MIPS: Keep the ISA bit in compressed code addresses
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
ecd75fc8 3 Copyright (C) 1994-2014 Free Software Foundation, Inc.
c906108c
SS
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 10 support.
c906108c 11
c5aa993b 12 This file is part of GDB.
c906108c 13
c5aa993b
JM
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
a9762ec7
JB
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
c906108c 18
a9762ec7
JB
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
c906108c 23
c5aa993b 24 You should have received a copy of the GNU General Public License
a9762ec7 25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 26
21b2bd31
DE
27/* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
c906108c
SS
31#include "defs.h"
32#include "bfd.h"
80626a55 33#include "elf-bfd.h"
c906108c
SS
34#include "symtab.h"
35#include "gdbtypes.h"
c906108c 36#include "objfiles.h"
fa8f86ff 37#include "dwarf2.h"
c906108c
SS
38#include "buildsym.h"
39#include "demangle.h"
50f182aa 40#include "gdb-demangle.h"
c906108c 41#include "expression.h"
d5166ae1 42#include "filenames.h" /* for DOSish file names */
2e276125 43#include "macrotab.h"
c906108c
SS
44#include "language.h"
45#include "complaints.h"
357e46e7 46#include "bcache.h"
4c2df51b
DJ
47#include "dwarf2expr.h"
48#include "dwarf2loc.h"
9219021c 49#include "cp-support.h"
72bf9492 50#include "hashtab.h"
ae038cb0
DJ
51#include "command.h"
52#include "gdbcmd.h"
edb3359d 53#include "block.h"
ff013f42 54#include "addrmap.h"
94af9270
KS
55#include "typeprint.h"
56#include "jv-lang.h"
ccefe4c4 57#include "psympriv.h"
53ce3c39 58#include <sys/stat.h>
96d19272 59#include "completer.h"
34eaf542 60#include "vec.h"
98bfdba5 61#include "c-lang.h"
a766d390 62#include "go-lang.h"
98bfdba5 63#include "valprint.h"
3019eac3 64#include "gdbcore.h" /* for gnutarget */
156942c7 65#include "gdb/gdb-index.h"
60d5a603 66#include <ctype.h>
cbb099e8 67#include "gdb_bfd.h"
4357ac6c 68#include "f-lang.h"
05cba821 69#include "source.h"
614c279d 70#include "filestuff.h"
dc294be5 71#include "build-id.h"
4c2df51b 72
c906108c 73#include <fcntl.h>
c906108c 74#include <sys/types.h>
d8151005 75
34eaf542
TT
76typedef struct symbol *symbolp;
77DEF_VEC_P (symbolp);
78
73be47f5
DE
79/* When == 1, print basic high level tracing messages.
80 When > 1, be more verbose.
45cfd468 81 This is in contrast to the low level DIE reading of dwarf2_die_debug. */
73be47f5 82static unsigned int dwarf2_read_debug = 0;
45cfd468 83
d97bc12b 84/* When non-zero, dump DIEs after they are read in. */
ccce17b0 85static unsigned int dwarf2_die_debug = 0;
d97bc12b 86
900e11f9
JK
87/* When non-zero, cross-check physname against demangler. */
88static int check_physname = 0;
89
481860b3 90/* When non-zero, do not reject deprecated .gdb_index sections. */
e615022a 91static int use_deprecated_index_sections = 0;
481860b3 92
6502dd73
DJ
93static const struct objfile_data *dwarf2_objfile_data_key;
94
f1e6e072
TT
95/* The "aclass" indices for various kinds of computed DWARF symbols. */
96
97static int dwarf2_locexpr_index;
98static int dwarf2_loclist_index;
99static int dwarf2_locexpr_block_index;
100static int dwarf2_loclist_block_index;
101
73869dc2
DE
102/* A descriptor for dwarf sections.
103
104 S.ASECTION, SIZE are typically initialized when the objfile is first
105 scanned. BUFFER, READIN are filled in later when the section is read.
106 If the section contained compressed data then SIZE is updated to record
107 the uncompressed size of the section.
108
109 DWP file format V2 introduces a wrinkle that is easiest to handle by
110 creating the concept of virtual sections contained within a real section.
111 In DWP V2 the sections of the input DWO files are concatenated together
112 into one section, but section offsets are kept relative to the original
113 input section.
114 If this is a virtual dwp-v2 section, S.CONTAINING_SECTION is a backlink to
115 the real section this "virtual" section is contained in, and BUFFER,SIZE
116 describe the virtual section. */
117
dce234bc
PP
118struct dwarf2_section_info
119{
73869dc2
DE
120 union
121 {
e5aa3347 122 /* If this is a real section, the bfd section. */
73869dc2
DE
123 asection *asection;
124 /* If this is a virtual section, pointer to the containing ("real")
e5aa3347 125 section. */
73869dc2
DE
126 struct dwarf2_section_info *containing_section;
127 } s;
19ac8c2e 128 /* Pointer to section data, only valid if readin. */
d521ce57 129 const gdb_byte *buffer;
73869dc2 130 /* The size of the section, real or virtual. */
dce234bc 131 bfd_size_type size;
73869dc2
DE
132 /* If this is a virtual section, the offset in the real section.
133 Only valid if is_virtual. */
134 bfd_size_type virtual_offset;
be391dca 135 /* True if we have tried to read this section. */
73869dc2
DE
136 char readin;
137 /* True if this is a virtual section, False otherwise.
138 This specifies which of s.asection and s.containing_section to use. */
139 char is_virtual;
dce234bc
PP
140};
141
8b70b953
TT
142typedef struct dwarf2_section_info dwarf2_section_info_def;
143DEF_VEC_O (dwarf2_section_info_def);
144
9291a0cd
TT
145/* All offsets in the index are of this type. It must be
146 architecture-independent. */
147typedef uint32_t offset_type;
148
149DEF_VEC_I (offset_type);
150
156942c7
DE
151/* Ensure only legit values are used. */
152#define DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE(cu_index, value) \
153 do { \
154 gdb_assert ((unsigned int) (value) <= 1); \
155 GDB_INDEX_SYMBOL_STATIC_SET_VALUE((cu_index), (value)); \
156 } while (0)
157
158/* Ensure only legit values are used. */
159#define DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE(cu_index, value) \
160 do { \
161 gdb_assert ((value) >= GDB_INDEX_SYMBOL_KIND_TYPE \
162 && (value) <= GDB_INDEX_SYMBOL_KIND_OTHER); \
163 GDB_INDEX_SYMBOL_KIND_SET_VALUE((cu_index), (value)); \
164 } while (0)
165
166/* Ensure we don't use more than the alloted nuber of bits for the CU. */
167#define DW2_GDB_INDEX_CU_SET_VALUE(cu_index, value) \
168 do { \
169 gdb_assert (((value) & ~GDB_INDEX_CU_MASK) == 0); \
170 GDB_INDEX_CU_SET_VALUE((cu_index), (value)); \
171 } while (0)
172
9291a0cd
TT
173/* A description of the mapped index. The file format is described in
174 a comment by the code that writes the index. */
175struct mapped_index
176{
559a7a62
JK
177 /* Index data format version. */
178 int version;
179
9291a0cd
TT
180 /* The total length of the buffer. */
181 off_t total_size;
b11b1f88 182
9291a0cd
TT
183 /* A pointer to the address table data. */
184 const gdb_byte *address_table;
b11b1f88 185
9291a0cd
TT
186 /* Size of the address table data in bytes. */
187 offset_type address_table_size;
b11b1f88 188
3876f04e
DE
189 /* The symbol table, implemented as a hash table. */
190 const offset_type *symbol_table;
b11b1f88 191
9291a0cd 192 /* Size in slots, each slot is 2 offset_types. */
3876f04e 193 offset_type symbol_table_slots;
b11b1f88 194
9291a0cd
TT
195 /* A pointer to the constant pool. */
196 const char *constant_pool;
197};
198
95554aad
TT
199typedef struct dwarf2_per_cu_data *dwarf2_per_cu_ptr;
200DEF_VEC_P (dwarf2_per_cu_ptr);
201
9cdd5dbd
DE
202/* Collection of data recorded per objfile.
203 This hangs off of dwarf2_objfile_data_key. */
204
6502dd73
DJ
205struct dwarf2_per_objfile
206{
dce234bc
PP
207 struct dwarf2_section_info info;
208 struct dwarf2_section_info abbrev;
209 struct dwarf2_section_info line;
dce234bc
PP
210 struct dwarf2_section_info loc;
211 struct dwarf2_section_info macinfo;
cf2c3c16 212 struct dwarf2_section_info macro;
dce234bc
PP
213 struct dwarf2_section_info str;
214 struct dwarf2_section_info ranges;
3019eac3 215 struct dwarf2_section_info addr;
dce234bc
PP
216 struct dwarf2_section_info frame;
217 struct dwarf2_section_info eh_frame;
9291a0cd 218 struct dwarf2_section_info gdb_index;
ae038cb0 219
8b70b953
TT
220 VEC (dwarf2_section_info_def) *types;
221
be391dca
TT
222 /* Back link. */
223 struct objfile *objfile;
224
d467dd73 225 /* Table of all the compilation units. This is used to locate
10b3939b 226 the target compilation unit of a particular reference. */
ae038cb0
DJ
227 struct dwarf2_per_cu_data **all_comp_units;
228
229 /* The number of compilation units in ALL_COMP_UNITS. */
230 int n_comp_units;
231
1fd400ff 232 /* The number of .debug_types-related CUs. */
d467dd73 233 int n_type_units;
1fd400ff 234
6aa5f3a6
DE
235 /* The number of elements allocated in all_type_units.
236 If there are skeleton-less TUs, we add them to all_type_units lazily. */
237 int n_allocated_type_units;
238
a2ce51a0
DE
239 /* The .debug_types-related CUs (TUs).
240 This is stored in malloc space because we may realloc it. */
b4dd5633 241 struct signatured_type **all_type_units;
1fd400ff 242
f4dc4d17
DE
243 /* Table of struct type_unit_group objects.
244 The hash key is the DW_AT_stmt_list value. */
245 htab_t type_unit_groups;
72dca2f5 246
348e048f
DE
247 /* A table mapping .debug_types signatures to its signatured_type entry.
248 This is NULL if the .debug_types section hasn't been read in yet. */
249 htab_t signatured_types;
250
f4dc4d17
DE
251 /* Type unit statistics, to see how well the scaling improvements
252 are doing. */
253 struct tu_stats
254 {
255 int nr_uniq_abbrev_tables;
256 int nr_symtabs;
257 int nr_symtab_sharers;
258 int nr_stmt_less_type_units;
6aa5f3a6 259 int nr_all_type_units_reallocs;
f4dc4d17
DE
260 } tu_stats;
261
262 /* A chain of compilation units that are currently read in, so that
263 they can be freed later. */
264 struct dwarf2_per_cu_data *read_in_chain;
265
3019eac3
DE
266 /* A table mapping DW_AT_dwo_name values to struct dwo_file objects.
267 This is NULL if the table hasn't been allocated yet. */
268 htab_t dwo_files;
269
80626a55
DE
270 /* Non-zero if we've check for whether there is a DWP file. */
271 int dwp_checked;
272
273 /* The DWP file if there is one, or NULL. */
274 struct dwp_file *dwp_file;
275
36586728
TT
276 /* The shared '.dwz' file, if one exists. This is used when the
277 original data was compressed using 'dwz -m'. */
278 struct dwz_file *dwz_file;
279
72dca2f5
FR
280 /* A flag indicating wether this objfile has a section loaded at a
281 VMA of 0. */
282 int has_section_at_zero;
9291a0cd 283
ae2de4f8
DE
284 /* True if we are using the mapped index,
285 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
286 unsigned char using_index;
287
ae2de4f8 288 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 289 struct mapped_index *index_table;
98bfdba5 290
7b9f3c50 291 /* When using index_table, this keeps track of all quick_file_names entries.
56e64610
DE
292 TUs typically share line table entries with a CU, so we maintain a
293 separate table of all line table entries to support the sharing.
294 Note that while there can be way more TUs than CUs, we've already
295 sorted all the TUs into "type unit groups", grouped by their
296 DW_AT_stmt_list value. Therefore the only sharing done here is with a
297 CU and its associated TU group if there is one. */
7b9f3c50
DE
298 htab_t quick_file_names_table;
299
98bfdba5
PA
300 /* Set during partial symbol reading, to prevent queueing of full
301 symbols. */
302 int reading_partial_symbols;
673bfd45 303
dee91e82 304 /* Table mapping type DIEs to their struct type *.
673bfd45 305 This is NULL if not allocated yet.
02142a6c 306 The mapping is done via (CU/TU + DIE offset) -> type. */
dee91e82 307 htab_t die_type_hash;
95554aad
TT
308
309 /* The CUs we recently read. */
310 VEC (dwarf2_per_cu_ptr) *just_read_cus;
6502dd73
DJ
311};
312
313static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 314
251d32d9 315/* Default names of the debugging sections. */
c906108c 316
233a11ab
CS
317/* Note that if the debugging section has been compressed, it might
318 have a name like .zdebug_info. */
319
9cdd5dbd
DE
320static const struct dwarf2_debug_sections dwarf2_elf_names =
321{
251d32d9
TG
322 { ".debug_info", ".zdebug_info" },
323 { ".debug_abbrev", ".zdebug_abbrev" },
324 { ".debug_line", ".zdebug_line" },
325 { ".debug_loc", ".zdebug_loc" },
326 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 327 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
328 { ".debug_str", ".zdebug_str" },
329 { ".debug_ranges", ".zdebug_ranges" },
330 { ".debug_types", ".zdebug_types" },
3019eac3 331 { ".debug_addr", ".zdebug_addr" },
251d32d9
TG
332 { ".debug_frame", ".zdebug_frame" },
333 { ".eh_frame", NULL },
24d3216f
TT
334 { ".gdb_index", ".zgdb_index" },
335 23
251d32d9 336};
c906108c 337
80626a55 338/* List of DWO/DWP sections. */
3019eac3 339
80626a55 340static const struct dwop_section_names
3019eac3
DE
341{
342 struct dwarf2_section_names abbrev_dwo;
343 struct dwarf2_section_names info_dwo;
344 struct dwarf2_section_names line_dwo;
345 struct dwarf2_section_names loc_dwo;
09262596
DE
346 struct dwarf2_section_names macinfo_dwo;
347 struct dwarf2_section_names macro_dwo;
3019eac3
DE
348 struct dwarf2_section_names str_dwo;
349 struct dwarf2_section_names str_offsets_dwo;
350 struct dwarf2_section_names types_dwo;
80626a55
DE
351 struct dwarf2_section_names cu_index;
352 struct dwarf2_section_names tu_index;
3019eac3 353}
80626a55 354dwop_section_names =
3019eac3
DE
355{
356 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
357 { ".debug_info.dwo", ".zdebug_info.dwo" },
358 { ".debug_line.dwo", ".zdebug_line.dwo" },
359 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
09262596
DE
360 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
361 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
3019eac3
DE
362 { ".debug_str.dwo", ".zdebug_str.dwo" },
363 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
364 { ".debug_types.dwo", ".zdebug_types.dwo" },
80626a55
DE
365 { ".debug_cu_index", ".zdebug_cu_index" },
366 { ".debug_tu_index", ".zdebug_tu_index" },
3019eac3
DE
367};
368
c906108c
SS
369/* local data types */
370
107d2387
AC
371/* The data in a compilation unit header, after target2host
372 translation, looks like this. */
c906108c 373struct comp_unit_head
a738430d 374{
c764a876 375 unsigned int length;
a738430d 376 short version;
a738430d
MK
377 unsigned char addr_size;
378 unsigned char signed_addr_p;
b64f50a1 379 sect_offset abbrev_offset;
57349743 380
a738430d
MK
381 /* Size of file offsets; either 4 or 8. */
382 unsigned int offset_size;
57349743 383
a738430d
MK
384 /* Size of the length field; either 4 or 12. */
385 unsigned int initial_length_size;
57349743 386
a738430d
MK
387 /* Offset to the first byte of this compilation unit header in the
388 .debug_info section, for resolving relative reference dies. */
b64f50a1 389 sect_offset offset;
57349743 390
d00adf39
DE
391 /* Offset to first die in this cu from the start of the cu.
392 This will be the first byte following the compilation unit header. */
b64f50a1 393 cu_offset first_die_offset;
a738430d 394};
c906108c 395
3da10d80
KS
396/* Type used for delaying computation of method physnames.
397 See comments for compute_delayed_physnames. */
398struct delayed_method_info
399{
400 /* The type to which the method is attached, i.e., its parent class. */
401 struct type *type;
402
403 /* The index of the method in the type's function fieldlists. */
404 int fnfield_index;
405
406 /* The index of the method in the fieldlist. */
407 int index;
408
409 /* The name of the DIE. */
410 const char *name;
411
412 /* The DIE associated with this method. */
413 struct die_info *die;
414};
415
416typedef struct delayed_method_info delayed_method_info;
417DEF_VEC_O (delayed_method_info);
418
e7c27a73
DJ
419/* Internal state when decoding a particular compilation unit. */
420struct dwarf2_cu
421{
422 /* The objfile containing this compilation unit. */
423 struct objfile *objfile;
424
d00adf39 425 /* The header of the compilation unit. */
e7c27a73 426 struct comp_unit_head header;
e142c38c 427
d00adf39
DE
428 /* Base address of this compilation unit. */
429 CORE_ADDR base_address;
430
431 /* Non-zero if base_address has been set. */
432 int base_known;
433
e142c38c
DJ
434 /* The language we are debugging. */
435 enum language language;
436 const struct language_defn *language_defn;
437
b0f35d58
DL
438 const char *producer;
439
e142c38c
DJ
440 /* The generic symbol table building routines have separate lists for
441 file scope symbols and all all other scopes (local scopes). So
442 we need to select the right one to pass to add_symbol_to_list().
443 We do it by keeping a pointer to the correct list in list_in_scope.
444
445 FIXME: The original dwarf code just treated the file scope as the
446 first local scope, and all other local scopes as nested local
447 scopes, and worked fine. Check to see if we really need to
448 distinguish these in buildsym.c. */
449 struct pending **list_in_scope;
450
433df2d4
DE
451 /* The abbrev table for this CU.
452 Normally this points to the abbrev table in the objfile.
453 But if DWO_UNIT is non-NULL this is the abbrev table in the DWO file. */
454 struct abbrev_table *abbrev_table;
72bf9492 455
b64f50a1
JK
456 /* Hash table holding all the loaded partial DIEs
457 with partial_die->offset.SECT_OFF as hash. */
72bf9492
DJ
458 htab_t partial_dies;
459
460 /* Storage for things with the same lifetime as this read-in compilation
461 unit, including partial DIEs. */
462 struct obstack comp_unit_obstack;
463
ae038cb0
DJ
464 /* When multiple dwarf2_cu structures are living in memory, this field
465 chains them all together, so that they can be released efficiently.
466 We will probably also want a generation counter so that most-recently-used
467 compilation units are cached... */
468 struct dwarf2_per_cu_data *read_in_chain;
469
69d751e3 470 /* Backlink to our per_cu entry. */
ae038cb0
DJ
471 struct dwarf2_per_cu_data *per_cu;
472
473 /* How many compilation units ago was this CU last referenced? */
474 int last_used;
475
b64f50a1
JK
476 /* A hash table of DIE cu_offset for following references with
477 die_info->offset.sect_off as hash. */
51545339 478 htab_t die_hash;
10b3939b
DJ
479
480 /* Full DIEs if read in. */
481 struct die_info *dies;
482
483 /* A set of pointers to dwarf2_per_cu_data objects for compilation
484 units referenced by this one. Only set during full symbol processing;
485 partial symbol tables do not have dependencies. */
486 htab_t dependencies;
487
cb1df416
DJ
488 /* Header data from the line table, during full symbol processing. */
489 struct line_header *line_header;
490
3da10d80
KS
491 /* A list of methods which need to have physnames computed
492 after all type information has been read. */
493 VEC (delayed_method_info) *method_list;
494
96408a79
SA
495 /* To be copied to symtab->call_site_htab. */
496 htab_t call_site_htab;
497
034e5797
DE
498 /* Non-NULL if this CU came from a DWO file.
499 There is an invariant here that is important to remember:
500 Except for attributes copied from the top level DIE in the "main"
501 (or "stub") file in preparation for reading the DWO file
502 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
503 Either there isn't a DWO file (in which case this is NULL and the point
504 is moot), or there is and either we're not going to read it (in which
505 case this is NULL) or there is and we are reading it (in which case this
506 is non-NULL). */
3019eac3
DE
507 struct dwo_unit *dwo_unit;
508
509 /* The DW_AT_addr_base attribute if present, zero otherwise
510 (zero is a valid value though).
1dbab08b 511 Note this value comes from the Fission stub CU/TU's DIE. */
3019eac3
DE
512 ULONGEST addr_base;
513
2e3cf129
DE
514 /* The DW_AT_ranges_base attribute if present, zero otherwise
515 (zero is a valid value though).
1dbab08b 516 Note this value comes from the Fission stub CU/TU's DIE.
2e3cf129 517 Also note that the value is zero in the non-DWO case so this value can
ab435259
DE
518 be used without needing to know whether DWO files are in use or not.
519 N.B. This does not apply to DW_AT_ranges appearing in
520 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
521 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
522 DW_AT_ranges_base *would* have to be applied, and we'd have to care
523 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
2e3cf129
DE
524 ULONGEST ranges_base;
525
ae038cb0
DJ
526 /* Mark used when releasing cached dies. */
527 unsigned int mark : 1;
528
8be455d7
JK
529 /* This CU references .debug_loc. See the symtab->locations_valid field.
530 This test is imperfect as there may exist optimized debug code not using
531 any location list and still facing inlining issues if handled as
532 unoptimized code. For a future better test see GCC PR other/32998. */
8be455d7 533 unsigned int has_loclist : 1;
ba919b58 534
1b80a9fa
JK
535 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is set
536 if all the producer_is_* fields are valid. This information is cached
537 because profiling CU expansion showed excessive time spent in
538 producer_is_gxx_lt_4_6. */
ba919b58
TT
539 unsigned int checked_producer : 1;
540 unsigned int producer_is_gxx_lt_4_6 : 1;
1b80a9fa 541 unsigned int producer_is_gcc_lt_4_3 : 1;
685b1105 542 unsigned int producer_is_icc : 1;
4d4ec4e5
TT
543
544 /* When set, the file that we're processing is known to have
545 debugging info for C++ namespaces. GCC 3.3.x did not produce
546 this information, but later versions do. */
547
548 unsigned int processing_has_namespace_info : 1;
e7c27a73
DJ
549};
550
10b3939b
DJ
551/* Persistent data held for a compilation unit, even when not
552 processing it. We put a pointer to this structure in the
28dee7f5 553 read_symtab_private field of the psymtab. */
10b3939b 554
ae038cb0
DJ
555struct dwarf2_per_cu_data
556{
36586728 557 /* The start offset and length of this compilation unit.
45452591 558 NOTE: Unlike comp_unit_head.length, this length includes
3019eac3
DE
559 initial_length_size.
560 If the DIE refers to a DWO file, this is always of the original die,
561 not the DWO file. */
b64f50a1 562 sect_offset offset;
36586728 563 unsigned int length;
ae038cb0
DJ
564
565 /* Flag indicating this compilation unit will be read in before
566 any of the current compilation units are processed. */
c764a876 567 unsigned int queued : 1;
ae038cb0 568
0d99eb77
DE
569 /* This flag will be set when reading partial DIEs if we need to load
570 absolutely all DIEs for this compilation unit, instead of just the ones
571 we think are interesting. It gets set if we look for a DIE in the
5afb4e99
DJ
572 hash table and don't find it. */
573 unsigned int load_all_dies : 1;
574
0186c6a7
DE
575 /* Non-zero if this CU is from .debug_types.
576 Struct dwarf2_per_cu_data is contained in struct signatured_type iff
577 this is non-zero. */
3019eac3
DE
578 unsigned int is_debug_types : 1;
579
36586728
TT
580 /* Non-zero if this CU is from the .dwz file. */
581 unsigned int is_dwz : 1;
582
a2ce51a0
DE
583 /* Non-zero if reading a TU directly from a DWO file, bypassing the stub.
584 This flag is only valid if is_debug_types is true.
585 We can't read a CU directly from a DWO file: There are required
586 attributes in the stub. */
587 unsigned int reading_dwo_directly : 1;
588
7ee85ab1
DE
589 /* Non-zero if the TU has been read.
590 This is used to assist the "Stay in DWO Optimization" for Fission:
591 When reading a DWO, it's faster to read TUs from the DWO instead of
592 fetching them from random other DWOs (due to comdat folding).
593 If the TU has already been read, the optimization is unnecessary
594 (and unwise - we don't want to change where gdb thinks the TU lives
595 "midflight").
596 This flag is only valid if is_debug_types is true. */
597 unsigned int tu_read : 1;
598
3019eac3
DE
599 /* The section this CU/TU lives in.
600 If the DIE refers to a DWO file, this is always the original die,
601 not the DWO file. */
8a0459fd 602 struct dwarf2_section_info *section;
348e048f 603
17ea53c3
JK
604 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
605 of the CU cache it gets reset to NULL again. */
ae038cb0 606 struct dwarf2_cu *cu;
1c379e20 607
9cdd5dbd
DE
608 /* The corresponding objfile.
609 Normally we can get the objfile from dwarf2_per_objfile.
610 However we can enter this file with just a "per_cu" handle. */
9291a0cd
TT
611 struct objfile *objfile;
612
fffbe6a8
YQ
613 /* When dwarf2_per_objfile->using_index is true, the 'quick' field
614 is active. Otherwise, the 'psymtab' field is active. */
9291a0cd
TT
615 union
616 {
617 /* The partial symbol table associated with this compilation unit,
95554aad 618 or NULL for unread partial units. */
9291a0cd
TT
619 struct partial_symtab *psymtab;
620
621 /* Data needed by the "quick" functions. */
622 struct dwarf2_per_cu_quick_data *quick;
623 } v;
95554aad 624
796a7ff8
DE
625 /* The CUs we import using DW_TAG_imported_unit. This is filled in
626 while reading psymtabs, used to compute the psymtab dependencies,
627 and then cleared. Then it is filled in again while reading full
628 symbols, and only deleted when the objfile is destroyed.
629
630 This is also used to work around a difference between the way gold
631 generates .gdb_index version <=7 and the way gdb does. Arguably this
632 is a gold bug. For symbols coming from TUs, gold records in the index
633 the CU that includes the TU instead of the TU itself. This breaks
634 dw2_lookup_symbol: It assumes that if the index says symbol X lives
635 in CU/TU Y, then one need only expand Y and a subsequent lookup in Y
636 will find X. Alas TUs live in their own symtab, so after expanding CU Y
637 we need to look in TU Z to find X. Fortunately, this is akin to
638 DW_TAG_imported_unit, so we just use the same mechanism: For
639 .gdb_index version <=7 this also records the TUs that the CU referred
640 to. Concurrently with this change gdb was modified to emit version 8
69d751e3
DE
641 indices so we only pay a price for gold generated indices.
642 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
796a7ff8 643 VEC (dwarf2_per_cu_ptr) *imported_symtabs;
ae038cb0
DJ
644};
645
348e048f
DE
646/* Entry in the signatured_types hash table. */
647
648struct signatured_type
649{
42e7ad6c 650 /* The "per_cu" object of this type.
ac9ec31b 651 This struct is used iff per_cu.is_debug_types.
42e7ad6c
DE
652 N.B.: This is the first member so that it's easy to convert pointers
653 between them. */
654 struct dwarf2_per_cu_data per_cu;
655
3019eac3 656 /* The type's signature. */
348e048f
DE
657 ULONGEST signature;
658
3019eac3 659 /* Offset in the TU of the type's DIE, as read from the TU header.
c88ee1f0
DE
660 If this TU is a DWO stub and the definition lives in a DWO file
661 (specified by DW_AT_GNU_dwo_name), this value is unusable. */
3019eac3
DE
662 cu_offset type_offset_in_tu;
663
664 /* Offset in the section of the type's DIE.
665 If the definition lives in a DWO file, this is the offset in the
666 .debug_types.dwo section.
667 The value is zero until the actual value is known.
668 Zero is otherwise not a valid section offset. */
669 sect_offset type_offset_in_section;
0186c6a7
DE
670
671 /* Type units are grouped by their DW_AT_stmt_list entry so that they
672 can share them. This points to the containing symtab. */
673 struct type_unit_group *type_unit_group;
ac9ec31b
DE
674
675 /* The type.
676 The first time we encounter this type we fully read it in and install it
677 in the symbol tables. Subsequent times we only need the type. */
678 struct type *type;
a2ce51a0
DE
679
680 /* Containing DWO unit.
681 This field is valid iff per_cu.reading_dwo_directly. */
682 struct dwo_unit *dwo_unit;
348e048f
DE
683};
684
0186c6a7
DE
685typedef struct signatured_type *sig_type_ptr;
686DEF_VEC_P (sig_type_ptr);
687
094b34ac
DE
688/* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
689 This includes type_unit_group and quick_file_names. */
690
691struct stmt_list_hash
692{
693 /* The DWO unit this table is from or NULL if there is none. */
694 struct dwo_unit *dwo_unit;
695
696 /* Offset in .debug_line or .debug_line.dwo. */
697 sect_offset line_offset;
698};
699
f4dc4d17
DE
700/* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
701 an object of this type. */
702
703struct type_unit_group
704{
0186c6a7 705 /* dwarf2read.c's main "handle" on a TU symtab.
f4dc4d17
DE
706 To simplify things we create an artificial CU that "includes" all the
707 type units using this stmt_list so that the rest of the code still has
708 a "per_cu" handle on the symtab.
709 This PER_CU is recognized by having no section. */
8a0459fd 710#define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
094b34ac
DE
711 struct dwarf2_per_cu_data per_cu;
712
0186c6a7
DE
713 /* The TUs that share this DW_AT_stmt_list entry.
714 This is added to while parsing type units to build partial symtabs,
715 and is deleted afterwards and not used again. */
716 VEC (sig_type_ptr) *tus;
f4dc4d17 717
43f3e411 718 /* The compunit symtab.
094b34ac 719 Type units in a group needn't all be defined in the same source file,
43f3e411
DE
720 so we create an essentially anonymous symtab as the compunit symtab. */
721 struct compunit_symtab *compunit_symtab;
f4dc4d17 722
094b34ac
DE
723 /* The data used to construct the hash key. */
724 struct stmt_list_hash hash;
f4dc4d17
DE
725
726 /* The number of symtabs from the line header.
727 The value here must match line_header.num_file_names. */
728 unsigned int num_symtabs;
729
730 /* The symbol tables for this TU (obtained from the files listed in
731 DW_AT_stmt_list).
732 WARNING: The order of entries here must match the order of entries
733 in the line header. After the first TU using this type_unit_group, the
734 line header for the subsequent TUs is recreated from this. This is done
735 because we need to use the same symtabs for each TU using the same
736 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
737 there's no guarantee the line header doesn't have duplicate entries. */
738 struct symtab **symtabs;
739};
740
73869dc2 741/* These sections are what may appear in a (real or virtual) DWO file. */
3019eac3
DE
742
743struct dwo_sections
744{
745 struct dwarf2_section_info abbrev;
3019eac3
DE
746 struct dwarf2_section_info line;
747 struct dwarf2_section_info loc;
09262596
DE
748 struct dwarf2_section_info macinfo;
749 struct dwarf2_section_info macro;
3019eac3
DE
750 struct dwarf2_section_info str;
751 struct dwarf2_section_info str_offsets;
80626a55
DE
752 /* In the case of a virtual DWO file, these two are unused. */
753 struct dwarf2_section_info info;
3019eac3
DE
754 VEC (dwarf2_section_info_def) *types;
755};
756
c88ee1f0 757/* CUs/TUs in DWP/DWO files. */
3019eac3
DE
758
759struct dwo_unit
760{
761 /* Backlink to the containing struct dwo_file. */
762 struct dwo_file *dwo_file;
763
764 /* The "id" that distinguishes this CU/TU.
765 .debug_info calls this "dwo_id", .debug_types calls this "signature".
766 Since signatures came first, we stick with it for consistency. */
767 ULONGEST signature;
768
769 /* The section this CU/TU lives in, in the DWO file. */
8a0459fd 770 struct dwarf2_section_info *section;
3019eac3 771
19ac8c2e 772 /* Same as dwarf2_per_cu_data:{offset,length} but in the DWO section. */
3019eac3
DE
773 sect_offset offset;
774 unsigned int length;
775
776 /* For types, offset in the type's DIE of the type defined by this TU. */
777 cu_offset type_offset_in_tu;
778};
779
73869dc2
DE
780/* include/dwarf2.h defines the DWP section codes.
781 It defines a max value but it doesn't define a min value, which we
782 use for error checking, so provide one. */
783
784enum dwp_v2_section_ids
785{
786 DW_SECT_MIN = 1
787};
788
80626a55 789/* Data for one DWO file.
57d63ce2
DE
790
791 This includes virtual DWO files (a virtual DWO file is a DWO file as it
792 appears in a DWP file). DWP files don't really have DWO files per se -
793 comdat folding of types "loses" the DWO file they came from, and from
794 a high level view DWP files appear to contain a mass of random types.
795 However, to maintain consistency with the non-DWP case we pretend DWP
796 files contain virtual DWO files, and we assign each TU with one virtual
797 DWO file (generally based on the line and abbrev section offsets -
798 a heuristic that seems to work in practice). */
3019eac3
DE
799
800struct dwo_file
801{
0ac5b59e 802 /* The DW_AT_GNU_dwo_name attribute.
80626a55
DE
803 For virtual DWO files the name is constructed from the section offsets
804 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
805 from related CU+TUs. */
0ac5b59e
DE
806 const char *dwo_name;
807
808 /* The DW_AT_comp_dir attribute. */
809 const char *comp_dir;
3019eac3 810
80626a55
DE
811 /* The bfd, when the file is open. Otherwise this is NULL.
812 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
813 bfd *dbfd;
3019eac3 814
73869dc2
DE
815 /* The sections that make up this DWO file.
816 Remember that for virtual DWO files in DWP V2, these are virtual
817 sections (for lack of a better name). */
3019eac3
DE
818 struct dwo_sections sections;
819
19c3d4c9
DE
820 /* The CU in the file.
821 We only support one because having more than one requires hacking the
822 dwo_name of each to match, which is highly unlikely to happen.
823 Doing this means all TUs can share comp_dir: We also assume that
824 DW_AT_comp_dir across all TUs in a DWO file will be identical. */
825 struct dwo_unit *cu;
3019eac3
DE
826
827 /* Table of TUs in the file.
828 Each element is a struct dwo_unit. */
829 htab_t tus;
830};
831
80626a55
DE
832/* These sections are what may appear in a DWP file. */
833
834struct dwp_sections
835{
73869dc2 836 /* These are used by both DWP version 1 and 2. */
80626a55
DE
837 struct dwarf2_section_info str;
838 struct dwarf2_section_info cu_index;
839 struct dwarf2_section_info tu_index;
73869dc2
DE
840
841 /* These are only used by DWP version 2 files.
842 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
843 sections are referenced by section number, and are not recorded here.
844 In DWP version 2 there is at most one copy of all these sections, each
845 section being (effectively) comprised of the concatenation of all of the
846 individual sections that exist in the version 1 format.
847 To keep the code simple we treat each of these concatenated pieces as a
848 section itself (a virtual section?). */
849 struct dwarf2_section_info abbrev;
850 struct dwarf2_section_info info;
851 struct dwarf2_section_info line;
852 struct dwarf2_section_info loc;
853 struct dwarf2_section_info macinfo;
854 struct dwarf2_section_info macro;
855 struct dwarf2_section_info str_offsets;
856 struct dwarf2_section_info types;
80626a55
DE
857};
858
73869dc2
DE
859/* These sections are what may appear in a virtual DWO file in DWP version 1.
860 A virtual DWO file is a DWO file as it appears in a DWP file. */
80626a55 861
73869dc2 862struct virtual_v1_dwo_sections
80626a55
DE
863{
864 struct dwarf2_section_info abbrev;
865 struct dwarf2_section_info line;
866 struct dwarf2_section_info loc;
867 struct dwarf2_section_info macinfo;
868 struct dwarf2_section_info macro;
869 struct dwarf2_section_info str_offsets;
870 /* Each DWP hash table entry records one CU or one TU.
8a0459fd 871 That is recorded here, and copied to dwo_unit.section. */
80626a55
DE
872 struct dwarf2_section_info info_or_types;
873};
874
73869dc2
DE
875/* Similar to virtual_v1_dwo_sections, but for DWP version 2.
876 In version 2, the sections of the DWO files are concatenated together
877 and stored in one section of that name. Thus each ELF section contains
878 several "virtual" sections. */
879
880struct virtual_v2_dwo_sections
881{
882 bfd_size_type abbrev_offset;
883 bfd_size_type abbrev_size;
884
885 bfd_size_type line_offset;
886 bfd_size_type line_size;
887
888 bfd_size_type loc_offset;
889 bfd_size_type loc_size;
890
891 bfd_size_type macinfo_offset;
892 bfd_size_type macinfo_size;
893
894 bfd_size_type macro_offset;
895 bfd_size_type macro_size;
896
897 bfd_size_type str_offsets_offset;
898 bfd_size_type str_offsets_size;
899
900 /* Each DWP hash table entry records one CU or one TU.
901 That is recorded here, and copied to dwo_unit.section. */
902 bfd_size_type info_or_types_offset;
903 bfd_size_type info_or_types_size;
904};
905
80626a55
DE
906/* Contents of DWP hash tables. */
907
908struct dwp_hash_table
909{
73869dc2 910 uint32_t version, nr_columns;
80626a55 911 uint32_t nr_units, nr_slots;
73869dc2
DE
912 const gdb_byte *hash_table, *unit_table;
913 union
914 {
915 struct
916 {
917 const gdb_byte *indices;
918 } v1;
919 struct
920 {
921 /* This is indexed by column number and gives the id of the section
922 in that column. */
923#define MAX_NR_V2_DWO_SECTIONS \
924 (1 /* .debug_info or .debug_types */ \
925 + 1 /* .debug_abbrev */ \
926 + 1 /* .debug_line */ \
927 + 1 /* .debug_loc */ \
928 + 1 /* .debug_str_offsets */ \
929 + 1 /* .debug_macro or .debug_macinfo */)
930 int section_ids[MAX_NR_V2_DWO_SECTIONS];
931 const gdb_byte *offsets;
932 const gdb_byte *sizes;
933 } v2;
934 } section_pool;
80626a55
DE
935};
936
937/* Data for one DWP file. */
938
939struct dwp_file
940{
941 /* Name of the file. */
942 const char *name;
943
73869dc2
DE
944 /* File format version. */
945 int version;
946
93417882 947 /* The bfd. */
80626a55
DE
948 bfd *dbfd;
949
950 /* Section info for this file. */
951 struct dwp_sections sections;
952
57d63ce2 953 /* Table of CUs in the file. */
80626a55
DE
954 const struct dwp_hash_table *cus;
955
956 /* Table of TUs in the file. */
957 const struct dwp_hash_table *tus;
958
19ac8c2e
DE
959 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
960 htab_t loaded_cus;
961 htab_t loaded_tus;
80626a55 962
73869dc2
DE
963 /* Table to map ELF section numbers to their sections.
964 This is only needed for the DWP V1 file format. */
80626a55
DE
965 unsigned int num_sections;
966 asection **elf_sections;
967};
968
36586728
TT
969/* This represents a '.dwz' file. */
970
971struct dwz_file
972{
973 /* A dwz file can only contain a few sections. */
974 struct dwarf2_section_info abbrev;
975 struct dwarf2_section_info info;
976 struct dwarf2_section_info str;
977 struct dwarf2_section_info line;
978 struct dwarf2_section_info macro;
2ec9a5e0 979 struct dwarf2_section_info gdb_index;
36586728
TT
980
981 /* The dwz's BFD. */
982 bfd *dwz_bfd;
983};
984
0963b4bd
MS
985/* Struct used to pass misc. parameters to read_die_and_children, et
986 al. which are used for both .debug_info and .debug_types dies.
987 All parameters here are unchanging for the life of the call. This
dee91e82 988 struct exists to abstract away the constant parameters of die reading. */
93311388
DE
989
990struct die_reader_specs
991{
a32a8923 992 /* The bfd of die_section. */
93311388
DE
993 bfd* abfd;
994
995 /* The CU of the DIE we are parsing. */
996 struct dwarf2_cu *cu;
997
80626a55 998 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
3019eac3
DE
999 struct dwo_file *dwo_file;
1000
dee91e82 1001 /* The section the die comes from.
3019eac3 1002 This is either .debug_info or .debug_types, or the .dwo variants. */
dee91e82
DE
1003 struct dwarf2_section_info *die_section;
1004
1005 /* die_section->buffer. */
d521ce57 1006 const gdb_byte *buffer;
f664829e
DE
1007
1008 /* The end of the buffer. */
1009 const gdb_byte *buffer_end;
a2ce51a0
DE
1010
1011 /* The value of the DW_AT_comp_dir attribute. */
1012 const char *comp_dir;
93311388
DE
1013};
1014
fd820528 1015/* Type of function passed to init_cutu_and_read_dies, et.al. */
dee91e82 1016typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
d521ce57 1017 const gdb_byte *info_ptr,
dee91e82
DE
1018 struct die_info *comp_unit_die,
1019 int has_children,
1020 void *data);
1021
debd256d
JB
1022/* The line number information for a compilation unit (found in the
1023 .debug_line section) begins with a "statement program header",
1024 which contains the following information. */
1025struct line_header
1026{
1027 unsigned int total_length;
1028 unsigned short version;
1029 unsigned int header_length;
1030 unsigned char minimum_instruction_length;
2dc7f7b3 1031 unsigned char maximum_ops_per_instruction;
debd256d
JB
1032 unsigned char default_is_stmt;
1033 int line_base;
1034 unsigned char line_range;
1035 unsigned char opcode_base;
1036
1037 /* standard_opcode_lengths[i] is the number of operands for the
1038 standard opcode whose value is i. This means that
1039 standard_opcode_lengths[0] is unused, and the last meaningful
1040 element is standard_opcode_lengths[opcode_base - 1]. */
1041 unsigned char *standard_opcode_lengths;
1042
1043 /* The include_directories table. NOTE! These strings are not
1044 allocated with xmalloc; instead, they are pointers into
1045 debug_line_buffer. If you try to free them, `free' will get
1046 indigestion. */
1047 unsigned int num_include_dirs, include_dirs_size;
d521ce57 1048 const char **include_dirs;
debd256d
JB
1049
1050 /* The file_names table. NOTE! These strings are not allocated
1051 with xmalloc; instead, they are pointers into debug_line_buffer.
1052 Don't try to free them directly. */
1053 unsigned int num_file_names, file_names_size;
1054 struct file_entry
c906108c 1055 {
d521ce57 1056 const char *name;
debd256d
JB
1057 unsigned int dir_index;
1058 unsigned int mod_time;
1059 unsigned int length;
aaa75496 1060 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 1061 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
1062 } *file_names;
1063
1064 /* The start and end of the statement program following this
6502dd73 1065 header. These point into dwarf2_per_objfile->line_buffer. */
d521ce57 1066 const gdb_byte *statement_program_start, *statement_program_end;
debd256d 1067};
c906108c
SS
1068
1069/* When we construct a partial symbol table entry we only
0963b4bd 1070 need this much information. */
c906108c
SS
1071struct partial_die_info
1072 {
72bf9492 1073 /* Offset of this DIE. */
b64f50a1 1074 sect_offset offset;
72bf9492
DJ
1075
1076 /* DWARF-2 tag for this DIE. */
1077 ENUM_BITFIELD(dwarf_tag) tag : 16;
1078
72bf9492
DJ
1079 /* Assorted flags describing the data found in this DIE. */
1080 unsigned int has_children : 1;
1081 unsigned int is_external : 1;
1082 unsigned int is_declaration : 1;
1083 unsigned int has_type : 1;
1084 unsigned int has_specification : 1;
1085 unsigned int has_pc_info : 1;
481860b3 1086 unsigned int may_be_inlined : 1;
72bf9492
DJ
1087
1088 /* Flag set if the SCOPE field of this structure has been
1089 computed. */
1090 unsigned int scope_set : 1;
1091
fa4028e9
JB
1092 /* Flag set if the DIE has a byte_size attribute. */
1093 unsigned int has_byte_size : 1;
1094
98bfdba5
PA
1095 /* Flag set if any of the DIE's children are template arguments. */
1096 unsigned int has_template_arguments : 1;
1097
abc72ce4
DE
1098 /* Flag set if fixup_partial_die has been called on this die. */
1099 unsigned int fixup_called : 1;
1100
36586728
TT
1101 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1102 unsigned int is_dwz : 1;
1103
1104 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1105 unsigned int spec_is_dwz : 1;
1106
72bf9492 1107 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 1108 sometimes a default name for unnamed DIEs. */
15d034d0 1109 const char *name;
72bf9492 1110
abc72ce4
DE
1111 /* The linkage name, if present. */
1112 const char *linkage_name;
1113
72bf9492
DJ
1114 /* The scope to prepend to our children. This is generally
1115 allocated on the comp_unit_obstack, so will disappear
1116 when this compilation unit leaves the cache. */
15d034d0 1117 const char *scope;
72bf9492 1118
95554aad
TT
1119 /* Some data associated with the partial DIE. The tag determines
1120 which field is live. */
1121 union
1122 {
1123 /* The location description associated with this DIE, if any. */
1124 struct dwarf_block *locdesc;
1125 /* The offset of an import, for DW_TAG_imported_unit. */
1126 sect_offset offset;
1127 } d;
72bf9492
DJ
1128
1129 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
1130 CORE_ADDR lowpc;
1131 CORE_ADDR highpc;
72bf9492 1132
93311388 1133 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 1134 DW_AT_sibling, if any. */
abc72ce4
DE
1135 /* NOTE: This member isn't strictly necessary, read_partial_die could
1136 return DW_AT_sibling values to its caller load_partial_dies. */
d521ce57 1137 const gdb_byte *sibling;
72bf9492
DJ
1138
1139 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1140 DW_AT_specification (or DW_AT_abstract_origin or
1141 DW_AT_extension). */
b64f50a1 1142 sect_offset spec_offset;
72bf9492
DJ
1143
1144 /* Pointers to this DIE's parent, first child, and next sibling,
1145 if any. */
1146 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
1147 };
1148
0963b4bd 1149/* This data structure holds the information of an abbrev. */
c906108c
SS
1150struct abbrev_info
1151 {
1152 unsigned int number; /* number identifying abbrev */
1153 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
1154 unsigned short has_children; /* boolean */
1155 unsigned short num_attrs; /* number of attributes */
c906108c
SS
1156 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1157 struct abbrev_info *next; /* next in chain */
1158 };
1159
1160struct attr_abbrev
1161 {
9d25dd43
DE
1162 ENUM_BITFIELD(dwarf_attribute) name : 16;
1163 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
1164 };
1165
433df2d4
DE
1166/* Size of abbrev_table.abbrev_hash_table. */
1167#define ABBREV_HASH_SIZE 121
1168
1169/* Top level data structure to contain an abbreviation table. */
1170
1171struct abbrev_table
1172{
f4dc4d17
DE
1173 /* Where the abbrev table came from.
1174 This is used as a sanity check when the table is used. */
433df2d4
DE
1175 sect_offset offset;
1176
1177 /* Storage for the abbrev table. */
1178 struct obstack abbrev_obstack;
1179
1180 /* Hash table of abbrevs.
1181 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1182 It could be statically allocated, but the previous code didn't so we
1183 don't either. */
1184 struct abbrev_info **abbrevs;
1185};
1186
0963b4bd 1187/* Attributes have a name and a value. */
b60c80d6
DJ
1188struct attribute
1189 {
9d25dd43 1190 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
1191 ENUM_BITFIELD(dwarf_form) form : 15;
1192
1193 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1194 field should be in u.str (existing only for DW_STRING) but it is kept
1195 here for better struct attribute alignment. */
1196 unsigned int string_is_canonical : 1;
1197
b60c80d6
DJ
1198 union
1199 {
15d034d0 1200 const char *str;
b60c80d6 1201 struct dwarf_block *blk;
43bbcdc2
PH
1202 ULONGEST unsnd;
1203 LONGEST snd;
b60c80d6 1204 CORE_ADDR addr;
ac9ec31b 1205 ULONGEST signature;
b60c80d6
DJ
1206 }
1207 u;
1208 };
1209
0963b4bd 1210/* This data structure holds a complete die structure. */
c906108c
SS
1211struct die_info
1212 {
76815b17
DE
1213 /* DWARF-2 tag for this DIE. */
1214 ENUM_BITFIELD(dwarf_tag) tag : 16;
1215
1216 /* Number of attributes */
98bfdba5
PA
1217 unsigned char num_attrs;
1218
1219 /* True if we're presently building the full type name for the
1220 type derived from this DIE. */
1221 unsigned char building_fullname : 1;
76815b17 1222
adde2bff
DE
1223 /* True if this die is in process. PR 16581. */
1224 unsigned char in_process : 1;
1225
76815b17
DE
1226 /* Abbrev number */
1227 unsigned int abbrev;
1228
93311388 1229 /* Offset in .debug_info or .debug_types section. */
b64f50a1 1230 sect_offset offset;
78ba4af6
JB
1231
1232 /* The dies in a compilation unit form an n-ary tree. PARENT
1233 points to this die's parent; CHILD points to the first child of
1234 this node; and all the children of a given node are chained
4950bc1c 1235 together via their SIBLING fields. */
639d11d3
DC
1236 struct die_info *child; /* Its first child, if any. */
1237 struct die_info *sibling; /* Its next sibling, if any. */
1238 struct die_info *parent; /* Its parent, if any. */
c906108c 1239
b60c80d6
DJ
1240 /* An array of attributes, with NUM_ATTRS elements. There may be
1241 zero, but it's not common and zero-sized arrays are not
1242 sufficiently portable C. */
1243 struct attribute attrs[1];
c906108c
SS
1244 };
1245
0963b4bd 1246/* Get at parts of an attribute structure. */
c906108c
SS
1247
1248#define DW_STRING(attr) ((attr)->u.str)
8285870a 1249#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
1250#define DW_UNSND(attr) ((attr)->u.unsnd)
1251#define DW_BLOCK(attr) ((attr)->u.blk)
1252#define DW_SND(attr) ((attr)->u.snd)
1253#define DW_ADDR(attr) ((attr)->u.addr)
ac9ec31b 1254#define DW_SIGNATURE(attr) ((attr)->u.signature)
c906108c 1255
0963b4bd 1256/* Blocks are a bunch of untyped bytes. */
c906108c
SS
1257struct dwarf_block
1258 {
56eb65bd 1259 size_t size;
1d6edc3c
JK
1260
1261 /* Valid only if SIZE is not zero. */
d521ce57 1262 const gdb_byte *data;
c906108c
SS
1263 };
1264
c906108c
SS
1265#ifndef ATTR_ALLOC_CHUNK
1266#define ATTR_ALLOC_CHUNK 4
1267#endif
1268
c906108c
SS
1269/* Allocate fields for structs, unions and enums in this size. */
1270#ifndef DW_FIELD_ALLOC_CHUNK
1271#define DW_FIELD_ALLOC_CHUNK 4
1272#endif
1273
c906108c
SS
1274/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1275 but this would require a corresponding change in unpack_field_as_long
1276 and friends. */
1277static int bits_per_byte = 8;
1278
1279/* The routines that read and process dies for a C struct or C++ class
1280 pass lists of data member fields and lists of member function fields
1281 in an instance of a field_info structure, as defined below. */
1282struct field_info
c5aa993b 1283 {
0963b4bd 1284 /* List of data member and baseclasses fields. */
c5aa993b
JM
1285 struct nextfield
1286 {
1287 struct nextfield *next;
1288 int accessibility;
1289 int virtuality;
1290 struct field field;
1291 }
7d0ccb61 1292 *fields, *baseclasses;
c906108c 1293
7d0ccb61 1294 /* Number of fields (including baseclasses). */
c5aa993b 1295 int nfields;
c906108c 1296
c5aa993b
JM
1297 /* Number of baseclasses. */
1298 int nbaseclasses;
c906108c 1299
c5aa993b
JM
1300 /* Set if the accesibility of one of the fields is not public. */
1301 int non_public_fields;
c906108c 1302
c5aa993b
JM
1303 /* Member function fields array, entries are allocated in the order they
1304 are encountered in the object file. */
1305 struct nextfnfield
1306 {
1307 struct nextfnfield *next;
1308 struct fn_field fnfield;
1309 }
1310 *fnfields;
c906108c 1311
c5aa993b
JM
1312 /* Member function fieldlist array, contains name of possibly overloaded
1313 member function, number of overloaded member functions and a pointer
1314 to the head of the member function field chain. */
1315 struct fnfieldlist
1316 {
15d034d0 1317 const char *name;
c5aa993b
JM
1318 int length;
1319 struct nextfnfield *head;
1320 }
1321 *fnfieldlists;
c906108c 1322
c5aa993b
JM
1323 /* Number of entries in the fnfieldlists array. */
1324 int nfnfields;
98751a41
JK
1325
1326 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1327 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1328 struct typedef_field_list
1329 {
1330 struct typedef_field field;
1331 struct typedef_field_list *next;
1332 }
1333 *typedef_field_list;
1334 unsigned typedef_field_list_count;
c5aa993b 1335 };
c906108c 1336
10b3939b
DJ
1337/* One item on the queue of compilation units to read in full symbols
1338 for. */
1339struct dwarf2_queue_item
1340{
1341 struct dwarf2_per_cu_data *per_cu;
95554aad 1342 enum language pretend_language;
10b3939b
DJ
1343 struct dwarf2_queue_item *next;
1344};
1345
1346/* The current queue. */
1347static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1348
ae038cb0
DJ
1349/* Loaded secondary compilation units are kept in memory until they
1350 have not been referenced for the processing of this many
1351 compilation units. Set this to zero to disable caching. Cache
1352 sizes of up to at least twenty will improve startup time for
1353 typical inter-CU-reference binaries, at an obvious memory cost. */
1354static int dwarf2_max_cache_age = 5;
920d2a44
AC
1355static void
1356show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
1357 struct cmd_list_element *c, const char *value)
1358{
3e43a32a
MS
1359 fprintf_filtered (file, _("The upper bound on the age of cached "
1360 "dwarf2 compilation units is %s.\n"),
920d2a44
AC
1361 value);
1362}
4390d890 1363\f
c906108c
SS
1364/* local function prototypes */
1365
a32a8923
DE
1366static const char *get_section_name (const struct dwarf2_section_info *);
1367
1368static const char *get_section_file_name (const struct dwarf2_section_info *);
1369
4efb68b1 1370static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 1371
918dd910
JK
1372static void dwarf2_find_base_address (struct die_info *die,
1373 struct dwarf2_cu *cu);
1374
0018ea6f
DE
1375static struct partial_symtab *create_partial_symtab
1376 (struct dwarf2_per_cu_data *per_cu, const char *name);
1377
c67a9c90 1378static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 1379
72bf9492
DJ
1380static void scan_partial_symbols (struct partial_die_info *,
1381 CORE_ADDR *, CORE_ADDR *,
5734ee8b 1382 int, struct dwarf2_cu *);
c906108c 1383
72bf9492
DJ
1384static void add_partial_symbol (struct partial_die_info *,
1385 struct dwarf2_cu *);
63d06c5c 1386
72bf9492
DJ
1387static void add_partial_namespace (struct partial_die_info *pdi,
1388 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 1389 int set_addrmap, struct dwarf2_cu *cu);
63d06c5c 1390
5d7cb8df 1391static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 1392 CORE_ADDR *highpc, int set_addrmap,
5d7cb8df
JK
1393 struct dwarf2_cu *cu);
1394
72bf9492
DJ
1395static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1396 struct dwarf2_cu *cu);
91c24f0a 1397
bc30ff58
JB
1398static void add_partial_subprogram (struct partial_die_info *pdi,
1399 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 1400 int need_pc, struct dwarf2_cu *cu);
bc30ff58 1401
257e7a09
YQ
1402static void dwarf2_read_symtab (struct partial_symtab *,
1403 struct objfile *);
c906108c 1404
a14ed312 1405static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 1406
433df2d4
DE
1407static struct abbrev_info *abbrev_table_lookup_abbrev
1408 (const struct abbrev_table *, unsigned int);
1409
1410static struct abbrev_table *abbrev_table_read_table
1411 (struct dwarf2_section_info *, sect_offset);
1412
1413static void abbrev_table_free (struct abbrev_table *);
1414
f4dc4d17
DE
1415static void abbrev_table_free_cleanup (void *);
1416
dee91e82
DE
1417static void dwarf2_read_abbrevs (struct dwarf2_cu *,
1418 struct dwarf2_section_info *);
c906108c 1419
f3dd6933 1420static void dwarf2_free_abbrev_table (void *);
c906108c 1421
d521ce57 1422static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
6caca83c 1423
dee91e82 1424static struct partial_die_info *load_partial_dies
d521ce57 1425 (const struct die_reader_specs *, const gdb_byte *, int);
72bf9492 1426
d521ce57
TT
1427static const gdb_byte *read_partial_die (const struct die_reader_specs *,
1428 struct partial_die_info *,
1429 struct abbrev_info *,
1430 unsigned int,
1431 const gdb_byte *);
c906108c 1432
36586728 1433static struct partial_die_info *find_partial_die (sect_offset, int,
10b3939b 1434 struct dwarf2_cu *);
72bf9492
DJ
1435
1436static void fixup_partial_die (struct partial_die_info *,
1437 struct dwarf2_cu *);
1438
d521ce57
TT
1439static const gdb_byte *read_attribute (const struct die_reader_specs *,
1440 struct attribute *, struct attr_abbrev *,
1441 const gdb_byte *);
a8329558 1442
a1855c1d 1443static unsigned int read_1_byte (bfd *, const gdb_byte *);
c906108c 1444
a1855c1d 1445static int read_1_signed_byte (bfd *, const gdb_byte *);
c906108c 1446
a1855c1d 1447static unsigned int read_2_bytes (bfd *, const gdb_byte *);
c906108c 1448
a1855c1d 1449static unsigned int read_4_bytes (bfd *, const gdb_byte *);
c906108c 1450
a1855c1d 1451static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
c906108c 1452
d521ce57 1453static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 1454 unsigned int *);
c906108c 1455
d521ce57 1456static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
c764a876
DE
1457
1458static LONGEST read_checked_initial_length_and_offset
d521ce57 1459 (bfd *, const gdb_byte *, const struct comp_unit_head *,
c764a876 1460 unsigned int *, unsigned int *);
613e1657 1461
d521ce57
TT
1462static LONGEST read_offset (bfd *, const gdb_byte *,
1463 const struct comp_unit_head *,
c764a876
DE
1464 unsigned int *);
1465
d521ce57 1466static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
613e1657 1467
f4dc4d17
DE
1468static sect_offset read_abbrev_offset (struct dwarf2_section_info *,
1469 sect_offset);
1470
d521ce57 1471static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
c906108c 1472
d521ce57 1473static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
c906108c 1474
d521ce57
TT
1475static const char *read_indirect_string (bfd *, const gdb_byte *,
1476 const struct comp_unit_head *,
1477 unsigned int *);
4bdf3d34 1478
d521ce57 1479static const char *read_indirect_string_from_dwz (struct dwz_file *, LONGEST);
36586728 1480
d521ce57 1481static ULONGEST read_unsigned_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1482
d521ce57 1483static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
c906108c 1484
d521ce57
TT
1485static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1486 const gdb_byte *,
3019eac3
DE
1487 unsigned int *);
1488
d521ce57 1489static const char *read_str_index (const struct die_reader_specs *reader,
342587c4 1490 ULONGEST str_index);
3019eac3 1491
e142c38c 1492static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1493
e142c38c
DJ
1494static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1495 struct dwarf2_cu *);
c906108c 1496
348e048f 1497static struct attribute *dwarf2_attr_no_follow (struct die_info *,
45e58e77 1498 unsigned int);
348e048f 1499
05cf31d1
JB
1500static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1501 struct dwarf2_cu *cu);
1502
e142c38c 1503static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1504
e142c38c 1505static struct die_info *die_specification (struct die_info *die,
f2f0e013 1506 struct dwarf2_cu **);
63d06c5c 1507
debd256d
JB
1508static void free_line_header (struct line_header *lh);
1509
3019eac3
DE
1510static struct line_header *dwarf_decode_line_header (unsigned int offset,
1511 struct dwarf2_cu *cu);
debd256d 1512
f3f5162e 1513static void dwarf_decode_lines (struct line_header *, const char *,
c3b7b696
YQ
1514 struct dwarf2_cu *, struct partial_symtab *,
1515 CORE_ADDR);
c906108c 1516
4d663531 1517static void dwarf2_start_subfile (const char *, const char *);
c906108c 1518
43f3e411
DE
1519static struct compunit_symtab *dwarf2_start_symtab (struct dwarf2_cu *,
1520 const char *, const char *,
1521 CORE_ADDR);
f4dc4d17 1522
a14ed312 1523static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1524 struct dwarf2_cu *);
c906108c 1525
34eaf542
TT
1526static struct symbol *new_symbol_full (struct die_info *, struct type *,
1527 struct dwarf2_cu *, struct symbol *);
1528
ff39bb5e 1529static void dwarf2_const_value (const struct attribute *, struct symbol *,
e7c27a73 1530 struct dwarf2_cu *);
c906108c 1531
ff39bb5e 1532static void dwarf2_const_value_attr (const struct attribute *attr,
98bfdba5
PA
1533 struct type *type,
1534 const char *name,
1535 struct obstack *obstack,
12df843f 1536 struct dwarf2_cu *cu, LONGEST *value,
d521ce57 1537 const gdb_byte **bytes,
98bfdba5 1538 struct dwarf2_locexpr_baton **baton);
2df3850c 1539
e7c27a73 1540static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1541
b4ba55a1
JB
1542static int need_gnat_info (struct dwarf2_cu *);
1543
3e43a32a
MS
1544static struct type *die_descriptive_type (struct die_info *,
1545 struct dwarf2_cu *);
b4ba55a1
JB
1546
1547static void set_descriptive_type (struct type *, struct die_info *,
1548 struct dwarf2_cu *);
1549
e7c27a73
DJ
1550static struct type *die_containing_type (struct die_info *,
1551 struct dwarf2_cu *);
c906108c 1552
ff39bb5e 1553static struct type *lookup_die_type (struct die_info *, const struct attribute *,
673bfd45 1554 struct dwarf2_cu *);
c906108c 1555
f792889a 1556static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1557
673bfd45
DE
1558static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1559
0d5cff50 1560static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1561
6e70227d 1562static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1563 const char *suffix, int physname,
1564 struct dwarf2_cu *cu);
63d06c5c 1565
e7c27a73 1566static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1567
348e048f
DE
1568static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1569
e7c27a73 1570static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1571
e7c27a73 1572static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1573
96408a79
SA
1574static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1575
ff013f42
JK
1576static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1577 struct dwarf2_cu *, struct partial_symtab *);
1578
a14ed312 1579static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1580 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1581 struct partial_symtab *);
c906108c 1582
fae299cd
DC
1583static void get_scope_pc_bounds (struct die_info *,
1584 CORE_ADDR *, CORE_ADDR *,
1585 struct dwarf2_cu *);
1586
801e3a5b
JB
1587static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1588 CORE_ADDR, struct dwarf2_cu *);
1589
a14ed312 1590static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1591 struct dwarf2_cu *);
c906108c 1592
a14ed312 1593static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1594 struct type *, struct dwarf2_cu *);
c906108c 1595
a14ed312 1596static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1597 struct die_info *, struct type *,
e7c27a73 1598 struct dwarf2_cu *);
c906108c 1599
a14ed312 1600static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1601 struct type *,
1602 struct dwarf2_cu *);
c906108c 1603
134d01f1 1604static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1605
e7c27a73 1606static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1607
e7c27a73 1608static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1609
5d7cb8df
JK
1610static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1611
27aa8d6a
SW
1612static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1613
74921315
KS
1614static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1615
f55ee35c
JK
1616static struct type *read_module_type (struct die_info *die,
1617 struct dwarf2_cu *cu);
1618
38d518c9 1619static const char *namespace_name (struct die_info *die,
e142c38c 1620 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1621
134d01f1 1622static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1623
e7c27a73 1624static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1625
6e70227d 1626static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1627 struct dwarf2_cu *);
1628
bf6af496 1629static struct die_info *read_die_and_siblings_1
d521ce57 1630 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
bf6af496 1631 struct die_info *);
639d11d3 1632
dee91e82 1633static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
d521ce57
TT
1634 const gdb_byte *info_ptr,
1635 const gdb_byte **new_info_ptr,
639d11d3
DC
1636 struct die_info *parent);
1637
d521ce57
TT
1638static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1639 struct die_info **, const gdb_byte *,
1640 int *, int);
3019eac3 1641
d521ce57
TT
1642static const gdb_byte *read_full_die (const struct die_reader_specs *,
1643 struct die_info **, const gdb_byte *,
1644 int *);
93311388 1645
e7c27a73 1646static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1647
15d034d0
TT
1648static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1649 struct obstack *);
71c25dea 1650
15d034d0 1651static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1652
15d034d0 1653static const char *dwarf2_full_name (const char *name,
98bfdba5
PA
1654 struct die_info *die,
1655 struct dwarf2_cu *cu);
1656
ca69b9e6
DE
1657static const char *dwarf2_physname (const char *name, struct die_info *die,
1658 struct dwarf2_cu *cu);
1659
e142c38c 1660static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1661 struct dwarf2_cu **);
9219021c 1662
f39c6ffd 1663static const char *dwarf_tag_name (unsigned int);
c906108c 1664
f39c6ffd 1665static const char *dwarf_attr_name (unsigned int);
c906108c 1666
f39c6ffd 1667static const char *dwarf_form_name (unsigned int);
c906108c 1668
a14ed312 1669static char *dwarf_bool_name (unsigned int);
c906108c 1670
f39c6ffd 1671static const char *dwarf_type_encoding_name (unsigned int);
c906108c 1672
f9aca02d 1673static struct die_info *sibling_die (struct die_info *);
c906108c 1674
d97bc12b
DE
1675static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1676
1677static void dump_die_for_error (struct die_info *);
1678
1679static void dump_die_1 (struct ui_file *, int level, int max_level,
1680 struct die_info *);
c906108c 1681
d97bc12b 1682/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1683
51545339 1684static void store_in_ref_table (struct die_info *,
10b3939b 1685 struct dwarf2_cu *);
c906108c 1686
ff39bb5e 1687static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
c906108c 1688
ff39bb5e 1689static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
a02abb62 1690
348e048f 1691static struct die_info *follow_die_ref_or_sig (struct die_info *,
ff39bb5e 1692 const struct attribute *,
348e048f
DE
1693 struct dwarf2_cu **);
1694
10b3939b 1695static struct die_info *follow_die_ref (struct die_info *,
ff39bb5e 1696 const struct attribute *,
f2f0e013 1697 struct dwarf2_cu **);
c906108c 1698
348e048f 1699static struct die_info *follow_die_sig (struct die_info *,
ff39bb5e 1700 const struct attribute *,
348e048f
DE
1701 struct dwarf2_cu **);
1702
ac9ec31b
DE
1703static struct type *get_signatured_type (struct die_info *, ULONGEST,
1704 struct dwarf2_cu *);
1705
1706static struct type *get_DW_AT_signature_type (struct die_info *,
ff39bb5e 1707 const struct attribute *,
ac9ec31b
DE
1708 struct dwarf2_cu *);
1709
e5fe5e75 1710static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
348e048f 1711
52dc124a 1712static void read_signatured_type (struct signatured_type *);
348e048f 1713
c906108c
SS
1714/* memory allocation interface */
1715
7b5a2f43 1716static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1717
b60c80d6 1718static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1719
43f3e411 1720static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
2e276125 1721
6e5a29e1 1722static int attr_form_is_block (const struct attribute *);
8e19ed76 1723
6e5a29e1 1724static int attr_form_is_section_offset (const struct attribute *);
3690dd37 1725
6e5a29e1 1726static int attr_form_is_constant (const struct attribute *);
3690dd37 1727
6e5a29e1 1728static int attr_form_is_ref (const struct attribute *);
7771576e 1729
8cf6f0b1
TT
1730static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1731 struct dwarf2_loclist_baton *baton,
ff39bb5e 1732 const struct attribute *attr);
8cf6f0b1 1733
ff39bb5e 1734static void dwarf2_symbol_mark_computed (const struct attribute *attr,
93e7bd98 1735 struct symbol *sym,
f1e6e072
TT
1736 struct dwarf2_cu *cu,
1737 int is_block);
4c2df51b 1738
d521ce57
TT
1739static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1740 const gdb_byte *info_ptr,
1741 struct abbrev_info *abbrev);
4bb7a0a7 1742
72bf9492
DJ
1743static void free_stack_comp_unit (void *);
1744
72bf9492
DJ
1745static hashval_t partial_die_hash (const void *item);
1746
1747static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1748
ae038cb0 1749static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
36586728 1750 (sect_offset offset, unsigned int offset_in_dwz, struct objfile *objfile);
ae038cb0 1751
9816fde3 1752static void init_one_comp_unit (struct dwarf2_cu *cu,
23745b47 1753 struct dwarf2_per_cu_data *per_cu);
9816fde3
JK
1754
1755static void prepare_one_comp_unit (struct dwarf2_cu *cu,
95554aad
TT
1756 struct die_info *comp_unit_die,
1757 enum language pretend_language);
93311388 1758
68dc6402 1759static void free_heap_comp_unit (void *);
ae038cb0
DJ
1760
1761static void free_cached_comp_units (void *);
1762
1763static void age_cached_comp_units (void);
1764
dee91e82 1765static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
ae038cb0 1766
f792889a
DJ
1767static struct type *set_die_type (struct die_info *, struct type *,
1768 struct dwarf2_cu *);
1c379e20 1769
ae038cb0
DJ
1770static void create_all_comp_units (struct objfile *);
1771
0e50663e 1772static int create_all_type_units (struct objfile *);
1fd400ff 1773
95554aad
TT
1774static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1775 enum language);
10b3939b 1776
95554aad
TT
1777static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1778 enum language);
10b3939b 1779
f4dc4d17
DE
1780static void process_full_type_unit (struct dwarf2_per_cu_data *,
1781 enum language);
1782
10b3939b
DJ
1783static void dwarf2_add_dependence (struct dwarf2_cu *,
1784 struct dwarf2_per_cu_data *);
1785
ae038cb0
DJ
1786static void dwarf2_mark (struct dwarf2_cu *);
1787
1788static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1789
b64f50a1 1790static struct type *get_die_type_at_offset (sect_offset,
ac9ec31b 1791 struct dwarf2_per_cu_data *);
673bfd45 1792
f792889a 1793static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1794
9291a0cd
TT
1795static void dwarf2_release_queue (void *dummy);
1796
95554aad
TT
1797static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1798 enum language pretend_language);
1799
a0f42c21 1800static void process_queue (void);
9291a0cd
TT
1801
1802static void find_file_and_directory (struct die_info *die,
1803 struct dwarf2_cu *cu,
15d034d0 1804 const char **name, const char **comp_dir);
9291a0cd
TT
1805
1806static char *file_full_name (int file, struct line_header *lh,
1807 const char *comp_dir);
1808
d521ce57 1809static const gdb_byte *read_and_check_comp_unit_head
36586728
TT
1810 (struct comp_unit_head *header,
1811 struct dwarf2_section_info *section,
d521ce57 1812 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
36586728
TT
1813 int is_debug_types_section);
1814
fd820528 1815static void init_cutu_and_read_dies
f4dc4d17
DE
1816 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1817 int use_existing_cu, int keep,
3019eac3
DE
1818 die_reader_func_ftype *die_reader_func, void *data);
1819
dee91e82
DE
1820static void init_cutu_and_read_dies_simple
1821 (struct dwarf2_per_cu_data *this_cu,
1822 die_reader_func_ftype *die_reader_func, void *data);
9291a0cd 1823
673bfd45 1824static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1825
3019eac3
DE
1826static htab_t allocate_dwo_unit_table (struct objfile *objfile);
1827
57d63ce2
DE
1828static struct dwo_unit *lookup_dwo_unit_in_dwp
1829 (struct dwp_file *dwp_file, const char *comp_dir,
1830 ULONGEST signature, int is_debug_types);
a2ce51a0
DE
1831
1832static struct dwp_file *get_dwp_file (void);
1833
3019eac3 1834static struct dwo_unit *lookup_dwo_comp_unit
a1855c1d 1835 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
3019eac3
DE
1836
1837static struct dwo_unit *lookup_dwo_type_unit
a1855c1d 1838 (struct signatured_type *, const char *, const char *);
3019eac3 1839
89e63ee4
DE
1840static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1841
3019eac3
DE
1842static void free_dwo_file_cleanup (void *);
1843
95554aad
TT
1844static void process_cu_includes (void);
1845
1b80a9fa 1846static void check_producer (struct dwarf2_cu *cu);
4390d890
DE
1847\f
1848/* Various complaints about symbol reading that don't abort the process. */
1849
1850static void
1851dwarf2_statement_list_fits_in_line_number_section_complaint (void)
1852{
1853 complaint (&symfile_complaints,
1854 _("statement list doesn't fit in .debug_line section"));
1855}
1856
1857static void
1858dwarf2_debug_line_missing_file_complaint (void)
1859{
1860 complaint (&symfile_complaints,
1861 _(".debug_line section has line data without a file"));
1862}
1863
1864static void
1865dwarf2_debug_line_missing_end_sequence_complaint (void)
1866{
1867 complaint (&symfile_complaints,
1868 _(".debug_line section has line "
1869 "program sequence without an end"));
1870}
1871
1872static void
1873dwarf2_complex_location_expr_complaint (void)
1874{
1875 complaint (&symfile_complaints, _("location expression too complex"));
1876}
1877
1878static void
1879dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1880 int arg3)
1881{
1882 complaint (&symfile_complaints,
1883 _("const value length mismatch for '%s', got %d, expected %d"),
1884 arg1, arg2, arg3);
1885}
1886
1887static void
1888dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
1889{
1890 complaint (&symfile_complaints,
1891 _("debug info runs off end of %s section"
1892 " [in module %s]"),
a32a8923
DE
1893 get_section_name (section),
1894 get_section_file_name (section));
4390d890 1895}
1b80a9fa 1896
4390d890
DE
1897static void
1898dwarf2_macro_malformed_definition_complaint (const char *arg1)
1899{
1900 complaint (&symfile_complaints,
1901 _("macro debug info contains a "
1902 "malformed macro definition:\n`%s'"),
1903 arg1);
1904}
1905
1906static void
1907dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1908{
1909 complaint (&symfile_complaints,
1910 _("invalid attribute class or form for '%s' in '%s'"),
1911 arg1, arg2);
1912}
1913\f
9291a0cd
TT
1914#if WORDS_BIGENDIAN
1915
1916/* Convert VALUE between big- and little-endian. */
1917static offset_type
1918byte_swap (offset_type value)
1919{
1920 offset_type result;
1921
1922 result = (value & 0xff) << 24;
1923 result |= (value & 0xff00) << 8;
1924 result |= (value & 0xff0000) >> 8;
1925 result |= (value & 0xff000000) >> 24;
1926 return result;
1927}
1928
1929#define MAYBE_SWAP(V) byte_swap (V)
1930
1931#else
1932#define MAYBE_SWAP(V) (V)
1933#endif /* WORDS_BIGENDIAN */
1934
31aa7e4e
JB
1935/* Read the given attribute value as an address, taking the attribute's
1936 form into account. */
1937
1938static CORE_ADDR
1939attr_value_as_address (struct attribute *attr)
1940{
1941 CORE_ADDR addr;
1942
1943 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_GNU_addr_index)
1944 {
1945 /* Aside from a few clearly defined exceptions, attributes that
1946 contain an address must always be in DW_FORM_addr form.
1947 Unfortunately, some compilers happen to be violating this
1948 requirement by encoding addresses using other forms, such
1949 as DW_FORM_data4 for example. For those broken compilers,
1950 we try to do our best, without any guarantee of success,
1951 to interpret the address correctly. It would also be nice
1952 to generate a complaint, but that would require us to maintain
1953 a list of legitimate cases where a non-address form is allowed,
1954 as well as update callers to pass in at least the CU's DWARF
1955 version. This is more overhead than what we're willing to
1956 expand for a pretty rare case. */
1957 addr = DW_UNSND (attr);
1958 }
1959 else
1960 addr = DW_ADDR (attr);
1961
1962 return addr;
1963}
1964
9291a0cd
TT
1965/* The suffix for an index file. */
1966#define INDEX_SUFFIX ".gdb-index"
1967
c906108c 1968/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
1969 information and return true if we have enough to do something.
1970 NAMES points to the dwarf2 section names, or is NULL if the standard
1971 ELF names are used. */
c906108c
SS
1972
1973int
251d32d9
TG
1974dwarf2_has_info (struct objfile *objfile,
1975 const struct dwarf2_debug_sections *names)
c906108c 1976{
be391dca
TT
1977 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1978 if (!dwarf2_per_objfile)
1979 {
1980 /* Initialize per-objfile state. */
1981 struct dwarf2_per_objfile *data
1982 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1983
be391dca
TT
1984 memset (data, 0, sizeof (*data));
1985 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1986 dwarf2_per_objfile = data;
6502dd73 1987
251d32d9
TG
1988 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1989 (void *) names);
be391dca
TT
1990 dwarf2_per_objfile->objfile = objfile;
1991 }
73869dc2
DE
1992 return (!dwarf2_per_objfile->info.is_virtual
1993 && dwarf2_per_objfile->info.s.asection != NULL
1994 && !dwarf2_per_objfile->abbrev.is_virtual
1995 && dwarf2_per_objfile->abbrev.s.asection != NULL);
1996}
1997
1998/* Return the containing section of virtual section SECTION. */
1999
2000static struct dwarf2_section_info *
2001get_containing_section (const struct dwarf2_section_info *section)
2002{
2003 gdb_assert (section->is_virtual);
2004 return section->s.containing_section;
c906108c
SS
2005}
2006
a32a8923
DE
2007/* Return the bfd owner of SECTION. */
2008
2009static struct bfd *
2010get_section_bfd_owner (const struct dwarf2_section_info *section)
2011{
73869dc2
DE
2012 if (section->is_virtual)
2013 {
2014 section = get_containing_section (section);
2015 gdb_assert (!section->is_virtual);
2016 }
2017 return section->s.asection->owner;
a32a8923
DE
2018}
2019
2020/* Return the bfd section of SECTION.
2021 Returns NULL if the section is not present. */
2022
2023static asection *
2024get_section_bfd_section (const struct dwarf2_section_info *section)
2025{
73869dc2
DE
2026 if (section->is_virtual)
2027 {
2028 section = get_containing_section (section);
2029 gdb_assert (!section->is_virtual);
2030 }
2031 return section->s.asection;
a32a8923
DE
2032}
2033
2034/* Return the name of SECTION. */
2035
2036static const char *
2037get_section_name (const struct dwarf2_section_info *section)
2038{
2039 asection *sectp = get_section_bfd_section (section);
2040
2041 gdb_assert (sectp != NULL);
2042 return bfd_section_name (get_section_bfd_owner (section), sectp);
2043}
2044
2045/* Return the name of the file SECTION is in. */
2046
2047static const char *
2048get_section_file_name (const struct dwarf2_section_info *section)
2049{
2050 bfd *abfd = get_section_bfd_owner (section);
2051
2052 return bfd_get_filename (abfd);
2053}
2054
2055/* Return the id of SECTION.
2056 Returns 0 if SECTION doesn't exist. */
2057
2058static int
2059get_section_id (const struct dwarf2_section_info *section)
2060{
2061 asection *sectp = get_section_bfd_section (section);
2062
2063 if (sectp == NULL)
2064 return 0;
2065 return sectp->id;
2066}
2067
2068/* Return the flags of SECTION.
73869dc2 2069 SECTION (or containing section if this is a virtual section) must exist. */
a32a8923
DE
2070
2071static int
2072get_section_flags (const struct dwarf2_section_info *section)
2073{
2074 asection *sectp = get_section_bfd_section (section);
2075
2076 gdb_assert (sectp != NULL);
2077 return bfd_get_section_flags (sectp->owner, sectp);
2078}
2079
251d32d9
TG
2080/* When loading sections, we look either for uncompressed section or for
2081 compressed section names. */
233a11ab
CS
2082
2083static int
251d32d9
TG
2084section_is_p (const char *section_name,
2085 const struct dwarf2_section_names *names)
233a11ab 2086{
251d32d9
TG
2087 if (names->normal != NULL
2088 && strcmp (section_name, names->normal) == 0)
2089 return 1;
2090 if (names->compressed != NULL
2091 && strcmp (section_name, names->compressed) == 0)
2092 return 1;
2093 return 0;
233a11ab
CS
2094}
2095
c906108c
SS
2096/* This function is mapped across the sections and remembers the
2097 offset and size of each of the debugging sections we are interested
2098 in. */
2099
2100static void
251d32d9 2101dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 2102{
251d32d9 2103 const struct dwarf2_debug_sections *names;
dc7650b8 2104 flagword aflag = bfd_get_section_flags (abfd, sectp);
251d32d9
TG
2105
2106 if (vnames == NULL)
2107 names = &dwarf2_elf_names;
2108 else
2109 names = (const struct dwarf2_debug_sections *) vnames;
2110
dc7650b8
JK
2111 if ((aflag & SEC_HAS_CONTENTS) == 0)
2112 {
2113 }
2114 else if (section_is_p (sectp->name, &names->info))
c906108c 2115 {
73869dc2 2116 dwarf2_per_objfile->info.s.asection = sectp;
dce234bc 2117 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 2118 }
251d32d9 2119 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 2120 {
73869dc2 2121 dwarf2_per_objfile->abbrev.s.asection = sectp;
dce234bc 2122 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 2123 }
251d32d9 2124 else if (section_is_p (sectp->name, &names->line))
c906108c 2125 {
73869dc2 2126 dwarf2_per_objfile->line.s.asection = sectp;
dce234bc 2127 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 2128 }
251d32d9 2129 else if (section_is_p (sectp->name, &names->loc))
c906108c 2130 {
73869dc2 2131 dwarf2_per_objfile->loc.s.asection = sectp;
dce234bc 2132 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 2133 }
251d32d9 2134 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 2135 {
73869dc2 2136 dwarf2_per_objfile->macinfo.s.asection = sectp;
dce234bc 2137 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 2138 }
cf2c3c16
TT
2139 else if (section_is_p (sectp->name, &names->macro))
2140 {
73869dc2 2141 dwarf2_per_objfile->macro.s.asection = sectp;
cf2c3c16
TT
2142 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
2143 }
251d32d9 2144 else if (section_is_p (sectp->name, &names->str))
c906108c 2145 {
73869dc2 2146 dwarf2_per_objfile->str.s.asection = sectp;
dce234bc 2147 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 2148 }
3019eac3
DE
2149 else if (section_is_p (sectp->name, &names->addr))
2150 {
73869dc2 2151 dwarf2_per_objfile->addr.s.asection = sectp;
3019eac3
DE
2152 dwarf2_per_objfile->addr.size = bfd_get_section_size (sectp);
2153 }
251d32d9 2154 else if (section_is_p (sectp->name, &names->frame))
b6af0555 2155 {
73869dc2 2156 dwarf2_per_objfile->frame.s.asection = sectp;
dce234bc 2157 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 2158 }
251d32d9 2159 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 2160 {
73869dc2 2161 dwarf2_per_objfile->eh_frame.s.asection = sectp;
dc7650b8 2162 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
b6af0555 2163 }
251d32d9 2164 else if (section_is_p (sectp->name, &names->ranges))
af34e669 2165 {
73869dc2 2166 dwarf2_per_objfile->ranges.s.asection = sectp;
dce234bc 2167 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 2168 }
251d32d9 2169 else if (section_is_p (sectp->name, &names->types))
348e048f 2170 {
8b70b953
TT
2171 struct dwarf2_section_info type_section;
2172
2173 memset (&type_section, 0, sizeof (type_section));
73869dc2 2174 type_section.s.asection = sectp;
8b70b953
TT
2175 type_section.size = bfd_get_section_size (sectp);
2176
2177 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
2178 &type_section);
348e048f 2179 }
251d32d9 2180 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd 2181 {
73869dc2 2182 dwarf2_per_objfile->gdb_index.s.asection = sectp;
9291a0cd
TT
2183 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
2184 }
dce234bc 2185
72dca2f5
FR
2186 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
2187 && bfd_section_vma (abfd, sectp) == 0)
2188 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
2189}
2190
fceca515
DE
2191/* A helper function that decides whether a section is empty,
2192 or not present. */
9e0ac564
TT
2193
2194static int
19ac8c2e 2195dwarf2_section_empty_p (const struct dwarf2_section_info *section)
9e0ac564 2196{
73869dc2
DE
2197 if (section->is_virtual)
2198 return section->size == 0;
2199 return section->s.asection == NULL || section->size == 0;
9e0ac564
TT
2200}
2201
3019eac3
DE
2202/* Read the contents of the section INFO.
2203 OBJFILE is the main object file, but not necessarily the file where
a32a8923
DE
2204 the section comes from. E.g., for DWO files the bfd of INFO is the bfd
2205 of the DWO file.
dce234bc 2206 If the section is compressed, uncompress it before returning. */
c906108c 2207
dce234bc
PP
2208static void
2209dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 2210{
a32a8923 2211 asection *sectp;
3019eac3 2212 bfd *abfd;
dce234bc 2213 gdb_byte *buf, *retbuf;
c906108c 2214
be391dca
TT
2215 if (info->readin)
2216 return;
dce234bc 2217 info->buffer = NULL;
be391dca 2218 info->readin = 1;
188dd5d6 2219
9e0ac564 2220 if (dwarf2_section_empty_p (info))
dce234bc 2221 return;
c906108c 2222
a32a8923 2223 sectp = get_section_bfd_section (info);
3019eac3 2224
73869dc2
DE
2225 /* If this is a virtual section we need to read in the real one first. */
2226 if (info->is_virtual)
2227 {
2228 struct dwarf2_section_info *containing_section =
2229 get_containing_section (info);
2230
2231 gdb_assert (sectp != NULL);
2232 if ((sectp->flags & SEC_RELOC) != 0)
2233 {
2234 error (_("Dwarf Error: DWP format V2 with relocations is not"
2235 " supported in section %s [in module %s]"),
2236 get_section_name (info), get_section_file_name (info));
2237 }
2238 dwarf2_read_section (objfile, containing_section);
2239 /* Other code should have already caught virtual sections that don't
2240 fit. */
2241 gdb_assert (info->virtual_offset + info->size
2242 <= containing_section->size);
2243 /* If the real section is empty or there was a problem reading the
2244 section we shouldn't get here. */
2245 gdb_assert (containing_section->buffer != NULL);
2246 info->buffer = containing_section->buffer + info->virtual_offset;
2247 return;
2248 }
2249
4bf44c1c
TT
2250 /* If the section has relocations, we must read it ourselves.
2251 Otherwise we attach it to the BFD. */
2252 if ((sectp->flags & SEC_RELOC) == 0)
dce234bc 2253 {
d521ce57 2254 info->buffer = gdb_bfd_map_section (sectp, &info->size);
4bf44c1c 2255 return;
dce234bc 2256 }
dce234bc 2257
4bf44c1c
TT
2258 buf = obstack_alloc (&objfile->objfile_obstack, info->size);
2259 info->buffer = buf;
dce234bc
PP
2260
2261 /* When debugging .o files, we may need to apply relocations; see
2262 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2263 We never compress sections in .o files, so we only need to
2264 try this when the section is not compressed. */
ac8035ab 2265 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
2266 if (retbuf != NULL)
2267 {
2268 info->buffer = retbuf;
2269 return;
2270 }
2271
a32a8923
DE
2272 abfd = get_section_bfd_owner (info);
2273 gdb_assert (abfd != NULL);
2274
dce234bc
PP
2275 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2276 || bfd_bread (buf, info->size, abfd) != info->size)
19ac8c2e
DE
2277 {
2278 error (_("Dwarf Error: Can't read DWARF data"
2279 " in section %s [in module %s]"),
2280 bfd_section_name (abfd, sectp), bfd_get_filename (abfd));
2281 }
dce234bc
PP
2282}
2283
9e0ac564
TT
2284/* A helper function that returns the size of a section in a safe way.
2285 If you are positive that the section has been read before using the
2286 size, then it is safe to refer to the dwarf2_section_info object's
2287 "size" field directly. In other cases, you must call this
2288 function, because for compressed sections the size field is not set
2289 correctly until the section has been read. */
2290
2291static bfd_size_type
2292dwarf2_section_size (struct objfile *objfile,
2293 struct dwarf2_section_info *info)
2294{
2295 if (!info->readin)
2296 dwarf2_read_section (objfile, info);
2297 return info->size;
2298}
2299
dce234bc 2300/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 2301 SECTION_NAME. */
af34e669 2302
dce234bc 2303void
3017a003
TG
2304dwarf2_get_section_info (struct objfile *objfile,
2305 enum dwarf2_section_enum sect,
d521ce57 2306 asection **sectp, const gdb_byte **bufp,
dce234bc
PP
2307 bfd_size_type *sizep)
2308{
2309 struct dwarf2_per_objfile *data
2310 = objfile_data (objfile, dwarf2_objfile_data_key);
2311 struct dwarf2_section_info *info;
a3b2a86b
TT
2312
2313 /* We may see an objfile without any DWARF, in which case we just
2314 return nothing. */
2315 if (data == NULL)
2316 {
2317 *sectp = NULL;
2318 *bufp = NULL;
2319 *sizep = 0;
2320 return;
2321 }
3017a003
TG
2322 switch (sect)
2323 {
2324 case DWARF2_DEBUG_FRAME:
2325 info = &data->frame;
2326 break;
2327 case DWARF2_EH_FRAME:
2328 info = &data->eh_frame;
2329 break;
2330 default:
2331 gdb_assert_not_reached ("unexpected section");
2332 }
dce234bc 2333
9e0ac564 2334 dwarf2_read_section (objfile, info);
dce234bc 2335
a32a8923 2336 *sectp = get_section_bfd_section (info);
dce234bc
PP
2337 *bufp = info->buffer;
2338 *sizep = info->size;
2339}
2340
36586728
TT
2341/* A helper function to find the sections for a .dwz file. */
2342
2343static void
2344locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2345{
2346 struct dwz_file *dwz_file = arg;
2347
2348 /* Note that we only support the standard ELF names, because .dwz
2349 is ELF-only (at the time of writing). */
2350 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2351 {
73869dc2 2352 dwz_file->abbrev.s.asection = sectp;
36586728
TT
2353 dwz_file->abbrev.size = bfd_get_section_size (sectp);
2354 }
2355 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2356 {
73869dc2 2357 dwz_file->info.s.asection = sectp;
36586728
TT
2358 dwz_file->info.size = bfd_get_section_size (sectp);
2359 }
2360 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2361 {
73869dc2 2362 dwz_file->str.s.asection = sectp;
36586728
TT
2363 dwz_file->str.size = bfd_get_section_size (sectp);
2364 }
2365 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2366 {
73869dc2 2367 dwz_file->line.s.asection = sectp;
36586728
TT
2368 dwz_file->line.size = bfd_get_section_size (sectp);
2369 }
2370 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2371 {
73869dc2 2372 dwz_file->macro.s.asection = sectp;
36586728
TT
2373 dwz_file->macro.size = bfd_get_section_size (sectp);
2374 }
2ec9a5e0
TT
2375 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2376 {
73869dc2 2377 dwz_file->gdb_index.s.asection = sectp;
2ec9a5e0
TT
2378 dwz_file->gdb_index.size = bfd_get_section_size (sectp);
2379 }
36586728
TT
2380}
2381
4db1a1dc
TT
2382/* Open the separate '.dwz' debug file, if needed. Return NULL if
2383 there is no .gnu_debugaltlink section in the file. Error if there
2384 is such a section but the file cannot be found. */
36586728
TT
2385
2386static struct dwz_file *
2387dwarf2_get_dwz_file (void)
2388{
4db1a1dc
TT
2389 bfd *dwz_bfd;
2390 char *data;
36586728
TT
2391 struct cleanup *cleanup;
2392 const char *filename;
2393 struct dwz_file *result;
acd13123 2394 bfd_size_type buildid_len_arg;
dc294be5
TT
2395 size_t buildid_len;
2396 bfd_byte *buildid;
36586728
TT
2397
2398 if (dwarf2_per_objfile->dwz_file != NULL)
2399 return dwarf2_per_objfile->dwz_file;
2400
4db1a1dc
TT
2401 bfd_set_error (bfd_error_no_error);
2402 data = bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
acd13123 2403 &buildid_len_arg, &buildid);
4db1a1dc
TT
2404 if (data == NULL)
2405 {
2406 if (bfd_get_error () == bfd_error_no_error)
2407 return NULL;
2408 error (_("could not read '.gnu_debugaltlink' section: %s"),
2409 bfd_errmsg (bfd_get_error ()));
2410 }
36586728 2411 cleanup = make_cleanup (xfree, data);
dc294be5 2412 make_cleanup (xfree, buildid);
36586728 2413
acd13123
TT
2414 buildid_len = (size_t) buildid_len_arg;
2415
f9d83a0b 2416 filename = (const char *) data;
36586728
TT
2417 if (!IS_ABSOLUTE_PATH (filename))
2418 {
4262abfb 2419 char *abs = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
36586728
TT
2420 char *rel;
2421
2422 make_cleanup (xfree, abs);
2423 abs = ldirname (abs);
2424 make_cleanup (xfree, abs);
2425
2426 rel = concat (abs, SLASH_STRING, filename, (char *) NULL);
2427 make_cleanup (xfree, rel);
2428 filename = rel;
2429 }
2430
dc294be5
TT
2431 /* First try the file name given in the section. If that doesn't
2432 work, try to use the build-id instead. */
36586728 2433 dwz_bfd = gdb_bfd_open (filename, gnutarget, -1);
dc294be5 2434 if (dwz_bfd != NULL)
36586728 2435 {
dc294be5
TT
2436 if (!build_id_verify (dwz_bfd, buildid_len, buildid))
2437 {
2438 gdb_bfd_unref (dwz_bfd);
2439 dwz_bfd = NULL;
2440 }
36586728
TT
2441 }
2442
dc294be5
TT
2443 if (dwz_bfd == NULL)
2444 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2445
2446 if (dwz_bfd == NULL)
2447 error (_("could not find '.gnu_debugaltlink' file for %s"),
2448 objfile_name (dwarf2_per_objfile->objfile));
2449
36586728
TT
2450 result = OBSTACK_ZALLOC (&dwarf2_per_objfile->objfile->objfile_obstack,
2451 struct dwz_file);
2452 result->dwz_bfd = dwz_bfd;
2453
2454 bfd_map_over_sections (dwz_bfd, locate_dwz_sections, result);
2455
2456 do_cleanups (cleanup);
2457
13aaf454 2458 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, dwz_bfd);
8d2cc612 2459 dwarf2_per_objfile->dwz_file = result;
36586728
TT
2460 return result;
2461}
9291a0cd 2462\f
7b9f3c50
DE
2463/* DWARF quick_symbols_functions support. */
2464
2465/* TUs can share .debug_line entries, and there can be a lot more TUs than
2466 unique line tables, so we maintain a separate table of all .debug_line
2467 derived entries to support the sharing.
2468 All the quick functions need is the list of file names. We discard the
2469 line_header when we're done and don't need to record it here. */
2470struct quick_file_names
2471{
094b34ac
DE
2472 /* The data used to construct the hash key. */
2473 struct stmt_list_hash hash;
7b9f3c50
DE
2474
2475 /* The number of entries in file_names, real_names. */
2476 unsigned int num_file_names;
2477
2478 /* The file names from the line table, after being run through
2479 file_full_name. */
2480 const char **file_names;
2481
2482 /* The file names from the line table after being run through
2483 gdb_realpath. These are computed lazily. */
2484 const char **real_names;
2485};
2486
2487/* When using the index (and thus not using psymtabs), each CU has an
2488 object of this type. This is used to hold information needed by
2489 the various "quick" methods. */
2490struct dwarf2_per_cu_quick_data
2491{
2492 /* The file table. This can be NULL if there was no file table
2493 or it's currently not read in.
2494 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2495 struct quick_file_names *file_names;
2496
2497 /* The corresponding symbol table. This is NULL if symbols for this
2498 CU have not yet been read. */
43f3e411 2499 struct compunit_symtab *compunit_symtab;
7b9f3c50
DE
2500
2501 /* A temporary mark bit used when iterating over all CUs in
2502 expand_symtabs_matching. */
2503 unsigned int mark : 1;
2504
2505 /* True if we've tried to read the file table and found there isn't one.
2506 There will be no point in trying to read it again next time. */
2507 unsigned int no_file_data : 1;
2508};
2509
094b34ac
DE
2510/* Utility hash function for a stmt_list_hash. */
2511
2512static hashval_t
2513hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2514{
2515 hashval_t v = 0;
2516
2517 if (stmt_list_hash->dwo_unit != NULL)
2518 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2519 v += stmt_list_hash->line_offset.sect_off;
2520 return v;
2521}
2522
2523/* Utility equality function for a stmt_list_hash. */
2524
2525static int
2526eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2527 const struct stmt_list_hash *rhs)
2528{
2529 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2530 return 0;
2531 if (lhs->dwo_unit != NULL
2532 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2533 return 0;
2534
2535 return lhs->line_offset.sect_off == rhs->line_offset.sect_off;
2536}
2537
7b9f3c50
DE
2538/* Hash function for a quick_file_names. */
2539
2540static hashval_t
2541hash_file_name_entry (const void *e)
2542{
2543 const struct quick_file_names *file_data = e;
2544
094b34ac 2545 return hash_stmt_list_entry (&file_data->hash);
7b9f3c50
DE
2546}
2547
2548/* Equality function for a quick_file_names. */
2549
2550static int
2551eq_file_name_entry (const void *a, const void *b)
2552{
2553 const struct quick_file_names *ea = a;
2554 const struct quick_file_names *eb = b;
2555
094b34ac 2556 return eq_stmt_list_entry (&ea->hash, &eb->hash);
7b9f3c50
DE
2557}
2558
2559/* Delete function for a quick_file_names. */
2560
2561static void
2562delete_file_name_entry (void *e)
2563{
2564 struct quick_file_names *file_data = e;
2565 int i;
2566
2567 for (i = 0; i < file_data->num_file_names; ++i)
2568 {
2569 xfree ((void*) file_data->file_names[i]);
2570 if (file_data->real_names)
2571 xfree ((void*) file_data->real_names[i]);
2572 }
2573
2574 /* The space for the struct itself lives on objfile_obstack,
2575 so we don't free it here. */
2576}
2577
2578/* Create a quick_file_names hash table. */
2579
2580static htab_t
2581create_quick_file_names_table (unsigned int nr_initial_entries)
2582{
2583 return htab_create_alloc (nr_initial_entries,
2584 hash_file_name_entry, eq_file_name_entry,
2585 delete_file_name_entry, xcalloc, xfree);
2586}
9291a0cd 2587
918dd910
JK
2588/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2589 have to be created afterwards. You should call age_cached_comp_units after
2590 processing PER_CU->CU. dw2_setup must have been already called. */
2591
2592static void
2593load_cu (struct dwarf2_per_cu_data *per_cu)
2594{
3019eac3 2595 if (per_cu->is_debug_types)
e5fe5e75 2596 load_full_type_unit (per_cu);
918dd910 2597 else
95554aad 2598 load_full_comp_unit (per_cu, language_minimal);
918dd910 2599
918dd910 2600 gdb_assert (per_cu->cu != NULL);
2dc860c0
DE
2601
2602 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
918dd910
JK
2603}
2604
a0f42c21 2605/* Read in the symbols for PER_CU. */
2fdf6df6 2606
9291a0cd 2607static void
a0f42c21 2608dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd
TT
2609{
2610 struct cleanup *back_to;
2611
f4dc4d17
DE
2612 /* Skip type_unit_groups, reading the type units they contain
2613 is handled elsewhere. */
2614 if (IS_TYPE_UNIT_GROUP (per_cu))
2615 return;
2616
9291a0cd
TT
2617 back_to = make_cleanup (dwarf2_release_queue, NULL);
2618
95554aad 2619 if (dwarf2_per_objfile->using_index
43f3e411 2620 ? per_cu->v.quick->compunit_symtab == NULL
95554aad
TT
2621 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2622 {
2623 queue_comp_unit (per_cu, language_minimal);
2624 load_cu (per_cu);
89e63ee4
DE
2625
2626 /* If we just loaded a CU from a DWO, and we're working with an index
2627 that may badly handle TUs, load all the TUs in that DWO as well.
2628 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2629 if (!per_cu->is_debug_types
2630 && per_cu->cu->dwo_unit != NULL
2631 && dwarf2_per_objfile->index_table != NULL
2632 && dwarf2_per_objfile->index_table->version <= 7
2633 /* DWP files aren't supported yet. */
2634 && get_dwp_file () == NULL)
2635 queue_and_load_all_dwo_tus (per_cu);
95554aad 2636 }
9291a0cd 2637
a0f42c21 2638 process_queue ();
9291a0cd
TT
2639
2640 /* Age the cache, releasing compilation units that have not
2641 been used recently. */
2642 age_cached_comp_units ();
2643
2644 do_cleanups (back_to);
2645}
2646
2647/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2648 the objfile from which this CU came. Returns the resulting symbol
2649 table. */
2fdf6df6 2650
43f3e411 2651static struct compunit_symtab *
a0f42c21 2652dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu)
9291a0cd 2653{
95554aad 2654 gdb_assert (dwarf2_per_objfile->using_index);
43f3e411 2655 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
2656 {
2657 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
2658 increment_reading_symtab ();
a0f42c21 2659 dw2_do_instantiate_symtab (per_cu);
95554aad 2660 process_cu_includes ();
9291a0cd
TT
2661 do_cleanups (back_to);
2662 }
f194fefb 2663
43f3e411 2664 return per_cu->v.quick->compunit_symtab;
9291a0cd
TT
2665}
2666
8832e7e3 2667/* Return the CU/TU given its index.
f4dc4d17
DE
2668
2669 This is intended for loops like:
2670
2671 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2672 + dwarf2_per_objfile->n_type_units); ++i)
2673 {
8832e7e3 2674 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
f4dc4d17
DE
2675
2676 ...;
2677 }
2678*/
2fdf6df6 2679
1fd400ff 2680static struct dwarf2_per_cu_data *
8832e7e3 2681dw2_get_cutu (int index)
1fd400ff
TT
2682{
2683 if (index >= dwarf2_per_objfile->n_comp_units)
2684 {
f4dc4d17 2685 index -= dwarf2_per_objfile->n_comp_units;
094b34ac
DE
2686 gdb_assert (index < dwarf2_per_objfile->n_type_units);
2687 return &dwarf2_per_objfile->all_type_units[index]->per_cu;
f4dc4d17
DE
2688 }
2689
2690 return dwarf2_per_objfile->all_comp_units[index];
2691}
2692
8832e7e3
DE
2693/* Return the CU given its index.
2694 This differs from dw2_get_cutu in that it's for when you know INDEX
2695 refers to a CU. */
f4dc4d17
DE
2696
2697static struct dwarf2_per_cu_data *
8832e7e3 2698dw2_get_cu (int index)
f4dc4d17 2699{
8832e7e3 2700 gdb_assert (index >= 0 && index < dwarf2_per_objfile->n_comp_units);
f4dc4d17 2701
1fd400ff
TT
2702 return dwarf2_per_objfile->all_comp_units[index];
2703}
2704
2ec9a5e0
TT
2705/* A helper for create_cus_from_index that handles a given list of
2706 CUs. */
2fdf6df6 2707
74a0d9f6 2708static void
2ec9a5e0
TT
2709create_cus_from_index_list (struct objfile *objfile,
2710 const gdb_byte *cu_list, offset_type n_elements,
2711 struct dwarf2_section_info *section,
2712 int is_dwz,
2713 int base_offset)
9291a0cd
TT
2714{
2715 offset_type i;
9291a0cd 2716
2ec9a5e0 2717 for (i = 0; i < n_elements; i += 2)
9291a0cd
TT
2718 {
2719 struct dwarf2_per_cu_data *the_cu;
2720 ULONGEST offset, length;
2721
74a0d9f6
JK
2722 gdb_static_assert (sizeof (ULONGEST) >= 8);
2723 offset = extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2724 length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
9291a0cd
TT
2725 cu_list += 2 * 8;
2726
2727 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2728 struct dwarf2_per_cu_data);
b64f50a1 2729 the_cu->offset.sect_off = offset;
9291a0cd
TT
2730 the_cu->length = length;
2731 the_cu->objfile = objfile;
8a0459fd 2732 the_cu->section = section;
9291a0cd
TT
2733 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2734 struct dwarf2_per_cu_quick_data);
2ec9a5e0
TT
2735 the_cu->is_dwz = is_dwz;
2736 dwarf2_per_objfile->all_comp_units[base_offset + i / 2] = the_cu;
9291a0cd 2737 }
9291a0cd
TT
2738}
2739
2ec9a5e0 2740/* Read the CU list from the mapped index, and use it to create all
74a0d9f6 2741 the CU objects for this objfile. */
2ec9a5e0 2742
74a0d9f6 2743static void
2ec9a5e0
TT
2744create_cus_from_index (struct objfile *objfile,
2745 const gdb_byte *cu_list, offset_type cu_list_elements,
2746 const gdb_byte *dwz_list, offset_type dwz_elements)
2747{
2748 struct dwz_file *dwz;
2749
2750 dwarf2_per_objfile->n_comp_units = (cu_list_elements + dwz_elements) / 2;
2751 dwarf2_per_objfile->all_comp_units
2752 = obstack_alloc (&objfile->objfile_obstack,
2753 dwarf2_per_objfile->n_comp_units
2754 * sizeof (struct dwarf2_per_cu_data *));
2755
74a0d9f6
JK
2756 create_cus_from_index_list (objfile, cu_list, cu_list_elements,
2757 &dwarf2_per_objfile->info, 0, 0);
2ec9a5e0
TT
2758
2759 if (dwz_elements == 0)
74a0d9f6 2760 return;
2ec9a5e0
TT
2761
2762 dwz = dwarf2_get_dwz_file ();
74a0d9f6
JK
2763 create_cus_from_index_list (objfile, dwz_list, dwz_elements, &dwz->info, 1,
2764 cu_list_elements / 2);
2ec9a5e0
TT
2765}
2766
1fd400ff 2767/* Create the signatured type hash table from the index. */
673bfd45 2768
74a0d9f6 2769static void
673bfd45 2770create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 2771 struct dwarf2_section_info *section,
673bfd45
DE
2772 const gdb_byte *bytes,
2773 offset_type elements)
1fd400ff
TT
2774{
2775 offset_type i;
673bfd45 2776 htab_t sig_types_hash;
1fd400ff 2777
6aa5f3a6
DE
2778 dwarf2_per_objfile->n_type_units
2779 = dwarf2_per_objfile->n_allocated_type_units
2780 = elements / 3;
d467dd73 2781 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
2782 = xmalloc (dwarf2_per_objfile->n_type_units
2783 * sizeof (struct signatured_type *));
1fd400ff 2784
673bfd45 2785 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
2786
2787 for (i = 0; i < elements; i += 3)
2788 {
52dc124a
DE
2789 struct signatured_type *sig_type;
2790 ULONGEST offset, type_offset_in_tu, signature;
1fd400ff
TT
2791 void **slot;
2792
74a0d9f6
JK
2793 gdb_static_assert (sizeof (ULONGEST) >= 8);
2794 offset = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2795 type_offset_in_tu = extract_unsigned_integer (bytes + 8, 8,
2796 BFD_ENDIAN_LITTLE);
1fd400ff
TT
2797 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2798 bytes += 3 * 8;
2799
52dc124a 2800 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1fd400ff 2801 struct signatured_type);
52dc124a 2802 sig_type->signature = signature;
3019eac3
DE
2803 sig_type->type_offset_in_tu.cu_off = type_offset_in_tu;
2804 sig_type->per_cu.is_debug_types = 1;
8a0459fd 2805 sig_type->per_cu.section = section;
52dc124a
DE
2806 sig_type->per_cu.offset.sect_off = offset;
2807 sig_type->per_cu.objfile = objfile;
2808 sig_type->per_cu.v.quick
1fd400ff
TT
2809 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2810 struct dwarf2_per_cu_quick_data);
2811
52dc124a
DE
2812 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
2813 *slot = sig_type;
1fd400ff 2814
b4dd5633 2815 dwarf2_per_objfile->all_type_units[i / 3] = sig_type;
1fd400ff
TT
2816 }
2817
673bfd45 2818 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2819}
2820
9291a0cd
TT
2821/* Read the address map data from the mapped index, and use it to
2822 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2823
9291a0cd
TT
2824static void
2825create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2826{
3e29f34a 2827 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9291a0cd
TT
2828 const gdb_byte *iter, *end;
2829 struct obstack temp_obstack;
2830 struct addrmap *mutable_map;
2831 struct cleanup *cleanup;
2832 CORE_ADDR baseaddr;
2833
2834 obstack_init (&temp_obstack);
2835 cleanup = make_cleanup_obstack_free (&temp_obstack);
2836 mutable_map = addrmap_create_mutable (&temp_obstack);
2837
2838 iter = index->address_table;
2839 end = iter + index->address_table_size;
2840
2841 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2842
2843 while (iter < end)
2844 {
2845 ULONGEST hi, lo, cu_index;
2846 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2847 iter += 8;
2848 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2849 iter += 8;
2850 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2851 iter += 4;
f652bce2 2852
24a55014 2853 if (lo > hi)
f652bce2 2854 {
24a55014
DE
2855 complaint (&symfile_complaints,
2856 _(".gdb_index address table has invalid range (%s - %s)"),
c0cd8254 2857 hex_string (lo), hex_string (hi));
24a55014 2858 continue;
f652bce2 2859 }
24a55014
DE
2860
2861 if (cu_index >= dwarf2_per_objfile->n_comp_units)
f652bce2
DE
2862 {
2863 complaint (&symfile_complaints,
2864 _(".gdb_index address table has invalid CU number %u"),
2865 (unsigned) cu_index);
24a55014 2866 continue;
f652bce2 2867 }
24a55014 2868
3e29f34a
MR
2869 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr);
2870 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr);
2871 addrmap_set_empty (mutable_map, lo, hi - 1, dw2_get_cutu (cu_index));
9291a0cd
TT
2872 }
2873
2874 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2875 &objfile->objfile_obstack);
2876 do_cleanups (cleanup);
2877}
2878
59d7bcaf
JK
2879/* The hash function for strings in the mapped index. This is the same as
2880 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2881 implementation. This is necessary because the hash function is tied to the
2882 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2883 SYMBOL_HASH_NEXT.
2884
2885 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2886
9291a0cd 2887static hashval_t
559a7a62 2888mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2889{
2890 const unsigned char *str = (const unsigned char *) p;
2891 hashval_t r = 0;
2892 unsigned char c;
2893
2894 while ((c = *str++) != 0)
559a7a62
JK
2895 {
2896 if (index_version >= 5)
2897 c = tolower (c);
2898 r = r * 67 + c - 113;
2899 }
9291a0cd
TT
2900
2901 return r;
2902}
2903
2904/* Find a slot in the mapped index INDEX for the object named NAME.
2905 If NAME is found, set *VEC_OUT to point to the CU vector in the
2906 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2907
9291a0cd
TT
2908static int
2909find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2910 offset_type **vec_out)
2911{
0cf03b49
JK
2912 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2913 offset_type hash;
9291a0cd 2914 offset_type slot, step;
559a7a62 2915 int (*cmp) (const char *, const char *);
9291a0cd 2916
0cf03b49
JK
2917 if (current_language->la_language == language_cplus
2918 || current_language->la_language == language_java
2919 || current_language->la_language == language_fortran)
2920 {
2921 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2922 not contain any. */
a8719064 2923
72998fb3 2924 if (strchr (name, '(') != NULL)
0cf03b49 2925 {
72998fb3 2926 char *without_params = cp_remove_params (name);
0cf03b49 2927
72998fb3
DE
2928 if (without_params != NULL)
2929 {
2930 make_cleanup (xfree, without_params);
2931 name = without_params;
2932 }
0cf03b49
JK
2933 }
2934 }
2935
559a7a62 2936 /* Index version 4 did not support case insensitive searches. But the
feea76c2 2937 indices for case insensitive languages are built in lowercase, therefore
559a7a62
JK
2938 simulate our NAME being searched is also lowercased. */
2939 hash = mapped_index_string_hash ((index->version == 4
2940 && case_sensitivity == case_sensitive_off
2941 ? 5 : index->version),
2942 name);
2943
3876f04e
DE
2944 slot = hash & (index->symbol_table_slots - 1);
2945 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 2946 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
2947
2948 for (;;)
2949 {
2950 /* Convert a slot number to an offset into the table. */
2951 offset_type i = 2 * slot;
2952 const char *str;
3876f04e 2953 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
2954 {
2955 do_cleanups (back_to);
2956 return 0;
2957 }
9291a0cd 2958
3876f04e 2959 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 2960 if (!cmp (name, str))
9291a0cd
TT
2961 {
2962 *vec_out = (offset_type *) (index->constant_pool
3876f04e 2963 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 2964 do_cleanups (back_to);
9291a0cd
TT
2965 return 1;
2966 }
2967
3876f04e 2968 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
2969 }
2970}
2971
2ec9a5e0
TT
2972/* A helper function that reads the .gdb_index from SECTION and fills
2973 in MAP. FILENAME is the name of the file containing the section;
2974 it is used for error reporting. DEPRECATED_OK is nonzero if it is
2975 ok to use deprecated sections.
2976
2977 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2978 out parameters that are filled in with information about the CU and
2979 TU lists in the section.
2980
2981 Returns 1 if all went well, 0 otherwise. */
2fdf6df6 2982
9291a0cd 2983static int
2ec9a5e0
TT
2984read_index_from_section (struct objfile *objfile,
2985 const char *filename,
2986 int deprecated_ok,
2987 struct dwarf2_section_info *section,
2988 struct mapped_index *map,
2989 const gdb_byte **cu_list,
2990 offset_type *cu_list_elements,
2991 const gdb_byte **types_list,
2992 offset_type *types_list_elements)
9291a0cd 2993{
948f8e3d 2994 const gdb_byte *addr;
2ec9a5e0 2995 offset_type version;
b3b272e1 2996 offset_type *metadata;
1fd400ff 2997 int i;
9291a0cd 2998
2ec9a5e0 2999 if (dwarf2_section_empty_p (section))
9291a0cd 3000 return 0;
82430852
JK
3001
3002 /* Older elfutils strip versions could keep the section in the main
3003 executable while splitting it for the separate debug info file. */
a32a8923 3004 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
82430852
JK
3005 return 0;
3006
2ec9a5e0 3007 dwarf2_read_section (objfile, section);
9291a0cd 3008
2ec9a5e0 3009 addr = section->buffer;
9291a0cd 3010 /* Version check. */
1fd400ff 3011 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 3012 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 3013 causes the index to behave very poorly for certain requests. Version 3
831adc1f 3014 contained incomplete addrmap. So, it seems better to just ignore such
481860b3 3015 indices. */
831adc1f 3016 if (version < 4)
481860b3
GB
3017 {
3018 static int warning_printed = 0;
3019 if (!warning_printed)
3020 {
3021 warning (_("Skipping obsolete .gdb_index section in %s."),
2ec9a5e0 3022 filename);
481860b3
GB
3023 warning_printed = 1;
3024 }
3025 return 0;
3026 }
3027 /* Index version 4 uses a different hash function than index version
3028 5 and later.
3029
3030 Versions earlier than 6 did not emit psymbols for inlined
3031 functions. Using these files will cause GDB not to be able to
3032 set breakpoints on inlined functions by name, so we ignore these
e615022a
DE
3033 indices unless the user has done
3034 "set use-deprecated-index-sections on". */
2ec9a5e0 3035 if (version < 6 && !deprecated_ok)
481860b3
GB
3036 {
3037 static int warning_printed = 0;
3038 if (!warning_printed)
3039 {
e615022a
DE
3040 warning (_("\
3041Skipping deprecated .gdb_index section in %s.\n\
3042Do \"set use-deprecated-index-sections on\" before the file is read\n\
3043to use the section anyway."),
2ec9a5e0 3044 filename);
481860b3
GB
3045 warning_printed = 1;
3046 }
3047 return 0;
3048 }
796a7ff8 3049 /* Version 7 indices generated by gold refer to the CU for a symbol instead
8943b874
DE
3050 of the TU (for symbols coming from TUs),
3051 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3052 Plus gold-generated indices can have duplicate entries for global symbols,
3053 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3054 These are just performance bugs, and we can't distinguish gdb-generated
3055 indices from gold-generated ones, so issue no warning here. */
796a7ff8 3056
481860b3 3057 /* Indexes with higher version than the one supported by GDB may be no
594e8718 3058 longer backward compatible. */
796a7ff8 3059 if (version > 8)
594e8718 3060 return 0;
9291a0cd 3061
559a7a62 3062 map->version = version;
2ec9a5e0 3063 map->total_size = section->size;
9291a0cd
TT
3064
3065 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
3066
3067 i = 0;
2ec9a5e0
TT
3068 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3069 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3070 / 8);
1fd400ff
TT
3071 ++i;
3072
2ec9a5e0
TT
3073 *types_list = addr + MAYBE_SWAP (metadata[i]);
3074 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3075 - MAYBE_SWAP (metadata[i]))
3076 / 8);
987d643c 3077 ++i;
1fd400ff
TT
3078
3079 map->address_table = addr + MAYBE_SWAP (metadata[i]);
3080 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
3081 - MAYBE_SWAP (metadata[i]));
3082 ++i;
3083
3876f04e
DE
3084 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
3085 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
3086 - MAYBE_SWAP (metadata[i]))
3087 / (2 * sizeof (offset_type)));
1fd400ff 3088 ++i;
9291a0cd 3089
f9d83a0b 3090 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
1fd400ff 3091
2ec9a5e0
TT
3092 return 1;
3093}
3094
3095
3096/* Read the index file. If everything went ok, initialize the "quick"
3097 elements of all the CUs and return 1. Otherwise, return 0. */
3098
3099static int
3100dwarf2_read_index (struct objfile *objfile)
3101{
3102 struct mapped_index local_map, *map;
3103 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3104 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
4db1a1dc 3105 struct dwz_file *dwz;
2ec9a5e0 3106
4262abfb 3107 if (!read_index_from_section (objfile, objfile_name (objfile),
2ec9a5e0
TT
3108 use_deprecated_index_sections,
3109 &dwarf2_per_objfile->gdb_index, &local_map,
3110 &cu_list, &cu_list_elements,
3111 &types_list, &types_list_elements))
3112 return 0;
3113
0fefef59 3114 /* Don't use the index if it's empty. */
2ec9a5e0 3115 if (local_map.symbol_table_slots == 0)
0fefef59
DE
3116 return 0;
3117
2ec9a5e0
TT
3118 /* If there is a .dwz file, read it so we can get its CU list as
3119 well. */
4db1a1dc
TT
3120 dwz = dwarf2_get_dwz_file ();
3121 if (dwz != NULL)
2ec9a5e0 3122 {
2ec9a5e0
TT
3123 struct mapped_index dwz_map;
3124 const gdb_byte *dwz_types_ignore;
3125 offset_type dwz_types_elements_ignore;
3126
3127 if (!read_index_from_section (objfile, bfd_get_filename (dwz->dwz_bfd),
3128 1,
3129 &dwz->gdb_index, &dwz_map,
3130 &dwz_list, &dwz_list_elements,
3131 &dwz_types_ignore,
3132 &dwz_types_elements_ignore))
3133 {
3134 warning (_("could not read '.gdb_index' section from %s; skipping"),
3135 bfd_get_filename (dwz->dwz_bfd));
3136 return 0;
3137 }
3138 }
3139
74a0d9f6
JK
3140 create_cus_from_index (objfile, cu_list, cu_list_elements, dwz_list,
3141 dwz_list_elements);
1fd400ff 3142
8b70b953
TT
3143 if (types_list_elements)
3144 {
3145 struct dwarf2_section_info *section;
3146
3147 /* We can only handle a single .debug_types when we have an
3148 index. */
3149 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
3150 return 0;
3151
3152 section = VEC_index (dwarf2_section_info_def,
3153 dwarf2_per_objfile->types, 0);
3154
74a0d9f6
JK
3155 create_signatured_type_table_from_index (objfile, section, types_list,
3156 types_list_elements);
8b70b953 3157 }
9291a0cd 3158
2ec9a5e0
TT
3159 create_addrmap_from_index (objfile, &local_map);
3160
3161 map = obstack_alloc (&objfile->objfile_obstack, sizeof (struct mapped_index));
3162 *map = local_map;
9291a0cd
TT
3163
3164 dwarf2_per_objfile->index_table = map;
3165 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
3166 dwarf2_per_objfile->quick_file_names_table =
3167 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
3168
3169 return 1;
3170}
3171
3172/* A helper for the "quick" functions which sets the global
3173 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 3174
9291a0cd
TT
3175static void
3176dw2_setup (struct objfile *objfile)
3177{
3178 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
3179 gdb_assert (dwarf2_per_objfile);
3180}
3181
dee91e82 3182/* die_reader_func for dw2_get_file_names. */
2fdf6df6 3183
dee91e82
DE
3184static void
3185dw2_get_file_names_reader (const struct die_reader_specs *reader,
d521ce57 3186 const gdb_byte *info_ptr,
dee91e82
DE
3187 struct die_info *comp_unit_die,
3188 int has_children,
3189 void *data)
9291a0cd 3190{
dee91e82
DE
3191 struct dwarf2_cu *cu = reader->cu;
3192 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3193 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 3194 struct dwarf2_per_cu_data *lh_cu;
7b9f3c50 3195 struct line_header *lh;
9291a0cd 3196 struct attribute *attr;
dee91e82 3197 int i;
15d034d0 3198 const char *name, *comp_dir;
7b9f3c50
DE
3199 void **slot;
3200 struct quick_file_names *qfn;
3201 unsigned int line_offset;
9291a0cd 3202
0186c6a7
DE
3203 gdb_assert (! this_cu->is_debug_types);
3204
07261596
TT
3205 /* Our callers never want to match partial units -- instead they
3206 will match the enclosing full CU. */
3207 if (comp_unit_die->tag == DW_TAG_partial_unit)
3208 {
3209 this_cu->v.quick->no_file_data = 1;
3210 return;
3211 }
3212
0186c6a7 3213 lh_cu = this_cu;
7b9f3c50
DE
3214 lh = NULL;
3215 slot = NULL;
3216 line_offset = 0;
dee91e82
DE
3217
3218 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
9291a0cd
TT
3219 if (attr)
3220 {
7b9f3c50
DE
3221 struct quick_file_names find_entry;
3222
3223 line_offset = DW_UNSND (attr);
3224
3225 /* We may have already read in this line header (TU line header sharing).
3226 If we have we're done. */
094b34ac
DE
3227 find_entry.hash.dwo_unit = cu->dwo_unit;
3228 find_entry.hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3229 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3230 &find_entry, INSERT);
3231 if (*slot != NULL)
3232 {
094b34ac 3233 lh_cu->v.quick->file_names = *slot;
dee91e82 3234 return;
7b9f3c50
DE
3235 }
3236
3019eac3 3237 lh = dwarf_decode_line_header (line_offset, cu);
9291a0cd
TT
3238 }
3239 if (lh == NULL)
3240 {
094b34ac 3241 lh_cu->v.quick->no_file_data = 1;
dee91e82 3242 return;
9291a0cd
TT
3243 }
3244
7b9f3c50 3245 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
094b34ac
DE
3246 qfn->hash.dwo_unit = cu->dwo_unit;
3247 qfn->hash.line_offset.sect_off = line_offset;
7b9f3c50
DE
3248 gdb_assert (slot != NULL);
3249 *slot = qfn;
9291a0cd 3250
dee91e82 3251 find_file_and_directory (comp_unit_die, cu, &name, &comp_dir);
9291a0cd 3252
7b9f3c50
DE
3253 qfn->num_file_names = lh->num_file_names;
3254 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
3255 lh->num_file_names * sizeof (char *));
9291a0cd 3256 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
3257 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
3258 qfn->real_names = NULL;
9291a0cd 3259
7b9f3c50 3260 free_line_header (lh);
7b9f3c50 3261
094b34ac 3262 lh_cu->v.quick->file_names = qfn;
dee91e82
DE
3263}
3264
3265/* A helper for the "quick" functions which attempts to read the line
3266 table for THIS_CU. */
3267
3268static struct quick_file_names *
e4a48d9d 3269dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
dee91e82 3270{
0186c6a7
DE
3271 /* This should never be called for TUs. */
3272 gdb_assert (! this_cu->is_debug_types);
3273 /* Nor type unit groups. */
3274 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
f4dc4d17 3275
dee91e82
DE
3276 if (this_cu->v.quick->file_names != NULL)
3277 return this_cu->v.quick->file_names;
3278 /* If we know there is no line data, no point in looking again. */
3279 if (this_cu->v.quick->no_file_data)
3280 return NULL;
3281
0186c6a7 3282 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
dee91e82
DE
3283
3284 if (this_cu->v.quick->no_file_data)
3285 return NULL;
3286 return this_cu->v.quick->file_names;
9291a0cd
TT
3287}
3288
3289/* A helper for the "quick" functions which computes and caches the
7b9f3c50 3290 real path for a given file name from the line table. */
2fdf6df6 3291
9291a0cd 3292static const char *
7b9f3c50
DE
3293dw2_get_real_path (struct objfile *objfile,
3294 struct quick_file_names *qfn, int index)
9291a0cd 3295{
7b9f3c50
DE
3296 if (qfn->real_names == NULL)
3297 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
26f2dc30 3298 qfn->num_file_names, const char *);
9291a0cd 3299
7b9f3c50
DE
3300 if (qfn->real_names[index] == NULL)
3301 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 3302
7b9f3c50 3303 return qfn->real_names[index];
9291a0cd
TT
3304}
3305
3306static struct symtab *
3307dw2_find_last_source_symtab (struct objfile *objfile)
3308{
43f3e411 3309 struct compunit_symtab *cust;
9291a0cd 3310 int index;
ae2de4f8 3311
9291a0cd
TT
3312 dw2_setup (objfile);
3313 index = dwarf2_per_objfile->n_comp_units - 1;
43f3e411
DE
3314 cust = dw2_instantiate_symtab (dw2_get_cutu (index));
3315 if (cust == NULL)
3316 return NULL;
3317 return compunit_primary_filetab (cust);
9291a0cd
TT
3318}
3319
7b9f3c50
DE
3320/* Traversal function for dw2_forget_cached_source_info. */
3321
3322static int
3323dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 3324{
7b9f3c50 3325 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 3326
7b9f3c50 3327 if (file_data->real_names)
9291a0cd 3328 {
7b9f3c50 3329 int i;
9291a0cd 3330
7b9f3c50 3331 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 3332 {
7b9f3c50
DE
3333 xfree ((void*) file_data->real_names[i]);
3334 file_data->real_names[i] = NULL;
9291a0cd
TT
3335 }
3336 }
7b9f3c50
DE
3337
3338 return 1;
3339}
3340
3341static void
3342dw2_forget_cached_source_info (struct objfile *objfile)
3343{
3344 dw2_setup (objfile);
3345
3346 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3347 dw2_free_cached_file_names, NULL);
9291a0cd
TT
3348}
3349
f8eba3c6
TT
3350/* Helper function for dw2_map_symtabs_matching_filename that expands
3351 the symtabs and calls the iterator. */
3352
3353static int
3354dw2_map_expand_apply (struct objfile *objfile,
3355 struct dwarf2_per_cu_data *per_cu,
f5b95b50 3356 const char *name, const char *real_path,
f8eba3c6
TT
3357 int (*callback) (struct symtab *, void *),
3358 void *data)
3359{
43f3e411 3360 struct compunit_symtab *last_made = objfile->compunit_symtabs;
f8eba3c6
TT
3361
3362 /* Don't visit already-expanded CUs. */
43f3e411 3363 if (per_cu->v.quick->compunit_symtab)
f8eba3c6
TT
3364 return 0;
3365
3366 /* This may expand more than one symtab, and we want to iterate over
3367 all of them. */
a0f42c21 3368 dw2_instantiate_symtab (per_cu);
f8eba3c6 3369
f5b95b50 3370 return iterate_over_some_symtabs (name, real_path, callback, data,
43f3e411 3371 objfile->compunit_symtabs, last_made);
f8eba3c6
TT
3372}
3373
3374/* Implementation of the map_symtabs_matching_filename method. */
3375
9291a0cd 3376static int
f8eba3c6 3377dw2_map_symtabs_matching_filename (struct objfile *objfile, const char *name,
f5b95b50 3378 const char *real_path,
f8eba3c6
TT
3379 int (*callback) (struct symtab *, void *),
3380 void *data)
9291a0cd
TT
3381{
3382 int i;
c011a4f4 3383 const char *name_basename = lbasename (name);
9291a0cd
TT
3384
3385 dw2_setup (objfile);
ae2de4f8 3386
848e3e78
DE
3387 /* The rule is CUs specify all the files, including those used by
3388 any TU, so there's no need to scan TUs here. */
f4dc4d17 3389
848e3e78 3390 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3391 {
3392 int j;
8832e7e3 3393 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 3394 struct quick_file_names *file_data;
9291a0cd 3395
3d7bb9d9 3396 /* We only need to look at symtabs not already expanded. */
43f3e411 3397 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3398 continue;
3399
e4a48d9d 3400 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3401 if (file_data == NULL)
9291a0cd
TT
3402 continue;
3403
7b9f3c50 3404 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3405 {
7b9f3c50 3406 const char *this_name = file_data->file_names[j];
da235a7c 3407 const char *this_real_name;
9291a0cd 3408
af529f8f 3409 if (compare_filenames_for_search (this_name, name))
9291a0cd 3410 {
f5b95b50 3411 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3412 callback, data))
3413 return 1;
288e77a7 3414 continue;
4aac40c8 3415 }
9291a0cd 3416
c011a4f4
DE
3417 /* Before we invoke realpath, which can get expensive when many
3418 files are involved, do a quick comparison of the basenames. */
3419 if (! basenames_may_differ
3420 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3421 continue;
3422
da235a7c
JK
3423 this_real_name = dw2_get_real_path (objfile, file_data, j);
3424 if (compare_filenames_for_search (this_real_name, name))
9291a0cd 3425 {
da235a7c
JK
3426 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3427 callback, data))
3428 return 1;
288e77a7 3429 continue;
da235a7c 3430 }
9291a0cd 3431
da235a7c
JK
3432 if (real_path != NULL)
3433 {
af529f8f
JK
3434 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3435 gdb_assert (IS_ABSOLUTE_PATH (name));
7b9f3c50 3436 if (this_real_name != NULL
af529f8f 3437 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 3438 {
f5b95b50 3439 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
f8eba3c6
TT
3440 callback, data))
3441 return 1;
288e77a7 3442 continue;
9291a0cd
TT
3443 }
3444 }
3445 }
3446 }
3447
9291a0cd
TT
3448 return 0;
3449}
3450
da51c347
DE
3451/* Struct used to manage iterating over all CUs looking for a symbol. */
3452
3453struct dw2_symtab_iterator
9291a0cd 3454{
da51c347
DE
3455 /* The internalized form of .gdb_index. */
3456 struct mapped_index *index;
3457 /* If non-zero, only look for symbols that match BLOCK_INDEX. */
3458 int want_specific_block;
3459 /* One of GLOBAL_BLOCK or STATIC_BLOCK.
3460 Unused if !WANT_SPECIFIC_BLOCK. */
3461 int block_index;
3462 /* The kind of symbol we're looking for. */
3463 domain_enum domain;
3464 /* The list of CUs from the index entry of the symbol,
3465 or NULL if not found. */
3466 offset_type *vec;
3467 /* The next element in VEC to look at. */
3468 int next;
3469 /* The number of elements in VEC, or zero if there is no match. */
3470 int length;
8943b874
DE
3471 /* Have we seen a global version of the symbol?
3472 If so we can ignore all further global instances.
3473 This is to work around gold/15646, inefficient gold-generated
3474 indices. */
3475 int global_seen;
da51c347 3476};
9291a0cd 3477
da51c347
DE
3478/* Initialize the index symtab iterator ITER.
3479 If WANT_SPECIFIC_BLOCK is non-zero, only look for symbols
3480 in block BLOCK_INDEX. Otherwise BLOCK_INDEX is ignored. */
2fdf6df6 3481
9291a0cd 3482static void
da51c347
DE
3483dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3484 struct mapped_index *index,
3485 int want_specific_block,
3486 int block_index,
3487 domain_enum domain,
3488 const char *name)
3489{
3490 iter->index = index;
3491 iter->want_specific_block = want_specific_block;
3492 iter->block_index = block_index;
3493 iter->domain = domain;
3494 iter->next = 0;
8943b874 3495 iter->global_seen = 0;
da51c347
DE
3496
3497 if (find_slot_in_mapped_hash (index, name, &iter->vec))
3498 iter->length = MAYBE_SWAP (*iter->vec);
3499 else
3500 {
3501 iter->vec = NULL;
3502 iter->length = 0;
3503 }
3504}
3505
3506/* Return the next matching CU or NULL if there are no more. */
3507
3508static struct dwarf2_per_cu_data *
3509dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3510{
3511 for ( ; iter->next < iter->length; ++iter->next)
3512 {
3513 offset_type cu_index_and_attrs =
3514 MAYBE_SWAP (iter->vec[iter->next + 1]);
3515 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6 3516 struct dwarf2_per_cu_data *per_cu;
da51c347
DE
3517 int want_static = iter->block_index != GLOBAL_BLOCK;
3518 /* This value is only valid for index versions >= 7. */
3519 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3520 gdb_index_symbol_kind symbol_kind =
3521 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3522 /* Only check the symbol attributes if they're present.
3523 Indices prior to version 7 don't record them,
3524 and indices >= 7 may elide them for certain symbols
3525 (gold does this). */
3526 int attrs_valid =
3527 (iter->index->version >= 7
3528 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3529
3190f0c6
DE
3530 /* Don't crash on bad data. */
3531 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3532 + dwarf2_per_objfile->n_type_units))
3533 {
3534 complaint (&symfile_complaints,
3535 _(".gdb_index entry has bad CU index"
4262abfb
JK
3536 " [in module %s]"),
3537 objfile_name (dwarf2_per_objfile->objfile));
3190f0c6
DE
3538 continue;
3539 }
3540
8832e7e3 3541 per_cu = dw2_get_cutu (cu_index);
3190f0c6 3542
da51c347 3543 /* Skip if already read in. */
43f3e411 3544 if (per_cu->v.quick->compunit_symtab)
da51c347
DE
3545 continue;
3546
8943b874
DE
3547 /* Check static vs global. */
3548 if (attrs_valid)
3549 {
3550 if (iter->want_specific_block
3551 && want_static != is_static)
3552 continue;
3553 /* Work around gold/15646. */
3554 if (!is_static && iter->global_seen)
3555 continue;
3556 if (!is_static)
3557 iter->global_seen = 1;
3558 }
da51c347
DE
3559
3560 /* Only check the symbol's kind if it has one. */
3561 if (attrs_valid)
3562 {
3563 switch (iter->domain)
3564 {
3565 case VAR_DOMAIN:
3566 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3567 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3568 /* Some types are also in VAR_DOMAIN. */
3569 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3570 continue;
3571 break;
3572 case STRUCT_DOMAIN:
3573 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3574 continue;
3575 break;
3576 case LABEL_DOMAIN:
3577 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3578 continue;
3579 break;
3580 default:
3581 break;
3582 }
3583 }
3584
3585 ++iter->next;
3586 return per_cu;
3587 }
3588
3589 return NULL;
3590}
3591
43f3e411 3592static struct compunit_symtab *
da51c347
DE
3593dw2_lookup_symbol (struct objfile *objfile, int block_index,
3594 const char *name, domain_enum domain)
9291a0cd 3595{
43f3e411 3596 struct compunit_symtab *stab_best = NULL;
156942c7
DE
3597 struct mapped_index *index;
3598
9291a0cd
TT
3599 dw2_setup (objfile);
3600
156942c7
DE
3601 index = dwarf2_per_objfile->index_table;
3602
da51c347 3603 /* index is NULL if OBJF_READNOW. */
156942c7 3604 if (index)
9291a0cd 3605 {
da51c347
DE
3606 struct dw2_symtab_iterator iter;
3607 struct dwarf2_per_cu_data *per_cu;
3608
3609 dw2_symtab_iter_init (&iter, index, 1, block_index, domain, name);
9291a0cd 3610
da51c347 3611 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
9291a0cd 3612 {
da51c347 3613 struct symbol *sym = NULL;
43f3e411
DE
3614 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu);
3615 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
f194fefb 3616 struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
da51c347
DE
3617
3618 /* Some caution must be observed with overloaded functions
3619 and methods, since the index will not contain any overload
3620 information (but NAME might contain it). */
f194fefb 3621 sym = block_lookup_symbol (block, name, domain);
1fd400ff 3622
da51c347
DE
3623 if (sym && strcmp_iw (SYMBOL_SEARCH_NAME (sym), name) == 0)
3624 {
3625 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
3626 return stab;
3627
3628 stab_best = stab;
9291a0cd 3629 }
da51c347
DE
3630
3631 /* Keep looking through other CUs. */
9291a0cd
TT
3632 }
3633 }
9291a0cd 3634
da51c347 3635 return stab_best;
9291a0cd
TT
3636}
3637
3638static void
3639dw2_print_stats (struct objfile *objfile)
3640{
e4a48d9d 3641 int i, total, count;
9291a0cd
TT
3642
3643 dw2_setup (objfile);
e4a48d9d 3644 total = dwarf2_per_objfile->n_comp_units + dwarf2_per_objfile->n_type_units;
9291a0cd 3645 count = 0;
e4a48d9d 3646 for (i = 0; i < total; ++i)
9291a0cd 3647 {
8832e7e3 3648 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3649
43f3e411 3650 if (!per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3651 ++count;
3652 }
e4a48d9d 3653 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
9291a0cd
TT
3654 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3655}
3656
779bd270
DE
3657/* This dumps minimal information about the index.
3658 It is called via "mt print objfiles".
3659 One use is to verify .gdb_index has been loaded by the
3660 gdb.dwarf2/gdb-index.exp testcase. */
3661
9291a0cd
TT
3662static void
3663dw2_dump (struct objfile *objfile)
3664{
779bd270
DE
3665 dw2_setup (objfile);
3666 gdb_assert (dwarf2_per_objfile->using_index);
3667 printf_filtered (".gdb_index:");
3668 if (dwarf2_per_objfile->index_table != NULL)
3669 {
3670 printf_filtered (" version %d\n",
3671 dwarf2_per_objfile->index_table->version);
3672 }
3673 else
3674 printf_filtered (" faked for \"readnow\"\n");
3675 printf_filtered ("\n");
9291a0cd
TT
3676}
3677
3678static void
3189cb12
DE
3679dw2_relocate (struct objfile *objfile,
3680 const struct section_offsets *new_offsets,
3681 const struct section_offsets *delta)
9291a0cd
TT
3682{
3683 /* There's nothing to relocate here. */
3684}
3685
3686static void
3687dw2_expand_symtabs_for_function (struct objfile *objfile,
3688 const char *func_name)
3689{
da51c347
DE
3690 struct mapped_index *index;
3691
3692 dw2_setup (objfile);
3693
3694 index = dwarf2_per_objfile->index_table;
3695
3696 /* index is NULL if OBJF_READNOW. */
3697 if (index)
3698 {
3699 struct dw2_symtab_iterator iter;
3700 struct dwarf2_per_cu_data *per_cu;
3701
3702 /* Note: It doesn't matter what we pass for block_index here. */
3703 dw2_symtab_iter_init (&iter, index, 0, GLOBAL_BLOCK, VAR_DOMAIN,
3704 func_name);
3705
3706 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3707 dw2_instantiate_symtab (per_cu);
3708 }
9291a0cd
TT
3709}
3710
3711static void
3712dw2_expand_all_symtabs (struct objfile *objfile)
3713{
3714 int i;
3715
3716 dw2_setup (objfile);
1fd400ff
TT
3717
3718 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 3719 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 3720 {
8832e7e3 3721 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 3722
a0f42c21 3723 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3724 }
3725}
3726
3727static void
652a8996
JK
3728dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3729 const char *fullname)
9291a0cd
TT
3730{
3731 int i;
3732
3733 dw2_setup (objfile);
d4637a04
DE
3734
3735 /* We don't need to consider type units here.
3736 This is only called for examining code, e.g. expand_line_sal.
3737 There can be an order of magnitude (or more) more type units
3738 than comp units, and we avoid them if we can. */
3739
3740 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
3741 {
3742 int j;
8832e7e3 3743 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
7b9f3c50 3744 struct quick_file_names *file_data;
9291a0cd 3745
3d7bb9d9 3746 /* We only need to look at symtabs not already expanded. */
43f3e411 3747 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
3748 continue;
3749
e4a48d9d 3750 file_data = dw2_get_file_names (per_cu);
7b9f3c50 3751 if (file_data == NULL)
9291a0cd
TT
3752 continue;
3753
7b9f3c50 3754 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 3755 {
652a8996
JK
3756 const char *this_fullname = file_data->file_names[j];
3757
3758 if (filename_cmp (this_fullname, fullname) == 0)
9291a0cd 3759 {
a0f42c21 3760 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3761 break;
3762 }
3763 }
3764 }
3765}
3766
9291a0cd 3767static void
ade7ed9e
DE
3768dw2_map_matching_symbols (struct objfile *objfile,
3769 const char * name, domain_enum namespace,
3770 int global,
40658b94
PH
3771 int (*callback) (struct block *,
3772 struct symbol *, void *),
2edb89d3
JK
3773 void *data, symbol_compare_ftype *match,
3774 symbol_compare_ftype *ordered_compare)
9291a0cd 3775{
40658b94 3776 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
3777 current language is Ada for a non-Ada objfile using GNU index. As Ada
3778 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
3779}
3780
3781static void
f8eba3c6
TT
3782dw2_expand_symtabs_matching
3783 (struct objfile *objfile,
206f2a57
DE
3784 expand_symtabs_file_matcher_ftype *file_matcher,
3785 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
f8eba3c6
TT
3786 enum search_domain kind,
3787 void *data)
9291a0cd
TT
3788{
3789 int i;
3790 offset_type iter;
4b5246aa 3791 struct mapped_index *index;
9291a0cd
TT
3792
3793 dw2_setup (objfile);
ae2de4f8
DE
3794
3795 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
3796 if (!dwarf2_per_objfile->index_table)
3797 return;
4b5246aa 3798 index = dwarf2_per_objfile->index_table;
9291a0cd 3799
7b08b9eb 3800 if (file_matcher != NULL)
24c79950
TT
3801 {
3802 struct cleanup *cleanup;
3803 htab_t visited_found, visited_not_found;
3804
3805 visited_found = htab_create_alloc (10,
3806 htab_hash_pointer, htab_eq_pointer,
3807 NULL, xcalloc, xfree);
3808 cleanup = make_cleanup_htab_delete (visited_found);
3809 visited_not_found = htab_create_alloc (10,
3810 htab_hash_pointer, htab_eq_pointer,
3811 NULL, xcalloc, xfree);
3812 make_cleanup_htab_delete (visited_not_found);
3813
848e3e78
DE
3814 /* The rule is CUs specify all the files, including those used by
3815 any TU, so there's no need to scan TUs here. */
3816
3817 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950
TT
3818 {
3819 int j;
8832e7e3 3820 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
24c79950
TT
3821 struct quick_file_names *file_data;
3822 void **slot;
7b08b9eb 3823
24c79950 3824 per_cu->v.quick->mark = 0;
3d7bb9d9 3825
24c79950 3826 /* We only need to look at symtabs not already expanded. */
43f3e411 3827 if (per_cu->v.quick->compunit_symtab)
24c79950 3828 continue;
7b08b9eb 3829
e4a48d9d 3830 file_data = dw2_get_file_names (per_cu);
24c79950
TT
3831 if (file_data == NULL)
3832 continue;
7b08b9eb 3833
24c79950
TT
3834 if (htab_find (visited_not_found, file_data) != NULL)
3835 continue;
3836 else if (htab_find (visited_found, file_data) != NULL)
3837 {
3838 per_cu->v.quick->mark = 1;
3839 continue;
3840 }
3841
3842 for (j = 0; j < file_data->num_file_names; ++j)
3843 {
da235a7c
JK
3844 const char *this_real_name;
3845
fbd9ab74 3846 if (file_matcher (file_data->file_names[j], data, 0))
24c79950
TT
3847 {
3848 per_cu->v.quick->mark = 1;
3849 break;
3850 }
da235a7c
JK
3851
3852 /* Before we invoke realpath, which can get expensive when many
3853 files are involved, do a quick comparison of the basenames. */
3854 if (!basenames_may_differ
3855 && !file_matcher (lbasename (file_data->file_names[j]),
3856 data, 1))
3857 continue;
3858
3859 this_real_name = dw2_get_real_path (objfile, file_data, j);
3860 if (file_matcher (this_real_name, data, 0))
3861 {
3862 per_cu->v.quick->mark = 1;
3863 break;
3864 }
24c79950
TT
3865 }
3866
3867 slot = htab_find_slot (per_cu->v.quick->mark
3868 ? visited_found
3869 : visited_not_found,
3870 file_data, INSERT);
3871 *slot = file_data;
3872 }
3873
3874 do_cleanups (cleanup);
3875 }
9291a0cd 3876
3876f04e 3877 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
3878 {
3879 offset_type idx = 2 * iter;
3880 const char *name;
3881 offset_type *vec, vec_len, vec_idx;
8943b874 3882 int global_seen = 0;
9291a0cd 3883
3876f04e 3884 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
3885 continue;
3886
3876f04e 3887 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd 3888
206f2a57 3889 if (! (*symbol_matcher) (name, data))
9291a0cd
TT
3890 continue;
3891
3892 /* The name was matched, now expand corresponding CUs that were
3893 marked. */
4b5246aa 3894 vec = (offset_type *) (index->constant_pool
3876f04e 3895 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
3896 vec_len = MAYBE_SWAP (vec[0]);
3897 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
3898 {
e254ef6a 3899 struct dwarf2_per_cu_data *per_cu;
156942c7 3900 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
8943b874
DE
3901 /* This value is only valid for index versions >= 7. */
3902 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
156942c7
DE
3903 gdb_index_symbol_kind symbol_kind =
3904 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3905 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3190f0c6
DE
3906 /* Only check the symbol attributes if they're present.
3907 Indices prior to version 7 don't record them,
3908 and indices >= 7 may elide them for certain symbols
3909 (gold does this). */
3910 int attrs_valid =
3911 (index->version >= 7
3912 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3913
8943b874
DE
3914 /* Work around gold/15646. */
3915 if (attrs_valid)
3916 {
3917 if (!is_static && global_seen)
3918 continue;
3919 if (!is_static)
3920 global_seen = 1;
3921 }
3922
3190f0c6
DE
3923 /* Only check the symbol's kind if it has one. */
3924 if (attrs_valid)
156942c7
DE
3925 {
3926 switch (kind)
3927 {
3928 case VARIABLES_DOMAIN:
3929 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
3930 continue;
3931 break;
3932 case FUNCTIONS_DOMAIN:
3933 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
3934 continue;
3935 break;
3936 case TYPES_DOMAIN:
3937 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3938 continue;
3939 break;
3940 default:
3941 break;
3942 }
3943 }
3944
3190f0c6
DE
3945 /* Don't crash on bad data. */
3946 if (cu_index >= (dwarf2_per_objfile->n_comp_units
3947 + dwarf2_per_objfile->n_type_units))
3948 {
3949 complaint (&symfile_complaints,
3950 _(".gdb_index entry has bad CU index"
4262abfb 3951 " [in module %s]"), objfile_name (objfile));
3190f0c6
DE
3952 continue;
3953 }
3954
8832e7e3 3955 per_cu = dw2_get_cutu (cu_index);
7b08b9eb 3956 if (file_matcher == NULL || per_cu->v.quick->mark)
a0f42c21 3957 dw2_instantiate_symtab (per_cu);
9291a0cd
TT
3958 }
3959 }
3960}
3961
43f3e411 3962/* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
9703b513
TT
3963 symtab. */
3964
43f3e411
DE
3965static struct compunit_symtab *
3966recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
3967 CORE_ADDR pc)
9703b513
TT
3968{
3969 int i;
3970
43f3e411
DE
3971 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
3972 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
3973 return cust;
9703b513 3974
43f3e411 3975 if (cust->includes == NULL)
a3ec0bb1
DE
3976 return NULL;
3977
43f3e411 3978 for (i = 0; cust->includes[i]; ++i)
9703b513 3979 {
43f3e411 3980 struct compunit_symtab *s = cust->includes[i];
9703b513 3981
43f3e411 3982 s = recursively_find_pc_sect_compunit_symtab (s, pc);
9703b513
TT
3983 if (s != NULL)
3984 return s;
3985 }
3986
3987 return NULL;
3988}
3989
43f3e411
DE
3990static struct compunit_symtab *
3991dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
3992 struct bound_minimal_symbol msymbol,
3993 CORE_ADDR pc,
3994 struct obj_section *section,
3995 int warn_if_readin)
9291a0cd
TT
3996{
3997 struct dwarf2_per_cu_data *data;
43f3e411 3998 struct compunit_symtab *result;
9291a0cd
TT
3999
4000 dw2_setup (objfile);
4001
4002 if (!objfile->psymtabs_addrmap)
4003 return NULL;
4004
4005 data = addrmap_find (objfile->psymtabs_addrmap, pc);
4006 if (!data)
4007 return NULL;
4008
43f3e411 4009 if (warn_if_readin && data->v.quick->compunit_symtab)
abebb8b0 4010 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
4011 paddress (get_objfile_arch (objfile), pc));
4012
43f3e411
DE
4013 result
4014 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data),
4015 pc);
9703b513
TT
4016 gdb_assert (result != NULL);
4017 return result;
9291a0cd
TT
4018}
4019
9291a0cd 4020static void
44b13c5a 4021dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
74e2f255 4022 void *data, int need_fullname)
9291a0cd
TT
4023{
4024 int i;
24c79950
TT
4025 struct cleanup *cleanup;
4026 htab_t visited = htab_create_alloc (10, htab_hash_pointer, htab_eq_pointer,
4027 NULL, xcalloc, xfree);
9291a0cd 4028
24c79950 4029 cleanup = make_cleanup_htab_delete (visited);
9291a0cd 4030 dw2_setup (objfile);
ae2de4f8 4031
848e3e78
DE
4032 /* The rule is CUs specify all the files, including those used by
4033 any TU, so there's no need to scan TUs here.
4034 We can ignore file names coming from already-expanded CUs. */
f4dc4d17 4035
848e3e78 4036 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
24c79950 4037 {
8832e7e3 4038 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
24c79950 4039
43f3e411 4040 if (per_cu->v.quick->compunit_symtab)
24c79950
TT
4041 {
4042 void **slot = htab_find_slot (visited, per_cu->v.quick->file_names,
4043 INSERT);
4044
4045 *slot = per_cu->v.quick->file_names;
4046 }
4047 }
4048
848e3e78 4049 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
4050 {
4051 int j;
8832e7e3 4052 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 4053 struct quick_file_names *file_data;
24c79950 4054 void **slot;
9291a0cd 4055
3d7bb9d9 4056 /* We only need to look at symtabs not already expanded. */
43f3e411 4057 if (per_cu->v.quick->compunit_symtab)
9291a0cd
TT
4058 continue;
4059
e4a48d9d 4060 file_data = dw2_get_file_names (per_cu);
7b9f3c50 4061 if (file_data == NULL)
9291a0cd
TT
4062 continue;
4063
24c79950
TT
4064 slot = htab_find_slot (visited, file_data, INSERT);
4065 if (*slot)
4066 {
4067 /* Already visited. */
4068 continue;
4069 }
4070 *slot = file_data;
4071
7b9f3c50 4072 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 4073 {
74e2f255
DE
4074 const char *this_real_name;
4075
4076 if (need_fullname)
4077 this_real_name = dw2_get_real_path (objfile, file_data, j);
4078 else
4079 this_real_name = NULL;
7b9f3c50 4080 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
4081 }
4082 }
24c79950
TT
4083
4084 do_cleanups (cleanup);
9291a0cd
TT
4085}
4086
4087static int
4088dw2_has_symbols (struct objfile *objfile)
4089{
4090 return 1;
4091}
4092
4093const struct quick_symbol_functions dwarf2_gdb_index_functions =
4094{
4095 dw2_has_symbols,
4096 dw2_find_last_source_symtab,
4097 dw2_forget_cached_source_info,
f8eba3c6 4098 dw2_map_symtabs_matching_filename,
9291a0cd 4099 dw2_lookup_symbol,
9291a0cd
TT
4100 dw2_print_stats,
4101 dw2_dump,
4102 dw2_relocate,
4103 dw2_expand_symtabs_for_function,
4104 dw2_expand_all_symtabs,
652a8996 4105 dw2_expand_symtabs_with_fullname,
40658b94 4106 dw2_map_matching_symbols,
9291a0cd 4107 dw2_expand_symtabs_matching,
43f3e411 4108 dw2_find_pc_sect_compunit_symtab,
9291a0cd
TT
4109 dw2_map_symbol_filenames
4110};
4111
4112/* Initialize for reading DWARF for this objfile. Return 0 if this
4113 file will use psymtabs, or 1 if using the GNU index. */
4114
4115int
4116dwarf2_initialize_objfile (struct objfile *objfile)
4117{
4118 /* If we're about to read full symbols, don't bother with the
4119 indices. In this case we also don't care if some other debug
4120 format is making psymtabs, because they are all about to be
4121 expanded anyway. */
4122 if ((objfile->flags & OBJF_READNOW))
4123 {
4124 int i;
4125
4126 dwarf2_per_objfile->using_index = 1;
4127 create_all_comp_units (objfile);
0e50663e 4128 create_all_type_units (objfile);
7b9f3c50
DE
4129 dwarf2_per_objfile->quick_file_names_table =
4130 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 4131
1fd400ff 4132 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
d467dd73 4133 + dwarf2_per_objfile->n_type_units); ++i)
9291a0cd 4134 {
8832e7e3 4135 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
9291a0cd 4136
e254ef6a
DE
4137 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4138 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
4139 }
4140
4141 /* Return 1 so that gdb sees the "quick" functions. However,
4142 these functions will be no-ops because we will have expanded
4143 all symtabs. */
4144 return 1;
4145 }
4146
4147 if (dwarf2_read_index (objfile))
4148 return 1;
4149
9291a0cd
TT
4150 return 0;
4151}
4152
4153\f
4154
dce234bc
PP
4155/* Build a partial symbol table. */
4156
4157void
f29dff0a 4158dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 4159{
c9bf0622
TT
4160 volatile struct gdb_exception except;
4161
f29dff0a 4162 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
4163 {
4164 init_psymbol_list (objfile, 1024);
4165 }
4166
c9bf0622
TT
4167 TRY_CATCH (except, RETURN_MASK_ERROR)
4168 {
4169 /* This isn't really ideal: all the data we allocate on the
4170 objfile's obstack is still uselessly kept around. However,
4171 freeing it seems unsafe. */
4172 struct cleanup *cleanups = make_cleanup_discard_psymtabs (objfile);
4173
4174 dwarf2_build_psymtabs_hard (objfile);
4175 discard_cleanups (cleanups);
4176 }
4177 if (except.reason < 0)
4178 exception_print (gdb_stderr, except);
c906108c 4179}
c906108c 4180
1ce1cefd
DE
4181/* Return the total length of the CU described by HEADER. */
4182
4183static unsigned int
4184get_cu_length (const struct comp_unit_head *header)
4185{
4186 return header->initial_length_size + header->length;
4187}
4188
45452591
DE
4189/* Return TRUE if OFFSET is within CU_HEADER. */
4190
4191static inline int
b64f50a1 4192offset_in_cu_p (const struct comp_unit_head *cu_header, sect_offset offset)
45452591 4193{
b64f50a1 4194 sect_offset bottom = { cu_header->offset.sect_off };
1ce1cefd 4195 sect_offset top = { cu_header->offset.sect_off + get_cu_length (cu_header) };
9a619af0 4196
b64f50a1 4197 return (offset.sect_off >= bottom.sect_off && offset.sect_off < top.sect_off);
45452591
DE
4198}
4199
3b80fe9b
DE
4200/* Find the base address of the compilation unit for range lists and
4201 location lists. It will normally be specified by DW_AT_low_pc.
4202 In DWARF-3 draft 4, the base address could be overridden by
4203 DW_AT_entry_pc. It's been removed, but GCC still uses this for
4204 compilation units with discontinuous ranges. */
4205
4206static void
4207dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
4208{
4209 struct attribute *attr;
4210
4211 cu->base_known = 0;
4212 cu->base_address = 0;
4213
4214 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
4215 if (attr)
4216 {
31aa7e4e 4217 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4218 cu->base_known = 1;
4219 }
4220 else
4221 {
4222 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
4223 if (attr)
4224 {
31aa7e4e 4225 cu->base_address = attr_value_as_address (attr);
3b80fe9b
DE
4226 cu->base_known = 1;
4227 }
4228 }
4229}
4230
93311388
DE
4231/* Read in the comp unit header information from the debug_info at info_ptr.
4232 NOTE: This leaves members offset, first_die_offset to be filled in
4233 by the caller. */
107d2387 4234
d521ce57 4235static const gdb_byte *
107d2387 4236read_comp_unit_head (struct comp_unit_head *cu_header,
d521ce57 4237 const gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
4238{
4239 int signed_addr;
891d2f0b 4240 unsigned int bytes_read;
c764a876
DE
4241
4242 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
4243 cu_header->initial_length_size = bytes_read;
4244 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 4245 info_ptr += bytes_read;
107d2387
AC
4246 cu_header->version = read_2_bytes (abfd, info_ptr);
4247 info_ptr += 2;
b64f50a1
JK
4248 cu_header->abbrev_offset.sect_off = read_offset (abfd, info_ptr, cu_header,
4249 &bytes_read);
613e1657 4250 info_ptr += bytes_read;
107d2387
AC
4251 cu_header->addr_size = read_1_byte (abfd, info_ptr);
4252 info_ptr += 1;
4253 signed_addr = bfd_get_sign_extend_vma (abfd);
4254 if (signed_addr < 0)
8e65ff28 4255 internal_error (__FILE__, __LINE__,
e2e0b3e5 4256 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 4257 cu_header->signed_addr_p = signed_addr;
c764a876 4258
107d2387
AC
4259 return info_ptr;
4260}
4261
36586728
TT
4262/* Helper function that returns the proper abbrev section for
4263 THIS_CU. */
4264
4265static struct dwarf2_section_info *
4266get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
4267{
4268 struct dwarf2_section_info *abbrev;
4269
4270 if (this_cu->is_dwz)
4271 abbrev = &dwarf2_get_dwz_file ()->abbrev;
4272 else
4273 abbrev = &dwarf2_per_objfile->abbrev;
4274
4275 return abbrev;
4276}
4277
9ff913ba
DE
4278/* Subroutine of read_and_check_comp_unit_head and
4279 read_and_check_type_unit_head to simplify them.
4280 Perform various error checking on the header. */
4281
4282static void
4283error_check_comp_unit_head (struct comp_unit_head *header,
4bdcc0c1
DE
4284 struct dwarf2_section_info *section,
4285 struct dwarf2_section_info *abbrev_section)
9ff913ba 4286{
a32a8923
DE
4287 bfd *abfd = get_section_bfd_owner (section);
4288 const char *filename = get_section_file_name (section);
9ff913ba
DE
4289
4290 if (header->version != 2 && header->version != 3 && header->version != 4)
4291 error (_("Dwarf Error: wrong version in compilation unit header "
4292 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
4293 filename);
4294
b64f50a1 4295 if (header->abbrev_offset.sect_off
36586728 4296 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
9ff913ba
DE
4297 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
4298 "(offset 0x%lx + 6) [in module %s]"),
b64f50a1 4299 (long) header->abbrev_offset.sect_off, (long) header->offset.sect_off,
9ff913ba
DE
4300 filename);
4301
4302 /* Cast to unsigned long to use 64-bit arithmetic when possible to
4303 avoid potential 32-bit overflow. */
1ce1cefd 4304 if (((unsigned long) header->offset.sect_off + get_cu_length (header))
9ff913ba
DE
4305 > section->size)
4306 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
4307 "(offset 0x%lx + 0) [in module %s]"),
b64f50a1 4308 (long) header->length, (long) header->offset.sect_off,
9ff913ba
DE
4309 filename);
4310}
4311
4312/* Read in a CU/TU header and perform some basic error checking.
4313 The contents of the header are stored in HEADER.
4314 The result is a pointer to the start of the first DIE. */
adabb602 4315
d521ce57 4316static const gdb_byte *
9ff913ba
DE
4317read_and_check_comp_unit_head (struct comp_unit_head *header,
4318 struct dwarf2_section_info *section,
4bdcc0c1 4319 struct dwarf2_section_info *abbrev_section,
d521ce57 4320 const gdb_byte *info_ptr,
9ff913ba 4321 int is_debug_types_section)
72bf9492 4322{
d521ce57 4323 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4324 bfd *abfd = get_section_bfd_owner (section);
72bf9492 4325
b64f50a1 4326 header->offset.sect_off = beg_of_comp_unit - section->buffer;
adabb602 4327
72bf9492
DJ
4328 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
4329
460c1c54
CC
4330 /* If we're reading a type unit, skip over the signature and
4331 type_offset fields. */
b0df02fd 4332 if (is_debug_types_section)
460c1c54
CC
4333 info_ptr += 8 /*signature*/ + header->offset_size;
4334
b64f50a1 4335 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
adabb602 4336
4bdcc0c1 4337 error_check_comp_unit_head (header, section, abbrev_section);
72bf9492
DJ
4338
4339 return info_ptr;
4340}
4341
348e048f
DE
4342/* Read in the types comp unit header information from .debug_types entry at
4343 types_ptr. The result is a pointer to one past the end of the header. */
4344
d521ce57 4345static const gdb_byte *
9ff913ba
DE
4346read_and_check_type_unit_head (struct comp_unit_head *header,
4347 struct dwarf2_section_info *section,
4bdcc0c1 4348 struct dwarf2_section_info *abbrev_section,
d521ce57 4349 const gdb_byte *info_ptr,
dee91e82
DE
4350 ULONGEST *signature,
4351 cu_offset *type_offset_in_tu)
348e048f 4352{
d521ce57 4353 const gdb_byte *beg_of_comp_unit = info_ptr;
a32a8923 4354 bfd *abfd = get_section_bfd_owner (section);
348e048f 4355
b64f50a1 4356 header->offset.sect_off = beg_of_comp_unit - section->buffer;
348e048f 4357
9ff913ba 4358 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
348e048f 4359
9ff913ba
DE
4360 /* If we're reading a type unit, skip over the signature and
4361 type_offset fields. */
4362 if (signature != NULL)
4363 *signature = read_8_bytes (abfd, info_ptr);
4364 info_ptr += 8;
dee91e82
DE
4365 if (type_offset_in_tu != NULL)
4366 type_offset_in_tu->cu_off = read_offset_1 (abfd, info_ptr,
4367 header->offset_size);
9ff913ba
DE
4368 info_ptr += header->offset_size;
4369
b64f50a1 4370 header->first_die_offset.cu_off = info_ptr - beg_of_comp_unit;
348e048f 4371
4bdcc0c1 4372 error_check_comp_unit_head (header, section, abbrev_section);
9ff913ba
DE
4373
4374 return info_ptr;
348e048f
DE
4375}
4376
f4dc4d17
DE
4377/* Fetch the abbreviation table offset from a comp or type unit header. */
4378
4379static sect_offset
4380read_abbrev_offset (struct dwarf2_section_info *section,
4381 sect_offset offset)
4382{
a32a8923 4383 bfd *abfd = get_section_bfd_owner (section);
d521ce57 4384 const gdb_byte *info_ptr;
f4dc4d17
DE
4385 unsigned int length, initial_length_size, offset_size;
4386 sect_offset abbrev_offset;
4387
4388 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
4389 info_ptr = section->buffer + offset.sect_off;
4390 length = read_initial_length (abfd, info_ptr, &initial_length_size);
4391 offset_size = initial_length_size == 4 ? 4 : 8;
4392 info_ptr += initial_length_size + 2 /*version*/;
4393 abbrev_offset.sect_off = read_offset_1 (abfd, info_ptr, offset_size);
4394 return abbrev_offset;
4395}
4396
aaa75496
JB
4397/* Allocate a new partial symtab for file named NAME and mark this new
4398 partial symtab as being an include of PST. */
4399
4400static void
d521ce57 4401dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
aaa75496
JB
4402 struct objfile *objfile)
4403{
4404 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
4405
fbd9ab74
JK
4406 if (!IS_ABSOLUTE_PATH (subpst->filename))
4407 {
4408 /* It shares objfile->objfile_obstack. */
4409 subpst->dirname = pst->dirname;
4410 }
4411
aaa75496
JB
4412 subpst->section_offsets = pst->section_offsets;
4413 subpst->textlow = 0;
4414 subpst->texthigh = 0;
4415
4416 subpst->dependencies = (struct partial_symtab **)
4417 obstack_alloc (&objfile->objfile_obstack,
4418 sizeof (struct partial_symtab *));
4419 subpst->dependencies[0] = pst;
4420 subpst->number_of_dependencies = 1;
4421
4422 subpst->globals_offset = 0;
4423 subpst->n_global_syms = 0;
4424 subpst->statics_offset = 0;
4425 subpst->n_static_syms = 0;
43f3e411 4426 subpst->compunit_symtab = NULL;
aaa75496
JB
4427 subpst->read_symtab = pst->read_symtab;
4428 subpst->readin = 0;
4429
4430 /* No private part is necessary for include psymtabs. This property
4431 can be used to differentiate between such include psymtabs and
10b3939b 4432 the regular ones. */
58a9656e 4433 subpst->read_symtab_private = NULL;
aaa75496
JB
4434}
4435
4436/* Read the Line Number Program data and extract the list of files
4437 included by the source file represented by PST. Build an include
d85a05f0 4438 partial symtab for each of these included files. */
aaa75496
JB
4439
4440static void
4441dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
dee91e82
DE
4442 struct die_info *die,
4443 struct partial_symtab *pst)
aaa75496 4444{
d85a05f0
DJ
4445 struct line_header *lh = NULL;
4446 struct attribute *attr;
aaa75496 4447
d85a05f0
DJ
4448 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
4449 if (attr)
3019eac3 4450 lh = dwarf_decode_line_header (DW_UNSND (attr), cu);
aaa75496
JB
4451 if (lh == NULL)
4452 return; /* No linetable, so no includes. */
4453
c6da4cef 4454 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
c3b7b696 4455 dwarf_decode_lines (lh, pst->dirname, cu, pst, pst->textlow);
aaa75496
JB
4456
4457 free_line_header (lh);
4458}
4459
348e048f 4460static hashval_t
52dc124a 4461hash_signatured_type (const void *item)
348e048f 4462{
52dc124a 4463 const struct signatured_type *sig_type = item;
9a619af0 4464
348e048f 4465 /* This drops the top 32 bits of the signature, but is ok for a hash. */
52dc124a 4466 return sig_type->signature;
348e048f
DE
4467}
4468
4469static int
52dc124a 4470eq_signatured_type (const void *item_lhs, const void *item_rhs)
348e048f
DE
4471{
4472 const struct signatured_type *lhs = item_lhs;
4473 const struct signatured_type *rhs = item_rhs;
9a619af0 4474
348e048f
DE
4475 return lhs->signature == rhs->signature;
4476}
4477
1fd400ff
TT
4478/* Allocate a hash table for signatured types. */
4479
4480static htab_t
673bfd45 4481allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
4482{
4483 return htab_create_alloc_ex (41,
52dc124a
DE
4484 hash_signatured_type,
4485 eq_signatured_type,
1fd400ff
TT
4486 NULL,
4487 &objfile->objfile_obstack,
4488 hashtab_obstack_allocate,
4489 dummy_obstack_deallocate);
4490}
4491
d467dd73 4492/* A helper function to add a signatured type CU to a table. */
1fd400ff
TT
4493
4494static int
d467dd73 4495add_signatured_type_cu_to_table (void **slot, void *datum)
1fd400ff
TT
4496{
4497 struct signatured_type *sigt = *slot;
b4dd5633 4498 struct signatured_type ***datap = datum;
1fd400ff 4499
b4dd5633 4500 **datap = sigt;
1fd400ff
TT
4501 ++*datap;
4502
4503 return 1;
4504}
4505
c88ee1f0
DE
4506/* Create the hash table of all entries in the .debug_types
4507 (or .debug_types.dwo) section(s).
4508 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
4509 otherwise it is NULL.
4510
4511 The result is a pointer to the hash table or NULL if there are no types.
4512
4513 Note: This function processes DWO files only, not DWP files. */
348e048f 4514
3019eac3
DE
4515static htab_t
4516create_debug_types_hash_table (struct dwo_file *dwo_file,
4517 VEC (dwarf2_section_info_def) *types)
348e048f 4518{
3019eac3 4519 struct objfile *objfile = dwarf2_per_objfile->objfile;
8b70b953 4520 htab_t types_htab = NULL;
8b70b953
TT
4521 int ix;
4522 struct dwarf2_section_info *section;
4bdcc0c1 4523 struct dwarf2_section_info *abbrev_section;
348e048f 4524
3019eac3
DE
4525 if (VEC_empty (dwarf2_section_info_def, types))
4526 return NULL;
348e048f 4527
4bdcc0c1
DE
4528 abbrev_section = (dwo_file != NULL
4529 ? &dwo_file->sections.abbrev
4530 : &dwarf2_per_objfile->abbrev);
4531
09406207
DE
4532 if (dwarf2_read_debug)
4533 fprintf_unfiltered (gdb_stdlog, "Reading .debug_types%s for %s:\n",
4534 dwo_file ? ".dwo" : "",
a32a8923 4535 get_section_file_name (abbrev_section));
09406207 4536
8b70b953 4537 for (ix = 0;
3019eac3 4538 VEC_iterate (dwarf2_section_info_def, types, ix, section);
8b70b953
TT
4539 ++ix)
4540 {
3019eac3 4541 bfd *abfd;
d521ce57 4542 const gdb_byte *info_ptr, *end_ptr;
348e048f 4543
8b70b953
TT
4544 dwarf2_read_section (objfile, section);
4545 info_ptr = section->buffer;
348e048f 4546
8b70b953
TT
4547 if (info_ptr == NULL)
4548 continue;
348e048f 4549
3019eac3 4550 /* We can't set abfd until now because the section may be empty or
a32a8923
DE
4551 not present, in which case the bfd is unknown. */
4552 abfd = get_section_bfd_owner (section);
3019eac3 4553
dee91e82
DE
4554 /* We don't use init_cutu_and_read_dies_simple, or some such, here
4555 because we don't need to read any dies: the signature is in the
4556 header. */
8b70b953
TT
4557
4558 end_ptr = info_ptr + section->size;
4559 while (info_ptr < end_ptr)
4560 {
b64f50a1 4561 sect_offset offset;
3019eac3 4562 cu_offset type_offset_in_tu;
8b70b953 4563 ULONGEST signature;
52dc124a 4564 struct signatured_type *sig_type;
3019eac3 4565 struct dwo_unit *dwo_tu;
8b70b953 4566 void **slot;
d521ce57 4567 const gdb_byte *ptr = info_ptr;
9ff913ba 4568 struct comp_unit_head header;
dee91e82 4569 unsigned int length;
348e048f 4570
b64f50a1 4571 offset.sect_off = ptr - section->buffer;
348e048f 4572
8b70b953 4573 /* We need to read the type's signature in order to build the hash
9ff913ba 4574 table, but we don't need anything else just yet. */
348e048f 4575
4bdcc0c1
DE
4576 ptr = read_and_check_type_unit_head (&header, section,
4577 abbrev_section, ptr,
3019eac3 4578 &signature, &type_offset_in_tu);
6caca83c 4579
1ce1cefd 4580 length = get_cu_length (&header);
dee91e82 4581
6caca83c 4582 /* Skip dummy type units. */
dee91e82
DE
4583 if (ptr >= info_ptr + length
4584 || peek_abbrev_code (abfd, ptr) == 0)
6caca83c 4585 {
1ce1cefd 4586 info_ptr += length;
6caca83c
CC
4587 continue;
4588 }
8b70b953 4589
0349ea22
DE
4590 if (types_htab == NULL)
4591 {
4592 if (dwo_file)
4593 types_htab = allocate_dwo_unit_table (objfile);
4594 else
4595 types_htab = allocate_signatured_type_table (objfile);
4596 }
4597
3019eac3
DE
4598 if (dwo_file)
4599 {
4600 sig_type = NULL;
4601 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4602 struct dwo_unit);
4603 dwo_tu->dwo_file = dwo_file;
4604 dwo_tu->signature = signature;
4605 dwo_tu->type_offset_in_tu = type_offset_in_tu;
8a0459fd 4606 dwo_tu->section = section;
3019eac3
DE
4607 dwo_tu->offset = offset;
4608 dwo_tu->length = length;
4609 }
4610 else
4611 {
4612 /* N.B.: type_offset is not usable if this type uses a DWO file.
4613 The real type_offset is in the DWO file. */
4614 dwo_tu = NULL;
4615 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4616 struct signatured_type);
4617 sig_type->signature = signature;
4618 sig_type->type_offset_in_tu = type_offset_in_tu;
4619 sig_type->per_cu.objfile = objfile;
4620 sig_type->per_cu.is_debug_types = 1;
8a0459fd 4621 sig_type->per_cu.section = section;
3019eac3
DE
4622 sig_type->per_cu.offset = offset;
4623 sig_type->per_cu.length = length;
4624 }
8b70b953 4625
3019eac3
DE
4626 slot = htab_find_slot (types_htab,
4627 dwo_file ? (void*) dwo_tu : (void *) sig_type,
4628 INSERT);
8b70b953
TT
4629 gdb_assert (slot != NULL);
4630 if (*slot != NULL)
4631 {
3019eac3
DE
4632 sect_offset dup_offset;
4633
4634 if (dwo_file)
4635 {
4636 const struct dwo_unit *dup_tu = *slot;
4637
4638 dup_offset = dup_tu->offset;
4639 }
4640 else
4641 {
4642 const struct signatured_type *dup_tu = *slot;
4643
4644 dup_offset = dup_tu->per_cu.offset;
4645 }
b3c8eb43 4646
8b70b953 4647 complaint (&symfile_complaints,
c88ee1f0 4648 _("debug type entry at offset 0x%x is duplicate to"
4031ecc5 4649 " the entry at offset 0x%x, signature %s"),
3019eac3 4650 offset.sect_off, dup_offset.sect_off,
4031ecc5 4651 hex_string (signature));
8b70b953 4652 }
3019eac3 4653 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
348e048f 4654
73be47f5 4655 if (dwarf2_read_debug > 1)
4031ecc5 4656 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature %s\n",
b64f50a1 4657 offset.sect_off,
4031ecc5 4658 hex_string (signature));
348e048f 4659
dee91e82 4660 info_ptr += length;
8b70b953 4661 }
348e048f
DE
4662 }
4663
3019eac3
DE
4664 return types_htab;
4665}
4666
4667/* Create the hash table of all entries in the .debug_types section,
4668 and initialize all_type_units.
4669 The result is zero if there is an error (e.g. missing .debug_types section),
4670 otherwise non-zero. */
4671
4672static int
4673create_all_type_units (struct objfile *objfile)
4674{
4675 htab_t types_htab;
b4dd5633 4676 struct signatured_type **iter;
3019eac3
DE
4677
4678 types_htab = create_debug_types_hash_table (NULL, dwarf2_per_objfile->types);
4679 if (types_htab == NULL)
4680 {
4681 dwarf2_per_objfile->signatured_types = NULL;
4682 return 0;
4683 }
4684
348e048f
DE
4685 dwarf2_per_objfile->signatured_types = types_htab;
4686
6aa5f3a6
DE
4687 dwarf2_per_objfile->n_type_units
4688 = dwarf2_per_objfile->n_allocated_type_units
4689 = htab_elements (types_htab);
d467dd73 4690 dwarf2_per_objfile->all_type_units
a2ce51a0
DE
4691 = xmalloc (dwarf2_per_objfile->n_type_units
4692 * sizeof (struct signatured_type *));
d467dd73
DE
4693 iter = &dwarf2_per_objfile->all_type_units[0];
4694 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table, &iter);
4695 gdb_assert (iter - &dwarf2_per_objfile->all_type_units[0]
4696 == dwarf2_per_objfile->n_type_units);
1fd400ff 4697
348e048f
DE
4698 return 1;
4699}
4700
6aa5f3a6
DE
4701/* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
4702 If SLOT is non-NULL, it is the entry to use in the hash table.
4703 Otherwise we find one. */
4704
4705static struct signatured_type *
4706add_type_unit (ULONGEST sig, void **slot)
4707{
4708 struct objfile *objfile = dwarf2_per_objfile->objfile;
4709 int n_type_units = dwarf2_per_objfile->n_type_units;
4710 struct signatured_type *sig_type;
4711
4712 gdb_assert (n_type_units <= dwarf2_per_objfile->n_allocated_type_units);
4713 ++n_type_units;
4714 if (n_type_units > dwarf2_per_objfile->n_allocated_type_units)
4715 {
4716 if (dwarf2_per_objfile->n_allocated_type_units == 0)
4717 dwarf2_per_objfile->n_allocated_type_units = 1;
4718 dwarf2_per_objfile->n_allocated_type_units *= 2;
4719 dwarf2_per_objfile->all_type_units
4720 = xrealloc (dwarf2_per_objfile->all_type_units,
4721 dwarf2_per_objfile->n_allocated_type_units
4722 * sizeof (struct signatured_type *));
4723 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
4724 }
4725 dwarf2_per_objfile->n_type_units = n_type_units;
4726
4727 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
4728 struct signatured_type);
4729 dwarf2_per_objfile->all_type_units[n_type_units - 1] = sig_type;
4730 sig_type->signature = sig;
4731 sig_type->per_cu.is_debug_types = 1;
4732 if (dwarf2_per_objfile->using_index)
4733 {
4734 sig_type->per_cu.v.quick =
4735 OBSTACK_ZALLOC (&objfile->objfile_obstack,
4736 struct dwarf2_per_cu_quick_data);
4737 }
4738
4739 if (slot == NULL)
4740 {
4741 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4742 sig_type, INSERT);
4743 }
4744 gdb_assert (*slot == NULL);
4745 *slot = sig_type;
4746 /* The rest of sig_type must be filled in by the caller. */
4747 return sig_type;
4748}
4749
a2ce51a0
DE
4750/* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
4751 Fill in SIG_ENTRY with DWO_ENTRY. */
4752
4753static void
4754fill_in_sig_entry_from_dwo_entry (struct objfile *objfile,
4755 struct signatured_type *sig_entry,
4756 struct dwo_unit *dwo_entry)
4757{
7ee85ab1 4758 /* Make sure we're not clobbering something we don't expect to. */
a2ce51a0
DE
4759 gdb_assert (! sig_entry->per_cu.queued);
4760 gdb_assert (sig_entry->per_cu.cu == NULL);
6aa5f3a6
DE
4761 if (dwarf2_per_objfile->using_index)
4762 {
4763 gdb_assert (sig_entry->per_cu.v.quick != NULL);
43f3e411 4764 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6aa5f3a6
DE
4765 }
4766 else
4767 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
a2ce51a0
DE
4768 gdb_assert (sig_entry->signature == dwo_entry->signature);
4769 gdb_assert (sig_entry->type_offset_in_section.sect_off == 0);
4770 gdb_assert (sig_entry->type_unit_group == NULL);
7ee85ab1
DE
4771 gdb_assert (sig_entry->dwo_unit == NULL);
4772
4773 sig_entry->per_cu.section = dwo_entry->section;
4774 sig_entry->per_cu.offset = dwo_entry->offset;
4775 sig_entry->per_cu.length = dwo_entry->length;
4776 sig_entry->per_cu.reading_dwo_directly = 1;
4777 sig_entry->per_cu.objfile = objfile;
a2ce51a0
DE
4778 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
4779 sig_entry->dwo_unit = dwo_entry;
4780}
4781
4782/* Subroutine of lookup_signatured_type.
7ee85ab1
DE
4783 If we haven't read the TU yet, create the signatured_type data structure
4784 for a TU to be read in directly from a DWO file, bypassing the stub.
4785 This is the "Stay in DWO Optimization": When there is no DWP file and we're
4786 using .gdb_index, then when reading a CU we want to stay in the DWO file
4787 containing that CU. Otherwise we could end up reading several other DWO
4788 files (due to comdat folding) to process the transitive closure of all the
4789 mentioned TUs, and that can be slow. The current DWO file will have every
4790 type signature that it needs.
a2ce51a0
DE
4791 We only do this for .gdb_index because in the psymtab case we already have
4792 to read all the DWOs to build the type unit groups. */
4793
4794static struct signatured_type *
4795lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4796{
4797 struct objfile *objfile = dwarf2_per_objfile->objfile;
4798 struct dwo_file *dwo_file;
4799 struct dwo_unit find_dwo_entry, *dwo_entry;
4800 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4801 void **slot;
a2ce51a0
DE
4802
4803 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4804
6aa5f3a6
DE
4805 /* If TU skeletons have been removed then we may not have read in any
4806 TUs yet. */
4807 if (dwarf2_per_objfile->signatured_types == NULL)
4808 {
4809 dwarf2_per_objfile->signatured_types
4810 = allocate_signatured_type_table (objfile);
4811 }
a2ce51a0
DE
4812
4813 /* We only ever need to read in one copy of a signatured type.
6aa5f3a6
DE
4814 Use the global signatured_types array to do our own comdat-folding
4815 of types. If this is the first time we're reading this TU, and
4816 the TU has an entry in .gdb_index, replace the recorded data from
4817 .gdb_index with this TU. */
a2ce51a0 4818
a2ce51a0 4819 find_sig_entry.signature = sig;
6aa5f3a6
DE
4820 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4821 &find_sig_entry, INSERT);
4822 sig_entry = *slot;
7ee85ab1
DE
4823
4824 /* We can get here with the TU already read, *or* in the process of being
6aa5f3a6
DE
4825 read. Don't reassign the global entry to point to this DWO if that's
4826 the case. Also note that if the TU is already being read, it may not
4827 have come from a DWO, the program may be a mix of Fission-compiled
4828 code and non-Fission-compiled code. */
4829
4830 /* Have we already tried to read this TU?
4831 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4832 needn't exist in the global table yet). */
4833 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
a2ce51a0
DE
4834 return sig_entry;
4835
6aa5f3a6
DE
4836 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
4837 dwo_unit of the TU itself. */
4838 dwo_file = cu->dwo_unit->dwo_file;
4839
a2ce51a0
DE
4840 /* Ok, this is the first time we're reading this TU. */
4841 if (dwo_file->tus == NULL)
4842 return NULL;
4843 find_dwo_entry.signature = sig;
4844 dwo_entry = htab_find (dwo_file->tus, &find_dwo_entry);
4845 if (dwo_entry == NULL)
4846 return NULL;
4847
6aa5f3a6
DE
4848 /* If the global table doesn't have an entry for this TU, add one. */
4849 if (sig_entry == NULL)
4850 sig_entry = add_type_unit (sig, slot);
4851
a2ce51a0 4852 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
89e63ee4 4853 sig_entry->per_cu.tu_read = 1;
a2ce51a0
DE
4854 return sig_entry;
4855}
4856
a2ce51a0
DE
4857/* Subroutine of lookup_signatured_type.
4858 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6aa5f3a6
DE
4859 then try the DWP file. If the TU stub (skeleton) has been removed then
4860 it won't be in .gdb_index. */
a2ce51a0
DE
4861
4862static struct signatured_type *
4863lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
4864{
4865 struct objfile *objfile = dwarf2_per_objfile->objfile;
4866 struct dwp_file *dwp_file = get_dwp_file ();
4867 struct dwo_unit *dwo_entry;
4868 struct signatured_type find_sig_entry, *sig_entry;
6aa5f3a6 4869 void **slot;
a2ce51a0
DE
4870
4871 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
4872 gdb_assert (dwp_file != NULL);
4873
6aa5f3a6
DE
4874 /* If TU skeletons have been removed then we may not have read in any
4875 TUs yet. */
4876 if (dwarf2_per_objfile->signatured_types == NULL)
a2ce51a0 4877 {
6aa5f3a6
DE
4878 dwarf2_per_objfile->signatured_types
4879 = allocate_signatured_type_table (objfile);
a2ce51a0
DE
4880 }
4881
6aa5f3a6
DE
4882 find_sig_entry.signature = sig;
4883 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
4884 &find_sig_entry, INSERT);
4885 sig_entry = *slot;
4886
4887 /* Have we already tried to read this TU?
4888 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
4889 needn't exist in the global table yet). */
4890 if (sig_entry != NULL)
4891 return sig_entry;
4892
a2ce51a0
DE
4893 if (dwp_file->tus == NULL)
4894 return NULL;
57d63ce2
DE
4895 dwo_entry = lookup_dwo_unit_in_dwp (dwp_file, NULL,
4896 sig, 1 /* is_debug_types */);
a2ce51a0
DE
4897 if (dwo_entry == NULL)
4898 return NULL;
4899
6aa5f3a6 4900 sig_entry = add_type_unit (sig, slot);
a2ce51a0
DE
4901 fill_in_sig_entry_from_dwo_entry (objfile, sig_entry, dwo_entry);
4902
a2ce51a0
DE
4903 return sig_entry;
4904}
4905
380bca97 4906/* Lookup a signature based type for DW_FORM_ref_sig8.
5a8b3f62
DE
4907 Returns NULL if signature SIG is not present in the table.
4908 It is up to the caller to complain about this. */
348e048f
DE
4909
4910static struct signatured_type *
a2ce51a0 4911lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
348e048f 4912{
a2ce51a0
DE
4913 if (cu->dwo_unit
4914 && dwarf2_per_objfile->using_index)
4915 {
4916 /* We're in a DWO/DWP file, and we're using .gdb_index.
4917 These cases require special processing. */
4918 if (get_dwp_file () == NULL)
4919 return lookup_dwo_signatured_type (cu, sig);
4920 else
4921 return lookup_dwp_signatured_type (cu, sig);
4922 }
4923 else
4924 {
4925 struct signatured_type find_entry, *entry;
348e048f 4926
a2ce51a0
DE
4927 if (dwarf2_per_objfile->signatured_types == NULL)
4928 return NULL;
4929 find_entry.signature = sig;
4930 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
4931 return entry;
4932 }
348e048f 4933}
42e7ad6c
DE
4934\f
4935/* Low level DIE reading support. */
348e048f 4936
d85a05f0
DJ
4937/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
4938
4939static void
4940init_cu_die_reader (struct die_reader_specs *reader,
dee91e82 4941 struct dwarf2_cu *cu,
3019eac3
DE
4942 struct dwarf2_section_info *section,
4943 struct dwo_file *dwo_file)
d85a05f0 4944{
fceca515 4945 gdb_assert (section->readin && section->buffer != NULL);
a32a8923 4946 reader->abfd = get_section_bfd_owner (section);
d85a05f0 4947 reader->cu = cu;
3019eac3 4948 reader->dwo_file = dwo_file;
dee91e82
DE
4949 reader->die_section = section;
4950 reader->buffer = section->buffer;
f664829e 4951 reader->buffer_end = section->buffer + section->size;
a2ce51a0 4952 reader->comp_dir = NULL;
d85a05f0
DJ
4953}
4954
b0c7bfa9
DE
4955/* Subroutine of init_cutu_and_read_dies to simplify it.
4956 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
4957 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
4958 already.
4959
4960 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
4961 from it to the DIE in the DWO. If NULL we are skipping the stub.
a2ce51a0
DE
4962 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
4963 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
c54a1dd8
DE
4964 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
4965 STUB_COMP_DIR may be non-NULL.
b0c7bfa9
DE
4966 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
4967 are filled in with the info of the DIE from the DWO file.
4968 ABBREV_TABLE_PROVIDED is non-zero if the caller of init_cutu_and_read_dies
4969 provided an abbrev table to use.
4970 The result is non-zero if a valid (non-dummy) DIE was found. */
4971
4972static int
4973read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
4974 struct dwo_unit *dwo_unit,
4975 int abbrev_table_provided,
4976 struct die_info *stub_comp_unit_die,
a2ce51a0 4977 const char *stub_comp_dir,
b0c7bfa9 4978 struct die_reader_specs *result_reader,
d521ce57 4979 const gdb_byte **result_info_ptr,
b0c7bfa9
DE
4980 struct die_info **result_comp_unit_die,
4981 int *result_has_children)
4982{
4983 struct objfile *objfile = dwarf2_per_objfile->objfile;
4984 struct dwarf2_cu *cu = this_cu->cu;
4985 struct dwarf2_section_info *section;
4986 bfd *abfd;
d521ce57 4987 const gdb_byte *begin_info_ptr, *info_ptr;
b0c7bfa9
DE
4988 ULONGEST signature; /* Or dwo_id. */
4989 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
4990 int i,num_extra_attrs;
4991 struct dwarf2_section_info *dwo_abbrev_section;
4992 struct attribute *attr;
4993 struct die_info *comp_unit_die;
4994
b0aeadb3
DE
4995 /* At most one of these may be provided. */
4996 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
a2ce51a0 4997
b0c7bfa9
DE
4998 /* These attributes aren't processed until later:
4999 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
0d60c288
DE
5000 DW_AT_comp_dir is used now, to find the DWO file, but it is also
5001 referenced later. However, these attributes are found in the stub
5002 which we won't have later. In order to not impose this complication
5003 on the rest of the code, we read them here and copy them to the
5004 DWO CU/TU die. */
b0c7bfa9
DE
5005
5006 stmt_list = NULL;
5007 low_pc = NULL;
5008 high_pc = NULL;
5009 ranges = NULL;
5010 comp_dir = NULL;
5011
5012 if (stub_comp_unit_die != NULL)
5013 {
5014 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
5015 DWO file. */
5016 if (! this_cu->is_debug_types)
5017 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
5018 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
5019 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
5020 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
5021 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
5022
5023 /* There should be a DW_AT_addr_base attribute here (if needed).
5024 We need the value before we can process DW_FORM_GNU_addr_index. */
5025 cu->addr_base = 0;
5026 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
5027 if (attr)
5028 cu->addr_base = DW_UNSND (attr);
5029
5030 /* There should be a DW_AT_ranges_base attribute here (if needed).
5031 We need the value before we can process DW_AT_ranges. */
5032 cu->ranges_base = 0;
5033 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
5034 if (attr)
5035 cu->ranges_base = DW_UNSND (attr);
5036 }
a2ce51a0
DE
5037 else if (stub_comp_dir != NULL)
5038 {
5039 /* Reconstruct the comp_dir attribute to simplify the code below. */
5040 comp_dir = (struct attribute *)
5041 obstack_alloc (&cu->comp_unit_obstack, sizeof (*comp_dir));
5042 comp_dir->name = DW_AT_comp_dir;
5043 comp_dir->form = DW_FORM_string;
5044 DW_STRING_IS_CANONICAL (comp_dir) = 0;
5045 DW_STRING (comp_dir) = stub_comp_dir;
5046 }
b0c7bfa9
DE
5047
5048 /* Set up for reading the DWO CU/TU. */
5049 cu->dwo_unit = dwo_unit;
5050 section = dwo_unit->section;
5051 dwarf2_read_section (objfile, section);
a32a8923 5052 abfd = get_section_bfd_owner (section);
b0c7bfa9
DE
5053 begin_info_ptr = info_ptr = section->buffer + dwo_unit->offset.sect_off;
5054 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
5055 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file);
5056
5057 if (this_cu->is_debug_types)
5058 {
5059 ULONGEST header_signature;
5060 cu_offset type_offset_in_tu;
5061 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
5062
5063 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5064 dwo_abbrev_section,
5065 info_ptr,
5066 &header_signature,
5067 &type_offset_in_tu);
a2ce51a0
DE
5068 /* This is not an assert because it can be caused by bad debug info. */
5069 if (sig_type->signature != header_signature)
5070 {
5071 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
5072 " TU at offset 0x%x [in module %s]"),
5073 hex_string (sig_type->signature),
5074 hex_string (header_signature),
5075 dwo_unit->offset.sect_off,
5076 bfd_get_filename (abfd));
5077 }
b0c7bfa9
DE
5078 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5079 /* For DWOs coming from DWP files, we don't know the CU length
5080 nor the type's offset in the TU until now. */
5081 dwo_unit->length = get_cu_length (&cu->header);
5082 dwo_unit->type_offset_in_tu = type_offset_in_tu;
5083
5084 /* Establish the type offset that can be used to lookup the type.
5085 For DWO files, we don't know it until now. */
5086 sig_type->type_offset_in_section.sect_off =
5087 dwo_unit->offset.sect_off + dwo_unit->type_offset_in_tu.cu_off;
5088 }
5089 else
5090 {
5091 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5092 dwo_abbrev_section,
5093 info_ptr, 0);
5094 gdb_assert (dwo_unit->offset.sect_off == cu->header.offset.sect_off);
5095 /* For DWOs coming from DWP files, we don't know the CU length
5096 until now. */
5097 dwo_unit->length = get_cu_length (&cu->header);
5098 }
5099
02142a6c
DE
5100 /* Replace the CU's original abbrev table with the DWO's.
5101 Reminder: We can't read the abbrev table until we've read the header. */
b0c7bfa9
DE
5102 if (abbrev_table_provided)
5103 {
5104 /* Don't free the provided abbrev table, the caller of
5105 init_cutu_and_read_dies owns it. */
5106 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5107 /* Ensure the DWO abbrev table gets freed. */
b0c7bfa9
DE
5108 make_cleanup (dwarf2_free_abbrev_table, cu);
5109 }
5110 else
5111 {
5112 dwarf2_free_abbrev_table (cu);
5113 dwarf2_read_abbrevs (cu, dwo_abbrev_section);
02142a6c 5114 /* Leave any existing abbrev table cleanup as is. */
b0c7bfa9
DE
5115 }
5116
5117 /* Read in the die, but leave space to copy over the attributes
5118 from the stub. This has the benefit of simplifying the rest of
5119 the code - all the work to maintain the illusion of a single
5120 DW_TAG_{compile,type}_unit DIE is done here. */
5121 num_extra_attrs = ((stmt_list != NULL)
5122 + (low_pc != NULL)
5123 + (high_pc != NULL)
5124 + (ranges != NULL)
5125 + (comp_dir != NULL));
5126 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
5127 result_has_children, num_extra_attrs);
5128
5129 /* Copy over the attributes from the stub to the DIE we just read in. */
5130 comp_unit_die = *result_comp_unit_die;
5131 i = comp_unit_die->num_attrs;
5132 if (stmt_list != NULL)
5133 comp_unit_die->attrs[i++] = *stmt_list;
5134 if (low_pc != NULL)
5135 comp_unit_die->attrs[i++] = *low_pc;
5136 if (high_pc != NULL)
5137 comp_unit_die->attrs[i++] = *high_pc;
5138 if (ranges != NULL)
5139 comp_unit_die->attrs[i++] = *ranges;
5140 if (comp_dir != NULL)
5141 comp_unit_die->attrs[i++] = *comp_dir;
5142 comp_unit_die->num_attrs += num_extra_attrs;
5143
bf6af496
DE
5144 if (dwarf2_die_debug)
5145 {
5146 fprintf_unfiltered (gdb_stdlog,
5147 "Read die from %s@0x%x of %s:\n",
a32a8923 5148 get_section_name (section),
bf6af496
DE
5149 (unsigned) (begin_info_ptr - section->buffer),
5150 bfd_get_filename (abfd));
5151 dump_die (comp_unit_die, dwarf2_die_debug);
5152 }
5153
a2ce51a0
DE
5154 /* Save the comp_dir attribute. If there is no DWP file then we'll read
5155 TUs by skipping the stub and going directly to the entry in the DWO file.
5156 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
5157 to get it via circuitous means. Blech. */
5158 if (comp_dir != NULL)
5159 result_reader->comp_dir = DW_STRING (comp_dir);
5160
b0c7bfa9
DE
5161 /* Skip dummy compilation units. */
5162 if (info_ptr >= begin_info_ptr + dwo_unit->length
5163 || peek_abbrev_code (abfd, info_ptr) == 0)
5164 return 0;
5165
5166 *result_info_ptr = info_ptr;
5167 return 1;
5168}
5169
5170/* Subroutine of init_cutu_and_read_dies to simplify it.
5171 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6a506a2d 5172 Returns NULL if the specified DWO unit cannot be found. */
b0c7bfa9
DE
5173
5174static struct dwo_unit *
5175lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
5176 struct die_info *comp_unit_die)
5177{
5178 struct dwarf2_cu *cu = this_cu->cu;
5179 struct attribute *attr;
5180 ULONGEST signature;
5181 struct dwo_unit *dwo_unit;
5182 const char *comp_dir, *dwo_name;
5183
a2ce51a0
DE
5184 gdb_assert (cu != NULL);
5185
b0c7bfa9
DE
5186 /* Yeah, we look dwo_name up again, but it simplifies the code. */
5187 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5188 gdb_assert (attr != NULL);
5189 dwo_name = DW_STRING (attr);
5190 comp_dir = NULL;
5191 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5192 if (attr)
5193 comp_dir = DW_STRING (attr);
5194
5195 if (this_cu->is_debug_types)
5196 {
5197 struct signatured_type *sig_type;
5198
5199 /* Since this_cu is the first member of struct signatured_type,
5200 we can go from a pointer to one to a pointer to the other. */
5201 sig_type = (struct signatured_type *) this_cu;
5202 signature = sig_type->signature;
5203 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
5204 }
5205 else
5206 {
5207 struct attribute *attr;
5208
5209 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
5210 if (! attr)
5211 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
5212 " [in module %s]"),
4262abfb 5213 dwo_name, objfile_name (this_cu->objfile));
b0c7bfa9
DE
5214 signature = DW_UNSND (attr);
5215 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
5216 signature);
5217 }
5218
b0c7bfa9
DE
5219 return dwo_unit;
5220}
5221
a2ce51a0 5222/* Subroutine of init_cutu_and_read_dies to simplify it.
6aa5f3a6
DE
5223 See it for a description of the parameters.
5224 Read a TU directly from a DWO file, bypassing the stub.
5225
5226 Note: This function could be a little bit simpler if we shared cleanups
5227 with our caller, init_cutu_and_read_dies. That's generally a fragile thing
5228 to do, so we keep this function self-contained. Or we could move this
5229 into our caller, but it's complex enough already. */
a2ce51a0
DE
5230
5231static void
6aa5f3a6
DE
5232init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
5233 int use_existing_cu, int keep,
a2ce51a0
DE
5234 die_reader_func_ftype *die_reader_func,
5235 void *data)
5236{
5237 struct dwarf2_cu *cu;
5238 struct signatured_type *sig_type;
6aa5f3a6 5239 struct cleanup *cleanups, *free_cu_cleanup = NULL;
a2ce51a0
DE
5240 struct die_reader_specs reader;
5241 const gdb_byte *info_ptr;
5242 struct die_info *comp_unit_die;
5243 int has_children;
5244
5245 /* Verify we can do the following downcast, and that we have the
5246 data we need. */
5247 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
5248 sig_type = (struct signatured_type *) this_cu;
5249 gdb_assert (sig_type->dwo_unit != NULL);
5250
5251 cleanups = make_cleanup (null_cleanup, NULL);
5252
6aa5f3a6
DE
5253 if (use_existing_cu && this_cu->cu != NULL)
5254 {
5255 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
5256 cu = this_cu->cu;
5257 /* There's no need to do the rereading_dwo_cu handling that
5258 init_cutu_and_read_dies does since we don't read the stub. */
5259 }
5260 else
5261 {
5262 /* If !use_existing_cu, this_cu->cu must be NULL. */
5263 gdb_assert (this_cu->cu == NULL);
5264 cu = xmalloc (sizeof (*cu));
5265 init_one_comp_unit (cu, this_cu);
5266 /* If an error occurs while loading, release our storage. */
5267 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
5268 }
5269
5270 /* A future optimization, if needed, would be to use an existing
5271 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
5272 could share abbrev tables. */
a2ce51a0
DE
5273
5274 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
5275 0 /* abbrev_table_provided */,
5276 NULL /* stub_comp_unit_die */,
5277 sig_type->dwo_unit->dwo_file->comp_dir,
5278 &reader, &info_ptr,
5279 &comp_unit_die, &has_children) == 0)
5280 {
5281 /* Dummy die. */
5282 do_cleanups (cleanups);
5283 return;
5284 }
5285
5286 /* All the "real" work is done here. */
5287 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5288
6aa5f3a6 5289 /* This duplicates the code in init_cutu_and_read_dies,
a2ce51a0
DE
5290 but the alternative is making the latter more complex.
5291 This function is only for the special case of using DWO files directly:
5292 no point in overly complicating the general case just to handle this. */
6aa5f3a6 5293 if (free_cu_cleanup != NULL)
a2ce51a0 5294 {
6aa5f3a6
DE
5295 if (keep)
5296 {
5297 /* We've successfully allocated this compilation unit. Let our
5298 caller clean it up when finished with it. */
5299 discard_cleanups (free_cu_cleanup);
a2ce51a0 5300
6aa5f3a6
DE
5301 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5302 So we have to manually free the abbrev table. */
5303 dwarf2_free_abbrev_table (cu);
a2ce51a0 5304
6aa5f3a6
DE
5305 /* Link this CU into read_in_chain. */
5306 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5307 dwarf2_per_objfile->read_in_chain = this_cu;
5308 }
5309 else
5310 do_cleanups (free_cu_cleanup);
a2ce51a0 5311 }
a2ce51a0
DE
5312
5313 do_cleanups (cleanups);
5314}
5315
fd820528 5316/* Initialize a CU (or TU) and read its DIEs.
3019eac3 5317 If the CU defers to a DWO file, read the DWO file as well.
dee91e82 5318
f4dc4d17
DE
5319 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
5320 Otherwise the table specified in the comp unit header is read in and used.
5321 This is an optimization for when we already have the abbrev table.
5322
dee91e82
DE
5323 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
5324 Otherwise, a new CU is allocated with xmalloc.
5325
5326 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
5327 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
5328
5329 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
fd820528 5330 linker) then DIE_READER_FUNC will not get called. */
aaa75496 5331
70221824 5332static void
fd820528 5333init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
f4dc4d17 5334 struct abbrev_table *abbrev_table,
fd820528
DE
5335 int use_existing_cu, int keep,
5336 die_reader_func_ftype *die_reader_func,
5337 void *data)
c906108c 5338{
dee91e82 5339 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5340 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5341 bfd *abfd = get_section_bfd_owner (section);
dee91e82 5342 struct dwarf2_cu *cu;
d521ce57 5343 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82 5344 struct die_reader_specs reader;
d85a05f0 5345 struct die_info *comp_unit_die;
dee91e82 5346 int has_children;
d85a05f0 5347 struct attribute *attr;
365156ad 5348 struct cleanup *cleanups, *free_cu_cleanup = NULL;
dee91e82 5349 struct signatured_type *sig_type = NULL;
4bdcc0c1 5350 struct dwarf2_section_info *abbrev_section;
42e7ad6c
DE
5351 /* Non-zero if CU currently points to a DWO file and we need to
5352 reread it. When this happens we need to reread the skeleton die
a2ce51a0 5353 before we can reread the DWO file (this only applies to CUs, not TUs). */
42e7ad6c 5354 int rereading_dwo_cu = 0;
c906108c 5355
09406207
DE
5356 if (dwarf2_die_debug)
5357 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5358 this_cu->is_debug_types ? "type" : "comp",
5359 this_cu->offset.sect_off);
5360
dee91e82
DE
5361 if (use_existing_cu)
5362 gdb_assert (keep);
23745b47 5363
a2ce51a0
DE
5364 /* If we're reading a TU directly from a DWO file, including a virtual DWO
5365 file (instead of going through the stub), short-circuit all of this. */
5366 if (this_cu->reading_dwo_directly)
5367 {
5368 /* Narrow down the scope of possibilities to have to understand. */
5369 gdb_assert (this_cu->is_debug_types);
5370 gdb_assert (abbrev_table == NULL);
6aa5f3a6
DE
5371 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
5372 die_reader_func, data);
a2ce51a0
DE
5373 return;
5374 }
5375
dee91e82
DE
5376 cleanups = make_cleanup (null_cleanup, NULL);
5377
5378 /* This is cheap if the section is already read in. */
5379 dwarf2_read_section (objfile, section);
5380
5381 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
36586728
TT
5382
5383 abbrev_section = get_abbrev_section_for_cu (this_cu);
dee91e82
DE
5384
5385 if (use_existing_cu && this_cu->cu != NULL)
5386 {
5387 cu = this_cu->cu;
42e7ad6c
DE
5388 /* If this CU is from a DWO file we need to start over, we need to
5389 refetch the attributes from the skeleton CU.
5390 This could be optimized by retrieving those attributes from when we
5391 were here the first time: the previous comp_unit_die was stored in
5392 comp_unit_obstack. But there's no data yet that we need this
5393 optimization. */
5394 if (cu->dwo_unit != NULL)
5395 rereading_dwo_cu = 1;
dee91e82
DE
5396 }
5397 else
5398 {
5399 /* If !use_existing_cu, this_cu->cu must be NULL. */
5400 gdb_assert (this_cu->cu == NULL);
dee91e82
DE
5401 cu = xmalloc (sizeof (*cu));
5402 init_one_comp_unit (cu, this_cu);
dee91e82 5403 /* If an error occurs while loading, release our storage. */
365156ad 5404 free_cu_cleanup = make_cleanup (free_heap_comp_unit, cu);
42e7ad6c 5405 }
dee91e82 5406
b0c7bfa9 5407 /* Get the header. */
42e7ad6c
DE
5408 if (cu->header.first_die_offset.cu_off != 0 && ! rereading_dwo_cu)
5409 {
5410 /* We already have the header, there's no need to read it in again. */
5411 info_ptr += cu->header.first_die_offset.cu_off;
5412 }
5413 else
5414 {
3019eac3 5415 if (this_cu->is_debug_types)
dee91e82
DE
5416 {
5417 ULONGEST signature;
42e7ad6c 5418 cu_offset type_offset_in_tu;
dee91e82 5419
4bdcc0c1
DE
5420 info_ptr = read_and_check_type_unit_head (&cu->header, section,
5421 abbrev_section, info_ptr,
42e7ad6c
DE
5422 &signature,
5423 &type_offset_in_tu);
dee91e82 5424
42e7ad6c
DE
5425 /* Since per_cu is the first member of struct signatured_type,
5426 we can go from a pointer to one to a pointer to the other. */
5427 sig_type = (struct signatured_type *) this_cu;
5428 gdb_assert (sig_type->signature == signature);
5429 gdb_assert (sig_type->type_offset_in_tu.cu_off
5430 == type_offset_in_tu.cu_off);
dee91e82
DE
5431 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
5432
42e7ad6c
DE
5433 /* LENGTH has not been set yet for type units if we're
5434 using .gdb_index. */
1ce1cefd 5435 this_cu->length = get_cu_length (&cu->header);
3019eac3
DE
5436
5437 /* Establish the type offset that can be used to lookup the type. */
5438 sig_type->type_offset_in_section.sect_off =
5439 this_cu->offset.sect_off + sig_type->type_offset_in_tu.cu_off;
dee91e82
DE
5440 }
5441 else
5442 {
4bdcc0c1
DE
5443 info_ptr = read_and_check_comp_unit_head (&cu->header, section,
5444 abbrev_section,
5445 info_ptr, 0);
dee91e82
DE
5446
5447 gdb_assert (this_cu->offset.sect_off == cu->header.offset.sect_off);
1ce1cefd 5448 gdb_assert (this_cu->length == get_cu_length (&cu->header));
dee91e82
DE
5449 }
5450 }
10b3939b 5451
6caca83c 5452 /* Skip dummy compilation units. */
dee91e82 5453 if (info_ptr >= begin_info_ptr + this_cu->length
6caca83c
CC
5454 || peek_abbrev_code (abfd, info_ptr) == 0)
5455 {
dee91e82 5456 do_cleanups (cleanups);
21b2bd31 5457 return;
6caca83c
CC
5458 }
5459
433df2d4
DE
5460 /* If we don't have them yet, read the abbrevs for this compilation unit.
5461 And if we need to read them now, make sure they're freed when we're
42e7ad6c
DE
5462 done. Note that it's important that if the CU had an abbrev table
5463 on entry we don't free it when we're done: Somewhere up the call stack
5464 it may be in use. */
f4dc4d17
DE
5465 if (abbrev_table != NULL)
5466 {
5467 gdb_assert (cu->abbrev_table == NULL);
5468 gdb_assert (cu->header.abbrev_offset.sect_off
5469 == abbrev_table->offset.sect_off);
5470 cu->abbrev_table = abbrev_table;
5471 }
5472 else if (cu->abbrev_table == NULL)
dee91e82 5473 {
4bdcc0c1 5474 dwarf2_read_abbrevs (cu, abbrev_section);
dee91e82
DE
5475 make_cleanup (dwarf2_free_abbrev_table, cu);
5476 }
42e7ad6c
DE
5477 else if (rereading_dwo_cu)
5478 {
5479 dwarf2_free_abbrev_table (cu);
5480 dwarf2_read_abbrevs (cu, abbrev_section);
5481 }
af703f96 5482
dee91e82 5483 /* Read the top level CU/TU die. */
3019eac3 5484 init_cu_die_reader (&reader, cu, section, NULL);
dee91e82 5485 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
93311388 5486
b0c7bfa9
DE
5487 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
5488 from the DWO file.
5489 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
5490 DWO CU, that this test will fail (the attribute will not be present). */
3019eac3
DE
5491 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_name, cu);
5492 if (attr)
5493 {
3019eac3 5494 struct dwo_unit *dwo_unit;
b0c7bfa9 5495 struct die_info *dwo_comp_unit_die;
3019eac3
DE
5496
5497 if (has_children)
6a506a2d
DE
5498 {
5499 complaint (&symfile_complaints,
5500 _("compilation unit with DW_AT_GNU_dwo_name"
5501 " has children (offset 0x%x) [in module %s]"),
5502 this_cu->offset.sect_off, bfd_get_filename (abfd));
5503 }
b0c7bfa9 5504 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
6a506a2d 5505 if (dwo_unit != NULL)
3019eac3 5506 {
6a506a2d
DE
5507 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
5508 abbrev_table != NULL,
a2ce51a0 5509 comp_unit_die, NULL,
6a506a2d
DE
5510 &reader, &info_ptr,
5511 &dwo_comp_unit_die, &has_children) == 0)
5512 {
5513 /* Dummy die. */
5514 do_cleanups (cleanups);
5515 return;
5516 }
5517 comp_unit_die = dwo_comp_unit_die;
5518 }
5519 else
5520 {
5521 /* Yikes, we couldn't find the rest of the DIE, we only have
5522 the stub. A complaint has already been logged. There's
5523 not much more we can do except pass on the stub DIE to
5524 die_reader_func. We don't want to throw an error on bad
5525 debug info. */
3019eac3
DE
5526 }
5527 }
5528
b0c7bfa9 5529 /* All of the above is setup for this call. Yikes. */
dee91e82
DE
5530 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5531
b0c7bfa9 5532 /* Done, clean up. */
365156ad 5533 if (free_cu_cleanup != NULL)
348e048f 5534 {
365156ad
TT
5535 if (keep)
5536 {
5537 /* We've successfully allocated this compilation unit. Let our
5538 caller clean it up when finished with it. */
5539 discard_cleanups (free_cu_cleanup);
dee91e82 5540
365156ad
TT
5541 /* We can only discard free_cu_cleanup and all subsequent cleanups.
5542 So we have to manually free the abbrev table. */
5543 dwarf2_free_abbrev_table (cu);
dee91e82 5544
365156ad
TT
5545 /* Link this CU into read_in_chain. */
5546 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
5547 dwarf2_per_objfile->read_in_chain = this_cu;
5548 }
5549 else
5550 do_cleanups (free_cu_cleanup);
348e048f 5551 }
365156ad
TT
5552
5553 do_cleanups (cleanups);
dee91e82
DE
5554}
5555
33e80786
DE
5556/* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
5557 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
5558 to have already done the lookup to find the DWO file).
dee91e82
DE
5559
5560 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
3019eac3 5561 THIS_CU->is_debug_types, but nothing else.
dee91e82
DE
5562
5563 We fill in THIS_CU->length.
5564
5565 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
5566 linker) then DIE_READER_FUNC will not get called.
5567
5568 THIS_CU->cu is always freed when done.
3019eac3
DE
5569 This is done in order to not leave THIS_CU->cu in a state where we have
5570 to care whether it refers to the "main" CU or the DWO CU. */
dee91e82
DE
5571
5572static void
5573init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
3019eac3 5574 struct dwo_file *dwo_file,
dee91e82
DE
5575 die_reader_func_ftype *die_reader_func,
5576 void *data)
5577{
5578 struct objfile *objfile = dwarf2_per_objfile->objfile;
8a0459fd 5579 struct dwarf2_section_info *section = this_cu->section;
a32a8923 5580 bfd *abfd = get_section_bfd_owner (section);
33e80786 5581 struct dwarf2_section_info *abbrev_section;
dee91e82 5582 struct dwarf2_cu cu;
d521ce57 5583 const gdb_byte *begin_info_ptr, *info_ptr;
dee91e82
DE
5584 struct die_reader_specs reader;
5585 struct cleanup *cleanups;
5586 struct die_info *comp_unit_die;
5587 int has_children;
5588
09406207
DE
5589 if (dwarf2_die_debug)
5590 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset 0x%x\n",
5591 this_cu->is_debug_types ? "type" : "comp",
5592 this_cu->offset.sect_off);
5593
dee91e82
DE
5594 gdb_assert (this_cu->cu == NULL);
5595
33e80786
DE
5596 abbrev_section = (dwo_file != NULL
5597 ? &dwo_file->sections.abbrev
5598 : get_abbrev_section_for_cu (this_cu));
5599
dee91e82
DE
5600 /* This is cheap if the section is already read in. */
5601 dwarf2_read_section (objfile, section);
5602
5603 init_one_comp_unit (&cu, this_cu);
5604
5605 cleanups = make_cleanup (free_stack_comp_unit, &cu);
5606
5607 begin_info_ptr = info_ptr = section->buffer + this_cu->offset.sect_off;
4bdcc0c1
DE
5608 info_ptr = read_and_check_comp_unit_head (&cu.header, section,
5609 abbrev_section, info_ptr,
3019eac3 5610 this_cu->is_debug_types);
dee91e82 5611
1ce1cefd 5612 this_cu->length = get_cu_length (&cu.header);
dee91e82
DE
5613
5614 /* Skip dummy compilation units. */
5615 if (info_ptr >= begin_info_ptr + this_cu->length
5616 || peek_abbrev_code (abfd, info_ptr) == 0)
c906108c 5617 {
dee91e82 5618 do_cleanups (cleanups);
21b2bd31 5619 return;
93311388 5620 }
72bf9492 5621
dee91e82
DE
5622 dwarf2_read_abbrevs (&cu, abbrev_section);
5623 make_cleanup (dwarf2_free_abbrev_table, &cu);
5624
3019eac3 5625 init_cu_die_reader (&reader, &cu, section, dwo_file);
dee91e82
DE
5626 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
5627
5628 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
5629
5630 do_cleanups (cleanups);
5631}
5632
3019eac3
DE
5633/* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
5634 does not lookup the specified DWO file.
5635 This cannot be used to read DWO files.
dee91e82
DE
5636
5637 THIS_CU->cu is always freed when done.
3019eac3
DE
5638 This is done in order to not leave THIS_CU->cu in a state where we have
5639 to care whether it refers to the "main" CU or the DWO CU.
5640 We can revisit this if the data shows there's a performance issue. */
dee91e82
DE
5641
5642static void
5643init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
5644 die_reader_func_ftype *die_reader_func,
5645 void *data)
5646{
33e80786 5647 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
dee91e82 5648}
0018ea6f
DE
5649\f
5650/* Type Unit Groups.
dee91e82 5651
0018ea6f
DE
5652 Type Unit Groups are a way to collapse the set of all TUs (type units) into
5653 a more manageable set. The grouping is done by DW_AT_stmt_list entry
5654 so that all types coming from the same compilation (.o file) are grouped
5655 together. A future step could be to put the types in the same symtab as
5656 the CU the types ultimately came from. */
ff013f42 5657
f4dc4d17
DE
5658static hashval_t
5659hash_type_unit_group (const void *item)
5660{
094b34ac 5661 const struct type_unit_group *tu_group = item;
f4dc4d17 5662
094b34ac 5663 return hash_stmt_list_entry (&tu_group->hash);
f4dc4d17 5664}
348e048f
DE
5665
5666static int
f4dc4d17 5667eq_type_unit_group (const void *item_lhs, const void *item_rhs)
348e048f 5668{
f4dc4d17
DE
5669 const struct type_unit_group *lhs = item_lhs;
5670 const struct type_unit_group *rhs = item_rhs;
348e048f 5671
094b34ac 5672 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
f4dc4d17 5673}
348e048f 5674
f4dc4d17
DE
5675/* Allocate a hash table for type unit groups. */
5676
5677static htab_t
5678allocate_type_unit_groups_table (void)
5679{
5680 return htab_create_alloc_ex (3,
5681 hash_type_unit_group,
5682 eq_type_unit_group,
5683 NULL,
5684 &dwarf2_per_objfile->objfile->objfile_obstack,
5685 hashtab_obstack_allocate,
5686 dummy_obstack_deallocate);
5687}
dee91e82 5688
f4dc4d17
DE
5689/* Type units that don't have DW_AT_stmt_list are grouped into their own
5690 partial symtabs. We combine several TUs per psymtab to not let the size
5691 of any one psymtab grow too big. */
5692#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
5693#define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
dee91e82 5694
094b34ac 5695/* Helper routine for get_type_unit_group.
f4dc4d17
DE
5696 Create the type_unit_group object used to hold one or more TUs. */
5697
5698static struct type_unit_group *
094b34ac 5699create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
f4dc4d17
DE
5700{
5701 struct objfile *objfile = dwarf2_per_objfile->objfile;
094b34ac 5702 struct dwarf2_per_cu_data *per_cu;
f4dc4d17 5703 struct type_unit_group *tu_group;
f4dc4d17
DE
5704
5705 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5706 struct type_unit_group);
094b34ac 5707 per_cu = &tu_group->per_cu;
f4dc4d17 5708 per_cu->objfile = objfile;
f4dc4d17 5709
094b34ac
DE
5710 if (dwarf2_per_objfile->using_index)
5711 {
5712 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5713 struct dwarf2_per_cu_quick_data);
094b34ac
DE
5714 }
5715 else
5716 {
5717 unsigned int line_offset = line_offset_struct.sect_off;
5718 struct partial_symtab *pst;
5719 char *name;
5720
5721 /* Give the symtab a useful name for debug purposes. */
5722 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
5723 name = xstrprintf ("<type_units_%d>",
5724 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
5725 else
5726 name = xstrprintf ("<type_units_at_0x%x>", line_offset);
5727
5728 pst = create_partial_symtab (per_cu, name);
5729 pst->anonymous = 1;
f4dc4d17 5730
094b34ac
DE
5731 xfree (name);
5732 }
f4dc4d17 5733
094b34ac
DE
5734 tu_group->hash.dwo_unit = cu->dwo_unit;
5735 tu_group->hash.line_offset = line_offset_struct;
f4dc4d17
DE
5736
5737 return tu_group;
5738}
5739
094b34ac
DE
5740/* Look up the type_unit_group for type unit CU, and create it if necessary.
5741 STMT_LIST is a DW_AT_stmt_list attribute. */
f4dc4d17
DE
5742
5743static struct type_unit_group *
ff39bb5e 5744get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
f4dc4d17
DE
5745{
5746 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
5747 struct type_unit_group *tu_group;
5748 void **slot;
5749 unsigned int line_offset;
5750 struct type_unit_group type_unit_group_for_lookup;
5751
5752 if (dwarf2_per_objfile->type_unit_groups == NULL)
5753 {
5754 dwarf2_per_objfile->type_unit_groups =
5755 allocate_type_unit_groups_table ();
5756 }
5757
5758 /* Do we need to create a new group, or can we use an existing one? */
5759
5760 if (stmt_list)
5761 {
5762 line_offset = DW_UNSND (stmt_list);
5763 ++tu_stats->nr_symtab_sharers;
5764 }
5765 else
5766 {
5767 /* Ugh, no stmt_list. Rare, but we have to handle it.
5768 We can do various things here like create one group per TU or
5769 spread them over multiple groups to split up the expansion work.
5770 To avoid worst case scenarios (too many groups or too large groups)
5771 we, umm, group them in bunches. */
5772 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
5773 | (tu_stats->nr_stmt_less_type_units
5774 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
5775 ++tu_stats->nr_stmt_less_type_units;
5776 }
5777
094b34ac
DE
5778 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
5779 type_unit_group_for_lookup.hash.line_offset.sect_off = line_offset;
f4dc4d17
DE
5780 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
5781 &type_unit_group_for_lookup, INSERT);
5782 if (*slot != NULL)
5783 {
5784 tu_group = *slot;
5785 gdb_assert (tu_group != NULL);
5786 }
5787 else
5788 {
5789 sect_offset line_offset_struct;
5790
5791 line_offset_struct.sect_off = line_offset;
094b34ac 5792 tu_group = create_type_unit_group (cu, line_offset_struct);
f4dc4d17
DE
5793 *slot = tu_group;
5794 ++tu_stats->nr_symtabs;
5795 }
5796
5797 return tu_group;
5798}
0018ea6f
DE
5799\f
5800/* Partial symbol tables. */
5801
5802/* Create a psymtab named NAME and assign it to PER_CU.
5803
5804 The caller must fill in the following details:
5805 dirname, textlow, texthigh. */
5806
5807static struct partial_symtab *
5808create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
5809{
5810 struct objfile *objfile = per_cu->objfile;
5811 struct partial_symtab *pst;
5812
5813 pst = start_psymtab_common (objfile, objfile->section_offsets,
5814 name, 0,
5815 objfile->global_psymbols.next,
5816 objfile->static_psymbols.next);
5817
5818 pst->psymtabs_addrmap_supported = 1;
5819
5820 /* This is the glue that links PST into GDB's symbol API. */
5821 pst->read_symtab_private = per_cu;
5822 pst->read_symtab = dwarf2_read_symtab;
5823 per_cu->v.psymtab = pst;
5824
5825 return pst;
5826}
5827
b93601f3
TT
5828/* The DATA object passed to process_psymtab_comp_unit_reader has this
5829 type. */
5830
5831struct process_psymtab_comp_unit_data
5832{
5833 /* True if we are reading a DW_TAG_partial_unit. */
5834
5835 int want_partial_unit;
5836
5837 /* The "pretend" language that is used if the CU doesn't declare a
5838 language. */
5839
5840 enum language pretend_language;
5841};
5842
0018ea6f
DE
5843/* die_reader_func for process_psymtab_comp_unit. */
5844
5845static void
5846process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 5847 const gdb_byte *info_ptr,
0018ea6f
DE
5848 struct die_info *comp_unit_die,
5849 int has_children,
5850 void *data)
5851{
5852 struct dwarf2_cu *cu = reader->cu;
5853 struct objfile *objfile = cu->objfile;
3e29f34a 5854 struct gdbarch *gdbarch = get_objfile_arch (objfile);
0018ea6f
DE
5855 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
5856 struct attribute *attr;
5857 CORE_ADDR baseaddr;
5858 CORE_ADDR best_lowpc = 0, best_highpc = 0;
5859 struct partial_symtab *pst;
5860 int has_pc_info;
5861 const char *filename;
b93601f3 5862 struct process_psymtab_comp_unit_data *info = data;
0018ea6f 5863
b93601f3 5864 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
0018ea6f
DE
5865 return;
5866
5867 gdb_assert (! per_cu->is_debug_types);
5868
b93601f3 5869 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
0018ea6f
DE
5870
5871 cu->list_in_scope = &file_symbols;
5872
5873 /* Allocate a new partial symbol table structure. */
5874 attr = dwarf2_attr (comp_unit_die, DW_AT_name, cu);
5875 if (attr == NULL || !DW_STRING (attr))
5876 filename = "";
5877 else
5878 filename = DW_STRING (attr);
5879
5880 pst = create_partial_symtab (per_cu, filename);
5881
5882 /* This must be done before calling dwarf2_build_include_psymtabs. */
5883 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, cu);
5884 if (attr != NULL)
5885 pst->dirname = DW_STRING (attr);
5886
5887 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5888
5889 dwarf2_find_base_address (comp_unit_die, cu);
5890
5891 /* Possibly set the default values of LOWPC and HIGHPC from
5892 `DW_AT_ranges'. */
5893 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
5894 &best_highpc, cu, pst);
5895 if (has_pc_info == 1 && best_lowpc < best_highpc)
5896 /* Store the contiguous range if it is not empty; it can be empty for
5897 CUs with no code. */
5898 addrmap_set_empty (objfile->psymtabs_addrmap,
3e29f34a
MR
5899 gdbarch_adjust_dwarf2_addr (gdbarch,
5900 best_lowpc + baseaddr),
5901 gdbarch_adjust_dwarf2_addr (gdbarch,
5902 best_highpc + baseaddr) - 1,
5903 pst);
0018ea6f
DE
5904
5905 /* Check if comp unit has_children.
5906 If so, read the rest of the partial symbols from this comp unit.
5907 If not, there's no more debug_info for this comp unit. */
5908 if (has_children)
5909 {
5910 struct partial_die_info *first_die;
5911 CORE_ADDR lowpc, highpc;
5912
5913 lowpc = ((CORE_ADDR) -1);
5914 highpc = ((CORE_ADDR) 0);
5915
5916 first_die = load_partial_dies (reader, info_ptr, 1);
5917
5918 scan_partial_symbols (first_die, &lowpc, &highpc,
5919 ! has_pc_info, cu);
5920
5921 /* If we didn't find a lowpc, set it to highpc to avoid
5922 complaints from `maint check'. */
5923 if (lowpc == ((CORE_ADDR) -1))
5924 lowpc = highpc;
5925
5926 /* If the compilation unit didn't have an explicit address range,
5927 then use the information extracted from its child dies. */
5928 if (! has_pc_info)
5929 {
5930 best_lowpc = lowpc;
5931 best_highpc = highpc;
5932 }
5933 }
3e29f34a
MR
5934 pst->textlow = gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr);
5935 pst->texthigh = gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr);
0018ea6f
DE
5936
5937 pst->n_global_syms = objfile->global_psymbols.next -
5938 (objfile->global_psymbols.list + pst->globals_offset);
5939 pst->n_static_syms = objfile->static_psymbols.next -
5940 (objfile->static_psymbols.list + pst->statics_offset);
5941 sort_pst_symbols (objfile, pst);
5942
5943 if (!VEC_empty (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs))
5944 {
5945 int i;
5946 int len = VEC_length (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5947 struct dwarf2_per_cu_data *iter;
5948
5949 /* Fill in 'dependencies' here; we fill in 'users' in a
5950 post-pass. */
5951 pst->number_of_dependencies = len;
5952 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
5953 len * sizeof (struct symtab *));
5954 for (i = 0;
5955 VEC_iterate (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
5956 i, iter);
5957 ++i)
5958 pst->dependencies[i] = iter->v.psymtab;
5959
5960 VEC_free (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs);
5961 }
5962
5963 /* Get the list of files included in the current compilation unit,
5964 and build a psymtab for each of them. */
5965 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
5966
5967 if (dwarf2_read_debug)
5968 {
5969 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5970
5971 fprintf_unfiltered (gdb_stdlog,
5972 "Psymtab for %s unit @0x%x: %s - %s"
5973 ", %d global, %d static syms\n",
5974 per_cu->is_debug_types ? "type" : "comp",
5975 per_cu->offset.sect_off,
5976 paddress (gdbarch, pst->textlow),
5977 paddress (gdbarch, pst->texthigh),
5978 pst->n_global_syms, pst->n_static_syms);
5979 }
5980}
5981
5982/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
5983 Process compilation unit THIS_CU for a psymtab. */
5984
5985static void
5986process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
b93601f3
TT
5987 int want_partial_unit,
5988 enum language pretend_language)
0018ea6f 5989{
b93601f3
TT
5990 struct process_psymtab_comp_unit_data info;
5991
0018ea6f
DE
5992 /* If this compilation unit was already read in, free the
5993 cached copy in order to read it in again. This is
5994 necessary because we skipped some symbols when we first
5995 read in the compilation unit (see load_partial_dies).
5996 This problem could be avoided, but the benefit is unclear. */
5997 if (this_cu->cu != NULL)
5998 free_one_cached_comp_unit (this_cu);
5999
6000 gdb_assert (! this_cu->is_debug_types);
b93601f3
TT
6001 info.want_partial_unit = want_partial_unit;
6002 info.pretend_language = pretend_language;
0018ea6f
DE
6003 init_cutu_and_read_dies (this_cu, NULL, 0, 0,
6004 process_psymtab_comp_unit_reader,
b93601f3 6005 &info);
0018ea6f
DE
6006
6007 /* Age out any secondary CUs. */
6008 age_cached_comp_units ();
6009}
f4dc4d17
DE
6010
6011/* Reader function for build_type_psymtabs. */
6012
6013static void
6014build_type_psymtabs_reader (const struct die_reader_specs *reader,
d521ce57 6015 const gdb_byte *info_ptr,
f4dc4d17
DE
6016 struct die_info *type_unit_die,
6017 int has_children,
6018 void *data)
6019{
6020 struct objfile *objfile = dwarf2_per_objfile->objfile;
6021 struct dwarf2_cu *cu = reader->cu;
6022 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
0186c6a7 6023 struct signatured_type *sig_type;
f4dc4d17
DE
6024 struct type_unit_group *tu_group;
6025 struct attribute *attr;
6026 struct partial_die_info *first_die;
6027 CORE_ADDR lowpc, highpc;
6028 struct partial_symtab *pst;
6029
6030 gdb_assert (data == NULL);
0186c6a7
DE
6031 gdb_assert (per_cu->is_debug_types);
6032 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
6033
6034 if (! has_children)
6035 return;
6036
6037 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
094b34ac 6038 tu_group = get_type_unit_group (cu, attr);
f4dc4d17 6039
0186c6a7 6040 VEC_safe_push (sig_type_ptr, tu_group->tus, sig_type);
f4dc4d17
DE
6041
6042 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
6043 cu->list_in_scope = &file_symbols;
6044 pst = create_partial_symtab (per_cu, "");
6045 pst->anonymous = 1;
6046
6047 first_die = load_partial_dies (reader, info_ptr, 1);
6048
6049 lowpc = (CORE_ADDR) -1;
6050 highpc = (CORE_ADDR) 0;
6051 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
6052
6053 pst->n_global_syms = objfile->global_psymbols.next -
6054 (objfile->global_psymbols.list + pst->globals_offset);
6055 pst->n_static_syms = objfile->static_psymbols.next -
6056 (objfile->static_psymbols.list + pst->statics_offset);
5c80ed9d 6057 sort_pst_symbols (objfile, pst);
f4dc4d17
DE
6058}
6059
73051182
DE
6060/* Struct used to sort TUs by their abbreviation table offset. */
6061
6062struct tu_abbrev_offset
6063{
6064 struct signatured_type *sig_type;
6065 sect_offset abbrev_offset;
6066};
6067
6068/* Helper routine for build_type_psymtabs_1, passed to qsort. */
6069
6070static int
6071sort_tu_by_abbrev_offset (const void *ap, const void *bp)
6072{
6073 const struct tu_abbrev_offset * const *a = ap;
6074 const struct tu_abbrev_offset * const *b = bp;
6075 unsigned int aoff = (*a)->abbrev_offset.sect_off;
6076 unsigned int boff = (*b)->abbrev_offset.sect_off;
6077
6078 return (aoff > boff) - (aoff < boff);
6079}
6080
6081/* Efficiently read all the type units.
6082 This does the bulk of the work for build_type_psymtabs.
6083
6084 The efficiency is because we sort TUs by the abbrev table they use and
6085 only read each abbrev table once. In one program there are 200K TUs
6086 sharing 8K abbrev tables.
6087
6088 The main purpose of this function is to support building the
6089 dwarf2_per_objfile->type_unit_groups table.
6090 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
6091 can collapse the search space by grouping them by stmt_list.
6092 The savings can be significant, in the same program from above the 200K TUs
6093 share 8K stmt_list tables.
6094
6095 FUNC is expected to call get_type_unit_group, which will create the
6096 struct type_unit_group if necessary and add it to
6097 dwarf2_per_objfile->type_unit_groups. */
6098
6099static void
6100build_type_psymtabs_1 (void)
6101{
6102 struct objfile *objfile = dwarf2_per_objfile->objfile;
6103 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6104 struct cleanup *cleanups;
6105 struct abbrev_table *abbrev_table;
6106 sect_offset abbrev_offset;
6107 struct tu_abbrev_offset *sorted_by_abbrev;
6108 struct type_unit_group **iter;
6109 int i;
6110
6111 /* It's up to the caller to not call us multiple times. */
6112 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
6113
6114 if (dwarf2_per_objfile->n_type_units == 0)
6115 return;
6116
6117 /* TUs typically share abbrev tables, and there can be way more TUs than
6118 abbrev tables. Sort by abbrev table to reduce the number of times we
6119 read each abbrev table in.
6120 Alternatives are to punt or to maintain a cache of abbrev tables.
6121 This is simpler and efficient enough for now.
6122
6123 Later we group TUs by their DW_AT_stmt_list value (as this defines the
6124 symtab to use). Typically TUs with the same abbrev offset have the same
6125 stmt_list value too so in practice this should work well.
6126
6127 The basic algorithm here is:
6128
6129 sort TUs by abbrev table
6130 for each TU with same abbrev table:
6131 read abbrev table if first user
6132 read TU top level DIE
6133 [IWBN if DWO skeletons had DW_AT_stmt_list]
6134 call FUNC */
6135
6136 if (dwarf2_read_debug)
6137 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
6138
6139 /* Sort in a separate table to maintain the order of all_type_units
6140 for .gdb_index: TU indices directly index all_type_units. */
6141 sorted_by_abbrev = XNEWVEC (struct tu_abbrev_offset,
6142 dwarf2_per_objfile->n_type_units);
6143 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6144 {
6145 struct signatured_type *sig_type = dwarf2_per_objfile->all_type_units[i];
6146
6147 sorted_by_abbrev[i].sig_type = sig_type;
6148 sorted_by_abbrev[i].abbrev_offset =
6149 read_abbrev_offset (sig_type->per_cu.section,
6150 sig_type->per_cu.offset);
6151 }
6152 cleanups = make_cleanup (xfree, sorted_by_abbrev);
6153 qsort (sorted_by_abbrev, dwarf2_per_objfile->n_type_units,
6154 sizeof (struct tu_abbrev_offset), sort_tu_by_abbrev_offset);
6155
6156 abbrev_offset.sect_off = ~(unsigned) 0;
6157 abbrev_table = NULL;
6158 make_cleanup (abbrev_table_free_cleanup, &abbrev_table);
6159
6160 for (i = 0; i < dwarf2_per_objfile->n_type_units; ++i)
6161 {
6162 const struct tu_abbrev_offset *tu = &sorted_by_abbrev[i];
6163
6164 /* Switch to the next abbrev table if necessary. */
6165 if (abbrev_table == NULL
6166 || tu->abbrev_offset.sect_off != abbrev_offset.sect_off)
6167 {
6168 if (abbrev_table != NULL)
6169 {
6170 abbrev_table_free (abbrev_table);
6171 /* Reset to NULL in case abbrev_table_read_table throws
6172 an error: abbrev_table_free_cleanup will get called. */
6173 abbrev_table = NULL;
6174 }
6175 abbrev_offset = tu->abbrev_offset;
6176 abbrev_table =
6177 abbrev_table_read_table (&dwarf2_per_objfile->abbrev,
6178 abbrev_offset);
6179 ++tu_stats->nr_uniq_abbrev_tables;
6180 }
6181
6182 init_cutu_and_read_dies (&tu->sig_type->per_cu, abbrev_table, 0, 0,
6183 build_type_psymtabs_reader, NULL);
6184 }
6185
73051182 6186 do_cleanups (cleanups);
6aa5f3a6 6187}
73051182 6188
6aa5f3a6
DE
6189/* Print collected type unit statistics. */
6190
6191static void
6192print_tu_stats (void)
6193{
6194 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
6195
6196 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
6197 fprintf_unfiltered (gdb_stdlog, " %d TUs\n",
6198 dwarf2_per_objfile->n_type_units);
6199 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
6200 tu_stats->nr_uniq_abbrev_tables);
6201 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
6202 tu_stats->nr_symtabs);
6203 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
6204 tu_stats->nr_symtab_sharers);
6205 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
6206 tu_stats->nr_stmt_less_type_units);
6207 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
6208 tu_stats->nr_all_type_units_reallocs);
73051182
DE
6209}
6210
f4dc4d17
DE
6211/* Traversal function for build_type_psymtabs. */
6212
6213static int
6214build_type_psymtab_dependencies (void **slot, void *info)
6215{
6216 struct objfile *objfile = dwarf2_per_objfile->objfile;
6217 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
094b34ac 6218 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
f4dc4d17 6219 struct partial_symtab *pst = per_cu->v.psymtab;
0186c6a7
DE
6220 int len = VEC_length (sig_type_ptr, tu_group->tus);
6221 struct signatured_type *iter;
f4dc4d17
DE
6222 int i;
6223
6224 gdb_assert (len > 0);
0186c6a7 6225 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
f4dc4d17
DE
6226
6227 pst->number_of_dependencies = len;
6228 pst->dependencies = obstack_alloc (&objfile->objfile_obstack,
6229 len * sizeof (struct psymtab *));
6230 for (i = 0;
0186c6a7 6231 VEC_iterate (sig_type_ptr, tu_group->tus, i, iter);
f4dc4d17
DE
6232 ++i)
6233 {
0186c6a7
DE
6234 gdb_assert (iter->per_cu.is_debug_types);
6235 pst->dependencies[i] = iter->per_cu.v.psymtab;
796a7ff8 6236 iter->type_unit_group = tu_group;
f4dc4d17
DE
6237 }
6238
0186c6a7 6239 VEC_free (sig_type_ptr, tu_group->tus);
348e048f
DE
6240
6241 return 1;
6242}
6243
6244/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
6245 Build partial symbol tables for the .debug_types comp-units. */
6246
6247static void
6248build_type_psymtabs (struct objfile *objfile)
6249{
0e50663e 6250 if (! create_all_type_units (objfile))
348e048f
DE
6251 return;
6252
73051182 6253 build_type_psymtabs_1 ();
6aa5f3a6 6254}
f4dc4d17 6255
6aa5f3a6
DE
6256/* Traversal function for process_skeletonless_type_unit.
6257 Read a TU in a DWO file and build partial symbols for it. */
6258
6259static int
6260process_skeletonless_type_unit (void **slot, void *info)
6261{
6262 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
6263 struct objfile *objfile = info;
6264 struct signatured_type find_entry, *entry;
6265
6266 /* If this TU doesn't exist in the global table, add it and read it in. */
6267
6268 if (dwarf2_per_objfile->signatured_types == NULL)
6269 {
6270 dwarf2_per_objfile->signatured_types
6271 = allocate_signatured_type_table (objfile);
6272 }
6273
6274 find_entry.signature = dwo_unit->signature;
6275 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
6276 INSERT);
6277 /* If we've already seen this type there's nothing to do. What's happening
6278 is we're doing our own version of comdat-folding here. */
6279 if (*slot != NULL)
6280 return 1;
6281
6282 /* This does the job that create_all_type_units would have done for
6283 this TU. */
6284 entry = add_type_unit (dwo_unit->signature, slot);
6285 fill_in_sig_entry_from_dwo_entry (objfile, entry, dwo_unit);
6286 *slot = entry;
6287
6288 /* This does the job that build_type_psymtabs_1 would have done. */
6289 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0,
6290 build_type_psymtabs_reader, NULL);
6291
6292 return 1;
6293}
6294
6295/* Traversal function for process_skeletonless_type_units. */
6296
6297static int
6298process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
6299{
6300 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
6301
6302 if (dwo_file->tus != NULL)
6303 {
6304 htab_traverse_noresize (dwo_file->tus,
6305 process_skeletonless_type_unit, info);
6306 }
6307
6308 return 1;
6309}
6310
6311/* Scan all TUs of DWO files, verifying we've processed them.
6312 This is needed in case a TU was emitted without its skeleton.
6313 Note: This can't be done until we know what all the DWO files are. */
6314
6315static void
6316process_skeletonless_type_units (struct objfile *objfile)
6317{
6318 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
6319 if (get_dwp_file () == NULL
6320 && dwarf2_per_objfile->dwo_files != NULL)
6321 {
6322 htab_traverse_noresize (dwarf2_per_objfile->dwo_files,
6323 process_dwo_file_for_skeletonless_type_units,
6324 objfile);
6325 }
348e048f
DE
6326}
6327
60606b2c
TT
6328/* A cleanup function that clears objfile's psymtabs_addrmap field. */
6329
6330static void
6331psymtabs_addrmap_cleanup (void *o)
6332{
6333 struct objfile *objfile = o;
ec61707d 6334
60606b2c
TT
6335 objfile->psymtabs_addrmap = NULL;
6336}
6337
95554aad
TT
6338/* Compute the 'user' field for each psymtab in OBJFILE. */
6339
6340static void
6341set_partial_user (struct objfile *objfile)
6342{
6343 int i;
6344
6345 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
6346 {
8832e7e3 6347 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
95554aad
TT
6348 struct partial_symtab *pst = per_cu->v.psymtab;
6349 int j;
6350
36586728
TT
6351 if (pst == NULL)
6352 continue;
6353
95554aad
TT
6354 for (j = 0; j < pst->number_of_dependencies; ++j)
6355 {
6356 /* Set the 'user' field only if it is not already set. */
6357 if (pst->dependencies[j]->user == NULL)
6358 pst->dependencies[j]->user = pst;
6359 }
6360 }
6361}
6362
93311388
DE
6363/* Build the partial symbol table by doing a quick pass through the
6364 .debug_info and .debug_abbrev sections. */
72bf9492 6365
93311388 6366static void
c67a9c90 6367dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 6368{
60606b2c
TT
6369 struct cleanup *back_to, *addrmap_cleanup;
6370 struct obstack temp_obstack;
21b2bd31 6371 int i;
93311388 6372
45cfd468
DE
6373 if (dwarf2_read_debug)
6374 {
6375 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
4262abfb 6376 objfile_name (objfile));
45cfd468
DE
6377 }
6378
98bfdba5
PA
6379 dwarf2_per_objfile->reading_partial_symbols = 1;
6380
be391dca 6381 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
91c24f0a 6382
93311388
DE
6383 /* Any cached compilation units will be linked by the per-objfile
6384 read_in_chain. Make sure to free them when we're done. */
6385 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 6386
348e048f
DE
6387 build_type_psymtabs (objfile);
6388
93311388 6389 create_all_comp_units (objfile);
c906108c 6390
60606b2c
TT
6391 /* Create a temporary address map on a temporary obstack. We later
6392 copy this to the final obstack. */
6393 obstack_init (&temp_obstack);
6394 make_cleanup_obstack_free (&temp_obstack);
6395 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
6396 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 6397
21b2bd31 6398 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
93311388 6399 {
8832e7e3 6400 struct dwarf2_per_cu_data *per_cu = dw2_get_cutu (i);
aaa75496 6401
b93601f3 6402 process_psymtab_comp_unit (per_cu, 0, language_minimal);
c906108c 6403 }
ff013f42 6404
6aa5f3a6
DE
6405 /* This has to wait until we read the CUs, we need the list of DWOs. */
6406 process_skeletonless_type_units (objfile);
6407
6408 /* Now that all TUs have been processed we can fill in the dependencies. */
6409 if (dwarf2_per_objfile->type_unit_groups != NULL)
6410 {
6411 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
6412 build_type_psymtab_dependencies, NULL);
6413 }
6414
6415 if (dwarf2_read_debug)
6416 print_tu_stats ();
6417
95554aad
TT
6418 set_partial_user (objfile);
6419
ff013f42
JK
6420 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
6421 &objfile->objfile_obstack);
60606b2c 6422 discard_cleanups (addrmap_cleanup);
ff013f42 6423
ae038cb0 6424 do_cleanups (back_to);
45cfd468
DE
6425
6426 if (dwarf2_read_debug)
6427 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
4262abfb 6428 objfile_name (objfile));
ae038cb0
DJ
6429}
6430
3019eac3 6431/* die_reader_func for load_partial_comp_unit. */
ae038cb0
DJ
6432
6433static void
dee91e82 6434load_partial_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 6435 const gdb_byte *info_ptr,
dee91e82
DE
6436 struct die_info *comp_unit_die,
6437 int has_children,
6438 void *data)
ae038cb0 6439{
dee91e82 6440 struct dwarf2_cu *cu = reader->cu;
ae038cb0 6441
95554aad 6442 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
ae038cb0 6443
ae038cb0
DJ
6444 /* Check if comp unit has_children.
6445 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 6446 If not, there's no more debug_info for this comp unit. */
d85a05f0 6447 if (has_children)
dee91e82
DE
6448 load_partial_dies (reader, info_ptr, 0);
6449}
98bfdba5 6450
dee91e82
DE
6451/* Load the partial DIEs for a secondary CU into memory.
6452 This is also used when rereading a primary CU with load_all_dies. */
c5b7e1cb 6453
dee91e82
DE
6454static void
6455load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
6456{
f4dc4d17
DE
6457 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
6458 load_partial_comp_unit_reader, NULL);
ae038cb0
DJ
6459}
6460
ae038cb0 6461static void
36586728
TT
6462read_comp_units_from_section (struct objfile *objfile,
6463 struct dwarf2_section_info *section,
6464 unsigned int is_dwz,
6465 int *n_allocated,
6466 int *n_comp_units,
6467 struct dwarf2_per_cu_data ***all_comp_units)
ae038cb0 6468{
d521ce57 6469 const gdb_byte *info_ptr;
a32a8923 6470 bfd *abfd = get_section_bfd_owner (section);
be391dca 6471
bf6af496
DE
6472 if (dwarf2_read_debug)
6473 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
a32a8923
DE
6474 get_section_name (section),
6475 get_section_file_name (section));
bf6af496 6476
36586728 6477 dwarf2_read_section (objfile, section);
ae038cb0 6478
36586728 6479 info_ptr = section->buffer;
6e70227d 6480
36586728 6481 while (info_ptr < section->buffer + section->size)
ae038cb0 6482 {
c764a876 6483 unsigned int length, initial_length_size;
ae038cb0 6484 struct dwarf2_per_cu_data *this_cu;
b64f50a1 6485 sect_offset offset;
ae038cb0 6486
36586728 6487 offset.sect_off = info_ptr - section->buffer;
ae038cb0
DJ
6488
6489 /* Read just enough information to find out where the next
6490 compilation unit is. */
36586728 6491 length = read_initial_length (abfd, info_ptr, &initial_length_size);
ae038cb0
DJ
6492
6493 /* Save the compilation unit for later lookup. */
6494 this_cu = obstack_alloc (&objfile->objfile_obstack,
6495 sizeof (struct dwarf2_per_cu_data));
6496 memset (this_cu, 0, sizeof (*this_cu));
6497 this_cu->offset = offset;
c764a876 6498 this_cu->length = length + initial_length_size;
36586728 6499 this_cu->is_dwz = is_dwz;
9291a0cd 6500 this_cu->objfile = objfile;
8a0459fd 6501 this_cu->section = section;
ae038cb0 6502
36586728 6503 if (*n_comp_units == *n_allocated)
ae038cb0 6504 {
36586728
TT
6505 *n_allocated *= 2;
6506 *all_comp_units = xrealloc (*all_comp_units,
6507 *n_allocated
6508 * sizeof (struct dwarf2_per_cu_data *));
ae038cb0 6509 }
36586728
TT
6510 (*all_comp_units)[*n_comp_units] = this_cu;
6511 ++*n_comp_units;
ae038cb0
DJ
6512
6513 info_ptr = info_ptr + this_cu->length;
6514 }
36586728
TT
6515}
6516
6517/* Create a list of all compilation units in OBJFILE.
6518 This is only done for -readnow and building partial symtabs. */
6519
6520static void
6521create_all_comp_units (struct objfile *objfile)
6522{
6523 int n_allocated;
6524 int n_comp_units;
6525 struct dwarf2_per_cu_data **all_comp_units;
4db1a1dc 6526 struct dwz_file *dwz;
36586728
TT
6527
6528 n_comp_units = 0;
6529 n_allocated = 10;
6530 all_comp_units = xmalloc (n_allocated
6531 * sizeof (struct dwarf2_per_cu_data *));
6532
6533 read_comp_units_from_section (objfile, &dwarf2_per_objfile->info, 0,
6534 &n_allocated, &n_comp_units, &all_comp_units);
6535
4db1a1dc
TT
6536 dwz = dwarf2_get_dwz_file ();
6537 if (dwz != NULL)
6538 read_comp_units_from_section (objfile, &dwz->info, 1,
6539 &n_allocated, &n_comp_units,
6540 &all_comp_units);
ae038cb0
DJ
6541
6542 dwarf2_per_objfile->all_comp_units
6543 = obstack_alloc (&objfile->objfile_obstack,
6544 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6545 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
6546 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
6547 xfree (all_comp_units);
6548 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
6549}
6550
5734ee8b 6551/* Process all loaded DIEs for compilation unit CU, starting at
cdc07690 6552 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
5734ee8b 6553 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
cdc07690
YQ
6554 DW_AT_ranges). See the comments of add_partial_subprogram on how
6555 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
c906108c 6556
72bf9492
DJ
6557static void
6558scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
cdc07690
YQ
6559 CORE_ADDR *highpc, int set_addrmap,
6560 struct dwarf2_cu *cu)
c906108c 6561{
72bf9492 6562 struct partial_die_info *pdi;
c906108c 6563
91c24f0a
DC
6564 /* Now, march along the PDI's, descending into ones which have
6565 interesting children but skipping the children of the other ones,
6566 until we reach the end of the compilation unit. */
c906108c 6567
72bf9492 6568 pdi = first_die;
91c24f0a 6569
72bf9492
DJ
6570 while (pdi != NULL)
6571 {
6572 fixup_partial_die (pdi, cu);
c906108c 6573
f55ee35c 6574 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
6575 children, so we need to look at them. Ditto for anonymous
6576 enums. */
933c6fe4 6577
72bf9492 6578 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
95554aad
TT
6579 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
6580 || pdi->tag == DW_TAG_imported_unit)
c906108c 6581 {
72bf9492 6582 switch (pdi->tag)
c906108c
SS
6583 {
6584 case DW_TAG_subprogram:
cdc07690 6585 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
c906108c 6586 break;
72929c62 6587 case DW_TAG_constant:
c906108c
SS
6588 case DW_TAG_variable:
6589 case DW_TAG_typedef:
91c24f0a 6590 case DW_TAG_union_type:
72bf9492 6591 if (!pdi->is_declaration)
63d06c5c 6592 {
72bf9492 6593 add_partial_symbol (pdi, cu);
63d06c5c
DC
6594 }
6595 break;
c906108c 6596 case DW_TAG_class_type:
680b30c7 6597 case DW_TAG_interface_type:
c906108c 6598 case DW_TAG_structure_type:
72bf9492 6599 if (!pdi->is_declaration)
c906108c 6600 {
72bf9492 6601 add_partial_symbol (pdi, cu);
c906108c
SS
6602 }
6603 break;
91c24f0a 6604 case DW_TAG_enumeration_type:
72bf9492
DJ
6605 if (!pdi->is_declaration)
6606 add_partial_enumeration (pdi, cu);
c906108c
SS
6607 break;
6608 case DW_TAG_base_type:
a02abb62 6609 case DW_TAG_subrange_type:
c906108c 6610 /* File scope base type definitions are added to the partial
c5aa993b 6611 symbol table. */
72bf9492 6612 add_partial_symbol (pdi, cu);
c906108c 6613 break;
d9fa45fe 6614 case DW_TAG_namespace:
cdc07690 6615 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
91c24f0a 6616 break;
5d7cb8df 6617 case DW_TAG_module:
cdc07690 6618 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
5d7cb8df 6619 break;
95554aad
TT
6620 case DW_TAG_imported_unit:
6621 {
6622 struct dwarf2_per_cu_data *per_cu;
6623
f4dc4d17
DE
6624 /* For now we don't handle imported units in type units. */
6625 if (cu->per_cu->is_debug_types)
6626 {
6627 error (_("Dwarf Error: DW_TAG_imported_unit is not"
6628 " supported in type units [in module %s]"),
4262abfb 6629 objfile_name (cu->objfile));
f4dc4d17
DE
6630 }
6631
95554aad 6632 per_cu = dwarf2_find_containing_comp_unit (pdi->d.offset,
36586728 6633 pdi->is_dwz,
95554aad
TT
6634 cu->objfile);
6635
6636 /* Go read the partial unit, if needed. */
6637 if (per_cu->v.psymtab == NULL)
b93601f3 6638 process_psymtab_comp_unit (per_cu, 1, cu->language);
95554aad 6639
f4dc4d17 6640 VEC_safe_push (dwarf2_per_cu_ptr,
796a7ff8 6641 cu->per_cu->imported_symtabs, per_cu);
95554aad
TT
6642 }
6643 break;
74921315
KS
6644 case DW_TAG_imported_declaration:
6645 add_partial_symbol (pdi, cu);
6646 break;
c906108c
SS
6647 default:
6648 break;
6649 }
6650 }
6651
72bf9492
DJ
6652 /* If the die has a sibling, skip to the sibling. */
6653
6654 pdi = pdi->die_sibling;
6655 }
6656}
6657
6658/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 6659
72bf9492 6660 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
6661 name is concatenated with "::" and the partial DIE's name. For
6662 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
6663 Enumerators are an exception; they use the scope of their parent
6664 enumeration type, i.e. the name of the enumeration type is not
6665 prepended to the enumerator.
91c24f0a 6666
72bf9492
DJ
6667 There are two complexities. One is DW_AT_specification; in this
6668 case "parent" means the parent of the target of the specification,
6669 instead of the direct parent of the DIE. The other is compilers
6670 which do not emit DW_TAG_namespace; in this case we try to guess
6671 the fully qualified name of structure types from their members'
6672 linkage names. This must be done using the DIE's children rather
6673 than the children of any DW_AT_specification target. We only need
6674 to do this for structures at the top level, i.e. if the target of
6675 any DW_AT_specification (if any; otherwise the DIE itself) does not
6676 have a parent. */
6677
6678/* Compute the scope prefix associated with PDI's parent, in
6679 compilation unit CU. The result will be allocated on CU's
6680 comp_unit_obstack, or a copy of the already allocated PDI->NAME
6681 field. NULL is returned if no prefix is necessary. */
15d034d0 6682static const char *
72bf9492
DJ
6683partial_die_parent_scope (struct partial_die_info *pdi,
6684 struct dwarf2_cu *cu)
6685{
15d034d0 6686 const char *grandparent_scope;
72bf9492 6687 struct partial_die_info *parent, *real_pdi;
91c24f0a 6688
72bf9492
DJ
6689 /* We need to look at our parent DIE; if we have a DW_AT_specification,
6690 then this means the parent of the specification DIE. */
6691
6692 real_pdi = pdi;
72bf9492 6693 while (real_pdi->has_specification)
36586728
TT
6694 real_pdi = find_partial_die (real_pdi->spec_offset,
6695 real_pdi->spec_is_dwz, cu);
72bf9492
DJ
6696
6697 parent = real_pdi->die_parent;
6698 if (parent == NULL)
6699 return NULL;
6700
6701 if (parent->scope_set)
6702 return parent->scope;
6703
6704 fixup_partial_die (parent, cu);
6705
10b3939b 6706 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 6707
acebe513
UW
6708 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
6709 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
6710 Work around this problem here. */
6711 if (cu->language == language_cplus
6e70227d 6712 && parent->tag == DW_TAG_namespace
acebe513
UW
6713 && strcmp (parent->name, "::") == 0
6714 && grandparent_scope == NULL)
6715 {
6716 parent->scope = NULL;
6717 parent->scope_set = 1;
6718 return NULL;
6719 }
6720
9c6c53f7
SA
6721 if (pdi->tag == DW_TAG_enumerator)
6722 /* Enumerators should not get the name of the enumeration as a prefix. */
6723 parent->scope = grandparent_scope;
6724 else if (parent->tag == DW_TAG_namespace
f55ee35c 6725 || parent->tag == DW_TAG_module
72bf9492
DJ
6726 || parent->tag == DW_TAG_structure_type
6727 || parent->tag == DW_TAG_class_type
680b30c7 6728 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
6729 || parent->tag == DW_TAG_union_type
6730 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
6731 {
6732 if (grandparent_scope == NULL)
6733 parent->scope = parent->name;
6734 else
3e43a32a
MS
6735 parent->scope = typename_concat (&cu->comp_unit_obstack,
6736 grandparent_scope,
f55ee35c 6737 parent->name, 0, cu);
72bf9492 6738 }
72bf9492
DJ
6739 else
6740 {
6741 /* FIXME drow/2004-04-01: What should we be doing with
6742 function-local names? For partial symbols, we should probably be
6743 ignoring them. */
6744 complaint (&symfile_complaints,
e2e0b3e5 6745 _("unhandled containing DIE tag %d for DIE at %d"),
b64f50a1 6746 parent->tag, pdi->offset.sect_off);
72bf9492 6747 parent->scope = grandparent_scope;
c906108c
SS
6748 }
6749
72bf9492
DJ
6750 parent->scope_set = 1;
6751 return parent->scope;
6752}
6753
6754/* Return the fully scoped name associated with PDI, from compilation unit
6755 CU. The result will be allocated with malloc. */
4568ecf9 6756
72bf9492
DJ
6757static char *
6758partial_die_full_name (struct partial_die_info *pdi,
6759 struct dwarf2_cu *cu)
6760{
15d034d0 6761 const char *parent_scope;
72bf9492 6762
98bfdba5
PA
6763 /* If this is a template instantiation, we can not work out the
6764 template arguments from partial DIEs. So, unfortunately, we have
6765 to go through the full DIEs. At least any work we do building
6766 types here will be reused if full symbols are loaded later. */
6767 if (pdi->has_template_arguments)
6768 {
6769 fixup_partial_die (pdi, cu);
6770
6771 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
6772 {
6773 struct die_info *die;
6774 struct attribute attr;
6775 struct dwarf2_cu *ref_cu = cu;
6776
b64f50a1 6777 /* DW_FORM_ref_addr is using section offset. */
98bfdba5
PA
6778 attr.name = 0;
6779 attr.form = DW_FORM_ref_addr;
4568ecf9 6780 attr.u.unsnd = pdi->offset.sect_off;
98bfdba5
PA
6781 die = follow_die_ref (NULL, &attr, &ref_cu);
6782
6783 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
6784 }
6785 }
6786
72bf9492
DJ
6787 parent_scope = partial_die_parent_scope (pdi, cu);
6788 if (parent_scope == NULL)
6789 return NULL;
6790 else
f55ee35c 6791 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
6792}
6793
6794static void
72bf9492 6795add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 6796{
e7c27a73 6797 struct objfile *objfile = cu->objfile;
3e29f34a 6798 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 6799 CORE_ADDR addr = 0;
15d034d0 6800 const char *actual_name = NULL;
e142c38c 6801 CORE_ADDR baseaddr;
15d034d0 6802 char *built_actual_name;
e142c38c
DJ
6803
6804 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 6805
15d034d0
TT
6806 built_actual_name = partial_die_full_name (pdi, cu);
6807 if (built_actual_name != NULL)
6808 actual_name = built_actual_name;
63d06c5c 6809
72bf9492
DJ
6810 if (actual_name == NULL)
6811 actual_name = pdi->name;
6812
c906108c
SS
6813 switch (pdi->tag)
6814 {
6815 case DW_TAG_subprogram:
3e29f34a 6816 addr = gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr);
2cfa0c8d 6817 if (pdi->is_external || cu->language == language_ada)
c906108c 6818 {
2cfa0c8d
JB
6819 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
6820 of the global scope. But in Ada, we want to be able to access
6821 nested procedures globally. So all Ada subprograms are stored
6822 in the global scope. */
3e29f34a
MR
6823 /* prim_record_minimal_symbol (actual_name, addr, mst_text,
6824 objfile); */
f47fb265 6825 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6826 built_actual_name != NULL,
f47fb265
MS
6827 VAR_DOMAIN, LOC_BLOCK,
6828 &objfile->global_psymbols,
3e29f34a 6829 0, addr, cu->language, objfile);
c906108c
SS
6830 }
6831 else
6832 {
3e29f34a
MR
6833 /* prim_record_minimal_symbol (actual_name, addr, mst_file_text,
6834 objfile); */
f47fb265 6835 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6836 built_actual_name != NULL,
f47fb265
MS
6837 VAR_DOMAIN, LOC_BLOCK,
6838 &objfile->static_psymbols,
3e29f34a 6839 0, addr, cu->language, objfile);
c906108c
SS
6840 }
6841 break;
72929c62
JB
6842 case DW_TAG_constant:
6843 {
6844 struct psymbol_allocation_list *list;
6845
6846 if (pdi->is_external)
6847 list = &objfile->global_psymbols;
6848 else
6849 list = &objfile->static_psymbols;
f47fb265 6850 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6851 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
f47fb265 6852 list, 0, 0, cu->language, objfile);
72929c62
JB
6853 }
6854 break;
c906108c 6855 case DW_TAG_variable:
95554aad
TT
6856 if (pdi->d.locdesc)
6857 addr = decode_locdesc (pdi->d.locdesc, cu);
caac4577 6858
95554aad 6859 if (pdi->d.locdesc
caac4577
JG
6860 && addr == 0
6861 && !dwarf2_per_objfile->has_section_at_zero)
6862 {
6863 /* A global or static variable may also have been stripped
6864 out by the linker if unused, in which case its address
6865 will be nullified; do not add such variables into partial
6866 symbol table then. */
6867 }
6868 else if (pdi->is_external)
c906108c
SS
6869 {
6870 /* Global Variable.
6871 Don't enter into the minimal symbol tables as there is
6872 a minimal symbol table entry from the ELF symbols already.
6873 Enter into partial symbol table if it has a location
6874 descriptor or a type.
6875 If the location descriptor is missing, new_symbol will create
6876 a LOC_UNRESOLVED symbol, the address of the variable will then
6877 be determined from the minimal symbol table whenever the variable
6878 is referenced.
6879 The address for the partial symbol table entry is not
6880 used by GDB, but it comes in handy for debugging partial symbol
6881 table building. */
6882
95554aad 6883 if (pdi->d.locdesc || pdi->has_type)
f47fb265 6884 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6885 built_actual_name != NULL,
f47fb265
MS
6886 VAR_DOMAIN, LOC_STATIC,
6887 &objfile->global_psymbols,
6888 0, addr + baseaddr,
6889 cu->language, objfile);
c906108c
SS
6890 }
6891 else
6892 {
0963b4bd 6893 /* Static Variable. Skip symbols without location descriptors. */
95554aad 6894 if (pdi->d.locdesc == NULL)
decbce07 6895 {
15d034d0 6896 xfree (built_actual_name);
decbce07
MS
6897 return;
6898 }
f47fb265 6899 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 6900 mst_file_data, objfile); */
f47fb265 6901 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6902 built_actual_name != NULL,
f47fb265
MS
6903 VAR_DOMAIN, LOC_STATIC,
6904 &objfile->static_psymbols,
6905 0, addr + baseaddr,
6906 cu->language, objfile);
c906108c
SS
6907 }
6908 break;
6909 case DW_TAG_typedef:
6910 case DW_TAG_base_type:
a02abb62 6911 case DW_TAG_subrange_type:
38d518c9 6912 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6913 built_actual_name != NULL,
176620f1 6914 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 6915 &objfile->static_psymbols,
e142c38c 6916 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6917 break;
74921315 6918 case DW_TAG_imported_declaration:
72bf9492
DJ
6919 case DW_TAG_namespace:
6920 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6921 built_actual_name != NULL,
72bf9492
DJ
6922 VAR_DOMAIN, LOC_TYPEDEF,
6923 &objfile->global_psymbols,
6924 0, (CORE_ADDR) 0, cu->language, objfile);
6925 break;
530e8392
KB
6926 case DW_TAG_module:
6927 add_psymbol_to_list (actual_name, strlen (actual_name),
6928 built_actual_name != NULL,
6929 MODULE_DOMAIN, LOC_TYPEDEF,
6930 &objfile->global_psymbols,
6931 0, (CORE_ADDR) 0, cu->language, objfile);
6932 break;
c906108c 6933 case DW_TAG_class_type:
680b30c7 6934 case DW_TAG_interface_type:
c906108c
SS
6935 case DW_TAG_structure_type:
6936 case DW_TAG_union_type:
6937 case DW_TAG_enumeration_type:
fa4028e9
JB
6938 /* Skip external references. The DWARF standard says in the section
6939 about "Structure, Union, and Class Type Entries": "An incomplete
6940 structure, union or class type is represented by a structure,
6941 union or class entry that does not have a byte size attribute
6942 and that has a DW_AT_declaration attribute." */
6943 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07 6944 {
15d034d0 6945 xfree (built_actual_name);
decbce07
MS
6946 return;
6947 }
fa4028e9 6948
63d06c5c
DC
6949 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
6950 static vs. global. */
38d518c9 6951 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6952 built_actual_name != NULL,
176620f1 6953 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
6954 (cu->language == language_cplus
6955 || cu->language == language_java)
63d06c5c
DC
6956 ? &objfile->global_psymbols
6957 : &objfile->static_psymbols,
e142c38c 6958 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 6959
c906108c
SS
6960 break;
6961 case DW_TAG_enumerator:
38d518c9 6962 add_psymbol_to_list (actual_name, strlen (actual_name),
15d034d0 6963 built_actual_name != NULL,
176620f1 6964 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
6965 (cu->language == language_cplus
6966 || cu->language == language_java)
f6fe98ef
DJ
6967 ? &objfile->global_psymbols
6968 : &objfile->static_psymbols,
e142c38c 6969 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
6970 break;
6971 default:
6972 break;
6973 }
5c4e30ca 6974
15d034d0 6975 xfree (built_actual_name);
c906108c
SS
6976}
6977
5c4e30ca
DC
6978/* Read a partial die corresponding to a namespace; also, add a symbol
6979 corresponding to that namespace to the symbol table. NAMESPACE is
6980 the name of the enclosing namespace. */
91c24f0a 6981
72bf9492
DJ
6982static void
6983add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 6984 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 6985 int set_addrmap, struct dwarf2_cu *cu)
91c24f0a 6986{
72bf9492 6987 /* Add a symbol for the namespace. */
e7c27a73 6988
72bf9492 6989 add_partial_symbol (pdi, cu);
5c4e30ca
DC
6990
6991 /* Now scan partial symbols in that namespace. */
6992
91c24f0a 6993 if (pdi->has_children)
cdc07690 6994 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
91c24f0a
DC
6995}
6996
5d7cb8df
JK
6997/* Read a partial die corresponding to a Fortran module. */
6998
6999static void
7000add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
cdc07690 7001 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
5d7cb8df 7002{
530e8392
KB
7003 /* Add a symbol for the namespace. */
7004
7005 add_partial_symbol (pdi, cu);
7006
f55ee35c 7007 /* Now scan partial symbols in that module. */
5d7cb8df
JK
7008
7009 if (pdi->has_children)
cdc07690 7010 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
5d7cb8df
JK
7011}
7012
bc30ff58
JB
7013/* Read a partial die corresponding to a subprogram and create a partial
7014 symbol for that subprogram. When the CU language allows it, this
7015 routine also defines a partial symbol for each nested subprogram
cdc07690 7016 that this subprogram contains. If SET_ADDRMAP is true, record the
428fc5fc
YQ
7017 covered ranges in the addrmap. Set *LOWPC and *HIGHPC to the lowest
7018 and highest PC values found in PDI.
6e70227d 7019
cdc07690
YQ
7020 PDI may also be a lexical block, in which case we simply search
7021 recursively for subprograms defined inside that lexical block.
bc30ff58
JB
7022 Again, this is only performed when the CU language allows this
7023 type of definitions. */
7024
7025static void
7026add_partial_subprogram (struct partial_die_info *pdi,
7027 CORE_ADDR *lowpc, CORE_ADDR *highpc,
cdc07690 7028 int set_addrmap, struct dwarf2_cu *cu)
bc30ff58
JB
7029{
7030 if (pdi->tag == DW_TAG_subprogram)
7031 {
7032 if (pdi->has_pc_info)
7033 {
7034 if (pdi->lowpc < *lowpc)
7035 *lowpc = pdi->lowpc;
7036 if (pdi->highpc > *highpc)
7037 *highpc = pdi->highpc;
cdc07690 7038 if (set_addrmap)
5734ee8b 7039 {
5734ee8b 7040 struct objfile *objfile = cu->objfile;
3e29f34a
MR
7041 struct gdbarch *gdbarch = get_objfile_arch (objfile);
7042 CORE_ADDR baseaddr;
7043 CORE_ADDR highpc;
7044 CORE_ADDR lowpc;
5734ee8b
DJ
7045
7046 baseaddr = ANOFFSET (objfile->section_offsets,
7047 SECT_OFF_TEXT (objfile));
3e29f34a
MR
7048 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7049 pdi->lowpc + baseaddr);
7050 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
7051 pdi->highpc + baseaddr);
7052 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
9291a0cd 7053 cu->per_cu->v.psymtab);
5734ee8b 7054 }
481860b3
GB
7055 }
7056
7057 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
7058 {
bc30ff58 7059 if (!pdi->is_declaration)
e8d05480
JB
7060 /* Ignore subprogram DIEs that do not have a name, they are
7061 illegal. Do not emit a complaint at this point, we will
7062 do so when we convert this psymtab into a symtab. */
7063 if (pdi->name)
7064 add_partial_symbol (pdi, cu);
bc30ff58
JB
7065 }
7066 }
6e70227d 7067
bc30ff58
JB
7068 if (! pdi->has_children)
7069 return;
7070
7071 if (cu->language == language_ada)
7072 {
7073 pdi = pdi->die_child;
7074 while (pdi != NULL)
7075 {
7076 fixup_partial_die (pdi, cu);
7077 if (pdi->tag == DW_TAG_subprogram
7078 || pdi->tag == DW_TAG_lexical_block)
cdc07690 7079 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
bc30ff58
JB
7080 pdi = pdi->die_sibling;
7081 }
7082 }
7083}
7084
91c24f0a
DC
7085/* Read a partial die corresponding to an enumeration type. */
7086
72bf9492
DJ
7087static void
7088add_partial_enumeration (struct partial_die_info *enum_pdi,
7089 struct dwarf2_cu *cu)
91c24f0a 7090{
72bf9492 7091 struct partial_die_info *pdi;
91c24f0a
DC
7092
7093 if (enum_pdi->name != NULL)
72bf9492
DJ
7094 add_partial_symbol (enum_pdi, cu);
7095
7096 pdi = enum_pdi->die_child;
7097 while (pdi)
91c24f0a 7098 {
72bf9492 7099 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 7100 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 7101 else
72bf9492
DJ
7102 add_partial_symbol (pdi, cu);
7103 pdi = pdi->die_sibling;
91c24f0a 7104 }
91c24f0a
DC
7105}
7106
6caca83c
CC
7107/* Return the initial uleb128 in the die at INFO_PTR. */
7108
7109static unsigned int
d521ce57 7110peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
6caca83c
CC
7111{
7112 unsigned int bytes_read;
7113
7114 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7115}
7116
4bb7a0a7
DJ
7117/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
7118 Return the corresponding abbrev, or NULL if the number is zero (indicating
7119 an empty DIE). In either case *BYTES_READ will be set to the length of
7120 the initial number. */
7121
7122static struct abbrev_info *
d521ce57 7123peek_die_abbrev (const gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 7124 struct dwarf2_cu *cu)
4bb7a0a7
DJ
7125{
7126 bfd *abfd = cu->objfile->obfd;
7127 unsigned int abbrev_number;
7128 struct abbrev_info *abbrev;
7129
7130 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
7131
7132 if (abbrev_number == 0)
7133 return NULL;
7134
433df2d4 7135 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
4bb7a0a7
DJ
7136 if (!abbrev)
7137 {
422b9917
DE
7138 error (_("Dwarf Error: Could not find abbrev number %d in %s"
7139 " at offset 0x%x [in module %s]"),
7140 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
7141 cu->header.offset.sect_off, bfd_get_filename (abfd));
4bb7a0a7
DJ
7142 }
7143
7144 return abbrev;
7145}
7146
93311388
DE
7147/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7148 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
7149 DIE. Any children of the skipped DIEs will also be skipped. */
7150
d521ce57
TT
7151static const gdb_byte *
7152skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
4bb7a0a7 7153{
dee91e82 7154 struct dwarf2_cu *cu = reader->cu;
4bb7a0a7
DJ
7155 struct abbrev_info *abbrev;
7156 unsigned int bytes_read;
7157
7158 while (1)
7159 {
7160 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
7161 if (abbrev == NULL)
7162 return info_ptr + bytes_read;
7163 else
dee91e82 7164 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
4bb7a0a7
DJ
7165 }
7166}
7167
93311388
DE
7168/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
7169 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
7170 abbrev corresponding to that skipped uleb128 should be passed in
7171 ABBREV. Returns a pointer to this DIE's sibling, skipping any
7172 children. */
7173
d521ce57
TT
7174static const gdb_byte *
7175skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
dee91e82 7176 struct abbrev_info *abbrev)
4bb7a0a7
DJ
7177{
7178 unsigned int bytes_read;
7179 struct attribute attr;
dee91e82
DE
7180 bfd *abfd = reader->abfd;
7181 struct dwarf2_cu *cu = reader->cu;
d521ce57 7182 const gdb_byte *buffer = reader->buffer;
f664829e 7183 const gdb_byte *buffer_end = reader->buffer_end;
d521ce57 7184 const gdb_byte *start_info_ptr = info_ptr;
4bb7a0a7
DJ
7185 unsigned int form, i;
7186
7187 for (i = 0; i < abbrev->num_attrs; i++)
7188 {
7189 /* The only abbrev we care about is DW_AT_sibling. */
7190 if (abbrev->attrs[i].name == DW_AT_sibling)
7191 {
dee91e82 7192 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
4bb7a0a7 7193 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
7194 complaint (&symfile_complaints,
7195 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 7196 else
b9502d3f
WN
7197 {
7198 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
7199 const gdb_byte *sibling_ptr = buffer + off;
7200
7201 if (sibling_ptr < info_ptr)
7202 complaint (&symfile_complaints,
7203 _("DW_AT_sibling points backwards"));
22869d73
KS
7204 else if (sibling_ptr > reader->buffer_end)
7205 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
7206 else
7207 return sibling_ptr;
7208 }
4bb7a0a7
DJ
7209 }
7210
7211 /* If it isn't DW_AT_sibling, skip this attribute. */
7212 form = abbrev->attrs[i].form;
7213 skip_attribute:
7214 switch (form)
7215 {
4bb7a0a7 7216 case DW_FORM_ref_addr:
ae411497
TT
7217 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
7218 and later it is offset sized. */
7219 if (cu->header.version == 2)
7220 info_ptr += cu->header.addr_size;
7221 else
7222 info_ptr += cu->header.offset_size;
7223 break;
36586728
TT
7224 case DW_FORM_GNU_ref_alt:
7225 info_ptr += cu->header.offset_size;
7226 break;
ae411497 7227 case DW_FORM_addr:
4bb7a0a7
DJ
7228 info_ptr += cu->header.addr_size;
7229 break;
7230 case DW_FORM_data1:
7231 case DW_FORM_ref1:
7232 case DW_FORM_flag:
7233 info_ptr += 1;
7234 break;
2dc7f7b3
TT
7235 case DW_FORM_flag_present:
7236 break;
4bb7a0a7
DJ
7237 case DW_FORM_data2:
7238 case DW_FORM_ref2:
7239 info_ptr += 2;
7240 break;
7241 case DW_FORM_data4:
7242 case DW_FORM_ref4:
7243 info_ptr += 4;
7244 break;
7245 case DW_FORM_data8:
7246 case DW_FORM_ref8:
55f1336d 7247 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
7248 info_ptr += 8;
7249 break;
7250 case DW_FORM_string:
9b1c24c8 7251 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
7252 info_ptr += bytes_read;
7253 break;
2dc7f7b3 7254 case DW_FORM_sec_offset:
4bb7a0a7 7255 case DW_FORM_strp:
36586728 7256 case DW_FORM_GNU_strp_alt:
4bb7a0a7
DJ
7257 info_ptr += cu->header.offset_size;
7258 break;
2dc7f7b3 7259 case DW_FORM_exprloc:
4bb7a0a7
DJ
7260 case DW_FORM_block:
7261 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7262 info_ptr += bytes_read;
7263 break;
7264 case DW_FORM_block1:
7265 info_ptr += 1 + read_1_byte (abfd, info_ptr);
7266 break;
7267 case DW_FORM_block2:
7268 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
7269 break;
7270 case DW_FORM_block4:
7271 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
7272 break;
7273 case DW_FORM_sdata:
7274 case DW_FORM_udata:
7275 case DW_FORM_ref_udata:
3019eac3
DE
7276 case DW_FORM_GNU_addr_index:
7277 case DW_FORM_GNU_str_index:
d521ce57 7278 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
4bb7a0a7
DJ
7279 break;
7280 case DW_FORM_indirect:
7281 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
7282 info_ptr += bytes_read;
7283 /* We need to continue parsing from here, so just go back to
7284 the top. */
7285 goto skip_attribute;
7286
7287 default:
3e43a32a
MS
7288 error (_("Dwarf Error: Cannot handle %s "
7289 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
7290 dwarf_form_name (form),
7291 bfd_get_filename (abfd));
7292 }
7293 }
7294
7295 if (abbrev->has_children)
dee91e82 7296 return skip_children (reader, info_ptr);
4bb7a0a7
DJ
7297 else
7298 return info_ptr;
7299}
7300
93311388 7301/* Locate ORIG_PDI's sibling.
dee91e82 7302 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
91c24f0a 7303
d521ce57 7304static const gdb_byte *
dee91e82
DE
7305locate_pdi_sibling (const struct die_reader_specs *reader,
7306 struct partial_die_info *orig_pdi,
d521ce57 7307 const gdb_byte *info_ptr)
91c24f0a
DC
7308{
7309 /* Do we know the sibling already? */
72bf9492 7310
91c24f0a
DC
7311 if (orig_pdi->sibling)
7312 return orig_pdi->sibling;
7313
7314 /* Are there any children to deal with? */
7315
7316 if (!orig_pdi->has_children)
7317 return info_ptr;
7318
4bb7a0a7 7319 /* Skip the children the long way. */
91c24f0a 7320
dee91e82 7321 return skip_children (reader, info_ptr);
91c24f0a
DC
7322}
7323
257e7a09 7324/* Expand this partial symbol table into a full symbol table. SELF is
442e4d9c 7325 not NULL. */
c906108c
SS
7326
7327static void
257e7a09
YQ
7328dwarf2_read_symtab (struct partial_symtab *self,
7329 struct objfile *objfile)
c906108c 7330{
257e7a09 7331 if (self->readin)
c906108c 7332 {
442e4d9c 7333 warning (_("bug: psymtab for %s is already read in."),
257e7a09 7334 self->filename);
442e4d9c
YQ
7335 }
7336 else
7337 {
7338 if (info_verbose)
c906108c 7339 {
442e4d9c 7340 printf_filtered (_("Reading in symbols for %s..."),
257e7a09 7341 self->filename);
442e4d9c 7342 gdb_flush (gdb_stdout);
c906108c 7343 }
c906108c 7344
442e4d9c
YQ
7345 /* Restore our global data. */
7346 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
10b3939b 7347
442e4d9c
YQ
7348 /* If this psymtab is constructed from a debug-only objfile, the
7349 has_section_at_zero flag will not necessarily be correct. We
7350 can get the correct value for this flag by looking at the data
7351 associated with the (presumably stripped) associated objfile. */
7352 if (objfile->separate_debug_objfile_backlink)
7353 {
7354 struct dwarf2_per_objfile *dpo_backlink
7355 = objfile_data (objfile->separate_debug_objfile_backlink,
7356 dwarf2_objfile_data_key);
9a619af0 7357
442e4d9c
YQ
7358 dwarf2_per_objfile->has_section_at_zero
7359 = dpo_backlink->has_section_at_zero;
7360 }
b2ab525c 7361
442e4d9c 7362 dwarf2_per_objfile->reading_partial_symbols = 0;
98bfdba5 7363
257e7a09 7364 psymtab_to_symtab_1 (self);
c906108c 7365
442e4d9c
YQ
7366 /* Finish up the debug error message. */
7367 if (info_verbose)
7368 printf_filtered (_("done.\n"));
c906108c 7369 }
95554aad
TT
7370
7371 process_cu_includes ();
c906108c 7372}
9cdd5dbd
DE
7373\f
7374/* Reading in full CUs. */
c906108c 7375
10b3939b
DJ
7376/* Add PER_CU to the queue. */
7377
7378static void
95554aad
TT
7379queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
7380 enum language pretend_language)
10b3939b
DJ
7381{
7382 struct dwarf2_queue_item *item;
7383
7384 per_cu->queued = 1;
7385 item = xmalloc (sizeof (*item));
7386 item->per_cu = per_cu;
95554aad 7387 item->pretend_language = pretend_language;
10b3939b
DJ
7388 item->next = NULL;
7389
7390 if (dwarf2_queue == NULL)
7391 dwarf2_queue = item;
7392 else
7393 dwarf2_queue_tail->next = item;
7394
7395 dwarf2_queue_tail = item;
7396}
7397
89e63ee4
DE
7398/* If PER_CU is not yet queued, add it to the queue.
7399 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
7400 dependency.
0907af0c 7401 The result is non-zero if PER_CU was queued, otherwise the result is zero
69d751e3
DE
7402 meaning either PER_CU is already queued or it is already loaded.
7403
7404 N.B. There is an invariant here that if a CU is queued then it is loaded.
7405 The caller is required to load PER_CU if we return non-zero. */
0907af0c
DE
7406
7407static int
89e63ee4 7408maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
0907af0c
DE
7409 struct dwarf2_per_cu_data *per_cu,
7410 enum language pretend_language)
7411{
7412 /* We may arrive here during partial symbol reading, if we need full
7413 DIEs to process an unusual case (e.g. template arguments). Do
7414 not queue PER_CU, just tell our caller to load its DIEs. */
7415 if (dwarf2_per_objfile->reading_partial_symbols)
7416 {
7417 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
7418 return 1;
7419 return 0;
7420 }
7421
7422 /* Mark the dependence relation so that we don't flush PER_CU
7423 too early. */
89e63ee4
DE
7424 if (dependent_cu != NULL)
7425 dwarf2_add_dependence (dependent_cu, per_cu);
0907af0c
DE
7426
7427 /* If it's already on the queue, we have nothing to do. */
7428 if (per_cu->queued)
7429 return 0;
7430
7431 /* If the compilation unit is already loaded, just mark it as
7432 used. */
7433 if (per_cu->cu != NULL)
7434 {
7435 per_cu->cu->last_used = 0;
7436 return 0;
7437 }
7438
7439 /* Add it to the queue. */
7440 queue_comp_unit (per_cu, pretend_language);
7441
7442 return 1;
7443}
7444
10b3939b
DJ
7445/* Process the queue. */
7446
7447static void
a0f42c21 7448process_queue (void)
10b3939b
DJ
7449{
7450 struct dwarf2_queue_item *item, *next_item;
7451
45cfd468
DE
7452 if (dwarf2_read_debug)
7453 {
7454 fprintf_unfiltered (gdb_stdlog,
7455 "Expanding one or more symtabs of objfile %s ...\n",
4262abfb 7456 objfile_name (dwarf2_per_objfile->objfile));
45cfd468
DE
7457 }
7458
03dd20cc
DJ
7459 /* The queue starts out with one item, but following a DIE reference
7460 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
7461 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
7462 {
9291a0cd 7463 if (dwarf2_per_objfile->using_index
43f3e411 7464 ? !item->per_cu->v.quick->compunit_symtab
9291a0cd 7465 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
f4dc4d17
DE
7466 {
7467 struct dwarf2_per_cu_data *per_cu = item->per_cu;
73be47f5 7468 unsigned int debug_print_threshold;
247f5c4f 7469 char buf[100];
f4dc4d17 7470
247f5c4f 7471 if (per_cu->is_debug_types)
f4dc4d17 7472 {
247f5c4f
DE
7473 struct signatured_type *sig_type =
7474 (struct signatured_type *) per_cu;
7475
7476 sprintf (buf, "TU %s at offset 0x%x",
73be47f5
DE
7477 hex_string (sig_type->signature),
7478 per_cu->offset.sect_off);
7479 /* There can be 100s of TUs.
7480 Only print them in verbose mode. */
7481 debug_print_threshold = 2;
f4dc4d17 7482 }
247f5c4f 7483 else
73be47f5
DE
7484 {
7485 sprintf (buf, "CU at offset 0x%x", per_cu->offset.sect_off);
7486 debug_print_threshold = 1;
7487 }
247f5c4f 7488
73be47f5 7489 if (dwarf2_read_debug >= debug_print_threshold)
247f5c4f 7490 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
f4dc4d17
DE
7491
7492 if (per_cu->is_debug_types)
7493 process_full_type_unit (per_cu, item->pretend_language);
7494 else
7495 process_full_comp_unit (per_cu, item->pretend_language);
7496
73be47f5 7497 if (dwarf2_read_debug >= debug_print_threshold)
247f5c4f 7498 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
f4dc4d17 7499 }
10b3939b
DJ
7500
7501 item->per_cu->queued = 0;
7502 next_item = item->next;
7503 xfree (item);
7504 }
7505
7506 dwarf2_queue_tail = NULL;
45cfd468
DE
7507
7508 if (dwarf2_read_debug)
7509 {
7510 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
4262abfb 7511 objfile_name (dwarf2_per_objfile->objfile));
45cfd468 7512 }
10b3939b
DJ
7513}
7514
7515/* Free all allocated queue entries. This function only releases anything if
7516 an error was thrown; if the queue was processed then it would have been
7517 freed as we went along. */
7518
7519static void
7520dwarf2_release_queue (void *dummy)
7521{
7522 struct dwarf2_queue_item *item, *last;
7523
7524 item = dwarf2_queue;
7525 while (item)
7526 {
7527 /* Anything still marked queued is likely to be in an
7528 inconsistent state, so discard it. */
7529 if (item->per_cu->queued)
7530 {
7531 if (item->per_cu->cu != NULL)
dee91e82 7532 free_one_cached_comp_unit (item->per_cu);
10b3939b
DJ
7533 item->per_cu->queued = 0;
7534 }
7535
7536 last = item;
7537 item = item->next;
7538 xfree (last);
7539 }
7540
7541 dwarf2_queue = dwarf2_queue_tail = NULL;
7542}
7543
7544/* Read in full symbols for PST, and anything it depends on. */
7545
c906108c 7546static void
fba45db2 7547psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 7548{
10b3939b 7549 struct dwarf2_per_cu_data *per_cu;
aaa75496
JB
7550 int i;
7551
95554aad
TT
7552 if (pst->readin)
7553 return;
7554
aaa75496 7555 for (i = 0; i < pst->number_of_dependencies; i++)
95554aad
TT
7556 if (!pst->dependencies[i]->readin
7557 && pst->dependencies[i]->user == NULL)
aaa75496
JB
7558 {
7559 /* Inform about additional files that need to be read in. */
7560 if (info_verbose)
7561 {
a3f17187 7562 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
7563 fputs_filtered (" ", gdb_stdout);
7564 wrap_here ("");
7565 fputs_filtered ("and ", gdb_stdout);
7566 wrap_here ("");
7567 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 7568 wrap_here (""); /* Flush output. */
aaa75496
JB
7569 gdb_flush (gdb_stdout);
7570 }
7571 psymtab_to_symtab_1 (pst->dependencies[i]);
7572 }
7573
e38df1d0 7574 per_cu = pst->read_symtab_private;
10b3939b
DJ
7575
7576 if (per_cu == NULL)
aaa75496
JB
7577 {
7578 /* It's an include file, no symbols to read for it.
7579 Everything is in the parent symtab. */
7580 pst->readin = 1;
7581 return;
7582 }
c906108c 7583
a0f42c21 7584 dw2_do_instantiate_symtab (per_cu);
10b3939b
DJ
7585}
7586
dee91e82
DE
7587/* Trivial hash function for die_info: the hash value of a DIE
7588 is its offset in .debug_info for this objfile. */
10b3939b 7589
dee91e82
DE
7590static hashval_t
7591die_hash (const void *item)
10b3939b 7592{
dee91e82 7593 const struct die_info *die = item;
6502dd73 7594
dee91e82
DE
7595 return die->offset.sect_off;
7596}
63d06c5c 7597
dee91e82
DE
7598/* Trivial comparison function for die_info structures: two DIEs
7599 are equal if they have the same offset. */
98bfdba5 7600
dee91e82
DE
7601static int
7602die_eq (const void *item_lhs, const void *item_rhs)
7603{
7604 const struct die_info *die_lhs = item_lhs;
7605 const struct die_info *die_rhs = item_rhs;
c906108c 7606
dee91e82
DE
7607 return die_lhs->offset.sect_off == die_rhs->offset.sect_off;
7608}
c906108c 7609
dee91e82
DE
7610/* die_reader_func for load_full_comp_unit.
7611 This is identical to read_signatured_type_reader,
7612 but is kept separate for now. */
c906108c 7613
dee91e82
DE
7614static void
7615load_full_comp_unit_reader (const struct die_reader_specs *reader,
d521ce57 7616 const gdb_byte *info_ptr,
dee91e82
DE
7617 struct die_info *comp_unit_die,
7618 int has_children,
7619 void *data)
7620{
7621 struct dwarf2_cu *cu = reader->cu;
95554aad 7622 enum language *language_ptr = data;
6caca83c 7623
dee91e82
DE
7624 gdb_assert (cu->die_hash == NULL);
7625 cu->die_hash =
7626 htab_create_alloc_ex (cu->header.length / 12,
7627 die_hash,
7628 die_eq,
7629 NULL,
7630 &cu->comp_unit_obstack,
7631 hashtab_obstack_allocate,
7632 dummy_obstack_deallocate);
e142c38c 7633
dee91e82
DE
7634 if (has_children)
7635 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
7636 &info_ptr, comp_unit_die);
7637 cu->dies = comp_unit_die;
7638 /* comp_unit_die is not stored in die_hash, no need. */
10b3939b
DJ
7639
7640 /* We try not to read any attributes in this function, because not
9cdd5dbd 7641 all CUs needed for references have been loaded yet, and symbol
10b3939b 7642 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
7643 or we won't be able to build types correctly.
7644 Similarly, if we do not read the producer, we can not apply
7645 producer-specific interpretation. */
95554aad 7646 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
dee91e82 7647}
10b3939b 7648
dee91e82 7649/* Load the DIEs associated with PER_CU into memory. */
a6c727b2 7650
dee91e82 7651static void
95554aad
TT
7652load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
7653 enum language pretend_language)
dee91e82 7654{
3019eac3 7655 gdb_assert (! this_cu->is_debug_types);
c5b7e1cb 7656
f4dc4d17
DE
7657 init_cutu_and_read_dies (this_cu, NULL, 1, 1,
7658 load_full_comp_unit_reader, &pretend_language);
10b3939b
DJ
7659}
7660
3da10d80
KS
7661/* Add a DIE to the delayed physname list. */
7662
7663static void
7664add_to_method_list (struct type *type, int fnfield_index, int index,
7665 const char *name, struct die_info *die,
7666 struct dwarf2_cu *cu)
7667{
7668 struct delayed_method_info mi;
7669 mi.type = type;
7670 mi.fnfield_index = fnfield_index;
7671 mi.index = index;
7672 mi.name = name;
7673 mi.die = die;
7674 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
7675}
7676
7677/* A cleanup for freeing the delayed method list. */
7678
7679static void
7680free_delayed_list (void *ptr)
7681{
7682 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
7683 if (cu->method_list != NULL)
7684 {
7685 VEC_free (delayed_method_info, cu->method_list);
7686 cu->method_list = NULL;
7687 }
7688}
7689
7690/* Compute the physnames of any methods on the CU's method list.
7691
7692 The computation of method physnames is delayed in order to avoid the
7693 (bad) condition that one of the method's formal parameters is of an as yet
7694 incomplete type. */
7695
7696static void
7697compute_delayed_physnames (struct dwarf2_cu *cu)
7698{
7699 int i;
7700 struct delayed_method_info *mi;
7701 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
7702 {
1d06ead6 7703 const char *physname;
3da10d80
KS
7704 struct fn_fieldlist *fn_flp
7705 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
7d455152 7706 physname = dwarf2_physname (mi->name, mi->die, cu);
3da10d80
KS
7707 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
7708 }
7709}
7710
a766d390
DE
7711/* Go objects should be embedded in a DW_TAG_module DIE,
7712 and it's not clear if/how imported objects will appear.
7713 To keep Go support simple until that's worked out,
7714 go back through what we've read and create something usable.
7715 We could do this while processing each DIE, and feels kinda cleaner,
7716 but that way is more invasive.
7717 This is to, for example, allow the user to type "p var" or "b main"
7718 without having to specify the package name, and allow lookups
7719 of module.object to work in contexts that use the expression
7720 parser. */
7721
7722static void
7723fixup_go_packaging (struct dwarf2_cu *cu)
7724{
7725 char *package_name = NULL;
7726 struct pending *list;
7727 int i;
7728
7729 for (list = global_symbols; list != NULL; list = list->next)
7730 {
7731 for (i = 0; i < list->nsyms; ++i)
7732 {
7733 struct symbol *sym = list->symbol[i];
7734
7735 if (SYMBOL_LANGUAGE (sym) == language_go
7736 && SYMBOL_CLASS (sym) == LOC_BLOCK)
7737 {
7738 char *this_package_name = go_symbol_package_name (sym);
7739
7740 if (this_package_name == NULL)
7741 continue;
7742 if (package_name == NULL)
7743 package_name = this_package_name;
7744 else
7745 {
7746 if (strcmp (package_name, this_package_name) != 0)
7747 complaint (&symfile_complaints,
7748 _("Symtab %s has objects from two different Go packages: %s and %s"),
210bbc17 7749 (SYMBOL_SYMTAB (sym)
05cba821 7750 ? symtab_to_filename_for_display (SYMBOL_SYMTAB (sym))
4262abfb 7751 : objfile_name (cu->objfile)),
a766d390
DE
7752 this_package_name, package_name);
7753 xfree (this_package_name);
7754 }
7755 }
7756 }
7757 }
7758
7759 if (package_name != NULL)
7760 {
7761 struct objfile *objfile = cu->objfile;
34a68019
TT
7762 const char *saved_package_name
7763 = obstack_copy0 (&objfile->per_bfd->storage_obstack,
7764 package_name,
7765 strlen (package_name));
a766d390 7766 struct type *type = init_type (TYPE_CODE_MODULE, 0, 0,
86f62fd7 7767 saved_package_name, objfile);
a766d390
DE
7768 struct symbol *sym;
7769
7770 TYPE_TAG_NAME (type) = TYPE_NAME (type);
7771
e623cf5d 7772 sym = allocate_symbol (objfile);
f85f34ed 7773 SYMBOL_SET_LANGUAGE (sym, language_go, &objfile->objfile_obstack);
86f62fd7
TT
7774 SYMBOL_SET_NAMES (sym, saved_package_name,
7775 strlen (saved_package_name), 0, objfile);
a766d390
DE
7776 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
7777 e.g., "main" finds the "main" module and not C's main(). */
7778 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
f1e6e072 7779 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
a766d390
DE
7780 SYMBOL_TYPE (sym) = type;
7781
7782 add_symbol_to_list (sym, &global_symbols);
7783
7784 xfree (package_name);
7785 }
7786}
7787
95554aad
TT
7788/* Return the symtab for PER_CU. This works properly regardless of
7789 whether we're using the index or psymtabs. */
7790
43f3e411
DE
7791static struct compunit_symtab *
7792get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
95554aad
TT
7793{
7794 return (dwarf2_per_objfile->using_index
43f3e411
DE
7795 ? per_cu->v.quick->compunit_symtab
7796 : per_cu->v.psymtab->compunit_symtab);
95554aad
TT
7797}
7798
7799/* A helper function for computing the list of all symbol tables
7800 included by PER_CU. */
7801
7802static void
43f3e411 7803recursively_compute_inclusions (VEC (compunit_symtab_ptr) **result,
ec94af83 7804 htab_t all_children, htab_t all_type_symtabs,
f9125b6c 7805 struct dwarf2_per_cu_data *per_cu,
43f3e411 7806 struct compunit_symtab *immediate_parent)
95554aad
TT
7807{
7808 void **slot;
7809 int ix;
43f3e411 7810 struct compunit_symtab *cust;
95554aad
TT
7811 struct dwarf2_per_cu_data *iter;
7812
7813 slot = htab_find_slot (all_children, per_cu, INSERT);
7814 if (*slot != NULL)
7815 {
7816 /* This inclusion and its children have been processed. */
7817 return;
7818 }
7819
7820 *slot = per_cu;
7821 /* Only add a CU if it has a symbol table. */
43f3e411
DE
7822 cust = get_compunit_symtab (per_cu);
7823 if (cust != NULL)
ec94af83
DE
7824 {
7825 /* If this is a type unit only add its symbol table if we haven't
7826 seen it yet (type unit per_cu's can share symtabs). */
7827 if (per_cu->is_debug_types)
7828 {
43f3e411 7829 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
ec94af83
DE
7830 if (*slot == NULL)
7831 {
43f3e411
DE
7832 *slot = cust;
7833 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7834 if (cust->user == NULL)
7835 cust->user = immediate_parent;
ec94af83
DE
7836 }
7837 }
7838 else
f9125b6c 7839 {
43f3e411
DE
7840 VEC_safe_push (compunit_symtab_ptr, *result, cust);
7841 if (cust->user == NULL)
7842 cust->user = immediate_parent;
f9125b6c 7843 }
ec94af83 7844 }
95554aad
TT
7845
7846 for (ix = 0;
796a7ff8 7847 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs, ix, iter);
95554aad 7848 ++ix)
ec94af83
DE
7849 {
7850 recursively_compute_inclusions (result, all_children,
43f3e411 7851 all_type_symtabs, iter, cust);
ec94af83 7852 }
95554aad
TT
7853}
7854
43f3e411 7855/* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
95554aad
TT
7856 PER_CU. */
7857
7858static void
43f3e411 7859compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
95554aad 7860{
f4dc4d17
DE
7861 gdb_assert (! per_cu->is_debug_types);
7862
796a7ff8 7863 if (!VEC_empty (dwarf2_per_cu_ptr, per_cu->imported_symtabs))
95554aad
TT
7864 {
7865 int ix, len;
ec94af83 7866 struct dwarf2_per_cu_data *per_cu_iter;
43f3e411
DE
7867 struct compunit_symtab *compunit_symtab_iter;
7868 VEC (compunit_symtab_ptr) *result_symtabs = NULL;
ec94af83 7869 htab_t all_children, all_type_symtabs;
43f3e411 7870 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
95554aad
TT
7871
7872 /* If we don't have a symtab, we can just skip this case. */
43f3e411 7873 if (cust == NULL)
95554aad
TT
7874 return;
7875
7876 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7877 NULL, xcalloc, xfree);
ec94af83
DE
7878 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
7879 NULL, xcalloc, xfree);
95554aad
TT
7880
7881 for (ix = 0;
796a7ff8 7882 VEC_iterate (dwarf2_per_cu_ptr, per_cu->imported_symtabs,
ec94af83 7883 ix, per_cu_iter);
95554aad 7884 ++ix)
ec94af83
DE
7885 {
7886 recursively_compute_inclusions (&result_symtabs, all_children,
f9125b6c 7887 all_type_symtabs, per_cu_iter,
43f3e411 7888 cust);
ec94af83 7889 }
95554aad 7890
ec94af83 7891 /* Now we have a transitive closure of all the included symtabs. */
43f3e411
DE
7892 len = VEC_length (compunit_symtab_ptr, result_symtabs);
7893 cust->includes
95554aad
TT
7894 = obstack_alloc (&dwarf2_per_objfile->objfile->objfile_obstack,
7895 (len + 1) * sizeof (struct symtab *));
7896 for (ix = 0;
43f3e411
DE
7897 VEC_iterate (compunit_symtab_ptr, result_symtabs, ix,
7898 compunit_symtab_iter);
95554aad 7899 ++ix)
43f3e411
DE
7900 cust->includes[ix] = compunit_symtab_iter;
7901 cust->includes[len] = NULL;
95554aad 7902
43f3e411 7903 VEC_free (compunit_symtab_ptr, result_symtabs);
95554aad 7904 htab_delete (all_children);
ec94af83 7905 htab_delete (all_type_symtabs);
95554aad
TT
7906 }
7907}
7908
7909/* Compute the 'includes' field for the symtabs of all the CUs we just
7910 read. */
7911
7912static void
7913process_cu_includes (void)
7914{
7915 int ix;
7916 struct dwarf2_per_cu_data *iter;
7917
7918 for (ix = 0;
7919 VEC_iterate (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus,
7920 ix, iter);
7921 ++ix)
f4dc4d17
DE
7922 {
7923 if (! iter->is_debug_types)
43f3e411 7924 compute_compunit_symtab_includes (iter);
f4dc4d17 7925 }
95554aad
TT
7926
7927 VEC_free (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus);
7928}
7929
9cdd5dbd 7930/* Generate full symbol information for PER_CU, whose DIEs have
10b3939b
DJ
7931 already been loaded into memory. */
7932
7933static void
95554aad
TT
7934process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
7935 enum language pretend_language)
10b3939b 7936{
10b3939b 7937 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 7938 struct objfile *objfile = per_cu->objfile;
3e29f34a 7939 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10b3939b 7940 CORE_ADDR lowpc, highpc;
43f3e411 7941 struct compunit_symtab *cust;
3da10d80 7942 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b 7943 CORE_ADDR baseaddr;
4359dff1 7944 struct block *static_block;
3e29f34a 7945 CORE_ADDR addr;
10b3939b
DJ
7946
7947 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
7948
10b3939b
DJ
7949 buildsym_init ();
7950 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 7951 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
7952
7953 cu->list_in_scope = &file_symbols;
c906108c 7954
95554aad
TT
7955 cu->language = pretend_language;
7956 cu->language_defn = language_def (cu->language);
7957
c906108c 7958 /* Do line number decoding in read_file_scope () */
10b3939b 7959 process_die (cu->dies, cu);
c906108c 7960
a766d390
DE
7961 /* For now fudge the Go package. */
7962 if (cu->language == language_go)
7963 fixup_go_packaging (cu);
7964
3da10d80
KS
7965 /* Now that we have processed all the DIEs in the CU, all the types
7966 should be complete, and it should now be safe to compute all of the
7967 physnames. */
7968 compute_delayed_physnames (cu);
7969 do_cleanups (delayed_list_cleanup);
7970
fae299cd
DC
7971 /* Some compilers don't define a DW_AT_high_pc attribute for the
7972 compilation unit. If the DW_AT_high_pc is missing, synthesize
7973 it, by scanning the DIE's below the compilation unit. */
10b3939b 7974 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 7975
3e29f34a
MR
7976 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
7977 static_block = end_symtab_get_static_block (addr, 0, 1);
4359dff1
JK
7978
7979 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
7980 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
7981 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
7982 addrmap to help ensure it has an accurate map of pc values belonging to
7983 this comp unit. */
7984 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
7985
43f3e411
DE
7986 cust = end_symtab_from_static_block (static_block,
7987 SECT_OFF_TEXT (objfile), 0);
c906108c 7988
43f3e411 7989 if (cust != NULL)
c906108c 7990 {
df15bd07 7991 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 7992
8be455d7
JK
7993 /* Set symtab language to language from DW_AT_language. If the
7994 compilation is from a C file generated by language preprocessors, do
7995 not set the language if it was already deduced by start_subfile. */
43f3e411
DE
7996 if (!(cu->language == language_c
7997 && COMPUNIT_FILETABS (cust)->language != language_c))
7998 COMPUNIT_FILETABS (cust)->language = cu->language;
8be455d7
JK
7999
8000 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
8001 produce DW_AT_location with location lists but it can be possibly
ab260dad
JK
8002 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
8003 there were bugs in prologue debug info, fixed later in GCC-4.5
8004 by "unwind info for epilogues" patch (which is not directly related).
8be455d7
JK
8005
8006 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
8007 needed, it would be wrong due to missing DW_AT_producer there.
8008
8009 Still one can confuse GDB by using non-standard GCC compilation
8010 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
8011 */
ab260dad 8012 if (cu->has_loclist && gcc_4_minor >= 5)
43f3e411 8013 cust->locations_valid = 1;
e0d00bc7
JK
8014
8015 if (gcc_4_minor >= 5)
43f3e411 8016 cust->epilogue_unwind_valid = 1;
96408a79 8017
43f3e411 8018 cust->call_site_htab = cu->call_site_htab;
c906108c 8019 }
9291a0cd
TT
8020
8021 if (dwarf2_per_objfile->using_index)
43f3e411 8022 per_cu->v.quick->compunit_symtab = cust;
9291a0cd
TT
8023 else
8024 {
8025 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8026 pst->compunit_symtab = cust;
9291a0cd
TT
8027 pst->readin = 1;
8028 }
c906108c 8029
95554aad
TT
8030 /* Push it for inclusion processing later. */
8031 VEC_safe_push (dwarf2_per_cu_ptr, dwarf2_per_objfile->just_read_cus, per_cu);
8032
c906108c 8033 do_cleanups (back_to);
f4dc4d17 8034}
45cfd468 8035
f4dc4d17
DE
8036/* Generate full symbol information for type unit PER_CU, whose DIEs have
8037 already been loaded into memory. */
8038
8039static void
8040process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
8041 enum language pretend_language)
8042{
8043 struct dwarf2_cu *cu = per_cu->cu;
8044 struct objfile *objfile = per_cu->objfile;
43f3e411 8045 struct compunit_symtab *cust;
f4dc4d17 8046 struct cleanup *back_to, *delayed_list_cleanup;
0186c6a7
DE
8047 struct signatured_type *sig_type;
8048
8049 gdb_assert (per_cu->is_debug_types);
8050 sig_type = (struct signatured_type *) per_cu;
f4dc4d17
DE
8051
8052 buildsym_init ();
8053 back_to = make_cleanup (really_free_pendings, NULL);
8054 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
8055
8056 cu->list_in_scope = &file_symbols;
8057
8058 cu->language = pretend_language;
8059 cu->language_defn = language_def (cu->language);
8060
8061 /* The symbol tables are set up in read_type_unit_scope. */
8062 process_die (cu->dies, cu);
8063
8064 /* For now fudge the Go package. */
8065 if (cu->language == language_go)
8066 fixup_go_packaging (cu);
8067
8068 /* Now that we have processed all the DIEs in the CU, all the types
8069 should be complete, and it should now be safe to compute all of the
8070 physnames. */
8071 compute_delayed_physnames (cu);
8072 do_cleanups (delayed_list_cleanup);
8073
8074 /* TUs share symbol tables.
8075 If this is the first TU to use this symtab, complete the construction
094b34ac
DE
8076 of it with end_expandable_symtab. Otherwise, complete the addition of
8077 this TU's symbols to the existing symtab. */
43f3e411 8078 if (sig_type->type_unit_group->compunit_symtab == NULL)
45cfd468 8079 {
43f3e411
DE
8080 cust = end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
8081 sig_type->type_unit_group->compunit_symtab = cust;
f4dc4d17 8082
43f3e411 8083 if (cust != NULL)
f4dc4d17
DE
8084 {
8085 /* Set symtab language to language from DW_AT_language. If the
8086 compilation is from a C file generated by language preprocessors,
8087 do not set the language if it was already deduced by
8088 start_subfile. */
43f3e411
DE
8089 if (!(cu->language == language_c
8090 && COMPUNIT_FILETABS (cust)->language != language_c))
8091 COMPUNIT_FILETABS (cust)->language = cu->language;
f4dc4d17
DE
8092 }
8093 }
8094 else
8095 {
43f3e411
DE
8096 augment_type_symtab (sig_type->type_unit_group->compunit_symtab);
8097 cust = sig_type->type_unit_group->compunit_symtab;
f4dc4d17
DE
8098 }
8099
8100 if (dwarf2_per_objfile->using_index)
43f3e411 8101 per_cu->v.quick->compunit_symtab = cust;
f4dc4d17
DE
8102 else
8103 {
8104 struct partial_symtab *pst = per_cu->v.psymtab;
43f3e411 8105 pst->compunit_symtab = cust;
f4dc4d17 8106 pst->readin = 1;
45cfd468 8107 }
f4dc4d17
DE
8108
8109 do_cleanups (back_to);
c906108c
SS
8110}
8111
95554aad
TT
8112/* Process an imported unit DIE. */
8113
8114static void
8115process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
8116{
8117 struct attribute *attr;
8118
f4dc4d17
DE
8119 /* For now we don't handle imported units in type units. */
8120 if (cu->per_cu->is_debug_types)
8121 {
8122 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8123 " supported in type units [in module %s]"),
4262abfb 8124 objfile_name (cu->objfile));
f4dc4d17
DE
8125 }
8126
95554aad
TT
8127 attr = dwarf2_attr (die, DW_AT_import, cu);
8128 if (attr != NULL)
8129 {
8130 struct dwarf2_per_cu_data *per_cu;
8131 struct symtab *imported_symtab;
8132 sect_offset offset;
36586728 8133 int is_dwz;
95554aad
TT
8134
8135 offset = dwarf2_get_ref_die_offset (attr);
36586728
TT
8136 is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
8137 per_cu = dwarf2_find_containing_comp_unit (offset, is_dwz, cu->objfile);
95554aad 8138
69d751e3 8139 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
8140 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
8141 load_full_comp_unit (per_cu, cu->language);
8142
796a7ff8 8143 VEC_safe_push (dwarf2_per_cu_ptr, cu->per_cu->imported_symtabs,
95554aad
TT
8144 per_cu);
8145 }
8146}
8147
adde2bff
DE
8148/* Reset the in_process bit of a die. */
8149
8150static void
8151reset_die_in_process (void *arg)
8152{
8153 struct die_info *die = arg;
8c3cb9fa 8154
adde2bff
DE
8155 die->in_process = 0;
8156}
8157
c906108c
SS
8158/* Process a die and its children. */
8159
8160static void
e7c27a73 8161process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8162{
adde2bff
DE
8163 struct cleanup *in_process;
8164
8165 /* We should only be processing those not already in process. */
8166 gdb_assert (!die->in_process);
8167
8168 die->in_process = 1;
8169 in_process = make_cleanup (reset_die_in_process,die);
8170
c906108c
SS
8171 switch (die->tag)
8172 {
8173 case DW_TAG_padding:
8174 break;
8175 case DW_TAG_compile_unit:
95554aad 8176 case DW_TAG_partial_unit:
e7c27a73 8177 read_file_scope (die, cu);
c906108c 8178 break;
348e048f
DE
8179 case DW_TAG_type_unit:
8180 read_type_unit_scope (die, cu);
8181 break;
c906108c 8182 case DW_TAG_subprogram:
c906108c 8183 case DW_TAG_inlined_subroutine:
edb3359d 8184 read_func_scope (die, cu);
c906108c
SS
8185 break;
8186 case DW_TAG_lexical_block:
14898363
L
8187 case DW_TAG_try_block:
8188 case DW_TAG_catch_block:
e7c27a73 8189 read_lexical_block_scope (die, cu);
c906108c 8190 break;
96408a79
SA
8191 case DW_TAG_GNU_call_site:
8192 read_call_site_scope (die, cu);
8193 break;
c906108c 8194 case DW_TAG_class_type:
680b30c7 8195 case DW_TAG_interface_type:
c906108c
SS
8196 case DW_TAG_structure_type:
8197 case DW_TAG_union_type:
134d01f1 8198 process_structure_scope (die, cu);
c906108c
SS
8199 break;
8200 case DW_TAG_enumeration_type:
134d01f1 8201 process_enumeration_scope (die, cu);
c906108c 8202 break;
134d01f1 8203
f792889a
DJ
8204 /* These dies have a type, but processing them does not create
8205 a symbol or recurse to process the children. Therefore we can
8206 read them on-demand through read_type_die. */
c906108c 8207 case DW_TAG_subroutine_type:
72019c9c 8208 case DW_TAG_set_type:
c906108c 8209 case DW_TAG_array_type:
c906108c 8210 case DW_TAG_pointer_type:
c906108c 8211 case DW_TAG_ptr_to_member_type:
c906108c 8212 case DW_TAG_reference_type:
c906108c 8213 case DW_TAG_string_type:
c906108c 8214 break;
134d01f1 8215
c906108c 8216 case DW_TAG_base_type:
a02abb62 8217 case DW_TAG_subrange_type:
cb249c71 8218 case DW_TAG_typedef:
134d01f1
DJ
8219 /* Add a typedef symbol for the type definition, if it has a
8220 DW_AT_name. */
f792889a 8221 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 8222 break;
c906108c 8223 case DW_TAG_common_block:
e7c27a73 8224 read_common_block (die, cu);
c906108c
SS
8225 break;
8226 case DW_TAG_common_inclusion:
8227 break;
d9fa45fe 8228 case DW_TAG_namespace:
4d4ec4e5 8229 cu->processing_has_namespace_info = 1;
e7c27a73 8230 read_namespace (die, cu);
d9fa45fe 8231 break;
5d7cb8df 8232 case DW_TAG_module:
4d4ec4e5 8233 cu->processing_has_namespace_info = 1;
5d7cb8df
JK
8234 read_module (die, cu);
8235 break;
d9fa45fe 8236 case DW_TAG_imported_declaration:
74921315
KS
8237 cu->processing_has_namespace_info = 1;
8238 if (read_namespace_alias (die, cu))
8239 break;
8240 /* The declaration is not a global namespace alias: fall through. */
d9fa45fe 8241 case DW_TAG_imported_module:
4d4ec4e5 8242 cu->processing_has_namespace_info = 1;
27aa8d6a
SW
8243 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
8244 || cu->language != language_fortran))
8245 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
8246 dwarf_tag_name (die->tag));
8247 read_import_statement (die, cu);
d9fa45fe 8248 break;
95554aad
TT
8249
8250 case DW_TAG_imported_unit:
8251 process_imported_unit_die (die, cu);
8252 break;
8253
c906108c 8254 default:
e7c27a73 8255 new_symbol (die, NULL, cu);
c906108c
SS
8256 break;
8257 }
adde2bff
DE
8258
8259 do_cleanups (in_process);
c906108c 8260}
ca69b9e6
DE
8261\f
8262/* DWARF name computation. */
c906108c 8263
94af9270
KS
8264/* A helper function for dwarf2_compute_name which determines whether DIE
8265 needs to have the name of the scope prepended to the name listed in the
8266 die. */
8267
8268static int
8269die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
8270{
1c809c68
TT
8271 struct attribute *attr;
8272
94af9270
KS
8273 switch (die->tag)
8274 {
8275 case DW_TAG_namespace:
8276 case DW_TAG_typedef:
8277 case DW_TAG_class_type:
8278 case DW_TAG_interface_type:
8279 case DW_TAG_structure_type:
8280 case DW_TAG_union_type:
8281 case DW_TAG_enumeration_type:
8282 case DW_TAG_enumerator:
8283 case DW_TAG_subprogram:
8284 case DW_TAG_member:
74921315 8285 case DW_TAG_imported_declaration:
94af9270
KS
8286 return 1;
8287
8288 case DW_TAG_variable:
c2b0a229 8289 case DW_TAG_constant:
94af9270
KS
8290 /* We only need to prefix "globally" visible variables. These include
8291 any variable marked with DW_AT_external or any variable that
8292 lives in a namespace. [Variables in anonymous namespaces
8293 require prefixing, but they are not DW_AT_external.] */
8294
8295 if (dwarf2_attr (die, DW_AT_specification, cu))
8296 {
8297 struct dwarf2_cu *spec_cu = cu;
9a619af0 8298
94af9270
KS
8299 return die_needs_namespace (die_specification (die, &spec_cu),
8300 spec_cu);
8301 }
8302
1c809c68 8303 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
8304 if (attr == NULL && die->parent->tag != DW_TAG_namespace
8305 && die->parent->tag != DW_TAG_module)
1c809c68
TT
8306 return 0;
8307 /* A variable in a lexical block of some kind does not need a
8308 namespace, even though in C++ such variables may be external
8309 and have a mangled name. */
8310 if (die->parent->tag == DW_TAG_lexical_block
8311 || die->parent->tag == DW_TAG_try_block
1054b214
TT
8312 || die->parent->tag == DW_TAG_catch_block
8313 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
8314 return 0;
8315 return 1;
94af9270
KS
8316
8317 default:
8318 return 0;
8319 }
8320}
8321
98bfdba5
PA
8322/* Retrieve the last character from a mem_file. */
8323
8324static void
8325do_ui_file_peek_last (void *object, const char *buffer, long length)
8326{
8327 char *last_char_p = (char *) object;
8328
8329 if (length > 0)
8330 *last_char_p = buffer[length - 1];
8331}
8332
94af9270 8333/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
a766d390
DE
8334 compute the physname for the object, which include a method's:
8335 - formal parameters (C++/Java),
8336 - receiver type (Go),
8337 - return type (Java).
8338
8339 The term "physname" is a bit confusing.
8340 For C++, for example, it is the demangled name.
8341 For Go, for example, it's the mangled name.
94af9270 8342
af6b7be1
JB
8343 For Ada, return the DIE's linkage name rather than the fully qualified
8344 name. PHYSNAME is ignored..
8345
94af9270
KS
8346 The result is allocated on the objfile_obstack and canonicalized. */
8347
8348static const char *
15d034d0
TT
8349dwarf2_compute_name (const char *name,
8350 struct die_info *die, struct dwarf2_cu *cu,
94af9270
KS
8351 int physname)
8352{
bb5ed363
DE
8353 struct objfile *objfile = cu->objfile;
8354
94af9270
KS
8355 if (name == NULL)
8356 name = dwarf2_name (die, cu);
8357
f55ee35c
JK
8358 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
8359 compute it by typename_concat inside GDB. */
8360 if (cu->language == language_ada
8361 || (cu->language == language_fortran && physname))
8362 {
8363 /* For Ada unit, we prefer the linkage name over the name, as
8364 the former contains the exported name, which the user expects
8365 to be able to reference. Ideally, we want the user to be able
8366 to reference this entity using either natural or linkage name,
8367 but we haven't started looking at this enhancement yet. */
8368 struct attribute *attr;
8369
8370 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8371 if (attr == NULL)
8372 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8373 if (attr && DW_STRING (attr))
8374 return DW_STRING (attr);
8375 }
8376
94af9270
KS
8377 /* These are the only languages we know how to qualify names in. */
8378 if (name != NULL
f55ee35c
JK
8379 && (cu->language == language_cplus || cu->language == language_java
8380 || cu->language == language_fortran))
94af9270
KS
8381 {
8382 if (die_needs_namespace (die, cu))
8383 {
8384 long length;
0d5cff50 8385 const char *prefix;
94af9270 8386 struct ui_file *buf;
34a68019
TT
8387 char *intermediate_name;
8388 const char *canonical_name = NULL;
94af9270
KS
8389
8390 prefix = determine_prefix (die, cu);
8391 buf = mem_fileopen ();
8392 if (*prefix != '\0')
8393 {
f55ee35c
JK
8394 char *prefixed_name = typename_concat (NULL, prefix, name,
8395 physname, cu);
9a619af0 8396
94af9270
KS
8397 fputs_unfiltered (prefixed_name, buf);
8398 xfree (prefixed_name);
8399 }
8400 else
62d5b8da 8401 fputs_unfiltered (name, buf);
94af9270 8402
98bfdba5
PA
8403 /* Template parameters may be specified in the DIE's DW_AT_name, or
8404 as children with DW_TAG_template_type_param or
8405 DW_TAG_value_type_param. If the latter, add them to the name
8406 here. If the name already has template parameters, then
8407 skip this step; some versions of GCC emit both, and
8408 it is more efficient to use the pre-computed name.
8409
8410 Something to keep in mind about this process: it is very
8411 unlikely, or in some cases downright impossible, to produce
8412 something that will match the mangled name of a function.
8413 If the definition of the function has the same debug info,
8414 we should be able to match up with it anyway. But fallbacks
8415 using the minimal symbol, for instance to find a method
8416 implemented in a stripped copy of libstdc++, will not work.
8417 If we do not have debug info for the definition, we will have to
8418 match them up some other way.
8419
8420 When we do name matching there is a related problem with function
8421 templates; two instantiated function templates are allowed to
8422 differ only by their return types, which we do not add here. */
8423
8424 if (cu->language == language_cplus && strchr (name, '<') == NULL)
8425 {
8426 struct attribute *attr;
8427 struct die_info *child;
8428 int first = 1;
8429
8430 die->building_fullname = 1;
8431
8432 for (child = die->child; child != NULL; child = child->sibling)
8433 {
8434 struct type *type;
12df843f 8435 LONGEST value;
d521ce57 8436 const gdb_byte *bytes;
98bfdba5
PA
8437 struct dwarf2_locexpr_baton *baton;
8438 struct value *v;
8439
8440 if (child->tag != DW_TAG_template_type_param
8441 && child->tag != DW_TAG_template_value_param)
8442 continue;
8443
8444 if (first)
8445 {
8446 fputs_unfiltered ("<", buf);
8447 first = 0;
8448 }
8449 else
8450 fputs_unfiltered (", ", buf);
8451
8452 attr = dwarf2_attr (child, DW_AT_type, cu);
8453 if (attr == NULL)
8454 {
8455 complaint (&symfile_complaints,
8456 _("template parameter missing DW_AT_type"));
8457 fputs_unfiltered ("UNKNOWN_TYPE", buf);
8458 continue;
8459 }
8460 type = die_type (child, cu);
8461
8462 if (child->tag == DW_TAG_template_type_param)
8463 {
79d43c61 8464 c_print_type (type, "", buf, -1, 0, &type_print_raw_options);
98bfdba5
PA
8465 continue;
8466 }
8467
8468 attr = dwarf2_attr (child, DW_AT_const_value, cu);
8469 if (attr == NULL)
8470 {
8471 complaint (&symfile_complaints,
3e43a32a
MS
8472 _("template parameter missing "
8473 "DW_AT_const_value"));
98bfdba5
PA
8474 fputs_unfiltered ("UNKNOWN_VALUE", buf);
8475 continue;
8476 }
8477
8478 dwarf2_const_value_attr (attr, type, name,
8479 &cu->comp_unit_obstack, cu,
8480 &value, &bytes, &baton);
8481
8482 if (TYPE_NOSIGN (type))
8483 /* GDB prints characters as NUMBER 'CHAR'. If that's
8484 changed, this can use value_print instead. */
8485 c_printchar (value, type, buf);
8486 else
8487 {
8488 struct value_print_options opts;
8489
8490 if (baton != NULL)
8491 v = dwarf2_evaluate_loc_desc (type, NULL,
8492 baton->data,
8493 baton->size,
8494 baton->per_cu);
8495 else if (bytes != NULL)
8496 {
8497 v = allocate_value (type);
8498 memcpy (value_contents_writeable (v), bytes,
8499 TYPE_LENGTH (type));
8500 }
8501 else
8502 v = value_from_longest (type, value);
8503
3e43a32a
MS
8504 /* Specify decimal so that we do not depend on
8505 the radix. */
98bfdba5
PA
8506 get_formatted_print_options (&opts, 'd');
8507 opts.raw = 1;
8508 value_print (v, buf, &opts);
8509 release_value (v);
8510 value_free (v);
8511 }
8512 }
8513
8514 die->building_fullname = 0;
8515
8516 if (!first)
8517 {
8518 /* Close the argument list, with a space if necessary
8519 (nested templates). */
8520 char last_char = '\0';
8521 ui_file_put (buf, do_ui_file_peek_last, &last_char);
8522 if (last_char == '>')
8523 fputs_unfiltered (" >", buf);
8524 else
8525 fputs_unfiltered (">", buf);
8526 }
8527 }
8528
94af9270
KS
8529 /* For Java and C++ methods, append formal parameter type
8530 information, if PHYSNAME. */
6e70227d 8531
94af9270
KS
8532 if (physname && die->tag == DW_TAG_subprogram
8533 && (cu->language == language_cplus
8534 || cu->language == language_java))
8535 {
8536 struct type *type = read_type_die (die, cu);
8537
79d43c61
TT
8538 c_type_print_args (type, buf, 1, cu->language,
8539 &type_print_raw_options);
94af9270
KS
8540
8541 if (cu->language == language_java)
8542 {
8543 /* For java, we must append the return type to method
0963b4bd 8544 names. */
94af9270
KS
8545 if (die->tag == DW_TAG_subprogram)
8546 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
79d43c61 8547 0, 0, &type_print_raw_options);
94af9270
KS
8548 }
8549 else if (cu->language == language_cplus)
8550 {
60430eff
DJ
8551 /* Assume that an artificial first parameter is
8552 "this", but do not crash if it is not. RealView
8553 marks unnamed (and thus unused) parameters as
8554 artificial; there is no way to differentiate
8555 the two cases. */
94af9270
KS
8556 if (TYPE_NFIELDS (type) > 0
8557 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 8558 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
8559 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
8560 0))))
94af9270
KS
8561 fputs_unfiltered (" const", buf);
8562 }
8563 }
8564
34a68019 8565 intermediate_name = ui_file_xstrdup (buf, &length);
94af9270
KS
8566 ui_file_delete (buf);
8567
8568 if (cu->language == language_cplus)
34a68019
TT
8569 canonical_name
8570 = dwarf2_canonicalize_name (intermediate_name, cu,
8571 &objfile->per_bfd->storage_obstack);
8572
8573 /* If we only computed INTERMEDIATE_NAME, or if
8574 INTERMEDIATE_NAME is already canonical, then we need to
8575 copy it to the appropriate obstack. */
8576 if (canonical_name == NULL || canonical_name == intermediate_name)
8577 name = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8578 intermediate_name,
8579 strlen (intermediate_name));
8580 else
8581 name = canonical_name;
9a619af0 8582
34a68019 8583 xfree (intermediate_name);
94af9270
KS
8584 }
8585 }
8586
8587 return name;
8588}
8589
0114d602
DJ
8590/* Return the fully qualified name of DIE, based on its DW_AT_name.
8591 If scope qualifiers are appropriate they will be added. The result
34a68019 8592 will be allocated on the storage_obstack, or NULL if the DIE does
94af9270
KS
8593 not have a name. NAME may either be from a previous call to
8594 dwarf2_name or NULL.
8595
0963b4bd 8596 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
8597
8598static const char *
15d034d0 8599dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 8600{
94af9270
KS
8601 return dwarf2_compute_name (name, die, cu, 0);
8602}
0114d602 8603
94af9270
KS
8604/* Construct a physname for the given DIE in CU. NAME may either be
8605 from a previous call to dwarf2_name or NULL. The result will be
8606 allocated on the objfile_objstack or NULL if the DIE does not have a
8607 name.
0114d602 8608
94af9270 8609 The output string will be canonicalized (if C++/Java). */
0114d602 8610
94af9270 8611static const char *
15d034d0 8612dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
94af9270 8613{
bb5ed363 8614 struct objfile *objfile = cu->objfile;
900e11f9
JK
8615 struct attribute *attr;
8616 const char *retval, *mangled = NULL, *canon = NULL;
8617 struct cleanup *back_to;
8618 int need_copy = 1;
8619
8620 /* In this case dwarf2_compute_name is just a shortcut not building anything
8621 on its own. */
8622 if (!die_needs_namespace (die, cu))
8623 return dwarf2_compute_name (name, die, cu, 1);
8624
8625 back_to = make_cleanup (null_cleanup, NULL);
8626
8627 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
8628 if (!attr)
8629 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
8630
8631 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
8632 has computed. */
8633 if (attr && DW_STRING (attr))
8634 {
8635 char *demangled;
8636
8637 mangled = DW_STRING (attr);
8638
8639 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
8640 type. It is easier for GDB users to search for such functions as
8641 `name(params)' than `long name(params)'. In such case the minimal
8642 symbol names do not match the full symbol names but for template
8643 functions there is never a need to look up their definition from their
8644 declaration so the only disadvantage remains the minimal symbol
8645 variant `long name(params)' does not have the proper inferior type.
8646 */
8647
a766d390
DE
8648 if (cu->language == language_go)
8649 {
8650 /* This is a lie, but we already lie to the caller new_symbol_full.
8651 new_symbol_full assumes we return the mangled name.
8652 This just undoes that lie until things are cleaned up. */
8653 demangled = NULL;
8654 }
8655 else
8656 {
8de20a37
TT
8657 demangled = gdb_demangle (mangled,
8658 (DMGL_PARAMS | DMGL_ANSI
8659 | (cu->language == language_java
8660 ? DMGL_JAVA | DMGL_RET_POSTFIX
8661 : DMGL_RET_DROP)));
a766d390 8662 }
900e11f9
JK
8663 if (demangled)
8664 {
8665 make_cleanup (xfree, demangled);
8666 canon = demangled;
8667 }
8668 else
8669 {
8670 canon = mangled;
8671 need_copy = 0;
8672 }
8673 }
8674
8675 if (canon == NULL || check_physname)
8676 {
8677 const char *physname = dwarf2_compute_name (name, die, cu, 1);
8678
8679 if (canon != NULL && strcmp (physname, canon) != 0)
8680 {
8681 /* It may not mean a bug in GDB. The compiler could also
8682 compute DW_AT_linkage_name incorrectly. But in such case
8683 GDB would need to be bug-to-bug compatible. */
8684
8685 complaint (&symfile_complaints,
8686 _("Computed physname <%s> does not match demangled <%s> "
8687 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
4262abfb
JK
8688 physname, canon, mangled, die->offset.sect_off,
8689 objfile_name (objfile));
900e11f9
JK
8690
8691 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
8692 is available here - over computed PHYSNAME. It is safer
8693 against both buggy GDB and buggy compilers. */
8694
8695 retval = canon;
8696 }
8697 else
8698 {
8699 retval = physname;
8700 need_copy = 0;
8701 }
8702 }
8703 else
8704 retval = canon;
8705
8706 if (need_copy)
34a68019
TT
8707 retval = obstack_copy0 (&objfile->per_bfd->storage_obstack,
8708 retval, strlen (retval));
900e11f9
JK
8709
8710 do_cleanups (back_to);
8711 return retval;
0114d602
DJ
8712}
8713
74921315
KS
8714/* Inspect DIE in CU for a namespace alias. If one exists, record
8715 a new symbol for it.
8716
8717 Returns 1 if a namespace alias was recorded, 0 otherwise. */
8718
8719static int
8720read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
8721{
8722 struct attribute *attr;
8723
8724 /* If the die does not have a name, this is not a namespace
8725 alias. */
8726 attr = dwarf2_attr (die, DW_AT_name, cu);
8727 if (attr != NULL)
8728 {
8729 int num;
8730 struct die_info *d = die;
8731 struct dwarf2_cu *imported_cu = cu;
8732
8733 /* If the compiler has nested DW_AT_imported_declaration DIEs,
8734 keep inspecting DIEs until we hit the underlying import. */
8735#define MAX_NESTED_IMPORTED_DECLARATIONS 100
8736 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
8737 {
8738 attr = dwarf2_attr (d, DW_AT_import, cu);
8739 if (attr == NULL)
8740 break;
8741
8742 d = follow_die_ref (d, attr, &imported_cu);
8743 if (d->tag != DW_TAG_imported_declaration)
8744 break;
8745 }
8746
8747 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
8748 {
8749 complaint (&symfile_complaints,
8750 _("DIE at 0x%x has too many recursively imported "
8751 "declarations"), d->offset.sect_off);
8752 return 0;
8753 }
8754
8755 if (attr != NULL)
8756 {
8757 struct type *type;
8758 sect_offset offset = dwarf2_get_ref_die_offset (attr);
8759
8760 type = get_die_type_at_offset (offset, cu->per_cu);
8761 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
8762 {
8763 /* This declaration is a global namespace alias. Add
8764 a symbol for it whose type is the aliased namespace. */
8765 new_symbol (die, type, cu);
8766 return 1;
8767 }
8768 }
8769 }
8770
8771 return 0;
8772}
8773
27aa8d6a
SW
8774/* Read the import statement specified by the given die and record it. */
8775
8776static void
8777read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
8778{
bb5ed363 8779 struct objfile *objfile = cu->objfile;
27aa8d6a 8780 struct attribute *import_attr;
32019081 8781 struct die_info *imported_die, *child_die;
de4affc9 8782 struct dwarf2_cu *imported_cu;
27aa8d6a 8783 const char *imported_name;
794684b6 8784 const char *imported_name_prefix;
13387711
SW
8785 const char *canonical_name;
8786 const char *import_alias;
8787 const char *imported_declaration = NULL;
794684b6 8788 const char *import_prefix;
32019081
JK
8789 VEC (const_char_ptr) *excludes = NULL;
8790 struct cleanup *cleanups;
13387711 8791
27aa8d6a
SW
8792 import_attr = dwarf2_attr (die, DW_AT_import, cu);
8793 if (import_attr == NULL)
8794 {
8795 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8796 dwarf_tag_name (die->tag));
8797 return;
8798 }
8799
de4affc9
CC
8800 imported_cu = cu;
8801 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
8802 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
8803 if (imported_name == NULL)
8804 {
8805 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
8806
8807 The import in the following code:
8808 namespace A
8809 {
8810 typedef int B;
8811 }
8812
8813 int main ()
8814 {
8815 using A::B;
8816 B b;
8817 return b;
8818 }
8819
8820 ...
8821 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
8822 <52> DW_AT_decl_file : 1
8823 <53> DW_AT_decl_line : 6
8824 <54> DW_AT_import : <0x75>
8825 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
8826 <59> DW_AT_name : B
8827 <5b> DW_AT_decl_file : 1
8828 <5c> DW_AT_decl_line : 2
8829 <5d> DW_AT_type : <0x6e>
8830 ...
8831 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
8832 <76> DW_AT_byte_size : 4
8833 <77> DW_AT_encoding : 5 (signed)
8834
8835 imports the wrong die ( 0x75 instead of 0x58 ).
8836 This case will be ignored until the gcc bug is fixed. */
8837 return;
8838 }
8839
82856980
SW
8840 /* Figure out the local name after import. */
8841 import_alias = dwarf2_name (die, cu);
27aa8d6a 8842
794684b6
SW
8843 /* Figure out where the statement is being imported to. */
8844 import_prefix = determine_prefix (die, cu);
8845
8846 /* Figure out what the scope of the imported die is and prepend it
8847 to the name of the imported die. */
de4affc9 8848 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 8849
f55ee35c
JK
8850 if (imported_die->tag != DW_TAG_namespace
8851 && imported_die->tag != DW_TAG_module)
794684b6 8852 {
13387711
SW
8853 imported_declaration = imported_name;
8854 canonical_name = imported_name_prefix;
794684b6 8855 }
13387711 8856 else if (strlen (imported_name_prefix) > 0)
12aaed36
TT
8857 canonical_name = obconcat (&objfile->objfile_obstack,
8858 imported_name_prefix, "::", imported_name,
8859 (char *) NULL);
13387711
SW
8860 else
8861 canonical_name = imported_name;
794684b6 8862
32019081
JK
8863 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
8864
8865 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
8866 for (child_die = die->child; child_die && child_die->tag;
8867 child_die = sibling_die (child_die))
8868 {
8869 /* DWARF-4: A Fortran use statement with a “rename list” may be
8870 represented by an imported module entry with an import attribute
8871 referring to the module and owned entries corresponding to those
8872 entities that are renamed as part of being imported. */
8873
8874 if (child_die->tag != DW_TAG_imported_declaration)
8875 {
8876 complaint (&symfile_complaints,
8877 _("child DW_TAG_imported_declaration expected "
8878 "- DIE at 0x%x [in module %s]"),
4262abfb 8879 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8880 continue;
8881 }
8882
8883 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
8884 if (import_attr == NULL)
8885 {
8886 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
8887 dwarf_tag_name (child_die->tag));
8888 continue;
8889 }
8890
8891 imported_cu = cu;
8892 imported_die = follow_die_ref_or_sig (child_die, import_attr,
8893 &imported_cu);
8894 imported_name = dwarf2_name (imported_die, imported_cu);
8895 if (imported_name == NULL)
8896 {
8897 complaint (&symfile_complaints,
8898 _("child DW_TAG_imported_declaration has unknown "
8899 "imported name - DIE at 0x%x [in module %s]"),
4262abfb 8900 child_die->offset.sect_off, objfile_name (objfile));
32019081
JK
8901 continue;
8902 }
8903
8904 VEC_safe_push (const_char_ptr, excludes, imported_name);
8905
8906 process_die (child_die, cu);
8907 }
8908
c0cc3a76
SW
8909 cp_add_using_directive (import_prefix,
8910 canonical_name,
8911 import_alias,
13387711 8912 imported_declaration,
32019081 8913 excludes,
12aaed36 8914 0,
bb5ed363 8915 &objfile->objfile_obstack);
32019081
JK
8916
8917 do_cleanups (cleanups);
27aa8d6a
SW
8918}
8919
f4dc4d17 8920/* Cleanup function for handle_DW_AT_stmt_list. */
ae2de4f8 8921
cb1df416
DJ
8922static void
8923free_cu_line_header (void *arg)
8924{
8925 struct dwarf2_cu *cu = arg;
8926
8927 free_line_header (cu->line_header);
8928 cu->line_header = NULL;
8929}
8930
1b80a9fa
JK
8931/* Check for possibly missing DW_AT_comp_dir with relative .debug_line
8932 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
8933 this, it was first present in GCC release 4.3.0. */
8934
8935static int
8936producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
8937{
8938 if (!cu->checked_producer)
8939 check_producer (cu);
8940
8941 return cu->producer_is_gcc_lt_4_3;
8942}
8943
9291a0cd
TT
8944static void
8945find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
15d034d0 8946 const char **name, const char **comp_dir)
9291a0cd
TT
8947{
8948 struct attribute *attr;
8949
8950 *name = NULL;
8951 *comp_dir = NULL;
8952
8953 /* Find the filename. Do not use dwarf2_name here, since the filename
8954 is not a source language identifier. */
8955 attr = dwarf2_attr (die, DW_AT_name, cu);
8956 if (attr)
8957 {
8958 *name = DW_STRING (attr);
8959 }
8960
8961 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
8962 if (attr)
8963 *comp_dir = DW_STRING (attr);
1b80a9fa
JK
8964 else if (producer_is_gcc_lt_4_3 (cu) && *name != NULL
8965 && IS_ABSOLUTE_PATH (*name))
9291a0cd 8966 {
15d034d0
TT
8967 char *d = ldirname (*name);
8968
8969 *comp_dir = d;
8970 if (d != NULL)
8971 make_cleanup (xfree, d);
9291a0cd
TT
8972 }
8973 if (*comp_dir != NULL)
8974 {
8975 /* Irix 6.2 native cc prepends <machine>.: to the compilation
8976 directory, get rid of it. */
8977 char *cp = strchr (*comp_dir, ':');
8978
8979 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
8980 *comp_dir = cp + 1;
8981 }
8982
8983 if (*name == NULL)
8984 *name = "<unknown>";
8985}
8986
f4dc4d17
DE
8987/* Handle DW_AT_stmt_list for a compilation unit.
8988 DIE is the DW_TAG_compile_unit die for CU.
c3b7b696
YQ
8989 COMP_DIR is the compilation directory. LOWPC is passed to
8990 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
2ab95328
TT
8991
8992static void
8993handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
c3b7b696 8994 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
2ab95328
TT
8995{
8996 struct attribute *attr;
2ab95328 8997
f4dc4d17
DE
8998 gdb_assert (! cu->per_cu->is_debug_types);
8999
2ab95328
TT
9000 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
9001 if (attr)
9002 {
9003 unsigned int line_offset = DW_UNSND (attr);
9004 struct line_header *line_header
3019eac3 9005 = dwarf_decode_line_header (line_offset, cu);
2ab95328
TT
9006
9007 if (line_header)
dee91e82
DE
9008 {
9009 cu->line_header = line_header;
9010 make_cleanup (free_cu_line_header, cu);
c3b7b696 9011 dwarf_decode_lines (line_header, comp_dir, cu, NULL, lowpc);
dee91e82 9012 }
2ab95328
TT
9013 }
9014}
9015
95554aad 9016/* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
ae2de4f8 9017
c906108c 9018static void
e7c27a73 9019read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 9020{
dee91e82 9021 struct objfile *objfile = dwarf2_per_objfile->objfile;
3e29f34a 9022 struct gdbarch *gdbarch = get_objfile_arch (objfile);
debd256d 9023 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 9024 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
9025 CORE_ADDR highpc = ((CORE_ADDR) 0);
9026 struct attribute *attr;
15d034d0
TT
9027 const char *name = NULL;
9028 const char *comp_dir = NULL;
c906108c
SS
9029 struct die_info *child_die;
9030 bfd *abfd = objfile->obfd;
e142c38c 9031 CORE_ADDR baseaddr;
6e70227d 9032
e142c38c 9033 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 9034
fae299cd 9035 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
9036
9037 /* If we didn't find a lowpc, set it to highpc to avoid complaints
9038 from finish_block. */
2acceee2 9039 if (lowpc == ((CORE_ADDR) -1))
c906108c 9040 lowpc = highpc;
3e29f34a 9041 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
c906108c 9042
9291a0cd 9043 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 9044
95554aad 9045 prepare_one_comp_unit (cu, die, cu->language);
303b6f5d 9046
f4b8a18d
KW
9047 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
9048 standardised yet. As a workaround for the language detection we fall
9049 back to the DW_AT_producer string. */
9050 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
9051 cu->language = language_opencl;
9052
3019eac3
DE
9053 /* Similar hack for Go. */
9054 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
9055 set_cu_language (DW_LANG_Go, cu);
9056
f4dc4d17 9057 dwarf2_start_symtab (cu, name, comp_dir, lowpc);
3019eac3
DE
9058
9059 /* Decode line number information if present. We do this before
9060 processing child DIEs, so that the line header table is available
9061 for DW_AT_decl_file. */
c3b7b696 9062 handle_DW_AT_stmt_list (die, cu, comp_dir, lowpc);
3019eac3
DE
9063
9064 /* Process all dies in compilation unit. */
9065 if (die->child != NULL)
9066 {
9067 child_die = die->child;
9068 while (child_die && child_die->tag)
9069 {
9070 process_die (child_die, cu);
9071 child_die = sibling_die (child_die);
9072 }
9073 }
9074
9075 /* Decode macro information, if present. Dwarf 2 macro information
9076 refers to information in the line number info statement program
9077 header, so we can only read it if we've read the header
9078 successfully. */
9079 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
9080 if (attr && cu->line_header)
9081 {
9082 if (dwarf2_attr (die, DW_AT_macro_info, cu))
9083 complaint (&symfile_complaints,
9084 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
9085
43f3e411 9086 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
3019eac3
DE
9087 }
9088 else
9089 {
9090 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
9091 if (attr && cu->line_header)
9092 {
9093 unsigned int macro_offset = DW_UNSND (attr);
9094
43f3e411 9095 dwarf_decode_macros (cu, macro_offset, 0);
3019eac3
DE
9096 }
9097 }
9098
9099 do_cleanups (back_to);
9100}
9101
f4dc4d17
DE
9102/* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
9103 Create the set of symtabs used by this TU, or if this TU is sharing
9104 symtabs with another TU and the symtabs have already been created
9105 then restore those symtabs in the line header.
9106 We don't need the pc/line-number mapping for type units. */
3019eac3
DE
9107
9108static void
f4dc4d17 9109setup_type_unit_groups (struct die_info *die, struct dwarf2_cu *cu)
3019eac3 9110{
f4dc4d17
DE
9111 struct objfile *objfile = dwarf2_per_objfile->objfile;
9112 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
9113 struct type_unit_group *tu_group;
9114 int first_time;
9115 struct line_header *lh;
3019eac3 9116 struct attribute *attr;
f4dc4d17 9117 unsigned int i, line_offset;
0186c6a7 9118 struct signatured_type *sig_type;
3019eac3 9119
f4dc4d17 9120 gdb_assert (per_cu->is_debug_types);
0186c6a7 9121 sig_type = (struct signatured_type *) per_cu;
3019eac3 9122
f4dc4d17 9123 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3019eac3 9124
f4dc4d17 9125 /* If we're using .gdb_index (includes -readnow) then
74e04d1c 9126 per_cu->type_unit_group may not have been set up yet. */
0186c6a7
DE
9127 if (sig_type->type_unit_group == NULL)
9128 sig_type->type_unit_group = get_type_unit_group (cu, attr);
9129 tu_group = sig_type->type_unit_group;
f4dc4d17
DE
9130
9131 /* If we've already processed this stmt_list there's no real need to
9132 do it again, we could fake it and just recreate the part we need
9133 (file name,index -> symtab mapping). If data shows this optimization
9134 is useful we can do it then. */
43f3e411 9135 first_time = tu_group->compunit_symtab == NULL;
f4dc4d17
DE
9136
9137 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
9138 debug info. */
9139 lh = NULL;
9140 if (attr != NULL)
3019eac3 9141 {
f4dc4d17
DE
9142 line_offset = DW_UNSND (attr);
9143 lh = dwarf_decode_line_header (line_offset, cu);
9144 }
9145 if (lh == NULL)
9146 {
9147 if (first_time)
9148 dwarf2_start_symtab (cu, "", NULL, 0);
9149 else
9150 {
9151 gdb_assert (tu_group->symtabs == NULL);
9152 restart_symtab (0);
9153 }
43f3e411 9154 /* Note: The compunit symtab will get allocated at the end. */
f4dc4d17 9155 return;
3019eac3
DE
9156 }
9157
f4dc4d17
DE
9158 cu->line_header = lh;
9159 make_cleanup (free_cu_line_header, cu);
3019eac3 9160
f4dc4d17
DE
9161 if (first_time)
9162 {
43f3e411 9163 struct compunit_symtab *cust = dwarf2_start_symtab (cu, "", NULL, 0);
3019eac3 9164
f4dc4d17
DE
9165 tu_group->num_symtabs = lh->num_file_names;
9166 tu_group->symtabs = XNEWVEC (struct symtab *, lh->num_file_names);
3019eac3 9167
f4dc4d17
DE
9168 for (i = 0; i < lh->num_file_names; ++i)
9169 {
d521ce57 9170 const char *dir = NULL;
f4dc4d17 9171 struct file_entry *fe = &lh->file_names[i];
3019eac3 9172
f4dc4d17
DE
9173 if (fe->dir_index)
9174 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 9175 dwarf2_start_subfile (fe->name, dir);
3019eac3 9176
f4dc4d17
DE
9177 if (current_subfile->symtab == NULL)
9178 {
9179 /* NOTE: start_subfile will recognize when it's been passed
9180 a file it has already seen. So we can't assume there's a
43f3e411 9181 simple mapping from lh->file_names to subfiles, plus
f4dc4d17 9182 lh->file_names may contain dups. */
43f3e411
DE
9183 current_subfile->symtab
9184 = allocate_symtab (cust, current_subfile->name);
f4dc4d17
DE
9185 }
9186
9187 fe->symtab = current_subfile->symtab;
9188 tu_group->symtabs[i] = fe->symtab;
9189 }
9190 }
9191 else
3019eac3 9192 {
f4dc4d17
DE
9193 restart_symtab (0);
9194
9195 for (i = 0; i < lh->num_file_names; ++i)
9196 {
9197 struct file_entry *fe = &lh->file_names[i];
9198
9199 fe->symtab = tu_group->symtabs[i];
9200 }
3019eac3
DE
9201 }
9202
f4dc4d17
DE
9203 /* The main symtab is allocated last. Type units don't have DW_AT_name
9204 so they don't have a "real" (so to speak) symtab anyway.
9205 There is later code that will assign the main symtab to all symbols
9206 that don't have one. We need to handle the case of a symbol with a
9207 missing symtab (DW_AT_decl_file) anyway. */
9208}
3019eac3 9209
f4dc4d17
DE
9210/* Process DW_TAG_type_unit.
9211 For TUs we want to skip the first top level sibling if it's not the
9212 actual type being defined by this TU. In this case the first top
9213 level sibling is there to provide context only. */
3019eac3 9214
f4dc4d17
DE
9215static void
9216read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
9217{
9218 struct die_info *child_die;
3019eac3 9219
f4dc4d17
DE
9220 prepare_one_comp_unit (cu, die, language_minimal);
9221
9222 /* Initialize (or reinitialize) the machinery for building symtabs.
9223 We do this before processing child DIEs, so that the line header table
9224 is available for DW_AT_decl_file. */
9225 setup_type_unit_groups (die, cu);
9226
9227 if (die->child != NULL)
9228 {
9229 child_die = die->child;
9230 while (child_die && child_die->tag)
9231 {
9232 process_die (child_die, cu);
9233 child_die = sibling_die (child_die);
9234 }
9235 }
3019eac3
DE
9236}
9237\f
80626a55
DE
9238/* DWO/DWP files.
9239
9240 http://gcc.gnu.org/wiki/DebugFission
9241 http://gcc.gnu.org/wiki/DebugFissionDWP
9242
9243 To simplify handling of both DWO files ("object" files with the DWARF info)
9244 and DWP files (a file with the DWOs packaged up into one file), we treat
9245 DWP files as having a collection of virtual DWO files. */
3019eac3
DE
9246
9247static hashval_t
9248hash_dwo_file (const void *item)
9249{
9250 const struct dwo_file *dwo_file = item;
a2ce51a0 9251 hashval_t hash;
3019eac3 9252
a2ce51a0
DE
9253 hash = htab_hash_string (dwo_file->dwo_name);
9254 if (dwo_file->comp_dir != NULL)
9255 hash += htab_hash_string (dwo_file->comp_dir);
9256 return hash;
3019eac3
DE
9257}
9258
9259static int
9260eq_dwo_file (const void *item_lhs, const void *item_rhs)
9261{
9262 const struct dwo_file *lhs = item_lhs;
9263 const struct dwo_file *rhs = item_rhs;
9264
a2ce51a0
DE
9265 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
9266 return 0;
9267 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
9268 return lhs->comp_dir == rhs->comp_dir;
9269 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
3019eac3
DE
9270}
9271
9272/* Allocate a hash table for DWO files. */
9273
9274static htab_t
9275allocate_dwo_file_hash_table (void)
9276{
9277 struct objfile *objfile = dwarf2_per_objfile->objfile;
9278
9279 return htab_create_alloc_ex (41,
9280 hash_dwo_file,
9281 eq_dwo_file,
9282 NULL,
9283 &objfile->objfile_obstack,
9284 hashtab_obstack_allocate,
9285 dummy_obstack_deallocate);
9286}
9287
80626a55
DE
9288/* Lookup DWO file DWO_NAME. */
9289
9290static void **
0ac5b59e 9291lookup_dwo_file_slot (const char *dwo_name, const char *comp_dir)
80626a55
DE
9292{
9293 struct dwo_file find_entry;
9294 void **slot;
9295
9296 if (dwarf2_per_objfile->dwo_files == NULL)
9297 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
9298
9299 memset (&find_entry, 0, sizeof (find_entry));
0ac5b59e
DE
9300 find_entry.dwo_name = dwo_name;
9301 find_entry.comp_dir = comp_dir;
80626a55
DE
9302 slot = htab_find_slot (dwarf2_per_objfile->dwo_files, &find_entry, INSERT);
9303
9304 return slot;
9305}
9306
3019eac3
DE
9307static hashval_t
9308hash_dwo_unit (const void *item)
9309{
9310 const struct dwo_unit *dwo_unit = item;
9311
9312 /* This drops the top 32 bits of the id, but is ok for a hash. */
9313 return dwo_unit->signature;
9314}
9315
9316static int
9317eq_dwo_unit (const void *item_lhs, const void *item_rhs)
9318{
9319 const struct dwo_unit *lhs = item_lhs;
9320 const struct dwo_unit *rhs = item_rhs;
9321
9322 /* The signature is assumed to be unique within the DWO file.
9323 So while object file CU dwo_id's always have the value zero,
9324 that's OK, assuming each object file DWO file has only one CU,
9325 and that's the rule for now. */
9326 return lhs->signature == rhs->signature;
9327}
9328
9329/* Allocate a hash table for DWO CUs,TUs.
9330 There is one of these tables for each of CUs,TUs for each DWO file. */
9331
9332static htab_t
9333allocate_dwo_unit_table (struct objfile *objfile)
9334{
9335 /* Start out with a pretty small number.
9336 Generally DWO files contain only one CU and maybe some TUs. */
9337 return htab_create_alloc_ex (3,
9338 hash_dwo_unit,
9339 eq_dwo_unit,
9340 NULL,
9341 &objfile->objfile_obstack,
9342 hashtab_obstack_allocate,
9343 dummy_obstack_deallocate);
9344}
9345
80626a55 9346/* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
3019eac3 9347
19c3d4c9 9348struct create_dwo_cu_data
3019eac3
DE
9349{
9350 struct dwo_file *dwo_file;
19c3d4c9 9351 struct dwo_unit dwo_unit;
3019eac3
DE
9352};
9353
19c3d4c9 9354/* die_reader_func for create_dwo_cu. */
3019eac3
DE
9355
9356static void
19c3d4c9
DE
9357create_dwo_cu_reader (const struct die_reader_specs *reader,
9358 const gdb_byte *info_ptr,
9359 struct die_info *comp_unit_die,
9360 int has_children,
9361 void *datap)
3019eac3
DE
9362{
9363 struct dwarf2_cu *cu = reader->cu;
9364 struct objfile *objfile = dwarf2_per_objfile->objfile;
9365 sect_offset offset = cu->per_cu->offset;
8a0459fd 9366 struct dwarf2_section_info *section = cu->per_cu->section;
19c3d4c9 9367 struct create_dwo_cu_data *data = datap;
3019eac3 9368 struct dwo_file *dwo_file = data->dwo_file;
19c3d4c9 9369 struct dwo_unit *dwo_unit = &data->dwo_unit;
3019eac3 9370 struct attribute *attr;
3019eac3
DE
9371
9372 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
9373 if (attr == NULL)
9374 {
19c3d4c9
DE
9375 complaint (&symfile_complaints,
9376 _("Dwarf Error: debug entry at offset 0x%x is missing"
9377 " its dwo_id [in module %s]"),
9378 offset.sect_off, dwo_file->dwo_name);
3019eac3
DE
9379 return;
9380 }
9381
3019eac3
DE
9382 dwo_unit->dwo_file = dwo_file;
9383 dwo_unit->signature = DW_UNSND (attr);
8a0459fd 9384 dwo_unit->section = section;
3019eac3
DE
9385 dwo_unit->offset = offset;
9386 dwo_unit->length = cu->per_cu->length;
9387
09406207 9388 if (dwarf2_read_debug)
4031ecc5
DE
9389 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, dwo_id %s\n",
9390 offset.sect_off, hex_string (dwo_unit->signature));
3019eac3
DE
9391}
9392
19c3d4c9
DE
9393/* Create the dwo_unit for the lone CU in DWO_FILE.
9394 Note: This function processes DWO files only, not DWP files. */
3019eac3 9395
19c3d4c9
DE
9396static struct dwo_unit *
9397create_dwo_cu (struct dwo_file *dwo_file)
3019eac3
DE
9398{
9399 struct objfile *objfile = dwarf2_per_objfile->objfile;
9400 struct dwarf2_section_info *section = &dwo_file->sections.info;
9401 bfd *abfd;
9402 htab_t cu_htab;
d521ce57 9403 const gdb_byte *info_ptr, *end_ptr;
19c3d4c9
DE
9404 struct create_dwo_cu_data create_dwo_cu_data;
9405 struct dwo_unit *dwo_unit;
3019eac3
DE
9406
9407 dwarf2_read_section (objfile, section);
9408 info_ptr = section->buffer;
9409
9410 if (info_ptr == NULL)
9411 return NULL;
9412
9413 /* We can't set abfd until now because the section may be empty or
9414 not present, in which case section->asection will be NULL. */
a32a8923 9415 abfd = get_section_bfd_owner (section);
3019eac3 9416
09406207 9417 if (dwarf2_read_debug)
19c3d4c9
DE
9418 {
9419 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
a32a8923
DE
9420 get_section_name (section),
9421 get_section_file_name (section));
19c3d4c9 9422 }
3019eac3 9423
19c3d4c9
DE
9424 create_dwo_cu_data.dwo_file = dwo_file;
9425 dwo_unit = NULL;
3019eac3
DE
9426
9427 end_ptr = info_ptr + section->size;
9428 while (info_ptr < end_ptr)
9429 {
9430 struct dwarf2_per_cu_data per_cu;
9431
19c3d4c9
DE
9432 memset (&create_dwo_cu_data.dwo_unit, 0,
9433 sizeof (create_dwo_cu_data.dwo_unit));
3019eac3
DE
9434 memset (&per_cu, 0, sizeof (per_cu));
9435 per_cu.objfile = objfile;
9436 per_cu.is_debug_types = 0;
9437 per_cu.offset.sect_off = info_ptr - section->buffer;
8a0459fd 9438 per_cu.section = section;
3019eac3 9439
33e80786 9440 init_cutu_and_read_dies_no_follow (&per_cu, dwo_file,
19c3d4c9
DE
9441 create_dwo_cu_reader,
9442 &create_dwo_cu_data);
9443
9444 if (create_dwo_cu_data.dwo_unit.dwo_file != NULL)
9445 {
9446 /* If we've already found one, complain. We only support one
9447 because having more than one requires hacking the dwo_name of
9448 each to match, which is highly unlikely to happen. */
9449 if (dwo_unit != NULL)
9450 {
9451 complaint (&symfile_complaints,
9452 _("Multiple CUs in DWO file %s [in module %s]"),
4262abfb 9453 dwo_file->dwo_name, objfile_name (objfile));
19c3d4c9
DE
9454 break;
9455 }
9456
9457 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9458 *dwo_unit = create_dwo_cu_data.dwo_unit;
9459 }
3019eac3
DE
9460
9461 info_ptr += per_cu.length;
9462 }
9463
19c3d4c9 9464 return dwo_unit;
3019eac3
DE
9465}
9466
80626a55
DE
9467/* DWP file .debug_{cu,tu}_index section format:
9468 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
9469
d2415c6c
DE
9470 DWP Version 1:
9471
80626a55
DE
9472 Both index sections have the same format, and serve to map a 64-bit
9473 signature to a set of section numbers. Each section begins with a header,
9474 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
9475 indexes, and a pool of 32-bit section numbers. The index sections will be
9476 aligned at 8-byte boundaries in the file.
9477
d2415c6c
DE
9478 The index section header consists of:
9479
9480 V, 32 bit version number
9481 -, 32 bits unused
9482 N, 32 bit number of compilation units or type units in the index
9483 M, 32 bit number of slots in the hash table
80626a55 9484
d2415c6c 9485 Numbers are recorded using the byte order of the application binary.
80626a55 9486
d2415c6c
DE
9487 The hash table begins at offset 16 in the section, and consists of an array
9488 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
9489 order of the application binary). Unused slots in the hash table are 0.
9490 (We rely on the extreme unlikeliness of a signature being exactly 0.)
80626a55 9491
d2415c6c
DE
9492 The parallel table begins immediately after the hash table
9493 (at offset 16 + 8 * M from the beginning of the section), and consists of an
9494 array of 32-bit indexes (using the byte order of the application binary),
9495 corresponding 1-1 with slots in the hash table. Each entry in the parallel
9496 table contains a 32-bit index into the pool of section numbers. For unused
9497 hash table slots, the corresponding entry in the parallel table will be 0.
80626a55 9498
73869dc2
DE
9499 The pool of section numbers begins immediately following the hash table
9500 (at offset 16 + 12 * M from the beginning of the section). The pool of
9501 section numbers consists of an array of 32-bit words (using the byte order
9502 of the application binary). Each item in the array is indexed starting
9503 from 0. The hash table entry provides the index of the first section
9504 number in the set. Additional section numbers in the set follow, and the
9505 set is terminated by a 0 entry (section number 0 is not used in ELF).
9506
9507 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
9508 section must be the first entry in the set, and the .debug_abbrev.dwo must
9509 be the second entry. Other members of the set may follow in any order.
9510
9511 ---
9512
9513 DWP Version 2:
9514
9515 DWP Version 2 combines all the .debug_info, etc. sections into one,
9516 and the entries in the index tables are now offsets into these sections.
9517 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
9518 section.
9519
9520 Index Section Contents:
9521 Header
9522 Hash Table of Signatures dwp_hash_table.hash_table
9523 Parallel Table of Indices dwp_hash_table.unit_table
9524 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
9525 Table of Section Sizes dwp_hash_table.v2.sizes
9526
9527 The index section header consists of:
9528
9529 V, 32 bit version number
9530 L, 32 bit number of columns in the table of section offsets
9531 N, 32 bit number of compilation units or type units in the index
9532 M, 32 bit number of slots in the hash table
9533
9534 Numbers are recorded using the byte order of the application binary.
9535
9536 The hash table has the same format as version 1.
9537 The parallel table of indices has the same format as version 1,
9538 except that the entries are origin-1 indices into the table of sections
9539 offsets and the table of section sizes.
9540
9541 The table of offsets begins immediately following the parallel table
9542 (at offset 16 + 12 * M from the beginning of the section). The table is
9543 a two-dimensional array of 32-bit words (using the byte order of the
9544 application binary), with L columns and N+1 rows, in row-major order.
9545 Each row in the array is indexed starting from 0. The first row provides
9546 a key to the remaining rows: each column in this row provides an identifier
9547 for a debug section, and the offsets in the same column of subsequent rows
9548 refer to that section. The section identifiers are:
9549
9550 DW_SECT_INFO 1 .debug_info.dwo
9551 DW_SECT_TYPES 2 .debug_types.dwo
9552 DW_SECT_ABBREV 3 .debug_abbrev.dwo
9553 DW_SECT_LINE 4 .debug_line.dwo
9554 DW_SECT_LOC 5 .debug_loc.dwo
9555 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
9556 DW_SECT_MACINFO 7 .debug_macinfo.dwo
9557 DW_SECT_MACRO 8 .debug_macro.dwo
9558
9559 The offsets provided by the CU and TU index sections are the base offsets
9560 for the contributions made by each CU or TU to the corresponding section
9561 in the package file. Each CU and TU header contains an abbrev_offset
9562 field, used to find the abbreviations table for that CU or TU within the
9563 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
9564 be interpreted as relative to the base offset given in the index section.
9565 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
9566 should be interpreted as relative to the base offset for .debug_line.dwo,
9567 and offsets into other debug sections obtained from DWARF attributes should
9568 also be interpreted as relative to the corresponding base offset.
9569
9570 The table of sizes begins immediately following the table of offsets.
9571 Like the table of offsets, it is a two-dimensional array of 32-bit words,
9572 with L columns and N rows, in row-major order. Each row in the array is
9573 indexed starting from 1 (row 0 is shared by the two tables).
9574
9575 ---
9576
9577 Hash table lookup is handled the same in version 1 and 2:
9578
9579 We assume that N and M will not exceed 2^32 - 1.
9580 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
9581
d2415c6c
DE
9582 Given a 64-bit compilation unit signature or a type signature S, an entry
9583 in the hash table is located as follows:
80626a55 9584
d2415c6c
DE
9585 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
9586 the low-order k bits all set to 1.
80626a55 9587
d2415c6c 9588 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
80626a55 9589
d2415c6c
DE
9590 3) If the hash table entry at index H matches the signature, use that
9591 entry. If the hash table entry at index H is unused (all zeroes),
9592 terminate the search: the signature is not present in the table.
80626a55 9593
d2415c6c 9594 4) Let H = (H + H') modulo M. Repeat at Step 3.
80626a55 9595
d2415c6c 9596 Because M > N and H' and M are relatively prime, the search is guaranteed
73869dc2 9597 to stop at an unused slot or find the match. */
80626a55
DE
9598
9599/* Create a hash table to map DWO IDs to their CU/TU entry in
9600 .debug_{info,types}.dwo in DWP_FILE.
9601 Returns NULL if there isn't one.
9602 Note: This function processes DWP files only, not DWO files. */
9603
9604static struct dwp_hash_table *
9605create_dwp_hash_table (struct dwp_file *dwp_file, int is_debug_types)
9606{
9607 struct objfile *objfile = dwarf2_per_objfile->objfile;
9608 bfd *dbfd = dwp_file->dbfd;
948f8e3d 9609 const gdb_byte *index_ptr, *index_end;
80626a55 9610 struct dwarf2_section_info *index;
73869dc2 9611 uint32_t version, nr_columns, nr_units, nr_slots;
80626a55
DE
9612 struct dwp_hash_table *htab;
9613
9614 if (is_debug_types)
9615 index = &dwp_file->sections.tu_index;
9616 else
9617 index = &dwp_file->sections.cu_index;
9618
9619 if (dwarf2_section_empty_p (index))
9620 return NULL;
9621 dwarf2_read_section (objfile, index);
9622
9623 index_ptr = index->buffer;
9624 index_end = index_ptr + index->size;
9625
9626 version = read_4_bytes (dbfd, index_ptr);
73869dc2
DE
9627 index_ptr += 4;
9628 if (version == 2)
9629 nr_columns = read_4_bytes (dbfd, index_ptr);
9630 else
9631 nr_columns = 0;
9632 index_ptr += 4;
80626a55
DE
9633 nr_units = read_4_bytes (dbfd, index_ptr);
9634 index_ptr += 4;
9635 nr_slots = read_4_bytes (dbfd, index_ptr);
9636 index_ptr += 4;
9637
73869dc2 9638 if (version != 1 && version != 2)
80626a55 9639 {
21aa081e 9640 error (_("Dwarf Error: unsupported DWP file version (%s)"
80626a55 9641 " [in module %s]"),
21aa081e 9642 pulongest (version), dwp_file->name);
80626a55
DE
9643 }
9644 if (nr_slots != (nr_slots & -nr_slots))
9645 {
21aa081e 9646 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
80626a55 9647 " is not power of 2 [in module %s]"),
21aa081e 9648 pulongest (nr_slots), dwp_file->name);
80626a55
DE
9649 }
9650
9651 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
73869dc2
DE
9652 htab->version = version;
9653 htab->nr_columns = nr_columns;
80626a55
DE
9654 htab->nr_units = nr_units;
9655 htab->nr_slots = nr_slots;
9656 htab->hash_table = index_ptr;
9657 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
73869dc2
DE
9658
9659 /* Exit early if the table is empty. */
9660 if (nr_slots == 0 || nr_units == 0
9661 || (version == 2 && nr_columns == 0))
9662 {
9663 /* All must be zero. */
9664 if (nr_slots != 0 || nr_units != 0
9665 || (version == 2 && nr_columns != 0))
9666 {
9667 complaint (&symfile_complaints,
9668 _("Empty DWP but nr_slots,nr_units,nr_columns not"
9669 " all zero [in modules %s]"),
9670 dwp_file->name);
9671 }
9672 return htab;
9673 }
9674
9675 if (version == 1)
9676 {
9677 htab->section_pool.v1.indices =
9678 htab->unit_table + sizeof (uint32_t) * nr_slots;
9679 /* It's harder to decide whether the section is too small in v1.
9680 V1 is deprecated anyway so we punt. */
9681 }
9682 else
9683 {
9684 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
9685 int *ids = htab->section_pool.v2.section_ids;
9686 /* Reverse map for error checking. */
9687 int ids_seen[DW_SECT_MAX + 1];
9688 int i;
9689
9690 if (nr_columns < 2)
9691 {
9692 error (_("Dwarf Error: bad DWP hash table, too few columns"
9693 " in section table [in module %s]"),
9694 dwp_file->name);
9695 }
9696 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
9697 {
9698 error (_("Dwarf Error: bad DWP hash table, too many columns"
9699 " in section table [in module %s]"),
9700 dwp_file->name);
9701 }
9702 memset (ids, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9703 memset (ids_seen, 255, (DW_SECT_MAX + 1) * sizeof (int32_t));
9704 for (i = 0; i < nr_columns; ++i)
9705 {
9706 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
9707
9708 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
9709 {
9710 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
9711 " in section table [in module %s]"),
9712 id, dwp_file->name);
9713 }
9714 if (ids_seen[id] != -1)
9715 {
9716 error (_("Dwarf Error: bad DWP hash table, duplicate section"
9717 " id %d in section table [in module %s]"),
9718 id, dwp_file->name);
9719 }
9720 ids_seen[id] = i;
9721 ids[i] = id;
9722 }
9723 /* Must have exactly one info or types section. */
9724 if (((ids_seen[DW_SECT_INFO] != -1)
9725 + (ids_seen[DW_SECT_TYPES] != -1))
9726 != 1)
9727 {
9728 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
9729 " DWO info/types section [in module %s]"),
9730 dwp_file->name);
9731 }
9732 /* Must have an abbrev section. */
9733 if (ids_seen[DW_SECT_ABBREV] == -1)
9734 {
9735 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
9736 " section [in module %s]"),
9737 dwp_file->name);
9738 }
9739 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
9740 htab->section_pool.v2.sizes =
9741 htab->section_pool.v2.offsets + (sizeof (uint32_t)
9742 * nr_units * nr_columns);
9743 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
9744 * nr_units * nr_columns))
9745 > index_end)
9746 {
9747 error (_("Dwarf Error: DWP index section is corrupt (too small)"
9748 " [in module %s]"),
9749 dwp_file->name);
9750 }
9751 }
80626a55
DE
9752
9753 return htab;
9754}
9755
9756/* Update SECTIONS with the data from SECTP.
9757
9758 This function is like the other "locate" section routines that are
9759 passed to bfd_map_over_sections, but in this context the sections to
73869dc2 9760 read comes from the DWP V1 hash table, not the full ELF section table.
80626a55
DE
9761
9762 The result is non-zero for success, or zero if an error was found. */
9763
9764static int
73869dc2
DE
9765locate_v1_virtual_dwo_sections (asection *sectp,
9766 struct virtual_v1_dwo_sections *sections)
80626a55
DE
9767{
9768 const struct dwop_section_names *names = &dwop_section_names;
9769
9770 if (section_is_p (sectp->name, &names->abbrev_dwo))
9771 {
9772 /* There can be only one. */
73869dc2 9773 if (sections->abbrev.s.asection != NULL)
80626a55 9774 return 0;
73869dc2 9775 sections->abbrev.s.asection = sectp;
80626a55
DE
9776 sections->abbrev.size = bfd_get_section_size (sectp);
9777 }
9778 else if (section_is_p (sectp->name, &names->info_dwo)
9779 || section_is_p (sectp->name, &names->types_dwo))
9780 {
9781 /* There can be only one. */
73869dc2 9782 if (sections->info_or_types.s.asection != NULL)
80626a55 9783 return 0;
73869dc2 9784 sections->info_or_types.s.asection = sectp;
80626a55
DE
9785 sections->info_or_types.size = bfd_get_section_size (sectp);
9786 }
9787 else if (section_is_p (sectp->name, &names->line_dwo))
9788 {
9789 /* There can be only one. */
73869dc2 9790 if (sections->line.s.asection != NULL)
80626a55 9791 return 0;
73869dc2 9792 sections->line.s.asection = sectp;
80626a55
DE
9793 sections->line.size = bfd_get_section_size (sectp);
9794 }
9795 else if (section_is_p (sectp->name, &names->loc_dwo))
9796 {
9797 /* There can be only one. */
73869dc2 9798 if (sections->loc.s.asection != NULL)
80626a55 9799 return 0;
73869dc2 9800 sections->loc.s.asection = sectp;
80626a55
DE
9801 sections->loc.size = bfd_get_section_size (sectp);
9802 }
9803 else if (section_is_p (sectp->name, &names->macinfo_dwo))
9804 {
9805 /* There can be only one. */
73869dc2 9806 if (sections->macinfo.s.asection != NULL)
80626a55 9807 return 0;
73869dc2 9808 sections->macinfo.s.asection = sectp;
80626a55
DE
9809 sections->macinfo.size = bfd_get_section_size (sectp);
9810 }
9811 else if (section_is_p (sectp->name, &names->macro_dwo))
9812 {
9813 /* There can be only one. */
73869dc2 9814 if (sections->macro.s.asection != NULL)
80626a55 9815 return 0;
73869dc2 9816 sections->macro.s.asection = sectp;
80626a55
DE
9817 sections->macro.size = bfd_get_section_size (sectp);
9818 }
9819 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
9820 {
9821 /* There can be only one. */
73869dc2 9822 if (sections->str_offsets.s.asection != NULL)
80626a55 9823 return 0;
73869dc2 9824 sections->str_offsets.s.asection = sectp;
80626a55
DE
9825 sections->str_offsets.size = bfd_get_section_size (sectp);
9826 }
9827 else
9828 {
9829 /* No other kind of section is valid. */
9830 return 0;
9831 }
9832
9833 return 1;
9834}
9835
73869dc2
DE
9836/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
9837 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
9838 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
9839 This is for DWP version 1 files. */
80626a55
DE
9840
9841static struct dwo_unit *
73869dc2
DE
9842create_dwo_unit_in_dwp_v1 (struct dwp_file *dwp_file,
9843 uint32_t unit_index,
9844 const char *comp_dir,
9845 ULONGEST signature, int is_debug_types)
80626a55
DE
9846{
9847 struct objfile *objfile = dwarf2_per_objfile->objfile;
73869dc2
DE
9848 const struct dwp_hash_table *dwp_htab =
9849 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55
DE
9850 bfd *dbfd = dwp_file->dbfd;
9851 const char *kind = is_debug_types ? "TU" : "CU";
9852 struct dwo_file *dwo_file;
9853 struct dwo_unit *dwo_unit;
73869dc2 9854 struct virtual_v1_dwo_sections sections;
80626a55
DE
9855 void **dwo_file_slot;
9856 char *virtual_dwo_name;
9857 struct dwarf2_section_info *cutu;
9858 struct cleanup *cleanups;
9859 int i;
9860
73869dc2
DE
9861 gdb_assert (dwp_file->version == 1);
9862
80626a55
DE
9863 if (dwarf2_read_debug)
9864 {
73869dc2 9865 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
80626a55 9866 kind,
73869dc2 9867 pulongest (unit_index), hex_string (signature),
80626a55
DE
9868 dwp_file->name);
9869 }
9870
19ac8c2e 9871 /* Fetch the sections of this DWO unit.
80626a55
DE
9872 Put a limit on the number of sections we look for so that bad data
9873 doesn't cause us to loop forever. */
9874
73869dc2 9875#define MAX_NR_V1_DWO_SECTIONS \
80626a55
DE
9876 (1 /* .debug_info or .debug_types */ \
9877 + 1 /* .debug_abbrev */ \
9878 + 1 /* .debug_line */ \
9879 + 1 /* .debug_loc */ \
9880 + 1 /* .debug_str_offsets */ \
19ac8c2e 9881 + 1 /* .debug_macro or .debug_macinfo */ \
80626a55
DE
9882 + 1 /* trailing zero */)
9883
9884 memset (&sections, 0, sizeof (sections));
9885 cleanups = make_cleanup (null_cleanup, 0);
9886
73869dc2 9887 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
80626a55
DE
9888 {
9889 asection *sectp;
9890 uint32_t section_nr =
9891 read_4_bytes (dbfd,
73869dc2
DE
9892 dwp_htab->section_pool.v1.indices
9893 + (unit_index + i) * sizeof (uint32_t));
80626a55
DE
9894
9895 if (section_nr == 0)
9896 break;
9897 if (section_nr >= dwp_file->num_sections)
9898 {
9899 error (_("Dwarf Error: bad DWP hash table, section number too large"
9900 " [in module %s]"),
9901 dwp_file->name);
9902 }
9903
9904 sectp = dwp_file->elf_sections[section_nr];
73869dc2 9905 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
80626a55
DE
9906 {
9907 error (_("Dwarf Error: bad DWP hash table, invalid section found"
9908 " [in module %s]"),
9909 dwp_file->name);
9910 }
9911 }
9912
9913 if (i < 2
a32a8923
DE
9914 || dwarf2_section_empty_p (&sections.info_or_types)
9915 || dwarf2_section_empty_p (&sections.abbrev))
80626a55
DE
9916 {
9917 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
9918 " [in module %s]"),
9919 dwp_file->name);
9920 }
73869dc2 9921 if (i == MAX_NR_V1_DWO_SECTIONS)
80626a55
DE
9922 {
9923 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
9924 " [in module %s]"),
9925 dwp_file->name);
9926 }
9927
9928 /* It's easier for the rest of the code if we fake a struct dwo_file and
9929 have dwo_unit "live" in that. At least for now.
9930
9931 The DWP file can be made up of a random collection of CUs and TUs.
c766f7ec 9932 However, for each CU + set of TUs that came from the same original DWO
57d63ce2
DE
9933 file, we can combine them back into a virtual DWO file to save space
9934 (fewer struct dwo_file objects to allocate). Remember that for really
80626a55
DE
9935 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
9936
2792b94d
PM
9937 virtual_dwo_name =
9938 xstrprintf ("virtual-dwo/%d-%d-%d-%d",
a32a8923
DE
9939 get_section_id (&sections.abbrev),
9940 get_section_id (&sections.line),
9941 get_section_id (&sections.loc),
9942 get_section_id (&sections.str_offsets));
80626a55
DE
9943 make_cleanup (xfree, virtual_dwo_name);
9944 /* Can we use an existing virtual DWO file? */
0ac5b59e 9945 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
80626a55
DE
9946 /* Create one if necessary. */
9947 if (*dwo_file_slot == NULL)
9948 {
9949 if (dwarf2_read_debug)
9950 {
9951 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
9952 virtual_dwo_name);
9953 }
9954 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
9955 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
9956 virtual_dwo_name,
9957 strlen (virtual_dwo_name));
9958 dwo_file->comp_dir = comp_dir;
80626a55
DE
9959 dwo_file->sections.abbrev = sections.abbrev;
9960 dwo_file->sections.line = sections.line;
9961 dwo_file->sections.loc = sections.loc;
9962 dwo_file->sections.macinfo = sections.macinfo;
9963 dwo_file->sections.macro = sections.macro;
9964 dwo_file->sections.str_offsets = sections.str_offsets;
9965 /* The "str" section is global to the entire DWP file. */
9966 dwo_file->sections.str = dwp_file->sections.str;
57d63ce2 9967 /* The info or types section is assigned below to dwo_unit,
80626a55
DE
9968 there's no need to record it in dwo_file.
9969 Also, we can't simply record type sections in dwo_file because
9970 we record a pointer into the vector in dwo_unit. As we collect more
9971 types we'll grow the vector and eventually have to reallocate space
57d63ce2
DE
9972 for it, invalidating all copies of pointers into the previous
9973 contents. */
80626a55
DE
9974 *dwo_file_slot = dwo_file;
9975 }
9976 else
9977 {
9978 if (dwarf2_read_debug)
9979 {
9980 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
9981 virtual_dwo_name);
9982 }
9983 dwo_file = *dwo_file_slot;
9984 }
9985 do_cleanups (cleanups);
9986
9987 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
9988 dwo_unit->dwo_file = dwo_file;
9989 dwo_unit->signature = signature;
8a0459fd
DE
9990 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
9991 sizeof (struct dwarf2_section_info));
9992 *dwo_unit->section = sections.info_or_types;
57d63ce2 9993 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
80626a55
DE
9994
9995 return dwo_unit;
9996}
9997
73869dc2
DE
9998/* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
9999 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
10000 piece within that section used by a TU/CU, return a virtual section
10001 of just that piece. */
10002
10003static struct dwarf2_section_info
10004create_dwp_v2_section (struct dwarf2_section_info *section,
10005 bfd_size_type offset, bfd_size_type size)
10006{
10007 struct dwarf2_section_info result;
10008 asection *sectp;
10009
10010 gdb_assert (section != NULL);
10011 gdb_assert (!section->is_virtual);
10012
10013 memset (&result, 0, sizeof (result));
10014 result.s.containing_section = section;
10015 result.is_virtual = 1;
10016
10017 if (size == 0)
10018 return result;
10019
10020 sectp = get_section_bfd_section (section);
10021
10022 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
10023 bounds of the real section. This is a pretty-rare event, so just
10024 flag an error (easier) instead of a warning and trying to cope. */
10025 if (sectp == NULL
10026 || offset + size > bfd_get_section_size (sectp))
10027 {
10028 bfd *abfd = sectp->owner;
10029
10030 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
10031 " in section %s [in module %s]"),
10032 sectp ? bfd_section_name (abfd, sectp) : "<unknown>",
10033 objfile_name (dwarf2_per_objfile->objfile));
10034 }
10035
10036 result.virtual_offset = offset;
10037 result.size = size;
10038 return result;
10039}
10040
10041/* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
10042 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
10043 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
10044 This is for DWP version 2 files. */
10045
10046static struct dwo_unit *
10047create_dwo_unit_in_dwp_v2 (struct dwp_file *dwp_file,
10048 uint32_t unit_index,
10049 const char *comp_dir,
10050 ULONGEST signature, int is_debug_types)
10051{
10052 struct objfile *objfile = dwarf2_per_objfile->objfile;
10053 const struct dwp_hash_table *dwp_htab =
10054 is_debug_types ? dwp_file->tus : dwp_file->cus;
10055 bfd *dbfd = dwp_file->dbfd;
10056 const char *kind = is_debug_types ? "TU" : "CU";
10057 struct dwo_file *dwo_file;
10058 struct dwo_unit *dwo_unit;
10059 struct virtual_v2_dwo_sections sections;
10060 void **dwo_file_slot;
10061 char *virtual_dwo_name;
10062 struct dwarf2_section_info *cutu;
10063 struct cleanup *cleanups;
10064 int i;
10065
10066 gdb_assert (dwp_file->version == 2);
10067
10068 if (dwarf2_read_debug)
10069 {
10070 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
10071 kind,
10072 pulongest (unit_index), hex_string (signature),
10073 dwp_file->name);
10074 }
10075
10076 /* Fetch the section offsets of this DWO unit. */
10077
10078 memset (&sections, 0, sizeof (sections));
10079 cleanups = make_cleanup (null_cleanup, 0);
10080
10081 for (i = 0; i < dwp_htab->nr_columns; ++i)
10082 {
10083 uint32_t offset = read_4_bytes (dbfd,
10084 dwp_htab->section_pool.v2.offsets
10085 + (((unit_index - 1) * dwp_htab->nr_columns
10086 + i)
10087 * sizeof (uint32_t)));
10088 uint32_t size = read_4_bytes (dbfd,
10089 dwp_htab->section_pool.v2.sizes
10090 + (((unit_index - 1) * dwp_htab->nr_columns
10091 + i)
10092 * sizeof (uint32_t)));
10093
10094 switch (dwp_htab->section_pool.v2.section_ids[i])
10095 {
10096 case DW_SECT_INFO:
10097 case DW_SECT_TYPES:
10098 sections.info_or_types_offset = offset;
10099 sections.info_or_types_size = size;
10100 break;
10101 case DW_SECT_ABBREV:
10102 sections.abbrev_offset = offset;
10103 sections.abbrev_size = size;
10104 break;
10105 case DW_SECT_LINE:
10106 sections.line_offset = offset;
10107 sections.line_size = size;
10108 break;
10109 case DW_SECT_LOC:
10110 sections.loc_offset = offset;
10111 sections.loc_size = size;
10112 break;
10113 case DW_SECT_STR_OFFSETS:
10114 sections.str_offsets_offset = offset;
10115 sections.str_offsets_size = size;
10116 break;
10117 case DW_SECT_MACINFO:
10118 sections.macinfo_offset = offset;
10119 sections.macinfo_size = size;
10120 break;
10121 case DW_SECT_MACRO:
10122 sections.macro_offset = offset;
10123 sections.macro_size = size;
10124 break;
10125 }
10126 }
10127
10128 /* It's easier for the rest of the code if we fake a struct dwo_file and
10129 have dwo_unit "live" in that. At least for now.
10130
10131 The DWP file can be made up of a random collection of CUs and TUs.
10132 However, for each CU + set of TUs that came from the same original DWO
10133 file, we can combine them back into a virtual DWO file to save space
10134 (fewer struct dwo_file objects to allocate). Remember that for really
10135 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
10136
10137 virtual_dwo_name =
10138 xstrprintf ("virtual-dwo/%ld-%ld-%ld-%ld",
10139 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
10140 (long) (sections.line_size ? sections.line_offset : 0),
10141 (long) (sections.loc_size ? sections.loc_offset : 0),
10142 (long) (sections.str_offsets_size
10143 ? sections.str_offsets_offset : 0));
10144 make_cleanup (xfree, virtual_dwo_name);
10145 /* Can we use an existing virtual DWO file? */
10146 dwo_file_slot = lookup_dwo_file_slot (virtual_dwo_name, comp_dir);
10147 /* Create one if necessary. */
10148 if (*dwo_file_slot == NULL)
10149 {
10150 if (dwarf2_read_debug)
10151 {
10152 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
10153 virtual_dwo_name);
10154 }
10155 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
10156 dwo_file->dwo_name = obstack_copy0 (&objfile->objfile_obstack,
10157 virtual_dwo_name,
10158 strlen (virtual_dwo_name));
10159 dwo_file->comp_dir = comp_dir;
10160 dwo_file->sections.abbrev =
10161 create_dwp_v2_section (&dwp_file->sections.abbrev,
10162 sections.abbrev_offset, sections.abbrev_size);
10163 dwo_file->sections.line =
10164 create_dwp_v2_section (&dwp_file->sections.line,
10165 sections.line_offset, sections.line_size);
10166 dwo_file->sections.loc =
10167 create_dwp_v2_section (&dwp_file->sections.loc,
10168 sections.loc_offset, sections.loc_size);
10169 dwo_file->sections.macinfo =
10170 create_dwp_v2_section (&dwp_file->sections.macinfo,
10171 sections.macinfo_offset, sections.macinfo_size);
10172 dwo_file->sections.macro =
10173 create_dwp_v2_section (&dwp_file->sections.macro,
10174 sections.macro_offset, sections.macro_size);
10175 dwo_file->sections.str_offsets =
10176 create_dwp_v2_section (&dwp_file->sections.str_offsets,
10177 sections.str_offsets_offset,
10178 sections.str_offsets_size);
10179 /* The "str" section is global to the entire DWP file. */
10180 dwo_file->sections.str = dwp_file->sections.str;
10181 /* The info or types section is assigned below to dwo_unit,
10182 there's no need to record it in dwo_file.
10183 Also, we can't simply record type sections in dwo_file because
10184 we record a pointer into the vector in dwo_unit. As we collect more
10185 types we'll grow the vector and eventually have to reallocate space
10186 for it, invalidating all copies of pointers into the previous
10187 contents. */
10188 *dwo_file_slot = dwo_file;
10189 }
10190 else
10191 {
10192 if (dwarf2_read_debug)
10193 {
10194 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
10195 virtual_dwo_name);
10196 }
10197 dwo_file = *dwo_file_slot;
10198 }
10199 do_cleanups (cleanups);
10200
10201 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
10202 dwo_unit->dwo_file = dwo_file;
10203 dwo_unit->signature = signature;
10204 dwo_unit->section = obstack_alloc (&objfile->objfile_obstack,
10205 sizeof (struct dwarf2_section_info));
10206 *dwo_unit->section = create_dwp_v2_section (is_debug_types
10207 ? &dwp_file->sections.types
10208 : &dwp_file->sections.info,
10209 sections.info_or_types_offset,
10210 sections.info_or_types_size);
10211 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
10212
10213 return dwo_unit;
10214}
10215
57d63ce2
DE
10216/* Lookup the DWO unit with SIGNATURE in DWP_FILE.
10217 Returns NULL if the signature isn't found. */
80626a55
DE
10218
10219static struct dwo_unit *
57d63ce2
DE
10220lookup_dwo_unit_in_dwp (struct dwp_file *dwp_file, const char *comp_dir,
10221 ULONGEST signature, int is_debug_types)
80626a55 10222{
57d63ce2
DE
10223 const struct dwp_hash_table *dwp_htab =
10224 is_debug_types ? dwp_file->tus : dwp_file->cus;
80626a55 10225 bfd *dbfd = dwp_file->dbfd;
57d63ce2 10226 uint32_t mask = dwp_htab->nr_slots - 1;
80626a55
DE
10227 uint32_t hash = signature & mask;
10228 uint32_t hash2 = ((signature >> 32) & mask) | 1;
10229 unsigned int i;
10230 void **slot;
10231 struct dwo_unit find_dwo_cu, *dwo_cu;
10232
10233 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
10234 find_dwo_cu.signature = signature;
19ac8c2e
DE
10235 slot = htab_find_slot (is_debug_types
10236 ? dwp_file->loaded_tus
10237 : dwp_file->loaded_cus,
10238 &find_dwo_cu, INSERT);
80626a55
DE
10239
10240 if (*slot != NULL)
10241 return *slot;
10242
10243 /* Use a for loop so that we don't loop forever on bad debug info. */
57d63ce2 10244 for (i = 0; i < dwp_htab->nr_slots; ++i)
80626a55
DE
10245 {
10246 ULONGEST signature_in_table;
10247
10248 signature_in_table =
57d63ce2 10249 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
80626a55
DE
10250 if (signature_in_table == signature)
10251 {
57d63ce2
DE
10252 uint32_t unit_index =
10253 read_4_bytes (dbfd,
10254 dwp_htab->unit_table + hash * sizeof (uint32_t));
80626a55 10255
73869dc2
DE
10256 if (dwp_file->version == 1)
10257 {
10258 *slot = create_dwo_unit_in_dwp_v1 (dwp_file, unit_index,
10259 comp_dir, signature,
10260 is_debug_types);
10261 }
10262 else
10263 {
10264 *slot = create_dwo_unit_in_dwp_v2 (dwp_file, unit_index,
10265 comp_dir, signature,
10266 is_debug_types);
10267 }
80626a55
DE
10268 return *slot;
10269 }
10270 if (signature_in_table == 0)
10271 return NULL;
10272 hash = (hash + hash2) & mask;
10273 }
10274
10275 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
10276 " [in module %s]"),
10277 dwp_file->name);
10278}
10279
ab5088bf 10280/* Subroutine of open_dwo_file,open_dwp_file to simplify them.
3019eac3
DE
10281 Open the file specified by FILE_NAME and hand it off to BFD for
10282 preliminary analysis. Return a newly initialized bfd *, which
10283 includes a canonicalized copy of FILE_NAME.
80626a55 10284 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
6ac97d4c
DE
10285 SEARCH_CWD is true if the current directory is to be searched.
10286 It will be searched before debug-file-directory.
13aaf454
DE
10287 If successful, the file is added to the bfd include table of the
10288 objfile's bfd (see gdb_bfd_record_inclusion).
6ac97d4c 10289 If unable to find/open the file, return NULL.
3019eac3
DE
10290 NOTE: This function is derived from symfile_bfd_open. */
10291
10292static bfd *
6ac97d4c 10293try_open_dwop_file (const char *file_name, int is_dwp, int search_cwd)
3019eac3
DE
10294{
10295 bfd *sym_bfd;
80626a55 10296 int desc, flags;
3019eac3 10297 char *absolute_name;
9c02c129
DE
10298 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
10299 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
10300 to debug_file_directory. */
10301 char *search_path;
10302 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
10303
6ac97d4c
DE
10304 if (search_cwd)
10305 {
10306 if (*debug_file_directory != '\0')
10307 search_path = concat (".", dirname_separator_string,
10308 debug_file_directory, NULL);
10309 else
10310 search_path = xstrdup (".");
10311 }
9c02c129 10312 else
6ac97d4c 10313 search_path = xstrdup (debug_file_directory);
3019eac3 10314
492c0ab7 10315 flags = OPF_RETURN_REALPATH;
80626a55
DE
10316 if (is_dwp)
10317 flags |= OPF_SEARCH_IN_PATH;
9c02c129 10318 desc = openp (search_path, flags, file_name,
3019eac3 10319 O_RDONLY | O_BINARY, &absolute_name);
9c02c129 10320 xfree (search_path);
3019eac3
DE
10321 if (desc < 0)
10322 return NULL;
10323
bb397797 10324 sym_bfd = gdb_bfd_open (absolute_name, gnutarget, desc);
a4453b7e 10325 xfree (absolute_name);
9c02c129
DE
10326 if (sym_bfd == NULL)
10327 return NULL;
3019eac3
DE
10328 bfd_set_cacheable (sym_bfd, 1);
10329
10330 if (!bfd_check_format (sym_bfd, bfd_object))
10331 {
cbb099e8 10332 gdb_bfd_unref (sym_bfd); /* This also closes desc. */
3019eac3
DE
10333 return NULL;
10334 }
10335
13aaf454
DE
10336 /* Success. Record the bfd as having been included by the objfile's bfd.
10337 This is important because things like demangled_names_hash lives in the
10338 objfile's per_bfd space and may have references to things like symbol
10339 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
10340 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd);
10341
3019eac3
DE
10342 return sym_bfd;
10343}
10344
ab5088bf 10345/* Try to open DWO file FILE_NAME.
3019eac3
DE
10346 COMP_DIR is the DW_AT_comp_dir attribute.
10347 The result is the bfd handle of the file.
10348 If there is a problem finding or opening the file, return NULL.
10349 Upon success, the canonicalized path of the file is stored in the bfd,
10350 same as symfile_bfd_open. */
10351
10352static bfd *
ab5088bf 10353open_dwo_file (const char *file_name, const char *comp_dir)
3019eac3
DE
10354{
10355 bfd *abfd;
3019eac3 10356
80626a55 10357 if (IS_ABSOLUTE_PATH (file_name))
6ac97d4c 10358 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 0 /*search_cwd*/);
3019eac3
DE
10359
10360 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
10361
10362 if (comp_dir != NULL)
10363 {
80626a55 10364 char *path_to_try = concat (comp_dir, SLASH_STRING, file_name, NULL);
3019eac3
DE
10365
10366 /* NOTE: If comp_dir is a relative path, this will also try the
10367 search path, which seems useful. */
6ac97d4c 10368 abfd = try_open_dwop_file (path_to_try, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10369 xfree (path_to_try);
10370 if (abfd != NULL)
10371 return abfd;
10372 }
10373
10374 /* That didn't work, try debug-file-directory, which, despite its name,
10375 is a list of paths. */
10376
10377 if (*debug_file_directory == '\0')
10378 return NULL;
10379
6ac97d4c 10380 return try_open_dwop_file (file_name, 0 /*is_dwp*/, 1 /*search_cwd*/);
3019eac3
DE
10381}
10382
80626a55
DE
10383/* This function is mapped across the sections and remembers the offset and
10384 size of each of the DWO debugging sections we are interested in. */
10385
10386static void
10387dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
10388{
10389 struct dwo_sections *dwo_sections = dwo_sections_ptr;
10390 const struct dwop_section_names *names = &dwop_section_names;
10391
10392 if (section_is_p (sectp->name, &names->abbrev_dwo))
10393 {
73869dc2 10394 dwo_sections->abbrev.s.asection = sectp;
80626a55
DE
10395 dwo_sections->abbrev.size = bfd_get_section_size (sectp);
10396 }
10397 else if (section_is_p (sectp->name, &names->info_dwo))
10398 {
73869dc2 10399 dwo_sections->info.s.asection = sectp;
80626a55
DE
10400 dwo_sections->info.size = bfd_get_section_size (sectp);
10401 }
10402 else if (section_is_p (sectp->name, &names->line_dwo))
10403 {
73869dc2 10404 dwo_sections->line.s.asection = sectp;
80626a55
DE
10405 dwo_sections->line.size = bfd_get_section_size (sectp);
10406 }
10407 else if (section_is_p (sectp->name, &names->loc_dwo))
10408 {
73869dc2 10409 dwo_sections->loc.s.asection = sectp;
80626a55
DE
10410 dwo_sections->loc.size = bfd_get_section_size (sectp);
10411 }
10412 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10413 {
73869dc2 10414 dwo_sections->macinfo.s.asection = sectp;
80626a55
DE
10415 dwo_sections->macinfo.size = bfd_get_section_size (sectp);
10416 }
10417 else if (section_is_p (sectp->name, &names->macro_dwo))
10418 {
73869dc2 10419 dwo_sections->macro.s.asection = sectp;
80626a55
DE
10420 dwo_sections->macro.size = bfd_get_section_size (sectp);
10421 }
10422 else if (section_is_p (sectp->name, &names->str_dwo))
10423 {
73869dc2 10424 dwo_sections->str.s.asection = sectp;
80626a55
DE
10425 dwo_sections->str.size = bfd_get_section_size (sectp);
10426 }
10427 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10428 {
73869dc2 10429 dwo_sections->str_offsets.s.asection = sectp;
80626a55
DE
10430 dwo_sections->str_offsets.size = bfd_get_section_size (sectp);
10431 }
10432 else if (section_is_p (sectp->name, &names->types_dwo))
10433 {
10434 struct dwarf2_section_info type_section;
10435
10436 memset (&type_section, 0, sizeof (type_section));
73869dc2 10437 type_section.s.asection = sectp;
80626a55
DE
10438 type_section.size = bfd_get_section_size (sectp);
10439 VEC_safe_push (dwarf2_section_info_def, dwo_sections->types,
10440 &type_section);
10441 }
10442}
10443
ab5088bf 10444/* Initialize the use of the DWO file specified by DWO_NAME and referenced
19c3d4c9 10445 by PER_CU. This is for the non-DWP case.
80626a55 10446 The result is NULL if DWO_NAME can't be found. */
3019eac3
DE
10447
10448static struct dwo_file *
0ac5b59e
DE
10449open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
10450 const char *dwo_name, const char *comp_dir)
3019eac3
DE
10451{
10452 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10453 struct dwo_file *dwo_file;
10454 bfd *dbfd;
3019eac3
DE
10455 struct cleanup *cleanups;
10456
ab5088bf 10457 dbfd = open_dwo_file (dwo_name, comp_dir);
80626a55
DE
10458 if (dbfd == NULL)
10459 {
10460 if (dwarf2_read_debug)
10461 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
10462 return NULL;
10463 }
10464 dwo_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_file);
0ac5b59e
DE
10465 dwo_file->dwo_name = dwo_name;
10466 dwo_file->comp_dir = comp_dir;
80626a55 10467 dwo_file->dbfd = dbfd;
3019eac3
DE
10468
10469 cleanups = make_cleanup (free_dwo_file_cleanup, dwo_file);
10470
80626a55 10471 bfd_map_over_sections (dbfd, dwarf2_locate_dwo_sections, &dwo_file->sections);
3019eac3 10472
19c3d4c9 10473 dwo_file->cu = create_dwo_cu (dwo_file);
3019eac3
DE
10474
10475 dwo_file->tus = create_debug_types_hash_table (dwo_file,
10476 dwo_file->sections.types);
10477
10478 discard_cleanups (cleanups);
10479
80626a55
DE
10480 if (dwarf2_read_debug)
10481 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
10482
3019eac3
DE
10483 return dwo_file;
10484}
10485
80626a55 10486/* This function is mapped across the sections and remembers the offset and
73869dc2
DE
10487 size of each of the DWP debugging sections common to version 1 and 2 that
10488 we are interested in. */
3019eac3 10489
80626a55 10490static void
73869dc2
DE
10491dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
10492 void *dwp_file_ptr)
3019eac3 10493{
80626a55
DE
10494 struct dwp_file *dwp_file = dwp_file_ptr;
10495 const struct dwop_section_names *names = &dwop_section_names;
10496 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
3019eac3 10497
80626a55 10498 /* Record the ELF section number for later lookup: this is what the
73869dc2 10499 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
80626a55
DE
10500 gdb_assert (elf_section_nr < dwp_file->num_sections);
10501 dwp_file->elf_sections[elf_section_nr] = sectp;
3019eac3 10502
80626a55
DE
10503 /* Look for specific sections that we need. */
10504 if (section_is_p (sectp->name, &names->str_dwo))
10505 {
73869dc2 10506 dwp_file->sections.str.s.asection = sectp;
80626a55
DE
10507 dwp_file->sections.str.size = bfd_get_section_size (sectp);
10508 }
10509 else if (section_is_p (sectp->name, &names->cu_index))
10510 {
73869dc2 10511 dwp_file->sections.cu_index.s.asection = sectp;
80626a55
DE
10512 dwp_file->sections.cu_index.size = bfd_get_section_size (sectp);
10513 }
10514 else if (section_is_p (sectp->name, &names->tu_index))
10515 {
73869dc2 10516 dwp_file->sections.tu_index.s.asection = sectp;
80626a55
DE
10517 dwp_file->sections.tu_index.size = bfd_get_section_size (sectp);
10518 }
10519}
3019eac3 10520
73869dc2
DE
10521/* This function is mapped across the sections and remembers the offset and
10522 size of each of the DWP version 2 debugging sections that we are interested
10523 in. This is split into a separate function because we don't know if we
10524 have version 1 or 2 until we parse the cu_index/tu_index sections. */
10525
10526static void
10527dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
10528{
10529 struct dwp_file *dwp_file = dwp_file_ptr;
10530 const struct dwop_section_names *names = &dwop_section_names;
10531 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
10532
10533 /* Record the ELF section number for later lookup: this is what the
10534 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
10535 gdb_assert (elf_section_nr < dwp_file->num_sections);
10536 dwp_file->elf_sections[elf_section_nr] = sectp;
10537
10538 /* Look for specific sections that we need. */
10539 if (section_is_p (sectp->name, &names->abbrev_dwo))
10540 {
10541 dwp_file->sections.abbrev.s.asection = sectp;
10542 dwp_file->sections.abbrev.size = bfd_get_section_size (sectp);
10543 }
10544 else if (section_is_p (sectp->name, &names->info_dwo))
10545 {
10546 dwp_file->sections.info.s.asection = sectp;
10547 dwp_file->sections.info.size = bfd_get_section_size (sectp);
10548 }
10549 else if (section_is_p (sectp->name, &names->line_dwo))
10550 {
10551 dwp_file->sections.line.s.asection = sectp;
10552 dwp_file->sections.line.size = bfd_get_section_size (sectp);
10553 }
10554 else if (section_is_p (sectp->name, &names->loc_dwo))
10555 {
10556 dwp_file->sections.loc.s.asection = sectp;
10557 dwp_file->sections.loc.size = bfd_get_section_size (sectp);
10558 }
10559 else if (section_is_p (sectp->name, &names->macinfo_dwo))
10560 {
10561 dwp_file->sections.macinfo.s.asection = sectp;
10562 dwp_file->sections.macinfo.size = bfd_get_section_size (sectp);
10563 }
10564 else if (section_is_p (sectp->name, &names->macro_dwo))
10565 {
10566 dwp_file->sections.macro.s.asection = sectp;
10567 dwp_file->sections.macro.size = bfd_get_section_size (sectp);
10568 }
10569 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
10570 {
10571 dwp_file->sections.str_offsets.s.asection = sectp;
10572 dwp_file->sections.str_offsets.size = bfd_get_section_size (sectp);
10573 }
10574 else if (section_is_p (sectp->name, &names->types_dwo))
10575 {
10576 dwp_file->sections.types.s.asection = sectp;
10577 dwp_file->sections.types.size = bfd_get_section_size (sectp);
10578 }
10579}
10580
80626a55 10581/* Hash function for dwp_file loaded CUs/TUs. */
3019eac3 10582
80626a55
DE
10583static hashval_t
10584hash_dwp_loaded_cutus (const void *item)
10585{
10586 const struct dwo_unit *dwo_unit = item;
3019eac3 10587
80626a55
DE
10588 /* This drops the top 32 bits of the signature, but is ok for a hash. */
10589 return dwo_unit->signature;
3019eac3
DE
10590}
10591
80626a55 10592/* Equality function for dwp_file loaded CUs/TUs. */
3019eac3 10593
80626a55
DE
10594static int
10595eq_dwp_loaded_cutus (const void *a, const void *b)
3019eac3 10596{
80626a55
DE
10597 const struct dwo_unit *dua = a;
10598 const struct dwo_unit *dub = b;
3019eac3 10599
80626a55
DE
10600 return dua->signature == dub->signature;
10601}
3019eac3 10602
80626a55 10603/* Allocate a hash table for dwp_file loaded CUs/TUs. */
3019eac3 10604
80626a55
DE
10605static htab_t
10606allocate_dwp_loaded_cutus_table (struct objfile *objfile)
10607{
10608 return htab_create_alloc_ex (3,
10609 hash_dwp_loaded_cutus,
10610 eq_dwp_loaded_cutus,
10611 NULL,
10612 &objfile->objfile_obstack,
10613 hashtab_obstack_allocate,
10614 dummy_obstack_deallocate);
10615}
3019eac3 10616
ab5088bf
DE
10617/* Try to open DWP file FILE_NAME.
10618 The result is the bfd handle of the file.
10619 If there is a problem finding or opening the file, return NULL.
10620 Upon success, the canonicalized path of the file is stored in the bfd,
10621 same as symfile_bfd_open. */
10622
10623static bfd *
10624open_dwp_file (const char *file_name)
10625{
6ac97d4c
DE
10626 bfd *abfd;
10627
10628 abfd = try_open_dwop_file (file_name, 1 /*is_dwp*/, 1 /*search_cwd*/);
10629 if (abfd != NULL)
10630 return abfd;
10631
10632 /* Work around upstream bug 15652.
10633 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
10634 [Whether that's a "bug" is debatable, but it is getting in our way.]
10635 We have no real idea where the dwp file is, because gdb's realpath-ing
10636 of the executable's path may have discarded the needed info.
10637 [IWBN if the dwp file name was recorded in the executable, akin to
10638 .gnu_debuglink, but that doesn't exist yet.]
10639 Strip the directory from FILE_NAME and search again. */
10640 if (*debug_file_directory != '\0')
10641 {
10642 /* Don't implicitly search the current directory here.
10643 If the user wants to search "." to handle this case,
10644 it must be added to debug-file-directory. */
10645 return try_open_dwop_file (lbasename (file_name), 1 /*is_dwp*/,
10646 0 /*search_cwd*/);
10647 }
10648
10649 return NULL;
ab5088bf
DE
10650}
10651
80626a55
DE
10652/* Initialize the use of the DWP file for the current objfile.
10653 By convention the name of the DWP file is ${objfile}.dwp.
10654 The result is NULL if it can't be found. */
a766d390 10655
80626a55 10656static struct dwp_file *
ab5088bf 10657open_and_init_dwp_file (void)
80626a55
DE
10658{
10659 struct objfile *objfile = dwarf2_per_objfile->objfile;
10660 struct dwp_file *dwp_file;
10661 char *dwp_name;
10662 bfd *dbfd;
10663 struct cleanup *cleanups;
10664
82bf32bc
JK
10665 /* Try to find first .dwp for the binary file before any symbolic links
10666 resolving. */
10667 dwp_name = xstrprintf ("%s.dwp", objfile->original_name);
80626a55
DE
10668 cleanups = make_cleanup (xfree, dwp_name);
10669
ab5088bf 10670 dbfd = open_dwp_file (dwp_name);
82bf32bc
JK
10671 if (dbfd == NULL
10672 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
10673 {
10674 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
10675 dwp_name = xstrprintf ("%s.dwp", objfile_name (objfile));
10676 make_cleanup (xfree, dwp_name);
10677 dbfd = open_dwp_file (dwp_name);
10678 }
10679
80626a55
DE
10680 if (dbfd == NULL)
10681 {
10682 if (dwarf2_read_debug)
10683 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name);
10684 do_cleanups (cleanups);
10685 return NULL;
3019eac3 10686 }
80626a55 10687 dwp_file = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_file);
93417882 10688 dwp_file->name = bfd_get_filename (dbfd);
80626a55
DE
10689 dwp_file->dbfd = dbfd;
10690 do_cleanups (cleanups);
c906108c 10691
80626a55
DE
10692 /* +1: section 0 is unused */
10693 dwp_file->num_sections = bfd_count_sections (dbfd) + 1;
10694 dwp_file->elf_sections =
10695 OBSTACK_CALLOC (&objfile->objfile_obstack,
10696 dwp_file->num_sections, asection *);
10697
73869dc2 10698 bfd_map_over_sections (dbfd, dwarf2_locate_common_dwp_sections, dwp_file);
80626a55
DE
10699
10700 dwp_file->cus = create_dwp_hash_table (dwp_file, 0);
10701
10702 dwp_file->tus = create_dwp_hash_table (dwp_file, 1);
10703
73869dc2
DE
10704 /* The DWP file version is stored in the hash table. Oh well. */
10705 if (dwp_file->cus->version != dwp_file->tus->version)
10706 {
10707 /* Technically speaking, we should try to limp along, but this is
fbcbc3fd 10708 pretty bizarre. We use pulongest here because that's the established
4d65956b 10709 portability solution (e.g, we cannot use %u for uint32_t). */
fbcbc3fd
DE
10710 error (_("Dwarf Error: DWP file CU version %s doesn't match"
10711 " TU version %s [in DWP file %s]"),
10712 pulongest (dwp_file->cus->version),
10713 pulongest (dwp_file->tus->version), dwp_name);
73869dc2
DE
10714 }
10715 dwp_file->version = dwp_file->cus->version;
10716
10717 if (dwp_file->version == 2)
10718 bfd_map_over_sections (dbfd, dwarf2_locate_v2_dwp_sections, dwp_file);
10719
19ac8c2e
DE
10720 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
10721 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
80626a55 10722
80626a55
DE
10723 if (dwarf2_read_debug)
10724 {
10725 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
10726 fprintf_unfiltered (gdb_stdlog,
21aa081e
PA
10727 " %s CUs, %s TUs\n",
10728 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
10729 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
80626a55
DE
10730 }
10731
10732 return dwp_file;
3019eac3 10733}
c906108c 10734
ab5088bf
DE
10735/* Wrapper around open_and_init_dwp_file, only open it once. */
10736
10737static struct dwp_file *
10738get_dwp_file (void)
10739{
10740 if (! dwarf2_per_objfile->dwp_checked)
10741 {
10742 dwarf2_per_objfile->dwp_file = open_and_init_dwp_file ();
10743 dwarf2_per_objfile->dwp_checked = 1;
10744 }
10745 return dwarf2_per_objfile->dwp_file;
10746}
10747
80626a55
DE
10748/* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
10749 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
10750 or in the DWP file for the objfile, referenced by THIS_UNIT.
3019eac3 10751 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
80626a55
DE
10752 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
10753
10754 This is called, for example, when wanting to read a variable with a
10755 complex location. Therefore we don't want to do file i/o for every call.
10756 Therefore we don't want to look for a DWO file on every call.
10757 Therefore we first see if we've already seen SIGNATURE in a DWP file,
10758 then we check if we've already seen DWO_NAME, and only THEN do we check
10759 for a DWO file.
10760
1c658ad5 10761 The result is a pointer to the dwo_unit object or NULL if we didn't find it
80626a55 10762 (dwo_id mismatch or couldn't find the DWO/DWP file). */
debd256d 10763
3019eac3 10764static struct dwo_unit *
80626a55
DE
10765lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
10766 const char *dwo_name, const char *comp_dir,
10767 ULONGEST signature, int is_debug_types)
3019eac3
DE
10768{
10769 struct objfile *objfile = dwarf2_per_objfile->objfile;
80626a55
DE
10770 const char *kind = is_debug_types ? "TU" : "CU";
10771 void **dwo_file_slot;
3019eac3 10772 struct dwo_file *dwo_file;
80626a55 10773 struct dwp_file *dwp_file;
cb1df416 10774
6a506a2d
DE
10775 /* First see if there's a DWP file.
10776 If we have a DWP file but didn't find the DWO inside it, don't
10777 look for the original DWO file. It makes gdb behave differently
10778 depending on whether one is debugging in the build tree. */
cf2c3c16 10779
ab5088bf 10780 dwp_file = get_dwp_file ();
80626a55 10781 if (dwp_file != NULL)
cf2c3c16 10782 {
80626a55
DE
10783 const struct dwp_hash_table *dwp_htab =
10784 is_debug_types ? dwp_file->tus : dwp_file->cus;
10785
10786 if (dwp_htab != NULL)
10787 {
10788 struct dwo_unit *dwo_cutu =
57d63ce2
DE
10789 lookup_dwo_unit_in_dwp (dwp_file, comp_dir,
10790 signature, is_debug_types);
80626a55
DE
10791
10792 if (dwo_cutu != NULL)
10793 {
10794 if (dwarf2_read_debug)
10795 {
10796 fprintf_unfiltered (gdb_stdlog,
10797 "Virtual DWO %s %s found: @%s\n",
10798 kind, hex_string (signature),
10799 host_address_to_string (dwo_cutu));
10800 }
10801 return dwo_cutu;
10802 }
10803 }
10804 }
6a506a2d 10805 else
80626a55 10806 {
6a506a2d 10807 /* No DWP file, look for the DWO file. */
80626a55 10808
6a506a2d
DE
10809 dwo_file_slot = lookup_dwo_file_slot (dwo_name, comp_dir);
10810 if (*dwo_file_slot == NULL)
80626a55 10811 {
6a506a2d
DE
10812 /* Read in the file and build a table of the CUs/TUs it contains. */
10813 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
19c3d4c9 10814 }
6a506a2d
DE
10815 /* NOTE: This will be NULL if unable to open the file. */
10816 dwo_file = *dwo_file_slot;
3019eac3 10817
6a506a2d 10818 if (dwo_file != NULL)
19c3d4c9 10819 {
6a506a2d
DE
10820 struct dwo_unit *dwo_cutu = NULL;
10821
10822 if (is_debug_types && dwo_file->tus)
10823 {
10824 struct dwo_unit find_dwo_cutu;
10825
10826 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
10827 find_dwo_cutu.signature = signature;
10828 dwo_cutu = htab_find (dwo_file->tus, &find_dwo_cutu);
10829 }
10830 else if (!is_debug_types && dwo_file->cu)
80626a55 10831 {
6a506a2d
DE
10832 if (signature == dwo_file->cu->signature)
10833 dwo_cutu = dwo_file->cu;
10834 }
10835
10836 if (dwo_cutu != NULL)
10837 {
10838 if (dwarf2_read_debug)
10839 {
10840 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
10841 kind, dwo_name, hex_string (signature),
10842 host_address_to_string (dwo_cutu));
10843 }
10844 return dwo_cutu;
80626a55
DE
10845 }
10846 }
2e276125 10847 }
9cdd5dbd 10848
80626a55
DE
10849 /* We didn't find it. This could mean a dwo_id mismatch, or
10850 someone deleted the DWO/DWP file, or the search path isn't set up
10851 correctly to find the file. */
10852
10853 if (dwarf2_read_debug)
10854 {
10855 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
10856 kind, dwo_name, hex_string (signature));
10857 }
3019eac3 10858
6656a72d
DE
10859 /* This is a warning and not a complaint because it can be caused by
10860 pilot error (e.g., user accidentally deleting the DWO). */
43942612
DE
10861 {
10862 /* Print the name of the DWP file if we looked there, helps the user
10863 better diagnose the problem. */
10864 char *dwp_text = NULL;
10865 struct cleanup *cleanups;
10866
10867 if (dwp_file != NULL)
10868 dwp_text = xstrprintf (" [in DWP file %s]", lbasename (dwp_file->name));
10869 cleanups = make_cleanup (xfree, dwp_text);
10870
10871 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset 0x%x"
10872 " [in module %s]"),
10873 kind, dwo_name, hex_string (signature),
10874 dwp_text != NULL ? dwp_text : "",
10875 this_unit->is_debug_types ? "TU" : "CU",
10876 this_unit->offset.sect_off, objfile_name (objfile));
10877
10878 do_cleanups (cleanups);
10879 }
3019eac3 10880 return NULL;
5fb290d7
DJ
10881}
10882
80626a55
DE
10883/* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
10884 See lookup_dwo_cutu_unit for details. */
10885
10886static struct dwo_unit *
10887lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
10888 const char *dwo_name, const char *comp_dir,
10889 ULONGEST signature)
10890{
10891 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
10892}
10893
10894/* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
10895 See lookup_dwo_cutu_unit for details. */
10896
10897static struct dwo_unit *
10898lookup_dwo_type_unit (struct signatured_type *this_tu,
10899 const char *dwo_name, const char *comp_dir)
10900{
10901 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
10902}
10903
89e63ee4
DE
10904/* Traversal function for queue_and_load_all_dwo_tus. */
10905
10906static int
10907queue_and_load_dwo_tu (void **slot, void *info)
10908{
10909 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
10910 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
10911 ULONGEST signature = dwo_unit->signature;
10912 struct signatured_type *sig_type =
10913 lookup_dwo_signatured_type (per_cu->cu, signature);
10914
10915 if (sig_type != NULL)
10916 {
10917 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
10918
10919 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
10920 a real dependency of PER_CU on SIG_TYPE. That is detected later
10921 while processing PER_CU. */
10922 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
10923 load_full_type_unit (sig_cu);
10924 VEC_safe_push (dwarf2_per_cu_ptr, per_cu->imported_symtabs, sig_cu);
10925 }
10926
10927 return 1;
10928}
10929
10930/* Queue all TUs contained in the DWO of PER_CU to be read in.
10931 The DWO may have the only definition of the type, though it may not be
10932 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
10933 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
10934
10935static void
10936queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
10937{
10938 struct dwo_unit *dwo_unit;
10939 struct dwo_file *dwo_file;
10940
10941 gdb_assert (!per_cu->is_debug_types);
10942 gdb_assert (get_dwp_file () == NULL);
10943 gdb_assert (per_cu->cu != NULL);
10944
10945 dwo_unit = per_cu->cu->dwo_unit;
10946 gdb_assert (dwo_unit != NULL);
10947
10948 dwo_file = dwo_unit->dwo_file;
10949 if (dwo_file->tus != NULL)
10950 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
10951}
10952
3019eac3
DE
10953/* Free all resources associated with DWO_FILE.
10954 Close the DWO file and munmap the sections.
10955 All memory should be on the objfile obstack. */
348e048f
DE
10956
10957static void
3019eac3 10958free_dwo_file (struct dwo_file *dwo_file, struct objfile *objfile)
348e048f 10959{
3019eac3
DE
10960 int ix;
10961 struct dwarf2_section_info *section;
348e048f 10962
5c6fa7ab 10963 /* Note: dbfd is NULL for virtual DWO files. */
80626a55 10964 gdb_bfd_unref (dwo_file->dbfd);
348e048f 10965
3019eac3
DE
10966 VEC_free (dwarf2_section_info_def, dwo_file->sections.types);
10967}
348e048f 10968
3019eac3 10969/* Wrapper for free_dwo_file for use in cleanups. */
348e048f 10970
3019eac3
DE
10971static void
10972free_dwo_file_cleanup (void *arg)
10973{
10974 struct dwo_file *dwo_file = (struct dwo_file *) arg;
10975 struct objfile *objfile = dwarf2_per_objfile->objfile;
348e048f 10976
3019eac3
DE
10977 free_dwo_file (dwo_file, objfile);
10978}
348e048f 10979
3019eac3 10980/* Traversal function for free_dwo_files. */
2ab95328 10981
3019eac3
DE
10982static int
10983free_dwo_file_from_slot (void **slot, void *info)
10984{
10985 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
10986 struct objfile *objfile = (struct objfile *) info;
348e048f 10987
3019eac3 10988 free_dwo_file (dwo_file, objfile);
348e048f 10989
3019eac3
DE
10990 return 1;
10991}
348e048f 10992
3019eac3 10993/* Free all resources associated with DWO_FILES. */
348e048f 10994
3019eac3
DE
10995static void
10996free_dwo_files (htab_t dwo_files, struct objfile *objfile)
10997{
10998 htab_traverse_noresize (dwo_files, free_dwo_file_from_slot, objfile);
348e048f 10999}
3019eac3
DE
11000\f
11001/* Read in various DIEs. */
348e048f 11002
d389af10
JK
11003/* qsort helper for inherit_abstract_dies. */
11004
11005static int
11006unsigned_int_compar (const void *ap, const void *bp)
11007{
11008 unsigned int a = *(unsigned int *) ap;
11009 unsigned int b = *(unsigned int *) bp;
11010
11011 return (a > b) - (b > a);
11012}
11013
11014/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
11015 Inherit only the children of the DW_AT_abstract_origin DIE not being
11016 already referenced by DW_AT_abstract_origin from the children of the
11017 current DIE. */
d389af10
JK
11018
11019static void
11020inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
11021{
11022 struct die_info *child_die;
11023 unsigned die_children_count;
11024 /* CU offsets which were referenced by children of the current DIE. */
b64f50a1
JK
11025 sect_offset *offsets;
11026 sect_offset *offsets_end, *offsetp;
d389af10
JK
11027 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
11028 struct die_info *origin_die;
11029 /* Iterator of the ORIGIN_DIE children. */
11030 struct die_info *origin_child_die;
11031 struct cleanup *cleanups;
11032 struct attribute *attr;
cd02d79d
PA
11033 struct dwarf2_cu *origin_cu;
11034 struct pending **origin_previous_list_in_scope;
d389af10
JK
11035
11036 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11037 if (!attr)
11038 return;
11039
cd02d79d
PA
11040 /* Note that following die references may follow to a die in a
11041 different cu. */
11042
11043 origin_cu = cu;
11044 origin_die = follow_die_ref (die, attr, &origin_cu);
11045
11046 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
11047 symbols in. */
11048 origin_previous_list_in_scope = origin_cu->list_in_scope;
11049 origin_cu->list_in_scope = cu->list_in_scope;
11050
edb3359d
DJ
11051 if (die->tag != origin_die->tag
11052 && !(die->tag == DW_TAG_inlined_subroutine
11053 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11054 complaint (&symfile_complaints,
11055 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
b64f50a1 11056 die->offset.sect_off, origin_die->offset.sect_off);
d389af10
JK
11057
11058 child_die = die->child;
11059 die_children_count = 0;
11060 while (child_die && child_die->tag)
11061 {
11062 child_die = sibling_die (child_die);
11063 die_children_count++;
11064 }
11065 offsets = xmalloc (sizeof (*offsets) * die_children_count);
11066 cleanups = make_cleanup (xfree, offsets);
11067
11068 offsets_end = offsets;
11069 child_die = die->child;
11070 while (child_die && child_die->tag)
11071 {
c38f313d
DJ
11072 /* For each CHILD_DIE, find the corresponding child of
11073 ORIGIN_DIE. If there is more than one layer of
11074 DW_AT_abstract_origin, follow them all; there shouldn't be,
11075 but GCC versions at least through 4.4 generate this (GCC PR
11076 40573). */
11077 struct die_info *child_origin_die = child_die;
cd02d79d 11078 struct dwarf2_cu *child_origin_cu = cu;
9a619af0 11079
c38f313d
DJ
11080 while (1)
11081 {
cd02d79d
PA
11082 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
11083 child_origin_cu);
c38f313d
DJ
11084 if (attr == NULL)
11085 break;
cd02d79d
PA
11086 child_origin_die = follow_die_ref (child_origin_die, attr,
11087 &child_origin_cu);
c38f313d
DJ
11088 }
11089
d389af10
JK
11090 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
11091 counterpart may exist. */
c38f313d 11092 if (child_origin_die != child_die)
d389af10 11093 {
edb3359d
DJ
11094 if (child_die->tag != child_origin_die->tag
11095 && !(child_die->tag == DW_TAG_inlined_subroutine
11096 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
11097 complaint (&symfile_complaints,
11098 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11099 "different tags"), child_die->offset.sect_off,
11100 child_origin_die->offset.sect_off);
c38f313d
DJ
11101 if (child_origin_die->parent != origin_die)
11102 complaint (&symfile_complaints,
11103 _("Child DIE 0x%x and its abstract origin 0x%x have "
b64f50a1
JK
11104 "different parents"), child_die->offset.sect_off,
11105 child_origin_die->offset.sect_off);
c38f313d
DJ
11106 else
11107 *offsets_end++ = child_origin_die->offset;
d389af10
JK
11108 }
11109 child_die = sibling_die (child_die);
11110 }
11111 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
11112 unsigned_int_compar);
11113 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
b64f50a1 11114 if (offsetp[-1].sect_off == offsetp->sect_off)
3e43a32a
MS
11115 complaint (&symfile_complaints,
11116 _("Multiple children of DIE 0x%x refer "
11117 "to DIE 0x%x as their abstract origin"),
b64f50a1 11118 die->offset.sect_off, offsetp->sect_off);
d389af10
JK
11119
11120 offsetp = offsets;
11121 origin_child_die = origin_die->child;
11122 while (origin_child_die && origin_child_die->tag)
11123 {
11124 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
b64f50a1
JK
11125 while (offsetp < offsets_end
11126 && offsetp->sect_off < origin_child_die->offset.sect_off)
d389af10 11127 offsetp++;
b64f50a1
JK
11128 if (offsetp >= offsets_end
11129 || offsetp->sect_off > origin_child_die->offset.sect_off)
d389af10 11130 {
adde2bff
DE
11131 /* Found that ORIGIN_CHILD_DIE is really not referenced.
11132 Check whether we're already processing ORIGIN_CHILD_DIE.
11133 This can happen with mutually referenced abstract_origins.
11134 PR 16581. */
11135 if (!origin_child_die->in_process)
11136 process_die (origin_child_die, origin_cu);
d389af10
JK
11137 }
11138 origin_child_die = sibling_die (origin_child_die);
11139 }
cd02d79d 11140 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
11141
11142 do_cleanups (cleanups);
11143}
11144
c906108c 11145static void
e7c27a73 11146read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11147{
e7c27a73 11148 struct objfile *objfile = cu->objfile;
3e29f34a 11149 struct gdbarch *gdbarch = get_objfile_arch (objfile);
52f0bd74 11150 struct context_stack *new;
c906108c
SS
11151 CORE_ADDR lowpc;
11152 CORE_ADDR highpc;
11153 struct die_info *child_die;
edb3359d 11154 struct attribute *attr, *call_line, *call_file;
15d034d0 11155 const char *name;
e142c38c 11156 CORE_ADDR baseaddr;
801e3a5b 11157 struct block *block;
edb3359d 11158 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
11159 VEC (symbolp) *template_args = NULL;
11160 struct template_symbol *templ_func = NULL;
edb3359d
DJ
11161
11162 if (inlined_func)
11163 {
11164 /* If we do not have call site information, we can't show the
11165 caller of this inlined function. That's too confusing, so
11166 only use the scope for local variables. */
11167 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
11168 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
11169 if (call_line == NULL || call_file == NULL)
11170 {
11171 read_lexical_block_scope (die, cu);
11172 return;
11173 }
11174 }
c906108c 11175
e142c38c
DJ
11176 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11177
94af9270 11178 name = dwarf2_name (die, cu);
c906108c 11179
e8d05480
JB
11180 /* Ignore functions with missing or empty names. These are actually
11181 illegal according to the DWARF standard. */
11182 if (name == NULL)
11183 {
11184 complaint (&symfile_complaints,
b64f50a1
JK
11185 _("missing name for subprogram DIE at %d"),
11186 die->offset.sect_off);
e8d05480
JB
11187 return;
11188 }
11189
11190 /* Ignore functions with missing or invalid low and high pc attributes. */
11191 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
11192 {
ae4d0c03
PM
11193 attr = dwarf2_attr (die, DW_AT_external, cu);
11194 if (!attr || !DW_UNSND (attr))
11195 complaint (&symfile_complaints,
3e43a32a
MS
11196 _("cannot get low and high bounds "
11197 "for subprogram DIE at %d"),
b64f50a1 11198 die->offset.sect_off);
e8d05480
JB
11199 return;
11200 }
c906108c 11201
3e29f34a
MR
11202 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11203 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c 11204
34eaf542
TT
11205 /* If we have any template arguments, then we must allocate a
11206 different sort of symbol. */
11207 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
11208 {
11209 if (child_die->tag == DW_TAG_template_type_param
11210 || child_die->tag == DW_TAG_template_value_param)
11211 {
e623cf5d 11212 templ_func = allocate_template_symbol (objfile);
34eaf542
TT
11213 templ_func->base.is_cplus_template_function = 1;
11214 break;
11215 }
11216 }
11217
c906108c 11218 new = push_context (0, lowpc);
34eaf542
TT
11219 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
11220 (struct symbol *) templ_func);
4c2df51b 11221
4cecd739
DJ
11222 /* If there is a location expression for DW_AT_frame_base, record
11223 it. */
e142c38c 11224 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 11225 if (attr)
f1e6e072 11226 dwarf2_symbol_mark_computed (attr, new->name, cu, 1);
4c2df51b 11227
e142c38c 11228 cu->list_in_scope = &local_symbols;
c906108c 11229
639d11d3 11230 if (die->child != NULL)
c906108c 11231 {
639d11d3 11232 child_die = die->child;
c906108c
SS
11233 while (child_die && child_die->tag)
11234 {
34eaf542
TT
11235 if (child_die->tag == DW_TAG_template_type_param
11236 || child_die->tag == DW_TAG_template_value_param)
11237 {
11238 struct symbol *arg = new_symbol (child_die, NULL, cu);
11239
f1078f66
DJ
11240 if (arg != NULL)
11241 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
11242 }
11243 else
11244 process_die (child_die, cu);
c906108c
SS
11245 child_die = sibling_die (child_die);
11246 }
11247 }
11248
d389af10
JK
11249 inherit_abstract_dies (die, cu);
11250
4a811a97
UW
11251 /* If we have a DW_AT_specification, we might need to import using
11252 directives from the context of the specification DIE. See the
11253 comment in determine_prefix. */
11254 if (cu->language == language_cplus
11255 && dwarf2_attr (die, DW_AT_specification, cu))
11256 {
11257 struct dwarf2_cu *spec_cu = cu;
11258 struct die_info *spec_die = die_specification (die, &spec_cu);
11259
11260 while (spec_die)
11261 {
11262 child_die = spec_die->child;
11263 while (child_die && child_die->tag)
11264 {
11265 if (child_die->tag == DW_TAG_imported_module)
11266 process_die (child_die, spec_cu);
11267 child_die = sibling_die (child_die);
11268 }
11269
11270 /* In some cases, GCC generates specification DIEs that
11271 themselves contain DW_AT_specification attributes. */
11272 spec_die = die_specification (spec_die, &spec_cu);
11273 }
11274 }
11275
c906108c
SS
11276 new = pop_context ();
11277 /* Make a block for the local symbols within. */
801e3a5b 11278 block = finish_block (new->name, &local_symbols, new->old_blocks,
4d663531 11279 lowpc, highpc);
801e3a5b 11280
df8a16a1 11281 /* For C++, set the block's scope. */
195a3f6c 11282 if ((cu->language == language_cplus || cu->language == language_fortran)
4d4ec4e5 11283 && cu->processing_has_namespace_info)
195a3f6c
TT
11284 block_set_scope (block, determine_prefix (die, cu),
11285 &objfile->objfile_obstack);
df8a16a1 11286
801e3a5b
JB
11287 /* If we have address ranges, record them. */
11288 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 11289
3e29f34a
MR
11290 gdbarch_make_symbol_special (gdbarch, new->name, objfile);
11291
34eaf542
TT
11292 /* Attach template arguments to function. */
11293 if (! VEC_empty (symbolp, template_args))
11294 {
11295 gdb_assert (templ_func != NULL);
11296
11297 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
11298 templ_func->template_arguments
11299 = obstack_alloc (&objfile->objfile_obstack,
11300 (templ_func->n_template_arguments
11301 * sizeof (struct symbol *)));
11302 memcpy (templ_func->template_arguments,
11303 VEC_address (symbolp, template_args),
11304 (templ_func->n_template_arguments * sizeof (struct symbol *)));
11305 VEC_free (symbolp, template_args);
11306 }
11307
208d8187
JB
11308 /* In C++, we can have functions nested inside functions (e.g., when
11309 a function declares a class that has methods). This means that
11310 when we finish processing a function scope, we may need to go
11311 back to building a containing block's symbol lists. */
11312 local_symbols = new->locals;
27aa8d6a 11313 using_directives = new->using_directives;
208d8187 11314
921e78cf
JB
11315 /* If we've finished processing a top-level function, subsequent
11316 symbols go in the file symbol list. */
11317 if (outermost_context_p ())
e142c38c 11318 cu->list_in_scope = &file_symbols;
c906108c
SS
11319}
11320
11321/* Process all the DIES contained within a lexical block scope. Start
11322 a new scope, process the dies, and then close the scope. */
11323
11324static void
e7c27a73 11325read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11326{
e7c27a73 11327 struct objfile *objfile = cu->objfile;
3e29f34a 11328 struct gdbarch *gdbarch = get_objfile_arch (objfile);
52f0bd74 11329 struct context_stack *new;
c906108c
SS
11330 CORE_ADDR lowpc, highpc;
11331 struct die_info *child_die;
e142c38c
DJ
11332 CORE_ADDR baseaddr;
11333
11334 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
11335
11336 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
11337 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
11338 as multiple lexical blocks? Handling children in a sane way would
6e70227d 11339 be nasty. Might be easier to properly extend generic blocks to
af34e669 11340 describe ranges. */
d85a05f0 11341 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c 11342 return;
3e29f34a
MR
11343 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11344 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
c906108c
SS
11345
11346 push_context (0, lowpc);
639d11d3 11347 if (die->child != NULL)
c906108c 11348 {
639d11d3 11349 child_die = die->child;
c906108c
SS
11350 while (child_die && child_die->tag)
11351 {
e7c27a73 11352 process_die (child_die, cu);
c906108c
SS
11353 child_die = sibling_die (child_die);
11354 }
11355 }
11356 new = pop_context ();
11357
8540c487 11358 if (local_symbols != NULL || using_directives != NULL)
c906108c 11359 {
801e3a5b
JB
11360 struct block *block
11361 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
4d663531 11362 highpc);
801e3a5b
JB
11363
11364 /* Note that recording ranges after traversing children, as we
11365 do here, means that recording a parent's ranges entails
11366 walking across all its children's ranges as they appear in
11367 the address map, which is quadratic behavior.
11368
11369 It would be nicer to record the parent's ranges before
11370 traversing its children, simply overriding whatever you find
11371 there. But since we don't even decide whether to create a
11372 block until after we've traversed its children, that's hard
11373 to do. */
11374 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
11375 }
11376 local_symbols = new->locals;
27aa8d6a 11377 using_directives = new->using_directives;
c906108c
SS
11378}
11379
96408a79
SA
11380/* Read in DW_TAG_GNU_call_site and insert it to CU->call_site_htab. */
11381
11382static void
11383read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
11384{
11385 struct objfile *objfile = cu->objfile;
11386 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11387 CORE_ADDR pc, baseaddr;
11388 struct attribute *attr;
11389 struct call_site *call_site, call_site_local;
11390 void **slot;
11391 int nparams;
11392 struct die_info *child_die;
11393
11394 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11395
11396 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
11397 if (!attr)
11398 {
11399 complaint (&symfile_complaints,
11400 _("missing DW_AT_low_pc for DW_TAG_GNU_call_site "
11401 "DIE 0x%x [in module %s]"),
4262abfb 11402 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11403 return;
11404 }
31aa7e4e 11405 pc = attr_value_as_address (attr) + baseaddr;
3e29f34a 11406 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
96408a79
SA
11407
11408 if (cu->call_site_htab == NULL)
11409 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
11410 NULL, &objfile->objfile_obstack,
11411 hashtab_obstack_allocate, NULL);
11412 call_site_local.pc = pc;
11413 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
11414 if (*slot != NULL)
11415 {
11416 complaint (&symfile_complaints,
11417 _("Duplicate PC %s for DW_TAG_GNU_call_site "
11418 "DIE 0x%x [in module %s]"),
4262abfb
JK
11419 paddress (gdbarch, pc), die->offset.sect_off,
11420 objfile_name (objfile));
96408a79
SA
11421 return;
11422 }
11423
11424 /* Count parameters at the caller. */
11425
11426 nparams = 0;
11427 for (child_die = die->child; child_die && child_die->tag;
11428 child_die = sibling_die (child_die))
11429 {
11430 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11431 {
11432 complaint (&symfile_complaints,
11433 _("Tag %d is not DW_TAG_GNU_call_site_parameter in "
11434 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb
JK
11435 child_die->tag, child_die->offset.sect_off,
11436 objfile_name (objfile));
96408a79
SA
11437 continue;
11438 }
11439
11440 nparams++;
11441 }
11442
11443 call_site = obstack_alloc (&objfile->objfile_obstack,
11444 (sizeof (*call_site)
11445 + (sizeof (*call_site->parameter)
11446 * (nparams - 1))));
11447 *slot = call_site;
11448 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
11449 call_site->pc = pc;
11450
11451 if (dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
11452 {
11453 struct die_info *func_die;
11454
11455 /* Skip also over DW_TAG_inlined_subroutine. */
11456 for (func_die = die->parent;
11457 func_die && func_die->tag != DW_TAG_subprogram
11458 && func_die->tag != DW_TAG_subroutine_type;
11459 func_die = func_die->parent);
11460
11461 /* DW_AT_GNU_all_call_sites is a superset
11462 of DW_AT_GNU_all_tail_call_sites. */
11463 if (func_die
11464 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
11465 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
11466 {
11467 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
11468 not complete. But keep CALL_SITE for look ups via call_site_htab,
11469 both the initial caller containing the real return address PC and
11470 the final callee containing the current PC of a chain of tail
11471 calls do not need to have the tail call list complete. But any
11472 function candidate for a virtual tail call frame searched via
11473 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
11474 determined unambiguously. */
11475 }
11476 else
11477 {
11478 struct type *func_type = NULL;
11479
11480 if (func_die)
11481 func_type = get_die_type (func_die, cu);
11482 if (func_type != NULL)
11483 {
11484 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
11485
11486 /* Enlist this call site to the function. */
11487 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
11488 TYPE_TAIL_CALL_LIST (func_type) = call_site;
11489 }
11490 else
11491 complaint (&symfile_complaints,
11492 _("Cannot find function owning DW_TAG_GNU_call_site "
11493 "DIE 0x%x [in module %s]"),
4262abfb 11494 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11495 }
11496 }
11497
11498 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
11499 if (attr == NULL)
11500 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
11501 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
11502 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
11503 /* Keep NULL DWARF_BLOCK. */;
11504 else if (attr_form_is_block (attr))
11505 {
11506 struct dwarf2_locexpr_baton *dlbaton;
11507
11508 dlbaton = obstack_alloc (&objfile->objfile_obstack, sizeof (*dlbaton));
11509 dlbaton->data = DW_BLOCK (attr)->data;
11510 dlbaton->size = DW_BLOCK (attr)->size;
11511 dlbaton->per_cu = cu->per_cu;
11512
11513 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
11514 }
7771576e 11515 else if (attr_form_is_ref (attr))
96408a79 11516 {
96408a79
SA
11517 struct dwarf2_cu *target_cu = cu;
11518 struct die_info *target_die;
11519
ac9ec31b 11520 target_die = follow_die_ref (die, attr, &target_cu);
96408a79
SA
11521 gdb_assert (target_cu->objfile == objfile);
11522 if (die_is_declaration (target_die, target_cu))
11523 {
9112db09
JK
11524 const char *target_physname = NULL;
11525 struct attribute *target_attr;
11526
11527 /* Prefer the mangled name; otherwise compute the demangled one. */
11528 target_attr = dwarf2_attr (target_die, DW_AT_linkage_name, target_cu);
11529 if (target_attr == NULL)
11530 target_attr = dwarf2_attr (target_die, DW_AT_MIPS_linkage_name,
11531 target_cu);
11532 if (target_attr != NULL && DW_STRING (target_attr) != NULL)
11533 target_physname = DW_STRING (target_attr);
11534 else
11535 target_physname = dwarf2_physname (NULL, target_die, target_cu);
96408a79
SA
11536 if (target_physname == NULL)
11537 complaint (&symfile_complaints,
11538 _("DW_AT_GNU_call_site_target target DIE has invalid "
11539 "physname, for referencing DIE 0x%x [in module %s]"),
4262abfb 11540 die->offset.sect_off, objfile_name (objfile));
96408a79 11541 else
7d455152 11542 SET_FIELD_PHYSNAME (call_site->target, target_physname);
96408a79
SA
11543 }
11544 else
11545 {
11546 CORE_ADDR lowpc;
11547
11548 /* DW_AT_entry_pc should be preferred. */
11549 if (!dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL))
11550 complaint (&symfile_complaints,
11551 _("DW_AT_GNU_call_site_target target DIE has invalid "
11552 "low pc, for referencing DIE 0x%x [in module %s]"),
4262abfb 11553 die->offset.sect_off, objfile_name (objfile));
96408a79 11554 else
3e29f34a
MR
11555 {
11556 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11557 SET_FIELD_PHYSADDR (call_site->target, lowpc);
11558 }
96408a79
SA
11559 }
11560 }
11561 else
11562 complaint (&symfile_complaints,
11563 _("DW_TAG_GNU_call_site DW_AT_GNU_call_site_target is neither "
11564 "block nor reference, for DIE 0x%x [in module %s]"),
4262abfb 11565 die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11566
11567 call_site->per_cu = cu->per_cu;
11568
11569 for (child_die = die->child;
11570 child_die && child_die->tag;
11571 child_die = sibling_die (child_die))
11572 {
96408a79 11573 struct call_site_parameter *parameter;
1788b2d3 11574 struct attribute *loc, *origin;
96408a79
SA
11575
11576 if (child_die->tag != DW_TAG_GNU_call_site_parameter)
11577 {
11578 /* Already printed the complaint above. */
11579 continue;
11580 }
11581
11582 gdb_assert (call_site->parameter_count < nparams);
11583 parameter = &call_site->parameter[call_site->parameter_count];
11584
1788b2d3
JK
11585 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
11586 specifies DW_TAG_formal_parameter. Value of the data assumed for the
11587 register is contained in DW_AT_GNU_call_site_value. */
96408a79 11588
24c5c679 11589 loc = dwarf2_attr (child_die, DW_AT_location, cu);
1788b2d3 11590 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
7771576e 11591 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
1788b2d3
JK
11592 {
11593 sect_offset offset;
11594
11595 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
11596 offset = dwarf2_get_ref_die_offset (origin);
d76b7dbc
JK
11597 if (!offset_in_cu_p (&cu->header, offset))
11598 {
11599 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
11600 binding can be done only inside one CU. Such referenced DIE
11601 therefore cannot be even moved to DW_TAG_partial_unit. */
11602 complaint (&symfile_complaints,
11603 _("DW_AT_abstract_origin offset is not in CU for "
11604 "DW_TAG_GNU_call_site child DIE 0x%x "
11605 "[in module %s]"),
4262abfb 11606 child_die->offset.sect_off, objfile_name (objfile));
d76b7dbc
JK
11607 continue;
11608 }
1788b2d3
JK
11609 parameter->u.param_offset.cu_off = (offset.sect_off
11610 - cu->header.offset.sect_off);
11611 }
11612 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
96408a79
SA
11613 {
11614 complaint (&symfile_complaints,
11615 _("No DW_FORM_block* DW_AT_location for "
11616 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11617 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11618 continue;
11619 }
24c5c679 11620 else
96408a79 11621 {
24c5c679
JK
11622 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
11623 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
11624 if (parameter->u.dwarf_reg != -1)
11625 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
11626 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
11627 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
11628 &parameter->u.fb_offset))
11629 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
11630 else
11631 {
11632 complaint (&symfile_complaints,
11633 _("Only single DW_OP_reg or DW_OP_fbreg is supported "
11634 "for DW_FORM_block* DW_AT_location is supported for "
11635 "DW_TAG_GNU_call_site child DIE 0x%x "
11636 "[in module %s]"),
4262abfb 11637 child_die->offset.sect_off, objfile_name (objfile));
24c5c679
JK
11638 continue;
11639 }
96408a79
SA
11640 }
11641
11642 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
11643 if (!attr_form_is_block (attr))
11644 {
11645 complaint (&symfile_complaints,
11646 _("No DW_FORM_block* DW_AT_GNU_call_site_value for "
11647 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11648 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11649 continue;
11650 }
11651 parameter->value = DW_BLOCK (attr)->data;
11652 parameter->value_size = DW_BLOCK (attr)->size;
11653
11654 /* Parameters are not pre-cleared by memset above. */
11655 parameter->data_value = NULL;
11656 parameter->data_value_size = 0;
11657 call_site->parameter_count++;
11658
11659 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
11660 if (attr)
11661 {
11662 if (!attr_form_is_block (attr))
11663 complaint (&symfile_complaints,
11664 _("No DW_FORM_block* DW_AT_GNU_call_site_data_value for "
11665 "DW_TAG_GNU_call_site child DIE 0x%x [in module %s]"),
4262abfb 11666 child_die->offset.sect_off, objfile_name (objfile));
96408a79
SA
11667 else
11668 {
11669 parameter->data_value = DW_BLOCK (attr)->data;
11670 parameter->data_value_size = DW_BLOCK (attr)->size;
11671 }
11672 }
11673 }
11674}
11675
43039443 11676/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
11677 Return 1 if the attributes are present and valid, otherwise, return 0.
11678 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
11679
11680static int
11681dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
11682 CORE_ADDR *high_return, struct dwarf2_cu *cu,
11683 struct partial_symtab *ranges_pst)
43039443
JK
11684{
11685 struct objfile *objfile = cu->objfile;
3e29f34a 11686 struct gdbarch *gdbarch = get_objfile_arch (objfile);
43039443
JK
11687 struct comp_unit_head *cu_header = &cu->header;
11688 bfd *obfd = objfile->obfd;
11689 unsigned int addr_size = cu_header->addr_size;
11690 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
11691 /* Base address selection entry. */
11692 CORE_ADDR base;
11693 int found_base;
11694 unsigned int dummy;
d521ce57 11695 const gdb_byte *buffer;
43039443
JK
11696 CORE_ADDR marker;
11697 int low_set;
11698 CORE_ADDR low = 0;
11699 CORE_ADDR high = 0;
ff013f42 11700 CORE_ADDR baseaddr;
43039443 11701
d00adf39
DE
11702 found_base = cu->base_known;
11703 base = cu->base_address;
43039443 11704
be391dca 11705 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 11706 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
11707 {
11708 complaint (&symfile_complaints,
11709 _("Offset %d out of bounds for DW_AT_ranges attribute"),
11710 offset);
11711 return 0;
11712 }
dce234bc 11713 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
11714
11715 /* Read in the largest possible address. */
11716 marker = read_address (obfd, buffer, cu, &dummy);
11717 if ((marker & mask) == mask)
11718 {
11719 /* If we found the largest possible address, then
11720 read the base address. */
11721 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11722 buffer += 2 * addr_size;
11723 offset += 2 * addr_size;
11724 found_base = 1;
11725 }
11726
11727 low_set = 0;
11728
e7030f15 11729 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 11730
43039443
JK
11731 while (1)
11732 {
11733 CORE_ADDR range_beginning, range_end;
11734
11735 range_beginning = read_address (obfd, buffer, cu, &dummy);
11736 buffer += addr_size;
11737 range_end = read_address (obfd, buffer, cu, &dummy);
11738 buffer += addr_size;
11739 offset += 2 * addr_size;
11740
11741 /* An end of list marker is a pair of zero addresses. */
11742 if (range_beginning == 0 && range_end == 0)
11743 /* Found the end of list entry. */
11744 break;
11745
11746 /* Each base address selection entry is a pair of 2 values.
11747 The first is the largest possible address, the second is
11748 the base address. Check for a base address here. */
11749 if ((range_beginning & mask) == mask)
11750 {
11751 /* If we found the largest possible address, then
11752 read the base address. */
11753 base = read_address (obfd, buffer + addr_size, cu, &dummy);
11754 found_base = 1;
11755 continue;
11756 }
11757
11758 if (!found_base)
11759 {
11760 /* We have no valid base address for the ranges
11761 data. */
11762 complaint (&symfile_complaints,
11763 _("Invalid .debug_ranges data (no base address)"));
11764 return 0;
11765 }
11766
9277c30c
UW
11767 if (range_beginning > range_end)
11768 {
11769 /* Inverted range entries are invalid. */
11770 complaint (&symfile_complaints,
11771 _("Invalid .debug_ranges data (inverted range)"));
11772 return 0;
11773 }
11774
11775 /* Empty range entries have no effect. */
11776 if (range_beginning == range_end)
11777 continue;
11778
43039443
JK
11779 range_beginning += base;
11780 range_end += base;
11781
01093045
DE
11782 /* A not-uncommon case of bad debug info.
11783 Don't pollute the addrmap with bad data. */
11784 if (range_beginning + baseaddr == 0
11785 && !dwarf2_per_objfile->has_section_at_zero)
11786 {
11787 complaint (&symfile_complaints,
11788 _(".debug_ranges entry has start address of zero"
4262abfb 11789 " [in module %s]"), objfile_name (objfile));
01093045
DE
11790 continue;
11791 }
11792
9277c30c 11793 if (ranges_pst != NULL)
3e29f34a
MR
11794 {
11795 CORE_ADDR lowpc;
11796 CORE_ADDR highpc;
11797
11798 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11799 range_beginning + baseaddr);
11800 highpc = gdbarch_adjust_dwarf2_addr (gdbarch,
11801 range_end + baseaddr);
11802 addrmap_set_empty (objfile->psymtabs_addrmap, lowpc, highpc - 1,
11803 ranges_pst);
11804 }
ff013f42 11805
43039443
JK
11806 /* FIXME: This is recording everything as a low-high
11807 segment of consecutive addresses. We should have a
11808 data structure for discontiguous block ranges
11809 instead. */
11810 if (! low_set)
11811 {
11812 low = range_beginning;
11813 high = range_end;
11814 low_set = 1;
11815 }
11816 else
11817 {
11818 if (range_beginning < low)
11819 low = range_beginning;
11820 if (range_end > high)
11821 high = range_end;
11822 }
11823 }
11824
11825 if (! low_set)
11826 /* If the first entry is an end-of-list marker, the range
11827 describes an empty scope, i.e. no instructions. */
11828 return 0;
11829
11830 if (low_return)
11831 *low_return = low;
11832 if (high_return)
11833 *high_return = high;
11834 return 1;
11835}
11836
af34e669
DJ
11837/* Get low and high pc attributes from a die. Return 1 if the attributes
11838 are present and valid, otherwise, return 0. Return -1 if the range is
11839 discontinuous, i.e. derived from DW_AT_ranges information. */
380bca97 11840
c906108c 11841static int
af34e669 11842dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
11843 CORE_ADDR *highpc, struct dwarf2_cu *cu,
11844 struct partial_symtab *pst)
c906108c
SS
11845{
11846 struct attribute *attr;
91da1414 11847 struct attribute *attr_high;
af34e669
DJ
11848 CORE_ADDR low = 0;
11849 CORE_ADDR high = 0;
11850 int ret = 0;
c906108c 11851
91da1414
MW
11852 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
11853 if (attr_high)
af34e669 11854 {
e142c38c 11855 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669 11856 if (attr)
91da1414 11857 {
31aa7e4e
JB
11858 low = attr_value_as_address (attr);
11859 high = attr_value_as_address (attr_high);
11860 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
11861 high += low;
91da1414 11862 }
af34e669
DJ
11863 else
11864 /* Found high w/o low attribute. */
11865 return 0;
11866
11867 /* Found consecutive range of addresses. */
11868 ret = 1;
11869 }
c906108c 11870 else
af34e669 11871 {
e142c38c 11872 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
11873 if (attr != NULL)
11874 {
ab435259
DE
11875 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
11876 We take advantage of the fact that DW_AT_ranges does not appear
11877 in DW_TAG_compile_unit of DWO files. */
11878 int need_ranges_base = die->tag != DW_TAG_compile_unit;
11879 unsigned int ranges_offset = (DW_UNSND (attr)
11880 + (need_ranges_base
11881 ? cu->ranges_base
11882 : 0));
2e3cf129 11883
af34e669 11884 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 11885 .debug_ranges section. */
2e3cf129 11886 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
af34e669 11887 return 0;
43039443 11888 /* Found discontinuous range of addresses. */
af34e669
DJ
11889 ret = -1;
11890 }
11891 }
c906108c 11892
9373cf26
JK
11893 /* read_partial_die has also the strict LOW < HIGH requirement. */
11894 if (high <= low)
c906108c
SS
11895 return 0;
11896
11897 /* When using the GNU linker, .gnu.linkonce. sections are used to
11898 eliminate duplicate copies of functions and vtables and such.
11899 The linker will arbitrarily choose one and discard the others.
11900 The AT_*_pc values for such functions refer to local labels in
11901 these sections. If the section from that file was discarded, the
11902 labels are not in the output, so the relocs get a value of 0.
11903 If this is a discarded function, mark the pc bounds as invalid,
11904 so that GDB will ignore it. */
72dca2f5 11905 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
11906 return 0;
11907
11908 *lowpc = low;
96408a79
SA
11909 if (highpc)
11910 *highpc = high;
af34e669 11911 return ret;
c906108c
SS
11912}
11913
b084d499
JB
11914/* Assuming that DIE represents a subprogram DIE or a lexical block, get
11915 its low and high PC addresses. Do nothing if these addresses could not
11916 be determined. Otherwise, set LOWPC to the low address if it is smaller,
11917 and HIGHPC to the high address if greater than HIGHPC. */
11918
11919static void
11920dwarf2_get_subprogram_pc_bounds (struct die_info *die,
11921 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11922 struct dwarf2_cu *cu)
11923{
11924 CORE_ADDR low, high;
11925 struct die_info *child = die->child;
11926
d85a05f0 11927 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
11928 {
11929 *lowpc = min (*lowpc, low);
11930 *highpc = max (*highpc, high);
11931 }
11932
11933 /* If the language does not allow nested subprograms (either inside
11934 subprograms or lexical blocks), we're done. */
11935 if (cu->language != language_ada)
11936 return;
6e70227d 11937
b084d499
JB
11938 /* Check all the children of the given DIE. If it contains nested
11939 subprograms, then check their pc bounds. Likewise, we need to
11940 check lexical blocks as well, as they may also contain subprogram
11941 definitions. */
11942 while (child && child->tag)
11943 {
11944 if (child->tag == DW_TAG_subprogram
11945 || child->tag == DW_TAG_lexical_block)
11946 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
11947 child = sibling_die (child);
11948 }
11949}
11950
fae299cd
DC
11951/* Get the low and high pc's represented by the scope DIE, and store
11952 them in *LOWPC and *HIGHPC. If the correct values can't be
11953 determined, set *LOWPC to -1 and *HIGHPC to 0. */
11954
11955static void
11956get_scope_pc_bounds (struct die_info *die,
11957 CORE_ADDR *lowpc, CORE_ADDR *highpc,
11958 struct dwarf2_cu *cu)
11959{
11960 CORE_ADDR best_low = (CORE_ADDR) -1;
11961 CORE_ADDR best_high = (CORE_ADDR) 0;
11962 CORE_ADDR current_low, current_high;
11963
d85a05f0 11964 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
11965 {
11966 best_low = current_low;
11967 best_high = current_high;
11968 }
11969 else
11970 {
11971 struct die_info *child = die->child;
11972
11973 while (child && child->tag)
11974 {
11975 switch (child->tag) {
11976 case DW_TAG_subprogram:
b084d499 11977 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
11978 break;
11979 case DW_TAG_namespace:
f55ee35c 11980 case DW_TAG_module:
fae299cd
DC
11981 /* FIXME: carlton/2004-01-16: Should we do this for
11982 DW_TAG_class_type/DW_TAG_structure_type, too? I think
11983 that current GCC's always emit the DIEs corresponding
11984 to definitions of methods of classes as children of a
11985 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
11986 the DIEs giving the declarations, which could be
11987 anywhere). But I don't see any reason why the
11988 standards says that they have to be there. */
11989 get_scope_pc_bounds (child, &current_low, &current_high, cu);
11990
11991 if (current_low != ((CORE_ADDR) -1))
11992 {
11993 best_low = min (best_low, current_low);
11994 best_high = max (best_high, current_high);
11995 }
11996 break;
11997 default:
0963b4bd 11998 /* Ignore. */
fae299cd
DC
11999 break;
12000 }
12001
12002 child = sibling_die (child);
12003 }
12004 }
12005
12006 *lowpc = best_low;
12007 *highpc = best_high;
12008}
12009
801e3a5b
JB
12010/* Record the address ranges for BLOCK, offset by BASEADDR, as given
12011 in DIE. */
380bca97 12012
801e3a5b
JB
12013static void
12014dwarf2_record_block_ranges (struct die_info *die, struct block *block,
12015 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
12016{
bb5ed363 12017 struct objfile *objfile = cu->objfile;
3e29f34a 12018 struct gdbarch *gdbarch = get_objfile_arch (objfile);
801e3a5b 12019 struct attribute *attr;
91da1414 12020 struct attribute *attr_high;
801e3a5b 12021
91da1414
MW
12022 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
12023 if (attr_high)
801e3a5b 12024 {
801e3a5b
JB
12025 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
12026 if (attr)
12027 {
31aa7e4e
JB
12028 CORE_ADDR low = attr_value_as_address (attr);
12029 CORE_ADDR high = attr_value_as_address (attr_high);
12030
12031 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
12032 high += low;
9a619af0 12033
3e29f34a
MR
12034 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
12035 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
12036 record_block_range (block, low, high - 1);
801e3a5b
JB
12037 }
12038 }
12039
12040 attr = dwarf2_attr (die, DW_AT_ranges, cu);
12041 if (attr)
12042 {
bb5ed363 12043 bfd *obfd = objfile->obfd;
ab435259
DE
12044 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
12045 We take advantage of the fact that DW_AT_ranges does not appear
12046 in DW_TAG_compile_unit of DWO files. */
12047 int need_ranges_base = die->tag != DW_TAG_compile_unit;
801e3a5b
JB
12048
12049 /* The value of the DW_AT_ranges attribute is the offset of the
12050 address range list in the .debug_ranges section. */
ab435259
DE
12051 unsigned long offset = (DW_UNSND (attr)
12052 + (need_ranges_base ? cu->ranges_base : 0));
d62bfeaf 12053 const gdb_byte *buffer;
801e3a5b
JB
12054
12055 /* For some target architectures, but not others, the
12056 read_address function sign-extends the addresses it returns.
12057 To recognize base address selection entries, we need a
12058 mask. */
12059 unsigned int addr_size = cu->header.addr_size;
12060 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
12061
12062 /* The base address, to which the next pair is relative. Note
12063 that this 'base' is a DWARF concept: most entries in a range
12064 list are relative, to reduce the number of relocs against the
12065 debugging information. This is separate from this function's
12066 'baseaddr' argument, which GDB uses to relocate debugging
12067 information from a shared library based on the address at
12068 which the library was loaded. */
d00adf39
DE
12069 CORE_ADDR base = cu->base_address;
12070 int base_known = cu->base_known;
801e3a5b 12071
d62bfeaf 12072 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 12073 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
12074 {
12075 complaint (&symfile_complaints,
12076 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
12077 offset);
12078 return;
12079 }
d62bfeaf 12080 buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
12081
12082 for (;;)
12083 {
12084 unsigned int bytes_read;
12085 CORE_ADDR start, end;
12086
12087 start = read_address (obfd, buffer, cu, &bytes_read);
12088 buffer += bytes_read;
12089 end = read_address (obfd, buffer, cu, &bytes_read);
12090 buffer += bytes_read;
12091
12092 /* Did we find the end of the range list? */
12093 if (start == 0 && end == 0)
12094 break;
12095
12096 /* Did we find a base address selection entry? */
12097 else if ((start & base_select_mask) == base_select_mask)
12098 {
12099 base = end;
12100 base_known = 1;
12101 }
12102
12103 /* We found an ordinary address range. */
12104 else
12105 {
12106 if (!base_known)
12107 {
12108 complaint (&symfile_complaints,
3e43a32a
MS
12109 _("Invalid .debug_ranges data "
12110 "(no base address)"));
801e3a5b
JB
12111 return;
12112 }
12113
9277c30c
UW
12114 if (start > end)
12115 {
12116 /* Inverted range entries are invalid. */
12117 complaint (&symfile_complaints,
12118 _("Invalid .debug_ranges data "
12119 "(inverted range)"));
12120 return;
12121 }
12122
12123 /* Empty range entries have no effect. */
12124 if (start == end)
12125 continue;
12126
01093045
DE
12127 start += base + baseaddr;
12128 end += base + baseaddr;
12129
12130 /* A not-uncommon case of bad debug info.
12131 Don't pollute the addrmap with bad data. */
12132 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
12133 {
12134 complaint (&symfile_complaints,
12135 _(".debug_ranges entry has start address of zero"
4262abfb 12136 " [in module %s]"), objfile_name (objfile));
01093045
DE
12137 continue;
12138 }
12139
3e29f34a
MR
12140 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
12141 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
01093045 12142 record_block_range (block, start, end - 1);
801e3a5b
JB
12143 }
12144 }
12145 }
12146}
12147
685b1105
JK
12148/* Check whether the producer field indicates either of GCC < 4.6, or the
12149 Intel C/C++ compiler, and cache the result in CU. */
60d5a603 12150
685b1105
JK
12151static void
12152check_producer (struct dwarf2_cu *cu)
60d5a603
JK
12153{
12154 const char *cs;
12155 int major, minor, release;
12156
12157 if (cu->producer == NULL)
12158 {
12159 /* For unknown compilers expect their behavior is DWARF version
12160 compliant.
12161
12162 GCC started to support .debug_types sections by -gdwarf-4 since
12163 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
12164 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
12165 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
12166 interpreted incorrectly by GDB now - GCC PR debug/48229. */
60d5a603 12167 }
685b1105 12168 else if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) == 0)
60d5a603 12169 {
685b1105
JK
12170 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
12171
ba919b58
TT
12172 cs = &cu->producer[strlen ("GNU ")];
12173 while (*cs && !isdigit (*cs))
12174 cs++;
12175 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
12176 {
12177 /* Not recognized as GCC. */
12178 }
12179 else
1b80a9fa
JK
12180 {
12181 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
12182 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
12183 }
685b1105
JK
12184 }
12185 else if (strncmp (cu->producer, "Intel(R) C", strlen ("Intel(R) C")) == 0)
12186 cu->producer_is_icc = 1;
12187 else
12188 {
12189 /* For other non-GCC compilers, expect their behavior is DWARF version
12190 compliant. */
60d5a603
JK
12191 }
12192
ba919b58 12193 cu->checked_producer = 1;
685b1105 12194}
ba919b58 12195
685b1105
JK
12196/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
12197 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
12198 during 4.6.0 experimental. */
12199
12200static int
12201producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
12202{
12203 if (!cu->checked_producer)
12204 check_producer (cu);
12205
12206 return cu->producer_is_gxx_lt_4_6;
60d5a603
JK
12207}
12208
12209/* Return the default accessibility type if it is not overriden by
12210 DW_AT_accessibility. */
12211
12212static enum dwarf_access_attribute
12213dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
12214{
12215 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
12216 {
12217 /* The default DWARF 2 accessibility for members is public, the default
12218 accessibility for inheritance is private. */
12219
12220 if (die->tag != DW_TAG_inheritance)
12221 return DW_ACCESS_public;
12222 else
12223 return DW_ACCESS_private;
12224 }
12225 else
12226 {
12227 /* DWARF 3+ defines the default accessibility a different way. The same
12228 rules apply now for DW_TAG_inheritance as for the members and it only
12229 depends on the container kind. */
12230
12231 if (die->parent->tag == DW_TAG_class_type)
12232 return DW_ACCESS_private;
12233 else
12234 return DW_ACCESS_public;
12235 }
12236}
12237
74ac6d43
TT
12238/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
12239 offset. If the attribute was not found return 0, otherwise return
12240 1. If it was found but could not properly be handled, set *OFFSET
12241 to 0. */
12242
12243static int
12244handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
12245 LONGEST *offset)
12246{
12247 struct attribute *attr;
12248
12249 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
12250 if (attr != NULL)
12251 {
12252 *offset = 0;
12253
12254 /* Note that we do not check for a section offset first here.
12255 This is because DW_AT_data_member_location is new in DWARF 4,
12256 so if we see it, we can assume that a constant form is really
12257 a constant and not a section offset. */
12258 if (attr_form_is_constant (attr))
12259 *offset = dwarf2_get_attr_constant_value (attr, 0);
12260 else if (attr_form_is_section_offset (attr))
12261 dwarf2_complex_location_expr_complaint ();
12262 else if (attr_form_is_block (attr))
12263 *offset = decode_locdesc (DW_BLOCK (attr), cu);
12264 else
12265 dwarf2_complex_location_expr_complaint ();
12266
12267 return 1;
12268 }
12269
12270 return 0;
12271}
12272
c906108c
SS
12273/* Add an aggregate field to the field list. */
12274
12275static void
107d2387 12276dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 12277 struct dwarf2_cu *cu)
6e70227d 12278{
e7c27a73 12279 struct objfile *objfile = cu->objfile;
5e2b427d 12280 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
12281 struct nextfield *new_field;
12282 struct attribute *attr;
12283 struct field *fp;
15d034d0 12284 const char *fieldname = "";
c906108c
SS
12285
12286 /* Allocate a new field list entry and link it in. */
12287 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 12288 make_cleanup (xfree, new_field);
c906108c 12289 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
12290
12291 if (die->tag == DW_TAG_inheritance)
12292 {
12293 new_field->next = fip->baseclasses;
12294 fip->baseclasses = new_field;
12295 }
12296 else
12297 {
12298 new_field->next = fip->fields;
12299 fip->fields = new_field;
12300 }
c906108c
SS
12301 fip->nfields++;
12302
e142c38c 12303 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
12304 if (attr)
12305 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
12306 else
12307 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
12308 if (new_field->accessibility != DW_ACCESS_public)
12309 fip->non_public_fields = 1;
60d5a603 12310
e142c38c 12311 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
12312 if (attr)
12313 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
12314 else
12315 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
12316
12317 fp = &new_field->field;
a9a9bd0f 12318
e142c38c 12319 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 12320 {
74ac6d43
TT
12321 LONGEST offset;
12322
a9a9bd0f 12323 /* Data member other than a C++ static data member. */
6e70227d 12324
c906108c 12325 /* Get type of field. */
e7c27a73 12326 fp->type = die_type (die, cu);
c906108c 12327
d6a843b5 12328 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 12329
c906108c 12330 /* Get bit size of field (zero if none). */
e142c38c 12331 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
12332 if (attr)
12333 {
12334 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
12335 }
12336 else
12337 {
12338 FIELD_BITSIZE (*fp) = 0;
12339 }
12340
12341 /* Get bit offset of field. */
74ac6d43
TT
12342 if (handle_data_member_location (die, cu, &offset))
12343 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 12344 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
12345 if (attr)
12346 {
5e2b427d 12347 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
12348 {
12349 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
12350 additional bit offset from the MSB of the containing
12351 anonymous object to the MSB of the field. We don't
12352 have to do anything special since we don't need to
12353 know the size of the anonymous object. */
f41f5e61 12354 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
c906108c
SS
12355 }
12356 else
12357 {
12358 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
12359 MSB of the anonymous object, subtract off the number of
12360 bits from the MSB of the field to the MSB of the
12361 object, and then subtract off the number of bits of
12362 the field itself. The result is the bit offset of
12363 the LSB of the field. */
c906108c
SS
12364 int anonymous_size;
12365 int bit_offset = DW_UNSND (attr);
12366
e142c38c 12367 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
12368 if (attr)
12369 {
12370 /* The size of the anonymous object containing
12371 the bit field is explicit, so use the
12372 indicated size (in bytes). */
12373 anonymous_size = DW_UNSND (attr);
12374 }
12375 else
12376 {
12377 /* The size of the anonymous object containing
12378 the bit field must be inferred from the type
12379 attribute of the data member containing the
12380 bit field. */
12381 anonymous_size = TYPE_LENGTH (fp->type);
12382 }
f41f5e61
PA
12383 SET_FIELD_BITPOS (*fp,
12384 (FIELD_BITPOS (*fp)
12385 + anonymous_size * bits_per_byte
12386 - bit_offset - FIELD_BITSIZE (*fp)));
c906108c
SS
12387 }
12388 }
12389
12390 /* Get name of field. */
39cbfefa
DJ
12391 fieldname = dwarf2_name (die, cu);
12392 if (fieldname == NULL)
12393 fieldname = "";
d8151005
DJ
12394
12395 /* The name is already allocated along with this objfile, so we don't
12396 need to duplicate it for the type. */
12397 fp->name = fieldname;
c906108c
SS
12398
12399 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 12400 pointer or virtual base class pointer) to private. */
e142c38c 12401 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 12402 {
d48cc9dd 12403 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
12404 new_field->accessibility = DW_ACCESS_private;
12405 fip->non_public_fields = 1;
12406 }
12407 }
a9a9bd0f 12408 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 12409 {
a9a9bd0f
DC
12410 /* C++ static member. */
12411
12412 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
12413 is a declaration, but all versions of G++ as of this writing
12414 (so through at least 3.2.1) incorrectly generate
12415 DW_TAG_variable tags. */
6e70227d 12416
ff355380 12417 const char *physname;
c906108c 12418
a9a9bd0f 12419 /* Get name of field. */
39cbfefa
DJ
12420 fieldname = dwarf2_name (die, cu);
12421 if (fieldname == NULL)
c906108c
SS
12422 return;
12423
254e6b9e 12424 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
12425 if (attr
12426 /* Only create a symbol if this is an external value.
12427 new_symbol checks this and puts the value in the global symbol
12428 table, which we want. If it is not external, new_symbol
12429 will try to put the value in cu->list_in_scope which is wrong. */
12430 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
12431 {
12432 /* A static const member, not much different than an enum as far as
12433 we're concerned, except that we can support more types. */
12434 new_symbol (die, NULL, cu);
12435 }
12436
2df3850c 12437 /* Get physical name. */
ff355380 12438 physname = dwarf2_physname (fieldname, die, cu);
c906108c 12439
d8151005
DJ
12440 /* The name is already allocated along with this objfile, so we don't
12441 need to duplicate it for the type. */
12442 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 12443 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 12444 FIELD_NAME (*fp) = fieldname;
c906108c
SS
12445 }
12446 else if (die->tag == DW_TAG_inheritance)
12447 {
74ac6d43 12448 LONGEST offset;
d4b96c9a 12449
74ac6d43
TT
12450 /* C++ base class field. */
12451 if (handle_data_member_location (die, cu, &offset))
12452 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 12453 FIELD_BITSIZE (*fp) = 0;
e7c27a73 12454 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
12455 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
12456 fip->nbaseclasses++;
12457 }
12458}
12459
98751a41
JK
12460/* Add a typedef defined in the scope of the FIP's class. */
12461
12462static void
12463dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
12464 struct dwarf2_cu *cu)
6e70227d 12465{
98751a41 12466 struct objfile *objfile = cu->objfile;
98751a41
JK
12467 struct typedef_field_list *new_field;
12468 struct attribute *attr;
12469 struct typedef_field *fp;
12470 char *fieldname = "";
12471
12472 /* Allocate a new field list entry and link it in. */
12473 new_field = xzalloc (sizeof (*new_field));
12474 make_cleanup (xfree, new_field);
12475
12476 gdb_assert (die->tag == DW_TAG_typedef);
12477
12478 fp = &new_field->field;
12479
12480 /* Get name of field. */
12481 fp->name = dwarf2_name (die, cu);
12482 if (fp->name == NULL)
12483 return;
12484
12485 fp->type = read_type_die (die, cu);
12486
12487 new_field->next = fip->typedef_field_list;
12488 fip->typedef_field_list = new_field;
12489 fip->typedef_field_list_count++;
12490}
12491
c906108c
SS
12492/* Create the vector of fields, and attach it to the type. */
12493
12494static void
fba45db2 12495dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12496 struct dwarf2_cu *cu)
c906108c
SS
12497{
12498 int nfields = fip->nfields;
12499
12500 /* Record the field count, allocate space for the array of fields,
12501 and create blank accessibility bitfields if necessary. */
12502 TYPE_NFIELDS (type) = nfields;
12503 TYPE_FIELDS (type) = (struct field *)
12504 TYPE_ALLOC (type, sizeof (struct field) * nfields);
12505 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
12506
b4ba55a1 12507 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
12508 {
12509 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12510
12511 TYPE_FIELD_PRIVATE_BITS (type) =
12512 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12513 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
12514
12515 TYPE_FIELD_PROTECTED_BITS (type) =
12516 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12517 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
12518
774b6a14
TT
12519 TYPE_FIELD_IGNORE_BITS (type) =
12520 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
12521 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
12522 }
12523
12524 /* If the type has baseclasses, allocate and clear a bit vector for
12525 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 12526 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
12527 {
12528 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 12529 unsigned char *pointer;
c906108c
SS
12530
12531 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
12532 pointer = TYPE_ALLOC (type, num_bytes);
12533 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
12534 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
12535 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
12536 }
12537
3e43a32a
MS
12538 /* Copy the saved-up fields into the field vector. Start from the head of
12539 the list, adding to the tail of the field array, so that they end up in
12540 the same order in the array in which they were added to the list. */
c906108c
SS
12541 while (nfields-- > 0)
12542 {
7d0ccb61
DJ
12543 struct nextfield *fieldp;
12544
12545 if (fip->fields)
12546 {
12547 fieldp = fip->fields;
12548 fip->fields = fieldp->next;
12549 }
12550 else
12551 {
12552 fieldp = fip->baseclasses;
12553 fip->baseclasses = fieldp->next;
12554 }
12555
12556 TYPE_FIELD (type, nfields) = fieldp->field;
12557 switch (fieldp->accessibility)
c906108c 12558 {
c5aa993b 12559 case DW_ACCESS_private:
b4ba55a1
JB
12560 if (cu->language != language_ada)
12561 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 12562 break;
c906108c 12563
c5aa993b 12564 case DW_ACCESS_protected:
b4ba55a1
JB
12565 if (cu->language != language_ada)
12566 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 12567 break;
c906108c 12568
c5aa993b
JM
12569 case DW_ACCESS_public:
12570 break;
c906108c 12571
c5aa993b
JM
12572 default:
12573 /* Unknown accessibility. Complain and treat it as public. */
12574 {
e2e0b3e5 12575 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 12576 fieldp->accessibility);
c5aa993b
JM
12577 }
12578 break;
c906108c
SS
12579 }
12580 if (nfields < fip->nbaseclasses)
12581 {
7d0ccb61 12582 switch (fieldp->virtuality)
c906108c 12583 {
c5aa993b
JM
12584 case DW_VIRTUALITY_virtual:
12585 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 12586 if (cu->language == language_ada)
a73c6dcd 12587 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
12588 SET_TYPE_FIELD_VIRTUAL (type, nfields);
12589 break;
c906108c
SS
12590 }
12591 }
c906108c
SS
12592 }
12593}
12594
7d27a96d
TT
12595/* Return true if this member function is a constructor, false
12596 otherwise. */
12597
12598static int
12599dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
12600{
12601 const char *fieldname;
12602 const char *typename;
12603 int len;
12604
12605 if (die->parent == NULL)
12606 return 0;
12607
12608 if (die->parent->tag != DW_TAG_structure_type
12609 && die->parent->tag != DW_TAG_union_type
12610 && die->parent->tag != DW_TAG_class_type)
12611 return 0;
12612
12613 fieldname = dwarf2_name (die, cu);
12614 typename = dwarf2_name (die->parent, cu);
12615 if (fieldname == NULL || typename == NULL)
12616 return 0;
12617
12618 len = strlen (fieldname);
12619 return (strncmp (fieldname, typename, len) == 0
12620 && (typename[len] == '\0' || typename[len] == '<'));
12621}
12622
c906108c
SS
12623/* Add a member function to the proper fieldlist. */
12624
12625static void
107d2387 12626dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 12627 struct type *type, struct dwarf2_cu *cu)
c906108c 12628{
e7c27a73 12629 struct objfile *objfile = cu->objfile;
c906108c
SS
12630 struct attribute *attr;
12631 struct fnfieldlist *flp;
12632 int i;
12633 struct fn_field *fnp;
15d034d0 12634 const char *fieldname;
c906108c 12635 struct nextfnfield *new_fnfield;
f792889a 12636 struct type *this_type;
60d5a603 12637 enum dwarf_access_attribute accessibility;
c906108c 12638
b4ba55a1 12639 if (cu->language == language_ada)
a73c6dcd 12640 error (_("unexpected member function in Ada type"));
b4ba55a1 12641
2df3850c 12642 /* Get name of member function. */
39cbfefa
DJ
12643 fieldname = dwarf2_name (die, cu);
12644 if (fieldname == NULL)
2df3850c 12645 return;
c906108c 12646
c906108c
SS
12647 /* Look up member function name in fieldlist. */
12648 for (i = 0; i < fip->nfnfields; i++)
12649 {
27bfe10e 12650 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
12651 break;
12652 }
12653
12654 /* Create new list element if necessary. */
12655 if (i < fip->nfnfields)
12656 flp = &fip->fnfieldlists[i];
12657 else
12658 {
12659 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
12660 {
12661 fip->fnfieldlists = (struct fnfieldlist *)
12662 xrealloc (fip->fnfieldlists,
12663 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 12664 * sizeof (struct fnfieldlist));
c906108c 12665 if (fip->nfnfields == 0)
c13c43fd 12666 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
12667 }
12668 flp = &fip->fnfieldlists[fip->nfnfields];
12669 flp->name = fieldname;
12670 flp->length = 0;
12671 flp->head = NULL;
3da10d80 12672 i = fip->nfnfields++;
c906108c
SS
12673 }
12674
12675 /* Create a new member function field and chain it to the field list
0963b4bd 12676 entry. */
c906108c 12677 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 12678 make_cleanup (xfree, new_fnfield);
c906108c
SS
12679 memset (new_fnfield, 0, sizeof (struct nextfnfield));
12680 new_fnfield->next = flp->head;
12681 flp->head = new_fnfield;
12682 flp->length++;
12683
12684 /* Fill in the member function field info. */
12685 fnp = &new_fnfield->fnfield;
3da10d80
KS
12686
12687 /* Delay processing of the physname until later. */
12688 if (cu->language == language_cplus || cu->language == language_java)
12689 {
12690 add_to_method_list (type, i, flp->length - 1, fieldname,
12691 die, cu);
12692 }
12693 else
12694 {
1d06ead6 12695 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
12696 fnp->physname = physname ? physname : "";
12697 }
12698
c906108c 12699 fnp->type = alloc_type (objfile);
f792889a
DJ
12700 this_type = read_type_die (die, cu);
12701 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 12702 {
f792889a 12703 int nparams = TYPE_NFIELDS (this_type);
c906108c 12704
f792889a 12705 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
12706 of the method itself (TYPE_CODE_METHOD). */
12707 smash_to_method_type (fnp->type, type,
f792889a
DJ
12708 TYPE_TARGET_TYPE (this_type),
12709 TYPE_FIELDS (this_type),
12710 TYPE_NFIELDS (this_type),
12711 TYPE_VARARGS (this_type));
c906108c
SS
12712
12713 /* Handle static member functions.
c5aa993b 12714 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
12715 member functions. G++ helps GDB by marking the first
12716 parameter for non-static member functions (which is the this
12717 pointer) as artificial. We obtain this information from
12718 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 12719 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
12720 fnp->voffset = VOFFSET_STATIC;
12721 }
12722 else
e2e0b3e5 12723 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 12724 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
12725
12726 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 12727 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 12728 fnp->fcontext = die_containing_type (die, cu);
c906108c 12729
3e43a32a
MS
12730 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
12731 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
12732
12733 /* Get accessibility. */
e142c38c 12734 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 12735 if (attr)
60d5a603
JK
12736 accessibility = DW_UNSND (attr);
12737 else
12738 accessibility = dwarf2_default_access_attribute (die, cu);
12739 switch (accessibility)
c906108c 12740 {
60d5a603
JK
12741 case DW_ACCESS_private:
12742 fnp->is_private = 1;
12743 break;
12744 case DW_ACCESS_protected:
12745 fnp->is_protected = 1;
12746 break;
c906108c
SS
12747 }
12748
b02dede2 12749 /* Check for artificial methods. */
e142c38c 12750 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
12751 if (attr && DW_UNSND (attr) != 0)
12752 fnp->is_artificial = 1;
12753
7d27a96d
TT
12754 fnp->is_constructor = dwarf2_is_constructor (die, cu);
12755
0d564a31 12756 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
12757 function. For older versions of GCC, this is an offset in the
12758 appropriate virtual table, as specified by DW_AT_containing_type.
12759 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
12760 to the object address. */
12761
e142c38c 12762 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 12763 if (attr)
8e19ed76 12764 {
aec5aa8b 12765 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 12766 {
aec5aa8b
TT
12767 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
12768 {
12769 /* Old-style GCC. */
12770 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
12771 }
12772 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
12773 || (DW_BLOCK (attr)->size > 1
12774 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
12775 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
12776 {
12777 struct dwarf_block blk;
12778 int offset;
12779
12780 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
12781 ? 1 : 2);
12782 blk.size = DW_BLOCK (attr)->size - offset;
12783 blk.data = DW_BLOCK (attr)->data + offset;
12784 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
12785 if ((fnp->voffset % cu->header.addr_size) != 0)
12786 dwarf2_complex_location_expr_complaint ();
12787 else
12788 fnp->voffset /= cu->header.addr_size;
12789 fnp->voffset += 2;
12790 }
12791 else
12792 dwarf2_complex_location_expr_complaint ();
12793
12794 if (!fnp->fcontext)
12795 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
12796 }
3690dd37 12797 else if (attr_form_is_section_offset (attr))
8e19ed76 12798 {
4d3c2250 12799 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
12800 }
12801 else
12802 {
4d3c2250
KB
12803 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
12804 fieldname);
8e19ed76 12805 }
0d564a31 12806 }
d48cc9dd
DJ
12807 else
12808 {
12809 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
12810 if (attr && DW_UNSND (attr))
12811 {
12812 /* GCC does this, as of 2008-08-25; PR debug/37237. */
12813 complaint (&symfile_complaints,
3e43a32a
MS
12814 _("Member function \"%s\" (offset %d) is virtual "
12815 "but the vtable offset is not specified"),
b64f50a1 12816 fieldname, die->offset.sect_off);
9655fd1a 12817 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
12818 TYPE_CPLUS_DYNAMIC (type) = 1;
12819 }
12820 }
c906108c
SS
12821}
12822
12823/* Create the vector of member function fields, and attach it to the type. */
12824
12825static void
fba45db2 12826dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 12827 struct dwarf2_cu *cu)
c906108c
SS
12828{
12829 struct fnfieldlist *flp;
c906108c
SS
12830 int i;
12831
b4ba55a1 12832 if (cu->language == language_ada)
a73c6dcd 12833 error (_("unexpected member functions in Ada type"));
b4ba55a1 12834
c906108c
SS
12835 ALLOCATE_CPLUS_STRUCT_TYPE (type);
12836 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
12837 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
12838
12839 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
12840 {
12841 struct nextfnfield *nfp = flp->head;
12842 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
12843 int k;
12844
12845 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
12846 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
12847 fn_flp->fn_fields = (struct fn_field *)
12848 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
12849 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 12850 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
12851 }
12852
12853 TYPE_NFN_FIELDS (type) = fip->nfnfields;
c906108c
SS
12854}
12855
1168df01
JB
12856/* Returns non-zero if NAME is the name of a vtable member in CU's
12857 language, zero otherwise. */
12858static int
12859is_vtable_name (const char *name, struct dwarf2_cu *cu)
12860{
12861 static const char vptr[] = "_vptr";
987504bb 12862 static const char vtable[] = "vtable";
1168df01 12863
987504bb
JJ
12864 /* Look for the C++ and Java forms of the vtable. */
12865 if ((cu->language == language_java
12866 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
12867 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
12868 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
12869 return 1;
12870
12871 return 0;
12872}
12873
c0dd20ea 12874/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
12875 functions, with the ABI-specified layout. If TYPE describes
12876 such a structure, smash it into a member function type.
61049d3b
DJ
12877
12878 GCC shouldn't do this; it should just output pointer to member DIEs.
12879 This is GCC PR debug/28767. */
c0dd20ea 12880
0b92b5bb
TT
12881static void
12882quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 12883{
0b92b5bb 12884 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
12885
12886 /* Check for a structure with no name and two children. */
0b92b5bb
TT
12887 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
12888 return;
c0dd20ea
DJ
12889
12890 /* Check for __pfn and __delta members. */
0b92b5bb
TT
12891 if (TYPE_FIELD_NAME (type, 0) == NULL
12892 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
12893 || TYPE_FIELD_NAME (type, 1) == NULL
12894 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
12895 return;
c0dd20ea
DJ
12896
12897 /* Find the type of the method. */
0b92b5bb 12898 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
12899 if (pfn_type == NULL
12900 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
12901 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 12902 return;
c0dd20ea
DJ
12903
12904 /* Look for the "this" argument. */
12905 pfn_type = TYPE_TARGET_TYPE (pfn_type);
12906 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 12907 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 12908 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 12909 return;
c0dd20ea
DJ
12910
12911 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
12912 new_type = alloc_type (objfile);
12913 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
12914 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
12915 TYPE_VARARGS (pfn_type));
0b92b5bb 12916 smash_to_methodptr_type (type, new_type);
c0dd20ea 12917}
1168df01 12918
685b1105
JK
12919/* Return non-zero if the CU's PRODUCER string matches the Intel C/C++ compiler
12920 (icc). */
12921
12922static int
12923producer_is_icc (struct dwarf2_cu *cu)
12924{
12925 if (!cu->checked_producer)
12926 check_producer (cu);
12927
12928 return cu->producer_is_icc;
12929}
12930
c906108c 12931/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
12932 (definition) to create a type for the structure or union. Fill in
12933 the type's name and general properties; the members will not be
83655187
DE
12934 processed until process_structure_scope. A symbol table entry for
12935 the type will also not be done until process_structure_scope (assuming
12936 the type has a name).
c906108c 12937
c767944b
DJ
12938 NOTE: we need to call these functions regardless of whether or not the
12939 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c 12940 structure or union. This gets the type entered into our set of
83655187 12941 user defined types. */
c906108c 12942
f792889a 12943static struct type *
134d01f1 12944read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12945{
e7c27a73 12946 struct objfile *objfile = cu->objfile;
c906108c
SS
12947 struct type *type;
12948 struct attribute *attr;
15d034d0 12949 const char *name;
c906108c 12950
348e048f
DE
12951 /* If the definition of this type lives in .debug_types, read that type.
12952 Don't follow DW_AT_specification though, that will take us back up
12953 the chain and we want to go down. */
45e58e77 12954 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
12955 if (attr)
12956 {
ac9ec31b 12957 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 12958
ac9ec31b 12959 /* The type's CU may not be the same as CU.
02142a6c 12960 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
12961 return set_die_type (die, type, cu);
12962 }
12963
c0dd20ea 12964 type = alloc_type (objfile);
c906108c 12965 INIT_CPLUS_SPECIFIC (type);
93311388 12966
39cbfefa
DJ
12967 name = dwarf2_name (die, cu);
12968 if (name != NULL)
c906108c 12969 {
987504bb
JJ
12970 if (cu->language == language_cplus
12971 || cu->language == language_java)
63d06c5c 12972 {
15d034d0 12973 const char *full_name = dwarf2_full_name (name, die, cu);
3da10d80
KS
12974
12975 /* dwarf2_full_name might have already finished building the DIE's
12976 type. If so, there is no need to continue. */
12977 if (get_die_type (die, cu) != NULL)
12978 return get_die_type (die, cu);
12979
12980 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
12981 if (die->tag == DW_TAG_structure_type
12982 || die->tag == DW_TAG_class_type)
12983 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
12984 }
12985 else
12986 {
d8151005
DJ
12987 /* The name is already allocated along with this objfile, so
12988 we don't need to duplicate it for the type. */
7d455152 12989 TYPE_TAG_NAME (type) = name;
94af9270
KS
12990 if (die->tag == DW_TAG_class_type)
12991 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 12992 }
c906108c
SS
12993 }
12994
12995 if (die->tag == DW_TAG_structure_type)
12996 {
12997 TYPE_CODE (type) = TYPE_CODE_STRUCT;
12998 }
12999 else if (die->tag == DW_TAG_union_type)
13000 {
13001 TYPE_CODE (type) = TYPE_CODE_UNION;
13002 }
13003 else
13004 {
4753d33b 13005 TYPE_CODE (type) = TYPE_CODE_STRUCT;
c906108c
SS
13006 }
13007
0cc2414c
TT
13008 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
13009 TYPE_DECLARED_CLASS (type) = 1;
13010
e142c38c 13011 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13012 if (attr)
13013 {
13014 TYPE_LENGTH (type) = DW_UNSND (attr);
13015 }
13016 else
13017 {
13018 TYPE_LENGTH (type) = 0;
13019 }
13020
422b1cb0 13021 if (producer_is_icc (cu) && (TYPE_LENGTH (type) == 0))
685b1105
JK
13022 {
13023 /* ICC does not output the required DW_AT_declaration
13024 on incomplete types, but gives them a size of zero. */
422b1cb0 13025 TYPE_STUB (type) = 1;
685b1105
JK
13026 }
13027 else
13028 TYPE_STUB_SUPPORTED (type) = 1;
13029
dc718098 13030 if (die_is_declaration (die, cu))
876cecd0 13031 TYPE_STUB (type) = 1;
a6c727b2
DJ
13032 else if (attr == NULL && die->child == NULL
13033 && producer_is_realview (cu->producer))
13034 /* RealView does not output the required DW_AT_declaration
13035 on incomplete types. */
13036 TYPE_STUB (type) = 1;
dc718098 13037
c906108c
SS
13038 /* We need to add the type field to the die immediately so we don't
13039 infinitely recurse when dealing with pointers to the structure
0963b4bd 13040 type within the structure itself. */
1c379e20 13041 set_die_type (die, type, cu);
c906108c 13042
7e314c57
JK
13043 /* set_die_type should be already done. */
13044 set_descriptive_type (type, die, cu);
13045
c767944b
DJ
13046 return type;
13047}
13048
13049/* Finish creating a structure or union type, including filling in
13050 its members and creating a symbol for it. */
13051
13052static void
13053process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
13054{
13055 struct objfile *objfile = cu->objfile;
ca040673 13056 struct die_info *child_die;
c767944b
DJ
13057 struct type *type;
13058
13059 type = get_die_type (die, cu);
13060 if (type == NULL)
13061 type = read_structure_type (die, cu);
13062
e142c38c 13063 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
13064 {
13065 struct field_info fi;
34eaf542 13066 VEC (symbolp) *template_args = NULL;
c767944b 13067 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
13068
13069 memset (&fi, 0, sizeof (struct field_info));
13070
639d11d3 13071 child_die = die->child;
c906108c
SS
13072
13073 while (child_die && child_die->tag)
13074 {
a9a9bd0f
DC
13075 if (child_die->tag == DW_TAG_member
13076 || child_die->tag == DW_TAG_variable)
c906108c 13077 {
a9a9bd0f
DC
13078 /* NOTE: carlton/2002-11-05: A C++ static data member
13079 should be a DW_TAG_member that is a declaration, but
13080 all versions of G++ as of this writing (so through at
13081 least 3.2.1) incorrectly generate DW_TAG_variable
13082 tags for them instead. */
e7c27a73 13083 dwarf2_add_field (&fi, child_die, cu);
c906108c 13084 }
8713b1b1 13085 else if (child_die->tag == DW_TAG_subprogram)
c906108c 13086 {
0963b4bd 13087 /* C++ member function. */
e7c27a73 13088 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
13089 }
13090 else if (child_die->tag == DW_TAG_inheritance)
13091 {
13092 /* C++ base class field. */
e7c27a73 13093 dwarf2_add_field (&fi, child_die, cu);
c906108c 13094 }
98751a41
JK
13095 else if (child_die->tag == DW_TAG_typedef)
13096 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
13097 else if (child_die->tag == DW_TAG_template_type_param
13098 || child_die->tag == DW_TAG_template_value_param)
13099 {
13100 struct symbol *arg = new_symbol (child_die, NULL, cu);
13101
f1078f66
DJ
13102 if (arg != NULL)
13103 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
13104 }
13105
c906108c
SS
13106 child_die = sibling_die (child_die);
13107 }
13108
34eaf542
TT
13109 /* Attach template arguments to type. */
13110 if (! VEC_empty (symbolp, template_args))
13111 {
13112 ALLOCATE_CPLUS_STRUCT_TYPE (type);
13113 TYPE_N_TEMPLATE_ARGUMENTS (type)
13114 = VEC_length (symbolp, template_args);
13115 TYPE_TEMPLATE_ARGUMENTS (type)
13116 = obstack_alloc (&objfile->objfile_obstack,
13117 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13118 * sizeof (struct symbol *)));
13119 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
13120 VEC_address (symbolp, template_args),
13121 (TYPE_N_TEMPLATE_ARGUMENTS (type)
13122 * sizeof (struct symbol *)));
13123 VEC_free (symbolp, template_args);
13124 }
13125
c906108c
SS
13126 /* Attach fields and member functions to the type. */
13127 if (fi.nfields)
e7c27a73 13128 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
13129 if (fi.nfnfields)
13130 {
e7c27a73 13131 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 13132
c5aa993b 13133 /* Get the type which refers to the base class (possibly this
c906108c 13134 class itself) which contains the vtable pointer for the current
0d564a31
DJ
13135 class from the DW_AT_containing_type attribute. This use of
13136 DW_AT_containing_type is a GNU extension. */
c906108c 13137
e142c38c 13138 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 13139 {
e7c27a73 13140 struct type *t = die_containing_type (die, cu);
c906108c
SS
13141
13142 TYPE_VPTR_BASETYPE (type) = t;
13143 if (type == t)
13144 {
c906108c
SS
13145 int i;
13146
13147 /* Our own class provides vtbl ptr. */
13148 for (i = TYPE_NFIELDS (t) - 1;
13149 i >= TYPE_N_BASECLASSES (t);
13150 --i)
13151 {
0d5cff50 13152 const char *fieldname = TYPE_FIELD_NAME (t, i);
c906108c 13153
1168df01 13154 if (is_vtable_name (fieldname, cu))
c906108c
SS
13155 {
13156 TYPE_VPTR_FIELDNO (type) = i;
13157 break;
13158 }
13159 }
13160
13161 /* Complain if virtual function table field not found. */
13162 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 13163 complaint (&symfile_complaints,
3e43a32a
MS
13164 _("virtual function table pointer "
13165 "not found when defining class '%s'"),
4d3c2250
KB
13166 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
13167 "");
c906108c
SS
13168 }
13169 else
13170 {
13171 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
13172 }
13173 }
f6235d4c
EZ
13174 else if (cu->producer
13175 && strncmp (cu->producer,
13176 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
13177 {
13178 /* The IBM XLC compiler does not provide direct indication
13179 of the containing type, but the vtable pointer is
13180 always named __vfp. */
13181
13182 int i;
13183
13184 for (i = TYPE_NFIELDS (type) - 1;
13185 i >= TYPE_N_BASECLASSES (type);
13186 --i)
13187 {
13188 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
13189 {
13190 TYPE_VPTR_FIELDNO (type) = i;
13191 TYPE_VPTR_BASETYPE (type) = type;
13192 break;
13193 }
13194 }
13195 }
c906108c 13196 }
98751a41
JK
13197
13198 /* Copy fi.typedef_field_list linked list elements content into the
13199 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
13200 if (fi.typedef_field_list)
13201 {
13202 int i = fi.typedef_field_list_count;
13203
a0d7a4ff 13204 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
13205 TYPE_TYPEDEF_FIELD_ARRAY (type)
13206 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
13207 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
13208
13209 /* Reverse the list order to keep the debug info elements order. */
13210 while (--i >= 0)
13211 {
13212 struct typedef_field *dest, *src;
6e70227d 13213
98751a41
JK
13214 dest = &TYPE_TYPEDEF_FIELD (type, i);
13215 src = &fi.typedef_field_list->field;
13216 fi.typedef_field_list = fi.typedef_field_list->next;
13217 *dest = *src;
13218 }
13219 }
c767944b
DJ
13220
13221 do_cleanups (back_to);
eb2a6f42
TT
13222
13223 if (HAVE_CPLUS_STRUCT (type))
13224 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 13225 }
63d06c5c 13226
bb5ed363 13227 quirk_gcc_member_function_pointer (type, objfile);
0b92b5bb 13228
90aeadfc
DC
13229 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
13230 snapshots) has been known to create a die giving a declaration
13231 for a class that has, as a child, a die giving a definition for a
13232 nested class. So we have to process our children even if the
13233 current die is a declaration. Normally, of course, a declaration
13234 won't have any children at all. */
134d01f1 13235
ca040673
DE
13236 child_die = die->child;
13237
90aeadfc
DC
13238 while (child_die != NULL && child_die->tag)
13239 {
13240 if (child_die->tag == DW_TAG_member
13241 || child_die->tag == DW_TAG_variable
34eaf542
TT
13242 || child_die->tag == DW_TAG_inheritance
13243 || child_die->tag == DW_TAG_template_value_param
13244 || child_die->tag == DW_TAG_template_type_param)
134d01f1 13245 {
90aeadfc 13246 /* Do nothing. */
134d01f1 13247 }
90aeadfc
DC
13248 else
13249 process_die (child_die, cu);
134d01f1 13250
90aeadfc 13251 child_die = sibling_die (child_die);
134d01f1
DJ
13252 }
13253
fa4028e9
JB
13254 /* Do not consider external references. According to the DWARF standard,
13255 these DIEs are identified by the fact that they have no byte_size
13256 attribute, and a declaration attribute. */
13257 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
13258 || !die_is_declaration (die, cu))
c767944b 13259 new_symbol (die, type, cu);
134d01f1
DJ
13260}
13261
55426c9d
JB
13262/* Assuming DIE is an enumeration type, and TYPE is its associated type,
13263 update TYPE using some information only available in DIE's children. */
13264
13265static void
13266update_enumeration_type_from_children (struct die_info *die,
13267 struct type *type,
13268 struct dwarf2_cu *cu)
13269{
13270 struct obstack obstack;
60f7655a 13271 struct die_info *child_die;
55426c9d
JB
13272 int unsigned_enum = 1;
13273 int flag_enum = 1;
13274 ULONGEST mask = 0;
13275 struct cleanup *old_chain;
13276
13277 obstack_init (&obstack);
13278 old_chain = make_cleanup_obstack_free (&obstack);
13279
60f7655a
DE
13280 for (child_die = die->child;
13281 child_die != NULL && child_die->tag;
13282 child_die = sibling_die (child_die))
55426c9d
JB
13283 {
13284 struct attribute *attr;
13285 LONGEST value;
13286 const gdb_byte *bytes;
13287 struct dwarf2_locexpr_baton *baton;
13288 const char *name;
60f7655a 13289
55426c9d
JB
13290 if (child_die->tag != DW_TAG_enumerator)
13291 continue;
13292
13293 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
13294 if (attr == NULL)
13295 continue;
13296
13297 name = dwarf2_name (child_die, cu);
13298 if (name == NULL)
13299 name = "<anonymous enumerator>";
13300
13301 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
13302 &value, &bytes, &baton);
13303 if (value < 0)
13304 {
13305 unsigned_enum = 0;
13306 flag_enum = 0;
13307 }
13308 else if ((mask & value) != 0)
13309 flag_enum = 0;
13310 else
13311 mask |= value;
13312
13313 /* If we already know that the enum type is neither unsigned, nor
13314 a flag type, no need to look at the rest of the enumerates. */
13315 if (!unsigned_enum && !flag_enum)
13316 break;
55426c9d
JB
13317 }
13318
13319 if (unsigned_enum)
13320 TYPE_UNSIGNED (type) = 1;
13321 if (flag_enum)
13322 TYPE_FLAG_ENUM (type) = 1;
13323
13324 do_cleanups (old_chain);
13325}
13326
134d01f1
DJ
13327/* Given a DW_AT_enumeration_type die, set its type. We do not
13328 complete the type's fields yet, or create any symbols. */
c906108c 13329
f792889a 13330static struct type *
134d01f1 13331read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13332{
e7c27a73 13333 struct objfile *objfile = cu->objfile;
c906108c 13334 struct type *type;
c906108c 13335 struct attribute *attr;
0114d602 13336 const char *name;
134d01f1 13337
348e048f
DE
13338 /* If the definition of this type lives in .debug_types, read that type.
13339 Don't follow DW_AT_specification though, that will take us back up
13340 the chain and we want to go down. */
45e58e77 13341 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
348e048f
DE
13342 if (attr)
13343 {
ac9ec31b 13344 type = get_DW_AT_signature_type (die, attr, cu);
9dc481d3 13345
ac9ec31b 13346 /* The type's CU may not be the same as CU.
02142a6c 13347 Ensure TYPE is recorded with CU in die_type_hash. */
348e048f
DE
13348 return set_die_type (die, type, cu);
13349 }
13350
c906108c
SS
13351 type = alloc_type (objfile);
13352
13353 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 13354 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 13355 if (name != NULL)
7d455152 13356 TYPE_TAG_NAME (type) = name;
c906108c 13357
0626fc76
TT
13358 attr = dwarf2_attr (die, DW_AT_type, cu);
13359 if (attr != NULL)
13360 {
13361 struct type *underlying_type = die_type (die, cu);
13362
13363 TYPE_TARGET_TYPE (type) = underlying_type;
13364 }
13365
e142c38c 13366 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
13367 if (attr)
13368 {
13369 TYPE_LENGTH (type) = DW_UNSND (attr);
13370 }
13371 else
13372 {
13373 TYPE_LENGTH (type) = 0;
13374 }
13375
137033e9
JB
13376 /* The enumeration DIE can be incomplete. In Ada, any type can be
13377 declared as private in the package spec, and then defined only
13378 inside the package body. Such types are known as Taft Amendment
13379 Types. When another package uses such a type, an incomplete DIE
13380 may be generated by the compiler. */
02eb380e 13381 if (die_is_declaration (die, cu))
876cecd0 13382 TYPE_STUB (type) = 1;
02eb380e 13383
0626fc76
TT
13384 /* Finish the creation of this type by using the enum's children.
13385 We must call this even when the underlying type has been provided
13386 so that we can determine if we're looking at a "flag" enum. */
55426c9d
JB
13387 update_enumeration_type_from_children (die, type, cu);
13388
0626fc76
TT
13389 /* If this type has an underlying type that is not a stub, then we
13390 may use its attributes. We always use the "unsigned" attribute
13391 in this situation, because ordinarily we guess whether the type
13392 is unsigned -- but the guess can be wrong and the underlying type
13393 can tell us the reality. However, we defer to a local size
13394 attribute if one exists, because this lets the compiler override
13395 the underlying type if needed. */
13396 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
13397 {
13398 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
13399 if (TYPE_LENGTH (type) == 0)
13400 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
13401 }
13402
3d567982
TT
13403 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
13404
f792889a 13405 return set_die_type (die, type, cu);
134d01f1
DJ
13406}
13407
13408/* Given a pointer to a die which begins an enumeration, process all
13409 the dies that define the members of the enumeration, and create the
13410 symbol for the enumeration type.
13411
13412 NOTE: We reverse the order of the element list. */
13413
13414static void
13415process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
13416{
f792889a 13417 struct type *this_type;
134d01f1 13418
f792889a
DJ
13419 this_type = get_die_type (die, cu);
13420 if (this_type == NULL)
13421 this_type = read_enumeration_type (die, cu);
9dc481d3 13422
639d11d3 13423 if (die->child != NULL)
c906108c 13424 {
9dc481d3
DE
13425 struct die_info *child_die;
13426 struct symbol *sym;
13427 struct field *fields = NULL;
13428 int num_fields = 0;
15d034d0 13429 const char *name;
9dc481d3 13430
639d11d3 13431 child_die = die->child;
c906108c
SS
13432 while (child_die && child_die->tag)
13433 {
13434 if (child_die->tag != DW_TAG_enumerator)
13435 {
e7c27a73 13436 process_die (child_die, cu);
c906108c
SS
13437 }
13438 else
13439 {
39cbfefa
DJ
13440 name = dwarf2_name (child_die, cu);
13441 if (name)
c906108c 13442 {
f792889a 13443 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
13444
13445 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
13446 {
13447 fields = (struct field *)
13448 xrealloc (fields,
13449 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 13450 * sizeof (struct field));
c906108c
SS
13451 }
13452
3567439c 13453 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 13454 FIELD_TYPE (fields[num_fields]) = NULL;
14e75d8e 13455 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
13456 FIELD_BITSIZE (fields[num_fields]) = 0;
13457
13458 num_fields++;
13459 }
13460 }
13461
13462 child_die = sibling_die (child_die);
13463 }
13464
13465 if (num_fields)
13466 {
f792889a
DJ
13467 TYPE_NFIELDS (this_type) = num_fields;
13468 TYPE_FIELDS (this_type) = (struct field *)
13469 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
13470 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 13471 sizeof (struct field) * num_fields);
b8c9b27d 13472 xfree (fields);
c906108c 13473 }
c906108c 13474 }
134d01f1 13475
6c83ed52
TT
13476 /* If we are reading an enum from a .debug_types unit, and the enum
13477 is a declaration, and the enum is not the signatured type in the
13478 unit, then we do not want to add a symbol for it. Adding a
13479 symbol would in some cases obscure the true definition of the
13480 enum, giving users an incomplete type when the definition is
13481 actually available. Note that we do not want to do this for all
13482 enums which are just declarations, because C++0x allows forward
13483 enum declarations. */
3019eac3 13484 if (cu->per_cu->is_debug_types
6c83ed52
TT
13485 && die_is_declaration (die, cu))
13486 {
52dc124a 13487 struct signatured_type *sig_type;
6c83ed52 13488
c0f78cd4 13489 sig_type = (struct signatured_type *) cu->per_cu;
3019eac3
DE
13490 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
13491 if (sig_type->type_offset_in_section.sect_off != die->offset.sect_off)
6c83ed52
TT
13492 return;
13493 }
13494
f792889a 13495 new_symbol (die, this_type, cu);
c906108c
SS
13496}
13497
13498/* Extract all information from a DW_TAG_array_type DIE and put it in
13499 the DIE's type field. For now, this only handles one dimensional
13500 arrays. */
13501
f792889a 13502static struct type *
e7c27a73 13503read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13504{
e7c27a73 13505 struct objfile *objfile = cu->objfile;
c906108c 13506 struct die_info *child_die;
7e314c57 13507 struct type *type;
c906108c
SS
13508 struct type *element_type, *range_type, *index_type;
13509 struct type **range_types = NULL;
13510 struct attribute *attr;
13511 int ndim = 0;
13512 struct cleanup *back_to;
15d034d0 13513 const char *name;
dc53a7ad 13514 unsigned int bit_stride = 0;
c906108c 13515
e7c27a73 13516 element_type = die_type (die, cu);
c906108c 13517
7e314c57
JK
13518 /* The die_type call above may have already set the type for this DIE. */
13519 type = get_die_type (die, cu);
13520 if (type)
13521 return type;
13522
dc53a7ad
JB
13523 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
13524 if (attr != NULL)
13525 bit_stride = DW_UNSND (attr) * 8;
13526
13527 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
13528 if (attr != NULL)
13529 bit_stride = DW_UNSND (attr);
13530
c906108c
SS
13531 /* Irix 6.2 native cc creates array types without children for
13532 arrays with unspecified length. */
639d11d3 13533 if (die->child == NULL)
c906108c 13534 {
46bf5051 13535 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 13536 range_type = create_static_range_type (NULL, index_type, 0, -1);
dc53a7ad
JB
13537 type = create_array_type_with_stride (NULL, element_type, range_type,
13538 bit_stride);
f792889a 13539 return set_die_type (die, type, cu);
c906108c
SS
13540 }
13541
13542 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 13543 child_die = die->child;
c906108c
SS
13544 while (child_die && child_die->tag)
13545 {
13546 if (child_die->tag == DW_TAG_subrange_type)
13547 {
f792889a 13548 struct type *child_type = read_type_die (child_die, cu);
9a619af0 13549
f792889a 13550 if (child_type != NULL)
a02abb62 13551 {
0963b4bd
MS
13552 /* The range type was succesfully read. Save it for the
13553 array type creation. */
a02abb62
JB
13554 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
13555 {
13556 range_types = (struct type **)
13557 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
13558 * sizeof (struct type *));
13559 if (ndim == 0)
13560 make_cleanup (free_current_contents, &range_types);
13561 }
f792889a 13562 range_types[ndim++] = child_type;
a02abb62 13563 }
c906108c
SS
13564 }
13565 child_die = sibling_die (child_die);
13566 }
13567
13568 /* Dwarf2 dimensions are output from left to right, create the
13569 necessary array types in backwards order. */
7ca2d3a3 13570
c906108c 13571 type = element_type;
7ca2d3a3
DL
13572
13573 if (read_array_order (die, cu) == DW_ORD_col_major)
13574 {
13575 int i = 0;
9a619af0 13576
7ca2d3a3 13577 while (i < ndim)
dc53a7ad
JB
13578 type = create_array_type_with_stride (NULL, type, range_types[i++],
13579 bit_stride);
7ca2d3a3
DL
13580 }
13581 else
13582 {
13583 while (ndim-- > 0)
dc53a7ad
JB
13584 type = create_array_type_with_stride (NULL, type, range_types[ndim],
13585 bit_stride);
7ca2d3a3 13586 }
c906108c 13587
f5f8a009
EZ
13588 /* Understand Dwarf2 support for vector types (like they occur on
13589 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
13590 array type. This is not part of the Dwarf2/3 standard yet, but a
13591 custom vendor extension. The main difference between a regular
13592 array and the vector variant is that vectors are passed by value
13593 to functions. */
e142c38c 13594 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 13595 if (attr)
ea37ba09 13596 make_vector_type (type);
f5f8a009 13597
dbc98a8b
KW
13598 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
13599 implementation may choose to implement triple vectors using this
13600 attribute. */
13601 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
13602 if (attr)
13603 {
13604 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
13605 TYPE_LENGTH (type) = DW_UNSND (attr);
13606 else
3e43a32a
MS
13607 complaint (&symfile_complaints,
13608 _("DW_AT_byte_size for array type smaller "
13609 "than the total size of elements"));
dbc98a8b
KW
13610 }
13611
39cbfefa
DJ
13612 name = dwarf2_name (die, cu);
13613 if (name)
13614 TYPE_NAME (type) = name;
6e70227d 13615
0963b4bd 13616 /* Install the type in the die. */
7e314c57
JK
13617 set_die_type (die, type, cu);
13618
13619 /* set_die_type should be already done. */
b4ba55a1
JB
13620 set_descriptive_type (type, die, cu);
13621
c906108c
SS
13622 do_cleanups (back_to);
13623
7e314c57 13624 return type;
c906108c
SS
13625}
13626
7ca2d3a3 13627static enum dwarf_array_dim_ordering
6e70227d 13628read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
13629{
13630 struct attribute *attr;
13631
13632 attr = dwarf2_attr (die, DW_AT_ordering, cu);
13633
13634 if (attr) return DW_SND (attr);
13635
0963b4bd
MS
13636 /* GNU F77 is a special case, as at 08/2004 array type info is the
13637 opposite order to the dwarf2 specification, but data is still
13638 laid out as per normal fortran.
7ca2d3a3 13639
0963b4bd
MS
13640 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
13641 version checking. */
7ca2d3a3 13642
905e0470
PM
13643 if (cu->language == language_fortran
13644 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
13645 {
13646 return DW_ORD_row_major;
13647 }
13648
6e70227d 13649 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
13650 {
13651 case array_column_major:
13652 return DW_ORD_col_major;
13653 case array_row_major:
13654 default:
13655 return DW_ORD_row_major;
13656 };
13657}
13658
72019c9c 13659/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 13660 the DIE's type field. */
72019c9c 13661
f792889a 13662static struct type *
72019c9c
GM
13663read_set_type (struct die_info *die, struct dwarf2_cu *cu)
13664{
7e314c57
JK
13665 struct type *domain_type, *set_type;
13666 struct attribute *attr;
f792889a 13667
7e314c57
JK
13668 domain_type = die_type (die, cu);
13669
13670 /* The die_type call above may have already set the type for this DIE. */
13671 set_type = get_die_type (die, cu);
13672 if (set_type)
13673 return set_type;
13674
13675 set_type = create_set_type (NULL, domain_type);
13676
13677 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
13678 if (attr)
13679 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 13680
f792889a 13681 return set_die_type (die, set_type, cu);
72019c9c 13682}
7ca2d3a3 13683
0971de02
TT
13684/* A helper for read_common_block that creates a locexpr baton.
13685 SYM is the symbol which we are marking as computed.
13686 COMMON_DIE is the DIE for the common block.
13687 COMMON_LOC is the location expression attribute for the common
13688 block itself.
13689 MEMBER_LOC is the location expression attribute for the particular
13690 member of the common block that we are processing.
13691 CU is the CU from which the above come. */
13692
13693static void
13694mark_common_block_symbol_computed (struct symbol *sym,
13695 struct die_info *common_die,
13696 struct attribute *common_loc,
13697 struct attribute *member_loc,
13698 struct dwarf2_cu *cu)
13699{
13700 struct objfile *objfile = dwarf2_per_objfile->objfile;
13701 struct dwarf2_locexpr_baton *baton;
13702 gdb_byte *ptr;
13703 unsigned int cu_off;
13704 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
13705 LONGEST offset = 0;
13706
13707 gdb_assert (common_loc && member_loc);
13708 gdb_assert (attr_form_is_block (common_loc));
13709 gdb_assert (attr_form_is_block (member_loc)
13710 || attr_form_is_constant (member_loc));
13711
13712 baton = obstack_alloc (&objfile->objfile_obstack,
13713 sizeof (struct dwarf2_locexpr_baton));
13714 baton->per_cu = cu->per_cu;
13715 gdb_assert (baton->per_cu);
13716
13717 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
13718
13719 if (attr_form_is_constant (member_loc))
13720 {
13721 offset = dwarf2_get_attr_constant_value (member_loc, 0);
13722 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
13723 }
13724 else
13725 baton->size += DW_BLOCK (member_loc)->size;
13726
13727 ptr = obstack_alloc (&objfile->objfile_obstack, baton->size);
13728 baton->data = ptr;
13729
13730 *ptr++ = DW_OP_call4;
13731 cu_off = common_die->offset.sect_off - cu->per_cu->offset.sect_off;
13732 store_unsigned_integer (ptr, 4, byte_order, cu_off);
13733 ptr += 4;
13734
13735 if (attr_form_is_constant (member_loc))
13736 {
13737 *ptr++ = DW_OP_addr;
13738 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
13739 ptr += cu->header.addr_size;
13740 }
13741 else
13742 {
13743 /* We have to copy the data here, because DW_OP_call4 will only
13744 use a DW_AT_location attribute. */
13745 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
13746 ptr += DW_BLOCK (member_loc)->size;
13747 }
13748
13749 *ptr++ = DW_OP_plus;
13750 gdb_assert (ptr - baton->data == baton->size);
13751
0971de02 13752 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 13753 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
0971de02
TT
13754}
13755
4357ac6c
TT
13756/* Create appropriate locally-scoped variables for all the
13757 DW_TAG_common_block entries. Also create a struct common_block
13758 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
13759 is used to sepate the common blocks name namespace from regular
13760 variable names. */
c906108c
SS
13761
13762static void
e7c27a73 13763read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13764{
0971de02
TT
13765 struct attribute *attr;
13766
13767 attr = dwarf2_attr (die, DW_AT_location, cu);
13768 if (attr)
13769 {
13770 /* Support the .debug_loc offsets. */
13771 if (attr_form_is_block (attr))
13772 {
13773 /* Ok. */
13774 }
13775 else if (attr_form_is_section_offset (attr))
13776 {
13777 dwarf2_complex_location_expr_complaint ();
13778 attr = NULL;
13779 }
13780 else
13781 {
13782 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
13783 "common block member");
13784 attr = NULL;
13785 }
13786 }
13787
639d11d3 13788 if (die->child != NULL)
c906108c 13789 {
4357ac6c
TT
13790 struct objfile *objfile = cu->objfile;
13791 struct die_info *child_die;
13792 size_t n_entries = 0, size;
13793 struct common_block *common_block;
13794 struct symbol *sym;
74ac6d43 13795
4357ac6c
TT
13796 for (child_die = die->child;
13797 child_die && child_die->tag;
13798 child_die = sibling_die (child_die))
13799 ++n_entries;
13800
13801 size = (sizeof (struct common_block)
13802 + (n_entries - 1) * sizeof (struct symbol *));
13803 common_block = obstack_alloc (&objfile->objfile_obstack, size);
13804 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
13805 common_block->n_entries = 0;
13806
13807 for (child_die = die->child;
13808 child_die && child_die->tag;
13809 child_die = sibling_die (child_die))
13810 {
13811 /* Create the symbol in the DW_TAG_common_block block in the current
13812 symbol scope. */
e7c27a73 13813 sym = new_symbol (child_die, NULL, cu);
0971de02
TT
13814 if (sym != NULL)
13815 {
13816 struct attribute *member_loc;
13817
13818 common_block->contents[common_block->n_entries++] = sym;
13819
13820 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
13821 cu);
13822 if (member_loc)
13823 {
13824 /* GDB has handled this for a long time, but it is
13825 not specified by DWARF. It seems to have been
13826 emitted by gfortran at least as recently as:
13827 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
13828 complaint (&symfile_complaints,
13829 _("Variable in common block has "
13830 "DW_AT_data_member_location "
13831 "- DIE at 0x%x [in module %s]"),
4262abfb
JK
13832 child_die->offset.sect_off,
13833 objfile_name (cu->objfile));
0971de02
TT
13834
13835 if (attr_form_is_section_offset (member_loc))
13836 dwarf2_complex_location_expr_complaint ();
13837 else if (attr_form_is_constant (member_loc)
13838 || attr_form_is_block (member_loc))
13839 {
13840 if (attr)
13841 mark_common_block_symbol_computed (sym, die, attr,
13842 member_loc, cu);
13843 }
13844 else
13845 dwarf2_complex_location_expr_complaint ();
13846 }
13847 }
c906108c 13848 }
4357ac6c
TT
13849
13850 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
13851 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
c906108c
SS
13852 }
13853}
13854
0114d602 13855/* Create a type for a C++ namespace. */
d9fa45fe 13856
0114d602
DJ
13857static struct type *
13858read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 13859{
e7c27a73 13860 struct objfile *objfile = cu->objfile;
0114d602 13861 const char *previous_prefix, *name;
9219021c 13862 int is_anonymous;
0114d602
DJ
13863 struct type *type;
13864
13865 /* For extensions, reuse the type of the original namespace. */
13866 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
13867 {
13868 struct die_info *ext_die;
13869 struct dwarf2_cu *ext_cu = cu;
9a619af0 13870
0114d602
DJ
13871 ext_die = dwarf2_extension (die, &ext_cu);
13872 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
13873
13874 /* EXT_CU may not be the same as CU.
02142a6c 13875 Ensure TYPE is recorded with CU in die_type_hash. */
0114d602
DJ
13876 return set_die_type (die, type, cu);
13877 }
9219021c 13878
e142c38c 13879 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
13880
13881 /* Now build the name of the current namespace. */
13882
0114d602
DJ
13883 previous_prefix = determine_prefix (die, cu);
13884 if (previous_prefix[0] != '\0')
13885 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 13886 previous_prefix, name, 0, cu);
0114d602
DJ
13887
13888 /* Create the type. */
13889 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
13890 objfile);
abee88f2 13891 TYPE_NAME (type) = name;
0114d602
DJ
13892 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13893
60531b24 13894 return set_die_type (die, type, cu);
0114d602
DJ
13895}
13896
13897/* Read a C++ namespace. */
13898
13899static void
13900read_namespace (struct die_info *die, struct dwarf2_cu *cu)
13901{
13902 struct objfile *objfile = cu->objfile;
0114d602 13903 int is_anonymous;
9219021c 13904
5c4e30ca
DC
13905 /* Add a symbol associated to this if we haven't seen the namespace
13906 before. Also, add a using directive if it's an anonymous
13907 namespace. */
9219021c 13908
f2f0e013 13909 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
13910 {
13911 struct type *type;
13912
0114d602 13913 type = read_type_die (die, cu);
e7c27a73 13914 new_symbol (die, type, cu);
5c4e30ca 13915
e8e80198 13916 namespace_name (die, &is_anonymous, cu);
5c4e30ca 13917 if (is_anonymous)
0114d602
DJ
13918 {
13919 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 13920
c0cc3a76 13921 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
12aaed36 13922 NULL, NULL, 0, &objfile->objfile_obstack);
0114d602 13923 }
5c4e30ca 13924 }
9219021c 13925
639d11d3 13926 if (die->child != NULL)
d9fa45fe 13927 {
639d11d3 13928 struct die_info *child_die = die->child;
6e70227d 13929
d9fa45fe
DC
13930 while (child_die && child_die->tag)
13931 {
e7c27a73 13932 process_die (child_die, cu);
d9fa45fe
DC
13933 child_die = sibling_die (child_die);
13934 }
13935 }
38d518c9
EZ
13936}
13937
f55ee35c
JK
13938/* Read a Fortran module as type. This DIE can be only a declaration used for
13939 imported module. Still we need that type as local Fortran "use ... only"
13940 declaration imports depend on the created type in determine_prefix. */
13941
13942static struct type *
13943read_module_type (struct die_info *die, struct dwarf2_cu *cu)
13944{
13945 struct objfile *objfile = cu->objfile;
15d034d0 13946 const char *module_name;
f55ee35c
JK
13947 struct type *type;
13948
13949 module_name = dwarf2_name (die, cu);
13950 if (!module_name)
3e43a32a
MS
13951 complaint (&symfile_complaints,
13952 _("DW_TAG_module has no name, offset 0x%x"),
b64f50a1 13953 die->offset.sect_off);
f55ee35c
JK
13954 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
13955
13956 /* determine_prefix uses TYPE_TAG_NAME. */
13957 TYPE_TAG_NAME (type) = TYPE_NAME (type);
13958
13959 return set_die_type (die, type, cu);
13960}
13961
5d7cb8df
JK
13962/* Read a Fortran module. */
13963
13964static void
13965read_module (struct die_info *die, struct dwarf2_cu *cu)
13966{
13967 struct die_info *child_die = die->child;
530e8392
KB
13968 struct type *type;
13969
13970 type = read_type_die (die, cu);
13971 new_symbol (die, type, cu);
5d7cb8df 13972
5d7cb8df
JK
13973 while (child_die && child_die->tag)
13974 {
13975 process_die (child_die, cu);
13976 child_die = sibling_die (child_die);
13977 }
13978}
13979
38d518c9
EZ
13980/* Return the name of the namespace represented by DIE. Set
13981 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
13982 namespace. */
13983
13984static const char *
e142c38c 13985namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
13986{
13987 struct die_info *current_die;
13988 const char *name = NULL;
13989
13990 /* Loop through the extensions until we find a name. */
13991
13992 for (current_die = die;
13993 current_die != NULL;
f2f0e013 13994 current_die = dwarf2_extension (die, &cu))
38d518c9 13995 {
e142c38c 13996 name = dwarf2_name (current_die, cu);
38d518c9
EZ
13997 if (name != NULL)
13998 break;
13999 }
14000
14001 /* Is it an anonymous namespace? */
14002
14003 *is_anonymous = (name == NULL);
14004 if (*is_anonymous)
2b1dbab0 14005 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
14006
14007 return name;
d9fa45fe
DC
14008}
14009
c906108c
SS
14010/* Extract all information from a DW_TAG_pointer_type DIE and add to
14011 the user defined type vector. */
14012
f792889a 14013static struct type *
e7c27a73 14014read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14015{
5e2b427d 14016 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 14017 struct comp_unit_head *cu_header = &cu->header;
c906108c 14018 struct type *type;
8b2dbe47
KB
14019 struct attribute *attr_byte_size;
14020 struct attribute *attr_address_class;
14021 int byte_size, addr_class;
7e314c57
JK
14022 struct type *target_type;
14023
14024 target_type = die_type (die, cu);
c906108c 14025
7e314c57
JK
14026 /* The die_type call above may have already set the type for this DIE. */
14027 type = get_die_type (die, cu);
14028 if (type)
14029 return type;
14030
14031 type = lookup_pointer_type (target_type);
8b2dbe47 14032
e142c38c 14033 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
14034 if (attr_byte_size)
14035 byte_size = DW_UNSND (attr_byte_size);
c906108c 14036 else
8b2dbe47
KB
14037 byte_size = cu_header->addr_size;
14038
e142c38c 14039 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
14040 if (attr_address_class)
14041 addr_class = DW_UNSND (attr_address_class);
14042 else
14043 addr_class = DW_ADDR_none;
14044
14045 /* If the pointer size or address class is different than the
14046 default, create a type variant marked as such and set the
14047 length accordingly. */
14048 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 14049 {
5e2b427d 14050 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
14051 {
14052 int type_flags;
14053
849957d9 14054 type_flags = gdbarch_address_class_type_flags
5e2b427d 14055 (gdbarch, byte_size, addr_class);
876cecd0
TT
14056 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
14057 == 0);
8b2dbe47
KB
14058 type = make_type_with_address_space (type, type_flags);
14059 }
14060 else if (TYPE_LENGTH (type) != byte_size)
14061 {
3e43a32a
MS
14062 complaint (&symfile_complaints,
14063 _("invalid pointer size %d"), byte_size);
8b2dbe47 14064 }
6e70227d 14065 else
9a619af0
MS
14066 {
14067 /* Should we also complain about unhandled address classes? */
14068 }
c906108c 14069 }
8b2dbe47
KB
14070
14071 TYPE_LENGTH (type) = byte_size;
f792889a 14072 return set_die_type (die, type, cu);
c906108c
SS
14073}
14074
14075/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
14076 the user defined type vector. */
14077
f792889a 14078static struct type *
e7c27a73 14079read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
14080{
14081 struct type *type;
14082 struct type *to_type;
14083 struct type *domain;
14084
e7c27a73
DJ
14085 to_type = die_type (die, cu);
14086 domain = die_containing_type (die, cu);
0d5de010 14087
7e314c57
JK
14088 /* The calls above may have already set the type for this DIE. */
14089 type = get_die_type (die, cu);
14090 if (type)
14091 return type;
14092
0d5de010
DJ
14093 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
14094 type = lookup_methodptr_type (to_type);
7078baeb
TT
14095 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
14096 {
14097 struct type *new_type = alloc_type (cu->objfile);
14098
14099 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
14100 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
14101 TYPE_VARARGS (to_type));
14102 type = lookup_methodptr_type (new_type);
14103 }
0d5de010
DJ
14104 else
14105 type = lookup_memberptr_type (to_type, domain);
c906108c 14106
f792889a 14107 return set_die_type (die, type, cu);
c906108c
SS
14108}
14109
14110/* Extract all information from a DW_TAG_reference_type DIE and add to
14111 the user defined type vector. */
14112
f792889a 14113static struct type *
e7c27a73 14114read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14115{
e7c27a73 14116 struct comp_unit_head *cu_header = &cu->header;
7e314c57 14117 struct type *type, *target_type;
c906108c
SS
14118 struct attribute *attr;
14119
7e314c57
JK
14120 target_type = die_type (die, cu);
14121
14122 /* The die_type call above may have already set the type for this DIE. */
14123 type = get_die_type (die, cu);
14124 if (type)
14125 return type;
14126
14127 type = lookup_reference_type (target_type);
e142c38c 14128 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14129 if (attr)
14130 {
14131 TYPE_LENGTH (type) = DW_UNSND (attr);
14132 }
14133 else
14134 {
107d2387 14135 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 14136 }
f792889a 14137 return set_die_type (die, type, cu);
c906108c
SS
14138}
14139
cf363f18
MW
14140/* Add the given cv-qualifiers to the element type of the array. GCC
14141 outputs DWARF type qualifiers that apply to an array, not the
14142 element type. But GDB relies on the array element type to carry
14143 the cv-qualifiers. This mimics section 6.7.3 of the C99
14144 specification. */
14145
14146static struct type *
14147add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
14148 struct type *base_type, int cnst, int voltl)
14149{
14150 struct type *el_type, *inner_array;
14151
14152 base_type = copy_type (base_type);
14153 inner_array = base_type;
14154
14155 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
14156 {
14157 TYPE_TARGET_TYPE (inner_array) =
14158 copy_type (TYPE_TARGET_TYPE (inner_array));
14159 inner_array = TYPE_TARGET_TYPE (inner_array);
14160 }
14161
14162 el_type = TYPE_TARGET_TYPE (inner_array);
14163 cnst |= TYPE_CONST (el_type);
14164 voltl |= TYPE_VOLATILE (el_type);
14165 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
14166
14167 return set_die_type (die, base_type, cu);
14168}
14169
f792889a 14170static struct type *
e7c27a73 14171read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14172{
f792889a 14173 struct type *base_type, *cv_type;
c906108c 14174
e7c27a73 14175 base_type = die_type (die, cu);
7e314c57
JK
14176
14177 /* The die_type call above may have already set the type for this DIE. */
14178 cv_type = get_die_type (die, cu);
14179 if (cv_type)
14180 return cv_type;
14181
2f608a3a
KW
14182 /* In case the const qualifier is applied to an array type, the element type
14183 is so qualified, not the array type (section 6.7.3 of C99). */
14184 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
cf363f18 14185 return add_array_cv_type (die, cu, base_type, 1, 0);
2f608a3a 14186
f792889a
DJ
14187 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
14188 return set_die_type (die, cv_type, cu);
c906108c
SS
14189}
14190
f792889a 14191static struct type *
e7c27a73 14192read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14193{
f792889a 14194 struct type *base_type, *cv_type;
c906108c 14195
e7c27a73 14196 base_type = die_type (die, cu);
7e314c57
JK
14197
14198 /* The die_type call above may have already set the type for this DIE. */
14199 cv_type = get_die_type (die, cu);
14200 if (cv_type)
14201 return cv_type;
14202
cf363f18
MW
14203 /* In case the volatile qualifier is applied to an array type, the
14204 element type is so qualified, not the array type (section 6.7.3
14205 of C99). */
14206 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
14207 return add_array_cv_type (die, cu, base_type, 0, 1);
14208
f792889a
DJ
14209 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
14210 return set_die_type (die, cv_type, cu);
c906108c
SS
14211}
14212
06d66ee9
TT
14213/* Handle DW_TAG_restrict_type. */
14214
14215static struct type *
14216read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
14217{
14218 struct type *base_type, *cv_type;
14219
14220 base_type = die_type (die, cu);
14221
14222 /* The die_type call above may have already set the type for this DIE. */
14223 cv_type = get_die_type (die, cu);
14224 if (cv_type)
14225 return cv_type;
14226
14227 cv_type = make_restrict_type (base_type);
14228 return set_die_type (die, cv_type, cu);
14229}
14230
c906108c
SS
14231/* Extract all information from a DW_TAG_string_type DIE and add to
14232 the user defined type vector. It isn't really a user defined type,
14233 but it behaves like one, with other DIE's using an AT_user_def_type
14234 attribute to reference it. */
14235
f792889a 14236static struct type *
e7c27a73 14237read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14238{
e7c27a73 14239 struct objfile *objfile = cu->objfile;
3b7538c0 14240 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
14241 struct type *type, *range_type, *index_type, *char_type;
14242 struct attribute *attr;
14243 unsigned int length;
14244
e142c38c 14245 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
14246 if (attr)
14247 {
14248 length = DW_UNSND (attr);
14249 }
14250 else
14251 {
0963b4bd 14252 /* Check for the DW_AT_byte_size attribute. */
e142c38c 14253 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
14254 if (attr)
14255 {
14256 length = DW_UNSND (attr);
14257 }
14258 else
14259 {
14260 length = 1;
14261 }
c906108c 14262 }
6ccb9162 14263
46bf5051 14264 index_type = objfile_type (objfile)->builtin_int;
0c9c3474 14265 range_type = create_static_range_type (NULL, index_type, 1, length);
3b7538c0
UW
14266 char_type = language_string_char_type (cu->language_defn, gdbarch);
14267 type = create_string_type (NULL, char_type, range_type);
6ccb9162 14268
f792889a 14269 return set_die_type (die, type, cu);
c906108c
SS
14270}
14271
4d804846
JB
14272/* Assuming that DIE corresponds to a function, returns nonzero
14273 if the function is prototyped. */
14274
14275static int
14276prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
14277{
14278 struct attribute *attr;
14279
14280 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
14281 if (attr && (DW_UNSND (attr) != 0))
14282 return 1;
14283
14284 /* The DWARF standard implies that the DW_AT_prototyped attribute
14285 is only meaninful for C, but the concept also extends to other
14286 languages that allow unprototyped functions (Eg: Objective C).
14287 For all other languages, assume that functions are always
14288 prototyped. */
14289 if (cu->language != language_c
14290 && cu->language != language_objc
14291 && cu->language != language_opencl)
14292 return 1;
14293
14294 /* RealView does not emit DW_AT_prototyped. We can not distinguish
14295 prototyped and unprototyped functions; default to prototyped,
14296 since that is more common in modern code (and RealView warns
14297 about unprototyped functions). */
14298 if (producer_is_realview (cu->producer))
14299 return 1;
14300
14301 return 0;
14302}
14303
c906108c
SS
14304/* Handle DIES due to C code like:
14305
14306 struct foo
c5aa993b
JM
14307 {
14308 int (*funcp)(int a, long l);
14309 int b;
14310 };
c906108c 14311
0963b4bd 14312 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 14313
f792889a 14314static struct type *
e7c27a73 14315read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14316{
bb5ed363 14317 struct objfile *objfile = cu->objfile;
0963b4bd
MS
14318 struct type *type; /* Type that this function returns. */
14319 struct type *ftype; /* Function that returns above type. */
c906108c
SS
14320 struct attribute *attr;
14321
e7c27a73 14322 type = die_type (die, cu);
7e314c57
JK
14323
14324 /* The die_type call above may have already set the type for this DIE. */
14325 ftype = get_die_type (die, cu);
14326 if (ftype)
14327 return ftype;
14328
0c8b41f1 14329 ftype = lookup_function_type (type);
c906108c 14330
4d804846 14331 if (prototyped_function_p (die, cu))
a6c727b2 14332 TYPE_PROTOTYPED (ftype) = 1;
c906108c 14333
c055b101
CV
14334 /* Store the calling convention in the type if it's available in
14335 the subroutine die. Otherwise set the calling convention to
14336 the default value DW_CC_normal. */
14337 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
14338 if (attr)
14339 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
14340 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
14341 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
14342 else
14343 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2
GM
14344
14345 /* We need to add the subroutine type to the die immediately so
14346 we don't infinitely recurse when dealing with parameters
0963b4bd 14347 declared as the same subroutine type. */
76c10ea2 14348 set_die_type (die, ftype, cu);
6e70227d 14349
639d11d3 14350 if (die->child != NULL)
c906108c 14351 {
bb5ed363 14352 struct type *void_type = objfile_type (objfile)->builtin_void;
c906108c 14353 struct die_info *child_die;
8072405b 14354 int nparams, iparams;
c906108c
SS
14355
14356 /* Count the number of parameters.
14357 FIXME: GDB currently ignores vararg functions, but knows about
14358 vararg member functions. */
8072405b 14359 nparams = 0;
639d11d3 14360 child_die = die->child;
c906108c
SS
14361 while (child_die && child_die->tag)
14362 {
14363 if (child_die->tag == DW_TAG_formal_parameter)
14364 nparams++;
14365 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 14366 TYPE_VARARGS (ftype) = 1;
c906108c
SS
14367 child_die = sibling_die (child_die);
14368 }
14369
14370 /* Allocate storage for parameters and fill them in. */
14371 TYPE_NFIELDS (ftype) = nparams;
14372 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 14373 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 14374
8072405b
JK
14375 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
14376 even if we error out during the parameters reading below. */
14377 for (iparams = 0; iparams < nparams; iparams++)
14378 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
14379
14380 iparams = 0;
639d11d3 14381 child_die = die->child;
c906108c
SS
14382 while (child_die && child_die->tag)
14383 {
14384 if (child_die->tag == DW_TAG_formal_parameter)
14385 {
3ce3b1ba
PA
14386 struct type *arg_type;
14387
14388 /* DWARF version 2 has no clean way to discern C++
14389 static and non-static member functions. G++ helps
14390 GDB by marking the first parameter for non-static
14391 member functions (which is the this pointer) as
14392 artificial. We pass this information to
14393 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
14394
14395 DWARF version 3 added DW_AT_object_pointer, which GCC
14396 4.5 does not yet generate. */
e142c38c 14397 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
14398 if (attr)
14399 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
14400 else
418835cc
KS
14401 {
14402 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
14403
14404 /* GCC/43521: In java, the formal parameter
14405 "this" is sometimes not marked with DW_AT_artificial. */
14406 if (cu->language == language_java)
14407 {
14408 const char *name = dwarf2_name (child_die, cu);
9a619af0 14409
418835cc
KS
14410 if (name && !strcmp (name, "this"))
14411 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
14412 }
14413 }
3ce3b1ba
PA
14414 arg_type = die_type (child_die, cu);
14415
14416 /* RealView does not mark THIS as const, which the testsuite
14417 expects. GCC marks THIS as const in method definitions,
14418 but not in the class specifications (GCC PR 43053). */
14419 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
14420 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
14421 {
14422 int is_this = 0;
14423 struct dwarf2_cu *arg_cu = cu;
14424 const char *name = dwarf2_name (child_die, cu);
14425
14426 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
14427 if (attr)
14428 {
14429 /* If the compiler emits this, use it. */
14430 if (follow_die_ref (die, attr, &arg_cu) == child_die)
14431 is_this = 1;
14432 }
14433 else if (name && strcmp (name, "this") == 0)
14434 /* Function definitions will have the argument names. */
14435 is_this = 1;
14436 else if (name == NULL && iparams == 0)
14437 /* Declarations may not have the names, so like
14438 elsewhere in GDB, assume an artificial first
14439 argument is "this". */
14440 is_this = 1;
14441
14442 if (is_this)
14443 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
14444 arg_type, 0);
14445 }
14446
14447 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
14448 iparams++;
14449 }
14450 child_die = sibling_die (child_die);
14451 }
14452 }
14453
76c10ea2 14454 return ftype;
c906108c
SS
14455}
14456
f792889a 14457static struct type *
e7c27a73 14458read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14459{
e7c27a73 14460 struct objfile *objfile = cu->objfile;
0114d602 14461 const char *name = NULL;
3c8e0968 14462 struct type *this_type, *target_type;
c906108c 14463
94af9270 14464 name = dwarf2_full_name (NULL, die, cu);
f792889a 14465 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602 14466 TYPE_FLAG_TARGET_STUB, NULL, objfile);
abee88f2 14467 TYPE_NAME (this_type) = name;
f792889a 14468 set_die_type (die, this_type, cu);
3c8e0968
DE
14469 target_type = die_type (die, cu);
14470 if (target_type != this_type)
14471 TYPE_TARGET_TYPE (this_type) = target_type;
14472 else
14473 {
14474 /* Self-referential typedefs are, it seems, not allowed by the DWARF
14475 spec and cause infinite loops in GDB. */
14476 complaint (&symfile_complaints,
14477 _("Self-referential DW_TAG_typedef "
14478 "- DIE at 0x%x [in module %s]"),
4262abfb 14479 die->offset.sect_off, objfile_name (objfile));
3c8e0968
DE
14480 TYPE_TARGET_TYPE (this_type) = NULL;
14481 }
f792889a 14482 return this_type;
c906108c
SS
14483}
14484
14485/* Find a representation of a given base type and install
14486 it in the TYPE field of the die. */
14487
f792889a 14488static struct type *
e7c27a73 14489read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 14490{
e7c27a73 14491 struct objfile *objfile = cu->objfile;
c906108c
SS
14492 struct type *type;
14493 struct attribute *attr;
14494 int encoding = 0, size = 0;
15d034d0 14495 const char *name;
6ccb9162
UW
14496 enum type_code code = TYPE_CODE_INT;
14497 int type_flags = 0;
14498 struct type *target_type = NULL;
c906108c 14499
e142c38c 14500 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
14501 if (attr)
14502 {
14503 encoding = DW_UNSND (attr);
14504 }
e142c38c 14505 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
14506 if (attr)
14507 {
14508 size = DW_UNSND (attr);
14509 }
39cbfefa 14510 name = dwarf2_name (die, cu);
6ccb9162 14511 if (!name)
c906108c 14512 {
6ccb9162
UW
14513 complaint (&symfile_complaints,
14514 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 14515 }
6ccb9162
UW
14516
14517 switch (encoding)
c906108c 14518 {
6ccb9162
UW
14519 case DW_ATE_address:
14520 /* Turn DW_ATE_address into a void * pointer. */
14521 code = TYPE_CODE_PTR;
14522 type_flags |= TYPE_FLAG_UNSIGNED;
14523 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
14524 break;
14525 case DW_ATE_boolean:
14526 code = TYPE_CODE_BOOL;
14527 type_flags |= TYPE_FLAG_UNSIGNED;
14528 break;
14529 case DW_ATE_complex_float:
14530 code = TYPE_CODE_COMPLEX;
14531 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
14532 break;
14533 case DW_ATE_decimal_float:
14534 code = TYPE_CODE_DECFLOAT;
14535 break;
14536 case DW_ATE_float:
14537 code = TYPE_CODE_FLT;
14538 break;
14539 case DW_ATE_signed:
14540 break;
14541 case DW_ATE_unsigned:
14542 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
14543 if (cu->language == language_fortran
14544 && name
14545 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
14546 code = TYPE_CODE_CHAR;
6ccb9162
UW
14547 break;
14548 case DW_ATE_signed_char:
6e70227d 14549 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14550 || cu->language == language_pascal
14551 || cu->language == language_fortran)
6ccb9162
UW
14552 code = TYPE_CODE_CHAR;
14553 break;
14554 case DW_ATE_unsigned_char:
868a0084 14555 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
14556 || cu->language == language_pascal
14557 || cu->language == language_fortran)
6ccb9162
UW
14558 code = TYPE_CODE_CHAR;
14559 type_flags |= TYPE_FLAG_UNSIGNED;
14560 break;
75079b2b
TT
14561 case DW_ATE_UTF:
14562 /* We just treat this as an integer and then recognize the
14563 type by name elsewhere. */
14564 break;
14565
6ccb9162
UW
14566 default:
14567 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
14568 dwarf_type_encoding_name (encoding));
14569 break;
c906108c 14570 }
6ccb9162 14571
0114d602
DJ
14572 type = init_type (code, size, type_flags, NULL, objfile);
14573 TYPE_NAME (type) = name;
6ccb9162
UW
14574 TYPE_TARGET_TYPE (type) = target_type;
14575
0114d602 14576 if (name && strcmp (name, "char") == 0)
876cecd0 14577 TYPE_NOSIGN (type) = 1;
0114d602 14578
f792889a 14579 return set_die_type (die, type, cu);
c906108c
SS
14580}
14581
80180f79
SA
14582/* Parse dwarf attribute if it's a block, reference or constant and put the
14583 resulting value of the attribute into struct bound_prop.
14584 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
14585
14586static int
14587attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
14588 struct dwarf2_cu *cu, struct dynamic_prop *prop)
14589{
14590 struct dwarf2_property_baton *baton;
14591 struct obstack *obstack = &cu->objfile->objfile_obstack;
14592
14593 if (attr == NULL || prop == NULL)
14594 return 0;
14595
14596 if (attr_form_is_block (attr))
14597 {
14598 baton = obstack_alloc (obstack, sizeof (*baton));
14599 baton->referenced_type = NULL;
14600 baton->locexpr.per_cu = cu->per_cu;
14601 baton->locexpr.size = DW_BLOCK (attr)->size;
14602 baton->locexpr.data = DW_BLOCK (attr)->data;
14603 prop->data.baton = baton;
14604 prop->kind = PROP_LOCEXPR;
14605 gdb_assert (prop->data.baton != NULL);
14606 }
14607 else if (attr_form_is_ref (attr))
14608 {
14609 struct dwarf2_cu *target_cu = cu;
14610 struct die_info *target_die;
14611 struct attribute *target_attr;
14612
14613 target_die = follow_die_ref (die, attr, &target_cu);
14614 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
14615 if (target_attr == NULL)
14616 return 0;
14617
14618 if (attr_form_is_section_offset (target_attr))
14619 {
14620 baton = obstack_alloc (obstack, sizeof (*baton));
14621 baton->referenced_type = die_type (target_die, target_cu);
14622 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
14623 prop->data.baton = baton;
14624 prop->kind = PROP_LOCLIST;
14625 gdb_assert (prop->data.baton != NULL);
14626 }
14627 else if (attr_form_is_block (target_attr))
14628 {
14629 baton = obstack_alloc (obstack, sizeof (*baton));
14630 baton->referenced_type = die_type (target_die, target_cu);
14631 baton->locexpr.per_cu = cu->per_cu;
14632 baton->locexpr.size = DW_BLOCK (target_attr)->size;
14633 baton->locexpr.data = DW_BLOCK (target_attr)->data;
14634 prop->data.baton = baton;
14635 prop->kind = PROP_LOCEXPR;
14636 gdb_assert (prop->data.baton != NULL);
14637 }
14638 else
14639 {
14640 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
14641 "dynamic property");
14642 return 0;
14643 }
14644 }
14645 else if (attr_form_is_constant (attr))
14646 {
14647 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
14648 prop->kind = PROP_CONST;
14649 }
14650 else
14651 {
14652 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
14653 dwarf2_name (die, cu));
14654 return 0;
14655 }
14656
14657 return 1;
14658}
14659
a02abb62
JB
14660/* Read the given DW_AT_subrange DIE. */
14661
f792889a 14662static struct type *
a02abb62
JB
14663read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
14664{
4c9ad8c2 14665 struct type *base_type, *orig_base_type;
a02abb62
JB
14666 struct type *range_type;
14667 struct attribute *attr;
729efb13 14668 struct dynamic_prop low, high;
4fae6e18 14669 int low_default_is_valid;
c451ebe5 14670 int high_bound_is_count = 0;
15d034d0 14671 const char *name;
43bbcdc2 14672 LONGEST negative_mask;
e77813c8 14673
4c9ad8c2
TT
14674 orig_base_type = die_type (die, cu);
14675 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
14676 whereas the real type might be. So, we use ORIG_BASE_TYPE when
14677 creating the range type, but we use the result of check_typedef
14678 when examining properties of the type. */
14679 base_type = check_typedef (orig_base_type);
a02abb62 14680
7e314c57
JK
14681 /* The die_type call above may have already set the type for this DIE. */
14682 range_type = get_die_type (die, cu);
14683 if (range_type)
14684 return range_type;
14685
729efb13
SA
14686 low.kind = PROP_CONST;
14687 high.kind = PROP_CONST;
14688 high.data.const_val = 0;
14689
4fae6e18
JK
14690 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
14691 omitting DW_AT_lower_bound. */
14692 switch (cu->language)
6e70227d 14693 {
4fae6e18
JK
14694 case language_c:
14695 case language_cplus:
729efb13 14696 low.data.const_val = 0;
4fae6e18
JK
14697 low_default_is_valid = 1;
14698 break;
14699 case language_fortran:
729efb13 14700 low.data.const_val = 1;
4fae6e18
JK
14701 low_default_is_valid = 1;
14702 break;
14703 case language_d:
14704 case language_java:
14705 case language_objc:
729efb13 14706 low.data.const_val = 0;
4fae6e18
JK
14707 low_default_is_valid = (cu->header.version >= 4);
14708 break;
14709 case language_ada:
14710 case language_m2:
14711 case language_pascal:
729efb13 14712 low.data.const_val = 1;
4fae6e18
JK
14713 low_default_is_valid = (cu->header.version >= 4);
14714 break;
14715 default:
729efb13 14716 low.data.const_val = 0;
4fae6e18
JK
14717 low_default_is_valid = 0;
14718 break;
a02abb62
JB
14719 }
14720
e142c38c 14721 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62 14722 if (attr)
11c1ba78 14723 attr_to_dynamic_prop (attr, die, cu, &low);
4fae6e18
JK
14724 else if (!low_default_is_valid)
14725 complaint (&symfile_complaints, _("Missing DW_AT_lower_bound "
14726 "- DIE at 0x%x [in module %s]"),
4262abfb 14727 die->offset.sect_off, objfile_name (cu->objfile));
a02abb62 14728
e142c38c 14729 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
80180f79 14730 if (!attr_to_dynamic_prop (attr, die, cu, &high))
e77813c8
PM
14731 {
14732 attr = dwarf2_attr (die, DW_AT_count, cu);
c451ebe5 14733 if (attr_to_dynamic_prop (attr, die, cu, &high))
6b662e19 14734 {
c451ebe5
SA
14735 /* If bounds are constant do the final calculation here. */
14736 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
14737 high.data.const_val = low.data.const_val + high.data.const_val - 1;
14738 else
14739 high_bound_is_count = 1;
c2ff108b 14740 }
e77813c8
PM
14741 }
14742
14743 /* Dwarf-2 specifications explicitly allows to create subrange types
14744 without specifying a base type.
14745 In that case, the base type must be set to the type of
14746 the lower bound, upper bound or count, in that order, if any of these
14747 three attributes references an object that has a type.
14748 If no base type is found, the Dwarf-2 specifications say that
14749 a signed integer type of size equal to the size of an address should
14750 be used.
14751 For the following C code: `extern char gdb_int [];'
14752 GCC produces an empty range DIE.
14753 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 14754 high bound or count are not yet handled by this code. */
e77813c8
PM
14755 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
14756 {
14757 struct objfile *objfile = cu->objfile;
14758 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14759 int addr_size = gdbarch_addr_bit (gdbarch) /8;
14760 struct type *int_type = objfile_type (objfile)->builtin_int;
14761
14762 /* Test "int", "long int", and "long long int" objfile types,
14763 and select the first one having a size above or equal to the
14764 architecture address size. */
14765 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14766 base_type = int_type;
14767 else
14768 {
14769 int_type = objfile_type (objfile)->builtin_long;
14770 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14771 base_type = int_type;
14772 else
14773 {
14774 int_type = objfile_type (objfile)->builtin_long_long;
14775 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
14776 base_type = int_type;
14777 }
14778 }
14779 }
a02abb62 14780
dbb9c2b1
JB
14781 /* Normally, the DWARF producers are expected to use a signed
14782 constant form (Eg. DW_FORM_sdata) to express negative bounds.
14783 But this is unfortunately not always the case, as witnessed
14784 with GCC, for instance, where the ambiguous DW_FORM_dataN form
14785 is used instead. To work around that ambiguity, we treat
14786 the bounds as signed, and thus sign-extend their values, when
14787 the base type is signed. */
6e70227d 14788 negative_mask =
43bbcdc2 14789 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
729efb13
SA
14790 if (low.kind == PROP_CONST
14791 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
14792 low.data.const_val |= negative_mask;
14793 if (high.kind == PROP_CONST
14794 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
14795 high.data.const_val |= negative_mask;
43bbcdc2 14796
729efb13 14797 range_type = create_range_type (NULL, orig_base_type, &low, &high);
a02abb62 14798
c451ebe5
SA
14799 if (high_bound_is_count)
14800 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
14801
c2ff108b
JK
14802 /* Ada expects an empty array on no boundary attributes. */
14803 if (attr == NULL && cu->language != language_ada)
729efb13 14804 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
c2ff108b 14805
39cbfefa
DJ
14806 name = dwarf2_name (die, cu);
14807 if (name)
14808 TYPE_NAME (range_type) = name;
6e70227d 14809
e142c38c 14810 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
14811 if (attr)
14812 TYPE_LENGTH (range_type) = DW_UNSND (attr);
14813
7e314c57
JK
14814 set_die_type (die, range_type, cu);
14815
14816 /* set_die_type should be already done. */
b4ba55a1
JB
14817 set_descriptive_type (range_type, die, cu);
14818
7e314c57 14819 return range_type;
a02abb62 14820}
6e70227d 14821
f792889a 14822static struct type *
81a17f79
JB
14823read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
14824{
14825 struct type *type;
81a17f79 14826
81a17f79
JB
14827 /* For now, we only support the C meaning of an unspecified type: void. */
14828
0114d602
DJ
14829 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
14830 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 14831
f792889a 14832 return set_die_type (die, type, cu);
81a17f79 14833}
a02abb62 14834
639d11d3
DC
14835/* Read a single die and all its descendents. Set the die's sibling
14836 field to NULL; set other fields in the die correctly, and set all
14837 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
14838 location of the info_ptr after reading all of those dies. PARENT
14839 is the parent of the die in question. */
14840
14841static struct die_info *
dee91e82 14842read_die_and_children (const struct die_reader_specs *reader,
d521ce57
TT
14843 const gdb_byte *info_ptr,
14844 const gdb_byte **new_info_ptr,
dee91e82 14845 struct die_info *parent)
639d11d3
DC
14846{
14847 struct die_info *die;
d521ce57 14848 const gdb_byte *cur_ptr;
639d11d3
DC
14849 int has_children;
14850
bf6af496 14851 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
1d325ec1
DJ
14852 if (die == NULL)
14853 {
14854 *new_info_ptr = cur_ptr;
14855 return NULL;
14856 }
93311388 14857 store_in_ref_table (die, reader->cu);
639d11d3
DC
14858
14859 if (has_children)
bf6af496 14860 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
14861 else
14862 {
14863 die->child = NULL;
14864 *new_info_ptr = cur_ptr;
14865 }
14866
14867 die->sibling = NULL;
14868 die->parent = parent;
14869 return die;
14870}
14871
14872/* Read a die, all of its descendents, and all of its siblings; set
14873 all of the fields of all of the dies correctly. Arguments are as
14874 in read_die_and_children. */
14875
14876static struct die_info *
bf6af496 14877read_die_and_siblings_1 (const struct die_reader_specs *reader,
d521ce57
TT
14878 const gdb_byte *info_ptr,
14879 const gdb_byte **new_info_ptr,
bf6af496 14880 struct die_info *parent)
639d11d3
DC
14881{
14882 struct die_info *first_die, *last_sibling;
d521ce57 14883 const gdb_byte *cur_ptr;
639d11d3 14884
c906108c 14885 cur_ptr = info_ptr;
639d11d3
DC
14886 first_die = last_sibling = NULL;
14887
14888 while (1)
c906108c 14889 {
639d11d3 14890 struct die_info *die
dee91e82 14891 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
639d11d3 14892
1d325ec1 14893 if (die == NULL)
c906108c 14894 {
639d11d3
DC
14895 *new_info_ptr = cur_ptr;
14896 return first_die;
c906108c 14897 }
1d325ec1
DJ
14898
14899 if (!first_die)
14900 first_die = die;
c906108c 14901 else
1d325ec1
DJ
14902 last_sibling->sibling = die;
14903
14904 last_sibling = die;
c906108c 14905 }
c906108c
SS
14906}
14907
bf6af496
DE
14908/* Read a die, all of its descendents, and all of its siblings; set
14909 all of the fields of all of the dies correctly. Arguments are as
14910 in read_die_and_children.
14911 This the main entry point for reading a DIE and all its children. */
14912
14913static struct die_info *
14914read_die_and_siblings (const struct die_reader_specs *reader,
d521ce57
TT
14915 const gdb_byte *info_ptr,
14916 const gdb_byte **new_info_ptr,
bf6af496
DE
14917 struct die_info *parent)
14918{
14919 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
14920 new_info_ptr, parent);
14921
14922 if (dwarf2_die_debug)
14923 {
14924 fprintf_unfiltered (gdb_stdlog,
14925 "Read die from %s@0x%x of %s:\n",
a32a8923 14926 get_section_name (reader->die_section),
bf6af496
DE
14927 (unsigned) (info_ptr - reader->die_section->buffer),
14928 bfd_get_filename (reader->abfd));
14929 dump_die (die, dwarf2_die_debug);
14930 }
14931
14932 return die;
14933}
14934
3019eac3
DE
14935/* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
14936 attributes.
14937 The caller is responsible for filling in the extra attributes
14938 and updating (*DIEP)->num_attrs.
14939 Set DIEP to point to a newly allocated die with its information,
14940 except for its child, sibling, and parent fields.
14941 Set HAS_CHILDREN to tell whether the die has children or not. */
93311388 14942
d521ce57 14943static const gdb_byte *
3019eac3 14944read_full_die_1 (const struct die_reader_specs *reader,
d521ce57 14945 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3 14946 int *has_children, int num_extra_attrs)
93311388 14947{
b64f50a1
JK
14948 unsigned int abbrev_number, bytes_read, i;
14949 sect_offset offset;
93311388
DE
14950 struct abbrev_info *abbrev;
14951 struct die_info *die;
14952 struct dwarf2_cu *cu = reader->cu;
14953 bfd *abfd = reader->abfd;
14954
b64f50a1 14955 offset.sect_off = info_ptr - reader->buffer;
93311388
DE
14956 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
14957 info_ptr += bytes_read;
14958 if (!abbrev_number)
14959 {
14960 *diep = NULL;
14961 *has_children = 0;
14962 return info_ptr;
14963 }
14964
433df2d4 14965 abbrev = abbrev_table_lookup_abbrev (cu->abbrev_table, abbrev_number);
93311388 14966 if (!abbrev)
348e048f
DE
14967 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
14968 abbrev_number,
14969 bfd_get_filename (abfd));
14970
3019eac3 14971 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
93311388
DE
14972 die->offset = offset;
14973 die->tag = abbrev->tag;
14974 die->abbrev = abbrev_number;
14975
3019eac3
DE
14976 /* Make the result usable.
14977 The caller needs to update num_attrs after adding the extra
14978 attributes. */
93311388
DE
14979 die->num_attrs = abbrev->num_attrs;
14980
14981 for (i = 0; i < abbrev->num_attrs; ++i)
dee91e82
DE
14982 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
14983 info_ptr);
93311388
DE
14984
14985 *diep = die;
14986 *has_children = abbrev->has_children;
14987 return info_ptr;
14988}
14989
3019eac3
DE
14990/* Read a die and all its attributes.
14991 Set DIEP to point to a newly allocated die with its information,
14992 except for its child, sibling, and parent fields.
14993 Set HAS_CHILDREN to tell whether the die has children or not. */
14994
d521ce57 14995static const gdb_byte *
3019eac3 14996read_full_die (const struct die_reader_specs *reader,
d521ce57 14997 struct die_info **diep, const gdb_byte *info_ptr,
3019eac3
DE
14998 int *has_children)
14999{
d521ce57 15000 const gdb_byte *result;
bf6af496
DE
15001
15002 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
15003
15004 if (dwarf2_die_debug)
15005 {
15006 fprintf_unfiltered (gdb_stdlog,
15007 "Read die from %s@0x%x of %s:\n",
a32a8923 15008 get_section_name (reader->die_section),
bf6af496
DE
15009 (unsigned) (info_ptr - reader->die_section->buffer),
15010 bfd_get_filename (reader->abfd));
15011 dump_die (*diep, dwarf2_die_debug);
15012 }
15013
15014 return result;
3019eac3 15015}
433df2d4
DE
15016\f
15017/* Abbreviation tables.
3019eac3 15018
433df2d4 15019 In DWARF version 2, the description of the debugging information is
c906108c
SS
15020 stored in a separate .debug_abbrev section. Before we read any
15021 dies from a section we read in all abbreviations and install them
433df2d4
DE
15022 in a hash table. */
15023
15024/* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
15025
15026static struct abbrev_info *
15027abbrev_table_alloc_abbrev (struct abbrev_table *abbrev_table)
15028{
15029 struct abbrev_info *abbrev;
15030
15031 abbrev = (struct abbrev_info *)
15032 obstack_alloc (&abbrev_table->abbrev_obstack, sizeof (struct abbrev_info));
15033 memset (abbrev, 0, sizeof (struct abbrev_info));
15034 return abbrev;
15035}
15036
15037/* Add an abbreviation to the table. */
c906108c
SS
15038
15039static void
433df2d4
DE
15040abbrev_table_add_abbrev (struct abbrev_table *abbrev_table,
15041 unsigned int abbrev_number,
15042 struct abbrev_info *abbrev)
15043{
15044 unsigned int hash_number;
15045
15046 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15047 abbrev->next = abbrev_table->abbrevs[hash_number];
15048 abbrev_table->abbrevs[hash_number] = abbrev;
15049}
dee91e82 15050
433df2d4
DE
15051/* Look up an abbrev in the table.
15052 Returns NULL if the abbrev is not found. */
15053
15054static struct abbrev_info *
15055abbrev_table_lookup_abbrev (const struct abbrev_table *abbrev_table,
15056 unsigned int abbrev_number)
c906108c 15057{
433df2d4
DE
15058 unsigned int hash_number;
15059 struct abbrev_info *abbrev;
15060
15061 hash_number = abbrev_number % ABBREV_HASH_SIZE;
15062 abbrev = abbrev_table->abbrevs[hash_number];
15063
15064 while (abbrev)
15065 {
15066 if (abbrev->number == abbrev_number)
15067 return abbrev;
15068 abbrev = abbrev->next;
15069 }
15070 return NULL;
15071}
15072
15073/* Read in an abbrev table. */
15074
15075static struct abbrev_table *
15076abbrev_table_read_table (struct dwarf2_section_info *section,
15077 sect_offset offset)
15078{
15079 struct objfile *objfile = dwarf2_per_objfile->objfile;
a32a8923 15080 bfd *abfd = get_section_bfd_owner (section);
433df2d4 15081 struct abbrev_table *abbrev_table;
d521ce57 15082 const gdb_byte *abbrev_ptr;
c906108c
SS
15083 struct abbrev_info *cur_abbrev;
15084 unsigned int abbrev_number, bytes_read, abbrev_name;
433df2d4 15085 unsigned int abbrev_form;
f3dd6933
DJ
15086 struct attr_abbrev *cur_attrs;
15087 unsigned int allocated_attrs;
c906108c 15088
70ba0933 15089 abbrev_table = XNEW (struct abbrev_table);
f4dc4d17 15090 abbrev_table->offset = offset;
433df2d4
DE
15091 obstack_init (&abbrev_table->abbrev_obstack);
15092 abbrev_table->abbrevs = obstack_alloc (&abbrev_table->abbrev_obstack,
15093 (ABBREV_HASH_SIZE
15094 * sizeof (struct abbrev_info *)));
15095 memset (abbrev_table->abbrevs, 0,
15096 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 15097
433df2d4
DE
15098 dwarf2_read_section (objfile, section);
15099 abbrev_ptr = section->buffer + offset.sect_off;
c906108c
SS
15100 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15101 abbrev_ptr += bytes_read;
15102
f3dd6933
DJ
15103 allocated_attrs = ATTR_ALLOC_CHUNK;
15104 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 15105
0963b4bd 15106 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
15107 while (abbrev_number)
15108 {
433df2d4 15109 cur_abbrev = abbrev_table_alloc_abbrev (abbrev_table);
c906108c
SS
15110
15111 /* read in abbrev header */
15112 cur_abbrev->number = abbrev_number;
15113 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15114 abbrev_ptr += bytes_read;
15115 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
15116 abbrev_ptr += 1;
15117
15118 /* now read in declarations */
15119 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15120 abbrev_ptr += bytes_read;
15121 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15122 abbrev_ptr += bytes_read;
15123 while (abbrev_name)
15124 {
f3dd6933 15125 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 15126 {
f3dd6933
DJ
15127 allocated_attrs += ATTR_ALLOC_CHUNK;
15128 cur_attrs
15129 = xrealloc (cur_attrs, (allocated_attrs
15130 * sizeof (struct attr_abbrev)));
c906108c 15131 }
ae038cb0 15132
f3dd6933
DJ
15133 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
15134 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
15135 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15136 abbrev_ptr += bytes_read;
15137 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15138 abbrev_ptr += bytes_read;
15139 }
15140
433df2d4 15141 cur_abbrev->attrs = obstack_alloc (&abbrev_table->abbrev_obstack,
f3dd6933
DJ
15142 (cur_abbrev->num_attrs
15143 * sizeof (struct attr_abbrev)));
15144 memcpy (cur_abbrev->attrs, cur_attrs,
15145 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
15146
433df2d4 15147 abbrev_table_add_abbrev (abbrev_table, abbrev_number, cur_abbrev);
c906108c
SS
15148
15149 /* Get next abbreviation.
15150 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
15151 always properly terminated with an abbrev number of 0.
15152 Exit loop if we encounter an abbreviation which we have
15153 already read (which means we are about to read the abbreviations
15154 for the next compile unit) or if the end of the abbreviation
15155 table is reached. */
433df2d4 15156 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
c906108c
SS
15157 break;
15158 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
15159 abbrev_ptr += bytes_read;
433df2d4 15160 if (abbrev_table_lookup_abbrev (abbrev_table, abbrev_number) != NULL)
c906108c
SS
15161 break;
15162 }
f3dd6933
DJ
15163
15164 xfree (cur_attrs);
433df2d4 15165 return abbrev_table;
c906108c
SS
15166}
15167
433df2d4 15168/* Free the resources held by ABBREV_TABLE. */
c906108c 15169
c906108c 15170static void
433df2d4 15171abbrev_table_free (struct abbrev_table *abbrev_table)
c906108c 15172{
433df2d4
DE
15173 obstack_free (&abbrev_table->abbrev_obstack, NULL);
15174 xfree (abbrev_table);
c906108c
SS
15175}
15176
f4dc4d17
DE
15177/* Same as abbrev_table_free but as a cleanup.
15178 We pass in a pointer to the pointer to the table so that we can
15179 set the pointer to NULL when we're done. It also simplifies
73051182 15180 build_type_psymtabs_1. */
f4dc4d17
DE
15181
15182static void
15183abbrev_table_free_cleanup (void *table_ptr)
15184{
15185 struct abbrev_table **abbrev_table_ptr = table_ptr;
15186
15187 if (*abbrev_table_ptr != NULL)
15188 abbrev_table_free (*abbrev_table_ptr);
15189 *abbrev_table_ptr = NULL;
15190}
15191
433df2d4
DE
15192/* Read the abbrev table for CU from ABBREV_SECTION. */
15193
15194static void
15195dwarf2_read_abbrevs (struct dwarf2_cu *cu,
15196 struct dwarf2_section_info *abbrev_section)
c906108c 15197{
433df2d4
DE
15198 cu->abbrev_table =
15199 abbrev_table_read_table (abbrev_section, cu->header.abbrev_offset);
15200}
c906108c 15201
433df2d4 15202/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 15203
433df2d4
DE
15204static void
15205dwarf2_free_abbrev_table (void *ptr_to_cu)
15206{
15207 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 15208
a2ce51a0
DE
15209 if (cu->abbrev_table != NULL)
15210 abbrev_table_free (cu->abbrev_table);
433df2d4
DE
15211 /* Set this to NULL so that we SEGV if we try to read it later,
15212 and also because free_comp_unit verifies this is NULL. */
15213 cu->abbrev_table = NULL;
15214}
15215\f
72bf9492
DJ
15216/* Returns nonzero if TAG represents a type that we might generate a partial
15217 symbol for. */
15218
15219static int
15220is_type_tag_for_partial (int tag)
15221{
15222 switch (tag)
15223 {
15224#if 0
15225 /* Some types that would be reasonable to generate partial symbols for,
15226 that we don't at present. */
15227 case DW_TAG_array_type:
15228 case DW_TAG_file_type:
15229 case DW_TAG_ptr_to_member_type:
15230 case DW_TAG_set_type:
15231 case DW_TAG_string_type:
15232 case DW_TAG_subroutine_type:
15233#endif
15234 case DW_TAG_base_type:
15235 case DW_TAG_class_type:
680b30c7 15236 case DW_TAG_interface_type:
72bf9492
DJ
15237 case DW_TAG_enumeration_type:
15238 case DW_TAG_structure_type:
15239 case DW_TAG_subrange_type:
15240 case DW_TAG_typedef:
15241 case DW_TAG_union_type:
15242 return 1;
15243 default:
15244 return 0;
15245 }
15246}
15247
15248/* Load all DIEs that are interesting for partial symbols into memory. */
15249
15250static struct partial_die_info *
dee91e82 15251load_partial_dies (const struct die_reader_specs *reader,
d521ce57 15252 const gdb_byte *info_ptr, int building_psymtab)
72bf9492 15253{
dee91e82 15254 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15255 struct objfile *objfile = cu->objfile;
72bf9492
DJ
15256 struct partial_die_info *part_die;
15257 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
15258 struct abbrev_info *abbrev;
15259 unsigned int bytes_read;
5afb4e99 15260 unsigned int load_all = 0;
72bf9492
DJ
15261 int nesting_level = 1;
15262
15263 parent_die = NULL;
15264 last_die = NULL;
15265
7adf1e79
DE
15266 gdb_assert (cu->per_cu != NULL);
15267 if (cu->per_cu->load_all_dies)
5afb4e99
DJ
15268 load_all = 1;
15269
72bf9492
DJ
15270 cu->partial_dies
15271 = htab_create_alloc_ex (cu->header.length / 12,
15272 partial_die_hash,
15273 partial_die_eq,
15274 NULL,
15275 &cu->comp_unit_obstack,
15276 hashtab_obstack_allocate,
15277 dummy_obstack_deallocate);
15278
15279 part_die = obstack_alloc (&cu->comp_unit_obstack,
15280 sizeof (struct partial_die_info));
15281
15282 while (1)
15283 {
15284 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
15285
15286 /* A NULL abbrev means the end of a series of children. */
15287 if (abbrev == NULL)
15288 {
15289 if (--nesting_level == 0)
15290 {
15291 /* PART_DIE was probably the last thing allocated on the
15292 comp_unit_obstack, so we could call obstack_free
15293 here. We don't do that because the waste is small,
15294 and will be cleaned up when we're done with this
15295 compilation unit. This way, we're also more robust
15296 against other users of the comp_unit_obstack. */
15297 return first_die;
15298 }
15299 info_ptr += bytes_read;
15300 last_die = parent_die;
15301 parent_die = parent_die->die_parent;
15302 continue;
15303 }
15304
98bfdba5
PA
15305 /* Check for template arguments. We never save these; if
15306 they're seen, we just mark the parent, and go on our way. */
15307 if (parent_die != NULL
15308 && cu->language == language_cplus
15309 && (abbrev->tag == DW_TAG_template_type_param
15310 || abbrev->tag == DW_TAG_template_value_param))
15311 {
15312 parent_die->has_template_arguments = 1;
15313
15314 if (!load_all)
15315 {
15316 /* We don't need a partial DIE for the template argument. */
dee91e82 15317 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15318 continue;
15319 }
15320 }
15321
0d99eb77 15322 /* We only recurse into c++ subprograms looking for template arguments.
98bfdba5
PA
15323 Skip their other children. */
15324 if (!load_all
15325 && cu->language == language_cplus
15326 && parent_die != NULL
15327 && parent_die->tag == DW_TAG_subprogram)
15328 {
dee91e82 15329 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
98bfdba5
PA
15330 continue;
15331 }
15332
5afb4e99
DJ
15333 /* Check whether this DIE is interesting enough to save. Normally
15334 we would not be interested in members here, but there may be
15335 later variables referencing them via DW_AT_specification (for
15336 static members). */
15337 if (!load_all
15338 && !is_type_tag_for_partial (abbrev->tag)
72929c62 15339 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
15340 && abbrev->tag != DW_TAG_enumerator
15341 && abbrev->tag != DW_TAG_subprogram
bc30ff58 15342 && abbrev->tag != DW_TAG_lexical_block
72bf9492 15343 && abbrev->tag != DW_TAG_variable
5afb4e99 15344 && abbrev->tag != DW_TAG_namespace
f55ee35c 15345 && abbrev->tag != DW_TAG_module
95554aad 15346 && abbrev->tag != DW_TAG_member
74921315
KS
15347 && abbrev->tag != DW_TAG_imported_unit
15348 && abbrev->tag != DW_TAG_imported_declaration)
72bf9492
DJ
15349 {
15350 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15351 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
72bf9492
DJ
15352 continue;
15353 }
15354
dee91e82
DE
15355 info_ptr = read_partial_die (reader, part_die, abbrev, bytes_read,
15356 info_ptr);
72bf9492
DJ
15357
15358 /* This two-pass algorithm for processing partial symbols has a
15359 high cost in cache pressure. Thus, handle some simple cases
15360 here which cover the majority of C partial symbols. DIEs
15361 which neither have specification tags in them, nor could have
15362 specification tags elsewhere pointing at them, can simply be
15363 processed and discarded.
15364
15365 This segment is also optional; scan_partial_symbols and
15366 add_partial_symbol will handle these DIEs if we chain
15367 them in normally. When compilers which do not emit large
15368 quantities of duplicate debug information are more common,
15369 this code can probably be removed. */
15370
15371 /* Any complete simple types at the top level (pretty much all
15372 of them, for a language without namespaces), can be processed
15373 directly. */
15374 if (parent_die == NULL
15375 && part_die->has_specification == 0
15376 && part_die->is_declaration == 0
d8228535 15377 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
15378 || part_die->tag == DW_TAG_base_type
15379 || part_die->tag == DW_TAG_subrange_type))
15380 {
15381 if (building_psymtab && part_die->name != NULL)
04a679b8 15382 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15383 VAR_DOMAIN, LOC_TYPEDEF,
bb5ed363
DE
15384 &objfile->static_psymbols,
15385 0, (CORE_ADDR) 0, cu->language, objfile);
dee91e82 15386 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15387 continue;
15388 }
15389
d8228535
JK
15390 /* The exception for DW_TAG_typedef with has_children above is
15391 a workaround of GCC PR debug/47510. In the case of this complaint
15392 type_name_no_tag_or_error will error on such types later.
15393
15394 GDB skipped children of DW_TAG_typedef by the shortcut above and then
15395 it could not find the child DIEs referenced later, this is checked
15396 above. In correct DWARF DW_TAG_typedef should have no children. */
15397
15398 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
15399 complaint (&symfile_complaints,
15400 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
15401 "- DIE at 0x%x [in module %s]"),
4262abfb 15402 part_die->offset.sect_off, objfile_name (objfile));
d8228535 15403
72bf9492
DJ
15404 /* If we're at the second level, and we're an enumerator, and
15405 our parent has no specification (meaning possibly lives in a
15406 namespace elsewhere), then we can add the partial symbol now
15407 instead of queueing it. */
15408 if (part_die->tag == DW_TAG_enumerator
15409 && parent_die != NULL
15410 && parent_die->die_parent == NULL
15411 && parent_die->tag == DW_TAG_enumeration_type
15412 && parent_die->has_specification == 0)
15413 {
15414 if (part_die->name == NULL)
3e43a32a
MS
15415 complaint (&symfile_complaints,
15416 _("malformed enumerator DIE ignored"));
72bf9492 15417 else if (building_psymtab)
04a679b8 15418 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 15419 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
15420 (cu->language == language_cplus
15421 || cu->language == language_java)
bb5ed363
DE
15422 ? &objfile->global_psymbols
15423 : &objfile->static_psymbols,
15424 0, (CORE_ADDR) 0, cu->language, objfile);
72bf9492 15425
dee91e82 15426 info_ptr = locate_pdi_sibling (reader, part_die, info_ptr);
72bf9492
DJ
15427 continue;
15428 }
15429
15430 /* We'll save this DIE so link it in. */
15431 part_die->die_parent = parent_die;
15432 part_die->die_sibling = NULL;
15433 part_die->die_child = NULL;
15434
15435 if (last_die && last_die == parent_die)
15436 last_die->die_child = part_die;
15437 else if (last_die)
15438 last_die->die_sibling = part_die;
15439
15440 last_die = part_die;
15441
15442 if (first_die == NULL)
15443 first_die = part_die;
15444
15445 /* Maybe add the DIE to the hash table. Not all DIEs that we
15446 find interesting need to be in the hash table, because we
15447 also have the parent/sibling/child chains; only those that we
15448 might refer to by offset later during partial symbol reading.
15449
15450 For now this means things that might have be the target of a
15451 DW_AT_specification, DW_AT_abstract_origin, or
15452 DW_AT_extension. DW_AT_extension will refer only to
15453 namespaces; DW_AT_abstract_origin refers to functions (and
15454 many things under the function DIE, but we do not recurse
15455 into function DIEs during partial symbol reading) and
15456 possibly variables as well; DW_AT_specification refers to
15457 declarations. Declarations ought to have the DW_AT_declaration
15458 flag. It happens that GCC forgets to put it in sometimes, but
15459 only for functions, not for types.
15460
15461 Adding more things than necessary to the hash table is harmless
15462 except for the performance cost. Adding too few will result in
5afb4e99
DJ
15463 wasted time in find_partial_die, when we reread the compilation
15464 unit with load_all_dies set. */
72bf9492 15465
5afb4e99 15466 if (load_all
72929c62 15467 || abbrev->tag == DW_TAG_constant
5afb4e99 15468 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
15469 || abbrev->tag == DW_TAG_variable
15470 || abbrev->tag == DW_TAG_namespace
15471 || part_die->is_declaration)
15472 {
15473 void **slot;
15474
15475 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
b64f50a1 15476 part_die->offset.sect_off, INSERT);
72bf9492
DJ
15477 *slot = part_die;
15478 }
15479
15480 part_die = obstack_alloc (&cu->comp_unit_obstack,
15481 sizeof (struct partial_die_info));
15482
15483 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 15484 we have no reason to follow the children of structures; for other
98bfdba5
PA
15485 languages we have to, so that we can get at method physnames
15486 to infer fully qualified class names, for DW_AT_specification,
15487 and for C++ template arguments. For C++, we also look one level
15488 inside functions to find template arguments (if the name of the
15489 function does not already contain the template arguments).
bc30ff58
JB
15490
15491 For Ada, we need to scan the children of subprograms and lexical
15492 blocks as well because Ada allows the definition of nested
15493 entities that could be interesting for the debugger, such as
15494 nested subprograms for instance. */
72bf9492 15495 if (last_die->has_children
5afb4e99
DJ
15496 && (load_all
15497 || last_die->tag == DW_TAG_namespace
f55ee35c 15498 || last_die->tag == DW_TAG_module
72bf9492 15499 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
15500 || (cu->language == language_cplus
15501 && last_die->tag == DW_TAG_subprogram
15502 && (last_die->name == NULL
15503 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
15504 || (cu->language != language_c
15505 && (last_die->tag == DW_TAG_class_type
680b30c7 15506 || last_die->tag == DW_TAG_interface_type
72bf9492 15507 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
15508 || last_die->tag == DW_TAG_union_type))
15509 || (cu->language == language_ada
15510 && (last_die->tag == DW_TAG_subprogram
15511 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
15512 {
15513 nesting_level++;
15514 parent_die = last_die;
15515 continue;
15516 }
15517
15518 /* Otherwise we skip to the next sibling, if any. */
dee91e82 15519 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
72bf9492
DJ
15520
15521 /* Back to the top, do it again. */
15522 }
15523}
15524
c906108c
SS
15525/* Read a minimal amount of information into the minimal die structure. */
15526
d521ce57 15527static const gdb_byte *
dee91e82
DE
15528read_partial_die (const struct die_reader_specs *reader,
15529 struct partial_die_info *part_die,
15530 struct abbrev_info *abbrev, unsigned int abbrev_len,
d521ce57 15531 const gdb_byte *info_ptr)
c906108c 15532{
dee91e82 15533 struct dwarf2_cu *cu = reader->cu;
bb5ed363 15534 struct objfile *objfile = cu->objfile;
d521ce57 15535 const gdb_byte *buffer = reader->buffer;
fa238c03 15536 unsigned int i;
c906108c 15537 struct attribute attr;
c5aa993b 15538 int has_low_pc_attr = 0;
c906108c 15539 int has_high_pc_attr = 0;
91da1414 15540 int high_pc_relative = 0;
c906108c 15541
72bf9492 15542 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 15543
b64f50a1 15544 part_die->offset.sect_off = info_ptr - buffer;
72bf9492
DJ
15545
15546 info_ptr += abbrev_len;
15547
15548 if (abbrev == NULL)
15549 return info_ptr;
15550
c906108c
SS
15551 part_die->tag = abbrev->tag;
15552 part_die->has_children = abbrev->has_children;
c906108c
SS
15553
15554 for (i = 0; i < abbrev->num_attrs; ++i)
15555 {
dee91e82 15556 info_ptr = read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
c906108c
SS
15557
15558 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 15559 partial symbol table. */
c906108c
SS
15560 switch (attr.name)
15561 {
15562 case DW_AT_name:
71c25dea
TT
15563 switch (part_die->tag)
15564 {
15565 case DW_TAG_compile_unit:
95554aad 15566 case DW_TAG_partial_unit:
348e048f 15567 case DW_TAG_type_unit:
71c25dea
TT
15568 /* Compilation units have a DW_AT_name that is a filename, not
15569 a source language identifier. */
15570 case DW_TAG_enumeration_type:
15571 case DW_TAG_enumerator:
15572 /* These tags always have simple identifiers already; no need
15573 to canonicalize them. */
15574 part_die->name = DW_STRING (&attr);
15575 break;
15576 default:
15577 part_die->name
15578 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
34a68019 15579 &objfile->per_bfd->storage_obstack);
71c25dea
TT
15580 break;
15581 }
c906108c 15582 break;
31ef98ae 15583 case DW_AT_linkage_name:
c906108c 15584 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
15585 /* Note that both forms of linkage name might appear. We
15586 assume they will be the same, and we only store the last
15587 one we see. */
94af9270
KS
15588 if (cu->language == language_ada)
15589 part_die->name = DW_STRING (&attr);
abc72ce4 15590 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
15591 break;
15592 case DW_AT_low_pc:
15593 has_low_pc_attr = 1;
31aa7e4e 15594 part_die->lowpc = attr_value_as_address (&attr);
c906108c
SS
15595 break;
15596 case DW_AT_high_pc:
15597 has_high_pc_attr = 1;
31aa7e4e
JB
15598 part_die->highpc = attr_value_as_address (&attr);
15599 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
15600 high_pc_relative = 1;
c906108c
SS
15601 break;
15602 case DW_AT_location:
0963b4bd 15603 /* Support the .debug_loc offsets. */
8e19ed76
PS
15604 if (attr_form_is_block (&attr))
15605 {
95554aad 15606 part_die->d.locdesc = DW_BLOCK (&attr);
8e19ed76 15607 }
3690dd37 15608 else if (attr_form_is_section_offset (&attr))
8e19ed76 15609 {
4d3c2250 15610 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
15611 }
15612 else
15613 {
4d3c2250
KB
15614 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
15615 "partial symbol information");
8e19ed76 15616 }
c906108c 15617 break;
c906108c
SS
15618 case DW_AT_external:
15619 part_die->is_external = DW_UNSND (&attr);
15620 break;
15621 case DW_AT_declaration:
15622 part_die->is_declaration = DW_UNSND (&attr);
15623 break;
15624 case DW_AT_type:
15625 part_die->has_type = 1;
15626 break;
15627 case DW_AT_abstract_origin:
15628 case DW_AT_specification:
72bf9492
DJ
15629 case DW_AT_extension:
15630 part_die->has_specification = 1;
c764a876 15631 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
36586728
TT
15632 part_die->spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15633 || cu->per_cu->is_dwz);
c906108c
SS
15634 break;
15635 case DW_AT_sibling:
15636 /* Ignore absolute siblings, they might point outside of
15637 the current compile unit. */
15638 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
15639 complaint (&symfile_complaints,
15640 _("ignoring absolute DW_AT_sibling"));
c906108c 15641 else
b9502d3f
WN
15642 {
15643 unsigned int off = dwarf2_get_ref_die_offset (&attr).sect_off;
15644 const gdb_byte *sibling_ptr = buffer + off;
15645
15646 if (sibling_ptr < info_ptr)
15647 complaint (&symfile_complaints,
15648 _("DW_AT_sibling points backwards"));
22869d73
KS
15649 else if (sibling_ptr > reader->buffer_end)
15650 dwarf2_section_buffer_overflow_complaint (reader->die_section);
b9502d3f
WN
15651 else
15652 part_die->sibling = sibling_ptr;
15653 }
c906108c 15654 break;
fa4028e9
JB
15655 case DW_AT_byte_size:
15656 part_die->has_byte_size = 1;
15657 break;
68511cec
CES
15658 case DW_AT_calling_convention:
15659 /* DWARF doesn't provide a way to identify a program's source-level
15660 entry point. DW_AT_calling_convention attributes are only meant
15661 to describe functions' calling conventions.
15662
15663 However, because it's a necessary piece of information in
15664 Fortran, and because DW_CC_program is the only piece of debugging
15665 information whose definition refers to a 'main program' at all,
15666 several compilers have begun marking Fortran main programs with
15667 DW_CC_program --- even when those functions use the standard
15668 calling conventions.
15669
15670 So until DWARF specifies a way to provide this information and
15671 compilers pick up the new representation, we'll support this
15672 practice. */
15673 if (DW_UNSND (&attr) == DW_CC_program
15674 && cu->language == language_fortran)
3d548a53 15675 set_objfile_main_name (objfile, part_die->name, language_fortran);
68511cec 15676 break;
481860b3
GB
15677 case DW_AT_inline:
15678 if (DW_UNSND (&attr) == DW_INL_inlined
15679 || DW_UNSND (&attr) == DW_INL_declared_inlined)
15680 part_die->may_be_inlined = 1;
15681 break;
95554aad
TT
15682
15683 case DW_AT_import:
15684 if (part_die->tag == DW_TAG_imported_unit)
36586728
TT
15685 {
15686 part_die->d.offset = dwarf2_get_ref_die_offset (&attr);
15687 part_die->is_dwz = (attr.form == DW_FORM_GNU_ref_alt
15688 || cu->per_cu->is_dwz);
15689 }
95554aad
TT
15690 break;
15691
c906108c
SS
15692 default:
15693 break;
15694 }
15695 }
15696
91da1414
MW
15697 if (high_pc_relative)
15698 part_die->highpc += part_die->lowpc;
15699
9373cf26
JK
15700 if (has_low_pc_attr && has_high_pc_attr)
15701 {
15702 /* When using the GNU linker, .gnu.linkonce. sections are used to
15703 eliminate duplicate copies of functions and vtables and such.
15704 The linker will arbitrarily choose one and discard the others.
15705 The AT_*_pc values for such functions refer to local labels in
15706 these sections. If the section from that file was discarded, the
15707 labels are not in the output, so the relocs get a value of 0.
15708 If this is a discarded function, mark the pc bounds as invalid,
15709 so that GDB will ignore it. */
15710 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
15711 {
bb5ed363 15712 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15713
15714 complaint (&symfile_complaints,
15715 _("DW_AT_low_pc %s is zero "
15716 "for DIE at 0x%x [in module %s]"),
15717 paddress (gdbarch, part_die->lowpc),
4262abfb 15718 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15719 }
15720 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
15721 else if (part_die->lowpc >= part_die->highpc)
15722 {
bb5ed363 15723 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9373cf26
JK
15724
15725 complaint (&symfile_complaints,
15726 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
15727 "for DIE at 0x%x [in module %s]"),
15728 paddress (gdbarch, part_die->lowpc),
15729 paddress (gdbarch, part_die->highpc),
4262abfb 15730 part_die->offset.sect_off, objfile_name (objfile));
9373cf26
JK
15731 }
15732 else
15733 part_die->has_pc_info = 1;
15734 }
85cbf3d3 15735
c906108c
SS
15736 return info_ptr;
15737}
15738
72bf9492
DJ
15739/* Find a cached partial DIE at OFFSET in CU. */
15740
15741static struct partial_die_info *
b64f50a1 15742find_partial_die_in_comp_unit (sect_offset offset, struct dwarf2_cu *cu)
72bf9492
DJ
15743{
15744 struct partial_die_info *lookup_die = NULL;
15745 struct partial_die_info part_die;
15746
15747 part_die.offset = offset;
b64f50a1
JK
15748 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die,
15749 offset.sect_off);
72bf9492 15750
72bf9492
DJ
15751 return lookup_die;
15752}
15753
348e048f
DE
15754/* Find a partial DIE at OFFSET, which may or may not be in CU,
15755 except in the case of .debug_types DIEs which do not reference
15756 outside their CU (they do however referencing other types via
55f1336d 15757 DW_FORM_ref_sig8). */
72bf9492
DJ
15758
15759static struct partial_die_info *
36586728 15760find_partial_die (sect_offset offset, int offset_in_dwz, struct dwarf2_cu *cu)
72bf9492 15761{
bb5ed363 15762 struct objfile *objfile = cu->objfile;
5afb4e99
DJ
15763 struct dwarf2_per_cu_data *per_cu = NULL;
15764 struct partial_die_info *pd = NULL;
72bf9492 15765
36586728
TT
15766 if (offset_in_dwz == cu->per_cu->is_dwz
15767 && offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
15768 {
15769 pd = find_partial_die_in_comp_unit (offset, cu);
15770 if (pd != NULL)
15771 return pd;
0d99eb77
DE
15772 /* We missed recording what we needed.
15773 Load all dies and try again. */
15774 per_cu = cu->per_cu;
5afb4e99 15775 }
0d99eb77
DE
15776 else
15777 {
15778 /* TUs don't reference other CUs/TUs (except via type signatures). */
3019eac3 15779 if (cu->per_cu->is_debug_types)
0d99eb77
DE
15780 {
15781 error (_("Dwarf Error: Type Unit at offset 0x%lx contains"
15782 " external reference to offset 0x%lx [in module %s].\n"),
15783 (long) cu->header.offset.sect_off, (long) offset.sect_off,
15784 bfd_get_filename (objfile->obfd));
15785 }
36586728
TT
15786 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
15787 objfile);
72bf9492 15788
0d99eb77
DE
15789 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
15790 load_partial_comp_unit (per_cu);
ae038cb0 15791
0d99eb77
DE
15792 per_cu->cu->last_used = 0;
15793 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15794 }
5afb4e99 15795
dee91e82
DE
15796 /* If we didn't find it, and not all dies have been loaded,
15797 load them all and try again. */
15798
5afb4e99
DJ
15799 if (pd == NULL && per_cu->load_all_dies == 0)
15800 {
5afb4e99 15801 per_cu->load_all_dies = 1;
fd820528
DE
15802
15803 /* This is nasty. When we reread the DIEs, somewhere up the call chain
15804 THIS_CU->cu may already be in use. So we can't just free it and
15805 replace its DIEs with the ones we read in. Instead, we leave those
15806 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
15807 and clobber THIS_CU->cu->partial_dies with the hash table for the new
15808 set. */
dee91e82 15809 load_partial_comp_unit (per_cu);
5afb4e99
DJ
15810
15811 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
15812 }
15813
15814 if (pd == NULL)
15815 internal_error (__FILE__, __LINE__,
3e43a32a
MS
15816 _("could not find partial DIE 0x%x "
15817 "in cache [from module %s]\n"),
b64f50a1 15818 offset.sect_off, bfd_get_filename (objfile->obfd));
5afb4e99 15819 return pd;
72bf9492
DJ
15820}
15821
abc72ce4
DE
15822/* See if we can figure out if the class lives in a namespace. We do
15823 this by looking for a member function; its demangled name will
15824 contain namespace info, if there is any. */
15825
15826static void
15827guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
15828 struct dwarf2_cu *cu)
15829{
15830 /* NOTE: carlton/2003-10-07: Getting the info this way changes
15831 what template types look like, because the demangler
15832 frequently doesn't give the same name as the debug info. We
15833 could fix this by only using the demangled name to get the
15834 prefix (but see comment in read_structure_type). */
15835
15836 struct partial_die_info *real_pdi;
15837 struct partial_die_info *child_pdi;
15838
15839 /* If this DIE (this DIE's specification, if any) has a parent, then
15840 we should not do this. We'll prepend the parent's fully qualified
15841 name when we create the partial symbol. */
15842
15843 real_pdi = struct_pdi;
15844 while (real_pdi->has_specification)
36586728
TT
15845 real_pdi = find_partial_die (real_pdi->spec_offset,
15846 real_pdi->spec_is_dwz, cu);
abc72ce4
DE
15847
15848 if (real_pdi->die_parent != NULL)
15849 return;
15850
15851 for (child_pdi = struct_pdi->die_child;
15852 child_pdi != NULL;
15853 child_pdi = child_pdi->die_sibling)
15854 {
15855 if (child_pdi->tag == DW_TAG_subprogram
15856 && child_pdi->linkage_name != NULL)
15857 {
15858 char *actual_class_name
15859 = language_class_name_from_physname (cu->language_defn,
15860 child_pdi->linkage_name);
15861 if (actual_class_name != NULL)
15862 {
15863 struct_pdi->name
34a68019 15864 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb
TT
15865 actual_class_name,
15866 strlen (actual_class_name));
abc72ce4
DE
15867 xfree (actual_class_name);
15868 }
15869 break;
15870 }
15871 }
15872}
15873
72bf9492
DJ
15874/* Adjust PART_DIE before generating a symbol for it. This function
15875 may set the is_external flag or change the DIE's name. */
15876
15877static void
15878fixup_partial_die (struct partial_die_info *part_die,
15879 struct dwarf2_cu *cu)
15880{
abc72ce4
DE
15881 /* Once we've fixed up a die, there's no point in doing so again.
15882 This also avoids a memory leak if we were to call
15883 guess_partial_die_structure_name multiple times. */
15884 if (part_die->fixup_called)
15885 return;
15886
72bf9492
DJ
15887 /* If we found a reference attribute and the DIE has no name, try
15888 to find a name in the referred to DIE. */
15889
15890 if (part_die->name == NULL && part_die->has_specification)
15891 {
15892 struct partial_die_info *spec_die;
72bf9492 15893
36586728
TT
15894 spec_die = find_partial_die (part_die->spec_offset,
15895 part_die->spec_is_dwz, cu);
72bf9492 15896
10b3939b 15897 fixup_partial_die (spec_die, cu);
72bf9492
DJ
15898
15899 if (spec_die->name)
15900 {
15901 part_die->name = spec_die->name;
15902
15903 /* Copy DW_AT_external attribute if it is set. */
15904 if (spec_die->is_external)
15905 part_die->is_external = spec_die->is_external;
15906 }
15907 }
15908
15909 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
15910
15911 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 15912 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 15913
abc72ce4
DE
15914 /* If there is no parent die to provide a namespace, and there are
15915 children, see if we can determine the namespace from their linkage
122d1940 15916 name. */
abc72ce4 15917 if (cu->language == language_cplus
8b70b953 15918 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
15919 && part_die->die_parent == NULL
15920 && part_die->has_children
15921 && (part_die->tag == DW_TAG_class_type
15922 || part_die->tag == DW_TAG_structure_type
15923 || part_die->tag == DW_TAG_union_type))
15924 guess_partial_die_structure_name (part_die, cu);
15925
53832f31
TT
15926 /* GCC might emit a nameless struct or union that has a linkage
15927 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
15928 if (part_die->name == NULL
96408a79
SA
15929 && (part_die->tag == DW_TAG_class_type
15930 || part_die->tag == DW_TAG_interface_type
15931 || part_die->tag == DW_TAG_structure_type
15932 || part_die->tag == DW_TAG_union_type)
53832f31
TT
15933 && part_die->linkage_name != NULL)
15934 {
15935 char *demangled;
15936
8de20a37 15937 demangled = gdb_demangle (part_die->linkage_name, DMGL_TYPES);
53832f31
TT
15938 if (demangled)
15939 {
96408a79
SA
15940 const char *base;
15941
15942 /* Strip any leading namespaces/classes, keep only the base name.
15943 DW_AT_name for named DIEs does not contain the prefixes. */
15944 base = strrchr (demangled, ':');
15945 if (base && base > demangled && base[-1] == ':')
15946 base++;
15947 else
15948 base = demangled;
15949
34a68019
TT
15950 part_die->name
15951 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
15952 base, strlen (base));
53832f31
TT
15953 xfree (demangled);
15954 }
15955 }
15956
abc72ce4 15957 part_die->fixup_called = 1;
72bf9492
DJ
15958}
15959
a8329558 15960/* Read an attribute value described by an attribute form. */
c906108c 15961
d521ce57 15962static const gdb_byte *
dee91e82
DE
15963read_attribute_value (const struct die_reader_specs *reader,
15964 struct attribute *attr, unsigned form,
d521ce57 15965 const gdb_byte *info_ptr)
c906108c 15966{
dee91e82 15967 struct dwarf2_cu *cu = reader->cu;
3e29f34a
MR
15968 struct objfile *objfile = cu->objfile;
15969 struct gdbarch *gdbarch = get_objfile_arch (objfile);
dee91e82 15970 bfd *abfd = reader->abfd;
e7c27a73 15971 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
15972 unsigned int bytes_read;
15973 struct dwarf_block *blk;
15974
a8329558
KW
15975 attr->form = form;
15976 switch (form)
c906108c 15977 {
c906108c 15978 case DW_FORM_ref_addr:
ae411497 15979 if (cu->header.version == 2)
4568ecf9 15980 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
ae411497 15981 else
4568ecf9
DE
15982 DW_UNSND (attr) = read_offset (abfd, info_ptr,
15983 &cu->header, &bytes_read);
ae411497
TT
15984 info_ptr += bytes_read;
15985 break;
36586728
TT
15986 case DW_FORM_GNU_ref_alt:
15987 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
15988 info_ptr += bytes_read;
15989 break;
ae411497 15990 case DW_FORM_addr:
e7c27a73 15991 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
3e29f34a 15992 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
107d2387 15993 info_ptr += bytes_read;
c906108c
SS
15994 break;
15995 case DW_FORM_block2:
7b5a2f43 15996 blk = dwarf_alloc_block (cu);
c906108c
SS
15997 blk->size = read_2_bytes (abfd, info_ptr);
15998 info_ptr += 2;
15999 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16000 info_ptr += blk->size;
16001 DW_BLOCK (attr) = blk;
16002 break;
16003 case DW_FORM_block4:
7b5a2f43 16004 blk = dwarf_alloc_block (cu);
c906108c
SS
16005 blk->size = read_4_bytes (abfd, info_ptr);
16006 info_ptr += 4;
16007 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16008 info_ptr += blk->size;
16009 DW_BLOCK (attr) = blk;
16010 break;
16011 case DW_FORM_data2:
16012 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
16013 info_ptr += 2;
16014 break;
16015 case DW_FORM_data4:
16016 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
16017 info_ptr += 4;
16018 break;
16019 case DW_FORM_data8:
16020 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
16021 info_ptr += 8;
16022 break;
2dc7f7b3
TT
16023 case DW_FORM_sec_offset:
16024 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
16025 info_ptr += bytes_read;
16026 break;
c906108c 16027 case DW_FORM_string:
9b1c24c8 16028 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 16029 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
16030 info_ptr += bytes_read;
16031 break;
4bdf3d34 16032 case DW_FORM_strp:
36586728
TT
16033 if (!cu->per_cu->is_dwz)
16034 {
16035 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
16036 &bytes_read);
16037 DW_STRING_IS_CANONICAL (attr) = 0;
16038 info_ptr += bytes_read;
16039 break;
16040 }
16041 /* FALLTHROUGH */
16042 case DW_FORM_GNU_strp_alt:
16043 {
16044 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16045 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
16046 &bytes_read);
16047
16048 DW_STRING (attr) = read_indirect_string_from_dwz (dwz, str_offset);
16049 DW_STRING_IS_CANONICAL (attr) = 0;
16050 info_ptr += bytes_read;
16051 }
4bdf3d34 16052 break;
2dc7f7b3 16053 case DW_FORM_exprloc:
c906108c 16054 case DW_FORM_block:
7b5a2f43 16055 blk = dwarf_alloc_block (cu);
c906108c
SS
16056 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16057 info_ptr += bytes_read;
16058 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16059 info_ptr += blk->size;
16060 DW_BLOCK (attr) = blk;
16061 break;
16062 case DW_FORM_block1:
7b5a2f43 16063 blk = dwarf_alloc_block (cu);
c906108c
SS
16064 blk->size = read_1_byte (abfd, info_ptr);
16065 info_ptr += 1;
16066 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
16067 info_ptr += blk->size;
16068 DW_BLOCK (attr) = blk;
16069 break;
16070 case DW_FORM_data1:
16071 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16072 info_ptr += 1;
16073 break;
16074 case DW_FORM_flag:
16075 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
16076 info_ptr += 1;
16077 break;
2dc7f7b3
TT
16078 case DW_FORM_flag_present:
16079 DW_UNSND (attr) = 1;
16080 break;
c906108c
SS
16081 case DW_FORM_sdata:
16082 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
16083 info_ptr += bytes_read;
16084 break;
16085 case DW_FORM_udata:
16086 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16087 info_ptr += bytes_read;
16088 break;
16089 case DW_FORM_ref1:
4568ecf9
DE
16090 DW_UNSND (attr) = (cu->header.offset.sect_off
16091 + read_1_byte (abfd, info_ptr));
c906108c
SS
16092 info_ptr += 1;
16093 break;
16094 case DW_FORM_ref2:
4568ecf9
DE
16095 DW_UNSND (attr) = (cu->header.offset.sect_off
16096 + read_2_bytes (abfd, info_ptr));
c906108c
SS
16097 info_ptr += 2;
16098 break;
16099 case DW_FORM_ref4:
4568ecf9
DE
16100 DW_UNSND (attr) = (cu->header.offset.sect_off
16101 + read_4_bytes (abfd, info_ptr));
c906108c
SS
16102 info_ptr += 4;
16103 break;
613e1657 16104 case DW_FORM_ref8:
4568ecf9
DE
16105 DW_UNSND (attr) = (cu->header.offset.sect_off
16106 + read_8_bytes (abfd, info_ptr));
613e1657
KB
16107 info_ptr += 8;
16108 break;
55f1336d 16109 case DW_FORM_ref_sig8:
ac9ec31b 16110 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
348e048f
DE
16111 info_ptr += 8;
16112 break;
c906108c 16113 case DW_FORM_ref_udata:
4568ecf9
DE
16114 DW_UNSND (attr) = (cu->header.offset.sect_off
16115 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
16116 info_ptr += bytes_read;
16117 break;
c906108c 16118 case DW_FORM_indirect:
a8329558
KW
16119 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16120 info_ptr += bytes_read;
dee91e82 16121 info_ptr = read_attribute_value (reader, attr, form, info_ptr);
a8329558 16122 break;
3019eac3
DE
16123 case DW_FORM_GNU_addr_index:
16124 if (reader->dwo_file == NULL)
16125 {
16126 /* For now flag a hard error.
16127 Later we can turn this into a complaint. */
16128 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16129 dwarf_form_name (form),
16130 bfd_get_filename (abfd));
16131 }
16132 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
16133 info_ptr += bytes_read;
16134 break;
16135 case DW_FORM_GNU_str_index:
16136 if (reader->dwo_file == NULL)
16137 {
16138 /* For now flag a hard error.
16139 Later we can turn this into a complaint if warranted. */
16140 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
16141 dwarf_form_name (form),
16142 bfd_get_filename (abfd));
16143 }
16144 {
16145 ULONGEST str_index =
16146 read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
16147
342587c4 16148 DW_STRING (attr) = read_str_index (reader, str_index);
3019eac3
DE
16149 DW_STRING_IS_CANONICAL (attr) = 0;
16150 info_ptr += bytes_read;
16151 }
16152 break;
c906108c 16153 default:
8a3fe4f8 16154 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
16155 dwarf_form_name (form),
16156 bfd_get_filename (abfd));
c906108c 16157 }
28e94949 16158
36586728 16159 /* Super hack. */
7771576e 16160 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
36586728
TT
16161 attr->form = DW_FORM_GNU_ref_alt;
16162
28e94949
JB
16163 /* We have seen instances where the compiler tried to emit a byte
16164 size attribute of -1 which ended up being encoded as an unsigned
16165 0xffffffff. Although 0xffffffff is technically a valid size value,
16166 an object of this size seems pretty unlikely so we can relatively
16167 safely treat these cases as if the size attribute was invalid and
16168 treat them as zero by default. */
16169 if (attr->name == DW_AT_byte_size
16170 && form == DW_FORM_data4
16171 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
16172 {
16173 complaint
16174 (&symfile_complaints,
43bbcdc2
PH
16175 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
16176 hex_string (DW_UNSND (attr)));
01c66ae6
JB
16177 DW_UNSND (attr) = 0;
16178 }
28e94949 16179
c906108c
SS
16180 return info_ptr;
16181}
16182
a8329558
KW
16183/* Read an attribute described by an abbreviated attribute. */
16184
d521ce57 16185static const gdb_byte *
dee91e82
DE
16186read_attribute (const struct die_reader_specs *reader,
16187 struct attribute *attr, struct attr_abbrev *abbrev,
d521ce57 16188 const gdb_byte *info_ptr)
a8329558
KW
16189{
16190 attr->name = abbrev->name;
dee91e82 16191 return read_attribute_value (reader, attr, abbrev->form, info_ptr);
a8329558
KW
16192}
16193
0963b4bd 16194/* Read dwarf information from a buffer. */
c906108c
SS
16195
16196static unsigned int
a1855c1d 16197read_1_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16198{
fe1b8b76 16199 return bfd_get_8 (abfd, buf);
c906108c
SS
16200}
16201
16202static int
a1855c1d 16203read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
c906108c 16204{
fe1b8b76 16205 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
16206}
16207
16208static unsigned int
a1855c1d 16209read_2_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16210{
fe1b8b76 16211 return bfd_get_16 (abfd, buf);
c906108c
SS
16212}
16213
21ae7a4d 16214static int
a1855c1d 16215read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16216{
16217 return bfd_get_signed_16 (abfd, buf);
16218}
16219
c906108c 16220static unsigned int
a1855c1d 16221read_4_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16222{
fe1b8b76 16223 return bfd_get_32 (abfd, buf);
c906108c
SS
16224}
16225
21ae7a4d 16226static int
a1855c1d 16227read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
21ae7a4d
JK
16228{
16229 return bfd_get_signed_32 (abfd, buf);
16230}
16231
93311388 16232static ULONGEST
a1855c1d 16233read_8_bytes (bfd *abfd, const gdb_byte *buf)
c906108c 16234{
fe1b8b76 16235 return bfd_get_64 (abfd, buf);
c906108c
SS
16236}
16237
16238static CORE_ADDR
d521ce57 16239read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 16240 unsigned int *bytes_read)
c906108c 16241{
e7c27a73 16242 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
16243 CORE_ADDR retval = 0;
16244
107d2387 16245 if (cu_header->signed_addr_p)
c906108c 16246 {
107d2387
AC
16247 switch (cu_header->addr_size)
16248 {
16249 case 2:
fe1b8b76 16250 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
16251 break;
16252 case 4:
fe1b8b76 16253 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
16254 break;
16255 case 8:
fe1b8b76 16256 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
16257 break;
16258 default:
8e65ff28 16259 internal_error (__FILE__, __LINE__,
e2e0b3e5 16260 _("read_address: bad switch, signed [in module %s]"),
659b0389 16261 bfd_get_filename (abfd));
107d2387
AC
16262 }
16263 }
16264 else
16265 {
16266 switch (cu_header->addr_size)
16267 {
16268 case 2:
fe1b8b76 16269 retval = bfd_get_16 (abfd, buf);
107d2387
AC
16270 break;
16271 case 4:
fe1b8b76 16272 retval = bfd_get_32 (abfd, buf);
107d2387
AC
16273 break;
16274 case 8:
fe1b8b76 16275 retval = bfd_get_64 (abfd, buf);
107d2387
AC
16276 break;
16277 default:
8e65ff28 16278 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
16279 _("read_address: bad switch, "
16280 "unsigned [in module %s]"),
659b0389 16281 bfd_get_filename (abfd));
107d2387 16282 }
c906108c 16283 }
64367e0a 16284
107d2387
AC
16285 *bytes_read = cu_header->addr_size;
16286 return retval;
c906108c
SS
16287}
16288
f7ef9339 16289/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
16290 specification allows the initial length to take up either 4 bytes
16291 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
16292 bytes describe the length and all offsets will be 8 bytes in length
16293 instead of 4.
16294
f7ef9339
KB
16295 An older, non-standard 64-bit format is also handled by this
16296 function. The older format in question stores the initial length
16297 as an 8-byte quantity without an escape value. Lengths greater
16298 than 2^32 aren't very common which means that the initial 4 bytes
16299 is almost always zero. Since a length value of zero doesn't make
16300 sense for the 32-bit format, this initial zero can be considered to
16301 be an escape value which indicates the presence of the older 64-bit
16302 format. As written, the code can't detect (old format) lengths
917c78fc
MK
16303 greater than 4GB. If it becomes necessary to handle lengths
16304 somewhat larger than 4GB, we could allow other small values (such
16305 as the non-sensical values of 1, 2, and 3) to also be used as
16306 escape values indicating the presence of the old format.
f7ef9339 16307
917c78fc
MK
16308 The value returned via bytes_read should be used to increment the
16309 relevant pointer after calling read_initial_length().
c764a876 16310
613e1657
KB
16311 [ Note: read_initial_length() and read_offset() are based on the
16312 document entitled "DWARF Debugging Information Format", revision
f7ef9339 16313 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
16314 from:
16315
f7ef9339 16316 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 16317
613e1657
KB
16318 This document is only a draft and is subject to change. (So beware.)
16319
f7ef9339 16320 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
16321 determined empirically by examining 64-bit ELF files produced by
16322 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
16323
16324 - Kevin, July 16, 2002
613e1657
KB
16325 ] */
16326
16327static LONGEST
d521ce57 16328read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
613e1657 16329{
fe1b8b76 16330 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 16331
dd373385 16332 if (length == 0xffffffff)
613e1657 16333 {
fe1b8b76 16334 length = bfd_get_64 (abfd, buf + 4);
613e1657 16335 *bytes_read = 12;
613e1657 16336 }
dd373385 16337 else if (length == 0)
f7ef9339 16338 {
dd373385 16339 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 16340 length = bfd_get_64 (abfd, buf);
f7ef9339 16341 *bytes_read = 8;
f7ef9339 16342 }
613e1657
KB
16343 else
16344 {
16345 *bytes_read = 4;
613e1657
KB
16346 }
16347
c764a876
DE
16348 return length;
16349}
dd373385 16350
c764a876
DE
16351/* Cover function for read_initial_length.
16352 Returns the length of the object at BUF, and stores the size of the
16353 initial length in *BYTES_READ and stores the size that offsets will be in
16354 *OFFSET_SIZE.
16355 If the initial length size is not equivalent to that specified in
16356 CU_HEADER then issue a complaint.
16357 This is useful when reading non-comp-unit headers. */
dd373385 16358
c764a876 16359static LONGEST
d521ce57 16360read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
c764a876
DE
16361 const struct comp_unit_head *cu_header,
16362 unsigned int *bytes_read,
16363 unsigned int *offset_size)
16364{
16365 LONGEST length = read_initial_length (abfd, buf, bytes_read);
16366
16367 gdb_assert (cu_header->initial_length_size == 4
16368 || cu_header->initial_length_size == 8
16369 || cu_header->initial_length_size == 12);
16370
16371 if (cu_header->initial_length_size != *bytes_read)
16372 complaint (&symfile_complaints,
16373 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 16374
c764a876 16375 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 16376 return length;
613e1657
KB
16377}
16378
16379/* Read an offset from the data stream. The size of the offset is
917c78fc 16380 given by cu_header->offset_size. */
613e1657
KB
16381
16382static LONGEST
d521ce57
TT
16383read_offset (bfd *abfd, const gdb_byte *buf,
16384 const struct comp_unit_head *cu_header,
891d2f0b 16385 unsigned int *bytes_read)
c764a876
DE
16386{
16387 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 16388
c764a876
DE
16389 *bytes_read = cu_header->offset_size;
16390 return offset;
16391}
16392
16393/* Read an offset from the data stream. */
16394
16395static LONGEST
d521ce57 16396read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
613e1657
KB
16397{
16398 LONGEST retval = 0;
16399
c764a876 16400 switch (offset_size)
613e1657
KB
16401 {
16402 case 4:
fe1b8b76 16403 retval = bfd_get_32 (abfd, buf);
613e1657
KB
16404 break;
16405 case 8:
fe1b8b76 16406 retval = bfd_get_64 (abfd, buf);
613e1657
KB
16407 break;
16408 default:
8e65ff28 16409 internal_error (__FILE__, __LINE__,
c764a876 16410 _("read_offset_1: bad switch [in module %s]"),
659b0389 16411 bfd_get_filename (abfd));
613e1657
KB
16412 }
16413
917c78fc 16414 return retval;
613e1657
KB
16415}
16416
d521ce57
TT
16417static const gdb_byte *
16418read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
c906108c
SS
16419{
16420 /* If the size of a host char is 8 bits, we can return a pointer
16421 to the buffer, otherwise we have to copy the data to a buffer
16422 allocated on the temporary obstack. */
4bdf3d34 16423 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 16424 return buf;
c906108c
SS
16425}
16426
d521ce57
TT
16427static const char *
16428read_direct_string (bfd *abfd, const gdb_byte *buf,
16429 unsigned int *bytes_read_ptr)
c906108c
SS
16430{
16431 /* If the size of a host char is 8 bits, we can return a pointer
16432 to the string, otherwise we have to copy the string to a buffer
16433 allocated on the temporary obstack. */
4bdf3d34 16434 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
16435 if (*buf == '\0')
16436 {
16437 *bytes_read_ptr = 1;
16438 return NULL;
16439 }
d521ce57
TT
16440 *bytes_read_ptr = strlen ((const char *) buf) + 1;
16441 return (const char *) buf;
4bdf3d34
JJ
16442}
16443
d521ce57 16444static const char *
cf2c3c16 16445read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 16446{
be391dca 16447 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 16448 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
16449 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
16450 bfd_get_filename (abfd));
dce234bc 16451 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
16452 error (_("DW_FORM_strp pointing outside of "
16453 ".debug_str section [in module %s]"),
16454 bfd_get_filename (abfd));
4bdf3d34 16455 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 16456 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 16457 return NULL;
d521ce57 16458 return (const char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
16459}
16460
36586728
TT
16461/* Read a string at offset STR_OFFSET in the .debug_str section from
16462 the .dwz file DWZ. Throw an error if the offset is too large. If
16463 the string consists of a single NUL byte, return NULL; otherwise
16464 return a pointer to the string. */
16465
d521ce57 16466static const char *
36586728
TT
16467read_indirect_string_from_dwz (struct dwz_file *dwz, LONGEST str_offset)
16468{
16469 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwz->str);
16470
16471 if (dwz->str.buffer == NULL)
16472 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
16473 "section [in module %s]"),
16474 bfd_get_filename (dwz->dwz_bfd));
16475 if (str_offset >= dwz->str.size)
16476 error (_("DW_FORM_GNU_strp_alt pointing outside of "
16477 ".debug_str section [in module %s]"),
16478 bfd_get_filename (dwz->dwz_bfd));
16479 gdb_assert (HOST_CHAR_BIT == 8);
16480 if (dwz->str.buffer[str_offset] == '\0')
16481 return NULL;
d521ce57 16482 return (const char *) (dwz->str.buffer + str_offset);
36586728
TT
16483}
16484
d521ce57
TT
16485static const char *
16486read_indirect_string (bfd *abfd, const gdb_byte *buf,
cf2c3c16
TT
16487 const struct comp_unit_head *cu_header,
16488 unsigned int *bytes_read_ptr)
16489{
16490 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
16491
16492 return read_indirect_string_at_offset (abfd, str_offset);
16493}
16494
12df843f 16495static ULONGEST
d521ce57
TT
16496read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
16497 unsigned int *bytes_read_ptr)
c906108c 16498{
12df843f 16499 ULONGEST result;
ce5d95e1 16500 unsigned int num_read;
c906108c
SS
16501 int i, shift;
16502 unsigned char byte;
16503
16504 result = 0;
16505 shift = 0;
16506 num_read = 0;
16507 i = 0;
16508 while (1)
16509 {
fe1b8b76 16510 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16511 buf++;
16512 num_read++;
12df843f 16513 result |= ((ULONGEST) (byte & 127) << shift);
c906108c
SS
16514 if ((byte & 128) == 0)
16515 {
16516 break;
16517 }
16518 shift += 7;
16519 }
16520 *bytes_read_ptr = num_read;
16521 return result;
16522}
16523
12df843f 16524static LONGEST
d521ce57
TT
16525read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
16526 unsigned int *bytes_read_ptr)
c906108c 16527{
12df843f 16528 LONGEST result;
77e0b926 16529 int i, shift, num_read;
c906108c
SS
16530 unsigned char byte;
16531
16532 result = 0;
16533 shift = 0;
c906108c
SS
16534 num_read = 0;
16535 i = 0;
16536 while (1)
16537 {
fe1b8b76 16538 byte = bfd_get_8 (abfd, buf);
c906108c
SS
16539 buf++;
16540 num_read++;
12df843f 16541 result |= ((LONGEST) (byte & 127) << shift);
c906108c
SS
16542 shift += 7;
16543 if ((byte & 128) == 0)
16544 {
16545 break;
16546 }
16547 }
77e0b926 16548 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
12df843f 16549 result |= -(((LONGEST) 1) << shift);
c906108c
SS
16550 *bytes_read_ptr = num_read;
16551 return result;
16552}
16553
3019eac3
DE
16554/* Given index ADDR_INDEX in .debug_addr, fetch the value.
16555 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
16556 ADDR_SIZE is the size of addresses from the CU header. */
16557
16558static CORE_ADDR
16559read_addr_index_1 (unsigned int addr_index, ULONGEST addr_base, int addr_size)
16560{
16561 struct objfile *objfile = dwarf2_per_objfile->objfile;
16562 bfd *abfd = objfile->obfd;
16563 const gdb_byte *info_ptr;
16564
16565 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
16566 if (dwarf2_per_objfile->addr.buffer == NULL)
16567 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
4262abfb 16568 objfile_name (objfile));
3019eac3
DE
16569 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
16570 error (_("DW_FORM_addr_index pointing outside of "
16571 ".debug_addr section [in module %s]"),
4262abfb 16572 objfile_name (objfile));
3019eac3
DE
16573 info_ptr = (dwarf2_per_objfile->addr.buffer
16574 + addr_base + addr_index * addr_size);
16575 if (addr_size == 4)
16576 return bfd_get_32 (abfd, info_ptr);
16577 else
16578 return bfd_get_64 (abfd, info_ptr);
16579}
16580
16581/* Given index ADDR_INDEX in .debug_addr, fetch the value. */
16582
16583static CORE_ADDR
16584read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
16585{
16586 return read_addr_index_1 (addr_index, cu->addr_base, cu->header.addr_size);
16587}
16588
16589/* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
16590
16591static CORE_ADDR
d521ce57 16592read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
3019eac3
DE
16593 unsigned int *bytes_read)
16594{
16595 bfd *abfd = cu->objfile->obfd;
16596 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
16597
16598 return read_addr_index (cu, addr_index);
16599}
16600
16601/* Data structure to pass results from dwarf2_read_addr_index_reader
16602 back to dwarf2_read_addr_index. */
16603
16604struct dwarf2_read_addr_index_data
16605{
16606 ULONGEST addr_base;
16607 int addr_size;
16608};
16609
16610/* die_reader_func for dwarf2_read_addr_index. */
16611
16612static void
16613dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
d521ce57 16614 const gdb_byte *info_ptr,
3019eac3
DE
16615 struct die_info *comp_unit_die,
16616 int has_children,
16617 void *data)
16618{
16619 struct dwarf2_cu *cu = reader->cu;
16620 struct dwarf2_read_addr_index_data *aidata =
16621 (struct dwarf2_read_addr_index_data *) data;
16622
16623 aidata->addr_base = cu->addr_base;
16624 aidata->addr_size = cu->header.addr_size;
16625}
16626
16627/* Given an index in .debug_addr, fetch the value.
16628 NOTE: This can be called during dwarf expression evaluation,
16629 long after the debug information has been read, and thus per_cu->cu
16630 may no longer exist. */
16631
16632CORE_ADDR
16633dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
16634 unsigned int addr_index)
16635{
16636 struct objfile *objfile = per_cu->objfile;
16637 struct dwarf2_cu *cu = per_cu->cu;
16638 ULONGEST addr_base;
16639 int addr_size;
16640
16641 /* This is intended to be called from outside this file. */
16642 dw2_setup (objfile);
16643
16644 /* We need addr_base and addr_size.
16645 If we don't have PER_CU->cu, we have to get it.
16646 Nasty, but the alternative is storing the needed info in PER_CU,
16647 which at this point doesn't seem justified: it's not clear how frequently
16648 it would get used and it would increase the size of every PER_CU.
16649 Entry points like dwarf2_per_cu_addr_size do a similar thing
16650 so we're not in uncharted territory here.
16651 Alas we need to be a bit more complicated as addr_base is contained
16652 in the DIE.
16653
16654 We don't need to read the entire CU(/TU).
16655 We just need the header and top level die.
a1b64ce1 16656
3019eac3 16657 IWBN to use the aging mechanism to let us lazily later discard the CU.
a1b64ce1 16658 For now we skip this optimization. */
3019eac3
DE
16659
16660 if (cu != NULL)
16661 {
16662 addr_base = cu->addr_base;
16663 addr_size = cu->header.addr_size;
16664 }
16665 else
16666 {
16667 struct dwarf2_read_addr_index_data aidata;
16668
a1b64ce1
DE
16669 /* Note: We can't use init_cutu_and_read_dies_simple here,
16670 we need addr_base. */
16671 init_cutu_and_read_dies (per_cu, NULL, 0, 0,
16672 dwarf2_read_addr_index_reader, &aidata);
3019eac3
DE
16673 addr_base = aidata.addr_base;
16674 addr_size = aidata.addr_size;
16675 }
16676
16677 return read_addr_index_1 (addr_index, addr_base, addr_size);
16678}
16679
57d63ce2
DE
16680/* Given a DW_FORM_GNU_str_index, fetch the string.
16681 This is only used by the Fission support. */
3019eac3 16682
d521ce57 16683static const char *
342587c4 16684read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
3019eac3
DE
16685{
16686 struct objfile *objfile = dwarf2_per_objfile->objfile;
c5164cbc 16687 const char *objf_name = objfile_name (objfile);
3019eac3 16688 bfd *abfd = objfile->obfd;
342587c4 16689 struct dwarf2_cu *cu = reader->cu;
73869dc2
DE
16690 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
16691 struct dwarf2_section_info *str_offsets_section =
16692 &reader->dwo_file->sections.str_offsets;
d521ce57 16693 const gdb_byte *info_ptr;
3019eac3 16694 ULONGEST str_offset;
57d63ce2 16695 static const char form_name[] = "DW_FORM_GNU_str_index";
3019eac3 16696
73869dc2
DE
16697 dwarf2_read_section (objfile, str_section);
16698 dwarf2_read_section (objfile, str_offsets_section);
16699 if (str_section->buffer == NULL)
57d63ce2 16700 error (_("%s used without .debug_str.dwo section"
3019eac3 16701 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16702 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16703 if (str_offsets_section->buffer == NULL)
57d63ce2 16704 error (_("%s used without .debug_str_offsets.dwo section"
3019eac3 16705 " in CU at offset 0x%lx [in module %s]"),
c5164cbc 16706 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16707 if (str_index * cu->header.offset_size >= str_offsets_section->size)
57d63ce2 16708 error (_("%s pointing outside of .debug_str_offsets.dwo"
3019eac3 16709 " section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16710 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16711 info_ptr = (str_offsets_section->buffer
3019eac3
DE
16712 + str_index * cu->header.offset_size);
16713 if (cu->header.offset_size == 4)
16714 str_offset = bfd_get_32 (abfd, info_ptr);
16715 else
16716 str_offset = bfd_get_64 (abfd, info_ptr);
73869dc2 16717 if (str_offset >= str_section->size)
57d63ce2 16718 error (_("Offset from %s pointing outside of"
3019eac3 16719 " .debug_str.dwo section in CU at offset 0x%lx [in module %s]"),
c5164cbc 16720 form_name, (long) cu->header.offset.sect_off, objf_name);
73869dc2 16721 return (const char *) (str_section->buffer + str_offset);
3019eac3
DE
16722}
16723
3019eac3
DE
16724/* Return the length of an LEB128 number in BUF. */
16725
16726static int
16727leb128_size (const gdb_byte *buf)
16728{
16729 const gdb_byte *begin = buf;
16730 gdb_byte byte;
16731
16732 while (1)
16733 {
16734 byte = *buf++;
16735 if ((byte & 128) == 0)
16736 return buf - begin;
16737 }
16738}
16739
c906108c 16740static void
e142c38c 16741set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
16742{
16743 switch (lang)
16744 {
16745 case DW_LANG_C89:
76bee0cc 16746 case DW_LANG_C99:
0cfd832f 16747 case DW_LANG_C11:
c906108c 16748 case DW_LANG_C:
d1be3247 16749 case DW_LANG_UPC:
e142c38c 16750 cu->language = language_c;
c906108c
SS
16751 break;
16752 case DW_LANG_C_plus_plus:
0cfd832f
MW
16753 case DW_LANG_C_plus_plus_11:
16754 case DW_LANG_C_plus_plus_14:
e142c38c 16755 cu->language = language_cplus;
c906108c 16756 break;
6aecb9c2
JB
16757 case DW_LANG_D:
16758 cu->language = language_d;
16759 break;
c906108c
SS
16760 case DW_LANG_Fortran77:
16761 case DW_LANG_Fortran90:
b21b22e0 16762 case DW_LANG_Fortran95:
e142c38c 16763 cu->language = language_fortran;
c906108c 16764 break;
a766d390
DE
16765 case DW_LANG_Go:
16766 cu->language = language_go;
16767 break;
c906108c 16768 case DW_LANG_Mips_Assembler:
e142c38c 16769 cu->language = language_asm;
c906108c 16770 break;
bebd888e 16771 case DW_LANG_Java:
e142c38c 16772 cu->language = language_java;
bebd888e 16773 break;
c906108c 16774 case DW_LANG_Ada83:
8aaf0b47 16775 case DW_LANG_Ada95:
bc5f45f8
JB
16776 cu->language = language_ada;
16777 break;
72019c9c
GM
16778 case DW_LANG_Modula2:
16779 cu->language = language_m2;
16780 break;
fe8e67fd
PM
16781 case DW_LANG_Pascal83:
16782 cu->language = language_pascal;
16783 break;
22566fbd
DJ
16784 case DW_LANG_ObjC:
16785 cu->language = language_objc;
16786 break;
c906108c
SS
16787 case DW_LANG_Cobol74:
16788 case DW_LANG_Cobol85:
c906108c 16789 default:
e142c38c 16790 cu->language = language_minimal;
c906108c
SS
16791 break;
16792 }
e142c38c 16793 cu->language_defn = language_def (cu->language);
c906108c
SS
16794}
16795
16796/* Return the named attribute or NULL if not there. */
16797
16798static struct attribute *
e142c38c 16799dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c 16800{
a48e046c 16801 for (;;)
c906108c 16802 {
a48e046c
TT
16803 unsigned int i;
16804 struct attribute *spec = NULL;
16805
16806 for (i = 0; i < die->num_attrs; ++i)
16807 {
16808 if (die->attrs[i].name == name)
16809 return &die->attrs[i];
16810 if (die->attrs[i].name == DW_AT_specification
16811 || die->attrs[i].name == DW_AT_abstract_origin)
16812 spec = &die->attrs[i];
16813 }
16814
16815 if (!spec)
16816 break;
c906108c 16817
f2f0e013 16818 die = follow_die_ref (die, spec, &cu);
f2f0e013 16819 }
c5aa993b 16820
c906108c
SS
16821 return NULL;
16822}
16823
348e048f
DE
16824/* Return the named attribute or NULL if not there,
16825 but do not follow DW_AT_specification, etc.
16826 This is for use in contexts where we're reading .debug_types dies.
16827 Following DW_AT_specification, DW_AT_abstract_origin will take us
16828 back up the chain, and we want to go down. */
16829
16830static struct attribute *
45e58e77 16831dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
348e048f
DE
16832{
16833 unsigned int i;
16834
16835 for (i = 0; i < die->num_attrs; ++i)
16836 if (die->attrs[i].name == name)
16837 return &die->attrs[i];
16838
16839 return NULL;
16840}
16841
05cf31d1
JB
16842/* Return non-zero iff the attribute NAME is defined for the given DIE,
16843 and holds a non-zero value. This function should only be used for
2dc7f7b3 16844 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
16845
16846static int
16847dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
16848{
16849 struct attribute *attr = dwarf2_attr (die, name, cu);
16850
16851 return (attr && DW_UNSND (attr));
16852}
16853
3ca72b44 16854static int
e142c38c 16855die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 16856{
05cf31d1
JB
16857 /* A DIE is a declaration if it has a DW_AT_declaration attribute
16858 which value is non-zero. However, we have to be careful with
16859 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
16860 (via dwarf2_flag_true_p) follows this attribute. So we may
16861 end up accidently finding a declaration attribute that belongs
16862 to a different DIE referenced by the specification attribute,
16863 even though the given DIE does not have a declaration attribute. */
16864 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
16865 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
16866}
16867
63d06c5c 16868/* Return the die giving the specification for DIE, if there is
f2f0e013 16869 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
16870 containing the return value on output. If there is no
16871 specification, but there is an abstract origin, that is
16872 returned. */
63d06c5c
DC
16873
16874static struct die_info *
f2f0e013 16875die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 16876{
f2f0e013
DJ
16877 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
16878 *spec_cu);
63d06c5c 16879
edb3359d
DJ
16880 if (spec_attr == NULL)
16881 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
16882
63d06c5c
DC
16883 if (spec_attr == NULL)
16884 return NULL;
16885 else
f2f0e013 16886 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 16887}
c906108c 16888
debd256d 16889/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
16890 refers to.
16891 NOTE: This is also used as a "cleanup" function. */
16892
debd256d
JB
16893static void
16894free_line_header (struct line_header *lh)
16895{
16896 if (lh->standard_opcode_lengths)
a8bc7b56 16897 xfree (lh->standard_opcode_lengths);
debd256d
JB
16898
16899 /* Remember that all the lh->file_names[i].name pointers are
16900 pointers into debug_line_buffer, and don't need to be freed. */
16901 if (lh->file_names)
a8bc7b56 16902 xfree (lh->file_names);
debd256d
JB
16903
16904 /* Similarly for the include directory names. */
16905 if (lh->include_dirs)
a8bc7b56 16906 xfree (lh->include_dirs);
debd256d 16907
a8bc7b56 16908 xfree (lh);
debd256d
JB
16909}
16910
debd256d 16911/* Add an entry to LH's include directory table. */
ae2de4f8 16912
debd256d 16913static void
d521ce57 16914add_include_dir (struct line_header *lh, const char *include_dir)
c906108c 16915{
debd256d
JB
16916 /* Grow the array if necessary. */
16917 if (lh->include_dirs_size == 0)
c5aa993b 16918 {
debd256d
JB
16919 lh->include_dirs_size = 1; /* for testing */
16920 lh->include_dirs = xmalloc (lh->include_dirs_size
16921 * sizeof (*lh->include_dirs));
16922 }
16923 else if (lh->num_include_dirs >= lh->include_dirs_size)
16924 {
16925 lh->include_dirs_size *= 2;
16926 lh->include_dirs = xrealloc (lh->include_dirs,
16927 (lh->include_dirs_size
16928 * sizeof (*lh->include_dirs)));
c5aa993b 16929 }
c906108c 16930
debd256d
JB
16931 lh->include_dirs[lh->num_include_dirs++] = include_dir;
16932}
6e70227d 16933
debd256d 16934/* Add an entry to LH's file name table. */
ae2de4f8 16935
debd256d
JB
16936static void
16937add_file_name (struct line_header *lh,
d521ce57 16938 const char *name,
debd256d
JB
16939 unsigned int dir_index,
16940 unsigned int mod_time,
16941 unsigned int length)
16942{
16943 struct file_entry *fe;
16944
16945 /* Grow the array if necessary. */
16946 if (lh->file_names_size == 0)
16947 {
16948 lh->file_names_size = 1; /* for testing */
16949 lh->file_names = xmalloc (lh->file_names_size
16950 * sizeof (*lh->file_names));
16951 }
16952 else if (lh->num_file_names >= lh->file_names_size)
16953 {
16954 lh->file_names_size *= 2;
16955 lh->file_names = xrealloc (lh->file_names,
16956 (lh->file_names_size
16957 * sizeof (*lh->file_names)));
16958 }
16959
16960 fe = &lh->file_names[lh->num_file_names++];
16961 fe->name = name;
16962 fe->dir_index = dir_index;
16963 fe->mod_time = mod_time;
16964 fe->length = length;
aaa75496 16965 fe->included_p = 0;
cb1df416 16966 fe->symtab = NULL;
debd256d 16967}
6e70227d 16968
36586728
TT
16969/* A convenience function to find the proper .debug_line section for a
16970 CU. */
16971
16972static struct dwarf2_section_info *
16973get_debug_line_section (struct dwarf2_cu *cu)
16974{
16975 struct dwarf2_section_info *section;
16976
16977 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
16978 DWO file. */
16979 if (cu->dwo_unit && cu->per_cu->is_debug_types)
16980 section = &cu->dwo_unit->dwo_file->sections.line;
16981 else if (cu->per_cu->is_dwz)
16982 {
16983 struct dwz_file *dwz = dwarf2_get_dwz_file ();
16984
16985 section = &dwz->line;
16986 }
16987 else
16988 section = &dwarf2_per_objfile->line;
16989
16990 return section;
16991}
16992
debd256d 16993/* Read the statement program header starting at OFFSET in
3019eac3 16994 .debug_line, or .debug_line.dwo. Return a pointer
6502dd73 16995 to a struct line_header, allocated using xmalloc.
debd256d
JB
16996
16997 NOTE: the strings in the include directory and file name tables of
3019eac3
DE
16998 the returned object point into the dwarf line section buffer,
16999 and must not be freed. */
ae2de4f8 17000
debd256d 17001static struct line_header *
3019eac3 17002dwarf_decode_line_header (unsigned int offset, struct dwarf2_cu *cu)
debd256d
JB
17003{
17004 struct cleanup *back_to;
17005 struct line_header *lh;
d521ce57 17006 const gdb_byte *line_ptr;
c764a876 17007 unsigned int bytes_read, offset_size;
debd256d 17008 int i;
d521ce57 17009 const char *cur_dir, *cur_file;
3019eac3
DE
17010 struct dwarf2_section_info *section;
17011 bfd *abfd;
17012
36586728 17013 section = get_debug_line_section (cu);
3019eac3
DE
17014 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
17015 if (section->buffer == NULL)
debd256d 17016 {
3019eac3
DE
17017 if (cu->dwo_unit && cu->per_cu->is_debug_types)
17018 complaint (&symfile_complaints, _("missing .debug_line.dwo section"));
17019 else
17020 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
17021 return 0;
17022 }
17023
fceca515
DE
17024 /* We can't do this until we know the section is non-empty.
17025 Only then do we know we have such a section. */
a32a8923 17026 abfd = get_section_bfd_owner (section);
fceca515 17027
a738430d
MK
17028 /* Make sure that at least there's room for the total_length field.
17029 That could be 12 bytes long, but we're just going to fudge that. */
3019eac3 17030 if (offset + 4 >= section->size)
debd256d 17031 {
4d3c2250 17032 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
17033 return 0;
17034 }
17035
17036 lh = xmalloc (sizeof (*lh));
17037 memset (lh, 0, sizeof (*lh));
17038 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
17039 (void *) lh);
17040
3019eac3 17041 line_ptr = section->buffer + offset;
debd256d 17042
a738430d 17043 /* Read in the header. */
6e70227d 17044 lh->total_length =
c764a876
DE
17045 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
17046 &bytes_read, &offset_size);
debd256d 17047 line_ptr += bytes_read;
3019eac3 17048 if (line_ptr + lh->total_length > (section->buffer + section->size))
debd256d 17049 {
4d3c2250 17050 dwarf2_statement_list_fits_in_line_number_section_complaint ();
2f324bf6 17051 do_cleanups (back_to);
debd256d
JB
17052 return 0;
17053 }
17054 lh->statement_program_end = line_ptr + lh->total_length;
17055 lh->version = read_2_bytes (abfd, line_ptr);
17056 line_ptr += 2;
c764a876
DE
17057 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
17058 line_ptr += offset_size;
debd256d
JB
17059 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
17060 line_ptr += 1;
2dc7f7b3
TT
17061 if (lh->version >= 4)
17062 {
17063 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
17064 line_ptr += 1;
17065 }
17066 else
17067 lh->maximum_ops_per_instruction = 1;
17068
17069 if (lh->maximum_ops_per_instruction == 0)
17070 {
17071 lh->maximum_ops_per_instruction = 1;
17072 complaint (&symfile_complaints,
3e43a32a
MS
17073 _("invalid maximum_ops_per_instruction "
17074 "in `.debug_line' section"));
2dc7f7b3
TT
17075 }
17076
debd256d
JB
17077 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
17078 line_ptr += 1;
17079 lh->line_base = read_1_signed_byte (abfd, line_ptr);
17080 line_ptr += 1;
17081 lh->line_range = read_1_byte (abfd, line_ptr);
17082 line_ptr += 1;
17083 lh->opcode_base = read_1_byte (abfd, line_ptr);
17084 line_ptr += 1;
17085 lh->standard_opcode_lengths
fe1b8b76 17086 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
17087
17088 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
17089 for (i = 1; i < lh->opcode_base; ++i)
17090 {
17091 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
17092 line_ptr += 1;
17093 }
17094
a738430d 17095 /* Read directory table. */
9b1c24c8 17096 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17097 {
17098 line_ptr += bytes_read;
17099 add_include_dir (lh, cur_dir);
17100 }
17101 line_ptr += bytes_read;
17102
a738430d 17103 /* Read file name table. */
9b1c24c8 17104 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
17105 {
17106 unsigned int dir_index, mod_time, length;
17107
17108 line_ptr += bytes_read;
17109 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17110 line_ptr += bytes_read;
17111 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17112 line_ptr += bytes_read;
17113 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17114 line_ptr += bytes_read;
17115
17116 add_file_name (lh, cur_file, dir_index, mod_time, length);
17117 }
17118 line_ptr += bytes_read;
6e70227d 17119 lh->statement_program_start = line_ptr;
debd256d 17120
3019eac3 17121 if (line_ptr > (section->buffer + section->size))
4d3c2250 17122 complaint (&symfile_complaints,
3e43a32a
MS
17123 _("line number info header doesn't "
17124 "fit in `.debug_line' section"));
debd256d
JB
17125
17126 discard_cleanups (back_to);
17127 return lh;
17128}
c906108c 17129
c6da4cef
DE
17130/* Subroutine of dwarf_decode_lines to simplify it.
17131 Return the file name of the psymtab for included file FILE_INDEX
17132 in line header LH of PST.
17133 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17134 If space for the result is malloc'd, it will be freed by a cleanup.
1ed59174
JK
17135 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename.
17136
17137 The function creates dangling cleanup registration. */
c6da4cef 17138
d521ce57 17139static const char *
c6da4cef
DE
17140psymtab_include_file_name (const struct line_header *lh, int file_index,
17141 const struct partial_symtab *pst,
17142 const char *comp_dir)
17143{
17144 const struct file_entry fe = lh->file_names [file_index];
d521ce57
TT
17145 const char *include_name = fe.name;
17146 const char *include_name_to_compare = include_name;
17147 const char *dir_name = NULL;
72b9f47f
TT
17148 const char *pst_filename;
17149 char *copied_name = NULL;
c6da4cef
DE
17150 int file_is_pst;
17151
17152 if (fe.dir_index)
17153 dir_name = lh->include_dirs[fe.dir_index - 1];
17154
17155 if (!IS_ABSOLUTE_PATH (include_name)
17156 && (dir_name != NULL || comp_dir != NULL))
17157 {
17158 /* Avoid creating a duplicate psymtab for PST.
17159 We do this by comparing INCLUDE_NAME and PST_FILENAME.
17160 Before we do the comparison, however, we need to account
17161 for DIR_NAME and COMP_DIR.
17162 First prepend dir_name (if non-NULL). If we still don't
17163 have an absolute path prepend comp_dir (if non-NULL).
17164 However, the directory we record in the include-file's
17165 psymtab does not contain COMP_DIR (to match the
17166 corresponding symtab(s)).
17167
17168 Example:
17169
17170 bash$ cd /tmp
17171 bash$ gcc -g ./hello.c
17172 include_name = "hello.c"
17173 dir_name = "."
17174 DW_AT_comp_dir = comp_dir = "/tmp"
5f52445b
YQ
17175 DW_AT_name = "./hello.c"
17176
17177 */
c6da4cef
DE
17178
17179 if (dir_name != NULL)
17180 {
d521ce57
TT
17181 char *tem = concat (dir_name, SLASH_STRING,
17182 include_name, (char *)NULL);
17183
17184 make_cleanup (xfree, tem);
17185 include_name = tem;
c6da4cef 17186 include_name_to_compare = include_name;
c6da4cef
DE
17187 }
17188 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
17189 {
d521ce57
TT
17190 char *tem = concat (comp_dir, SLASH_STRING,
17191 include_name, (char *)NULL);
17192
17193 make_cleanup (xfree, tem);
17194 include_name_to_compare = tem;
c6da4cef
DE
17195 }
17196 }
17197
17198 pst_filename = pst->filename;
17199 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
17200 {
72b9f47f
TT
17201 copied_name = concat (pst->dirname, SLASH_STRING,
17202 pst_filename, (char *)NULL);
17203 pst_filename = copied_name;
c6da4cef
DE
17204 }
17205
1e3fad37 17206 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef 17207
72b9f47f
TT
17208 if (copied_name != NULL)
17209 xfree (copied_name);
c6da4cef
DE
17210
17211 if (file_is_pst)
17212 return NULL;
17213 return include_name;
17214}
17215
c91513d8
PP
17216/* Ignore this record_line request. */
17217
17218static void
17219noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
17220{
17221 return;
17222}
17223
a05a36a5
DE
17224/* Return non-zero if we should add LINE to the line number table.
17225 LINE is the line to add, LAST_LINE is the last line that was added,
17226 LAST_SUBFILE is the subfile for LAST_LINE.
17227 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
17228 had a non-zero discriminator.
17229
17230 We have to be careful in the presence of discriminators.
17231 E.g., for this line:
17232
17233 for (i = 0; i < 100000; i++);
17234
17235 clang can emit four line number entries for that one line,
17236 each with a different discriminator.
17237 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
17238
17239 However, we want gdb to coalesce all four entries into one.
17240 Otherwise the user could stepi into the middle of the line and
17241 gdb would get confused about whether the pc really was in the
17242 middle of the line.
17243
17244 Things are further complicated by the fact that two consecutive
17245 line number entries for the same line is a heuristic used by gcc
17246 to denote the end of the prologue. So we can't just discard duplicate
17247 entries, we have to be selective about it. The heuristic we use is
17248 that we only collapse consecutive entries for the same line if at least
17249 one of those entries has a non-zero discriminator. PR 17276.
17250
17251 Note: Addresses in the line number state machine can never go backwards
17252 within one sequence, thus this coalescing is ok. */
17253
17254static int
17255dwarf_record_line_p (unsigned int line, unsigned int last_line,
17256 int line_has_non_zero_discriminator,
17257 struct subfile *last_subfile)
17258{
17259 if (current_subfile != last_subfile)
17260 return 1;
17261 if (line != last_line)
17262 return 1;
17263 /* Same line for the same file that we've seen already.
17264 As a last check, for pr 17276, only record the line if the line
17265 has never had a non-zero discriminator. */
17266 if (!line_has_non_zero_discriminator)
17267 return 1;
17268 return 0;
17269}
17270
252a6764
DE
17271/* Use P_RECORD_LINE to record line number LINE beginning at address ADDRESS
17272 in the line table of subfile SUBFILE. */
17273
17274static void
17275dwarf_record_line (struct gdbarch *gdbarch, struct subfile *subfile,
17276 unsigned int line, CORE_ADDR address,
17277 record_line_ftype p_record_line)
17278{
17279 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
17280
d5962de5 17281 (*p_record_line) (subfile, line, addr);
252a6764
DE
17282}
17283
17284/* Subroutine of dwarf_decode_lines_1 to simplify it.
17285 Mark the end of a set of line number records.
17286 The arguments are the same as for dwarf_record_line.
17287 If SUBFILE is NULL the request is ignored. */
17288
17289static void
17290dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
17291 CORE_ADDR address, record_line_ftype p_record_line)
17292{
17293 if (subfile != NULL)
17294 dwarf_record_line (gdbarch, subfile, 0, address, p_record_line);
17295}
17296
f3f5162e
DE
17297/* Subroutine of dwarf_decode_lines to simplify it.
17298 Process the line number information in LH. */
debd256d 17299
c906108c 17300static void
43f3e411
DE
17301dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
17302 const int decode_for_pst_p, CORE_ADDR lowpc)
c906108c 17303{
d521ce57
TT
17304 const gdb_byte *line_ptr, *extended_end;
17305 const gdb_byte *line_end;
a8c50c1f 17306 unsigned int bytes_read, extended_len;
699ca60a 17307 unsigned char op_code, extended_op;
e142c38c
DJ
17308 CORE_ADDR baseaddr;
17309 struct objfile *objfile = cu->objfile;
f3f5162e 17310 bfd *abfd = objfile->obfd;
fbf65064 17311 struct gdbarch *gdbarch = get_objfile_arch (objfile);
f3f5162e 17312 struct subfile *last_subfile = NULL;
c91513d8
PP
17313 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
17314 = record_line;
e142c38c
DJ
17315
17316 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17317
debd256d
JB
17318 line_ptr = lh->statement_program_start;
17319 line_end = lh->statement_program_end;
c906108c
SS
17320
17321 /* Read the statement sequences until there's nothing left. */
17322 while (line_ptr < line_end)
17323 {
3e29f34a
MR
17324 /* State machine registers. Call `gdbarch_adjust_dwarf2_line'
17325 on the initial 0 address as if there was a line entry for it
17326 so that the backend has a chance to adjust it and also record
17327 it in case it needs it. This is currently used by MIPS code,
17328 cf. `mips_adjust_dwarf2_line'. */
17329 CORE_ADDR address = gdbarch_adjust_dwarf2_line (gdbarch, 0, 0);
c906108c
SS
17330 unsigned int file = 1;
17331 unsigned int line = 1;
debd256d 17332 int is_stmt = lh->default_is_stmt;
c906108c 17333 int end_sequence = 0;
2dc7f7b3 17334 unsigned char op_index = 0;
a05a36a5
DE
17335 unsigned int discriminator = 0;
17336 /* The last line number that was recorded, used to coalesce
17337 consecutive entries for the same line. This can happen, for
17338 example, when discriminators are present. PR 17276. */
17339 unsigned int last_line = 0;
17340 int line_has_non_zero_discriminator = 0;
c906108c 17341
aaa75496 17342 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 17343 {
aaa75496 17344 /* Start a subfile for the current file of the state machine. */
debd256d
JB
17345 /* lh->include_dirs and lh->file_names are 0-based, but the
17346 directory and file name numbers in the statement program
17347 are 1-based. */
17348 struct file_entry *fe = &lh->file_names[file - 1];
d521ce57 17349 const char *dir = NULL;
a738430d 17350
debd256d
JB
17351 if (fe->dir_index)
17352 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb 17353
4d663531 17354 dwarf2_start_subfile (fe->name, dir);
c906108c
SS
17355 }
17356
a738430d 17357 /* Decode the table. */
c5aa993b 17358 while (!end_sequence)
c906108c
SS
17359 {
17360 op_code = read_1_byte (abfd, line_ptr);
17361 line_ptr += 1;
59205f5a
JB
17362 if (line_ptr > line_end)
17363 {
17364 dwarf2_debug_line_missing_end_sequence_complaint ();
17365 break;
17366 }
9aa1fe7e 17367
debd256d 17368 if (op_code >= lh->opcode_base)
6e70227d 17369 {
8e07a239 17370 /* Special opcode. */
699ca60a 17371 unsigned char adj_opcode;
3e29f34a 17372 CORE_ADDR addr_adj;
a05a36a5 17373 int line_delta;
8e07a239 17374
debd256d 17375 adj_opcode = op_code - lh->opcode_base;
3e29f34a 17376 addr_adj = (((op_index + (adj_opcode / lh->line_range))
2dc7f7b3
TT
17377 / lh->maximum_ops_per_instruction)
17378 * lh->minimum_instruction_length);
3e29f34a 17379 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
2dc7f7b3
TT
17380 op_index = ((op_index + (adj_opcode / lh->line_range))
17381 % lh->maximum_ops_per_instruction);
a05a36a5
DE
17382 line_delta = lh->line_base + (adj_opcode % lh->line_range);
17383 line += line_delta;
17384 if (line_delta != 0)
17385 line_has_non_zero_discriminator = discriminator != 0;
59205f5a 17386 if (lh->num_file_names < file || file == 0)
25e43795 17387 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
17388 /* For now we ignore lines not starting on an
17389 instruction boundary. */
17390 else if (op_index == 0)
25e43795
DJ
17391 {
17392 lh->file_names[file - 1].included_p = 1;
ca5f395d 17393 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
17394 {
17395 if (last_subfile != current_subfile)
17396 {
252a6764
DE
17397 dwarf_finish_line (gdbarch, last_subfile,
17398 address, p_record_line);
fbf65064 17399 }
a05a36a5
DE
17400 if (dwarf_record_line_p (line, last_line,
17401 line_has_non_zero_discriminator,
17402 last_subfile))
17403 {
17404 dwarf_record_line (gdbarch, current_subfile,
17405 line, address, p_record_line);
17406 }
17407 last_subfile = current_subfile;
17408 last_line = line;
366da635 17409 }
25e43795 17410 }
a05a36a5 17411 discriminator = 0;
9aa1fe7e
GK
17412 }
17413 else switch (op_code)
c906108c
SS
17414 {
17415 case DW_LNS_extended_op:
3e43a32a
MS
17416 extended_len = read_unsigned_leb128 (abfd, line_ptr,
17417 &bytes_read);
473b7be6 17418 line_ptr += bytes_read;
a8c50c1f 17419 extended_end = line_ptr + extended_len;
c906108c
SS
17420 extended_op = read_1_byte (abfd, line_ptr);
17421 line_ptr += 1;
17422 switch (extended_op)
17423 {
17424 case DW_LNE_end_sequence:
c91513d8 17425 p_record_line = record_line;
c906108c 17426 end_sequence = 1;
c906108c
SS
17427 break;
17428 case DW_LNE_set_address:
e7c27a73 17429 address = read_address (abfd, line_ptr, cu, &bytes_read);
c91513d8 17430
c3b7b696
YQ
17431 /* If address < lowpc then it's not a usable value, it's
17432 outside the pc range of the CU. However, we restrict
17433 the test to only address values of zero to preserve
17434 GDB's previous behaviour which is to handle the specific
17435 case of a function being GC'd by the linker. */
17436 if (address == 0 && address < lowpc)
c91513d8
PP
17437 {
17438 /* This line table is for a function which has been
17439 GCd by the linker. Ignore it. PR gdb/12528 */
17440
17441 long line_offset
36586728 17442 = line_ptr - get_debug_line_section (cu)->buffer;
c91513d8
PP
17443
17444 complaint (&symfile_complaints,
17445 _(".debug_line address at offset 0x%lx is 0 "
17446 "[in module %s]"),
4262abfb 17447 line_offset, objfile_name (objfile));
c91513d8 17448 p_record_line = noop_record_line;
37780ee5
DE
17449 /* Note: p_record_line is left as noop_record_line
17450 until we see DW_LNE_end_sequence. */
c91513d8
PP
17451 }
17452
2dc7f7b3 17453 op_index = 0;
107d2387
AC
17454 line_ptr += bytes_read;
17455 address += baseaddr;
3e29f34a 17456 address = gdbarch_adjust_dwarf2_line (gdbarch, address, 0);
c906108c
SS
17457 break;
17458 case DW_LNE_define_file:
debd256d 17459 {
d521ce57 17460 const char *cur_file;
debd256d 17461 unsigned int dir_index, mod_time, length;
6e70227d 17462
3e43a32a
MS
17463 cur_file = read_direct_string (abfd, line_ptr,
17464 &bytes_read);
debd256d
JB
17465 line_ptr += bytes_read;
17466 dir_index =
17467 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17468 line_ptr += bytes_read;
17469 mod_time =
17470 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17471 line_ptr += bytes_read;
17472 length =
17473 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17474 line_ptr += bytes_read;
17475 add_file_name (lh, cur_file, dir_index, mod_time, length);
17476 }
c906108c 17477 break;
d0c6ba3d
CC
17478 case DW_LNE_set_discriminator:
17479 /* The discriminator is not interesting to the debugger;
a05a36a5
DE
17480 just ignore it. We still need to check its value though:
17481 if there are consecutive entries for the same
17482 (non-prologue) line we want to coalesce them.
17483 PR 17276. */
17484 discriminator = read_unsigned_leb128 (abfd, line_ptr,
17485 &bytes_read);
17486 line_has_non_zero_discriminator |= discriminator != 0;
17487 line_ptr += bytes_read;
d0c6ba3d 17488 break;
c906108c 17489 default:
4d3c2250 17490 complaint (&symfile_complaints,
e2e0b3e5 17491 _("mangled .debug_line section"));
debd256d 17492 return;
c906108c 17493 }
a8c50c1f
DJ
17494 /* Make sure that we parsed the extended op correctly. If e.g.
17495 we expected a different address size than the producer used,
17496 we may have read the wrong number of bytes. */
17497 if (line_ptr != extended_end)
17498 {
17499 complaint (&symfile_complaints,
17500 _("mangled .debug_line section"));
17501 return;
17502 }
c906108c
SS
17503 break;
17504 case DW_LNS_copy:
59205f5a 17505 if (lh->num_file_names < file || file == 0)
25e43795
DJ
17506 dwarf2_debug_line_missing_file_complaint ();
17507 else
366da635 17508 {
25e43795 17509 lh->file_names[file - 1].included_p = 1;
ca5f395d 17510 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
17511 {
17512 if (last_subfile != current_subfile)
17513 {
252a6764
DE
17514 dwarf_finish_line (gdbarch, last_subfile,
17515 address, p_record_line);
fbf65064 17516 }
a05a36a5
DE
17517 if (dwarf_record_line_p (line, last_line,
17518 line_has_non_zero_discriminator,
17519 last_subfile))
17520 {
17521 dwarf_record_line (gdbarch, current_subfile,
17522 line, address, p_record_line);
17523 }
17524 last_subfile = current_subfile;
17525 last_line = line;
fbf65064 17526 }
366da635 17527 }
a05a36a5 17528 discriminator = 0;
c906108c
SS
17529 break;
17530 case DW_LNS_advance_pc:
2dc7f7b3
TT
17531 {
17532 CORE_ADDR adjust
17533 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
3e29f34a 17534 CORE_ADDR addr_adj;
2dc7f7b3 17535
3e29f34a 17536 addr_adj = (((op_index + adjust)
2dc7f7b3
TT
17537 / lh->maximum_ops_per_instruction)
17538 * lh->minimum_instruction_length);
3e29f34a 17539 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
2dc7f7b3
TT
17540 op_index = ((op_index + adjust)
17541 % lh->maximum_ops_per_instruction);
17542 line_ptr += bytes_read;
17543 }
c906108c
SS
17544 break;
17545 case DW_LNS_advance_line:
a05a36a5
DE
17546 {
17547 int line_delta
17548 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
17549
17550 line += line_delta;
17551 if (line_delta != 0)
17552 line_has_non_zero_discriminator = discriminator != 0;
17553 line_ptr += bytes_read;
17554 }
c906108c
SS
17555 break;
17556 case DW_LNS_set_file:
debd256d 17557 {
a738430d
MK
17558 /* The arrays lh->include_dirs and lh->file_names are
17559 0-based, but the directory and file name numbers in
17560 the statement program are 1-based. */
debd256d 17561 struct file_entry *fe;
d521ce57 17562 const char *dir = NULL;
a738430d 17563
debd256d
JB
17564 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17565 line_ptr += bytes_read;
59205f5a 17566 if (lh->num_file_names < file || file == 0)
25e43795
DJ
17567 dwarf2_debug_line_missing_file_complaint ();
17568 else
17569 {
17570 fe = &lh->file_names[file - 1];
17571 if (fe->dir_index)
17572 dir = lh->include_dirs[fe->dir_index - 1];
17573 if (!decode_for_pst_p)
17574 {
17575 last_subfile = current_subfile;
a05a36a5 17576 line_has_non_zero_discriminator = discriminator != 0;
4d663531 17577 dwarf2_start_subfile (fe->name, dir);
25e43795
DJ
17578 }
17579 }
debd256d 17580 }
c906108c
SS
17581 break;
17582 case DW_LNS_set_column:
0ad93d4f 17583 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
c906108c
SS
17584 line_ptr += bytes_read;
17585 break;
17586 case DW_LNS_negate_stmt:
17587 is_stmt = (!is_stmt);
17588 break;
17589 case DW_LNS_set_basic_block:
c906108c 17590 break;
c2c6d25f
JM
17591 /* Add to the address register of the state machine the
17592 address increment value corresponding to special opcode
a738430d
MK
17593 255. I.e., this value is scaled by the minimum
17594 instruction length since special opcode 255 would have
b021a221 17595 scaled the increment. */
c906108c 17596 case DW_LNS_const_add_pc:
2dc7f7b3
TT
17597 {
17598 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
3e29f34a 17599 CORE_ADDR addr_adj;
2dc7f7b3 17600
3e29f34a 17601 addr_adj = (((op_index + adjust)
2dc7f7b3
TT
17602 / lh->maximum_ops_per_instruction)
17603 * lh->minimum_instruction_length);
3e29f34a 17604 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
2dc7f7b3
TT
17605 op_index = ((op_index + adjust)
17606 % lh->maximum_ops_per_instruction);
17607 }
c906108c
SS
17608 break;
17609 case DW_LNS_fixed_advance_pc:
3e29f34a
MR
17610 {
17611 CORE_ADDR addr_adj;
17612
17613 addr_adj = read_2_bytes (abfd, line_ptr);
17614 address += gdbarch_adjust_dwarf2_line (gdbarch, addr_adj, 1);
17615 op_index = 0;
17616 line_ptr += 2;
17617 }
c906108c 17618 break;
9aa1fe7e 17619 default:
a738430d
MK
17620 {
17621 /* Unknown standard opcode, ignore it. */
9aa1fe7e 17622 int i;
a738430d 17623
debd256d 17624 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
17625 {
17626 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
17627 line_ptr += bytes_read;
17628 }
17629 }
c906108c
SS
17630 }
17631 }
59205f5a
JB
17632 if (lh->num_file_names < file || file == 0)
17633 dwarf2_debug_line_missing_file_complaint ();
17634 else
17635 {
17636 lh->file_names[file - 1].included_p = 1;
17637 if (!decode_for_pst_p)
fbf65064 17638 {
252a6764
DE
17639 dwarf_finish_line (gdbarch, current_subfile, address,
17640 p_record_line);
fbf65064 17641 }
59205f5a 17642 }
c906108c 17643 }
f3f5162e
DE
17644}
17645
17646/* Decode the Line Number Program (LNP) for the given line_header
17647 structure and CU. The actual information extracted and the type
17648 of structures created from the LNP depends on the value of PST.
17649
17650 1. If PST is NULL, then this procedure uses the data from the program
17651 to create all necessary symbol tables, and their linetables.
17652
17653 2. If PST is not NULL, this procedure reads the program to determine
17654 the list of files included by the unit represented by PST, and
17655 builds all the associated partial symbol tables.
17656
17657 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
17658 It is used for relative paths in the line table.
17659 NOTE: When processing partial symtabs (pst != NULL),
17660 comp_dir == pst->dirname.
17661
17662 NOTE: It is important that psymtabs have the same file name (via strcmp)
17663 as the corresponding symtab. Since COMP_DIR is not used in the name of the
17664 symtab we don't use it in the name of the psymtabs we create.
17665 E.g. expand_line_sal requires this when finding psymtabs to expand.
c3b7b696
YQ
17666 A good testcase for this is mb-inline.exp.
17667
17668 LOWPC is the lowest address in CU (or 0 if not known). */
f3f5162e
DE
17669
17670static void
17671dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
c3b7b696
YQ
17672 struct dwarf2_cu *cu, struct partial_symtab *pst,
17673 CORE_ADDR lowpc)
f3f5162e
DE
17674{
17675 struct objfile *objfile = cu->objfile;
17676 const int decode_for_pst_p = (pst != NULL);
f3f5162e 17677
43f3e411 17678 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
aaa75496
JB
17679
17680 if (decode_for_pst_p)
17681 {
17682 int file_index;
17683
17684 /* Now that we're done scanning the Line Header Program, we can
17685 create the psymtab of each included file. */
17686 for (file_index = 0; file_index < lh->num_file_names; file_index++)
17687 if (lh->file_names[file_index].included_p == 1)
17688 {
d521ce57 17689 const char *include_name =
c6da4cef
DE
17690 psymtab_include_file_name (lh, file_index, pst, comp_dir);
17691 if (include_name != NULL)
aaa75496
JB
17692 dwarf2_create_include_psymtab (include_name, pst, objfile);
17693 }
17694 }
cb1df416
DJ
17695 else
17696 {
17697 /* Make sure a symtab is created for every file, even files
17698 which contain only variables (i.e. no code with associated
17699 line numbers). */
43f3e411 17700 struct compunit_symtab *cust = buildsym_compunit_symtab ();
cb1df416 17701 int i;
cb1df416
DJ
17702
17703 for (i = 0; i < lh->num_file_names; i++)
17704 {
d521ce57 17705 const char *dir = NULL;
f3f5162e 17706 struct file_entry *fe;
9a619af0 17707
cb1df416
DJ
17708 fe = &lh->file_names[i];
17709 if (fe->dir_index)
17710 dir = lh->include_dirs[fe->dir_index - 1];
4d663531 17711 dwarf2_start_subfile (fe->name, dir);
cb1df416 17712
cb1df416 17713 if (current_subfile->symtab == NULL)
43f3e411
DE
17714 {
17715 current_subfile->symtab
17716 = allocate_symtab (cust, current_subfile->name);
17717 }
cb1df416
DJ
17718 fe->symtab = current_subfile->symtab;
17719 }
17720 }
c906108c
SS
17721}
17722
17723/* Start a subfile for DWARF. FILENAME is the name of the file and
17724 DIRNAME the name of the source directory which contains FILENAME
4d663531 17725 or NULL if not known.
c906108c
SS
17726 This routine tries to keep line numbers from identical absolute and
17727 relative file names in a common subfile.
17728
17729 Using the `list' example from the GDB testsuite, which resides in
17730 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
17731 of /srcdir/list0.c yields the following debugging information for list0.c:
17732
c5aa993b 17733 DW_AT_name: /srcdir/list0.c
4d663531 17734 DW_AT_comp_dir: /compdir
357e46e7 17735 files.files[0].name: list0.h
c5aa993b 17736 files.files[0].dir: /srcdir
357e46e7 17737 files.files[1].name: list0.c
c5aa993b 17738 files.files[1].dir: /srcdir
c906108c
SS
17739
17740 The line number information for list0.c has to end up in a single
4f1520fb
FR
17741 subfile, so that `break /srcdir/list0.c:1' works as expected.
17742 start_subfile will ensure that this happens provided that we pass the
17743 concatenation of files.files[1].dir and files.files[1].name as the
17744 subfile's name. */
c906108c
SS
17745
17746static void
4d663531 17747dwarf2_start_subfile (const char *filename, const char *dirname)
c906108c 17748{
d521ce57 17749 char *copy = NULL;
4f1520fb 17750
4d663531 17751 /* In order not to lose the line information directory,
4f1520fb
FR
17752 we concatenate it to the filename when it makes sense.
17753 Note that the Dwarf3 standard says (speaking of filenames in line
17754 information): ``The directory index is ignored for file names
17755 that represent full path names''. Thus ignoring dirname in the
17756 `else' branch below isn't an issue. */
c906108c 17757
d5166ae1 17758 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
d521ce57
TT
17759 {
17760 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
17761 filename = copy;
17762 }
c906108c 17763
4d663531 17764 start_subfile (filename);
4f1520fb 17765
d521ce57
TT
17766 if (copy != NULL)
17767 xfree (copy);
c906108c
SS
17768}
17769
f4dc4d17
DE
17770/* Start a symtab for DWARF.
17771 NAME, COMP_DIR, LOW_PC are passed to start_symtab. */
17772
43f3e411 17773static struct compunit_symtab *
f4dc4d17 17774dwarf2_start_symtab (struct dwarf2_cu *cu,
15d034d0 17775 const char *name, const char *comp_dir, CORE_ADDR low_pc)
f4dc4d17 17776{
43f3e411
DE
17777 struct compunit_symtab *cust
17778 = start_symtab (cu->objfile, name, comp_dir, low_pc);
17779
f4dc4d17
DE
17780 record_debugformat ("DWARF 2");
17781 record_producer (cu->producer);
17782
17783 /* We assume that we're processing GCC output. */
17784 processing_gcc_compilation = 2;
17785
4d4ec4e5 17786 cu->processing_has_namespace_info = 0;
43f3e411
DE
17787
17788 return cust;
f4dc4d17
DE
17789}
17790
4c2df51b
DJ
17791static void
17792var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 17793 struct dwarf2_cu *cu)
4c2df51b 17794{
e7c27a73
DJ
17795 struct objfile *objfile = cu->objfile;
17796 struct comp_unit_head *cu_header = &cu->header;
17797
4c2df51b
DJ
17798 /* NOTE drow/2003-01-30: There used to be a comment and some special
17799 code here to turn a symbol with DW_AT_external and a
17800 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
17801 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
17802 with some versions of binutils) where shared libraries could have
17803 relocations against symbols in their debug information - the
17804 minimal symbol would have the right address, but the debug info
17805 would not. It's no longer necessary, because we will explicitly
17806 apply relocations when we read in the debug information now. */
17807
17808 /* A DW_AT_location attribute with no contents indicates that a
17809 variable has been optimized away. */
17810 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
17811 {
f1e6e072 17812 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
4c2df51b
DJ
17813 return;
17814 }
17815
17816 /* Handle one degenerate form of location expression specially, to
17817 preserve GDB's previous behavior when section offsets are
3019eac3
DE
17818 specified. If this is just a DW_OP_addr or DW_OP_GNU_addr_index
17819 then mark this symbol as LOC_STATIC. */
4c2df51b
DJ
17820
17821 if (attr_form_is_block (attr)
3019eac3
DE
17822 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
17823 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
17824 || (DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
17825 && (DW_BLOCK (attr)->size
17826 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
4c2df51b 17827 {
891d2f0b 17828 unsigned int dummy;
4c2df51b 17829
3019eac3
DE
17830 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
17831 SYMBOL_VALUE_ADDRESS (sym) =
17832 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
17833 else
17834 SYMBOL_VALUE_ADDRESS (sym) =
17835 read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1, &dummy);
f1e6e072 17836 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
4c2df51b
DJ
17837 fixup_symbol_section (sym, objfile);
17838 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
17839 SYMBOL_SECTION (sym));
4c2df51b
DJ
17840 return;
17841 }
17842
17843 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
17844 expression evaluator, and use LOC_COMPUTED only when necessary
17845 (i.e. when the value of a register or memory location is
17846 referenced, or a thread-local block, etc.). Then again, it might
17847 not be worthwhile. I'm assuming that it isn't unless performance
17848 or memory numbers show me otherwise. */
17849
f1e6e072 17850 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
8be455d7 17851
f1e6e072 17852 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
8be455d7 17853 cu->has_loclist = 1;
4c2df51b
DJ
17854}
17855
c906108c
SS
17856/* Given a pointer to a DWARF information entry, figure out if we need
17857 to make a symbol table entry for it, and if so, create a new entry
17858 and return a pointer to it.
17859 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
17860 used the passed type.
17861 If SPACE is not NULL, use it to hold the new symbol. If it is
17862 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
17863
17864static struct symbol *
34eaf542
TT
17865new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
17866 struct symbol *space)
c906108c 17867{
e7c27a73 17868 struct objfile *objfile = cu->objfile;
3e29f34a 17869 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c 17870 struct symbol *sym = NULL;
15d034d0 17871 const char *name;
c906108c
SS
17872 struct attribute *attr = NULL;
17873 struct attribute *attr2 = NULL;
e142c38c 17874 CORE_ADDR baseaddr;
e37fd15a
SW
17875 struct pending **list_to_add = NULL;
17876
edb3359d 17877 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
17878
17879 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 17880
94af9270 17881 name = dwarf2_name (die, cu);
c906108c
SS
17882 if (name)
17883 {
94af9270 17884 const char *linkagename;
34eaf542 17885 int suppress_add = 0;
94af9270 17886
34eaf542
TT
17887 if (space)
17888 sym = space;
17889 else
e623cf5d 17890 sym = allocate_symbol (objfile);
c906108c 17891 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
17892
17893 /* Cache this symbol's name and the name's demangled form (if any). */
f85f34ed 17894 SYMBOL_SET_LANGUAGE (sym, cu->language, &objfile->objfile_obstack);
94af9270
KS
17895 linkagename = dwarf2_physname (name, die, cu);
17896 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 17897
f55ee35c
JK
17898 /* Fortran does not have mangling standard and the mangling does differ
17899 between gfortran, iFort etc. */
17900 if (cu->language == language_fortran
b250c185 17901 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d 17902 symbol_set_demangled_name (&(sym->ginfo),
cfc594ee 17903 dwarf2_full_name (name, die, cu),
29df156d 17904 NULL);
f55ee35c 17905
c906108c 17906 /* Default assumptions.
c5aa993b 17907 Use the passed type or decode it from the die. */
176620f1 17908 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
f1e6e072 17909 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
17910 if (type != NULL)
17911 SYMBOL_TYPE (sym) = type;
17912 else
e7c27a73 17913 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
17914 attr = dwarf2_attr (die,
17915 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
17916 cu);
c906108c
SS
17917 if (attr)
17918 {
17919 SYMBOL_LINE (sym) = DW_UNSND (attr);
17920 }
cb1df416 17921
edb3359d
DJ
17922 attr = dwarf2_attr (die,
17923 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
17924 cu);
cb1df416
DJ
17925 if (attr)
17926 {
17927 int file_index = DW_UNSND (attr);
9a619af0 17928
cb1df416
DJ
17929 if (cu->line_header == NULL
17930 || file_index > cu->line_header->num_file_names)
17931 complaint (&symfile_complaints,
17932 _("file index out of range"));
1c3d648d 17933 else if (file_index > 0)
cb1df416
DJ
17934 {
17935 struct file_entry *fe;
9a619af0 17936
cb1df416
DJ
17937 fe = &cu->line_header->file_names[file_index - 1];
17938 SYMBOL_SYMTAB (sym) = fe->symtab;
17939 }
17940 }
17941
c906108c
SS
17942 switch (die->tag)
17943 {
17944 case DW_TAG_label:
e142c38c 17945 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c 17946 if (attr)
3e29f34a
MR
17947 {
17948 CORE_ADDR addr;
17949
17950 addr = attr_value_as_address (attr);
17951 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
17952 SYMBOL_VALUE_ADDRESS (sym) = addr;
17953 }
0f5238ed
TT
17954 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
17955 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
f1e6e072 17956 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
0f5238ed 17957 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
17958 break;
17959 case DW_TAG_subprogram:
17960 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17961 finish_block. */
f1e6e072 17962 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
e142c38c 17963 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
17964 if ((attr2 && (DW_UNSND (attr2) != 0))
17965 || cu->language == language_ada)
c906108c 17966 {
2cfa0c8d
JB
17967 /* Subprograms marked external are stored as a global symbol.
17968 Ada subprograms, whether marked external or not, are always
17969 stored as a global symbol, because we want to be able to
17970 access them globally. For instance, we want to be able
17971 to break on a nested subprogram without having to
17972 specify the context. */
e37fd15a 17973 list_to_add = &global_symbols;
c906108c
SS
17974 }
17975 else
17976 {
e37fd15a 17977 list_to_add = cu->list_in_scope;
c906108c
SS
17978 }
17979 break;
edb3359d
DJ
17980 case DW_TAG_inlined_subroutine:
17981 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
17982 finish_block. */
f1e6e072 17983 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
edb3359d 17984 SYMBOL_INLINED (sym) = 1;
481860b3 17985 list_to_add = cu->list_in_scope;
edb3359d 17986 break;
34eaf542
TT
17987 case DW_TAG_template_value_param:
17988 suppress_add = 1;
17989 /* Fall through. */
72929c62 17990 case DW_TAG_constant:
c906108c 17991 case DW_TAG_variable:
254e6b9e 17992 case DW_TAG_member:
0963b4bd
MS
17993 /* Compilation with minimal debug info may result in
17994 variables with missing type entries. Change the
17995 misleading `void' type to something sensible. */
c906108c 17996 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 17997 SYMBOL_TYPE (sym)
46bf5051 17998 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 17999
e142c38c 18000 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
18001 /* In the case of DW_TAG_member, we should only be called for
18002 static const members. */
18003 if (die->tag == DW_TAG_member)
18004 {
3863f96c
DE
18005 /* dwarf2_add_field uses die_is_declaration,
18006 so we do the same. */
254e6b9e
DE
18007 gdb_assert (die_is_declaration (die, cu));
18008 gdb_assert (attr);
18009 }
c906108c
SS
18010 if (attr)
18011 {
e7c27a73 18012 dwarf2_const_value (attr, sym, cu);
e142c38c 18013 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 18014 if (!suppress_add)
34eaf542
TT
18015 {
18016 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 18017 list_to_add = &global_symbols;
34eaf542 18018 else
e37fd15a 18019 list_to_add = cu->list_in_scope;
34eaf542 18020 }
c906108c
SS
18021 break;
18022 }
e142c38c 18023 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18024 if (attr)
18025 {
e7c27a73 18026 var_decode_location (attr, sym, cu);
e142c38c 18027 attr2 = dwarf2_attr (die, DW_AT_external, cu);
4357ac6c
TT
18028
18029 /* Fortran explicitly imports any global symbols to the local
18030 scope by DW_TAG_common_block. */
18031 if (cu->language == language_fortran && die->parent
18032 && die->parent->tag == DW_TAG_common_block)
18033 attr2 = NULL;
18034
caac4577
JG
18035 if (SYMBOL_CLASS (sym) == LOC_STATIC
18036 && SYMBOL_VALUE_ADDRESS (sym) == 0
18037 && !dwarf2_per_objfile->has_section_at_zero)
18038 {
18039 /* When a static variable is eliminated by the linker,
18040 the corresponding debug information is not stripped
18041 out, but the variable address is set to null;
18042 do not add such variables into symbol table. */
18043 }
18044 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 18045 {
f55ee35c
JK
18046 /* Workaround gfortran PR debug/40040 - it uses
18047 DW_AT_location for variables in -fPIC libraries which may
18048 get overriden by other libraries/executable and get
18049 a different address. Resolve it by the minimal symbol
18050 which may come from inferior's executable using copy
18051 relocation. Make this workaround only for gfortran as for
18052 other compilers GDB cannot guess the minimal symbol
18053 Fortran mangling kind. */
18054 if (cu->language == language_fortran && die->parent
18055 && die->parent->tag == DW_TAG_module
18056 && cu->producer
18057 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
f1e6e072 18058 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
f55ee35c 18059
1c809c68
TT
18060 /* A variable with DW_AT_external is never static,
18061 but it may be block-scoped. */
18062 list_to_add = (cu->list_in_scope == &file_symbols
18063 ? &global_symbols : cu->list_in_scope);
1c809c68 18064 }
c906108c 18065 else
e37fd15a 18066 list_to_add = cu->list_in_scope;
c906108c
SS
18067 }
18068 else
18069 {
18070 /* We do not know the address of this symbol.
c5aa993b
JM
18071 If it is an external symbol and we have type information
18072 for it, enter the symbol as a LOC_UNRESOLVED symbol.
18073 The address of the variable will then be determined from
18074 the minimal symbol table whenever the variable is
18075 referenced. */
e142c38c 18076 attr2 = dwarf2_attr (die, DW_AT_external, cu);
0971de02
TT
18077
18078 /* Fortran explicitly imports any global symbols to the local
18079 scope by DW_TAG_common_block. */
18080 if (cu->language == language_fortran && die->parent
18081 && die->parent->tag == DW_TAG_common_block)
18082 {
18083 /* SYMBOL_CLASS doesn't matter here because
18084 read_common_block is going to reset it. */
18085 if (!suppress_add)
18086 list_to_add = cu->list_in_scope;
18087 }
18088 else if (attr2 && (DW_UNSND (attr2) != 0)
18089 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 18090 {
0fe7935b
DJ
18091 /* A variable with DW_AT_external is never static, but it
18092 may be block-scoped. */
18093 list_to_add = (cu->list_in_scope == &file_symbols
18094 ? &global_symbols : cu->list_in_scope);
18095
f1e6e072 18096 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
c906108c 18097 }
442ddf59
JK
18098 else if (!die_is_declaration (die, cu))
18099 {
18100 /* Use the default LOC_OPTIMIZED_OUT class. */
18101 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
18102 if (!suppress_add)
18103 list_to_add = cu->list_in_scope;
442ddf59 18104 }
c906108c
SS
18105 }
18106 break;
18107 case DW_TAG_formal_parameter:
edb3359d
DJ
18108 /* If we are inside a function, mark this as an argument. If
18109 not, we might be looking at an argument to an inlined function
18110 when we do not have enough information to show inlined frames;
18111 pretend it's a local variable in that case so that the user can
18112 still see it. */
18113 if (context_stack_depth > 0
18114 && context_stack[context_stack_depth - 1].name != NULL)
18115 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 18116 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
18117 if (attr)
18118 {
e7c27a73 18119 var_decode_location (attr, sym, cu);
c906108c 18120 }
e142c38c 18121 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18122 if (attr)
18123 {
e7c27a73 18124 dwarf2_const_value (attr, sym, cu);
c906108c 18125 }
f346a30d 18126
e37fd15a 18127 list_to_add = cu->list_in_scope;
c906108c
SS
18128 break;
18129 case DW_TAG_unspecified_parameters:
18130 /* From varargs functions; gdb doesn't seem to have any
18131 interest in this information, so just ignore it for now.
18132 (FIXME?) */
18133 break;
34eaf542
TT
18134 case DW_TAG_template_type_param:
18135 suppress_add = 1;
18136 /* Fall through. */
c906108c 18137 case DW_TAG_class_type:
680b30c7 18138 case DW_TAG_interface_type:
c906108c
SS
18139 case DW_TAG_structure_type:
18140 case DW_TAG_union_type:
72019c9c 18141 case DW_TAG_set_type:
c906108c 18142 case DW_TAG_enumeration_type:
f1e6e072 18143 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18144 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 18145
63d06c5c 18146 {
987504bb 18147 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
18148 really ever be static objects: otherwise, if you try
18149 to, say, break of a class's method and you're in a file
18150 which doesn't mention that class, it won't work unless
18151 the check for all static symbols in lookup_symbol_aux
18152 saves you. See the OtherFileClass tests in
18153 gdb.c++/namespace.exp. */
18154
e37fd15a 18155 if (!suppress_add)
34eaf542 18156 {
34eaf542
TT
18157 list_to_add = (cu->list_in_scope == &file_symbols
18158 && (cu->language == language_cplus
18159 || cu->language == language_java)
18160 ? &global_symbols : cu->list_in_scope);
63d06c5c 18161
64382290
TT
18162 /* The semantics of C++ state that "struct foo {
18163 ... }" also defines a typedef for "foo". A Java
18164 class declaration also defines a typedef for the
18165 class. */
18166 if (cu->language == language_cplus
18167 || cu->language == language_java
18168 || cu->language == language_ada)
18169 {
18170 /* The symbol's name is already allocated along
18171 with this objfile, so we don't need to
18172 duplicate it for the type. */
18173 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
18174 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
18175 }
63d06c5c
DC
18176 }
18177 }
c906108c
SS
18178 break;
18179 case DW_TAG_typedef:
f1e6e072 18180 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
63d06c5c 18181 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18182 list_to_add = cu->list_in_scope;
63d06c5c 18183 break;
c906108c 18184 case DW_TAG_base_type:
a02abb62 18185 case DW_TAG_subrange_type:
f1e6e072 18186 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
176620f1 18187 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 18188 list_to_add = cu->list_in_scope;
c906108c
SS
18189 break;
18190 case DW_TAG_enumerator:
e142c38c 18191 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
18192 if (attr)
18193 {
e7c27a73 18194 dwarf2_const_value (attr, sym, cu);
c906108c 18195 }
63d06c5c
DC
18196 {
18197 /* NOTE: carlton/2003-11-10: See comment above in the
18198 DW_TAG_class_type, etc. block. */
18199
e142c38c 18200 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
18201 && (cu->language == language_cplus
18202 || cu->language == language_java)
e142c38c 18203 ? &global_symbols : cu->list_in_scope);
63d06c5c 18204 }
c906108c 18205 break;
74921315 18206 case DW_TAG_imported_declaration:
5c4e30ca 18207 case DW_TAG_namespace:
f1e6e072 18208 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
e37fd15a 18209 list_to_add = &global_symbols;
5c4e30ca 18210 break;
530e8392
KB
18211 case DW_TAG_module:
18212 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
18213 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
18214 list_to_add = &global_symbols;
18215 break;
4357ac6c 18216 case DW_TAG_common_block:
f1e6e072 18217 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
4357ac6c
TT
18218 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
18219 add_symbol_to_list (sym, cu->list_in_scope);
18220 break;
c906108c
SS
18221 default:
18222 /* Not a tag we recognize. Hopefully we aren't processing
18223 trash data, but since we must specifically ignore things
18224 we don't recognize, there is nothing else we should do at
0963b4bd 18225 this point. */
e2e0b3e5 18226 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 18227 dwarf_tag_name (die->tag));
c906108c
SS
18228 break;
18229 }
df8a16a1 18230
e37fd15a
SW
18231 if (suppress_add)
18232 {
18233 sym->hash_next = objfile->template_symbols;
18234 objfile->template_symbols = sym;
18235 list_to_add = NULL;
18236 }
18237
18238 if (list_to_add != NULL)
18239 add_symbol_to_list (sym, list_to_add);
18240
df8a16a1
DJ
18241 /* For the benefit of old versions of GCC, check for anonymous
18242 namespaces based on the demangled name. */
4d4ec4e5 18243 if (!cu->processing_has_namespace_info
94af9270 18244 && cu->language == language_cplus)
a10964d1 18245 cp_scan_for_anonymous_namespaces (sym, objfile);
c906108c
SS
18246 }
18247 return (sym);
18248}
18249
34eaf542
TT
18250/* A wrapper for new_symbol_full that always allocates a new symbol. */
18251
18252static struct symbol *
18253new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
18254{
18255 return new_symbol_full (die, type, cu, NULL);
18256}
18257
98bfdba5
PA
18258/* Given an attr with a DW_FORM_dataN value in host byte order,
18259 zero-extend it as appropriate for the symbol's type. The DWARF
18260 standard (v4) is not entirely clear about the meaning of using
18261 DW_FORM_dataN for a constant with a signed type, where the type is
18262 wider than the data. The conclusion of a discussion on the DWARF
18263 list was that this is unspecified. We choose to always zero-extend
18264 because that is the interpretation long in use by GCC. */
c906108c 18265
98bfdba5 18266static gdb_byte *
ff39bb5e 18267dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
12df843f 18268 struct dwarf2_cu *cu, LONGEST *value, int bits)
c906108c 18269{
e7c27a73 18270 struct objfile *objfile = cu->objfile;
e17a4113
UW
18271 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
18272 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
18273 LONGEST l = DW_UNSND (attr);
18274
18275 if (bits < sizeof (*value) * 8)
18276 {
18277 l &= ((LONGEST) 1 << bits) - 1;
18278 *value = l;
18279 }
18280 else if (bits == sizeof (*value) * 8)
18281 *value = l;
18282 else
18283 {
18284 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
18285 store_unsigned_integer (bytes, bits / 8, byte_order, l);
18286 return bytes;
18287 }
18288
18289 return NULL;
18290}
18291
18292/* Read a constant value from an attribute. Either set *VALUE, or if
18293 the value does not fit in *VALUE, set *BYTES - either already
18294 allocated on the objfile obstack, or newly allocated on OBSTACK,
18295 or, set *BATON, if we translated the constant to a location
18296 expression. */
18297
18298static void
ff39bb5e 18299dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
98bfdba5
PA
18300 const char *name, struct obstack *obstack,
18301 struct dwarf2_cu *cu,
d521ce57 18302 LONGEST *value, const gdb_byte **bytes,
98bfdba5
PA
18303 struct dwarf2_locexpr_baton **baton)
18304{
18305 struct objfile *objfile = cu->objfile;
18306 struct comp_unit_head *cu_header = &cu->header;
c906108c 18307 struct dwarf_block *blk;
98bfdba5
PA
18308 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
18309 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
18310
18311 *value = 0;
18312 *bytes = NULL;
18313 *baton = NULL;
c906108c
SS
18314
18315 switch (attr->form)
18316 {
18317 case DW_FORM_addr:
3019eac3 18318 case DW_FORM_GNU_addr_index:
ac56253d 18319 {
ac56253d
TT
18320 gdb_byte *data;
18321
98bfdba5
PA
18322 if (TYPE_LENGTH (type) != cu_header->addr_size)
18323 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 18324 cu_header->addr_size,
98bfdba5 18325 TYPE_LENGTH (type));
ac56253d
TT
18326 /* Symbols of this form are reasonably rare, so we just
18327 piggyback on the existing location code rather than writing
18328 a new implementation of symbol_computed_ops. */
7919a973 18329 *baton = obstack_alloc (obstack, sizeof (struct dwarf2_locexpr_baton));
98bfdba5
PA
18330 (*baton)->per_cu = cu->per_cu;
18331 gdb_assert ((*baton)->per_cu);
ac56253d 18332
98bfdba5 18333 (*baton)->size = 2 + cu_header->addr_size;
7919a973 18334 data = obstack_alloc (obstack, (*baton)->size);
98bfdba5 18335 (*baton)->data = data;
ac56253d
TT
18336
18337 data[0] = DW_OP_addr;
18338 store_unsigned_integer (&data[1], cu_header->addr_size,
18339 byte_order, DW_ADDR (attr));
18340 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 18341 }
c906108c 18342 break;
4ac36638 18343 case DW_FORM_string:
93b5768b 18344 case DW_FORM_strp:
3019eac3 18345 case DW_FORM_GNU_str_index:
36586728 18346 case DW_FORM_GNU_strp_alt:
98bfdba5
PA
18347 /* DW_STRING is already allocated on the objfile obstack, point
18348 directly to it. */
d521ce57 18349 *bytes = (const gdb_byte *) DW_STRING (attr);
93b5768b 18350 break;
c906108c
SS
18351 case DW_FORM_block1:
18352 case DW_FORM_block2:
18353 case DW_FORM_block4:
18354 case DW_FORM_block:
2dc7f7b3 18355 case DW_FORM_exprloc:
c906108c 18356 blk = DW_BLOCK (attr);
98bfdba5
PA
18357 if (TYPE_LENGTH (type) != blk->size)
18358 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
18359 TYPE_LENGTH (type));
18360 *bytes = blk->data;
c906108c 18361 break;
2df3850c
JM
18362
18363 /* The DW_AT_const_value attributes are supposed to carry the
18364 symbol's value "represented as it would be on the target
18365 architecture." By the time we get here, it's already been
18366 converted to host endianness, so we just need to sign- or
18367 zero-extend it as appropriate. */
18368 case DW_FORM_data1:
3aef2284 18369 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
2df3850c 18370 break;
c906108c 18371 case DW_FORM_data2:
3aef2284 18372 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
2df3850c 18373 break;
c906108c 18374 case DW_FORM_data4:
3aef2284 18375 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
2df3850c 18376 break;
c906108c 18377 case DW_FORM_data8:
3aef2284 18378 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
2df3850c
JM
18379 break;
18380
c906108c 18381 case DW_FORM_sdata:
98bfdba5 18382 *value = DW_SND (attr);
2df3850c
JM
18383 break;
18384
c906108c 18385 case DW_FORM_udata:
98bfdba5 18386 *value = DW_UNSND (attr);
c906108c 18387 break;
2df3850c 18388
c906108c 18389 default:
4d3c2250 18390 complaint (&symfile_complaints,
e2e0b3e5 18391 _("unsupported const value attribute form: '%s'"),
4d3c2250 18392 dwarf_form_name (attr->form));
98bfdba5 18393 *value = 0;
c906108c
SS
18394 break;
18395 }
18396}
18397
2df3850c 18398
98bfdba5
PA
18399/* Copy constant value from an attribute to a symbol. */
18400
2df3850c 18401static void
ff39bb5e 18402dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
98bfdba5 18403 struct dwarf2_cu *cu)
2df3850c 18404{
98bfdba5
PA
18405 struct objfile *objfile = cu->objfile;
18406 struct comp_unit_head *cu_header = &cu->header;
12df843f 18407 LONGEST value;
d521ce57 18408 const gdb_byte *bytes;
98bfdba5 18409 struct dwarf2_locexpr_baton *baton;
2df3850c 18410
98bfdba5
PA
18411 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
18412 SYMBOL_PRINT_NAME (sym),
18413 &objfile->objfile_obstack, cu,
18414 &value, &bytes, &baton);
2df3850c 18415
98bfdba5
PA
18416 if (baton != NULL)
18417 {
98bfdba5 18418 SYMBOL_LOCATION_BATON (sym) = baton;
f1e6e072 18419 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
98bfdba5
PA
18420 }
18421 else if (bytes != NULL)
18422 {
18423 SYMBOL_VALUE_BYTES (sym) = bytes;
f1e6e072 18424 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
98bfdba5
PA
18425 }
18426 else
18427 {
18428 SYMBOL_VALUE (sym) = value;
f1e6e072 18429 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
98bfdba5 18430 }
2df3850c
JM
18431}
18432
c906108c
SS
18433/* Return the type of the die in question using its DW_AT_type attribute. */
18434
18435static struct type *
e7c27a73 18436die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18437{
c906108c 18438 struct attribute *type_attr;
c906108c 18439
e142c38c 18440 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
18441 if (!type_attr)
18442 {
18443 /* A missing DW_AT_type represents a void type. */
46bf5051 18444 return objfile_type (cu->objfile)->builtin_void;
c906108c 18445 }
348e048f 18446
673bfd45 18447 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18448}
18449
b4ba55a1
JB
18450/* True iff CU's producer generates GNAT Ada auxiliary information
18451 that allows to find parallel types through that information instead
18452 of having to do expensive parallel lookups by type name. */
18453
18454static int
18455need_gnat_info (struct dwarf2_cu *cu)
18456{
18457 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
18458 of GNAT produces this auxiliary information, without any indication
18459 that it is produced. Part of enhancing the FSF version of GNAT
18460 to produce that information will be to put in place an indicator
18461 that we can use in order to determine whether the descriptive type
18462 info is available or not. One suggestion that has been made is
18463 to use a new attribute, attached to the CU die. For now, assume
18464 that the descriptive type info is not available. */
18465 return 0;
18466}
18467
b4ba55a1
JB
18468/* Return the auxiliary type of the die in question using its
18469 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
18470 attribute is not present. */
18471
18472static struct type *
18473die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
18474{
b4ba55a1 18475 struct attribute *type_attr;
b4ba55a1
JB
18476
18477 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
18478 if (!type_attr)
18479 return NULL;
18480
673bfd45 18481 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
18482}
18483
18484/* If DIE has a descriptive_type attribute, then set the TYPE's
18485 descriptive type accordingly. */
18486
18487static void
18488set_descriptive_type (struct type *type, struct die_info *die,
18489 struct dwarf2_cu *cu)
18490{
18491 struct type *descriptive_type = die_descriptive_type (die, cu);
18492
18493 if (descriptive_type)
18494 {
18495 ALLOCATE_GNAT_AUX_TYPE (type);
18496 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
18497 }
18498}
18499
c906108c
SS
18500/* Return the containing type of the die in question using its
18501 DW_AT_containing_type attribute. */
18502
18503static struct type *
e7c27a73 18504die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18505{
c906108c 18506 struct attribute *type_attr;
c906108c 18507
e142c38c 18508 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
18509 if (!type_attr)
18510 error (_("Dwarf Error: Problem turning containing type into gdb type "
4262abfb 18511 "[in module %s]"), objfile_name (cu->objfile));
33ac96f0 18512
673bfd45 18513 return lookup_die_type (die, type_attr, cu);
c906108c
SS
18514}
18515
ac9ec31b
DE
18516/* Return an error marker type to use for the ill formed type in DIE/CU. */
18517
18518static struct type *
18519build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
18520{
18521 struct objfile *objfile = dwarf2_per_objfile->objfile;
18522 char *message, *saved;
18523
18524 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
4262abfb 18525 objfile_name (objfile),
ac9ec31b
DE
18526 cu->header.offset.sect_off,
18527 die->offset.sect_off);
18528 saved = obstack_copy0 (&objfile->objfile_obstack,
18529 message, strlen (message));
18530 xfree (message);
18531
18532 return init_type (TYPE_CODE_ERROR, 0, 0, saved, objfile);
18533}
18534
673bfd45 18535/* Look up the type of DIE in CU using its type attribute ATTR.
ac9ec31b
DE
18536 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
18537 DW_AT_containing_type.
673bfd45
DE
18538 If there is no type substitute an error marker. */
18539
c906108c 18540static struct type *
ff39bb5e 18541lookup_die_type (struct die_info *die, const struct attribute *attr,
673bfd45 18542 struct dwarf2_cu *cu)
c906108c 18543{
bb5ed363 18544 struct objfile *objfile = cu->objfile;
f792889a
DJ
18545 struct type *this_type;
18546
ac9ec31b
DE
18547 gdb_assert (attr->name == DW_AT_type
18548 || attr->name == DW_AT_GNAT_descriptive_type
18549 || attr->name == DW_AT_containing_type);
18550
673bfd45
DE
18551 /* First see if we have it cached. */
18552
36586728
TT
18553 if (attr->form == DW_FORM_GNU_ref_alt)
18554 {
18555 struct dwarf2_per_cu_data *per_cu;
18556 sect_offset offset = dwarf2_get_ref_die_offset (attr);
18557
18558 per_cu = dwarf2_find_containing_comp_unit (offset, 1, cu->objfile);
18559 this_type = get_die_type_at_offset (offset, per_cu);
18560 }
7771576e 18561 else if (attr_form_is_ref (attr))
673bfd45 18562 {
b64f50a1 18563 sect_offset offset = dwarf2_get_ref_die_offset (attr);
673bfd45
DE
18564
18565 this_type = get_die_type_at_offset (offset, cu->per_cu);
18566 }
55f1336d 18567 else if (attr->form == DW_FORM_ref_sig8)
673bfd45 18568 {
ac9ec31b 18569 ULONGEST signature = DW_SIGNATURE (attr);
673bfd45 18570
ac9ec31b 18571 return get_signatured_type (die, signature, cu);
673bfd45
DE
18572 }
18573 else
18574 {
ac9ec31b
DE
18575 complaint (&symfile_complaints,
18576 _("Dwarf Error: Bad type attribute %s in DIE"
18577 " at 0x%x [in module %s]"),
18578 dwarf_attr_name (attr->name), die->offset.sect_off,
4262abfb 18579 objfile_name (objfile));
ac9ec31b 18580 return build_error_marker_type (cu, die);
673bfd45
DE
18581 }
18582
18583 /* If not cached we need to read it in. */
18584
18585 if (this_type == NULL)
18586 {
ac9ec31b 18587 struct die_info *type_die = NULL;
673bfd45
DE
18588 struct dwarf2_cu *type_cu = cu;
18589
7771576e 18590 if (attr_form_is_ref (attr))
ac9ec31b
DE
18591 type_die = follow_die_ref (die, attr, &type_cu);
18592 if (type_die == NULL)
18593 return build_error_marker_type (cu, die);
18594 /* If we find the type now, it's probably because the type came
3019eac3
DE
18595 from an inter-CU reference and the type's CU got expanded before
18596 ours. */
ac9ec31b 18597 this_type = read_type_die (type_die, type_cu);
673bfd45
DE
18598 }
18599
18600 /* If we still don't have a type use an error marker. */
18601
18602 if (this_type == NULL)
ac9ec31b 18603 return build_error_marker_type (cu, die);
673bfd45 18604
f792889a 18605 return this_type;
c906108c
SS
18606}
18607
673bfd45
DE
18608/* Return the type in DIE, CU.
18609 Returns NULL for invalid types.
18610
02142a6c 18611 This first does a lookup in die_type_hash,
673bfd45
DE
18612 and only reads the die in if necessary.
18613
18614 NOTE: This can be called when reading in partial or full symbols. */
18615
f792889a 18616static struct type *
e7c27a73 18617read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 18618{
f792889a
DJ
18619 struct type *this_type;
18620
18621 this_type = get_die_type (die, cu);
18622 if (this_type)
18623 return this_type;
18624
673bfd45
DE
18625 return read_type_die_1 (die, cu);
18626}
18627
18628/* Read the type in DIE, CU.
18629 Returns NULL for invalid types. */
18630
18631static struct type *
18632read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
18633{
18634 struct type *this_type = NULL;
18635
c906108c
SS
18636 switch (die->tag)
18637 {
18638 case DW_TAG_class_type:
680b30c7 18639 case DW_TAG_interface_type:
c906108c
SS
18640 case DW_TAG_structure_type:
18641 case DW_TAG_union_type:
f792889a 18642 this_type = read_structure_type (die, cu);
c906108c
SS
18643 break;
18644 case DW_TAG_enumeration_type:
f792889a 18645 this_type = read_enumeration_type (die, cu);
c906108c
SS
18646 break;
18647 case DW_TAG_subprogram:
18648 case DW_TAG_subroutine_type:
edb3359d 18649 case DW_TAG_inlined_subroutine:
f792889a 18650 this_type = read_subroutine_type (die, cu);
c906108c
SS
18651 break;
18652 case DW_TAG_array_type:
f792889a 18653 this_type = read_array_type (die, cu);
c906108c 18654 break;
72019c9c 18655 case DW_TAG_set_type:
f792889a 18656 this_type = read_set_type (die, cu);
72019c9c 18657 break;
c906108c 18658 case DW_TAG_pointer_type:
f792889a 18659 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
18660 break;
18661 case DW_TAG_ptr_to_member_type:
f792889a 18662 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
18663 break;
18664 case DW_TAG_reference_type:
f792889a 18665 this_type = read_tag_reference_type (die, cu);
c906108c
SS
18666 break;
18667 case DW_TAG_const_type:
f792889a 18668 this_type = read_tag_const_type (die, cu);
c906108c
SS
18669 break;
18670 case DW_TAG_volatile_type:
f792889a 18671 this_type = read_tag_volatile_type (die, cu);
c906108c 18672 break;
06d66ee9
TT
18673 case DW_TAG_restrict_type:
18674 this_type = read_tag_restrict_type (die, cu);
18675 break;
c906108c 18676 case DW_TAG_string_type:
f792889a 18677 this_type = read_tag_string_type (die, cu);
c906108c
SS
18678 break;
18679 case DW_TAG_typedef:
f792889a 18680 this_type = read_typedef (die, cu);
c906108c 18681 break;
a02abb62 18682 case DW_TAG_subrange_type:
f792889a 18683 this_type = read_subrange_type (die, cu);
a02abb62 18684 break;
c906108c 18685 case DW_TAG_base_type:
f792889a 18686 this_type = read_base_type (die, cu);
c906108c 18687 break;
81a17f79 18688 case DW_TAG_unspecified_type:
f792889a 18689 this_type = read_unspecified_type (die, cu);
81a17f79 18690 break;
0114d602
DJ
18691 case DW_TAG_namespace:
18692 this_type = read_namespace_type (die, cu);
18693 break;
f55ee35c
JK
18694 case DW_TAG_module:
18695 this_type = read_module_type (die, cu);
18696 break;
c906108c 18697 default:
3e43a32a
MS
18698 complaint (&symfile_complaints,
18699 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 18700 dwarf_tag_name (die->tag));
c906108c
SS
18701 break;
18702 }
63d06c5c 18703
f792889a 18704 return this_type;
63d06c5c
DC
18705}
18706
abc72ce4
DE
18707/* See if we can figure out if the class lives in a namespace. We do
18708 this by looking for a member function; its demangled name will
18709 contain namespace info, if there is any.
18710 Return the computed name or NULL.
18711 Space for the result is allocated on the objfile's obstack.
18712 This is the full-die version of guess_partial_die_structure_name.
18713 In this case we know DIE has no useful parent. */
18714
18715static char *
18716guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
18717{
18718 struct die_info *spec_die;
18719 struct dwarf2_cu *spec_cu;
18720 struct die_info *child;
18721
18722 spec_cu = cu;
18723 spec_die = die_specification (die, &spec_cu);
18724 if (spec_die != NULL)
18725 {
18726 die = spec_die;
18727 cu = spec_cu;
18728 }
18729
18730 for (child = die->child;
18731 child != NULL;
18732 child = child->sibling)
18733 {
18734 if (child->tag == DW_TAG_subprogram)
18735 {
18736 struct attribute *attr;
18737
18738 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
18739 if (attr == NULL)
18740 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
18741 if (attr != NULL)
18742 {
18743 char *actual_name
18744 = language_class_name_from_physname (cu->language_defn,
18745 DW_STRING (attr));
18746 char *name = NULL;
18747
18748 if (actual_name != NULL)
18749 {
15d034d0 18750 const char *die_name = dwarf2_name (die, cu);
abc72ce4
DE
18751
18752 if (die_name != NULL
18753 && strcmp (die_name, actual_name) != 0)
18754 {
18755 /* Strip off the class name from the full name.
18756 We want the prefix. */
18757 int die_name_len = strlen (die_name);
18758 int actual_name_len = strlen (actual_name);
18759
18760 /* Test for '::' as a sanity check. */
18761 if (actual_name_len > die_name_len + 2
3e43a32a
MS
18762 && actual_name[actual_name_len
18763 - die_name_len - 1] == ':')
abc72ce4 18764 name =
34a68019 18765 obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb
TT
18766 actual_name,
18767 actual_name_len - die_name_len - 2);
abc72ce4
DE
18768 }
18769 }
18770 xfree (actual_name);
18771 return name;
18772 }
18773 }
18774 }
18775
18776 return NULL;
18777}
18778
96408a79
SA
18779/* GCC might emit a nameless typedef that has a linkage name. Determine the
18780 prefix part in such case. See
18781 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18782
18783static char *
18784anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
18785{
18786 struct attribute *attr;
18787 char *base;
18788
18789 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
18790 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
18791 return NULL;
18792
18793 attr = dwarf2_attr (die, DW_AT_name, cu);
18794 if (attr != NULL && DW_STRING (attr) != NULL)
18795 return NULL;
18796
18797 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
18798 if (attr == NULL)
18799 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
18800 if (attr == NULL || DW_STRING (attr) == NULL)
18801 return NULL;
18802
18803 /* dwarf2_name had to be already called. */
18804 gdb_assert (DW_STRING_IS_CANONICAL (attr));
18805
18806 /* Strip the base name, keep any leading namespaces/classes. */
18807 base = strrchr (DW_STRING (attr), ':');
18808 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
18809 return "";
18810
34a68019 18811 return obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
10f0c4bb 18812 DW_STRING (attr), &base[-1] - DW_STRING (attr));
96408a79
SA
18813}
18814
fdde2d81 18815/* Return the name of the namespace/class that DIE is defined within,
0114d602 18816 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 18817
0114d602
DJ
18818 For example, if we're within the method foo() in the following
18819 code:
18820
18821 namespace N {
18822 class C {
18823 void foo () {
18824 }
18825 };
18826 }
18827
18828 then determine_prefix on foo's die will return "N::C". */
fdde2d81 18829
0d5cff50 18830static const char *
e142c38c 18831determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 18832{
0114d602
DJ
18833 struct die_info *parent, *spec_die;
18834 struct dwarf2_cu *spec_cu;
18835 struct type *parent_type;
96408a79 18836 char *retval;
63d06c5c 18837
f55ee35c
JK
18838 if (cu->language != language_cplus && cu->language != language_java
18839 && cu->language != language_fortran)
0114d602
DJ
18840 return "";
18841
96408a79
SA
18842 retval = anonymous_struct_prefix (die, cu);
18843 if (retval)
18844 return retval;
18845
0114d602
DJ
18846 /* We have to be careful in the presence of DW_AT_specification.
18847 For example, with GCC 3.4, given the code
18848
18849 namespace N {
18850 void foo() {
18851 // Definition of N::foo.
18852 }
18853 }
18854
18855 then we'll have a tree of DIEs like this:
18856
18857 1: DW_TAG_compile_unit
18858 2: DW_TAG_namespace // N
18859 3: DW_TAG_subprogram // declaration of N::foo
18860 4: DW_TAG_subprogram // definition of N::foo
18861 DW_AT_specification // refers to die #3
18862
18863 Thus, when processing die #4, we have to pretend that we're in
18864 the context of its DW_AT_specification, namely the contex of die
18865 #3. */
18866 spec_cu = cu;
18867 spec_die = die_specification (die, &spec_cu);
18868 if (spec_die == NULL)
18869 parent = die->parent;
18870 else
63d06c5c 18871 {
0114d602
DJ
18872 parent = spec_die->parent;
18873 cu = spec_cu;
63d06c5c 18874 }
0114d602
DJ
18875
18876 if (parent == NULL)
18877 return "";
98bfdba5
PA
18878 else if (parent->building_fullname)
18879 {
18880 const char *name;
18881 const char *parent_name;
18882
18883 /* It has been seen on RealView 2.2 built binaries,
18884 DW_TAG_template_type_param types actually _defined_ as
18885 children of the parent class:
18886
18887 enum E {};
18888 template class <class Enum> Class{};
18889 Class<enum E> class_e;
18890
18891 1: DW_TAG_class_type (Class)
18892 2: DW_TAG_enumeration_type (E)
18893 3: DW_TAG_enumerator (enum1:0)
18894 3: DW_TAG_enumerator (enum2:1)
18895 ...
18896 2: DW_TAG_template_type_param
18897 DW_AT_type DW_FORM_ref_udata (E)
18898
18899 Besides being broken debug info, it can put GDB into an
18900 infinite loop. Consider:
18901
18902 When we're building the full name for Class<E>, we'll start
18903 at Class, and go look over its template type parameters,
18904 finding E. We'll then try to build the full name of E, and
18905 reach here. We're now trying to build the full name of E,
18906 and look over the parent DIE for containing scope. In the
18907 broken case, if we followed the parent DIE of E, we'd again
18908 find Class, and once again go look at its template type
18909 arguments, etc., etc. Simply don't consider such parent die
18910 as source-level parent of this die (it can't be, the language
18911 doesn't allow it), and break the loop here. */
18912 name = dwarf2_name (die, cu);
18913 parent_name = dwarf2_name (parent, cu);
18914 complaint (&symfile_complaints,
18915 _("template param type '%s' defined within parent '%s'"),
18916 name ? name : "<unknown>",
18917 parent_name ? parent_name : "<unknown>");
18918 return "";
18919 }
63d06c5c 18920 else
0114d602
DJ
18921 switch (parent->tag)
18922 {
63d06c5c 18923 case DW_TAG_namespace:
0114d602 18924 parent_type = read_type_die (parent, cu);
acebe513
UW
18925 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
18926 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
18927 Work around this problem here. */
18928 if (cu->language == language_cplus
18929 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
18930 return "";
0114d602
DJ
18931 /* We give a name to even anonymous namespaces. */
18932 return TYPE_TAG_NAME (parent_type);
63d06c5c 18933 case DW_TAG_class_type:
680b30c7 18934 case DW_TAG_interface_type:
63d06c5c 18935 case DW_TAG_structure_type:
0114d602 18936 case DW_TAG_union_type:
f55ee35c 18937 case DW_TAG_module:
0114d602
DJ
18938 parent_type = read_type_die (parent, cu);
18939 if (TYPE_TAG_NAME (parent_type) != NULL)
18940 return TYPE_TAG_NAME (parent_type);
18941 else
18942 /* An anonymous structure is only allowed non-static data
18943 members; no typedefs, no member functions, et cetera.
18944 So it does not need a prefix. */
18945 return "";
abc72ce4 18946 case DW_TAG_compile_unit:
95554aad 18947 case DW_TAG_partial_unit:
abc72ce4
DE
18948 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
18949 if (cu->language == language_cplus
8b70b953 18950 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
18951 && die->child != NULL
18952 && (die->tag == DW_TAG_class_type
18953 || die->tag == DW_TAG_structure_type
18954 || die->tag == DW_TAG_union_type))
18955 {
18956 char *name = guess_full_die_structure_name (die, cu);
18957 if (name != NULL)
18958 return name;
18959 }
18960 return "";
3d567982
TT
18961 case DW_TAG_enumeration_type:
18962 parent_type = read_type_die (parent, cu);
18963 if (TYPE_DECLARED_CLASS (parent_type))
18964 {
18965 if (TYPE_TAG_NAME (parent_type) != NULL)
18966 return TYPE_TAG_NAME (parent_type);
18967 return "";
18968 }
18969 /* Fall through. */
63d06c5c 18970 default:
8176b9b8 18971 return determine_prefix (parent, cu);
63d06c5c 18972 }
63d06c5c
DC
18973}
18974
3e43a32a
MS
18975/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
18976 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
18977 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
18978 an obconcat, otherwise allocate storage for the result. The CU argument is
18979 used to determine the language and hence, the appropriate separator. */
987504bb 18980
f55ee35c 18981#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
18982
18983static char *
f55ee35c
JK
18984typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
18985 int physname, struct dwarf2_cu *cu)
63d06c5c 18986{
f55ee35c 18987 const char *lead = "";
5c315b68 18988 const char *sep;
63d06c5c 18989
3e43a32a
MS
18990 if (suffix == NULL || suffix[0] == '\0'
18991 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
18992 sep = "";
18993 else if (cu->language == language_java)
18994 sep = ".";
f55ee35c
JK
18995 else if (cu->language == language_fortran && physname)
18996 {
18997 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
18998 DW_AT_MIPS_linkage_name is preferred and used instead. */
18999
19000 lead = "__";
19001 sep = "_MOD_";
19002 }
987504bb
JJ
19003 else
19004 sep = "::";
63d06c5c 19005
6dd47d34
DE
19006 if (prefix == NULL)
19007 prefix = "";
19008 if (suffix == NULL)
19009 suffix = "";
19010
987504bb
JJ
19011 if (obs == NULL)
19012 {
3e43a32a
MS
19013 char *retval
19014 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 19015
f55ee35c
JK
19016 strcpy (retval, lead);
19017 strcat (retval, prefix);
6dd47d34
DE
19018 strcat (retval, sep);
19019 strcat (retval, suffix);
63d06c5c
DC
19020 return retval;
19021 }
987504bb
JJ
19022 else
19023 {
19024 /* We have an obstack. */
f55ee35c 19025 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 19026 }
63d06c5c
DC
19027}
19028
c906108c
SS
19029/* Return sibling of die, NULL if no sibling. */
19030
f9aca02d 19031static struct die_info *
fba45db2 19032sibling_die (struct die_info *die)
c906108c 19033{
639d11d3 19034 return die->sibling;
c906108c
SS
19035}
19036
71c25dea
TT
19037/* Get name of a die, return NULL if not found. */
19038
15d034d0
TT
19039static const char *
19040dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
71c25dea
TT
19041 struct obstack *obstack)
19042{
19043 if (name && cu->language == language_cplus)
19044 {
19045 char *canon_name = cp_canonicalize_string (name);
19046
19047 if (canon_name != NULL)
19048 {
19049 if (strcmp (canon_name, name) != 0)
10f0c4bb 19050 name = obstack_copy0 (obstack, canon_name, strlen (canon_name));
71c25dea
TT
19051 xfree (canon_name);
19052 }
19053 }
19054
19055 return name;
c906108c
SS
19056}
19057
9219021c
DC
19058/* Get name of a die, return NULL if not found. */
19059
15d034d0 19060static const char *
e142c38c 19061dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
19062{
19063 struct attribute *attr;
19064
e142c38c 19065 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31
TT
19066 if ((!attr || !DW_STRING (attr))
19067 && die->tag != DW_TAG_class_type
19068 && die->tag != DW_TAG_interface_type
19069 && die->tag != DW_TAG_structure_type
19070 && die->tag != DW_TAG_union_type)
71c25dea
TT
19071 return NULL;
19072
19073 switch (die->tag)
19074 {
19075 case DW_TAG_compile_unit:
95554aad 19076 case DW_TAG_partial_unit:
71c25dea
TT
19077 /* Compilation units have a DW_AT_name that is a filename, not
19078 a source language identifier. */
19079 case DW_TAG_enumeration_type:
19080 case DW_TAG_enumerator:
19081 /* These tags always have simple identifiers already; no need
19082 to canonicalize them. */
19083 return DW_STRING (attr);
907af001 19084
418835cc
KS
19085 case DW_TAG_subprogram:
19086 /* Java constructors will all be named "<init>", so return
19087 the class name when we see this special case. */
19088 if (cu->language == language_java
19089 && DW_STRING (attr) != NULL
19090 && strcmp (DW_STRING (attr), "<init>") == 0)
19091 {
19092 struct dwarf2_cu *spec_cu = cu;
19093 struct die_info *spec_die;
19094
19095 /* GCJ will output '<init>' for Java constructor names.
19096 For this special case, return the name of the parent class. */
19097
cdc07690 19098 /* GCJ may output subprogram DIEs with AT_specification set.
418835cc
KS
19099 If so, use the name of the specified DIE. */
19100 spec_die = die_specification (die, &spec_cu);
19101 if (spec_die != NULL)
19102 return dwarf2_name (spec_die, spec_cu);
19103
19104 do
19105 {
19106 die = die->parent;
19107 if (die->tag == DW_TAG_class_type)
19108 return dwarf2_name (die, cu);
19109 }
95554aad
TT
19110 while (die->tag != DW_TAG_compile_unit
19111 && die->tag != DW_TAG_partial_unit);
418835cc 19112 }
907af001
UW
19113 break;
19114
19115 case DW_TAG_class_type:
19116 case DW_TAG_interface_type:
19117 case DW_TAG_structure_type:
19118 case DW_TAG_union_type:
19119 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
19120 structures or unions. These were of the form "._%d" in GCC 4.1,
19121 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
19122 and GCC 4.4. We work around this problem by ignoring these. */
53832f31
TT
19123 if (attr && DW_STRING (attr)
19124 && (strncmp (DW_STRING (attr), "._", 2) == 0
19125 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
907af001 19126 return NULL;
53832f31
TT
19127
19128 /* GCC might emit a nameless typedef that has a linkage name. See
19129 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19130 if (!attr || DW_STRING (attr) == NULL)
19131 {
df5c6c50 19132 char *demangled = NULL;
53832f31
TT
19133
19134 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
19135 if (attr == NULL)
19136 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
19137
19138 if (attr == NULL || DW_STRING (attr) == NULL)
19139 return NULL;
19140
df5c6c50
JK
19141 /* Avoid demangling DW_STRING (attr) the second time on a second
19142 call for the same DIE. */
19143 if (!DW_STRING_IS_CANONICAL (attr))
8de20a37 19144 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
19145
19146 if (demangled)
19147 {
96408a79
SA
19148 char *base;
19149
53832f31 19150 /* FIXME: we already did this for the partial symbol... */
34a68019
TT
19151 DW_STRING (attr)
19152 = obstack_copy0 (&cu->objfile->per_bfd->storage_obstack,
19153 demangled, strlen (demangled));
53832f31
TT
19154 DW_STRING_IS_CANONICAL (attr) = 1;
19155 xfree (demangled);
96408a79
SA
19156
19157 /* Strip any leading namespaces/classes, keep only the base name.
19158 DW_AT_name for named DIEs does not contain the prefixes. */
19159 base = strrchr (DW_STRING (attr), ':');
19160 if (base && base > DW_STRING (attr) && base[-1] == ':')
19161 return &base[1];
19162 else
19163 return DW_STRING (attr);
53832f31
TT
19164 }
19165 }
907af001
UW
19166 break;
19167
71c25dea 19168 default:
907af001
UW
19169 break;
19170 }
19171
19172 if (!DW_STRING_IS_CANONICAL (attr))
19173 {
19174 DW_STRING (attr)
19175 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
34a68019 19176 &cu->objfile->per_bfd->storage_obstack);
907af001 19177 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 19178 }
907af001 19179 return DW_STRING (attr);
9219021c
DC
19180}
19181
19182/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
19183 is none. *EXT_CU is the CU containing DIE on input, and the CU
19184 containing the return value on output. */
9219021c
DC
19185
19186static struct die_info *
f2f0e013 19187dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
19188{
19189 struct attribute *attr;
9219021c 19190
f2f0e013 19191 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
19192 if (attr == NULL)
19193 return NULL;
19194
f2f0e013 19195 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
19196}
19197
c906108c
SS
19198/* Convert a DIE tag into its string name. */
19199
f39c6ffd 19200static const char *
aa1ee363 19201dwarf_tag_name (unsigned tag)
c906108c 19202{
f39c6ffd
TT
19203 const char *name = get_DW_TAG_name (tag);
19204
19205 if (name == NULL)
19206 return "DW_TAG_<unknown>";
19207
19208 return name;
c906108c
SS
19209}
19210
19211/* Convert a DWARF attribute code into its string name. */
19212
f39c6ffd 19213static const char *
aa1ee363 19214dwarf_attr_name (unsigned attr)
c906108c 19215{
f39c6ffd
TT
19216 const char *name;
19217
c764a876 19218#ifdef MIPS /* collides with DW_AT_HP_block_index */
f39c6ffd
TT
19219 if (attr == DW_AT_MIPS_fde)
19220 return "DW_AT_MIPS_fde";
19221#else
19222 if (attr == DW_AT_HP_block_index)
19223 return "DW_AT_HP_block_index";
c764a876 19224#endif
f39c6ffd
TT
19225
19226 name = get_DW_AT_name (attr);
19227
19228 if (name == NULL)
19229 return "DW_AT_<unknown>";
19230
19231 return name;
c906108c
SS
19232}
19233
19234/* Convert a DWARF value form code into its string name. */
19235
f39c6ffd 19236static const char *
aa1ee363 19237dwarf_form_name (unsigned form)
c906108c 19238{
f39c6ffd
TT
19239 const char *name = get_DW_FORM_name (form);
19240
19241 if (name == NULL)
19242 return "DW_FORM_<unknown>";
19243
19244 return name;
c906108c
SS
19245}
19246
19247static char *
fba45db2 19248dwarf_bool_name (unsigned mybool)
c906108c
SS
19249{
19250 if (mybool)
19251 return "TRUE";
19252 else
19253 return "FALSE";
19254}
19255
19256/* Convert a DWARF type code into its string name. */
19257
f39c6ffd 19258static const char *
aa1ee363 19259dwarf_type_encoding_name (unsigned enc)
c906108c 19260{
f39c6ffd 19261 const char *name = get_DW_ATE_name (enc);
c906108c 19262
f39c6ffd
TT
19263 if (name == NULL)
19264 return "DW_ATE_<unknown>";
c906108c 19265
f39c6ffd 19266 return name;
c906108c 19267}
c906108c 19268
f9aca02d 19269static void
d97bc12b 19270dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
19271{
19272 unsigned int i;
19273
d97bc12b
DE
19274 print_spaces (indent, f);
19275 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
b64f50a1 19276 dwarf_tag_name (die->tag), die->abbrev, die->offset.sect_off);
d97bc12b
DE
19277
19278 if (die->parent != NULL)
19279 {
19280 print_spaces (indent, f);
19281 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
b64f50a1 19282 die->parent->offset.sect_off);
d97bc12b
DE
19283 }
19284
19285 print_spaces (indent, f);
19286 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 19287 dwarf_bool_name (die->child != NULL));
c906108c 19288
d97bc12b
DE
19289 print_spaces (indent, f);
19290 fprintf_unfiltered (f, " attributes:\n");
19291
c906108c
SS
19292 for (i = 0; i < die->num_attrs; ++i)
19293 {
d97bc12b
DE
19294 print_spaces (indent, f);
19295 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
19296 dwarf_attr_name (die->attrs[i].name),
19297 dwarf_form_name (die->attrs[i].form));
d97bc12b 19298
c906108c
SS
19299 switch (die->attrs[i].form)
19300 {
c906108c 19301 case DW_FORM_addr:
3019eac3 19302 case DW_FORM_GNU_addr_index:
d97bc12b 19303 fprintf_unfiltered (f, "address: ");
5af949e3 19304 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
19305 break;
19306 case DW_FORM_block2:
19307 case DW_FORM_block4:
19308 case DW_FORM_block:
19309 case DW_FORM_block1:
56eb65bd
SP
19310 fprintf_unfiltered (f, "block: size %s",
19311 pulongest (DW_BLOCK (&die->attrs[i])->size));
c906108c 19312 break;
2dc7f7b3 19313 case DW_FORM_exprloc:
56eb65bd
SP
19314 fprintf_unfiltered (f, "expression: size %s",
19315 pulongest (DW_BLOCK (&die->attrs[i])->size));
2dc7f7b3 19316 break;
4568ecf9
DE
19317 case DW_FORM_ref_addr:
19318 fprintf_unfiltered (f, "ref address: ");
19319 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19320 break;
36586728
TT
19321 case DW_FORM_GNU_ref_alt:
19322 fprintf_unfiltered (f, "alt ref address: ");
19323 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
19324 break;
10b3939b
DJ
19325 case DW_FORM_ref1:
19326 case DW_FORM_ref2:
19327 case DW_FORM_ref4:
4568ecf9
DE
19328 case DW_FORM_ref8:
19329 case DW_FORM_ref_udata:
d97bc12b 19330 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
4568ecf9 19331 (long) (DW_UNSND (&die->attrs[i])));
10b3939b 19332 break;
c906108c
SS
19333 case DW_FORM_data1:
19334 case DW_FORM_data2:
19335 case DW_FORM_data4:
ce5d95e1 19336 case DW_FORM_data8:
c906108c
SS
19337 case DW_FORM_udata:
19338 case DW_FORM_sdata:
43bbcdc2
PH
19339 fprintf_unfiltered (f, "constant: %s",
19340 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 19341 break;
2dc7f7b3
TT
19342 case DW_FORM_sec_offset:
19343 fprintf_unfiltered (f, "section offset: %s",
19344 pulongest (DW_UNSND (&die->attrs[i])));
19345 break;
55f1336d 19346 case DW_FORM_ref_sig8:
ac9ec31b
DE
19347 fprintf_unfiltered (f, "signature: %s",
19348 hex_string (DW_SIGNATURE (&die->attrs[i])));
348e048f 19349 break;
c906108c 19350 case DW_FORM_string:
4bdf3d34 19351 case DW_FORM_strp:
3019eac3 19352 case DW_FORM_GNU_str_index:
36586728 19353 case DW_FORM_GNU_strp_alt:
8285870a 19354 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 19355 DW_STRING (&die->attrs[i])
8285870a
JK
19356 ? DW_STRING (&die->attrs[i]) : "",
19357 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
19358 break;
19359 case DW_FORM_flag:
19360 if (DW_UNSND (&die->attrs[i]))
d97bc12b 19361 fprintf_unfiltered (f, "flag: TRUE");
c906108c 19362 else
d97bc12b 19363 fprintf_unfiltered (f, "flag: FALSE");
c906108c 19364 break;
2dc7f7b3
TT
19365 case DW_FORM_flag_present:
19366 fprintf_unfiltered (f, "flag: TRUE");
19367 break;
a8329558 19368 case DW_FORM_indirect:
0963b4bd
MS
19369 /* The reader will have reduced the indirect form to
19370 the "base form" so this form should not occur. */
3e43a32a
MS
19371 fprintf_unfiltered (f,
19372 "unexpected attribute form: DW_FORM_indirect");
a8329558 19373 break;
c906108c 19374 default:
d97bc12b 19375 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 19376 die->attrs[i].form);
d97bc12b 19377 break;
c906108c 19378 }
d97bc12b 19379 fprintf_unfiltered (f, "\n");
c906108c
SS
19380 }
19381}
19382
f9aca02d 19383static void
d97bc12b 19384dump_die_for_error (struct die_info *die)
c906108c 19385{
d97bc12b
DE
19386 dump_die_shallow (gdb_stderr, 0, die);
19387}
19388
19389static void
19390dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
19391{
19392 int indent = level * 4;
19393
19394 gdb_assert (die != NULL);
19395
19396 if (level >= max_level)
19397 return;
19398
19399 dump_die_shallow (f, indent, die);
19400
19401 if (die->child != NULL)
c906108c 19402 {
d97bc12b
DE
19403 print_spaces (indent, f);
19404 fprintf_unfiltered (f, " Children:");
19405 if (level + 1 < max_level)
19406 {
19407 fprintf_unfiltered (f, "\n");
19408 dump_die_1 (f, level + 1, max_level, die->child);
19409 }
19410 else
19411 {
3e43a32a
MS
19412 fprintf_unfiltered (f,
19413 " [not printed, max nesting level reached]\n");
d97bc12b
DE
19414 }
19415 }
19416
19417 if (die->sibling != NULL && level > 0)
19418 {
19419 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
19420 }
19421}
19422
d97bc12b
DE
19423/* This is called from the pdie macro in gdbinit.in.
19424 It's not static so gcc will keep a copy callable from gdb. */
19425
19426void
19427dump_die (struct die_info *die, int max_level)
19428{
19429 dump_die_1 (gdb_stdlog, 0, max_level, die);
19430}
19431
f9aca02d 19432static void
51545339 19433store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 19434{
51545339 19435 void **slot;
c906108c 19436
b64f50a1
JK
19437 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset.sect_off,
19438 INSERT);
51545339
DJ
19439
19440 *slot = die;
c906108c
SS
19441}
19442
b64f50a1
JK
19443/* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
19444 required kind. */
19445
19446static sect_offset
ff39bb5e 19447dwarf2_get_ref_die_offset (const struct attribute *attr)
93311388 19448{
4568ecf9 19449 sect_offset retval = { DW_UNSND (attr) };
b64f50a1 19450
7771576e 19451 if (attr_form_is_ref (attr))
b64f50a1 19452 return retval;
93311388 19453
b64f50a1 19454 retval.sect_off = 0;
93311388
DE
19455 complaint (&symfile_complaints,
19456 _("unsupported die ref attribute form: '%s'"),
19457 dwarf_form_name (attr->form));
b64f50a1 19458 return retval;
c906108c
SS
19459}
19460
43bbcdc2
PH
19461/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
19462 * the value held by the attribute is not constant. */
a02abb62 19463
43bbcdc2 19464static LONGEST
ff39bb5e 19465dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
a02abb62
JB
19466{
19467 if (attr->form == DW_FORM_sdata)
19468 return DW_SND (attr);
19469 else if (attr->form == DW_FORM_udata
19470 || attr->form == DW_FORM_data1
19471 || attr->form == DW_FORM_data2
19472 || attr->form == DW_FORM_data4
19473 || attr->form == DW_FORM_data8)
19474 return DW_UNSND (attr);
19475 else
19476 {
3e43a32a
MS
19477 complaint (&symfile_complaints,
19478 _("Attribute value is not a constant (%s)"),
a02abb62
JB
19479 dwarf_form_name (attr->form));
19480 return default_value;
19481 }
19482}
19483
348e048f
DE
19484/* Follow reference or signature attribute ATTR of SRC_DIE.
19485 On entry *REF_CU is the CU of SRC_DIE.
19486 On exit *REF_CU is the CU of the result. */
19487
19488static struct die_info *
ff39bb5e 19489follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
348e048f
DE
19490 struct dwarf2_cu **ref_cu)
19491{
19492 struct die_info *die;
19493
7771576e 19494 if (attr_form_is_ref (attr))
348e048f 19495 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 19496 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
19497 die = follow_die_sig (src_die, attr, ref_cu);
19498 else
19499 {
19500 dump_die_for_error (src_die);
19501 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
4262abfb 19502 objfile_name ((*ref_cu)->objfile));
348e048f
DE
19503 }
19504
19505 return die;
03dd20cc
DJ
19506}
19507
5c631832 19508/* Follow reference OFFSET.
673bfd45
DE
19509 On entry *REF_CU is the CU of the source die referencing OFFSET.
19510 On exit *REF_CU is the CU of the result.
19511 Returns NULL if OFFSET is invalid. */
f504f079 19512
f9aca02d 19513static struct die_info *
36586728
TT
19514follow_die_offset (sect_offset offset, int offset_in_dwz,
19515 struct dwarf2_cu **ref_cu)
c906108c 19516{
10b3939b 19517 struct die_info temp_die;
f2f0e013 19518 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 19519
348e048f
DE
19520 gdb_assert (cu->per_cu != NULL);
19521
98bfdba5
PA
19522 target_cu = cu;
19523
3019eac3 19524 if (cu->per_cu->is_debug_types)
348e048f
DE
19525 {
19526 /* .debug_types CUs cannot reference anything outside their CU.
19527 If they need to, they have to reference a signatured type via
55f1336d 19528 DW_FORM_ref_sig8. */
348e048f 19529 if (! offset_in_cu_p (&cu->header, offset))
5c631832 19530 return NULL;
348e048f 19531 }
36586728
TT
19532 else if (offset_in_dwz != cu->per_cu->is_dwz
19533 || ! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
19534 {
19535 struct dwarf2_per_cu_data *per_cu;
9a619af0 19536
36586728
TT
19537 per_cu = dwarf2_find_containing_comp_unit (offset, offset_in_dwz,
19538 cu->objfile);
03dd20cc
DJ
19539
19540 /* If necessary, add it to the queue and load its DIEs. */
95554aad
TT
19541 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
19542 load_full_comp_unit (per_cu, cu->language);
03dd20cc 19543
10b3939b
DJ
19544 target_cu = per_cu->cu;
19545 }
98bfdba5
PA
19546 else if (cu->dies == NULL)
19547 {
19548 /* We're loading full DIEs during partial symbol reading. */
19549 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
95554aad 19550 load_full_comp_unit (cu->per_cu, language_minimal);
98bfdba5 19551 }
c906108c 19552
f2f0e013 19553 *ref_cu = target_cu;
51545339 19554 temp_die.offset = offset;
b64f50a1 19555 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset.sect_off);
5c631832 19556}
10b3939b 19557
5c631832
JK
19558/* Follow reference attribute ATTR of SRC_DIE.
19559 On entry *REF_CU is the CU of SRC_DIE.
19560 On exit *REF_CU is the CU of the result. */
19561
19562static struct die_info *
ff39bb5e 19563follow_die_ref (struct die_info *src_die, const struct attribute *attr,
5c631832
JK
19564 struct dwarf2_cu **ref_cu)
19565{
b64f50a1 19566 sect_offset offset = dwarf2_get_ref_die_offset (attr);
5c631832
JK
19567 struct dwarf2_cu *cu = *ref_cu;
19568 struct die_info *die;
19569
36586728
TT
19570 die = follow_die_offset (offset,
19571 (attr->form == DW_FORM_GNU_ref_alt
19572 || cu->per_cu->is_dwz),
19573 ref_cu);
5c631832
JK
19574 if (!die)
19575 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
19576 "at 0x%x [in module %s]"),
4262abfb
JK
19577 offset.sect_off, src_die->offset.sect_off,
19578 objfile_name (cu->objfile));
348e048f 19579
5c631832
JK
19580 return die;
19581}
19582
d83e736b
JK
19583/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
19584 Returned value is intended for DW_OP_call*. Returned
19585 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
19586
19587struct dwarf2_locexpr_baton
8b9737bf
TT
19588dwarf2_fetch_die_loc_sect_off (sect_offset offset,
19589 struct dwarf2_per_cu_data *per_cu,
19590 CORE_ADDR (*get_frame_pc) (void *baton),
19591 void *baton)
5c631832 19592{
918dd910 19593 struct dwarf2_cu *cu;
5c631832
JK
19594 struct die_info *die;
19595 struct attribute *attr;
19596 struct dwarf2_locexpr_baton retval;
19597
8cf6f0b1
TT
19598 dw2_setup (per_cu->objfile);
19599
918dd910
JK
19600 if (per_cu->cu == NULL)
19601 load_cu (per_cu);
19602 cu = per_cu->cu;
19603
36586728 19604 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
5c631832
JK
19605 if (!die)
19606 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 19607 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
19608
19609 attr = dwarf2_attr (die, DW_AT_location, cu);
19610 if (!attr)
19611 {
e103e986
JK
19612 /* DWARF: "If there is no such attribute, then there is no effect.".
19613 DATA is ignored if SIZE is 0. */
5c631832 19614
e103e986 19615 retval.data = NULL;
5c631832
JK
19616 retval.size = 0;
19617 }
8cf6f0b1
TT
19618 else if (attr_form_is_section_offset (attr))
19619 {
19620 struct dwarf2_loclist_baton loclist_baton;
19621 CORE_ADDR pc = (*get_frame_pc) (baton);
19622 size_t size;
19623
19624 fill_in_loclist_baton (cu, &loclist_baton, attr);
19625
19626 retval.data = dwarf2_find_location_expression (&loclist_baton,
19627 &size, pc);
19628 retval.size = size;
19629 }
5c631832
JK
19630 else
19631 {
19632 if (!attr_form_is_block (attr))
19633 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
19634 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
4262abfb 19635 offset.sect_off, objfile_name (per_cu->objfile));
5c631832
JK
19636
19637 retval.data = DW_BLOCK (attr)->data;
19638 retval.size = DW_BLOCK (attr)->size;
19639 }
19640 retval.per_cu = cu->per_cu;
918dd910 19641
918dd910
JK
19642 age_cached_comp_units ();
19643
5c631832 19644 return retval;
348e048f
DE
19645}
19646
8b9737bf
TT
19647/* Like dwarf2_fetch_die_loc_sect_off, but take a CU
19648 offset. */
19649
19650struct dwarf2_locexpr_baton
19651dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
19652 struct dwarf2_per_cu_data *per_cu,
19653 CORE_ADDR (*get_frame_pc) (void *baton),
19654 void *baton)
19655{
19656 sect_offset offset = { per_cu->offset.sect_off + offset_in_cu.cu_off };
19657
19658 return dwarf2_fetch_die_loc_sect_off (offset, per_cu, get_frame_pc, baton);
19659}
19660
b6807d98
TT
19661/* Write a constant of a given type as target-ordered bytes into
19662 OBSTACK. */
19663
19664static const gdb_byte *
19665write_constant_as_bytes (struct obstack *obstack,
19666 enum bfd_endian byte_order,
19667 struct type *type,
19668 ULONGEST value,
19669 LONGEST *len)
19670{
19671 gdb_byte *result;
19672
19673 *len = TYPE_LENGTH (type);
19674 result = obstack_alloc (obstack, *len);
19675 store_unsigned_integer (result, *len, byte_order, value);
19676
19677 return result;
19678}
19679
19680/* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
19681 pointer to the constant bytes and set LEN to the length of the
19682 data. If memory is needed, allocate it on OBSTACK. If the DIE
19683 does not have a DW_AT_const_value, return NULL. */
19684
19685const gdb_byte *
19686dwarf2_fetch_constant_bytes (sect_offset offset,
19687 struct dwarf2_per_cu_data *per_cu,
19688 struct obstack *obstack,
19689 LONGEST *len)
19690{
19691 struct dwarf2_cu *cu;
19692 struct die_info *die;
19693 struct attribute *attr;
19694 const gdb_byte *result = NULL;
19695 struct type *type;
19696 LONGEST value;
19697 enum bfd_endian byte_order;
19698
19699 dw2_setup (per_cu->objfile);
19700
19701 if (per_cu->cu == NULL)
19702 load_cu (per_cu);
19703 cu = per_cu->cu;
19704
19705 die = follow_die_offset (offset, per_cu->is_dwz, &cu);
19706 if (!die)
19707 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
4262abfb 19708 offset.sect_off, objfile_name (per_cu->objfile));
b6807d98
TT
19709
19710
19711 attr = dwarf2_attr (die, DW_AT_const_value, cu);
19712 if (attr == NULL)
19713 return NULL;
19714
19715 byte_order = (bfd_big_endian (per_cu->objfile->obfd)
19716 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
19717
19718 switch (attr->form)
19719 {
19720 case DW_FORM_addr:
19721 case DW_FORM_GNU_addr_index:
19722 {
19723 gdb_byte *tem;
19724
19725 *len = cu->header.addr_size;
19726 tem = obstack_alloc (obstack, *len);
19727 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
19728 result = tem;
19729 }
19730 break;
19731 case DW_FORM_string:
19732 case DW_FORM_strp:
19733 case DW_FORM_GNU_str_index:
19734 case DW_FORM_GNU_strp_alt:
19735 /* DW_STRING is already allocated on the objfile obstack, point
19736 directly to it. */
19737 result = (const gdb_byte *) DW_STRING (attr);
19738 *len = strlen (DW_STRING (attr));
19739 break;
19740 case DW_FORM_block1:
19741 case DW_FORM_block2:
19742 case DW_FORM_block4:
19743 case DW_FORM_block:
19744 case DW_FORM_exprloc:
19745 result = DW_BLOCK (attr)->data;
19746 *len = DW_BLOCK (attr)->size;
19747 break;
19748
19749 /* The DW_AT_const_value attributes are supposed to carry the
19750 symbol's value "represented as it would be on the target
19751 architecture." By the time we get here, it's already been
19752 converted to host endianness, so we just need to sign- or
19753 zero-extend it as appropriate. */
19754 case DW_FORM_data1:
19755 type = die_type (die, cu);
19756 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
19757 if (result == NULL)
19758 result = write_constant_as_bytes (obstack, byte_order,
19759 type, value, len);
19760 break;
19761 case DW_FORM_data2:
19762 type = die_type (die, cu);
19763 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
19764 if (result == NULL)
19765 result = write_constant_as_bytes (obstack, byte_order,
19766 type, value, len);
19767 break;
19768 case DW_FORM_data4:
19769 type = die_type (die, cu);
19770 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
19771 if (result == NULL)
19772 result = write_constant_as_bytes (obstack, byte_order,
19773 type, value, len);
19774 break;
19775 case DW_FORM_data8:
19776 type = die_type (die, cu);
19777 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
19778 if (result == NULL)
19779 result = write_constant_as_bytes (obstack, byte_order,
19780 type, value, len);
19781 break;
19782
19783 case DW_FORM_sdata:
19784 type = die_type (die, cu);
19785 result = write_constant_as_bytes (obstack, byte_order,
19786 type, DW_SND (attr), len);
19787 break;
19788
19789 case DW_FORM_udata:
19790 type = die_type (die, cu);
19791 result = write_constant_as_bytes (obstack, byte_order,
19792 type, DW_UNSND (attr), len);
19793 break;
19794
19795 default:
19796 complaint (&symfile_complaints,
19797 _("unsupported const value attribute form: '%s'"),
19798 dwarf_form_name (attr->form));
19799 break;
19800 }
19801
19802 return result;
19803}
19804
8a9b8146
TT
19805/* Return the type of the DIE at DIE_OFFSET in the CU named by
19806 PER_CU. */
19807
19808struct type *
b64f50a1 19809dwarf2_get_die_type (cu_offset die_offset,
8a9b8146
TT
19810 struct dwarf2_per_cu_data *per_cu)
19811{
b64f50a1
JK
19812 sect_offset die_offset_sect;
19813
8a9b8146 19814 dw2_setup (per_cu->objfile);
b64f50a1
JK
19815
19816 die_offset_sect.sect_off = per_cu->offset.sect_off + die_offset.cu_off;
19817 return get_die_type_at_offset (die_offset_sect, per_cu);
8a9b8146
TT
19818}
19819
ac9ec31b 19820/* Follow type unit SIG_TYPE referenced by SRC_DIE.
348e048f 19821 On entry *REF_CU is the CU of SRC_DIE.
ac9ec31b
DE
19822 On exit *REF_CU is the CU of the result.
19823 Returns NULL if the referenced DIE isn't found. */
348e048f
DE
19824
19825static struct die_info *
ac9ec31b
DE
19826follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
19827 struct dwarf2_cu **ref_cu)
348e048f
DE
19828{
19829 struct objfile *objfile = (*ref_cu)->objfile;
19830 struct die_info temp_die;
348e048f
DE
19831 struct dwarf2_cu *sig_cu;
19832 struct die_info *die;
19833
ac9ec31b
DE
19834 /* While it might be nice to assert sig_type->type == NULL here,
19835 we can get here for DW_AT_imported_declaration where we need
19836 the DIE not the type. */
348e048f
DE
19837
19838 /* If necessary, add it to the queue and load its DIEs. */
19839
95554aad 19840 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
a0f42c21 19841 read_signatured_type (sig_type);
348e048f 19842
348e048f 19843 sig_cu = sig_type->per_cu.cu;
69d751e3 19844 gdb_assert (sig_cu != NULL);
3019eac3
DE
19845 gdb_assert (sig_type->type_offset_in_section.sect_off != 0);
19846 temp_die.offset = sig_type->type_offset_in_section;
b64f50a1
JK
19847 die = htab_find_with_hash (sig_cu->die_hash, &temp_die,
19848 temp_die.offset.sect_off);
348e048f
DE
19849 if (die)
19850 {
796a7ff8
DE
19851 /* For .gdb_index version 7 keep track of included TUs.
19852 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
19853 if (dwarf2_per_objfile->index_table != NULL
19854 && dwarf2_per_objfile->index_table->version <= 7)
19855 {
19856 VEC_safe_push (dwarf2_per_cu_ptr,
19857 (*ref_cu)->per_cu->imported_symtabs,
19858 sig_cu->per_cu);
19859 }
19860
348e048f
DE
19861 *ref_cu = sig_cu;
19862 return die;
19863 }
19864
ac9ec31b
DE
19865 return NULL;
19866}
19867
19868/* Follow signatured type referenced by ATTR in SRC_DIE.
19869 On entry *REF_CU is the CU of SRC_DIE.
19870 On exit *REF_CU is the CU of the result.
19871 The result is the DIE of the type.
19872 If the referenced type cannot be found an error is thrown. */
19873
19874static struct die_info *
ff39bb5e 19875follow_die_sig (struct die_info *src_die, const struct attribute *attr,
ac9ec31b
DE
19876 struct dwarf2_cu **ref_cu)
19877{
19878 ULONGEST signature = DW_SIGNATURE (attr);
19879 struct signatured_type *sig_type;
19880 struct die_info *die;
19881
19882 gdb_assert (attr->form == DW_FORM_ref_sig8);
19883
a2ce51a0 19884 sig_type = lookup_signatured_type (*ref_cu, signature);
ac9ec31b
DE
19885 /* sig_type will be NULL if the signatured type is missing from
19886 the debug info. */
19887 if (sig_type == NULL)
19888 {
19889 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
19890 " from DIE at 0x%x [in module %s]"),
19891 hex_string (signature), src_die->offset.sect_off,
4262abfb 19892 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
19893 }
19894
19895 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
19896 if (die == NULL)
19897 {
19898 dump_die_for_error (src_die);
19899 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
19900 " from DIE at 0x%x [in module %s]"),
19901 hex_string (signature), src_die->offset.sect_off,
4262abfb 19902 objfile_name ((*ref_cu)->objfile));
ac9ec31b
DE
19903 }
19904
19905 return die;
19906}
19907
19908/* Get the type specified by SIGNATURE referenced in DIE/CU,
19909 reading in and processing the type unit if necessary. */
19910
19911static struct type *
19912get_signatured_type (struct die_info *die, ULONGEST signature,
19913 struct dwarf2_cu *cu)
19914{
19915 struct signatured_type *sig_type;
19916 struct dwarf2_cu *type_cu;
19917 struct die_info *type_die;
19918 struct type *type;
19919
a2ce51a0 19920 sig_type = lookup_signatured_type (cu, signature);
ac9ec31b
DE
19921 /* sig_type will be NULL if the signatured type is missing from
19922 the debug info. */
19923 if (sig_type == NULL)
19924 {
19925 complaint (&symfile_complaints,
19926 _("Dwarf Error: Cannot find signatured DIE %s referenced"
19927 " from DIE at 0x%x [in module %s]"),
19928 hex_string (signature), die->offset.sect_off,
4262abfb 19929 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19930 return build_error_marker_type (cu, die);
19931 }
19932
19933 /* If we already know the type we're done. */
19934 if (sig_type->type != NULL)
19935 return sig_type->type;
19936
19937 type_cu = cu;
19938 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
19939 if (type_die != NULL)
19940 {
19941 /* N.B. We need to call get_die_type to ensure only one type for this DIE
19942 is created. This is important, for example, because for c++ classes
19943 we need TYPE_NAME set which is only done by new_symbol. Blech. */
19944 type = read_type_die (type_die, type_cu);
19945 if (type == NULL)
19946 {
19947 complaint (&symfile_complaints,
19948 _("Dwarf Error: Cannot build signatured type %s"
19949 " referenced from DIE at 0x%x [in module %s]"),
19950 hex_string (signature), die->offset.sect_off,
4262abfb 19951 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19952 type = build_error_marker_type (cu, die);
19953 }
19954 }
19955 else
19956 {
19957 complaint (&symfile_complaints,
19958 _("Dwarf Error: Problem reading signatured DIE %s referenced"
19959 " from DIE at 0x%x [in module %s]"),
19960 hex_string (signature), die->offset.sect_off,
4262abfb 19961 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19962 type = build_error_marker_type (cu, die);
19963 }
19964 sig_type->type = type;
19965
19966 return type;
19967}
19968
19969/* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
19970 reading in and processing the type unit if necessary. */
19971
19972static struct type *
ff39bb5e 19973get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
b385a60d 19974 struct dwarf2_cu *cu) /* ARI: editCase function */
ac9ec31b
DE
19975{
19976 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
7771576e 19977 if (attr_form_is_ref (attr))
ac9ec31b
DE
19978 {
19979 struct dwarf2_cu *type_cu = cu;
19980 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
19981
19982 return read_type_die (type_die, type_cu);
19983 }
19984 else if (attr->form == DW_FORM_ref_sig8)
19985 {
19986 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
19987 }
19988 else
19989 {
19990 complaint (&symfile_complaints,
19991 _("Dwarf Error: DW_AT_signature has bad form %s in DIE"
19992 " at 0x%x [in module %s]"),
19993 dwarf_form_name (attr->form), die->offset.sect_off,
4262abfb 19994 objfile_name (dwarf2_per_objfile->objfile));
ac9ec31b
DE
19995 return build_error_marker_type (cu, die);
19996 }
348e048f
DE
19997}
19998
e5fe5e75 19999/* Load the DIEs associated with type unit PER_CU into memory. */
348e048f
DE
20000
20001static void
e5fe5e75 20002load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
348e048f 20003{
52dc124a 20004 struct signatured_type *sig_type;
348e048f 20005
f4dc4d17
DE
20006 /* Caller is responsible for ensuring type_unit_groups don't get here. */
20007 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
20008
6721b2ec
DE
20009 /* We have the per_cu, but we need the signatured_type.
20010 Fortunately this is an easy translation. */
20011 gdb_assert (per_cu->is_debug_types);
20012 sig_type = (struct signatured_type *) per_cu;
348e048f 20013
6721b2ec 20014 gdb_assert (per_cu->cu == NULL);
348e048f 20015
52dc124a 20016 read_signatured_type (sig_type);
348e048f 20017
6721b2ec 20018 gdb_assert (per_cu->cu != NULL);
348e048f
DE
20019}
20020
dee91e82
DE
20021/* die_reader_func for read_signatured_type.
20022 This is identical to load_full_comp_unit_reader,
20023 but is kept separate for now. */
348e048f
DE
20024
20025static void
dee91e82 20026read_signatured_type_reader (const struct die_reader_specs *reader,
d521ce57 20027 const gdb_byte *info_ptr,
dee91e82
DE
20028 struct die_info *comp_unit_die,
20029 int has_children,
20030 void *data)
348e048f 20031{
dee91e82 20032 struct dwarf2_cu *cu = reader->cu;
348e048f 20033
dee91e82
DE
20034 gdb_assert (cu->die_hash == NULL);
20035 cu->die_hash =
20036 htab_create_alloc_ex (cu->header.length / 12,
20037 die_hash,
20038 die_eq,
20039 NULL,
20040 &cu->comp_unit_obstack,
20041 hashtab_obstack_allocate,
20042 dummy_obstack_deallocate);
348e048f 20043
dee91e82
DE
20044 if (has_children)
20045 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
20046 &info_ptr, comp_unit_die);
20047 cu->dies = comp_unit_die;
20048 /* comp_unit_die is not stored in die_hash, no need. */
348e048f
DE
20049
20050 /* We try not to read any attributes in this function, because not
9cdd5dbd 20051 all CUs needed for references have been loaded yet, and symbol
348e048f 20052 table processing isn't initialized. But we have to set the CU language,
dee91e82
DE
20053 or we won't be able to build types correctly.
20054 Similarly, if we do not read the producer, we can not apply
20055 producer-specific interpretation. */
95554aad 20056 prepare_one_comp_unit (cu, cu->dies, language_minimal);
dee91e82 20057}
348e048f 20058
3019eac3
DE
20059/* Read in a signatured type and build its CU and DIEs.
20060 If the type is a stub for the real type in a DWO file,
20061 read in the real type from the DWO file as well. */
dee91e82
DE
20062
20063static void
20064read_signatured_type (struct signatured_type *sig_type)
20065{
20066 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
348e048f 20067
3019eac3 20068 gdb_assert (per_cu->is_debug_types);
dee91e82 20069 gdb_assert (per_cu->cu == NULL);
348e048f 20070
f4dc4d17
DE
20071 init_cutu_and_read_dies (per_cu, NULL, 0, 1,
20072 read_signatured_type_reader, NULL);
7ee85ab1 20073 sig_type->per_cu.tu_read = 1;
c906108c
SS
20074}
20075
c906108c
SS
20076/* Decode simple location descriptions.
20077 Given a pointer to a dwarf block that defines a location, compute
20078 the location and return the value.
20079
4cecd739
DJ
20080 NOTE drow/2003-11-18: This function is called in two situations
20081 now: for the address of static or global variables (partial symbols
20082 only) and for offsets into structures which are expected to be
20083 (more or less) constant. The partial symbol case should go away,
20084 and only the constant case should remain. That will let this
20085 function complain more accurately. A few special modes are allowed
20086 without complaint for global variables (for instance, global
20087 register values and thread-local values).
c906108c
SS
20088
20089 A location description containing no operations indicates that the
4cecd739 20090 object is optimized out. The return value is 0 for that case.
6b992462
DJ
20091 FIXME drow/2003-11-16: No callers check for this case any more; soon all
20092 callers will only want a very basic result and this can become a
21ae7a4d
JK
20093 complaint.
20094
20095 Note that stack[0] is unused except as a default error return. */
c906108c
SS
20096
20097static CORE_ADDR
e7c27a73 20098decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 20099{
e7c27a73 20100 struct objfile *objfile = cu->objfile;
56eb65bd
SP
20101 size_t i;
20102 size_t size = blk->size;
d521ce57 20103 const gdb_byte *data = blk->data;
21ae7a4d
JK
20104 CORE_ADDR stack[64];
20105 int stacki;
20106 unsigned int bytes_read, unsnd;
20107 gdb_byte op;
c906108c 20108
21ae7a4d
JK
20109 i = 0;
20110 stacki = 0;
20111 stack[stacki] = 0;
20112 stack[++stacki] = 0;
20113
20114 while (i < size)
20115 {
20116 op = data[i++];
20117 switch (op)
20118 {
20119 case DW_OP_lit0:
20120 case DW_OP_lit1:
20121 case DW_OP_lit2:
20122 case DW_OP_lit3:
20123 case DW_OP_lit4:
20124 case DW_OP_lit5:
20125 case DW_OP_lit6:
20126 case DW_OP_lit7:
20127 case DW_OP_lit8:
20128 case DW_OP_lit9:
20129 case DW_OP_lit10:
20130 case DW_OP_lit11:
20131 case DW_OP_lit12:
20132 case DW_OP_lit13:
20133 case DW_OP_lit14:
20134 case DW_OP_lit15:
20135 case DW_OP_lit16:
20136 case DW_OP_lit17:
20137 case DW_OP_lit18:
20138 case DW_OP_lit19:
20139 case DW_OP_lit20:
20140 case DW_OP_lit21:
20141 case DW_OP_lit22:
20142 case DW_OP_lit23:
20143 case DW_OP_lit24:
20144 case DW_OP_lit25:
20145 case DW_OP_lit26:
20146 case DW_OP_lit27:
20147 case DW_OP_lit28:
20148 case DW_OP_lit29:
20149 case DW_OP_lit30:
20150 case DW_OP_lit31:
20151 stack[++stacki] = op - DW_OP_lit0;
20152 break;
f1bea926 20153
21ae7a4d
JK
20154 case DW_OP_reg0:
20155 case DW_OP_reg1:
20156 case DW_OP_reg2:
20157 case DW_OP_reg3:
20158 case DW_OP_reg4:
20159 case DW_OP_reg5:
20160 case DW_OP_reg6:
20161 case DW_OP_reg7:
20162 case DW_OP_reg8:
20163 case DW_OP_reg9:
20164 case DW_OP_reg10:
20165 case DW_OP_reg11:
20166 case DW_OP_reg12:
20167 case DW_OP_reg13:
20168 case DW_OP_reg14:
20169 case DW_OP_reg15:
20170 case DW_OP_reg16:
20171 case DW_OP_reg17:
20172 case DW_OP_reg18:
20173 case DW_OP_reg19:
20174 case DW_OP_reg20:
20175 case DW_OP_reg21:
20176 case DW_OP_reg22:
20177 case DW_OP_reg23:
20178 case DW_OP_reg24:
20179 case DW_OP_reg25:
20180 case DW_OP_reg26:
20181 case DW_OP_reg27:
20182 case DW_OP_reg28:
20183 case DW_OP_reg29:
20184 case DW_OP_reg30:
20185 case DW_OP_reg31:
20186 stack[++stacki] = op - DW_OP_reg0;
20187 if (i < size)
20188 dwarf2_complex_location_expr_complaint ();
20189 break;
c906108c 20190
21ae7a4d
JK
20191 case DW_OP_regx:
20192 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
20193 i += bytes_read;
20194 stack[++stacki] = unsnd;
20195 if (i < size)
20196 dwarf2_complex_location_expr_complaint ();
20197 break;
c906108c 20198
21ae7a4d
JK
20199 case DW_OP_addr:
20200 stack[++stacki] = read_address (objfile->obfd, &data[i],
20201 cu, &bytes_read);
20202 i += bytes_read;
20203 break;
d53d4ac5 20204
21ae7a4d
JK
20205 case DW_OP_const1u:
20206 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
20207 i += 1;
20208 break;
20209
20210 case DW_OP_const1s:
20211 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
20212 i += 1;
20213 break;
20214
20215 case DW_OP_const2u:
20216 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
20217 i += 2;
20218 break;
20219
20220 case DW_OP_const2s:
20221 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
20222 i += 2;
20223 break;
d53d4ac5 20224
21ae7a4d
JK
20225 case DW_OP_const4u:
20226 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
20227 i += 4;
20228 break;
20229
20230 case DW_OP_const4s:
20231 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
20232 i += 4;
20233 break;
20234
585861ea
JK
20235 case DW_OP_const8u:
20236 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
20237 i += 8;
20238 break;
20239
21ae7a4d
JK
20240 case DW_OP_constu:
20241 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
20242 &bytes_read);
20243 i += bytes_read;
20244 break;
20245
20246 case DW_OP_consts:
20247 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
20248 i += bytes_read;
20249 break;
20250
20251 case DW_OP_dup:
20252 stack[stacki + 1] = stack[stacki];
20253 stacki++;
20254 break;
20255
20256 case DW_OP_plus:
20257 stack[stacki - 1] += stack[stacki];
20258 stacki--;
20259 break;
20260
20261 case DW_OP_plus_uconst:
20262 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
20263 &bytes_read);
20264 i += bytes_read;
20265 break;
20266
20267 case DW_OP_minus:
20268 stack[stacki - 1] -= stack[stacki];
20269 stacki--;
20270 break;
20271
20272 case DW_OP_deref:
20273 /* If we're not the last op, then we definitely can't encode
20274 this using GDB's address_class enum. This is valid for partial
20275 global symbols, although the variable's address will be bogus
20276 in the psymtab. */
20277 if (i < size)
20278 dwarf2_complex_location_expr_complaint ();
20279 break;
20280
20281 case DW_OP_GNU_push_tls_address:
20282 /* The top of the stack has the offset from the beginning
20283 of the thread control block at which the variable is located. */
20284 /* Nothing should follow this operator, so the top of stack would
20285 be returned. */
20286 /* This is valid for partial global symbols, but the variable's
585861ea
JK
20287 address will be bogus in the psymtab. Make it always at least
20288 non-zero to not look as a variable garbage collected by linker
20289 which have DW_OP_addr 0. */
21ae7a4d
JK
20290 if (i < size)
20291 dwarf2_complex_location_expr_complaint ();
585861ea 20292 stack[stacki]++;
21ae7a4d
JK
20293 break;
20294
20295 case DW_OP_GNU_uninit:
20296 break;
20297
3019eac3 20298 case DW_OP_GNU_addr_index:
49f6c839 20299 case DW_OP_GNU_const_index:
3019eac3
DE
20300 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
20301 &bytes_read);
20302 i += bytes_read;
20303 break;
20304
21ae7a4d
JK
20305 default:
20306 {
f39c6ffd 20307 const char *name = get_DW_OP_name (op);
21ae7a4d
JK
20308
20309 if (name)
20310 complaint (&symfile_complaints, _("unsupported stack op: '%s'"),
20311 name);
20312 else
20313 complaint (&symfile_complaints, _("unsupported stack op: '%02x'"),
20314 op);
20315 }
20316
20317 return (stack[stacki]);
d53d4ac5 20318 }
3c6e0cb3 20319
21ae7a4d
JK
20320 /* Enforce maximum stack depth of SIZE-1 to avoid writing
20321 outside of the allocated space. Also enforce minimum>0. */
20322 if (stacki >= ARRAY_SIZE (stack) - 1)
20323 {
20324 complaint (&symfile_complaints,
20325 _("location description stack overflow"));
20326 return 0;
20327 }
20328
20329 if (stacki <= 0)
20330 {
20331 complaint (&symfile_complaints,
20332 _("location description stack underflow"));
20333 return 0;
20334 }
20335 }
20336 return (stack[stacki]);
c906108c
SS
20337}
20338
20339/* memory allocation interface */
20340
c906108c 20341static struct dwarf_block *
7b5a2f43 20342dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
20343{
20344 struct dwarf_block *blk;
20345
20346 blk = (struct dwarf_block *)
7b5a2f43 20347 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
20348 return (blk);
20349}
20350
c906108c 20351static struct die_info *
b60c80d6 20352dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
20353{
20354 struct die_info *die;
b60c80d6
DJ
20355 size_t size = sizeof (struct die_info);
20356
20357 if (num_attrs > 1)
20358 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 20359
b60c80d6 20360 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
20361 memset (die, 0, sizeof (struct die_info));
20362 return (die);
20363}
2e276125
JB
20364
20365\f
20366/* Macro support. */
20367
233d95b5
JK
20368/* Return file name relative to the compilation directory of file number I in
20369 *LH's file name table. The result is allocated using xmalloc; the caller is
2e276125 20370 responsible for freeing it. */
233d95b5 20371
2e276125 20372static char *
233d95b5 20373file_file_name (int file, struct line_header *lh)
2e276125 20374{
6a83a1e6
EZ
20375 /* Is the file number a valid index into the line header's file name
20376 table? Remember that file numbers start with one, not zero. */
20377 if (1 <= file && file <= lh->num_file_names)
20378 {
20379 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 20380
233d95b5 20381 if (IS_ABSOLUTE_PATH (fe->name) || fe->dir_index == 0)
6a83a1e6 20382 return xstrdup (fe->name);
233d95b5
JK
20383 return concat (lh->include_dirs[fe->dir_index - 1], SLASH_STRING,
20384 fe->name, NULL);
6a83a1e6 20385 }
2e276125
JB
20386 else
20387 {
6a83a1e6
EZ
20388 /* The compiler produced a bogus file number. We can at least
20389 record the macro definitions made in the file, even if we
20390 won't be able to find the file by name. */
20391 char fake_name[80];
9a619af0 20392
8c042590
PM
20393 xsnprintf (fake_name, sizeof (fake_name),
20394 "<bad macro file number %d>", file);
2e276125 20395
6e70227d 20396 complaint (&symfile_complaints,
6a83a1e6
EZ
20397 _("bad file number in macro information (%d)"),
20398 file);
2e276125 20399
6a83a1e6 20400 return xstrdup (fake_name);
2e276125
JB
20401 }
20402}
20403
233d95b5
JK
20404/* Return the full name of file number I in *LH's file name table.
20405 Use COMP_DIR as the name of the current directory of the
20406 compilation. The result is allocated using xmalloc; the caller is
20407 responsible for freeing it. */
20408static char *
20409file_full_name (int file, struct line_header *lh, const char *comp_dir)
20410{
20411 /* Is the file number a valid index into the line header's file name
20412 table? Remember that file numbers start with one, not zero. */
20413 if (1 <= file && file <= lh->num_file_names)
20414 {
20415 char *relative = file_file_name (file, lh);
20416
20417 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
20418 return relative;
20419 return reconcat (relative, comp_dir, SLASH_STRING, relative, NULL);
20420 }
20421 else
20422 return file_file_name (file, lh);
20423}
20424
2e276125
JB
20425
20426static struct macro_source_file *
20427macro_start_file (int file, int line,
20428 struct macro_source_file *current_file,
43f3e411 20429 struct line_header *lh)
2e276125 20430{
233d95b5
JK
20431 /* File name relative to the compilation directory of this source file. */
20432 char *file_name = file_file_name (file, lh);
2e276125 20433
2e276125 20434 if (! current_file)
abc9d0dc 20435 {
fc474241
DE
20436 /* Note: We don't create a macro table for this compilation unit
20437 at all until we actually get a filename. */
43f3e411 20438 struct macro_table *macro_table = get_macro_table ();
fc474241 20439
abc9d0dc
TT
20440 /* If we have no current file, then this must be the start_file
20441 directive for the compilation unit's main source file. */
fc474241
DE
20442 current_file = macro_set_main (macro_table, file_name);
20443 macro_define_special (macro_table);
abc9d0dc 20444 }
2e276125 20445 else
233d95b5 20446 current_file = macro_include (current_file, line, file_name);
2e276125 20447
233d95b5 20448 xfree (file_name);
6e70227d 20449
2e276125
JB
20450 return current_file;
20451}
20452
20453
20454/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
20455 followed by a null byte. */
20456static char *
20457copy_string (const char *buf, int len)
20458{
20459 char *s = xmalloc (len + 1);
9a619af0 20460
2e276125
JB
20461 memcpy (s, buf, len);
20462 s[len] = '\0';
2e276125
JB
20463 return s;
20464}
20465
20466
20467static const char *
20468consume_improper_spaces (const char *p, const char *body)
20469{
20470 if (*p == ' ')
20471 {
4d3c2250 20472 complaint (&symfile_complaints,
3e43a32a
MS
20473 _("macro definition contains spaces "
20474 "in formal argument list:\n`%s'"),
4d3c2250 20475 body);
2e276125
JB
20476
20477 while (*p == ' ')
20478 p++;
20479 }
20480
20481 return p;
20482}
20483
20484
20485static void
20486parse_macro_definition (struct macro_source_file *file, int line,
20487 const char *body)
20488{
20489 const char *p;
20490
20491 /* The body string takes one of two forms. For object-like macro
20492 definitions, it should be:
20493
20494 <macro name> " " <definition>
20495
20496 For function-like macro definitions, it should be:
20497
20498 <macro name> "() " <definition>
20499 or
20500 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
20501
20502 Spaces may appear only where explicitly indicated, and in the
20503 <definition>.
20504
20505 The Dwarf 2 spec says that an object-like macro's name is always
20506 followed by a space, but versions of GCC around March 2002 omit
6e70227d 20507 the space when the macro's definition is the empty string.
2e276125
JB
20508
20509 The Dwarf 2 spec says that there should be no spaces between the
20510 formal arguments in a function-like macro's formal argument list,
20511 but versions of GCC around March 2002 include spaces after the
20512 commas. */
20513
20514
20515 /* Find the extent of the macro name. The macro name is terminated
20516 by either a space or null character (for an object-like macro) or
20517 an opening paren (for a function-like macro). */
20518 for (p = body; *p; p++)
20519 if (*p == ' ' || *p == '(')
20520 break;
20521
20522 if (*p == ' ' || *p == '\0')
20523 {
20524 /* It's an object-like macro. */
20525 int name_len = p - body;
20526 char *name = copy_string (body, name_len);
20527 const char *replacement;
20528
20529 if (*p == ' ')
20530 replacement = body + name_len + 1;
20531 else
20532 {
4d3c2250 20533 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20534 replacement = body + name_len;
20535 }
6e70227d 20536
2e276125
JB
20537 macro_define_object (file, line, name, replacement);
20538
20539 xfree (name);
20540 }
20541 else if (*p == '(')
20542 {
20543 /* It's a function-like macro. */
20544 char *name = copy_string (body, p - body);
20545 int argc = 0;
20546 int argv_size = 1;
20547 char **argv = xmalloc (argv_size * sizeof (*argv));
20548
20549 p++;
20550
20551 p = consume_improper_spaces (p, body);
20552
20553 /* Parse the formal argument list. */
20554 while (*p && *p != ')')
20555 {
20556 /* Find the extent of the current argument name. */
20557 const char *arg_start = p;
20558
20559 while (*p && *p != ',' && *p != ')' && *p != ' ')
20560 p++;
20561
20562 if (! *p || p == arg_start)
4d3c2250 20563 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20564 else
20565 {
20566 /* Make sure argv has room for the new argument. */
20567 if (argc >= argv_size)
20568 {
20569 argv_size *= 2;
20570 argv = xrealloc (argv, argv_size * sizeof (*argv));
20571 }
20572
20573 argv[argc++] = copy_string (arg_start, p - arg_start);
20574 }
20575
20576 p = consume_improper_spaces (p, body);
20577
20578 /* Consume the comma, if present. */
20579 if (*p == ',')
20580 {
20581 p++;
20582
20583 p = consume_improper_spaces (p, body);
20584 }
20585 }
20586
20587 if (*p == ')')
20588 {
20589 p++;
20590
20591 if (*p == ' ')
20592 /* Perfectly formed definition, no complaints. */
20593 macro_define_function (file, line, name,
6e70227d 20594 argc, (const char **) argv,
2e276125
JB
20595 p + 1);
20596 else if (*p == '\0')
20597 {
20598 /* Complain, but do define it. */
4d3c2250 20599 dwarf2_macro_malformed_definition_complaint (body);
2e276125 20600 macro_define_function (file, line, name,
6e70227d 20601 argc, (const char **) argv,
2e276125
JB
20602 p);
20603 }
20604 else
20605 /* Just complain. */
4d3c2250 20606 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20607 }
20608 else
20609 /* Just complain. */
4d3c2250 20610 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20611
20612 xfree (name);
20613 {
20614 int i;
20615
20616 for (i = 0; i < argc; i++)
20617 xfree (argv[i]);
20618 }
20619 xfree (argv);
20620 }
20621 else
4d3c2250 20622 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
20623}
20624
cf2c3c16
TT
20625/* Skip some bytes from BYTES according to the form given in FORM.
20626 Returns the new pointer. */
2e276125 20627
d521ce57
TT
20628static const gdb_byte *
20629skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
cf2c3c16
TT
20630 enum dwarf_form form,
20631 unsigned int offset_size,
20632 struct dwarf2_section_info *section)
2e276125 20633{
cf2c3c16 20634 unsigned int bytes_read;
2e276125 20635
cf2c3c16 20636 switch (form)
2e276125 20637 {
cf2c3c16
TT
20638 case DW_FORM_data1:
20639 case DW_FORM_flag:
20640 ++bytes;
20641 break;
20642
20643 case DW_FORM_data2:
20644 bytes += 2;
20645 break;
20646
20647 case DW_FORM_data4:
20648 bytes += 4;
20649 break;
20650
20651 case DW_FORM_data8:
20652 bytes += 8;
20653 break;
20654
20655 case DW_FORM_string:
20656 read_direct_string (abfd, bytes, &bytes_read);
20657 bytes += bytes_read;
20658 break;
20659
20660 case DW_FORM_sec_offset:
20661 case DW_FORM_strp:
36586728 20662 case DW_FORM_GNU_strp_alt:
cf2c3c16
TT
20663 bytes += offset_size;
20664 break;
20665
20666 case DW_FORM_block:
20667 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
20668 bytes += bytes_read;
20669 break;
20670
20671 case DW_FORM_block1:
20672 bytes += 1 + read_1_byte (abfd, bytes);
20673 break;
20674 case DW_FORM_block2:
20675 bytes += 2 + read_2_bytes (abfd, bytes);
20676 break;
20677 case DW_FORM_block4:
20678 bytes += 4 + read_4_bytes (abfd, bytes);
20679 break;
20680
20681 case DW_FORM_sdata:
20682 case DW_FORM_udata:
3019eac3
DE
20683 case DW_FORM_GNU_addr_index:
20684 case DW_FORM_GNU_str_index:
d521ce57 20685 bytes = gdb_skip_leb128 (bytes, buffer_end);
f664829e
DE
20686 if (bytes == NULL)
20687 {
20688 dwarf2_section_buffer_overflow_complaint (section);
20689 return NULL;
20690 }
cf2c3c16
TT
20691 break;
20692
20693 default:
20694 {
20695 complain:
20696 complaint (&symfile_complaints,
20697 _("invalid form 0x%x in `%s'"),
a32a8923 20698 form, get_section_name (section));
cf2c3c16
TT
20699 return NULL;
20700 }
2e276125
JB
20701 }
20702
cf2c3c16
TT
20703 return bytes;
20704}
757a13d0 20705
cf2c3c16
TT
20706/* A helper for dwarf_decode_macros that handles skipping an unknown
20707 opcode. Returns an updated pointer to the macro data buffer; or,
20708 on error, issues a complaint and returns NULL. */
757a13d0 20709
d521ce57 20710static const gdb_byte *
cf2c3c16 20711skip_unknown_opcode (unsigned int opcode,
d521ce57
TT
20712 const gdb_byte **opcode_definitions,
20713 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16
TT
20714 bfd *abfd,
20715 unsigned int offset_size,
20716 struct dwarf2_section_info *section)
20717{
20718 unsigned int bytes_read, i;
20719 unsigned long arg;
d521ce57 20720 const gdb_byte *defn;
2e276125 20721
cf2c3c16 20722 if (opcode_definitions[opcode] == NULL)
2e276125 20723 {
cf2c3c16
TT
20724 complaint (&symfile_complaints,
20725 _("unrecognized DW_MACFINO opcode 0x%x"),
20726 opcode);
20727 return NULL;
20728 }
2e276125 20729
cf2c3c16
TT
20730 defn = opcode_definitions[opcode];
20731 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
20732 defn += bytes_read;
2e276125 20733
cf2c3c16
TT
20734 for (i = 0; i < arg; ++i)
20735 {
f664829e
DE
20736 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end, defn[i], offset_size,
20737 section);
cf2c3c16
TT
20738 if (mac_ptr == NULL)
20739 {
20740 /* skip_form_bytes already issued the complaint. */
20741 return NULL;
20742 }
20743 }
757a13d0 20744
cf2c3c16
TT
20745 return mac_ptr;
20746}
757a13d0 20747
cf2c3c16
TT
20748/* A helper function which parses the header of a macro section.
20749 If the macro section is the extended (for now called "GNU") type,
20750 then this updates *OFFSET_SIZE. Returns a pointer to just after
20751 the header, or issues a complaint and returns NULL on error. */
757a13d0 20752
d521ce57
TT
20753static const gdb_byte *
20754dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
cf2c3c16 20755 bfd *abfd,
d521ce57 20756 const gdb_byte *mac_ptr,
cf2c3c16
TT
20757 unsigned int *offset_size,
20758 int section_is_gnu)
20759{
20760 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 20761
cf2c3c16
TT
20762 if (section_is_gnu)
20763 {
20764 unsigned int version, flags;
757a13d0 20765
cf2c3c16
TT
20766 version = read_2_bytes (abfd, mac_ptr);
20767 if (version != 4)
20768 {
20769 complaint (&symfile_complaints,
20770 _("unrecognized version `%d' in .debug_macro section"),
20771 version);
20772 return NULL;
20773 }
20774 mac_ptr += 2;
757a13d0 20775
cf2c3c16
TT
20776 flags = read_1_byte (abfd, mac_ptr);
20777 ++mac_ptr;
20778 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 20779
cf2c3c16
TT
20780 if ((flags & 2) != 0)
20781 /* We don't need the line table offset. */
20782 mac_ptr += *offset_size;
757a13d0 20783
cf2c3c16
TT
20784 /* Vendor opcode descriptions. */
20785 if ((flags & 4) != 0)
20786 {
20787 unsigned int i, count;
757a13d0 20788
cf2c3c16
TT
20789 count = read_1_byte (abfd, mac_ptr);
20790 ++mac_ptr;
20791 for (i = 0; i < count; ++i)
20792 {
20793 unsigned int opcode, bytes_read;
20794 unsigned long arg;
20795
20796 opcode = read_1_byte (abfd, mac_ptr);
20797 ++mac_ptr;
20798 opcode_definitions[opcode] = mac_ptr;
20799 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20800 mac_ptr += bytes_read;
20801 mac_ptr += arg;
20802 }
757a13d0 20803 }
cf2c3c16 20804 }
757a13d0 20805
cf2c3c16
TT
20806 return mac_ptr;
20807}
757a13d0 20808
cf2c3c16 20809/* A helper for dwarf_decode_macros that handles the GNU extensions,
8fc3fc34 20810 including DW_MACRO_GNU_transparent_include. */
cf2c3c16
TT
20811
20812static void
d521ce57
TT
20813dwarf_decode_macro_bytes (bfd *abfd,
20814 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
cf2c3c16 20815 struct macro_source_file *current_file,
43f3e411 20816 struct line_header *lh,
cf2c3c16 20817 struct dwarf2_section_info *section,
36586728 20818 int section_is_gnu, int section_is_dwz,
cf2c3c16 20819 unsigned int offset_size,
8fc3fc34 20820 htab_t include_hash)
cf2c3c16 20821{
4d663531 20822 struct objfile *objfile = dwarf2_per_objfile->objfile;
cf2c3c16
TT
20823 enum dwarf_macro_record_type macinfo_type;
20824 int at_commandline;
d521ce57 20825 const gdb_byte *opcode_definitions[256];
757a13d0 20826
cf2c3c16
TT
20827 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
20828 &offset_size, section_is_gnu);
20829 if (mac_ptr == NULL)
20830 {
20831 /* We already issued a complaint. */
20832 return;
20833 }
757a13d0
JK
20834
20835 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
20836 GDB is still reading the definitions from command line. First
20837 DW_MACINFO_start_file will need to be ignored as it was already executed
20838 to create CURRENT_FILE for the main source holding also the command line
20839 definitions. On first met DW_MACINFO_start_file this flag is reset to
20840 normally execute all the remaining DW_MACINFO_start_file macinfos. */
20841
20842 at_commandline = 1;
20843
20844 do
20845 {
20846 /* Do we at least have room for a macinfo type byte? */
20847 if (mac_ptr >= mac_end)
20848 {
f664829e 20849 dwarf2_section_buffer_overflow_complaint (section);
757a13d0
JK
20850 break;
20851 }
20852
20853 macinfo_type = read_1_byte (abfd, mac_ptr);
20854 mac_ptr++;
20855
cf2c3c16
TT
20856 /* Note that we rely on the fact that the corresponding GNU and
20857 DWARF constants are the same. */
757a13d0
JK
20858 switch (macinfo_type)
20859 {
20860 /* A zero macinfo type indicates the end of the macro
20861 information. */
20862 case 0:
20863 break;
2e276125 20864
cf2c3c16
TT
20865 case DW_MACRO_GNU_define:
20866 case DW_MACRO_GNU_undef:
20867 case DW_MACRO_GNU_define_indirect:
20868 case DW_MACRO_GNU_undef_indirect:
36586728
TT
20869 case DW_MACRO_GNU_define_indirect_alt:
20870 case DW_MACRO_GNU_undef_indirect_alt:
2e276125 20871 {
891d2f0b 20872 unsigned int bytes_read;
2e276125 20873 int line;
d521ce57 20874 const char *body;
cf2c3c16 20875 int is_define;
2e276125 20876
cf2c3c16
TT
20877 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20878 mac_ptr += bytes_read;
20879
20880 if (macinfo_type == DW_MACRO_GNU_define
20881 || macinfo_type == DW_MACRO_GNU_undef)
20882 {
20883 body = read_direct_string (abfd, mac_ptr, &bytes_read);
20884 mac_ptr += bytes_read;
20885 }
20886 else
20887 {
20888 LONGEST str_offset;
20889
20890 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
20891 mac_ptr += offset_size;
2e276125 20892
36586728 20893 if (macinfo_type == DW_MACRO_GNU_define_indirect_alt
f7a35f02
TT
20894 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt
20895 || section_is_dwz)
36586728
TT
20896 {
20897 struct dwz_file *dwz = dwarf2_get_dwz_file ();
20898
20899 body = read_indirect_string_from_dwz (dwz, str_offset);
20900 }
20901 else
20902 body = read_indirect_string_at_offset (abfd, str_offset);
cf2c3c16
TT
20903 }
20904
20905 is_define = (macinfo_type == DW_MACRO_GNU_define
36586728
TT
20906 || macinfo_type == DW_MACRO_GNU_define_indirect
20907 || macinfo_type == DW_MACRO_GNU_define_indirect_alt);
2e276125 20908 if (! current_file)
757a13d0
JK
20909 {
20910 /* DWARF violation as no main source is present. */
20911 complaint (&symfile_complaints,
20912 _("debug info with no main source gives macro %s "
20913 "on line %d: %s"),
cf2c3c16
TT
20914 is_define ? _("definition") : _("undefinition"),
20915 line, body);
757a13d0
JK
20916 break;
20917 }
3e43a32a
MS
20918 if ((line == 0 && !at_commandline)
20919 || (line != 0 && at_commandline))
4d3c2250 20920 complaint (&symfile_complaints,
757a13d0
JK
20921 _("debug info gives %s macro %s with %s line %d: %s"),
20922 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 20923 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
20924 line == 0 ? _("zero") : _("non-zero"), line, body);
20925
cf2c3c16 20926 if (is_define)
757a13d0 20927 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
20928 else
20929 {
20930 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
36586728
TT
20931 || macinfo_type == DW_MACRO_GNU_undef_indirect
20932 || macinfo_type == DW_MACRO_GNU_undef_indirect_alt);
cf2c3c16
TT
20933 macro_undef (current_file, line, body);
20934 }
2e276125
JB
20935 }
20936 break;
20937
cf2c3c16 20938 case DW_MACRO_GNU_start_file:
2e276125 20939 {
891d2f0b 20940 unsigned int bytes_read;
2e276125
JB
20941 int line, file;
20942
20943 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20944 mac_ptr += bytes_read;
20945 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
20946 mac_ptr += bytes_read;
20947
3e43a32a
MS
20948 if ((line == 0 && !at_commandline)
20949 || (line != 0 && at_commandline))
757a13d0
JK
20950 complaint (&symfile_complaints,
20951 _("debug info gives source %d included "
20952 "from %s at %s line %d"),
20953 file, at_commandline ? _("command-line") : _("file"),
20954 line == 0 ? _("zero") : _("non-zero"), line);
20955
20956 if (at_commandline)
20957 {
cf2c3c16
TT
20958 /* This DW_MACRO_GNU_start_file was executed in the
20959 pass one. */
757a13d0
JK
20960 at_commandline = 0;
20961 }
20962 else
43f3e411 20963 current_file = macro_start_file (file, line, current_file, lh);
2e276125
JB
20964 }
20965 break;
20966
cf2c3c16 20967 case DW_MACRO_GNU_end_file:
2e276125 20968 if (! current_file)
4d3c2250 20969 complaint (&symfile_complaints,
3e43a32a
MS
20970 _("macro debug info has an unmatched "
20971 "`close_file' directive"));
2e276125
JB
20972 else
20973 {
20974 current_file = current_file->included_by;
20975 if (! current_file)
20976 {
cf2c3c16 20977 enum dwarf_macro_record_type next_type;
2e276125
JB
20978
20979 /* GCC circa March 2002 doesn't produce the zero
20980 type byte marking the end of the compilation
20981 unit. Complain if it's not there, but exit no
20982 matter what. */
20983
20984 /* Do we at least have room for a macinfo type byte? */
20985 if (mac_ptr >= mac_end)
20986 {
f664829e 20987 dwarf2_section_buffer_overflow_complaint (section);
2e276125
JB
20988 return;
20989 }
20990
20991 /* We don't increment mac_ptr here, so this is just
20992 a look-ahead. */
20993 next_type = read_1_byte (abfd, mac_ptr);
20994 if (next_type != 0)
4d3c2250 20995 complaint (&symfile_complaints,
3e43a32a
MS
20996 _("no terminating 0-type entry for "
20997 "macros in `.debug_macinfo' section"));
2e276125
JB
20998
20999 return;
21000 }
21001 }
21002 break;
21003
cf2c3c16 21004 case DW_MACRO_GNU_transparent_include:
36586728 21005 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21006 {
21007 LONGEST offset;
8fc3fc34 21008 void **slot;
a036ba48
TT
21009 bfd *include_bfd = abfd;
21010 struct dwarf2_section_info *include_section = section;
21011 struct dwarf2_section_info alt_section;
d521ce57 21012 const gdb_byte *include_mac_end = mac_end;
a036ba48 21013 int is_dwz = section_is_dwz;
d521ce57 21014 const gdb_byte *new_mac_ptr;
cf2c3c16
TT
21015
21016 offset = read_offset_1 (abfd, mac_ptr, offset_size);
21017 mac_ptr += offset_size;
21018
a036ba48
TT
21019 if (macinfo_type == DW_MACRO_GNU_transparent_include_alt)
21020 {
21021 struct dwz_file *dwz = dwarf2_get_dwz_file ();
21022
4d663531 21023 dwarf2_read_section (objfile, &dwz->macro);
a036ba48 21024
a036ba48 21025 include_section = &dwz->macro;
a32a8923 21026 include_bfd = get_section_bfd_owner (include_section);
a036ba48
TT
21027 include_mac_end = dwz->macro.buffer + dwz->macro.size;
21028 is_dwz = 1;
21029 }
21030
21031 new_mac_ptr = include_section->buffer + offset;
21032 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
21033
8fc3fc34
TT
21034 if (*slot != NULL)
21035 {
21036 /* This has actually happened; see
21037 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
21038 complaint (&symfile_complaints,
21039 _("recursive DW_MACRO_GNU_transparent_include in "
21040 ".debug_macro section"));
21041 }
21042 else
21043 {
d521ce57 21044 *slot = (void *) new_mac_ptr;
36586728 21045
a036ba48 21046 dwarf_decode_macro_bytes (include_bfd, new_mac_ptr,
43f3e411 21047 include_mac_end, current_file, lh,
36586728 21048 section, section_is_gnu, is_dwz,
4d663531 21049 offset_size, include_hash);
8fc3fc34 21050
d521ce57 21051 htab_remove_elt (include_hash, (void *) new_mac_ptr);
8fc3fc34 21052 }
cf2c3c16
TT
21053 }
21054 break;
21055
2e276125 21056 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
21057 if (!section_is_gnu)
21058 {
21059 unsigned int bytes_read;
21060 int constant;
2e276125 21061
cf2c3c16
TT
21062 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21063 mac_ptr += bytes_read;
21064 read_direct_string (abfd, mac_ptr, &bytes_read);
21065 mac_ptr += bytes_read;
2e276125 21066
cf2c3c16
TT
21067 /* We don't recognize any vendor extensions. */
21068 break;
21069 }
21070 /* FALLTHROUGH */
21071
21072 default:
21073 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21074 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21075 section);
21076 if (mac_ptr == NULL)
21077 return;
21078 break;
2e276125 21079 }
757a13d0 21080 } while (macinfo_type != 0);
2e276125 21081}
8e19ed76 21082
cf2c3c16 21083static void
09262596 21084dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
43f3e411 21085 int section_is_gnu)
cf2c3c16 21086{
bb5ed363 21087 struct objfile *objfile = dwarf2_per_objfile->objfile;
09262596
DE
21088 struct line_header *lh = cu->line_header;
21089 bfd *abfd;
d521ce57 21090 const gdb_byte *mac_ptr, *mac_end;
cf2c3c16
TT
21091 struct macro_source_file *current_file = 0;
21092 enum dwarf_macro_record_type macinfo_type;
21093 unsigned int offset_size = cu->header.offset_size;
d521ce57 21094 const gdb_byte *opcode_definitions[256];
8fc3fc34
TT
21095 struct cleanup *cleanup;
21096 htab_t include_hash;
21097 void **slot;
09262596
DE
21098 struct dwarf2_section_info *section;
21099 const char *section_name;
21100
21101 if (cu->dwo_unit != NULL)
21102 {
21103 if (section_is_gnu)
21104 {
21105 section = &cu->dwo_unit->dwo_file->sections.macro;
21106 section_name = ".debug_macro.dwo";
21107 }
21108 else
21109 {
21110 section = &cu->dwo_unit->dwo_file->sections.macinfo;
21111 section_name = ".debug_macinfo.dwo";
21112 }
21113 }
21114 else
21115 {
21116 if (section_is_gnu)
21117 {
21118 section = &dwarf2_per_objfile->macro;
21119 section_name = ".debug_macro";
21120 }
21121 else
21122 {
21123 section = &dwarf2_per_objfile->macinfo;
21124 section_name = ".debug_macinfo";
21125 }
21126 }
cf2c3c16 21127
bb5ed363 21128 dwarf2_read_section (objfile, section);
cf2c3c16
TT
21129 if (section->buffer == NULL)
21130 {
fceca515 21131 complaint (&symfile_complaints, _("missing %s section"), section_name);
cf2c3c16
TT
21132 return;
21133 }
a32a8923 21134 abfd = get_section_bfd_owner (section);
cf2c3c16
TT
21135
21136 /* First pass: Find the name of the base filename.
21137 This filename is needed in order to process all macros whose definition
21138 (or undefinition) comes from the command line. These macros are defined
21139 before the first DW_MACINFO_start_file entry, and yet still need to be
21140 associated to the base file.
21141
21142 To determine the base file name, we scan the macro definitions until we
21143 reach the first DW_MACINFO_start_file entry. We then initialize
21144 CURRENT_FILE accordingly so that any macro definition found before the
21145 first DW_MACINFO_start_file can still be associated to the base file. */
21146
21147 mac_ptr = section->buffer + offset;
21148 mac_end = section->buffer + section->size;
21149
21150 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
21151 &offset_size, section_is_gnu);
21152 if (mac_ptr == NULL)
21153 {
21154 /* We already issued a complaint. */
21155 return;
21156 }
21157
21158 do
21159 {
21160 /* Do we at least have room for a macinfo type byte? */
21161 if (mac_ptr >= mac_end)
21162 {
21163 /* Complaint is printed during the second pass as GDB will probably
21164 stop the first pass earlier upon finding
21165 DW_MACINFO_start_file. */
21166 break;
21167 }
21168
21169 macinfo_type = read_1_byte (abfd, mac_ptr);
21170 mac_ptr++;
21171
21172 /* Note that we rely on the fact that the corresponding GNU and
21173 DWARF constants are the same. */
21174 switch (macinfo_type)
21175 {
21176 /* A zero macinfo type indicates the end of the macro
21177 information. */
21178 case 0:
21179 break;
21180
21181 case DW_MACRO_GNU_define:
21182 case DW_MACRO_GNU_undef:
21183 /* Only skip the data by MAC_PTR. */
21184 {
21185 unsigned int bytes_read;
21186
21187 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21188 mac_ptr += bytes_read;
21189 read_direct_string (abfd, mac_ptr, &bytes_read);
21190 mac_ptr += bytes_read;
21191 }
21192 break;
21193
21194 case DW_MACRO_GNU_start_file:
21195 {
21196 unsigned int bytes_read;
21197 int line, file;
21198
21199 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21200 mac_ptr += bytes_read;
21201 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21202 mac_ptr += bytes_read;
21203
43f3e411 21204 current_file = macro_start_file (file, line, current_file, lh);
cf2c3c16
TT
21205 }
21206 break;
21207
21208 case DW_MACRO_GNU_end_file:
21209 /* No data to skip by MAC_PTR. */
21210 break;
21211
21212 case DW_MACRO_GNU_define_indirect:
21213 case DW_MACRO_GNU_undef_indirect:
f7a35f02
TT
21214 case DW_MACRO_GNU_define_indirect_alt:
21215 case DW_MACRO_GNU_undef_indirect_alt:
cf2c3c16
TT
21216 {
21217 unsigned int bytes_read;
21218
21219 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21220 mac_ptr += bytes_read;
21221 mac_ptr += offset_size;
21222 }
21223 break;
21224
21225 case DW_MACRO_GNU_transparent_include:
f7a35f02 21226 case DW_MACRO_GNU_transparent_include_alt:
cf2c3c16
TT
21227 /* Note that, according to the spec, a transparent include
21228 chain cannot call DW_MACRO_GNU_start_file. So, we can just
21229 skip this opcode. */
21230 mac_ptr += offset_size;
21231 break;
21232
21233 case DW_MACINFO_vendor_ext:
21234 /* Only skip the data by MAC_PTR. */
21235 if (!section_is_gnu)
21236 {
21237 unsigned int bytes_read;
21238
21239 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
21240 mac_ptr += bytes_read;
21241 read_direct_string (abfd, mac_ptr, &bytes_read);
21242 mac_ptr += bytes_read;
21243 }
21244 /* FALLTHROUGH */
21245
21246 default:
21247 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
f664829e 21248 mac_ptr, mac_end, abfd, offset_size,
cf2c3c16
TT
21249 section);
21250 if (mac_ptr == NULL)
21251 return;
21252 break;
21253 }
21254 } while (macinfo_type != 0 && current_file == NULL);
21255
21256 /* Second pass: Process all entries.
21257
21258 Use the AT_COMMAND_LINE flag to determine whether we are still processing
21259 command-line macro definitions/undefinitions. This flag is unset when we
21260 reach the first DW_MACINFO_start_file entry. */
21261
8fc3fc34
TT
21262 include_hash = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
21263 NULL, xcalloc, xfree);
21264 cleanup = make_cleanup_htab_delete (include_hash);
21265 mac_ptr = section->buffer + offset;
21266 slot = htab_find_slot (include_hash, mac_ptr, INSERT);
d521ce57 21267 *slot = (void *) mac_ptr;
8fc3fc34 21268 dwarf_decode_macro_bytes (abfd, mac_ptr, mac_end,
43f3e411 21269 current_file, lh, section,
4d663531 21270 section_is_gnu, 0, offset_size, include_hash);
8fc3fc34 21271 do_cleanups (cleanup);
cf2c3c16
TT
21272}
21273
8e19ed76 21274/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 21275 if so return true else false. */
380bca97 21276
8e19ed76 21277static int
6e5a29e1 21278attr_form_is_block (const struct attribute *attr)
8e19ed76
PS
21279{
21280 return (attr == NULL ? 0 :
21281 attr->form == DW_FORM_block1
21282 || attr->form == DW_FORM_block2
21283 || attr->form == DW_FORM_block4
2dc7f7b3
TT
21284 || attr->form == DW_FORM_block
21285 || attr->form == DW_FORM_exprloc);
8e19ed76 21286}
4c2df51b 21287
c6a0999f
JB
21288/* Return non-zero if ATTR's value is a section offset --- classes
21289 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
21290 You may use DW_UNSND (attr) to retrieve such offsets.
21291
21292 Section 7.5.4, "Attribute Encodings", explains that no attribute
21293 may have a value that belongs to more than one of these classes; it
21294 would be ambiguous if we did, because we use the same forms for all
21295 of them. */
380bca97 21296
3690dd37 21297static int
6e5a29e1 21298attr_form_is_section_offset (const struct attribute *attr)
3690dd37
JB
21299{
21300 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
21301 || attr->form == DW_FORM_data8
21302 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
21303}
21304
3690dd37
JB
21305/* Return non-zero if ATTR's value falls in the 'constant' class, or
21306 zero otherwise. When this function returns true, you can apply
21307 dwarf2_get_attr_constant_value to it.
21308
21309 However, note that for some attributes you must check
21310 attr_form_is_section_offset before using this test. DW_FORM_data4
21311 and DW_FORM_data8 are members of both the constant class, and of
21312 the classes that contain offsets into other debug sections
21313 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
21314 that, if an attribute's can be either a constant or one of the
21315 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
21316 taken as section offsets, not constants. */
380bca97 21317
3690dd37 21318static int
6e5a29e1 21319attr_form_is_constant (const struct attribute *attr)
3690dd37
JB
21320{
21321 switch (attr->form)
21322 {
21323 case DW_FORM_sdata:
21324 case DW_FORM_udata:
21325 case DW_FORM_data1:
21326 case DW_FORM_data2:
21327 case DW_FORM_data4:
21328 case DW_FORM_data8:
21329 return 1;
21330 default:
21331 return 0;
21332 }
21333}
21334
7771576e
SA
21335
21336/* DW_ADDR is always stored already as sect_offset; despite for the forms
21337 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
21338
21339static int
6e5a29e1 21340attr_form_is_ref (const struct attribute *attr)
7771576e
SA
21341{
21342 switch (attr->form)
21343 {
21344 case DW_FORM_ref_addr:
21345 case DW_FORM_ref1:
21346 case DW_FORM_ref2:
21347 case DW_FORM_ref4:
21348 case DW_FORM_ref8:
21349 case DW_FORM_ref_udata:
21350 case DW_FORM_GNU_ref_alt:
21351 return 1;
21352 default:
21353 return 0;
21354 }
21355}
21356
3019eac3
DE
21357/* Return the .debug_loc section to use for CU.
21358 For DWO files use .debug_loc.dwo. */
21359
21360static struct dwarf2_section_info *
21361cu_debug_loc_section (struct dwarf2_cu *cu)
21362{
21363 if (cu->dwo_unit)
21364 return &cu->dwo_unit->dwo_file->sections.loc;
21365 return &dwarf2_per_objfile->loc;
21366}
21367
8cf6f0b1
TT
21368/* A helper function that fills in a dwarf2_loclist_baton. */
21369
21370static void
21371fill_in_loclist_baton (struct dwarf2_cu *cu,
21372 struct dwarf2_loclist_baton *baton,
ff39bb5e 21373 const struct attribute *attr)
8cf6f0b1 21374{
3019eac3
DE
21375 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
21376
21377 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
8cf6f0b1
TT
21378
21379 baton->per_cu = cu->per_cu;
21380 gdb_assert (baton->per_cu);
21381 /* We don't know how long the location list is, but make sure we
21382 don't run off the edge of the section. */
3019eac3
DE
21383 baton->size = section->size - DW_UNSND (attr);
21384 baton->data = section->buffer + DW_UNSND (attr);
8cf6f0b1 21385 baton->base_address = cu->base_address;
f664829e 21386 baton->from_dwo = cu->dwo_unit != NULL;
8cf6f0b1
TT
21387}
21388
4c2df51b 21389static void
ff39bb5e 21390dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
f1e6e072 21391 struct dwarf2_cu *cu, int is_block)
4c2df51b 21392{
bb5ed363 21393 struct objfile *objfile = dwarf2_per_objfile->objfile;
3019eac3 21394 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
bb5ed363 21395
3690dd37 21396 if (attr_form_is_section_offset (attr)
3019eac3 21397 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
99bcc461
DJ
21398 the section. If so, fall through to the complaint in the
21399 other branch. */
3019eac3 21400 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
4c2df51b 21401 {
0d53c4c4 21402 struct dwarf2_loclist_baton *baton;
4c2df51b 21403
bb5ed363 21404 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 21405 sizeof (struct dwarf2_loclist_baton));
4c2df51b 21406
8cf6f0b1 21407 fill_in_loclist_baton (cu, baton, attr);
be391dca 21408
d00adf39 21409 if (cu->base_known == 0)
0d53c4c4 21410 complaint (&symfile_complaints,
3e43a32a
MS
21411 _("Location list used without "
21412 "specifying the CU base address."));
4c2df51b 21413
f1e6e072
TT
21414 SYMBOL_ACLASS_INDEX (sym) = (is_block
21415 ? dwarf2_loclist_block_index
21416 : dwarf2_loclist_index);
0d53c4c4
DJ
21417 SYMBOL_LOCATION_BATON (sym) = baton;
21418 }
21419 else
21420 {
21421 struct dwarf2_locexpr_baton *baton;
21422
bb5ed363 21423 baton = obstack_alloc (&objfile->objfile_obstack,
0d53c4c4 21424 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
21425 baton->per_cu = cu->per_cu;
21426 gdb_assert (baton->per_cu);
0d53c4c4
DJ
21427
21428 if (attr_form_is_block (attr))
21429 {
21430 /* Note that we're just copying the block's data pointer
21431 here, not the actual data. We're still pointing into the
6502dd73
DJ
21432 info_buffer for SYM's objfile; right now we never release
21433 that buffer, but when we do clean up properly this may
21434 need to change. */
0d53c4c4
DJ
21435 baton->size = DW_BLOCK (attr)->size;
21436 baton->data = DW_BLOCK (attr)->data;
21437 }
21438 else
21439 {
21440 dwarf2_invalid_attrib_class_complaint ("location description",
21441 SYMBOL_NATURAL_NAME (sym));
21442 baton->size = 0;
0d53c4c4 21443 }
6e70227d 21444
f1e6e072
TT
21445 SYMBOL_ACLASS_INDEX (sym) = (is_block
21446 ? dwarf2_locexpr_block_index
21447 : dwarf2_locexpr_index);
0d53c4c4
DJ
21448 SYMBOL_LOCATION_BATON (sym) = baton;
21449 }
4c2df51b 21450}
6502dd73 21451
9aa1f1e3
TT
21452/* Return the OBJFILE associated with the compilation unit CU. If CU
21453 came from a separate debuginfo file, then the master objfile is
21454 returned. */
ae0d2f24
UW
21455
21456struct objfile *
21457dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
21458{
9291a0cd 21459 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
21460
21461 /* Return the master objfile, so that we can report and look up the
21462 correct file containing this variable. */
21463 if (objfile->separate_debug_objfile_backlink)
21464 objfile = objfile->separate_debug_objfile_backlink;
21465
21466 return objfile;
21467}
21468
96408a79
SA
21469/* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
21470 (CU_HEADERP is unused in such case) or prepare a temporary copy at
21471 CU_HEADERP first. */
21472
21473static const struct comp_unit_head *
21474per_cu_header_read_in (struct comp_unit_head *cu_headerp,
21475 struct dwarf2_per_cu_data *per_cu)
21476{
d521ce57 21477 const gdb_byte *info_ptr;
96408a79
SA
21478
21479 if (per_cu->cu)
21480 return &per_cu->cu->header;
21481
8a0459fd 21482 info_ptr = per_cu->section->buffer + per_cu->offset.sect_off;
96408a79
SA
21483
21484 memset (cu_headerp, 0, sizeof (*cu_headerp));
0bc3a05c 21485 read_comp_unit_head (cu_headerp, info_ptr, per_cu->objfile->obfd);
96408a79
SA
21486
21487 return cu_headerp;
21488}
21489
ae0d2f24
UW
21490/* Return the address size given in the compilation unit header for CU. */
21491
98714339 21492int
ae0d2f24
UW
21493dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
21494{
96408a79
SA
21495 struct comp_unit_head cu_header_local;
21496 const struct comp_unit_head *cu_headerp;
c471e790 21497
96408a79
SA
21498 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21499
21500 return cu_headerp->addr_size;
ae0d2f24
UW
21501}
21502
9eae7c52
TT
21503/* Return the offset size given in the compilation unit header for CU. */
21504
21505int
21506dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
21507{
96408a79
SA
21508 struct comp_unit_head cu_header_local;
21509 const struct comp_unit_head *cu_headerp;
9c6c53f7 21510
96408a79
SA
21511 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21512
21513 return cu_headerp->offset_size;
21514}
21515
21516/* See its dwarf2loc.h declaration. */
21517
21518int
21519dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
21520{
21521 struct comp_unit_head cu_header_local;
21522 const struct comp_unit_head *cu_headerp;
21523
21524 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
21525
21526 if (cu_headerp->version == 2)
21527 return cu_headerp->addr_size;
21528 else
21529 return cu_headerp->offset_size;
181cebd4
JK
21530}
21531
9aa1f1e3
TT
21532/* Return the text offset of the CU. The returned offset comes from
21533 this CU's objfile. If this objfile came from a separate debuginfo
21534 file, then the offset may be different from the corresponding
21535 offset in the parent objfile. */
21536
21537CORE_ADDR
21538dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
21539{
bb3fa9d0 21540 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
21541
21542 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21543}
21544
348e048f
DE
21545/* Locate the .debug_info compilation unit from CU's objfile which contains
21546 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
21547
21548static struct dwarf2_per_cu_data *
b64f50a1 21549dwarf2_find_containing_comp_unit (sect_offset offset,
36586728 21550 unsigned int offset_in_dwz,
ae038cb0
DJ
21551 struct objfile *objfile)
21552{
21553 struct dwarf2_per_cu_data *this_cu;
21554 int low, high;
36586728 21555 const sect_offset *cu_off;
ae038cb0 21556
ae038cb0
DJ
21557 low = 0;
21558 high = dwarf2_per_objfile->n_comp_units - 1;
21559 while (high > low)
21560 {
36586728 21561 struct dwarf2_per_cu_data *mid_cu;
ae038cb0 21562 int mid = low + (high - low) / 2;
9a619af0 21563
36586728
TT
21564 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
21565 cu_off = &mid_cu->offset;
21566 if (mid_cu->is_dwz > offset_in_dwz
21567 || (mid_cu->is_dwz == offset_in_dwz
21568 && cu_off->sect_off >= offset.sect_off))
ae038cb0
DJ
21569 high = mid;
21570 else
21571 low = mid + 1;
21572 }
21573 gdb_assert (low == high);
36586728
TT
21574 this_cu = dwarf2_per_objfile->all_comp_units[low];
21575 cu_off = &this_cu->offset;
21576 if (this_cu->is_dwz != offset_in_dwz || cu_off->sect_off > offset.sect_off)
ae038cb0 21577 {
36586728 21578 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
8a3fe4f8
AC
21579 error (_("Dwarf Error: could not find partial DIE containing "
21580 "offset 0x%lx [in module %s]"),
b64f50a1 21581 (long) offset.sect_off, bfd_get_filename (objfile->obfd));
10b3939b 21582
b64f50a1
JK
21583 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset.sect_off
21584 <= offset.sect_off);
ae038cb0
DJ
21585 return dwarf2_per_objfile->all_comp_units[low-1];
21586 }
21587 else
21588 {
21589 this_cu = dwarf2_per_objfile->all_comp_units[low];
21590 if (low == dwarf2_per_objfile->n_comp_units - 1
b64f50a1
JK
21591 && offset.sect_off >= this_cu->offset.sect_off + this_cu->length)
21592 error (_("invalid dwarf2 offset %u"), offset.sect_off);
21593 gdb_assert (offset.sect_off < this_cu->offset.sect_off + this_cu->length);
ae038cb0
DJ
21594 return this_cu;
21595 }
21596}
21597
23745b47 21598/* Initialize dwarf2_cu CU, owned by PER_CU. */
93311388 21599
9816fde3 21600static void
23745b47 21601init_one_comp_unit (struct dwarf2_cu *cu, struct dwarf2_per_cu_data *per_cu)
93311388 21602{
9816fde3 21603 memset (cu, 0, sizeof (*cu));
23745b47
DE
21604 per_cu->cu = cu;
21605 cu->per_cu = per_cu;
21606 cu->objfile = per_cu->objfile;
93311388 21607 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
21608}
21609
21610/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
21611
21612static void
95554aad
TT
21613prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
21614 enum language pretend_language)
9816fde3
JK
21615{
21616 struct attribute *attr;
21617
21618 /* Set the language we're debugging. */
21619 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
21620 if (attr)
21621 set_cu_language (DW_UNSND (attr), cu);
21622 else
9cded63f 21623 {
95554aad 21624 cu->language = pretend_language;
9cded63f
TT
21625 cu->language_defn = language_def (cu->language);
21626 }
dee91e82
DE
21627
21628 attr = dwarf2_attr (comp_unit_die, DW_AT_producer, cu);
21629 if (attr)
21630 cu->producer = DW_STRING (attr);
93311388
DE
21631}
21632
ae038cb0
DJ
21633/* Release one cached compilation unit, CU. We unlink it from the tree
21634 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
21635 the caller is responsible for that.
21636 NOTE: DATA is a void * because this function is also used as a
21637 cleanup routine. */
ae038cb0
DJ
21638
21639static void
68dc6402 21640free_heap_comp_unit (void *data)
ae038cb0
DJ
21641{
21642 struct dwarf2_cu *cu = data;
21643
23745b47
DE
21644 gdb_assert (cu->per_cu != NULL);
21645 cu->per_cu->cu = NULL;
ae038cb0
DJ
21646 cu->per_cu = NULL;
21647
21648 obstack_free (&cu->comp_unit_obstack, NULL);
21649
21650 xfree (cu);
21651}
21652
72bf9492 21653/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0 21654 when we're finished with it. We can't free the pointer itself, but be
dee91e82 21655 sure to unlink it from the cache. Also release any associated storage. */
72bf9492
DJ
21656
21657static void
21658free_stack_comp_unit (void *data)
21659{
21660 struct dwarf2_cu *cu = data;
21661
23745b47
DE
21662 gdb_assert (cu->per_cu != NULL);
21663 cu->per_cu->cu = NULL;
21664 cu->per_cu = NULL;
21665
72bf9492
DJ
21666 obstack_free (&cu->comp_unit_obstack, NULL);
21667 cu->partial_dies = NULL;
ae038cb0
DJ
21668}
21669
21670/* Free all cached compilation units. */
21671
21672static void
21673free_cached_comp_units (void *data)
21674{
21675 struct dwarf2_per_cu_data *per_cu, **last_chain;
21676
21677 per_cu = dwarf2_per_objfile->read_in_chain;
21678 last_chain = &dwarf2_per_objfile->read_in_chain;
21679 while (per_cu != NULL)
21680 {
21681 struct dwarf2_per_cu_data *next_cu;
21682
21683 next_cu = per_cu->cu->read_in_chain;
21684
68dc6402 21685 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
21686 *last_chain = next_cu;
21687
21688 per_cu = next_cu;
21689 }
21690}
21691
21692/* Increase the age counter on each cached compilation unit, and free
21693 any that are too old. */
21694
21695static void
21696age_cached_comp_units (void)
21697{
21698 struct dwarf2_per_cu_data *per_cu, **last_chain;
21699
21700 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
21701 per_cu = dwarf2_per_objfile->read_in_chain;
21702 while (per_cu != NULL)
21703 {
21704 per_cu->cu->last_used ++;
21705 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
21706 dwarf2_mark (per_cu->cu);
21707 per_cu = per_cu->cu->read_in_chain;
21708 }
21709
21710 per_cu = dwarf2_per_objfile->read_in_chain;
21711 last_chain = &dwarf2_per_objfile->read_in_chain;
21712 while (per_cu != NULL)
21713 {
21714 struct dwarf2_per_cu_data *next_cu;
21715
21716 next_cu = per_cu->cu->read_in_chain;
21717
21718 if (!per_cu->cu->mark)
21719 {
68dc6402 21720 free_heap_comp_unit (per_cu->cu);
ae038cb0
DJ
21721 *last_chain = next_cu;
21722 }
21723 else
21724 last_chain = &per_cu->cu->read_in_chain;
21725
21726 per_cu = next_cu;
21727 }
21728}
21729
21730/* Remove a single compilation unit from the cache. */
21731
21732static void
dee91e82 21733free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
ae038cb0
DJ
21734{
21735 struct dwarf2_per_cu_data *per_cu, **last_chain;
21736
21737 per_cu = dwarf2_per_objfile->read_in_chain;
21738 last_chain = &dwarf2_per_objfile->read_in_chain;
21739 while (per_cu != NULL)
21740 {
21741 struct dwarf2_per_cu_data *next_cu;
21742
21743 next_cu = per_cu->cu->read_in_chain;
21744
dee91e82 21745 if (per_cu == target_per_cu)
ae038cb0 21746 {
68dc6402 21747 free_heap_comp_unit (per_cu->cu);
dee91e82 21748 per_cu->cu = NULL;
ae038cb0
DJ
21749 *last_chain = next_cu;
21750 break;
21751 }
21752 else
21753 last_chain = &per_cu->cu->read_in_chain;
21754
21755 per_cu = next_cu;
21756 }
21757}
21758
fe3e1990
DJ
21759/* Release all extra memory associated with OBJFILE. */
21760
21761void
21762dwarf2_free_objfile (struct objfile *objfile)
21763{
21764 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
21765
21766 if (dwarf2_per_objfile == NULL)
21767 return;
21768
21769 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
21770 free_cached_comp_units (NULL);
21771
7b9f3c50
DE
21772 if (dwarf2_per_objfile->quick_file_names_table)
21773 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 21774
fe3e1990
DJ
21775 /* Everything else should be on the objfile obstack. */
21776}
21777
dee91e82
DE
21778/* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
21779 We store these in a hash table separate from the DIEs, and preserve them
21780 when the DIEs are flushed out of cache.
21781
21782 The CU "per_cu" pointer is needed because offset alone is not enough to
3019eac3 21783 uniquely identify the type. A file may have multiple .debug_types sections,
c88ee1f0
DE
21784 or the type may come from a DWO file. Furthermore, while it's more logical
21785 to use per_cu->section+offset, with Fission the section with the data is in
21786 the DWO file but we don't know that section at the point we need it.
21787 We have to use something in dwarf2_per_cu_data (or the pointer to it)
21788 because we can enter the lookup routine, get_die_type_at_offset, from
21789 outside this file, and thus won't necessarily have PER_CU->cu.
21790 Fortunately, PER_CU is stable for the life of the objfile. */
1c379e20 21791
dee91e82 21792struct dwarf2_per_cu_offset_and_type
1c379e20 21793{
dee91e82 21794 const struct dwarf2_per_cu_data *per_cu;
b64f50a1 21795 sect_offset offset;
1c379e20
DJ
21796 struct type *type;
21797};
21798
dee91e82 21799/* Hash function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
21800
21801static hashval_t
dee91e82 21802per_cu_offset_and_type_hash (const void *item)
1c379e20 21803{
dee91e82 21804 const struct dwarf2_per_cu_offset_and_type *ofs = item;
9a619af0 21805
dee91e82 21806 return (uintptr_t) ofs->per_cu + ofs->offset.sect_off;
1c379e20
DJ
21807}
21808
dee91e82 21809/* Equality function for a dwarf2_per_cu_offset_and_type. */
1c379e20
DJ
21810
21811static int
dee91e82 21812per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
1c379e20 21813{
dee91e82
DE
21814 const struct dwarf2_per_cu_offset_and_type *ofs_lhs = item_lhs;
21815 const struct dwarf2_per_cu_offset_and_type *ofs_rhs = item_rhs;
9a619af0 21816
dee91e82
DE
21817 return (ofs_lhs->per_cu == ofs_rhs->per_cu
21818 && ofs_lhs->offset.sect_off == ofs_rhs->offset.sect_off);
1c379e20
DJ
21819}
21820
21821/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
21822 table if necessary. For convenience, return TYPE.
21823
21824 The DIEs reading must have careful ordering to:
21825 * Not cause infite loops trying to read in DIEs as a prerequisite for
21826 reading current DIE.
21827 * Not trying to dereference contents of still incompletely read in types
21828 while reading in other DIEs.
21829 * Enable referencing still incompletely read in types just by a pointer to
21830 the type without accessing its fields.
21831
21832 Therefore caller should follow these rules:
21833 * Try to fetch any prerequisite types we may need to build this DIE type
21834 before building the type and calling set_die_type.
e71ec853 21835 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
21836 possible before fetching more types to complete the current type.
21837 * Make the type as complete as possible before fetching more types. */
1c379e20 21838
f792889a 21839static struct type *
1c379e20
DJ
21840set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
21841{
dee91e82 21842 struct dwarf2_per_cu_offset_and_type **slot, ofs;
673bfd45 21843 struct objfile *objfile = cu->objfile;
3cdcd0ce
JB
21844 struct attribute *attr;
21845 struct dynamic_prop prop;
1c379e20 21846
b4ba55a1
JB
21847 /* For Ada types, make sure that the gnat-specific data is always
21848 initialized (if not already set). There are a few types where
21849 we should not be doing so, because the type-specific area is
21850 already used to hold some other piece of info (eg: TYPE_CODE_FLT
21851 where the type-specific area is used to store the floatformat).
21852 But this is not a problem, because the gnat-specific information
21853 is actually not needed for these types. */
21854 if (need_gnat_info (cu)
21855 && TYPE_CODE (type) != TYPE_CODE_FUNC
21856 && TYPE_CODE (type) != TYPE_CODE_FLT
21857 && !HAVE_GNAT_AUX_INFO (type))
21858 INIT_GNAT_SPECIFIC (type);
21859
3cdcd0ce
JB
21860 /* Read DW_AT_data_location and set in type. */
21861 attr = dwarf2_attr (die, DW_AT_data_location, cu);
21862 if (attr_to_dynamic_prop (attr, die, cu, &prop))
21863 {
21864 TYPE_DATA_LOCATION (type)
21865 = obstack_alloc (&objfile->objfile_obstack, sizeof (prop));
21866 *TYPE_DATA_LOCATION (type) = prop;
21867 }
21868
dee91e82 21869 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 21870 {
dee91e82
DE
21871 dwarf2_per_objfile->die_type_hash =
21872 htab_create_alloc_ex (127,
21873 per_cu_offset_and_type_hash,
21874 per_cu_offset_and_type_eq,
21875 NULL,
21876 &objfile->objfile_obstack,
21877 hashtab_obstack_allocate,
21878 dummy_obstack_deallocate);
f792889a 21879 }
1c379e20 21880
dee91e82 21881 ofs.per_cu = cu->per_cu;
1c379e20
DJ
21882 ofs.offset = die->offset;
21883 ofs.type = type;
dee91e82
DE
21884 slot = (struct dwarf2_per_cu_offset_and_type **)
21885 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
7e314c57
JK
21886 if (*slot)
21887 complaint (&symfile_complaints,
21888 _("A problem internal to GDB: DIE 0x%x has type already set"),
b64f50a1 21889 die->offset.sect_off);
673bfd45 21890 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 21891 **slot = ofs;
f792889a 21892 return type;
1c379e20
DJ
21893}
21894
02142a6c
DE
21895/* Look up the type for the die at OFFSET in PER_CU in die_type_hash,
21896 or return NULL if the die does not have a saved type. */
1c379e20
DJ
21897
21898static struct type *
b64f50a1 21899get_die_type_at_offset (sect_offset offset,
673bfd45 21900 struct dwarf2_per_cu_data *per_cu)
1c379e20 21901{
dee91e82 21902 struct dwarf2_per_cu_offset_and_type *slot, ofs;
f792889a 21903
dee91e82 21904 if (dwarf2_per_objfile->die_type_hash == NULL)
f792889a 21905 return NULL;
1c379e20 21906
dee91e82 21907 ofs.per_cu = per_cu;
673bfd45 21908 ofs.offset = offset;
dee91e82 21909 slot = htab_find (dwarf2_per_objfile->die_type_hash, &ofs);
1c379e20
DJ
21910 if (slot)
21911 return slot->type;
21912 else
21913 return NULL;
21914}
21915
02142a6c 21916/* Look up the type for DIE in CU in die_type_hash,
673bfd45
DE
21917 or return NULL if DIE does not have a saved type. */
21918
21919static struct type *
21920get_die_type (struct die_info *die, struct dwarf2_cu *cu)
21921{
21922 return get_die_type_at_offset (die->offset, cu->per_cu);
21923}
21924
10b3939b
DJ
21925/* Add a dependence relationship from CU to REF_PER_CU. */
21926
21927static void
21928dwarf2_add_dependence (struct dwarf2_cu *cu,
21929 struct dwarf2_per_cu_data *ref_per_cu)
21930{
21931 void **slot;
21932
21933 if (cu->dependencies == NULL)
21934 cu->dependencies
21935 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
21936 NULL, &cu->comp_unit_obstack,
21937 hashtab_obstack_allocate,
21938 dummy_obstack_deallocate);
21939
21940 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
21941 if (*slot == NULL)
21942 *slot = ref_per_cu;
21943}
1c379e20 21944
f504f079
DE
21945/* Subroutine of dwarf2_mark to pass to htab_traverse.
21946 Set the mark field in every compilation unit in the
ae038cb0
DJ
21947 cache that we must keep because we are keeping CU. */
21948
10b3939b
DJ
21949static int
21950dwarf2_mark_helper (void **slot, void *data)
21951{
21952 struct dwarf2_per_cu_data *per_cu;
21953
21954 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
21955
21956 /* cu->dependencies references may not yet have been ever read if QUIT aborts
21957 reading of the chain. As such dependencies remain valid it is not much
21958 useful to track and undo them during QUIT cleanups. */
21959 if (per_cu->cu == NULL)
21960 return 1;
21961
10b3939b
DJ
21962 if (per_cu->cu->mark)
21963 return 1;
21964 per_cu->cu->mark = 1;
21965
21966 if (per_cu->cu->dependencies != NULL)
21967 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
21968
21969 return 1;
21970}
21971
f504f079
DE
21972/* Set the mark field in CU and in every other compilation unit in the
21973 cache that we must keep because we are keeping CU. */
21974
ae038cb0
DJ
21975static void
21976dwarf2_mark (struct dwarf2_cu *cu)
21977{
21978 if (cu->mark)
21979 return;
21980 cu->mark = 1;
10b3939b
DJ
21981 if (cu->dependencies != NULL)
21982 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
21983}
21984
21985static void
21986dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
21987{
21988 while (per_cu)
21989 {
21990 per_cu->cu->mark = 0;
21991 per_cu = per_cu->cu->read_in_chain;
21992 }
72bf9492
DJ
21993}
21994
72bf9492
DJ
21995/* Trivial hash function for partial_die_info: the hash value of a DIE
21996 is its offset in .debug_info for this objfile. */
21997
21998static hashval_t
21999partial_die_hash (const void *item)
22000{
22001 const struct partial_die_info *part_die = item;
9a619af0 22002
b64f50a1 22003 return part_die->offset.sect_off;
72bf9492
DJ
22004}
22005
22006/* Trivial comparison function for partial_die_info structures: two DIEs
22007 are equal if they have the same offset. */
22008
22009static int
22010partial_die_eq (const void *item_lhs, const void *item_rhs)
22011{
22012 const struct partial_die_info *part_die_lhs = item_lhs;
22013 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 22014
b64f50a1 22015 return part_die_lhs->offset.sect_off == part_die_rhs->offset.sect_off;
72bf9492
DJ
22016}
22017
ae038cb0
DJ
22018static struct cmd_list_element *set_dwarf2_cmdlist;
22019static struct cmd_list_element *show_dwarf2_cmdlist;
22020
22021static void
22022set_dwarf2_cmd (char *args, int from_tty)
22023{
635c7e8a
TT
22024 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", all_commands,
22025 gdb_stdout);
ae038cb0
DJ
22026}
22027
22028static void
22029show_dwarf2_cmd (char *args, int from_tty)
6e70227d 22030{
ae038cb0
DJ
22031 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
22032}
22033
4bf44c1c 22034/* Free data associated with OBJFILE, if necessary. */
dce234bc
PP
22035
22036static void
c1bd65d0 22037dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
22038{
22039 struct dwarf2_per_objfile *data = d;
8b70b953 22040 int ix;
8b70b953 22041
626f2d1c
TT
22042 /* Make sure we don't accidentally use dwarf2_per_objfile while
22043 cleaning up. */
22044 dwarf2_per_objfile = NULL;
22045
59b0c7c1
JB
22046 for (ix = 0; ix < data->n_comp_units; ++ix)
22047 VEC_free (dwarf2_per_cu_ptr, data->all_comp_units[ix]->imported_symtabs);
796a7ff8 22048
59b0c7c1 22049 for (ix = 0; ix < data->n_type_units; ++ix)
796a7ff8 22050 VEC_free (dwarf2_per_cu_ptr,
59b0c7c1
JB
22051 data->all_type_units[ix]->per_cu.imported_symtabs);
22052 xfree (data->all_type_units);
95554aad 22053
8b70b953 22054 VEC_free (dwarf2_section_info_def, data->types);
3019eac3
DE
22055
22056 if (data->dwo_files)
22057 free_dwo_files (data->dwo_files, objfile);
5c6fa7ab
DE
22058 if (data->dwp_file)
22059 gdb_bfd_unref (data->dwp_file->dbfd);
36586728
TT
22060
22061 if (data->dwz_file && data->dwz_file->dwz_bfd)
22062 gdb_bfd_unref (data->dwz_file->dwz_bfd);
9291a0cd
TT
22063}
22064
22065\f
ae2de4f8 22066/* The "save gdb-index" command. */
9291a0cd
TT
22067
22068/* The contents of the hash table we create when building the string
22069 table. */
22070struct strtab_entry
22071{
22072 offset_type offset;
22073 const char *str;
22074};
22075
559a7a62
JK
22076/* Hash function for a strtab_entry.
22077
22078 Function is used only during write_hash_table so no index format backward
22079 compatibility is needed. */
b89be57b 22080
9291a0cd
TT
22081static hashval_t
22082hash_strtab_entry (const void *e)
22083{
22084 const struct strtab_entry *entry = e;
559a7a62 22085 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
22086}
22087
22088/* Equality function for a strtab_entry. */
b89be57b 22089
9291a0cd
TT
22090static int
22091eq_strtab_entry (const void *a, const void *b)
22092{
22093 const struct strtab_entry *ea = a;
22094 const struct strtab_entry *eb = b;
22095 return !strcmp (ea->str, eb->str);
22096}
22097
22098/* Create a strtab_entry hash table. */
b89be57b 22099
9291a0cd
TT
22100static htab_t
22101create_strtab (void)
22102{
22103 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
22104 xfree, xcalloc, xfree);
22105}
22106
22107/* Add a string to the constant pool. Return the string's offset in
22108 host order. */
b89be57b 22109
9291a0cd
TT
22110static offset_type
22111add_string (htab_t table, struct obstack *cpool, const char *str)
22112{
22113 void **slot;
22114 struct strtab_entry entry;
22115 struct strtab_entry *result;
22116
22117 entry.str = str;
22118 slot = htab_find_slot (table, &entry, INSERT);
22119 if (*slot)
22120 result = *slot;
22121 else
22122 {
22123 result = XNEW (struct strtab_entry);
22124 result->offset = obstack_object_size (cpool);
22125 result->str = str;
22126 obstack_grow_str0 (cpool, str);
22127 *slot = result;
22128 }
22129 return result->offset;
22130}
22131
22132/* An entry in the symbol table. */
22133struct symtab_index_entry
22134{
22135 /* The name of the symbol. */
22136 const char *name;
22137 /* The offset of the name in the constant pool. */
22138 offset_type index_offset;
22139 /* A sorted vector of the indices of all the CUs that hold an object
22140 of this name. */
22141 VEC (offset_type) *cu_indices;
22142};
22143
22144/* The symbol table. This is a power-of-2-sized hash table. */
22145struct mapped_symtab
22146{
22147 offset_type n_elements;
22148 offset_type size;
22149 struct symtab_index_entry **data;
22150};
22151
22152/* Hash function for a symtab_index_entry. */
b89be57b 22153
9291a0cd
TT
22154static hashval_t
22155hash_symtab_entry (const void *e)
22156{
22157 const struct symtab_index_entry *entry = e;
22158 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
22159 sizeof (offset_type) * VEC_length (offset_type,
22160 entry->cu_indices),
22161 0);
22162}
22163
22164/* Equality function for a symtab_index_entry. */
b89be57b 22165
9291a0cd
TT
22166static int
22167eq_symtab_entry (const void *a, const void *b)
22168{
22169 const struct symtab_index_entry *ea = a;
22170 const struct symtab_index_entry *eb = b;
22171 int len = VEC_length (offset_type, ea->cu_indices);
22172 if (len != VEC_length (offset_type, eb->cu_indices))
22173 return 0;
22174 return !memcmp (VEC_address (offset_type, ea->cu_indices),
22175 VEC_address (offset_type, eb->cu_indices),
22176 sizeof (offset_type) * len);
22177}
22178
22179/* Destroy a symtab_index_entry. */
b89be57b 22180
9291a0cd
TT
22181static void
22182delete_symtab_entry (void *p)
22183{
22184 struct symtab_index_entry *entry = p;
22185 VEC_free (offset_type, entry->cu_indices);
22186 xfree (entry);
22187}
22188
22189/* Create a hash table holding symtab_index_entry objects. */
b89be57b 22190
9291a0cd 22191static htab_t
3876f04e 22192create_symbol_hash_table (void)
9291a0cd
TT
22193{
22194 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
22195 delete_symtab_entry, xcalloc, xfree);
22196}
22197
22198/* Create a new mapped symtab object. */
b89be57b 22199
9291a0cd
TT
22200static struct mapped_symtab *
22201create_mapped_symtab (void)
22202{
22203 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
22204 symtab->n_elements = 0;
22205 symtab->size = 1024;
22206 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22207 return symtab;
22208}
22209
22210/* Destroy a mapped_symtab. */
b89be57b 22211
9291a0cd
TT
22212static void
22213cleanup_mapped_symtab (void *p)
22214{
22215 struct mapped_symtab *symtab = p;
22216 /* The contents of the array are freed when the other hash table is
22217 destroyed. */
22218 xfree (symtab->data);
22219 xfree (symtab);
22220}
22221
22222/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
22223 the slot.
22224
22225 Function is used only during write_hash_table so no index format backward
22226 compatibility is needed. */
b89be57b 22227
9291a0cd
TT
22228static struct symtab_index_entry **
22229find_slot (struct mapped_symtab *symtab, const char *name)
22230{
559a7a62 22231 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
22232
22233 index = hash & (symtab->size - 1);
22234 step = ((hash * 17) & (symtab->size - 1)) | 1;
22235
22236 for (;;)
22237 {
22238 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
22239 return &symtab->data[index];
22240 index = (index + step) & (symtab->size - 1);
22241 }
22242}
22243
22244/* Expand SYMTAB's hash table. */
b89be57b 22245
9291a0cd
TT
22246static void
22247hash_expand (struct mapped_symtab *symtab)
22248{
22249 offset_type old_size = symtab->size;
22250 offset_type i;
22251 struct symtab_index_entry **old_entries = symtab->data;
22252
22253 symtab->size *= 2;
22254 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
22255
22256 for (i = 0; i < old_size; ++i)
22257 {
22258 if (old_entries[i])
22259 {
22260 struct symtab_index_entry **slot = find_slot (symtab,
22261 old_entries[i]->name);
22262 *slot = old_entries[i];
22263 }
22264 }
22265
22266 xfree (old_entries);
22267}
22268
156942c7
DE
22269/* Add an entry to SYMTAB. NAME is the name of the symbol.
22270 CU_INDEX is the index of the CU in which the symbol appears.
22271 IS_STATIC is one if the symbol is static, otherwise zero (global). */
b89be57b 22272
9291a0cd
TT
22273static void
22274add_index_entry (struct mapped_symtab *symtab, const char *name,
156942c7 22275 int is_static, gdb_index_symbol_kind kind,
9291a0cd
TT
22276 offset_type cu_index)
22277{
22278 struct symtab_index_entry **slot;
156942c7 22279 offset_type cu_index_and_attrs;
9291a0cd
TT
22280
22281 ++symtab->n_elements;
22282 if (4 * symtab->n_elements / 3 >= symtab->size)
22283 hash_expand (symtab);
22284
22285 slot = find_slot (symtab, name);
22286 if (!*slot)
22287 {
22288 *slot = XNEW (struct symtab_index_entry);
22289 (*slot)->name = name;
156942c7 22290 /* index_offset is set later. */
9291a0cd
TT
22291 (*slot)->cu_indices = NULL;
22292 }
156942c7
DE
22293
22294 cu_index_and_attrs = 0;
22295 DW2_GDB_INDEX_CU_SET_VALUE (cu_index_and_attrs, cu_index);
22296 DW2_GDB_INDEX_SYMBOL_STATIC_SET_VALUE (cu_index_and_attrs, is_static);
22297 DW2_GDB_INDEX_SYMBOL_KIND_SET_VALUE (cu_index_and_attrs, kind);
22298
22299 /* We don't want to record an index value twice as we want to avoid the
22300 duplication.
22301 We process all global symbols and then all static symbols
22302 (which would allow us to avoid the duplication by only having to check
22303 the last entry pushed), but a symbol could have multiple kinds in one CU.
22304 To keep things simple we don't worry about the duplication here and
22305 sort and uniqufy the list after we've processed all symbols. */
22306 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index_and_attrs);
22307}
22308
22309/* qsort helper routine for uniquify_cu_indices. */
22310
22311static int
22312offset_type_compare (const void *ap, const void *bp)
22313{
22314 offset_type a = *(offset_type *) ap;
22315 offset_type b = *(offset_type *) bp;
22316
22317 return (a > b) - (b > a);
22318}
22319
22320/* Sort and remove duplicates of all symbols' cu_indices lists. */
22321
22322static void
22323uniquify_cu_indices (struct mapped_symtab *symtab)
22324{
22325 int i;
22326
22327 for (i = 0; i < symtab->size; ++i)
22328 {
22329 struct symtab_index_entry *entry = symtab->data[i];
22330
22331 if (entry
22332 && entry->cu_indices != NULL)
22333 {
22334 unsigned int next_to_insert, next_to_check;
22335 offset_type last_value;
22336
22337 qsort (VEC_address (offset_type, entry->cu_indices),
22338 VEC_length (offset_type, entry->cu_indices),
22339 sizeof (offset_type), offset_type_compare);
22340
22341 last_value = VEC_index (offset_type, entry->cu_indices, 0);
22342 next_to_insert = 1;
22343 for (next_to_check = 1;
22344 next_to_check < VEC_length (offset_type, entry->cu_indices);
22345 ++next_to_check)
22346 {
22347 if (VEC_index (offset_type, entry->cu_indices, next_to_check)
22348 != last_value)
22349 {
22350 last_value = VEC_index (offset_type, entry->cu_indices,
22351 next_to_check);
22352 VEC_replace (offset_type, entry->cu_indices, next_to_insert,
22353 last_value);
22354 ++next_to_insert;
22355 }
22356 }
22357 VEC_truncate (offset_type, entry->cu_indices, next_to_insert);
22358 }
22359 }
9291a0cd
TT
22360}
22361
22362/* Add a vector of indices to the constant pool. */
b89be57b 22363
9291a0cd 22364static offset_type
3876f04e 22365add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
22366 struct symtab_index_entry *entry)
22367{
22368 void **slot;
22369
3876f04e 22370 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
22371 if (!*slot)
22372 {
22373 offset_type len = VEC_length (offset_type, entry->cu_indices);
22374 offset_type val = MAYBE_SWAP (len);
22375 offset_type iter;
22376 int i;
22377
22378 *slot = entry;
22379 entry->index_offset = obstack_object_size (cpool);
22380
22381 obstack_grow (cpool, &val, sizeof (val));
22382 for (i = 0;
22383 VEC_iterate (offset_type, entry->cu_indices, i, iter);
22384 ++i)
22385 {
22386 val = MAYBE_SWAP (iter);
22387 obstack_grow (cpool, &val, sizeof (val));
22388 }
22389 }
22390 else
22391 {
22392 struct symtab_index_entry *old_entry = *slot;
22393 entry->index_offset = old_entry->index_offset;
22394 entry = old_entry;
22395 }
22396 return entry->index_offset;
22397}
22398
22399/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
22400 constant pool entries going into the obstack CPOOL. */
b89be57b 22401
9291a0cd
TT
22402static void
22403write_hash_table (struct mapped_symtab *symtab,
22404 struct obstack *output, struct obstack *cpool)
22405{
22406 offset_type i;
3876f04e 22407 htab_t symbol_hash_table;
9291a0cd
TT
22408 htab_t str_table;
22409
3876f04e 22410 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 22411 str_table = create_strtab ();
3876f04e 22412
9291a0cd
TT
22413 /* We add all the index vectors to the constant pool first, to
22414 ensure alignment is ok. */
22415 for (i = 0; i < symtab->size; ++i)
22416 {
22417 if (symtab->data[i])
3876f04e 22418 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
22419 }
22420
22421 /* Now write out the hash table. */
22422 for (i = 0; i < symtab->size; ++i)
22423 {
22424 offset_type str_off, vec_off;
22425
22426 if (symtab->data[i])
22427 {
22428 str_off = add_string (str_table, cpool, symtab->data[i]->name);
22429 vec_off = symtab->data[i]->index_offset;
22430 }
22431 else
22432 {
22433 /* While 0 is a valid constant pool index, it is not valid
22434 to have 0 for both offsets. */
22435 str_off = 0;
22436 vec_off = 0;
22437 }
22438
22439 str_off = MAYBE_SWAP (str_off);
22440 vec_off = MAYBE_SWAP (vec_off);
22441
22442 obstack_grow (output, &str_off, sizeof (str_off));
22443 obstack_grow (output, &vec_off, sizeof (vec_off));
22444 }
22445
22446 htab_delete (str_table);
3876f04e 22447 htab_delete (symbol_hash_table);
9291a0cd
TT
22448}
22449
0a5429f6
DE
22450/* Struct to map psymtab to CU index in the index file. */
22451struct psymtab_cu_index_map
22452{
22453 struct partial_symtab *psymtab;
22454 unsigned int cu_index;
22455};
22456
22457static hashval_t
22458hash_psymtab_cu_index (const void *item)
22459{
22460 const struct psymtab_cu_index_map *map = item;
22461
22462 return htab_hash_pointer (map->psymtab);
22463}
22464
22465static int
22466eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
22467{
22468 const struct psymtab_cu_index_map *lhs = item_lhs;
22469 const struct psymtab_cu_index_map *rhs = item_rhs;
22470
22471 return lhs->psymtab == rhs->psymtab;
22472}
22473
22474/* Helper struct for building the address table. */
22475struct addrmap_index_data
22476{
22477 struct objfile *objfile;
22478 struct obstack *addr_obstack;
22479 htab_t cu_index_htab;
22480
22481 /* Non-zero if the previous_* fields are valid.
22482 We can't write an entry until we see the next entry (since it is only then
22483 that we know the end of the entry). */
22484 int previous_valid;
22485 /* Index of the CU in the table of all CUs in the index file. */
22486 unsigned int previous_cu_index;
0963b4bd 22487 /* Start address of the CU. */
0a5429f6
DE
22488 CORE_ADDR previous_cu_start;
22489};
22490
22491/* Write an address entry to OBSTACK. */
b89be57b 22492
9291a0cd 22493static void
0a5429f6
DE
22494add_address_entry (struct objfile *objfile, struct obstack *obstack,
22495 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 22496{
0a5429f6 22497 offset_type cu_index_to_write;
948f8e3d 22498 gdb_byte addr[8];
9291a0cd
TT
22499 CORE_ADDR baseaddr;
22500
22501 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
22502
0a5429f6
DE
22503 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
22504 obstack_grow (obstack, addr, 8);
22505 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
22506 obstack_grow (obstack, addr, 8);
22507 cu_index_to_write = MAYBE_SWAP (cu_index);
22508 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
22509}
22510
22511/* Worker function for traversing an addrmap to build the address table. */
22512
22513static int
22514add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
22515{
22516 struct addrmap_index_data *data = datap;
22517 struct partial_symtab *pst = obj;
0a5429f6
DE
22518
22519 if (data->previous_valid)
22520 add_address_entry (data->objfile, data->addr_obstack,
22521 data->previous_cu_start, start_addr,
22522 data->previous_cu_index);
22523
22524 data->previous_cu_start = start_addr;
22525 if (pst != NULL)
22526 {
22527 struct psymtab_cu_index_map find_map, *map;
22528 find_map.psymtab = pst;
22529 map = htab_find (data->cu_index_htab, &find_map);
22530 gdb_assert (map != NULL);
22531 data->previous_cu_index = map->cu_index;
22532 data->previous_valid = 1;
22533 }
22534 else
22535 data->previous_valid = 0;
22536
22537 return 0;
22538}
22539
22540/* Write OBJFILE's address map to OBSTACK.
22541 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
22542 in the index file. */
22543
22544static void
22545write_address_map (struct objfile *objfile, struct obstack *obstack,
22546 htab_t cu_index_htab)
22547{
22548 struct addrmap_index_data addrmap_index_data;
22549
22550 /* When writing the address table, we have to cope with the fact that
22551 the addrmap iterator only provides the start of a region; we have to
22552 wait until the next invocation to get the start of the next region. */
22553
22554 addrmap_index_data.objfile = objfile;
22555 addrmap_index_data.addr_obstack = obstack;
22556 addrmap_index_data.cu_index_htab = cu_index_htab;
22557 addrmap_index_data.previous_valid = 0;
22558
22559 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
22560 &addrmap_index_data);
22561
22562 /* It's highly unlikely the last entry (end address = 0xff...ff)
22563 is valid, but we should still handle it.
22564 The end address is recorded as the start of the next region, but that
22565 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
22566 anyway. */
22567 if (addrmap_index_data.previous_valid)
22568 add_address_entry (objfile, obstack,
22569 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
22570 addrmap_index_data.previous_cu_index);
9291a0cd
TT
22571}
22572
156942c7
DE
22573/* Return the symbol kind of PSYM. */
22574
22575static gdb_index_symbol_kind
22576symbol_kind (struct partial_symbol *psym)
22577{
22578 domain_enum domain = PSYMBOL_DOMAIN (psym);
22579 enum address_class aclass = PSYMBOL_CLASS (psym);
22580
22581 switch (domain)
22582 {
22583 case VAR_DOMAIN:
22584 switch (aclass)
22585 {
22586 case LOC_BLOCK:
22587 return GDB_INDEX_SYMBOL_KIND_FUNCTION;
22588 case LOC_TYPEDEF:
22589 return GDB_INDEX_SYMBOL_KIND_TYPE;
22590 case LOC_COMPUTED:
22591 case LOC_CONST_BYTES:
22592 case LOC_OPTIMIZED_OUT:
22593 case LOC_STATIC:
22594 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22595 case LOC_CONST:
22596 /* Note: It's currently impossible to recognize psyms as enum values
22597 short of reading the type info. For now punt. */
22598 return GDB_INDEX_SYMBOL_KIND_VARIABLE;
22599 default:
22600 /* There are other LOC_FOO values that one might want to classify
22601 as variables, but dwarf2read.c doesn't currently use them. */
22602 return GDB_INDEX_SYMBOL_KIND_OTHER;
22603 }
22604 case STRUCT_DOMAIN:
22605 return GDB_INDEX_SYMBOL_KIND_TYPE;
22606 default:
22607 return GDB_INDEX_SYMBOL_KIND_OTHER;
22608 }
22609}
22610
9291a0cd 22611/* Add a list of partial symbols to SYMTAB. */
b89be57b 22612
9291a0cd
TT
22613static void
22614write_psymbols (struct mapped_symtab *symtab,
987d643c 22615 htab_t psyms_seen,
9291a0cd
TT
22616 struct partial_symbol **psymp,
22617 int count,
987d643c
TT
22618 offset_type cu_index,
22619 int is_static)
9291a0cd
TT
22620{
22621 for (; count-- > 0; ++psymp)
22622 {
156942c7
DE
22623 struct partial_symbol *psym = *psymp;
22624 void **slot;
987d643c 22625
156942c7 22626 if (SYMBOL_LANGUAGE (psym) == language_ada)
9291a0cd 22627 error (_("Ada is not currently supported by the index"));
987d643c 22628
987d643c 22629 /* Only add a given psymbol once. */
156942c7 22630 slot = htab_find_slot (psyms_seen, psym, INSERT);
987d643c
TT
22631 if (!*slot)
22632 {
156942c7
DE
22633 gdb_index_symbol_kind kind = symbol_kind (psym);
22634
22635 *slot = psym;
22636 add_index_entry (symtab, SYMBOL_SEARCH_NAME (psym),
22637 is_static, kind, cu_index);
987d643c 22638 }
9291a0cd
TT
22639 }
22640}
22641
22642/* Write the contents of an ("unfinished") obstack to FILE. Throw an
22643 exception if there is an error. */
b89be57b 22644
9291a0cd
TT
22645static void
22646write_obstack (FILE *file, struct obstack *obstack)
22647{
22648 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
22649 file)
22650 != obstack_object_size (obstack))
22651 error (_("couldn't data write to file"));
22652}
22653
22654/* Unlink a file if the argument is not NULL. */
b89be57b 22655
9291a0cd
TT
22656static void
22657unlink_if_set (void *p)
22658{
22659 char **filename = p;
22660 if (*filename)
22661 unlink (*filename);
22662}
22663
1fd400ff
TT
22664/* A helper struct used when iterating over debug_types. */
22665struct signatured_type_index_data
22666{
22667 struct objfile *objfile;
22668 struct mapped_symtab *symtab;
22669 struct obstack *types_list;
987d643c 22670 htab_t psyms_seen;
1fd400ff
TT
22671 int cu_index;
22672};
22673
22674/* A helper function that writes a single signatured_type to an
22675 obstack. */
b89be57b 22676
1fd400ff
TT
22677static int
22678write_one_signatured_type (void **slot, void *d)
22679{
22680 struct signatured_type_index_data *info = d;
22681 struct signatured_type *entry = (struct signatured_type *) *slot;
0186c6a7 22682 struct partial_symtab *psymtab = entry->per_cu.v.psymtab;
1fd400ff
TT
22683 gdb_byte val[8];
22684
22685 write_psymbols (info->symtab,
987d643c 22686 info->psyms_seen,
3e43a32a
MS
22687 info->objfile->global_psymbols.list
22688 + psymtab->globals_offset,
987d643c
TT
22689 psymtab->n_global_syms, info->cu_index,
22690 0);
1fd400ff 22691 write_psymbols (info->symtab,
987d643c 22692 info->psyms_seen,
3e43a32a
MS
22693 info->objfile->static_psymbols.list
22694 + psymtab->statics_offset,
987d643c
TT
22695 psymtab->n_static_syms, info->cu_index,
22696 1);
1fd400ff 22697
b64f50a1
JK
22698 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22699 entry->per_cu.offset.sect_off);
1fd400ff 22700 obstack_grow (info->types_list, val, 8);
3019eac3
DE
22701 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22702 entry->type_offset_in_tu.cu_off);
1fd400ff
TT
22703 obstack_grow (info->types_list, val, 8);
22704 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
22705 obstack_grow (info->types_list, val, 8);
22706
22707 ++info->cu_index;
22708
22709 return 1;
22710}
22711
95554aad
TT
22712/* Recurse into all "included" dependencies and write their symbols as
22713 if they appeared in this psymtab. */
22714
22715static void
22716recursively_write_psymbols (struct objfile *objfile,
22717 struct partial_symtab *psymtab,
22718 struct mapped_symtab *symtab,
22719 htab_t psyms_seen,
22720 offset_type cu_index)
22721{
22722 int i;
22723
22724 for (i = 0; i < psymtab->number_of_dependencies; ++i)
22725 if (psymtab->dependencies[i]->user != NULL)
22726 recursively_write_psymbols (objfile, psymtab->dependencies[i],
22727 symtab, psyms_seen, cu_index);
22728
22729 write_psymbols (symtab,
22730 psyms_seen,
22731 objfile->global_psymbols.list + psymtab->globals_offset,
22732 psymtab->n_global_syms, cu_index,
22733 0);
22734 write_psymbols (symtab,
22735 psyms_seen,
22736 objfile->static_psymbols.list + psymtab->statics_offset,
22737 psymtab->n_static_syms, cu_index,
22738 1);
22739}
22740
9291a0cd 22741/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 22742
9291a0cd
TT
22743static void
22744write_psymtabs_to_index (struct objfile *objfile, const char *dir)
22745{
22746 struct cleanup *cleanup;
22747 char *filename, *cleanup_filename;
1fd400ff
TT
22748 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
22749 struct obstack cu_list, types_cu_list;
9291a0cd
TT
22750 int i;
22751 FILE *out_file;
22752 struct mapped_symtab *symtab;
22753 offset_type val, size_of_contents, total_len;
22754 struct stat st;
987d643c 22755 htab_t psyms_seen;
0a5429f6
DE
22756 htab_t cu_index_htab;
22757 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 22758
9291a0cd
TT
22759 if (dwarf2_per_objfile->using_index)
22760 error (_("Cannot use an index to create the index"));
22761
8b70b953
TT
22762 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
22763 error (_("Cannot make an index when the file has multiple .debug_types sections"));
22764
260b681b
DE
22765 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
22766 return;
22767
4262abfb
JK
22768 if (stat (objfile_name (objfile), &st) < 0)
22769 perror_with_name (objfile_name (objfile));
9291a0cd 22770
4262abfb 22771 filename = concat (dir, SLASH_STRING, lbasename (objfile_name (objfile)),
9291a0cd
TT
22772 INDEX_SUFFIX, (char *) NULL);
22773 cleanup = make_cleanup (xfree, filename);
22774
614c279d 22775 out_file = gdb_fopen_cloexec (filename, "wb");
9291a0cd
TT
22776 if (!out_file)
22777 error (_("Can't open `%s' for writing"), filename);
22778
22779 cleanup_filename = filename;
22780 make_cleanup (unlink_if_set, &cleanup_filename);
22781
22782 symtab = create_mapped_symtab ();
22783 make_cleanup (cleanup_mapped_symtab, symtab);
22784
22785 obstack_init (&addr_obstack);
22786 make_cleanup_obstack_free (&addr_obstack);
22787
22788 obstack_init (&cu_list);
22789 make_cleanup_obstack_free (&cu_list);
22790
1fd400ff
TT
22791 obstack_init (&types_cu_list);
22792 make_cleanup_obstack_free (&types_cu_list);
22793
987d643c
TT
22794 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
22795 NULL, xcalloc, xfree);
96408a79 22796 make_cleanup_htab_delete (psyms_seen);
987d643c 22797
0a5429f6
DE
22798 /* While we're scanning CU's create a table that maps a psymtab pointer
22799 (which is what addrmap records) to its index (which is what is recorded
22800 in the index file). This will later be needed to write the address
22801 table. */
22802 cu_index_htab = htab_create_alloc (100,
22803 hash_psymtab_cu_index,
22804 eq_psymtab_cu_index,
22805 NULL, xcalloc, xfree);
96408a79 22806 make_cleanup_htab_delete (cu_index_htab);
0a5429f6
DE
22807 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
22808 xmalloc (sizeof (struct psymtab_cu_index_map)
22809 * dwarf2_per_objfile->n_comp_units);
22810 make_cleanup (xfree, psymtab_cu_index_map);
22811
22812 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
22813 work here. Also, the debug_types entries do not appear in
22814 all_comp_units, but only in their own hash table. */
9291a0cd
TT
22815 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
22816 {
3e43a32a
MS
22817 struct dwarf2_per_cu_data *per_cu
22818 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 22819 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 22820 gdb_byte val[8];
0a5429f6
DE
22821 struct psymtab_cu_index_map *map;
22822 void **slot;
9291a0cd 22823
92fac807
JK
22824 /* CU of a shared file from 'dwz -m' may be unused by this main file.
22825 It may be referenced from a local scope but in such case it does not
22826 need to be present in .gdb_index. */
22827 if (psymtab == NULL)
22828 continue;
22829
95554aad
TT
22830 if (psymtab->user == NULL)
22831 recursively_write_psymbols (objfile, psymtab, symtab, psyms_seen, i);
9291a0cd 22832
0a5429f6
DE
22833 map = &psymtab_cu_index_map[i];
22834 map->psymtab = psymtab;
22835 map->cu_index = i;
22836 slot = htab_find_slot (cu_index_htab, map, INSERT);
22837 gdb_assert (slot != NULL);
22838 gdb_assert (*slot == NULL);
22839 *slot = map;
9291a0cd 22840
b64f50a1
JK
22841 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE,
22842 per_cu->offset.sect_off);
9291a0cd 22843 obstack_grow (&cu_list, val, 8);
e254ef6a 22844 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
22845 obstack_grow (&cu_list, val, 8);
22846 }
22847
0a5429f6
DE
22848 /* Dump the address map. */
22849 write_address_map (objfile, &addr_obstack, cu_index_htab);
22850
1fd400ff
TT
22851 /* Write out the .debug_type entries, if any. */
22852 if (dwarf2_per_objfile->signatured_types)
22853 {
22854 struct signatured_type_index_data sig_data;
22855
22856 sig_data.objfile = objfile;
22857 sig_data.symtab = symtab;
22858 sig_data.types_list = &types_cu_list;
987d643c 22859 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
22860 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
22861 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
22862 write_one_signatured_type, &sig_data);
22863 }
22864
156942c7
DE
22865 /* Now that we've processed all symbols we can shrink their cu_indices
22866 lists. */
22867 uniquify_cu_indices (symtab);
22868
9291a0cd
TT
22869 obstack_init (&constant_pool);
22870 make_cleanup_obstack_free (&constant_pool);
22871 obstack_init (&symtab_obstack);
22872 make_cleanup_obstack_free (&symtab_obstack);
22873 write_hash_table (symtab, &symtab_obstack, &constant_pool);
22874
22875 obstack_init (&contents);
22876 make_cleanup_obstack_free (&contents);
1fd400ff 22877 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
22878 total_len = size_of_contents;
22879
22880 /* The version number. */
796a7ff8 22881 val = MAYBE_SWAP (8);
9291a0cd
TT
22882 obstack_grow (&contents, &val, sizeof (val));
22883
22884 /* The offset of the CU list from the start of the file. */
22885 val = MAYBE_SWAP (total_len);
22886 obstack_grow (&contents, &val, sizeof (val));
22887 total_len += obstack_object_size (&cu_list);
22888
1fd400ff
TT
22889 /* The offset of the types CU list from the start of the file. */
22890 val = MAYBE_SWAP (total_len);
22891 obstack_grow (&contents, &val, sizeof (val));
22892 total_len += obstack_object_size (&types_cu_list);
22893
9291a0cd
TT
22894 /* The offset of the address table from the start of the file. */
22895 val = MAYBE_SWAP (total_len);
22896 obstack_grow (&contents, &val, sizeof (val));
22897 total_len += obstack_object_size (&addr_obstack);
22898
22899 /* The offset of the symbol table from the start of the file. */
22900 val = MAYBE_SWAP (total_len);
22901 obstack_grow (&contents, &val, sizeof (val));
22902 total_len += obstack_object_size (&symtab_obstack);
22903
22904 /* The offset of the constant pool from the start of the file. */
22905 val = MAYBE_SWAP (total_len);
22906 obstack_grow (&contents, &val, sizeof (val));
22907 total_len += obstack_object_size (&constant_pool);
22908
22909 gdb_assert (obstack_object_size (&contents) == size_of_contents);
22910
22911 write_obstack (out_file, &contents);
22912 write_obstack (out_file, &cu_list);
1fd400ff 22913 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
22914 write_obstack (out_file, &addr_obstack);
22915 write_obstack (out_file, &symtab_obstack);
22916 write_obstack (out_file, &constant_pool);
22917
22918 fclose (out_file);
22919
22920 /* We want to keep the file, so we set cleanup_filename to NULL
22921 here. See unlink_if_set. */
22922 cleanup_filename = NULL;
22923
22924 do_cleanups (cleanup);
22925}
22926
90476074
TT
22927/* Implementation of the `save gdb-index' command.
22928
22929 Note that the file format used by this command is documented in the
22930 GDB manual. Any changes here must be documented there. */
11570e71 22931
9291a0cd
TT
22932static void
22933save_gdb_index_command (char *arg, int from_tty)
22934{
22935 struct objfile *objfile;
22936
22937 if (!arg || !*arg)
96d19272 22938 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
22939
22940 ALL_OBJFILES (objfile)
22941 {
22942 struct stat st;
22943
22944 /* If the objfile does not correspond to an actual file, skip it. */
4262abfb 22945 if (stat (objfile_name (objfile), &st) < 0)
9291a0cd
TT
22946 continue;
22947
22948 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
22949 if (dwarf2_per_objfile)
22950 {
22951 volatile struct gdb_exception except;
22952
22953 TRY_CATCH (except, RETURN_MASK_ERROR)
22954 {
22955 write_psymtabs_to_index (objfile, arg);
22956 }
22957 if (except.reason < 0)
22958 exception_fprintf (gdb_stderr, except,
22959 _("Error while writing index for `%s': "),
4262abfb 22960 objfile_name (objfile));
9291a0cd
TT
22961 }
22962 }
dce234bc
PP
22963}
22964
9291a0cd
TT
22965\f
22966
9eae7c52
TT
22967int dwarf2_always_disassemble;
22968
22969static void
22970show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
22971 struct cmd_list_element *c, const char *value)
22972{
3e43a32a
MS
22973 fprintf_filtered (file,
22974 _("Whether to always disassemble "
22975 "DWARF expressions is %s.\n"),
9eae7c52
TT
22976 value);
22977}
22978
900e11f9
JK
22979static void
22980show_check_physname (struct ui_file *file, int from_tty,
22981 struct cmd_list_element *c, const char *value)
22982{
22983 fprintf_filtered (file,
22984 _("Whether to check \"physname\" is %s.\n"),
22985 value);
22986}
22987
6502dd73
DJ
22988void _initialize_dwarf2_read (void);
22989
22990void
22991_initialize_dwarf2_read (void)
22992{
96d19272
JK
22993 struct cmd_list_element *c;
22994
dce234bc 22995 dwarf2_objfile_data_key
c1bd65d0 22996 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 22997
1bedd215
AC
22998 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
22999Set DWARF 2 specific variables.\n\
23000Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
23001 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
23002 0/*allow-unknown*/, &maintenance_set_cmdlist);
23003
1bedd215
AC
23004 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
23005Show DWARF 2 specific variables\n\
23006Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
23007 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
23008 0/*allow-unknown*/, &maintenance_show_cmdlist);
23009
23010 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
23011 &dwarf2_max_cache_age, _("\
23012Set the upper bound on the age of cached dwarf2 compilation units."), _("\
23013Show the upper bound on the age of cached dwarf2 compilation units."), _("\
23014A higher limit means that cached compilation units will be stored\n\
23015in memory longer, and more total memory will be used. Zero disables\n\
23016caching, which can slow down startup."),
2c5b56ce 23017 NULL,
920d2a44 23018 show_dwarf2_max_cache_age,
2c5b56ce 23019 &set_dwarf2_cmdlist,
ae038cb0 23020 &show_dwarf2_cmdlist);
d97bc12b 23021
9eae7c52
TT
23022 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
23023 &dwarf2_always_disassemble, _("\
23024Set whether `info address' always disassembles DWARF expressions."), _("\
23025Show whether `info address' always disassembles DWARF expressions."), _("\
23026When enabled, DWARF expressions are always printed in an assembly-like\n\
23027syntax. When disabled, expressions will be printed in a more\n\
23028conversational style, when possible."),
23029 NULL,
23030 show_dwarf2_always_disassemble,
23031 &set_dwarf2_cmdlist,
23032 &show_dwarf2_cmdlist);
23033
73be47f5 23034 add_setshow_zuinteger_cmd ("dwarf2-read", no_class, &dwarf2_read_debug, _("\
45cfd468
DE
23035Set debugging of the dwarf2 reader."), _("\
23036Show debugging of the dwarf2 reader."), _("\
73be47f5
DE
23037When enabled (non-zero), debugging messages are printed during dwarf2\n\
23038reading and symtab expansion. A value of 1 (one) provides basic\n\
23039information. A value greater than 1 provides more verbose information."),
45cfd468
DE
23040 NULL,
23041 NULL,
23042 &setdebuglist, &showdebuglist);
23043
ccce17b0 23044 add_setshow_zuinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
d97bc12b
DE
23045Set debugging of the dwarf2 DIE reader."), _("\
23046Show debugging of the dwarf2 DIE reader."), _("\
23047When enabled (non-zero), DIEs are dumped after they are read in.\n\
23048The value is the maximum depth to print."),
ccce17b0
YQ
23049 NULL,
23050 NULL,
23051 &setdebuglist, &showdebuglist);
9291a0cd 23052
900e11f9
JK
23053 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23054Set cross-checking of \"physname\" code against demangler."), _("\
23055Show cross-checking of \"physname\" code against demangler."), _("\
23056When enabled, GDB's internal \"physname\" code is checked against\n\
23057the demangler."),
23058 NULL, show_check_physname,
23059 &setdebuglist, &showdebuglist);
23060
e615022a
DE
23061 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23062 no_class, &use_deprecated_index_sections, _("\
23063Set whether to use deprecated gdb_index sections."), _("\
23064Show whether to use deprecated gdb_index sections."), _("\
23065When enabled, deprecated .gdb_index sections are used anyway.\n\
23066Normally they are ignored either because of a missing feature or\n\
23067performance issue.\n\
23068Warning: This option must be enabled before gdb reads the file."),
23069 NULL,
23070 NULL,
23071 &setlist, &showlist);
23072
96d19272 23073 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 23074 _("\
fc1a9d6e 23075Save a gdb-index file.\n\
11570e71 23076Usage: save gdb-index DIRECTORY"),
96d19272
JK
23077 &save_cmdlist);
23078 set_cmd_completer (c, filename_completer);
f1e6e072
TT
23079
23080 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23081 &dwarf2_locexpr_funcs);
23082 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23083 &dwarf2_loclist_funcs);
23084
23085 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23086 &dwarf2_block_frame_base_locexpr_funcs);
23087 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23088 &dwarf2_block_frame_base_loclist_funcs);
6502dd73 23089}
This page took 4.346535 seconds and 4 git commands to generate.