daily update
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
CommitLineData
c906108c 1/* DWARF 2 debugging format support for GDB.
917c78fc 2
6aba47ca 3 Copyright (C) 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
7b6bb8da 4 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
0fb0cc75 5 Free Software Foundation, Inc.
c906108c
SS
6
7 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
8 Inc. with support from Florida State University (under contract
9 with the Ada Joint Program Office), and Silicon Graphics, Inc.
10 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
11 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
7ce59000 12 support.
c906108c 13
c5aa993b 14 This file is part of GDB.
c906108c 15
c5aa993b
JM
16 This program is free software; you can redistribute it and/or modify
17 it under the terms of the GNU General Public License as published by
a9762ec7
JB
18 the Free Software Foundation; either version 3 of the License, or
19 (at your option) any later version.
c906108c 20
a9762ec7
JB
21 This program is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
c906108c 25
c5aa993b 26 You should have received a copy of the GNU General Public License
a9762ec7 27 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
28
29#include "defs.h"
30#include "bfd.h"
c906108c
SS
31#include "symtab.h"
32#include "gdbtypes.h"
c906108c 33#include "objfiles.h"
fa8f86ff 34#include "dwarf2.h"
c906108c
SS
35#include "buildsym.h"
36#include "demangle.h"
37#include "expression.h"
d5166ae1 38#include "filenames.h" /* for DOSish file names */
2e276125 39#include "macrotab.h"
c906108c
SS
40#include "language.h"
41#include "complaints.h"
357e46e7 42#include "bcache.h"
4c2df51b
DJ
43#include "dwarf2expr.h"
44#include "dwarf2loc.h"
9219021c 45#include "cp-support.h"
72bf9492 46#include "hashtab.h"
ae038cb0
DJ
47#include "command.h"
48#include "gdbcmd.h"
edb3359d 49#include "block.h"
ff013f42 50#include "addrmap.h"
94af9270
KS
51#include "typeprint.h"
52#include "jv-lang.h"
ccefe4c4 53#include "psympriv.h"
9291a0cd
TT
54#include "exceptions.h"
55#include "gdb_stat.h"
96d19272 56#include "completer.h"
34eaf542 57#include "vec.h"
98bfdba5
PA
58#include "c-lang.h"
59#include "valprint.h"
60d5a603 60#include <ctype.h>
4c2df51b 61
c906108c
SS
62#include <fcntl.h>
63#include "gdb_string.h"
4bdf3d34 64#include "gdb_assert.h"
c906108c 65#include <sys/types.h>
233a11ab
CS
66#ifdef HAVE_ZLIB_H
67#include <zlib.h>
68#endif
dce234bc
PP
69#ifdef HAVE_MMAP
70#include <sys/mman.h>
85d9bd0e
TT
71#ifndef MAP_FAILED
72#define MAP_FAILED ((void *) -1)
73#endif
dce234bc 74#endif
d8151005 75
34eaf542
TT
76typedef struct symbol *symbolp;
77DEF_VEC_P (symbolp);
78
107d2387 79#if 0
357e46e7 80/* .debug_info header for a compilation unit
c906108c
SS
81 Because of alignment constraints, this structure has padding and cannot
82 be mapped directly onto the beginning of the .debug_info section. */
83typedef struct comp_unit_header
84 {
85 unsigned int length; /* length of the .debug_info
86 contribution */
87 unsigned short version; /* version number -- 2 for DWARF
88 version 2 */
89 unsigned int abbrev_offset; /* offset into .debug_abbrev section */
90 unsigned char addr_size; /* byte size of an address -- 4 */
91 }
92_COMP_UNIT_HEADER;
93#define _ACTUAL_COMP_UNIT_HEADER_SIZE 11
107d2387 94#endif
c906108c 95
c906108c
SS
96/* .debug_line statement program prologue
97 Because of alignment constraints, this structure has padding and cannot
98 be mapped directly onto the beginning of the .debug_info section. */
99typedef struct statement_prologue
100 {
101 unsigned int total_length; /* byte length of the statement
102 information */
103 unsigned short version; /* version number -- 2 for DWARF
104 version 2 */
105 unsigned int prologue_length; /* # bytes between prologue &
106 stmt program */
107 unsigned char minimum_instruction_length; /* byte size of
108 smallest instr */
109 unsigned char default_is_stmt; /* initial value of is_stmt
110 register */
111 char line_base;
112 unsigned char line_range;
113 unsigned char opcode_base; /* number assigned to first special
114 opcode */
115 unsigned char *standard_opcode_lengths;
116 }
117_STATEMENT_PROLOGUE;
118
d97bc12b
DE
119/* When non-zero, dump DIEs after they are read in. */
120static int dwarf2_die_debug = 0;
121
900e11f9
JK
122/* When non-zero, cross-check physname against demangler. */
123static int check_physname = 0;
124
dce234bc
PP
125static int pagesize;
126
df8a16a1
DJ
127/* When set, the file that we're processing is known to have debugging
128 info for C++ namespaces. GCC 3.3.x did not produce this information,
129 but later versions do. */
130
131static int processing_has_namespace_info;
132
6502dd73
DJ
133static const struct objfile_data *dwarf2_objfile_data_key;
134
dce234bc
PP
135struct dwarf2_section_info
136{
137 asection *asection;
138 gdb_byte *buffer;
139 bfd_size_type size;
b315ab21
TG
140 /* Not NULL if the section was actually mmapped. */
141 void *map_addr;
142 /* Page aligned size of mmapped area. */
143 bfd_size_type map_len;
be391dca
TT
144 /* True if we have tried to read this section. */
145 int readin;
dce234bc
PP
146};
147
8b70b953
TT
148typedef struct dwarf2_section_info dwarf2_section_info_def;
149DEF_VEC_O (dwarf2_section_info_def);
150
9291a0cd
TT
151/* All offsets in the index are of this type. It must be
152 architecture-independent. */
153typedef uint32_t offset_type;
154
155DEF_VEC_I (offset_type);
156
157/* A description of the mapped index. The file format is described in
158 a comment by the code that writes the index. */
159struct mapped_index
160{
559a7a62
JK
161 /* Index data format version. */
162 int version;
163
9291a0cd
TT
164 /* The total length of the buffer. */
165 off_t total_size;
b11b1f88 166
9291a0cd
TT
167 /* A pointer to the address table data. */
168 const gdb_byte *address_table;
b11b1f88 169
9291a0cd
TT
170 /* Size of the address table data in bytes. */
171 offset_type address_table_size;
b11b1f88 172
3876f04e
DE
173 /* The symbol table, implemented as a hash table. */
174 const offset_type *symbol_table;
b11b1f88 175
9291a0cd 176 /* Size in slots, each slot is 2 offset_types. */
3876f04e 177 offset_type symbol_table_slots;
b11b1f88 178
9291a0cd
TT
179 /* A pointer to the constant pool. */
180 const char *constant_pool;
181};
182
6502dd73
DJ
183struct dwarf2_per_objfile
184{
dce234bc
PP
185 struct dwarf2_section_info info;
186 struct dwarf2_section_info abbrev;
187 struct dwarf2_section_info line;
dce234bc
PP
188 struct dwarf2_section_info loc;
189 struct dwarf2_section_info macinfo;
cf2c3c16 190 struct dwarf2_section_info macro;
dce234bc
PP
191 struct dwarf2_section_info str;
192 struct dwarf2_section_info ranges;
193 struct dwarf2_section_info frame;
194 struct dwarf2_section_info eh_frame;
9291a0cd 195 struct dwarf2_section_info gdb_index;
ae038cb0 196
8b70b953
TT
197 VEC (dwarf2_section_info_def) *types;
198
be391dca
TT
199 /* Back link. */
200 struct objfile *objfile;
201
10b3939b
DJ
202 /* A list of all the compilation units. This is used to locate
203 the target compilation unit of a particular reference. */
ae038cb0
DJ
204 struct dwarf2_per_cu_data **all_comp_units;
205
206 /* The number of compilation units in ALL_COMP_UNITS. */
207 int n_comp_units;
208
1fd400ff
TT
209 /* The number of .debug_types-related CUs. */
210 int n_type_comp_units;
211
212 /* The .debug_types-related CUs. */
213 struct dwarf2_per_cu_data **type_comp_units;
214
ae038cb0
DJ
215 /* A chain of compilation units that are currently read in, so that
216 they can be freed later. */
217 struct dwarf2_per_cu_data *read_in_chain;
72dca2f5 218
348e048f
DE
219 /* A table mapping .debug_types signatures to its signatured_type entry.
220 This is NULL if the .debug_types section hasn't been read in yet. */
221 htab_t signatured_types;
222
72dca2f5
FR
223 /* A flag indicating wether this objfile has a section loaded at a
224 VMA of 0. */
225 int has_section_at_zero;
9291a0cd 226
ae2de4f8
DE
227 /* True if we are using the mapped index,
228 or we are faking it for OBJF_READNOW's sake. */
9291a0cd
TT
229 unsigned char using_index;
230
ae2de4f8 231 /* The mapped index, or NULL if .gdb_index is missing or not being used. */
9291a0cd 232 struct mapped_index *index_table;
98bfdba5 233
7b9f3c50
DE
234 /* When using index_table, this keeps track of all quick_file_names entries.
235 TUs can share line table entries with CUs or other TUs, and there can be
236 a lot more TUs than unique line tables, so we maintain a separate table
237 of all line table entries to support the sharing. */
238 htab_t quick_file_names_table;
239
98bfdba5
PA
240 /* Set during partial symbol reading, to prevent queueing of full
241 symbols. */
242 int reading_partial_symbols;
673bfd45
DE
243
244 /* Table mapping type .debug_info DIE offsets to types.
245 This is NULL if not allocated yet.
246 It (currently) makes sense to allocate debug_types_type_hash lazily.
247 To keep things simple we allocate both lazily. */
248 htab_t debug_info_type_hash;
249
250 /* Table mapping type .debug_types DIE offsets to types.
251 This is NULL if not allocated yet. */
252 htab_t debug_types_type_hash;
6502dd73
DJ
253};
254
255static struct dwarf2_per_objfile *dwarf2_per_objfile;
c906108c 256
251d32d9 257/* Default names of the debugging sections. */
c906108c 258
233a11ab
CS
259/* Note that if the debugging section has been compressed, it might
260 have a name like .zdebug_info. */
261
251d32d9
TG
262static const struct dwarf2_debug_sections dwarf2_elf_names = {
263 { ".debug_info", ".zdebug_info" },
264 { ".debug_abbrev", ".zdebug_abbrev" },
265 { ".debug_line", ".zdebug_line" },
266 { ".debug_loc", ".zdebug_loc" },
267 { ".debug_macinfo", ".zdebug_macinfo" },
cf2c3c16 268 { ".debug_macro", ".zdebug_macro" },
251d32d9
TG
269 { ".debug_str", ".zdebug_str" },
270 { ".debug_ranges", ".zdebug_ranges" },
271 { ".debug_types", ".zdebug_types" },
272 { ".debug_frame", ".zdebug_frame" },
273 { ".eh_frame", NULL },
24d3216f
TT
274 { ".gdb_index", ".zgdb_index" },
275 23
251d32d9 276};
c906108c
SS
277
278/* local data types */
279
0963b4bd 280/* We hold several abbreviation tables in memory at the same time. */
57349743
JB
281#ifndef ABBREV_HASH_SIZE
282#define ABBREV_HASH_SIZE 121
283#endif
284
107d2387
AC
285/* The data in a compilation unit header, after target2host
286 translation, looks like this. */
c906108c 287struct comp_unit_head
a738430d 288{
c764a876 289 unsigned int length;
a738430d 290 short version;
a738430d
MK
291 unsigned char addr_size;
292 unsigned char signed_addr_p;
9cbfa09e 293 unsigned int abbrev_offset;
57349743 294
a738430d
MK
295 /* Size of file offsets; either 4 or 8. */
296 unsigned int offset_size;
57349743 297
a738430d
MK
298 /* Size of the length field; either 4 or 12. */
299 unsigned int initial_length_size;
57349743 300
a738430d
MK
301 /* Offset to the first byte of this compilation unit header in the
302 .debug_info section, for resolving relative reference dies. */
303 unsigned int offset;
57349743 304
d00adf39
DE
305 /* Offset to first die in this cu from the start of the cu.
306 This will be the first byte following the compilation unit header. */
307 unsigned int first_die_offset;
a738430d 308};
c906108c 309
3da10d80
KS
310/* Type used for delaying computation of method physnames.
311 See comments for compute_delayed_physnames. */
312struct delayed_method_info
313{
314 /* The type to which the method is attached, i.e., its parent class. */
315 struct type *type;
316
317 /* The index of the method in the type's function fieldlists. */
318 int fnfield_index;
319
320 /* The index of the method in the fieldlist. */
321 int index;
322
323 /* The name of the DIE. */
324 const char *name;
325
326 /* The DIE associated with this method. */
327 struct die_info *die;
328};
329
330typedef struct delayed_method_info delayed_method_info;
331DEF_VEC_O (delayed_method_info);
332
e7c27a73
DJ
333/* Internal state when decoding a particular compilation unit. */
334struct dwarf2_cu
335{
336 /* The objfile containing this compilation unit. */
337 struct objfile *objfile;
338
d00adf39 339 /* The header of the compilation unit. */
e7c27a73 340 struct comp_unit_head header;
e142c38c 341
d00adf39
DE
342 /* Base address of this compilation unit. */
343 CORE_ADDR base_address;
344
345 /* Non-zero if base_address has been set. */
346 int base_known;
347
e142c38c
DJ
348 struct function_range *first_fn, *last_fn, *cached_fn;
349
350 /* The language we are debugging. */
351 enum language language;
352 const struct language_defn *language_defn;
353
b0f35d58
DL
354 const char *producer;
355
e142c38c
DJ
356 /* The generic symbol table building routines have separate lists for
357 file scope symbols and all all other scopes (local scopes). So
358 we need to select the right one to pass to add_symbol_to_list().
359 We do it by keeping a pointer to the correct list in list_in_scope.
360
361 FIXME: The original dwarf code just treated the file scope as the
362 first local scope, and all other local scopes as nested local
363 scopes, and worked fine. Check to see if we really need to
364 distinguish these in buildsym.c. */
365 struct pending **list_in_scope;
366
f3dd6933
DJ
367 /* DWARF abbreviation table associated with this compilation unit. */
368 struct abbrev_info **dwarf2_abbrevs;
369
370 /* Storage for the abbrev table. */
371 struct obstack abbrev_obstack;
72bf9492
DJ
372
373 /* Hash table holding all the loaded partial DIEs. */
374 htab_t partial_dies;
375
376 /* Storage for things with the same lifetime as this read-in compilation
377 unit, including partial DIEs. */
378 struct obstack comp_unit_obstack;
379
ae038cb0
DJ
380 /* When multiple dwarf2_cu structures are living in memory, this field
381 chains them all together, so that they can be released efficiently.
382 We will probably also want a generation counter so that most-recently-used
383 compilation units are cached... */
384 struct dwarf2_per_cu_data *read_in_chain;
385
386 /* Backchain to our per_cu entry if the tree has been built. */
387 struct dwarf2_per_cu_data *per_cu;
388
389 /* How many compilation units ago was this CU last referenced? */
390 int last_used;
391
10b3939b 392 /* A hash table of die offsets for following references. */
51545339 393 htab_t die_hash;
10b3939b
DJ
394
395 /* Full DIEs if read in. */
396 struct die_info *dies;
397
398 /* A set of pointers to dwarf2_per_cu_data objects for compilation
399 units referenced by this one. Only set during full symbol processing;
400 partial symbol tables do not have dependencies. */
401 htab_t dependencies;
402
cb1df416
DJ
403 /* Header data from the line table, during full symbol processing. */
404 struct line_header *line_header;
405
3da10d80
KS
406 /* A list of methods which need to have physnames computed
407 after all type information has been read. */
408 VEC (delayed_method_info) *method_list;
409
ae038cb0
DJ
410 /* Mark used when releasing cached dies. */
411 unsigned int mark : 1;
412
413 /* This flag will be set if this compilation unit might include
414 inter-compilation-unit references. */
415 unsigned int has_form_ref_addr : 1;
416
72bf9492
DJ
417 /* This flag will be set if this compilation unit includes any
418 DW_TAG_namespace DIEs. If we know that there are explicit
419 DIEs for namespaces, we don't need to try to infer them
420 from mangled names. */
421 unsigned int has_namespace_info : 1;
8be455d7
JK
422
423 /* This CU references .debug_loc. See the symtab->locations_valid field.
424 This test is imperfect as there may exist optimized debug code not using
425 any location list and still facing inlining issues if handled as
426 unoptimized code. For a future better test see GCC PR other/32998. */
427
428 unsigned int has_loclist : 1;
e7c27a73
DJ
429};
430
10b3939b
DJ
431/* Persistent data held for a compilation unit, even when not
432 processing it. We put a pointer to this structure in the
433 read_symtab_private field of the psymtab. If we encounter
434 inter-compilation-unit references, we also maintain a sorted
435 list of all compilation units. */
436
ae038cb0
DJ
437struct dwarf2_per_cu_data
438{
348e048f 439 /* The start offset and length of this compilation unit. 2**29-1
ae038cb0 440 bytes should suffice to store the length of any compilation unit
45452591
DE
441 - if it doesn't, GDB will fall over anyway.
442 NOTE: Unlike comp_unit_head.length, this length includes
443 initial_length_size. */
c764a876 444 unsigned int offset;
348e048f 445 unsigned int length : 29;
ae038cb0
DJ
446
447 /* Flag indicating this compilation unit will be read in before
448 any of the current compilation units are processed. */
c764a876 449 unsigned int queued : 1;
ae038cb0 450
5afb4e99
DJ
451 /* This flag will be set if we need to load absolutely all DIEs
452 for this compilation unit, instead of just the ones we think
453 are interesting. It gets set if we look for a DIE in the
454 hash table and don't find it. */
455 unsigned int load_all_dies : 1;
456
8b70b953
TT
457 /* Non-null if this CU is from .debug_types; in which case it points
458 to the section. Otherwise it's from .debug_info. */
459 struct dwarf2_section_info *debug_type_section;
348e048f 460
17ea53c3
JK
461 /* Set to non-NULL iff this CU is currently loaded. When it gets freed out
462 of the CU cache it gets reset to NULL again. */
ae038cb0 463 struct dwarf2_cu *cu;
1c379e20 464
9291a0cd
TT
465 /* The corresponding objfile. */
466 struct objfile *objfile;
467
468 /* When using partial symbol tables, the 'psymtab' field is active.
469 Otherwise the 'quick' field is active. */
470 union
471 {
472 /* The partial symbol table associated with this compilation unit,
473 or NULL for partial units (which do not have an associated
474 symtab). */
475 struct partial_symtab *psymtab;
476
477 /* Data needed by the "quick" functions. */
478 struct dwarf2_per_cu_quick_data *quick;
479 } v;
ae038cb0
DJ
480};
481
348e048f
DE
482/* Entry in the signatured_types hash table. */
483
484struct signatured_type
485{
486 ULONGEST signature;
487
348e048f
DE
488 /* Offset in .debug_types of the type defined by this TU. */
489 unsigned int type_offset;
490
491 /* The CU(/TU) of this type. */
492 struct dwarf2_per_cu_data per_cu;
493};
494
0963b4bd
MS
495/* Struct used to pass misc. parameters to read_die_and_children, et
496 al. which are used for both .debug_info and .debug_types dies.
497 All parameters here are unchanging for the life of the call. This
498 struct exists to abstract away the constant parameters of die
499 reading. */
93311388
DE
500
501struct die_reader_specs
502{
503 /* The bfd of this objfile. */
504 bfd* abfd;
505
506 /* The CU of the DIE we are parsing. */
507 struct dwarf2_cu *cu;
508
509 /* Pointer to start of section buffer.
510 This is either the start of .debug_info or .debug_types. */
511 const gdb_byte *buffer;
512};
513
debd256d
JB
514/* The line number information for a compilation unit (found in the
515 .debug_line section) begins with a "statement program header",
516 which contains the following information. */
517struct line_header
518{
519 unsigned int total_length;
520 unsigned short version;
521 unsigned int header_length;
522 unsigned char minimum_instruction_length;
2dc7f7b3 523 unsigned char maximum_ops_per_instruction;
debd256d
JB
524 unsigned char default_is_stmt;
525 int line_base;
526 unsigned char line_range;
527 unsigned char opcode_base;
528
529 /* standard_opcode_lengths[i] is the number of operands for the
530 standard opcode whose value is i. This means that
531 standard_opcode_lengths[0] is unused, and the last meaningful
532 element is standard_opcode_lengths[opcode_base - 1]. */
533 unsigned char *standard_opcode_lengths;
534
535 /* The include_directories table. NOTE! These strings are not
536 allocated with xmalloc; instead, they are pointers into
537 debug_line_buffer. If you try to free them, `free' will get
538 indigestion. */
539 unsigned int num_include_dirs, include_dirs_size;
540 char **include_dirs;
541
542 /* The file_names table. NOTE! These strings are not allocated
543 with xmalloc; instead, they are pointers into debug_line_buffer.
544 Don't try to free them directly. */
545 unsigned int num_file_names, file_names_size;
546 struct file_entry
c906108c 547 {
debd256d
JB
548 char *name;
549 unsigned int dir_index;
550 unsigned int mod_time;
551 unsigned int length;
aaa75496 552 int included_p; /* Non-zero if referenced by the Line Number Program. */
cb1df416 553 struct symtab *symtab; /* The associated symbol table, if any. */
debd256d
JB
554 } *file_names;
555
556 /* The start and end of the statement program following this
6502dd73 557 header. These point into dwarf2_per_objfile->line_buffer. */
fe1b8b76 558 gdb_byte *statement_program_start, *statement_program_end;
debd256d 559};
c906108c
SS
560
561/* When we construct a partial symbol table entry we only
0963b4bd 562 need this much information. */
c906108c
SS
563struct partial_die_info
564 {
72bf9492 565 /* Offset of this DIE. */
c906108c 566 unsigned int offset;
72bf9492
DJ
567
568 /* DWARF-2 tag for this DIE. */
569 ENUM_BITFIELD(dwarf_tag) tag : 16;
570
72bf9492
DJ
571 /* Assorted flags describing the data found in this DIE. */
572 unsigned int has_children : 1;
573 unsigned int is_external : 1;
574 unsigned int is_declaration : 1;
575 unsigned int has_type : 1;
576 unsigned int has_specification : 1;
577 unsigned int has_pc_info : 1;
578
579 /* Flag set if the SCOPE field of this structure has been
580 computed. */
581 unsigned int scope_set : 1;
582
fa4028e9
JB
583 /* Flag set if the DIE has a byte_size attribute. */
584 unsigned int has_byte_size : 1;
585
98bfdba5
PA
586 /* Flag set if any of the DIE's children are template arguments. */
587 unsigned int has_template_arguments : 1;
588
abc72ce4
DE
589 /* Flag set if fixup_partial_die has been called on this die. */
590 unsigned int fixup_called : 1;
591
72bf9492 592 /* The name of this DIE. Normally the value of DW_AT_name, but
94af9270 593 sometimes a default name for unnamed DIEs. */
c906108c 594 char *name;
72bf9492 595
abc72ce4
DE
596 /* The linkage name, if present. */
597 const char *linkage_name;
598
72bf9492
DJ
599 /* The scope to prepend to our children. This is generally
600 allocated on the comp_unit_obstack, so will disappear
601 when this compilation unit leaves the cache. */
602 char *scope;
603
604 /* The location description associated with this DIE, if any. */
605 struct dwarf_block *locdesc;
606
607 /* If HAS_PC_INFO, the PC range associated with this DIE. */
c906108c
SS
608 CORE_ADDR lowpc;
609 CORE_ADDR highpc;
72bf9492 610
93311388 611 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
72bf9492 612 DW_AT_sibling, if any. */
abc72ce4
DE
613 /* NOTE: This member isn't strictly necessary, read_partial_die could
614 return DW_AT_sibling values to its caller load_partial_dies. */
fe1b8b76 615 gdb_byte *sibling;
72bf9492
DJ
616
617 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
618 DW_AT_specification (or DW_AT_abstract_origin or
619 DW_AT_extension). */
620 unsigned int spec_offset;
621
622 /* Pointers to this DIE's parent, first child, and next sibling,
623 if any. */
624 struct partial_die_info *die_parent, *die_child, *die_sibling;
c906108c
SS
625 };
626
0963b4bd 627/* This data structure holds the information of an abbrev. */
c906108c
SS
628struct abbrev_info
629 {
630 unsigned int number; /* number identifying abbrev */
631 enum dwarf_tag tag; /* dwarf tag */
f3dd6933
DJ
632 unsigned short has_children; /* boolean */
633 unsigned short num_attrs; /* number of attributes */
c906108c
SS
634 struct attr_abbrev *attrs; /* an array of attribute descriptions */
635 struct abbrev_info *next; /* next in chain */
636 };
637
638struct attr_abbrev
639 {
9d25dd43
DE
640 ENUM_BITFIELD(dwarf_attribute) name : 16;
641 ENUM_BITFIELD(dwarf_form) form : 16;
c906108c
SS
642 };
643
0963b4bd 644/* Attributes have a name and a value. */
b60c80d6
DJ
645struct attribute
646 {
9d25dd43 647 ENUM_BITFIELD(dwarf_attribute) name : 16;
8285870a
JK
648 ENUM_BITFIELD(dwarf_form) form : 15;
649
650 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
651 field should be in u.str (existing only for DW_STRING) but it is kept
652 here for better struct attribute alignment. */
653 unsigned int string_is_canonical : 1;
654
b60c80d6
DJ
655 union
656 {
657 char *str;
658 struct dwarf_block *blk;
43bbcdc2
PH
659 ULONGEST unsnd;
660 LONGEST snd;
b60c80d6 661 CORE_ADDR addr;
348e048f 662 struct signatured_type *signatured_type;
b60c80d6
DJ
663 }
664 u;
665 };
666
0963b4bd 667/* This data structure holds a complete die structure. */
c906108c
SS
668struct die_info
669 {
76815b17
DE
670 /* DWARF-2 tag for this DIE. */
671 ENUM_BITFIELD(dwarf_tag) tag : 16;
672
673 /* Number of attributes */
98bfdba5
PA
674 unsigned char num_attrs;
675
676 /* True if we're presently building the full type name for the
677 type derived from this DIE. */
678 unsigned char building_fullname : 1;
76815b17
DE
679
680 /* Abbrev number */
681 unsigned int abbrev;
682
93311388 683 /* Offset in .debug_info or .debug_types section. */
76815b17 684 unsigned int offset;
78ba4af6
JB
685
686 /* The dies in a compilation unit form an n-ary tree. PARENT
687 points to this die's parent; CHILD points to the first child of
688 this node; and all the children of a given node are chained
4950bc1c 689 together via their SIBLING fields. */
639d11d3
DC
690 struct die_info *child; /* Its first child, if any. */
691 struct die_info *sibling; /* Its next sibling, if any. */
692 struct die_info *parent; /* Its parent, if any. */
c906108c 693
b60c80d6
DJ
694 /* An array of attributes, with NUM_ATTRS elements. There may be
695 zero, but it's not common and zero-sized arrays are not
696 sufficiently portable C. */
697 struct attribute attrs[1];
c906108c
SS
698 };
699
5fb290d7
DJ
700struct function_range
701{
702 const char *name;
703 CORE_ADDR lowpc, highpc;
704 int seen_line;
705 struct function_range *next;
706};
707
0963b4bd 708/* Get at parts of an attribute structure. */
c906108c
SS
709
710#define DW_STRING(attr) ((attr)->u.str)
8285870a 711#define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
c906108c
SS
712#define DW_UNSND(attr) ((attr)->u.unsnd)
713#define DW_BLOCK(attr) ((attr)->u.blk)
714#define DW_SND(attr) ((attr)->u.snd)
715#define DW_ADDR(attr) ((attr)->u.addr)
348e048f 716#define DW_SIGNATURED_TYPE(attr) ((attr)->u.signatured_type)
c906108c 717
0963b4bd 718/* Blocks are a bunch of untyped bytes. */
c906108c
SS
719struct dwarf_block
720 {
721 unsigned int size;
fe1b8b76 722 gdb_byte *data;
c906108c
SS
723 };
724
c906108c
SS
725#ifndef ATTR_ALLOC_CHUNK
726#define ATTR_ALLOC_CHUNK 4
727#endif
728
c906108c
SS
729/* Allocate fields for structs, unions and enums in this size. */
730#ifndef DW_FIELD_ALLOC_CHUNK
731#define DW_FIELD_ALLOC_CHUNK 4
732#endif
733
c906108c
SS
734/* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
735 but this would require a corresponding change in unpack_field_as_long
736 and friends. */
737static int bits_per_byte = 8;
738
739/* The routines that read and process dies for a C struct or C++ class
740 pass lists of data member fields and lists of member function fields
741 in an instance of a field_info structure, as defined below. */
742struct field_info
c5aa993b 743 {
0963b4bd 744 /* List of data member and baseclasses fields. */
c5aa993b
JM
745 struct nextfield
746 {
747 struct nextfield *next;
748 int accessibility;
749 int virtuality;
750 struct field field;
751 }
7d0ccb61 752 *fields, *baseclasses;
c906108c 753
7d0ccb61 754 /* Number of fields (including baseclasses). */
c5aa993b 755 int nfields;
c906108c 756
c5aa993b
JM
757 /* Number of baseclasses. */
758 int nbaseclasses;
c906108c 759
c5aa993b
JM
760 /* Set if the accesibility of one of the fields is not public. */
761 int non_public_fields;
c906108c 762
c5aa993b
JM
763 /* Member function fields array, entries are allocated in the order they
764 are encountered in the object file. */
765 struct nextfnfield
766 {
767 struct nextfnfield *next;
768 struct fn_field fnfield;
769 }
770 *fnfields;
c906108c 771
c5aa993b
JM
772 /* Member function fieldlist array, contains name of possibly overloaded
773 member function, number of overloaded member functions and a pointer
774 to the head of the member function field chain. */
775 struct fnfieldlist
776 {
777 char *name;
778 int length;
779 struct nextfnfield *head;
780 }
781 *fnfieldlists;
c906108c 782
c5aa993b
JM
783 /* Number of entries in the fnfieldlists array. */
784 int nfnfields;
98751a41
JK
785
786 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
787 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
788 struct typedef_field_list
789 {
790 struct typedef_field field;
791 struct typedef_field_list *next;
792 }
793 *typedef_field_list;
794 unsigned typedef_field_list_count;
c5aa993b 795 };
c906108c 796
10b3939b
DJ
797/* One item on the queue of compilation units to read in full symbols
798 for. */
799struct dwarf2_queue_item
800{
801 struct dwarf2_per_cu_data *per_cu;
802 struct dwarf2_queue_item *next;
803};
804
805/* The current queue. */
806static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
807
ae038cb0
DJ
808/* Loaded secondary compilation units are kept in memory until they
809 have not been referenced for the processing of this many
810 compilation units. Set this to zero to disable caching. Cache
811 sizes of up to at least twenty will improve startup time for
812 typical inter-CU-reference binaries, at an obvious memory cost. */
813static int dwarf2_max_cache_age = 5;
920d2a44
AC
814static void
815show_dwarf2_max_cache_age (struct ui_file *file, int from_tty,
816 struct cmd_list_element *c, const char *value)
817{
3e43a32a
MS
818 fprintf_filtered (file, _("The upper bound on the age of cached "
819 "dwarf2 compilation units is %s.\n"),
920d2a44
AC
820 value);
821}
822
ae038cb0 823
0963b4bd 824/* Various complaints about symbol reading that don't abort the process. */
c906108c 825
4d3c2250
KB
826static void
827dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2e276125 828{
4d3c2250 829 complaint (&symfile_complaints,
e2e0b3e5 830 _("statement list doesn't fit in .debug_line section"));
4d3c2250
KB
831}
832
25e43795
DJ
833static void
834dwarf2_debug_line_missing_file_complaint (void)
835{
836 complaint (&symfile_complaints,
837 _(".debug_line section has line data without a file"));
838}
839
59205f5a
JB
840static void
841dwarf2_debug_line_missing_end_sequence_complaint (void)
842{
843 complaint (&symfile_complaints,
3e43a32a
MS
844 _(".debug_line section has line "
845 "program sequence without an end"));
59205f5a
JB
846}
847
4d3c2250
KB
848static void
849dwarf2_complex_location_expr_complaint (void)
2e276125 850{
e2e0b3e5 851 complaint (&symfile_complaints, _("location expression too complex"));
4d3c2250
KB
852}
853
4d3c2250
KB
854static void
855dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
856 int arg3)
2e276125 857{
4d3c2250 858 complaint (&symfile_complaints,
3e43a32a
MS
859 _("const value length mismatch for '%s', got %d, expected %d"),
860 arg1, arg2, arg3);
4d3c2250
KB
861}
862
863static void
cf2c3c16 864dwarf2_macros_too_long_complaint (struct dwarf2_section_info *section)
2e276125 865{
4d3c2250 866 complaint (&symfile_complaints,
cf2c3c16
TT
867 _("macro info runs off end of `%s' section"),
868 section->asection->name);
4d3c2250
KB
869}
870
871static void
872dwarf2_macro_malformed_definition_complaint (const char *arg1)
8e19ed76 873{
4d3c2250 874 complaint (&symfile_complaints,
3e43a32a
MS
875 _("macro debug info contains a "
876 "malformed macro definition:\n`%s'"),
4d3c2250
KB
877 arg1);
878}
879
880static void
881dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
8b2dbe47 882{
4d3c2250 883 complaint (&symfile_complaints,
3e43a32a
MS
884 _("invalid attribute class or form for '%s' in '%s'"),
885 arg1, arg2);
4d3c2250 886}
c906108c 887
c906108c
SS
888/* local function prototypes */
889
4efb68b1 890static void dwarf2_locate_sections (bfd *, asection *, void *);
c906108c 891
aaa75496
JB
892static void dwarf2_create_include_psymtab (char *, struct partial_symtab *,
893 struct objfile *);
894
918dd910
JK
895static void dwarf2_find_base_address (struct die_info *die,
896 struct dwarf2_cu *cu);
897
c67a9c90 898static void dwarf2_build_psymtabs_hard (struct objfile *);
c906108c 899
72bf9492
DJ
900static void scan_partial_symbols (struct partial_die_info *,
901 CORE_ADDR *, CORE_ADDR *,
5734ee8b 902 int, struct dwarf2_cu *);
c906108c 903
72bf9492
DJ
904static void add_partial_symbol (struct partial_die_info *,
905 struct dwarf2_cu *);
63d06c5c 906
72bf9492
DJ
907static void add_partial_namespace (struct partial_die_info *pdi,
908 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 909 int need_pc, struct dwarf2_cu *cu);
63d06c5c 910
5d7cb8df
JK
911static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
912 CORE_ADDR *highpc, int need_pc,
913 struct dwarf2_cu *cu);
914
72bf9492
DJ
915static void add_partial_enumeration (struct partial_die_info *enum_pdi,
916 struct dwarf2_cu *cu);
91c24f0a 917
bc30ff58
JB
918static void add_partial_subprogram (struct partial_die_info *pdi,
919 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 920 int need_pc, struct dwarf2_cu *cu);
bc30ff58 921
fe1b8b76 922static gdb_byte *locate_pdi_sibling (struct partial_die_info *orig_pdi,
93311388
DE
923 gdb_byte *buffer, gdb_byte *info_ptr,
924 bfd *abfd, struct dwarf2_cu *cu);
91c24f0a 925
a14ed312 926static void dwarf2_psymtab_to_symtab (struct partial_symtab *);
c906108c 927
a14ed312 928static void psymtab_to_symtab_1 (struct partial_symtab *);
c906108c 929
e7c27a73 930static void dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu);
c906108c 931
f3dd6933 932static void dwarf2_free_abbrev_table (void *);
c906108c 933
fe1b8b76 934static struct abbrev_info *peek_die_abbrev (gdb_byte *, unsigned int *,
891d2f0b 935 struct dwarf2_cu *);
72bf9492 936
57349743 937static struct abbrev_info *dwarf2_lookup_abbrev (unsigned int,
e7c27a73 938 struct dwarf2_cu *);
c906108c 939
93311388
DE
940static struct partial_die_info *load_partial_dies (bfd *,
941 gdb_byte *, gdb_byte *,
942 int, struct dwarf2_cu *);
72bf9492 943
fe1b8b76 944static gdb_byte *read_partial_die (struct partial_die_info *,
93311388
DE
945 struct abbrev_info *abbrev,
946 unsigned int, bfd *,
947 gdb_byte *, gdb_byte *,
948 struct dwarf2_cu *);
c906108c 949
c764a876 950static struct partial_die_info *find_partial_die (unsigned int,
10b3939b 951 struct dwarf2_cu *);
72bf9492
DJ
952
953static void fixup_partial_die (struct partial_die_info *,
954 struct dwarf2_cu *);
955
fe1b8b76
JB
956static gdb_byte *read_attribute (struct attribute *, struct attr_abbrev *,
957 bfd *, gdb_byte *, struct dwarf2_cu *);
c906108c 958
fe1b8b76
JB
959static gdb_byte *read_attribute_value (struct attribute *, unsigned,
960 bfd *, gdb_byte *, struct dwarf2_cu *);
a8329558 961
fe1b8b76 962static unsigned int read_1_byte (bfd *, gdb_byte *);
c906108c 963
fe1b8b76 964static int read_1_signed_byte (bfd *, gdb_byte *);
c906108c 965
fe1b8b76 966static unsigned int read_2_bytes (bfd *, gdb_byte *);
c906108c 967
fe1b8b76 968static unsigned int read_4_bytes (bfd *, gdb_byte *);
c906108c 969
93311388 970static ULONGEST read_8_bytes (bfd *, gdb_byte *);
c906108c 971
fe1b8b76 972static CORE_ADDR read_address (bfd *, gdb_byte *ptr, struct dwarf2_cu *,
891d2f0b 973 unsigned int *);
c906108c 974
c764a876
DE
975static LONGEST read_initial_length (bfd *, gdb_byte *, unsigned int *);
976
977static LONGEST read_checked_initial_length_and_offset
978 (bfd *, gdb_byte *, const struct comp_unit_head *,
979 unsigned int *, unsigned int *);
613e1657 980
fe1b8b76 981static LONGEST read_offset (bfd *, gdb_byte *, const struct comp_unit_head *,
c764a876
DE
982 unsigned int *);
983
984static LONGEST read_offset_1 (bfd *, gdb_byte *, unsigned int);
613e1657 985
fe1b8b76 986static gdb_byte *read_n_bytes (bfd *, gdb_byte *, unsigned int);
c906108c 987
9b1c24c8 988static char *read_direct_string (bfd *, gdb_byte *, unsigned int *);
c906108c 989
fe1b8b76
JB
990static char *read_indirect_string (bfd *, gdb_byte *,
991 const struct comp_unit_head *,
992 unsigned int *);
4bdf3d34 993
fe1b8b76 994static unsigned long read_unsigned_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 995
fe1b8b76 996static long read_signed_leb128 (bfd *, gdb_byte *, unsigned int *);
c906108c 997
fe1b8b76 998static gdb_byte *skip_leb128 (bfd *, gdb_byte *);
4bb7a0a7 999
e142c38c 1000static void set_cu_language (unsigned int, struct dwarf2_cu *);
c906108c 1001
e142c38c
DJ
1002static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1003 struct dwarf2_cu *);
c906108c 1004
348e048f
DE
1005static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1006 unsigned int,
1007 struct dwarf2_cu *);
1008
05cf31d1
JB
1009static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1010 struct dwarf2_cu *cu);
1011
e142c38c 1012static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
3ca72b44 1013
e142c38c 1014static struct die_info *die_specification (struct die_info *die,
f2f0e013 1015 struct dwarf2_cu **);
63d06c5c 1016
debd256d
JB
1017static void free_line_header (struct line_header *lh);
1018
aaa75496
JB
1019static void add_file_name (struct line_header *, char *, unsigned int,
1020 unsigned int, unsigned int);
1021
debd256d
JB
1022static struct line_header *(dwarf_decode_line_header
1023 (unsigned int offset,
e7c27a73 1024 bfd *abfd, struct dwarf2_cu *cu));
debd256d 1025
72b9f47f 1026static void dwarf_decode_lines (struct line_header *, const char *, bfd *,
aaa75496 1027 struct dwarf2_cu *, struct partial_symtab *);
c906108c 1028
72b9f47f 1029static void dwarf2_start_subfile (char *, const char *, const char *);
c906108c 1030
a14ed312 1031static struct symbol *new_symbol (struct die_info *, struct type *,
e7c27a73 1032 struct dwarf2_cu *);
c906108c 1033
34eaf542
TT
1034static struct symbol *new_symbol_full (struct die_info *, struct type *,
1035 struct dwarf2_cu *, struct symbol *);
1036
a14ed312 1037static void dwarf2_const_value (struct attribute *, struct symbol *,
e7c27a73 1038 struct dwarf2_cu *);
c906108c 1039
98bfdba5
PA
1040static void dwarf2_const_value_attr (struct attribute *attr,
1041 struct type *type,
1042 const char *name,
1043 struct obstack *obstack,
1044 struct dwarf2_cu *cu, long *value,
1045 gdb_byte **bytes,
1046 struct dwarf2_locexpr_baton **baton);
2df3850c 1047
e7c27a73 1048static struct type *die_type (struct die_info *, struct dwarf2_cu *);
c906108c 1049
b4ba55a1
JB
1050static int need_gnat_info (struct dwarf2_cu *);
1051
3e43a32a
MS
1052static struct type *die_descriptive_type (struct die_info *,
1053 struct dwarf2_cu *);
b4ba55a1
JB
1054
1055static void set_descriptive_type (struct type *, struct die_info *,
1056 struct dwarf2_cu *);
1057
e7c27a73
DJ
1058static struct type *die_containing_type (struct die_info *,
1059 struct dwarf2_cu *);
c906108c 1060
673bfd45
DE
1061static struct type *lookup_die_type (struct die_info *, struct attribute *,
1062 struct dwarf2_cu *);
c906108c 1063
f792889a 1064static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
c906108c 1065
673bfd45
DE
1066static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1067
086ed43d 1068static char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
63d06c5c 1069
6e70227d 1070static char *typename_concat (struct obstack *obs, const char *prefix,
f55ee35c
JK
1071 const char *suffix, int physname,
1072 struct dwarf2_cu *cu);
63d06c5c 1073
e7c27a73 1074static void read_file_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1075
348e048f
DE
1076static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1077
e7c27a73 1078static void read_func_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1079
e7c27a73 1080static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1081
ff013f42
JK
1082static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1083 struct dwarf2_cu *, struct partial_symtab *);
1084
a14ed312 1085static int dwarf2_get_pc_bounds (struct die_info *,
d85a05f0
DJ
1086 CORE_ADDR *, CORE_ADDR *, struct dwarf2_cu *,
1087 struct partial_symtab *);
c906108c 1088
fae299cd
DC
1089static void get_scope_pc_bounds (struct die_info *,
1090 CORE_ADDR *, CORE_ADDR *,
1091 struct dwarf2_cu *);
1092
801e3a5b
JB
1093static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1094 CORE_ADDR, struct dwarf2_cu *);
1095
a14ed312 1096static void dwarf2_add_field (struct field_info *, struct die_info *,
e7c27a73 1097 struct dwarf2_cu *);
c906108c 1098
a14ed312 1099static void dwarf2_attach_fields_to_type (struct field_info *,
e7c27a73 1100 struct type *, struct dwarf2_cu *);
c906108c 1101
a14ed312 1102static void dwarf2_add_member_fn (struct field_info *,
e26fb1d7 1103 struct die_info *, struct type *,
e7c27a73 1104 struct dwarf2_cu *);
c906108c 1105
a14ed312 1106static void dwarf2_attach_fn_fields_to_type (struct field_info *,
3e43a32a
MS
1107 struct type *,
1108 struct dwarf2_cu *);
c906108c 1109
134d01f1 1110static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1111
e7c27a73 1112static void read_common_block (struct die_info *, struct dwarf2_cu *);
c906108c 1113
e7c27a73 1114static void read_namespace (struct die_info *die, struct dwarf2_cu *);
d9fa45fe 1115
5d7cb8df
JK
1116static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1117
27aa8d6a
SW
1118static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1119
f55ee35c
JK
1120static struct type *read_module_type (struct die_info *die,
1121 struct dwarf2_cu *cu);
1122
38d518c9 1123static const char *namespace_name (struct die_info *die,
e142c38c 1124 int *is_anonymous, struct dwarf2_cu *);
38d518c9 1125
134d01f1 1126static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
c906108c 1127
e7c27a73 1128static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
c906108c 1129
6e70227d 1130static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
7ca2d3a3
DL
1131 struct dwarf2_cu *);
1132
93311388 1133static struct die_info *read_comp_unit (gdb_byte *, struct dwarf2_cu *);
c906108c 1134
93311388
DE
1135static struct die_info *read_die_and_children_1 (const struct die_reader_specs *reader,
1136 gdb_byte *info_ptr,
d97bc12b
DE
1137 gdb_byte **new_info_ptr,
1138 struct die_info *parent);
1139
93311388
DE
1140static struct die_info *read_die_and_children (const struct die_reader_specs *reader,
1141 gdb_byte *info_ptr,
fe1b8b76 1142 gdb_byte **new_info_ptr,
639d11d3
DC
1143 struct die_info *parent);
1144
93311388
DE
1145static struct die_info *read_die_and_siblings (const struct die_reader_specs *reader,
1146 gdb_byte *info_ptr,
fe1b8b76 1147 gdb_byte **new_info_ptr,
639d11d3
DC
1148 struct die_info *parent);
1149
93311388
DE
1150static gdb_byte *read_full_die (const struct die_reader_specs *reader,
1151 struct die_info **, gdb_byte *,
1152 int *);
1153
e7c27a73 1154static void process_die (struct die_info *, struct dwarf2_cu *);
c906108c 1155
71c25dea
TT
1156static char *dwarf2_canonicalize_name (char *, struct dwarf2_cu *,
1157 struct obstack *);
1158
e142c38c 1159static char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
9219021c 1160
98bfdba5
PA
1161static const char *dwarf2_full_name (char *name,
1162 struct die_info *die,
1163 struct dwarf2_cu *cu);
1164
e142c38c 1165static struct die_info *dwarf2_extension (struct die_info *die,
f2f0e013 1166 struct dwarf2_cu **);
9219021c 1167
a14ed312 1168static char *dwarf_tag_name (unsigned int);
c906108c 1169
a14ed312 1170static char *dwarf_attr_name (unsigned int);
c906108c 1171
a14ed312 1172static char *dwarf_form_name (unsigned int);
c906108c 1173
a14ed312 1174static char *dwarf_bool_name (unsigned int);
c906108c 1175
a14ed312 1176static char *dwarf_type_encoding_name (unsigned int);
c906108c
SS
1177
1178#if 0
a14ed312 1179static char *dwarf_cfi_name (unsigned int);
c906108c
SS
1180#endif
1181
f9aca02d 1182static struct die_info *sibling_die (struct die_info *);
c906108c 1183
d97bc12b
DE
1184static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1185
1186static void dump_die_for_error (struct die_info *);
1187
1188static void dump_die_1 (struct ui_file *, int level, int max_level,
1189 struct die_info *);
c906108c 1190
d97bc12b 1191/*static*/ void dump_die (struct die_info *, int max_level);
c906108c 1192
51545339 1193static void store_in_ref_table (struct die_info *,
10b3939b 1194 struct dwarf2_cu *);
c906108c 1195
93311388
DE
1196static int is_ref_attr (struct attribute *);
1197
c764a876 1198static unsigned int dwarf2_get_ref_die_offset (struct attribute *);
c906108c 1199
43bbcdc2 1200static LONGEST dwarf2_get_attr_constant_value (struct attribute *, int);
a02abb62 1201
348e048f
DE
1202static struct die_info *follow_die_ref_or_sig (struct die_info *,
1203 struct attribute *,
1204 struct dwarf2_cu **);
1205
10b3939b
DJ
1206static struct die_info *follow_die_ref (struct die_info *,
1207 struct attribute *,
f2f0e013 1208 struct dwarf2_cu **);
c906108c 1209
348e048f
DE
1210static struct die_info *follow_die_sig (struct die_info *,
1211 struct attribute *,
1212 struct dwarf2_cu **);
1213
6c83ed52
TT
1214static struct signatured_type *lookup_signatured_type_at_offset
1215 (struct objfile *objfile,
1216 struct dwarf2_section_info *section,
1217 unsigned int offset);
1218
348e048f 1219static void read_signatured_type_at_offset (struct objfile *objfile,
8b70b953 1220 struct dwarf2_section_info *sect,
348e048f
DE
1221 unsigned int offset);
1222
1223static void read_signatured_type (struct objfile *,
1224 struct signatured_type *type_sig);
1225
c906108c
SS
1226/* memory allocation interface */
1227
7b5a2f43 1228static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
c906108c 1229
f3dd6933 1230static struct abbrev_info *dwarf_alloc_abbrev (struct dwarf2_cu *);
c906108c 1231
b60c80d6 1232static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
c906108c 1233
e142c38c 1234static void initialize_cu_func_list (struct dwarf2_cu *);
5fb290d7 1235
e142c38c
DJ
1236static void add_to_cu_func_list (const char *, CORE_ADDR, CORE_ADDR,
1237 struct dwarf2_cu *);
5fb290d7 1238
2e276125 1239static void dwarf_decode_macros (struct line_header *, unsigned int,
cf2c3c16
TT
1240 char *, bfd *, struct dwarf2_cu *,
1241 struct dwarf2_section_info *,
1242 int);
2e276125 1243
8e19ed76
PS
1244static int attr_form_is_block (struct attribute *);
1245
3690dd37
JB
1246static int attr_form_is_section_offset (struct attribute *);
1247
1248static int attr_form_is_constant (struct attribute *);
1249
8cf6f0b1
TT
1250static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1251 struct dwarf2_loclist_baton *baton,
1252 struct attribute *attr);
1253
93e7bd98
DJ
1254static void dwarf2_symbol_mark_computed (struct attribute *attr,
1255 struct symbol *sym,
1256 struct dwarf2_cu *cu);
4c2df51b 1257
93311388
DE
1258static gdb_byte *skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
1259 struct abbrev_info *abbrev,
1260 struct dwarf2_cu *cu);
4bb7a0a7 1261
72bf9492
DJ
1262static void free_stack_comp_unit (void *);
1263
72bf9492
DJ
1264static hashval_t partial_die_hash (const void *item);
1265
1266static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1267
ae038cb0 1268static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
c764a876 1269 (unsigned int offset, struct objfile *objfile);
ae038cb0
DJ
1270
1271static struct dwarf2_per_cu_data *dwarf2_find_comp_unit
c764a876 1272 (unsigned int offset, struct objfile *objfile);
ae038cb0 1273
9816fde3
JK
1274static void init_one_comp_unit (struct dwarf2_cu *cu,
1275 struct objfile *objfile);
1276
1277static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1278 struct die_info *comp_unit_die);
93311388 1279
ae038cb0
DJ
1280static void free_one_comp_unit (void *);
1281
1282static void free_cached_comp_units (void *);
1283
1284static void age_cached_comp_units (void);
1285
1286static void free_one_cached_comp_unit (void *);
1287
f792889a
DJ
1288static struct type *set_die_type (struct die_info *, struct type *,
1289 struct dwarf2_cu *);
1c379e20 1290
ae038cb0
DJ
1291static void create_all_comp_units (struct objfile *);
1292
1fd400ff
TT
1293static int create_debug_types_hash_table (struct objfile *objfile);
1294
93311388
DE
1295static void load_full_comp_unit (struct dwarf2_per_cu_data *,
1296 struct objfile *);
10b3939b
DJ
1297
1298static void process_full_comp_unit (struct dwarf2_per_cu_data *);
1299
1300static void dwarf2_add_dependence (struct dwarf2_cu *,
1301 struct dwarf2_per_cu_data *);
1302
ae038cb0
DJ
1303static void dwarf2_mark (struct dwarf2_cu *);
1304
1305static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1306
673bfd45
DE
1307static struct type *get_die_type_at_offset (unsigned int,
1308 struct dwarf2_per_cu_data *per_cu);
1309
f792889a 1310static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
72019c9c 1311
9291a0cd
TT
1312static void dwarf2_release_queue (void *dummy);
1313
1314static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1315 struct objfile *objfile);
1316
1317static void process_queue (struct objfile *objfile);
1318
1319static void find_file_and_directory (struct die_info *die,
1320 struct dwarf2_cu *cu,
1321 char **name, char **comp_dir);
1322
1323static char *file_full_name (int file, struct line_header *lh,
1324 const char *comp_dir);
1325
1326static gdb_byte *partial_read_comp_unit_head (struct comp_unit_head *header,
1327 gdb_byte *info_ptr,
1328 gdb_byte *buffer,
1329 unsigned int buffer_size,
1330 bfd *abfd);
1331
1332static void init_cu_die_reader (struct die_reader_specs *reader,
1333 struct dwarf2_cu *cu);
1334
673bfd45 1335static htab_t allocate_signatured_type_table (struct objfile *objfile);
1fd400ff 1336
9291a0cd
TT
1337#if WORDS_BIGENDIAN
1338
1339/* Convert VALUE between big- and little-endian. */
1340static offset_type
1341byte_swap (offset_type value)
1342{
1343 offset_type result;
1344
1345 result = (value & 0xff) << 24;
1346 result |= (value & 0xff00) << 8;
1347 result |= (value & 0xff0000) >> 8;
1348 result |= (value & 0xff000000) >> 24;
1349 return result;
1350}
1351
1352#define MAYBE_SWAP(V) byte_swap (V)
1353
1354#else
1355#define MAYBE_SWAP(V) (V)
1356#endif /* WORDS_BIGENDIAN */
1357
1358/* The suffix for an index file. */
1359#define INDEX_SUFFIX ".gdb-index"
1360
3da10d80
KS
1361static const char *dwarf2_physname (char *name, struct die_info *die,
1362 struct dwarf2_cu *cu);
1363
c906108c 1364/* Try to locate the sections we need for DWARF 2 debugging
251d32d9
TG
1365 information and return true if we have enough to do something.
1366 NAMES points to the dwarf2 section names, or is NULL if the standard
1367 ELF names are used. */
c906108c
SS
1368
1369int
251d32d9
TG
1370dwarf2_has_info (struct objfile *objfile,
1371 const struct dwarf2_debug_sections *names)
c906108c 1372{
be391dca
TT
1373 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
1374 if (!dwarf2_per_objfile)
1375 {
1376 /* Initialize per-objfile state. */
1377 struct dwarf2_per_objfile *data
1378 = obstack_alloc (&objfile->objfile_obstack, sizeof (*data));
9a619af0 1379
be391dca
TT
1380 memset (data, 0, sizeof (*data));
1381 set_objfile_data (objfile, dwarf2_objfile_data_key, data);
1382 dwarf2_per_objfile = data;
6502dd73 1383
251d32d9
TG
1384 bfd_map_over_sections (objfile->obfd, dwarf2_locate_sections,
1385 (void *) names);
be391dca
TT
1386 dwarf2_per_objfile->objfile = objfile;
1387 }
1388 return (dwarf2_per_objfile->info.asection != NULL
1389 && dwarf2_per_objfile->abbrev.asection != NULL);
c906108c
SS
1390}
1391
251d32d9
TG
1392/* When loading sections, we look either for uncompressed section or for
1393 compressed section names. */
233a11ab
CS
1394
1395static int
251d32d9
TG
1396section_is_p (const char *section_name,
1397 const struct dwarf2_section_names *names)
233a11ab 1398{
251d32d9
TG
1399 if (names->normal != NULL
1400 && strcmp (section_name, names->normal) == 0)
1401 return 1;
1402 if (names->compressed != NULL
1403 && strcmp (section_name, names->compressed) == 0)
1404 return 1;
1405 return 0;
233a11ab
CS
1406}
1407
c906108c
SS
1408/* This function is mapped across the sections and remembers the
1409 offset and size of each of the debugging sections we are interested
1410 in. */
1411
1412static void
251d32d9 1413dwarf2_locate_sections (bfd *abfd, asection *sectp, void *vnames)
c906108c 1414{
251d32d9
TG
1415 const struct dwarf2_debug_sections *names;
1416
1417 if (vnames == NULL)
1418 names = &dwarf2_elf_names;
1419 else
1420 names = (const struct dwarf2_debug_sections *) vnames;
1421
1422 if (section_is_p (sectp->name, &names->info))
c906108c 1423 {
dce234bc
PP
1424 dwarf2_per_objfile->info.asection = sectp;
1425 dwarf2_per_objfile->info.size = bfd_get_section_size (sectp);
c906108c 1426 }
251d32d9 1427 else if (section_is_p (sectp->name, &names->abbrev))
c906108c 1428 {
dce234bc
PP
1429 dwarf2_per_objfile->abbrev.asection = sectp;
1430 dwarf2_per_objfile->abbrev.size = bfd_get_section_size (sectp);
c906108c 1431 }
251d32d9 1432 else if (section_is_p (sectp->name, &names->line))
c906108c 1433 {
dce234bc
PP
1434 dwarf2_per_objfile->line.asection = sectp;
1435 dwarf2_per_objfile->line.size = bfd_get_section_size (sectp);
c906108c 1436 }
251d32d9 1437 else if (section_is_p (sectp->name, &names->loc))
c906108c 1438 {
dce234bc
PP
1439 dwarf2_per_objfile->loc.asection = sectp;
1440 dwarf2_per_objfile->loc.size = bfd_get_section_size (sectp);
c906108c 1441 }
251d32d9 1442 else if (section_is_p (sectp->name, &names->macinfo))
c906108c 1443 {
dce234bc
PP
1444 dwarf2_per_objfile->macinfo.asection = sectp;
1445 dwarf2_per_objfile->macinfo.size = bfd_get_section_size (sectp);
c906108c 1446 }
cf2c3c16
TT
1447 else if (section_is_p (sectp->name, &names->macro))
1448 {
1449 dwarf2_per_objfile->macro.asection = sectp;
1450 dwarf2_per_objfile->macro.size = bfd_get_section_size (sectp);
1451 }
251d32d9 1452 else if (section_is_p (sectp->name, &names->str))
c906108c 1453 {
dce234bc
PP
1454 dwarf2_per_objfile->str.asection = sectp;
1455 dwarf2_per_objfile->str.size = bfd_get_section_size (sectp);
c906108c 1456 }
251d32d9 1457 else if (section_is_p (sectp->name, &names->frame))
b6af0555 1458 {
dce234bc
PP
1459 dwarf2_per_objfile->frame.asection = sectp;
1460 dwarf2_per_objfile->frame.size = bfd_get_section_size (sectp);
b6af0555 1461 }
251d32d9 1462 else if (section_is_p (sectp->name, &names->eh_frame))
b6af0555 1463 {
3799ccc6 1464 flagword aflag = bfd_get_section_flags (ignore_abfd, sectp);
9a619af0 1465
3799ccc6
EZ
1466 if (aflag & SEC_HAS_CONTENTS)
1467 {
dce234bc
PP
1468 dwarf2_per_objfile->eh_frame.asection = sectp;
1469 dwarf2_per_objfile->eh_frame.size = bfd_get_section_size (sectp);
3799ccc6 1470 }
b6af0555 1471 }
251d32d9 1472 else if (section_is_p (sectp->name, &names->ranges))
af34e669 1473 {
dce234bc
PP
1474 dwarf2_per_objfile->ranges.asection = sectp;
1475 dwarf2_per_objfile->ranges.size = bfd_get_section_size (sectp);
af34e669 1476 }
251d32d9 1477 else if (section_is_p (sectp->name, &names->types))
348e048f 1478 {
8b70b953
TT
1479 struct dwarf2_section_info type_section;
1480
1481 memset (&type_section, 0, sizeof (type_section));
1482 type_section.asection = sectp;
1483 type_section.size = bfd_get_section_size (sectp);
1484
1485 VEC_safe_push (dwarf2_section_info_def, dwarf2_per_objfile->types,
1486 &type_section);
348e048f 1487 }
251d32d9 1488 else if (section_is_p (sectp->name, &names->gdb_index))
9291a0cd
TT
1489 {
1490 dwarf2_per_objfile->gdb_index.asection = sectp;
1491 dwarf2_per_objfile->gdb_index.size = bfd_get_section_size (sectp);
1492 }
dce234bc 1493
72dca2f5
FR
1494 if ((bfd_get_section_flags (abfd, sectp) & SEC_LOAD)
1495 && bfd_section_vma (abfd, sectp) == 0)
1496 dwarf2_per_objfile->has_section_at_zero = 1;
c906108c
SS
1497}
1498
dce234bc
PP
1499/* Decompress a section that was compressed using zlib. Store the
1500 decompressed buffer, and its size, in OUTBUF and OUTSIZE. */
233a11ab
CS
1501
1502static void
dce234bc
PP
1503zlib_decompress_section (struct objfile *objfile, asection *sectp,
1504 gdb_byte **outbuf, bfd_size_type *outsize)
1505{
1506 bfd *abfd = objfile->obfd;
1507#ifndef HAVE_ZLIB_H
1508 error (_("Support for zlib-compressed DWARF data (from '%s') "
1509 "is disabled in this copy of GDB"),
1510 bfd_get_filename (abfd));
1511#else
1512 bfd_size_type compressed_size = bfd_get_section_size (sectp);
1513 gdb_byte *compressed_buffer = xmalloc (compressed_size);
affddf13 1514 struct cleanup *cleanup = make_cleanup (xfree, compressed_buffer);
dce234bc
PP
1515 bfd_size_type uncompressed_size;
1516 gdb_byte *uncompressed_buffer;
1517 z_stream strm;
1518 int rc;
1519 int header_size = 12;
1520
1521 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
3e43a32a
MS
1522 || bfd_bread (compressed_buffer,
1523 compressed_size, abfd) != compressed_size)
dce234bc
PP
1524 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1525 bfd_get_filename (abfd));
1526
1527 /* Read the zlib header. In this case, it should be "ZLIB" followed
1528 by the uncompressed section size, 8 bytes in big-endian order. */
1529 if (compressed_size < header_size
1530 || strncmp (compressed_buffer, "ZLIB", 4) != 0)
1531 error (_("Dwarf Error: Corrupt DWARF ZLIB header from '%s'"),
1532 bfd_get_filename (abfd));
1533 uncompressed_size = compressed_buffer[4]; uncompressed_size <<= 8;
1534 uncompressed_size += compressed_buffer[5]; uncompressed_size <<= 8;
1535 uncompressed_size += compressed_buffer[6]; uncompressed_size <<= 8;
1536 uncompressed_size += compressed_buffer[7]; uncompressed_size <<= 8;
1537 uncompressed_size += compressed_buffer[8]; uncompressed_size <<= 8;
1538 uncompressed_size += compressed_buffer[9]; uncompressed_size <<= 8;
1539 uncompressed_size += compressed_buffer[10]; uncompressed_size <<= 8;
1540 uncompressed_size += compressed_buffer[11];
1541
1542 /* It is possible the section consists of several compressed
1543 buffers concatenated together, so we uncompress in a loop. */
1544 strm.zalloc = NULL;
1545 strm.zfree = NULL;
1546 strm.opaque = NULL;
1547 strm.avail_in = compressed_size - header_size;
1548 strm.next_in = (Bytef*) compressed_buffer + header_size;
1549 strm.avail_out = uncompressed_size;
1550 uncompressed_buffer = obstack_alloc (&objfile->objfile_obstack,
1551 uncompressed_size);
1552 rc = inflateInit (&strm);
1553 while (strm.avail_in > 0)
1554 {
1555 if (rc != Z_OK)
1556 error (_("Dwarf Error: setting up DWARF uncompression in '%s': %d"),
1557 bfd_get_filename (abfd), rc);
1558 strm.next_out = ((Bytef*) uncompressed_buffer
1559 + (uncompressed_size - strm.avail_out));
1560 rc = inflate (&strm, Z_FINISH);
1561 if (rc != Z_STREAM_END)
1562 error (_("Dwarf Error: zlib error uncompressing from '%s': %d"),
1563 bfd_get_filename (abfd), rc);
1564 rc = inflateReset (&strm);
1565 }
1566 rc = inflateEnd (&strm);
1567 if (rc != Z_OK
1568 || strm.avail_out != 0)
1569 error (_("Dwarf Error: concluding DWARF uncompression in '%s': %d"),
1570 bfd_get_filename (abfd), rc);
1571
affddf13 1572 do_cleanups (cleanup);
dce234bc
PP
1573 *outbuf = uncompressed_buffer;
1574 *outsize = uncompressed_size;
1575#endif
233a11ab
CS
1576}
1577
9e0ac564
TT
1578/* A helper function that decides whether a section is empty. */
1579
1580static int
1581dwarf2_section_empty_p (struct dwarf2_section_info *info)
1582{
1583 return info->asection == NULL || info->size == 0;
1584}
1585
dce234bc
PP
1586/* Read the contents of the section SECTP from object file specified by
1587 OBJFILE, store info about the section into INFO.
1588 If the section is compressed, uncompress it before returning. */
c906108c 1589
dce234bc
PP
1590static void
1591dwarf2_read_section (struct objfile *objfile, struct dwarf2_section_info *info)
c906108c 1592{
dce234bc
PP
1593 bfd *abfd = objfile->obfd;
1594 asection *sectp = info->asection;
1595 gdb_byte *buf, *retbuf;
1596 unsigned char header[4];
c906108c 1597
be391dca
TT
1598 if (info->readin)
1599 return;
dce234bc 1600 info->buffer = NULL;
b315ab21 1601 info->map_addr = NULL;
be391dca 1602 info->readin = 1;
188dd5d6 1603
9e0ac564 1604 if (dwarf2_section_empty_p (info))
dce234bc 1605 return;
c906108c 1606
dce234bc
PP
1607 /* Check if the file has a 4-byte header indicating compression. */
1608 if (info->size > sizeof (header)
1609 && bfd_seek (abfd, sectp->filepos, SEEK_SET) == 0
1610 && bfd_bread (header, sizeof (header), abfd) == sizeof (header))
1611 {
1612 /* Upon decompression, update the buffer and its size. */
1613 if (strncmp (header, "ZLIB", sizeof (header)) == 0)
1614 {
1615 zlib_decompress_section (objfile, sectp, &info->buffer,
1616 &info->size);
1617 return;
1618 }
1619 }
4bdf3d34 1620
dce234bc
PP
1621#ifdef HAVE_MMAP
1622 if (pagesize == 0)
1623 pagesize = getpagesize ();
2e276125 1624
dce234bc
PP
1625 /* Only try to mmap sections which are large enough: we don't want to
1626 waste space due to fragmentation. Also, only try mmap for sections
1627 without relocations. */
1628
1629 if (info->size > 4 * pagesize && (sectp->flags & SEC_RELOC) == 0)
1630 {
b315ab21
TG
1631 info->buffer = bfd_mmap (abfd, 0, info->size, PROT_READ,
1632 MAP_PRIVATE, sectp->filepos,
1633 &info->map_addr, &info->map_len);
dce234bc 1634
b315ab21 1635 if ((caddr_t)info->buffer != MAP_FAILED)
dce234bc 1636 {
be391dca 1637#if HAVE_POSIX_MADVISE
b315ab21 1638 posix_madvise (info->map_addr, info->map_len, POSIX_MADV_WILLNEED);
be391dca 1639#endif
dce234bc
PP
1640 return;
1641 }
1642 }
1643#endif
1644
1645 /* If we get here, we are a normal, not-compressed section. */
1646 info->buffer = buf
1647 = obstack_alloc (&objfile->objfile_obstack, info->size);
1648
1649 /* When debugging .o files, we may need to apply relocations; see
1650 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
1651 We never compress sections in .o files, so we only need to
1652 try this when the section is not compressed. */
ac8035ab 1653 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
dce234bc
PP
1654 if (retbuf != NULL)
1655 {
1656 info->buffer = retbuf;
1657 return;
1658 }
1659
1660 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
1661 || bfd_bread (buf, info->size, abfd) != info->size)
1662 error (_("Dwarf Error: Can't read DWARF data from '%s'"),
1663 bfd_get_filename (abfd));
1664}
1665
9e0ac564
TT
1666/* A helper function that returns the size of a section in a safe way.
1667 If you are positive that the section has been read before using the
1668 size, then it is safe to refer to the dwarf2_section_info object's
1669 "size" field directly. In other cases, you must call this
1670 function, because for compressed sections the size field is not set
1671 correctly until the section has been read. */
1672
1673static bfd_size_type
1674dwarf2_section_size (struct objfile *objfile,
1675 struct dwarf2_section_info *info)
1676{
1677 if (!info->readin)
1678 dwarf2_read_section (objfile, info);
1679 return info->size;
1680}
1681
dce234bc 1682/* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
0963b4bd 1683 SECTION_NAME. */
af34e669 1684
dce234bc 1685void
3017a003
TG
1686dwarf2_get_section_info (struct objfile *objfile,
1687 enum dwarf2_section_enum sect,
dce234bc
PP
1688 asection **sectp, gdb_byte **bufp,
1689 bfd_size_type *sizep)
1690{
1691 struct dwarf2_per_objfile *data
1692 = objfile_data (objfile, dwarf2_objfile_data_key);
1693 struct dwarf2_section_info *info;
a3b2a86b
TT
1694
1695 /* We may see an objfile without any DWARF, in which case we just
1696 return nothing. */
1697 if (data == NULL)
1698 {
1699 *sectp = NULL;
1700 *bufp = NULL;
1701 *sizep = 0;
1702 return;
1703 }
3017a003
TG
1704 switch (sect)
1705 {
1706 case DWARF2_DEBUG_FRAME:
1707 info = &data->frame;
1708 break;
1709 case DWARF2_EH_FRAME:
1710 info = &data->eh_frame;
1711 break;
1712 default:
1713 gdb_assert_not_reached ("unexpected section");
1714 }
dce234bc 1715
9e0ac564 1716 dwarf2_read_section (objfile, info);
dce234bc
PP
1717
1718 *sectp = info->asection;
1719 *bufp = info->buffer;
1720 *sizep = info->size;
1721}
1722
9291a0cd 1723\f
7b9f3c50
DE
1724/* DWARF quick_symbols_functions support. */
1725
1726/* TUs can share .debug_line entries, and there can be a lot more TUs than
1727 unique line tables, so we maintain a separate table of all .debug_line
1728 derived entries to support the sharing.
1729 All the quick functions need is the list of file names. We discard the
1730 line_header when we're done and don't need to record it here. */
1731struct quick_file_names
1732{
1733 /* The offset in .debug_line of the line table. We hash on this. */
1734 unsigned int offset;
1735
1736 /* The number of entries in file_names, real_names. */
1737 unsigned int num_file_names;
1738
1739 /* The file names from the line table, after being run through
1740 file_full_name. */
1741 const char **file_names;
1742
1743 /* The file names from the line table after being run through
1744 gdb_realpath. These are computed lazily. */
1745 const char **real_names;
1746};
1747
1748/* When using the index (and thus not using psymtabs), each CU has an
1749 object of this type. This is used to hold information needed by
1750 the various "quick" methods. */
1751struct dwarf2_per_cu_quick_data
1752{
1753 /* The file table. This can be NULL if there was no file table
1754 or it's currently not read in.
1755 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
1756 struct quick_file_names *file_names;
1757
1758 /* The corresponding symbol table. This is NULL if symbols for this
1759 CU have not yet been read. */
1760 struct symtab *symtab;
1761
1762 /* A temporary mark bit used when iterating over all CUs in
1763 expand_symtabs_matching. */
1764 unsigned int mark : 1;
1765
1766 /* True if we've tried to read the file table and found there isn't one.
1767 There will be no point in trying to read it again next time. */
1768 unsigned int no_file_data : 1;
1769};
1770
1771/* Hash function for a quick_file_names. */
1772
1773static hashval_t
1774hash_file_name_entry (const void *e)
1775{
1776 const struct quick_file_names *file_data = e;
1777
1778 return file_data->offset;
1779}
1780
1781/* Equality function for a quick_file_names. */
1782
1783static int
1784eq_file_name_entry (const void *a, const void *b)
1785{
1786 const struct quick_file_names *ea = a;
1787 const struct quick_file_names *eb = b;
1788
1789 return ea->offset == eb->offset;
1790}
1791
1792/* Delete function for a quick_file_names. */
1793
1794static void
1795delete_file_name_entry (void *e)
1796{
1797 struct quick_file_names *file_data = e;
1798 int i;
1799
1800 for (i = 0; i < file_data->num_file_names; ++i)
1801 {
1802 xfree ((void*) file_data->file_names[i]);
1803 if (file_data->real_names)
1804 xfree ((void*) file_data->real_names[i]);
1805 }
1806
1807 /* The space for the struct itself lives on objfile_obstack,
1808 so we don't free it here. */
1809}
1810
1811/* Create a quick_file_names hash table. */
1812
1813static htab_t
1814create_quick_file_names_table (unsigned int nr_initial_entries)
1815{
1816 return htab_create_alloc (nr_initial_entries,
1817 hash_file_name_entry, eq_file_name_entry,
1818 delete_file_name_entry, xcalloc, xfree);
1819}
9291a0cd 1820
918dd910
JK
1821/* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
1822 have to be created afterwards. You should call age_cached_comp_units after
1823 processing PER_CU->CU. dw2_setup must have been already called. */
1824
1825static void
1826load_cu (struct dwarf2_per_cu_data *per_cu)
1827{
8b70b953
TT
1828 if (per_cu->debug_type_section)
1829 read_signatured_type_at_offset (per_cu->objfile,
1830 per_cu->debug_type_section,
1831 per_cu->offset);
918dd910
JK
1832 else
1833 load_full_comp_unit (per_cu, per_cu->objfile);
1834
1835 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
1836
1837 gdb_assert (per_cu->cu != NULL);
1838}
1839
9291a0cd
TT
1840/* Read in the symbols for PER_CU. OBJFILE is the objfile from which
1841 this CU came. */
2fdf6df6 1842
9291a0cd
TT
1843static void
1844dw2_do_instantiate_symtab (struct objfile *objfile,
1845 struct dwarf2_per_cu_data *per_cu)
1846{
1847 struct cleanup *back_to;
1848
1849 back_to = make_cleanup (dwarf2_release_queue, NULL);
1850
1851 queue_comp_unit (per_cu, objfile);
1852
918dd910 1853 load_cu (per_cu);
9291a0cd
TT
1854
1855 process_queue (objfile);
1856
1857 /* Age the cache, releasing compilation units that have not
1858 been used recently. */
1859 age_cached_comp_units ();
1860
1861 do_cleanups (back_to);
1862}
1863
1864/* Ensure that the symbols for PER_CU have been read in. OBJFILE is
1865 the objfile from which this CU came. Returns the resulting symbol
1866 table. */
2fdf6df6 1867
9291a0cd
TT
1868static struct symtab *
1869dw2_instantiate_symtab (struct objfile *objfile,
1870 struct dwarf2_per_cu_data *per_cu)
1871{
1872 if (!per_cu->v.quick->symtab)
1873 {
1874 struct cleanup *back_to = make_cleanup (free_cached_comp_units, NULL);
1875 increment_reading_symtab ();
1876 dw2_do_instantiate_symtab (objfile, per_cu);
1877 do_cleanups (back_to);
1878 }
1879 return per_cu->v.quick->symtab;
1880}
1881
1fd400ff 1882/* Return the CU given its index. */
2fdf6df6 1883
1fd400ff
TT
1884static struct dwarf2_per_cu_data *
1885dw2_get_cu (int index)
1886{
1887 if (index >= dwarf2_per_objfile->n_comp_units)
1888 {
1889 index -= dwarf2_per_objfile->n_comp_units;
1890 return dwarf2_per_objfile->type_comp_units[index];
1891 }
1892 return dwarf2_per_objfile->all_comp_units[index];
1893}
1894
9291a0cd
TT
1895/* A helper function that knows how to read a 64-bit value in a way
1896 that doesn't make gdb die. Returns 1 if the conversion went ok, 0
1897 otherwise. */
2fdf6df6 1898
9291a0cd
TT
1899static int
1900extract_cu_value (const char *bytes, ULONGEST *result)
1901{
1902 if (sizeof (ULONGEST) < 8)
1903 {
1904 int i;
1905
1906 /* Ignore the upper 4 bytes if they are all zero. */
1907 for (i = 0; i < 4; ++i)
1908 if (bytes[i + 4] != 0)
1909 return 0;
1910
1911 *result = extract_unsigned_integer (bytes, 4, BFD_ENDIAN_LITTLE);
1912 }
1913 else
1914 *result = extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
1915 return 1;
1916}
1917
1918/* Read the CU list from the mapped index, and use it to create all
1919 the CU objects for this objfile. Return 0 if something went wrong,
1920 1 if everything went ok. */
2fdf6df6 1921
9291a0cd 1922static int
1fd400ff
TT
1923create_cus_from_index (struct objfile *objfile, const gdb_byte *cu_list,
1924 offset_type cu_list_elements)
9291a0cd
TT
1925{
1926 offset_type i;
9291a0cd
TT
1927
1928 dwarf2_per_objfile->n_comp_units = cu_list_elements / 2;
1929 dwarf2_per_objfile->all_comp_units
1930 = obstack_alloc (&objfile->objfile_obstack,
1931 dwarf2_per_objfile->n_comp_units
1932 * sizeof (struct dwarf2_per_cu_data *));
1933
1934 for (i = 0; i < cu_list_elements; i += 2)
1935 {
1936 struct dwarf2_per_cu_data *the_cu;
1937 ULONGEST offset, length;
1938
1939 if (!extract_cu_value (cu_list, &offset)
1940 || !extract_cu_value (cu_list + 8, &length))
1941 return 0;
1942 cu_list += 2 * 8;
1943
1944 the_cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1945 struct dwarf2_per_cu_data);
1946 the_cu->offset = offset;
1947 the_cu->length = length;
1948 the_cu->objfile = objfile;
1949 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1950 struct dwarf2_per_cu_quick_data);
1951 dwarf2_per_objfile->all_comp_units[i / 2] = the_cu;
1952 }
1953
1954 return 1;
1955}
1956
1fd400ff 1957/* Create the signatured type hash table from the index. */
673bfd45 1958
1fd400ff 1959static int
673bfd45 1960create_signatured_type_table_from_index (struct objfile *objfile,
8b70b953 1961 struct dwarf2_section_info *section,
673bfd45
DE
1962 const gdb_byte *bytes,
1963 offset_type elements)
1fd400ff
TT
1964{
1965 offset_type i;
673bfd45 1966 htab_t sig_types_hash;
1fd400ff
TT
1967
1968 dwarf2_per_objfile->n_type_comp_units = elements / 3;
1969 dwarf2_per_objfile->type_comp_units
1970 = obstack_alloc (&objfile->objfile_obstack,
1971 dwarf2_per_objfile->n_type_comp_units
1972 * sizeof (struct dwarf2_per_cu_data *));
1973
673bfd45 1974 sig_types_hash = allocate_signatured_type_table (objfile);
1fd400ff
TT
1975
1976 for (i = 0; i < elements; i += 3)
1977 {
1978 struct signatured_type *type_sig;
1979 ULONGEST offset, type_offset, signature;
1980 void **slot;
1981
1982 if (!extract_cu_value (bytes, &offset)
1983 || !extract_cu_value (bytes + 8, &type_offset))
1984 return 0;
1985 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
1986 bytes += 3 * 8;
1987
1988 type_sig = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1989 struct signatured_type);
1990 type_sig->signature = signature;
1fd400ff 1991 type_sig->type_offset = type_offset;
8b70b953 1992 type_sig->per_cu.debug_type_section = section;
1fd400ff
TT
1993 type_sig->per_cu.offset = offset;
1994 type_sig->per_cu.objfile = objfile;
1995 type_sig->per_cu.v.quick
1996 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
1997 struct dwarf2_per_cu_quick_data);
1998
673bfd45 1999 slot = htab_find_slot (sig_types_hash, type_sig, INSERT);
1fd400ff
TT
2000 *slot = type_sig;
2001
2002 dwarf2_per_objfile->type_comp_units[i / 3] = &type_sig->per_cu;
2003 }
2004
673bfd45 2005 dwarf2_per_objfile->signatured_types = sig_types_hash;
1fd400ff
TT
2006
2007 return 1;
2008}
2009
9291a0cd
TT
2010/* Read the address map data from the mapped index, and use it to
2011 populate the objfile's psymtabs_addrmap. */
2fdf6df6 2012
9291a0cd
TT
2013static void
2014create_addrmap_from_index (struct objfile *objfile, struct mapped_index *index)
2015{
2016 const gdb_byte *iter, *end;
2017 struct obstack temp_obstack;
2018 struct addrmap *mutable_map;
2019 struct cleanup *cleanup;
2020 CORE_ADDR baseaddr;
2021
2022 obstack_init (&temp_obstack);
2023 cleanup = make_cleanup_obstack_free (&temp_obstack);
2024 mutable_map = addrmap_create_mutable (&temp_obstack);
2025
2026 iter = index->address_table;
2027 end = iter + index->address_table_size;
2028
2029 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2030
2031 while (iter < end)
2032 {
2033 ULONGEST hi, lo, cu_index;
2034 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2035 iter += 8;
2036 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2037 iter += 8;
2038 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2039 iter += 4;
2040
2041 addrmap_set_empty (mutable_map, lo + baseaddr, hi + baseaddr - 1,
1fd400ff 2042 dw2_get_cu (cu_index));
9291a0cd
TT
2043 }
2044
2045 objfile->psymtabs_addrmap = addrmap_create_fixed (mutable_map,
2046 &objfile->objfile_obstack);
2047 do_cleanups (cleanup);
2048}
2049
59d7bcaf
JK
2050/* The hash function for strings in the mapped index. This is the same as
2051 SYMBOL_HASH_NEXT, but we keep a separate copy to maintain control over the
2052 implementation. This is necessary because the hash function is tied to the
2053 format of the mapped index file. The hash values do not have to match with
559a7a62
JK
2054 SYMBOL_HASH_NEXT.
2055
2056 Use INT_MAX for INDEX_VERSION if you generate the current index format. */
2fdf6df6 2057
9291a0cd 2058static hashval_t
559a7a62 2059mapped_index_string_hash (int index_version, const void *p)
9291a0cd
TT
2060{
2061 const unsigned char *str = (const unsigned char *) p;
2062 hashval_t r = 0;
2063 unsigned char c;
2064
2065 while ((c = *str++) != 0)
559a7a62
JK
2066 {
2067 if (index_version >= 5)
2068 c = tolower (c);
2069 r = r * 67 + c - 113;
2070 }
9291a0cd
TT
2071
2072 return r;
2073}
2074
2075/* Find a slot in the mapped index INDEX for the object named NAME.
2076 If NAME is found, set *VEC_OUT to point to the CU vector in the
2077 constant pool and return 1. If NAME cannot be found, return 0. */
2fdf6df6 2078
9291a0cd
TT
2079static int
2080find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2081 offset_type **vec_out)
2082{
0cf03b49
JK
2083 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2084 offset_type hash;
9291a0cd 2085 offset_type slot, step;
559a7a62 2086 int (*cmp) (const char *, const char *);
9291a0cd 2087
0cf03b49
JK
2088 if (current_language->la_language == language_cplus
2089 || current_language->la_language == language_java
2090 || current_language->la_language == language_fortran)
2091 {
2092 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2093 not contain any. */
2094 const char *paren = strchr (name, '(');
2095
2096 if (paren)
2097 {
2098 char *dup;
2099
2100 dup = xmalloc (paren - name + 1);
2101 memcpy (dup, name, paren - name);
2102 dup[paren - name] = 0;
2103
2104 make_cleanup (xfree, dup);
2105 name = dup;
2106 }
2107 }
2108
559a7a62
JK
2109 /* Index version 4 did not support case insensitive searches. But the
2110 indexes for case insensitive languages are built in lowercase, therefore
2111 simulate our NAME being searched is also lowercased. */
2112 hash = mapped_index_string_hash ((index->version == 4
2113 && case_sensitivity == case_sensitive_off
2114 ? 5 : index->version),
2115 name);
2116
3876f04e
DE
2117 slot = hash & (index->symbol_table_slots - 1);
2118 step = ((hash * 17) & (index->symbol_table_slots - 1)) | 1;
559a7a62 2119 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
9291a0cd
TT
2120
2121 for (;;)
2122 {
2123 /* Convert a slot number to an offset into the table. */
2124 offset_type i = 2 * slot;
2125 const char *str;
3876f04e 2126 if (index->symbol_table[i] == 0 && index->symbol_table[i + 1] == 0)
0cf03b49
JK
2127 {
2128 do_cleanups (back_to);
2129 return 0;
2130 }
9291a0cd 2131
3876f04e 2132 str = index->constant_pool + MAYBE_SWAP (index->symbol_table[i]);
559a7a62 2133 if (!cmp (name, str))
9291a0cd
TT
2134 {
2135 *vec_out = (offset_type *) (index->constant_pool
3876f04e 2136 + MAYBE_SWAP (index->symbol_table[i + 1]));
0cf03b49 2137 do_cleanups (back_to);
9291a0cd
TT
2138 return 1;
2139 }
2140
3876f04e 2141 slot = (slot + step) & (index->symbol_table_slots - 1);
9291a0cd
TT
2142 }
2143}
2144
2145/* Read the index file. If everything went ok, initialize the "quick"
2146 elements of all the CUs and return 1. Otherwise, return 0. */
2fdf6df6 2147
9291a0cd
TT
2148static int
2149dwarf2_read_index (struct objfile *objfile)
2150{
9291a0cd
TT
2151 char *addr;
2152 struct mapped_index *map;
b3b272e1 2153 offset_type *metadata;
ac0b195c
KW
2154 const gdb_byte *cu_list;
2155 const gdb_byte *types_list = NULL;
2156 offset_type version, cu_list_elements;
2157 offset_type types_list_elements = 0;
1fd400ff 2158 int i;
9291a0cd 2159
9e0ac564 2160 if (dwarf2_section_empty_p (&dwarf2_per_objfile->gdb_index))
9291a0cd 2161 return 0;
82430852
JK
2162
2163 /* Older elfutils strip versions could keep the section in the main
2164 executable while splitting it for the separate debug info file. */
2165 if ((bfd_get_file_flags (dwarf2_per_objfile->gdb_index.asection)
2166 & SEC_HAS_CONTENTS) == 0)
2167 return 0;
2168
9291a0cd
TT
2169 dwarf2_read_section (objfile, &dwarf2_per_objfile->gdb_index);
2170
2171 addr = dwarf2_per_objfile->gdb_index.buffer;
2172 /* Version check. */
1fd400ff 2173 version = MAYBE_SWAP (*(offset_type *) addr);
987d643c 2174 /* Versions earlier than 3 emitted every copy of a psymbol. This
a6e293d1 2175 causes the index to behave very poorly for certain requests. Version 3
831adc1f 2176 contained incomplete addrmap. So, it seems better to just ignore such
559a7a62
JK
2177 indices. Index version 4 uses a different hash function than index
2178 version 5 and later. */
831adc1f 2179 if (version < 4)
9291a0cd 2180 return 0;
594e8718
JK
2181 /* Indexes with higher version than the one supported by GDB may be no
2182 longer backward compatible. */
559a7a62 2183 if (version > 5)
594e8718 2184 return 0;
9291a0cd
TT
2185
2186 map = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct mapped_index);
559a7a62 2187 map->version = version;
b3b272e1 2188 map->total_size = dwarf2_per_objfile->gdb_index.size;
9291a0cd
TT
2189
2190 metadata = (offset_type *) (addr + sizeof (offset_type));
1fd400ff
TT
2191
2192 i = 0;
2193 cu_list = addr + MAYBE_SWAP (metadata[i]);
2194 cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
9291a0cd 2195 / 8);
1fd400ff
TT
2196 ++i;
2197
987d643c
TT
2198 types_list = addr + MAYBE_SWAP (metadata[i]);
2199 types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2200 - MAYBE_SWAP (metadata[i]))
2201 / 8);
2202 ++i;
1fd400ff
TT
2203
2204 map->address_table = addr + MAYBE_SWAP (metadata[i]);
2205 map->address_table_size = (MAYBE_SWAP (metadata[i + 1])
2206 - MAYBE_SWAP (metadata[i]));
2207 ++i;
2208
3876f04e
DE
2209 map->symbol_table = (offset_type *) (addr + MAYBE_SWAP (metadata[i]));
2210 map->symbol_table_slots = ((MAYBE_SWAP (metadata[i + 1])
2211 - MAYBE_SWAP (metadata[i]))
2212 / (2 * sizeof (offset_type)));
1fd400ff 2213 ++i;
9291a0cd 2214
1fd400ff
TT
2215 map->constant_pool = addr + MAYBE_SWAP (metadata[i]);
2216
2217 if (!create_cus_from_index (objfile, cu_list, cu_list_elements))
2218 return 0;
2219
8b70b953
TT
2220 if (types_list_elements)
2221 {
2222 struct dwarf2_section_info *section;
2223
2224 /* We can only handle a single .debug_types when we have an
2225 index. */
2226 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) != 1)
2227 return 0;
2228
2229 section = VEC_index (dwarf2_section_info_def,
2230 dwarf2_per_objfile->types, 0);
2231
2232 if (!create_signatured_type_table_from_index (objfile, section,
2233 types_list,
2234 types_list_elements))
2235 return 0;
2236 }
9291a0cd
TT
2237
2238 create_addrmap_from_index (objfile, map);
2239
2240 dwarf2_per_objfile->index_table = map;
2241 dwarf2_per_objfile->using_index = 1;
7b9f3c50
DE
2242 dwarf2_per_objfile->quick_file_names_table =
2243 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd
TT
2244
2245 return 1;
2246}
2247
2248/* A helper for the "quick" functions which sets the global
2249 dwarf2_per_objfile according to OBJFILE. */
2fdf6df6 2250
9291a0cd
TT
2251static void
2252dw2_setup (struct objfile *objfile)
2253{
2254 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
2255 gdb_assert (dwarf2_per_objfile);
2256}
2257
2258/* A helper for the "quick" functions which attempts to read the line
2259 table for THIS_CU. */
2fdf6df6 2260
7b9f3c50
DE
2261static struct quick_file_names *
2262dw2_get_file_names (struct objfile *objfile,
2263 struct dwarf2_per_cu_data *this_cu)
9291a0cd
TT
2264{
2265 bfd *abfd = objfile->obfd;
7b9f3c50 2266 struct line_header *lh;
9291a0cd
TT
2267 struct attribute *attr;
2268 struct cleanup *cleanups;
2269 struct die_info *comp_unit_die;
36374493 2270 struct dwarf2_section_info* sec;
9291a0cd
TT
2271 gdb_byte *beg_of_comp_unit, *info_ptr, *buffer;
2272 int has_children, i;
2273 struct dwarf2_cu cu;
2274 unsigned int bytes_read, buffer_size;
2275 struct die_reader_specs reader_specs;
2276 char *name, *comp_dir;
7b9f3c50
DE
2277 void **slot;
2278 struct quick_file_names *qfn;
2279 unsigned int line_offset;
9291a0cd 2280
7b9f3c50
DE
2281 if (this_cu->v.quick->file_names != NULL)
2282 return this_cu->v.quick->file_names;
2283 /* If we know there is no line data, no point in looking again. */
2284 if (this_cu->v.quick->no_file_data)
2285 return NULL;
9291a0cd 2286
9816fde3 2287 init_one_comp_unit (&cu, objfile);
9291a0cd
TT
2288 cleanups = make_cleanup (free_stack_comp_unit, &cu);
2289
8b70b953
TT
2290 if (this_cu->debug_type_section)
2291 sec = this_cu->debug_type_section;
36374493
DE
2292 else
2293 sec = &dwarf2_per_objfile->info;
2294 dwarf2_read_section (objfile, sec);
2295 buffer_size = sec->size;
2296 buffer = sec->buffer;
9291a0cd
TT
2297 info_ptr = buffer + this_cu->offset;
2298 beg_of_comp_unit = info_ptr;
2299
2300 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
2301 buffer, buffer_size,
2302 abfd);
2303
2304 /* Complete the cu_header. */
2305 cu.header.offset = beg_of_comp_unit - buffer;
2306 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
2307
2308 this_cu->cu = &cu;
2309 cu.per_cu = this_cu;
2310
2311 dwarf2_read_abbrevs (abfd, &cu);
2312 make_cleanup (dwarf2_free_abbrev_table, &cu);
2313
8b70b953 2314 if (this_cu->debug_type_section)
9291a0cd
TT
2315 info_ptr += 8 /*signature*/ + cu.header.offset_size;
2316 init_cu_die_reader (&reader_specs, &cu);
e8e80198
MS
2317 read_full_die (&reader_specs, &comp_unit_die, info_ptr,
2318 &has_children);
9291a0cd 2319
7b9f3c50
DE
2320 lh = NULL;
2321 slot = NULL;
2322 line_offset = 0;
9291a0cd
TT
2323 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, &cu);
2324 if (attr)
2325 {
7b9f3c50
DE
2326 struct quick_file_names find_entry;
2327
2328 line_offset = DW_UNSND (attr);
2329
2330 /* We may have already read in this line header (TU line header sharing).
2331 If we have we're done. */
2332 find_entry.offset = line_offset;
2333 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
2334 &find_entry, INSERT);
2335 if (*slot != NULL)
2336 {
2337 do_cleanups (cleanups);
2338 this_cu->v.quick->file_names = *slot;
2339 return *slot;
2340 }
2341
9291a0cd
TT
2342 lh = dwarf_decode_line_header (line_offset, abfd, &cu);
2343 }
2344 if (lh == NULL)
2345 {
2346 do_cleanups (cleanups);
7b9f3c50
DE
2347 this_cu->v.quick->no_file_data = 1;
2348 return NULL;
9291a0cd
TT
2349 }
2350
7b9f3c50
DE
2351 qfn = obstack_alloc (&objfile->objfile_obstack, sizeof (*qfn));
2352 qfn->offset = line_offset;
2353 gdb_assert (slot != NULL);
2354 *slot = qfn;
9291a0cd 2355
7b9f3c50 2356 find_file_and_directory (comp_unit_die, &cu, &name, &comp_dir);
9291a0cd 2357
7b9f3c50
DE
2358 qfn->num_file_names = lh->num_file_names;
2359 qfn->file_names = obstack_alloc (&objfile->objfile_obstack,
2360 lh->num_file_names * sizeof (char *));
9291a0cd 2361 for (i = 0; i < lh->num_file_names; ++i)
7b9f3c50
DE
2362 qfn->file_names[i] = file_full_name (i + 1, lh, comp_dir);
2363 qfn->real_names = NULL;
9291a0cd 2364
7b9f3c50 2365 free_line_header (lh);
9291a0cd 2366 do_cleanups (cleanups);
7b9f3c50
DE
2367
2368 this_cu->v.quick->file_names = qfn;
2369 return qfn;
9291a0cd
TT
2370}
2371
2372/* A helper for the "quick" functions which computes and caches the
7b9f3c50 2373 real path for a given file name from the line table. */
2fdf6df6 2374
9291a0cd 2375static const char *
7b9f3c50
DE
2376dw2_get_real_path (struct objfile *objfile,
2377 struct quick_file_names *qfn, int index)
9291a0cd 2378{
7b9f3c50
DE
2379 if (qfn->real_names == NULL)
2380 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
2381 qfn->num_file_names, sizeof (char *));
9291a0cd 2382
7b9f3c50
DE
2383 if (qfn->real_names[index] == NULL)
2384 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]);
9291a0cd 2385
7b9f3c50 2386 return qfn->real_names[index];
9291a0cd
TT
2387}
2388
2389static struct symtab *
2390dw2_find_last_source_symtab (struct objfile *objfile)
2391{
2392 int index;
ae2de4f8 2393
9291a0cd
TT
2394 dw2_setup (objfile);
2395 index = dwarf2_per_objfile->n_comp_units - 1;
1fd400ff 2396 return dw2_instantiate_symtab (objfile, dw2_get_cu (index));
9291a0cd
TT
2397}
2398
7b9f3c50
DE
2399/* Traversal function for dw2_forget_cached_source_info. */
2400
2401static int
2402dw2_free_cached_file_names (void **slot, void *info)
9291a0cd 2403{
7b9f3c50 2404 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
9291a0cd 2405
7b9f3c50 2406 if (file_data->real_names)
9291a0cd 2407 {
7b9f3c50 2408 int i;
9291a0cd 2409
7b9f3c50 2410 for (i = 0; i < file_data->num_file_names; ++i)
9291a0cd 2411 {
7b9f3c50
DE
2412 xfree ((void*) file_data->real_names[i]);
2413 file_data->real_names[i] = NULL;
9291a0cd
TT
2414 }
2415 }
7b9f3c50
DE
2416
2417 return 1;
2418}
2419
2420static void
2421dw2_forget_cached_source_info (struct objfile *objfile)
2422{
2423 dw2_setup (objfile);
2424
2425 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
2426 dw2_free_cached_file_names, NULL);
9291a0cd
TT
2427}
2428
2429static int
2430dw2_lookup_symtab (struct objfile *objfile, const char *name,
2431 const char *full_path, const char *real_path,
2432 struct symtab **result)
2433{
2434 int i;
2435 int check_basename = lbasename (name) == name;
2436 struct dwarf2_per_cu_data *base_cu = NULL;
2437
2438 dw2_setup (objfile);
ae2de4f8 2439
1fd400ff
TT
2440 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2441 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd
TT
2442 {
2443 int j;
e254ef6a 2444 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 2445 struct quick_file_names *file_data;
9291a0cd 2446
e254ef6a 2447 if (per_cu->v.quick->symtab)
9291a0cd
TT
2448 continue;
2449
7b9f3c50
DE
2450 file_data = dw2_get_file_names (objfile, per_cu);
2451 if (file_data == NULL)
9291a0cd
TT
2452 continue;
2453
7b9f3c50 2454 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 2455 {
7b9f3c50 2456 const char *this_name = file_data->file_names[j];
9291a0cd
TT
2457
2458 if (FILENAME_CMP (name, this_name) == 0)
2459 {
e254ef6a 2460 *result = dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2461 return 1;
2462 }
2463
2464 if (check_basename && ! base_cu
2465 && FILENAME_CMP (lbasename (this_name), name) == 0)
e254ef6a 2466 base_cu = per_cu;
9291a0cd
TT
2467
2468 if (full_path != NULL)
2469 {
7b9f3c50
DE
2470 const char *this_real_name = dw2_get_real_path (objfile,
2471 file_data, j);
9291a0cd 2472
7b9f3c50
DE
2473 if (this_real_name != NULL
2474 && FILENAME_CMP (full_path, this_real_name) == 0)
9291a0cd 2475 {
e254ef6a 2476 *result = dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2477 return 1;
2478 }
2479 }
2480
2481 if (real_path != NULL)
2482 {
7b9f3c50
DE
2483 const char *this_real_name = dw2_get_real_path (objfile,
2484 file_data, j);
9291a0cd 2485
7b9f3c50
DE
2486 if (this_real_name != NULL
2487 && FILENAME_CMP (real_path, this_real_name) == 0)
9291a0cd 2488 {
74dd2ca6
DE
2489 *result = dw2_instantiate_symtab (objfile, per_cu);
2490 return 1;
9291a0cd
TT
2491 }
2492 }
2493 }
2494 }
2495
2496 if (base_cu)
2497 {
2498 *result = dw2_instantiate_symtab (objfile, base_cu);
2499 return 1;
2500 }
2501
2502 return 0;
2503}
2504
2505static struct symtab *
2506dw2_lookup_symbol (struct objfile *objfile, int block_index,
2507 const char *name, domain_enum domain)
2508{
774b6a14 2509 /* We do all the work in the pre_expand_symtabs_matching hook
9291a0cd
TT
2510 instead. */
2511 return NULL;
2512}
2513
2514/* A helper function that expands all symtabs that hold an object
2515 named NAME. */
2fdf6df6 2516
9291a0cd
TT
2517static void
2518dw2_do_expand_symtabs_matching (struct objfile *objfile, const char *name)
2519{
2520 dw2_setup (objfile);
2521
ae2de4f8 2522 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
2523 if (dwarf2_per_objfile->index_table)
2524 {
2525 offset_type *vec;
2526
2527 if (find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2528 name, &vec))
2529 {
2530 offset_type i, len = MAYBE_SWAP (*vec);
2531 for (i = 0; i < len; ++i)
2532 {
2533 offset_type cu_index = MAYBE_SWAP (vec[i + 1]);
e254ef6a 2534 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (cu_index);
1fd400ff 2535
e254ef6a 2536 dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2537 }
2538 }
2539 }
2540}
2541
774b6a14
TT
2542static void
2543dw2_pre_expand_symtabs_matching (struct objfile *objfile,
8903c50d 2544 enum block_enum block_kind, const char *name,
774b6a14 2545 domain_enum domain)
9291a0cd 2546{
774b6a14 2547 dw2_do_expand_symtabs_matching (objfile, name);
9291a0cd
TT
2548}
2549
2550static void
2551dw2_print_stats (struct objfile *objfile)
2552{
2553 int i, count;
2554
2555 dw2_setup (objfile);
2556 count = 0;
1fd400ff
TT
2557 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2558 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd 2559 {
e254ef6a 2560 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2561
e254ef6a 2562 if (!per_cu->v.quick->symtab)
9291a0cd
TT
2563 ++count;
2564 }
2565 printf_filtered (_(" Number of unread CUs: %d\n"), count);
2566}
2567
2568static void
2569dw2_dump (struct objfile *objfile)
2570{
2571 /* Nothing worth printing. */
2572}
2573
2574static void
2575dw2_relocate (struct objfile *objfile, struct section_offsets *new_offsets,
2576 struct section_offsets *delta)
2577{
2578 /* There's nothing to relocate here. */
2579}
2580
2581static void
2582dw2_expand_symtabs_for_function (struct objfile *objfile,
2583 const char *func_name)
2584{
2585 dw2_do_expand_symtabs_matching (objfile, func_name);
2586}
2587
2588static void
2589dw2_expand_all_symtabs (struct objfile *objfile)
2590{
2591 int i;
2592
2593 dw2_setup (objfile);
1fd400ff
TT
2594
2595 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2596 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd 2597 {
e254ef6a 2598 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2599
e254ef6a 2600 dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2601 }
2602}
2603
2604static void
2605dw2_expand_symtabs_with_filename (struct objfile *objfile,
2606 const char *filename)
2607{
2608 int i;
2609
2610 dw2_setup (objfile);
d4637a04
DE
2611
2612 /* We don't need to consider type units here.
2613 This is only called for examining code, e.g. expand_line_sal.
2614 There can be an order of magnitude (or more) more type units
2615 than comp units, and we avoid them if we can. */
2616
2617 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
9291a0cd
TT
2618 {
2619 int j;
e254ef6a 2620 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 2621 struct quick_file_names *file_data;
9291a0cd 2622
e254ef6a 2623 if (per_cu->v.quick->symtab)
9291a0cd
TT
2624 continue;
2625
7b9f3c50
DE
2626 file_data = dw2_get_file_names (objfile, per_cu);
2627 if (file_data == NULL)
9291a0cd
TT
2628 continue;
2629
7b9f3c50 2630 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 2631 {
7b9f3c50 2632 const char *this_name = file_data->file_names[j];
1ef75ecc 2633 if (FILENAME_CMP (this_name, filename) == 0)
9291a0cd 2634 {
e254ef6a 2635 dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2636 break;
2637 }
2638 }
2639 }
2640}
2641
dd786858 2642static const char *
9291a0cd
TT
2643dw2_find_symbol_file (struct objfile *objfile, const char *name)
2644{
e254ef6a 2645 struct dwarf2_per_cu_data *per_cu;
9291a0cd 2646 offset_type *vec;
7b9f3c50 2647 struct quick_file_names *file_data;
9291a0cd
TT
2648
2649 dw2_setup (objfile);
2650
ae2de4f8 2651 /* index_table is NULL if OBJF_READNOW. */
9291a0cd 2652 if (!dwarf2_per_objfile->index_table)
9c6c53f7 2653 return NULL;
9291a0cd
TT
2654
2655 if (!find_slot_in_mapped_hash (dwarf2_per_objfile->index_table,
2656 name, &vec))
2657 return NULL;
2658
2659 /* Note that this just looks at the very first one named NAME -- but
2660 actually we are looking for a function. find_main_filename
2661 should be rewritten so that it doesn't require a custom hook. It
2662 could just use the ordinary symbol tables. */
2663 /* vec[0] is the length, which must always be >0. */
e254ef6a 2664 per_cu = dw2_get_cu (MAYBE_SWAP (vec[1]));
9291a0cd 2665
7b9f3c50
DE
2666 file_data = dw2_get_file_names (objfile, per_cu);
2667 if (file_data == NULL)
9291a0cd
TT
2668 return NULL;
2669
7b9f3c50 2670 return file_data->file_names[file_data->num_file_names - 1];
9291a0cd
TT
2671}
2672
2673static void
40658b94
PH
2674dw2_map_matching_symbols (const char * name, domain_enum namespace,
2675 struct objfile *objfile, int global,
2676 int (*callback) (struct block *,
2677 struct symbol *, void *),
2edb89d3
JK
2678 void *data, symbol_compare_ftype *match,
2679 symbol_compare_ftype *ordered_compare)
9291a0cd 2680{
40658b94 2681 /* Currently unimplemented; used for Ada. The function can be called if the
a9e6a4bb
JK
2682 current language is Ada for a non-Ada objfile using GNU index. As Ada
2683 does not look for non-Ada symbols this function should just return. */
9291a0cd
TT
2684}
2685
2686static void
2687dw2_expand_symtabs_matching (struct objfile *objfile,
2688 int (*file_matcher) (const char *, void *),
2689 int (*name_matcher) (const char *, void *),
8903c50d 2690 enum search_domain kind,
9291a0cd
TT
2691 void *data)
2692{
2693 int i;
2694 offset_type iter;
4b5246aa 2695 struct mapped_index *index;
9291a0cd
TT
2696
2697 dw2_setup (objfile);
ae2de4f8
DE
2698
2699 /* index_table is NULL if OBJF_READNOW. */
9291a0cd
TT
2700 if (!dwarf2_per_objfile->index_table)
2701 return;
4b5246aa 2702 index = dwarf2_per_objfile->index_table;
9291a0cd 2703
7b08b9eb
JK
2704 if (file_matcher != NULL)
2705 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2706 + dwarf2_per_objfile->n_type_comp_units); ++i)
2707 {
2708 int j;
2709 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
2710 struct quick_file_names *file_data;
2711
2712 per_cu->v.quick->mark = 0;
2713 if (per_cu->v.quick->symtab)
2714 continue;
2715
2716 file_data = dw2_get_file_names (objfile, per_cu);
2717 if (file_data == NULL)
2718 continue;
2719
2720 for (j = 0; j < file_data->num_file_names; ++j)
2721 {
2722 if (file_matcher (file_data->file_names[j], data))
2723 {
2724 per_cu->v.quick->mark = 1;
2725 break;
2726 }
2727 }
2728 }
9291a0cd 2729
3876f04e 2730 for (iter = 0; iter < index->symbol_table_slots; ++iter)
9291a0cd
TT
2731 {
2732 offset_type idx = 2 * iter;
2733 const char *name;
2734 offset_type *vec, vec_len, vec_idx;
2735
3876f04e 2736 if (index->symbol_table[idx] == 0 && index->symbol_table[idx + 1] == 0)
9291a0cd
TT
2737 continue;
2738
3876f04e 2739 name = index->constant_pool + MAYBE_SWAP (index->symbol_table[idx]);
9291a0cd
TT
2740
2741 if (! (*name_matcher) (name, data))
2742 continue;
2743
2744 /* The name was matched, now expand corresponding CUs that were
2745 marked. */
4b5246aa 2746 vec = (offset_type *) (index->constant_pool
3876f04e 2747 + MAYBE_SWAP (index->symbol_table[idx + 1]));
9291a0cd
TT
2748 vec_len = MAYBE_SWAP (vec[0]);
2749 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
2750 {
e254ef6a 2751 struct dwarf2_per_cu_data *per_cu;
1fd400ff 2752
e254ef6a 2753 per_cu = dw2_get_cu (MAYBE_SWAP (vec[vec_idx + 1]));
7b08b9eb 2754 if (file_matcher == NULL || per_cu->v.quick->mark)
e254ef6a 2755 dw2_instantiate_symtab (objfile, per_cu);
9291a0cd
TT
2756 }
2757 }
2758}
2759
2760static struct symtab *
2761dw2_find_pc_sect_symtab (struct objfile *objfile,
2762 struct minimal_symbol *msymbol,
2763 CORE_ADDR pc,
2764 struct obj_section *section,
2765 int warn_if_readin)
2766{
2767 struct dwarf2_per_cu_data *data;
2768
2769 dw2_setup (objfile);
2770
2771 if (!objfile->psymtabs_addrmap)
2772 return NULL;
2773
2774 data = addrmap_find (objfile->psymtabs_addrmap, pc);
2775 if (!data)
2776 return NULL;
2777
2778 if (warn_if_readin && data->v.quick->symtab)
abebb8b0 2779 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
9291a0cd
TT
2780 paddress (get_objfile_arch (objfile), pc));
2781
2782 return dw2_instantiate_symtab (objfile, data);
2783}
2784
9291a0cd 2785static void
44b13c5a 2786dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
9291a0cd
TT
2787 void *data)
2788{
2789 int i;
2790
2791 dw2_setup (objfile);
ae2de4f8 2792
1fd400ff
TT
2793 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2794 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd
TT
2795 {
2796 int j;
e254ef6a 2797 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
7b9f3c50 2798 struct quick_file_names *file_data;
9291a0cd 2799
e254ef6a 2800 if (per_cu->v.quick->symtab)
9291a0cd
TT
2801 continue;
2802
7b9f3c50
DE
2803 file_data = dw2_get_file_names (objfile, per_cu);
2804 if (file_data == NULL)
9291a0cd
TT
2805 continue;
2806
7b9f3c50 2807 for (j = 0; j < file_data->num_file_names; ++j)
9291a0cd 2808 {
7b9f3c50
DE
2809 const char *this_real_name = dw2_get_real_path (objfile, file_data,
2810 j);
2811 (*fun) (file_data->file_names[j], this_real_name, data);
9291a0cd
TT
2812 }
2813 }
2814}
2815
2816static int
2817dw2_has_symbols (struct objfile *objfile)
2818{
2819 return 1;
2820}
2821
2822const struct quick_symbol_functions dwarf2_gdb_index_functions =
2823{
2824 dw2_has_symbols,
2825 dw2_find_last_source_symtab,
2826 dw2_forget_cached_source_info,
2827 dw2_lookup_symtab,
2828 dw2_lookup_symbol,
774b6a14 2829 dw2_pre_expand_symtabs_matching,
9291a0cd
TT
2830 dw2_print_stats,
2831 dw2_dump,
2832 dw2_relocate,
2833 dw2_expand_symtabs_for_function,
2834 dw2_expand_all_symtabs,
2835 dw2_expand_symtabs_with_filename,
2836 dw2_find_symbol_file,
40658b94 2837 dw2_map_matching_symbols,
9291a0cd
TT
2838 dw2_expand_symtabs_matching,
2839 dw2_find_pc_sect_symtab,
9291a0cd
TT
2840 dw2_map_symbol_filenames
2841};
2842
2843/* Initialize for reading DWARF for this objfile. Return 0 if this
2844 file will use psymtabs, or 1 if using the GNU index. */
2845
2846int
2847dwarf2_initialize_objfile (struct objfile *objfile)
2848{
2849 /* If we're about to read full symbols, don't bother with the
2850 indices. In this case we also don't care if some other debug
2851 format is making psymtabs, because they are all about to be
2852 expanded anyway. */
2853 if ((objfile->flags & OBJF_READNOW))
2854 {
2855 int i;
2856
2857 dwarf2_per_objfile->using_index = 1;
2858 create_all_comp_units (objfile);
1fd400ff 2859 create_debug_types_hash_table (objfile);
7b9f3c50
DE
2860 dwarf2_per_objfile->quick_file_names_table =
2861 create_quick_file_names_table (dwarf2_per_objfile->n_comp_units);
9291a0cd 2862
1fd400ff
TT
2863 for (i = 0; i < (dwarf2_per_objfile->n_comp_units
2864 + dwarf2_per_objfile->n_type_comp_units); ++i)
9291a0cd 2865 {
e254ef6a 2866 struct dwarf2_per_cu_data *per_cu = dw2_get_cu (i);
9291a0cd 2867
e254ef6a
DE
2868 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2869 struct dwarf2_per_cu_quick_data);
9291a0cd
TT
2870 }
2871
2872 /* Return 1 so that gdb sees the "quick" functions. However,
2873 these functions will be no-ops because we will have expanded
2874 all symtabs. */
2875 return 1;
2876 }
2877
2878 if (dwarf2_read_index (objfile))
2879 return 1;
2880
9291a0cd
TT
2881 return 0;
2882}
2883
2884\f
2885
dce234bc
PP
2886/* Build a partial symbol table. */
2887
2888void
f29dff0a 2889dwarf2_build_psymtabs (struct objfile *objfile)
dce234bc 2890{
f29dff0a 2891 if (objfile->global_psymbols.size == 0 && objfile->static_psymbols.size == 0)
c906108c
SS
2892 {
2893 init_psymbol_list (objfile, 1024);
2894 }
2895
d146bf1e 2896 dwarf2_build_psymtabs_hard (objfile);
c906108c 2897}
c906108c 2898
45452591
DE
2899/* Return TRUE if OFFSET is within CU_HEADER. */
2900
2901static inline int
2902offset_in_cu_p (const struct comp_unit_head *cu_header, unsigned int offset)
2903{
2904 unsigned int bottom = cu_header->offset;
2905 unsigned int top = (cu_header->offset
2906 + cu_header->length
2907 + cu_header->initial_length_size);
9a619af0 2908
45452591
DE
2909 return (offset >= bottom && offset < top);
2910}
2911
93311388
DE
2912/* Read in the comp unit header information from the debug_info at info_ptr.
2913 NOTE: This leaves members offset, first_die_offset to be filled in
2914 by the caller. */
107d2387 2915
fe1b8b76 2916static gdb_byte *
107d2387 2917read_comp_unit_head (struct comp_unit_head *cu_header,
fe1b8b76 2918 gdb_byte *info_ptr, bfd *abfd)
107d2387
AC
2919{
2920 int signed_addr;
891d2f0b 2921 unsigned int bytes_read;
c764a876
DE
2922
2923 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
2924 cu_header->initial_length_size = bytes_read;
2925 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
613e1657 2926 info_ptr += bytes_read;
107d2387
AC
2927 cu_header->version = read_2_bytes (abfd, info_ptr);
2928 info_ptr += 2;
613e1657 2929 cu_header->abbrev_offset = read_offset (abfd, info_ptr, cu_header,
c764a876 2930 &bytes_read);
613e1657 2931 info_ptr += bytes_read;
107d2387
AC
2932 cu_header->addr_size = read_1_byte (abfd, info_ptr);
2933 info_ptr += 1;
2934 signed_addr = bfd_get_sign_extend_vma (abfd);
2935 if (signed_addr < 0)
8e65ff28 2936 internal_error (__FILE__, __LINE__,
e2e0b3e5 2937 _("read_comp_unit_head: dwarf from non elf file"));
107d2387 2938 cu_header->signed_addr_p = signed_addr;
c764a876 2939
107d2387
AC
2940 return info_ptr;
2941}
2942
fe1b8b76
JB
2943static gdb_byte *
2944partial_read_comp_unit_head (struct comp_unit_head *header, gdb_byte *info_ptr,
93311388 2945 gdb_byte *buffer, unsigned int buffer_size,
72bf9492
DJ
2946 bfd *abfd)
2947{
fe1b8b76 2948 gdb_byte *beg_of_comp_unit = info_ptr;
72bf9492
DJ
2949
2950 info_ptr = read_comp_unit_head (header, info_ptr, abfd);
2951
2dc7f7b3 2952 if (header->version != 2 && header->version != 3 && header->version != 4)
8a3fe4f8 2953 error (_("Dwarf Error: wrong version in compilation unit header "
2dc7f7b3
TT
2954 "(is %d, should be 2, 3, or 4) [in module %s]"), header->version,
2955 bfd_get_filename (abfd));
72bf9492 2956
9e0ac564
TT
2957 if (header->abbrev_offset
2958 >= dwarf2_section_size (dwarf2_per_objfile->objfile,
2959 &dwarf2_per_objfile->abbrev))
8a3fe4f8
AC
2960 error (_("Dwarf Error: bad offset (0x%lx) in compilation unit header "
2961 "(offset 0x%lx + 6) [in module %s]"),
72bf9492 2962 (long) header->abbrev_offset,
93311388 2963 (long) (beg_of_comp_unit - buffer),
72bf9492
DJ
2964 bfd_get_filename (abfd));
2965
2966 if (beg_of_comp_unit + header->length + header->initial_length_size
93311388 2967 > buffer + buffer_size)
8a3fe4f8
AC
2968 error (_("Dwarf Error: bad length (0x%lx) in compilation unit header "
2969 "(offset 0x%lx + 0) [in module %s]"),
72bf9492 2970 (long) header->length,
93311388 2971 (long) (beg_of_comp_unit - buffer),
72bf9492
DJ
2972 bfd_get_filename (abfd));
2973
2974 return info_ptr;
2975}
2976
348e048f
DE
2977/* Read in the types comp unit header information from .debug_types entry at
2978 types_ptr. The result is a pointer to one past the end of the header. */
2979
2980static gdb_byte *
2981read_type_comp_unit_head (struct comp_unit_head *cu_header,
8b70b953 2982 struct dwarf2_section_info *section,
348e048f
DE
2983 ULONGEST *signature,
2984 gdb_byte *types_ptr, bfd *abfd)
2985{
348e048f
DE
2986 gdb_byte *initial_types_ptr = types_ptr;
2987
8b70b953
TT
2988 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
2989 cu_header->offset = types_ptr - section->buffer;
348e048f
DE
2990
2991 types_ptr = read_comp_unit_head (cu_header, types_ptr, abfd);
2992
2993 *signature = read_8_bytes (abfd, types_ptr);
2994 types_ptr += 8;
2995 types_ptr += cu_header->offset_size;
2996 cu_header->first_die_offset = types_ptr - initial_types_ptr;
2997
2998 return types_ptr;
2999}
3000
aaa75496
JB
3001/* Allocate a new partial symtab for file named NAME and mark this new
3002 partial symtab as being an include of PST. */
3003
3004static void
3005dwarf2_create_include_psymtab (char *name, struct partial_symtab *pst,
3006 struct objfile *objfile)
3007{
3008 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
3009
3010 subpst->section_offsets = pst->section_offsets;
3011 subpst->textlow = 0;
3012 subpst->texthigh = 0;
3013
3014 subpst->dependencies = (struct partial_symtab **)
3015 obstack_alloc (&objfile->objfile_obstack,
3016 sizeof (struct partial_symtab *));
3017 subpst->dependencies[0] = pst;
3018 subpst->number_of_dependencies = 1;
3019
3020 subpst->globals_offset = 0;
3021 subpst->n_global_syms = 0;
3022 subpst->statics_offset = 0;
3023 subpst->n_static_syms = 0;
3024 subpst->symtab = NULL;
3025 subpst->read_symtab = pst->read_symtab;
3026 subpst->readin = 0;
3027
3028 /* No private part is necessary for include psymtabs. This property
3029 can be used to differentiate between such include psymtabs and
10b3939b 3030 the regular ones. */
58a9656e 3031 subpst->read_symtab_private = NULL;
aaa75496
JB
3032}
3033
3034/* Read the Line Number Program data and extract the list of files
3035 included by the source file represented by PST. Build an include
d85a05f0 3036 partial symtab for each of these included files. */
aaa75496
JB
3037
3038static void
3039dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
d85a05f0 3040 struct die_info *die,
aaa75496
JB
3041 struct partial_symtab *pst)
3042{
3043 struct objfile *objfile = cu->objfile;
3044 bfd *abfd = objfile->obfd;
d85a05f0
DJ
3045 struct line_header *lh = NULL;
3046 struct attribute *attr;
aaa75496 3047
d85a05f0
DJ
3048 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
3049 if (attr)
3050 {
3051 unsigned int line_offset = DW_UNSND (attr);
9a619af0 3052
d85a05f0
DJ
3053 lh = dwarf_decode_line_header (line_offset, abfd, cu);
3054 }
aaa75496
JB
3055 if (lh == NULL)
3056 return; /* No linetable, so no includes. */
3057
c6da4cef
DE
3058 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). */
3059 dwarf_decode_lines (lh, pst->dirname, abfd, cu, pst);
aaa75496
JB
3060
3061 free_line_header (lh);
3062}
3063
348e048f
DE
3064static hashval_t
3065hash_type_signature (const void *item)
3066{
3067 const struct signatured_type *type_sig = item;
9a619af0 3068
348e048f
DE
3069 /* This drops the top 32 bits of the signature, but is ok for a hash. */
3070 return type_sig->signature;
3071}
3072
3073static int
3074eq_type_signature (const void *item_lhs, const void *item_rhs)
3075{
3076 const struct signatured_type *lhs = item_lhs;
3077 const struct signatured_type *rhs = item_rhs;
9a619af0 3078
348e048f
DE
3079 return lhs->signature == rhs->signature;
3080}
3081
1fd400ff
TT
3082/* Allocate a hash table for signatured types. */
3083
3084static htab_t
673bfd45 3085allocate_signatured_type_table (struct objfile *objfile)
1fd400ff
TT
3086{
3087 return htab_create_alloc_ex (41,
3088 hash_type_signature,
3089 eq_type_signature,
3090 NULL,
3091 &objfile->objfile_obstack,
3092 hashtab_obstack_allocate,
3093 dummy_obstack_deallocate);
3094}
3095
3096/* A helper function to add a signatured type CU to a list. */
3097
3098static int
3099add_signatured_type_cu_to_list (void **slot, void *datum)
3100{
3101 struct signatured_type *sigt = *slot;
3102 struct dwarf2_per_cu_data ***datap = datum;
3103
3104 **datap = &sigt->per_cu;
3105 ++*datap;
3106
3107 return 1;
3108}
3109
348e048f
DE
3110/* Create the hash table of all entries in the .debug_types section.
3111 The result is zero if there is an error (e.g. missing .debug_types section),
3112 otherwise non-zero. */
3113
3114static int
3115create_debug_types_hash_table (struct objfile *objfile)
3116{
8b70b953 3117 htab_t types_htab = NULL;
1fd400ff 3118 struct dwarf2_per_cu_data **iter;
8b70b953
TT
3119 int ix;
3120 struct dwarf2_section_info *section;
348e048f 3121
8b70b953 3122 if (VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types))
348e048f
DE
3123 {
3124 dwarf2_per_objfile->signatured_types = NULL;
3125 return 0;
3126 }
3127
8b70b953
TT
3128 for (ix = 0;
3129 VEC_iterate (dwarf2_section_info_def, dwarf2_per_objfile->types,
3130 ix, section);
3131 ++ix)
3132 {
3133 gdb_byte *info_ptr, *end_ptr;
348e048f 3134
8b70b953
TT
3135 dwarf2_read_section (objfile, section);
3136 info_ptr = section->buffer;
348e048f 3137
8b70b953
TT
3138 if (info_ptr == NULL)
3139 continue;
348e048f 3140
8b70b953
TT
3141 if (types_htab == NULL)
3142 types_htab = allocate_signatured_type_table (objfile);
348e048f 3143
8b70b953
TT
3144 if (dwarf2_die_debug)
3145 fprintf_unfiltered (gdb_stdlog, "Signatured types:\n");
3146
3147 end_ptr = info_ptr + section->size;
3148 while (info_ptr < end_ptr)
3149 {
3150 unsigned int offset;
3151 unsigned int offset_size;
3152 unsigned int type_offset;
3153 unsigned int length, initial_length_size;
3154 unsigned short version;
3155 ULONGEST signature;
3156 struct signatured_type *type_sig;
3157 void **slot;
3158 gdb_byte *ptr = info_ptr;
348e048f 3159
8b70b953 3160 offset = ptr - section->buffer;
348e048f 3161
8b70b953
TT
3162 /* We need to read the type's signature in order to build the hash
3163 table, but we don't need to read anything else just yet. */
348e048f 3164
8b70b953
TT
3165 /* Sanity check to ensure entire cu is present. */
3166 length = read_initial_length (objfile->obfd, ptr,
3167 &initial_length_size);
3168 if (ptr + length + initial_length_size > end_ptr)
3169 {
3170 complaint (&symfile_complaints,
3171 _("debug type entry runs off end "
3172 "of `.debug_types' section, ignored"));
3173 break;
3174 }
348e048f 3175
8b70b953
TT
3176 offset_size = initial_length_size == 4 ? 4 : 8;
3177 ptr += initial_length_size;
3178 version = bfd_get_16 (objfile->obfd, ptr);
3179 ptr += 2;
3180 ptr += offset_size; /* abbrev offset */
3181 ptr += 1; /* address size */
3182 signature = bfd_get_64 (objfile->obfd, ptr);
3183 ptr += 8;
3184 type_offset = read_offset_1 (objfile->obfd, ptr, offset_size);
3185
3186 type_sig = obstack_alloc (&objfile->objfile_obstack, sizeof (*type_sig));
3187 memset (type_sig, 0, sizeof (*type_sig));
3188 type_sig->signature = signature;
3189 type_sig->type_offset = type_offset;
3190 type_sig->per_cu.objfile = objfile;
3191 type_sig->per_cu.debug_type_section = section;
3192 type_sig->per_cu.offset = offset;
3193
3194 slot = htab_find_slot (types_htab, type_sig, INSERT);
3195 gdb_assert (slot != NULL);
3196 if (*slot != NULL)
3197 {
3198 const struct signatured_type *dup_sig = *slot;
b3c8eb43 3199
8b70b953
TT
3200 complaint (&symfile_complaints,
3201 _("debug type entry at offset 0x%x is duplicate to the "
3202 "entry at offset 0x%x, signature 0x%s"),
3203 offset, dup_sig->per_cu.offset,
3204 phex (signature, sizeof (signature)));
3205 gdb_assert (signature == dup_sig->signature);
3206 }
3207 *slot = type_sig;
348e048f 3208
8b70b953
TT
3209 if (dwarf2_die_debug)
3210 fprintf_unfiltered (gdb_stdlog, " offset 0x%x, signature 0x%s\n",
3211 offset, phex (signature, sizeof (signature)));
348e048f 3212
8b70b953
TT
3213 info_ptr = info_ptr + initial_length_size + length;
3214 }
348e048f
DE
3215 }
3216
3217 dwarf2_per_objfile->signatured_types = types_htab;
3218
1fd400ff
TT
3219 dwarf2_per_objfile->n_type_comp_units = htab_elements (types_htab);
3220 dwarf2_per_objfile->type_comp_units
3221 = obstack_alloc (&objfile->objfile_obstack,
3222 dwarf2_per_objfile->n_type_comp_units
3223 * sizeof (struct dwarf2_per_cu_data *));
3224 iter = &dwarf2_per_objfile->type_comp_units[0];
3225 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_list, &iter);
3226 gdb_assert (iter - &dwarf2_per_objfile->type_comp_units[0]
3227 == dwarf2_per_objfile->n_type_comp_units);
3228
348e048f
DE
3229 return 1;
3230}
3231
3232/* Lookup a signature based type.
3233 Returns NULL if SIG is not present in the table. */
3234
3235static struct signatured_type *
3236lookup_signatured_type (struct objfile *objfile, ULONGEST sig)
3237{
3238 struct signatured_type find_entry, *entry;
3239
3240 if (dwarf2_per_objfile->signatured_types == NULL)
3241 {
3242 complaint (&symfile_complaints,
55f1336d 3243 _("missing `.debug_types' section for DW_FORM_ref_sig8 die"));
348e048f
DE
3244 return 0;
3245 }
3246
3247 find_entry.signature = sig;
3248 entry = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
3249 return entry;
3250}
3251
d85a05f0
DJ
3252/* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
3253
3254static void
3255init_cu_die_reader (struct die_reader_specs *reader,
3256 struct dwarf2_cu *cu)
3257{
3258 reader->abfd = cu->objfile->obfd;
3259 reader->cu = cu;
8b70b953 3260 if (cu->per_cu->debug_type_section)
be391dca 3261 {
8b70b953
TT
3262 gdb_assert (cu->per_cu->debug_type_section->readin);
3263 reader->buffer = cu->per_cu->debug_type_section->buffer;
be391dca 3264 }
d85a05f0 3265 else
be391dca
TT
3266 {
3267 gdb_assert (dwarf2_per_objfile->info.readin);
3268 reader->buffer = dwarf2_per_objfile->info.buffer;
3269 }
d85a05f0
DJ
3270}
3271
3272/* Find the base address of the compilation unit for range lists and
3273 location lists. It will normally be specified by DW_AT_low_pc.
3274 In DWARF-3 draft 4, the base address could be overridden by
3275 DW_AT_entry_pc. It's been removed, but GCC still uses this for
3276 compilation units with discontinuous ranges. */
3277
3278static void
3279dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
3280{
3281 struct attribute *attr;
3282
3283 cu->base_known = 0;
3284 cu->base_address = 0;
3285
3286 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
3287 if (attr)
3288 {
3289 cu->base_address = DW_ADDR (attr);
3290 cu->base_known = 1;
3291 }
3292 else
3293 {
3294 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
3295 if (attr)
3296 {
3297 cu->base_address = DW_ADDR (attr);
3298 cu->base_known = 1;
3299 }
3300 }
3301}
3302
348e048f
DE
3303/* Subroutine of process_type_comp_unit and dwarf2_build_psymtabs_hard
3304 to combine the common parts.
93311388 3305 Process a compilation unit for a psymtab.
348e048f
DE
3306 BUFFER is a pointer to the beginning of the dwarf section buffer,
3307 either .debug_info or debug_types.
93311388
DE
3308 INFO_PTR is a pointer to the start of the CU.
3309 Returns a pointer to the next CU. */
aaa75496 3310
93311388
DE
3311static gdb_byte *
3312process_psymtab_comp_unit (struct objfile *objfile,
3313 struct dwarf2_per_cu_data *this_cu,
3314 gdb_byte *buffer, gdb_byte *info_ptr,
3315 unsigned int buffer_size)
c906108c 3316{
c906108c 3317 bfd *abfd = objfile->obfd;
93311388 3318 gdb_byte *beg_of_comp_unit = info_ptr;
d85a05f0 3319 struct die_info *comp_unit_die;
c906108c 3320 struct partial_symtab *pst;
5734ee8b 3321 CORE_ADDR baseaddr;
93311388
DE
3322 struct cleanup *back_to_inner;
3323 struct dwarf2_cu cu;
d85a05f0
DJ
3324 int has_children, has_pc_info;
3325 struct attribute *attr;
d85a05f0
DJ
3326 CORE_ADDR best_lowpc = 0, best_highpc = 0;
3327 struct die_reader_specs reader_specs;
3e2a0cee 3328 const char *filename;
c906108c 3329
9816fde3 3330 init_one_comp_unit (&cu, objfile);
93311388 3331 back_to_inner = make_cleanup (free_stack_comp_unit, &cu);
ae038cb0 3332
93311388
DE
3333 info_ptr = partial_read_comp_unit_head (&cu.header, info_ptr,
3334 buffer, buffer_size,
3335 abfd);
10b3939b 3336
93311388
DE
3337 /* Complete the cu_header. */
3338 cu.header.offset = beg_of_comp_unit - buffer;
3339 cu.header.first_die_offset = info_ptr - beg_of_comp_unit;
ff013f42 3340
93311388 3341 cu.list_in_scope = &file_symbols;
af703f96 3342
328c9494
DJ
3343 /* If this compilation unit was already read in, free the
3344 cached copy in order to read it in again. This is
3345 necessary because we skipped some symbols when we first
3346 read in the compilation unit (see load_partial_dies).
3347 This problem could be avoided, but the benefit is
3348 unclear. */
3349 if (this_cu->cu != NULL)
3350 free_one_cached_comp_unit (this_cu->cu);
3351
3352 /* Note that this is a pointer to our stack frame, being
3353 added to a global data structure. It will be cleaned up
3354 in free_stack_comp_unit when we finish with this
3355 compilation unit. */
3356 this_cu->cu = &cu;
d85a05f0
DJ
3357 cu.per_cu = this_cu;
3358
93311388
DE
3359 /* Read the abbrevs for this compilation unit into a table. */
3360 dwarf2_read_abbrevs (abfd, &cu);
3361 make_cleanup (dwarf2_free_abbrev_table, &cu);
af703f96 3362
93311388 3363 /* Read the compilation unit die. */
8b70b953 3364 if (this_cu->debug_type_section)
348e048f 3365 info_ptr += 8 /*signature*/ + cu.header.offset_size;
d85a05f0
DJ
3366 init_cu_die_reader (&reader_specs, &cu);
3367 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3368 &has_children);
93311388 3369
8b70b953 3370 if (this_cu->debug_type_section)
348e048f 3371 {
b3c8eb43
JK
3372 /* LENGTH has not been set yet for type units. */
3373 gdb_assert (this_cu->offset == cu.header.offset);
348e048f
DE
3374 this_cu->length = cu.header.length + cu.header.initial_length_size;
3375 }
d85a05f0 3376 else if (comp_unit_die->tag == DW_TAG_partial_unit)
c906108c 3377 {
93311388
DE
3378 info_ptr = (beg_of_comp_unit + cu.header.length
3379 + cu.header.initial_length_size);
3380 do_cleanups (back_to_inner);
3381 return info_ptr;
3382 }
72bf9492 3383
9816fde3 3384 prepare_one_comp_unit (&cu, comp_unit_die);
c906108c 3385
93311388 3386 /* Allocate a new partial symbol table structure. */
d85a05f0 3387 attr = dwarf2_attr (comp_unit_die, DW_AT_name, &cu);
3e2a0cee
TT
3388 if (attr == NULL || !DW_STRING (attr))
3389 filename = "";
3390 else
3391 filename = DW_STRING (attr);
93311388 3392 pst = start_psymtab_common (objfile, objfile->section_offsets,
3e2a0cee 3393 filename,
93311388
DE
3394 /* TEXTLOW and TEXTHIGH are set below. */
3395 0,
3396 objfile->global_psymbols.next,
3397 objfile->static_psymbols.next);
72bf9492 3398
d85a05f0
DJ
3399 attr = dwarf2_attr (comp_unit_die, DW_AT_comp_dir, &cu);
3400 if (attr != NULL)
3401 pst->dirname = DW_STRING (attr);
72bf9492 3402
e38df1d0 3403 pst->read_symtab_private = this_cu;
72bf9492 3404
93311388 3405 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
e7c27a73 3406
0963b4bd 3407 /* Store the function that reads in the rest of the symbol table. */
93311388 3408 pst->read_symtab = dwarf2_psymtab_to_symtab;
57349743 3409
9291a0cd 3410 this_cu->v.psymtab = pst;
c906108c 3411
d85a05f0
DJ
3412 dwarf2_find_base_address (comp_unit_die, &cu);
3413
93311388
DE
3414 /* Possibly set the default values of LOWPC and HIGHPC from
3415 `DW_AT_ranges'. */
d85a05f0
DJ
3416 has_pc_info = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
3417 &best_highpc, &cu, pst);
3418 if (has_pc_info == 1 && best_lowpc < best_highpc)
93311388
DE
3419 /* Store the contiguous range if it is not empty; it can be empty for
3420 CUs with no code. */
3421 addrmap_set_empty (objfile->psymtabs_addrmap,
d85a05f0
DJ
3422 best_lowpc + baseaddr,
3423 best_highpc + baseaddr - 1, pst);
93311388
DE
3424
3425 /* Check if comp unit has_children.
3426 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 3427 If not, there's no more debug_info for this comp unit. */
d85a05f0 3428 if (has_children)
93311388
DE
3429 {
3430 struct partial_die_info *first_die;
3431 CORE_ADDR lowpc, highpc;
31ffec48 3432
93311388
DE
3433 lowpc = ((CORE_ADDR) -1);
3434 highpc = ((CORE_ADDR) 0);
c906108c 3435
93311388 3436 first_die = load_partial_dies (abfd, buffer, info_ptr, 1, &cu);
c906108c 3437
93311388 3438 scan_partial_symbols (first_die, &lowpc, &highpc,
d85a05f0 3439 ! has_pc_info, &cu);
57c22c6c 3440
93311388
DE
3441 /* If we didn't find a lowpc, set it to highpc to avoid
3442 complaints from `maint check'. */
3443 if (lowpc == ((CORE_ADDR) -1))
3444 lowpc = highpc;
10b3939b 3445
93311388
DE
3446 /* If the compilation unit didn't have an explicit address range,
3447 then use the information extracted from its child dies. */
d85a05f0 3448 if (! has_pc_info)
93311388 3449 {
d85a05f0
DJ
3450 best_lowpc = lowpc;
3451 best_highpc = highpc;
93311388
DE
3452 }
3453 }
d85a05f0
DJ
3454 pst->textlow = best_lowpc + baseaddr;
3455 pst->texthigh = best_highpc + baseaddr;
c906108c 3456
93311388
DE
3457 pst->n_global_syms = objfile->global_psymbols.next -
3458 (objfile->global_psymbols.list + pst->globals_offset);
3459 pst->n_static_syms = objfile->static_psymbols.next -
3460 (objfile->static_psymbols.list + pst->statics_offset);
3461 sort_pst_symbols (pst);
c906108c 3462
93311388
DE
3463 info_ptr = (beg_of_comp_unit + cu.header.length
3464 + cu.header.initial_length_size);
ae038cb0 3465
8b70b953 3466 if (this_cu->debug_type_section)
348e048f
DE
3467 {
3468 /* It's not clear we want to do anything with stmt lists here.
3469 Waiting to see what gcc ultimately does. */
3470 }
d85a05f0 3471 else
93311388
DE
3472 {
3473 /* Get the list of files included in the current compilation unit,
3474 and build a psymtab for each of them. */
d85a05f0 3475 dwarf2_build_include_psymtabs (&cu, comp_unit_die, pst);
93311388 3476 }
ae038cb0 3477
93311388 3478 do_cleanups (back_to_inner);
ae038cb0 3479
93311388
DE
3480 return info_ptr;
3481}
ff013f42 3482
348e048f
DE
3483/* Traversal function for htab_traverse_noresize.
3484 Process one .debug_types comp-unit. */
3485
3486static int
3487process_type_comp_unit (void **slot, void *info)
3488{
3489 struct signatured_type *entry = (struct signatured_type *) *slot;
3490 struct objfile *objfile = (struct objfile *) info;
3491 struct dwarf2_per_cu_data *this_cu;
3492
3493 this_cu = &entry->per_cu;
348e048f 3494
8b70b953 3495 gdb_assert (this_cu->debug_type_section->readin);
348e048f 3496 process_psymtab_comp_unit (objfile, this_cu,
8b70b953
TT
3497 this_cu->debug_type_section->buffer,
3498 (this_cu->debug_type_section->buffer
3499 + this_cu->offset),
3500 this_cu->debug_type_section->size);
348e048f
DE
3501
3502 return 1;
3503}
3504
3505/* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
3506 Build partial symbol tables for the .debug_types comp-units. */
3507
3508static void
3509build_type_psymtabs (struct objfile *objfile)
3510{
3511 if (! create_debug_types_hash_table (objfile))
3512 return;
3513
3514 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
3515 process_type_comp_unit, objfile);
3516}
3517
60606b2c
TT
3518/* A cleanup function that clears objfile's psymtabs_addrmap field. */
3519
3520static void
3521psymtabs_addrmap_cleanup (void *o)
3522{
3523 struct objfile *objfile = o;
ec61707d 3524
60606b2c
TT
3525 objfile->psymtabs_addrmap = NULL;
3526}
3527
93311388
DE
3528/* Build the partial symbol table by doing a quick pass through the
3529 .debug_info and .debug_abbrev sections. */
72bf9492 3530
93311388 3531static void
c67a9c90 3532dwarf2_build_psymtabs_hard (struct objfile *objfile)
93311388 3533{
93311388 3534 gdb_byte *info_ptr;
60606b2c
TT
3535 struct cleanup *back_to, *addrmap_cleanup;
3536 struct obstack temp_obstack;
93311388 3537
98bfdba5
PA
3538 dwarf2_per_objfile->reading_partial_symbols = 1;
3539
be391dca 3540 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
93311388 3541 info_ptr = dwarf2_per_objfile->info.buffer;
91c24f0a 3542
93311388
DE
3543 /* Any cached compilation units will be linked by the per-objfile
3544 read_in_chain. Make sure to free them when we're done. */
3545 back_to = make_cleanup (free_cached_comp_units, NULL);
72bf9492 3546
348e048f
DE
3547 build_type_psymtabs (objfile);
3548
93311388 3549 create_all_comp_units (objfile);
c906108c 3550
60606b2c
TT
3551 /* Create a temporary address map on a temporary obstack. We later
3552 copy this to the final obstack. */
3553 obstack_init (&temp_obstack);
3554 make_cleanup_obstack_free (&temp_obstack);
3555 objfile->psymtabs_addrmap = addrmap_create_mutable (&temp_obstack);
3556 addrmap_cleanup = make_cleanup (psymtabs_addrmap_cleanup, objfile);
72bf9492 3557
93311388
DE
3558 /* Since the objects we're extracting from .debug_info vary in
3559 length, only the individual functions to extract them (like
3560 read_comp_unit_head and load_partial_die) can really know whether
3561 the buffer is large enough to hold another complete object.
c906108c 3562
93311388
DE
3563 At the moment, they don't actually check that. If .debug_info
3564 holds just one extra byte after the last compilation unit's dies,
3565 then read_comp_unit_head will happily read off the end of the
3566 buffer. read_partial_die is similarly casual. Those functions
3567 should be fixed.
c906108c 3568
93311388
DE
3569 For this loop condition, simply checking whether there's any data
3570 left at all should be sufficient. */
c906108c 3571
93311388
DE
3572 while (info_ptr < (dwarf2_per_objfile->info.buffer
3573 + dwarf2_per_objfile->info.size))
3574 {
3575 struct dwarf2_per_cu_data *this_cu;
dd373385 3576
3e43a32a
MS
3577 this_cu = dwarf2_find_comp_unit (info_ptr
3578 - dwarf2_per_objfile->info.buffer,
93311388 3579 objfile);
aaa75496 3580
93311388
DE
3581 info_ptr = process_psymtab_comp_unit (objfile, this_cu,
3582 dwarf2_per_objfile->info.buffer,
3583 info_ptr,
3584 dwarf2_per_objfile->info.size);
c906108c 3585 }
ff013f42
JK
3586
3587 objfile->psymtabs_addrmap = addrmap_create_fixed (objfile->psymtabs_addrmap,
3588 &objfile->objfile_obstack);
60606b2c 3589 discard_cleanups (addrmap_cleanup);
ff013f42 3590
ae038cb0
DJ
3591 do_cleanups (back_to);
3592}
3593
93311388 3594/* Load the partial DIEs for a secondary CU into memory. */
ae038cb0
DJ
3595
3596static void
93311388
DE
3597load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu,
3598 struct objfile *objfile)
ae038cb0
DJ
3599{
3600 bfd *abfd = objfile->obfd;
fe1b8b76 3601 gdb_byte *info_ptr, *beg_of_comp_unit;
d85a05f0 3602 struct die_info *comp_unit_die;
ae038cb0 3603 struct dwarf2_cu *cu;
1d9ec526 3604 struct cleanup *free_abbrevs_cleanup, *free_cu_cleanup = NULL;
d85a05f0
DJ
3605 int has_children;
3606 struct die_reader_specs reader_specs;
98bfdba5 3607 int read_cu = 0;
ae038cb0 3608
8b70b953 3609 gdb_assert (! this_cu->debug_type_section);
348e048f 3610
be391dca 3611 gdb_assert (dwarf2_per_objfile->info.readin);
dce234bc 3612 info_ptr = dwarf2_per_objfile->info.buffer + this_cu->offset;
ae038cb0
DJ
3613 beg_of_comp_unit = info_ptr;
3614
98bfdba5
PA
3615 if (this_cu->cu == NULL)
3616 {
9816fde3
JK
3617 cu = xmalloc (sizeof (*cu));
3618 init_one_comp_unit (cu, objfile);
ae038cb0 3619
98bfdba5 3620 read_cu = 1;
ae038cb0 3621
98bfdba5
PA
3622 /* If an error occurs while loading, release our storage. */
3623 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
328c9494 3624
98bfdba5
PA
3625 info_ptr = partial_read_comp_unit_head (&cu->header, info_ptr,
3626 dwarf2_per_objfile->info.buffer,
3627 dwarf2_per_objfile->info.size,
3628 abfd);
ae038cb0 3629
98bfdba5
PA
3630 /* Complete the cu_header. */
3631 cu->header.offset = this_cu->offset;
3632 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
3633
3634 /* Link this compilation unit into the compilation unit tree. */
3635 this_cu->cu = cu;
3636 cu->per_cu = this_cu;
98bfdba5
PA
3637
3638 /* Link this CU into read_in_chain. */
3639 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
3640 dwarf2_per_objfile->read_in_chain = this_cu;
3641 }
3642 else
3643 {
3644 cu = this_cu->cu;
3645 info_ptr += cu->header.first_die_offset;
3646 }
ae038cb0
DJ
3647
3648 /* Read the abbrevs for this compilation unit into a table. */
98bfdba5 3649 gdb_assert (cu->dwarf2_abbrevs == NULL);
ae038cb0 3650 dwarf2_read_abbrevs (abfd, cu);
98bfdba5 3651 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
ae038cb0
DJ
3652
3653 /* Read the compilation unit die. */
d85a05f0
DJ
3654 init_cu_die_reader (&reader_specs, cu);
3655 info_ptr = read_full_die (&reader_specs, &comp_unit_die, info_ptr,
3656 &has_children);
ae038cb0 3657
9816fde3 3658 prepare_one_comp_unit (cu, comp_unit_die);
ae038cb0 3659
ae038cb0
DJ
3660 /* Check if comp unit has_children.
3661 If so, read the rest of the partial symbols from this comp unit.
0963b4bd 3662 If not, there's no more debug_info for this comp unit. */
d85a05f0 3663 if (has_children)
93311388 3664 load_partial_dies (abfd, dwarf2_per_objfile->info.buffer, info_ptr, 0, cu);
ae038cb0 3665
98bfdba5
PA
3666 do_cleanups (free_abbrevs_cleanup);
3667
3668 if (read_cu)
3669 {
3670 /* We've successfully allocated this compilation unit. Let our
3671 caller clean it up when finished with it. */
3672 discard_cleanups (free_cu_cleanup);
3673 }
ae038cb0
DJ
3674}
3675
3676/* Create a list of all compilation units in OBJFILE. We do this only
3677 if an inter-comp-unit reference is found; presumably if there is one,
3678 there will be many, and one will occur early in the .debug_info section.
3679 So there's no point in building this list incrementally. */
3680
3681static void
3682create_all_comp_units (struct objfile *objfile)
3683{
3684 int n_allocated;
3685 int n_comp_units;
3686 struct dwarf2_per_cu_data **all_comp_units;
be391dca
TT
3687 gdb_byte *info_ptr;
3688
3689 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
3690 info_ptr = dwarf2_per_objfile->info.buffer;
ae038cb0
DJ
3691
3692 n_comp_units = 0;
3693 n_allocated = 10;
3694 all_comp_units = xmalloc (n_allocated
3695 * sizeof (struct dwarf2_per_cu_data *));
6e70227d 3696
3e43a32a
MS
3697 while (info_ptr < dwarf2_per_objfile->info.buffer
3698 + dwarf2_per_objfile->info.size)
ae038cb0 3699 {
c764a876 3700 unsigned int length, initial_length_size;
ae038cb0 3701 struct dwarf2_per_cu_data *this_cu;
c764a876 3702 unsigned int offset;
ae038cb0 3703
dce234bc 3704 offset = info_ptr - dwarf2_per_objfile->info.buffer;
ae038cb0
DJ
3705
3706 /* Read just enough information to find out where the next
3707 compilation unit is. */
c764a876
DE
3708 length = read_initial_length (objfile->obfd, info_ptr,
3709 &initial_length_size);
ae038cb0
DJ
3710
3711 /* Save the compilation unit for later lookup. */
3712 this_cu = obstack_alloc (&objfile->objfile_obstack,
3713 sizeof (struct dwarf2_per_cu_data));
3714 memset (this_cu, 0, sizeof (*this_cu));
3715 this_cu->offset = offset;
c764a876 3716 this_cu->length = length + initial_length_size;
9291a0cd 3717 this_cu->objfile = objfile;
ae038cb0
DJ
3718
3719 if (n_comp_units == n_allocated)
3720 {
3721 n_allocated *= 2;
3722 all_comp_units = xrealloc (all_comp_units,
3723 n_allocated
3724 * sizeof (struct dwarf2_per_cu_data *));
3725 }
3726 all_comp_units[n_comp_units++] = this_cu;
3727
3728 info_ptr = info_ptr + this_cu->length;
3729 }
3730
3731 dwarf2_per_objfile->all_comp_units
3732 = obstack_alloc (&objfile->objfile_obstack,
3733 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3734 memcpy (dwarf2_per_objfile->all_comp_units, all_comp_units,
3735 n_comp_units * sizeof (struct dwarf2_per_cu_data *));
3736 xfree (all_comp_units);
3737 dwarf2_per_objfile->n_comp_units = n_comp_units;
c906108c
SS
3738}
3739
5734ee8b
DJ
3740/* Process all loaded DIEs for compilation unit CU, starting at
3741 FIRST_DIE. The caller should pass NEED_PC == 1 if the compilation
3742 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
3743 DW_AT_ranges). If NEED_PC is set, then this function will set
3744 *LOWPC and *HIGHPC to the lowest and highest PC values found in CU
3745 and record the covered ranges in the addrmap. */
c906108c 3746
72bf9492
DJ
3747static void
3748scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
5734ee8b 3749 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
c906108c 3750{
72bf9492 3751 struct partial_die_info *pdi;
c906108c 3752
91c24f0a
DC
3753 /* Now, march along the PDI's, descending into ones which have
3754 interesting children but skipping the children of the other ones,
3755 until we reach the end of the compilation unit. */
c906108c 3756
72bf9492 3757 pdi = first_die;
91c24f0a 3758
72bf9492
DJ
3759 while (pdi != NULL)
3760 {
3761 fixup_partial_die (pdi, cu);
c906108c 3762
f55ee35c 3763 /* Anonymous namespaces or modules have no name but have interesting
91c24f0a
DC
3764 children, so we need to look at them. Ditto for anonymous
3765 enums. */
933c6fe4 3766
72bf9492 3767 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
f55ee35c 3768 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type)
c906108c 3769 {
72bf9492 3770 switch (pdi->tag)
c906108c
SS
3771 {
3772 case DW_TAG_subprogram:
5734ee8b 3773 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
c906108c 3774 break;
72929c62 3775 case DW_TAG_constant:
c906108c
SS
3776 case DW_TAG_variable:
3777 case DW_TAG_typedef:
91c24f0a 3778 case DW_TAG_union_type:
72bf9492 3779 if (!pdi->is_declaration)
63d06c5c 3780 {
72bf9492 3781 add_partial_symbol (pdi, cu);
63d06c5c
DC
3782 }
3783 break;
c906108c 3784 case DW_TAG_class_type:
680b30c7 3785 case DW_TAG_interface_type:
c906108c 3786 case DW_TAG_structure_type:
72bf9492 3787 if (!pdi->is_declaration)
c906108c 3788 {
72bf9492 3789 add_partial_symbol (pdi, cu);
c906108c
SS
3790 }
3791 break;
91c24f0a 3792 case DW_TAG_enumeration_type:
72bf9492
DJ
3793 if (!pdi->is_declaration)
3794 add_partial_enumeration (pdi, cu);
c906108c
SS
3795 break;
3796 case DW_TAG_base_type:
a02abb62 3797 case DW_TAG_subrange_type:
c906108c 3798 /* File scope base type definitions are added to the partial
c5aa993b 3799 symbol table. */
72bf9492 3800 add_partial_symbol (pdi, cu);
c906108c 3801 break;
d9fa45fe 3802 case DW_TAG_namespace:
5734ee8b 3803 add_partial_namespace (pdi, lowpc, highpc, need_pc, cu);
91c24f0a 3804 break;
5d7cb8df
JK
3805 case DW_TAG_module:
3806 add_partial_module (pdi, lowpc, highpc, need_pc, cu);
3807 break;
c906108c
SS
3808 default:
3809 break;
3810 }
3811 }
3812
72bf9492
DJ
3813 /* If the die has a sibling, skip to the sibling. */
3814
3815 pdi = pdi->die_sibling;
3816 }
3817}
3818
3819/* Functions used to compute the fully scoped name of a partial DIE.
91c24f0a 3820
72bf9492 3821 Normally, this is simple. For C++, the parent DIE's fully scoped
987504bb
JJ
3822 name is concatenated with "::" and the partial DIE's name. For
3823 Java, the same thing occurs except that "." is used instead of "::".
72bf9492
DJ
3824 Enumerators are an exception; they use the scope of their parent
3825 enumeration type, i.e. the name of the enumeration type is not
3826 prepended to the enumerator.
91c24f0a 3827
72bf9492
DJ
3828 There are two complexities. One is DW_AT_specification; in this
3829 case "parent" means the parent of the target of the specification,
3830 instead of the direct parent of the DIE. The other is compilers
3831 which do not emit DW_TAG_namespace; in this case we try to guess
3832 the fully qualified name of structure types from their members'
3833 linkage names. This must be done using the DIE's children rather
3834 than the children of any DW_AT_specification target. We only need
3835 to do this for structures at the top level, i.e. if the target of
3836 any DW_AT_specification (if any; otherwise the DIE itself) does not
3837 have a parent. */
3838
3839/* Compute the scope prefix associated with PDI's parent, in
3840 compilation unit CU. The result will be allocated on CU's
3841 comp_unit_obstack, or a copy of the already allocated PDI->NAME
3842 field. NULL is returned if no prefix is necessary. */
3843static char *
3844partial_die_parent_scope (struct partial_die_info *pdi,
3845 struct dwarf2_cu *cu)
3846{
3847 char *grandparent_scope;
3848 struct partial_die_info *parent, *real_pdi;
91c24f0a 3849
72bf9492
DJ
3850 /* We need to look at our parent DIE; if we have a DW_AT_specification,
3851 then this means the parent of the specification DIE. */
3852
3853 real_pdi = pdi;
72bf9492 3854 while (real_pdi->has_specification)
10b3939b 3855 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
72bf9492
DJ
3856
3857 parent = real_pdi->die_parent;
3858 if (parent == NULL)
3859 return NULL;
3860
3861 if (parent->scope_set)
3862 return parent->scope;
3863
3864 fixup_partial_die (parent, cu);
3865
10b3939b 3866 grandparent_scope = partial_die_parent_scope (parent, cu);
72bf9492 3867
acebe513
UW
3868 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
3869 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
3870 Work around this problem here. */
3871 if (cu->language == language_cplus
6e70227d 3872 && parent->tag == DW_TAG_namespace
acebe513
UW
3873 && strcmp (parent->name, "::") == 0
3874 && grandparent_scope == NULL)
3875 {
3876 parent->scope = NULL;
3877 parent->scope_set = 1;
3878 return NULL;
3879 }
3880
9c6c53f7
SA
3881 if (pdi->tag == DW_TAG_enumerator)
3882 /* Enumerators should not get the name of the enumeration as a prefix. */
3883 parent->scope = grandparent_scope;
3884 else if (parent->tag == DW_TAG_namespace
f55ee35c 3885 || parent->tag == DW_TAG_module
72bf9492
DJ
3886 || parent->tag == DW_TAG_structure_type
3887 || parent->tag == DW_TAG_class_type
680b30c7 3888 || parent->tag == DW_TAG_interface_type
ceeb3d5a
TT
3889 || parent->tag == DW_TAG_union_type
3890 || parent->tag == DW_TAG_enumeration_type)
72bf9492
DJ
3891 {
3892 if (grandparent_scope == NULL)
3893 parent->scope = parent->name;
3894 else
3e43a32a
MS
3895 parent->scope = typename_concat (&cu->comp_unit_obstack,
3896 grandparent_scope,
f55ee35c 3897 parent->name, 0, cu);
72bf9492 3898 }
72bf9492
DJ
3899 else
3900 {
3901 /* FIXME drow/2004-04-01: What should we be doing with
3902 function-local names? For partial symbols, we should probably be
3903 ignoring them. */
3904 complaint (&symfile_complaints,
e2e0b3e5 3905 _("unhandled containing DIE tag %d for DIE at %d"),
72bf9492
DJ
3906 parent->tag, pdi->offset);
3907 parent->scope = grandparent_scope;
c906108c
SS
3908 }
3909
72bf9492
DJ
3910 parent->scope_set = 1;
3911 return parent->scope;
3912}
3913
3914/* Return the fully scoped name associated with PDI, from compilation unit
3915 CU. The result will be allocated with malloc. */
3916static char *
3917partial_die_full_name (struct partial_die_info *pdi,
3918 struct dwarf2_cu *cu)
3919{
3920 char *parent_scope;
3921
98bfdba5
PA
3922 /* If this is a template instantiation, we can not work out the
3923 template arguments from partial DIEs. So, unfortunately, we have
3924 to go through the full DIEs. At least any work we do building
3925 types here will be reused if full symbols are loaded later. */
3926 if (pdi->has_template_arguments)
3927 {
3928 fixup_partial_die (pdi, cu);
3929
3930 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
3931 {
3932 struct die_info *die;
3933 struct attribute attr;
3934 struct dwarf2_cu *ref_cu = cu;
3935
3936 attr.name = 0;
3937 attr.form = DW_FORM_ref_addr;
3938 attr.u.addr = pdi->offset;
3939 die = follow_die_ref (NULL, &attr, &ref_cu);
3940
3941 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
3942 }
3943 }
3944
72bf9492
DJ
3945 parent_scope = partial_die_parent_scope (pdi, cu);
3946 if (parent_scope == NULL)
3947 return NULL;
3948 else
f55ee35c 3949 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
c906108c
SS
3950}
3951
3952static void
72bf9492 3953add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
c906108c 3954{
e7c27a73 3955 struct objfile *objfile = cu->objfile;
c906108c 3956 CORE_ADDR addr = 0;
decbce07 3957 char *actual_name = NULL;
5c4e30ca 3958 const struct partial_symbol *psym = NULL;
e142c38c 3959 CORE_ADDR baseaddr;
72bf9492 3960 int built_actual_name = 0;
e142c38c
DJ
3961
3962 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 3963
94af9270
KS
3964 actual_name = partial_die_full_name (pdi, cu);
3965 if (actual_name)
3966 built_actual_name = 1;
63d06c5c 3967
72bf9492
DJ
3968 if (actual_name == NULL)
3969 actual_name = pdi->name;
3970
c906108c
SS
3971 switch (pdi->tag)
3972 {
3973 case DW_TAG_subprogram:
2cfa0c8d 3974 if (pdi->is_external || cu->language == language_ada)
c906108c 3975 {
2cfa0c8d
JB
3976 /* brobecker/2007-12-26: Normally, only "external" DIEs are part
3977 of the global scope. But in Ada, we want to be able to access
3978 nested procedures globally. So all Ada subprograms are stored
3979 in the global scope. */
f47fb265 3980 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 3981 mst_text, objfile); */
f47fb265
MS
3982 add_psymbol_to_list (actual_name, strlen (actual_name),
3983 built_actual_name,
3984 VAR_DOMAIN, LOC_BLOCK,
3985 &objfile->global_psymbols,
3986 0, pdi->lowpc + baseaddr,
3987 cu->language, objfile);
c906108c
SS
3988 }
3989 else
3990 {
f47fb265 3991 /* prim_record_minimal_symbol (actual_name, pdi->lowpc + baseaddr,
c5aa993b 3992 mst_file_text, objfile); */
f47fb265
MS
3993 add_psymbol_to_list (actual_name, strlen (actual_name),
3994 built_actual_name,
3995 VAR_DOMAIN, LOC_BLOCK,
3996 &objfile->static_psymbols,
3997 0, pdi->lowpc + baseaddr,
3998 cu->language, objfile);
c906108c
SS
3999 }
4000 break;
72929c62
JB
4001 case DW_TAG_constant:
4002 {
4003 struct psymbol_allocation_list *list;
4004
4005 if (pdi->is_external)
4006 list = &objfile->global_psymbols;
4007 else
4008 list = &objfile->static_psymbols;
f47fb265
MS
4009 add_psymbol_to_list (actual_name, strlen (actual_name),
4010 built_actual_name, VAR_DOMAIN, LOC_STATIC,
4011 list, 0, 0, cu->language, objfile);
72929c62
JB
4012 }
4013 break;
c906108c 4014 case DW_TAG_variable:
caac4577
JG
4015 if (pdi->locdesc)
4016 addr = decode_locdesc (pdi->locdesc, cu);
4017
4018 if (pdi->locdesc
4019 && addr == 0
4020 && !dwarf2_per_objfile->has_section_at_zero)
4021 {
4022 /* A global or static variable may also have been stripped
4023 out by the linker if unused, in which case its address
4024 will be nullified; do not add such variables into partial
4025 symbol table then. */
4026 }
4027 else if (pdi->is_external)
c906108c
SS
4028 {
4029 /* Global Variable.
4030 Don't enter into the minimal symbol tables as there is
4031 a minimal symbol table entry from the ELF symbols already.
4032 Enter into partial symbol table if it has a location
4033 descriptor or a type.
4034 If the location descriptor is missing, new_symbol will create
4035 a LOC_UNRESOLVED symbol, the address of the variable will then
4036 be determined from the minimal symbol table whenever the variable
4037 is referenced.
4038 The address for the partial symbol table entry is not
4039 used by GDB, but it comes in handy for debugging partial symbol
4040 table building. */
4041
c906108c 4042 if (pdi->locdesc || pdi->has_type)
f47fb265
MS
4043 add_psymbol_to_list (actual_name, strlen (actual_name),
4044 built_actual_name,
4045 VAR_DOMAIN, LOC_STATIC,
4046 &objfile->global_psymbols,
4047 0, addr + baseaddr,
4048 cu->language, objfile);
c906108c
SS
4049 }
4050 else
4051 {
0963b4bd 4052 /* Static Variable. Skip symbols without location descriptors. */
c906108c 4053 if (pdi->locdesc == NULL)
decbce07
MS
4054 {
4055 if (built_actual_name)
4056 xfree (actual_name);
4057 return;
4058 }
f47fb265 4059 /* prim_record_minimal_symbol (actual_name, addr + baseaddr,
c5aa993b 4060 mst_file_data, objfile); */
f47fb265
MS
4061 add_psymbol_to_list (actual_name, strlen (actual_name),
4062 built_actual_name,
4063 VAR_DOMAIN, LOC_STATIC,
4064 &objfile->static_psymbols,
4065 0, addr + baseaddr,
4066 cu->language, objfile);
c906108c
SS
4067 }
4068 break;
4069 case DW_TAG_typedef:
4070 case DW_TAG_base_type:
a02abb62 4071 case DW_TAG_subrange_type:
38d518c9 4072 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 4073 built_actual_name,
176620f1 4074 VAR_DOMAIN, LOC_TYPEDEF,
c906108c 4075 &objfile->static_psymbols,
e142c38c 4076 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 4077 break;
72bf9492
DJ
4078 case DW_TAG_namespace:
4079 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 4080 built_actual_name,
72bf9492
DJ
4081 VAR_DOMAIN, LOC_TYPEDEF,
4082 &objfile->global_psymbols,
4083 0, (CORE_ADDR) 0, cu->language, objfile);
4084 break;
c906108c 4085 case DW_TAG_class_type:
680b30c7 4086 case DW_TAG_interface_type:
c906108c
SS
4087 case DW_TAG_structure_type:
4088 case DW_TAG_union_type:
4089 case DW_TAG_enumeration_type:
fa4028e9
JB
4090 /* Skip external references. The DWARF standard says in the section
4091 about "Structure, Union, and Class Type Entries": "An incomplete
4092 structure, union or class type is represented by a structure,
4093 union or class entry that does not have a byte size attribute
4094 and that has a DW_AT_declaration attribute." */
4095 if (!pdi->has_byte_size && pdi->is_declaration)
decbce07
MS
4096 {
4097 if (built_actual_name)
4098 xfree (actual_name);
4099 return;
4100 }
fa4028e9 4101
63d06c5c
DC
4102 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
4103 static vs. global. */
38d518c9 4104 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 4105 built_actual_name,
176620f1 4106 STRUCT_DOMAIN, LOC_TYPEDEF,
987504bb
JJ
4107 (cu->language == language_cplus
4108 || cu->language == language_java)
63d06c5c
DC
4109 ? &objfile->global_psymbols
4110 : &objfile->static_psymbols,
e142c38c 4111 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c 4112
c906108c
SS
4113 break;
4114 case DW_TAG_enumerator:
38d518c9 4115 add_psymbol_to_list (actual_name, strlen (actual_name),
04a679b8 4116 built_actual_name,
176620f1 4117 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
4118 (cu->language == language_cplus
4119 || cu->language == language_java)
f6fe98ef
DJ
4120 ? &objfile->global_psymbols
4121 : &objfile->static_psymbols,
e142c38c 4122 0, (CORE_ADDR) 0, cu->language, objfile);
c906108c
SS
4123 break;
4124 default:
4125 break;
4126 }
5c4e30ca 4127
72bf9492
DJ
4128 if (built_actual_name)
4129 xfree (actual_name);
c906108c
SS
4130}
4131
5c4e30ca
DC
4132/* Read a partial die corresponding to a namespace; also, add a symbol
4133 corresponding to that namespace to the symbol table. NAMESPACE is
4134 the name of the enclosing namespace. */
91c24f0a 4135
72bf9492
DJ
4136static void
4137add_partial_namespace (struct partial_die_info *pdi,
91c24f0a 4138 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 4139 int need_pc, struct dwarf2_cu *cu)
91c24f0a 4140{
72bf9492 4141 /* Add a symbol for the namespace. */
e7c27a73 4142
72bf9492 4143 add_partial_symbol (pdi, cu);
5c4e30ca
DC
4144
4145 /* Now scan partial symbols in that namespace. */
4146
91c24f0a 4147 if (pdi->has_children)
5734ee8b 4148 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
91c24f0a
DC
4149}
4150
5d7cb8df
JK
4151/* Read a partial die corresponding to a Fortran module. */
4152
4153static void
4154add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
4155 CORE_ADDR *highpc, int need_pc, struct dwarf2_cu *cu)
4156{
f55ee35c 4157 /* Now scan partial symbols in that module. */
5d7cb8df
JK
4158
4159 if (pdi->has_children)
4160 scan_partial_symbols (pdi->die_child, lowpc, highpc, need_pc, cu);
4161}
4162
bc30ff58
JB
4163/* Read a partial die corresponding to a subprogram and create a partial
4164 symbol for that subprogram. When the CU language allows it, this
4165 routine also defines a partial symbol for each nested subprogram
4166 that this subprogram contains.
6e70227d 4167
bc30ff58
JB
4168 DIE my also be a lexical block, in which case we simply search
4169 recursively for suprograms defined inside that lexical block.
4170 Again, this is only performed when the CU language allows this
4171 type of definitions. */
4172
4173static void
4174add_partial_subprogram (struct partial_die_info *pdi,
4175 CORE_ADDR *lowpc, CORE_ADDR *highpc,
5734ee8b 4176 int need_pc, struct dwarf2_cu *cu)
bc30ff58
JB
4177{
4178 if (pdi->tag == DW_TAG_subprogram)
4179 {
4180 if (pdi->has_pc_info)
4181 {
4182 if (pdi->lowpc < *lowpc)
4183 *lowpc = pdi->lowpc;
4184 if (pdi->highpc > *highpc)
4185 *highpc = pdi->highpc;
5734ee8b
DJ
4186 if (need_pc)
4187 {
4188 CORE_ADDR baseaddr;
4189 struct objfile *objfile = cu->objfile;
4190
4191 baseaddr = ANOFFSET (objfile->section_offsets,
4192 SECT_OFF_TEXT (objfile));
4193 addrmap_set_empty (objfile->psymtabs_addrmap,
01637564
DE
4194 pdi->lowpc + baseaddr,
4195 pdi->highpc - 1 + baseaddr,
9291a0cd 4196 cu->per_cu->v.psymtab);
5734ee8b 4197 }
bc30ff58 4198 if (!pdi->is_declaration)
e8d05480
JB
4199 /* Ignore subprogram DIEs that do not have a name, they are
4200 illegal. Do not emit a complaint at this point, we will
4201 do so when we convert this psymtab into a symtab. */
4202 if (pdi->name)
4203 add_partial_symbol (pdi, cu);
bc30ff58
JB
4204 }
4205 }
6e70227d 4206
bc30ff58
JB
4207 if (! pdi->has_children)
4208 return;
4209
4210 if (cu->language == language_ada)
4211 {
4212 pdi = pdi->die_child;
4213 while (pdi != NULL)
4214 {
4215 fixup_partial_die (pdi, cu);
4216 if (pdi->tag == DW_TAG_subprogram
4217 || pdi->tag == DW_TAG_lexical_block)
5734ee8b 4218 add_partial_subprogram (pdi, lowpc, highpc, need_pc, cu);
bc30ff58
JB
4219 pdi = pdi->die_sibling;
4220 }
4221 }
4222}
4223
91c24f0a
DC
4224/* Read a partial die corresponding to an enumeration type. */
4225
72bf9492
DJ
4226static void
4227add_partial_enumeration (struct partial_die_info *enum_pdi,
4228 struct dwarf2_cu *cu)
91c24f0a 4229{
72bf9492 4230 struct partial_die_info *pdi;
91c24f0a
DC
4231
4232 if (enum_pdi->name != NULL)
72bf9492
DJ
4233 add_partial_symbol (enum_pdi, cu);
4234
4235 pdi = enum_pdi->die_child;
4236 while (pdi)
91c24f0a 4237 {
72bf9492 4238 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
e2e0b3e5 4239 complaint (&symfile_complaints, _("malformed enumerator DIE ignored"));
91c24f0a 4240 else
72bf9492
DJ
4241 add_partial_symbol (pdi, cu);
4242 pdi = pdi->die_sibling;
91c24f0a 4243 }
91c24f0a
DC
4244}
4245
4bb7a0a7
DJ
4246/* Read the initial uleb128 in the die at INFO_PTR in compilation unit CU.
4247 Return the corresponding abbrev, or NULL if the number is zero (indicating
4248 an empty DIE). In either case *BYTES_READ will be set to the length of
4249 the initial number. */
4250
4251static struct abbrev_info *
fe1b8b76 4252peek_die_abbrev (gdb_byte *info_ptr, unsigned int *bytes_read,
891d2f0b 4253 struct dwarf2_cu *cu)
4bb7a0a7
DJ
4254{
4255 bfd *abfd = cu->objfile->obfd;
4256 unsigned int abbrev_number;
4257 struct abbrev_info *abbrev;
4258
4259 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
4260
4261 if (abbrev_number == 0)
4262 return NULL;
4263
4264 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
4265 if (!abbrev)
4266 {
3e43a32a
MS
4267 error (_("Dwarf Error: Could not find abbrev number %d [in module %s]"),
4268 abbrev_number, bfd_get_filename (abfd));
4bb7a0a7
DJ
4269 }
4270
4271 return abbrev;
4272}
4273
93311388
DE
4274/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4275 Returns a pointer to the end of a series of DIEs, terminated by an empty
4bb7a0a7
DJ
4276 DIE. Any children of the skipped DIEs will also be skipped. */
4277
fe1b8b76 4278static gdb_byte *
93311388 4279skip_children (gdb_byte *buffer, gdb_byte *info_ptr, struct dwarf2_cu *cu)
4bb7a0a7
DJ
4280{
4281 struct abbrev_info *abbrev;
4282 unsigned int bytes_read;
4283
4284 while (1)
4285 {
4286 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
4287 if (abbrev == NULL)
4288 return info_ptr + bytes_read;
4289 else
93311388 4290 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
4bb7a0a7
DJ
4291 }
4292}
4293
93311388
DE
4294/* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
4295 INFO_PTR should point just after the initial uleb128 of a DIE, and the
4bb7a0a7
DJ
4296 abbrev corresponding to that skipped uleb128 should be passed in
4297 ABBREV. Returns a pointer to this DIE's sibling, skipping any
4298 children. */
4299
fe1b8b76 4300static gdb_byte *
93311388
DE
4301skip_one_die (gdb_byte *buffer, gdb_byte *info_ptr,
4302 struct abbrev_info *abbrev, struct dwarf2_cu *cu)
4bb7a0a7
DJ
4303{
4304 unsigned int bytes_read;
4305 struct attribute attr;
4306 bfd *abfd = cu->objfile->obfd;
4307 unsigned int form, i;
4308
4309 for (i = 0; i < abbrev->num_attrs; i++)
4310 {
4311 /* The only abbrev we care about is DW_AT_sibling. */
4312 if (abbrev->attrs[i].name == DW_AT_sibling)
4313 {
4314 read_attribute (&attr, &abbrev->attrs[i],
4315 abfd, info_ptr, cu);
4316 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
4317 complaint (&symfile_complaints,
4318 _("ignoring absolute DW_AT_sibling"));
4bb7a0a7 4319 else
93311388 4320 return buffer + dwarf2_get_ref_die_offset (&attr);
4bb7a0a7
DJ
4321 }
4322
4323 /* If it isn't DW_AT_sibling, skip this attribute. */
4324 form = abbrev->attrs[i].form;
4325 skip_attribute:
4326 switch (form)
4327 {
4bb7a0a7 4328 case DW_FORM_ref_addr:
ae411497
TT
4329 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
4330 and later it is offset sized. */
4331 if (cu->header.version == 2)
4332 info_ptr += cu->header.addr_size;
4333 else
4334 info_ptr += cu->header.offset_size;
4335 break;
4336 case DW_FORM_addr:
4bb7a0a7
DJ
4337 info_ptr += cu->header.addr_size;
4338 break;
4339 case DW_FORM_data1:
4340 case DW_FORM_ref1:
4341 case DW_FORM_flag:
4342 info_ptr += 1;
4343 break;
2dc7f7b3
TT
4344 case DW_FORM_flag_present:
4345 break;
4bb7a0a7
DJ
4346 case DW_FORM_data2:
4347 case DW_FORM_ref2:
4348 info_ptr += 2;
4349 break;
4350 case DW_FORM_data4:
4351 case DW_FORM_ref4:
4352 info_ptr += 4;
4353 break;
4354 case DW_FORM_data8:
4355 case DW_FORM_ref8:
55f1336d 4356 case DW_FORM_ref_sig8:
4bb7a0a7
DJ
4357 info_ptr += 8;
4358 break;
4359 case DW_FORM_string:
9b1c24c8 4360 read_direct_string (abfd, info_ptr, &bytes_read);
4bb7a0a7
DJ
4361 info_ptr += bytes_read;
4362 break;
2dc7f7b3 4363 case DW_FORM_sec_offset:
4bb7a0a7
DJ
4364 case DW_FORM_strp:
4365 info_ptr += cu->header.offset_size;
4366 break;
2dc7f7b3 4367 case DW_FORM_exprloc:
4bb7a0a7
DJ
4368 case DW_FORM_block:
4369 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4370 info_ptr += bytes_read;
4371 break;
4372 case DW_FORM_block1:
4373 info_ptr += 1 + read_1_byte (abfd, info_ptr);
4374 break;
4375 case DW_FORM_block2:
4376 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
4377 break;
4378 case DW_FORM_block4:
4379 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
4380 break;
4381 case DW_FORM_sdata:
4382 case DW_FORM_udata:
4383 case DW_FORM_ref_udata:
4384 info_ptr = skip_leb128 (abfd, info_ptr);
4385 break;
4386 case DW_FORM_indirect:
4387 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
4388 info_ptr += bytes_read;
4389 /* We need to continue parsing from here, so just go back to
4390 the top. */
4391 goto skip_attribute;
4392
4393 default:
3e43a32a
MS
4394 error (_("Dwarf Error: Cannot handle %s "
4395 "in DWARF reader [in module %s]"),
4bb7a0a7
DJ
4396 dwarf_form_name (form),
4397 bfd_get_filename (abfd));
4398 }
4399 }
4400
4401 if (abbrev->has_children)
93311388 4402 return skip_children (buffer, info_ptr, cu);
4bb7a0a7
DJ
4403 else
4404 return info_ptr;
4405}
4406
93311388
DE
4407/* Locate ORIG_PDI's sibling.
4408 INFO_PTR should point to the start of the next DIE after ORIG_PDI
4409 in BUFFER. */
91c24f0a 4410
fe1b8b76 4411static gdb_byte *
93311388
DE
4412locate_pdi_sibling (struct partial_die_info *orig_pdi,
4413 gdb_byte *buffer, gdb_byte *info_ptr,
e7c27a73 4414 bfd *abfd, struct dwarf2_cu *cu)
91c24f0a
DC
4415{
4416 /* Do we know the sibling already? */
72bf9492 4417
91c24f0a
DC
4418 if (orig_pdi->sibling)
4419 return orig_pdi->sibling;
4420
4421 /* Are there any children to deal with? */
4422
4423 if (!orig_pdi->has_children)
4424 return info_ptr;
4425
4bb7a0a7 4426 /* Skip the children the long way. */
91c24f0a 4427
93311388 4428 return skip_children (buffer, info_ptr, cu);
91c24f0a
DC
4429}
4430
c906108c
SS
4431/* Expand this partial symbol table into a full symbol table. */
4432
4433static void
fba45db2 4434dwarf2_psymtab_to_symtab (struct partial_symtab *pst)
c906108c 4435{
c906108c
SS
4436 if (pst != NULL)
4437 {
4438 if (pst->readin)
4439 {
3e43a32a
MS
4440 warning (_("bug: psymtab for %s is already read in."),
4441 pst->filename);
c906108c
SS
4442 }
4443 else
4444 {
4445 if (info_verbose)
4446 {
3e43a32a
MS
4447 printf_filtered (_("Reading in symbols for %s..."),
4448 pst->filename);
c906108c
SS
4449 gdb_flush (gdb_stdout);
4450 }
4451
10b3939b
DJ
4452 /* Restore our global data. */
4453 dwarf2_per_objfile = objfile_data (pst->objfile,
4454 dwarf2_objfile_data_key);
4455
b2ab525c
KB
4456 /* If this psymtab is constructed from a debug-only objfile, the
4457 has_section_at_zero flag will not necessarily be correct. We
4458 can get the correct value for this flag by looking at the data
4459 associated with the (presumably stripped) associated objfile. */
4460 if (pst->objfile->separate_debug_objfile_backlink)
4461 {
4462 struct dwarf2_per_objfile *dpo_backlink
4463 = objfile_data (pst->objfile->separate_debug_objfile_backlink,
4464 dwarf2_objfile_data_key);
9a619af0 4465
b2ab525c
KB
4466 dwarf2_per_objfile->has_section_at_zero
4467 = dpo_backlink->has_section_at_zero;
4468 }
4469
98bfdba5
PA
4470 dwarf2_per_objfile->reading_partial_symbols = 0;
4471
c906108c
SS
4472 psymtab_to_symtab_1 (pst);
4473
4474 /* Finish up the debug error message. */
4475 if (info_verbose)
a3f17187 4476 printf_filtered (_("done.\n"));
c906108c
SS
4477 }
4478 }
4479}
4480
10b3939b
DJ
4481/* Add PER_CU to the queue. */
4482
4483static void
03dd20cc 4484queue_comp_unit (struct dwarf2_per_cu_data *per_cu, struct objfile *objfile)
10b3939b
DJ
4485{
4486 struct dwarf2_queue_item *item;
4487
4488 per_cu->queued = 1;
4489 item = xmalloc (sizeof (*item));
4490 item->per_cu = per_cu;
4491 item->next = NULL;
4492
4493 if (dwarf2_queue == NULL)
4494 dwarf2_queue = item;
4495 else
4496 dwarf2_queue_tail->next = item;
4497
4498 dwarf2_queue_tail = item;
4499}
4500
4501/* Process the queue. */
4502
4503static void
4504process_queue (struct objfile *objfile)
4505{
4506 struct dwarf2_queue_item *item, *next_item;
4507
03dd20cc
DJ
4508 /* The queue starts out with one item, but following a DIE reference
4509 may load a new CU, adding it to the end of the queue. */
10b3939b
DJ
4510 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
4511 {
9291a0cd
TT
4512 if (dwarf2_per_objfile->using_index
4513 ? !item->per_cu->v.quick->symtab
4514 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
10b3939b
DJ
4515 process_full_comp_unit (item->per_cu);
4516
4517 item->per_cu->queued = 0;
4518 next_item = item->next;
4519 xfree (item);
4520 }
4521
4522 dwarf2_queue_tail = NULL;
4523}
4524
4525/* Free all allocated queue entries. This function only releases anything if
4526 an error was thrown; if the queue was processed then it would have been
4527 freed as we went along. */
4528
4529static void
4530dwarf2_release_queue (void *dummy)
4531{
4532 struct dwarf2_queue_item *item, *last;
4533
4534 item = dwarf2_queue;
4535 while (item)
4536 {
4537 /* Anything still marked queued is likely to be in an
4538 inconsistent state, so discard it. */
4539 if (item->per_cu->queued)
4540 {
4541 if (item->per_cu->cu != NULL)
4542 free_one_cached_comp_unit (item->per_cu->cu);
4543 item->per_cu->queued = 0;
4544 }
4545
4546 last = item;
4547 item = item->next;
4548 xfree (last);
4549 }
4550
4551 dwarf2_queue = dwarf2_queue_tail = NULL;
4552}
4553
4554/* Read in full symbols for PST, and anything it depends on. */
4555
c906108c 4556static void
fba45db2 4557psymtab_to_symtab_1 (struct partial_symtab *pst)
c906108c 4558{
10b3939b 4559 struct dwarf2_per_cu_data *per_cu;
c906108c 4560 struct cleanup *back_to;
aaa75496
JB
4561 int i;
4562
4563 for (i = 0; i < pst->number_of_dependencies; i++)
4564 if (!pst->dependencies[i]->readin)
4565 {
4566 /* Inform about additional files that need to be read in. */
4567 if (info_verbose)
4568 {
a3f17187 4569 /* FIXME: i18n: Need to make this a single string. */
aaa75496
JB
4570 fputs_filtered (" ", gdb_stdout);
4571 wrap_here ("");
4572 fputs_filtered ("and ", gdb_stdout);
4573 wrap_here ("");
4574 printf_filtered ("%s...", pst->dependencies[i]->filename);
0963b4bd 4575 wrap_here (""); /* Flush output. */
aaa75496
JB
4576 gdb_flush (gdb_stdout);
4577 }
4578 psymtab_to_symtab_1 (pst->dependencies[i]);
4579 }
4580
e38df1d0 4581 per_cu = pst->read_symtab_private;
10b3939b
DJ
4582
4583 if (per_cu == NULL)
aaa75496
JB
4584 {
4585 /* It's an include file, no symbols to read for it.
4586 Everything is in the parent symtab. */
4587 pst->readin = 1;
4588 return;
4589 }
c906108c 4590
9291a0cd 4591 dw2_do_instantiate_symtab (pst->objfile, per_cu);
10b3939b
DJ
4592}
4593
93311388 4594/* Load the DIEs associated with PER_CU into memory. */
10b3939b 4595
93311388 4596static void
3e43a32a
MS
4597load_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
4598 struct objfile *objfile)
10b3939b 4599{
31ffec48 4600 bfd *abfd = objfile->obfd;
10b3939b 4601 struct dwarf2_cu *cu;
c764a876 4602 unsigned int offset;
93311388 4603 gdb_byte *info_ptr, *beg_of_comp_unit;
98bfdba5 4604 struct cleanup *free_abbrevs_cleanup = NULL, *free_cu_cleanup = NULL;
10b3939b 4605 struct attribute *attr;
98bfdba5 4606 int read_cu = 0;
6502dd73 4607
8b70b953 4608 gdb_assert (! per_cu->debug_type_section);
348e048f 4609
c906108c 4610 /* Set local variables from the partial symbol table info. */
10b3939b 4611 offset = per_cu->offset;
6502dd73 4612
be391dca 4613 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
dce234bc 4614 info_ptr = dwarf2_per_objfile->info.buffer + offset;
93311388 4615 beg_of_comp_unit = info_ptr;
63d06c5c 4616
98bfdba5
PA
4617 if (per_cu->cu == NULL)
4618 {
9816fde3
JK
4619 cu = xmalloc (sizeof (*cu));
4620 init_one_comp_unit (cu, objfile);
98bfdba5
PA
4621
4622 read_cu = 1;
c906108c 4623
98bfdba5
PA
4624 /* If an error occurs while loading, release our storage. */
4625 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
c906108c 4626
98bfdba5
PA
4627 /* Read in the comp_unit header. */
4628 info_ptr = read_comp_unit_head (&cu->header, info_ptr, abfd);
c906108c 4629
98bfdba5
PA
4630 /* Complete the cu_header. */
4631 cu->header.offset = offset;
4632 cu->header.first_die_offset = info_ptr - beg_of_comp_unit;
93311388 4633
98bfdba5
PA
4634 /* Read the abbrevs for this compilation unit. */
4635 dwarf2_read_abbrevs (abfd, cu);
4636 free_abbrevs_cleanup = make_cleanup (dwarf2_free_abbrev_table, cu);
10b3939b 4637
98bfdba5
PA
4638 /* Link this compilation unit into the compilation unit tree. */
4639 per_cu->cu = cu;
4640 cu->per_cu = per_cu;
98bfdba5
PA
4641
4642 /* Link this CU into read_in_chain. */
4643 per_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
4644 dwarf2_per_objfile->read_in_chain = per_cu;
4645 }
4646 else
4647 {
4648 cu = per_cu->cu;
4649 info_ptr += cu->header.first_die_offset;
4650 }
e142c38c 4651
93311388 4652 cu->dies = read_comp_unit (info_ptr, cu);
10b3939b
DJ
4653
4654 /* We try not to read any attributes in this function, because not
4655 all objfiles needed for references have been loaded yet, and symbol
4656 table processing isn't initialized. But we have to set the CU language,
4657 or we won't be able to build types correctly. */
9816fde3 4658 prepare_one_comp_unit (cu, cu->dies);
10b3939b 4659
a6c727b2
DJ
4660 /* Similarly, if we do not read the producer, we can not apply
4661 producer-specific interpretation. */
4662 attr = dwarf2_attr (cu->dies, DW_AT_producer, cu);
4663 if (attr)
4664 cu->producer = DW_STRING (attr);
4665
98bfdba5
PA
4666 if (read_cu)
4667 {
4668 do_cleanups (free_abbrevs_cleanup);
e142c38c 4669
98bfdba5
PA
4670 /* We've successfully allocated this compilation unit. Let our
4671 caller clean it up when finished with it. */
4672 discard_cleanups (free_cu_cleanup);
4673 }
10b3939b
DJ
4674}
4675
3da10d80
KS
4676/* Add a DIE to the delayed physname list. */
4677
4678static void
4679add_to_method_list (struct type *type, int fnfield_index, int index,
4680 const char *name, struct die_info *die,
4681 struct dwarf2_cu *cu)
4682{
4683 struct delayed_method_info mi;
4684 mi.type = type;
4685 mi.fnfield_index = fnfield_index;
4686 mi.index = index;
4687 mi.name = name;
4688 mi.die = die;
4689 VEC_safe_push (delayed_method_info, cu->method_list, &mi);
4690}
4691
4692/* A cleanup for freeing the delayed method list. */
4693
4694static void
4695free_delayed_list (void *ptr)
4696{
4697 struct dwarf2_cu *cu = (struct dwarf2_cu *) ptr;
4698 if (cu->method_list != NULL)
4699 {
4700 VEC_free (delayed_method_info, cu->method_list);
4701 cu->method_list = NULL;
4702 }
4703}
4704
4705/* Compute the physnames of any methods on the CU's method list.
4706
4707 The computation of method physnames is delayed in order to avoid the
4708 (bad) condition that one of the method's formal parameters is of an as yet
4709 incomplete type. */
4710
4711static void
4712compute_delayed_physnames (struct dwarf2_cu *cu)
4713{
4714 int i;
4715 struct delayed_method_info *mi;
4716 for (i = 0; VEC_iterate (delayed_method_info, cu->method_list, i, mi) ; ++i)
4717 {
1d06ead6 4718 const char *physname;
3da10d80
KS
4719 struct fn_fieldlist *fn_flp
4720 = &TYPE_FN_FIELDLIST (mi->type, mi->fnfield_index);
1d06ead6 4721 physname = dwarf2_physname ((char *) mi->name, mi->die, cu);
3da10d80
KS
4722 fn_flp->fn_fields[mi->index].physname = physname ? physname : "";
4723 }
4724}
4725
10b3939b
DJ
4726/* Generate full symbol information for PST and CU, whose DIEs have
4727 already been loaded into memory. */
4728
4729static void
4730process_full_comp_unit (struct dwarf2_per_cu_data *per_cu)
4731{
10b3939b 4732 struct dwarf2_cu *cu = per_cu->cu;
9291a0cd 4733 struct objfile *objfile = per_cu->objfile;
10b3939b
DJ
4734 CORE_ADDR lowpc, highpc;
4735 struct symtab *symtab;
3da10d80 4736 struct cleanup *back_to, *delayed_list_cleanup;
10b3939b
DJ
4737 CORE_ADDR baseaddr;
4738
4739 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
4740
10b3939b
DJ
4741 buildsym_init ();
4742 back_to = make_cleanup (really_free_pendings, NULL);
3da10d80 4743 delayed_list_cleanup = make_cleanup (free_delayed_list, cu);
10b3939b
DJ
4744
4745 cu->list_in_scope = &file_symbols;
c906108c
SS
4746
4747 /* Do line number decoding in read_file_scope () */
10b3939b 4748 process_die (cu->dies, cu);
c906108c 4749
3da10d80
KS
4750 /* Now that we have processed all the DIEs in the CU, all the types
4751 should be complete, and it should now be safe to compute all of the
4752 physnames. */
4753 compute_delayed_physnames (cu);
4754 do_cleanups (delayed_list_cleanup);
4755
fae299cd
DC
4756 /* Some compilers don't define a DW_AT_high_pc attribute for the
4757 compilation unit. If the DW_AT_high_pc is missing, synthesize
4758 it, by scanning the DIE's below the compilation unit. */
10b3939b 4759 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
c906108c 4760
613e1657 4761 symtab = end_symtab (highpc + baseaddr, objfile, SECT_OFF_TEXT (objfile));
c906108c 4762
8be455d7 4763 if (symtab != NULL)
c906108c 4764 {
df15bd07 4765 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
4632c0d0 4766
8be455d7
JK
4767 /* Set symtab language to language from DW_AT_language. If the
4768 compilation is from a C file generated by language preprocessors, do
4769 not set the language if it was already deduced by start_subfile. */
4770 if (!(cu->language == language_c && symtab->language != language_c))
4771 symtab->language = cu->language;
4772
4773 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
4774 produce DW_AT_location with location lists but it can be possibly
4775 invalid without -fvar-tracking.
4776
4777 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
4778 needed, it would be wrong due to missing DW_AT_producer there.
4779
4780 Still one can confuse GDB by using non-standard GCC compilation
4781 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
4782 */
4632c0d0 4783 if (cu->has_loclist && gcc_4_minor >= 0)
8be455d7 4784 symtab->locations_valid = 1;
e0d00bc7
JK
4785
4786 if (gcc_4_minor >= 5)
4787 symtab->epilogue_unwind_valid = 1;
c906108c 4788 }
9291a0cd
TT
4789
4790 if (dwarf2_per_objfile->using_index)
4791 per_cu->v.quick->symtab = symtab;
4792 else
4793 {
4794 struct partial_symtab *pst = per_cu->v.psymtab;
4795 pst->symtab = symtab;
4796 pst->readin = 1;
4797 }
c906108c
SS
4798
4799 do_cleanups (back_to);
4800}
4801
4802/* Process a die and its children. */
4803
4804static void
e7c27a73 4805process_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
4806{
4807 switch (die->tag)
4808 {
4809 case DW_TAG_padding:
4810 break;
4811 case DW_TAG_compile_unit:
e7c27a73 4812 read_file_scope (die, cu);
c906108c 4813 break;
348e048f
DE
4814 case DW_TAG_type_unit:
4815 read_type_unit_scope (die, cu);
4816 break;
c906108c 4817 case DW_TAG_subprogram:
c906108c 4818 case DW_TAG_inlined_subroutine:
edb3359d 4819 read_func_scope (die, cu);
c906108c
SS
4820 break;
4821 case DW_TAG_lexical_block:
14898363
L
4822 case DW_TAG_try_block:
4823 case DW_TAG_catch_block:
e7c27a73 4824 read_lexical_block_scope (die, cu);
c906108c
SS
4825 break;
4826 case DW_TAG_class_type:
680b30c7 4827 case DW_TAG_interface_type:
c906108c
SS
4828 case DW_TAG_structure_type:
4829 case DW_TAG_union_type:
134d01f1 4830 process_structure_scope (die, cu);
c906108c
SS
4831 break;
4832 case DW_TAG_enumeration_type:
134d01f1 4833 process_enumeration_scope (die, cu);
c906108c 4834 break;
134d01f1 4835
f792889a
DJ
4836 /* These dies have a type, but processing them does not create
4837 a symbol or recurse to process the children. Therefore we can
4838 read them on-demand through read_type_die. */
c906108c 4839 case DW_TAG_subroutine_type:
72019c9c 4840 case DW_TAG_set_type:
c906108c 4841 case DW_TAG_array_type:
c906108c 4842 case DW_TAG_pointer_type:
c906108c 4843 case DW_TAG_ptr_to_member_type:
c906108c 4844 case DW_TAG_reference_type:
c906108c 4845 case DW_TAG_string_type:
c906108c 4846 break;
134d01f1 4847
c906108c 4848 case DW_TAG_base_type:
a02abb62 4849 case DW_TAG_subrange_type:
cb249c71 4850 case DW_TAG_typedef:
134d01f1
DJ
4851 /* Add a typedef symbol for the type definition, if it has a
4852 DW_AT_name. */
f792889a 4853 new_symbol (die, read_type_die (die, cu), cu);
a02abb62 4854 break;
c906108c 4855 case DW_TAG_common_block:
e7c27a73 4856 read_common_block (die, cu);
c906108c
SS
4857 break;
4858 case DW_TAG_common_inclusion:
4859 break;
d9fa45fe 4860 case DW_TAG_namespace:
63d06c5c 4861 processing_has_namespace_info = 1;
e7c27a73 4862 read_namespace (die, cu);
d9fa45fe 4863 break;
5d7cb8df 4864 case DW_TAG_module:
f55ee35c 4865 processing_has_namespace_info = 1;
5d7cb8df
JK
4866 read_module (die, cu);
4867 break;
d9fa45fe
DC
4868 case DW_TAG_imported_declaration:
4869 case DW_TAG_imported_module:
63d06c5c 4870 processing_has_namespace_info = 1;
27aa8d6a
SW
4871 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
4872 || cu->language != language_fortran))
4873 complaint (&symfile_complaints, _("Tag '%s' has unexpected children"),
4874 dwarf_tag_name (die->tag));
4875 read_import_statement (die, cu);
d9fa45fe 4876 break;
c906108c 4877 default:
e7c27a73 4878 new_symbol (die, NULL, cu);
c906108c
SS
4879 break;
4880 }
4881}
4882
94af9270
KS
4883/* A helper function for dwarf2_compute_name which determines whether DIE
4884 needs to have the name of the scope prepended to the name listed in the
4885 die. */
4886
4887static int
4888die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
4889{
1c809c68
TT
4890 struct attribute *attr;
4891
94af9270
KS
4892 switch (die->tag)
4893 {
4894 case DW_TAG_namespace:
4895 case DW_TAG_typedef:
4896 case DW_TAG_class_type:
4897 case DW_TAG_interface_type:
4898 case DW_TAG_structure_type:
4899 case DW_TAG_union_type:
4900 case DW_TAG_enumeration_type:
4901 case DW_TAG_enumerator:
4902 case DW_TAG_subprogram:
4903 case DW_TAG_member:
4904 return 1;
4905
4906 case DW_TAG_variable:
c2b0a229 4907 case DW_TAG_constant:
94af9270
KS
4908 /* We only need to prefix "globally" visible variables. These include
4909 any variable marked with DW_AT_external or any variable that
4910 lives in a namespace. [Variables in anonymous namespaces
4911 require prefixing, but they are not DW_AT_external.] */
4912
4913 if (dwarf2_attr (die, DW_AT_specification, cu))
4914 {
4915 struct dwarf2_cu *spec_cu = cu;
9a619af0 4916
94af9270
KS
4917 return die_needs_namespace (die_specification (die, &spec_cu),
4918 spec_cu);
4919 }
4920
1c809c68 4921 attr = dwarf2_attr (die, DW_AT_external, cu);
f55ee35c
JK
4922 if (attr == NULL && die->parent->tag != DW_TAG_namespace
4923 && die->parent->tag != DW_TAG_module)
1c809c68
TT
4924 return 0;
4925 /* A variable in a lexical block of some kind does not need a
4926 namespace, even though in C++ such variables may be external
4927 and have a mangled name. */
4928 if (die->parent->tag == DW_TAG_lexical_block
4929 || die->parent->tag == DW_TAG_try_block
1054b214
TT
4930 || die->parent->tag == DW_TAG_catch_block
4931 || die->parent->tag == DW_TAG_subprogram)
1c809c68
TT
4932 return 0;
4933 return 1;
94af9270
KS
4934
4935 default:
4936 return 0;
4937 }
4938}
4939
98bfdba5
PA
4940/* Retrieve the last character from a mem_file. */
4941
4942static void
4943do_ui_file_peek_last (void *object, const char *buffer, long length)
4944{
4945 char *last_char_p = (char *) object;
4946
4947 if (length > 0)
4948 *last_char_p = buffer[length - 1];
4949}
4950
94af9270
KS
4951/* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
4952 compute the physname for the object, which include a method's
4953 formal parameters (C++/Java) and return type (Java).
4954
af6b7be1
JB
4955 For Ada, return the DIE's linkage name rather than the fully qualified
4956 name. PHYSNAME is ignored..
4957
94af9270
KS
4958 The result is allocated on the objfile_obstack and canonicalized. */
4959
4960static const char *
4961dwarf2_compute_name (char *name, struct die_info *die, struct dwarf2_cu *cu,
4962 int physname)
4963{
4964 if (name == NULL)
4965 name = dwarf2_name (die, cu);
4966
f55ee35c
JK
4967 /* For Fortran GDB prefers DW_AT_*linkage_name if present but otherwise
4968 compute it by typename_concat inside GDB. */
4969 if (cu->language == language_ada
4970 || (cu->language == language_fortran && physname))
4971 {
4972 /* For Ada unit, we prefer the linkage name over the name, as
4973 the former contains the exported name, which the user expects
4974 to be able to reference. Ideally, we want the user to be able
4975 to reference this entity using either natural or linkage name,
4976 but we haven't started looking at this enhancement yet. */
4977 struct attribute *attr;
4978
4979 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
4980 if (attr == NULL)
4981 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
4982 if (attr && DW_STRING (attr))
4983 return DW_STRING (attr);
4984 }
4985
94af9270
KS
4986 /* These are the only languages we know how to qualify names in. */
4987 if (name != NULL
f55ee35c
JK
4988 && (cu->language == language_cplus || cu->language == language_java
4989 || cu->language == language_fortran))
94af9270
KS
4990 {
4991 if (die_needs_namespace (die, cu))
4992 {
4993 long length;
4994 char *prefix;
4995 struct ui_file *buf;
4996
4997 prefix = determine_prefix (die, cu);
4998 buf = mem_fileopen ();
4999 if (*prefix != '\0')
5000 {
f55ee35c
JK
5001 char *prefixed_name = typename_concat (NULL, prefix, name,
5002 physname, cu);
9a619af0 5003
94af9270
KS
5004 fputs_unfiltered (prefixed_name, buf);
5005 xfree (prefixed_name);
5006 }
5007 else
62d5b8da 5008 fputs_unfiltered (name, buf);
94af9270 5009
98bfdba5
PA
5010 /* Template parameters may be specified in the DIE's DW_AT_name, or
5011 as children with DW_TAG_template_type_param or
5012 DW_TAG_value_type_param. If the latter, add them to the name
5013 here. If the name already has template parameters, then
5014 skip this step; some versions of GCC emit both, and
5015 it is more efficient to use the pre-computed name.
5016
5017 Something to keep in mind about this process: it is very
5018 unlikely, or in some cases downright impossible, to produce
5019 something that will match the mangled name of a function.
5020 If the definition of the function has the same debug info,
5021 we should be able to match up with it anyway. But fallbacks
5022 using the minimal symbol, for instance to find a method
5023 implemented in a stripped copy of libstdc++, will not work.
5024 If we do not have debug info for the definition, we will have to
5025 match them up some other way.
5026
5027 When we do name matching there is a related problem with function
5028 templates; two instantiated function templates are allowed to
5029 differ only by their return types, which we do not add here. */
5030
5031 if (cu->language == language_cplus && strchr (name, '<') == NULL)
5032 {
5033 struct attribute *attr;
5034 struct die_info *child;
5035 int first = 1;
5036
5037 die->building_fullname = 1;
5038
5039 for (child = die->child; child != NULL; child = child->sibling)
5040 {
5041 struct type *type;
5042 long value;
5043 gdb_byte *bytes;
5044 struct dwarf2_locexpr_baton *baton;
5045 struct value *v;
5046
5047 if (child->tag != DW_TAG_template_type_param
5048 && child->tag != DW_TAG_template_value_param)
5049 continue;
5050
5051 if (first)
5052 {
5053 fputs_unfiltered ("<", buf);
5054 first = 0;
5055 }
5056 else
5057 fputs_unfiltered (", ", buf);
5058
5059 attr = dwarf2_attr (child, DW_AT_type, cu);
5060 if (attr == NULL)
5061 {
5062 complaint (&symfile_complaints,
5063 _("template parameter missing DW_AT_type"));
5064 fputs_unfiltered ("UNKNOWN_TYPE", buf);
5065 continue;
5066 }
5067 type = die_type (child, cu);
5068
5069 if (child->tag == DW_TAG_template_type_param)
5070 {
5071 c_print_type (type, "", buf, -1, 0);
5072 continue;
5073 }
5074
5075 attr = dwarf2_attr (child, DW_AT_const_value, cu);
5076 if (attr == NULL)
5077 {
5078 complaint (&symfile_complaints,
3e43a32a
MS
5079 _("template parameter missing "
5080 "DW_AT_const_value"));
98bfdba5
PA
5081 fputs_unfiltered ("UNKNOWN_VALUE", buf);
5082 continue;
5083 }
5084
5085 dwarf2_const_value_attr (attr, type, name,
5086 &cu->comp_unit_obstack, cu,
5087 &value, &bytes, &baton);
5088
5089 if (TYPE_NOSIGN (type))
5090 /* GDB prints characters as NUMBER 'CHAR'. If that's
5091 changed, this can use value_print instead. */
5092 c_printchar (value, type, buf);
5093 else
5094 {
5095 struct value_print_options opts;
5096
5097 if (baton != NULL)
5098 v = dwarf2_evaluate_loc_desc (type, NULL,
5099 baton->data,
5100 baton->size,
5101 baton->per_cu);
5102 else if (bytes != NULL)
5103 {
5104 v = allocate_value (type);
5105 memcpy (value_contents_writeable (v), bytes,
5106 TYPE_LENGTH (type));
5107 }
5108 else
5109 v = value_from_longest (type, value);
5110
3e43a32a
MS
5111 /* Specify decimal so that we do not depend on
5112 the radix. */
98bfdba5
PA
5113 get_formatted_print_options (&opts, 'd');
5114 opts.raw = 1;
5115 value_print (v, buf, &opts);
5116 release_value (v);
5117 value_free (v);
5118 }
5119 }
5120
5121 die->building_fullname = 0;
5122
5123 if (!first)
5124 {
5125 /* Close the argument list, with a space if necessary
5126 (nested templates). */
5127 char last_char = '\0';
5128 ui_file_put (buf, do_ui_file_peek_last, &last_char);
5129 if (last_char == '>')
5130 fputs_unfiltered (" >", buf);
5131 else
5132 fputs_unfiltered (">", buf);
5133 }
5134 }
5135
94af9270
KS
5136 /* For Java and C++ methods, append formal parameter type
5137 information, if PHYSNAME. */
6e70227d 5138
94af9270
KS
5139 if (physname && die->tag == DW_TAG_subprogram
5140 && (cu->language == language_cplus
5141 || cu->language == language_java))
5142 {
5143 struct type *type = read_type_die (die, cu);
5144
3167638f 5145 c_type_print_args (type, buf, 1, cu->language);
94af9270
KS
5146
5147 if (cu->language == language_java)
5148 {
5149 /* For java, we must append the return type to method
0963b4bd 5150 names. */
94af9270
KS
5151 if (die->tag == DW_TAG_subprogram)
5152 java_print_type (TYPE_TARGET_TYPE (type), "", buf,
5153 0, 0);
5154 }
5155 else if (cu->language == language_cplus)
5156 {
60430eff
DJ
5157 /* Assume that an artificial first parameter is
5158 "this", but do not crash if it is not. RealView
5159 marks unnamed (and thus unused) parameters as
5160 artificial; there is no way to differentiate
5161 the two cases. */
94af9270
KS
5162 if (TYPE_NFIELDS (type) > 0
5163 && TYPE_FIELD_ARTIFICIAL (type, 0)
60430eff 5164 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
3e43a32a
MS
5165 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
5166 0))))
94af9270
KS
5167 fputs_unfiltered (" const", buf);
5168 }
5169 }
5170
5171 name = ui_file_obsavestring (buf, &cu->objfile->objfile_obstack,
5172 &length);
5173 ui_file_delete (buf);
5174
5175 if (cu->language == language_cplus)
5176 {
5177 char *cname
5178 = dwarf2_canonicalize_name (name, cu,
5179 &cu->objfile->objfile_obstack);
9a619af0 5180
94af9270
KS
5181 if (cname != NULL)
5182 name = cname;
5183 }
5184 }
5185 }
5186
5187 return name;
5188}
5189
0114d602
DJ
5190/* Return the fully qualified name of DIE, based on its DW_AT_name.
5191 If scope qualifiers are appropriate they will be added. The result
5192 will be allocated on the objfile_obstack, or NULL if the DIE does
94af9270
KS
5193 not have a name. NAME may either be from a previous call to
5194 dwarf2_name or NULL.
5195
0963b4bd 5196 The output string will be canonicalized (if C++/Java). */
0114d602
DJ
5197
5198static const char *
94af9270 5199dwarf2_full_name (char *name, struct die_info *die, struct dwarf2_cu *cu)
0114d602 5200{
94af9270
KS
5201 return dwarf2_compute_name (name, die, cu, 0);
5202}
0114d602 5203
94af9270
KS
5204/* Construct a physname for the given DIE in CU. NAME may either be
5205 from a previous call to dwarf2_name or NULL. The result will be
5206 allocated on the objfile_objstack or NULL if the DIE does not have a
5207 name.
0114d602 5208
94af9270 5209 The output string will be canonicalized (if C++/Java). */
0114d602 5210
94af9270
KS
5211static const char *
5212dwarf2_physname (char *name, struct die_info *die, struct dwarf2_cu *cu)
5213{
900e11f9
JK
5214 struct attribute *attr;
5215 const char *retval, *mangled = NULL, *canon = NULL;
5216 struct cleanup *back_to;
5217 int need_copy = 1;
5218
5219 /* In this case dwarf2_compute_name is just a shortcut not building anything
5220 on its own. */
5221 if (!die_needs_namespace (die, cu))
5222 return dwarf2_compute_name (name, die, cu, 1);
5223
5224 back_to = make_cleanup (null_cleanup, NULL);
5225
5226 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
5227 if (!attr)
5228 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
5229
5230 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
5231 has computed. */
5232 if (attr && DW_STRING (attr))
5233 {
5234 char *demangled;
5235
5236 mangled = DW_STRING (attr);
5237
5238 /* Use DMGL_RET_DROP for C++ template functions to suppress their return
5239 type. It is easier for GDB users to search for such functions as
5240 `name(params)' than `long name(params)'. In such case the minimal
5241 symbol names do not match the full symbol names but for template
5242 functions there is never a need to look up their definition from their
5243 declaration so the only disadvantage remains the minimal symbol
5244 variant `long name(params)' does not have the proper inferior type.
5245 */
5246
5247 demangled = cplus_demangle (mangled, (DMGL_PARAMS | DMGL_ANSI
5248 | (cu->language == language_java
5249 ? DMGL_JAVA | DMGL_RET_POSTFIX
5250 : DMGL_RET_DROP)));
5251 if (demangled)
5252 {
5253 make_cleanup (xfree, demangled);
5254 canon = demangled;
5255 }
5256 else
5257 {
5258 canon = mangled;
5259 need_copy = 0;
5260 }
5261 }
5262
5263 if (canon == NULL || check_physname)
5264 {
5265 const char *physname = dwarf2_compute_name (name, die, cu, 1);
5266
5267 if (canon != NULL && strcmp (physname, canon) != 0)
5268 {
5269 /* It may not mean a bug in GDB. The compiler could also
5270 compute DW_AT_linkage_name incorrectly. But in such case
5271 GDB would need to be bug-to-bug compatible. */
5272
5273 complaint (&symfile_complaints,
5274 _("Computed physname <%s> does not match demangled <%s> "
5275 "(from linkage <%s>) - DIE at 0x%x [in module %s]"),
5276 physname, canon, mangled, die->offset, cu->objfile->name);
5277
5278 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
5279 is available here - over computed PHYSNAME. It is safer
5280 against both buggy GDB and buggy compilers. */
5281
5282 retval = canon;
5283 }
5284 else
5285 {
5286 retval = physname;
5287 need_copy = 0;
5288 }
5289 }
5290 else
5291 retval = canon;
5292
5293 if (need_copy)
5294 retval = obsavestring (retval, strlen (retval),
5295 &cu->objfile->objfile_obstack);
5296
5297 do_cleanups (back_to);
5298 return retval;
0114d602
DJ
5299}
5300
27aa8d6a
SW
5301/* Read the import statement specified by the given die and record it. */
5302
5303static void
5304read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
5305{
5306 struct attribute *import_attr;
32019081 5307 struct die_info *imported_die, *child_die;
de4affc9 5308 struct dwarf2_cu *imported_cu;
27aa8d6a 5309 const char *imported_name;
794684b6 5310 const char *imported_name_prefix;
13387711
SW
5311 const char *canonical_name;
5312 const char *import_alias;
5313 const char *imported_declaration = NULL;
794684b6 5314 const char *import_prefix;
32019081
JK
5315 VEC (const_char_ptr) *excludes = NULL;
5316 struct cleanup *cleanups;
13387711
SW
5317
5318 char *temp;
27aa8d6a
SW
5319
5320 import_attr = dwarf2_attr (die, DW_AT_import, cu);
5321 if (import_attr == NULL)
5322 {
5323 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5324 dwarf_tag_name (die->tag));
5325 return;
5326 }
5327
de4affc9
CC
5328 imported_cu = cu;
5329 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
5330 imported_name = dwarf2_name (imported_die, imported_cu);
27aa8d6a
SW
5331 if (imported_name == NULL)
5332 {
5333 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
5334
5335 The import in the following code:
5336 namespace A
5337 {
5338 typedef int B;
5339 }
5340
5341 int main ()
5342 {
5343 using A::B;
5344 B b;
5345 return b;
5346 }
5347
5348 ...
5349 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
5350 <52> DW_AT_decl_file : 1
5351 <53> DW_AT_decl_line : 6
5352 <54> DW_AT_import : <0x75>
5353 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
5354 <59> DW_AT_name : B
5355 <5b> DW_AT_decl_file : 1
5356 <5c> DW_AT_decl_line : 2
5357 <5d> DW_AT_type : <0x6e>
5358 ...
5359 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
5360 <76> DW_AT_byte_size : 4
5361 <77> DW_AT_encoding : 5 (signed)
5362
5363 imports the wrong die ( 0x75 instead of 0x58 ).
5364 This case will be ignored until the gcc bug is fixed. */
5365 return;
5366 }
5367
82856980
SW
5368 /* Figure out the local name after import. */
5369 import_alias = dwarf2_name (die, cu);
27aa8d6a 5370
794684b6
SW
5371 /* Figure out where the statement is being imported to. */
5372 import_prefix = determine_prefix (die, cu);
5373
5374 /* Figure out what the scope of the imported die is and prepend it
5375 to the name of the imported die. */
de4affc9 5376 imported_name_prefix = determine_prefix (imported_die, imported_cu);
794684b6 5377
f55ee35c
JK
5378 if (imported_die->tag != DW_TAG_namespace
5379 && imported_die->tag != DW_TAG_module)
794684b6 5380 {
13387711
SW
5381 imported_declaration = imported_name;
5382 canonical_name = imported_name_prefix;
794684b6 5383 }
13387711 5384 else if (strlen (imported_name_prefix) > 0)
794684b6 5385 {
13387711
SW
5386 temp = alloca (strlen (imported_name_prefix)
5387 + 2 + strlen (imported_name) + 1);
5388 strcpy (temp, imported_name_prefix);
5389 strcat (temp, "::");
5390 strcat (temp, imported_name);
5391 canonical_name = temp;
794684b6 5392 }
13387711
SW
5393 else
5394 canonical_name = imported_name;
794684b6 5395
32019081
JK
5396 cleanups = make_cleanup (VEC_cleanup (const_char_ptr), &excludes);
5397
5398 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
5399 for (child_die = die->child; child_die && child_die->tag;
5400 child_die = sibling_die (child_die))
5401 {
5402 /* DWARF-4: A Fortran use statement with a “rename list” may be
5403 represented by an imported module entry with an import attribute
5404 referring to the module and owned entries corresponding to those
5405 entities that are renamed as part of being imported. */
5406
5407 if (child_die->tag != DW_TAG_imported_declaration)
5408 {
5409 complaint (&symfile_complaints,
5410 _("child DW_TAG_imported_declaration expected "
5411 "- DIE at 0x%x [in module %s]"),
5412 child_die->offset, cu->objfile->name);
5413 continue;
5414 }
5415
5416 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
5417 if (import_attr == NULL)
5418 {
5419 complaint (&symfile_complaints, _("Tag '%s' has no DW_AT_import"),
5420 dwarf_tag_name (child_die->tag));
5421 continue;
5422 }
5423
5424 imported_cu = cu;
5425 imported_die = follow_die_ref_or_sig (child_die, import_attr,
5426 &imported_cu);
5427 imported_name = dwarf2_name (imported_die, imported_cu);
5428 if (imported_name == NULL)
5429 {
5430 complaint (&symfile_complaints,
5431 _("child DW_TAG_imported_declaration has unknown "
5432 "imported name - DIE at 0x%x [in module %s]"),
5433 child_die->offset, cu->objfile->name);
5434 continue;
5435 }
5436
5437 VEC_safe_push (const_char_ptr, excludes, imported_name);
5438
5439 process_die (child_die, cu);
5440 }
5441
c0cc3a76
SW
5442 cp_add_using_directive (import_prefix,
5443 canonical_name,
5444 import_alias,
13387711 5445 imported_declaration,
32019081 5446 excludes,
c0cc3a76 5447 &cu->objfile->objfile_obstack);
32019081
JK
5448
5449 do_cleanups (cleanups);
27aa8d6a
SW
5450}
5451
5fb290d7 5452static void
e142c38c 5453initialize_cu_func_list (struct dwarf2_cu *cu)
5fb290d7 5454{
e142c38c 5455 cu->first_fn = cu->last_fn = cu->cached_fn = NULL;
5fb290d7
DJ
5456}
5457
ae2de4f8
DE
5458/* Cleanup function for read_file_scope. */
5459
cb1df416
DJ
5460static void
5461free_cu_line_header (void *arg)
5462{
5463 struct dwarf2_cu *cu = arg;
5464
5465 free_line_header (cu->line_header);
5466 cu->line_header = NULL;
5467}
5468
9291a0cd
TT
5469static void
5470find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu,
5471 char **name, char **comp_dir)
5472{
5473 struct attribute *attr;
5474
5475 *name = NULL;
5476 *comp_dir = NULL;
5477
5478 /* Find the filename. Do not use dwarf2_name here, since the filename
5479 is not a source language identifier. */
5480 attr = dwarf2_attr (die, DW_AT_name, cu);
5481 if (attr)
5482 {
5483 *name = DW_STRING (attr);
5484 }
5485
5486 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5487 if (attr)
5488 *comp_dir = DW_STRING (attr);
5489 else if (*name != NULL && IS_ABSOLUTE_PATH (*name))
5490 {
5491 *comp_dir = ldirname (*name);
5492 if (*comp_dir != NULL)
5493 make_cleanup (xfree, *comp_dir);
5494 }
5495 if (*comp_dir != NULL)
5496 {
5497 /* Irix 6.2 native cc prepends <machine>.: to the compilation
5498 directory, get rid of it. */
5499 char *cp = strchr (*comp_dir, ':');
5500
5501 if (cp && cp != *comp_dir && cp[-1] == '.' && cp[1] == '/')
5502 *comp_dir = cp + 1;
5503 }
5504
5505 if (*name == NULL)
5506 *name = "<unknown>";
5507}
5508
2ab95328
TT
5509/* Handle DW_AT_stmt_list for a compilation unit. */
5510
5511static void
5512handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
5513 const char *comp_dir)
5514{
5515 struct attribute *attr;
5516 struct objfile *objfile = cu->objfile;
5517 bfd *abfd = objfile->obfd;
5518
5519 /* Decode line number information if present. We do this before
5520 processing child DIEs, so that the line header table is available
5521 for DW_AT_decl_file. */
5522 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
5523 if (attr)
5524 {
5525 unsigned int line_offset = DW_UNSND (attr);
5526 struct line_header *line_header
5527 = dwarf_decode_line_header (line_offset, abfd, cu);
5528
5529 if (line_header)
5530 {
5531 cu->line_header = line_header;
5532 make_cleanup (free_cu_line_header, cu);
5533 dwarf_decode_lines (line_header, comp_dir, abfd, cu, NULL);
5534 }
5535 }
5536}
5537
ae2de4f8
DE
5538/* Process DW_TAG_compile_unit. */
5539
c906108c 5540static void
e7c27a73 5541read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5542{
e7c27a73 5543 struct objfile *objfile = cu->objfile;
debd256d 5544 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
2acceee2 5545 CORE_ADDR lowpc = ((CORE_ADDR) -1);
c906108c
SS
5546 CORE_ADDR highpc = ((CORE_ADDR) 0);
5547 struct attribute *attr;
e1024ff1 5548 char *name = NULL;
c906108c
SS
5549 char *comp_dir = NULL;
5550 struct die_info *child_die;
5551 bfd *abfd = objfile->obfd;
e142c38c 5552 CORE_ADDR baseaddr;
6e70227d 5553
e142c38c 5554 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 5555
fae299cd 5556 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
c906108c
SS
5557
5558 /* If we didn't find a lowpc, set it to highpc to avoid complaints
5559 from finish_block. */
2acceee2 5560 if (lowpc == ((CORE_ADDR) -1))
c906108c
SS
5561 lowpc = highpc;
5562 lowpc += baseaddr;
5563 highpc += baseaddr;
5564
9291a0cd 5565 find_file_and_directory (die, cu, &name, &comp_dir);
e1024ff1 5566
e142c38c 5567 attr = dwarf2_attr (die, DW_AT_language, cu);
c906108c
SS
5568 if (attr)
5569 {
e142c38c 5570 set_cu_language (DW_UNSND (attr), cu);
c906108c
SS
5571 }
5572
b0f35d58 5573 attr = dwarf2_attr (die, DW_AT_producer, cu);
6e70227d 5574 if (attr)
b0f35d58 5575 cu->producer = DW_STRING (attr);
303b6f5d 5576
f4b8a18d
KW
5577 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
5578 standardised yet. As a workaround for the language detection we fall
5579 back to the DW_AT_producer string. */
5580 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
5581 cu->language = language_opencl;
5582
0963b4bd 5583 /* We assume that we're processing GCC output. */
c906108c 5584 processing_gcc_compilation = 2;
c906108c 5585
df8a16a1
DJ
5586 processing_has_namespace_info = 0;
5587
c906108c
SS
5588 start_symtab (name, comp_dir, lowpc);
5589 record_debugformat ("DWARF 2");
303b6f5d 5590 record_producer (cu->producer);
c906108c 5591
e142c38c 5592 initialize_cu_func_list (cu);
c906108c 5593
2ab95328 5594 handle_DW_AT_stmt_list (die, cu, comp_dir);
debd256d 5595
cb1df416
DJ
5596 /* Process all dies in compilation unit. */
5597 if (die->child != NULL)
5598 {
5599 child_die = die->child;
5600 while (child_die && child_die->tag)
5601 {
5602 process_die (child_die, cu);
5603 child_die = sibling_die (child_die);
5604 }
5605 }
5606
2e276125
JB
5607 /* Decode macro information, if present. Dwarf 2 macro information
5608 refers to information in the line number info statement program
5609 header, so we can only read it if we've read the header
5610 successfully. */
cf2c3c16 5611 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
2ab95328 5612 if (attr && cu->line_header)
2e276125 5613 {
cf2c3c16
TT
5614 if (dwarf2_attr (die, DW_AT_macro_info, cu))
5615 complaint (&symfile_complaints,
5616 _("CU refers to both DW_AT_GNU_macros and DW_AT_macro_info"));
5617
5618 dwarf_decode_macros (cu->line_header, DW_UNSND (attr),
5619 comp_dir, abfd, cu,
5620 &dwarf2_per_objfile->macro, 1);
5621 }
5622 else
5623 {
5624 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
5625 if (attr && cu->line_header)
5626 {
5627 unsigned int macro_offset = DW_UNSND (attr);
9a619af0 5628
cf2c3c16
TT
5629 dwarf_decode_macros (cu->line_header, macro_offset,
5630 comp_dir, abfd, cu,
5631 &dwarf2_per_objfile->macinfo, 0);
5632 }
2e276125 5633 }
debd256d 5634 do_cleanups (back_to);
5fb290d7
DJ
5635}
5636
ae2de4f8
DE
5637/* Process DW_TAG_type_unit.
5638 For TUs we want to skip the first top level sibling if it's not the
348e048f
DE
5639 actual type being defined by this TU. In this case the first top
5640 level sibling is there to provide context only. */
5641
5642static void
5643read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
5644{
5645 struct objfile *objfile = cu->objfile;
5646 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
5647 CORE_ADDR lowpc;
5648 struct attribute *attr;
5649 char *name = NULL;
5650 char *comp_dir = NULL;
5651 struct die_info *child_die;
5652 bfd *abfd = objfile->obfd;
348e048f
DE
5653
5654 /* start_symtab needs a low pc, but we don't really have one.
5655 Do what read_file_scope would do in the absence of such info. */
5656 lowpc = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5657
5658 /* Find the filename. Do not use dwarf2_name here, since the filename
5659 is not a source language identifier. */
5660 attr = dwarf2_attr (die, DW_AT_name, cu);
5661 if (attr)
5662 name = DW_STRING (attr);
5663
5664 attr = dwarf2_attr (die, DW_AT_comp_dir, cu);
5665 if (attr)
5666 comp_dir = DW_STRING (attr);
5667 else if (name != NULL && IS_ABSOLUTE_PATH (name))
5668 {
5669 comp_dir = ldirname (name);
5670 if (comp_dir != NULL)
5671 make_cleanup (xfree, comp_dir);
5672 }
5673
5674 if (name == NULL)
5675 name = "<unknown>";
5676
5677 attr = dwarf2_attr (die, DW_AT_language, cu);
5678 if (attr)
5679 set_cu_language (DW_UNSND (attr), cu);
5680
5681 /* This isn't technically needed today. It is done for symmetry
5682 with read_file_scope. */
5683 attr = dwarf2_attr (die, DW_AT_producer, cu);
6e70227d 5684 if (attr)
348e048f
DE
5685 cu->producer = DW_STRING (attr);
5686
0963b4bd 5687 /* We assume that we're processing GCC output. */
348e048f
DE
5688 processing_gcc_compilation = 2;
5689
5690 processing_has_namespace_info = 0;
5691
5692 start_symtab (name, comp_dir, lowpc);
5693 record_debugformat ("DWARF 2");
5694 record_producer (cu->producer);
5695
2ab95328
TT
5696 handle_DW_AT_stmt_list (die, cu, comp_dir);
5697
348e048f
DE
5698 /* Process the dies in the type unit. */
5699 if (die->child == NULL)
5700 {
5701 dump_die_for_error (die);
5702 error (_("Dwarf Error: Missing children for type unit [in module %s]"),
5703 bfd_get_filename (abfd));
5704 }
5705
5706 child_die = die->child;
5707
5708 while (child_die && child_die->tag)
5709 {
5710 process_die (child_die, cu);
5711
5712 child_die = sibling_die (child_die);
5713 }
5714
5715 do_cleanups (back_to);
5716}
5717
5fb290d7 5718static void
e142c38c
DJ
5719add_to_cu_func_list (const char *name, CORE_ADDR lowpc, CORE_ADDR highpc,
5720 struct dwarf2_cu *cu)
5fb290d7
DJ
5721{
5722 struct function_range *thisfn;
5723
5724 thisfn = (struct function_range *)
7b5a2f43 5725 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct function_range));
5fb290d7
DJ
5726 thisfn->name = name;
5727 thisfn->lowpc = lowpc;
5728 thisfn->highpc = highpc;
5729 thisfn->seen_line = 0;
5730 thisfn->next = NULL;
5731
e142c38c
DJ
5732 if (cu->last_fn == NULL)
5733 cu->first_fn = thisfn;
5fb290d7 5734 else
e142c38c 5735 cu->last_fn->next = thisfn;
5fb290d7 5736
e142c38c 5737 cu->last_fn = thisfn;
c906108c
SS
5738}
5739
d389af10
JK
5740/* qsort helper for inherit_abstract_dies. */
5741
5742static int
5743unsigned_int_compar (const void *ap, const void *bp)
5744{
5745 unsigned int a = *(unsigned int *) ap;
5746 unsigned int b = *(unsigned int *) bp;
5747
5748 return (a > b) - (b > a);
5749}
5750
5751/* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
3e43a32a
MS
5752 Inherit only the children of the DW_AT_abstract_origin DIE not being
5753 already referenced by DW_AT_abstract_origin from the children of the
5754 current DIE. */
d389af10
JK
5755
5756static void
5757inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
5758{
5759 struct die_info *child_die;
5760 unsigned die_children_count;
5761 /* CU offsets which were referenced by children of the current DIE. */
5762 unsigned *offsets;
5763 unsigned *offsets_end, *offsetp;
5764 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
5765 struct die_info *origin_die;
5766 /* Iterator of the ORIGIN_DIE children. */
5767 struct die_info *origin_child_die;
5768 struct cleanup *cleanups;
5769 struct attribute *attr;
cd02d79d
PA
5770 struct dwarf2_cu *origin_cu;
5771 struct pending **origin_previous_list_in_scope;
d389af10
JK
5772
5773 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
5774 if (!attr)
5775 return;
5776
cd02d79d
PA
5777 /* Note that following die references may follow to a die in a
5778 different cu. */
5779
5780 origin_cu = cu;
5781 origin_die = follow_die_ref (die, attr, &origin_cu);
5782
5783 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
5784 symbols in. */
5785 origin_previous_list_in_scope = origin_cu->list_in_scope;
5786 origin_cu->list_in_scope = cu->list_in_scope;
5787
edb3359d
DJ
5788 if (die->tag != origin_die->tag
5789 && !(die->tag == DW_TAG_inlined_subroutine
5790 && origin_die->tag == DW_TAG_subprogram))
d389af10
JK
5791 complaint (&symfile_complaints,
5792 _("DIE 0x%x and its abstract origin 0x%x have different tags"),
5793 die->offset, origin_die->offset);
5794
5795 child_die = die->child;
5796 die_children_count = 0;
5797 while (child_die && child_die->tag)
5798 {
5799 child_die = sibling_die (child_die);
5800 die_children_count++;
5801 }
5802 offsets = xmalloc (sizeof (*offsets) * die_children_count);
5803 cleanups = make_cleanup (xfree, offsets);
5804
5805 offsets_end = offsets;
5806 child_die = die->child;
5807 while (child_die && child_die->tag)
5808 {
c38f313d
DJ
5809 /* For each CHILD_DIE, find the corresponding child of
5810 ORIGIN_DIE. If there is more than one layer of
5811 DW_AT_abstract_origin, follow them all; there shouldn't be,
5812 but GCC versions at least through 4.4 generate this (GCC PR
5813 40573). */
5814 struct die_info *child_origin_die = child_die;
cd02d79d 5815 struct dwarf2_cu *child_origin_cu = cu;
9a619af0 5816
c38f313d
DJ
5817 while (1)
5818 {
cd02d79d
PA
5819 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
5820 child_origin_cu);
c38f313d
DJ
5821 if (attr == NULL)
5822 break;
cd02d79d
PA
5823 child_origin_die = follow_die_ref (child_origin_die, attr,
5824 &child_origin_cu);
c38f313d
DJ
5825 }
5826
d389af10
JK
5827 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
5828 counterpart may exist. */
c38f313d 5829 if (child_origin_die != child_die)
d389af10 5830 {
edb3359d
DJ
5831 if (child_die->tag != child_origin_die->tag
5832 && !(child_die->tag == DW_TAG_inlined_subroutine
5833 && child_origin_die->tag == DW_TAG_subprogram))
d389af10
JK
5834 complaint (&symfile_complaints,
5835 _("Child DIE 0x%x and its abstract origin 0x%x have "
5836 "different tags"), child_die->offset,
5837 child_origin_die->offset);
c38f313d
DJ
5838 if (child_origin_die->parent != origin_die)
5839 complaint (&symfile_complaints,
5840 _("Child DIE 0x%x and its abstract origin 0x%x have "
5841 "different parents"), child_die->offset,
5842 child_origin_die->offset);
5843 else
5844 *offsets_end++ = child_origin_die->offset;
d389af10
JK
5845 }
5846 child_die = sibling_die (child_die);
5847 }
5848 qsort (offsets, offsets_end - offsets, sizeof (*offsets),
5849 unsigned_int_compar);
5850 for (offsetp = offsets + 1; offsetp < offsets_end; offsetp++)
5851 if (offsetp[-1] == *offsetp)
3e43a32a
MS
5852 complaint (&symfile_complaints,
5853 _("Multiple children of DIE 0x%x refer "
5854 "to DIE 0x%x as their abstract origin"),
d389af10
JK
5855 die->offset, *offsetp);
5856
5857 offsetp = offsets;
5858 origin_child_die = origin_die->child;
5859 while (origin_child_die && origin_child_die->tag)
5860 {
5861 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
5862 while (offsetp < offsets_end && *offsetp < origin_child_die->offset)
5863 offsetp++;
5864 if (offsetp >= offsets_end || *offsetp > origin_child_die->offset)
5865 {
5866 /* Found that ORIGIN_CHILD_DIE is really not referenced. */
cd02d79d 5867 process_die (origin_child_die, origin_cu);
d389af10
JK
5868 }
5869 origin_child_die = sibling_die (origin_child_die);
5870 }
cd02d79d 5871 origin_cu->list_in_scope = origin_previous_list_in_scope;
d389af10
JK
5872
5873 do_cleanups (cleanups);
5874}
5875
c906108c 5876static void
e7c27a73 5877read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 5878{
e7c27a73 5879 struct objfile *objfile = cu->objfile;
52f0bd74 5880 struct context_stack *new;
c906108c
SS
5881 CORE_ADDR lowpc;
5882 CORE_ADDR highpc;
5883 struct die_info *child_die;
edb3359d 5884 struct attribute *attr, *call_line, *call_file;
c906108c 5885 char *name;
e142c38c 5886 CORE_ADDR baseaddr;
801e3a5b 5887 struct block *block;
edb3359d 5888 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
34eaf542
TT
5889 VEC (symbolp) *template_args = NULL;
5890 struct template_symbol *templ_func = NULL;
edb3359d
DJ
5891
5892 if (inlined_func)
5893 {
5894 /* If we do not have call site information, we can't show the
5895 caller of this inlined function. That's too confusing, so
5896 only use the scope for local variables. */
5897 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
5898 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
5899 if (call_line == NULL || call_file == NULL)
5900 {
5901 read_lexical_block_scope (die, cu);
5902 return;
5903 }
5904 }
c906108c 5905
e142c38c
DJ
5906 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
5907
94af9270 5908 name = dwarf2_name (die, cu);
c906108c 5909
e8d05480
JB
5910 /* Ignore functions with missing or empty names. These are actually
5911 illegal according to the DWARF standard. */
5912 if (name == NULL)
5913 {
5914 complaint (&symfile_complaints,
5915 _("missing name for subprogram DIE at %d"), die->offset);
5916 return;
5917 }
5918
5919 /* Ignore functions with missing or invalid low and high pc attributes. */
5920 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
5921 {
ae4d0c03
PM
5922 attr = dwarf2_attr (die, DW_AT_external, cu);
5923 if (!attr || !DW_UNSND (attr))
5924 complaint (&symfile_complaints,
3e43a32a
MS
5925 _("cannot get low and high bounds "
5926 "for subprogram DIE at %d"),
ae4d0c03 5927 die->offset);
e8d05480
JB
5928 return;
5929 }
c906108c
SS
5930
5931 lowpc += baseaddr;
5932 highpc += baseaddr;
5933
5fb290d7 5934 /* Record the function range for dwarf_decode_lines. */
e142c38c 5935 add_to_cu_func_list (name, lowpc, highpc, cu);
5fb290d7 5936
34eaf542
TT
5937 /* If we have any template arguments, then we must allocate a
5938 different sort of symbol. */
5939 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
5940 {
5941 if (child_die->tag == DW_TAG_template_type_param
5942 || child_die->tag == DW_TAG_template_value_param)
5943 {
5944 templ_func = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5945 struct template_symbol);
5946 templ_func->base.is_cplus_template_function = 1;
5947 break;
5948 }
5949 }
5950
c906108c 5951 new = push_context (0, lowpc);
34eaf542
TT
5952 new->name = new_symbol_full (die, read_type_die (die, cu), cu,
5953 (struct symbol *) templ_func);
4c2df51b 5954
4cecd739
DJ
5955 /* If there is a location expression for DW_AT_frame_base, record
5956 it. */
e142c38c 5957 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
4c2df51b 5958 if (attr)
c034e007
AC
5959 /* FIXME: cagney/2004-01-26: The DW_AT_frame_base's location
5960 expression is being recorded directly in the function's symbol
5961 and not in a separate frame-base object. I guess this hack is
5962 to avoid adding some sort of frame-base adjunct/annex to the
5963 function's symbol :-(. The problem with doing this is that it
5964 results in a function symbol with a location expression that
5965 has nothing to do with the location of the function, ouch! The
5966 relationship should be: a function's symbol has-a frame base; a
5967 frame-base has-a location expression. */
e7c27a73 5968 dwarf2_symbol_mark_computed (attr, new->name, cu);
4c2df51b 5969
e142c38c 5970 cu->list_in_scope = &local_symbols;
c906108c 5971
639d11d3 5972 if (die->child != NULL)
c906108c 5973 {
639d11d3 5974 child_die = die->child;
c906108c
SS
5975 while (child_die && child_die->tag)
5976 {
34eaf542
TT
5977 if (child_die->tag == DW_TAG_template_type_param
5978 || child_die->tag == DW_TAG_template_value_param)
5979 {
5980 struct symbol *arg = new_symbol (child_die, NULL, cu);
5981
f1078f66
DJ
5982 if (arg != NULL)
5983 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
5984 }
5985 else
5986 process_die (child_die, cu);
c906108c
SS
5987 child_die = sibling_die (child_die);
5988 }
5989 }
5990
d389af10
JK
5991 inherit_abstract_dies (die, cu);
5992
4a811a97
UW
5993 /* If we have a DW_AT_specification, we might need to import using
5994 directives from the context of the specification DIE. See the
5995 comment in determine_prefix. */
5996 if (cu->language == language_cplus
5997 && dwarf2_attr (die, DW_AT_specification, cu))
5998 {
5999 struct dwarf2_cu *spec_cu = cu;
6000 struct die_info *spec_die = die_specification (die, &spec_cu);
6001
6002 while (spec_die)
6003 {
6004 child_die = spec_die->child;
6005 while (child_die && child_die->tag)
6006 {
6007 if (child_die->tag == DW_TAG_imported_module)
6008 process_die (child_die, spec_cu);
6009 child_die = sibling_die (child_die);
6010 }
6011
6012 /* In some cases, GCC generates specification DIEs that
6013 themselves contain DW_AT_specification attributes. */
6014 spec_die = die_specification (spec_die, &spec_cu);
6015 }
6016 }
6017
c906108c
SS
6018 new = pop_context ();
6019 /* Make a block for the local symbols within. */
801e3a5b
JB
6020 block = finish_block (new->name, &local_symbols, new->old_blocks,
6021 lowpc, highpc, objfile);
6022
df8a16a1 6023 /* For C++, set the block's scope. */
f55ee35c 6024 if (cu->language == language_cplus || cu->language == language_fortran)
df8a16a1 6025 cp_set_block_scope (new->name, block, &objfile->objfile_obstack,
0114d602 6026 determine_prefix (die, cu),
df8a16a1
DJ
6027 processing_has_namespace_info);
6028
801e3a5b
JB
6029 /* If we have address ranges, record them. */
6030 dwarf2_record_block_ranges (die, block, baseaddr, cu);
6e70227d 6031
34eaf542
TT
6032 /* Attach template arguments to function. */
6033 if (! VEC_empty (symbolp, template_args))
6034 {
6035 gdb_assert (templ_func != NULL);
6036
6037 templ_func->n_template_arguments = VEC_length (symbolp, template_args);
6038 templ_func->template_arguments
6039 = obstack_alloc (&objfile->objfile_obstack,
6040 (templ_func->n_template_arguments
6041 * sizeof (struct symbol *)));
6042 memcpy (templ_func->template_arguments,
6043 VEC_address (symbolp, template_args),
6044 (templ_func->n_template_arguments * sizeof (struct symbol *)));
6045 VEC_free (symbolp, template_args);
6046 }
6047
208d8187
JB
6048 /* In C++, we can have functions nested inside functions (e.g., when
6049 a function declares a class that has methods). This means that
6050 when we finish processing a function scope, we may need to go
6051 back to building a containing block's symbol lists. */
6052 local_symbols = new->locals;
6053 param_symbols = new->params;
27aa8d6a 6054 using_directives = new->using_directives;
208d8187 6055
921e78cf
JB
6056 /* If we've finished processing a top-level function, subsequent
6057 symbols go in the file symbol list. */
6058 if (outermost_context_p ())
e142c38c 6059 cu->list_in_scope = &file_symbols;
c906108c
SS
6060}
6061
6062/* Process all the DIES contained within a lexical block scope. Start
6063 a new scope, process the dies, and then close the scope. */
6064
6065static void
e7c27a73 6066read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
c906108c 6067{
e7c27a73 6068 struct objfile *objfile = cu->objfile;
52f0bd74 6069 struct context_stack *new;
c906108c
SS
6070 CORE_ADDR lowpc, highpc;
6071 struct die_info *child_die;
e142c38c
DJ
6072 CORE_ADDR baseaddr;
6073
6074 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c
SS
6075
6076 /* Ignore blocks with missing or invalid low and high pc attributes. */
af34e669
DJ
6077 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
6078 as multiple lexical blocks? Handling children in a sane way would
6e70227d 6079 be nasty. Might be easier to properly extend generic blocks to
af34e669 6080 describe ranges. */
d85a05f0 6081 if (!dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
c906108c
SS
6082 return;
6083 lowpc += baseaddr;
6084 highpc += baseaddr;
6085
6086 push_context (0, lowpc);
639d11d3 6087 if (die->child != NULL)
c906108c 6088 {
639d11d3 6089 child_die = die->child;
c906108c
SS
6090 while (child_die && child_die->tag)
6091 {
e7c27a73 6092 process_die (child_die, cu);
c906108c
SS
6093 child_die = sibling_die (child_die);
6094 }
6095 }
6096 new = pop_context ();
6097
8540c487 6098 if (local_symbols != NULL || using_directives != NULL)
c906108c 6099 {
801e3a5b
JB
6100 struct block *block
6101 = finish_block (0, &local_symbols, new->old_blocks, new->start_addr,
6102 highpc, objfile);
6103
6104 /* Note that recording ranges after traversing children, as we
6105 do here, means that recording a parent's ranges entails
6106 walking across all its children's ranges as they appear in
6107 the address map, which is quadratic behavior.
6108
6109 It would be nicer to record the parent's ranges before
6110 traversing its children, simply overriding whatever you find
6111 there. But since we don't even decide whether to create a
6112 block until after we've traversed its children, that's hard
6113 to do. */
6114 dwarf2_record_block_ranges (die, block, baseaddr, cu);
c906108c
SS
6115 }
6116 local_symbols = new->locals;
27aa8d6a 6117 using_directives = new->using_directives;
c906108c
SS
6118}
6119
43039443 6120/* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
ff013f42
JK
6121 Return 1 if the attributes are present and valid, otherwise, return 0.
6122 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
43039443
JK
6123
6124static int
6125dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
ff013f42
JK
6126 CORE_ADDR *high_return, struct dwarf2_cu *cu,
6127 struct partial_symtab *ranges_pst)
43039443
JK
6128{
6129 struct objfile *objfile = cu->objfile;
6130 struct comp_unit_head *cu_header = &cu->header;
6131 bfd *obfd = objfile->obfd;
6132 unsigned int addr_size = cu_header->addr_size;
6133 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6134 /* Base address selection entry. */
6135 CORE_ADDR base;
6136 int found_base;
6137 unsigned int dummy;
6138 gdb_byte *buffer;
6139 CORE_ADDR marker;
6140 int low_set;
6141 CORE_ADDR low = 0;
6142 CORE_ADDR high = 0;
ff013f42 6143 CORE_ADDR baseaddr;
43039443 6144
d00adf39
DE
6145 found_base = cu->base_known;
6146 base = cu->base_address;
43039443 6147
be391dca 6148 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
dce234bc 6149 if (offset >= dwarf2_per_objfile->ranges.size)
43039443
JK
6150 {
6151 complaint (&symfile_complaints,
6152 _("Offset %d out of bounds for DW_AT_ranges attribute"),
6153 offset);
6154 return 0;
6155 }
dce234bc 6156 buffer = dwarf2_per_objfile->ranges.buffer + offset;
43039443
JK
6157
6158 /* Read in the largest possible address. */
6159 marker = read_address (obfd, buffer, cu, &dummy);
6160 if ((marker & mask) == mask)
6161 {
6162 /* If we found the largest possible address, then
6163 read the base address. */
6164 base = read_address (obfd, buffer + addr_size, cu, &dummy);
6165 buffer += 2 * addr_size;
6166 offset += 2 * addr_size;
6167 found_base = 1;
6168 }
6169
6170 low_set = 0;
6171
e7030f15 6172 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
ff013f42 6173
43039443
JK
6174 while (1)
6175 {
6176 CORE_ADDR range_beginning, range_end;
6177
6178 range_beginning = read_address (obfd, buffer, cu, &dummy);
6179 buffer += addr_size;
6180 range_end = read_address (obfd, buffer, cu, &dummy);
6181 buffer += addr_size;
6182 offset += 2 * addr_size;
6183
6184 /* An end of list marker is a pair of zero addresses. */
6185 if (range_beginning == 0 && range_end == 0)
6186 /* Found the end of list entry. */
6187 break;
6188
6189 /* Each base address selection entry is a pair of 2 values.
6190 The first is the largest possible address, the second is
6191 the base address. Check for a base address here. */
6192 if ((range_beginning & mask) == mask)
6193 {
6194 /* If we found the largest possible address, then
6195 read the base address. */
6196 base = read_address (obfd, buffer + addr_size, cu, &dummy);
6197 found_base = 1;
6198 continue;
6199 }
6200
6201 if (!found_base)
6202 {
6203 /* We have no valid base address for the ranges
6204 data. */
6205 complaint (&symfile_complaints,
6206 _("Invalid .debug_ranges data (no base address)"));
6207 return 0;
6208 }
6209
9277c30c
UW
6210 if (range_beginning > range_end)
6211 {
6212 /* Inverted range entries are invalid. */
6213 complaint (&symfile_complaints,
6214 _("Invalid .debug_ranges data (inverted range)"));
6215 return 0;
6216 }
6217
6218 /* Empty range entries have no effect. */
6219 if (range_beginning == range_end)
6220 continue;
6221
43039443
JK
6222 range_beginning += base;
6223 range_end += base;
6224
9277c30c 6225 if (ranges_pst != NULL)
ff013f42 6226 addrmap_set_empty (objfile->psymtabs_addrmap,
3e43a32a
MS
6227 range_beginning + baseaddr,
6228 range_end - 1 + baseaddr,
ff013f42
JK
6229 ranges_pst);
6230
43039443
JK
6231 /* FIXME: This is recording everything as a low-high
6232 segment of consecutive addresses. We should have a
6233 data structure for discontiguous block ranges
6234 instead. */
6235 if (! low_set)
6236 {
6237 low = range_beginning;
6238 high = range_end;
6239 low_set = 1;
6240 }
6241 else
6242 {
6243 if (range_beginning < low)
6244 low = range_beginning;
6245 if (range_end > high)
6246 high = range_end;
6247 }
6248 }
6249
6250 if (! low_set)
6251 /* If the first entry is an end-of-list marker, the range
6252 describes an empty scope, i.e. no instructions. */
6253 return 0;
6254
6255 if (low_return)
6256 *low_return = low;
6257 if (high_return)
6258 *high_return = high;
6259 return 1;
6260}
6261
af34e669
DJ
6262/* Get low and high pc attributes from a die. Return 1 if the attributes
6263 are present and valid, otherwise, return 0. Return -1 if the range is
6264 discontinuous, i.e. derived from DW_AT_ranges information. */
c906108c 6265static int
af34e669 6266dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
d85a05f0
DJ
6267 CORE_ADDR *highpc, struct dwarf2_cu *cu,
6268 struct partial_symtab *pst)
c906108c
SS
6269{
6270 struct attribute *attr;
af34e669
DJ
6271 CORE_ADDR low = 0;
6272 CORE_ADDR high = 0;
6273 int ret = 0;
c906108c 6274
e142c38c 6275 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
c906108c 6276 if (attr)
af34e669
DJ
6277 {
6278 high = DW_ADDR (attr);
e142c38c 6279 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
af34e669
DJ
6280 if (attr)
6281 low = DW_ADDR (attr);
6282 else
6283 /* Found high w/o low attribute. */
6284 return 0;
6285
6286 /* Found consecutive range of addresses. */
6287 ret = 1;
6288 }
c906108c 6289 else
af34e669 6290 {
e142c38c 6291 attr = dwarf2_attr (die, DW_AT_ranges, cu);
af34e669
DJ
6292 if (attr != NULL)
6293 {
af34e669 6294 /* Value of the DW_AT_ranges attribute is the offset in the
a604369a 6295 .debug_ranges section. */
d85a05f0 6296 if (!dwarf2_ranges_read (DW_UNSND (attr), &low, &high, cu, pst))
af34e669 6297 return 0;
43039443 6298 /* Found discontinuous range of addresses. */
af34e669
DJ
6299 ret = -1;
6300 }
6301 }
c906108c 6302
9373cf26
JK
6303 /* read_partial_die has also the strict LOW < HIGH requirement. */
6304 if (high <= low)
c906108c
SS
6305 return 0;
6306
6307 /* When using the GNU linker, .gnu.linkonce. sections are used to
6308 eliminate duplicate copies of functions and vtables and such.
6309 The linker will arbitrarily choose one and discard the others.
6310 The AT_*_pc values for such functions refer to local labels in
6311 these sections. If the section from that file was discarded, the
6312 labels are not in the output, so the relocs get a value of 0.
6313 If this is a discarded function, mark the pc bounds as invalid,
6314 so that GDB will ignore it. */
72dca2f5 6315 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
c906108c
SS
6316 return 0;
6317
6318 *lowpc = low;
9c6c53f7 6319 *highpc = high;
af34e669 6320 return ret;
c906108c
SS
6321}
6322
b084d499
JB
6323/* Assuming that DIE represents a subprogram DIE or a lexical block, get
6324 its low and high PC addresses. Do nothing if these addresses could not
6325 be determined. Otherwise, set LOWPC to the low address if it is smaller,
6326 and HIGHPC to the high address if greater than HIGHPC. */
6327
6328static void
6329dwarf2_get_subprogram_pc_bounds (struct die_info *die,
6330 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6331 struct dwarf2_cu *cu)
6332{
6333 CORE_ADDR low, high;
6334 struct die_info *child = die->child;
6335
d85a05f0 6336 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL))
b084d499
JB
6337 {
6338 *lowpc = min (*lowpc, low);
6339 *highpc = max (*highpc, high);
6340 }
6341
6342 /* If the language does not allow nested subprograms (either inside
6343 subprograms or lexical blocks), we're done. */
6344 if (cu->language != language_ada)
6345 return;
6e70227d 6346
b084d499
JB
6347 /* Check all the children of the given DIE. If it contains nested
6348 subprograms, then check their pc bounds. Likewise, we need to
6349 check lexical blocks as well, as they may also contain subprogram
6350 definitions. */
6351 while (child && child->tag)
6352 {
6353 if (child->tag == DW_TAG_subprogram
6354 || child->tag == DW_TAG_lexical_block)
6355 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
6356 child = sibling_die (child);
6357 }
6358}
6359
fae299cd
DC
6360/* Get the low and high pc's represented by the scope DIE, and store
6361 them in *LOWPC and *HIGHPC. If the correct values can't be
6362 determined, set *LOWPC to -1 and *HIGHPC to 0. */
6363
6364static void
6365get_scope_pc_bounds (struct die_info *die,
6366 CORE_ADDR *lowpc, CORE_ADDR *highpc,
6367 struct dwarf2_cu *cu)
6368{
6369 CORE_ADDR best_low = (CORE_ADDR) -1;
6370 CORE_ADDR best_high = (CORE_ADDR) 0;
6371 CORE_ADDR current_low, current_high;
6372
d85a05f0 6373 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL))
fae299cd
DC
6374 {
6375 best_low = current_low;
6376 best_high = current_high;
6377 }
6378 else
6379 {
6380 struct die_info *child = die->child;
6381
6382 while (child && child->tag)
6383 {
6384 switch (child->tag) {
6385 case DW_TAG_subprogram:
b084d499 6386 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
fae299cd
DC
6387 break;
6388 case DW_TAG_namespace:
f55ee35c 6389 case DW_TAG_module:
fae299cd
DC
6390 /* FIXME: carlton/2004-01-16: Should we do this for
6391 DW_TAG_class_type/DW_TAG_structure_type, too? I think
6392 that current GCC's always emit the DIEs corresponding
6393 to definitions of methods of classes as children of a
6394 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
6395 the DIEs giving the declarations, which could be
6396 anywhere). But I don't see any reason why the
6397 standards says that they have to be there. */
6398 get_scope_pc_bounds (child, &current_low, &current_high, cu);
6399
6400 if (current_low != ((CORE_ADDR) -1))
6401 {
6402 best_low = min (best_low, current_low);
6403 best_high = max (best_high, current_high);
6404 }
6405 break;
6406 default:
0963b4bd 6407 /* Ignore. */
fae299cd
DC
6408 break;
6409 }
6410
6411 child = sibling_die (child);
6412 }
6413 }
6414
6415 *lowpc = best_low;
6416 *highpc = best_high;
6417}
6418
801e3a5b
JB
6419/* Record the address ranges for BLOCK, offset by BASEADDR, as given
6420 in DIE. */
6421static void
6422dwarf2_record_block_ranges (struct die_info *die, struct block *block,
6423 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
6424{
6425 struct attribute *attr;
6426
6427 attr = dwarf2_attr (die, DW_AT_high_pc, cu);
6428 if (attr)
6429 {
6430 CORE_ADDR high = DW_ADDR (attr);
9a619af0 6431
801e3a5b
JB
6432 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6433 if (attr)
6434 {
6435 CORE_ADDR low = DW_ADDR (attr);
9a619af0 6436
801e3a5b
JB
6437 record_block_range (block, baseaddr + low, baseaddr + high - 1);
6438 }
6439 }
6440
6441 attr = dwarf2_attr (die, DW_AT_ranges, cu);
6442 if (attr)
6443 {
6444 bfd *obfd = cu->objfile->obfd;
6445
6446 /* The value of the DW_AT_ranges attribute is the offset of the
6447 address range list in the .debug_ranges section. */
6448 unsigned long offset = DW_UNSND (attr);
dce234bc 6449 gdb_byte *buffer = dwarf2_per_objfile->ranges.buffer + offset;
801e3a5b
JB
6450
6451 /* For some target architectures, but not others, the
6452 read_address function sign-extends the addresses it returns.
6453 To recognize base address selection entries, we need a
6454 mask. */
6455 unsigned int addr_size = cu->header.addr_size;
6456 CORE_ADDR base_select_mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
6457
6458 /* The base address, to which the next pair is relative. Note
6459 that this 'base' is a DWARF concept: most entries in a range
6460 list are relative, to reduce the number of relocs against the
6461 debugging information. This is separate from this function's
6462 'baseaddr' argument, which GDB uses to relocate debugging
6463 information from a shared library based on the address at
6464 which the library was loaded. */
d00adf39
DE
6465 CORE_ADDR base = cu->base_address;
6466 int base_known = cu->base_known;
801e3a5b 6467
be391dca 6468 gdb_assert (dwarf2_per_objfile->ranges.readin);
dce234bc 6469 if (offset >= dwarf2_per_objfile->ranges.size)
801e3a5b
JB
6470 {
6471 complaint (&symfile_complaints,
6472 _("Offset %lu out of bounds for DW_AT_ranges attribute"),
6473 offset);
6474 return;
6475 }
6476
6477 for (;;)
6478 {
6479 unsigned int bytes_read;
6480 CORE_ADDR start, end;
6481
6482 start = read_address (obfd, buffer, cu, &bytes_read);
6483 buffer += bytes_read;
6484 end = read_address (obfd, buffer, cu, &bytes_read);
6485 buffer += bytes_read;
6486
6487 /* Did we find the end of the range list? */
6488 if (start == 0 && end == 0)
6489 break;
6490
6491 /* Did we find a base address selection entry? */
6492 else if ((start & base_select_mask) == base_select_mask)
6493 {
6494 base = end;
6495 base_known = 1;
6496 }
6497
6498 /* We found an ordinary address range. */
6499 else
6500 {
6501 if (!base_known)
6502 {
6503 complaint (&symfile_complaints,
3e43a32a
MS
6504 _("Invalid .debug_ranges data "
6505 "(no base address)"));
801e3a5b
JB
6506 return;
6507 }
6508
9277c30c
UW
6509 if (start > end)
6510 {
6511 /* Inverted range entries are invalid. */
6512 complaint (&symfile_complaints,
6513 _("Invalid .debug_ranges data "
6514 "(inverted range)"));
6515 return;
6516 }
6517
6518 /* Empty range entries have no effect. */
6519 if (start == end)
6520 continue;
6521
6e70227d
DE
6522 record_block_range (block,
6523 baseaddr + base + start,
801e3a5b
JB
6524 baseaddr + base + end - 1);
6525 }
6526 }
6527 }
6528}
6529
60d5a603
JK
6530/* Check for GCC PR debug/45124 fix which is not present in any G++ version up
6531 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
6532 during 4.6.0 experimental. */
6533
6534static int
6535producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
6536{
6537 const char *cs;
6538 int major, minor, release;
6539
6540 if (cu->producer == NULL)
6541 {
6542 /* For unknown compilers expect their behavior is DWARF version
6543 compliant.
6544
6545 GCC started to support .debug_types sections by -gdwarf-4 since
6546 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
6547 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
6548 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
6549 interpreted incorrectly by GDB now - GCC PR debug/48229. */
6550
6551 return 0;
6552 }
6553
6554 /* Skip any identifier after "GNU " - such as "C++" or "Java". */
6555
6556 if (strncmp (cu->producer, "GNU ", strlen ("GNU ")) != 0)
6557 {
6558 /* For non-GCC compilers expect their behavior is DWARF version
6559 compliant. */
6560
6561 return 0;
6562 }
6563 cs = &cu->producer[strlen ("GNU ")];
6564 while (*cs && !isdigit (*cs))
6565 cs++;
6566 if (sscanf (cs, "%d.%d.%d", &major, &minor, &release) != 3)
6567 {
6568 /* Not recognized as GCC. */
6569
6570 return 0;
6571 }
6572
6573 return major < 4 || (major == 4 && minor < 6);
6574}
6575
6576/* Return the default accessibility type if it is not overriden by
6577 DW_AT_accessibility. */
6578
6579static enum dwarf_access_attribute
6580dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
6581{
6582 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
6583 {
6584 /* The default DWARF 2 accessibility for members is public, the default
6585 accessibility for inheritance is private. */
6586
6587 if (die->tag != DW_TAG_inheritance)
6588 return DW_ACCESS_public;
6589 else
6590 return DW_ACCESS_private;
6591 }
6592 else
6593 {
6594 /* DWARF 3+ defines the default accessibility a different way. The same
6595 rules apply now for DW_TAG_inheritance as for the members and it only
6596 depends on the container kind. */
6597
6598 if (die->parent->tag == DW_TAG_class_type)
6599 return DW_ACCESS_private;
6600 else
6601 return DW_ACCESS_public;
6602 }
6603}
6604
74ac6d43
TT
6605/* Look for DW_AT_data_member_location. Set *OFFSET to the byte
6606 offset. If the attribute was not found return 0, otherwise return
6607 1. If it was found but could not properly be handled, set *OFFSET
6608 to 0. */
6609
6610static int
6611handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
6612 LONGEST *offset)
6613{
6614 struct attribute *attr;
6615
6616 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
6617 if (attr != NULL)
6618 {
6619 *offset = 0;
6620
6621 /* Note that we do not check for a section offset first here.
6622 This is because DW_AT_data_member_location is new in DWARF 4,
6623 so if we see it, we can assume that a constant form is really
6624 a constant and not a section offset. */
6625 if (attr_form_is_constant (attr))
6626 *offset = dwarf2_get_attr_constant_value (attr, 0);
6627 else if (attr_form_is_section_offset (attr))
6628 dwarf2_complex_location_expr_complaint ();
6629 else if (attr_form_is_block (attr))
6630 *offset = decode_locdesc (DW_BLOCK (attr), cu);
6631 else
6632 dwarf2_complex_location_expr_complaint ();
6633
6634 return 1;
6635 }
6636
6637 return 0;
6638}
6639
c906108c
SS
6640/* Add an aggregate field to the field list. */
6641
6642static void
107d2387 6643dwarf2_add_field (struct field_info *fip, struct die_info *die,
e7c27a73 6644 struct dwarf2_cu *cu)
6e70227d 6645{
e7c27a73 6646 struct objfile *objfile = cu->objfile;
5e2b427d 6647 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
6648 struct nextfield *new_field;
6649 struct attribute *attr;
6650 struct field *fp;
6651 char *fieldname = "";
6652
6653 /* Allocate a new field list entry and link it in. */
6654 new_field = (struct nextfield *) xmalloc (sizeof (struct nextfield));
b8c9b27d 6655 make_cleanup (xfree, new_field);
c906108c 6656 memset (new_field, 0, sizeof (struct nextfield));
7d0ccb61
DJ
6657
6658 if (die->tag == DW_TAG_inheritance)
6659 {
6660 new_field->next = fip->baseclasses;
6661 fip->baseclasses = new_field;
6662 }
6663 else
6664 {
6665 new_field->next = fip->fields;
6666 fip->fields = new_field;
6667 }
c906108c
SS
6668 fip->nfields++;
6669
e142c38c 6670 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c
SS
6671 if (attr)
6672 new_field->accessibility = DW_UNSND (attr);
60d5a603
JK
6673 else
6674 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
c906108c
SS
6675 if (new_field->accessibility != DW_ACCESS_public)
6676 fip->non_public_fields = 1;
60d5a603 6677
e142c38c 6678 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
c906108c
SS
6679 if (attr)
6680 new_field->virtuality = DW_UNSND (attr);
60d5a603
JK
6681 else
6682 new_field->virtuality = DW_VIRTUALITY_none;
c906108c
SS
6683
6684 fp = &new_field->field;
a9a9bd0f 6685
e142c38c 6686 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
c906108c 6687 {
74ac6d43
TT
6688 LONGEST offset;
6689
a9a9bd0f 6690 /* Data member other than a C++ static data member. */
6e70227d 6691
c906108c 6692 /* Get type of field. */
e7c27a73 6693 fp->type = die_type (die, cu);
c906108c 6694
d6a843b5 6695 SET_FIELD_BITPOS (*fp, 0);
01ad7f36 6696
c906108c 6697 /* Get bit size of field (zero if none). */
e142c38c 6698 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
c906108c
SS
6699 if (attr)
6700 {
6701 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
6702 }
6703 else
6704 {
6705 FIELD_BITSIZE (*fp) = 0;
6706 }
6707
6708 /* Get bit offset of field. */
74ac6d43
TT
6709 if (handle_data_member_location (die, cu, &offset))
6710 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
e142c38c 6711 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
c906108c
SS
6712 if (attr)
6713 {
5e2b427d 6714 if (gdbarch_bits_big_endian (gdbarch))
c906108c
SS
6715 {
6716 /* For big endian bits, the DW_AT_bit_offset gives the
c5aa993b
JM
6717 additional bit offset from the MSB of the containing
6718 anonymous object to the MSB of the field. We don't
6719 have to do anything special since we don't need to
6720 know the size of the anonymous object. */
c906108c
SS
6721 FIELD_BITPOS (*fp) += DW_UNSND (attr);
6722 }
6723 else
6724 {
6725 /* For little endian bits, compute the bit offset to the
c5aa993b
JM
6726 MSB of the anonymous object, subtract off the number of
6727 bits from the MSB of the field to the MSB of the
6728 object, and then subtract off the number of bits of
6729 the field itself. The result is the bit offset of
6730 the LSB of the field. */
c906108c
SS
6731 int anonymous_size;
6732 int bit_offset = DW_UNSND (attr);
6733
e142c38c 6734 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
6735 if (attr)
6736 {
6737 /* The size of the anonymous object containing
6738 the bit field is explicit, so use the
6739 indicated size (in bytes). */
6740 anonymous_size = DW_UNSND (attr);
6741 }
6742 else
6743 {
6744 /* The size of the anonymous object containing
6745 the bit field must be inferred from the type
6746 attribute of the data member containing the
6747 bit field. */
6748 anonymous_size = TYPE_LENGTH (fp->type);
6749 }
6750 FIELD_BITPOS (*fp) += anonymous_size * bits_per_byte
6751 - bit_offset - FIELD_BITSIZE (*fp);
6752 }
6753 }
6754
6755 /* Get name of field. */
39cbfefa
DJ
6756 fieldname = dwarf2_name (die, cu);
6757 if (fieldname == NULL)
6758 fieldname = "";
d8151005
DJ
6759
6760 /* The name is already allocated along with this objfile, so we don't
6761 need to duplicate it for the type. */
6762 fp->name = fieldname;
c906108c
SS
6763
6764 /* Change accessibility for artificial fields (e.g. virtual table
c5aa993b 6765 pointer or virtual base class pointer) to private. */
e142c38c 6766 if (dwarf2_attr (die, DW_AT_artificial, cu))
c906108c 6767 {
d48cc9dd 6768 FIELD_ARTIFICIAL (*fp) = 1;
c906108c
SS
6769 new_field->accessibility = DW_ACCESS_private;
6770 fip->non_public_fields = 1;
6771 }
6772 }
a9a9bd0f 6773 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
c906108c 6774 {
a9a9bd0f
DC
6775 /* C++ static member. */
6776
6777 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
6778 is a declaration, but all versions of G++ as of this writing
6779 (so through at least 3.2.1) incorrectly generate
6780 DW_TAG_variable tags. */
6e70227d 6781
ff355380 6782 const char *physname;
c906108c 6783
a9a9bd0f 6784 /* Get name of field. */
39cbfefa
DJ
6785 fieldname = dwarf2_name (die, cu);
6786 if (fieldname == NULL)
c906108c
SS
6787 return;
6788
254e6b9e 6789 attr = dwarf2_attr (die, DW_AT_const_value, cu);
3863f96c
DE
6790 if (attr
6791 /* Only create a symbol if this is an external value.
6792 new_symbol checks this and puts the value in the global symbol
6793 table, which we want. If it is not external, new_symbol
6794 will try to put the value in cu->list_in_scope which is wrong. */
6795 && dwarf2_flag_true_p (die, DW_AT_external, cu))
254e6b9e
DE
6796 {
6797 /* A static const member, not much different than an enum as far as
6798 we're concerned, except that we can support more types. */
6799 new_symbol (die, NULL, cu);
6800 }
6801
2df3850c 6802 /* Get physical name. */
ff355380 6803 physname = dwarf2_physname (fieldname, die, cu);
c906108c 6804
d8151005
DJ
6805 /* The name is already allocated along with this objfile, so we don't
6806 need to duplicate it for the type. */
6807 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
e7c27a73 6808 FIELD_TYPE (*fp) = die_type (die, cu);
d8151005 6809 FIELD_NAME (*fp) = fieldname;
c906108c
SS
6810 }
6811 else if (die->tag == DW_TAG_inheritance)
6812 {
74ac6d43 6813 LONGEST offset;
d4b96c9a 6814
74ac6d43
TT
6815 /* C++ base class field. */
6816 if (handle_data_member_location (die, cu, &offset))
6817 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
c906108c 6818 FIELD_BITSIZE (*fp) = 0;
e7c27a73 6819 FIELD_TYPE (*fp) = die_type (die, cu);
c906108c
SS
6820 FIELD_NAME (*fp) = type_name_no_tag (fp->type);
6821 fip->nbaseclasses++;
6822 }
6823}
6824
98751a41
JK
6825/* Add a typedef defined in the scope of the FIP's class. */
6826
6827static void
6828dwarf2_add_typedef (struct field_info *fip, struct die_info *die,
6829 struct dwarf2_cu *cu)
6e70227d 6830{
98751a41 6831 struct objfile *objfile = cu->objfile;
98751a41
JK
6832 struct typedef_field_list *new_field;
6833 struct attribute *attr;
6834 struct typedef_field *fp;
6835 char *fieldname = "";
6836
6837 /* Allocate a new field list entry and link it in. */
6838 new_field = xzalloc (sizeof (*new_field));
6839 make_cleanup (xfree, new_field);
6840
6841 gdb_assert (die->tag == DW_TAG_typedef);
6842
6843 fp = &new_field->field;
6844
6845 /* Get name of field. */
6846 fp->name = dwarf2_name (die, cu);
6847 if (fp->name == NULL)
6848 return;
6849
6850 fp->type = read_type_die (die, cu);
6851
6852 new_field->next = fip->typedef_field_list;
6853 fip->typedef_field_list = new_field;
6854 fip->typedef_field_list_count++;
6855}
6856
c906108c
SS
6857/* Create the vector of fields, and attach it to the type. */
6858
6859static void
fba45db2 6860dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 6861 struct dwarf2_cu *cu)
c906108c
SS
6862{
6863 int nfields = fip->nfields;
6864
6865 /* Record the field count, allocate space for the array of fields,
6866 and create blank accessibility bitfields if necessary. */
6867 TYPE_NFIELDS (type) = nfields;
6868 TYPE_FIELDS (type) = (struct field *)
6869 TYPE_ALLOC (type, sizeof (struct field) * nfields);
6870 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
6871
b4ba55a1 6872 if (fip->non_public_fields && cu->language != language_ada)
c906108c
SS
6873 {
6874 ALLOCATE_CPLUS_STRUCT_TYPE (type);
6875
6876 TYPE_FIELD_PRIVATE_BITS (type) =
6877 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6878 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
6879
6880 TYPE_FIELD_PROTECTED_BITS (type) =
6881 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6882 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
6883
774b6a14
TT
6884 TYPE_FIELD_IGNORE_BITS (type) =
6885 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
6886 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
c906108c
SS
6887 }
6888
6889 /* If the type has baseclasses, allocate and clear a bit vector for
6890 TYPE_FIELD_VIRTUAL_BITS. */
b4ba55a1 6891 if (fip->nbaseclasses && cu->language != language_ada)
c906108c
SS
6892 {
6893 int num_bytes = B_BYTES (fip->nbaseclasses);
fe1b8b76 6894 unsigned char *pointer;
c906108c
SS
6895
6896 ALLOCATE_CPLUS_STRUCT_TYPE (type);
fe1b8b76
JB
6897 pointer = TYPE_ALLOC (type, num_bytes);
6898 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
c906108c
SS
6899 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->nbaseclasses);
6900 TYPE_N_BASECLASSES (type) = fip->nbaseclasses;
6901 }
6902
3e43a32a
MS
6903 /* Copy the saved-up fields into the field vector. Start from the head of
6904 the list, adding to the tail of the field array, so that they end up in
6905 the same order in the array in which they were added to the list. */
c906108c
SS
6906 while (nfields-- > 0)
6907 {
7d0ccb61
DJ
6908 struct nextfield *fieldp;
6909
6910 if (fip->fields)
6911 {
6912 fieldp = fip->fields;
6913 fip->fields = fieldp->next;
6914 }
6915 else
6916 {
6917 fieldp = fip->baseclasses;
6918 fip->baseclasses = fieldp->next;
6919 }
6920
6921 TYPE_FIELD (type, nfields) = fieldp->field;
6922 switch (fieldp->accessibility)
c906108c 6923 {
c5aa993b 6924 case DW_ACCESS_private:
b4ba55a1
JB
6925 if (cu->language != language_ada)
6926 SET_TYPE_FIELD_PRIVATE (type, nfields);
c5aa993b 6927 break;
c906108c 6928
c5aa993b 6929 case DW_ACCESS_protected:
b4ba55a1
JB
6930 if (cu->language != language_ada)
6931 SET_TYPE_FIELD_PROTECTED (type, nfields);
c5aa993b 6932 break;
c906108c 6933
c5aa993b
JM
6934 case DW_ACCESS_public:
6935 break;
c906108c 6936
c5aa993b
JM
6937 default:
6938 /* Unknown accessibility. Complain and treat it as public. */
6939 {
e2e0b3e5 6940 complaint (&symfile_complaints, _("unsupported accessibility %d"),
7d0ccb61 6941 fieldp->accessibility);
c5aa993b
JM
6942 }
6943 break;
c906108c
SS
6944 }
6945 if (nfields < fip->nbaseclasses)
6946 {
7d0ccb61 6947 switch (fieldp->virtuality)
c906108c 6948 {
c5aa993b
JM
6949 case DW_VIRTUALITY_virtual:
6950 case DW_VIRTUALITY_pure_virtual:
b4ba55a1 6951 if (cu->language == language_ada)
a73c6dcd 6952 error (_("unexpected virtuality in component of Ada type"));
c5aa993b
JM
6953 SET_TYPE_FIELD_VIRTUAL (type, nfields);
6954 break;
c906108c
SS
6955 }
6956 }
c906108c
SS
6957 }
6958}
6959
c906108c
SS
6960/* Add a member function to the proper fieldlist. */
6961
6962static void
107d2387 6963dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
e7c27a73 6964 struct type *type, struct dwarf2_cu *cu)
c906108c 6965{
e7c27a73 6966 struct objfile *objfile = cu->objfile;
c906108c
SS
6967 struct attribute *attr;
6968 struct fnfieldlist *flp;
6969 int i;
6970 struct fn_field *fnp;
6971 char *fieldname;
c906108c 6972 struct nextfnfield *new_fnfield;
f792889a 6973 struct type *this_type;
60d5a603 6974 enum dwarf_access_attribute accessibility;
c906108c 6975
b4ba55a1 6976 if (cu->language == language_ada)
a73c6dcd 6977 error (_("unexpected member function in Ada type"));
b4ba55a1 6978
2df3850c 6979 /* Get name of member function. */
39cbfefa
DJ
6980 fieldname = dwarf2_name (die, cu);
6981 if (fieldname == NULL)
2df3850c 6982 return;
c906108c 6983
c906108c
SS
6984 /* Look up member function name in fieldlist. */
6985 for (i = 0; i < fip->nfnfields; i++)
6986 {
27bfe10e 6987 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
c906108c
SS
6988 break;
6989 }
6990
6991 /* Create new list element if necessary. */
6992 if (i < fip->nfnfields)
6993 flp = &fip->fnfieldlists[i];
6994 else
6995 {
6996 if ((fip->nfnfields % DW_FIELD_ALLOC_CHUNK) == 0)
6997 {
6998 fip->fnfieldlists = (struct fnfieldlist *)
6999 xrealloc (fip->fnfieldlists,
7000 (fip->nfnfields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 7001 * sizeof (struct fnfieldlist));
c906108c 7002 if (fip->nfnfields == 0)
c13c43fd 7003 make_cleanup (free_current_contents, &fip->fnfieldlists);
c906108c
SS
7004 }
7005 flp = &fip->fnfieldlists[fip->nfnfields];
7006 flp->name = fieldname;
7007 flp->length = 0;
7008 flp->head = NULL;
3da10d80 7009 i = fip->nfnfields++;
c906108c
SS
7010 }
7011
7012 /* Create a new member function field and chain it to the field list
0963b4bd 7013 entry. */
c906108c 7014 new_fnfield = (struct nextfnfield *) xmalloc (sizeof (struct nextfnfield));
b8c9b27d 7015 make_cleanup (xfree, new_fnfield);
c906108c
SS
7016 memset (new_fnfield, 0, sizeof (struct nextfnfield));
7017 new_fnfield->next = flp->head;
7018 flp->head = new_fnfield;
7019 flp->length++;
7020
7021 /* Fill in the member function field info. */
7022 fnp = &new_fnfield->fnfield;
3da10d80
KS
7023
7024 /* Delay processing of the physname until later. */
7025 if (cu->language == language_cplus || cu->language == language_java)
7026 {
7027 add_to_method_list (type, i, flp->length - 1, fieldname,
7028 die, cu);
7029 }
7030 else
7031 {
1d06ead6 7032 const char *physname = dwarf2_physname (fieldname, die, cu);
3da10d80
KS
7033 fnp->physname = physname ? physname : "";
7034 }
7035
c906108c 7036 fnp->type = alloc_type (objfile);
f792889a
DJ
7037 this_type = read_type_die (die, cu);
7038 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
c906108c 7039 {
f792889a 7040 int nparams = TYPE_NFIELDS (this_type);
c906108c 7041
f792889a 7042 /* TYPE is the domain of this method, and THIS_TYPE is the type
e26fb1d7
DC
7043 of the method itself (TYPE_CODE_METHOD). */
7044 smash_to_method_type (fnp->type, type,
f792889a
DJ
7045 TYPE_TARGET_TYPE (this_type),
7046 TYPE_FIELDS (this_type),
7047 TYPE_NFIELDS (this_type),
7048 TYPE_VARARGS (this_type));
c906108c
SS
7049
7050 /* Handle static member functions.
c5aa993b 7051 Dwarf2 has no clean way to discern C++ static and non-static
0963b4bd
MS
7052 member functions. G++ helps GDB by marking the first
7053 parameter for non-static member functions (which is the this
7054 pointer) as artificial. We obtain this information from
7055 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
f792889a 7056 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
c906108c
SS
7057 fnp->voffset = VOFFSET_STATIC;
7058 }
7059 else
e2e0b3e5 7060 complaint (&symfile_complaints, _("member function type missing for '%s'"),
3da10d80 7061 dwarf2_full_name (fieldname, die, cu));
c906108c
SS
7062
7063 /* Get fcontext from DW_AT_containing_type if present. */
e142c38c 7064 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
e7c27a73 7065 fnp->fcontext = die_containing_type (die, cu);
c906108c 7066
3e43a32a
MS
7067 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
7068 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
c906108c
SS
7069
7070 /* Get accessibility. */
e142c38c 7071 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
c906108c 7072 if (attr)
60d5a603
JK
7073 accessibility = DW_UNSND (attr);
7074 else
7075 accessibility = dwarf2_default_access_attribute (die, cu);
7076 switch (accessibility)
c906108c 7077 {
60d5a603
JK
7078 case DW_ACCESS_private:
7079 fnp->is_private = 1;
7080 break;
7081 case DW_ACCESS_protected:
7082 fnp->is_protected = 1;
7083 break;
c906108c
SS
7084 }
7085
b02dede2 7086 /* Check for artificial methods. */
e142c38c 7087 attr = dwarf2_attr (die, DW_AT_artificial, cu);
b02dede2
DJ
7088 if (attr && DW_UNSND (attr) != 0)
7089 fnp->is_artificial = 1;
7090
0d564a31 7091 /* Get index in virtual function table if it is a virtual member
aec5aa8b
TT
7092 function. For older versions of GCC, this is an offset in the
7093 appropriate virtual table, as specified by DW_AT_containing_type.
7094 For everyone else, it is an expression to be evaluated relative
0d564a31
DJ
7095 to the object address. */
7096
e142c38c 7097 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
aec5aa8b 7098 if (attr)
8e19ed76 7099 {
aec5aa8b 7100 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
8e19ed76 7101 {
aec5aa8b
TT
7102 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
7103 {
7104 /* Old-style GCC. */
7105 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
7106 }
7107 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
7108 || (DW_BLOCK (attr)->size > 1
7109 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
7110 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
7111 {
7112 struct dwarf_block blk;
7113 int offset;
7114
7115 offset = (DW_BLOCK (attr)->data[0] == DW_OP_deref
7116 ? 1 : 2);
7117 blk.size = DW_BLOCK (attr)->size - offset;
7118 blk.data = DW_BLOCK (attr)->data + offset;
7119 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
7120 if ((fnp->voffset % cu->header.addr_size) != 0)
7121 dwarf2_complex_location_expr_complaint ();
7122 else
7123 fnp->voffset /= cu->header.addr_size;
7124 fnp->voffset += 2;
7125 }
7126 else
7127 dwarf2_complex_location_expr_complaint ();
7128
7129 if (!fnp->fcontext)
7130 fnp->fcontext = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
7131 }
3690dd37 7132 else if (attr_form_is_section_offset (attr))
8e19ed76 7133 {
4d3c2250 7134 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
7135 }
7136 else
7137 {
4d3c2250
KB
7138 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
7139 fieldname);
8e19ed76 7140 }
0d564a31 7141 }
d48cc9dd
DJ
7142 else
7143 {
7144 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
7145 if (attr && DW_UNSND (attr))
7146 {
7147 /* GCC does this, as of 2008-08-25; PR debug/37237. */
7148 complaint (&symfile_complaints,
3e43a32a
MS
7149 _("Member function \"%s\" (offset %d) is virtual "
7150 "but the vtable offset is not specified"),
d48cc9dd 7151 fieldname, die->offset);
9655fd1a 7152 ALLOCATE_CPLUS_STRUCT_TYPE (type);
d48cc9dd
DJ
7153 TYPE_CPLUS_DYNAMIC (type) = 1;
7154 }
7155 }
c906108c
SS
7156}
7157
7158/* Create the vector of member function fields, and attach it to the type. */
7159
7160static void
fba45db2 7161dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
e7c27a73 7162 struct dwarf2_cu *cu)
c906108c
SS
7163{
7164 struct fnfieldlist *flp;
7165 int total_length = 0;
7166 int i;
7167
b4ba55a1 7168 if (cu->language == language_ada)
a73c6dcd 7169 error (_("unexpected member functions in Ada type"));
b4ba55a1 7170
c906108c
SS
7171 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7172 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
7173 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * fip->nfnfields);
7174
7175 for (i = 0, flp = fip->fnfieldlists; i < fip->nfnfields; i++, flp++)
7176 {
7177 struct nextfnfield *nfp = flp->head;
7178 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
7179 int k;
7180
7181 TYPE_FN_FIELDLIST_NAME (type, i) = flp->name;
7182 TYPE_FN_FIELDLIST_LENGTH (type, i) = flp->length;
7183 fn_flp->fn_fields = (struct fn_field *)
7184 TYPE_ALLOC (type, sizeof (struct fn_field) * flp->length);
7185 for (k = flp->length; (k--, nfp); nfp = nfp->next)
c5aa993b 7186 fn_flp->fn_fields[k] = nfp->fnfield;
c906108c
SS
7187
7188 total_length += flp->length;
7189 }
7190
7191 TYPE_NFN_FIELDS (type) = fip->nfnfields;
7192 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
7193}
7194
1168df01
JB
7195/* Returns non-zero if NAME is the name of a vtable member in CU's
7196 language, zero otherwise. */
7197static int
7198is_vtable_name (const char *name, struct dwarf2_cu *cu)
7199{
7200 static const char vptr[] = "_vptr";
987504bb 7201 static const char vtable[] = "vtable";
1168df01 7202
987504bb
JJ
7203 /* Look for the C++ and Java forms of the vtable. */
7204 if ((cu->language == language_java
7205 && strncmp (name, vtable, sizeof (vtable) - 1) == 0)
7206 || (strncmp (name, vptr, sizeof (vptr) - 1) == 0
7207 && is_cplus_marker (name[sizeof (vptr) - 1])))
1168df01
JB
7208 return 1;
7209
7210 return 0;
7211}
7212
c0dd20ea 7213/* GCC outputs unnamed structures that are really pointers to member
0b92b5bb
TT
7214 functions, with the ABI-specified layout. If TYPE describes
7215 such a structure, smash it into a member function type.
61049d3b
DJ
7216
7217 GCC shouldn't do this; it should just output pointer to member DIEs.
7218 This is GCC PR debug/28767. */
c0dd20ea 7219
0b92b5bb
TT
7220static void
7221quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
c0dd20ea 7222{
0b92b5bb 7223 struct type *pfn_type, *domain_type, *new_type;
c0dd20ea
DJ
7224
7225 /* Check for a structure with no name and two children. */
0b92b5bb
TT
7226 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
7227 return;
c0dd20ea
DJ
7228
7229 /* Check for __pfn and __delta members. */
0b92b5bb
TT
7230 if (TYPE_FIELD_NAME (type, 0) == NULL
7231 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
7232 || TYPE_FIELD_NAME (type, 1) == NULL
7233 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
7234 return;
c0dd20ea
DJ
7235
7236 /* Find the type of the method. */
0b92b5bb 7237 pfn_type = TYPE_FIELD_TYPE (type, 0);
c0dd20ea
DJ
7238 if (pfn_type == NULL
7239 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
7240 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
0b92b5bb 7241 return;
c0dd20ea
DJ
7242
7243 /* Look for the "this" argument. */
7244 pfn_type = TYPE_TARGET_TYPE (pfn_type);
7245 if (TYPE_NFIELDS (pfn_type) == 0
0b92b5bb 7246 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
c0dd20ea 7247 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
0b92b5bb 7248 return;
c0dd20ea
DJ
7249
7250 domain_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
0b92b5bb
TT
7251 new_type = alloc_type (objfile);
7252 smash_to_method_type (new_type, domain_type, TYPE_TARGET_TYPE (pfn_type),
c0dd20ea
DJ
7253 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
7254 TYPE_VARARGS (pfn_type));
0b92b5bb 7255 smash_to_methodptr_type (type, new_type);
c0dd20ea 7256}
1168df01 7257
c906108c 7258/* Called when we find the DIE that starts a structure or union scope
c767944b
DJ
7259 (definition) to create a type for the structure or union. Fill in
7260 the type's name and general properties; the members will not be
7261 processed until process_structure_type.
c906108c 7262
c767944b
DJ
7263 NOTE: we need to call these functions regardless of whether or not the
7264 DIE has a DW_AT_name attribute, since it might be an anonymous
c906108c
SS
7265 structure or union. This gets the type entered into our set of
7266 user defined types.
7267
7268 However, if the structure is incomplete (an opaque struct/union)
7269 then suppress creating a symbol table entry for it since gdb only
7270 wants to find the one with the complete definition. Note that if
7271 it is complete, we just call new_symbol, which does it's own
7272 checking about whether the struct/union is anonymous or not (and
7273 suppresses creating a symbol table entry itself). */
7274
f792889a 7275static struct type *
134d01f1 7276read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7277{
e7c27a73 7278 struct objfile *objfile = cu->objfile;
c906108c
SS
7279 struct type *type;
7280 struct attribute *attr;
39cbfefa 7281 char *name;
c906108c 7282
348e048f
DE
7283 /* If the definition of this type lives in .debug_types, read that type.
7284 Don't follow DW_AT_specification though, that will take us back up
7285 the chain and we want to go down. */
7286 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7287 if (attr)
7288 {
7289 struct dwarf2_cu *type_cu = cu;
7290 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9a619af0 7291
348e048f
DE
7292 /* We could just recurse on read_structure_type, but we need to call
7293 get_die_type to ensure only one type for this DIE is created.
7294 This is important, for example, because for c++ classes we need
7295 TYPE_NAME set which is only done by new_symbol. Blech. */
7296 type = read_type_die (type_die, type_cu);
9dc481d3
DE
7297
7298 /* TYPE_CU may not be the same as CU.
7299 Ensure TYPE is recorded in CU's type_hash table. */
348e048f
DE
7300 return set_die_type (die, type, cu);
7301 }
7302
c0dd20ea 7303 type = alloc_type (objfile);
c906108c 7304 INIT_CPLUS_SPECIFIC (type);
93311388 7305
39cbfefa
DJ
7306 name = dwarf2_name (die, cu);
7307 if (name != NULL)
c906108c 7308 {
987504bb
JJ
7309 if (cu->language == language_cplus
7310 || cu->language == language_java)
63d06c5c 7311 {
3da10d80
KS
7312 char *full_name = (char *) dwarf2_full_name (name, die, cu);
7313
7314 /* dwarf2_full_name might have already finished building the DIE's
7315 type. If so, there is no need to continue. */
7316 if (get_die_type (die, cu) != NULL)
7317 return get_die_type (die, cu);
7318
7319 TYPE_TAG_NAME (type) = full_name;
94af9270
KS
7320 if (die->tag == DW_TAG_structure_type
7321 || die->tag == DW_TAG_class_type)
7322 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c
DC
7323 }
7324 else
7325 {
d8151005
DJ
7326 /* The name is already allocated along with this objfile, so
7327 we don't need to duplicate it for the type. */
94af9270
KS
7328 TYPE_TAG_NAME (type) = (char *) name;
7329 if (die->tag == DW_TAG_class_type)
7330 TYPE_NAME (type) = TYPE_TAG_NAME (type);
63d06c5c 7331 }
c906108c
SS
7332 }
7333
7334 if (die->tag == DW_TAG_structure_type)
7335 {
7336 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7337 }
7338 else if (die->tag == DW_TAG_union_type)
7339 {
7340 TYPE_CODE (type) = TYPE_CODE_UNION;
7341 }
7342 else
7343 {
c906108c
SS
7344 TYPE_CODE (type) = TYPE_CODE_CLASS;
7345 }
7346
0cc2414c
TT
7347 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
7348 TYPE_DECLARED_CLASS (type) = 1;
7349
e142c38c 7350 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
7351 if (attr)
7352 {
7353 TYPE_LENGTH (type) = DW_UNSND (attr);
7354 }
7355 else
7356 {
7357 TYPE_LENGTH (type) = 0;
7358 }
7359
876cecd0 7360 TYPE_STUB_SUPPORTED (type) = 1;
dc718098 7361 if (die_is_declaration (die, cu))
876cecd0 7362 TYPE_STUB (type) = 1;
a6c727b2
DJ
7363 else if (attr == NULL && die->child == NULL
7364 && producer_is_realview (cu->producer))
7365 /* RealView does not output the required DW_AT_declaration
7366 on incomplete types. */
7367 TYPE_STUB (type) = 1;
dc718098 7368
c906108c
SS
7369 /* We need to add the type field to the die immediately so we don't
7370 infinitely recurse when dealing with pointers to the structure
0963b4bd 7371 type within the structure itself. */
1c379e20 7372 set_die_type (die, type, cu);
c906108c 7373
7e314c57
JK
7374 /* set_die_type should be already done. */
7375 set_descriptive_type (type, die, cu);
7376
c767944b
DJ
7377 return type;
7378}
7379
7380/* Finish creating a structure or union type, including filling in
7381 its members and creating a symbol for it. */
7382
7383static void
7384process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
7385{
7386 struct objfile *objfile = cu->objfile;
7387 struct die_info *child_die = die->child;
7388 struct type *type;
7389
7390 type = get_die_type (die, cu);
7391 if (type == NULL)
7392 type = read_structure_type (die, cu);
7393
e142c38c 7394 if (die->child != NULL && ! die_is_declaration (die, cu))
c906108c
SS
7395 {
7396 struct field_info fi;
7397 struct die_info *child_die;
34eaf542 7398 VEC (symbolp) *template_args = NULL;
c767944b 7399 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
c906108c
SS
7400
7401 memset (&fi, 0, sizeof (struct field_info));
7402
639d11d3 7403 child_die = die->child;
c906108c
SS
7404
7405 while (child_die && child_die->tag)
7406 {
a9a9bd0f
DC
7407 if (child_die->tag == DW_TAG_member
7408 || child_die->tag == DW_TAG_variable)
c906108c 7409 {
a9a9bd0f
DC
7410 /* NOTE: carlton/2002-11-05: A C++ static data member
7411 should be a DW_TAG_member that is a declaration, but
7412 all versions of G++ as of this writing (so through at
7413 least 3.2.1) incorrectly generate DW_TAG_variable
7414 tags for them instead. */
e7c27a73 7415 dwarf2_add_field (&fi, child_die, cu);
c906108c 7416 }
8713b1b1 7417 else if (child_die->tag == DW_TAG_subprogram)
c906108c 7418 {
0963b4bd 7419 /* C++ member function. */
e7c27a73 7420 dwarf2_add_member_fn (&fi, child_die, type, cu);
c906108c
SS
7421 }
7422 else if (child_die->tag == DW_TAG_inheritance)
7423 {
7424 /* C++ base class field. */
e7c27a73 7425 dwarf2_add_field (&fi, child_die, cu);
c906108c 7426 }
98751a41
JK
7427 else if (child_die->tag == DW_TAG_typedef)
7428 dwarf2_add_typedef (&fi, child_die, cu);
34eaf542
TT
7429 else if (child_die->tag == DW_TAG_template_type_param
7430 || child_die->tag == DW_TAG_template_value_param)
7431 {
7432 struct symbol *arg = new_symbol (child_die, NULL, cu);
7433
f1078f66
DJ
7434 if (arg != NULL)
7435 VEC_safe_push (symbolp, template_args, arg);
34eaf542
TT
7436 }
7437
c906108c
SS
7438 child_die = sibling_die (child_die);
7439 }
7440
34eaf542
TT
7441 /* Attach template arguments to type. */
7442 if (! VEC_empty (symbolp, template_args))
7443 {
7444 ALLOCATE_CPLUS_STRUCT_TYPE (type);
7445 TYPE_N_TEMPLATE_ARGUMENTS (type)
7446 = VEC_length (symbolp, template_args);
7447 TYPE_TEMPLATE_ARGUMENTS (type)
7448 = obstack_alloc (&objfile->objfile_obstack,
7449 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7450 * sizeof (struct symbol *)));
7451 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
7452 VEC_address (symbolp, template_args),
7453 (TYPE_N_TEMPLATE_ARGUMENTS (type)
7454 * sizeof (struct symbol *)));
7455 VEC_free (symbolp, template_args);
7456 }
7457
c906108c
SS
7458 /* Attach fields and member functions to the type. */
7459 if (fi.nfields)
e7c27a73 7460 dwarf2_attach_fields_to_type (&fi, type, cu);
c906108c
SS
7461 if (fi.nfnfields)
7462 {
e7c27a73 7463 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
c906108c 7464
c5aa993b 7465 /* Get the type which refers to the base class (possibly this
c906108c 7466 class itself) which contains the vtable pointer for the current
0d564a31
DJ
7467 class from the DW_AT_containing_type attribute. This use of
7468 DW_AT_containing_type is a GNU extension. */
c906108c 7469
e142c38c 7470 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
c906108c 7471 {
e7c27a73 7472 struct type *t = die_containing_type (die, cu);
c906108c
SS
7473
7474 TYPE_VPTR_BASETYPE (type) = t;
7475 if (type == t)
7476 {
c906108c
SS
7477 int i;
7478
7479 /* Our own class provides vtbl ptr. */
7480 for (i = TYPE_NFIELDS (t) - 1;
7481 i >= TYPE_N_BASECLASSES (t);
7482 --i)
7483 {
7484 char *fieldname = TYPE_FIELD_NAME (t, i);
7485
1168df01 7486 if (is_vtable_name (fieldname, cu))
c906108c
SS
7487 {
7488 TYPE_VPTR_FIELDNO (type) = i;
7489 break;
7490 }
7491 }
7492
7493 /* Complain if virtual function table field not found. */
7494 if (i < TYPE_N_BASECLASSES (t))
4d3c2250 7495 complaint (&symfile_complaints,
3e43a32a
MS
7496 _("virtual function table pointer "
7497 "not found when defining class '%s'"),
4d3c2250
KB
7498 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) :
7499 "");
c906108c
SS
7500 }
7501 else
7502 {
7503 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
7504 }
7505 }
f6235d4c
EZ
7506 else if (cu->producer
7507 && strncmp (cu->producer,
7508 "IBM(R) XL C/C++ Advanced Edition", 32) == 0)
7509 {
7510 /* The IBM XLC compiler does not provide direct indication
7511 of the containing type, but the vtable pointer is
7512 always named __vfp. */
7513
7514 int i;
7515
7516 for (i = TYPE_NFIELDS (type) - 1;
7517 i >= TYPE_N_BASECLASSES (type);
7518 --i)
7519 {
7520 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
7521 {
7522 TYPE_VPTR_FIELDNO (type) = i;
7523 TYPE_VPTR_BASETYPE (type) = type;
7524 break;
7525 }
7526 }
7527 }
c906108c 7528 }
98751a41
JK
7529
7530 /* Copy fi.typedef_field_list linked list elements content into the
7531 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
7532 if (fi.typedef_field_list)
7533 {
7534 int i = fi.typedef_field_list_count;
7535
a0d7a4ff 7536 ALLOCATE_CPLUS_STRUCT_TYPE (type);
98751a41
JK
7537 TYPE_TYPEDEF_FIELD_ARRAY (type)
7538 = TYPE_ALLOC (type, sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * i);
7539 TYPE_TYPEDEF_FIELD_COUNT (type) = i;
7540
7541 /* Reverse the list order to keep the debug info elements order. */
7542 while (--i >= 0)
7543 {
7544 struct typedef_field *dest, *src;
6e70227d 7545
98751a41
JK
7546 dest = &TYPE_TYPEDEF_FIELD (type, i);
7547 src = &fi.typedef_field_list->field;
7548 fi.typedef_field_list = fi.typedef_field_list->next;
7549 *dest = *src;
7550 }
7551 }
c767944b
DJ
7552
7553 do_cleanups (back_to);
eb2a6f42
TT
7554
7555 if (HAVE_CPLUS_STRUCT (type))
7556 TYPE_CPLUS_REALLY_JAVA (type) = cu->language == language_java;
c906108c 7557 }
63d06c5c 7558
0b92b5bb
TT
7559 quirk_gcc_member_function_pointer (type, cu->objfile);
7560
90aeadfc
DC
7561 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
7562 snapshots) has been known to create a die giving a declaration
7563 for a class that has, as a child, a die giving a definition for a
7564 nested class. So we have to process our children even if the
7565 current die is a declaration. Normally, of course, a declaration
7566 won't have any children at all. */
134d01f1 7567
90aeadfc
DC
7568 while (child_die != NULL && child_die->tag)
7569 {
7570 if (child_die->tag == DW_TAG_member
7571 || child_die->tag == DW_TAG_variable
34eaf542
TT
7572 || child_die->tag == DW_TAG_inheritance
7573 || child_die->tag == DW_TAG_template_value_param
7574 || child_die->tag == DW_TAG_template_type_param)
134d01f1 7575 {
90aeadfc 7576 /* Do nothing. */
134d01f1 7577 }
90aeadfc
DC
7578 else
7579 process_die (child_die, cu);
134d01f1 7580
90aeadfc 7581 child_die = sibling_die (child_die);
134d01f1
DJ
7582 }
7583
fa4028e9
JB
7584 /* Do not consider external references. According to the DWARF standard,
7585 these DIEs are identified by the fact that they have no byte_size
7586 attribute, and a declaration attribute. */
7587 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
7588 || !die_is_declaration (die, cu))
c767944b 7589 new_symbol (die, type, cu);
134d01f1
DJ
7590}
7591
7592/* Given a DW_AT_enumeration_type die, set its type. We do not
7593 complete the type's fields yet, or create any symbols. */
c906108c 7594
f792889a 7595static struct type *
134d01f1 7596read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7597{
e7c27a73 7598 struct objfile *objfile = cu->objfile;
c906108c 7599 struct type *type;
c906108c 7600 struct attribute *attr;
0114d602 7601 const char *name;
134d01f1 7602
348e048f
DE
7603 /* If the definition of this type lives in .debug_types, read that type.
7604 Don't follow DW_AT_specification though, that will take us back up
7605 the chain and we want to go down. */
7606 attr = dwarf2_attr_no_follow (die, DW_AT_signature, cu);
7607 if (attr)
7608 {
7609 struct dwarf2_cu *type_cu = cu;
7610 struct die_info *type_die = follow_die_ref_or_sig (die, attr, &type_cu);
9a619af0 7611
348e048f 7612 type = read_type_die (type_die, type_cu);
9dc481d3
DE
7613
7614 /* TYPE_CU may not be the same as CU.
7615 Ensure TYPE is recorded in CU's type_hash table. */
348e048f
DE
7616 return set_die_type (die, type, cu);
7617 }
7618
c906108c
SS
7619 type = alloc_type (objfile);
7620
7621 TYPE_CODE (type) = TYPE_CODE_ENUM;
94af9270 7622 name = dwarf2_full_name (NULL, die, cu);
39cbfefa 7623 if (name != NULL)
0114d602 7624 TYPE_TAG_NAME (type) = (char *) name;
c906108c 7625
e142c38c 7626 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
7627 if (attr)
7628 {
7629 TYPE_LENGTH (type) = DW_UNSND (attr);
7630 }
7631 else
7632 {
7633 TYPE_LENGTH (type) = 0;
7634 }
7635
137033e9
JB
7636 /* The enumeration DIE can be incomplete. In Ada, any type can be
7637 declared as private in the package spec, and then defined only
7638 inside the package body. Such types are known as Taft Amendment
7639 Types. When another package uses such a type, an incomplete DIE
7640 may be generated by the compiler. */
02eb380e 7641 if (die_is_declaration (die, cu))
876cecd0 7642 TYPE_STUB (type) = 1;
02eb380e 7643
f792889a 7644 return set_die_type (die, type, cu);
134d01f1
DJ
7645}
7646
7647/* Given a pointer to a die which begins an enumeration, process all
7648 the dies that define the members of the enumeration, and create the
7649 symbol for the enumeration type.
7650
7651 NOTE: We reverse the order of the element list. */
7652
7653static void
7654process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
7655{
f792889a 7656 struct type *this_type;
134d01f1 7657
f792889a
DJ
7658 this_type = get_die_type (die, cu);
7659 if (this_type == NULL)
7660 this_type = read_enumeration_type (die, cu);
9dc481d3 7661
639d11d3 7662 if (die->child != NULL)
c906108c 7663 {
9dc481d3
DE
7664 struct die_info *child_die;
7665 struct symbol *sym;
7666 struct field *fields = NULL;
7667 int num_fields = 0;
7668 int unsigned_enum = 1;
7669 char *name;
7670
639d11d3 7671 child_die = die->child;
c906108c
SS
7672 while (child_die && child_die->tag)
7673 {
7674 if (child_die->tag != DW_TAG_enumerator)
7675 {
e7c27a73 7676 process_die (child_die, cu);
c906108c
SS
7677 }
7678 else
7679 {
39cbfefa
DJ
7680 name = dwarf2_name (child_die, cu);
7681 if (name)
c906108c 7682 {
f792889a 7683 sym = new_symbol (child_die, this_type, cu);
c906108c
SS
7684 if (SYMBOL_VALUE (sym) < 0)
7685 unsigned_enum = 0;
7686
7687 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
7688 {
7689 fields = (struct field *)
7690 xrealloc (fields,
7691 (num_fields + DW_FIELD_ALLOC_CHUNK)
c5aa993b 7692 * sizeof (struct field));
c906108c
SS
7693 }
7694
3567439c 7695 FIELD_NAME (fields[num_fields]) = SYMBOL_LINKAGE_NAME (sym);
c906108c 7696 FIELD_TYPE (fields[num_fields]) = NULL;
d6a843b5 7697 SET_FIELD_BITPOS (fields[num_fields], SYMBOL_VALUE (sym));
c906108c
SS
7698 FIELD_BITSIZE (fields[num_fields]) = 0;
7699
7700 num_fields++;
7701 }
7702 }
7703
7704 child_die = sibling_die (child_die);
7705 }
7706
7707 if (num_fields)
7708 {
f792889a
DJ
7709 TYPE_NFIELDS (this_type) = num_fields;
7710 TYPE_FIELDS (this_type) = (struct field *)
7711 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
7712 memcpy (TYPE_FIELDS (this_type), fields,
c906108c 7713 sizeof (struct field) * num_fields);
b8c9b27d 7714 xfree (fields);
c906108c
SS
7715 }
7716 if (unsigned_enum)
876cecd0 7717 TYPE_UNSIGNED (this_type) = 1;
c906108c 7718 }
134d01f1 7719
6c83ed52
TT
7720 /* If we are reading an enum from a .debug_types unit, and the enum
7721 is a declaration, and the enum is not the signatured type in the
7722 unit, then we do not want to add a symbol for it. Adding a
7723 symbol would in some cases obscure the true definition of the
7724 enum, giving users an incomplete type when the definition is
7725 actually available. Note that we do not want to do this for all
7726 enums which are just declarations, because C++0x allows forward
7727 enum declarations. */
7728 if (cu->per_cu->debug_type_section
7729 && die_is_declaration (die, cu))
7730 {
7731 struct signatured_type *type_sig;
7732
7733 type_sig
7734 = lookup_signatured_type_at_offset (dwarf2_per_objfile->objfile,
7735 cu->per_cu->debug_type_section,
7736 cu->per_cu->offset);
7737 if (type_sig->type_offset != die->offset)
7738 return;
7739 }
7740
f792889a 7741 new_symbol (die, this_type, cu);
c906108c
SS
7742}
7743
7744/* Extract all information from a DW_TAG_array_type DIE and put it in
7745 the DIE's type field. For now, this only handles one dimensional
7746 arrays. */
7747
f792889a 7748static struct type *
e7c27a73 7749read_array_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 7750{
e7c27a73 7751 struct objfile *objfile = cu->objfile;
c906108c 7752 struct die_info *child_die;
7e314c57 7753 struct type *type;
c906108c
SS
7754 struct type *element_type, *range_type, *index_type;
7755 struct type **range_types = NULL;
7756 struct attribute *attr;
7757 int ndim = 0;
7758 struct cleanup *back_to;
39cbfefa 7759 char *name;
c906108c 7760
e7c27a73 7761 element_type = die_type (die, cu);
c906108c 7762
7e314c57
JK
7763 /* The die_type call above may have already set the type for this DIE. */
7764 type = get_die_type (die, cu);
7765 if (type)
7766 return type;
7767
c906108c
SS
7768 /* Irix 6.2 native cc creates array types without children for
7769 arrays with unspecified length. */
639d11d3 7770 if (die->child == NULL)
c906108c 7771 {
46bf5051 7772 index_type = objfile_type (objfile)->builtin_int;
c906108c 7773 range_type = create_range_type (NULL, index_type, 0, -1);
f792889a
DJ
7774 type = create_array_type (NULL, element_type, range_type);
7775 return set_die_type (die, type, cu);
c906108c
SS
7776 }
7777
7778 back_to = make_cleanup (null_cleanup, NULL);
639d11d3 7779 child_die = die->child;
c906108c
SS
7780 while (child_die && child_die->tag)
7781 {
7782 if (child_die->tag == DW_TAG_subrange_type)
7783 {
f792889a 7784 struct type *child_type = read_type_die (child_die, cu);
9a619af0 7785
f792889a 7786 if (child_type != NULL)
a02abb62 7787 {
0963b4bd
MS
7788 /* The range type was succesfully read. Save it for the
7789 array type creation. */
a02abb62
JB
7790 if ((ndim % DW_FIELD_ALLOC_CHUNK) == 0)
7791 {
7792 range_types = (struct type **)
7793 xrealloc (range_types, (ndim + DW_FIELD_ALLOC_CHUNK)
7794 * sizeof (struct type *));
7795 if (ndim == 0)
7796 make_cleanup (free_current_contents, &range_types);
7797 }
f792889a 7798 range_types[ndim++] = child_type;
a02abb62 7799 }
c906108c
SS
7800 }
7801 child_die = sibling_die (child_die);
7802 }
7803
7804 /* Dwarf2 dimensions are output from left to right, create the
7805 necessary array types in backwards order. */
7ca2d3a3 7806
c906108c 7807 type = element_type;
7ca2d3a3
DL
7808
7809 if (read_array_order (die, cu) == DW_ORD_col_major)
7810 {
7811 int i = 0;
9a619af0 7812
7ca2d3a3
DL
7813 while (i < ndim)
7814 type = create_array_type (NULL, type, range_types[i++]);
7815 }
7816 else
7817 {
7818 while (ndim-- > 0)
7819 type = create_array_type (NULL, type, range_types[ndim]);
7820 }
c906108c 7821
f5f8a009
EZ
7822 /* Understand Dwarf2 support for vector types (like they occur on
7823 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
7824 array type. This is not part of the Dwarf2/3 standard yet, but a
7825 custom vendor extension. The main difference between a regular
7826 array and the vector variant is that vectors are passed by value
7827 to functions. */
e142c38c 7828 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
f5f8a009 7829 if (attr)
ea37ba09 7830 make_vector_type (type);
f5f8a009 7831
dbc98a8b
KW
7832 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
7833 implementation may choose to implement triple vectors using this
7834 attribute. */
7835 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
7836 if (attr)
7837 {
7838 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
7839 TYPE_LENGTH (type) = DW_UNSND (attr);
7840 else
3e43a32a
MS
7841 complaint (&symfile_complaints,
7842 _("DW_AT_byte_size for array type smaller "
7843 "than the total size of elements"));
dbc98a8b
KW
7844 }
7845
39cbfefa
DJ
7846 name = dwarf2_name (die, cu);
7847 if (name)
7848 TYPE_NAME (type) = name;
6e70227d 7849
0963b4bd 7850 /* Install the type in the die. */
7e314c57
JK
7851 set_die_type (die, type, cu);
7852
7853 /* set_die_type should be already done. */
b4ba55a1
JB
7854 set_descriptive_type (type, die, cu);
7855
c906108c
SS
7856 do_cleanups (back_to);
7857
7e314c57 7858 return type;
c906108c
SS
7859}
7860
7ca2d3a3 7861static enum dwarf_array_dim_ordering
6e70227d 7862read_array_order (struct die_info *die, struct dwarf2_cu *cu)
7ca2d3a3
DL
7863{
7864 struct attribute *attr;
7865
7866 attr = dwarf2_attr (die, DW_AT_ordering, cu);
7867
7868 if (attr) return DW_SND (attr);
7869
0963b4bd
MS
7870 /* GNU F77 is a special case, as at 08/2004 array type info is the
7871 opposite order to the dwarf2 specification, but data is still
7872 laid out as per normal fortran.
7ca2d3a3 7873
0963b4bd
MS
7874 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
7875 version checking. */
7ca2d3a3 7876
905e0470
PM
7877 if (cu->language == language_fortran
7878 && cu->producer && strstr (cu->producer, "GNU F77"))
7ca2d3a3
DL
7879 {
7880 return DW_ORD_row_major;
7881 }
7882
6e70227d 7883 switch (cu->language_defn->la_array_ordering)
7ca2d3a3
DL
7884 {
7885 case array_column_major:
7886 return DW_ORD_col_major;
7887 case array_row_major:
7888 default:
7889 return DW_ORD_row_major;
7890 };
7891}
7892
72019c9c 7893/* Extract all information from a DW_TAG_set_type DIE and put it in
0963b4bd 7894 the DIE's type field. */
72019c9c 7895
f792889a 7896static struct type *
72019c9c
GM
7897read_set_type (struct die_info *die, struct dwarf2_cu *cu)
7898{
7e314c57
JK
7899 struct type *domain_type, *set_type;
7900 struct attribute *attr;
f792889a 7901
7e314c57
JK
7902 domain_type = die_type (die, cu);
7903
7904 /* The die_type call above may have already set the type for this DIE. */
7905 set_type = get_die_type (die, cu);
7906 if (set_type)
7907 return set_type;
7908
7909 set_type = create_set_type (NULL, domain_type);
7910
7911 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
d09039dd
PM
7912 if (attr)
7913 TYPE_LENGTH (set_type) = DW_UNSND (attr);
7e314c57 7914
f792889a 7915 return set_die_type (die, set_type, cu);
72019c9c 7916}
7ca2d3a3 7917
c906108c
SS
7918/* First cut: install each common block member as a global variable. */
7919
7920static void
e7c27a73 7921read_common_block (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
7922{
7923 struct die_info *child_die;
7924 struct attribute *attr;
7925 struct symbol *sym;
7926 CORE_ADDR base = (CORE_ADDR) 0;
7927
e142c38c 7928 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
7929 if (attr)
7930 {
0963b4bd 7931 /* Support the .debug_loc offsets. */
8e19ed76
PS
7932 if (attr_form_is_block (attr))
7933 {
e7c27a73 7934 base = decode_locdesc (DW_BLOCK (attr), cu);
8e19ed76 7935 }
3690dd37 7936 else if (attr_form_is_section_offset (attr))
8e19ed76 7937 {
4d3c2250 7938 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
7939 }
7940 else
7941 {
4d3c2250
KB
7942 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
7943 "common block member");
8e19ed76 7944 }
c906108c 7945 }
639d11d3 7946 if (die->child != NULL)
c906108c 7947 {
639d11d3 7948 child_die = die->child;
c906108c
SS
7949 while (child_die && child_die->tag)
7950 {
74ac6d43
TT
7951 LONGEST offset;
7952
e7c27a73 7953 sym = new_symbol (child_die, NULL, cu);
e8d28ef4
TT
7954 if (sym != NULL
7955 && handle_data_member_location (child_die, cu, &offset))
c906108c 7956 {
74ac6d43 7957 SYMBOL_VALUE_ADDRESS (sym) = base + offset;
c906108c
SS
7958 add_symbol_to_list (sym, &global_symbols);
7959 }
7960 child_die = sibling_die (child_die);
7961 }
7962 }
7963}
7964
0114d602 7965/* Create a type for a C++ namespace. */
d9fa45fe 7966
0114d602
DJ
7967static struct type *
7968read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
d9fa45fe 7969{
e7c27a73 7970 struct objfile *objfile = cu->objfile;
0114d602 7971 const char *previous_prefix, *name;
9219021c 7972 int is_anonymous;
0114d602
DJ
7973 struct type *type;
7974
7975 /* For extensions, reuse the type of the original namespace. */
7976 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
7977 {
7978 struct die_info *ext_die;
7979 struct dwarf2_cu *ext_cu = cu;
9a619af0 7980
0114d602
DJ
7981 ext_die = dwarf2_extension (die, &ext_cu);
7982 type = read_type_die (ext_die, ext_cu);
9dc481d3
DE
7983
7984 /* EXT_CU may not be the same as CU.
7985 Ensure TYPE is recorded in CU's type_hash table. */
0114d602
DJ
7986 return set_die_type (die, type, cu);
7987 }
9219021c 7988
e142c38c 7989 name = namespace_name (die, &is_anonymous, cu);
9219021c
DC
7990
7991 /* Now build the name of the current namespace. */
7992
0114d602
DJ
7993 previous_prefix = determine_prefix (die, cu);
7994 if (previous_prefix[0] != '\0')
7995 name = typename_concat (&objfile->objfile_obstack,
f55ee35c 7996 previous_prefix, name, 0, cu);
0114d602
DJ
7997
7998 /* Create the type. */
7999 type = init_type (TYPE_CODE_NAMESPACE, 0, 0, NULL,
8000 objfile);
8001 TYPE_NAME (type) = (char *) name;
8002 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8003
60531b24 8004 return set_die_type (die, type, cu);
0114d602
DJ
8005}
8006
8007/* Read a C++ namespace. */
8008
8009static void
8010read_namespace (struct die_info *die, struct dwarf2_cu *cu)
8011{
8012 struct objfile *objfile = cu->objfile;
0114d602 8013 int is_anonymous;
9219021c 8014
5c4e30ca
DC
8015 /* Add a symbol associated to this if we haven't seen the namespace
8016 before. Also, add a using directive if it's an anonymous
8017 namespace. */
9219021c 8018
f2f0e013 8019 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
5c4e30ca
DC
8020 {
8021 struct type *type;
8022
0114d602 8023 type = read_type_die (die, cu);
e7c27a73 8024 new_symbol (die, type, cu);
5c4e30ca 8025
e8e80198 8026 namespace_name (die, &is_anonymous, cu);
5c4e30ca 8027 if (is_anonymous)
0114d602
DJ
8028 {
8029 const char *previous_prefix = determine_prefix (die, cu);
9a619af0 8030
c0cc3a76 8031 cp_add_using_directive (previous_prefix, TYPE_NAME (type), NULL,
32019081 8032 NULL, NULL, &objfile->objfile_obstack);
0114d602 8033 }
5c4e30ca 8034 }
9219021c 8035
639d11d3 8036 if (die->child != NULL)
d9fa45fe 8037 {
639d11d3 8038 struct die_info *child_die = die->child;
6e70227d 8039
d9fa45fe
DC
8040 while (child_die && child_die->tag)
8041 {
e7c27a73 8042 process_die (child_die, cu);
d9fa45fe
DC
8043 child_die = sibling_die (child_die);
8044 }
8045 }
38d518c9
EZ
8046}
8047
f55ee35c
JK
8048/* Read a Fortran module as type. This DIE can be only a declaration used for
8049 imported module. Still we need that type as local Fortran "use ... only"
8050 declaration imports depend on the created type in determine_prefix. */
8051
8052static struct type *
8053read_module_type (struct die_info *die, struct dwarf2_cu *cu)
8054{
8055 struct objfile *objfile = cu->objfile;
8056 char *module_name;
8057 struct type *type;
8058
8059 module_name = dwarf2_name (die, cu);
8060 if (!module_name)
3e43a32a
MS
8061 complaint (&symfile_complaints,
8062 _("DW_TAG_module has no name, offset 0x%x"),
f55ee35c
JK
8063 die->offset);
8064 type = init_type (TYPE_CODE_MODULE, 0, 0, module_name, objfile);
8065
8066 /* determine_prefix uses TYPE_TAG_NAME. */
8067 TYPE_TAG_NAME (type) = TYPE_NAME (type);
8068
8069 return set_die_type (die, type, cu);
8070}
8071
5d7cb8df
JK
8072/* Read a Fortran module. */
8073
8074static void
8075read_module (struct die_info *die, struct dwarf2_cu *cu)
8076{
8077 struct die_info *child_die = die->child;
8078
5d7cb8df
JK
8079 while (child_die && child_die->tag)
8080 {
8081 process_die (child_die, cu);
8082 child_die = sibling_die (child_die);
8083 }
8084}
8085
38d518c9
EZ
8086/* Return the name of the namespace represented by DIE. Set
8087 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
8088 namespace. */
8089
8090static const char *
e142c38c 8091namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
38d518c9
EZ
8092{
8093 struct die_info *current_die;
8094 const char *name = NULL;
8095
8096 /* Loop through the extensions until we find a name. */
8097
8098 for (current_die = die;
8099 current_die != NULL;
f2f0e013 8100 current_die = dwarf2_extension (die, &cu))
38d518c9 8101 {
e142c38c 8102 name = dwarf2_name (current_die, cu);
38d518c9
EZ
8103 if (name != NULL)
8104 break;
8105 }
8106
8107 /* Is it an anonymous namespace? */
8108
8109 *is_anonymous = (name == NULL);
8110 if (*is_anonymous)
2b1dbab0 8111 name = CP_ANONYMOUS_NAMESPACE_STR;
38d518c9
EZ
8112
8113 return name;
d9fa45fe
DC
8114}
8115
c906108c
SS
8116/* Extract all information from a DW_TAG_pointer_type DIE and add to
8117 the user defined type vector. */
8118
f792889a 8119static struct type *
e7c27a73 8120read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8121{
5e2b427d 8122 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
e7c27a73 8123 struct comp_unit_head *cu_header = &cu->header;
c906108c 8124 struct type *type;
8b2dbe47
KB
8125 struct attribute *attr_byte_size;
8126 struct attribute *attr_address_class;
8127 int byte_size, addr_class;
7e314c57
JK
8128 struct type *target_type;
8129
8130 target_type = die_type (die, cu);
c906108c 8131
7e314c57
JK
8132 /* The die_type call above may have already set the type for this DIE. */
8133 type = get_die_type (die, cu);
8134 if (type)
8135 return type;
8136
8137 type = lookup_pointer_type (target_type);
8b2dbe47 8138
e142c38c 8139 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
8b2dbe47
KB
8140 if (attr_byte_size)
8141 byte_size = DW_UNSND (attr_byte_size);
c906108c 8142 else
8b2dbe47
KB
8143 byte_size = cu_header->addr_size;
8144
e142c38c 8145 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
8b2dbe47
KB
8146 if (attr_address_class)
8147 addr_class = DW_UNSND (attr_address_class);
8148 else
8149 addr_class = DW_ADDR_none;
8150
8151 /* If the pointer size or address class is different than the
8152 default, create a type variant marked as such and set the
8153 length accordingly. */
8154 if (TYPE_LENGTH (type) != byte_size || addr_class != DW_ADDR_none)
c906108c 8155 {
5e2b427d 8156 if (gdbarch_address_class_type_flags_p (gdbarch))
8b2dbe47
KB
8157 {
8158 int type_flags;
8159
849957d9 8160 type_flags = gdbarch_address_class_type_flags
5e2b427d 8161 (gdbarch, byte_size, addr_class);
876cecd0
TT
8162 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
8163 == 0);
8b2dbe47
KB
8164 type = make_type_with_address_space (type, type_flags);
8165 }
8166 else if (TYPE_LENGTH (type) != byte_size)
8167 {
3e43a32a
MS
8168 complaint (&symfile_complaints,
8169 _("invalid pointer size %d"), byte_size);
8b2dbe47 8170 }
6e70227d 8171 else
9a619af0
MS
8172 {
8173 /* Should we also complain about unhandled address classes? */
8174 }
c906108c 8175 }
8b2dbe47
KB
8176
8177 TYPE_LENGTH (type) = byte_size;
f792889a 8178 return set_die_type (die, type, cu);
c906108c
SS
8179}
8180
8181/* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
8182 the user defined type vector. */
8183
f792889a 8184static struct type *
e7c27a73 8185read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c
SS
8186{
8187 struct type *type;
8188 struct type *to_type;
8189 struct type *domain;
8190
e7c27a73
DJ
8191 to_type = die_type (die, cu);
8192 domain = die_containing_type (die, cu);
0d5de010 8193
7e314c57
JK
8194 /* The calls above may have already set the type for this DIE. */
8195 type = get_die_type (die, cu);
8196 if (type)
8197 return type;
8198
0d5de010
DJ
8199 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
8200 type = lookup_methodptr_type (to_type);
8201 else
8202 type = lookup_memberptr_type (to_type, domain);
c906108c 8203
f792889a 8204 return set_die_type (die, type, cu);
c906108c
SS
8205}
8206
8207/* Extract all information from a DW_TAG_reference_type DIE and add to
8208 the user defined type vector. */
8209
f792889a 8210static struct type *
e7c27a73 8211read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8212{
e7c27a73 8213 struct comp_unit_head *cu_header = &cu->header;
7e314c57 8214 struct type *type, *target_type;
c906108c
SS
8215 struct attribute *attr;
8216
7e314c57
JK
8217 target_type = die_type (die, cu);
8218
8219 /* The die_type call above may have already set the type for this DIE. */
8220 type = get_die_type (die, cu);
8221 if (type)
8222 return type;
8223
8224 type = lookup_reference_type (target_type);
e142c38c 8225 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
8226 if (attr)
8227 {
8228 TYPE_LENGTH (type) = DW_UNSND (attr);
8229 }
8230 else
8231 {
107d2387 8232 TYPE_LENGTH (type) = cu_header->addr_size;
c906108c 8233 }
f792889a 8234 return set_die_type (die, type, cu);
c906108c
SS
8235}
8236
f792889a 8237static struct type *
e7c27a73 8238read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8239{
f792889a 8240 struct type *base_type, *cv_type;
c906108c 8241
e7c27a73 8242 base_type = die_type (die, cu);
7e314c57
JK
8243
8244 /* The die_type call above may have already set the type for this DIE. */
8245 cv_type = get_die_type (die, cu);
8246 if (cv_type)
8247 return cv_type;
8248
2f608a3a
KW
8249 /* In case the const qualifier is applied to an array type, the element type
8250 is so qualified, not the array type (section 6.7.3 of C99). */
8251 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
8252 {
8253 struct type *el_type, *inner_array;
8254
8255 base_type = copy_type (base_type);
8256 inner_array = base_type;
8257
8258 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
8259 {
8260 TYPE_TARGET_TYPE (inner_array) =
8261 copy_type (TYPE_TARGET_TYPE (inner_array));
8262 inner_array = TYPE_TARGET_TYPE (inner_array);
8263 }
8264
8265 el_type = TYPE_TARGET_TYPE (inner_array);
8266 TYPE_TARGET_TYPE (inner_array) =
8267 make_cv_type (1, TYPE_VOLATILE (el_type), el_type, NULL);
8268
8269 return set_die_type (die, base_type, cu);
8270 }
8271
f792889a
DJ
8272 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
8273 return set_die_type (die, cv_type, cu);
c906108c
SS
8274}
8275
f792889a 8276static struct type *
e7c27a73 8277read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8278{
f792889a 8279 struct type *base_type, *cv_type;
c906108c 8280
e7c27a73 8281 base_type = die_type (die, cu);
7e314c57
JK
8282
8283 /* The die_type call above may have already set the type for this DIE. */
8284 cv_type = get_die_type (die, cu);
8285 if (cv_type)
8286 return cv_type;
8287
f792889a
DJ
8288 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
8289 return set_die_type (die, cv_type, cu);
c906108c
SS
8290}
8291
8292/* Extract all information from a DW_TAG_string_type DIE and add to
8293 the user defined type vector. It isn't really a user defined type,
8294 but it behaves like one, with other DIE's using an AT_user_def_type
8295 attribute to reference it. */
8296
f792889a 8297static struct type *
e7c27a73 8298read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8299{
e7c27a73 8300 struct objfile *objfile = cu->objfile;
3b7538c0 8301 struct gdbarch *gdbarch = get_objfile_arch (objfile);
c906108c
SS
8302 struct type *type, *range_type, *index_type, *char_type;
8303 struct attribute *attr;
8304 unsigned int length;
8305
e142c38c 8306 attr = dwarf2_attr (die, DW_AT_string_length, cu);
c906108c
SS
8307 if (attr)
8308 {
8309 length = DW_UNSND (attr);
8310 }
8311 else
8312 {
0963b4bd 8313 /* Check for the DW_AT_byte_size attribute. */
e142c38c 8314 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
b21b22e0
PS
8315 if (attr)
8316 {
8317 length = DW_UNSND (attr);
8318 }
8319 else
8320 {
8321 length = 1;
8322 }
c906108c 8323 }
6ccb9162 8324
46bf5051 8325 index_type = objfile_type (objfile)->builtin_int;
c906108c 8326 range_type = create_range_type (NULL, index_type, 1, length);
3b7538c0
UW
8327 char_type = language_string_char_type (cu->language_defn, gdbarch);
8328 type = create_string_type (NULL, char_type, range_type);
6ccb9162 8329
f792889a 8330 return set_die_type (die, type, cu);
c906108c
SS
8331}
8332
8333/* Handle DIES due to C code like:
8334
8335 struct foo
c5aa993b
JM
8336 {
8337 int (*funcp)(int a, long l);
8338 int b;
8339 };
c906108c 8340
0963b4bd 8341 ('funcp' generates a DW_TAG_subroutine_type DIE). */
c906108c 8342
f792889a 8343static struct type *
e7c27a73 8344read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8345{
0963b4bd
MS
8346 struct type *type; /* Type that this function returns. */
8347 struct type *ftype; /* Function that returns above type. */
c906108c
SS
8348 struct attribute *attr;
8349
e7c27a73 8350 type = die_type (die, cu);
7e314c57
JK
8351
8352 /* The die_type call above may have already set the type for this DIE. */
8353 ftype = get_die_type (die, cu);
8354 if (ftype)
8355 return ftype;
8356
0c8b41f1 8357 ftype = lookup_function_type (type);
c906108c 8358
5b8101ae 8359 /* All functions in C++, Pascal and Java have prototypes. */
e142c38c 8360 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
c906108c 8361 if ((attr && (DW_UNSND (attr) != 0))
987504bb 8362 || cu->language == language_cplus
5b8101ae
PM
8363 || cu->language == language_java
8364 || cu->language == language_pascal)
876cecd0 8365 TYPE_PROTOTYPED (ftype) = 1;
a6c727b2
DJ
8366 else if (producer_is_realview (cu->producer))
8367 /* RealView does not emit DW_AT_prototyped. We can not
8368 distinguish prototyped and unprototyped functions; default to
8369 prototyped, since that is more common in modern code (and
8370 RealView warns about unprototyped functions). */
8371 TYPE_PROTOTYPED (ftype) = 1;
c906108c 8372
c055b101
CV
8373 /* Store the calling convention in the type if it's available in
8374 the subroutine die. Otherwise set the calling convention to
8375 the default value DW_CC_normal. */
8376 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
54fcddd0
UW
8377 if (attr)
8378 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
8379 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
8380 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
8381 else
8382 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
76c10ea2
GM
8383
8384 /* We need to add the subroutine type to the die immediately so
8385 we don't infinitely recurse when dealing with parameters
0963b4bd 8386 declared as the same subroutine type. */
76c10ea2 8387 set_die_type (die, ftype, cu);
6e70227d 8388
639d11d3 8389 if (die->child != NULL)
c906108c 8390 {
8072405b 8391 struct type *void_type = objfile_type (cu->objfile)->builtin_void;
c906108c 8392 struct die_info *child_die;
8072405b 8393 int nparams, iparams;
c906108c
SS
8394
8395 /* Count the number of parameters.
8396 FIXME: GDB currently ignores vararg functions, but knows about
8397 vararg member functions. */
8072405b 8398 nparams = 0;
639d11d3 8399 child_die = die->child;
c906108c
SS
8400 while (child_die && child_die->tag)
8401 {
8402 if (child_die->tag == DW_TAG_formal_parameter)
8403 nparams++;
8404 else if (child_die->tag == DW_TAG_unspecified_parameters)
876cecd0 8405 TYPE_VARARGS (ftype) = 1;
c906108c
SS
8406 child_die = sibling_die (child_die);
8407 }
8408
8409 /* Allocate storage for parameters and fill them in. */
8410 TYPE_NFIELDS (ftype) = nparams;
8411 TYPE_FIELDS (ftype) = (struct field *)
ae5a43e0 8412 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
c906108c 8413
8072405b
JK
8414 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
8415 even if we error out during the parameters reading below. */
8416 for (iparams = 0; iparams < nparams; iparams++)
8417 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
8418
8419 iparams = 0;
639d11d3 8420 child_die = die->child;
c906108c
SS
8421 while (child_die && child_die->tag)
8422 {
8423 if (child_die->tag == DW_TAG_formal_parameter)
8424 {
3ce3b1ba
PA
8425 struct type *arg_type;
8426
8427 /* DWARF version 2 has no clean way to discern C++
8428 static and non-static member functions. G++ helps
8429 GDB by marking the first parameter for non-static
8430 member functions (which is the this pointer) as
8431 artificial. We pass this information to
8432 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
8433
8434 DWARF version 3 added DW_AT_object_pointer, which GCC
8435 4.5 does not yet generate. */
e142c38c 8436 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
c906108c
SS
8437 if (attr)
8438 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
8439 else
418835cc
KS
8440 {
8441 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
8442
8443 /* GCC/43521: In java, the formal parameter
8444 "this" is sometimes not marked with DW_AT_artificial. */
8445 if (cu->language == language_java)
8446 {
8447 const char *name = dwarf2_name (child_die, cu);
9a619af0 8448
418835cc
KS
8449 if (name && !strcmp (name, "this"))
8450 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 1;
8451 }
8452 }
3ce3b1ba
PA
8453 arg_type = die_type (child_die, cu);
8454
8455 /* RealView does not mark THIS as const, which the testsuite
8456 expects. GCC marks THIS as const in method definitions,
8457 but not in the class specifications (GCC PR 43053). */
8458 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
8459 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
8460 {
8461 int is_this = 0;
8462 struct dwarf2_cu *arg_cu = cu;
8463 const char *name = dwarf2_name (child_die, cu);
8464
8465 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
8466 if (attr)
8467 {
8468 /* If the compiler emits this, use it. */
8469 if (follow_die_ref (die, attr, &arg_cu) == child_die)
8470 is_this = 1;
8471 }
8472 else if (name && strcmp (name, "this") == 0)
8473 /* Function definitions will have the argument names. */
8474 is_this = 1;
8475 else if (name == NULL && iparams == 0)
8476 /* Declarations may not have the names, so like
8477 elsewhere in GDB, assume an artificial first
8478 argument is "this". */
8479 is_this = 1;
8480
8481 if (is_this)
8482 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
8483 arg_type, 0);
8484 }
8485
8486 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
c906108c
SS
8487 iparams++;
8488 }
8489 child_die = sibling_die (child_die);
8490 }
8491 }
8492
76c10ea2 8493 return ftype;
c906108c
SS
8494}
8495
f792889a 8496static struct type *
e7c27a73 8497read_typedef (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8498{
e7c27a73 8499 struct objfile *objfile = cu->objfile;
0114d602 8500 const char *name = NULL;
f792889a 8501 struct type *this_type;
c906108c 8502
94af9270 8503 name = dwarf2_full_name (NULL, die, cu);
f792889a 8504 this_type = init_type (TYPE_CODE_TYPEDEF, 0,
0114d602
DJ
8505 TYPE_FLAG_TARGET_STUB, NULL, objfile);
8506 TYPE_NAME (this_type) = (char *) name;
f792889a
DJ
8507 set_die_type (die, this_type, cu);
8508 TYPE_TARGET_TYPE (this_type) = die_type (die, cu);
8509 return this_type;
c906108c
SS
8510}
8511
8512/* Find a representation of a given base type and install
8513 it in the TYPE field of the die. */
8514
f792889a 8515static struct type *
e7c27a73 8516read_base_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 8517{
e7c27a73 8518 struct objfile *objfile = cu->objfile;
c906108c
SS
8519 struct type *type;
8520 struct attribute *attr;
8521 int encoding = 0, size = 0;
39cbfefa 8522 char *name;
6ccb9162
UW
8523 enum type_code code = TYPE_CODE_INT;
8524 int type_flags = 0;
8525 struct type *target_type = NULL;
c906108c 8526
e142c38c 8527 attr = dwarf2_attr (die, DW_AT_encoding, cu);
c906108c
SS
8528 if (attr)
8529 {
8530 encoding = DW_UNSND (attr);
8531 }
e142c38c 8532 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
c906108c
SS
8533 if (attr)
8534 {
8535 size = DW_UNSND (attr);
8536 }
39cbfefa 8537 name = dwarf2_name (die, cu);
6ccb9162 8538 if (!name)
c906108c 8539 {
6ccb9162
UW
8540 complaint (&symfile_complaints,
8541 _("DW_AT_name missing from DW_TAG_base_type"));
c906108c 8542 }
6ccb9162
UW
8543
8544 switch (encoding)
c906108c 8545 {
6ccb9162
UW
8546 case DW_ATE_address:
8547 /* Turn DW_ATE_address into a void * pointer. */
8548 code = TYPE_CODE_PTR;
8549 type_flags |= TYPE_FLAG_UNSIGNED;
8550 target_type = init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
8551 break;
8552 case DW_ATE_boolean:
8553 code = TYPE_CODE_BOOL;
8554 type_flags |= TYPE_FLAG_UNSIGNED;
8555 break;
8556 case DW_ATE_complex_float:
8557 code = TYPE_CODE_COMPLEX;
8558 target_type = init_type (TYPE_CODE_FLT, size / 2, 0, NULL, objfile);
8559 break;
8560 case DW_ATE_decimal_float:
8561 code = TYPE_CODE_DECFLOAT;
8562 break;
8563 case DW_ATE_float:
8564 code = TYPE_CODE_FLT;
8565 break;
8566 case DW_ATE_signed:
8567 break;
8568 case DW_ATE_unsigned:
8569 type_flags |= TYPE_FLAG_UNSIGNED;
3b2b8fea
TT
8570 if (cu->language == language_fortran
8571 && name
8572 && strncmp (name, "character(", sizeof ("character(") - 1) == 0)
8573 code = TYPE_CODE_CHAR;
6ccb9162
UW
8574 break;
8575 case DW_ATE_signed_char:
6e70227d 8576 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
8577 || cu->language == language_pascal
8578 || cu->language == language_fortran)
6ccb9162
UW
8579 code = TYPE_CODE_CHAR;
8580 break;
8581 case DW_ATE_unsigned_char:
868a0084 8582 if (cu->language == language_ada || cu->language == language_m2
3b2b8fea
TT
8583 || cu->language == language_pascal
8584 || cu->language == language_fortran)
6ccb9162
UW
8585 code = TYPE_CODE_CHAR;
8586 type_flags |= TYPE_FLAG_UNSIGNED;
8587 break;
75079b2b
TT
8588 case DW_ATE_UTF:
8589 /* We just treat this as an integer and then recognize the
8590 type by name elsewhere. */
8591 break;
8592
6ccb9162
UW
8593 default:
8594 complaint (&symfile_complaints, _("unsupported DW_AT_encoding: '%s'"),
8595 dwarf_type_encoding_name (encoding));
8596 break;
c906108c 8597 }
6ccb9162 8598
0114d602
DJ
8599 type = init_type (code, size, type_flags, NULL, objfile);
8600 TYPE_NAME (type) = name;
6ccb9162
UW
8601 TYPE_TARGET_TYPE (type) = target_type;
8602
0114d602 8603 if (name && strcmp (name, "char") == 0)
876cecd0 8604 TYPE_NOSIGN (type) = 1;
0114d602 8605
f792889a 8606 return set_die_type (die, type, cu);
c906108c
SS
8607}
8608
a02abb62
JB
8609/* Read the given DW_AT_subrange DIE. */
8610
f792889a 8611static struct type *
a02abb62
JB
8612read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
8613{
8614 struct type *base_type;
8615 struct type *range_type;
8616 struct attribute *attr;
43bbcdc2
PH
8617 LONGEST low = 0;
8618 LONGEST high = -1;
39cbfefa 8619 char *name;
43bbcdc2 8620 LONGEST negative_mask;
e77813c8 8621
a02abb62 8622 base_type = die_type (die, cu);
953ac07e
JK
8623 /* Preserve BASE_TYPE's original type, just set its LENGTH. */
8624 check_typedef (base_type);
a02abb62 8625
7e314c57
JK
8626 /* The die_type call above may have already set the type for this DIE. */
8627 range_type = get_die_type (die, cu);
8628 if (range_type)
8629 return range_type;
8630
e142c38c 8631 if (cu->language == language_fortran)
6e70227d 8632 {
a02abb62
JB
8633 /* FORTRAN implies a lower bound of 1, if not given. */
8634 low = 1;
8635 }
8636
dd5e6932
DJ
8637 /* FIXME: For variable sized arrays either of these could be
8638 a variable rather than a constant value. We'll allow it,
8639 but we don't know how to handle it. */
e142c38c 8640 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
a02abb62
JB
8641 if (attr)
8642 low = dwarf2_get_attr_constant_value (attr, 0);
8643
e142c38c 8644 attr = dwarf2_attr (die, DW_AT_upper_bound, cu);
a02abb62 8645 if (attr)
6e70227d 8646 {
d48323d8 8647 if (attr_form_is_block (attr) || is_ref_attr (attr))
a02abb62
JB
8648 {
8649 /* GCC encodes arrays with unspecified or dynamic length
e77813c8 8650 with a DW_FORM_block1 attribute or a reference attribute.
a02abb62
JB
8651 FIXME: GDB does not yet know how to handle dynamic
8652 arrays properly, treat them as arrays with unspecified
8653 length for now.
8654
8655 FIXME: jimb/2003-09-22: GDB does not really know
8656 how to handle arrays of unspecified length
8657 either; we just represent them as zero-length
8658 arrays. Choose an appropriate upper bound given
8659 the lower bound we've computed above. */
8660 high = low - 1;
8661 }
8662 else
8663 high = dwarf2_get_attr_constant_value (attr, 1);
8664 }
e77813c8
PM
8665 else
8666 {
8667 attr = dwarf2_attr (die, DW_AT_count, cu);
8668 if (attr)
8669 {
8670 int count = dwarf2_get_attr_constant_value (attr, 1);
8671 high = low + count - 1;
8672 }
c2ff108b
JK
8673 else
8674 {
8675 /* Unspecified array length. */
8676 high = low - 1;
8677 }
e77813c8
PM
8678 }
8679
8680 /* Dwarf-2 specifications explicitly allows to create subrange types
8681 without specifying a base type.
8682 In that case, the base type must be set to the type of
8683 the lower bound, upper bound or count, in that order, if any of these
8684 three attributes references an object that has a type.
8685 If no base type is found, the Dwarf-2 specifications say that
8686 a signed integer type of size equal to the size of an address should
8687 be used.
8688 For the following C code: `extern char gdb_int [];'
8689 GCC produces an empty range DIE.
8690 FIXME: muller/2010-05-28: Possible references to object for low bound,
0963b4bd 8691 high bound or count are not yet handled by this code. */
e77813c8
PM
8692 if (TYPE_CODE (base_type) == TYPE_CODE_VOID)
8693 {
8694 struct objfile *objfile = cu->objfile;
8695 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8696 int addr_size = gdbarch_addr_bit (gdbarch) /8;
8697 struct type *int_type = objfile_type (objfile)->builtin_int;
8698
8699 /* Test "int", "long int", and "long long int" objfile types,
8700 and select the first one having a size above or equal to the
8701 architecture address size. */
8702 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8703 base_type = int_type;
8704 else
8705 {
8706 int_type = objfile_type (objfile)->builtin_long;
8707 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8708 base_type = int_type;
8709 else
8710 {
8711 int_type = objfile_type (objfile)->builtin_long_long;
8712 if (int_type && TYPE_LENGTH (int_type) >= addr_size)
8713 base_type = int_type;
8714 }
8715 }
8716 }
a02abb62 8717
6e70227d 8718 negative_mask =
43bbcdc2
PH
8719 (LONGEST) -1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1);
8720 if (!TYPE_UNSIGNED (base_type) && (low & negative_mask))
8721 low |= negative_mask;
8722 if (!TYPE_UNSIGNED (base_type) && (high & negative_mask))
8723 high |= negative_mask;
8724
a02abb62
JB
8725 range_type = create_range_type (NULL, base_type, low, high);
8726
bbb0eef6
JK
8727 /* Mark arrays with dynamic length at least as an array of unspecified
8728 length. GDB could check the boundary but before it gets implemented at
8729 least allow accessing the array elements. */
d48323d8 8730 if (attr && attr_form_is_block (attr))
bbb0eef6
JK
8731 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
8732
c2ff108b
JK
8733 /* Ada expects an empty array on no boundary attributes. */
8734 if (attr == NULL && cu->language != language_ada)
8735 TYPE_HIGH_BOUND_UNDEFINED (range_type) = 1;
8736
39cbfefa
DJ
8737 name = dwarf2_name (die, cu);
8738 if (name)
8739 TYPE_NAME (range_type) = name;
6e70227d 8740
e142c38c 8741 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
a02abb62
JB
8742 if (attr)
8743 TYPE_LENGTH (range_type) = DW_UNSND (attr);
8744
7e314c57
JK
8745 set_die_type (die, range_type, cu);
8746
8747 /* set_die_type should be already done. */
b4ba55a1
JB
8748 set_descriptive_type (range_type, die, cu);
8749
7e314c57 8750 return range_type;
a02abb62 8751}
6e70227d 8752
f792889a 8753static struct type *
81a17f79
JB
8754read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
8755{
8756 struct type *type;
81a17f79 8757
81a17f79
JB
8758 /* For now, we only support the C meaning of an unspecified type: void. */
8759
0114d602
DJ
8760 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, cu->objfile);
8761 TYPE_NAME (type) = dwarf2_name (die, cu);
81a17f79 8762
f792889a 8763 return set_die_type (die, type, cu);
81a17f79 8764}
a02abb62 8765
51545339
DJ
8766/* Trivial hash function for die_info: the hash value of a DIE
8767 is its offset in .debug_info for this objfile. */
8768
8769static hashval_t
8770die_hash (const void *item)
8771{
8772 const struct die_info *die = item;
9a619af0 8773
51545339
DJ
8774 return die->offset;
8775}
8776
8777/* Trivial comparison function for die_info structures: two DIEs
8778 are equal if they have the same offset. */
8779
8780static int
8781die_eq (const void *item_lhs, const void *item_rhs)
8782{
8783 const struct die_info *die_lhs = item_lhs;
8784 const struct die_info *die_rhs = item_rhs;
9a619af0 8785
51545339
DJ
8786 return die_lhs->offset == die_rhs->offset;
8787}
8788
c906108c
SS
8789/* Read a whole compilation unit into a linked list of dies. */
8790
f9aca02d 8791static struct die_info *
93311388 8792read_comp_unit (gdb_byte *info_ptr, struct dwarf2_cu *cu)
c906108c 8793{
93311388 8794 struct die_reader_specs reader_specs;
98bfdba5 8795 int read_abbrevs = 0;
1d9ec526 8796 struct cleanup *back_to = NULL;
98bfdba5
PA
8797 struct die_info *die;
8798
8799 if (cu->dwarf2_abbrevs == NULL)
8800 {
8801 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
8802 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
8803 read_abbrevs = 1;
8804 }
93311388 8805
348e048f 8806 gdb_assert (cu->die_hash == NULL);
51545339
DJ
8807 cu->die_hash
8808 = htab_create_alloc_ex (cu->header.length / 12,
8809 die_hash,
8810 die_eq,
8811 NULL,
8812 &cu->comp_unit_obstack,
8813 hashtab_obstack_allocate,
8814 dummy_obstack_deallocate);
8815
93311388
DE
8816 init_cu_die_reader (&reader_specs, cu);
8817
98bfdba5
PA
8818 die = read_die_and_children (&reader_specs, info_ptr, &info_ptr, NULL);
8819
8820 if (read_abbrevs)
8821 do_cleanups (back_to);
8822
8823 return die;
639d11d3
DC
8824}
8825
d97bc12b
DE
8826/* Main entry point for reading a DIE and all children.
8827 Read the DIE and dump it if requested. */
8828
8829static struct die_info *
93311388
DE
8830read_die_and_children (const struct die_reader_specs *reader,
8831 gdb_byte *info_ptr,
d97bc12b
DE
8832 gdb_byte **new_info_ptr,
8833 struct die_info *parent)
8834{
93311388 8835 struct die_info *result = read_die_and_children_1 (reader, info_ptr,
d97bc12b
DE
8836 new_info_ptr, parent);
8837
8838 if (dwarf2_die_debug)
8839 {
348e048f
DE
8840 fprintf_unfiltered (gdb_stdlog,
8841 "\nRead die from %s of %s:\n",
8b70b953
TT
8842 (reader->cu->per_cu->debug_type_section
8843 ? ".debug_types"
8844 : ".debug_info"),
348e048f 8845 reader->abfd->filename);
d97bc12b
DE
8846 dump_die (result, dwarf2_die_debug);
8847 }
8848
8849 return result;
8850}
8851
639d11d3
DC
8852/* Read a single die and all its descendents. Set the die's sibling
8853 field to NULL; set other fields in the die correctly, and set all
8854 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
8855 location of the info_ptr after reading all of those dies. PARENT
8856 is the parent of the die in question. */
8857
8858static struct die_info *
93311388
DE
8859read_die_and_children_1 (const struct die_reader_specs *reader,
8860 gdb_byte *info_ptr,
d97bc12b
DE
8861 gdb_byte **new_info_ptr,
8862 struct die_info *parent)
639d11d3
DC
8863{
8864 struct die_info *die;
fe1b8b76 8865 gdb_byte *cur_ptr;
639d11d3
DC
8866 int has_children;
8867
93311388 8868 cur_ptr = read_full_die (reader, &die, info_ptr, &has_children);
1d325ec1
DJ
8869 if (die == NULL)
8870 {
8871 *new_info_ptr = cur_ptr;
8872 return NULL;
8873 }
93311388 8874 store_in_ref_table (die, reader->cu);
639d11d3
DC
8875
8876 if (has_children)
348e048f 8877 die->child = read_die_and_siblings (reader, cur_ptr, new_info_ptr, die);
639d11d3
DC
8878 else
8879 {
8880 die->child = NULL;
8881 *new_info_ptr = cur_ptr;
8882 }
8883
8884 die->sibling = NULL;
8885 die->parent = parent;
8886 return die;
8887}
8888
8889/* Read a die, all of its descendents, and all of its siblings; set
8890 all of the fields of all of the dies correctly. Arguments are as
8891 in read_die_and_children. */
8892
8893static struct die_info *
93311388
DE
8894read_die_and_siblings (const struct die_reader_specs *reader,
8895 gdb_byte *info_ptr,
fe1b8b76 8896 gdb_byte **new_info_ptr,
639d11d3
DC
8897 struct die_info *parent)
8898{
8899 struct die_info *first_die, *last_sibling;
fe1b8b76 8900 gdb_byte *cur_ptr;
639d11d3 8901
c906108c 8902 cur_ptr = info_ptr;
639d11d3
DC
8903 first_die = last_sibling = NULL;
8904
8905 while (1)
c906108c 8906 {
639d11d3 8907 struct die_info *die
93311388 8908 = read_die_and_children_1 (reader, cur_ptr, &cur_ptr, parent);
639d11d3 8909
1d325ec1 8910 if (die == NULL)
c906108c 8911 {
639d11d3
DC
8912 *new_info_ptr = cur_ptr;
8913 return first_die;
c906108c 8914 }
1d325ec1
DJ
8915
8916 if (!first_die)
8917 first_die = die;
c906108c 8918 else
1d325ec1
DJ
8919 last_sibling->sibling = die;
8920
8921 last_sibling = die;
c906108c 8922 }
c906108c
SS
8923}
8924
93311388
DE
8925/* Read the die from the .debug_info section buffer. Set DIEP to
8926 point to a newly allocated die with its information, except for its
8927 child, sibling, and parent fields. Set HAS_CHILDREN to tell
8928 whether the die has children or not. */
8929
8930static gdb_byte *
8931read_full_die (const struct die_reader_specs *reader,
8932 struct die_info **diep, gdb_byte *info_ptr,
8933 int *has_children)
8934{
8935 unsigned int abbrev_number, bytes_read, i, offset;
8936 struct abbrev_info *abbrev;
8937 struct die_info *die;
8938 struct dwarf2_cu *cu = reader->cu;
8939 bfd *abfd = reader->abfd;
8940
8941 offset = info_ptr - reader->buffer;
8942 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8943 info_ptr += bytes_read;
8944 if (!abbrev_number)
8945 {
8946 *diep = NULL;
8947 *has_children = 0;
8948 return info_ptr;
8949 }
8950
8951 abbrev = dwarf2_lookup_abbrev (abbrev_number, cu);
8952 if (!abbrev)
348e048f
DE
8953 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
8954 abbrev_number,
8955 bfd_get_filename (abfd));
8956
93311388
DE
8957 die = dwarf_alloc_die (cu, abbrev->num_attrs);
8958 die->offset = offset;
8959 die->tag = abbrev->tag;
8960 die->abbrev = abbrev_number;
8961
8962 die->num_attrs = abbrev->num_attrs;
8963
8964 for (i = 0; i < abbrev->num_attrs; ++i)
8965 info_ptr = read_attribute (&die->attrs[i], &abbrev->attrs[i],
8966 abfd, info_ptr, cu);
8967
8968 *diep = die;
8969 *has_children = abbrev->has_children;
8970 return info_ptr;
8971}
8972
c906108c
SS
8973/* In DWARF version 2, the description of the debugging information is
8974 stored in a separate .debug_abbrev section. Before we read any
8975 dies from a section we read in all abbreviations and install them
72bf9492
DJ
8976 in a hash table. This function also sets flags in CU describing
8977 the data found in the abbrev table. */
c906108c
SS
8978
8979static void
e7c27a73 8980dwarf2_read_abbrevs (bfd *abfd, struct dwarf2_cu *cu)
c906108c 8981{
e7c27a73 8982 struct comp_unit_head *cu_header = &cu->header;
fe1b8b76 8983 gdb_byte *abbrev_ptr;
c906108c
SS
8984 struct abbrev_info *cur_abbrev;
8985 unsigned int abbrev_number, bytes_read, abbrev_name;
8986 unsigned int abbrev_form, hash_number;
f3dd6933
DJ
8987 struct attr_abbrev *cur_attrs;
8988 unsigned int allocated_attrs;
c906108c 8989
0963b4bd 8990 /* Initialize dwarf2 abbrevs. */
f3dd6933
DJ
8991 obstack_init (&cu->abbrev_obstack);
8992 cu->dwarf2_abbrevs = obstack_alloc (&cu->abbrev_obstack,
8993 (ABBREV_HASH_SIZE
8994 * sizeof (struct abbrev_info *)));
8995 memset (cu->dwarf2_abbrevs, 0,
8996 ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
c906108c 8997
be391dca
TT
8998 dwarf2_read_section (dwarf2_per_objfile->objfile,
8999 &dwarf2_per_objfile->abbrev);
dce234bc 9000 abbrev_ptr = dwarf2_per_objfile->abbrev.buffer + cu_header->abbrev_offset;
c906108c
SS
9001 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9002 abbrev_ptr += bytes_read;
9003
f3dd6933
DJ
9004 allocated_attrs = ATTR_ALLOC_CHUNK;
9005 cur_attrs = xmalloc (allocated_attrs * sizeof (struct attr_abbrev));
6e70227d 9006
0963b4bd 9007 /* Loop until we reach an abbrev number of 0. */
c906108c
SS
9008 while (abbrev_number)
9009 {
f3dd6933 9010 cur_abbrev = dwarf_alloc_abbrev (cu);
c906108c
SS
9011
9012 /* read in abbrev header */
9013 cur_abbrev->number = abbrev_number;
9014 cur_abbrev->tag = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9015 abbrev_ptr += bytes_read;
9016 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
9017 abbrev_ptr += 1;
9018
72bf9492
DJ
9019 if (cur_abbrev->tag == DW_TAG_namespace)
9020 cu->has_namespace_info = 1;
9021
c906108c
SS
9022 /* now read in declarations */
9023 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9024 abbrev_ptr += bytes_read;
9025 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9026 abbrev_ptr += bytes_read;
9027 while (abbrev_name)
9028 {
f3dd6933 9029 if (cur_abbrev->num_attrs == allocated_attrs)
c906108c 9030 {
f3dd6933
DJ
9031 allocated_attrs += ATTR_ALLOC_CHUNK;
9032 cur_attrs
9033 = xrealloc (cur_attrs, (allocated_attrs
9034 * sizeof (struct attr_abbrev)));
c906108c 9035 }
ae038cb0
DJ
9036
9037 /* Record whether this compilation unit might have
9038 inter-compilation-unit references. If we don't know what form
9039 this attribute will have, then it might potentially be a
9040 DW_FORM_ref_addr, so we conservatively expect inter-CU
9041 references. */
9042
9043 if (abbrev_form == DW_FORM_ref_addr
9044 || abbrev_form == DW_FORM_indirect)
9045 cu->has_form_ref_addr = 1;
9046
f3dd6933
DJ
9047 cur_attrs[cur_abbrev->num_attrs].name = abbrev_name;
9048 cur_attrs[cur_abbrev->num_attrs++].form = abbrev_form;
c906108c
SS
9049 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9050 abbrev_ptr += bytes_read;
9051 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9052 abbrev_ptr += bytes_read;
9053 }
9054
f3dd6933
DJ
9055 cur_abbrev->attrs = obstack_alloc (&cu->abbrev_obstack,
9056 (cur_abbrev->num_attrs
9057 * sizeof (struct attr_abbrev)));
9058 memcpy (cur_abbrev->attrs, cur_attrs,
9059 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
9060
c906108c 9061 hash_number = abbrev_number % ABBREV_HASH_SIZE;
f3dd6933
DJ
9062 cur_abbrev->next = cu->dwarf2_abbrevs[hash_number];
9063 cu->dwarf2_abbrevs[hash_number] = cur_abbrev;
c906108c
SS
9064
9065 /* Get next abbreviation.
9066 Under Irix6 the abbreviations for a compilation unit are not
c5aa993b
JM
9067 always properly terminated with an abbrev number of 0.
9068 Exit loop if we encounter an abbreviation which we have
9069 already read (which means we are about to read the abbreviations
9070 for the next compile unit) or if the end of the abbreviation
9071 table is reached. */
dce234bc
PP
9072 if ((unsigned int) (abbrev_ptr - dwarf2_per_objfile->abbrev.buffer)
9073 >= dwarf2_per_objfile->abbrev.size)
c906108c
SS
9074 break;
9075 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
9076 abbrev_ptr += bytes_read;
e7c27a73 9077 if (dwarf2_lookup_abbrev (abbrev_number, cu) != NULL)
c906108c
SS
9078 break;
9079 }
f3dd6933
DJ
9080
9081 xfree (cur_attrs);
c906108c
SS
9082}
9083
f3dd6933 9084/* Release the memory used by the abbrev table for a compilation unit. */
c906108c 9085
c906108c 9086static void
f3dd6933 9087dwarf2_free_abbrev_table (void *ptr_to_cu)
c906108c 9088{
f3dd6933 9089 struct dwarf2_cu *cu = ptr_to_cu;
c906108c 9090
f3dd6933
DJ
9091 obstack_free (&cu->abbrev_obstack, NULL);
9092 cu->dwarf2_abbrevs = NULL;
c906108c
SS
9093}
9094
9095/* Lookup an abbrev_info structure in the abbrev hash table. */
9096
9097static struct abbrev_info *
e7c27a73 9098dwarf2_lookup_abbrev (unsigned int number, struct dwarf2_cu *cu)
c906108c
SS
9099{
9100 unsigned int hash_number;
9101 struct abbrev_info *abbrev;
9102
9103 hash_number = number % ABBREV_HASH_SIZE;
f3dd6933 9104 abbrev = cu->dwarf2_abbrevs[hash_number];
c906108c
SS
9105
9106 while (abbrev)
9107 {
9108 if (abbrev->number == number)
9109 return abbrev;
9110 else
9111 abbrev = abbrev->next;
9112 }
9113 return NULL;
9114}
9115
72bf9492
DJ
9116/* Returns nonzero if TAG represents a type that we might generate a partial
9117 symbol for. */
9118
9119static int
9120is_type_tag_for_partial (int tag)
9121{
9122 switch (tag)
9123 {
9124#if 0
9125 /* Some types that would be reasonable to generate partial symbols for,
9126 that we don't at present. */
9127 case DW_TAG_array_type:
9128 case DW_TAG_file_type:
9129 case DW_TAG_ptr_to_member_type:
9130 case DW_TAG_set_type:
9131 case DW_TAG_string_type:
9132 case DW_TAG_subroutine_type:
9133#endif
9134 case DW_TAG_base_type:
9135 case DW_TAG_class_type:
680b30c7 9136 case DW_TAG_interface_type:
72bf9492
DJ
9137 case DW_TAG_enumeration_type:
9138 case DW_TAG_structure_type:
9139 case DW_TAG_subrange_type:
9140 case DW_TAG_typedef:
9141 case DW_TAG_union_type:
9142 return 1;
9143 default:
9144 return 0;
9145 }
9146}
9147
9148/* Load all DIEs that are interesting for partial symbols into memory. */
9149
9150static struct partial_die_info *
93311388
DE
9151load_partial_dies (bfd *abfd, gdb_byte *buffer, gdb_byte *info_ptr,
9152 int building_psymtab, struct dwarf2_cu *cu)
72bf9492
DJ
9153{
9154 struct partial_die_info *part_die;
9155 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
9156 struct abbrev_info *abbrev;
9157 unsigned int bytes_read;
5afb4e99 9158 unsigned int load_all = 0;
72bf9492
DJ
9159
9160 int nesting_level = 1;
9161
9162 parent_die = NULL;
9163 last_die = NULL;
9164
5afb4e99
DJ
9165 if (cu->per_cu && cu->per_cu->load_all_dies)
9166 load_all = 1;
9167
72bf9492
DJ
9168 cu->partial_dies
9169 = htab_create_alloc_ex (cu->header.length / 12,
9170 partial_die_hash,
9171 partial_die_eq,
9172 NULL,
9173 &cu->comp_unit_obstack,
9174 hashtab_obstack_allocate,
9175 dummy_obstack_deallocate);
9176
9177 part_die = obstack_alloc (&cu->comp_unit_obstack,
9178 sizeof (struct partial_die_info));
9179
9180 while (1)
9181 {
9182 abbrev = peek_die_abbrev (info_ptr, &bytes_read, cu);
9183
9184 /* A NULL abbrev means the end of a series of children. */
9185 if (abbrev == NULL)
9186 {
9187 if (--nesting_level == 0)
9188 {
9189 /* PART_DIE was probably the last thing allocated on the
9190 comp_unit_obstack, so we could call obstack_free
9191 here. We don't do that because the waste is small,
9192 and will be cleaned up when we're done with this
9193 compilation unit. This way, we're also more robust
9194 against other users of the comp_unit_obstack. */
9195 return first_die;
9196 }
9197 info_ptr += bytes_read;
9198 last_die = parent_die;
9199 parent_die = parent_die->die_parent;
9200 continue;
9201 }
9202
98bfdba5
PA
9203 /* Check for template arguments. We never save these; if
9204 they're seen, we just mark the parent, and go on our way. */
9205 if (parent_die != NULL
9206 && cu->language == language_cplus
9207 && (abbrev->tag == DW_TAG_template_type_param
9208 || abbrev->tag == DW_TAG_template_value_param))
9209 {
9210 parent_die->has_template_arguments = 1;
9211
9212 if (!load_all)
9213 {
9214 /* We don't need a partial DIE for the template argument. */
9215 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev,
9216 cu);
9217 continue;
9218 }
9219 }
9220
9221 /* We only recurse into subprograms looking for template arguments.
9222 Skip their other children. */
9223 if (!load_all
9224 && cu->language == language_cplus
9225 && parent_die != NULL
9226 && parent_die->tag == DW_TAG_subprogram)
9227 {
9228 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
9229 continue;
9230 }
9231
5afb4e99
DJ
9232 /* Check whether this DIE is interesting enough to save. Normally
9233 we would not be interested in members here, but there may be
9234 later variables referencing them via DW_AT_specification (for
9235 static members). */
9236 if (!load_all
9237 && !is_type_tag_for_partial (abbrev->tag)
72929c62 9238 && abbrev->tag != DW_TAG_constant
72bf9492
DJ
9239 && abbrev->tag != DW_TAG_enumerator
9240 && abbrev->tag != DW_TAG_subprogram
bc30ff58 9241 && abbrev->tag != DW_TAG_lexical_block
72bf9492 9242 && abbrev->tag != DW_TAG_variable
5afb4e99 9243 && abbrev->tag != DW_TAG_namespace
f55ee35c 9244 && abbrev->tag != DW_TAG_module
5afb4e99 9245 && abbrev->tag != DW_TAG_member)
72bf9492
DJ
9246 {
9247 /* Otherwise we skip to the next sibling, if any. */
93311388 9248 info_ptr = skip_one_die (buffer, info_ptr + bytes_read, abbrev, cu);
72bf9492
DJ
9249 continue;
9250 }
9251
93311388
DE
9252 info_ptr = read_partial_die (part_die, abbrev, bytes_read, abfd,
9253 buffer, info_ptr, cu);
72bf9492
DJ
9254
9255 /* This two-pass algorithm for processing partial symbols has a
9256 high cost in cache pressure. Thus, handle some simple cases
9257 here which cover the majority of C partial symbols. DIEs
9258 which neither have specification tags in them, nor could have
9259 specification tags elsewhere pointing at them, can simply be
9260 processed and discarded.
9261
9262 This segment is also optional; scan_partial_symbols and
9263 add_partial_symbol will handle these DIEs if we chain
9264 them in normally. When compilers which do not emit large
9265 quantities of duplicate debug information are more common,
9266 this code can probably be removed. */
9267
9268 /* Any complete simple types at the top level (pretty much all
9269 of them, for a language without namespaces), can be processed
9270 directly. */
9271 if (parent_die == NULL
9272 && part_die->has_specification == 0
9273 && part_die->is_declaration == 0
d8228535 9274 && ((part_die->tag == DW_TAG_typedef && !part_die->has_children)
72bf9492
DJ
9275 || part_die->tag == DW_TAG_base_type
9276 || part_die->tag == DW_TAG_subrange_type))
9277 {
9278 if (building_psymtab && part_die->name != NULL)
04a679b8 9279 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492
DJ
9280 VAR_DOMAIN, LOC_TYPEDEF,
9281 &cu->objfile->static_psymbols,
9282 0, (CORE_ADDR) 0, cu->language, cu->objfile);
93311388 9283 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
9284 continue;
9285 }
9286
d8228535
JK
9287 /* The exception for DW_TAG_typedef with has_children above is
9288 a workaround of GCC PR debug/47510. In the case of this complaint
9289 type_name_no_tag_or_error will error on such types later.
9290
9291 GDB skipped children of DW_TAG_typedef by the shortcut above and then
9292 it could not find the child DIEs referenced later, this is checked
9293 above. In correct DWARF DW_TAG_typedef should have no children. */
9294
9295 if (part_die->tag == DW_TAG_typedef && part_die->has_children)
9296 complaint (&symfile_complaints,
9297 _("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
9298 "- DIE at 0x%x [in module %s]"),
9299 part_die->offset, cu->objfile->name);
9300
72bf9492
DJ
9301 /* If we're at the second level, and we're an enumerator, and
9302 our parent has no specification (meaning possibly lives in a
9303 namespace elsewhere), then we can add the partial symbol now
9304 instead of queueing it. */
9305 if (part_die->tag == DW_TAG_enumerator
9306 && parent_die != NULL
9307 && parent_die->die_parent == NULL
9308 && parent_die->tag == DW_TAG_enumeration_type
9309 && parent_die->has_specification == 0)
9310 {
9311 if (part_die->name == NULL)
3e43a32a
MS
9312 complaint (&symfile_complaints,
9313 _("malformed enumerator DIE ignored"));
72bf9492 9314 else if (building_psymtab)
04a679b8 9315 add_psymbol_to_list (part_die->name, strlen (part_die->name), 0,
72bf9492 9316 VAR_DOMAIN, LOC_CONST,
987504bb
JJ
9317 (cu->language == language_cplus
9318 || cu->language == language_java)
72bf9492
DJ
9319 ? &cu->objfile->global_psymbols
9320 : &cu->objfile->static_psymbols,
9321 0, (CORE_ADDR) 0, cu->language, cu->objfile);
9322
93311388 9323 info_ptr = locate_pdi_sibling (part_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
9324 continue;
9325 }
9326
9327 /* We'll save this DIE so link it in. */
9328 part_die->die_parent = parent_die;
9329 part_die->die_sibling = NULL;
9330 part_die->die_child = NULL;
9331
9332 if (last_die && last_die == parent_die)
9333 last_die->die_child = part_die;
9334 else if (last_die)
9335 last_die->die_sibling = part_die;
9336
9337 last_die = part_die;
9338
9339 if (first_die == NULL)
9340 first_die = part_die;
9341
9342 /* Maybe add the DIE to the hash table. Not all DIEs that we
9343 find interesting need to be in the hash table, because we
9344 also have the parent/sibling/child chains; only those that we
9345 might refer to by offset later during partial symbol reading.
9346
9347 For now this means things that might have be the target of a
9348 DW_AT_specification, DW_AT_abstract_origin, or
9349 DW_AT_extension. DW_AT_extension will refer only to
9350 namespaces; DW_AT_abstract_origin refers to functions (and
9351 many things under the function DIE, but we do not recurse
9352 into function DIEs during partial symbol reading) and
9353 possibly variables as well; DW_AT_specification refers to
9354 declarations. Declarations ought to have the DW_AT_declaration
9355 flag. It happens that GCC forgets to put it in sometimes, but
9356 only for functions, not for types.
9357
9358 Adding more things than necessary to the hash table is harmless
9359 except for the performance cost. Adding too few will result in
5afb4e99
DJ
9360 wasted time in find_partial_die, when we reread the compilation
9361 unit with load_all_dies set. */
72bf9492 9362
5afb4e99 9363 if (load_all
72929c62 9364 || abbrev->tag == DW_TAG_constant
5afb4e99 9365 || abbrev->tag == DW_TAG_subprogram
72bf9492
DJ
9366 || abbrev->tag == DW_TAG_variable
9367 || abbrev->tag == DW_TAG_namespace
9368 || part_die->is_declaration)
9369 {
9370 void **slot;
9371
9372 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
9373 part_die->offset, INSERT);
9374 *slot = part_die;
9375 }
9376
9377 part_die = obstack_alloc (&cu->comp_unit_obstack,
9378 sizeof (struct partial_die_info));
9379
9380 /* For some DIEs we want to follow their children (if any). For C
bc30ff58 9381 we have no reason to follow the children of structures; for other
98bfdba5
PA
9382 languages we have to, so that we can get at method physnames
9383 to infer fully qualified class names, for DW_AT_specification,
9384 and for C++ template arguments. For C++, we also look one level
9385 inside functions to find template arguments (if the name of the
9386 function does not already contain the template arguments).
bc30ff58
JB
9387
9388 For Ada, we need to scan the children of subprograms and lexical
9389 blocks as well because Ada allows the definition of nested
9390 entities that could be interesting for the debugger, such as
9391 nested subprograms for instance. */
72bf9492 9392 if (last_die->has_children
5afb4e99
DJ
9393 && (load_all
9394 || last_die->tag == DW_TAG_namespace
f55ee35c 9395 || last_die->tag == DW_TAG_module
72bf9492 9396 || last_die->tag == DW_TAG_enumeration_type
98bfdba5
PA
9397 || (cu->language == language_cplus
9398 && last_die->tag == DW_TAG_subprogram
9399 && (last_die->name == NULL
9400 || strchr (last_die->name, '<') == NULL))
72bf9492
DJ
9401 || (cu->language != language_c
9402 && (last_die->tag == DW_TAG_class_type
680b30c7 9403 || last_die->tag == DW_TAG_interface_type
72bf9492 9404 || last_die->tag == DW_TAG_structure_type
bc30ff58
JB
9405 || last_die->tag == DW_TAG_union_type))
9406 || (cu->language == language_ada
9407 && (last_die->tag == DW_TAG_subprogram
9408 || last_die->tag == DW_TAG_lexical_block))))
72bf9492
DJ
9409 {
9410 nesting_level++;
9411 parent_die = last_die;
9412 continue;
9413 }
9414
9415 /* Otherwise we skip to the next sibling, if any. */
93311388 9416 info_ptr = locate_pdi_sibling (last_die, buffer, info_ptr, abfd, cu);
72bf9492
DJ
9417
9418 /* Back to the top, do it again. */
9419 }
9420}
9421
c906108c
SS
9422/* Read a minimal amount of information into the minimal die structure. */
9423
fe1b8b76 9424static gdb_byte *
72bf9492
DJ
9425read_partial_die (struct partial_die_info *part_die,
9426 struct abbrev_info *abbrev,
9427 unsigned int abbrev_len, bfd *abfd,
93311388
DE
9428 gdb_byte *buffer, gdb_byte *info_ptr,
9429 struct dwarf2_cu *cu)
c906108c 9430{
fa238c03 9431 unsigned int i;
c906108c 9432 struct attribute attr;
c5aa993b 9433 int has_low_pc_attr = 0;
c906108c
SS
9434 int has_high_pc_attr = 0;
9435
72bf9492 9436 memset (part_die, 0, sizeof (struct partial_die_info));
c906108c 9437
93311388 9438 part_die->offset = info_ptr - buffer;
72bf9492
DJ
9439
9440 info_ptr += abbrev_len;
9441
9442 if (abbrev == NULL)
9443 return info_ptr;
9444
c906108c
SS
9445 part_die->tag = abbrev->tag;
9446 part_die->has_children = abbrev->has_children;
c906108c
SS
9447
9448 for (i = 0; i < abbrev->num_attrs; ++i)
9449 {
e7c27a73 9450 info_ptr = read_attribute (&attr, &abbrev->attrs[i], abfd, info_ptr, cu);
c906108c
SS
9451
9452 /* Store the data if it is of an attribute we want to keep in a
c5aa993b 9453 partial symbol table. */
c906108c
SS
9454 switch (attr.name)
9455 {
9456 case DW_AT_name:
71c25dea
TT
9457 switch (part_die->tag)
9458 {
9459 case DW_TAG_compile_unit:
348e048f 9460 case DW_TAG_type_unit:
71c25dea
TT
9461 /* Compilation units have a DW_AT_name that is a filename, not
9462 a source language identifier. */
9463 case DW_TAG_enumeration_type:
9464 case DW_TAG_enumerator:
9465 /* These tags always have simple identifiers already; no need
9466 to canonicalize them. */
9467 part_die->name = DW_STRING (&attr);
9468 break;
9469 default:
9470 part_die->name
9471 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
95519e0e 9472 &cu->objfile->objfile_obstack);
71c25dea
TT
9473 break;
9474 }
c906108c 9475 break;
31ef98ae 9476 case DW_AT_linkage_name:
c906108c 9477 case DW_AT_MIPS_linkage_name:
31ef98ae
TT
9478 /* Note that both forms of linkage name might appear. We
9479 assume they will be the same, and we only store the last
9480 one we see. */
94af9270
KS
9481 if (cu->language == language_ada)
9482 part_die->name = DW_STRING (&attr);
abc72ce4 9483 part_die->linkage_name = DW_STRING (&attr);
c906108c
SS
9484 break;
9485 case DW_AT_low_pc:
9486 has_low_pc_attr = 1;
9487 part_die->lowpc = DW_ADDR (&attr);
9488 break;
9489 case DW_AT_high_pc:
9490 has_high_pc_attr = 1;
9491 part_die->highpc = DW_ADDR (&attr);
9492 break;
9493 case DW_AT_location:
0963b4bd 9494 /* Support the .debug_loc offsets. */
8e19ed76
PS
9495 if (attr_form_is_block (&attr))
9496 {
9497 part_die->locdesc = DW_BLOCK (&attr);
9498 }
3690dd37 9499 else if (attr_form_is_section_offset (&attr))
8e19ed76 9500 {
4d3c2250 9501 dwarf2_complex_location_expr_complaint ();
8e19ed76
PS
9502 }
9503 else
9504 {
4d3c2250
KB
9505 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
9506 "partial symbol information");
8e19ed76 9507 }
c906108c 9508 break;
c906108c
SS
9509 case DW_AT_external:
9510 part_die->is_external = DW_UNSND (&attr);
9511 break;
9512 case DW_AT_declaration:
9513 part_die->is_declaration = DW_UNSND (&attr);
9514 break;
9515 case DW_AT_type:
9516 part_die->has_type = 1;
9517 break;
9518 case DW_AT_abstract_origin:
9519 case DW_AT_specification:
72bf9492
DJ
9520 case DW_AT_extension:
9521 part_die->has_specification = 1;
c764a876 9522 part_die->spec_offset = dwarf2_get_ref_die_offset (&attr);
c906108c
SS
9523 break;
9524 case DW_AT_sibling:
9525 /* Ignore absolute siblings, they might point outside of
9526 the current compile unit. */
9527 if (attr.form == DW_FORM_ref_addr)
3e43a32a
MS
9528 complaint (&symfile_complaints,
9529 _("ignoring absolute DW_AT_sibling"));
c906108c 9530 else
93311388 9531 part_die->sibling = buffer + dwarf2_get_ref_die_offset (&attr);
c906108c 9532 break;
fa4028e9
JB
9533 case DW_AT_byte_size:
9534 part_die->has_byte_size = 1;
9535 break;
68511cec
CES
9536 case DW_AT_calling_convention:
9537 /* DWARF doesn't provide a way to identify a program's source-level
9538 entry point. DW_AT_calling_convention attributes are only meant
9539 to describe functions' calling conventions.
9540
9541 However, because it's a necessary piece of information in
9542 Fortran, and because DW_CC_program is the only piece of debugging
9543 information whose definition refers to a 'main program' at all,
9544 several compilers have begun marking Fortran main programs with
9545 DW_CC_program --- even when those functions use the standard
9546 calling conventions.
9547
9548 So until DWARF specifies a way to provide this information and
9549 compilers pick up the new representation, we'll support this
9550 practice. */
9551 if (DW_UNSND (&attr) == DW_CC_program
9552 && cu->language == language_fortran)
01f8c46d
JK
9553 {
9554 set_main_name (part_die->name);
9555
9556 /* As this DIE has a static linkage the name would be difficult
9557 to look up later. */
9558 language_of_main = language_fortran;
9559 }
68511cec 9560 break;
c906108c
SS
9561 default:
9562 break;
9563 }
9564 }
9565
9373cf26
JK
9566 if (has_low_pc_attr && has_high_pc_attr)
9567 {
9568 /* When using the GNU linker, .gnu.linkonce. sections are used to
9569 eliminate duplicate copies of functions and vtables and such.
9570 The linker will arbitrarily choose one and discard the others.
9571 The AT_*_pc values for such functions refer to local labels in
9572 these sections. If the section from that file was discarded, the
9573 labels are not in the output, so the relocs get a value of 0.
9574 If this is a discarded function, mark the pc bounds as invalid,
9575 so that GDB will ignore it. */
9576 if (part_die->lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
9577 {
9578 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
9579
9580 complaint (&symfile_complaints,
9581 _("DW_AT_low_pc %s is zero "
9582 "for DIE at 0x%x [in module %s]"),
9583 paddress (gdbarch, part_die->lowpc),
9584 part_die->offset, cu->objfile->name);
9585 }
9586 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
9587 else if (part_die->lowpc >= part_die->highpc)
9588 {
9589 struct gdbarch *gdbarch = get_objfile_arch (cu->objfile);
9590
9591 complaint (&symfile_complaints,
9592 _("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
9593 "for DIE at 0x%x [in module %s]"),
9594 paddress (gdbarch, part_die->lowpc),
9595 paddress (gdbarch, part_die->highpc),
9596 part_die->offset, cu->objfile->name);
9597 }
9598 else
9599 part_die->has_pc_info = 1;
9600 }
85cbf3d3 9601
c906108c
SS
9602 return info_ptr;
9603}
9604
72bf9492
DJ
9605/* Find a cached partial DIE at OFFSET in CU. */
9606
9607static struct partial_die_info *
c764a876 9608find_partial_die_in_comp_unit (unsigned int offset, struct dwarf2_cu *cu)
72bf9492
DJ
9609{
9610 struct partial_die_info *lookup_die = NULL;
9611 struct partial_die_info part_die;
9612
9613 part_die.offset = offset;
9614 lookup_die = htab_find_with_hash (cu->partial_dies, &part_die, offset);
9615
72bf9492
DJ
9616 return lookup_die;
9617}
9618
348e048f
DE
9619/* Find a partial DIE at OFFSET, which may or may not be in CU,
9620 except in the case of .debug_types DIEs which do not reference
9621 outside their CU (they do however referencing other types via
55f1336d 9622 DW_FORM_ref_sig8). */
72bf9492
DJ
9623
9624static struct partial_die_info *
c764a876 9625find_partial_die (unsigned int offset, struct dwarf2_cu *cu)
72bf9492 9626{
5afb4e99
DJ
9627 struct dwarf2_per_cu_data *per_cu = NULL;
9628 struct partial_die_info *pd = NULL;
72bf9492 9629
8b70b953 9630 if (cu->per_cu->debug_type_section)
348e048f
DE
9631 {
9632 pd = find_partial_die_in_comp_unit (offset, cu);
9633 if (pd != NULL)
9634 return pd;
9635 goto not_found;
9636 }
9637
45452591 9638 if (offset_in_cu_p (&cu->header, offset))
5afb4e99
DJ
9639 {
9640 pd = find_partial_die_in_comp_unit (offset, cu);
9641 if (pd != NULL)
9642 return pd;
9643 }
72bf9492 9644
ae038cb0
DJ
9645 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
9646
98bfdba5
PA
9647 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
9648 load_partial_comp_unit (per_cu, cu->objfile);
ae038cb0
DJ
9649
9650 per_cu->cu->last_used = 0;
5afb4e99
DJ
9651 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9652
9653 if (pd == NULL && per_cu->load_all_dies == 0)
9654 {
9655 struct cleanup *back_to;
9656 struct partial_die_info comp_unit_die;
9657 struct abbrev_info *abbrev;
9658 unsigned int bytes_read;
9659 char *info_ptr;
9660
9661 per_cu->load_all_dies = 1;
9662
9663 /* Re-read the DIEs. */
9664 back_to = make_cleanup (null_cleanup, 0);
9665 if (per_cu->cu->dwarf2_abbrevs == NULL)
9666 {
9667 dwarf2_read_abbrevs (per_cu->cu->objfile->obfd, per_cu->cu);
53d72f98 9668 make_cleanup (dwarf2_free_abbrev_table, per_cu->cu);
5afb4e99 9669 }
dce234bc 9670 info_ptr = (dwarf2_per_objfile->info.buffer
d00adf39
DE
9671 + per_cu->cu->header.offset
9672 + per_cu->cu->header.first_die_offset);
5afb4e99
DJ
9673 abbrev = peek_die_abbrev (info_ptr, &bytes_read, per_cu->cu);
9674 info_ptr = read_partial_die (&comp_unit_die, abbrev, bytes_read,
93311388
DE
9675 per_cu->cu->objfile->obfd,
9676 dwarf2_per_objfile->info.buffer, info_ptr,
5afb4e99
DJ
9677 per_cu->cu);
9678 if (comp_unit_die.has_children)
93311388
DE
9679 load_partial_dies (per_cu->cu->objfile->obfd,
9680 dwarf2_per_objfile->info.buffer, info_ptr,
9681 0, per_cu->cu);
5afb4e99
DJ
9682 do_cleanups (back_to);
9683
9684 pd = find_partial_die_in_comp_unit (offset, per_cu->cu);
9685 }
9686
348e048f
DE
9687 not_found:
9688
5afb4e99
DJ
9689 if (pd == NULL)
9690 internal_error (__FILE__, __LINE__,
3e43a32a
MS
9691 _("could not find partial DIE 0x%x "
9692 "in cache [from module %s]\n"),
5afb4e99
DJ
9693 offset, bfd_get_filename (cu->objfile->obfd));
9694 return pd;
72bf9492
DJ
9695}
9696
abc72ce4
DE
9697/* See if we can figure out if the class lives in a namespace. We do
9698 this by looking for a member function; its demangled name will
9699 contain namespace info, if there is any. */
9700
9701static void
9702guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
9703 struct dwarf2_cu *cu)
9704{
9705 /* NOTE: carlton/2003-10-07: Getting the info this way changes
9706 what template types look like, because the demangler
9707 frequently doesn't give the same name as the debug info. We
9708 could fix this by only using the demangled name to get the
9709 prefix (but see comment in read_structure_type). */
9710
9711 struct partial_die_info *real_pdi;
9712 struct partial_die_info *child_pdi;
9713
9714 /* If this DIE (this DIE's specification, if any) has a parent, then
9715 we should not do this. We'll prepend the parent's fully qualified
9716 name when we create the partial symbol. */
9717
9718 real_pdi = struct_pdi;
9719 while (real_pdi->has_specification)
9720 real_pdi = find_partial_die (real_pdi->spec_offset, cu);
9721
9722 if (real_pdi->die_parent != NULL)
9723 return;
9724
9725 for (child_pdi = struct_pdi->die_child;
9726 child_pdi != NULL;
9727 child_pdi = child_pdi->die_sibling)
9728 {
9729 if (child_pdi->tag == DW_TAG_subprogram
9730 && child_pdi->linkage_name != NULL)
9731 {
9732 char *actual_class_name
9733 = language_class_name_from_physname (cu->language_defn,
9734 child_pdi->linkage_name);
9735 if (actual_class_name != NULL)
9736 {
9737 struct_pdi->name
9738 = obsavestring (actual_class_name,
9739 strlen (actual_class_name),
9740 &cu->objfile->objfile_obstack);
9741 xfree (actual_class_name);
9742 }
9743 break;
9744 }
9745 }
9746}
9747
72bf9492
DJ
9748/* Adjust PART_DIE before generating a symbol for it. This function
9749 may set the is_external flag or change the DIE's name. */
9750
9751static void
9752fixup_partial_die (struct partial_die_info *part_die,
9753 struct dwarf2_cu *cu)
9754{
abc72ce4
DE
9755 /* Once we've fixed up a die, there's no point in doing so again.
9756 This also avoids a memory leak if we were to call
9757 guess_partial_die_structure_name multiple times. */
9758 if (part_die->fixup_called)
9759 return;
9760
72bf9492
DJ
9761 /* If we found a reference attribute and the DIE has no name, try
9762 to find a name in the referred to DIE. */
9763
9764 if (part_die->name == NULL && part_die->has_specification)
9765 {
9766 struct partial_die_info *spec_die;
72bf9492 9767
10b3939b 9768 spec_die = find_partial_die (part_die->spec_offset, cu);
72bf9492 9769
10b3939b 9770 fixup_partial_die (spec_die, cu);
72bf9492
DJ
9771
9772 if (spec_die->name)
9773 {
9774 part_die->name = spec_die->name;
9775
9776 /* Copy DW_AT_external attribute if it is set. */
9777 if (spec_die->is_external)
9778 part_die->is_external = spec_die->is_external;
9779 }
9780 }
9781
9782 /* Set default names for some unnamed DIEs. */
72bf9492
DJ
9783
9784 if (part_die->name == NULL && part_die->tag == DW_TAG_namespace)
2b1dbab0 9785 part_die->name = CP_ANONYMOUS_NAMESPACE_STR;
72bf9492 9786
abc72ce4
DE
9787 /* If there is no parent die to provide a namespace, and there are
9788 children, see if we can determine the namespace from their linkage
9789 name.
9790 NOTE: We need to do this even if cu->has_namespace_info != 0.
9791 gcc-4.5 -gdwarf-4 can drop the enclosing namespace. */
9792 if (cu->language == language_cplus
8b70b953 9793 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
9794 && part_die->die_parent == NULL
9795 && part_die->has_children
9796 && (part_die->tag == DW_TAG_class_type
9797 || part_die->tag == DW_TAG_structure_type
9798 || part_die->tag == DW_TAG_union_type))
9799 guess_partial_die_structure_name (part_die, cu);
9800
53832f31
TT
9801 /* GCC might emit a nameless struct or union that has a linkage
9802 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
9803 if (part_die->name == NULL
9c6c53f7
SA
9804 && (part_die->tag == DW_TAG_structure_type
9805 || part_die->tag == DW_TAG_union_type
9806 || part_die->tag == DW_TAG_class_type)
53832f31
TT
9807 && part_die->linkage_name != NULL)
9808 {
9809 char *demangled;
9810
9811 demangled = cplus_demangle (part_die->linkage_name, DMGL_TYPES);
9812 if (demangled)
9813 {
9c6c53f7 9814 part_die->name = obsavestring (demangled, strlen (demangled),
53832f31
TT
9815 &cu->objfile->objfile_obstack);
9816 xfree (demangled);
9817 }
9818 }
9819
abc72ce4 9820 part_die->fixup_called = 1;
72bf9492
DJ
9821}
9822
a8329558 9823/* Read an attribute value described by an attribute form. */
c906108c 9824
fe1b8b76 9825static gdb_byte *
a8329558 9826read_attribute_value (struct attribute *attr, unsigned form,
fe1b8b76 9827 bfd *abfd, gdb_byte *info_ptr,
e7c27a73 9828 struct dwarf2_cu *cu)
c906108c 9829{
e7c27a73 9830 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
9831 unsigned int bytes_read;
9832 struct dwarf_block *blk;
9833
a8329558
KW
9834 attr->form = form;
9835 switch (form)
c906108c 9836 {
c906108c 9837 case DW_FORM_ref_addr:
ae411497
TT
9838 if (cu->header.version == 2)
9839 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
9840 else
3e43a32a
MS
9841 DW_ADDR (attr) = read_offset (abfd, info_ptr,
9842 &cu->header, &bytes_read);
ae411497
TT
9843 info_ptr += bytes_read;
9844 break;
9845 case DW_FORM_addr:
e7c27a73 9846 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
107d2387 9847 info_ptr += bytes_read;
c906108c
SS
9848 break;
9849 case DW_FORM_block2:
7b5a2f43 9850 blk = dwarf_alloc_block (cu);
c906108c
SS
9851 blk->size = read_2_bytes (abfd, info_ptr);
9852 info_ptr += 2;
9853 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9854 info_ptr += blk->size;
9855 DW_BLOCK (attr) = blk;
9856 break;
9857 case DW_FORM_block4:
7b5a2f43 9858 blk = dwarf_alloc_block (cu);
c906108c
SS
9859 blk->size = read_4_bytes (abfd, info_ptr);
9860 info_ptr += 4;
9861 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9862 info_ptr += blk->size;
9863 DW_BLOCK (attr) = blk;
9864 break;
9865 case DW_FORM_data2:
9866 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
9867 info_ptr += 2;
9868 break;
9869 case DW_FORM_data4:
9870 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
9871 info_ptr += 4;
9872 break;
9873 case DW_FORM_data8:
9874 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
9875 info_ptr += 8;
9876 break;
2dc7f7b3
TT
9877 case DW_FORM_sec_offset:
9878 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
9879 info_ptr += bytes_read;
9880 break;
c906108c 9881 case DW_FORM_string:
9b1c24c8 9882 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
8285870a 9883 DW_STRING_IS_CANONICAL (attr) = 0;
c906108c
SS
9884 info_ptr += bytes_read;
9885 break;
4bdf3d34
JJ
9886 case DW_FORM_strp:
9887 DW_STRING (attr) = read_indirect_string (abfd, info_ptr, cu_header,
9888 &bytes_read);
8285870a 9889 DW_STRING_IS_CANONICAL (attr) = 0;
4bdf3d34
JJ
9890 info_ptr += bytes_read;
9891 break;
2dc7f7b3 9892 case DW_FORM_exprloc:
c906108c 9893 case DW_FORM_block:
7b5a2f43 9894 blk = dwarf_alloc_block (cu);
c906108c
SS
9895 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9896 info_ptr += bytes_read;
9897 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9898 info_ptr += blk->size;
9899 DW_BLOCK (attr) = blk;
9900 break;
9901 case DW_FORM_block1:
7b5a2f43 9902 blk = dwarf_alloc_block (cu);
c906108c
SS
9903 blk->size = read_1_byte (abfd, info_ptr);
9904 info_ptr += 1;
9905 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
9906 info_ptr += blk->size;
9907 DW_BLOCK (attr) = blk;
9908 break;
9909 case DW_FORM_data1:
9910 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9911 info_ptr += 1;
9912 break;
9913 case DW_FORM_flag:
9914 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
9915 info_ptr += 1;
9916 break;
2dc7f7b3
TT
9917 case DW_FORM_flag_present:
9918 DW_UNSND (attr) = 1;
9919 break;
c906108c
SS
9920 case DW_FORM_sdata:
9921 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
9922 info_ptr += bytes_read;
9923 break;
9924 case DW_FORM_udata:
9925 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9926 info_ptr += bytes_read;
9927 break;
9928 case DW_FORM_ref1:
10b3939b 9929 DW_ADDR (attr) = cu->header.offset + read_1_byte (abfd, info_ptr);
c906108c
SS
9930 info_ptr += 1;
9931 break;
9932 case DW_FORM_ref2:
10b3939b 9933 DW_ADDR (attr) = cu->header.offset + read_2_bytes (abfd, info_ptr);
c906108c
SS
9934 info_ptr += 2;
9935 break;
9936 case DW_FORM_ref4:
10b3939b 9937 DW_ADDR (attr) = cu->header.offset + read_4_bytes (abfd, info_ptr);
c906108c
SS
9938 info_ptr += 4;
9939 break;
613e1657 9940 case DW_FORM_ref8:
10b3939b 9941 DW_ADDR (attr) = cu->header.offset + read_8_bytes (abfd, info_ptr);
613e1657
KB
9942 info_ptr += 8;
9943 break;
55f1336d 9944 case DW_FORM_ref_sig8:
348e048f
DE
9945 /* Convert the signature to something we can record in DW_UNSND
9946 for later lookup.
9947 NOTE: This is NULL if the type wasn't found. */
9948 DW_SIGNATURED_TYPE (attr) =
9949 lookup_signatured_type (cu->objfile, read_8_bytes (abfd, info_ptr));
9950 info_ptr += 8;
9951 break;
c906108c 9952 case DW_FORM_ref_udata:
10b3939b
DJ
9953 DW_ADDR (attr) = (cu->header.offset
9954 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
c906108c
SS
9955 info_ptr += bytes_read;
9956 break;
c906108c 9957 case DW_FORM_indirect:
a8329558
KW
9958 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9959 info_ptr += bytes_read;
e7c27a73 9960 info_ptr = read_attribute_value (attr, form, abfd, info_ptr, cu);
a8329558 9961 break;
c906108c 9962 default:
8a3fe4f8 9963 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
659b0389
ML
9964 dwarf_form_name (form),
9965 bfd_get_filename (abfd));
c906108c 9966 }
28e94949
JB
9967
9968 /* We have seen instances where the compiler tried to emit a byte
9969 size attribute of -1 which ended up being encoded as an unsigned
9970 0xffffffff. Although 0xffffffff is technically a valid size value,
9971 an object of this size seems pretty unlikely so we can relatively
9972 safely treat these cases as if the size attribute was invalid and
9973 treat them as zero by default. */
9974 if (attr->name == DW_AT_byte_size
9975 && form == DW_FORM_data4
9976 && DW_UNSND (attr) >= 0xffffffff)
01c66ae6
JB
9977 {
9978 complaint
9979 (&symfile_complaints,
43bbcdc2
PH
9980 _("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
9981 hex_string (DW_UNSND (attr)));
01c66ae6
JB
9982 DW_UNSND (attr) = 0;
9983 }
28e94949 9984
c906108c
SS
9985 return info_ptr;
9986}
9987
a8329558
KW
9988/* Read an attribute described by an abbreviated attribute. */
9989
fe1b8b76 9990static gdb_byte *
a8329558 9991read_attribute (struct attribute *attr, struct attr_abbrev *abbrev,
fe1b8b76 9992 bfd *abfd, gdb_byte *info_ptr, struct dwarf2_cu *cu)
a8329558
KW
9993{
9994 attr->name = abbrev->name;
e7c27a73 9995 return read_attribute_value (attr, abbrev->form, abfd, info_ptr, cu);
a8329558
KW
9996}
9997
0963b4bd 9998/* Read dwarf information from a buffer. */
c906108c
SS
9999
10000static unsigned int
fe1b8b76 10001read_1_byte (bfd *abfd, gdb_byte *buf)
c906108c 10002{
fe1b8b76 10003 return bfd_get_8 (abfd, buf);
c906108c
SS
10004}
10005
10006static int
fe1b8b76 10007read_1_signed_byte (bfd *abfd, gdb_byte *buf)
c906108c 10008{
fe1b8b76 10009 return bfd_get_signed_8 (abfd, buf);
c906108c
SS
10010}
10011
10012static unsigned int
fe1b8b76 10013read_2_bytes (bfd *abfd, gdb_byte *buf)
c906108c 10014{
fe1b8b76 10015 return bfd_get_16 (abfd, buf);
c906108c
SS
10016}
10017
c906108c 10018static unsigned int
fe1b8b76 10019read_4_bytes (bfd *abfd, gdb_byte *buf)
c906108c 10020{
fe1b8b76 10021 return bfd_get_32 (abfd, buf);
c906108c
SS
10022}
10023
93311388 10024static ULONGEST
fe1b8b76 10025read_8_bytes (bfd *abfd, gdb_byte *buf)
c906108c 10026{
fe1b8b76 10027 return bfd_get_64 (abfd, buf);
c906108c
SS
10028}
10029
10030static CORE_ADDR
fe1b8b76 10031read_address (bfd *abfd, gdb_byte *buf, struct dwarf2_cu *cu,
891d2f0b 10032 unsigned int *bytes_read)
c906108c 10033{
e7c27a73 10034 struct comp_unit_head *cu_header = &cu->header;
c906108c
SS
10035 CORE_ADDR retval = 0;
10036
107d2387 10037 if (cu_header->signed_addr_p)
c906108c 10038 {
107d2387
AC
10039 switch (cu_header->addr_size)
10040 {
10041 case 2:
fe1b8b76 10042 retval = bfd_get_signed_16 (abfd, buf);
107d2387
AC
10043 break;
10044 case 4:
fe1b8b76 10045 retval = bfd_get_signed_32 (abfd, buf);
107d2387
AC
10046 break;
10047 case 8:
fe1b8b76 10048 retval = bfd_get_signed_64 (abfd, buf);
107d2387
AC
10049 break;
10050 default:
8e65ff28 10051 internal_error (__FILE__, __LINE__,
e2e0b3e5 10052 _("read_address: bad switch, signed [in module %s]"),
659b0389 10053 bfd_get_filename (abfd));
107d2387
AC
10054 }
10055 }
10056 else
10057 {
10058 switch (cu_header->addr_size)
10059 {
10060 case 2:
fe1b8b76 10061 retval = bfd_get_16 (abfd, buf);
107d2387
AC
10062 break;
10063 case 4:
fe1b8b76 10064 retval = bfd_get_32 (abfd, buf);
107d2387
AC
10065 break;
10066 case 8:
fe1b8b76 10067 retval = bfd_get_64 (abfd, buf);
107d2387
AC
10068 break;
10069 default:
8e65ff28 10070 internal_error (__FILE__, __LINE__,
a73c6dcd
MS
10071 _("read_address: bad switch, "
10072 "unsigned [in module %s]"),
659b0389 10073 bfd_get_filename (abfd));
107d2387 10074 }
c906108c 10075 }
64367e0a 10076
107d2387
AC
10077 *bytes_read = cu_header->addr_size;
10078 return retval;
c906108c
SS
10079}
10080
f7ef9339 10081/* Read the initial length from a section. The (draft) DWARF 3
613e1657
KB
10082 specification allows the initial length to take up either 4 bytes
10083 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
10084 bytes describe the length and all offsets will be 8 bytes in length
10085 instead of 4.
10086
f7ef9339
KB
10087 An older, non-standard 64-bit format is also handled by this
10088 function. The older format in question stores the initial length
10089 as an 8-byte quantity without an escape value. Lengths greater
10090 than 2^32 aren't very common which means that the initial 4 bytes
10091 is almost always zero. Since a length value of zero doesn't make
10092 sense for the 32-bit format, this initial zero can be considered to
10093 be an escape value which indicates the presence of the older 64-bit
10094 format. As written, the code can't detect (old format) lengths
917c78fc
MK
10095 greater than 4GB. If it becomes necessary to handle lengths
10096 somewhat larger than 4GB, we could allow other small values (such
10097 as the non-sensical values of 1, 2, and 3) to also be used as
10098 escape values indicating the presence of the old format.
f7ef9339 10099
917c78fc
MK
10100 The value returned via bytes_read should be used to increment the
10101 relevant pointer after calling read_initial_length().
c764a876 10102
613e1657
KB
10103 [ Note: read_initial_length() and read_offset() are based on the
10104 document entitled "DWARF Debugging Information Format", revision
f7ef9339 10105 3, draft 8, dated November 19, 2001. This document was obtained
613e1657
KB
10106 from:
10107
f7ef9339 10108 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
6e70227d 10109
613e1657
KB
10110 This document is only a draft and is subject to change. (So beware.)
10111
f7ef9339 10112 Details regarding the older, non-standard 64-bit format were
917c78fc
MK
10113 determined empirically by examining 64-bit ELF files produced by
10114 the SGI toolchain on an IRIX 6.5 machine.
f7ef9339
KB
10115
10116 - Kevin, July 16, 2002
613e1657
KB
10117 ] */
10118
10119static LONGEST
c764a876 10120read_initial_length (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read)
613e1657 10121{
fe1b8b76 10122 LONGEST length = bfd_get_32 (abfd, buf);
613e1657 10123
dd373385 10124 if (length == 0xffffffff)
613e1657 10125 {
fe1b8b76 10126 length = bfd_get_64 (abfd, buf + 4);
613e1657 10127 *bytes_read = 12;
613e1657 10128 }
dd373385 10129 else if (length == 0)
f7ef9339 10130 {
dd373385 10131 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
fe1b8b76 10132 length = bfd_get_64 (abfd, buf);
f7ef9339 10133 *bytes_read = 8;
f7ef9339 10134 }
613e1657
KB
10135 else
10136 {
10137 *bytes_read = 4;
613e1657
KB
10138 }
10139
c764a876
DE
10140 return length;
10141}
dd373385 10142
c764a876
DE
10143/* Cover function for read_initial_length.
10144 Returns the length of the object at BUF, and stores the size of the
10145 initial length in *BYTES_READ and stores the size that offsets will be in
10146 *OFFSET_SIZE.
10147 If the initial length size is not equivalent to that specified in
10148 CU_HEADER then issue a complaint.
10149 This is useful when reading non-comp-unit headers. */
dd373385 10150
c764a876
DE
10151static LONGEST
10152read_checked_initial_length_and_offset (bfd *abfd, gdb_byte *buf,
10153 const struct comp_unit_head *cu_header,
10154 unsigned int *bytes_read,
10155 unsigned int *offset_size)
10156{
10157 LONGEST length = read_initial_length (abfd, buf, bytes_read);
10158
10159 gdb_assert (cu_header->initial_length_size == 4
10160 || cu_header->initial_length_size == 8
10161 || cu_header->initial_length_size == 12);
10162
10163 if (cu_header->initial_length_size != *bytes_read)
10164 complaint (&symfile_complaints,
10165 _("intermixed 32-bit and 64-bit DWARF sections"));
dd373385 10166
c764a876 10167 *offset_size = (*bytes_read == 4) ? 4 : 8;
dd373385 10168 return length;
613e1657
KB
10169}
10170
10171/* Read an offset from the data stream. The size of the offset is
917c78fc 10172 given by cu_header->offset_size. */
613e1657
KB
10173
10174static LONGEST
fe1b8b76 10175read_offset (bfd *abfd, gdb_byte *buf, const struct comp_unit_head *cu_header,
891d2f0b 10176 unsigned int *bytes_read)
c764a876
DE
10177{
10178 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
9a619af0 10179
c764a876
DE
10180 *bytes_read = cu_header->offset_size;
10181 return offset;
10182}
10183
10184/* Read an offset from the data stream. */
10185
10186static LONGEST
10187read_offset_1 (bfd *abfd, gdb_byte *buf, unsigned int offset_size)
613e1657
KB
10188{
10189 LONGEST retval = 0;
10190
c764a876 10191 switch (offset_size)
613e1657
KB
10192 {
10193 case 4:
fe1b8b76 10194 retval = bfd_get_32 (abfd, buf);
613e1657
KB
10195 break;
10196 case 8:
fe1b8b76 10197 retval = bfd_get_64 (abfd, buf);
613e1657
KB
10198 break;
10199 default:
8e65ff28 10200 internal_error (__FILE__, __LINE__,
c764a876 10201 _("read_offset_1: bad switch [in module %s]"),
659b0389 10202 bfd_get_filename (abfd));
613e1657
KB
10203 }
10204
917c78fc 10205 return retval;
613e1657
KB
10206}
10207
fe1b8b76
JB
10208static gdb_byte *
10209read_n_bytes (bfd *abfd, gdb_byte *buf, unsigned int size)
c906108c
SS
10210{
10211 /* If the size of a host char is 8 bits, we can return a pointer
10212 to the buffer, otherwise we have to copy the data to a buffer
10213 allocated on the temporary obstack. */
4bdf3d34 10214 gdb_assert (HOST_CHAR_BIT == 8);
c906108c 10215 return buf;
c906108c
SS
10216}
10217
10218static char *
9b1c24c8 10219read_direct_string (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c
SS
10220{
10221 /* If the size of a host char is 8 bits, we can return a pointer
10222 to the string, otherwise we have to copy the string to a buffer
10223 allocated on the temporary obstack. */
4bdf3d34 10224 gdb_assert (HOST_CHAR_BIT == 8);
c906108c
SS
10225 if (*buf == '\0')
10226 {
10227 *bytes_read_ptr = 1;
10228 return NULL;
10229 }
fe1b8b76
JB
10230 *bytes_read_ptr = strlen ((char *) buf) + 1;
10231 return (char *) buf;
4bdf3d34
JJ
10232}
10233
10234static char *
cf2c3c16 10235read_indirect_string_at_offset (bfd *abfd, LONGEST str_offset)
4bdf3d34 10236{
be391dca 10237 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->str);
dce234bc 10238 if (dwarf2_per_objfile->str.buffer == NULL)
cf2c3c16
TT
10239 error (_("DW_FORM_strp used without .debug_str section [in module %s]"),
10240 bfd_get_filename (abfd));
dce234bc 10241 if (str_offset >= dwarf2_per_objfile->str.size)
cf2c3c16
TT
10242 error (_("DW_FORM_strp pointing outside of "
10243 ".debug_str section [in module %s]"),
10244 bfd_get_filename (abfd));
4bdf3d34 10245 gdb_assert (HOST_CHAR_BIT == 8);
dce234bc 10246 if (dwarf2_per_objfile->str.buffer[str_offset] == '\0')
4bdf3d34 10247 return NULL;
dce234bc 10248 return (char *) (dwarf2_per_objfile->str.buffer + str_offset);
c906108c
SS
10249}
10250
cf2c3c16
TT
10251static char *
10252read_indirect_string (bfd *abfd, gdb_byte *buf,
10253 const struct comp_unit_head *cu_header,
10254 unsigned int *bytes_read_ptr)
10255{
10256 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
10257
10258 return read_indirect_string_at_offset (abfd, str_offset);
10259}
10260
ce5d95e1 10261static unsigned long
fe1b8b76 10262read_unsigned_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 10263{
ce5d95e1
JB
10264 unsigned long result;
10265 unsigned int num_read;
c906108c
SS
10266 int i, shift;
10267 unsigned char byte;
10268
10269 result = 0;
10270 shift = 0;
10271 num_read = 0;
10272 i = 0;
10273 while (1)
10274 {
fe1b8b76 10275 byte = bfd_get_8 (abfd, buf);
c906108c
SS
10276 buf++;
10277 num_read++;
ce5d95e1 10278 result |= ((unsigned long)(byte & 127) << shift);
c906108c
SS
10279 if ((byte & 128) == 0)
10280 {
10281 break;
10282 }
10283 shift += 7;
10284 }
10285 *bytes_read_ptr = num_read;
10286 return result;
10287}
10288
ce5d95e1 10289static long
fe1b8b76 10290read_signed_leb128 (bfd *abfd, gdb_byte *buf, unsigned int *bytes_read_ptr)
c906108c 10291{
ce5d95e1 10292 long result;
77e0b926 10293 int i, shift, num_read;
c906108c
SS
10294 unsigned char byte;
10295
10296 result = 0;
10297 shift = 0;
c906108c
SS
10298 num_read = 0;
10299 i = 0;
10300 while (1)
10301 {
fe1b8b76 10302 byte = bfd_get_8 (abfd, buf);
c906108c
SS
10303 buf++;
10304 num_read++;
ce5d95e1 10305 result |= ((long)(byte & 127) << shift);
c906108c
SS
10306 shift += 7;
10307 if ((byte & 128) == 0)
10308 {
10309 break;
10310 }
10311 }
77e0b926
DJ
10312 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
10313 result |= -(((long)1) << shift);
c906108c
SS
10314 *bytes_read_ptr = num_read;
10315 return result;
10316}
10317
4bb7a0a7
DJ
10318/* Return a pointer to just past the end of an LEB128 number in BUF. */
10319
fe1b8b76
JB
10320static gdb_byte *
10321skip_leb128 (bfd *abfd, gdb_byte *buf)
4bb7a0a7
DJ
10322{
10323 int byte;
10324
10325 while (1)
10326 {
fe1b8b76 10327 byte = bfd_get_8 (abfd, buf);
4bb7a0a7
DJ
10328 buf++;
10329 if ((byte & 128) == 0)
10330 return buf;
10331 }
10332}
10333
c906108c 10334static void
e142c38c 10335set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
c906108c
SS
10336{
10337 switch (lang)
10338 {
10339 case DW_LANG_C89:
76bee0cc 10340 case DW_LANG_C99:
c906108c 10341 case DW_LANG_C:
e142c38c 10342 cu->language = language_c;
c906108c
SS
10343 break;
10344 case DW_LANG_C_plus_plus:
e142c38c 10345 cu->language = language_cplus;
c906108c 10346 break;
6aecb9c2
JB
10347 case DW_LANG_D:
10348 cu->language = language_d;
10349 break;
c906108c
SS
10350 case DW_LANG_Fortran77:
10351 case DW_LANG_Fortran90:
b21b22e0 10352 case DW_LANG_Fortran95:
e142c38c 10353 cu->language = language_fortran;
c906108c
SS
10354 break;
10355 case DW_LANG_Mips_Assembler:
e142c38c 10356 cu->language = language_asm;
c906108c 10357 break;
bebd888e 10358 case DW_LANG_Java:
e142c38c 10359 cu->language = language_java;
bebd888e 10360 break;
c906108c 10361 case DW_LANG_Ada83:
8aaf0b47 10362 case DW_LANG_Ada95:
bc5f45f8
JB
10363 cu->language = language_ada;
10364 break;
72019c9c
GM
10365 case DW_LANG_Modula2:
10366 cu->language = language_m2;
10367 break;
fe8e67fd
PM
10368 case DW_LANG_Pascal83:
10369 cu->language = language_pascal;
10370 break;
22566fbd
DJ
10371 case DW_LANG_ObjC:
10372 cu->language = language_objc;
10373 break;
c906108c
SS
10374 case DW_LANG_Cobol74:
10375 case DW_LANG_Cobol85:
c906108c 10376 default:
e142c38c 10377 cu->language = language_minimal;
c906108c
SS
10378 break;
10379 }
e142c38c 10380 cu->language_defn = language_def (cu->language);
c906108c
SS
10381}
10382
10383/* Return the named attribute or NULL if not there. */
10384
10385static struct attribute *
e142c38c 10386dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
c906108c
SS
10387{
10388 unsigned int i;
10389 struct attribute *spec = NULL;
10390
10391 for (i = 0; i < die->num_attrs; ++i)
10392 {
10393 if (die->attrs[i].name == name)
10b3939b 10394 return &die->attrs[i];
c906108c
SS
10395 if (die->attrs[i].name == DW_AT_specification
10396 || die->attrs[i].name == DW_AT_abstract_origin)
10397 spec = &die->attrs[i];
10398 }
c906108c 10399
10b3939b 10400 if (spec)
f2f0e013
DJ
10401 {
10402 die = follow_die_ref (die, spec, &cu);
10403 return dwarf2_attr (die, name, cu);
10404 }
c5aa993b 10405
c906108c
SS
10406 return NULL;
10407}
10408
348e048f
DE
10409/* Return the named attribute or NULL if not there,
10410 but do not follow DW_AT_specification, etc.
10411 This is for use in contexts where we're reading .debug_types dies.
10412 Following DW_AT_specification, DW_AT_abstract_origin will take us
10413 back up the chain, and we want to go down. */
10414
10415static struct attribute *
10416dwarf2_attr_no_follow (struct die_info *die, unsigned int name,
10417 struct dwarf2_cu *cu)
10418{
10419 unsigned int i;
10420
10421 for (i = 0; i < die->num_attrs; ++i)
10422 if (die->attrs[i].name == name)
10423 return &die->attrs[i];
10424
10425 return NULL;
10426}
10427
05cf31d1
JB
10428/* Return non-zero iff the attribute NAME is defined for the given DIE,
10429 and holds a non-zero value. This function should only be used for
2dc7f7b3 10430 DW_FORM_flag or DW_FORM_flag_present attributes. */
05cf31d1
JB
10431
10432static int
10433dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
10434{
10435 struct attribute *attr = dwarf2_attr (die, name, cu);
10436
10437 return (attr && DW_UNSND (attr));
10438}
10439
3ca72b44 10440static int
e142c38c 10441die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
3ca72b44 10442{
05cf31d1
JB
10443 /* A DIE is a declaration if it has a DW_AT_declaration attribute
10444 which value is non-zero. However, we have to be careful with
10445 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
10446 (via dwarf2_flag_true_p) follows this attribute. So we may
10447 end up accidently finding a declaration attribute that belongs
10448 to a different DIE referenced by the specification attribute,
10449 even though the given DIE does not have a declaration attribute. */
10450 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
10451 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
3ca72b44
AC
10452}
10453
63d06c5c 10454/* Return the die giving the specification for DIE, if there is
f2f0e013 10455 one. *SPEC_CU is the CU containing DIE on input, and the CU
edb3359d
DJ
10456 containing the return value on output. If there is no
10457 specification, but there is an abstract origin, that is
10458 returned. */
63d06c5c
DC
10459
10460static struct die_info *
f2f0e013 10461die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
63d06c5c 10462{
f2f0e013
DJ
10463 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
10464 *spec_cu);
63d06c5c 10465
edb3359d
DJ
10466 if (spec_attr == NULL)
10467 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
10468
63d06c5c
DC
10469 if (spec_attr == NULL)
10470 return NULL;
10471 else
f2f0e013 10472 return follow_die_ref (die, spec_attr, spec_cu);
63d06c5c 10473}
c906108c 10474
debd256d 10475/* Free the line_header structure *LH, and any arrays and strings it
ae2de4f8
DE
10476 refers to.
10477 NOTE: This is also used as a "cleanup" function. */
10478
debd256d
JB
10479static void
10480free_line_header (struct line_header *lh)
10481{
10482 if (lh->standard_opcode_lengths)
a8bc7b56 10483 xfree (lh->standard_opcode_lengths);
debd256d
JB
10484
10485 /* Remember that all the lh->file_names[i].name pointers are
10486 pointers into debug_line_buffer, and don't need to be freed. */
10487 if (lh->file_names)
a8bc7b56 10488 xfree (lh->file_names);
debd256d
JB
10489
10490 /* Similarly for the include directory names. */
10491 if (lh->include_dirs)
a8bc7b56 10492 xfree (lh->include_dirs);
debd256d 10493
a8bc7b56 10494 xfree (lh);
debd256d
JB
10495}
10496
debd256d 10497/* Add an entry to LH's include directory table. */
ae2de4f8 10498
debd256d
JB
10499static void
10500add_include_dir (struct line_header *lh, char *include_dir)
c906108c 10501{
debd256d
JB
10502 /* Grow the array if necessary. */
10503 if (lh->include_dirs_size == 0)
c5aa993b 10504 {
debd256d
JB
10505 lh->include_dirs_size = 1; /* for testing */
10506 lh->include_dirs = xmalloc (lh->include_dirs_size
10507 * sizeof (*lh->include_dirs));
10508 }
10509 else if (lh->num_include_dirs >= lh->include_dirs_size)
10510 {
10511 lh->include_dirs_size *= 2;
10512 lh->include_dirs = xrealloc (lh->include_dirs,
10513 (lh->include_dirs_size
10514 * sizeof (*lh->include_dirs)));
c5aa993b 10515 }
c906108c 10516
debd256d
JB
10517 lh->include_dirs[lh->num_include_dirs++] = include_dir;
10518}
6e70227d 10519
debd256d 10520/* Add an entry to LH's file name table. */
ae2de4f8 10521
debd256d
JB
10522static void
10523add_file_name (struct line_header *lh,
10524 char *name,
10525 unsigned int dir_index,
10526 unsigned int mod_time,
10527 unsigned int length)
10528{
10529 struct file_entry *fe;
10530
10531 /* Grow the array if necessary. */
10532 if (lh->file_names_size == 0)
10533 {
10534 lh->file_names_size = 1; /* for testing */
10535 lh->file_names = xmalloc (lh->file_names_size
10536 * sizeof (*lh->file_names));
10537 }
10538 else if (lh->num_file_names >= lh->file_names_size)
10539 {
10540 lh->file_names_size *= 2;
10541 lh->file_names = xrealloc (lh->file_names,
10542 (lh->file_names_size
10543 * sizeof (*lh->file_names)));
10544 }
10545
10546 fe = &lh->file_names[lh->num_file_names++];
10547 fe->name = name;
10548 fe->dir_index = dir_index;
10549 fe->mod_time = mod_time;
10550 fe->length = length;
aaa75496 10551 fe->included_p = 0;
cb1df416 10552 fe->symtab = NULL;
debd256d 10553}
6e70227d 10554
debd256d 10555/* Read the statement program header starting at OFFSET in
6502dd73
DJ
10556 .debug_line, according to the endianness of ABFD. Return a pointer
10557 to a struct line_header, allocated using xmalloc.
debd256d
JB
10558
10559 NOTE: the strings in the include directory and file name tables of
10560 the returned object point into debug_line_buffer, and must not be
10561 freed. */
ae2de4f8 10562
debd256d
JB
10563static struct line_header *
10564dwarf_decode_line_header (unsigned int offset, bfd *abfd,
e7c27a73 10565 struct dwarf2_cu *cu)
debd256d
JB
10566{
10567 struct cleanup *back_to;
10568 struct line_header *lh;
fe1b8b76 10569 gdb_byte *line_ptr;
c764a876 10570 unsigned int bytes_read, offset_size;
debd256d
JB
10571 int i;
10572 char *cur_dir, *cur_file;
10573
be391dca 10574 dwarf2_read_section (dwarf2_per_objfile->objfile, &dwarf2_per_objfile->line);
dce234bc 10575 if (dwarf2_per_objfile->line.buffer == NULL)
debd256d 10576 {
e2e0b3e5 10577 complaint (&symfile_complaints, _("missing .debug_line section"));
debd256d
JB
10578 return 0;
10579 }
10580
a738430d
MK
10581 /* Make sure that at least there's room for the total_length field.
10582 That could be 12 bytes long, but we're just going to fudge that. */
dce234bc 10583 if (offset + 4 >= dwarf2_per_objfile->line.size)
debd256d 10584 {
4d3c2250 10585 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
10586 return 0;
10587 }
10588
10589 lh = xmalloc (sizeof (*lh));
10590 memset (lh, 0, sizeof (*lh));
10591 back_to = make_cleanup ((make_cleanup_ftype *) free_line_header,
10592 (void *) lh);
10593
dce234bc 10594 line_ptr = dwarf2_per_objfile->line.buffer + offset;
debd256d 10595
a738430d 10596 /* Read in the header. */
6e70227d 10597 lh->total_length =
c764a876
DE
10598 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
10599 &bytes_read, &offset_size);
debd256d 10600 line_ptr += bytes_read;
dce234bc
PP
10601 if (line_ptr + lh->total_length > (dwarf2_per_objfile->line.buffer
10602 + dwarf2_per_objfile->line.size))
debd256d 10603 {
4d3c2250 10604 dwarf2_statement_list_fits_in_line_number_section_complaint ();
debd256d
JB
10605 return 0;
10606 }
10607 lh->statement_program_end = line_ptr + lh->total_length;
10608 lh->version = read_2_bytes (abfd, line_ptr);
10609 line_ptr += 2;
c764a876
DE
10610 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
10611 line_ptr += offset_size;
debd256d
JB
10612 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
10613 line_ptr += 1;
2dc7f7b3
TT
10614 if (lh->version >= 4)
10615 {
10616 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
10617 line_ptr += 1;
10618 }
10619 else
10620 lh->maximum_ops_per_instruction = 1;
10621
10622 if (lh->maximum_ops_per_instruction == 0)
10623 {
10624 lh->maximum_ops_per_instruction = 1;
10625 complaint (&symfile_complaints,
3e43a32a
MS
10626 _("invalid maximum_ops_per_instruction "
10627 "in `.debug_line' section"));
2dc7f7b3
TT
10628 }
10629
debd256d
JB
10630 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
10631 line_ptr += 1;
10632 lh->line_base = read_1_signed_byte (abfd, line_ptr);
10633 line_ptr += 1;
10634 lh->line_range = read_1_byte (abfd, line_ptr);
10635 line_ptr += 1;
10636 lh->opcode_base = read_1_byte (abfd, line_ptr);
10637 line_ptr += 1;
10638 lh->standard_opcode_lengths
fe1b8b76 10639 = xmalloc (lh->opcode_base * sizeof (lh->standard_opcode_lengths[0]));
debd256d
JB
10640
10641 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
10642 for (i = 1; i < lh->opcode_base; ++i)
10643 {
10644 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
10645 line_ptr += 1;
10646 }
10647
a738430d 10648 /* Read directory table. */
9b1c24c8 10649 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
10650 {
10651 line_ptr += bytes_read;
10652 add_include_dir (lh, cur_dir);
10653 }
10654 line_ptr += bytes_read;
10655
a738430d 10656 /* Read file name table. */
9b1c24c8 10657 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
debd256d
JB
10658 {
10659 unsigned int dir_index, mod_time, length;
10660
10661 line_ptr += bytes_read;
10662 dir_index = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10663 line_ptr += bytes_read;
10664 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10665 line_ptr += bytes_read;
10666 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10667 line_ptr += bytes_read;
10668
10669 add_file_name (lh, cur_file, dir_index, mod_time, length);
10670 }
10671 line_ptr += bytes_read;
6e70227d 10672 lh->statement_program_start = line_ptr;
debd256d 10673
dce234bc
PP
10674 if (line_ptr > (dwarf2_per_objfile->line.buffer
10675 + dwarf2_per_objfile->line.size))
4d3c2250 10676 complaint (&symfile_complaints,
3e43a32a
MS
10677 _("line number info header doesn't "
10678 "fit in `.debug_line' section"));
debd256d
JB
10679
10680 discard_cleanups (back_to);
10681 return lh;
10682}
c906108c 10683
5fb290d7
DJ
10684/* This function exists to work around a bug in certain compilers
10685 (particularly GCC 2.95), in which the first line number marker of a
10686 function does not show up until after the prologue, right before
10687 the second line number marker. This function shifts ADDRESS down
10688 to the beginning of the function if necessary, and is called on
10689 addresses passed to record_line. */
10690
10691static CORE_ADDR
e142c38c 10692check_cu_functions (CORE_ADDR address, struct dwarf2_cu *cu)
5fb290d7
DJ
10693{
10694 struct function_range *fn;
10695
10696 /* Find the function_range containing address. */
e142c38c 10697 if (!cu->first_fn)
5fb290d7
DJ
10698 return address;
10699
e142c38c
DJ
10700 if (!cu->cached_fn)
10701 cu->cached_fn = cu->first_fn;
5fb290d7 10702
e142c38c 10703 fn = cu->cached_fn;
5fb290d7
DJ
10704 while (fn)
10705 if (fn->lowpc <= address && fn->highpc > address)
10706 goto found;
10707 else
10708 fn = fn->next;
10709
e142c38c
DJ
10710 fn = cu->first_fn;
10711 while (fn && fn != cu->cached_fn)
5fb290d7
DJ
10712 if (fn->lowpc <= address && fn->highpc > address)
10713 goto found;
10714 else
10715 fn = fn->next;
10716
10717 return address;
10718
10719 found:
10720 if (fn->seen_line)
10721 return address;
10722 if (address != fn->lowpc)
4d3c2250 10723 complaint (&symfile_complaints,
e2e0b3e5 10724 _("misplaced first line number at 0x%lx for '%s'"),
4d3c2250 10725 (unsigned long) address, fn->name);
5fb290d7
DJ
10726 fn->seen_line = 1;
10727 return fn->lowpc;
10728}
10729
c6da4cef
DE
10730/* Subroutine of dwarf_decode_lines to simplify it.
10731 Return the file name of the psymtab for included file FILE_INDEX
10732 in line header LH of PST.
10733 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10734 If space for the result is malloc'd, it will be freed by a cleanup.
10735 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
10736
10737static char *
10738psymtab_include_file_name (const struct line_header *lh, int file_index,
10739 const struct partial_symtab *pst,
10740 const char *comp_dir)
10741{
10742 const struct file_entry fe = lh->file_names [file_index];
10743 char *include_name = fe.name;
10744 char *include_name_to_compare = include_name;
10745 char *dir_name = NULL;
72b9f47f
TT
10746 const char *pst_filename;
10747 char *copied_name = NULL;
c6da4cef
DE
10748 int file_is_pst;
10749
10750 if (fe.dir_index)
10751 dir_name = lh->include_dirs[fe.dir_index - 1];
10752
10753 if (!IS_ABSOLUTE_PATH (include_name)
10754 && (dir_name != NULL || comp_dir != NULL))
10755 {
10756 /* Avoid creating a duplicate psymtab for PST.
10757 We do this by comparing INCLUDE_NAME and PST_FILENAME.
10758 Before we do the comparison, however, we need to account
10759 for DIR_NAME and COMP_DIR.
10760 First prepend dir_name (if non-NULL). If we still don't
10761 have an absolute path prepend comp_dir (if non-NULL).
10762 However, the directory we record in the include-file's
10763 psymtab does not contain COMP_DIR (to match the
10764 corresponding symtab(s)).
10765
10766 Example:
10767
10768 bash$ cd /tmp
10769 bash$ gcc -g ./hello.c
10770 include_name = "hello.c"
10771 dir_name = "."
10772 DW_AT_comp_dir = comp_dir = "/tmp"
10773 DW_AT_name = "./hello.c" */
10774
10775 if (dir_name != NULL)
10776 {
10777 include_name = concat (dir_name, SLASH_STRING,
10778 include_name, (char *)NULL);
10779 include_name_to_compare = include_name;
10780 make_cleanup (xfree, include_name);
10781 }
10782 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
10783 {
10784 include_name_to_compare = concat (comp_dir, SLASH_STRING,
10785 include_name, (char *)NULL);
10786 }
10787 }
10788
10789 pst_filename = pst->filename;
10790 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
10791 {
72b9f47f
TT
10792 copied_name = concat (pst->dirname, SLASH_STRING,
10793 pst_filename, (char *)NULL);
10794 pst_filename = copied_name;
c6da4cef
DE
10795 }
10796
1e3fad37 10797 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
c6da4cef
DE
10798
10799 if (include_name_to_compare != include_name)
10800 xfree (include_name_to_compare);
72b9f47f
TT
10801 if (copied_name != NULL)
10802 xfree (copied_name);
c6da4cef
DE
10803
10804 if (file_is_pst)
10805 return NULL;
10806 return include_name;
10807}
10808
c91513d8
PP
10809/* Ignore this record_line request. */
10810
10811static void
10812noop_record_line (struct subfile *subfile, int line, CORE_ADDR pc)
10813{
10814 return;
10815}
10816
aaa75496
JB
10817/* Decode the Line Number Program (LNP) for the given line_header
10818 structure and CU. The actual information extracted and the type
10819 of structures created from the LNP depends on the value of PST.
10820
10821 1. If PST is NULL, then this procedure uses the data from the program
10822 to create all necessary symbol tables, and their linetables.
6e70227d 10823
aaa75496
JB
10824 2. If PST is not NULL, this procedure reads the program to determine
10825 the list of files included by the unit represented by PST, and
c6da4cef
DE
10826 builds all the associated partial symbol tables.
10827
10828 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
10829 It is used for relative paths in the line table.
10830 NOTE: When processing partial symtabs (pst != NULL),
10831 comp_dir == pst->dirname.
10832
10833 NOTE: It is important that psymtabs have the same file name (via strcmp)
10834 as the corresponding symtab. Since COMP_DIR is not used in the name of the
10835 symtab we don't use it in the name of the psymtabs we create.
10836 E.g. expand_line_sal requires this when finding psymtabs to expand.
10837 A good testcase for this is mb-inline.exp. */
debd256d 10838
c906108c 10839static void
72b9f47f 10840dwarf_decode_lines (struct line_header *lh, const char *comp_dir, bfd *abfd,
aaa75496 10841 struct dwarf2_cu *cu, struct partial_symtab *pst)
c906108c 10842{
a8c50c1f 10843 gdb_byte *line_ptr, *extended_end;
fe1b8b76 10844 gdb_byte *line_end;
a8c50c1f 10845 unsigned int bytes_read, extended_len;
c906108c 10846 unsigned char op_code, extended_op, adj_opcode;
e142c38c
DJ
10847 CORE_ADDR baseaddr;
10848 struct objfile *objfile = cu->objfile;
fbf65064 10849 struct gdbarch *gdbarch = get_objfile_arch (objfile);
aaa75496 10850 const int decode_for_pst_p = (pst != NULL);
cb1df416 10851 struct subfile *last_subfile = NULL, *first_subfile = current_subfile;
c91513d8
PP
10852 void (*p_record_line) (struct subfile *subfile, int line, CORE_ADDR pc)
10853 = record_line;
e142c38c
DJ
10854
10855 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 10856
debd256d
JB
10857 line_ptr = lh->statement_program_start;
10858 line_end = lh->statement_program_end;
c906108c
SS
10859
10860 /* Read the statement sequences until there's nothing left. */
10861 while (line_ptr < line_end)
10862 {
10863 /* state machine registers */
10864 CORE_ADDR address = 0;
10865 unsigned int file = 1;
10866 unsigned int line = 1;
10867 unsigned int column = 0;
debd256d 10868 int is_stmt = lh->default_is_stmt;
c906108c
SS
10869 int basic_block = 0;
10870 int end_sequence = 0;
fbf65064 10871 CORE_ADDR addr;
2dc7f7b3 10872 unsigned char op_index = 0;
c906108c 10873
aaa75496 10874 if (!decode_for_pst_p && lh->num_file_names >= file)
c906108c 10875 {
aaa75496 10876 /* Start a subfile for the current file of the state machine. */
debd256d
JB
10877 /* lh->include_dirs and lh->file_names are 0-based, but the
10878 directory and file name numbers in the statement program
10879 are 1-based. */
10880 struct file_entry *fe = &lh->file_names[file - 1];
4f1520fb 10881 char *dir = NULL;
a738430d 10882
debd256d
JB
10883 if (fe->dir_index)
10884 dir = lh->include_dirs[fe->dir_index - 1];
4f1520fb
FR
10885
10886 dwarf2_start_subfile (fe->name, dir, comp_dir);
c906108c
SS
10887 }
10888
a738430d 10889 /* Decode the table. */
c5aa993b 10890 while (!end_sequence)
c906108c
SS
10891 {
10892 op_code = read_1_byte (abfd, line_ptr);
10893 line_ptr += 1;
59205f5a
JB
10894 if (line_ptr > line_end)
10895 {
10896 dwarf2_debug_line_missing_end_sequence_complaint ();
10897 break;
10898 }
9aa1fe7e 10899
debd256d 10900 if (op_code >= lh->opcode_base)
6e70227d 10901 {
a738430d 10902 /* Special operand. */
debd256d 10903 adj_opcode = op_code - lh->opcode_base;
2dc7f7b3
TT
10904 address += (((op_index + (adj_opcode / lh->line_range))
10905 / lh->maximum_ops_per_instruction)
10906 * lh->minimum_instruction_length);
10907 op_index = ((op_index + (adj_opcode / lh->line_range))
10908 % lh->maximum_ops_per_instruction);
debd256d 10909 line += lh->line_base + (adj_opcode % lh->line_range);
59205f5a 10910 if (lh->num_file_names < file || file == 0)
25e43795 10911 dwarf2_debug_line_missing_file_complaint ();
2dc7f7b3
TT
10912 /* For now we ignore lines not starting on an
10913 instruction boundary. */
10914 else if (op_index == 0)
25e43795
DJ
10915 {
10916 lh->file_names[file - 1].included_p = 1;
ca5f395d 10917 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
10918 {
10919 if (last_subfile != current_subfile)
10920 {
10921 addr = gdbarch_addr_bits_remove (gdbarch, address);
10922 if (last_subfile)
c91513d8 10923 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
10924 last_subfile = current_subfile;
10925 }
25e43795 10926 /* Append row to matrix using current values. */
fbf65064
UW
10927 addr = check_cu_functions (address, cu);
10928 addr = gdbarch_addr_bits_remove (gdbarch, addr);
c91513d8 10929 (*p_record_line) (current_subfile, line, addr);
366da635 10930 }
25e43795 10931 }
ca5f395d 10932 basic_block = 0;
9aa1fe7e
GK
10933 }
10934 else switch (op_code)
c906108c
SS
10935 {
10936 case DW_LNS_extended_op:
3e43a32a
MS
10937 extended_len = read_unsigned_leb128 (abfd, line_ptr,
10938 &bytes_read);
473b7be6 10939 line_ptr += bytes_read;
a8c50c1f 10940 extended_end = line_ptr + extended_len;
c906108c
SS
10941 extended_op = read_1_byte (abfd, line_ptr);
10942 line_ptr += 1;
10943 switch (extended_op)
10944 {
10945 case DW_LNE_end_sequence:
c91513d8 10946 p_record_line = record_line;
c906108c 10947 end_sequence = 1;
c906108c
SS
10948 break;
10949 case DW_LNE_set_address:
e7c27a73 10950 address = read_address (abfd, line_ptr, cu, &bytes_read);
c91513d8
PP
10951
10952 if (address == 0 && !dwarf2_per_objfile->has_section_at_zero)
10953 {
10954 /* This line table is for a function which has been
10955 GCd by the linker. Ignore it. PR gdb/12528 */
10956
10957 long line_offset
10958 = line_ptr - dwarf2_per_objfile->line.buffer;
10959
10960 complaint (&symfile_complaints,
10961 _(".debug_line address at offset 0x%lx is 0 "
10962 "[in module %s]"),
10963 line_offset, cu->objfile->name);
10964 p_record_line = noop_record_line;
10965 }
10966
2dc7f7b3 10967 op_index = 0;
107d2387
AC
10968 line_ptr += bytes_read;
10969 address += baseaddr;
c906108c
SS
10970 break;
10971 case DW_LNE_define_file:
debd256d
JB
10972 {
10973 char *cur_file;
10974 unsigned int dir_index, mod_time, length;
6e70227d 10975
3e43a32a
MS
10976 cur_file = read_direct_string (abfd, line_ptr,
10977 &bytes_read);
debd256d
JB
10978 line_ptr += bytes_read;
10979 dir_index =
10980 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10981 line_ptr += bytes_read;
10982 mod_time =
10983 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10984 line_ptr += bytes_read;
10985 length =
10986 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
10987 line_ptr += bytes_read;
10988 add_file_name (lh, cur_file, dir_index, mod_time, length);
10989 }
c906108c 10990 break;
d0c6ba3d
CC
10991 case DW_LNE_set_discriminator:
10992 /* The discriminator is not interesting to the debugger;
10993 just ignore it. */
10994 line_ptr = extended_end;
10995 break;
c906108c 10996 default:
4d3c2250 10997 complaint (&symfile_complaints,
e2e0b3e5 10998 _("mangled .debug_line section"));
debd256d 10999 return;
c906108c 11000 }
a8c50c1f
DJ
11001 /* Make sure that we parsed the extended op correctly. If e.g.
11002 we expected a different address size than the producer used,
11003 we may have read the wrong number of bytes. */
11004 if (line_ptr != extended_end)
11005 {
11006 complaint (&symfile_complaints,
11007 _("mangled .debug_line section"));
11008 return;
11009 }
c906108c
SS
11010 break;
11011 case DW_LNS_copy:
59205f5a 11012 if (lh->num_file_names < file || file == 0)
25e43795
DJ
11013 dwarf2_debug_line_missing_file_complaint ();
11014 else
366da635 11015 {
25e43795 11016 lh->file_names[file - 1].included_p = 1;
ca5f395d 11017 if (!decode_for_pst_p && is_stmt)
fbf65064
UW
11018 {
11019 if (last_subfile != current_subfile)
11020 {
11021 addr = gdbarch_addr_bits_remove (gdbarch, address);
11022 if (last_subfile)
c91513d8 11023 (*p_record_line) (last_subfile, 0, addr);
fbf65064
UW
11024 last_subfile = current_subfile;
11025 }
11026 addr = check_cu_functions (address, cu);
11027 addr = gdbarch_addr_bits_remove (gdbarch, addr);
c91513d8 11028 (*p_record_line) (current_subfile, line, addr);
fbf65064 11029 }
366da635 11030 }
c906108c
SS
11031 basic_block = 0;
11032 break;
11033 case DW_LNS_advance_pc:
2dc7f7b3
TT
11034 {
11035 CORE_ADDR adjust
11036 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11037
11038 address += (((op_index + adjust)
11039 / lh->maximum_ops_per_instruction)
11040 * lh->minimum_instruction_length);
11041 op_index = ((op_index + adjust)
11042 % lh->maximum_ops_per_instruction);
11043 line_ptr += bytes_read;
11044 }
c906108c
SS
11045 break;
11046 case DW_LNS_advance_line:
11047 line += read_signed_leb128 (abfd, line_ptr, &bytes_read);
11048 line_ptr += bytes_read;
11049 break;
11050 case DW_LNS_set_file:
debd256d 11051 {
a738430d
MK
11052 /* The arrays lh->include_dirs and lh->file_names are
11053 0-based, but the directory and file name numbers in
11054 the statement program are 1-based. */
debd256d 11055 struct file_entry *fe;
4f1520fb 11056 char *dir = NULL;
a738430d 11057
debd256d
JB
11058 file = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11059 line_ptr += bytes_read;
59205f5a 11060 if (lh->num_file_names < file || file == 0)
25e43795
DJ
11061 dwarf2_debug_line_missing_file_complaint ();
11062 else
11063 {
11064 fe = &lh->file_names[file - 1];
11065 if (fe->dir_index)
11066 dir = lh->include_dirs[fe->dir_index - 1];
11067 if (!decode_for_pst_p)
11068 {
11069 last_subfile = current_subfile;
11070 dwarf2_start_subfile (fe->name, dir, comp_dir);
11071 }
11072 }
debd256d 11073 }
c906108c
SS
11074 break;
11075 case DW_LNS_set_column:
11076 column = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11077 line_ptr += bytes_read;
11078 break;
11079 case DW_LNS_negate_stmt:
11080 is_stmt = (!is_stmt);
11081 break;
11082 case DW_LNS_set_basic_block:
11083 basic_block = 1;
11084 break;
c2c6d25f
JM
11085 /* Add to the address register of the state machine the
11086 address increment value corresponding to special opcode
a738430d
MK
11087 255. I.e., this value is scaled by the minimum
11088 instruction length since special opcode 255 would have
b021a221 11089 scaled the increment. */
c906108c 11090 case DW_LNS_const_add_pc:
2dc7f7b3
TT
11091 {
11092 CORE_ADDR adjust = (255 - lh->opcode_base) / lh->line_range;
11093
11094 address += (((op_index + adjust)
11095 / lh->maximum_ops_per_instruction)
11096 * lh->minimum_instruction_length);
11097 op_index = ((op_index + adjust)
11098 % lh->maximum_ops_per_instruction);
11099 }
c906108c
SS
11100 break;
11101 case DW_LNS_fixed_advance_pc:
11102 address += read_2_bytes (abfd, line_ptr);
2dc7f7b3 11103 op_index = 0;
c906108c
SS
11104 line_ptr += 2;
11105 break;
9aa1fe7e 11106 default:
a738430d
MK
11107 {
11108 /* Unknown standard opcode, ignore it. */
9aa1fe7e 11109 int i;
a738430d 11110
debd256d 11111 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
9aa1fe7e
GK
11112 {
11113 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
11114 line_ptr += bytes_read;
11115 }
11116 }
c906108c
SS
11117 }
11118 }
59205f5a
JB
11119 if (lh->num_file_names < file || file == 0)
11120 dwarf2_debug_line_missing_file_complaint ();
11121 else
11122 {
11123 lh->file_names[file - 1].included_p = 1;
11124 if (!decode_for_pst_p)
fbf65064
UW
11125 {
11126 addr = gdbarch_addr_bits_remove (gdbarch, address);
c91513d8 11127 (*p_record_line) (current_subfile, 0, addr);
fbf65064 11128 }
59205f5a 11129 }
c906108c 11130 }
aaa75496
JB
11131
11132 if (decode_for_pst_p)
11133 {
11134 int file_index;
11135
11136 /* Now that we're done scanning the Line Header Program, we can
11137 create the psymtab of each included file. */
11138 for (file_index = 0; file_index < lh->num_file_names; file_index++)
11139 if (lh->file_names[file_index].included_p == 1)
11140 {
c6da4cef
DE
11141 char *include_name =
11142 psymtab_include_file_name (lh, file_index, pst, comp_dir);
11143 if (include_name != NULL)
aaa75496
JB
11144 dwarf2_create_include_psymtab (include_name, pst, objfile);
11145 }
11146 }
cb1df416
DJ
11147 else
11148 {
11149 /* Make sure a symtab is created for every file, even files
11150 which contain only variables (i.e. no code with associated
11151 line numbers). */
11152
11153 int i;
11154 struct file_entry *fe;
11155
11156 for (i = 0; i < lh->num_file_names; i++)
11157 {
11158 char *dir = NULL;
9a619af0 11159
cb1df416
DJ
11160 fe = &lh->file_names[i];
11161 if (fe->dir_index)
11162 dir = lh->include_dirs[fe->dir_index - 1];
11163 dwarf2_start_subfile (fe->name, dir, comp_dir);
11164
11165 /* Skip the main file; we don't need it, and it must be
11166 allocated last, so that it will show up before the
11167 non-primary symtabs in the objfile's symtab list. */
11168 if (current_subfile == first_subfile)
11169 continue;
11170
11171 if (current_subfile->symtab == NULL)
11172 current_subfile->symtab = allocate_symtab (current_subfile->name,
11173 cu->objfile);
11174 fe->symtab = current_subfile->symtab;
11175 }
11176 }
c906108c
SS
11177}
11178
11179/* Start a subfile for DWARF. FILENAME is the name of the file and
11180 DIRNAME the name of the source directory which contains FILENAME
4f1520fb
FR
11181 or NULL if not known. COMP_DIR is the compilation directory for the
11182 linetable's compilation unit or NULL if not known.
c906108c
SS
11183 This routine tries to keep line numbers from identical absolute and
11184 relative file names in a common subfile.
11185
11186 Using the `list' example from the GDB testsuite, which resides in
11187 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
11188 of /srcdir/list0.c yields the following debugging information for list0.c:
11189
c5aa993b
JM
11190 DW_AT_name: /srcdir/list0.c
11191 DW_AT_comp_dir: /compdir
357e46e7 11192 files.files[0].name: list0.h
c5aa993b 11193 files.files[0].dir: /srcdir
357e46e7 11194 files.files[1].name: list0.c
c5aa993b 11195 files.files[1].dir: /srcdir
c906108c
SS
11196
11197 The line number information for list0.c has to end up in a single
4f1520fb
FR
11198 subfile, so that `break /srcdir/list0.c:1' works as expected.
11199 start_subfile will ensure that this happens provided that we pass the
11200 concatenation of files.files[1].dir and files.files[1].name as the
11201 subfile's name. */
c906108c
SS
11202
11203static void
3e43a32a
MS
11204dwarf2_start_subfile (char *filename, const char *dirname,
11205 const char *comp_dir)
c906108c 11206{
4f1520fb
FR
11207 char *fullname;
11208
11209 /* While reading the DIEs, we call start_symtab(DW_AT_name, DW_AT_comp_dir).
11210 `start_symtab' will always pass the contents of DW_AT_comp_dir as
11211 second argument to start_subfile. To be consistent, we do the
11212 same here. In order not to lose the line information directory,
11213 we concatenate it to the filename when it makes sense.
11214 Note that the Dwarf3 standard says (speaking of filenames in line
11215 information): ``The directory index is ignored for file names
11216 that represent full path names''. Thus ignoring dirname in the
11217 `else' branch below isn't an issue. */
c906108c 11218
d5166ae1 11219 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
4f1520fb
FR
11220 fullname = concat (dirname, SLASH_STRING, filename, (char *)NULL);
11221 else
11222 fullname = filename;
c906108c 11223
4f1520fb
FR
11224 start_subfile (fullname, comp_dir);
11225
11226 if (fullname != filename)
11227 xfree (fullname);
c906108c
SS
11228}
11229
4c2df51b
DJ
11230static void
11231var_decode_location (struct attribute *attr, struct symbol *sym,
e7c27a73 11232 struct dwarf2_cu *cu)
4c2df51b 11233{
e7c27a73
DJ
11234 struct objfile *objfile = cu->objfile;
11235 struct comp_unit_head *cu_header = &cu->header;
11236
4c2df51b
DJ
11237 /* NOTE drow/2003-01-30: There used to be a comment and some special
11238 code here to turn a symbol with DW_AT_external and a
11239 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
11240 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
11241 with some versions of binutils) where shared libraries could have
11242 relocations against symbols in their debug information - the
11243 minimal symbol would have the right address, but the debug info
11244 would not. It's no longer necessary, because we will explicitly
11245 apply relocations when we read in the debug information now. */
11246
11247 /* A DW_AT_location attribute with no contents indicates that a
11248 variable has been optimized away. */
11249 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
11250 {
11251 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
11252 return;
11253 }
11254
11255 /* Handle one degenerate form of location expression specially, to
11256 preserve GDB's previous behavior when section offsets are
11257 specified. If this is just a DW_OP_addr then mark this symbol
11258 as LOC_STATIC. */
11259
11260 if (attr_form_is_block (attr)
11261 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size
11262 && DW_BLOCK (attr)->data[0] == DW_OP_addr)
11263 {
891d2f0b 11264 unsigned int dummy;
4c2df51b
DJ
11265
11266 SYMBOL_VALUE_ADDRESS (sym) =
e7c27a73 11267 read_address (objfile->obfd, DW_BLOCK (attr)->data + 1, cu, &dummy);
907fc202 11268 SYMBOL_CLASS (sym) = LOC_STATIC;
4c2df51b
DJ
11269 fixup_symbol_section (sym, objfile);
11270 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (objfile->section_offsets,
11271 SYMBOL_SECTION (sym));
4c2df51b
DJ
11272 return;
11273 }
11274
11275 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
11276 expression evaluator, and use LOC_COMPUTED only when necessary
11277 (i.e. when the value of a register or memory location is
11278 referenced, or a thread-local block, etc.). Then again, it might
11279 not be worthwhile. I'm assuming that it isn't unless performance
11280 or memory numbers show me otherwise. */
11281
e7c27a73 11282 dwarf2_symbol_mark_computed (attr, sym, cu);
4c2df51b 11283 SYMBOL_CLASS (sym) = LOC_COMPUTED;
8be455d7
JK
11284
11285 if (SYMBOL_COMPUTED_OPS (sym) == &dwarf2_loclist_funcs)
11286 cu->has_loclist = 1;
4c2df51b
DJ
11287}
11288
c906108c
SS
11289/* Given a pointer to a DWARF information entry, figure out if we need
11290 to make a symbol table entry for it, and if so, create a new entry
11291 and return a pointer to it.
11292 If TYPE is NULL, determine symbol type from the die, otherwise
34eaf542
TT
11293 used the passed type.
11294 If SPACE is not NULL, use it to hold the new symbol. If it is
11295 NULL, allocate a new symbol on the objfile's obstack. */
c906108c
SS
11296
11297static struct symbol *
34eaf542
TT
11298new_symbol_full (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
11299 struct symbol *space)
c906108c 11300{
e7c27a73 11301 struct objfile *objfile = cu->objfile;
c906108c
SS
11302 struct symbol *sym = NULL;
11303 char *name;
11304 struct attribute *attr = NULL;
11305 struct attribute *attr2 = NULL;
e142c38c 11306 CORE_ADDR baseaddr;
e37fd15a
SW
11307 struct pending **list_to_add = NULL;
11308
edb3359d 11309 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
e142c38c
DJ
11310
11311 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
c906108c 11312
94af9270 11313 name = dwarf2_name (die, cu);
c906108c
SS
11314 if (name)
11315 {
94af9270 11316 const char *linkagename;
34eaf542 11317 int suppress_add = 0;
94af9270 11318
34eaf542
TT
11319 if (space)
11320 sym = space;
11321 else
11322 sym = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
c906108c 11323 OBJSTAT (objfile, n_syms++);
2de7ced7
DJ
11324
11325 /* Cache this symbol's name and the name's demangled form (if any). */
33e5013e 11326 SYMBOL_SET_LANGUAGE (sym, cu->language);
94af9270
KS
11327 linkagename = dwarf2_physname (name, die, cu);
11328 SYMBOL_SET_NAMES (sym, linkagename, strlen (linkagename), 0, objfile);
c906108c 11329
f55ee35c
JK
11330 /* Fortran does not have mangling standard and the mangling does differ
11331 between gfortran, iFort etc. */
11332 if (cu->language == language_fortran
b250c185 11333 && symbol_get_demangled_name (&(sym->ginfo)) == NULL)
29df156d
SW
11334 symbol_set_demangled_name (&(sym->ginfo),
11335 (char *) dwarf2_full_name (name, die, cu),
11336 NULL);
f55ee35c 11337
c906108c 11338 /* Default assumptions.
c5aa993b 11339 Use the passed type or decode it from the die. */
176620f1 11340 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
875dc2fc 11341 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
c906108c
SS
11342 if (type != NULL)
11343 SYMBOL_TYPE (sym) = type;
11344 else
e7c27a73 11345 SYMBOL_TYPE (sym) = die_type (die, cu);
edb3359d
DJ
11346 attr = dwarf2_attr (die,
11347 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
11348 cu);
c906108c
SS
11349 if (attr)
11350 {
11351 SYMBOL_LINE (sym) = DW_UNSND (attr);
11352 }
cb1df416 11353
edb3359d
DJ
11354 attr = dwarf2_attr (die,
11355 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
11356 cu);
cb1df416
DJ
11357 if (attr)
11358 {
11359 int file_index = DW_UNSND (attr);
9a619af0 11360
cb1df416
DJ
11361 if (cu->line_header == NULL
11362 || file_index > cu->line_header->num_file_names)
11363 complaint (&symfile_complaints,
11364 _("file index out of range"));
1c3d648d 11365 else if (file_index > 0)
cb1df416
DJ
11366 {
11367 struct file_entry *fe;
9a619af0 11368
cb1df416
DJ
11369 fe = &cu->line_header->file_names[file_index - 1];
11370 SYMBOL_SYMTAB (sym) = fe->symtab;
11371 }
11372 }
11373
c906108c
SS
11374 switch (die->tag)
11375 {
11376 case DW_TAG_label:
e142c38c 11377 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
c906108c
SS
11378 if (attr)
11379 {
11380 SYMBOL_VALUE_ADDRESS (sym) = DW_ADDR (attr) + baseaddr;
11381 }
0f5238ed
TT
11382 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
11383 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
c906108c 11384 SYMBOL_CLASS (sym) = LOC_LABEL;
0f5238ed 11385 add_symbol_to_list (sym, cu->list_in_scope);
c906108c
SS
11386 break;
11387 case DW_TAG_subprogram:
11388 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
11389 finish_block. */
11390 SYMBOL_CLASS (sym) = LOC_BLOCK;
e142c38c 11391 attr2 = dwarf2_attr (die, DW_AT_external, cu);
2cfa0c8d
JB
11392 if ((attr2 && (DW_UNSND (attr2) != 0))
11393 || cu->language == language_ada)
c906108c 11394 {
2cfa0c8d
JB
11395 /* Subprograms marked external are stored as a global symbol.
11396 Ada subprograms, whether marked external or not, are always
11397 stored as a global symbol, because we want to be able to
11398 access them globally. For instance, we want to be able
11399 to break on a nested subprogram without having to
11400 specify the context. */
e37fd15a 11401 list_to_add = &global_symbols;
c906108c
SS
11402 }
11403 else
11404 {
e37fd15a 11405 list_to_add = cu->list_in_scope;
c906108c
SS
11406 }
11407 break;
edb3359d
DJ
11408 case DW_TAG_inlined_subroutine:
11409 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
11410 finish_block. */
11411 SYMBOL_CLASS (sym) = LOC_BLOCK;
11412 SYMBOL_INLINED (sym) = 1;
11413 /* Do not add the symbol to any lists. It will be found via
11414 BLOCK_FUNCTION from the blockvector. */
11415 break;
34eaf542
TT
11416 case DW_TAG_template_value_param:
11417 suppress_add = 1;
11418 /* Fall through. */
72929c62 11419 case DW_TAG_constant:
c906108c 11420 case DW_TAG_variable:
254e6b9e 11421 case DW_TAG_member:
0963b4bd
MS
11422 /* Compilation with minimal debug info may result in
11423 variables with missing type entries. Change the
11424 misleading `void' type to something sensible. */
c906108c 11425 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
64c50499 11426 SYMBOL_TYPE (sym)
46bf5051 11427 = objfile_type (objfile)->nodebug_data_symbol;
64c50499 11428
e142c38c 11429 attr = dwarf2_attr (die, DW_AT_const_value, cu);
254e6b9e
DE
11430 /* In the case of DW_TAG_member, we should only be called for
11431 static const members. */
11432 if (die->tag == DW_TAG_member)
11433 {
3863f96c
DE
11434 /* dwarf2_add_field uses die_is_declaration,
11435 so we do the same. */
254e6b9e
DE
11436 gdb_assert (die_is_declaration (die, cu));
11437 gdb_assert (attr);
11438 }
c906108c
SS
11439 if (attr)
11440 {
e7c27a73 11441 dwarf2_const_value (attr, sym, cu);
e142c38c 11442 attr2 = dwarf2_attr (die, DW_AT_external, cu);
e37fd15a 11443 if (!suppress_add)
34eaf542
TT
11444 {
11445 if (attr2 && (DW_UNSND (attr2) != 0))
e37fd15a 11446 list_to_add = &global_symbols;
34eaf542 11447 else
e37fd15a 11448 list_to_add = cu->list_in_scope;
34eaf542 11449 }
c906108c
SS
11450 break;
11451 }
e142c38c 11452 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
11453 if (attr)
11454 {
e7c27a73 11455 var_decode_location (attr, sym, cu);
e142c38c 11456 attr2 = dwarf2_attr (die, DW_AT_external, cu);
caac4577
JG
11457 if (SYMBOL_CLASS (sym) == LOC_STATIC
11458 && SYMBOL_VALUE_ADDRESS (sym) == 0
11459 && !dwarf2_per_objfile->has_section_at_zero)
11460 {
11461 /* When a static variable is eliminated by the linker,
11462 the corresponding debug information is not stripped
11463 out, but the variable address is set to null;
11464 do not add such variables into symbol table. */
11465 }
11466 else if (attr2 && (DW_UNSND (attr2) != 0))
1c809c68 11467 {
f55ee35c
JK
11468 /* Workaround gfortran PR debug/40040 - it uses
11469 DW_AT_location for variables in -fPIC libraries which may
11470 get overriden by other libraries/executable and get
11471 a different address. Resolve it by the minimal symbol
11472 which may come from inferior's executable using copy
11473 relocation. Make this workaround only for gfortran as for
11474 other compilers GDB cannot guess the minimal symbol
11475 Fortran mangling kind. */
11476 if (cu->language == language_fortran && die->parent
11477 && die->parent->tag == DW_TAG_module
11478 && cu->producer
11479 && strncmp (cu->producer, "GNU Fortran ", 12) == 0)
11480 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
11481
1c809c68
TT
11482 /* A variable with DW_AT_external is never static,
11483 but it may be block-scoped. */
11484 list_to_add = (cu->list_in_scope == &file_symbols
11485 ? &global_symbols : cu->list_in_scope);
1c809c68 11486 }
c906108c 11487 else
e37fd15a 11488 list_to_add = cu->list_in_scope;
c906108c
SS
11489 }
11490 else
11491 {
11492 /* We do not know the address of this symbol.
c5aa993b
JM
11493 If it is an external symbol and we have type information
11494 for it, enter the symbol as a LOC_UNRESOLVED symbol.
11495 The address of the variable will then be determined from
11496 the minimal symbol table whenever the variable is
11497 referenced. */
e142c38c 11498 attr2 = dwarf2_attr (die, DW_AT_external, cu);
c906108c 11499 if (attr2 && (DW_UNSND (attr2) != 0)
e142c38c 11500 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
c906108c 11501 {
0fe7935b
DJ
11502 /* A variable with DW_AT_external is never static, but it
11503 may be block-scoped. */
11504 list_to_add = (cu->list_in_scope == &file_symbols
11505 ? &global_symbols : cu->list_in_scope);
11506
c906108c 11507 SYMBOL_CLASS (sym) = LOC_UNRESOLVED;
c906108c 11508 }
442ddf59
JK
11509 else if (!die_is_declaration (die, cu))
11510 {
11511 /* Use the default LOC_OPTIMIZED_OUT class. */
11512 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
e37fd15a
SW
11513 if (!suppress_add)
11514 list_to_add = cu->list_in_scope;
442ddf59 11515 }
c906108c
SS
11516 }
11517 break;
11518 case DW_TAG_formal_parameter:
edb3359d
DJ
11519 /* If we are inside a function, mark this as an argument. If
11520 not, we might be looking at an argument to an inlined function
11521 when we do not have enough information to show inlined frames;
11522 pretend it's a local variable in that case so that the user can
11523 still see it. */
11524 if (context_stack_depth > 0
11525 && context_stack[context_stack_depth - 1].name != NULL)
11526 SYMBOL_IS_ARGUMENT (sym) = 1;
e142c38c 11527 attr = dwarf2_attr (die, DW_AT_location, cu);
c906108c
SS
11528 if (attr)
11529 {
e7c27a73 11530 var_decode_location (attr, sym, cu);
c906108c 11531 }
e142c38c 11532 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
11533 if (attr)
11534 {
e7c27a73 11535 dwarf2_const_value (attr, sym, cu);
c906108c 11536 }
f346a30d 11537
e37fd15a 11538 list_to_add = cu->list_in_scope;
c906108c
SS
11539 break;
11540 case DW_TAG_unspecified_parameters:
11541 /* From varargs functions; gdb doesn't seem to have any
11542 interest in this information, so just ignore it for now.
11543 (FIXME?) */
11544 break;
34eaf542
TT
11545 case DW_TAG_template_type_param:
11546 suppress_add = 1;
11547 /* Fall through. */
c906108c 11548 case DW_TAG_class_type:
680b30c7 11549 case DW_TAG_interface_type:
c906108c
SS
11550 case DW_TAG_structure_type:
11551 case DW_TAG_union_type:
72019c9c 11552 case DW_TAG_set_type:
c906108c
SS
11553 case DW_TAG_enumeration_type:
11554 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 11555 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
c906108c 11556
63d06c5c 11557 {
987504bb 11558 /* NOTE: carlton/2003-11-10: C++ and Java class symbols shouldn't
63d06c5c
DC
11559 really ever be static objects: otherwise, if you try
11560 to, say, break of a class's method and you're in a file
11561 which doesn't mention that class, it won't work unless
11562 the check for all static symbols in lookup_symbol_aux
11563 saves you. See the OtherFileClass tests in
11564 gdb.c++/namespace.exp. */
11565
e37fd15a 11566 if (!suppress_add)
34eaf542 11567 {
34eaf542
TT
11568 list_to_add = (cu->list_in_scope == &file_symbols
11569 && (cu->language == language_cplus
11570 || cu->language == language_java)
11571 ? &global_symbols : cu->list_in_scope);
63d06c5c 11572
64382290
TT
11573 /* The semantics of C++ state that "struct foo {
11574 ... }" also defines a typedef for "foo". A Java
11575 class declaration also defines a typedef for the
11576 class. */
11577 if (cu->language == language_cplus
11578 || cu->language == language_java
11579 || cu->language == language_ada)
11580 {
11581 /* The symbol's name is already allocated along
11582 with this objfile, so we don't need to
11583 duplicate it for the type. */
11584 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
11585 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_SEARCH_NAME (sym);
11586 }
63d06c5c
DC
11587 }
11588 }
c906108c
SS
11589 break;
11590 case DW_TAG_typedef:
63d06c5c
DC
11591 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
11592 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 11593 list_to_add = cu->list_in_scope;
63d06c5c 11594 break;
c906108c 11595 case DW_TAG_base_type:
a02abb62 11596 case DW_TAG_subrange_type:
c906108c 11597 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
176620f1 11598 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
e37fd15a 11599 list_to_add = cu->list_in_scope;
c906108c
SS
11600 break;
11601 case DW_TAG_enumerator:
e142c38c 11602 attr = dwarf2_attr (die, DW_AT_const_value, cu);
c906108c
SS
11603 if (attr)
11604 {
e7c27a73 11605 dwarf2_const_value (attr, sym, cu);
c906108c 11606 }
63d06c5c
DC
11607 {
11608 /* NOTE: carlton/2003-11-10: See comment above in the
11609 DW_TAG_class_type, etc. block. */
11610
e142c38c 11611 list_to_add = (cu->list_in_scope == &file_symbols
987504bb
JJ
11612 && (cu->language == language_cplus
11613 || cu->language == language_java)
e142c38c 11614 ? &global_symbols : cu->list_in_scope);
63d06c5c 11615 }
c906108c 11616 break;
5c4e30ca
DC
11617 case DW_TAG_namespace:
11618 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
e37fd15a 11619 list_to_add = &global_symbols;
5c4e30ca 11620 break;
c906108c
SS
11621 default:
11622 /* Not a tag we recognize. Hopefully we aren't processing
11623 trash data, but since we must specifically ignore things
11624 we don't recognize, there is nothing else we should do at
0963b4bd 11625 this point. */
e2e0b3e5 11626 complaint (&symfile_complaints, _("unsupported tag: '%s'"),
4d3c2250 11627 dwarf_tag_name (die->tag));
c906108c
SS
11628 break;
11629 }
df8a16a1 11630
e37fd15a
SW
11631 if (suppress_add)
11632 {
11633 sym->hash_next = objfile->template_symbols;
11634 objfile->template_symbols = sym;
11635 list_to_add = NULL;
11636 }
11637
11638 if (list_to_add != NULL)
11639 add_symbol_to_list (sym, list_to_add);
11640
df8a16a1
DJ
11641 /* For the benefit of old versions of GCC, check for anonymous
11642 namespaces based on the demangled name. */
11643 if (!processing_has_namespace_info
94af9270 11644 && cu->language == language_cplus)
df8a16a1 11645 cp_scan_for_anonymous_namespaces (sym);
c906108c
SS
11646 }
11647 return (sym);
11648}
11649
34eaf542
TT
11650/* A wrapper for new_symbol_full that always allocates a new symbol. */
11651
11652static struct symbol *
11653new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
11654{
11655 return new_symbol_full (die, type, cu, NULL);
11656}
11657
98bfdba5
PA
11658/* Given an attr with a DW_FORM_dataN value in host byte order,
11659 zero-extend it as appropriate for the symbol's type. The DWARF
11660 standard (v4) is not entirely clear about the meaning of using
11661 DW_FORM_dataN for a constant with a signed type, where the type is
11662 wider than the data. The conclusion of a discussion on the DWARF
11663 list was that this is unspecified. We choose to always zero-extend
11664 because that is the interpretation long in use by GCC. */
c906108c 11665
98bfdba5
PA
11666static gdb_byte *
11667dwarf2_const_value_data (struct attribute *attr, struct type *type,
11668 const char *name, struct obstack *obstack,
11669 struct dwarf2_cu *cu, long *value, int bits)
c906108c 11670{
e7c27a73 11671 struct objfile *objfile = cu->objfile;
e17a4113
UW
11672 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
11673 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
98bfdba5
PA
11674 LONGEST l = DW_UNSND (attr);
11675
11676 if (bits < sizeof (*value) * 8)
11677 {
11678 l &= ((LONGEST) 1 << bits) - 1;
11679 *value = l;
11680 }
11681 else if (bits == sizeof (*value) * 8)
11682 *value = l;
11683 else
11684 {
11685 gdb_byte *bytes = obstack_alloc (obstack, bits / 8);
11686 store_unsigned_integer (bytes, bits / 8, byte_order, l);
11687 return bytes;
11688 }
11689
11690 return NULL;
11691}
11692
11693/* Read a constant value from an attribute. Either set *VALUE, or if
11694 the value does not fit in *VALUE, set *BYTES - either already
11695 allocated on the objfile obstack, or newly allocated on OBSTACK,
11696 or, set *BATON, if we translated the constant to a location
11697 expression. */
11698
11699static void
11700dwarf2_const_value_attr (struct attribute *attr, struct type *type,
11701 const char *name, struct obstack *obstack,
11702 struct dwarf2_cu *cu,
11703 long *value, gdb_byte **bytes,
11704 struct dwarf2_locexpr_baton **baton)
11705{
11706 struct objfile *objfile = cu->objfile;
11707 struct comp_unit_head *cu_header = &cu->header;
c906108c 11708 struct dwarf_block *blk;
98bfdba5
PA
11709 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
11710 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
11711
11712 *value = 0;
11713 *bytes = NULL;
11714 *baton = NULL;
c906108c
SS
11715
11716 switch (attr->form)
11717 {
11718 case DW_FORM_addr:
ac56253d 11719 {
ac56253d
TT
11720 gdb_byte *data;
11721
98bfdba5
PA
11722 if (TYPE_LENGTH (type) != cu_header->addr_size)
11723 dwarf2_const_value_length_mismatch_complaint (name,
ac56253d 11724 cu_header->addr_size,
98bfdba5 11725 TYPE_LENGTH (type));
ac56253d
TT
11726 /* Symbols of this form are reasonably rare, so we just
11727 piggyback on the existing location code rather than writing
11728 a new implementation of symbol_computed_ops. */
98bfdba5
PA
11729 *baton = obstack_alloc (&objfile->objfile_obstack,
11730 sizeof (struct dwarf2_locexpr_baton));
11731 (*baton)->per_cu = cu->per_cu;
11732 gdb_assert ((*baton)->per_cu);
ac56253d 11733
98bfdba5
PA
11734 (*baton)->size = 2 + cu_header->addr_size;
11735 data = obstack_alloc (&objfile->objfile_obstack, (*baton)->size);
11736 (*baton)->data = data;
ac56253d
TT
11737
11738 data[0] = DW_OP_addr;
11739 store_unsigned_integer (&data[1], cu_header->addr_size,
11740 byte_order, DW_ADDR (attr));
11741 data[cu_header->addr_size + 1] = DW_OP_stack_value;
ac56253d 11742 }
c906108c 11743 break;
4ac36638 11744 case DW_FORM_string:
93b5768b 11745 case DW_FORM_strp:
98bfdba5
PA
11746 /* DW_STRING is already allocated on the objfile obstack, point
11747 directly to it. */
11748 *bytes = (gdb_byte *) DW_STRING (attr);
93b5768b 11749 break;
c906108c
SS
11750 case DW_FORM_block1:
11751 case DW_FORM_block2:
11752 case DW_FORM_block4:
11753 case DW_FORM_block:
2dc7f7b3 11754 case DW_FORM_exprloc:
c906108c 11755 blk = DW_BLOCK (attr);
98bfdba5
PA
11756 if (TYPE_LENGTH (type) != blk->size)
11757 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
11758 TYPE_LENGTH (type));
11759 *bytes = blk->data;
c906108c 11760 break;
2df3850c
JM
11761
11762 /* The DW_AT_const_value attributes are supposed to carry the
11763 symbol's value "represented as it would be on the target
11764 architecture." By the time we get here, it's already been
11765 converted to host endianness, so we just need to sign- or
11766 zero-extend it as appropriate. */
11767 case DW_FORM_data1:
3e43a32a
MS
11768 *bytes = dwarf2_const_value_data (attr, type, name,
11769 obstack, cu, value, 8);
2df3850c 11770 break;
c906108c 11771 case DW_FORM_data2:
3e43a32a
MS
11772 *bytes = dwarf2_const_value_data (attr, type, name,
11773 obstack, cu, value, 16);
2df3850c 11774 break;
c906108c 11775 case DW_FORM_data4:
3e43a32a
MS
11776 *bytes = dwarf2_const_value_data (attr, type, name,
11777 obstack, cu, value, 32);
2df3850c 11778 break;
c906108c 11779 case DW_FORM_data8:
3e43a32a
MS
11780 *bytes = dwarf2_const_value_data (attr, type, name,
11781 obstack, cu, value, 64);
2df3850c
JM
11782 break;
11783
c906108c 11784 case DW_FORM_sdata:
98bfdba5 11785 *value = DW_SND (attr);
2df3850c
JM
11786 break;
11787
c906108c 11788 case DW_FORM_udata:
98bfdba5 11789 *value = DW_UNSND (attr);
c906108c 11790 break;
2df3850c 11791
c906108c 11792 default:
4d3c2250 11793 complaint (&symfile_complaints,
e2e0b3e5 11794 _("unsupported const value attribute form: '%s'"),
4d3c2250 11795 dwarf_form_name (attr->form));
98bfdba5 11796 *value = 0;
c906108c
SS
11797 break;
11798 }
11799}
11800
2df3850c 11801
98bfdba5
PA
11802/* Copy constant value from an attribute to a symbol. */
11803
2df3850c 11804static void
98bfdba5
PA
11805dwarf2_const_value (struct attribute *attr, struct symbol *sym,
11806 struct dwarf2_cu *cu)
2df3850c 11807{
98bfdba5
PA
11808 struct objfile *objfile = cu->objfile;
11809 struct comp_unit_head *cu_header = &cu->header;
11810 long value;
11811 gdb_byte *bytes;
11812 struct dwarf2_locexpr_baton *baton;
2df3850c 11813
98bfdba5
PA
11814 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
11815 SYMBOL_PRINT_NAME (sym),
11816 &objfile->objfile_obstack, cu,
11817 &value, &bytes, &baton);
2df3850c 11818
98bfdba5
PA
11819 if (baton != NULL)
11820 {
11821 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
11822 SYMBOL_LOCATION_BATON (sym) = baton;
11823 SYMBOL_CLASS (sym) = LOC_COMPUTED;
11824 }
11825 else if (bytes != NULL)
11826 {
11827 SYMBOL_VALUE_BYTES (sym) = bytes;
11828 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
11829 }
11830 else
11831 {
11832 SYMBOL_VALUE (sym) = value;
11833 SYMBOL_CLASS (sym) = LOC_CONST;
11834 }
2df3850c
JM
11835}
11836
c906108c
SS
11837/* Return the type of the die in question using its DW_AT_type attribute. */
11838
11839static struct type *
e7c27a73 11840die_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11841{
c906108c 11842 struct attribute *type_attr;
c906108c 11843
e142c38c 11844 type_attr = dwarf2_attr (die, DW_AT_type, cu);
c906108c
SS
11845 if (!type_attr)
11846 {
11847 /* A missing DW_AT_type represents a void type. */
46bf5051 11848 return objfile_type (cu->objfile)->builtin_void;
c906108c 11849 }
348e048f 11850
673bfd45 11851 return lookup_die_type (die, type_attr, cu);
c906108c
SS
11852}
11853
b4ba55a1
JB
11854/* True iff CU's producer generates GNAT Ada auxiliary information
11855 that allows to find parallel types through that information instead
11856 of having to do expensive parallel lookups by type name. */
11857
11858static int
11859need_gnat_info (struct dwarf2_cu *cu)
11860{
11861 /* FIXME: brobecker/2010-10-12: As of now, only the AdaCore version
11862 of GNAT produces this auxiliary information, without any indication
11863 that it is produced. Part of enhancing the FSF version of GNAT
11864 to produce that information will be to put in place an indicator
11865 that we can use in order to determine whether the descriptive type
11866 info is available or not. One suggestion that has been made is
11867 to use a new attribute, attached to the CU die. For now, assume
11868 that the descriptive type info is not available. */
11869 return 0;
11870}
11871
b4ba55a1
JB
11872/* Return the auxiliary type of the die in question using its
11873 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
11874 attribute is not present. */
11875
11876static struct type *
11877die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
11878{
b4ba55a1 11879 struct attribute *type_attr;
b4ba55a1
JB
11880
11881 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
11882 if (!type_attr)
11883 return NULL;
11884
673bfd45 11885 return lookup_die_type (die, type_attr, cu);
b4ba55a1
JB
11886}
11887
11888/* If DIE has a descriptive_type attribute, then set the TYPE's
11889 descriptive type accordingly. */
11890
11891static void
11892set_descriptive_type (struct type *type, struct die_info *die,
11893 struct dwarf2_cu *cu)
11894{
11895 struct type *descriptive_type = die_descriptive_type (die, cu);
11896
11897 if (descriptive_type)
11898 {
11899 ALLOCATE_GNAT_AUX_TYPE (type);
11900 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
11901 }
11902}
11903
c906108c
SS
11904/* Return the containing type of the die in question using its
11905 DW_AT_containing_type attribute. */
11906
11907static struct type *
e7c27a73 11908die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
c906108c 11909{
c906108c 11910 struct attribute *type_attr;
c906108c 11911
e142c38c 11912 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
33ac96f0
JK
11913 if (!type_attr)
11914 error (_("Dwarf Error: Problem turning containing type into gdb type "
11915 "[in module %s]"), cu->objfile->name);
11916
673bfd45 11917 return lookup_die_type (die, type_attr, cu);
c906108c
SS
11918}
11919
673bfd45
DE
11920/* Look up the type of DIE in CU using its type attribute ATTR.
11921 If there is no type substitute an error marker. */
11922
c906108c 11923static struct type *
673bfd45
DE
11924lookup_die_type (struct die_info *die, struct attribute *attr,
11925 struct dwarf2_cu *cu)
c906108c 11926{
f792889a
DJ
11927 struct type *this_type;
11928
673bfd45
DE
11929 /* First see if we have it cached. */
11930
11931 if (is_ref_attr (attr))
11932 {
11933 unsigned int offset = dwarf2_get_ref_die_offset (attr);
11934
11935 this_type = get_die_type_at_offset (offset, cu->per_cu);
11936 }
55f1336d 11937 else if (attr->form == DW_FORM_ref_sig8)
673bfd45
DE
11938 {
11939 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
11940 struct dwarf2_cu *sig_cu;
11941 unsigned int offset;
11942
11943 /* sig_type will be NULL if the signatured type is missing from
11944 the debug info. */
11945 if (sig_type == NULL)
11946 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
11947 "at 0x%x [in module %s]"),
11948 die->offset, cu->objfile->name);
11949
8b70b953 11950 gdb_assert (sig_type->per_cu.debug_type_section);
b3c8eb43 11951 offset = sig_type->per_cu.offset + sig_type->type_offset;
673bfd45
DE
11952 this_type = get_die_type_at_offset (offset, &sig_type->per_cu);
11953 }
11954 else
11955 {
11956 dump_die_for_error (die);
11957 error (_("Dwarf Error: Bad type attribute %s [in module %s]"),
11958 dwarf_attr_name (attr->name), cu->objfile->name);
11959 }
11960
11961 /* If not cached we need to read it in. */
11962
11963 if (this_type == NULL)
11964 {
11965 struct die_info *type_die;
11966 struct dwarf2_cu *type_cu = cu;
11967
11968 type_die = follow_die_ref_or_sig (die, attr, &type_cu);
11969 /* If the type is cached, we should have found it above. */
11970 gdb_assert (get_die_type (type_die, type_cu) == NULL);
11971 this_type = read_type_die_1 (type_die, type_cu);
11972 }
11973
11974 /* If we still don't have a type use an error marker. */
11975
11976 if (this_type == NULL)
c906108c 11977 {
b00fdb78
TT
11978 char *message, *saved;
11979
11980 /* read_type_die already issued a complaint. */
11981 message = xstrprintf (_("<unknown type in %s, CU 0x%x, DIE 0x%x>"),
11982 cu->objfile->name,
11983 cu->header.offset,
11984 die->offset);
11985 saved = obstack_copy0 (&cu->objfile->objfile_obstack,
11986 message, strlen (message));
11987 xfree (message);
11988
11989 this_type = init_type (TYPE_CODE_ERROR, 0, 0, saved, cu->objfile);
c906108c 11990 }
673bfd45 11991
f792889a 11992 return this_type;
c906108c
SS
11993}
11994
673bfd45
DE
11995/* Return the type in DIE, CU.
11996 Returns NULL for invalid types.
11997
11998 This first does a lookup in the appropriate type_hash table,
11999 and only reads the die in if necessary.
12000
12001 NOTE: This can be called when reading in partial or full symbols. */
12002
f792889a 12003static struct type *
e7c27a73 12004read_type_die (struct die_info *die, struct dwarf2_cu *cu)
c906108c 12005{
f792889a
DJ
12006 struct type *this_type;
12007
12008 this_type = get_die_type (die, cu);
12009 if (this_type)
12010 return this_type;
12011
673bfd45
DE
12012 return read_type_die_1 (die, cu);
12013}
12014
12015/* Read the type in DIE, CU.
12016 Returns NULL for invalid types. */
12017
12018static struct type *
12019read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
12020{
12021 struct type *this_type = NULL;
12022
c906108c
SS
12023 switch (die->tag)
12024 {
12025 case DW_TAG_class_type:
680b30c7 12026 case DW_TAG_interface_type:
c906108c
SS
12027 case DW_TAG_structure_type:
12028 case DW_TAG_union_type:
f792889a 12029 this_type = read_structure_type (die, cu);
c906108c
SS
12030 break;
12031 case DW_TAG_enumeration_type:
f792889a 12032 this_type = read_enumeration_type (die, cu);
c906108c
SS
12033 break;
12034 case DW_TAG_subprogram:
12035 case DW_TAG_subroutine_type:
edb3359d 12036 case DW_TAG_inlined_subroutine:
f792889a 12037 this_type = read_subroutine_type (die, cu);
c906108c
SS
12038 break;
12039 case DW_TAG_array_type:
f792889a 12040 this_type = read_array_type (die, cu);
c906108c 12041 break;
72019c9c 12042 case DW_TAG_set_type:
f792889a 12043 this_type = read_set_type (die, cu);
72019c9c 12044 break;
c906108c 12045 case DW_TAG_pointer_type:
f792889a 12046 this_type = read_tag_pointer_type (die, cu);
c906108c
SS
12047 break;
12048 case DW_TAG_ptr_to_member_type:
f792889a 12049 this_type = read_tag_ptr_to_member_type (die, cu);
c906108c
SS
12050 break;
12051 case DW_TAG_reference_type:
f792889a 12052 this_type = read_tag_reference_type (die, cu);
c906108c
SS
12053 break;
12054 case DW_TAG_const_type:
f792889a 12055 this_type = read_tag_const_type (die, cu);
c906108c
SS
12056 break;
12057 case DW_TAG_volatile_type:
f792889a 12058 this_type = read_tag_volatile_type (die, cu);
c906108c
SS
12059 break;
12060 case DW_TAG_string_type:
f792889a 12061 this_type = read_tag_string_type (die, cu);
c906108c
SS
12062 break;
12063 case DW_TAG_typedef:
f792889a 12064 this_type = read_typedef (die, cu);
c906108c 12065 break;
a02abb62 12066 case DW_TAG_subrange_type:
f792889a 12067 this_type = read_subrange_type (die, cu);
a02abb62 12068 break;
c906108c 12069 case DW_TAG_base_type:
f792889a 12070 this_type = read_base_type (die, cu);
c906108c 12071 break;
81a17f79 12072 case DW_TAG_unspecified_type:
f792889a 12073 this_type = read_unspecified_type (die, cu);
81a17f79 12074 break;
0114d602
DJ
12075 case DW_TAG_namespace:
12076 this_type = read_namespace_type (die, cu);
12077 break;
f55ee35c
JK
12078 case DW_TAG_module:
12079 this_type = read_module_type (die, cu);
12080 break;
c906108c 12081 default:
3e43a32a
MS
12082 complaint (&symfile_complaints,
12083 _("unexpected tag in read_type_die: '%s'"),
4d3c2250 12084 dwarf_tag_name (die->tag));
c906108c
SS
12085 break;
12086 }
63d06c5c 12087
f792889a 12088 return this_type;
63d06c5c
DC
12089}
12090
abc72ce4
DE
12091/* See if we can figure out if the class lives in a namespace. We do
12092 this by looking for a member function; its demangled name will
12093 contain namespace info, if there is any.
12094 Return the computed name or NULL.
12095 Space for the result is allocated on the objfile's obstack.
12096 This is the full-die version of guess_partial_die_structure_name.
12097 In this case we know DIE has no useful parent. */
12098
12099static char *
12100guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
12101{
12102 struct die_info *spec_die;
12103 struct dwarf2_cu *spec_cu;
12104 struct die_info *child;
12105
12106 spec_cu = cu;
12107 spec_die = die_specification (die, &spec_cu);
12108 if (spec_die != NULL)
12109 {
12110 die = spec_die;
12111 cu = spec_cu;
12112 }
12113
12114 for (child = die->child;
12115 child != NULL;
12116 child = child->sibling)
12117 {
12118 if (child->tag == DW_TAG_subprogram)
12119 {
12120 struct attribute *attr;
12121
12122 attr = dwarf2_attr (child, DW_AT_linkage_name, cu);
12123 if (attr == NULL)
12124 attr = dwarf2_attr (child, DW_AT_MIPS_linkage_name, cu);
12125 if (attr != NULL)
12126 {
12127 char *actual_name
12128 = language_class_name_from_physname (cu->language_defn,
12129 DW_STRING (attr));
12130 char *name = NULL;
12131
12132 if (actual_name != NULL)
12133 {
12134 char *die_name = dwarf2_name (die, cu);
12135
12136 if (die_name != NULL
12137 && strcmp (die_name, actual_name) != 0)
12138 {
12139 /* Strip off the class name from the full name.
12140 We want the prefix. */
12141 int die_name_len = strlen (die_name);
12142 int actual_name_len = strlen (actual_name);
12143
12144 /* Test for '::' as a sanity check. */
12145 if (actual_name_len > die_name_len + 2
3e43a32a
MS
12146 && actual_name[actual_name_len
12147 - die_name_len - 1] == ':')
abc72ce4
DE
12148 name =
12149 obsavestring (actual_name,
12150 actual_name_len - die_name_len - 2,
12151 &cu->objfile->objfile_obstack);
12152 }
12153 }
12154 xfree (actual_name);
12155 return name;
12156 }
12157 }
12158 }
12159
12160 return NULL;
12161}
12162
fdde2d81 12163/* Return the name of the namespace/class that DIE is defined within,
0114d602 12164 or "" if we can't tell. The caller should not xfree the result.
fdde2d81 12165
0114d602
DJ
12166 For example, if we're within the method foo() in the following
12167 code:
12168
12169 namespace N {
12170 class C {
12171 void foo () {
12172 }
12173 };
12174 }
12175
12176 then determine_prefix on foo's die will return "N::C". */
fdde2d81
DC
12177
12178static char *
e142c38c 12179determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
63d06c5c 12180{
0114d602
DJ
12181 struct die_info *parent, *spec_die;
12182 struct dwarf2_cu *spec_cu;
12183 struct type *parent_type;
63d06c5c 12184
f55ee35c
JK
12185 if (cu->language != language_cplus && cu->language != language_java
12186 && cu->language != language_fortran)
0114d602
DJ
12187 return "";
12188
12189 /* We have to be careful in the presence of DW_AT_specification.
12190 For example, with GCC 3.4, given the code
12191
12192 namespace N {
12193 void foo() {
12194 // Definition of N::foo.
12195 }
12196 }
12197
12198 then we'll have a tree of DIEs like this:
12199
12200 1: DW_TAG_compile_unit
12201 2: DW_TAG_namespace // N
12202 3: DW_TAG_subprogram // declaration of N::foo
12203 4: DW_TAG_subprogram // definition of N::foo
12204 DW_AT_specification // refers to die #3
12205
12206 Thus, when processing die #4, we have to pretend that we're in
12207 the context of its DW_AT_specification, namely the contex of die
12208 #3. */
12209 spec_cu = cu;
12210 spec_die = die_specification (die, &spec_cu);
12211 if (spec_die == NULL)
12212 parent = die->parent;
12213 else
63d06c5c 12214 {
0114d602
DJ
12215 parent = spec_die->parent;
12216 cu = spec_cu;
63d06c5c 12217 }
0114d602
DJ
12218
12219 if (parent == NULL)
12220 return "";
98bfdba5
PA
12221 else if (parent->building_fullname)
12222 {
12223 const char *name;
12224 const char *parent_name;
12225
12226 /* It has been seen on RealView 2.2 built binaries,
12227 DW_TAG_template_type_param types actually _defined_ as
12228 children of the parent class:
12229
12230 enum E {};
12231 template class <class Enum> Class{};
12232 Class<enum E> class_e;
12233
12234 1: DW_TAG_class_type (Class)
12235 2: DW_TAG_enumeration_type (E)
12236 3: DW_TAG_enumerator (enum1:0)
12237 3: DW_TAG_enumerator (enum2:1)
12238 ...
12239 2: DW_TAG_template_type_param
12240 DW_AT_type DW_FORM_ref_udata (E)
12241
12242 Besides being broken debug info, it can put GDB into an
12243 infinite loop. Consider:
12244
12245 When we're building the full name for Class<E>, we'll start
12246 at Class, and go look over its template type parameters,
12247 finding E. We'll then try to build the full name of E, and
12248 reach here. We're now trying to build the full name of E,
12249 and look over the parent DIE for containing scope. In the
12250 broken case, if we followed the parent DIE of E, we'd again
12251 find Class, and once again go look at its template type
12252 arguments, etc., etc. Simply don't consider such parent die
12253 as source-level parent of this die (it can't be, the language
12254 doesn't allow it), and break the loop here. */
12255 name = dwarf2_name (die, cu);
12256 parent_name = dwarf2_name (parent, cu);
12257 complaint (&symfile_complaints,
12258 _("template param type '%s' defined within parent '%s'"),
12259 name ? name : "<unknown>",
12260 parent_name ? parent_name : "<unknown>");
12261 return "";
12262 }
63d06c5c 12263 else
0114d602
DJ
12264 switch (parent->tag)
12265 {
63d06c5c 12266 case DW_TAG_namespace:
0114d602 12267 parent_type = read_type_die (parent, cu);
acebe513
UW
12268 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
12269 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
12270 Work around this problem here. */
12271 if (cu->language == language_cplus
12272 && strcmp (TYPE_TAG_NAME (parent_type), "::") == 0)
12273 return "";
0114d602
DJ
12274 /* We give a name to even anonymous namespaces. */
12275 return TYPE_TAG_NAME (parent_type);
63d06c5c 12276 case DW_TAG_class_type:
680b30c7 12277 case DW_TAG_interface_type:
63d06c5c 12278 case DW_TAG_structure_type:
0114d602 12279 case DW_TAG_union_type:
f55ee35c 12280 case DW_TAG_module:
0114d602
DJ
12281 parent_type = read_type_die (parent, cu);
12282 if (TYPE_TAG_NAME (parent_type) != NULL)
12283 return TYPE_TAG_NAME (parent_type);
12284 else
12285 /* An anonymous structure is only allowed non-static data
12286 members; no typedefs, no member functions, et cetera.
12287 So it does not need a prefix. */
12288 return "";
abc72ce4
DE
12289 case DW_TAG_compile_unit:
12290 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
12291 if (cu->language == language_cplus
8b70b953 12292 && !VEC_empty (dwarf2_section_info_def, dwarf2_per_objfile->types)
abc72ce4
DE
12293 && die->child != NULL
12294 && (die->tag == DW_TAG_class_type
12295 || die->tag == DW_TAG_structure_type
12296 || die->tag == DW_TAG_union_type))
12297 {
12298 char *name = guess_full_die_structure_name (die, cu);
12299 if (name != NULL)
12300 return name;
12301 }
12302 return "";
63d06c5c 12303 default:
8176b9b8 12304 return determine_prefix (parent, cu);
63d06c5c 12305 }
63d06c5c
DC
12306}
12307
3e43a32a
MS
12308/* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
12309 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
12310 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
12311 an obconcat, otherwise allocate storage for the result. The CU argument is
12312 used to determine the language and hence, the appropriate separator. */
987504bb 12313
f55ee35c 12314#define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
63d06c5c
DC
12315
12316static char *
f55ee35c
JK
12317typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
12318 int physname, struct dwarf2_cu *cu)
63d06c5c 12319{
f55ee35c 12320 const char *lead = "";
5c315b68 12321 const char *sep;
63d06c5c 12322
3e43a32a
MS
12323 if (suffix == NULL || suffix[0] == '\0'
12324 || prefix == NULL || prefix[0] == '\0')
987504bb
JJ
12325 sep = "";
12326 else if (cu->language == language_java)
12327 sep = ".";
f55ee35c
JK
12328 else if (cu->language == language_fortran && physname)
12329 {
12330 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
12331 DW_AT_MIPS_linkage_name is preferred and used instead. */
12332
12333 lead = "__";
12334 sep = "_MOD_";
12335 }
987504bb
JJ
12336 else
12337 sep = "::";
63d06c5c 12338
6dd47d34
DE
12339 if (prefix == NULL)
12340 prefix = "";
12341 if (suffix == NULL)
12342 suffix = "";
12343
987504bb
JJ
12344 if (obs == NULL)
12345 {
3e43a32a
MS
12346 char *retval
12347 = xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1);
9a619af0 12348
f55ee35c
JK
12349 strcpy (retval, lead);
12350 strcat (retval, prefix);
6dd47d34
DE
12351 strcat (retval, sep);
12352 strcat (retval, suffix);
63d06c5c
DC
12353 return retval;
12354 }
987504bb
JJ
12355 else
12356 {
12357 /* We have an obstack. */
f55ee35c 12358 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
987504bb 12359 }
63d06c5c
DC
12360}
12361
c906108c
SS
12362/* Return sibling of die, NULL if no sibling. */
12363
f9aca02d 12364static struct die_info *
fba45db2 12365sibling_die (struct die_info *die)
c906108c 12366{
639d11d3 12367 return die->sibling;
c906108c
SS
12368}
12369
71c25dea
TT
12370/* Get name of a die, return NULL if not found. */
12371
12372static char *
12373dwarf2_canonicalize_name (char *name, struct dwarf2_cu *cu,
12374 struct obstack *obstack)
12375{
12376 if (name && cu->language == language_cplus)
12377 {
12378 char *canon_name = cp_canonicalize_string (name);
12379
12380 if (canon_name != NULL)
12381 {
12382 if (strcmp (canon_name, name) != 0)
12383 name = obsavestring (canon_name, strlen (canon_name),
12384 obstack);
12385 xfree (canon_name);
12386 }
12387 }
12388
12389 return name;
c906108c
SS
12390}
12391
9219021c
DC
12392/* Get name of a die, return NULL if not found. */
12393
12394static char *
e142c38c 12395dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
9219021c
DC
12396{
12397 struct attribute *attr;
12398
e142c38c 12399 attr = dwarf2_attr (die, DW_AT_name, cu);
53832f31
TT
12400 if ((!attr || !DW_STRING (attr))
12401 && die->tag != DW_TAG_class_type
12402 && die->tag != DW_TAG_interface_type
12403 && die->tag != DW_TAG_structure_type
12404 && die->tag != DW_TAG_union_type)
71c25dea
TT
12405 return NULL;
12406
12407 switch (die->tag)
12408 {
12409 case DW_TAG_compile_unit:
12410 /* Compilation units have a DW_AT_name that is a filename, not
12411 a source language identifier. */
12412 case DW_TAG_enumeration_type:
12413 case DW_TAG_enumerator:
12414 /* These tags always have simple identifiers already; no need
12415 to canonicalize them. */
12416 return DW_STRING (attr);
907af001 12417
418835cc
KS
12418 case DW_TAG_subprogram:
12419 /* Java constructors will all be named "<init>", so return
12420 the class name when we see this special case. */
12421 if (cu->language == language_java
12422 && DW_STRING (attr) != NULL
12423 && strcmp (DW_STRING (attr), "<init>") == 0)
12424 {
12425 struct dwarf2_cu *spec_cu = cu;
12426 struct die_info *spec_die;
12427
12428 /* GCJ will output '<init>' for Java constructor names.
12429 For this special case, return the name of the parent class. */
12430
12431 /* GCJ may output suprogram DIEs with AT_specification set.
12432 If so, use the name of the specified DIE. */
12433 spec_die = die_specification (die, &spec_cu);
12434 if (spec_die != NULL)
12435 return dwarf2_name (spec_die, spec_cu);
12436
12437 do
12438 {
12439 die = die->parent;
12440 if (die->tag == DW_TAG_class_type)
12441 return dwarf2_name (die, cu);
12442 }
12443 while (die->tag != DW_TAG_compile_unit);
12444 }
907af001
UW
12445 break;
12446
12447 case DW_TAG_class_type:
12448 case DW_TAG_interface_type:
12449 case DW_TAG_structure_type:
12450 case DW_TAG_union_type:
12451 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
12452 structures or unions. These were of the form "._%d" in GCC 4.1,
12453 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
12454 and GCC 4.4. We work around this problem by ignoring these. */
53832f31
TT
12455 if (attr && DW_STRING (attr)
12456 && (strncmp (DW_STRING (attr), "._", 2) == 0
12457 || strncmp (DW_STRING (attr), "<anonymous", 10) == 0))
907af001 12458 return NULL;
53832f31
TT
12459
12460 /* GCC might emit a nameless typedef that has a linkage name. See
12461 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
12462 if (!attr || DW_STRING (attr) == NULL)
12463 {
df5c6c50 12464 char *demangled = NULL;
53832f31
TT
12465
12466 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
12467 if (attr == NULL)
12468 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
12469
12470 if (attr == NULL || DW_STRING (attr) == NULL)
12471 return NULL;
12472
df5c6c50
JK
12473 /* Avoid demangling DW_STRING (attr) the second time on a second
12474 call for the same DIE. */
12475 if (!DW_STRING_IS_CANONICAL (attr))
12476 demangled = cplus_demangle (DW_STRING (attr), DMGL_TYPES);
53832f31
TT
12477
12478 if (demangled)
12479 {
12480 /* FIXME: we already did this for the partial symbol... */
9c6c53f7
SA
12481 DW_STRING (attr)
12482 = obsavestring (demangled, strlen (demangled),
12483 &cu->objfile->objfile_obstack);
53832f31
TT
12484 DW_STRING_IS_CANONICAL (attr) = 1;
12485 xfree (demangled);
12486 }
12487 }
907af001
UW
12488 break;
12489
71c25dea 12490 default:
907af001
UW
12491 break;
12492 }
12493
12494 if (!DW_STRING_IS_CANONICAL (attr))
12495 {
12496 DW_STRING (attr)
12497 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
12498 &cu->objfile->objfile_obstack);
12499 DW_STRING_IS_CANONICAL (attr) = 1;
71c25dea 12500 }
907af001 12501 return DW_STRING (attr);
9219021c
DC
12502}
12503
12504/* Return the die that this die in an extension of, or NULL if there
f2f0e013
DJ
12505 is none. *EXT_CU is the CU containing DIE on input, and the CU
12506 containing the return value on output. */
9219021c
DC
12507
12508static struct die_info *
f2f0e013 12509dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
9219021c
DC
12510{
12511 struct attribute *attr;
9219021c 12512
f2f0e013 12513 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
9219021c
DC
12514 if (attr == NULL)
12515 return NULL;
12516
f2f0e013 12517 return follow_die_ref (die, attr, ext_cu);
9219021c
DC
12518}
12519
c906108c
SS
12520/* Convert a DIE tag into its string name. */
12521
12522static char *
aa1ee363 12523dwarf_tag_name (unsigned tag)
c906108c
SS
12524{
12525 switch (tag)
12526 {
12527 case DW_TAG_padding:
12528 return "DW_TAG_padding";
12529 case DW_TAG_array_type:
12530 return "DW_TAG_array_type";
12531 case DW_TAG_class_type:
12532 return "DW_TAG_class_type";
12533 case DW_TAG_entry_point:
12534 return "DW_TAG_entry_point";
12535 case DW_TAG_enumeration_type:
12536 return "DW_TAG_enumeration_type";
12537 case DW_TAG_formal_parameter:
12538 return "DW_TAG_formal_parameter";
12539 case DW_TAG_imported_declaration:
12540 return "DW_TAG_imported_declaration";
12541 case DW_TAG_label:
12542 return "DW_TAG_label";
12543 case DW_TAG_lexical_block:
12544 return "DW_TAG_lexical_block";
12545 case DW_TAG_member:
12546 return "DW_TAG_member";
12547 case DW_TAG_pointer_type:
12548 return "DW_TAG_pointer_type";
12549 case DW_TAG_reference_type:
12550 return "DW_TAG_reference_type";
12551 case DW_TAG_compile_unit:
12552 return "DW_TAG_compile_unit";
12553 case DW_TAG_string_type:
12554 return "DW_TAG_string_type";
12555 case DW_TAG_structure_type:
12556 return "DW_TAG_structure_type";
12557 case DW_TAG_subroutine_type:
12558 return "DW_TAG_subroutine_type";
12559 case DW_TAG_typedef:
12560 return "DW_TAG_typedef";
12561 case DW_TAG_union_type:
12562 return "DW_TAG_union_type";
12563 case DW_TAG_unspecified_parameters:
12564 return "DW_TAG_unspecified_parameters";
12565 case DW_TAG_variant:
12566 return "DW_TAG_variant";
12567 case DW_TAG_common_block:
12568 return "DW_TAG_common_block";
12569 case DW_TAG_common_inclusion:
12570 return "DW_TAG_common_inclusion";
12571 case DW_TAG_inheritance:
12572 return "DW_TAG_inheritance";
12573 case DW_TAG_inlined_subroutine:
12574 return "DW_TAG_inlined_subroutine";
12575 case DW_TAG_module:
12576 return "DW_TAG_module";
12577 case DW_TAG_ptr_to_member_type:
12578 return "DW_TAG_ptr_to_member_type";
12579 case DW_TAG_set_type:
12580 return "DW_TAG_set_type";
12581 case DW_TAG_subrange_type:
12582 return "DW_TAG_subrange_type";
12583 case DW_TAG_with_stmt:
12584 return "DW_TAG_with_stmt";
12585 case DW_TAG_access_declaration:
12586 return "DW_TAG_access_declaration";
12587 case DW_TAG_base_type:
12588 return "DW_TAG_base_type";
12589 case DW_TAG_catch_block:
12590 return "DW_TAG_catch_block";
12591 case DW_TAG_const_type:
12592 return "DW_TAG_const_type";
12593 case DW_TAG_constant:
12594 return "DW_TAG_constant";
12595 case DW_TAG_enumerator:
12596 return "DW_TAG_enumerator";
12597 case DW_TAG_file_type:
12598 return "DW_TAG_file_type";
12599 case DW_TAG_friend:
12600 return "DW_TAG_friend";
12601 case DW_TAG_namelist:
12602 return "DW_TAG_namelist";
12603 case DW_TAG_namelist_item:
12604 return "DW_TAG_namelist_item";
12605 case DW_TAG_packed_type:
12606 return "DW_TAG_packed_type";
12607 case DW_TAG_subprogram:
12608 return "DW_TAG_subprogram";
12609 case DW_TAG_template_type_param:
12610 return "DW_TAG_template_type_param";
12611 case DW_TAG_template_value_param:
12612 return "DW_TAG_template_value_param";
12613 case DW_TAG_thrown_type:
12614 return "DW_TAG_thrown_type";
12615 case DW_TAG_try_block:
12616 return "DW_TAG_try_block";
12617 case DW_TAG_variant_part:
12618 return "DW_TAG_variant_part";
12619 case DW_TAG_variable:
12620 return "DW_TAG_variable";
12621 case DW_TAG_volatile_type:
12622 return "DW_TAG_volatile_type";
d9fa45fe
DC
12623 case DW_TAG_dwarf_procedure:
12624 return "DW_TAG_dwarf_procedure";
12625 case DW_TAG_restrict_type:
12626 return "DW_TAG_restrict_type";
12627 case DW_TAG_interface_type:
12628 return "DW_TAG_interface_type";
12629 case DW_TAG_namespace:
12630 return "DW_TAG_namespace";
12631 case DW_TAG_imported_module:
12632 return "DW_TAG_imported_module";
12633 case DW_TAG_unspecified_type:
12634 return "DW_TAG_unspecified_type";
12635 case DW_TAG_partial_unit:
12636 return "DW_TAG_partial_unit";
12637 case DW_TAG_imported_unit:
12638 return "DW_TAG_imported_unit";
b7619582
GF
12639 case DW_TAG_condition:
12640 return "DW_TAG_condition";
12641 case DW_TAG_shared_type:
12642 return "DW_TAG_shared_type";
348e048f
DE
12643 case DW_TAG_type_unit:
12644 return "DW_TAG_type_unit";
c906108c
SS
12645 case DW_TAG_MIPS_loop:
12646 return "DW_TAG_MIPS_loop";
b7619582
GF
12647 case DW_TAG_HP_array_descriptor:
12648 return "DW_TAG_HP_array_descriptor";
c906108c
SS
12649 case DW_TAG_format_label:
12650 return "DW_TAG_format_label";
12651 case DW_TAG_function_template:
12652 return "DW_TAG_function_template";
12653 case DW_TAG_class_template:
12654 return "DW_TAG_class_template";
b7619582
GF
12655 case DW_TAG_GNU_BINCL:
12656 return "DW_TAG_GNU_BINCL";
12657 case DW_TAG_GNU_EINCL:
12658 return "DW_TAG_GNU_EINCL";
12659 case DW_TAG_upc_shared_type:
12660 return "DW_TAG_upc_shared_type";
12661 case DW_TAG_upc_strict_type:
12662 return "DW_TAG_upc_strict_type";
12663 case DW_TAG_upc_relaxed_type:
12664 return "DW_TAG_upc_relaxed_type";
12665 case DW_TAG_PGI_kanji_type:
12666 return "DW_TAG_PGI_kanji_type";
12667 case DW_TAG_PGI_interface_block:
12668 return "DW_TAG_PGI_interface_block";
c906108c
SS
12669 default:
12670 return "DW_TAG_<unknown>";
12671 }
12672}
12673
12674/* Convert a DWARF attribute code into its string name. */
12675
12676static char *
aa1ee363 12677dwarf_attr_name (unsigned attr)
c906108c
SS
12678{
12679 switch (attr)
12680 {
12681 case DW_AT_sibling:
12682 return "DW_AT_sibling";
12683 case DW_AT_location:
12684 return "DW_AT_location";
12685 case DW_AT_name:
12686 return "DW_AT_name";
12687 case DW_AT_ordering:
12688 return "DW_AT_ordering";
12689 case DW_AT_subscr_data:
12690 return "DW_AT_subscr_data";
12691 case DW_AT_byte_size:
12692 return "DW_AT_byte_size";
12693 case DW_AT_bit_offset:
12694 return "DW_AT_bit_offset";
12695 case DW_AT_bit_size:
12696 return "DW_AT_bit_size";
12697 case DW_AT_element_list:
12698 return "DW_AT_element_list";
12699 case DW_AT_stmt_list:
12700 return "DW_AT_stmt_list";
12701 case DW_AT_low_pc:
12702 return "DW_AT_low_pc";
12703 case DW_AT_high_pc:
12704 return "DW_AT_high_pc";
12705 case DW_AT_language:
12706 return "DW_AT_language";
12707 case DW_AT_member:
12708 return "DW_AT_member";
12709 case DW_AT_discr:
12710 return "DW_AT_discr";
12711 case DW_AT_discr_value:
12712 return "DW_AT_discr_value";
12713 case DW_AT_visibility:
12714 return "DW_AT_visibility";
12715 case DW_AT_import:
12716 return "DW_AT_import";
12717 case DW_AT_string_length:
12718 return "DW_AT_string_length";
12719 case DW_AT_common_reference:
12720 return "DW_AT_common_reference";
12721 case DW_AT_comp_dir:
12722 return "DW_AT_comp_dir";
12723 case DW_AT_const_value:
12724 return "DW_AT_const_value";
12725 case DW_AT_containing_type:
12726 return "DW_AT_containing_type";
12727 case DW_AT_default_value:
12728 return "DW_AT_default_value";
12729 case DW_AT_inline:
12730 return "DW_AT_inline";
12731 case DW_AT_is_optional:
12732 return "DW_AT_is_optional";
12733 case DW_AT_lower_bound:
12734 return "DW_AT_lower_bound";
12735 case DW_AT_producer:
12736 return "DW_AT_producer";
12737 case DW_AT_prototyped:
12738 return "DW_AT_prototyped";
12739 case DW_AT_return_addr:
12740 return "DW_AT_return_addr";
12741 case DW_AT_start_scope:
12742 return "DW_AT_start_scope";
09fa0d7c
JK
12743 case DW_AT_bit_stride:
12744 return "DW_AT_bit_stride";
c906108c
SS
12745 case DW_AT_upper_bound:
12746 return "DW_AT_upper_bound";
12747 case DW_AT_abstract_origin:
12748 return "DW_AT_abstract_origin";
12749 case DW_AT_accessibility:
12750 return "DW_AT_accessibility";
12751 case DW_AT_address_class:
12752 return "DW_AT_address_class";
12753 case DW_AT_artificial:
12754 return "DW_AT_artificial";
12755 case DW_AT_base_types:
12756 return "DW_AT_base_types";
12757 case DW_AT_calling_convention:
12758 return "DW_AT_calling_convention";
12759 case DW_AT_count:
12760 return "DW_AT_count";
12761 case DW_AT_data_member_location:
12762 return "DW_AT_data_member_location";
12763 case DW_AT_decl_column:
12764 return "DW_AT_decl_column";
12765 case DW_AT_decl_file:
12766 return "DW_AT_decl_file";
12767 case DW_AT_decl_line:
12768 return "DW_AT_decl_line";
12769 case DW_AT_declaration:
12770 return "DW_AT_declaration";
12771 case DW_AT_discr_list:
12772 return "DW_AT_discr_list";
12773 case DW_AT_encoding:
12774 return "DW_AT_encoding";
12775 case DW_AT_external:
12776 return "DW_AT_external";
12777 case DW_AT_frame_base:
12778 return "DW_AT_frame_base";
12779 case DW_AT_friend:
12780 return "DW_AT_friend";
12781 case DW_AT_identifier_case:
12782 return "DW_AT_identifier_case";
12783 case DW_AT_macro_info:
12784 return "DW_AT_macro_info";
12785 case DW_AT_namelist_items:
12786 return "DW_AT_namelist_items";
12787 case DW_AT_priority:
12788 return "DW_AT_priority";
12789 case DW_AT_segment:
12790 return "DW_AT_segment";
12791 case DW_AT_specification:
12792 return "DW_AT_specification";
12793 case DW_AT_static_link:
12794 return "DW_AT_static_link";
12795 case DW_AT_type:
12796 return "DW_AT_type";
12797 case DW_AT_use_location:
12798 return "DW_AT_use_location";
12799 case DW_AT_variable_parameter:
12800 return "DW_AT_variable_parameter";
12801 case DW_AT_virtuality:
12802 return "DW_AT_virtuality";
12803 case DW_AT_vtable_elem_location:
12804 return "DW_AT_vtable_elem_location";
b7619582 12805 /* DWARF 3 values. */
d9fa45fe
DC
12806 case DW_AT_allocated:
12807 return "DW_AT_allocated";
12808 case DW_AT_associated:
12809 return "DW_AT_associated";
12810 case DW_AT_data_location:
12811 return "DW_AT_data_location";
09fa0d7c
JK
12812 case DW_AT_byte_stride:
12813 return "DW_AT_byte_stride";
d9fa45fe
DC
12814 case DW_AT_entry_pc:
12815 return "DW_AT_entry_pc";
12816 case DW_AT_use_UTF8:
12817 return "DW_AT_use_UTF8";
12818 case DW_AT_extension:
12819 return "DW_AT_extension";
12820 case DW_AT_ranges:
12821 return "DW_AT_ranges";
12822 case DW_AT_trampoline:
12823 return "DW_AT_trampoline";
12824 case DW_AT_call_column:
12825 return "DW_AT_call_column";
12826 case DW_AT_call_file:
12827 return "DW_AT_call_file";
12828 case DW_AT_call_line:
12829 return "DW_AT_call_line";
b7619582
GF
12830 case DW_AT_description:
12831 return "DW_AT_description";
12832 case DW_AT_binary_scale:
12833 return "DW_AT_binary_scale";
12834 case DW_AT_decimal_scale:
12835 return "DW_AT_decimal_scale";
12836 case DW_AT_small:
12837 return "DW_AT_small";
12838 case DW_AT_decimal_sign:
12839 return "DW_AT_decimal_sign";
12840 case DW_AT_digit_count:
12841 return "DW_AT_digit_count";
12842 case DW_AT_picture_string:
12843 return "DW_AT_picture_string";
12844 case DW_AT_mutable:
12845 return "DW_AT_mutable";
12846 case DW_AT_threads_scaled:
12847 return "DW_AT_threads_scaled";
12848 case DW_AT_explicit:
12849 return "DW_AT_explicit";
12850 case DW_AT_object_pointer:
12851 return "DW_AT_object_pointer";
12852 case DW_AT_endianity:
12853 return "DW_AT_endianity";
12854 case DW_AT_elemental:
12855 return "DW_AT_elemental";
12856 case DW_AT_pure:
12857 return "DW_AT_pure";
12858 case DW_AT_recursive:
12859 return "DW_AT_recursive";
348e048f
DE
12860 /* DWARF 4 values. */
12861 case DW_AT_signature:
12862 return "DW_AT_signature";
31ef98ae
TT
12863 case DW_AT_linkage_name:
12864 return "DW_AT_linkage_name";
b7619582 12865 /* SGI/MIPS extensions. */
c764a876 12866#ifdef MIPS /* collides with DW_AT_HP_block_index */
c906108c
SS
12867 case DW_AT_MIPS_fde:
12868 return "DW_AT_MIPS_fde";
c764a876 12869#endif
c906108c
SS
12870 case DW_AT_MIPS_loop_begin:
12871 return "DW_AT_MIPS_loop_begin";
12872 case DW_AT_MIPS_tail_loop_begin:
12873 return "DW_AT_MIPS_tail_loop_begin";
12874 case DW_AT_MIPS_epilog_begin:
12875 return "DW_AT_MIPS_epilog_begin";
12876 case DW_AT_MIPS_loop_unroll_factor:
12877 return "DW_AT_MIPS_loop_unroll_factor";
12878 case DW_AT_MIPS_software_pipeline_depth:
12879 return "DW_AT_MIPS_software_pipeline_depth";
12880 case DW_AT_MIPS_linkage_name:
12881 return "DW_AT_MIPS_linkage_name";
b7619582
GF
12882 case DW_AT_MIPS_stride:
12883 return "DW_AT_MIPS_stride";
12884 case DW_AT_MIPS_abstract_name:
12885 return "DW_AT_MIPS_abstract_name";
12886 case DW_AT_MIPS_clone_origin:
12887 return "DW_AT_MIPS_clone_origin";
12888 case DW_AT_MIPS_has_inlines:
12889 return "DW_AT_MIPS_has_inlines";
b7619582 12890 /* HP extensions. */
c764a876 12891#ifndef MIPS /* collides with DW_AT_MIPS_fde */
b7619582
GF
12892 case DW_AT_HP_block_index:
12893 return "DW_AT_HP_block_index";
c764a876 12894#endif
b7619582
GF
12895 case DW_AT_HP_unmodifiable:
12896 return "DW_AT_HP_unmodifiable";
12897 case DW_AT_HP_actuals_stmt_list:
12898 return "DW_AT_HP_actuals_stmt_list";
12899 case DW_AT_HP_proc_per_section:
12900 return "DW_AT_HP_proc_per_section";
12901 case DW_AT_HP_raw_data_ptr:
12902 return "DW_AT_HP_raw_data_ptr";
12903 case DW_AT_HP_pass_by_reference:
12904 return "DW_AT_HP_pass_by_reference";
12905 case DW_AT_HP_opt_level:
12906 return "DW_AT_HP_opt_level";
12907 case DW_AT_HP_prof_version_id:
12908 return "DW_AT_HP_prof_version_id";
12909 case DW_AT_HP_opt_flags:
12910 return "DW_AT_HP_opt_flags";
12911 case DW_AT_HP_cold_region_low_pc:
12912 return "DW_AT_HP_cold_region_low_pc";
12913 case DW_AT_HP_cold_region_high_pc:
12914 return "DW_AT_HP_cold_region_high_pc";
12915 case DW_AT_HP_all_variables_modifiable:
12916 return "DW_AT_HP_all_variables_modifiable";
12917 case DW_AT_HP_linkage_name:
12918 return "DW_AT_HP_linkage_name";
12919 case DW_AT_HP_prof_flags:
12920 return "DW_AT_HP_prof_flags";
12921 /* GNU extensions. */
c906108c
SS
12922 case DW_AT_sf_names:
12923 return "DW_AT_sf_names";
12924 case DW_AT_src_info:
12925 return "DW_AT_src_info";
12926 case DW_AT_mac_info:
12927 return "DW_AT_mac_info";
12928 case DW_AT_src_coords:
12929 return "DW_AT_src_coords";
12930 case DW_AT_body_begin:
12931 return "DW_AT_body_begin";
12932 case DW_AT_body_end:
12933 return "DW_AT_body_end";
f5f8a009
EZ
12934 case DW_AT_GNU_vector:
12935 return "DW_AT_GNU_vector";
2de00c64
DE
12936 case DW_AT_GNU_odr_signature:
12937 return "DW_AT_GNU_odr_signature";
b7619582
GF
12938 /* VMS extensions. */
12939 case DW_AT_VMS_rtnbeg_pd_address:
12940 return "DW_AT_VMS_rtnbeg_pd_address";
12941 /* UPC extension. */
12942 case DW_AT_upc_threads_scaled:
12943 return "DW_AT_upc_threads_scaled";
12944 /* PGI (STMicroelectronics) extensions. */
12945 case DW_AT_PGI_lbase:
12946 return "DW_AT_PGI_lbase";
12947 case DW_AT_PGI_soffset:
12948 return "DW_AT_PGI_soffset";
12949 case DW_AT_PGI_lstride:
12950 return "DW_AT_PGI_lstride";
c906108c
SS
12951 default:
12952 return "DW_AT_<unknown>";
12953 }
12954}
12955
12956/* Convert a DWARF value form code into its string name. */
12957
12958static char *
aa1ee363 12959dwarf_form_name (unsigned form)
c906108c
SS
12960{
12961 switch (form)
12962 {
12963 case DW_FORM_addr:
12964 return "DW_FORM_addr";
12965 case DW_FORM_block2:
12966 return "DW_FORM_block2";
12967 case DW_FORM_block4:
12968 return "DW_FORM_block4";
12969 case DW_FORM_data2:
12970 return "DW_FORM_data2";
12971 case DW_FORM_data4:
12972 return "DW_FORM_data4";
12973 case DW_FORM_data8:
12974 return "DW_FORM_data8";
12975 case DW_FORM_string:
12976 return "DW_FORM_string";
12977 case DW_FORM_block:
12978 return "DW_FORM_block";
12979 case DW_FORM_block1:
12980 return "DW_FORM_block1";
12981 case DW_FORM_data1:
12982 return "DW_FORM_data1";
12983 case DW_FORM_flag:
12984 return "DW_FORM_flag";
12985 case DW_FORM_sdata:
12986 return "DW_FORM_sdata";
12987 case DW_FORM_strp:
12988 return "DW_FORM_strp";
12989 case DW_FORM_udata:
12990 return "DW_FORM_udata";
12991 case DW_FORM_ref_addr:
12992 return "DW_FORM_ref_addr";
12993 case DW_FORM_ref1:
12994 return "DW_FORM_ref1";
12995 case DW_FORM_ref2:
12996 return "DW_FORM_ref2";
12997 case DW_FORM_ref4:
12998 return "DW_FORM_ref4";
12999 case DW_FORM_ref8:
13000 return "DW_FORM_ref8";
13001 case DW_FORM_ref_udata:
13002 return "DW_FORM_ref_udata";
13003 case DW_FORM_indirect:
13004 return "DW_FORM_indirect";
348e048f
DE
13005 case DW_FORM_sec_offset:
13006 return "DW_FORM_sec_offset";
13007 case DW_FORM_exprloc:
13008 return "DW_FORM_exprloc";
13009 case DW_FORM_flag_present:
13010 return "DW_FORM_flag_present";
55f1336d
TT
13011 case DW_FORM_ref_sig8:
13012 return "DW_FORM_ref_sig8";
c906108c
SS
13013 default:
13014 return "DW_FORM_<unknown>";
13015 }
13016}
13017
13018/* Convert a DWARF stack opcode into its string name. */
13019
9eae7c52 13020const char *
b1bfef65 13021dwarf_stack_op_name (unsigned op)
c906108c
SS
13022{
13023 switch (op)
13024 {
13025 case DW_OP_addr:
13026 return "DW_OP_addr";
13027 case DW_OP_deref:
13028 return "DW_OP_deref";
13029 case DW_OP_const1u:
13030 return "DW_OP_const1u";
13031 case DW_OP_const1s:
13032 return "DW_OP_const1s";
13033 case DW_OP_const2u:
13034 return "DW_OP_const2u";
13035 case DW_OP_const2s:
13036 return "DW_OP_const2s";
13037 case DW_OP_const4u:
13038 return "DW_OP_const4u";
13039 case DW_OP_const4s:
13040 return "DW_OP_const4s";
13041 case DW_OP_const8u:
13042 return "DW_OP_const8u";
13043 case DW_OP_const8s:
13044 return "DW_OP_const8s";
13045 case DW_OP_constu:
13046 return "DW_OP_constu";
13047 case DW_OP_consts:
13048 return "DW_OP_consts";
13049 case DW_OP_dup:
13050 return "DW_OP_dup";
13051 case DW_OP_drop:
13052 return "DW_OP_drop";
13053 case DW_OP_over:
13054 return "DW_OP_over";
13055 case DW_OP_pick:
13056 return "DW_OP_pick";
13057 case DW_OP_swap:
13058 return "DW_OP_swap";
13059 case DW_OP_rot:
13060 return "DW_OP_rot";
13061 case DW_OP_xderef:
13062 return "DW_OP_xderef";
13063 case DW_OP_abs:
13064 return "DW_OP_abs";
13065 case DW_OP_and:
13066 return "DW_OP_and";
13067 case DW_OP_div:
13068 return "DW_OP_div";
13069 case DW_OP_minus:
13070 return "DW_OP_minus";
13071 case DW_OP_mod:
13072 return "DW_OP_mod";
13073 case DW_OP_mul:
13074 return "DW_OP_mul";
13075 case DW_OP_neg:
13076 return "DW_OP_neg";
13077 case DW_OP_not:
13078 return "DW_OP_not";
13079 case DW_OP_or:
13080 return "DW_OP_or";
13081 case DW_OP_plus:
13082 return "DW_OP_plus";
13083 case DW_OP_plus_uconst:
13084 return "DW_OP_plus_uconst";
13085 case DW_OP_shl:
13086 return "DW_OP_shl";
13087 case DW_OP_shr:
13088 return "DW_OP_shr";
13089 case DW_OP_shra:
13090 return "DW_OP_shra";
13091 case DW_OP_xor:
13092 return "DW_OP_xor";
13093 case DW_OP_bra:
13094 return "DW_OP_bra";
13095 case DW_OP_eq:
13096 return "DW_OP_eq";
13097 case DW_OP_ge:
13098 return "DW_OP_ge";
13099 case DW_OP_gt:
13100 return "DW_OP_gt";
13101 case DW_OP_le:
13102 return "DW_OP_le";
13103 case DW_OP_lt:
13104 return "DW_OP_lt";
13105 case DW_OP_ne:
13106 return "DW_OP_ne";
13107 case DW_OP_skip:
13108 return "DW_OP_skip";
13109 case DW_OP_lit0:
13110 return "DW_OP_lit0";
13111 case DW_OP_lit1:
13112 return "DW_OP_lit1";
13113 case DW_OP_lit2:
13114 return "DW_OP_lit2";
13115 case DW_OP_lit3:
13116 return "DW_OP_lit3";
13117 case DW_OP_lit4:
13118 return "DW_OP_lit4";
13119 case DW_OP_lit5:
13120 return "DW_OP_lit5";
13121 case DW_OP_lit6:
13122 return "DW_OP_lit6";
13123 case DW_OP_lit7:
13124 return "DW_OP_lit7";
13125 case DW_OP_lit8:
13126 return "DW_OP_lit8";
13127 case DW_OP_lit9:
13128 return "DW_OP_lit9";
13129 case DW_OP_lit10:
13130 return "DW_OP_lit10";
13131 case DW_OP_lit11:
13132 return "DW_OP_lit11";
13133 case DW_OP_lit12:
13134 return "DW_OP_lit12";
13135 case DW_OP_lit13:
13136 return "DW_OP_lit13";
13137 case DW_OP_lit14:
13138 return "DW_OP_lit14";
13139 case DW_OP_lit15:
13140 return "DW_OP_lit15";
13141 case DW_OP_lit16:
13142 return "DW_OP_lit16";
13143 case DW_OP_lit17:
13144 return "DW_OP_lit17";
13145 case DW_OP_lit18:
13146 return "DW_OP_lit18";
13147 case DW_OP_lit19:
13148 return "DW_OP_lit19";
13149 case DW_OP_lit20:
13150 return "DW_OP_lit20";
13151 case DW_OP_lit21:
13152 return "DW_OP_lit21";
13153 case DW_OP_lit22:
13154 return "DW_OP_lit22";
13155 case DW_OP_lit23:
13156 return "DW_OP_lit23";
13157 case DW_OP_lit24:
13158 return "DW_OP_lit24";
13159 case DW_OP_lit25:
13160 return "DW_OP_lit25";
13161 case DW_OP_lit26:
13162 return "DW_OP_lit26";
13163 case DW_OP_lit27:
13164 return "DW_OP_lit27";
13165 case DW_OP_lit28:
13166 return "DW_OP_lit28";
13167 case DW_OP_lit29:
13168 return "DW_OP_lit29";
13169 case DW_OP_lit30:
13170 return "DW_OP_lit30";
13171 case DW_OP_lit31:
13172 return "DW_OP_lit31";
13173 case DW_OP_reg0:
13174 return "DW_OP_reg0";
13175 case DW_OP_reg1:
13176 return "DW_OP_reg1";
13177 case DW_OP_reg2:
13178 return "DW_OP_reg2";
13179 case DW_OP_reg3:
13180 return "DW_OP_reg3";
13181 case DW_OP_reg4:
13182 return "DW_OP_reg4";
13183 case DW_OP_reg5:
13184 return "DW_OP_reg5";
13185 case DW_OP_reg6:
13186 return "DW_OP_reg6";
13187 case DW_OP_reg7:
13188 return "DW_OP_reg7";
13189 case DW_OP_reg8:
13190 return "DW_OP_reg8";
13191 case DW_OP_reg9:
13192 return "DW_OP_reg9";
13193 case DW_OP_reg10:
13194 return "DW_OP_reg10";
13195 case DW_OP_reg11:
13196 return "DW_OP_reg11";
13197 case DW_OP_reg12:
13198 return "DW_OP_reg12";
13199 case DW_OP_reg13:
13200 return "DW_OP_reg13";
13201 case DW_OP_reg14:
13202 return "DW_OP_reg14";
13203 case DW_OP_reg15:
13204 return "DW_OP_reg15";
13205 case DW_OP_reg16:
13206 return "DW_OP_reg16";
13207 case DW_OP_reg17:
13208 return "DW_OP_reg17";
13209 case DW_OP_reg18:
13210 return "DW_OP_reg18";
13211 case DW_OP_reg19:
13212 return "DW_OP_reg19";
13213 case DW_OP_reg20:
13214 return "DW_OP_reg20";
13215 case DW_OP_reg21:
13216 return "DW_OP_reg21";
13217 case DW_OP_reg22:
13218 return "DW_OP_reg22";
13219 case DW_OP_reg23:
13220 return "DW_OP_reg23";
13221 case DW_OP_reg24:
13222 return "DW_OP_reg24";
13223 case DW_OP_reg25:
13224 return "DW_OP_reg25";
13225 case DW_OP_reg26:
13226 return "DW_OP_reg26";
13227 case DW_OP_reg27:
13228 return "DW_OP_reg27";
13229 case DW_OP_reg28:
13230 return "DW_OP_reg28";
13231 case DW_OP_reg29:
13232 return "DW_OP_reg29";
13233 case DW_OP_reg30:
13234 return "DW_OP_reg30";
13235 case DW_OP_reg31:
13236 return "DW_OP_reg31";
13237 case DW_OP_breg0:
13238 return "DW_OP_breg0";
13239 case DW_OP_breg1:
13240 return "DW_OP_breg1";
13241 case DW_OP_breg2:
13242 return "DW_OP_breg2";
13243 case DW_OP_breg3:
13244 return "DW_OP_breg3";
13245 case DW_OP_breg4:
13246 return "DW_OP_breg4";
13247 case DW_OP_breg5:
13248 return "DW_OP_breg5";
13249 case DW_OP_breg6:
13250 return "DW_OP_breg6";
13251 case DW_OP_breg7:
13252 return "DW_OP_breg7";
13253 case DW_OP_breg8:
13254 return "DW_OP_breg8";
13255 case DW_OP_breg9:
13256 return "DW_OP_breg9";
13257 case DW_OP_breg10:
13258 return "DW_OP_breg10";
13259 case DW_OP_breg11:
13260 return "DW_OP_breg11";
13261 case DW_OP_breg12:
13262 return "DW_OP_breg12";
13263 case DW_OP_breg13:
13264 return "DW_OP_breg13";
13265 case DW_OP_breg14:
13266 return "DW_OP_breg14";
13267 case DW_OP_breg15:
13268 return "DW_OP_breg15";
13269 case DW_OP_breg16:
13270 return "DW_OP_breg16";
13271 case DW_OP_breg17:
13272 return "DW_OP_breg17";
13273 case DW_OP_breg18:
13274 return "DW_OP_breg18";
13275 case DW_OP_breg19:
13276 return "DW_OP_breg19";
13277 case DW_OP_breg20:
13278 return "DW_OP_breg20";
13279 case DW_OP_breg21:
13280 return "DW_OP_breg21";
13281 case DW_OP_breg22:
13282 return "DW_OP_breg22";
13283 case DW_OP_breg23:
13284 return "DW_OP_breg23";
13285 case DW_OP_breg24:
13286 return "DW_OP_breg24";
13287 case DW_OP_breg25:
13288 return "DW_OP_breg25";
13289 case DW_OP_breg26:
13290 return "DW_OP_breg26";
13291 case DW_OP_breg27:
13292 return "DW_OP_breg27";
13293 case DW_OP_breg28:
13294 return "DW_OP_breg28";
13295 case DW_OP_breg29:
13296 return "DW_OP_breg29";
13297 case DW_OP_breg30:
13298 return "DW_OP_breg30";
13299 case DW_OP_breg31:
13300 return "DW_OP_breg31";
13301 case DW_OP_regx:
13302 return "DW_OP_regx";
13303 case DW_OP_fbreg:
13304 return "DW_OP_fbreg";
13305 case DW_OP_bregx:
13306 return "DW_OP_bregx";
13307 case DW_OP_piece:
13308 return "DW_OP_piece";
13309 case DW_OP_deref_size:
13310 return "DW_OP_deref_size";
13311 case DW_OP_xderef_size:
13312 return "DW_OP_xderef_size";
13313 case DW_OP_nop:
13314 return "DW_OP_nop";
b7619582 13315 /* DWARF 3 extensions. */
ed348acc
EZ
13316 case DW_OP_push_object_address:
13317 return "DW_OP_push_object_address";
13318 case DW_OP_call2:
13319 return "DW_OP_call2";
13320 case DW_OP_call4:
13321 return "DW_OP_call4";
13322 case DW_OP_call_ref:
13323 return "DW_OP_call_ref";
b7619582
GF
13324 case DW_OP_form_tls_address:
13325 return "DW_OP_form_tls_address";
13326 case DW_OP_call_frame_cfa:
13327 return "DW_OP_call_frame_cfa";
13328 case DW_OP_bit_piece:
13329 return "DW_OP_bit_piece";
9eae7c52
TT
13330 /* DWARF 4 extensions. */
13331 case DW_OP_implicit_value:
13332 return "DW_OP_implicit_value";
13333 case DW_OP_stack_value:
13334 return "DW_OP_stack_value";
13335 /* GNU extensions. */
ed348acc
EZ
13336 case DW_OP_GNU_push_tls_address:
13337 return "DW_OP_GNU_push_tls_address";
42be36b3
CT
13338 case DW_OP_GNU_uninit:
13339 return "DW_OP_GNU_uninit";
8cf6f0b1
TT
13340 case DW_OP_GNU_implicit_pointer:
13341 return "DW_OP_GNU_implicit_pointer";
8a9b8146
TT
13342 case DW_OP_GNU_entry_value:
13343 return "DW_OP_GNU_entry_value";
13344 case DW_OP_GNU_const_type:
13345 return "DW_OP_GNU_const_type";
13346 case DW_OP_GNU_regval_type:
13347 return "DW_OP_GNU_regval_type";
13348 case DW_OP_GNU_deref_type:
13349 return "DW_OP_GNU_deref_type";
13350 case DW_OP_GNU_convert:
13351 return "DW_OP_GNU_convert";
13352 case DW_OP_GNU_reinterpret:
13353 return "DW_OP_GNU_reinterpret";
c906108c 13354 default:
b1bfef65 13355 return NULL;
c906108c
SS
13356 }
13357}
13358
13359static char *
fba45db2 13360dwarf_bool_name (unsigned mybool)
c906108c
SS
13361{
13362 if (mybool)
13363 return "TRUE";
13364 else
13365 return "FALSE";
13366}
13367
13368/* Convert a DWARF type code into its string name. */
13369
13370static char *
aa1ee363 13371dwarf_type_encoding_name (unsigned enc)
c906108c
SS
13372{
13373 switch (enc)
13374 {
b7619582
GF
13375 case DW_ATE_void:
13376 return "DW_ATE_void";
c906108c
SS
13377 case DW_ATE_address:
13378 return "DW_ATE_address";
13379 case DW_ATE_boolean:
13380 return "DW_ATE_boolean";
13381 case DW_ATE_complex_float:
13382 return "DW_ATE_complex_float";
13383 case DW_ATE_float:
13384 return "DW_ATE_float";
13385 case DW_ATE_signed:
13386 return "DW_ATE_signed";
13387 case DW_ATE_signed_char:
13388 return "DW_ATE_signed_char";
13389 case DW_ATE_unsigned:
13390 return "DW_ATE_unsigned";
13391 case DW_ATE_unsigned_char:
13392 return "DW_ATE_unsigned_char";
b7619582 13393 /* DWARF 3. */
d9fa45fe
DC
13394 case DW_ATE_imaginary_float:
13395 return "DW_ATE_imaginary_float";
b7619582
GF
13396 case DW_ATE_packed_decimal:
13397 return "DW_ATE_packed_decimal";
13398 case DW_ATE_numeric_string:
13399 return "DW_ATE_numeric_string";
13400 case DW_ATE_edited:
13401 return "DW_ATE_edited";
13402 case DW_ATE_signed_fixed:
13403 return "DW_ATE_signed_fixed";
13404 case DW_ATE_unsigned_fixed:
13405 return "DW_ATE_unsigned_fixed";
13406 case DW_ATE_decimal_float:
13407 return "DW_ATE_decimal_float";
75079b2b
TT
13408 /* DWARF 4. */
13409 case DW_ATE_UTF:
13410 return "DW_ATE_UTF";
b7619582
GF
13411 /* HP extensions. */
13412 case DW_ATE_HP_float80:
13413 return "DW_ATE_HP_float80";
13414 case DW_ATE_HP_complex_float80:
13415 return "DW_ATE_HP_complex_float80";
13416 case DW_ATE_HP_float128:
13417 return "DW_ATE_HP_float128";
13418 case DW_ATE_HP_complex_float128:
13419 return "DW_ATE_HP_complex_float128";
13420 case DW_ATE_HP_floathpintel:
13421 return "DW_ATE_HP_floathpintel";
13422 case DW_ATE_HP_imaginary_float80:
13423 return "DW_ATE_HP_imaginary_float80";
13424 case DW_ATE_HP_imaginary_float128:
13425 return "DW_ATE_HP_imaginary_float128";
c906108c
SS
13426 default:
13427 return "DW_ATE_<unknown>";
13428 }
13429}
13430
0963b4bd 13431/* Convert a DWARF call frame info operation to its string name. */
c906108c
SS
13432
13433#if 0
13434static char *
aa1ee363 13435dwarf_cfi_name (unsigned cfi_opc)
c906108c
SS
13436{
13437 switch (cfi_opc)
13438 {
13439 case DW_CFA_advance_loc:
13440 return "DW_CFA_advance_loc";
13441 case DW_CFA_offset:
13442 return "DW_CFA_offset";
13443 case DW_CFA_restore:
13444 return "DW_CFA_restore";
13445 case DW_CFA_nop:
13446 return "DW_CFA_nop";
13447 case DW_CFA_set_loc:
13448 return "DW_CFA_set_loc";
13449 case DW_CFA_advance_loc1:
13450 return "DW_CFA_advance_loc1";
13451 case DW_CFA_advance_loc2:
13452 return "DW_CFA_advance_loc2";
13453 case DW_CFA_advance_loc4:
13454 return "DW_CFA_advance_loc4";
13455 case DW_CFA_offset_extended:
13456 return "DW_CFA_offset_extended";
13457 case DW_CFA_restore_extended:
13458 return "DW_CFA_restore_extended";
13459 case DW_CFA_undefined:
13460 return "DW_CFA_undefined";
13461 case DW_CFA_same_value:
13462 return "DW_CFA_same_value";
13463 case DW_CFA_register:
13464 return "DW_CFA_register";
13465 case DW_CFA_remember_state:
13466 return "DW_CFA_remember_state";
13467 case DW_CFA_restore_state:
13468 return "DW_CFA_restore_state";
13469 case DW_CFA_def_cfa:
13470 return "DW_CFA_def_cfa";
13471 case DW_CFA_def_cfa_register:
13472 return "DW_CFA_def_cfa_register";
13473 case DW_CFA_def_cfa_offset:
13474 return "DW_CFA_def_cfa_offset";
b7619582 13475 /* DWARF 3. */
985cb1a3
JM
13476 case DW_CFA_def_cfa_expression:
13477 return "DW_CFA_def_cfa_expression";
13478 case DW_CFA_expression:
13479 return "DW_CFA_expression";
13480 case DW_CFA_offset_extended_sf:
13481 return "DW_CFA_offset_extended_sf";
13482 case DW_CFA_def_cfa_sf:
13483 return "DW_CFA_def_cfa_sf";
13484 case DW_CFA_def_cfa_offset_sf:
13485 return "DW_CFA_def_cfa_offset_sf";
b7619582
GF
13486 case DW_CFA_val_offset:
13487 return "DW_CFA_val_offset";
13488 case DW_CFA_val_offset_sf:
13489 return "DW_CFA_val_offset_sf";
13490 case DW_CFA_val_expression:
13491 return "DW_CFA_val_expression";
13492 /* SGI/MIPS specific. */
c906108c
SS
13493 case DW_CFA_MIPS_advance_loc8:
13494 return "DW_CFA_MIPS_advance_loc8";
b7619582 13495 /* GNU extensions. */
985cb1a3
JM
13496 case DW_CFA_GNU_window_save:
13497 return "DW_CFA_GNU_window_save";
13498 case DW_CFA_GNU_args_size:
13499 return "DW_CFA_GNU_args_size";
13500 case DW_CFA_GNU_negative_offset_extended:
13501 return "DW_CFA_GNU_negative_offset_extended";
c906108c
SS
13502 default:
13503 return "DW_CFA_<unknown>";
13504 }
13505}
13506#endif
13507
f9aca02d 13508static void
d97bc12b 13509dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
c906108c
SS
13510{
13511 unsigned int i;
13512
d97bc12b
DE
13513 print_spaces (indent, f);
13514 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset 0x%x)\n",
c906108c 13515 dwarf_tag_name (die->tag), die->abbrev, die->offset);
d97bc12b
DE
13516
13517 if (die->parent != NULL)
13518 {
13519 print_spaces (indent, f);
13520 fprintf_unfiltered (f, " parent at offset: 0x%x\n",
13521 die->parent->offset);
13522 }
13523
13524 print_spaces (indent, f);
13525 fprintf_unfiltered (f, " has children: %s\n",
639d11d3 13526 dwarf_bool_name (die->child != NULL));
c906108c 13527
d97bc12b
DE
13528 print_spaces (indent, f);
13529 fprintf_unfiltered (f, " attributes:\n");
13530
c906108c
SS
13531 for (i = 0; i < die->num_attrs; ++i)
13532 {
d97bc12b
DE
13533 print_spaces (indent, f);
13534 fprintf_unfiltered (f, " %s (%s) ",
c906108c
SS
13535 dwarf_attr_name (die->attrs[i].name),
13536 dwarf_form_name (die->attrs[i].form));
d97bc12b 13537
c906108c
SS
13538 switch (die->attrs[i].form)
13539 {
13540 case DW_FORM_ref_addr:
13541 case DW_FORM_addr:
d97bc12b 13542 fprintf_unfiltered (f, "address: ");
5af949e3 13543 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
c906108c
SS
13544 break;
13545 case DW_FORM_block2:
13546 case DW_FORM_block4:
13547 case DW_FORM_block:
13548 case DW_FORM_block1:
3e43a32a
MS
13549 fprintf_unfiltered (f, "block: size %d",
13550 DW_BLOCK (&die->attrs[i])->size);
c906108c 13551 break;
2dc7f7b3
TT
13552 case DW_FORM_exprloc:
13553 fprintf_unfiltered (f, "expression: size %u",
13554 DW_BLOCK (&die->attrs[i])->size);
13555 break;
10b3939b
DJ
13556 case DW_FORM_ref1:
13557 case DW_FORM_ref2:
13558 case DW_FORM_ref4:
d97bc12b 13559 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
10b3939b
DJ
13560 (long) (DW_ADDR (&die->attrs[i])));
13561 break;
c906108c
SS
13562 case DW_FORM_data1:
13563 case DW_FORM_data2:
13564 case DW_FORM_data4:
ce5d95e1 13565 case DW_FORM_data8:
c906108c
SS
13566 case DW_FORM_udata:
13567 case DW_FORM_sdata:
43bbcdc2
PH
13568 fprintf_unfiltered (f, "constant: %s",
13569 pulongest (DW_UNSND (&die->attrs[i])));
c906108c 13570 break;
2dc7f7b3
TT
13571 case DW_FORM_sec_offset:
13572 fprintf_unfiltered (f, "section offset: %s",
13573 pulongest (DW_UNSND (&die->attrs[i])));
13574 break;
55f1336d 13575 case DW_FORM_ref_sig8:
348e048f
DE
13576 if (DW_SIGNATURED_TYPE (&die->attrs[i]) != NULL)
13577 fprintf_unfiltered (f, "signatured type, offset: 0x%x",
b3c8eb43 13578 DW_SIGNATURED_TYPE (&die->attrs[i])->per_cu.offset);
348e048f
DE
13579 else
13580 fprintf_unfiltered (f, "signatured type, offset: unknown");
13581 break;
c906108c 13582 case DW_FORM_string:
4bdf3d34 13583 case DW_FORM_strp:
8285870a 13584 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
c906108c 13585 DW_STRING (&die->attrs[i])
8285870a
JK
13586 ? DW_STRING (&die->attrs[i]) : "",
13587 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
c906108c
SS
13588 break;
13589 case DW_FORM_flag:
13590 if (DW_UNSND (&die->attrs[i]))
d97bc12b 13591 fprintf_unfiltered (f, "flag: TRUE");
c906108c 13592 else
d97bc12b 13593 fprintf_unfiltered (f, "flag: FALSE");
c906108c 13594 break;
2dc7f7b3
TT
13595 case DW_FORM_flag_present:
13596 fprintf_unfiltered (f, "flag: TRUE");
13597 break;
a8329558 13598 case DW_FORM_indirect:
0963b4bd
MS
13599 /* The reader will have reduced the indirect form to
13600 the "base form" so this form should not occur. */
3e43a32a
MS
13601 fprintf_unfiltered (f,
13602 "unexpected attribute form: DW_FORM_indirect");
a8329558 13603 break;
c906108c 13604 default:
d97bc12b 13605 fprintf_unfiltered (f, "unsupported attribute form: %d.",
c5aa993b 13606 die->attrs[i].form);
d97bc12b 13607 break;
c906108c 13608 }
d97bc12b 13609 fprintf_unfiltered (f, "\n");
c906108c
SS
13610 }
13611}
13612
f9aca02d 13613static void
d97bc12b 13614dump_die_for_error (struct die_info *die)
c906108c 13615{
d97bc12b
DE
13616 dump_die_shallow (gdb_stderr, 0, die);
13617}
13618
13619static void
13620dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
13621{
13622 int indent = level * 4;
13623
13624 gdb_assert (die != NULL);
13625
13626 if (level >= max_level)
13627 return;
13628
13629 dump_die_shallow (f, indent, die);
13630
13631 if (die->child != NULL)
c906108c 13632 {
d97bc12b
DE
13633 print_spaces (indent, f);
13634 fprintf_unfiltered (f, " Children:");
13635 if (level + 1 < max_level)
13636 {
13637 fprintf_unfiltered (f, "\n");
13638 dump_die_1 (f, level + 1, max_level, die->child);
13639 }
13640 else
13641 {
3e43a32a
MS
13642 fprintf_unfiltered (f,
13643 " [not printed, max nesting level reached]\n");
d97bc12b
DE
13644 }
13645 }
13646
13647 if (die->sibling != NULL && level > 0)
13648 {
13649 dump_die_1 (f, level, max_level, die->sibling);
c906108c
SS
13650 }
13651}
13652
d97bc12b
DE
13653/* This is called from the pdie macro in gdbinit.in.
13654 It's not static so gcc will keep a copy callable from gdb. */
13655
13656void
13657dump_die (struct die_info *die, int max_level)
13658{
13659 dump_die_1 (gdb_stdlog, 0, max_level, die);
13660}
13661
f9aca02d 13662static void
51545339 13663store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
c906108c 13664{
51545339 13665 void **slot;
c906108c 13666
51545339
DJ
13667 slot = htab_find_slot_with_hash (cu->die_hash, die, die->offset, INSERT);
13668
13669 *slot = die;
c906108c
SS
13670}
13671
93311388
DE
13672static int
13673is_ref_attr (struct attribute *attr)
c906108c 13674{
c906108c
SS
13675 switch (attr->form)
13676 {
13677 case DW_FORM_ref_addr:
c906108c
SS
13678 case DW_FORM_ref1:
13679 case DW_FORM_ref2:
13680 case DW_FORM_ref4:
613e1657 13681 case DW_FORM_ref8:
c906108c 13682 case DW_FORM_ref_udata:
93311388 13683 return 1;
c906108c 13684 default:
93311388 13685 return 0;
c906108c 13686 }
93311388
DE
13687}
13688
13689static unsigned int
13690dwarf2_get_ref_die_offset (struct attribute *attr)
13691{
13692 if (is_ref_attr (attr))
13693 return DW_ADDR (attr);
13694
13695 complaint (&symfile_complaints,
13696 _("unsupported die ref attribute form: '%s'"),
13697 dwarf_form_name (attr->form));
13698 return 0;
c906108c
SS
13699}
13700
43bbcdc2
PH
13701/* Return the constant value held by ATTR. Return DEFAULT_VALUE if
13702 * the value held by the attribute is not constant. */
a02abb62 13703
43bbcdc2 13704static LONGEST
a02abb62
JB
13705dwarf2_get_attr_constant_value (struct attribute *attr, int default_value)
13706{
13707 if (attr->form == DW_FORM_sdata)
13708 return DW_SND (attr);
13709 else if (attr->form == DW_FORM_udata
13710 || attr->form == DW_FORM_data1
13711 || attr->form == DW_FORM_data2
13712 || attr->form == DW_FORM_data4
13713 || attr->form == DW_FORM_data8)
13714 return DW_UNSND (attr);
13715 else
13716 {
3e43a32a
MS
13717 complaint (&symfile_complaints,
13718 _("Attribute value is not a constant (%s)"),
a02abb62
JB
13719 dwarf_form_name (attr->form));
13720 return default_value;
13721 }
13722}
13723
03dd20cc 13724/* THIS_CU has a reference to PER_CU. If necessary, load the new compilation
348e048f
DE
13725 unit and add it to our queue.
13726 The result is non-zero if PER_CU was queued, otherwise the result is zero
13727 meaning either PER_CU is already queued or it is already loaded. */
03dd20cc 13728
348e048f 13729static int
03dd20cc
DJ
13730maybe_queue_comp_unit (struct dwarf2_cu *this_cu,
13731 struct dwarf2_per_cu_data *per_cu)
13732{
98bfdba5
PA
13733 /* We may arrive here during partial symbol reading, if we need full
13734 DIEs to process an unusual case (e.g. template arguments). Do
13735 not queue PER_CU, just tell our caller to load its DIEs. */
13736 if (dwarf2_per_objfile->reading_partial_symbols)
13737 {
13738 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
13739 return 1;
13740 return 0;
13741 }
13742
03dd20cc
DJ
13743 /* Mark the dependence relation so that we don't flush PER_CU
13744 too early. */
13745 dwarf2_add_dependence (this_cu, per_cu);
13746
13747 /* If it's already on the queue, we have nothing to do. */
13748 if (per_cu->queued)
348e048f 13749 return 0;
03dd20cc
DJ
13750
13751 /* If the compilation unit is already loaded, just mark it as
13752 used. */
13753 if (per_cu->cu != NULL)
13754 {
13755 per_cu->cu->last_used = 0;
348e048f 13756 return 0;
03dd20cc
DJ
13757 }
13758
13759 /* Add it to the queue. */
13760 queue_comp_unit (per_cu, this_cu->objfile);
348e048f
DE
13761
13762 return 1;
13763}
13764
13765/* Follow reference or signature attribute ATTR of SRC_DIE.
13766 On entry *REF_CU is the CU of SRC_DIE.
13767 On exit *REF_CU is the CU of the result. */
13768
13769static struct die_info *
13770follow_die_ref_or_sig (struct die_info *src_die, struct attribute *attr,
13771 struct dwarf2_cu **ref_cu)
13772{
13773 struct die_info *die;
13774
13775 if (is_ref_attr (attr))
13776 die = follow_die_ref (src_die, attr, ref_cu);
55f1336d 13777 else if (attr->form == DW_FORM_ref_sig8)
348e048f
DE
13778 die = follow_die_sig (src_die, attr, ref_cu);
13779 else
13780 {
13781 dump_die_for_error (src_die);
13782 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
13783 (*ref_cu)->objfile->name);
13784 }
13785
13786 return die;
03dd20cc
DJ
13787}
13788
5c631832 13789/* Follow reference OFFSET.
673bfd45
DE
13790 On entry *REF_CU is the CU of the source die referencing OFFSET.
13791 On exit *REF_CU is the CU of the result.
13792 Returns NULL if OFFSET is invalid. */
f504f079 13793
f9aca02d 13794static struct die_info *
5c631832 13795follow_die_offset (unsigned int offset, struct dwarf2_cu **ref_cu)
c906108c 13796{
10b3939b 13797 struct die_info temp_die;
f2f0e013 13798 struct dwarf2_cu *target_cu, *cu = *ref_cu;
10b3939b 13799
348e048f
DE
13800 gdb_assert (cu->per_cu != NULL);
13801
98bfdba5
PA
13802 target_cu = cu;
13803
8b70b953 13804 if (cu->per_cu->debug_type_section)
348e048f
DE
13805 {
13806 /* .debug_types CUs cannot reference anything outside their CU.
13807 If they need to, they have to reference a signatured type via
55f1336d 13808 DW_FORM_ref_sig8. */
348e048f 13809 if (! offset_in_cu_p (&cu->header, offset))
5c631832 13810 return NULL;
348e048f
DE
13811 }
13812 else if (! offset_in_cu_p (&cu->header, offset))
10b3939b
DJ
13813 {
13814 struct dwarf2_per_cu_data *per_cu;
9a619af0 13815
45452591 13816 per_cu = dwarf2_find_containing_comp_unit (offset, cu->objfile);
03dd20cc
DJ
13817
13818 /* If necessary, add it to the queue and load its DIEs. */
348e048f
DE
13819 if (maybe_queue_comp_unit (cu, per_cu))
13820 load_full_comp_unit (per_cu, cu->objfile);
03dd20cc 13821
10b3939b
DJ
13822 target_cu = per_cu->cu;
13823 }
98bfdba5
PA
13824 else if (cu->dies == NULL)
13825 {
13826 /* We're loading full DIEs during partial symbol reading. */
13827 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
13828 load_full_comp_unit (cu->per_cu, cu->objfile);
13829 }
c906108c 13830
f2f0e013 13831 *ref_cu = target_cu;
51545339 13832 temp_die.offset = offset;
5c631832
JK
13833 return htab_find_with_hash (target_cu->die_hash, &temp_die, offset);
13834}
10b3939b 13835
5c631832
JK
13836/* Follow reference attribute ATTR of SRC_DIE.
13837 On entry *REF_CU is the CU of SRC_DIE.
13838 On exit *REF_CU is the CU of the result. */
13839
13840static struct die_info *
13841follow_die_ref (struct die_info *src_die, struct attribute *attr,
13842 struct dwarf2_cu **ref_cu)
13843{
13844 unsigned int offset = dwarf2_get_ref_die_offset (attr);
13845 struct dwarf2_cu *cu = *ref_cu;
13846 struct die_info *die;
13847
13848 die = follow_die_offset (offset, ref_cu);
13849 if (!die)
13850 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced from DIE "
13851 "at 0x%x [in module %s]"),
13852 offset, src_die->offset, cu->objfile->name);
348e048f 13853
5c631832
JK
13854 return die;
13855}
13856
d83e736b
JK
13857/* Return DWARF block referenced by DW_AT_location of DIE at OFFSET at PER_CU.
13858 Returned value is intended for DW_OP_call*. Returned
13859 dwarf2_locexpr_baton->data has lifetime of PER_CU->OBJFILE. */
5c631832
JK
13860
13861struct dwarf2_locexpr_baton
13862dwarf2_fetch_die_location_block (unsigned int offset,
8cf6f0b1
TT
13863 struct dwarf2_per_cu_data *per_cu,
13864 CORE_ADDR (*get_frame_pc) (void *baton),
13865 void *baton)
5c631832 13866{
918dd910 13867 struct dwarf2_cu *cu;
5c631832
JK
13868 struct die_info *die;
13869 struct attribute *attr;
13870 struct dwarf2_locexpr_baton retval;
13871
8cf6f0b1
TT
13872 dw2_setup (per_cu->objfile);
13873
918dd910
JK
13874 if (per_cu->cu == NULL)
13875 load_cu (per_cu);
13876 cu = per_cu->cu;
13877
5c631832
JK
13878 die = follow_die_offset (offset, &cu);
13879 if (!die)
13880 error (_("Dwarf Error: Cannot find DIE at 0x%x referenced in module %s"),
13881 offset, per_cu->cu->objfile->name);
13882
13883 attr = dwarf2_attr (die, DW_AT_location, cu);
13884 if (!attr)
13885 {
13886 /* DWARF: "If there is no such attribute, then there is no effect.". */
13887
13888 retval.data = NULL;
13889 retval.size = 0;
13890 }
8cf6f0b1
TT
13891 else if (attr_form_is_section_offset (attr))
13892 {
13893 struct dwarf2_loclist_baton loclist_baton;
13894 CORE_ADDR pc = (*get_frame_pc) (baton);
13895 size_t size;
13896
13897 fill_in_loclist_baton (cu, &loclist_baton, attr);
13898
13899 retval.data = dwarf2_find_location_expression (&loclist_baton,
13900 &size, pc);
13901 retval.size = size;
13902 }
5c631832
JK
13903 else
13904 {
13905 if (!attr_form_is_block (attr))
13906 error (_("Dwarf Error: DIE at 0x%x referenced in module %s "
13907 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
13908 offset, per_cu->cu->objfile->name);
13909
13910 retval.data = DW_BLOCK (attr)->data;
13911 retval.size = DW_BLOCK (attr)->size;
13912 }
13913 retval.per_cu = cu->per_cu;
918dd910 13914
918dd910
JK
13915 age_cached_comp_units ();
13916
5c631832 13917 return retval;
348e048f
DE
13918}
13919
8a9b8146
TT
13920/* Return the type of the DIE at DIE_OFFSET in the CU named by
13921 PER_CU. */
13922
13923struct type *
13924dwarf2_get_die_type (unsigned int die_offset,
13925 struct dwarf2_per_cu_data *per_cu)
13926{
8a9b8146 13927 dw2_setup (per_cu->objfile);
9ff3b74f 13928 return get_die_type_at_offset (die_offset, per_cu);
8a9b8146
TT
13929}
13930
348e048f
DE
13931/* Follow the signature attribute ATTR in SRC_DIE.
13932 On entry *REF_CU is the CU of SRC_DIE.
13933 On exit *REF_CU is the CU of the result. */
13934
13935static struct die_info *
13936follow_die_sig (struct die_info *src_die, struct attribute *attr,
13937 struct dwarf2_cu **ref_cu)
13938{
13939 struct objfile *objfile = (*ref_cu)->objfile;
13940 struct die_info temp_die;
13941 struct signatured_type *sig_type = DW_SIGNATURED_TYPE (attr);
13942 struct dwarf2_cu *sig_cu;
13943 struct die_info *die;
13944
13945 /* sig_type will be NULL if the signatured type is missing from
13946 the debug info. */
13947 if (sig_type == NULL)
13948 error (_("Dwarf Error: Cannot find signatured DIE referenced from DIE "
13949 "at 0x%x [in module %s]"),
13950 src_die->offset, objfile->name);
13951
13952 /* If necessary, add it to the queue and load its DIEs. */
13953
13954 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu))
13955 read_signatured_type (objfile, sig_type);
13956
13957 gdb_assert (sig_type->per_cu.cu != NULL);
13958
13959 sig_cu = sig_type->per_cu.cu;
13960 temp_die.offset = sig_cu->header.offset + sig_type->type_offset;
13961 die = htab_find_with_hash (sig_cu->die_hash, &temp_die, temp_die.offset);
13962 if (die)
13963 {
13964 *ref_cu = sig_cu;
13965 return die;
13966 }
13967
3e43a32a
MS
13968 error (_("Dwarf Error: Cannot find signatured DIE at 0x%x referenced "
13969 "from DIE at 0x%x [in module %s]"),
348e048f
DE
13970 sig_type->type_offset, src_die->offset, objfile->name);
13971}
13972
13973/* Given an offset of a signatured type, return its signatured_type. */
13974
13975static struct signatured_type *
8b70b953
TT
13976lookup_signatured_type_at_offset (struct objfile *objfile,
13977 struct dwarf2_section_info *section,
13978 unsigned int offset)
348e048f 13979{
8b70b953 13980 gdb_byte *info_ptr = section->buffer + offset;
348e048f
DE
13981 unsigned int length, initial_length_size;
13982 unsigned int sig_offset;
13983 struct signatured_type find_entry, *type_sig;
13984
13985 length = read_initial_length (objfile->obfd, info_ptr, &initial_length_size);
13986 sig_offset = (initial_length_size
13987 + 2 /*version*/
13988 + (initial_length_size == 4 ? 4 : 8) /*debug_abbrev_offset*/
13989 + 1 /*address_size*/);
13990 find_entry.signature = bfd_get_64 (objfile->obfd, info_ptr + sig_offset);
13991 type_sig = htab_find (dwarf2_per_objfile->signatured_types, &find_entry);
13992
13993 /* This is only used to lookup previously recorded types.
13994 If we didn't find it, it's our bug. */
13995 gdb_assert (type_sig != NULL);
b3c8eb43 13996 gdb_assert (offset == type_sig->per_cu.offset);
348e048f
DE
13997
13998 return type_sig;
13999}
14000
14001/* Read in signatured type at OFFSET and build its CU and die(s). */
14002
14003static void
14004read_signatured_type_at_offset (struct objfile *objfile,
8b70b953 14005 struct dwarf2_section_info *sect,
348e048f
DE
14006 unsigned int offset)
14007{
14008 struct signatured_type *type_sig;
14009
8b70b953 14010 dwarf2_read_section (objfile, sect);
be391dca 14011
348e048f
DE
14012 /* We have the section offset, but we need the signature to do the
14013 hash table lookup. */
8b70b953 14014 type_sig = lookup_signatured_type_at_offset (objfile, sect, offset);
348e048f
DE
14015
14016 gdb_assert (type_sig->per_cu.cu == NULL);
14017
14018 read_signatured_type (objfile, type_sig);
14019
14020 gdb_assert (type_sig->per_cu.cu != NULL);
14021}
14022
14023/* Read in a signatured type and build its CU and DIEs. */
14024
14025static void
14026read_signatured_type (struct objfile *objfile,
14027 struct signatured_type *type_sig)
14028{
1fd400ff 14029 gdb_byte *types_ptr;
348e048f
DE
14030 struct die_reader_specs reader_specs;
14031 struct dwarf2_cu *cu;
14032 ULONGEST signature;
14033 struct cleanup *back_to, *free_cu_cleanup;
8b70b953 14034 struct dwarf2_section_info *section = type_sig->per_cu.debug_type_section;
348e048f 14035
8b70b953
TT
14036 dwarf2_read_section (objfile, section);
14037 types_ptr = section->buffer + type_sig->per_cu.offset;
1fd400ff 14038
348e048f
DE
14039 gdb_assert (type_sig->per_cu.cu == NULL);
14040
9816fde3
JK
14041 cu = xmalloc (sizeof (*cu));
14042 init_one_comp_unit (cu, objfile);
14043
348e048f
DE
14044 type_sig->per_cu.cu = cu;
14045 cu->per_cu = &type_sig->per_cu;
14046
14047 /* If an error occurs while loading, release our storage. */
14048 free_cu_cleanup = make_cleanup (free_one_comp_unit, cu);
14049
8b70b953 14050 types_ptr = read_type_comp_unit_head (&cu->header, section, &signature,
348e048f
DE
14051 types_ptr, objfile->obfd);
14052 gdb_assert (signature == type_sig->signature);
14053
14054 cu->die_hash
14055 = htab_create_alloc_ex (cu->header.length / 12,
14056 die_hash,
14057 die_eq,
14058 NULL,
14059 &cu->comp_unit_obstack,
14060 hashtab_obstack_allocate,
14061 dummy_obstack_deallocate);
14062
14063 dwarf2_read_abbrevs (cu->objfile->obfd, cu);
14064 back_to = make_cleanup (dwarf2_free_abbrev_table, cu);
14065
14066 init_cu_die_reader (&reader_specs, cu);
14067
14068 cu->dies = read_die_and_children (&reader_specs, types_ptr, &types_ptr,
14069 NULL /*parent*/);
14070
14071 /* We try not to read any attributes in this function, because not
14072 all objfiles needed for references have been loaded yet, and symbol
14073 table processing isn't initialized. But we have to set the CU language,
14074 or we won't be able to build types correctly. */
9816fde3 14075 prepare_one_comp_unit (cu, cu->dies);
348e048f
DE
14076
14077 do_cleanups (back_to);
14078
14079 /* We've successfully allocated this compilation unit. Let our caller
14080 clean it up when finished with it. */
14081 discard_cleanups (free_cu_cleanup);
14082
14083 type_sig->per_cu.cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
14084 dwarf2_per_objfile->read_in_chain = &type_sig->per_cu;
c906108c
SS
14085}
14086
3c6e0cb3
JK
14087/* Workaround as dwarf_expr_context_funcs.read_mem implementation before
14088 a proper runtime DWARF expressions evaluator gets implemented.
14089 Otherwise gnuv3_baseclass_offset would error by:
14090 Expected a negative vbase offset (old compiler?) */
14091
14092static void
14093decode_locdesc_read_mem (void *baton, gdb_byte *buf, CORE_ADDR addr,
14094 size_t length)
14095{
14096 struct dwarf_expr_context *ctx = baton;
14097 struct gdbarch *gdbarch = ctx->gdbarch;
14098 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
14099
14100 memset (buf, 0, length);
14101
14102 if (TYPE_LENGTH (ptr_type) == length)
14103 store_typed_address (buf, ptr_type, addr);
14104}
14105
14106static const struct dwarf_expr_context_funcs decode_locdesc_ctx_funcs =
14107{
14108 ctx_no_read_reg,
14109 decode_locdesc_read_mem,
14110 ctx_no_get_frame_base,
14111 ctx_no_get_frame_cfa,
14112 ctx_no_get_frame_pc,
14113 ctx_no_get_tls_address,
14114 ctx_no_dwarf_call,
14115 ctx_no_get_base_type
14116};
14117
c906108c
SS
14118/* Decode simple location descriptions.
14119 Given a pointer to a dwarf block that defines a location, compute
14120 the location and return the value.
14121
4cecd739
DJ
14122 NOTE drow/2003-11-18: This function is called in two situations
14123 now: for the address of static or global variables (partial symbols
14124 only) and for offsets into structures which are expected to be
14125 (more or less) constant. The partial symbol case should go away,
14126 and only the constant case should remain. That will let this
14127 function complain more accurately. A few special modes are allowed
14128 without complaint for global variables (for instance, global
14129 register values and thread-local values).
c906108c
SS
14130
14131 A location description containing no operations indicates that the
4cecd739 14132 object is optimized out. The return value is 0 for that case.
6b992462
DJ
14133 FIXME drow/2003-11-16: No callers check for this case any more; soon all
14134 callers will only want a very basic result and this can become a
3c6e0cb3 14135 complaint. */
c906108c
SS
14136
14137static CORE_ADDR
e7c27a73 14138decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
c906108c 14139{
e7c27a73 14140 struct objfile *objfile = cu->objfile;
3c6e0cb3
JK
14141 struct dwarf_expr_context *ctx;
14142 struct cleanup *old_chain;
14143 volatile struct gdb_exception ex;
c906108c 14144
3c6e0cb3
JK
14145 ctx = new_dwarf_expr_context ();
14146 old_chain = make_cleanup_free_dwarf_expr_context (ctx);
14147 make_cleanup_value_free_to_mark (value_mark ());
f1bea926 14148
3c6e0cb3
JK
14149 ctx->gdbarch = get_objfile_arch (objfile);
14150 ctx->addr_size = cu->header.addr_size;
14151 ctx->offset = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14152 ctx->baton = ctx;
14153 ctx->funcs = &decode_locdesc_ctx_funcs;
c906108c 14154
3c6e0cb3
JK
14155 /* DW_AT_data_member_location expects the structure address to be pushed on
14156 the stack. Simulate the offset by address 0. */
14157 dwarf_expr_push_address (ctx, 0, 0);
c906108c 14158
3c6e0cb3
JK
14159 TRY_CATCH (ex, RETURN_MASK_ERROR)
14160 {
14161 dwarf_expr_eval (ctx, blk->data, blk->size);
14162 }
14163 if (ex.reason < 0)
14164 {
14165 if (ex.message)
14166 complaint (&symfile_complaints, "%s", ex.message);
14167 }
14168 else if (ctx->num_pieces == 0)
14169 switch (ctx->location)
14170 {
14171 /* The returned number will be bogus, just do not complain for locations
14172 in global registers - it is here only a partial symbol address. */
14173 case DWARF_VALUE_REGISTER:
d53d4ac5 14174
3c6e0cb3
JK
14175 case DWARF_VALUE_MEMORY:
14176 case DWARF_VALUE_STACK:
d53d4ac5 14177 {
3c6e0cb3 14178 CORE_ADDR address = dwarf_expr_fetch_address (ctx, 0);
d53d4ac5 14179
3c6e0cb3
JK
14180 do_cleanups (old_chain);
14181 return address;
d53d4ac5 14182 }
3c6e0cb3
JK
14183 }
14184
14185 do_cleanups (old_chain);
14186 dwarf2_complex_location_expr_complaint ();
14187 return 0;
c906108c
SS
14188}
14189
14190/* memory allocation interface */
14191
c906108c 14192static struct dwarf_block *
7b5a2f43 14193dwarf_alloc_block (struct dwarf2_cu *cu)
c906108c
SS
14194{
14195 struct dwarf_block *blk;
14196
14197 blk = (struct dwarf_block *)
7b5a2f43 14198 obstack_alloc (&cu->comp_unit_obstack, sizeof (struct dwarf_block));
c906108c
SS
14199 return (blk);
14200}
14201
14202static struct abbrev_info *
f3dd6933 14203dwarf_alloc_abbrev (struct dwarf2_cu *cu)
c906108c
SS
14204{
14205 struct abbrev_info *abbrev;
14206
f3dd6933
DJ
14207 abbrev = (struct abbrev_info *)
14208 obstack_alloc (&cu->abbrev_obstack, sizeof (struct abbrev_info));
c906108c
SS
14209 memset (abbrev, 0, sizeof (struct abbrev_info));
14210 return (abbrev);
14211}
14212
14213static struct die_info *
b60c80d6 14214dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
c906108c
SS
14215{
14216 struct die_info *die;
b60c80d6
DJ
14217 size_t size = sizeof (struct die_info);
14218
14219 if (num_attrs > 1)
14220 size += (num_attrs - 1) * sizeof (struct attribute);
c906108c 14221
b60c80d6 14222 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
c906108c
SS
14223 memset (die, 0, sizeof (struct die_info));
14224 return (die);
14225}
2e276125
JB
14226
14227\f
14228/* Macro support. */
14229
2e276125
JB
14230/* Return the full name of file number I in *LH's file name table.
14231 Use COMP_DIR as the name of the current directory of the
14232 compilation. The result is allocated using xmalloc; the caller is
14233 responsible for freeing it. */
14234static char *
14235file_full_name (int file, struct line_header *lh, const char *comp_dir)
14236{
6a83a1e6
EZ
14237 /* Is the file number a valid index into the line header's file name
14238 table? Remember that file numbers start with one, not zero. */
14239 if (1 <= file && file <= lh->num_file_names)
14240 {
14241 struct file_entry *fe = &lh->file_names[file - 1];
6e70227d 14242
6a83a1e6
EZ
14243 if (IS_ABSOLUTE_PATH (fe->name))
14244 return xstrdup (fe->name);
14245 else
14246 {
14247 const char *dir;
14248 int dir_len;
14249 char *full_name;
14250
14251 if (fe->dir_index)
14252 dir = lh->include_dirs[fe->dir_index - 1];
14253 else
14254 dir = comp_dir;
14255
14256 if (dir)
14257 {
14258 dir_len = strlen (dir);
14259 full_name = xmalloc (dir_len + 1 + strlen (fe->name) + 1);
14260 strcpy (full_name, dir);
14261 full_name[dir_len] = '/';
14262 strcpy (full_name + dir_len + 1, fe->name);
14263 return full_name;
14264 }
14265 else
14266 return xstrdup (fe->name);
14267 }
14268 }
2e276125
JB
14269 else
14270 {
6a83a1e6
EZ
14271 /* The compiler produced a bogus file number. We can at least
14272 record the macro definitions made in the file, even if we
14273 won't be able to find the file by name. */
14274 char fake_name[80];
9a619af0 14275
6a83a1e6 14276 sprintf (fake_name, "<bad macro file number %d>", file);
2e276125 14277
6e70227d 14278 complaint (&symfile_complaints,
6a83a1e6
EZ
14279 _("bad file number in macro information (%d)"),
14280 file);
2e276125 14281
6a83a1e6 14282 return xstrdup (fake_name);
2e276125
JB
14283 }
14284}
14285
14286
14287static struct macro_source_file *
14288macro_start_file (int file, int line,
14289 struct macro_source_file *current_file,
14290 const char *comp_dir,
14291 struct line_header *lh, struct objfile *objfile)
14292{
14293 /* The full name of this source file. */
14294 char *full_name = file_full_name (file, lh, comp_dir);
14295
14296 /* We don't create a macro table for this compilation unit
14297 at all until we actually get a filename. */
14298 if (! pending_macros)
4a146b47 14299 pending_macros = new_macro_table (&objfile->objfile_obstack,
af5f3db6 14300 objfile->macro_cache);
2e276125
JB
14301
14302 if (! current_file)
14303 /* If we have no current file, then this must be the start_file
14304 directive for the compilation unit's main source file. */
14305 current_file = macro_set_main (pending_macros, full_name);
14306 else
14307 current_file = macro_include (current_file, line, full_name);
14308
14309 xfree (full_name);
6e70227d 14310
2e276125
JB
14311 return current_file;
14312}
14313
14314
14315/* Copy the LEN characters at BUF to a xmalloc'ed block of memory,
14316 followed by a null byte. */
14317static char *
14318copy_string (const char *buf, int len)
14319{
14320 char *s = xmalloc (len + 1);
9a619af0 14321
2e276125
JB
14322 memcpy (s, buf, len);
14323 s[len] = '\0';
2e276125
JB
14324 return s;
14325}
14326
14327
14328static const char *
14329consume_improper_spaces (const char *p, const char *body)
14330{
14331 if (*p == ' ')
14332 {
4d3c2250 14333 complaint (&symfile_complaints,
3e43a32a
MS
14334 _("macro definition contains spaces "
14335 "in formal argument list:\n`%s'"),
4d3c2250 14336 body);
2e276125
JB
14337
14338 while (*p == ' ')
14339 p++;
14340 }
14341
14342 return p;
14343}
14344
14345
14346static void
14347parse_macro_definition (struct macro_source_file *file, int line,
14348 const char *body)
14349{
14350 const char *p;
14351
14352 /* The body string takes one of two forms. For object-like macro
14353 definitions, it should be:
14354
14355 <macro name> " " <definition>
14356
14357 For function-like macro definitions, it should be:
14358
14359 <macro name> "() " <definition>
14360 or
14361 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
14362
14363 Spaces may appear only where explicitly indicated, and in the
14364 <definition>.
14365
14366 The Dwarf 2 spec says that an object-like macro's name is always
14367 followed by a space, but versions of GCC around March 2002 omit
6e70227d 14368 the space when the macro's definition is the empty string.
2e276125
JB
14369
14370 The Dwarf 2 spec says that there should be no spaces between the
14371 formal arguments in a function-like macro's formal argument list,
14372 but versions of GCC around March 2002 include spaces after the
14373 commas. */
14374
14375
14376 /* Find the extent of the macro name. The macro name is terminated
14377 by either a space or null character (for an object-like macro) or
14378 an opening paren (for a function-like macro). */
14379 for (p = body; *p; p++)
14380 if (*p == ' ' || *p == '(')
14381 break;
14382
14383 if (*p == ' ' || *p == '\0')
14384 {
14385 /* It's an object-like macro. */
14386 int name_len = p - body;
14387 char *name = copy_string (body, name_len);
14388 const char *replacement;
14389
14390 if (*p == ' ')
14391 replacement = body + name_len + 1;
14392 else
14393 {
4d3c2250 14394 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
14395 replacement = body + name_len;
14396 }
6e70227d 14397
2e276125
JB
14398 macro_define_object (file, line, name, replacement);
14399
14400 xfree (name);
14401 }
14402 else if (*p == '(')
14403 {
14404 /* It's a function-like macro. */
14405 char *name = copy_string (body, p - body);
14406 int argc = 0;
14407 int argv_size = 1;
14408 char **argv = xmalloc (argv_size * sizeof (*argv));
14409
14410 p++;
14411
14412 p = consume_improper_spaces (p, body);
14413
14414 /* Parse the formal argument list. */
14415 while (*p && *p != ')')
14416 {
14417 /* Find the extent of the current argument name. */
14418 const char *arg_start = p;
14419
14420 while (*p && *p != ',' && *p != ')' && *p != ' ')
14421 p++;
14422
14423 if (! *p || p == arg_start)
4d3c2250 14424 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
14425 else
14426 {
14427 /* Make sure argv has room for the new argument. */
14428 if (argc >= argv_size)
14429 {
14430 argv_size *= 2;
14431 argv = xrealloc (argv, argv_size * sizeof (*argv));
14432 }
14433
14434 argv[argc++] = copy_string (arg_start, p - arg_start);
14435 }
14436
14437 p = consume_improper_spaces (p, body);
14438
14439 /* Consume the comma, if present. */
14440 if (*p == ',')
14441 {
14442 p++;
14443
14444 p = consume_improper_spaces (p, body);
14445 }
14446 }
14447
14448 if (*p == ')')
14449 {
14450 p++;
14451
14452 if (*p == ' ')
14453 /* Perfectly formed definition, no complaints. */
14454 macro_define_function (file, line, name,
6e70227d 14455 argc, (const char **) argv,
2e276125
JB
14456 p + 1);
14457 else if (*p == '\0')
14458 {
14459 /* Complain, but do define it. */
4d3c2250 14460 dwarf2_macro_malformed_definition_complaint (body);
2e276125 14461 macro_define_function (file, line, name,
6e70227d 14462 argc, (const char **) argv,
2e276125
JB
14463 p);
14464 }
14465 else
14466 /* Just complain. */
4d3c2250 14467 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
14468 }
14469 else
14470 /* Just complain. */
4d3c2250 14471 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
14472
14473 xfree (name);
14474 {
14475 int i;
14476
14477 for (i = 0; i < argc; i++)
14478 xfree (argv[i]);
14479 }
14480 xfree (argv);
14481 }
14482 else
4d3c2250 14483 dwarf2_macro_malformed_definition_complaint (body);
2e276125
JB
14484}
14485
cf2c3c16
TT
14486/* Skip some bytes from BYTES according to the form given in FORM.
14487 Returns the new pointer. */
2e276125 14488
cf2c3c16
TT
14489static gdb_byte *
14490skip_form_bytes (bfd *abfd, gdb_byte *bytes,
14491 enum dwarf_form form,
14492 unsigned int offset_size,
14493 struct dwarf2_section_info *section)
2e276125 14494{
cf2c3c16 14495 unsigned int bytes_read;
2e276125 14496
cf2c3c16 14497 switch (form)
2e276125 14498 {
cf2c3c16
TT
14499 case DW_FORM_data1:
14500 case DW_FORM_flag:
14501 ++bytes;
14502 break;
14503
14504 case DW_FORM_data2:
14505 bytes += 2;
14506 break;
14507
14508 case DW_FORM_data4:
14509 bytes += 4;
14510 break;
14511
14512 case DW_FORM_data8:
14513 bytes += 8;
14514 break;
14515
14516 case DW_FORM_string:
14517 read_direct_string (abfd, bytes, &bytes_read);
14518 bytes += bytes_read;
14519 break;
14520
14521 case DW_FORM_sec_offset:
14522 case DW_FORM_strp:
14523 bytes += offset_size;
14524 break;
14525
14526 case DW_FORM_block:
14527 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
14528 bytes += bytes_read;
14529 break;
14530
14531 case DW_FORM_block1:
14532 bytes += 1 + read_1_byte (abfd, bytes);
14533 break;
14534 case DW_FORM_block2:
14535 bytes += 2 + read_2_bytes (abfd, bytes);
14536 break;
14537 case DW_FORM_block4:
14538 bytes += 4 + read_4_bytes (abfd, bytes);
14539 break;
14540
14541 case DW_FORM_sdata:
14542 case DW_FORM_udata:
14543 bytes = skip_leb128 (abfd, bytes);
14544 break;
14545
14546 default:
14547 {
14548 complain:
14549 complaint (&symfile_complaints,
14550 _("invalid form 0x%x in `%s'"),
14551 form,
14552 section->asection->name);
14553 return NULL;
14554 }
2e276125
JB
14555 }
14556
cf2c3c16
TT
14557 return bytes;
14558}
757a13d0 14559
cf2c3c16
TT
14560/* A helper for dwarf_decode_macros that handles skipping an unknown
14561 opcode. Returns an updated pointer to the macro data buffer; or,
14562 on error, issues a complaint and returns NULL. */
757a13d0 14563
cf2c3c16
TT
14564static gdb_byte *
14565skip_unknown_opcode (unsigned int opcode,
14566 gdb_byte **opcode_definitions,
14567 gdb_byte *mac_ptr,
14568 bfd *abfd,
14569 unsigned int offset_size,
14570 struct dwarf2_section_info *section)
14571{
14572 unsigned int bytes_read, i;
14573 unsigned long arg;
14574 gdb_byte *defn;
2e276125 14575
cf2c3c16 14576 if (opcode_definitions[opcode] == NULL)
2e276125 14577 {
cf2c3c16
TT
14578 complaint (&symfile_complaints,
14579 _("unrecognized DW_MACFINO opcode 0x%x"),
14580 opcode);
14581 return NULL;
14582 }
2e276125 14583
cf2c3c16
TT
14584 defn = opcode_definitions[opcode];
14585 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
14586 defn += bytes_read;
2e276125 14587
cf2c3c16
TT
14588 for (i = 0; i < arg; ++i)
14589 {
14590 mac_ptr = skip_form_bytes (abfd, mac_ptr, defn[i], offset_size, section);
14591 if (mac_ptr == NULL)
14592 {
14593 /* skip_form_bytes already issued the complaint. */
14594 return NULL;
14595 }
14596 }
757a13d0 14597
cf2c3c16
TT
14598 return mac_ptr;
14599}
757a13d0 14600
cf2c3c16
TT
14601/* A helper function which parses the header of a macro section.
14602 If the macro section is the extended (for now called "GNU") type,
14603 then this updates *OFFSET_SIZE. Returns a pointer to just after
14604 the header, or issues a complaint and returns NULL on error. */
757a13d0 14605
cf2c3c16
TT
14606static gdb_byte *
14607dwarf_parse_macro_header (gdb_byte **opcode_definitions,
14608 bfd *abfd,
14609 gdb_byte *mac_ptr,
14610 unsigned int *offset_size,
14611 int section_is_gnu)
14612{
14613 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
757a13d0 14614
cf2c3c16
TT
14615 if (section_is_gnu)
14616 {
14617 unsigned int version, flags;
757a13d0 14618
cf2c3c16
TT
14619 version = read_2_bytes (abfd, mac_ptr);
14620 if (version != 4)
14621 {
14622 complaint (&symfile_complaints,
14623 _("unrecognized version `%d' in .debug_macro section"),
14624 version);
14625 return NULL;
14626 }
14627 mac_ptr += 2;
757a13d0 14628
cf2c3c16
TT
14629 flags = read_1_byte (abfd, mac_ptr);
14630 ++mac_ptr;
14631 *offset_size = (flags & 1) ? 8 : 4;
757a13d0 14632
cf2c3c16
TT
14633 if ((flags & 2) != 0)
14634 /* We don't need the line table offset. */
14635 mac_ptr += *offset_size;
757a13d0 14636
cf2c3c16
TT
14637 /* Vendor opcode descriptions. */
14638 if ((flags & 4) != 0)
14639 {
14640 unsigned int i, count;
757a13d0 14641
cf2c3c16
TT
14642 count = read_1_byte (abfd, mac_ptr);
14643 ++mac_ptr;
14644 for (i = 0; i < count; ++i)
14645 {
14646 unsigned int opcode, bytes_read;
14647 unsigned long arg;
14648
14649 opcode = read_1_byte (abfd, mac_ptr);
14650 ++mac_ptr;
14651 opcode_definitions[opcode] = mac_ptr;
14652 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14653 mac_ptr += bytes_read;
14654 mac_ptr += arg;
14655 }
757a13d0 14656 }
cf2c3c16 14657 }
757a13d0 14658
cf2c3c16
TT
14659 return mac_ptr;
14660}
757a13d0 14661
cf2c3c16
TT
14662/* A helper for dwarf_decode_macros that handles the GNU extensions,
14663 including DW_GNU_MACINFO_transparent_include. */
14664
14665static void
14666dwarf_decode_macro_bytes (bfd *abfd, gdb_byte *mac_ptr, gdb_byte *mac_end,
14667 struct macro_source_file *current_file,
14668 struct line_header *lh, char *comp_dir,
14669 struct dwarf2_section_info *section,
14670 int section_is_gnu,
14671 unsigned int offset_size,
14672 struct objfile *objfile)
14673{
14674 enum dwarf_macro_record_type macinfo_type;
14675 int at_commandline;
14676 gdb_byte *opcode_definitions[256];
757a13d0 14677
cf2c3c16
TT
14678 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
14679 &offset_size, section_is_gnu);
14680 if (mac_ptr == NULL)
14681 {
14682 /* We already issued a complaint. */
14683 return;
14684 }
757a13d0
JK
14685
14686 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
14687 GDB is still reading the definitions from command line. First
14688 DW_MACINFO_start_file will need to be ignored as it was already executed
14689 to create CURRENT_FILE for the main source holding also the command line
14690 definitions. On first met DW_MACINFO_start_file this flag is reset to
14691 normally execute all the remaining DW_MACINFO_start_file macinfos. */
14692
14693 at_commandline = 1;
14694
14695 do
14696 {
14697 /* Do we at least have room for a macinfo type byte? */
14698 if (mac_ptr >= mac_end)
14699 {
cf2c3c16 14700 dwarf2_macros_too_long_complaint (section);
757a13d0
JK
14701 break;
14702 }
14703
14704 macinfo_type = read_1_byte (abfd, mac_ptr);
14705 mac_ptr++;
14706
cf2c3c16
TT
14707 /* Note that we rely on the fact that the corresponding GNU and
14708 DWARF constants are the same. */
757a13d0
JK
14709 switch (macinfo_type)
14710 {
14711 /* A zero macinfo type indicates the end of the macro
14712 information. */
14713 case 0:
14714 break;
2e276125 14715
cf2c3c16
TT
14716 case DW_MACRO_GNU_define:
14717 case DW_MACRO_GNU_undef:
14718 case DW_MACRO_GNU_define_indirect:
14719 case DW_MACRO_GNU_undef_indirect:
2e276125 14720 {
891d2f0b 14721 unsigned int bytes_read;
2e276125
JB
14722 int line;
14723 char *body;
cf2c3c16 14724 int is_define;
2e276125 14725
cf2c3c16
TT
14726 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14727 mac_ptr += bytes_read;
14728
14729 if (macinfo_type == DW_MACRO_GNU_define
14730 || macinfo_type == DW_MACRO_GNU_undef)
14731 {
14732 body = read_direct_string (abfd, mac_ptr, &bytes_read);
14733 mac_ptr += bytes_read;
14734 }
14735 else
14736 {
14737 LONGEST str_offset;
14738
14739 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
14740 mac_ptr += offset_size;
2e276125 14741
cf2c3c16
TT
14742 body = read_indirect_string_at_offset (abfd, str_offset);
14743 }
14744
14745 is_define = (macinfo_type == DW_MACRO_GNU_define
14746 || macinfo_type == DW_MACRO_GNU_define_indirect);
2e276125 14747 if (! current_file)
757a13d0
JK
14748 {
14749 /* DWARF violation as no main source is present. */
14750 complaint (&symfile_complaints,
14751 _("debug info with no main source gives macro %s "
14752 "on line %d: %s"),
cf2c3c16
TT
14753 is_define ? _("definition") : _("undefinition"),
14754 line, body);
757a13d0
JK
14755 break;
14756 }
3e43a32a
MS
14757 if ((line == 0 && !at_commandline)
14758 || (line != 0 && at_commandline))
4d3c2250 14759 complaint (&symfile_complaints,
757a13d0
JK
14760 _("debug info gives %s macro %s with %s line %d: %s"),
14761 at_commandline ? _("command-line") : _("in-file"),
cf2c3c16 14762 is_define ? _("definition") : _("undefinition"),
757a13d0
JK
14763 line == 0 ? _("zero") : _("non-zero"), line, body);
14764
cf2c3c16 14765 if (is_define)
757a13d0 14766 parse_macro_definition (current_file, line, body);
cf2c3c16
TT
14767 else
14768 {
14769 gdb_assert (macinfo_type == DW_MACRO_GNU_undef
14770 || macinfo_type == DW_MACRO_GNU_undef_indirect);
14771 macro_undef (current_file, line, body);
14772 }
2e276125
JB
14773 }
14774 break;
14775
cf2c3c16 14776 case DW_MACRO_GNU_start_file:
2e276125 14777 {
891d2f0b 14778 unsigned int bytes_read;
2e276125
JB
14779 int line, file;
14780
14781 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14782 mac_ptr += bytes_read;
14783 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14784 mac_ptr += bytes_read;
14785
3e43a32a
MS
14786 if ((line == 0 && !at_commandline)
14787 || (line != 0 && at_commandline))
757a13d0
JK
14788 complaint (&symfile_complaints,
14789 _("debug info gives source %d included "
14790 "from %s at %s line %d"),
14791 file, at_commandline ? _("command-line") : _("file"),
14792 line == 0 ? _("zero") : _("non-zero"), line);
14793
14794 if (at_commandline)
14795 {
cf2c3c16
TT
14796 /* This DW_MACRO_GNU_start_file was executed in the
14797 pass one. */
757a13d0
JK
14798 at_commandline = 0;
14799 }
14800 else
14801 current_file = macro_start_file (file, line,
14802 current_file, comp_dir,
cf2c3c16 14803 lh, objfile);
2e276125
JB
14804 }
14805 break;
14806
cf2c3c16 14807 case DW_MACRO_GNU_end_file:
2e276125 14808 if (! current_file)
4d3c2250 14809 complaint (&symfile_complaints,
3e43a32a
MS
14810 _("macro debug info has an unmatched "
14811 "`close_file' directive"));
2e276125
JB
14812 else
14813 {
14814 current_file = current_file->included_by;
14815 if (! current_file)
14816 {
cf2c3c16 14817 enum dwarf_macro_record_type next_type;
2e276125
JB
14818
14819 /* GCC circa March 2002 doesn't produce the zero
14820 type byte marking the end of the compilation
14821 unit. Complain if it's not there, but exit no
14822 matter what. */
14823
14824 /* Do we at least have room for a macinfo type byte? */
14825 if (mac_ptr >= mac_end)
14826 {
cf2c3c16 14827 dwarf2_macros_too_long_complaint (section);
2e276125
JB
14828 return;
14829 }
14830
14831 /* We don't increment mac_ptr here, so this is just
14832 a look-ahead. */
14833 next_type = read_1_byte (abfd, mac_ptr);
14834 if (next_type != 0)
4d3c2250 14835 complaint (&symfile_complaints,
3e43a32a
MS
14836 _("no terminating 0-type entry for "
14837 "macros in `.debug_macinfo' section"));
2e276125
JB
14838
14839 return;
14840 }
14841 }
14842 break;
14843
cf2c3c16
TT
14844 case DW_MACRO_GNU_transparent_include:
14845 {
14846 LONGEST offset;
14847
14848 offset = read_offset_1 (abfd, mac_ptr, offset_size);
14849 mac_ptr += offset_size;
14850
14851 dwarf_decode_macro_bytes (abfd,
14852 section->buffer + offset,
14853 mac_end, current_file,
14854 lh, comp_dir,
14855 section, section_is_gnu,
14856 offset_size, objfile);
14857 }
14858 break;
14859
2e276125 14860 case DW_MACINFO_vendor_ext:
cf2c3c16
TT
14861 if (!section_is_gnu)
14862 {
14863 unsigned int bytes_read;
14864 int constant;
2e276125 14865
cf2c3c16
TT
14866 constant = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14867 mac_ptr += bytes_read;
14868 read_direct_string (abfd, mac_ptr, &bytes_read);
14869 mac_ptr += bytes_read;
2e276125 14870
cf2c3c16
TT
14871 /* We don't recognize any vendor extensions. */
14872 break;
14873 }
14874 /* FALLTHROUGH */
14875
14876 default:
14877 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
14878 mac_ptr, abfd, offset_size,
14879 section);
14880 if (mac_ptr == NULL)
14881 return;
14882 break;
2e276125 14883 }
757a13d0 14884 } while (macinfo_type != 0);
2e276125 14885}
8e19ed76 14886
cf2c3c16
TT
14887static void
14888dwarf_decode_macros (struct line_header *lh, unsigned int offset,
14889 char *comp_dir, bfd *abfd,
14890 struct dwarf2_cu *cu,
14891 struct dwarf2_section_info *section,
14892 int section_is_gnu)
14893{
14894 gdb_byte *mac_ptr, *mac_end;
14895 struct macro_source_file *current_file = 0;
14896 enum dwarf_macro_record_type macinfo_type;
14897 unsigned int offset_size = cu->header.offset_size;
14898 gdb_byte *opcode_definitions[256];
14899
14900 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
14901 if (section->buffer == NULL)
14902 {
14903 complaint (&symfile_complaints, _("missing %s section"),
14904 section->asection->name);
14905 return;
14906 }
14907
14908 /* First pass: Find the name of the base filename.
14909 This filename is needed in order to process all macros whose definition
14910 (or undefinition) comes from the command line. These macros are defined
14911 before the first DW_MACINFO_start_file entry, and yet still need to be
14912 associated to the base file.
14913
14914 To determine the base file name, we scan the macro definitions until we
14915 reach the first DW_MACINFO_start_file entry. We then initialize
14916 CURRENT_FILE accordingly so that any macro definition found before the
14917 first DW_MACINFO_start_file can still be associated to the base file. */
14918
14919 mac_ptr = section->buffer + offset;
14920 mac_end = section->buffer + section->size;
14921
14922 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
14923 &offset_size, section_is_gnu);
14924 if (mac_ptr == NULL)
14925 {
14926 /* We already issued a complaint. */
14927 return;
14928 }
14929
14930 do
14931 {
14932 /* Do we at least have room for a macinfo type byte? */
14933 if (mac_ptr >= mac_end)
14934 {
14935 /* Complaint is printed during the second pass as GDB will probably
14936 stop the first pass earlier upon finding
14937 DW_MACINFO_start_file. */
14938 break;
14939 }
14940
14941 macinfo_type = read_1_byte (abfd, mac_ptr);
14942 mac_ptr++;
14943
14944 /* Note that we rely on the fact that the corresponding GNU and
14945 DWARF constants are the same. */
14946 switch (macinfo_type)
14947 {
14948 /* A zero macinfo type indicates the end of the macro
14949 information. */
14950 case 0:
14951 break;
14952
14953 case DW_MACRO_GNU_define:
14954 case DW_MACRO_GNU_undef:
14955 /* Only skip the data by MAC_PTR. */
14956 {
14957 unsigned int bytes_read;
14958
14959 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14960 mac_ptr += bytes_read;
14961 read_direct_string (abfd, mac_ptr, &bytes_read);
14962 mac_ptr += bytes_read;
14963 }
14964 break;
14965
14966 case DW_MACRO_GNU_start_file:
14967 {
14968 unsigned int bytes_read;
14969 int line, file;
14970
14971 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14972 mac_ptr += bytes_read;
14973 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14974 mac_ptr += bytes_read;
14975
14976 current_file = macro_start_file (file, line, current_file,
14977 comp_dir, lh, cu->objfile);
14978 }
14979 break;
14980
14981 case DW_MACRO_GNU_end_file:
14982 /* No data to skip by MAC_PTR. */
14983 break;
14984
14985 case DW_MACRO_GNU_define_indirect:
14986 case DW_MACRO_GNU_undef_indirect:
14987 {
14988 unsigned int bytes_read;
14989
14990 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
14991 mac_ptr += bytes_read;
14992 mac_ptr += offset_size;
14993 }
14994 break;
14995
14996 case DW_MACRO_GNU_transparent_include:
14997 /* Note that, according to the spec, a transparent include
14998 chain cannot call DW_MACRO_GNU_start_file. So, we can just
14999 skip this opcode. */
15000 mac_ptr += offset_size;
15001 break;
15002
15003 case DW_MACINFO_vendor_ext:
15004 /* Only skip the data by MAC_PTR. */
15005 if (!section_is_gnu)
15006 {
15007 unsigned int bytes_read;
15008
15009 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
15010 mac_ptr += bytes_read;
15011 read_direct_string (abfd, mac_ptr, &bytes_read);
15012 mac_ptr += bytes_read;
15013 }
15014 /* FALLTHROUGH */
15015
15016 default:
15017 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
15018 mac_ptr, abfd, offset_size,
15019 section);
15020 if (mac_ptr == NULL)
15021 return;
15022 break;
15023 }
15024 } while (macinfo_type != 0 && current_file == NULL);
15025
15026 /* Second pass: Process all entries.
15027
15028 Use the AT_COMMAND_LINE flag to determine whether we are still processing
15029 command-line macro definitions/undefinitions. This flag is unset when we
15030 reach the first DW_MACINFO_start_file entry. */
15031
15032 dwarf_decode_macro_bytes (abfd, section->buffer + offset, mac_end,
15033 current_file, lh, comp_dir, section, section_is_gnu,
15034 offset_size, cu->objfile);
15035}
15036
8e19ed76 15037/* Check if the attribute's form is a DW_FORM_block*
0963b4bd 15038 if so return true else false. */
8e19ed76
PS
15039static int
15040attr_form_is_block (struct attribute *attr)
15041{
15042 return (attr == NULL ? 0 :
15043 attr->form == DW_FORM_block1
15044 || attr->form == DW_FORM_block2
15045 || attr->form == DW_FORM_block4
2dc7f7b3
TT
15046 || attr->form == DW_FORM_block
15047 || attr->form == DW_FORM_exprloc);
8e19ed76 15048}
4c2df51b 15049
c6a0999f
JB
15050/* Return non-zero if ATTR's value is a section offset --- classes
15051 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
15052 You may use DW_UNSND (attr) to retrieve such offsets.
15053
15054 Section 7.5.4, "Attribute Encodings", explains that no attribute
15055 may have a value that belongs to more than one of these classes; it
15056 would be ambiguous if we did, because we use the same forms for all
15057 of them. */
3690dd37
JB
15058static int
15059attr_form_is_section_offset (struct attribute *attr)
15060{
15061 return (attr->form == DW_FORM_data4
2dc7f7b3
TT
15062 || attr->form == DW_FORM_data8
15063 || attr->form == DW_FORM_sec_offset);
3690dd37
JB
15064}
15065
15066
15067/* Return non-zero if ATTR's value falls in the 'constant' class, or
15068 zero otherwise. When this function returns true, you can apply
15069 dwarf2_get_attr_constant_value to it.
15070
15071 However, note that for some attributes you must check
15072 attr_form_is_section_offset before using this test. DW_FORM_data4
15073 and DW_FORM_data8 are members of both the constant class, and of
15074 the classes that contain offsets into other debug sections
15075 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
15076 that, if an attribute's can be either a constant or one of the
15077 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
15078 taken as section offsets, not constants. */
15079static int
15080attr_form_is_constant (struct attribute *attr)
15081{
15082 switch (attr->form)
15083 {
15084 case DW_FORM_sdata:
15085 case DW_FORM_udata:
15086 case DW_FORM_data1:
15087 case DW_FORM_data2:
15088 case DW_FORM_data4:
15089 case DW_FORM_data8:
15090 return 1;
15091 default:
15092 return 0;
15093 }
15094}
15095
8cf6f0b1
TT
15096/* A helper function that fills in a dwarf2_loclist_baton. */
15097
15098static void
15099fill_in_loclist_baton (struct dwarf2_cu *cu,
15100 struct dwarf2_loclist_baton *baton,
15101 struct attribute *attr)
15102{
15103 dwarf2_read_section (dwarf2_per_objfile->objfile,
15104 &dwarf2_per_objfile->loc);
15105
15106 baton->per_cu = cu->per_cu;
15107 gdb_assert (baton->per_cu);
15108 /* We don't know how long the location list is, but make sure we
15109 don't run off the edge of the section. */
15110 baton->size = dwarf2_per_objfile->loc.size - DW_UNSND (attr);
15111 baton->data = dwarf2_per_objfile->loc.buffer + DW_UNSND (attr);
15112 baton->base_address = cu->base_address;
15113}
15114
4c2df51b
DJ
15115static void
15116dwarf2_symbol_mark_computed (struct attribute *attr, struct symbol *sym,
e7c27a73 15117 struct dwarf2_cu *cu)
4c2df51b 15118{
3690dd37 15119 if (attr_form_is_section_offset (attr)
99bcc461
DJ
15120 /* ".debug_loc" may not exist at all, or the offset may be outside
15121 the section. If so, fall through to the complaint in the
15122 other branch. */
9e0ac564
TT
15123 && DW_UNSND (attr) < dwarf2_section_size (dwarf2_per_objfile->objfile,
15124 &dwarf2_per_objfile->loc))
4c2df51b 15125 {
0d53c4c4 15126 struct dwarf2_loclist_baton *baton;
4c2df51b 15127
4a146b47 15128 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 15129 sizeof (struct dwarf2_loclist_baton));
4c2df51b 15130
8cf6f0b1 15131 fill_in_loclist_baton (cu, baton, attr);
be391dca 15132
d00adf39 15133 if (cu->base_known == 0)
0d53c4c4 15134 complaint (&symfile_complaints,
3e43a32a
MS
15135 _("Location list used without "
15136 "specifying the CU base address."));
4c2df51b 15137
768a979c 15138 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_loclist_funcs;
0d53c4c4
DJ
15139 SYMBOL_LOCATION_BATON (sym) = baton;
15140 }
15141 else
15142 {
15143 struct dwarf2_locexpr_baton *baton;
15144
4a146b47 15145 baton = obstack_alloc (&cu->objfile->objfile_obstack,
0d53c4c4 15146 sizeof (struct dwarf2_locexpr_baton));
ae0d2f24
UW
15147 baton->per_cu = cu->per_cu;
15148 gdb_assert (baton->per_cu);
0d53c4c4
DJ
15149
15150 if (attr_form_is_block (attr))
15151 {
15152 /* Note that we're just copying the block's data pointer
15153 here, not the actual data. We're still pointing into the
6502dd73
DJ
15154 info_buffer for SYM's objfile; right now we never release
15155 that buffer, but when we do clean up properly this may
15156 need to change. */
0d53c4c4
DJ
15157 baton->size = DW_BLOCK (attr)->size;
15158 baton->data = DW_BLOCK (attr)->data;
15159 }
15160 else
15161 {
15162 dwarf2_invalid_attrib_class_complaint ("location description",
15163 SYMBOL_NATURAL_NAME (sym));
15164 baton->size = 0;
15165 baton->data = NULL;
15166 }
6e70227d 15167
768a979c 15168 SYMBOL_COMPUTED_OPS (sym) = &dwarf2_locexpr_funcs;
0d53c4c4
DJ
15169 SYMBOL_LOCATION_BATON (sym) = baton;
15170 }
4c2df51b 15171}
6502dd73 15172
9aa1f1e3
TT
15173/* Return the OBJFILE associated with the compilation unit CU. If CU
15174 came from a separate debuginfo file, then the master objfile is
15175 returned. */
ae0d2f24
UW
15176
15177struct objfile *
15178dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
15179{
9291a0cd 15180 struct objfile *objfile = per_cu->objfile;
ae0d2f24
UW
15181
15182 /* Return the master objfile, so that we can report and look up the
15183 correct file containing this variable. */
15184 if (objfile->separate_debug_objfile_backlink)
15185 objfile = objfile->separate_debug_objfile_backlink;
15186
15187 return objfile;
15188}
15189
15190/* Return the address size given in the compilation unit header for CU. */
15191
15192CORE_ADDR
15193dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
15194{
9c6c53f7
SA
15195 if (per_cu->cu)
15196 return per_cu->cu->header.addr_size;
15197 else
15198 {
15199 /* If the CU is not currently read in, we re-read its header. */
15200 struct objfile *objfile = per_cu->objfile;
15201 struct dwarf2_per_objfile *per_objfile
15202 = objfile_data (objfile, dwarf2_objfile_data_key);
15203 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
15204 struct comp_unit_head cu_header;
c471e790 15205
9c6c53f7
SA
15206 memset (&cu_header, 0, sizeof cu_header);
15207 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
15208 return cu_header.addr_size;
15209 }
ae0d2f24
UW
15210}
15211
9eae7c52
TT
15212/* Return the offset size given in the compilation unit header for CU. */
15213
15214int
15215dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
15216{
9c6c53f7
SA
15217 if (per_cu->cu)
15218 return per_cu->cu->header.offset_size;
181cebd4 15219 else
9c6c53f7
SA
15220 {
15221 /* If the CU is not currently read in, we re-read its header. */
15222 struct objfile *objfile = per_cu->objfile;
15223 struct dwarf2_per_objfile *per_objfile
15224 = objfile_data (objfile, dwarf2_objfile_data_key);
15225 gdb_byte *info_ptr = per_objfile->info.buffer + per_cu->offset;
15226 struct comp_unit_head cu_header;
15227
15228 memset (&cu_header, 0, sizeof cu_header);
15229 read_comp_unit_head (&cu_header, info_ptr, objfile->obfd);
15230 return cu_header.offset_size;
15231 }
181cebd4
JK
15232}
15233
9aa1f1e3
TT
15234/* Return the text offset of the CU. The returned offset comes from
15235 this CU's objfile. If this objfile came from a separate debuginfo
15236 file, then the offset may be different from the corresponding
15237 offset in the parent objfile. */
15238
15239CORE_ADDR
15240dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
15241{
bb3fa9d0 15242 struct objfile *objfile = per_cu->objfile;
9aa1f1e3
TT
15243
15244 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
15245}
15246
348e048f
DE
15247/* Locate the .debug_info compilation unit from CU's objfile which contains
15248 the DIE at OFFSET. Raises an error on failure. */
ae038cb0
DJ
15249
15250static struct dwarf2_per_cu_data *
c764a876 15251dwarf2_find_containing_comp_unit (unsigned int offset,
ae038cb0
DJ
15252 struct objfile *objfile)
15253{
15254 struct dwarf2_per_cu_data *this_cu;
15255 int low, high;
15256
ae038cb0
DJ
15257 low = 0;
15258 high = dwarf2_per_objfile->n_comp_units - 1;
15259 while (high > low)
15260 {
15261 int mid = low + (high - low) / 2;
9a619af0 15262
ae038cb0
DJ
15263 if (dwarf2_per_objfile->all_comp_units[mid]->offset >= offset)
15264 high = mid;
15265 else
15266 low = mid + 1;
15267 }
15268 gdb_assert (low == high);
15269 if (dwarf2_per_objfile->all_comp_units[low]->offset > offset)
15270 {
10b3939b 15271 if (low == 0)
8a3fe4f8
AC
15272 error (_("Dwarf Error: could not find partial DIE containing "
15273 "offset 0x%lx [in module %s]"),
10b3939b
DJ
15274 (long) offset, bfd_get_filename (objfile->obfd));
15275
ae038cb0
DJ
15276 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->offset <= offset);
15277 return dwarf2_per_objfile->all_comp_units[low-1];
15278 }
15279 else
15280 {
15281 this_cu = dwarf2_per_objfile->all_comp_units[low];
15282 if (low == dwarf2_per_objfile->n_comp_units - 1
15283 && offset >= this_cu->offset + this_cu->length)
c764a876 15284 error (_("invalid dwarf2 offset %u"), offset);
ae038cb0
DJ
15285 gdb_assert (offset < this_cu->offset + this_cu->length);
15286 return this_cu;
15287 }
15288}
15289
10b3939b
DJ
15290/* Locate the compilation unit from OBJFILE which is located at exactly
15291 OFFSET. Raises an error on failure. */
15292
ae038cb0 15293static struct dwarf2_per_cu_data *
c764a876 15294dwarf2_find_comp_unit (unsigned int offset, struct objfile *objfile)
ae038cb0
DJ
15295{
15296 struct dwarf2_per_cu_data *this_cu;
9a619af0 15297
ae038cb0
DJ
15298 this_cu = dwarf2_find_containing_comp_unit (offset, objfile);
15299 if (this_cu->offset != offset)
c764a876 15300 error (_("no compilation unit with offset %u."), offset);
ae038cb0
DJ
15301 return this_cu;
15302}
15303
9816fde3 15304/* Initialize dwarf2_cu CU for OBJFILE in a pre-allocated space. */
93311388 15305
9816fde3
JK
15306static void
15307init_one_comp_unit (struct dwarf2_cu *cu, struct objfile *objfile)
93311388 15308{
9816fde3 15309 memset (cu, 0, sizeof (*cu));
93311388
DE
15310 cu->objfile = objfile;
15311 obstack_init (&cu->comp_unit_obstack);
9816fde3
JK
15312}
15313
15314/* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
15315
15316static void
15317prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die)
15318{
15319 struct attribute *attr;
15320
15321 /* Set the language we're debugging. */
15322 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
15323 if (attr)
15324 set_cu_language (DW_UNSND (attr), cu);
15325 else
9cded63f
TT
15326 {
15327 cu->language = language_minimal;
15328 cu->language_defn = language_def (cu->language);
15329 }
93311388
DE
15330}
15331
ae038cb0
DJ
15332/* Release one cached compilation unit, CU. We unlink it from the tree
15333 of compilation units, but we don't remove it from the read_in_chain;
93311388
DE
15334 the caller is responsible for that.
15335 NOTE: DATA is a void * because this function is also used as a
15336 cleanup routine. */
ae038cb0
DJ
15337
15338static void
15339free_one_comp_unit (void *data)
15340{
15341 struct dwarf2_cu *cu = data;
15342
15343 if (cu->per_cu != NULL)
15344 cu->per_cu->cu = NULL;
15345 cu->per_cu = NULL;
15346
15347 obstack_free (&cu->comp_unit_obstack, NULL);
15348
15349 xfree (cu);
15350}
15351
72bf9492 15352/* This cleanup function is passed the address of a dwarf2_cu on the stack
ae038cb0
DJ
15353 when we're finished with it. We can't free the pointer itself, but be
15354 sure to unlink it from the cache. Also release any associated storage
15355 and perform cache maintenance.
72bf9492
DJ
15356
15357 Only used during partial symbol parsing. */
15358
15359static void
15360free_stack_comp_unit (void *data)
15361{
15362 struct dwarf2_cu *cu = data;
15363
15364 obstack_free (&cu->comp_unit_obstack, NULL);
15365 cu->partial_dies = NULL;
ae038cb0
DJ
15366
15367 if (cu->per_cu != NULL)
15368 {
15369 /* This compilation unit is on the stack in our caller, so we
15370 should not xfree it. Just unlink it. */
15371 cu->per_cu->cu = NULL;
15372 cu->per_cu = NULL;
15373
15374 /* If we had a per-cu pointer, then we may have other compilation
15375 units loaded, so age them now. */
15376 age_cached_comp_units ();
15377 }
15378}
15379
15380/* Free all cached compilation units. */
15381
15382static void
15383free_cached_comp_units (void *data)
15384{
15385 struct dwarf2_per_cu_data *per_cu, **last_chain;
15386
15387 per_cu = dwarf2_per_objfile->read_in_chain;
15388 last_chain = &dwarf2_per_objfile->read_in_chain;
15389 while (per_cu != NULL)
15390 {
15391 struct dwarf2_per_cu_data *next_cu;
15392
15393 next_cu = per_cu->cu->read_in_chain;
15394
15395 free_one_comp_unit (per_cu->cu);
15396 *last_chain = next_cu;
15397
15398 per_cu = next_cu;
15399 }
15400}
15401
15402/* Increase the age counter on each cached compilation unit, and free
15403 any that are too old. */
15404
15405static void
15406age_cached_comp_units (void)
15407{
15408 struct dwarf2_per_cu_data *per_cu, **last_chain;
15409
15410 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
15411 per_cu = dwarf2_per_objfile->read_in_chain;
15412 while (per_cu != NULL)
15413 {
15414 per_cu->cu->last_used ++;
15415 if (per_cu->cu->last_used <= dwarf2_max_cache_age)
15416 dwarf2_mark (per_cu->cu);
15417 per_cu = per_cu->cu->read_in_chain;
15418 }
15419
15420 per_cu = dwarf2_per_objfile->read_in_chain;
15421 last_chain = &dwarf2_per_objfile->read_in_chain;
15422 while (per_cu != NULL)
15423 {
15424 struct dwarf2_per_cu_data *next_cu;
15425
15426 next_cu = per_cu->cu->read_in_chain;
15427
15428 if (!per_cu->cu->mark)
15429 {
15430 free_one_comp_unit (per_cu->cu);
15431 *last_chain = next_cu;
15432 }
15433 else
15434 last_chain = &per_cu->cu->read_in_chain;
15435
15436 per_cu = next_cu;
15437 }
15438}
15439
15440/* Remove a single compilation unit from the cache. */
15441
15442static void
15443free_one_cached_comp_unit (void *target_cu)
15444{
15445 struct dwarf2_per_cu_data *per_cu, **last_chain;
15446
15447 per_cu = dwarf2_per_objfile->read_in_chain;
15448 last_chain = &dwarf2_per_objfile->read_in_chain;
15449 while (per_cu != NULL)
15450 {
15451 struct dwarf2_per_cu_data *next_cu;
15452
15453 next_cu = per_cu->cu->read_in_chain;
15454
15455 if (per_cu->cu == target_cu)
15456 {
15457 free_one_comp_unit (per_cu->cu);
15458 *last_chain = next_cu;
15459 break;
15460 }
15461 else
15462 last_chain = &per_cu->cu->read_in_chain;
15463
15464 per_cu = next_cu;
15465 }
15466}
15467
fe3e1990
DJ
15468/* Release all extra memory associated with OBJFILE. */
15469
15470void
15471dwarf2_free_objfile (struct objfile *objfile)
15472{
15473 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
15474
15475 if (dwarf2_per_objfile == NULL)
15476 return;
15477
15478 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
15479 free_cached_comp_units (NULL);
15480
7b9f3c50
DE
15481 if (dwarf2_per_objfile->quick_file_names_table)
15482 htab_delete (dwarf2_per_objfile->quick_file_names_table);
9291a0cd 15483
fe3e1990
DJ
15484 /* Everything else should be on the objfile obstack. */
15485}
15486
1c379e20
DJ
15487/* A pair of DIE offset and GDB type pointer. We store these
15488 in a hash table separate from the DIEs, and preserve them
15489 when the DIEs are flushed out of cache. */
15490
15491struct dwarf2_offset_and_type
15492{
15493 unsigned int offset;
15494 struct type *type;
15495};
15496
15497/* Hash function for a dwarf2_offset_and_type. */
15498
15499static hashval_t
15500offset_and_type_hash (const void *item)
15501{
15502 const struct dwarf2_offset_and_type *ofs = item;
9a619af0 15503
1c379e20
DJ
15504 return ofs->offset;
15505}
15506
15507/* Equality function for a dwarf2_offset_and_type. */
15508
15509static int
15510offset_and_type_eq (const void *item_lhs, const void *item_rhs)
15511{
15512 const struct dwarf2_offset_and_type *ofs_lhs = item_lhs;
15513 const struct dwarf2_offset_and_type *ofs_rhs = item_rhs;
9a619af0 15514
1c379e20
DJ
15515 return ofs_lhs->offset == ofs_rhs->offset;
15516}
15517
15518/* Set the type associated with DIE to TYPE. Save it in CU's hash
7e314c57
JK
15519 table if necessary. For convenience, return TYPE.
15520
15521 The DIEs reading must have careful ordering to:
15522 * Not cause infite loops trying to read in DIEs as a prerequisite for
15523 reading current DIE.
15524 * Not trying to dereference contents of still incompletely read in types
15525 while reading in other DIEs.
15526 * Enable referencing still incompletely read in types just by a pointer to
15527 the type without accessing its fields.
15528
15529 Therefore caller should follow these rules:
15530 * Try to fetch any prerequisite types we may need to build this DIE type
15531 before building the type and calling set_die_type.
e71ec853 15532 * After building type call set_die_type for current DIE as soon as
7e314c57
JK
15533 possible before fetching more types to complete the current type.
15534 * Make the type as complete as possible before fetching more types. */
1c379e20 15535
f792889a 15536static struct type *
1c379e20
DJ
15537set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
15538{
15539 struct dwarf2_offset_and_type **slot, ofs;
673bfd45
DE
15540 struct objfile *objfile = cu->objfile;
15541 htab_t *type_hash_ptr;
1c379e20 15542
b4ba55a1
JB
15543 /* For Ada types, make sure that the gnat-specific data is always
15544 initialized (if not already set). There are a few types where
15545 we should not be doing so, because the type-specific area is
15546 already used to hold some other piece of info (eg: TYPE_CODE_FLT
15547 where the type-specific area is used to store the floatformat).
15548 But this is not a problem, because the gnat-specific information
15549 is actually not needed for these types. */
15550 if (need_gnat_info (cu)
15551 && TYPE_CODE (type) != TYPE_CODE_FUNC
15552 && TYPE_CODE (type) != TYPE_CODE_FLT
15553 && !HAVE_GNAT_AUX_INFO (type))
15554 INIT_GNAT_SPECIFIC (type);
15555
8b70b953 15556 if (cu->per_cu->debug_type_section)
673bfd45
DE
15557 type_hash_ptr = &dwarf2_per_objfile->debug_types_type_hash;
15558 else
15559 type_hash_ptr = &dwarf2_per_objfile->debug_info_type_hash;
15560
15561 if (*type_hash_ptr == NULL)
f792889a 15562 {
673bfd45
DE
15563 *type_hash_ptr
15564 = htab_create_alloc_ex (127,
f792889a
DJ
15565 offset_and_type_hash,
15566 offset_and_type_eq,
15567 NULL,
673bfd45 15568 &objfile->objfile_obstack,
f792889a
DJ
15569 hashtab_obstack_allocate,
15570 dummy_obstack_deallocate);
f792889a 15571 }
1c379e20
DJ
15572
15573 ofs.offset = die->offset;
15574 ofs.type = type;
15575 slot = (struct dwarf2_offset_and_type **)
673bfd45 15576 htab_find_slot_with_hash (*type_hash_ptr, &ofs, ofs.offset, INSERT);
7e314c57
JK
15577 if (*slot)
15578 complaint (&symfile_complaints,
15579 _("A problem internal to GDB: DIE 0x%x has type already set"),
15580 die->offset);
673bfd45 15581 *slot = obstack_alloc (&objfile->objfile_obstack, sizeof (**slot));
1c379e20 15582 **slot = ofs;
f792889a 15583 return type;
1c379e20
DJ
15584}
15585
673bfd45
DE
15586/* Look up the type for the die at DIE_OFFSET in the appropriate type_hash
15587 table, or return NULL if the die does not have a saved type. */
1c379e20
DJ
15588
15589static struct type *
673bfd45
DE
15590get_die_type_at_offset (unsigned int offset,
15591 struct dwarf2_per_cu_data *per_cu)
1c379e20
DJ
15592{
15593 struct dwarf2_offset_and_type *slot, ofs;
673bfd45 15594 htab_t type_hash;
f792889a 15595
8b70b953 15596 if (per_cu->debug_type_section)
673bfd45
DE
15597 type_hash = dwarf2_per_objfile->debug_types_type_hash;
15598 else
15599 type_hash = dwarf2_per_objfile->debug_info_type_hash;
f792889a
DJ
15600 if (type_hash == NULL)
15601 return NULL;
1c379e20 15602
673bfd45 15603 ofs.offset = offset;
1c379e20
DJ
15604 slot = htab_find_with_hash (type_hash, &ofs, ofs.offset);
15605 if (slot)
15606 return slot->type;
15607 else
15608 return NULL;
15609}
15610
673bfd45
DE
15611/* Look up the type for DIE in the appropriate type_hash table,
15612 or return NULL if DIE does not have a saved type. */
15613
15614static struct type *
15615get_die_type (struct die_info *die, struct dwarf2_cu *cu)
15616{
15617 return get_die_type_at_offset (die->offset, cu->per_cu);
15618}
15619
10b3939b
DJ
15620/* Add a dependence relationship from CU to REF_PER_CU. */
15621
15622static void
15623dwarf2_add_dependence (struct dwarf2_cu *cu,
15624 struct dwarf2_per_cu_data *ref_per_cu)
15625{
15626 void **slot;
15627
15628 if (cu->dependencies == NULL)
15629 cu->dependencies
15630 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
15631 NULL, &cu->comp_unit_obstack,
15632 hashtab_obstack_allocate,
15633 dummy_obstack_deallocate);
15634
15635 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
15636 if (*slot == NULL)
15637 *slot = ref_per_cu;
15638}
1c379e20 15639
f504f079
DE
15640/* Subroutine of dwarf2_mark to pass to htab_traverse.
15641 Set the mark field in every compilation unit in the
ae038cb0
DJ
15642 cache that we must keep because we are keeping CU. */
15643
10b3939b
DJ
15644static int
15645dwarf2_mark_helper (void **slot, void *data)
15646{
15647 struct dwarf2_per_cu_data *per_cu;
15648
15649 per_cu = (struct dwarf2_per_cu_data *) *slot;
d07ed419
JK
15650
15651 /* cu->dependencies references may not yet have been ever read if QUIT aborts
15652 reading of the chain. As such dependencies remain valid it is not much
15653 useful to track and undo them during QUIT cleanups. */
15654 if (per_cu->cu == NULL)
15655 return 1;
15656
10b3939b
DJ
15657 if (per_cu->cu->mark)
15658 return 1;
15659 per_cu->cu->mark = 1;
15660
15661 if (per_cu->cu->dependencies != NULL)
15662 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
15663
15664 return 1;
15665}
15666
f504f079
DE
15667/* Set the mark field in CU and in every other compilation unit in the
15668 cache that we must keep because we are keeping CU. */
15669
ae038cb0
DJ
15670static void
15671dwarf2_mark (struct dwarf2_cu *cu)
15672{
15673 if (cu->mark)
15674 return;
15675 cu->mark = 1;
10b3939b
DJ
15676 if (cu->dependencies != NULL)
15677 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
ae038cb0
DJ
15678}
15679
15680static void
15681dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
15682{
15683 while (per_cu)
15684 {
15685 per_cu->cu->mark = 0;
15686 per_cu = per_cu->cu->read_in_chain;
15687 }
72bf9492
DJ
15688}
15689
72bf9492
DJ
15690/* Trivial hash function for partial_die_info: the hash value of a DIE
15691 is its offset in .debug_info for this objfile. */
15692
15693static hashval_t
15694partial_die_hash (const void *item)
15695{
15696 const struct partial_die_info *part_die = item;
9a619af0 15697
72bf9492
DJ
15698 return part_die->offset;
15699}
15700
15701/* Trivial comparison function for partial_die_info structures: two DIEs
15702 are equal if they have the same offset. */
15703
15704static int
15705partial_die_eq (const void *item_lhs, const void *item_rhs)
15706{
15707 const struct partial_die_info *part_die_lhs = item_lhs;
15708 const struct partial_die_info *part_die_rhs = item_rhs;
9a619af0 15709
72bf9492
DJ
15710 return part_die_lhs->offset == part_die_rhs->offset;
15711}
15712
ae038cb0
DJ
15713static struct cmd_list_element *set_dwarf2_cmdlist;
15714static struct cmd_list_element *show_dwarf2_cmdlist;
15715
15716static void
15717set_dwarf2_cmd (char *args, int from_tty)
15718{
15719 help_list (set_dwarf2_cmdlist, "maintenance set dwarf2 ", -1, gdb_stdout);
15720}
15721
15722static void
15723show_dwarf2_cmd (char *args, int from_tty)
6e70227d 15724{
ae038cb0
DJ
15725 cmd_show_list (show_dwarf2_cmdlist, from_tty, "");
15726}
15727
dce234bc
PP
15728/* If section described by INFO was mmapped, munmap it now. */
15729
15730static void
15731munmap_section_buffer (struct dwarf2_section_info *info)
15732{
b315ab21 15733 if (info->map_addr != NULL)
dce234bc
PP
15734 {
15735#ifdef HAVE_MMAP
b315ab21 15736 int res;
9a619af0 15737
b315ab21
TG
15738 res = munmap (info->map_addr, info->map_len);
15739 gdb_assert (res == 0);
dce234bc
PP
15740#else
15741 /* Without HAVE_MMAP, we should never be here to begin with. */
f3574227 15742 gdb_assert_not_reached ("no mmap support");
dce234bc
PP
15743#endif
15744 }
15745}
15746
15747/* munmap debug sections for OBJFILE, if necessary. */
15748
15749static void
c1bd65d0 15750dwarf2_per_objfile_free (struct objfile *objfile, void *d)
dce234bc
PP
15751{
15752 struct dwarf2_per_objfile *data = d;
8b70b953
TT
15753 int ix;
15754 struct dwarf2_section_info *section;
9a619af0 15755
16be1145
DE
15756 /* This is sorted according to the order they're defined in to make it easier
15757 to keep in sync. */
dce234bc
PP
15758 munmap_section_buffer (&data->info);
15759 munmap_section_buffer (&data->abbrev);
15760 munmap_section_buffer (&data->line);
16be1145 15761 munmap_section_buffer (&data->loc);
dce234bc 15762 munmap_section_buffer (&data->macinfo);
cf2c3c16 15763 munmap_section_buffer (&data->macro);
16be1145 15764 munmap_section_buffer (&data->str);
dce234bc 15765 munmap_section_buffer (&data->ranges);
dce234bc
PP
15766 munmap_section_buffer (&data->frame);
15767 munmap_section_buffer (&data->eh_frame);
9291a0cd 15768 munmap_section_buffer (&data->gdb_index);
8b70b953
TT
15769
15770 for (ix = 0;
15771 VEC_iterate (dwarf2_section_info_def, data->types, ix, section);
15772 ++ix)
15773 munmap_section_buffer (section);
15774
15775 VEC_free (dwarf2_section_info_def, data->types);
9291a0cd
TT
15776}
15777
15778\f
ae2de4f8 15779/* The "save gdb-index" command. */
9291a0cd
TT
15780
15781/* The contents of the hash table we create when building the string
15782 table. */
15783struct strtab_entry
15784{
15785 offset_type offset;
15786 const char *str;
15787};
15788
559a7a62
JK
15789/* Hash function for a strtab_entry.
15790
15791 Function is used only during write_hash_table so no index format backward
15792 compatibility is needed. */
b89be57b 15793
9291a0cd
TT
15794static hashval_t
15795hash_strtab_entry (const void *e)
15796{
15797 const struct strtab_entry *entry = e;
559a7a62 15798 return mapped_index_string_hash (INT_MAX, entry->str);
9291a0cd
TT
15799}
15800
15801/* Equality function for a strtab_entry. */
b89be57b 15802
9291a0cd
TT
15803static int
15804eq_strtab_entry (const void *a, const void *b)
15805{
15806 const struct strtab_entry *ea = a;
15807 const struct strtab_entry *eb = b;
15808 return !strcmp (ea->str, eb->str);
15809}
15810
15811/* Create a strtab_entry hash table. */
b89be57b 15812
9291a0cd
TT
15813static htab_t
15814create_strtab (void)
15815{
15816 return htab_create_alloc (100, hash_strtab_entry, eq_strtab_entry,
15817 xfree, xcalloc, xfree);
15818}
15819
15820/* Add a string to the constant pool. Return the string's offset in
15821 host order. */
b89be57b 15822
9291a0cd
TT
15823static offset_type
15824add_string (htab_t table, struct obstack *cpool, const char *str)
15825{
15826 void **slot;
15827 struct strtab_entry entry;
15828 struct strtab_entry *result;
15829
15830 entry.str = str;
15831 slot = htab_find_slot (table, &entry, INSERT);
15832 if (*slot)
15833 result = *slot;
15834 else
15835 {
15836 result = XNEW (struct strtab_entry);
15837 result->offset = obstack_object_size (cpool);
15838 result->str = str;
15839 obstack_grow_str0 (cpool, str);
15840 *slot = result;
15841 }
15842 return result->offset;
15843}
15844
15845/* An entry in the symbol table. */
15846struct symtab_index_entry
15847{
15848 /* The name of the symbol. */
15849 const char *name;
15850 /* The offset of the name in the constant pool. */
15851 offset_type index_offset;
15852 /* A sorted vector of the indices of all the CUs that hold an object
15853 of this name. */
15854 VEC (offset_type) *cu_indices;
15855};
15856
15857/* The symbol table. This is a power-of-2-sized hash table. */
15858struct mapped_symtab
15859{
15860 offset_type n_elements;
15861 offset_type size;
15862 struct symtab_index_entry **data;
15863};
15864
15865/* Hash function for a symtab_index_entry. */
b89be57b 15866
9291a0cd
TT
15867static hashval_t
15868hash_symtab_entry (const void *e)
15869{
15870 const struct symtab_index_entry *entry = e;
15871 return iterative_hash (VEC_address (offset_type, entry->cu_indices),
15872 sizeof (offset_type) * VEC_length (offset_type,
15873 entry->cu_indices),
15874 0);
15875}
15876
15877/* Equality function for a symtab_index_entry. */
b89be57b 15878
9291a0cd
TT
15879static int
15880eq_symtab_entry (const void *a, const void *b)
15881{
15882 const struct symtab_index_entry *ea = a;
15883 const struct symtab_index_entry *eb = b;
15884 int len = VEC_length (offset_type, ea->cu_indices);
15885 if (len != VEC_length (offset_type, eb->cu_indices))
15886 return 0;
15887 return !memcmp (VEC_address (offset_type, ea->cu_indices),
15888 VEC_address (offset_type, eb->cu_indices),
15889 sizeof (offset_type) * len);
15890}
15891
15892/* Destroy a symtab_index_entry. */
b89be57b 15893
9291a0cd
TT
15894static void
15895delete_symtab_entry (void *p)
15896{
15897 struct symtab_index_entry *entry = p;
15898 VEC_free (offset_type, entry->cu_indices);
15899 xfree (entry);
15900}
15901
15902/* Create a hash table holding symtab_index_entry objects. */
b89be57b 15903
9291a0cd 15904static htab_t
3876f04e 15905create_symbol_hash_table (void)
9291a0cd
TT
15906{
15907 return htab_create_alloc (100, hash_symtab_entry, eq_symtab_entry,
15908 delete_symtab_entry, xcalloc, xfree);
15909}
15910
15911/* Create a new mapped symtab object. */
b89be57b 15912
9291a0cd
TT
15913static struct mapped_symtab *
15914create_mapped_symtab (void)
15915{
15916 struct mapped_symtab *symtab = XNEW (struct mapped_symtab);
15917 symtab->n_elements = 0;
15918 symtab->size = 1024;
15919 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
15920 return symtab;
15921}
15922
15923/* Destroy a mapped_symtab. */
b89be57b 15924
9291a0cd
TT
15925static void
15926cleanup_mapped_symtab (void *p)
15927{
15928 struct mapped_symtab *symtab = p;
15929 /* The contents of the array are freed when the other hash table is
15930 destroyed. */
15931 xfree (symtab->data);
15932 xfree (symtab);
15933}
15934
15935/* Find a slot in SYMTAB for the symbol NAME. Returns a pointer to
559a7a62
JK
15936 the slot.
15937
15938 Function is used only during write_hash_table so no index format backward
15939 compatibility is needed. */
b89be57b 15940
9291a0cd
TT
15941static struct symtab_index_entry **
15942find_slot (struct mapped_symtab *symtab, const char *name)
15943{
559a7a62 15944 offset_type index, step, hash = mapped_index_string_hash (INT_MAX, name);
9291a0cd
TT
15945
15946 index = hash & (symtab->size - 1);
15947 step = ((hash * 17) & (symtab->size - 1)) | 1;
15948
15949 for (;;)
15950 {
15951 if (!symtab->data[index] || !strcmp (name, symtab->data[index]->name))
15952 return &symtab->data[index];
15953 index = (index + step) & (symtab->size - 1);
15954 }
15955}
15956
15957/* Expand SYMTAB's hash table. */
b89be57b 15958
9291a0cd
TT
15959static void
15960hash_expand (struct mapped_symtab *symtab)
15961{
15962 offset_type old_size = symtab->size;
15963 offset_type i;
15964 struct symtab_index_entry **old_entries = symtab->data;
15965
15966 symtab->size *= 2;
15967 symtab->data = XCNEWVEC (struct symtab_index_entry *, symtab->size);
15968
15969 for (i = 0; i < old_size; ++i)
15970 {
15971 if (old_entries[i])
15972 {
15973 struct symtab_index_entry **slot = find_slot (symtab,
15974 old_entries[i]->name);
15975 *slot = old_entries[i];
15976 }
15977 }
15978
15979 xfree (old_entries);
15980}
15981
15982/* Add an entry to SYMTAB. NAME is the name of the symbol. CU_INDEX
15983 is the index of the CU in which the symbol appears. */
b89be57b 15984
9291a0cd
TT
15985static void
15986add_index_entry (struct mapped_symtab *symtab, const char *name,
15987 offset_type cu_index)
15988{
15989 struct symtab_index_entry **slot;
15990
15991 ++symtab->n_elements;
15992 if (4 * symtab->n_elements / 3 >= symtab->size)
15993 hash_expand (symtab);
15994
15995 slot = find_slot (symtab, name);
15996 if (!*slot)
15997 {
15998 *slot = XNEW (struct symtab_index_entry);
15999 (*slot)->name = name;
16000 (*slot)->cu_indices = NULL;
16001 }
16002 /* Don't push an index twice. Due to how we add entries we only
16003 have to check the last one. */
16004 if (VEC_empty (offset_type, (*slot)->cu_indices)
cf31e6f9 16005 || VEC_last (offset_type, (*slot)->cu_indices) != cu_index)
9291a0cd
TT
16006 VEC_safe_push (offset_type, (*slot)->cu_indices, cu_index);
16007}
16008
16009/* Add a vector of indices to the constant pool. */
b89be57b 16010
9291a0cd 16011static offset_type
3876f04e 16012add_indices_to_cpool (htab_t symbol_hash_table, struct obstack *cpool,
9291a0cd
TT
16013 struct symtab_index_entry *entry)
16014{
16015 void **slot;
16016
3876f04e 16017 slot = htab_find_slot (symbol_hash_table, entry, INSERT);
9291a0cd
TT
16018 if (!*slot)
16019 {
16020 offset_type len = VEC_length (offset_type, entry->cu_indices);
16021 offset_type val = MAYBE_SWAP (len);
16022 offset_type iter;
16023 int i;
16024
16025 *slot = entry;
16026 entry->index_offset = obstack_object_size (cpool);
16027
16028 obstack_grow (cpool, &val, sizeof (val));
16029 for (i = 0;
16030 VEC_iterate (offset_type, entry->cu_indices, i, iter);
16031 ++i)
16032 {
16033 val = MAYBE_SWAP (iter);
16034 obstack_grow (cpool, &val, sizeof (val));
16035 }
16036 }
16037 else
16038 {
16039 struct symtab_index_entry *old_entry = *slot;
16040 entry->index_offset = old_entry->index_offset;
16041 entry = old_entry;
16042 }
16043 return entry->index_offset;
16044}
16045
16046/* Write the mapped hash table SYMTAB to the obstack OUTPUT, with
16047 constant pool entries going into the obstack CPOOL. */
b89be57b 16048
9291a0cd
TT
16049static void
16050write_hash_table (struct mapped_symtab *symtab,
16051 struct obstack *output, struct obstack *cpool)
16052{
16053 offset_type i;
3876f04e 16054 htab_t symbol_hash_table;
9291a0cd
TT
16055 htab_t str_table;
16056
3876f04e 16057 symbol_hash_table = create_symbol_hash_table ();
9291a0cd 16058 str_table = create_strtab ();
3876f04e 16059
9291a0cd
TT
16060 /* We add all the index vectors to the constant pool first, to
16061 ensure alignment is ok. */
16062 for (i = 0; i < symtab->size; ++i)
16063 {
16064 if (symtab->data[i])
3876f04e 16065 add_indices_to_cpool (symbol_hash_table, cpool, symtab->data[i]);
9291a0cd
TT
16066 }
16067
16068 /* Now write out the hash table. */
16069 for (i = 0; i < symtab->size; ++i)
16070 {
16071 offset_type str_off, vec_off;
16072
16073 if (symtab->data[i])
16074 {
16075 str_off = add_string (str_table, cpool, symtab->data[i]->name);
16076 vec_off = symtab->data[i]->index_offset;
16077 }
16078 else
16079 {
16080 /* While 0 is a valid constant pool index, it is not valid
16081 to have 0 for both offsets. */
16082 str_off = 0;
16083 vec_off = 0;
16084 }
16085
16086 str_off = MAYBE_SWAP (str_off);
16087 vec_off = MAYBE_SWAP (vec_off);
16088
16089 obstack_grow (output, &str_off, sizeof (str_off));
16090 obstack_grow (output, &vec_off, sizeof (vec_off));
16091 }
16092
16093 htab_delete (str_table);
3876f04e 16094 htab_delete (symbol_hash_table);
9291a0cd
TT
16095}
16096
0a5429f6
DE
16097/* Struct to map psymtab to CU index in the index file. */
16098struct psymtab_cu_index_map
16099{
16100 struct partial_symtab *psymtab;
16101 unsigned int cu_index;
16102};
16103
16104static hashval_t
16105hash_psymtab_cu_index (const void *item)
16106{
16107 const struct psymtab_cu_index_map *map = item;
16108
16109 return htab_hash_pointer (map->psymtab);
16110}
16111
16112static int
16113eq_psymtab_cu_index (const void *item_lhs, const void *item_rhs)
16114{
16115 const struct psymtab_cu_index_map *lhs = item_lhs;
16116 const struct psymtab_cu_index_map *rhs = item_rhs;
16117
16118 return lhs->psymtab == rhs->psymtab;
16119}
16120
16121/* Helper struct for building the address table. */
16122struct addrmap_index_data
16123{
16124 struct objfile *objfile;
16125 struct obstack *addr_obstack;
16126 htab_t cu_index_htab;
16127
16128 /* Non-zero if the previous_* fields are valid.
16129 We can't write an entry until we see the next entry (since it is only then
16130 that we know the end of the entry). */
16131 int previous_valid;
16132 /* Index of the CU in the table of all CUs in the index file. */
16133 unsigned int previous_cu_index;
0963b4bd 16134 /* Start address of the CU. */
0a5429f6
DE
16135 CORE_ADDR previous_cu_start;
16136};
16137
16138/* Write an address entry to OBSTACK. */
b89be57b 16139
9291a0cd 16140static void
0a5429f6
DE
16141add_address_entry (struct objfile *objfile, struct obstack *obstack,
16142 CORE_ADDR start, CORE_ADDR end, unsigned int cu_index)
9291a0cd 16143{
0a5429f6 16144 offset_type cu_index_to_write;
9291a0cd
TT
16145 char addr[8];
16146 CORE_ADDR baseaddr;
16147
16148 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
16149
0a5429f6
DE
16150 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, start - baseaddr);
16151 obstack_grow (obstack, addr, 8);
16152 store_unsigned_integer (addr, 8, BFD_ENDIAN_LITTLE, end - baseaddr);
16153 obstack_grow (obstack, addr, 8);
16154 cu_index_to_write = MAYBE_SWAP (cu_index);
16155 obstack_grow (obstack, &cu_index_to_write, sizeof (offset_type));
16156}
16157
16158/* Worker function for traversing an addrmap to build the address table. */
16159
16160static int
16161add_address_entry_worker (void *datap, CORE_ADDR start_addr, void *obj)
16162{
16163 struct addrmap_index_data *data = datap;
16164 struct partial_symtab *pst = obj;
16165 offset_type cu_index;
16166 void **slot;
16167
16168 if (data->previous_valid)
16169 add_address_entry (data->objfile, data->addr_obstack,
16170 data->previous_cu_start, start_addr,
16171 data->previous_cu_index);
16172
16173 data->previous_cu_start = start_addr;
16174 if (pst != NULL)
16175 {
16176 struct psymtab_cu_index_map find_map, *map;
16177 find_map.psymtab = pst;
16178 map = htab_find (data->cu_index_htab, &find_map);
16179 gdb_assert (map != NULL);
16180 data->previous_cu_index = map->cu_index;
16181 data->previous_valid = 1;
16182 }
16183 else
16184 data->previous_valid = 0;
16185
16186 return 0;
16187}
16188
16189/* Write OBJFILE's address map to OBSTACK.
16190 CU_INDEX_HTAB is used to map addrmap entries to their CU indices
16191 in the index file. */
16192
16193static void
16194write_address_map (struct objfile *objfile, struct obstack *obstack,
16195 htab_t cu_index_htab)
16196{
16197 struct addrmap_index_data addrmap_index_data;
16198
16199 /* When writing the address table, we have to cope with the fact that
16200 the addrmap iterator only provides the start of a region; we have to
16201 wait until the next invocation to get the start of the next region. */
16202
16203 addrmap_index_data.objfile = objfile;
16204 addrmap_index_data.addr_obstack = obstack;
16205 addrmap_index_data.cu_index_htab = cu_index_htab;
16206 addrmap_index_data.previous_valid = 0;
16207
16208 addrmap_foreach (objfile->psymtabs_addrmap, add_address_entry_worker,
16209 &addrmap_index_data);
16210
16211 /* It's highly unlikely the last entry (end address = 0xff...ff)
16212 is valid, but we should still handle it.
16213 The end address is recorded as the start of the next region, but that
16214 doesn't work here. To cope we pass 0xff...ff, this is a rare situation
16215 anyway. */
16216 if (addrmap_index_data.previous_valid)
16217 add_address_entry (objfile, obstack,
16218 addrmap_index_data.previous_cu_start, (CORE_ADDR) -1,
16219 addrmap_index_data.previous_cu_index);
9291a0cd
TT
16220}
16221
16222/* Add a list of partial symbols to SYMTAB. */
b89be57b 16223
9291a0cd
TT
16224static void
16225write_psymbols (struct mapped_symtab *symtab,
987d643c 16226 htab_t psyms_seen,
9291a0cd
TT
16227 struct partial_symbol **psymp,
16228 int count,
987d643c
TT
16229 offset_type cu_index,
16230 int is_static)
9291a0cd
TT
16231{
16232 for (; count-- > 0; ++psymp)
16233 {
987d643c
TT
16234 void **slot, *lookup;
16235
9291a0cd
TT
16236 if (SYMBOL_LANGUAGE (*psymp) == language_ada)
16237 error (_("Ada is not currently supported by the index"));
987d643c
TT
16238
16239 /* We only want to add a given psymbol once. However, we also
16240 want to account for whether it is global or static. So, we
16241 may add it twice, using slightly different values. */
16242 if (is_static)
16243 {
16244 uintptr_t val = 1 | (uintptr_t) *psymp;
16245
16246 lookup = (void *) val;
16247 }
16248 else
16249 lookup = *psymp;
16250
16251 /* Only add a given psymbol once. */
16252 slot = htab_find_slot (psyms_seen, lookup, INSERT);
16253 if (!*slot)
16254 {
16255 *slot = lookup;
16256 add_index_entry (symtab, SYMBOL_NATURAL_NAME (*psymp), cu_index);
16257 }
9291a0cd
TT
16258 }
16259}
16260
16261/* Write the contents of an ("unfinished") obstack to FILE. Throw an
16262 exception if there is an error. */
b89be57b 16263
9291a0cd
TT
16264static void
16265write_obstack (FILE *file, struct obstack *obstack)
16266{
16267 if (fwrite (obstack_base (obstack), 1, obstack_object_size (obstack),
16268 file)
16269 != obstack_object_size (obstack))
16270 error (_("couldn't data write to file"));
16271}
16272
16273/* Unlink a file if the argument is not NULL. */
b89be57b 16274
9291a0cd
TT
16275static void
16276unlink_if_set (void *p)
16277{
16278 char **filename = p;
16279 if (*filename)
16280 unlink (*filename);
16281}
16282
1fd400ff
TT
16283/* A helper struct used when iterating over debug_types. */
16284struct signatured_type_index_data
16285{
16286 struct objfile *objfile;
16287 struct mapped_symtab *symtab;
16288 struct obstack *types_list;
987d643c 16289 htab_t psyms_seen;
1fd400ff
TT
16290 int cu_index;
16291};
16292
16293/* A helper function that writes a single signatured_type to an
16294 obstack. */
b89be57b 16295
1fd400ff
TT
16296static int
16297write_one_signatured_type (void **slot, void *d)
16298{
16299 struct signatured_type_index_data *info = d;
16300 struct signatured_type *entry = (struct signatured_type *) *slot;
e254ef6a
DE
16301 struct dwarf2_per_cu_data *per_cu = &entry->per_cu;
16302 struct partial_symtab *psymtab = per_cu->v.psymtab;
1fd400ff
TT
16303 gdb_byte val[8];
16304
16305 write_psymbols (info->symtab,
987d643c 16306 info->psyms_seen,
3e43a32a
MS
16307 info->objfile->global_psymbols.list
16308 + psymtab->globals_offset,
987d643c
TT
16309 psymtab->n_global_syms, info->cu_index,
16310 0);
1fd400ff 16311 write_psymbols (info->symtab,
987d643c 16312 info->psyms_seen,
3e43a32a
MS
16313 info->objfile->static_psymbols.list
16314 + psymtab->statics_offset,
987d643c
TT
16315 psymtab->n_static_syms, info->cu_index,
16316 1);
1fd400ff 16317
b3c8eb43 16318 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->per_cu.offset);
1fd400ff
TT
16319 obstack_grow (info->types_list, val, 8);
16320 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->type_offset);
16321 obstack_grow (info->types_list, val, 8);
16322 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, entry->signature);
16323 obstack_grow (info->types_list, val, 8);
16324
16325 ++info->cu_index;
16326
16327 return 1;
16328}
16329
9c6c53f7
SA
16330/* A cleanup function for an htab_t. */
16331
16332static void
16333cleanup_htab (void *arg)
16334{
16335 htab_delete (arg);
16336}
16337
9291a0cd 16338/* Create an index file for OBJFILE in the directory DIR. */
b89be57b 16339
9291a0cd
TT
16340static void
16341write_psymtabs_to_index (struct objfile *objfile, const char *dir)
16342{
16343 struct cleanup *cleanup;
16344 char *filename, *cleanup_filename;
1fd400ff
TT
16345 struct obstack contents, addr_obstack, constant_pool, symtab_obstack;
16346 struct obstack cu_list, types_cu_list;
9291a0cd
TT
16347 int i;
16348 FILE *out_file;
16349 struct mapped_symtab *symtab;
16350 offset_type val, size_of_contents, total_len;
16351 struct stat st;
16352 char buf[8];
987d643c 16353 htab_t psyms_seen;
0a5429f6
DE
16354 htab_t cu_index_htab;
16355 struct psymtab_cu_index_map *psymtab_cu_index_map;
9291a0cd 16356
b4f2f049 16357 if (!objfile->psymtabs || !objfile->psymtabs_addrmap)
9291a0cd 16358 return;
b4f2f049 16359
9291a0cd
TT
16360 if (dwarf2_per_objfile->using_index)
16361 error (_("Cannot use an index to create the index"));
16362
8b70b953
TT
16363 if (VEC_length (dwarf2_section_info_def, dwarf2_per_objfile->types) > 1)
16364 error (_("Cannot make an index when the file has multiple .debug_types sections"));
16365
9291a0cd 16366 if (stat (objfile->name, &st) < 0)
7e17e088 16367 perror_with_name (objfile->name);
9291a0cd
TT
16368
16369 filename = concat (dir, SLASH_STRING, lbasename (objfile->name),
16370 INDEX_SUFFIX, (char *) NULL);
16371 cleanup = make_cleanup (xfree, filename);
16372
16373 out_file = fopen (filename, "wb");
16374 if (!out_file)
16375 error (_("Can't open `%s' for writing"), filename);
16376
16377 cleanup_filename = filename;
16378 make_cleanup (unlink_if_set, &cleanup_filename);
16379
16380 symtab = create_mapped_symtab ();
16381 make_cleanup (cleanup_mapped_symtab, symtab);
16382
16383 obstack_init (&addr_obstack);
16384 make_cleanup_obstack_free (&addr_obstack);
16385
16386 obstack_init (&cu_list);
16387 make_cleanup_obstack_free (&cu_list);
16388
1fd400ff
TT
16389 obstack_init (&types_cu_list);
16390 make_cleanup_obstack_free (&types_cu_list);
16391
987d643c
TT
16392 psyms_seen = htab_create_alloc (100, htab_hash_pointer, htab_eq_pointer,
16393 NULL, xcalloc, xfree);
9c6c53f7 16394 make_cleanup (cleanup_htab, psyms_seen);
987d643c 16395
0a5429f6
DE
16396 /* While we're scanning CU's create a table that maps a psymtab pointer
16397 (which is what addrmap records) to its index (which is what is recorded
16398 in the index file). This will later be needed to write the address
16399 table. */
16400 cu_index_htab = htab_create_alloc (100,
16401 hash_psymtab_cu_index,
16402 eq_psymtab_cu_index,
16403 NULL, xcalloc, xfree);
9c6c53f7 16404 make_cleanup (cleanup_htab, cu_index_htab);
0a5429f6
DE
16405 psymtab_cu_index_map = (struct psymtab_cu_index_map *)
16406 xmalloc (sizeof (struct psymtab_cu_index_map)
16407 * dwarf2_per_objfile->n_comp_units);
16408 make_cleanup (xfree, psymtab_cu_index_map);
16409
16410 /* The CU list is already sorted, so we don't need to do additional
1fd400ff
TT
16411 work here. Also, the debug_types entries do not appear in
16412 all_comp_units, but only in their own hash table. */
9291a0cd
TT
16413 for (i = 0; i < dwarf2_per_objfile->n_comp_units; ++i)
16414 {
3e43a32a
MS
16415 struct dwarf2_per_cu_data *per_cu
16416 = dwarf2_per_objfile->all_comp_units[i];
e254ef6a 16417 struct partial_symtab *psymtab = per_cu->v.psymtab;
9291a0cd 16418 gdb_byte val[8];
0a5429f6
DE
16419 struct psymtab_cu_index_map *map;
16420 void **slot;
9291a0cd
TT
16421
16422 write_psymbols (symtab,
987d643c 16423 psyms_seen,
9291a0cd 16424 objfile->global_psymbols.list + psymtab->globals_offset,
987d643c
TT
16425 psymtab->n_global_syms, i,
16426 0);
9291a0cd 16427 write_psymbols (symtab,
987d643c 16428 psyms_seen,
9291a0cd 16429 objfile->static_psymbols.list + psymtab->statics_offset,
987d643c
TT
16430 psymtab->n_static_syms, i,
16431 1);
9291a0cd 16432
0a5429f6
DE
16433 map = &psymtab_cu_index_map[i];
16434 map->psymtab = psymtab;
16435 map->cu_index = i;
16436 slot = htab_find_slot (cu_index_htab, map, INSERT);
16437 gdb_assert (slot != NULL);
16438 gdb_assert (*slot == NULL);
16439 *slot = map;
9291a0cd 16440
e254ef6a 16441 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->offset);
9291a0cd 16442 obstack_grow (&cu_list, val, 8);
e254ef6a 16443 store_unsigned_integer (val, 8, BFD_ENDIAN_LITTLE, per_cu->length);
9291a0cd
TT
16444 obstack_grow (&cu_list, val, 8);
16445 }
16446
0a5429f6
DE
16447 /* Dump the address map. */
16448 write_address_map (objfile, &addr_obstack, cu_index_htab);
16449
1fd400ff
TT
16450 /* Write out the .debug_type entries, if any. */
16451 if (dwarf2_per_objfile->signatured_types)
16452 {
16453 struct signatured_type_index_data sig_data;
16454
16455 sig_data.objfile = objfile;
16456 sig_data.symtab = symtab;
16457 sig_data.types_list = &types_cu_list;
987d643c 16458 sig_data.psyms_seen = psyms_seen;
1fd400ff
TT
16459 sig_data.cu_index = dwarf2_per_objfile->n_comp_units;
16460 htab_traverse_noresize (dwarf2_per_objfile->signatured_types,
16461 write_one_signatured_type, &sig_data);
16462 }
16463
9291a0cd
TT
16464 obstack_init (&constant_pool);
16465 make_cleanup_obstack_free (&constant_pool);
16466 obstack_init (&symtab_obstack);
16467 make_cleanup_obstack_free (&symtab_obstack);
16468 write_hash_table (symtab, &symtab_obstack, &constant_pool);
16469
16470 obstack_init (&contents);
16471 make_cleanup_obstack_free (&contents);
1fd400ff 16472 size_of_contents = 6 * sizeof (offset_type);
9291a0cd
TT
16473 total_len = size_of_contents;
16474
16475 /* The version number. */
559a7a62 16476 val = MAYBE_SWAP (5);
9291a0cd
TT
16477 obstack_grow (&contents, &val, sizeof (val));
16478
16479 /* The offset of the CU list from the start of the file. */
16480 val = MAYBE_SWAP (total_len);
16481 obstack_grow (&contents, &val, sizeof (val));
16482 total_len += obstack_object_size (&cu_list);
16483
1fd400ff
TT
16484 /* The offset of the types CU list from the start of the file. */
16485 val = MAYBE_SWAP (total_len);
16486 obstack_grow (&contents, &val, sizeof (val));
16487 total_len += obstack_object_size (&types_cu_list);
16488
9291a0cd
TT
16489 /* The offset of the address table from the start of the file. */
16490 val = MAYBE_SWAP (total_len);
16491 obstack_grow (&contents, &val, sizeof (val));
16492 total_len += obstack_object_size (&addr_obstack);
16493
16494 /* The offset of the symbol table from the start of the file. */
16495 val = MAYBE_SWAP (total_len);
16496 obstack_grow (&contents, &val, sizeof (val));
16497 total_len += obstack_object_size (&symtab_obstack);
16498
16499 /* The offset of the constant pool from the start of the file. */
16500 val = MAYBE_SWAP (total_len);
16501 obstack_grow (&contents, &val, sizeof (val));
16502 total_len += obstack_object_size (&constant_pool);
16503
16504 gdb_assert (obstack_object_size (&contents) == size_of_contents);
16505
16506 write_obstack (out_file, &contents);
16507 write_obstack (out_file, &cu_list);
1fd400ff 16508 write_obstack (out_file, &types_cu_list);
9291a0cd
TT
16509 write_obstack (out_file, &addr_obstack);
16510 write_obstack (out_file, &symtab_obstack);
16511 write_obstack (out_file, &constant_pool);
16512
16513 fclose (out_file);
16514
16515 /* We want to keep the file, so we set cleanup_filename to NULL
16516 here. See unlink_if_set. */
16517 cleanup_filename = NULL;
16518
16519 do_cleanups (cleanup);
16520}
16521
90476074
TT
16522/* Implementation of the `save gdb-index' command.
16523
16524 Note that the file format used by this command is documented in the
16525 GDB manual. Any changes here must be documented there. */
11570e71 16526
9291a0cd
TT
16527static void
16528save_gdb_index_command (char *arg, int from_tty)
16529{
16530 struct objfile *objfile;
16531
16532 if (!arg || !*arg)
96d19272 16533 error (_("usage: save gdb-index DIRECTORY"));
9291a0cd
TT
16534
16535 ALL_OBJFILES (objfile)
16536 {
16537 struct stat st;
16538
16539 /* If the objfile does not correspond to an actual file, skip it. */
16540 if (stat (objfile->name, &st) < 0)
16541 continue;
16542
16543 dwarf2_per_objfile = objfile_data (objfile, dwarf2_objfile_data_key);
16544 if (dwarf2_per_objfile)
16545 {
16546 volatile struct gdb_exception except;
16547
16548 TRY_CATCH (except, RETURN_MASK_ERROR)
16549 {
16550 write_psymtabs_to_index (objfile, arg);
16551 }
16552 if (except.reason < 0)
16553 exception_fprintf (gdb_stderr, except,
16554 _("Error while writing index for `%s': "),
16555 objfile->name);
16556 }
16557 }
dce234bc
PP
16558}
16559
9291a0cd
TT
16560\f
16561
9eae7c52
TT
16562int dwarf2_always_disassemble;
16563
16564static void
16565show_dwarf2_always_disassemble (struct ui_file *file, int from_tty,
16566 struct cmd_list_element *c, const char *value)
16567{
3e43a32a
MS
16568 fprintf_filtered (file,
16569 _("Whether to always disassemble "
16570 "DWARF expressions is %s.\n"),
9eae7c52
TT
16571 value);
16572}
16573
900e11f9
JK
16574static void
16575show_check_physname (struct ui_file *file, int from_tty,
16576 struct cmd_list_element *c, const char *value)
16577{
16578 fprintf_filtered (file,
16579 _("Whether to check \"physname\" is %s.\n"),
16580 value);
16581}
16582
6502dd73
DJ
16583void _initialize_dwarf2_read (void);
16584
16585void
16586_initialize_dwarf2_read (void)
16587{
96d19272
JK
16588 struct cmd_list_element *c;
16589
dce234bc 16590 dwarf2_objfile_data_key
c1bd65d0 16591 = register_objfile_data_with_cleanup (NULL, dwarf2_per_objfile_free);
ae038cb0 16592
1bedd215
AC
16593 add_prefix_cmd ("dwarf2", class_maintenance, set_dwarf2_cmd, _("\
16594Set DWARF 2 specific variables.\n\
16595Configure DWARF 2 variables such as the cache size"),
ae038cb0
DJ
16596 &set_dwarf2_cmdlist, "maintenance set dwarf2 ",
16597 0/*allow-unknown*/, &maintenance_set_cmdlist);
16598
1bedd215
AC
16599 add_prefix_cmd ("dwarf2", class_maintenance, show_dwarf2_cmd, _("\
16600Show DWARF 2 specific variables\n\
16601Show DWARF 2 variables such as the cache size"),
ae038cb0
DJ
16602 &show_dwarf2_cmdlist, "maintenance show dwarf2 ",
16603 0/*allow-unknown*/, &maintenance_show_cmdlist);
16604
16605 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
7915a72c
AC
16606 &dwarf2_max_cache_age, _("\
16607Set the upper bound on the age of cached dwarf2 compilation units."), _("\
16608Show the upper bound on the age of cached dwarf2 compilation units."), _("\
16609A higher limit means that cached compilation units will be stored\n\
16610in memory longer, and more total memory will be used. Zero disables\n\
16611caching, which can slow down startup."),
2c5b56ce 16612 NULL,
920d2a44 16613 show_dwarf2_max_cache_age,
2c5b56ce 16614 &set_dwarf2_cmdlist,
ae038cb0 16615 &show_dwarf2_cmdlist);
d97bc12b 16616
9eae7c52
TT
16617 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
16618 &dwarf2_always_disassemble, _("\
16619Set whether `info address' always disassembles DWARF expressions."), _("\
16620Show whether `info address' always disassembles DWARF expressions."), _("\
16621When enabled, DWARF expressions are always printed in an assembly-like\n\
16622syntax. When disabled, expressions will be printed in a more\n\
16623conversational style, when possible."),
16624 NULL,
16625 show_dwarf2_always_disassemble,
16626 &set_dwarf2_cmdlist,
16627 &show_dwarf2_cmdlist);
16628
d97bc12b
DE
16629 add_setshow_zinteger_cmd ("dwarf2-die", no_class, &dwarf2_die_debug, _("\
16630Set debugging of the dwarf2 DIE reader."), _("\
16631Show debugging of the dwarf2 DIE reader."), _("\
16632When enabled (non-zero), DIEs are dumped after they are read in.\n\
16633The value is the maximum depth to print."),
16634 NULL,
16635 NULL,
16636 &setdebuglist, &showdebuglist);
9291a0cd 16637
900e11f9
JK
16638 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
16639Set cross-checking of \"physname\" code against demangler."), _("\
16640Show cross-checking of \"physname\" code against demangler."), _("\
16641When enabled, GDB's internal \"physname\" code is checked against\n\
16642the demangler."),
16643 NULL, show_check_physname,
16644 &setdebuglist, &showdebuglist);
16645
96d19272 16646 c = add_cmd ("gdb-index", class_files, save_gdb_index_command,
11570e71 16647 _("\
fc1a9d6e 16648Save a gdb-index file.\n\
11570e71 16649Usage: save gdb-index DIRECTORY"),
96d19272
JK
16650 &save_cmdlist);
16651 set_cmd_completer (c, filename_completer);
6502dd73 16652}
This page took 3.238526 seconds and 4 git commands to generate.