eac3
DE
755 struct dwarf2_section_info str;
756 struct dwarf2_section_info str_offsets;
80626a55
DE
757 /* In the case of a virtual DWO file, these two are unused. */
758 struct dwarf2_section_info info;
3019eac3
DE
759 VEC (dwarf2_section_info_def) *types;
760};
761
c88ee1f0 762/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
763
764struct dwo_unit
765{
766 /* Backlink to the containing struct dwo_file. */
767 struct dwo_file *dwo_file;
768
769 /* The "id" that distinguishes this CU/TU.
770 .debug_info calls this "dwo_id", .debug_types calls this "signature".
771 Since signatures came first, we stick with it for consistency. */
772 ULONGEST signature;
773
774 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 775 struct dwarf2_section_info *section;
3019eac3 776
19ac8c2e 777 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
778 sect_offset offset;
779 unsigned int length;
780
781 /* For types, offset in the type's DIE of the type defined by this TU. */
782 cu_offset type_offset_in_tu;
783};
784
73869dc2
DE
785/* include/dwarf2.h defines the DWP section codes.
786 It defines a max value but it doesn't define a min value, which we
787 use for error checking, so provide one. */
788
789enum dwp_v2_section_ids
790{
791 DW_SECT_MIN = 1
792};
793
80626a55 794/* Data for one DWO file.
57d63ce2
DE
795
796 This includes virtual DWO files (a virtual DWO file is a DWO file as it
797 appears in a DWP file). DWP files don't really have DWO files per se -
798 comdat folding of types "loses" the DWO file they came from, and from
799 a high level view DWP files appear to contain a mass of random types.
800 However, to maintain consistency with the non-DWP case we pretend DWP
801 files contain virtual DWO files, and we assign each TU with one virtual
802 DWO file (generally based on the line and abbrev section offsets -
803 a heuristic that seems to work in practice). */
3019eac3
DE
804
805struct dwo_file
806{
0ac5b59e 807 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
808 For virtual DWO files the name is constructed from the section offsets
809 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
810 from related CU+TUs. */
0ac5b59e
DE
811 const char *dwo_name;
812
813 /* The DW_AT_comp_dir attribute. */
814 const char *comp_dir;
3019eac3 815
80626a55
DE
816 /* The bfd, when the file is open. Otherwise this is NULL.
817 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
818 bfd *dbfd;
3019eac3 819
73869dc2
DE
820 /* The sections that make up this DWO file.
821 Remember that for virtual DWO files in DWP V2, these are virtual
822 sections (for lack of a better name). */
3019eac3
DE
823 struct dwo_sections sections;
824
19c3d4c9
DE
825 /* The CU in the file.
826 We only support one because having more than one requires hacking the
827 dwo_name of each to match, which is highly unlikely to happen.
828 Doing this means all TUs can share comp_dir: We also assume that
829 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
830 struct dwo_unit *cu;
3019eac3
DE
831
832 /* Table of TUs in the file.
833 Each element is a struct dwo_unit. */
834 htab_t tus;
835};
836
80626a55
DE
837/* These sections are what may appear in a DWP file. */
838
839struct dwp_sections
840{
73869dc2 841 /* These are used by both DWP version 1 and 2. */
80626a55
DE
842 struct dwarf2_section_info str;
843 struct dwarf2_section_info cu_index;
844 struct dwarf2_section_info tu_index;
73869dc2
DE
845
846 /* These are only used by DWP version 2 files.
847 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
848 sections are referenced by section number, and are not recorded here.
849 In DWP version 2 there is at most one copy of all these sections, each
850 section being (effectively) comprised of the concatenation of all of the
851 individual sections that exist in the version 1 format.
852 To keep the code simple we treat each of these concatenated pieces as a
853 section itself (a virtual section?). */
854 struct dwarf2_section_info abbrev;
855 struct dwarf2_section_info info;
856 struct dwarf2_section_info line;
857 struct dwarf2_section_info loc;
858 struct dwarf2_section_info macinfo;
859 struct dwarf2_section_info macro;
860 struct dwarf2_section_info str_offsets;
861 struct dwarf2_section_info types;
80626a55
DE
862};
863
73869dc2
DE
864/* These sections are what may appear in a virtual DWO file in DWP version 1.
865 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 866
73869dc2 867struct virtual_v1_dwo_sections
80626a55
DE
868{
869 struct dwarf2_section_info abbrev;
870 struct dwarf2_section_info line;
871 struct dwarf2_section_info loc;
872 struct dwarf2_section_info macinfo;
873 struct dwarf2_section_info macro;
874 struct dwarf2_section_info str_offsets;
875 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 876 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
877 struct dwarf2_section_info info_or_types;
878};
879
73869dc2
DE
880/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
881 In version 2, the sections of the DWO files are concatenated together
882 and stored in one section of that name. Thus each ELF section contains
883 several "virtual" sections. */
884
885struct virtual_v2_dwo_sections
886{
887 bfd_size_type abbrev_offset;
888 bfd_size_type abbrev_size;
889
890 bfd_size_type line_offset;
891 bfd_size_type line_size;
892
893 bfd_size_type loc_offset;
894 bfd_size_type loc_size;
895
896 bfd_size_type macinfo_offset;
897 bfd_size_type macinfo_size;
898
899 bfd_size_type macro_offset;
900 bfd_size_type macro_size;
901
902 bfd_size_type str_offsets_offset;
903 bfd_size_type str_offsets_size;
904
905 /* Each DWP hash table entry records one CU or one TU.
906 That is recorded here, and copied to dwo_unit.section. */
907 bfd_size_type info_or_types_offset;
908 bfd_size_type info_or_types_size;
909};
910
80626a55
DE
911/* Contents of DWP hash tables. */
912
913struct dwp_hash_table
914{
73869dc2 915 uint32_t version, nr_columns;
80626a55 916 uint32_t nr_units, nr_slots;
73869dc2
DE
917 const gdb_byte *hash_table, *unit_table;
918 union
919 {
920 struct
921 {
922 const gdb_byte *indices;
923 } v1;
924 struct
925 {
926 /* This is indexed by column number and gives the id of the section
927 in that column. */
928#define MAX_NR_V2_DWO_SECTIONS \
929 (1 /* .debug_info or .debug_types */ \
930 + 1 /* .debug_abbrev */ \
931 + 1 /* .debug_line */ \
932 + 1 /* .debug_loc */ \
933 + 1 /* .debug_str_offsets */ \
934 + 1 /* .debug_macro or .debug_macinfo */)
935 int section_ids[MAX_NR_V2_DWO_SECTIONS];
936 const gdb_byte *offsets;
937 const gdb_byte *sizes;
938 } v2;
939 } section_pool;
80626a55
DE
940};
941
942/* Data for one DWP file. */
943
944struct dwp_file
945{
946 /* Name of the file. */
947 const char *name;
948
73869dc2
DE
949 /* File format version. */
950 int version;
951
93417882 952 /* The bfd. */
80626a55
DE
953 bfd *dbfd;
954
955 /* Section info for this file. */
956 struct dwp_sections sections;
957
57d63ce2 958 /* Table of CUs in the file. */
80626a55
DE
959 const struct dwp_hash_table *cus;
960
961 /* Table of TUs in the file. */
962 const struct dwp_hash_table *tus;
963
19ac8c2e
DE
964 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
965 htab_t loaded_cus;
966 htab_t loaded_tus;
80626a55 967
73869dc2
DE
968 /* Table to map ELF section numbers to their sections.
969 This is only needed for the DWP V1 file format. */
80626a55
DE
970 unsigned int num_sections;
971 asection **elf_sections;
972};
973
36586728
TT
974/* This represents a '.dwz' file. */
975
976struct dwz_file
977{
978 /* A dwz file can only contain a few sections. */
979 struct dwarf2_section_info abbrev;
980 struct dwarf2_section_info info;
981 struct dwarf2_section_info str;
982 struct dwarf2_section_info line;
983 struct dwarf2_section_info macro;
2ec9a5e0 984 struct dwarf2_section_info gdb_index;
36586728
TT
985
986 /* The dwz's BFD. */
987 bfd *dwz_bfd;
988};
989
0963b4bd
MS
990/* Struct used to pass misc. parameters to read_die_and_children, et
991 al. which are used for both .debug_info and .debug_types dies.
992 All parameters here are unchanging for the life of the call. This
dee91e82 993 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
994
995struct die_reader_specs
996{
a32a8923 997 /* The bfd of die_section. */
93311388
DE
998 bfd* abfd;
999
1000 /* The CU of the DIE we are parsing. */
1001 struct dwarf2_cu *cu;
1002
80626a55 1003 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
1004 struct dwo_file *dwo_file;
1005
dee91e82 1006 /* The section the die comes from.
3019eac3 1007 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1008 struct dwarf2_section_info *die_section;
1009
1010 /* die_section->buffer. */
d521ce57 1011 const gdb_byte *buffer;
f664829e
DE
1012
1013 /* The end of the buffer. */
1014 const gdb_byte *buffer_end;
a2ce51a0
DE
1015
1016 /* The value of the DW_AT_comp_dir attribute. */
1017 const char *comp_dir;
93311388
DE
1018};
1019
fd820528 1020/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1021typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1022 const gdb_byte *info_ptr,
dee91e82
DE
1023 struct die_info *comp_unit_die,
1024 int has_children,
1025 void *data);
1026
debd256d
JB
1027/* The line number information for a compilation unit (found in the
1028 .debug_line section) begins with a "statement program header",
1029 which contains the following information. */
1030struct line_header
1031{
1032 unsigned int total_length;
1033 unsigned short version;
1034 unsigned int header_length;
1035 unsigned char minimum_instruction_length;
2dc7f7b3 1036 unsigned char maximum_ops_per_instruction;
debd256d
JB
1037 unsigned char default_is_stmt;
1038 int line_base;
1039 unsigned char line_range;
1040 unsigned char opcode_base;
1041
1042 /* standard_opcode_lengths[i] is the number of operands for the
1043 standard opcode whose value is i. This means that
1044 standard_opcode_lengths[0] is unused, and the last meaningful
1045 element is standard_opcode_lengths[opcode_base - 1]. */
1046 unsigned char *standard_opcode_lengths;
1047
1048 /* The include_directories table. NOTE! These strings are not
1049 allocated with xmalloc; instead, they are pointers into
1050 debug_line_buffer. If you try to free them, `free' will get
1051 indigestion. */
1052 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1053 const char **include_dirs;
debd256d
JB
1054
1055 /* The file_names table. NOTE! These strings are not allocated
1056 with xmalloc; instead, they are pointers into debug_line_buffer.
1057 Don't try to free them directly. */
1058 unsigned int num_file_names, file_names_size;
1059 struct file_entry
c906108c 1060 {
d521ce57 1061 const char *name;
debd256d
JB
1062 unsigned int dir_index;
1063 unsigned int mod_time;
1064 unsigned int length;
aaa75496 1065 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 1066 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
1067 } *file_names;
1068
1069 /* The start and end of the statement program following this
6502dd73 1070 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1071 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1072};
c906108c
SS
1073
1074/* When we construct a partial symbol table entry we only
0963b4bd 1075 need this much information. */
c906108c
SS
1076struct partial_die_info
1077 {
72bf9492 1078 /* Offset of this DIE. */
b64f50a1 1079 sect_offset offset;
72bf9492
DJ
1080
1081 /* DWARF-2 tag for this DIE. */
1082 ENUM_BITFIELD(dwarf_tag) tag : 16;
1083
72bf9492
DJ
1084 /* Assorted flags describing the data found in this DIE. */
1085 unsigned int has_children : 1;
1086 unsigned int is_external : 1;
1087 unsigned int is_declaration : 1;
1088 unsigned int has_type : 1;
1089 unsigned int has_specification : 1;
1090 unsigned int has_pc_info : 1;
481860b3 1091 unsigned int may_be_inlined : 1;
72bf9492
DJ
1092
1093 /* Flag set if the SCOPE field of this structure has been
1094 computed. */
1095 unsigned int scope_set : 1;
1096
fa4028e9
JB
1097 /* Flag set if the DIE has a byte_size attribute. */
1098 unsigned int has_byte_size : 1;
1099
98bfdba5
PA
1100 /* Flag set if any of the DIE's children are template arguments. */
1101 unsigned int has_template_arguments : 1;
1102
abc72ce4
DE
1103 /* Flag set if fixup_partial_die has been called on this die. */
1104 unsigned int fixup_called : 1;
1105
36586728
TT
1106 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1107 unsigned int is_dwz : 1;
1108
1109 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1110 unsigned int spec_is_dwz : 1;
1111
72bf9492 1112 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1113 sometimes a default name for unnamed DIEs. */
15d034d0 1114 const char *name;
72bf9492 1115
abc72ce4
DE
1116 /* The linkage name, if present. */
1117 const char *linkage_name;
1118
72bf9492
DJ
1119 /* The scope to prepend to our children. This is generally
1120 allocated on the comp_unit_obstack, so will disappear
1121 when this compilation unit leaves the cache. */
15d034d0 1122 const char *scope;
72bf9492 1123
95554aad
TT
1124 /* Some data associated with the partial DIE. The tag determines
1125 which field is live. */
1126 union
1127 {
1128 /* The location description associated with this DIE, if any. */
1129 struct dwarf_block *locdesc;
1130 /* The offset of an import, for DW_TAG_imported_unit. */
1131 sect_offset offset;
1132 } d;
72bf9492
DJ
1133
1134 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1135 CORE_ADDR lowpc;
1136 CORE_ADDR highpc;
72bf9492 1137
93311388 1138 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1139 DW_AT_sibling, if any. */
abc72ce4
DE
1140 /* NOTE: This member isn't strictly necessary, read_partial_die could
1141 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1142 const gdb_byte *sibling;
72bf9492
DJ
1143
1144 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1145 DW_AT_specification (or DW_AT_abstract_origin or
1146 DW_AT_extension). */
b64f50a1 1147 sect_offset spec_offset;
72bf9492
DJ
1148
1149 /* Pointers to this DIE's parent, first child, and next sibling,
1150 if any. */
1151 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1152 };
1153
0963b4bd 1154/* This data structure holds the information of an abbrev. */
c906108c
SS
1155struct abbrev_info
1156 {
1157 unsigned int number; /* number identifying abbrev */
1158 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1159 unsigned short has_children; /* boolean */
1160 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1161 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1162 struct abbrev_info *next; /* next in chain */
1163 };
1164
1165struct attr_abbrev
1166 {
9d25dd43
DE
1167 ENUM_BITFIELD(dwarf_attribute) name : 16;
1168 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1169 };
1170
433df2d4
DE
1171/* Size of abbrev_table.abbrev_hash_table. */
1172#define ABBREV_HASH_SIZE 121
1173
1174/* Top level data structure to contain an abbreviation table. */
1175
1176struct abbrev_table
1177{
f4dc4d17
DE
1178 /* Where the abbrev table came from.
1179 This is used as a sanity check when the table is used. */
433df2d4
DE
1180 sect_offset offset;
1181
1182 /* Storage for the abbrev table. */
1183 struct obstack abbrev_obstack;
1184
1185 /* Hash table of abbrevs.
1186 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1187 It could be statically allocated, but the previous code didn't so we
1188 don't either. */
1189 struct abbrev_info **abbrevs;
1190};
1191
0963b4bd 1192/* Attributes have a name and a value. */
b60c80d6
DJ
1193struct attribute
1194 {
9d25dd43 1195 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1196 ENUM_BITFIELD(dwarf_form) form : 15;
1197
1198 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1199 field should be in u.str (existing only for DW_STRING) but it is kept
1200 here for better struct attribute alignment. */
1201 unsigned int string_is_canonical : 1;
1202
b60c80d6
DJ
1203 union
1204 {
15d034d0 1205 const char *str;
b60c80d6 1206 struct dwarf_block *blk;
43bbcdc2
PH
1207 ULONGEST unsnd;
1208 LONGEST snd;
b60c80d6 1209 CORE_ADDR addr;
ac9ec31b 1210 ULONGEST signature;
b60c80d6
DJ
1211 }
1212 u;
1213 };
1214
0963b4bd 1215/* This data structure holds a complete die structure. */
c906108c
SS
1216struct die_info
1217 {
76815b17
DE
1218 /* DWARF-2 tag for this DIE. */
1219 ENUM_BITFIELD(dwarf_tag) tag : 16;
1220
1221 /* Number of attributes */
98bfdba5
PA
1222 unsigned char num_attrs;
1223
1224 /* True if we're presently building the full type name for the
1225 type derived from this DIE. */
1226 unsigned char building_fullname : 1;
76815b17 1227
adde2bff
DE
1228 /* True if this die is in process. PR 16581. */
1229 unsigned char in_process : 1;
1230
76815b17
DE
1231 /* Abbrev number */
1232 unsigned int abbrev;
1233
93311388 1234 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1235 sect_offset offset;
78ba4af6
JB
1236
1237 /* The dies in a compilation unit form an n-ary tree. PARENT
1238 points to this die's parent; CHILD points to the first child of
1239 this node; and all the children of a given node are chained
4950bc1c 1240 together via their SIBLING fields. */
639d11d3
DC
1241 struct die_info *child; /* Its first child, if any. */
1242 struct die_info *sibling; /* Its next sibling, if any. */
1243 struct die_info *parent; /* Its parent, if any. */
c906108c 1244
b60c80d6
DJ
1245 /* An array of attributes, with NUM_ATTRS elements. There may be
1246 zero, but it's not common and zero-sized arrays are not
1247 sufficiently portable C. */
1248 struct attribute attrs[1];
c906108c
SS
1249 };
1250
0963b4bd 1251/* Get at parts of an attribute structure. */
c906108c
SS
1252
1253#define DW_STRING(attr) ((attr)->u.str)
8285870a 1254#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1255#define DW_UNSND(attr) ((attr)->u.unsnd)
1256#define DW_BLOCK(attr) ((attr)->u.blk)
1257#define DW_SND(attr) ((attr)->u.snd)
1258#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1259#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1260
0963b4bd 1261/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1262struct dwarf_block
1263 {
56eb65bd 1264 size_t size;
1d6edc3c
JK
1265
1266 /* Valid only if SIZE is not zero. */
d521ce57 1267 const gdb_byte *data;
c906108c
SS
1268 };
1269
c906108c
SS
1270#ifndef ATTR_ALLOC_CHUNK
1271#define ATTR_ALLOC_CHUNK 4
1272#endif
1273
c906108c
SS
1274/* Allocate fields for structs, unions and enums in this size. */
1275#ifndef DW_FIELD_ALLOC_CHUNK
1276#define DW_FIELD_ALLOC_CHUNK 4
1277#endif
1278
c906108c
SS
1279/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1280 but this would require a corresponding change in unpack_field_as_long
1281 and friends. */
1282static int bits_per_byte = 8;
1283
1284/* The routines that read and process dies for a C struct or C++ class
1285 pass lists of data member fields and lists of member function fields
1286 in an instance of a field_info structure, as defined below. */
1287struct field_info
c5aa993b 1288 {
0963b4bd 1289 /* List of data member and baseclasses fields. */
c5aa993b
JM
1290 struct nextfield
1291 {
1292 struct nextfield *next;
1293 int accessibility;
1294 int virtuality;
1295 struct field field;
1296 }
7d0ccb61 1297 *fields, *baseclasses;
c906108c 1298
7d0ccb61 1299 /* Number of fields (including baseclasses). */
c5aa993b 1300 int nfields;
c906108c 1301
c5aa993b
JM
1302 /* Number of baseclasses. */
1303 int nbaseclasses;
c906108c 1304
c5aa993b
JM
1305 /* Set if the accesibility of one of the fields is not public. */
1306 int non_public_fields;
c906108c 1307
c5aa993b
JM
1308 /* Member function fields array, entries are allocated in the order they
1309 are encountered in the object file. */
1310 struct nextfnfield
1311 {
1312 struct nextfnfield *next;
1313 struct fn_field fnfield;
1314 }
1315 *fnfields;
c906108c 1316
c5aa993b
JM
1317 /* Member function fieldlist array, contains name of possibly overloaded
1318 member function, number of overloaded member functions and a pointer
1319 to the head of the member function field chain. */
1320 struct fnfieldlist
1321 {
15d034d0 1322 const char *name;
c5aa993b
JM
1323 int length;
1324 struct nextfnfield *head;
1325 }
1326 *fnfieldlists;
c906108c 1327
c5aa993b
JM
1328 /* Number of entries in the fnfieldlists array. */
1329 int nfnfields;
98751a41
JK
1330
1331 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1332 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1333 struct typedef_field_list
1334 {
1335 struct typedef_field field;
1336 struct typedef_field_list *next;
1337 }
1338 *typedef_field_list;
1339 unsigned typedef_field_list_count;
c5aa993b 1340 };
c906108c 1341
10b3939b
DJ
1342/* One item on the queue of compilation units to read in full symbols
1343 for. */
1344struct dwarf2_queue_item
1345{
1346 struct dwarf2_per_cu_data *per_cu;
95554aad 1347 enum language pretend_language;
10b3939b
DJ
1348 struct dwarf2_queue_item *next;
1349};
1350
1351/* The current queue. */
1352static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1353
ae038cb0
DJ
1354/* Loaded secondary compilation units are kept in memory until they
1355 have not been referenced for the processing of this many
1356 compilation units. Set this to zero to disable caching. Cache
1357 sizes of up to at least twenty will improve startup time for
1358 typical inter-CU-reference binaries, at an obvious memory cost. */
1359static int dwarf2_max_cache_age = 5;
920d2a44
AC
1360static void
1361show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1362 struct cmd_list_element *c, const char *value)
1363{
3e43a32a
MS
1364 fprintf_filtered (file, _("The upper bound on the age of cached "
1365 "dwarf2 compilation units is %s.\n"),
920d2a44
AC
1366 value);
1367}
4390d890 1368\f
c906108c
SS
1369/* local function prototypes */
1370
a32a8923
DE
1371static const char *get_section_name (const struct dwarf2_section_info *);
1372
1373static const char *get_section_file_name (const struct dwarf2_section_info *);
1374
4efb68b1 1375static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1376
918dd910
JK
1377static void dwarf2_find_base_address (struct die_info *die,
1378 struct dwarf2_cu *cu);
1379
0018ea6f
DE
1380static struct partial_symtab *create_partial_symtab
1381 (struct dwarf2_per_cu_data *per_cu, const char *name);
1382
c67a9c90 1383static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1384
72bf9492
DJ
1385static void scan_partial_symbols (struct partial_die_info *,
1386 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1387 int, struct dwarf2_cu *);
c906108c 1388
72bf9492
DJ
1389static void add_partial_symbol (struct partial_die_info *,
1390 struct dwarf2_cu *);
63d06c5c 1391
72bf9492
DJ
1392static void add_partial_namespace (struct partial_die_info *pdi,
1393 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1394 int need_pc, struct dwarf2_cu *cu);
63d06c5c 1395
5d7cb8df
JK
1396static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1397 CORE_ADDR *highpc, int need_pc,
1398 struct dwarf2_cu *cu);
1399
72bf9492
DJ
1400static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1401 struct dwarf2_cu *cu);
91c24f0a 1402
bc30ff58
JB
1403static void add_partial_subprogram (struct partial_die_info *pdi,
1404 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1405 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1406
257e7a09
YQ
1407static void dwarf2_read_symtab (struct partial_symtab *,
1408 struct objfile *);
c906108c 1409
a14ed312 1410static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1411
433df2d4
DE
1412static struct abbrev_info *abbrev_table_lookup_abbrev
1413 (const struct abbrev_table *, unsigned int);
1414
1415static struct abbrev_table *abbrev_table_read_table
1416 (struct dwarf2_section_info *, sect_offset);
1417
1418static void abbrev_table_free (struct abbrev_table *);
1419
f4dc4d17
DE
1420static void abbrev_table_free_cleanup (void *);
1421
dee91e82
DE
1422static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1423 struct dwarf2_section_info *);
c906108c 1424
f3dd6933 1425static void dwarf2_free_abbrev_table (void *);
c906108c 1426
d521ce57 1427static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1428
dee91e82 1429static struct partial_die_info *load_partial_dies
d521ce57 1430 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1431
d521ce57
TT
1432static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1433 struct partial_die_info *,
1434 struct abbrev_info *,
1435 unsigned int,
1436 const gdb_byte *);
c906108c 1437
36586728 1438static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1439 struct dwarf2_cu *);
72bf9492
DJ
1440
1441static void fixup_partial_die (struct partial_die_info *,
1442 struct dwarf2_cu *);
1443
d521ce57
TT
1444static const gdb_byte *read_attribute (const struct die_reader_specs *,
1445 struct attribute *, struct attr_abbrev *,
1446 const gdb_byte *);
a8329558 1447
a1855c1d 1448static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1449
a1855c1d 1450static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1451
a1855c1d 1452static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1453
a1855c1d 1454static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1455
a1855c1d 1456static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1457
d521ce57 1458static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1459 unsigned int *);
c906108c 1460
d521ce57 1461static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1462
1463static LONGEST read_checked_initial_length_and_offset
d521ce57 1464 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1465 unsigned int *, unsigned int *);
613e1657 1466
d521ce57
TT
1467static LONGEST read_offset (bfd *, const gdb_byte *,
1468 const struct comp_unit_head *,
c764a876
DE
1469 unsigned int *);
1470
d521ce57 1471static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1472
f4dc4d17
DE
1473static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1474 sect_offset);
1475
d521ce57 1476static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1477
d521ce57 1478static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1479
d521ce57
TT
1480static const char *read_indirect_string (bfd *, const gdb_byte *,
1481 const struct comp_unit_head *,
1482 unsigned int *);
4bdf3d34 1483
d521ce57 1484static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1485
d521ce57 1486static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1487
d521ce57 1488static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1489
d521ce57
TT
1490static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1491 const gdb_byte *,
3019eac3
DE
1492 unsigned int *);
1493
d521ce57 1494static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1495 ULONGEST str_index);
3019eac3 1496
e142c38c 1497static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1498
e142c38c
DJ
1499static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1500 struct dwarf2_cu *);
c906108c 1501
348e048f 1502static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1503 unsigned int);
348e048f 1504
05cf31d1
JB
1505static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1506 struct dwarf2_cu *cu);
1507
e142c38c 1508static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1509
e142c38c 1510static struct die_info *die_specification (struct die_info *die,
f2f0e013 1511 struct dwarf2_cu **);
63d06c5c 1512
debd256d
JB
1513static void free_line_header (struct line_header *lh);
1514
3019eac3
DE
1515static struct line_header *dwarf_decode_line_header (unsigned int offset,
1516 struct dwarf2_cu *cu);
debd256d 1517
f3f5162e
DE
1518static void dwarf_decode_lines (struct line_header *, const char *,
1519 struct dwarf2_cu *, struct partial_symtab *,
1520 int);
c906108c 1521
d521ce57 1522static void dwarf2_start_subfile (const char *, const char *, const char *);
c906108c 1523
f4dc4d17 1524static void dwarf2_start_symtab (struct dwarf2_cu *,
15d034d0 1525 const char *, const char *, CORE_ADDR);
f4dc4d17 1526
a14ed312 1527static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1528 struct dwarf2_cu *);
c906108c 1529
34eaf542
TT
1530static struct symbol *new_symbol_full (struct die_info *, struct type *,
1531 struct dwarf2_cu *, struct symbol *);
1532
ff39bb5e 1533static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1534 struct dwarf2_cu *);
c906108c 1535
ff39bb5e 1536static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1537 struct type *type,
1538 const char *name,
1539 struct obstack *obstack,
12df843f 1540 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1541 const gdb_byte **bytes,
98bfdba5 1542 struct dwarf2_locexpr_baton **baton);
2df3850c 1543
e7c27a73 1544static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1545
b4ba55a1
JB
1546static int need_gnat_info (struct dwarf2_cu *);
1547
3e43a32a
MS
1548static struct type *die_descriptive_type (struct die_info *,
1549 struct dwarf2_cu *);
b4ba55a1
JB
1550
1551static void set_descriptive_type (struct type *, struct die_info *,
1552 struct dwarf2_cu *);
1553
e7c27a73
DJ
1554static struct type *die_containing_type (struct die_info *,
1555 struct dwarf2_cu *);
c906108c 1556
ff39bb5e 1557static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1558 struct dwarf2_cu *);
c906108c 1559
f792889a 1560static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1561
673bfd45
DE
1562static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1563
0d5cff50 1564static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1565
6e70227d 1566static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1567 const char *suffix, int physname,
1568 struct dwarf2_cu *cu);
63d06c5c 1569
e7c27a73 1570static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1571
348e048f
DE
1572static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1573
e7c27a73 1574static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1575
e7c27a73 1576static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1577
96408a79
SA
1578static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1579
ff013f42
JK
1580static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1581 struct dwarf2_cu *, struct partial_symtab *);
1582
a14ed312 1583static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1584 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1585 struct partial_symtab *);
c906108c 1586
fae299cd
DC
1587static void get_scope_pc_bounds (struct die_info *,
1588 CORE_ADDR *, CORE_ADDR *,
1589 struct dwarf2_cu *);
1590
801e3a5b
JB
1591static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1592 CORE_ADDR, struct dwarf2_cu *);
1593
a14ed312 1594static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1595 struct dwarf2_cu *);
c906108c 1596
a14ed312 1597static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1598 struct type *, struct dwarf2_cu *);
c906108c 1599
a14ed312 1600static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1601 struct die_info *, struct type *,
e7c27a73 1602 struct dwarf2_cu *);
c906108c 1603
a14ed312 1604static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1605 struct type *,
1606 struct dwarf2_cu *);
c906108c 1607
134d01f1 1608static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1609
e7c27a73 1610static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1611
e7c27a73 1612static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1613
5d7cb8df
JK
1614static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1615
27aa8d6a
SW
1616static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1617
74921315
KS
1618static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1619
f55ee35c
JK
1620static struct type *read_module_type (struct die_info *die,
1621 struct dwarf2_cu *cu);
1622
38d518c9 1623static const char *namespace_name (struct die_info *die,
e142c38c 1624 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1625
134d01f1 1626static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1627
e7c27a73 1628static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1629
6e70227d 1630static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1631 struct dwarf2_cu *);
1632
bf6af496 1633static struct die_info *read_die_and_siblings_1
d521ce57 1634 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1635 struct die_info *);
639d11d3 1636
dee91e82 1637static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1638 const gdb_byte *info_ptr,
1639 const gdb_byte **new_info_ptr,
639d11d3
DC
1640 struct die_info *parent);
1641
d521ce57
TT
1642static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1643 struct die_info **, const gdb_byte *,
1644 int *, int);
3019eac3 1645
d521ce57
TT
1646static const gdb_byte *read_full_die (const struct die_reader_specs *,
1647 struct die_info **, const gdb_byte *,
1648 int *);
93311388 1649
e7c27a73 1650static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1651
15d034d0
TT
1652static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1653 struct obstack *);
71c25dea 1654
15d034d0 1655static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1656
15d034d0 1657static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1658 struct die_info *die,
1659 struct dwarf2_cu *cu);
1660
ca69b9e6
DE
1661static const char *dwarf2_physname (const char *name, struct die_info *die,
1662 struct dwarf2_cu *cu);
1663
e142c38c 1664static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1665 struct dwarf2_cu **);
9219021c 1666
f39c6ffd 1667static const char *dwarf_tag_name (unsigned int);
c906108c 1668
f39c6ffd 1669static const char *dwarf_attr_name (unsigned int);
c906108c 1670
f39c6ffd 1671static const char *dwarf_form_name (unsigned int);
c906108c 1672
a14ed312 1673static char *dwarf_bool_name (unsigned int);
c906108c 1674
f39c6ffd 1675static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1676
f9aca02d 1677static struct die_info *sibling_die (struct die_info *);
c906108c 1678
d97bc12b
DE
1679static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1680
1681static void dump_die_for_error (struct die_info *);
1682
1683static void dump_die_1 (struct ui_file *, int level, int max_level,
1684 struct die_info *);
c906108c 1685
d97bc12b 1686/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1687
51545339 1688static void store_in_ref_table (struct die_info *,
10b3939b 1689 struct dwarf2_cu *);
c906108c 1690
ff39bb5e 1691static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1692
ff39bb5e 1693static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1694
348e048f 1695static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1696 const struct attribute *,
348e048f
DE
1697 struct dwarf2_cu **);
1698
10b3939b 1699static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1700 const struct attribute *,
f2f0e013 1701 struct dwarf2_cu **);
c906108c 1702
348e048f 1703static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1704 const struct attribute *,
348e048f
DE
1705 struct dwarf2_cu **);
1706
ac9ec31b
DE
1707static struct type *get_signatured_type (struct die_info *, ULONGEST,
1708 struct dwarf2_cu *);
1709
1710static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1711 const struct attribute *,
ac9ec31b
DE
1712 struct dwarf2_cu *);
1713
e5fe5e75 1714static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1715
52dc124a 1716static void read_signatured_type (struct signatured_type *);
348e048f 1717
f4dc4d17 1718static struct type_unit_group *get_type_unit_group
ff39bb5e 1719 (struct dwarf2_cu *, const struct attribute *);
f4dc4d17
DE
1720
1721static void build_type_unit_groups (die_reader_func_ftype *, void *);
1722
c906108c
SS
1723/* memory allocation interface */
1724
7b5a2f43 1725static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1726
b60c80d6 1727static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1728
09262596 1729static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int,
15d034d0 1730 const char *, int);
2e276125 1731
6e5a29e1 1732static int attr_form_is_block (const struct attribute *);
8e19ed76 1733
6e5a29e1 1734static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1735
6e5a29e1 1736static int attr_form_is_constant (const struct attribute *);
3690dd37 1737
6e5a29e1 1738static int attr_form_is_ref (const struct attribute *);
7771576e 1739
8cf6f0b1
TT
1740static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1741 struct dwarf2_loclist_baton *baton,
ff39bb5e 1742 const struct attribute *attr);
8cf6f0b1 1743
ff39bb5e 1744static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1745 struct symbol *sym,
f1e6e072
TT
1746 struct dwarf2_cu *cu,
1747 int is_block);
4c2df51b 1748
d521ce57
TT
1749static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1750 const gdb_byte *info_ptr,
1751 struct abbrev_info *abbrev);
4bb7a0a7 1752
72bf9492
DJ
1753static void free_stack_comp_unit (void *);
1754
72bf9492
DJ
1755static hashval_t partial_die_hash (const void *item);
1756
1757static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1758
ae038cb0 1759static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1760 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1761
9816fde3 1762static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1763 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1764
1765static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1766 struct die_info *comp_unit_die,
1767 enum language pretend_language);
93311388 1768
68dc6402 1769static void free_heap_comp_unit (void *);
ae038cb0
DJ
1770
1771static void free_cached_comp_units (void *);
1772
1773static void age_cached_comp_units (void);
1774
dee91e82 1775static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1776
f792889a
DJ
1777static struct type *set_die_type (struct die_info *, struct type *,
1778 struct dwarf2_cu *);
1c379e20 1779
ae038cb0
DJ
1780static void create_all_comp_units (struct objfile *);
1781
0e50663e 1782static int create_all_type_units (struct objfile *);
1fd400ff 1783
95554aad
TT
1784static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1785 enum language);
10b3939b 1786
95554aad
TT
1787static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1788 enum language);
10b3939b 1789
f4dc4d17
DE
1790static void process_full_type_unit (struct dwarf2_per_cu_data *,
1791 enum language);
1792
10b3939b
DJ
1793static void dwarf2_add_dependence (struct dwarf2_cu *,
1794 struct dwarf2_per_cu_data *);
1795
ae038cb0
DJ
1796static void dwarf2_mark (struct dwarf2_cu *);
1797
1798static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1799
b64f50a1 1800static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1801 struct dwarf2_per_cu_data *);
673bfd45 1802
f792889a 1803static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1804
9291a0cd
TT
1805static void dwarf2_release_queue (void *dummy);
1806
95554aad
TT
1807static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1808 enum language pretend_language);
1809
a0f42c21 1810static void process_queue (void);
9291a0cd
TT
1811
1812static void find_file_and_directory (struct die_info *die,
1813 struct dwarf2_cu *cu,
15d034d0 1814 const char **name, const char **comp_dir);
9291a0cd
TT
1815
1816static char *file_full_name (int file, struct line_header *lh,
1817 const char *comp_dir);
1818
d521ce57 1819static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1820 (struct comp_unit_head *header,
1821 struct dwarf2_section_info *section,
d521ce57 1822 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1823 int is_debug_types_section);
1824
fd820528 1825static void init_cutu_and_read_dies
f4dc4d17
DE
1826 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1827 int use_existing_cu, int keep,
3019eac3
DE
1828 die_reader_func_ftype *die_reader_func, void *data);
1829
dee91e82
DE
1830static void init_cutu_and_read_dies_simple
1831 (struct dwarf2_per_cu_data *this_cu,
1832 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1833
673bfd45 1834static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1835
3019eac3
DE
1836static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1837
57d63ce2
DE
1838static struct dwo_unit *lookup_dwo_unit_in_dwp
1839 (struct dwp_file *dwp_file, const char *comp_dir,
1840 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1841
1842static struct dwp_file *get_dwp_file (void);
1843
3019eac3 1844static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1845 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1846
1847static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1848 (struct signatured_type *, const char *, const char *);
3019eac3 1849
89e63ee4
DE
1850static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1851
3019eac3
DE
1852static void free_dwo_file_cleanup (void *);
1853
95554aad
TT
1854static void process_cu_includes (void);
1855
1b80a9fa 1856static void check_producer (struct dwarf2_cu *cu);
4390d890
DE
1857\f
1858/* Various complaints about symbol reading that don't abort the process. */
1859
1860static void
1861dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1862{
1863 complaint (&symfile_complaints,
1864 _("statement list doesn't fit in .debug_line section"));
1865}
1866
1867static void
1868dwarf2_debug_line_missing_file_complaint (void)
1869{
1870 complaint (&symfile_complaints,
1871 _(".debug_line section has line data without a file"));
1872}
1873
1874static void
1875dwarf2_debug_line_missing_end_sequence_complaint (void)
1876{
1877 complaint (&symfile_complaints,
1878 _(".debug_line section has line "
1879 "program sequence without an end"));
1880}
1881
1882static void
1883dwarf2_complex_location_expr_complaint (void)
1884{
1885 complaint (&symfile_complaints, _("location expression too complex"));
1886}
1887
1888static void
1889dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1890 int arg3)
1891{
1892 complaint (&symfile_complaints,
1893 _("const value length mismatch for '%s', got %d, expected %d"),
1894 arg1, arg2, arg3);
1895}
1896
1897static void
1898dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1899{
1900 complaint (&symfile_complaints,
1901 _("debug info runs off end of %s section"
1902 " [in module %s]"),
a32a8923
DE
1903 get_section_name (section),
1904 get_section_file_name (section));
4390d890 1905}
1b80a9fa 1906
4390d890
DE
1907static void
1908dwarf2_macro_malformed_definition_complaint (const char *arg1)
1909{
1910 complaint (&symfile_complaints,
1911 _("macro debug info contains a "
1912 "malformed macro definition:\n`%s'"),
1913 arg1);
1914}
1915
1916static void
1917dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1918{
1919 complaint (&symfile_complaints,
1920 _("invalid attribute class or form for '%s' in '%s'"),
1921 arg1, arg2);
1922}
1923\f
9291a0cd
TT
1924#if WORDS_BIGENDIAN
1925
1926/* Convert VALUE between big- and little-endian. */
1927static offset_type
1928byte_swap (offset_type value)
1929{
1930 offset_type result;
1931
1932 result = (value & 0xff) << 24;
1933 result |= (value & 0xff00) << 8;
1934 result |= (value & 0xff0000) >> 8;
1935 result |= (value & 0xff000000) >> 24;
1936 return result;
1937}
1938
1939#define MAYBE_SWAP(V) byte_swap (V)
1940
1941#else
1942#define MAYBE_SWAP(V) (V)
1943#endif /* WORDS_BIGENDIAN */
1944
31aa7e4e
JB
1945/* Read the given attribute value as an address, taking the attribute's
1946 form into account. */
1947
1948static CORE_ADDR
1949attr_value_as_address (struct attribute *attr)
1950{
1951 CORE_ADDR addr;
1952
1953 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1954 {
1955 /* Aside from a few clearly defined exceptions, attributes that
1956 contain an address must always be in DW_FORM_addr form.
1957 Unfortunately, some compilers happen to be violating this
1958 requirement by encoding addresses using other forms, such
1959 as DW_FORM_data4 for example. For those broken compilers,
1960 we try to do our best, without any guarantee of success,
1961 to interpret the address correctly. It would also be nice
1962 to generate a complaint, but that would require us to maintain
1963 a list of legitimate cases where a non-address form is allowed,
1964 as well as update callers to pass in at least the CU's DWARF
1965 version. This is more overhead than what we're willing to
1966 expand for a pretty rare case. */
1967 addr = DW_UNSND (attr);
1968 }
1969 else
1970 addr = DW_ADDR (attr);
1971
1972 return addr;
1973}
1974
9291a0cd
TT
1975/* The suffix for an index file. */
1976#define INDEX_SUFFIX ".gdb-index"
1977
c906108c 1978/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
1979 information and return true if we have enough to do something.
1980 NAMES points to the dwarf2 section names, or is NULL if the standard
1981 ELF names are used. */
c906108c
SS
1982
1983int
251d32d9
TG
1984dwarf2_has_info (struct objfile *objfile,
1985 const struct dwarf2_debug_sections *names)
c906108c 1986{
be391dca
TT
1987 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1988 if (!dwarf2_per_objfile)
1989 {
1990 /* Initialize per-objfile state. */
1991 struct dwarf2_per_objfile *data
1992 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1993
be391dca
TT
1994 memset (data, 0, sizeof (*data));
1995 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1996 dwarf2_per_objfile = data;
6502dd73 1997
251d32d9
TG
1998 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1999 (void *) names);
be391dca
TT
2000 dwarf2_per_objfile->objfile = objfile;
2001 }
73869dc2
DE
2002 return (!dwarf2_per_objfile->info.is_virtual
2003 && dwarf2_per_objfile->info.s.asection != NULL
2004 && !dwarf2_per_objfile->abbrev.is_virtual
2005 && dwarf2_per_objfile->abbrev.s.asection != NULL);
2006}
2007
2008/* Return the containing section of virtual section SECTION. */
2009
2010static struct dwarf2_section_info *
2011get_containing_section (const struct dwarf2_section_info *section)
2012{
2013 gdb_assert (section->is_virtual);
2014 return section->s.containing_section;
c906108c
SS
2015}
2016
a32a8923
DE
2017/* Return the bfd owner of SECTION. */
2018
2019static struct bfd *
2020get_section_bfd_owner (const struct dwarf2_section_info *section)
2021{
73869dc2
DE
2022 if (section->is_virtual)
2023 {
2024 section = get_containing_section (section);
2025 gdb_assert (!section->is_virtual);
2026 }
2027 return section->s.asection->owner;
a32a8923
DE
2028}
2029
2030/* Return the bfd section of SECTION.
2031 Returns NULL if the section is not present. */
2032
2033static asection *
2034get_section_bfd_section (const struct dwarf2_section_info *section)
2035{
73869dc2
DE
2036 if (section->is_virtual)
2037 {
2038 section = get_containing_section (section);
2039 gdb_assert (!section->is_virtual);
2040 }
2041 return section->s.asection;
a32a8923
DE
2042}
2043
2044/* Return the name of SECTION. */
2045
2046static const char *
2047get_section_name (const struct dwarf2_section_info *section)
2048{
2049 asection *sectp = get_section_bfd_section (section);
2050
2051 gdb_assert (sectp != NULL);
2052 return bfd_section_name (get_section_bfd_owner (section), sectp);
2053}
2054
2055/* Return the name of the file SECTION is in. */
2056
2057static const char *
2058get_section_file_name (const struct dwarf2_section_info *section)
2059{
2060 bfd *abfd = get_section_bfd_owner (section);
2061
2062 return bfd_get_filename (abfd);
2063}
2064
2065/* Return the id of SECTION.
2066 Returns 0 if SECTION doesn't exist. */
2067
2068static int
2069get_section_id (const struct dwarf2_section_info *section)
2070{
2071 asection *sectp = get_section_bfd_section (section);
2072
2073 if (sectp == NULL)
2074 return 0;
2075 return sectp->id;
2076}
2077
2078/* Return the flags of SECTION.
73869dc2 2079 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2080
2081static int
2082get_section_flags (const struct dwarf2_section_info *section)
2083{
2084 asection *sectp = get_section_bfd_section (section);
2085
2086 gdb_assert (sectp != NULL);
2087 return bfd_get_section_flags (sectp->owner, sectp);
2088}
2089
251d32d9
TG
2090/* When loading sections, we look either for uncompressed section or for
2091 compressed section names. */
233a11ab
CS
2092
2093static int
251d32d9
TG
2094section_is_p (const char *section_name,
2095 const struct dwarf2_section_names *names)
233a11ab 2096{
251d32d9
TG
2097 if (names->normal != NULL
2098 && strcmp (section_name, names->normal) == 0)
2099 return 1;
2100 if (names->compressed != NULL
2101 && strcmp (section_name, names->compressed) == 0)
2102 return 1;
2103 return 0;
233a11ab
CS
2104}
2105
c906108c
SS
2106/* This function is mapped across the sections and remembers the
2107 offset and size of each of the debugging sections we are interested
2108 in. */
2109
2110static void
251d32d9 2111dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2112{
251d32d9 2113 const struct dwarf2_debug_sections *names;
dc7650b8 2114 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2115
2116 if (vnames == NULL)
2117 names = &dwarf2_elf_names;
2118 else
2119 names = (const struct dwarf2_debug_sections *) vnames;
2120
dc7650b8
JK
2121 if ((aflag & SEC_HAS_CONTENTS) == 0)
2122 {
2123 }
2124 else if (section_is_p (sectp->name, &names->info))
c906108c 2125 {
73869dc2 2126 dwarf2_per_objfile->info.s.asection = sectp;
dce234bc 2127 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2128 }
251d32d9 2129 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2130 {
73869dc2 2131 dwarf2_per_objfile->abbrev.s.asection = sectp;
dce234bc 2132 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2133 }
251d32d9 2134 else if (section_is_p (sectp->name, &names->line))
c906108c 2135 {
73869dc2 2136 dwarf2_per_objfile->line.s.asection = sectp;
dce234bc 2137 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2138 }
251d32d9 2139 else if (section_is_p (sectp->name, &names->loc))
c906108c 2140 {
73869dc2 2141 dwarf2_per_objfile->loc.s.asection = sectp;
dce234bc 2142 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2143 }
251d32d9 2144 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2145 {
73869dc2 2146 dwarf2_per_objfile->macinfo.s.asection = sectp;
dce234bc 2147 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2148 }
cf2c3c16
TT
2149 else if (section_is_p (sectp->name, &names->macro))
2150 {
73869dc2 2151 dwarf2_per_objfile->macro.s.asection = sectp;
cf2c3c16
TT
2152 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2153 }
251d32d9 2154 else if (section_is_p (sectp->name, &names->str))
c906108c 2155 {
73869dc2 2156 dwarf2_per_objfile->str.s.asection = sectp;
dce234bc 2157 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2158 }
3019eac3
DE
2159 else if (section_is_p (sectp->name, &names->addr))
2160 {
73869dc2 2161 dwarf2_per_objfile->addr.s.asection = sectp;
3019eac3
DE
2162 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2163 }
251d32d9 2164 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2165 {
73869dc2 2166 dwarf2_per_objfile->frame.s.asection = sectp;
dce234bc 2167 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2168 }
251d32d9 2169 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2170 {
73869dc2 2171 dwarf2_per_objfile->eh_frame.s.asection = sectp;
dc7650b8 2172 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2173 }
251d32d9 2174 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2175 {
73869dc2 2176 dwarf2_per_objfile->ranges.s.asection = sectp;
dce234bc 2177 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2178 }
251d32d9 2179 else if (section_is_p (sectp->name, &names->types))
348e048f 2180 {
8b70b953
TT
2181 struct dwarf2_section_info type_section;
2182
2183 memset (&type_section, 0, sizeof (type_section));
73869dc2 2184 type_section.s.asection = sectp;
8b70b953
TT
2185 type_section.size = bfd_get_section_size (sectp);
2186
2187 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2188 &type_section);
348e048f 2189 }
251d32d9 2190 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2191 {
73869dc2 2192 dwarf2_per_objfile->gdb_index.s.asection = sectp;
9291a0cd
TT
2193 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2194 }
dce234bc 2195
72dca2f5
FR
2196 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2197 && bfd_section_vma (abfd, sectp) == 0)
2198 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2199}
2200
fceca515
DE
2201/* A helper function that decides whether a section is empty,
2202 or not present. */
9e0ac564
TT
2203
2204static int
19ac8c2e 2205dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2206{
73869dc2
DE
2207 if (section->is_virtual)
2208 return section->size == 0;
2209 return section->s.asection == NULL || section->size == 0;
9e0ac564
TT
2210}
2211
3019eac3
DE
2212/* Read the contents of the section INFO.
2213 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2214 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2215 of the DWO file.
dce234bc 2216 If the section is compressed, uncompress it before returning. */
c906108c 2217
dce234bc
PP
2218static void
2219dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2220{
a32a8923 2221 asection *sectp;
3019eac3 2222 bfd *abfd;
dce234bc 2223 gdb_byte *buf, *retbuf;
c906108c 2224
be391dca
TT
2225 if (info->readin)
2226 return;
dce234bc 2227 info->buffer = NULL;
be391dca 2228 info->readin = 1;
188dd5d6 2229
9e0ac564 2230 if (dwarf2_section_empty_p (info))
dce234bc 2231 return;
c906108c 2232
a32a8923 2233 sectp = get_section_bfd_section (info);
3019eac3 2234
73869dc2
DE
2235 /* If this is a virtual section we need to read in the real one first. */
2236 if (info->is_virtual)
2237 {
2238 struct dwarf2_section_info *containing_section =
2239 get_containing_section (info);
2240
2241 gdb_assert (sectp != NULL);
2242 if ((sectp->flags & SEC_RELOC) != 0)
2243 {
2244 error (_("Dwarf Error: DWP format V2 with relocations is not"
2245 " supported in section %s [in module %s]"),
2246 get_section_name (info), get_section_file_name (info));
2247 }
2248 dwarf2_read_section (objfile, containing_section);
2249 /* Other code should have already caught virtual sections that don't
2250 fit. */
2251 gdb_assert (info->virtual_offset + info->size
2252 <= containing_section->size);
2253 /* If the real section is empty or there was a problem reading the
2254 section we shouldn't get here. */
2255 gdb_assert (containing_section->buffer != NULL);
2256 info->buffer = containing_section->buffer + info->virtual_offset;
2257 return;
2258 }
2259
4bf44c1c
TT
2260 /* If the section has relocations, we must read it ourselves.
2261 Otherwise we attach it to the BFD. */
2262 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2263 {
d521ce57 2264 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2265 return;
dce234bc 2266 }
dce234bc 2267
4bf44c1c
TT
2268 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2269 info->buffer = buf;
dce234bc
PP
2270
2271 /* When debugging .o files, we may need to apply relocations; see
2272 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2273 We never compress sections in .o files, so we only need to
2274 try this when the section is not compressed. */
ac8035ab 2275 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2276 if (retbuf != NULL)
2277 {
2278 info->buffer = retbuf;
2279 return;
2280 }
2281
a32a8923
DE
2282 abfd = get_section_bfd_owner (info);
2283 gdb_assert (abfd != NULL);
2284
dce234bc
PP
2285 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2286 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2287 {
2288 error (_("Dwarf Error: Can't read DWARF data"
2289 " in section %s [in module %s]"),
2290 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2291 }
dce234bc
PP
2292}
2293
9e0ac564
TT
2294/* A helper function that returns the size of a section in a safe way.
2295 If you are positive that the section has been read before using the
2296 size, then it is safe to refer to the dwarf2_section_info object's
2297 "size" field directly. In other cases, you must call this
2298 function, because for compressed sections the size field is not set
2299 correctly until the section has been read. */
2300
2301static bfd_size_type
2302dwarf2_section_size (struct objfile *objfile,
2303 struct dwarf2_section_info *info)
2304{
2305 if (!info->readin)
2306 dwarf2_read_section (objfile, info);
2307 return info->size;
2308}
2309
dce234bc 2310/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2311 SECTION_NAME. */
af34e669 2312
dce234bc 2313void
3017a003
TG
2314dwarf2_get_section_info (struct objfile *objfile,
2315 enum dwarf2_section_enum sect,
d521ce57 2316 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2317 bfd_size_type *sizep)
2318{
2319 struct dwarf2_per_objfile *data
2320 = objfile_data (objfile, dwarf2_objfile_data_key);
2321 struct dwarf2_section_info *info;
a3b2a86b
TT
2322
2323 /* We may see an objfile without any DWARF, in which case we just
2324 return nothing. */
2325 if (data == NULL)
2326 {
2327 *sectp = NULL;
2328 *bufp = NULL;
2329 *sizep = 0;
2330 return;
2331 }
3017a003
TG
2332 switch (sect)
2333 {
2334 case DWARF2_DEBUG_FRAME:
2335 info = &data->frame;
2336 break;
2337 case DWARF2_EH_FRAME:
2338 info = &data->eh_frame;
2339 break;
2340 default:
2341 gdb_assert_not_reached ("unexpected section");
2342 }
dce234bc 2343
9e0ac564 2344 dwarf2_read_section (objfile, info);
dce234bc 2345
a32a8923 2346 *sectp = get_section_bfd_section (info);
dce234bc
PP
2347 *bufp = info->buffer;
2348 *sizep = info->size;
2349}
2350
36586728
TT
2351/* A helper function to find the sections for a .dwz file. */
2352
2353static void
2354locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2355{
2356 struct dwz_file *dwz_file = arg;
2357
2358 /* Note that we only support the standard ELF names, because .dwz
2359 is ELF-only (at the time of writing). */
2360 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2361 {
73869dc2 2362 dwz_file->abbrev.s.asection = sectp;
36586728
TT
2363 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2364 }
2365 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2366 {
73869dc2 2367 dwz_file->info.s.asection = sectp;
36586728
TT
2368 dwz_file->info.size = bfd_get_section_size (sectp);
2369 }
2370 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2371 {
73869dc2 2372 dwz_file->str.s.asection = sectp;
36586728
TT
2373 dwz_file->str.size = bfd_get_section_size (sectp);
2374 }
2375 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2376 {
73869dc2 2377 dwz_file->line.s.asection = sectp;
36586728
TT
2378 dwz_file->line.size = bfd_get_section_size (sectp);
2379 }
2380 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2381 {
73869dc2 2382 dwz_file->macro.s.asection = sectp;
36586728
TT
2383 dwz_file->macro.size = bfd_get_section_size (sectp);
2384 }
2ec9a5e0
TT
2385 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2386 {
73869dc2 2387 dwz_file->gdb_index.s.asection = sectp;
2ec9a5e0
TT
2388 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2389 }
36586728
TT
2390}
2391
4db1a1dc
TT
2392/* Open the separate '.dwz' debug file, if needed. Return NULL if
2393 there is no .gnu_debugaltlink section in the file. Error if there
2394 is such a section but the file cannot be found. */
36586728
TT
2395
2396static struct dwz_file *
2397dwarf2_get_dwz_file (void)
2398{
4db1a1dc
TT
2399 bfd *dwz_bfd;
2400 char *data;
36586728
TT
2401 struct cleanup *cleanup;
2402 const char *filename;
2403 struct dwz_file *result;
acd13123 2404 bfd_size_type buildid_len_arg;
dc294be5
TT
2405 size_t buildid_len;
2406 bfd_byte *buildid;
36586728
TT
2407
2408 if (dwarf2_per_objfile->dwz_file != NULL)
2409 return dwarf2_per_objfile->dwz_file;
2410
4db1a1dc
TT
2411 bfd_set_error (bfd_error_no_error);
2412 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2413 &buildid_len_arg, &buildid);
4db1a1dc
TT
2414 if (data == NULL)
2415 {
2416 if (bfd_get_error () == bfd_error_no_error)
2417 return NULL;
2418 error (_("could not read '.gnu_debugaltlink' section: %s"),
2419 bfd_errmsg (bfd_get_error ()));
2420 }
36586728 2421 cleanup = make_cleanup (xfree, data);
dc294be5 2422 make_cleanup (xfree, buildid);
36586728 2423
acd13123
TT
2424 buildid_len = (size_t) buildid_len_arg;
2425
f9d83a0b 2426 filename = (const char *) data;
36586728
TT
2427 if (!IS_ABSOLUTE_PATH (filename))
2428 {
4262abfb 2429 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2430 char *rel;
2431
2432 make_cleanup (xfree, abs);
2433 abs = ldirname (abs);
2434 make_cleanup (xfree, abs);
2435
2436 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2437 make_cleanup (xfree, rel);
2438 filename = rel;
2439 }
2440
dc294be5
TT
2441 /* First try the file name given in the section. If that doesn't
2442 work, try to use the build-id instead. */
36586728 2443 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
dc294be5 2444 if (dwz_bfd != NULL)
36586728 2445 {
dc294be5
TT
2446 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2447 {
2448 gdb_bfd_unref (dwz_bfd);
2449 dwz_bfd = NULL;
2450 }
36586728
TT
2451 }
2452
dc294be5
TT
2453 if (dwz_bfd == NULL)
2454 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2455
2456 if (dwz_bfd == NULL)
2457 error (_("could not find '.gnu_debugaltlink' file for %s"),
2458 objfile_name (dwarf2_per_objfile->objfile));
2459
36586728
TT
2460 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2461 struct dwz_file);
2462 result->dwz_bfd = dwz_bfd;
2463
2464 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2465
2466 do_cleanups (cleanup);
2467
13aaf454 2468 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
8d2cc612 2469 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2470 return result;
2471}
9291a0cd 2472\f
7b9f3c50
DE
2473/* DWARF quick_symbols_functions support. */
2474
2475/* TUs can share .debug_line entries, and there can be a lot more TUs than
2476 unique line tables, so we maintain a separate table of all .debug_line
2477 derived entries to support the sharing.
2478 All the quick functions need is the list of file names. We discard the
2479 line_header when we're done and don't need to record it here. */
2480struct quick_file_names
2481{
094b34ac
DE
2482 /* The data used to construct the hash key. */
2483 struct stmt_list_hash hash;
7b9f3c50
DE
2484
2485 /* The number of entries in file_names, real_names. */
2486 unsigned int num_file_names;
2487
2488 /* The file names from the line table, after being run through
2489 file_full_name. */
2490 const char **file_names;
2491
2492 /* The file names from the line table after being run through
2493 gdb_realpath. These are computed lazily. */
2494 const char **real_names;
2495};
2496
2497/* When using the index (and thus not using psymtabs), each CU has an
2498 object of this type. This is used to hold information needed by
2499 the various "quick" methods. */
2500struct dwarf2_per_cu_quick_data
2501{
2502 /* The file table. This can be NULL if there was no file table
2503 or it's currently not read in.
2504 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2505 struct quick_file_names *file_names;
2506
2507 /* The corresponding symbol table. This is NULL if symbols for this
2508 CU have not yet been read. */
2509 struct symtab *symtab;
2510
2511 /* A temporary mark bit used when iterating over all CUs in
2512 expand_symtabs_matching. */
2513 unsigned int mark : 1;
2514
2515 /* True if we've tried to read the file table and found there isn't one.
2516 There will be no point in trying to read it again next time. */
2517 unsigned int no_file_data : 1;
2518};
2519
094b34ac
DE
2520/* Utility hash function for a stmt_list_hash. */
2521
2522static hashval_t
2523hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2524{
2525 hashval_t v = 0;
2526
2527 if (stmt_list_hash->dwo_unit != NULL)
2528 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2529 v += stmt_list_hash->line_offset.sect_off;
2530 return v;
2531}
2532
2533/* Utility equality function for a stmt_list_hash. */
2534
2535static int
2536eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2537 const struct stmt_list_hash *rhs)
2538{
2539 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2540 return 0;
2541 if (lhs->dwo_unit != NULL
2542 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2543 return 0;
2544
2545 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2546}
2547
7b9f3c50
DE
2548/* Hash function for a quick_file_names. */
2549
2550static hashval_t
2551hash_file_name_entry (const void *e)
2552{
2553 const struct quick_file_names *file_data = e;
2554
094b34ac 2555 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2556}
2557
2558/* Equality function for a quick_file_names. */
2559
2560static int
2561eq_file_name_entry (const void *a, const void *b)
2562{
2563 const struct quick_file_names *ea = a;
2564 const struct quick_file_names *eb = b;
2565
094b34ac 2566 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2567}
2568
2569/* Delete function for a quick_file_names. */
2570
2571static void
2572delete_file_name_entry (void *e)
2573{
2574 struct quick_file_names *file_data = e;
2575 int i;
2576
2577 for (i = 0; i < file_data->num_file_names; ++i)
2578 {
2579 xfree ((void*) file_data->file_names[i]);
2580 if (file_data->real_names)
2581 xfree ((void*) file_data->real_names[i]);
2582 }
2583
2584 /* The space for the struct itself lives on objfile_obstack,
2585 so we don't free it here. */
2586}
2587
2588/* Create a quick_file_names hash table. */
2589
2590static htab_t
2591create_quick_file_names_table (unsigned int nr_initial_entries)
2592{
2593 return htab_create_alloc (nr_initial_entries,
2594 hash_file_name_entry, eq_file_name_entry,
2595 delete_file_name_entry, xcalloc, xfree);
2596}
9291a0cd 2597
918dd910
JK
2598/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2599 have to be created afterwards. You should call age_cached_comp_units after
2600 processing PER_CU->CU. dw2_setup must have been already called. */
2601
2602static void
2603load_cu (struct dwarf2_per_cu_data *per_cu)
2604{
3019eac3 2605 if (per_cu->is_debug_types)
e5fe5e75 2606 load_full_type_unit (per_cu);
918dd910 2607 else
95554aad 2608 load_full_comp_unit (per_cu, language_minimal);
918dd910 2609
918dd910 2610 gdb_assert (per_cu->cu != NULL);
2dc860c0
DE
2611
2612 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2613}
2614
a0f42c21 2615/* Read in the symbols for PER_CU. */
2fdf6df6 2616
9291a0cd 2617static void
a0f42c21 2618dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2619{
2620 struct cleanup *back_to;
2621
f4dc4d17
DE
2622 /* Skip type_unit_groups, reading the type units they contain
2623 is handled elsewhere. */
2624 if (IS_TYPE_UNIT_GROUP (per_cu))
2625 return;
2626
9291a0cd
TT
2627 back_to = make_cleanup (dwarf2_release_queue, NULL);
2628
95554aad
TT
2629 if (dwarf2_per_objfile->using_index
2630 ? per_cu->v.quick->symtab == NULL
2631 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2632 {
2633 queue_comp_unit (per_cu, language_minimal);
2634 load_cu (per_cu);
89e63ee4
DE
2635
2636 /* If we just loaded a CU from a DWO, and we're working with an index
2637 that may badly handle TUs, load all the TUs in that DWO as well.
2638 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2639 if (!per_cu->is_debug_types
2640 && per_cu->cu->dwo_unit != NULL
2641 && dwarf2_per_objfile->index_table != NULL
2642 && dwarf2_per_objfile->index_table->version <= 7
2643 /* DWP files aren't supported yet. */
2644 && get_dwp_file () == NULL)
2645 queue_and_load_all_dwo_tus (per_cu);
95554aad 2646 }
9291a0cd 2647
a0f42c21 2648 process_queue ();
9291a0cd
TT
2649
2650 /* Age the cache, releasing compilation units that have not
2651 been used recently. */
2652 age_cached_comp_units ();
2653
2654 do_cleanups (back_to);
2655}
2656
2657/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2658 the objfile from which this CU came. Returns the resulting symbol
2659 table. */
2fdf6df6 2660
9291a0cd 2661static struct symtab *
a0f42c21 2662dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2663{
95554aad 2664 gdb_assert (dwarf2_per_objfile->using_index);
9291a0cd
TT
2665 if (!per_cu->v.quick->symtab)
2666 {
2667 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2668 increment_reading_symtab ();
a0f42c21 2669 dw2_do_instantiate_symtab (per_cu);
95554aad 2670 process_cu_includes ();
9291a0cd
TT
2671 do_cleanups (back_to);
2672 }
2673 return per_cu->v.quick->symtab;
2674}
2675
f4dc4d17
DE
2676/* Return the CU given its index.
2677
2678 This is intended for loops like:
2679
2680 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2681 + dwarf2_per_objfile->n_type_units); ++i)
2682 {
2683 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2684
2685 ...;
2686 }
2687*/
2fdf6df6 2688
1fd400ff
TT
2689static struct dwarf2_per_cu_data *
2690dw2_get_cu (int index)
2691{
2692 if (index >= dwarf2_per_objfile->n_comp_units)
2693 {
f4dc4d17 2694 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2695 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2696 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2697 }
2698
2699 return dwarf2_per_objfile->all_comp_units[index];
2700}
2701
2702/* Return the primary CU given its index.
2703 The difference between this function and dw2_get_cu is in the handling
2704 of type units (TUs). Here we return the type_unit_group object.
2705
2706 This is intended for loops like:
2707
2708 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2709 + dwarf2_per_objfile->n_type_unit_groups); ++i)
2710 {
2711 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
2712
2713 ...;
2714 }
2715*/
2716
2717static struct dwarf2_per_cu_data *
2718dw2_get_primary_cu (int index)
2719{
2720 if (index >= dwarf2_per_objfile->n_comp_units)
2721 {
1fd400ff 2722 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2723 gdb_assert (index < dwarf2_per_objfile->n_type_unit_groups);
2724 return &dwarf2_per_objfile->all_type_unit_groups[index]->per_cu;
1fd400ff 2725 }
f4dc4d17 2726
1fd400ff
TT
2727 return dwarf2_per_objfile->all_comp_units[index];
2728}
2729
2ec9a5e0
TT
2730/* A helper for create_cus_from_index that handles a given list of
2731 CUs. */
2fdf6df6 2732
74a0d9f6 2733static void
2ec9a5e0
TT
2734create_cus_from_index_list (struct objfile *objfile,
2735 const gdb_byte *cu_list, offset_type n_elements,
2736 struct dwarf2_section_info *section,
2737 int is_dwz,
2738 int base_offset)
9291a0cd
TT
2739{
2740 offset_type i;
9291a0cd 2741
2ec9a5e0 2742 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2743 {
2744 struct dwarf2_per_cu_data *the_cu;
2745 ULONGEST offset, length;
2746
74a0d9f6
JK
2747 gdb_static_assert (sizeof (ULONGEST) >= 8);
2748 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2749 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2750 cu_list += 2 * 8;
2751
2752 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2753 struct dwarf2_per_cu_data);
b64f50a1 2754 the_cu->offset.sect_off = offset;
9291a0cd
TT
2755 the_cu->length = length;
2756 the_cu->objfile = objfile;
8a0459fd 2757 the_cu->section = section;
9291a0cd
TT
2758 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2759 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2760 the_cu->is_dwz = is_dwz;
2761 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2762 }
9291a0cd
TT
2763}
2764
2ec9a5e0 2765/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2766 the CU objects for this objfile. */
2ec9a5e0 2767
74a0d9f6 2768static void
2ec9a5e0
TT
2769create_cus_from_index (struct objfile *objfile,
2770 const gdb_byte *cu_list, offset_type cu_list_elements,
2771 const gdb_byte *dwz_list, offset_type dwz_elements)
2772{
2773 struct dwz_file *dwz;
2774
2775 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2776 dwarf2_per_objfile->all_comp_units
2777 = obstack_alloc (&objfile->objfile_obstack,
2778 dwarf2_per_objfile->n_comp_units
2779 * sizeof (struct dwarf2_per_cu_data *));
2780
74a0d9f6
JK
2781 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2782 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2783
2784 if (dwz_elements == 0)
74a0d9f6 2785 return;
2ec9a5e0
TT
2786
2787 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2788 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2789 cu_list_elements / 2);
2ec9a5e0
TT
2790}
2791
1fd400ff 2792/* Create the signatured type hash table from the index. */
673bfd45 2793
74a0d9f6 2794static void
673bfd45 2795create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2796 struct dwarf2_section_info *section,
673bfd45
DE
2797 const gdb_byte *bytes,
2798 offset_type elements)
1fd400ff
TT
2799{
2800 offset_type i;
673bfd45 2801 htab_t sig_types_hash;
1fd400ff 2802
d467dd73
DE
2803 dwarf2_per_objfile->n_type_units = elements / 3;
2804 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
2805 = xmalloc (dwarf2_per_objfile->n_type_units
2806 * sizeof (struct signatured_type *));
1fd400ff 2807
673bfd45 2808 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2809
2810 for (i = 0; i < elements; i += 3)
2811 {
52dc124a
DE
2812 struct signatured_type *sig_type;
2813 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2814 void **slot;
2815
74a0d9f6
JK
2816 gdb_static_assert (sizeof (ULONGEST) >= 8);
2817 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2818 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2819 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2820 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2821 bytes += 3 * 8;
2822
52dc124a 2823 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2824 struct signatured_type);
52dc124a 2825 sig_type->signature = signature;
3019eac3
DE
2826 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2827 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2828 sig_type->per_cu.section = section;
52dc124a
DE
2829 sig_type->per_cu.offset.sect_off = offset;
2830 sig_type->per_cu.objfile = objfile;
2831 sig_type->per_cu.v.quick
1fd400ff
TT
2832 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2833 struct dwarf2_per_cu_quick_data);
2834
52dc124a
DE
2835 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2836 *slot = sig_type;
1fd400ff 2837
b4dd5633 2838 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2839 }
2840
673bfd45 2841 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2842}
2843
9291a0cd
TT
2844/* Read the address map data from the mapped index, and use it to
2845 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2846
9291a0cd
TT
2847static void
2848create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2849{
2850 const gdb_byte *iter, *end;
2851 struct obstack temp_obstack;
2852 struct addrmap *mutable_map;
2853 struct cleanup *cleanup;
2854 CORE_ADDR baseaddr;
2855
2856 obstack_init (&temp_obstack);
2857 cleanup = make_cleanup_obstack_free (&temp_obstack);
2858 mutable_map = addrmap_create_mutable (&temp_obstack);
2859
2860 iter = index->address_table;
2861 end = iter + index->address_table_size;
2862
2863 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2864
2865 while (iter < end)
2866 {
2867 ULONGEST hi, lo, cu_index;
2868 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2869 iter += 8;
2870 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2871 iter += 8;
2872 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2873 iter += 4;
f652bce2 2874
24a55014 2875 if (lo > hi)
f652bce2 2876 {
24a55014
DE
2877 complaint (&symfile_complaints,
2878 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2879 hex_string (lo), hex_string (hi));
24a55014 2880 continue;
f652bce2 2881 }
24a55014
DE
2882
2883 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2884 {
2885 complaint (&symfile_complaints,
2886 _(".gdb_index address table has invalid CU number %u"),
2887 (unsigned) cu_index);
24a55014 2888 continue;
f652bce2 2889 }
24a55014
DE
2890
2891 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
2892 dw2_get_cu (cu_index));
9291a0cd
TT
2893 }
2894
2895 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2896 &objfile->objfile_obstack);
2897 do_cleanups (cleanup);
2898}
2899
59d7bcaf
JK
2900/* The hash function for strings in the mapped index. This is the same as
2901 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2902 implementation. This is necessary because the hash function is tied to the
2903 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2904 SYMBOL_HASH_NEXT.
2905
2906 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2907
9291a0cd 2908static hashval_t
559a7a62 2909mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2910{
2911 const unsigned char *str = (const unsigned char *) p;
2912 hashval_t r = 0;
2913 unsigned char c;
2914
2915 while ((c = *str++) != 0)
559a7a62
JK
2916 {
2917 if (index_version >= 5)
2918 c = tolower (c);
2919 r = r * 67 + c - 113;
2920 }
9291a0cd
TT
2921
2922 return r;
2923}
2924
2925/* Find a slot in the mapped index INDEX for the object named NAME.
2926 If NAME is found, set *VEC_OUT to point to the CU vector in the
2927 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2928
9291a0cd
TT
2929static int
2930find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2931 offset_type **vec_out)
2932{
0cf03b49
JK
2933 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2934 offset_type hash;
9291a0cd 2935 offset_type slot, step;
559a7a62 2936 int (*cmp) (const char *, const char *);
9291a0cd 2937
0cf03b49
JK
2938 if (current_language->la_language == language_cplus
2939 || current_language->la_language == language_java
2940 || current_language->la_language == language_fortran)
2941 {
2942 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2943 not contain any. */
2944 const char *paren = strchr (name, '(');
2945
2946 if (paren)
2947 {
2948 char *dup;
2949
2950 dup = xmalloc (paren - name + 1);
2951 memcpy (dup, name, paren - name);
2952 dup[paren - name] = 0;
2953
2954 make_cleanup (xfree, dup);
2955 name = dup;
2956 }
2957 }
2958
559a7a62 2959 /* Index version 4 did not support case insensitive searches. But the
feea76c2 2960 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
2961 simulate our NAME being searched is also lowercased. */
2962 hash = mapped_index_string_hash ((index->version == 4
2963 && case_sensitivity == case_sensitive_off
2964 ? 5 : index->version),
2965 name);
2966
3876f04e
DE
2967 slot = hash & (index->symbol_table_slots - 1);
2968 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 2969 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
2970
2971 for (;;)
2972 {
2973 /* Convert a slot number to an offset into the table. */
2974 offset_type i = 2 * slot;
2975 const char *str;
3876f04e 2976 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
2977 {
2978 do_cleanups (back_to);
2979 return 0;
2980 }
9291a0cd 2981
3876f04e 2982 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 2983 if (!cmp (name, str))
9291a0cd
TT
2984 {
2985 *vec_out = (offset_type *) (index->constant_pool
3876f04e 2986 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 2987 do_cleanups (back_to);
9291a0cd
TT
2988 return 1;
2989 }
2990
3876f04e 2991 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
2992 }
2993}
2994
2ec9a5e0
TT
2995/* A helper function that reads the .gdb_index from SECTION and fills
2996 in MAP. FILENAME is the name of the file containing the section;
2997 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2998 ok to use deprecated sections.
2999
3000 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3001 out parameters that are filled in with information about the CU and
3002 TU lists in the section.
3003
3004 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 3005
9291a0cd 3006static int
2ec9a5e0
TT
3007read_index_from_section (struct objfile *objfile,
3008 const char *filename,
3009 int deprecated_ok,
3010 struct dwarf2_section_info *section,
3011 struct mapped_index *map,
3012 const gdb_byte **cu_list,
3013 offset_type *cu_list_elements,
3014 const gdb_byte **types_list,
3015 offset_type *types_list_elements)
9291a0cd 3016{
948f8e3d 3017 const gdb_byte *addr;
2ec9a5e0 3018 offset_type version;
b3b272e1 3019 offset_type *metadata;
1fd400ff 3020 int i;
9291a0cd 3021
2ec9a5e0 3022 if (dwarf2_section_empty_p (section))
9291a0cd 3023 return 0;
82430852
JK
3024
3025 /* Older elfutils strip versions could keep the section in the main
3026 executable while splitting it for the separate debug info file. */
a32a8923 3027 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3028 return 0;
3029
2ec9a5e0 3030 dwarf2_read_section (objfile, section);
9291a0cd 3031
2ec9a5e0 3032 addr = section->buffer;
9291a0cd 3033 /* Version check. */
1fd400ff 3034 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3035 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3036 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3037 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3038 indices. */
831adc1f 3039 if (version < 4)
481860b3
GB
3040 {
3041 static int warning_printed = 0;
3042 if (!warning_printed)
3043 {
3044 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3045 filename);
481860b3
GB
3046 warning_printed = 1;
3047 }
3048 return 0;
3049 }
3050 /* Index version 4 uses a different hash function than index version
3051 5 and later.
3052
3053 Versions earlier than 6 did not emit psymbols for inlined
3054 functions. Using these files will cause GDB not to be able to
3055 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3056 indices unless the user has done
3057 "set use-deprecated-index-sections on". */
2ec9a5e0 3058 if (version < 6 && !deprecated_ok)
481860b3
GB
3059 {
3060 static int warning_printed = 0;
3061 if (!warning_printed)
3062 {
e615022a
DE
3063 warning (_("\
3064Skipping deprecated .gdb_index section in %s.\n\
3065Do \"set use-deprecated-index-sections on\" before the file is read\n\
3066to use the section anyway."),
2ec9a5e0 3067 filename);
481860b3
GB
3068 warning_printed = 1;
3069 }
3070 return 0;
3071 }
796a7ff8 3072 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3073 of the TU (for symbols coming from TUs),
3074 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3075 Plus gold-generated indices can have duplicate entries for global symbols,
3076 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3077 These are just performance bugs, and we can't distinguish gdb-generated
3078 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3079
481860b3 3080 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3081 longer backward compatible. */
796a7ff8 3082 if (version > 8)
594e8718 3083 return 0;
9291a0cd 3084
559a7a62 3085 map->version = version;
2ec9a5e0 3086 map->total_size = section->size;
9291a0cd
TT
3087
3088 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3089
3090 i = 0;
2ec9a5e0
TT
3091 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3092 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3093 / 8);
1fd400ff
TT
3094 ++i;
3095
2ec9a5e0
TT
3096 *types_list = addr + MAYBE_SWAP (metadata[i]);
3097 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3098 - MAYBE_SWAP (metadata[i]))
3099 / 8);
987d643c 3100 ++i;
1fd400ff
TT
3101
3102 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3103 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3104 - MAYBE_SWAP (metadata[i]));
3105 ++i;
3106
3876f04e
DE
3107 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3108 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3109 - MAYBE_SWAP (metadata[i]))
3110 / (2 * sizeof (offset_type)));
1fd400ff 3111 ++i;
9291a0cd 3112
f9d83a0b 3113 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3114
2ec9a5e0
TT
3115 return 1;
3116}
3117
3118
3119/* Read the index file. If everything went ok, initialize the "quick"
3120 elements of all the CUs and return 1. Otherwise, return 0. */
3121
3122static int
3123dwarf2_read_index (struct objfile *objfile)
3124{
3125 struct mapped_index local_map, *map;
3126 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3127 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3128 struct dwz_file *dwz;
2ec9a5e0 3129
4262abfb 3130 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3131 use_deprecated_index_sections,
3132 &dwarf2_per_objfile->gdb_index, &local_map,
3133 &cu_list, &cu_list_elements,
3134 &types_list, &types_list_elements))
3135 return 0;
3136
0fefef59 3137 /* Don't use the index if it's empty. */
2ec9a5e0 3138 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3139 return 0;
3140
2ec9a5e0
TT
3141 /* If there is a .dwz file, read it so we can get its CU list as
3142 well. */
4db1a1dc
TT
3143 dwz = dwarf2_get_dwz_file ();
3144 if (dwz != NULL)
2ec9a5e0 3145 {
2ec9a5e0
TT
3146 struct mapped_index dwz_map;
3147 const gdb_byte *dwz_types_ignore;
3148 offset_type dwz_types_elements_ignore;
3149
3150 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3151 1,
3152 &dwz->gdb_index, &dwz_map,
3153 &dwz_list, &dwz_list_elements,
3154 &dwz_types_ignore,
3155 &dwz_types_elements_ignore))
3156 {
3157 warning (_("could not read '.gdb_index' section from %s; skipping"),
3158 bfd_get_filename (dwz->dwz_bfd));
3159 return 0;
3160 }
3161 }
3162
74a0d9f6
JK
3163 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3164 dwz_list_elements);
1fd400ff 3165
8b70b953
TT
3166 if (types_list_elements)
3167 {
3168 struct dwarf2_section_info *section;
3169
3170 /* We can only handle a single .debug_types when we have an
3171 index. */
3172 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3173 return 0;
3174
3175 section = VEC_index (dwarf2_section_info_def,
3176 dwarf2_per_objfile->types, 0);
3177
74a0d9f6
JK
3178 create_signatured_type_table_from_index (objfile, section, types_list,
3179 types_list_elements);
8b70b953 3180 }
9291a0cd 3181
2ec9a5e0
TT
3182 create_addrmap_from_index (objfile, &local_map);
3183
3184 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3185 *map = local_map;
9291a0cd
TT
3186
3187 dwarf2_per_objfile->index_table = map;
3188 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3189 dwarf2_per_objfile->quick_file_names_table =
3190 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3191
3192 return 1;
3193}
3194
3195/* A helper for the "quick" functions which sets the global
3196 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3197
9291a0cd
TT
3198static void
3199dw2_setup (struct objfile *objfile)
3200{
3201 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3202 gdb_assert (dwarf2_per_objfile);
3203}
3204
dee91e82 3205/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3206
dee91e82
DE
3207static void
3208dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3209 const gdb_byte *info_ptr,
dee91e82
DE
3210 struct die_info *comp_unit_die,
3211 int has_children,
3212 void *data)
9291a0cd 3213{
dee91e82
DE
3214 struct dwarf2_cu *cu = reader->cu;
3215 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3216 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3217 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3218 struct line_header *lh;
9291a0cd 3219 struct attribute *attr;
dee91e82 3220 int i;
15d034d0 3221 const char *name, *comp_dir;
7b9f3c50
DE
3222 void **slot;
3223 struct quick_file_names *qfn;
3224 unsigned int line_offset;
9291a0cd 3225
0186c6a7
DE
3226 gdb_assert (! this_cu->is_debug_types);
3227
07261596
TT
3228 /* Our callers never want to match partial units -- instead they
3229 will match the enclosing full CU. */
3230 if (comp_unit_die->tag == DW_TAG_partial_unit)
3231 {
3232 this_cu->v.quick->no_file_data = 1;
3233 return;
3234 }
3235
0186c6a7 3236 lh_cu = this_cu;
7b9f3c50
DE
3237 lh = NULL;
3238 slot = NULL;
3239 line_offset = 0;
dee91e82
DE
3240
3241 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3242 if (attr)
3243 {
7b9f3c50
DE
3244 struct quick_file_names find_entry;
3245
3246 line_offset = DW_UNSND (attr);
3247
3248 /* We may have already read in this line header (TU line header sharing).
3249 If we have we're done. */
094b34ac
DE
3250 find_entry.hash.dwo_unit = cu->dwo_unit;
3251 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3252 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3253 &find_entry, INSERT);
3254 if (*slot != NULL)
3255 {
094b34ac 3256 lh_cu->v.quick->file_names = *slot;
dee91e82 3257 return;
7b9f3c50
DE
3258 }
3259
3019eac3 3260 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3261 }
3262 if (lh == NULL)
3263 {
094b34ac 3264 lh_cu->v.quick->no_file_data = 1;
dee91e82 3265 return;
9291a0cd
TT
3266 }
3267
7b9f3c50 3268 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
094b34ac
DE
3269 qfn->hash.dwo_unit = cu->dwo_unit;
3270 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3271 gdb_assert (slot != NULL);
3272 *slot = qfn;
9291a0cd 3273
dee91e82 3274 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3275
7b9f3c50
DE
3276 qfn->num_file_names = lh->num_file_names;
3277 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3278 lh->num_file_names * sizeof (char *));
9291a0cd 3279 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3280 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3281 qfn->real_names = NULL;
9291a0cd 3282
7b9f3c50 3283 free_line_header (lh);
7b9f3c50 3284
094b34ac 3285 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3286}
3287
3288/* A helper for the "quick" functions which attempts to read the line
3289 table for THIS_CU. */
3290
3291static struct quick_file_names *
e4a48d9d 3292dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3293{
0186c6a7
DE
3294 /* This should never be called for TUs. */
3295 gdb_assert (! this_cu->is_debug_types);
3296 /* Nor type unit groups. */
3297 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3298
dee91e82
DE
3299 if (this_cu->v.quick->file_names != NULL)
3300 return this_cu->v.quick->file_names;
3301 /* If we know there is no line data, no point in looking again. */
3302 if (this_cu->v.quick->no_file_data)
3303 return NULL;
3304
0186c6a7 3305 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3306
3307 if (this_cu->v.quick->no_file_data)
3308 return NULL;
3309 return this_cu->v.quick->file_names;
9291a0cd
TT
3310}
3311
3312/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3313 real path for a given file name from the line table. */
2fdf6df6 3314
9291a0cd 3315static const char *
7b9f3c50
DE
3316dw2_get_real_path (struct objfile *objfile,
3317 struct quick_file_names *qfn, int index)
9291a0cd 3318{
7b9f3c50
DE
3319 if (qfn->real_names == NULL)
3320 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
fd0a4d76 3321 qfn->num_file_names, char *);
9291a0cd 3322
7b9f3c50
DE
3323 if (qfn->real_names[index] == NULL)
3324 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3325
7b9f3c50 3326 return qfn->real_names[index];
9291a0cd
TT
3327}
3328
3329static struct symtab *
3330dw2_find_last_source_symtab (struct objfile *objfile)
3331{
3332 int index;
ae2de4f8 3333
9291a0cd
TT
3334 dw2_setup (objfile);
3335 index = dwarf2_per_objfile->n_comp_units - 1;
a0f42c21 3336 return dw2_instantiate_symtab (dw2_get_cu (index));
9291a0cd
TT
3337}
3338
7b9f3c50
DE
3339/* Traversal function for dw2_forget_cached_source_info. */
3340
3341static int
3342dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3343{
7b9f3c50 3344 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3345
7b9f3c50 3346 if (file_data->real_names)
9291a0cd 3347 {
7b9f3c50 3348 int i;
9291a0cd 3349
7b9f3c50 3350 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3351 {
7b9f3c50
DE
3352 xfree ((void*) file_data->real_names[i]);
3353 file_data->real_names[i] = NULL;
9291a0cd
TT
3354 }
3355 }
7b9f3c50
DE
3356
3357 return 1;
3358}
3359
3360static void
3361dw2_forget_cached_source_info (struct objfile *objfile)
3362{
3363 dw2_setup (objfile);
3364
3365 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3366 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3367}
3368
f8eba3c6
TT
3369/* Helper function for dw2_map_symtabs_matching_filename that expands
3370 the symtabs and calls the iterator. */
3371
3372static int
3373dw2_map_expand_apply (struct objfile *objfile,
3374 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3375 const char *name, const char *real_path,
f8eba3c6
TT
3376 int (*callback) (struct symtab *, void *),
3377 void *data)
3378{
3379 struct symtab *last_made = objfile->symtabs;
3380
3381 /* Don't visit already-expanded CUs. */
3382 if (per_cu->v.quick->symtab)
3383 return 0;
3384
3385 /* This may expand more than one symtab, and we want to iterate over
3386 all of them. */
a0f42c21 3387 dw2_instantiate_symtab (per_cu);
f8eba3c6 3388
f5b95b50 3389 return iterate_over_some_symtabs (name, real_path, callback, data,
f8eba3c6
TT
3390 objfile->symtabs, last_made);
3391}
3392
3393/* Implementation of the map_symtabs_matching_filename method. */
3394
9291a0cd 3395static int
f8eba3c6 3396dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3397 const char *real_path,
f8eba3c6
TT
3398 int (*callback) (struct symtab *, void *),
3399 void *data)
9291a0cd
TT
3400{
3401 int i;
c011a4f4 3402 const char *name_basename = lbasename (name);
9291a0cd
TT
3403
3404 dw2_setup (objfile);
ae2de4f8 3405
848e3e78
DE
3406 /* The rule is CUs specify all the files, including those used by
3407 any TU, so there's no need to scan TUs here. */
f4dc4d17 3408
848e3e78 3409 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3410 {
3411 int j;
f4dc4d17 3412 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
7b9f3c50 3413 struct quick_file_names *file_data;
9291a0cd 3414
3d7bb9d9 3415 /* We only need to look at symtabs not already expanded. */
e254ef6a 3416 if (per_cu->v.quick->symtab)
9291a0cd
TT
3417 continue;
3418
e4a48d9d 3419 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3420 if (file_data == NULL)
9291a0cd
TT
3421 continue;
3422
7b9f3c50 3423 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3424 {
7b9f3c50 3425 const char *this_name = file_data->file_names[j];
da235a7c 3426 const char *this_real_name;
9291a0cd 3427
af529f8f 3428 if (compare_filenames_for_search (this_name, name))
9291a0cd 3429 {
f5b95b50 3430 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3431 callback, data))
3432 return 1;
288e77a7 3433 continue;
4aac40c8 3434 }
9291a0cd 3435
c011a4f4
DE
3436 /* Before we invoke realpath, which can get expensive when many
3437 files are involved, do a quick comparison of the basenames. */
3438 if (! basenames_may_differ
3439 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3440 continue;
3441
da235a7c
JK
3442 this_real_name = dw2_get_real_path (objfile, file_data, j);
3443 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3444 {
da235a7c
JK
3445 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3446 callback, data))
3447 return 1;
288e77a7 3448 continue;
da235a7c 3449 }
9291a0cd 3450
da235a7c
JK
3451 if (real_path != NULL)
3452 {
af529f8f
JK
3453 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3454 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3455 if (this_real_name != NULL
af529f8f 3456 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3457 {
f5b95b50 3458 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3459 callback, data))
3460 return 1;
288e77a7 3461 continue;
9291a0cd
TT
3462 }
3463 }
3464 }
3465 }
3466
9291a0cd
TT
3467 return 0;
3468}
3469
da51c347
DE
3470/* Struct used to manage iterating over all CUs looking for a symbol. */
3471
3472struct dw2_symtab_iterator
9291a0cd 3473{
da51c347
DE
3474 /* The internalized form of .gdb_index. */
3475 struct mapped_index *index;
3476 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3477 int want_specific_block;
3478 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3479 Unused if !WANT_SPECIFIC_BLOCK. */
3480 int block_index;
3481 /* The kind of symbol we're looking for. */
3482 domain_enum domain;
3483 /* The list of CUs from the index entry of the symbol,
3484 or NULL if not found. */
3485 offset_type *vec;
3486 /* The next element in VEC to look at. */
3487 int next;
3488 /* The number of elements in VEC, or zero if there is no match. */
3489 int length;
8943b874
DE
3490 /* Have we seen a global version of the symbol?
3491 If so we can ignore all further global instances.
3492 This is to work around gold/15646, inefficient gold-generated
3493 indices. */
3494 int global_seen;
da51c347 3495};
9291a0cd 3496
da51c347
DE
3497/* Initialize the index symtab iterator ITER.
3498 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3499 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3500
9291a0cd 3501static void
da51c347
DE
3502dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3503 struct mapped_index *index,
3504 int want_specific_block,
3505 int block_index,
3506 domain_enum domain,
3507 const char *name)
3508{
3509 iter->index = index;
3510 iter->want_specific_block = want_specific_block;
3511 iter->block_index = block_index;
3512 iter->domain = domain;
3513 iter->next = 0;
8943b874 3514 iter->global_seen = 0;
da51c347
DE
3515
3516 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3517 iter->length = MAYBE_SWAP (*iter->vec);
3518 else
3519 {
3520 iter->vec = NULL;
3521 iter->length = 0;
3522 }
3523}
3524
3525/* Return the next matching CU or NULL if there are no more. */
3526
3527static struct dwarf2_per_cu_data *
3528dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3529{
3530 for ( ; iter->next < iter->length; ++iter->next)
3531 {
3532 offset_type cu_index_and_attrs =
3533 MAYBE_SWAP (iter->vec[iter->next + 1]);
3534 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3535 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3536 int want_static = iter->block_index != GLOBAL_BLOCK;
3537 /* This value is only valid for index versions >= 7. */
3538 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3539 gdb_index_symbol_kind symbol_kind =
3540 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3541 /* Only check the symbol attributes if they're present.
3542 Indices prior to version 7 don't record them,
3543 and indices >= 7 may elide them for certain symbols
3544 (gold does this). */
3545 int attrs_valid =
3546 (iter->index->version >= 7
3547 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3548
3190f0c6
DE
3549 /* Don't crash on bad data. */
3550 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3551 + dwarf2_per_objfile->n_type_units))
3552 {
3553 complaint (&symfile_complaints,
3554 _(".gdb_index entry has bad CU index"
4262abfb
JK
3555 " [in module %s]"),
3556 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3557 continue;
3558 }
3559
3560 per_cu = dw2_get_cu (cu_index);
3561
da51c347
DE
3562 /* Skip if already read in. */
3563 if (per_cu->v.quick->symtab)
3564 continue;
3565
8943b874
DE
3566 /* Check static vs global. */
3567 if (attrs_valid)
3568 {
3569 if (iter->want_specific_block
3570 && want_static != is_static)
3571 continue;
3572 /* Work around gold/15646. */
3573 if (!is_static && iter->global_seen)
3574 continue;
3575 if (!is_static)
3576 iter->global_seen = 1;
3577 }
da51c347
DE
3578
3579 /* Only check the symbol's kind if it has one. */
3580 if (attrs_valid)
3581 {
3582 switch (iter->domain)
3583 {
3584 case VAR_DOMAIN:
3585 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3586 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3587 /* Some types are also in VAR_DOMAIN. */
3588 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3589 continue;
3590 break;
3591 case STRUCT_DOMAIN:
3592 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3593 continue;
3594 break;
3595 case LABEL_DOMAIN:
3596 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3597 continue;
3598 break;
3599 default:
3600 break;
3601 }
3602 }
3603
3604 ++iter->next;
3605 return per_cu;
3606 }
3607
3608 return NULL;
3609}
3610
3611static struct symtab *
3612dw2_lookup_symbol (struct objfile *objfile, int block_index,
3613 const char *name, domain_enum domain)
9291a0cd 3614{
da51c347 3615 struct symtab *stab_best = NULL;
156942c7
DE
3616 struct mapped_index *index;
3617
9291a0cd
TT
3618 dw2_setup (objfile);
3619
156942c7
DE
3620 index = dwarf2_per_objfile->index_table;
3621
da51c347 3622 /* index is NULL if OBJF_READNOW. */
156942c7 3623 if (index)
9291a0cd 3624 {
da51c347
DE
3625 struct dw2_symtab_iterator iter;
3626 struct dwarf2_per_cu_data *per_cu;
3627
3628 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3629
da51c347 3630 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3631 {
da51c347
DE
3632 struct symbol *sym = NULL;
3633 struct symtab *stab = dw2_instantiate_symtab (per_cu);
3634
3635 /* Some caution must be observed with overloaded functions
3636 and methods, since the index will not contain any overload
3637 information (but NAME might contain it). */
3638 if (stab->primary)
9291a0cd 3639 {
da51c347
DE
3640 struct blockvector *bv = BLOCKVECTOR (stab);
3641 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
156942c7 3642
da51c347
DE
3643 sym = lookup_block_symbol (block, name, domain);
3644 }
1fd400ff 3645
da51c347
DE
3646 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3647 {
3648 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3649 return stab;
3650
3651 stab_best = stab;
9291a0cd 3652 }
da51c347
DE
3653
3654 /* Keep looking through other CUs. */
9291a0cd
TT
3655 }
3656 }
9291a0cd 3657
da51c347 3658 return stab_best;
9291a0cd
TT
3659}
3660
3661static void
3662dw2_print_stats (struct objfile *objfile)
3663{
e4a48d9d 3664 int i, total, count;
9291a0cd
TT
3665
3666 dw2_setup (objfile);
e4a48d9d 3667 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3668 count = 0;
e4a48d9d 3669 for (i = 0; i < total; ++i)
9291a0cd 3670 {
e254ef6a 3671 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3672
e254ef6a 3673 if (!per_cu->v.quick->symtab)
9291a0cd
TT
3674 ++count;
3675 }
e4a48d9d 3676 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3677 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3678}
3679
779bd270
DE
3680/* This dumps minimal information about the index.
3681 It is called via "mt print objfiles".
3682 One use is to verify .gdb_index has been loaded by the
3683 gdb.dwarf2/gdb-index.exp testcase. */
3684
9291a0cd
TT
3685static void
3686dw2_dump (struct objfile *objfile)
3687{
779bd270
DE
3688 dw2_setup (objfile);
3689 gdb_assert (dwarf2_per_objfile->using_index);
3690 printf_filtered (".gdb_index:");
3691 if (dwarf2_per_objfile->index_table != NULL)
3692 {
3693 printf_filtered (" version %d\n",
3694 dwarf2_per_objfile->index_table->version);
3695 }
3696 else
3697 printf_filtered (" faked for \"readnow\"\n");
3698 printf_filtered ("\n");
9291a0cd
TT
3699}
3700
3701static void
3189cb12
DE
3702dw2_relocate (struct objfile *objfile,
3703 const struct section_offsets *new_offsets,
3704 const struct section_offsets *delta)
9291a0cd
TT
3705{
3706 /* There's nothing to relocate here. */
3707}
3708
3709static void
3710dw2_expand_symtabs_for_function (struct objfile *objfile,
3711 const char *func_name)
3712{
da51c347
DE
3713 struct mapped_index *index;
3714
3715 dw2_setup (objfile);
3716
3717 index = dwarf2_per_objfile->index_table;
3718
3719 /* index is NULL if OBJF_READNOW. */
3720 if (index)
3721 {
3722 struct dw2_symtab_iterator iter;
3723 struct dwarf2_per_cu_data *per_cu;
3724
3725 /* Note: It doesn't matter what we pass for block_index here. */
3726 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3727 func_name);
3728
3729 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3730 dw2_instantiate_symtab (per_cu);
3731 }
9291a0cd
TT
3732}
3733
3734static void
3735dw2_expand_all_symtabs (struct objfile *objfile)
3736{
3737 int i;
3738
3739 dw2_setup (objfile);
1fd400ff
TT
3740
3741 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3742 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3743 {
e254ef6a 3744 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 3745
a0f42c21 3746 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3747 }
3748}
3749
3750static void
652a8996
JK
3751dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3752 const char *fullname)
9291a0cd
TT
3753{
3754 int i;
3755
3756 dw2_setup (objfile);
d4637a04
DE
3757
3758 /* We don't need to consider type units here.
3759 This is only called for examining code, e.g. expand_line_sal.
3760 There can be an order of magnitude (or more) more type units
3761 than comp units, and we avoid them if we can. */
3762
3763 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3764 {
3765 int j;
e254ef6a 3766 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3767 struct quick_file_names *file_data;
9291a0cd 3768
3d7bb9d9 3769 /* We only need to look at symtabs not already expanded. */
e254ef6a 3770 if (per_cu->v.quick->symtab)
9291a0cd
TT
3771 continue;
3772
e4a48d9d 3773 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3774 if (file_data == NULL)
9291a0cd
TT
3775 continue;
3776
7b9f3c50 3777 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3778 {
652a8996
JK
3779 const char *this_fullname = file_data->file_names[j];
3780
3781 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3782 {
a0f42c21 3783 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3784 break;
3785 }
3786 }
3787 }
3788}
3789
9291a0cd 3790static void
ade7ed9e
DE
3791dw2_map_matching_symbols (struct objfile *objfile,
3792 const char * name, domain_enum namespace,
3793 int global,
40658b94
PH
3794 int (*callback) (struct block *,
3795 struct symbol *, void *),
2edb89d3
JK
3796 void *data, symbol_compare_ftype *match,
3797 symbol_compare_ftype *ordered_compare)
9291a0cd 3798{
40658b94 3799 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3800 current language is Ada for a non-Ada objfile using GNU index. As Ada
3801 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3802}
3803
3804static void
f8eba3c6
TT
3805dw2_expand_symtabs_matching
3806 (struct objfile *objfile,
206f2a57
DE
3807 expand_symtabs_file_matcher_ftype *file_matcher,
3808 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
f8eba3c6
TT
3809 enum search_domain kind,
3810 void *data)
9291a0cd
TT
3811{
3812 int i;
3813 offset_type iter;
4b5246aa 3814 struct mapped_index *index;
9291a0cd
TT
3815
3816 dw2_setup (objfile);
ae2de4f8
DE
3817
3818 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3819 if (!dwarf2_per_objfile->index_table)
3820 return;
4b5246aa 3821 index = dwarf2_per_objfile->index_table;
9291a0cd 3822
7b08b9eb 3823 if (file_matcher != NULL)
24c79950
TT
3824 {
3825 struct cleanup *cleanup;
3826 htab_t visited_found, visited_not_found;
3827
3828 visited_found = htab_create_alloc (10,
3829 htab_hash_pointer, htab_eq_pointer,
3830 NULL, xcalloc, xfree);
3831 cleanup = make_cleanup_htab_delete (visited_found);
3832 visited_not_found = htab_create_alloc (10,
3833 htab_hash_pointer, htab_eq_pointer,
3834 NULL, xcalloc, xfree);
3835 make_cleanup_htab_delete (visited_not_found);
3836
848e3e78
DE
3837 /* The rule is CUs specify all the files, including those used by
3838 any TU, so there's no need to scan TUs here. */
3839
3840 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3841 {
3842 int j;
f4dc4d17 3843 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
24c79950
TT
3844 struct quick_file_names *file_data;
3845 void **slot;
7b08b9eb 3846
24c79950 3847 per_cu->v.quick->mark = 0;
3d7bb9d9 3848
24c79950
TT
3849 /* We only need to look at symtabs not already expanded. */
3850 if (per_cu->v.quick->symtab)
3851 continue;
7b08b9eb 3852
e4a48d9d 3853 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3854 if (file_data == NULL)
3855 continue;
7b08b9eb 3856
24c79950
TT
3857 if (htab_find (visited_not_found, file_data) != NULL)
3858 continue;
3859 else if (htab_find (visited_found, file_data) != NULL)
3860 {
3861 per_cu->v.quick->mark = 1;
3862 continue;
3863 }
3864
3865 for (j = 0; j < file_data->num_file_names; ++j)
3866 {
da235a7c
JK
3867 const char *this_real_name;
3868
fbd9ab74 3869 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3870 {
3871 per_cu->v.quick->mark = 1;
3872 break;
3873 }
da235a7c
JK
3874
3875 /* Before we invoke realpath, which can get expensive when many
3876 files are involved, do a quick comparison of the basenames. */
3877 if (!basenames_may_differ
3878 && !file_matcher (lbasename (file_data->file_names[j]),
3879 data, 1))
3880 continue;
3881
3882 this_real_name = dw2_get_real_path (objfile, file_data, j);
3883 if (file_matcher (this_real_name, data, 0))
3884 {
3885 per_cu->v.quick->mark = 1;
3886 break;
3887 }
24c79950
TT
3888 }
3889
3890 slot = htab_find_slot (per_cu->v.quick->mark
3891 ? visited_found
3892 : visited_not_found,
3893 file_data, INSERT);
3894 *slot = file_data;
3895 }
3896
3897 do_cleanups (cleanup);
3898 }
9291a0cd 3899
3876f04e 3900 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3901 {
3902 offset_type idx = 2 * iter;
3903 const char *name;
3904 offset_type *vec, vec_len, vec_idx;
8943b874 3905 int global_seen = 0;
9291a0cd 3906
3876f04e 3907 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3908 continue;
3909
3876f04e 3910 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3911
206f2a57 3912 if (! (*symbol_matcher) (name, data))
9291a0cd
TT
3913 continue;
3914
3915 /* The name was matched, now expand corresponding CUs that were
3916 marked. */
4b5246aa 3917 vec = (offset_type *) (index->constant_pool
3876f04e 3918 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3919 vec_len = MAYBE_SWAP (vec[0]);
3920 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3921 {
e254ef6a 3922 struct dwarf2_per_cu_data *per_cu;
156942c7 3923 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
3924 /* This value is only valid for index versions >= 7. */
3925 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
3926 gdb_index_symbol_kind symbol_kind =
3927 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3928 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
3929 /* Only check the symbol attributes if they're present.
3930 Indices prior to version 7 don't record them,
3931 and indices >= 7 may elide them for certain symbols
3932 (gold does this). */
3933 int attrs_valid =
3934 (index->version >= 7
3935 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3936
8943b874
DE
3937 /* Work around gold/15646. */
3938 if (attrs_valid)
3939 {
3940 if (!is_static && global_seen)
3941 continue;
3942 if (!is_static)
3943 global_seen = 1;
3944 }
3945
3190f0c6
DE
3946 /* Only check the symbol's kind if it has one. */
3947 if (attrs_valid)
156942c7
DE
3948 {
3949 switch (kind)
3950 {
3951 case VARIABLES_DOMAIN:
3952 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3953 continue;
3954 break;
3955 case FUNCTIONS_DOMAIN:
3956 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3957 continue;
3958 break;
3959 case TYPES_DOMAIN:
3960 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3961 continue;
3962 break;
3963 default:
3964 break;
3965 }
3966 }
3967
3190f0c6
DE
3968 /* Don't crash on bad data. */
3969 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3970 + dwarf2_per_objfile->n_type_units))
3971 {
3972 complaint (&symfile_complaints,
3973 _(".gdb_index entry has bad CU index"
4262abfb 3974 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
3975 continue;
3976 }
3977
156942c7 3978 per_cu = dw2_get_cu (cu_index);
7b08b9eb 3979 if (file_matcher == NULL || per_cu->v.quick->mark)
a0f42c21 3980 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3981 }
3982 }
3983}
3984
9703b513
TT
3985/* A helper for dw2_find_pc_sect_symtab which finds the most specific
3986 symtab. */
3987
3988static struct symtab *
3989recursively_find_pc_sect_symtab (struct symtab *symtab, CORE_ADDR pc)
3990{
3991 int i;
3992
3993 if (BLOCKVECTOR (symtab) != NULL
3994 && blockvector_contains_pc (BLOCKVECTOR (symtab), pc))
3995 return symtab;
3996
a3ec0bb1
DE
3997 if (symtab->includes == NULL)
3998 return NULL;
3999
9703b513
TT
4000 for (i = 0; symtab->includes[i]; ++i)
4001 {
a3ec0bb1 4002 struct symtab *s = symtab->includes[i];
9703b513
TT
4003
4004 s = recursively_find_pc_sect_symtab (s, pc);
4005 if (s != NULL)
4006 return s;
4007 }
4008
4009 return NULL;
4010}
4011
9291a0cd
TT
4012static struct symtab *
4013dw2_find_pc_sect_symtab (struct objfile *objfile,
77e371c0 4014 struct bound_minimal_symbol msymbol,
9291a0cd
TT
4015 CORE_ADDR pc,
4016 struct obj_section *section,
4017 int warn_if_readin)
4018{
4019 struct dwarf2_per_cu_data *data;
9703b513 4020 struct symtab *result;
9291a0cd
TT
4021
4022 dw2_setup (objfile);
4023
4024 if (!objfile->psymtabs_addrmap)
4025 return NULL;
4026
4027 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4028 if (!data)
4029 return NULL;
4030
4031 if (warn_if_readin && data->v.quick->symtab)
abebb8b0 4032 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4033 paddress (get_objfile_arch (objfile), pc));
4034
9703b513
TT
4035 result = recursively_find_pc_sect_symtab (dw2_instantiate_symtab (data), pc);
4036 gdb_assert (result != NULL);
4037 return result;
9291a0cd
TT
4038}
4039
9291a0cd 4040static void
44b13c5a 4041dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4042 void *data, int need_fullname)
9291a0cd
TT
4043{
4044 int i;
24c79950
TT
4045 struct cleanup *cleanup;
4046 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4047 NULL, xcalloc, xfree);
9291a0cd 4048
24c79950 4049 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 4050 dw2_setup (objfile);
ae2de4f8 4051
848e3e78
DE
4052 /* The rule is CUs specify all the files, including those used by
4053 any TU, so there's no need to scan TUs here.
4054 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4055
848e3e78 4056 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
4057 {
4058 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
4059
4060 if (per_cu->v.quick->symtab)
4061 {
4062 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4063 INSERT);
4064
4065 *slot = per_cu->v.quick->file_names;
4066 }
4067 }
4068
848e3e78 4069 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4070 {
4071 int j;
f4dc4d17 4072 struct dwarf2_per_cu_data *per_cu = dw2_get_primary_cu (i);
7b9f3c50 4073 struct quick_file_names *file_data;
24c79950 4074 void **slot;
9291a0cd 4075
3d7bb9d9 4076 /* We only need to look at symtabs not already expanded. */
e254ef6a 4077 if (per_cu->v.quick->symtab)
9291a0cd
TT
4078 continue;
4079
e4a48d9d 4080 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4081 if (file_data == NULL)
9291a0cd
TT
4082 continue;
4083
24c79950
TT
4084 slot = htab_find_slot (visited, file_data, INSERT);
4085 if (*slot)
4086 {
4087 /* Already visited. */
4088 continue;
4089 }
4090 *slot = file_data;
4091
7b9f3c50 4092 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4093 {
74e2f255
DE
4094 const char *this_real_name;
4095
4096 if (need_fullname)
4097 this_real_name = dw2_get_real_path (objfile, file_data, j);
4098 else
4099 this_real_name = NULL;
7b9f3c50 4100 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4101 }
4102 }
24c79950
TT
4103
4104 do_cleanups (cleanup);
9291a0cd
TT
4105}
4106
4107static int
4108dw2_has_symbols (struct objfile *objfile)
4109{
4110 return 1;
4111}
4112
4113const struct quick_symbol_functions dwarf2_gdb_index_functions =
4114{
4115 dw2_has_symbols,
4116 dw2_find_last_source_symtab,
4117 dw2_forget_cached_source_info,
f8eba3c6 4118 dw2_map_symtabs_matching_filename,
9291a0cd 4119 dw2_lookup_symbol,
9291a0cd
TT
4120 dw2_print_stats,
4121 dw2_dump,
4122 dw2_relocate,
4123 dw2_expand_symtabs_for_function,
4124 dw2_expand_all_symtabs,
652a8996 4125 dw2_expand_symtabs_with_fullname,
40658b94 4126 dw2_map_matching_symbols,
9291a0cd
TT
4127 dw2_expand_symtabs_matching,
4128 dw2_find_pc_sect_symtab,
9291a0cd
TT
4129 dw2_map_symbol_filenames
4130};
4131
4132/* Initialize for reading DWARF for this objfile. Return 0 if this
4133 file will use psymtabs, or 1 if using the GNU index. */
4134
4135int
4136dwarf2_initialize_objfile (struct objfile *objfile)
4137{
4138 /* If we're about to read full symbols, don't bother with the
4139 indices. In this case we also don't care if some other debug
4140 format is making psymtabs, because they are all about to be
4141 expanded anyway. */
4142 if ((objfile->flags & OBJF_READNOW))
4143 {
4144 int i;
4145
4146 dwarf2_per_objfile->using_index = 1;
4147 create_all_comp_units (objfile);
0e50663e 4148 create_all_type_units (objfile);
7b9f3c50
DE
4149 dwarf2_per_objfile->quick_file_names_table =
4150 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4151
1fd400ff 4152 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4153 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4154 {
e254ef6a 4155 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 4156
e254ef6a
DE
4157 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4158 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4159 }
4160
4161 /* Return 1 so that gdb sees the "quick" functions. However,
4162 these functions will be no-ops because we will have expanded
4163 all symtabs. */
4164 return 1;
4165 }
4166
4167 if (dwarf2_read_index (objfile))
4168 return 1;
4169
9291a0cd
TT
4170 return 0;
4171}
4172
4173\f
4174
dce234bc
PP
4175/* Build a partial symbol table. */
4176
4177void
f29dff0a 4178dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4179{
c9bf0622
TT
4180 volatile struct gdb_exception except;
4181
f29dff0a 4182 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4183 {
4184 init_psymbol_list (objfile, 1024);
4185 }
4186
c9bf0622
TT
4187 TRY_CATCH (except, RETURN_MASK_ERROR)
4188 {
4189 /* This isn't really ideal: all the data we allocate on the
4190 objfile's obstack is still uselessly kept around. However,
4191 freeing it seems unsafe. */
4192 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4193
4194 dwarf2_build_psymtabs_hard (objfile);
4195 discard_cleanups (cleanups);
4196 }
4197 if (except.reason < 0)
4198 exception_print (gdb_stderr, except);
c906108c 4199}
c906108c 4200
1ce1cefd
DE
4201/* Return the total length of the CU described by HEADER. */
4202
4203static unsigned int
4204get_cu_length (const struct comp_unit_head *header)
4205{
4206 return header->initial_length_size + header->length;
4207}
4208
45452591
DE
4209/* Return TRUE if OFFSET is within CU_HEADER. */
4210
4211static inline int
b64f50a1 4212offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4213{
b64f50a1 4214 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4215 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4216
b64f50a1 4217 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4218}
4219
3b80fe9b
DE
4220/* Find the base address of the compilation unit for range lists and
4221 location lists. It will normally be specified by DW_AT_low_pc.
4222 In DWARF-3 draft 4, the base address could be overridden by
4223 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4224 compilation units with discontinuous ranges. */
4225
4226static void
4227dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4228{
4229 struct attribute *attr;
4230
4231 cu->base_known = 0;
4232 cu->base_address = 0;
4233
4234 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4235 if (attr)
4236 {
31aa7e4e 4237 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4238 cu->base_known = 1;
4239 }
4240 else
4241 {
4242 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4243 if (attr)
4244 {
31aa7e4e 4245 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4246 cu->base_known = 1;
4247 }
4248 }
4249}
4250
93311388
DE
4251/* Read in the comp unit header information from the debug_info at info_ptr.
4252 NOTE: This leaves members offset, first_die_offset to be filled in
4253 by the caller. */
107d2387 4254
d521ce57 4255static const gdb_byte *
107d2387 4256read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 4257 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
4258{
4259 int signed_addr;
891d2f0b 4260 unsigned int bytes_read;
c764a876
DE
4261
4262 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4263 cu_header->initial_length_size = bytes_read;
4264 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4265 info_ptr += bytes_read;
107d2387
AC
4266 cu_header->version = read_2_bytes (abfd, info_ptr);
4267 info_ptr += 2;
b64f50a1
JK
4268 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4269 &bytes_read);
613e1657 4270 info_ptr += bytes_read;
107d2387
AC
4271 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4272 info_ptr += 1;
4273 signed_addr = bfd_get_sign_extend_vma (abfd);
4274 if (signed_addr < 0)
8e65ff28 4275 internal_error (__FILE__, __LINE__,
e2e0b3e5 4276 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4277 cu_header->signed_addr_p = signed_addr;
c764a876 4278
107d2387
AC
4279 return info_ptr;
4280}
4281
36586728
TT
4282/* Helper function that returns the proper abbrev section for
4283 THIS_CU. */
4284
4285static struct dwarf2_section_info *
4286get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4287{
4288 struct dwarf2_section_info *abbrev;
4289
4290 if (this_cu->is_dwz)
4291 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4292 else
4293 abbrev = &dwarf2_per_objfile->abbrev;
4294
4295 return abbrev;
4296}
4297
9ff913ba
DE
4298/* Subroutine of read_and_check_comp_unit_head and
4299 read_and_check_type_unit_head to simplify them.
4300 Perform various error checking on the header. */
4301
4302static void
4303error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4304 struct dwarf2_section_info *section,
4305 struct dwarf2_section_info *abbrev_section)
9ff913ba 4306{
a32a8923
DE
4307 bfd *abfd = get_section_bfd_owner (section);
4308 const char *filename = get_section_file_name (section);
9ff913ba
DE
4309
4310 if (header->version != 2 && header->version != 3 && header->version != 4)
4311 error (_("Dwarf Error: wrong version in compilation unit header "
4312 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4313 filename);
4314
b64f50a1 4315 if (header->abbrev_offset.sect_off
36586728 4316 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4317 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4318 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4319 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4320 filename);
4321
4322 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4323 avoid potential 32-bit overflow. */
1ce1cefd 4324 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4325 > section->size)
4326 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4327 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4328 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4329 filename);
4330}
4331
4332/* Read in a CU/TU header and perform some basic error checking.
4333 The contents of the header are stored in HEADER.
4334 The result is a pointer to the start of the first DIE. */
adabb602 4335
d521ce57 4336static const gdb_byte *
9ff913ba
DE
4337read_and_check_comp_unit_head (struct comp_unit_head *header,
4338 struct dwarf2_section_info *section,
4bdcc0c1 4339 struct dwarf2_section_info *abbrev_section,
d521ce57 4340 const gdb_byte *info_ptr,
9ff913ba 4341 int is_debug_types_section)
72bf9492 4342{
d521ce57 4343 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4344 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4345
b64f50a1 4346 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4347
72bf9492
DJ
4348 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4349
460c1c54
CC
4350 /* If we're reading a type unit, skip over the signature and
4351 type_offset fields. */
b0df02fd 4352 if (is_debug_types_section)
460c1c54
CC
4353 info_ptr += 8 /*signature*/ + header->offset_size;
4354
b64f50a1 4355 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4356
4bdcc0c1 4357 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4358
4359 return info_ptr;
4360}
4361
348e048f
DE
4362/* Read in the types comp unit header information from .debug_types entry at
4363 types_ptr. The result is a pointer to one past the end of the header. */
4364
d521ce57 4365static const gdb_byte *
9ff913ba
DE
4366read_and_check_type_unit_head (struct comp_unit_head *header,
4367 struct dwarf2_section_info *section,
4bdcc0c1 4368 struct dwarf2_section_info *abbrev_section,
d521ce57 4369 const gdb_byte *info_ptr,
dee91e82
DE
4370 ULONGEST *signature,
4371 cu_offset *type_offset_in_tu)
348e048f 4372{
d521ce57 4373 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4374 bfd *abfd = get_section_bfd_owner (section);
348e048f 4375
b64f50a1 4376 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4377
9ff913ba 4378 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4379
9ff913ba
DE
4380 /* If we're reading a type unit, skip over the signature and
4381 type_offset fields. */
4382 if (signature != NULL)
4383 *signature = read_8_bytes (abfd, info_ptr);
4384 info_ptr += 8;
dee91e82
DE
4385 if (type_offset_in_tu != NULL)
4386 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4387 header->offset_size);
9ff913ba
DE
4388 info_ptr += header->offset_size;
4389
b64f50a1 4390 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4391
4bdcc0c1 4392 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4393
4394 return info_ptr;
348e048f
DE
4395}
4396
f4dc4d17
DE
4397/* Fetch the abbreviation table offset from a comp or type unit header. */
4398
4399static sect_offset
4400read_abbrev_offset (struct dwarf2_section_info *section,
4401 sect_offset offset)
4402{
a32a8923 4403 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4404 const gdb_byte *info_ptr;
f4dc4d17
DE
4405 unsigned int length, initial_length_size, offset_size;
4406 sect_offset abbrev_offset;
4407
4408 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4409 info_ptr = section->buffer + offset.sect_off;
4410 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4411 offset_size = initial_length_size == 4 ? 4 : 8;
4412 info_ptr += initial_length_size + 2 /*version*/;
4413 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4414 return abbrev_offset;
4415}
4416
aaa75496
JB
4417/* Allocate a new partial symtab for file named NAME and mark this new
4418 partial symtab as being an include of PST. */
4419
4420static void
d521ce57 4421dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4422 struct objfile *objfile)
4423{
4424 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4425
fbd9ab74
JK
4426 if (!IS_ABSOLUTE_PATH (subpst->filename))
4427 {
4428 /* It shares objfile->objfile_obstack. */
4429 subpst->dirname = pst->dirname;
4430 }
4431
aaa75496
JB
4432 subpst->section_offsets = pst->section_offsets;
4433 subpst->textlow = 0;
4434 subpst->texthigh = 0;
4435
4436 subpst->dependencies = (struct partial_symtab **)
4437 obstack_alloc (&objfile->objfile_obstack,
4438 sizeof (struct partial_symtab *));
4439 subpst->dependencies[0] = pst;
4440 subpst->number_of_dependencies = 1;
4441
4442 subpst->globals_offset = 0;
4443 subpst->n_global_syms = 0;
4444 subpst->statics_offset = 0;
4445 subpst->n_static_syms = 0;
4446 subpst->symtab = NULL;
4447 subpst->read_symtab = pst->read_symtab;
4448 subpst->readin = 0;
4449
4450 /* No private part is necessary for include psymtabs. This property
4451 can be used to differentiate between such include psymtabs and
10b3939b 4452 the regular ones. */
58a9656e 4453 subpst->read_symtab_private = NULL;
aaa75496
JB
4454}
4455
4456/* Read the Line Number Program data and extract the list of files
4457 included by the source file represented by PST. Build an include
d85a05f0 4458 partial symtab for each of these included files. */
aaa75496
JB
4459
4460static void
4461dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4462 struct die_info *die,
4463 struct partial_symtab *pst)
aaa75496 4464{
d85a05f0
DJ
4465 struct line_header *lh = NULL;
4466 struct attribute *attr;
aaa75496 4467
d85a05f0
DJ
4468 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4469 if (attr)
3019eac3 4470 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4471 if (lh == NULL)
4472 return; /* No linetable, so no includes. */
4473
c6da4cef 4474 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
f3f5162e 4475 dwarf_decode_lines (lh, pst->dirname, cu, pst, 1);
aaa75496
JB
4476
4477 free_line_header (lh);
4478}
4479
348e048f 4480static hashval_t
52dc124a 4481hash_signatured_type (const void *item)
348e048f 4482{
52dc124a 4483 const struct signatured_type *sig_type = item;
9a619af0 4484
348e048f 4485 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4486 return sig_type->signature;
348e048f
DE
4487}
4488
4489static int
52dc124a 4490eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f
DE
4491{
4492 const struct signatured_type *lhs = item_lhs;
4493 const struct signatured_type *rhs = item_rhs;
9a619af0 4494
348e048f
DE
4495 return lhs->signature == rhs->signature;
4496}
4497
1fd400ff
TT
4498/* Allocate a hash table for signatured types. */
4499
4500static htab_t
673bfd45 4501allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4502{
4503 return htab_create_alloc_ex (41,
52dc124a
DE
4504 hash_signatured_type,
4505 eq_signatured_type,
1fd400ff
TT
4506 NULL,
4507 &objfile->objfile_obstack,
4508 hashtab_obstack_allocate,
4509 dummy_obstack_deallocate);
4510}
4511
d467dd73 4512/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4513
4514static int
d467dd73 4515add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff
TT
4516{
4517 struct signatured_type *sigt = *slot;
b4dd5633 4518 struct signatured_type ***datap = datum;
1fd400ff 4519
b4dd5633 4520 **datap = sigt;
1fd400ff
TT
4521 ++*datap;
4522
4523 return 1;
4524}
4525
c88ee1f0
DE
4526/* Create the hash table of all entries in the .debug_types
4527 (or .debug_types.dwo) section(s).
4528 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4529 otherwise it is NULL.
4530
4531 The result is a pointer to the hash table or NULL if there are no types.
4532
4533 Note: This function processes DWO files only, not DWP files. */
348e048f 4534
3019eac3
DE
4535static htab_t
4536create_debug_types_hash_table (struct dwo_file *dwo_file,
4537 VEC (dwarf2_section_info_def) *types)
348e048f 4538{
3019eac3 4539 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4540 htab_t types_htab = NULL;
8b70b953
TT
4541 int ix;
4542 struct dwarf2_section_info *section;
4bdcc0c1 4543 struct dwarf2_section_info *abbrev_section;
348e048f 4544
3019eac3
DE
4545 if (VEC_empty (dwarf2_section_info_def, types))
4546 return NULL;
348e048f 4547
4bdcc0c1
DE
4548 abbrev_section = (dwo_file != NULL
4549 ? &dwo_file->sections.abbrev
4550 : &dwarf2_per_objfile->abbrev);
4551
09406207
DE
4552 if (dwarf2_read_debug)
4553 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4554 dwo_file ? ".dwo" : "",
a32a8923 4555 get_section_file_name (abbrev_section));
09406207 4556
8b70b953 4557 for (ix = 0;
3019eac3 4558 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4559 ++ix)
4560 {
3019eac3 4561 bfd *abfd;
d521ce57 4562 const gdb_byte *info_ptr, *end_ptr;
348e048f 4563
8b70b953
TT
4564 dwarf2_read_section (objfile, section);
4565 info_ptr = section->buffer;
348e048f 4566
8b70b953
TT
4567 if (info_ptr == NULL)
4568 continue;
348e048f 4569
3019eac3 4570 /* We can't set abfd until now because the section may be empty or
a32a8923
DE
4571 not present, in which case the bfd is unknown. */
4572 abfd = get_section_bfd_owner (section);
3019eac3 4573
dee91e82
DE
4574 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4575 because we don't need to read any dies: the signature is in the
4576 header. */
8b70b953
TT
4577
4578 end_ptr = info_ptr + section->size;
4579 while (info_ptr < end_ptr)
4580 {
b64f50a1 4581 sect_offset offset;
3019eac3 4582 cu_offset type_offset_in_tu;
8b70b953 4583 ULONGEST signature;
52dc124a 4584 struct signatured_type *sig_type;
3019eac3 4585 struct dwo_unit *dwo_tu;
8b70b953 4586 void **slot;
d521ce57 4587 const gdb_byte *ptr = info_ptr;
9ff913ba 4588 struct comp_unit_head header;
dee91e82 4589 unsigned int length;
348e048f 4590
b64f50a1 4591 offset.sect_off = ptr - section->buffer;
348e048f 4592
8b70b953 4593 /* We need to read the type's signature in order to build the hash
9ff913ba 4594 table, but we don't need anything else just yet. */
348e048f 4595
4bdcc0c1
DE
4596 ptr = read_and_check_type_unit_head (&header, section,
4597 abbrev_section, ptr,
3019eac3 4598 &signature, &type_offset_in_tu);
6caca83c 4599
1ce1cefd 4600 length = get_cu_length (&header);
dee91e82 4601
6caca83c 4602 /* Skip dummy type units. */
dee91e82
DE
4603 if (ptr >= info_ptr + length
4604 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4605 {
1ce1cefd 4606 info_ptr += length;
6caca83c
CC
4607 continue;
4608 }
8b70b953 4609
0349ea22
DE
4610 if (types_htab == NULL)
4611 {
4612 if (dwo_file)
4613 types_htab = allocate_dwo_unit_table (objfile);
4614 else
4615 types_htab = allocate_signatured_type_table (objfile);
4616 }
4617
3019eac3
DE
4618 if (dwo_file)
4619 {
4620 sig_type = NULL;
4621 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4622 struct dwo_unit);
4623 dwo_tu->dwo_file = dwo_file;
4624 dwo_tu->signature = signature;
4625 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4626 dwo_tu->section = section;
3019eac3
DE
4627 dwo_tu->offset = offset;
4628 dwo_tu->length = length;
4629 }
4630 else
4631 {
4632 /* N.B.: type_offset is not usable if this type uses a DWO file.
4633 The real type_offset is in the DWO file. */
4634 dwo_tu = NULL;
4635 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4636 struct signatured_type);
4637 sig_type->signature = signature;
4638 sig_type->type_offset_in_tu = type_offset_in_tu;
4639 sig_type->per_cu.objfile = objfile;
4640 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4641 sig_type->per_cu.section = section;
3019eac3
DE
4642 sig_type->per_cu.offset = offset;
4643 sig_type->per_cu.length = length;
4644 }
8b70b953 4645
3019eac3
DE
4646 slot = htab_find_slot (types_htab,
4647 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4648 INSERT);
8b70b953
TT
4649 gdb_assert (slot != NULL);
4650 if (*slot != NULL)
4651 {
3019eac3
DE
4652 sect_offset dup_offset;
4653
4654 if (dwo_file)
4655 {
4656 const struct dwo_unit *dup_tu = *slot;
4657
4658 dup_offset = dup_tu->offset;
4659 }
4660 else
4661 {
4662 const struct signatured_type *dup_tu = *slot;
4663
4664 dup_offset = dup_tu->per_cu.offset;
4665 }
b3c8eb43 4666
8b70b953 4667 complaint (&symfile_complaints,
c88ee1f0 4668 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4669 " the entry at offset 0x%x, signature %s"),
3019eac3 4670 offset.sect_off, dup_offset.sect_off,
4031ecc5 4671 hex_string (signature));
8b70b953 4672 }
3019eac3 4673 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4674
73be47f5 4675 if (dwarf2_read_debug > 1)
4031ecc5 4676 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4677 offset.sect_off,
4031ecc5 4678 hex_string (signature));
348e048f 4679
dee91e82 4680 info_ptr += length;
8b70b953 4681 }
348e048f
DE
4682 }
4683
3019eac3
DE
4684 return types_htab;
4685}
4686
4687/* Create the hash table of all entries in the .debug_types section,
4688 and initialize all_type_units.
4689 The result is zero if there is an error (e.g. missing .debug_types section),
4690 otherwise non-zero. */
4691
4692static int
4693create_all_type_units (struct objfile *objfile)
4694{
4695 htab_t types_htab;
b4dd5633 4696 struct signatured_type **iter;
3019eac3
DE
4697
4698 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4699 if (types_htab == NULL)
4700 {
4701 dwarf2_per_objfile->signatured_types = NULL;
4702 return 0;
4703 }
4704
348e048f
DE
4705 dwarf2_per_objfile->signatured_types = types_htab;
4706
d467dd73
DE
4707 dwarf2_per_objfile->n_type_units = htab_elements (types_htab);
4708 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
4709 = xmalloc (dwarf2_per_objfile->n_type_units
4710 * sizeof (struct signatured_type *));
d467dd73
DE
4711 iter = &dwarf2_per_objfile->all_type_units[0];
4712 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4713 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4714 == dwarf2_per_objfile->n_type_units);
1fd400ff 4715
348e048f
DE
4716 return 1;
4717}
4718
a2ce51a0
DE
4719/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4720 Fill in SIG_ENTRY with DWO_ENTRY. */
4721
4722static void
4723fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4724 struct signatured_type *sig_entry,
4725 struct dwo_unit *dwo_entry)
4726{
7ee85ab1 4727 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4728 gdb_assert (! sig_entry->per_cu.queued);
4729 gdb_assert (sig_entry->per_cu.cu == NULL);
4730 gdb_assert (sig_entry->per_cu.v.quick != NULL);
4731 gdb_assert (sig_entry->per_cu.v.quick->symtab == NULL);
4732 gdb_assert (sig_entry->signature == dwo_entry->signature);
4733 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4734 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4735 gdb_assert (sig_entry->dwo_unit == NULL);
4736
4737 sig_entry->per_cu.section = dwo_entry->section;
4738 sig_entry->per_cu.offset = dwo_entry->offset;
4739 sig_entry->per_cu.length = dwo_entry->length;
4740 sig_entry->per_cu.reading_dwo_directly = 1;
4741 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4742 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4743 sig_entry->dwo_unit = dwo_entry;
4744}
4745
4746/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4747 If we haven't read the TU yet, create the signatured_type data structure
4748 for a TU to be read in directly from a DWO file, bypassing the stub.
4749 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4750 using .gdb_index, then when reading a CU we want to stay in the DWO file
4751 containing that CU. Otherwise we could end up reading several other DWO
4752 files (due to comdat folding) to process the transitive closure of all the
4753 mentioned TUs, and that can be slow. The current DWO file will have every
4754 type signature that it needs.
a2ce51a0
DE
4755 We only do this for .gdb_index because in the psymtab case we already have
4756 to read all the DWOs to build the type unit groups. */
4757
4758static struct signatured_type *
4759lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4760{
4761 struct objfile *objfile = dwarf2_per_objfile->objfile;
4762 struct dwo_file *dwo_file;
4763 struct dwo_unit find_dwo_entry, *dwo_entry;
4764 struct signatured_type find_sig_entry, *sig_entry;
4765
4766 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4767
4768 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4769 dwo_unit of the TU itself. */
4770 dwo_file = cu->dwo_unit->dwo_file;
4771
4772 /* We only ever need to read in one copy of a signatured type.
4773 Just use the global signatured_types array. If this is the first time
4774 we're reading this type, replace the recorded data from .gdb_index with
4775 this TU. */
4776
4777 if (dwarf2_per_objfile->signatured_types == NULL)
4778 return NULL;
4779 find_sig_entry.signature = sig;
4780 sig_entry = htab_find (dwarf2_per_objfile->signatured_types, &find_sig_entry);
4781 if (sig_entry == NULL)
4782 return NULL;
7ee85ab1
DE
4783
4784 /* We can get here with the TU already read, *or* in the process of being
4785 read. Don't reassign it if that's the case. Also note that if the TU is
4786 already being read, it may not have come from a DWO, the program may be
4787 a mix of Fission-compiled code and non-Fission-compiled code. */
a2ce51a0 4788 /* Have we already tried to read this TU? */
7ee85ab1 4789 if (sig_entry->per_cu.tu_read)
a2ce51a0
DE
4790 return sig_entry;
4791
4792 /* Ok, this is the first time we're reading this TU. */
4793 if (dwo_file->tus == NULL)
4794 return NULL;
4795 find_dwo_entry.signature = sig;
4796 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4797 if (dwo_entry == NULL)
4798 return NULL;
4799
4800 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 4801 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
4802 return sig_entry;
4803}
4804
4805/* Subroutine of lookup_dwp_signatured_type.
4806 Add an entry for signature SIG to dwarf2_per_objfile->signatured_types. */
4807
4808static struct signatured_type *
4809add_type_unit (ULONGEST sig)
4810{
4811 struct objfile *objfile = dwarf2_per_objfile->objfile;
4812 int n_type_units = dwarf2_per_objfile->n_type_units;
4813 struct signatured_type *sig_type;
4814 void **slot;
4815
4816 ++n_type_units;
4817 dwarf2_per_objfile->all_type_units =
4818 xrealloc (dwarf2_per_objfile->all_type_units,
4819 n_type_units * sizeof (struct signatured_type *));
4820 dwarf2_per_objfile->n_type_units = n_type_units;
4821 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4822 struct signatured_type);
4823 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4824 sig_type->signature = sig;
4825 sig_type->per_cu.is_debug_types = 1;
4826 sig_type->per_cu.v.quick =
4827 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4828 struct dwarf2_per_cu_quick_data);
4829 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4830 sig_type, INSERT);
4831 gdb_assert (*slot == NULL);
4832 *slot = sig_type;
4833 /* The rest of sig_type must be filled in by the caller. */
4834 return sig_type;
4835}
4836
4837/* Subroutine of lookup_signatured_type.
4838 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
4839 then try the DWP file.
4840 Normally this "can't happen", but if there's a bug in signature
4841 generation and/or the DWP file is built incorrectly, it can happen.
4842 Using the type directly from the DWP file means we don't have the stub
4843 which has some useful attributes (e.g., DW_AT_comp_dir), but they're
4844 not critical. [Eventually the stub may go away for type units anyway.] */
4845
4846static struct signatured_type *
4847lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4848{
4849 struct objfile *objfile = dwarf2_per_objfile->objfile;
4850 struct dwp_file *dwp_file = get_dwp_file ();
4851 struct dwo_unit *dwo_entry;
4852 struct signatured_type find_sig_entry, *sig_entry;
4853
4854 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4855 gdb_assert (dwp_file != NULL);
4856
4857 if (dwarf2_per_objfile->signatured_types != NULL)
4858 {
4859 find_sig_entry.signature = sig;
4860 sig_entry = htab_find (dwarf2_per_objfile->signatured_types,
4861 &find_sig_entry);
4862 if (sig_entry != NULL)
4863 return sig_entry;
4864 }
4865
4866 /* This is the "shouldn't happen" case.
4867 Try the DWP file and hope for the best. */
4868 if (dwp_file->tus == NULL)
4869 return NULL;
57d63ce2
DE
4870 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4871 sig, 1 /* is_debug_types */);
a2ce51a0
DE
4872 if (dwo_entry == NULL)
4873 return NULL;
4874
4875 sig_entry = add_type_unit (sig);
4876 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4877
4878 /* The caller will signal a complaint if we return NULL.
4879 Here we don't return NULL but we still want to complain. */
4880 complaint (&symfile_complaints,
4881 _("Bad type signature %s referenced by %s at 0x%x,"
4882 " coping by using copy in DWP [in module %s]"),
4883 hex_string (sig),
4884 cu->per_cu->is_debug_types ? "TU" : "CU",
4885 cu->per_cu->offset.sect_off,
4262abfb 4886 objfile_name (objfile));
a2ce51a0
DE
4887
4888 return sig_entry;
4889}
4890
380bca97 4891/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
4892 Returns NULL if signature SIG is not present in the table.
4893 It is up to the caller to complain about this. */
348e048f
DE
4894
4895static struct signatured_type *
a2ce51a0 4896lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 4897{
a2ce51a0
DE
4898 if (cu->dwo_unit
4899 && dwarf2_per_objfile->using_index)
4900 {
4901 /* We're in a DWO/DWP file, and we're using .gdb_index.
4902 These cases require special processing. */
4903 if (get_dwp_file () == NULL)
4904 return lookup_dwo_signatured_type (cu, sig);
4905 else
4906 return lookup_dwp_signatured_type (cu, sig);
4907 }
4908 else
4909 {
4910 struct signatured_type find_entry, *entry;
348e048f 4911
a2ce51a0
DE
4912 if (dwarf2_per_objfile->signatured_types == NULL)
4913 return NULL;
4914 find_entry.signature = sig;
4915 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4916 return entry;
4917 }
348e048f 4918}
42e7ad6c
DE
4919\f
4920/* Low level DIE reading support. */
348e048f 4921
d85a05f0
DJ
4922/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4923
4924static void
4925init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 4926 struct dwarf2_cu *cu,
3019eac3
DE
4927 struct dwarf2_section_info *section,
4928 struct dwo_file *dwo_file)
d85a05f0 4929{
fceca515 4930 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 4931 reader->abfd = get_section_bfd_owner (section);
d85a05f0 4932 reader->cu = cu;
3019eac3 4933 reader->dwo_file = dwo_file;
dee91e82
DE
4934 reader->die_section = section;
4935 reader->buffer = section->buffer;
f664829e 4936 reader->buffer_end = section->buffer + section->size;
a2ce51a0 4937 reader->comp_dir = NULL;
d85a05f0
DJ
4938}
4939
b0c7bfa9
DE
4940/* Subroutine of init_cutu_and_read_dies to simplify it.
4941 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4942 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4943 already.
4944
4945 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4946 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
4947 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4948 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
4949 attribute of the referencing CU. Exactly one of STUB_COMP_UNIT_DIE and
c4a3fee2 4950 STUB_COMP_DIR must be non-NULL.
b0c7bfa9
DE
4951 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4952 are filled in with the info of the DIE from the DWO file.
4953 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4954 provided an abbrev table to use.
4955 The result is non-zero if a valid (non-dummy) DIE was found. */
4956
4957static int
4958read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4959 struct dwo_unit *dwo_unit,
4960 int abbrev_table_provided,
4961 struct die_info *stub_comp_unit_die,
a2ce51a0 4962 const char *stub_comp_dir,
b0c7bfa9 4963 struct die_reader_specs *result_reader,
d521ce57 4964 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
4965 struct die_info **result_comp_unit_die,
4966 int *result_has_children)
4967{
4968 struct objfile *objfile = dwarf2_per_objfile->objfile;
4969 struct dwarf2_cu *cu = this_cu->cu;
4970 struct dwarf2_section_info *section;
4971 bfd *abfd;
d521ce57 4972 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
4973 const char *comp_dir_string;
4974 ULONGEST signature; /* Or dwo_id. */
4975 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4976 int i,num_extra_attrs;
4977 struct dwarf2_section_info *dwo_abbrev_section;
4978 struct attribute *attr;
4979 struct die_info *comp_unit_die;
4980
c4a3fee2
DE
4981 /* Exactly one of these must be provided. */
4982 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) == 1);
a2ce51a0 4983
b0c7bfa9
DE
4984 /* These attributes aren't processed until later:
4985 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
4986 However, the attribute is found in the stub which we won't have later.
4987 In order to not impose this complication on the rest of the code,
4988 we read them here and copy them to the DWO CU/TU die. */
4989
4990 stmt_list = NULL;
4991 low_pc = NULL;
4992 high_pc = NULL;
4993 ranges = NULL;
4994 comp_dir = NULL;
4995
4996 if (stub_comp_unit_die != NULL)
4997 {
4998 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
4999 DWO file. */
5000 if (! this_cu->is_debug_types)
5001 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5002 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5003 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5004 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5005 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5006
5007 /* There should be a DW_AT_addr_base attribute here (if needed).
5008 We need the value before we can process DW_FORM_GNU_addr_index. */
5009 cu->addr_base = 0;
5010 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5011 if (attr)
5012 cu->addr_base = DW_UNSND (attr);
5013
5014 /* There should be a DW_AT_ranges_base attribute here (if needed).
5015 We need the value before we can process DW_AT_ranges. */
5016 cu->ranges_base = 0;
5017 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5018 if (attr)
5019 cu->ranges_base = DW_UNSND (attr);
5020 }
a2ce51a0
DE
5021 else if (stub_comp_dir != NULL)
5022 {
5023 /* Reconstruct the comp_dir attribute to simplify the code below. */
5024 comp_dir = (struct attribute *)
5025 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5026 comp_dir->name = DW_AT_comp_dir;
5027 comp_dir->form = DW_FORM_string;
5028 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5029 DW_STRING (comp_dir) = stub_comp_dir;
5030 }
b0c7bfa9
DE
5031
5032 /* Set up for reading the DWO CU/TU. */
5033 cu->dwo_unit = dwo_unit;
5034 section = dwo_unit->section;
5035 dwarf2_read_section (objfile, section);
a32a8923 5036 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5037 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5038 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5039 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5040
5041 if (this_cu->is_debug_types)
5042 {
5043 ULONGEST header_signature;
5044 cu_offset type_offset_in_tu;
5045 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5046
5047 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5048 dwo_abbrev_section,
5049 info_ptr,
5050 &header_signature,
5051 &type_offset_in_tu);
a2ce51a0
DE
5052 /* This is not an assert because it can be caused by bad debug info. */
5053 if (sig_type->signature != header_signature)
5054 {
5055 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5056 " TU at offset 0x%x [in module %s]"),
5057 hex_string (sig_type->signature),
5058 hex_string (header_signature),
5059 dwo_unit->offset.sect_off,
5060 bfd_get_filename (abfd));
5061 }
b0c7bfa9
DE
5062 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5063 /* For DWOs coming from DWP files, we don't know the CU length
5064 nor the type's offset in the TU until now. */
5065 dwo_unit->length = get_cu_length (&cu->header);
5066 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5067
5068 /* Establish the type offset that can be used to lookup the type.
5069 For DWO files, we don't know it until now. */
5070 sig_type->type_offset_in_section.sect_off =
5071 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5072 }
5073 else
5074 {
5075 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5076 dwo_abbrev_section,
5077 info_ptr, 0);
5078 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5079 /* For DWOs coming from DWP files, we don't know the CU length
5080 until now. */
5081 dwo_unit->length = get_cu_length (&cu->header);
5082 }
5083
02142a6c
DE
5084 /* Replace the CU's original abbrev table with the DWO's.
5085 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5086 if (abbrev_table_provided)
5087 {
5088 /* Don't free the provided abbrev table, the caller of
5089 init_cutu_and_read_dies owns it. */
5090 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5091 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5092 make_cleanup (dwarf2_free_abbrev_table, cu);
5093 }
5094 else
5095 {
5096 dwarf2_free_abbrev_table (cu);
5097 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5098 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5099 }
5100
5101 /* Read in the die, but leave space to copy over the attributes
5102 from the stub. This has the benefit of simplifying the rest of
5103 the code - all the work to maintain the illusion of a single
5104 DW_TAG_{compile,type}_unit DIE is done here. */
5105 num_extra_attrs = ((stmt_list != NULL)
5106 + (low_pc != NULL)
5107 + (high_pc != NULL)
5108 + (ranges != NULL)
5109 + (comp_dir != NULL));
5110 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5111 result_has_children, num_extra_attrs);
5112
5113 /* Copy over the attributes from the stub to the DIE we just read in. */
5114 comp_unit_die = *result_comp_unit_die;
5115 i = comp_unit_die->num_attrs;
5116 if (stmt_list != NULL)
5117 comp_unit_die->attrs[i++] = *stmt_list;
5118 if (low_pc != NULL)
5119 comp_unit_die->attrs[i++] = *low_pc;
5120 if (high_pc != NULL)
5121 comp_unit_die->attrs[i++] = *high_pc;
5122 if (ranges != NULL)
5123 comp_unit_die->attrs[i++] = *ranges;
5124 if (comp_dir != NULL)
5125 comp_unit_die->attrs[i++] = *comp_dir;
5126 comp_unit_die->num_attrs += num_extra_attrs;
5127
bf6af496
DE
5128 if (dwarf2_die_debug)
5129 {
5130 fprintf_unfiltered (gdb_stdlog,
5131 "Read die from %s@0x%x of %s:\n",
a32a8923 5132 get_section_name (section),
bf6af496
DE
5133 (unsigned) (begin_info_ptr - section->buffer),
5134 bfd_get_filename (abfd));
5135 dump_die (comp_unit_die, dwarf2_die_debug);
5136 }
5137
a2ce51a0
DE
5138 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5139 TUs by skipping the stub and going directly to the entry in the DWO file.
5140 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5141 to get it via circuitous means. Blech. */
5142 if (comp_dir != NULL)
5143 result_reader->comp_dir = DW_STRING (comp_dir);
5144
b0c7bfa9
DE
5145 /* Skip dummy compilation units. */
5146 if (info_ptr >= begin_info_ptr + dwo_unit->length
5147 || peek_abbrev_code (abfd, info_ptr) == 0)
5148 return 0;
5149
5150 *result_info_ptr = info_ptr;
5151 return 1;
5152}
5153
5154/* Subroutine of init_cutu_and_read_dies to simplify it.
5155 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5156 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5157
5158static struct dwo_unit *
5159lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5160 struct die_info *comp_unit_die)
5161{
5162 struct dwarf2_cu *cu = this_cu->cu;
5163 struct attribute *attr;
5164 ULONGEST signature;
5165 struct dwo_unit *dwo_unit;
5166 const char *comp_dir, *dwo_name;
5167
a2ce51a0
DE
5168 gdb_assert (cu != NULL);
5169
b0c7bfa9
DE
5170 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5171 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5172 gdb_assert (attr != NULL);
5173 dwo_name = DW_STRING (attr);
5174 comp_dir = NULL;
5175 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5176 if (attr)
5177 comp_dir = DW_STRING (attr);
5178
5179 if (this_cu->is_debug_types)
5180 {
5181 struct signatured_type *sig_type;
5182
5183 /* Since this_cu is the first member of struct signatured_type,
5184 we can go from a pointer to one to a pointer to the other. */
5185 sig_type = (struct signatured_type *) this_cu;
5186 signature = sig_type->signature;
5187 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5188 }
5189 else
5190 {
5191 struct attribute *attr;
5192
5193 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5194 if (! attr)
5195 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5196 " [in module %s]"),
4262abfb 5197 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5198 signature = DW_UNSND (attr);
5199 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5200 signature);
5201 }
5202
b0c7bfa9
DE
5203 return dwo_unit;
5204}
5205
a2ce51a0
DE
5206/* Subroutine of init_cutu_and_read_dies to simplify it.
5207 Read a TU directly from a DWO file, bypassing the stub. */
5208
5209static void
5210init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu, int keep,
5211 die_reader_func_ftype *die_reader_func,
5212 void *data)
5213{
5214 struct dwarf2_cu *cu;
5215 struct signatured_type *sig_type;
5216 struct cleanup *cleanups, *free_cu_cleanup;
5217 struct die_reader_specs reader;
5218 const gdb_byte *info_ptr;
5219 struct die_info *comp_unit_die;
5220 int has_children;
5221
5222 /* Verify we can do the following downcast, and that we have the
5223 data we need. */
5224 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5225 sig_type = (struct signatured_type *) this_cu;
5226 gdb_assert (sig_type->dwo_unit != NULL);
5227
5228 cleanups = make_cleanup (null_cleanup, NULL);
5229
5230 gdb_assert (this_cu->cu == NULL);
5231 cu = xmalloc (sizeof (*cu));
5232 init_one_comp_unit (cu, this_cu);
5233 /* If an error occurs while loading, release our storage. */
5234 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5235
5236 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5237 0 /* abbrev_table_provided */,
5238 NULL /* stub_comp_unit_die */,
5239 sig_type->dwo_unit->dwo_file->comp_dir,
5240 &reader, &info_ptr,
5241 &comp_unit_die, &has_children) == 0)
5242 {
5243 /* Dummy die. */
5244 do_cleanups (cleanups);
5245 return;
5246 }
5247
5248 /* All the "real" work is done here. */
5249 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5250
5251 /* This duplicates some code in init_cutu_and_read_dies,
5252 but the alternative is making the latter more complex.
5253 This function is only for the special case of using DWO files directly:
5254 no point in overly complicating the general case just to handle this. */
5255 if (keep)
5256 {
5257 /* We've successfully allocated this compilation unit. Let our
5258 caller clean it up when finished with it. */
5259 discard_cleanups (free_cu_cleanup);
5260
5261 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5262 So we have to manually free the abbrev table. */
5263 dwarf2_free_abbrev_table (cu);
5264
5265 /* Link this CU into read_in_chain. */
5266 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5267 dwarf2_per_objfile->read_in_chain = this_cu;
5268 }
5269 else
5270 do_cleanups (free_cu_cleanup);
5271
5272 do_cleanups (cleanups);
5273}
5274
fd820528 5275/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5276 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5277
f4dc4d17
DE
5278 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5279 Otherwise the table specified in the comp unit header is read in and used.
5280 This is an optimization for when we already have the abbrev table.
5281
dee91e82
DE
5282 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5283 Otherwise, a new CU is allocated with xmalloc.
5284
5285 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5286 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5287
5288 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5289 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5290
70221824 5291static void
fd820528 5292init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5293 struct abbrev_table *abbrev_table,
fd820528
DE
5294 int use_existing_cu, int keep,
5295 die_reader_func_ftype *die_reader_func,
5296 void *data)
c906108c 5297{
dee91e82 5298 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5299 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5300 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5301 struct dwarf2_cu *cu;
d521ce57 5302 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5303 struct die_reader_specs reader;
d85a05f0 5304 struct die_info *comp_unit_die;
dee91e82 5305 int has_children;
d85a05f0 5306 struct attribute *attr;
365156ad 5307 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5308 struct signatured_type *sig_type = NULL;
4bdcc0c1 5309 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5310 /* Non-zero if CU currently points to a DWO file and we need to
5311 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5312 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5313 int rereading_dwo_cu = 0;
c906108c 5314
09406207
DE
5315 if (dwarf2_die_debug)
5316 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5317 this_cu->is_debug_types ? "type" : "comp",
5318 this_cu->offset.sect_off);
5319
dee91e82
DE
5320 if (use_existing_cu)
5321 gdb_assert (keep);
23745b47 5322
a2ce51a0
DE
5323 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5324 file (instead of going through the stub), short-circuit all of this. */
5325 if (this_cu->reading_dwo_directly)
5326 {
5327 /* Narrow down the scope of possibilities to have to understand. */
5328 gdb_assert (this_cu->is_debug_types);
5329 gdb_assert (abbrev_table == NULL);
5330 gdb_assert (!use_existing_cu);
5331 init_tu_and_read_dwo_dies (this_cu, keep, die_reader_func, data);
5332 return;
5333 }
5334
dee91e82
DE
5335 cleanups = make_cleanup (null_cleanup, NULL);
5336
5337 /* This is cheap if the section is already read in. */
5338 dwarf2_read_section (objfile, section);
5339
5340 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5341
5342 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5343
5344 if (use_existing_cu && this_cu->cu != NULL)
5345 {
5346 cu = this_cu->cu;
42e7ad6c
DE
5347
5348 /* If this CU is from a DWO file we need to start over, we need to
5349 refetch the attributes from the skeleton CU.
5350 This could be optimized by retrieving those attributes from when we
5351 were here the first time: the previous comp_unit_die was stored in
5352 comp_unit_obstack. But there's no data yet that we need this
5353 optimization. */
5354 if (cu->dwo_unit != NULL)
5355 rereading_dwo_cu = 1;
dee91e82
DE
5356 }
5357 else
5358 {
5359 /* If !use_existing_cu, this_cu->cu must be NULL. */
5360 gdb_assert (this_cu->cu == NULL);
5361
5362 cu = xmalloc (sizeof (*cu));
5363 init_one_comp_unit (cu, this_cu);
5364
5365 /* If an error occurs while loading, release our storage. */
365156ad 5366 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5367 }
dee91e82 5368
b0c7bfa9 5369 /* Get the header. */
42e7ad6c
DE
5370 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5371 {
5372 /* We already have the header, there's no need to read it in again. */
5373 info_ptr += cu->header.first_die_offset.cu_off;
5374 }
5375 else
5376 {
3019eac3 5377 if (this_cu->is_debug_types)
dee91e82
DE
5378 {
5379 ULONGEST signature;
42e7ad6c 5380 cu_offset type_offset_in_tu;
dee91e82 5381
4bdcc0c1
DE
5382 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5383 abbrev_section, info_ptr,
42e7ad6c
DE
5384 &signature,
5385 &type_offset_in_tu);
dee91e82 5386
42e7ad6c
DE
5387 /* Since per_cu is the first member of struct signatured_type,
5388 we can go from a pointer to one to a pointer to the other. */
5389 sig_type = (struct signatured_type *) this_cu;
5390 gdb_assert (sig_type->signature == signature);
5391 gdb_assert (sig_type->type_offset_in_tu.cu_off
5392 == type_offset_in_tu.cu_off);
dee91e82
DE
5393 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5394
42e7ad6c
DE
5395 /* LENGTH has not been set yet for type units if we're
5396 using .gdb_index. */
1ce1cefd 5397 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5398
5399 /* Establish the type offset that can be used to lookup the type. */
5400 sig_type->type_offset_in_section.sect_off =
5401 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5402 }
5403 else
5404 {
4bdcc0c1
DE
5405 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5406 abbrev_section,
5407 info_ptr, 0);
dee91e82
DE
5408
5409 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5410 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5411 }
5412 }
10b3939b 5413
6caca83c 5414 /* Skip dummy compilation units. */
dee91e82 5415 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5416 || peek_abbrev_code (abfd, info_ptr) == 0)
5417 {
dee91e82 5418 do_cleanups (cleanups);
21b2bd31 5419 return;
6caca83c
CC
5420 }
5421
433df2d4
DE
5422 /* If we don't have them yet, read the abbrevs for this compilation unit.
5423 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5424 done. Note that it's important that if the CU had an abbrev table
5425 on entry we don't free it when we're done: Somewhere up the call stack
5426 it may be in use. */
f4dc4d17
DE
5427 if (abbrev_table != NULL)
5428 {
5429 gdb_assert (cu->abbrev_table == NULL);
5430 gdb_assert (cu->header.abbrev_offset.sect_off
5431 == abbrev_table->offset.sect_off);
5432 cu->abbrev_table = abbrev_table;
5433 }
5434 else if (cu->abbrev_table == NULL)
dee91e82 5435 {
4bdcc0c1 5436 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5437 make_cleanup (dwarf2_free_abbrev_table, cu);
5438 }
42e7ad6c
DE
5439 else if (rereading_dwo_cu)
5440 {
5441 dwarf2_free_abbrev_table (cu);
5442 dwarf2_read_abbrevs (cu, abbrev_section);
5443 }
af703f96 5444
dee91e82 5445 /* Read the top level CU/TU die. */
3019eac3 5446 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5447 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5448
b0c7bfa9
DE
5449 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5450 from the DWO file.
5451 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5452 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5453 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5454 if (attr)
5455 {
3019eac3 5456 struct dwo_unit *dwo_unit;
b0c7bfa9 5457 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5458
5459 if (has_children)
6a506a2d
DE
5460 {
5461 complaint (&symfile_complaints,
5462 _("compilation unit with DW_AT_GNU_dwo_name"
5463 " has children (offset 0x%x) [in module %s]"),
5464 this_cu->offset.sect_off, bfd_get_filename (abfd));
5465 }
b0c7bfa9 5466 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5467 if (dwo_unit != NULL)
3019eac3 5468 {
6a506a2d
DE
5469 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5470 abbrev_table != NULL,
a2ce51a0 5471 comp_unit_die, NULL,
6a506a2d
DE
5472 &reader, &info_ptr,
5473 &dwo_comp_unit_die, &has_children) == 0)
5474 {
5475 /* Dummy die. */
5476 do_cleanups (cleanups);
5477 return;
5478 }
5479 comp_unit_die = dwo_comp_unit_die;
5480 }
5481 else
5482 {
5483 /* Yikes, we couldn't find the rest of the DIE, we only have
5484 the stub. A complaint has already been logged. There's
5485 not much more we can do except pass on the stub DIE to
5486 die_reader_func. We don't want to throw an error on bad
5487 debug info. */
3019eac3
DE
5488 }
5489 }
5490
b0c7bfa9 5491 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5492 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5493
b0c7bfa9 5494 /* Done, clean up. */
365156ad 5495 if (free_cu_cleanup != NULL)
348e048f 5496 {
365156ad
TT
5497 if (keep)
5498 {
5499 /* We've successfully allocated this compilation unit. Let our
5500 caller clean it up when finished with it. */
5501 discard_cleanups (free_cu_cleanup);
dee91e82 5502
365156ad
TT
5503 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5504 So we have to manually free the abbrev table. */
5505 dwarf2_free_abbrev_table (cu);
dee91e82 5506
365156ad
TT
5507 /* Link this CU into read_in_chain. */
5508 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5509 dwarf2_per_objfile->read_in_chain = this_cu;
5510 }
5511 else
5512 do_cleanups (free_cu_cleanup);
348e048f 5513 }
365156ad
TT
5514
5515 do_cleanups (cleanups);
dee91e82
DE
5516}
5517
33e80786
DE
5518/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5519 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5520 to have already done the lookup to find the DWO file).
dee91e82
DE
5521
5522 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5523 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5524
5525 We fill in THIS_CU->length.
5526
5527 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5528 linker) then DIE_READER_FUNC will not get called.
5529
5530 THIS_CU->cu is always freed when done.
3019eac3
DE
5531 This is done in order to not leave THIS_CU->cu in a state where we have
5532 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5533
5534static void
5535init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5536 struct dwo_file *dwo_file,
dee91e82
DE
5537 die_reader_func_ftype *die_reader_func,
5538 void *data)
5539{
5540 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5541 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5542 bfd *abfd = get_section_bfd_owner (section);
33e80786 5543 struct dwarf2_section_info *abbrev_section;
dee91e82 5544 struct dwarf2_cu cu;
d521ce57 5545 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5546 struct die_reader_specs reader;
5547 struct cleanup *cleanups;
5548 struct die_info *comp_unit_die;
5549 int has_children;
5550
09406207
DE
5551 if (dwarf2_die_debug)
5552 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5553 this_cu->is_debug_types ? "type" : "comp",
5554 this_cu->offset.sect_off);
5555
dee91e82
DE
5556 gdb_assert (this_cu->cu == NULL);
5557
33e80786
DE
5558 abbrev_section = (dwo_file != NULL
5559 ? &dwo_file->sections.abbrev
5560 : get_abbrev_section_for_cu (this_cu));
5561
dee91e82
DE
5562 /* This is cheap if the section is already read in. */
5563 dwarf2_read_section (objfile, section);
5564
5565 init_one_comp_unit (&cu, this_cu);
5566
5567 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5568
5569 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5570 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5571 abbrev_section, info_ptr,
3019eac3 5572 this_cu->is_debug_types);
dee91e82 5573
1ce1cefd 5574 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5575
5576 /* Skip dummy compilation units. */
5577 if (info_ptr >= begin_info_ptr + this_cu->length
5578 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5579 {
dee91e82 5580 do_cleanups (cleanups);
21b2bd31 5581 return;
93311388 5582 }
72bf9492 5583
dee91e82
DE
5584 dwarf2_read_abbrevs (&cu, abbrev_section);
5585 make_cleanup (dwarf2_free_abbrev_table, &cu);
5586
3019eac3 5587 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5588 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5589
5590 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5591
5592 do_cleanups (cleanups);
5593}
5594
3019eac3
DE
5595/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5596 does not lookup the specified DWO file.
5597 This cannot be used to read DWO files.
dee91e82
DE
5598
5599 THIS_CU->cu is always freed when done.
3019eac3
DE
5600 This is done in order to not leave THIS_CU->cu in a state where we have
5601 to care whether it refers to the "main" CU or the DWO CU.
5602 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5603
5604static void
5605init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5606 die_reader_func_ftype *die_reader_func,
5607 void *data)
5608{
33e80786 5609 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5610}
0018ea6f
DE
5611\f
5612/* Type Unit Groups.
dee91e82 5613
0018ea6f
DE
5614 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5615 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5616 so that all types coming from the same compilation (.o file) are grouped
5617 together. A future step could be to put the types in the same symtab as
5618 the CU the types ultimately came from. */
ff013f42 5619
f4dc4d17
DE
5620static hashval_t
5621hash_type_unit_group (const void *item)
5622{
094b34ac 5623 const struct type_unit_group *tu_group = item;
f4dc4d17 5624
094b34ac 5625 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5626}
348e048f
DE
5627
5628static int
f4dc4d17 5629eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5630{
f4dc4d17
DE
5631 const struct type_unit_group *lhs = item_lhs;
5632 const struct type_unit_group *rhs = item_rhs;
348e048f 5633
094b34ac 5634 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5635}
348e048f 5636
f4dc4d17
DE
5637/* Allocate a hash table for type unit groups. */
5638
5639static htab_t
5640allocate_type_unit_groups_table (void)
5641{
5642 return htab_create_alloc_ex (3,
5643 hash_type_unit_group,
5644 eq_type_unit_group,
5645 NULL,
5646 &dwarf2_per_objfile->objfile->objfile_obstack,
5647 hashtab_obstack_allocate,
5648 dummy_obstack_deallocate);
5649}
dee91e82 5650
f4dc4d17
DE
5651/* Type units that don't have DW_AT_stmt_list are grouped into their own
5652 partial symtabs. We combine several TUs per psymtab to not let the size
5653 of any one psymtab grow too big. */
5654#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5655#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5656
094b34ac 5657/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5658 Create the type_unit_group object used to hold one or more TUs. */
5659
5660static struct type_unit_group *
094b34ac 5661create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5662{
5663 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5664 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5665 struct type_unit_group *tu_group;
f4dc4d17
DE
5666
5667 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5668 struct type_unit_group);
094b34ac 5669 per_cu = &tu_group->per_cu;
f4dc4d17 5670 per_cu->objfile = objfile;
f4dc4d17 5671
094b34ac
DE
5672 if (dwarf2_per_objfile->using_index)
5673 {
5674 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5675 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5676 }
5677 else
5678 {
5679 unsigned int line_offset = line_offset_struct.sect_off;
5680 struct partial_symtab *pst;
5681 char *name;
5682
5683 /* Give the symtab a useful name for debug purposes. */
5684 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5685 name = xstrprintf ("<type_units_%d>",
5686 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5687 else
5688 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5689
5690 pst = create_partial_symtab (per_cu, name);
5691 pst->anonymous = 1;
f4dc4d17 5692
094b34ac
DE
5693 xfree (name);
5694 }
f4dc4d17 5695
094b34ac
DE
5696 tu_group->hash.dwo_unit = cu->dwo_unit;
5697 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5698
5699 return tu_group;
5700}
5701
094b34ac
DE
5702/* Look up the type_unit_group for type unit CU, and create it if necessary.
5703 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5704
5705static struct type_unit_group *
ff39bb5e 5706get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5707{
5708 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5709 struct type_unit_group *tu_group;
5710 void **slot;
5711 unsigned int line_offset;
5712 struct type_unit_group type_unit_group_for_lookup;
5713
5714 if (dwarf2_per_objfile->type_unit_groups == NULL)
5715 {
5716 dwarf2_per_objfile->type_unit_groups =
5717 allocate_type_unit_groups_table ();
5718 }
5719
5720 /* Do we need to create a new group, or can we use an existing one? */
5721
5722 if (stmt_list)
5723 {
5724 line_offset = DW_UNSND (stmt_list);
5725 ++tu_stats->nr_symtab_sharers;
5726 }
5727 else
5728 {
5729 /* Ugh, no stmt_list. Rare, but we have to handle it.
5730 We can do various things here like create one group per TU or
5731 spread them over multiple groups to split up the expansion work.
5732 To avoid worst case scenarios (too many groups or too large groups)
5733 we, umm, group them in bunches. */
5734 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5735 | (tu_stats->nr_stmt_less_type_units
5736 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5737 ++tu_stats->nr_stmt_less_type_units;
5738 }
5739
094b34ac
DE
5740 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5741 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5742 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5743 &type_unit_group_for_lookup, INSERT);
5744 if (*slot != NULL)
5745 {
5746 tu_group = *slot;
5747 gdb_assert (tu_group != NULL);
5748 }
5749 else
5750 {
5751 sect_offset line_offset_struct;
5752
5753 line_offset_struct.sect_off = line_offset;
094b34ac 5754 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5755 *slot = tu_group;
5756 ++tu_stats->nr_symtabs;
5757 }
5758
5759 return tu_group;
5760}
5761
5762/* Struct used to sort TUs by their abbreviation table offset. */
5763
5764struct tu_abbrev_offset
5765{
5766 struct signatured_type *sig_type;
5767 sect_offset abbrev_offset;
5768};
5769
5770/* Helper routine for build_type_unit_groups, passed to qsort. */
5771
5772static int
5773sort_tu_by_abbrev_offset (const void *ap, const void *bp)
5774{
5775 const struct tu_abbrev_offset * const *a = ap;
5776 const struct tu_abbrev_offset * const *b = bp;
5777 unsigned int aoff = (*a)->abbrev_offset.sect_off;
5778 unsigned int boff = (*b)->abbrev_offset.sect_off;
5779
5780 return (aoff > boff) - (aoff < boff);
5781}
5782
5783/* A helper function to add a type_unit_group to a table. */
5784
5785static int
5786add_type_unit_group_to_table (void **slot, void *datum)
5787{
5788 struct type_unit_group *tu_group = *slot;
5789 struct type_unit_group ***datap = datum;
5790
5791 **datap = tu_group;
5792 ++*datap;
5793
5794 return 1;
5795}
5796
5797/* Efficiently read all the type units, calling init_cutu_and_read_dies on
5798 each one passing FUNC,DATA.
5799
5800 The efficiency is because we sort TUs by the abbrev table they use and
5801 only read each abbrev table once. In one program there are 200K TUs
5802 sharing 8K abbrev tables.
5803
5804 The main purpose of this function is to support building the
5805 dwarf2_per_objfile->type_unit_groups table.
5806 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
5807 can collapse the search space by grouping them by stmt_list.
5808 The savings can be significant, in the same program from above the 200K TUs
5809 share 8K stmt_list tables.
5810
5811 FUNC is expected to call get_type_unit_group, which will create the
5812 struct type_unit_group if necessary and add it to
5813 dwarf2_per_objfile->type_unit_groups. */
5814
5815static void
5816build_type_unit_groups (die_reader_func_ftype *func, void *data)
5817{
5818 struct objfile *objfile = dwarf2_per_objfile->objfile;
5819 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5820 struct cleanup *cleanups;
5821 struct abbrev_table *abbrev_table;
5822 sect_offset abbrev_offset;
5823 struct tu_abbrev_offset *sorted_by_abbrev;
5824 struct type_unit_group **iter;
5825 int i;
5826
5827 /* It's up to the caller to not call us multiple times. */
5828 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
5829
5830 if (dwarf2_per_objfile->n_type_units == 0)
5831 return;
5832
5833 /* TUs typically share abbrev tables, and there can be way more TUs than
5834 abbrev tables. Sort by abbrev table to reduce the number of times we
5835 read each abbrev table in.
5836 Alternatives are to punt or to maintain a cache of abbrev tables.
5837 This is simpler and efficient enough for now.
5838
5839 Later we group TUs by their DW_AT_stmt_list value (as this defines the
5840 symtab to use). Typically TUs with the same abbrev offset have the same
5841 stmt_list value too so in practice this should work well.
5842
5843 The basic algorithm here is:
5844
5845 sort TUs by abbrev table
5846 for each TU with same abbrev table:
5847 read abbrev table if first user
5848 read TU top level DIE
5849 [IWBN if DWO skeletons had DW_AT_stmt_list]
5850 call FUNC */
5851
5852 if (dwarf2_read_debug)
5853 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
5854
5855 /* Sort in a separate table to maintain the order of all_type_units
5856 for .gdb_index: TU indices directly index all_type_units. */
5857 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
5858 dwarf2_per_objfile->n_type_units);
5859 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5860 {
5861 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
5862
5863 sorted_by_abbrev[i].sig_type = sig_type;
5864 sorted_by_abbrev[i].abbrev_offset =
8a0459fd 5865 read_abbrev_offset (sig_type->per_cu.section,
f4dc4d17
DE
5866 sig_type->per_cu.offset);
5867 }
5868 cleanups = make_cleanup (xfree, sorted_by_abbrev);
5869 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
5870 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
5871
094b34ac
DE
5872 /* Note: In the .gdb_index case, get_type_unit_group may have already been
5873 called any number of times, so we don't reset tu_stats here. */
5874
f4dc4d17
DE
5875 abbrev_offset.sect_off = ~(unsigned) 0;
5876 abbrev_table = NULL;
5877 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
5878
5879 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
5880 {
5881 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
5882
5883 /* Switch to the next abbrev table if necessary. */
5884 if (abbrev_table == NULL
5885 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
5886 {
5887 if (abbrev_table != NULL)
5888 {
5889 abbrev_table_free (abbrev_table);
5890 /* Reset to NULL in case abbrev_table_read_table throws
5891 an error: abbrev_table_free_cleanup will get called. */
5892 abbrev_table = NULL;
5893 }
5894 abbrev_offset = tu->abbrev_offset;
5895 abbrev_table =
5896 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
5897 abbrev_offset);
5898 ++tu_stats->nr_uniq_abbrev_tables;
5899 }
5900
5901 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
5902 func, data);
5903 }
5904
a2ce51a0
DE
5905 /* type_unit_groups can be NULL if there is an error in the debug info.
5906 Just create an empty table so the rest of gdb doesn't have to watch
5907 for this error case. */
5908 if (dwarf2_per_objfile->type_unit_groups == NULL)
5909 {
5910 dwarf2_per_objfile->type_unit_groups =
5911 allocate_type_unit_groups_table ();
5912 dwarf2_per_objfile->n_type_unit_groups = 0;
5913 }
5914
f4dc4d17
DE
5915 /* Create a vector of pointers to primary type units to make it easy to
5916 iterate over them and CUs. See dw2_get_primary_cu. */
5917 dwarf2_per_objfile->n_type_unit_groups =
5918 htab_elements (dwarf2_per_objfile->type_unit_groups);
5919 dwarf2_per_objfile->all_type_unit_groups =
5920 obstack_alloc (&objfile->objfile_obstack,
5921 dwarf2_per_objfile->n_type_unit_groups
5922 * sizeof (struct type_unit_group *));
5923 iter = &dwarf2_per_objfile->all_type_unit_groups[0];
5924 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
5925 add_type_unit_group_to_table, &iter);
5926 gdb_assert (iter - &dwarf2_per_objfile->all_type_unit_groups[0]
5927 == dwarf2_per_objfile->n_type_unit_groups);
5928
5929 do_cleanups (cleanups);
5930
5931 if (dwarf2_read_debug)
5932 {
5933 fprintf_unfiltered (gdb_stdlog, "Done building type unit groups:\n");
5934 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
5935 dwarf2_per_objfile->n_type_units);
5936 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
5937 tu_stats->nr_uniq_abbrev_tables);
5938 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
5939 tu_stats->nr_symtabs);
5940 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
5941 tu_stats->nr_symtab_sharers);
5942 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
5943 tu_stats->nr_stmt_less_type_units);
5944 }
5945}
0018ea6f
DE
5946\f
5947/* Partial symbol tables. */
5948
5949/* Create a psymtab named NAME and assign it to PER_CU.
5950
5951 The caller must fill in the following details:
5952 dirname, textlow, texthigh. */
5953
5954static struct partial_symtab *
5955create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5956{
5957 struct objfile *objfile = per_cu->objfile;
5958 struct partial_symtab *pst;
5959
5960 pst = start_psymtab_common (objfile, objfile->section_offsets,
5961 name, 0,
5962 objfile->global_psymbols.next,
5963 objfile->static_psymbols.next);
5964
5965 pst->psymtabs_addrmap_supported = 1;
5966
5967 /* This is the glue that links PST into GDB's symbol API. */
5968 pst->read_symtab_private = per_cu;
5969 pst->read_symtab = dwarf2_read_symtab;
5970 per_cu->v.psymtab = pst;
5971
5972 return pst;
5973}
5974
b93601f3
TT
5975/* The DATA object passed to process_psymtab_comp_unit_reader has this
5976 type. */
5977
5978struct process_psymtab_comp_unit_data
5979{
5980 /* True if we are reading a DW_TAG_partial_unit. */
5981
5982 int want_partial_unit;
5983
5984 /* The "pretend" language that is used if the CU doesn't declare a
5985 language. */
5986
5987 enum language pretend_language;
5988};
5989
0018ea6f
DE
5990/* die_reader_func for process_psymtab_comp_unit. */
5991
5992static void
5993process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5994 const gdb_byte *info_ptr,
0018ea6f
DE
5995 struct die_info *comp_unit_die,
5996 int has_children,
5997 void *data)
5998{
5999 struct dwarf2_cu *cu = reader->cu;
6000 struct objfile *objfile = cu->objfile;
6001 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
6002 struct attribute *attr;
6003 CORE_ADDR baseaddr;
6004 CORE_ADDR best_lowpc = 0, best_highpc = 0;
6005 struct partial_symtab *pst;
6006 int has_pc_info;
6007 const char *filename;
b93601f3 6008 struct process_psymtab_comp_unit_data *info = data;
0018ea6f 6009
b93601f3 6010 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
6011 return;
6012
6013 gdb_assert (! per_cu->is_debug_types);
6014
b93601f3 6015 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
6016
6017 cu->list_in_scope = &file_symbols;
6018
6019 /* Allocate a new partial symbol table structure. */
6020 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
6021 if (attr == NULL || !DW_STRING (attr))
6022 filename = "";
6023 else
6024 filename = DW_STRING (attr);
6025
6026 pst = create_partial_symtab (per_cu, filename);
6027
6028 /* This must be done before calling dwarf2_build_include_psymtabs. */
6029 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
6030 if (attr != NULL)
6031 pst->dirname = DW_STRING (attr);
6032
6033 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
6034
6035 dwarf2_find_base_address (comp_unit_die, cu);
6036
6037 /* Possibly set the default values of LOWPC and HIGHPC from
6038 `DW_AT_ranges'. */
6039 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
6040 &best_highpc, cu, pst);
6041 if (has_pc_info == 1 && best_lowpc < best_highpc)
6042 /* Store the contiguous range if it is not empty; it can be empty for
6043 CUs with no code. */
6044 addrmap_set_empty (objfile->psymtabs_addrmap,
6045 best_lowpc + baseaddr,
6046 best_highpc + baseaddr - 1, pst);
6047
6048 /* Check if comp unit has_children.
6049 If so, read the rest of the partial symbols from this comp unit.
6050 If not, there's no more debug_info for this comp unit. */
6051 if (has_children)
6052 {
6053 struct partial_die_info *first_die;
6054 CORE_ADDR lowpc, highpc;
6055
6056 lowpc = ((CORE_ADDR) -1);
6057 highpc = ((CORE_ADDR) 0);
6058
6059 first_die = load_partial_dies (reader, info_ptr, 1);
6060
6061 scan_partial_symbols (first_die, &lowpc, &highpc,
6062 ! has_pc_info, cu);
6063
6064 /* If we didn't find a lowpc, set it to highpc to avoid
6065 complaints from `maint check'. */
6066 if (lowpc == ((CORE_ADDR) -1))
6067 lowpc = highpc;
6068
6069 /* If the compilation unit didn't have an explicit address range,
6070 then use the information extracted from its child dies. */
6071 if (! has_pc_info)
6072 {
6073 best_lowpc = lowpc;
6074 best_highpc = highpc;
6075 }
6076 }
6077 pst->textlow = best_lowpc + baseaddr;
6078 pst->texthigh = best_highpc + baseaddr;
6079
6080 pst->n_global_syms = objfile->global_psymbols.next -
6081 (objfile->global_psymbols.list + pst->globals_offset);
6082 pst->n_static_syms = objfile->static_psymbols.next -
6083 (objfile->static_psymbols.list + pst->statics_offset);
6084 sort_pst_symbols (objfile, pst);
6085
6086 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
6087 {
6088 int i;
6089 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6090 struct dwarf2_per_cu_data *iter;
6091
6092 /* Fill in 'dependencies' here; we fill in 'users' in a
6093 post-pass. */
6094 pst->number_of_dependencies = len;
6095 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6096 len * sizeof (struct symtab *));
6097 for (i = 0;
6098 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
6099 i, iter);
6100 ++i)
6101 pst->dependencies[i] = iter->v.psymtab;
6102
6103 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
6104 }
6105
6106 /* Get the list of files included in the current compilation unit,
6107 and build a psymtab for each of them. */
6108 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
6109
6110 if (dwarf2_read_debug)
6111 {
6112 struct gdbarch *gdbarch = get_objfile_arch (objfile);
6113
6114 fprintf_unfiltered (gdb_stdlog,
6115 "Psymtab for %s unit @0x%x: %s - %s"
6116 ", %d global, %d static syms\n",
6117 per_cu->is_debug_types ? "type" : "comp",
6118 per_cu->offset.sect_off,
6119 paddress (gdbarch, pst->textlow),
6120 paddress (gdbarch, pst->texthigh),
6121 pst->n_global_syms, pst->n_static_syms);
6122 }
6123}
6124
6125/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6126 Process compilation unit THIS_CU for a psymtab. */
6127
6128static void
6129process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
6130 int want_partial_unit,
6131 enum language pretend_language)
0018ea6f 6132{
b93601f3
TT
6133 struct process_psymtab_comp_unit_data info;
6134
0018ea6f
DE
6135 /* If this compilation unit was already read in, free the
6136 cached copy in order to read it in again. This is
6137 necessary because we skipped some symbols when we first
6138 read in the compilation unit (see load_partial_dies).
6139 This problem could be avoided, but the benefit is unclear. */
6140 if (this_cu->cu != NULL)
6141 free_one_cached_comp_unit (this_cu);
6142
6143 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6144 info.want_partial_unit = want_partial_unit;
6145 info.pretend_language = pretend_language;
0018ea6f
DE
6146 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6147 process_psymtab_comp_unit_reader,
b93601f3 6148 &info);
0018ea6f
DE
6149
6150 /* Age out any secondary CUs. */
6151 age_cached_comp_units ();
6152}
f4dc4d17
DE
6153
6154/* Reader function for build_type_psymtabs. */
6155
6156static void
6157build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6158 const gdb_byte *info_ptr,
f4dc4d17
DE
6159 struct die_info *type_unit_die,
6160 int has_children,
6161 void *data)
6162{
6163 struct objfile *objfile = dwarf2_per_objfile->objfile;
6164 struct dwarf2_cu *cu = reader->cu;
6165 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6166 struct signatured_type *sig_type;
f4dc4d17
DE
6167 struct type_unit_group *tu_group;
6168 struct attribute *attr;
6169 struct partial_die_info *first_die;
6170 CORE_ADDR lowpc, highpc;
6171 struct partial_symtab *pst;
6172
6173 gdb_assert (data == NULL);
0186c6a7
DE
6174 gdb_assert (per_cu->is_debug_types);
6175 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6176
6177 if (! has_children)
6178 return;
6179
6180 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6181 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6182
0186c6a7 6183 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6184
6185 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6186 cu->list_in_scope = &file_symbols;
6187 pst = create_partial_symtab (per_cu, "");
6188 pst->anonymous = 1;
6189
6190 first_die = load_partial_dies (reader, info_ptr, 1);
6191
6192 lowpc = (CORE_ADDR) -1;
6193 highpc = (CORE_ADDR) 0;
6194 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6195
6196 pst->n_global_syms = objfile->global_psymbols.next -
6197 (objfile->global_psymbols.list + pst->globals_offset);
6198 pst->n_static_syms = objfile->static_psymbols.next -
6199 (objfile->static_psymbols.list + pst->statics_offset);
5c80ed9d 6200 sort_pst_symbols (objfile, pst);
f4dc4d17
DE
6201}
6202
6203/* Traversal function for build_type_psymtabs. */
6204
6205static int
6206build_type_psymtab_dependencies (void **slot, void *info)
6207{
6208 struct objfile *objfile = dwarf2_per_objfile->objfile;
6209 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6210 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6211 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6212 int len = VEC_length (sig_type_ptr, tu_group->tus);
6213 struct signatured_type *iter;
f4dc4d17
DE
6214 int i;
6215
6216 gdb_assert (len > 0);
0186c6a7 6217 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6218
6219 pst->number_of_dependencies = len;
6220 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6221 len * sizeof (struct psymtab *));
6222 for (i = 0;
0186c6a7 6223 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6224 ++i)
6225 {
0186c6a7
DE
6226 gdb_assert (iter->per_cu.is_debug_types);
6227 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6228 iter->type_unit_group = tu_group;
f4dc4d17
DE
6229 }
6230
0186c6a7 6231 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6232
6233 return 1;
6234}
6235
6236/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6237 Build partial symbol tables for the .debug_types comp-units. */
6238
6239static void
6240build_type_psymtabs (struct objfile *objfile)
6241{
0e50663e 6242 if (! create_all_type_units (objfile))
348e048f
DE
6243 return;
6244
f4dc4d17
DE
6245 build_type_unit_groups (build_type_psymtabs_reader, NULL);
6246
6247 /* Now that all TUs have been processed we can fill in the dependencies. */
6248 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6249 build_type_psymtab_dependencies, NULL);
348e048f
DE
6250}
6251
60606b2c
TT
6252/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6253
6254static void
6255psymtabs_addrmap_cleanup (void *o)
6256{
6257 struct objfile *objfile = o;
ec61707d 6258
60606b2c
TT
6259 objfile->psymtabs_addrmap = NULL;
6260}
6261
95554aad
TT
6262/* Compute the 'user' field for each psymtab in OBJFILE. */
6263
6264static void
6265set_partial_user (struct objfile *objfile)
6266{
6267 int i;
6268
6269 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6270 {
6271 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
6272 struct partial_symtab *pst = per_cu->v.psymtab;
6273 int j;
6274
36586728
TT
6275 if (pst == NULL)
6276 continue;
6277
95554aad
TT
6278 for (j = 0; j < pst->number_of_dependencies; ++j)
6279 {
6280 /* Set the 'user' field only if it is not already set. */
6281 if (pst->dependencies[j]->user == NULL)
6282 pst->dependencies[j]->user = pst;
6283 }
6284 }
6285}
6286
93311388
DE
6287/* Build the partial symbol table by doing a quick pass through the
6288 .debug_info and .debug_abbrev sections. */
72bf9492 6289
93311388 6290static void
c67a9c90 6291dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6292{
60606b2c
TT
6293 struct cleanup *back_to, *addrmap_cleanup;
6294 struct obstack temp_obstack;
21b2bd31 6295 int i;
93311388 6296
45cfd468
DE
6297 if (dwarf2_read_debug)
6298 {
6299 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6300 objfile_name (objfile));
45cfd468
DE
6301 }
6302
98bfdba5
PA
6303 dwarf2_per_objfile->reading_partial_symbols = 1;
6304
be391dca 6305 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6306
93311388
DE
6307 /* Any cached compilation units will be linked by the per-objfile
6308 read_in_chain. Make sure to free them when we're done. */
6309 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6310
348e048f
DE
6311 build_type_psymtabs (objfile);
6312
93311388 6313 create_all_comp_units (objfile);
c906108c 6314
60606b2c
TT
6315 /* Create a temporary address map on a temporary obstack. We later
6316 copy this to the final obstack. */
6317 obstack_init (&temp_obstack);
6318 make_cleanup_obstack_free (&temp_obstack);
6319 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6320 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6321
21b2bd31 6322 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6323 {
21b2bd31 6324 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
aaa75496 6325
b93601f3 6326 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6327 }
ff013f42 6328
95554aad
TT
6329 set_partial_user (objfile);
6330
ff013f42
JK
6331 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6332 &objfile->objfile_obstack);
60606b2c 6333 discard_cleanups (addrmap_cleanup);
ff013f42 6334
ae038cb0 6335 do_cleanups (back_to);
45cfd468
DE
6336
6337 if (dwarf2_read_debug)
6338 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6339 objfile_name (objfile));
ae038cb0
DJ
6340}
6341
3019eac3 6342/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6343
6344static void
dee91e82 6345load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6346 const gdb_byte *info_ptr,
dee91e82
DE
6347 struct die_info *comp_unit_die,
6348 int has_children,
6349 void *data)
ae038cb0 6350{
dee91e82 6351 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6352
95554aad 6353 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6354
ae038cb0
DJ
6355 /* Check if comp unit has_children.
6356 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6357 If not, there's no more debug_info for this comp unit. */
d85a05f0 6358 if (has_children)
dee91e82
DE
6359 load_partial_dies (reader, info_ptr, 0);
6360}
98bfdba5 6361
dee91e82
DE
6362/* Load the partial DIEs for a secondary CU into memory.
6363 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6364
dee91e82
DE
6365static void
6366load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6367{
f4dc4d17
DE
6368 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6369 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6370}
6371
ae038cb0 6372static void
36586728
TT
6373read_comp_units_from_section (struct objfile *objfile,
6374 struct dwarf2_section_info *section,
6375 unsigned int is_dwz,
6376 int *n_allocated,
6377 int *n_comp_units,
6378 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6379{
d521ce57 6380 const gdb_byte *info_ptr;
a32a8923 6381 bfd *abfd = get_section_bfd_owner (section);
be391dca 6382
bf6af496
DE
6383 if (dwarf2_read_debug)
6384 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6385 get_section_name (section),
6386 get_section_file_name (section));
bf6af496 6387
36586728 6388 dwarf2_read_section (objfile, section);
ae038cb0 6389
36586728 6390 info_ptr = section->buffer;
6e70227d 6391
36586728 6392 while (info_ptr < section->buffer + section->size)
ae038cb0 6393 {
c764a876 6394 unsigned int length, initial_length_size;
ae038cb0 6395 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6396 sect_offset offset;
ae038cb0 6397
36586728 6398 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6399
6400 /* Read just enough information to find out where the next
6401 compilation unit is. */
36586728 6402 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6403
6404 /* Save the compilation unit for later lookup. */
6405 this_cu = obstack_alloc (&objfile->objfile_obstack,
6406 sizeof (struct dwarf2_per_cu_data));
6407 memset (this_cu, 0, sizeof (*this_cu));
6408 this_cu->offset = offset;
c764a876 6409 this_cu->length = length + initial_length_size;
36586728 6410 this_cu->is_dwz = is_dwz;
9291a0cd 6411 this_cu->objfile = objfile;
8a0459fd 6412 this_cu->section = section;
ae038cb0 6413
36586728 6414 if (*n_comp_units == *n_allocated)
ae038cb0 6415 {
36586728
TT
6416 *n_allocated *= 2;
6417 *all_comp_units = xrealloc (*all_comp_units,
6418 *n_allocated
6419 * sizeof (struct dwarf2_per_cu_data *));
ae038cb0 6420 }
36586728
TT
6421 (*all_comp_units)[*n_comp_units] = this_cu;
6422 ++*n_comp_units;
ae038cb0
DJ
6423
6424 info_ptr = info_ptr + this_cu->length;
6425 }
36586728
TT
6426}
6427
6428/* Create a list of all compilation units in OBJFILE.
6429 This is only done for -readnow and building partial symtabs. */
6430
6431static void
6432create_all_comp_units (struct objfile *objfile)
6433{
6434 int n_allocated;
6435 int n_comp_units;
6436 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6437 struct dwz_file *dwz;
36586728
TT
6438
6439 n_comp_units = 0;
6440 n_allocated = 10;
6441 all_comp_units = xmalloc (n_allocated
6442 * sizeof (struct dwarf2_per_cu_data *));
6443
6444 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6445 &n_allocated, &n_comp_units, &all_comp_units);
6446
4db1a1dc
TT
6447 dwz = dwarf2_get_dwz_file ();
6448 if (dwz != NULL)
6449 read_comp_units_from_section (objfile, &dwz->info, 1,
6450 &n_allocated, &n_comp_units,
6451 &all_comp_units);
ae038cb0
DJ
6452
6453 dwarf2_per_objfile->all_comp_units
6454 = obstack_alloc (&objfile->objfile_obstack,
6455 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6456 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6457 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6458 xfree (all_comp_units);
6459 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6460}
6461
5734ee8b
DJ
6462/* Process all loaded DIEs for compilation unit CU, starting at
6463 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
6464 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
6465 DW_AT_ranges). If NEED_PC is set, then this function will set
6466 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
6467 and record the covered ranges in the addrmap. */
c906108c 6468
72bf9492
DJ
6469static void
6470scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5734ee8b 6471 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
c906108c 6472{
72bf9492 6473 struct partial_die_info *pdi;
c906108c 6474
91c24f0a
DC
6475 /* Now, march along the PDI's, descending into ones which have
6476 interesting children but skipping the children of the other ones,
6477 until we reach the end of the compilation unit. */
c906108c 6478
72bf9492 6479 pdi = first_die;
91c24f0a 6480
72bf9492
DJ
6481 while (pdi != NULL)
6482 {
6483 fixup_partial_die (pdi, cu);
c906108c 6484
f55ee35c 6485 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6486 children, so we need to look at them. Ditto for anonymous
6487 enums. */
933c6fe4 6488
72bf9492 6489 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6490 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6491 || pdi->tag == DW_TAG_imported_unit)
c906108c 6492 {
72bf9492 6493 switch (pdi->tag)
c906108c
SS
6494 {
6495 case DW_TAG_subprogram:
5734ee8b 6496 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
c906108c 6497 break;
72929c62 6498 case DW_TAG_constant:
c906108c
SS
6499 case DW_TAG_variable:
6500 case DW_TAG_typedef:
91c24f0a 6501 case DW_TAG_union_type:
72bf9492 6502 if (!pdi->is_declaration)
63d06c5c 6503 {
72bf9492 6504 add_partial_symbol (pdi, cu);
63d06c5c
DC
6505 }
6506 break;
c906108c 6507 case DW_TAG_class_type:
680b30c7 6508 case DW_TAG_interface_type:
c906108c 6509 case DW_TAG_structure_type:
72bf9492 6510 if (!pdi->is_declaration)
c906108c 6511 {
72bf9492 6512 add_partial_symbol (pdi, cu);
c906108c
SS
6513 }
6514 break;
91c24f0a 6515 case DW_TAG_enumeration_type:
72bf9492
DJ
6516 if (!pdi->is_declaration)
6517 add_partial_enumeration (pdi, cu);
c906108c
SS
6518 break;
6519 case DW_TAG_base_type:
a02abb62 6520 case DW_TAG_subrange_type:
c906108c 6521 /* File scope base type definitions are added to the partial
c5aa993b 6522 symbol table. */
72bf9492 6523 add_partial_symbol (pdi, cu);
c906108c 6524 break;
d9fa45fe 6525 case DW_TAG_namespace:
5734ee8b 6526 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
91c24f0a 6527 break;
5d7cb8df
JK
6528 case DW_TAG_module:
6529 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
6530 break;
95554aad
TT
6531 case DW_TAG_imported_unit:
6532 {
6533 struct dwarf2_per_cu_data *per_cu;
6534
f4dc4d17
DE
6535 /* For now we don't handle imported units in type units. */
6536 if (cu->per_cu->is_debug_types)
6537 {
6538 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6539 " supported in type units [in module %s]"),
4262abfb 6540 objfile_name (cu->objfile));
f4dc4d17
DE
6541 }
6542
95554aad 6543 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6544 pdi->is_dwz,
95554aad
TT
6545 cu->objfile);
6546
6547 /* Go read the partial unit, if needed. */
6548 if (per_cu->v.psymtab == NULL)
b93601f3 6549 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6550
f4dc4d17 6551 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6552 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6553 }
6554 break;
74921315
KS
6555 case DW_TAG_imported_declaration:
6556 add_partial_symbol (pdi, cu);
6557 break;
c906108c
SS
6558 default:
6559 break;
6560 }
6561 }
6562
72bf9492
DJ
6563 /* If the die has a sibling, skip to the sibling. */
6564
6565 pdi = pdi->die_sibling;
6566 }
6567}
6568
6569/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6570
72bf9492 6571 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6572 name is concatenated with "::" and the partial DIE's name. For
6573 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6574 Enumerators are an exception; they use the scope of their parent
6575 enumeration type, i.e. the name of the enumeration type is not
6576 prepended to the enumerator.
91c24f0a 6577
72bf9492
DJ
6578 There are two complexities. One is DW_AT_specification; in this
6579 case "parent" means the parent of the target of the specification,
6580 instead of the direct parent of the DIE. The other is compilers
6581 which do not emit DW_TAG_namespace; in this case we try to guess
6582 the fully qualified name of structure types from their members'
6583 linkage names. This must be done using the DIE's children rather
6584 than the children of any DW_AT_specification target. We only need
6585 to do this for structures at the top level, i.e. if the target of
6586 any DW_AT_specification (if any; otherwise the DIE itself) does not
6587 have a parent. */
6588
6589/* Compute the scope prefix associated with PDI's parent, in
6590 compilation unit CU. The result will be allocated on CU's
6591 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6592 field. NULL is returned if no prefix is necessary. */
15d034d0 6593static const char *
72bf9492
DJ
6594partial_die_parent_scope (struct partial_die_info *pdi,
6595 struct dwarf2_cu *cu)
6596{
15d034d0 6597 const char *grandparent_scope;
72bf9492 6598 struct partial_die_info *parent, *real_pdi;
91c24f0a 6599
72bf9492
DJ
6600 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6601 then this means the parent of the specification DIE. */
6602
6603 real_pdi = pdi;
72bf9492 6604 while (real_pdi->has_specification)
36586728
TT
6605 real_pdi = find_partial_die (real_pdi->spec_offset,
6606 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6607
6608 parent = real_pdi->die_parent;
6609 if (parent == NULL)
6610 return NULL;
6611
6612 if (parent->scope_set)
6613 return parent->scope;
6614
6615 fixup_partial_die (parent, cu);
6616
10b3939b 6617 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6618
acebe513
UW
6619 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6620 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6621 Work around this problem here. */
6622 if (cu->language == language_cplus
6e70227d 6623 && parent->tag == DW_TAG_namespace
acebe513
UW
6624 && strcmp (parent->name, "::") == 0
6625 && grandparent_scope == NULL)
6626 {
6627 parent->scope = NULL;
6628 parent->scope_set = 1;
6629 return NULL;
6630 }
6631
9c6c53f7
SA
6632 if (pdi->tag == DW_TAG_enumerator)
6633 /* Enumerators should not get the name of the enumeration as a prefix. */
6634 parent->scope = grandparent_scope;
6635 else if (parent->tag == DW_TAG_namespace
f55ee35c 6636 || parent->tag == DW_TAG_module
72bf9492
DJ
6637 || parent->tag == DW_TAG_structure_type
6638 || parent->tag == DW_TAG_class_type
680b30c7 6639 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6640 || parent->tag == DW_TAG_union_type
6641 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6642 {
6643 if (grandparent_scope == NULL)
6644 parent->scope = parent->name;
6645 else
3e43a32a
MS
6646 parent->scope = typename_concat (&cu->comp_unit_obstack,
6647 grandparent_scope,
f55ee35c 6648 parent->name, 0, cu);
72bf9492 6649 }
72bf9492
DJ
6650 else
6651 {
6652 /* FIXME drow/2004-04-01: What should we be doing with
6653 function-local names? For partial symbols, we should probably be
6654 ignoring them. */
6655 complaint (&symfile_complaints,
e2e0b3e5 6656 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6657 parent->tag, pdi->offset.sect_off);
72bf9492 6658 parent->scope = grandparent_scope;
c906108c
SS
6659 }
6660
72bf9492
DJ
6661 parent->scope_set = 1;
6662 return parent->scope;
6663}
6664
6665/* Return the fully scoped name associated with PDI, from compilation unit
6666 CU. The result will be allocated with malloc. */
4568ecf9 6667
72bf9492
DJ
6668static char *
6669partial_die_full_name (struct partial_die_info *pdi,
6670 struct dwarf2_cu *cu)
6671{
15d034d0 6672 const char *parent_scope;
72bf9492 6673
98bfdba5
PA
6674 /* If this is a template instantiation, we can not work out the
6675 template arguments from partial DIEs. So, unfortunately, we have
6676 to go through the full DIEs. At least any work we do building
6677 types here will be reused if full symbols are loaded later. */
6678 if (pdi->has_template_arguments)
6679 {
6680 fixup_partial_die (pdi, cu);
6681
6682 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6683 {
6684 struct die_info *die;
6685 struct attribute attr;
6686 struct dwarf2_cu *ref_cu = cu;
6687
b64f50a1 6688 /* DW_FORM_ref_addr is using section offset. */
98bfdba5
PA
6689 attr.name = 0;
6690 attr.form = DW_FORM_ref_addr;
4568ecf9 6691 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6692 die = follow_die_ref (NULL, &attr, &ref_cu);
6693
6694 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6695 }
6696 }
6697
72bf9492
DJ
6698 parent_scope = partial_die_parent_scope (pdi, cu);
6699 if (parent_scope == NULL)
6700 return NULL;
6701 else
f55ee35c 6702 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6703}
6704
6705static void
72bf9492 6706add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6707{
e7c27a73 6708 struct objfile *objfile = cu->objfile;
c906108c 6709 CORE_ADDR addr = 0;
15d034d0 6710 const char *actual_name = NULL;
e142c38c 6711 CORE_ADDR baseaddr;
15d034d0 6712 char *built_actual_name;
e142c38c
DJ
6713
6714 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6715
15d034d0
TT
6716 built_actual_name = partial_die_full_name (pdi, cu);
6717 if (built_actual_name != NULL)
6718 actual_name = built_actual_name;
63d06c5c 6719
72bf9492
DJ
6720 if (actual_name == NULL)
6721 actual_name = pdi->name;
6722
c906108c
SS
6723 switch (pdi->tag)
6724 {
6725 case DW_TAG_subprogram:
2cfa0c8d 6726 if (pdi->is_external || cu->language == language_ada)
c906108c 6727 {
2cfa0c8d
JB
6728 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6729 of the global scope. But in Ada, we want to be able to access
6730 nested procedures globally. So all Ada subprograms are stored
6731 in the global scope. */
f47fb265 6732 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 6733 mst_text, objfile); */
f47fb265 6734 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6735 built_actual_name != NULL,
f47fb265
MS
6736 VAR_DOMAIN, LOC_BLOCK,
6737 &objfile->global_psymbols,
6738 0, pdi->lowpc + baseaddr,
6739 cu->language, objfile);
c906108c
SS
6740 }
6741 else
6742 {
f47fb265 6743 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 6744 mst_file_text, objfile); */
f47fb265 6745 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6746 built_actual_name != NULL,
f47fb265
MS
6747 VAR_DOMAIN, LOC_BLOCK,
6748 &objfile->static_psymbols,
6749 0, pdi->lowpc + baseaddr,
6750 cu->language, objfile);
c906108c
SS
6751 }
6752 break;
72929c62
JB
6753 case DW_TAG_constant:
6754 {
6755 struct psymbol_allocation_list *list;
6756
6757 if (pdi->is_external)
6758 list = &objfile->global_psymbols;
6759 else
6760 list = &objfile->static_psymbols;
f47fb265 6761 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6762 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
f47fb265 6763 list, 0, 0, cu->language, objfile);
72929c62
JB
6764 }
6765 break;
c906108c 6766 case DW_TAG_variable:
95554aad
TT
6767 if (pdi->d.locdesc)
6768 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6769
95554aad 6770 if (pdi->d.locdesc
caac4577
JG
6771 && addr == 0
6772 && !dwarf2_per_objfile->has_section_at_zero)
6773 {
6774 /* A global or static variable may also have been stripped
6775 out by the linker if unused, in which case its address
6776 will be nullified; do not add such variables into partial
6777 symbol table then. */
6778 }
6779 else if (pdi->is_external)
c906108c
SS
6780 {
6781 /* Global Variable.
6782 Don't enter into the minimal symbol tables as there is
6783 a minimal symbol table entry from the ELF symbols already.
6784 Enter into partial symbol table if it has a location
6785 descriptor or a type.
6786 If the location descriptor is missing, new_symbol will create
6787 a LOC_UNRESOLVED symbol, the address of the variable will then
6788 be determined from the minimal symbol table whenever the variable
6789 is referenced.
6790 The address for the partial symbol table entry is not
6791 used by GDB, but it comes in handy for debugging partial symbol
6792 table building. */
6793
95554aad 6794 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6795 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6796 built_actual_name != NULL,
f47fb265
MS
6797 VAR_DOMAIN, LOC_STATIC,
6798 &objfile->global_psymbols,
6799 0, addr + baseaddr,
6800 cu->language, objfile);
c906108c
SS
6801 }
6802 else
6803 {
0963b4bd 6804 /* Static Variable. Skip symbols without location descriptors. */
95554aad 6805 if (pdi->d.locdesc == NULL)
decbce07 6806 {
15d034d0 6807 xfree (built_actual_name);
decbce07
MS
6808 return;
6809 }
f47fb265 6810 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 6811 mst_file_data, objfile); */
f47fb265 6812 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6813 built_actual_name != NULL,
f47fb265
MS
6814 VAR_DOMAIN, LOC_STATIC,
6815 &objfile->static_psymbols,
6816 0, addr + baseaddr,
6817 cu->language, objfile);
c906108c
SS
6818 }
6819 break;
6820 case DW_TAG_typedef:
6821 case DW_TAG_base_type:
a02abb62 6822 case DW_TAG_subrange_type:
38d518c9 6823 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6824 built_actual_name != NULL,
176620f1 6825 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 6826 &objfile->static_psymbols,
e142c38c 6827 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6828 break;
74921315 6829 case DW_TAG_imported_declaration:
72bf9492
DJ
6830 case DW_TAG_namespace:
6831 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6832 built_actual_name != NULL,
72bf9492
DJ
6833 VAR_DOMAIN, LOC_TYPEDEF,
6834 &objfile->global_psymbols,
6835 0, (CORE_ADDR) 0, cu->language, objfile);
6836 break;
530e8392
KB
6837 case DW_TAG_module:
6838 add_psymbol_to_list (actual_name, strlen (actual_name),
6839 built_actual_name != NULL,
6840 MODULE_DOMAIN, LOC_TYPEDEF,
6841 &objfile->global_psymbols,
6842 0, (CORE_ADDR) 0, cu->language, objfile);
6843 break;
c906108c 6844 case DW_TAG_class_type:
680b30c7 6845 case DW_TAG_interface_type:
c906108c
SS
6846 case DW_TAG_structure_type:
6847 case DW_TAG_union_type:
6848 case DW_TAG_enumeration_type:
fa4028e9
JB
6849 /* Skip external references. The DWARF standard says in the section
6850 about "Structure, Union, and Class Type Entries": "An incomplete
6851 structure, union or class type is represented by a structure,
6852 union or class entry that does not have a byte size attribute
6853 and that has a DW_AT_declaration attribute." */
6854 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 6855 {
15d034d0 6856 xfree (built_actual_name);
decbce07
MS
6857 return;
6858 }
fa4028e9 6859
63d06c5c
DC
6860 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6861 static vs. global. */
38d518c9 6862 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6863 built_actual_name != NULL,
176620f1 6864 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
6865 (cu->language == language_cplus
6866 || cu->language == language_java)
63d06c5c
DC
6867 ? &objfile->global_psymbols
6868 : &objfile->static_psymbols,
e142c38c 6869 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6870
c906108c
SS
6871 break;
6872 case DW_TAG_enumerator:
38d518c9 6873 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6874 built_actual_name != NULL,
176620f1 6875 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
6876 (cu->language == language_cplus
6877 || cu->language == language_java)
f6fe98ef
DJ
6878 ? &objfile->global_psymbols
6879 : &objfile->static_psymbols,
e142c38c 6880 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
6881 break;
6882 default:
6883 break;
6884 }
5c4e30ca 6885
15d034d0 6886 xfree (built_actual_name);
c906108c
SS
6887}
6888
5c4e30ca
DC
6889/* Read a partial die corresponding to a namespace; also, add a symbol
6890 corresponding to that namespace to the symbol table. NAMESPACE is
6891 the name of the enclosing namespace. */
91c24f0a 6892
72bf9492
DJ
6893static void
6894add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 6895 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 6896 int need_pc, struct dwarf2_cu *cu)
91c24f0a 6897{
72bf9492 6898 /* Add a symbol for the namespace. */
e7c27a73 6899
72bf9492 6900 add_partial_symbol (pdi, cu);
5c4e30ca
DC
6901
6902 /* Now scan partial symbols in that namespace. */
6903
91c24f0a 6904 if (pdi->has_children)
5734ee8b 6905 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
91c24f0a
DC
6906}
6907
5d7cb8df
JK
6908/* Read a partial die corresponding to a Fortran module. */
6909
6910static void
6911add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
6912 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
6913{
530e8392
KB
6914 /* Add a symbol for the namespace. */
6915
6916 add_partial_symbol (pdi, cu);
6917
f55ee35c 6918 /* Now scan partial symbols in that module. */
5d7cb8df
JK
6919
6920 if (pdi->has_children)
6921 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
6922}
6923
bc30ff58
JB
6924/* Read a partial die corresponding to a subprogram and create a partial
6925 symbol for that subprogram. When the CU language allows it, this
6926 routine also defines a partial symbol for each nested subprogram
6927 that this subprogram contains.
6e70227d 6928
bc30ff58
JB
6929 DIE my also be a lexical block, in which case we simply search
6930 recursively for suprograms defined inside that lexical block.
6931 Again, this is only performed when the CU language allows this
6932 type of definitions. */
6933
6934static void
6935add_partial_subprogram (struct partial_die_info *pdi,
6936 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 6937 int need_pc, struct dwarf2_cu *cu)
bc30ff58
JB
6938{
6939 if (pdi->tag == DW_TAG_subprogram)
6940 {
6941 if (pdi->has_pc_info)
6942 {
6943 if (pdi->lowpc < *lowpc)
6944 *lowpc = pdi->lowpc;
6945 if (pdi->highpc > *highpc)
6946 *highpc = pdi->highpc;
5734ee8b
DJ
6947 if (need_pc)
6948 {
6949 CORE_ADDR baseaddr;
6950 struct objfile *objfile = cu->objfile;
6951
6952 baseaddr = ANOFFSET (objfile->section_offsets,
6953 SECT_OFF_TEXT (objfile));
6954 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
6955 pdi->lowpc + baseaddr,
6956 pdi->highpc - 1 + baseaddr,
9291a0cd 6957 cu->per_cu->v.psymtab);
5734ee8b 6958 }
481860b3
GB
6959 }
6960
6961 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
6962 {
bc30ff58 6963 if (!pdi->is_declaration)
e8d05480
JB
6964 /* Ignore subprogram DIEs that do not have a name, they are
6965 illegal. Do not emit a complaint at this point, we will
6966 do so when we convert this psymtab into a symtab. */
6967 if (pdi->name)
6968 add_partial_symbol (pdi, cu);
bc30ff58
JB
6969 }
6970 }
6e70227d 6971
bc30ff58
JB
6972 if (! pdi->has_children)
6973 return;
6974
6975 if (cu->language == language_ada)
6976 {
6977 pdi = pdi->die_child;
6978 while (pdi != NULL)
6979 {
6980 fixup_partial_die (pdi, cu);
6981 if (pdi->tag == DW_TAG_subprogram
6982 || pdi->tag == DW_TAG_lexical_block)
5734ee8b 6983 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
bc30ff58
JB
6984 pdi = pdi->die_sibling;
6985 }
6986 }
6987}
6988
91c24f0a
DC
6989/* Read a partial die corresponding to an enumeration type. */
6990
72bf9492
DJ
6991static void
6992add_partial_enumeration (struct partial_die_info *enum_pdi,
6993 struct dwarf2_cu *cu)
91c24f0a 6994{
72bf9492 6995 struct partial_die_info *pdi;
91c24f0a
DC
6996
6997 if (enum_pdi->name != NULL)
72bf9492
DJ
6998 add_partial_symbol (enum_pdi, cu);
6999
7000 pdi = enum_pdi->die_child;
7001 while (pdi)
91c24f0a 7002 {
72bf9492 7003 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7004 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7005 else
72bf9492
DJ
7006 add_partial_symbol (pdi, cu);
7007 pdi = pdi->die_sibling;
91c24f0a 7008 }
91c24f0a
DC
7009}
7010
6caca83c
CC
7011/* Return the initial uleb128 in the die at INFO_PTR. */
7012
7013static unsigned int
d521ce57 7014peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7015{
7016 unsigned int bytes_read;
7017
7018 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7019}
7020
4bb7a0a7
DJ
7021/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7022 Return the corresponding abbrev, or NULL if the number is zero (indicating
7023 an empty DIE). In either case *BYTES_READ will be set to the length of
7024 the initial number. */
7025
7026static struct abbrev_info *
d521ce57 7027peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7028 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7029{
7030 bfd *abfd = cu->objfile->obfd;
7031 unsigned int abbrev_number;
7032 struct abbrev_info *abbrev;
7033
7034 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7035
7036 if (abbrev_number == 0)
7037 return NULL;
7038
433df2d4 7039 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7040 if (!abbrev)
7041 {
3e43a32a
MS
7042 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
7043 abbrev_number, bfd_get_filename (abfd));
4bb7a0a7
DJ
7044 }
7045
7046 return abbrev;
7047}
7048
93311388
DE
7049/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7050 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7051 DIE. Any children of the skipped DIEs will also be skipped. */
7052
d521ce57
TT
7053static const gdb_byte *
7054skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7055{
dee91e82 7056 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7057 struct abbrev_info *abbrev;
7058 unsigned int bytes_read;
7059
7060 while (1)
7061 {
7062 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7063 if (abbrev == NULL)
7064 return info_ptr + bytes_read;
7065 else
dee91e82 7066 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7067 }
7068}
7069
93311388
DE
7070/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7071 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7072 abbrev corresponding to that skipped uleb128 should be passed in
7073 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7074 children. */
7075
d521ce57
TT
7076static const gdb_byte *
7077skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7078 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7079{
7080 unsigned int bytes_read;
7081 struct attribute attr;
dee91e82
DE
7082 bfd *abfd = reader->abfd;
7083 struct dwarf2_cu *cu = reader->cu;
d521ce57 7084 const gdb_byte *buffer = reader->buffer;
f664829e 7085 const gdb_byte *buffer_end = reader->buffer_end;
d521ce57 7086 const gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
7087 unsigned int form, i;
7088
7089 for (i = 0; i < abbrev->num_attrs; i++)
7090 {
7091 /* The only abbrev we care about is DW_AT_sibling. */
7092 if (abbrev->attrs[i].name == DW_AT_sibling)
7093 {
dee91e82 7094 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7095 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7096 complaint (&symfile_complaints,
7097 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7098 else
b9502d3f
WN
7099 {
7100 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7101 const gdb_byte *sibling_ptr = buffer + off;
7102
7103 if (sibling_ptr < info_ptr)
7104 complaint (&symfile_complaints,
7105 _("DW_AT_sibling points backwards"));
7106 else
7107 return sibling_ptr;
7108 }
4bb7a0a7
DJ
7109 }
7110
7111 /* If it isn't DW_AT_sibling, skip this attribute. */
7112 form = abbrev->attrs[i].form;
7113 skip_attribute:
7114 switch (form)
7115 {
4bb7a0a7 7116 case DW_FORM_ref_addr:
ae411497
TT
7117 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7118 and later it is offset sized. */
7119 if (cu->header.version == 2)
7120 info_ptr += cu->header.addr_size;
7121 else
7122 info_ptr += cu->header.offset_size;
7123 break;
36586728
TT
7124 case DW_FORM_GNU_ref_alt:
7125 info_ptr += cu->header.offset_size;
7126 break;
ae411497 7127 case DW_FORM_addr:
4bb7a0a7
DJ
7128 info_ptr += cu->header.addr_size;
7129 break;
7130 case DW_FORM_data1:
7131 case DW_FORM_ref1:
7132 case DW_FORM_flag:
7133 info_ptr += 1;
7134 break;
2dc7f7b3
TT
7135 case DW_FORM_flag_present:
7136 break;
4bb7a0a7
DJ
7137 case DW_FORM_data2:
7138 case DW_FORM_ref2:
7139 info_ptr += 2;
7140 break;
7141 case DW_FORM_data4:
7142 case DW_FORM_ref4:
7143 info_ptr += 4;
7144 break;
7145 case DW_FORM_data8:
7146 case DW_FORM_ref8:
55f1336d 7147 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7148 info_ptr += 8;
7149 break;
7150 case DW_FORM_string:
9b1c24c8 7151 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7152 info_ptr += bytes_read;
7153 break;
2dc7f7b3 7154 case DW_FORM_sec_offset:
4bb7a0a7 7155 case DW_FORM_strp:
36586728 7156 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7157 info_ptr += cu->header.offset_size;
7158 break;
2dc7f7b3 7159 case DW_FORM_exprloc:
4bb7a0a7
DJ
7160 case DW_FORM_block:
7161 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7162 info_ptr += bytes_read;
7163 break;
7164 case DW_FORM_block1:
7165 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7166 break;
7167 case DW_FORM_block2:
7168 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7169 break;
7170 case DW_FORM_block4:
7171 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7172 break;
7173 case DW_FORM_sdata:
7174 case DW_FORM_udata:
7175 case DW_FORM_ref_udata:
3019eac3
DE
7176 case DW_FORM_GNU_addr_index:
7177 case DW_FORM_GNU_str_index:
d521ce57 7178 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7179 break;
7180 case DW_FORM_indirect:
7181 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7182 info_ptr += bytes_read;
7183 /* We need to continue parsing from here, so just go back to
7184 the top. */
7185 goto skip_attribute;
7186
7187 default:
3e43a32a
MS
7188 error (_("Dwarf Error: Cannot handle %s "
7189 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7190 dwarf_form_name (form),
7191 bfd_get_filename (abfd));
7192 }
7193 }
7194
7195 if (abbrev->has_children)
dee91e82 7196 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7197 else
7198 return info_ptr;
7199}
7200
93311388 7201/* Locate ORIG_PDI's sibling.
dee91e82 7202 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7203
d521ce57 7204static const gdb_byte *
dee91e82
DE
7205locate_pdi_sibling (const struct die_reader_specs *reader,
7206 struct partial_die_info *orig_pdi,
d521ce57 7207 const gdb_byte *info_ptr)
91c24f0a
DC
7208{
7209 /* Do we know the sibling already? */
72bf9492 7210
91c24f0a
DC
7211 if (orig_pdi->sibling)
7212 return orig_pdi->sibling;
7213
7214 /* Are there any children to deal with? */
7215
7216 if (!orig_pdi->has_children)
7217 return info_ptr;
7218
4bb7a0a7 7219 /* Skip the children the long way. */
91c24f0a 7220
dee91e82 7221 return skip_children (reader, info_ptr);
91c24f0a
DC
7222}
7223
257e7a09 7224/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7225 not NULL. */
c906108c
SS
7226
7227static void
257e7a09
YQ
7228dwarf2_read_symtab (struct partial_symtab *self,
7229 struct objfile *objfile)
c906108c 7230{
257e7a09 7231 if (self->readin)
c906108c 7232 {
442e4d9c 7233 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7234 self->filename);
442e4d9c
YQ
7235 }
7236 else
7237 {
7238 if (info_verbose)
c906108c 7239 {
442e4d9c 7240 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7241 self->filename);
442e4d9c 7242 gdb_flush (gdb_stdout);
c906108c 7243 }
c906108c 7244
442e4d9c
YQ
7245 /* Restore our global data. */
7246 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10b3939b 7247
442e4d9c
YQ
7248 /* If this psymtab is constructed from a debug-only objfile, the
7249 has_section_at_zero flag will not necessarily be correct. We
7250 can get the correct value for this flag by looking at the data
7251 associated with the (presumably stripped) associated objfile. */
7252 if (objfile->separate_debug_objfile_backlink)
7253 {
7254 struct dwarf2_per_objfile *dpo_backlink
7255 = objfile_data (objfile->separate_debug_objfile_backlink,
7256 dwarf2_objfile_data_key);
9a619af0 7257
442e4d9c
YQ
7258 dwarf2_per_objfile->has_section_at_zero
7259 = dpo_backlink->has_section_at_zero;
7260 }
b2ab525c 7261
442e4d9c 7262 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7263
257e7a09 7264 psymtab_to_symtab_1 (self);
c906108c 7265
442e4d9c
YQ
7266 /* Finish up the debug error message. */
7267 if (info_verbose)
7268 printf_filtered (_("done.\n"));
c906108c 7269 }
95554aad
TT
7270
7271 process_cu_includes ();
c906108c 7272}
9cdd5dbd
DE
7273\f
7274/* Reading in full CUs. */
c906108c 7275
10b3939b
DJ
7276/* Add PER_CU to the queue. */
7277
7278static void
95554aad
TT
7279queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7280 enum language pretend_language)
10b3939b
DJ
7281{
7282 struct dwarf2_queue_item *item;
7283
7284 per_cu->queued = 1;
7285 item = xmalloc (sizeof (*item));
7286 item->per_cu = per_cu;
95554aad 7287 item->pretend_language = pretend_language;
10b3939b
DJ
7288 item->next = NULL;
7289
7290 if (dwarf2_queue == NULL)
7291 dwarf2_queue = item;
7292 else
7293 dwarf2_queue_tail->next = item;
7294
7295 dwarf2_queue_tail = item;
7296}
7297
89e63ee4
DE
7298/* If PER_CU is not yet queued, add it to the queue.
7299 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7300 dependency.
0907af0c 7301 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7302 meaning either PER_CU is already queued or it is already loaded.
7303
7304 N.B. There is an invariant here that if a CU is queued then it is loaded.
7305 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7306
7307static int
89e63ee4 7308maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7309 struct dwarf2_per_cu_data *per_cu,
7310 enum language pretend_language)
7311{
7312 /* We may arrive here during partial symbol reading, if we need full
7313 DIEs to process an unusual case (e.g. template arguments). Do
7314 not queue PER_CU, just tell our caller to load its DIEs. */
7315 if (dwarf2_per_objfile->reading_partial_symbols)
7316 {
7317 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7318 return 1;
7319 return 0;
7320 }
7321
7322 /* Mark the dependence relation so that we don't flush PER_CU
7323 too early. */
89e63ee4
DE
7324 if (dependent_cu != NULL)
7325 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7326
7327 /* If it's already on the queue, we have nothing to do. */
7328 if (per_cu->queued)
7329 return 0;
7330
7331 /* If the compilation unit is already loaded, just mark it as
7332 used. */
7333 if (per_cu->cu != NULL)
7334 {
7335 per_cu->cu->last_used = 0;
7336 return 0;
7337 }
7338
7339 /* Add it to the queue. */
7340 queue_comp_unit (per_cu, pretend_language);
7341
7342 return 1;
7343}
7344
10b3939b
DJ
7345/* Process the queue. */
7346
7347static void
a0f42c21 7348process_queue (void)
10b3939b
DJ
7349{
7350 struct dwarf2_queue_item *item, *next_item;
7351
45cfd468
DE
7352 if (dwarf2_read_debug)
7353 {
7354 fprintf_unfiltered (gdb_stdlog,
7355 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7356 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7357 }
7358
03dd20cc
DJ
7359 /* The queue starts out with one item, but following a DIE reference
7360 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7361 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7362 {
9291a0cd
TT
7363 if (dwarf2_per_objfile->using_index
7364 ? !item->per_cu->v.quick->symtab
7365 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
f4dc4d17
DE
7366 {
7367 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7368 unsigned int debug_print_threshold;
247f5c4f 7369 char buf[100];
f4dc4d17 7370
247f5c4f 7371 if (per_cu->is_debug_types)
f4dc4d17 7372 {
247f5c4f
DE
7373 struct signatured_type *sig_type =
7374 (struct signatured_type *) per_cu;
7375
7376 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7377 hex_string (sig_type->signature),
7378 per_cu->offset.sect_off);
7379 /* There can be 100s of TUs.
7380 Only print them in verbose mode. */
7381 debug_print_threshold = 2;
f4dc4d17 7382 }
247f5c4f 7383 else
73be47f5
DE
7384 {
7385 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7386 debug_print_threshold = 1;
7387 }
247f5c4f 7388
73be47f5 7389 if (dwarf2_read_debug >= debug_print_threshold)
247f5c4f 7390 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7391
7392 if (per_cu->is_debug_types)
7393 process_full_type_unit (per_cu, item->pretend_language);
7394 else
7395 process_full_comp_unit (per_cu, item->pretend_language);
7396
73be47f5 7397 if (dwarf2_read_debug >= debug_print_threshold)
247f5c4f 7398 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7399 }
10b3939b
DJ
7400
7401 item->per_cu->queued = 0;
7402 next_item = item->next;
7403 xfree (item);
7404 }
7405
7406 dwarf2_queue_tail = NULL;
45cfd468
DE
7407
7408 if (dwarf2_read_debug)
7409 {
7410 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7411 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7412 }
10b3939b
DJ
7413}
7414
7415/* Free all allocated queue entries. This function only releases anything if
7416 an error was thrown; if the queue was processed then it would have been
7417 freed as we went along. */
7418
7419static void
7420dwarf2_release_queue (void *dummy)
7421{
7422 struct dwarf2_queue_item *item, *last;
7423
7424 item = dwarf2_queue;
7425 while (item)
7426 {
7427 /* Anything still marked queued is likely to be in an
7428 inconsistent state, so discard it. */
7429 if (item->per_cu->queued)
7430 {
7431 if (item->per_cu->cu != NULL)
dee91e82 7432 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7433 item->per_cu->queued = 0;
7434 }
7435
7436 last = item;
7437 item = item->next;
7438 xfree (last);
7439 }
7440
7441 dwarf2_queue = dwarf2_queue_tail = NULL;
7442}
7443
7444/* Read in full symbols for PST, and anything it depends on. */
7445
c906108c 7446static void
fba45db2 7447psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7448{
10b3939b 7449 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7450 int i;
7451
95554aad
TT
7452 if (pst->readin)
7453 return;
7454
aaa75496 7455 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7456 if (!pst->dependencies[i]->readin
7457 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7458 {
7459 /* Inform about additional files that need to be read in. */
7460 if (info_verbose)
7461 {
a3f17187 7462 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7463 fputs_filtered (" ", gdb_stdout);
7464 wrap_here ("");
7465 fputs_filtered ("and ", gdb_stdout);
7466 wrap_here ("");
7467 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7468 wrap_here (""); /* Flush output. */
aaa75496
JB
7469 gdb_flush (gdb_stdout);
7470 }
7471 psymtab_to_symtab_1 (pst->dependencies[i]);
7472 }
7473
e38df1d0 7474 per_cu = pst->read_symtab_private;
10b3939b
DJ
7475
7476 if (per_cu == NULL)
aaa75496
JB
7477 {
7478 /* It's an include file, no symbols to read for it.
7479 Everything is in the parent symtab. */
7480 pst->readin = 1;
7481 return;
7482 }
c906108c 7483
a0f42c21 7484 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7485}
7486
dee91e82
DE
7487/* Trivial hash function for die_info: the hash value of a DIE
7488 is its offset in .debug_info for this objfile. */
10b3939b 7489
dee91e82
DE
7490static hashval_t
7491die_hash (const void *item)
10b3939b 7492{
dee91e82 7493 const struct die_info *die = item;
6502dd73 7494
dee91e82
DE
7495 return die->offset.sect_off;
7496}
63d06c5c 7497
dee91e82
DE
7498/* Trivial comparison function for die_info structures: two DIEs
7499 are equal if they have the same offset. */
98bfdba5 7500
dee91e82
DE
7501static int
7502die_eq (const void *item_lhs, const void *item_rhs)
7503{
7504 const struct die_info *die_lhs = item_lhs;
7505 const struct die_info *die_rhs = item_rhs;
c906108c 7506
dee91e82
DE
7507 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7508}
c906108c 7509
dee91e82
DE
7510/* die_reader_func for load_full_comp_unit.
7511 This is identical to read_signatured_type_reader,
7512 but is kept separate for now. */
c906108c 7513
dee91e82
DE
7514static void
7515load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7516 const gdb_byte *info_ptr,
dee91e82
DE
7517 struct die_info *comp_unit_die,
7518 int has_children,
7519 void *data)
7520{
7521 struct dwarf2_cu *cu = reader->cu;
95554aad 7522 enum language *language_ptr = data;
6caca83c 7523
dee91e82
DE
7524 gdb_assert (cu->die_hash == NULL);
7525 cu->die_hash =
7526 htab_create_alloc_ex (cu->header.length / 12,
7527 die_hash,
7528 die_eq,
7529 NULL,
7530 &cu->comp_unit_obstack,
7531 hashtab_obstack_allocate,
7532 dummy_obstack_deallocate);
e142c38c 7533
dee91e82
DE
7534 if (has_children)
7535 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7536 &info_ptr, comp_unit_die);
7537 cu->dies = comp_unit_die;
7538 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7539
7540 /* We try not to read any attributes in this function, because not
9cdd5dbd 7541 all CUs needed for references have been loaded yet, and symbol
10b3939b 7542 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7543 or we won't be able to build types correctly.
7544 Similarly, if we do not read the producer, we can not apply
7545 producer-specific interpretation. */
95554aad 7546 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7547}
10b3939b 7548
dee91e82 7549/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7550
dee91e82 7551static void
95554aad
TT
7552load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7553 enum language pretend_language)
dee91e82 7554{
3019eac3 7555 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7556
f4dc4d17
DE
7557 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7558 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7559}
7560
3da10d80
KS
7561/* Add a DIE to the delayed physname list. */
7562
7563static void
7564add_to_method_list (struct type *type, int fnfield_index, int index,
7565 const char *name, struct die_info *die,
7566 struct dwarf2_cu *cu)
7567{
7568 struct delayed_method_info mi;
7569 mi.type = type;
7570 mi.fnfield_index = fnfield_index;
7571 mi.index = index;
7572 mi.name = name;
7573 mi.die = die;
7574 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7575}
7576
7577/* A cleanup for freeing the delayed method list. */
7578
7579static void
7580free_delayed_list (void *ptr)
7581{
7582 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7583 if (cu->method_list != NULL)
7584 {
7585 VEC_free (delayed_method_info, cu->method_list);
7586 cu->method_list = NULL;
7587 }
7588}
7589
7590/* Compute the physnames of any methods on the CU's method list.
7591
7592 The computation of method physnames is delayed in order to avoid the
7593 (bad) condition that one of the method's formal parameters is of an as yet
7594 incomplete type. */
7595
7596static void
7597compute_delayed_physnames (struct dwarf2_cu *cu)
7598{
7599 int i;
7600 struct delayed_method_info *mi;
7601 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7602 {
1d06ead6 7603 const char *physname;
3da10d80
KS
7604 struct fn_fieldlist *fn_flp
7605 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7606 physname = dwarf2_physname (mi->name, mi->die, cu);
3da10d80
KS
7607 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7608 }
7609}
7610
a766d390
DE
7611/* Go objects should be embedded in a DW_TAG_module DIE,
7612 and it's not clear if/how imported objects will appear.
7613 To keep Go support simple until that's worked out,
7614 go back through what we've read and create something usable.
7615 We could do this while processing each DIE, and feels kinda cleaner,
7616 but that way is more invasive.
7617 This is to, for example, allow the user to type "p var" or "b main"
7618 without having to specify the package name, and allow lookups
7619 of module.object to work in contexts that use the expression
7620 parser. */
7621
7622static void
7623fixup_go_packaging (struct dwarf2_cu *cu)
7624{
7625 char *package_name = NULL;
7626 struct pending *list;
7627 int i;
7628
7629 for (list = global_symbols; list != NULL; list = list->next)
7630 {
7631 for (i = 0; i < list->nsyms; ++i)
7632 {
7633 struct symbol *sym = list->symbol[i];
7634
7635 if (SYMBOL_LANGUAGE (sym) == language_go
7636 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7637 {
7638 char *this_package_name = go_symbol_package_name (sym);
7639
7640 if (this_package_name == NULL)
7641 continue;
7642 if (package_name == NULL)
7643 package_name = this_package_name;
7644 else
7645 {
7646 if (strcmp (package_name, this_package_name) != 0)
7647 complaint (&symfile_complaints,
7648 _("Symtab %s has objects from two different Go packages: %s and %s"),
210bbc17 7649 (SYMBOL_SYMTAB (sym)
05cba821 7650 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
4262abfb 7651 : objfile_name (cu->objfile)),
a766d390
DE
7652 this_package_name, package_name);
7653 xfree (this_package_name);
7654 }
7655 }
7656 }
7657 }
7658
7659 if (package_name != NULL)
7660 {
7661 struct objfile *objfile = cu->objfile;
10f0c4bb
TT
7662 const char *saved_package_name = obstack_copy0 (&objfile->objfile_obstack,
7663 package_name,
7664 strlen (package_name));
a766d390 7665 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
86f62fd7 7666 saved_package_name, objfile);
a766d390
DE
7667 struct symbol *sym;
7668
7669 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7670
e623cf5d 7671 sym = allocate_symbol (objfile);
f85f34ed 7672 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7673 SYMBOL_SET_NAMES (sym, saved_package_name,
7674 strlen (saved_package_name), 0, objfile);
a766d390
DE
7675 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7676 e.g., "main" finds the "main" module and not C's main(). */
7677 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7678 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7679 SYMBOL_TYPE (sym) = type;
7680
7681 add_symbol_to_list (sym, &global_symbols);
7682
7683 xfree (package_name);
7684 }
7685}
7686
95554aad
TT
7687/* Return the symtab for PER_CU. This works properly regardless of
7688 whether we're using the index or psymtabs. */
7689
7690static struct symtab *
7691get_symtab (struct dwarf2_per_cu_data *per_cu)
7692{
7693 return (dwarf2_per_objfile->using_index
7694 ? per_cu->v.quick->symtab
7695 : per_cu->v.psymtab->symtab);
7696}
7697
7698/* A helper function for computing the list of all symbol tables
7699 included by PER_CU. */
7700
7701static void
ec94af83
DE
7702recursively_compute_inclusions (VEC (symtab_ptr) **result,
7703 htab_t all_children, htab_t all_type_symtabs,
f9125b6c
TT
7704 struct dwarf2_per_cu_data *per_cu,
7705 struct symtab *immediate_parent)
95554aad
TT
7706{
7707 void **slot;
7708 int ix;
ec94af83 7709 struct symtab *symtab;
95554aad
TT
7710 struct dwarf2_per_cu_data *iter;
7711
7712 slot = htab_find_slot (all_children, per_cu, INSERT);
7713 if (*slot != NULL)
7714 {
7715 /* This inclusion and its children have been processed. */
7716 return;
7717 }
7718
7719 *slot = per_cu;
7720 /* Only add a CU if it has a symbol table. */
ec94af83
DE
7721 symtab = get_symtab (per_cu);
7722 if (symtab != NULL)
7723 {
7724 /* If this is a type unit only add its symbol table if we haven't
7725 seen it yet (type unit per_cu's can share symtabs). */
7726 if (per_cu->is_debug_types)
7727 {
7728 slot = htab_find_slot (all_type_symtabs, symtab, INSERT);
7729 if (*slot == NULL)
7730 {
7731 *slot = symtab;
7732 VEC_safe_push (symtab_ptr, *result, symtab);
f9125b6c
TT
7733 if (symtab->user == NULL)
7734 symtab->user = immediate_parent;
ec94af83
DE
7735 }
7736 }
7737 else
f9125b6c
TT
7738 {
7739 VEC_safe_push (symtab_ptr, *result, symtab);
7740 if (symtab->user == NULL)
7741 symtab->user = immediate_parent;
7742 }
ec94af83 7743 }
95554aad
TT
7744
7745 for (ix = 0;
796a7ff8 7746 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7747 ++ix)
ec94af83
DE
7748 {
7749 recursively_compute_inclusions (result, all_children,
f9125b6c 7750 all_type_symtabs, iter, symtab);
ec94af83 7751 }
95554aad
TT
7752}
7753
7754/* Compute the symtab 'includes' fields for the symtab related to
7755 PER_CU. */
7756
7757static void
7758compute_symtab_includes (struct dwarf2_per_cu_data *per_cu)
7759{
f4dc4d17
DE
7760 gdb_assert (! per_cu->is_debug_types);
7761
796a7ff8 7762 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7763 {
7764 int ix, len;
ec94af83
DE
7765 struct dwarf2_per_cu_data *per_cu_iter;
7766 struct symtab *symtab_iter;
7767 VEC (symtab_ptr) *result_symtabs = NULL;
7768 htab_t all_children, all_type_symtabs;
95554aad
TT
7769 struct symtab *symtab = get_symtab (per_cu);
7770
7771 /* If we don't have a symtab, we can just skip this case. */
7772 if (symtab == NULL)
7773 return;
7774
7775 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7776 NULL, xcalloc, xfree);
ec94af83
DE
7777 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7778 NULL, xcalloc, xfree);
95554aad
TT
7779
7780 for (ix = 0;
796a7ff8 7781 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7782 ix, per_cu_iter);
95554aad 7783 ++ix)
ec94af83
DE
7784 {
7785 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c
TT
7786 all_type_symtabs, per_cu_iter,
7787 symtab);
ec94af83 7788 }
95554aad 7789
ec94af83
DE
7790 /* Now we have a transitive closure of all the included symtabs. */
7791 len = VEC_length (symtab_ptr, result_symtabs);
95554aad
TT
7792 symtab->includes
7793 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7794 (len + 1) * sizeof (struct symtab *));
7795 for (ix = 0;
ec94af83 7796 VEC_iterate (symtab_ptr, result_symtabs, ix, symtab_iter);
95554aad 7797 ++ix)
ec94af83 7798 symtab->includes[ix] = symtab_iter;
95554aad
TT
7799 symtab->includes[len] = NULL;
7800
ec94af83 7801 VEC_free (symtab_ptr, result_symtabs);
95554aad 7802 htab_delete (all_children);
ec94af83 7803 htab_delete (all_type_symtabs);
95554aad
TT
7804 }
7805}
7806
7807/* Compute the 'includes' field for the symtabs of all the CUs we just
7808 read. */
7809
7810static void
7811process_cu_includes (void)
7812{
7813 int ix;
7814 struct dwarf2_per_cu_data *iter;
7815
7816 for (ix = 0;
7817 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7818 ix, iter);
7819 ++ix)
f4dc4d17
DE
7820 {
7821 if (! iter->is_debug_types)
7822 compute_symtab_includes (iter);
7823 }
95554aad
TT
7824
7825 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7826}
7827
9cdd5dbd 7828/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
7829 already been loaded into memory. */
7830
7831static void
95554aad
TT
7832process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7833 enum language pretend_language)
10b3939b 7834{
10b3939b 7835 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 7836 struct objfile *objfile = per_cu->objfile;
10b3939b
DJ
7837 CORE_ADDR lowpc, highpc;
7838 struct symtab *symtab;
3da10d80 7839 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 7840 CORE_ADDR baseaddr;
4359dff1 7841 struct block *static_block;
10b3939b
DJ
7842
7843 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7844
10b3939b
DJ
7845 buildsym_init ();
7846 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 7847 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
7848
7849 cu->list_in_scope = &file_symbols;
c906108c 7850
95554aad
TT
7851 cu->language = pretend_language;
7852 cu->language_defn = language_def (cu->language);
7853
c906108c 7854 /* Do line number decoding in read_file_scope () */
10b3939b 7855 process_die (cu->dies, cu);
c906108c 7856
a766d390
DE
7857 /* For now fudge the Go package. */
7858 if (cu->language == language_go)
7859 fixup_go_packaging (cu);
7860
3da10d80
KS
7861 /* Now that we have processed all the DIEs in the CU, all the types
7862 should be complete, and it should now be safe to compute all of the
7863 physnames. */
7864 compute_delayed_physnames (cu);
7865 do_cleanups (delayed_list_cleanup);
7866
fae299cd
DC
7867 /* Some compilers don't define a DW_AT_high_pc attribute for the
7868 compilation unit. If the DW_AT_high_pc is missing, synthesize
7869 it, by scanning the DIE's below the compilation unit. */
10b3939b 7870 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 7871
36586728 7872 static_block
ff546935 7873 = end_symtab_get_static_block (highpc + baseaddr, objfile, 0, 1);
4359dff1
JK
7874
7875 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7876 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7877 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7878 addrmap to help ensure it has an accurate map of pc values belonging to
7879 this comp unit. */
7880 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7881
7882 symtab = end_symtab_from_static_block (static_block, objfile,
7883 SECT_OFF_TEXT (objfile), 0);
c906108c 7884
8be455d7 7885 if (symtab != NULL)
c906108c 7886 {
df15bd07 7887 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 7888
8be455d7
JK
7889 /* Set symtab language to language from DW_AT_language. If the
7890 compilation is from a C file generated by language preprocessors, do
7891 not set the language if it was already deduced by start_subfile. */
7892 if (!(cu->language == language_c && symtab->language != language_c))
7893 symtab->language = cu->language;
7894
7895 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
7896 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
7897 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
7898 there were bugs in prologue debug info, fixed later in GCC-4.5
7899 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
7900
7901 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
7902 needed, it would be wrong due to missing DW_AT_producer there.
7903
7904 Still one can confuse GDB by using non-standard GCC compilation
7905 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
7906 */
ab260dad 7907 if (cu->has_loclist && gcc_4_minor >= 5)
8be455d7 7908 symtab->locations_valid = 1;
e0d00bc7
JK
7909
7910 if (gcc_4_minor >= 5)
7911 symtab->epilogue_unwind_valid = 1;
96408a79
SA
7912
7913 symtab->call_site_htab = cu->call_site_htab;
c906108c 7914 }
9291a0cd
TT
7915
7916 if (dwarf2_per_objfile->using_index)
7917 per_cu->v.quick->symtab = symtab;
7918 else
7919 {
7920 struct partial_symtab *pst = per_cu->v.psymtab;
7921 pst->symtab = symtab;
7922 pst->readin = 1;
7923 }
c906108c 7924
95554aad
TT
7925 /* Push it for inclusion processing later. */
7926 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
7927
c906108c 7928 do_cleanups (back_to);
f4dc4d17 7929}
45cfd468 7930
f4dc4d17
DE
7931/* Generate full symbol information for type unit PER_CU, whose DIEs have
7932 already been loaded into memory. */
7933
7934static void
7935process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
7936 enum language pretend_language)
7937{
7938 struct dwarf2_cu *cu = per_cu->cu;
7939 struct objfile *objfile = per_cu->objfile;
7940 struct symtab *symtab;
7941 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
7942 struct signatured_type *sig_type;
7943
7944 gdb_assert (per_cu->is_debug_types);
7945 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
7946
7947 buildsym_init ();
7948 back_to = make_cleanup (really_free_pendings, NULL);
7949 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
7950
7951 cu->list_in_scope = &file_symbols;
7952
7953 cu->language = pretend_language;
7954 cu->language_defn = language_def (cu->language);
7955
7956 /* The symbol tables are set up in read_type_unit_scope. */
7957 process_die (cu->dies, cu);
7958
7959 /* For now fudge the Go package. */
7960 if (cu->language == language_go)
7961 fixup_go_packaging (cu);
7962
7963 /* Now that we have processed all the DIEs in the CU, all the types
7964 should be complete, and it should now be safe to compute all of the
7965 physnames. */
7966 compute_delayed_physnames (cu);
7967 do_cleanups (delayed_list_cleanup);
7968
7969 /* TUs share symbol tables.
7970 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
7971 of it with end_expandable_symtab. Otherwise, complete the addition of
7972 this TU's symbols to the existing symtab. */
0186c6a7 7973 if (sig_type->type_unit_group->primary_symtab == NULL)
45cfd468 7974 {
f4dc4d17 7975 symtab = end_expandable_symtab (0, objfile, SECT_OFF_TEXT (objfile));
0186c6a7 7976 sig_type->type_unit_group->primary_symtab = symtab;
f4dc4d17
DE
7977
7978 if (symtab != NULL)
7979 {
7980 /* Set symtab language to language from DW_AT_language. If the
7981 compilation is from a C file generated by language preprocessors,
7982 do not set the language if it was already deduced by
7983 start_subfile. */
7984 if (!(cu->language == language_c && symtab->language != language_c))
7985 symtab->language = cu->language;
7986 }
7987 }
7988 else
7989 {
7990 augment_type_symtab (objfile,
0186c6a7
DE
7991 sig_type->type_unit_group->primary_symtab);
7992 symtab = sig_type->type_unit_group->primary_symtab;
f4dc4d17
DE
7993 }
7994
7995 if (dwarf2_per_objfile->using_index)
7996 per_cu->v.quick->symtab = symtab;
7997 else
7998 {
7999 struct partial_symtab *pst = per_cu->v.psymtab;
8000 pst->symtab = symtab;
8001 pst->readin = 1;
45cfd468 8002 }
f4dc4d17
DE
8003
8004 do_cleanups (back_to);
c906108c
SS
8005}
8006
95554aad
TT
8007/* Process an imported unit DIE. */
8008
8009static void
8010process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8011{
8012 struct attribute *attr;
8013
f4dc4d17
DE
8014 /* For now we don't handle imported units in type units. */
8015 if (cu->per_cu->is_debug_types)
8016 {
8017 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8018 " supported in type units [in module %s]"),
4262abfb 8019 objfile_name (cu->objfile));
f4dc4d17
DE
8020 }
8021
95554aad
TT
8022 attr = dwarf2_attr (die, DW_AT_import, cu);
8023 if (attr != NULL)
8024 {
8025 struct dwarf2_per_cu_data *per_cu;
8026 struct symtab *imported_symtab;
8027 sect_offset offset;
36586728 8028 int is_dwz;
95554aad
TT
8029
8030 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
8031 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8032 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 8033
69d751e3 8034 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8035 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8036 load_full_comp_unit (per_cu, cu->language);
8037
796a7ff8 8038 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8039 per_cu);
8040 }
8041}
8042
adde2bff
DE
8043/* Reset the in_process bit of a die. */
8044
8045static void
8046reset_die_in_process (void *arg)
8047{
8048 struct die_info *die = arg;
8c3cb9fa 8049
adde2bff
DE
8050 die->in_process = 0;
8051}
8052
c906108c
SS
8053/* Process a die and its children. */
8054
8055static void
e7c27a73 8056process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8057{
adde2bff
DE
8058 struct cleanup *in_process;
8059
8060 /* We should only be processing those not already in process. */
8061 gdb_assert (!die->in_process);
8062
8063 die->in_process = 1;
8064 in_process = make_cleanup (reset_die_in_process,die);
8065
c906108c
SS
8066 switch (die->tag)
8067 {
8068 case DW_TAG_padding:
8069 break;
8070 case DW_TAG_compile_unit:
95554aad 8071 case DW_TAG_partial_unit:
e7c27a73 8072 read_file_scope (die, cu);
c906108c 8073 break;
348e048f
DE
8074 case DW_TAG_type_unit:
8075 read_type_unit_scope (die, cu);
8076 break;
c906108c 8077 case DW_TAG_subprogram:
c906108c 8078 case DW_TAG_inlined_subroutine:
edb3359d 8079 read_func_scope (die, cu);
c906108c
SS
8080 break;
8081 case DW_TAG_lexical_block:
14898363
L
8082 case DW_TAG_try_block:
8083 case DW_TAG_catch_block:
e7c27a73 8084 read_lexical_block_scope (die, cu);
c906108c 8085 break;
96408a79
SA
8086 case DW_TAG_GNU_call_site:
8087 read_call_site_scope (die, cu);
8088 break;
c906108c 8089 case DW_TAG_class_type:
680b30c7 8090 case DW_TAG_interface_type:
c906108c
SS
8091 case DW_TAG_structure_type:
8092 case DW_TAG_union_type:
134d01f1 8093 process_structure_scope (die, cu);
c906108c
SS
8094 break;
8095 case DW_TAG_enumeration_type:
134d01f1 8096 process_enumeration_scope (die, cu);
c906108c 8097 break;
134d01f1 8098
f792889a
DJ
8099 /* These dies have a type, but processing them does not create
8100 a symbol or recurse to process the children. Therefore we can
8101 read them on-demand through read_type_die. */
c906108c 8102 case DW_TAG_subroutine_type:
72019c9c 8103 case DW_TAG_set_type:
c906108c 8104 case DW_TAG_array_type:
c906108c 8105 case DW_TAG_pointer_type:
c906108c 8106 case DW_TAG_ptr_to_member_type:
c906108c 8107 case DW_TAG_reference_type:
c906108c 8108 case DW_TAG_string_type:
c906108c 8109 break;
134d01f1 8110
c906108c 8111 case DW_TAG_base_type:
a02abb62 8112 case DW_TAG_subrange_type:
cb249c71 8113 case DW_TAG_typedef:
134d01f1
DJ
8114 /* Add a typedef symbol for the type definition, if it has a
8115 DW_AT_name. */
f792889a 8116 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8117 break;
c906108c 8118 case DW_TAG_common_block:
e7c27a73 8119 read_common_block (die, cu);
c906108c
SS
8120 break;
8121 case DW_TAG_common_inclusion:
8122 break;
d9fa45fe 8123 case DW_TAG_namespace:
4d4ec4e5 8124 cu->processing_has_namespace_info = 1;
e7c27a73 8125 read_namespace (die, cu);
d9fa45fe 8126 break;
5d7cb8df 8127 case DW_TAG_module:
4d4ec4e5 8128 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8129 read_module (die, cu);
8130 break;
d9fa45fe 8131 case DW_TAG_imported_declaration:
74921315
KS
8132 cu->processing_has_namespace_info = 1;
8133 if (read_namespace_alias (die, cu))
8134 break;
8135 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8136 case DW_TAG_imported_module:
4d4ec4e5 8137 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8138 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8139 || cu->language != language_fortran))
8140 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8141 dwarf_tag_name (die->tag));
8142 read_import_statement (die, cu);
d9fa45fe 8143 break;
95554aad
TT
8144
8145 case DW_TAG_imported_unit:
8146 process_imported_unit_die (die, cu);
8147 break;
8148
c906108c 8149 default:
e7c27a73 8150 new_symbol (die, NULL, cu);
c906108c
SS
8151 break;
8152 }
adde2bff
DE
8153
8154 do_cleanups (in_process);
c906108c 8155}
ca69b9e6
DE
8156\f
8157/* DWARF name computation. */
c906108c 8158
94af9270
KS
8159/* A helper function for dwarf2_compute_name which determines whether DIE
8160 needs to have the name of the scope prepended to the name listed in the
8161 die. */
8162
8163static int
8164die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8165{
1c809c68
TT
8166 struct attribute *attr;
8167
94af9270
KS
8168 switch (die->tag)
8169 {
8170 case DW_TAG_namespace:
8171 case DW_TAG_typedef:
8172 case DW_TAG_class_type:
8173 case DW_TAG_interface_type:
8174 case DW_TAG_structure_type:
8175 case DW_TAG_union_type:
8176 case DW_TAG_enumeration_type:
8177 case DW_TAG_enumerator:
8178 case DW_TAG_subprogram:
8179 case DW_TAG_member:
74921315 8180 case DW_TAG_imported_declaration:
94af9270
KS
8181 return 1;
8182
8183 case DW_TAG_variable:
c2b0a229 8184 case DW_TAG_constant:
94af9270
KS
8185 /* We only need to prefix "globally" visible variables. These include
8186 any variable marked with DW_AT_external or any variable that
8187 lives in a namespace. [Variables in anonymous namespaces
8188 require prefixing, but they are not DW_AT_external.] */
8189
8190 if (dwarf2_attr (die, DW_AT_specification, cu))
8191 {
8192 struct dwarf2_cu *spec_cu = cu;
9a619af0 8193
94af9270
KS
8194 return die_needs_namespace (die_specification (die, &spec_cu),
8195 spec_cu);
8196 }
8197
1c809c68 8198 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8199 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8200 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8201 return 0;
8202 /* A variable in a lexical block of some kind does not need a
8203 namespace, even though in C++ such variables may be external
8204 and have a mangled name. */
8205 if (die->parent->tag == DW_TAG_lexical_block
8206 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8207 || die->parent->tag == DW_TAG_catch_block
8208 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8209 return 0;
8210 return 1;
94af9270
KS
8211
8212 default:
8213 return 0;
8214 }
8215}
8216
98bfdba5
PA
8217/* Retrieve the last character from a mem_file. */
8218
8219static void
8220do_ui_file_peek_last (void *object, const char *buffer, long length)
8221{
8222 char *last_char_p = (char *) object;
8223
8224 if (length > 0)
8225 *last_char_p = buffer[length - 1];
8226}
8227
94af9270 8228/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
8229 compute the physname for the object, which include a method's:
8230 - formal parameters (C++/Java),
8231 - receiver type (Go),
8232 - return type (Java).
8233
8234 The term "physname" is a bit confusing.
8235 For C++, for example, it is the demangled name.
8236 For Go, for example, it's the mangled name.
94af9270 8237
af6b7be1
JB
8238 For Ada, return the DIE's linkage name rather than the fully qualified
8239 name. PHYSNAME is ignored..
8240
94af9270
KS
8241 The result is allocated on the objfile_obstack and canonicalized. */
8242
8243static const char *
15d034d0
TT
8244dwarf2_compute_name (const char *name,
8245 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8246 int physname)
8247{
bb5ed363
DE
8248 struct objfile *objfile = cu->objfile;
8249
94af9270
KS
8250 if (name == NULL)
8251 name = dwarf2_name (die, cu);
8252
f55ee35c
JK
8253 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8254 compute it by typename_concat inside GDB. */
8255 if (cu->language == language_ada
8256 || (cu->language == language_fortran && physname))
8257 {
8258 /* For Ada unit, we prefer the linkage name over the name, as
8259 the former contains the exported name, which the user expects
8260 to be able to reference. Ideally, we want the user to be able
8261 to reference this entity using either natural or linkage name,
8262 but we haven't started looking at this enhancement yet. */
8263 struct attribute *attr;
8264
8265 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8266 if (attr == NULL)
8267 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8268 if (attr && DW_STRING (attr))
8269 return DW_STRING (attr);
8270 }
8271
94af9270
KS
8272 /* These are the only languages we know how to qualify names in. */
8273 if (name != NULL
f55ee35c
JK
8274 && (cu->language == language_cplus || cu->language == language_java
8275 || cu->language == language_fortran))
94af9270
KS
8276 {
8277 if (die_needs_namespace (die, cu))
8278 {
8279 long length;
0d5cff50 8280 const char *prefix;
94af9270
KS
8281 struct ui_file *buf;
8282
8283 prefix = determine_prefix (die, cu);
8284 buf = mem_fileopen ();
8285 if (*prefix != '\0')
8286 {
f55ee35c
JK
8287 char *prefixed_name = typename_concat (NULL, prefix, name,
8288 physname, cu);
9a619af0 8289
94af9270
KS
8290 fputs_unfiltered (prefixed_name, buf);
8291 xfree (prefixed_name);
8292 }
8293 else
62d5b8da 8294 fputs_unfiltered (name, buf);
94af9270 8295
98bfdba5
PA
8296 /* Template parameters may be specified in the DIE's DW_AT_name, or
8297 as children with DW_TAG_template_type_param or
8298 DW_TAG_value_type_param. If the latter, add them to the name
8299 here. If the name already has template parameters, then
8300 skip this step; some versions of GCC emit both, and
8301 it is more efficient to use the pre-computed name.
8302
8303 Something to keep in mind about this process: it is very
8304 unlikely, or in some cases downright impossible, to produce
8305 something that will match the mangled name of a function.
8306 If the definition of the function has the same debug info,
8307 we should be able to match up with it anyway. But fallbacks
8308 using the minimal symbol, for instance to find a method
8309 implemented in a stripped copy of libstdc++, will not work.
8310 If we do not have debug info for the definition, we will have to
8311 match them up some other way.
8312
8313 When we do name matching there is a related problem with function
8314 templates; two instantiated function templates are allowed to
8315 differ only by their return types, which we do not add here. */
8316
8317 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8318 {
8319 struct attribute *attr;
8320 struct die_info *child;
8321 int first = 1;
8322
8323 die->building_fullname = 1;
8324
8325 for (child = die->child; child != NULL; child = child->sibling)
8326 {
8327 struct type *type;
12df843f 8328 LONGEST value;
d521ce57 8329 const gdb_byte *bytes;
98bfdba5
PA
8330 struct dwarf2_locexpr_baton *baton;
8331 struct value *v;
8332
8333 if (child->tag != DW_TAG_template_type_param
8334 && child->tag != DW_TAG_template_value_param)
8335 continue;
8336
8337 if (first)
8338 {
8339 fputs_unfiltered ("<", buf);
8340 first = 0;
8341 }
8342 else
8343 fputs_unfiltered (", ", buf);
8344
8345 attr = dwarf2_attr (child, DW_AT_type, cu);
8346 if (attr == NULL)
8347 {
8348 complaint (&symfile_complaints,
8349 _("template parameter missing DW_AT_type"));
8350 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8351 continue;
8352 }
8353 type = die_type (child, cu);
8354
8355 if (child->tag == DW_TAG_template_type_param)
8356 {
79d43c61 8357 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8358 continue;
8359 }
8360
8361 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8362 if (attr == NULL)
8363 {
8364 complaint (&symfile_complaints,
3e43a32a
MS
8365 _("template parameter missing "
8366 "DW_AT_const_value"));
98bfdba5
PA
8367 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8368 continue;
8369 }
8370
8371 dwarf2_const_value_attr (attr, type, name,
8372 &cu->comp_unit_obstack, cu,
8373 &value, &bytes, &baton);
8374
8375 if (TYPE_NOSIGN (type))
8376 /* GDB prints characters as NUMBER 'CHAR'. If that's
8377 changed, this can use value_print instead. */
8378 c_printchar (value, type, buf);
8379 else
8380 {
8381 struct value_print_options opts;
8382
8383 if (baton != NULL)
8384 v = dwarf2_evaluate_loc_desc (type, NULL,
8385 baton->data,
8386 baton->size,
8387 baton->per_cu);
8388 else if (bytes != NULL)
8389 {
8390 v = allocate_value (type);
8391 memcpy (value_contents_writeable (v), bytes,
8392 TYPE_LENGTH (type));
8393 }
8394 else
8395 v = value_from_longest (type, value);
8396
3e43a32a
MS
8397 /* Specify decimal so that we do not depend on
8398 the radix. */
98bfdba5
PA
8399 get_formatted_print_options (&opts, 'd');
8400 opts.raw = 1;
8401 value_print (v, buf, &opts);
8402 release_value (v);
8403 value_free (v);
8404 }
8405 }
8406
8407 die->building_fullname = 0;
8408
8409 if (!first)
8410 {
8411 /* Close the argument list, with a space if necessary
8412 (nested templates). */
8413 char last_char = '\0';
8414 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8415 if (last_char == '>')
8416 fputs_unfiltered (" >", buf);
8417 else
8418 fputs_unfiltered (">", buf);
8419 }
8420 }
8421
94af9270
KS
8422 /* For Java and C++ methods, append formal parameter type
8423 information, if PHYSNAME. */
6e70227d 8424
94af9270
KS
8425 if (physname && die->tag == DW_TAG_subprogram
8426 && (cu->language == language_cplus
8427 || cu->language == language_java))
8428 {
8429 struct type *type = read_type_die (die, cu);
8430
79d43c61
TT
8431 c_type_print_args (type, buf, 1, cu->language,
8432 &type_print_raw_options);
94af9270
KS
8433
8434 if (cu->language == language_java)
8435 {
8436 /* For java, we must append the return type to method
0963b4bd 8437 names. */
94af9270
KS
8438 if (die->tag == DW_TAG_subprogram)
8439 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8440 0, 0, &type_print_raw_options);
94af9270
KS
8441 }
8442 else if (cu->language == language_cplus)
8443 {
60430eff
DJ
8444 /* Assume that an artificial first parameter is
8445 "this", but do not crash if it is not. RealView
8446 marks unnamed (and thus unused) parameters as
8447 artificial; there is no way to differentiate
8448 the two cases. */
94af9270
KS
8449 if (TYPE_NFIELDS (type) > 0
8450 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8451 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8452 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8453 0))))
94af9270
KS
8454 fputs_unfiltered (" const", buf);
8455 }
8456 }
8457
bb5ed363 8458 name = ui_file_obsavestring (buf, &objfile->objfile_obstack,
94af9270
KS
8459 &length);
8460 ui_file_delete (buf);
8461
8462 if (cu->language == language_cplus)
8463 {
15d034d0 8464 const char *cname
94af9270 8465 = dwarf2_canonicalize_name (name, cu,
bb5ed363 8466 &objfile->objfile_obstack);
9a619af0 8467
94af9270
KS
8468 if (cname != NULL)
8469 name = cname;
8470 }
8471 }
8472 }
8473
8474 return name;
8475}
8476
0114d602
DJ
8477/* Return the fully qualified name of DIE, based on its DW_AT_name.
8478 If scope qualifiers are appropriate they will be added. The result
8479 will be allocated on the objfile_obstack, or NULL if the DIE does
94af9270
KS
8480 not have a name. NAME may either be from a previous call to
8481 dwarf2_name or NULL.
8482
0963b4bd 8483 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8484
8485static const char *
15d034d0 8486dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8487{
94af9270
KS
8488 return dwarf2_compute_name (name, die, cu, 0);
8489}
0114d602 8490
94af9270
KS
8491/* Construct a physname for the given DIE in CU. NAME may either be
8492 from a previous call to dwarf2_name or NULL. The result will be
8493 allocated on the objfile_objstack or NULL if the DIE does not have a
8494 name.
0114d602 8495
94af9270 8496 The output string will be canonicalized (if C++/Java). */
0114d602 8497
94af9270 8498static const char *
15d034d0 8499dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8500{
bb5ed363 8501 struct objfile *objfile = cu->objfile;
900e11f9
JK
8502 struct attribute *attr;
8503 const char *retval, *mangled = NULL, *canon = NULL;
8504 struct cleanup *back_to;
8505 int need_copy = 1;
8506
8507 /* In this case dwarf2_compute_name is just a shortcut not building anything
8508 on its own. */
8509 if (!die_needs_namespace (die, cu))
8510 return dwarf2_compute_name (name, die, cu, 1);
8511
8512 back_to = make_cleanup (null_cleanup, NULL);
8513
8514 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8515 if (!attr)
8516 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8517
8518 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8519 has computed. */
8520 if (attr && DW_STRING (attr))
8521 {
8522 char *demangled;
8523
8524 mangled = DW_STRING (attr);
8525
8526 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8527 type. It is easier for GDB users to search for such functions as
8528 `name(params)' than `long name(params)'. In such case the minimal
8529 symbol names do not match the full symbol names but for template
8530 functions there is never a need to look up their definition from their
8531 declaration so the only disadvantage remains the minimal symbol
8532 variant `long name(params)' does not have the proper inferior type.
8533 */
8534
a766d390
DE
8535 if (cu->language == language_go)
8536 {
8537 /* This is a lie, but we already lie to the caller new_symbol_full.
8538 new_symbol_full assumes we return the mangled name.
8539 This just undoes that lie until things are cleaned up. */
8540 demangled = NULL;
8541 }
8542 else
8543 {
8de20a37
TT
8544 demangled = gdb_demangle (mangled,
8545 (DMGL_PARAMS | DMGL_ANSI
8546 | (cu->language == language_java
8547 ? DMGL_JAVA | DMGL_RET_POSTFIX
8548 : DMGL_RET_DROP)));
a766d390 8549 }
900e11f9
JK
8550 if (demangled)
8551 {
8552 make_cleanup (xfree, demangled);
8553 canon = demangled;
8554 }
8555 else
8556 {
8557 canon = mangled;
8558 need_copy = 0;
8559 }
8560 }
8561
8562 if (canon == NULL || check_physname)
8563 {
8564 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8565
8566 if (canon != NULL && strcmp (physname, canon) != 0)
8567 {
8568 /* It may not mean a bug in GDB. The compiler could also
8569 compute DW_AT_linkage_name incorrectly. But in such case
8570 GDB would need to be bug-to-bug compatible. */
8571
8572 complaint (&symfile_complaints,
8573 _("Computed physname <%s> does not match demangled <%s> "
8574 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8575 physname, canon, mangled, die->offset.sect_off,
8576 objfile_name (objfile));
900e11f9
JK
8577
8578 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8579 is available here - over computed PHYSNAME. It is safer
8580 against both buggy GDB and buggy compilers. */
8581
8582 retval = canon;
8583 }
8584 else
8585 {
8586 retval = physname;
8587 need_copy = 0;
8588 }
8589 }
8590 else
8591 retval = canon;
8592
8593 if (need_copy)
10f0c4bb 8594 retval = obstack_copy0 (&objfile->objfile_obstack, retval, strlen (retval));
900e11f9
JK
8595
8596 do_cleanups (back_to);
8597 return retval;
0114d602
DJ
8598}
8599
74921315
KS
8600/* Inspect DIE in CU for a namespace alias. If one exists, record
8601 a new symbol for it.
8602
8603 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8604
8605static int
8606read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8607{
8608 struct attribute *attr;
8609
8610 /* If the die does not have a name, this is not a namespace
8611 alias. */
8612 attr = dwarf2_attr (die, DW_AT_name, cu);
8613 if (attr != NULL)
8614 {
8615 int num;
8616 struct die_info *d = die;
8617 struct dwarf2_cu *imported_cu = cu;
8618
8619 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8620 keep inspecting DIEs until we hit the underlying import. */
8621#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8622 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8623 {
8624 attr = dwarf2_attr (d, DW_AT_import, cu);
8625 if (attr == NULL)
8626 break;
8627
8628 d = follow_die_ref (d, attr, &imported_cu);
8629 if (d->tag != DW_TAG_imported_declaration)
8630 break;
8631 }
8632
8633 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8634 {
8635 complaint (&symfile_complaints,
8636 _("DIE at 0x%x has too many recursively imported "
8637 "declarations"), d->offset.sect_off);
8638 return 0;
8639 }
8640
8641 if (attr != NULL)
8642 {
8643 struct type *type;
8644 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8645
8646 type = get_die_type_at_offset (offset, cu->per_cu);
8647 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8648 {
8649 /* This declaration is a global namespace alias. Add
8650 a symbol for it whose type is the aliased namespace. */
8651 new_symbol (die, type, cu);
8652 return 1;
8653 }
8654 }
8655 }
8656
8657 return 0;
8658}
8659
27aa8d6a
SW
8660/* Read the import statement specified by the given die and record it. */
8661
8662static void
8663read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8664{
bb5ed363 8665 struct objfile *objfile = cu->objfile;
27aa8d6a 8666 struct attribute *import_attr;
32019081 8667 struct die_info *imported_die, *child_die;
de4affc9 8668 struct dwarf2_cu *imported_cu;
27aa8d6a 8669 const char *imported_name;
794684b6 8670 const char *imported_name_prefix;
13387711
SW
8671 const char *canonical_name;
8672 const char *import_alias;
8673 const char *imported_declaration = NULL;
794684b6 8674 const char *import_prefix;
32019081
JK
8675 VEC (const_char_ptr) *excludes = NULL;
8676 struct cleanup *cleanups;
13387711 8677
27aa8d6a
SW
8678 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8679 if (import_attr == NULL)
8680 {
8681 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8682 dwarf_tag_name (die->tag));
8683 return;
8684 }
8685
de4affc9
CC
8686 imported_cu = cu;
8687 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8688 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8689 if (imported_name == NULL)
8690 {
8691 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8692
8693 The import in the following code:
8694 namespace A
8695 {
8696 typedef int B;
8697 }
8698
8699 int main ()
8700 {
8701 using A::B;
8702 B b;
8703 return b;
8704 }
8705
8706 ...
8707 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8708 <52> DW_AT_decl_file : 1
8709 <53> DW_AT_decl_line : 6
8710 <54> DW_AT_import : <0x75>
8711 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8712 <59> DW_AT_name : B
8713 <5b> DW_AT_decl_file : 1
8714 <5c> DW_AT_decl_line : 2
8715 <5d> DW_AT_type : <0x6e>
8716 ...
8717 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8718 <76> DW_AT_byte_size : 4
8719 <77> DW_AT_encoding : 5 (signed)
8720
8721 imports the wrong die ( 0x75 instead of 0x58 ).
8722 This case will be ignored until the gcc bug is fixed. */
8723 return;
8724 }
8725
82856980
SW
8726 /* Figure out the local name after import. */
8727 import_alias = dwarf2_name (die, cu);
27aa8d6a 8728
794684b6
SW
8729 /* Figure out where the statement is being imported to. */
8730 import_prefix = determine_prefix (die, cu);
8731
8732 /* Figure out what the scope of the imported die is and prepend it
8733 to the name of the imported die. */
de4affc9 8734 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8735
f55ee35c
JK
8736 if (imported_die->tag != DW_TAG_namespace
8737 && imported_die->tag != DW_TAG_module)
794684b6 8738 {
13387711
SW
8739 imported_declaration = imported_name;
8740 canonical_name = imported_name_prefix;
794684b6 8741 }
13387711 8742 else if (strlen (imported_name_prefix) > 0)
12aaed36
TT
8743 canonical_name = obconcat (&objfile->objfile_obstack,
8744 imported_name_prefix, "::", imported_name,
8745 (char *) NULL);
13387711
SW
8746 else
8747 canonical_name = imported_name;
794684b6 8748
32019081
JK
8749 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8750
8751 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8752 for (child_die = die->child; child_die && child_die->tag;
8753 child_die = sibling_die (child_die))
8754 {
8755 /* DWARF-4: A Fortran use statement with a “rename list” may be
8756 represented by an imported module entry with an import attribute
8757 referring to the module and owned entries corresponding to those
8758 entities that are renamed as part of being imported. */
8759
8760 if (child_die->tag != DW_TAG_imported_declaration)
8761 {
8762 complaint (&symfile_complaints,
8763 _("child DW_TAG_imported_declaration expected "
8764 "- DIE at 0x%x [in module %s]"),
4262abfb 8765 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8766 continue;
8767 }
8768
8769 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8770 if (import_attr == NULL)
8771 {
8772 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8773 dwarf_tag_name (child_die->tag));
8774 continue;
8775 }
8776
8777 imported_cu = cu;
8778 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8779 &imported_cu);
8780 imported_name = dwarf2_name (imported_die, imported_cu);
8781 if (imported_name == NULL)
8782 {
8783 complaint (&symfile_complaints,
8784 _("child DW_TAG_imported_declaration has unknown "
8785 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 8786 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8787 continue;
8788 }
8789
8790 VEC_safe_push (const_char_ptr, excludes, imported_name);
8791
8792 process_die (child_die, cu);
8793 }
8794
c0cc3a76
SW
8795 cp_add_using_directive (import_prefix,
8796 canonical_name,
8797 import_alias,
13387711 8798 imported_declaration,
32019081 8799 excludes,
12aaed36 8800 0,
bb5ed363 8801 &objfile->objfile_obstack);
32019081
JK
8802
8803 do_cleanups (cleanups);
27aa8d6a
SW
8804}
8805
f4dc4d17 8806/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 8807
cb1df416
DJ
8808static void
8809free_cu_line_header (void *arg)
8810{
8811 struct dwarf2_cu *cu = arg;
8812
8813 free_line_header (cu->line_header);
8814 cu->line_header = NULL;
8815}
8816
1b80a9fa
JK
8817/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8818 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8819 this, it was first present in GCC release 4.3.0. */
8820
8821static int
8822producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8823{
8824 if (!cu->checked_producer)
8825 check_producer (cu);
8826
8827 return cu->producer_is_gcc_lt_4_3;
8828}
8829
9291a0cd
TT
8830static void
8831find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 8832 const char **name, const char **comp_dir)
9291a0cd
TT
8833{
8834 struct attribute *attr;
8835
8836 *name = NULL;
8837 *comp_dir = NULL;
8838
8839 /* Find the filename. Do not use dwarf2_name here, since the filename
8840 is not a source language identifier. */
8841 attr = dwarf2_attr (die, DW_AT_name, cu);
8842 if (attr)
8843 {
8844 *name = DW_STRING (attr);
8845 }
8846
8847 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8848 if (attr)
8849 *comp_dir = DW_STRING (attr);
1b80a9fa
JK
8850 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8851 && IS_ABSOLUTE_PATH (*name))
9291a0cd 8852 {
15d034d0
TT
8853 char *d = ldirname (*name);
8854
8855 *comp_dir = d;
8856 if (d != NULL)
8857 make_cleanup (xfree, d);
9291a0cd
TT
8858 }
8859 if (*comp_dir != NULL)
8860 {
8861 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8862 directory, get rid of it. */
8863 char *cp = strchr (*comp_dir, ':');
8864
8865 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8866 *comp_dir = cp + 1;
8867 }
8868
8869 if (*name == NULL)
8870 *name = "<unknown>";
8871}
8872
f4dc4d17
DE
8873/* Handle DW_AT_stmt_list for a compilation unit.
8874 DIE is the DW_TAG_compile_unit die for CU.
f3f5162e
DE
8875 COMP_DIR is the compilation directory.
8876 WANT_LINE_INFO is non-zero if the pc/line-number mapping is needed. */
2ab95328
TT
8877
8878static void
8879handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
b385a60d 8880 const char *comp_dir) /* ARI: editCase function */
2ab95328
TT
8881{
8882 struct attribute *attr;
2ab95328 8883
f4dc4d17
DE
8884 gdb_assert (! cu->per_cu->is_debug_types);
8885
2ab95328
TT
8886 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
8887 if (attr)
8888 {
8889 unsigned int line_offset = DW_UNSND (attr);
8890 struct line_header *line_header
3019eac3 8891 = dwarf_decode_line_header (line_offset, cu);
2ab95328
TT
8892
8893 if (line_header)
dee91e82
DE
8894 {
8895 cu->line_header = line_header;
8896 make_cleanup (free_cu_line_header, cu);
f4dc4d17 8897 dwarf_decode_lines (line_header, comp_dir, cu, NULL, 1);
dee91e82 8898 }
2ab95328
TT
8899 }
8900}
8901
95554aad 8902/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 8903
c906108c 8904static void
e7c27a73 8905read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8906{
dee91e82 8907 struct objfile *objfile = dwarf2_per_objfile->objfile;
debd256d 8908 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 8909 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
8910 CORE_ADDR highpc = ((CORE_ADDR) 0);
8911 struct attribute *attr;
15d034d0
TT
8912 const char *name = NULL;
8913 const char *comp_dir = NULL;
c906108c
SS
8914 struct die_info *child_die;
8915 bfd *abfd = objfile->obfd;
e142c38c 8916 CORE_ADDR baseaddr;
6e70227d 8917
e142c38c 8918 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 8919
fae299cd 8920 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
8921
8922 /* If we didn't find a lowpc, set it to highpc to avoid complaints
8923 from finish_block. */
2acceee2 8924 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
8925 lowpc = highpc;
8926 lowpc += baseaddr;
8927 highpc += baseaddr;
8928
9291a0cd 8929 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 8930
95554aad 8931 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 8932
f4b8a18d
KW
8933 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
8934 standardised yet. As a workaround for the language detection we fall
8935 back to the DW_AT_producer string. */
8936 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
8937 cu->language = language_opencl;
8938
3019eac3
DE
8939 /* Similar hack for Go. */
8940 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
8941 set_cu_language (DW_LANG_Go, cu);
8942
f4dc4d17 8943 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
8944
8945 /* Decode line number information if present. We do this before
8946 processing child DIEs, so that the line header table is available
8947 for DW_AT_decl_file. */
f4dc4d17 8948 handle_DW_AT_stmt_list (die, cu, comp_dir);
3019eac3
DE
8949
8950 /* Process all dies in compilation unit. */
8951 if (die->child != NULL)
8952 {
8953 child_die = die->child;
8954 while (child_die && child_die->tag)
8955 {
8956 process_die (child_die, cu);
8957 child_die = sibling_die (child_die);
8958 }
8959 }
8960
8961 /* Decode macro information, if present. Dwarf 2 macro information
8962 refers to information in the line number info statement program
8963 header, so we can only read it if we've read the header
8964 successfully. */
8965 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
8966 if (attr && cu->line_header)
8967 {
8968 if (dwarf2_attr (die, DW_AT_macro_info, cu))
8969 complaint (&symfile_complaints,
8970 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
8971
09262596 8972 dwarf_decode_macros (cu, DW_UNSND (attr), comp_dir, 1);
3019eac3
DE
8973 }
8974 else
8975 {
8976 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
8977 if (attr && cu->line_header)
8978 {
8979 unsigned int macro_offset = DW_UNSND (attr);
8980
09262596 8981 dwarf_decode_macros (cu, macro_offset, comp_dir, 0);
3019eac3
DE
8982 }
8983 }
8984
8985 do_cleanups (back_to);
8986}
8987
f4dc4d17
DE
8988/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
8989 Create the set of symtabs used by this TU, or if this TU is sharing
8990 symtabs with another TU and the symtabs have already been created
8991 then restore those symtabs in the line header.
8992 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
8993
8994static void
f4dc4d17 8995setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 8996{
f4dc4d17
DE
8997 struct objfile *objfile = dwarf2_per_objfile->objfile;
8998 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8999 struct type_unit_group *tu_group;
9000 int first_time;
9001 struct line_header *lh;
3019eac3 9002 struct attribute *attr;
f4dc4d17 9003 unsigned int i, line_offset;
0186c6a7 9004 struct signatured_type *sig_type;
3019eac3 9005
f4dc4d17 9006 gdb_assert (per_cu->is_debug_types);
0186c6a7 9007 sig_type = (struct signatured_type *) per_cu;
3019eac3 9008
f4dc4d17 9009 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9010
f4dc4d17 9011 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9012 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9013 if (sig_type->type_unit_group == NULL)
9014 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9015 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9016
9017 /* If we've already processed this stmt_list there's no real need to
9018 do it again, we could fake it and just recreate the part we need
9019 (file name,index -> symtab mapping). If data shows this optimization
9020 is useful we can do it then. */
9021 first_time = tu_group->primary_symtab == NULL;
9022
9023 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9024 debug info. */
9025 lh = NULL;
9026 if (attr != NULL)
3019eac3 9027 {
f4dc4d17
DE
9028 line_offset = DW_UNSND (attr);
9029 lh = dwarf_decode_line_header (line_offset, cu);
9030 }
9031 if (lh == NULL)
9032 {
9033 if (first_time)
9034 dwarf2_start_symtab (cu, "", NULL, 0);
9035 else
9036 {
9037 gdb_assert (tu_group->symtabs == NULL);
9038 restart_symtab (0);
9039 }
9040 /* Note: The primary symtab will get allocated at the end. */
9041 return;
3019eac3
DE
9042 }
9043
f4dc4d17
DE
9044 cu->line_header = lh;
9045 make_cleanup (free_cu_line_header, cu);
3019eac3 9046
f4dc4d17
DE
9047 if (first_time)
9048 {
9049 dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9050
f4dc4d17
DE
9051 tu_group->num_symtabs = lh->num_file_names;
9052 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 9053
f4dc4d17
DE
9054 for (i = 0; i < lh->num_file_names; ++i)
9055 {
d521ce57 9056 const char *dir = NULL;
f4dc4d17 9057 struct file_entry *fe = &lh->file_names[i];
3019eac3 9058
f4dc4d17
DE
9059 if (fe->dir_index)
9060 dir = lh->include_dirs[fe->dir_index - 1];
9061 dwarf2_start_subfile (fe->name, dir, NULL);
3019eac3 9062
f4dc4d17
DE
9063 /* Note: We don't have to watch for the main subfile here, type units
9064 don't have DW_AT_name. */
3019eac3 9065
f4dc4d17
DE
9066 if (current_subfile->symtab == NULL)
9067 {
9068 /* NOTE: start_subfile will recognize when it's been passed
9069 a file it has already seen. So we can't assume there's a
9070 simple mapping from lh->file_names to subfiles,
9071 lh->file_names may contain dups. */
9072 current_subfile->symtab = allocate_symtab (current_subfile->name,
9073 objfile);
9074 }
9075
9076 fe->symtab = current_subfile->symtab;
9077 tu_group->symtabs[i] = fe->symtab;
9078 }
9079 }
9080 else
3019eac3 9081 {
f4dc4d17
DE
9082 restart_symtab (0);
9083
9084 for (i = 0; i < lh->num_file_names; ++i)
9085 {
9086 struct file_entry *fe = &lh->file_names[i];
9087
9088 fe->symtab = tu_group->symtabs[i];
9089 }
3019eac3
DE
9090 }
9091
f4dc4d17
DE
9092 /* The main symtab is allocated last. Type units don't have DW_AT_name
9093 so they don't have a "real" (so to speak) symtab anyway.
9094 There is later code that will assign the main symtab to all symbols
9095 that don't have one. We need to handle the case of a symbol with a
9096 missing symtab (DW_AT_decl_file) anyway. */
9097}
3019eac3 9098
f4dc4d17
DE
9099/* Process DW_TAG_type_unit.
9100 For TUs we want to skip the first top level sibling if it's not the
9101 actual type being defined by this TU. In this case the first top
9102 level sibling is there to provide context only. */
3019eac3 9103
f4dc4d17
DE
9104static void
9105read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9106{
9107 struct die_info *child_die;
3019eac3 9108
f4dc4d17
DE
9109 prepare_one_comp_unit (cu, die, language_minimal);
9110
9111 /* Initialize (or reinitialize) the machinery for building symtabs.
9112 We do this before processing child DIEs, so that the line header table
9113 is available for DW_AT_decl_file. */
9114 setup_type_unit_groups (die, cu);
9115
9116 if (die->child != NULL)
9117 {
9118 child_die = die->child;
9119 while (child_die && child_die->tag)
9120 {
9121 process_die (child_die, cu);
9122 child_die = sibling_die (child_die);
9123 }
9124 }
3019eac3
DE
9125}
9126\f
80626a55
DE
9127/* DWO/DWP files.
9128
9129 http://gcc.gnu.org/wiki/DebugFission
9130 http://gcc.gnu.org/wiki/DebugFissionDWP
9131
9132 To simplify handling of both DWO files ("object" files with the DWARF info)
9133 and DWP files (a file with the DWOs packaged up into one file), we treat
9134 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9135
9136static hashval_t
9137hash_dwo_file (const void *item)
9138{
9139 const struct dwo_file *dwo_file = item;
a2ce51a0 9140 hashval_t hash;
3019eac3 9141
a2ce51a0
DE
9142 hash = htab_hash_string (dwo_file->dwo_name);
9143 if (dwo_file->comp_dir != NULL)
9144 hash += htab_hash_string (dwo_file->comp_dir);
9145 return hash;
3019eac3
DE
9146}
9147
9148static int
9149eq_dwo_file (const void *item_lhs, const void *item_rhs)
9150{
9151 const struct dwo_file *lhs = item_lhs;
9152 const struct dwo_file *rhs = item_rhs;
9153
a2ce51a0
DE
9154 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9155 return 0;
9156 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9157 return lhs->comp_dir == rhs->comp_dir;
9158 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9159}
9160
9161/* Allocate a hash table for DWO files. */
9162
9163static htab_t
9164allocate_dwo_file_hash_table (void)
9165{
9166 struct objfile *objfile = dwarf2_per_objfile->objfile;
9167
9168 return htab_create_alloc_ex (41,
9169 hash_dwo_file,
9170 eq_dwo_file,
9171 NULL,
9172 &objfile->objfile_obstack,
9173 hashtab_obstack_allocate,
9174 dummy_obstack_deallocate);
9175}
9176
80626a55
DE
9177/* Lookup DWO file DWO_NAME. */
9178
9179static void **
0ac5b59e 9180lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9181{
9182 struct dwo_file find_entry;
9183 void **slot;
9184
9185 if (dwarf2_per_objfile->dwo_files == NULL)
9186 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9187
9188 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9189 find_entry.dwo_name = dwo_name;
9190 find_entry.comp_dir = comp_dir;
80626a55
DE
9191 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9192
9193 return slot;
9194}
9195
3019eac3
DE
9196static hashval_t
9197hash_dwo_unit (const void *item)
9198{
9199 const struct dwo_unit *dwo_unit = item;
9200
9201 /* This drops the top 32 bits of the id, but is ok for a hash. */
9202 return dwo_unit->signature;
9203}
9204
9205static int
9206eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9207{
9208 const struct dwo_unit *lhs = item_lhs;
9209 const struct dwo_unit *rhs = item_rhs;
9210
9211 /* The signature is assumed to be unique within the DWO file.
9212 So while object file CU dwo_id's always have the value zero,
9213 that's OK, assuming each object file DWO file has only one CU,
9214 and that's the rule for now. */
9215 return lhs->signature == rhs->signature;
9216}
9217
9218/* Allocate a hash table for DWO CUs,TUs.
9219 There is one of these tables for each of CUs,TUs for each DWO file. */
9220
9221static htab_t
9222allocate_dwo_unit_table (struct objfile *objfile)
9223{
9224 /* Start out with a pretty small number.
9225 Generally DWO files contain only one CU and maybe some TUs. */
9226 return htab_create_alloc_ex (3,
9227 hash_dwo_unit,
9228 eq_dwo_unit,
9229 NULL,
9230 &objfile->objfile_obstack,
9231 hashtab_obstack_allocate,
9232 dummy_obstack_deallocate);
9233}
9234
80626a55 9235/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9236
19c3d4c9 9237struct create_dwo_cu_data
3019eac3
DE
9238{
9239 struct dwo_file *dwo_file;
19c3d4c9 9240 struct dwo_unit dwo_unit;
3019eac3
DE
9241};
9242
19c3d4c9 9243/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9244
9245static void
19c3d4c9
DE
9246create_dwo_cu_reader (const struct die_reader_specs *reader,
9247 const gdb_byte *info_ptr,
9248 struct die_info *comp_unit_die,
9249 int has_children,
9250 void *datap)
3019eac3
DE
9251{
9252 struct dwarf2_cu *cu = reader->cu;
9253 struct objfile *objfile = dwarf2_per_objfile->objfile;
9254 sect_offset offset = cu->per_cu->offset;
8a0459fd 9255 struct dwarf2_section_info *section = cu->per_cu->section;
19c3d4c9 9256 struct create_dwo_cu_data *data = datap;
3019eac3 9257 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9258 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9259 struct attribute *attr;
3019eac3
DE
9260
9261 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9262 if (attr == NULL)
9263 {
19c3d4c9
DE
9264 complaint (&symfile_complaints,
9265 _("Dwarf Error: debug entry at offset 0x%x is missing"
9266 " its dwo_id [in module %s]"),
9267 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9268 return;
9269 }
9270
3019eac3
DE
9271 dwo_unit->dwo_file = dwo_file;
9272 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9273 dwo_unit->section = section;
3019eac3
DE
9274 dwo_unit->offset = offset;
9275 dwo_unit->length = cu->per_cu->length;
9276
09406207 9277 if (dwarf2_read_debug)
4031ecc5
DE
9278 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9279 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9280}
9281
19c3d4c9
DE
9282/* Create the dwo_unit for the lone CU in DWO_FILE.
9283 Note: This function processes DWO files only, not DWP files. */
3019eac3 9284
19c3d4c9
DE
9285static struct dwo_unit *
9286create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9287{
9288 struct objfile *objfile = dwarf2_per_objfile->objfile;
9289 struct dwarf2_section_info *section = &dwo_file->sections.info;
9290 bfd *abfd;
9291 htab_t cu_htab;
d521ce57 9292 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9293 struct create_dwo_cu_data create_dwo_cu_data;
9294 struct dwo_unit *dwo_unit;
3019eac3
DE
9295
9296 dwarf2_read_section (objfile, section);
9297 info_ptr = section->buffer;
9298
9299 if (info_ptr == NULL)
9300 return NULL;
9301
9302 /* We can't set abfd until now because the section may be empty or
9303 not present, in which case section->asection will be NULL. */
a32a8923 9304 abfd = get_section_bfd_owner (section);
3019eac3 9305
09406207 9306 if (dwarf2_read_debug)
19c3d4c9
DE
9307 {
9308 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9309 get_section_name (section),
9310 get_section_file_name (section));
19c3d4c9 9311 }
3019eac3 9312
19c3d4c9
DE
9313 create_dwo_cu_data.dwo_file = dwo_file;
9314 dwo_unit = NULL;
3019eac3
DE
9315
9316 end_ptr = info_ptr + section->size;
9317 while (info_ptr < end_ptr)
9318 {
9319 struct dwarf2_per_cu_data per_cu;
9320
19c3d4c9
DE
9321 memset (&create_dwo_cu_data.dwo_unit, 0,
9322 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9323 memset (&per_cu, 0, sizeof (per_cu));
9324 per_cu.objfile = objfile;
9325 per_cu.is_debug_types = 0;
9326 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9327 per_cu.section = section;
3019eac3 9328
33e80786 9329 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
19c3d4c9
DE
9330 create_dwo_cu_reader,
9331 &create_dwo_cu_data);
9332
9333 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9334 {
9335 /* If we've already found one, complain. We only support one
9336 because having more than one requires hacking the dwo_name of
9337 each to match, which is highly unlikely to happen. */
9338 if (dwo_unit != NULL)
9339 {
9340 complaint (&symfile_complaints,
9341 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9342 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9343 break;
9344 }
9345
9346 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9347 *dwo_unit = create_dwo_cu_data.dwo_unit;
9348 }
3019eac3
DE
9349
9350 info_ptr += per_cu.length;
9351 }
9352
19c3d4c9 9353 return dwo_unit;
3019eac3
DE
9354}
9355
80626a55
DE
9356/* DWP file .debug_{cu,tu}_index section format:
9357 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9358
d2415c6c
DE
9359 DWP Version 1:
9360
80626a55
DE
9361 Both index sections have the same format, and serve to map a 64-bit
9362 signature to a set of section numbers. Each section begins with a header,
9363 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9364 indexes, and a pool of 32-bit section numbers. The index sections will be
9365 aligned at 8-byte boundaries in the file.
9366
d2415c6c
DE
9367 The index section header consists of:
9368
9369 V, 32 bit version number
9370 -, 32 bits unused
9371 N, 32 bit number of compilation units or type units in the index
9372 M, 32 bit number of slots in the hash table
80626a55 9373
d2415c6c 9374 Numbers are recorded using the byte order of the application binary.
80626a55 9375
d2415c6c
DE
9376 The hash table begins at offset 16 in the section, and consists of an array
9377 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9378 order of the application binary). Unused slots in the hash table are 0.
9379 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9380
d2415c6c
DE
9381 The parallel table begins immediately after the hash table
9382 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9383 array of 32-bit indexes (using the byte order of the application binary),
9384 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9385 table contains a 32-bit index into the pool of section numbers. For unused
9386 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9387
73869dc2
DE
9388 The pool of section numbers begins immediately following the hash table
9389 (at offset 16 + 12 * M from the beginning of the section). The pool of
9390 section numbers consists of an array of 32-bit words (using the byte order
9391 of the application binary). Each item in the array is indexed starting
9392 from 0. The hash table entry provides the index of the first section
9393 number in the set. Additional section numbers in the set follow, and the
9394 set is terminated by a 0 entry (section number 0 is not used in ELF).
9395
9396 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9397 section must be the first entry in the set, and the .debug_abbrev.dwo must
9398 be the second entry. Other members of the set may follow in any order.
9399
9400 ---
9401
9402 DWP Version 2:
9403
9404 DWP Version 2 combines all the .debug_info, etc. sections into one,
9405 and the entries in the index tables are now offsets into these sections.
9406 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9407 section.
9408
9409 Index Section Contents:
9410 Header
9411 Hash Table of Signatures dwp_hash_table.hash_table
9412 Parallel Table of Indices dwp_hash_table.unit_table
9413 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9414 Table of Section Sizes dwp_hash_table.v2.sizes
9415
9416 The index section header consists of:
9417
9418 V, 32 bit version number
9419 L, 32 bit number of columns in the table of section offsets
9420 N, 32 bit number of compilation units or type units in the index
9421 M, 32 bit number of slots in the hash table
9422
9423 Numbers are recorded using the byte order of the application binary.
9424
9425 The hash table has the same format as version 1.
9426 The parallel table of indices has the same format as version 1,
9427 except that the entries are origin-1 indices into the table of sections
9428 offsets and the table of section sizes.
9429
9430 The table of offsets begins immediately following the parallel table
9431 (at offset 16 + 12 * M from the beginning of the section). The table is
9432 a two-dimensional array of 32-bit words (using the byte order of the
9433 application binary), with L columns and N+1 rows, in row-major order.
9434 Each row in the array is indexed starting from 0. The first row provides
9435 a key to the remaining rows: each column in this row provides an identifier
9436 for a debug section, and the offsets in the same column of subsequent rows
9437 refer to that section. The section identifiers are:
9438
9439 DW_SECT_INFO 1 .debug_info.dwo
9440 DW_SECT_TYPES 2 .debug_types.dwo
9441 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9442 DW_SECT_LINE 4 .debug_line.dwo
9443 DW_SECT_LOC 5 .debug_loc.dwo
9444 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9445 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9446 DW_SECT_MACRO 8 .debug_macro.dwo
9447
9448 The offsets provided by the CU and TU index sections are the base offsets
9449 for the contributions made by each CU or TU to the corresponding section
9450 in the package file. Each CU and TU header contains an abbrev_offset
9451 field, used to find the abbreviations table for that CU or TU within the
9452 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9453 be interpreted as relative to the base offset given in the index section.
9454 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9455 should be interpreted as relative to the base offset for .debug_line.dwo,
9456 and offsets into other debug sections obtained from DWARF attributes should
9457 also be interpreted as relative to the corresponding base offset.
9458
9459 The table of sizes begins immediately following the table of offsets.
9460 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9461 with L columns and N rows, in row-major order. Each row in the array is
9462 indexed starting from 1 (row 0 is shared by the two tables).
9463
9464 ---
9465
9466 Hash table lookup is handled the same in version 1 and 2:
9467
9468 We assume that N and M will not exceed 2^32 - 1.
9469 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9470
d2415c6c
DE
9471 Given a 64-bit compilation unit signature or a type signature S, an entry
9472 in the hash table is located as follows:
80626a55 9473
d2415c6c
DE
9474 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9475 the low-order k bits all set to 1.
80626a55 9476
d2415c6c 9477 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9478
d2415c6c
DE
9479 3) If the hash table entry at index H matches the signature, use that
9480 entry. If the hash table entry at index H is unused (all zeroes),
9481 terminate the search: the signature is not present in the table.
80626a55 9482
d2415c6c 9483 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9484
d2415c6c 9485 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9486 to stop at an unused slot or find the match. */
80626a55
DE
9487
9488/* Create a hash table to map DWO IDs to their CU/TU entry in
9489 .debug_{info,types}.dwo in DWP_FILE.
9490 Returns NULL if there isn't one.
9491 Note: This function processes DWP files only, not DWO files. */
9492
9493static struct dwp_hash_table *
9494create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9495{
9496 struct objfile *objfile = dwarf2_per_objfile->objfile;
9497 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9498 const gdb_byte *index_ptr, *index_end;
80626a55 9499 struct dwarf2_section_info *index;
73869dc2 9500 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9501 struct dwp_hash_table *htab;
9502
9503 if (is_debug_types)
9504 index = &dwp_file->sections.tu_index;
9505 else
9506 index = &dwp_file->sections.cu_index;
9507
9508 if (dwarf2_section_empty_p (index))
9509 return NULL;
9510 dwarf2_read_section (objfile, index);
9511
9512 index_ptr = index->buffer;
9513 index_end = index_ptr + index->size;
9514
9515 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9516 index_ptr += 4;
9517 if (version == 2)
9518 nr_columns = read_4_bytes (dbfd, index_ptr);
9519 else
9520 nr_columns = 0;
9521 index_ptr += 4;
80626a55
DE
9522 nr_units = read_4_bytes (dbfd, index_ptr);
9523 index_ptr += 4;
9524 nr_slots = read_4_bytes (dbfd, index_ptr);
9525 index_ptr += 4;
9526
73869dc2 9527 if (version != 1 && version != 2)
80626a55 9528 {
21aa081e 9529 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9530 " [in module %s]"),
21aa081e 9531 pulongest (version), dwp_file->name);
80626a55
DE
9532 }
9533 if (nr_slots != (nr_slots & -nr_slots))
9534 {
21aa081e 9535 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9536 " is not power of 2 [in module %s]"),
21aa081e 9537 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9538 }
9539
9540 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9541 htab->version = version;
9542 htab->nr_columns = nr_columns;
80626a55
DE
9543 htab->nr_units = nr_units;
9544 htab->nr_slots = nr_slots;
9545 htab->hash_table = index_ptr;
9546 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9547
9548 /* Exit early if the table is empty. */
9549 if (nr_slots == 0 || nr_units == 0
9550 || (version == 2 && nr_columns == 0))
9551 {
9552 /* All must be zero. */
9553 if (nr_slots != 0 || nr_units != 0
9554 || (version == 2 && nr_columns != 0))
9555 {
9556 complaint (&symfile_complaints,
9557 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9558 " all zero [in modules %s]"),
9559 dwp_file->name);
9560 }
9561 return htab;
9562 }
9563
9564 if (version == 1)
9565 {
9566 htab->section_pool.v1.indices =
9567 htab->unit_table + sizeof (uint32_t) * nr_slots;
9568 /* It's harder to decide whether the section is too small in v1.
9569 V1 is deprecated anyway so we punt. */
9570 }
9571 else
9572 {
9573 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9574 int *ids = htab->section_pool.v2.section_ids;
9575 /* Reverse map for error checking. */
9576 int ids_seen[DW_SECT_MAX + 1];
9577 int i;
9578
9579 if (nr_columns < 2)
9580 {
9581 error (_("Dwarf Error: bad DWP hash table, too few columns"
9582 " in section table [in module %s]"),
9583 dwp_file->name);
9584 }
9585 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9586 {
9587 error (_("Dwarf Error: bad DWP hash table, too many columns"
9588 " in section table [in module %s]"),
9589 dwp_file->name);
9590 }
9591 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9592 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9593 for (i = 0; i < nr_columns; ++i)
9594 {
9595 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9596
9597 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9598 {
9599 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9600 " in section table [in module %s]"),
9601 id, dwp_file->name);
9602 }
9603 if (ids_seen[id] != -1)
9604 {
9605 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9606 " id %d in section table [in module %s]"),
9607 id, dwp_file->name);
9608 }
9609 ids_seen[id] = i;
9610 ids[i] = id;
9611 }
9612 /* Must have exactly one info or types section. */
9613 if (((ids_seen[DW_SECT_INFO] != -1)
9614 + (ids_seen[DW_SECT_TYPES] != -1))
9615 != 1)
9616 {
9617 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9618 " DWO info/types section [in module %s]"),
9619 dwp_file->name);
9620 }
9621 /* Must have an abbrev section. */
9622 if (ids_seen[DW_SECT_ABBREV] == -1)
9623 {
9624 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9625 " section [in module %s]"),
9626 dwp_file->name);
9627 }
9628 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9629 htab->section_pool.v2.sizes =
9630 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9631 * nr_units * nr_columns);
9632 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9633 * nr_units * nr_columns))
9634 > index_end)
9635 {
9636 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9637 " [in module %s]"),
9638 dwp_file->name);
9639 }
9640 }
80626a55
DE
9641
9642 return htab;
9643}
9644
9645/* Update SECTIONS with the data from SECTP.
9646
9647 This function is like the other "locate" section routines that are
9648 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9649 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9650
9651 The result is non-zero for success, or zero if an error was found. */
9652
9653static int
73869dc2
DE
9654locate_v1_virtual_dwo_sections (asection *sectp,
9655 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9656{
9657 const struct dwop_section_names *names = &dwop_section_names;
9658
9659 if (section_is_p (sectp->name, &names->abbrev_dwo))
9660 {
9661 /* There can be only one. */
73869dc2 9662 if (sections->abbrev.s.asection != NULL)
80626a55 9663 return 0;
73869dc2 9664 sections->abbrev.s.asection = sectp;
80626a55
DE
9665 sections->abbrev.size = bfd_get_section_size (sectp);
9666 }
9667 else if (section_is_p (sectp->name, &names->info_dwo)
9668 || section_is_p (sectp->name, &names->types_dwo))
9669 {
9670 /* There can be only one. */
73869dc2 9671 if (sections->info_or_types.s.asection != NULL)
80626a55 9672 return 0;
73869dc2 9673 sections->info_or_types.s.asection = sectp;
80626a55
DE
9674 sections->info_or_types.size = bfd_get_section_size (sectp);
9675 }
9676 else if (section_is_p (sectp->name, &names->line_dwo))
9677 {
9678 /* There can be only one. */
73869dc2 9679 if (sections->line.s.asection != NULL)
80626a55 9680 return 0;
73869dc2 9681 sections->line.s.asection = sectp;
80626a55
DE
9682 sections->line.size = bfd_get_section_size (sectp);
9683 }
9684 else if (section_is_p (sectp->name, &names->loc_dwo))
9685 {
9686 /* There can be only one. */
73869dc2 9687 if (sections->loc.s.asection != NULL)
80626a55 9688 return 0;
73869dc2 9689 sections->loc.s.asection = sectp;
80626a55
DE
9690 sections->loc.size = bfd_get_section_size (sectp);
9691 }
9692 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9693 {
9694 /* There can be only one. */
73869dc2 9695 if (sections->macinfo.s.asection != NULL)
80626a55 9696 return 0;
73869dc2 9697 sections->macinfo.s.asection = sectp;
80626a55
DE
9698 sections->macinfo.size = bfd_get_section_size (sectp);
9699 }
9700 else if (section_is_p (sectp->name, &names->macro_dwo))
9701 {
9702 /* There can be only one. */
73869dc2 9703 if (sections->macro.s.asection != NULL)
80626a55 9704 return 0;
73869dc2 9705 sections->macro.s.asection = sectp;
80626a55
DE
9706 sections->macro.size = bfd_get_section_size (sectp);
9707 }
9708 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9709 {
9710 /* There can be only one. */
73869dc2 9711 if (sections->str_offsets.s.asection != NULL)
80626a55 9712 return 0;
73869dc2 9713 sections->str_offsets.s.asection = sectp;
80626a55
DE
9714 sections->str_offsets.size = bfd_get_section_size (sectp);
9715 }
9716 else
9717 {
9718 /* No other kind of section is valid. */
9719 return 0;
9720 }
9721
9722 return 1;
9723}
9724
73869dc2
DE
9725/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9726 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9727 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9728 This is for DWP version 1 files. */
80626a55
DE
9729
9730static struct dwo_unit *
73869dc2
DE
9731create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9732 uint32_t unit_index,
9733 const char *comp_dir,
9734 ULONGEST signature, int is_debug_types)
80626a55
DE
9735{
9736 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
9737 const struct dwp_hash_table *dwp_htab =
9738 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
9739 bfd *dbfd = dwp_file->dbfd;
9740 const char *kind = is_debug_types ? "TU" : "CU";
9741 struct dwo_file *dwo_file;
9742 struct dwo_unit *dwo_unit;
73869dc2 9743 struct virtual_v1_dwo_sections sections;
80626a55
DE
9744 void **dwo_file_slot;
9745 char *virtual_dwo_name;
9746 struct dwarf2_section_info *cutu;
9747 struct cleanup *cleanups;
9748 int i;
9749
73869dc2
DE
9750 gdb_assert (dwp_file->version == 1);
9751
80626a55
DE
9752 if (dwarf2_read_debug)
9753 {
73869dc2 9754 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 9755 kind,
73869dc2 9756 pulongest (unit_index), hex_string (signature),
80626a55
DE
9757 dwp_file->name);
9758 }
9759
19ac8c2e 9760 /* Fetch the sections of this DWO unit.
80626a55
DE
9761 Put a limit on the number of sections we look for so that bad data
9762 doesn't cause us to loop forever. */
9763
73869dc2 9764#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
9765 (1 /* .debug_info or .debug_types */ \
9766 + 1 /* .debug_abbrev */ \
9767 + 1 /* .debug_line */ \
9768 + 1 /* .debug_loc */ \
9769 + 1 /* .debug_str_offsets */ \
19ac8c2e 9770 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
9771 + 1 /* trailing zero */)
9772
9773 memset (&sections, 0, sizeof (sections));
9774 cleanups = make_cleanup (null_cleanup, 0);
9775
73869dc2 9776 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
9777 {
9778 asection *sectp;
9779 uint32_t section_nr =
9780 read_4_bytes (dbfd,
73869dc2
DE
9781 dwp_htab->section_pool.v1.indices
9782 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
9783
9784 if (section_nr == 0)
9785 break;
9786 if (section_nr >= dwp_file->num_sections)
9787 {
9788 error (_("Dwarf Error: bad DWP hash table, section number too large"
9789 " [in module %s]"),
9790 dwp_file->name);
9791 }
9792
9793 sectp = dwp_file->elf_sections[section_nr];
73869dc2 9794 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
9795 {
9796 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9797 " [in module %s]"),
9798 dwp_file->name);
9799 }
9800 }
9801
9802 if (i < 2
a32a8923
DE
9803 || dwarf2_section_empty_p (&sections.info_or_types)
9804 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
9805 {
9806 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9807 " [in module %s]"),
9808 dwp_file->name);
9809 }
73869dc2 9810 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
9811 {
9812 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9813 " [in module %s]"),
9814 dwp_file->name);
9815 }
9816
9817 /* It's easier for the rest of the code if we fake a struct dwo_file and
9818 have dwo_unit "live" in that. At least for now.
9819
9820 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 9821 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
9822 file, we can combine them back into a virtual DWO file to save space
9823 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
9824 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9825
2792b94d
PM
9826 virtual_dwo_name =
9827 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
9828 get_section_id (&sections.abbrev),
9829 get_section_id (&sections.line),
9830 get_section_id (&sections.loc),
9831 get_section_id (&sections.str_offsets));
80626a55
DE
9832 make_cleanup (xfree, virtual_dwo_name);
9833 /* Can we use an existing virtual DWO file? */
0ac5b59e 9834 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
9835 /* Create one if necessary. */
9836 if (*dwo_file_slot == NULL)
9837 {
9838 if (dwarf2_read_debug)
9839 {
9840 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9841 virtual_dwo_name);
9842 }
9843 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
9844 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9845 virtual_dwo_name,
9846 strlen (virtual_dwo_name));
9847 dwo_file->comp_dir = comp_dir;
80626a55
DE
9848 dwo_file->sections.abbrev = sections.abbrev;
9849 dwo_file->sections.line = sections.line;
9850 dwo_file->sections.loc = sections.loc;
9851 dwo_file->sections.macinfo = sections.macinfo;
9852 dwo_file->sections.macro = sections.macro;
9853 dwo_file->sections.str_offsets = sections.str_offsets;
9854 /* The "str" section is global to the entire DWP file. */
9855 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 9856 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
9857 there's no need to record it in dwo_file.
9858 Also, we can't simply record type sections in dwo_file because
9859 we record a pointer into the vector in dwo_unit. As we collect more
9860 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
9861 for it, invalidating all copies of pointers into the previous
9862 contents. */
80626a55
DE
9863 *dwo_file_slot = dwo_file;
9864 }
9865 else
9866 {
9867 if (dwarf2_read_debug)
9868 {
9869 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9870 virtual_dwo_name);
9871 }
9872 dwo_file = *dwo_file_slot;
9873 }
9874 do_cleanups (cleanups);
9875
9876 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9877 dwo_unit->dwo_file = dwo_file;
9878 dwo_unit->signature = signature;
8a0459fd
DE
9879 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9880 sizeof (struct dwarf2_section_info));
9881 *dwo_unit->section = sections.info_or_types;
57d63ce2 9882 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
9883
9884 return dwo_unit;
9885}
9886
73869dc2
DE
9887/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9888 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
9889 piece within that section used by a TU/CU, return a virtual section
9890 of just that piece. */
9891
9892static struct dwarf2_section_info
9893create_dwp_v2_section (struct dwarf2_section_info *section,
9894 bfd_size_type offset, bfd_size_type size)
9895{
9896 struct dwarf2_section_info result;
9897 asection *sectp;
9898
9899 gdb_assert (section != NULL);
9900 gdb_assert (!section->is_virtual);
9901
9902 memset (&result, 0, sizeof (result));
9903 result.s.containing_section = section;
9904 result.is_virtual = 1;
9905
9906 if (size == 0)
9907 return result;
9908
9909 sectp = get_section_bfd_section (section);
9910
9911 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
9912 bounds of the real section. This is a pretty-rare event, so just
9913 flag an error (easier) instead of a warning and trying to cope. */
9914 if (sectp == NULL
9915 || offset + size > bfd_get_section_size (sectp))
9916 {
9917 bfd *abfd = sectp->owner;
9918
9919 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
9920 " in section %s [in module %s]"),
9921 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
9922 objfile_name (dwarf2_per_objfile->objfile));
9923 }
9924
9925 result.virtual_offset = offset;
9926 result.size = size;
9927 return result;
9928}
9929
9930/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9931 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9932 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9933 This is for DWP version 2 files. */
9934
9935static struct dwo_unit *
9936create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
9937 uint32_t unit_index,
9938 const char *comp_dir,
9939 ULONGEST signature, int is_debug_types)
9940{
9941 struct objfile *objfile = dwarf2_per_objfile->objfile;
9942 const struct dwp_hash_table *dwp_htab =
9943 is_debug_types ? dwp_file->tus : dwp_file->cus;
9944 bfd *dbfd = dwp_file->dbfd;
9945 const char *kind = is_debug_types ? "TU" : "CU";
9946 struct dwo_file *dwo_file;
9947 struct dwo_unit *dwo_unit;
9948 struct virtual_v2_dwo_sections sections;
9949 void **dwo_file_slot;
9950 char *virtual_dwo_name;
9951 struct dwarf2_section_info *cutu;
9952 struct cleanup *cleanups;
9953 int i;
9954
9955 gdb_assert (dwp_file->version == 2);
9956
9957 if (dwarf2_read_debug)
9958 {
9959 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
9960 kind,
9961 pulongest (unit_index), hex_string (signature),
9962 dwp_file->name);
9963 }
9964
9965 /* Fetch the section offsets of this DWO unit. */
9966
9967 memset (&sections, 0, sizeof (sections));
9968 cleanups = make_cleanup (null_cleanup, 0);
9969
9970 for (i = 0; i < dwp_htab->nr_columns; ++i)
9971 {
9972 uint32_t offset = read_4_bytes (dbfd,
9973 dwp_htab->section_pool.v2.offsets
9974 + (((unit_index - 1) * dwp_htab->nr_columns
9975 + i)
9976 * sizeof (uint32_t)));
9977 uint32_t size = read_4_bytes (dbfd,
9978 dwp_htab->section_pool.v2.sizes
9979 + (((unit_index - 1) * dwp_htab->nr_columns
9980 + i)
9981 * sizeof (uint32_t)));
9982
9983 switch (dwp_htab->section_pool.v2.section_ids[i])
9984 {
9985 case DW_SECT_INFO:
9986 case DW_SECT_TYPES:
9987 sections.info_or_types_offset = offset;
9988 sections.info_or_types_size = size;
9989 break;
9990 case DW_SECT_ABBREV:
9991 sections.abbrev_offset = offset;
9992 sections.abbrev_size = size;
9993 break;
9994 case DW_SECT_LINE:
9995 sections.line_offset = offset;
9996 sections.line_size = size;
9997 break;
9998 case DW_SECT_LOC:
9999 sections.loc_offset = offset;
10000 sections.loc_size = size;
10001 break;
10002 case DW_SECT_STR_OFFSETS:
10003 sections.str_offsets_offset = offset;
10004 sections.str_offsets_size = size;
10005 break;
10006 case DW_SECT_MACINFO:
10007 sections.macinfo_offset = offset;
10008 sections.macinfo_size = size;
10009 break;
10010 case DW_SECT_MACRO:
10011 sections.macro_offset = offset;
10012 sections.macro_size = size;
10013 break;
10014 }
10015 }
10016
10017 /* It's easier for the rest of the code if we fake a struct dwo_file and
10018 have dwo_unit "live" in that. At least for now.
10019
10020 The DWP file can be made up of a random collection of CUs and TUs.
10021 However, for each CU + set of TUs that came from the same original DWO
10022 file, we can combine them back into a virtual DWO file to save space
10023 (fewer struct dwo_file objects to allocate). Remember that for really
10024 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10025
10026 virtual_dwo_name =
10027 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10028 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10029 (long) (sections.line_size ? sections.line_offset : 0),
10030 (long) (sections.loc_size ? sections.loc_offset : 0),
10031 (long) (sections.str_offsets_size
10032 ? sections.str_offsets_offset : 0));
10033 make_cleanup (xfree, virtual_dwo_name);
10034 /* Can we use an existing virtual DWO file? */
10035 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10036 /* Create one if necessary. */
10037 if (*dwo_file_slot == NULL)
10038 {
10039 if (dwarf2_read_debug)
10040 {
10041 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10042 virtual_dwo_name);
10043 }
10044 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10045 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10046 virtual_dwo_name,
10047 strlen (virtual_dwo_name));
10048 dwo_file->comp_dir = comp_dir;
10049 dwo_file->sections.abbrev =
10050 create_dwp_v2_section (&dwp_file->sections.abbrev,
10051 sections.abbrev_offset, sections.abbrev_size);
10052 dwo_file->sections.line =
10053 create_dwp_v2_section (&dwp_file->sections.line,
10054 sections.line_offset, sections.line_size);
10055 dwo_file->sections.loc =
10056 create_dwp_v2_section (&dwp_file->sections.loc,
10057 sections.loc_offset, sections.loc_size);
10058 dwo_file->sections.macinfo =
10059 create_dwp_v2_section (&dwp_file->sections.macinfo,
10060 sections.macinfo_offset, sections.macinfo_size);
10061 dwo_file->sections.macro =
10062 create_dwp_v2_section (&dwp_file->sections.macro,
10063 sections.macro_offset, sections.macro_size);
10064 dwo_file->sections.str_offsets =
10065 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10066 sections.str_offsets_offset,
10067 sections.str_offsets_size);
10068 /* The "str" section is global to the entire DWP file. */
10069 dwo_file->sections.str = dwp_file->sections.str;
10070 /* The info or types section is assigned below to dwo_unit,
10071 there's no need to record it in dwo_file.
10072 Also, we can't simply record type sections in dwo_file because
10073 we record a pointer into the vector in dwo_unit. As we collect more
10074 types we'll grow the vector and eventually have to reallocate space
10075 for it, invalidating all copies of pointers into the previous
10076 contents. */
10077 *dwo_file_slot = dwo_file;
10078 }
10079 else
10080 {
10081 if (dwarf2_read_debug)
10082 {
10083 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10084 virtual_dwo_name);
10085 }
10086 dwo_file = *dwo_file_slot;
10087 }
10088 do_cleanups (cleanups);
10089
10090 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10091 dwo_unit->dwo_file = dwo_file;
10092 dwo_unit->signature = signature;
10093 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10094 sizeof (struct dwarf2_section_info));
10095 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10096 ? &dwp_file->sections.types
10097 : &dwp_file->sections.info,
10098 sections.info_or_types_offset,
10099 sections.info_or_types_size);
10100 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10101
10102 return dwo_unit;
10103}
10104
57d63ce2
DE
10105/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10106 Returns NULL if the signature isn't found. */
80626a55
DE
10107
10108static struct dwo_unit *
57d63ce2
DE
10109lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10110 ULONGEST signature, int is_debug_types)
80626a55 10111{
57d63ce2
DE
10112 const struct dwp_hash_table *dwp_htab =
10113 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10114 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10115 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10116 uint32_t hash = signature & mask;
10117 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10118 unsigned int i;
10119 void **slot;
10120 struct dwo_unit find_dwo_cu, *dwo_cu;
10121
10122 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10123 find_dwo_cu.signature = signature;
19ac8c2e
DE
10124 slot = htab_find_slot (is_debug_types
10125 ? dwp_file->loaded_tus
10126 : dwp_file->loaded_cus,
10127 &find_dwo_cu, INSERT);
80626a55
DE
10128
10129 if (*slot != NULL)
10130 return *slot;
10131
10132 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10133 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10134 {
10135 ULONGEST signature_in_table;
10136
10137 signature_in_table =
57d63ce2 10138 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10139 if (signature_in_table == signature)
10140 {
57d63ce2
DE
10141 uint32_t unit_index =
10142 read_4_bytes (dbfd,
10143 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10144
73869dc2
DE
10145 if (dwp_file->version == 1)
10146 {
10147 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10148 comp_dir, signature,
10149 is_debug_types);
10150 }
10151 else
10152 {
10153 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10154 comp_dir, signature,
10155 is_debug_types);
10156 }
80626a55
DE
10157 return *slot;
10158 }
10159 if (signature_in_table == 0)
10160 return NULL;
10161 hash = (hash + hash2) & mask;
10162 }
10163
10164 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10165 " [in module %s]"),
10166 dwp_file->name);
10167}
10168
ab5088bf 10169/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10170 Open the file specified by FILE_NAME and hand it off to BFD for
10171 preliminary analysis. Return a newly initialized bfd *, which
10172 includes a canonicalized copy of FILE_NAME.
80626a55 10173 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10174 SEARCH_CWD is true if the current directory is to be searched.
10175 It will be searched before debug-file-directory.
13aaf454
DE
10176 If successful, the file is added to the bfd include table of the
10177 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10178 If unable to find/open the file, return NULL.
3019eac3
DE
10179 NOTE: This function is derived from symfile_bfd_open. */
10180
10181static bfd *
6ac97d4c 10182try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
10183{
10184 bfd *sym_bfd;
80626a55 10185 int desc, flags;
3019eac3 10186 char *absolute_name;
9c02c129
DE
10187 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10188 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10189 to debug_file_directory. */
10190 char *search_path;
10191 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10192
6ac97d4c
DE
10193 if (search_cwd)
10194 {
10195 if (*debug_file_directory != '\0')
10196 search_path = concat (".", dirname_separator_string,
10197 debug_file_directory, NULL);
10198 else
10199 search_path = xstrdup (".");
10200 }
9c02c129 10201 else
6ac97d4c 10202 search_path = xstrdup (debug_file_directory);
3019eac3 10203
492c0ab7 10204 flags = OPF_RETURN_REALPATH;
80626a55
DE
10205 if (is_dwp)
10206 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10207 desc = openp (search_path, flags, file_name,
3019eac3 10208 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10209 xfree (search_path);
3019eac3
DE
10210 if (desc < 0)
10211 return NULL;
10212
bb397797 10213 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 10214 xfree (absolute_name);
9c02c129
DE
10215 if (sym_bfd == NULL)
10216 return NULL;
3019eac3
DE
10217 bfd_set_cacheable (sym_bfd, 1);
10218
10219 if (!bfd_check_format (sym_bfd, bfd_object))
10220 {
cbb099e8 10221 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
10222 return NULL;
10223 }
10224
13aaf454
DE
10225 /* Success. Record the bfd as having been included by the objfile's bfd.
10226 This is important because things like demangled_names_hash lives in the
10227 objfile's per_bfd space and may have references to things like symbol
10228 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10229 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10230
3019eac3
DE
10231 return sym_bfd;
10232}
10233
ab5088bf 10234/* Try to open DWO file FILE_NAME.
3019eac3
DE
10235 COMP_DIR is the DW_AT_comp_dir attribute.
10236 The result is the bfd handle of the file.
10237 If there is a problem finding or opening the file, return NULL.
10238 Upon success, the canonicalized path of the file is stored in the bfd,
10239 same as symfile_bfd_open. */
10240
10241static bfd *
ab5088bf 10242open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
10243{
10244 bfd *abfd;
3019eac3 10245
80626a55 10246 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10247 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10248
10249 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10250
10251 if (comp_dir != NULL)
10252 {
80626a55 10253 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
3019eac3
DE
10254
10255 /* NOTE: If comp_dir is a relative path, this will also try the
10256 search path, which seems useful. */
6ac97d4c 10257 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10258 xfree (path_to_try);
10259 if (abfd != NULL)
10260 return abfd;
10261 }
10262
10263 /* That didn't work, try debug-file-directory, which, despite its name,
10264 is a list of paths. */
10265
10266 if (*debug_file_directory == '\0')
10267 return NULL;
10268
6ac97d4c 10269 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10270}
10271
80626a55
DE
10272/* This function is mapped across the sections and remembers the offset and
10273 size of each of the DWO debugging sections we are interested in. */
10274
10275static void
10276dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10277{
10278 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10279 const struct dwop_section_names *names = &dwop_section_names;
10280
10281 if (section_is_p (sectp->name, &names->abbrev_dwo))
10282 {
73869dc2 10283 dwo_sections->abbrev.s.asection = sectp;
80626a55
DE
10284 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10285 }
10286 else if (section_is_p (sectp->name, &names->info_dwo))
10287 {
73869dc2 10288 dwo_sections->info.s.asection = sectp;
80626a55
DE
10289 dwo_sections->info.size = bfd_get_section_size (sectp);
10290 }
10291 else if (section_is_p (sectp->name, &names->line_dwo))
10292 {
73869dc2 10293 dwo_sections->line.s.asection = sectp;
80626a55
DE
10294 dwo_sections->line.size = bfd_get_section_size (sectp);
10295 }
10296 else if (section_is_p (sectp->name, &names->loc_dwo))
10297 {
73869dc2 10298 dwo_sections->loc.s.asection = sectp;
80626a55
DE
10299 dwo_sections->loc.size = bfd_get_section_size (sectp);
10300 }
10301 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10302 {
73869dc2 10303 dwo_sections->macinfo.s.asection = sectp;
80626a55
DE
10304 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10305 }
10306 else if (section_is_p (sectp->name, &names->macro_dwo))
10307 {
73869dc2 10308 dwo_sections->macro.s.asection = sectp;
80626a55
DE
10309 dwo_sections->macro.size = bfd_get_section_size (sectp);
10310 }
10311 else if (section_is_p (sectp->name, &names->str_dwo))
10312 {
73869dc2 10313 dwo_sections->str.s.asection = sectp;
80626a55
DE
10314 dwo_sections->str.size = bfd_get_section_size (sectp);
10315 }
10316 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10317 {
73869dc2 10318 dwo_sections->str_offsets.s.asection = sectp;
80626a55
DE
10319 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10320 }
10321 else if (section_is_p (sectp->name, &names->types_dwo))
10322 {
10323 struct dwarf2_section_info type_section;
10324
10325 memset (&type_section, 0, sizeof (type_section));
73869dc2 10326 type_section.s.asection = sectp;
80626a55
DE
10327 type_section.size = bfd_get_section_size (sectp);
10328 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10329 &type_section);
10330 }
10331}
10332
ab5088bf 10333/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10334 by PER_CU. This is for the non-DWP case.
80626a55 10335 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10336
10337static struct dwo_file *
0ac5b59e
DE
10338open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10339 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10340{
10341 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10342 struct dwo_file *dwo_file;
10343 bfd *dbfd;
3019eac3
DE
10344 struct cleanup *cleanups;
10345
ab5088bf 10346 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
10347 if (dbfd == NULL)
10348 {
10349 if (dwarf2_read_debug)
10350 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10351 return NULL;
10352 }
10353 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10354 dwo_file->dwo_name = dwo_name;
10355 dwo_file->comp_dir = comp_dir;
80626a55 10356 dwo_file->dbfd = dbfd;
3019eac3
DE
10357
10358 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10359
80626a55 10360 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 10361
19c3d4c9 10362 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
10363
10364 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10365 dwo_file->sections.types);
10366
10367 discard_cleanups (cleanups);
10368
80626a55
DE
10369 if (dwarf2_read_debug)
10370 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10371
3019eac3
DE
10372 return dwo_file;
10373}
10374
80626a55 10375/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10376 size of each of the DWP debugging sections common to version 1 and 2 that
10377 we are interested in. */
3019eac3 10378
80626a55 10379static void
73869dc2
DE
10380dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10381 void *dwp_file_ptr)
3019eac3 10382{
80626a55
DE
10383 struct dwp_file *dwp_file = dwp_file_ptr;
10384 const struct dwop_section_names *names = &dwop_section_names;
10385 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10386
80626a55 10387 /* Record the ELF section number for later lookup: this is what the
73869dc2 10388 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10389 gdb_assert (elf_section_nr < dwp_file->num_sections);
10390 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10391
80626a55
DE
10392 /* Look for specific sections that we need. */
10393 if (section_is_p (sectp->name, &names->str_dwo))
10394 {
73869dc2 10395 dwp_file->sections.str.s.asection = sectp;
80626a55
DE
10396 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10397 }
10398 else if (section_is_p (sectp->name, &names->cu_index))
10399 {
73869dc2 10400 dwp_file->sections.cu_index.s.asection = sectp;
80626a55
DE
10401 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10402 }
10403 else if (section_is_p (sectp->name, &names->tu_index))
10404 {
73869dc2 10405 dwp_file->sections.tu_index.s.asection = sectp;
80626a55
DE
10406 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10407 }
10408}
3019eac3 10409
73869dc2
DE
10410/* This function is mapped across the sections and remembers the offset and
10411 size of each of the DWP version 2 debugging sections that we are interested
10412 in. This is split into a separate function because we don't know if we
10413 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10414
10415static void
10416dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10417{
10418 struct dwp_file *dwp_file = dwp_file_ptr;
10419 const struct dwop_section_names *names = &dwop_section_names;
10420 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10421
10422 /* Record the ELF section number for later lookup: this is what the
10423 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10424 gdb_assert (elf_section_nr < dwp_file->num_sections);
10425 dwp_file->elf_sections[elf_section_nr] = sectp;
10426
10427 /* Look for specific sections that we need. */
10428 if (section_is_p (sectp->name, &names->abbrev_dwo))
10429 {
10430 dwp_file->sections.abbrev.s.asection = sectp;
10431 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10432 }
10433 else if (section_is_p (sectp->name, &names->info_dwo))
10434 {
10435 dwp_file->sections.info.s.asection = sectp;
10436 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10437 }
10438 else if (section_is_p (sectp->name, &names->line_dwo))
10439 {
10440 dwp_file->sections.line.s.asection = sectp;
10441 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10442 }
10443 else if (section_is_p (sectp->name, &names->loc_dwo))
10444 {
10445 dwp_file->sections.loc.s.asection = sectp;
10446 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10447 }
10448 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10449 {
10450 dwp_file->sections.macinfo.s.asection = sectp;
10451 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10452 }
10453 else if (section_is_p (sectp->name, &names->macro_dwo))
10454 {
10455 dwp_file->sections.macro.s.asection = sectp;
10456 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10457 }
10458 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10459 {
10460 dwp_file->sections.str_offsets.s.asection = sectp;
10461 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10462 }
10463 else if (section_is_p (sectp->name, &names->types_dwo))
10464 {
10465 dwp_file->sections.types.s.asection = sectp;
10466 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10467 }
10468}
10469
80626a55 10470/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10471
80626a55
DE
10472static hashval_t
10473hash_dwp_loaded_cutus (const void *item)
10474{
10475 const struct dwo_unit *dwo_unit = item;
3019eac3 10476
80626a55
DE
10477 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10478 return dwo_unit->signature;
3019eac3
DE
10479}
10480
80626a55 10481/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10482
80626a55
DE
10483static int
10484eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10485{
80626a55
DE
10486 const struct dwo_unit *dua = a;
10487 const struct dwo_unit *dub = b;
3019eac3 10488
80626a55
DE
10489 return dua->signature == dub->signature;
10490}
3019eac3 10491
80626a55 10492/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10493
80626a55
DE
10494static htab_t
10495allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10496{
10497 return htab_create_alloc_ex (3,
10498 hash_dwp_loaded_cutus,
10499 eq_dwp_loaded_cutus,
10500 NULL,
10501 &objfile->objfile_obstack,
10502 hashtab_obstack_allocate,
10503 dummy_obstack_deallocate);
10504}
3019eac3 10505
ab5088bf
DE
10506/* Try to open DWP file FILE_NAME.
10507 The result is the bfd handle of the file.
10508 If there is a problem finding or opening the file, return NULL.
10509 Upon success, the canonicalized path of the file is stored in the bfd,
10510 same as symfile_bfd_open. */
10511
10512static bfd *
10513open_dwp_file (const char *file_name)
10514{
6ac97d4c
DE
10515 bfd *abfd;
10516
10517 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10518 if (abfd != NULL)
10519 return abfd;
10520
10521 /* Work around upstream bug 15652.
10522 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10523 [Whether that's a "bug" is debatable, but it is getting in our way.]
10524 We have no real idea where the dwp file is, because gdb's realpath-ing
10525 of the executable's path may have discarded the needed info.
10526 [IWBN if the dwp file name was recorded in the executable, akin to
10527 .gnu_debuglink, but that doesn't exist yet.]
10528 Strip the directory from FILE_NAME and search again. */
10529 if (*debug_file_directory != '\0')
10530 {
10531 /* Don't implicitly search the current directory here.
10532 If the user wants to search "." to handle this case,
10533 it must be added to debug-file-directory. */
10534 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10535 0 /*search_cwd*/);
10536 }
10537
10538 return NULL;
ab5088bf
DE
10539}
10540
80626a55
DE
10541/* Initialize the use of the DWP file for the current objfile.
10542 By convention the name of the DWP file is ${objfile}.dwp.
10543 The result is NULL if it can't be found. */
a766d390 10544
80626a55 10545static struct dwp_file *
ab5088bf 10546open_and_init_dwp_file (void)
80626a55
DE
10547{
10548 struct objfile *objfile = dwarf2_per_objfile->objfile;
10549 struct dwp_file *dwp_file;
10550 char *dwp_name;
10551 bfd *dbfd;
10552 struct cleanup *cleanups;
10553
82bf32bc
JK
10554 /* Try to find first .dwp for the binary file before any symbolic links
10555 resolving. */
10556 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
80626a55
DE
10557 cleanups = make_cleanup (xfree, dwp_name);
10558
ab5088bf 10559 dbfd = open_dwp_file (dwp_name);
82bf32bc
JK
10560 if (dbfd == NULL
10561 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10562 {
10563 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10564 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10565 make_cleanup (xfree, dwp_name);
10566 dbfd = open_dwp_file (dwp_name);
10567 }
10568
80626a55
DE
10569 if (dbfd == NULL)
10570 {
10571 if (dwarf2_read_debug)
10572 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10573 do_cleanups (cleanups);
10574 return NULL;
3019eac3 10575 }
80626a55 10576 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 10577 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
10578 dwp_file->dbfd = dbfd;
10579 do_cleanups (cleanups);
c906108c 10580
80626a55
DE
10581 /* +1: section 0 is unused */
10582 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10583 dwp_file->elf_sections =
10584 OBSTACK_CALLOC (&objfile->objfile_obstack,
10585 dwp_file->num_sections, asection *);
10586
73869dc2 10587 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
80626a55
DE
10588
10589 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10590
10591 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10592
73869dc2
DE
10593 /* The DWP file version is stored in the hash table. Oh well. */
10594 if (dwp_file->cus->version != dwp_file->tus->version)
10595 {
10596 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 10597 pretty bizarre. We use pulongest here because that's the established
4d65956b 10598 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
10599 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10600 " TU version %s [in DWP file %s]"),
10601 pulongest (dwp_file->cus->version),
10602 pulongest (dwp_file->tus->version), dwp_name);
73869dc2
DE
10603 }
10604 dwp_file->version = dwp_file->cus->version;
10605
10606 if (dwp_file->version == 2)
10607 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10608
19ac8c2e
DE
10609 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10610 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10611
80626a55
DE
10612 if (dwarf2_read_debug)
10613 {
10614 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10615 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10616 " %s CUs, %s TUs\n",
10617 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10618 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10619 }
10620
10621 return dwp_file;
3019eac3 10622}
c906108c 10623
ab5088bf
DE
10624/* Wrapper around open_and_init_dwp_file, only open it once. */
10625
10626static struct dwp_file *
10627get_dwp_file (void)
10628{
10629 if (! dwarf2_per_objfile->dwp_checked)
10630 {
10631 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10632 dwarf2_per_objfile->dwp_checked = 1;
10633 }
10634 return dwarf2_per_objfile->dwp_file;
10635}
10636
80626a55
DE
10637/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10638 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10639 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10640 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10641 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10642
10643 This is called, for example, when wanting to read a variable with a
10644 complex location. Therefore we don't want to do file i/o for every call.
10645 Therefore we don't want to look for a DWO file on every call.
10646 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10647 then we check if we've already seen DWO_NAME, and only THEN do we check
10648 for a DWO file.
10649
1c658ad5 10650 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 10651 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 10652
3019eac3 10653static struct dwo_unit *
80626a55
DE
10654lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10655 const char *dwo_name, const char *comp_dir,
10656 ULONGEST signature, int is_debug_types)
3019eac3
DE
10657{
10658 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10659 const char *kind = is_debug_types ? "TU" : "CU";
10660 void **dwo_file_slot;
3019eac3 10661 struct dwo_file *dwo_file;
80626a55 10662 struct dwp_file *dwp_file;
cb1df416 10663
6a506a2d
DE
10664 /* First see if there's a DWP file.
10665 If we have a DWP file but didn't find the DWO inside it, don't
10666 look for the original DWO file. It makes gdb behave differently
10667 depending on whether one is debugging in the build tree. */
cf2c3c16 10668
ab5088bf 10669 dwp_file = get_dwp_file ();
80626a55 10670 if (dwp_file != NULL)
cf2c3c16 10671 {
80626a55
DE
10672 const struct dwp_hash_table *dwp_htab =
10673 is_debug_types ? dwp_file->tus : dwp_file->cus;
10674
10675 if (dwp_htab != NULL)
10676 {
10677 struct dwo_unit *dwo_cutu =
57d63ce2
DE
10678 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10679 signature, is_debug_types);
80626a55
DE
10680
10681 if (dwo_cutu != NULL)
10682 {
10683 if (dwarf2_read_debug)
10684 {
10685 fprintf_unfiltered (gdb_stdlog,
10686 "Virtual DWO %s %s found: @%s\n",
10687 kind, hex_string (signature),
10688 host_address_to_string (dwo_cutu));
10689 }
10690 return dwo_cutu;
10691 }
10692 }
10693 }
6a506a2d 10694 else
80626a55 10695 {
6a506a2d 10696 /* No DWP file, look for the DWO file. */
80626a55 10697
6a506a2d
DE
10698 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10699 if (*dwo_file_slot == NULL)
80626a55 10700 {
6a506a2d
DE
10701 /* Read in the file and build a table of the CUs/TUs it contains. */
10702 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 10703 }
6a506a2d
DE
10704 /* NOTE: This will be NULL if unable to open the file. */
10705 dwo_file = *dwo_file_slot;
3019eac3 10706
6a506a2d 10707 if (dwo_file != NULL)
19c3d4c9 10708 {
6a506a2d
DE
10709 struct dwo_unit *dwo_cutu = NULL;
10710
10711 if (is_debug_types && dwo_file->tus)
10712 {
10713 struct dwo_unit find_dwo_cutu;
10714
10715 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10716 find_dwo_cutu.signature = signature;
10717 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10718 }
10719 else if (!is_debug_types && dwo_file->cu)
80626a55 10720 {
6a506a2d
DE
10721 if (signature == dwo_file->cu->signature)
10722 dwo_cutu = dwo_file->cu;
10723 }
10724
10725 if (dwo_cutu != NULL)
10726 {
10727 if (dwarf2_read_debug)
10728 {
10729 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10730 kind, dwo_name, hex_string (signature),
10731 host_address_to_string (dwo_cutu));
10732 }
10733 return dwo_cutu;
80626a55
DE
10734 }
10735 }
2e276125 10736 }
9cdd5dbd 10737
80626a55
DE
10738 /* We didn't find it. This could mean a dwo_id mismatch, or
10739 someone deleted the DWO/DWP file, or the search path isn't set up
10740 correctly to find the file. */
10741
10742 if (dwarf2_read_debug)
10743 {
10744 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10745 kind, dwo_name, hex_string (signature));
10746 }
3019eac3 10747
6656a72d
DE
10748 /* This is a warning and not a complaint because it can be caused by
10749 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
10750 {
10751 /* Print the name of the DWP file if we looked there, helps the user
10752 better diagnose the problem. */
10753 char *dwp_text = NULL;
10754 struct cleanup *cleanups;
10755
10756 if (dwp_file != NULL)
10757 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10758 cleanups = make_cleanup (xfree, dwp_text);
10759
10760 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10761 " [in module %s]"),
10762 kind, dwo_name, hex_string (signature),
10763 dwp_text != NULL ? dwp_text : "",
10764 this_unit->is_debug_types ? "TU" : "CU",
10765 this_unit->offset.sect_off, objfile_name (objfile));
10766
10767 do_cleanups (cleanups);
10768 }
3019eac3 10769 return NULL;
5fb290d7
DJ
10770}
10771
80626a55
DE
10772/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10773 See lookup_dwo_cutu_unit for details. */
10774
10775static struct dwo_unit *
10776lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10777 const char *dwo_name, const char *comp_dir,
10778 ULONGEST signature)
10779{
10780 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10781}
10782
10783/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10784 See lookup_dwo_cutu_unit for details. */
10785
10786static struct dwo_unit *
10787lookup_dwo_type_unit (struct signatured_type *this_tu,
10788 const char *dwo_name, const char *comp_dir)
10789{
10790 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10791}
10792
89e63ee4
DE
10793/* Traversal function for queue_and_load_all_dwo_tus. */
10794
10795static int
10796queue_and_load_dwo_tu (void **slot, void *info)
10797{
10798 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10799 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10800 ULONGEST signature = dwo_unit->signature;
10801 struct signatured_type *sig_type =
10802 lookup_dwo_signatured_type (per_cu->cu, signature);
10803
10804 if (sig_type != NULL)
10805 {
10806 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10807
10808 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10809 a real dependency of PER_CU on SIG_TYPE. That is detected later
10810 while processing PER_CU. */
10811 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10812 load_full_type_unit (sig_cu);
10813 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10814 }
10815
10816 return 1;
10817}
10818
10819/* Queue all TUs contained in the DWO of PER_CU to be read in.
10820 The DWO may have the only definition of the type, though it may not be
10821 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10822 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10823
10824static void
10825queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10826{
10827 struct dwo_unit *dwo_unit;
10828 struct dwo_file *dwo_file;
10829
10830 gdb_assert (!per_cu->is_debug_types);
10831 gdb_assert (get_dwp_file () == NULL);
10832 gdb_assert (per_cu->cu != NULL);
10833
10834 dwo_unit = per_cu->cu->dwo_unit;
10835 gdb_assert (dwo_unit != NULL);
10836
10837 dwo_file = dwo_unit->dwo_file;
10838 if (dwo_file->tus != NULL)
10839 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10840}
10841
3019eac3
DE
10842/* Free all resources associated with DWO_FILE.
10843 Close the DWO file and munmap the sections.
10844 All memory should be on the objfile obstack. */
348e048f
DE
10845
10846static void
3019eac3 10847free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 10848{
3019eac3
DE
10849 int ix;
10850 struct dwarf2_section_info *section;
348e048f 10851
5c6fa7ab 10852 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 10853 gdb_bfd_unref (dwo_file->dbfd);
348e048f 10854
3019eac3
DE
10855 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10856}
348e048f 10857
3019eac3 10858/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 10859
3019eac3
DE
10860static void
10861free_dwo_file_cleanup (void *arg)
10862{
10863 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10864 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 10865
3019eac3
DE
10866 free_dwo_file (dwo_file, objfile);
10867}
348e048f 10868
3019eac3 10869/* Traversal function for free_dwo_files. */
2ab95328 10870
3019eac3
DE
10871static int
10872free_dwo_file_from_slot (void **slot, void *info)
10873{
10874 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10875 struct objfile *objfile = (struct objfile *) info;
348e048f 10876
3019eac3 10877 free_dwo_file (dwo_file, objfile);
348e048f 10878
3019eac3
DE
10879 return 1;
10880}
348e048f 10881
3019eac3 10882/* Free all resources associated with DWO_FILES. */
348e048f 10883
3019eac3
DE
10884static void
10885free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10886{
10887 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 10888}
3019eac3
DE
10889\f
10890/* Read in various DIEs. */
348e048f 10891
d389af10
JK
10892/* qsort helper for inherit_abstract_dies. */
10893
10894static int
10895unsigned_int_compar (const void *ap, const void *bp)
10896{
10897 unsigned int a = *(unsigned int *) ap;
10898 unsigned int b = *(unsigned int *) bp;
10899
10900 return (a > b) - (b > a);
10901}
10902
10903/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
10904 Inherit only the children of the DW_AT_abstract_origin DIE not being
10905 already referenced by DW_AT_abstract_origin from the children of the
10906 current DIE. */
d389af10
JK
10907
10908static void
10909inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
10910{
10911 struct die_info *child_die;
10912 unsigned die_children_count;
10913 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
10914 sect_offset *offsets;
10915 sect_offset *offsets_end, *offsetp;
d389af10
JK
10916 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
10917 struct die_info *origin_die;
10918 /* Iterator of the ORIGIN_DIE children. */
10919 struct die_info *origin_child_die;
10920 struct cleanup *cleanups;
10921 struct attribute *attr;
cd02d79d
PA
10922 struct dwarf2_cu *origin_cu;
10923 struct pending **origin_previous_list_in_scope;
d389af10
JK
10924
10925 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
10926 if (!attr)
10927 return;
10928
cd02d79d
PA
10929 /* Note that following die references may follow to a die in a
10930 different cu. */
10931
10932 origin_cu = cu;
10933 origin_die = follow_die_ref (die, attr, &origin_cu);
10934
10935 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
10936 symbols in. */
10937 origin_previous_list_in_scope = origin_cu->list_in_scope;
10938 origin_cu->list_in_scope = cu->list_in_scope;
10939
edb3359d
DJ
10940 if (die->tag != origin_die->tag
10941 && !(die->tag == DW_TAG_inlined_subroutine
10942 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
10943 complaint (&symfile_complaints,
10944 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 10945 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
10946
10947 child_die = die->child;
10948 die_children_count = 0;
10949 while (child_die && child_die->tag)
10950 {
10951 child_die = sibling_die (child_die);
10952 die_children_count++;
10953 }
10954 offsets = xmalloc (sizeof (*offsets) * die_children_count);
10955 cleanups = make_cleanup (xfree, offsets);
10956
10957 offsets_end = offsets;
10958 child_die = die->child;
10959 while (child_die && child_die->tag)
10960 {
c38f313d
DJ
10961 /* For each CHILD_DIE, find the corresponding child of
10962 ORIGIN_DIE. If there is more than one layer of
10963 DW_AT_abstract_origin, follow them all; there shouldn't be,
10964 but GCC versions at least through 4.4 generate this (GCC PR
10965 40573). */
10966 struct die_info *child_origin_die = child_die;
cd02d79d 10967 struct dwarf2_cu *child_origin_cu = cu;
9a619af0 10968
c38f313d
DJ
10969 while (1)
10970 {
cd02d79d
PA
10971 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
10972 child_origin_cu);
c38f313d
DJ
10973 if (attr == NULL)
10974 break;
cd02d79d
PA
10975 child_origin_die = follow_die_ref (child_origin_die, attr,
10976 &child_origin_cu);
c38f313d
DJ
10977 }
10978
d389af10
JK
10979 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
10980 counterpart may exist. */
c38f313d 10981 if (child_origin_die != child_die)
d389af10 10982 {
edb3359d
DJ
10983 if (child_die->tag != child_origin_die->tag
10984 && !(child_die->tag == DW_TAG_inlined_subroutine
10985 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
10986 complaint (&symfile_complaints,
10987 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
10988 "different tags"), child_die->offset.sect_off,
10989 child_origin_die->offset.sect_off);
c38f313d
DJ
10990 if (child_origin_die->parent != origin_die)
10991 complaint (&symfile_complaints,
10992 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
10993 "different parents"), child_die->offset.sect_off,
10994 child_origin_die->offset.sect_off);
c38f313d
DJ
10995 else
10996 *offsets_end++ = child_origin_die->offset;
d389af10
JK
10997 }
10998 child_die = sibling_die (child_die);
10999 }
11000 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11001 unsigned_int_compar);
11002 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 11003 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
11004 complaint (&symfile_complaints,
11005 _("Multiple children of DIE 0x%x refer "
11006 "to DIE 0x%x as their abstract origin"),
b64f50a1 11007 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
11008
11009 offsetp = offsets;
11010 origin_child_die = origin_die->child;
11011 while (origin_child_die && origin_child_die->tag)
11012 {
11013 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
11014 while (offsetp < offsets_end
11015 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 11016 offsetp++;
b64f50a1
JK
11017 if (offsetp >= offsets_end
11018 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10 11019 {
adde2bff
DE
11020 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11021 Check whether we're already processing ORIGIN_CHILD_DIE.
11022 This can happen with mutually referenced abstract_origins.
11023 PR 16581. */
11024 if (!origin_child_die->in_process)
11025 process_die (origin_child_die, origin_cu);
d389af10
JK
11026 }
11027 origin_child_die = sibling_die (origin_child_die);
11028 }
cd02d79d 11029 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11030
11031 do_cleanups (cleanups);
11032}
11033
c906108c 11034static void
e7c27a73 11035read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11036{
e7c27a73 11037 struct objfile *objfile = cu->objfile;
52f0bd74 11038 struct context_stack *new;
c906108c
SS
11039 CORE_ADDR lowpc;
11040 CORE_ADDR highpc;
11041 struct die_info *child_die;
edb3359d 11042 struct attribute *attr, *call_line, *call_file;
15d034d0 11043 const char *name;
e142c38c 11044 CORE_ADDR baseaddr;
801e3a5b 11045 struct block *block;
edb3359d 11046 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11047 VEC (symbolp) *template_args = NULL;
11048 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11049
11050 if (inlined_func)
11051 {
11052 /* If we do not have call site information, we can't show the
11053 caller of this inlined function. That's too confusing, so
11054 only use the scope for local variables. */
11055 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11056 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11057 if (call_line == NULL || call_file == NULL)
11058 {
11059 read_lexical_block_scope (die, cu);
11060 return;
11061 }
11062 }
c906108c 11063
e142c38c
DJ
11064 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11065
94af9270 11066 name = dwarf2_name (die, cu);
c906108c 11067
e8d05480
JB
11068 /* Ignore functions with missing or empty names. These are actually
11069 illegal according to the DWARF standard. */
11070 if (name == NULL)
11071 {
11072 complaint (&symfile_complaints,
b64f50a1
JK
11073 _("missing name for subprogram DIE at %d"),
11074 die->offset.sect_off);
e8d05480
JB
11075 return;
11076 }
11077
11078 /* Ignore functions with missing or invalid low and high pc attributes. */
11079 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11080 {
ae4d0c03
PM
11081 attr = dwarf2_attr (die, DW_AT_external, cu);
11082 if (!attr || !DW_UNSND (attr))
11083 complaint (&symfile_complaints,
3e43a32a
MS
11084 _("cannot get low and high bounds "
11085 "for subprogram DIE at %d"),
b64f50a1 11086 die->offset.sect_off);
e8d05480
JB
11087 return;
11088 }
c906108c
SS
11089
11090 lowpc += baseaddr;
11091 highpc += baseaddr;
11092
34eaf542
TT
11093 /* If we have any template arguments, then we must allocate a
11094 different sort of symbol. */
11095 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11096 {
11097 if (child_die->tag == DW_TAG_template_type_param
11098 || child_die->tag == DW_TAG_template_value_param)
11099 {
e623cf5d 11100 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11101 templ_func->base.is_cplus_template_function = 1;
11102 break;
11103 }
11104 }
11105
c906108c 11106 new = push_context (0, lowpc);
34eaf542
TT
11107 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11108 (struct symbol *) templ_func);
4c2df51b 11109
4cecd739
DJ
11110 /* If there is a location expression for DW_AT_frame_base, record
11111 it. */
e142c38c 11112 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11113 if (attr)
f1e6e072 11114 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
4c2df51b 11115
e142c38c 11116 cu->list_in_scope = &local_symbols;
c906108c 11117
639d11d3 11118 if (die->child != NULL)
c906108c 11119 {
639d11d3 11120 child_die = die->child;
c906108c
SS
11121 while (child_die && child_die->tag)
11122 {
34eaf542
TT
11123 if (child_die->tag == DW_TAG_template_type_param
11124 || child_die->tag == DW_TAG_template_value_param)
11125 {
11126 struct symbol *arg = new_symbol (child_die, NULL, cu);
11127
f1078f66
DJ
11128 if (arg != NULL)
11129 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11130 }
11131 else
11132 process_die (child_die, cu);
c906108c
SS
11133 child_die = sibling_die (child_die);
11134 }
11135 }
11136
d389af10
JK
11137 inherit_abstract_dies (die, cu);
11138
4a811a97
UW
11139 /* If we have a DW_AT_specification, we might need to import using
11140 directives from the context of the specification DIE. See the
11141 comment in determine_prefix. */
11142 if (cu->language == language_cplus
11143 && dwarf2_attr (die, DW_AT_specification, cu))
11144 {
11145 struct dwarf2_cu *spec_cu = cu;
11146 struct die_info *spec_die = die_specification (die, &spec_cu);
11147
11148 while (spec_die)
11149 {
11150 child_die = spec_die->child;
11151 while (child_die && child_die->tag)
11152 {
11153 if (child_die->tag == DW_TAG_imported_module)
11154 process_die (child_die, spec_cu);
11155 child_die = sibling_die (child_die);
11156 }
11157
11158 /* In some cases, GCC generates specification DIEs that
11159 themselves contain DW_AT_specification attributes. */
11160 spec_die = die_specification (spec_die, &spec_cu);
11161 }
11162 }
11163
c906108c
SS
11164 new = pop_context ();
11165 /* Make a block for the local symbols within. */
801e3a5b
JB
11166 block = finish_block (new->name, &local_symbols, new->old_blocks,
11167 lowpc, highpc, objfile);
11168
df8a16a1 11169 /* For C++, set the block's scope. */
195a3f6c 11170 if ((cu->language == language_cplus || cu->language == language_fortran)
4d4ec4e5 11171 && cu->processing_has_namespace_info)
195a3f6c
TT
11172 block_set_scope (block, determine_prefix (die, cu),
11173 &objfile->objfile_obstack);
df8a16a1 11174
801e3a5b
JB
11175 /* If we have address ranges, record them. */
11176 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11177
34eaf542
TT
11178 /* Attach template arguments to function. */
11179 if (! VEC_empty (symbolp, template_args))
11180 {
11181 gdb_assert (templ_func != NULL);
11182
11183 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11184 templ_func->template_arguments
11185 = obstack_alloc (&objfile->objfile_obstack,
11186 (templ_func->n_template_arguments
11187 * sizeof (struct symbol *)));
11188 memcpy (templ_func->template_arguments,
11189 VEC_address (symbolp, template_args),
11190 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11191 VEC_free (symbolp, template_args);
11192 }
11193
208d8187
JB
11194 /* In C++, we can have functions nested inside functions (e.g., when
11195 a function declares a class that has methods). This means that
11196 when we finish processing a function scope, we may need to go
11197 back to building a containing block's symbol lists. */
11198 local_symbols = new->locals;
27aa8d6a 11199 using_directives = new->using_directives;
208d8187 11200
921e78cf
JB
11201 /* If we've finished processing a top-level function, subsequent
11202 symbols go in the file symbol list. */
11203 if (outermost_context_p ())
e142c38c 11204 cu->list_in_scope = &file_symbols;
c906108c
SS
11205}
11206
11207/* Process all the DIES contained within a lexical block scope. Start
11208 a new scope, process the dies, and then close the scope. */
11209
11210static void
e7c27a73 11211read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11212{
e7c27a73 11213 struct objfile *objfile = cu->objfile;
52f0bd74 11214 struct context_stack *new;
c906108c
SS
11215 CORE_ADDR lowpc, highpc;
11216 struct die_info *child_die;
e142c38c
DJ
11217 CORE_ADDR baseaddr;
11218
11219 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11220
11221 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11222 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11223 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11224 be nasty. Might be easier to properly extend generic blocks to
af34e669 11225 describe ranges. */
d85a05f0 11226 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
11227 return;
11228 lowpc += baseaddr;
11229 highpc += baseaddr;
11230
11231 push_context (0, lowpc);
639d11d3 11232 if (die->child != NULL)
c906108c 11233 {
639d11d3 11234 child_die = die->child;
c906108c
SS
11235 while (child_die && child_die->tag)
11236 {
e7c27a73 11237 process_die (child_die, cu);
c906108c
SS
11238 child_die = sibling_die (child_die);
11239 }
11240 }
11241 new = pop_context ();
11242
8540c487 11243 if (local_symbols != NULL || using_directives != NULL)
c906108c 11244 {
801e3a5b
JB
11245 struct block *block
11246 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
11247 highpc, objfile);
11248
11249 /* Note that recording ranges after traversing children, as we
11250 do here, means that recording a parent's ranges entails
11251 walking across all its children's ranges as they appear in
11252 the address map, which is quadratic behavior.
11253
11254 It would be nicer to record the parent's ranges before
11255 traversing its children, simply overriding whatever you find
11256 there. But since we don't even decide whether to create a
11257 block until after we've traversed its children, that's hard
11258 to do. */
11259 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
11260 }
11261 local_symbols = new->locals;
27aa8d6a 11262 using_directives = new->using_directives;
c906108c
SS
11263}
11264
96408a79
SA
11265/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11266
11267static void
11268read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11269{
11270 struct objfile *objfile = cu->objfile;
11271 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11272 CORE_ADDR pc, baseaddr;
11273 struct attribute *attr;
11274 struct call_site *call_site, call_site_local;
11275 void **slot;
11276 int nparams;
11277 struct die_info *child_die;
11278
11279 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11280
11281 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11282 if (!attr)
11283 {
11284 complaint (&symfile_complaints,
11285 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11286 "DIE 0x%x [in module %s]"),
4262abfb 11287 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11288 return;
11289 }
31aa7e4e 11290 pc = attr_value_as_address (attr) + baseaddr;
96408a79
SA
11291
11292 if (cu->call_site_htab == NULL)
11293 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11294 NULL, &objfile->objfile_obstack,
11295 hashtab_obstack_allocate, NULL);
11296 call_site_local.pc = pc;
11297 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11298 if (*slot != NULL)
11299 {
11300 complaint (&symfile_complaints,
11301 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11302 "DIE 0x%x [in module %s]"),
4262abfb
JK
11303 paddress (gdbarch, pc), die->offset.sect_off,
11304 objfile_name (objfile));
96408a79
SA
11305 return;
11306 }
11307
11308 /* Count parameters at the caller. */
11309
11310 nparams = 0;
11311 for (child_die = die->child; child_die && child_die->tag;
11312 child_die = sibling_die (child_die))
11313 {
11314 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11315 {
11316 complaint (&symfile_complaints,
11317 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11318 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11319 child_die->tag, child_die->offset.sect_off,
11320 objfile_name (objfile));
96408a79
SA
11321 continue;
11322 }
11323
11324 nparams++;
11325 }
11326
11327 call_site = obstack_alloc (&objfile->objfile_obstack,
11328 (sizeof (*call_site)
11329 + (sizeof (*call_site->parameter)
11330 * (nparams - 1))));
11331 *slot = call_site;
11332 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11333 call_site->pc = pc;
11334
11335 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11336 {
11337 struct die_info *func_die;
11338
11339 /* Skip also over DW_TAG_inlined_subroutine. */
11340 for (func_die = die->parent;
11341 func_die && func_die->tag != DW_TAG_subprogram
11342 && func_die->tag != DW_TAG_subroutine_type;
11343 func_die = func_die->parent);
11344
11345 /* DW_AT_GNU_all_call_sites is a superset
11346 of DW_AT_GNU_all_tail_call_sites. */
11347 if (func_die
11348 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11349 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11350 {
11351 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11352 not complete. But keep CALL_SITE for look ups via call_site_htab,
11353 both the initial caller containing the real return address PC and
11354 the final callee containing the current PC of a chain of tail
11355 calls do not need to have the tail call list complete. But any
11356 function candidate for a virtual tail call frame searched via
11357 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11358 determined unambiguously. */
11359 }
11360 else
11361 {
11362 struct type *func_type = NULL;
11363
11364 if (func_die)
11365 func_type = get_die_type (func_die, cu);
11366 if (func_type != NULL)
11367 {
11368 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11369
11370 /* Enlist this call site to the function. */
11371 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11372 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11373 }
11374 else
11375 complaint (&symfile_complaints,
11376 _("Cannot find function owning DW_TAG_GNU_call_site "
11377 "DIE 0x%x [in module %s]"),
4262abfb 11378 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11379 }
11380 }
11381
11382 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11383 if (attr == NULL)
11384 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11385 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11386 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11387 /* Keep NULL DWARF_BLOCK. */;
11388 else if (attr_form_is_block (attr))
11389 {
11390 struct dwarf2_locexpr_baton *dlbaton;
11391
11392 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11393 dlbaton->data = DW_BLOCK (attr)->data;
11394 dlbaton->size = DW_BLOCK (attr)->size;
11395 dlbaton->per_cu = cu->per_cu;
11396
11397 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11398 }
7771576e 11399 else if (attr_form_is_ref (attr))
96408a79 11400 {
96408a79
SA
11401 struct dwarf2_cu *target_cu = cu;
11402 struct die_info *target_die;
11403
ac9ec31b 11404 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11405 gdb_assert (target_cu->objfile == objfile);
11406 if (die_is_declaration (target_die, target_cu))
11407 {
9112db09
JK
11408 const char *target_physname = NULL;
11409 struct attribute *target_attr;
11410
11411 /* Prefer the mangled name; otherwise compute the demangled one. */
11412 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11413 if (target_attr == NULL)
11414 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11415 target_cu);
11416 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11417 target_physname = DW_STRING (target_attr);
11418 else
11419 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11420 if (target_physname == NULL)
11421 complaint (&symfile_complaints,
11422 _("DW_AT_GNU_call_site_target target DIE has invalid "
11423 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11424 die->offset.sect_off, objfile_name (objfile));
96408a79 11425 else
7d455152 11426 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11427 }
11428 else
11429 {
11430 CORE_ADDR lowpc;
11431
11432 /* DW_AT_entry_pc should be preferred. */
11433 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11434 complaint (&symfile_complaints,
11435 _("DW_AT_GNU_call_site_target target DIE has invalid "
11436 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11437 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11438 else
11439 SET_FIELD_PHYSADDR (call_site->target, lowpc + baseaddr);
11440 }
11441 }
11442 else
11443 complaint (&symfile_complaints,
11444 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11445 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11446 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11447
11448 call_site->per_cu = cu->per_cu;
11449
11450 for (child_die = die->child;
11451 child_die && child_die->tag;
11452 child_die = sibling_die (child_die))
11453 {
96408a79 11454 struct call_site_parameter *parameter;
1788b2d3 11455 struct attribute *loc, *origin;
96408a79
SA
11456
11457 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11458 {
11459 /* Already printed the complaint above. */
11460 continue;
11461 }
11462
11463 gdb_assert (call_site->parameter_count < nparams);
11464 parameter = &call_site->parameter[call_site->parameter_count];
11465
1788b2d3
JK
11466 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11467 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11468 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11469
24c5c679 11470 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11471 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11472 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11473 {
11474 sect_offset offset;
11475
11476 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11477 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11478 if (!offset_in_cu_p (&cu->header, offset))
11479 {
11480 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11481 binding can be done only inside one CU. Such referenced DIE
11482 therefore cannot be even moved to DW_TAG_partial_unit. */
11483 complaint (&symfile_complaints,
11484 _("DW_AT_abstract_origin offset is not in CU for "
11485 "DW_TAG_GNU_call_site child DIE 0x%x "
11486 "[in module %s]"),
4262abfb 11487 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11488 continue;
11489 }
1788b2d3
JK
11490 parameter->u.param_offset.cu_off = (offset.sect_off
11491 - cu->header.offset.sect_off);
11492 }
11493 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11494 {
11495 complaint (&symfile_complaints,
11496 _("No DW_FORM_block* DW_AT_location for "
11497 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11498 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11499 continue;
11500 }
24c5c679 11501 else
96408a79 11502 {
24c5c679
JK
11503 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11504 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11505 if (parameter->u.dwarf_reg != -1)
11506 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11507 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11508 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11509 &parameter->u.fb_offset))
11510 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11511 else
11512 {
11513 complaint (&symfile_complaints,
11514 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11515 "for DW_FORM_block* DW_AT_location is supported for "
11516 "DW_TAG_GNU_call_site child DIE 0x%x "
11517 "[in module %s]"),
4262abfb 11518 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11519 continue;
11520 }
96408a79
SA
11521 }
11522
11523 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11524 if (!attr_form_is_block (attr))
11525 {
11526 complaint (&symfile_complaints,
11527 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11528 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11529 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11530 continue;
11531 }
11532 parameter->value = DW_BLOCK (attr)->data;
11533 parameter->value_size = DW_BLOCK (attr)->size;
11534
11535 /* Parameters are not pre-cleared by memset above. */
11536 parameter->data_value = NULL;
11537 parameter->data_value_size = 0;
11538 call_site->parameter_count++;
11539
11540 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11541 if (attr)
11542 {
11543 if (!attr_form_is_block (attr))
11544 complaint (&symfile_complaints,
11545 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11546 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11547 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11548 else
11549 {
11550 parameter->data_value = DW_BLOCK (attr)->data;
11551 parameter->data_value_size = DW_BLOCK (attr)->size;
11552 }
11553 }
11554 }
11555}
11556
43039443 11557/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
11558 Return 1 if the attributes are present and valid, otherwise, return 0.
11559 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
11560
11561static int
11562dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
11563 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11564 struct partial_symtab *ranges_pst)
43039443
JK
11565{
11566 struct objfile *objfile = cu->objfile;
11567 struct comp_unit_head *cu_header = &cu->header;
11568 bfd *obfd = objfile->obfd;
11569 unsigned int addr_size = cu_header->addr_size;
11570 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11571 /* Base address selection entry. */
11572 CORE_ADDR base;
11573 int found_base;
11574 unsigned int dummy;
d521ce57 11575 const gdb_byte *buffer;
43039443
JK
11576 CORE_ADDR marker;
11577 int low_set;
11578 CORE_ADDR low = 0;
11579 CORE_ADDR high = 0;
ff013f42 11580 CORE_ADDR baseaddr;
43039443 11581
d00adf39
DE
11582 found_base = cu->base_known;
11583 base = cu->base_address;
43039443 11584
be391dca 11585 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11586 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
11587 {
11588 complaint (&symfile_complaints,
11589 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11590 offset);
11591 return 0;
11592 }
dce234bc 11593 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
11594
11595 /* Read in the largest possible address. */
11596 marker = read_address (obfd, buffer, cu, &dummy);
11597 if ((marker & mask) == mask)
11598 {
11599 /* If we found the largest possible address, then
11600 read the base address. */
11601 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11602 buffer += 2 * addr_size;
11603 offset += 2 * addr_size;
11604 found_base = 1;
11605 }
11606
11607 low_set = 0;
11608
e7030f15 11609 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 11610
43039443
JK
11611 while (1)
11612 {
11613 CORE_ADDR range_beginning, range_end;
11614
11615 range_beginning = read_address (obfd, buffer, cu, &dummy);
11616 buffer += addr_size;
11617 range_end = read_address (obfd, buffer, cu, &dummy);
11618 buffer += addr_size;
11619 offset += 2 * addr_size;
11620
11621 /* An end of list marker is a pair of zero addresses. */
11622 if (range_beginning == 0 && range_end == 0)
11623 /* Found the end of list entry. */
11624 break;
11625
11626 /* Each base address selection entry is a pair of 2 values.
11627 The first is the largest possible address, the second is
11628 the base address. Check for a base address here. */
11629 if ((range_beginning & mask) == mask)
11630 {
11631 /* If we found the largest possible address, then
11632 read the base address. */
11633 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11634 found_base = 1;
11635 continue;
11636 }
11637
11638 if (!found_base)
11639 {
11640 /* We have no valid base address for the ranges
11641 data. */
11642 complaint (&symfile_complaints,
11643 _("Invalid .debug_ranges data (no base address)"));
11644 return 0;
11645 }
11646
9277c30c
UW
11647 if (range_beginning > range_end)
11648 {
11649 /* Inverted range entries are invalid. */
11650 complaint (&symfile_complaints,
11651 _("Invalid .debug_ranges data (inverted range)"));
11652 return 0;
11653 }
11654
11655 /* Empty range entries have no effect. */
11656 if (range_beginning == range_end)
11657 continue;
11658
43039443
JK
11659 range_beginning += base;
11660 range_end += base;
11661
01093045
DE
11662 /* A not-uncommon case of bad debug info.
11663 Don't pollute the addrmap with bad data. */
11664 if (range_beginning + baseaddr == 0
11665 && !dwarf2_per_objfile->has_section_at_zero)
11666 {
11667 complaint (&symfile_complaints,
11668 _(".debug_ranges entry has start address of zero"
4262abfb 11669 " [in module %s]"), objfile_name (objfile));
01093045
DE
11670 continue;
11671 }
11672
9277c30c 11673 if (ranges_pst != NULL)
ff013f42 11674 addrmap_set_empty (objfile->psymtabs_addrmap,
3e43a32a
MS
11675 range_beginning + baseaddr,
11676 range_end - 1 + baseaddr,
ff013f42
JK
11677 ranges_pst);
11678
43039443
JK
11679 /* FIXME: This is recording everything as a low-high
11680 segment of consecutive addresses. We should have a
11681 data structure for discontiguous block ranges
11682 instead. */
11683 if (! low_set)
11684 {
11685 low = range_beginning;
11686 high = range_end;
11687 low_set = 1;
11688 }
11689 else
11690 {
11691 if (range_beginning < low)
11692 low = range_beginning;
11693 if (range_end > high)
11694 high = range_end;
11695 }
11696 }
11697
11698 if (! low_set)
11699 /* If the first entry is an end-of-list marker, the range
11700 describes an empty scope, i.e. no instructions. */
11701 return 0;
11702
11703 if (low_return)
11704 *low_return = low;
11705 if (high_return)
11706 *high_return = high;
11707 return 1;
11708}
11709
af34e669
DJ
11710/* Get low and high pc attributes from a die. Return 1 if the attributes
11711 are present and valid, otherwise, return 0. Return -1 if the range is
11712 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 11713
c906108c 11714static int
af34e669 11715dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
11716 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11717 struct partial_symtab *pst)
c906108c
SS
11718{
11719 struct attribute *attr;
91da1414 11720 struct attribute *attr_high;
af34e669
DJ
11721 CORE_ADDR low = 0;
11722 CORE_ADDR high = 0;
11723 int ret = 0;
c906108c 11724
91da1414
MW
11725 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11726 if (attr_high)
af34e669 11727 {
e142c38c 11728 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 11729 if (attr)
91da1414 11730 {
31aa7e4e
JB
11731 low = attr_value_as_address (attr);
11732 high = attr_value_as_address (attr_high);
11733 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11734 high += low;
91da1414 11735 }
af34e669
DJ
11736 else
11737 /* Found high w/o low attribute. */
11738 return 0;
11739
11740 /* Found consecutive range of addresses. */
11741 ret = 1;
11742 }
c906108c 11743 else
af34e669 11744 {
e142c38c 11745 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
11746 if (attr != NULL)
11747 {
ab435259
DE
11748 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11749 We take advantage of the fact that DW_AT_ranges does not appear
11750 in DW_TAG_compile_unit of DWO files. */
11751 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11752 unsigned int ranges_offset = (DW_UNSND (attr)
11753 + (need_ranges_base
11754 ? cu->ranges_base
11755 : 0));
2e3cf129 11756
af34e669 11757 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 11758 .debug_ranges section. */
2e3cf129 11759 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
af34e669 11760 return 0;
43039443 11761 /* Found discontinuous range of addresses. */
af34e669
DJ
11762 ret = -1;
11763 }
11764 }
c906108c 11765
9373cf26
JK
11766 /* read_partial_die has also the strict LOW < HIGH requirement. */
11767 if (high <= low)
c906108c
SS
11768 return 0;
11769
11770 /* When using the GNU linker, .gnu.linkonce. sections are used to
11771 eliminate duplicate copies of functions and vtables and such.
11772 The linker will arbitrarily choose one and discard the others.
11773 The AT_*_pc values for such functions refer to local labels in
11774 these sections. If the section from that file was discarded, the
11775 labels are not in the output, so the relocs get a value of 0.
11776 If this is a discarded function, mark the pc bounds as invalid,
11777 so that GDB will ignore it. */
72dca2f5 11778 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
11779 return 0;
11780
11781 *lowpc = low;
96408a79
SA
11782 if (highpc)
11783 *highpc = high;
af34e669 11784 return ret;
c906108c
SS
11785}
11786
b084d499
JB
11787/* Assuming that DIE represents a subprogram DIE or a lexical block, get
11788 its low and high PC addresses. Do nothing if these addresses could not
11789 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11790 and HIGHPC to the high address if greater than HIGHPC. */
11791
11792static void
11793dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11794 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11795 struct dwarf2_cu *cu)
11796{
11797 CORE_ADDR low, high;
11798 struct die_info *child = die->child;
11799
d85a05f0 11800 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
11801 {
11802 *lowpc = min (*lowpc, low);
11803 *highpc = max (*highpc, high);
11804 }
11805
11806 /* If the language does not allow nested subprograms (either inside
11807 subprograms or lexical blocks), we're done. */
11808 if (cu->language != language_ada)
11809 return;
6e70227d 11810
b084d499
JB
11811 /* Check all the children of the given DIE. If it contains nested
11812 subprograms, then check their pc bounds. Likewise, we need to
11813 check lexical blocks as well, as they may also contain subprogram
11814 definitions. */
11815 while (child && child->tag)
11816 {
11817 if (child->tag == DW_TAG_subprogram
11818 || child->tag == DW_TAG_lexical_block)
11819 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11820 child = sibling_die (child);
11821 }
11822}
11823
fae299cd
DC
11824/* Get the low and high pc's represented by the scope DIE, and store
11825 them in *LOWPC and *HIGHPC. If the correct values can't be
11826 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11827
11828static void
11829get_scope_pc_bounds (struct die_info *die,
11830 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11831 struct dwarf2_cu *cu)
11832{
11833 CORE_ADDR best_low = (CORE_ADDR) -1;
11834 CORE_ADDR best_high = (CORE_ADDR) 0;
11835 CORE_ADDR current_low, current_high;
11836
d85a05f0 11837 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
11838 {
11839 best_low = current_low;
11840 best_high = current_high;
11841 }
11842 else
11843 {
11844 struct die_info *child = die->child;
11845
11846 while (child && child->tag)
11847 {
11848 switch (child->tag) {
11849 case DW_TAG_subprogram:
b084d499 11850 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
11851 break;
11852 case DW_TAG_namespace:
f55ee35c 11853 case DW_TAG_module:
fae299cd
DC
11854 /* FIXME: carlton/2004-01-16: Should we do this for
11855 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11856 that current GCC's always emit the DIEs corresponding
11857 to definitions of methods of classes as children of a
11858 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11859 the DIEs giving the declarations, which could be
11860 anywhere). But I don't see any reason why the
11861 standards says that they have to be there. */
11862 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11863
11864 if (current_low != ((CORE_ADDR) -1))
11865 {
11866 best_low = min (best_low, current_low);
11867 best_high = max (best_high, current_high);
11868 }
11869 break;
11870 default:
0963b4bd 11871 /* Ignore. */
fae299cd
DC
11872 break;
11873 }
11874
11875 child = sibling_die (child);
11876 }
11877 }
11878
11879 *lowpc = best_low;
11880 *highpc = best_high;
11881}
11882
801e3a5b
JB
11883/* Record the address ranges for BLOCK, offset by BASEADDR, as given
11884 in DIE. */
380bca97 11885
801e3a5b
JB
11886static void
11887dwarf2_record_block_ranges (struct die_info *die, struct block *block,
11888 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
11889{
bb5ed363 11890 struct objfile *objfile = cu->objfile;
801e3a5b 11891 struct attribute *attr;
91da1414 11892 struct attribute *attr_high;
801e3a5b 11893
91da1414
MW
11894 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11895 if (attr_high)
801e3a5b 11896 {
801e3a5b
JB
11897 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11898 if (attr)
11899 {
31aa7e4e
JB
11900 CORE_ADDR low = attr_value_as_address (attr);
11901 CORE_ADDR high = attr_value_as_address (attr_high);
11902
11903 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11904 high += low;
9a619af0 11905
801e3a5b
JB
11906 record_block_range (block, baseaddr + low, baseaddr + high - 1);
11907 }
11908 }
11909
11910 attr = dwarf2_attr (die, DW_AT_ranges, cu);
11911 if (attr)
11912 {
bb5ed363 11913 bfd *obfd = objfile->obfd;
ab435259
DE
11914 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11915 We take advantage of the fact that DW_AT_ranges does not appear
11916 in DW_TAG_compile_unit of DWO files. */
11917 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
11918
11919 /* The value of the DW_AT_ranges attribute is the offset of the
11920 address range list in the .debug_ranges section. */
ab435259
DE
11921 unsigned long offset = (DW_UNSND (attr)
11922 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 11923 const gdb_byte *buffer;
801e3a5b
JB
11924
11925 /* For some target architectures, but not others, the
11926 read_address function sign-extends the addresses it returns.
11927 To recognize base address selection entries, we need a
11928 mask. */
11929 unsigned int addr_size = cu->header.addr_size;
11930 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11931
11932 /* The base address, to which the next pair is relative. Note
11933 that this 'base' is a DWARF concept: most entries in a range
11934 list are relative, to reduce the number of relocs against the
11935 debugging information. This is separate from this function's
11936 'baseaddr' argument, which GDB uses to relocate debugging
11937 information from a shared library based on the address at
11938 which the library was loaded. */
d00adf39
DE
11939 CORE_ADDR base = cu->base_address;
11940 int base_known = cu->base_known;
801e3a5b 11941
d62bfeaf 11942 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11943 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
11944 {
11945 complaint (&symfile_complaints,
11946 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
11947 offset);
11948 return;
11949 }
d62bfeaf 11950 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
11951
11952 for (;;)
11953 {
11954 unsigned int bytes_read;
11955 CORE_ADDR start, end;
11956
11957 start = read_address (obfd, buffer, cu, &bytes_read);
11958 buffer += bytes_read;
11959 end = read_address (obfd, buffer, cu, &bytes_read);
11960 buffer += bytes_read;
11961
11962 /* Did we find the end of the range list? */
11963 if (start == 0 && end == 0)
11964 break;
11965
11966 /* Did we find a base address selection entry? */
11967 else if ((start & base_select_mask) == base_select_mask)
11968 {
11969 base = end;
11970 base_known = 1;
11971 }
11972
11973 /* We found an ordinary address range. */
11974 else
11975 {
11976 if (!base_known)
11977 {
11978 complaint (&symfile_complaints,
3e43a32a
MS
11979 _("Invalid .debug_ranges data "
11980 "(no base address)"));
801e3a5b
JB
11981 return;
11982 }
11983
9277c30c
UW
11984 if (start > end)
11985 {
11986 /* Inverted range entries are invalid. */
11987 complaint (&symfile_complaints,
11988 _("Invalid .debug_ranges data "
11989 "(inverted range)"));
11990 return;
11991 }
11992
11993 /* Empty range entries have no effect. */
11994 if (start == end)
11995 continue;
11996
01093045
DE
11997 start += base + baseaddr;
11998 end += base + baseaddr;
11999
12000 /* A not-uncommon case of bad debug info.
12001 Don't pollute the addrmap with bad data. */
12002 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12003 {
12004 complaint (&symfile_complaints,
12005 _(".debug_ranges entry has start address of zero"
4262abfb 12006 " [in module %s]"), objfile_name (objfile));
01093045
DE
12007 continue;
12008 }
12009
12010 record_block_range (block, start, end - 1);
801e3a5b
JB
12011 }
12012 }
12013 }
12014}
12015
685b1105
JK
12016/* Check whether the producer field indicates either of GCC < 4.6, or the
12017 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12018
685b1105
JK
12019static void
12020check_producer (struct dwarf2_cu *cu)
60d5a603
JK
12021{
12022 const char *cs;
12023 int major, minor, release;
12024
12025 if (cu->producer == NULL)
12026 {
12027 /* For unknown compilers expect their behavior is DWARF version
12028 compliant.
12029
12030 GCC started to support .debug_types sections by -gdwarf-4 since
12031 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12032 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12033 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12034 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12035 }
685b1105 12036 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
60d5a603 12037 {
685b1105
JK
12038 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12039
ba919b58
TT
12040 cs = &cu->producer[strlen ("GNU ")];
12041 while (*cs && !isdigit (*cs))
12042 cs++;
12043 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12044 {
12045 /* Not recognized as GCC. */
12046 }
12047 else
1b80a9fa
JK
12048 {
12049 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12050 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12051 }
685b1105
JK
12052 }
12053 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12054 cu->producer_is_icc = 1;
12055 else
12056 {
12057 /* For other non-GCC compilers, expect their behavior is DWARF version
12058 compliant. */
60d5a603
JK
12059 }
12060
ba919b58 12061 cu->checked_producer = 1;
685b1105 12062}
ba919b58 12063
685b1105
JK
12064/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12065 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12066 during 4.6.0 experimental. */
12067
12068static int
12069producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12070{
12071 if (!cu->checked_producer)
12072 check_producer (cu);
12073
12074 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12075}
12076
12077/* Return the default accessibility type if it is not overriden by
12078 DW_AT_accessibility. */
12079
12080static enum dwarf_access_attribute
12081dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12082{
12083 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12084 {
12085 /* The default DWARF 2 accessibility for members is public, the default
12086 accessibility for inheritance is private. */
12087
12088 if (die->tag != DW_TAG_inheritance)
12089 return DW_ACCESS_public;
12090 else
12091 return DW_ACCESS_private;
12092 }
12093 else
12094 {
12095 /* DWARF 3+ defines the default accessibility a different way. The same
12096 rules apply now for DW_TAG_inheritance as for the members and it only
12097 depends on the container kind. */
12098
12099 if (die->parent->tag == DW_TAG_class_type)
12100 return DW_ACCESS_private;
12101 else
12102 return DW_ACCESS_public;
12103 }
12104}
12105
74ac6d43
TT
12106/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12107 offset. If the attribute was not found return 0, otherwise return
12108 1. If it was found but could not properly be handled, set *OFFSET
12109 to 0. */
12110
12111static int
12112handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12113 LONGEST *offset)
12114{
12115 struct attribute *attr;
12116
12117 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12118 if (attr != NULL)
12119 {
12120 *offset = 0;
12121
12122 /* Note that we do not check for a section offset first here.
12123 This is because DW_AT_data_member_location is new in DWARF 4,
12124 so if we see it, we can assume that a constant form is really
12125 a constant and not a section offset. */
12126 if (attr_form_is_constant (attr))
12127 *offset = dwarf2_get_attr_constant_value (attr, 0);
12128 else if (attr_form_is_section_offset (attr))
12129 dwarf2_complex_location_expr_complaint ();
12130 else if (attr_form_is_block (attr))
12131 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12132 else
12133 dwarf2_complex_location_expr_complaint ();
12134
12135 return 1;
12136 }
12137
12138 return 0;
12139}
12140
c906108c
SS
12141/* Add an aggregate field to the field list. */
12142
12143static void
107d2387 12144dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12145 struct dwarf2_cu *cu)
6e70227d 12146{
e7c27a73 12147 struct objfile *objfile = cu->objfile;
5e2b427d 12148 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12149 struct nextfield *new_field;
12150 struct attribute *attr;
12151 struct field *fp;
15d034d0 12152 const char *fieldname = "";
c906108c
SS
12153
12154 /* Allocate a new field list entry and link it in. */
12155 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 12156 make_cleanup (xfree, new_field);
c906108c 12157 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12158
12159 if (die->tag == DW_TAG_inheritance)
12160 {
12161 new_field->next = fip->baseclasses;
12162 fip->baseclasses = new_field;
12163 }
12164 else
12165 {
12166 new_field->next = fip->fields;
12167 fip->fields = new_field;
12168 }
c906108c
SS
12169 fip->nfields++;
12170
e142c38c 12171 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12172 if (attr)
12173 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12174 else
12175 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12176 if (new_field->accessibility != DW_ACCESS_public)
12177 fip->non_public_fields = 1;
60d5a603 12178
e142c38c 12179 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12180 if (attr)
12181 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12182 else
12183 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12184
12185 fp = &new_field->field;
a9a9bd0f 12186
e142c38c 12187 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12188 {
74ac6d43
TT
12189 LONGEST offset;
12190
a9a9bd0f 12191 /* Data member other than a C++ static data member. */
6e70227d 12192
c906108c 12193 /* Get type of field. */
e7c27a73 12194 fp->type = die_type (die, cu);
c906108c 12195
d6a843b5 12196 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12197
c906108c 12198 /* Get bit size of field (zero if none). */
e142c38c 12199 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12200 if (attr)
12201 {
12202 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12203 }
12204 else
12205 {
12206 FIELD_BITSIZE (*fp) = 0;
12207 }
12208
12209 /* Get bit offset of field. */
74ac6d43
TT
12210 if (handle_data_member_location (die, cu, &offset))
12211 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12212 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12213 if (attr)
12214 {
5e2b427d 12215 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12216 {
12217 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12218 additional bit offset from the MSB of the containing
12219 anonymous object to the MSB of the field. We don't
12220 have to do anything special since we don't need to
12221 know the size of the anonymous object. */
f41f5e61 12222 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12223 }
12224 else
12225 {
12226 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12227 MSB of the anonymous object, subtract off the number of
12228 bits from the MSB of the field to the MSB of the
12229 object, and then subtract off the number of bits of
12230 the field itself. The result is the bit offset of
12231 the LSB of the field. */
c906108c
SS
12232 int anonymous_size;
12233 int bit_offset = DW_UNSND (attr);
12234
e142c38c 12235 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12236 if (attr)
12237 {
12238 /* The size of the anonymous object containing
12239 the bit field is explicit, so use the
12240 indicated size (in bytes). */
12241 anonymous_size = DW_UNSND (attr);
12242 }
12243 else
12244 {
12245 /* The size of the anonymous object containing
12246 the bit field must be inferred from the type
12247 attribute of the data member containing the
12248 bit field. */
12249 anonymous_size = TYPE_LENGTH (fp->type);
12250 }
f41f5e61
PA
12251 SET_FIELD_BITPOS (*fp,
12252 (FIELD_BITPOS (*fp)
12253 + anonymous_size * bits_per_byte
12254 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12255 }
12256 }
12257
12258 /* Get name of field. */
39cbfefa
DJ
12259 fieldname = dwarf2_name (die, cu);
12260 if (fieldname == NULL)
12261 fieldname = "";
d8151005
DJ
12262
12263 /* The name is already allocated along with this objfile, so we don't
12264 need to duplicate it for the type. */
12265 fp->name = fieldname;
c906108c
SS
12266
12267 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12268 pointer or virtual base class pointer) to private. */
e142c38c 12269 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12270 {
d48cc9dd 12271 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12272 new_field->accessibility = DW_ACCESS_private;
12273 fip->non_public_fields = 1;
12274 }
12275 }
a9a9bd0f 12276 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12277 {
a9a9bd0f
DC
12278 /* C++ static member. */
12279
12280 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12281 is a declaration, but all versions of G++ as of this writing
12282 (so through at least 3.2.1) incorrectly generate
12283 DW_TAG_variable tags. */
6e70227d 12284
ff355380 12285 const char *physname;
c906108c 12286
a9a9bd0f 12287 /* Get name of field. */
39cbfefa
DJ
12288 fieldname = dwarf2_name (die, cu);
12289 if (fieldname == NULL)
c906108c
SS
12290 return;
12291
254e6b9e 12292 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12293 if (attr
12294 /* Only create a symbol if this is an external value.
12295 new_symbol checks this and puts the value in the global symbol
12296 table, which we want. If it is not external, new_symbol
12297 will try to put the value in cu->list_in_scope which is wrong. */
12298 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12299 {
12300 /* A static const member, not much different than an enum as far as
12301 we're concerned, except that we can support more types. */
12302 new_symbol (die, NULL, cu);
12303 }
12304
2df3850c 12305 /* Get physical name. */
ff355380 12306 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12307
d8151005
DJ
12308 /* The name is already allocated along with this objfile, so we don't
12309 need to duplicate it for the type. */
12310 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12311 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12312 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12313 }
12314 else if (die->tag == DW_TAG_inheritance)
12315 {
74ac6d43 12316 LONGEST offset;
d4b96c9a 12317
74ac6d43
TT
12318 /* C++ base class field. */
12319 if (handle_data_member_location (die, cu, &offset))
12320 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12321 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12322 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12323 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12324 fip->nbaseclasses++;
12325 }
12326}
12327
98751a41
JK
12328/* Add a typedef defined in the scope of the FIP's class. */
12329
12330static void
12331dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12332 struct dwarf2_cu *cu)
6e70227d 12333{
98751a41 12334 struct objfile *objfile = cu->objfile;
98751a41
JK
12335 struct typedef_field_list *new_field;
12336 struct attribute *attr;
12337 struct typedef_field *fp;
12338 char *fieldname = "";
12339
12340 /* Allocate a new field list entry and link it in. */
12341 new_field = xzalloc (sizeof (*new_field));
12342 make_cleanup (xfree, new_field);
12343
12344 gdb_assert (die->tag == DW_TAG_typedef);
12345
12346 fp = &new_field->field;
12347
12348 /* Get name of field. */
12349 fp->name = dwarf2_name (die, cu);
12350 if (fp->name == NULL)
12351 return;
12352
12353 fp->type = read_type_die (die, cu);
12354
12355 new_field->next = fip->typedef_field_list;
12356 fip->typedef_field_list = new_field;
12357 fip->typedef_field_list_count++;
12358}
12359
c906108c
SS
12360/* Create the vector of fields, and attach it to the type. */
12361
12362static void
fba45db2 12363dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12364 struct dwarf2_cu *cu)
c906108c
SS
12365{
12366 int nfields = fip->nfields;
12367
12368 /* Record the field count, allocate space for the array of fields,
12369 and create blank accessibility bitfields if necessary. */
12370 TYPE_NFIELDS (type) = nfields;
12371 TYPE_FIELDS (type) = (struct field *)
12372 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12373 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12374
b4ba55a1 12375 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12376 {
12377 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12378
12379 TYPE_FIELD_PRIVATE_BITS (type) =
12380 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12381 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12382
12383 TYPE_FIELD_PROTECTED_BITS (type) =
12384 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12385 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12386
774b6a14
TT
12387 TYPE_FIELD_IGNORE_BITS (type) =
12388 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12389 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12390 }
12391
12392 /* If the type has baseclasses, allocate and clear a bit vector for
12393 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12394 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12395 {
12396 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12397 unsigned char *pointer;
c906108c
SS
12398
12399 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
12400 pointer = TYPE_ALLOC (type, num_bytes);
12401 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12402 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12403 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12404 }
12405
3e43a32a
MS
12406 /* Copy the saved-up fields into the field vector. Start from the head of
12407 the list, adding to the tail of the field array, so that they end up in
12408 the same order in the array in which they were added to the list. */
c906108c
SS
12409 while (nfields-- > 0)
12410 {
7d0ccb61
DJ
12411 struct nextfield *fieldp;
12412
12413 if (fip->fields)
12414 {
12415 fieldp = fip->fields;
12416 fip->fields = fieldp->next;
12417 }
12418 else
12419 {
12420 fieldp = fip->baseclasses;
12421 fip->baseclasses = fieldp->next;
12422 }
12423
12424 TYPE_FIELD (type, nfields) = fieldp->field;
12425 switch (fieldp->accessibility)
c906108c 12426 {
c5aa993b 12427 case DW_ACCESS_private:
b4ba55a1
JB
12428 if (cu->language != language_ada)
12429 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12430 break;
c906108c 12431
c5aa993b 12432 case DW_ACCESS_protected:
b4ba55a1
JB
12433 if (cu->language != language_ada)
12434 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12435 break;
c906108c 12436
c5aa993b
JM
12437 case DW_ACCESS_public:
12438 break;
c906108c 12439
c5aa993b
JM
12440 default:
12441 /* Unknown accessibility. Complain and treat it as public. */
12442 {
e2e0b3e5 12443 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12444 fieldp->accessibility);
c5aa993b
JM
12445 }
12446 break;
c906108c
SS
12447 }
12448 if (nfields < fip->nbaseclasses)
12449 {
7d0ccb61 12450 switch (fieldp->virtuality)
c906108c 12451 {
c5aa993b
JM
12452 case DW_VIRTUALITY_virtual:
12453 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12454 if (cu->language == language_ada)
a73c6dcd 12455 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12456 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12457 break;
c906108c
SS
12458 }
12459 }
c906108c
SS
12460 }
12461}
12462
7d27a96d
TT
12463/* Return true if this member function is a constructor, false
12464 otherwise. */
12465
12466static int
12467dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12468{
12469 const char *fieldname;
12470 const char *typename;
12471 int len;
12472
12473 if (die->parent == NULL)
12474 return 0;
12475
12476 if (die->parent->tag != DW_TAG_structure_type
12477 && die->parent->tag != DW_TAG_union_type
12478 && die->parent->tag != DW_TAG_class_type)
12479 return 0;
12480
12481 fieldname = dwarf2_name (die, cu);
12482 typename = dwarf2_name (die->parent, cu);
12483 if (fieldname == NULL || typename == NULL)
12484 return 0;
12485
12486 len = strlen (fieldname);
12487 return (strncmp (fieldname, typename, len) == 0
12488 && (typename[len] == '\0' || typename[len] == '<'));
12489}
12490
c906108c
SS
12491/* Add a member function to the proper fieldlist. */
12492
12493static void
107d2387 12494dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 12495 struct type *type, struct dwarf2_cu *cu)
c906108c 12496{
e7c27a73 12497 struct objfile *objfile = cu->objfile;
c906108c
SS
12498 struct attribute *attr;
12499 struct fnfieldlist *flp;
12500 int i;
12501 struct fn_field *fnp;
15d034d0 12502 const char *fieldname;
c906108c 12503 struct nextfnfield *new_fnfield;
f792889a 12504 struct type *this_type;
60d5a603 12505 enum dwarf_access_attribute accessibility;
c906108c 12506
b4ba55a1 12507 if (cu->language == language_ada)
a73c6dcd 12508 error (_("unexpected member function in Ada type"));
b4ba55a1 12509
2df3850c 12510 /* Get name of member function. */
39cbfefa
DJ
12511 fieldname = dwarf2_name (die, cu);
12512 if (fieldname == NULL)
2df3850c 12513 return;
c906108c 12514
c906108c
SS
12515 /* Look up member function name in fieldlist. */
12516 for (i = 0; i < fip->nfnfields; i++)
12517 {
27bfe10e 12518 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
12519 break;
12520 }
12521
12522 /* Create new list element if necessary. */
12523 if (i < fip->nfnfields)
12524 flp = &fip->fnfieldlists[i];
12525 else
12526 {
12527 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12528 {
12529 fip->fnfieldlists = (struct fnfieldlist *)
12530 xrealloc (fip->fnfieldlists,
12531 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12532 * sizeof (struct fnfieldlist));
c906108c 12533 if (fip->nfnfields == 0)
c13c43fd 12534 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
12535 }
12536 flp = &fip->fnfieldlists[fip->nfnfields];
12537 flp->name = fieldname;
12538 flp->length = 0;
12539 flp->head = NULL;
3da10d80 12540 i = fip->nfnfields++;
c906108c
SS
12541 }
12542
12543 /* Create a new member function field and chain it to the field list
0963b4bd 12544 entry. */
c906108c 12545 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 12546 make_cleanup (xfree, new_fnfield);
c906108c
SS
12547 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12548 new_fnfield->next = flp->head;
12549 flp->head = new_fnfield;
12550 flp->length++;
12551
12552 /* Fill in the member function field info. */
12553 fnp = &new_fnfield->fnfield;
3da10d80
KS
12554
12555 /* Delay processing of the physname until later. */
12556 if (cu->language == language_cplus || cu->language == language_java)
12557 {
12558 add_to_method_list (type, i, flp->length - 1, fieldname,
12559 die, cu);
12560 }
12561 else
12562 {
1d06ead6 12563 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
12564 fnp->physname = physname ? physname : "";
12565 }
12566
c906108c 12567 fnp->type = alloc_type (objfile);
f792889a
DJ
12568 this_type = read_type_die (die, cu);
12569 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 12570 {
f792889a 12571 int nparams = TYPE_NFIELDS (this_type);
c906108c 12572
f792889a 12573 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
12574 of the method itself (TYPE_CODE_METHOD). */
12575 smash_to_method_type (fnp->type, type,
f792889a
DJ
12576 TYPE_TARGET_TYPE (this_type),
12577 TYPE_FIELDS (this_type),
12578 TYPE_NFIELDS (this_type),
12579 TYPE_VARARGS (this_type));
c906108c
SS
12580
12581 /* Handle static member functions.
c5aa993b 12582 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
12583 member functions. G++ helps GDB by marking the first
12584 parameter for non-static member functions (which is the this
12585 pointer) as artificial. We obtain this information from
12586 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 12587 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
12588 fnp->voffset = VOFFSET_STATIC;
12589 }
12590 else
e2e0b3e5 12591 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 12592 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
12593
12594 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 12595 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 12596 fnp->fcontext = die_containing_type (die, cu);
c906108c 12597
3e43a32a
MS
12598 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12599 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
12600
12601 /* Get accessibility. */
e142c38c 12602 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 12603 if (attr)
60d5a603
JK
12604 accessibility = DW_UNSND (attr);
12605 else
12606 accessibility = dwarf2_default_access_attribute (die, cu);
12607 switch (accessibility)
c906108c 12608 {
60d5a603
JK
12609 case DW_ACCESS_private:
12610 fnp->is_private = 1;
12611 break;
12612 case DW_ACCESS_protected:
12613 fnp->is_protected = 1;
12614 break;
c906108c
SS
12615 }
12616
b02dede2 12617 /* Check for artificial methods. */
e142c38c 12618 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
12619 if (attr && DW_UNSND (attr) != 0)
12620 fnp->is_artificial = 1;
12621
7d27a96d
TT
12622 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12623
0d564a31 12624 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
12625 function. For older versions of GCC, this is an offset in the
12626 appropriate virtual table, as specified by DW_AT_containing_type.
12627 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
12628 to the object address. */
12629
e142c38c 12630 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 12631 if (attr)
8e19ed76 12632 {
aec5aa8b 12633 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 12634 {
aec5aa8b
TT
12635 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12636 {
12637 /* Old-style GCC. */
12638 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12639 }
12640 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12641 || (DW_BLOCK (attr)->size > 1
12642 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12643 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12644 {
12645 struct dwarf_block blk;
12646 int offset;
12647
12648 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12649 ? 1 : 2);
12650 blk.size = DW_BLOCK (attr)->size - offset;
12651 blk.data = DW_BLOCK (attr)->data + offset;
12652 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12653 if ((fnp->voffset % cu->header.addr_size) != 0)
12654 dwarf2_complex_location_expr_complaint ();
12655 else
12656 fnp->voffset /= cu->header.addr_size;
12657 fnp->voffset += 2;
12658 }
12659 else
12660 dwarf2_complex_location_expr_complaint ();
12661
12662 if (!fnp->fcontext)
12663 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12664 }
3690dd37 12665 else if (attr_form_is_section_offset (attr))
8e19ed76 12666 {
4d3c2250 12667 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
12668 }
12669 else
12670 {
4d3c2250
KB
12671 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12672 fieldname);
8e19ed76 12673 }
0d564a31 12674 }
d48cc9dd
DJ
12675 else
12676 {
12677 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12678 if (attr && DW_UNSND (attr))
12679 {
12680 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12681 complaint (&symfile_complaints,
3e43a32a
MS
12682 _("Member function \"%s\" (offset %d) is virtual "
12683 "but the vtable offset is not specified"),
b64f50a1 12684 fieldname, die->offset.sect_off);
9655fd1a 12685 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
12686 TYPE_CPLUS_DYNAMIC (type) = 1;
12687 }
12688 }
c906108c
SS
12689}
12690
12691/* Create the vector of member function fields, and attach it to the type. */
12692
12693static void
fba45db2 12694dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12695 struct dwarf2_cu *cu)
c906108c
SS
12696{
12697 struct fnfieldlist *flp;
c906108c
SS
12698 int i;
12699
b4ba55a1 12700 if (cu->language == language_ada)
a73c6dcd 12701 error (_("unexpected member functions in Ada type"));
b4ba55a1 12702
c906108c
SS
12703 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12704 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12705 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12706
12707 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12708 {
12709 struct nextfnfield *nfp = flp->head;
12710 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12711 int k;
12712
12713 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12714 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12715 fn_flp->fn_fields = (struct fn_field *)
12716 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12717 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 12718 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
12719 }
12720
12721 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
12722}
12723
1168df01
JB
12724/* Returns non-zero if NAME is the name of a vtable member in CU's
12725 language, zero otherwise. */
12726static int
12727is_vtable_name (const char *name, struct dwarf2_cu *cu)
12728{
12729 static const char vptr[] = "_vptr";
987504bb 12730 static const char vtable[] = "vtable";
1168df01 12731
987504bb
JJ
12732 /* Look for the C++ and Java forms of the vtable. */
12733 if ((cu->language == language_java
12734 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12735 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12736 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
12737 return 1;
12738
12739 return 0;
12740}
12741
c0dd20ea 12742/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
12743 functions, with the ABI-specified layout. If TYPE describes
12744 such a structure, smash it into a member function type.
61049d3b
DJ
12745
12746 GCC shouldn't do this; it should just output pointer to member DIEs.
12747 This is GCC PR debug/28767. */
c0dd20ea 12748
0b92b5bb
TT
12749static void
12750quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 12751{
0b92b5bb 12752 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
12753
12754 /* Check for a structure with no name and two children. */
0b92b5bb
TT
12755 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12756 return;
c0dd20ea
DJ
12757
12758 /* Check for __pfn and __delta members. */
0b92b5bb
TT
12759 if (TYPE_FIELD_NAME (type, 0) == NULL
12760 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12761 || TYPE_FIELD_NAME (type, 1) == NULL
12762 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12763 return;
c0dd20ea
DJ
12764
12765 /* Find the type of the method. */
0b92b5bb 12766 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
12767 if (pfn_type == NULL
12768 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12769 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 12770 return;
c0dd20ea
DJ
12771
12772 /* Look for the "this" argument. */
12773 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12774 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 12775 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 12776 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 12777 return;
c0dd20ea
DJ
12778
12779 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
12780 new_type = alloc_type (objfile);
12781 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
12782 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12783 TYPE_VARARGS (pfn_type));
0b92b5bb 12784 smash_to_methodptr_type (type, new_type);
c0dd20ea 12785}
1168df01 12786
685b1105
JK
12787/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12788 (icc). */
12789
12790static int
12791producer_is_icc (struct dwarf2_cu *cu)
12792{
12793 if (!cu->checked_producer)
12794 check_producer (cu);
12795
12796 return cu->producer_is_icc;
12797}
12798
c906108c 12799/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
12800 (definition) to create a type for the structure or union. Fill in
12801 the type's name and general properties; the members will not be
3d1d5ea3 12802 processed until process_structure_scope.
c906108c 12803
c767944b
DJ
12804 NOTE: we need to call these functions regardless of whether or not the
12805 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c
SS
12806 structure or union. This gets the type entered into our set of
12807 user defined types.
12808
12809 However, if the structure is incomplete (an opaque struct/union)
12810 then suppress creating a symbol table entry for it since gdb only
12811 wants to find the one with the complete definition. Note that if
12812 it is complete, we just call new_symbol, which does it's own
12813 checking about whether the struct/union is anonymous or not (and
12814 suppresses creating a symbol table entry itself). */
12815
f792889a 12816static struct type *
134d01f1 12817read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12818{
e7c27a73 12819 struct objfile *objfile = cu->objfile;
c906108c
SS
12820 struct type *type;
12821 struct attribute *attr;
15d034d0 12822 const char *name;
c906108c 12823
348e048f
DE
12824 /* If the definition of this type lives in .debug_types, read that type.
12825 Don't follow DW_AT_specification though, that will take us back up
12826 the chain and we want to go down. */
45e58e77 12827 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
12828 if (attr)
12829 {
ac9ec31b 12830 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 12831
ac9ec31b 12832 /* The type's CU may not be the same as CU.
02142a6c 12833 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
12834 return set_die_type (die, type, cu);
12835 }
12836
c0dd20ea 12837 type = alloc_type (objfile);
c906108c 12838 INIT_CPLUS_SPECIFIC (type);
93311388 12839
39cbfefa
DJ
12840 name = dwarf2_name (die, cu);
12841 if (name != NULL)
c906108c 12842 {
987504bb
JJ
12843 if (cu->language == language_cplus
12844 || cu->language == language_java)
63d06c5c 12845 {
15d034d0 12846 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
12847
12848 /* dwarf2_full_name might have already finished building the DIE's
12849 type. If so, there is no need to continue. */
12850 if (get_die_type (die, cu) != NULL)
12851 return get_die_type (die, cu);
12852
12853 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
12854 if (die->tag == DW_TAG_structure_type
12855 || die->tag == DW_TAG_class_type)
12856 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
12857 }
12858 else
12859 {
d8151005
DJ
12860 /* The name is already allocated along with this objfile, so
12861 we don't need to duplicate it for the type. */
7d455152 12862 TYPE_TAG_NAME (type) = name;
94af9270
KS
12863 if (die->tag == DW_TAG_class_type)
12864 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 12865 }
c906108c
SS
12866 }
12867
12868 if (die->tag == DW_TAG_structure_type)
12869 {
12870 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12871 }
12872 else if (die->tag == DW_TAG_union_type)
12873 {
12874 TYPE_CODE (type) = TYPE_CODE_UNION;
12875 }
12876 else
12877 {
c906108c
SS
12878 TYPE_CODE (type) = TYPE_CODE_CLASS;
12879 }
12880
0cc2414c
TT
12881 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
12882 TYPE_DECLARED_CLASS (type) = 1;
12883
e142c38c 12884 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12885 if (attr)
12886 {
12887 TYPE_LENGTH (type) = DW_UNSND (attr);
12888 }
12889 else
12890 {
12891 TYPE_LENGTH (type) = 0;
12892 }
12893
685b1105
JK
12894 if (producer_is_icc (cu))
12895 {
12896 /* ICC does not output the required DW_AT_declaration
12897 on incomplete types, but gives them a size of zero. */
12898 }
12899 else
12900 TYPE_STUB_SUPPORTED (type) = 1;
12901
dc718098 12902 if (die_is_declaration (die, cu))
876cecd0 12903 TYPE_STUB (type) = 1;
a6c727b2
DJ
12904 else if (attr == NULL && die->child == NULL
12905 && producer_is_realview (cu->producer))
12906 /* RealView does not output the required DW_AT_declaration
12907 on incomplete types. */
12908 TYPE_STUB (type) = 1;
dc718098 12909
c906108c
SS
12910 /* We need to add the type field to the die immediately so we don't
12911 infinitely recurse when dealing with pointers to the structure
0963b4bd 12912 type within the structure itself. */
1c379e20 12913 set_die_type (die, type, cu);
c906108c 12914
7e314c57
JK
12915 /* set_die_type should be already done. */
12916 set_descriptive_type (type, die, cu);
12917
c767944b
DJ
12918 return type;
12919}
12920
12921/* Finish creating a structure or union type, including filling in
12922 its members and creating a symbol for it. */
12923
12924static void
12925process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
12926{
12927 struct objfile *objfile = cu->objfile;
12928 struct die_info *child_die = die->child;
12929 struct type *type;
12930
12931 type = get_die_type (die, cu);
12932 if (type == NULL)
12933 type = read_structure_type (die, cu);
12934
e142c38c 12935 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
12936 {
12937 struct field_info fi;
12938 struct die_info *child_die;
34eaf542 12939 VEC (symbolp) *template_args = NULL;
c767944b 12940 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
12941
12942 memset (&fi, 0, sizeof (struct field_info));
12943
639d11d3 12944 child_die = die->child;
c906108c
SS
12945
12946 while (child_die && child_die->tag)
12947 {
a9a9bd0f
DC
12948 if (child_die->tag == DW_TAG_member
12949 || child_die->tag == DW_TAG_variable)
c906108c 12950 {
a9a9bd0f
DC
12951 /* NOTE: carlton/2002-11-05: A C++ static data member
12952 should be a DW_TAG_member that is a declaration, but
12953 all versions of G++ as of this writing (so through at
12954 least 3.2.1) incorrectly generate DW_TAG_variable
12955 tags for them instead. */
e7c27a73 12956 dwarf2_add_field (&fi, child_die, cu);
c906108c 12957 }
8713b1b1 12958 else if (child_die->tag == DW_TAG_subprogram)
c906108c 12959 {
0963b4bd 12960 /* C++ member function. */
e7c27a73 12961 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
12962 }
12963 else if (child_die->tag == DW_TAG_inheritance)
12964 {
12965 /* C++ base class field. */
e7c27a73 12966 dwarf2_add_field (&fi, child_die, cu);
c906108c 12967 }
98751a41
JK
12968 else if (child_die->tag == DW_TAG_typedef)
12969 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
12970 else if (child_die->tag == DW_TAG_template_type_param
12971 || child_die->tag == DW_TAG_template_value_param)
12972 {
12973 struct symbol *arg = new_symbol (child_die, NULL, cu);
12974
f1078f66
DJ
12975 if (arg != NULL)
12976 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
12977 }
12978
c906108c
SS
12979 child_die = sibling_die (child_die);
12980 }
12981
34eaf542
TT
12982 /* Attach template arguments to type. */
12983 if (! VEC_empty (symbolp, template_args))
12984 {
12985 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12986 TYPE_N_TEMPLATE_ARGUMENTS (type)
12987 = VEC_length (symbolp, template_args);
12988 TYPE_TEMPLATE_ARGUMENTS (type)
12989 = obstack_alloc (&objfile->objfile_obstack,
12990 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12991 * sizeof (struct symbol *)));
12992 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
12993 VEC_address (symbolp, template_args),
12994 (TYPE_N_TEMPLATE_ARGUMENTS (type)
12995 * sizeof (struct symbol *)));
12996 VEC_free (symbolp, template_args);
12997 }
12998
c906108c
SS
12999 /* Attach fields and member functions to the type. */
13000 if (fi.nfields)
e7c27a73 13001 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13002 if (fi.nfnfields)
13003 {
e7c27a73 13004 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13005
c5aa993b 13006 /* Get the type which refers to the base class (possibly this
c906108c 13007 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13008 class from the DW_AT_containing_type attribute. This use of
13009 DW_AT_containing_type is a GNU extension. */
c906108c 13010
e142c38c 13011 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13012 {
e7c27a73 13013 struct type *t = die_containing_type (die, cu);
c906108c
SS
13014
13015 TYPE_VPTR_BASETYPE (type) = t;
13016 if (type == t)
13017 {
c906108c
SS
13018 int i;
13019
13020 /* Our own class provides vtbl ptr. */
13021 for (i = TYPE_NFIELDS (t) - 1;
13022 i >= TYPE_N_BASECLASSES (t);
13023 --i)
13024 {
0d5cff50 13025 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13026
1168df01 13027 if (is_vtable_name (fieldname, cu))
c906108c
SS
13028 {
13029 TYPE_VPTR_FIELDNO (type) = i;
13030 break;
13031 }
13032 }
13033
13034 /* Complain if virtual function table field not found. */
13035 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13036 complaint (&symfile_complaints,
3e43a32a
MS
13037 _("virtual function table pointer "
13038 "not found when defining class '%s'"),
4d3c2250
KB
13039 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13040 "");
c906108c
SS
13041 }
13042 else
13043 {
13044 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13045 }
13046 }
f6235d4c
EZ
13047 else if (cu->producer
13048 && strncmp (cu->producer,
13049 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13050 {
13051 /* The IBM XLC compiler does not provide direct indication
13052 of the containing type, but the vtable pointer is
13053 always named __vfp. */
13054
13055 int i;
13056
13057 for (i = TYPE_NFIELDS (type) - 1;
13058 i >= TYPE_N_BASECLASSES (type);
13059 --i)
13060 {
13061 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13062 {
13063 TYPE_VPTR_FIELDNO (type) = i;
13064 TYPE_VPTR_BASETYPE (type) = type;
13065 break;
13066 }
13067 }
13068 }
c906108c 13069 }
98751a41
JK
13070
13071 /* Copy fi.typedef_field_list linked list elements content into the
13072 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13073 if (fi.typedef_field_list)
13074 {
13075 int i = fi.typedef_field_list_count;
13076
a0d7a4ff 13077 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
13078 TYPE_TYPEDEF_FIELD_ARRAY (type)
13079 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13080 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13081
13082 /* Reverse the list order to keep the debug info elements order. */
13083 while (--i >= 0)
13084 {
13085 struct typedef_field *dest, *src;
6e70227d 13086
98751a41
JK
13087 dest = &TYPE_TYPEDEF_FIELD (type, i);
13088 src = &fi.typedef_field_list->field;
13089 fi.typedef_field_list = fi.typedef_field_list->next;
13090 *dest = *src;
13091 }
13092 }
c767944b
DJ
13093
13094 do_cleanups (back_to);
eb2a6f42
TT
13095
13096 if (HAVE_CPLUS_STRUCT (type))
13097 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 13098 }
63d06c5c 13099
bb5ed363 13100 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13101
90aeadfc
DC
13102 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13103 snapshots) has been known to create a die giving a declaration
13104 for a class that has, as a child, a die giving a definition for a
13105 nested class. So we have to process our children even if the
13106 current die is a declaration. Normally, of course, a declaration
13107 won't have any children at all. */
134d01f1 13108
90aeadfc
DC
13109 while (child_die != NULL && child_die->tag)
13110 {
13111 if (child_die->tag == DW_TAG_member
13112 || child_die->tag == DW_TAG_variable
34eaf542
TT
13113 || child_die->tag == DW_TAG_inheritance
13114 || child_die->tag == DW_TAG_template_value_param
13115 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13116 {
90aeadfc 13117 /* Do nothing. */
134d01f1 13118 }
90aeadfc
DC
13119 else
13120 process_die (child_die, cu);
134d01f1 13121
90aeadfc 13122 child_die = sibling_die (child_die);
134d01f1
DJ
13123 }
13124
fa4028e9
JB
13125 /* Do not consider external references. According to the DWARF standard,
13126 these DIEs are identified by the fact that they have no byte_size
13127 attribute, and a declaration attribute. */
13128 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13129 || !die_is_declaration (die, cu))
c767944b 13130 new_symbol (die, type, cu);
134d01f1
DJ
13131}
13132
55426c9d
JB
13133/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13134 update TYPE using some information only available in DIE's children. */
13135
13136static void
13137update_enumeration_type_from_children (struct die_info *die,
13138 struct type *type,
13139 struct dwarf2_cu *cu)
13140{
13141 struct obstack obstack;
13142 struct die_info *child_die = die->child;
13143 int unsigned_enum = 1;
13144 int flag_enum = 1;
13145 ULONGEST mask = 0;
13146 struct cleanup *old_chain;
13147
13148 obstack_init (&obstack);
13149 old_chain = make_cleanup_obstack_free (&obstack);
13150
13151 while (child_die != NULL && child_die->tag)
13152 {
13153 struct attribute *attr;
13154 LONGEST value;
13155 const gdb_byte *bytes;
13156 struct dwarf2_locexpr_baton *baton;
13157 const char *name;
13158 if (child_die->tag != DW_TAG_enumerator)
13159 continue;
13160
13161 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13162 if (attr == NULL)
13163 continue;
13164
13165 name = dwarf2_name (child_die, cu);
13166 if (name == NULL)
13167 name = "<anonymous enumerator>";
13168
13169 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13170 &value, &bytes, &baton);
13171 if (value < 0)
13172 {
13173 unsigned_enum = 0;
13174 flag_enum = 0;
13175 }
13176 else if ((mask & value) != 0)
13177 flag_enum = 0;
13178 else
13179 mask |= value;
13180
13181 /* If we already know that the enum type is neither unsigned, nor
13182 a flag type, no need to look at the rest of the enumerates. */
13183 if (!unsigned_enum && !flag_enum)
13184 break;
13185 child_die = sibling_die (child_die);
13186 }
13187
13188 if (unsigned_enum)
13189 TYPE_UNSIGNED (type) = 1;
13190 if (flag_enum)
13191 TYPE_FLAG_ENUM (type) = 1;
13192
13193 do_cleanups (old_chain);
13194}
13195
134d01f1
DJ
13196/* Given a DW_AT_enumeration_type die, set its type. We do not
13197 complete the type's fields yet, or create any symbols. */
c906108c 13198
f792889a 13199static struct type *
134d01f1 13200read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13201{
e7c27a73 13202 struct objfile *objfile = cu->objfile;
c906108c 13203 struct type *type;
c906108c 13204 struct attribute *attr;
0114d602 13205 const char *name;
134d01f1 13206
348e048f
DE
13207 /* If the definition of this type lives in .debug_types, read that type.
13208 Don't follow DW_AT_specification though, that will take us back up
13209 the chain and we want to go down. */
45e58e77 13210 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13211 if (attr)
13212 {
ac9ec31b 13213 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13214
ac9ec31b 13215 /* The type's CU may not be the same as CU.
02142a6c 13216 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13217 return set_die_type (die, type, cu);
13218 }
13219
c906108c
SS
13220 type = alloc_type (objfile);
13221
13222 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13223 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13224 if (name != NULL)
7d455152 13225 TYPE_TAG_NAME (type) = name;
c906108c 13226
e142c38c 13227 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13228 if (attr)
13229 {
13230 TYPE_LENGTH (type) = DW_UNSND (attr);
13231 }
13232 else
13233 {
13234 TYPE_LENGTH (type) = 0;
13235 }
13236
137033e9
JB
13237 /* The enumeration DIE can be incomplete. In Ada, any type can be
13238 declared as private in the package spec, and then defined only
13239 inside the package body. Such types are known as Taft Amendment
13240 Types. When another package uses such a type, an incomplete DIE
13241 may be generated by the compiler. */
02eb380e 13242 if (die_is_declaration (die, cu))
876cecd0 13243 TYPE_STUB (type) = 1;
02eb380e 13244
55426c9d
JB
13245 /* Finish the creation of this type by using the enum's children. */
13246 update_enumeration_type_from_children (die, type, cu);
13247
f792889a 13248 return set_die_type (die, type, cu);
134d01f1
DJ
13249}
13250
13251/* Given a pointer to a die which begins an enumeration, process all
13252 the dies that define the members of the enumeration, and create the
13253 symbol for the enumeration type.
13254
13255 NOTE: We reverse the order of the element list. */
13256
13257static void
13258process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13259{
f792889a 13260 struct type *this_type;
134d01f1 13261
f792889a
DJ
13262 this_type = get_die_type (die, cu);
13263 if (this_type == NULL)
13264 this_type = read_enumeration_type (die, cu);
9dc481d3 13265
639d11d3 13266 if (die->child != NULL)
c906108c 13267 {
9dc481d3
DE
13268 struct die_info *child_die;
13269 struct symbol *sym;
13270 struct field *fields = NULL;
13271 int num_fields = 0;
15d034d0 13272 const char *name;
9dc481d3 13273
639d11d3 13274 child_die = die->child;
c906108c
SS
13275 while (child_die && child_die->tag)
13276 {
13277 if (child_die->tag != DW_TAG_enumerator)
13278 {
e7c27a73 13279 process_die (child_die, cu);
c906108c
SS
13280 }
13281 else
13282 {
39cbfefa
DJ
13283 name = dwarf2_name (child_die, cu);
13284 if (name)
c906108c 13285 {
f792889a 13286 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
13287
13288 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13289 {
13290 fields = (struct field *)
13291 xrealloc (fields,
13292 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13293 * sizeof (struct field));
c906108c
SS
13294 }
13295
3567439c 13296 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13297 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13298 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13299 FIELD_BITSIZE (fields[num_fields]) = 0;
13300
13301 num_fields++;
13302 }
13303 }
13304
13305 child_die = sibling_die (child_die);
13306 }
13307
13308 if (num_fields)
13309 {
f792889a
DJ
13310 TYPE_NFIELDS (this_type) = num_fields;
13311 TYPE_FIELDS (this_type) = (struct field *)
13312 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13313 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13314 sizeof (struct field) * num_fields);
b8c9b27d 13315 xfree (fields);
c906108c 13316 }
c906108c 13317 }
134d01f1 13318
6c83ed52
TT
13319 /* If we are reading an enum from a .debug_types unit, and the enum
13320 is a declaration, and the enum is not the signatured type in the
13321 unit, then we do not want to add a symbol for it. Adding a
13322 symbol would in some cases obscure the true definition of the
13323 enum, giving users an incomplete type when the definition is
13324 actually available. Note that we do not want to do this for all
13325 enums which are just declarations, because C++0x allows forward
13326 enum declarations. */
3019eac3 13327 if (cu->per_cu->is_debug_types
6c83ed52
TT
13328 && die_is_declaration (die, cu))
13329 {
52dc124a 13330 struct signatured_type *sig_type;
6c83ed52 13331
c0f78cd4 13332 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13333 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13334 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13335 return;
13336 }
13337
f792889a 13338 new_symbol (die, this_type, cu);
c906108c
SS
13339}
13340
13341/* Extract all information from a DW_TAG_array_type DIE and put it in
13342 the DIE's type field. For now, this only handles one dimensional
13343 arrays. */
13344
f792889a 13345static struct type *
e7c27a73 13346read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13347{
e7c27a73 13348 struct objfile *objfile = cu->objfile;
c906108c 13349 struct die_info *child_die;
7e314c57 13350 struct type *type;
c906108c
SS
13351 struct type *element_type, *range_type, *index_type;
13352 struct type **range_types = NULL;
13353 struct attribute *attr;
13354 int ndim = 0;
13355 struct cleanup *back_to;
15d034d0 13356 const char *name;
dc53a7ad 13357 unsigned int bit_stride = 0;
c906108c 13358
e7c27a73 13359 element_type = die_type (die, cu);
c906108c 13360
7e314c57
JK
13361 /* The die_type call above may have already set the type for this DIE. */
13362 type = get_die_type (die, cu);
13363 if (type)
13364 return type;
13365
dc53a7ad
JB
13366 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13367 if (attr != NULL)
13368 bit_stride = DW_UNSND (attr) * 8;
13369
13370 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13371 if (attr != NULL)
13372 bit_stride = DW_UNSND (attr);
13373
c906108c
SS
13374 /* Irix 6.2 native cc creates array types without children for
13375 arrays with unspecified length. */
639d11d3 13376 if (die->child == NULL)
c906108c 13377 {
46bf5051 13378 index_type = objfile_type (objfile)->builtin_int;
c906108c 13379 range_type = create_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
13380 type = create_array_type_with_stride (NULL, element_type, range_type,
13381 bit_stride);
f792889a 13382 return set_die_type (die, type, cu);
c906108c
SS
13383 }
13384
13385 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13386 child_die = die->child;
c906108c
SS
13387 while (child_die && child_die->tag)
13388 {
13389 if (child_die->tag == DW_TAG_subrange_type)
13390 {
f792889a 13391 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13392
f792889a 13393 if (child_type != NULL)
a02abb62 13394 {
0963b4bd
MS
13395 /* The range type was succesfully read. Save it for the
13396 array type creation. */
a02abb62
JB
13397 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13398 {
13399 range_types = (struct type **)
13400 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13401 * sizeof (struct type *));
13402 if (ndim == 0)
13403 make_cleanup (free_current_contents, &range_types);
13404 }
f792889a 13405 range_types[ndim++] = child_type;
a02abb62 13406 }
c906108c
SS
13407 }
13408 child_die = sibling_die (child_die);
13409 }
13410
13411 /* Dwarf2 dimensions are output from left to right, create the
13412 necessary array types in backwards order. */
7ca2d3a3 13413
c906108c 13414 type = element_type;
7ca2d3a3
DL
13415
13416 if (read_array_order (die, cu) == DW_ORD_col_major)
13417 {
13418 int i = 0;
9a619af0 13419
7ca2d3a3 13420 while (i < ndim)
dc53a7ad
JB
13421 type = create_array_type_with_stride (NULL, type, range_types[i++],
13422 bit_stride);
7ca2d3a3
DL
13423 }
13424 else
13425 {
13426 while (ndim-- > 0)
dc53a7ad
JB
13427 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13428 bit_stride);
7ca2d3a3 13429 }
c906108c 13430
f5f8a009
EZ
13431 /* Understand Dwarf2 support for vector types (like they occur on
13432 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13433 array type. This is not part of the Dwarf2/3 standard yet, but a
13434 custom vendor extension. The main difference between a regular
13435 array and the vector variant is that vectors are passed by value
13436 to functions. */
e142c38c 13437 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 13438 if (attr)
ea37ba09 13439 make_vector_type (type);
f5f8a009 13440
dbc98a8b
KW
13441 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13442 implementation may choose to implement triple vectors using this
13443 attribute. */
13444 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13445 if (attr)
13446 {
13447 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13448 TYPE_LENGTH (type) = DW_UNSND (attr);
13449 else
3e43a32a
MS
13450 complaint (&symfile_complaints,
13451 _("DW_AT_byte_size for array type smaller "
13452 "than the total size of elements"));
dbc98a8b
KW
13453 }
13454
39cbfefa
DJ
13455 name = dwarf2_name (die, cu);
13456 if (name)
13457 TYPE_NAME (type) = name;
6e70227d 13458
0963b4bd 13459 /* Install the type in the die. */
7e314c57
JK
13460 set_die_type (die, type, cu);
13461
13462 /* set_die_type should be already done. */
b4ba55a1
JB
13463 set_descriptive_type (type, die, cu);
13464
c906108c
SS
13465 do_cleanups (back_to);
13466
7e314c57 13467 return type;
c906108c
SS
13468}
13469
7ca2d3a3 13470static enum dwarf_array_dim_ordering
6e70227d 13471read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
13472{
13473 struct attribute *attr;
13474
13475 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13476
13477 if (attr) return DW_SND (attr);
13478
0963b4bd
MS
13479 /* GNU F77 is a special case, as at 08/2004 array type info is the
13480 opposite order to the dwarf2 specification, but data is still
13481 laid out as per normal fortran.
7ca2d3a3 13482
0963b4bd
MS
13483 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13484 version checking. */
7ca2d3a3 13485
905e0470
PM
13486 if (cu->language == language_fortran
13487 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
13488 {
13489 return DW_ORD_row_major;
13490 }
13491
6e70227d 13492 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
13493 {
13494 case array_column_major:
13495 return DW_ORD_col_major;
13496 case array_row_major:
13497 default:
13498 return DW_ORD_row_major;
13499 };
13500}
13501
72019c9c 13502/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 13503 the DIE's type field. */
72019c9c 13504
f792889a 13505static struct type *
72019c9c
GM
13506read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13507{
7e314c57
JK
13508 struct type *domain_type, *set_type;
13509 struct attribute *attr;
f792889a 13510
7e314c57
JK
13511 domain_type = die_type (die, cu);
13512
13513 /* The die_type call above may have already set the type for this DIE. */
13514 set_type = get_die_type (die, cu);
13515 if (set_type)
13516 return set_type;
13517
13518 set_type = create_set_type (NULL, domain_type);
13519
13520 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
13521 if (attr)
13522 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 13523
f792889a 13524 return set_die_type (die, set_type, cu);
72019c9c 13525}
7ca2d3a3 13526
0971de02
TT
13527/* A helper for read_common_block that creates a locexpr baton.
13528 SYM is the symbol which we are marking as computed.
13529 COMMON_DIE is the DIE for the common block.
13530 COMMON_LOC is the location expression attribute for the common
13531 block itself.
13532 MEMBER_LOC is the location expression attribute for the particular
13533 member of the common block that we are processing.
13534 CU is the CU from which the above come. */
13535
13536static void
13537mark_common_block_symbol_computed (struct symbol *sym,
13538 struct die_info *common_die,
13539 struct attribute *common_loc,
13540 struct attribute *member_loc,
13541 struct dwarf2_cu *cu)
13542{
13543 struct objfile *objfile = dwarf2_per_objfile->objfile;
13544 struct dwarf2_locexpr_baton *baton;
13545 gdb_byte *ptr;
13546 unsigned int cu_off;
13547 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13548 LONGEST offset = 0;
13549
13550 gdb_assert (common_loc && member_loc);
13551 gdb_assert (attr_form_is_block (common_loc));
13552 gdb_assert (attr_form_is_block (member_loc)
13553 || attr_form_is_constant (member_loc));
13554
13555 baton = obstack_alloc (&objfile->objfile_obstack,
13556 sizeof (struct dwarf2_locexpr_baton));
13557 baton->per_cu = cu->per_cu;
13558 gdb_assert (baton->per_cu);
13559
13560 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13561
13562 if (attr_form_is_constant (member_loc))
13563 {
13564 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13565 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13566 }
13567 else
13568 baton->size += DW_BLOCK (member_loc)->size;
13569
13570 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13571 baton->data = ptr;
13572
13573 *ptr++ = DW_OP_call4;
13574 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13575 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13576 ptr += 4;
13577
13578 if (attr_form_is_constant (member_loc))
13579 {
13580 *ptr++ = DW_OP_addr;
13581 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13582 ptr += cu->header.addr_size;
13583 }
13584 else
13585 {
13586 /* We have to copy the data here, because DW_OP_call4 will only
13587 use a DW_AT_location attribute. */
13588 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13589 ptr += DW_BLOCK (member_loc)->size;
13590 }
13591
13592 *ptr++ = DW_OP_plus;
13593 gdb_assert (ptr - baton->data == baton->size);
13594
0971de02 13595 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 13596 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
13597}
13598
4357ac6c
TT
13599/* Create appropriate locally-scoped variables for all the
13600 DW_TAG_common_block entries. Also create a struct common_block
13601 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13602 is used to sepate the common blocks name namespace from regular
13603 variable names. */
c906108c
SS
13604
13605static void
e7c27a73 13606read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13607{
0971de02
TT
13608 struct attribute *attr;
13609
13610 attr = dwarf2_attr (die, DW_AT_location, cu);
13611 if (attr)
13612 {
13613 /* Support the .debug_loc offsets. */
13614 if (attr_form_is_block (attr))
13615 {
13616 /* Ok. */
13617 }
13618 else if (attr_form_is_section_offset (attr))
13619 {
13620 dwarf2_complex_location_expr_complaint ();
13621 attr = NULL;
13622 }
13623 else
13624 {
13625 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13626 "common block member");
13627 attr = NULL;
13628 }
13629 }
13630
639d11d3 13631 if (die->child != NULL)
c906108c 13632 {
4357ac6c
TT
13633 struct objfile *objfile = cu->objfile;
13634 struct die_info *child_die;
13635 size_t n_entries = 0, size;
13636 struct common_block *common_block;
13637 struct symbol *sym;
74ac6d43 13638
4357ac6c
TT
13639 for (child_die = die->child;
13640 child_die && child_die->tag;
13641 child_die = sibling_die (child_die))
13642 ++n_entries;
13643
13644 size = (sizeof (struct common_block)
13645 + (n_entries - 1) * sizeof (struct symbol *));
13646 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13647 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13648 common_block->n_entries = 0;
13649
13650 for (child_die = die->child;
13651 child_die && child_die->tag;
13652 child_die = sibling_die (child_die))
13653 {
13654 /* Create the symbol in the DW_TAG_common_block block in the current
13655 symbol scope. */
e7c27a73 13656 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
13657 if (sym != NULL)
13658 {
13659 struct attribute *member_loc;
13660
13661 common_block->contents[common_block->n_entries++] = sym;
13662
13663 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13664 cu);
13665 if (member_loc)
13666 {
13667 /* GDB has handled this for a long time, but it is
13668 not specified by DWARF. It seems to have been
13669 emitted by gfortran at least as recently as:
13670 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13671 complaint (&symfile_complaints,
13672 _("Variable in common block has "
13673 "DW_AT_data_member_location "
13674 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
13675 child_die->offset.sect_off,
13676 objfile_name (cu->objfile));
0971de02
TT
13677
13678 if (attr_form_is_section_offset (member_loc))
13679 dwarf2_complex_location_expr_complaint ();
13680 else if (attr_form_is_constant (member_loc)
13681 || attr_form_is_block (member_loc))
13682 {
13683 if (attr)
13684 mark_common_block_symbol_computed (sym, die, attr,
13685 member_loc, cu);
13686 }
13687 else
13688 dwarf2_complex_location_expr_complaint ();
13689 }
13690 }
c906108c 13691 }
4357ac6c
TT
13692
13693 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13694 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
13695 }
13696}
13697
0114d602 13698/* Create a type for a C++ namespace. */
d9fa45fe 13699
0114d602
DJ
13700static struct type *
13701read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 13702{
e7c27a73 13703 struct objfile *objfile = cu->objfile;
0114d602 13704 const char *previous_prefix, *name;
9219021c 13705 int is_anonymous;
0114d602
DJ
13706 struct type *type;
13707
13708 /* For extensions, reuse the type of the original namespace. */
13709 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13710 {
13711 struct die_info *ext_die;
13712 struct dwarf2_cu *ext_cu = cu;
9a619af0 13713
0114d602
DJ
13714 ext_die = dwarf2_extension (die, &ext_cu);
13715 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
13716
13717 /* EXT_CU may not be the same as CU.
02142a6c 13718 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
13719 return set_die_type (die, type, cu);
13720 }
9219021c 13721
e142c38c 13722 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
13723
13724 /* Now build the name of the current namespace. */
13725
0114d602
DJ
13726 previous_prefix = determine_prefix (die, cu);
13727 if (previous_prefix[0] != '\0')
13728 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 13729 previous_prefix, name, 0, cu);
0114d602
DJ
13730
13731 /* Create the type. */
13732 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13733 objfile);
abee88f2 13734 TYPE_NAME (type) = name;
0114d602
DJ
13735 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13736
60531b24 13737 return set_die_type (die, type, cu);
0114d602
DJ
13738}
13739
13740/* Read a C++ namespace. */
13741
13742static void
13743read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13744{
13745 struct objfile *objfile = cu->objfile;
0114d602 13746 int is_anonymous;
9219021c 13747
5c4e30ca
DC
13748 /* Add a symbol associated to this if we haven't seen the namespace
13749 before. Also, add a using directive if it's an anonymous
13750 namespace. */
9219021c 13751
f2f0e013 13752 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
13753 {
13754 struct type *type;
13755
0114d602 13756 type = read_type_die (die, cu);
e7c27a73 13757 new_symbol (die, type, cu);
5c4e30ca 13758
e8e80198 13759 namespace_name (die, &is_anonymous, cu);
5c4e30ca 13760 if (is_anonymous)
0114d602
DJ
13761 {
13762 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 13763
c0cc3a76 13764 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12aaed36 13765 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 13766 }
5c4e30ca 13767 }
9219021c 13768
639d11d3 13769 if (die->child != NULL)
d9fa45fe 13770 {
639d11d3 13771 struct die_info *child_die = die->child;
6e70227d 13772
d9fa45fe
DC
13773 while (child_die && child_die->tag)
13774 {
e7c27a73 13775 process_die (child_die, cu);
d9fa45fe
DC
13776 child_die = sibling_die (child_die);
13777 }
13778 }
38d518c9
EZ
13779}
13780
f55ee35c
JK
13781/* Read a Fortran module as type. This DIE can be only a declaration used for
13782 imported module. Still we need that type as local Fortran "use ... only"
13783 declaration imports depend on the created type in determine_prefix. */
13784
13785static struct type *
13786read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13787{
13788 struct objfile *objfile = cu->objfile;
15d034d0 13789 const char *module_name;
f55ee35c
JK
13790 struct type *type;
13791
13792 module_name = dwarf2_name (die, cu);
13793 if (!module_name)
3e43a32a
MS
13794 complaint (&symfile_complaints,
13795 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 13796 die->offset.sect_off);
f55ee35c
JK
13797 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13798
13799 /* determine_prefix uses TYPE_TAG_NAME. */
13800 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13801
13802 return set_die_type (die, type, cu);
13803}
13804
5d7cb8df
JK
13805/* Read a Fortran module. */
13806
13807static void
13808read_module (struct die_info *die, struct dwarf2_cu *cu)
13809{
13810 struct die_info *child_die = die->child;
530e8392
KB
13811 struct type *type;
13812
13813 type = read_type_die (die, cu);
13814 new_symbol (die, type, cu);
5d7cb8df 13815
5d7cb8df
JK
13816 while (child_die && child_die->tag)
13817 {
13818 process_die (child_die, cu);
13819 child_die = sibling_die (child_die);
13820 }
13821}
13822
38d518c9
EZ
13823/* Return the name of the namespace represented by DIE. Set
13824 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13825 namespace. */
13826
13827static const char *
e142c38c 13828namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
13829{
13830 struct die_info *current_die;
13831 const char *name = NULL;
13832
13833 /* Loop through the extensions until we find a name. */
13834
13835 for (current_die = die;
13836 current_die != NULL;
f2f0e013 13837 current_die = dwarf2_extension (die, &cu))
38d518c9 13838 {
e142c38c 13839 name = dwarf2_name (current_die, cu);
38d518c9
EZ
13840 if (name != NULL)
13841 break;
13842 }
13843
13844 /* Is it an anonymous namespace? */
13845
13846 *is_anonymous = (name == NULL);
13847 if (*is_anonymous)
2b1dbab0 13848 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
13849
13850 return name;
d9fa45fe
DC
13851}
13852
c906108c
SS
13853/* Extract all information from a DW_TAG_pointer_type DIE and add to
13854 the user defined type vector. */
13855
f792889a 13856static struct type *
e7c27a73 13857read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13858{
5e2b427d 13859 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 13860 struct comp_unit_head *cu_header = &cu->header;
c906108c 13861 struct type *type;
8b2dbe47
KB
13862 struct attribute *attr_byte_size;
13863 struct attribute *attr_address_class;
13864 int byte_size, addr_class;
7e314c57
JK
13865 struct type *target_type;
13866
13867 target_type = die_type (die, cu);
c906108c 13868
7e314c57
JK
13869 /* The die_type call above may have already set the type for this DIE. */
13870 type = get_die_type (die, cu);
13871 if (type)
13872 return type;
13873
13874 type = lookup_pointer_type (target_type);
8b2dbe47 13875
e142c38c 13876 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
13877 if (attr_byte_size)
13878 byte_size = DW_UNSND (attr_byte_size);
c906108c 13879 else
8b2dbe47
KB
13880 byte_size = cu_header->addr_size;
13881
e142c38c 13882 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
13883 if (attr_address_class)
13884 addr_class = DW_UNSND (attr_address_class);
13885 else
13886 addr_class = DW_ADDR_none;
13887
13888 /* If the pointer size or address class is different than the
13889 default, create a type variant marked as such and set the
13890 length accordingly. */
13891 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 13892 {
5e2b427d 13893 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
13894 {
13895 int type_flags;
13896
849957d9 13897 type_flags = gdbarch_address_class_type_flags
5e2b427d 13898 (gdbarch, byte_size, addr_class);
876cecd0
TT
13899 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
13900 == 0);
8b2dbe47
KB
13901 type = make_type_with_address_space (type, type_flags);
13902 }
13903 else if (TYPE_LENGTH (type) != byte_size)
13904 {
3e43a32a
MS
13905 complaint (&symfile_complaints,
13906 _("invalid pointer size %d"), byte_size);
8b2dbe47 13907 }
6e70227d 13908 else
9a619af0
MS
13909 {
13910 /* Should we also complain about unhandled address classes? */
13911 }
c906108c 13912 }
8b2dbe47
KB
13913
13914 TYPE_LENGTH (type) = byte_size;
f792889a 13915 return set_die_type (die, type, cu);
c906108c
SS
13916}
13917
13918/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
13919 the user defined type vector. */
13920
f792889a 13921static struct type *
e7c27a73 13922read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
13923{
13924 struct type *type;
13925 struct type *to_type;
13926 struct type *domain;
13927
e7c27a73
DJ
13928 to_type = die_type (die, cu);
13929 domain = die_containing_type (die, cu);
0d5de010 13930
7e314c57
JK
13931 /* The calls above may have already set the type for this DIE. */
13932 type = get_die_type (die, cu);
13933 if (type)
13934 return type;
13935
0d5de010
DJ
13936 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
13937 type = lookup_methodptr_type (to_type);
7078baeb
TT
13938 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
13939 {
13940 struct type *new_type = alloc_type (cu->objfile);
13941
13942 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
13943 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
13944 TYPE_VARARGS (to_type));
13945 type = lookup_methodptr_type (new_type);
13946 }
0d5de010
DJ
13947 else
13948 type = lookup_memberptr_type (to_type, domain);
c906108c 13949
f792889a 13950 return set_die_type (die, type, cu);
c906108c
SS
13951}
13952
13953/* Extract all information from a DW_TAG_reference_type DIE and add to
13954 the user defined type vector. */
13955
f792889a 13956static struct type *
e7c27a73 13957read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13958{
e7c27a73 13959 struct comp_unit_head *cu_header = &cu->header;
7e314c57 13960 struct type *type, *target_type;
c906108c
SS
13961 struct attribute *attr;
13962
7e314c57
JK
13963 target_type = die_type (die, cu);
13964
13965 /* The die_type call above may have already set the type for this DIE. */
13966 type = get_die_type (die, cu);
13967 if (type)
13968 return type;
13969
13970 type = lookup_reference_type (target_type);
e142c38c 13971 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13972 if (attr)
13973 {
13974 TYPE_LENGTH (type) = DW_UNSND (attr);
13975 }
13976 else
13977 {
107d2387 13978 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 13979 }
f792889a 13980 return set_die_type (die, type, cu);
c906108c
SS
13981}
13982
f792889a 13983static struct type *
e7c27a73 13984read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13985{
f792889a 13986 struct type *base_type, *cv_type;
c906108c 13987
e7c27a73 13988 base_type = die_type (die, cu);
7e314c57
JK
13989
13990 /* The die_type call above may have already set the type for this DIE. */
13991 cv_type = get_die_type (die, cu);
13992 if (cv_type)
13993 return cv_type;
13994
2f608a3a
KW
13995 /* In case the const qualifier is applied to an array type, the element type
13996 is so qualified, not the array type (section 6.7.3 of C99). */
13997 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
13998 {
13999 struct type *el_type, *inner_array;
14000
14001 base_type = copy_type (base_type);
14002 inner_array = base_type;
14003
14004 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14005 {
14006 TYPE_TARGET_TYPE (inner_array) =
14007 copy_type (TYPE_TARGET_TYPE (inner_array));
14008 inner_array = TYPE_TARGET_TYPE (inner_array);
14009 }
14010
14011 el_type = TYPE_TARGET_TYPE (inner_array);
14012 TYPE_TARGET_TYPE (inner_array) =
14013 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
14014
14015 return set_die_type (die, base_type, cu);
14016 }
14017
f792889a
DJ
14018 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14019 return set_die_type (die, cv_type, cu);
c906108c
SS
14020}
14021
f792889a 14022static struct type *
e7c27a73 14023read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14024{
f792889a 14025 struct type *base_type, *cv_type;
c906108c 14026
e7c27a73 14027 base_type = die_type (die, cu);
7e314c57
JK
14028
14029 /* The die_type call above may have already set the type for this DIE. */
14030 cv_type = get_die_type (die, cu);
14031 if (cv_type)
14032 return cv_type;
14033
f792889a
DJ
14034 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14035 return set_die_type (die, cv_type, cu);
c906108c
SS
14036}
14037
06d66ee9
TT
14038/* Handle DW_TAG_restrict_type. */
14039
14040static struct type *
14041read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14042{
14043 struct type *base_type, *cv_type;
14044
14045 base_type = die_type (die, cu);
14046
14047 /* The die_type call above may have already set the type for this DIE. */
14048 cv_type = get_die_type (die, cu);
14049 if (cv_type)
14050 return cv_type;
14051
14052 cv_type = make_restrict_type (base_type);
14053 return set_die_type (die, cv_type, cu);
14054}
14055
c906108c
SS
14056/* Extract all information from a DW_TAG_string_type DIE and add to
14057 the user defined type vector. It isn't really a user defined type,
14058 but it behaves like one, with other DIE's using an AT_user_def_type
14059 attribute to reference it. */
14060
f792889a 14061static struct type *
e7c27a73 14062read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14063{
e7c27a73 14064 struct objfile *objfile = cu->objfile;
3b7538c0 14065 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14066 struct type *type, *range_type, *index_type, *char_type;
14067 struct attribute *attr;
14068 unsigned int length;
14069
e142c38c 14070 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14071 if (attr)
14072 {
14073 length = DW_UNSND (attr);
14074 }
14075 else
14076 {
0963b4bd 14077 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14078 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14079 if (attr)
14080 {
14081 length = DW_UNSND (attr);
14082 }
14083 else
14084 {
14085 length = 1;
14086 }
c906108c 14087 }
6ccb9162 14088
46bf5051 14089 index_type = objfile_type (objfile)->builtin_int;
c906108c 14090 range_type = create_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14091 char_type = language_string_char_type (cu->language_defn, gdbarch);
14092 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14093
f792889a 14094 return set_die_type (die, type, cu);
c906108c
SS
14095}
14096
4d804846
JB
14097/* Assuming that DIE corresponds to a function, returns nonzero
14098 if the function is prototyped. */
14099
14100static int
14101prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14102{
14103 struct attribute *attr;
14104
14105 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14106 if (attr && (DW_UNSND (attr) != 0))
14107 return 1;
14108
14109 /* The DWARF standard implies that the DW_AT_prototyped attribute
14110 is only meaninful for C, but the concept also extends to other
14111 languages that allow unprototyped functions (Eg: Objective C).
14112 For all other languages, assume that functions are always
14113 prototyped. */
14114 if (cu->language != language_c
14115 && cu->language != language_objc
14116 && cu->language != language_opencl)
14117 return 1;
14118
14119 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14120 prototyped and unprototyped functions; default to prototyped,
14121 since that is more common in modern code (and RealView warns
14122 about unprototyped functions). */
14123 if (producer_is_realview (cu->producer))
14124 return 1;
14125
14126 return 0;
14127}
14128
c906108c
SS
14129/* Handle DIES due to C code like:
14130
14131 struct foo
c5aa993b
JM
14132 {
14133 int (*funcp)(int a, long l);
14134 int b;
14135 };
c906108c 14136
0963b4bd 14137 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14138
f792889a 14139static struct type *
e7c27a73 14140read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14141{
bb5ed363 14142 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14143 struct type *type; /* Type that this function returns. */
14144 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14145 struct attribute *attr;
14146
e7c27a73 14147 type = die_type (die, cu);
7e314c57
JK
14148
14149 /* The die_type call above may have already set the type for this DIE. */
14150 ftype = get_die_type (die, cu);
14151 if (ftype)
14152 return ftype;
14153
0c8b41f1 14154 ftype = lookup_function_type (type);
c906108c 14155
4d804846 14156 if (prototyped_function_p (die, cu))
a6c727b2 14157 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14158
c055b101
CV
14159 /* Store the calling convention in the type if it's available in
14160 the subroutine die. Otherwise set the calling convention to
14161 the default value DW_CC_normal. */
14162 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14163 if (attr)
14164 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14165 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14166 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14167 else
14168 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2
GM
14169
14170 /* We need to add the subroutine type to the die immediately so
14171 we don't infinitely recurse when dealing with parameters
0963b4bd 14172 declared as the same subroutine type. */
76c10ea2 14173 set_die_type (die, ftype, cu);
6e70227d 14174
639d11d3 14175 if (die->child != NULL)
c906108c 14176 {
bb5ed363 14177 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14178 struct die_info *child_die;
8072405b 14179 int nparams, iparams;
c906108c
SS
14180
14181 /* Count the number of parameters.
14182 FIXME: GDB currently ignores vararg functions, but knows about
14183 vararg member functions. */
8072405b 14184 nparams = 0;
639d11d3 14185 child_die = die->child;
c906108c
SS
14186 while (child_die && child_die->tag)
14187 {
14188 if (child_die->tag == DW_TAG_formal_parameter)
14189 nparams++;
14190 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14191 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14192 child_die = sibling_die (child_die);
14193 }
14194
14195 /* Allocate storage for parameters and fill them in. */
14196 TYPE_NFIELDS (ftype) = nparams;
14197 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14198 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14199
8072405b
JK
14200 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14201 even if we error out during the parameters reading below. */
14202 for (iparams = 0; iparams < nparams; iparams++)
14203 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14204
14205 iparams = 0;
639d11d3 14206 child_die = die->child;
c906108c
SS
14207 while (child_die && child_die->tag)
14208 {
14209 if (child_die->tag == DW_TAG_formal_parameter)
14210 {
3ce3b1ba
PA
14211 struct type *arg_type;
14212
14213 /* DWARF version 2 has no clean way to discern C++
14214 static and non-static member functions. G++ helps
14215 GDB by marking the first parameter for non-static
14216 member functions (which is the this pointer) as
14217 artificial. We pass this information to
14218 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14219
14220 DWARF version 3 added DW_AT_object_pointer, which GCC
14221 4.5 does not yet generate. */
e142c38c 14222 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14223 if (attr)
14224 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14225 else
418835cc
KS
14226 {
14227 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14228
14229 /* GCC/43521: In java, the formal parameter
14230 "this" is sometimes not marked with DW_AT_artificial. */
14231 if (cu->language == language_java)
14232 {
14233 const char *name = dwarf2_name (child_die, cu);
9a619af0 14234
418835cc
KS
14235 if (name && !strcmp (name, "this"))
14236 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14237 }
14238 }
3ce3b1ba
PA
14239 arg_type = die_type (child_die, cu);
14240
14241 /* RealView does not mark THIS as const, which the testsuite
14242 expects. GCC marks THIS as const in method definitions,
14243 but not in the class specifications (GCC PR 43053). */
14244 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14245 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14246 {
14247 int is_this = 0;
14248 struct dwarf2_cu *arg_cu = cu;
14249 const char *name = dwarf2_name (child_die, cu);
14250
14251 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14252 if (attr)
14253 {
14254 /* If the compiler emits this, use it. */
14255 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14256 is_this = 1;
14257 }
14258 else if (name && strcmp (name, "this") == 0)
14259 /* Function definitions will have the argument names. */
14260 is_this = 1;
14261 else if (name == NULL && iparams == 0)
14262 /* Declarations may not have the names, so like
14263 elsewhere in GDB, assume an artificial first
14264 argument is "this". */
14265 is_this = 1;
14266
14267 if (is_this)
14268 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14269 arg_type, 0);
14270 }
14271
14272 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14273 iparams++;
14274 }
14275 child_die = sibling_die (child_die);
14276 }
14277 }
14278
76c10ea2 14279 return ftype;
c906108c
SS
14280}
14281
f792889a 14282static struct type *
e7c27a73 14283read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14284{
e7c27a73 14285 struct objfile *objfile = cu->objfile;
0114d602 14286 const char *name = NULL;
3c8e0968 14287 struct type *this_type, *target_type;
c906108c 14288
94af9270 14289 name = dwarf2_full_name (NULL, die, cu);
f792889a 14290 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602 14291 TYPE_FLAG_TARGET_STUB, NULL, objfile);
abee88f2 14292 TYPE_NAME (this_type) = name;
f792889a 14293 set_die_type (die, this_type, cu);
3c8e0968
DE
14294 target_type = die_type (die, cu);
14295 if (target_type != this_type)
14296 TYPE_TARGET_TYPE (this_type) = target_type;
14297 else
14298 {
14299 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14300 spec and cause infinite loops in GDB. */
14301 complaint (&symfile_complaints,
14302 _("Self-referential DW_TAG_typedef "
14303 "- DIE at 0x%x [in module %s]"),
4262abfb 14304 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14305 TYPE_TARGET_TYPE (this_type) = NULL;
14306 }
f792889a 14307 return this_type;
c906108c
SS
14308}
14309
14310/* Find a representation of a given base type and install
14311 it in the TYPE field of the die. */
14312
f792889a 14313static struct type *
e7c27a73 14314read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14315{
e7c27a73 14316 struct objfile *objfile = cu->objfile;
c906108c
SS
14317 struct type *type;
14318 struct attribute *attr;
14319 int encoding = 0, size = 0;
15d034d0 14320 const char *name;
6ccb9162
UW
14321 enum type_code code = TYPE_CODE_INT;
14322 int type_flags = 0;
14323 struct type *target_type = NULL;
c906108c 14324
e142c38c 14325 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14326 if (attr)
14327 {
14328 encoding = DW_UNSND (attr);
14329 }
e142c38c 14330 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14331 if (attr)
14332 {
14333 size = DW_UNSND (attr);
14334 }
39cbfefa 14335 name = dwarf2_name (die, cu);
6ccb9162 14336 if (!name)
c906108c 14337 {
6ccb9162
UW
14338 complaint (&symfile_complaints,
14339 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14340 }
6ccb9162
UW
14341
14342 switch (encoding)
c906108c 14343 {
6ccb9162
UW
14344 case DW_ATE_address:
14345 /* Turn DW_ATE_address into a void * pointer. */
14346 code = TYPE_CODE_PTR;
14347 type_flags |= TYPE_FLAG_UNSIGNED;
14348 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14349 break;
14350 case DW_ATE_boolean:
14351 code = TYPE_CODE_BOOL;
14352 type_flags |= TYPE_FLAG_UNSIGNED;
14353 break;
14354 case DW_ATE_complex_float:
14355 code = TYPE_CODE_COMPLEX;
14356 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14357 break;
14358 case DW_ATE_decimal_float:
14359 code = TYPE_CODE_DECFLOAT;
14360 break;
14361 case DW_ATE_float:
14362 code = TYPE_CODE_FLT;
14363 break;
14364 case DW_ATE_signed:
14365 break;
14366 case DW_ATE_unsigned:
14367 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
14368 if (cu->language == language_fortran
14369 && name
14370 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14371 code = TYPE_CODE_CHAR;
6ccb9162
UW
14372 break;
14373 case DW_ATE_signed_char:
6e70227d 14374 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14375 || cu->language == language_pascal
14376 || cu->language == language_fortran)
6ccb9162
UW
14377 code = TYPE_CODE_CHAR;
14378 break;
14379 case DW_ATE_unsigned_char:
868a0084 14380 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14381 || cu->language == language_pascal
14382 || cu->language == language_fortran)
6ccb9162
UW
14383 code = TYPE_CODE_CHAR;
14384 type_flags |= TYPE_FLAG_UNSIGNED;
14385 break;
75079b2b
TT
14386 case DW_ATE_UTF:
14387 /* We just treat this as an integer and then recognize the
14388 type by name elsewhere. */
14389 break;
14390
6ccb9162
UW
14391 default:
14392 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14393 dwarf_type_encoding_name (encoding));
14394 break;
c906108c 14395 }
6ccb9162 14396
0114d602
DJ
14397 type = init_type (code, size, type_flags, NULL, objfile);
14398 TYPE_NAME (type) = name;
6ccb9162
UW
14399 TYPE_TARGET_TYPE (type) = target_type;
14400
0114d602 14401 if (name && strcmp (name, "char") == 0)
876cecd0 14402 TYPE_NOSIGN (type) = 1;
0114d602 14403
f792889a 14404 return set_die_type (die, type, cu);
c906108c
SS
14405}
14406
a02abb62
JB
14407/* Read the given DW_AT_subrange DIE. */
14408
f792889a 14409static struct type *
a02abb62
JB
14410read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14411{
4c9ad8c2 14412 struct type *base_type, *orig_base_type;
a02abb62
JB
14413 struct type *range_type;
14414 struct attribute *attr;
4fae6e18
JK
14415 LONGEST low, high;
14416 int low_default_is_valid;
15d034d0 14417 const char *name;
43bbcdc2 14418 LONGEST negative_mask;
e77813c8 14419
4c9ad8c2
TT
14420 orig_base_type = die_type (die, cu);
14421 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14422 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14423 creating the range type, but we use the result of check_typedef
14424 when examining properties of the type. */
14425 base_type = check_typedef (orig_base_type);
a02abb62 14426
7e314c57
JK
14427 /* The die_type call above may have already set the type for this DIE. */
14428 range_type = get_die_type (die, cu);
14429 if (range_type)
14430 return range_type;
14431
4fae6e18
JK
14432 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14433 omitting DW_AT_lower_bound. */
14434 switch (cu->language)
6e70227d 14435 {
4fae6e18
JK
14436 case language_c:
14437 case language_cplus:
14438 low = 0;
14439 low_default_is_valid = 1;
14440 break;
14441 case language_fortran:
14442 low = 1;
14443 low_default_is_valid = 1;
14444 break;
14445 case language_d:
14446 case language_java:
14447 case language_objc:
14448 low = 0;
14449 low_default_is_valid = (cu->header.version >= 4);
14450 break;
14451 case language_ada:
14452 case language_m2:
14453 case language_pascal:
a02abb62 14454 low = 1;
4fae6e18
JK
14455 low_default_is_valid = (cu->header.version >= 4);
14456 break;
14457 default:
14458 low = 0;
14459 low_default_is_valid = 0;
14460 break;
a02abb62
JB
14461 }
14462
dd5e6932
DJ
14463 /* FIXME: For variable sized arrays either of these could be
14464 a variable rather than a constant value. We'll allow it,
14465 but we don't know how to handle it. */
e142c38c 14466 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 14467 if (attr)
4fae6e18
JK
14468 low = dwarf2_get_attr_constant_value (attr, low);
14469 else if (!low_default_is_valid)
14470 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14471 "- DIE at 0x%x [in module %s]"),
4262abfb 14472 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 14473
e142c38c 14474 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62 14475 if (attr)
6e70227d 14476 {
7771576e 14477 if (attr_form_is_block (attr) || attr_form_is_ref (attr))
a02abb62
JB
14478 {
14479 /* GCC encodes arrays with unspecified or dynamic length
e77813c8 14480 with a DW_FORM_block1 attribute or a reference attribute.
a02abb62
JB
14481 FIXME: GDB does not yet know how to handle dynamic
14482 arrays properly, treat them as arrays with unspecified
14483 length for now.
14484
14485 FIXME: jimb/2003-09-22: GDB does not really know
14486 how to handle arrays of unspecified length
14487 either; we just represent them as zero-length
14488 arrays. Choose an appropriate upper bound given
14489 the lower bound we've computed above. */
14490 high = low - 1;
14491 }
14492 else
14493 high = dwarf2_get_attr_constant_value (attr, 1);
14494 }
e77813c8
PM
14495 else
14496 {
14497 attr = dwarf2_attr (die, DW_AT_count, cu);
14498 if (attr)
14499 {
14500 int count = dwarf2_get_attr_constant_value (attr, 1);
14501 high = low + count - 1;
14502 }
c2ff108b
JK
14503 else
14504 {
14505 /* Unspecified array length. */
14506 high = low - 1;
14507 }
e77813c8
PM
14508 }
14509
14510 /* Dwarf-2 specifications explicitly allows to create subrange types
14511 without specifying a base type.
14512 In that case, the base type must be set to the type of
14513 the lower bound, upper bound or count, in that order, if any of these
14514 three attributes references an object that has a type.
14515 If no base type is found, the Dwarf-2 specifications say that
14516 a signed integer type of size equal to the size of an address should
14517 be used.
14518 For the following C code: `extern char gdb_int [];'
14519 GCC produces an empty range DIE.
14520 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 14521 high bound or count are not yet handled by this code. */
e77813c8
PM
14522 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14523 {
14524 struct objfile *objfile = cu->objfile;
14525 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14526 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14527 struct type *int_type = objfile_type (objfile)->builtin_int;
14528
14529 /* Test "int", "long int", and "long long int" objfile types,
14530 and select the first one having a size above or equal to the
14531 architecture address size. */
14532 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14533 base_type = int_type;
14534 else
14535 {
14536 int_type = objfile_type (objfile)->builtin_long;
14537 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14538 base_type = int_type;
14539 else
14540 {
14541 int_type = objfile_type (objfile)->builtin_long_long;
14542 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14543 base_type = int_type;
14544 }
14545 }
14546 }
a02abb62 14547
dbb9c2b1
JB
14548 /* Normally, the DWARF producers are expected to use a signed
14549 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14550 But this is unfortunately not always the case, as witnessed
14551 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14552 is used instead. To work around that ambiguity, we treat
14553 the bounds as signed, and thus sign-extend their values, when
14554 the base type is signed. */
6e70227d 14555 negative_mask =
43bbcdc2
PH
14556 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
14557 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
14558 low |= negative_mask;
14559 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
14560 high |= negative_mask;
14561
4c9ad8c2 14562 range_type = create_range_type (NULL, orig_base_type, low, high);
a02abb62 14563
bbb0eef6
JK
14564 /* Mark arrays with dynamic length at least as an array of unspecified
14565 length. GDB could check the boundary but before it gets implemented at
14566 least allow accessing the array elements. */
d48323d8 14567 if (attr && attr_form_is_block (attr))
bbb0eef6
JK
14568 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14569
c2ff108b
JK
14570 /* Ada expects an empty array on no boundary attributes. */
14571 if (attr == NULL && cu->language != language_ada)
14572 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
14573
39cbfefa
DJ
14574 name = dwarf2_name (die, cu);
14575 if (name)
14576 TYPE_NAME (range_type) = name;
6e70227d 14577
e142c38c 14578 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
14579 if (attr)
14580 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14581
7e314c57
JK
14582 set_die_type (die, range_type, cu);
14583
14584 /* set_die_type should be already done. */
b4ba55a1
JB
14585 set_descriptive_type (range_type, die, cu);
14586
7e314c57 14587 return range_type;
a02abb62 14588}
6e70227d 14589
f792889a 14590static struct type *
81a17f79
JB
14591read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14592{
14593 struct type *type;
81a17f79 14594
81a17f79
JB
14595 /* For now, we only support the C meaning of an unspecified type: void. */
14596
0114d602
DJ
14597 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14598 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 14599
f792889a 14600 return set_die_type (die, type, cu);
81a17f79 14601}
a02abb62 14602
639d11d3
DC
14603/* Read a single die and all its descendents. Set the die's sibling
14604 field to NULL; set other fields in the die correctly, and set all
14605 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14606 location of the info_ptr after reading all of those dies. PARENT
14607 is the parent of the die in question. */
14608
14609static struct die_info *
dee91e82 14610read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
14611 const gdb_byte *info_ptr,
14612 const gdb_byte **new_info_ptr,
dee91e82 14613 struct die_info *parent)
639d11d3
DC
14614{
14615 struct die_info *die;
d521ce57 14616 const gdb_byte *cur_ptr;
639d11d3
DC
14617 int has_children;
14618
bf6af496 14619 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
14620 if (die == NULL)
14621 {
14622 *new_info_ptr = cur_ptr;
14623 return NULL;
14624 }
93311388 14625 store_in_ref_table (die, reader->cu);
639d11d3
DC
14626
14627 if (has_children)
bf6af496 14628 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
14629 else
14630 {
14631 die->child = NULL;
14632 *new_info_ptr = cur_ptr;
14633 }
14634
14635 die->sibling = NULL;
14636 die->parent = parent;
14637 return die;
14638}
14639
14640/* Read a die, all of its descendents, and all of its siblings; set
14641 all of the fields of all of the dies correctly. Arguments are as
14642 in read_die_and_children. */
14643
14644static struct die_info *
bf6af496 14645read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
14646 const gdb_byte *info_ptr,
14647 const gdb_byte **new_info_ptr,
bf6af496 14648 struct die_info *parent)
639d11d3
DC
14649{
14650 struct die_info *first_die, *last_sibling;
d521ce57 14651 const gdb_byte *cur_ptr;
639d11d3 14652
c906108c 14653 cur_ptr = info_ptr;
639d11d3
DC
14654 first_die = last_sibling = NULL;
14655
14656 while (1)
c906108c 14657 {
639d11d3 14658 struct die_info *die
dee91e82 14659 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 14660
1d325ec1 14661 if (die == NULL)
c906108c 14662 {
639d11d3
DC
14663 *new_info_ptr = cur_ptr;
14664 return first_die;
c906108c 14665 }
1d325ec1
DJ
14666
14667 if (!first_die)
14668 first_die = die;
c906108c 14669 else
1d325ec1
DJ
14670 last_sibling->sibling = die;
14671
14672 last_sibling = die;
c906108c 14673 }
c906108c
SS
14674}
14675
bf6af496
DE
14676/* Read a die, all of its descendents, and all of its siblings; set
14677 all of the fields of all of the dies correctly. Arguments are as
14678 in read_die_and_children.
14679 This the main entry point for reading a DIE and all its children. */
14680
14681static struct die_info *
14682read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
14683 const gdb_byte *info_ptr,
14684 const gdb_byte **new_info_ptr,
bf6af496
DE
14685 struct die_info *parent)
14686{
14687 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14688 new_info_ptr, parent);
14689
14690 if (dwarf2_die_debug)
14691 {
14692 fprintf_unfiltered (gdb_stdlog,
14693 "Read die from %s@0x%x of %s:\n",
a32a8923 14694 get_section_name (reader->die_section),
bf6af496
DE
14695 (unsigned) (info_ptr - reader->die_section->buffer),
14696 bfd_get_filename (reader->abfd));
14697 dump_die (die, dwarf2_die_debug);
14698 }
14699
14700 return die;
14701}
14702
3019eac3
DE
14703/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14704 attributes.
14705 The caller is responsible for filling in the extra attributes
14706 and updating (*DIEP)->num_attrs.
14707 Set DIEP to point to a newly allocated die with its information,
14708 except for its child, sibling, and parent fields.
14709 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 14710
d521ce57 14711static const gdb_byte *
3019eac3 14712read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 14713 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 14714 int *has_children, int num_extra_attrs)
93311388 14715{
b64f50a1
JK
14716 unsigned int abbrev_number, bytes_read, i;
14717 sect_offset offset;
93311388
DE
14718 struct abbrev_info *abbrev;
14719 struct die_info *die;
14720 struct dwarf2_cu *cu = reader->cu;
14721 bfd *abfd = reader->abfd;
14722
b64f50a1 14723 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
14724 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14725 info_ptr += bytes_read;
14726 if (!abbrev_number)
14727 {
14728 *diep = NULL;
14729 *has_children = 0;
14730 return info_ptr;
14731 }
14732
433df2d4 14733 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 14734 if (!abbrev)
348e048f
DE
14735 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14736 abbrev_number,
14737 bfd_get_filename (abfd));
14738
3019eac3 14739 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
14740 die->offset = offset;
14741 die->tag = abbrev->tag;
14742 die->abbrev = abbrev_number;
14743
3019eac3
DE
14744 /* Make the result usable.
14745 The caller needs to update num_attrs after adding the extra
14746 attributes. */
93311388
DE
14747 die->num_attrs = abbrev->num_attrs;
14748
14749 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
14750 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14751 info_ptr);
93311388
DE
14752
14753 *diep = die;
14754 *has_children = abbrev->has_children;
14755 return info_ptr;
14756}
14757
3019eac3
DE
14758/* Read a die and all its attributes.
14759 Set DIEP to point to a newly allocated die with its information,
14760 except for its child, sibling, and parent fields.
14761 Set HAS_CHILDREN to tell whether the die has children or not. */
14762
d521ce57 14763static const gdb_byte *
3019eac3 14764read_full_die (const struct die_reader_specs *reader,
d521ce57 14765 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
14766 int *has_children)
14767{
d521ce57 14768 const gdb_byte *result;
bf6af496
DE
14769
14770 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
14771
14772 if (dwarf2_die_debug)
14773 {
14774 fprintf_unfiltered (gdb_stdlog,
14775 "Read die from %s@0x%x of %s:\n",
a32a8923 14776 get_section_name (reader->die_section),
bf6af496
DE
14777 (unsigned) (info_ptr - reader->die_section->buffer),
14778 bfd_get_filename (reader->abfd));
14779 dump_die (*diep, dwarf2_die_debug);
14780 }
14781
14782 return result;
3019eac3 14783}
433df2d4
DE
14784\f
14785/* Abbreviation tables.
3019eac3 14786
433df2d4 14787 In DWARF version 2, the description of the debugging information is
c906108c
SS
14788 stored in a separate .debug_abbrev section. Before we read any
14789 dies from a section we read in all abbreviations and install them
433df2d4
DE
14790 in a hash table. */
14791
14792/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
14793
14794static struct abbrev_info *
14795abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
14796{
14797 struct abbrev_info *abbrev;
14798
14799 abbrev = (struct abbrev_info *)
14800 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
14801 memset (abbrev, 0, sizeof (struct abbrev_info));
14802 return abbrev;
14803}
14804
14805/* Add an abbreviation to the table. */
c906108c
SS
14806
14807static void
433df2d4
DE
14808abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
14809 unsigned int abbrev_number,
14810 struct abbrev_info *abbrev)
14811{
14812 unsigned int hash_number;
14813
14814 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14815 abbrev->next = abbrev_table->abbrevs[hash_number];
14816 abbrev_table->abbrevs[hash_number] = abbrev;
14817}
dee91e82 14818
433df2d4
DE
14819/* Look up an abbrev in the table.
14820 Returns NULL if the abbrev is not found. */
14821
14822static struct abbrev_info *
14823abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
14824 unsigned int abbrev_number)
c906108c 14825{
433df2d4
DE
14826 unsigned int hash_number;
14827 struct abbrev_info *abbrev;
14828
14829 hash_number = abbrev_number % ABBREV_HASH_SIZE;
14830 abbrev = abbrev_table->abbrevs[hash_number];
14831
14832 while (abbrev)
14833 {
14834 if (abbrev->number == abbrev_number)
14835 return abbrev;
14836 abbrev = abbrev->next;
14837 }
14838 return NULL;
14839}
14840
14841/* Read in an abbrev table. */
14842
14843static struct abbrev_table *
14844abbrev_table_read_table (struct dwarf2_section_info *section,
14845 sect_offset offset)
14846{
14847 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 14848 bfd *abfd = get_section_bfd_owner (section);
433df2d4 14849 struct abbrev_table *abbrev_table;
d521ce57 14850 const gdb_byte *abbrev_ptr;
c906108c
SS
14851 struct abbrev_info *cur_abbrev;
14852 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 14853 unsigned int abbrev_form;
f3dd6933
DJ
14854 struct attr_abbrev *cur_attrs;
14855 unsigned int allocated_attrs;
c906108c 14856
70ba0933 14857 abbrev_table = XNEW (struct abbrev_table);
f4dc4d17 14858 abbrev_table->offset = offset;
433df2d4
DE
14859 obstack_init (&abbrev_table->abbrev_obstack);
14860 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
14861 (ABBREV_HASH_SIZE
14862 * sizeof (struct abbrev_info *)));
14863 memset (abbrev_table->abbrevs, 0,
14864 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 14865
433df2d4
DE
14866 dwarf2_read_section (objfile, section);
14867 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
14868 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14869 abbrev_ptr += bytes_read;
14870
f3dd6933
DJ
14871 allocated_attrs = ATTR_ALLOC_CHUNK;
14872 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 14873
0963b4bd 14874 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
14875 while (abbrev_number)
14876 {
433df2d4 14877 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
14878
14879 /* read in abbrev header */
14880 cur_abbrev->number = abbrev_number;
14881 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14882 abbrev_ptr += bytes_read;
14883 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
14884 abbrev_ptr += 1;
14885
14886 /* now read in declarations */
14887 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14888 abbrev_ptr += bytes_read;
14889 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14890 abbrev_ptr += bytes_read;
14891 while (abbrev_name)
14892 {
f3dd6933 14893 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 14894 {
f3dd6933
DJ
14895 allocated_attrs += ATTR_ALLOC_CHUNK;
14896 cur_attrs
14897 = xrealloc (cur_attrs, (allocated_attrs
14898 * sizeof (struct attr_abbrev)));
c906108c 14899 }
ae038cb0 14900
f3dd6933
DJ
14901 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
14902 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
14903 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14904 abbrev_ptr += bytes_read;
14905 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14906 abbrev_ptr += bytes_read;
14907 }
14908
433df2d4 14909 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
f3dd6933
DJ
14910 (cur_abbrev->num_attrs
14911 * sizeof (struct attr_abbrev)));
14912 memcpy (cur_abbrev->attrs, cur_attrs,
14913 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
14914
433df2d4 14915 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
14916
14917 /* Get next abbreviation.
14918 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
14919 always properly terminated with an abbrev number of 0.
14920 Exit loop if we encounter an abbreviation which we have
14921 already read (which means we are about to read the abbreviations
14922 for the next compile unit) or if the end of the abbreviation
14923 table is reached. */
433df2d4 14924 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
14925 break;
14926 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
14927 abbrev_ptr += bytes_read;
433df2d4 14928 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
14929 break;
14930 }
f3dd6933
DJ
14931
14932 xfree (cur_attrs);
433df2d4 14933 return abbrev_table;
c906108c
SS
14934}
14935
433df2d4 14936/* Free the resources held by ABBREV_TABLE. */
c906108c 14937
c906108c 14938static void
433df2d4 14939abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 14940{
433df2d4
DE
14941 obstack_free (&abbrev_table->abbrev_obstack, NULL);
14942 xfree (abbrev_table);
c906108c
SS
14943}
14944
f4dc4d17
DE
14945/* Same as abbrev_table_free but as a cleanup.
14946 We pass in a pointer to the pointer to the table so that we can
14947 set the pointer to NULL when we're done. It also simplifies
14948 build_type_unit_groups. */
14949
14950static void
14951abbrev_table_free_cleanup (void *table_ptr)
14952{
14953 struct abbrev_table **abbrev_table_ptr = table_ptr;
14954
14955 if (*abbrev_table_ptr != NULL)
14956 abbrev_table_free (*abbrev_table_ptr);
14957 *abbrev_table_ptr = NULL;
14958}
14959
433df2d4
DE
14960/* Read the abbrev table for CU from ABBREV_SECTION. */
14961
14962static void
14963dwarf2_read_abbrevs (struct dwarf2_cu *cu,
14964 struct dwarf2_section_info *abbrev_section)
c906108c 14965{
433df2d4
DE
14966 cu->abbrev_table =
14967 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
14968}
c906108c 14969
433df2d4 14970/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 14971
433df2d4
DE
14972static void
14973dwarf2_free_abbrev_table (void *ptr_to_cu)
14974{
14975 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 14976
a2ce51a0
DE
14977 if (cu->abbrev_table != NULL)
14978 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
14979 /* Set this to NULL so that we SEGV if we try to read it later,
14980 and also because free_comp_unit verifies this is NULL. */
14981 cu->abbrev_table = NULL;
14982}
14983\f
72bf9492
DJ
14984/* Returns nonzero if TAG represents a type that we might generate a partial
14985 symbol for. */
14986
14987static int
14988is_type_tag_for_partial (int tag)
14989{
14990 switch (tag)
14991 {
14992#if 0
14993 /* Some types that would be reasonable to generate partial symbols for,
14994 that we don't at present. */
14995 case DW_TAG_array_type:
14996 case DW_TAG_file_type:
14997 case DW_TAG_ptr_to_member_type:
14998 case DW_TAG_set_type:
14999 case DW_TAG_string_type:
15000 case DW_TAG_subroutine_type:
15001#endif
15002 case DW_TAG_base_type:
15003 case DW_TAG_class_type:
680b30c7 15004 case DW_TAG_interface_type:
72bf9492
DJ
15005 case DW_TAG_enumeration_type:
15006 case DW_TAG_structure_type:
15007 case DW_TAG_subrange_type:
15008 case DW_TAG_typedef:
15009 case DW_TAG_union_type:
15010 return 1;
15011 default:
15012 return 0;
15013 }
15014}
15015
15016/* Load all DIEs that are interesting for partial symbols into memory. */
15017
15018static struct partial_die_info *
dee91e82 15019load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15020 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15021{
dee91e82 15022 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15023 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15024 struct partial_die_info *part_die;
15025 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15026 struct abbrev_info *abbrev;
15027 unsigned int bytes_read;
5afb4e99 15028 unsigned int load_all = 0;
72bf9492
DJ
15029 int nesting_level = 1;
15030
15031 parent_die = NULL;
15032 last_die = NULL;
15033
7adf1e79
DE
15034 gdb_assert (cu->per_cu != NULL);
15035 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15036 load_all = 1;
15037
72bf9492
DJ
15038 cu->partial_dies
15039 = htab_create_alloc_ex (cu->header.length / 12,
15040 partial_die_hash,
15041 partial_die_eq,
15042 NULL,
15043 &cu->comp_unit_obstack,
15044 hashtab_obstack_allocate,
15045 dummy_obstack_deallocate);
15046
15047 part_die = obstack_alloc (&cu->comp_unit_obstack,
15048 sizeof (struct partial_die_info));
15049
15050 while (1)
15051 {
15052 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15053
15054 /* A NULL abbrev means the end of a series of children. */
15055 if (abbrev == NULL)
15056 {
15057 if (--nesting_level == 0)
15058 {
15059 /* PART_DIE was probably the last thing allocated on the
15060 comp_unit_obstack, so we could call obstack_free
15061 here. We don't do that because the waste is small,
15062 and will be cleaned up when we're done with this
15063 compilation unit. This way, we're also more robust
15064 against other users of the comp_unit_obstack. */
15065 return first_die;
15066 }
15067 info_ptr += bytes_read;
15068 last_die = parent_die;
15069 parent_die = parent_die->die_parent;
15070 continue;
15071 }
15072
98bfdba5
PA
15073 /* Check for template arguments. We never save these; if
15074 they're seen, we just mark the parent, and go on our way. */
15075 if (parent_die != NULL
15076 && cu->language == language_cplus
15077 && (abbrev->tag == DW_TAG_template_type_param
15078 || abbrev->tag == DW_TAG_template_value_param))
15079 {
15080 parent_die->has_template_arguments = 1;
15081
15082 if (!load_all)
15083 {
15084 /* We don't need a partial DIE for the template argument. */
dee91e82 15085 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15086 continue;
15087 }
15088 }
15089
0d99eb77 15090 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
15091 Skip their other children. */
15092 if (!load_all
15093 && cu->language == language_cplus
15094 && parent_die != NULL
15095 && parent_die->tag == DW_TAG_subprogram)
15096 {
dee91e82 15097 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15098 continue;
15099 }
15100
5afb4e99
DJ
15101 /* Check whether this DIE is interesting enough to save. Normally
15102 we would not be interested in members here, but there may be
15103 later variables referencing them via DW_AT_specification (for
15104 static members). */
15105 if (!load_all
15106 && !is_type_tag_for_partial (abbrev->tag)
72929c62 15107 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
15108 && abbrev->tag != DW_TAG_enumerator
15109 && abbrev->tag != DW_TAG_subprogram
bc30ff58 15110 && abbrev->tag != DW_TAG_lexical_block
72bf9492 15111 && abbrev->tag != DW_TAG_variable
5afb4e99 15112 && abbrev->tag != DW_TAG_namespace
f55ee35c 15113 && abbrev->tag != DW_TAG_module
95554aad 15114 && abbrev->tag != DW_TAG_member
74921315
KS
15115 && abbrev->tag != DW_TAG_imported_unit
15116 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
15117 {
15118 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15119 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
15120 continue;
15121 }
15122
dee91e82
DE
15123 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15124 info_ptr);
72bf9492
DJ
15125
15126 /* This two-pass algorithm for processing partial symbols has a
15127 high cost in cache pressure. Thus, handle some simple cases
15128 here which cover the majority of C partial symbols. DIEs
15129 which neither have specification tags in them, nor could have
15130 specification tags elsewhere pointing at them, can simply be
15131 processed and discarded.
15132
15133 This segment is also optional; scan_partial_symbols and
15134 add_partial_symbol will handle these DIEs if we chain
15135 them in normally. When compilers which do not emit large
15136 quantities of duplicate debug information are more common,
15137 this code can probably be removed. */
15138
15139 /* Any complete simple types at the top level (pretty much all
15140 of them, for a language without namespaces), can be processed
15141 directly. */
15142 if (parent_die == NULL
15143 && part_die->has_specification == 0
15144 && part_die->is_declaration == 0
d8228535 15145 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15146 || part_die->tag == DW_TAG_base_type
15147 || part_die->tag == DW_TAG_subrange_type))
15148 {
15149 if (building_psymtab && part_die->name != NULL)
04a679b8 15150 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15151 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363
DE
15152 &objfile->static_psymbols,
15153 0, (CORE_ADDR) 0, cu->language, objfile);
dee91e82 15154 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15155 continue;
15156 }
15157
d8228535
JK
15158 /* The exception for DW_TAG_typedef with has_children above is
15159 a workaround of GCC PR debug/47510. In the case of this complaint
15160 type_name_no_tag_or_error will error on such types later.
15161
15162 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15163 it could not find the child DIEs referenced later, this is checked
15164 above. In correct DWARF DW_TAG_typedef should have no children. */
15165
15166 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15167 complaint (&symfile_complaints,
15168 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15169 "- DIE at 0x%x [in module %s]"),
4262abfb 15170 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15171
72bf9492
DJ
15172 /* If we're at the second level, and we're an enumerator, and
15173 our parent has no specification (meaning possibly lives in a
15174 namespace elsewhere), then we can add the partial symbol now
15175 instead of queueing it. */
15176 if (part_die->tag == DW_TAG_enumerator
15177 && parent_die != NULL
15178 && parent_die->die_parent == NULL
15179 && parent_die->tag == DW_TAG_enumeration_type
15180 && parent_die->has_specification == 0)
15181 {
15182 if (part_die->name == NULL)
3e43a32a
MS
15183 complaint (&symfile_complaints,
15184 _("malformed enumerator DIE ignored"));
72bf9492 15185 else if (building_psymtab)
04a679b8 15186 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15187 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
15188 (cu->language == language_cplus
15189 || cu->language == language_java)
bb5ed363
DE
15190 ? &objfile->global_psymbols
15191 : &objfile->static_psymbols,
15192 0, (CORE_ADDR) 0, cu->language, objfile);
72bf9492 15193
dee91e82 15194 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15195 continue;
15196 }
15197
15198 /* We'll save this DIE so link it in. */
15199 part_die->die_parent = parent_die;
15200 part_die->die_sibling = NULL;
15201 part_die->die_child = NULL;
15202
15203 if (last_die && last_die == parent_die)
15204 last_die->die_child = part_die;
15205 else if (last_die)
15206 last_die->die_sibling = part_die;
15207
15208 last_die = part_die;
15209
15210 if (first_die == NULL)
15211 first_die = part_die;
15212
15213 /* Maybe add the DIE to the hash table. Not all DIEs that we
15214 find interesting need to be in the hash table, because we
15215 also have the parent/sibling/child chains; only those that we
15216 might refer to by offset later during partial symbol reading.
15217
15218 For now this means things that might have be the target of a
15219 DW_AT_specification, DW_AT_abstract_origin, or
15220 DW_AT_extension. DW_AT_extension will refer only to
15221 namespaces; DW_AT_abstract_origin refers to functions (and
15222 many things under the function DIE, but we do not recurse
15223 into function DIEs during partial symbol reading) and
15224 possibly variables as well; DW_AT_specification refers to
15225 declarations. Declarations ought to have the DW_AT_declaration
15226 flag. It happens that GCC forgets to put it in sometimes, but
15227 only for functions, not for types.
15228
15229 Adding more things than necessary to the hash table is harmless
15230 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15231 wasted time in find_partial_die, when we reread the compilation
15232 unit with load_all_dies set. */
72bf9492 15233
5afb4e99 15234 if (load_all
72929c62 15235 || abbrev->tag == DW_TAG_constant
5afb4e99 15236 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15237 || abbrev->tag == DW_TAG_variable
15238 || abbrev->tag == DW_TAG_namespace
15239 || part_die->is_declaration)
15240 {
15241 void **slot;
15242
15243 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 15244 part_die->offset.sect_off, INSERT);
72bf9492
DJ
15245 *slot = part_die;
15246 }
15247
15248 part_die = obstack_alloc (&cu->comp_unit_obstack,
15249 sizeof (struct partial_die_info));
15250
15251 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 15252 we have no reason to follow the children of structures; for other
98bfdba5
PA
15253 languages we have to, so that we can get at method physnames
15254 to infer fully qualified class names, for DW_AT_specification,
15255 and for C++ template arguments. For C++, we also look one level
15256 inside functions to find template arguments (if the name of the
15257 function does not already contain the template arguments).
bc30ff58
JB
15258
15259 For Ada, we need to scan the children of subprograms and lexical
15260 blocks as well because Ada allows the definition of nested
15261 entities that could be interesting for the debugger, such as
15262 nested subprograms for instance. */
72bf9492 15263 if (last_die->has_children
5afb4e99
DJ
15264 && (load_all
15265 || last_die->tag == DW_TAG_namespace
f55ee35c 15266 || last_die->tag == DW_TAG_module
72bf9492 15267 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15268 || (cu->language == language_cplus
15269 && last_die->tag == DW_TAG_subprogram
15270 && (last_die->name == NULL
15271 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15272 || (cu->language != language_c
15273 && (last_die->tag == DW_TAG_class_type
680b30c7 15274 || last_die->tag == DW_TAG_interface_type
72bf9492 15275 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
15276 || last_die->tag == DW_TAG_union_type))
15277 || (cu->language == language_ada
15278 && (last_die->tag == DW_TAG_subprogram
15279 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
15280 {
15281 nesting_level++;
15282 parent_die = last_die;
15283 continue;
15284 }
15285
15286 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15287 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
15288
15289 /* Back to the top, do it again. */
15290 }
15291}
15292
c906108c
SS
15293/* Read a minimal amount of information into the minimal die structure. */
15294
d521ce57 15295static const gdb_byte *
dee91e82
DE
15296read_partial_die (const struct die_reader_specs *reader,
15297 struct partial_die_info *part_die,
15298 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 15299 const gdb_byte *info_ptr)
c906108c 15300{
dee91e82 15301 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15302 struct objfile *objfile = cu->objfile;
d521ce57 15303 const gdb_byte *buffer = reader->buffer;
fa238c03 15304 unsigned int i;
c906108c 15305 struct attribute attr;
c5aa993b 15306 int has_low_pc_attr = 0;
c906108c 15307 int has_high_pc_attr = 0;
91da1414 15308 int high_pc_relative = 0;
c906108c 15309
72bf9492 15310 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 15311
b64f50a1 15312 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
15313
15314 info_ptr += abbrev_len;
15315
15316 if (abbrev == NULL)
15317 return info_ptr;
15318
c906108c
SS
15319 part_die->tag = abbrev->tag;
15320 part_die->has_children = abbrev->has_children;
c906108c
SS
15321
15322 for (i = 0; i < abbrev->num_attrs; ++i)
15323 {
dee91e82 15324 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
15325
15326 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 15327 partial symbol table. */
c906108c
SS
15328 switch (attr.name)
15329 {
15330 case DW_AT_name:
71c25dea
TT
15331 switch (part_die->tag)
15332 {
15333 case DW_TAG_compile_unit:
95554aad 15334 case DW_TAG_partial_unit:
348e048f 15335 case DW_TAG_type_unit:
71c25dea
TT
15336 /* Compilation units have a DW_AT_name that is a filename, not
15337 a source language identifier. */
15338 case DW_TAG_enumeration_type:
15339 case DW_TAG_enumerator:
15340 /* These tags always have simple identifiers already; no need
15341 to canonicalize them. */
15342 part_die->name = DW_STRING (&attr);
15343 break;
15344 default:
15345 part_die->name
15346 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
bb5ed363 15347 &objfile->objfile_obstack);
71c25dea
TT
15348 break;
15349 }
c906108c 15350 break;
31ef98ae 15351 case DW_AT_linkage_name:
c906108c 15352 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
15353 /* Note that both forms of linkage name might appear. We
15354 assume they will be the same, and we only store the last
15355 one we see. */
94af9270
KS
15356 if (cu->language == language_ada)
15357 part_die->name = DW_STRING (&attr);
abc72ce4 15358 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
15359 break;
15360 case DW_AT_low_pc:
15361 has_low_pc_attr = 1;
31aa7e4e 15362 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
15363 break;
15364 case DW_AT_high_pc:
15365 has_high_pc_attr = 1;
31aa7e4e
JB
15366 part_die->highpc = attr_value_as_address (&attr);
15367 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15368 high_pc_relative = 1;
c906108c
SS
15369 break;
15370 case DW_AT_location:
0963b4bd 15371 /* Support the .debug_loc offsets. */
8e19ed76
PS
15372 if (attr_form_is_block (&attr))
15373 {
95554aad 15374 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 15375 }
3690dd37 15376 else if (attr_form_is_section_offset (&attr))
8e19ed76 15377 {
4d3c2250 15378 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15379 }
15380 else
15381 {
4d3c2250
KB
15382 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15383 "partial symbol information");
8e19ed76 15384 }
c906108c 15385 break;
c906108c
SS
15386 case DW_AT_external:
15387 part_die->is_external = DW_UNSND (&attr);
15388 break;
15389 case DW_AT_declaration:
15390 part_die->is_declaration = DW_UNSND (&attr);
15391 break;
15392 case DW_AT_type:
15393 part_die->has_type = 1;
15394 break;
15395 case DW_AT_abstract_origin:
15396 case DW_AT_specification:
72bf9492
DJ
15397 case DW_AT_extension:
15398 part_die->has_specification = 1;
c764a876 15399 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
15400 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15401 || cu->per_cu->is_dwz);
c906108c
SS
15402 break;
15403 case DW_AT_sibling:
15404 /* Ignore absolute siblings, they might point outside of
15405 the current compile unit. */
15406 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
15407 complaint (&symfile_complaints,
15408 _("ignoring absolute DW_AT_sibling"));
c906108c 15409 else
b9502d3f
WN
15410 {
15411 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15412 const gdb_byte *sibling_ptr = buffer + off;
15413
15414 if (sibling_ptr < info_ptr)
15415 complaint (&symfile_complaints,
15416 _("DW_AT_sibling points backwards"));
15417 else
15418 part_die->sibling = sibling_ptr;
15419 }
c906108c 15420 break;
fa4028e9
JB
15421 case DW_AT_byte_size:
15422 part_die->has_byte_size = 1;
15423 break;
68511cec
CES
15424 case DW_AT_calling_convention:
15425 /* DWARF doesn't provide a way to identify a program's source-level
15426 entry point. DW_AT_calling_convention attributes are only meant
15427 to describe functions' calling conventions.
15428
15429 However, because it's a necessary piece of information in
15430 Fortran, and because DW_CC_program is the only piece of debugging
15431 information whose definition refers to a 'main program' at all,
15432 several compilers have begun marking Fortran main programs with
15433 DW_CC_program --- even when those functions use the standard
15434 calling conventions.
15435
15436 So until DWARF specifies a way to provide this information and
15437 compilers pick up the new representation, we'll support this
15438 practice. */
15439 if (DW_UNSND (&attr) == DW_CC_program
15440 && cu->language == language_fortran)
3d548a53 15441 set_objfile_main_name (objfile, part_die->name, language_fortran);
68511cec 15442 break;
481860b3
GB
15443 case DW_AT_inline:
15444 if (DW_UNSND (&attr) == DW_INL_inlined
15445 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15446 part_die->may_be_inlined = 1;
15447 break;
95554aad
TT
15448
15449 case DW_AT_import:
15450 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
15451 {
15452 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15453 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15454 || cu->per_cu->is_dwz);
15455 }
95554aad
TT
15456 break;
15457
c906108c
SS
15458 default:
15459 break;
15460 }
15461 }
15462
91da1414
MW
15463 if (high_pc_relative)
15464 part_die->highpc += part_die->lowpc;
15465
9373cf26
JK
15466 if (has_low_pc_attr && has_high_pc_attr)
15467 {
15468 /* When using the GNU linker, .gnu.linkonce. sections are used to
15469 eliminate duplicate copies of functions and vtables and such.
15470 The linker will arbitrarily choose one and discard the others.
15471 The AT_*_pc values for such functions refer to local labels in
15472 these sections. If the section from that file was discarded, the
15473 labels are not in the output, so the relocs get a value of 0.
15474 If this is a discarded function, mark the pc bounds as invalid,
15475 so that GDB will ignore it. */
15476 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15477 {
bb5ed363 15478 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15479
15480 complaint (&symfile_complaints,
15481 _("DW_AT_low_pc %s is zero "
15482 "for DIE at 0x%x [in module %s]"),
15483 paddress (gdbarch, part_die->lowpc),
4262abfb 15484 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15485 }
15486 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15487 else if (part_die->lowpc >= part_die->highpc)
15488 {
bb5ed363 15489 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15490
15491 complaint (&symfile_complaints,
15492 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15493 "for DIE at 0x%x [in module %s]"),
15494 paddress (gdbarch, part_die->lowpc),
15495 paddress (gdbarch, part_die->highpc),
4262abfb 15496 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15497 }
15498 else
15499 part_die->has_pc_info = 1;
15500 }
85cbf3d3 15501
c906108c
SS
15502 return info_ptr;
15503}
15504
72bf9492
DJ
15505/* Find a cached partial DIE at OFFSET in CU. */
15506
15507static struct partial_die_info *
b64f50a1 15508find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
15509{
15510 struct partial_die_info *lookup_die = NULL;
15511 struct partial_die_info part_die;
15512
15513 part_die.offset = offset;
b64f50a1
JK
15514 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15515 offset.sect_off);
72bf9492 15516
72bf9492
DJ
15517 return lookup_die;
15518}
15519
348e048f
DE
15520/* Find a partial DIE at OFFSET, which may or may not be in CU,
15521 except in the case of .debug_types DIEs which do not reference
15522 outside their CU (they do however referencing other types via
55f1336d 15523 DW_FORM_ref_sig8). */
72bf9492
DJ
15524
15525static struct partial_die_info *
36586728 15526find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 15527{
bb5ed363 15528 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
15529 struct dwarf2_per_cu_data *per_cu = NULL;
15530 struct partial_die_info *pd = NULL;
72bf9492 15531
36586728
TT
15532 if (offset_in_dwz == cu->per_cu->is_dwz
15533 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
15534 {
15535 pd = find_partial_die_in_comp_unit (offset, cu);
15536 if (pd != NULL)
15537 return pd;
0d99eb77
DE
15538 /* We missed recording what we needed.
15539 Load all dies and try again. */
15540 per_cu = cu->per_cu;
5afb4e99 15541 }
0d99eb77
DE
15542 else
15543 {
15544 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 15545 if (cu->per_cu->is_debug_types)
0d99eb77
DE
15546 {
15547 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15548 " external reference to offset 0x%lx [in module %s].\n"),
15549 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15550 bfd_get_filename (objfile->obfd));
15551 }
36586728
TT
15552 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15553 objfile);
72bf9492 15554
0d99eb77
DE
15555 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15556 load_partial_comp_unit (per_cu);
ae038cb0 15557
0d99eb77
DE
15558 per_cu->cu->last_used = 0;
15559 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15560 }
5afb4e99 15561
dee91e82
DE
15562 /* If we didn't find it, and not all dies have been loaded,
15563 load them all and try again. */
15564
5afb4e99
DJ
15565 if (pd == NULL && per_cu->load_all_dies == 0)
15566 {
5afb4e99 15567 per_cu->load_all_dies = 1;
fd820528
DE
15568
15569 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15570 THIS_CU->cu may already be in use. So we can't just free it and
15571 replace its DIEs with the ones we read in. Instead, we leave those
15572 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15573 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15574 set. */
dee91e82 15575 load_partial_comp_unit (per_cu);
5afb4e99
DJ
15576
15577 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15578 }
15579
15580 if (pd == NULL)
15581 internal_error (__FILE__, __LINE__,
3e43a32a
MS
15582 _("could not find partial DIE 0x%x "
15583 "in cache [from module %s]\n"),
b64f50a1 15584 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 15585 return pd;
72bf9492
DJ
15586}
15587
abc72ce4
DE
15588/* See if we can figure out if the class lives in a namespace. We do
15589 this by looking for a member function; its demangled name will
15590 contain namespace info, if there is any. */
15591
15592static void
15593guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15594 struct dwarf2_cu *cu)
15595{
15596 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15597 what template types look like, because the demangler
15598 frequently doesn't give the same name as the debug info. We
15599 could fix this by only using the demangled name to get the
15600 prefix (but see comment in read_structure_type). */
15601
15602 struct partial_die_info *real_pdi;
15603 struct partial_die_info *child_pdi;
15604
15605 /* If this DIE (this DIE's specification, if any) has a parent, then
15606 we should not do this. We'll prepend the parent's fully qualified
15607 name when we create the partial symbol. */
15608
15609 real_pdi = struct_pdi;
15610 while (real_pdi->has_specification)
36586728
TT
15611 real_pdi = find_partial_die (real_pdi->spec_offset,
15612 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
15613
15614 if (real_pdi->die_parent != NULL)
15615 return;
15616
15617 for (child_pdi = struct_pdi->die_child;
15618 child_pdi != NULL;
15619 child_pdi = child_pdi->die_sibling)
15620 {
15621 if (child_pdi->tag == DW_TAG_subprogram
15622 && child_pdi->linkage_name != NULL)
15623 {
15624 char *actual_class_name
15625 = language_class_name_from_physname (cu->language_defn,
15626 child_pdi->linkage_name);
15627 if (actual_class_name != NULL)
15628 {
15629 struct_pdi->name
10f0c4bb
TT
15630 = obstack_copy0 (&cu->objfile->objfile_obstack,
15631 actual_class_name,
15632 strlen (actual_class_name));
abc72ce4
DE
15633 xfree (actual_class_name);
15634 }
15635 break;
15636 }
15637 }
15638}
15639
72bf9492
DJ
15640/* Adjust PART_DIE before generating a symbol for it. This function
15641 may set the is_external flag or change the DIE's name. */
15642
15643static void
15644fixup_partial_die (struct partial_die_info *part_die,
15645 struct dwarf2_cu *cu)
15646{
abc72ce4
DE
15647 /* Once we've fixed up a die, there's no point in doing so again.
15648 This also avoids a memory leak if we were to call
15649 guess_partial_die_structure_name multiple times. */
15650 if (part_die->fixup_called)
15651 return;
15652
72bf9492
DJ
15653 /* If we found a reference attribute and the DIE has no name, try
15654 to find a name in the referred to DIE. */
15655
15656 if (part_die->name == NULL && part_die->has_specification)
15657 {
15658 struct partial_die_info *spec_die;
72bf9492 15659
36586728
TT
15660 spec_die = find_partial_die (part_die->spec_offset,
15661 part_die->spec_is_dwz, cu);
72bf9492 15662
10b3939b 15663 fixup_partial_die (spec_die, cu);
72bf9492
DJ
15664
15665 if (spec_die->name)
15666 {
15667 part_die->name = spec_die->name;
15668
15669 /* Copy DW_AT_external attribute if it is set. */
15670 if (spec_die->is_external)
15671 part_die->is_external = spec_die->is_external;
15672 }
15673 }
15674
15675 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
15676
15677 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 15678 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 15679
abc72ce4
DE
15680 /* If there is no parent die to provide a namespace, and there are
15681 children, see if we can determine the namespace from their linkage
122d1940 15682 name. */
abc72ce4 15683 if (cu->language == language_cplus
8b70b953 15684 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
15685 && part_die->die_parent == NULL
15686 && part_die->has_children
15687 && (part_die->tag == DW_TAG_class_type
15688 || part_die->tag == DW_TAG_structure_type
15689 || part_die->tag == DW_TAG_union_type))
15690 guess_partial_die_structure_name (part_die, cu);
15691
53832f31
TT
15692 /* GCC might emit a nameless struct or union that has a linkage
15693 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15694 if (part_die->name == NULL
96408a79
SA
15695 && (part_die->tag == DW_TAG_class_type
15696 || part_die->tag == DW_TAG_interface_type
15697 || part_die->tag == DW_TAG_structure_type
15698 || part_die->tag == DW_TAG_union_type)
53832f31
TT
15699 && part_die->linkage_name != NULL)
15700 {
15701 char *demangled;
15702
8de20a37 15703 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
15704 if (demangled)
15705 {
96408a79
SA
15706 const char *base;
15707
15708 /* Strip any leading namespaces/classes, keep only the base name.
15709 DW_AT_name for named DIEs does not contain the prefixes. */
15710 base = strrchr (demangled, ':');
15711 if (base && base > demangled && base[-1] == ':')
15712 base++;
15713 else
15714 base = demangled;
15715
10f0c4bb
TT
15716 part_die->name = obstack_copy0 (&cu->objfile->objfile_obstack,
15717 base, strlen (base));
53832f31
TT
15718 xfree (demangled);
15719 }
15720 }
15721
abc72ce4 15722 part_die->fixup_called = 1;
72bf9492
DJ
15723}
15724
a8329558 15725/* Read an attribute value described by an attribute form. */
c906108c 15726
d521ce57 15727static const gdb_byte *
dee91e82
DE
15728read_attribute_value (const struct die_reader_specs *reader,
15729 struct attribute *attr, unsigned form,
d521ce57 15730 const gdb_byte *info_ptr)
c906108c 15731{
dee91e82
DE
15732 struct dwarf2_cu *cu = reader->cu;
15733 bfd *abfd = reader->abfd;
e7c27a73 15734 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
15735 unsigned int bytes_read;
15736 struct dwarf_block *blk;
15737
a8329558
KW
15738 attr->form = form;
15739 switch (form)
c906108c 15740 {
c906108c 15741 case DW_FORM_ref_addr:
ae411497 15742 if (cu->header.version == 2)
4568ecf9 15743 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 15744 else
4568ecf9
DE
15745 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15746 &cu->header, &bytes_read);
ae411497
TT
15747 info_ptr += bytes_read;
15748 break;
36586728
TT
15749 case DW_FORM_GNU_ref_alt:
15750 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15751 info_ptr += bytes_read;
15752 break;
ae411497 15753 case DW_FORM_addr:
e7c27a73 15754 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 15755 info_ptr += bytes_read;
c906108c
SS
15756 break;
15757 case DW_FORM_block2:
7b5a2f43 15758 blk = dwarf_alloc_block (cu);
c906108c
SS
15759 blk->size = read_2_bytes (abfd, info_ptr);
15760 info_ptr += 2;
15761 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15762 info_ptr += blk->size;
15763 DW_BLOCK (attr) = blk;
15764 break;
15765 case DW_FORM_block4:
7b5a2f43 15766 blk = dwarf_alloc_block (cu);
c906108c
SS
15767 blk->size = read_4_bytes (abfd, info_ptr);
15768 info_ptr += 4;
15769 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15770 info_ptr += blk->size;
15771 DW_BLOCK (attr) = blk;
15772 break;
15773 case DW_FORM_data2:
15774 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
15775 info_ptr += 2;
15776 break;
15777 case DW_FORM_data4:
15778 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
15779 info_ptr += 4;
15780 break;
15781 case DW_FORM_data8:
15782 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
15783 info_ptr += 8;
15784 break;
2dc7f7b3
TT
15785 case DW_FORM_sec_offset:
15786 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15787 info_ptr += bytes_read;
15788 break;
c906108c 15789 case DW_FORM_string:
9b1c24c8 15790 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 15791 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
15792 info_ptr += bytes_read;
15793 break;
4bdf3d34 15794 case DW_FORM_strp:
36586728
TT
15795 if (!cu->per_cu->is_dwz)
15796 {
15797 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
15798 &bytes_read);
15799 DW_STRING_IS_CANONICAL (attr) = 0;
15800 info_ptr += bytes_read;
15801 break;
15802 }
15803 /* FALLTHROUGH */
15804 case DW_FORM_GNU_strp_alt:
15805 {
15806 struct dwz_file *dwz = dwarf2_get_dwz_file ();
15807 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
15808 &bytes_read);
15809
15810 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
15811 DW_STRING_IS_CANONICAL (attr) = 0;
15812 info_ptr += bytes_read;
15813 }
4bdf3d34 15814 break;
2dc7f7b3 15815 case DW_FORM_exprloc:
c906108c 15816 case DW_FORM_block:
7b5a2f43 15817 blk = dwarf_alloc_block (cu);
c906108c
SS
15818 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15819 info_ptr += bytes_read;
15820 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15821 info_ptr += blk->size;
15822 DW_BLOCK (attr) = blk;
15823 break;
15824 case DW_FORM_block1:
7b5a2f43 15825 blk = dwarf_alloc_block (cu);
c906108c
SS
15826 blk->size = read_1_byte (abfd, info_ptr);
15827 info_ptr += 1;
15828 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
15829 info_ptr += blk->size;
15830 DW_BLOCK (attr) = blk;
15831 break;
15832 case DW_FORM_data1:
15833 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15834 info_ptr += 1;
15835 break;
15836 case DW_FORM_flag:
15837 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
15838 info_ptr += 1;
15839 break;
2dc7f7b3
TT
15840 case DW_FORM_flag_present:
15841 DW_UNSND (attr) = 1;
15842 break;
c906108c
SS
15843 case DW_FORM_sdata:
15844 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
15845 info_ptr += bytes_read;
15846 break;
15847 case DW_FORM_udata:
15848 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15849 info_ptr += bytes_read;
15850 break;
15851 case DW_FORM_ref1:
4568ecf9
DE
15852 DW_UNSND (attr) = (cu->header.offset.sect_off
15853 + read_1_byte (abfd, info_ptr));
c906108c
SS
15854 info_ptr += 1;
15855 break;
15856 case DW_FORM_ref2:
4568ecf9
DE
15857 DW_UNSND (attr) = (cu->header.offset.sect_off
15858 + read_2_bytes (abfd, info_ptr));
c906108c
SS
15859 info_ptr += 2;
15860 break;
15861 case DW_FORM_ref4:
4568ecf9
DE
15862 DW_UNSND (attr) = (cu->header.offset.sect_off
15863 + read_4_bytes (abfd, info_ptr));
c906108c
SS
15864 info_ptr += 4;
15865 break;
613e1657 15866 case DW_FORM_ref8:
4568ecf9
DE
15867 DW_UNSND (attr) = (cu->header.offset.sect_off
15868 + read_8_bytes (abfd, info_ptr));
613e1657
KB
15869 info_ptr += 8;
15870 break;
55f1336d 15871 case DW_FORM_ref_sig8:
ac9ec31b 15872 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
15873 info_ptr += 8;
15874 break;
c906108c 15875 case DW_FORM_ref_udata:
4568ecf9
DE
15876 DW_UNSND (attr) = (cu->header.offset.sect_off
15877 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
15878 info_ptr += bytes_read;
15879 break;
c906108c 15880 case DW_FORM_indirect:
a8329558
KW
15881 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15882 info_ptr += bytes_read;
dee91e82 15883 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 15884 break;
3019eac3
DE
15885 case DW_FORM_GNU_addr_index:
15886 if (reader->dwo_file == NULL)
15887 {
15888 /* For now flag a hard error.
15889 Later we can turn this into a complaint. */
15890 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15891 dwarf_form_name (form),
15892 bfd_get_filename (abfd));
15893 }
15894 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
15895 info_ptr += bytes_read;
15896 break;
15897 case DW_FORM_GNU_str_index:
15898 if (reader->dwo_file == NULL)
15899 {
15900 /* For now flag a hard error.
15901 Later we can turn this into a complaint if warranted. */
15902 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
15903 dwarf_form_name (form),
15904 bfd_get_filename (abfd));
15905 }
15906 {
15907 ULONGEST str_index =
15908 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
15909
342587c4 15910 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
15911 DW_STRING_IS_CANONICAL (attr) = 0;
15912 info_ptr += bytes_read;
15913 }
15914 break;
c906108c 15915 default:
8a3fe4f8 15916 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
15917 dwarf_form_name (form),
15918 bfd_get_filename (abfd));
c906108c 15919 }
28e94949 15920
36586728 15921 /* Super hack. */
7771576e 15922 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
15923 attr->form = DW_FORM_GNU_ref_alt;
15924
28e94949
JB
15925 /* We have seen instances where the compiler tried to emit a byte
15926 size attribute of -1 which ended up being encoded as an unsigned
15927 0xffffffff. Although 0xffffffff is technically a valid size value,
15928 an object of this size seems pretty unlikely so we can relatively
15929 safely treat these cases as if the size attribute was invalid and
15930 treat them as zero by default. */
15931 if (attr->name == DW_AT_byte_size
15932 && form == DW_FORM_data4
15933 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
15934 {
15935 complaint
15936 (&symfile_complaints,
43bbcdc2
PH
15937 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
15938 hex_string (DW_UNSND (attr)));
01c66ae6
JB
15939 DW_UNSND (attr) = 0;
15940 }
28e94949 15941
c906108c
SS
15942 return info_ptr;
15943}
15944
a8329558
KW
15945/* Read an attribute described by an abbreviated attribute. */
15946
d521ce57 15947static const gdb_byte *
dee91e82
DE
15948read_attribute (const struct die_reader_specs *reader,
15949 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 15950 const gdb_byte *info_ptr)
a8329558
KW
15951{
15952 attr->name = abbrev->name;
dee91e82 15953 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
15954}
15955
0963b4bd 15956/* Read dwarf information from a buffer. */
c906108c
SS
15957
15958static unsigned int
a1855c1d 15959read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 15960{
fe1b8b76 15961 return bfd_get_8 (abfd, buf);
c906108c
SS
15962}
15963
15964static int
a1855c1d 15965read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 15966{
fe1b8b76 15967 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
15968}
15969
15970static unsigned int
a1855c1d 15971read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 15972{
fe1b8b76 15973 return bfd_get_16 (abfd, buf);
c906108c
SS
15974}
15975
21ae7a4d 15976static int
a1855c1d 15977read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
15978{
15979 return bfd_get_signed_16 (abfd, buf);
15980}
15981
c906108c 15982static unsigned int
a1855c1d 15983read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 15984{
fe1b8b76 15985 return bfd_get_32 (abfd, buf);
c906108c
SS
15986}
15987
21ae7a4d 15988static int
a1855c1d 15989read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
15990{
15991 return bfd_get_signed_32 (abfd, buf);
15992}
15993
93311388 15994static ULONGEST
a1855c1d 15995read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 15996{
fe1b8b76 15997 return bfd_get_64 (abfd, buf);
c906108c
SS
15998}
15999
16000static CORE_ADDR
d521ce57 16001read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16002 unsigned int *bytes_read)
c906108c 16003{
e7c27a73 16004 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16005 CORE_ADDR retval = 0;
16006
107d2387 16007 if (cu_header->signed_addr_p)
c906108c 16008 {
107d2387
AC
16009 switch (cu_header->addr_size)
16010 {
16011 case 2:
fe1b8b76 16012 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16013 break;
16014 case 4:
fe1b8b76 16015 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16016 break;
16017 case 8:
fe1b8b76 16018 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16019 break;
16020 default:
8e65ff28 16021 internal_error (__FILE__, __LINE__,
e2e0b3e5 16022 _("read_address: bad switch, signed [in module %s]"),
659b0389 16023 bfd_get_filename (abfd));
107d2387
AC
16024 }
16025 }
16026 else
16027 {
16028 switch (cu_header->addr_size)
16029 {
16030 case 2:
fe1b8b76 16031 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16032 break;
16033 case 4:
fe1b8b76 16034 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16035 break;
16036 case 8:
fe1b8b76 16037 retval = bfd_get_64 (abfd, buf);
107d2387
AC
16038 break;
16039 default:
8e65ff28 16040 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
16041 _("read_address: bad switch, "
16042 "unsigned [in module %s]"),
659b0389 16043 bfd_get_filename (abfd));
107d2387 16044 }
c906108c 16045 }
64367e0a 16046
107d2387
AC
16047 *bytes_read = cu_header->addr_size;
16048 return retval;
c906108c
SS
16049}
16050
f7ef9339 16051/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
16052 specification allows the initial length to take up either 4 bytes
16053 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16054 bytes describe the length and all offsets will be 8 bytes in length
16055 instead of 4.
16056
f7ef9339
KB
16057 An older, non-standard 64-bit format is also handled by this
16058 function. The older format in question stores the initial length
16059 as an 8-byte quantity without an escape value. Lengths greater
16060 than 2^32 aren't very common which means that the initial 4 bytes
16061 is almost always zero. Since a length value of zero doesn't make
16062 sense for the 32-bit format, this initial zero can be considered to
16063 be an escape value which indicates the presence of the older 64-bit
16064 format. As written, the code can't detect (old format) lengths
917c78fc
MK
16065 greater than 4GB. If it becomes necessary to handle lengths
16066 somewhat larger than 4GB, we could allow other small values (such
16067 as the non-sensical values of 1, 2, and 3) to also be used as
16068 escape values indicating the presence of the old format.
f7ef9339 16069
917c78fc
MK
16070 The value returned via bytes_read should be used to increment the
16071 relevant pointer after calling read_initial_length().
c764a876 16072
613e1657
KB
16073 [ Note: read_initial_length() and read_offset() are based on the
16074 document entitled "DWARF Debugging Information Format", revision
f7ef9339 16075 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
16076 from:
16077
f7ef9339 16078 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 16079
613e1657
KB
16080 This document is only a draft and is subject to change. (So beware.)
16081
f7ef9339 16082 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
16083 determined empirically by examining 64-bit ELF files produced by
16084 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
16085
16086 - Kevin, July 16, 2002
613e1657
KB
16087 ] */
16088
16089static LONGEST
d521ce57 16090read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 16091{
fe1b8b76 16092 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 16093
dd373385 16094 if (length == 0xffffffff)
613e1657 16095 {
fe1b8b76 16096 length = bfd_get_64 (abfd, buf + 4);
613e1657 16097 *bytes_read = 12;
613e1657 16098 }
dd373385 16099 else if (length == 0)
f7ef9339 16100 {
dd373385 16101 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 16102 length = bfd_get_64 (abfd, buf);
f7ef9339 16103 *bytes_read = 8;
f7ef9339 16104 }
613e1657
KB
16105 else
16106 {
16107 *bytes_read = 4;
613e1657
KB
16108 }
16109
c764a876
DE
16110 return length;
16111}
dd373385 16112
c764a876
DE
16113/* Cover function for read_initial_length.
16114 Returns the length of the object at BUF, and stores the size of the
16115 initial length in *BYTES_READ and stores the size that offsets will be in
16116 *OFFSET_SIZE.
16117 If the initial length size is not equivalent to that specified in
16118 CU_HEADER then issue a complaint.
16119 This is useful when reading non-comp-unit headers. */
dd373385 16120
c764a876 16121static LONGEST
d521ce57 16122read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
16123 const struct comp_unit_head *cu_header,
16124 unsigned int *bytes_read,
16125 unsigned int *offset_size)
16126{
16127 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16128
16129 gdb_assert (cu_header->initial_length_size == 4
16130 || cu_header->initial_length_size == 8
16131 || cu_header->initial_length_size == 12);
16132
16133 if (cu_header->initial_length_size != *bytes_read)
16134 complaint (&symfile_complaints,
16135 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16136
c764a876 16137 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16138 return length;
613e1657
KB
16139}
16140
16141/* Read an offset from the data stream. The size of the offset is
917c78fc 16142 given by cu_header->offset_size. */
613e1657
KB
16143
16144static LONGEST
d521ce57
TT
16145read_offset (bfd *abfd, const gdb_byte *buf,
16146 const struct comp_unit_head *cu_header,
891d2f0b 16147 unsigned int *bytes_read)
c764a876
DE
16148{
16149 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16150
c764a876
DE
16151 *bytes_read = cu_header->offset_size;
16152 return offset;
16153}
16154
16155/* Read an offset from the data stream. */
16156
16157static LONGEST
d521ce57 16158read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16159{
16160 LONGEST retval = 0;
16161
c764a876 16162 switch (offset_size)
613e1657
KB
16163 {
16164 case 4:
fe1b8b76 16165 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16166 break;
16167 case 8:
fe1b8b76 16168 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16169 break;
16170 default:
8e65ff28 16171 internal_error (__FILE__, __LINE__,
c764a876 16172 _("read_offset_1: bad switch [in module %s]"),
659b0389 16173 bfd_get_filename (abfd));
613e1657
KB
16174 }
16175
917c78fc 16176 return retval;
613e1657
KB
16177}
16178
d521ce57
TT
16179static const gdb_byte *
16180read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16181{
16182 /* If the size of a host char is 8 bits, we can return a pointer
16183 to the buffer, otherwise we have to copy the data to a buffer
16184 allocated on the temporary obstack. */
4bdf3d34 16185 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16186 return buf;
c906108c
SS
16187}
16188
d521ce57
TT
16189static const char *
16190read_direct_string (bfd *abfd, const gdb_byte *buf,
16191 unsigned int *bytes_read_ptr)
c906108c
SS
16192{
16193 /* If the size of a host char is 8 bits, we can return a pointer
16194 to the string, otherwise we have to copy the string to a buffer
16195 allocated on the temporary obstack. */
4bdf3d34 16196 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
16197 if (*buf == '\0')
16198 {
16199 *bytes_read_ptr = 1;
16200 return NULL;
16201 }
d521ce57
TT
16202 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16203 return (const char *) buf;
4bdf3d34
JJ
16204}
16205
d521ce57 16206static const char *
cf2c3c16 16207read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 16208{
be391dca 16209 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 16210 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
16211 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16212 bfd_get_filename (abfd));
dce234bc 16213 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
16214 error (_("DW_FORM_strp pointing outside of "
16215 ".debug_str section [in module %s]"),
16216 bfd_get_filename (abfd));
4bdf3d34 16217 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 16218 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 16219 return NULL;
d521ce57 16220 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
16221}
16222
36586728
TT
16223/* Read a string at offset STR_OFFSET in the .debug_str section from
16224 the .dwz file DWZ. Throw an error if the offset is too large. If
16225 the string consists of a single NUL byte, return NULL; otherwise
16226 return a pointer to the string. */
16227
d521ce57 16228static const char *
36586728
TT
16229read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16230{
16231 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16232
16233 if (dwz->str.buffer == NULL)
16234 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16235 "section [in module %s]"),
16236 bfd_get_filename (dwz->dwz_bfd));
16237 if (str_offset >= dwz->str.size)
16238 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16239 ".debug_str section [in module %s]"),
16240 bfd_get_filename (dwz->dwz_bfd));
16241 gdb_assert (HOST_CHAR_BIT == 8);
16242 if (dwz->str.buffer[str_offset] == '\0')
16243 return NULL;
d521ce57 16244 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
16245}
16246
d521ce57
TT
16247static const char *
16248read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
16249 const struct comp_unit_head *cu_header,
16250 unsigned int *bytes_read_ptr)
16251{
16252 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16253
16254 return read_indirect_string_at_offset (abfd, str_offset);
16255}
16256
12df843f 16257static ULONGEST
d521ce57
TT
16258read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16259 unsigned int *bytes_read_ptr)
c906108c 16260{
12df843f 16261 ULONGEST result;
ce5d95e1 16262 unsigned int num_read;
c906108c
SS
16263 int i, shift;
16264 unsigned char byte;
16265
16266 result = 0;
16267 shift = 0;
16268 num_read = 0;
16269 i = 0;
16270 while (1)
16271 {
fe1b8b76 16272 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16273 buf++;
16274 num_read++;
12df843f 16275 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
16276 if ((byte & 128) == 0)
16277 {
16278 break;
16279 }
16280 shift += 7;
16281 }
16282 *bytes_read_ptr = num_read;
16283 return result;
16284}
16285
12df843f 16286static LONGEST
d521ce57
TT
16287read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16288 unsigned int *bytes_read_ptr)
c906108c 16289{
12df843f 16290 LONGEST result;
77e0b926 16291 int i, shift, num_read;
c906108c
SS
16292 unsigned char byte;
16293
16294 result = 0;
16295 shift = 0;
c906108c
SS
16296 num_read = 0;
16297 i = 0;
16298 while (1)
16299 {
fe1b8b76 16300 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16301 buf++;
16302 num_read++;
12df843f 16303 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
16304 shift += 7;
16305 if ((byte & 128) == 0)
16306 {
16307 break;
16308 }
16309 }
77e0b926 16310 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 16311 result |= -(((LONGEST) 1) << shift);
c906108c
SS
16312 *bytes_read_ptr = num_read;
16313 return result;
16314}
16315
3019eac3
DE
16316/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16317 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16318 ADDR_SIZE is the size of addresses from the CU header. */
16319
16320static CORE_ADDR
16321read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16322{
16323 struct objfile *objfile = dwarf2_per_objfile->objfile;
16324 bfd *abfd = objfile->obfd;
16325 const gdb_byte *info_ptr;
16326
16327 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16328 if (dwarf2_per_objfile->addr.buffer == NULL)
16329 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 16330 objfile_name (objfile));
3019eac3
DE
16331 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16332 error (_("DW_FORM_addr_index pointing outside of "
16333 ".debug_addr section [in module %s]"),
4262abfb 16334 objfile_name (objfile));
3019eac3
DE
16335 info_ptr = (dwarf2_per_objfile->addr.buffer
16336 + addr_base + addr_index * addr_size);
16337 if (addr_size == 4)
16338 return bfd_get_32 (abfd, info_ptr);
16339 else
16340 return bfd_get_64 (abfd, info_ptr);
16341}
16342
16343/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16344
16345static CORE_ADDR
16346read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16347{
16348 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16349}
16350
16351/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16352
16353static CORE_ADDR
d521ce57 16354read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
16355 unsigned int *bytes_read)
16356{
16357 bfd *abfd = cu->objfile->obfd;
16358 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16359
16360 return read_addr_index (cu, addr_index);
16361}
16362
16363/* Data structure to pass results from dwarf2_read_addr_index_reader
16364 back to dwarf2_read_addr_index. */
16365
16366struct dwarf2_read_addr_index_data
16367{
16368 ULONGEST addr_base;
16369 int addr_size;
16370};
16371
16372/* die_reader_func for dwarf2_read_addr_index. */
16373
16374static void
16375dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 16376 const gdb_byte *info_ptr,
3019eac3
DE
16377 struct die_info *comp_unit_die,
16378 int has_children,
16379 void *data)
16380{
16381 struct dwarf2_cu *cu = reader->cu;
16382 struct dwarf2_read_addr_index_data *aidata =
16383 (struct dwarf2_read_addr_index_data *) data;
16384
16385 aidata->addr_base = cu->addr_base;
16386 aidata->addr_size = cu->header.addr_size;
16387}
16388
16389/* Given an index in .debug_addr, fetch the value.
16390 NOTE: This can be called during dwarf expression evaluation,
16391 long after the debug information has been read, and thus per_cu->cu
16392 may no longer exist. */
16393
16394CORE_ADDR
16395dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16396 unsigned int addr_index)
16397{
16398 struct objfile *objfile = per_cu->objfile;
16399 struct dwarf2_cu *cu = per_cu->cu;
16400 ULONGEST addr_base;
16401 int addr_size;
16402
16403 /* This is intended to be called from outside this file. */
16404 dw2_setup (objfile);
16405
16406 /* We need addr_base and addr_size.
16407 If we don't have PER_CU->cu, we have to get it.
16408 Nasty, but the alternative is storing the needed info in PER_CU,
16409 which at this point doesn't seem justified: it's not clear how frequently
16410 it would get used and it would increase the size of every PER_CU.
16411 Entry points like dwarf2_per_cu_addr_size do a similar thing
16412 so we're not in uncharted territory here.
16413 Alas we need to be a bit more complicated as addr_base is contained
16414 in the DIE.
16415
16416 We don't need to read the entire CU(/TU).
16417 We just need the header and top level die.
a1b64ce1 16418
3019eac3 16419 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 16420 For now we skip this optimization. */
3019eac3
DE
16421
16422 if (cu != NULL)
16423 {
16424 addr_base = cu->addr_base;
16425 addr_size = cu->header.addr_size;
16426 }
16427 else
16428 {
16429 struct dwarf2_read_addr_index_data aidata;
16430
a1b64ce1
DE
16431 /* Note: We can't use init_cutu_and_read_dies_simple here,
16432 we need addr_base. */
16433 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16434 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
16435 addr_base = aidata.addr_base;
16436 addr_size = aidata.addr_size;
16437 }
16438
16439 return read_addr_index_1 (addr_index, addr_base, addr_size);
16440}
16441
57d63ce2
DE
16442/* Given a DW_FORM_GNU_str_index, fetch the string.
16443 This is only used by the Fission support. */
3019eac3 16444
d521ce57 16445static const char *
342587c4 16446read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
16447{
16448 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 16449 const char *objf_name = objfile_name (objfile);
3019eac3 16450 bfd *abfd = objfile->obfd;
342587c4 16451 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
16452 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16453 struct dwarf2_section_info *str_offsets_section =
16454 &reader->dwo_file->sections.str_offsets;
d521ce57 16455 const gdb_byte *info_ptr;
3019eac3 16456 ULONGEST str_offset;
57d63ce2 16457 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 16458
73869dc2
DE
16459 dwarf2_read_section (objfile, str_section);
16460 dwarf2_read_section (objfile, str_offsets_section);
16461 if (str_section->buffer == NULL)
57d63ce2 16462 error (_("%s used without .debug_str.dwo section"
3019eac3 16463 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16464 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16465 if (str_offsets_section->buffer == NULL)
57d63ce2 16466 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 16467 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16468 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16469 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 16470 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 16471 " section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16472 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16473 info_ptr = (str_offsets_section->buffer
3019eac3
DE
16474 + str_index * cu->header.offset_size);
16475 if (cu->header.offset_size == 4)
16476 str_offset = bfd_get_32 (abfd, info_ptr);
16477 else
16478 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 16479 if (str_offset >= str_section->size)
57d63ce2 16480 error (_("Offset from %s pointing outside of"
3019eac3 16481 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16482 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16483 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
16484}
16485
3019eac3
DE
16486/* Return the length of an LEB128 number in BUF. */
16487
16488static int
16489leb128_size (const gdb_byte *buf)
16490{
16491 const gdb_byte *begin = buf;
16492 gdb_byte byte;
16493
16494 while (1)
16495 {
16496 byte = *buf++;
16497 if ((byte & 128) == 0)
16498 return buf - begin;
16499 }
16500}
16501
c906108c 16502static void
e142c38c 16503set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
16504{
16505 switch (lang)
16506 {
16507 case DW_LANG_C89:
76bee0cc 16508 case DW_LANG_C99:
c906108c 16509 case DW_LANG_C:
d1be3247 16510 case DW_LANG_UPC:
e142c38c 16511 cu->language = language_c;
c906108c
SS
16512 break;
16513 case DW_LANG_C_plus_plus:
e142c38c 16514 cu->language = language_cplus;
c906108c 16515 break;
6aecb9c2
JB
16516 case DW_LANG_D:
16517 cu->language = language_d;
16518 break;
c906108c
SS
16519 case DW_LANG_Fortran77:
16520 case DW_LANG_Fortran90:
b21b22e0 16521 case DW_LANG_Fortran95:
e142c38c 16522 cu->language = language_fortran;
c906108c 16523 break;
a766d390
DE
16524 case DW_LANG_Go:
16525 cu->language = language_go;
16526 break;
c906108c 16527 case DW_LANG_Mips_Assembler:
e142c38c 16528 cu->language = language_asm;
c906108c 16529 break;
bebd888e 16530 case DW_LANG_Java:
e142c38c 16531 cu->language = language_java;
bebd888e 16532 break;
c906108c 16533 case DW_LANG_Ada83:
8aaf0b47 16534 case DW_LANG_Ada95:
bc5f45f8
JB
16535 cu->language = language_ada;
16536 break;
72019c9c
GM
16537 case DW_LANG_Modula2:
16538 cu->language = language_m2;
16539 break;
fe8e67fd
PM
16540 case DW_LANG_Pascal83:
16541 cu->language = language_pascal;
16542 break;
22566fbd
DJ
16543 case DW_LANG_ObjC:
16544 cu->language = language_objc;
16545 break;
c906108c
SS
16546 case DW_LANG_Cobol74:
16547 case DW_LANG_Cobol85:
c906108c 16548 default:
e142c38c 16549 cu->language = language_minimal;
c906108c
SS
16550 break;
16551 }
e142c38c 16552 cu->language_defn = language_def (cu->language);
c906108c
SS
16553}
16554
16555/* Return the named attribute or NULL if not there. */
16556
16557static struct attribute *
e142c38c 16558dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 16559{
a48e046c 16560 for (;;)
c906108c 16561 {
a48e046c
TT
16562 unsigned int i;
16563 struct attribute *spec = NULL;
16564
16565 for (i = 0; i < die->num_attrs; ++i)
16566 {
16567 if (die->attrs[i].name == name)
16568 return &die->attrs[i];
16569 if (die->attrs[i].name == DW_AT_specification
16570 || die->attrs[i].name == DW_AT_abstract_origin)
16571 spec = &die->attrs[i];
16572 }
16573
16574 if (!spec)
16575 break;
c906108c 16576
f2f0e013 16577 die = follow_die_ref (die, spec, &cu);
f2f0e013 16578 }
c5aa993b 16579
c906108c
SS
16580 return NULL;
16581}
16582
348e048f
DE
16583/* Return the named attribute or NULL if not there,
16584 but do not follow DW_AT_specification, etc.
16585 This is for use in contexts where we're reading .debug_types dies.
16586 Following DW_AT_specification, DW_AT_abstract_origin will take us
16587 back up the chain, and we want to go down. */
16588
16589static struct attribute *
45e58e77 16590dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
16591{
16592 unsigned int i;
16593
16594 for (i = 0; i < die->num_attrs; ++i)
16595 if (die->attrs[i].name == name)
16596 return &die->attrs[i];
16597
16598 return NULL;
16599}
16600
05cf31d1
JB
16601/* Return non-zero iff the attribute NAME is defined for the given DIE,
16602 and holds a non-zero value. This function should only be used for
2dc7f7b3 16603 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
16604
16605static int
16606dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16607{
16608 struct attribute *attr = dwarf2_attr (die, name, cu);
16609
16610 return (attr && DW_UNSND (attr));
16611}
16612
3ca72b44 16613static int
e142c38c 16614die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 16615{
05cf31d1
JB
16616 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16617 which value is non-zero. However, we have to be careful with
16618 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16619 (via dwarf2_flag_true_p) follows this attribute. So we may
16620 end up accidently finding a declaration attribute that belongs
16621 to a different DIE referenced by the specification attribute,
16622 even though the given DIE does not have a declaration attribute. */
16623 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16624 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
16625}
16626
63d06c5c 16627/* Return the die giving the specification for DIE, if there is
f2f0e013 16628 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
16629 containing the return value on output. If there is no
16630 specification, but there is an abstract origin, that is
16631 returned. */
63d06c5c
DC
16632
16633static struct die_info *
f2f0e013 16634die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 16635{
f2f0e013
DJ
16636 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16637 *spec_cu);
63d06c5c 16638
edb3359d
DJ
16639 if (spec_attr == NULL)
16640 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16641
63d06c5c
DC
16642 if (spec_attr == NULL)
16643 return NULL;
16644 else
f2f0e013 16645 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 16646}
c906108c 16647
debd256d 16648/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
16649 refers to.
16650 NOTE: This is also used as a "cleanup" function. */
16651
debd256d
JB
16652static void
16653free_line_header (struct line_header *lh)
16654{
16655 if (lh->standard_opcode_lengths)
a8bc7b56 16656 xfree (lh->standard_opcode_lengths);
debd256d
JB
16657
16658 /* Remember that all the lh->file_names[i].name pointers are
16659 pointers into debug_line_buffer, and don't need to be freed. */
16660 if (lh->file_names)
a8bc7b56 16661 xfree (lh->file_names);
debd256d
JB
16662
16663 /* Similarly for the include directory names. */
16664 if (lh->include_dirs)
a8bc7b56 16665 xfree (lh->include_dirs);
debd256d 16666
a8bc7b56 16667 xfree (lh);
debd256d
JB
16668}
16669
debd256d 16670/* Add an entry to LH's include directory table. */
ae2de4f8 16671
debd256d 16672static void
d521ce57 16673add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 16674{
debd256d
JB
16675 /* Grow the array if necessary. */
16676 if (lh->include_dirs_size == 0)
c5aa993b 16677 {
debd256d
JB
16678 lh->include_dirs_size = 1; /* for testing */
16679 lh->include_dirs = xmalloc (lh->include_dirs_size
16680 * sizeof (*lh->include_dirs));
16681 }
16682 else if (lh->num_include_dirs >= lh->include_dirs_size)
16683 {
16684 lh->include_dirs_size *= 2;
16685 lh->include_dirs = xrealloc (lh->include_dirs,
16686 (lh->include_dirs_size
16687 * sizeof (*lh->include_dirs)));
c5aa993b 16688 }
c906108c 16689
debd256d
JB
16690 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16691}
6e70227d 16692
debd256d 16693/* Add an entry to LH's file name table. */
ae2de4f8 16694
debd256d
JB
16695static void
16696add_file_name (struct line_header *lh,
d521ce57 16697 const char *name,
debd256d
JB
16698 unsigned int dir_index,
16699 unsigned int mod_time,
16700 unsigned int length)
16701{
16702 struct file_entry *fe;
16703
16704 /* Grow the array if necessary. */
16705 if (lh->file_names_size == 0)
16706 {
16707 lh->file_names_size = 1; /* for testing */
16708 lh->file_names = xmalloc (lh->file_names_size
16709 * sizeof (*lh->file_names));
16710 }
16711 else if (lh->num_file_names >= lh->file_names_size)
16712 {
16713 lh->file_names_size *= 2;
16714 lh->file_names = xrealloc (lh->file_names,
16715 (lh->file_names_size
16716 * sizeof (*lh->file_names)));
16717 }
16718
16719 fe = &lh->file_names[lh->num_file_names++];
16720 fe->name = name;
16721 fe->dir_index = dir_index;
16722 fe->mod_time = mod_time;
16723 fe->length = length;
aaa75496 16724 fe->included_p = 0;
cb1df416 16725 fe->symtab = NULL;
debd256d 16726}
6e70227d 16727
36586728
TT
16728/* A convenience function to find the proper .debug_line section for a
16729 CU. */
16730
16731static struct dwarf2_section_info *
16732get_debug_line_section (struct dwarf2_cu *cu)
16733{
16734 struct dwarf2_section_info *section;
16735
16736 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16737 DWO file. */
16738 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16739 section = &cu->dwo_unit->dwo_file->sections.line;
16740 else if (cu->per_cu->is_dwz)
16741 {
16742 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16743
16744 section = &dwz->line;
16745 }
16746 else
16747 section = &dwarf2_per_objfile->line;
16748
16749 return section;
16750}
16751
debd256d 16752/* Read the statement program header starting at OFFSET in
3019eac3 16753 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 16754 to a struct line_header, allocated using xmalloc.
debd256d
JB
16755
16756 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
16757 the returned object point into the dwarf line section buffer,
16758 and must not be freed. */
ae2de4f8 16759
debd256d 16760static struct line_header *
3019eac3 16761dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
16762{
16763 struct cleanup *back_to;
16764 struct line_header *lh;
d521ce57 16765 const gdb_byte *line_ptr;
c764a876 16766 unsigned int bytes_read, offset_size;
debd256d 16767 int i;
d521ce57 16768 const char *cur_dir, *cur_file;
3019eac3
DE
16769 struct dwarf2_section_info *section;
16770 bfd *abfd;
16771
36586728 16772 section = get_debug_line_section (cu);
3019eac3
DE
16773 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
16774 if (section->buffer == NULL)
debd256d 16775 {
3019eac3
DE
16776 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16777 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
16778 else
16779 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
16780 return 0;
16781 }
16782
fceca515
DE
16783 /* We can't do this until we know the section is non-empty.
16784 Only then do we know we have such a section. */
a32a8923 16785 abfd = get_section_bfd_owner (section);
fceca515 16786
a738430d
MK
16787 /* Make sure that at least there's room for the total_length field.
16788 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 16789 if (offset + 4 >= section->size)
debd256d 16790 {
4d3c2250 16791 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
16792 return 0;
16793 }
16794
16795 lh = xmalloc (sizeof (*lh));
16796 memset (lh, 0, sizeof (*lh));
16797 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
16798 (void *) lh);
16799
3019eac3 16800 line_ptr = section->buffer + offset;
debd256d 16801
a738430d 16802 /* Read in the header. */
6e70227d 16803 lh->total_length =
c764a876
DE
16804 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
16805 &bytes_read, &offset_size);
debd256d 16806 line_ptr += bytes_read;
3019eac3 16807 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 16808 {
4d3c2250 16809 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 16810 do_cleanups (back_to);
debd256d
JB
16811 return 0;
16812 }
16813 lh->statement_program_end = line_ptr + lh->total_length;
16814 lh->version = read_2_bytes (abfd, line_ptr);
16815 line_ptr += 2;
c764a876
DE
16816 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
16817 line_ptr += offset_size;
debd256d
JB
16818 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
16819 line_ptr += 1;
2dc7f7b3
TT
16820 if (lh->version >= 4)
16821 {
16822 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
16823 line_ptr += 1;
16824 }
16825 else
16826 lh->maximum_ops_per_instruction = 1;
16827
16828 if (lh->maximum_ops_per_instruction == 0)
16829 {
16830 lh->maximum_ops_per_instruction = 1;
16831 complaint (&symfile_complaints,
3e43a32a
MS
16832 _("invalid maximum_ops_per_instruction "
16833 "in `.debug_line' section"));
2dc7f7b3
TT
16834 }
16835
debd256d
JB
16836 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
16837 line_ptr += 1;
16838 lh->line_base = read_1_signed_byte (abfd, line_ptr);
16839 line_ptr += 1;
16840 lh->line_range = read_1_byte (abfd, line_ptr);
16841 line_ptr += 1;
16842 lh->opcode_base = read_1_byte (abfd, line_ptr);
16843 line_ptr += 1;
16844 lh->standard_opcode_lengths
fe1b8b76 16845 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
16846
16847 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
16848 for (i = 1; i < lh->opcode_base; ++i)
16849 {
16850 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
16851 line_ptr += 1;
16852 }
16853
a738430d 16854 /* Read directory table. */
9b1c24c8 16855 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
16856 {
16857 line_ptr += bytes_read;
16858 add_include_dir (lh, cur_dir);
16859 }
16860 line_ptr += bytes_read;
16861
a738430d 16862 /* Read file name table. */
9b1c24c8 16863 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
16864 {
16865 unsigned int dir_index, mod_time, length;
16866
16867 line_ptr += bytes_read;
16868 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16869 line_ptr += bytes_read;
16870 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16871 line_ptr += bytes_read;
16872 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
16873 line_ptr += bytes_read;
16874
16875 add_file_name (lh, cur_file, dir_index, mod_time, length);
16876 }
16877 line_ptr += bytes_read;
6e70227d 16878 lh->statement_program_start = line_ptr;
debd256d 16879
3019eac3 16880 if (line_ptr > (section->buffer + section->size))
4d3c2250 16881 complaint (&symfile_complaints,
3e43a32a
MS
16882 _("line number info header doesn't "
16883 "fit in `.debug_line' section"));
debd256d
JB
16884
16885 discard_cleanups (back_to);
16886 return lh;
16887}
c906108c 16888
c6da4cef
DE
16889/* Subroutine of dwarf_decode_lines to simplify it.
16890 Return the file name of the psymtab for included file FILE_INDEX
16891 in line header LH of PST.
16892 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
16893 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
16894 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
16895
16896 The function creates dangling cleanup registration. */
c6da4cef 16897
d521ce57 16898static const char *
c6da4cef
DE
16899psymtab_include_file_name (const struct line_header *lh, int file_index,
16900 const struct partial_symtab *pst,
16901 const char *comp_dir)
16902{
16903 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
16904 const char *include_name = fe.name;
16905 const char *include_name_to_compare = include_name;
16906 const char *dir_name = NULL;
72b9f47f
TT
16907 const char *pst_filename;
16908 char *copied_name = NULL;
c6da4cef
DE
16909 int file_is_pst;
16910
16911 if (fe.dir_index)
16912 dir_name = lh->include_dirs[fe.dir_index - 1];
16913
16914 if (!IS_ABSOLUTE_PATH (include_name)
16915 && (dir_name != NULL || comp_dir != NULL))
16916 {
16917 /* Avoid creating a duplicate psymtab for PST.
16918 We do this by comparing INCLUDE_NAME and PST_FILENAME.
16919 Before we do the comparison, however, we need to account
16920 for DIR_NAME and COMP_DIR.
16921 First prepend dir_name (if non-NULL). If we still don't
16922 have an absolute path prepend comp_dir (if non-NULL).
16923 However, the directory we record in the include-file's
16924 psymtab does not contain COMP_DIR (to match the
16925 corresponding symtab(s)).
16926
16927 Example:
16928
16929 bash$ cd /tmp
16930 bash$ gcc -g ./hello.c
16931 include_name = "hello.c"
16932 dir_name = "."
16933 DW_AT_comp_dir = comp_dir = "/tmp"
16934 DW_AT_name = "./hello.c" */
16935
16936 if (dir_name != NULL)
16937 {
d521ce57
TT
16938 char *tem = concat (dir_name, SLASH_STRING,
16939 include_name, (char *)NULL);
16940
16941 make_cleanup (xfree, tem);
16942 include_name = tem;
c6da4cef 16943 include_name_to_compare = include_name;
c6da4cef
DE
16944 }
16945 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
16946 {
d521ce57
TT
16947 char *tem = concat (comp_dir, SLASH_STRING,
16948 include_name, (char *)NULL);
16949
16950 make_cleanup (xfree, tem);
16951 include_name_to_compare = tem;
c6da4cef
DE
16952 }
16953 }
16954
16955 pst_filename = pst->filename;
16956 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
16957 {
72b9f47f
TT
16958 copied_name = concat (pst->dirname, SLASH_STRING,
16959 pst_filename, (char *)NULL);
16960 pst_filename = copied_name;
c6da4cef
DE
16961 }
16962
1e3fad37 16963 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 16964
72b9f47f
TT
16965 if (copied_name != NULL)
16966 xfree (copied_name);
c6da4cef
DE
16967
16968 if (file_is_pst)
16969 return NULL;
16970 return include_name;
16971}
16972
c91513d8
PP
16973/* Ignore this record_line request. */
16974
16975static void
16976noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
16977{
16978 return;
16979}
16980
f3f5162e
DE
16981/* Subroutine of dwarf_decode_lines to simplify it.
16982 Process the line number information in LH. */
debd256d 16983
c906108c 16984static void
f3f5162e
DE
16985dwarf_decode_lines_1 (struct line_header *lh, const char *comp_dir,
16986 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 16987{
d521ce57
TT
16988 const gdb_byte *line_ptr, *extended_end;
16989 const gdb_byte *line_end;
a8c50c1f 16990 unsigned int bytes_read, extended_len;
c906108c 16991 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
16992 CORE_ADDR baseaddr;
16993 struct objfile *objfile = cu->objfile;
f3f5162e 16994 bfd *abfd = objfile->obfd;
fbf65064 16995 struct gdbarch *gdbarch = get_objfile_arch (objfile);
aaa75496 16996 const int decode_for_pst_p = (pst != NULL);
f3f5162e 16997 struct subfile *last_subfile = NULL;
c91513d8
PP
16998 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
16999 = record_line;
e142c38c
DJ
17000
17001 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17002
debd256d
JB
17003 line_ptr = lh->statement_program_start;
17004 line_end = lh->statement_program_end;
c906108c
SS
17005
17006 /* Read the statement sequences until there's nothing left. */
17007 while (line_ptr < line_end)
17008 {
17009 /* state machine registers */
17010 CORE_ADDR address = 0;
17011 unsigned int file = 1;
17012 unsigned int line = 1;
17013 unsigned int column = 0;
debd256d 17014 int is_stmt = lh->default_is_stmt;
c906108c
SS
17015 int basic_block = 0;
17016 int end_sequence = 0;
fbf65064 17017 CORE_ADDR addr;
2dc7f7b3 17018 unsigned char op_index = 0;
c906108c 17019
aaa75496 17020 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 17021 {
aaa75496 17022 /* Start a subfile for the current file of the state machine. */
debd256d
JB
17023 /* lh->include_dirs and lh->file_names are 0-based, but the
17024 directory and file name numbers in the statement program
17025 are 1-based. */
17026 struct file_entry *fe = &lh->file_names[file - 1];
d521ce57 17027 const char *dir = NULL;
a738430d 17028
debd256d
JB
17029 if (fe->dir_index)
17030 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
17031
17032 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
17033 }
17034
a738430d 17035 /* Decode the table. */
c5aa993b 17036 while (!end_sequence)
c906108c
SS
17037 {
17038 op_code = read_1_byte (abfd, line_ptr);
17039 line_ptr += 1;
59205f5a
JB
17040 if (line_ptr > line_end)
17041 {
17042 dwarf2_debug_line_missing_end_sequence_complaint ();
17043 break;
17044 }
9aa1fe7e 17045
debd256d 17046 if (op_code >= lh->opcode_base)
6e70227d 17047 {
a738430d 17048 /* Special operand. */
debd256d 17049 adj_opcode = op_code - lh->opcode_base;
2dc7f7b3
TT
17050 address += (((op_index + (adj_opcode / lh->line_range))
17051 / lh->maximum_ops_per_instruction)
17052 * lh->minimum_instruction_length);
17053 op_index = ((op_index + (adj_opcode / lh->line_range))
17054 % lh->maximum_ops_per_instruction);
debd256d 17055 line += lh->line_base + (adj_opcode % lh->line_range);
59205f5a 17056 if (lh->num_file_names < file || file == 0)
25e43795 17057 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
17058 /* For now we ignore lines not starting on an
17059 instruction boundary. */
17060 else if (op_index == 0)
25e43795
DJ
17061 {
17062 lh->file_names[file - 1].included_p = 1;
ca5f395d 17063 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
17064 {
17065 if (last_subfile != current_subfile)
17066 {
17067 addr = gdbarch_addr_bits_remove (gdbarch, address);
17068 if (last_subfile)
c91513d8 17069 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
17070 last_subfile = current_subfile;
17071 }
25e43795 17072 /* Append row to matrix using current values. */
7019d805 17073 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 17074 (*p_record_line) (current_subfile, line, addr);
366da635 17075 }
25e43795 17076 }
ca5f395d 17077 basic_block = 0;
9aa1fe7e
GK
17078 }
17079 else switch (op_code)
c906108c
SS
17080 {
17081 case DW_LNS_extended_op:
3e43a32a
MS
17082 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17083 &bytes_read);
473b7be6 17084 line_ptr += bytes_read;
a8c50c1f 17085 extended_end = line_ptr + extended_len;
c906108c
SS
17086 extended_op = read_1_byte (abfd, line_ptr);
17087 line_ptr += 1;
17088 switch (extended_op)
17089 {
17090 case DW_LNE_end_sequence:
c91513d8 17091 p_record_line = record_line;
c906108c 17092 end_sequence = 1;
c906108c
SS
17093 break;
17094 case DW_LNE_set_address:
e7c27a73 17095 address = read_address (abfd, line_ptr, cu, &bytes_read);
c91513d8
PP
17096
17097 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
17098 {
17099 /* This line table is for a function which has been
17100 GCd by the linker. Ignore it. PR gdb/12528 */
17101
17102 long line_offset
36586728 17103 = line_ptr - get_debug_line_section (cu)->buffer;
c91513d8
PP
17104
17105 complaint (&symfile_complaints,
17106 _(".debug_line address at offset 0x%lx is 0 "
17107 "[in module %s]"),
4262abfb 17108 line_offset, objfile_name (objfile));
c91513d8
PP
17109 p_record_line = noop_record_line;
17110 }
17111
2dc7f7b3 17112 op_index = 0;
107d2387
AC
17113 line_ptr += bytes_read;
17114 address += baseaddr;
c906108c
SS
17115 break;
17116 case DW_LNE_define_file:
debd256d 17117 {
d521ce57 17118 const char *cur_file;
debd256d 17119 unsigned int dir_index, mod_time, length;
6e70227d 17120
3e43a32a
MS
17121 cur_file = read_direct_string (abfd, line_ptr,
17122 &bytes_read);
debd256d
JB
17123 line_ptr += bytes_read;
17124 dir_index =
17125 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17126 line_ptr += bytes_read;
17127 mod_time =
17128 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17129 line_ptr += bytes_read;
17130 length =
17131 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17132 line_ptr += bytes_read;
17133 add_file_name (lh, cur_file, dir_index, mod_time, length);
17134 }
c906108c 17135 break;
d0c6ba3d
CC
17136 case DW_LNE_set_discriminator:
17137 /* The discriminator is not interesting to the debugger;
17138 just ignore it. */
17139 line_ptr = extended_end;
17140 break;
c906108c 17141 default:
4d3c2250 17142 complaint (&symfile_complaints,
e2e0b3e5 17143 _("mangled .debug_line section"));
debd256d 17144 return;
c906108c 17145 }
a8c50c1f
DJ
17146 /* Make sure that we parsed the extended op correctly. If e.g.
17147 we expected a different address size than the producer used,
17148 we may have read the wrong number of bytes. */
17149 if (line_ptr != extended_end)
17150 {
17151 complaint (&symfile_complaints,
17152 _("mangled .debug_line section"));
17153 return;
17154 }
c906108c
SS
17155 break;
17156 case DW_LNS_copy:
59205f5a 17157 if (lh->num_file_names < file || file == 0)
25e43795
DJ
17158 dwarf2_debug_line_missing_file_complaint ();
17159 else
366da635 17160 {
25e43795 17161 lh->file_names[file - 1].included_p = 1;
ca5f395d 17162 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
17163 {
17164 if (last_subfile != current_subfile)
17165 {
17166 addr = gdbarch_addr_bits_remove (gdbarch, address);
17167 if (last_subfile)
c91513d8 17168 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
17169 last_subfile = current_subfile;
17170 }
7019d805 17171 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 17172 (*p_record_line) (current_subfile, line, addr);
fbf65064 17173 }
366da635 17174 }
c906108c
SS
17175 basic_block = 0;
17176 break;
17177 case DW_LNS_advance_pc:
2dc7f7b3
TT
17178 {
17179 CORE_ADDR adjust
17180 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17181
17182 address += (((op_index + adjust)
17183 / lh->maximum_ops_per_instruction)
17184 * lh->minimum_instruction_length);
17185 op_index = ((op_index + adjust)
17186 % lh->maximum_ops_per_instruction);
17187 line_ptr += bytes_read;
17188 }
c906108c
SS
17189 break;
17190 case DW_LNS_advance_line:
17191 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
17192 line_ptr += bytes_read;
17193 break;
17194 case DW_LNS_set_file:
debd256d 17195 {
a738430d
MK
17196 /* The arrays lh->include_dirs and lh->file_names are
17197 0-based, but the directory and file name numbers in
17198 the statement program are 1-based. */
debd256d 17199 struct file_entry *fe;
d521ce57 17200 const char *dir = NULL;
a738430d 17201
debd256d
JB
17202 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17203 line_ptr += bytes_read;
59205f5a 17204 if (lh->num_file_names < file || file == 0)
25e43795
DJ
17205 dwarf2_debug_line_missing_file_complaint ();
17206 else
17207 {
17208 fe = &lh->file_names[file - 1];
17209 if (fe->dir_index)
17210 dir = lh->include_dirs[fe->dir_index - 1];
17211 if (!decode_for_pst_p)
17212 {
17213 last_subfile = current_subfile;
17214 dwarf2_start_subfile (fe->name, dir, comp_dir);
17215 }
17216 }
debd256d 17217 }
c906108c
SS
17218 break;
17219 case DW_LNS_set_column:
17220 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17221 line_ptr += bytes_read;
17222 break;
17223 case DW_LNS_negate_stmt:
17224 is_stmt = (!is_stmt);
17225 break;
17226 case DW_LNS_set_basic_block:
17227 basic_block = 1;
17228 break;
c2c6d25f
JM
17229 /* Add to the address register of the state machine the
17230 address increment value corresponding to special opcode
a738430d
MK
17231 255. I.e., this value is scaled by the minimum
17232 instruction length since special opcode 255 would have
b021a221 17233 scaled the increment. */
c906108c 17234 case DW_LNS_const_add_pc:
2dc7f7b3
TT
17235 {
17236 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
17237
17238 address += (((op_index + adjust)
17239 / lh->maximum_ops_per_instruction)
17240 * lh->minimum_instruction_length);
17241 op_index = ((op_index + adjust)
17242 % lh->maximum_ops_per_instruction);
17243 }
c906108c
SS
17244 break;
17245 case DW_LNS_fixed_advance_pc:
17246 address += read_2_bytes (abfd, line_ptr);
2dc7f7b3 17247 op_index = 0;
c906108c
SS
17248 line_ptr += 2;
17249 break;
9aa1fe7e 17250 default:
a738430d
MK
17251 {
17252 /* Unknown standard opcode, ignore it. */
9aa1fe7e 17253 int i;
a738430d 17254
debd256d 17255 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
17256 {
17257 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17258 line_ptr += bytes_read;
17259 }
17260 }
c906108c
SS
17261 }
17262 }
59205f5a
JB
17263 if (lh->num_file_names < file || file == 0)
17264 dwarf2_debug_line_missing_file_complaint ();
17265 else
17266 {
17267 lh->file_names[file - 1].included_p = 1;
17268 if (!decode_for_pst_p)
fbf65064
UW
17269 {
17270 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 17271 (*p_record_line) (current_subfile, 0, addr);
fbf65064 17272 }
59205f5a 17273 }
c906108c 17274 }
f3f5162e
DE
17275}
17276
17277/* Decode the Line Number Program (LNP) for the given line_header
17278 structure and CU. The actual information extracted and the type
17279 of structures created from the LNP depends on the value of PST.
17280
17281 1. If PST is NULL, then this procedure uses the data from the program
17282 to create all necessary symbol tables, and their linetables.
17283
17284 2. If PST is not NULL, this procedure reads the program to determine
17285 the list of files included by the unit represented by PST, and
17286 builds all the associated partial symbol tables.
17287
17288 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17289 It is used for relative paths in the line table.
17290 NOTE: When processing partial symtabs (pst != NULL),
17291 comp_dir == pst->dirname.
17292
17293 NOTE: It is important that psymtabs have the same file name (via strcmp)
17294 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17295 symtab we don't use it in the name of the psymtabs we create.
17296 E.g. expand_line_sal requires this when finding psymtabs to expand.
17297 A good testcase for this is mb-inline.exp. */
17298
17299static void
17300dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
17301 struct dwarf2_cu *cu, struct partial_symtab *pst,
17302 int want_line_info)
17303{
17304 struct objfile *objfile = cu->objfile;
17305 const int decode_for_pst_p = (pst != NULL);
17306 struct subfile *first_subfile = current_subfile;
17307
17308 if (want_line_info)
17309 dwarf_decode_lines_1 (lh, comp_dir, cu, pst);
aaa75496
JB
17310
17311 if (decode_for_pst_p)
17312 {
17313 int file_index;
17314
17315 /* Now that we're done scanning the Line Header Program, we can
17316 create the psymtab of each included file. */
17317 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17318 if (lh->file_names[file_index].included_p == 1)
17319 {
d521ce57 17320 const char *include_name =
c6da4cef
DE
17321 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17322 if (include_name != NULL)
aaa75496
JB
17323 dwarf2_create_include_psymtab (include_name, pst, objfile);
17324 }
17325 }
cb1df416
DJ
17326 else
17327 {
17328 /* Make sure a symtab is created for every file, even files
17329 which contain only variables (i.e. no code with associated
17330 line numbers). */
cb1df416 17331 int i;
cb1df416
DJ
17332
17333 for (i = 0; i < lh->num_file_names; i++)
17334 {
d521ce57 17335 const char *dir = NULL;
f3f5162e 17336 struct file_entry *fe;
9a619af0 17337
cb1df416
DJ
17338 fe = &lh->file_names[i];
17339 if (fe->dir_index)
17340 dir = lh->include_dirs[fe->dir_index - 1];
17341 dwarf2_start_subfile (fe->name, dir, comp_dir);
17342
17343 /* Skip the main file; we don't need it, and it must be
17344 allocated last, so that it will show up before the
17345 non-primary symtabs in the objfile's symtab list. */
17346 if (current_subfile == first_subfile)
17347 continue;
17348
17349 if (current_subfile->symtab == NULL)
17350 current_subfile->symtab = allocate_symtab (current_subfile->name,
bb5ed363 17351 objfile);
cb1df416
DJ
17352 fe->symtab = current_subfile->symtab;
17353 }
17354 }
c906108c
SS
17355}
17356
17357/* Start a subfile for DWARF. FILENAME is the name of the file and
17358 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
17359 or NULL if not known. COMP_DIR is the compilation directory for the
17360 linetable's compilation unit or NULL if not known.
c906108c
SS
17361 This routine tries to keep line numbers from identical absolute and
17362 relative file names in a common subfile.
17363
17364 Using the `list' example from the GDB testsuite, which resides in
17365 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17366 of /srcdir/list0.c yields the following debugging information for list0.c:
17367
c5aa993b
JM
17368 DW_AT_name: /srcdir/list0.c
17369 DW_AT_comp_dir: /compdir
357e46e7 17370 files.files[0].name: list0.h
c5aa993b 17371 files.files[0].dir: /srcdir
357e46e7 17372 files.files[1].name: list0.c
c5aa993b 17373 files.files[1].dir: /srcdir
c906108c
SS
17374
17375 The line number information for list0.c has to end up in a single
4f1520fb
FR
17376 subfile, so that `break /srcdir/list0.c:1' works as expected.
17377 start_subfile will ensure that this happens provided that we pass the
17378 concatenation of files.files[1].dir and files.files[1].name as the
17379 subfile's name. */
c906108c
SS
17380
17381static void
d521ce57 17382dwarf2_start_subfile (const char *filename, const char *dirname,
3e43a32a 17383 const char *comp_dir)
c906108c 17384{
d521ce57 17385 char *copy = NULL;
4f1520fb
FR
17386
17387 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
17388 `start_symtab' will always pass the contents of DW_AT_comp_dir as
17389 second argument to start_subfile. To be consistent, we do the
17390 same here. In order not to lose the line information directory,
17391 we concatenate it to the filename when it makes sense.
17392 Note that the Dwarf3 standard says (speaking of filenames in line
17393 information): ``The directory index is ignored for file names
17394 that represent full path names''. Thus ignoring dirname in the
17395 `else' branch below isn't an issue. */
c906108c 17396
d5166ae1 17397 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
17398 {
17399 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17400 filename = copy;
17401 }
c906108c 17402
d521ce57 17403 start_subfile (filename, comp_dir);
4f1520fb 17404
d521ce57
TT
17405 if (copy != NULL)
17406 xfree (copy);
c906108c
SS
17407}
17408
f4dc4d17
DE
17409/* Start a symtab for DWARF.
17410 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17411
17412static void
17413dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 17414 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17
DE
17415{
17416 start_symtab (name, comp_dir, low_pc);
17417 record_debugformat ("DWARF 2");
17418 record_producer (cu->producer);
17419
17420 /* We assume that we're processing GCC output. */
17421 processing_gcc_compilation = 2;
17422
4d4ec4e5 17423 cu->processing_has_namespace_info = 0;
f4dc4d17
DE
17424}
17425
4c2df51b
DJ
17426static void
17427var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 17428 struct dwarf2_cu *cu)
4c2df51b 17429{
e7c27a73
DJ
17430 struct objfile *objfile = cu->objfile;
17431 struct comp_unit_head *cu_header = &cu->header;
17432
4c2df51b
DJ
17433 /* NOTE drow/2003-01-30: There used to be a comment and some special
17434 code here to turn a symbol with DW_AT_external and a
17435 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17436 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17437 with some versions of binutils) where shared libraries could have
17438 relocations against symbols in their debug information - the
17439 minimal symbol would have the right address, but the debug info
17440 would not. It's no longer necessary, because we will explicitly
17441 apply relocations when we read in the debug information now. */
17442
17443 /* A DW_AT_location attribute with no contents indicates that a
17444 variable has been optimized away. */
17445 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17446 {
f1e6e072 17447 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
17448 return;
17449 }
17450
17451 /* Handle one degenerate form of location expression specially, to
17452 preserve GDB's previous behavior when section offsets are
3019eac3
DE
17453 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17454 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
17455
17456 if (attr_form_is_block (attr)
3019eac3
DE
17457 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17458 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17459 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17460 && (DW_BLOCK (attr)->size
17461 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 17462 {
891d2f0b 17463 unsigned int dummy;
4c2df51b 17464
3019eac3
DE
17465 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17466 SYMBOL_VALUE_ADDRESS (sym) =
17467 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17468 else
17469 SYMBOL_VALUE_ADDRESS (sym) =
17470 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 17471 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
17472 fixup_symbol_section (sym, objfile);
17473 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17474 SYMBOL_SECTION (sym));
4c2df51b
DJ
17475 return;
17476 }
17477
17478 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17479 expression evaluator, and use LOC_COMPUTED only when necessary
17480 (i.e. when the value of a register or memory location is
17481 referenced, or a thread-local block, etc.). Then again, it might
17482 not be worthwhile. I'm assuming that it isn't unless performance
17483 or memory numbers show me otherwise. */
17484
f1e6e072 17485 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 17486
f1e6e072 17487 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 17488 cu->has_loclist = 1;
4c2df51b
DJ
17489}
17490
c906108c
SS
17491/* Given a pointer to a DWARF information entry, figure out if we need
17492 to make a symbol table entry for it, and if so, create a new entry
17493 and return a pointer to it.
17494 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
17495 used the passed type.
17496 If SPACE is not NULL, use it to hold the new symbol. If it is
17497 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
17498
17499static struct symbol *
34eaf542
TT
17500new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17501 struct symbol *space)
c906108c 17502{
e7c27a73 17503 struct objfile *objfile = cu->objfile;
c906108c 17504 struct symbol *sym = NULL;
15d034d0 17505 const char *name;
c906108c
SS
17506 struct attribute *attr = NULL;
17507 struct attribute *attr2 = NULL;
e142c38c 17508 CORE_ADDR baseaddr;
e37fd15a
SW
17509 struct pending **list_to_add = NULL;
17510
edb3359d 17511 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
17512
17513 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17514
94af9270 17515 name = dwarf2_name (die, cu);
c906108c
SS
17516 if (name)
17517 {
94af9270 17518 const char *linkagename;
34eaf542 17519 int suppress_add = 0;
94af9270 17520
34eaf542
TT
17521 if (space)
17522 sym = space;
17523 else
e623cf5d 17524 sym = allocate_symbol (objfile);
c906108c 17525 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
17526
17527 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 17528 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
17529 linkagename = dwarf2_physname (name, die, cu);
17530 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 17531
f55ee35c
JK
17532 /* Fortran does not have mangling standard and the mangling does differ
17533 between gfortran, iFort etc. */
17534 if (cu->language == language_fortran
b250c185 17535 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 17536 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 17537 dwarf2_full_name (name, die, cu),
29df156d 17538 NULL);
f55ee35c 17539
c906108c 17540 /* Default assumptions.
c5aa993b 17541 Use the passed type or decode it from the die. */
176620f1 17542 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 17543 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
17544 if (type != NULL)
17545 SYMBOL_TYPE (sym) = type;
17546 else
e7c27a73 17547 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
17548 attr = dwarf2_attr (die,
17549 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17550 cu);
c906108c
SS
17551 if (attr)
17552 {
17553 SYMBOL_LINE (sym) = DW_UNSND (attr);
17554 }
cb1df416 17555
edb3359d
DJ
17556 attr = dwarf2_attr (die,
17557 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17558 cu);
cb1df416
DJ
17559 if (attr)
17560 {
17561 int file_index = DW_UNSND (attr);
9a619af0 17562
cb1df416
DJ
17563 if (cu->line_header == NULL
17564 || file_index > cu->line_header->num_file_names)
17565 complaint (&symfile_complaints,
17566 _("file index out of range"));
1c3d648d 17567 else if (file_index > 0)
cb1df416
DJ
17568 {
17569 struct file_entry *fe;
9a619af0 17570
cb1df416
DJ
17571 fe = &cu->line_header->file_names[file_index - 1];
17572 SYMBOL_SYMTAB (sym) = fe->symtab;
17573 }
17574 }
17575
c906108c
SS
17576 switch (die->tag)
17577 {
17578 case DW_TAG_label:
e142c38c 17579 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 17580 if (attr)
31aa7e4e
JB
17581 SYMBOL_VALUE_ADDRESS (sym)
17582 = attr_value_as_address (attr) + baseaddr;
0f5238ed
TT
17583 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17584 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 17585 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 17586 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
17587 break;
17588 case DW_TAG_subprogram:
17589 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17590 finish_block. */
f1e6e072 17591 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 17592 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
17593 if ((attr2 && (DW_UNSND (attr2) != 0))
17594 || cu->language == language_ada)
c906108c 17595 {
2cfa0c8d
JB
17596 /* Subprograms marked external are stored as a global symbol.
17597 Ada subprograms, whether marked external or not, are always
17598 stored as a global symbol, because we want to be able to
17599 access them globally. For instance, we want to be able
17600 to break on a nested subprogram without having to
17601 specify the context. */
e37fd15a 17602 list_to_add = &global_symbols;
c906108c
SS
17603 }
17604 else
17605 {
e37fd15a 17606 list_to_add = cu->list_in_scope;
c906108c
SS
17607 }
17608 break;
edb3359d
DJ
17609 case DW_TAG_inlined_subroutine:
17610 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17611 finish_block. */
f1e6e072 17612 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 17613 SYMBOL_INLINED (sym) = 1;
481860b3 17614 list_to_add = cu->list_in_scope;
edb3359d 17615 break;
34eaf542
TT
17616 case DW_TAG_template_value_param:
17617 suppress_add = 1;
17618 /* Fall through. */
72929c62 17619 case DW_TAG_constant:
c906108c 17620 case DW_TAG_variable:
254e6b9e 17621 case DW_TAG_member:
0963b4bd
MS
17622 /* Compilation with minimal debug info may result in
17623 variables with missing type entries. Change the
17624 misleading `void' type to something sensible. */
c906108c 17625 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 17626 SYMBOL_TYPE (sym)
46bf5051 17627 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 17628
e142c38c 17629 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
17630 /* In the case of DW_TAG_member, we should only be called for
17631 static const members. */
17632 if (die->tag == DW_TAG_member)
17633 {
3863f96c
DE
17634 /* dwarf2_add_field uses die_is_declaration,
17635 so we do the same. */
254e6b9e
DE
17636 gdb_assert (die_is_declaration (die, cu));
17637 gdb_assert (attr);
17638 }
c906108c
SS
17639 if (attr)
17640 {
e7c27a73 17641 dwarf2_const_value (attr, sym, cu);
e142c38c 17642 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 17643 if (!suppress_add)
34eaf542
TT
17644 {
17645 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 17646 list_to_add = &global_symbols;
34eaf542 17647 else
e37fd15a 17648 list_to_add = cu->list_in_scope;
34eaf542 17649 }
c906108c
SS
17650 break;
17651 }
e142c38c 17652 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
17653 if (attr)
17654 {
e7c27a73 17655 var_decode_location (attr, sym, cu);
e142c38c 17656 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
17657
17658 /* Fortran explicitly imports any global symbols to the local
17659 scope by DW_TAG_common_block. */
17660 if (cu->language == language_fortran && die->parent
17661 && die->parent->tag == DW_TAG_common_block)
17662 attr2 = NULL;
17663
caac4577
JG
17664 if (SYMBOL_CLASS (sym) == LOC_STATIC
17665 && SYMBOL_VALUE_ADDRESS (sym) == 0
17666 && !dwarf2_per_objfile->has_section_at_zero)
17667 {
17668 /* When a static variable is eliminated by the linker,
17669 the corresponding debug information is not stripped
17670 out, but the variable address is set to null;
17671 do not add such variables into symbol table. */
17672 }
17673 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 17674 {
f55ee35c
JK
17675 /* Workaround gfortran PR debug/40040 - it uses
17676 DW_AT_location for variables in -fPIC libraries which may
17677 get overriden by other libraries/executable and get
17678 a different address. Resolve it by the minimal symbol
17679 which may come from inferior's executable using copy
17680 relocation. Make this workaround only for gfortran as for
17681 other compilers GDB cannot guess the minimal symbol
17682 Fortran mangling kind. */
17683 if (cu->language == language_fortran && die->parent
17684 && die->parent->tag == DW_TAG_module
17685 && cu->producer
17686 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
f1e6e072 17687 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 17688
1c809c68
TT
17689 /* A variable with DW_AT_external is never static,
17690 but it may be block-scoped. */
17691 list_to_add = (cu->list_in_scope == &file_symbols
17692 ? &global_symbols : cu->list_in_scope);
1c809c68 17693 }
c906108c 17694 else
e37fd15a 17695 list_to_add = cu->list_in_scope;
c906108c
SS
17696 }
17697 else
17698 {
17699 /* We do not know the address of this symbol.
c5aa993b
JM
17700 If it is an external symbol and we have type information
17701 for it, enter the symbol as a LOC_UNRESOLVED symbol.
17702 The address of the variable will then be determined from
17703 the minimal symbol table whenever the variable is
17704 referenced. */
e142c38c 17705 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
17706
17707 /* Fortran explicitly imports any global symbols to the local
17708 scope by DW_TAG_common_block. */
17709 if (cu->language == language_fortran && die->parent
17710 && die->parent->tag == DW_TAG_common_block)
17711 {
17712 /* SYMBOL_CLASS doesn't matter here because
17713 read_common_block is going to reset it. */
17714 if (!suppress_add)
17715 list_to_add = cu->list_in_scope;
17716 }
17717 else if (attr2 && (DW_UNSND (attr2) != 0)
17718 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 17719 {
0fe7935b
DJ
17720 /* A variable with DW_AT_external is never static, but it
17721 may be block-scoped. */
17722 list_to_add = (cu->list_in_scope == &file_symbols
17723 ? &global_symbols : cu->list_in_scope);
17724
f1e6e072 17725 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 17726 }
442ddf59
JK
17727 else if (!die_is_declaration (die, cu))
17728 {
17729 /* Use the default LOC_OPTIMIZED_OUT class. */
17730 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
17731 if (!suppress_add)
17732 list_to_add = cu->list_in_scope;
442ddf59 17733 }
c906108c
SS
17734 }
17735 break;
17736 case DW_TAG_formal_parameter:
edb3359d
DJ
17737 /* If we are inside a function, mark this as an argument. If
17738 not, we might be looking at an argument to an inlined function
17739 when we do not have enough information to show inlined frames;
17740 pretend it's a local variable in that case so that the user can
17741 still see it. */
17742 if (context_stack_depth > 0
17743 && context_stack[context_stack_depth - 1].name != NULL)
17744 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 17745 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
17746 if (attr)
17747 {
e7c27a73 17748 var_decode_location (attr, sym, cu);
c906108c 17749 }
e142c38c 17750 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
17751 if (attr)
17752 {
e7c27a73 17753 dwarf2_const_value (attr, sym, cu);
c906108c 17754 }
f346a30d 17755
e37fd15a 17756 list_to_add = cu->list_in_scope;
c906108c
SS
17757 break;
17758 case DW_TAG_unspecified_parameters:
17759 /* From varargs functions; gdb doesn't seem to have any
17760 interest in this information, so just ignore it for now.
17761 (FIXME?) */
17762 break;
34eaf542
TT
17763 case DW_TAG_template_type_param:
17764 suppress_add = 1;
17765 /* Fall through. */
c906108c 17766 case DW_TAG_class_type:
680b30c7 17767 case DW_TAG_interface_type:
c906108c
SS
17768 case DW_TAG_structure_type:
17769 case DW_TAG_union_type:
72019c9c 17770 case DW_TAG_set_type:
c906108c 17771 case DW_TAG_enumeration_type:
f1e6e072 17772 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 17773 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 17774
63d06c5c 17775 {
987504bb 17776 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
17777 really ever be static objects: otherwise, if you try
17778 to, say, break of a class's method and you're in a file
17779 which doesn't mention that class, it won't work unless
17780 the check for all static symbols in lookup_symbol_aux
17781 saves you. See the OtherFileClass tests in
17782 gdb.c++/namespace.exp. */
17783
e37fd15a 17784 if (!suppress_add)
34eaf542 17785 {
34eaf542
TT
17786 list_to_add = (cu->list_in_scope == &file_symbols
17787 && (cu->language == language_cplus
17788 || cu->language == language_java)
17789 ? &global_symbols : cu->list_in_scope);
63d06c5c 17790
64382290
TT
17791 /* The semantics of C++ state that "struct foo {
17792 ... }" also defines a typedef for "foo". A Java
17793 class declaration also defines a typedef for the
17794 class. */
17795 if (cu->language == language_cplus
17796 || cu->language == language_java
17797 || cu->language == language_ada)
17798 {
17799 /* The symbol's name is already allocated along
17800 with this objfile, so we don't need to
17801 duplicate it for the type. */
17802 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
17803 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
17804 }
63d06c5c
DC
17805 }
17806 }
c906108c
SS
17807 break;
17808 case DW_TAG_typedef:
f1e6e072 17809 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 17810 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 17811 list_to_add = cu->list_in_scope;
63d06c5c 17812 break;
c906108c 17813 case DW_TAG_base_type:
a02abb62 17814 case DW_TAG_subrange_type:
f1e6e072 17815 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 17816 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 17817 list_to_add = cu->list_in_scope;
c906108c
SS
17818 break;
17819 case DW_TAG_enumerator:
e142c38c 17820 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
17821 if (attr)
17822 {
e7c27a73 17823 dwarf2_const_value (attr, sym, cu);
c906108c 17824 }
63d06c5c
DC
17825 {
17826 /* NOTE: carlton/2003-11-10: See comment above in the
17827 DW_TAG_class_type, etc. block. */
17828
e142c38c 17829 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
17830 && (cu->language == language_cplus
17831 || cu->language == language_java)
e142c38c 17832 ? &global_symbols : cu->list_in_scope);
63d06c5c 17833 }
c906108c 17834 break;
74921315 17835 case DW_TAG_imported_declaration:
5c4e30ca 17836 case DW_TAG_namespace:
f1e6e072 17837 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 17838 list_to_add = &global_symbols;
5c4e30ca 17839 break;
530e8392
KB
17840 case DW_TAG_module:
17841 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
17842 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
17843 list_to_add = &global_symbols;
17844 break;
4357ac6c 17845 case DW_TAG_common_block:
f1e6e072 17846 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
17847 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
17848 add_symbol_to_list (sym, cu->list_in_scope);
17849 break;
c906108c
SS
17850 default:
17851 /* Not a tag we recognize. Hopefully we aren't processing
17852 trash data, but since we must specifically ignore things
17853 we don't recognize, there is nothing else we should do at
0963b4bd 17854 this point. */
e2e0b3e5 17855 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 17856 dwarf_tag_name (die->tag));
c906108c
SS
17857 break;
17858 }
df8a16a1 17859
e37fd15a
SW
17860 if (suppress_add)
17861 {
17862 sym->hash_next = objfile->template_symbols;
17863 objfile->template_symbols = sym;
17864 list_to_add = NULL;
17865 }
17866
17867 if (list_to_add != NULL)
17868 add_symbol_to_list (sym, list_to_add);
17869
df8a16a1
DJ
17870 /* For the benefit of old versions of GCC, check for anonymous
17871 namespaces based on the demangled name. */
4d4ec4e5 17872 if (!cu->processing_has_namespace_info
94af9270 17873 && cu->language == language_cplus)
a10964d1 17874 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
17875 }
17876 return (sym);
17877}
17878
34eaf542
TT
17879/* A wrapper for new_symbol_full that always allocates a new symbol. */
17880
17881static struct symbol *
17882new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
17883{
17884 return new_symbol_full (die, type, cu, NULL);
17885}
17886
98bfdba5
PA
17887/* Given an attr with a DW_FORM_dataN value in host byte order,
17888 zero-extend it as appropriate for the symbol's type. The DWARF
17889 standard (v4) is not entirely clear about the meaning of using
17890 DW_FORM_dataN for a constant with a signed type, where the type is
17891 wider than the data. The conclusion of a discussion on the DWARF
17892 list was that this is unspecified. We choose to always zero-extend
17893 because that is the interpretation long in use by GCC. */
c906108c 17894
98bfdba5 17895static gdb_byte *
ff39bb5e 17896dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 17897 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 17898{
e7c27a73 17899 struct objfile *objfile = cu->objfile;
e17a4113
UW
17900 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
17901 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
17902 LONGEST l = DW_UNSND (attr);
17903
17904 if (bits < sizeof (*value) * 8)
17905 {
17906 l &= ((LONGEST) 1 << bits) - 1;
17907 *value = l;
17908 }
17909 else if (bits == sizeof (*value) * 8)
17910 *value = l;
17911 else
17912 {
17913 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
17914 store_unsigned_integer (bytes, bits / 8, byte_order, l);
17915 return bytes;
17916 }
17917
17918 return NULL;
17919}
17920
17921/* Read a constant value from an attribute. Either set *VALUE, or if
17922 the value does not fit in *VALUE, set *BYTES - either already
17923 allocated on the objfile obstack, or newly allocated on OBSTACK,
17924 or, set *BATON, if we translated the constant to a location
17925 expression. */
17926
17927static void
ff39bb5e 17928dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
17929 const char *name, struct obstack *obstack,
17930 struct dwarf2_cu *cu,
d521ce57 17931 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
17932 struct dwarf2_locexpr_baton **baton)
17933{
17934 struct objfile *objfile = cu->objfile;
17935 struct comp_unit_head *cu_header = &cu->header;
c906108c 17936 struct dwarf_block *blk;
98bfdba5
PA
17937 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
17938 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
17939
17940 *value = 0;
17941 *bytes = NULL;
17942 *baton = NULL;
c906108c
SS
17943
17944 switch (attr->form)
17945 {
17946 case DW_FORM_addr:
3019eac3 17947 case DW_FORM_GNU_addr_index:
ac56253d 17948 {
ac56253d
TT
17949 gdb_byte *data;
17950
98bfdba5
PA
17951 if (TYPE_LENGTH (type) != cu_header->addr_size)
17952 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 17953 cu_header->addr_size,
98bfdba5 17954 TYPE_LENGTH (type));
ac56253d
TT
17955 /* Symbols of this form are reasonably rare, so we just
17956 piggyback on the existing location code rather than writing
17957 a new implementation of symbol_computed_ops. */
7919a973 17958 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
98bfdba5
PA
17959 (*baton)->per_cu = cu->per_cu;
17960 gdb_assert ((*baton)->per_cu);
ac56253d 17961
98bfdba5 17962 (*baton)->size = 2 + cu_header->addr_size;
7919a973 17963 data = obstack_alloc (obstack, (*baton)->size);
98bfdba5 17964 (*baton)->data = data;
ac56253d
TT
17965
17966 data[0] = DW_OP_addr;
17967 store_unsigned_integer (&data[1], cu_header->addr_size,
17968 byte_order, DW_ADDR (attr));
17969 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 17970 }
c906108c 17971 break;
4ac36638 17972 case DW_FORM_string:
93b5768b 17973 case DW_FORM_strp:
3019eac3 17974 case DW_FORM_GNU_str_index:
36586728 17975 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
17976 /* DW_STRING is already allocated on the objfile obstack, point
17977 directly to it. */
d521ce57 17978 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 17979 break;
c906108c
SS
17980 case DW_FORM_block1:
17981 case DW_FORM_block2:
17982 case DW_FORM_block4:
17983 case DW_FORM_block:
2dc7f7b3 17984 case DW_FORM_exprloc:
c906108c 17985 blk = DW_BLOCK (attr);
98bfdba5
PA
17986 if (TYPE_LENGTH (type) != blk->size)
17987 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
17988 TYPE_LENGTH (type));
17989 *bytes = blk->data;
c906108c 17990 break;
2df3850c
JM
17991
17992 /* The DW_AT_const_value attributes are supposed to carry the
17993 symbol's value "represented as it would be on the target
17994 architecture." By the time we get here, it's already been
17995 converted to host endianness, so we just need to sign- or
17996 zero-extend it as appropriate. */
17997 case DW_FORM_data1:
3aef2284 17998 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 17999 break;
c906108c 18000 case DW_FORM_data2:
3aef2284 18001 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 18002 break;
c906108c 18003 case DW_FORM_data4:
3aef2284 18004 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 18005 break;
c906108c 18006 case DW_FORM_data8:
3aef2284 18007 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
18008 break;
18009
c906108c 18010 case DW_FORM_sdata:
98bfdba5 18011 *value = DW_SND (attr);
2df3850c
JM
18012 break;
18013
c906108c 18014 case DW_FORM_udata:
98bfdba5 18015 *value = DW_UNSND (attr);
c906108c 18016 break;
2df3850c 18017
c906108c 18018 default:
4d3c2250 18019 complaint (&symfile_complaints,
e2e0b3e5 18020 _("unsupported const value attribute form: '%s'"),
4d3c2250 18021 dwarf_form_name (attr->form));
98bfdba5 18022 *value = 0;
c906108c
SS
18023 break;
18024 }
18025}
18026
2df3850c 18027
98bfdba5
PA
18028/* Copy constant value from an attribute to a symbol. */
18029
2df3850c 18030static void
ff39bb5e 18031dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 18032 struct dwarf2_cu *cu)
2df3850c 18033{
98bfdba5
PA
18034 struct objfile *objfile = cu->objfile;
18035 struct comp_unit_head *cu_header = &cu->header;
12df843f 18036 LONGEST value;
d521ce57 18037 const gdb_byte *bytes;
98bfdba5 18038 struct dwarf2_locexpr_baton *baton;
2df3850c 18039
98bfdba5
PA
18040 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18041 SYMBOL_PRINT_NAME (sym),
18042 &objfile->objfile_obstack, cu,
18043 &value, &bytes, &baton);
2df3850c 18044
98bfdba5
PA
18045 if (baton != NULL)
18046 {
98bfdba5 18047 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 18048 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
18049 }
18050 else if (bytes != NULL)
18051 {
18052 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 18053 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
18054 }
18055 else
18056 {
18057 SYMBOL_VALUE (sym) = value;
f1e6e072 18058 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 18059 }
2df3850c
JM
18060}
18061
c906108c
SS
18062/* Return the type of the die in question using its DW_AT_type attribute. */
18063
18064static struct type *
e7c27a73 18065die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18066{
c906108c 18067 struct attribute *type_attr;
c906108c 18068
e142c38c 18069 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
18070 if (!type_attr)
18071 {
18072 /* A missing DW_AT_type represents a void type. */
46bf5051 18073 return objfile_type (cu->objfile)->builtin_void;
c906108c 18074 }
348e048f 18075
673bfd45 18076 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18077}
18078
b4ba55a1
JB
18079/* True iff CU's producer generates GNAT Ada auxiliary information
18080 that allows to find parallel types through that information instead
18081 of having to do expensive parallel lookups by type name. */
18082
18083static int
18084need_gnat_info (struct dwarf2_cu *cu)
18085{
18086 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18087 of GNAT produces this auxiliary information, without any indication
18088 that it is produced. Part of enhancing the FSF version of GNAT
18089 to produce that information will be to put in place an indicator
18090 that we can use in order to determine whether the descriptive type
18091 info is available or not. One suggestion that has been made is
18092 to use a new attribute, attached to the CU die. For now, assume
18093 that the descriptive type info is not available. */
18094 return 0;
18095}
18096
b4ba55a1
JB
18097/* Return the auxiliary type of the die in question using its
18098 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18099 attribute is not present. */
18100
18101static struct type *
18102die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18103{
b4ba55a1 18104 struct attribute *type_attr;
b4ba55a1
JB
18105
18106 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18107 if (!type_attr)
18108 return NULL;
18109
673bfd45 18110 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
18111}
18112
18113/* If DIE has a descriptive_type attribute, then set the TYPE's
18114 descriptive type accordingly. */
18115
18116static void
18117set_descriptive_type (struct type *type, struct die_info *die,
18118 struct dwarf2_cu *cu)
18119{
18120 struct type *descriptive_type = die_descriptive_type (die, cu);
18121
18122 if (descriptive_type)
18123 {
18124 ALLOCATE_GNAT_AUX_TYPE (type);
18125 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18126 }
18127}
18128
c906108c
SS
18129/* Return the containing type of the die in question using its
18130 DW_AT_containing_type attribute. */
18131
18132static struct type *
e7c27a73 18133die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18134{
c906108c 18135 struct attribute *type_attr;
c906108c 18136
e142c38c 18137 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
18138 if (!type_attr)
18139 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 18140 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 18141
673bfd45 18142 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18143}
18144
ac9ec31b
DE
18145/* Return an error marker type to use for the ill formed type in DIE/CU. */
18146
18147static struct type *
18148build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18149{
18150 struct objfile *objfile = dwarf2_per_objfile->objfile;
18151 char *message, *saved;
18152
18153 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 18154 objfile_name (objfile),
ac9ec31b
DE
18155 cu->header.offset.sect_off,
18156 die->offset.sect_off);
18157 saved = obstack_copy0 (&objfile->objfile_obstack,
18158 message, strlen (message));
18159 xfree (message);
18160
18161 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18162}
18163
673bfd45 18164/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
18165 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18166 DW_AT_containing_type.
673bfd45
DE
18167 If there is no type substitute an error marker. */
18168
c906108c 18169static struct type *
ff39bb5e 18170lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 18171 struct dwarf2_cu *cu)
c906108c 18172{
bb5ed363 18173 struct objfile *objfile = cu->objfile;
f792889a
DJ
18174 struct type *this_type;
18175
ac9ec31b
DE
18176 gdb_assert (attr->name == DW_AT_type
18177 || attr->name == DW_AT_GNAT_descriptive_type
18178 || attr->name == DW_AT_containing_type);
18179
673bfd45
DE
18180 /* First see if we have it cached. */
18181
36586728
TT
18182 if (attr->form == DW_FORM_GNU_ref_alt)
18183 {
18184 struct dwarf2_per_cu_data *per_cu;
18185 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18186
18187 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18188 this_type = get_die_type_at_offset (offset, per_cu);
18189 }
7771576e 18190 else if (attr_form_is_ref (attr))
673bfd45 18191 {
b64f50a1 18192 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
18193
18194 this_type = get_die_type_at_offset (offset, cu->per_cu);
18195 }
55f1336d 18196 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 18197 {
ac9ec31b 18198 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 18199
ac9ec31b 18200 return get_signatured_type (die, signature, cu);
673bfd45
DE
18201 }
18202 else
18203 {
ac9ec31b
DE
18204 complaint (&symfile_complaints,
18205 _("Dwarf Error: Bad type attribute %s in DIE"
18206 " at 0x%x [in module %s]"),
18207 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 18208 objfile_name (objfile));
ac9ec31b 18209 return build_error_marker_type (cu, die);
673bfd45
DE
18210 }
18211
18212 /* If not cached we need to read it in. */
18213
18214 if (this_type == NULL)
18215 {
ac9ec31b 18216 struct die_info *type_die = NULL;
673bfd45
DE
18217 struct dwarf2_cu *type_cu = cu;
18218
7771576e 18219 if (attr_form_is_ref (attr))
ac9ec31b
DE
18220 type_die = follow_die_ref (die, attr, &type_cu);
18221 if (type_die == NULL)
18222 return build_error_marker_type (cu, die);
18223 /* If we find the type now, it's probably because the type came
3019eac3
DE
18224 from an inter-CU reference and the type's CU got expanded before
18225 ours. */
ac9ec31b 18226 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
18227 }
18228
18229 /* If we still don't have a type use an error marker. */
18230
18231 if (this_type == NULL)
ac9ec31b 18232 return build_error_marker_type (cu, die);
673bfd45 18233
f792889a 18234 return this_type;
c906108c
SS
18235}
18236
673bfd45
DE
18237/* Return the type in DIE, CU.
18238 Returns NULL for invalid types.
18239
02142a6c 18240 This first does a lookup in die_type_hash,
673bfd45
DE
18241 and only reads the die in if necessary.
18242
18243 NOTE: This can be called when reading in partial or full symbols. */
18244
f792889a 18245static struct type *
e7c27a73 18246read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18247{
f792889a
DJ
18248 struct type *this_type;
18249
18250 this_type = get_die_type (die, cu);
18251 if (this_type)
18252 return this_type;
18253
673bfd45
DE
18254 return read_type_die_1 (die, cu);
18255}
18256
18257/* Read the type in DIE, CU.
18258 Returns NULL for invalid types. */
18259
18260static struct type *
18261read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18262{
18263 struct type *this_type = NULL;
18264
c906108c
SS
18265 switch (die->tag)
18266 {
18267 case DW_TAG_class_type:
680b30c7 18268 case DW_TAG_interface_type:
c906108c
SS
18269 case DW_TAG_structure_type:
18270 case DW_TAG_union_type:
f792889a 18271 this_type = read_structure_type (die, cu);
c906108c
SS
18272 break;
18273 case DW_TAG_enumeration_type:
f792889a 18274 this_type = read_enumeration_type (die, cu);
c906108c
SS
18275 break;
18276 case DW_TAG_subprogram:
18277 case DW_TAG_subroutine_type:
edb3359d 18278 case DW_TAG_inlined_subroutine:
f792889a 18279 this_type = read_subroutine_type (die, cu);
c906108c
SS
18280 break;
18281 case DW_TAG_array_type:
f792889a 18282 this_type = read_array_type (die, cu);
c906108c 18283 break;
72019c9c 18284 case DW_TAG_set_type:
f792889a 18285 this_type = read_set_type (die, cu);
72019c9c 18286 break;
c906108c 18287 case DW_TAG_pointer_type:
f792889a 18288 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
18289 break;
18290 case DW_TAG_ptr_to_member_type:
f792889a 18291 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
18292 break;
18293 case DW_TAG_reference_type:
f792889a 18294 this_type = read_tag_reference_type (die, cu);
c906108c
SS
18295 break;
18296 case DW_TAG_const_type:
f792889a 18297 this_type = read_tag_const_type (die, cu);
c906108c
SS
18298 break;
18299 case DW_TAG_volatile_type:
f792889a 18300 this_type = read_tag_volatile_type (die, cu);
c906108c 18301 break;
06d66ee9
TT
18302 case DW_TAG_restrict_type:
18303 this_type = read_tag_restrict_type (die, cu);
18304 break;
c906108c 18305 case DW_TAG_string_type:
f792889a 18306 this_type = read_tag_string_type (die, cu);
c906108c
SS
18307 break;
18308 case DW_TAG_typedef:
f792889a 18309 this_type = read_typedef (die, cu);
c906108c 18310 break;
a02abb62 18311 case DW_TAG_subrange_type:
f792889a 18312 this_type = read_subrange_type (die, cu);
a02abb62 18313 break;
c906108c 18314 case DW_TAG_base_type:
f792889a 18315 this_type = read_base_type (die, cu);
c906108c 18316 break;
81a17f79 18317 case DW_TAG_unspecified_type:
f792889a 18318 this_type = read_unspecified_type (die, cu);
81a17f79 18319 break;
0114d602
DJ
18320 case DW_TAG_namespace:
18321 this_type = read_namespace_type (die, cu);
18322 break;
f55ee35c
JK
18323 case DW_TAG_module:
18324 this_type = read_module_type (die, cu);
18325 break;
c906108c 18326 default:
3e43a32a
MS
18327 complaint (&symfile_complaints,
18328 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 18329 dwarf_tag_name (die->tag));
c906108c
SS
18330 break;
18331 }
63d06c5c 18332
f792889a 18333 return this_type;
63d06c5c
DC
18334}
18335
abc72ce4
DE
18336/* See if we can figure out if the class lives in a namespace. We do
18337 this by looking for a member function; its demangled name will
18338 contain namespace info, if there is any.
18339 Return the computed name or NULL.
18340 Space for the result is allocated on the objfile's obstack.
18341 This is the full-die version of guess_partial_die_structure_name.
18342 In this case we know DIE has no useful parent. */
18343
18344static char *
18345guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18346{
18347 struct die_info *spec_die;
18348 struct dwarf2_cu *spec_cu;
18349 struct die_info *child;
18350
18351 spec_cu = cu;
18352 spec_die = die_specification (die, &spec_cu);
18353 if (spec_die != NULL)
18354 {
18355 die = spec_die;
18356 cu = spec_cu;
18357 }
18358
18359 for (child = die->child;
18360 child != NULL;
18361 child = child->sibling)
18362 {
18363 if (child->tag == DW_TAG_subprogram)
18364 {
18365 struct attribute *attr;
18366
18367 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18368 if (attr == NULL)
18369 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18370 if (attr != NULL)
18371 {
18372 char *actual_name
18373 = language_class_name_from_physname (cu->language_defn,
18374 DW_STRING (attr));
18375 char *name = NULL;
18376
18377 if (actual_name != NULL)
18378 {
15d034d0 18379 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
18380
18381 if (die_name != NULL
18382 && strcmp (die_name, actual_name) != 0)
18383 {
18384 /* Strip off the class name from the full name.
18385 We want the prefix. */
18386 int die_name_len = strlen (die_name);
18387 int actual_name_len = strlen (actual_name);
18388
18389 /* Test for '::' as a sanity check. */
18390 if (actual_name_len > die_name_len + 2
3e43a32a
MS
18391 && actual_name[actual_name_len
18392 - die_name_len - 1] == ':')
abc72ce4 18393 name =
10f0c4bb
TT
18394 obstack_copy0 (&cu->objfile->objfile_obstack,
18395 actual_name,
18396 actual_name_len - die_name_len - 2);
abc72ce4
DE
18397 }
18398 }
18399 xfree (actual_name);
18400 return name;
18401 }
18402 }
18403 }
18404
18405 return NULL;
18406}
18407
96408a79
SA
18408/* GCC might emit a nameless typedef that has a linkage name. Determine the
18409 prefix part in such case. See
18410 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18411
18412static char *
18413anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18414{
18415 struct attribute *attr;
18416 char *base;
18417
18418 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18419 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18420 return NULL;
18421
18422 attr = dwarf2_attr (die, DW_AT_name, cu);
18423 if (attr != NULL && DW_STRING (attr) != NULL)
18424 return NULL;
18425
18426 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18427 if (attr == NULL)
18428 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18429 if (attr == NULL || DW_STRING (attr) == NULL)
18430 return NULL;
18431
18432 /* dwarf2_name had to be already called. */
18433 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18434
18435 /* Strip the base name, keep any leading namespaces/classes. */
18436 base = strrchr (DW_STRING (attr), ':');
18437 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18438 return "";
18439
10f0c4bb
TT
18440 return obstack_copy0 (&cu->objfile->objfile_obstack,
18441 DW_STRING (attr), &base[-1] - DW_STRING (attr));
96408a79
SA
18442}
18443
fdde2d81 18444/* Return the name of the namespace/class that DIE is defined within,
0114d602 18445 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 18446
0114d602
DJ
18447 For example, if we're within the method foo() in the following
18448 code:
18449
18450 namespace N {
18451 class C {
18452 void foo () {
18453 }
18454 };
18455 }
18456
18457 then determine_prefix on foo's die will return "N::C". */
fdde2d81 18458
0d5cff50 18459static const char *
e142c38c 18460determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 18461{
0114d602
DJ
18462 struct die_info *parent, *spec_die;
18463 struct dwarf2_cu *spec_cu;
18464 struct type *parent_type;
96408a79 18465 char *retval;
63d06c5c 18466
f55ee35c
JK
18467 if (cu->language != language_cplus && cu->language != language_java
18468 && cu->language != language_fortran)
0114d602
DJ
18469 return "";
18470
96408a79
SA
18471 retval = anonymous_struct_prefix (die, cu);
18472 if (retval)
18473 return retval;
18474
0114d602
DJ
18475 /* We have to be careful in the presence of DW_AT_specification.
18476 For example, with GCC 3.4, given the code
18477
18478 namespace N {
18479 void foo() {
18480 // Definition of N::foo.
18481 }
18482 }
18483
18484 then we'll have a tree of DIEs like this:
18485
18486 1: DW_TAG_compile_unit
18487 2: DW_TAG_namespace // N
18488 3: DW_TAG_subprogram // declaration of N::foo
18489 4: DW_TAG_subprogram // definition of N::foo
18490 DW_AT_specification // refers to die #3
18491
18492 Thus, when processing die #4, we have to pretend that we're in
18493 the context of its DW_AT_specification, namely the contex of die
18494 #3. */
18495 spec_cu = cu;
18496 spec_die = die_specification (die, &spec_cu);
18497 if (spec_die == NULL)
18498 parent = die->parent;
18499 else
63d06c5c 18500 {
0114d602
DJ
18501 parent = spec_die->parent;
18502 cu = spec_cu;
63d06c5c 18503 }
0114d602
DJ
18504
18505 if (parent == NULL)
18506 return "";
98bfdba5
PA
18507 else if (parent->building_fullname)
18508 {
18509 const char *name;
18510 const char *parent_name;
18511
18512 /* It has been seen on RealView 2.2 built binaries,
18513 DW_TAG_template_type_param types actually _defined_ as
18514 children of the parent class:
18515
18516 enum E {};
18517 template class <class Enum> Class{};
18518 Class<enum E> class_e;
18519
18520 1: DW_TAG_class_type (Class)
18521 2: DW_TAG_enumeration_type (E)
18522 3: DW_TAG_enumerator (enum1:0)
18523 3: DW_TAG_enumerator (enum2:1)
18524 ...
18525 2: DW_TAG_template_type_param
18526 DW_AT_type DW_FORM_ref_udata (E)
18527
18528 Besides being broken debug info, it can put GDB into an
18529 infinite loop. Consider:
18530
18531 When we're building the full name for Class<E>, we'll start
18532 at Class, and go look over its template type parameters,
18533 finding E. We'll then try to build the full name of E, and
18534 reach here. We're now trying to build the full name of E,
18535 and look over the parent DIE for containing scope. In the
18536 broken case, if we followed the parent DIE of E, we'd again
18537 find Class, and once again go look at its template type
18538 arguments, etc., etc. Simply don't consider such parent die
18539 as source-level parent of this die (it can't be, the language
18540 doesn't allow it), and break the loop here. */
18541 name = dwarf2_name (die, cu);
18542 parent_name = dwarf2_name (parent, cu);
18543 complaint (&symfile_complaints,
18544 _("template param type '%s' defined within parent '%s'"),
18545 name ? name : "<unknown>",
18546 parent_name ? parent_name : "<unknown>");
18547 return "";
18548 }
63d06c5c 18549 else
0114d602
DJ
18550 switch (parent->tag)
18551 {
63d06c5c 18552 case DW_TAG_namespace:
0114d602 18553 parent_type = read_type_die (parent, cu);
acebe513
UW
18554 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18555 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18556 Work around this problem here. */
18557 if (cu->language == language_cplus
18558 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18559 return "";
0114d602
DJ
18560 /* We give a name to even anonymous namespaces. */
18561 return TYPE_TAG_NAME (parent_type);
63d06c5c 18562 case DW_TAG_class_type:
680b30c7 18563 case DW_TAG_interface_type:
63d06c5c 18564 case DW_TAG_structure_type:
0114d602 18565 case DW_TAG_union_type:
f55ee35c 18566 case DW_TAG_module:
0114d602
DJ
18567 parent_type = read_type_die (parent, cu);
18568 if (TYPE_TAG_NAME (parent_type) != NULL)
18569 return TYPE_TAG_NAME (parent_type);
18570 else
18571 /* An anonymous structure is only allowed non-static data
18572 members; no typedefs, no member functions, et cetera.
18573 So it does not need a prefix. */
18574 return "";
abc72ce4 18575 case DW_TAG_compile_unit:
95554aad 18576 case DW_TAG_partial_unit:
abc72ce4
DE
18577 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18578 if (cu->language == language_cplus
8b70b953 18579 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
18580 && die->child != NULL
18581 && (die->tag == DW_TAG_class_type
18582 || die->tag == DW_TAG_structure_type
18583 || die->tag == DW_TAG_union_type))
18584 {
18585 char *name = guess_full_die_structure_name (die, cu);
18586 if (name != NULL)
18587 return name;
18588 }
18589 return "";
63d06c5c 18590 default:
8176b9b8 18591 return determine_prefix (parent, cu);
63d06c5c 18592 }
63d06c5c
DC
18593}
18594
3e43a32a
MS
18595/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18596 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18597 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18598 an obconcat, otherwise allocate storage for the result. The CU argument is
18599 used to determine the language and hence, the appropriate separator. */
987504bb 18600
f55ee35c 18601#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
18602
18603static char *
f55ee35c
JK
18604typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18605 int physname, struct dwarf2_cu *cu)
63d06c5c 18606{
f55ee35c 18607 const char *lead = "";
5c315b68 18608 const char *sep;
63d06c5c 18609
3e43a32a
MS
18610 if (suffix == NULL || suffix[0] == '\0'
18611 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
18612 sep = "";
18613 else if (cu->language == language_java)
18614 sep = ".";
f55ee35c
JK
18615 else if (cu->language == language_fortran && physname)
18616 {
18617 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18618 DW_AT_MIPS_linkage_name is preferred and used instead. */
18619
18620 lead = "__";
18621 sep = "_MOD_";
18622 }
987504bb
JJ
18623 else
18624 sep = "::";
63d06c5c 18625
6dd47d34
DE
18626 if (prefix == NULL)
18627 prefix = "";
18628 if (suffix == NULL)
18629 suffix = "";
18630
987504bb
JJ
18631 if (obs == NULL)
18632 {
3e43a32a
MS
18633 char *retval
18634 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 18635
f55ee35c
JK
18636 strcpy (retval, lead);
18637 strcat (retval, prefix);
6dd47d34
DE
18638 strcat (retval, sep);
18639 strcat (retval, suffix);
63d06c5c
DC
18640 return retval;
18641 }
987504bb
JJ
18642 else
18643 {
18644 /* We have an obstack. */
f55ee35c 18645 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 18646 }
63d06c5c
DC
18647}
18648
c906108c
SS
18649/* Return sibling of die, NULL if no sibling. */
18650
f9aca02d 18651static struct die_info *
fba45db2 18652sibling_die (struct die_info *die)
c906108c 18653{
639d11d3 18654 return die->sibling;
c906108c
SS
18655}
18656
71c25dea
TT
18657/* Get name of a die, return NULL if not found. */
18658
15d034d0
TT
18659static const char *
18660dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
18661 struct obstack *obstack)
18662{
18663 if (name && cu->language == language_cplus)
18664 {
18665 char *canon_name = cp_canonicalize_string (name);
18666
18667 if (canon_name != NULL)
18668 {
18669 if (strcmp (canon_name, name) != 0)
10f0c4bb 18670 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
71c25dea
TT
18671 xfree (canon_name);
18672 }
18673 }
18674
18675 return name;
c906108c
SS
18676}
18677
9219021c
DC
18678/* Get name of a die, return NULL if not found. */
18679
15d034d0 18680static const char *
e142c38c 18681dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
18682{
18683 struct attribute *attr;
18684
e142c38c 18685 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31
TT
18686 if ((!attr || !DW_STRING (attr))
18687 && die->tag != DW_TAG_class_type
18688 && die->tag != DW_TAG_interface_type
18689 && die->tag != DW_TAG_structure_type
18690 && die->tag != DW_TAG_union_type)
71c25dea
TT
18691 return NULL;
18692
18693 switch (die->tag)
18694 {
18695 case DW_TAG_compile_unit:
95554aad 18696 case DW_TAG_partial_unit:
71c25dea
TT
18697 /* Compilation units have a DW_AT_name that is a filename, not
18698 a source language identifier. */
18699 case DW_TAG_enumeration_type:
18700 case DW_TAG_enumerator:
18701 /* These tags always have simple identifiers already; no need
18702 to canonicalize them. */
18703 return DW_STRING (attr);
907af001 18704
418835cc
KS
18705 case DW_TAG_subprogram:
18706 /* Java constructors will all be named "<init>", so return
18707 the class name when we see this special case. */
18708 if (cu->language == language_java
18709 && DW_STRING (attr) != NULL
18710 && strcmp (DW_STRING (attr), "<init>") == 0)
18711 {
18712 struct dwarf2_cu *spec_cu = cu;
18713 struct die_info *spec_die;
18714
18715 /* GCJ will output '<init>' for Java constructor names.
18716 For this special case, return the name of the parent class. */
18717
18718 /* GCJ may output suprogram DIEs with AT_specification set.
18719 If so, use the name of the specified DIE. */
18720 spec_die = die_specification (die, &spec_cu);
18721 if (spec_die != NULL)
18722 return dwarf2_name (spec_die, spec_cu);
18723
18724 do
18725 {
18726 die = die->parent;
18727 if (die->tag == DW_TAG_class_type)
18728 return dwarf2_name (die, cu);
18729 }
95554aad
TT
18730 while (die->tag != DW_TAG_compile_unit
18731 && die->tag != DW_TAG_partial_unit);
418835cc 18732 }
907af001
UW
18733 break;
18734
18735 case DW_TAG_class_type:
18736 case DW_TAG_interface_type:
18737 case DW_TAG_structure_type:
18738 case DW_TAG_union_type:
18739 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
18740 structures or unions. These were of the form "._%d" in GCC 4.1,
18741 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
18742 and GCC 4.4. We work around this problem by ignoring these. */
53832f31
TT
18743 if (attr && DW_STRING (attr)
18744 && (strncmp (DW_STRING (attr), "._", 2) == 0
18745 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
907af001 18746 return NULL;
53832f31
TT
18747
18748 /* GCC might emit a nameless typedef that has a linkage name. See
18749 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18750 if (!attr || DW_STRING (attr) == NULL)
18751 {
df5c6c50 18752 char *demangled = NULL;
53832f31
TT
18753
18754 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18755 if (attr == NULL)
18756 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18757
18758 if (attr == NULL || DW_STRING (attr) == NULL)
18759 return NULL;
18760
df5c6c50
JK
18761 /* Avoid demangling DW_STRING (attr) the second time on a second
18762 call for the same DIE. */
18763 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 18764 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
18765
18766 if (demangled)
18767 {
96408a79
SA
18768 char *base;
18769
53832f31 18770 /* FIXME: we already did this for the partial symbol... */
10f0c4bb
TT
18771 DW_STRING (attr) = obstack_copy0 (&cu->objfile->objfile_obstack,
18772 demangled, strlen (demangled));
53832f31
TT
18773 DW_STRING_IS_CANONICAL (attr) = 1;
18774 xfree (demangled);
96408a79
SA
18775
18776 /* Strip any leading namespaces/classes, keep only the base name.
18777 DW_AT_name for named DIEs does not contain the prefixes. */
18778 base = strrchr (DW_STRING (attr), ':');
18779 if (base && base > DW_STRING (attr) && base[-1] == ':')
18780 return &base[1];
18781 else
18782 return DW_STRING (attr);
53832f31
TT
18783 }
18784 }
907af001
UW
18785 break;
18786
71c25dea 18787 default:
907af001
UW
18788 break;
18789 }
18790
18791 if (!DW_STRING_IS_CANONICAL (attr))
18792 {
18793 DW_STRING (attr)
18794 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
18795 &cu->objfile->objfile_obstack);
18796 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 18797 }
907af001 18798 return DW_STRING (attr);
9219021c
DC
18799}
18800
18801/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
18802 is none. *EXT_CU is the CU containing DIE on input, and the CU
18803 containing the return value on output. */
9219021c
DC
18804
18805static struct die_info *
f2f0e013 18806dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
18807{
18808 struct attribute *attr;
9219021c 18809
f2f0e013 18810 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
18811 if (attr == NULL)
18812 return NULL;
18813
f2f0e013 18814 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
18815}
18816
c906108c
SS
18817/* Convert a DIE tag into its string name. */
18818
f39c6ffd 18819static const char *
aa1ee363 18820dwarf_tag_name (unsigned tag)
c906108c 18821{
f39c6ffd
TT
18822 const char *name = get_DW_TAG_name (tag);
18823
18824 if (name == NULL)
18825 return "DW_TAG_<unknown>";
18826
18827 return name;
c906108c
SS
18828}
18829
18830/* Convert a DWARF attribute code into its string name. */
18831
f39c6ffd 18832static const char *
aa1ee363 18833dwarf_attr_name (unsigned attr)
c906108c 18834{
f39c6ffd
TT
18835 const char *name;
18836
c764a876 18837#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
18838 if (attr == DW_AT_MIPS_fde)
18839 return "DW_AT_MIPS_fde";
18840#else
18841 if (attr == DW_AT_HP_block_index)
18842 return "DW_AT_HP_block_index";
c764a876 18843#endif
f39c6ffd
TT
18844
18845 name = get_DW_AT_name (attr);
18846
18847 if (name == NULL)
18848 return "DW_AT_<unknown>";
18849
18850 return name;
c906108c
SS
18851}
18852
18853/* Convert a DWARF value form code into its string name. */
18854
f39c6ffd 18855static const char *
aa1ee363 18856dwarf_form_name (unsigned form)
c906108c 18857{
f39c6ffd
TT
18858 const char *name = get_DW_FORM_name (form);
18859
18860 if (name == NULL)
18861 return "DW_FORM_<unknown>";
18862
18863 return name;
c906108c
SS
18864}
18865
18866static char *
fba45db2 18867dwarf_bool_name (unsigned mybool)
c906108c
SS
18868{
18869 if (mybool)
18870 return "TRUE";
18871 else
18872 return "FALSE";
18873}
18874
18875/* Convert a DWARF type code into its string name. */
18876
f39c6ffd 18877static const char *
aa1ee363 18878dwarf_type_encoding_name (unsigned enc)
c906108c 18879{
f39c6ffd 18880 const char *name = get_DW_ATE_name (enc);
c906108c 18881
f39c6ffd
TT
18882 if (name == NULL)
18883 return "DW_ATE_<unknown>";
c906108c 18884
f39c6ffd 18885 return name;
c906108c 18886}
c906108c 18887
f9aca02d 18888static void
d97bc12b 18889dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
18890{
18891 unsigned int i;
18892
d97bc12b
DE
18893 print_spaces (indent, f);
18894 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 18895 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
18896
18897 if (die->parent != NULL)
18898 {
18899 print_spaces (indent, f);
18900 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 18901 die->parent->offset.sect_off);
d97bc12b
DE
18902 }
18903
18904 print_spaces (indent, f);
18905 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 18906 dwarf_bool_name (die->child != NULL));
c906108c 18907
d97bc12b
DE
18908 print_spaces (indent, f);
18909 fprintf_unfiltered (f, " attributes:\n");
18910
c906108c
SS
18911 for (i = 0; i < die->num_attrs; ++i)
18912 {
d97bc12b
DE
18913 print_spaces (indent, f);
18914 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
18915 dwarf_attr_name (die->attrs[i].name),
18916 dwarf_form_name (die->attrs[i].form));
d97bc12b 18917
c906108c
SS
18918 switch (die->attrs[i].form)
18919 {
c906108c 18920 case DW_FORM_addr:
3019eac3 18921 case DW_FORM_GNU_addr_index:
d97bc12b 18922 fprintf_unfiltered (f, "address: ");
5af949e3 18923 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
18924 break;
18925 case DW_FORM_block2:
18926 case DW_FORM_block4:
18927 case DW_FORM_block:
18928 case DW_FORM_block1:
56eb65bd
SP
18929 fprintf_unfiltered (f, "block: size %s",
18930 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 18931 break;
2dc7f7b3 18932 case DW_FORM_exprloc:
56eb65bd
SP
18933 fprintf_unfiltered (f, "expression: size %s",
18934 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 18935 break;
4568ecf9
DE
18936 case DW_FORM_ref_addr:
18937 fprintf_unfiltered (f, "ref address: ");
18938 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18939 break;
36586728
TT
18940 case DW_FORM_GNU_ref_alt:
18941 fprintf_unfiltered (f, "alt ref address: ");
18942 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
18943 break;
10b3939b
DJ
18944 case DW_FORM_ref1:
18945 case DW_FORM_ref2:
18946 case DW_FORM_ref4:
4568ecf9
DE
18947 case DW_FORM_ref8:
18948 case DW_FORM_ref_udata:
d97bc12b 18949 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 18950 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 18951 break;
c906108c
SS
18952 case DW_FORM_data1:
18953 case DW_FORM_data2:
18954 case DW_FORM_data4:
ce5d95e1 18955 case DW_FORM_data8:
c906108c
SS
18956 case DW_FORM_udata:
18957 case DW_FORM_sdata:
43bbcdc2
PH
18958 fprintf_unfiltered (f, "constant: %s",
18959 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 18960 break;
2dc7f7b3
TT
18961 case DW_FORM_sec_offset:
18962 fprintf_unfiltered (f, "section offset: %s",
18963 pulongest (DW_UNSND (&die->attrs[i])));
18964 break;
55f1336d 18965 case DW_FORM_ref_sig8:
ac9ec31b
DE
18966 fprintf_unfiltered (f, "signature: %s",
18967 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 18968 break;
c906108c 18969 case DW_FORM_string:
4bdf3d34 18970 case DW_FORM_strp:
3019eac3 18971 case DW_FORM_GNU_str_index:
36586728 18972 case DW_FORM_GNU_strp_alt:
8285870a 18973 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 18974 DW_STRING (&die->attrs[i])
8285870a
JK
18975 ? DW_STRING (&die->attrs[i]) : "",
18976 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
18977 break;
18978 case DW_FORM_flag:
18979 if (DW_UNSND (&die->attrs[i]))
d97bc12b 18980 fprintf_unfiltered (f, "flag: TRUE");
c906108c 18981 else
d97bc12b 18982 fprintf_unfiltered (f, "flag: FALSE");
c906108c 18983 break;
2dc7f7b3
TT
18984 case DW_FORM_flag_present:
18985 fprintf_unfiltered (f, "flag: TRUE");
18986 break;
a8329558 18987 case DW_FORM_indirect:
0963b4bd
MS
18988 /* The reader will have reduced the indirect form to
18989 the "base form" so this form should not occur. */
3e43a32a
MS
18990 fprintf_unfiltered (f,
18991 "unexpected attribute form: DW_FORM_indirect");
a8329558 18992 break;
c906108c 18993 default:
d97bc12b 18994 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 18995 die->attrs[i].form);
d97bc12b 18996 break;
c906108c 18997 }
d97bc12b 18998 fprintf_unfiltered (f, "\n");
c906108c
SS
18999 }
19000}
19001
f9aca02d 19002static void
d97bc12b 19003dump_die_for_error (struct die_info *die)
c906108c 19004{
d97bc12b
DE
19005 dump_die_shallow (gdb_stderr, 0, die);
19006}
19007
19008static void
19009dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19010{
19011 int indent = level * 4;
19012
19013 gdb_assert (die != NULL);
19014
19015 if (level >= max_level)
19016 return;
19017
19018 dump_die_shallow (f, indent, die);
19019
19020 if (die->child != NULL)
c906108c 19021 {
d97bc12b
DE
19022 print_spaces (indent, f);
19023 fprintf_unfiltered (f, " Children:");
19024 if (level + 1 < max_level)
19025 {
19026 fprintf_unfiltered (f, "\n");
19027 dump_die_1 (f, level + 1, max_level, die->child);
19028 }
19029 else
19030 {
3e43a32a
MS
19031 fprintf_unfiltered (f,
19032 " [not printed, max nesting level reached]\n");
d97bc12b
DE
19033 }
19034 }
19035
19036 if (die->sibling != NULL && level > 0)
19037 {
19038 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
19039 }
19040}
19041
d97bc12b
DE
19042/* This is called from the pdie macro in gdbinit.in.
19043 It's not static so gcc will keep a copy callable from gdb. */
19044
19045void
19046dump_die (struct die_info *die, int max_level)
19047{
19048 dump_die_1 (gdb_stdlog, 0, max_level, die);
19049}
19050
f9aca02d 19051static void
51545339 19052store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19053{
51545339 19054 void **slot;
c906108c 19055
b64f50a1
JK
19056 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19057 INSERT);
51545339
DJ
19058
19059 *slot = die;
c906108c
SS
19060}
19061
b64f50a1
JK
19062/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19063 required kind. */
19064
19065static sect_offset
ff39bb5e 19066dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 19067{
4568ecf9 19068 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 19069
7771576e 19070 if (attr_form_is_ref (attr))
b64f50a1 19071 return retval;
93311388 19072
b64f50a1 19073 retval.sect_off = 0;
93311388
DE
19074 complaint (&symfile_complaints,
19075 _("unsupported die ref attribute form: '%s'"),
19076 dwarf_form_name (attr->form));
b64f50a1 19077 return retval;
c906108c
SS
19078}
19079
43bbcdc2
PH
19080/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19081 * the value held by the attribute is not constant. */
a02abb62 19082
43bbcdc2 19083static LONGEST
ff39bb5e 19084dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
19085{
19086 if (attr->form == DW_FORM_sdata)
19087 return DW_SND (attr);
19088 else if (attr->form == DW_FORM_udata
19089 || attr->form == DW_FORM_data1
19090 || attr->form == DW_FORM_data2
19091 || attr->form == DW_FORM_data4
19092 || attr->form == DW_FORM_data8)
19093 return DW_UNSND (attr);
19094 else
19095 {
3e43a32a
MS
19096 complaint (&symfile_complaints,
19097 _("Attribute value is not a constant (%s)"),
a02abb62
JB
19098 dwarf_form_name (attr->form));
19099 return default_value;
19100 }
19101}
19102
348e048f
DE
19103/* Follow reference or signature attribute ATTR of SRC_DIE.
19104 On entry *REF_CU is the CU of SRC_DIE.
19105 On exit *REF_CU is the CU of the result. */
19106
19107static struct die_info *
ff39bb5e 19108follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
19109 struct dwarf2_cu **ref_cu)
19110{
19111 struct die_info *die;
19112
7771576e 19113 if (attr_form_is_ref (attr))
348e048f 19114 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 19115 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
19116 die = follow_die_sig (src_die, attr, ref_cu);
19117 else
19118 {
19119 dump_die_for_error (src_die);
19120 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 19121 objfile_name ((*ref_cu)->objfile));
348e048f
DE
19122 }
19123
19124 return die;
03dd20cc
DJ
19125}
19126
5c631832 19127/* Follow reference OFFSET.
673bfd45
DE
19128 On entry *REF_CU is the CU of the source die referencing OFFSET.
19129 On exit *REF_CU is the CU of the result.
19130 Returns NULL if OFFSET is invalid. */
f504f079 19131
f9aca02d 19132static struct die_info *
36586728
TT
19133follow_die_offset (sect_offset offset, int offset_in_dwz,
19134 struct dwarf2_cu **ref_cu)
c906108c 19135{
10b3939b 19136 struct die_info temp_die;
f2f0e013 19137 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 19138
348e048f
DE
19139 gdb_assert (cu->per_cu != NULL);
19140
98bfdba5
PA
19141 target_cu = cu;
19142
3019eac3 19143 if (cu->per_cu->is_debug_types)
348e048f
DE
19144 {
19145 /* .debug_types CUs cannot reference anything outside their CU.
19146 If they need to, they have to reference a signatured type via
55f1336d 19147 DW_FORM_ref_sig8. */
348e048f 19148 if (! offset_in_cu_p (&cu->header, offset))
5c631832 19149 return NULL;
348e048f 19150 }
36586728
TT
19151 else if (offset_in_dwz != cu->per_cu->is_dwz
19152 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
19153 {
19154 struct dwarf2_per_cu_data *per_cu;
9a619af0 19155
36586728
TT
19156 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19157 cu->objfile);
03dd20cc
DJ
19158
19159 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
19160 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19161 load_full_comp_unit (per_cu, cu->language);
03dd20cc 19162
10b3939b
DJ
19163 target_cu = per_cu->cu;
19164 }
98bfdba5
PA
19165 else if (cu->dies == NULL)
19166 {
19167 /* We're loading full DIEs during partial symbol reading. */
19168 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 19169 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 19170 }
c906108c 19171
f2f0e013 19172 *ref_cu = target_cu;
51545339 19173 temp_die.offset = offset;
b64f50a1 19174 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
5c631832 19175}
10b3939b 19176
5c631832
JK
19177/* Follow reference attribute ATTR of SRC_DIE.
19178 On entry *REF_CU is the CU of SRC_DIE.
19179 On exit *REF_CU is the CU of the result. */
19180
19181static struct die_info *
ff39bb5e 19182follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
19183 struct dwarf2_cu **ref_cu)
19184{
b64f50a1 19185 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
19186 struct dwarf2_cu *cu = *ref_cu;
19187 struct die_info *die;
19188
36586728
TT
19189 die = follow_die_offset (offset,
19190 (attr->form == DW_FORM_GNU_ref_alt
19191 || cu->per_cu->is_dwz),
19192 ref_cu);
5c631832
JK
19193 if (!die)
19194 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19195 "at 0x%x [in module %s]"),
4262abfb
JK
19196 offset.sect_off, src_die->offset.sect_off,
19197 objfile_name (cu->objfile));
348e048f 19198
5c631832
JK
19199 return die;
19200}
19201
d83e736b
JK
19202/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19203 Returned value is intended for DW_OP_call*. Returned
19204 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
19205
19206struct dwarf2_locexpr_baton
8b9737bf
TT
19207dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19208 struct dwarf2_per_cu_data *per_cu,
19209 CORE_ADDR (*get_frame_pc) (void *baton),
19210 void *baton)
5c631832 19211{
918dd910 19212 struct dwarf2_cu *cu;
5c631832
JK
19213 struct die_info *die;
19214 struct attribute *attr;
19215 struct dwarf2_locexpr_baton retval;
19216
8cf6f0b1
TT
19217 dw2_setup (per_cu->objfile);
19218
918dd910
JK
19219 if (per_cu->cu == NULL)
19220 load_cu (per_cu);
19221 cu = per_cu->cu;
19222
36586728 19223 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
19224 if (!die)
19225 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 19226 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
19227
19228 attr = dwarf2_attr (die, DW_AT_location, cu);
19229 if (!attr)
19230 {
e103e986
JK
19231 /* DWARF: "If there is no such attribute, then there is no effect.".
19232 DATA is ignored if SIZE is 0. */
5c631832 19233
e103e986 19234 retval.data = NULL;
5c631832
JK
19235 retval.size = 0;
19236 }
8cf6f0b1
TT
19237 else if (attr_form_is_section_offset (attr))
19238 {
19239 struct dwarf2_loclist_baton loclist_baton;
19240 CORE_ADDR pc = (*get_frame_pc) (baton);
19241 size_t size;
19242
19243 fill_in_loclist_baton (cu, &loclist_baton, attr);
19244
19245 retval.data = dwarf2_find_location_expression (&loclist_baton,
19246 &size, pc);
19247 retval.size = size;
19248 }
5c631832
JK
19249 else
19250 {
19251 if (!attr_form_is_block (attr))
19252 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19253 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 19254 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
19255
19256 retval.data = DW_BLOCK (attr)->data;
19257 retval.size = DW_BLOCK (attr)->size;
19258 }
19259 retval.per_cu = cu->per_cu;
918dd910 19260
918dd910
JK
19261 age_cached_comp_units ();
19262
5c631832 19263 return retval;
348e048f
DE
19264}
19265
8b9737bf
TT
19266/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19267 offset. */
19268
19269struct dwarf2_locexpr_baton
19270dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19271 struct dwarf2_per_cu_data *per_cu,
19272 CORE_ADDR (*get_frame_pc) (void *baton),
19273 void *baton)
19274{
19275 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19276
19277 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19278}
19279
b6807d98
TT
19280/* Write a constant of a given type as target-ordered bytes into
19281 OBSTACK. */
19282
19283static const gdb_byte *
19284write_constant_as_bytes (struct obstack *obstack,
19285 enum bfd_endian byte_order,
19286 struct type *type,
19287 ULONGEST value,
19288 LONGEST *len)
19289{
19290 gdb_byte *result;
19291
19292 *len = TYPE_LENGTH (type);
19293 result = obstack_alloc (obstack, *len);
19294 store_unsigned_integer (result, *len, byte_order, value);
19295
19296 return result;
19297}
19298
19299/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19300 pointer to the constant bytes and set LEN to the length of the
19301 data. If memory is needed, allocate it on OBSTACK. If the DIE
19302 does not have a DW_AT_const_value, return NULL. */
19303
19304const gdb_byte *
19305dwarf2_fetch_constant_bytes (sect_offset offset,
19306 struct dwarf2_per_cu_data *per_cu,
19307 struct obstack *obstack,
19308 LONGEST *len)
19309{
19310 struct dwarf2_cu *cu;
19311 struct die_info *die;
19312 struct attribute *attr;
19313 const gdb_byte *result = NULL;
19314 struct type *type;
19315 LONGEST value;
19316 enum bfd_endian byte_order;
19317
19318 dw2_setup (per_cu->objfile);
19319
19320 if (per_cu->cu == NULL)
19321 load_cu (per_cu);
19322 cu = per_cu->cu;
19323
19324 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19325 if (!die)
19326 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 19327 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
19328
19329
19330 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19331 if (attr == NULL)
19332 return NULL;
19333
19334 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19335 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19336
19337 switch (attr->form)
19338 {
19339 case DW_FORM_addr:
19340 case DW_FORM_GNU_addr_index:
19341 {
19342 gdb_byte *tem;
19343
19344 *len = cu->header.addr_size;
19345 tem = obstack_alloc (obstack, *len);
19346 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19347 result = tem;
19348 }
19349 break;
19350 case DW_FORM_string:
19351 case DW_FORM_strp:
19352 case DW_FORM_GNU_str_index:
19353 case DW_FORM_GNU_strp_alt:
19354 /* DW_STRING is already allocated on the objfile obstack, point
19355 directly to it. */
19356 result = (const gdb_byte *) DW_STRING (attr);
19357 *len = strlen (DW_STRING (attr));
19358 break;
19359 case DW_FORM_block1:
19360 case DW_FORM_block2:
19361 case DW_FORM_block4:
19362 case DW_FORM_block:
19363 case DW_FORM_exprloc:
19364 result = DW_BLOCK (attr)->data;
19365 *len = DW_BLOCK (attr)->size;
19366 break;
19367
19368 /* The DW_AT_const_value attributes are supposed to carry the
19369 symbol's value "represented as it would be on the target
19370 architecture." By the time we get here, it's already been
19371 converted to host endianness, so we just need to sign- or
19372 zero-extend it as appropriate. */
19373 case DW_FORM_data1:
19374 type = die_type (die, cu);
19375 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19376 if (result == NULL)
19377 result = write_constant_as_bytes (obstack, byte_order,
19378 type, value, len);
19379 break;
19380 case DW_FORM_data2:
19381 type = die_type (die, cu);
19382 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19383 if (result == NULL)
19384 result = write_constant_as_bytes (obstack, byte_order,
19385 type, value, len);
19386 break;
19387 case DW_FORM_data4:
19388 type = die_type (die, cu);
19389 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19390 if (result == NULL)
19391 result = write_constant_as_bytes (obstack, byte_order,
19392 type, value, len);
19393 break;
19394 case DW_FORM_data8:
19395 type = die_type (die, cu);
19396 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19397 if (result == NULL)
19398 result = write_constant_as_bytes (obstack, byte_order,
19399 type, value, len);
19400 break;
19401
19402 case DW_FORM_sdata:
19403 type = die_type (die, cu);
19404 result = write_constant_as_bytes (obstack, byte_order,
19405 type, DW_SND (attr), len);
19406 break;
19407
19408 case DW_FORM_udata:
19409 type = die_type (die, cu);
19410 result = write_constant_as_bytes (obstack, byte_order,
19411 type, DW_UNSND (attr), len);
19412 break;
19413
19414 default:
19415 complaint (&symfile_complaints,
19416 _("unsupported const value attribute form: '%s'"),
19417 dwarf_form_name (attr->form));
19418 break;
19419 }
19420
19421 return result;
19422}
19423
8a9b8146
TT
19424/* Return the type of the DIE at DIE_OFFSET in the CU named by
19425 PER_CU. */
19426
19427struct type *
b64f50a1 19428dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
19429 struct dwarf2_per_cu_data *per_cu)
19430{
b64f50a1
JK
19431 sect_offset die_offset_sect;
19432
8a9b8146 19433 dw2_setup (per_cu->objfile);
b64f50a1
JK
19434
19435 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19436 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
19437}
19438
ac9ec31b 19439/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 19440 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
19441 On exit *REF_CU is the CU of the result.
19442 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
19443
19444static struct die_info *
ac9ec31b
DE
19445follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19446 struct dwarf2_cu **ref_cu)
348e048f
DE
19447{
19448 struct objfile *objfile = (*ref_cu)->objfile;
19449 struct die_info temp_die;
348e048f
DE
19450 struct dwarf2_cu *sig_cu;
19451 struct die_info *die;
19452
ac9ec31b
DE
19453 /* While it might be nice to assert sig_type->type == NULL here,
19454 we can get here for DW_AT_imported_declaration where we need
19455 the DIE not the type. */
348e048f
DE
19456
19457 /* If necessary, add it to the queue and load its DIEs. */
19458
95554aad 19459 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 19460 read_signatured_type (sig_type);
348e048f 19461
348e048f 19462 sig_cu = sig_type->per_cu.cu;
69d751e3 19463 gdb_assert (sig_cu != NULL);
3019eac3
DE
19464 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19465 temp_die.offset = sig_type->type_offset_in_section;
b64f50a1
JK
19466 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19467 temp_die.offset.sect_off);
348e048f
DE
19468 if (die)
19469 {
796a7ff8
DE
19470 /* For .gdb_index version 7 keep track of included TUs.
19471 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19472 if (dwarf2_per_objfile->index_table != NULL
19473 && dwarf2_per_objfile->index_table->version <= 7)
19474 {
19475 VEC_safe_push (dwarf2_per_cu_ptr,
19476 (*ref_cu)->per_cu->imported_symtabs,
19477 sig_cu->per_cu);
19478 }
19479
348e048f
DE
19480 *ref_cu = sig_cu;
19481 return die;
19482 }
19483
ac9ec31b
DE
19484 return NULL;
19485}
19486
19487/* Follow signatured type referenced by ATTR in SRC_DIE.
19488 On entry *REF_CU is the CU of SRC_DIE.
19489 On exit *REF_CU is the CU of the result.
19490 The result is the DIE of the type.
19491 If the referenced type cannot be found an error is thrown. */
19492
19493static struct die_info *
ff39bb5e 19494follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
19495 struct dwarf2_cu **ref_cu)
19496{
19497 ULONGEST signature = DW_SIGNATURE (attr);
19498 struct signatured_type *sig_type;
19499 struct die_info *die;
19500
19501 gdb_assert (attr->form == DW_FORM_ref_sig8);
19502
a2ce51a0 19503 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
19504 /* sig_type will be NULL if the signatured type is missing from
19505 the debug info. */
19506 if (sig_type == NULL)
19507 {
19508 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19509 " from DIE at 0x%x [in module %s]"),
19510 hex_string (signature), src_die->offset.sect_off,
4262abfb 19511 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
19512 }
19513
19514 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19515 if (die == NULL)
19516 {
19517 dump_die_for_error (src_die);
19518 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19519 " from DIE at 0x%x [in module %s]"),
19520 hex_string (signature), src_die->offset.sect_off,
4262abfb 19521 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
19522 }
19523
19524 return die;
19525}
19526
19527/* Get the type specified by SIGNATURE referenced in DIE/CU,
19528 reading in and processing the type unit if necessary. */
19529
19530static struct type *
19531get_signatured_type (struct die_info *die, ULONGEST signature,
19532 struct dwarf2_cu *cu)
19533{
19534 struct signatured_type *sig_type;
19535 struct dwarf2_cu *type_cu;
19536 struct die_info *type_die;
19537 struct type *type;
19538
a2ce51a0 19539 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
19540 /* sig_type will be NULL if the signatured type is missing from
19541 the debug info. */
19542 if (sig_type == NULL)
19543 {
19544 complaint (&symfile_complaints,
19545 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19546 " from DIE at 0x%x [in module %s]"),
19547 hex_string (signature), die->offset.sect_off,
4262abfb 19548 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19549 return build_error_marker_type (cu, die);
19550 }
19551
19552 /* If we already know the type we're done. */
19553 if (sig_type->type != NULL)
19554 return sig_type->type;
19555
19556 type_cu = cu;
19557 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19558 if (type_die != NULL)
19559 {
19560 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19561 is created. This is important, for example, because for c++ classes
19562 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19563 type = read_type_die (type_die, type_cu);
19564 if (type == NULL)
19565 {
19566 complaint (&symfile_complaints,
19567 _("Dwarf Error: Cannot build signatured type %s"
19568 " referenced from DIE at 0x%x [in module %s]"),
19569 hex_string (signature), die->offset.sect_off,
4262abfb 19570 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19571 type = build_error_marker_type (cu, die);
19572 }
19573 }
19574 else
19575 {
19576 complaint (&symfile_complaints,
19577 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19578 " from DIE at 0x%x [in module %s]"),
19579 hex_string (signature), die->offset.sect_off,
4262abfb 19580 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19581 type = build_error_marker_type (cu, die);
19582 }
19583 sig_type->type = type;
19584
19585 return type;
19586}
19587
19588/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19589 reading in and processing the type unit if necessary. */
19590
19591static struct type *
ff39bb5e 19592get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 19593 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
19594{
19595 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 19596 if (attr_form_is_ref (attr))
ac9ec31b
DE
19597 {
19598 struct dwarf2_cu *type_cu = cu;
19599 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19600
19601 return read_type_die (type_die, type_cu);
19602 }
19603 else if (attr->form == DW_FORM_ref_sig8)
19604 {
19605 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19606 }
19607 else
19608 {
19609 complaint (&symfile_complaints,
19610 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19611 " at 0x%x [in module %s]"),
19612 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 19613 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19614 return build_error_marker_type (cu, die);
19615 }
348e048f
DE
19616}
19617
e5fe5e75 19618/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
19619
19620static void
e5fe5e75 19621load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 19622{
52dc124a 19623 struct signatured_type *sig_type;
348e048f 19624
f4dc4d17
DE
19625 /* Caller is responsible for ensuring type_unit_groups don't get here. */
19626 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
19627
6721b2ec
DE
19628 /* We have the per_cu, but we need the signatured_type.
19629 Fortunately this is an easy translation. */
19630 gdb_assert (per_cu->is_debug_types);
19631 sig_type = (struct signatured_type *) per_cu;
348e048f 19632
6721b2ec 19633 gdb_assert (per_cu->cu == NULL);
348e048f 19634
52dc124a 19635 read_signatured_type (sig_type);
348e048f 19636
6721b2ec 19637 gdb_assert (per_cu->cu != NULL);
348e048f
DE
19638}
19639
dee91e82
DE
19640/* die_reader_func for read_signatured_type.
19641 This is identical to load_full_comp_unit_reader,
19642 but is kept separate for now. */
348e048f
DE
19643
19644static void
dee91e82 19645read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 19646 const gdb_byte *info_ptr,
dee91e82
DE
19647 struct die_info *comp_unit_die,
19648 int has_children,
19649 void *data)
348e048f 19650{
dee91e82 19651 struct dwarf2_cu *cu = reader->cu;
348e048f 19652
dee91e82
DE
19653 gdb_assert (cu->die_hash == NULL);
19654 cu->die_hash =
19655 htab_create_alloc_ex (cu->header.length / 12,
19656 die_hash,
19657 die_eq,
19658 NULL,
19659 &cu->comp_unit_obstack,
19660 hashtab_obstack_allocate,
19661 dummy_obstack_deallocate);
348e048f 19662
dee91e82
DE
19663 if (has_children)
19664 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
19665 &info_ptr, comp_unit_die);
19666 cu->dies = comp_unit_die;
19667 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
19668
19669 /* We try not to read any attributes in this function, because not
9cdd5dbd 19670 all CUs needed for references have been loaded yet, and symbol
348e048f 19671 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
19672 or we won't be able to build types correctly.
19673 Similarly, if we do not read the producer, we can not apply
19674 producer-specific interpretation. */
95554aad 19675 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 19676}
348e048f 19677
3019eac3
DE
19678/* Read in a signatured type and build its CU and DIEs.
19679 If the type is a stub for the real type in a DWO file,
19680 read in the real type from the DWO file as well. */
dee91e82
DE
19681
19682static void
19683read_signatured_type (struct signatured_type *sig_type)
19684{
19685 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 19686
3019eac3 19687 gdb_assert (per_cu->is_debug_types);
dee91e82 19688 gdb_assert (per_cu->cu == NULL);
348e048f 19689
f4dc4d17
DE
19690 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
19691 read_signatured_type_reader, NULL);
7ee85ab1 19692 sig_type->per_cu.tu_read = 1;
c906108c
SS
19693}
19694
c906108c
SS
19695/* Decode simple location descriptions.
19696 Given a pointer to a dwarf block that defines a location, compute
19697 the location and return the value.
19698
4cecd739
DJ
19699 NOTE drow/2003-11-18: This function is called in two situations
19700 now: for the address of static or global variables (partial symbols
19701 only) and for offsets into structures which are expected to be
19702 (more or less) constant. The partial symbol case should go away,
19703 and only the constant case should remain. That will let this
19704 function complain more accurately. A few special modes are allowed
19705 without complaint for global variables (for instance, global
19706 register values and thread-local values).
c906108c
SS
19707
19708 A location description containing no operations indicates that the
4cecd739 19709 object is optimized out. The return value is 0 for that case.
6b992462
DJ
19710 FIXME drow/2003-11-16: No callers check for this case any more; soon all
19711 callers will only want a very basic result and this can become a
21ae7a4d
JK
19712 complaint.
19713
19714 Note that stack[0] is unused except as a default error return. */
c906108c
SS
19715
19716static CORE_ADDR
e7c27a73 19717decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 19718{
e7c27a73 19719 struct objfile *objfile = cu->objfile;
56eb65bd
SP
19720 size_t i;
19721 size_t size = blk->size;
d521ce57 19722 const gdb_byte *data = blk->data;
21ae7a4d
JK
19723 CORE_ADDR stack[64];
19724 int stacki;
19725 unsigned int bytes_read, unsnd;
19726 gdb_byte op;
c906108c 19727
21ae7a4d
JK
19728 i = 0;
19729 stacki = 0;
19730 stack[stacki] = 0;
19731 stack[++stacki] = 0;
19732
19733 while (i < size)
19734 {
19735 op = data[i++];
19736 switch (op)
19737 {
19738 case DW_OP_lit0:
19739 case DW_OP_lit1:
19740 case DW_OP_lit2:
19741 case DW_OP_lit3:
19742 case DW_OP_lit4:
19743 case DW_OP_lit5:
19744 case DW_OP_lit6:
19745 case DW_OP_lit7:
19746 case DW_OP_lit8:
19747 case DW_OP_lit9:
19748 case DW_OP_lit10:
19749 case DW_OP_lit11:
19750 case DW_OP_lit12:
19751 case DW_OP_lit13:
19752 case DW_OP_lit14:
19753 case DW_OP_lit15:
19754 case DW_OP_lit16:
19755 case DW_OP_lit17:
19756 case DW_OP_lit18:
19757 case DW_OP_lit19:
19758 case DW_OP_lit20:
19759 case DW_OP_lit21:
19760 case DW_OP_lit22:
19761 case DW_OP_lit23:
19762 case DW_OP_lit24:
19763 case DW_OP_lit25:
19764 case DW_OP_lit26:
19765 case DW_OP_lit27:
19766 case DW_OP_lit28:
19767 case DW_OP_lit29:
19768 case DW_OP_lit30:
19769 case DW_OP_lit31:
19770 stack[++stacki] = op - DW_OP_lit0;
19771 break;
f1bea926 19772
21ae7a4d
JK
19773 case DW_OP_reg0:
19774 case DW_OP_reg1:
19775 case DW_OP_reg2:
19776 case DW_OP_reg3:
19777 case DW_OP_reg4:
19778 case DW_OP_reg5:
19779 case DW_OP_reg6:
19780 case DW_OP_reg7:
19781 case DW_OP_reg8:
19782 case DW_OP_reg9:
19783 case DW_OP_reg10:
19784 case DW_OP_reg11:
19785 case DW_OP_reg12:
19786 case DW_OP_reg13:
19787 case DW_OP_reg14:
19788 case DW_OP_reg15:
19789 case DW_OP_reg16:
19790 case DW_OP_reg17:
19791 case DW_OP_reg18:
19792 case DW_OP_reg19:
19793 case DW_OP_reg20:
19794 case DW_OP_reg21:
19795 case DW_OP_reg22:
19796 case DW_OP_reg23:
19797 case DW_OP_reg24:
19798 case DW_OP_reg25:
19799 case DW_OP_reg26:
19800 case DW_OP_reg27:
19801 case DW_OP_reg28:
19802 case DW_OP_reg29:
19803 case DW_OP_reg30:
19804 case DW_OP_reg31:
19805 stack[++stacki] = op - DW_OP_reg0;
19806 if (i < size)
19807 dwarf2_complex_location_expr_complaint ();
19808 break;
c906108c 19809
21ae7a4d
JK
19810 case DW_OP_regx:
19811 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
19812 i += bytes_read;
19813 stack[++stacki] = unsnd;
19814 if (i < size)
19815 dwarf2_complex_location_expr_complaint ();
19816 break;
c906108c 19817
21ae7a4d
JK
19818 case DW_OP_addr:
19819 stack[++stacki] = read_address (objfile->obfd, &data[i],
19820 cu, &bytes_read);
19821 i += bytes_read;
19822 break;
d53d4ac5 19823
21ae7a4d
JK
19824 case DW_OP_const1u:
19825 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
19826 i += 1;
19827 break;
19828
19829 case DW_OP_const1s:
19830 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
19831 i += 1;
19832 break;
19833
19834 case DW_OP_const2u:
19835 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
19836 i += 2;
19837 break;
19838
19839 case DW_OP_const2s:
19840 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
19841 i += 2;
19842 break;
d53d4ac5 19843
21ae7a4d
JK
19844 case DW_OP_const4u:
19845 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
19846 i += 4;
19847 break;
19848
19849 case DW_OP_const4s:
19850 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
19851 i += 4;
19852 break;
19853
585861ea
JK
19854 case DW_OP_const8u:
19855 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
19856 i += 8;
19857 break;
19858
21ae7a4d
JK
19859 case DW_OP_constu:
19860 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
19861 &bytes_read);
19862 i += bytes_read;
19863 break;
19864
19865 case DW_OP_consts:
19866 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
19867 i += bytes_read;
19868 break;
19869
19870 case DW_OP_dup:
19871 stack[stacki + 1] = stack[stacki];
19872 stacki++;
19873 break;
19874
19875 case DW_OP_plus:
19876 stack[stacki - 1] += stack[stacki];
19877 stacki--;
19878 break;
19879
19880 case DW_OP_plus_uconst:
19881 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
19882 &bytes_read);
19883 i += bytes_read;
19884 break;
19885
19886 case DW_OP_minus:
19887 stack[stacki - 1] -= stack[stacki];
19888 stacki--;
19889 break;
19890
19891 case DW_OP_deref:
19892 /* If we're not the last op, then we definitely can't encode
19893 this using GDB's address_class enum. This is valid for partial
19894 global symbols, although the variable's address will be bogus
19895 in the psymtab. */
19896 if (i < size)
19897 dwarf2_complex_location_expr_complaint ();
19898 break;
19899
19900 case DW_OP_GNU_push_tls_address:
19901 /* The top of the stack has the offset from the beginning
19902 of the thread control block at which the variable is located. */
19903 /* Nothing should follow this operator, so the top of stack would
19904 be returned. */
19905 /* This is valid for partial global symbols, but the variable's
585861ea
JK
19906 address will be bogus in the psymtab. Make it always at least
19907 non-zero to not look as a variable garbage collected by linker
19908 which have DW_OP_addr 0. */
21ae7a4d
JK
19909 if (i < size)
19910 dwarf2_complex_location_expr_complaint ();
585861ea 19911 stack[stacki]++;
21ae7a4d
JK
19912 break;
19913
19914 case DW_OP_GNU_uninit:
19915 break;
19916
3019eac3 19917 case DW_OP_GNU_addr_index:
49f6c839 19918 case DW_OP_GNU_const_index:
3019eac3
DE
19919 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
19920 &bytes_read);
19921 i += bytes_read;
19922 break;
19923
21ae7a4d
JK
19924 default:
19925 {
f39c6ffd 19926 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
19927
19928 if (name)
19929 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
19930 name);
19931 else
19932 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
19933 op);
19934 }
19935
19936 return (stack[stacki]);
d53d4ac5 19937 }
3c6e0cb3 19938
21ae7a4d
JK
19939 /* Enforce maximum stack depth of SIZE-1 to avoid writing
19940 outside of the allocated space. Also enforce minimum>0. */
19941 if (stacki >= ARRAY_SIZE (stack) - 1)
19942 {
19943 complaint (&symfile_complaints,
19944 _("location description stack overflow"));
19945 return 0;
19946 }
19947
19948 if (stacki <= 0)
19949 {
19950 complaint (&symfile_complaints,
19951 _("location description stack underflow"));
19952 return 0;
19953 }
19954 }
19955 return (stack[stacki]);
c906108c
SS
19956}
19957
19958/* memory allocation interface */
19959
c906108c 19960static struct dwarf_block *
7b5a2f43 19961dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
19962{
19963 struct dwarf_block *blk;
19964
19965 blk = (struct dwarf_block *)
7b5a2f43 19966 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
19967 return (blk);
19968}
19969
c906108c 19970static struct die_info *
b60c80d6 19971dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
19972{
19973 struct die_info *die;
b60c80d6
DJ
19974 size_t size = sizeof (struct die_info);
19975
19976 if (num_attrs > 1)
19977 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 19978
b60c80d6 19979 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
19980 memset (die, 0, sizeof (struct die_info));
19981 return (die);
19982}
2e276125
JB
19983
19984\f
19985/* Macro support. */
19986
233d95b5
JK
19987/* Return file name relative to the compilation directory of file number I in
19988 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 19989 responsible for freeing it. */
233d95b5 19990
2e276125 19991static char *
233d95b5 19992file_file_name (int file, struct line_header *lh)
2e276125 19993{
6a83a1e6
EZ
19994 /* Is the file number a valid index into the line header's file name
19995 table? Remember that file numbers start with one, not zero. */
19996 if (1 <= file && file <= lh->num_file_names)
19997 {
19998 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 19999
233d95b5 20000 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
6a83a1e6 20001 return xstrdup (fe->name);
233d95b5
JK
20002 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20003 fe->name, NULL);
6a83a1e6 20004 }
2e276125
JB
20005 else
20006 {
6a83a1e6
EZ
20007 /* The compiler produced a bogus file number. We can at least
20008 record the macro definitions made in the file, even if we
20009 won't be able to find the file by name. */
20010 char fake_name[80];
9a619af0 20011
8c042590
PM
20012 xsnprintf (fake_name, sizeof (fake_name),
20013 "<bad macro file number %d>", file);
2e276125 20014
6e70227d 20015 complaint (&symfile_complaints,
6a83a1e6
EZ
20016 _("bad file number in macro information (%d)"),
20017 file);
2e276125 20018
6a83a1e6 20019 return xstrdup (fake_name);
2e276125
JB
20020 }
20021}
20022
233d95b5
JK
20023/* Return the full name of file number I in *LH's file name table.
20024 Use COMP_DIR as the name of the current directory of the
20025 compilation. The result is allocated using xmalloc; the caller is
20026 responsible for freeing it. */
20027static char *
20028file_full_name (int file, struct line_header *lh, const char *comp_dir)
20029{
20030 /* Is the file number a valid index into the line header's file name
20031 table? Remember that file numbers start with one, not zero. */
20032 if (1 <= file && file <= lh->num_file_names)
20033 {
20034 char *relative = file_file_name (file, lh);
20035
20036 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20037 return relative;
20038 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20039 }
20040 else
20041 return file_file_name (file, lh);
20042}
20043
2e276125
JB
20044
20045static struct macro_source_file *
20046macro_start_file (int file, int line,
20047 struct macro_source_file *current_file,
20048 const char *comp_dir,
20049 struct line_header *lh, struct objfile *objfile)
20050{
233d95b5
JK
20051 /* File name relative to the compilation directory of this source file. */
20052 char *file_name = file_file_name (file, lh);
2e276125 20053
2e276125 20054 if (! current_file)
abc9d0dc 20055 {
fc474241
DE
20056 /* Note: We don't create a macro table for this compilation unit
20057 at all until we actually get a filename. */
20058 struct macro_table *macro_table = get_macro_table (objfile, comp_dir);
20059
abc9d0dc
TT
20060 /* If we have no current file, then this must be the start_file
20061 directive for the compilation unit's main source file. */
fc474241
DE
20062 current_file = macro_set_main (macro_table, file_name);
20063 macro_define_special (macro_table);
abc9d0dc 20064 }
2e276125 20065 else
233d95b5 20066 current_file = macro_include (current_file, line, file_name);
2e276125 20067
233d95b5 20068 xfree (file_name);
6e70227d 20069
2e276125
JB
20070 return current_file;
20071}
20072
20073
20074/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20075 followed by a null byte. */
20076static char *
20077copy_string (const char *buf, int len)
20078{
20079 char *s = xmalloc (len + 1);
9a619af0 20080
2e276125
JB
20081 memcpy (s, buf, len);
20082 s[len] = '\0';
2e276125
JB
20083 return s;
20084}
20085
20086
20087static const char *
20088consume_improper_spaces (const char *p, const char *body)
20089{
20090 if (*p == ' ')
20091 {
4d3c2250 20092 complaint (&symfile_complaints,
3e43a32a
MS
20093 _("macro definition contains spaces "
20094 "in formal argument list:\n`%s'"),
4d3c2250 20095 body);
2e276125
JB
20096
20097 while (*p == ' ')
20098 p++;
20099 }
20100
20101 return p;
20102}
20103
20104
20105static void
20106parse_macro_definition (struct macro_source_file *file, int line,
20107 const char *body)
20108{
20109 const char *p;
20110
20111 /* The body string takes one of two forms. For object-like macro
20112 definitions, it should be:
20113
20114 <macro name> " " <definition>
20115
20116 For function-like macro definitions, it should be:
20117
20118 <macro name> "() " <definition>
20119 or
20120 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20121
20122 Spaces may appear only where explicitly indicated, and in the
20123 <definition>.
20124
20125 The Dwarf 2 spec says that an object-like macro's name is always
20126 followed by a space, but versions of GCC around March 2002 omit
6e70227d 20127 the space when the macro's definition is the empty string.
2e276125
JB
20128
20129 The Dwarf 2 spec says that there should be no spaces between the
20130 formal arguments in a function-like macro's formal argument list,
20131 but versions of GCC around March 2002 include spaces after the
20132 commas. */
20133
20134
20135 /* Find the extent of the macro name. The macro name is terminated
20136 by either a space or null character (for an object-like macro) or
20137 an opening paren (for a function-like macro). */
20138 for (p = body; *p; p++)
20139 if (*p == ' ' || *p == '(')
20140 break;
20141
20142 if (*p == ' ' || *p == '\0')
20143 {
20144 /* It's an object-like macro. */
20145 int name_len = p - body;
20146 char *name = copy_string (body, name_len);
20147 const char *replacement;
20148
20149 if (*p == ' ')
20150 replacement = body + name_len + 1;
20151 else
20152 {
4d3c2250 20153 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20154 replacement = body + name_len;
20155 }
6e70227d 20156
2e276125
JB
20157 macro_define_object (file, line, name, replacement);
20158
20159 xfree (name);
20160 }
20161 else if (*p == '(')
20162 {
20163 /* It's a function-like macro. */
20164 char *name = copy_string (body, p - body);
20165 int argc = 0;
20166 int argv_size = 1;
20167 char **argv = xmalloc (argv_size * sizeof (*argv));
20168
20169 p++;
20170
20171 p = consume_improper_spaces (p, body);
20172
20173 /* Parse the formal argument list. */
20174 while (*p && *p != ')')
20175 {
20176 /* Find the extent of the current argument name. */
20177 const char *arg_start = p;
20178
20179 while (*p && *p != ',' && *p != ')' && *p != ' ')
20180 p++;
20181
20182 if (! *p || p == arg_start)
4d3c2250 20183 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20184 else
20185 {
20186 /* Make sure argv has room for the new argument. */
20187 if (argc >= argv_size)
20188 {
20189 argv_size *= 2;
20190 argv = xrealloc (argv, argv_size * sizeof (*argv));
20191 }
20192
20193 argv[argc++] = copy_string (arg_start, p - arg_start);
20194 }
20195
20196 p = consume_improper_spaces (p, body);
20197
20198 /* Consume the comma, if present. */
20199 if (*p == ',')
20200 {
20201 p++;
20202
20203 p = consume_improper_spaces (p, body);
20204 }
20205 }
20206
20207 if (*p == ')')
20208 {
20209 p++;
20210
20211 if (*p == ' ')
20212 /* Perfectly formed definition, no complaints. */
20213 macro_define_function (file, line, name,
6e70227d 20214 argc, (const char **) argv,
2e276125
JB
20215 p + 1);
20216 else if (*p == '\0')
20217 {
20218 /* Complain, but do define it. */
4d3c2250 20219 dwarf2_macro_malformed_definition_complaint (body);
2e276125 20220 macro_define_function (file, line, name,
6e70227d 20221 argc, (const char **) argv,
2e276125
JB
20222 p);
20223 }
20224 else
20225 /* Just complain. */
4d3c2250 20226 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20227 }
20228 else
20229 /* Just complain. */
4d3c2250 20230 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20231
20232 xfree (name);
20233 {
20234 int i;
20235
20236 for (i = 0; i < argc; i++)
20237 xfree (argv[i]);
20238 }
20239 xfree (argv);
20240 }
20241 else
4d3c2250 20242 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20243}
20244
cf2c3c16
TT
20245/* Skip some bytes from BYTES according to the form given in FORM.
20246 Returns the new pointer. */
2e276125 20247
d521ce57
TT
20248static const gdb_byte *
20249skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
20250 enum dwarf_form form,
20251 unsigned int offset_size,
20252 struct dwarf2_section_info *section)
2e276125 20253{
cf2c3c16 20254 unsigned int bytes_read;
2e276125 20255
cf2c3c16 20256 switch (form)
2e276125 20257 {
cf2c3c16
TT
20258 case DW_FORM_data1:
20259 case DW_FORM_flag:
20260 ++bytes;
20261 break;
20262
20263 case DW_FORM_data2:
20264 bytes += 2;
20265 break;
20266
20267 case DW_FORM_data4:
20268 bytes += 4;
20269 break;
20270
20271 case DW_FORM_data8:
20272 bytes += 8;
20273 break;
20274
20275 case DW_FORM_string:
20276 read_direct_string (abfd, bytes, &bytes_read);
20277 bytes += bytes_read;
20278 break;
20279
20280 case DW_FORM_sec_offset:
20281 case DW_FORM_strp:
36586728 20282 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
20283 bytes += offset_size;
20284 break;
20285
20286 case DW_FORM_block:
20287 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20288 bytes += bytes_read;
20289 break;
20290
20291 case DW_FORM_block1:
20292 bytes += 1 + read_1_byte (abfd, bytes);
20293 break;
20294 case DW_FORM_block2:
20295 bytes += 2 + read_2_bytes (abfd, bytes);
20296 break;
20297 case DW_FORM_block4:
20298 bytes += 4 + read_4_bytes (abfd, bytes);
20299 break;
20300
20301 case DW_FORM_sdata:
20302 case DW_FORM_udata:
3019eac3
DE
20303 case DW_FORM_GNU_addr_index:
20304 case DW_FORM_GNU_str_index:
d521ce57 20305 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
20306 if (bytes == NULL)
20307 {
20308 dwarf2_section_buffer_overflow_complaint (section);
20309 return NULL;
20310 }
cf2c3c16
TT
20311 break;
20312
20313 default:
20314 {
20315 complain:
20316 complaint (&symfile_complaints,
20317 _("invalid form 0x%x in `%s'"),
a32a8923 20318 form, get_section_name (section));
cf2c3c16
TT
20319 return NULL;
20320 }
2e276125
JB
20321 }
20322
cf2c3c16
TT
20323 return bytes;
20324}
757a13d0 20325
cf2c3c16
TT
20326/* A helper for dwarf_decode_macros that handles skipping an unknown
20327 opcode. Returns an updated pointer to the macro data buffer; or,
20328 on error, issues a complaint and returns NULL. */
757a13d0 20329
d521ce57 20330static const gdb_byte *
cf2c3c16 20331skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
20332 const gdb_byte **opcode_definitions,
20333 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
20334 bfd *abfd,
20335 unsigned int offset_size,
20336 struct dwarf2_section_info *section)
20337{
20338 unsigned int bytes_read, i;
20339 unsigned long arg;
d521ce57 20340 const gdb_byte *defn;
2e276125 20341
cf2c3c16 20342 if (opcode_definitions[opcode] == NULL)
2e276125 20343 {
cf2c3c16
TT
20344 complaint (&symfile_complaints,
20345 _("unrecognized DW_MACFINO opcode 0x%x"),
20346 opcode);
20347 return NULL;
20348 }
2e276125 20349
cf2c3c16
TT
20350 defn = opcode_definitions[opcode];
20351 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20352 defn += bytes_read;
2e276125 20353
cf2c3c16
TT
20354 for (i = 0; i < arg; ++i)
20355 {
f664829e
DE
20356 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20357 section);
cf2c3c16
TT
20358 if (mac_ptr == NULL)
20359 {
20360 /* skip_form_bytes already issued the complaint. */
20361 return NULL;
20362 }
20363 }
757a13d0 20364
cf2c3c16
TT
20365 return mac_ptr;
20366}
757a13d0 20367
cf2c3c16
TT
20368/* A helper function which parses the header of a macro section.
20369 If the macro section is the extended (for now called "GNU") type,
20370 then this updates *OFFSET_SIZE. Returns a pointer to just after
20371 the header, or issues a complaint and returns NULL on error. */
757a13d0 20372
d521ce57
TT
20373static const gdb_byte *
20374dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 20375 bfd *abfd,
d521ce57 20376 const gdb_byte *mac_ptr,
cf2c3c16
TT
20377 unsigned int *offset_size,
20378 int section_is_gnu)
20379{
20380 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 20381
cf2c3c16
TT
20382 if (section_is_gnu)
20383 {
20384 unsigned int version, flags;
757a13d0 20385
cf2c3c16
TT
20386 version = read_2_bytes (abfd, mac_ptr);
20387 if (version != 4)
20388 {
20389 complaint (&symfile_complaints,
20390 _("unrecognized version `%d' in .debug_macro section"),
20391 version);
20392 return NULL;
20393 }
20394 mac_ptr += 2;
757a13d0 20395
cf2c3c16
TT
20396 flags = read_1_byte (abfd, mac_ptr);
20397 ++mac_ptr;
20398 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 20399
cf2c3c16
TT
20400 if ((flags & 2) != 0)
20401 /* We don't need the line table offset. */
20402 mac_ptr += *offset_size;
757a13d0 20403
cf2c3c16
TT
20404 /* Vendor opcode descriptions. */
20405 if ((flags & 4) != 0)
20406 {
20407 unsigned int i, count;
757a13d0 20408
cf2c3c16
TT
20409 count = read_1_byte (abfd, mac_ptr);
20410 ++mac_ptr;
20411 for (i = 0; i < count; ++i)
20412 {
20413 unsigned int opcode, bytes_read;
20414 unsigned long arg;
20415
20416 opcode = read_1_byte (abfd, mac_ptr);
20417 ++mac_ptr;
20418 opcode_definitions[opcode] = mac_ptr;
20419 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20420 mac_ptr += bytes_read;
20421 mac_ptr += arg;
20422 }
757a13d0 20423 }
cf2c3c16 20424 }
757a13d0 20425
cf2c3c16
TT
20426 return mac_ptr;
20427}
757a13d0 20428
cf2c3c16 20429/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 20430 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
20431
20432static void
d521ce57
TT
20433dwarf_decode_macro_bytes (bfd *abfd,
20434 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 20435 struct macro_source_file *current_file,
15d034d0 20436 struct line_header *lh, const char *comp_dir,
cf2c3c16 20437 struct dwarf2_section_info *section,
36586728 20438 int section_is_gnu, int section_is_dwz,
cf2c3c16 20439 unsigned int offset_size,
8fc3fc34
TT
20440 struct objfile *objfile,
20441 htab_t include_hash)
cf2c3c16
TT
20442{
20443 enum dwarf_macro_record_type macinfo_type;
20444 int at_commandline;
d521ce57 20445 const gdb_byte *opcode_definitions[256];
757a13d0 20446
cf2c3c16
TT
20447 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20448 &offset_size, section_is_gnu);
20449 if (mac_ptr == NULL)
20450 {
20451 /* We already issued a complaint. */
20452 return;
20453 }
757a13d0
JK
20454
20455 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20456 GDB is still reading the definitions from command line. First
20457 DW_MACINFO_start_file will need to be ignored as it was already executed
20458 to create CURRENT_FILE for the main source holding also the command line
20459 definitions. On first met DW_MACINFO_start_file this flag is reset to
20460 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20461
20462 at_commandline = 1;
20463
20464 do
20465 {
20466 /* Do we at least have room for a macinfo type byte? */
20467 if (mac_ptr >= mac_end)
20468 {
f664829e 20469 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
20470 break;
20471 }
20472
20473 macinfo_type = read_1_byte (abfd, mac_ptr);
20474 mac_ptr++;
20475
cf2c3c16
TT
20476 /* Note that we rely on the fact that the corresponding GNU and
20477 DWARF constants are the same. */
757a13d0
JK
20478 switch (macinfo_type)
20479 {
20480 /* A zero macinfo type indicates the end of the macro
20481 information. */
20482 case 0:
20483 break;
2e276125 20484
cf2c3c16
TT
20485 case DW_MACRO_GNU_define:
20486 case DW_MACRO_GNU_undef:
20487 case DW_MACRO_GNU_define_indirect:
20488 case DW_MACRO_GNU_undef_indirect:
36586728
TT
20489 case DW_MACRO_GNU_define_indirect_alt:
20490 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 20491 {
891d2f0b 20492 unsigned int bytes_read;
2e276125 20493 int line;
d521ce57 20494 const char *body;
cf2c3c16 20495 int is_define;
2e276125 20496
cf2c3c16
TT
20497 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20498 mac_ptr += bytes_read;
20499
20500 if (macinfo_type == DW_MACRO_GNU_define
20501 || macinfo_type == DW_MACRO_GNU_undef)
20502 {
20503 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20504 mac_ptr += bytes_read;
20505 }
20506 else
20507 {
20508 LONGEST str_offset;
20509
20510 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20511 mac_ptr += offset_size;
2e276125 20512
36586728 20513 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
20514 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20515 || section_is_dwz)
36586728
TT
20516 {
20517 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20518
20519 body = read_indirect_string_from_dwz (dwz, str_offset);
20520 }
20521 else
20522 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
20523 }
20524
20525 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
20526 || macinfo_type == DW_MACRO_GNU_define_indirect
20527 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 20528 if (! current_file)
757a13d0
JK
20529 {
20530 /* DWARF violation as no main source is present. */
20531 complaint (&symfile_complaints,
20532 _("debug info with no main source gives macro %s "
20533 "on line %d: %s"),
cf2c3c16
TT
20534 is_define ? _("definition") : _("undefinition"),
20535 line, body);
757a13d0
JK
20536 break;
20537 }
3e43a32a
MS
20538 if ((line == 0 && !at_commandline)
20539 || (line != 0 && at_commandline))
4d3c2250 20540 complaint (&symfile_complaints,
757a13d0
JK
20541 _("debug info gives %s macro %s with %s line %d: %s"),
20542 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 20543 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
20544 line == 0 ? _("zero") : _("non-zero"), line, body);
20545
cf2c3c16 20546 if (is_define)
757a13d0 20547 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
20548 else
20549 {
20550 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
20551 || macinfo_type == DW_MACRO_GNU_undef_indirect
20552 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
20553 macro_undef (current_file, line, body);
20554 }
2e276125
JB
20555 }
20556 break;
20557
cf2c3c16 20558 case DW_MACRO_GNU_start_file:
2e276125 20559 {
891d2f0b 20560 unsigned int bytes_read;
2e276125
JB
20561 int line, file;
20562
20563 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20564 mac_ptr += bytes_read;
20565 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20566 mac_ptr += bytes_read;
20567
3e43a32a
MS
20568 if ((line == 0 && !at_commandline)
20569 || (line != 0 && at_commandline))
757a13d0
JK
20570 complaint (&symfile_complaints,
20571 _("debug info gives source %d included "
20572 "from %s at %s line %d"),
20573 file, at_commandline ? _("command-line") : _("file"),
20574 line == 0 ? _("zero") : _("non-zero"), line);
20575
20576 if (at_commandline)
20577 {
cf2c3c16
TT
20578 /* This DW_MACRO_GNU_start_file was executed in the
20579 pass one. */
757a13d0
JK
20580 at_commandline = 0;
20581 }
20582 else
20583 current_file = macro_start_file (file, line,
20584 current_file, comp_dir,
cf2c3c16 20585 lh, objfile);
2e276125
JB
20586 }
20587 break;
20588
cf2c3c16 20589 case DW_MACRO_GNU_end_file:
2e276125 20590 if (! current_file)
4d3c2250 20591 complaint (&symfile_complaints,
3e43a32a
MS
20592 _("macro debug info has an unmatched "
20593 "`close_file' directive"));
2e276125
JB
20594 else
20595 {
20596 current_file = current_file->included_by;
20597 if (! current_file)
20598 {
cf2c3c16 20599 enum dwarf_macro_record_type next_type;
2e276125
JB
20600
20601 /* GCC circa March 2002 doesn't produce the zero
20602 type byte marking the end of the compilation
20603 unit. Complain if it's not there, but exit no
20604 matter what. */
20605
20606 /* Do we at least have room for a macinfo type byte? */
20607 if (mac_ptr >= mac_end)
20608 {
f664829e 20609 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
20610 return;
20611 }
20612
20613 /* We don't increment mac_ptr here, so this is just
20614 a look-ahead. */
20615 next_type = read_1_byte (abfd, mac_ptr);
20616 if (next_type != 0)
4d3c2250 20617 complaint (&symfile_complaints,
3e43a32a
MS
20618 _("no terminating 0-type entry for "
20619 "macros in `.debug_macinfo' section"));
2e276125
JB
20620
20621 return;
20622 }
20623 }
20624 break;
20625
cf2c3c16 20626 case DW_MACRO_GNU_transparent_include:
36586728 20627 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
20628 {
20629 LONGEST offset;
8fc3fc34 20630 void **slot;
a036ba48
TT
20631 bfd *include_bfd = abfd;
20632 struct dwarf2_section_info *include_section = section;
20633 struct dwarf2_section_info alt_section;
d521ce57 20634 const gdb_byte *include_mac_end = mac_end;
a036ba48 20635 int is_dwz = section_is_dwz;
d521ce57 20636 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
20637
20638 offset = read_offset_1 (abfd, mac_ptr, offset_size);
20639 mac_ptr += offset_size;
20640
a036ba48
TT
20641 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
20642 {
20643 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20644
20645 dwarf2_read_section (dwarf2_per_objfile->objfile,
20646 &dwz->macro);
20647
a036ba48 20648 include_section = &dwz->macro;
a32a8923 20649 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
20650 include_mac_end = dwz->macro.buffer + dwz->macro.size;
20651 is_dwz = 1;
20652 }
20653
20654 new_mac_ptr = include_section->buffer + offset;
20655 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
20656
8fc3fc34
TT
20657 if (*slot != NULL)
20658 {
20659 /* This has actually happened; see
20660 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
20661 complaint (&symfile_complaints,
20662 _("recursive DW_MACRO_GNU_transparent_include in "
20663 ".debug_macro section"));
20664 }
20665 else
20666 {
d521ce57 20667 *slot = (void *) new_mac_ptr;
36586728 20668
a036ba48 20669 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
36586728 20670 include_mac_end, current_file,
8fc3fc34 20671 lh, comp_dir,
36586728 20672 section, section_is_gnu, is_dwz,
8fc3fc34
TT
20673 offset_size, objfile, include_hash);
20674
d521ce57 20675 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 20676 }
cf2c3c16
TT
20677 }
20678 break;
20679
2e276125 20680 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
20681 if (!section_is_gnu)
20682 {
20683 unsigned int bytes_read;
20684 int constant;
2e276125 20685
cf2c3c16
TT
20686 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20687 mac_ptr += bytes_read;
20688 read_direct_string (abfd, mac_ptr, &bytes_read);
20689 mac_ptr += bytes_read;
2e276125 20690
cf2c3c16
TT
20691 /* We don't recognize any vendor extensions. */
20692 break;
20693 }
20694 /* FALLTHROUGH */
20695
20696 default:
20697 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 20698 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
20699 section);
20700 if (mac_ptr == NULL)
20701 return;
20702 break;
2e276125 20703 }
757a13d0 20704 } while (macinfo_type != 0);
2e276125 20705}
8e19ed76 20706
cf2c3c16 20707static void
09262596 20708dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
15d034d0 20709 const char *comp_dir, int section_is_gnu)
cf2c3c16 20710{
bb5ed363 20711 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
20712 struct line_header *lh = cu->line_header;
20713 bfd *abfd;
d521ce57 20714 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
20715 struct macro_source_file *current_file = 0;
20716 enum dwarf_macro_record_type macinfo_type;
20717 unsigned int offset_size = cu->header.offset_size;
d521ce57 20718 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
20719 struct cleanup *cleanup;
20720 htab_t include_hash;
20721 void **slot;
09262596
DE
20722 struct dwarf2_section_info *section;
20723 const char *section_name;
20724
20725 if (cu->dwo_unit != NULL)
20726 {
20727 if (section_is_gnu)
20728 {
20729 section = &cu->dwo_unit->dwo_file->sections.macro;
20730 section_name = ".debug_macro.dwo";
20731 }
20732 else
20733 {
20734 section = &cu->dwo_unit->dwo_file->sections.macinfo;
20735 section_name = ".debug_macinfo.dwo";
20736 }
20737 }
20738 else
20739 {
20740 if (section_is_gnu)
20741 {
20742 section = &dwarf2_per_objfile->macro;
20743 section_name = ".debug_macro";
20744 }
20745 else
20746 {
20747 section = &dwarf2_per_objfile->macinfo;
20748 section_name = ".debug_macinfo";
20749 }
20750 }
cf2c3c16 20751
bb5ed363 20752 dwarf2_read_section (objfile, section);
cf2c3c16
TT
20753 if (section->buffer == NULL)
20754 {
fceca515 20755 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
20756 return;
20757 }
a32a8923 20758 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
20759
20760 /* First pass: Find the name of the base filename.
20761 This filename is needed in order to process all macros whose definition
20762 (or undefinition) comes from the command line. These macros are defined
20763 before the first DW_MACINFO_start_file entry, and yet still need to be
20764 associated to the base file.
20765
20766 To determine the base file name, we scan the macro definitions until we
20767 reach the first DW_MACINFO_start_file entry. We then initialize
20768 CURRENT_FILE accordingly so that any macro definition found before the
20769 first DW_MACINFO_start_file can still be associated to the base file. */
20770
20771 mac_ptr = section->buffer + offset;
20772 mac_end = section->buffer + section->size;
20773
20774 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20775 &offset_size, section_is_gnu);
20776 if (mac_ptr == NULL)
20777 {
20778 /* We already issued a complaint. */
20779 return;
20780 }
20781
20782 do
20783 {
20784 /* Do we at least have room for a macinfo type byte? */
20785 if (mac_ptr >= mac_end)
20786 {
20787 /* Complaint is printed during the second pass as GDB will probably
20788 stop the first pass earlier upon finding
20789 DW_MACINFO_start_file. */
20790 break;
20791 }
20792
20793 macinfo_type = read_1_byte (abfd, mac_ptr);
20794 mac_ptr++;
20795
20796 /* Note that we rely on the fact that the corresponding GNU and
20797 DWARF constants are the same. */
20798 switch (macinfo_type)
20799 {
20800 /* A zero macinfo type indicates the end of the macro
20801 information. */
20802 case 0:
20803 break;
20804
20805 case DW_MACRO_GNU_define:
20806 case DW_MACRO_GNU_undef:
20807 /* Only skip the data by MAC_PTR. */
20808 {
20809 unsigned int bytes_read;
20810
20811 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20812 mac_ptr += bytes_read;
20813 read_direct_string (abfd, mac_ptr, &bytes_read);
20814 mac_ptr += bytes_read;
20815 }
20816 break;
20817
20818 case DW_MACRO_GNU_start_file:
20819 {
20820 unsigned int bytes_read;
20821 int line, file;
20822
20823 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20824 mac_ptr += bytes_read;
20825 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20826 mac_ptr += bytes_read;
20827
20828 current_file = macro_start_file (file, line, current_file,
bb5ed363 20829 comp_dir, lh, objfile);
cf2c3c16
TT
20830 }
20831 break;
20832
20833 case DW_MACRO_GNU_end_file:
20834 /* No data to skip by MAC_PTR. */
20835 break;
20836
20837 case DW_MACRO_GNU_define_indirect:
20838 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
20839 case DW_MACRO_GNU_define_indirect_alt:
20840 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
20841 {
20842 unsigned int bytes_read;
20843
20844 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20845 mac_ptr += bytes_read;
20846 mac_ptr += offset_size;
20847 }
20848 break;
20849
20850 case DW_MACRO_GNU_transparent_include:
f7a35f02 20851 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
20852 /* Note that, according to the spec, a transparent include
20853 chain cannot call DW_MACRO_GNU_start_file. So, we can just
20854 skip this opcode. */
20855 mac_ptr += offset_size;
20856 break;
20857
20858 case DW_MACINFO_vendor_ext:
20859 /* Only skip the data by MAC_PTR. */
20860 if (!section_is_gnu)
20861 {
20862 unsigned int bytes_read;
20863
20864 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20865 mac_ptr += bytes_read;
20866 read_direct_string (abfd, mac_ptr, &bytes_read);
20867 mac_ptr += bytes_read;
20868 }
20869 /* FALLTHROUGH */
20870
20871 default:
20872 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 20873 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
20874 section);
20875 if (mac_ptr == NULL)
20876 return;
20877 break;
20878 }
20879 } while (macinfo_type != 0 && current_file == NULL);
20880
20881 /* Second pass: Process all entries.
20882
20883 Use the AT_COMMAND_LINE flag to determine whether we are still processing
20884 command-line macro definitions/undefinitions. This flag is unset when we
20885 reach the first DW_MACINFO_start_file entry. */
20886
8fc3fc34
TT
20887 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
20888 NULL, xcalloc, xfree);
20889 cleanup = make_cleanup_htab_delete (include_hash);
20890 mac_ptr = section->buffer + offset;
20891 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 20892 *slot = (void *) mac_ptr;
8fc3fc34 20893 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
36586728
TT
20894 current_file, lh, comp_dir, section,
20895 section_is_gnu, 0,
8fc3fc34
TT
20896 offset_size, objfile, include_hash);
20897 do_cleanups (cleanup);
cf2c3c16
TT
20898}
20899
8e19ed76 20900/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 20901 if so return true else false. */
380bca97 20902
8e19ed76 20903static int
6e5a29e1 20904attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
20905{
20906 return (attr == NULL ? 0 :
20907 attr->form == DW_FORM_block1
20908 || attr->form == DW_FORM_block2
20909 || attr->form == DW_FORM_block4
2dc7f7b3
TT
20910 || attr->form == DW_FORM_block
20911 || attr->form == DW_FORM_exprloc);
8e19ed76 20912}
4c2df51b 20913
c6a0999f
JB
20914/* Return non-zero if ATTR's value is a section offset --- classes
20915 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
20916 You may use DW_UNSND (attr) to retrieve such offsets.
20917
20918 Section 7.5.4, "Attribute Encodings", explains that no attribute
20919 may have a value that belongs to more than one of these classes; it
20920 would be ambiguous if we did, because we use the same forms for all
20921 of them. */
380bca97 20922
3690dd37 20923static int
6e5a29e1 20924attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
20925{
20926 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
20927 || attr->form == DW_FORM_data8
20928 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
20929}
20930
3690dd37
JB
20931/* Return non-zero if ATTR's value falls in the 'constant' class, or
20932 zero otherwise. When this function returns true, you can apply
20933 dwarf2_get_attr_constant_value to it.
20934
20935 However, note that for some attributes you must check
20936 attr_form_is_section_offset before using this test. DW_FORM_data4
20937 and DW_FORM_data8 are members of both the constant class, and of
20938 the classes that contain offsets into other debug sections
20939 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
20940 that, if an attribute's can be either a constant or one of the
20941 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
20942 taken as section offsets, not constants. */
380bca97 20943
3690dd37 20944static int
6e5a29e1 20945attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
20946{
20947 switch (attr->form)
20948 {
20949 case DW_FORM_sdata:
20950 case DW_FORM_udata:
20951 case DW_FORM_data1:
20952 case DW_FORM_data2:
20953 case DW_FORM_data4:
20954 case DW_FORM_data8:
20955 return 1;
20956 default:
20957 return 0;
20958 }
20959}
20960
7771576e
SA
20961
20962/* DW_ADDR is always stored already as sect_offset; despite for the forms
20963 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
20964
20965static int
6e5a29e1 20966attr_form_is_ref (const struct attribute *attr)
7771576e
SA
20967{
20968 switch (attr->form)
20969 {
20970 case DW_FORM_ref_addr:
20971 case DW_FORM_ref1:
20972 case DW_FORM_ref2:
20973 case DW_FORM_ref4:
20974 case DW_FORM_ref8:
20975 case DW_FORM_ref_udata:
20976 case DW_FORM_GNU_ref_alt:
20977 return 1;
20978 default:
20979 return 0;
20980 }
20981}
20982
3019eac3
DE
20983/* Return the .debug_loc section to use for CU.
20984 For DWO files use .debug_loc.dwo. */
20985
20986static struct dwarf2_section_info *
20987cu_debug_loc_section (struct dwarf2_cu *cu)
20988{
20989 if (cu->dwo_unit)
20990 return &cu->dwo_unit->dwo_file->sections.loc;
20991 return &dwarf2_per_objfile->loc;
20992}
20993
8cf6f0b1
TT
20994/* A helper function that fills in a dwarf2_loclist_baton. */
20995
20996static void
20997fill_in_loclist_baton (struct dwarf2_cu *cu,
20998 struct dwarf2_loclist_baton *baton,
ff39bb5e 20999 const struct attribute *attr)
8cf6f0b1 21000{
3019eac3
DE
21001 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21002
21003 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
21004
21005 baton->per_cu = cu->per_cu;
21006 gdb_assert (baton->per_cu);
21007 /* We don't know how long the location list is, but make sure we
21008 don't run off the edge of the section. */
3019eac3
DE
21009 baton->size = section->size - DW_UNSND (attr);
21010 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 21011 baton->base_address = cu->base_address;
f664829e 21012 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
21013}
21014
4c2df51b 21015static void
ff39bb5e 21016dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 21017 struct dwarf2_cu *cu, int is_block)
4c2df51b 21018{
bb5ed363 21019 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 21020 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 21021
3690dd37 21022 if (attr_form_is_section_offset (attr)
3019eac3 21023 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
21024 the section. If so, fall through to the complaint in the
21025 other branch. */
3019eac3 21026 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 21027 {
0d53c4c4 21028 struct dwarf2_loclist_baton *baton;
4c2df51b 21029
bb5ed363 21030 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 21031 sizeof (struct dwarf2_loclist_baton));
4c2df51b 21032
8cf6f0b1 21033 fill_in_loclist_baton (cu, baton, attr);
be391dca 21034
d00adf39 21035 if (cu->base_known == 0)
0d53c4c4 21036 complaint (&symfile_complaints,
3e43a32a
MS
21037 _("Location list used without "
21038 "specifying the CU base address."));
4c2df51b 21039
f1e6e072
TT
21040 SYMBOL_ACLASS_INDEX (sym) = (is_block
21041 ? dwarf2_loclist_block_index
21042 : dwarf2_loclist_index);
0d53c4c4
DJ
21043 SYMBOL_LOCATION_BATON (sym) = baton;
21044 }
21045 else
21046 {
21047 struct dwarf2_locexpr_baton *baton;
21048
bb5ed363 21049 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 21050 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
21051 baton->per_cu = cu->per_cu;
21052 gdb_assert (baton->per_cu);
0d53c4c4
DJ
21053
21054 if (attr_form_is_block (attr))
21055 {
21056 /* Note that we're just copying the block's data pointer
21057 here, not the actual data. We're still pointing into the
6502dd73
DJ
21058 info_buffer for SYM's objfile; right now we never release
21059 that buffer, but when we do clean up properly this may
21060 need to change. */
0d53c4c4
DJ
21061 baton->size = DW_BLOCK (attr)->size;
21062 baton->data = DW_BLOCK (attr)->data;
21063 }
21064 else
21065 {
21066 dwarf2_invalid_attrib_class_complaint ("location description",
21067 SYMBOL_NATURAL_NAME (sym));
21068 baton->size = 0;
0d53c4c4 21069 }
6e70227d 21070
f1e6e072
TT
21071 SYMBOL_ACLASS_INDEX (sym) = (is_block
21072 ? dwarf2_locexpr_block_index
21073 : dwarf2_locexpr_index);
0d53c4c4
DJ
21074 SYMBOL_LOCATION_BATON (sym) = baton;
21075 }
4c2df51b 21076}
6502dd73 21077
9aa1f1e3
TT
21078/* Return the OBJFILE associated with the compilation unit CU. If CU
21079 came from a separate debuginfo file, then the master objfile is
21080 returned. */
ae0d2f24
UW
21081
21082struct objfile *
21083dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21084{
9291a0cd 21085 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
21086
21087 /* Return the master objfile, so that we can report and look up the
21088 correct file containing this variable. */
21089 if (objfile->separate_debug_objfile_backlink)
21090 objfile = objfile->separate_debug_objfile_backlink;
21091
21092 return objfile;
21093}
21094
96408a79
SA
21095/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21096 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21097 CU_HEADERP first. */
21098
21099static const struct comp_unit_head *
21100per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21101 struct dwarf2_per_cu_data *per_cu)
21102{
d521ce57 21103 const gdb_byte *info_ptr;
96408a79
SA
21104
21105 if (per_cu->cu)
21106 return &per_cu->cu->header;
21107
8a0459fd 21108 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
21109
21110 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 21111 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
21112
21113 return cu_headerp;
21114}
21115
ae0d2f24
UW
21116/* Return the address size given in the compilation unit header for CU. */
21117
98714339 21118int
ae0d2f24
UW
21119dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21120{
96408a79
SA
21121 struct comp_unit_head cu_header_local;
21122 const struct comp_unit_head *cu_headerp;
c471e790 21123
96408a79
SA
21124 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21125
21126 return cu_headerp->addr_size;
ae0d2f24
UW
21127}
21128
9eae7c52
TT
21129/* Return the offset size given in the compilation unit header for CU. */
21130
21131int
21132dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21133{
96408a79
SA
21134 struct comp_unit_head cu_header_local;
21135 const struct comp_unit_head *cu_headerp;
9c6c53f7 21136
96408a79
SA
21137 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21138
21139 return cu_headerp->offset_size;
21140}
21141
21142/* See its dwarf2loc.h declaration. */
21143
21144int
21145dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21146{
21147 struct comp_unit_head cu_header_local;
21148 const struct comp_unit_head *cu_headerp;
21149
21150 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21151
21152 if (cu_headerp->version == 2)
21153 return cu_headerp->addr_size;
21154 else
21155 return cu_headerp->offset_size;
181cebd4
JK
21156}
21157
9aa1f1e3
TT
21158/* Return the text offset of the CU. The returned offset comes from
21159 this CU's objfile. If this objfile came from a separate debuginfo
21160 file, then the offset may be different from the corresponding
21161 offset in the parent objfile. */
21162
21163CORE_ADDR
21164dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21165{
bb3fa9d0 21166 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
21167
21168 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21169}
21170
348e048f
DE
21171/* Locate the .debug_info compilation unit from CU's objfile which contains
21172 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
21173
21174static struct dwarf2_per_cu_data *
b64f50a1 21175dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 21176 unsigned int offset_in_dwz,
ae038cb0
DJ
21177 struct objfile *objfile)
21178{
21179 struct dwarf2_per_cu_data *this_cu;
21180 int low, high;
36586728 21181 const sect_offset *cu_off;
ae038cb0 21182
ae038cb0
DJ
21183 low = 0;
21184 high = dwarf2_per_objfile->n_comp_units - 1;
21185 while (high > low)
21186 {
36586728 21187 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 21188 int mid = low + (high - low) / 2;
9a619af0 21189
36586728
TT
21190 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21191 cu_off = &mid_cu->offset;
21192 if (mid_cu->is_dwz > offset_in_dwz
21193 || (mid_cu->is_dwz == offset_in_dwz
21194 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
21195 high = mid;
21196 else
21197 low = mid + 1;
21198 }
21199 gdb_assert (low == high);
36586728
TT
21200 this_cu = dwarf2_per_objfile->all_comp_units[low];
21201 cu_off = &this_cu->offset;
21202 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 21203 {
36586728 21204 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
21205 error (_("Dwarf Error: could not find partial DIE containing "
21206 "offset 0x%lx [in module %s]"),
b64f50a1 21207 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 21208
b64f50a1
JK
21209 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21210 <= offset.sect_off);
ae038cb0
DJ
21211 return dwarf2_per_objfile->all_comp_units[low-1];
21212 }
21213 else
21214 {
21215 this_cu = dwarf2_per_objfile->all_comp_units[low];
21216 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
21217 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21218 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21219 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
21220 return this_cu;
21221 }
21222}
21223
23745b47 21224/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 21225
9816fde3 21226static void
23745b47 21227init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 21228{
9816fde3 21229 memset (cu, 0, sizeof (*cu));
23745b47
DE
21230 per_cu->cu = cu;
21231 cu->per_cu = per_cu;
21232 cu->objfile = per_cu->objfile;
93311388 21233 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
21234}
21235
21236/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21237
21238static void
95554aad
TT
21239prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21240 enum language pretend_language)
9816fde3
JK
21241{
21242 struct attribute *attr;
21243
21244 /* Set the language we're debugging. */
21245 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21246 if (attr)
21247 set_cu_language (DW_UNSND (attr), cu);
21248 else
9cded63f 21249 {
95554aad 21250 cu->language = pretend_language;
9cded63f
TT
21251 cu->language_defn = language_def (cu->language);
21252 }
dee91e82
DE
21253
21254 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21255 if (attr)
21256 cu->producer = DW_STRING (attr);
93311388
DE
21257}
21258
ae038cb0
DJ
21259/* Release one cached compilation unit, CU. We unlink it from the tree
21260 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
21261 the caller is responsible for that.
21262 NOTE: DATA is a void * because this function is also used as a
21263 cleanup routine. */
ae038cb0
DJ
21264
21265static void
68dc6402 21266free_heap_comp_unit (void *data)
ae038cb0
DJ
21267{
21268 struct dwarf2_cu *cu = data;
21269
23745b47
DE
21270 gdb_assert (cu->per_cu != NULL);
21271 cu->per_cu->cu = NULL;
ae038cb0
DJ
21272 cu->per_cu = NULL;
21273
21274 obstack_free (&cu->comp_unit_obstack, NULL);
21275
21276 xfree (cu);
21277}
21278
72bf9492 21279/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 21280 when we're finished with it. We can't free the pointer itself, but be
dee91e82 21281 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
21282
21283static void
21284free_stack_comp_unit (void *data)
21285{
21286 struct dwarf2_cu *cu = data;
21287
23745b47
DE
21288 gdb_assert (cu->per_cu != NULL);
21289 cu->per_cu->cu = NULL;
21290 cu->per_cu = NULL;
21291
72bf9492
DJ
21292 obstack_free (&cu->comp_unit_obstack, NULL);
21293 cu->partial_dies = NULL;
ae038cb0
DJ
21294}
21295
21296/* Free all cached compilation units. */
21297
21298static void
21299free_cached_comp_units (void *data)
21300{
21301 struct dwarf2_per_cu_data *per_cu, **last_chain;
21302
21303 per_cu = dwarf2_per_objfile->read_in_chain;
21304 last_chain = &dwarf2_per_objfile->read_in_chain;
21305 while (per_cu != NULL)
21306 {
21307 struct dwarf2_per_cu_data *next_cu;
21308
21309 next_cu = per_cu->cu->read_in_chain;
21310
68dc6402 21311 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
21312 *last_chain = next_cu;
21313
21314 per_cu = next_cu;
21315 }
21316}
21317
21318/* Increase the age counter on each cached compilation unit, and free
21319 any that are too old. */
21320
21321static void
21322age_cached_comp_units (void)
21323{
21324 struct dwarf2_per_cu_data *per_cu, **last_chain;
21325
21326 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21327 per_cu = dwarf2_per_objfile->read_in_chain;
21328 while (per_cu != NULL)
21329 {
21330 per_cu->cu->last_used ++;
21331 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21332 dwarf2_mark (per_cu->cu);
21333 per_cu = per_cu->cu->read_in_chain;
21334 }
21335
21336 per_cu = dwarf2_per_objfile->read_in_chain;
21337 last_chain = &dwarf2_per_objfile->read_in_chain;
21338 while (per_cu != NULL)
21339 {
21340 struct dwarf2_per_cu_data *next_cu;
21341
21342 next_cu = per_cu->cu->read_in_chain;
21343
21344 if (!per_cu->cu->mark)
21345 {
68dc6402 21346 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
21347 *last_chain = next_cu;
21348 }
21349 else
21350 last_chain = &per_cu->cu->read_in_chain;
21351
21352 per_cu = next_cu;
21353 }
21354}
21355
21356/* Remove a single compilation unit from the cache. */
21357
21358static void
dee91e82 21359free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
21360{
21361 struct dwarf2_per_cu_data *per_cu, **last_chain;
21362
21363 per_cu = dwarf2_per_objfile->read_in_chain;
21364 last_chain = &dwarf2_per_objfile->read_in_chain;
21365 while (per_cu != NULL)
21366 {
21367 struct dwarf2_per_cu_data *next_cu;
21368
21369 next_cu = per_cu->cu->read_in_chain;
21370
dee91e82 21371 if (per_cu == target_per_cu)
ae038cb0 21372 {
68dc6402 21373 free_heap_comp_unit (per_cu->cu);
dee91e82 21374 per_cu->cu = NULL;
ae038cb0
DJ
21375 *last_chain = next_cu;
21376 break;
21377 }
21378 else
21379 last_chain = &per_cu->cu->read_in_chain;
21380
21381 per_cu = next_cu;
21382 }
21383}
21384
fe3e1990
DJ
21385/* Release all extra memory associated with OBJFILE. */
21386
21387void
21388dwarf2_free_objfile (struct objfile *objfile)
21389{
21390 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21391
21392 if (dwarf2_per_objfile == NULL)
21393 return;
21394
21395 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21396 free_cached_comp_units (NULL);
21397
7b9f3c50
DE
21398 if (dwarf2_per_objfile->quick_file_names_table)
21399 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 21400
fe3e1990
DJ
21401 /* Everything else should be on the objfile obstack. */
21402}
21403
dee91e82
DE
21404/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21405 We store these in a hash table separate from the DIEs, and preserve them
21406 when the DIEs are flushed out of cache.
21407
21408 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 21409 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
21410 or the type may come from a DWO file. Furthermore, while it's more logical
21411 to use per_cu->section+offset, with Fission the section with the data is in
21412 the DWO file but we don't know that section at the point we need it.
21413 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21414 because we can enter the lookup routine, get_die_type_at_offset, from
21415 outside this file, and thus won't necessarily have PER_CU->cu.
21416 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 21417
dee91e82 21418struct dwarf2_per_cu_offset_and_type
1c379e20 21419{
dee91e82 21420 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 21421 sect_offset offset;
1c379e20
DJ
21422 struct type *type;
21423};
21424
dee91e82 21425/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
21426
21427static hashval_t
dee91e82 21428per_cu_offset_and_type_hash (const void *item)
1c379e20 21429{
dee91e82 21430 const struct dwarf2_per_cu_offset_and_type *ofs = item;
9a619af0 21431
dee91e82 21432 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
21433}
21434
dee91e82 21435/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
21436
21437static int
dee91e82 21438per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 21439{
dee91e82
DE
21440 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21441 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
9a619af0 21442
dee91e82
DE
21443 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21444 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
21445}
21446
21447/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
21448 table if necessary. For convenience, return TYPE.
21449
21450 The DIEs reading must have careful ordering to:
21451 * Not cause infite loops trying to read in DIEs as a prerequisite for
21452 reading current DIE.
21453 * Not trying to dereference contents of still incompletely read in types
21454 while reading in other DIEs.
21455 * Enable referencing still incompletely read in types just by a pointer to
21456 the type without accessing its fields.
21457
21458 Therefore caller should follow these rules:
21459 * Try to fetch any prerequisite types we may need to build this DIE type
21460 before building the type and calling set_die_type.
e71ec853 21461 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
21462 possible before fetching more types to complete the current type.
21463 * Make the type as complete as possible before fetching more types. */
1c379e20 21464
f792889a 21465static struct type *
1c379e20
DJ
21466set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21467{
dee91e82 21468 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 21469 struct objfile *objfile = cu->objfile;
1c379e20 21470
b4ba55a1
JB
21471 /* For Ada types, make sure that the gnat-specific data is always
21472 initialized (if not already set). There are a few types where
21473 we should not be doing so, because the type-specific area is
21474 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21475 where the type-specific area is used to store the floatformat).
21476 But this is not a problem, because the gnat-specific information
21477 is actually not needed for these types. */
21478 if (need_gnat_info (cu)
21479 && TYPE_CODE (type) != TYPE_CODE_FUNC
21480 && TYPE_CODE (type) != TYPE_CODE_FLT
21481 && !HAVE_GNAT_AUX_INFO (type))
21482 INIT_GNAT_SPECIFIC (type);
21483
dee91e82 21484 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 21485 {
dee91e82
DE
21486 dwarf2_per_objfile->die_type_hash =
21487 htab_create_alloc_ex (127,
21488 per_cu_offset_and_type_hash,
21489 per_cu_offset_and_type_eq,
21490 NULL,
21491 &objfile->objfile_obstack,
21492 hashtab_obstack_allocate,
21493 dummy_obstack_deallocate);
f792889a 21494 }
1c379e20 21495
dee91e82 21496 ofs.per_cu = cu->per_cu;
1c379e20
DJ
21497 ofs.offset = die->offset;
21498 ofs.type = type;
dee91e82
DE
21499 slot = (struct dwarf2_per_cu_offset_and_type **)
21500 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
21501 if (*slot)
21502 complaint (&symfile_complaints,
21503 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 21504 die->offset.sect_off);
673bfd45 21505 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 21506 **slot = ofs;
f792889a 21507 return type;
1c379e20
DJ
21508}
21509
02142a6c
DE
21510/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21511 or return NULL if the die does not have a saved type. */
1c379e20
DJ
21512
21513static struct type *
b64f50a1 21514get_die_type_at_offset (sect_offset offset,
673bfd45 21515 struct dwarf2_per_cu_data *per_cu)
1c379e20 21516{
dee91e82 21517 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 21518
dee91e82 21519 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 21520 return NULL;
1c379e20 21521
dee91e82 21522 ofs.per_cu = per_cu;
673bfd45 21523 ofs.offset = offset;
dee91e82 21524 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
1c379e20
DJ
21525 if (slot)
21526 return slot->type;
21527 else
21528 return NULL;
21529}
21530
02142a6c 21531/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
21532 or return NULL if DIE does not have a saved type. */
21533
21534static struct type *
21535get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21536{
21537 return get_die_type_at_offset (die->offset, cu->per_cu);
21538}
21539
10b3939b
DJ
21540/* Add a dependence relationship from CU to REF_PER_CU. */
21541
21542static void
21543dwarf2_add_dependence (struct dwarf2_cu *cu,
21544 struct dwarf2_per_cu_data *ref_per_cu)
21545{
21546 void **slot;
21547
21548 if (cu->dependencies == NULL)
21549 cu->dependencies
21550 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21551 NULL, &cu->comp_unit_obstack,
21552 hashtab_obstack_allocate,
21553 dummy_obstack_deallocate);
21554
21555 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21556 if (*slot == NULL)
21557 *slot = ref_per_cu;
21558}
1c379e20 21559
f504f079
DE
21560/* Subroutine of dwarf2_mark to pass to htab_traverse.
21561 Set the mark field in every compilation unit in the
ae038cb0
DJ
21562 cache that we must keep because we are keeping CU. */
21563
10b3939b
DJ
21564static int
21565dwarf2_mark_helper (void **slot, void *data)
21566{
21567 struct dwarf2_per_cu_data *per_cu;
21568
21569 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
21570
21571 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21572 reading of the chain. As such dependencies remain valid it is not much
21573 useful to track and undo them during QUIT cleanups. */
21574 if (per_cu->cu == NULL)
21575 return 1;
21576
10b3939b
DJ
21577 if (per_cu->cu->mark)
21578 return 1;
21579 per_cu->cu->mark = 1;
21580
21581 if (per_cu->cu->dependencies != NULL)
21582 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21583
21584 return 1;
21585}
21586
f504f079
DE
21587/* Set the mark field in CU and in every other compilation unit in the
21588 cache that we must keep because we are keeping CU. */
21589
ae038cb0
DJ
21590static void
21591dwarf2_mark (struct dwarf2_cu *cu)
21592{
21593 if (cu->mark)
21594 return;
21595 cu->mark = 1;
10b3939b
DJ
21596 if (cu->dependencies != NULL)
21597 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
21598}
21599
21600static void
21601dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21602{
21603 while (per_cu)
21604 {
21605 per_cu->cu->mark = 0;
21606 per_cu = per_cu->cu->read_in_chain;
21607 }
72bf9492
DJ
21608}
21609
72bf9492
DJ
21610/* Trivial hash function for partial_die_info: the hash value of a DIE
21611 is its offset in .debug_info for this objfile. */
21612
21613static hashval_t
21614partial_die_hash (const void *item)
21615{
21616 const struct partial_die_info *part_die = item;
9a619af0 21617
b64f50a1 21618 return part_die->offset.sect_off;
72bf9492
DJ
21619}
21620
21621/* Trivial comparison function for partial_die_info structures: two DIEs
21622 are equal if they have the same offset. */
21623
21624static int
21625partial_die_eq (const void *item_lhs, const void *item_rhs)
21626{
21627 const struct partial_die_info *part_die_lhs = item_lhs;
21628 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 21629
b64f50a1 21630 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
21631}
21632
ae038cb0
DJ
21633static struct cmd_list_element *set_dwarf2_cmdlist;
21634static struct cmd_list_element *show_dwarf2_cmdlist;
21635
21636static void
21637set_dwarf2_cmd (char *args, int from_tty)
21638{
21639 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
21640}
21641
21642static void
21643show_dwarf2_cmd (char *args, int from_tty)
6e70227d 21644{
ae038cb0
DJ
21645 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
21646}
21647
4bf44c1c 21648/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
21649
21650static void
c1bd65d0 21651dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
21652{
21653 struct dwarf2_per_objfile *data = d;
8b70b953 21654 int ix;
8b70b953 21655
626f2d1c
TT
21656 /* Make sure we don't accidentally use dwarf2_per_objfile while
21657 cleaning up. */
21658 dwarf2_per_objfile = NULL;
21659
59b0c7c1
JB
21660 for (ix = 0; ix < data->n_comp_units; ++ix)
21661 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 21662
59b0c7c1 21663 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 21664 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
21665 data->all_type_units[ix]->per_cu.imported_symtabs);
21666 xfree (data->all_type_units);
95554aad 21667
8b70b953 21668 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
21669
21670 if (data->dwo_files)
21671 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
21672 if (data->dwp_file)
21673 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
21674
21675 if (data->dwz_file && data->dwz_file->dwz_bfd)
21676 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
21677}
21678
21679\f
ae2de4f8 21680/* The "save gdb-index" command. */
9291a0cd
TT
21681
21682/* The contents of the hash table we create when building the string
21683 table. */
21684struct strtab_entry
21685{
21686 offset_type offset;
21687 const char *str;
21688};
21689
559a7a62
JK
21690/* Hash function for a strtab_entry.
21691
21692 Function is used only during write_hash_table so no index format backward
21693 compatibility is needed. */
b89be57b 21694
9291a0cd
TT
21695static hashval_t
21696hash_strtab_entry (const void *e)
21697{
21698 const struct strtab_entry *entry = e;
559a7a62 21699 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
21700}
21701
21702/* Equality function for a strtab_entry. */
b89be57b 21703
9291a0cd
TT
21704static int
21705eq_strtab_entry (const void *a, const void *b)
21706{
21707 const struct strtab_entry *ea = a;
21708 const struct strtab_entry *eb = b;
21709 return !strcmp (ea->str, eb->str);
21710}
21711
21712/* Create a strtab_entry hash table. */
b89be57b 21713
9291a0cd
TT
21714static htab_t
21715create_strtab (void)
21716{
21717 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
21718 xfree, xcalloc, xfree);
21719}
21720
21721/* Add a string to the constant pool. Return the string's offset in
21722 host order. */
b89be57b 21723
9291a0cd
TT
21724static offset_type
21725add_string (htab_t table, struct obstack *cpool, const char *str)
21726{
21727 void **slot;
21728 struct strtab_entry entry;
21729 struct strtab_entry *result;
21730
21731 entry.str = str;
21732 slot = htab_find_slot (table, &entry, INSERT);
21733 if (*slot)
21734 result = *slot;
21735 else
21736 {
21737 result = XNEW (struct strtab_entry);
21738 result->offset = obstack_object_size (cpool);
21739 result->str = str;
21740 obstack_grow_str0 (cpool, str);
21741 *slot = result;
21742 }
21743 return result->offset;
21744}
21745
21746/* An entry in the symbol table. */
21747struct symtab_index_entry
21748{
21749 /* The name of the symbol. */
21750 const char *name;
21751 /* The offset of the name in the constant pool. */
21752 offset_type index_offset;
21753 /* A sorted vector of the indices of all the CUs that hold an object
21754 of this name. */
21755 VEC (offset_type) *cu_indices;
21756};
21757
21758/* The symbol table. This is a power-of-2-sized hash table. */
21759struct mapped_symtab
21760{
21761 offset_type n_elements;
21762 offset_type size;
21763 struct symtab_index_entry **data;
21764};
21765
21766/* Hash function for a symtab_index_entry. */
b89be57b 21767
9291a0cd
TT
21768static hashval_t
21769hash_symtab_entry (const void *e)
21770{
21771 const struct symtab_index_entry *entry = e;
21772 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
21773 sizeof (offset_type) * VEC_length (offset_type,
21774 entry->cu_indices),
21775 0);
21776}
21777
21778/* Equality function for a symtab_index_entry. */
b89be57b 21779
9291a0cd
TT
21780static int
21781eq_symtab_entry (const void *a, const void *b)
21782{
21783 const struct symtab_index_entry *ea = a;
21784 const struct symtab_index_entry *eb = b;
21785 int len = VEC_length (offset_type, ea->cu_indices);
21786 if (len != VEC_length (offset_type, eb->cu_indices))
21787 return 0;
21788 return !memcmp (VEC_address (offset_type, ea->cu_indices),
21789 VEC_address (offset_type, eb->cu_indices),
21790 sizeof (offset_type) * len);
21791}
21792
21793/* Destroy a symtab_index_entry. */
b89be57b 21794
9291a0cd
TT
21795static void
21796delete_symtab_entry (void *p)
21797{
21798 struct symtab_index_entry *entry = p;
21799 VEC_free (offset_type, entry->cu_indices);
21800 xfree (entry);
21801}
21802
21803/* Create a hash table holding symtab_index_entry objects. */
b89be57b 21804
9291a0cd 21805static htab_t
3876f04e 21806create_symbol_hash_table (void)
9291a0cd
TT
21807{
21808 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
21809 delete_symtab_entry, xcalloc, xfree);
21810}
21811
21812/* Create a new mapped symtab object. */
b89be57b 21813
9291a0cd
TT
21814static struct mapped_symtab *
21815create_mapped_symtab (void)
21816{
21817 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
21818 symtab->n_elements = 0;
21819 symtab->size = 1024;
21820 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21821 return symtab;
21822}
21823
21824/* Destroy a mapped_symtab. */
b89be57b 21825
9291a0cd
TT
21826static void
21827cleanup_mapped_symtab (void *p)
21828{
21829 struct mapped_symtab *symtab = p;
21830 /* The contents of the array are freed when the other hash table is
21831 destroyed. */
21832 xfree (symtab->data);
21833 xfree (symtab);
21834}
21835
21836/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
21837 the slot.
21838
21839 Function is used only during write_hash_table so no index format backward
21840 compatibility is needed. */
b89be57b 21841
9291a0cd
TT
21842static struct symtab_index_entry **
21843find_slot (struct mapped_symtab *symtab, const char *name)
21844{
559a7a62 21845 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
21846
21847 index = hash & (symtab->size - 1);
21848 step = ((hash * 17) & (symtab->size - 1)) | 1;
21849
21850 for (;;)
21851 {
21852 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
21853 return &symtab->data[index];
21854 index = (index + step) & (symtab->size - 1);
21855 }
21856}
21857
21858/* Expand SYMTAB's hash table. */
b89be57b 21859
9291a0cd
TT
21860static void
21861hash_expand (struct mapped_symtab *symtab)
21862{
21863 offset_type old_size = symtab->size;
21864 offset_type i;
21865 struct symtab_index_entry **old_entries = symtab->data;
21866
21867 symtab->size *= 2;
21868 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
21869
21870 for (i = 0; i < old_size; ++i)
21871 {
21872 if (old_entries[i])
21873 {
21874 struct symtab_index_entry **slot = find_slot (symtab,
21875 old_entries[i]->name);
21876 *slot = old_entries[i];
21877 }
21878 }
21879
21880 xfree (old_entries);
21881}
21882
156942c7
DE
21883/* Add an entry to SYMTAB. NAME is the name of the symbol.
21884 CU_INDEX is the index of the CU in which the symbol appears.
21885 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 21886
9291a0cd
TT
21887static void
21888add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 21889 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
21890 offset_type cu_index)
21891{
21892 struct symtab_index_entry **slot;
156942c7 21893 offset_type cu_index_and_attrs;
9291a0cd
TT
21894
21895 ++symtab->n_elements;
21896 if (4 * symtab->n_elements / 3 >= symtab->size)
21897 hash_expand (symtab);
21898
21899 slot = find_slot (symtab, name);
21900 if (!*slot)
21901 {
21902 *slot = XNEW (struct symtab_index_entry);
21903 (*slot)->name = name;
156942c7 21904 /* index_offset is set later. */
9291a0cd
TT
21905 (*slot)->cu_indices = NULL;
21906 }
156942c7
DE
21907
21908 cu_index_and_attrs = 0;
21909 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
21910 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
21911 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
21912
21913 /* We don't want to record an index value twice as we want to avoid the
21914 duplication.
21915 We process all global symbols and then all static symbols
21916 (which would allow us to avoid the duplication by only having to check
21917 the last entry pushed), but a symbol could have multiple kinds in one CU.
21918 To keep things simple we don't worry about the duplication here and
21919 sort and uniqufy the list after we've processed all symbols. */
21920 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
21921}
21922
21923/* qsort helper routine for uniquify_cu_indices. */
21924
21925static int
21926offset_type_compare (const void *ap, const void *bp)
21927{
21928 offset_type a = *(offset_type *) ap;
21929 offset_type b = *(offset_type *) bp;
21930
21931 return (a > b) - (b > a);
21932}
21933
21934/* Sort and remove duplicates of all symbols' cu_indices lists. */
21935
21936static void
21937uniquify_cu_indices (struct mapped_symtab *symtab)
21938{
21939 int i;
21940
21941 for (i = 0; i < symtab->size; ++i)
21942 {
21943 struct symtab_index_entry *entry = symtab->data[i];
21944
21945 if (entry
21946 && entry->cu_indices != NULL)
21947 {
21948 unsigned int next_to_insert, next_to_check;
21949 offset_type last_value;
21950
21951 qsort (VEC_address (offset_type, entry->cu_indices),
21952 VEC_length (offset_type, entry->cu_indices),
21953 sizeof (offset_type), offset_type_compare);
21954
21955 last_value = VEC_index (offset_type, entry->cu_indices, 0);
21956 next_to_insert = 1;
21957 for (next_to_check = 1;
21958 next_to_check < VEC_length (offset_type, entry->cu_indices);
21959 ++next_to_check)
21960 {
21961 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
21962 != last_value)
21963 {
21964 last_value = VEC_index (offset_type, entry->cu_indices,
21965 next_to_check);
21966 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
21967 last_value);
21968 ++next_to_insert;
21969 }
21970 }
21971 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
21972 }
21973 }
9291a0cd
TT
21974}
21975
21976/* Add a vector of indices to the constant pool. */
b89be57b 21977
9291a0cd 21978static offset_type
3876f04e 21979add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
21980 struct symtab_index_entry *entry)
21981{
21982 void **slot;
21983
3876f04e 21984 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
21985 if (!*slot)
21986 {
21987 offset_type len = VEC_length (offset_type, entry->cu_indices);
21988 offset_type val = MAYBE_SWAP (len);
21989 offset_type iter;
21990 int i;
21991
21992 *slot = entry;
21993 entry->index_offset = obstack_object_size (cpool);
21994
21995 obstack_grow (cpool, &val, sizeof (val));
21996 for (i = 0;
21997 VEC_iterate (offset_type, entry->cu_indices, i, iter);
21998 ++i)
21999 {
22000 val = MAYBE_SWAP (iter);
22001 obstack_grow (cpool, &val, sizeof (val));
22002 }
22003 }
22004 else
22005 {
22006 struct symtab_index_entry *old_entry = *slot;
22007 entry->index_offset = old_entry->index_offset;
22008 entry = old_entry;
22009 }
22010 return entry->index_offset;
22011}
22012
22013/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22014 constant pool entries going into the obstack CPOOL. */
b89be57b 22015
9291a0cd
TT
22016static void
22017write_hash_table (struct mapped_symtab *symtab,
22018 struct obstack *output, struct obstack *cpool)
22019{
22020 offset_type i;
3876f04e 22021 htab_t symbol_hash_table;
9291a0cd
TT
22022 htab_t str_table;
22023
3876f04e 22024 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 22025 str_table = create_strtab ();
3876f04e 22026
9291a0cd
TT
22027 /* We add all the index vectors to the constant pool first, to
22028 ensure alignment is ok. */
22029 for (i = 0; i < symtab->size; ++i)
22030 {
22031 if (symtab->data[i])
3876f04e 22032 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
22033 }
22034
22035 /* Now write out the hash table. */
22036 for (i = 0; i < symtab->size; ++i)
22037 {
22038 offset_type str_off, vec_off;
22039
22040 if (symtab->data[i])
22041 {
22042 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22043 vec_off = symtab->data[i]->index_offset;
22044 }
22045 else
22046 {
22047 /* While 0 is a valid constant pool index, it is not valid
22048 to have 0 for both offsets. */
22049 str_off = 0;
22050 vec_off = 0;
22051 }
22052
22053 str_off = MAYBE_SWAP (str_off);
22054 vec_off = MAYBE_SWAP (vec_off);
22055
22056 obstack_grow (output, &str_off, sizeof (str_off));
22057 obstack_grow (output, &vec_off, sizeof (vec_off));
22058 }
22059
22060 htab_delete (str_table);
3876f04e 22061 htab_delete (symbol_hash_table);
9291a0cd
TT
22062}
22063
0a5429f6
DE
22064/* Struct to map psymtab to CU index in the index file. */
22065struct psymtab_cu_index_map
22066{
22067 struct partial_symtab *psymtab;
22068 unsigned int cu_index;
22069};
22070
22071static hashval_t
22072hash_psymtab_cu_index (const void *item)
22073{
22074 const struct psymtab_cu_index_map *map = item;
22075
22076 return htab_hash_pointer (map->psymtab);
22077}
22078
22079static int
22080eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22081{
22082 const struct psymtab_cu_index_map *lhs = item_lhs;
22083 const struct psymtab_cu_index_map *rhs = item_rhs;
22084
22085 return lhs->psymtab == rhs->psymtab;
22086}
22087
22088/* Helper struct for building the address table. */
22089struct addrmap_index_data
22090{
22091 struct objfile *objfile;
22092 struct obstack *addr_obstack;
22093 htab_t cu_index_htab;
22094
22095 /* Non-zero if the previous_* fields are valid.
22096 We can't write an entry until we see the next entry (since it is only then
22097 that we know the end of the entry). */
22098 int previous_valid;
22099 /* Index of the CU in the table of all CUs in the index file. */
22100 unsigned int previous_cu_index;
0963b4bd 22101 /* Start address of the CU. */
0a5429f6
DE
22102 CORE_ADDR previous_cu_start;
22103};
22104
22105/* Write an address entry to OBSTACK. */
b89be57b 22106
9291a0cd 22107static void
0a5429f6
DE
22108add_address_entry (struct objfile *objfile, struct obstack *obstack,
22109 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 22110{
0a5429f6 22111 offset_type cu_index_to_write;
948f8e3d 22112 gdb_byte addr[8];
9291a0cd
TT
22113 CORE_ADDR baseaddr;
22114
22115 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22116
0a5429f6
DE
22117 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22118 obstack_grow (obstack, addr, 8);
22119 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22120 obstack_grow (obstack, addr, 8);
22121 cu_index_to_write = MAYBE_SWAP (cu_index);
22122 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22123}
22124
22125/* Worker function for traversing an addrmap to build the address table. */
22126
22127static int
22128add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22129{
22130 struct addrmap_index_data *data = datap;
22131 struct partial_symtab *pst = obj;
0a5429f6
DE
22132
22133 if (data->previous_valid)
22134 add_address_entry (data->objfile, data->addr_obstack,
22135 data->previous_cu_start, start_addr,
22136 data->previous_cu_index);
22137
22138 data->previous_cu_start = start_addr;
22139 if (pst != NULL)
22140 {
22141 struct psymtab_cu_index_map find_map, *map;
22142 find_map.psymtab = pst;
22143 map = htab_find (data->cu_index_htab, &find_map);
22144 gdb_assert (map != NULL);
22145 data->previous_cu_index = map->cu_index;
22146 data->previous_valid = 1;
22147 }
22148 else
22149 data->previous_valid = 0;
22150
22151 return 0;
22152}
22153
22154/* Write OBJFILE's address map to OBSTACK.
22155 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22156 in the index file. */
22157
22158static void
22159write_address_map (struct objfile *objfile, struct obstack *obstack,
22160 htab_t cu_index_htab)
22161{
22162 struct addrmap_index_data addrmap_index_data;
22163
22164 /* When writing the address table, we have to cope with the fact that
22165 the addrmap iterator only provides the start of a region; we have to
22166 wait until the next invocation to get the start of the next region. */
22167
22168 addrmap_index_data.objfile = objfile;
22169 addrmap_index_data.addr_obstack = obstack;
22170 addrmap_index_data.cu_index_htab = cu_index_htab;
22171 addrmap_index_data.previous_valid = 0;
22172
22173 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22174 &addrmap_index_data);
22175
22176 /* It's highly unlikely the last entry (end address = 0xff...ff)
22177 is valid, but we should still handle it.
22178 The end address is recorded as the start of the next region, but that
22179 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22180 anyway. */
22181 if (addrmap_index_data.previous_valid)
22182 add_address_entry (objfile, obstack,
22183 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22184 addrmap_index_data.previous_cu_index);
9291a0cd
TT
22185}
22186
156942c7
DE
22187/* Return the symbol kind of PSYM. */
22188
22189static gdb_index_symbol_kind
22190symbol_kind (struct partial_symbol *psym)
22191{
22192 domain_enum domain = PSYMBOL_DOMAIN (psym);
22193 enum address_class aclass = PSYMBOL_CLASS (psym);
22194
22195 switch (domain)
22196 {
22197 case VAR_DOMAIN:
22198 switch (aclass)
22199 {
22200 case LOC_BLOCK:
22201 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22202 case LOC_TYPEDEF:
22203 return GDB_INDEX_SYMBOL_KIND_TYPE;
22204 case LOC_COMPUTED:
22205 case LOC_CONST_BYTES:
22206 case LOC_OPTIMIZED_OUT:
22207 case LOC_STATIC:
22208 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22209 case LOC_CONST:
22210 /* Note: It's currently impossible to recognize psyms as enum values
22211 short of reading the type info. For now punt. */
22212 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22213 default:
22214 /* There are other LOC_FOO values that one might want to classify
22215 as variables, but dwarf2read.c doesn't currently use them. */
22216 return GDB_INDEX_SYMBOL_KIND_OTHER;
22217 }
22218 case STRUCT_DOMAIN:
22219 return GDB_INDEX_SYMBOL_KIND_TYPE;
22220 default:
22221 return GDB_INDEX_SYMBOL_KIND_OTHER;
22222 }
22223}
22224
9291a0cd 22225/* Add a list of partial symbols to SYMTAB. */
b89be57b 22226
9291a0cd
TT
22227static void
22228write_psymbols (struct mapped_symtab *symtab,
987d643c 22229 htab_t psyms_seen,
9291a0cd
TT
22230 struct partial_symbol **psymp,
22231 int count,
987d643c
TT
22232 offset_type cu_index,
22233 int is_static)
9291a0cd
TT
22234{
22235 for (; count-- > 0; ++psymp)
22236 {
156942c7
DE
22237 struct partial_symbol *psym = *psymp;
22238 void **slot;
987d643c 22239
156942c7 22240 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 22241 error (_("Ada is not currently supported by the index"));
987d643c 22242
987d643c 22243 /* Only add a given psymbol once. */
156942c7 22244 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
22245 if (!*slot)
22246 {
156942c7
DE
22247 gdb_index_symbol_kind kind = symbol_kind (psym);
22248
22249 *slot = psym;
22250 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22251 is_static, kind, cu_index);
987d643c 22252 }
9291a0cd
TT
22253 }
22254}
22255
22256/* Write the contents of an ("unfinished") obstack to FILE. Throw an
22257 exception if there is an error. */
b89be57b 22258
9291a0cd
TT
22259static void
22260write_obstack (FILE *file, struct obstack *obstack)
22261{
22262 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22263 file)
22264 != obstack_object_size (obstack))
22265 error (_("couldn't data write to file"));
22266}
22267
22268/* Unlink a file if the argument is not NULL. */
b89be57b 22269
9291a0cd
TT
22270static void
22271unlink_if_set (void *p)
22272{
22273 char **filename = p;
22274 if (*filename)
22275 unlink (*filename);
22276}
22277
1fd400ff
TT
22278/* A helper struct used when iterating over debug_types. */
22279struct signatured_type_index_data
22280{
22281 struct objfile *objfile;
22282 struct mapped_symtab *symtab;
22283 struct obstack *types_list;
987d643c 22284 htab_t psyms_seen;
1fd400ff
TT
22285 int cu_index;
22286};
22287
22288/* A helper function that writes a single signatured_type to an
22289 obstack. */
b89be57b 22290
1fd400ff
TT
22291static int
22292write_one_signatured_type (void **slot, void *d)
22293{
22294 struct signatured_type_index_data *info = d;
22295 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 22296 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
22297 gdb_byte val[8];
22298
22299 write_psymbols (info->symtab,
987d643c 22300 info->psyms_seen,
3e43a32a
MS
22301 info->objfile->global_psymbols.list
22302 + psymtab->globals_offset,
987d643c
TT
22303 psymtab->n_global_syms, info->cu_index,
22304 0);
1fd400ff 22305 write_psymbols (info->symtab,
987d643c 22306 info->psyms_seen,
3e43a32a
MS
22307 info->objfile->static_psymbols.list
22308 + psymtab->statics_offset,
987d643c
TT
22309 psymtab->n_static_syms, info->cu_index,
22310 1);
1fd400ff 22311
b64f50a1
JK
22312 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22313 entry->per_cu.offset.sect_off);
1fd400ff 22314 obstack_grow (info->types_list, val, 8);
3019eac3
DE
22315 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22316 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
22317 obstack_grow (info->types_list, val, 8);
22318 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22319 obstack_grow (info->types_list, val, 8);
22320
22321 ++info->cu_index;
22322
22323 return 1;
22324}
22325
95554aad
TT
22326/* Recurse into all "included" dependencies and write their symbols as
22327 if they appeared in this psymtab. */
22328
22329static void
22330recursively_write_psymbols (struct objfile *objfile,
22331 struct partial_symtab *psymtab,
22332 struct mapped_symtab *symtab,
22333 htab_t psyms_seen,
22334 offset_type cu_index)
22335{
22336 int i;
22337
22338 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22339 if (psymtab->dependencies[i]->user != NULL)
22340 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22341 symtab, psyms_seen, cu_index);
22342
22343 write_psymbols (symtab,
22344 psyms_seen,
22345 objfile->global_psymbols.list + psymtab->globals_offset,
22346 psymtab->n_global_syms, cu_index,
22347 0);
22348 write_psymbols (symtab,
22349 psyms_seen,
22350 objfile->static_psymbols.list + psymtab->statics_offset,
22351 psymtab->n_static_syms, cu_index,
22352 1);
22353}
22354
9291a0cd 22355/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 22356
9291a0cd
TT
22357static void
22358write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22359{
22360 struct cleanup *cleanup;
22361 char *filename, *cleanup_filename;
1fd400ff
TT
22362 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22363 struct obstack cu_list, types_cu_list;
9291a0cd
TT
22364 int i;
22365 FILE *out_file;
22366 struct mapped_symtab *symtab;
22367 offset_type val, size_of_contents, total_len;
22368 struct stat st;
987d643c 22369 htab_t psyms_seen;
0a5429f6
DE
22370 htab_t cu_index_htab;
22371 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 22372
9291a0cd
TT
22373 if (dwarf2_per_objfile->using_index)
22374 error (_("Cannot use an index to create the index"));
22375
8b70b953
TT
22376 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22377 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22378
260b681b
DE
22379 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22380 return;
22381
4262abfb
JK
22382 if (stat (objfile_name (objfile), &st) < 0)
22383 perror_with_name (objfile_name (objfile));
9291a0cd 22384
4262abfb 22385 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
22386 INDEX_SUFFIX, (char *) NULL);
22387 cleanup = make_cleanup (xfree, filename);
22388
614c279d 22389 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
22390 if (!out_file)
22391 error (_("Can't open `%s' for writing"), filename);
22392
22393 cleanup_filename = filename;
22394 make_cleanup (unlink_if_set, &cleanup_filename);
22395
22396 symtab = create_mapped_symtab ();
22397 make_cleanup (cleanup_mapped_symtab, symtab);
22398
22399 obstack_init (&addr_obstack);
22400 make_cleanup_obstack_free (&addr_obstack);
22401
22402 obstack_init (&cu_list);
22403 make_cleanup_obstack_free (&cu_list);
22404
1fd400ff
TT
22405 obstack_init (&types_cu_list);
22406 make_cleanup_obstack_free (&types_cu_list);
22407
987d643c
TT
22408 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22409 NULL, xcalloc, xfree);
96408a79 22410 make_cleanup_htab_delete (psyms_seen);
987d643c 22411
0a5429f6
DE
22412 /* While we're scanning CU's create a table that maps a psymtab pointer
22413 (which is what addrmap records) to its index (which is what is recorded
22414 in the index file). This will later be needed to write the address
22415 table. */
22416 cu_index_htab = htab_create_alloc (100,
22417 hash_psymtab_cu_index,
22418 eq_psymtab_cu_index,
22419 NULL, xcalloc, xfree);
96408a79 22420 make_cleanup_htab_delete (cu_index_htab);
0a5429f6
DE
22421 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22422 xmalloc (sizeof (struct psymtab_cu_index_map)
22423 * dwarf2_per_objfile->n_comp_units);
22424 make_cleanup (xfree, psymtab_cu_index_map);
22425
22426 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
22427 work here. Also, the debug_types entries do not appear in
22428 all_comp_units, but only in their own hash table. */
9291a0cd
TT
22429 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22430 {
3e43a32a
MS
22431 struct dwarf2_per_cu_data *per_cu
22432 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 22433 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 22434 gdb_byte val[8];
0a5429f6
DE
22435 struct psymtab_cu_index_map *map;
22436 void **slot;
9291a0cd 22437
92fac807
JK
22438 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22439 It may be referenced from a local scope but in such case it does not
22440 need to be present in .gdb_index. */
22441 if (psymtab == NULL)
22442 continue;
22443
95554aad
TT
22444 if (psymtab->user == NULL)
22445 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 22446
0a5429f6
DE
22447 map = &psymtab_cu_index_map[i];
22448 map->psymtab = psymtab;
22449 map->cu_index = i;
22450 slot = htab_find_slot (cu_index_htab, map, INSERT);
22451 gdb_assert (slot != NULL);
22452 gdb_assert (*slot == NULL);
22453 *slot = map;
9291a0cd 22454
b64f50a1
JK
22455 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22456 per_cu->offset.sect_off);
9291a0cd 22457 obstack_grow (&cu_list, val, 8);
e254ef6a 22458 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
22459 obstack_grow (&cu_list, val, 8);
22460 }
22461
0a5429f6
DE
22462 /* Dump the address map. */
22463 write_address_map (objfile, &addr_obstack, cu_index_htab);
22464
1fd400ff
TT
22465 /* Write out the .debug_type entries, if any. */
22466 if (dwarf2_per_objfile->signatured_types)
22467 {
22468 struct signatured_type_index_data sig_data;
22469
22470 sig_data.objfile = objfile;
22471 sig_data.symtab = symtab;
22472 sig_data.types_list = &types_cu_list;
987d643c 22473 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
22474 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22475 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22476 write_one_signatured_type, &sig_data);
22477 }
22478
156942c7
DE
22479 /* Now that we've processed all symbols we can shrink their cu_indices
22480 lists. */
22481 uniquify_cu_indices (symtab);
22482
9291a0cd
TT
22483 obstack_init (&constant_pool);
22484 make_cleanup_obstack_free (&constant_pool);
22485 obstack_init (&symtab_obstack);
22486 make_cleanup_obstack_free (&symtab_obstack);
22487 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22488
22489 obstack_init (&contents);
22490 make_cleanup_obstack_free (&contents);
1fd400ff 22491 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
22492 total_len = size_of_contents;
22493
22494 /* The version number. */
796a7ff8 22495 val = MAYBE_SWAP (8);
9291a0cd
TT
22496 obstack_grow (&contents, &val, sizeof (val));
22497
22498 /* The offset of the CU list from the start of the file. */
22499 val = MAYBE_SWAP (total_len);
22500 obstack_grow (&contents, &val, sizeof (val));
22501 total_len += obstack_object_size (&cu_list);
22502
1fd400ff
TT
22503 /* The offset of the types CU list from the start of the file. */
22504 val = MAYBE_SWAP (total_len);
22505 obstack_grow (&contents, &val, sizeof (val));
22506 total_len += obstack_object_size (&types_cu_list);
22507
9291a0cd
TT
22508 /* The offset of the address table from the start of the file. */
22509 val = MAYBE_SWAP (total_len);
22510 obstack_grow (&contents, &val, sizeof (val));
22511 total_len += obstack_object_size (&addr_obstack);
22512
22513 /* The offset of the symbol table from the start of the file. */
22514 val = MAYBE_SWAP (total_len);
22515 obstack_grow (&contents, &val, sizeof (val));
22516 total_len += obstack_object_size (&symtab_obstack);
22517
22518 /* The offset of the constant pool from the start of the file. */
22519 val = MAYBE_SWAP (total_len);
22520 obstack_grow (&contents, &val, sizeof (val));
22521 total_len += obstack_object_size (&constant_pool);
22522
22523 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22524
22525 write_obstack (out_file, &contents);
22526 write_obstack (out_file, &cu_list);
1fd400ff 22527 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
22528 write_obstack (out_file, &addr_obstack);
22529 write_obstack (out_file, &symtab_obstack);
22530 write_obstack (out_file, &constant_pool);
22531
22532 fclose (out_file);
22533
22534 /* We want to keep the file, so we set cleanup_filename to NULL
22535 here. See unlink_if_set. */
22536 cleanup_filename = NULL;
22537
22538 do_cleanups (cleanup);
22539}
22540
90476074
TT
22541/* Implementation of the `save gdb-index' command.
22542
22543 Note that the file format used by this command is documented in the
22544 GDB manual. Any changes here must be documented there. */
11570e71 22545
9291a0cd
TT
22546static void
22547save_gdb_index_command (char *arg, int from_tty)
22548{
22549 struct objfile *objfile;
22550
22551 if (!arg || !*arg)
96d19272 22552 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
22553
22554 ALL_OBJFILES (objfile)
22555 {
22556 struct stat st;
22557
22558 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 22559 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
22560 continue;
22561
22562 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22563 if (dwarf2_per_objfile)
22564 {
22565 volatile struct gdb_exception except;
22566
22567 TRY_CATCH (except, RETURN_MASK_ERROR)
22568 {
22569 write_psymtabs_to_index (objfile, arg);
22570 }
22571 if (except.reason < 0)
22572 exception_fprintf (gdb_stderr, except,
22573 _("Error while writing index for `%s': "),
4262abfb 22574 objfile_name (objfile));
9291a0cd
TT
22575 }
22576 }
dce234bc
PP
22577}
22578
9291a0cd
TT
22579\f
22580
9eae7c52
TT
22581int dwarf2_always_disassemble;
22582
22583static void
22584show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22585 struct cmd_list_element *c, const char *value)
22586{
3e43a32a
MS
22587 fprintf_filtered (file,
22588 _("Whether to always disassemble "
22589 "DWARF expressions is %s.\n"),
9eae7c52
TT
22590 value);
22591}
22592
900e11f9
JK
22593static void
22594show_check_physname (struct ui_file *file, int from_tty,
22595 struct cmd_list_element *c, const char *value)
22596{
22597 fprintf_filtered (file,
22598 _("Whether to check \"physname\" is %s.\n"),
22599 value);
22600}
22601
6502dd73
DJ
22602void _initialize_dwarf2_read (void);
22603
22604void
22605_initialize_dwarf2_read (void)
22606{
96d19272
JK
22607 struct cmd_list_element *c;
22608
dce234bc 22609 dwarf2_objfile_data_key
c1bd65d0 22610 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 22611
1bedd215
AC
22612 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22613Set DWARF 2 specific variables.\n\
22614Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
22615 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
22616 0/*allow-unknown*/, &maintenance_set_cmdlist);
22617
1bedd215
AC
22618 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
22619Show DWARF 2 specific variables\n\
22620Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
22621 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
22622 0/*allow-unknown*/, &maintenance_show_cmdlist);
22623
22624 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
22625 &dwarf2_max_cache_age, _("\
22626Set the upper bound on the age of cached dwarf2 compilation units."), _("\
22627Show the upper bound on the age of cached dwarf2 compilation units."), _("\
22628A higher limit means that cached compilation units will be stored\n\
22629in memory longer, and more total memory will be used. Zero disables\n\
22630caching, which can slow down startup."),
2c5b56ce 22631 NULL,
920d2a44 22632 show_dwarf2_max_cache_age,
2c5b56ce 22633 &set_dwarf2_cmdlist,
ae038cb0 22634 &show_dwarf2_cmdlist);
d97bc12b 22635
9eae7c52
TT
22636 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
22637 &dwarf2_always_disassemble, _("\
22638Set whether `info address' always disassembles DWARF expressions."), _("\
22639Show whether `info address' always disassembles DWARF expressions."), _("\
22640When enabled, DWARF expressions are always printed in an assembly-like\n\
22641syntax. When disabled, expressions will be printed in a more\n\
22642conversational style, when possible."),
22643 NULL,
22644 show_dwarf2_always_disassemble,
22645 &set_dwarf2_cmdlist,
22646 &show_dwarf2_cmdlist);
22647
73be47f5 22648 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
45cfd468
DE
22649Set debugging of the dwarf2 reader."), _("\
22650Show debugging of the dwarf2 reader."), _("\
73be47f5
DE
22651When enabled (non-zero), debugging messages are printed during dwarf2\n\
22652reading and symtab expansion. A value of 1 (one) provides basic\n\
22653information. A value greater than 1 provides more verbose information."),
45cfd468
DE
22654 NULL,
22655 NULL,
22656 &setdebuglist, &showdebuglist);
22657
ccce17b0 22658 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
d97bc12b
DE
22659Set debugging of the dwarf2 DIE reader."), _("\
22660Show debugging of the dwarf2 DIE reader."), _("\
22661When enabled (non-zero), DIEs are dumped after they are read in.\n\
22662The value is the maximum depth to print."),
ccce17b0
YQ
22663 NULL,
22664 NULL,
22665 &setdebuglist, &showdebuglist);
9291a0cd 22666
900e11f9
JK
22667 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
22668Set cross-checking of \"physname\" code against demangler."), _("\
22669Show cross-checking of \"physname\" code against demangler."), _("\
22670When enabled, GDB's internal \"physname\" code is checked against\n\
22671the demangler."),
22672 NULL, show_check_physname,
22673 &setdebuglist, &showdebuglist);
22674
e615022a
DE
22675 add_setshow_boolean_cmd ("use-deprecated-index-sections",
22676 no_class, &use_deprecated_index_sections, _("\
22677Set whether to use deprecated gdb_index sections."), _("\
22678Show whether to use deprecated gdb_index sections."), _("\
22679When enabled, deprecated .gdb_index sections are used anyway.\n\
22680Normally they are ignored either because of a missing feature or\n\
22681performance issue.\n\
22682Warning: This option must be enabled before gdb reads the file."),
22683 NULL,
22684 NULL,
22685 &setlist, &showlist);
22686
96d19272 22687 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 22688 _("\
fc1a9d6e 22689Save a gdb-index file.\n\
11570e71 22690Usage: save gdb-index DIRECTORY"),
96d19272
JK
22691 &save_cmdlist);
22692 set_cmd_completer (c, filename_completer);
f1e6e072
TT
22693
22694 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
22695 &dwarf2_locexpr_funcs);
22696 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
22697 &dwarf2_loclist_funcs);
22698
22699 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
22700 &dwarf2_block_frame_base_locexpr_funcs);
22701 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
22702 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 22703}
This page took 3.532586 seconds and 4 git commands to generate.